
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



 

                    Blue Shade Hues:  

 A Study of Blue Pigments Used by 

        Romano-British Wall-Painters  

      

 

                                  Susan Clegg 

 

 

 

 

 

                                May  2014 



Contents 

 

Abstract              iv 

Acknowledgements              v 

Chapter 1 :  Introduction              1                                                                                      

Chapter 2 :  Literature Research          12                                        

Chapter3 :  Methodology           60 

Chapter 4 :  Egyptian Blue Pellets, Fishbourne Roman Palace, Chichester                  69 

Chapter 5 :  Egyptian Blue Pellets, Piddington Roman Villa, Northampton               113 

Chapter 6 :  Egyptian Blue Pellets, Turner Hall’s Farm, St Albans                             151 

Chapter 7 :  Blue Frit pellets from Roman Verulamium                                              164 

Chapter 8 :  Fragments of Painted Wall Plaster, Verulamium Park                            177  

Chapter 9 : Experimental Work in Re-producing Blue Frit pellets                              198 

Chapter 10 : Conclusion                     226  

References               239 

Appendix A : The Munsell Colour Reference System                            253  

Appendix B : Paper published by the author                                                               256 

                                   



Acknowledgements 

 

I would like to thank the following people for all their support and encouragement 

whilst I was researching this project: Professor Andrew Cundy and Dr Martin Smith, 

University of Brighton, Professor Andrew Rankin, Kingston University and  Professor 

Michael Ramsey, University of Sussex and Dr Ian Croudace from the National 

Oceanography Centre, University of Southampton and the Natural History Museum, 

London. To the archaeologists without whom I would have not been able to complete 

my studies had they not be kind enough to supply Egyptian Blue pellets and samples 

of painted plaster; these include John Manley and David Rudkin, Fishbourne Roman 

Palace, Chichester in West Sussex, Mr and Mrs R Friendship-Taylor, Piddington 

Roman Villa, Northampton, Simon West and Nicky Metcalf of St Albans 

Archaeology Unit, David Thorold of the Verulamium Museum, St Albans.  

I would like to express my gratitude to the two laboratory technicians Christopher 

Dadswell at Sussex University and Jennifer Holter at Brighton University for all their 

help and encouragement and also for their assistance as I learnt new techniques when 

analysing the Egyptian Blue pellets and samples of painted plaster. To technicians 

Tim Cane and Mick Henry and to Roger Tant for allowing me to fire my Egyptian 

Blue pellets in the glass kiln at Sussex University and to John Ward for translations 

from French into English. To Julia Freeman and my late tutor John Evans of the 

University of East London. To Tristan Bareham, Chief Executive of Sussex 

Archaeological Society and Ian Dunford of East Sussex Archaeology & Museum 

Projects who both encouraged and helped me to fire my Egyptian Blue pellets using  

ancient technology. To the artist Margherita Hale of Lewes, East Sussex, and to my 

dear friend Emily Svendsen for her support and encouragement.  

 

 



ABSTRACT 

 

Following an earlier study of different coloured pigments used in Roman wall-plaster 

paintings, this research project investigates the use of the synthetic pigment commonly 

known as Egyptian Blue in Romano-British wall-plaster paintings. Samples of Egyptian 

Blue pellets were obtained from excavations at the Romano-British sites of Fishbourne 

Roman Palace, near Chichester, Piddington near Northampton, Turners Hall Farm, near St 

Albans, and from excavations at Verulamium (Roman St Albans).  

The aim of this study is to determine the chemical composition, fabric and texture of each 

pellet as well as attempting a textural and geochemical classification of the pellets, using 

well established analytical techniques, particularly LA-ICP-MS and SEM-EDAX.  The colour 

of the pellets was examined and identified using the Munsell Book of Color (Matte Finish 

Collection) 1973. The results of the analysis of the Egyptian Blue pellets found on 

Romano-British sites showed that differing amounts of silica, copper, calcium, as well as 

smaller amounts of other elements, were used in their manufacture.  Most of the pellets 

examined appear to have been manufactured locally, though some were almost certainly 

imported.  

Experimental work was undertaken, both in the laboratory and out in-the-field where a 

reconstructed Bronze Age Clamp Kiln and an Iron Age Belgic Kiln were used, to 

reproduce the synthetic pigment Egyptian Blue, using a recipe similar to that used by 

earlier investigators. Such recently manufactured Egyptian Blue pellets were applied, as a 

pigment, to damp lime mortar, in an attempt to correlate the achieved colour with the firing 

time. 

Similar techniques were used in an attempt to ascertain the nature of the pigments used on 

the small fragments of painted wall-plaster found in a back filled trench, from Wheeler’s 

1930 - 33 excavations at Verulamium. On two of the fragments gas chromatographic 

analysis was applied to determine the nature of the binding material that might have been 

used. 

This study is thought to be the first in-depth investigation of Romano-British Egyptian Blue 

pellets and thereby contributes to the art history and archaeological knowledge of this 

period.  



CHAPTER  1 

     Introduction 

   Pigments …  have been explored by painters since the beginnings of art                              

and by scientists for many generations 

 

Gettens & Stout, 1966, 140 

 

1.1   Preliminaries  

The word pigment (Latin pigmentum) describes a material or substance 

that may be used as a colouring agent.  The word ‘colour’ cannot itself 

describe a material substance, for colour is only a luminous sensation 

resulting from the selective absorption of certain wavelengths of light. 

From the electromagnetic energy emitted by the sun, the human eye can 

only detect as light, energy within the visible spectrum, that is, energy with 

radiation wavelengths in the range of approximately 4000Å to 7000Å.
*
  

(Skoog  &  Leary, 1992, 89). This visible portion of the electromagnetic or 

solar spectrum is, by custom, referred to as ‘colour’.   

   

The word ‘pigment’ is thus used for a colouring substance, which is 

usually made ready for use in the form of a dry powder.  Such pigments, 

whether crystalline or amorphous, were ground to fine particles which, as 

they have no adhesive qualities of  their  own,  require  to be mixed with a  

binding agent or medium to hold them in situ, and the combination 

constitutes what is known as a ‘paint’. Pigments may be divided into 

different categories such as mineral or organic and natural or artificial, 

depending on their origin.  

____________________________________ 

*
  1 Ångstrom unit  =  10

-10
 m.  (thus, 10Å = 1nm).  
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Natural mineral pigments are found in the earth in the form of carbonates, 

sulphates, sulphides and oxides. Ochres are natural earth pigments 

consisting of clay and silica, often with different concentrations of iron.  In  

ancient  times  after extraction  the  mineral was  left to dry and was then 

roughly ground and sieved to remove any impurities, then re-ground to a 

fine powder, cleaned and dried. Organic pigments are commonly obtained 

by maceration of fruits, leaves, bark, and the roots of plants. Once 

macerated the ‘mush’ is boiled and the coloured pigment finally obtained 

by evaporation and desiccation  (Mora & Philippot, 1984). Some artificial  

pigments are produced by well defined chemical processes whereby they 

are obtained by sublimation; alternatively they may be produced by 

precipitation of chemical solutions. Other artificial pigments, Egyptian 

Blue being a classic example, are produced by a complex operation 

involving the fusing together of different compounds at a high temperature. 

 

In earlier studies the term ‘blue frit’ was used to describe the calcium-

copper-tetrasilicate mineral, cuprorivaite, CaCuSi4O10, produced by mixing 

and firing together silica, copper and calcium compounds, normally with a 

flux.  In describing a range of vitreous materials, Tite (1987) uses the term 

frit to describe a  … sintered, polycrystalline material … However, the 

term frit is now, conventionally, restricted to the description of amorphous 

glass-like materials that demonstrate no crystalline structure. Thus, what 

was formally known as blue frit is today known as ‘Egyptian Blue’: the 

term is used to describe crystals of the mineral cuprorivaite; it is also used 

to describe smaller and larger quantities of a multiphase material, the bulk 

of which is composed of cuprorivaite, though several other phases, 

including glass, are also, invariably, present. 
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1.2   Historical background 

Over many millennia modern man has produced paintings of various forms 

and shapes by applying coloured pigments to hard, smooth surfaces. 

Painting, unlike other more ephemeral art forms, such as music and dance, 

was probably one of the earliest ways in which man sought to express his 

own personality and his emerging belief in and understanding of, a 

possible existence beyond the material world.  

 

It  was  during  the  third  millennium  BC  that  the  Egyptian  artisans 

perfected the manufacture of the first known synthetic pigment, using 

silica, copper and calcium to produce what is now known as Egyptian 

Blue.  The earliest known evidence for the use of this pigment was found 

in Egypt as early as the Fourth-Dynasty (ca. 2613 - 2494 BC) where it was 

formed into small objects such as cylinder seals, statuettes, amulets, inlays 

and beads (Lucas & Harris, 1962);  at a slightly later date it was ground 

and used as a pigment on limestone sculptures and sarcophagi, wood, 

plaster and papyrus. From this time onwards Egyptian Blue became one of 

the most popular pigments used in Egyptian art (a fine example is shown in 

figure 1a); its use continuing into the Ptolemaic Period (4th century BC) 

and subsequently when it was in use throughout the Late Period into 

Greco-Roman times, 332 - 395 AD, (Chase, 1971 & Riederer, 1997).  The 

term for Egyptian Blue in ancient Egyptian texts is hśbd-iryt which is said 

to be an expression for the colour of lapis lazuli and also to signify that it is 

a synthetic product.  

 

The manufacture of Egyptian Blue in Egypt, became a … resounding 

success … it was manufactured in large quantities and … was exported … 

across to the known Mediterranean world (Delamare and Guineau,1999, 
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22). During the third and second millennia BC the art of wall painting was 

introduced to the Aegean islands of Thera, now known as Santorini, and 

Crete by peoples from the Eastern Mediterranean such as the Syrians and 

Egyptians (Doumas, 1992). The Aegean artists appear to have used two 

kinds of blue pigment, viz. azurite and the artificially produced Egyptian  

Blue (Doumas, 1992). It was during the period 1600 - 450 BC that the 

technique of wall painting was developed in metropolitan Greece 

following its cultural diffusion from the islands of Crete and Thera (Myers, 

1967). 

 

The Etruscans has close contacts with the inhabitants of the major Greek 

speaking areas to the south of their homeland in northern Italy and would 

have learnt about the use of Egyptian Blue from these contacts. The use of 

Egyptian Blue in Etruscan wall paintings is mentioned by Spurrell (1895) 

and their artists may have used Egyptian Blue in tomb paintings during the 

fourth and sixth century BC (Pontrandolfo  et al., 2004).  

 

Use of Egyptian Blue is likely to have found its way into Italy, via trade 

links: Rome came into contact with both Greek and Etruscan art during the 

6th century BC.  Greek artists, such as Nicias and Aristolaus, began to 

flock towards Rome, as the city offered the best and most consistent source 

of patronage (Pliny, Book XXXV).  

 

There have been numerous records of Egyptian Blue, found in relatively 

large amounts, in the so-called colour shops of Pompeii and in the tombs 

of Roman painters. In a tomb found in St Médard-des-Prés in France 

eighty samples of Egyptian Blue were found in wooden and bronze 

containers together with different kinds of tools used to apply the pigment 

to the prepared walls (Riederer, 1997).  Towards the end of the fourth 
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century AD Roman artists had perfected the technique of wall-plaster 

painting using bold and vivid colours, especially the colour blue, in their 

paintings, see figure 1b.  Their achievements influenced many of the latter-

day fresco artists and will undoubtedly continue to capture the imagination 

of future generations (Mora  &  Philippot, 1984).   

 

The study of Roman Britain wall-paintings has been mainly based on 

establishing a chronological order of the paintings (Davey & Ling, 1982) 

similar to those established by the German scholar August Mau’s 

classification of the different ‘styles’ found in the Campanian cities of 

Pompeii and Herculaneum, and in Rome (Ling, 1992).  Study of the nature 

of the pigments used on Roman Britain wall-paintings have been limited 

mainly to the different ochre colours (Davey & Ling, 1982). There is little 

published material on the blue pigments used in Romano-Britain, despite 

their archaeological importance. This view was confirmed by English 

Heritage and the National Trust (personal communications, 2008). In 

contrast, detailed investigations into Egyptian Blue pellets found on 

various Egyptian, Mediterranean and other sites has been on-going for 

many years:  Spurrell and Russell in the 1800s and Laurie, Tite and Chase 

in the 1900s, to mention only a few of the early investigators. 

 

The description of the historical use of Egyptian Blue in this Introduction 

is necessarily limited since a more comprehensive, chronological study of 

the use of this (synthetic) pigment is provided in the Literature Review, 

Chapter 2. 

 

 

 

 



 6 

1.3   Objectives 

The aim of this research project is to attempt to close the knowledge gap 

within this area of Romano-British archaeology by analysing and 

characterising fragments of blue (and green) painted plaster and Egyptian 

Blue pellets found on various archaeological sites, using well established 

analytical techniques such as LA-ICP-MS, SEM-EDAX and XRD, and via 

these techniques to determine the source, composition and formulation 

method(s) of the Egyptian Blue pellets used.  

 

Specific study objectives are given below: 

 

1. To determine the chemical composition, fabric and texture of the 

Egyptian Blue pellets reviewed from various Romano-British sites 

across the southern and central England (viz. Fishbourne Roman 

Palace, Piddington Roman Villa and two sites near modern day St 

Albans), as well as to attempt a textural and geochemical 

classification using well defined analytical techniques;  

 

2. To establish the nature of other blue producing materials employed 

as a pigment on Romano-British wall paintings;  

 

3. To improve the understanding of how Egyptian Blue pellets were 

manufactured by using experimental work, both in the laboratory 

and in field studies, using materials and techniques which are similar 

to those found to have been used by the artists working in Roman 

Britain;  

 

4. To attempt to establish what type of binding material was used on 

two fragments of painted plaster from Verulamium. 
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The archaeological sites referred to and used as the source of 

archaeological material in this study are shown on  Map 1. 

 

This thesis has the following structure: 

 

 Chapter 1 is an introduction with a general history of the use of 

Egyptian Blue; 

 

 Chapter 2 reviews the available literature looking at the 

production, use and identification of Egyptian Blue (and other 

blue pigments) at various historical sites; 

 

 Chapter 3 - Methodology – presents the use of different 

microscopic and geochemical techniques in order to establish 

the composition of  Romano-British samples of blue pigments; 

 

 Chapter 4 contains an analysis of Egyptian Blue pellets found at 

Fishbourne Roman Palace in order to determine the materials 

used in their manufacture. An attempt is made to ascertain 

whether or not the Egyptian Blue pellets found at Fishbourne 

were manufactured on site or were imported by the interior 

decorators/painters.  The same analytical methods were applied 

to the Egyptian Blue pellets obtained from Piddington Roman 

Villa (Chapter 5), Turners Hall Farm (Chapter 6) and 

Verulamium (Chapter 7);  

 

 Chapter 8 analyses and characterizes samples of blue (and 

green) pigments found on painted fragments located in the back- 
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fill from one of Mortimer Wheeler’s trenches after the 

excavation (1930 - 33) of a high-status town house, found in 

‘Roman’ St Albans.  An attempt is also made to identify the 

type of binding material(s) used with two of the painted 

fragments. 

 

 Chapter  9  presents the results of experimental archaeological 

activity, both laboratory and field-based, to investigate the 

manufacture of Egyptian Blue pellets using compositional data 

drawn from earlier Chapters and simulated ancient techniques; 

and finally 

 

 Chapter 10 presents conclusions and suggestions for further 

work. 

 

The structure of this thesis reflects the nature of the investigations 

undertaken. It initially focuses on the Egyptian Blue pellets found at 

different Romano-British sites (Chapters 4 - 7), then examines other blue 

materials that might have been employed as pigments (Chapter 8), and 

culminates in experimental work, using simulated ancient technologies, to 

examine the production techniques that were thought to have been used by 

the employed artisans (Chapter 9).  

 

 

 



Figure 1a   Blue pigment seen in a side chapel at Queen Hatchepsut’s 
temple in the Valley of the Queens, Egypt  (18th Dynasty)  
 
 
Picture taken by the author 
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Figure 1b  A detailed painting clearly showing the use of a blue pigment of 
Apollo playing the lyre, Palatine Museum, Rome.  

 
 
Picture taken by the author 
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Map 1: Locations of archaeological sites discussed in this thesis (latitude 
and longitude marked).  

Key:  
 

 

 

Piddington Roman 

Villa, Northampton 

Fishbourne Roman 

Palace, Chichester, W. 

Sussex 

Verulamium & Turner 

Hall’s Farm 



CHAPTER  2 

 

Literature Review 

 

Reading is to the mind what exercise is to the body. 

                              Richard Steele 1672-1729: The Tatler 18th March1710 

 

2.1 Introduction  

Prior to undertaking this research project English Heritage, local 

archaeological societies, the National Trust and the Museum of London were 

contacted, to see if previous in-depth research had been undertaken, or was 

on-going, into Egyptian Blue or any other blue pigment used in wall-plaster 

paintings found on Romano-British sites. In all cases the answer was negative. 

A preliminary literature review (of archaeological material) was carried out by 

the author at the request of the recently retired chief executive of Sussex 

Archaeological Society and the recently retired Director of Fishbourne Roman 

Palace. This review indicated a paucity of material specific to Romano-British 

sites, despite a not insignificant number of relevant archaeological finds.  

The main emphasis of contemporary research into Romano-British use of 

Egyptian Blue is directed towards laboratory experimentation. Very little 

work is aimed at exploring the nature of extant historic samples or 

investigating the materials and methods that might have been used by the 

ancient artisans operating in the British Isles.  

This study makes a contribution towards a better understanding of some of the 

Egyptian Blue pellets found at a small number of Romano-British sites and 

also attempts to investigate the processes that might have been involved in the 
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manufacture of the pellets at these sites by using technologies that attempt to 

mimic those that might have been used by early artisans. 

 

2.2   The Occurrence and Use of Egyptian Blue in Egypt.       

According to Hatton and colleagues (2008, 1591) the ... earliest surviving use 

of Egyptian Blue ... [in Egypt] ... was possibly in the painting from Tomb 3121 

at Saqqara ... dated to the reign of Ka-sen who was the last king of the 1st
 

Dynasty (ie circa 2900 BC). In the same paper they also state (page 1591) that 

the use in Egypt of the pigment Egyptian Blue only became widespread by 

Fourth-Dynasty (ca. 2613–2494 BC). The Max-Planck Project identified 

Egyptian Blue as the blue pigment in all the Egyptian samples (more than 

1300) they analyzed (from the Fifth-Dynasty onwards), apart from the grey-

blue pigments of the First Intermediate Period (Blom-Böer, 1994). The blue of 

the dramatic head-dress and of parts of the neck covering of the Eighteenth-

Dynasty Queen, Nefertiti, which can be seen in the Neues Museum in Berlin, 

has been identified as Egyptian Blue by Wiedemann & Bayer, (1982). 

Sir Flinders Petrie’s excavations at Tell el-Amarna at the beginning of the 

twentieth century, uncovered ancient stocks (sometimes called artists’ pot 

specimens)  of the raw ingredients used for the manufacture of Egyptian Blue. 

Also found, were sites (which he labelled as ‘factories’) for the production of 

the pigment Egyptian Blue; previously, in 1894, Petrie had uncovered bowl-

shaped pans and cylindrical vessels or saggers that he suggested were used in 

antiquity to make Egyptian Blue.  Provided that they are duly cared for and 

not subsequently contaminated, artists’ pot specimens, such as found by 

Petrie, are important because their analysis should not produce fallacious 

chemical phases, but represent the product as left by the early artisan.  

However, they may, of course, have been subjected to weathering or chemical 
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degradation in the centuries that have passed since their production. These pot 

specimens may also yield information (relating to the manufacturing 

processes and the availability of ingredients) about the locality in which they 

were found. 

More recent excavations at Tell el-Amarna by Barry Kemp (1989), found a 

very small number of these “fritting” pans. Kemp also uncovered various 

remaining, isolated, pieces of Egyptian Blue ‘cake’, which allowed the 

identification of five different categories of Egyptian Blue forms and the 

vessels associated with them: large round flat cakes, large rectangular flat 

cakes, bowl-shaped cakes, small sack-shaped pieces and spherical shapes.  

At the ancient habour town of Qantir (Pi-Ramesses), in Lower Egypt,  

founded by Seti I (1294 - 1279 BC) which later became the major seat of 

government under his son, Ramesses II (1279 - 1213 BC), fragments of small 

objects, in various stages of production were discovered early the twentieth 

century by Mahmud Hamza (1930). Also found were '... lumps of the favourite 

blue colour (ie Egyptian Blue pigment) ...' (Nicholson & Peltenburg, 2009,  

184).  Recent excavations at the same site by Rehren & Pusch (2005) were 

concerned with the early production of glass. Their evidence uncovered a 

substantial copper-based industry with evidence of bronze-casting, red-glass 

making and faience production, in addition to Egyptian Blue manufacture.  

Reaction vessels with adhering remains of Egyptian Blue were also found in 

the excavations (Shortland, 2012, 94) which suggests that the Egyptian Blue 

had been manufactured on site.  The scarcity of finished Egyptian Blue 

products, at this site, however, may suggest the possibility that the locally 

manufactured Egyptian Blue cakes were exported to other areas where they 

would be worked into finished small objects or used to produce the pigment. 

Alternatively, of course, the lack of finished products at Qantir - Pi-Ramesses 

may simply reflect the presence of an efficient and well managed trading 
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organization whose stocks of finished artifacts were, perhaps, deliberately run 

down.  In fact, there is no reason to suppose that such a well established local 

industry would not have had the facilities to produce Egyptian Blue, firing the 

cakes and regrinding the material if a pigment was to be produced.  However, 

given the evidence, a more likely explanation is that a decision had been made 

to terminate the production of Egyptian Blue and to continue with the other, 

perhaps more profitable, well established industrial activities. 

The finding of Egyptian Blue cakes at Zawiyet Umm El-Rakham, a 

Ramesside fort abandoned shortly after the reign of Ramesses II, near the 

Libyan coast  (Hatton,  Shortland  & Tite,  2008, 1599)  without evidence of 

any local manufacturing site, might be taken to suggest that the cakes had 

been traded and would probably be passed on to, or traded with, another 

location with a manufacturing capability. However, it is not clear why any 

manufacturing site would need to import cakes from elsewhere. Cakes that 

have been molded or pressed into the shape of small objects, or those waiting 

to be prepared for use as a pigment normally need to undergo at least a single 

further firing -  hence the difficulty in explaining the presence of cakes in 

those (non-manufacturing) areas near the Libyan coast. It is possible that the 

cakes may have been used as ‘currency’, to encourage or facilitate trade with 

other areas by means of a barter economy.   

The royal graves near the New Kingdom town of Karnak were serviced, by a 

nearby village of craftsmen who were responsible for their building and 

decoration.  In 1999 Pagès-Camagna et al. analysed, using Raman microscopy 

and scanning electron microscopy, … seven cakes of raw Egyptian pigments 

… which had been excavated from the village. The colour of the cakes varied 

from different shades of blue to turquoise which, according to Pagès-Camagna 

are … associated with residues of the initial compounds and by-
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products…[of] …the manufacturing process. The analysis showed the 

presence of calcium, silica, copper and, in some of the samples, tin. 

 

2.3   The Occurrence and Use of Egyptian Blue outside Egypt.   

 As already noted, Egyptian Blue is first attested in Egypt during the Fourth-

Dynasty, ca. 2613–2494 BC, although Hatton et al., (2008) have suggested a 

considerably earlier date. There are no extant Egyptian texts describing its 

production.  According to Spurrell (1895, 236) ... Wherever Greek and 

Roman Colonies existed in the Mediterranean area it [Egyptian Blue] has 

been found extensively on buildings, sculptures, vases, ivory etc.  However 

there is no direct evidence to suggest that the technology was transferred 

from Egypt to other parts of the Mediterranean basin, or elsewhere in the 

Middle East; neither is there evidence to support the contention that parallel, 

possibly later, or an even an earlier, invention occurred outside Egypt.  This 

suggestion does not exclude the possibility that modifications or adjustments 

to the technology invented elsewhere in the Mediterranean basin did not at 

some stage find their way back to influence the Egyptian production 

protocols. There were, for instance, significant trading connections between 

Crete and Egypt (Immerwahi, 1990): Minoan ceramics are found in many 

Egyptian cities and the Minoans imported several items from Egypt, most 

notably papyrus, and it is claimed that Egyptian hieroglyphs served as a 

model for the Minoan pictographs, which later developed into the Linear A 

writing systems (Bengtson, 2002); Linear B is thought have appeared later 

after the Minoans were over-run by the Mycenaeans.  Furthermore, the 

strong indications of trade in glass ingots, and possibly finished items, 

during the Bronze Age (fourteenth century BC) between Egypt, 

Mesopotamia and several Mycenaean and Aegean cities (Jackson & 

http://en.wikipedia.org/wiki/Hieroglyphs
http://en.wikipedia.org/wiki/Minoan_pictographic_writing
http://en.wikipedia.org/wiki/Linear_A
http://en.wikipedia.org/wiki/Linear_B
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Nicholson, 2010) implies that the exchange of technologies between major 

centres was always a strong possibility.  

In their 2007 paper, when considering possible international trade in Egyptian 

Blue pigments, Tite and Hatton tentatively suggest that there was some form 

of central control over the production of Egyptian Blue pigments. It may be 

suggested that this opinion is, for three reasons at least, unjustified.  Firstly, it 

implies the existence, for which there is absolutely no evidence, of central 

areas of production, which could be regulated; secondly, it is based on the 

examination of 27 samples of Egyptian Blue from just six sites across the 

Roman Empire: Egyptian Blue pellets, in the form of balls, were examined 

from Memphis in Egypt, from Delos in the Aegean, from a shipwreck off the 

coast of Malta and from both Hertford and Colchester in England. The sample 

from Pompeii consisted of ground pigment contained in small pots; the 

Roman samples are from mosaic tesserae; and finally, because it fails to take 

into consideration the undoubted mobility of different ‘schools’ of painters 

who, during the course of their engagements, were likely to have acquired the 

Egyptian Blue pellets from many different sources. Hence, the location in 

which Egyptian Blue pellets might be found, may bear absolutely no 

relationship to the place in which the pellets had been manufactured. 

From the third millennium BC, that is from the Early Dynastic III Period in 

Mesopotamia and elsewhere in the Middle East, Egyptian Blue is found as 

the material from which small artefacts and inlays have been created, though 

at this early stage there is no evidence of its use as a pigment, (Moorey, 

1994). Riederer (1997) reports that Egyptian Blue has been identified at 

several Mesopotamian sites, including Persepolis, Pasargadae and Nineveh.  

From the seventh-century site at Nimrud, Tite et al., (1984) have identified 

substantial blocks of Egyptian Blue that are thought to have been available 

for trade. In their 1987 paper Tite and colleagues examined a single sample 
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from each of Nineveh and Nimrud; the chemical analyses demonstrate that 

both samples have an otherwise similar chemical content, though the lime 

content in the Nineveh specimen is some 40% greater than that found in the 

sample from Nimrud. No explanation is offered for this difference, though 

elsewhere, Tite and colleagues (1984), suggest that Egyptian and Roman 

samples of Egyptian Blue have a higher calcium content than samples from 

Nimrud. 

The dark blue material on a mace head from the Hurrian city of Nuzi 

(modern Yorghan Tepi, in northern Mesopotamia, south of Ninevah), dating 

to ca. 1500 BC has also been identified as Egyptian Blue (Moorey, 1994). 

Because of the early finds of Egyptian Blue in Mesopotamia, Moorey (1994) 

has suggested that it is possible that this material was first produced here, 

and not in Egypt.  Egyptian Blue has also been found at the Roman fort, near 

the Azanathkona Temple, dating before AD 256, the date of its destruction 

by the Persians, at Dura-Europos, Mesopotamia, in modern day Syria.  

An investigation of in situ wall-paintings and of powdered pigments isolated 

in ceramic vessels found at Herold’s Palace in Jericho, dating to the first 

century BC, was undertaken by Silvia Rozenberg (1997). The powdered blue 

and green pigments were found to be identical to those used on the walls of 

the palace. The blue pigment was identified as Egyptian Blue. Rozenberg 

suggests that the high quality of the fresco work, the preparation of the walls 

according to standard Roman rules and the use of other imported colours 

strongly suggests that foreign, probably Roman, craftsmen were engaged at 

Jericho, and that these artists would have brought their pigments with them. 

This transport of coloured pigments by artisans is also suggested by Davey 

& Ling (1982).  
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Segal  & Porat (1997) have reported finding wall-painting fragments from a 

3rd -2nd century BC Hellenist fort at Acre. The colours were scraped off the 

wall-paintings by use of a scalpel and in two of the fragments Egyptian Blue 

was found, and in a third sample Egyptian Blue was found mixed with calcite. 

During excavation of a Pompeian-style house, dated to the period 400 – 168 

BC, in Pella, western Macedonia, samples of blue painted plaster were 

acquired for analysis and using non-destructive methods, [both XRD and XRF],  

by Calamiotou  et al., (1983) who were able to demonstrate that Egyptian 

Blue had been widely employed. 

Several authors, including Segal & Porat, (1997), acknowledge that the 

pigment Egyptian Blue was widely adopted by different Greek civilizations. 

The Greek polymath Theophrastus, writing ca. 315 BC in his work de 

Lapidibus [On Stones, Chapter 98] mentions Egyptian Blue and the fact that it 

is synthetic. He states that there are natural and synthetic varieties of blue, 

kyanos (κύανος): the synthetic forms being Egyptian and Scythian Blue from 

Phoenicia – mentioning that both were made by combining sand, copper 

filings and flowers of soda, without describing the manufacturing process. He 

mentions Scythian or Phoenician Blue as another synthetic compound, 

different from Egyptian Blue. In fact, it seems that Egyptian Blue was traded 

by the Phoenicians and also possibly manufactured in the Levant, hence its 

‘adopted’ name; and it is because of Alexandria’s significance as a trading 

port, that the pigment Egyptian Blue also came to be known as Alexandrian 

Blue. 

From late Bronze Age sites in the vicinity of Thebes, 30 fragments of 

generally high quality wall-paintings, belonging to several contexts and 

periods, were investigated by Brysbaert (2008).  Four of the blue samples 

were shown to be Egyptian Blue. Another blue sample was shown to contain 
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the blue sodic-amphibole, riebeckite, Na2(FeMg)3Fe2Si8O22(OH)2 -  the first 

time that this mineral has been identified on the Greek mainland. 

Brysbaert and colleagues (2006) examined a total of 23 fragments of painted 

wall-plaster from sites in Crete, from Thebes and from Tell el-Dab’a in Egypt. 

Using laser-induced breakdown spectroscopy, Egyptian Blue was found in the 

blue samples from both Thebes and the Egyptian site. LIBS studies identified 

that the blue sample from Crete contained iron and magnesium: subsequent 

XRD studies concluded that the mineral was riebeckite. 

Samples of painted wall-plaster were obtained for analysis from Knossos, 

Crete, made famous by Sir Arthur Evans’ excavations at the beginning of the 

20th Century. They were first examined by Noel Heaton (1910-11) who 

concluded that the paintings were … executed in true fresco technique … the 

pigments were mainly earth colours, the blue being Egyptian Blue.  In 1976 

Profi, with others, used non-destructive analytical techniques [such as X-ray 

fluorescence analysis (XRF), X-ray diffraction analysis (XRD) and 

mineralogical examination with a polarizing microscope] to ascertain what 

type   of   pigment   had   been   applied   to   these   frescos.   Samples   of   

the  blue pigment  from  Knossos  4  and  5  were  identified  as  Egyptian  

Blue  whilst  the  sample  from  Knossos  6,  dated  to  ca.  2100 BC,  

contained a sodium-magnesium-aluminium-hydroxide-silicate, the mineral 

glaucophane, Na2(Mg3Al2)(Si8O22)(OH)2, found locally in metamorphic rocks.  

Further work by Profi and colleagues continued on the Egyptian Blue samples 

and half of all the specimens examined contained this mineral. Tin was also 

found in the Egyptian Blue samples from Knossos, thereby implying that 

bronze products, as opposed to copper ores, were used in the manufacture of 

Egyptian Blue, at an earlier date than was the case in Thutmose III’s Egypt, 

raising the possibility that this particular use may have been subsequently 

exported to Egypt.  Filippakis et al. (1976), Jones (2005) and Hejl & Tippett 
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(2005) have shown the extent to which Egyptian Blue appears in Minoan 

frescos both in Crete, Phaistos, Kommos and Thera during the  Bronze Age.  

Jones and Filippakis (1977) have demonstrated that a green pigment used on 

the island is produced by applying a yellow ochre mixed with or painted on 

top of either Egyptian Blue or a sodic-amphibole.  

Using the same analytical techniques as those used on the Knossos samples, 

Profi and colleagues (1977) examined samples of blue pigment from the 

frescoes on the Greek island of Thera (Santorini) which had been excavated in 

1866 shortly after a volcanic eruption. The famous French mineralogist, 

volcanologist, and administrator, Fouqué, was amongst those who participated 

in the excavation.  More excavations took place in 1870 and 1967.  As was the 

case  at  Knossos,  a  number  of  the  Egyptian  Blue  samples  found  at 

Thera, and dating to ca. 1500 BC, demonstrated  the  presence  of 

glaucophane.  Also, on Thera, the related iron containing mineral, riebekite, 

Na2(Fe.Mg)3Fe2Si8O22(OH)2, was isolated (Jones,  2005 & Profi et al., 1977). 

Since both glaucophane and riebekite are found in local metamorphic rocks on 

Thera (and also at Knossos), the possibility exists that these blue sodic-

amphiboles were mixed with the ingredients used to make Egyptian Blue 

during the manufacturing process, either deliberately, or more likely, as a 

result of soil contamination. Furthermore, analysis of sixteenth century BC 

samples taken from frescoes found at Thera showed that the identified 

Egyptian Blue also included tin products (Profi et al., 1977).   

In a recent study of the partially reconstructed wall-painting of the well known  

Archer Fragment in the Palace of Nestor, on the Greek Island of Mykonos, 

Brecoulaki and colleagues (2008) have identified Egyptian Blue as the 

background colour to the area of the bow. This had been mixed with calcite to 

produce a light blue hue and had been applied above a grey undercoat. 
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On Cyprus, at Nea Paphos and Kourion, eight sites have been found in which 

Egyptian Blue (and no other blue pigment) has been found in Roman period 

wall-paintings.  At none of these eight sites has any other element been found 

to suggested that anything other than ‘pure’ copper had been used in the 

production of the blue pigment (Kakoulli, 1996), ie there was no evidence of 

the use of bronze or any other copper-rich alloy: a finding that is not 

surprising given that Cyprus was known to be the principal source of copper 

during the Roman period. However, the author was not able to determine 

whether the Egyptian Blue found on Cyprus had been manufactured locally or 

had been imported.   

During earlier excavations of the South East building in the forum at Corinth a 

collection of wall-painting fragments of mixed colours were found, together 

with a small ball (ca. 1 cm in diameter) of a blue pigment, and subsequently 

analyzed by Meggiolaro and colleagues (1997). All the blue pigmented 

fragments were associated with a calcite matrix which the authors suggest 

implies that the paintings were executed with a true fresco technique. The blue 

of the fragments has been identified as Egyptian Blue: in several of the blue 

fragments minute quantities of tin, magnesium, iron, and aluminum have been 

found. The small blue ball was also identified as being Egyptian Blue and it 

has been suggested that it represents an example of the raw material that was 

used in the production of the original wall-paintings, which subsequently were 

found as the fragments. 

The use of Egyptian Blue in Etruscan wall paintings and in their frescoed 

tomb interiors is mentioned by Spurrell (1895, 236) and possibly pre-dates the 

use of the pigment in Rome itself.  The Etruscans had close contacts with the 

inhabitants of the major Greek speaking areas to the south of their homeland 

in northern Italy and probably learnt of the use of Egyptian Blue from these 

contacts (Pontrandolfo, et al., 2004). 
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There was extensive use of Egyptian Blue during the Roman period. Many 

local production centres and schools were established and a whole ‘army’ of 

painters became masters of its use both in Rome and elsewhere within Italy 

and throughout the Empire. Only in Roman texts is there an explicit 

description of the manufacture of Egyptian Blue found, such a description, if 

ever written, is not found in Egyptian works nor in those of  any other ancient 

civilization.  It is not certain at what date Egyptian Blue began to be produced 

in Roman Italy, though the first descriptions of its production process are 

found in the texts of Vitruvius (Book VII, Chapter XI, 1) writing in the first 

century BC. The pigment known as Egyptian Blue was described by Vitruvius 

by the term caeruleum
*
, though he erroneously states that it was invented in 

Alexandria.  

 

In one of the rooms of the baths of Emperor Titus’ palace in Rome, Davy 

(1815, 100) found… several large lumps of a deep blue frit… and in May 

1814 he was present when … a small pot containing a pale blue colour [-ed 

material] … was recovered during an excavation in Pompeii and which was 

subsequently shown to contained … Alexandrian – [ie Egyptian] ... Blue.   

 

Fragments taken from wall-paintings in the Vesuvian area and bowls of 

powdered pigments found at Pompeii were investigated by Aliatis and 

colleagues (2010) using micro-Raman technology and other non-destructive 

techniques.  Micro-stratification studies showed that in all the fragments of 

wall-paintings studied a beeswax layer was present. The authors suggested 

that this might have been a consequence of recent restoration work – the site  


For most authors in antiquity caeruleum is used, like the Greek kyanos, to refer to the colour 

'blue'.   
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was severely damaged by the AD 62 earthquake which preceded the 

destruction by eruption of Mt. Vesuvius in AD 79.  Three blue samples, one 

fragment and two powders, were identified. One powdered sample was shown 

to be Egyptian Blue, but with it was found the lead mineral cerussite, PbCO3, 

which it was suggested might have been used to dilute the blue hue.  The 

second blue powder was also Egyptian Blue and was associated with the high 

temperature polymorphs of quartz, viz. trydimite and cristobalite. The blue 

fragment from a wall-painting was also Egyptian Blue, but also demonstrated 

calcite, gypsum and beeswax. A violet coloured powder also contained 

Egyptian Blue which had been mixed with haematite grains, Fe2O3.  Egyptian 

Blue was found in two other wall-painting fragments: the analysis 

demonstrated that the first was mixed with other compounds, viz. haematite, 

cinnabar, HgS, minium, Pb3O4, and goethite, FeO(OH).  A second, green 

coloured fragment, was also shown to contain Egyptian Blue, but was mainly 

composed malachite, Cu2CO3(OH)2,  and also contained smaller amounts of 

haematite, goethite, quartz, calcite, cerussite, albite, NaAlSi3O8, and massicot, 

PbO. The finding of so many powders with mixed pigments possibly suggests 

that they had recently been prepared and were shortly to be employed – before 

nature so cruelly intervened.   

Piovesan and her colleagues (2011) have investigated some 57 fragments of 

wall-paintings and floor filling material from the Temple of Venus at Pompeii.  

On seven of the samples, all of which date from the Augustan and Julio-

Claudian periods of construction, Egyptian Blue was found to have been used. 

In the two pale blue samples, a phase containing tin was identified as small 

inclusions within the cuprorivaite, CaCuSi4O10 crystals, implying that the 

copper had been sourced from a bronze material. The remaining five 

fragments, from a possibly different period, in which Egyptian Blue had been 

used showed no evidence of tin inclusions and were, therefore, manufactured 
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using a copper ore or metal; the implication being that two different methods 

of production of Egyptian Blue had been used. In each of these five samples, 

the Egyptian Blue had been mixed with, or covered with, other coloured 

pigments, including green earth.   

The Domus Aurea, built by Nero in AD 64, was obliterated some 40 years 

later and its remains lay beneath newer constructions. Today it remains 

beneath the ruins of the Baths of Trajan. Being the largest palace in imperial 

Rome it was sumptuously decorated and is said to have had a magnificent 

Gilded Vault. Using MOLAB and a range of other technologies Clementi and 

colleagues (2011) investigated the pigments used in the decoration of the 

Gilded Vault.  Egyptian Blue was identified on a number of samples.  It was 

also identified at sites where the blue colour had turned black and elsewhere 

in combination with other pigments. Egyptian Blue was also identified in all 

the analysed green areas; in some areas the Egyptian Blue had been mixed 

with green earths; Egyptian Blue was also found in some of the purple areas 

where it seems that it was mixed with, or painted over with a red lake.  In 

some areas micro-stratigraphy demonstrated five successive paint layers.  The 

authors note that their results showed that pigments were seldom used alone 

but very often as complex blends. 

During an excavation of the House of Diana at Cosa, Grosseto, Italy (dating to 

ca. 71 BC) forty samples of painted plaster were selected for an in depth study 

by Damiani et al., (2003, 343). Chemical and mineralogical analytical 

techniques were employed in order to try and establish … the provenance and 

the technological utilization of the raw materials used for the pigments … for 

the reconstruction of ancient trading patterns … The identification and 

quantification of the pigments within the House of Diana gave further 

information regarding cost-accounting … Analysis of one of the painted 

samples showed that the pigment Egyptian Blue had been used and the 



 26 

identification of a small amount of tin in the sample indicated that material 

from a bronze product or from scrap metal had been used instead of a copper 

ore.  However, in another blue painted sample from the same site a copper 

ore, possibly malachite, had been used, no tin being identified. The production 

of Egyptian Blue, using two different copper sources, from the same period, 

on one site, had not been previously recorded.  

Mazzocchin (2003) and colleagues used a range of analytical methods [optical 

microscopy, SEM-EDS, X-ray powder diffraction (XRD) and Fourier transform 

infrared spectroscopy, FT-IR] to investigate 60 fragments of wall paintings 

found during archaeological excavations at a Roman Villa in Vicenza, in 

north-east Italy.  There were 5 pigments with a blue hue.  All five were found 

to have been painted using Egyptian Blue, two were, however, diluted with 

calcite, calcium carbonate, CaCO3. 

Throughout the late Roman period and into the early Middle Ages the use of 

Egyptian   Blue  as  a  pigment  declined  and  the  manner  of  its  production 

was thought to have been forgotten.  Indeed, it had been assumed that the 

technique for manufacturing Egyptian Blue had been lost by the late Roman 

period. Spurrell (1895) for example states that … there is no trace of it in any 

mediæval paintings … and Laurie (1914/1967) was of the opinion that the 

latest date for samples from Italy were the second to seventh centuries AD. 

 

However, recent work has proved that these opinions were groundless: 

Riederer summarizes ‘late’ appearances of the pigment in Christian wall 

paintings in his 1997 paper. The pigments used on a ninth century Byzantine 

fresco, an Assumption, possibly dated to AD 850, in the Church of San 

Clemente, Rome, were compared with ‘standard samples’ of Egyptian Blue 

obtained from the first century AD fresco Domus Augustana  in Rome, and 

from an excavated site at Aquilia. The results showed that Egyptian Blue had 
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been used as a pigment on this ninth century painting.  The poor quality of the 

pigment used might suggest that the painters had access to an old source of the 

pigment from within Rome itself  (Lazzarini (1982).  However, it is now 

believed that Egyptian Blue was still being manufactured in the former 

Roman provinces of Asia Minor and Greece where traditional technology had 

not been forgotten (Lazzarini, 1982) and this might have provided an 

alternative source from which the artist obtained his material. 

 

In 2000, Pozza et al., published their study on the Photoluminescence of 

Egyptian Blue, Han blue and Han purple. The analytical non-destructive 

techniques that were employed were photoluminescence spectroscopy and x-

ray diffraction (XRD). The aim of their research was to examine pigments 

identified in fresco and tempera wall-paintings. Small samples of pigment 

were obtained from the Last Judgement, a painting by the 12th century artist 

Nicolaus Johannes.  The painting is presently held by the Vatican Museums.  

The unequivocal finding of Egyptian Blue, used as a large area of sky in the 

background of the picture, can only mean that the material was still being used 

into the Middle Ages; it does not, of course, necessarily mean that Egyptian 

Blue was still being manufactured in Europe at that time. 

Egyptian Blue has also been found at sites in Switzerland (Béarat, 1996;      

Fuchs & Béarat, 1997  and  Bugini & Folli, 1997) and France (Spurrell, 1895, 

and Ullrich, 1979) and elsewhere throughout the Empire. The most northerly 

finds have been made in Norway where Rosenqvist (1959) reported Egyptian 

Blue on a third century AD painted shield; however, it would be right to be 

somewhat sceptical of this claim since it was made without the advantage of 

modern investigative technologies, at a time when it was thought that 

Egyptian Blue could be identified following examination with a hand lens. 

The same hesitation about making premature diagnoses was expressed by Ann 

Brysbaert (and colleagues,  2006,  1098) when she writes that the initial 
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microscopic examination of a sample from Crete which was initially thought 

to be Egyptian Blue was a clear proof that plain optical microscopic 

examination with a stereomicroscope is not sufficient to determine the 

composition of these materials.  

In 1999 Smith and Barbet examined, using Raman Microscopy, a blue 

pigment found in a garland of flowers on a painting from a Roman tomb near 

the necropolis at Kertch, in what is now the Ukraine. The results showed that 

Egyptian Blue had been applied to the wall painting. Smith and Barbet 

compared the results with a sample of an Egyptian Blue pellet taken from an 

artist’s collection discovered near the Azanathkona Temple at Dura-Europos. 

The  results  were  the  same  as those  found  in  the  Roman  tomb.  

During the Han Dynasty in China (208 BC to AD 220) a barium-copper-

silicate compound, commonly known as Chinese, or more correctly, as Han 

Blue was used as a pigment, as Egyptian Blue was, further to the west. This 

material produced a deep lilac to purple colour. There is no evidence to 

suggest that the Chinese version had Egyptian roots, or indeed that the 

Egyptian pigment had an eastern origin. Han Blue is an analogue of the 

calcium-copper-silicate used in West.  Nevertheless, it has been suggested, 

without any evidence to support the notion, that Egyptian Blue could have 

travelled along the so-called Silk Route and reached China, where local 

materials were adopted in the manufacturing process (Chiari & Scott, 2004). 

Since the production of Han Blue involves the same sort of manufacturing 

process as does Egyptian Blue, it will also inevitably result in the production 

of phases other than the main pigment, such as wollastonite, quartz and glass, 

Kendrick and colleagues (2007) have shown that the alkali-earth analogues 

wesselsite, SrCuSi4O10, and effenbergerite, Han Blue, BaCuSi4O10, may be 

synthesized, though the colours of these synthetic products lack the intensity 

of synthetic calcium-copper-tetrasilicate, Egyptian Blue.  In this 2007 paper 
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Kendrick et al., investigated the structural and colour properties of the 

Egyptian Blue family of pigments, and have demonstrated that prolonged 

exposure to natural light has a deleterious effect on the colours of all of these 

synthetic products, leading to the darkening seen in historic samples, 

something of which most archaeologists and art historians have been aware 

for decades, if not longer ! 

 

2.4   Egyptian Blue pigment found at Romano-British sites.   

Egyptian Blue has been found as artefacts or as a pigment at a number of 

Romano-British sites including Woodeaton (Jope & Huse, 1940), Wroxeter 

(Bushe-Fox, 1915), Silchester (Spurrell,1895) and Darenth (Spurrell, 1895). 

Spurrell (1895) records that in these last two sites the Egyptian Blue is ... of 

the pale cheap kind. 

On receiving samples of painted plaster from the renowned antiquary Samuel 

Lysons (who with the aid of John Hawkins and many others excavated Bignor  

Roman Villa from 1811 to 1819, following the discovery of a large mosaic by 

George Tupper whilst ploughing his field), Sir Humphry Davy wrote a short 

letter to him (dated 14th June 1815) confirming  that … The blue is a frit, or 

artificial ultramarine, composed of peroxide of copper, silica, and alkali  …  

and goes on to say that it … is of the same kind as the colour said by Vitruvius 

… which was manufactured in his time at Pueoli.  Having previously 

completed his research and written his paper Observations upon the 

Composition of the Colours found on the Walls of the Roman House 

discovered at Bignor in Sussex  Davy spoke about his findings to the Royal 

Society on 15th June 1815, only some four months after giving a reading of 

his investigations into the pigments found at Pompeii and ancient Rome. 
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In the 1970s Egyptian Blue was found on a Romano-British site at Shakenoak  

Farm, north of Oxford, and was examined by Atkins (1970)  using X-ray 

powder diffraction. The results showed that it was Egyptian Blue… a calcium-

copper silicate … [5%] … of the material from the interior nodules consists of 

various impurities including quartz, calcite and limonite. Atkins also 

compared the Shakenoak samples with pure synthetic Egyptian Blue data 

obtained from Pabst’s studies (1959); the comparison suggested that the 

Shakenoak blue pigment was … very pure.  The Shakenoak material had not 

been ground and may have been used as a … stock material intended as a 

paint pigment and it was unlikely that it had been manufactured on site but 

was imported, (Atkins, 1970).  

A W G Lowther carried out an extensive excavation at Ashtead Roman Villa, 

Leatherhead, Surrey, during 1927, 1928 and 1930 and found amongst the 

artefacts were three pellets of Egyptian Blue.  According to Gower … The 

Ashtead pellets are not particularly noteworthy, being very typical of 

examples of Egyptian Blue pellets found in Britain ….  These were subjected 

to visual examination by the author, Gower, and by Justine Bayley, from the 

Ancient Monuments Laboratory; no scientific analysis took place. It was 

concluded that these samples represented stock which was intended to be used 

as a pigment for internal decoration of the villa, (Gower, 1984). 

Egyptian Blue was found in sediments on two different archaeological sites in 

west-central England and, according to the authors, (Canti & Heathcote, 

2002), this is the first time that Egyptian Blue has been identified from micro-

stratigraphic samples. The first find occurred in centrifuged heavy mineral 

separates from Roman layers beneath a car park in the Roman town of 

Cirencester. The sediments formed part of a suite of road surfaces and 

included the fill of a ditch, all dating to before the 3rd century. Individual 

grains of less than 500 μm were hand picked and selected for analysis.  The 
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second sample was found in soil destined for micromorphological studies, in 

Mill Street, Wantage, Oxfordshire, in Saxon sediments.  Three grains were 

found in two thin sections produced for soil micromorphological studies; no 

loose material was available. Analyses were therefore restricted to techniques 

suitable to a thin section. Analytical techniques used for the study were optical 

analysis, scanning electron microscopy, energy dispersive X-ray analysis and 

X-ray diffraction. The results of the investigations showed that the samples 

were the pigment Egyptian Blue.  The authors were unable to provide an 

explanation for the presence of their finds since, for instance, the nearest 

copper ore deposits and copper working sites were at a considerable distance 

from the two locations. It is assumed that the finds were discarded, or lost, by 

artisans using the pigment in the area. The authors also undertook 

experimental work using a modified recipe obtained from Chase’s paper; the 

resulting Egyptian Blue pellets were fired, re-ground and fired again in order 

to obtain a successful result.  

A study undertaken by Clegg and Freeman on twenty-seven Egyptian Blue 

pellets found during the 1997, 1998 and 1999 excavations at Fishbourne 

Roman Palace, Chichester in West Sussex, was published in Sussex 

Archaeological Collections, 141, (2003). All the pellets were analyzed using 

XRF, the results of which showed differing quantities of calcium, copper and 

silica. Lead and tin were also detected in some of the pellets.  This study 

suggested that there was no standard recipe used for the manufacture of the 

Egyptian Blue pellets found at Fishbourne Roman Palace. 

 

2.5 The Method of Production of Egyptian Blue.  In  his  text  De 

Architectura, (Book VII, Ch XI) Vitruvius details the manufacture of 

Egyptian Blue, described as a common (or austere) pigment, discussing how it 

http://en.wikipedia.org/wiki/De_architectura
http://en.wikipedia.org/wiki/De_architectura
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was produced by grinding sand, copper and natron and by heating the mixture, 

shaped into small balls, in a furnace.  He fails to mention lime, a major 

component of Egyptian blue though, it is probable that lime-rich sand was 

used; desert sand can contain up to 18% lime (Tite & Shortland, 2003). 

Vitruvius (Book VII, XI, 1) also records that a factory to produce Egyptian 

Blue had been established, by Vestorius in Puteoli (modern Pozzuoli) in 

Campania, and that the material produced was also known, at least locally, as 

Puteolanum or Pozzuoli Blue and also as Vestorianum or Vestorian Blue.  In 

his text Pliny (Book XXXIII, 57) also mentions the use of natural blue 

materials which he describes as being mined in Cyprus, Scythia and Egypt, 

but adds that of all the blues, Egyptian [Blue] was the best.  

One of the earliest known studies of synthetic blue pellets occurs in a paper 

entitled Some Experiments and Observations on the Colours used in Paintings 

by the Ancients, by Sir Humphry Davy, LLD, FRS, which was read to the 

Royal Society on 23rd February 1815, and subsequently published in the  

Philosophical Transactions of the Royal Society, 105, (1815).  In this paper 

Davy thanks his good friend Canova, who had responsibility for the care of 

ancient art works in Rome, for allowing him to collect samples of different 

pigments, found in vases, in the ruins of Emperor Titus’ palace in Rome. 

Davy acknowledges the slightly earlier work of the French chemist J A 

Chaptal (1809), who investigated colours found in a colour shop in Pompeii. 

Two  of  the  colours  were  blues ... which he considered as compounds of 

alumina [Al2O3] and lime [chaux, CaO] with oxide of copper [d’oxide de 

cuivre, CuO].  In one of the rooms in the baths of the palace, Davy found… 

several large lumps of a deep blue frit …  which when submitted to various 

chemical analyses were found to contain minute quantities of lime and … 

sulphate of soda, which proves that it was a frit  made  by  the  means  of  

soda, and coloured with oxide of copper ….  In May 1814 Davy was present 

http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Natron
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when … a small pot containing a pale blue colour [-ed material] … was 

recovered during an excavation in Pompeii and which was subsequently 

proved to contained … Alexandrian frit  - ie Egyptian Blue.  Apart from these 

observations, Davy appears to have been the first to manufacture this material 

in modern times and when describing Alexandrian frit he says ...[it] may be 

easily and cheaply made; I find that fifteen parts by weight of carbonate of 

soda, twenty parts of powdered opaque flints, and three parts of copper filings 

strongly heated together for two hours, gave a substance of exactly the same 

tint, and of nearly the same degree of fusibility, and which, when powdered, 

produced a deep sky blue… 

After a gap of nearly eighty years other papers began to be published on 

similar looking blue pigmented material. A specimen of material obtained 

from Roman ruins at Autun in central France was analysed by Fontenay 

(1874, 193-199) who described it as bleu égyptien.  He also undertook 

experiments (using 25 parts CaCO3, 15 parts CuO, 70 parts white sand and 6 

parts of Na2CO3)  that after firing led to the successful production of the 

pigment and recommended that a sodium flux no greater than 7 wt % should 

be used.  Dr W J Russell’s paper of 1892, published as Chapter VIII (Egyptian 

Colours), in W M Flinders Petrie’s book Medûm examined blue pellets found 

in the Egyptian towns of Gurob (Eighteenth-Nineteenth-Dynasty) and Kahun 

(Twelfth-Dynasty). Although blue-green, green and purple pellets were found 

at these sites (and later manufactured by Russell), he states that the blue 

pellets … are by far the most interesting ones … their existence may serve to 

indicate to some extent the manufacturing skill and knowledge of the 

producers. They vary greatly in tint... After thoroughly examining these 

pellets Russell wanted to know … how exactly they were made, what furnace 

would be necessary… He went on to undertake experiments to emulate these 

ancient craftsmen.  Of the materials used, Russell was of the opinion that 
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silica ... was the principal constituent, and formed perhaps 60 to 80% of the 

whole mixture; then there was the copper to give the colour, no doubt merely 

the crude mineral, but almost any salt of copper would produce the same 

effect. For Russell, that ...copper was the colouring-matter in these frits there 

could be but little doubt... His experiments showed that it was important to 

maintain a high temperature as well as maintaining … the length of time of 

heating … He goes on to state that the … colour of the frit depends principally 

… upon the amount of copper it contains … and says of the ingredients that 

…the blue pigments ... contain comparatively small amounts of copper, 

perhaps 3 to 10 %... and that lime and sand were used with ... 10 % of 

potassium and sodium carbonates.  These ingredients were fused together in 

order to produce what would now be referred to as Egyptian Blue. Russell was 

well aware of the important effect that the sand could have on the final 

product ... at all events it is certain that a very small amount of iron 

[combined with the silica] modifies the colour to a very considerable extent. 

In 1889 the French geologist Ferdinand Fouqué gave a detailed description of 

the texture of the very pellets that had been shown to Davy at Pompeii in 

1814.  He was the first to identify the material, now known as Egyptian Blue, 

as the calcium-copper-tetrasilicate, cuprorivaite, CaCuS4iO10, (Laurie et al., 

1914;  Kendrick  et al., 2007) and identified its crystalline structure to be of 

the tetragonal system, and its specific gravity to be of the order of 3.04.  

Fouqué also defined the optical characteristics of the crystals which he 

described as being ... scales flattened parallel to the base of the prism, and 

often jagged at the edges, sometimes, however, ending in clear rectangular 

outlines .... They are of a beautiful azure blue  (quoted in Laurie, et al., 1914, 

419). Another important finding by Fouqué was that Egyptian Blue could be 

produced without the aid of a soda or potash flux, a finding which was later 

confirmed by Laurie (1914).  
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In  1895  F C J  Spurrell   published,  in  volume 52 of  The Archaeological  

Journal,  a paper  entitled  Notes  on  Egyptian  Colours  detailing  his  in-

depth  study  of  the  blue  pellets  found  at  a  ‘factory site’  during  

excavations at Tell el-Amarna by Flinders Petrie.  He described in great detail 

his understanding of the manufacturing process and the ingredients of the 

pellets which consisted of fine sand which was … difficult to procure free 

from iron … copper ore was always malachite and the alkali was either native 

potash or soda and included the use of limestone …. He continues by saying 

that … the bowls of frit, sometimes flat bottomed, sometimes rounded, rested 

[on structures] so that the furnace could be raked under them … After the 

firing and cooling of the pellets … the best parts were selected, ground and 

re-heated in shallow pans … [which] … intensified the frit, making it uniform 

… in an attempt to improve the hardness and uniformity of the material.  He 

notes that from the Fourth Dynasty the object was to produce a … brilliant 

blue of moderate depth. However, in later periods various shades of blue were 

produced, … some by intention in manufacture, or some by admixture. After 

the Nineteenth Dynasty true blues were made but mostly a lower tone was 

affected … being sometimes little better than grey, or the powder of roofing 

slate … as determined by the fashion of the time.  Both green and lilac 

coloured material was found amongst the debris found at Petrie’s ‘factory’ 

sites.  Green material is commonly produced and reported by most authors 

who have attempted to manufacture these pellets (see Bianchetti, et al., 2000; 

Russell, 1892 and Spurrell, 1895). Additionally, Russell (1892) states that 

lilac material can be produced by adding … a large proportion of lime … and 

a great increase in the copper to the recipe. 

Dr A P Laurie, together with Messrs McLintock and Miles, published a paper 

in 1914 entitled  Egyptian Blue  in The Proceedings of the Royal Academy, 

volume 89.  In order to successfully re-produce Egyptian Blue in their own 
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laboratory Laurie and his colleagues conducted a large series of experiments. 

They describe the method of producing Egyptian Blue pellets, the firing times 

and the type of furnace that they suggest was used by the Egyptians, from 

information gained following a reading of Spurrell’s 1895 paper. Laurie and 

his colleagues obtained samples of Egyptian Blue pellets which they carefully 

examined following Fouqué’s description of its texture and comments about 

its crystalline structure. It is said that Fouqué’s descriptions (of 1889) are 

somewhat ambiguous, if not misleading, due to his commercial interests with 

a French manufacturer of Egyptian Blue material (Warner, 2007, 41). Laurie’s 

team undertook further studies on additional samples from various sources 

extending over different periods of time, such  as … the lid of a coffin of the 

XIth Dynasty and a piece of Roman fresco on the Palatine Hill, a piece of the 

crude frit from the Manchester Museum, a piece of crude frit occurring 

among Dr Russell’s samples, two samples from Viriconium, [Wroxeter Roman 

Villa] in Shropshire, a sample obtained in Syria, … and some of Dr Russell’s 

1892 samples … from Gurob...  and found that all the samples had the same 

crystalline structure, as indicated by Fouqué’s analyses.    

Laurie and colleagues followed Russell’s method of repeated grinding, 

heating and firing of the ingredients. They used a mixture of calcium and 

copper oxides, silica and a flux.  The  recipe  they  used  was  adapted  from  

that of Russell and consisted of silica 64.6g, copper carbonate 15.4g,  calcium 

carbonate 12.4g,  with  7.2g of sodium carbonate (Na2CO3, natrite) as the flux: 

the ratios of these components being:  4.2 : 1 : 0.8  (and 0.5 for the flux). 

Laurie and colleagues also extended the firing times from 16 to 48 hours and 

they increased the temperature of the muffle furnace from 760˚C to 900˚C, 

(though on one occasion the temperature rose to 1150˚C).  As a consequence 

of their series of experiments it was concluded that to successfully produce 

Egyptian Blue crystals the temperature should remain at 850˚C
 
and the firing 
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time last for 48 hours. Temperatures below this critical range resulted in the 

production of unfused materials; higher temperatures resulted in the 

production of a greenish glass. They also found that if too much flux was 

added to mixture, the manufacturing process resulted in the formation of 

glass; on the other hand no flux at all was needed if the long firing time at 

850˚C was preceded by firing at much higher temperatures. They concluded 

that the flux (usually sodium or potassium salts) did not enter into the final 

crystal formation, but merely acted to bring the three ingredients (copper, 

calcium and silica) into combination at the optimum temperature of 850˚C. 

Indeed, they suggested that the presence of a molten glass phase provided the 

medium in which the components could chemically react within the melt and 

thus exsolve the various crystalline phases, thus distinguishing the process 

from a solid-state sintering process.  This work by Laurie and his colleagues 

was the first modern attempt, in which the scientific method is fully described, 

to synthesize the pigment known as Egyptian Blue.   

In 1971, after he became interested in studying Egyptian Blue artefacts found 

in the department of Ancient Near East Art at the Metropolitan Museum in 

New York, W T Chase (1980) began a series of experiments to produce 

Egyptian Blue objects. In all he conducted a series of six experiments using 

different combinations of ingredients, each experiment being subject to 

different firing times. He noted Laurie’s formula or recipe and adopted his 

own, his Formula II (the most successful) was identical to that used by Laurie 

and his colleagues, except that the 7.2g of sodium carbonate, natrite, was 

replaced with 7.2g of so-called synthetic natron consisting of 3.2g sodium 

sesquicarbonate, 2.1g of sodium sulphate and 1.5g of sodium chloride (NB 

Chase’s listed amounts do not add up to 7.2g). The temperature used in his 

Formula II, was 830˚C and with a firing time greatly reduced to 45 minutes he 

produced … a nice blue … which corresponded to the blue found on one of 
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the studied artefacts – a ‘sistrum handle’. In the oxidizing atmosphere used, 

Chase found that the cuprorivaite phase disappeared if the temperature was 

raised to 1000˚C and held at that level for a duration of one hour. However, he 

stated that the cuprorivaite crystals could be regenerated if the resulting glassy 

mixture were fired again at 850˚C for a prolonged period. This particular 

feature had also been noted by Laurie. 

It is to be noted that Chase is, in fact, describing the production of a coarse, 

‘pre-fired’, sintered material that would in ancient times have then been 

moulded into any one of a number of small objects, which would normally 

have needed to be re-fired before acquiring any commercial potential. He 

makes no claim to have produced a pigment. 

Following these and more recent studies, eg by Ullrich (1985) and Tite et al., 

(1984 & 1987), it is established, unequivocally, that Egyptian Blue is 

produced by heating together, in an oxidizing atmosphere, a mixture of silica, 

copper and calcium, normally together with an alkaline flux. According to 

Blom-Böer (1994) the three principal ingredients used in the early period, viz. 

the Fourth-Dynasty (ca. 2600 BC)  of  the  manufacture  of  Egyptian  Blue  in 

Egypt were: silica in the form of quartz sand, the copper ore, malachite, 

Cu2CO3(OH)2, and calcite, CaCO3, with potash or natron (sodium 

sesquicarbonate, Na2CO3NaCHO3.2H2O,)  as a flux, all of which components 

were found naturally within Egypt itself.  Malachite, for instance, is found in 

both the eastern desert regions and in the Sinai peninsula; there are also 

indications of ancient workings at the Wadi Arabah near the present-day 

Israeli boarder.  Some of the other ancient mining sites, such as that at Wadi 

Maghara were associated  with  much  smaller  amounts  of  other  copper  

containing minerals, such as azurite (chessylite), Cu3(CO3)2(OH)2, and 

chrysocolla, (CuAl)2H2Si2O5(OH)4.nH2O. There is, however, no conclusive 

evidence to suggest that malachite was ever used as the main copper 
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ingredient in the manufacture of Egyptian Blue in Egypt. The ingredients are 

ground, mixed together, and moistened with a little water and rolled in the 

hand, being shaped into small balls, which are heated at a high temperature, 

which Blom-Böer said was lowered to ca. 743˚C, by the presence of the flux. 

According to Riederer, (1997) the mixture should be heated to 900 – 1000˚C 

with the temperature maintained at 800˚C for a period of 10 to 100 hours.  

Temperatures below these levels, he claims, are likely to produce un-fused 

materials or glass and slags. The heating process turns the silica, malachite 

and calcite to cuprorivaite, carbon dioxide and water as shown in the 

following balanced equation:   

      8SiO2  +   Cu2CO3(OH)2 + 2CaCO3  →   2[CaCuSi4O10] + 3CO2 + H2O 

The major product of this reaction is the calcium-copper-tetrasilicate 

cuprorivaite,  CaCuSi4O10,  (written as CaO.CuO.4SiO2  by Fouqué). To obtain 

the idealized end product of only the blue crystals of cuprorivaite with no 

unreacted quartz or the formation of glass or other unwanted phases, the 

theoretical percentages of the ingredients used – when no flux is employed – 

should be approximately (according to Tite, et al., 1987)  silica  64%,  copper  

oxide  21%  and  calcium  oxide  15%,  ie  the  ingredients  should  be  mixed  

in  a  ratio of:   3 : 1 : 0.7.  However, these authors acknowledge that all 

ancient samples examined contain, in addition to Egyptian Blue, various 

amounts of unwanted components, including a glass phase. 

The natural mineral cuprorivaite was first isolated on material recovered from 

Mount Vesuvius by Carlo Minguzzi, who published his findings in 1938. 

However, it is found naturally in concentrations too small to provide a viable 

pigment source. Pabst, working in Berkeley, California, was the first to 

suggest, in 1959, that cuprorivaite was the natural analogue of the pigment 

known as Egyptian Blue. The synthetic form has been found as crystal 
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fragments from a copper smelting furnace in Arizona (Mazzi & Pabst, 1962); 

similar findings have been reported by Ivanov (1938) and colleagues. 

In recent ground breaking laboratory experiments Pradell, with Tite and 

others (2006) have investigated the development of cuprorivaite crystals, and 

other phases during the manufacturing process, both during the heating and 

during the subsequent cooling of the mixed ingredients. Much of the 

following description is based on the material of that paper. All of the 

ingredients, the quartz powder, the artificial malachite (copper carbonate 

hydroxide 1-hydrate) and the calcium carbonate, had a grain size of less than 

53μm;  the  mixture  was  divided  into  two  lots  which  were  then  mixed 

with a 3 wt % and with a 0.3 wt % portion of soda (Na2O) flux respectively. 

Both portions were mixed and pre-fired to 700˚C to drive off water of 

hydration. These two lots of cooled, pre-fired, dark grey, sintered material 

were then reground to pass through a 500μm sieve and (in the first 

experiment) one portion was used for each of the low and high alkali 

mixtures.   

Subsequent XRD analysis demonstrated, in each lot, the presence of quartz, 

SiO2,  tenorite, CuO,  calcite, CaCO3,  and a disordered phase that was thought 

to be trona, Na3H(CO3)2.2H20. In the high alkali portion only, sodium 

carbonate, natrite, Na2CO3, was also found.   

For the second experiment a further two portions (with a high and a low soda 

flux respectively) of the cooled, pre-fired, dark grey, sintered, reground and 

sieved material were used for high-temperature XRD analyses. This mixture 

was heated to 675˚C before the furnace temperature was then increased at a 

rate of 5˚C/min. until it reached 1000˚C, (ie for 65 minutes).  The material 

was then cooled to room temperature at a constant rate of 10˚C/minute.  

During the heating and cooling stages high-temperature XRD measurements 
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were made with the assistance of a high photon flux provided at the European 

Synchrotron Radiation Facility at Grenoble. From the XRD data the 

percentages of the different crystal phases that were formed were calculated. 

In the experiment with a high alkali mixture, the following information was 

obtained as the temperature increased:   

 In the temperature range of 700 – 800˚C  there is decomposition of 

sodium carbonate and the formation of soda; 

 At a temperature of ca. 850˚C  calcite starts to decompose to form lime, 

CaO,  and Ca2CuO3; 

 Above 850˚C a sodium silicate is formed; 

 Between about 850 and 950˚C the amounts of quartz and tenorite 

progressively decrease; 

 At 950°C lime reacts to produce wollastonite, CaSiO3; 

 Between 950 and 1000˚C the sodium silicate disappears and a 

corresponding decrease in the total crystalline phases suggests the 

formation of a melt, from which cuprorivaite crystallizes; 

 Finally, at ca 1000˚C some of the quartz converts to cristobalite. 

During the cooling phase cuprorivaite crystals continue to form until the 

temperature reaches ca. 700˚C.  During this stage there is also an increase in 

the  formation  of  wollastonite  and  quartz  and  a  slight  decrease  in 

cristobalite. Analysis  shows  that  the  percentages  of  the  final  cooled  

mineral composition  are:  cuprorivaite  40 wt %,  quartz  37 wt %,   

wollastonite 17 wt %,   tenorite 3 wt %  and cristobalite 3 wt %. 

The  high  temperature  XRD  analysis  for  the  mixture  with  a  low  alkali  

flux level shows similar patterns,  though with some notable differences,  viz. 

neither wollastonite nor cuprorivaite appear until the temperature reaches 

1000˚C. During the cooling stage cuprorivaite stops forming at the higher 

temperature of 850˚C, suggesting that the crystals nucleate but do not grow 

very much during the subsequent cooling, in contrast to the high alkali mix.   



 42 

Analysis shows that the percentages of the final cooled mineral composition  

are: cuprorivaite  26 wt %,  quartz  41 wt %,  wollastonite 16 wt %,  tenorite 

13 wt %  and   cristobalite 4 wt %.  

 In a third series of experiments, bulk samples of the high and low alkali 

prefired and reground, sieved, dark grey material, that had not proceeded to 

high-temperature analysis, were formed into small compacted discs which 

were fired (for a second  time) at 1000˚C for a period of 1 hour. The bulk 

composition of the Egyptian Blue pellets were examined in cross-section 

using a SEM which indicated that … the high-alkali mixture consisted of 

abundant elongated Egyptian Blue crystals, up to 50μm in length, intermixed 

with occasional quartz particles (that have been partially converted to 

cristobalite), and all bonded together by an extensive glass phase to form a 

uniform microstructure across the sample.  In contrast, high magnification of 

the SEM analysis of the low alkali specimen demonstrated elongated Egyptian 

Blue crystals (up to 30μm in length) that are in some cases partially separated 

by very small areas of glass. Occasional scatterings of small unreacted copper 

oxide particles are visible.  The glass phase is much less extensive than in the 

high-alkali mixture … so that the microstructure is less uniform across the 

sample and consists of isolated clusters of Egyptian Blue crystals adhering to 

partially reacted quartz particles. The authors suggest that in the high alkali 

mixture a greater glass phase develops and it is the formation of a melt from 

which the cuprorivaite crystals continue to grow, even during the cooling 

phase, that produces the characteristic SEM picture. 

The paper concludes with a consideration of the impact that the study might 

have for the understanding of the manufacturing process of ancient specimens 

of Egyptian Blue.  The authors are clear that a glass phase is only to be found 

in samples from Egypt; in contrast, in samples from the Near East, the Aegean 

and  Europe  the  glass  phase  is  absent,  presumably  because  of  
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weathering.  But in all the ancient specimens that have been analyzed the 

abundance and morphology of Egyptian Blue crystals and the uniformity of 

their microstructure matches those of the high alkali replicate mixtures, and 

never those of the low alkali replicate mixture. Thus, in all the ancient 

specimens examined, the Egyptian Blue crystals were formed (it is claimed) 

through nucleation and growth within a liquid or glass phase from mixture 

that would have included, as a minimum, a few percent of an alkali flux. 

In the real (non-laboratory) world in which Egyptian Blue was manufactured 

for commercial or artistic purposes in antiquity the process undoubtedly 

became well established and highly regulated over the course of time. 

Manufacturing processes that were in some way “irregular”, with activity 

outside specified limits, could have disastrous results. As a simple example, it 

is suggested that if for any reason the firing temperature exceeded 1050˚C 

then the resulting pellets would be found to be unstable (Jaksch et al., 1983). 

Again, unauthorized or ill-advised manufacturing activity could result in the 

production of excessive amounts of unwanted mineral components, ie phases 

other than cuprorivaite, such as wollastonite, CaSiO3, or tenorite, CuO, that 

might prove detrimental to the intended use or colour of the pigment finally 

formed.  

The type, amount and ratio of ingredients employed in the manufacturing 

process  have  a  significant  effect  on  the  texture,  composition  and  other 

features of  the  manufactured  pigment  pellets.  Samples  taken  from  ancient 

specimens of  Egyptian  Blue  show,  when  subjected  to  analysis,  

considerable variation in their bulk composition.   

If, as would seem to have occurred frequently, desert sand, which is invariably 

associated with iron, is used as the source of silica then, when finally 

produced, the Egyptian Blue pigment would include small amounts pyrite, 
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FeS2 ,  and  titanomagnetite, Fe3O4Fe2TiO4.  Jaksch et al. (1983) found crystals 

of  this  last  mineral  in  samples  collected  from  the  tomb  of  Sabni,  in 

Aswan, of the Sixth-Dynasty, confirming that desert sand had been used in the 

manufacturing process at that time. Similarly, the Max-Planck project, (Blom-

Böer, 1994) demonstrated that in all the samples of Egyptian Blue analysed, 

both pyrite and titanomagnetite were found. This study, involved the analysis 

of 1,380 pigment samples, (most of which were of Egyptian Blue obtained 

from paintings on stone surfaces and wall paintings from the Fifth-Dynasty to 

the early Roman period, but with a majority of samples obtained from Thebes) 

extended over a twelve year period. Similarly, Scott (2002) observed the 

presence of pyrite in several Fifth-Dynasty tomb paintings, even though 

pyrite, FeS2, is said to decompose at temperatures greater than 743˚C  – 

suggesting, possibly, that the ingredients were far from thoroughly mixed and, 

possibly, poorly ground, so that in the furnace there existed, as it were, 

protected ‘microclimates’ where the temperature was lower; this phenomenon 

is not unknown in manually ‘controlled’ firing processes. The use of desert 

sand from Egypt, which can contain significant amounts of other elements (for 

instance 2 - 18% lime, up to 2%  iron  and  1 - 4 % alumina) should be 

compared with the (virtually) iron-free crushed quartz pebbles that were used 

in the New Kingdom site at Qantir and at Tell el-Amarna, which according to 

Tite & Shortland (2003) contains 99.83% SiO2 with minute amounts of lime, 

soda and alumina, Al2O3. 

By the time of the reign of Thutmose III, (1479 – 1425 BC), ie during the early 

New Kingdom period, copper ore, possibly malachite, Cu2CO3(OH)2, was 

replaced in Egypt, in some cases at least, by filings from copper ingots or 

from bronze scrap as has been deduced by the presence of the tin oxide, 

cassiterite, SnO2,  in the end product (Jaksch et al., 1983).  No copper ores 

have been found in Egypt that contain significant amounts of tin oxides; the 
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reasonable assumption is, therefore, that the tin oxide found in the 

manufactured pigments was a result of replacing the copper ores, possibly 

malachite, by fragments or filings from copper products and possibly also 

scrap metal fragments, when very small amounts of arsenic and lead might 

also be found.   

Because the manufacturing process was not mechanized but depended on 

individual (usually, skilled) human input, and because of limited local 

availability of some ingredients, all of the historic Egyptian Blue pigments 

that have been analyzed have been found to contain phases in addition to the 

desired cuprorivaite. Thus, if during the manufacturing process an inattentive 

operative adds more calcium, in the form of excess lime, CaO, calcium 

carbonate, CaCO3, or even gypsum, CaSO4.2H2O, to the ingredient mix than 

copper, then the mineral copper wollastonite, (CuCa)3Si3O9, forms and the 

resulting pigment shows a distinctive green hue (Jaksch, et al. 1983).  

Additionally, very small amounts of copper wollastonite also appears as 

minute crystals within the interstices of the cuprorivaite.  According to Tite 

(1987) if  more  calcium  than  copper  is  added  during  the  preparatory 

phase  then … Egyptian Blue crystals are not observed. Instead the excess 

CaO is precipitated from the glass, typically, as calcium silicate, ie  

wollastonite (CaO.SiO2 ) and the CuO remains dissolved in the glass to 

produce the characteristic pale blue colour... 

Similarly, if excessive amounts of a copper ingredient is incorporated into the 

mixture then copper oxides such as cuprite, Cu2O, and tenorite, CuO, may be 

found (Tite  et al., 1984) and variable amounts of unreacted quartz and a glass 

phase are also likely to be present as unwanted phases. The appearance of iron 

products following the use of quartz sand has been mentioned. 
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On  occasions,  less  common  minerals  are  found  in  examined  Egyptian 

Blue  specimens.  Thus  in  material   from  Knossos,  dated  to  ca. 2100 BC  

and from Thera (Santorini) dated to 1500 BC, glaucophane, 

Na2Mg3Al2Si8O22(OH)2, and the related iron containing mineral, riebekite, 

[discussed above] have been isolated.  

It is perhaps not surprising that the bulk composition of samples of Egyptian 

Blue pigments show a geographical variation. Thus Tite, et al. (1984) have 

shown that Egyptian and Roman specimens tend to have excess calcium 

oxide, CaO, lime, and higher concentrations of alkali when compared with 

samples from, for instance, the great Assyrian city of Nimrud.  Specimens 

from the latter have an excess of copper oxides and lower concentrations of 

alkali, whether derived from plant ash or natron, ie lower levels of both 

sodium and potassium.  At these sites, as at virtually every other site, there is 

more silica than is required for stoichiometry. 

During analysis of the blue pigment samples found at the Eighteenth-Dynasty 

‘factory site’ at Tell el-Amarna, Weatherhead and Buckley (1989) drew 

attention to the present obvious visual difference between the turquoise blue 

pellets and the blues of other pellets. Turquoise, and lapis lazuli, were much 

admired semi-precious stones that, it is thought, many Egyptians coveted, 

hence, it is suggested, that attempts appear to have been made to imitate these 

stones.  The authors have also suggested that the turquoise hue could be 

mimicked in Egyptian Blue production if significantly higher amounts of 

sodium, in the form of impure natron, were included as part of the 

manufacturing process. 

But it is not only the nature, the amounts and the ratios of the ingredients used 

that affect the end product: the manufacturing process itself is a major factor 

in determining the texture, structure and colour of the resulting pigment. The 
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extent to which the ingredients are mixed together, the size of the powdered 

granules, the number of times the fired pellets are reground, the number of 

times the mixture is fired, the duration of the firing times, the firing 

temperatures, the rate at which the furnace temperature is increased and the 

rate of cooling, and the amount and nature of the alkali flux, if used, all 

contribute to determining the hardness, the texture and the colour of the 

manufactured pigment. 

There appears to be an intimate relationship between texture and the colour of 

the manufactured pigment (Tite et al., 1984 & 1987). When the ingredients 

are prepared in what might be called the ‘standard fashion’ and fired once 

according to the established recipe, the resulting pigment has a visibly coarse 

texture. At the microscopic level the structure shows large irregular clusters or 

aggregates of coarse crystals of cuprorivaite which adhere to the unreacted 

quartz.  Such a product is usually found in the form of small blocks, cakes or 

slabs (in the early Dynastic periods) and as small balls (in later Dynastic 

periods and until the Greco-Roman Period) and it is suggested that these could 

have either been waiting to be processed through a second stage, where they 

would be ground, or they would have been used as a blue pigment or possibly 

molded to the shape of variety of low value small artifacts, before being re-

fired to produce the desired object (Tite et al., 1984).  

Because of its microscopic structure, of clusters of crystals, this coarse form 

of cuprorivaite is relatively thick and produces a characteristic dark blue 

colour. According to Tite et al. (1987) this dark blue, coarsely crystalline 

Egyptian Blue, shows significantly high levels of the alkali flux. However, 

large aggregates of crystals could be achieved without the alkali flux, but 

longer firing times at higher temperatures were required. Such a requirement 

was also found by Canti and Heathcote (2001) in their small scale study to 

produce Egyptian Blue. Although the authors managed, by multiple cycles of 

http://en.wikipedia.org/w/index.php?title=Michael_Tite&action=edit&redlink=1
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grinding and firing at 1000˚C to produce an Egyptian Blue pigment with large 

amounts of dark unreacted crystal aggregates, the greater proportion of their 

output consisted merely of a grey-blue sintered powder. 

To produce a fine-textured Egyptian Blue pigment a second manufacturing 

stage is required. The coarse cuprorivaite crystals are subjected to a second 

grinding to produce a fine powder that is mixed with water and the paste 

reformulated, before re-sintering, for a second time, at a temperature range of 

850 – 950˚C for one hour (Tite et al., 1984 & 1987) or longer.  In general, the 

finer the powder produced by grinding, the smaller the particles that are 

sintered and the paler the resulting pigment (Ullrich, 1985). The result is a 

finely texture cuprorivaite pellet whose crystals, at the microscopic level, are 

seen to be uniformly interspersed between, and intimately linked to, the 

unreacted quartz grains. This product will be of a light blue hue. Tite et al., 

(1987) demonstrated that such a product also has a relatively low alkali 

content.  It is said that an alkali content of below 1% does not allow glass to 

form  and  the  resulting  Egyptian  Blue  would  be  softer,  with  a  hardness 

of 1 – 2 on the Mohs scale (Tite et al., 1984). 

 In the same paper Tite et al. go on to show that an even paler shade of blue 

pigment, assigned the name diluted or pale light blue, is produced if 

manufactured in a similar fashion to the light blue material, but with higher 

amounts of an alkali flux used in its production cycle. Because of this 

(relatively) high alkali content the resulting material has a significantly greater 

proportion of unreacted quartz embedded in a glass matrix and is therefore 

much harder, though remaining finely textured. The ‘paleness’ of the blue 

colour is due, it is suggested, to the extensive glass phase which ‘masks’ the 

blueness of the material. These harder, finely textured, relatively glass-rich 

forms of Egyptian Blue are often found in the Eighteenth-Dynasty and later 
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and their production is thought to have been influenced by advances in glass 

technology (Lee & Quirke, 2009). 

Flux was considered to be an essential ingredient in the process of 

manufacturing Egyptian Blue pigments by Weidemann and Bayer in their 

1982 study.  The presence of a flux was considered necessary if the deepest 

blues were to be produced since the flux was understood to catalyse the 

production of the larger crystals (sizes of 5–50 μm) upon which the colour 

intensity depended. (Jaksch, et al. 1983).   

According to Tite et al., (1987) in all the samples of ancient Egyptian Blue 

specimens that have been analyzed the alkali content is greater than 1%, 

suggesting that the flux was deliberately added to the other ingredients and not 

merely the result of the use of impure components. However, the amount of 

alkali used in the production of Egyptian Blue seldom exceeds 4% and this 

may make its identification in ancient samples difficult, particularly because 

of the possibility of leaching. (This low percentage can be compared with the 

Egyptian glass manufacturing process, for instance, where the alkali flux is of 

the order of 10 – 20% of the total component weight). In the Late Bronze Age 

glass manufacturing process, plant ash was the normal alkali (Rehren & 

Pusch, 2005) which can be identified by its potash, phosphorus, magnesia, 

lime and sometimes iron content.  It is likely that use of plant ash as the flux 

was also continued during the manufacture of Egyptian Blue. Sodium 

sesquicarbonate, natron, Na2CO3NaCHO3.2H2O, is a natural evaporitic 

deposit containing few impurities, and is also a common source of the alkali 

flux, and has been found at the Wadi Natroun and at El-Kab; Tite and his 

colleagues (1984) suggest that natron was the alkali most commonly used in 

the production of Egyptian Blue. On the other hand, analysis by Jaksch et al. 

(1983) of various samples of Egyptian Blue, identified variable amounts of 



 50 

phosphorus (up to 2% by weight), suggesting that the alkali source used was 

plant ash and not natron in the samples they examined.  

Although it is technically possible, as discussed above, to produce Egyptian 

Blue pigments without the use of a specific flux, a priori this is highly 

unlikely to have happened in antiquity for the simple reason that the 

ingredients used were seldom, if ever, free from contamination of one sort or 

another. 

This review demonstrates that the major effort of research into the study of the 

Egyptian Blue pigment is concerned with its production and manufacture, in 

Egypt, within Mediterranean Basin and elsewhere. For this reason significant 

reference is made to the controversies surrounding the materials used as the 

ingredient mix and to the method of production. The literature also includes a 

large amount of material relating to the laboratory manufacture of Egyptian 

Blue material.  There is, however, a relative shortage of material relating to 

the use of Egyptian Blue, used as a pigment, on wall- paintings, particularly at 

Romano-British sites. 

Egyptian faience and Egyptian Blue production are both very old industries. 

Faience objects have a distinct core and separate glass layers which makes 

them relatively easy to distinguish from objects made from Egyptian Blue.  

However, glass objects may sometimes be difficult to distinguish from those 

made with Egyptian Blue: this is especially true in the New Kingdom as 

Egyptian Blue at that time became more refined and glassy in structure.  The 

influence of glass production (which really only begun during the reign of 

Thutmose III, 1479 – 1425 BC) appears to have had a significant influence on 

the manufacturing process of Egyptian Blue in the later periods. Furthermore, 

the expanding copper industry associated with Thutmose III resulted in copper 

filings or other copper products, rather than the copper ore malachite, being 
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employed in the Egyptian Blue recipe, as indicated by the presence of tin 

oxides in the Egyptian Blue pigment, as mentioned above.  

It is generally thought that the use of Egyptian Blue became less common as 

the Roman Empire retreated.  Humphrey Davy (1815), for instance, attributes 

the loss of the skills involved in its production in areas of the former empire to 

be due to the description given by Vitruvius whose recipe fails to mention 

explicitly that a calcium component is a prerequisite. However, the damage 

done to the remaining Empire by invading barbarians surely played a not  

insignificant rôle in the decline of artistic achievements and the production of 

artistic materials. 

 

2.6   Other Blue Pigments used in Antiquity 

(a) Azurite.  According to Lucas, (1934) the natural mineral azurite was 

commonly used as a pigment for wall paintings in antiquity in Egypt.   In Book 

XXXV, 28  Pliny  mentions the expensive rich blue mineral azurite, also 

known as chessylite, Cu3(CO3)2(OH)2, known as armenium in antiquity and 

commonly found with malachite. Armenian azurite was said to cost 300 

sesterces per pound whereas an inferior version found in the provinces of Spain 

was much less expensive. Azurite is a naturally occurring, blue carbonate of 

copper found in Sinai and the eastern desert regions of Egypt.  Spurrell in 1895 

noted its use in a Fourth-Dynasty context near Rahotep where it is found in a 

shell used as a palette ...  which has the remains of a beautiful blue smeared 

over its interior.   He also states that pure azurite is found ... on the mouth and 

eyebrows painted on the fine cloth which covers the face ... of the Fifth-

Dynasty Ranefer mummy which is now to be found at the Royal College of 

Surgeons Museum, in London, and on a number of Eighteenth-Dynasty wall-

paintings (at a time when the use of Egyptian Blue was well established).   
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However, no examples of azurite were found by the Max-Planck Project;   

Ingrid Blom-Böer (1994) suggests that the apparent absence of azurite from the 

Egyptian palette was perhaps a result of its poor quality and its impermanence 

as a pigment, though the above mentioned findings of Spurrell seem to 

contradict such a suggestion. When ground finely, its colour becomes a pale 

blue (Pastoureau, 2001). According to Gettens & Stout (1966), azurite was 

coarsely ground in order to achieve a dark blue colour; it was easy to recognise 

by its sandy texture and it would have been applied to a tempera medium 

(Gettens & Stout, 1966).  

(b)  Malachite.   Many earlier authors suggest that malachite, Cu2CO3(OH)2, 

was the copper pigment most commonly used in the manufacture of Egyptian 

Blue, as mentioned above. It is also suggested that it was the most commonly 

used green pigment. Thus in describing the colours found at Kahun (XII 

Dynasty)  Spurrell (1895, 227) states that … the greens are copper silicates … 

(chrysocolla) … [(CuAl)2H2Si2O5(OH)4.nH2O] … or malachite … and when 

describing the colours used at Medûm (IV Dynasty) he states that the greens are 

pure malachite; likewise when describing the colours from Tell el-Amarna 

(XVIII Dynasty) he states that the copper ore was always malachite, crude and 

roasted. He does, however, acknowledge that malachite was scarce and that it 

was often used as a thin surface layer supported by a yellow marl. 

(c)  Indigo.   Pliny talks of indigo, (indicum purpurissum), indigofera tinctoria,  

C16H10N2O2, being used by the [Roman] painters as dividing lines … that is for 

separating shadows from light …(Book XXXIII, 57, where it is also called 

Indian blue).  Indgo, according to Eastaugh and colleagues (2004) was used as a 

pigment in the first century AD in Roman paintings, and was … most valued 

…as one of the organic blue pigments. There appears to be no suggestion that 

indigo was ever used in Egypt or elsewhere in the Middle East or 

Mediterranean area in antiquity.  
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 (d) Lapis Lazuli.  Writing in 1955 Forbes records that the known blue 

pigments of antiquity, generically known as caeruleum or kyanos, were 

restricted to lapis lazuli, azurite, indigo and Egyptian Blue.  Also known at the 

time were turquoise and cobalt.   

In 1815 Davy examined blue pigment samples found in one of the areas in the 

baths of Titus. As they contained various amounts of carbonate of lime he used 

an acid (which he called nitro-muriatic (or marine) acid, a combination of nitric 

and hydrochloric acids) to dissolve the lime and the result showed a … very fine 

blue powder similar to the best … ultramarine … Calcite, as found for instance, 

in the rock known as lapis lazuli, is dissolved by dilute hydrochloric acid.  It is 

therefore possible, though perhaps unlikely, that Davy had found that lapis 

lazuli had been used as a pigment – the residual fine blue powder would, 

therefore, have been grains of lazurite.  Lucas & Harris (1962) report that the 

lapis lazuli pigment, ultramarine, was not attested [in wall-paintings] before the 

eleventh century AD and Lucas (1934) suggests that ... there is no proof that 

this [ground lapis lazuli, ultramarine] was known until about the beginning of 

the eleventh century AD. According to Forbes (1955) there appears to be 

absolutely no record of lapis lazuli, or of turquoise, being ground and used as a 

pigment before the sixth or seventh centuries AD, indeed it was thought 

unlikely that these  semi-precious  stones,  much  sought  after  in  antiquity,  

would  ever,  at that time, have been subjected to such degradation. In contrast 

to such statements Theophrastus, writing in the fourth century BC, is reported to 

have said that lapis lazuli, ... a stone common among us in the tops of snuff-

boxes ... of which the glorious blue colour called ultramarine by the painters, is 

made. (De Lapidibus, 83). Forbes (1955) notes that the expensive mineral lapis 

lazuli (but not its ground form) was known in the Ancient Near East: it was a 

major component in the famous so-called Standard of Ur, found in the Royal 

Sumerian cemetery at Ur and dating to ca. 2600 BC; it is first mentioned (in any 
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text) in the Sumerian epic story of Gilgamesh, dating to about 2750 BC: the poet 

Sîn-lēqi-unninni tells us  ... [to]  Find ... the copper box marked with his name 

... take out the tablet of lapis lazuli. Read how Gilgamesh suffered ... and 

accomplished all … (Mitchell, 2004, 9).   

Forbes (1955)  also noted that … a cake of lapis lazuli …was reported to have 

been found, as a pigment, in Sargon’s palace at Khorsabad, the Assyrian capital 

city that was abandoned following Sargon of Akkad’s death in 705 BC and 

Spurrell (1895, 236) states that Egyptian Blue was an … early subject of barter 

between Egypt and the East, together with its superior, lapis lazuli.   

Not withstanding the opinions of Forbes (1955) or of Lucas and Harris (1962),  

the lapis lazuli pigment, ultramarine, was used in the Roman period, if not 

earlier in the East.  Thus, in their study of fragments taken from the wall- 

paintings in the Vesuvian area and of bowls of powdered pigments found at 

Pompeii, Aliatis and colleagues (2010) found some blue spots on one wall-

painting fragment that were conclusively demonstrated to be lazurite, the major 

component of lapis lazuli.  Furthermore,  Brysbaert (2006) has identified lapis 

lazuli (lazurite) used as a pigment in a mixture with a purple hue found on a 

13th century BC Greek Bronze Age wall painting from Gla,  a fortified site 

in Boeotia, mainland Greece. Brysbaert suggests that the ancient artisans had 

the knowledge to produce and use this pigment on wall plaster paintings. 

Pagès-Camagna and Colinart (2003) consider Egyptian Blue to be a lapis-lazuli 

substitute, just as they claim that Egyptian Green was a substitute for the natural 

pigment, turquoise. Ground lapis lazuli (ultramarine) can produce a wide range 

of differing blues: its preparation requires considerable skill over a period of 

time and due to its high cost, it is mainly used in small areas of a painting. 

When used by the Roman artists preparation was usually haphazard as they did 

not separate out the blue crystals (from the calcite, pyrite and other possible 

http://en.wikipedia.org/wiki/Boeotia
http://en.wikipedia.org/wiki/Greece
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minerals), hence the blues that had been applied to the lime mortar were less 

rich than those seen in paintings found in the Ancient Near East (Pastoureau, 

2001).   

It is worth noting that in paintings on vellum and other portable materials, 

indigo or woad is notoriously difficult to distinguish from lapis lazuli.  Several 

major studies of the blues found in the illuminated pages of the Lindisfarne 

Gospels and the Book of Kells (both eight century AD), and earlier 

manuscripts, for instance, were definitively described as lapis lazuli until the 

blue areas in question were conclusively identified as woad or indigo by use of 

micro-Raman studies (Meehan, 2012). 

(e)   Cobalt Blue   Spurrell  (1895) stated that cobalt had never been found on 

wall-paintings but acknowledged that it had been used in the making of blue 

glass in the eighteenth dynasty and later, in Egypt and in Mesopotamia.  

However, cobalt is now attested in Egypt from the Tell el-Amarna period and is 

found on pottery, but again not on wall-paintings. A source of the cobalt has 

been reported from the western desert oases of Kharga and Dakhla, 

(Kaczmarczyk, 1986 and Shortland et al., 2007) though a central European 

provenance has also been thought to be a possibility - there appears to have 

been intensive Aegean-Egyptian trade contacts – either directly or via Syria – 

during the reigns of Amenhotep III and Akhenaten in the late Eighteenth-

Dynasty which might have provided the network for a cobalt supply from the 

far side of the Balkans. Geologically, cobalt is not found as a native metal but 

normally as a by-product of nickel and copper exploration or mining. In the 

form of salts of aluminium, CoAl2O4, cobalt has been used historically, 

particularly in Chinese blue and white porcelain from the time of the Tang 

Dynasty, AD 618-907 (Enghag, 2004);  it has also been attested in Egyptian 

sculpture (but not on wall or other paintings) and in Persian jewellery from the 

late bronze age.  Its use in Egyptian glass, glasses and faience dates from the 
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time of the Eighteenth-Dynasty, ca. 1550 -1292 BC, (Rehren, 2003 and Lucas, 

1934). 

 

2.7   Egyptian Green 

Green, and purple pigments, and pellets, were found with the debris as well as 

blue pigments in early studies (eg by Russell, 1892); all of the Egyptian Blue 

pigments that have been analyzed have been found to have excesses of some 

components or unwanted phases. As already discussed, if during the 

manufacturing process excess lime (CaO), calcium carbonate, CaCO3, or even 

gypsum, CaSO4.2H2O, is added to the ingredient mix then the mineral copper 

wollastonite, (CaCu)3Si3O9, forms and the resulting pigment shows a distinctly 

green hue (Jaksch, et al. 1983). Mazzocchin and colleagues (2004) have shown 

that cuprorivaite decomposes at temperatures greater than 1050˚C and in the 

presence of sodium carbonate results in the formation of a green frit, 

The pigment known as Egyptian Green has, often, a turquoise hue and was 

known to have been used in antiquity in foliage decorations; for long it has been 

considered to be a pale version of Egyptian Blue (eg by Weatherhead & 

Buckley, 1989), or as a misfired Egyptian Blue (eg Bayer & Wiedemann, 1976;  

Jaksch, et al., 1983  and  Ullrich, 1985) or even as a weathered Egyptian Blue.  

Pagès-Camagna and Colinart  without explanation, state in their 2003 study that 

Egyptian Green was a substitute for the natural pigment turquoise; they go on to 

demonstrate that Egyptian Green is a pigment distinct from Egyptian Blue. 

Although Egyptian Green and Egyptian Blue have an almost identical chemical 

composition the latter authors claim that as a result of the manufacturing 

process two distinct pigments can be produced. They appear conclusively to be 

able to distinguish, on the basis of the CIE L*a*b colour analysis (which system 
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is, of course, less subjective that the Munsell charts), between visually different 

coloured cakes of historic material and thereby demonstrate that there are 

indeed two different coloured pigments. An SEM study of the cakes also 

appeared to distinguish between the two pigments: the Egyptian Blue scan 

showed cuprorivaite crystals, CaCuSi4O10, in a silica rich amorphous phase, 

whereas the Egyptian Green scan shows wollastonite crystals, CaSiO3, in a 

copper rich siliceous amorphous phase. Studies were also undertaken on 50 

archaeological fragments taken from paintings kept in the Louvre museum, 

though no details are provided about the sampling conditions, sample sizes, 

substrate material or provenance, for example. The authors continued with 

experimental studies looking at the mineral content of a fired mixture, 

consisting of silica sand, copper oxide and calcium carbonate with a sodium 

carbonate flux between 7 and 12 [wt] %, as the furnace temperature increased 

and subsequently decreased. It is not recorded how the mineral content was 

recorded at each temperature stage but the results presented are significantly 

different to those recorded by, Pradell, with Tite and others (2006), discussed 

above. For instance, Pagès-Camagna and Colinart (2003) do not record that 

both cuprorivaite and wollastonite appear during the cooling phase, as well as 

during the heating stages, although they state that the cooling rate is a 

significant factor in determining colour, and that wollastonite is the main 

marker for Egyptian Green. They conclude that the following conditions are 

found when Egyptian Green is created:  

  the firing temperatures are higher than those for Egyptian Blue ie higher 

than the 870-950°C at which Egyptian Blue is formed;  

  there is less copper than calcium in the original mixture; 

  the bulk Ca/Cu ratio is greater than 1.7, and the bulk SiO2/CuO ratio is 

greater than 4 [in Egyptian Blue the ratios are said to be of the order of 0.7 and 

3 respectively]; 
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  there is a significant level of a soda rich flux, typically between 5.7 and 10 

wt % whereas in Egyptian Blue it is always five or less;  

  There is a significant copper concentration, CuO, in the silica rich 

amorphous phase, shown on the SEM; 

  the characteristic presence of (copper)-wollastonite in the pigment.  

 

Thus they conclude that Egyptian Green, a copper containing wollastonite-type 

compound, is formed by varying both the proportion of the materials selected 

and the production conditions used to produce Egyptian Blue. The nature of the 

bulk Ca/Cu and SiO2/Cu ratios mentioned as being necessary for the production 

of Egyptian Green mirror the observation by Jaksch et al., (1983) that an excess 

of lime or other calcium compounds added to the ingredient mixture will result 

in the final pigment having a green hue. Overall, therefore, it is possible to 

conclude that there is almost certainly a mineralogical distinction between the 

two pigments but, it is suggested, the case presented by Pagès-Camagna and 

Colinart (2003) is somewhat confused and lacks clarity, perhaps because they 

are writing in a language which is not their mother tongue. 

Many of the findings of Pagès-Camagna and Colinart  (2003) appear at first 

sight to be corroborated by Bianchetti and colleagues (2000) who, in a series of 

experiments that consider the manufacture of Egyptian Blue, suggest that 

wollastonite was detected in mixtures containing a lower copper to calcium 

ratio. They also noted that when the firing temperature is raised to 1015 ˚C 

cuprorivaite is transformed into green glass (a green frit) and that wollastonite 

was always detected in green frit. However, their overall conclusion is that ... 

the presence of wollastonite and green frit cannot be strictly connected, so that 

wollastonite cannot be regarded as a certain indicator of the presence of green 

frit ... and that ... it was possible to obtain – from the same constitutive 

materials of Egyptian blue – an artificial green colour, a green frit, by a 

moderate raising of temperature or by using fluxes; this reconstruction may be 
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compatible with the ancient Egyptian technology of glass production. Many of 

the earlier investigators of Egyptian Blue production, including Spurrell, would, 

it may be suggested, agree with this finding. 

Indeed, Spurrell (1895, 234) found specimens from Tell el-Amarna and Gurob 

that were both blue and green carbonates of copper.  He suggested that when a 

mass of the fired pigment was broken up and examined it was … commonly 

found that part was green and part blue, mottled and shaded in a beautiful 

manner. Subsequently the best (ie blue) parts were selected, reground and re-

fired to produce blue cakes.  Spurrell (op.cit.) was of the opinion that a green 

pigment was … sometimes a step in the process of making the blue… But green 

could also be made by employing sand highly stained with iron; the careless 

use of which ruined many a batch intended for blue (Spurrell, idem.).  However, 

he suggested that such greens were rarely used since they were inferior to 

malachite and he acknowledged that it was difficult to find sand free of iron. 

It has been suggested that pigments described as being of a green hue or even as 

being an Egyptian Green pigment may be the product of weathering and 

degradation of the multiphase Egyptian Blue pigment. Schiegl and colleagues 

(1992) have shown that some superficial green surfaces on painted stone 

surfaces of Old and Middle Kingdom samples were originally Egyptian Blue.  

They showed that the glass phase of Egyptian Blue can devitrify, resulting in 

the secondary formation of copper compounds such as copper chloride and 

malachite and a corresponding green hue to the pigment. 

 



 

CHAPTER 3 

 

Methodology 

 

By different methods different men excel ....  

                               Charles Churchill,  1731-1764,  priest and poet 

 

3.1   Preamble 

In order to facilitate the understanding of past civilizations, archaeologists – and 

to a lesser extent historians - have, particularly since the 1960s, begun to 

interact with specialists within fields such as analytical chemistry, physics,  

statistics, geology and environmental sciences.  Pollard and Heron (1996) have 

suggested that these and other specialities can provide the archaeologist with 

numerous approaches and techniques which … facilitate data analysis and 

interpretation, enhancing the opportunity to extract more information from the 

material record of past human activity.  In the light of such an understanding, 

Archaeological Science may be viewed, according to Tite (1991), as a group of 

various sub-specialities in which the main activities include: 

 eg the study of the provenance, use and technology associated with discovered 

artefacts (Glascock et al., 2005); 

 

 eg the investigation of environmental issues such as climate change, animal 

husbandry, land management, and consideration of the diet, health and welfare of 

those who lived on a particular site (Chepstow-Lusty et al., 2007); 

 

 eg the use of non-destructive techniques, such as geophysics and aerial photography, 

for the location of buried features (Clark, 1990); 
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 eg the use of chemical and physical dating methods that provide the archaeologist 

with absolute and relative chronologies  (Bowman et al., 1991);  and 

 

 eg the conservation of artefacts: involving the study of the decaying process and the 

development of new methods for reconstructing and preserving these objects 

(Watkinson,1987 and Barham & Goodman, 2005). 

 

These various scientific approaches frequently have the potential to supply 

precise and detailed information upon which improved archaeological 

interpretations can be based.  Furthermore, as Greene (1995) suggests, using 

tried and tested scientific methods can only enhance the design and conduct of 

archaeological research. Aitken, (1990) in his studies, goes yet further and 

suggests that  … scientific dating is not just a boring necessity that tidies things 

up by providing numbers, it is vital for valid interpretation.   

 

3.2    Analytical techniques used in sample preparation  

In the present study it was necessary to establish the chemical and mineralogical 

composition, texture,  fabric,  structure  and geochemical classification of each 

of the sampled Egyptian Blue pellets and of the blue and green fragments of 

painted wall plaster.  It was therefore vital to determine what types of 

quantitative and semi-quantitative geochemical analyses would be most suitable 

for this purpose. This is particularly important given the requirement that all the 

samples examined in this study, being of archaeological value, were required to 

be analysed using non-destructive (or absolutely minimally destructive) 

techniques.  Initially all the Egyptian Blue pellets were weighed and measured. 

The pellets, together with fragments of painted-plaster, had their colour 

identified using the Munsell Book of Color (Matt Finish Collection) 2001, (see 

appendix A). Samples were also examined under a MEIJI techno RZ zoom 

Stereomicroscope with a fibre-optic light source to permit study in fine detail 
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their textural composition, structure and fabric.  The data presented using these 

methods are, therefore, purely qualitative and the results are intended to show 

the general characteristics of each pellet and fragment of painted plaster. The 

method used to prepare the samples taken for investigation are described along 

with the analytical technique employed in their analysis. 

Laser Ablation Inductively Coupled Plasma-Mass Spectroscopy (LA-ICP-

MS) is a multi-element analytical technique that is able to produce detection 

levels in the range of a few parts per million, and is therefore used when 

elements are present in very small quantities. It requires a small sample size for 

the analysis and is therefore technically micro-destructive, though the damage is 

normally so small as to be invisible to the naked eye. The method has been used 

as an important analytical tool in earth sciences since the 1990s and according 

to Sylvester (2001), … it can be argued that earth scientists have been the 

major driving force behind the development of … LA-ICP-MS.  The technique is 

also used in environmental sciences and has been applied to analyse fish scales, 

bone, teeth, mollusc shells and tree rings (Veinott, 2001). The technique can be 

applied to solid samples, such as Egyptian Blue pellets, without preparation.  In 

the context of this study it was observed that there was a developing link 

between the investigative techniques being employed in geological research and 

their applicability to archaeological studies. Disadvantages involved with the 

LA-ICP-MS technique include the high purchase cost, the lack of calibration 

standards and the need to use a nebulizer and spray chamber for liquid samples.  

During initial studies for this project it was noticed, during the literature search, 

that recent papers had been published on the successful use of LA-ICP-MS in 

archaeological sample characterization. The use in archaeological research of 

this investigative technique has been extensive in the United States for several 

years, especially in establishing trade patterns, for example, concerning the 

manufacture of obsidian artefacts (the origin of obsidian artefacts can be traced 
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chemically since each volcanic source has a distinctive “fingerprint”) from the 

Aztec-Tarascan frontier and also at El Ujuxite in Guatemala, Speakman et al., 

(2005). It is evident that LA-ICP-MS has an established pedigree in 

archaeological research, particularly in the USA, though presently less so in the 

United Kingdom. It is one of the techniques of choice in the present study.  The 

data presented for this study from LA-ICP-MS are qualitative and the results are 

intended to show the general elemental composition of each pellet and fragment 

of painted plaster. The reliability of the data obtained from the LA-ICP-MS is 

paramount: the manufacturers of the New Wave Research Merchantek UP-213 

Laser Ablation System, which was used to analyse the Egyptian Blue pellets, 

have produced a software programme that meets the analytical needs of this 

research project. 

The Egyptian Blue pellets from several Romano-British sites were characterised 

using an Agilent 7500ce ICP-MS equipped with a New Wave Research 

Merchantek UP-213 Laser Ablation System, operated in scanning mode.  

Operational parameters were as follows: Argon gas was used throughout at a 

flow rate of 1.25 litres/min; laser ablation spot size was 10μm, with a pulse 

frequency of 10Hz, a scan speed of 10 μm/sec and an energy density of 3J/cm
2
. 

Before analysing the pellets a gas blank was run to ensure that the … carrier 

gas ’s [Argon] flow into the [LA-ICP-MS ablation chamber was] a high velocity 

jet directed on to the ablation site... (Jackson, 2001).  Each of the pellets were 

placed separately, without any preparation, inside the chamber where ablation 

of the sample took place. During ablation the laser beam obliterates a very small 

section of the sample which produces a  cloud of very small particles which are 

removed by the carrier gas (Argon) and are passed into the ICP plasma for 

analysis the results of which are shown within seconds on a computer screen.  

LA-ICP-MS has a distinct advantage over other geochemical analytical methods, 

including its ability to determine the concentrations of a wide range of elements, 
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minimal sample damage, a rapid turn-over, low cost and typically good 

precision and accuracy. In addition, when  undertaking  LA-ICP-MS  studies 

there is  little  risk of  the sample  becoming  contaminated  because it remains 

intact within its original matrix throughout the procedure. 

Perhaps the most frequently used method of investigation described in   

published archaeological research papers is Scanning Electron Microscopy 

with Energy Dispersive X-ray Micro-analysis (SEM-EDAX). In this 

investigative technique an image can be magnified from x 20 to more than x 

80,000 – very many times more than would be possible when seen under an 

ordinary optical microscope. Unlike an optical image, the SEM uses an electron 

beam to produce high resolution images with a large focal depth and is, 

therefore, able to produce images that provide a good representation of the 

three-dimensional structure of the sample since a large amount of the sample 

can be in focus at one time.  A further great advantage of the SEM-EDAX as an 

analytical tool is that the researcher can see clear and detailed images of the 

sample on a computer screen, from samples no larger than 10μm in diameter. 

Using X-rays to analyse the relative energies emitted by the back-scattered 

electrons it is possible to accurately determine what elements are present in each 

sample. Disadvantages of the SEM-EDAX include its high cost and rather bulky 

mass, its inability to produce colour images and its sensitivity to vibration and 

external magnetic and voltage fields; its location must therefore be carefully 

chosen.  According to Kuisma-Kursula (1999) SEM-EDAX is known to have a 

poor sensitivity to trace elements and to all elements lighter than sodium (RAM, 

22.99).  This  opinion  supported  Reed’s statement (1996)  in  which he  states  

that  the  theoretical  detection  limits  for  SEM-EDAX  are  about  0.08 % (ie 800 

ppm) by weight. Trace element concentrations in archaeological specimens are 

commonly below this level.   Furthermore,  the  sample  must  be  stable  under 

vacuum and must be electrically conductive (Killick, 1996); however, 
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conductive coatings such as gold (Au) and palladium (Pd) can overcome many 

of the latter two problems.  In the present study both gold and palladium were 

applied to samples from the Egyptian Blue pellets using a splutter coater. 

A Scanning Electron Microscope (SEM) equipped with an Oxford Instrument 

Analytical ISIS system and an Energy Dispersive X-ray Spectrometer (EDAX) 

was used to analyse all of the samples used in this study. In the application of 

SEM-EDAX, minute samples (weighing < 0.1g) were taken from each of the 

Egyptian Blue pellet and mounted on 12mm aluminium pin stubs, using sticky 

carbon tabs (Agar Scientific) to hold the particles in place, each with its own ID. 

In order to increase the electrical stability and reduce the possibility of charging 

effects, it was necessary to coat the samples with palladium (Pd) using a 

Polaron SC7640 sputter coater. Once dried the samples were loaded into the 

chamber of a JEOL JSM 6310 Analytical Scanning Electron Microscope. 

X-ray Powder Diffraction (XRD) is a method of investigation, based on the 

early work of Bragg, and formulated as Bragg’s Law, that provides both a 

quantitative and a qualitative analysis of the compounds being studied. The 

method involves beaming an X-ray at the subject material and then measuring 

the diffraction of the beam from different parts of the sample. By analysing the 

resulting diffraction pattern the unique atomic structure of the sample can be 

recorded. It thus allows identification of different crystalline phases (and the 

degree of crystallinity), the presence of amorphous phases and the size and 

orientation of crystallites. According to Skoog and Leary (1992) XRD … 

provides a convenient and practical means for the qualitative identification of 

crystalline compounds … an X-ray diffraction pattern is unique for each 

crystalline structure. However, the method is less accurate when analysing 

smaller samples so that materials that are present in only trace amounts will 

often go undetected thereby possibly producing skewed results. Another 

disadvantage is the high purchase cost of the equipment. 
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X-ray Powder Diffraction  was used to verify the mineralogy of two fragments 

of painted plaster from St Albans which were analysed using a PANalytical 

X'Pert Pro X-ray diffractometer to determine their mineralogical composition. 

Intact specimens of each of the two fragments of painted-plaster were placed, 

without any preparation, into the sample holder and then onto a spinning stage 

in order to maximise the random orientation of mineral components, and then 

scanned at 40kV (using Cu K radiation) between 5 and 700 2θ (at a step size of 

0.008). The results obtained from the analysis of each of the painted samples 

were compared with those provided by the computer’s data base. 

Gas Chromatography is the investigative technique that uses the different 

absorption rates of different compounds to identify a particular substance. Gas 

Chromatography with Mass Spectroscopy (GC-MS) is a term which 

encompasses a diverse and important group of investigative methods that permit 

the separation of the closely related components often found in complex 

mixtures; many of such separations are impossible by other means.  However, 

gas chromatograms are unable to identify a substance conclusively unless the 

chromatograms have themselves been substantiated by additional analysis using 

known standards under the same conditions and on the same machine. GC-MS 

analytical equipment is widely used in the analysis of organic materials from 

archaeological sites (White, 1978; Mills & White, 1999;  Colombini et al., 1999  

and  Evershed et al., 2003). 

A Perkin Elmer AutoSystem XL Gas Chromatograph and TurboMass 

Spectrometer (GC-MS) was used on the two small fragments of painted wall-

plaster found in a back filled trench from Wheeler’s 1930-33 Verulamium 

excavations in an attempt to determine the nature of the binding material that 

might have been used to fix the pigment to the plaster. Minute samples 

(weighing <0.1g) from the two fragments of painted-plaster and placed 

respectively in two clean two-necked round-bottom flasks with 2 ml of 
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dichlorom ethane. Once the samples had dissolved, the flasks were transferred 

into a glass water bath which had been placed on top of a small laboratory hot 

plate and then inserted into a fume cupboard. It was important to exclude air 

from both flasks by flushing with inert nitrogen; the necks were sealed with 

rubber seals. Non-disposable needles  were  inserted  into  both  seals  to  allow  

nitrogen  to  flow  through  the  system,  Then 50μl of the mixture BSTFA (N,O-

Bis[trimethylsily] trifluoroacetamide) and TMCS (trimethylchlorosilane), in  a  

ratio of  99 : 1, were added to each sample. BSTFA is a powerful trimethylsily 

donor and the TMCS enhances the reactivity of the BSTFA with samples which 

are difficult to derivatise, especially when trying to ascertain what type of 

binding material, whether a wax or an oil, had been used in the preparation of 

ancient pigments.  

To improve the efficiency of the derivatization reaction, the samples were 

heated at a temperature of 70˚C for thirty minutes in the warmed water bath. 

Once the samples had evaporated, 0.05μl of dichloromethane was added and the 

prepared sample was injected into a J&W Scientific DB-5MS capillary column 

(length 30m, internal diameter 0.25mm, film thickness 0.25μm). A standard 

programme was used throughout the analysis: the Oven temperature was set at 

50˚C for 1 minute, then increased at 10˚C per minute to a final temperature of 

325˚C, which was sustained for 15 minutes, the injection temperature was 

250˚C, and the flow rate of the helium carrier gas was 1.3 ml per minute.  The 

samples were injected in splitless mode with a splitless time of 1 minute. The 

total time allowed for the process was within the range 38 to 50 minutes. The 

Mass Spectrometer was operated in Electron Impact mode with an ionisation 

energy of 70eV.  Spectra were recorded using full scan mode over the range 40 

to 620 m/z.  Modern day samples of beeswax and linseed oil were prepared 

using the same methodology as those of the painted samples to be used as 

standards. 
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First reported in 1928 the Raman effect detects the interaction between the 

scattering of electromagnetic waves and the vibration modes of molecules.  The 

advent of lasers has enabled the analytical capacity Raman Spectroscopy to be 

dramatically improved; the application of micro-Raman Laser Spectroscopy is 

now one of the major instruments for the absolutely non-destructive analysis of 

chemical, mineralogical, gemmological and other materials and is especially 

useful in the field of archaeology. Using this non-destructive technique the 

sample size can be as small as 1μm in diameter. However, its present high cost 

has limited availability to a relatively small number of institutions. A Renishaw 

RM1000 laser Raman microprobe, equipped with an argon ion laser (514.5 nm) 

was used in this study for additional sample characterisation of two pellets from 

Fishbourne Roman Palace at Kingston University (courtesy of Professor A. 

Rankin).  

In a previous study, X-ray Fluorescence Spectroscopy (XRF) using a 

Cambridge Instruments AN10000 X-ray Spectrometer with a Philip PV9500 

detector and with a 20v Rhodium X-ray tube was used to analyse a samples of 

Egyptian Blue pellets from excavations carried out at Fishbourne Roman Palace 

over the period 1997 to 1999, (Clegg & Freeman, 2003).  The technique is 

relatively sensitive and is capable of detecting elements above sodium (Na) in 

the Periodic Table and is particularly useful for detecting heavy metal pollutants 

such as lead (Pb). XRF is widely used in archaeological research because of its 

ability to carry out accurate, non-destructive analyses at high speed, with the 

results being available within minutes (Skoog & Leary, 1992). 



 

CHAPTER 4 

 

Egyptian Blue Pellets,  Fishbourne Roman Palace, Chichester 

 

They vary greatly in tint … some of a light and … pure blue …                                                                                                                           

                                                                                                   W J Russell  1892, 46 

 

 

4.1 Introduction 

The building of Fishbourne Roman Palace, near Chichester, began following the 

Roman invasion of AD 43; it was occupied continuously from ca. AD 65 until 

its destruction by fire in the late third century.  (The geographical position of the 

site of the Palace is shown on Map 2). The palace consisted of four residential 

wings placed around a large garden (figure  4.1a).  The south wing … with its 

view across the secluded southern gardens … was the private living apartments 

of the occupants of the Palace, whereas part of the east wing and the north wing 

constituted a suite of luxurious rooms for visiting dignitaries Cunliffe (1998, 

107). The Palace was richly decorated with marble mouldings … (Cunliffe 

1998, 40), fine wall paintings and mosaics. 
 

As discussed in Chapter 2 Egyptian Blue was widely used by ancient artisans 

throughout the Roman world to decorate interior walls and has been found on 

many samples of blue painted-wall plaster. A fine example being a large 

fragment of a second century AD wall painting, found in the north wing of the 

Palace, showing a small figure standing in front of a colonnaded building with 

the sea in the background (figure 4.1b). It has been compared to a similar 

painting found at Stabiae (near Pompeii) and, according to Cunliffe may have 
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been painted by the same school of painters (1998). Twelve Egyptian Blue 

pellets were obtained from the 2002 excavation at Fishbourne Roman Palace. 

Ten of the pellets were found on spoil heaps by metal detectors and two were 

found in a ditch which pre-dated the proto-palace. They all varied in colour, 

shape, size and texture.  

 

4.2  Analytical techniques used on these pellets 

All the pellets were examined by LA-ICP-MS and SEM-EDAX in order to 

qualitatively determine their geochemical composition and classification. The 

samples were also examined under a MEIJI techno RZ zoom Stereomicroscope 

with a fibre-optic light source to study in fine detail their textural composition, 

structure and fabric. The methods used in the preparation of samples is 

discussed in Chapter 3. Because individual pellets are never homogeneous 

throughout, their described colours, identified with use of the Munsell Book of 

Color (Matt Finish Collection) 2001 should be considered as a guide only. The 

pellets were also weighed and measured as shown in figure 4.2. 

 

4.3  Results 

The elemental composition of each of the twelve pellets, as derived from LA-

ICP-MS and SEM-EDAX analyses, is shown in the spectra of figure 4.3, and 

tabulated in figure 4.4   Chemical analysis of the Fishbourne Roman Palace 

pellets by LA-ICP-MS shows significant variation in the amounts of copper (Cu), 

iron (Fe) and tin (Sn) found in eleven of the pellets. Copper is, however, not 

detectable in one of the pellets, viz. FBE02 1005/14454. Calcium (Ca) was not 

recorded in any sample. Silica (Si) is one of the main components in the 

production of Egyptian Blue and was found in all the pellets with the exception 

of the following three, namely FBE02 1005/14448, FBE02 1139/17463 and 

FBE02 1145/17632. Carbon (C) was detected, in various amounts, in all of the 
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pellets; suggesting that the flux used in the production of these pellets was 

likely to have been potash.  

 

The  predominant  isotope  of  lead  (Pb)  is  208.  Unfortunately, some  of  the 

LA-ICP-MS spectra for this element did not demonstrate the presence of the three 

stable isotopes (viz. 206, 207 and 208) which are considered necessary before 

conclusive evidence of the presence of lead can be confirmed. On this basis lead 

was not identified in pellets FBE02 1013/14376, FBE02 1024/15353, FBE02 

1139/17463 and FBE02 1145/17632 although it was present in all the other 

pellets.   

 

Sodium (Na) was detected in eight of the pellets: FBE02 1005/14174, FBE02 

1005/14448, FBE02 1006/16512, FBE02 1010/14932, FBE02 1013/14376,  

FBE02 1024/15353, FBE02 1139/17463 and FBE02 1145/17632  and may have 

been used as a flux in the manufacture of these pellets. 

 

Aluminium (Al) was found in all the following pellets: FBE02 1005/14174, 

FBE02 1005/14454, FBE02 1005/14448, FBE02 1006/16512, FBE02 

1010/14932, FBE02 1013/14376, FBE02 1024/15353, FBE02 1029/16203, 

FBE02 1071/17421(a), FBE02 1071/17421(b), FBE02 1139/17463 and FBE02 

1145/17632.    

 

Potassium (K) was detected in eleven of the pellets, namely: FBE02 

1005/14174, FBE02 1005/14454, FBE02 1005/14448, FBE02 1006/16512, 

FBE02 1010/14932, FBE02 1013/14376, FBE02 1024/15353, FBE02 

1071/17421(a), FBE02 1071/17421(b), FB02 1139/17463 and FBE02 

1145/17632. This suggests that potash was the flux used in the manufacture of 

these eleven pellets. 
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Barium (Ba) was identified in five of the pellets, namely:  FBE02 1005/14454,  

FBE02 1006/16512,  FBE02 1024/15453,  FBE02 1029/16203 and  FBE02 

1145/17632.   

 

All the pellets were, when originally excavated, covered by varying amounts of 

clayey soil. The underlying geology of the Fishbourne area is essentially 

London Clay (Eocene); the area represents the remains of an extensive coastal 

plain, with heavy clayey soils and rich organic deposits. Tertiary Clays and 

more recent soils, derived from estuarine alluvium, contain aluminium 

concentrations greater than 10% by weight and potassium concentrations 

greater than 2% by weight (Croudace & Cundy, 1995) as well as background 

levels of barium in the soil which range from 100 – 3000 ppm. The 

identification of these elements in the soil surrounding some of the pellets was, 

therefore, not unexpected. 

 

The  results  of  the  SEM-EDAX  analysis  differ  considerably  from  those  of 

LA-ICP-MS analysis. The SEM-EDAX analysis shows that in all the samples silica 

is present with various quantities of calcium, copper, iron, and sodium. 

Differing amounts of carbon were also present, however, no carbon was found 

in pellet FBE02 1006/16512 although it was detected by the LA-ICP-MS. 

Aluminium was detected in all the pellets, as it was in the LA-ICP-MS analysis.  

Magnesium (Mg) was found in eight of the pellets, namely: FBE02 1005/14454, 

FBE02 1005/14448, FBE02 1006/16512, FBE02 1010/14932, FBE02 

1013/14376, FBE02 1024/15453, FBE02 1029/16203 and FBE02 1139/17463.  

Tin, lead and barium is absent in all of the samples. In four of the pellets, viz. 

FBE02 1005/14454, FBE02 1005/14448, FBE02 1010/14932 and FBE02 

1024/15353, titanium (Ti) is found. Potassium is found in six pellets, viz. 

FBE02 1005/14454, FBE02 1005/14448, FBE02 1006/16512, FBE02 

1010/14932,  FBE02 1024/15353 and FBE02 1145/17632. 
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Titanium, potassium, aluminium and magnesium are elements commonly found 

in soil samples. With the exception of one pellet (see above) they all contained 

carbon and this together with aluminium, magnesium and potassium may 

indicate the nature of the flux used in the manufacture of the pellets. The 

variations in the chemical composition of the pellets, while based on qualitative, 

rather than quantitative LA-ICP-MS and SEM-EDAX scans, indicate considerable 

heterogeneity as mentioned. This may be due to either the materials sourced to 

produce these pellets, ie the available ingredients, or to the actual extent of the 

mixing of those ingredients in the manufacturing process, or indeed to both 

factors. 

 

4.4   Texture and structure of the pellets 

The texture and structure of all twelve pellets were closely examined by the 

naked eye and also microscopically (magnification x 7.5), figure 4.5.  As a 

result of this examination the pellets were categorized into four types, classified, 

for convenience, as Fishbourne Roman Palace (FRP) Types I, II, III, and IV, 

shown in Table 1 (Clegg  et al., 2006). 

 

The structure and texture of each pellet results from the nature of the materials 

used and the way in which they have been prepared and combined.  In extensive 

experiments conducted by the author the intimate relationship between the 

degree to which the ingredients have been ground and the resulting microscopic 

structure of the pellet is clearly identifiable.  This work is discussed at length in 

Chapter 9. From these experiments it is possible, when looking microscopically,  

at  a  given  pellet  to  be  highly confident  of  the  extent  to  which  the  

ingredients  have  been  ground  and  prepared.  And it is on the basis of this 

work that the following classification of the Fishbourne Roman Palace pellets 

has been constructed. 
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The structure of  FRP Type I  pellets  [FBE02 1010/14932,  FBE02 1013/14376 

and  FBE02 1145/173632] are those in which the ingredients have been roughly 

ground. The quartz grains are large and there are few inclusions (figure 4.6 (a) – 

(c)). The composition of FRP Type II pellets [FBE02 1005/14448, FBE02 

1071/17421(a), FBE02 1071/17421(b) and FBE02 1139/17463] is very  

different:  these are the pellets in which the ingredients would have been finely 

ground, although some small inclusions are found (figures 4.5.(d) – (g)).  The 

size of the quartz grains are smaller than those of FRP Type I.  The FRP Type 

III pellets [FBE02 1006/16512, FBE02 1024/15353 and FBE02 1029/16203], 

(figures 4.5 (h) – (j)), varied slightly from those of Types I and II. Although the 

ingredients of these pellets would have been finely ground, a few large grains of 

quartz remained, but very few inclusions were seen. The ingredients of FRP 

Type IV pellets  [FBE02 1005/14174,  FBE02 1005/14454] were finely ground 

and there are no inclusions, as shown in figures 4.5 (k) – (l). 

   

When the pellets were examined microscopically for fine detail it was 

noticeable that although the grains varied in size and colour they all appeared to 

have been ‘washed’ showing well defined, clean margins and minimal débris. 

This can be seen in FBE02 1071/17421(a) and FBE02 1139/17463 (both FRP 

Type II pellets) in figure 4.6. The ‘washed’ grains would indicate that 

Fishbourne Roman Palace’s pellets were made by an expert. These two pellets 

are similar in texture, structure and friability; however the size of their 

individual grains varies noticeably, as is shown in figure 4.6. This is 

demonstrated in the following analysis: a selection of the grains have had their 

long axis determined. From pellet FBE02 1071/17421(a) 25 grains were 

measured. The longest axis being 646.3 μm whilst the shortest was 258.5 μm; 

the mean length was 464.9μm with a standard deviation of 107.3μm and a 

standard error of the mean of 21.9μm.  In contrast, the 21 measured grains of 
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pellet FBE02 1139/17463 showed a mean length of 593.9μm with a standard 

deviation of 153.4μm and a standard error of the mean of 34.3μm. The longest 

axis measured was 850.1μm and the shortest was 293.5μm. Pellet FBE02 

1071/17421(a) has a lower standard error of the mean and this supports the 

contention that the grains of this pellet have been sorted and washed to a greater 

degree than those of FBE02  1139/17463.  The statistical analysis was 

conducted on only two of the pellets, both friable, from which grains were 

easily obtained.  It may be concluded that these two (otherwise similar) pellets 

were made at different times and / or possibly by different operatives.  It was 

not possible to obtain material suitable for analysis from any of the other pellets 

without exposing them to unacceptable damage. 

 

In composition all twelve of the pellets show a smoothed, amorphous, glassy 

slag-type structure, possibly caused by high temperatures during the firing 

process. With the exception of FRP02 1071/17421(a), 4.7(i), which shows part 

of a large single prismatic crystal (the green colour shown is a construct) the 

SEM-EDAX images of the crystal habit of the pellets show an overall general 

uniformity - given the textural differences in the nature of the pellets. The 

crystal habit of the twelve pellets is shown in figure 4.7(a – l), where it can be 

seen that the damaged platy and tabular habit is predominant. Although some 

crystal habit is recognizable in all of the pellets, it is impossible to identify any 

particular mineral that may have been used in the manufacture of these pellets. 

 

4.5   Discussion                                                

The results of the LA-ICP-MS analysis show that calcium is lacking in all of the 

samples [which is actually in conformity with that the ‘recipe’ suggested by 

Vitruvius’s (Book VII, XI, 1)]. However, the presence of tin and, in the majority 

of pellets, lead, copper and iron is common to all but one of the samples, viz. 

(FBE02 1005/14454), raising the possibility that scrap metal, in particular 
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bronze scrap, was an important ingredient in the production of the Fishbourne 

Roman Palace pellets. Similar observations were made by Damiani et al., 

(2003) when investigating the House of Diana at Costa, see Chapter 2.  

 

It is well established that iron is frequently associated with sand, (as an oxide or 

oxyhydroxide contaminate) which is one of the main ingredients in the 

production of Egyptian Blue pellets. The other ingredients for producing such 

pellets, using scrap metal, would have been readily available during the building 

of Fishbourne Roman Palace: during  the  excavation  of  the  Palace  evidence  

was found suggesting base foundations of Belgic-type kilns which may implies 

that, with all the different professional skills required to assemble such a grand 

structure, at least some of the pellets may have been produced locally, on site 

(Manley & Rudkin, 2006).  

 

The results of the SEM-EDAX analysis, however, contradict the above 

hypothesis, that scrap metal was used, since neither tin or lead was identified. 

Calcium was positively identified, implying, incidentally, that Vitruvius’s 

written recipe was not followed  -  it is assumed that the sand used by Vitruvius 

was ‘contaminated’ with lime, thus providing (unnoticed) one of the essential 

ingredients for the manufacture of Egyptian Blue pellets. Other, anachronistic 

elements were also identified. These elements, such as aluminium, titanium and 

magnesium are likely to be soil contaminants. Iron is frequently associated with 

silica. All the Fishbourne pellets were found isolated in a soil matrix.  

 

On detailed examination the two Egyptian Blue pellets (FBE02 1071/17421(a) 

and FBE02 1139/17363), classified as FRP Type II (Table 1), were notably 

friable to touch and were clearly of a different texture and structure to all the 

other pellets found during the 2002 excavations.  They correspond to the 

description given by Russell (1892, 46) … every specimen of the frits that I 
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have seen has been in the friable condition … [and] …on rubbing they can be 

readily reduced to powder...  It is unlikely, therefore, that these two pellets were 

made locally. Knowing that those who commissioned Fishbourne Roman Palace 

engaged master craftsmen (Cunliffe, 1998), most likely Roman-trained, then 

these two pellets could have been manufactured at a factory site such, as 

Vestorius’ industrial plant in Puteoli, modern day Puzzuoli. Were this to be the 

case then these pellets would have been brought to Fishbourne by such a master 

craftsmen and his entourage and formed part of a larger batch of pellets and 

other pigments used to decorate the interior walls of the palace during its initial 

construction. 

 

The two friable pellets, FBE02 1071/17421(a) and FBE02 1139/17363, were 

found in a very early ditch, pre-dating A.D 43.  However, … that an amount of 

wall-painting may have been undertaken in the vicinity in the decades prior to 

AD 43 must, however, be treated with caution … (Clegg, 2005,  78)  since 

painted plaster from such an early date is very rare in Roman Britain.  During 

the 2002 excavations the bottom  of this ditch was moist.  And … the clay soils 

at Fishbourne are very conducive to small things becoming attached the soles of 

boots … [of  excavators, and]  … it is possible that these two finds could have 

become located in the ditch as a result of contamination (Clegg,  2005, 78). 





Figure 4.1a   A model depicting Fishbourne Roman Palace, ca  

1st century AD 

Figure 4.1b  Fragment of blue painted wall plaster painting showing the 

famous balcony scene.  
 

Kind permission of Sussex Archaeological Society. 

North wing 
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4.2a FBE02  1005/14174 
 
Weight: 1.19g 
Dimensions: 9.5 x 14mm 
 
Munsell No.  10B  8/4 
 

Figure 4.2  Showing weight, dimensions and colour 

4.2b  FBE02  1005/14454 
 
Weight: 0.17g 
Dimensions: 5 x 7 x 8mm 
 
Munsell No.  10B  7/4 
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4.2c  FBE02  1005/14448 
 
Weight: 0.53g 
Dimensions: 8 x 8 x 9mm 
 
Munsell No.   10B  6/6 
 

4.2d  FBE02  1006/16512 
 
Weight: 2.28g 
Dimensions: 12 x 13 x 16 mm 
 
Munsell No.  10B  7/6 
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4.2e  FBE02  1010/14932 
 
Weight: 1.95g 
Dimensions: 13 x 15 x 18 mm 
 
Munsell No. 10B  7/4 

 

4.2.   FBE02  1013/14376 
 
Weight: 1.52g 
Dimensions: 12 x 13 x 15 mm 
 
Munsell No.  10B  7/6 
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4.2g  FBE02  1024/15353 
 
Weight: 0.71g 
Dimensions: 8 x 10 x 12 mm 
 
Munsell No.  10B  6/6 

 

4.2h   FBE02  1029/16203 
 
Weight: 1.67g 
Dimensions: 10 x 13 x 17 mm 
 
Munsell No.  10B  6/6 
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4.2i  FBE02  1071/17421 (a) 
 
Weight: 12.09g 
Dimensions: 21 x 26 x 31 mm 
 
Munsell No.  5PB  5/8 
 

4.2j  FBE02 1071/17421 (b) 
 
Weight: 17.62g 
Dimensions: 15 x 32 x 40 mm 
 
Munsell No.  5PB   6/8 
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Figure 4.3. Showing the LA-ICP-MS and SEM-EDAX 
results 

 
(a) FBE02   1005/14174 
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EDX energy spectrum for LA-ICP-MS 

EDX energy spectrum for SEM-EDAX 

(b)  FBE02 1005/14454  

Pb 

Ba 
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Fe 

Si 
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EDX energy spectrum for LA-ICP-MS spectra 

EDX energy spectrum for SEM-EDAX spectra 

(c)   FBE02  1005/14448  
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C 
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EDX energy spectrum from LA-ICP-MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(d)  FBE02 1006/16512  
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EDX energy spectrum from LA-ICP-MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(e)   FBE02 1010/14932  
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EDX energy spectrum from LA-ICP-MS  spectra 

Energy spectrum from SEM-EDAX spectra 

(f)  FBE02  1013/14376  
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EDX energy spectrum from LA-ICP-MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(g)  FBE02 1024/15353  
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EDX spectrum from LA-ICP-MS spectra 

EDX spectrum from SEM-EDAX  spectra 

(h)  FBE02  1029/116203  
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EDX energy spectrum from LA-ICP- MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(i)  FBE02  1071/17421 (a)  
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EDX energy spectrum from SEM-EDAX spectra 

EDX energy spectrum from LA-ICP-MS spectra 

(j)  FBE02  1071/17421 (b)  
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EDX energy spectrum from LA-ICP-MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(k)    FBE02  1139/17463  

Sn 

Na 

Al 

K 

Fe 

Cu 

C 

           97 



EDX energy spectrum from LA-ICP-MS spectra 

EDX energy spectrum from SEM-EDAX spectra 

(l)  FBE02  1145/17632  
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Figure 4.4A 
             

               

 

Summary of elements detected by LA-ICP-MS Analysis of 

 

Egytian Blue pellets found at Fishbourne Roman Palace 
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Figure 4.4B 
              

               Summary of elements detected by SEM-EDAX Analysis of 
 Egytian Blue pellets found at Fishbourne Roman Palace 
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 Table One.   Showing the Classification of the  twelve 
                        Fishbourne Roman Palace pellets. 

 
 
 
    Group                                      Sample ID 
 
  
 FRP Type I                 FBE02 1010/14932 
                                                                    FBE02 1013/14376 
              FBE02 1145/173632 
 
 FRP Type II              FBE02 1005/14448 
                                                                        FBE02 1071/17421(a) 
                                                                         FBE02 1071/17421(b) 
                                                                         FBE02 1139/17463 
 
 
 FRP Type III             FBE02 1006/16512  
                                                                         FBE02 1024/15353 
              FBE02  1029/16203 
    
 
 
 FRP Type IV            FBE02 1005/14174 
                                                                        FBE02 1005/14454 
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Figure 4.5   Classification of Fishbourne Roman Palace’s pellets 

FBE02  1010/14932 

  FBE02  1013/14376   

FBE02 1145/17632  

            FRP Type I pellets 
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               FRP Type II pellets 

FBE02  1005/14448 

FBE02 1071/17421 (a)  

 FBE02  1071/17421 (b)  

FBE02 1130/17463 
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           FRP Type III pellets 

  FBE02 1006/16512 

  FBE02 1024/15353 

   FBE02 1029/16203 
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                     FRP Type IV  pellets 

FBE02  1005/14174 

 FBE02   1005/14454 
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FBE02  1071/17421 (a) 

FBE02  1139/17463 

Figure 4.6     An example of the grain structure of the                
 pellets from Fishbourne Roman Palace 

‘Washed’ grain 

Red arrows show 
’washed’ grains 
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Figure 4.7     Showing the crystal habit of the twelve pellets 
 from Fishbourne Roman Palace 

(a)  FRP02 1005/14174: showing an agglomeration of tabular crystals 

(b) FRP02 1005/14454: showing an agglomeration of fractured 

tabular crystals  
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(c) FRP02  1005/14448: showing an agglomeration of tabular, platy and 
pyramidal crystals 

(d)   FRP02  1006/16512: showing an agglomeration of fractured platy, 
tabular and pyramidal crystals 
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(e)  FRP02  1010/19432: showing an agglomeration of fractured 
cubic and prismatic crystals 

(f)  FRP02  1013/14376: showing an agglomeration of platy, tabular, 
prismatic and cubic crystals 
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(h)  FRP02  1029/116203:showing an agglomeration of fractured 
platy, tabular, cubic and prismatic crystals 

(g)  FRP02  1024/15353: showing an agglomeration of fractured 

platy and tabular crystals  
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(i)   FRP02  1071/17421 (a) 

(j) FRP02  1071/17421 (b): an agglomeration of fractured 
platy and tabular crystals 

Fractured cubic 
and tabular 
crystals with a 
single  large 
crystal showing a 
prismatic habit 
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(l)  FRP02  1145/17632: an agglomeration of fractured platy and 
tabular crystals 

(k) FRP02  1139/17463: an agglomeration of fractured cubic and 
tabular crystals with other debris 
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CHAPTER 5 
 

 

 

Egyptian Blue Pellets from Piddington Roman Villa, 

Northampton 

 
 

… by importing pigments … this led to the arrival of specialized workers … 
                                                                                                                                                                                                                                   

Delamare & Guineau 1999, 33 

 

 

5.1   Introduction 

The Roman British Villa at Piddington (Map 3) is situated approximately six 

miles south-east of the City of Northampton.  It was first discovered in the 

eighteenth century by workers quarrying limestone nearby.  In the late 1980s a 

rescue dig began when a skeleton armed with a spear and a nearby gold ring 

were discovered. Also found in the same area were a mosaic and an underlying 

channelled hypocaust.  A number of worked flints, such as blades, scrapers and 

arrow-heads were found during the exploration of the Roman villa area and 

surrounding fields indicating that the Piddington site had been occupied during 

the prehistoric period. Evidence from sherds of Claudian samian ware, 

amphorae and military equipment suggest that the Roman site may have been 

used as a military fort, constructed  between AD 44 – 60, and occupied by the 

14th Legion. The first proto-villa was built in about AD 65 and consisted of a 

rectangular wooden building with three rooms (Friendship-Taylor, 2006).  

 

During the end of the first century, or early in the second century AD the first  

stone villa, a cottage-type villa, was developed.  Later, towards the end of the 

second century it was expanded to become a wing-corridor-type villa having 

adjacent buildings on three sides. A bath-house was also completed during this 

period.  At the end of the second century a fire destroyed most of the buildings 
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following which the occupants began to rebuild and refurnish the villa on a 

grand scale.  However, at the end of the third century the continuing renovation 

of the villa appears to have come to a sudden end.  The finding of an unworn 

coin dedicated to the emperor Allectus (AD 293-296) suggested to Friendship-

Taylor (2006, 13:4) that the then occupiers who were … possibly supporters of 

Carausius / Allectus, started to rebuild the villa, only to have it confiscated on 

Allectus’ defeat.  We know that … in times of civil war … estates of the … 

losing side were often confiscated by the state.  Figure 5.1 shows a drawing of 

how Piddington Roman Villa might have looked towards the end of the third 

century and figure 5.2 shows a sample of painted wall plaster from the villa, 

obtained from an in-fill during the 1999 excavation season. 

 

The excavation of this site continues, under the direction of Roy and Elizabeth 

Friendship-Taylor and the Upper Nene Archaeological Society, where new and 

exciting discoveries are still being made. One such is evidence of ‘squatters’ 

moving into the abandoned ruins of the villa. These ‘squatters’ appear to have 

been  industrious;  a ceramic tile kiln, working surfaces and hearths have been 

found as well as large amounts of fourth century coins and Nene Valley fine-

coated ware that date from the time of this occupation. It has been suggested 

that these so-called ‘squatters’ may have been the earliest inhabitants associated 

with what subsequently became the village of Piddington (Friendship-Taylor, 

2006).  Eleven Egyptian Blue pellets were found in two areas in the Roman 

Villa at Piddington.  Pellet BM136 V/30 was found in a feature gully underlying 

the late first century villa; the remaining ten pellets were found in the midden 

area dating from the late third century. Figure 5.3 shows a plan of the site and 

the location where the pellets were found. 
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5.2  Analytical Investigations 

Semi-quantitative geochemical techniques were employed in order to identify 

the elemental composition of these eleven pellets. The two main methods used 

to analyse these samples were Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICP-MS) and Scanning Electron Microscopy - Energy 

Dispersive X-ray Analysis (SEM-EDAX).   

 

Each of the pellets were weighed, measured and their colour identified using the 

Munsell Book of Color (Matt Finish Collection), second edition, 2001: the 

results are shown in figure 5.4. The described colours are subjective and should 

be considered as a guide only. The pellets were also examined under a MEIJI 

techno RZ zoom Stereomicroscope with a fibre-optic light source to study fine 

detail.  

 

 

5.3   Results 

The results of the LA-ICP-MS analysis show variations in the chemical elements 

found in the Egyptian Blue pellets of Piddington Roman Villa. Three of the 

pellets: ST116 FF/22,  BM082 LL/24 and  BM089 NN/29 contain both copper 

(Cu) and iron (Fe), whilst in BM070 MM/24, BM080 MM/29, BM054 TT/30,  

BM086 UU/22,  BM127 VV/15,  BM136 V/30 and West Field iron (Fe) is 

present but no copper is detected. However, in BM065 MM/25 copper is present 

but iron is not detectable.  

 

Silica (Si) is present, in various amounts, in all the pellets with the exception of 

BM054 TT/30,  BM086 UU/22,  BM127 VV/15  and West Field.  Lead (Pb) has 

been detected in all of the samples. Tin (Sn) has been identified in four of the 

pellets: ST116 FF/22,  BM082 LL/24,  BM089 NN/29, with a trace identified in 

West Field. Sodium (Na) has been detected in five of the pellets, namely: 

ST116 FF/22,  BM065 MM/25,  BM080 MM/29,  BM089 NN/29 and  also in  
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BM127VV/15 which may suggest that a sodium flux was used in the 

manufacture of these pellets. Calcium (Ca) is present in BM070 MM/24 and 

BM080 MM/29; traces of calcium have also been found in BM065 MM/25, 

BM086 UU/22 and BM127 VV/15.  Both carbon (C) and lead (Pb) are present, 

in various quantities, in all the samples.   

 

Barium (Ba) has been detected in five of the pellets:  BM070 MM/24, BM080 

MM/29, BM086 UU/22, BM127 VV/15 and West Field; traces of barium were 

also found in BM065 MM/25.  Potassium (K) has been found in six of the 

pellets, namely: ST116 FF/22, BM080 MM/29, BM080 NN/29, BM054 TT/30, 

BM127 VV/15 and BM136 V/30. Traces of potassium were also been detected 

in BM086 UU/22 and in West Field. Differing amounts of Aluminium (Al) 

have been found in nine of the pellets: ST116 FF/22, BM082 LL/24, BM070 

MM/24, BM080 MM/29, BM089 NN/29, BM054 TT/30, BM086 UU/22, 

BM136 V/30 and West Field.  Magnesium (Mg) has been found in three of the 

pellets: BM080 MM/29, BM054 TT/30 and BM136 V/30. The elements, 

barium, potassium, aluminium and magnesium are commonly found the soil 

samples and were not unexpected finds given the differing amounts of soil with 

which the pellets were impregnated when they were examined.  

 
 

The SEM-EDAX analysis showed that all the pellets contained large amounts of 

silica with various quantities of calcium, copper, iron, aluminium and carbon, 

although neither copper nor calcium were detected in the West Field pellet. In 

four of the pellets:  BM070 MM/24, BM080 MM/29, BM089 NN/29 and 

BM086 UU/22 traces of sulphur (S) were identified.  Evidence  of  sodium was  

found in  five  of  the  samples:  BM082 LL/24,  BM070 MM/24,  BM065 

MM/25,  BM054 TT/30 and  BM136 V/30. Only in the third of these five 

pellets is sodium also detected in the LA-ICP-MS analysis.  Potassium has been 
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found in seven of the pellets: ST116 FF/22, BM082 LL/24, BM070 MM/24, 

BM065 MM/25, BM054 TT/30, BM136 V/30 and West Field. Traces of 

magnesium have been detected in six of the pellets: BM082 LL/24, BM070 

MM/24, BM065 MM/25, BM054 TT/30,  BM136 V/30 and West Field. Traces 

of titanium (Ti) were found in two of the samples: BM070 MM/24 and BM127 

VV/15. Traces of chlorine (Cl) were indicated in BM070 MM/24.  The finding 

of carbon, together with potassium in six pellets could be associated with a flux 

ie potash, that may have been used in the manufacture of these pellets. Tin, lead 

and barium are notably absent in all the samples.  

 

 

The elemental composition of each of the eleven pellets studied with the LA-

ICP-MS and SEM-EDAX analyses is shown in figure 5.5, and tabulated in figures 

5.6A and 5.6B.  

 

 

5.4   Texture and Structure of the Pellets 

 

The texture and structure of all eleven pellets were examined under fibro-optic 

microscopy at a magnification of times 7.5 as shown in figure 5.7.   Following 

experiments conducted by the author (see Chapter 9) it had been possible to 

detect, when looking microscopically at each pellet, the extent to which the 

ingredients had been ground and prepared prior to firing.  Unlike the pellets at 

Fishbourne Roman Palace it has not been possible to categorize these 

Piddington pellets into different types. The ingredients of pellets ST116 FF/22, 

BM082 LL/24, and BM089 NN/29 have been roughly ground; the quartz grains 

are large and there are some inclusions. In BM070 MM/24, BM065 MM/25, 

BM080 MM/29 and BM136 V/30, by contrast, the ingredients have been finely 

ground; no inclusions or large grains of quartz could been seen. When the 

microscopic picture of the West Field pellet is examined it can be seen that this 

pellet looks very different from the other ten: whereas in all the other pellets 
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individual grains of different sizes can be identified, in the West Field pellet the 

grains appear to have fused into a more-or-less continuous sheet looking like 

bubbling lava flow, being somewhat botryoidal in appearance. 

 

With detailed examination of the pellets under high power microscopy the 

grains sizes were seen to vary considerably. Figure 5.8a, pellet ST116 FF/22,  

shows grains that give the appearance of being unwashed, indicated by the red 

arrows:  the blue arrows shows the presence of much small quartz grains. Figure 

5.8b, pellet BM080 MM/29 again shows the small size of the quartz grains 

when compared to the size of the unwashed grains. The different size grains 

found in pellet BM082 LL/24 are shown in figure 5.8c. As in the previous 

figure a small grain of quartz is identified by a blue arrow. The green arrow 

shows a single well defined washed grain amongst several unwashed grains, 

shown by the red arrows.  

 

 

5.5   Discussion  

The results of the LA-ICP-MS suggest that the majority of Piddington’s pellets, 

containing carbon, and lead. Tin was found in four pellets, viz. ST116 FF/22, 

BM080 MM/29, BM089 NN/29 and West Field; these four pellets also 

contained carbon and lead and other components such as copper and iron which 

may suggest that these Egyptian Blue pellets may have been manufactured from 

scraps of metal discarded by the Villa’s workshops. To date, no archaeological 

evidence has been found to suggest that any of the Piddington pellets were 

manufactured at a ‘factory site’ within the vicinity of the Roman Villa. 

 

The results of the SEM-EDAX analysis shows a similar elemental composition 

for the following three pellets: ST116 FF/22, BM080 MM/29 and BM089 

NN/29. This may suggest that these pellets had been produced using Vitruvius’ 
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recommended ingredients (Book VII, 219,1) although in the LA-ICP-MS data 

there is a high tin content both in ST116 FF/22 and BM089 NN/29 and but none 

in BM080 MM/29. Lead is present in differing quantities in all three pellets. It 

could be suggested, therefore, that these three pellets may have been 

contaminated in the manufacturing process.  

 

The apparent uniform texture, structure and fabric of the pellets can be seen in 

figure 5.4.  Similarly, the SEM-EDAX details of the crystal structure (which show 

uniformly amorphous habits with few identifiable tabular, platy and cubic 

crystal faces) would suggest that all the pellets came from a similar 

‘manufacturing process’.  However, it has been established that pellet BM136 

V/30 is from a first century AD strata whereas the other 10 pellets where found 

in a maiden area dating to the third century. Of the later, the West Field pellet 

shows some distinct characteristics: microscopically it shows no individual 

grains but gives the appearance of a single, fused, botryoidal sheet. 

Additionally, the analyses might suggest that its chemistry is distinct: neither 

the LA-ICP-MS nor the SEM analyses have identified the presence of copper or 

calcium; silica is only identified by SEM-EDAX.  Thus although the 10 pellets 

have a similar date, it would appear that that found in the West Field, at least, 

should be regarded as being from a distinct batch. 

 

  

  

 

 

 

 

 



Map 3. Showing location of Piddington Roman Villa 



Figure 5.1    Tiberius Claudius Severus and his family outside 

Piddington Roman Villa   (Drawing of Piddington Roman Villa) 

Figure 5.2     Painted Plaster Piddington Roman Villa   
Picture taken by author. 

  

By kind permission of  R M & D E Friendship-Taylor 

  

121 



Figure 5.3     Site Plan of Piddington Roman Villa  

Shows where the majority 
of the pellets were found in 
a Roman midden dating 
from the late 3rd Century 
AD. 

BM136 V/30 was found in 
a feature gully, underlying 
the late 1st Century Villa 

Site Plan provided by Roy Friendship-Taylor 
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Figure 5.4   Showing weight, dimensions and colour of Piddington 
Roman Villa’s pellets 

(a) ST116FF/22 
 
Weight: 2.04g 
Dimensions: 15.58 x 13.47 mm 
 
Munsell No. 5PB  5/10 

(c)   BM070 MM/24 
 
Weight: 1.09g 
Dimensions: 17.26 x 15. 45 
 
Munsell No. 5PB  6/8( 

(b) BM082 LL/24 
 
Weight: 0.54g 
Dimensions: 9.46 x 8.68 mm 
 
Munsell No. 5PB  4/8 
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(d)  BM065 MM/25 
 
Weight:  0.15g 
Dimensions: 9.12 x 4.76 
 
Munsell No. 5PB  6/8 

(e)   BM080 MM/29 
 
Weight: 0.36g 
Dimensions: 9.34 x 8.66 mm 
 
Munsell No. 5PB 5/8 

(f) BM089 NN/29 
 
Weight: 2.24g 
Dimensions: 21.27x 14.04 mm 
 
Munsell No. 5PB 5/10 
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(g)  BM054 TT/30 
 
Weight: 0.48g 
Dimensions: 8.12 x 7.82 mm 
 
Munsell No. 5PB 7/6 

(i)  BM127 VV/15 
 
Weight:2.29g 
Dimensions: 15.44 x 15.26 mm 
 
Munsell No. 5PB  5/10 

(h)   BM086 UU/22 
 
Weight: 1.11g 
Dimensions: 14.55 x 10.91 mm 
 
Munsell No. 5PB  6/8 
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(j)    BM 136 V/30 
Weight:1.88 
Dimensions: 14.56 x 13.33mm 
 
Munsell No. 5PB  7/6 

(k)  West Field 
 
Weight: 2.76g 
Dimensions: 16.92 x 15.35 mm 
 
Munsell No. 5PB 6/8 
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Figure 5.5   LA-ICP-MS and SEM-EDAX results for Piddington Roman Villa 

(a)     ST116  FF/22 

EDX energy spectrum for LA-ICP-MS 

EDX energy spectrum for SEM-EDAX 

Al 

C 
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(b)  BM082  LL/24 

EDX energy spectrum for LA-ICP-MS 

 

EDX energy spectrum for SEM-EDAX 

Pb 

Sn 

Al 

Si 

Fe 

Cu    C 
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(c)  BM070  MM/24   

Pb 
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Al 

Si 

Ca Fe 

EDX energy spectrum for SEM-EDAX 

 C 
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EDX energy spectrum for LA-ICP-MS 



(d)  BM065   MM/25 
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EDX energy spectrum for SEM-EDAX 
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EDX energy spectrum for LA-ICP-MS 



(e)  BM080  MM/29 
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(f)  BM089  NN/29 

EDX energy spectrum for SEM-DAX 
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EDX energy spectrum for LA-ICP-MS 



(g)  BM054  TT/30 

Pb 
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Al 
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Fe 

EDX energy spectrum for LA-ICP-MS 

EDX energy spectrum for SEM-EDAX 
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(h) BM086   UU/22 
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Al K 
Ca 

EDX energy spectrum for LA-ICP-MS  

EDX energy spectrum for SEM-EDAX 
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(i)  BM127  VV/15 
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EDX energy spectrum for SEM-EDAX 
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EDX energy spectrum for LA-ICP-MS  



(j) BM136  V/30 
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(k) West Field 

EDX energy spectrum for SEM-EDAX 
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EDX energy spectrum for LA-ICP-MS 



Figure 5.6A 
              

               Summary of elements detected by LA-ICP-MS Analysis  
 of Egyptian Blue pellets found at Piddington Roman Villa 
 

               

               

 
C Cu Fe Si Pb Sn Na Ca Ba K Al Mg 

  

 
                        

  ST116 FF/22 x x x x x x x     x x   
  BM082 LL/24 x x x x x x         x   
  BM070 MM/24 x   x x x     x x   x   
  BM065 MM/25 x x   x x   x x x       
  BM080 MM/29 x   x x x   x x x x x x 
  BM089 NN/29 x x x x x x x     x x   
  BM054 TT/30 x   x   x         x x x 
  BM086 UU/22 x   x   x     x x x x   
  BM127 VV/15 x   x   x   x x x x     
  BM136  V/30 x   x x x         x x x 
  West Field x   x   x x     x x x   
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Figure 5.6B 
                

                 Summary of elements detected by SEM-EDAX analysis of 
  the Egyptian Blue pellets found at Piddington Roman Villa 
  

                                         
       C Cu Fe Si Pb Sn Na Ca Ba K Al Mg Ti S P 

                         
     ST116 FF/22   x x x       x   x x 
     BM082 LL/24 x x x x x   x x   x x x 

    BM070 MM/24 x x x x     x x   x x x x x x 
 BM065 MM/25 x x x x x   x x   x x x 

    BM080 MM/29 x x x x       x     x 
  

x 
  BM089 NN/29 x x x x       x     x 

  
x 

  BM054 TT/30 x x x x     x x   x x x 
    BM086 UU/22 x x x x       x     x 

     BM127 VV/15 x x x x       x     x 
 

x x 
  BM136  V/30 x x x x     x x   x x x 

    West Field x   x x           x x x 
    ____________________________________________________________________ 
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(a) ST116 FF/22 

(b) BM082 LL/24 

Figure 5.7   Piddington Roman Villa Pellets at  
Magnification of  x 7.5 

(c)  BM070 MM/24 
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   (d) BM065 MM/25 

(e)  BM080 MM/29 

(f) BM089 NN/29 
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(g) BM054 TT/30 

(i) BM127 VV/15 

(h) BM086 UU/22 

142 



(j) BM136 V/30 

(k) West Field. 
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Figure 5.8   An example of the grain structure and size of the              
pellets from Piddington Roman Villa 

(a)  ST116  FF/22.  The  green arrows show clearly show 
unwashed grains whilst the blue arrows small grains of quartz 

144 

(b) BM080 MM/29.   Unwashed grain is highlighted by green arrow. 
Small quartz grains by blue arrows 

__ 400μm 

___ 500μm 
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(c) BM082  LL/24.   Blue arrows  points to small quartz grains. The red arrow 
shows a washed grain 

__  400μm 



(b)  BM082  LL/22: an amorphous mass in which a few fractured 
cubic and prismatic crystals can be identified. 

             Figure 5.9   Showing the crystal habit of Piddington pellets 

(a)  ST116  FF/22: an amorphous agglomeration in which only a few 
fragments of cubic, platy and tabular crystals can be identified 
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(c)    BM070  MM/24: an amorphous mass showing a single fractured 
crystal face 

(d)   BM065  MM/25: an amorphous mass showing fractured cubic, 
tabular and prismati crystals 
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(e)   BM080  MM/29: an amorphous mass with few fractured platy, tabular, 
prismatic and cubic crystals 

(f)  BM089  NN/29: an amorphous mass showing multiple fractured 
platy, tabulur and cubic crystals 
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(h)  BM086  UU/22: an amorphous aggregate 

(g)    BM054 TT/30: an amorphous mass showing a few fractured cubic     
crystals and a single compound prismatic crystal 
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         (i) BM127 VV/15: an amorphous mass showing a 
few fractured crystal faces 

 

(j)  BM136 V/30: an amorphous mass showing a    few 
fractured cubic, platy and tabular crystal faces 

(k) West Field: an amorphous mass showing multiple 
fractured tabular and platy crystal faces 
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CHAPTER 6  

 

 

Blue Frit Pellets excavated from Turners Hall Farm near St 

Albans 

… they painted some surfaces with coarsely ground pigments ... 

                                                                                                                            Delamare &Guineau, 1999, 33 

 

6.1   Introduction 

In 2002 the St Albans Archaeology Unit was contacted by Verulamium 

Museum who indicated that they had been shown some high status objects. 

These objects had been discovered by two metal-detectorists, working a Roman 

burial site at Turners Hall Farm, near St Albans.  Before the site was excavated 

field walking was organised to collect any artefacts that lay on or near the 

surface and a geophysical survey undertaken to assess what anomalies lay 

beneath the soil.  

Over the three year period that excavations took place, the St Albans team 

discovered that the site had firstly been occupied in the Iron Age period and had 

continued to be occupied  through Roman times, during which wealthy owners 

built a cottage or corridor-type villa. Besides finding rich burials, clay pellet-

moulds were also found for producing Late Iron Age coins, suggesting that 

Turners Hall Farm may have been under the political control of Verlamion (the 

precursor of Roman Verulamium), an Iron Age town or oppidum for the 

minting of coins (West, 2005). Turners Hall Farm lies some 6 miles north-east 

of the oppidum, shown in Map 4. 
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Three samples of Egyptian Blue pellets were excavated from different areas on 

this Iron Age / Roman site. One of the Egyptian Blue pellets (MED04 

V1544/926) was found in trench 2 in a layer of silt of Roman occupation at the 

base of a lynchet, over a possible Iron Age roundhouse. Another Egyptian Blue 

pellet (MED06 1196/62) was excavated from the lower fill of two large ditches 

close to, but not on, the actual villa site, possibly near workshops where much 

metal débris had been found.  A third pellet, HYP04 043/25, was also found at 

Turners Hall Farm, though the position of its location on the site has yet to be 

identified.  

 

6.2   Analytical  Investigations 

Semi-quantitative  geochemical  techniques  were  employed  in  order  to 

identify  the  elemental composition  of  the  three  pellets  mentioned  above,  

viz. MED04 V1544/926,  MED06 1196/62 and the third pellet, assigned the 

designation  HYP04 043/25.  The two techniques used to analyse these samples 

were  Laser  Ablation  Inductively  Coupled  Plasma  Mass  Spectrometry (LA-

ICP-MS) and Scanning Electron Microscopy - Energy Dispersive X-ray Analysis 

(SEM-EDAX).  The methods used in the preparation of these three pellets is fully 

discussed in Chapter 3.  The pellets were examined by naked eye and were also 

examined under a MEIJI techno RZ zoom Stereomicroscope with a fibre-optic 

light source to study fine detail. The pellets were weighed, measured and the 

colour of each pellet was identified using the Munsell Book of Color (Matt 

Finish Collection) 2001 as a guide. This information is detailed in figure 6.1.  
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6.3   Results 

The LA-ICP-MS and SEM-EDAX analysis indicates the elemental components of 

each pellet and are shown in figure 6.2.  In the pellet HYP04 043/25 (figure 

6.2a) there is a high copper content with some tin and smaller amounts of lead. 

With Egyptian Blue pellet MED04 V1544/926 (figure 6.2b) again there is a 

high copper content, a little less than in HYP04 043/25 and some tin and lead 

and a trace of  silica. The results for MED06 1196/62 (figure 6.2c) also show a 

high copper content, a level similar to that of HYP04 043/25, smaller amounts 

of tin and lead with trace levels of silica.  

In the SEM-EDAX analysis silica is identified as the major element in all the 

three pellets. All three pellets also have moderate amounts of copper and 

calcium.  However, in MED04 V1544/926 (figure 6.2b), unlike the other two 

pellets, there are trace levels of lead, potassium, magnesium, aluminium,  

sodium and iron.  Trace levels of carbon were detected in MED04 V1544/926  

(figure 6.2b) and MED06 1196/62 (figure 6.2c). A difference between the two 

geochemical analyses is that LA-ICP-MS is unable to detect calcium, whereas the 

SEM-EDAX is unable to detect the presence of tin in any of these three pellets.  

Lead is detected in MED04 V1544/926 only. 

The  results  of  the  LA-ICP-MS  and  SEM-EDAX  analyses  are  tabulated  in 

figure 6.3 a and b. 

 

6.4   Discussion 

The presence of lead, copper and tin, indicated by the LA-ICP-MS analysis 

suggests that all three pellets were made from scrap metal. This hypothesis is 

supported  by  the  knowledge  that  pellet  MED06  1196/62  was   found   near  

workshops where metal workings are known to have taken place. If bronze was 
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used as a scrap metal then it is evident that tin needs to be identified. The 

combination of trace amounts of carbon, potassium and magnesium is possibly 

associated with a flux ie potash, which may have been used in the manufacture 

of these pellets. A trace of silica was identified by the LA-ICP-MS technique in 

two of the pellets.  Although the SEM-EDAX analyses identified silica, calcium 

and copper it was unable to detect the presence of tin and lead in two of the 

samples although trace levels were detected in MED04 V1544/926.   

The microscopic detail of these three pellets suggest that they may all have been 

manufactured by the same group of artisans. Although the grain sizes differ 

slightly, the structure and texture of the pellets appear similar, as shown in 

figure 6.4.  Large grains of quartz can be seen in HYP04 043/25 and in MED06 

1196/62, but none appear in MED04 V1544/926. 

However, when observed under high power microscopy, figure 6.5,  (the bar in 

the top left hand corner represents 50μm), the second picture, MED04 

V1544/926 (figure 6.5b) and the third MED06 1196/62 (figure 6.5c) show the 

presence of quartz grains of various sizes, but none were observed in HYP04 

043/25 (figure 6.5a). A single clear washed grain has been detected in HYP04 

043/25, which may suggest that this pellet had been made by an expert.  

However, the two other pellets, not showing washed grains, were possibly made 

by an apprentice, who would have been affiliated to the master craftsmen 

The crystal form of the pellets, HYP04 043/25 and MED 04 V1544/926 is 

pluristic, with several fractured habits visible.  However, pellet MED06 1196/62 

shows almost exclusively an agglomeration of fractured crystals with a tabular 

habit.  These are all shown in figure 6.6. 



Map 4  showing the relative positions of Turners Hall Farm and the Verlamion Oppidum. 

With the permission of St Albans Archaeology Unit. 



6.1a  HYP04  043/25 

 

Weight 1.49g 

Dimensions: 12.63 x 11.77 

mm  

 

Munsell No. 10B   7/6 

 

          

6.1b   MED04  V1544/926 
 
Weight  2.06g 
Dimensions:: 18.36 x 14.88mm 
 
Munsell No. 10B  7/6 

6.1c   MED06  1196/62 
 
Weight  1.14g 
Dimensions: 13.3 x10.95mm 
 
Munsell No. 10B 6/6 

Figure 6.1   Showing the  colour, weight and size of the three pellets from 
Turners Hall Farm 
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EDX energy spectrum for LA-ICP-MS  

Figure 6.2 a    HYP04  043/25 

EDX energy  spectrum for SEM-EDAX  

Pb 

Sn 

Cu 
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Figure 6.2b    MED04  V1544/926  

EDX energy spectrum for LA-ICP-MS  

EDX energy spectrum for SEM-EDAX  

Pb 

Sn 

Si 

Cu 
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Figure  6.3c   MED06 1196/62 

EDX energy spectrum for LA-ICP-MS  

EDX energy  spectrum for SEM-EDAX  

Pb 

Sn 

Si 

Cu 
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Figure 6.3A 
              

               Summary of elements detected by LA-ICP-MS Analysis  
 of Egyptian Blue pellets found at Turners Hall Farm 
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               Figure 6.3B 
              

               Summary of elements detected by SEM-EDAX Analysis  
 of Egyptian Blue pellets found at Turners Hall Farm 
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Figure 6.4  Microscopic pictures x 7.5 of the pellets                  
found at Turners Hall Farm 

(a) HYP04 043/25 

(b) MED06 1196/62 

(c)  MED04 V1544/926 
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(a) Different grain sizes.  
 
The red arrow indicates 
a single ‘washed’ grain 
for HYP04 043/25 

(c) Large well defined 
grains from MED04 
V1544/926 
 
Green arrows show 
unwashed grains 

(b) Clusters of different 
grain sizes  
 
Blue arrows show the 

presence of quartz  from 
MED06 1196/62 

Figure 6.5   Microscopic examination of grains  from the                 
three pellets found at Turners Hall Farm 
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(a ) HYP04 043/25. 

A mass of crystals showing 
large platy and tabular and 
smaller prismatic with a 
few acicular habits 

(c) Med 04 V1544/926. 
A mass of fractured crystal 
faces  showing platy, 
tabular and cubic forms. 

(b) Med06 1196/62. 
An agglomeration of 
fractured  tabular   crystals  
forms 

Figure 6.6.  Showing the crystal habit of the three pellets                                 
from Turners  Hall Farm 
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CHAPTER 7 
 

 

 

Verulamium blue frit pellets 
 

“… is coarsely crystalline and pure blue in color” 

                                                               Gettens & Stout, 1966, 112 

 

 

 

 

7.1   Introduction 

Two large Egyptian Blue pellets were loaned by Verulamium Museum 

for this research project. Sadly, there is no record indicating when or from 

where these pellet were excavated in Roman St Albans. However, it is 

understood that these finds are associated with Sir Mortimer Wheeler’s 

excavations of Verulamium during the 1900s, though it seems that they 

were not considered important enough to be documented in the original 

find’s records.  The location of Verulamium is shown on Map 5. 

 

7.2   Analytical Investigations 

Semi-quantitative geochemical techniques were employed in order to 

identify the elemental composition of these two pellets. The two main 

methods used to analyse these samples were Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Scanning Electron 

Microscopy - Energy Dispersive X-ray Analysis (SEM-EDAX).  The 

pellets were weighed, measured and the colour of each identified using 

the Munsell Book of Color (Matt Finish Collection) 2001, figure 7.1.    

The pellets were also examined under a MEIJI techno RZ zoom 

Stereomicroscope with  a  fibre-optic  light  source  to  study  fine  detail. 

The methods used in the preparation of samples is fully discussed in 

Chapter 3.   
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7.3   Results  

The elemental composition of the two pellets, Verulamium One and 

Verulamium Two, as derived from the two geochemical techniques, are 

shown in the spectra of figure 7.2.  

 

The LA-ICP-MS analysis for Verulamium One shows the presence of 

copper with smaller amounts of tin and lead and traces of calcium and 

silica. The record for Verulamium Two shows that copper and tin are the 

dominant elements, with a smaller amount of lead and a trace of silica. 

Calcium is noticeable by its absence.   

 

In the SEM-EDAX analysis of Verulamium One, silica is identified as the 

major element with traces of calcium, aluminium, copper and carbon. 

Lead and tin were not identified. The results of the SEM-EDAX analysis 

for Verulamium Two similarly indicates a lack of tin and lead but traces 

of copper, calcium, aluminium, carbon and a large presence of silica.  

 

The two geochemical analyses suggest that the elemental composition of 

the two pellets is similar, though in each analytical method the ratios of 

the different elements identified are characteristic. The elements copper, 

silica and calcium are present in both samples.  However, tin and lead are 

detected by the LA-ICP-MS analyses but not by the SEM-EDAX. 

 

The results of the LA-ICP-MS and SEM-EDAX analysis is tabulated in 

figure 7.3a and b. 

 

Both pellets were examined by the naked eye and under a fibro-optic 

microscope. The structure of grains of the pellets was different: in 

Verulamium One (figure 7.4a) the grains, seen under the microscope, 
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were large and cleanly formed, ie washed, whereas in Verulamium Two 

(figure 7.4b) the grains are smaller, ragged and ill-defined in shape, 

implying that they were unwashed. 

 

The SEM-EDAX images show a clear difference in the texture and crystal 

form of the two pellets. Figure 7.5a shows a single well defined crystal 

with a tabular habit from the Verulamium One pellet. This can be 

contrasted with the ragged conglomerate of crystals found in the 

Verulamium Two pellet, figure 7.5b, which show fractured cubic, tabular 

and prismatic habits. 

 

 

7.4   Discussion 

From the above geochemical results it can be seen that the two pellets 

have a different elemental content. It is not surprising, therefore, that they 

also differed in texture, structure, and colour. The microscopic 

examination of the two pellets demonstrates that they have a different 

surface texture and colour as shown in figure 7.6. The Verulamium One 

pellet (figure 7.6a) can be seen to be of a rich blue colouration whereas 

the Verulamium Two pellet (figure 7.6b) is of a much paler colouration.   

 

Furthermore, the counts for the main copper isotopes, 
63

Cu and 
65

Cu, 

differed markedly between samples.  In the Verulamium One pellet the 

average amount (of three runs) of the 
63

Cu and 
65

Cu isotopes, derived 

from the LA-ICP-MS histograms, is 52.7 x 10
5
 and 24.6 x 10

5
 respectively. 

For the Verulamium Two pellet the corresponding values are 37.9 x 10
5
  

and 17.5 x 10
5
.  This  data  is shown as a histogram in figure 7.6 and  

indicates that the Verulamium  One  pellet contains considerably more  

copper  than  the  Verulamium  Two  pellet;  the  amount  of  copper  in  a  
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pellet  is closely  related  to  the  depth  of  the  blue  colouration.  It is 

worth noting that the ratio of the two copper isotopes 
63

Cu / 
65

Cu in both 

pellets is approximately 2.140;  in Verulamium One the ratio is 2.142 and 

in Verulamium Two the ratio is 2.166 (to three decimals place in each 

case). This ratio differs somewhat from those reported as typical of 

copper minerals from historical mines (ca. 2.42 – 2.46, Marelli et al., 

2010), which itself differs from the ratio (of 2.24) given by Clark in his 

New Physical & Mathematical Tables, 1970). The difference between the 

experimentally produced ratio and the two published figures is probably 

due to the analytical limitations of the LA-ICP-MS used in this study.  

 

For the Verulamium One pellet the SEM-EDAX image (figure 7.5a) shows 

a regularly formed crystal habit and in the microscopic picture (figure 

7.4a) the grains are cleanly formed and appear to have the appearance of 

having being ‘washed’.  These two factors suggest that this pellet was 

likely to have been manufactured by an expert, a master craftsmen, who 

was evidently able to produce such a fine specimen.   

 

Although the elemental composition of the two pellets is similar, the 

manufacturing process used to produce the Verulamium Two pellet was 

different. The SEM-EDAX image shows that the crystal habit is totally 

disorganized and, under microscopy (figure 7.4b), the various grain sizes 

show that they have a jagged, fractured and ‘unwashed’ appearance. It 

might well be suggested that this pellet was not made by an expert but by 

an apprentice - possibly one of the apprentices who was part of the 

entourage attached to the master craftsmen responsible for the 

manufacture of the Verulamium One pellet.  
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The LA-ICP-MS analysis indicates, in both pellets, the presence of tin and 

lead, also copper, which suggests that both pellets may have been made 

from scrap metal, most probably from bronze scrapings foraged from the 

metal workshops of the presumed nearby building site. 

 

The Egyptian Blue pellets identified from this site were the result of a 

utilitarian method of manufacture, using copper associated with small 

amounts of tin and lead from discarded pieces of scrap metal instead of 

the more expensive copper filings recommended by Vitruvius (Book VII, 

XI,1). An alternative, though more expensive, approach would be to 

include a mineral such as malachite instead of copper filings. 

 

 

 

 

 

 

 

 

 



Map 5  showing the location of Roman Verulamium 



7.1a  Verulamium One 
 
Weight: 7.38g 
Dimensions:30.42 x  23.22 mm 
 
Munsell No.  5PB  5/6 
 

7.1b  Verulamium Two 
 
Weight: 10.63g 
Dimensions: 32.66 x 27.34 mm 
 
Munsell No.  10B  6/4 

Figure 7.1    Showing the weight, size and colour of the two Verulamium pellets 
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EDX energy spectrum for LA-IPC-MS  

EDX energy spectrum for SEM-EDAX  

Figure 7.2 a   Verulamium One 

Pb 

Sn 

Si 

Cu 

Ca 
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EDX energy spectrum for SEM-EDAX  

Figure 7.2b  Verulamium Two 

EDX energy spectrum for LA-ICP-MS  

Pb 

Sn 

Si 

Cu 
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Figure 7.3A 
             

              Summary of elements detected by LA-ICP-MS Analysis  

of Egyptian Blue pellets found at Verulamium   
    

              

              

 
C Cu Fe Si Pb Sn Na Ca Ba K Al Mg 

 

              Verulamium-One 
 

x 
 

x x x 
 

x 
     Verulamium-Two 

 
x 

 
x x x 

                                 
 

              

              

              Figure 7.3B 
             

              Summary of elements detected by SEM-EDAX Analysis  

of Egyptian Blue pellets found at Verulamium 
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7.4a  Verulamium One shows large cleanly formed washed grains 

 
7.4b  Verulamium Two.  Green arrows show a cluster of different                       
sized unwashed grains 

Figure 7.4   Microscopic examination of grains from the two      
Verulamium pellets 
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7.5a  Verulamium One: showing a single tabular crystal 

7.5b  Verulamium Two: an amorphous mass showing a  few  
fractured cubic, tabular and prismatic crystals 

Figure 7.5  Showing the crystal habit of the two Verulamium pellets 
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Figure 7.6   Surface structure (magnification x 7.5) and isotopes 63Cu and 
65Cu contents of the two Verulamium pellets 

1 

2 

1 

1 

2 

Verulamium One - microscopic picture  

showing dark blue grains 

1 2 3 4 5 6 7 8 9 10 11 

Verulamium one 

Cu 65  

7.6a  Verulamium One - LA-
ICP-MS data showing Cu 
content from isotopes 63Cu 
and  65Cu 

1 2 3 4 5 6 7 8 9 10 11 

Verulamium two 

 Verulamium Two -microscopic picture showing 
pale blue grains 

7.6b  Verulamium Two - LA-
ICP-MS data showing Cu 
content from isotopes 63Cu 
and  65Cu 

Cu 63 

Cu 63 

Cu 65 
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CHAPTER 8 

 

Fragments of Blue and Green Painted Wall Plaster found in  

Verulamium Park,  St Albans  

 

The brilliant colours, which the patron supplies at his own expense to the painter... 

                                                                                          Pliny, Book XXXV, 12 

 

 

8.1   Introduction 

During the summer of 2008 the St Albans District Archaeology Unit, led by 

Simon West, organised an excavation of a small area of a high status town 

house in Verulamium Park. The house, constructed over the period AD 150 to 

300, consisted of at least thirty-three rooms with wall-paintings, mosaics and 

hypocausts. Sir Mortimer Wheeler and his wife had excavated this area during 

the 1930s. The St Albans Unit had expected to find the remains of one of the 

mosaic floors, but this eluded them. However, whilst in the process of back 

filling the hypocaust, seven small fragments of blue and green painted plaster 

were recovered. The size of the fragments ranged from 16 to 25 mm across. 

These seven small painted plaster specimens were subsequently analysed in an 

attempt to determine the type of pigment used; two of these fragments were 

further studied to ascertain the nature of the binding agent that had been 

employed.   

The use of a binding material or medium, mixed with a ground pigment, can be 

traced as far back as the Palaeolithic period when traces of plant and animal oils 

were found to have been used as a binding agent (Bahn & Vertut, 1997). Lucas 

(1934) mentions that the Egyptians used both size (made from animal glue) and 
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albumin (egg white) to enable pigments such as Egyptian Blue to adhere to wet 

or dry plaster. Laurie (1967) noted that the Egyptians used gum arabic as a 

binding agent and Spurrell (1895), when studying fragments of painted plaster 

from Kahun (Twelfth Dynasty), found that albumin and gum arabic were used 

as a medium and that acacia gum had been used at Tell el-Amarna. He also 

recorded that albumin and gelatine were used as the binding agent in the 

paintings of Akhenaton and his daughters. Forbes (1955) mentions the use of 

animal glue, egg white and beeswax. Chromatographic analysis of a sample 

from a Roman building beneath the cathedral in Köln revealed traces of amino-

acids which Davey & Ling (1982) suggests indicated that the pigment may have 

been mixed with an animal size. Pliny (quoted in Davey & Ling, 1982) informs 

the reader that … the finest size is made from the ears and genitals of bulls … 

the most reliable variety… comes from Rhodes and is used by painters and 

physicians. Vitruvius mentions that the use of an oil mixed with hot wax was 

used as a binding material (Book VII, IX, 3). 

Another medium or binding material that was used to ensure that the ground 

pigment would adhere to the surface to be painted, is beeswax. Its use, as a 

binder can be traced as far back as the Eighteenth Dynasty (Spurrell 1895). 

Lucas also mentions that wax may have been applied as a protective coat to a 

finished painting. Sir Flinders Petrie (quoted in Lucas, 1934) found that 

beeswax was used … as a filling of the hieroglyphs on the red granite coffin of 

Ramesses III.  It was during the late 1890s whilst analysing pigments for Petrie, 

that Russell discovered the use of beeswax as a binding material on the Greco-

Roman fragments found at Hawara. He claimed that the pigments used were of 

great interest as they had been … mixed with a wax … [and may appear to be 

similar to] … the colours used by the great Greek artists (Russell, 1892). 

According to Pliny (Book XXXV, 123) the Greek artist Pausias of Sicyon 

became famous for producing paintings using the encaustic technique where 
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ground pigments were added to wax heated by the sun or on a hot plate (Forbes, 

1955) which was then … burnt in…(Pliny, Book XXXV,122)  to the prepared 

plaster.  Forbes goes on to say that … by the time of Apelles a very adequate 

palette had been acquired with which paintings could be made which surpassed 

frescoes and tempera paintings in depth and richness of colour (Forbes, 1955).  

Studies were undertaken by Scott and colleagues (2002) to ascertain what type 

of pigment (and, possibly, what type of binding material) had been applied to 

the décor of nine Egyptian cartonnage fragments obtained from the Petrie 

Museum. These fragments dated from the late Old Kingdom (ca. 2250 BC) to 

the early Roman period, ie first to second century AD.  These fragments were 

analysed using GC-MS, XRD, SEM-EDX, FTIR and enzyme – linked immuno-

sorbant assay (ELISA). The results indicated that a plant gum, animal glue and 

egg had been used as media, though it was unclear whether the wax detected 

from these artefacts was indeed the original wax medium or wax that had been 

added as a protective coating. Another possibility recognized by Scott and 

colleagues is that it was the wax that Petrie had used to … steep his Egyptian 

artefacts into locally obtained beeswax before sending them to England…  

An in depth study of the pigments and binding media used in ancient paintings 

found in Alexandria and at other Egyptian sites was undertaken by El Salam in 

2011, using GC-Ms and Infrared Spectroscopy (FTIR). He questions the use of 

albumin as a binding material but agrees with Lucas (1934) that gum and glue 

were used in the Egyptian paintings. He notes that the pigments, with their 

binding material, would have been exposed to the elements, over thousands of 

years and that chemical changes would almost certainly have taken place.  

According to  El Salam (2011,  206) GC-MS was one of the ideal techniques to 

identify organic and other materials that were used as binding media and that 

the sample … should be clean so as to avoid any contamination which would 

affect the results …  
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In 2012 Casoli & Santoro attempted a study of the pigments and the binding 

media used in the fresco paintings obtained from different rooms of the Insula 

del Centenario at Pompeii, using Fourier Transform Infrared (FT-IR) and Gas 

Chromatography-Mass Spectroscopy (GC-MS). Unfortunately, their studies were 

only able to record details of the modern media, such as wax, egg and animal 

glue that had been used in previous restoration work for protective purposes; it 

was not possible to identify the nature of the original media.  

 

8.2   Methodology 

Great care was taken when using a number 15 scalpel blade to remove minute 

samples (weight ≤ 0.1g) of pigment from each of the seven painted plaster 

fragments.  Each of these minute samples were mounted on a 12mm aluminium 

pin stub for SEM-EDAX analysis. Additionally, one of the painted plaster 

fragments, identified as HYPO8/06, was placed, intact, on a metal disc and 

inserted into the PANalytical X’Pert ProX-ray diffractometer chamber for XRD 

analysis. 

In addition, an attempt was made to identify the binding material used on two of 

the seven fragments, namely HYPO8/B and HYPO8/D. Minute samples, (0.03g) 

and (0.015 g) respectively, were taken from these two fragments and prepared 

for analysis via GC-MS. Contemporary materials were used as standards: thus 

weighed beeswax (0.04g) and measured, unrefined, linseed oil (1ml) were 

prepared and analysed in a manner identical to that to which the ancient 

specimens had been subjected.  

The methods used in the preparation of the painted fragments is fully discussed 

in Chapter 3. 
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8.3   The seven St Albans fragments : attempted pigment identification  

The semi-quantitative geochemical technique, SEM-EDAX, was employed in 

order to identify the pigments used in the seven small fragments of painted 

plaster. The fragments were also examined under a MEIJI techno RZ zoom 

Stereomicroscope with a fibre-optic light source to study fine detail.   

For each of these blue and green painted fragments (recorded as figures 8.1a to 

8.1g) details are shown of the painted fragment itself, the SEM-EDAX spectra, 

and finally its crystal form is noted. Also recorded is an approximation of the 

dimensions of the fragment and an indication of its colour, identified using the 

Munsell Book of Color (Matt Finish Collection) 2001. 

Results obtained from the SEM-EDAX analysis of the blue and green painted 

fragments indicate that different pigments were used in the interior decoration 

of the plastered walls. However, since the fragments were obtained from a back-

filled trench it is not possible to place the fragments in particular rooms in the 

high status house. 

Fragment: HYP08/06.  The sample (figure 8.1a) shows a blue, gritty and granular 

surface in which a few bright blue granules stand out against a paler blue 

background and the clearly visible plaster layer.  The SEM-EDAX spectra of this 

fragment shows that silica, copper, calcium and a small amount of aluminium 

were present. When examined under the fibre-optic microscope minute crystals 

could be seen which appear to have a sandy texture. The SEM image for this 

fragment shows a range of euhedral crystal forms: pyramidal, cubic and platy 

habits are identifiable.  

Fragment: HYPO8/A. This sample (figure 8.1b) shows a fine smooth green 

surface. The SEM-EDAX spectra identified the presence of silica with small 

amounts of copper and calcium. A single tabular crystal form can be identified 
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set against what appears to be a single crystal with a bladed habit in an 

otherwise amorphous assemblage. 

 Fragment:  HYPO8/B.   This fragment (figure 8.1c) shows a fine smooth green 

surface colour that is both darker and thicker than that of HYPO8/A. The SEM-

EDAX spectra is similar to that of HYPO8/A except that there is also a slight trace 

of iron. The crystal habit is predominantly acicular with what appears to be a 

few pyramidal and prismatic forms.  

Fragment: HYPO8/C. The surface of this fragment (figure 8.1d) shows a fairly 

thick, smooth blue colouration; within the few slightly rougher areas of this 

surface there are a few scattered bright blue granules. Beneath the surface 

colouration is a much thicker layer of a red under colour. The SEM-EDAX 

spectra from the uppermost (blue layer) showed the presence of silica with 

smaller amounts of aluminium, calcium and iron. The crystal form is anhedral, 

with only a single aggregate being identifiable. 

 Fragments: HYPO8/D & HYPO8/E.  Both these fragments (figures 8.1e and 8.1f 

respectively) show a fine blue surface in which both pale and bright blue 

granules can be identified. The SEM-EDX spectra show that both have the same 

elements present, viz. silica, iron, copper, lead, magnesium, sodium, calcium, 

potassium and aluminium. In both samples there is also a trace of chlorine 

which may suggest surface contamination. The crystal form of both fragments is 

subhedral. Fragment HYPO8/D shows some fractured tabular and platy habits 

and a single example of a pinacoid face; fragment HYPO8/E shows a single large 

tabular crystal with several crystals showing fractured tabular or platy habits. 

Fragment: HYPO8/F.  The very finely granulated surface of this fragment (figure 

8.1g) is unique in that it clearly demonstrates two distinct hues. The upper 

colour is a much darker blue than the lower covering. The SEM-EDX spectra 

shows the presence of silica, calcium, copper, aluminium, lead, magnesium and 
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sodium. A single large crystal showing a tabular habit and a crystal with a 

fractured cubic habit are clearly visible, together with a few scattered fragments. 

The elemental composition, detected by SEM-EDAX analysis, of the seven 

fragments of blue and green painted plaster found at Verulamium Park are 

tabulated in figure 8.2. 

 

8.4  Further studies on two of the St Albans fragments   

In addition to the above exercise, two fragments were subjected to further 

analyses: firstly, in an attempt to confirm its mineral composition HYPO08/06 

was subjected to XRD analysis and, secondly, in an attempt to identify the 

binding agent that had been used GC-MS analysis was employed to investigate 

the fragments HYPO08/B and HYPO08/D. 

Figure 8.3 shows the results of the XRD analysis of fragment HYPO8/06. 

Somewhat unexpectedly the results clearly suggest that a form of the relatively 

rare mineral dioptase, Cu6.6(SiO3)(H2O)6,was present. This is found as a 

secondary mineral in oxidized zones of copper deposits, particularly in arid 

regions (Mondadori, 1991). The process of its formation is said to be extremely 

complex. Traces of this uncommon mineral have been found as … particles of 

emerald-like dioptase … on one of the eyes from the Neolithic sculptures found 

in the Nahal Hemar Caves above the Dead Sea (Kingery et al., 1988). There is 

however no evidence of the use of dioptase in Roman Britain, and there are no 

major sources of this mineral in the area occupied by the then Roman Empire. 

Given this, and the fact that the fragments have been buried for many centuries, 

the presence of dioptase here is almost certainly the result of post-burial 

secondary alteration and mineral formation, although the exact mechanism of 

dioptase formation in these fragments remains unclear.  
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In a second investigation minute samples were taken, from the two fragments, 

for GC-MS analysis in an attempt to detect whether a wax or an oil (or both) 

had been used as the binding material with the coloured pigments on these 

fragments. 

Modern day samples of linseed oil (figure 8.3a) and unrefined beeswax (figure 

8.3b) were analysed by GC-MS using the same column and temperature as had 

been used to analyse the minute samples from the two fragments. Figures 8.3c 

and 8.3d show the results of the GC-MS analysis of the fragments HYPO08/B and 

HYPO08/D respectively. 

Various studies show that when analysing samples of modern day linseed oil the 

ratio of free fatty acids, such as palmitic (C16) and stearic acid (C18), can vary 

according the strain or variety of the crop and according to the season (Mills & 

White, 1999).  Linseed oil is dominated by lighter (ie lower molecular weight) 

compounds which are less likely to be preserved and over a period of time 

degrade more rapidly than those heavier (ie higher molecular weight) 

compounds such as beeswax (Mills & White, 1999).   

Beeswax is chemically complex and is mainly composed of odd-numbered 

hydrocarbons whose molecular weights ranges from C21 to C33 and even-

numbered free fatty acids (C22 to C30),  (Regert et al., 2001),  together with 

esters which range from C40 to C50 (White, 1978).  According to Regert (ibid.) 

beeswax is very difficult to identify in paintings that have been preserved on 

archaeological sites.  He also suggest that any such identification would require 

chemical analysis and that … The chromatographic profile of ancient beeswax 

often presents significant differences to that of contemporary beeswax due to 

the degradation of this material through time. 

From the GC-MS results of HYPO8/B and HYPO8/D it proved extremely difficult 

to identify the nature of the binding material that had been used in applying the 
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pigment to lime mortar. The results from the green painted sample, HYP08/B, 

(figure 8.3c) show a ‘hump’ in the chromatogram known as an Unresolved 

Complex Mixture (UCM). There is a wide spread of low molecular weight 

molecules implying the presence of aliphatics. There is also a wide range of 

regularly spaced peaks as well as many indications of heavier compounds (C21 

to C30) which suggests that it may be a wax or possibly a mixture of, for 

example, beeswax and an oil.  Pliny (Book XXXIII, 122) mentions … wax 

melted with olive oil and applied by means of [a] brush … while it is still hot ... 

It is possible that the green pigment was prepared in a similar fashion before 

being applied to the lime mortar.  

The results of the chromatographic study of the blue painted sample, HYDP08/D, 

(figure 8.3d) is different. The range of peaks is narrow and may suggest the 

presence of aromatic compounds, with the UCM more defined than that shown 

in the HYD08/B chromatogram.  It is difficult to determine what type of binding 

material had been used in the preparation of the blue pigment. However, the 

relative scarcity of heavier compounds and the dominant presence of shorter 

fatty acids such as palmitic acid, (Stacey, 2008) suggests that an oil, rather than 

a wax, was the most likely binding medium to have been used. 

 

8.5  Discussion 

The painted fragments obtained from the back-fill of the hypocaust from 

Wheeler’s excavation of a high status town house in Verulamium Park suggest 

that a variety of different blue and green pigments had been applied to the wall 

paintings. The thickness of the pigment also varied which might suggest that 

more care was taken when applying the pigment to some wall-paintings than to 

others.  [It is possible that, if the blue pigment (HYPO8/06) were azurite and the 

green pigment (HYP08/B) malachite, both could possibly have been obtained 
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from the Roman mine of Pot Shaft at Engine Vein,  Alderley Edge (Timberlake, 

1999)]. The possible presence of expensive pigments, such as azurite and 

malachite, and the thickness to which the pigment had been applied to the 

plaster, would suggest that these fragments may have come from an expensive 

panel painting or vignette. Such a painting would have been executed by the 

artist who had been commissioned by a wealthy entrepreneur to decorate the 

internal walls of this high status building. 

The SEM-EDAX results may indicate, at a chemical level, that the synthetic 

pigment, Egyptian Blue, could have been used on all the fragments apart from 

HYPO08/C, this latter fragment being the only one not to contain copper.  

Fragments HYP08 /D,  HYP08 /E and  HYP08 /F, have an almost identical elemental 

composition and these samples of Egyptian Blue pigment would seem to have 

been derived from pellets manufactured from components that included scrap 

metal. The two green fragments, HYP08 /A and HYP08 /B, having silica, copper 

and calcium, and in the case of the latter fragment iron also, could have been 

painted with an Egyptian Green pigment. Interestingly, when HYP08 /B was 

subjected to XRD analysis the mineral dioptase, CuSiO2(OH)2, was identified 

whereas the mineral copper wollastonite, (CuCa)3Si3O9, was not. Pagès-

Camagna and Colinart (2003) claim that this latter mineral is diagnostic for 

Egyptian Green. Furthermore, the SEM-EDAX analysis is qualitative, not 

quantitative and does not, therefore, permit an description of the relative 

quantities of the ingredients: it is known that when excess calcium, in the form 

of lime, calcium carbonate or even gypsum, is added to the Egyptian Blue 

ingredients then the resulting pigment will often show a distinctly greenish hue 

(Jaksch, et al., 1983). Use of Egyptian Green as a pigment is discussed in more 

detail on pages 56 to 59, Chapter 2. Having stated this, it should be noted, 

however, that fragment HYP08 /B does demonstrate a markedly dark green hue.  

However, the results, as a whole, demonstrate that it is impossible to be 
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absolutely certain which pigments were used on the fragments. This difficulty 

has been aggravated by weathering, degradation and possible contamination of 

the sample fragments. The only mineral identified with certainty (dioptase) was 

not used in the production of a pigment for use on these Verulamium paintings. 

An attempt using GC-MS to identify the binding materials used in HYP08/B and 

HYPO08/D proved inconclusive. It was not possible to determine definitively 

whether an oil or a wax, or a combination of the two, had been used. However, 

the clear difference of the chromatograms, in samples that have been subject to 

similar burial and weathering conditions, indicates that different binding 

materials (or combinations of different binding materials) may have been used 

on each fragment. 

Although not available to the author it is recognized that the use of a polarizing 

microscope would have aided identification of some, at least, of the crystals 

found in the original paintings represented by the Verulamium fragments. 

 



 
Painted area: 15 x 11 mm 
 
Colour: Blue 
 
Munsell No. 5PB 5/6 

EDX energy spectra for SEM-
EDAX 

Figure 8.1a  HYP08/ 06 

 

Crystal form showing pyramidal, 
cubic and platy habits  
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Painted area: 27 x 21 mm 
 
Colour: Green 
 
Munsell No: 5G 5/1 

EDX energy spectrum for 
SEM-EDAX 

Figure 8.1b   HYP08/A 

A single fractured tabular 
crystal set  against  a large 
crystal with a bladed  habit in  
an otherwise  amorphous 
assemblage 
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Painted area: 23 x 13 mm 
 
Colour:  Dark  Green 
 
Munsell No.  5G  8/4 

EDX energy spectrum for 
SEM-EDAX 

Crystal  habits are 
predominantly acicular 
with a few  pyramidal  

and prismatic forms     

  Figure 8.1c    HYP08/B 
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Painted area: 25 x 15 mm 
 
Colour: Blue 
 
Munsell No. 5G  8/1 

EDX energy spectrum for 
SEM-EDAX 

Figure 8.1d   HYP08/C 

An amorphous mass   of 
crystals with a suggestion 
of one or two tabular 
habits 
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Painted area: 15 x 10mm 
 
Colour: Blue 
 
Munsell No. 10B   8/4 

EDX energy spectrum for 
SEM-EDAX 

    Figure 8.1e  HYP08/D 

Crystals showing tabular and 
platy habits with a single 
example of a pinacoid face 
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Painted area:  25 x 15 mm 
 
Colour: Blue 
 
Munsell No. 10B 7/4 

EDX energy spectrum for SEM-
EDAX  

Figure 8.1f   HYP08/E 

A single large tabular crystal 
with several other crystals 
showing fractured tabular or 
platy habits 
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Painted area: 27 x 25 mm 
 
Colour: Dark & Pale Blue 
 
Munsell No. 10B 8/2 

EDX energy spectrum for 

SEM-EDAX  

Figure 8.1g  HYP08/F 

A single crystal with a 
tabular habit and a larger,  
fractured crystal with a 
cubic habit, together with 
scattered  fragments 

194 



Figure 8.2 
              

               Summary of elements detected by SEM-EDAX Analysis of  
 fragments of blue and green painted plaster found at 

Verulamium Park  
   

                  
              

 
C Cu Fe Si Pb Sn Na Ca Ba K Al Mg Cl Ti 

               HYP08 /06 x x 
 

x 
   

x 
  

x 
   HYP08 /A 

 
x 

 
x 

   
x 

      HYP08 /B 
 

x x x 
   

x 
      HYP08 /C x 

 
x x 

   
x 

  
x 

   HYP08 /D x x x x x 
 

x x 
 

x x x x x 

HYP08 /E x x x x x 
 

x x 
 

x x x x 
 HYP08 /F x x x x x 

 
x x 

 
x x x 

                                

                                             

               

               KEY : C 
 

Carbon 
  

Na 
 

Sodium      

   
 

Cu 
 

Copper 
  

Ca 
 

Calcium 
   

 
Fe 

 
Iron 

  
Ba 

 
Barium 

    

 
Si 

 
Silicon 

  
K 

 
Potassium 

   

 
Pb 

 
Lead 

  
Al 

 
Aluminium 

   

 
Sn 

 
Tin 

   
Mg 

 
Magnesium 

  

 
Cl 

 
Chlorine 

 
Ti 

 
Titanium 

   

 
  

             

               

                



196 



Beeswax    15-May-2009   17:36:42

5.25 7.25 9.25 11.25 13.25 15.25 17.25 19.25 21.25 23.25 25.25 27.25 29.25 31.25 33.25 35.25 37.25
Time0

100

%

beeswax_15may09 Scan EI+ 
TIC

1.45e9
18.73

17.19

4.42

15.5313.21

15.01

20.16

19.69

21.49

21.37

22.61

22.32

Linseed Oil    15-May-2009   18:23:48

5.25 7.25 9.25 11.25 13.25 15.25 17.25 19.25 21.25 23.25 25.25 27.25 29.25 31.25 33.25 35.25 37.25
Time0

100

%

linseed_15may09 Scan EI+ 
TIC

7.24e8
14.78

13.214.42

9.135.28 11.25

14.72

15.01

22.92

8.4b  Beeswax (21st century) 

8.4a  Linseed oil (21st century) 

St Albans Blue    15-May-2009   16:01:49

5.25 7.25 9.25 11.25 13.25 15.25 17.25 19.25 21.25 23.25 25.25 27.25 29.25 31.25 33.25 35.25 37.25
Time0

100

%

sta(blue)_15may09 Scan EI+ 
TIC

2.49e9
16.47

13.23

11.8110.774.40 12.80

15.04

14.25

15.67

22.95

22.56
17.42

18.2018.95 21.51

23.03

25.49

23.45
24.74

25.75

8.4d   St. Albans blue pigment sample (HYP08/D) 

St Albans Green    15-May-2009   16:49:34

4.80 6.80 8.80 10.80 12.80 14.80 16.80 18.80 20.80 22.80 24.80 26.80 28.80 30.80 32.80 34.80 36.80
Time0

100

%

sta(green)_15may09 Scan EI+ 
TIC

2.47e7

13.20

10.33

4.40

9.13

10.79 11.39 12.38

12.24
13.81

15.01

17.18

16.3715.65

28.06
22.11

20.82

20.1419.43
18.71

23.34

24.62 26.3425.41

37.05

33.30
29.12

8.4c   St. Albans green pigment sample (HYP08/B) 

   Figure 8.4       Results from the GC-MS 
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CHAPTER  9 

 

Experimental Work to Produce Egyptian Blue Pellets 

                            

Egyptian blue was the most important blue pigment in antiquity    

                                                                                                                             Chase 1980,  80 

                                                                           

 

9.1   Introduction 

In  previous Chapters, viz. Chapters 4, 5, 6 and 7 the conclusion drawn from the 

analytical results was that the ancient artisans did not use a standard recipe for 

producing Egyptian Blue pellets, but used a variety of ingredients, depending on 

the materials available at the time. 

In their ground-breaking paper of 1914 Laurie, McLintock and Miles described 

the first modern experiments to reproduce Egyptian Blue pellets. In a set of 

experiments they adopted Russell’s (1895) recipe, using calcium carbonate, 

copper carbonate, quartz sand together with fusion mixtures and emulated his 

technique of regrinding and reheating the mixture. The temperature they used 

varied from 760˚C to 890˚C and on one occasion reached 1150˚C.  After 

experimenting with differing temperatures, Laurie and his co-authors, decided 

that 850˚C was the ideal temperature to produce Egyptian Blue. The firing times 

that they employed varied from 16 to 20 hours and to 48 hours. In his 1980 

paper Chase discussed Laurie’s recipe for the production of Egyptian Blue and 

his own attempts to duplicate the production of Egyptian Blue objects by 

reducing the firing time to forty five minutes. The outcome of these 

experiments, he claimed, using the shorter firing time, was a success (see 

Chapter 2). 
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The aim of the series of experiments, discussed here, both in the laboratory and 

under field conditions - when simulated ancient technologies were used - was to 

determine whether the Egyptian Blue pellets, also known, erroneously, as 

Pompeian Blue, could indeed be reproducibly manufactured using, firstly, 

ingredients identified from previously published work and, secondly, simulated 

ancient technologies.  To the best of the author’s knowledge, this is the first 

attempt to reproduce Egyptian Blue pellets using ancient technologies under 

field conditions. Field experiments were, by their very nature, subject to many 

uncontrollable factors, unlike those conducted in the laboratory. Additionally, 

both the laboratory and the field experiments were designed to determine 

whether, with longer firing periods, the colours of typical Egyptian Blue pellets 

could be achieved. In all cases the colour of the pellets was indentified using the 

Munsell Book of Color (Matt Finish) 2001 and the pellets were further 

examined microscopically to determine their surface structure so that 

comparisons could be made with pellets found on archaeological sites.   

The ingredients used in the present series of experiments were identical to those 

used by Russell (1895), Laurie and colleagues (1914) and corresponded to those 

of Chase’s second formula (1980). The recipe used for these experiments (with 

one exception) consisted of: silica, 64.6g, copper carbonate 15.4g, calcium 

carbonate, (Na2CO3, natrite) 12.4g  and, as the flux, sodium carbonate, 7.2g ie 

in the ratio of  4.2 : 1 : 0.8 (and 0.5 for the flux). Although the actual volumes of 

ingredients used might vary, depending on the number of pellets to be 

formulated, they were always employed using the above ratio. 

In addition to testing the established recipe, the author’s laboratory experiments 

systematically examined the effects of changing and extending the firing times 

and conditions. These modifications are shown on the flowchart (figure 9.1). 

Further experiments based on the findings outlined in previous Chapters and 

with consideration of the materials which would have been available to ancient 
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artisans led the author to also make the following modifications, viz. the use of  

copper filings, ground malachite and rock chalk.  

 

9.2    Laboratory based experiments   

In the first experiment, the ingredients were mixed together with a small amount 

of water (Bianchetti et al., 2000).  Nine pellets were made and allowed to dry 

naturally (Figure 9.2 shows Egyptian Blue pellets before firing). After drying 

the pellets were placed in a ceramic pot and then inserted into a Muffle furnace 

for forty-five minutes at 850˚C under aerobic conditions. The pellets were 

removed from the oven after 45 minutes and, when cooled, were examined with 

a fibre-optic microscope (Niotic SMZ 168-Photonic PL 3000). Clusters of 

blue/green crystals had formed on the outside of all the pellets. When sectioned 

the inner surface appeared to be very dark in colour possibly due to oxidation of 

the copper to copper oxide (CuO).   

In a second experiment one of the nine pellets was re-ground and re-fired at the 

same temperature for 45 minutes and then again examined under the fibre optic 

microscope. This pellet was itself then reground and on examination the colour 

of the ground pellet was found to be more grey than blue (Munsell No. 5PB 6/2) 

see figure 9.3.  In a third experiment that particular pellet was then reformulated 

by adding a small quantity of water and allowed to dry naturally. It was re-fired 

for a period of one hour, the temperature of the oven remaining constant at 

850˚C. On macroscopic examination the texture and colour of the pellet had not 

changed from that achieved after the previous firing, ie it did not change its 

colour after 3 firings - over a total of 2½ hours. 

The remaining eight pellets were also re-ground, reformulated and allowed to 

dry naturally. In the fourth experiment they were re-fired for one hour at the 

same temperature, ie these pellets were fired twice for a total period of 1¾  
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hours. On examination it was noted that the pellets had become more blue/green 

in colour (Munsell No. 10B 3/4) than the initial pellet (whose colour had not 

changed over its three firings). There appears to be no obvious explanation for 

the difference in the final colour of these eight pellets as compared with the 

single re-fired pellet. However, on reflection it was considered that the use of 

grains of sand of different size might offer a possible explanation since all the 

other ingredients (viz. the copper, calcium and sodium bicarbonate) were ground 

to the same fine consistency. 

Vitruvius (1960) notes that the elements of the mixture used to form the pellets 

should be ... brayed together so finely that the product is like a meal ... (Book 

VII, 218:1). In the previous experiment very fine, unsieved, sand had been 

employed.  It was decided, therefore, that the sand should be passed through a 

very fine archaeological sieve (mesh size 0.355 mm) thereby removing larger 

particles. It was subsequently ground to produce a consistence resembling that 

of fine baking flour. In the fifth experiment a combination of the sieved and 

ground sand with the other (powdered) ingredients produced a more pliable 

mixture. The formulation of a further nine pellets became an easier process. 

After drying the pellets were place in the oven for a period of five hours, the 

temperature remaining at 850˚C. Once cooled the pellets were examined and the 

colour of the ground pellet was noted to vary from a dark blue to a dark grey 

(Munsell No. 10B 5/4) but not the traditional colour associated with Egyptian 

Blue.  Figure 9.4 shows one of these pellets with a grey/blue coloration. 

In a sixth experiment the standard recipe, with the sieved and ground sand, was 

again used and eight pellets were fired for twenty-four hours.  The temperature 

remained at 850˚C.  Once cooled the pellets were examined by naked eye and 

then studied under the fibre-optic microscope.  The change in colour was quite 

remarkable. They were consistently a dark blue in colour (Munsell No.5PB 4/8), 

figure 9.5.   
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Once cooled these eight pellets were re-fire for a further 24 hours to see if they 

would change colour yet again: four of these pellets were finely re-ground and 

the remainder four were coarsely re-ground. After this second-twenty hour 

firing the colour had again changed dramatically: the finely ground pellets were 

cobalt blue in colour (Munsell No. 5PB 5/8) and the coarsely ground pellets 

were a royal blue in colour (Munsell No. 10B 4/8). Vitruvius explained this 

change when he said:  As soon as the copper and sand grow hot and unite under 

the intensity of the fire, they mutually receive each other’s sweat, relinquishing 

their peculiar qualities, and having lost their properties through the intensity of 

the fire, they are reduced to a blue colour .... (idem.). 

In the eighth experiment the length the firing time was increased to a total of 

ninety-six hours using the same recipe, with the sieved and ground sand. The 

remaining ingredients were added and eighteen pellets fired for an initial forty-

eight hours.  After cooling, the pellets were  re-ground and re-fired for a further 

48 hours, following which the colour had changed to a vivid blue (Munsell 

No.5PB 4/8), similar to the colour of traditional Egyptian blue. 

Following the above two firings, in the ninth experiment, nine of these pellets 

were again re-ground and then re-fired at 850˚C for a further 48 hours  (giving a 

total  firing  time  of  144  hours). Once  cooled  these  nine  pellets  were  seen 

to be a dark blue in colour (Munsell No.5B 10/4), figure 9.6.  There was a 

distinct similarity in colour to one of the first or second century AD pellets 

(FBE02 1071/1741a) found  in red clay that  had sealed an early ditch, during the 

2002 excavation season at Fishbourne Roman Palace, Chichester,  (Clegg,  

2005, 78).   

From the above series of experiments it was clear that Egyptian Blue had been 

successfully produced. Under experimental conditions, of three firings and two 

episodes of regrinding, it took a total firing time of 144 hours to produce a pellet 
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(one of the nine of experiment nine) whose colour was more-or-less 

indistinguishable from that of the Fishbourne Roman Palace pellet, FBE02 

1071/1741a, (figure 9.7). Both pellets, with almost identical colours, were 

examined with a fibro-optic microscope and it was seen that the structure of the 

Fishbourne pellet, although fibrous to touch, looked as though it had been 

coarsely ground, whereas the pellet produced for this study showed a much 

finer texture. 

In order to obtain the brilliant blue associated with Egyptian Blue found in 

ancient specimens (both pellets and applied pigment) the laboratory-based 

experiments indicated that the ingredients had to be finely ground and that the 

firing time, which clearly also influenced the colour obtained,  needed to extend 

over a period longer than a few hours.  These results clearly contradict the 

statement by Chase (page 37, above) in which he claimed to be able to produce 

Egyptian Blue with a firing time of only 45 minutes.   

As a single ‘one off’ study it was decided to continue with an experiment – in 

the laboratory – using ingredients similar to those that may have been used by 

the ancient Romano-British craftsmen: copper filings were used instead of 

copper carbonate, chalk (obtained in this case from Beachy Head in Eastbourne, 

Sussex) and a local fine beach sand used as a source of silica. Pellets made from 

these ingredients were fired for twenty-fours hours at 850˚C. Regrettably this 

experiment failed as a result of a power cut during the firing period. 

A second ‘one off’ experiment was conducted to determine whether there would 

be any variation in the colour of the pellets if ground malachite was substituted 

for copper carbonate or copper filings, the other ingredients remaining 

unchanged. Eight pellets were fired for forty-eight hours, the temperature 

remaining at 850˚C.  On completion the colour appeared to be more green/blue 

(Munsell No.10B 4/6) than just a plain blue, as shown in figure 9.8.  These eight 
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pellets were again re-ground and re-fired for a further 48 hours to see if the 

colour would change; however the colour remained unchanged, showing the 

same green/blue hue. 

From the original nine experiments eight pellets were selected for further study. 

Two pellets were selected from each of the following experiments: experiments 

one, five, six and nine. One pellet from each of these experiments was 

macerated and examined using SEM-EDAX to determine its crystal structure. The 

remaining four pellets, whose colour had been recorded, were finely ground, 

mixed into a paste, using water and applied to squares of damp lime mortar (4 x 

4 cm) in order to ascertain what colour the pigment would produce when used 

as a paint. The colour of the ground pellet, a description of the crystal habit and  

the colour of the applied pigment is shown in figure 9.9a to 9.9d.  

It is possible to correlate the crystal habit of the four pellets that formed this 

twelfth (and final) laboratory experiment, just described, with their firing times 

because the production history of these pellets (the firing time, degree of 

grinding, the specific ingredients, etc.) is meticulously recorded. Although some 

archaeological specimens may demonstrate a crystal habit similar to that of 

these four pellets it is not possible to thus conclude any information about their 

production history – the number of possible variables is totally unknown. 

 

9.3   Field trials using ancient technology 

After the successful production of Egyptian Blue pellets, under controlled 

laboratory conditions, it was considered that similar experiments, carried out 

using simulated ancient technologies, under field conditions, would prove 

invaluable in understanding the knowledge skills of the ancient artisans. The 

kilns used in these experiments were a simulated Bronze Age Clamp Kiln and a 

simulated Iron Age Belgic Kiln. While there is no direct archaeological 
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evidence to suggest that clamp kilns were used in the production of Egyptian 

Blue it should be noted that such structures are unlikely to be well preserved in 

the archaeological record, due to the very nature of their construction and use – 

a shallow pit containing the remnants of charcoal and burnt earth soon 

disappears into the ever-changing landscape.   

The Belgic kiln may have been used by the Roman craftsmen during the first 

and second centuries AD.  Evidence of the existence of workshops (for instance 

for metal working and for potters) has been found at Fishbourne Roman Palace 

in Chichester, at Turners Hall Farm, near St Albans and at Piddington Roman 

Villa in Northampton. This suggests the possibility that kilns may have been 

used in the production of various commodities associated with the site. Whether 

those kilns were similar in construction to the simulated Belgic kiln used in 

these experiments is debatable, although the general construction and firing 

conditions of the simulated kilns are thought to be representative of Romano-

British era technology. 

In 2006 Tristan Bareham, Chief Executive of Sussex Archaeological Society, 

and Ian Dunford of East Sussex Archaeology and Museum Projects, who 

specialize in firing pots using kilns of Bronze and Iron Age construction, agreed 

to assist. Over a three year period experiments took place at the annual week 

long Ancient Crafts and Technology Summer School at Michelham Priory, 

which is owned by Sussex Archaeology Society, Upper Dicker in East Sussex 

and also at a single Wood Craft Fair at Bentley Wildfowl Trust, near Ringmer, 

East Sussex. 

 

9.3.1   Bronze Age Clamp Kiln 

Several experiments were conducted. Pellets were made, using the refined 

recipe in a single large batch and divided into lots for use in each of the 
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following investigations.  In the first experiment a reconstructed Bronze Age 

Clamp Kiln was used (figure 9.10). A shallow pit was made in the ground in 

which hot charcoal was placed. The charcoal was covered with large pieces of 

dried local wood from native species such as ash, oak, hornbeam and elder in 

the form of a raft weighing twelve kilograms. The pellets were placed in three 

small pre-fired pots, made from local sand and clay, and left uncovered within 

the kiln. They were placed in different positions on the base of the raft (figure 

9.11) where the intensity of the fire would partially oxidise the pellets over the 

firing period. The raft was then covered, in the shape of a tepee, by ‘rods’ of 

local wood which itself was enveloped with strips of turf, see figure 9.12 (a) and 

(b). A digital pyrometer was inserted into the clamp kiln every twenty minutes 

to record the rising temperature which, after a period of five to six hours, 

eventually reached 800˚C. The intention was to maintain this temperature for up 

to ten hours. The clamp kiln was left to burn overnight.  Figure 9.13 shows the 

kiln during the period of firing. The remains of the kiln were uncovered after a 

time lapse of twenty-four hours and the pots left to cool, figure 9.14. 

After a cooling period of several hours the pellets were closely examined. The 

pellets in one of the pots had started to turn blue (figure 9.15) which suggests 

that these pellets were exposed to a higher temperature and Egyptian Blue had 

begun to form. The pellets in the other two pots had turned black in colour. The 

black colour is most probably due to copper oxide formed by decomposition of 

copper carbonate. 

Using a second batch of pellets the same experiment was repeated the following 

day.  It was decided to make the pit slightly deeper and to increase the amount 

of dried wood with the anticipation that the clamp kiln would reach a 

temperature of at least 800
 
˚C and that this temperature would be sustained for 

more than ten hours.   The pellets were divided equally into three different pots.  
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Again temperature readings were recorded, at regular intervals, using a digital 

pyrometer. The kiln was left to burn for twenty-four hours. On the following 

day when opening the clamp kiln, to allow the pots could cool, it was noted that 

the internal structure of the kiln was glowing red hot.  It was surmised that the 

internal temperature must have reached, much to everyone’s surprise, overnight, 

figures well in excess of 1000˚C.  The pellets were black in colour, figure 9.16. 

In a final experiment twenty-eight kilograms of wood was used in an attempt to 

encourage the kiln to sustain a temperature of 800˚C over a longer period of 

time, possibly up to twelve hours or more.  Again, as with the first two 

experiments, the temperature was monitored at regular intervals and after a 

period of four hours the temperature had risen to 488˚C. The temperature 

continued to be monitored until it reached 800˚C.  Unfortunately this 

experiment did not succeed: during the night it became very windy and by early 

next morning the clamp kiln had completely burnt out. The pellets had started to 

form a agglomerate (figure 9.17) but with effort, once cooled, they were 

separated (figure 9.18) and returned to the laboratory to be studied under fibre 

optic microscopy. On examining the pellets it was seen that the ingredients had 

started to fuse together, figure 9.19. 

 

9.3.2   Iron Age Belgic Kiln 

The next experiment took place at Bentley Wildfowl Trust where a 

reconstructed Iron Age Belgic Kiln (figure 9.20) was employed. A further batch 

of pellets were made using the standard recipe. The lower part of the Belgic kiln 

was constructed of a clay-lined turf wall. Inside the kiln was a pre-fired clay 

pedestal upon which pre-fired clay bars were placed. For this experiment two 

uncovered pre-fired pots containing the pellets were placed in the middle of a 

group of fifty-five pots ready for firing (figure 9.21), the latter being stacked 
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upside down. The upper half of the kiln was then covered with layers of turf and 

clay to form a chimney. Local dried wood was lit in front of the fire box and hot 

embers were gradually fed into the kiln, figure 9.22, great care being taken not 

to dislodge the central pedestal.  A digital pyrometer was placed half way up the 

kiln and the temperature was recorded every twenty minutes.  It was observed 

that the temperature rose evenly at about 100˚C per hour. After some eight 

hours the temperature finally reached 883˚C and  remained so for about two and 

a half hours.  The kiln was left to cool overnight.  During the following 

morning, when it had cooled sufficiently, the upper part of the Belgic kiln was 

partially dismantled (figure 9.23) thus exposing the fired pots including, the two 

pots containing pellets, figure 9.24.  The colour of the pellets had partially 

changed to a slightly blue colour as can be seen in figure 9.25. Under 

microscopic examination one of the pellets clearly shows that some of the 

components had indeed turned to a blue coloration, figure 9.26. The experiment 

could thus be described as being at least partially successful. 

 

9.4   Discussion 

In the series of nine laboratory experiments it was clearly demonstrated that the 

recipe and firing times are of crucial importance in the production of Egyptian 

Blue pellets.  This confirms the findings of Russell (1895) and Laurie et al. 

(1914).  Dr Russell, who examined samples of Egyptian Blue from Flinders 

Petrie’s sites at the Egyptian towns of Kahun and Gurob and undertook his own 

experiments to produce the pigment, wrote in his notebooks ... In the case of the 

samples containing calcium carbonate [it was]  found that in every instance 

they had been ground and reheated sometimes several times before the blue was 

properly developed, the sample after the first heating very often being black, 

[and] the blue gradually improving with each new heating. (quoted in Laurie, et 



 
 

209 

al. 1914, 421). This statements, like the findings presented above, are (as 

already suggested) in marked contrast to the claims of Chase (1980). 

The failure of the field experiments to produce the brilliant blue normally 

associated with Egyptian Blue confirms that it is important to maintain the 

temperature of 850˚C over a period of time, probably greater than 48 hours.   It 

is simply not known for how long the kilns were fired nor how the Roman 

artisans ‘controlled’ the temperatures of these kilns. Vitruvius noticeably fails to 

mention these two factors.  It is not known whether the artisans who decorated 

the interior walls of houses and villas for the wealthy carried stocks of Egyptian 

Blue pellets as they moved from one site to another or whether they used local 

basic clamp kilns for the manufacture small quantities of ‘as required’ Egyptian 

Blue pellets. 

There is, at present, no archaeological evidence to suggest that the manufacture 

of Egyptian Blue pellets in Roman Britain was carried out on a scale large 

enough to be described as “factory” produced that would have necessitated the 

use of Egyptian fritting-pans. During the early period of the Roman occupation 

of Britain it is possible that kilns, similar to Belgic kilns, had a multi-purpose 

function, including the manufacture of Egyptian Blue pellets.  For simple 

economic reasons it may be considered unlikely that these Belgic-style kilns 

were used for the sole purpose of producing Egyptian Blue pellets. The various 

apparent successes and failures demonstrated by the these field studies, using 

simulated ancient technologies, clearly indicate that further field work is 

required in order to re-produce the blue colour obtained by the Roman or 

Romano-British artists in the production of Egyptian Blue in Romano-Britain.  



Figure 9.1   Flow chart for the preproduction of 21st Century Egyptian Blue pellets 

Egyptian Blue pellets manufactured 
according  to Laurie’s 1914 recipe, Used by 
Chase as his Formula II (1980). Water used 
as the binding agent in a series of 
experiments. Analysis of the results of 

Egyptian Blue pellets in  
Chapters 4, 6, 8 and 9 
show that there was no 
standard or basic recipe 
for the manufacture 
these pellets. 

The silica grain size was reduced to a fine 
powder. Firing times were extended from 45 
minutes to 5 hours, temperature remaining 
at 850˚̊C 

Firing time was further extended from 5 hours          
to 24 and then to 48 hours and subsequently to 
96 and 144 hour to examine effects of an 
extended firing time on the colour of the 
pellets. 

Recipe adapted to use copper filings and the 
mineral malachite as the copper source and 
rock chalk as the alkaline medium. The 
temperature remaining constant at 850 ̊̊C  

Laurie’s recipe used when firing pellets in field 
conditions using reconstructed ancient 
techniques. 

Pellets were fired under 
field conditions using a 
Bronze Age Clamp and  
Iron Age Belgic kilns. 
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Figure 9.2  Unfired Egyptian Blue pellets  

Figure 9.3   (a) pellet fired for 90 minutes, experiment 2. (b) examined under 
microscope x 20.  (c)  ground pellet,  Munsell No. 5PB 6/2.  

a b 

Figure 9.4  (a) pellet fired for 5 hours, experiment 5.  (b)  examined under microscope x 

20.  (c)  ground pellet, Munsell No. 10B 5/4.  

b 

Figure 9.5  (a) pellet fired for 24 hours, experiment 6.  (b)  examined under microscope x 20.  

(c) ground pellet, Munsell No 5PB 4/8.  

a 

c 
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Figure 9.6  (a) pellet fired for a total of 144 hours, experiment 9.  (b) examined 
under  microscope x 20.  (c)  ground pellet, Munsell No 5B 10/4.  The colour  is 
similar to that, shown below, found during the Fishbourne Roman Palace 2002 
excavations. 

Figure 9.7   FB02 1071/17421a,  Munsell No.5PB 5/8. 

Figure 9.8   (a) Malachite pellet fired for 48 hours, second ‘one off’ 

experiment.  (b) examined under microscope x 20.  (c) ground pellet, 
Munsell No 10B 4/6.  
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Ground pellet fired for 90 
minutes, experiment 2. 

The ground pigment as 
applied to lime mortar, 
Munsell No.10B 7/2.  

Figure 9.9a  Ground pellet, crystal habit and the colour of applied pigment 
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A single large crystal with 

tabular habit and other 

fractured forms. 
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Figure 9.9b  Ground pellet, crystal habit and the colour of applied pigment 

Ground pellet fired for 5 hours, 

experiment 5. 

The ground pigment as 

applied to  lime mortar, 

Munsell No. 5PB 8/4. 

A single large crystal with 

unidentifiable habit. 



Figure 9.9c  Ground pellet, crystal habit and the colour of applied pigment 

The ground pigment as 

applied to lime mortar, 

Munsell No. 10B 7/4. 

Colour of ground pellet fired 

for 24 hours, experiment 6. 
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A large fractured crystal 

with cubic habit and 

other fragments 



Figure 9.9d  Ground pellet, crystal habit and the colour of applied pigment 

Colour of ground pellet fired 
for 144 hours, experiment 9. 

The ground pigment as 
applied to lime mortar, 
Munsell No. 5PB 6/8.  
Unlike other examples this 
shows a noticeable sheen. 
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Several large crystals with 
fractured cubic habits 



Kind permission East Sussex Archaeology & Museum Projects 

Figure 9.11 Raft made with local wood, pots placed on base of raft. 

Figure 9.10 A drawing of a re-constructed Bronze Age Clamp Kiln 
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Figure 9.12(b)   Enveloped in strips of turf 

Figure 9.12(a)  Showing ‘rods’ of local wood 
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Figure 9.13   Clamp kiln was left to burn overnight. 

Figure 9.14  Clamp kiln uncovered, pots left to cool.  Yellow arrow 
shows position of the digital pyrometer. 
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Figure 9.16   Results from second experiment.  The pellets                 
were black in colour. 

Figure 9.15  Showing the pellets that had started to turn                    
blue,  first experiment 
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Figure: 9.17  Failed experiment: pot showing the ingredients                          

having fused together. 

Pellet B 

Figure 9.18  Separated fused ingredients, Pellet A and B. 
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Figure 9.19  Pellets A and B examined under the microscope x 20 

Pellet A 

Pellet B 



Kind permission East Sussex Archaeology & Museum Projects 

Figure 9.20  Drawing of a re-construction of a  Belgic Kiln 

Figure 9.21 The yellow arrows show ‘raw’ Egyptian Blue                                  
pellets ready for firing 
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Figure 9.22  The author feeding the hot embers into                                        
the kiln’s fire box 

Figure 9.23  The uncovered kiln being left to cool  
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Figure 9.24   A view of the pellets cooling in the Belgic Kiln 

Figure 9.25  Showing the pellets having partially changed to a                 
blue colour 
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Figure 9.26  One of the pellets removed from the pot 
(figure 9.25) Munsell No. 10B 3/6, shown below magnified 
x 20  
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CHAPTER 10 
 

 

 

Conclusion 
 

 

… colour is more stimulating than line-drawing, because it is life-like                                  

… and gives more satisfaction 

 

                                                                    Plutarch 1st century AD  
                                                                                              (quoted in: Colour and Culture by J Gage, 2001, 15) 

 

 

 

10.1   Considerations 

 

After an extended examination of published papers and following 

consideration  of  the  various  geochemical  and  analytical  methods 

used  in  archaeological  research  it  was  decided  to  use,  where 

appropriate, LA-ICP-MS, SEM-EDAX, XRD, GC-MS and micro-Raman Laser 

Spectroscopy as the analytical methods most appropriate for the 

investigation of the Egyptian Blue pellets and fragments of blue and 

green painted wall plaster available for this study. It is understood that 

this is the first in-depth study of Egyptian Blue pellets used in Romano-

British wall plaster paintings to be undertaken using both LA-ICP-MS and 

SEM-EDAX analytical techniques.  

 

When examining archaeological specimens or artefacts it is evidently 

important to consider, where possible, the method of construction, the 

raw materials used (and also their source), as well as noting any 

restoration work that might have been undertaken. It is, furthermore, 

advisable to determine, where practicable, the major and minor elements, 

also the trace elements found in the manufactured specimen or artefact. 

Different investigative techniques will prove better than others for 

different artefacts. Some techniques will be inappropriate for certain 



 227 

exhibits. In many instances it is not possible to remove even the smallest 

of samples from the original artefact. This will clearly limit the tools 

available for the investigation of that particular specimen.   

 

A previous study demonstrated the value of XRF in determining the 

presence of lead (Relative Atomic Mass, RAM, 207.2) and lighter 

elements in the Egyptian Blue pellets found in the 1997, 1998 and 1999 

excavations at Fishbourne Roman Palace (Clegg & Freeman, 2003).  At 

the time that this present study was planned XFR was unavailable at 

Sussex University. However, the new and more ‘high tech’ facility of LA-

ICP-MS was available and this, combined with the well established SEM-

EDAX technology, was considered to provide enough analytical power to 

commence this investigation.     

 

The application of LA-ICP-MS technology to the twelve Egyptian Blue 

pellets found in the 2002 excavation at Fishbourne Roman Palace 

demonstrated the presence of many relatively abundant elements, all of  

whose RAM was lighter than that of lead, including tin, iron and copper. 

Silica, as a major element was identified in nine of the twelve pellets (see 

figure 4.4A, page 99). It is recognized that LA-ICP-MS technology was 

unable to detect the presence of many trace elements in this study. In 

contrast to this the SEM-EDAX was able to identify, among the relatively 

abundant elements, silica, aluminium, magnesium, copper, iron and 

calcium (RAM, 40.08). This technique was also able to detect a large 

number of trace elements including titanium, magnesium, potassium and 

sodium.  However, it is evident from figures 4.4A and 4.4B that the SEM-

EDAX technology was unable to detect the presence of lead and tin which 

was identified by the LA-ICP-MS technology.  
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The above results suggest that the SEM-EDAX analysis is in general more 

efficacious in identifying trace elements in the Egyptian Blue pellets than 

the LA-ICP-MS technology. This is the case for all of the sites with the 

exception of Piddington where the different analytical methods both 

identify a different range of trace elements, although the SEM-EDAX 

technology was again unable (at Piddington) to detect lead and tin in the 

majority of the pellets. 

 

From the investigations it is also apparent that these two analytical 

methods identify different elements, even when it is the major and minor 

elemental composition that is being analysed. Thus it is clear that neither 

LA-ICP-MS technology nor SEM-EDAX analyses alone have given a clear 

picture of the elemental composition of the Egyptian Blue pellets used in 

this study. All of these pellets, with the exception of those from 

Verulamium, were found in a soil matrix, and were subjected to 

weathering and degradation, and this fact has been a major factor in the 

determination of their elemental composition. It is known, for instance, 

that water will, over time, leach out alkali and some elements, such as 

potassium and sodium, from the pellets.  

 

According to Kuisma-Kursula (1999) SEM-EDAX is known to have a poor 

sensitivity to trace elements (see Chapter 3, page 64). However, the data 

presented in this study of the pigments used in the Egyptian Blue pellets 

found on Romano-British sites suggests the contrary: SEM-EDAX was able 

to identify a large range of trace elements in the Egyptian Blue pellets 

available for analysis.  

 

The marked difference in the isolation and identification of elements by 

the two techniques (LA-ICP-MS and SEM-EDAX) represents the differing 
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susceptibility of the analytical tools to the quantities of the elements in 

the samples presented for analysis. A further complicating factor 

regarding calcium detection by LA-ICP-MS is that the signal from the main 

isotope (
40

Ca) suffers major interference from the Argon
 
40 isotope gas 

used in the analysis. Consequently, the detection of calcium in the 

samples relies on identification of 
42

Ca, 
43

Ca, 
44

Ca, 
46

Ca and 
48

Ca 

isotopes, all of which have very low natural abundance.  Furthermore, the 

Sussex University LA-ICP-MS machine, dating from the early 2000s, is 

unable to compete with more recent machines which are able to analyse 

data in much greater detail. However, it may be considered that a 

judicious combination of the results from the two techniques available for 

this study will, with practical experience, supplemented by careful 

thought, provide information that is not available from any other source. 

 

A visual examination of all the Egyptian Blue pellets from the different 

archaeological sites used in this study demonstrates that the pellets 

obtained from the 2002 excavation at Fishbourne Roman Palace were of a 

different standard and quality to those found at Piddington Roma Villa, 

Turners Hall Farm and Verulamium, even though the LA-ICP-MS and 

SEM-EDAX analyses shows some similarities.  Especially notable were the 

two friable pellets, FBE02 1071/71421(a) and FBE02 1139/17363), which were 

almost certainly brought to what was the Fishbourne building site by a 

skilled master painter who had probably been taught in a school of highly 

trained professionals on the continent. In addition to Egyptian Blue he 

would almost certainly also have brought with him the most commonly 

used ochres, and other common pigments, called the colores austeri by 

Pliny, as well more expensive pigments, which Pliny named the colores 

floridi, the latter normally being provided by the patron at his own 

expense. One such expensive pigment is the mineral azurite obtained 
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from Armenia, which, according to Pliny, cost …300 sesterces per pound 

(Pliny, Book XXXV, XXVIII) and which would have been used exclusively 

in the production of a vignette.  

 

The ingredients necessary for making Egyptian Blue pellets in Roman 

Britain would have been readily available during the construction of 

Fishbourne Roman Palace, Piddington Roman Villa and Turners Hall 

Farm. During the excavation of Fishbourne Roman Palace evidence has 

been found of base foundations of Belgic type kilns which may suggest 

that, with all the different professional skills that were required to build 

such a grand structure, at least some of the pellets may have been 

produced locally, on site, using scrap metal obtained from nearby metal-

working workshops. Workshops have also been found near the Villa at 

Turners Hall Farm. The master craftsmen would have instructed the 

apprentices on the art of manufacturing Egyptian Blue pellets; possibly 

this would in time have resulted in the local production of pellets. 

 

There is some textural evidence that may be deduced from the analytical 

data to suggest that pellets from different periods of the Roman 

occupation have different provenances – early ones (such as the two 

friable pellets found during the Fishbourne 2002 excavation, viz. FBE02 

1071/71421(a) and FBE02 1139/17363) are likely to have imported, whereas 

later ones such as those found in Piddington, Turners Hall Farm and 

Verulamium, discussed in Chapters 5, 6 and 7 respectively, were 

probably made locally.  

 

The geochemical data suggests that the Egyptian Blue pellets found at 

Piddington Roman Villa, Turners Hall Farm and Verulamium, with the 

exception of Verulamium One, are comparable in that they have a similar 
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texture, structure and fabric. Looking at the pellets visually and 

microscopically it is possible to suggest that the occupiers of the high 

status town houses and villas at Verulamium, and the inhabitants of 

Turners Hall Farm, employed the same group of artists and their 

entourage to decorate the internal walls of their houses and villas, as had 

decorated the interior of Piddington Roman Villa. Another possibility is 

that one of the wealthy occupiers of a richly decorated town house in 

Verulamium may have also owned the villa found on Turners Hall Farm 

and would, therefore, have been likely to have employed the same master 

craftsmen to decorate the internal walls of that building.  In other words it 

may be suggested that all these pellets had been made by the same group 

or school of painters (Cunliffe, 1998) who, with their apprentices, 

travelled to different towns and to large country estates vying for business 

in order to apply their expertise in the decoration of the interior of high 

status buildings. As mentioned, the texture, structure and the size of the 

grains of the pellets from these three sites (ie Turners Hall Farm, 

Piddington and Verulamium) are similar, with the Verulamium One pellet 

being the single exception; the difference being that the Verulamium One 

pellet has larger grain sizes and its crystal structure appears cleaned and 

sorted suggesting that it was made by an expert (see figure 7.4a, page 

173).  

 

The pellets found at Piddington Roman Villa, Turners Hall Farm and 

those provided by Verulamium Museum were all discovered in unique 

locations: 10 of the Piddington pellets were found in a midden area dated 

to the late third century whilst the eleventh was found in a feature gully 

underlying a late first century villa; the three pellets found at Turners Hall 

Farm were found at three different sites, all being somewhat near 

workshops; the two Verulamium pellets are museum specimens whose 
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find location is unknown, but thought to originate from Wheeler’s 1930s 

excavation. As the evidence presented in Chapters 5, 6 and 7 

demonstrates the visual and microscopic appearance of the pellets from 

the three sites (with the exception of the Verulamium One pellet) 

suggests that all these pellets have a similar texture, structure and fabric. 

The crystal structure of the pellets from Piddington essentially show an 

amorphous agglomeration in which only a few defined crystal habits can 

be identified; the crystal structure of Verulamium Two similarly shows 

that of an amorphous mass with few identifiable crystal habits. By 

contrast the three pellets of Turners Hall Farm show different crystal 

forms which although fractured are readily identifiable. With the 

exception of one washed grain from Turners Hall Farm (pellet HYP04 

043/25) the grains of all the other pellets thus examined have the 

appearance of being ‘unwashed’ and were possibly made by apprentices 

attached to the artisan. 

 

The grain structure of the pellets from Fishbourne Roman Palace also 

shows that some of the grains had been washed and others had not, 

examples of washed pellets are FBE02 1071/17421(a) and FBE02 

1139/17463. This suggests that the Fishbourne pellets were made by, at 

least, two different groups of people.  

 

Although attempts to produce the Egyptian Blue pellets under laboratory 

conditions were successful, it is very difficult to compare and contrast 

their different firing times with those of the Romano-British Egyptian 

Blue pellets. Looking at FRP Type II pellet FBE02 1071/17421(a) (page 

102) and the modern day, laboratory produced pellet, figure 9.6 (page 

212), fired for a total of 144 hours, a comparison of their colours would 

suggest that the Fishbourne pellet was also fired for long period of time. 
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The visual data of some of the pellets from Piddington Roman Villa, [eg 

figure 5.7(f) BM089 NN/29, 5.7(i) BM127 VV/15], Verulamium One 

(figure 7.6a), the laboratory produced pellet (figure 9.3) and the pellet 

fired in a simulated Belgic kiln (figure 9.26) would suggest that the 

Romano-British pellets could have firing times which varied from 90 

minutes to 24 hours.  However, as discussed above (page 204), because 

of the large number of possible variables involved in the selection and 

preparation of ingredients, and also in the production process itself, it is 

not possible to correlate the colour or crystal structure of ancient  

Egyptian Blue pigments with a firing time.  Furthermore, the exposure 

of ancient pellets to weathering and chemical degradation over the 

centuries renders the idea of any such correlation unachievable.  

 

 By way of contrast it is important to note that since the whole of the 

production process, from selection and preparation of ingredients to the 

number and duration of firing times, of laboratory produced Egyptian 

Blue pigments, is meticulously recorded, a correlation between crystal 

structure, firing times and the final colour of the pigments can be readily 

established. 

 

A further considerable factor to note is that both the main analytical 

techniques used in this study were restricted to surface and near-surface 

analysis of the structure of the pellets. The constraint imposed upon the 

author to maintain the integrity of the supplied pellets has meant that they 

have not been sectioned, nor the internal fabric analysed; it has not been 

possible, therefore, to confirm that surface and near surface features, 

which have been studied at length, are reproduced throughout the internal 

structure of the pellet.  
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Experiments reproducing Egyptian Blue pellets, both in a controlled 

laboratory environment and in the field situation, showed mixed 

success. The field experiments have shown that Egyptian Blue is 

difficult to make, particularly when using recreated ancient technologies 

and there are questions still to be answered. There is very little written 

evidence to indicate how these pellets were manufactured in ancient 

times. Petrie’s discovery of a ‘factory’ site in Tel el Amarna, gives clues 

on how Egyptian Blue was produced in Egypt. Vitruvius gives an 

insight as to how the ingredients, but not the amounts, reacted with each 

other.  Vestorius, it appears, perfected the technique, but did not commit 

it to a written record.  Future work should include more experiments 

conducted in field studies to address these questions. Especially 

important is the determination of the length of firing times used when  

producing these pellets.  

 

Laboratory based investigations have generally proved more positive 

than those conducted in the field. The determination of the fabric, 

texture and geochemical structure of the Egyptian Blue pellets was an 

interesting and worthwhile project that increases our knowledge of the 

composition and formulation of one the pigments used in decoration of 

the dwellings of the Romano-British élite. The possible discovery that 

minerals such as azurite and malachite were used as a pigment in 

fragments painted wall-plaster found at Verulamium also proved 

interesting.  

 

The results of this study of Egyptian Blue pellets from different Romano-

British sites suggests that the craftsmen did not use a standard recipe 

when producing the pigment; with few exceptions, the pellets were likely 
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to have been produced by individual manufacturers and artisans who used 

the various materials that were available locally at the time of production; 

this resulted in the production of pellets demonstrating a variety of 

different blue shades and textures and showing a different geochemical 

composition.   

 

Other pigments, such as the expensive copper bearing minerals, malachite 

and azurite, could have been specially purchased and may have been

obtained from one of the mines associated with Alderley Edge in 

Cheshire (Catling,  id.).  Evidence, from SEM-EDAX analysis, suggests 

that these two minerals (azurite and malachite) were used in the interior 

decoration of a high status town house found in Verulamium Park. These 

minerals were probably obtained locally although, according to Pliny, the 

most expensive azurite was obtained from Armenia (Pliny, Book XXXV, 

XXVIII). As an alternative to the use of ochres, locally produced Egyptian 

Blue pellets could also be manufactured on site and would have been  

much cheaper to purchase than Vestorian Blue, the finest  Egyptian Blue,  

which would …cost 11 denarii per pound… (Pliny, Book XXXIII, LVII).  

Egyptian Blue pellets could be made cheaply from discarded pieces of 

scrap metal, or they could become a more expensive product when using 

copper filings or malachite. It is likely that the latter would have been 

used sparingly, normally only used in the production of a vignette, 

whereas the cheaper pellets would have been used to cover a whole wall 

as a background colour in a wall painting.  

   

The specific objectives established as this study was initiated have 

largely been fulfilled. Experimental work undertaken in field studies has 

demonstrated how difficult it is, when using simulated ancient 

technologies, to emulate the skills of the artisans working at Romano-
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British sites and elsewhere in the empire. It is evident that using these 

initial studies as a starting point much further work, time and effort 

should be undertaken before it would be possible to begin to emulate the 

techniques, skills and professionalism of the ancient artisans, both in 

producing what is thought to be the first synthetic pigment, Egyptian 

Blue - a significant and notable achievement - and in subsequently 

applying it to the walls of the dwellings of the wealthy Romano-British. 

The skill of the artisans to produce such a variety of different shades of 

blue when applying their various skills to the most detailed of paintings 

is exemplary. A fine example of their craftsmanship, using a variety of 

blue pigments and techniques, is to be seen in the Villa Oplontis at 

Naples, shown in figure 10.1 

 

If  it  were  possible  to  undertake  further  work  on  the  Egyptian  Blue 

pellets used in this study then it would be worth considering the use of 

XRF which  is  claimed  to  have  detection  levels  at  the  1-10 ppm  by 

weight level.  Similar or even better results can be obtained from micro-

PIXE (Particle-induced X-ray Emission) analyses (Kuisma-Kursula, 

1999). Both techniques are non-destructive and can be used to determine 

the distribution of trace elements in a wide range of archaeological 

samples; unfortunately neither was available at Sussex University. 

 

Further geochemical work would also need be undertaken, using 

(modern) LA-ICP-MS technology, in order to try and ascertain where the 

ancient artist obtained copper, one of the main ingredients used in the 

manufacture of some of the Egyptian Blue pellets. It is hoped that it will 

be possible to do this by identifying copper isotopes and thereby trace 

national and international trade routes so that it may be possible to 

establish whether the copper was sourced locally or imported. 
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The poet Horace (65-68 BC) informs us that the Greeks …once… [they 

had] overcome [their] wild conqueror[s] …brought the arts into rustic 

Latium…  Subsequently, through their newly acquired technical expertise, 

the ‘rustic’ Roman conquerors brought the art of interior decoration to 

these so-called ‘uncivilised’ shores. 



Figure10.1  Shrine dedicated to the god Apollo, the receiving 

room, Villa Oplontis, Naples, Italy.    
 

(Picture taken by the author) 
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   Appendix A: 

 

 

 

 

     The Munsell Color Reference 

System 



The Munsell Book of Color 

 

The Munsell numbers used in this text to identity the colours of different 

archaeological specimens are of that system first described by A H 

Munsell in 1915 and now available in the Munsell Book of Color (Matte 

Finish Collection) 2001.  The system identifies colour in terms of three 

attributes: hue (H), value (V) and chroma (C); the identification being 

specified by a code in the symbolic form: H V/C. Hue is based on ten 

major standards arranged in a circular scale. viz. Red, Yellow-Red, Yellow, 

Yellow-Green, Green, Blue-Green, Blue, Purple-Blue, Purple and Purple-

Red.  In total the Munsell collection contains a 100 equally spaced hues 

arranged on a 100 hue circuit surrounding the neutral spine. For computing 

and statistical purposes the hue circuit may be represented entirely 

numerically but for normal descriptive purposes, however, the hue notation 

consists of a number and a letter, such as 25 YR  (signifying 25 Yellow-

Red). 

 

The value notation indicates the degree of lightness of the colour in 

relation to a neutral grey scale which extends from absolute black, 

represented as 0/, to absolute white, represented as 10/.   The chroma (or 

saturation) notation indicates the degree of departure of a given hue from a 

neutral grey of the same value (lightness).  A neutral value scale graded in 

equal visual steps from black at the bottom to white at the top forms the 

central core or axis of the system.  By use of a decimal system each scale 

[H, V and C] may be divided into increments as small as required for 

accurate colour identification.  As an example of the application of the 

Munsell notation, the colour commonly described as ‘rose’ might be 

classified as 5R 5/4 in this system. 

 



Although under ideal conditions the human eye can perceive several 

million different colours, it is economically impractical to produce a vast 

number of coloured samples for use as comparators. The Munsell matte 

atlas displays 1185 colour standards permanently mounted on loose-leaf 

charts for 40 different hues. 

 

The Munsell colour system has gained world-wide acceptance as a 

standard reference work in those fields for which colour identification is 

important. Many British colour standards are expressed in terms of the 

Munsell system. 

 

All significant colour observations should be made under standard 

conditions of illumination.  It is suggested that the observer should view 

the sample and the standards at 90 and that the light should fall upon them 

at about 45. Clearly, those working and making decisions in the field of 

colour should previously have been examined for possible colour vision 

defects, for instance by examination of Ishihara charts. 

 

Ideally the specimen to be examined should be of uniform colour and gloss 

and free from scratches, brush marks and other imperfections in the surface 

texture.  Archaeological specimens are often not of a single or uniform 

colour and are seldom free of imperfections: the matching of colours is 

thus likely to be, in most cases, somewhat artificial.  Nevertheless, use of 

the Munsell system may provide a guide and an aid to the comparison of 

disparate specimens. 
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