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Summary 

The fifth basic taste, ‘umami’, is the flavour function elicited by amino acids like 

monosodium glutamate (MSG) in foods. This taste is recognized for its flavour enhancing 

properties but little is known about its effects on appetite and intake. Thus the experiments in 

this thesis aimed to understand how umami influences pleasantness, appetite stimulation, 

satiation and satiety using MSG, with some additional focus on its associated ribonucleotide 

inosine 5’-monophosphate (IMP). 

 

Chapter 2 established a bland, low glutamate control soup which was used throughout all 

subsequent experiments to test the effects of MSG on palatability using commercially-

relevant concentrations. Chapters 3 and 4 assessed the influence of increasing palatability on 

rated appetite and intake of this soup with either added MSG (Chapter 3) or added sucrose 

(Chapter 4). No increase in hunger or intake was found after the more palatable conditions. 

Chapter 5 explored the relationship between MSG taste and protein regulation, assessing 

acute and habitual protein intake with findings indicating that high protein consumers liked 

high MSG concentrations more after an acute protein deprivation than sweet, salty or control 

flavours. Chapter 6 examined the time course of rated MSG satiety alone and in combination 

with either protein or carbohydrate in a preload soup and found enhanced rated satiety in 

MSG protein conditions. This design was extended in Chapter 7 to include an intake test after 

a pre-specified time of consuming the preload soup. The results indicated better 

compensation after MSG protein conditions but no differences in intake were found across 

carbohydrate or control conditions. Chapter 8 assessed MSG and IMP with or without added 

protein using the same design as Chapter 7 and found reductions in intake in MSG/IMP 

conditions. This suggests that the flavour of umami plays an important role in the regulation 

of appetite and intake. 
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CHAPTER 1: 

UNDERSTANDING THE ROLE OF UMAMI IN APPETITE CONTROL: A 

PROTEIN-SPECIFIC EFFECT? 

 

1.1 Brief Background 

 

1.1.1 Why should we assess the effects of umami on appetite and intake?  

 

The flavour of umami is one generally enjoyed across the world and can be described as 

a unique taste quality elicited by certain amino acids and related compounds, most 

notably monosodium glutamate (MSG). MSG is a sodium salt of glutamic acid which is 

an amino acid found in protein (Loliger, 2000). MSG is particularly abundant in a wide 

array of foods such as animal protein, vegetables and cheeses (Garcia-Bailo, Toguri, 

Eny, & El-Sohemy, 2009; Jinap & Hajeb, 2010; Luscombe-Marsh, Smeets, & 

Westerterp-Plantenga, 2009; Yamaguchi & Ninomiya, 2000). The umami experience 

generated by MSG has consequently shaped cooking practices across centuries dating 

back to the Romans’ use of fermented fish sauce (Beauchamp, 2009; Curtis, 2009) to 

more modern day cooking with inventions such as ‘umami paste’ and the ‘umami 

burger’ increasing in popularity. Indeed, the simple combination of foods used to make 

soups and stocks may have evolved as a means of blending foods high in glutamic acid, 

such as MSG containing foods, with complementary ribonucleotides to further boost the 

umami taste (Uneyama, Uematsu, Iwatsuki, & Nakamura, 2012; Yamaguchi & 

Ninomiya, 2000). These umami compounds are extracted from natural sources, for 

instance MSG was originally isolated from dried kelp (Ikeda, 1908) whilst the umami 

associated ribonucleotides inosine 5’-monophosphate (IMP) was first isolated from 

dried skipjack tuna (Kodama, 1913) and guanosine 5’-monophosphate (GMP) was 

isolated from dried shiitake mushrooms (Kuninaka, 1960). These flavour enhancers act 

to produce the hedonic responses experienced when tasting umami in dietary sources 

(Prescott, 1998) with IMP and GMP acting synergistically with MSG to enhance the 

fifth basic taste of umami that MSG may also elicit alone.  

 

Further understanding of the role of this basic taste in food selection and intake is vital 

as the basic tastes play a fundamental part in the regulation of suitable and unsuitable 

foods to eat and provide us with the necessary information as to why these foods are 
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selected based on their flavour. As the history of research surrounding umami has been 

controversial, our understanding of how umami compounds such as MSG and IMP 

influence appetite and intake is inadequate. Kwok (1968) initially suggested that MSG 

was linked to  Chinese restaurant syndrome, characterised by numbness, weakness and 

headaches resulting in the branding of MSG as detrimental to health (Prescott & Young, 

2002). However, numerous placebo-controlled studies have failed to support the role of 

MSG as the cause of such adverse reactions (Geha et al., 2000; Tanphaichitr, 

Leelahagul, & Suwan, 2000). Indeed, Bazzano and colleagues (1970) gave their 

participants doses of up to 147g MSG per day over a 30 day period noting no ill effects. 

Similarly, MSG has not been linked to any long-term negative health consequences 

(Walker & Lupien, 2000), yet the opinion that flavour enhancers are in some way 

detrimental to health still prevails (Shi et al., 2010).  

 

1.1.2 MSG and the risk for weight gain 

 

The reputation of MSG as damaging to health has not only been unsubstantiated in 

relation to immediate harmful effects, but has also been unsupported with regards to 

long-term negative health outcomes such as the potential for weight gain and obesity 

(Shi, et al., 2010). This relationship between MSG and weight gain was originally 

suggested after experimental work in animals showed increases in weight gain in 

animals injected with high concentrations of MSG during the weanling period 

(Hermanussen et al., 2005; Xue, Wong, & Leong, 1997). However, these studies often 

also involved lesions to certain brain areas or caused central nervous system pathologies 

related to appetite and body metabolism due to these extreme doses of injected MSG 

(Shi, et al., 2010). Such effects have not been found in a range of studies providing 

animals with free access to MSG concentrations (Ackroff & Sclafani, 2011; Kondoh & 

Torii, 2008; Ren, Ferreira, Yeckel, Kondoh, & de Araujo, 2011). In humans this 

relationship between MSG and weight gain has generated mixed findings. Due to the 

known differences in obese and healthy weight participants such as higher preferences 

for sweet and fatty flavours (Salbe, DelParigi, Pratley, Drewnowski, & Tataranni, 

2004), possibly due to polymorphisms in T1R taste receptor genes which have been 

linked to differences in dietary patterns between healthy and overweight individuals 

(Garcia-Bailo, et al., 2009), it may be that MSG perpetuates higher weight maintenance 

because of its effects on enhancing flavour. Donaldson and colleagues (2009) found that 
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obese women rated MSG as more intense in flavour than did normal weight or 

overweight women. Thus it may be argued that the palatable element of MSG may be 

said to encourage intake (or maintain higher intake) of energy dense foods to which 

MSG has been added in these individuals (Cox, Perry, Moore, Vallis, & Mela, 1999). 

He and colleagues (2008) reported a positive correlation between MSG and BMI in a 

sample of Chinese adults, with a higher prevalence of overweight found in those 

reporting regular use of MSG when controlling for physical activity and total energy 

intake. However, from the mentioned research it is not clear whether MSG leads to 

obesity or whether obese individuals would choose to consume foods that are high in 

MSG. Similarly, many studies conducted on humans that appear to support the link 

between MSG and obesity do not take accurate measures of MSG ingestion into account 

(Shi, et al., 2010). For instance, He and colleagues did not assess dietary patterns and 

foods ingested (which include natural glutamic acid in the form of free glutamates 

found in foods instead of added to food in the form of MSG). Indeed, when natural free 

glutamates are taken into account, the relationships between MSG and weight gain were 

not substantiated (Shi, et al., 2010). This has also been found in mice offered free access 

to MSG (Ren, et al., 2011), with some researchers suggesting that mice fed high fat 

diets actually show reductions in weight gain after being given ad-libitum access to 1% 

MSG solutions (Kondoh & Torii, 2008).     

 

The encouraging findings reported by Kondoh & Torii (2008) in mice instead highlight 

the potential for a different role of flavour enhancers generating the experience of 

umami such as MSG, one which may be more related to reducing energy intake. Indeed, 

umami flavour has been associated with producing a ‘meaty’ taste experience and has 

been related to the sensing of protein (Luscombe-Marsh, Smeets, & Westerterp-

Plantenga, 2008; Luscombe-Marsh, et al., 2009). Upon discovering MSG, Ikeda 

claimed that this umami compound may be used by the body as a signal for the presence 

of protein in foods (Ikeda, 1908). Subsequently, this idea has been endorsed by many 

researchers (Kurihara, 2009; Naim, Ohara, Kare, & Levinson, 1991) and has led to a 

more concentrated effort to understand what role umami compounds may play in 

guiding intake, and whether these compounds influence intake when provided in 

different macronutrient combinations. As the effects of protein on reducing appetite and 

intake are well known (Bertenshaw, Lluch, & Yeomans, 2008; Lejeune, Kovacs, & 

Westerterp-Plantenga, 2005; Tome, Schwarz, Darcel, & Fromentin, 2009; Westerterp-
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Plantenga, Nieuwenhuizen, Tomé, Soenen, & Westerterp, 2009), could combining MSG 

with protein act to further reduce feelings of hunger and intake (whilst maintaining 

appetitive satisfaction) due to the presence of an additional protein cue? Could this 

effect be magnified further by providing complementary ribonucleotides that are present 

in dietary protein sources (such as IMP)? Could this further improve adherence to high 

protein diets (which can be low; Brinkworth et al., 2004; St Jeor et al., 2001) by 

improving the flavour of meals supplemented with protein? Without investigating the 

effects of this important basic taste on rated appetite and intake, and in combination 

with other macronutrients, the scope for understanding how this taste may inform 

human feeding practices remains incomplete.  

 

1.2 Motivational processes in the control of appetite 

 

1.2.1 Defining Hunger 

 

The traditional homeostatic approach of intake conceptualises hunger as a physiological 

cue which promotes feeding due to nutrient shortage. This is deemed as biologically 

useful because it reminds us of the body’s need for sustenance (Blundell, Lawton, 

Cotton, & Macdiarmid, 1996). Hunger may also be characterised by the motivation to 

locate and consume food. Indeed, individuals state that it is this motivation to consume 

coupled with a physiological need state that dictates the onset of eating (Blundell et al., 

2010). However, these definitions only encompass hunger as motivating eating 

behaviour based on the body’s needs. Identifying hunger also relies on processes 

including how palatable the food may be, the availability of the food, previous 

experiences with the food, the social context in which the food is consumed, and the 

sensory information the food is providing (Blundell, et al., 2010) amongst others. All of 

these factors influence the way in which hunger is stimulated and expectations about 

how the food will affect hunger (Brunstrom, Shakeshaft, & Scott-Samuel, 2008) even 

before the eating occasion has begun. As a consequence, this multifaceted experience of 

hunger is important in determining the type, quantity and timing of food consumed. 

During food intake, thoughts relating to hunger relay information about the sensory 

experience of the food and how this interacts with the physiological cues of nutrient 

shortage (Booth, Toates, & Platt, 1976). This suggests that hunger is complex and not 

only dependent on a shortfall of nutrients. Thus hunger may be said to relate to a 
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combination of physiological and psychological factors, with the physiological 

messages integrated with the available information from the food source and the 

environment affecting the resulting behavioural response.  

 

1.2.2 Defining Satiation 

 

Satiation may be defined as an inhibitory process during an eating episode that brings 

an eating episode to an end and relies on the cues arising from ingestion to terminate the 

feeding episode (also termed intra-meal satiation). It is reliant on both the positive 

feedback (stimulating appetite) provided by strong hunger, low fullness and high 

palatability (see section 1.2.4) and the negative feedback (suppressing appetite) 

provided by low hunger and strong fullness and is an expression of the change in these 

appetite percepts. Satiation is also important for determining meal size and the rate of 

consumption (Blundell, Goodson, & Halford, 2001) and may be governed by a number 

of factors including the volume and weight of the meal (Blundell, et al., 1996), with 

feelings of fullness acting as a potent satiation signal to inhibit further meal intake 

(Halford & Harrold, 2012). As satiation is closely related to hunger, and particularly 

rated hunger in experimental situations (Blundell et al., 2009), the complex factors 

which influence hunger also apply to the rate of satiation. Indeed, just as the intensity of 

hunger may be determined by habitual eating patterns, social or cultural factors or other 

such periprandial circumstances (Blundell, et al., 1996), so too is satiation. Similarly, 

satiation may be influenced by palatability, with food pleasantness acting to stimulate 

hunger and thus delay intra-meal satiation (see section 1.2.4). Fullness also influences 

satiation in relation to the volume consumed. Indeed, rated fullness has been suggested 

to depend more on physiological cues such as volume and stomach distension rather 

than the more cognitive cues that apply to estimations of hunger (Allirot et al., 2013). 

Thus, satiation can be said to rely on interactions between physiological regulation, the 

external environment (such as cultural and social influences), sensory information, 

motivational constructs, and brain mechanisms (such as cognitions and attributions) 

(Blundell, et al., 1996).  
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1.2.3 Defining Satiety 

 

Satiety (sometimes referred to as inter-meal satiety) follows the end of an eating episode 

and is the state in which further intake between eating episodes is inhibited, thus 

delaying the onset of the next meal (Blundell, et al., 2010; Blundell, et al., 1996). The 

strength of satiety may be measured by the duration of hunger suppression (using rated 

appetite measures or time elapsed until self-determined meal intake occurs) and by the 

quantity of subsequent meal intake (by provision of an ad-libitum meal; Blundell et al., 

2009). Satiety may be influenced by the qualities of the meal consumed such as the 

chemical and physical meal components (including the energy density and 

macronutrient composition) but also may be influenced by other factors similar to 

satiation. Blundell and colleagues (Blundell, Rogers, & Hill, 1987) suggested that four 

mediating processes act to mediate the maintenance of hunger inhibition between meals. 

These include the sensory, cognitive, post-ingestive (pre-absorptive), and post-

absorptive processes. This Satiety Cascade model (Figure 1; Blundell et al., 1987) 

suggests that various aspects of a food influence the mediating processes determining 

satiety (and satiation) differently therefore affect the experience of satiety (and 

satiation) differently (such as the effects of different macronutrients on satiating 

efficiency – see section 1.4). It also demonstrates how the sensory qualities of a meal 

may interact with the macronutrient profile and energy density to trigger the relevant 

regulatory processes and also takes the cognitive aspects of intake (rated appetite and 

thoughts about the meal consumed; Blundell et al., 2001) into account to determine 

satiety. Thus, the cascade allows for integration between the traditional biological 

systems underpinning appetite and the psychological behavioural indices that determine 

the rate of satiety (Halford & Harrold, 2012).   
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Figure 1. The Satiety Cascade (adapted from Blundell et al., 1987)  
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Developing a good understanding of the interplay between these biological and 

psychological processes is essential for understanding both satiation and satiety. For 

instance, familiarity with a food generates learned associations which trigger 

expectations about the likely palatability and satiating potential of that food which in 

turn may shape the quantity consumed. This then influences satiation through stomach 

distension, detected by nutrient receptors in the gut wall which also process energy load, 

further impacting on the experience of satiation. Additional post-ingestive signals 

activated by the initiation of digestion then generate hormone release which influences 

the rate of gastric emptying and, post-absorptively, circulating insulin levels as well as 

satiety relevant hormones (such as cholecystokinin; CCK, glucagon-like peptide 1; 

GLP-1 and peptide YY; PYY), in turn affecting satiety (Blundell, et al., 2010; Blundell, 

et al., 2001; Halford, Boyland, Blundell, Kirkham, & Harrold, 2010; Halford & Harrold, 

2012; Moran, 2000). Understanding the interplay between these physiological and 

psychological factors further inform our knowledge of how basic tastes such as umami 

may influence satiation and satiety separately and how the relevant processes mentioned 

may interact with umami compounds to bring about a qualitatively different experience 

of satiation and satiety.  

 

1.2.4 The role of flavour hedonics in appetite and intake  

 

The perception of flavour depends on a multisensory process of inputs from olfactory, 

gustatory, and trigeminal systems and is influenced by food properties such as texture, 

temperature, fat and composition alongside others (Auvray & Spence, 2008; Loliger, 

2000). All of these sensory inputs combine during an eating occasion to allow for 

learned associations between a flavour and its post-ingestive consequences (Gibson & 

Brunstrom, 2007) which can occur while eating to further monitor present intake (as has 

been found in rats; (Myers, Taddeo, & Richards, 2013; Zukerman, Ackroff, & Sclafani, 

2011) and identify valuable nutrition sources (as is further discussed in section 1.4).  

 

Flavour hedonics play a vital role in the learned associations made between relevant 

flavours and their biological consequences (see Yeomans, 2000) and can encourage 

conditioning of flavour preferences when the positive post-ingestive consequences of 

ingestion are associated with a flavour (flavour consequence learning) or the positive 

experience of one flavour is generalized to another flavour (flavour-flavour learning). 
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This model predicts that an appetitive state such as hunger would generate a preference 

for a flavour associated with a high energy source, with stronger hunger increasing 

sensitivity to the calories present in a food (Gibson & Wardle, 2001). In this way hunger 

can be said to influence palatability evaluations (Cabanac, 1971; Yeomans & Mobini, 

2006) and increased palatability has been related to larger meal size in experimental 

sessions (Robinson, Gray, Yeomans, & French, 2005; Yeomans, 1996; Yeomans, 

Blundell, & Leshem, 2004; Yeomans & Gray, 1997; Yeomans, Weinberg, & James, 

2005) and in natural environments using food diaries (de Castro, Bellisle, & Dalix, 

2000; de Castro, Bellisle, Dalix, & Pearcey, 2000). Meal pleasantness has also been 

shown to affect rated appetite and in turn accurately determine meal size early during 

consumption. This ‘appetizer effect’ (Yeomans, 1996) states that rated hunger after 

tasting an optimally palatable meal will increase compared to hunger ratings made 

before tasting the meal and this increase can determine the amount consumed. For 

instance, participants provided with a well-seasoned main course not only preferred the 

flavour of this meal in comparison to a bland or over-seasoned condition, but also ate 

more and at a faster rate of the optimally seasoned course (Yeomans, 1996). Similarly, 

intake of a meal deemed palatable after tasting has been found to increase irrespective 

of previously received energy. Participants provided with high or low energy soup 

preloads and a main course meal either high or low in palatability 30 minutes after soup 

ingestion consumed significantly more of the palatable meal irrespective of the energy 

content of the soup previously received (Yeomans, Lee, Gray, & French, 2001). 

Likewise, reducing need state has not been shown to reduce palatability (Raynor & 

Epstein, 2000).  

 

But how do such findings fit in with traditional approaches to appetite control? 

Originally, physiological cues were said to stimulate feeding due to energy and nutrient 

shortage (causing hunger) whilst gastric cues were claimed to end the eating episode 

when sufficient energy had been received (encouraging satiation). However, this 

approach does not account for the established effects of flavour pleasantness on intake. 

Consequently, it has been suggested that appetite and intake rely on the sensory 

information received as well as the cues arising from ingestion (Yeomans & Gray, 

1997). Integrating these ideas may explain the situations in which sensory information 

may override the homeostatic regulation of appetite and intake. For instance, when 

consuming a palatable meal, the rewarding sensation (positive feedback) of palatability 
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may alter perceptions of hunger and drive further intake due to a desire to experience 

more reward at the expense of physiological need (Berridge, 2004; Berthoud & 

Morrison, 2008). Indeed, participants given a dose of naltrexone, an opioid antagonist 

implicated in orosensory reward (Bertino, Beauchamp, & Engelman, 1991; Fantino, 

Hosotte, & Apfelbaum, 1986), showed reduced liking, hunger, eating rate and intake of 

a pasta meal compared to baseline and placebo condition intake (Yeomans & Gray, 

1997). This opioid effect has not been related to a change in perception with participants 

still rating saltiness or sweetness as the same across naltrexone and placebo conditions 

(Drewnowski, Krahn, Demitrack, Nairn, & Gosnell, 1992; Ścińska et al., 2000) 

suggesting that the reduction in intake was largely reward-driven (Yeomans & Gray, 

2002).  

 

However, palatability effects on appetite and intake have also generated mixed results 

with some research indicating an increase in consumption but no difference in rated 

hunger after tasting a palatable meal (Yeomans & Symes, 1999), others observing lower 

hunger ratings after fixed consumption of a palatable preload and no difference in 

subsequent test meal intake (De Graaf, De Jong, & Lambers, 1999; Warwick, Hall, 

Pappas, & Schiffman, 1993) and others still reporting no differences in appetite or 

intake immediately after a palatable meal but more rapid hunger recovery and desire to 

eat after the preload (Hill, Magson, & Blundell, 1984; Monneuse, Bellisle, & Louis-

Sylvestre, 1991; Rogers & Blundell, 1990). Indeed, some evidence seems to suggest 

that palatability only influences energy intake with meals served as conventional 

courses (starter, main and dessert) as opposed to serving sweet and savoury sandwiches 

or semi-liquid meals (Guy-Grand, Lehnert, Doassans, & Bellisle, 1994). The 

inconsistencies found between studies may also relate to the palatability of the test 

meals used as some of the ‘bland’ control meals tested were rated as aversive (De Graaf, 

et al., 1999; Hill, et al., 1984) whilst other study designs using palatable preloads varied 

greatly in timings between the preload and test meal (De Graaf, et al., 1999; Hill, et al., 

1984; Monneuse, et al., 1991; Rogers & Blundell, 1990; Warwick, et al., 1993) 

suggesting that palatability and hunger effects may be time dependent. Warwick and 

colleagues (1993) found no difference in energy intake in a test meal served 5 hours 

after a palatable test meal despite a greater decline in initial hunger ratings immediately 

after fixed palatable preload consumption. de Graaf and colleagues (1999) also observed 

no influence of preload palatability in a test meal delivered 2 hours after preload intake. 



11 
 

Likewise, highly preferred equicaloric meals enhanced hunger ratings during the intake 

of the meal but did not influence appetite after consumption (Sorensen, Moller, Flint, 

Martens, & Raben, 2003). This suggests that palatability effects are most pertinent to 

ensure food acceptability whilst information regarding the type of flavour experienced 

further informs physiological post-oral processes. 

 

1.3 The fifth basic taste 

 

1.3.1 Umami - the fifth basic taste  

 

Monosodium glutamate (MSG) is a sodium salt of glutamic acid which was initially 

discovered by Kikunae Ikeda in 1908 as a unique taste component in dried kelp but is 

now made commercially from the fermentation of sugar sources (Sano, 2009). The 

flavour of MSG was coined ‘umami’ which translates to ‘savoury deliciousness’ 

(Chandrashekar, Hoon, Ryba, & Zuker, 2006; Kurihara, 2009). The umami taste is 

elicited by glutamate ions whilst the glutamate enantiomer contains flavour enhancing 

properties, boosting the palatability of foods (Rundlett & Armstrong, 1994). MSG 

mimics the non-essential amino acid glutamic acid (elicited by glutamate salts which are 

also termed ‘glutamate’), which has been found to be one of the most plentiful naturally 

occurring amino acids found in foods of both plant and animal origin (Garcia-Bailo, et 

al., 2009; Jinap & Hajeb, 2010; Yamaguchi & Ninomiya, 2000). Higher concentrations 

of free glutamate have been related to the increased ripeness and flavour of natural 

foods (Ninomiya, 1998) as well as man-made foods such as contributing to the taste and 

texture of cheese (Ramos, Cáceres, Polo, Alonso, & Juarez, 1987) and cured meats 

(Cordoba et al., 1994). Bound glutamate on the other hand is bound with other peptides 

and proteins in foods and does not give rise to the flavour of umami unless it is 

converted to free glutamate which can occur by breaking down peptide bonds during 

chewing through the action of proteases. As glutamate is a non-essential amino acid, it 

is naturally produced by the body and aids metabolism (Appaiah, 2009; Bellisle, 1999; 

Fürst & Stehle, 2004), particularly acting as a major source of energy for the intestines 

(Young & Ajami, 2000). As MSG contains glutamate and provides a flavouring 

function similar to naturally occurring free glutamate (Yamaguchi & Ninomiya, 2000), 

it is a potent flavour enhancer typically added to commercial produce in similar levels to 

naturally occurring glutamate found in traditional dishes (Bellisle, 1999; Luscombe-
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Marsh, et al., 2009). Indeed, the body cannot distinguish between glutamate ingested 

naturally in foods and glutamate added to foods (Appaiah, 2009). 

 

The flavour of MSG is not very palatable (Beauchamp & Pearson, 1991; Rolls, 2000) 

and has been described as “sweet-saline” (Foster, 1955) when tasted alone. However, 

when added to foods MSG elicits a “savoury” or “brothy” flavour (Chandrashekar, et 

al., 2006; Jinap & Hajeb, 2010; Loliger, 2000). The distinctive taste quality of umami 

led to its establishment as the fifth basic taste. Umami is coded by the taste system as 

completely unique (Nelson et al., 2002; Rolls, 2000) from the four basic tastes (salty, 

sweet, sour and bitter) despite sharing taste receptors that code sweet and salty flavours 

(see section 1.3.2). Indeed, the addition of umami does not enhance the taste of 

sweetness, saltiness, sourness or bitterness (Yamaguchi, 1987) and the threshold for 

detecting  the experience of these tastes on the tongue is not lower with added MSG as 

might be expected with an enhancement of flavour (Yamaguchi, 1967). The uniqueness 

of umami taste is clear in the human taste system. Participants provided with 21 taste 

stimuli varying in the four basic tastes and umami were asked to sort the stimuli based 

on taste quality and similarity. This was used to produce a similarity matrix using 

multidimensional modelling which gave rise to a ‘taste tetrahedron’ in which the 

established four basic tastes were located. However, MSG was found to be located 

outside of this tetrahedron, suggesting that its flavour was indeed perceived as 

qualitatively different from the other four basic tastes (Yamaguchi & Kimizuka, 1979). 

Umami detection is also present cross culturally (Prescott, 1998) and has been found in 

both naïve participants and panellists trained to identify the umami taste (Sinesio, 

Peparaio, Moneta, & Comendador, 2010). 

 

1.3.2 The umami taste system 

 

Since the discovery of umami, considerable research has explored the taste system 

underpinning this fifth basic taste. Information about bitter, salty, sweet and sour tastes 

are relayed to the primary and secondary cortex via receptor membranes in taste buds 

inducing impulses in the nerves related to gustatory sensitivity (Bellisle, 1999). The 

brain areas stimulated by these basic tastes to generate a response are independent of 

one another, establishing their status as basic tastes. The question remained as to 
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whether umami also operated a distinct taste receptor mechanism, consequently 

validating its status as a basic taste.  

 

Glutamate has been shown to independently activate G-protein coupled receptors in 

specialized glutamate taste receptor cells (Chaudhari, Landin, & Roper, 2000; 

Chaudhari, Pereira, & Roper, 2009; Chaudhari et al., 1996; Gabriel, Maekawa, 

Uneyama, & Torii, 2009). These receptors have been found both in the posterior region 

of the tongue in metabotropic glutamate taste bud receptors (mGluRs) (Yasumatsu et 

al., 2009) and in the anterior region in T1R1/T1R3 taste receptors. T1R class receptors 

consist of specialized class C G-protein coupled taste receptor cells that relay sensations 

of umami and sweet taste. Deciphering which taste is being experienced relies on these 

taste receptors (T1R1, T1R2 and T1R3) acting together to communicate this 

information. Indeed T1R1/T1R3 have been established as umami-specific receptors in 

humans (Egan & Margolskee, 2008; Li et al., 2002; Yasumatsu, et al., 2009) whilst 

T1R2/T1R3 are related to ‘sweet’ taste sensing (Stone, Barrows, Finger, & Kinnamon, 

2007). This understanding developed when assessing the expression patterns of taste 

molecules.  

 

These taste receptors also map directly onto the genes that express them, Tas1r1 and 

Tas1r3 (Damak et al., 2003; Zhao et al., 2003). Indeed, glutamate taste receptors have 

been found to bear a pharmacological and structural resemblance to brain glutamate 

receptors (Brand, 2000). The presence of specific receptor sites for umami detection 

allow for a greater understanding of the experience of umami, the ability to discriminate 

umami stimuli and how sensitive the umami taste system is. Indeed, when T1R1 or 

T1R3 receptors are not expressed (in mouse genetic knock out models removing the 

Tas1r1 and/or Tas1r3 gene), umami taste preference is greatly reduced in animals 

(Damak et al., 2003; Zhao et al., 2003) and as human T1R1 and T1R3 are more 

selective for umami stimuli (Li, et al., 2002), this effect would be expected to present 

even more strongly in humans (Li, 2009). Identifying a taste also relies on other G-

proteins working in combination with the T1R taste receptors. α-gustducin has been 

suggested to be fundamental in T1R transduction pathways, with mice lacking this 

protein showing defects in the ability to taste sweet and umami stimuli (Glendinning et 

al., 2005; Ruiz, Wray, Delay, Margolskee, & Kinnamon, 2003). Indeed, T1R2/T1R3 

pathways have been shown to express α-gustducin but T1R1 receptors only express this 
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protein half of the time (Stone, et al., 2007). This may explain why α-gustducin  has 

been implicated in the detection of MSG but not IMP (He et al., 2004; see section 1.3.3 

for the synergism between MSG and IMP). Developing an understanding of the 

complex connections between the receptors and proteins implicated in umami taste also 

allows for a greater appreciation of the associations between umami and sweet taste as 

these two flavours are considerably linked and are clearly separable from other tastes 

such as bitter (which is expressed by T2R class receptors) or salty (mediated by 

epithelial sodium channel ENaC; Chandrashekar et al., 2010). 

 

The evidence for  pathways and proteins dedicated to umami taste discrimination further 

supports the role of the function of this basic taste in facilitating adequate nutrition 

(Yamaguchi & Ninomiya, 2000) despite the status of glutamate as a non-essential 

amino acid (Bellisle, 1999; Fürst & Stehle, 2004). This indicates that, just as saltiness 

informs of mineral content (Krause & Sakai, 2007; Richter, 1936) and sweetness 

indicates an energy source (Anderson, 1995; Sclafani, 1987), the evolution of the 

detection of umami may signal the availability of another food source such as savoury 

foods. In particular, the taste of glutamate has been related to savoury foods rich in 

protein due to the abundance of umami in these foods (Ikeda, 1908; Laska & Hernandez 

Salazar, 2004; Luscombe-Marsh, et al., 2008; Mori, Kawada, Ono, & Torii, 1991; 

Smriga & Torii, 2000). 

 

1.3.3 Glutamate synergism with other flavour enhancers 

 

The flavour enhancers that produce the experience of glutamate also include disodium 

inosinate and disodium guanylate which are derived from the purine nucleotides inosine 

5’-monophosphate (IMP) and guanosine 5’-monophosphate (GMP). These nucleotides 

mimic naturally occurring umami found in animal products for IMP (Lindemann, 1996; 

Yamaguchi & Ninomiya, 2000) and plant-based foods for GMP (Ninomiya, 1998) and 

enhance the taste of umami when combined appropriately with MSG (Kurihara, 2009). 

Indeed, as natural and processed foods have distinct umami profiles, subtle differences 

in umami taste can be generated (Fuke & Konosu, 1991) and flavour can be improved 

when combined with appropriate concentrations of MSG, IMP and/or GMP. Hence 

MSG alone may improve sensory assessments more effectively in certain foods whilst 

additional IMP or GMP may enhance pleasantness more in others (Baryłko-Pikielna & 
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Kostyra, 2007). This is evident in the cooking practices seen cross culturally throughout 

the world, with the enhancement of meals with umami stocks made up of animal and 

plant based proteins to further improve flavour (Kurihara, 2009). 

 

When MSG is combined with one or both nucleotides (IMP and/or GMP), a sensory 

synergism occurs enhancing the subjective experience of umami taste intensity more so 

than either component presented alone (de Araujo, Kringelbach, Rolls, & Hobden, 

2003; Lindemann, 1996; Ninomiya, Tanimukai, Yoshida, & Funakoshi, 1991; Rifkin & 

Bartoshuk, 1980). This interaction effect has also been found at the receptor level, with 

glutamate-nucleotide synergisms apparent in T1R1/T1R3 receptors (Kurihara, 2009; 

Zhang et al., 2008; Zhao et al., 2003). Indeed, T1R3 damage has been shown to abolish 

the synergistic response to MSG and IMP (Damak, et al., 2003) and T1R1 has been 

proposed to be vital for GMP and IMP detection (Zhang, et al., 2008) providing a 

physiological basis for this synergism. The activity of the chorda tympani, which is vital 

for relaying taste information to the brain, has also been shown to be particularly 

sensitive to MSG-nucleotide synergisms (Kumazawa, Nakamura, & Kurihara, 1991). 

 

Further support for a synergistic effect was found in the orbitofrontal cortex (OFC) 

which was more strongly activated by the additive influence of IMP to MSG than when 

either solution was provided in isolation (de Araujo, et al., 2003). This suggests that the 

OFC may combine the information from the channels detecting MSG/IMP to produce a 

larger response to MSG/IMP when in combination (de Araujo, et al., 2003). Indeed, it 

may be that IMP and GMP do not have an intrinsic umami taste and only act to enhance 

an effect by glutamate (Beauchamp, 2009). These nucleotides show very weak taste 

intensities when presented alone which may occur due to the small amounts of 

glutamate naturally present in saliva, thus they may instead enhance an intrinsic umami 

taste but instead enhance it (Yamaguchi & Kobori, 1991). Indeed, doses of IMP which 

do not elicit the umami taste themselves have been shown to increase sensitivity to 

glutamate detection (Li, et al., 2002). Such synergism has not been found with other 

tastes such as the addition of sweet (Zhang, et al., 2008), indicating that this is an 

umami-specific effect.  

 

This synergism has also been related to further enhancing the pleasantness generated by 

umami as the OFC also provides information about the rewarding aspects of taste 
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(O'Doherty, Rolls, Francis, Bowtell, & McGlone, 2001); thus the stronger OFC 

activation may be indicative of a further improvement in flavour with umami synergism 

than when umami tastants were provided alone. However, this enhancement of 

pleasantness by synergism may depend on the balance between MSG and IMP, with 

higher concentrations of MSG to IMP reducing pleasantness assessments (Baryłko-

Pikielna & Kostyra, 2007). Likewise, an enhancement of MSG/IMP was not found to 

increase intake in rats when compared to MSG alone conditions (Ackroff & Sclafani, 

2011). This may indicate similar pleasantness across conditions or indeed may indicate 

that the effects of IMP occur primarily in the mouth to improve glutamate detection and 

thus the selection of glutamate containing foods. 

 

1.3.4 MSG and food palatability 

 

Foods rich in naturally occurring glutamate are rated as high in palatability (Yamaguchi 

& Ninomiya, 2000) and this positive affective reaction is evident from birth 

(Beauchamp & Mennella, 2009; Steiner, 1973). Thus, it is unsurprising to note that as 

MSG is primarily used for its flavour enhancing properties, the addition of this 

seasoning to meals can improve flavour pleasantness in a concentration-specific manner 

(Halpern, 2000; Prescott, 2004; Rogers & Blundell, 1990) and activates the OFC 

(McCabe & Rolls, 2007), but too high a dose is deemed aversive (Halpern, 2000). MSG 

also improves flavour pleasantness when combined with salty flavours, further 

enhancing palatability assessments than sodium chloride alone (Halpern, 2000). 

Likewise foods with added MSG are rated as more palatable, even when sodium is 

equivalent (Okiyama & Beauchamp, 1998) or when no sodium is present (as is found 

with calcium glutamate; Bellisle, Dartois, & Broyer, 1992). However MSG does not 

improve the flavour of sweetened foods (Yamaguchi, 1998) possibly because glutamate 

does not occur naturally in most sweet foods.  

 

MSG may also be used to increase palatability for novel, congruent food flavours with 

repeated pairings (Prescott, 2004; Roininen, Lähteenmäki, & Tuorilla, 1996) as has 

been documented with highly palatable flavours such as sweet (Brunstrom & Fletcher, 

2008; Mobini, Chambers, & Yeomans, 2007) and macronutrients such as fat (Johnson, 

McPhee, & Birch, 1991; Kern, McPhee, Fisher, Johnson, & Birch, 1993). Indeed, 

conditioned preferences for new food flavours have been shown with repeated pairings 
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of the food when ingested with MSG (Prescott, 2004; Yeomans, Gould, Mobini, & 

Prescott, 2008). This suggests that MSG may increase liking of initially disliked foods 

with high nutritional value by adding needed appeal and palatability (Loliger, 2000). 

Indeed, food selection preferences have also been found to be affected by the addition 

of MSG, increasing intake of MSG-containing products over foods containing no MSG 

(Bellisle et al., 1991). However, this selection may also be mediated by top-down 

processes alongside the sensory experience of MSG. Broths containing added MSG 

labelled as ‘rich and delicious taste’ are rated as significantly more pleasant and 

increase activation in the medial OFC more strongly than when described as ‘boiled 

vegetable water’ or ‘MSG’ (Grabenhorst, Rolls, & Bilderbeck, 2008). This indicates 

that cognitive expectations can override sensory experiences but it must be noted that 

such examinations may be heavily influenced by demand characteristics.   

 

Hunger assessments are also influenced by MSG as a function of palatability. Yeomans 

and colleagues (2008) provided participants with a novel savoury soup (control) which 

was then paired with (or without) added MSG over four exposure sessions before 

providing participants with the control soup (without added MSG) once again. The 

addition of MSG in the training stage significantly increased rated hunger after tasting 

the control soup post-training compared to the no MSG trials as well as increasing 

liking and intake, indicating appetite stimulation by flavour. Similarly, MSG has been 

related to more rapid hunger recovery, possibly due to its appetizing effects (Rogers & 

Blundell, 1990). However, no research to date has specifically assessed the nature of 

MSG enhanced meals in relation to palatability, rated appetite and intake. 

 

The first series of papers within this thesis are predominantly focussed on the 

experience of umami and its effect on stimulating appetite due to its palatability 

whereas the later papers discussed are more focussed on the effects of umami as a signal 

for protein and in the promotion of satiety. Consequently these experiments are 

summarized in turn, following on from the literature that gave rise to them. It was 

initially essential to establish a vehicle which was not only of neutral palatability but 

that could be consumed as either a preload or a main meal and to which the addition of 

MSG would improve flavour (Paper 1). This flavour enhancing effect was subsequently 

assessed for its effects on satiation and appetite stimulation (Paper 2), with an additional 
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experiment further testing the methodology used with an additional basic taste (Paper 

3).   

 

1.3.4.1 Summary of Paper 1 

 

As the flavour of umami is so abundant in a range of foods, it was essential to limit the 

naturally occurring free glutamate present in the vehicle to be used for testing the effects 

of MSG. This was to ensure that any effect of MSG was not masked by a potential 

interaction between large quantities of available free glutamate and MSG. Indeed, too 

high a dose of free glutamate has been shown to be unpalatable (Jinap & Hajeb, 2010; 

Yamaguchi & Takahashi, 1984). Thus if baseline levels of glutamate are naturally high, 

any additional effect by MSG may taste unpleasant, affecting appetite and intake and 

not reflecting the use of MSG commercially (Loliger, 2000). Previous research 

assessing the influence of MSG on appetite and intake does not take natural free 

glutamate levels into account, potentially confounding the effects reported as was found 

by Shi et al (2010) in the study published by He and colleagues (He, et al., 2008).  

 

Based on the relevant literature it was deemed essential to formulate a hedonically 

neutral control soup to which the addition of MSG would enhance palatability. 

Formulating a low glutamate soup would also allow for any effect by MSG to be 

attributed to MSG and not the potential interaction between natural glutamate present in 

the vehicle and MSG. Paper 1 is divided into two experiments. Both experiments 

utilized the same methodology, with participants rating the sensory and hedonic 

characteristics of samples of two different vegetable soups with no MSG, 0.6% added 

MSG or 0.8% added MSG. This resulted in a six sample tasting which was carried out 

twice in the same session. Experiment 1 assessed a pumpkin or butternut squash soup 

however these soups were rated as highly unpalatable with no significant increase in 

palatability evident with the addition of MSG. Thus Experiment 2 examined a carrot 

and spice soup with or without added cream. Both carrot soups were rated as 

hedonically neutral with the addition of MSG improving flavour palatability. However 

as the carrot soup without cream was lower in naturally occurring glutamate, it was 

preferred for further assessment. However, as the concentrations of MSG in the soups 

yielded more inconsistent results in terms of ratings of savouriness and strength of 

flavour, the concentrations of MSG to be used were further assessed in Paper 2.   
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1.3.4.2 Summary of Paper 2 

 

As mentioned in section1.3.4, the appetizing nature of MSG has not previously been 

assessed. It was deemed important to examine the influence of MSG on indices of 

hunger and fullness during intake of the early stages of a meal to further understand 

whether the experience of umami was the same or qualitatively different from other 

appetizing seasonings (see Yeomans et al., 2000) or from that found previously with 

MSG conditioned flavour preferences (Yeomans, et al., 2008). As Yeomans and 

colleagues’ (2008) study did not explicitly assess the impact of an MSG containing 

meal on rated appetite and intake, the aim of the experiment in Paper 2 was to 

investigate the palatable nature of MSG on the appetizer effect. This involved utilizing a 

similar study design to that used in the original appetizer experiment adopted by 

Yeomans (1996) and consisted of participants rating their appetite after tasting and at 

25g intervals for 75g consumption and at the 200g re-fill stage during ad-libitum 

consumption of a soup varying in added MSG concentrations.   

 

Paper 2 is divided into two experiments with the first establishing the concentrations to 

be used throughout testing. This was deemed vital as a clear enhancement of palatability 

was required to assess the role of meal hedonics on rated hunger and intake. The first 

experiment was also necessary to ensure the computer rating system used would remain 

sensitive with a semi-liquid vehicle as previous assessments have used predominantly 

solid meals (Yeomans, 1996; Yeomans, Gray, & Conyers, 1998). Rated meal 

pleasantness was found to increase upon tasting the MSG enhanced conditions relative 

to the control in a concentration-specific manner however, due to the speed of 

consumption influencing the sensitivity of the balance system used, further within-meal 

analyses were not possible in Experiment 1. The second experiment in Paper 2 adopted 

an additional training session with a separate, well accepted soup which improved 

analysis of within-meal ratings. However, no appetizing effect was evident across MSG 

conditions and no differences were noted in meal intake in Experiment 2. This may be 

due to the similar palatability ratings found across conditions. Nevertheless, rated 

hunger and eating rate was lower in added MSG conditions after 200g intake as 

compared to no added MSG conditions. Experiment 2 also revealed that the added MSG 

conditions were rated as more satiating than no added MSG soups, despite the similar 
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quantities consumed across conditions, indicating the potential for stronger satiety with 

added MSG conditions. 

 

1.3.4.3 Implications of Paper 2 and summary of Paper 3 

 

No clear appetizer effect was evident in Paper 2 and a high participant exclusion rate 

indicated that the methodology employed required revisions. Thus in Paper 3 the 

appetizer effect was assessed with a sweet taste, to determine whether the hedonic 

qualities of sweetness would influence appetite and increase intake relative to a bland 

control soup. Sweetness was examined due to its profile as inherently palatable 

(Sclafani, 1987), its presence in many energy dense foods (Bellisle & Drewnowski, 

2007; Yamamoto & Ishimaru, 2013), and as it has not been assessed before in relation 

to the appetizer effect whereas other basic tastes such as saltiness have (Yeomans, 

2000). Similarly, sweet taste shares a taste receptor with umami taste (the T1R3 

receptor; Li, 2009; see section 1.3.2). 

 

In addition to employing the same methodology as Paper 2, Paper 3 only differed in the 

inclusion of a training session using non-edible food items where Paper 2 utilized a 

different well-accepted soup. This was due to efforts to reduce the potential for a 

negative contrast effect (Flaherty, 1982; Flaherty, Coppotelli, Grigson, Mitchell, & 

Flaherty, 1995) as the lack of a perceived appetizer effect in Paper 2 may have been due 

to participants preferring the more familiar training soup to the relatively novel test soup 

provided. Additional ratings of motivation to consume the test soup were also included 

in Paper 3 to understand whether the influence of soup pleasantness during intake was 

more related to the liking or wanting indices of meal intake as previous research 

suggests a decline in liking results in a reduction of intake (Yeomans & Gray, 1997) but 

the willingness to work for sucrose rewards (which may be indicative of behaviours 

related to wanting an item)  has been found to be a strong motivator for intake in rats 

(Uematsu et al., 2011).  

 

No clear appetizer effect was evident upon tasting the sweetened soups as compared to 

the bland control and no differences were noted in appetite, pleasantness or motivation 

to consume the sucrose sweetened soup relative to the bland control. Similarly there 

were no differences in intake between conditions but eating rate was found to be slower 



21 
 

in the sweet condition relative to the control. The similar pleasantness ratings found 

suggested that the hedonic influence of the tasted food could not be meaningfully 

compared. However, the outcome of Paper 3 shed further light on the unexpected results 

of Paper 2, firstly due to the known effects of palatable substances on evaluations of 

hunger and consumption (Yeomans, 2000) and secondly due to the maintained 

palatability but marginally increased experience of satiation in added MSG conditions 

relative to control which was not evident in Paper 3. Despite similar intake across 

conditions across Papers 2 and 3, participants were only more satiated in the added 

MSG conditions relative to control. This was not seen in Paper 3 and indicated the 

potential for a bi-phasic effect of MSG on appetite and intake, maintaining palatability 

but potentially acting to enhance the experience of satiety. However, this finding could 

not be substantiated unless further ratings of appetite were assessed over the duration 

after meal consumption. 

 

1.3.5 MSG and intake 

 

Upon completing Papers 2 and 3 the question of how the effects of MSG influence 

hunger and intake remained unclear. However, although very subtle, the results were 

surprisingly more in line with those found in the literature. Although many studies show 

an initial enhancement of intake (Bellisle et al., 1996; Bellisle, et al., 1991; Bellisle, 

Tournier, & Louis-Sylvestre, 1989; Mathey, Siebelink, de Graaf, & Van Staveren, 2001; 

Schiffman, Sattely-Miller, Zimmerman, Graham, & Erickson, 1994), few have found 

maintenance of intake in MSG-added conditions as compared to control (Mathey, et al., 

2001; Schiffman, et al., 1994), with intake more often returning to baseline levels 

(Bellisle, et al., 1996; Bellisle, et al., 1991; Bellisle, et al., 1989; Essed, van Staveren, 

Kok, & de Graaf, 2007). Mathey and colleagues (2001) and Essed and colleagues 

(2007) conducted 16 week interventions in nursing home elderly who were given meals 

with added or no added MSG sprinkled over the cooked component of the course. 

Intake over time was assessed as well as measures of weight at 8 (Mathey, et al., 2001) 

and 16  (Mathey et al., 2001; Essed et al., 2007) weeks. Mathey et al., reported an 

increase in intake and weight in the added MSG group compared to the control 

condition, which were found to lose weight during the period. Conversely, Essed et al. 

(2007) reported a reduction in energy intake in the MSG added group and no change in 

body weight in this condition compared to baseline. This was despite the low 
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concentrations of MSG (0.3% MSG) added to the meals. Why was there such a 

difference in energy intake and weight gain between these nursing home elderly? One 

suggestion may be related to the foods to which the MSG was added. Essed et al. 

(2007), sprinkled the MSG only onto the high protein components of the meal whilst 

Mathey and colleagues (2001) seasoned the entire meal, including the high carbohydrate 

foods with the flavour enhancer. Likewise, Bellisle and colleagues (Bellisle, 1999; 

Bellisle, et al., 1996; Bellisle, et al., 1991; Bellisle, et al., 1989) enhanced the low 

energy carbohydrate components of meals with added MSG, showing increased intake 

of these foods relative to the high protein foods with no added MSG in healthy (Bellisle, 

et al., 1989), elderly (Bellisle, et al., 1991) and diabetic elderly (Bellisle, et al., 1996) 

populations. When Bellisle and colleagues (see Bellisle et al., 1999) further assessed the 

intake of diabetic elderly individuals over a four week period, they reported increased 

intake of the starch components of meals with added MSG as compared to control. Thus 

it may be that the carbohydrate components of a meal enhance intake with added MSG 

as has been suggested elsewhere (Simpson & Raubenheimer, 2005).  

 

However, despite participants increasing their consumption of the more palatable 

starch-based elements, Bellisle and colleagues repeatedly found no increases in calorie 

load or overall energy intake over time (Bellisle, 1999; Bellisle, et al., 1996; Bellisle, et 

al., 1991; Bellisle, et al., 1989). Support for these findings has also been reported by 

Rogers & Blundell (1990) who found that adding MSG to beef consommé soups 

increased ratings of pleasantness and hunger recovery compared to control but did not 

influence energy intake at a later course delivered 2 or 30mins after the soup preload. 

Equally, Carter and colleagues (Carter, Monsivais, Perrigue, & Drewnowski, 2011) 

provided participants with chicken broth preloads with added MSG, added MSG and 

nucleotides (IMP and GMP) or with added fat which were delivered in two exposures 

two hours apart then provided an ad-libitum lunch 35 minutes after the second preload 

exposure. They reported no differences in consumption between added MSG and 

control conditions with only the addition of fat decreasing ad-libitum intake. Although, 

unlike Rogers & Blundell (1990) they also found that added MSG reduced rated hunger 

and desire to snack before the meal, indicating a stronger experience of satiety in MSG 

conditions. These findings suggest that the increased palatability found with added 

MSG does not necessarily maintain heightened energy intake (Bellisle, 1999; Bellisle, 

et al., 1996; Bellisle, et al., 1991; Bellisle, et al., 1989; Essed, et al., 2007) or influence 
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subsequent energy intake (Carter, et al., 2011; Rogers & Blundell, 1990). Indeed, 

Bellisle (1999) suggests that the short-term enhancement of intake in meals with added 

MSG may be in response to the sudden increase in dietary palatability, with intake 

returning to baseline after a few days due to regulatory mechanisms intervening. Other 

important aspects such as the macronutrient compositions of the foods consumed may 

also be taken into account during energy regulation, consequently contributing to the 

experience of satiety.  

 

The effects of high palatability meals enhanced with MSG on intake do not match those 

found with high palatability energy dense (ED) foods. Indeed, long-term MSG intake 

has been found to have a negative or no effect on weight gain in human and animal 

studies (Essed, et al., 2007; Kondoh & Torii, 2008; Shi, et al., 2010) whereas this is not 

the case for ED foods, with intake associated with high weight status (Ledikwe et al., 

2006; Zizza, Siega-Riz, & Popkin, 2001) and body fat content (McCrory, Fuss, 

Saltzman, & Roberts, 2000). One suggestion for this may be related to ‘liking’ and 

‘wanting’ of MSG enhanced foods as opposed to other basic tastes (such as sweetness 

which may predict palatability and energy). Hedonic ‘liking’ may be related to 

palatability assessments whilst ‘wanting’ judgements may be based on approach 

responses and the willingness to work for these rewards (Berridge, 1996) as may be 

demonstrated when MSG enhanced foods are selected over those foods containing no 

MSG (Bellisle, et al., 1996). These constructs are not only said to be separable but are 

postulated to rely on separate neural networks with ‘liking’ mediated by the opioid 

system in the rostro-dorsal medial shell region of the nucleus accumbens and the ventral 

pallidum (Smith & Berridge, 2007) whilst ‘wanting’ is associated with dopamine 

interactions with corticolimbic glutamate (Kelley, 2004) as found with sucrose. 

However, it may be that MSG is accessing different neural network systems to elicit 

varied behavioural responses. Some research has assessed this by providing rats with a 

range of concentrations of MSG (0-120mM) and sucrose (0-480mM) with fixed 

progressive ratio operant tasks to assess ‘wanting’ and gusto-facial responses and 

naloxone treatment to assess ‘liking’. Positive hedonic reactions to MSG concentrations 

(30-120mM) were observed as was found for sucrose (10-480mM), with naloxone 

treatment decreasing these positive reactions for both MSG and sucrose, implicating the 

opioid system in MSG and sucrose taste processing (Uematsu, et al., 2011). The animals 

were also willing to work for lower concentrations of MSG (up to 60mM) but this 
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‘wanting’ (also termed incentive salience) of the MSG reward was further reduced with 

naloxone treatment. This was not seen with the sucrose concentrations, with incentive 

salience remaining high despite naloxone treatment. As MSG does not trigger dopamine 

release in oral pathways (Uematsu, Tsurugizawa, Kondoh, & Torii, 2009) and incentive 

salience was influenced by naloxone treatment, umami ‘wanting’ may be mediated by 

the opioid system instead. Thus MSG may influence approach behaviours differently to 

sugar sweetened foods, which have also been related to higher energy intake (Harnack, 

Stang, & Story, 1999). However, these effects have not been assessed in humans and 

thus selection and intake may be mediated by a variety of factors. 

 

It may be that the incentive salience experienced with sucrose is inherently related not 

to palatability but to energy density. As sucrose is experienced largely in high ED foods 

and beverages and itself is a signal of energy (Bellisle & Drewnowski, 2007; Sclafani, 

1987; Torii, Mimura, & Yugari, 1987; Yamamoto & Ishimaru, 2013) whilst MSG may 

be consumed in both low ED (such as umami broths, vegetable preparations and lean 

protein) and high ED foods, the learned association between sucrose and energy 

density, not palatability, may be driving and maintaining intake (Brunstrom & Rogers, 

2009). Indeed, high ED foods are said to have a higher incentive salience as the capacity 

of these foods to satisfy hunger is greater per portion than low ED foods (Brunstrom & 

Shakeshaft, 2009; Rogers, 2011). However, these foods are also selected in larger 

calorie portions irrespective of palatability than low ED foods as the same weight of a 

high ED food and a low ED food would provide a different number of available 

calories, thus high ED foods are less satiating than low ED foods on a calorie-for-

calorie basis (Brunstrom & Rogers, 2009; Rogers, 2011). It is not known whether 

selection of a flavour that is not a reliable predictor of high ED (such as MSG) may 

influence incentive salience but it is clear that MSG containing foods are both preferred 

and selected more than no MSG-foods (Bellisle, 1999; Bellisle, et al., 1996) and that 

these preferences are maintained over time (Bellisle, 1999; Bellisle, et al., 1996; 

Bellisle, et al., 1991) irrespective of the energy density of the food. So it may be that the 

incentive salience experienced with MSG may be more dependent on palatability or 

other aspects related to MSG flavour such as information about the macronutrients 

available in the food.  
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1.4 Macronutrients in the diet 

 

The role of ED in energy intake regulation is well documented in the literature (de 

Castro, 2006; Rolls, 2009; Rolls, Roe, & Meengs, 2004). However, the essential 

macronutrients (carbohydrate, fat and protein) that comprise the human diet have been 

suggested to affect the regulation of energy intake independently from ED (Blundell & 

Stubbs, 1999). These nutrients are vital for normal biological functioning and serve as 

important energy sources. Our diets are recommended to be comprised of 50% 

carbohydrate, 35% fat and 15% protein (FSA, 2006) to meet the energy needs of the 

body. However, much research points towards an excess in fat and carbohydrate intake 

(Krebs, 2009; Simpson & Raubenheimer, 2005). These macronutrients require differing 

amounts of energy to convert to the fuel required by the body using glucostatic 

mechanisms (Van Itallie, 1989). Fat requires the largest proportion of energy to be 

expended (9 Kcal/g) whilst protein and carbohydrate require less (4 Kcal/g). Thus, gram 

for gram protein and carbohydrate provide less energy than fat however, per unit of 

energy consumed, carbohydrate (Stubbs, Mazlan, & Whybrow, 2001) and protein 

(Bertenshaw, et al., 2008; Rogers, 1990; Rolls, Hetherington, & Burley, 1988; Yeomans 

& Chambers, 2011) have been shown to have a higher satiating efficiency, that is to say, 

a smaller load of carbohydrate or protein increases the experience of satiation more 

strongly than fat (Kissileff, Gruss, Thornton, & Jordan, 1984; Tremblay, Plourde, 

Despres, & Bouchard, 1989). This is because energy from fat is more readily stored as it 

causes the smallest energy cost to store but the highest to expend (Rogers, 1990). 

Similarly, ingested fat tends to be low in fibre and bulk, thus reducing its satiating 

efficiency (Rogers, 1990). Indeed, high carbohydrate preloads have been shown to 

reduce feelings of rated hunger (Chambers & Yeomans, 2011; Cotton, Burley, 

Weststrate, & Bhmdell, 1994; Eller, Ainslie, Poulin, & Reimer, 2008; Poppitt, 

McCormack, & Buffenstein, 1998) and food intake (Robinson, et al., 2005) more than 

high fat preloads. Equally, due to the elevated palatability of most high fat foods, these 

items have been shown to stimulate intake and appetite of a subsequent course more 

strongly than a high carbohydrate food (Robinson, et al., 2005). It may also be argued 

that the differences in intake and appetite mentioned may be related to the different 

sensory experience of high fat as compared to high carbohydrate foods (Rogers, 1990). 

Indeed, the orosensory experience of a food may be important for evaluations about 

how satiating the food is. For instance, high energy preloads are rated as more satiating 
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than low energy preloads when consumed than when infused into the stomach (Cecil, 

Francis, & Read, 1999). The taste of fatty acids can be detected (Abumrad, 2005; Chalé-

Rush, Burgess, & Mattes, 2007; Mattes, 2009) even when other sensory information 

such as smell is blocked (Chalé-Rush, et al., 2007), suggesting that this taste provides a 

different orosensory experience to carbohydrate. Similarly, specific carbohydrate taste 

has been discussed in animal models (see Sclafani, 1987). This suggests that the nutrient 

profile of a food is detected from the first taste, indicating that it is important to match 

the sensory experience of the food if macronutrient intake is being assessed. 

 

Some researchers also report no differences in appetite (de Graaf, Schreurs, & Blauw, 

1993; Raben, Agerholm-Larsen, Flint, Holst, & Astrup, 2003; Rolls et al., 1991) or 

intake (Chambers & Yeomans, 2011; Cotton, et al., 1994; Yeomans, et al., 2001) 

between high fat and high carbohydrate conditions. This may be due to individual 

differences in responsiveness to orosensory experiences of fat and fat sensing by the 

body as has been suggested elsewhere (Little & Feinle-Bisset, 2011; Stewart et al., 

2010) and may be related to the impact of these macronutrients in the regulation of 

peripheral appetite peptides (Karhunen, Juvonen, Huotari, Purhonen, & Herzig, 2008), 

as well as the differences in the preload time intervals and energy densities used 

between studies (Almiron-Roig, Chen, & Drewnowski, 2003; Almiron-Roig et al., 

2013).  

 

1.4.1 The importance of protein 

 

Dietary protein is vital for generating signals controlling gastric motility (Tome et al., 

2009) with the quality and quantity of protein consumed during a meal essential for 

stimulating adequate digestion (Kondoh, Mori, Ono, & Torii, 2000). General protein 

intake in human diets has been shown to be the most stable as a percentage of energy in 

the diet (Simpson & Raubenheimer, 2005) and in terms of absolute amounts consumed 

(Westerterp-Plantenga, 1994) over time and across populations. It has been suggested to 

be the most tightly regulated macronutrient with protein imbalance monitored by the 

body over time (Kondoh, et al., 2000).  

 

Indeed, when faced with unbalanced diets, protein has been shown to be prioritized and 

regulated at a more constant level than carbohydrate and fat (Simpson, Batley, & 
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Raubenheimer, 2003; Simpson & Raubenheimer, 2005). Participants tested over a 6 day 

period were given free access to buffet meals (breakfast, lunch and dinner) with varied 

food items for 2 days before one group was provided with a 2-day diet limited in protein 

but not carbohydrate or fat whilst the second group were limited in carbohydrate and fat 

but not protein. Participants were then once again given free access to all of the food 

items for the final 2 day period. The researchers reported that participants consuming 

the restricted protein diet increased energy intake by carbohydrate and fat compared to 

baseline during protein deprivation and increased their protein intake during the final 2 

day period. Conversely, those consuming high protein diets did not alter energy intake 

before and after the diet manipulation (Simpson, et al., 2003). This led the researchers to 

propose the Protein Leverage Hypothesis (Simpson & Raubenheimer, 2005) which 

asserts that the need to regulate protein at a constant level is the primary driver of 

energy intake. Thus, when faced with imbalanced diets, the absolute intake of protein is 

prioritized by overconsumption of carbohydrate and fat sources until protein needs are 

met (Austin, Ogden, & Hill, 2011; Larsen et al., 2010; Simpson, et al., 2003). Whereas 

the regulation of excessive carbohydrate and fat intake is not as acute as that of protein 

(Simpson & Raubenheimer, 2000) and may be due to our limited evolutionary 

experience with carbohydrate and fat sources as they were not as readily available as 

they are in the developed world (Simpson & Raubenheimer, 2000).  

 

One way in which this regulation may occur is related to the sensory experience of the 

ingested food (as previously mentioned with fat and carbohydrate taste; see section 1.4). 

Foods with sensory qualities predicting protein may increase intake of these items when 

in a protein deficient state (Booth, 1985) and can be demonstrated in the learning of 

protein-specific appetite in rats (Baker, Booth, Duggan, & Gibson, 1987; Booth & 

Baker, 1990; Gibson & Booth, 1986; Piquard, Schaefer, & Haberey, 1978) and humans 

(Gibson, Wainwright, & Booth, 1995). Participants were found to learn and modestly 

prefer a food flavour previously paired with the delivery of protein when in mild protein 

deprivation (Gibson et al., 1995). This suggests that the sensory nutrient interaction 

between the orosensory experience of protein and its post-ingestive effects may have 

conditioned a flavour preference, thus allowing for more efficient protein regulation. As 

this effect has not been found with carbohydrate in rats (DiBattista, 1991), it may be 

that the orosensory experience of protein is different to that of carbohydrate. Indeed, the 

sensory cues of thickness and creaminess have been proposed as potential sensory 
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components of protein detection and when these cues are provided with high 

carbohydrate sources participants have been shown to adjust intake in line with the 

expectation of receiving protein (Bertenshaw, Lluch, & Yeomans, 2013). This suggests 

that the immediate orosensory experience is a key mediator of protein sensing. However 

such sensing is not specific to protein. Restricted access to fat sources has also been 

shown to generate appetite for fat in non-energy deprived rats, with rats reducing 

standard chow intake to account for the extra energy consumed and thus maintaining 

stable weight (Corwin et al., 1998) and may be related to the similar creaminess and 

thickness experienced with fat. Indeed, this can also be seen in humans with restricted 

fat intake in low fat diets resulting in enhanced fat intake over time (McGuire, Wing, 

Klem, Lang, & Hill, 1999) however, human participants show poorer regulation of extra 

energy received as fat, resulting in faster weight re-gain (Mozaffarian, Hao, Rimm, 

Willett, & Hu, 2011) but this has not been shown to the same extent with protein 

(Layman et al., 2003; Lejeune, et al., 2005).  

 

Protein has also been implicated in reducing fat mass (Layman, et al., 2003; Parker, 

Noakes, Luscombe, & Clifton, 2002; Skov, Toubro, Rønn, Holm, & Astrup, 1999), and 

increasing thermogenesis (Halton & Hu, 2004) and the maintenance of fat free mass 

(Lejeune, et al., 2005; Westerterp-Plantenga, Lejeune, Nijs, Van Ooijen, & Kovacs, 

2004). Thus protein may have low energy efficiency, boosting energy expenditure as 

has been found during overfeeding (Stock, 1999) and may as a consequence encourage 

weight loss. Trials assessing this hypothesis have found an increase in weight loss in 

participants following high protein as compared to high carbohydrate diets (Arciero et 

al., 2008; Halton & Hu, 2004; Weigle et al., 2005), with maintained weight loss and 

improved body composition shown over time as was found 10 weeks after moderate 

(125g protein/day) as opposed to average (65g protein/day) protein diets (Layman et al., 

2003) and 6 months after self-selected high protein compared to high carbohydrate diets 

(Skov et al., 1999). Indeed, participants were found to have slower weight re-gain at one 

year follow-up after high protein diets (1kg) as compared to low protein diets (3.9kg) 

(Lejeune et al., 2005) and the weight regained largely consisted of fat free mass as 

opposed to fat mass (Westerterp-Plantenga et al., 2004; Lejeune et al., 2005).  

 

But what are the determinants of reductions in weight with high protein diets? The 

increases in energy intake and weight following low protein diets cannot account for the 
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weight loss found with heightened protein intake. Indeed, the processing of protein has 

been related to a stronger down regulation of orexigenic neuropeptide-Y and 

melanocortin pathways (Tome, 2009), and decreased post-prandial ghrelin as well as up 

regulation of anorexigenic CCK, GLP-1 and PYY (Batterham et al., 2006; Beglinger, 

Degen, Matzinger, D'Amato, & Drewe, 2001; Blom et al., 2006; Bowen, Noakes, 

Trenerry, & Clifton, 2006; Degen, Matzinger, Drewe, & Beglinger, 2001; Hall, 

Millward, Long, & Morgan, 2003) than carbohydrate and fat. This indicates that protein 

may improve satiety regulation (Tome et al., 2009) and suggests that not only is protein 

acutely regulated but that it may have a higher satiating efficiency than carbohydrate or 

fat. Indeed, protein has been related to increases in satiety despite similar or low energy 

intake (Arciero, et al., 2008; Lejeune, Westerterp, Adam, Luscombe-Marsh, & 

Westerterp-Plantenga, 2006; Westerterp-Plantenga, et al., 2009). Gosby and colleagues 

(2011) provided participants with ad-libitum breakfasts, lunches, dinners and snacks 

with 10%, 15% or 25% energy from protein over 4 non-consecutive test days. 

Additional food diaries were collected on test days documenting the previous 4 day’s 

energy intake and appetite ratings were assessed throughout test days to examine energy 

intake and rated appetite. They reported a 12% increase in energy intake in 10% protein 

conditions, and similar intake in 15% and 25% conditions. Interestingly, Gosby et al. 

also found that this enhanced intake in the 10% condition was due to increased snacking 

and hunger ratings were found to be stronger in this condition relative to the 15% and 

25% conditions, especially after breakfast consumption. This implies that compensation 

for low protein availability encouraged earlier hunger recovery and meal initiation (such 

as consuming snacks) as opposed to increasing the size of a low protein meal (Gosby et 

al., 2011). Thus satiety was affected by the lower protein load. Leidy and colleagues 

(Leidy, Tang, Armstrong, Martin, & Campbell, 2011) also reported greater feelings of 

fullness, lower late night desire to eat and lower food preoccupied thoughts during the 

day in overweight and obese participants provided with high (25% energy from protein) 

compared to average (14% energy from protein) protein diets. This effect on rated 

satiation and satiety is well documented within the literature (Johnson & Vickers, 1993; 

Johnstone, Horgan, Murison, Bremner, & Lobley, 2008; Lejeune, et al., 2006; Stubbs, 

Van Wyk, Johnstone, & Harbron, 1996) and has even been found in short-term preload 

manipulations. For instance, protein has been consistently shown to reduce subsequent 

test meal intake in comparison to isoenergetic carbohydrate preloads (Bertenshaw, et al., 

2008; Bertenshaw, Lluch, & Yeomans, 2009), and isoenergetic carbohydrate, fat and 
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alcohol preloads (Poppitt et al., 1998) and has been found to increase the delay in 

hunger between the preload and test meal when protein, fat and carbohydrate preloads 

were compared (Marmonier, Chapelot, & Louis-Sylvestre, 2000; Poppitt, et al., 1998). 

Indeed, large volume consumption (1L) of high protein loads (40% and 72% energy 

from protein) were found to decrease feelings of hunger and subsequent intake 4 hours 

after preload intake when compared to carbohydrate preloads (Latner & Schwartz, 

1999). Protein containing preloads have also been found to improve compensation for 

the energy received at a subsequent meal more effectively than isoenergetic 

carbohydrate conditions, reducing intake at the ad-libitum meal in line with the calories 

ingested in the preload (Bertenshaw, et al., 2009; Westerterp-Plantenga & Verwegen, 

1999) further supporting the assertion that protein is processed differently to 

carbohydrate. This may be due to sensory information (increasing satiation) or the post-

ingestive consequences of protein ingestion (maintained satiety and lower ad-libitum 

intake) or a combination of both of these factors.  

 

Despite the abundance of research promoting the role of protein in encouraging 

maintained weight loss, not all studies show improved and maintained weight loss in 

high protein conditions. Indeed, Aldrich and colleagues (2011) found no differences in 

total weight or fat loss between participants provided with control, mixed protein or 

whey protein diets during an 8-week manipulation or over a 12-week follow up period. 

Similarly, participants provided with low carbohydrate, high protein diets achieved 

greater short-term weight loss than participants on low fat diets but this weight loss was 

not maintained at 12-month follow-up (Foster et al., 2003). This may be due to the poor 

compliance found with maintaining high protein diets (Brinkworth, et al., 2004; St Jeor, 

et al., 2001). Consuming meals higher in protein has also been found to have no impact 

on energy intake but increased satiation and satiety (Fischer, Colombani, & Wenk, 

2004; Harper, James, Flint, & Astrup, 2007; Lejeune, et al., 2006), no influence on 

satiation or satiety but decreased energy intake (Bertenshaw et al., 2008) and no 

influence on energy intake or satiety (Blatt, Roe, & Rolls, 2011; Griffioen-Roose, Mars, 

Finlayson, Blundell, & de Graaf, 2011; Raben, et al., 2003) when compared to low 

protein conditions. The equivalent effects of high as compared to low protein diets and 

preloads on subsequent intake and satiety may be related to energy density. Some 

research suggests equivalent effects of high and low protein conditions when energy 

density is held constant (Bell, Castellanos, Pelkman, Thorwart, & Rolls, 1998; Blatt, et 
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al., 2011; Stubbs, et al., 1996) however, others show reduced intake (Rolls, et al., 1988) 

and stronger satiety (Lejeune et al., 2006) in protein conditions with matched energy 

density.  

 

Another factor that may influence the discrepancies found across studies is related to the 

quality of protein ingested. For instance, whey protein has been found to increase 

satiation and satiety more effectively than casein or soy protein (Anderson, Tecimer, 

Shah, & Zafar, 2004; Veldhorst et al., 2009) and has been shown to reduce subsequent 

buffet lunch intake when compared to casein protein (Hall, et al., 2003). Similarly, mice 

consuming diets high in whey protein displayed a longer inter-meal interval than those 

consuming soy or gluten protein diets (Yu, South, & Huang, 2009). This effect of 

protein variety may be related to its digestibility as whey protein is highly digestible 

whilst proteins such as casein require a longer gastric emptying time (Boirie et al., 

1997). Indeed, whey has been shown to increase postprandial protein synthesis and 

amino acid oxidation earlier and more strongly than slowly digested proteins such as 

casein (Dangin et al., 2001; Dangin, Boirie, Guillet, & Beaufrère, 2002). Some 

researchers also argue that many of the positive effects of protein reported are due to the 

use of extracted protein such as whey protein as opposed to dietary protein as these 

proteins are purer sources and thus may be used in quantities exceeding those found 

naturally in the diet (Blatt et al., 2011). However when control, dietary sources of 

protein, and dietary protein with mixed whey were compared, there were no differences 

found in weight loss across conditions (Aldrich et al., 2011) and a maintained effect of 

protein reducing energy intake has also been found (Weigle et al., 2005).  

 

The inconsistencies encountered in short-term preload studies may also relate to the 

time interval employed. Some researchers report no influence of protein preloads on 

subsequent test meal intake after a 3 hour (Blom et al., 2006), or 30 minute (Chung 

Chun Lam, Moughan, Awati, & Morton, 2009) inter-meal interval as compared to 

control whilst others show reduced energy intake and hunger ratings after consuming 

protein as opposed to carbohydrate preloads 4 hours after intake (Latner & Schwartz, 

1999). Others still report an effect of protein reducing intake irrespective of inter-meal 

interval (either 30, 60, or 120 minutes) as compared to control (Chung Chun Lam, 

Moughan, Henare, & Ganesh, 2012) as has been found elsewhere (Bellissimo et al., 

2007). However, Fischer and colleagues (2004) assessed the impact of pure protein, 
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carbohydrate and fat gels on short-term satiety (including rated appetite, blood indices 

and indirect caliometry) over 3 hours after intake finding equivalent effects of 

carbohydrate and protein after 1 hour but stronger desire to eat and gastric emptying in 

carbohydrate and fat conditions as compared to protein from 2-3 hours. The wide array 

of conflicting findings reported is most likely related to the combined influence of 

protein variety, quantity, composition and the time interval used (Almiron-Roig, et al., 

2003; Blundell, et al., 2010). Indeed, the satiating effects of protein have been stated to 

be most potent when timing of the meal interval is matched to timing of the amino acid 

profiles (Luhovyy, Akhavan, & Anderson, 2007), which is dependent on the type, 

volume and composition of protein used. Thus attempts to assess the rate of satiation 

and satiety of the type of protein under investigation may be important in further 

understanding appropriate inter-meal interval timings and the relative influence of 

protein on general appetite and intake. Similarly, focussing on one type and quantity of 

protein across study designs may be an effective means of maintaining consistency to 

understand the influence of this type of protein on appetite and intake. 

 

1.4.2 Umami as a signal for protein in the diet 

 

Despite research in the animal literature suggesting that the positive post-ingestive 

experience of protein determines protein satiation (L'Heureux-Bouron et al., 2004), 

there may also be a role for the sensory impact of protein on appetite indices as 

previously mentioned (Bertenshaw et al., 2013; see section 1.4.1). Indeed, the provision 

of creamy and thick high protein or high carbohydrate preloads was shown to reduce 

subsequent test meal intake and increase satiety more than high protein preloads without 

creamy and thick sensory cues. This suggests that these orosensory markers are acting 

as feedback of the macronutrient availability of the ingested foods, further informing 

satiety relevant processes. Indeed, when thicker high protein preloads were compared to 

less thick isoenergetic carbohydrate drinks, subsequent intake at a test meal was lower 

after the protein condition compared to the carbohydrate condition (Bertenshaw et al., 

2008). However, many dietary protein sources, such as animal protein, are not 

inherently creamy or thick, thus it may be that ‘creaminess’ and ‘thickness’ are not the 

only markers of protein availability. It may instead be argued that the flavour of 

glutamate (umami) is a more potent signal for protein detection (Ikeda, 1908).  
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Typical dietary proteins have been shown to be tasteless when presented alone 

(excluding sweet proteins such as monellin; Kant, 2005). Similarly, glutamate 

availability is most reliably paired with the presence of protein in foods (Kurihara et al., 

2000; Naim et al., 1991) but these dietary sources of glutamate are not required by the 

body as they are already synthesised in sufficient quantities required for metabolic 

processes (Reeds, Burrin, Stoll, & Jahoor, 2000). Consequently the taste of glutamate 

may function as the signal to adequately regulate protein intake (Laska & Hernandez 

Salazar, 2004; Mori, et al., 1991; Smriga & Torii, 2000) just as sodium chloride 

consumption guides mineral intake and sweet taste determines carbohydrate intake 

(Lindemann, 2000) and may explain how protein regulation has remained consistent 

over time as previously discussed (Simpson & Raubenheimer, 2005; see section1.4.1). 

Indeed, the experience of glutamate alone in the form of MSG and in combination with 

IMP has also been described as the taste of dietary protein in taste perception studies 

(Brand, Teeter, Kumazawa, Huque, & Bayley, 1991; Luscombe-Marsh, et al., 2008; 

Ninomiya, et al., 1991) and in fMRI research (de Araujo, et al., 2003). The stimulation 

of gut glutamate receptors by luminal glutamate and subsequent activation of vagal 

afferent fibres during protein digestion may be the mechanism by which protein 

ingestion by MSG is detected (Kondoh, Mallick, & Torii, 2009) whilst the potential site 

of an umami recognition centre (Smriga & Torii, 2000) has also been suggested in rat 

models with strong activation in the lateral hypothalamus during MSG intake (Torii, 

1998) and compromised function in this area found in protein deficient rats (Kondoh et 

al., 2000; Smriga & Torii, 2000).  

 

MSG taste detection, palatability, and preference have also been related to protein 

intake in the diet. Indeed, protein-deficient individuals have been found to prefer higher 

concentrations of MSG than well-nourished controls (Murphy, 1987). Equally, 

underweight, energy and protein malnourished infants were found to prefer higher 

concentrations of MSG in soups and consumed more than nutritionally replete children 

(Vazquez, Pearson, & Beauchamp, 1981) indicating heightened sensory responding to 

the available amino acids to relieve protein deficiency (Shi, et al., 2010). Similarly, the 

unanimous preference for umami taste in domestic ruminants has been related to the 

rewarding aspects of protein delivery (Ginane, Baumont, & Favreau-Peigné, 2011) and 

preference for MSG solutions have been found to differ according to dietary habits. For 

instance, spider monkeys, which consume low proportions of animal matter, have more 
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sensitive thresholds for MSG and higher taste preference thresholds compared to water 

than squirrel monkeys, which consume large amounts of animal matter and are less 

sensitive to MSG thresholds, with moderate preference of MSG sources as compared to 

sucrose and salt (NaCl; Laska & Hernandez Salazar, 2004). Indeed, Laska and 

Hernandez Salazar (2004) identified a significant negative correlation between taste 

threshold preference for MSG and proportion of animal matter consumption in the diet. 

This may be related to optimal foraging theory (Stephens & Krebs, 1986) as animals 

consuming low protein diets are more sensitive to the small amounts of  protein 

available to them in their diet to meet their protein needs. However, others have found 

increases in preference and consumption of MSG-enriched soups in both malnourished 

and well-nourished infants (Beauchamp & Pearson, 1991) and rats fed protein-free and 

low-protein diets were not found to show a preference for umami containing solutions 

(Torii, 1987). However, as protein availability increased, so too did preference for 

umami sources (Naim et al., 1991). This has also been found in humans with the ability 

to detect lower concentrations of MSG (Luscombe-Marsh et al., 2009) and MSG and 

IMP (Luscombe-Marsh et al., 2008) stimuli predicted by greater self-reported protein 

liking. These inconsistencies may be related to the ways in which the body senses MSG 

as a consequence of previous experience and in relation to the body’s protein stores (He 

et al., 2004).  

 

Developing an understanding of the ways in which protein regulation occurs may be 

informative due to the known effects of protein on appetite control (see section 1.4.1). If 

the orosensory information provided by umami sources is important in maintaining this 

regulation, as thick and creamy cues have been shown to be (Bertenshaw et al., 2008), 

then it may be interesting to assess whether protein intake in the diet influences liking 

for MSG sources. From the research discussed it is not clear whether this effect of 

palatability for umami sources occurs as a result of chronic under-exposure to protein 

foods, whether it may be manipulated more acutely or whether it occurs at all under 

experimental conditions in humans. As palatability is so important in appetite control 

(see section 1.2.4), understanding the nature of the relationship between umami and 

protein in terms of palatability and liking, and the conditions under which altering one 

(such as protein) may change the hedonic qualities of the other (umami) is important to 

further explore whether protein is regulated in some way by sensory cues such as 
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umami. Thus, Paper 4 aimed to assess this relationship in relation to the palatable 

experience of umami flavour. 

 

1.4.2.1 Summary of Paper 4 

 

The variation in the literature with regards to the influence of protein status on 

preference for MSG sources was further explored in Paper 4. This paper examined the 

potential influence of acute mild protein deprivation and habitual protein intake in the 

diet on the potential for a change in flavour pleasantness of high and low concentrations 

of MSG in comparison to other basic tastes such as salty (NaCl) and sweet (Ace K). 

This was to further understand the ways in which protein regulation by MSG may occur 

and whether this is moderated by changes in liking. Participants completed a baseline 

taste test session (having consumed their regular breakfast) and were then provided with 

a high or low protein breakfast matched in energy density on the second and third test 

day for the acute protein manipulation. They returned at lunchtime sessions to complete 

taste tests with soup samples differing in flavour (control, umami, salty and sweet) and 

concentration (strong or weak). An additional protein food frequency questionnaire was 

completed to assess protein intake over the 6 month period prior to study participation 

and to assess whether long-term protein intake may predict liking of MSG sources as 

has been found previously (Luscombe-Marsh, et al., 2008, 2009) and whether sample 

flavour pleasantness differed by test day manipulation as a function of habitual protein 

intake. It was important to include additional basic tastes in Paper 4 to ensure that any 

influence of protein was specific to the umami flavour and not an artefact of liking for 

sodium which is present in MSG. Equally, as participants arrived for their taste test in a 

fasted state, the influence of sweetness (a predictor of energy) was also included to 

ensure pleasantness ratings were not affected by energy need.  

 

Pleasantness was found to be higher on the low protein day as compared to the high 

protein day for all flavours and a stronger desire for savoury flavours was evident on the 

low as compared to high protein day. No clear predictive influence of long-term protein 

status on liking for MSG sources was found. Thus, participants generally consuming 

large amounts of protein did not differ in their liking of MSG to those consuming lower 

quantities of protein. However, similar to the findings reported by Laska and Hernandez 

Salazar (2004), individuals habitually consuming more protein were found to like the 
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flavour of high concentrations of MSG more when they had been subjected to an acute 

protein deprivation (low protein breakfast) than any other flavour. This subtle effect 

may suggest that protein regulation is moderated in some way by richer sources of 

umami flavour and that this may occur when high protein consumers are faced with 

short-term protein deprivation. Habitual high protein consumers exposed to an acute 

protein deficit also reduced their liking of high MSG sources after the high protein 

breakfast, further implicating umami flavour in protein regulation in these individuals. 

However, the questionnaire used may have been biased to only assessing high protein 

diets from animal sources instead of general macronutrient intake as a whole. Indeed, 

the effects found were subtle and the experiment suffered from being underpowered. 

Nevertheless, as the acute manipulation allowed for a more controlled assessment of the 

potential effects of protein regulation, assessing this alongside habitual protein intake 

provided a detailed representation of the interaction between the regulation of nutrients 

and how this may be manifested by palatability.  

 

1.4.3 The role of umami in protein satiation and satiety 

 

As the umami flavour generated by MSG and its associated nucleotides has been related 

to specific detection of protein sources (Naim et al., 1991; Kurihara et al., 2000; 

Luscombe-Marsh et al., 2008, 2009), it has been suggested to play some role in 

influencing liking depending on protein regulation (Paper 4), and as protein has been 

argued to be the most satiating macronutrient, it may be that the taste of umami in 

umami-rich foods is especially satiating. For instance, studies in infants report that 

protein hydrolysate formulas, which are rich in free glutamate, are more satiating than 

equivalent low glutamate milk-based formulas such as cow’s milk formulas (CMF) 

(Mennella & Beauchamp, 1996; Mennella, Ventura, & Beauchamp, 2011). This has 

also been shown to influence weigh gain as infants assigned a formula high in protein 

and free glutamate (extensive protein hydrolysate formula; ePHF) or lower in protein 

but high in free glutamate (CMF with added glutamate to match levels in ePHF) 

consumed less formula to satiation, maintained prolonged satiety and gained less weight 

than those fed on isocaloric low glutamate CMF (Ventura, Beauchamp, & Mennella, 

2012). This suggests that not only do infants self-regulate free glutamate intake and thus 

can adequately balance protein intake, but that the high glutamate formulas helped 

promote both satiation and satiety. The quantities of glutamate in ePHF also closely 
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match those found in breast milk and infants fed on mother’s milk have been shown to 

be of a lower weight after their first year than those consuming CMF (Owen, Martin, 

Whincup, Smith, & Cook, 2005). This is most likely due to the glutamate signal cuing 

the presence of satiating protein. Indeed, both animal and human studies support the 

role of free glutamate as a key signal for satiation (Niijima, 2000; San Gabriel, 

Maekawa, Uneyama, Yoshie, & Torii, 2007; Viarouge, Caulliez, & Nicolaidis, 1992). 

For instance, rats given ad-libitum free access to MSG solutions from pre-weaning to 

adulthood were found to weigh less as adults than those not exposed to MSG solutions 

(Kondoh & Torii, 2008).  

 

Thus it may be that early experiences of glutamate may become a learned cue for the 

satiating aspects of protein (Gibson & Brunstrom, 2007). Indeed, rat models have found 

that when oral glutamate is paired with protein it acts as a conditioned stimulus to 

encourage the cephalic phase of pancreatic secretion, inducing a concentration-

dependent release of glucagon and thus maintaining satiety (Bertrand, Gross, Puech, 

Loubatières-Mariani, & Bockaert, 1993). Similarly, this may explain why Essed and 

colleagues saw a reduction in weight gain in added MSG conditions over their 16-week 

manipulation (Essed et al., 2007) whilst Mathey and colleagues did not (Mathey et al., 

2001) as discussed previously (see section 1.3.5). Such results indicate that MSG may 

be giving rise to a biphasic effect on appetite, increasing flavour pleasantness and 

hunger during a meal but then acting to maintain feelings of satiety after meal intake. 

Lejeune and colleagues (Lejeune, Smeets, & Westerterp-Plantenga, 2007) also assessed 

the effects of MSG and IMP with added protein on indices of appetite. They provided 

participants with high-protein diets over 3 days with or without added MSG and IMP 

combinations in food or provided as a dietary supplement, revealing lower ratings of 

desire to eat in participants consuming high protein diets with added MSG/IMP in foods 

as compared to control high protein or high protein supplemented MSG/IMP diets. 

However, there were no differences across these conditions in rated satiation or 

prospective consumption but as only 12 participants were tested, the study may have 

been inadequately powered. Nevertheless, others have similarly reported no effect of 

MSG or MSG/IMP combinations on appetite and intake. For instance, Luscombe-Marsh 

and colleagues (2009) provided participants with high protein preloads either provided 

alone or with added MSG or added MSG and IMP 30 minutes before giving access to 

an ad-libitum buffet meal. They reported no differences in hunger or fullness ratings and 
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showed an increase in buffet meal intake after the MSG preload relative to all other 

conditions. Carter and colleagues also saw similar results when providing added MSG, 

or added MSG/IMP as compared to added fat broths before an ad-libitum meal (Carter 

et al., 2011). Zai and colleagues suggest that this may be due to increases in gastric 

emptying time and thus earlier hunger-recovery as when MSG was combined with high 

protein meals gastric emptying time increased but this was not found with isocaloric 

high carbohydrate meals (Zai et al., 2009). Alternatively, as intake also increased in the 

high protein condition, it may be that the buffet courses provided in the previously 

mentioned studies (Carter et al., 2011; Luscombe-Marsh et al., 2009) encouraged intake 

due to the variety of items on offer. It may also be that Luscombe-Marsh et al. (2009), 

delivered the test meal too soon before the post-ingestive influence of MSG or 

MSG/IMP could occur whilst the aversive flavour of the broths provided in Carter et 

al’s (2011) study  may have influenced subsequent intake. 

 

It may additionally be argued that glutamate is equally abundant in many low protein 

foods such as the high concentrations found in tomatoes and mushrooms (Jinap & 

Hajeb, 2010; Ninomiya, 1998; Yamaguchi & Ninomiya, 2000), thus the total glutamate 

content of foods (including both free glutamate which can be tasted and protein bound 

glutamate which may be released with chewing; see section 1.3.1) may provide a more 

reliable index of protein ingestion (Kondoh et al., 2009) and was not controlled for in 

the previously mentioned studies (Carter et al., 2011; Luscombe-Marsh et al., 2009). 

Thus some effect of glutamate from control conditions cannot be discounted. Similarly, 

as the umami taste derived by glutamate is generated by MSG and is further expressed 

with the addition of GMP and/or IMP, some researchers argue that the effect of MSG 

on protein-based satiety can only occur when accompanied by the appropriate amino 

acids or flavours that reinforce this message (Beauchamp, 2009). Indeed, as previously 

mentioned (see sections 1.1.1 and 1.3.3), IMP is found in animal protein (Lindemann, 

1996; Yamaguchi, 1998) whilst GMP is more associated with plant-based protein 

(Yamaguchi 1967). Thus, it may be that the strength of the MSG protein cue is more 

reliant on its associated ribonucleotides and thus has not been consistently found to 

decrease intake. Indeed, experiments conducted with MSG/IMP and protein are few, 

with those mentioned low in participant numbers (Lejeune et al., 2007) or not taking 

confounds regarding the inter-meal interval (Luscombe-Marsh et al., 2009) or the test 

foods used (Carter et al., 2011; Luscombe-Marsh et al., 2009) into account. 
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The research discussed in this section indicates mixed findings about the relationship 

between umami flavour and protein in relation to satiation and satiety. As the 

experiments mentioned varied in the length of the inter-meal interval used (which may 

be important for determining the satiating aspect of macronutrient effects; see section 

1.4.1), the type of meal provided with umami (whether in the form of liquid soups, 

semi-liquids or solids), and the free glutamate content of the meal before adding umami 

sources (see section 1.3.4), it is important to control for these effects to understand the 

conditions under which umami and protein may interact to influence appetite control. 

Thus, the need to further explore the rate of satiety of umami sources such as MSG in 

different macronutrient combinations is important to understand whether MSG may 

slow hunger recovery in a protein context in comparison to a different macronutrient 

context such as carbohydrate (Paper 5). It is also essential to measure what effects, if 

any, combining MSG with specific macronutrients has on subsequent intake of a meal 

(Paper 6) and whether the synergism between umami sources that may be predictive of 

protein (such as MSG and IMP) influence satiety further (Paper 7). As these papers deal 

with the effects of umami and protein specifically on the experience of satiation and 

satiety, they have been consequently presented as a series of complementary studies.  

 

1.4.3.1 Summary of Paper 5 

 

The aim of Paper 5 was to assess the time course of MSG satiety when provided as a 

fixed volume preload in low energy control or high energy added protein or added 

carbohydrate conditions and to compare this to equivalent no added MSG conditions. 

This was to further elucidate the role of MSG on satiety and particularly to understand 

whether this changed as a function of the macronutrient content of the meal provided. 

Participants completed ratings of appetite before and after the preload to investigate 

satiation whilst additional ratings of appetite were then completed in 15 minute intervals 

for 120 minutes post-ingestion to understand the role of MSG on satiety.  

 

The satiating effect of MSG decreasing hunger and increasing fullness immediately 

after intake was not repeated in Paper 5 as it had been found in Paper 2, especially when 

provided with added protein. This discrepancy may have been due to the methods 

employed as in Paper 2 participants ate ad-libitum and thus controlled their portion size 
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whilst in Paper 5 a fixed volume of the soup was provided based on previous research 

with a male sample (Yeomans et al., 1998). Also, Paper 2 included a female sample 

alongside males thus the quantities consumed may have been lower than would be 

expected with an all-male sample. Nevertheless, a significant linear contrast effect was 

evident at specific time points in satiety evaluations with added MSG protein soups 

maintaining reduced feelings of hunger more strongly from 30-60 minutes post-

ingestion than no added MSG soups.  

 

Paper 5 allowed for an accurate examination of the rate of satiety in specific 

combinations of MSG and macronutrient preloads and was established at the 45 minute 

mark. This provided more precise profiling of the generation of satiety with the specific 

type and variety of protein used as has not been accounted for in previous studies and 

may explain the variation in the results seen (see section 1.4.1). However, no main 

effects and no main interaction effects were evident in the results which may have been 

due to the variations present in appetite ratings across participants. Similarly, the results 

presented may suggest that satiety was stronger with added MSG protein preloads but 

cannot account for potential reductions in consumption at a subsequent course as 

appetite ratings may not be the most accurate predictor of subsequent intake (Blundell 

& Greenough, 1994; Crovetti, Porrini, Santangelo, & Testolin, 1998; Fischer, et al., 

2004). 

 

1.4.3.2 Summary of Paper 6 

 

As a consequence of the results of Paper 5, Paper 6 wished to further assess the 

influence of MSG and macronutrient combinations on rated satiation and satiety but 

additionally looked at the influence of these preload combinations on intake at a 

subsequent meal. Thus the same fixed volume preload conditions (control, added 

carbohydrate and added protein with and without added MSG) were assessed with 

appetite ratings made before, after tasting and after intake of the soup course followed 

by a 45 minute inter-meal interval (in accordance with the results of Paper 5). 

Participants then returned for an ad-libitum two course meal (main course and dessert) 

and completed appetite ratings before, after tasting and at the end of each respective 

course. Intake at the ad-libitum course was recorded and assessed alongside appetite 

ratings at the relevant time points.  
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The added protein preloads were found to reduce intake at the ad-libitum meal more 

effectively than either carbohydrate or control preloads irrespective of added MSG. 

However, the addition of MSG to the protein preloads further improved compensation 

for the extra energy received in the high energy protein preload as compared to the high 

energy carbohydrate preload. Thus participants were able to adjust their intake more 

precisely to the calories ingested in the soup course with the added MSG cue in a 

protein context than when no cue was present. Similarly, the experience of satiation was 

strongest in the added MSG protein condition over the course of the ad-libitum meal 

despite the lowest energy intake in this condition. This further supports the potential 

role of MSG in prolonging protein satiety as suggested in Papers 2 and 5.  

 

However, there was no clear difference in appetite across conditions at the 45 minute 

interval in contrast to what was found previously (Paper 5). This may be due to the 

differences in the methods employed as in Paper 6 participants may have been more 

insensitive to perceptions of hunger due to the knowledge that they would be receiving 

a two course meal after these ratings whilst in Paper 5 no additional meal was provided. 

Similarly, appetite ratings were not found to decrease during soup intake (Paper 2) or 

increase immediately after intake of the MSG added conditions (Paper 5) in Paper 6. 

This suggests that the immediate experience of a fixed portion of MSG and protein was 

less sensitive to rated appetite than if this combination was potentially consumed to 

satiation (Paper 2). However, the clear long lasting effect of maintained lower hunger 

ratings in MSG added protein conditions during the ad-libitum meal matched those 

found in Paper 5 and this stronger satiation during the meal relates to the findings of 

Paper 2, but the added protein acted to reduce further calorie intake in Paper 6 where 

intake remained similar in Paper 2. 

 

Despite a clear indication that adding MSG to protein preloads improved energy 

compensation, intake at the ad-libitum meal was not found to differ in added and no 

MSG conditions with no significant main effect found and no significant interaction 

between condition and MSG, although the data did indicate trends in the right direction. 

It may be that this effect was not evident due to the influence of MSG on intake being 

very subtle and prone to more variation. However, it may also be that the MSG signal 

experienced was not salient enough to give rise to a robust bi-phasic effect. Just as 
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Paper 4 found stronger preferences for high concentrations of MSG in high protein 

consumers when in protein need, it may be that the umami signal was too weak to 

generate an effect or may have required complementary amino acids to reinforce the 

umami protein signal (as previously suggested by Beauchamp, 2009) as the umami 

generated by MSG is found in both low- and high-protein sources.  

 

1.4.3.3 Summary of Paper 7 

 

As a consequence of the results found in Paper 6, Paper 7 investigated the influence of a 

more robust umami signal on appetite and intake, taking not just the umami effects of 

MSG into account but the synergistic consequences of combining MSG and IMP. This 

allows for a better understanding of the effects of umami in a meal context as high 

dietary protein sources tend to include high levels of IMP alongside MSG flavour (Jinap 

& Hajeb, 2010; Ninomiya, 1998; Uneyama et al., 2012; Yamaguchi & Ninomiya, 

2000). Thus, Paper 7 utilized a similar design to Paper 6 but only assessed the impact of 

MSG/IMP combinations in low energy control and high energy protein conditions 

compared to no added MSG/IMP conditions. Also, the ad-libitum meal provided 45 

minutes after the fixed soup preload portion consisted of a main savoury course and no 

dessert. This was due to efforts to regulate the palatability of a dessert course impacting 

more strongly on hedonic hunger as was found in Paper 6. It is important to note that 

the differences between macronutrient and MSG conditions did not influence dessert 

intake in Paper 6, which tended to be similar across macronutrient and MSG soup 

courses, indicating a stronger influence of palatability on intake.  

 

Unlike Paper 6, Paper 7 found an appetizer effect in added MSG/IMP conditions and an 

increase in hunger ratings after first tasting the umami-enhanced soups. However this 

initial rise in hunger declined to match no MSG/IMP conditions at the end of fixed 

preload consumption. A significant main effect of MSG/IMP on intake revealed that 

added MSG/IMP conditions reduced subsequent ad-libitum test meal intake when 

provided in a protein context and, more interestingly, also reduced ad-libitum intake of 

the main course in the low protein MSG/IMP condition. Thus the added MSG/IMP 

conditions effectively acted to reduce subsequent intake despite low availability of 

protein. This suggests that the more salient umami signal generated by the addition of 

IMP may act as an effective protein cue, subsequently reducing intake due to the satiety 
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generated by protein. Indeed, as this reduction in intake was also evident in the low 

energy protein MSG/IMP condition as well as the high energy protein MSG/IMP 

condition, it indicates the potential for improved weight maintenance without having to 

increase the energy content of the meal. Additionally, compensation at the ad-libitum 

main course for the extra energy received as protein was significantly better when 

MSG/IMP had been combined with protein than when protein was presented alone. This 

indicates that MSG/IMP may further allow for more accurate energy regulation than 

protein alone. Such results may also provide support for a bi-phasic effect of umami, 

maintaining hunger as a consequence of palatability within the meal but then acting to 

increase the experience of satiety over time.  

 

Interestingly, no corresponding main effect of MSG/IMP conditions were seen in the 

main course when appetite ratings were assessed but a significant interaction between 

protein and MSG/IMP revealed that participants experienced lower hunger over the 

course of the meal in added MSG/IMP protein conditions than no MSG/IMP protein 

conditions suggesting that added MSG/IMP protein conditions had long lasting effects 

on the conscious experience of appetite at the ad-libitum meal whilst the impact of 

MSG/IMP alone may have influenced meal intake without affecting rated appetite. 

Thus, just as was found in Paper 6, participants experienced similar rated satiation 

across no added and added MSG/IMP conditions but because intake was lower in added 

MSG/IMP conditions, satiation was stronger due to consuming less, thus satisfaction 

was maintained despite lower energy intake. This may suggest that the combined effect 

of MSG and IMP may provide a valuable umami protein cue without the need for the 

addition of protein due to increasing the salience of this cue with complementary 

ribonucleotides in the form of IMP. 

 

1.5 General conclusions 

 

This thesis aimed to understand the role of the fifth basic taste, umami, in relation to 

appetite and intake, particularly when in combination with specific macronutrients such 

as protein. The importance of understanding the role of taste and how it may influence 

feeding practices is evident throughout the literature (Beauchamp & Mennella, 2009; 

Drewnowski, 1997; Krebs, 2009). However, the flavour of umami as experienced by 

MSG with some additional focus on its association with another umami substance, 
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namely inosine monophosphate (IMP) has not been researched in such detail and may 

allow for a greater understanding of how this taste guides appetite control. This may be 

of particular interest as the flavour of umami is attributed to the taste of protein in foods 

and as protein is important in energy regulation, may indicate a role for umami as the 

flavour function essential for this regulation.  

 

The first paper in this thesis aimed to establish a low glutamate, hedonically neutral 

soup to use across all experiments. This was vital to determine the extent to which MSG 

influenced appetite and intake as opposed to the potential interaction between high free 

glutamate levels and MSG. Indeed, as too high a concentration of free glutamate is 

aversive (Jinap & Hajeb, 2010; Yamaguchi & Takashi, 1984) and previous studies have 

found inconsistent results when glutamate content was not measured (Shi et al., 2010), 

it was essential to formulate an appropriate vehicle to test the influence of umami by 

MSG. It was also additionally important to ensure that the soup itself was not aversive 

as this would not reflect true eating behaviour (as individuals do not generally pick and 

eat aversive foods) and to formulate a vehicle that could be consumed both as a meal 

and as a preload. Once the soup was determined, the following two papers in this thesis 

examined the effects of enhanced palatability on appetite and intake using MSG (Paper 

2) and sucrose (Paper 3) as previous research indicates that palatability leads to 

increased intake and maintained hunger after tasting the palatable food (the appetizer 

effect; Yeomans et al., 1996). It was important to assess the effects of MSG in this way 

to understand whether its flavour enhancing elements increased appetite and intake 

when consumed to satiation relative to a bland control (Paper 2). This was also tested 

using another basic taste (Paper 3) to determine whether the effects found were specific 

to MSG and whether there were potential issues with the methodology used. 

Interestingly, both Papers 2 and 3 found no appetizer effect with the flavour enhanced 

conditions and there was no difference in meal intake. This may be due to the 

comparable pleasantness ratings found for supposedly ‘bland’ and flavour enhanced 

conditions. However, despite the similar quantities consumed across conditions in both 

Papers 2 and 3, only the MSG added soups (Paper 2) increased the experience of 

satiation more quickly during intake, indicating the potential for MSG to maintain 

satiety. This was not evident in the sucrose condition in Paper 3. 
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This potential for a bi-phasic effect of appetite, with added MSG increasing 

pleasantness during intake but possibly maintaining satiety over time was suggested to 

be related to the effects of MSG acting as a possible cue for protein in the diet. If this 

was the case and MSG was in some way related to protein, it was expected that 

manipulating the protein intake in the diet may have influenced liking of MSG sources. 

Paper 1 found high pleasantness ratings across MSG added conditions during intake, but 

this potential for MSG palatability influencing appetite was not apparent (as found in 

Paper 2). However, if MSG was a marker for protein (which, as mentioned, is tightly 

regulated) and protein availability was low, the question remained as to whether this 

would influence liking for MSG sources. Similarly, it was important to understand 

whether these effects were more sensitive to acute as opposed to long-term protein 

intake or whether a combination of both influenced this liking. Indeed, Paper 4 revealed 

a significant increase in the desire for savoury foods when in protein deficit than when 

given a high protein load at breakfast. However, the acute protein manipulation also 

showed a more general increase in liking of all flavours (bland, MSG, sweet and salty) 

when in protein deficit, rather than just those predicting protein (strong and weak MSG 

concentrations) when compared to the baseline (no manipulation) test day. Habitual 

protein consumption was also not directly related to MSG liking, but when generally 

high protein consuming participants were subjected to a low protein manipulation, their 

liking for high concentrations of MSG was stronger than low concentrations and all 

other flavour samples and this liking for MSG was lower on the high protein test day. 

This modest effect of high concentrations of MSG influencing liking in these 

individuals suggested that an aspect of protein regulation may be related to MSG 

sensing in habitual protein consumers but as the effects seen were so subtle due to 

issues of power, further investigation of the effects of MSG on appetite control were not 

restricted to habitually high protein consuming individuals. 

 

The extent to which umami flavours and protein may interact to influence the 

experience of satiation, but also importantly, the generation of satiety was consequently 

assessed using rated appetite over time (Paper 5) and subsequent intake (Papers 6 and 

7). Papers 5 and 6 looked at the influence of MSG when in combination with high 

energy protein and carbohydrate preloads as compared to equivalent low energy no 

MSG conditions. Paper 5 focussed on assessing the time course of MSG satiety over 

two hours after intake of a fixed preload across the six soup conditions whilst Paper 6 
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utilized the results from Paper 5 to determine when to provide a subsequent ad-libitum 

meal (established as 45 minutes after preload intake). Although no main effects were 

evident for rated hunger over time in Paper 5 due to variation across participants, 

contrast analysis indicated an effect of MSG added protein conditions showing slower 

hunger recovery as compared to all other conditions. As this was not evident in the 

carbohydrate condition, further evidence for a subtle interaction between MSG and 

protein was clear. Paper 6 additionally found an interaction between MSG and protein 

for energy compensation, indicating better compensation than in the MSG and 

carbohydrate condition. Satiety was also found to remain strongest during ad-libitum 

meal intake in the MSG added protein condition. However, no main effects were found 

for MSG and no interaction between MSG and protein was evident during ad-libitum 

intake, suggesting that this effect remained subtle and prone to variation.  

 

As there was no clear effect of MSG reducing intake as protein had been found to in 

Paper 6, this suggested that MSG alone may not have been acting as a complete protein 

cue on its own, but only one that worked to amplify the satiating aspects of protein. 

Thus, Paper 7 aimed to determine whether an additional nucleotide present in high 

protein sources (IMP) could act to increase the salience of a potential umami protein cue 

and whether this would occur with an absence of protein. Following on from the design 

of Paper 6 but only assessing high protein and low energy control conditions, when 

MSG/IMP preloads were consumed 45 minutes before an ad-libitum single item meal, 

intake of the subsequent course reduced with the addition of MSG/IMP irrespective of 

the presence of protein. Similarly, the addition of MSG/IMP also acted to improve 

energy compensation more than when protein was provided alone (as was found with 

MSG in Paper 6). Nevertheless, rated satiety was improved when MSG/IMP was 

combined with protein, indicating that the more subtle effects seen with MSG alone 

(Papers 2, 4, 5 and 6) may have been due to a weaker umami signal that could only be 

effective with the addition of protein. However, when this cue is amplified it may 

further act to signal the presence of protein even when no protein is available, but this is 

not necessarily consciously perceived. Indeed, ratings of hunger and fullness were not 

lower in the MSG/IMP conditions and only when protein was added alongside 

MSG/IMP did appetite ratings indicate stronger satiety. This suggests that the palatable 

elements of the MSG/IMP control condition were maintained even during ad-libitum 
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intake, but also that intake was consistently lower in these conditions, despite the higher 

ratings of hunger. 

 

Overall, these findings may further add to the literature regarding the importance of 

taste in guiding food preferences and intake. This thesis suggests that MSG does not 

reduce satiation by increasing ad-libitum intake despite maintaining palatability in the 

relevant food (Paper 2). MSG may also be useful in guiding protein regulation in those 

that regularly consume protein due to increased liking of MSG sources (although it 

should not be assumed that liking of these flavours translates to increased intake of 

these sources; Paper 4). MSG may also be said to subtly increase the experience of 

satiety when combined with protein (Papers 5 and 6). This effect is further amplified 

without the presence of protein when MSG is combined with complementary 

ribonucleotides such as IMP, indicating that MSG/IMP combinations may act as 

relevant satiety cues as found when consuming a high protein food (Paper 7). As a 

consequence such a cue may be exploited as a tool for maintaining adherence to higher 

protein diets which has been suggested to be difficult (Brinkworth et al., 2004; St Jeor et 

al., 2001) and may as a result also contribute to improved weight loss through 

maintained satiety but also reduced energy density (as protein increases energy density 

whilst MSG and IMP do not). However, these findings have also been shown to be 

subtle and prone to variation with MSG, whilst the consistent result of MSG/IMP 

reducing ad-libitum intake in Paper 7 requires replication. 

 

1.5.1 Limitations 

 

Despite every effort being taken to ensure all experiments presented in this thesis were 

of a high standard, there were a number of limitations that restricted the conclusions that 

could be drawn. Although these limitations are mentioned in the relevant chapters, more 

general issues are addressed here. 

 

1.5.1.1 Participants 

 

All experimental work detailed within the thesis was carried out on a young, Caucasian 

male and female sample who were non-obese, healthy and educated individuals. This 

was due to the studies being largely conducted on students at the University of Sussex. 
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The limitations of the sample therefore restrict the generalizability of the research to 

older individuals, those of a different ethnic background or obese individuals. 

 

1.5.1.2 Methodology 

 

A number of methodological issues must also be raised in the research carried out 

which limited the conclusions drawn. As all of the studies conducted were carried out in 

an experimental setting, it may be argued that the results reported are not indicative of 

eating behaviour in the natural environment. Indeed, Papers 2, 3 and 7 all included 

measures of within-meal interrupts to assess appetite responses whilst Papers 6 and 7 

also included a 45 minute inter-meal interval between what may have been perceived as 

a ‘starter’ (the soup), ‘main meal’ (the pasta meal; Papers 6 and 7) and ‘dessert’ (Paper 

6). These variations in eating may explain some of the differences found between Paper 

5 and Papers 6 and 7. As mentioned in Papers 6 and 7, appetite was not found to differ 

45 minutes after the preload in added protein and MSG or MSG/IMP meals whilst in 

Paper 5 this difference was clear. It may be argued that participants were acting in 

anticipation of the meal to be received in Papers 6 and 7 whereas this was not the case 

in Paper 5. Similarly, the discord apparent in VAS rated hunger and fullness and actual 

intake in Papers 6 and 7 may point to a difficulty in identifying perceptions of appetite 

during a meal and this relationship has been shown to be weak elsewhere (Blundell & 

Greenough, 1994; Blundell & Rogers, 1980; Crovetti, et al., 1998; de Graaf, et al., 

1993; Fischer, et al., 2004). This suggests that a more unconscious process such as 

feelings of hunger and fullness during an eating occasion must be made consciously 

available in an experimental situation and may, as a result, be difficult to quantify.  

 

Further limitations with regards to the ‘savoury’ label were evident throughout testing. 

It may be that participants were confused by this descriptor. Indeed, the ‘savoury 

flavour’ label may be applied to more specific taste experiences which vary according 

to each individual and meal. For instance, some may deem the taste of cheese as 

‘savoury’ whilst others may attach savouriness to the flavour of a mushroom or broth. 

As these tastes differ to one another, individuals may have found it difficult to associate 

the umami taste in the vehicle used to the experience of savouriness. Research with 

trained panels have been successful (Ishii & O'Mahony, 1990; Sinesio, et al., 2010) but 

were not feasible in the presented research which relied on naïve participants due to the 
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potential influence of experience on VAS ratings (Kobayashi & Kennedy, 2002) and 

due to previous success with naïve participants (Sinesio et al., 2010). The detection of 

umami may instead have been related to a difference in the strength of flavour and 

saltiness of the soup. This relates to the appetite enhancing effects of glutamate and the 

sodium ion found in MSG. Indeed, these labels may have made flavour distinctions 

easier as strength of flavour is not related to specific taste but is more reliant on 

pungency whilst saltiness is a more universally agreed upon unitary taste experience. 

Similarly, the inconsistencies found in rated palatability between pilot tests of the 

relevant soup (Paper 1) and the main experiment (Papers 2, 5 and 6)  may be a 

consequence of the VAS labels used or may be more related to the method of pilot 

testing used. Indeed, as participants were provided with tasting samples of the relevant 

flavour, the potential for comparison between flavours was high. Although efforts to 

regulate prospective negative contrast effects were made by employing 

counterbalancing across flavour conditions. The similar palatability ratings across added 

and no MSG soups during testing (Papers 2 and 6) but not found during soup 

formulation (Paper 1) or with the addition of IMP (Paper 7) may instead be related to 

individual variability between participants. It would also have been useful to include 

sensory ratings of thickness and creaminess throughout experiments to assess whether 

the soup formulated provided any additional sensory cues which may have influenced 

the experience of satiety, particularly as these cues have been related to the effects if 

protein on satiety (Bertenshaw et al., 2013). However, as Paper 1 found neutral VAS 

ratings for thickness, further assessments were not considered.  

 

It may also be argued that the effects seen in Papers 6 and 7 were found only using a 

single item test meal which may be a more sensitive means of assessing satiety. Indeed, 

the use of a multi-item buffet may have been another means of assessing the effects of 

umami on appetite. However, buffet-style meals have been suggested as a more 

valuable means of determining subsequent macronutrient selection after a preload 

(Blundell et al., 2009) which was not the basis of much of the research presented. Multi-

item meals have also been suggested to reduce the sensitivity of detecting changes in 

appetite, resulting in higher energy intake (Long, Griffiths, Rogers, & Morgan, 2000; 

Raynor & Epstein, 2001), although this has not been found elsewhere (Wiessing et al., 

2012) and may not reflect general eating behaviours. Additionally, the influence of 

protein with no added flavour enhancer on intake in Papers 5, 6 and 7 could not 
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discount some baseline effects of glutamate despite efforts to regulate the quantity of 

glutamate in the control condition. Indeed, as whey protein isolate is derived from an 

umami containing source, the effects of glutamate could not be completely separated 

and could not be measured although levels in the protein soups were predicted to be 

low. It may also be stated that the effects seen across experiments remained subtle and 

require further substantiation. 

 

1.5.2 Suggestions for future research 

 

Given the limited scope of research assessing the influence of umami on indices of 

appetite control and the findings reported in this thesis, a number of directions may be 

taken to further understand the nature of the effects of umami. Taking the findings that 

habitual protein consumers like strong concentrations of MSG more when in acute 

protein deficit and less when given a high protein load (Paper 4) into account, a further 

assessment of intake after the relevant protein deprivation would be valuable to 

understand how these differences in liking translate to consumption. Assessing 

macronutrient selection by using a multi-item buffet style meal may also be of interest 

to assess whether nutrient selection is further influenced by umami sources. As it was 

the habitual protein consumers that displayed these differences in liking for MSG, it 

may also be of interest to assess the responses of these individuals and further explore 

where these differences between habitual and non-habitual protein consumers may lie. 

For instance, it may be that learning about the predictive value of umami as a protein 

source may be stronger in habitual protein consumers due to repeated exposure to high 

protein umami sources. One way in which this potential flavour nutrient learning may 

be investigated would be to assess whether brain opioid responses to MSG and 

MSG/IMP as compared to (and in combination with) protein sources using fMRI differs 

in these individuals as compared to low protein consumers as opioids have been 

implicated in the hedonic response to, and the incentive salience (or ‘wanting’ related 

behaviours) of MSG sources (Uematsu, et al., 2011). Similar effects of dopamine firing 

have been seen when assessing carbohydrate and fat sources in animal models 

(Oliveira-Maia et al., 2011). It may be that the rate of opioid signalling in habitual 

protein consumers in protein deficit is similar when subsequently receiving an MSG 

source (as opposed to another flavour) as when subsequently receiving a protein source 
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and this may differ in low protein consumers. Indeed, this type of research has not been 

conducted with protein and glutamate sources in animals or humans before. 

 

The findings reported in Papers 5, 6 and 7 suggested that combining umami with protein 

may be an effective means of maintaining satiety by reducing feelings of hunger (Papers 

5 and 7) and improving energy compensation (Papers 6 and 7). Paper 7 also found 

reduced intake in MSG/IMP conditions without added protein. Firstly it would be 

important to replicate the results found in Paper 7 to further corroborate the satiety 

generated by MSG/IMP, particularly as the effects found were independent of protein 

(which has not been found previously, Carter et al., 2011; Lejeune et al., 2005; 

Luscombe-Marsh et al., 2009). It would also be important to assess this influence of 

MSG/IMP in a high energy, high carbohydrate soup to understand whether the effect 

found was specific to a low energy item (the control) and whether carbohydrate 

preloads may differ to protein preloads. Additionally, the synergism of guanosine 5’-

monophosphate (GMP) with MSG would be vital to assess further to understand 

whether the umami elicited by MSG and IMP (found in animal protein) is specifically 

acting as a marker for protein or whether the umami elicited by GMP (which is found 

predominantly in low protein plant-based foods) may also affect appetite control, and, if 

so, in what way. In particular it would be interesting to consider the synergism between 

MSG, IMP and GMP, to understand the effects of these flavour enhancers on appetite 

control. Would the added GMP influence appetite control as IMP was found to? Would 

this differ by macronutrient conditions?  

 

As the effects found in Papers 5-7 all occurred post-orally either 45 minutes after intake 

or during a subsequent meal, the gastric impact of these flavour enhancers would be 

invaluable to assess. As glutamate receptors are found in the gut as well as the taste 

receptors on the tongue (Akiba, Watanabe, Mizumori, & Kaunitz, 2009; Bezençon, le 

Coutre, & Damak, 2007; Kondoh & Torii, 2008; Niijima, 2000; San Gabriel, et al., 

2007), it may be that the effects of umami on satiety are acting on these gut receptors in 

a similar way to protein. To further gauge whether the impact of these flavour enhancers 

is purely physiological or whether the oral exposure of MSG and its related 

ribonucleotides is additionally important for learning about the satiating nature of the 

food consumed, it may be useful to compare the sensory experience of umami coupled 

with its post-ingestive effects to the post-ingestive effects of umami alone without 
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tasted umami flavour (using microencapsulated MSG and/or IMP) and the taste of 

umami without the post-ingestive consequences (using modified sham feeding). This 

would also be interesting to study with or without added protein to further shed light on 

the relevant mechanisms involved in the satiety enhancement found. Such research may 

also clarify whether learning about the orosensory experience of the flavour is important 

for determining its expected satiating capacity. Indeed, certain gut chemosensors that 

may generate these nutrient conditioning signals such as sweet (T1R3) and fatty acid 

(CD36) have been excluded (See Sclafani & Ackroff, 2012) thus it would be interesting 

to know whether MSG or MSG/IMP may promote flavour nutrient learning in this way. 

Such research would also further expand upon whether this differs when protein is 

provided alongside the relevant flavour enhancer or when it is tested in isolation. 

Likewise, it may be useful to further explore the oral and gut experience of umami using 

fMRI techniques to understand how umami is processed in the brain and whether this 

differs with or without a gut nutrient infusion, particularly one of protein, as this work 

has never been conducted in animal or human models (Sclafani & Ackroff, 2012).  

 

If an orosensory basis for the satiety experienced by umami sources was found to be a 

relevant contributor of protein-based satiety, further understanding about the relevant 

sensory cues that may underline the satiating aspects of protein would be vital to 

explore. For instance, thickness and creaminess have been related to protein-based 

satiety (Bertenshaw et al., 2013) and as the preload developed for the research in this 

thesis was thicker than the more conventional broth-based soups tested previously 

(Carter et al., 2011), with the addition of protein potentially providing a creamier mouth 

feel, it may be that the combination of thickness, creaminess and umami acted to 

enhance the experience of satiety further than thickness and creaminess alone (although 

the soups tested were not rated as particularly thick in the one experiment in which this 

sensory percept was measured; Paper 1). Additional research may wish to separate 

thickness, creaminess and umami to assess which sensory cue may be the most potent 

for appetite control and whether these cues further reduce intake when presented 

together. 
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Appendix 1.1 Glossary of terms 

Appetite – the effects of a food on hunger and fullness processes determined by 

subjective ratings (using VAS scales) or approach response (consumption). 

Fullness – the feeling of having consumed enough based on stomach distension and 

volume consumed.  

Hunger – feeding promoted by the desire to locate and consume food which may be 

influenced by physiological bodily need but also may change according to cognitive and 

contextual cues (such as the hedonic qualities of the food consumed). 

Pleasantness/Palatability – the hedonic experience of a food as a good taste which 

may promote an approach response (the desire to consume more of the food). 

Satiation – the interaction between the positive feedback cues of hunger (appetite 

stimulation), and the negative feedback cues of fullness (appetite suppression) within a 

meal that leads to the end of that meal. 

Satiety – the time period after finishing one meal and before deciding to consume the 

next meal (also known as the inter-meal interval). 
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Abstract 

Levels of glutamate in foods contribute to the pleasantness and acceptability of these 

foods. Monosodium glutamate (MSG) is characterised as a flavour enhancer that 

improves food palatability. However, attempts to isolate the flavour-enhancing effects 

of added MSG are confounded by the presence of natural concentrations of glutamate 

salts which occur in a wide range of foods. Thus to adequately assess the effects of 

MSG on flavour and appetite, a novel food with neutral palatability and low levels of 

natural glutamate is needed. Two experiments were therefore conducted to develop a 

low energy food (soup) to which added MSG reliably improved rated liking when added 

in differing concentrations (no MSG; 0.6% (w/w) or 0.8% (w/w) added MSG). Fifteen 

(Experiment 1) and thirteen (Experiment 2) low-restraint men evaluated two sets of six 

samples of either pumpkin or butternut squash soup (Experiment 1) or carrot and spice 

soup with or without added cream (Experiment 2).  In Experiment 1, rated palatability 

of the soup vehicle was below neutral and was not enhanced by MSG whilst 

Experiment 2 revealed two hedonically neutral soups to which added MSG improved 

rated flavour pleasantness, with the lower glutamate carrot and spice soup deemed most 

appropriate. Overall, these results suggest that MSG may not affect the palatability of 

all savoury foods and that low glutamate content is important to understand the true 

effects of added MSG on appetite. 
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2.1 Introduction 

 

Glutamic acid is the most abundant free amino acid found in food (Luscombe-Marsh, et 

al., 2008). It is present in both animal and plant sources and contributes to the flavour of 

‘umami’ which may be described as a broth-like, ‘savoury’ flavour (Ikeda, 1908). The 

taste of glutamic acid is most commonly experienced in the form of glutamate salts 

which tend to increase the palatability of savoury foods. Monosodium glutamate (MSG) 

is a sodium salt that elicits the taste of umami and may be used as an effective flavour 

enhancer to improve the taste of many food items. However, too high a concentration of 

glutamate (both naturally occurring or by MSG enhancement) is perceived as 

unpalatable and aversive (Jinap & Hajeb, 2010; Yamaguchi & Ninomiya, 2000) and 

may in turn influence food selection and intake. Thus it is important when assessing the 

influence of this flavour enhancer and its complimentary ribonucleotides (such as 

inosine monophosphate; IMP) on appetite and intake to formulate an appropriate 

vehicle to test these effects. 

 

The natural glutamate found in foods can be categorized as glutamate present in a bound 

or free form (Jinap & Hajeb, 2010; Ninomiya, 1998; Yamaguchi & Ninomiya, 2000). 

Free glutamate is experienced immediately and elicits the taste quality of umami whilst 

bound glutamate may give rise to umami flavours when chewed or exposed to heat 

(through cooking), converting bound glutamate to free glutamate (Jinap & Hajeb, 

2010). Bound glutamate may also be converted to free glutamate through the ripening 

process as is evidenced by the difference in flavour of young and ripe cheeses (Ramos, 

et al., 1987) and even vegetables (Ninomiya, 1998). This suggests that the natural 

occurrence of glutamate in foods differs by food type and stage of maturation. The taste 

of free glutamate is important due to this role in changing the flavour of the food 

consumed, improving the complexity and overall palatability (Jinap & Hajeb, 2010; 

Loliger, 2000). This can be mimicked through the use of compounds extracted from 

high glutamate foods such as MSG (Ikeda, 1908). Indeed, MSG is commonly used to 

successfully improve flavour palatability (Bellisle, et al., 1996; Bellisle, et al., 1991) 

and as a consequence MSG has also been researched for its effects on appetite and food 

intake.   
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MSG has been shown to encourage faster hunger recovery after intake (Rogers & 

Blundell, 1990), increased intake of the MSG containing foods (Bellisle, et al., 1996; 

Mathey, et al., 2001) but also decreased intake when consumed over longer time periods 

(Bellisle, 1999; Essed, et al., 2007). When in combination with complimentary 

ribonucleotides, namely IMP, MSG has been suggested to increase hunger recovery and 

subsequent food intake (Luscombe-Marsh, et al., 2009), and have no effect on feelings 

of hunger and ensuing energy intake (Carter, et al., 2011). MSG has also been related to 

a higher body mass index (He, et al., 2008). These contrasting results paint a confusing 

picture of the efficacy of this flavour enhancer in maintaining palatability without 

negatively affecting the experience of satiety.  

 

So why might this be? One reason for the disparity between results may relate to the 

natural free glutamate content of the foods to which MSG was added. Much of the 

literature makes no mention of the natural glutamate content of the test foods used, and 

of the test foods described, many use animal protein-based broths and other food items 

which are naturally high in umami (Carter, et al., 2011; Luscombe-Marsh, et al., 2009; 

Rogers & Blundell, 1990). Thus the baseline glutamate present in the ‘control’ 

conditions may be high. This may be a problem as higher concentrations of natural 

glutamate in certain foods may cause further addition of MSG to taste aversive (Jinap & 

Hajeb, 2010; Yamaguchi & Ninomiya, 2000). Equally, as glutamate levels in the 

control condition may be naturally high, any effects of added MSG on flavour, appetite 

and intake are hard to interpret. This may be exemplified by the analysis of the link 

between obesity and MSG (He, et al., 2008). When these results were assessed with the 

levels of natural free glutamate included as an additional factor, the initial suggestion 

that added MSG was a risk for obesity was reversed, suggesting that higher total 

glutamate intake (both naturally and by MSG) was associated with leaner participants 

(Shi, et al., 2010). This suggests that taking baseline free glutamate concentration into 

account is vital for a clearer understanding of the influence of MSG on appetite and 

intake. The present pilot experiments therefore set out to establish a hedonically neutral, 

low-glutamate soup to which added concentrations of MSG adequately enhanced 

pleasantness.   
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2.2 Method 

2.2.1 Design 

Pleasantness assessments and flavour characteristics of low glutamate vegetable soups 

were assessed in a single taste test trial with varying concentrations of added MSG 

(0.6% MSG or 0.8% MSG (w/w)) or no MSG (MSG-) in pumpkin or butternut squash 

soups (Experiment 1) and in carrot and spice soups with or without added cream 

(Experiment 2). Soup sample presentation order was randomized for each participant.  

 

2.2.2 Participants 

Fifteen low-restraint male participants from a student sample at the University of 

Sussex took part in Experiment 1 whilst thirteen low-restraint men completed 

Experiment 2. Participants were recruited based on their responses to a database 

recruitment questionnaire system and were emailed with details of the study described 

as ‘taste test looking at the sensory qualities of different vegetable soups’. Exclusion 

from participation included any individuals taking prescription medication, those 

smoking more than 5 cigarettes a day, those with a history of diabetes, diagnosed eating 

disorders and/or allergies or dietary intolerances to the foods used. Additionally, those 

with high restraint scores (ratings above 7 on the Three Factor Eating Questionnaire 

(TFEQ) were also excluded. 

 

Participants were paid £3 upon completion of the tasting session. All experimental work 

was conducted in accordance with the standards expressed in the Helsinki Declaration 

and was approved by the University of Sussex ethics committee. 

 

2.2.3 Test Foods 

The test soups assessed in Experiments 1 and 2 were developed to have a low free 

glutamate content to ensure no strong baseline effects of umami in control conditions. 

This was addressed by selecting ingredients with a lower natural level of glutamate 

(Jinap & Hajeb, 2010; Loliger, 2000; Ninomiya, 1998). Although the cooking procedure 

may have elevated glutamate content by converting bound glutamate to free glutamate, 

the levels estimated within the soups trialled still remained low as these were all low-

protein formulations.  
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2.2.3.1 Experiment 1 test soup: 

The two low energy vegetable soups (pumpkin or butternut squash) had a base of 

celery, onions and olive oil (Medium Flavour Olive Oil, Sainsbury’s Plc., UK) with the 

pumpkin soup containing pumpkin puree (Libby’s100% Pure Pumpkin, Nestle, UK) 

and the butternut squash recipe including chopped butternut squash (Sainsbury’s Plc., 

UK). The base soup was prepared in batches by softening 170g diced onion and 100g 

diced celery in 20g oil before adding 425g pumpkin puree and 700g water for the 

pumpkin soup or 840g chopped butternut squash and 900g water for the butternut 

squash soup. The soups were brought to the boil for 15 minutes and allowed to simmer 

for 25 minutes before being blended and refrigerated at 4
o
C until needed. 

 

Soup energy density was mainly derived from carbohydrate for both soups: nutritional 

values per 100g for butternut squash were 32 Kcal, carbohydrate 4.0g, fat 1.4g, protein 

0.6g, estimated free glutamate 0.9g  and for pumpkin were 31 Kcal, carbohydrate 4.2g, 

fat 1.5g, protein 0.9g; estimated free glutamate 0.1g, see Table 1. 

 

2.2.3.2 Experiment 2 test soup: 

The carrot and spice soup (with or without added cream) contained carrots (Frozen 

Baby Carrots, Sainsbury’s Plc. UK), celery, onions, olive oil (Medium Flavour Olive 

Oil, Sainsbury’s Plc., UK) and a commercial spice mixture (Garam Masala Schwartz, 

UK) with the cream soup including added cream (Double Cream, Sainsbury’s Plc., 

UK). Soup preparation consisted of sweating 170g diced onion and 100g diced celery in 

20g oil until softened. 600g frozen carrots was then added along with 350g water and 

the mixture was brought to the boil for 15 minutes and left to simmer for an additional 

15 minutes. The soup was then blended and separated into batches with 0.1g/100g spice 

mixture added to each batch and 1.5g/100g cream added to the cream soup. 

 

Energy density was derived from carbohydrate for both soups (nutritional content per 

100g for the carrot were 28 Kcal, carbohydrate 3.1g, fat 1.6g, protein 0.4g, free 

glutamate 0.2g and for carrot with cream were: 33 Kcal, carbohydrate 3g, fat 2.2g, 

protein 0.4g, free glutamate 0.3g) soups, see Table 2.1. 
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Table 2.1. Nutritional composition of the soup preloads of butternut squash or pumpkin 

soups (Experiment 1) or carrot and spice soups with or without added cream 

(Experiment 2) per 100g. 

 Experiment 1 Experiment 2 

 Butternut 

squash 

Pumpkin Carrot Carrot with 

cream 

Carbohydrate 4 4.2 3.1 3 

Protein 0.6 0.9 0.4 0.4 

Fat 1.4 1.5 1.6 2.2 

Free glutamate 0.9 0.1 0.3 0.5 

Carbohydrate (% energy) 50 52 44 36 

Protein (% energy) 10 8 6 5 

Fat (% energy) 40 40 50 59 

Kcal 31.8 30.8 28 33.2 

 

Soups in Experiments 1 and 2 were trialled with the same levels of MSG (Ajinomoto 

Co., Inc. Europe); no MSG, 0.6% (w/w) added MSG or 0.8% (w/w) added MSG. These 

levels were chosen based on concentrations used in related studies (Luscombe-Marsh, et 

al., 2009) and available commercially (Loliger, 2000) and were added to soups before 

heating the relevant sample.  

 

2.2.4 Computerized Data Collection 

Appetite, sensory and hedonic ratings were assessed using the Sussex Ingestion Pattern 

Monitor (SIPM version 2.0.13, University of Sussex) across both experiments. This 

consists of a computer monitor linked to a digital balance system (Sartorius, Model 

BP4100). Visual Analogue Scales (VAS) were used to assess appetite and sensory 

ratings on the SIPM. The ratings consisted of simple sentences (“How <word> do you 

feel?”) with a left hand anchor reading “Not at all <word>” (coded as 0) and a right 

hand anchor reading “As <word> as I have ever felt/experienced” (coded as 100). To 

ensure compliance during ratings the software prompted participants to “Please use the 

mouse to drag the bar to the point on the scale that best represents how you feel right 

now.” before each evaluation. Participants completed this and pressed “Rating 
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Complete”. The first set of ratings completed assessed how, full, hungry and thirsty 

participants felt. 

 

Participants were then provided with a tray containing the relevant soup samples and 

participants were asked to “Please take a mouthful of sample <letter>, count to 5 and 

then swallow” before completing sensory ratings after tasting the soup (assessing how 

filling, pleasant,  salty, savoury, strong, sweet and thick). After each tasting, participants 

were reminded to “Please take a mouthful of water and press ‘Continue’”. Soup samples 

were randomized across session days and were given labels “A”, “B”, “C”, “D”, “E” 

and “F” and once the six samples were tasted the experimenter was alerted with a 

statement “Please call the experimenter for the next samples”. The next set of six 

samples were then delivered which looked identical to the first and used the same 

lettering system. Once all soup tastings were completed, appetite ratings equal to the 

first set were filled in before participants were paid and permitted to leave. The same 

methodology was used in Experiment 1 and 2. 

 

2.2.5 Procedure 

For both Experiments 1 and 2, participants were invited to the Ingestive Behaviour Unit 

(IBU) at the University of Sussex for a single taste test session. Prior to the session, 

participants were asked to consume nothing but water for 2 hours before testing (from 

1130h-1430h) to ensure mild food deprivation. 

 

The taste test session was carried out in a windowless cubicle containing a large glass of 

water and the SIPM software. Participants were asked to follow the on-screen 

instructions, filling in the appetite ratings before alerting their experimenter when the 

six sample tasting tray was required. Samples were served in 10g portions in clear 

plastic tasting cups served at approximately 60ºC and were labelled using letters A-F. 

Participants were asked to taste the relevant soup sample  and complete sensory ratings 

relating to the flavour of the soup. Once all samples were tasted and rated, a second six 

sample tasting tray was provided and participants completed the same tastings a second 

time. Participants were not made aware that the samples were the same as those 

previously tasted. The second tasting was conducted to allow for the generation of a 

more consistent average of rating scores. A final set of appetite ratings were then 
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completed before participants were paid and debriefed. A graphical depiction of the 

experimental design can be seen in Appendix 2.1. 

 

2.2.6 Data Analysis 

The two sets of ratings for each sensory evaluation of the soups tasted were averaged to 

give a mean score for each evaluation. This was to provide a more reliable average of 

liking for the relevant sample. Mean pleasantness ratings for the control condition was 

used to determine acceptability with ratings of 45-55 on VAS pleasantness pre-specified 

as appropriate for a hedonically neutral vehicle. Two way 2x3 repeated measures 

ANOVA assessing soup type (experiment 1: pumpkin or butternut squash; experiment 

2: carrot and spice or carrot and spice with cream) and added (0.6% added or 0.8% 

added MSG) or no MSG were conducted on each sensory evaluation to determine the 

influence of MSG on the soups tested, with specific focus on pleasantness ratings. T-

tests of mean hunger, fullness and thirst ratings taken at the start of the session were 

also assessed to ensure participants were mildly fasted before the session. In cases of 

violated sphericity, Greenhouse Geisser values were used. 

 

2.3 Results  

 

2.3.1 Experiment 1 

Participants arrived hungry 59±6, not very full 30±7 and slightly thirsty 42±7 to the 

taste test session. A significant effect of condition (F(1,14) = 7.57, p=.02) indicated that 

the butternut squash conditions were rated as more pleasant than the pumpkin soups, 

however, mean pleasantness ratings were found to be aversively low across both control 

soup types; pumpkin: 31±4; butternut squash: 40±4. There was no significant 

differences found across MSG levels for pleasantness (F(2,28) = 1.82, p=.18) which 

remained consistently low across control and added MSG conditions. Similarly, no soup 

condition*MSG interaction was apparent (F(2,28) = 0.62, p=.54). As MSG 

concentration increased, ratings of how salty (F(2,28) = 4.50, p = .02) and strong 

(F(2,28) = 3.79, p = .04) the soups were evaluated also increased. Sweetness was also 

rated as higher in butternut squash soups as compared to pumpkin conditions (main 

effect of condition: F(1,14) = 24.89, p=<.001). All other sensory analyses were not 

found to differ with the addition of MSG across pumpkin or butternut squash soups 

(Table 2.2).Control soup pleasantness was not rated as hedonically neutral and the 
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addition of MSG to the test soups did not result in an enhancement of pleasantness by 

MSG. Thus Experiment 2 examined a different soup type with additional spice to 

counteract the unpalatable experiences found in Experiment 1. 

 

Table 2.2. Mean VAS sensory ratings of two soups (pumpkin or butternut squash) with 

(0.6% or 0.8%) or without added MSG. Data are mean ±SE. a 
statistically significantly 

different from pumpkin. 
b 
statistically significantly different from no MSG. 

 

Rating No MSG 0.6% MSG 0.8% MSG 

Pumpkin Butternut 

Squash 

Pumpkin Butternut 

Squash 

Pumpkin Butternut 

Squash 

Filling 53.47±5.4 49.73±3.9 52.67±4.6 46.33±3.5 50.40±4.8 46.60±3.8 

Pleasant 31.76±4.7
 

35.90±5.2
a 

28.70±3.6
 
 39.90±4.8

 a
 32.80±4.8

 
 45±4.4

 a
 

Salty 34.87±5.2 30.80±4.2 42.07±5.5
b 

35.47±6.2
 b
 43.13±5.3

 b
 43.37±6.1

b
 

Savoury 50.80±4.9 46.03±4.0 47.40±5.0 48.37±4.1 52.70±4.4 45.23±5.1 

Strong 45.67±4.8 46.80±4.0 47.83±4.0
b
 53.20±4.4

b 
56.07±5.2

b 
54.23±4.5

b 

Sweet 25.33±3.9 50.30±5.1
 a
 34.83±4.4 55.37±5.8

 a
 32.60±5.5 54±6.5

 a
 

Thick 63.27±5.2 49.73±4.8 58.40±4.4 44.30±4.3 57.30±5.0 45±4.8 

 

2.3.2 Experiment 2 

Appetite rating at the start of the session indicated that participants were hungry (64±5) 

and thirsty 60±6 and were not full 26±6 before the session began.  

Soup pleasantness ratings were found to be similarly neutral [F(1,12) = 0.001, p=.97] 

across both control carrot and carrot with cream conditions; carrot: 52±5; carrot with 

cream: 52±6. Adding MSG increased pleasantness significantly (F(2,24) = 6.11, p = 

.01). This effect was most prominent between no MSG (m:46±5) and 0.8% MSG (m: 

56±6) but was small between 0.6% MSG (m: 55±7) and 0.8% MSG conditions (figure 

2.1). No interaction effect was apparent (F(2,24) = 0.69, p=.51). A difference in 

saltiness was also perceived according to MSG condition (F(2,24) = 4.54, p = .02) with 

higher concentrations rated as more salty. There were no significant differences in 
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savoury (F(2,24) = 2.17, p=.14) or strength (F(1.3,15.6) = 0.70, p=.45) ratings by MSG 

indicating that a less subtle manipulation of MSG concentration may have altered these 

assessments. All other sensory assessments revealed no significant differences with 

enhancement by MSG (Figure 2.1). 

 

Figure 2.1. VAS sensory and hedonic ratings of two carrot soups with (Panel B) or 

without cream (Panel A) differing in MSG concentration (no MSG (  ), 0.6% added 

MSG (  ) and 0.8% added MSG (  ). Data are mean ±SEM. Statistically significant 

difference between no and added MSG soups for pleasantness (p=.01) and saltiness 

(p=.02) are indicated.  

  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Filling Pleasant Salty Savoury Strong Sweet  Thick 

V
A

S
 R

a
ti

n
g

 

Sensory Label 

A) Carrot 

* 

* 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Filling Pleasant Salty Savoury Strong Sweet  Thick 

V
A

S
 R

a
ti

n
g

 

Sensory Label 

B) Carrot with Cream 

* 

* 



93 
 

2.4 Discussion 

 

The presence of free glutamate contributes to the palatability and complexity of flavour 

experienced in a food (Jinap & Hajeb, 2010; Ninomiya, 1998). This may be mimicked 

with the use of flavour enhancers such as monosodium glutamate (MSG). However, 

when assessing the impact of MSG on appetite and intake it is important to note that the 

addition of MSG to a food naturally high in glutamate may become aversive (Jinap & 

Hajeb, 2010; Yamaguchi & Ninomiya, 2000). Thus it is important to formulate a 

vehicle that takes baseline glutamate concentrations into account to ensure an 

enhancement of palatability by MSG. The main findings from Experiment 1 suggested 

that, although the soups tested were low in free glutamate, the flavour of the control 

soup was deemed too low in pleasantness and no enhancement by MSG was found with 

both pumpkin and butternut squash conditions. Experiment 2 however identified two 

hedonically neutral soups to which added MSG improved rated pleasantness. As the 

carrot and spice soup was lower in naturally occurring glutamate and displayed a similar 

enhancement with added MSG despite more neutral control pleasantness ratings, this 

vehicle was deemed most appropriate to measure an effect by MSG.  

 

These experiments may further support the importance of taking free glutamate content 

into account when assessing the influence of high glutamate flavour enhancers in foods 

and may explain some of the inconsistencies in previous study findings (Carter, et al., 

2011; Essed, et al., 2007; Luscombe-Marsh, et al., 2009; Mathey, et al., 2001; Rogers & 

Blundell, 1990), further supporting the claims made by Shi and colleagues (2010). It is 

important to note that the flavour enhancing effects of MSG were most evident in the 

carrot soups in Experiment 2 even though these soups contained more free glutamate 

than the pumpkin soup in Experiment 1. It may be that the less pleasant flavour of the 

pumpkin soup was too strong to be masked by the addition of MSG. As free glutamate 

is vital for food pleasantness, too low a concentration may not have allowed for an 

improvement of flavour in the pumpkin soup with the concentrations of MSG used in 

the present experiments. Indeed, there were also some inconsistencies associated with 

the saltiness of the soups, with stronger saltiness experienced in 0.6% MSG enhanced 

pumpkin soups but not 0.8% enhanced soups. Whilst saltiness was found to increase 

more with added MSG in the carrot soup in Experiment 2, indicating a more stable 

effect. Savoury assessments were not affected by the addition of MSG, suggesting that 
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the concentrations of MSG used may have been too weak to detect a difference between 

conditions. Equally, the methodology used may have encouraged comparisons across 

the flavour samples tasted, potentially leading to more inconsistent results. This may be 

the case across ratings of strength of flavour found in Experiment 2 as the addition of 

MSG did not influence this assessment but was found to increase strength ratings in 

Experiment 1. As the control carrot soups were not rated as stronger tasting by 

participants in Experiment 2 than the control pumpkin and butternut squash soups in 

Experiment 1, these incompatible results may be due to cross comparisons between 

conditions. Similarly, the small participant numbers employed may have influenced any 

effect by MSG. 

 

Overall these findings demonstrate the importance of developing an appropriate vehicle 

to assess effects by added MSG, ensuring a balance between maintaining low free 

glutamate levels and a hedonically neutral taste to allow for an enhancement by MSG. 

The experiments suggest that a carrot and spice soup may be used to further assess the 

influence of MSG on appetite and intake without potentially confounding the findings 

reported due to low naturally occurring free glutamate levels. 

 

2.5 Summary of key findings and ideas for future research 

 Experiment 1 indicated that the addition of MSG did not improve the 

palatability of pumpkin or butternut squash vegetable soups despite the low 

glutamate content of the developed soups 

 Consequently experiment 2 was carried out and established two low glutamate 

soups (carrot and spice with and without added cream) to which added MSG 

improved palatability 

 The carrot and spice soup was selected as the vehicle for testing due to its 

slightly lower glutamate content as compared to the carrot and cream soup 

 A subsequent experiment assessing the role of a palatable MSG enhanced 

vehicle on appetite and intake would be important using this low glutamate soup 

to have a clearer understanding of the role of umami by MSG on appetite as 

opposed to naturally occurring umami in the diet 
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Appendix 2.1. Graphical depiction of the experimental design employed in experiments 

1 and 2. 
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Abstract 

 

Meal intake and eating rate are said to be modulated by the hedonic properties of a 

meal, with rated hunger increasing early during meals evaluated as more pleasant in 

flavour, also termed the ‘appetizer effect’. Monosodium glutamate (MSG) is a flavour 

enhancer which may increase flavour pleasantness and generates the taste of umami in 

foods but it is unclear how umami taste pleasantness influences meal intake. The effect 

of umami on the appetizer effect was evaluated in two studies using soups differing in 

MSG concentration (no MSG; 0.6% (w/w) or 1% (w/w) added MSG). Nine non-obese, 

low-restraint individuals (mean age: 20; BMI: 22; Experiment 1) and 18 non-obese, 

low-restraint individuals (mean age: 21; BMI: 22; Experiment 2) were provided with 

ad-libitum portions of soup and completed appetite and sensory evaluations before, after 

soup tasting, at 25g consumption for 200g intake and at meal termination. Experiment 1 

revealed an increase in pleasantness after tasting added MSG conditions but this was not 

replicated in Experiment 2. Added MSG did not increase meal pleasantness or intake 

but eating rate was slower in added MSG conditions and the 1% MSG condition was 

rated as more satiating per gram consumed in Experiment 2. Overall, these results 

indicate that MSG may not influence intake according to meal pleasantness but that it 

may slow eating rate and increase the experience of satiation more strongly for the same 

quantity consumed than no added MSG conditions, and therefore may be important in 

maintaining satiety after a meal.     
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3.1 Introduction 

 

Monosodium glutamate (MSG) is a sodium salt of glutamic acid which generates a 

‘savoury deliciousness’ also termed ‘umami’ (Ikeda, 1908; Kurihara, 2009). This 

flavour enhancing element of MSG has been related to improving the richness and 

saltiness of foods (Prescott, 2004) as well as meal pleasantness (Yamaguchi & 

Ninomiya, 2000). Indeed, MSG containing meals have repeatedly been found to be 

preferred over meals containing no MSG (Bellisle, 1999; Rogers & Blundell, 1990) and 

have been associated with increases in short-term meal intake (Bellisle, et al., 1996; 

Bellisle, et al., 1991; Bellisle, et al., 1989) and a low satiety value (Rogers & Blundell, 

1990). These outcomes support the literature suggesting that meal pleasantness 

determines meal size (Yeomans, 2000). However, the stage at which this decision 

occurs during intake has not been explored using MSG, suggesting that it may be 

valuable to understand the influence of MSG on meal pleasantness and intake at discrete 

time points during intake to further understand the role of MSG on meal intake.    

 

MSG is primarily used to enhance food palatability (Loliger, 2000) and increases in 

meal pleasantness have been repeatedly and reliably linked with estimations of meal 

size (Yeomans, 2000; Yeomans, et al., 2004) and short-term overconsumption (Blundell 

& Cooling, 2000). Indeed, palatability assessments have been shown to relate to 

appetite to accurately determine portion size after simply tasting the food to be 

consumed. This ‘appetizer effect’ (Yeomans, 1996) proposes that a meal evaluated as 

more pleasant in flavour generates an increase in rated hunger after tasting the food 

which is maintained within the early stages of the meal and declines more slowly than 

when provided with a blander counterpart. This may be due to the orosensory reward 

experienced when consuming the palatable food, driving further reward-seeking 

translated as further intake. This opposes traditional views of homeostatic ‘need’ based 

meal-control (Yeomans, 2000; Yeomans & Gray, 1997), indicating that appetite is 

modulated by sensory feedback as well as satiation.  

 

Due to the palatable nature of MSG, it may be a candidate for generating the appetizer 

effect. Participants provided with a novel savoury soup control which was then paired 

with added MSG over four training exposure sessions displayed significant increases in 

hunger, liking and voluntary soup intake when provided with the control soup again 
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without added MSG compared to those not exposed to MSG containing soups during 

the training phase (Yeomans, et al., 2008). This suggests that appetite and intake can 

indeed be stimulated by MSG as has also been found in some elderly populations 

(Mathey, et al., 2001; Schiffman, et al., 1994). MSG has also been anecdotally 

suggested to enhance eating rates due to its palatability (Bellisle & Le Magnen, 1981). 

However, the addition of MSG to the diet has also been repeatedly found to result in an 

initial increase in consumption, followed by a steady decline over time, with energy 

intake returning to baseline levels in long-term trials (Bellisle, et al., 1996; Bellisle, et 

al., 1989; Essed, et al., 2007) and has not been linked to increases in BMI in regular 

consumers (Shi, et al., 2010). Thus the discrepancy in the literature regarding the effects 

of MSG on intake indicate that the influence of short-term MSG intake results in 

overconsumption of the MSG-containing meal and faster hunger recovery (Mathey, et 

al., 2001; Rogers & Blundell, 1990) whilst other studies suggest that long-term 

consumption does not affect the maintenance of stable energy intake (Bellisle, et al., 

1996; Bellisle, et al., 1991; Bellisle, et al., 1989; Essed, et al., 2007).  

 

The role of meal hedonics on rated appetite and meal size of MSG containing meals 

may be assessed using early within-meal appetite assessments (the appetizer effect) to 

understand how short-term consumption is affected by MSG palatability. This was 

explored to understand whether enhancing the flavour of a hedonically neutral soup 

using increasing concentrations of MSG (0.6% and 1% added MSG) initially increases 

pleasantness (Experiment 1) and additionally influences rated hunger during the early 

stages of a meal (Experiment 2) in a concentration-specific manner relative to a bland 

(control) condition. As short-term intake was assessed, it was hypothesised that rated 

hunger and pleasantness would increase immediately after tasting (Experiments 1 and 2) 

and within the early stages of the meal (Experiment 2) in a linear fashion with the 

concentration of MSG added. Thus rated hunger, pleasantness and eating rate were 

predicted to be low in the bland control, higher in 0.6% MSG conditions and highest in 

1% MSG conditions. 
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3.2 Method 

 

3.2.1 Design 

For Experiment 1, a within-participants design was used to explore the appetitive and 

sensory characteristics of a vegetable soup varying in the concentration of added MSG 

(0.6% or 1% (w/w) MSG) or no added MSG (control) during consumption. The same 

design was used in Experiment 2, but here an additional familiarisation session with a 

separate soup flavour was included prior to the target soup trials to reduce data loss. 

Soup condition was counterbalanced using a Latin Square design. 

 

3.2.2 Participants 

Eligible participants from a student population at the University of Sussex were emailed 

due to a previously expressed interest to take part in food research and based on their 

responses upon completion of relevant questionnaires using a database system. Both 

Experiments 1 and 2 were described as ‘the effects of food on mood’. This was to 

ensure participants were not aware of the experimental manipulations and to reduce the 

potential for demand characteristics. Individuals with any dietary intolerances or 

allergies to the foods listed in the information sheet, on medications (excluding the 

contraceptive pill), smoking more than 5 cigarettes per week, or those with a history of 

diabetes or a diagnosed eating disorder were excluded from taking part. Also, those with 

a score higher than 7 on TFEQ restraint (Stunkard & Messick, 1985) were excluded as 

the literature suggests that restrained individuals tend to attend more to external cues 

and less to sensory  and appetitive features during intake studies (Dohm, Cachelin, & 

Striegel-Moore, 2005; Herman & Polivy, 2005, 2008a). 

 

Fourteen non-obese, low restraint participants took part in Experiment 1 of which 13 

were eligible for analysis (6 men, 7 women, mean age: 20±0.2 , ages from: 19-21; mean 

BMI: 22±0.6, BMI from: 19-28 kg/m²). One participant was removed as they did  not 

complete appetite ratings before and after the study session on the last test day.   

 

Thirty-two low-restraint, non-obese participants were tested in Experiment 2 of which 

eighteen were eligible for analysis (9 men, 9 women; mean age: 21±1.5, ages from:19-

24; mean BMI: 22±2.4, BMI from: 19-27 kg/m²). Three participants discontinued due to 

schedule conflicts, five participants consumed too little to allow for statistical analysis 
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and a further four did not complete an adequate number of within-meal appetite ratings 

and were excluded before analysis. After normality testing, two participants were 

excluded from further analysis due to providing ceiling responses across sessions. A 

further two participants had a BMI of 27, placing them in the overweight category. A 

correlational analysis assessing BMI and test meal intake was conducted which found 

no significant correlation between BMI and ad-libitum intake [r(18) = -0.35, p=.15] 

indicating that the amount consumed was not related to BMI status. Consequently these 

participants were not excluded from further analysis. 

 

Upon completion of the study, participants were paid £15 (Experiment 1) or £20 

(Experiment 2) or awarded credits through a participant pool scheme. All participants 

gave written, informed consent for their participation before the study and the research 

was approved by the University of Sussex ethics committee and adhered to the 

standards laid down in the Helsinki Declaration. 

 

3.2.3 Test Food 

3.2.3.1 Control Breakfast: 

Breakfast size was determined using Food Standard Agency guidelines (FSA, 2006) for 

men (M) and women (W) and consisted of cereal (M:80g; W:60g; Crunchy Nut 

Cornflakes, Kellogg’s, UK), semi-skimmed milk (M: 200g; W: 160g; Sainsbury’s PLC, 

UK) and orange juice (M: 200g; F: 200g; Sainsbury’s Pure Orange Juice, Sainsbury’s 

PLC, UK) providing 504 Kcal for men and 404 Kcal for women. 

 

3.2.3.2 Test Soup: 

The soup consisted of a low energy density (28 Kcal/100g) carrot and spice soup 

containing carrots (Frozen Baby Carrots, Sainsbury’s Plc., UK), onions, celery, olive oil 

(Medium Flavour Olive Oil, Sainsbury’s Plc., UK), spice mixture (Garam Masala, 

Schwartz, UK) and water. The soup was prepared in large batches each week by 

sweating 680g diced onion and 400g diced celery in 80g oil for 8 minutes before adding 

2400g frozen carrots and 1400g water. This was brought to the boil for 1 hour and then 

simmered for an additional hour before being blended and separated into batches. The 

spice mixture was then added (0.1g/100g) as well as 0.6% (w/w) MSG (Ajinomoto Co., 

Inc. Europe) or 1% (w/w) MSG to relevant soup conditions. The batches were 

refrigerated at 4ºC until needed. The soup used was specifically developed to be 
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hedonically neutral and low in glutamate (which produce the flavour of umami; Masic 

& Yeomans, 2013, Chapter 2). Soup energy density was mainly derived from fat 

comprising 50% fat, 44% carbohydrate and 6% protein. All nutritional information can 

be seen in Table 3.1. 

 

Table 3.1. Nutritional composition of the soup preload per 100g  

 Control 

Carbohydrate 3.1 

Protein 0.4 

Fat 1.6 

Carbohydrate (% energy) 44 

Protein (% energy) 6 

Fat (% energy) 50 

Kcal  28 

 

In Experiment 2, participants also consumed a well-accepted commercially available 

soup (Heinz Leek and Potato soup, Co. Ltd, UK) in a training session prior to the 

experimental sessions. This was to allow participants to familiarize themselves with the 

intake procedure, ensuring that ad-libitum test intake would not be influenced by 

external methodological factors as was found in Experiment 1. Initial tastings of the 

soups were served in 10g portions in plastic tasting cups before the main meal. The test 

soup was served in 300g portions and was consumed ad-libitum. Re-fill portions of the 

soup were provided as 300g servings.   

 

3.2.4 Computerized Data Collection 

Sensory and hedonic ratings of the soup were assessed using the Sussex Ingestion 

Pattern Monitor (SIPM version 2.0.13, University of Sussex) that also tracked intake. 

The SIPM consists of a concealed digital balance (Sartorius, Model BP4100) connected 

to a Dell computer which reads the balance weight (to an accuracy of 0.1g) at two-

second intervals during the test meal. SIPM has previously been used in ingestive 

behaviour studies using soup (Yeomans & Gray, 2002; Yeomans, et al., 1998; 

Yeomans, et al., 2001) thus legitimizing its use in the present study.  
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In both Experiments 1 and 2 participants using SIPM were initially prompted to fill in 

mood and appetite ratings using digital Visual Analogue Scales (VAS). These ratings 

followed a template (“How <word> do you feel?”) with the left-hand end anchor (“Not 

at all <word>”) coded as 0 and the right-hand end anchor (“Extremely <word>”) coded 

as 100. Participants were given the instructions “Please use the mouse to drag the bar to 

the point on the scale that best represents how you feel right now.” before each 

evaluation to prevent confusion during ratings. They then completed ratings by moving 

the computer mouse to their desired point on the VAS and registering their selection by 

pressing “Rating Complete”. Each participant rated how alert, anxious, clear-headed, 

contented, drowsy, energetic, full, happy, hungry, nauseous and thirsty they felt. All 

VAS ratings were presented in a randomized order across all sessions. A taster sample 

of the target soup was then provided with instructions to “Please take a mouthful of the 

soup, count to 5 and then swallow”. A series of VAS questions were then presented in 

the form “How <taste> is the soup?” with sensory and hedonic ratings  (filling, pleasant, 

salty, savoury, strong and sweet) followed by appetite ratings (full, hungry and thirsty). 

Participants were then presented with a bowl of the test soup with instructions to 

“Please eat as much of the soup as you like until you feel comfortably full”. Participants 

then made further sensory and appetite ratings (Experiment 1 asked how hungry, full 

and thirsty and Experiment 2 additionally included how pleasant the soup tasted) after 

approximately every 25g consumption of the first bowl of soup (determined as the first 

stable balance reading where weight had decreased by at least 25g since the last rating 

set up to approximately 75g consumed). An on-screen message alerted the participant to 

request a re-fill portion of soup at the first stable balance reading after 200g had been 

consumed. Once replete, participants indicated that they had finished the meal by 

clicking “Finished eating”, and were required to confirm this decision to prevent meals 

being completed in error.  Participants completed a second set of mood and appetite 

ratings once they had eaten all they wanted. All VAS data and intake data were 

automatically stored in a data file throughout the session by the SIPM. 

 

3.2.5 Procedure 

Participants were invited to the Ingestive Behaviour Unit (IBU) at the University of 

Sussex on three (Experiment 1) or four (Experiment 2) non-consecutive days. 

Participants consumed nothing but water from 2300h the night before each session and 

were given the standard breakfast at pre-arranged times (from 0830h – 1030h). After 
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breakfast, participants were permitted to leave the IBU with instructions to consume 

nothing but water and returned after 3h. 

 

Test meal sessions ran from 1130h – 1330h in windowless cubicles containing a glass 

of water, cutlery and the SIPM software. Participants were asked to follow the 

instructions on screen which explained the experimental procedure and completed the 

first set of appetite and mood ratings before calling the experimenter. They were then 

provided with a taster sample of the soup and evaluated its sensory and hedonic 

qualities before completing more appetite ratings. Participants were then provided with 

a bowl of the test soup which they were left to consume ad-libitum and were 

automatically interrupted by SIPM after 25g consumption for the first 75g of intake and 

at the 200g re-fill stage with appetite and sensory ratings. After the re-fill they 

consumed the soup without interruptions. Additional (300g) portions of soup were 

provided until the participants indicated that they were comfortably full by clicking 

through to the final set of mood and appetite ratings. Offering re-fill portions of the 

soup before finishing the bowl ensured that food was always present in the bowl to 

prevent external food cues influencing meal intake as has been previously found 

(Herman & Polivy, 2008a; Wansink, Painter, & North, 2005b). Once completed 

participants were free to leave but were weighed, measured and debriefed before 

payment on the final day. 

 

As the experimental sessions involved set weight interrupts during consumption, an 

additional training day was included in Experiment 2 on day 1. This involved 

consuming a commercial brand soup and was to ensure that participants did not miss 

weighted interrupts during eating by allowing participants to ask any questions and 

familiarize themselves with the experimental procedure as participants in Experiment 1 

indicated some confusion regarding what to do when meal interrupts occurred. A 

graphical depiction of the experimental design can be seen in Appendix 3.1. 

 

3.2.6 Data Analysis 

The main variable examined was MSG concentration, with three levels; no MSG 

(control), 0.6% MSG (w/w) or 1% MSG (w/w). Repeated measures ANOVAs were 

conducted on sensory ratings (Experiments 1 and 2), appetite ratings during the meal 
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(Experiment 2) and overall intake data (Experiment 2). Further within-meal analyses 

were not possible in Experiment 1 due to missing data leading to inadequate power 

required for analysis, with the number of participants reduced to 9 available cases. 

Instead, sensory and tasting data were analysed for 13 participants from Experiment 1. 

The effects of MSG concentration on assessments of appetite (hunger and fullness) were 

evaluated at two key points (before and after tasting the meal) in Experiment 1 and at 

seven key points in Experiment 2: before, after tasting, at 25g intervals during the first 

75g consumption, at the 200g re-fill point and immediately after the meal. Pleasantness 

was rated at six key points following the same structure as the appetite evaluations after 

tasting in Experiment 2.  

 

Within-meal appetite and sensory ratings assessing the microstructure of feeding require 

best fit quadratic function analyses to determine the more subtle effects of appetite on 

food intake. However, as previous microstructural analyses were mainly conducted with 

solid foods (Yeomans, 1996; Yeomans, et al., 1998) eating time was increased in these 

studies, allowing for more accurate assessments of the amount consumed to trigger the 

appropriate VAS appetite questions. With semi-liquids, eating time is greatly reduced 

due to an increased bite size (Zijlstra, Mars, De Wijk, Westerterp-plantenga, & De 

Graaf, 2008b) and reduced oral exposure time (de Graaf & Kok, 2010). This reduced 

the accuracy of triggering the appropriate VAS question, affecting the number of data 

points acquired. Therefore, to assess the more subtle effects of soup type on appetite 

stimulation and intake, the rate of satiation during consumption was assessed using a 

similar methodology to that which has been adopted previously when assessing the 

satiating capacity of a food over the time after consumption (satiety quotient; Green, 

Delargy, Joanes, & Blundell, 1997). These scores take into account the combined 

impact of hunger ratings and volume consumed (grams) over an eating episode and 

were calculated for each individual time point by subtracting the pre-meal hunger rating 

from the interrupt point hunger rating (tasting, 25g, 50g, 75g, 200g) or post-meal hunger 

rating and dividing this value by the grams consumed. These scores were then analysed 

in a 3x6 repeated measures ANOVA to assess the progression of the satiating capacity 

of each soup type.  

 

As the effects of nausea may impact on subjective appetite and sensory evaluations as 

well as overall energy intake, repeated measures ANOVA was also conducted assessing 
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nausea before and after the meal in Experiment 2. Equally, thirst may also influence 

appetite and intake (Bellisle & Le Magnen, 1981; McKiernan, Houchins, & Mattes, 

2008) and was assessed alongside appetite ratings in Experiment 2 to ensure no 

confounding influence of this factor. This was especially pertinent due to the sodium 

component of the MSG-containing soups. Eighteen participants were eligible for 

analysis in Experiment 2 from a sample of thirty-two. This meant that counterbalancing 

was incomplete across participants and was subsequently analysed to ensure no 

confounding effects of order. In cases where sphericity was violated, adjusted 

Greenhouse Geisser values are reported (ε = <0.75). Significant interactions were 

further explored through analysis of within-subjects Bonferroni protected contrasts 

across conditions at relevant interrupt stages and Pearson’s correlation coefficient was 

used to determine effect sizes where interactions were evident. G*Power was used to 

assess post-hoc power in Experiment 2.   

 

3.3 Results 

 

3.3.1 Experiment 1 

There was a significant overall increase in pleasantness (Figure 3.1) with the addition of 

MSG (F(1.1,12.63) = 20.77, p <.001); with 1% MSG conditions generating the 

strongest pleasantness (F(1,12) = 21.87, p = .001, r = 0.80), followed by the 0.6% MSG 

condition (F(1,12) = 18.06, p = .001, r = 0.78) when compared to the control. Ratings of 

savouriness were also found to differ significantly across MSG concentrations (F(2,24) 

= 6.00, p = .008; Figure 1) with 1% MSG conditions rated most savoury when 

compared to control (F(1,12) = 13.98, p = .003, r = 0.73). A main effect of saltiness 

(F(2,24) = 3.81, p = .04) also indicated an increase in saltiness perceptions in 1% 

(F(1,12) = 6.75, p = .02, r = 0.60) conditions compared to control. A trend was also 

evident in strength of flavour ratings (F(2,24) = 3.01, p=.07), suggesting that the added 

MSG conditions were rated as stronger than control. However, there were no significant 

differences between conditions in how filling the soup was expected to be (F(2,24) = 

1.82, p=.18), or how sweet (F(2,24) = 0.26, p=.77) it tasted. 

 



109 
 

 

Figure 3.1. Mean Experiment 1 (Panel A) and Experiment 2 (Panel B) sensory and 

hedonic assessments (mm) of three soups differing in MSG concentration (no MSG (  

), 0.6% added MSG (  ) and 1% added MSG (  ). Data are mean ±SE. Significant 

differences between added and no MSG conditions are indicated: * P<0.05. 

 

No baseline differences were noted in hunger (F(1.2,14.9) = 2.32, p=.15) or fullness 

(F(1.3,16.1) = 3.50, p=.10) immediately before intake. A significant increase in hunger 

was evident after tasting the soup samples (main effect of time: F(1,12) = 24.62, p 

<.001, r = 0.82) and an MSG*time interaction was also evident (F(2,24) = 15.45, p 

<.001) indicating that hunger increased significantly after tasting the soups with 1% 

MSG (F(1,12) = 28.30, p = <.001, r = 0.84) and 0.6% MSG (F(1,12) = 20.16, p = .001, r 

= 0.79) added when compared to control (Table 3.2). 
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Table 3.2. Mean Experiment 1 hunger ratings pre-meal and after tasting three soups 

differing in MSG concentration (no MSG control, 0.6% added MSG or 1% added 

MSG). Data are mean ±SE. 
1
Statistically significantly different from post-taste. 

2
Statistically significantly different from control using pair-wise protected contrasts, 

P<0.05. 

 

 Condition 

 Control 0.6% MSG 1% MSG 

Pre-meal 69.67±3.7
1 

66.56±3.6
1,2 

67.67±4.3
1,2 

Post-taste 65.44±4.5 83.22±4.5
2 

85.78±4
2 

 

3.3.2 Experiment 2 

3.3.2.1 Sensory and hedonic evaluations of the soup 

There was a significant difference in perceived saltiness across MSG conditions 

(F(1.5,25.5) = 3.99, p = 0.04) with saltiness rated as stronger in 1% MSG conditions 

compared to control (F(1,17) = 8.11, p = .01, r = 0.57). All other sensory assessments 

were found to be non-significant including ratings of soup pleasantness (F(2,34) = 1.47, 

p=.24) and savouriness (F(1.5, 24.9) = 0.03, p=.93) although pleasantness tended to 

increase with MSG concentration, with effect sizes indicating a moderate effect of 1% 

MSG when compared to control (F(1,17) = 2.18, p=.16, r = .33) but a small effect of 

0.6% MSG when compared to control (F(1,17) = 0.64, p=.44, r = .19; Figure 3.1).  

 

3.3.2.2 Appetite and meal pleasantness  

The main variables of interest were the effects of MSG concentration on appetite and 

hedonic liking tracked over the course of the meal. As expected, no significant 

differences were noted for hunger (F(2,34) = 1.63, p=.21) or fullness (F(2,34) = 0.12, 

p=.87) before intake sessions indicating that participants arrived hungry (m:69±2.8) and 

not very full (m:26±3.5). Hunger ratings decreased (F(2.5,42.2) = 57.83, p <0.001) and 

fullness ratings increased (F(2.3,39.7) = 53.07, p <0.001) over the course of the meal. 

MSG concentration did not influence hunger (F(2,34) = 1.84, p=.17) or fullness ratings 

(F(2,34) = 0.65, p=.53) immediately after soup tasting, suggesting that the MSG added 

conditions did not generate an appetizer effect (Figure 2). However, appetite analysis 

over the duration of the meal revealed a significant MSG*time interaction for hunger 
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ratings (F(5.5,94.2) = 2.47, p = .03) with further protected contrasts revealing a 

significantly stronger hunger reducing effect at the end of the meal for the 1% MSG 

condition (F(1,17) = 13.02, p=.002, r = 0.66) compared to control (Figure 3.2). No 

significant main effect of MSG (F(2,34) = 0.11, p=.90) or MSG*time interaction 

(F(4.8,81.7) = 1.29, p=.22) were evident for fullness (Figure 3.2) over the course of the 

meal. Pleasantness declined over the course of the meal (main effect of time: F(2.1, 

35.3) = 16.54, p<.001). There was no effect of MSG condition on pleasantness during 

intake (F(2, 34) = 1.45, p=.25; Figure 3.2) and no MSG*time interaction (F(3.8, 64.0) = 

0.58, p=.83) was evident (Figure 3.2). The lack of a detectable appetizer effect between 

soup condition and appetite may be due to a lack of power in the sample as effect size 

calculations estimated a requirement for 28 participants to detect a moderate appetizer 

effect between conditions (at 80% power) whereas post-hoc power analyses with the 

current sample was too low (25% power).  
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Figure 3.2. Mean (± SEM) Experiment 2 VAS ratings (mm) for hunger (Panel A), fullness (Panel B) and pleasantness (Panel C) at interrupt 

points (g) before, during and after ingestion of soup varying in MSG concentration (no MSG ( ), 0.6% MSG ( ) or 1% MSG 

( ). 
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3.3.2.3 Intake, eating rate and the rate of satiation during the meal  

Energy intake did not differ by MSG condition (F(2,34) = 1.66, p=.21; Figure 3.3). 

However, eating rate was significantly slower as MSG concentration increased (main 

effect of condition: F(2,34) = 3.49, p = .04; Figure 3.4). Contrast analysis revealed a 

trend for a longer time spent eating in the 0.6% MSG condition (F(1,17) = 3.55, p = .08, 

r = 0.42) relative to the bland control and a significantly slower eating rate in 1% MSG 

conditions compared to control (F(1,17) = 5.46, p = 03, r = 0.49). Eating rate did not 

change over time (F(1.3, 22.5) = 1.77, p=.20), and there was no condition*time 

interaction (F(1.7, 28.2) = 1.25, p=.30) suggesting that the speed of eating was similar 

across the duration of intake and that this did not differ by condition.  

 

Figure 3.3. Mean (±SEM) ad-libitum energy intake (Kcal) of three soups differing in 

MSG concentration (no MSG, 0.6% MSG and 1% MSG).  

 

The rate of satiation was assessed during the meal to understand whether there was an 

influence of appetite stimulation across MSG conditions during intake. This analysis 

was based on the satiety quotient (SQ; Green et al., 1997), which determines a food’s 

effectiveness at maintaining satiety after intake by allocating a SQ score. This score 

reflects the extent to which the food consumed decreases rated appetite (after the meal) 

per unit of intake (e.g. gram consumed). Thus if rated hunger was taken into account, 

the greater the quotient value, the more hunger ratings were suppressed per gram 

consumed. In the present experiment, SQ scores could not be used as post-meal appetite 

was not assessed but was conducted using within-meal ratings to generate a ‘satiating’ 
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quotient. When this rate of satiation was averaged for the meal, a significant effect of 

MSG was evident (F(2,34) = 5.19, p = .01). Consequently, ratings at discrete time 

points (Figure 3.4) were assessed to further understand how satiation and intake were 

related during the meal, a significant MSG*time interaction was evident (F(4.2,71.6) = 

3.53, p = .01) with further analyses revealing a stronger hunger reducing effect 

immediately after tasting in the 1% condition as compared to control (F(1,17) = 4.57, p 

= .05) but not the 0.6% condition when compared to control (F(1,17) = 0.22, p=.65) 

indicating an immediate orosensory effect of the high MSG condition. A significantly 

higher satiating quotient score was also evident after the meal in the 1% MSG (F(1,17) 

= 10.10, p = .006, r = 0.61) and 0.6% MSG (F(1,17) = 4.52, p = .05, r = 0.46) conditions 

compared to control. This suggests that, overall the 1% MSG and 0.6% conditions 

reduced feelings of hunger more during intake despite intake being similar across 

conditions (Figure 3.4). There was also a significant effect of time (F(2,33.7) = 50.91, p 

<.001) with satiation increasing over time across all conditions. 
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Figure 3.4. Mean (±SEM) experience of satiation (satiation quotient score) in relation to 

the volume consumed at specified interrupts (Panel A) and eating rate (g/min) at mean 

time interrupts during ingestion of soup varying in MSG concentration (no MSG (

), 0.6% MSG ( ) or 1% MSG ( )). Statistically significant protected contrasts 

between control and 1% MSG are indicated at the end of the meal (Panel A) and over 

the meal (Panel B) are indicated: * P<0.05. 

 

3.3.2.4 Nausea, thirst and order effects 

Analyses of nausea revealed a significant effect of time (F(1,17) = 5.79, p = .03) with 

nausea increasing after soup consumption. This may be due to the volume of soup 

ingested potentially making some participants feel uncomfortable. Nausea did not differ 

according to condition and no interaction was evident (condition: F(2,34) = 0.17, p=.85; 
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MSG*time interaction: F(2,34) = 0.75, p=.48).  Baseline thirst analyses before lunch 

sessions was non-significant across conditions (F(2,34) = 0.63, 54) indicating that 

participants arrived in a similar state of thirst. A significant effect of time suggested that 

thirst decreased over the intake session (F(1,17) = 4.50, p = .05) but this did not differ 

according to MSG condition (F(2,34) = 2.15, p=.13) and there was no MSG*time 

interaction (F(5.3, 90.6) = 0.53, p=.76).  

 

As fourteen participants were excluded from all analyses in Experiment 2 the influence 

of order was taken into account due to unequal counterbalancing. There was no effect of 

order on energy intake across test days (F(10,24) = 1.46, p=.22) however an 

MSG*pleasantness*order interaction trend (F(14.8,35.5) = 1.84, p = .07) was noted. 

This may be due to one counterbalanced sequence only being completed by one 

participant, potentially giving rise to a spurious interaction. As there was no significant 

effect of order on soup type across all other sensory and intake data, it can be assumed 

that previous soup flavour experiences did not affect intake and sensory assessments 

across the testing days. 

 

3.4 Discussion 

 

The main findings suggest that MSG improved the palatability of a hedonically neutral 

soup and increased hunger after tasting the soup compared to a no-MSG control 

(Experiment 1). However, MSG did not influence rated meal pleasantness or appetite 

during the early stages of a meal in Experiment 2 but a strong concentration of MSG did 

reduce rated hunger more than the no-MSG control at the end of the meal. These 

findings also suggested that the addition of MSG may not affect energy intake but may 

reduce eating speed and increase the experience of satiation immediately after intake 

than when no MSG is provided. 

 

Despite no appetizer effect being apparent early during the meal in Experiment 2 and no 

differences in energy intake, the rate of satiation was higher immediately after tasting 

and at the end of the meal in the 1% MSG condition, indicating lower rated hunger with 

respect to the volume consumed when compared to the bland control. Similarly, eating 

rate tended to decline as a function of MSG concentration with the slowest speed of 

eating evident in the 1% MSG condition followed by 0.6% MSG and the control 



117 
 

condition. Slowed eating rate has been related to reduced meal intake due to improving 

the accuracy of recognizing satiation as it develops as was found in the 1% MSG 

condition. This could be attributed to the intra-meal pauses used in the present study (as 

has been found elsewhere (Andrade, Greene, & Melanson, 2008). However, as eating 

rate did not change over time, the effect of early meal pauses most likely did not 

influence the experience of satiation. 

 

So why may it be that the 1% MSG condition reduced eating speed and increased 

satiation compared to the control condition? Indeed, these differences cannot be 

attributed to flavour pleasantness over the course of the meal (Yeomans, 1996) as this 

was found to decline equally across conditions. It may instead be that eating rate is 

related to improved assessments of the experience of satiation developing in the MSG 

conditions compared to the control condition. This interaction between slowed eating 

rate and a stronger experience of satiation towards the end of the meal may be related to 

early sensory-gut processing as umami receptors have not only been found on the 

tongue (potentially conveying immediate messages of satiation) but also in the stomach 

lining and small intestine (Beauchamp, 2009; Egan & Margolskee, 2008). It may be that 

sensory and gut umami receptors are conveying feedback messages of satiation during 

the eating episode more effectively due to a slower eating rate. Indeed this stronger 

experience of satiation for the volume consumed may in turn influence feelings of 

hunger, potentially delaying the timing of the next meal (enhancing satiety) despite the 

similar energy intake between conditions. This explanation is particularly pertinent 

when assessed alongside the existing literature on the long-term effects of MSG 

maintaining stable energy intake and body weight despite improving palatability 

assessments (Bellisle, et al., 1996; Bellisle, et al., 1991; Bellisle, et al., 1989; Essed, et 

al., 2007) and requires clarification.  

 

A further question may consider why MSG may increase satiation due to early sensory-

gut umami signalling? Some researchers suggest that, just as sugar sweetness indicates 

the presence of energy (Sclafani, 1987; Yamamoto & Ishimaru, 2013), the umami taste 

may detect the availability of protein within foods (Ikeda, 1908; Luscombe-Marsh, et 

al., 2008). As protein has been repeatedly found to be the most satiating macronutrient 

(Bertenshaw, et al., 2008; Bertenshaw, et al., 2013; Gosby, et al., 2011), it may be that 

the high concentration of MSG in the 1% soup combined with a slowed eating rate 
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allowed for the immediate detection of protein, thus making satiation more apparent. 

This may explain the inconsistencies found between short- and long-term MSG trials as 

both short-term (Rogers & Blundell, 1990) and long-term (Bellisle, et al., 1996; 

Bellisle, et al., 1991; Bellisle, et al., 1989; Essed, et al., 2007) trials did not measure 

eating rate. It may be that long-term trials allow for a learning effect of the satiating 

capacity of the MSG containing foods, especially as exposure to foods alters 

assessments of how satiating they are deemed to be (Gibson & Brunstrom, 2007). 

Eating rates in the short-term trials however may have been too high in single exposure 

MSG conditions (due to palatability effects) to allow for adequate sensory-gut protein 

detection.  

 

The expected impact of an increase in hunger immediately after tasting MSG enhanced 

meals compared to the no-MSG condition was not evident in Experiment 2. This 

apparent lack of an appetizer effect may be due to the similar high pleasantness ratings 

found across conditions at the tasting stage and early within the meal as previous 

findings show clear differences when pleasantness ratings are not closely matched 

(Yeomans, 1996; Yeomans, et al., 2001) indicating that the flavour manipulation may 

have been too subtle. However, Experiment 1 and previous research utilizing the same 

and lower doses of MSG (Bellisle, et al., 1996; Luscombe-Marsh, et al., 2008, 2009; 

Prescott, 2004; Prescott & Young, 2002) did find significant differences in pleasantness 

between conditions. This may be due to participants receiving a separate training soup 

prior to target soup sessions in Experiment 2 which may have influenced sensory 

expectations. However, as there was no effect of soup order presentation on intake it 

may instead be that the sample sizes analysed in both experiments were too small and 

thus more sensitive to variation. The comparable pleasantness ratings across soup 

conditions in Experiment 2 may also explain the similar energy intake due to the effects 

of meal pleasantness on energy intake (Yeomans, 2000). However, although non-

significant, pleasantness ratings remained consistently higher in 1% MSG added 

conditions compared to the equivalent 0.6% and no MSG conditions in Experiment 2 

and yet intake in this condition was lower than both 0.6% and no MSG conditions. The 

effect of MSG on the appetizer effect has not previously been examined in this way 

before and is indicative of the potential for MSG to encourage satiation more strongly, 

potentially delaying the return of hunger and maintaining satiety over a longer period. 

Future research is warranted to further explore the time course of MSG satiation during 
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the meal and over the post-gastric period to examine the influence of MSG on sensory 

and post-oral processing, particularly in combination with macronutrients such as 

protein. Similarly, further research using a larger sample size and a vehicle that can 

more accurately track the rate of satiation as it develops would be required as 

inconsistencies in tracked food intake meant that this aspect of intake could not be 

adequately assessed. 

 

Overall this research suggests that the addition of MSG to an ad-libitum meal increases 

the satiating capacity of a meal and delays eating speed when compared to a no-MSG 

control. However, added MSG did not generate an appetizer effect when provided in a 

more varied soup context as rated appetite and meal pleasantness remained similar 

across conditions during the early stages of the meal. Equally, energy intake remained 

stable across conditions suggesting that although added MSG may be more effective at 

increasing satiation and reducing eating rate towards the end of the meal, this did not 

translate to actual energy intake. Further research should explore the potential for an 

enhancement of satiety by MSG. 

 

3.5 Summary of key findings and ideas for future research 

 Experiment 1 established an appetizing effect of the MSG concentrations used, 

with hunger ratings increasing after tasting the MSG containing soups in a 

concentration specific manner 

 However, further ratings of appetite could not be assessed due to limitations 

with the study design  

 Experiment 2 included an additional training soup to reduce missed within-meal 

appetite ratings, however a high number of ratings were still left uncompleted 

 Despite no appetizing effect of MSG in experiment 2 and no differences in early 

meal ratings of hunger or fullness, the rate of satiation was stronger in the added 

MSG conditions as compared to control suggesting that there may be a satiating 

component to MSG 

 Future research would be important to re-assess the methodology used in the 

present experiment to understand whether the lack of an appetizing effect by 

MSG was due to this basic taste or may be as an artefact of the methods 

employed 
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 Future research should also focus on an already well-established basic taste, 

known for its palatable properties such as sweetness to clarify the unexpected 

findings of the present experiments 
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Appendix 3.1. Graphical depiction of the experimental procedure carried out for 

experiments 1 and 2. Experiment 2 also included an additional training soup day.  
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Abstract 

Sweet taste is the most accepted of the five basic tastes and generates liking responses 

across species and from infanthood. The palatability generated by sweetness may in turn 

enhance early meal assessments of hunger and motivation to consume (the appetizer 

effect), subsequently increasing meal intake. This was assessed using ratings of 

appetite, motivation and pleasantness as well as intake and eating rate in an energy-

matched ad-libitum soup lunch with or without added sucrose. 17 non-obese, low-

restraint men (mean age: 21; BMI: 21) completed appetite ratings before, after soup 

tasting, after 25g consumption for 200g intake and at the end of the meal. No significant 

differences were noted for hunger, pleasantness or motivation to consume between 

conditions indicating that sweet taste did not generate an appetizer effect. Eating rate 

was slower in the sweet condition after the 200g re-fill stage but increased in the control 

condition, however this did not affect meal intake or the satiating quality of the soup 

between conditions. Overall, the findings indicate that sweetness did not affect meal 

intake or appetite. However, as pleasantness and sweetness ratings between conditions 

were similar, the true effect of sweet palatability on intake may have been masked and 

thus requires further research.  
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4.1 Introduction 

 

Sweetness has been described as one of the five basic tastes and is elicited by 

carbohydrates such as simple sugars which provide dietary energy and food reward 

(Bellisle & Drewnowski, 2007). We display a preference for sweet taste soon after birth 

(Maller & Desor, 1973; Sclafani, 1987). This may be due to sweet taste being coupled 

with the expectation of receiving energy (Bellisle & Drewnowski, 2007; Sclafani, 1987; 

Yamamoto & Ishimaru, 2013) and this expectation may be maintained by exposure to 

sweet-nutrient associations over the lifespan (Sclafani & Ackroff, 2012). Some 

researchers suggest that sweet taste may stimulate hunger and therefore increase intake 

(Rogers & Blundell, 1989). This may be due to the known effects of palatability on 

increasing appetitive hunger, meal size and speed of eating (Yeomans, 1996). Thus the 

effects of palatability on appetite, motivation to consume and energy intake of a 

sweetened meal is required to gain a better understanding of the effect of this basic taste 

during consumption.    

 

The taste of sucrose sweetness is one that is widely accepted as inherently appetizing 

(Sclafani, 1987). Indeed, sweet taste is one of the few basic tastes that infants show a 

preference for within a few hours of birth (Maller & Desor, 1973) and liking for sweet 

taste is widespread across many species (Sclafani, 1987), with an inability to detect 

sweetness only present in those species that do not consume food sources that are sweet 

(Li et al., 2006). This predominantly universal acceptance has been said to involve 

hormones including dopamine, serotonin and endogenous opioid peptides 

(Drewnowski, Krahn, Demitrack, Nairn, & Gosnell, 1995; Levine, Kotz, & Gosnell, 

2003; Schwartz, 2006) which may also play a vital role in palatability evaluations 

(Berridge & Robinson, 1998; Blundell & Halford, 1998; Yeomans & Gray, 2002). 

Sweet taste palatability has also been related to the stimulation of hunger (Brala & 

Hagen, 1983), which in turn may increase intake (Rogers & Blundell, 1989) possibly 

due to the effects of sweetness signalling energy (Blundell & Rogers, 1994). This 

suggests that sensory feedback can alter appetite together with satiation as has been 

found with other basic tastes such as saltiness (Yeomans, et al., 2004) and foods such as 

soup (Yeomans, et al., 2008). One example of this is the appetizer effect (Yeomans, 

1996) in which tasting an optimally palatable food can increase rated hunger, 

consumption and eating rate of the meal relative to a bland version of the same meal. 
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The appetizer effect has been suggested to rely on reward mechanisms with the positive 

experience (a pleasant taste) eliciting an approach response (eating more of the pleasant 

tasting food). Indeed, this positive feedback response hypothesis has been related to the 

opioid system, which is linked to generating feelings of satisfaction (Yeomans & Gray, 

1997). A previous study has shown an appetizer effect of sucrose and aspartame 

containing yoghurts when provided at the most preferred concentration, with the highest 

energy intake evident in these conditions (Pérez, Dalix, Guy-Grand, & Bellisle, 1994). 

However, evidence to the contrary has found no effect of sweetness on hunger ratings 

and intake (Drewnowski et al., 1994a; Mattes, 1990; Rolls, Hetherington, & Laster, 

1988) suggesting that sweet taste may have a range of effects on appetite (Appleton, 

Rogers, & Blundell, 2004; Lavin, French, & Read, 1997). As sweet taste is also an 

established basic taste, it is important to understand if the appetizer effects found with 

other basic tastes are present with sweet taste as this has not been found with umami 

taste (Masic & Yeomans, Chapter 3), to further understand whether umami is 

qualitatively different from the other basic tastes. 

 

These inconsistencies may be related to the influence of sweet taste on perceived 

pleasantness of the individual. Indeed, participants categorized as sweet likers or 

dislikers have been shown to react differently to sweet cues and tastes, with sweet 

dislikers showing an earlier decline in pleasantness over the course of consumption of a 

sucrose solution despite not feeling satiated (Looy & Weingarten, 1991) (termed 

alliesthesia; Cabanac, 1971). Other research has also supported these differential 

responses in sweet likers and dislikers (Laeng, Berridge, & Butter, 1993), implying that 

taster status as well as flavour may affect the motivation to consume, even to a greater 

degree than the experience of satiation. Another issue in the assessment of sweet taste 

on appetite relates to the test foods used, with some researchers opting for sucrose 

solutions (Cabanac, 1971; Looy & Weingarten, 1991) whilst others used sweetened 

dessert-type items provided as main course meals (de Graaf, et al., 1993; Griffioen-

Roose, Mars, Finlayson, Blundell, & de Graaf, 2009). Providing such varied stimuli 

may not be representative of the influence of sweet taste on appetite and intake as 

sweetened beverages such as sucrose solutions are not perceived to be as filling as 

whole foods (Mattes & Campbell, 2009) and thus may not indicate how satiating sweet 

foods are. Indeed, appetite and intake assessments have been shown to rely heavily on 

expectations about how filling a meal is perceived to be (Brunstrom, et al., 2008) and as 
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sweet taste is also inherent in many savoury dishes, the impact of this basic taste on 

appetite requires further research. No research to date has explicitly measured the 

appetizer effect with sweet taste.  

 

Given the contradictory findings in the literature regarding the influence of sweetness 

on appetite, the present study addressed the effects of sucrose sweetness on the 

appetizer effect and intake. It was hypothesised that a optimally sucrose sweetened soup 

would increase rated hunger, pleasantness and motivation to consume within the early 

stages of a meal and result in increased energy intake and an enhanced eating rate as 

compared to an energy matched bland control in a group of sweet likers. 

 

4.2 Method 

 

4.2.1 Design 

Early within-meal sensory evaluations of the flavour of a vegetable soup with or 

without added sweetness were assessed using a within-participants Latin Square design. 

A taste test was included prior to experimental sessions to ensure liking of the sweet 

soup was higher than the control. This was followed by a training session with a non-

edible food to familiarize participants with the experimental procedure. 

 

4.2.2 Participants 

Twenty low restraint, non-obese men from a student population at the University of 

Sussex took part in the research of which seventeen were eligible for statistical analysis 

(age range: 18-25, mean age: 21±2.7; mean BMI: 21±3.2, BMI range: 18-29 kg/m²). 

Three participants were excluded from further analysis as outliers when the data was 

subjected to normality testing due to providing ceiling responses across sessions. One 

participant was also found to be in the overweight category (BMI of 29) however no 

significant correlation between BMI and ad-libitum intake was evident (r(17) = 0.16, 

p=.55) and was not found to be an outlier therefore this participant was not excluded 

from analysis. 

 

Prospective participants were contacted based on their responses to an eating habits 

questionnaire using a database system. Subjects were emailed with details of the study 
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described as ‘the effects of food on mood’. This was to ensure participants were not 

aware of the true purpose of the study to reduce possible demand characteristics. 

Individuals with dietary intolerances or allergies to the foods listed and those with high 

restraint scores (ratings above 8 on the Three Factor Eating Questionnaire (TFEQ); 

Stunkard & Messick, 1985) were excluded during recruitment as restraint has been 

found to influence perceptions about food and intake (Dohm, et al., 2005). Individuals 

smoking more than 5 cigarettes per week, those with a diagnosed eating disorder, a 

history of diabetes or those on any medications were excluded from participation. Upon 

completion of all sessions participants were paid £14 or granted credits through a 

participant pool scheme. If participants were not eligible to continue after the taste test 

they were paid £2 or one credit. Written informed consent was obtained before the study 

began and the research was approved by the University of Sussex ethics committee and 

was conducted in accordance with the Helsinki Declaration.  

 

4.2.3 Test Food 

4.2.3.1 Breakfast: 

Breakfasts consisted of 80g cereal (Crunchy Nut Cornflakes, Kellogg’s, UK), 200g 

semi-skimmed milk (Sainsbury’s, Plc, UK) and 200g orange juice (Sainsbury’s, Plc, 

UK) (total 503.6 Kcal). These quantities were determined based on the Food Standard 

Agency guidelines for male breakfast consumption (FSA, 2006). 

 

4.2.3.2 Test soup: 

The control soup comprised a low energy (32 Kcal/100g) carrot and spice soup 

containing carrots (Frozen Baby Carrots, Sainsbury’s Plc, UK) onions, celery, olive oil 

(Medium Flavour Olive Oil, Sainsbury’s Plc, UK), spice mixture (Garam Masala 

Schwartz, UK) and water with added maltodextrin (DE: 15.3, Cargill, UK; 1.05g/100g) 

or sugar (Granulated Sugar, Silver Spoon, UK; 1g/100g). The basic soup was 

specifically developed to assess the effects of sensory (taste) influences on appetite and 

satiety (Masic & Yeomans, 2013, Chapter 2). The concentrations of maltodextrin and 

sucrose were selected in line with the quantities added to commercially available soups 

and were deemed acceptable by all participants during the initial tasting session (control 

pleasantness mean: 55±1.8; sweet pleasantness mean: 72±1.4). The preparation of the 

soup and its serving on test days matched those used in a previous study (Masic & 

Yeomans, 2013, Chapter 3) with the addition of maltodextrin or sucrose added to the 
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appropriate condition. The energy density of the soups was mainly derived from 

carbohydrate comprising 51% carbohydrate, 44% fat and 5% protein. All nutritional 

information is available in Table 4.1.  

 

Table 4.1. Nutritional composition of soup preloads per 100g 

 

 Control Sucrose 

Carbohydrate 4.1 4.1 

Protein 0.4 0.4 

Fat 1.6 1.6 

Carbohydrate (% energy) 51 51 

Protein (% energy) 5 5 

Fat (% energy) 44 44 

Kcal 31.9 32 

 

All soup tasting samples were served in 10g portions in plastic tasting cups during the 

initial tasting session and before the main meal on days 2 and 3. The soup was served in 

300g portions and was consumed ad-libitum with additional 300g (re-fill) portions.  

 

4.2.4 Computerized Data Collection 

The Sussex Ingestion Pattern Monitor (SIPM version 2.0.13, University of Sussex) was 

used to track sensory and hedonic ratings at the taste test and throughout the early stages 

of the test meal. This consists of a balance system (Sartorius, Model BP4100) linked to 

a Dell computer. During the taste test trial and the experimental sessions participants 

were instructed to fill in mood and appetite ratings using digital Visual Analogue Scales 

(VAS) by the program. These ratings were presented as “How <word> do you feel?” 

with the left-hand end anchor (“Not AT ALL <word>”) coded as 0 and the right-hand 

end anchor (“As <word> as I have ever felt/experienced”) coded as 100. To prevent 

confusion during ratings the software prompted participants to “Please use the mouse to 

drag the bar to the point on the scale that best represents how you feel right now.” 

before each evaluation. The ratings were completed by moving the mouse to the desired 

point on the scale and pressing “Rating Complete”. Each participant rated how alert, 

anxious, clear-headed, full, happy, hungry, nauseous and thirsty they felt. In the taste 

test, two labelled taster samples of the target soup were then provided with instructions 
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to “Please take a mouthful of soup A (or B), count to 5 and then swallow.” A series of 

VAS questions were then presented in the form “How <taste> is the soup” which 

examined the sensory qualities of the soup (these included how filling, pleasant, salty, 

savoury, strong and sweet). Once each soup was tasted and rated, participants were 

deemed eligible if pleasantness ratings of the control soup were between 45-65 points 

on the VAS and above 65 points for the sweetened soup (Table 4.2). This also ensured 

that participants were sweet likers, reducing the potential influence of alliesthesia on 

intake (Looy & Weingarten, 1991). If eligible, participants were then asked to complete 

a trial of the experimental procedure using a non-edible food item (dried lentils) and 

were asked five VAS questions relating to the auditory and visual cues related to the 

item. These questions included “how appealing is the colour of the lentils?”; “How 

strong is the colour of the lentils?”; “How appealing is the sound of the lentils?”; “How 

loud is the sound of the lentils?” and “How strong is your desire to buy lentils?”.   

 

Table 4.2. Mean (±SEM) pilot tasting evaluations of two soups with or without added 

sweetness. 
1
 Statistically significantly different from control P<0.05. 

 

Rating Control Sweet 

Filling 43.8±4.5 50.3±4.9 

Pleasant 54.5±1.8 71.5±1.4
1 

Salty 29.6±3.7 37.4±5.6 

Savoury 59±3.4 47.9±4.4 

Strong 39.7±4.8 49.1±4.4 

Sweet 50.4±4.7 64.4±3.3
1 

 

Within the experimental sessions, once participants had completed the taste test ratings 

with the target soup they were provided with a fixed portion of the test soup with 

instructions to “Please eat as much of the soup as you like until you feel comfortably 

full.” Ratings of hunger, fullness, thirst, soup pleasantness and desire to consume the 

soup (“How much do you want to eat another mouthful of the soup right now?”) were 

presented on-screen during consumption of the first bowl of soup and at the end of the 

meal. When additional (re-fill) portions of the soup were required, an on-screen 

message and alert sound were presented, instructing participants to call the 

experimenter. Once they had finished the meal, participants indicated this by clicking 
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“Finished eating” after which they were asked of their confidence in meal termination. 

Mood and appetite ratings were once again completed before the end of the session. 

 

 

4.2.5 Procedure 

On three non-consecutive days participants were invited to the Ingestive Behaviour Unit 

(IBU) at the University of Sussex. Prior to the first session participants consumed 

nothing but water two hours before the session to ensure mild hunger. The first session 

involved a taste test to determine whether participants preferred the sweetened soup. 

Participants then completed a trial of the experimental procedure using a non-edible 

food item (dried lentils) which they transferred from a bowl on the hidden balance to a 

separate bowl, completing questions about the appearance and sound of the lentils until 

a re-fill portion was required. The experimenter remained present during this training 

phase to ensure adequate completion of the task and to allow for any questions. At the 

end of the session participants were reminded that they would be provided with soup in 

the following sessions.  

 

Following the training session, participants were instructed to abstain from eating from 

2300h the night before testing and were provided with a control breakfast at a pre-

arranged time (from 0830 h – 1030 h) for the experimental sessions. Participants were 

then permitted to leave the IBU with instructions to consume only water and returned 

3h later for lunch which ran from 1130h – 1330h. For lunch sessions participants were 

taken to a windowless cubicle containing a glass of water and the SIPM software. They 

were told to follow the on-screen instructions which detailed the procedure and initiated 

the first set of mood and appetite ratings. Sensory and hedonic evaluations with a taster 

sample of the soup were then completed according to condition followed by ratings of 

appetite and motivation to eat. Participants were then provided with a bowl of the test 

soup which they consumed ad-libitum and were interrupted by the SIPM after 

approximately 25g consumption for the first 75g of intake and at the 200g re-fill stage 

with appetite and motivation ratings after which they were left to consume as much 

soup as desired. Additional (300g) portions of soup were provided until participants 

stated that they were full. Using this methodology reduced the impact of external cues 

such as an empty bowl from determining meal size (Herman & Polivy, 2008b; Wansink, 

Painter, & North, 2005a). A final set of mood and appetite ratings were then filled-in 
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and participants were free to leave and were weighed, measured and debriefed before 

payment on the final day. A graphical representation of the experimental procedure can 

be seen in Appendix 4.1. 

 

4.2.6 Data Analysis 

The main variable was the sweetness of the soup with two levels; a control (bland) 

condition and a sucrose sweetened (sweet) condition. The impact of soup condition on 

meal intake, eating rate, appetite, motivation to eat and pleasantness as well as sensory 

ratings were assessed using repeated measures ANOVAs, with condition as the main 

factor examined. Appetite (rated hunger and fullness) was measured at seven points 

throughout each session including before meal intake, after tasting the relevant soup, at 

25g intervals for the first 75g consumption, at the 200g re-fill point and immediately at 

the end of the meal. Ratings of pleasantness were included at six points following the 

same structure as the appetite evaluations from the taste test. Additional ratings of 

desire to eat were also included to assess whether this motivational construct differed 

from hunger and pleasantness (Berridge, 1996; Berridge & Robinson, 1998) and 

highlighted any subtle effects that these two ratings may have been insensitive to pick 

up. This was rated in the same way as the appetite ratings from 25g consumption until 

the end of the meal. The data could not be subjected to best fit quadratic functions (see 

Masic & Yeomans, 2013; Chapter 3) thus the more subtle effects of soup condition on 

appetite and intake were measured to track the rate of satiation during consumption, 

similar to assessments used by Green et al., (1997; see Chapter 3). This analysis tracks 

the rate of satiety after consuming a food to establish the extent to which this food 

subsequently reduces rated appetite per unit of intake (grams) initially consumed 

(establishing a satiety quotient). As post-meal ratings were not available, the rate of 

satiation during the meal was taken into account using within-meal hunger ratings to 

establish a ‘satiation quotient’ (see Masic &  eomans, 2013; Chapter 3).  The amount 

consumed (grams) was compared with rated hunger during the meal to provide an index 

of how satiating the meal was at any given point during consumption. Hunger ratings 

over the course of the session (before, during and post-meal) and quantity consumed 

(grams) were assessed in a 2x6 repeated measures ANOVA. Test order was included as 

a factor in all analyses. 
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Nausea ratings were also assessed pre- and post-meal using repeated measures 

ANOVA. This was to ensure rated appetite, hedonic and motivational assessments as 

well as meal intake were not influenced by feelings of illness. The impact of thirst 

during the course of the meal was also assessed to ensure appetite and intake were not 

influenced by thirst as has been suggested previously (Bellisle & Le Magnen, 1981; 

McKiernan, et al., 2008). As three participants were excluded from the final analysis the 

effect of order was examined to ensure that this did not act as a confounding factor due 

to incomplete counterbalancing. Where sphericity was violated, adjusted Greenhouse 

Geisser values are reported (ε = <0.75). Significant interactions were assessed with pair-

wise protected contrasts across soup conditions at relevant interrupt stages and effect 

sizes for these interactions are reported using Pearson’s correlation coefficient. Power 

analysis was conducted using G*Power. 

 

4.3 Results 

 

4.3.1 Rated appetite, motivation and meal pleasantness during the meal 

The main focus was to understand whether meal palatability influenced appetite, 

motivation to consume and intake tracked early during the meal and at the end of the 

meal. As expected, there were no significant differences in appetite before lunch 

sessions began (hunger: F(1,16) = 0.03, p=.86; fullness: F(1,16) = 0.68, p=.42). No 

effect of soup condition and no condition*time interaction (F(1,16) = 0.30, p=.59)  was 

evident for hunger after tasting suggesting that an appetizer effect was not present 

despite high pleasantness ratings across conditions (Table 4.3).  
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Table 4.3. Mean (±SEM) sensory evaluations of two soups with or without added 

sweetness.  

 

Rating Control Sweet 

Filling 55.1±4.7 56.1±4.8 

Pleasant 69.1±2.9 73±1.7 

Salty 36.2±3.8 43±4.1 

Savoury 59.1±3.3 57±3.3 

Strong 54.1±3.1 56±3.7 

Sweet 57.8±3.3 55.7±4.0 

 

The lack of an observable appetizer effect may be due to low power as a result of the 

small sample size analysed with post-hoc power analysis revealing only 30% statistical 

power. Based on the observed findings (Figure 4.1), to ensure adequate power of 80%, 

approximately 52 participants would have been required to detect a significant appetizer 

effect between conditions. When appetite was assessed over the course of the meal 

(time), no significant effects of condition were evident (hunger: F(1,16) = 1.32, p=.27; 

fullness: F(1,16) = 1.78, p=.20; Figure 4.1). Perhaps unsurprisingly, ratings of desire 

[F(1,16) = 0.71, p=.41] and pleasantness [F(1,16) = 0.81, p=.38] during intake also did 

not differ significantly according to condition (Figure 4.1). As expected, assessments of 

hunger decreased (F(2.5, 40.4) = 75.04, p <.001) and fullness increased (F(3.6, 58.3) = 

115.45, p <.001) over time. Equally, ratings of desire to eat (F(1.9, 31.1) = 231.39, p 

<.001) and pleasantness (F(1.7, 27.0) = 23.22, p <.001) declined over the course of 

intake.  
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Figure 4.1. Mean (±SEM) VAS ratings (mm) for hunger (Panel A), fullness (Panel B),  

pleasantness (Panel C) and desire (Panel D) at interrupt points (g) before, during and 

after ingestion of soup with (  ) or without (  ) added sweetness. 

 

4.3.2 Intake, eating rate and the experience of satiation  

Energy intake did not differ between conditions (F(1,16) = 0.39, p=.54; Table 4.4). This 

may explain why hunger and fullness ratings were similar across soup conditions as the 

equivalence found in consumption matched those observed in the appetite ratings.  

 

Table 4.4. Mean (±SEM) ad-libitum energy intake (grams and calories consumed; Kcal) 

across two soups with or without added sweetness. 

 Control Sweet 

Energy intake (g) 507.01±35.16 481.37±35.03 

Energy intake (Kcal) 161.74±11.77 154.04±11.15 
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However, a main effect of time (F(4,64) = 19.31, p <.001) suggested that eating rate 

initially increased during the first two interrupt stages, then slowed until the first re-fill 

stage. A condition*time interaction (F(2.4, 38.1) = 10.97, p <.001) also revealed that 

eating rate differed significantly by condition (Figure 4.2) with further analyses using 

pair-wise protected contrasts revealing that eating rate slowed significantly after  the  

200g re-fill until the end of the meal in the sweet condition but increased in the control 

soup (t(16) = 9.12, p <.001, r = .86). Analyses of order indicated that the condition 

initially received did not influence this interaction (F(4,60) = 0.77, p=.55). When 

average eating rate for the whole meal was assessed, no differences were evident 

between conditions (F(1,16) = 2.28, p=.15), suggesting that the effect found was 

sensitive to the specific interrupt point. The more subtle effects of the rate of satiation 

during intake were assessed using a similar analysis established by Green and 

colleagues (Green, et al., 1997). A significant effect of time (F(2.0, 31.3) = 83.83, p 

<.001) suggested that the meal was rated as more satiating as intake increased over time 

(Figure 4.2). However no effect of condition (F(1,16) = 0.60, p=.45) and no 

condition*time interaction (F(2.8, 44.9) = 0.91, p=.48) at discrete time points over the 

course of the intake session was evident indicating that there was no difference between 

soups in how satiating per gram consumed and that this was not influenced by the stage 

of consumption. 
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Figure 4.2. Mean (±SEM) eating rate (g/min) at mean time interrupts (Panel A) and  rate 

of satiation in relation to volume consumed at specified interrupts (Panel B) during 

ingestion of a soup with (  ) and without (  ) added sweetness. Statistically 

significant differences between no and added sweet conditions are indicated: ** 

P<0.001. 

 

4.3.3 Sensory assessments of the meal 

There were no significant differences evident across conditions for soup pleasantness 

(F(1,16) = 1.74, p=.21) or sweetness (F(1,16) = 0.21, p=.65; Table 4.3) despite the 

baseline pilot session indicating clear significant differences between conditions (Table 

4.2). As expected, all other sensory analyses of how filling, savoury, salty and strong 

were found to be non-significant (Table 4.3). 
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4.3.4 Nausea, thirst and order effects 

No significant effect of nausea was evident between conditions (F(1,16) = 0.56, p=.46) 

or over time (F(1,16) = 0.72, p=.41) indicating that intake was not confounded by 

nausea; m: 18.6±1.2. Equally, no interaction with order was apparent (F(1,15) = 1.01, 

p=.33) suggesting that the order of soup presentations did not influence feelings of 

nausea across testing days. Baseline thirst analysis before intake sessions was found to 

be non-significant (F(1,16) = 0.15, p=.71) indicating all participants arrived in a similar 

state of thirst. When thirst was assessed over the duration of the eating episode, no 

significant effect of time (F(3.3, 52.3) = 1.88, p=.10) or condition (F(1,16) = 0.02, 

p=.88) was observed. Despite unequal counterbalancing there was no effect of order on 

subjective evaluations of hedonic, motivational and appetitive responses and on intake. 

Thus the order of soup presentation did not affect feelings of hunger (F(1,15) = 0.54, 

p=.48), fullness (F(1,15) = 0.55, p=.47), pleasantness (F(1,15) = 0.26, p=.62), desire 

(F(1,15) = 0.36, p=.56) or intake (F(1,15) = 1.43, p=.58). 

 

4.4 Discussion 

 

The main results indicate that eating rate reduced towards the end of a sucrose 

sweetened meal compared to an energy-matched unsweetened meal. However, 

sweetness was not found to influence early meal ratings of pleasantness, appetite, 

motivation to consume or energy intake relative to the control condition. The sweet 

soup also did not influence how satiating the meal was perceived to be. These findings 

may be explained in terms of perceptions of sweetness as the sweet condition was not 

identified as significantly sweeter or more pleasant than the control condition. 

 

The influence of sweet taste in a lunch setting was not shown to generate a detectable 

appetizer effect when compared to a ‘non-sweet’ control. The similar hunger ratings in 

the early stages of the meal may be due to the comparable ratings of pleasantness and 

sweetness found across conditions. This may explain why test meal intake and the 

satiating capacity of the soup were equally matched between conditions and why 

‘desire’ ratings did not differ according to soup condition, as the hedonic effects of the 

soup were deemed equally rewarding (Berridge, 1996; Berridge & Robinson, 2003; 

Yeomans, et al., 2004). Eating rate however steadily increased during the first bowl of 
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soup, slowing down from the re-fill stage until the end of the meal in the sweet 

condition but speeding up further in the control condition. As the change in eating rate 

occurred after the re-fill stage, it may be that eating rate increased in the control 

condition due to a cessation in meal interrupts at this point. However, the speed of 

intake decreased in the sweet condition at this stage, indicating that this effect was not 

an artefact of the methods used. Equally, due to the high pleasantness assessments of 

the soups and the focus on sweet likers, an alliesthesia effect cannot account for the 

divergence found, particularly as desire and pleasantness ratings were comparable 

(Looy & Weingarten, 1991). Eating rate also did not differ from the participant’s first 

session to the next, suggesting that participant naiveté cannot account for the results 

found. As whole meal eating rate between conditions remained similar, this divergence 

may have been spurious due to the limited size of the sample assessed. 

 

The predicted effect of sweet taste increasing appetite at the early stages of a meal 

compared to a bland control was not evident and may be related to aspects of the design 

employed. Although every effort was made to ensure that participants preferred the 

sweet soup relative to the control before the study began, no difference in pleasantness 

was evident as had been found in the pilot experiment. This may be due to a contrast 

effect, with the difference in sweetness being more easily, and more extremely 

perceived when both soups were sampled together in the pilot session than when 

provided across test days. Indeed, it may also be that the sweetness manipulation was 

too subtle, or that the dextrose equivalent of the carbohydrate used was too high and 

thus the difference in sweetness was not detected at separate exposure sessions. The 

sample assessed may also have been too small to adequately detect an influence of this 

basic taste on early within-meal appetite ratings.  

 

The role of sweet taste on appetite has been extensively assessed due to the innate 

enjoyment of sweet taste evident from birth (Maller & Desor, 1973) and across species 

(Sclafani, 1987). This study aimed to assess the impact of sweet taste on early appetite 

evaluations and how they may influence overall intake in a meal context as previous 

findings have been mixed (Appleton, et al., 2004; Lavin, et al., 1997; Pérez, et al., 

1994), possibly due to the effects of sweetness being focussed on sweet solutions 

(Cabanac, 1971; Lavin, et al., 1997) and dessert-type main courses (Finlayson, King, & 

Blundell, 2007; Griffioen-Roose, et al., 2009). Overall, early meal assessments of 
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appetite, pleasantness, motivation and overall intake were not affected by a difference in 

sweetness in a meal context. Eating rate was found to increase after the first bowl 

consumed in the control condition but decrease in the sweet condition. Due to the 

similar hedonic value of the soups used, further investigation is warranted with less 

subtle taste manipulations and a larger sample size. 

 

4.5 Summary of key findings and ideas for future research 

 The main findings suggested no appetizing effect of sweetness on increasing the 

experience of hunger, motivation to eat, or pleasantness after tasting a sucrose 

sweetened soup  

 Eating rate was slower in the added sucrose condition and this condition was 

also rated as more satiating per gram consumed 

 However, no differences in energy intake were also seen between the sucrose 

sweetened condition and the energy-matched control despite pilot ratings of 

palatability indicating the sucrose condition was more pleasant in flavour 

 Both sucrose sweet and control soups were deemed as equally palatable and 

sweet during the experimental phase, indicating that the appetizer effect may not 

have been easily assessed 

 As a consequence it is still unclear whether basic tastes such as sweetness or 

umami elicit an appetizer effect that influences intake from the early stages of 

the meal 

 Future research may wish to make the sweet distinction more clear before 

assessing the appetizing role of a sucrose sweetened meal and may wish to use a 

solid food vehicle to ensure a more sensitive methodology  
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Appendix 4.1. Graphical depiction of the experimental procedure carried out for the 

training day (Panel A) and on test days (Panel B). 
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Abstract 

 

The umami flavour generated by monosodium glutamate (MSG) has been proposed as 

the marker for the presence of protein in foods. As protein is the most closely regulated 

macronutrient in the diet, the present study addressed whether acute protein deprivation, 

habitual protein intake or a combination of the two influenced liking for the taste of 

MSG. 24 low-restraint male participants were tested after their habitual breakfast 

(baseline), after a low protein breakfast and a high protein breakfast and returned at 

lunchtime to complete sensory assessments of flavour samples (control, MSG, sodium 

chloride (NaCl) or Acesulphame K (Ace K)) in low or high concentrations in a soup 

using a within-subjects design. Participants also completed a habitual protein intake 

questionnaire. Acute protein deprivation increased liking for the flavours more strongly 

than on the high protein day and a main effect of flavour revealed NaCl and Ace K 

flavours were liked less on both protein manipulation days when compared to the 

control sample. Habitual protein intake was not related to liking for MSG stimuli alone 

but habitual high protein consumers rated a high concentration of MSG as more 

pleasant than any other flavour when in protein deficit. Overall, these findings suggest 

that liking of high MSG concentrations may be moderated by nutritional need in high 

protein consumers.  
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5.1 Introduction 

 

Protein is an essential macronutrient predominantly consumed in savoury tasting foods 

(Blundell & Rogers, 1994; Luscombe-Marsh, et al., 2008; Viskaal-van Dongen, Kok, & 

de Graaf, 2011). It is the most tightly regulated macronutrient in the diet and has been 

related to the overconsumption of high carbohydrate and high fat containing foods if too 

little has been ingested to meet protein needs (Simpson & Raubenheimer, 2005). 

Animals and humans are able to detect the quality and quantity of protein consumed 

during a meal and use this information to monitor protein intake (Kondoh, et al., 2000). 

This indicates that the taste system has evolved to provide information about the 

nutritional value of food. Umami, the fifth basic taste which can be generated by the 

flavour enhancer monosodium glutamate (MSG)  has been linked to the detection of 

protein in the diet (He, et al., 2004; Ikeda, 1908; Luscombe-Marsh, et al., 2008) and 

may influence food selection based on nutritional need state. Therefore, it may be that 

liking for umami sources such as MSG in foods changes according to the amount of 

protein generally consumed in the diet (protein status) and may also be sensitive to 

acute protein deprivation. 

 

Protein accounts for 15% dietary energy intake (Veldhorst et al., 2008; Westerterp-

Plantenga, 1994) which has remained constant over time and across populations 

compared to other macronutrients (Simpson & Raubenheimer, 2005; Westerterp-

Plantenga, 1994) and may be related to the body’s efficiency in regulating protein 

feedback (Essed et al., 2009; He, et al., 2004) due to the limited availability of 

carbohydrate and fat in human evolutionary history (Simpson, et al., 2003; Simpson & 

Raubenheimer, 2000). Indeed, protein intake has been shown to be prioritized over 

carbohydrate and fat intake in ad-libitum meals after participants were provided with 

unbalanced diets (Austin, et al., 2011; Larsen, et al., 2010; Simpson, et al., 2003; 

Simpson & Raubenheimer, 2005). This change in food selection may be influenced by 

flavour, with increases in consumption of savoury foods due to their association with 

protein. Indeed, the savoury taste elicited by MSG has been found to increase 

preference for foods with stronger MSG concentrations in both adults (Murphy, 1987) 

and children (Vazquez, et al., 1981) in protein-deficient states with poor nutritional 

status compared to well-nourished controls. This indicates that long-term protein 

deprivation may influence the selection of and liking for MSG. Laska and Hernandez 
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Salazar (2004) assessed MSG taste preferences in primates naturally consuming low or 

high quantities of animal protein. Contrary to the previous findings, they reported that 

primates consuming more animal protein preferred stronger concentrations of MSG 

whilst low animal protein consumers enjoyed MSG more overall, particularly when 

delivered in weaker concentrations. These differences between malnourished humans 

and primates consuming low amounts of animal protein may be due to learned 

experiences of umami concentrations in foods. As the malnourished humans tested had 

previously been exposed to animal protein, which is abundant in umami (Jinap & Hajeb, 

2010), their liking and preference for strong concentrations of MSG flavour may have 

been greater due to previously learned associations between stronger concentrations of 

umami linked to high protein sources. Indeed, liking for MSG in humans is correlated 

with liking of high protein foods (Luscombe-Marsh, et al., 2008). However, as primates 

who consume low amounts of protein subsist on predominantly plant-based diets, their 

exposure to strong concentrations of umami tastants is less likely and thus they may 

prefer weaker concentrations of umami, as would naturally be found in their diet. 

Additionally, the primates consuming low-protein diets may be more sensitive to 

sensory cues, including umami taste, which may predict the presence of protein, in line 

with optimal foraging theory (Stephens & Krebs, 1986). This influence of habitual 

dietary intake affecting preference for a stimulus which may be predictive of protein has 

not been previously assessed in humans and as protein is so tightly regulated, may 

provide further insight into the influence of general protein intake on hedonic 

preference.  

 

The influence of protein status may even alter hedonic taste perception in short-term 

manipulations. Gibson and colleagues (1995) found that participants experimentally 

manipulated to be in acute mild protein deficit (by provision of low protein breakfasts) 

learned to prefer a dessert flavour that was previously paired with the delivery of more 

protein when compared to participants in nutritional balance. This mild protein 

deprivation has also been found to increase ingestion and choice of flavours that have 

been paired with the post-ingestive consequences of consuming protein in rats (Baker & 

Booth, 1989; Booth & Baker, 1990; Gibson & Booth, 1986) and protein conditioned 

flavour preferences have been reported to be eliminated by a protein preload, but not 

after an equicaloric carbohydrate preload (Baker, et al., 1987). Such flavour preferences 

required very few pairings of novel flavoured protein-rich food when in mild protein 
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need (Baker & Booth, 1989; Booth & Baker, 1990; Gibson & Booth, 1986), reflecting 

the tight regulation of this macronutrient within the diet.  

 

However, although short-term protein deprivation has been shown to influence choice 

through learning, the effect of an acute deficit on liking for tastes that may naturally be 

associated with protein has not been assessed. Equally, it is not known whether habitual 

protein consumption in the diet influences taste preferences for these flavours in 

humans in the same way as has been reported in animals. Thus, the current experiment 

aimed to explore the effects of manipulating protein status (through the presentation of 

high or low protein breakfasts) and habitual protein intake in the diet (using a protein 

food frequency questionnaire) on subsequent sensory assessments of a hedonically 

neutral savoury soup with strong and weak concentrations of MSG (0.6% or 1% (w/w)), 

sodium chloride (NaCl; 0.3% or 0.4% (w/w)), sweetener (acesulphame K; 0.005% or 

0.01% (w/w)) or an unflavoured control. The additional flavour conditions were 

included to assess whether the effects of protein were specific to the flavour of MSG 

alone as opposed to energy need (sweetness) (Bellisle & Drewnowski, 2007; Sclafani, 

1987; Yamamoto & Ishimaru, 2013) or specifically the sodium found in MSG 

(saltiness). Baseline flavour assessments were also taken before acute protein 

manipulations. It was hypothesised that MSG would be optimally preferred when 

participants were in an acute protein deficit with stronger concentrations of MSG being 

most preferred. Protein status based on habitual protein intake was also hypothesised to 

be related to liking of MSG, with naturally high protein consumers expected to prefer 

stronger concentrations of MSG compared to naturally low protein consumers, 

particularly when in acute protein deficit.  

 

5.2 Method 

 

5.2.1 Design 

A two way 3x7 mixed design was used to contrast protein manipulation day (baseline, 

low protein or high protein) with evaluations of strong or weak concentrations of 

samples of soup with added savouriness (0.6% or 1% w/w MSG), saltiness (0.3% or 

0.4% w/w NaCl), sweetness (0.005% or 0.01% Acesulphame K (Ace K)) or nothing 

added (control) (within-participant). This was contrasted with participant’s habitual self-

reported protein consumption (between-participants). Habitual protein intake was 
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assessed using a protein food frequency questionnaire (FFQ). Breakfast conditions were 

balanced using a Williams square design (Williams, 1949).   

 

5.2.2 Participants 

24 healthy weight low restraint men from a student population at the University of 

Sussex took part in the research (mean age: 22; ages from 19-31; mean BMI: 23, BMI 

from 19-25 kg/m²). Participants were recruited based on their responses to an eating 

habits questionnaire using a database system. Individuals who smoked, were diabetic, 

had a diagnosed eating disorder, used medication, or had allergies or intolerances to the 

foods used were excluded. Those who scored high (ratings above 7) on TFEQ restraint 

(Stunkard & Messick, 1985) were also excluded due to the potential for confounding 

factors influencing assessments as high restraint individuals have been found to differ in 

their perceptions of food (Crystal, Frye, & Kanarek, 1995; Dohm, et al., 2005; Tepper 

& Ullrich, 2002). Eligible participants were emailed with the study details ‘the effects 

of breakfast on mood’ to ensure participants were not aware of the experimental 

manipulation. Study details were emailed to participants and written, informed consent 

was obtained before taking part. Participants were paid £10 upon completion of all 

sessions or were awarded credits according to a participant pool scheme.  

 

A-priori power calculations were conducted to establish the number of participants 

required for a medium effect of protein test day manipulation on changes in 

pleasantness ratings of strong and weak concentrations of the flavours assessed using 

G*Power. This indicated that 24 participants would be required to provide 80% power 

to detect a difference in rated palatability for weak and particularly strong 

concentrations of MSG flavours when in mild protein deficit. All experimental work 

was conducted in accordance with the standards expressed in the Helsinki Declaration 

and was approved by the University of Sussex ethics committee. 

 

5.2.3 Test Food 

5.2.3.1 Breakfasts: 

Both high and low protein breakfasts consisted of 52g cereal (Crunchy Nut Cornflakes, 

Kellogg’s, UK). The high protein breakfast also included 170g skimmed milk 

(Sainsbury’s PLC, UK) and a 300g high protein breakfast shake made up of 250g semi-

skimmed milk (Sainsbury’s PLC, UK) combined with 25g Greek yoghurt (Total 0%, 
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Fage, UK), 25g whey protein (MyProtein, UK), 0.1g vanilla extract (Nielsen-Massey, 

Netherlands) and 0.04g Acesulphame K (Beckmann-Kenko, Germany). High protein 

breakfasts provided 504 Kcal and consisted of 32% protein, 53% carbohydrate and 16% 

fat.  

 

The low protein breakfast included 170g low protein milk consisting of 156g tara water 

(water mixed with tara gum (Kalys, France; 0.03g/100g) at least 24 hours before use) 

added to 10g double cream (Sainsbury’s Plc, UK) and 4g maltodextrin (Cargill, UK). 

The 300g low protein breakfast shake comprised of 225g tara water added to 27g honey 

yoghurt (Rachel’s Organics Greek Style Honey Yoghurt, UK), 24g double cream, 24g 

maltodextrin, 0.1g vanilla extract, 0.06g cream flavour (International Flavours and 

Fragrances) and 0.02g acesulphame K. The whole breakfast provided 504 Kcal and was 

made up of 4% protein, 59% carbohydrate and 37% fat. The low protein milk was 

necessary to further enhance protein deprivation and has been successfully used 

elsewhere (Gibson, et al., 1995). The addition of tara gum was necessary to mimic the 

thicker consistency of milk and the natural thickness generated by the addition of whey 

protein in the high protein shake. Equally, the added cream flavouring in the low protein 

milkshake was required to match the creaminess of the high protein milkshake. Both 

high and low protein breakfasts provided adequate energy requirements for men as 

specified in the Food Standard Agency guidelines (FSA, 2006). All nutritional 

information can be found in Table 5.1.  



154 
 

Table 5.1. Nutritional composition of high and low protein breakfasts per 100g 

 

 High Protein Shake Low Protein Shake High Protein Breakfast Low Protein Breakfast 

Carbohydrate 15 28.1 66.1 74.8 

Protein 30.7 1.3 39.6 4.6 

Fat 6 13.6 8.7 20.9 

Carbohydrate (% energy) 25 47 53 59 

Protein (% energy) 52 2 32 4 

Fat (% energy) 23 51 16 37 

Kcal 78.4 78.3 96.5 96.5 

Kcal/portion 235.1 235 503.6 503.7 
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5.2.3.2 Soup Samples: 

A low energy density (28 Kcal/100g) carrot and spice soup was used for all taste test 

samples. This soup was formulated in earlier studies to be hedonically neutral and low 

in naturally occurring MSG (Masic & Yeomans, 2013, Chapter 2).  The soup was made 

up of carrots (Frozen Baby Carrots, Sainsbury’s Plc, UK) onions, celery, olive oil 

(Medium Flavour Olive Oil, Sainsbury’s Plc, UK), spice mixture (Garam Masala 

Schwartz, UK) and water (see Masic & Yeomans, 2013, Chapter 2). The sample 

flavours consisted of the addition of monosodium glutamate (MSG; Ajinomoto Co., Inc. 

Europe) (0.6g/100g; weak MSG or 1g/100g; strong MSG) for the savoury sample, 

sodium chloride (NaCl; Saxa Table Salt, UK) (0.3g/100g; weak NaCl or 0.4g/100g; 

strong NaCl) for the salty sample and acesulphame K (0.005g/100g; weak Ace K or 

0.01g/100g; strong Ace K) for the sweet sample. These concentrations were chosen in 

line with those commercially available in soups and used in previous research 

(Luscombe-Marsh, et al., 2008, 2009; Roininen, et al., 1996). All nutritional 

information can be seen in Table 5.2.  

 

Table 5.2. Nutritional composition of the soup preload per 100g  

 Control 

Carbohydrate 3.1 

Protein 0.4 

Fat 1.6 

Carbohydrate (% energy) 44 

Protein (% energy) 6 

Fat (% energy) 50 

Kcal 28 

 

Both breakfast shakes and soup flavour conditions were subject to initial pilot testing to 

ensure equal acceptability and adequate taste enhancement across conditions. This 

included 12 men (mean age: 23; range: 20-29) attending a session in which they rated 

the sensory and flavour characteristics of the two breakfast shakes and six samples of 

soup (high and low protein shakes and strong and weak MSG, NaCl, Ace K). Mean 

pilot study ratings are shown in Table 5.3 and indicated no significant differences in 

sensory ratings between protein shakes including equivalent pleasantness assessments 
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(F(1,11) = 0.37, p=.56). Soup assessments across strong and weak flavour samples 

indicated an enhancement by MSG of saltiness (F(1,11) = 6.81, p = .02) and strength of 

flavour (F(1,11) = 12.90, p = .004). Equally, an increase in saltiness (F(1,11) = 12.30, p 

= .005) across conditions was found in NaCl conditions and enhanced sweetness across 

concentrations in the Ace K samples (F(1,11) = 12.74, p = .004) as well as increased 

familiarity in weak compared to strong (F(1,11) = 11.57, p = .006) Ace K samples. All 

other sensory ratings including those of pleasantness were found to be non-significant 

across conditions. 
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Table 5.3. Mean (±SEM) pilot sensory ratings of two milkshakes (low or high protein) and six soups differing in MSG (weak MSG or 

strong MSG), sodium chloride (weak NaCl or strong NaCl) and sweetener (weak Ace K or strong Ace K) concentration (dashes are 

provided where ratings were not included as part of the sensory assessment). 
1
 Statistically significantly different from low concentration 

p<0.05. 

 

Rating Breakfast Shake Soup    

High Protein Low Protein Low MSG High MSG Low NaCl High NaCl Low Ace K High Ace K 

Familiar 41.00±8.0 45.17±8.7 60.33±4.7 54.08±6.5 60.33±5.5 58.33±5.5 63.92±6.0 54.67±6.4
1 

Pleasant 56.92±4.0 59.42±4.4 58.42±5.9 53.33±7.2 67.83±3.7 65.00±5.1 67.83±5.4 60.58±6.4 

Salty - - 52.83±3.9 66.75±3.3
1 

43.50±5.3 69.50±4.2
1 

39.91±7.2 38.83±4.7 

Savoury - - 71.25±3.5 72.50±3.8 66.17±3.1 70.25±5.4 62.25±6.3 56.67±5.9 

Strong 40.67±7.4 36.83±5.6 50.17±3.6 68.75±3.9 46.75±7.0
1 

58.25±4.5 60.42±4.1 55.92±5.1 

Sweet 54.00±5.7 53.58±4.9 38.17±6.0 39.50±4.4 47.75±5.7 38.91±5.8 51.42±4.2 76.25±4.7
1 

Thick 45.33±6.1 41.58±5.9 - - - - - - 
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5.2.4 Computerized Data Collection 

Appetite, hedonic and sensory ratings were assessed using the Sussex Ingestion Pattern 

Monitor (SIPM version 2.0.13, University of Sussex). This consists of a digital balance 

(Sartorius, Model BP4100) linked to a Dell computer. Appetite, hedonic, sensory and 

mood ratings were completed using digital Visual Analogue Scales (VAS) and stored 

by the SIPM. Ratings were presented as sentences (“How <word> do you feel?”) with 

the left hand anchor (“Not at all <word>”) coded as 0 and the right hand anchor (“As 

<word> as I have ever felt”) coded as 100.  Participants were presented with 

instructions on how to use the scale before each rating was completed to prevent 

confusion and registered their selection (pressing “Rating Completed”) before moving 

on to the next question. The first rating set completed assessed how energetic, full, 

happy, hungry, nauseous, and thirsty participants felt as well as how much they desired 

to eat something savoury or sweet (“how much would you like to eat something 

savoury/sweet right now?”). All VAS ratings were randomized across trials and 

sessions.  

 

A tray containing seven soup samples (strong and weak concentrations of MSG, NaCl, 

and Ace K soups and the control soup) served hot in 10g plastic tasting cups and 

labelled using randomly generated 3-digit number sequences was then provided and 

participants were asked to “Please take a mouthful of sample <number>, count to 5 and 

then swallow” before completing sensory ratings upon tasting each soup (how familiar, 

pleasant, salty, savoury, strong and sweet). After each tasting, participants were 

reminded to “Please take a mouthful of water and press Continue”. Soup samples were 

randomized across session days. Once all soup tastings were completed, participants 

repeated the set of mood and appetite ratings from the start of the session before they 

were free to leave. 

 

5.2.5 Protein Food Frequency Questionnaire 

The protein food frequency questionnaire (FFQ) was based on the National Health and 

Nutrition Examination Survey (NHANES) FFQ developed and validated by the 

National Cancer Institute (NCI, 2007). The NHANES questionnaire comprises a set of 

multiple choice questions assessing intake of a variety of foods which are grouped into 

categories (such as fruit and vegetables, dairy, cereals and beverages amongst others). 

The questionnaire originally focuses on how often a particular food is consumed over a 
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12 month period. The NHANES FFQ contains over 130 questions, which were tailored 

in the present study to allow for a more specific focus on the frequency of consumption 

of high protein foods. Based on this, a 39 item protein FFQ was developed assessing 

intake of protein-rich items (dairy, nut, meat, seafood, tofu, egg) and specific sources of 

protein (beverages, bars and supplements) over the last six months. Also noted was the 

exclusion of any of these items over that time.  

 

The questions asked took the form “Over the past 6 months, how often did you 

(drink/eat) (relevant food and distinction; e.g. milk as a beverage (not in coffee, cereal 

or tea)?”. Possible answers were “Never (go to question __)” (awarded 0 points), “1 

time per month or less” (1 point), “2-3 times per month” (2 points), “1-2 times per 

week” (3 points), “3-4 times per week” (4 points), “5-6 times per week” (5 points), “1 

time per day” (6 points), “2-3 times per day” (7 points) or “2 or more times per day” (8 

points) for meals and additional ratings “4-5 times per day” (9 points) or “6 or more 

times per day” (10 points) for beverages. Equally, with dairy products, questions 

regarding the type of product (“whole milk” (3 points), “semi-skimmed (2% fat) milk” 

(4 points), “skimmed milk”(4 points), “soy milk”(2 points), “rice milk” (1 point), “raw 

unpasteurized milk”(3 points) or “other” (1 point)) was important to include as points 

were awarded based on the available protein in these products. With dairy products it 

was also important to include the proportion of times lower fat options were chosen  

(“How often was the yoghurt you ate low fat or fat free?” – “Almost never or never” (0 

points), “about ¼ of the time”(1 point), “about ½ of the time”(2 points), “about ¾ of the 

time” (3 points) or “almost always or always” (4 points)).This was important as protein 

content tends to be higher in low fat dairy products.  Additionally, consumption of meat, 

animal products, seafood and added protein (in the form of milkshakes/supplements or 

bars) was awarded double points across ratings of how often and how much of the food 

was consumed in line with the higher protein content of these foods.  

 

In addition to assessing how often high protein foods were consumed, the protein FFQ 

also included questions relating to approximate portion sizes each time the food was 

consumed. For beverages this ranged from “Less than 1 mug/glass (less than 250ml)” (1 

point), “1-2 mugs/glasses (250-500 ml)” (2 points) or “more than 2 mugs/glasses (more 

than 500ml)” (3 points) whilst for solid foods this differed based on average portion size 

information (NCI, 2007). Again, for very high protein foods (protein supplemented 
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beverages and foods, meat, fish and eggs) double points were awarded for each possible 

portion size response. To allow for a more concrete estimation, participants were 

provided with a portion size estimation sheet (Appendix 5.1), which provided pictures 

of approximate portion sizes based on hand symbols (also provided on the sheet was 

ounce measurements). For instance the question: “Each time you ate beef in mixtures 

(such as meatballs, chilli,  meatloaf, beef stew, beef pies, beef and noodles, beef and 

vegetables), how much did you usually eat?” provided the answers “Less than 125g or 

less than 3 ounces (palm of hand)”, “125-250g or 3 – 6 ounces (1 – 2 palms of hands)” 

or “More than 250g or more than 6 ounces (more than 2 palms of hand)”. This ensured 

participants were able to make as accurate a selection as possible. An additional 

question regarding the exclusion of high protein foods from the diet: “For ALL of the 

past 6 months, have you followed any type of vegetarian diet?”; “Which of the 

following foods did you TOTALLY EXCLUDE from your diet (mark all that 

apply)?” with answers “Meat (beef, pork, lamb, etc)”, “Poultry (chicken, turkey, duck, 

etc)”, “Fish and/or seafood”, “Eggs” and “Dairy products (milk, cheese, yoghurt etc)” 

resulted in negative marking (deducting 4 points for all animal or seafood products and 

2 points for dairy products). If participants had not consumed a particular food they 

were directed to the next question “(go to question __’)”. An example of the 

questionnaire used can be seen in Appendix 5.2) 

 

Six participants completed the Protein FFQ 2-3 weeks before starting the study whilst 

the remaining 18 participants filled-in the questionnaire at the end of session 3. There 

were no differences in awareness between those participants provided with the FFQ 

before the study compared to those who completed the FFQ after the study had ended 

when contingency awareness questions were assessed.  

 

5.2.6 Procedure 

Participants were invited to the Ingestive Behaviour Unit (IBU) at the University of 

Sussex on three non-consecutive sessions. On the first (baseline) session day 

participants were allowed to consume their normal breakfast and were then asked to 

consume nothing but water for the two hours before testing (from 1200h-1400h) to 

ensure mild food deprivation. For sessions two and three, participants were required to 

eat nothing and consume only water from 2300h on the previous evening, with 

breakfast served in the IBU between 9000h-1100h  after which they were free to leave 
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but were asked to return after three hours for the taste test session (from 1200h-1400h) 

having consumed nothing but water. 

 

The taste test sessions were completed in a windowless cubicle containing a large glass 

of water and the SIPM software. Participants were asked to follow the on-screen 

instructions, filling in all mood, appetite and desire for savoury and sweet ratings before 

alerting their experimenter when the relevant samples were required. Across all sessions 

participants were asked to taste the relevant soup sample and complete sensory ratings 

relating to the flavour of that soup. The order in which the samples were evaluated was 

randomised at each session. Once all samples were tasted and rated a final set of mood 

and appetite ratings were filled in. At the end of sessions one and two participants were 

free to leave but their weight, height and age were recorded on the last day and they 

were provided with a copy of the FFQ which they completed before being debriefed and 

paid. A graphical depiction of the experimental design can be seen in Appendix 5.3. 

 

5.2.7 Data Analysis 

In the short-term protein manipulation, sensory ratings of the flavour (MSG, NaCl and 

Ace K) samples were transformed to examine the change in the sensory rating (e.g. 

pleasantness) of the relevant flavour (control, MSG, NaCl or Ace K) and concentration 

(control, weak or strong) on the protein manipulation days (low or high protein) relative 

to the baseline test day. These change scores were calculated taking the sample flavour 

first on the low protein day in control, weak or strong concentrations and expressing the 

difference in this value from the relevant flavour and concentration on the baseline day. 

This was then done for the high protein test day (control was contrasted with no 

inclusion of concentration over the low or high protein manipulation). Two way 

repeated measures 2x7 ANOVAs assessing test condition (low protein breakfast or high 

protein breakfast) and sample taste for weak and strong concentrations (control, weak 

MSG, strong MSG, weak NaCl, strong NaCl, weak Ace K or strong Ace K) were 

conducted to determine any differences in sensory assessments. Similarly, change from 

baseline measures were used in assessments of desire for sweet or savoury to assess 

whether protein manipulation day influenced these assessments in 2x2 ANOVA 

comparing test day manipulation (low or high protein) and time (pre and post flavour 

sample tasting). Ratings of baseline appetite, thirst and nausea were not transformed and 

were examined over session days (baseline test day, low protein manipulation and high 
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protein manipulation) and over time (ratings made before and after the session) using 

3x2 repeated measures ANOVA. 

 

The influence of habitual protein intake in the diet (long-term protein status) on sensory 

assessments of the relevant sample tastes (control, MSG, NaCl or Ace K) and 

concentrations (weak or strong for MSG, NaCl and Ace K) were assessed using simple 

linear regression analyses for each individual taste and each individual concentration to 

assess whether protein status was related to liking for specific tastes and concentrations 

on each day (baseline, low protein day and high protein day). Additional multiple 

regression analyses were also conducted for each individual taste and concentration 

including familiarity alongside protein status as separate blocks in the analysis to 

determine whether familiarity influenced pleasantness ratings more than protein status 

alone. This was due to the known effects of familiarity on influencing pleasantness 

(Appleton, 2013; Blissett & Fogel, 2013; Pliner, 1982).      

 

The influence of long-term protein status was further explored over low and high 

protein manipulation test days to determine whether protein status influenced 

palatability ratings of the taste samples and concentrations differently when in acute 

protein deprivation (after a low protein breakfast) as opposed to when a high protein 

load was received (after the high protein breakfast). The baseline test day was not 

included in this analysis as breakfast consumption (and thus protein intake) on this day 

was not controlled. This was assessed taking each simple linear regression analysis of 

pleasantness for each individual relevant taste (control, MSG, NaCl or Ace K) and 

concentration (weak or strong)  and comparing low protein to high protein manipulation 

days using a one tailed t-test.  Where there were cases of violated sphericity, 

Greenhouse Geisser values (ε = <0.75) were used. If Greenhouse Geisser (ε = >0.75), 

Huynh-Feldt values were reported. Bonferroni adjusted comparisons were used to 

assess significant interactions between patterns of data using within-subjects contrasts 

and effect sizes are reported using Pearson’s correlation coefficient for specific effects. 

G*Power was used to determine the number of participants a-priori for 80% power and 

was also assessed post-hoc. Data are shown for all 24 participants.  
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5.3 Results 

 

5.3.1 Hedonic change from baseline ratings after protein manipulations 

When the change from baseline pleasantness for all flavours and concentrations were 

assessed across test days, a significant effect of test day was evident (F(1,23) = 4.66, p 

=.04), indicating that the change in palatability was higher for all flavours on the low 

protein day than the high protein day in relation to baseline test day (Figure 5.1). 

Flavour samples also differed significantly in rated palatability (main effect of flavour: 

F(6,138) = 3.37, p=.004) with strong NaCl samples (F(1,23) = 7.63, p =.01, r=0.50) and 

weak Ace K samples (F(1,23) = 5.32, p=.03, r=0.43) rated as more aversive on both 

protein manipulation days when compared to the control sample.  Strong MSG samples 

were also rated as most pleasant in flavour over all other flavour samples but this did 

not differ significantly from control (F(1,23) = 0.70, p=.41, r=0.17) and may be due to 

inadequate power as post-hoc power calculations indicated only 12% power in this 

sample. No test day*flavour interaction was evident (F(6,138) = 1.01, p=.43).  
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Figure 5.1. Change from baseline pleasantness assessments (mm) of three flavours 

(Monosodium glutamate; MSG, Panel A, sodium chloride; NaCl, Panel B and 
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Acesulphame K; Ace K, Panel C) of a soup delivered in weak ( ) or strong ( ) flavour 

concentrations and compared to a bland control ( ) across high and low protein 

breakfast exposure days. Data are mean±SEM. Statistically significant difference 

between low and high protein test day (main effect of day) is indicated: * P<0.05.  

 

5.3.2 Sensory change from baseline assessments after protein manipulations 

Sensory ratings were also assessed as change from baseline test day to determine 

whether the protein manipulation influenced these ratings differently from the baseline 

day. A significant effect of flavour was evident in familiarity ratings (F(6,130) = 3.88, 

p=.001) with some flavours rated as more familiar on protein manipulation days as 

compared to the baseline day. Indeed, within-subjects contrasts indicated that strong 

NaCl samples were rated as more familiar than the control condition (F(1,23) = 6.79, 

p=.02, r=0.50). Similarly, weak MSG conditions were rated as more familiar than 

control but this was not statistically significant (F(1,23) = 2.92, p=.10, r=0.34) although 

effect size calculations indicated a medium effect (r = 0.33; Table 5.4). A significant 

effect of flavour was also apparent in strength ratings (F(6,138) = 2.52, p =.02) with all 

but weak Ace K samples rated as stronger than control in flavour. In particular, weak 

MSG (F(1,23) = 5.62, p=.02, r=0.44) and weak NaCl (F(1,23) = 6.93, p =.02, r=0.48) 

concentrations were rated as stronger tasting than control on protein manipulation days 

as compared to the baseline test day. All other sensory ratings were not found to be 

influenced by flavour type or test day and no interactions were apparent.  
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Table 5.4. Mean (±SEM) change from baseline sensory ratings across weak and strong concentrations of flavour samples (monosodium 

glutamate; MSG, sodium chloride; NaCl and Acesulphame K; Ace K) and the control sample after protein manipulations (low protein 

breakfast or high protein breakfast) during lunchtime taste test sessions.
1 

Significantly different from all flavour manipulations P<0.05. 

 

 

  Control MSG NaCl Ace K 

   Low High Low High Low High 

Low Protein Familiar 10.17±5.4
1 

8.25±5.2
 

21.75±6.5 3.71±5.2 -2.63±5.5 11.08±6.3 1.29±5.5 

Pleasant 11.21±5.5
1 

6±5.6 18.96±6.2 7.08±5.2 -8.67±5.3 -2.46±5 -2.58±3.4 

Salty 2.21±4
1 

3.83±4.4 5.38±4.3 10.87±3.3 0.38±4.3 0.79±3.8 -0.25±3.3 

Savoury -0.42±4.6
1 

2.88±4 5.63±4.5 5.12±3.8 -6.20±4.2 6.25±5.4 -2.45±3.5 

Strong -2.54±4
1 

8.83±4.6 8.08±4 8.83±4.68 -1.50±5.6 0.04±3.9 1.29±4.2 

Sweet -2.08±3.7
1 

-4.13±3.7 -0.50±5.9 0.63±5 -2.75±3.9 -5.58±4.6 -3.42±4.1 

High Protein Familiar 8.63±6.4
1 

12.46±4.4 16.58±5.8 5.08±4.5 -5.67±3.9 5.38±6 3.71±5.5 

Pleasant 2.17±5.8
1 

6.46±4.9 7.29±5.89 2.75±4.7 -7.42±3.6 -8.2±4.6 -3.04±4.1 

Salty 1.42±4.3
1 

7.42±4.3 1.21±4.3 7.58±4.6 7.58±3.6 0.67±3 -3.54±5.3 

Savoury -3.58±5.2
1 

6.13±4.6 -0.21±4.3 -0.04±4.1 -1.21±3.8 -1.54±4.1 0.50±5.1 

Strong -5.79±4.3
1 

11.67±5 0.33±4.8 13.92±4.8 1.96±3.8 -0.29±3.8 2.17±3.7 

Sweet -5.67±5.03
1 

-5.67±6 6.58±4.9 -2.04±5.22 -1.88±4.5 -0.25±3.5 -0.38±3.3 
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5.3.3 Appetite and desire ratings over test day sessions 

Hunger (F(2,46) = 0.82, p=.85)  and fullness (F(2,46) = 1.10, p=.34) evaluations before 

soup tasting sessions were found to be non-significant, indicating that participants 

arrived hungry; m: 61.8±2.1 and not very full; m: 33.6±1.3. Change from baseline 

desire for sweet foods was not significantly different irrespective of protein 

manipulation (F(1,23) = 1.20, p=.28), did not differ from pre- to post- session (F(1,23) = 

1.49, p=.23) and no interaction was apparent (F(1,23) = 0.28, p=.60) when compared to 

the baseline test day. However, change from baseline desire for savoury was 

significantly higher on low as compared to high protein days (Main effect of test day: 

F(1,23) = 5.48, p=.03; Table 5.5). This did not change over time (F(1,23) = 0.002, 

p=.97) and no interaction was apparent (F(1,23) = 0.02, p=.89).  

 

Table 5.5. Mean (±SEM) change from baseline appetite and desire ratings across protein 

manipulations (low protein breakfast or high protein breakfast) before (pre) and after 

(post) lunchtime taste test sessions. 
1
 Significantly different from high protein P<0.05. 

 

5.3.4 Long-term protein status and pleasantness assessments  

It was predicted that habitual protein intake in the diet (protein status) would influence 

liking for MSG sources, with those self-reporting higher dietary protein intake expected 

to show increased palatability assessments for stronger concentrations of MSG. There 

was no significant effect of a higher protein status alone increasing pleasantness for 

MSG on baseline sessions for weak (b= 0.03, t(23) = 0.39, p=.70) or strong (b= 0.02, 

t(23) = 0.19, p=.85) concentrations or on low protein (weak concentration: b = 0.01, 

t(23) = 0.19, p=.85; strong concentration: b =  0.05, t(23) = 0.70, p=.49) or high protein 

(weak concentration: b= 0.06, t(23) = 1.04, p=.31; strong concentration: b = -0.06, t(23) 

= -0.98, p=.34) test days (Table 5.6). The influence of protein status on other sensory 

ratings of MSG was also not found to be significant and can be seen in Table 5.6. 

Protein status was also not predictive of desire for savoury after baseline (b= -0.004, 

 Low Protein High Protein 

 Pre Post Pre Post 

Desire for Savoury 6.5±3.3
1 

6.3±3.3
1 

-0.8±3.9 -0.3±4.2 

Desire for Sweet 7.1±4.4 -3.2±6 1.8±4 -5.1±5.8 
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t(23) = -0.10, p=.92) , low protein (b= -0.004, t(23) = -0.08, p=.94) or high protein (b= 

0.004, t(23) = -0.07, p=.87) manipulations.  
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Table 5.6. Regression results across sensory ratings for weak and strong MSG soup sample concentrations after protein manipulations 

(baseline no manipulation, low protein breakfast or high protein breakfast). 

 

 Sensory Rating B  t 

  Low High Low High Low High 

Baseline Familiar 0.06±0.06 -0.02±0.06 0.20 -0.57 0.97 -0.26 

Pleasant 0.03±0.1 0.02±0.1 0.08 0.04 0.39 0.19 

Salty 0.05±0.07 -0.04±0.06 0.16 -0.16 0.75 -0.76 

Savoury -0.03±0.05 -0.01±0.04 -0.14 -0.82 -0.64 -0.23 

Strong 0.07±0.07 -0.05±0.06 0.20 -0.19 0.94 -0.92 

Sweet -0.01±0.05 -0.04±0.06 -0.05 -0.13 -0.24 -0.59 

Low Protein Familiar -0.01±0.06 -0.02±0.06 -0.04 -0.06 -0.17 0.78 

Pleasant 0.01±0.07 0.05±0.07 0.04 0.15 0.19 0.70 

Salty 0.07±0.05 0.09±0.05 0.29 0.37 1.42 1.88 

Savoury 0.03±0.05 -0.03±0.04 0.15 -0.15 0.49 -0.71 

Strong -0.05±0.05 -0.05±0.03 -0.20 -0.36 -0.94 -1.80 

Sweet -0.06±0.06 0.03±0.07 -0.21 0.09 -0.98 0.40 

High Protein Familiar 0.04±0.05 -0.040.07 0.15 -0.13 0.72 -0.59 

Pleasant 0.06±0.06 -0.06±0.07 0.21 -0.21 1.04 -0.98 

Salty 0.02±0.05 0.001±0.07 0.07 0.003 0.32 0.01 

Savoury 0.01±0.06 -0.13±0.06 0.05 -0.42 0.23 -1.22 

Strong 0.005±0.05 -0.01±0.05 0.02 -0.04 0.11 -0.20 

Sweet -0.09±0.06 0.004±0.07 -0.28 0.01 -1.38 0.06 
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When familiarity was included as a separate block alongside protein status in multiple 

regression analyses, familiarity was found to significantly predict pleasantness for weak 

and strong concentrations of MSG, NaCl and Ace K and for control conditions after the 

baseline and high protein test days but was not found to be significant for MSG on the 

low protein test day at weak (b = 0.33, t(23) = 1.47, p = 0.16) or strong (b = 0.35, t(23) 

= 1.44, p = 0.16) concentrations or for Ace K at strong concentrations (b = 0.27, t(23) = 

1.56, p = 0.14) or for the control condition (b = 0.24, t(23) = 1.47, p = 0.16) on the low 

protein day. Correlations between the sensory and appetite ratings revealed no 

significant correlations between these conditions on the test days thus no additional 

sensory assessments were added to the regression model. 

 

It was also predicted that acute protein deprivation would increase liking of stronger 

concentrations of MSG on low protein days as a function of protein status with the 

expectation that the higher the protein status, the more palatable the strong 

concentration of MSG would be rated on the low protein test day as compared to the 

high protein test day. Simple regression analyses for rated pleasantness of strong 

concentrations of MSG on low protein test days were contrasted with high protein test 

days using one tailed t-tests. This was also conducted across weak concentrations of 

MSG as well as weak and strong concentrations of all of the other taste samples tested 

(control, NaCl and Ace K) but was not found to significantly differ between days for the 

other flavour samples. As protein status increased, palatability ratings were found to 

increase after strong concentrations of MSG on low protein test days as compared to 

high protein test days (t(23) = -0.012, p = .05; Figure 5.2). Figure 5.2 also suggests that 

those with higher protein status disliked strong MSG concentrations on the high protein 

test day. Protein status did not influence palatability across weak concentrations of 

MSG on low as compared to high protein test days (t(23) = -0.84, p=.79) and there were 

no other significant differences found across all other tastes or concentrations.  
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Figure 5.2. Pleasantness assessments (mm) of weak (Panel A) and strong (Panel B) 

concentrations of MSG soup samples after protein manipulations (baseline no 

manipulation ( ), low protein breakfast ( ) or high protein breakfast ( )) as 

a function of habitual protein consumption (Protein Status Score) using linear regression 

coefficients. Significant t-test difference on high concentration day between 

manipulation conditions P=0.05.  

 

5.3.5 Rated thirst and nausea across test days 

There were no significant differences in thirst (F(2,46) = 1.33, p=.28) or nausea 

(F(1.5,33.7) = 0.51, p=.60) assessments before each tasting session. Participants arrived 

relatively thirsty; m: 56±0.1 and were not nauseous; m: 10±1.1 before the sessions. 

Thirst significantly decreased over time across all test sessions (F(1,23) = 18.40, p = 
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<.001) and this did not interact with test day (F(2,46) = 3.00, p=.38). Nausea ratings did 

not change across the test session (F(1,23) = 0.00, p=.98) and there was no 

condition*time interaction (F(2,46) = 0.77, p=.47) indicating that neither test day nor 

taste sample caused any detrimental effects.  

 

5.4 Discussion 

 

The main results suggest that acute protein deprivation increased liking for all flavours 

and increased desire for savoury foods indicating that short-term manipulations of 

protein may act to increase liking and desire for a range of foods but not specifically for 

umami flavours. These differences in preferences were seen despite there being no 

overall difference in rated hunger at the two test sessions, suggesting the effects were 

driven by the macronutrient manipulation and not appetite per se. Although liking for 

strong concentrations of MSG tended to be greater on low protein days, this was not 

significant. Strong NaCl and weak Ace K flavours were liked less when protein status 

was manipulated but liking for MSG tended to remain high. Habitual protein intake was 

not a predictor of liking for MSG when assessed alone however, higher habitual protein 

intake was associated with higher pleasantness assessments of strong concentrations of 

MSG when these individuals were in acute protein deficit and lower pleasantness 

ratings when these individuals were provided with high protein loads. These findings 

may be contradictory based on the evidence put forward by Laska and Hernandez 

Salazar (2004) but do suggest that protein status may influence liking of foods that may 

predict protein. 

 

The hypothesis that acute protein deprivation would increase liking of a strong 

concentration of MSG relative to other flavour samples was not supported. This may be 

due to the research being underpowered as the results did suggest stronger liking for the 

stronger concentration of MSG when in protein deficit as compared to baseline. 

Similarly, the desire for savoury was higher after the low protein manipulation 

irrespective of hunger. This may be understood in terms of an innate desire for foods 

which predict protein (Austin, et al., 2011; Larsen, et al., 2010; Simpson, et al., 2003; 

Simpson & Raubenheimer, 2005) as savoury foods contain more reliable and higher 

quantities of protein than sweet foods (Blundell & Rogers, 1994; Luscombe-Marsh, et 

al., 2008; Viskaal-van Dongen, et al., 2011). However this did not translate to liking, 
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with a general increase in liking of all flavours found on the low protein day, instead 

suggesting that pleasantness assessments were extended to any flavour which offered a 

nutrient source. Liking of the flavours was also lower on the high protein day, with 

strong NaCl and weak Ace K flavours in particular liked less on this day than after 

baseline sessions. Although it is not clear why these flavours in particular were liked 

less, the general decline in liking after the high protein manipulation may be related to 

macronutrient sensing, with a less urgent need for nutrients in high as opposed to low 

protein manipulation reflected in the pleasantness ratings. It is however surprising to 

note that hunger assessments did not differ across low and high protein manipulations as 

liking has been related to hunger, with stronger hunger increasing liking (Gibson & 

Wardle, 2001) and as protein has been shown to be particularly satiating (Bertenshaw, 

et al., 2008). Only weak NaCl samples were rated as more familiar after baseline 

sessions, although weak MSG soups were also perceived as more familiar (but this was 

not statistically significant). This may be due to this quantity of NaCl used falling 

within the range usually consumed by this sample thus it was assessed as more familiar 

on the remaining sessions. It may also be that participants were focussed more on 

flavours that predicted a savoury source and this salience caused NaCl and MSG 

flavours to be perceived as more familiar. Indeed, ratings of strength of flavour were 

also higher across all flavour conditions apart from weak Ace K samples in comparison 

to control soups on protein manipulation days. This suggests that for the most part 

‘strength’ may have been assumed to denote ‘additional flavour’ across protein 

manipulation days indicating that more clarification may have been required with the 

ratings used. It also may suggest that the samples low in sweetness began to taste more 

similar to the control after the baseline test day, possibly due to the less important signal 

of sweetness encountered. However, this remains as speculation.  

 

Although habitual protein intake was also not found to be associated with liking of 

MSG concentrations alone, when individuals who regularly consumed higher 

proportions of protein were exposed to an acute protein deprivation, pleasantness 

ratings of strong MSG concentrations were greater than when these individuals 

consumed large protein loads. This is similar to the findings observed in primates 

(Laska & Hernandez Salazar, 2004), with primates who ingested higher quantities of 

animal protein shown to prefer stronger concentrations of MSG. These individuals were 

also found to rate strong concentrations of MSG as less palatable after a high protein 
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load. This may be due to these participants regulating their protein intake more 

efficiently due to their regular exposure to protein (Simpson, et al., 2003). Unlike the 

findings reported by Laska and Hernandez Salazar (2004), lower protein consumers 

were not found to prefer weaker concentrations of MSG. This may be due to the nature 

of the habitual protein intake questionnaire used which may not have been sensitive 

enough to pick up subtle differences in protein intake due to the questions asked. 

Similarly, there may have been a potential for errors of omission and under-reporting as 

has frequently been found in questionnaire designs (Mendez et al., 2011). Indeed, the 

effects reported must also be treated with caution as they were found to be subtle and 

were underpowered.      

 

When the influences of familiarity and protein status on the rated pleasantness of soups 

were assessed across all session days (baseline, low protein and high protein) for all 

soup flavours, habitual protein intake was not found to be associated with liking of 

MSG concentrations, suggesting that regular consumption of high protein sources did 

not influence liking of MSG on baseline, low or high protein test days. However, a 

significant effect was apparent for familiarity. Indeed, the salt enhanced samples in 

particular were rated as more pleasant due to familiarity across all session days 

irrespective of protein status. This may be due to the known effects of familiarity on 

liking (Appleton, 2013; Blissett & Fogel, 2013; Pliner, 1982). Indeed, participants may 

have been more familiar with the NaCl conditions overall, again due to the greater 

likelihood of repeated exposure to salt-containing stimuli. This was also evident with 

the MSG samples on baseline and high protein days, with familiarity (but not protein 

status) predicting liking but was not evident on the low protein day. It may be that 

familiarity was not a dominant factor in liking for MSG on low protein test days due to 

other cues potentially acting as more dominant sources. However as no clear change in 

pleasantness for MSG samples when given a high or low protein load was apparent in 

the earlier analyses mentioned, speculations about the mechanisms that may be more 

salient cannot be made. Familiarity did not influence liking of control and strong 

concentrations of Ace K on the low protein day either.  

 

Despite the modest increase in liking for strong concentrations of MSG during protein 

deprivation relative to baseline and high protein sessions in habitually high protein 

consumers, it is still not clear whether this liking would elicit approach responses in 



175 
 

individuals. Indeed, the distinction between behaviours influenced by ‘liking’ and 

‘wanting’ is well documented in the literature (Berridge, 1996; Berridge & Robinson, 

1998; Finlayson, King, & Blundell, 2008; Finlayson, et al., 2007) with researchers 

showing approach behaviours to be influenced by ‘wanting’ with an absence of ‘liking’ 

(Peciña, Cagniard, Berridge, Aldridge, & Zhuang, 2003) and behaviours related to 

‘liking’ without ‘wanting’ (Berridge, 2009). Thus, it may be that the liking response 

observed may not translate to an increase in free choice consumption of high MSG 

containing foods, particularly as liking ratings in taste test paradigms may give biased 

estimations of food palatability (Zandstra, de Graaf, van Trijp, & van Staveren, 1999).  

Some research also suggests that receiving a high protein or carbohydrate load 

differentially influences the brain areas associated with ‘wanting’ and ‘liking’ (Born, 

Martens, Lemmens, Goebel, & Westerterp-Plantenga, 2013), with participants satiated 

on high protein loads found to decrease ‘liking’ task related brain signalling to food 

items in the putamen whilst high carbohydrate loads decreased ‘wanting’ responses to 

food items in the hypothalamus. Thus, further research is required to ascertain whether 

the increase in liking found in high protein consumers translates to increased intake in a 

free choice paradigm as participants were not fed to satiation.  

 

Overall, acutely manipulating protein need may increase desire for savoury foods and 

more generally increases liking of umami and salty flavours as compared to sweet and 

bland flavours. This liking is not predicted by habitual protein intake alone but when 

habitual intake is compared across acute protein manipulations, individuals who 

generally consume more protein in their diet show increased liking for a strong 

concentration of MSG when in acute protein deficit but lower liking after a high protein 

load in these individuals. Future research is necessary to explore the role of acute 

protein deprivation and general protein intake on food choice and consumption to assess 

whether food selection practices are influenced by protein-need with MSG added and no 

MSG foods; further broadening our understanding about the predictive nature of flavour 

pleasantness and nutritional need. 

 

5.5 Summary of key findings and directions for future research 

 The findings indicate that palatability and desire for umami, sweet and salty 

flavours increased after a low as compared to high protein manipulation 

irrespective of appetite 
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 There was no effect of low protein manipulation on specific liking for umami 

and habitual protein status score did not predict liking for MSG sources however 

high protein consumers subjected to a protein deprivation showed a stronger 

liking for high concentrations of MSG than low protein consumers  

 Future research is required to further understand whether the effects for umami 

palatability seen in high protein consumers undergoing a mild protein 

deprivation are specific to the effects of protein  

 Similarly, if high protein consumers are more responsive to umami flavours, 

future research may wish to further explore this distinction in relation to appetite 

and intake using MSG and protein cues 

 As high protein consumers were receptive to strong concentrations of MSG, it 

would additionally be useful to assess the potential link between umami flavours 

and protein and whether umami may act as a cue for protein in the diet, 

particularly in relation to the aspects of protein related to improving satiation 

and satiety 
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Appendix 5.1. Portion size estimation sheet 
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Appendix 5.2.  Protein Food Frequency Questionnaire  

This questionnaire will ask you about your food intake over the 

last 6 months. To mark your selections check the boxes next to 

the options listed by pressing the square box to the left of the 

option e.g. 

 

☒This box is checked 

☐This box is not checked  

 

With a new question, either the question number and/or the 

question text will be written in blue; this is to allow you to locate 

the next question if the current question is not relevant.  

 

Included is a portion sizing guide to estimate how much of 

certain foods you have eaten within this period. Please use it 

when making your selections as the questionnaire explicitly refers 

to it. 

 

Please ensure that you read all of the questions thoroughly and 

answer them to the best of your knowledge. All questionnaire 

data will be anonymised and assigned coded values to maintain 

your anonymity. 
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1. Please check the box next to each beverage that you drank at least once 

in the past 6 months.  

☐ 1. Milk as a beverage (NOT in coffee, cereal or tea)  

☐2. Chocolate milk or milkshakes (including hot chocolate) (NOT 

including high protein milkshakes) 

☐3. High-protein beverages or milkshakes 

☐None of the above [GO TO QUESTION 4] 

 

1a. Over the past 6 months, how often did you drink milk as a beverage 

(NOT in coffee, cereal or tea)? 

☐Never [GO TO QUESTION 2] 

☐1 time per month or less 

☐2-3 times per month  

☐1-2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2-3 times per day 

☐4-5 times per day 

☐6 or more times per day 

 

1b. Each time you drank milk as a beverage (NOT in coffee, cereal or 

tea), how much did you usually drink?  

☐Less than 1 mug/glass (less than 250ml) 

☐1 – 2 mugs/glasses (250ml – 500ml) 

☐More than 2 mugs/glasses (more than 500ml) 

 

1c. Each time you drank milk as a beverage (NOT in coffee, cereal or 

tea), what kind of milk did you usually drink? 

☐Whole milk 

☐Semi-skimmed (2% fat) milk 

☐Skimmed milk 

☐Soy milk 

☐Rice milk 

☐Raw unpasteurized milk 

☐Other 

 

2a. Over the past 6 months, how often did you drink chocolate milk or 

milkshakes (including hot chocolate) (not including high protein 

milkshakes)? 
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☐Never [GO TO QUESTION 3] 

☐1 time per month or less 

☐2-3 times per month  

☐1-2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2-3 times per day 

☐4-5 times per day 

☐6 or more times per day 

 

2b. Each time you drank chocolate milk or milkshakes (including hot 

chocolate) (not including high protein milkshakes), how much did you 

usually drink?  

☐Less than 1 mug/glass (less than 250ml) 

☐1 – 2 mugs/glasses (250ml – 500ml) 

☐More than 2 mugs/glasses (more than 500ml) 

 

2c. Each time you drank chocolate milk or milkshakes (including hot 

chocolate) (not including high protein milkshakes), what kind of milk 

did you usually drink? 

☐Whole milk 

☐Semi-skimmed (2% fat) milk 

☐Skimmed milk 

☐Soy milk 

☐Rice milk 

☐Raw unpasteurized milk 

☐Other 

 

3a. Over the past 6 months, how often did you drink high protein 

beverages or milkshakes? 

☐Never [GO TO QUESTION 4] 

☐1 time per month or less 

☐2-3 times per month  

☐1-2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2-3 times per day 
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☐4-5 times per day 

☐6 or more times per day 

 

3b. Each time you drank high protein beverages or milkshakes, how 

much did you usually drink?  

☐Less than 1 mug/glass (less than 250ml) 

☐1 – 2 mugs/glasses (250ml – 500ml) 

☐More than 2 mugs/glasses (more than 500ml) 

 

4. Please check the box next to each food that you ate at least once in the 

past 6 months.  

☐4. Porridge or other cooked cereal 

☐5. Cold cereal 

☐None of the above [GO TO QUESTION 6] 

 

4a. How often did you eat porridge or other cooked cereal over the past 6 

months? 

☐Never [GO TO QUESTION 5] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

4b. Each time you ate porridge or other cooked cereal, how much did 

you usually eat? 

☐Less than 1 instant sachet or less than one serving size (26g) 

☐1 instant sachet or one serving size (27-50g)  

☐More than 1 instant sachet or more than one serving size (more than 50g) 

 

4c. Was milk added to make up your porridge or other cooked cereal? 

☐Yes 

☐No 

 

4d. If yes, what kind of milk was usually added? 

☐Whole milk 

☐Semi-skimmed (2% fat) milk 
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☐Skimmed milk 

☐Soy milk 

☐Rice milk 

☐Raw unpasteurized milk 

☐Other 

 

4e. Each time milk was added to your porridge or other cooked cereal, 

how much milk was usually added? 

☐Less than 1 mug/glass (less than 250ml) 

☐1 – 2 mugs/glasses (250ml – 500ml) 

☐More than 2 mugs/glasses (more than 500ml) 

 

5a. How often did you eat cold cereal over the past 6 months? 

☐Never [GO TO QUESTION 6] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

5b. Each time you ate cold cereal, how much did you usually eat? 

☐Half of a breakfast bowl or less than 1 serving size (29g) 

☐1- 1½ breakfast bowl or 1 to 2 serving sizes (30g-60g) 

☐More than 1½ breakfast bowls or more than 2 serving sizes (more than 

60g) 

 

5c. Was milk added to make up your cold cereal? 

☐Yes 

☐No [GO TO QUESTION 6] 

 

5d. If yes, what kind of milk was usually added? 

☐Whole milk 

☐Semi-skimmed (2% fat) milk 

☐Skimmed milk 

☐Soy milk 

☐Rice milk 
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☐Raw unpasteurized milk 

☐Other 

 

5e. Each time milk was added to your cold cereal, how much milk was 

usually added? 

☐Less than 1 mug/glass (less than 250ml) 

☐1 – 2 mugs/glasses (250ml – 500ml) 

☐More than 2 mugs/glasses (more than 500ml) 

 

6. Please check the box next to each food that you ate at least once in the 

past 6 months 

☐Never [GO TO QUESTION 8] 

☐6. Peanut butter or other nut or seed butters 

☐7.Peanuts, walnuts, almonds, seeds or other nuts  

 

6a. How often did you eat peanut butter or other nut or seed butters 

over the past 6 months? 

☐Never [GO TO QUESTION 7] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

6b. Each time you ate peanut butter or other nut or seed butters, how 

much did you usually eat? 

☐Less than 15g (less than 1 tablespoon or less than 1 thumb size (1 

ounce)) 

☐15-30g (1-2 tablespoons or 1-2 thumb sizes (1-2 ounces)) 

☐More than 30g (more than 2 tablespoons or more than 2 thumb sizes 

(more than 2 ounces)) 

 

7a. How often did you eat peanuts, walnuts, almonds, seeds or other 

nuts in the last 6 months? 

☐Never [GO TO QUESTION 8] 

☐1 time per month or less 

☐2-3 times per month  
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☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

7b. Each time you ate peanuts, walnuts, almonds, seeds or other nuts, 

how much did you usually eat?  

☐Less than 25g (less than 1 ounce or less than 1 handful) 

☐25g to 50g (1-2 ounces or 1-2 handfuls) 

☐More than 50g (more than 2 ounces or more than 2 handfuls) 

 

8. Please check the box next to each food that you ate at least once in the 

past 6 months (including in sandwiches and/or in other meals). 

☐8. Roast beef or steak in sandwiches 

☐9. Turkey or chicken COLD CUTS (such as luncheon meat, turkey or 

chicken slices or pastrami) 

☐10. Luncheon or deli-style ham  

☐11. Other cold cuts or luncheon meats (such as salami, corned beef, 

pastrami etc) (Please do not include ham, turkey or chicken cold cuts) 

☐12. Hot dogs or frankfurters (Please do not include sausages or 

vegetarian hot dogs) 

☐None of the above [GO TO QUESTION 12] 

 

8a. How often did you eat roast beef or steak in sandwiches? 

☐Never [GO TO QUESTION 9] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

8b. Each time you ate roast beef or steak in sandwiches, how much did 

you usually eat? 

☐Less than 1 slice (or less than 26g or less than 1 ounce/ 1 handful) 

☐1 to 2 slices (or 27- 54g or 1 – 2 ounces/ 1-2 handfuls) 
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☐3 or more slices (more than 54g or more than 2 ounces/ 2 handfuls) 

 

9a. How often did you eat Turkey or chicken COLD CUTS (such as 

luncheon meat, turkey ham or turkey pastrami)? 

☐Never [GO TO QUESTION 10] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

9b. Each time you ate Turkey or chicken COLD CUTS (such as luncheon 

meat, turkey ham or turkey pastrami), how much did you usually eat? 

☐Less than 1 slice (or less than 26g or less than 1 ounce/ 1 handful) 

☐1 to 2 slices (or 27- 54g or 1 – 2 ounces/ 1-2 handfuls) 

☐3 or more slices (more than 54g or more than 2 ounces/ 2 handfuls) 

 

10a. How often did you eat luncheon or deli-style ham? 

☐Never [GO TO QUESTION 11] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

10b. Each time you ate luncheon or deli-style ham, how much did you 

usually eat? 

☐Less than 1 slice (or less than 26g or less than 1 ounce/ 1 handful) 

☐1 to 2 slices (or 27- 54g or 1 – 2 ounces/ 1-2 handfuls) 

☐3 or more slices (more than 54g or more than 2 ounces/ 2 handfuls) 

 

11a. How often did you eat other cold cuts or luncheon meats (such as 

salami, corned beef, pastrami etc) (Please do not include ham, turkey or 

chicken cold cuts)? 
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☐Never [GO TO QUESTION 12] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

  

11b. Each time you ate other cold cuts or luncheon meats, how much did 

you usually eat? 

☐Less than 1 slice (or less than 26g or less than 1 ounce/ 1 handful) 

☐1 to 2 slices (or 27- 54g or 1 – 2 ounces/ 1-2 handfuls) 

☐3 or more slices (more than 54g or more than 2 ounces/ 2 handfuls) 

 

12a. How often did you eat hot dogs or frankfurters (Please do not 

include sausages or vegetarian hot dogs)? 

☐Never [GO TO QUESTION 13] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

12b. Each time you ate hot dogs or frankfurters, how much did you 

usually eat? 

☐Less than 1 hot dog/frankfurter 

☐1-2 hot dogs/frankfurters 

☐More than 2 hot dogs/frankfurters 

 

13. Please check the box next to each food that you ate at least once in the 

past 6 months. 

☐13. Minced chicken or turkey 

☐14. Beef hamburgers or cheeseburgers  

☐15. Beef mixtures (such as meatballs, chilli, meatloaf, beef stew, beef 

pies, beef and noodles, beef and vegetables) 
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☐16. Roast beef, pot roasts or beef steak (NOT in sandwiches) 

☐17. Pork or beef spareribs 

☐18. Baked ham or ham steaks (e.g. gammon) 

☐19. Bacon  

☐20. Pork Sausages 

☐21. Pork (including chops, roasts and mixed in dishes) (Please do not 

include ham, bacon or sausages) 

☐22. Lamb (including chops, roasts and mixed in dishes) 

☐23. Roast turkey, turkey nuggets, or turkey cutlets (including 

sandwiches) 

☐24. Chicken mixtures (such as salads, sandwiches, casseroles, stews and 

other mixtures) 

☐25. Roasted, baked, boiled or fried chicken (including nuggets) 

☐26. Offal such as heart, kidneys, liver (all kinds)  

☐27. Canned tuna (including in salads, sandwiches or casseroles) 

☐28. Shellfish (including fried) 

☐29. Salmon, fresh tuna or trout 

☐30. Other fish, fish fingers (not including shellfish) 

☐None of the above [GO TO QUESTION 30] 

 

13a. How often did you eat minced chicken or turkey? 

☐Never [GO TO QUESTION 14] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

13b. Each time you ate minced chicken or turkey, how much did you 

usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

14a. How often did you eat beef hamburgers or cheeseburgers? 

☐Never [GO TO QUESTION 15] 
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☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

  

14b. Each time you ate beef hamburgers or cheeseburgers, how much did 

you usually eat? 

☐Less than 1 patty (less than 70g) 

☐1 patty (approximately 70g) 

☐More than 1 patty (more than 70g) 

 

15a. How often did you eat beef in mixtures (such as meatballs, chilli,  

meatloaf, beef stew, beef pies, beef and noodles, beef and vegetables )? 

☐Never [GO TO QUESTION 16] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

15b. Each time you ate beef in mixtures (such as meatballs, chilli,  

meatloaf, beef stew, beef pies, beef and noodles, beef and vegetables), how 

much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

16a. How often did you eat roast beef, pot roasts or beef steaks (NOT in 

sandwiches)?  

☐Never [GO TO QUESTION 17] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 
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☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

16b. Each time you ate roast beef, pot roasts or beef steaks (NOT in 

sandwiches), how much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

17a. How often did you eat pork or beef spareribs?  

☐Never [GO TO QUESTION 18] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

17b. Each time you ate pork or beef spareribs, how much did you usually 

eat? 

☐Less than 4 spareribs 

☐4 to 12 spareribs 

☐More than 12 spareribs 

 

18a. How often did you eat baked ham or ham steaks (e.g. gammon)?  

☐Never [GO TO QUESTION 19] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 
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18b. Each time you ate baked ham or ham steaks (e.g. gammon), how 

much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

19a. How often did you eat bacon?  

☐Never [GO TO QUESTION 20] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

19b. Each time you ate bacon, how much did you usually eat? 

☐Less than 2 rashers 

☐2 to 3 rashers 

☐More than 3 rashers 

 

20a. How often did you eat pork sausages?  

☐Never [GO TO QUESTION 21] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

20b. Each time you ate pork sausages, how much did you usually eat? 

☐Less than 2 links 

☐2 to 3 links 

☐More than 3 links 
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21a. How often did you eat pork (including chops, roasts and mixed in 

dishes) (Please do not include ham, bacon or sausages)? 

☐Never [GO TO QUESTION 22] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

21b. Each time you ate pork, how much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

22a. How often did you eat lamb (including chops, roasts and mixed in 

dishes)? 

☐Never [GO TO QUESTION 23] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

22b. Each time you ate lamb, how much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

23a. How often did you eat roast turkey, turkey nuggets, or turkey 

cutlets (including sandwiches)? 

☐Never [GO TO QUESTION 24] 

☐1 time per month or less 

☐2-3 times per month  
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☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

23b. Each time you ate roast turkey, turkey nuggets, or turkey cutlets, 

how much did you usually eat? (Please note: 4 to 8 turkey nuggets = 85g or 

3 ounces) 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

24a. How often did you eat chicken mixtures (such as salads, sandwiches, 

casseroles, stews and other mixtures)? 

☐Never [GO TO QUESTION 25] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

24b. Each time you ate chicken mixtures, how much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

25a. How often did you eat roasted, baked, boiled or fried chicken 

(including nuggets)?  

☐Never [GO TO QUESTION 26] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 
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☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

25b. Each time you ate roasted, baked, boiled or fried chicken, how 

much did you usually eat? 

☐Less than 2 drumsticks or wings, or less than 1 breast or thigh, or less 

than 4 nuggets 

☐2 drumsticks or wings, or 1 breast or thigh, or 4 nuggets-8 nuggets 

☐More than 2 drumsticks or wings, or 1 breast or thigh, or 4 nuggets-8 

nuggets 

 

26a. How often did you eat offal such as heart, kidneys, liver (all kinds)? 

☐Never [GO TO QUESTION 27] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

26b. Each time you ate offal such as heart, kidneys, liver (all kinds), how 

much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

27a. How often did you eat canned tuna (including in salads, sandwiches 

or casseroles)? 

☐Never [GO TO QUESTION 28] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 
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27b. Each time you ate canned tuna, how much did you usually eat? 

☐Less than 125g or less than 1 can, less than 3 ounces (palm of hand) 

☐125-250g or 1- 1½ cans or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 1½ cans or more than 6 ounces (more than 

2 palms of hand) 

 

28a. How often did you eat shellfish (including fried)?  

☐Never [GO TO QUESTION 29] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

28b. Each time you ate shellfish, how much did you usually eat? 

☐Less than 125g or less than 3 ounces (palm of hand) 

☐125-250g or 3 – 6 ounces (1 – 2 palms of hands) 

☐More than 250g or more than 6 ounces (more than 2 palms of hand) 

 

29a. How often did you eat salmon, fresh tuna or trout? 

☐Never [GO TO QUESTION 30] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

29b. Each time you ate salmon, fresh tuna or trout, how much did you 

usually eat? 

☐Less than 1 or 1 fillet, less than 125g or less than 3 ounces (palm of 

hand) 

☐1 to 2 fillets or 125-250g or 3 – 6 ounces (1 – 2 palms of hands) 



195 
 

☐More than 2 fillets or more than 250g or more than 6 ounces (more than 

2 palms of hand) 

 

30a. How often did you eat other fish or fish fingers (not including 

shellfish)? 

☐Never [GO TO QUESTION 31] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

30b. Each time you ate other fish or fish fingers (not including shellfish), 

how much did you usually eat? 

☐Less than 3 fish fingers or less than 1 fillet (less than 125g or less than 3 

ounces (palm of hand) 

☐3 to 4 fish fingers or 1 - 2 fillets (125-250g or 3 – 6 ounces (1 – 2 palms 

of hands)  

☐More than 4 fish fingers or more than 2 fillets (more than 250g or more 

than 6 ounces (more than 2 palms of hands) 

 

31. Please check the box next to each food that you ate at least once in the 

past 6 months. 

☐31. Tofu, soy burgers, vegetarian sausages or other soy-meat substitutes 

☐32. Eggs or egg whites (Please include eggs in egg salads, quiche or 

soufflés) (not counting eggs in baked goods and desserts)  

☐None of the above [GO TO QUESTION 33] 

 

31a. How often did you eat tofu, soy burgers, vegetarian sausages or 

other soy-meat substitutes? 

☐Never [GO TO QUESTION 32] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 
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☐1 time per day 

☐2 or more times per day 

 

31b. Each time you ate tofu, soy burgers, vegetarian sausages or other 

soy-meat substitutes, how much did you usually eat? 

☐Less than 2 burgers or sausages or less than 125g (palm of hand) tofu or 

soy substitute 

☐2-3 burgers or sausages or 125-250g (1 – 2 palms of hands) tofu or soy 

substitute 

☐More than 3 burgers or sausages or more than 250g (2 palms of hands) 

tofu or soy substitute 

 

32a. How often did you eat eggs or egg whites (Please include eggs in egg 

salads, quiche or soufflés) (not counting eggs in baked goods and desserts)? 

☐Never [GO TO QUESTION 33] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

32b. Each time you ate eggs or egg whites, how many did you usually eat? 

☐1 egg or 1 egg white 

☐2 eggs or 2 egg whites 

☐More than 2 eggs or more than 2 egg whites 

 

33a. How often did you eat high protein bars (e.g. Maximuscle, Promax 

etc) in the last 6 months? 

☐Never [GO TO QUESTION 34] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 
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33b. Each time you ate high protein bars, how much did you usually eat?  

☐Less than 1 bar (less than 60g) 

☐1 bar (60g) 

☐More than 1 bar (more than 60g) 

 

34. Please check the box next to each food that you ate at least once in the 

past 6 months. 

☐34. Yoghurt (including low-fat and fat-free and fruit yoghurts) (NOT 

including frozen yoghurt) 

☐35. Cottage cheese or cream cheese (including low-fat and fat-free) 

☐36. Cheese (including low-fat and fat-free; including on cheeseburgers 

or in sandwiches or subs) 

☐None of the above [GO TO QUESTION 37] 

 

34a. How often did you eat yoghurt (including low-fat and fat-free and 

fruit yoghurts) (NOT including frozen yoghurt)? 

☐Never [GO TO QUESTION 35] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

34b. Each time you ate yoghurt, how much did you usually eat? 

☐Less than 125g (less than ¼ large pot or less than 3 ounces (palm of 

hand) 

☐125g – 250g (¼ to ½ large pot or 3 – 6 ounces (1-2 palms of hand) 

☐More than 250g (more than ¼ to ½ large pot or more than 6 ounces (2 

palms of hands) 

 

34c. How often was the yoghurt you ate low-fat or fat-free? 

☐Almost never or never 

☐About ¼ of the time 

☐About ½ of the time 

☐About ¾ of the time 

☐Almost always or always  
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35a. How often did you eat cottage cheese? 

☐Never [GO TO QUESTION 35d] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

35b. Each time you ate cottage cheese, how much did you usually eat? 

☐Less than 28g (less than ⅙ large pot or less than 1 handful) 

☐28g – 56g (⅙ to ⅓ large pot or 1-2 handfuls) 

☐More than 56g (more than ⅙ to ⅓ large pot or more than 2 handfuls) 

 

35c. How often was the cottage cheese you ate low-fat or fat-free? 

☐Almost never or never 

☐About ¼ of the time 

☐About ½ of the time 

☐About ¾ of the time 

☐Almost always or always  

 

35d. How often did you eat cream cheese? 

☐Never [GO TO QUESTION 36] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

35e. Each time you ate cream cheese, how much did you usually eat? 

☐Less than 15g (less than 1 tablespoon or less than 1 thumb size (1 

ounce)) 

☐15-30g (1-2 tablespoons or 1-2 thumb sizes (1-2 ounces)) 
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☐More than 30g (more than 2 tablespoons or more than 2 thumb sizes 

(more than 2 ounces)) 

 

35f. How often was the cream cheese you ate low-fat or fat-free? 

☐Almost never or never 

☐About ¼ of the time 

☐About ½ of the time 

☐About ¾ of the time 

☐Almost always or always  

 

36a. How often did you eat cheese (including low-fat and fat-free; 

including on cheeseburgers or in sandwiches or subs)?  

☐Never [GO TO QUESTION 37] 

☐1 time per month or less 

☐2-3 times per month  

☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

36b. Each time you ate cheese, how much did you usually eat? 

☐Less than 25g (less than 1 slice/ less than 1 ounce or 1 thumb’s worth) 

☐25-50g (1 to 2 slices/ 1-2 ounces or 1-2 thumb’s worth) 

☐More than 50g (more than 2 slices/ more than 2 ounces or more than 2 

thumb’s worth) 

 

36c. How often was the cheese you ate low-fat or fat-free? 

☐Almost never or never 

☐About ¼ of the time 

☐About ½ of the time 

☐About ¾ of the time 

☐Almost always or always   

 

37a. How often did you eat frozen yoghurt, ice cream, ice cream bars or 

ice cream cones in the last 6 months? 

☐Never [GO TO QUESTION 38] 

☐1 time per month or less 

☐2-3 times per month  
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☐1 time per week 

☐2 times per week 

☐3-4 times per week 

☐5-6 times per week 

☐1 time per day 

☐2 or more times per day 

 

37b. Each time you ate frozen yoghurt, ice cream, ice cream bars or ice 

cream cones, how much did you usually eat? 

☐Less than ½ cup (or less than 1 scoop), less than 1 bar or cone 

☐½ cup (1 scoop), 1 bar or cone 

☐More than ½ cup (more than 1 scoop), more than 1 bar or cone 

 

38a. For ALL of the past 6 months, have you followed any type of 

vegetarian diet? 

☐Yes 

☐No [GO TO QUESTION 39] 

 

38b. Which of the following foods did you TOTALLY EXCLUDE from 

your diet (mark all that apply) 

☐Meat (beef, pork, lamb, etc) 

☐Poultry (chicken, turkey, duck, etc) 

☐Fish and/or seafood 

☐Eggs 

☐Dairy products (milk, cheese, yoghurt etc) 

 

39a. Have you taken any protein supplements (not in protein shakes or 

bars) over the last 6 months? (N.B. this does not include multivitamin or 

mineral supplements) 

☐Yes 

☐No  

 

39b. How often did you take protein supplements? 

☐Less than 1 day per month 

☐1-3 days per month 

☐1-3 days per week 

☐4-6 days per week 

☐Every day 

 

39c For how many years have you taken protein supplements? 
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☐Less than 1 year 

☐1-4 years 

☐5-9 years 

☐10 or more years  
 

 

That completes the questionnaire, thank you for your 

participation. Please email your completed questionnaire as an 

attachment to Una Masic (u.masic@sussex.ac.uk) with the words 

‘FFQ’ in the subject title. 

 
  

mailto:u.masic@sussex.ac.uk
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Appendix 5.3 Graphical depiction of the study design employed 
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Abstract 

The influence of flavour enhancers such as monosodium glutamate (MSG) on satiation 

and satiety is unclear, and the present study aimed to explore this by examining the 

effects consumption of soups varying in MSG (1% added MSG or no MSG) and 

macronutrient content (added carbohydrate, protein or control) had on appetite.  24 non-

obese, low-restraint male participants (mean age: 21; BMI: 24) consumed a fixed 

portion of soup and rated their appetite before, immediately after intake and at 15 

minute intervals for 120 minutes post-ingestion across six sessions. Added MSG 

significantly increased flavour pleasantness and tended to result in a smaller decrease in 

hunger immediately after soup ingestion. MSG also reduced rather than enhanced 

feelings of fullness immediately after ingestion of the high protein soup. As expected, 

hunger increased, and fullness decreased, over the subsequent 120 min, but the increase 

in hunger was significantly lower in the MSG than no-MSG conditions with the protein 

soup between 30 and 60 minutes post-ingestion. Overall these data suggest that MSG 

may have a bi-phasic effect on appetite, with reduced satiation mediated by effects on 

palatability, but potential for enhanced post-ingestive satiety particularly in the context 

of protein ingestion. 

 

Key Words: appetite; monosodium glutamate; MSG; sensory; hunger; fullness; intake  
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6.1 Introduction 

 

Monosodium glutamate (MSG) has been shown to elicit the sensory experience of 

‘umami’, evoking the taste of glutamate and nucleotides found in animal protein, 

vegetables and matured foods such as cheeses. MSG’s savoury flavour profile (McCabe 

& Rolls, 2007) improves the palatability and acceptability of many foods (Yamaguchi 

& Ninomiya, 2000) and (Prescott, 2004), highlighting its potential for sustaining higher 

energy intake due to its flavour enhancing properties (Mathey, et al., 2001) and apparent 

low satiety value (Rogers & Blundell, 1990). However, MSG supplemented diets have 

been repeatedly linked to the maintenance of stable energy intake over time (Essed, et 

al., 2007) and (Schiffman, et al., 1994).  Likewise, and in contrast to claims of a low 

satiety-value for MSG, some studies suggest the potential for MSG enhancing satiety 

over time due to interactions with specific macronutrients, with supporting evidence for 

the role of protein reported in animal-studies (Viarouge, et al., 1992).  This has led to 

the idea that MSG may have a dual role in appetite control since it has been found to 

increase hedonic satisfaction (which may stimulate appetite and intake (Yeomans, 1996; 

Yeomans & Gray, 1997; Yeomans, et al., 1998 and Yeomans, et al., 2004) and yet 

maintain stable energy intake over time.  Inconsistencies in the literature may be related 

to the role of MSG on the experience of appetite after meal cessation. Thus there is a 

need for more clarification of the impact of MSG at discrete points during satiation 

(before and immediately after meal consumption) and satiety (over the post-ingestive 

period). 

 

MSG has the potential for multiple effects on appetite.  The role of MSG as a flavour 

enhancer would suggest that the presence of MSG in foods will lead to increased 

consumption. Indeed, the effects of palatability on intake are well established and robust 

(see Yeomans, et al., 2004).  In brief, as liking for a food increases so too does 

voluntary intake.  However, there have been few studies specifically testing whether 

MSG-enhancement of liking actually results in increased intake. Bellisle et al., (1989) 

assessed the acceptability of novel foods supplemented with 0.6% (w/w) or 1.2% (w/w) 

MSG, finding that the 0.6% condition increased intake and eating rate whilst the 1.2% 

condition increased meal size. However these initial increases did not remain over time 

with energy intake (EI) returning to baseline values. Bellisle also found no differences 
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in energy intake in elderly (Bellisle, et al., 1991) or diabetic (Bellisle, et al., 1996) 

participants with the addition of MSG to the diet. 

 

One possible explanation for the apparent disparity between the acute effects of MSG 

on liking but failure to find evidence of increased intake over time might be that MSG 

initially stimulates appetite through flavour enhancement but then increases satiety by 

acting on post-ingestive physiological responses. If so, analyses need to look separately 

at the effects of MSG before and immediately after a meal (to measure satiation effects), 

and during the post-ingestive time span (to examine effects on satiety).  Indeed, some 

recent research does suggest enhanced satiety after consumption of MSG.  Carter et al., 

(Carter, Monsivais, & Drewnowski, 2011) compared MSG-containing and no-MSG 

soup preloads over two morning exposures separated by two hours with appetite ratings 

completed every 15 minutes after consumption of the first preload and for a further 10 

minutes after ingestion of the second preload. Participants were then provided with a 

buffet-style lunch 2 or 30 minutes after preload ingestion. The addition of MSG 

significantly reduced the experience of hunger and desire to snack after the second 

preload relative to control and may have reduced the experience of hunger over time but 

the authors reported no subsequent energy intake differences between no-MSG and 

MSG conditions in the ad-libitum meal. Earlier studies also report no differences in 

intake 2 or 30 minutes after consumption of low energy soup consommé preloads 

supplemented with MSG compared to no-MSG controls (Rogers & Blundell, 1990). 

However, the authors also reported a more rapid recovery of hunger after ingestion of 

the MSG preloads whilst the rate of hunger recovery was found to be equal across low 

energy control and MSG conditions in the previous study (Carter, et al., 2011). These 

inconsistencies between studies may be due to the procedures employed.  For example, 

Carter et al., (Carter, et al., 2011) provided chicken broth as a breakfast item which may 

have been unusual for participants and consequently affected appetite assessments (de 

Castro, 1987; Lipps Birch, Billman, & Salisbury Richards, 1984; Means, Ginn, Arolfo, 

& Pence, 2000; Rodin, 1980). Also, although MSG improved soup acceptability 

compared to control, the palatability enhancing effects of MSG may not have been 

accounted for due to low soup pleasantness ratings across conditions in both studies.  

 

The lack of consensus regarding the effects of MSG on immediate appetite over time 

may be related to the macronutrient compositions of the foods tested. Indeed, the key 
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macronutrients (carbohydrate, fat and protein) have been repeatedly shown to 

differentially alter the experience of satiety with protein reported to be more effective at 

encouraging both satiation and satiety than carbohydrate or fat (Dove et al., 2009; 

Poppitt, et al., 1998; Porrini, Crovetti, Testolin, & Silva, 1995; Ratliff et al., 2010). 

Equally, the experience of umami has been linked to a protein detection function in 

foods (Ikeda, 1908), and may guide food selection practices (Bellisle, et al., 1996; 

Luscombe-Marsh, et al., 2008) and regulate protein intake (Laska & Hernandez Salazar, 

2004; Smriga & Torii, 2000) because of the glutamate sensing component of MSG 

which has been suggested to be a taste constituent of dietary protein (Finlayson, Bordes, 

Griffioen-Roose, de Graaf, & Blundell, 2012; Naim, et al., 1991; Narukawa et al., 

2011).Thus, umami itself may provide a ‘protein taste’ (de Araujo, et al., 2003; Rolls, 

2000) or act as a learned cue for protein with experience (Gibson, 2001) only signalling 

the presence of protein when accompanied by other nutrients or flavours that reinforce 

this message (Gibson, 2001; Beauchamp, 2009).This potential for a learned regulatory 

effect of umami by protein signalling may be traced to infanthood, affecting future 

assessments of appetite by initially associating umami flavours as being more satiating 

(Mennella & Beauchamp, 1996; Ventura, et al., 2012). These findings may provide an 

explanation for the lack of direct evidence for increased intake over time with the 

addition of MSG. It may be that the sensory experience of MSG acts to prepare for 

protein ingestion and so contributes to the enhanced satiating effects of protein. Thus 

paradoxically MSG could theoretically enhance appetite, through its effects on flavour, 

and at the same time enhance satiety by allowing the body to prepare for ingestion of 

protein. If so, then MSG may lead to reduced satiation (as a consequence of its effects 

on palatability) but enhanced satiety, by acting as a cue for protein ingestion. Although 

one study (Luscombe-Marsh, et al., 2009) found no differences in satiety between 

protein preloads varying in MSG, there is evidence that gut glutamate sensing 

mechanisms enhance satiety in animals (Kondoh & Torii, 2008) and MSG has been 

related to gastric increases in GLP-1 secretion 30 minutes after a test meal when 

compared with sodium chloride (NaCl; Hosaka et al., 2012).   

 

Given the uncertainly in the literature, the present research consequently assessed the 

time course of the effects of added MSG (MSG+) relative to a control (MSG-) across 

different macronutrient compositions and energy levels (high energy carbohydrate-rich 

(CHO) or protein-rich (PRO) or low energy controls) in a hedonically neutral low-



213 
 

 213 

glutamate soup. It was hypothesised that the flavour enhancing properties of MSG 

would increase appetitive hunger sensations compared to the no-MSG conditions 

immediately and so result in lower satiation from consumption of a fixed portion, whilst 

in contrast MSG would retard the recovery of hunger post-ingestion. It was also 

hypothesised that the protein containing preloads would enhance satiety more strongly 

than the control and carbohydrate conditions (Bertenshaw, Lluch, & Yeomans, 2008), 

but this effect of protein on satiety would be further enhanced by MSG. 

 

6.2 Method 

 

6.2.1 Design 

A within-subjects design was used to assess the time-course of changes in hunger and 

fullness both during ingestion (to assess satiation) and over the subsequent two hours (to 

assess satiety) for a fixed portion of a vegetable soup differing in macronutrient content, 

energy (high energy carbohydrate-rich (CHO) or protein-rich (PRO) or low energy 

control) and MSG content (1% MSG w/w (MSG+) or no MSG (MSG-)). Condition 

order was counterbalanced using a Williams square design (Williams, 1949). 

 

6.2.2 Participants 

Twenty-four low restraint male participants from a student population (mean age: 

21±1.4, ages from 18-53; mean BMI: 24±0.5, BMI from 19-26 kg/m²) at the University 

of Sussex took part in the research. Prospective participants who had previously 

expressed an interest in participating in appetite research were emailed with details of 

the study described as ‘the effects of food on motor skills’ to reduce demand 

characteristics due to awareness of the experimental manipulations. Individuals on 

medications, those smoking more than 5 cigarettes a day, those with a history of 

diabetes, diagnosed eating disorders and allergies or dietary intolerances to the foods 

used were excluded as were those with high restraint scores (ratings above 7 on the 

Three Factor Eating Questionnaire (TFEQ; Stunkard & Messick, 1985) as restrained 

individuals may not be representative of general eating behaviour (Dohm, et al., 2005).  

 

Participants gave written informed consent before participation and were paid £60 on 

completion of the final session. The study was approved by the University of Sussex 
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ethics committee and was conducted in accordance with the standards laid down in the 

Helsinki Declaration.  

 

6.2.3 Test Food 

6.2.3.1 Control Breakfasts: 

Breakfasts comprised of 80g cereal (Crunchy Nut Cornflakes, Kellogg’s, UK), 200g 

semi-skimmed milk (Sainsbury’s Plc., UK) and 200g orange juice (Sainsbury’s Plc., 

UK) (total 503.6 Kcal). These quantities were established based on the UK Food 

Standard Agency guidelines for male breakfast consumption (FSA, 2006). 

 

6.2.3.2 Soups: 

A low energy density (ED) control soup was used as a base for all flavour and energy 

manipulations. This consisted of a carrot and spice soup containing carrots (Frozen 

Baby Carrots, Sainsbury’s Plc. UK) onions, olive oil (Medium Flavour Olive Oil, 

Sainsbury’s Plc., UK), spice mixture (Garam Masala Schwartz, UK) and water. The 

base soup was prepared in large batches at the start of each week by sweating 680g 

diced onion and 400g chopped celery in 80g oil before adding 2400g frozen carrots 

combined with 1400g water. The mixture was brought to the boil for 1 hour and then 

simmered for an additional hour. The soup was then blended and separated into batches 

and the spice mixture and MSG (according to soup type) was added before being stored 

at 4
o
C until needed.  Soup formulation and serving followed a standardized procedure 

and preload portions were fixed at 450g as this has previously been found to be an 

adequate portion size for male participants (Yeomans & Gray, 2002).The addition of 

52g maltodextrin (DE: 15.3, Cargill, UK) was used in the CHO soup and 17.86g 

maltodextrin (Cargill, UK) combined with 36g whey protein isolate (MyProtein UK) 

was added to the PRO soup to make up 450g portions. The addition of maltodextrin to 

the PRO preload was necessary to ensure both high energy conditions were similar in 

ED while minimizing differences in flavour pleasantness. The addition of 1% (w/w) 

MSG (Ajinomoto Co., Inc. Europe) was also added to all MSG+ soup conditions. The 

final formulations followed extensive pilot testing (data not shown) to identify a base 

soup that was low in glutamate, and which was rated as moderately pleasant to allow for 

enhancement by MSG.  
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The high ED conditions contained around180 Kcal more per portion than the low ED 

conditions (CHO: 178 Kcal, PRO: 184 Kcal). The small (6 Kcal) difference between 

high ED CHO and PRO conditions arose due to efforts to minimise the flavour effects 

of maltodextrin added in the CHO condition.  All soups were tested in a final pilot 

experiment to ensure similar pleasantness ratings across MSG+ compared to MSG- 

conditions. This involved 10 unrestrained male participants (mean age: 20±1.3, ages 

from: 18-23; mean BMI: 22.8±2.7, BMI from: 19-29 kg/m²) attending a single session 

in which they evaluated the sensory characteristics of two samples of each of the six 

soups in random order.  Mean ratings from the pilot study are shown in Table 6.1 and 

indicate a significant sensory enhancement in pleasantness (F(1,9) = 10.76, p = 0.01), 

saltiness (F(1,9) = 19.82, p = 0.002), and strength (F(1,9) = 9.27, p = 0.01) with the 

addition of MSG. Sweetness was also found to differ significantly by condition (F(2,18) 

= 3.78, p = .04) with carbohydrate and protein conditions deemed sweeter than control. 

The pilot also indicated no significant differences in pleasantness between the three 

soups without added MSG (F(2,18) = 1.68, p = NS) and no effect of MSG on savoury 

assessments (F(1,9) = 2.62, p = NS). All nutritional information can be found in Table 

6.2.  

 

Table 6.1. Mean (±SEM) pilot sensory ratings of six soups differing in macronutrient 

and MSG concentration. 

 

Rating Control Carbohydrate Protein 

No MSG MSG No MSG MSG No MSG MSG 

Pleasant 48.6±7.4  59.8±3.9  46.1±7.4  62.4±3.6 39.6±6.0 61.5±5.2  

Salty 36.7±6.2 57.1±5.5 36.0±5.8 52±5.6 31.1±5.2 41.9±5.3 

Strong 33.8±5.1 53.3±3.5 45.1±4.6 57.7±4.8 37.8±5.8 52.2±5.7 

Savoury 50.1±5.2 57.4±3.7 49.8±4.9 53.8±4.1 44.3±4.1 53.9±4.1 

Sweet 42.2±4.7 42.1±4.1 58.1±3.4 49.4±6.2 54.0±5.3 53.2±11.0 
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Table 6.2. Nutritional composition of soup preloads per 100g 

 

 Control Carbohydrate Protein 

Carbohydrate (g) 3 14 7 

Protein (g) 0.4 0.3 8 

Fat (g) 2 1 1 

Carbohydrate (% energy) 44 81 38 

Protein (% energy) 6 2 45 

Fat (% energy) 50 17 19 

Kcal 28 67 69 

Kcal/450g portion 126 303 310 

 

6.2.4 Computerized Data Collection 

Sensory and hedonic ratings were tracked using the Sussex Ingestion Pattern Monitor 

(SIPM version 2.0.13, University of Sussex) which consists of a digital balance system 

linked to a computer monitor similar to the Universal Eating Monitor (UEM). In all 

trials participants were asked to fill in appetite and mood ratings using digital Visual 

Analogue Scales (VAS) by the SIPM. The ratings were presented as simple sentences 

(“How <word> do you feel?”) with a left hand anchor reading “Not at all <word>” 

(coded as 0) and a right hand anchor reading “As <word> as I have ever 

felt/experienced” (coded as 100). To ensure compliance during ratings the software 

prompted participants to “Please use the mouse to drag the bar to the point on the scale 

that best represents how you feel right now.” before each evaluation. Participants 

completed this action and pressed “Rating Complete”. Initial appetite and mood ratings 

included how alert, clear-headed, energetic, full, hungry, nauseous and thirsty they felt. 

 

Following the appetite and mood ratings, participants were provided with a fixed 

portion of the target soup according to condition and first completed a taste test in 

which they were asked to “Please take a mouthful of the soup, count to 5 and then 

swallow”. VAS ratings regarding the sensory features of the soup (how filling, pleasant, 

salty, savoury, strong and sweet) were then completed before being notified to “Please 
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consume all of the soup”. Participants were also reminded to “Make sure you consume 

all of the soup before moving on to the next stage”. Once finished, meal termination 

was indicated by clicking “Finished eating”. A second set of mood and appetite ratings 

mirroring the first set were then filled-in before participants were asked to sit in the 

waiting room and complete further ratings of hunger, fullness and thirst every 15 

minutes for 2 hours from meal cessation. All VAS ratings were randomized across all 

trials. 

 

6.2.5 Procedure 

Participants attended sessions at the Ingestive Behaviour Unit (IBU) at the University of 

Sussex on six non-consecutive days under the impression that they were taking part in 

an experiment assessing “the effects of food on motor skills”. Prior to each testing 

session participants were asked to consume nothing but water from 2300h the night 

before testing and were given a control breakfast at a pre-arranged time (from 0900h - 

1100h) for all sessions. Following breakfast, participants were permitted to leave the 

IBU with instructions to consume only water and returned 3 h later for the soup session. 

 

Upon their return, participants were taken to a cubicle containing a glass of water and 

the SIPM software. They were asked to follow the instructions on-screen which 

explained the experimental procedure and instigated the first set of mood and appetite 

ratings. Participants then informed the experimenter who provided the soup according 

to condition. Ratings of the sensory and hedonic features of the soup were carried out 

after consuming one mouthful of soup after which participants were prompted to 

consume the soup in its entirety. This was followed by further ratings of appetite before 

participants were provided with a pencil and paper and were asked to draw within an 

outline of a star using their non-dominant hand. This star drawing task was used as 

means of concealing the true purpose of the experiment.  

 

Participants were then taken to the waiting room and returned to the cubicle every 15 

minutes for 120 minutes post-ingestion to fill-in appetite ratings. Star drawings were 

also completed at baseline and after each hour in keeping with the cover story. At the 

end of sessions 1-5 participants were free to leave but their height and weight was 

recorded and they were debriefed before payment on the final test day. A graphical 

depiction of the experimental design can be seen in Appendix 6.1. 
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6.2.6 Data Analysis 

Repeated measures two way 3x2 ANOVAs were conducted on initial sensory 

evaluations after tasting and on appetite (hunger and fullness) ratings after test meal 

consumption assessing the two main variables; soup type (PRO, CHO, or control) and 

MSG condition (MSG+ or MSG-). Additional repeated measures 3x2x8 ANOVAs were 

also carried out assessing the effect of soup type and MSG condition over distinct time 

points after soup ingestion (15, 30, 45, 60, 75, 90, 105 and 120 minutes post-ingestion). 

Satiation (defined as the experience of hunger and fullness before and immediately after 

ingestion) data and satiety (hunger and fullness after ingestion) data were analysed 

separately to understand the effects of MSG on immediate and prolonged appetite 

sensations independently. All of the variables examined were transformed to track the 

change in subjective experience either from the start of the meal until immediately after 

ingestion (satiation) or from the end of the meal over 2 hours post-consumption 

(satiety). Pair-wise protected contrasts of MSG and no-MSG conditions at each time 

point were carried out where significant interactions were apparent. Effect sizes are 

reported for specific effects using Pearson’s correlation coefficient. 

 

Greenhouse Geisser values were used in cases of violated sphericity (ε = <0.75) and 

time based within-subject contrasts were analysed to understand specific effects of 

different patterns of data. Data are shown for all 24 participants. 

 

6.3 Results 

 

6.3.1 Sensory and Hedonic Assessments 

MSG+ conditions were rated as more pleasant tasting than the equivalent MSG- 

conditions (main effect of MSG: F(1,23) = 10.25, p<0.01, r=.55) and MSG enhanced 

soups were also rated as stronger tasting, (F(1,23) = 12.85, p <0.01, r=.60) and more 

salty, (F(1,23) = 14.94, p<0.01, .63) than MSG- soups (Figure 6.1). This may be due to 

the sodium ion found in MSG increasing the perception of saltiness. There was also a 

trend for a significant effect of soup condition on pleasantness ratings (F(2,46) = 2.99, 

p=.06) and a similar trend for sweetness to differ between soups (F(2,46) = 2.76,p=.07) 

with CHO soups tending to be rated as more pleasant (F(1,23) = 6.55, p=.02, r=.47) 

than control soups and sweeter (F(1,23) = 6.24, p=.02, r=.46) than protein soups at 
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baseline. Interestingly there was no effect of savouriness between no MSG and added 

MSG soups (F(2,46) = 0.16, p=.45). This may be because participants were not trained 

to associate the MSG flavour with savouriness, which may be a more ambiguous food 

label in the current context. 

 

 

 

Figure 6.1. Sensory and hedonic assessments (mm) of three levels of soup (low energy 

control  ( ), high energy protein ( ) and high energy carbohydrate ( ) with (Panel A) 

and without (Panel B) added MSG. Data are mean ±SE. Significant differences between 

no and added MSG are indicated: ** P<0.01. 
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6.3.2 Satiation Ratings 

The data of interest were how hunger and fullness changed over ingestion. As expected, 

there were no significant differences in hunger, (F(2,46) = 1.19, p=.31) or fullness, 

(F(2,46) = 0.54, p=.54) before the food was tasted. Analyses looked at overall changes 

from pre- to post-meal intake. No significant changes in appetite were noted between 

soup types for either hunger, (F(2,46) = 1.63, p=.21) or fullness, (F(2,46) = 1.25, p=.30) 

suggesting that the macronutrient content of the soup did not affect the immediate post-

meal experience of satiation. The predicted smaller decrease in hunger after MSG 

approached significance (F(1,23) = 3.63, p = 0.07) with a moderate effect size (r=.37) 

suggesting a smaller overall decrease in hunger in the MSG+; m: -41.6±3.9 compared to 

MSG-; m: -46.9±4.2 condition. The equivalent data for fullness was not significant 

(F(1,23) = 0.35, p=.56).  However, for changes in fullness the soup*MSG interaction 

approached significance (F(2,46) = 2.85, p=.07) but surprisingly the increase in fullness 

after consumption of the protein soup was lower with added MSG; m: 46.4±4.5 than 

without MSG; m: 53 (r=.43: Figure 6.2). However, this effect was reversed for both the 

carbohydrate and control soups with fullness increasing more in the MSG+ than MSG- 

conditions. There was no significant effect of order of testing on hunger (F(2,36) = 1.92, 

p=.82) or fullness (F(2,36) = 1.33, p=.34).  
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Figure 6.2. Change from baseline VAS hunger (Panel A) (mm) and fullness (Panel B) 

ratings across three levels of soup (low energy control, high energy carbohydrate and 

high energy protein) containing no ( ) and added ( ) MSG. Data are mean ± SE.  

 

6.3.3 Satiety Evaluations 

Effects of the preload nutrient and MSG manipulations on satiety were assessed by 

examining changes in rated hunger and fullness over the subsequent 120 minutes 

(Figures 6.3 and 6.4). Since the prediction was that both the recovery of hunger and 

decline in fullness would depend on a combination of MSG and macronutrient content, 

we examined how hunger and fullness changed using linear contrasts within 

multivariate ANOVA to test for these effects. As expected, hunger increased (F(1,23 = 
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45.88, p<.001) and fullness decreased (F(1,23) = 48.32, p<.001) over the 120 minutes. 

However, with hunger these changes over time depended both on the MSG and soup 

manipulations (time*soup*MSG interaction: F(1,23) = 4.76, p=.04, r=.41).  The main 

effect of soup overall was not significant (F(1,23) = 0.19, p=.67), which was surprising 

given that two of the soups had higher energy content than the control. However, effect 

size calculations indicated a large effect of protein compared to control (r=.41), 

indicating that the protein condition suppressed hunger more strongly than the 

equivalent control condition, while the main effect of MSG approached significance 

(F(1,23) = 3.18, p=.09). No two-way interactions were significant in these analyses. 

Pair-wise protected contrasts of equivalent MSG and no-MSG conditions at each time 

point revealed hunger to be significantly lower in the MSG than no-MSG condition at 3 

time points: 30, 45 and 60 minutes after the soup was consumed. There were no 

equivalent effects of MSG on fullness ratings: the main effects of MSG (F(1,23) 0.83, 

p=.48) and soup (F(1,23) = 0.81, p=.46) were not significant, and there were no 

significant interactions between MSG, soup and time.  The lower panels of Figure 6.3 

show no clear pattern of difference in fullness between soups or MSG conditions over 

the 120 minutes post-ingestion. 
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Figure 6.3. Change in hunger ratings (mm) post-ingestion across three levels of soup (low energy control (Panel A) and high energy protein 

(Panel B) and high energy carbohydrate (Panel C)) with ( ) and without ( ) added MSG over time (minutes). Data are mean ± 

SEM. Significant protected contrasts (p = <.02) are denoted with *.   

* 
* 

* 



224 
 

 224 

 

 

Figure 6.4. Change in fullness ratings (mm) post-ingestion across three levels of soup (low energy control (Panel A) and high energy 

protein (Panel B) and high energy carbohydrate (Panel C)) with ( ) and without ( ) added MSG over time (minutes). Data are 

mean ± SEM. 
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6.4 Discussion 

 

This research aimed to elucidate the impact of MSG on experiences of short-term 

hunger and fullness (satiation) and appetite over time (satiety) when combined with 

different macronutrients in a vegetable soup context. The main findings suggest that 

MSG may reduce satiation due to the effects of MSG on pleasantness enhancing 

appetite but that MSG may subsequently enhance satiety, especially when provided in a 

protein context. 

 

The predicted impact of MSG enhancing immediate post-meal hunger across soup 

conditions may be explained in terms of hedonic satisfaction (Bellisle, et al., 1989) and 

the appetizer effect (Yeomans, 1996). Hunger remained elevated after the more 

appetizing MSG+ soup across all conditions and sensory analysis confirmed that MSG+ 

soups tasted more pleasant than were MSG-.  When MSG was assessed with soup type, 

the MSG+ protein soup resulted in a lower increase in fullness compared to MSG+ 

carbohydrate and MSG- conditions instead of further maximising satiation as predicted. 

Why might the addition of MSG reduce this fullness response in combination with 

protein? It may be that the oral protein sensing cue (Bellisle, 1999) which may be 

implicitly learned to be more filling (Tome, et al., 2009), was masked by the oral 

glutamate protein cue as this additional cue in the vehicle used (a low protein soup) was 

not expected. In contrast, the glutamate cue in the MSG carbohydrate and control 

conditions may have increased the experience of immediate fullness due to the 

expectation of receiving protein(Kondoh, et al., 2009). 

 

When looking at the influence of MSG after the meal (post-meal satiety), the addition of 

MSG seemed to decrease hunger sensations across soup type compared to the 

equivalent no MSG conditions in the control and protein contexts, and these differences 

were significant in the protein condition between 30 and 60 minutes post-ingestion. This 

is consistent with the idea that the glutamate protein signal may be a more potent cue 

post-ingestion due to the impact on gut glutamate receptors (Niijima, 2000; San Gabriel, 

et al., 2007) with the MSG cue acting to maximise satiety more effectively when 

provided with protein.  Alternatively, it may be that the mismatch between the 

expectation of protein in the MSG+ carbohydrate soup and subsequent experience of 

carbohydrate but no protein reversed any satiating effects of the added MSG in that 
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context.  This mismatch may have led to rebound hunger within the MSG+ 

carbohydrate condition (Appleton & Blundell, 2007; Tordoff & Alleva, 1990).  

However, there was no protein in the low-energy control condition and here MSG+ did 

slow the recovery of hunger post-ingestion.  Further research is therefore needed to 

elucidate the apparent short-term satiating effects of MSG in this context. 

 

One surprising outcome was the lack of differences in rated appetite between the soup 

conditions despite differences in energy and macronutrient content. This may be due to 

the effect of sweetness as the carbohydrate and protein conditions were evaluated as 

sweeter during pilot testing which may have affected hunger recovery due to the 

difference in taste. This outcome may also be due to the context of the soup as a single 

lunchtime item. Indeed, preload energy has been found to affect subsequent energy 

intake and appetite assessments (Perrigue, Monsivais, & Drewnowski, 2009). Thus high 

energy conditions were required to ensure any appetite suppressing effects could be 

related to the impact of MSG rather than due to energy effects (Rogers & Blundell, 

1990). Nonetheless, participants’ expectations of how filling a single serving of soup is 

as a meal immediately after ingestion may be cognitively mediated by other factors such 

as portion size and usual intake at lunch. For instance, Blatt et al., (2011) indicated that 

palatability and appearance are more salient features during satiation than the immediate 

post-ingestive effects of the food.  

 

No significant differences were noted in the experience of fullness during the post-

ingestive period with the addition of MSG despite indications in the literature 

suggesting that fullness assessments are more accurately judged over time (Stuart & 

Davis, 1972). This may be due to the fullness responses relying on the volume 

consumed, making them more prone to variability over time (Allirot et al., 2013) than 

hunger ratings, which tend to be more sensitive to assessments of hedonic eating 

motivation (Yeomans, 2010).  

 

The time dependent effects of MSG have not been previously examined in this way to 

consider the generation of satiety across different macronutrient conditions. Thus, future 

research exploring the impact of MSG on satiety by assessing subsequent test meal 

intake is warranted to further understand the role of MSG-macronutrient relationships 

on consumption as well as subjective appetite. 
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Overall, MSG may increase hunger sensations immediately post-ingestion and may also 

reduce feelings of fullness in high energy protein soups relative to high energy 

carbohydrate and low energy control conditions. MSG may also delay the experience of 

hunger across macronutrient conditions without affecting long-term evaluations of 

fullness. However, these effects remain as trends within the data and require further 

investigation.  
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6.6 Summary of main findings and directions for future research 

 The addition of MSG to a fixed portion of a low energy soup or one with added 

energy in the form of carbohydrate or protein acted to increase feelings of 

hunger immediately after consuming the soup, with no differences in appetite 

between the high and low energy conditions 

 However, trends in the data suggested that MSG was also found to slow the 

recovery of hunger over time across conditions 

 This was found to be significant in added MSG protein conditions as compared 

to no MSG protein conditions within 30-60 minutes post-ingestion 

 This suggests that MSG and protein may act to further enhance feelings of 

satiety post-ingestion, with the critical period of satiety strongest soon after 

intake 

 However, ratings were based on subjective appetite measures and future 

research would be required to assess whether self-rated appetite resulted in true 

reductions in intake at a subsequent course as a concrete measure of satiety 
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Appendix 6.1. Graphical depiction of the study design employed. 
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Abstract 

Previous research suggests that monosodium glutamate (MSG) may have a bi-phasic 

effect on appetite, increasing appetite within a meal with its flavour-enhancing effect, 

but enhancing subsequent satiety due to its proposed role as a predictor of protein 

content. The present study explored this by assessing the impact of a 450g soup preload 

differing in MSG concentration (1% MSG added, MSG+ or no MSG, MSG-) and 

nutrient content (low energy control or high energy carbohydrate or high energy 

protein) on rated appetite and ad-libitum intake of a test meal in 35 low-restraint male 

volunteers using a within-participant design. Protein preloads significantly reduced 

intake at the test meal and resulted in more accurate energy compensation than did 

carbohydrate preloads. This effect was stronger in the MSG+ protein conditions when 

compared to MSG+ carbohydrate conditions. No clear differences in rated appetite were 

seen in MSG or macronutrient conditions alone during preload ingestion or 45 minutes 

after intake. Overall, these findings indicate that MSG may act to further improve 

energy regulation when provided in a protein context.   
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7.1 Introduction 

 

Monosodium glutamate (MSG) is a flavour enhancer which improves the savoury 

experience of foods and is the prototypical chemical associated with the ‘umami’ taste 

(Ikeda, 1908; Jinap & Hajeb, 2010; Ninomiya, 1998). Because of its role as a flavour 

enhancer, it was initially believed that MSG increased appetite and intake (Bellisle, et 

al., 1991; Bellisle, et al., 1989; Essed, et al., 2009; Mathey, et al., 2001; Schiffman, et 

al., 1994; Yeomans, 1996; Yeomans & Gray, 2002; Yeomans, et al., 1998). However, 

initial enhanced intake tends to decrease over time (Bellisle, 1999; Bellisle, et al., 1996; 

Essed, et al., 2007; Schiffman, et al., 1994) and recent research suggests that MSG may 

delay hunger recovery over time; particularly when in combination with protein (Masic 

& Yeomans, 2013).  

 

So why might any appetite-enhancing effects of MSG be short-lived? One explanation 

is that appetite is stimulated by MSG during the course of the meal (reducing satiation), 

but then suppressed during the post-ingestive stage to delay later intake (enhancing 

satiety). This suggestion is based on the idea that our ability to detect MSG evolved as a 

means of detecting the presence of protein in foods (Ikeda, 1908) and regulates protein 

consumption (Laska & Hernandez Salazar, 2004; Smriga & Torii, 2000). There is clear 

evidence that protein enhances satiety more effectively than does either carbohydrate 

(Fischer, et al., 2004; Marmonier, et al., 2000; Poppitt, et al., 1998) or fat (Simpson & 

Raubenheimer, 2000; Weigle, et al., 2005) when delivered acutely as a preload 

(Bertenshaw, et al., 2008; Latner & Schwartz, 1999) and longer term in the diet (Leidy, 

et al., 2011; Lejeune, et al., 2005; Simpson & Raubenheimer, 2005). Recent data 

suggest that the satiating effects of protein are in part due to the sensory characteristics 

of protein foods acting to enhance post-ingestive satiety (Bertenshaw, et al., 2013), and 

umami could be one of the critical cues generating these sensory-nutrient interactions. 

Indeed, umami taste has been linked to the satiating effects of protein in infants 

(Mennella & Beauchamp, 1996; Ventura, et al., 2012) and may explain why intake of 

MSG meals over time remains stable despite increases in palatability. A previous study 

assessing the time course of changes in rated appetite over 120 minutes after 

consumption of a fixed volume of soup varying in macronutrient content (high energy 

carbohydrate or protein or low energy control) with and without added MSG also 

supports these findings. Hunger decreased less after MSG soup intake (consistent with 
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the stimulation of appetite through flavour enhancement), but slower hunger recovery in 

the MSG protein condition compared to protein alone which was not seen for MSG in a 

low-energy or carbohydrate context  (Masic & Yeomans, 2013). However, another 

study has found no effect of MSG and protein on satiety when measured at a test-meal 

(Luscombe-Marsh, et al., 2009). This discrepancy might be due to the previous study 

(Masic & Yeomans, 2013a) relying on measures of rated appetite at pre-defined time 

points whilst other research has assessed intake at ad-libitum test meal sessions 

(Luscombe-Marsh, et al., 2009).  

 

Given this ambiguity in the literature about the role of MSG in appetite control, the 

present research examined the effects of a soup preload differing in macronutrient 

content (high energy soups enhanced with protein or carbohydrate contrasted with a low 

energy control) either with MSG added (MSG+) or no MSG (MSG-) on appetite and 

intake at a subsequent ad-libitum meal. A preload meal interval of 45 minutes was used 

as this was found to be the optimum time for differences in hunger and fullness ratings 

between MSG+ and MSG- conditions in our recent study (Masic & Yeomans, 2013). It 

was hypothesised that the flavour enhancing effects of MSG would mean less decrease 

in hunger when consuming a fixed portion of the MSG+ versions regardless of nutrient 

content, but that hunger would recover more slowly, and consequently that test-meal 

intake would be less in the protein than carbohydrate preload conditions relative to the 

control, with MSG+ enhancing the satiating effects of protein. 

 

7.2 Method 

 

7.2.1 Design 

The study used a within-participant design to examine the effects of consumption of a 

fixed soup preload differing in macronutrient content/energy (high energy carbohydrate 

or protein or low energy control) and MSG content (1% MSG w/w; MSG+ or no MSG; 

MSG-). Preload condition order was balanced using a Williams square design 

(Williams, 1949). 

 

7.2.2 Participants 

Thirty-six low restraint males initially participated in the research but one participant 

failed to complete all sessions. The 35 remaining participants (mean age: 21±0.4, ages 



240 
 

 240 

from 18-28; mean BMI: 22±0.5, BMI from 18-33 kg/m²) were mainly students at the 

University of Sussex. This number was used based on a previously under powered study 

(Masic & Yeomans, 2013) with effect size calculations indicating that 36 participants 

would be required to reach 80% statistical power. Potential participants were initially 

contacted based on their responses to a general eating habits recruitment questionnaire 

using a database system. Individuals who smoked, those on medications, those with a 

history of diabetes, diagnosed eating disorders, allergies or dietary intolerances to the 

foods used were not contacted. Also, those with high restraint scores (ratings above 7 on 

the Three Factor Eating Questionnaire (TFEQ; Stunkard & Messick, 1985) were 

excluded as restrained individuals may not be representative of general eating behaviour 

(Fedoroff, Polivy, & Herman, 1997, 2003). One participant had a BMI of 33, placing 

him in the obese category, thus a correlational analysis between test meal intake and 

BMI was performed. No significant correlation was found (r(35) = 0.06, p=.72) 

therefore this participant was not excluded from further analysis. 

 

Prospective subjects were emailed with details of the study disguised as ‘assessing the 

effects of food on motor skills’. This was to ensure eating behaviour would not be 

affected by awareness of the experimental manipulation. Details about the study 

procedure and exclusion criteria were specified and written informed consent was given 

before participation. Upon completion of all testing sessions participants were paid £60. 

The study was conducted in accordance with the standards expressed in the Helsinki 

Declaration and was approved by the University of Sussex ethics committee. 

 

7.2.3 Test Food 

7.2.3.1 Control Breakfast: 

Breakfast on all test days consisted of 80g cereal (Crunchy Nut Cornflakes, Kellogg’s, 

UK), 200g semi-skimmed milk (Sainsbury’s Plc, UK) and 200g orange juice 

(Sainsbury’s Plc, UK) (total 503.6 Kcal). These quantities were established based on 

UK Food Standard Agency guidelines for male breakfast consumption (FSA, 2006). 

 

7.2.3.2 Soup preloads: 

All flavour and energy manipulations used the same low energy density (ED) control 

soup. The soup consisted of a carrot and spice soup containing carrots (Frozen Baby 

Carrots, Sainsbury’s Plc, UK) onions, celery, olive oil (Medium Flavour Olive Oil, 
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Sainsbury’s Plc, UK), spice mixture (Garam Masala Schwartz, UK) and water (see 

(Masic & Yeomans, 2013). Soup formulation and serving on test days followed 

standard operating procedures and portion size was fixed at 450g as this quantity has 

been established as an adequate portion size for males (Yeomans & Gray, 2002) and 

was deemed adequate in a previous study (Masic & Yeomans, 2013). The addition of 

52g/450g portion maltodextrin (DE: 15.3, Cargill, UK) was used in the carbohydrate 

soup and 17.86g/450g maltodextrin (Cargill, UK) combined with 36g/450g whey 

protein isolate (MyProtein UK) was added to the protein soup. Maltodextrin was added 

to the protein preload to reduce differences in flavour pleasantness whilst maintaining 

similar ED across the two conditions. 1% w/w MSG (Ajinomoto Co., Inc. Europe) was 

added to all MSG+ soup conditions. Base soup formulation followed extensive pilot 

testing to formulate a novel soup low in MSG, and which was rated as moderately 

pleasant to allow for enhancement by MSG. Pilot testing was also carried out on the 

energy and macronutrient soup combinations used (see Masic & Yeomans, 2013). 

 

The high ED conditions contained approximately 180 Kcal more per portion than the 

low ED condition (carbohydrate: 177.5 Kcal, protein: 184.3 Kcal). The 6 Kcal 

difference between high ED carbohydrate and protein conditions was due to efforts to 

regulate the quantity of maltodextrin used in the carbohydrate condition without 

affecting the flavour of the preload due to the sweetness that can be experienced with 

the use of high quantities of maltodextrin. All nutritional information can be found in 

Table 7.1.   
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Table 7.1. Nutritional composition of soup preloads (all data are per 100g). 

 

 Control Carbohydrate Protein 

Carbohydrate (g) 3 14 7 

Protein (g) 0.4 0.3 8 

Fat (g) 2 1 1 

Carbohydrate (% energy) 44 81 38 

Protein (% energy) 6 2 45 

Fat (% energy) 50 17 19 

Kcal 28 67 69 

Kcal/450g portion 126 303 310 

 

7.2.3.3 Ad-libitum meal: 

The two course ad-libitum lunch was comprised of pasta in tomato sauce followed by 

ice cream purchased from a local supermarket. Due to an unexpected change in the 

formulation of the pasta sauce part-way through the study, two versions of the meal had 

to be used but each participant was only tested with one version.  Both versions used 

250g cooked pasta (Conchiglie Pasta, Sainsbury’s PLC, UK) which was combined with 

250g of pasta sauce (Tomato and Basil Sauce, Sainsbury’s PLC, UK) for version 1, 

giving a 500g served portion (total 543.4 Kcal). Re-fill portions were provided as 500g 

servings. As the reformulated version of the sauce had a higher energy density, the 

portion size was re-adjusted to 200g for version 2 to ensure a similar energy density 

across test meals (total 500.4 Kcal). Fifteen participants were tested with 500g (version 

1) whilst the remaining 20 received the reformulated meal (version 2). Repeated 

measures analyses of sensory ratings and intake of the test meal depending on the 

served version found a significant difference in rated saltiness between the two versions 

(F(5,165) = 2.78, p = .02)  but all other ratings were found to be non-significant 

including pleasantness ratings (F(5,165) = 0.73, p=.74). Intake did not differ 

significantly between those consuming version 1 and version 2 (F(5,165) = 0.85, p=.71) 

and when test meal version was included as a covariate, no differences in pasta meal 

intake was apparent [MSG*test meal version: F(1,33) = 2.57, p=.12; 
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MSG*condition*test meal version: F(2,66) = 1.34, p=.21]. The dessert consisted of 

vanilla ice cream (Carte D’or, Unilever, UK; total 315 Kcal/150g) with re-fill portions 

provided (total 210 Kcal/100g). The preparation and serving of all meals on test days 

adhered to a standardized protocol. 

 

7.2.4 Computerized Data Collection 

Sensory, hedonic and appetite ratings were tracked using the Sussex Ingestion Pattern 

Monitor (SIPM version 2.0.13, University of Sussex), an extension of the Universal 

Eating Monitor (Kissileff, Klingsberg, & Van Itallie, 1980) which is comprised of a 

digital balance (Sartorius, Model BP4100) linked to a computer. Participants were asked 

to complete appetite, sensory, hedonic and mood ratings using digital Visual Analogue 

Scales (VAS) by the SIPM. All ratings were presented as sentences (“How <word> do 

you feel?”) with a left hand anchor reading “Not at all <word>” (coded as 0) and a right 

hand anchor reading “As <word> as I have ever felt/experienced” (coded as 100). 

Instructions on how to use the scale were presented to participants before each 

evaluation to ensure compliance. Participants registered their selection by pressing 

“Rating Complete”.  The first set of ratings presented before each trial assessed how 

alert, clear-headed, energetic, full, hungry, nauseous and thirsty subjects felt. All VAS 

ratings were randomized across all trials and sessions. 

 

Participants were then presented with their fixed preload portion and completed hedonic 

assessments of the target soup (how familiar, pleasant, salty, savoury, strong and sweet) 

and appetite ratings of hunger, fullness and thirst after tasting the soup (“Please take a 

mouthful of the soup, count to 5 and then swallow”.) before being asked to “Please 

consume all of the soup”. Participants were also reminded to “Make sure you consume 

all of the soup before moving on to the next stage”. Meal termination was indicated by 

pressing “Finished eating”. Mood and appetite ratings mirroring the first set completed 

were then presented and participants were free to leave but were told to return at a 

specific time (45 min after ingestion) for the second part of the meal.  

 

The ad-libitum lunch followed a similar structure with an initial set of mood and 

appetite ratings completed. Before each course, participants were provided with samples 

of the food to be consumed and completed taste tests (assessing how familiar, pleasant 

and strong; for both of the courses, salty and savoury; for the pasta course, and sweet; 
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for the dessert course) and then filled in appetite ratings (hunger, fullness and thirst) 

before being given a portion of the food with instructions to “Please eat as much 

(pasta/ice cream) as you like until you feel comfortably full”. Additional (re-fill) 

portions of the course being consumed were prompted by the SIPM with an on-screen 

message and alert sound which instructed participants to call the experimenter. Pasta 

course termination was indicated by pressing “Ready for dessert” which triggered 

further appetite assessments before the dessert course began while whole meal 

termination was registered by pressing “Finished the meal” which prompted a 

confidence in meal termination statement. A final set of appetite and mood ratings were 

then completed mirroring the initial set. 

 

7.2.5 Procedure 

The research took place over six non-consecutive sessions at the Ingestive Behaviour 

Unit (IBU) at the University of Sussex. Participants were asked to consume nothing but 

water from 2300h the night before each testing session and were provided with the 

control breakfast at pre-arranged times (from 0900h – 1030h) across testing days. 

Participants were free to leave the IBU after breakfast with instructions to consume 

nothing but water and returned after 3 h for the soup preload.  

 

For all consumption trials (preload and test meal) participants were tested in a 

windowless cubicle and were provided with water throughout testing. In compliance 

with the cover story to conceal the true purpose of the experiment, participants were 

first asked to complete a bogus motor skills task (the star motor task, which consisted of 

tracing the outline of a star with their non-dominant hand).  

 

Within the preload session which ran from 1200h – 1330h, mood and appetite ratings 

were completed and followed by the provision of the soup which was served according 

to condition. Taste test and appetite ratings were then completed with further appetite 

ratings made after soup intake. Participants were then permitted to leave but were asked 

to return after 40 min for the main course which was provided 45 min post-ingestion as 

this has been found to be the most sensitive time window for detecting preloading 

effects with this test soup as revealed by a previous experiment (Masic & Yeomans, 

2013).  
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Upon their return participants once again completed the star motor task, mood and 

appetite ratings and completed a taste test with the pasta main course before being 

provided with an ad-libitum 500g (or 450g) portion of the pasta in sauce served on a 

white ceramic plate. Re-fills were registered by the SIPM and were provided in 500g (or 

450g) portions after approximately 450g (or 400g) consumption. This ensured that food 

was always present on the plate to prevent normative external cues such as an empty 

plate from influencing meal intake (Herman & Polivy, 2008b; Wansink, et al., 2005b). 

After main meal consumption, further ratings of appetite were filled in before a taste 

test was completed for the dessert course. After the ice cream sample was evaluated, a 

150g portion of ice cream was provided in a white ceramic bowl with additional 100g 

portions provided after 100g ice cream consumption. The session was completed after 

the final set of mood and appetite ratings were filled in. At the end of sessions 1-5 

participants were free to leave but their height and weight was recorded and they were 

debriefed before payment on the final test day. A graphical depiction of the 

experimental design can be seen in Appendix 7.1. 

 

7.2.6 Data Analysis 

Test meal intake (Kcal consumed) was contrasted using two-way 3x2 repeated measures 

ANOVA with soup type (control, protein or carbohydrate) and MSG condition (MSG+ 

or MSG-) as variables. Intake was also analysed across the whole test meal and by 

individual courses (savoury course and dessert) to determine whether preload conditions 

impacted intake overall or differed by course. Additional analyses were conducted to 

determine energy compensation (COMPX) at the test meal after high energy (protein or 

carbohydrate) preloads across MSG conditions (MSG+ or MSG-). COMPX values were 

calculated by subtracting test meal intake in the relevant control (low energy) MSG+ or 

MSG- condition from the corresponding protein or carbohydrate (high energy) MSG+ 

or MSG- condition and expressing this value as a percentage of the actual difference in 

soup preload energy between low and high energy preloads (protein: 184 Kcal; 

carbohydrate: 177 Kcal). The resulting COMPX scores were contrasted using two-way 

2x2 repeated measures ANOVA. To control for repeat testing, test order was included 

as a factor in all analyses. 

 

Satiation analyses (pre-meal, post-taste and post-course) were conducted for each eating 

episode using 3x2x3 repeated measures ANOVA assessing appetite (hunger and 
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fullness) ratings over time for the preload and equivalent 3x2x5 repeated measures 

ANOVA assessing appetite over time for the test meal and were analysed separately due 

to the expected hunger enhancing effects of MSG during the preload but maintaining 

satiety during the main course. A separate 3x2 repeated measures ANOVA analysing 

the preload effects over 45 min post ingestion was also carried out to assess the effects 

of MSG or condition on satiety. Hunger and fullness variables during preload satiation 

were transformed to track the changes from baseline over the eating episode. Sensory 

evaluations of the soup and test meal were analysed using repeated measures two-way 

3x2 ANOVA. 

 

In cases of violated sphericity, Greenhouse Geisser values (ε = <0.75) were adopted. In 

cases of violated Greenhouse Geisser assumptions (ε = >0.75), Huynh-Feldt values 

were reported. Within-subjects contrasts were assessed using Bonferroni adjusted 

comparisons to understand significant interactions between different patterns of data. 

Effect sizes are reported for specific effects using Pearson’s correlation coefficient. Data 

are shown for all 35 participants.  

 

7.3 Results  

 

7.3.1 Test meal intake 

There was a significant effect of soup preload on energy consumed at the test meal (F 

(1.75, 59.55) = 4.58, p = .02), with significantly less energy consumed in protein 

conditions compared to control (F(1,34) = 7.47, p = .01, r = .42; Figure 7.1). Overall, 

less energy tended to be consumed in MSG+; 442 Kcal compared to MSG-; 450 Kcal 

conditions but this small difference was not significant (F(1,34) = 0.31, NS, r = .09). 

The predicted enhancement of protein satiety by MSG was not supported: the 

interaction between MSG and soup conditions was not significant (F(2,68) = 0.37, NS, r 

= .13) although in line with predictions the lowest intake was in the protein MSG+ 

condition (Figure 7.1). An order*condition interaction effect was noted for intake of the 

savoury course (F(10,58) = 2.41, p = .02) and sweet course (F(10,58) = 2.05, p = .04) 

with inspection of the data across test sessions suggesting that intake was highest in the 

first session after which consumption was adjusted to the nutrients ingested in the 

preload. No significant effects of condition or MSG were found for the dessert course.  
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Figure 7.1. Ad-libitum lunch intake after fixed preload consumption of three versions of 

soup (low energy control, high energy carbohydrate and high energy protein) with (  ) 

and without (  ) added MSG. Data are mean ±SEM. Significant main effect of 

condition is indicated: * P<0.05. 

 

7.3.2 Compensation for preload energy 

Overall energy compensation at test meal intake for the difference in soup preload 

energy was significantly better in the protein than carbohydrate condition (F (1,34) = 

4.19, p = .05, r = .33), with 48% compensation in the protein and only 16% 

compensation in the carbohydrate conditions (Figure 7.2).  Although there was no 

significant effect of MSG overall (F (1,34) = 0.86, NS, r = .16), there was a significant 

difference in compensation between protein and carbohydrate conditions with added 

MSG (F (1,34) = 5.45, p = .03, r = .37) with 24% compensation in the carbohydrate 

MSG+ condition but 62% compensation in the protein MSG+ condition. This effect was 

largely driven by differences in savoury course intake (F (1,34) = 5.63, p = .02, r = .38) 

with 51% compensation in the MSG+ protein condition but only 16% in the 

carbohydrate MSG+ condition.  No significant differences in compensation were found 

when comparing carbohydrate and protein MSG- conditions overall (F(1,34) = 1.21, 

NS, r = .04).  
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Figure 7.2. Energy compensation overall at an ad-libitum test meal (Panel A) after fixed 

consumption of high energy carbohydrate and high energy protein soup preloads with 

and without added MSG. Different letters indicate statistically significant differences (p 

= <.05) between conditions (using within-subjects Bonferroni corrected contrasts); 

statistically significant contrast between no and added MSG carbohydrate conditions 

(a); no and added MSG protein conditions (b) and no MSG carbohydrate and all protein 

conditions (ab). Data are mean±SEM. 

 

7.3.3 Rated hunger and fullness during the preload and test meal 

7.3.3.1 Preload Satiation and Satiety 

There were no significant spurious differences in rated hunger (F (2,68) = .06, p = NS) 

or fullness (F (2,68) = .68, p = NS) before the soup was tasted. Thus, change from 

baseline hunger and fullness were analysed to assess the influence of MSG 

manipulations when the soup was first tasted (assessing the appetizer effect (Yeomans, 

1996)) and immediately after consuming the soup preload (assessing effects on 

satiation). 

 

Hunger and fullness ratings at the start of the test meal (45 min after soup preload 

intake) were also assessed, with hunger ratings immediately after tasting the meal to be 

consumed of particular interest as these have been shown to correlate with selected 

meal-size during ad-libitum intake sessions (Yeomans, et al., 2001). A significant 

condition*MSG interaction (F (2,68) = 4.10, p = .02) was noted in the hunger ratings 
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immediately after tasting the soup. Hunger increased after tasting the MSG+ control and 

carbohydrate soups but, unexpectedly, decreased after tasting in the MSG+ protein 

condition whilst in the no added MSG conditions, hunger was lower after control and 

carbohydrate conditions but increased after tasting the protein soup (F(1,34) = 5.70, p = 

.02, r = .38) (Table 7.2). No significant differences were noted between conditions for 

changes in fullness after tasting the soup (F (2,68) = 0.27, NS; Table 7.2). When 

changes in appetite ratings immediately after soup consumption were assessed, no 

significant effects were found for either hunger (F (2,68) = 0.31, NS) or fullness (F 

(2,68) = <.001, NS) across conditions indicating that the nutrients or energy in the soup 

did not affect appetite immediately after intake.  

 

Satiety analyses post-preload to pre-lunch revealed a significant effect of time with 

hunger increasing (F(1,34) = 38.30, p = <.001) and fullness decreasing (F(1,34) = 59.55, 

p = <.001) over the 45 min period. There was no effect of soup condition on hunger 

(F(2,68) = 0.53, NS) or fullness (F(2,68) = 0.81, NS) despite the energy and nutrient 

differences between the conditions (Table 7.2). However, effect size calculations 

suggested stronger hunger in carbohydrate conditions compared to control upon return 

for the test meal (r = .32) than when protein was compared to control (r = .11). No 

differences in hunger (F(1,34) = 0.87, NS) or fullness (F(1,34) = <0.001, NS) were 

observed between MSG+ and MSG- soups and no MSG*condition interaction effects 

were noted for hunger (F(1.7, 57.2) = 0.21, NS) or fullness (F(1.8, 57.3) = 0.33, NS).
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Table 7.2. Change from baseline Visual Analogue Scale (VAS) appetite ratings for three versions of soups (low energy control, high 

energy carbohydrate, and high energy protein) with (MSG+) and without (MSG-) added MSG. 
1
 Significantly different from post-preload. 

2
 

Significantly different pair-wise contrast from control at P<0.05. 

 

 

 

 

 

 

 

 

 Time Control  Carbohydrate  Protein 

  MSG- SEM MSG+ SEM  MSG- SEM MSG+ SEM  MSG- SEM MSG+ SEM 

Hunger Taste -4.2
 

3.3 1.1
1 

1.3  -3.0 2.2 0.1
1 

1.5  2.0 1.1 -3.4
1,2 

2.1 

Post-Preload -29.2 4.0 -27.2 3.4  -27.4 3.6 -25.0 3.7  -24.8 4.4 -28.3
2 

4.0 

Fullness Taste 1.9 2.0 1.5 1.4  2.8 2.3 2.8 1.8  2.1 1.5 3.5 2.4 

Post-Preload 32.7 4.6 32.3 4.1  32.9 4.0 32.1 3.6  32.2 3.7 32.8 3.9 
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7.3.3.2 Test Meal Satiation 

The final analyses of appetite ratings focussed on how satisfying the test meal was to 

see if this was influenced by the earlier soup preload manipulation. As expected, hunger 

decreased (F (1,34) = 213.73 , p<.001) and fullness increased (F(1,34) = 211.39, 

p<.001) over the course of the ad-libitum test meal.   

 

Over the course of the test meal a significant effect of soup condition on changes in 

rated hunger (F (2,68) = 15.18, p = <.001) indicated that protein was found to be more 

satiating across the meal when compared to control conditions (F (1,34) = 23.80, p = 

<.001, r = .64). A significant condition*time interaction (F(2,68) = 10.31, p = <.001) 

suggested that appetite was most suppressed post-meal after protein preloads  followed 

by carbohydrate and control conditions. The overall decrease in hunger across the test 

meal was significantly greater after MSG- soup preloads compared to MSG+ (main 

effect of MSG: F(1,34) = 4.52, p = .04, r = .34) but this may be driven by MSG effects 

on the control and carbohydrate conditions as a significant condition*MSG*time 

interaction F(2,68) = 5.39, p = .007) revealed that the addition of MSG to carbohydrate 

soups suppressed hunger less over the course of the ad-libitum meal when compared to 

control (F (1,34) = 4.15, p = .05, r  = .33) but acted to reduce hunger more in the protein 

condition when compared to control (F (1,34) = 9.77, p = .004, r = .47). Changes in 

fullness over the meal were significantly influenced by the preload condition initially 

received (F(2,68) = 4.01, p = .02), with lowest fullness ratings after the control 

condition followed by carbohydrate and protein conditions. This suggests that satiation 

was lowest in the control condition despite test meal intake being highest in this 

condition (Figure 7.1). No significant effects of added MSG were found (F (1,34) = 

0.43, NS) and no MSG*condition interaction was evident (F(2,68) = 1.08, NS). 

 

Inspection of each individual course was carried out to assess which courses were most 

affected by the preload manipulations. Overall, hunger ratings declined after savoury 

course intake (F(1,34) = 151.81, p = < .001) and fullness ratings increased (F(1,34) = 

174.61, p = < .001) as expected. There was a significant appetizer effect on hunger 

ratings immediately after tasting the savoury course (main effect of time F (1,34) = 

15.09, p <.001), and this varied between soup conditions (F (2,68) = 3.24, p = .05), with 

higher hunger ratings after tasting in control and protein conditions compared to the 

carbohydrate conditions. A significant condition*MSG*time interaction (F(2,68) = 
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3.60, p = .03) revealed significant appetizer effects across all macronutrient conditions 

in MSG- soups which was also found in MSG+ control and protein conditions but there 

was no increase in hunger immediately after tasting the MSG+ carbohydrate condition. 

However, these increases in hunger after tasting did not translate to actual savoury 

course consumption, which was lower in the MSG added conditions (Figure 7.1).  

 

When assessing changes in appetite over the duration of the savoury course there were 

no main effects of macronutrient condition on hunger (F(2,68) = 0.82, NS) or fullness 

(F(2,68) = 2.56, NS), no main effect of MSG on hunger (F(1,34) = 0.01, NS) or fullness 

(F(1,34) = 0.07, NS) and no interaction effects found for hunger (F(2,68) = 1.98, NS) or 

fullness (F(1.7, 58.5) = 0.88, NS). Hunger increased (F (1,34) = 12.59, p = .001) and 

fullness decreased (F(1,34) = 9.35, p = .004) immediately after the dessert was first 

tasted. A significant effect of soup condition (F(2,68) = 10.80, p = <.001) was evident in 

changes in hunger from the end of the savoury course to the end of the meal with 

hunger remaining elevated in the control compared to carbohydrate and protein preload 

conditions. There was also a significant Condition*MSG*time interaction  (F(2,68) = 

8.54, p = <.001) with protected contrasts indicating that the hunger reducing effects of 

protein were stronger with added MSG at the end of the meal compared to control 

(F(1,34) = 15.20, p = <.001, r = .56) and compared to carbohydrate (F(1,34) = 5.48, p = 

.03, r = .37) conditions. Equally, fullness evaluations before the dessert course to after 

the meal differed significantly between soup conditions (F(2,68) = 3.34, p = .04)  with a 

smaller increase in fullness experienced after control preload soup than protein or 

carbohydrate conditions.
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7.3.4 Sensory ratings of the preload and test meal 

7.3.4.1 Soups 

There were no significant differences noted for familiarity (F (2,68) = 0.08, p=.93), 

pleasantness (F (2,68) = 2.93, p=.07), or sweetness (F (2,68) = 2.31, p=.09) across soup 

conditions; all soups were deemed familiar; m: 70, pleasant; m: 63 and marginally 

sweet; m: 54 (Table 7.3). MSG+ soups were rated as more salty (F (1,34) = 26.26, p = 

<.001) and stronger tasting (F (1,34) = 12.57, p = .001) than MSG- soups and there was 

a significant soup*MSG interaction found for savoury assessments (F (2,68) = 4.37, p = 

.02) with MSG+ control and protein soups deemed more savoury than no added MSG 

but MSG+ carbohydrate soups rated as less savoury than the MSG- condition (Table 

7.3). This may be due to the ambiguous nature of the ‘savoury’ label affecting sensory 

judgements as trained sensory panels were not tested.  

 

7.3.4.2 Test Meal 

The main meal items were deemed equally familiar across conditions. There was a 

significant difference in savoury course pleasantness (F (2,68) = 5.93, p =.004), and 

strength of flavour (F (2,68) = 3.16, p = .05)  ratings across conditions with higher 

ratings made after protein preload consumption, followed by control and carbohydrate 

conditions. There were no significant differences in sensory ratings across conditions 

for the dessert course. 
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Table 7.3. VAS ratings of the sensory characteristics of three versions of soup (low energy control, high energy carbohydrate and high 

energy protein with (MSG+) and without (MSG-) added MSG. 
1
 Significantly different from MSG-. 

2
 Significantly different pair wise 

comparison from control P<0.05. 

 

Rating Control  Carbohydrate  Protein 

MSG- SEM MSG+ SEM  MSG- SEM MSG+ SEM  MSG- SEM MSG+ SEM 

Familiar 70.3 3.6 68.6 3.3  72.3 2.5 69.4 3.5  69.9 3.5 70.1 3.2 

Pleasant 60.5 3.4 65.9 1.8  66.9 2.2 65.8 2.7  60.6 3.2 61.1 3.5 

Salty 45.4 3.1 50.7
1 

3.2  40.1 2.7 49.9
1 

3.1  41.5 3.6 53.9
1 

3.7 

Savoury 61.2 2.4 63.8 2.3  61.3 2.0 57.2
2 

3.2  57.7 3.2 63.7 2.9 

Strong 51.5 3.5 56.5
1 

2.6  49.6 2.7 56.4
1 

3.0  49.9 3.6 54.3
1 

3.4 

Sweet 55.1 2.6 50.0 3.0  56.7 2.3 57.6 2.6  54.3 2.8 51.8 2.8 
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7.4 Discussion 

The main findings of the study indicate that nutrients received largely as protein in a 

soup preload allow for an adequate adjustment of energy consumed at a later ad-libitum 

meal. Increasing the overall energy content of the test soup with added protein resulted 

in a greater reduction in lunch intake, and consequently more accurate compensation for 

this added energy, than was seen when energy was increased by addition of 

carbohydrate, in line with several recent studies (Bertenshaw, et al., 2008; Bertenshaw, 

et al., 2009; Yeomans & Chambers, 2011).  Although the predicted enhancement of 

protein-induced satiety by addition of MSG was not significant based on intake data, the 

addition of MSG did result in greater compensation for added protein energy. However 

there were no differences between MSG or specific macronutrient conditions in rated 

satiety over testing after preload intake. 

 

As predicted, test meal intake after consumption of the protein enriched preload was 

lowest followed by the carbohydrate and control conditions. Thus, there was better 

compensation for the energy received in the protein condition when later provided with 

an ad-libitum meal, consistent with the broader literature suggesting that protein is more 

satiating than is carbohydrate (Fischer, et al., 2004; Marmonier, et al., 2000; Poppitt, et 

al., 1998). Importantly, compensation became even more accurate when MSG was 

added to the protein- compared to the carbohydrate-enriched preload, with this effect 

strongest in the savoury course of the test meal. This compensation effect was evident 

despite the relatively small energy difference between low and high energy conditions. 

In previous studies compensation effects have only been apparent with larger energy 

differences between preloads (Bertenshaw, et al., 2008; Yeomans & Chambers, 2011; 

Yeomans, et al., 2001). This suggests that moderate increases in the energy content of a 

food through the addition of protein and MSG, for example as a savoury snack, may 

reduce the likelihood of subsequent overconsumption. 

  

We suggest two possible explanations for how MSG may enhance compensation for 

energy added as protein. Firstly, the sensory quality generated by the addition of MSG 

may have cued the experience of protein, and so enhanced the actual satiating effects of 

protein at the test meal. This idea is supported by recent data showing no significant 

differences in compensation at a test meal following high protein and high carbohydrate 
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preloads when these were matched for thickness and creaminess (Bertenshaw, et al., 

2013). Indeed, it may be that the savoury characteristics of MSG are more strongly 

associated with protein than are the sensory characteristics of thickness and creaminess 

identified in the earlier study and thus act as a more reliable cue for protein-based 

satiety. Alternatively, the enhanced satiating effects of protein in the MSG+ condition 

could be related to post-ingestive stimulation of gut glutamate sensors (Kitamura, 

Tsurugizawa, & Torii, 2011; Masic & Yeomans, 2013) which have been related to 

enhanced satiety in animals (Kondoh & Torii, 2008; Niijima, 2000; San Gabriel, et al., 

2007).  

 

An appetizing effect (Yeomans, 1996; Yeomans & Gray, 1997) of MSG was seen in 

both the control and carbohydrate-rich soups with added MSG but surprisingly was  not 

found in the equivalent protein-rich soup. This may be due to the immediate sensory 

experience of protein and MSG eliciting lower feelings of hunger in the protein-rich 

MSG+ condition, however as ad-libitum intake of the soup course was not assessed, this 

remains as speculation. Despite the immediate stimulation of appetite by added MSG in 

some conditions, no significant differences in hunger were seen immediately after 

ingesting the soup, in contrast to our recent study (Masic & Yeomans, 2013). This may 

be related to volume and hedonic assessments, with participants expecting each soup to 

be equally satiating due to the equivalent volumes received (Allirot, et al., 2013). These 

predetermined portion sizes may then have influenced hedonic hunger (Yeomans, 

2010). No difference in appetite was also evident immediately before the ad-libitum 

meal 45 minutes after preload ingestion and may be due to participants responding in 

anticipation of the meal to be received (Weingarten, 1984). Hunger also remained 

stronger at the ad-libitum meal in added MSG control and carbohydrate conditions but 

was suppressed in added MSG protein conditions. Such an effect may be indicative of 

delayed rebound hunger (Yeomans & Chambers, 2011), as participants consuming 

added MSG preloads without the accompanying protein may have been anticipating 

stronger satiation due to the MSG protein cue. However, as protein was not delivered, 

hunger was not as satisfied at the end of the test meal as when no protein cue was 

present (in no MSG conditions). But when added MSG was presented in combination 

with protein, the additional protein cue from MSG acted to reduce feelings of hunger 

more strongly; suggesting that the added MSG may have increased the salience of this 

cue as has been found previously (Masic & Yeomans, 2013) and is evident in infants 



257 
 

 257 

experiencing umami taste in mother’s milk (Mennella & Beauchamp, 1996; Ventura, et 

al., 2012). 

 

The present study also noted that most of the effects of the preload manipulations on 

lunch intake were evident for the first (savoury) course whereas intake at the dessert 

course was not affected by preload type. This may be due to the high palatability of this 

course overriding sensory and energy effects as has been found previously (Yeomans, et 

al., 2001) as sweet appetite relies less on the experience of hunger (de Graaf, et al., 

1993) and more on the hedonic effects of palatability (Blundell & Rogers, 1994; Rogers 

& Blundell, 1989).  Thus consumption of a sweet course may be less suppressed by a 

previously consumed savoury course (Appleton, et al., 2004), with the critical impact on 

behaviour being an earlier switch from savoury to sweet courses. There were also a 

number of limitations in the present design that constrained the conclusions drawn. Due 

to reformulations of the ad-libitum main course item, the different versions of the main 

course may have influenced test meal intake. However, further analyses of intake taking 

this into account indicated that this was most likely not the case. Similarly, effects of 

order on ad-libitum intake indicated that consumption was greater after the first test day 

but thereafter consumption was in line with the nutrients ingested, indicating that these 

order effects should not have influenced the sensory-nutrient interactions reported. 

Initial power analyses indicated that the sample tested would yield adequate power, 

however, although rated appetite and intake was in the direction predicted it was not 

found to be significant. This may suggest that a larger sample would be required to 

assess the more subtle effects of MSG on appetite. 

 

Overall, the addition of protein to a soup preload reduced subsequent intake and 

allowed for more accurate energy compensation at a test meal and this was enhanced by 

the addition of MSG. When protein was consumed with added MSG, meal satisfaction 

remained the same despite reduced intake at a later test meal. However, subjective 

satiety ratings were not influenced by MSG, macronutrients or energy 45 minutes after 

preload intake. Further research is required to understand the influence of MSG and 

protein on sensory and gut responding and how this interacts with the subjective 

experience of appetite and subsequent intake. 
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7.9 Summary of main findings and directions for future research 

 The main findings suggested that the addition of energy in a fixed preload 

(added carbohydrate or added protein) acted to improve the compensation for 

this extra energy received in a subsequent two-course meal 

 The addition of MSG further improved this compensation, particularly when in 

combination with added energy in the form of protein but no changes in meal 

intake between conditions were apparent after MSG conditions 

 Added MSG also increased palatability and rated hunger immediately after 

tasting in added control and carbohydrate conditions but not protein conditions 

 This suggests that MSG increases palatability and hunger during intake of the 

MSG containing meal but that it may contribute to satiety when combined with 

protein by improving energy regulation over time 

 Future research may wish to further assess the effects of MSG in relation to 

protein; as the effects found were subtle, the use of a more reliable protein cue 

such as one derived from umami in the form of inosine monophosphate (IMP) in 

combination with MSG may reveal whether the energy compensation effects 
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found may be more specific rather than a general effect of umami on appetite 

and intake 
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Appendix 7.1. Graphical depiction of the study design employed. 
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Abstract 

Monosodium glutamate (MSG) has been shown to increase satiety when in combination 

with protein. Inosine 5’-monophosphate (IMP) acts synergistically with MSG and is 

present in high protein sources and may potentially enhance satiety further. This 

experiment assessed the effects of a combination of MSG and IMP either provided 

alone or in combination with protein on appetite during ingestion and post-ingestive 

satiety. Fixed portions (450g) of low energy control and high energy protein soup 

preloads with (MSG/IMP+) or without (MSG/IMP-) added MSG/IMP were consumed 

on four non-consecutive days and changes in appetite during soup intake and at a 

subsequent ad-libitum lunch were assessed in 26 low-restraint volunteers using in a 

within-participant design. MSG/IMP+ preloads significantly reduced subsequent intake 

more than MSG/IMP- conditions irrespective of protein. The addition of protein also 

reduced intake independently of MSG/IMP. Energy compensation was greater in 

MSG/IMP+ protein conditions than protein alone and the addition of MSG/IMP+ also 

increased soup pleasantness and caused an immediate increase in appetite when soup 

was first tasted. This suggests that the addition of MSG/IMP to a low energy preload 

had a biphasic effect on appetite, stimulating appetite during ingestion but then 

enhancing post-ingestive satiety. 
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8.1 Introduction 

Monosodium glutamate (MSG) has been used for over a century to increase the savoury 

umami taste of food (Ikeda, 1908; Jinap & Hajeb, 2010; Ninomiya, 1998). When MSG 

is combined with the purine nucleotide inosine 5’-monophosphate (IMP), these 

chemicals act synergistically to further increase the flavour of umami (Chaudhari, et al., 

2009; Garcia-Bailo, et al., 2009; Yamamoto & Ishimaru, 2013). Since MSG enhances 

flavour and thereby palatability, and palatability is known to increase short-term intake 

(Yeomans, et al., 2004), it was initially thought that MSG would increase short-term 

intake (Bellisle, et al., 1991; Mathey, et al., 2001).  However, the short-term effects of 

MSG on appetite have been found to reduce over time (Bellisle, 1999; Essed, et al., 

2007). This raises the possibility that MSG may also modulate post-ingestive satiety, 

giving umami a dual role in appetite control. 

 

It has been suggested that the ability to taste umami arose as a way of detecting the 

presence of protein (Kurihara, 2009; Luscombe-Marsh, et al., 2008; Naim, et al., 1991) 

and it may be this potential to signal the presence of protein in foods that contributes to 

satiety (Ikeda, 1908; Ninomiya, 1998). There is considerable evidence that protein is 

more satiating than either carbohydrate (Bertenshaw, et al., 2008; Fischer, et al., 2004) 

or fat (Simpson & Raubenheimer, 2000; Weigle, et al., 2005). In support of this idea, 

two recent studies in our laboratory found that MSG reduced post-ingestive recovery of 

hunger (Masic & Yeomans, 2013a) and improved energy compensation (Masic & 

Yeomans, 2013b) when consumed in combination with protein. Similarly, it has been 

found that increasing MSG content in infant formula causes the same increase in 

satiation and satiety as when  protein hydrolysate formula milk is used, which is known 

for its effects on improving appetite control due to added protein and free glutamate 

(Ventura, et al., 2012). However, not all studies have found evidence that MSG 

enhances satiety (Mathey, et al., 2001). IMP is predominantly found with MSG in 

animal protein (Ninomiya, 1998), thus it may be a strong candidate for enhancing 

sensory associations with protein, further increasing the salience of the protein signal 

provided by MSG and in turn reducing appetite and intake in a protein context. 

However, few studies have looked at effects of MSG+IMP on measures of appetite and 

satiety. Indeed, the only studies to date examining effects of MSG+IMP on acute satiety 

in adults found no evidence of enhanced satiety (Carter, et al., 2011; Luscombe-Marsh, 
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et al., 2009) although both of these experiments used control preloads naturally high in 

protein (and thus high in MSG+IMP), potentially masking an effect of MSG+IMP. 

Building on our recent findings using a low MSG+IMP preload (Masic & Yeomans, 

2013a, 2013b), the present research assessed the effects of a soup preload with or 

without added MSG/IMP (MSG/IMP+ or MSG/IMP-) and with or without added 

protein (high energy protein or low energy control) on subsequent intake of an ad-

libitum meal provided 45 minutes after preload intake (see Masic & Yeomans, 2013a)  

(368). Critically, this was the first study to assess the immediate impact of MSG/IMP on 

flavour and appetite and the subsequent experience of satiety. The inclusion of 

assessments of appetite and eating rate during preload intake depending on the addition 

of MSG/IMP allowed for a dissociation of effects on acute appetite stimulation and 

satiation (Yeomans, 2000). We predicted an acute appetizer effect (Yeomans, 1996), 

slower decline in rated hunger and faster eating speed irrespective of added energy as a 

consequence of flavour-enhancement by MSG/IMP. Based on our recent findings with 

MSG alone, we also predicted that MSG/IMP would further enhance the satiating 

effects of added protein post-ingestion. 

 

8.2 Subjects and Methods  

 

8.2.1 Design 

A within-participant design assessed the effects of a fixed volume soup preload 

differing in macronutrient/energy content (low energy control or high energy protein) 

with or without added MSG/IMP (0.6% w/w MSG and 0.25% w/w IMP; MSG/IMP+ or 

no MSG and IMP; MSG/IMP-) on within-meal appetite and eating rate and subsequent 

rated appetite and intake at an ad-libitum test meal. A Williams square design was used 

to balance preload condition order (Williams, 1949). 

 

8.2.2 Participants 

Twenty-seven volunteers were recruited, mostly students from the University of Sussex 

(11 men, 16 women, mean age: 21.7, ages range: 18-34; mean BMI: 22.4, BMI range: 

19-29kg/m²). Potential participants were contacted based on their previous completion 

of a recruitment questionnaire using a database system. Individuals who were taking 

prescription medication (excluding the contraceptive pill), smoked, were diabetic, had a 

diagnosed eating disorder, or had allergies or dietary intolerances to the foods used were 
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excluded. Individuals with a high restraint score (above 7 on the Three Factor Eating 

Questionnaire (TFEQ; Stunkard & Messick, 1985) were also excluded as restrained 

eaters display different eating behaviours to those seen more generally in the population 

(Dohm, et al., 2005). Eligible participants were contacted with details of the study 

described as ‘determining the effects of food on motor skills’. This was to ensure 

awareness of the experimental manipulation would not influence eating behaviour 

during the testing sessions. Written, informed consent was given before participation 

and participants were paid £40 on completion of the study. The study was conducted in 

accordance with the standards expressed in the Helsinki Declaration and was approved 

by the University of Sussex ethics committee. 

 

8.2.3 Test Food 

8.2.3.1 Breakfast and lunch: 

The size of breakfasts on test days were based on Food Standard Agency guidelines for 

men (M) and women (W) (FSA, 2006) and comprised of cereal (M:80g; W:60g; 

Crunchy Nut Cornflakes, Kellogg’s, UK), semi-skimmed milk (M: 200g; W: 160g; 

Sainsbury’s Plc, UK) and orange juice (M: 200g; W: 200g; Sainsbury’s Pure Orange 

Juice, Sainsbury’s Plc, UK) providing 504 Kcal for men and 404 Kcal for women. The 

ad-libitum lunch consisted of pasta (Conchiglie, Sainsbury’s Plc, UK) served in a 

tomato sauce (Tomato and Basil Sauce, Sainsbury’s Plc, UK). Each serving consisted of 

250g cooked pasta combined with 200g sauce (total: 500 Kcal, 12% fat, 13% protein, 

75% carbohydrate). Re-fill portions were provided as 450g servings. Tasting samples 

were served in 10g portions in small white ceramic bowls while pasta tasting portions 

were served on white ceramic plates.  

 

8.2.3.2 Soup Preloads: 

As in our earlier studies (Masic & Yeomans, 2013a, 2013b), a low energy density 

control spiced carrot soup (per 100g: 28 Kcal, 50% fat, 6% protein, 44% carbohydrate) 

was used as the base for all preloads which was served in a 450g portion. This contained 

carrots (Frozen Baby Carrots, Sainsbury’s Plc, UK) onions, celery, olive oil (Medium 

Flavour Olive Oil, Sainsbury’s Plc, UK), spice mixture (Garam Masala Schwartz, UK) 

and water (see Masic & Yeomans, 2013a)  (368). Protein-rich soups (per 100g: 69 Kcal, 

19% fat, 45% protein, 36% carbohydrate) additionally contained 36g/450g whey protein 

isolate (MyProtein UK) and 18g/450g maltodextrin (DE: 15.3, Cargill, UK). 
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Maltodextrin was added to the protein-rich soup in line with our previous studies (Masic 

& Yeomans, 2013a, 2013b) to ensure an adequate energy difference between low and 

high energy conditions. 0.6% w/w MSG and 0.25% w/w IMP (Ajinomoto Co., Inc. 

Europe) were added to MSG/IMP+ soup conditions. The formulation of the control 

soup followed extensive pilot testing to prepare a moderately pleasant soup low in MSG 

to which added MSG/IMP would allow for an enhancement of pleasantness. Pilot 

testing was also carried out on the high energy protein-rich soup used to ensure its 

acceptability (see Masic & Yeomans, 2013a). The levels of MSG/IMP used were 

determined based on previous successful flavour manipulations (Luscombe-Marsh, et 

al., 2008, 2009) and are in-line with commercial usage (Bellisle, 1999; Loliger, 2000; 

Yamaguchi & Ninomiya, 2000). 

 

8.2.4 Procedure 

The study was conducted over four non-consecutive test days at the Ingestive Behaviour 

Unit (IBU) at the University of Sussex. Participants arrived in a fasted state having 

consumed nothing but water from 2300h the night before and were given a standard 

breakfast in the IBU at a pre-arranged time (from 0900h – 1030h) . After breakfast, 

participants were free to leave with instructions to abstain from eating and drink only 

water and to return to the IBU 3 h later.  

 

Preload and test meal sessions ran from 1200 h-1330 h and were conducted in 

windowless cubicles. To conceal the purpose of the experiment and in compliance with 

the cover story used, participants completed a motor skills task (the star motor task, 

which entailed tracing the outline of a star using their non-dominant hand) to minimise 

demand effects from the preload/intake tests. Before preload and test lunch sessions 

participants completed digital Visual Analogue Scale (VAS) ratings assessing how alert, 

clear-headed, energetic, full, hungry, nauseous and thirsty they felt using the Sussex 

Ingestion Pattern Monitor (SIPM) which consists of a digital balance (Sartorius, Model 

BP4100) linked to a Dell personal computer. All scales were presented as sentences 

(“How <word> do you feel?”) with a left hand anchor reading “Not at all <word>” 

(coded as 0) and a right hand anchor reading “As <word> as I have ever 

felt/experienced” (coded as 100). Participants were given instructions on screen of how 

to use the scale before each evaluation. Participants registered their response by 

selecting “Rating Complete” and data were logged by SIPM. A sample of the relevant 
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preload soup was then provided in a clear plastic beaker and participants rated how 

filling, pleasant, salty, savoury, strong and sweet the sample was before completing 

appetite ratings (how full, hungry and thirsty). A bowl of the tasted soup was then 

provided and ratings of how full, hungry and thirsty they felt, and how pleasant the soup 

tasted, were made after every 50g soup consumed until all of the soup was ingested (the 

change in the weight of the bowl was tracked and registered by the SIPM), after which 

additional appetite and mood ratings were completed. Participants were then free to 

leave but told to consume only water until they returned 40 minutes later for the test 

lunch. This was provided 45 min after the soup had been consumed as this interval was 

previously found to be the most sensitive for detecting appetite suppression by MSG 

(Masic & Yeomans, 2013a). As with the soup preload, participants first completed the 

star motor task, mood and appetite ratings and taste test, before being provided with a 

450g portion of the pasta in sauce with instructions to “Please eat as much pasta as you 

like until you feel comfortably full”. Re-fill portions of the course were prompted by the 

SIPM after 400g consumed with an alert sound and on-screen message instructing 

participants to call the experimenter. Re-fills were provided in this way to reduce 

external cues such as an empty plate from influencing intake (Herman & Polivy, 2008b; 

Wansink, et al., 2005a). When participants had indicated that they had finished their 

meal, a final set of appetite and mood ratings were completed matching those at the start 

of the test meal. The order of VAS ratings was randomized for all rating sets. Drinking 

water was available during both the preload and test lunch. Participants were free to 

leave once the test meal was complete on days 1-3. The final session ended with a 

structured debriefing during which height and weight was recorded before payment. A 

graphical depiction of the experimental design can be seen in Appendix 8.1. 

 

8.2.5 Data Analysis 

Initial analysis of intake data identified one outlier who had a higher BMI and was 

consequently removed from all analyses. To assess post-ingestive satiety, two-way 

repeated measures ANOVA was used to assess test meal intake (Kcal) between soup 

(control or protein-rich) and flavour (MSG/IMP+ or MSG/IMP-) conditions. To further 

determine effects of flavour and energy manipulations on satiety, energy compensation 

(COMPX) values (Rolls, Dimeo, & Shide, 1995) were calculated by subtracting ad-

libitum meal intake in the control MSG/IMP- condition from that in the protein-rich 

MSG/IMP+ or MSG/IMP- condition and expressing this as a percentage of the 
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difference in preload energy between low and high energy protein preloads (187 Kcal). 

COMPX values were contrasted using repeated measures ANOVA with the prediction 

that MSG/IMP+ would reduce intake resulting in a unidirectional hypothesis. Appetite 

(hunger and fullness) and food pleasantness across the test meal were contrasted using 

ANOVA. As there were no baseline differences in rated hunger or fullness at the start of 

each session, immediate changes in rated hunger and fullness after first tasting the soup 

was calculated as this has been shown to measure sensory-impact on appetite (Yeomans 

& Bertenshaw, 2008), and these change data were contrasted using two-way ANOVA, 

with a prediction of enhanced appetite in MSG/IMP conditions. The overall change in 

these measures after tasting until the end of soup ingestion was also contrasted between 

conditions. Eating rate (grams per minute) was assessed for the whole preload duration 

using 2x2 repeated measures ANOVA. Soup and test meal sensory evaluations were 

contrasted using two-way repeated measures ANOVA. Gender was included as a 

between-subjects factor in all analyses as was test order. Within-subjects contrasts were 

assessed using Bonferroni adjusted comparisons to further understand the nature of 

specific interactions. Effect sizes are reported using Pearson’s correlation coefficient. 

Data are shown for 26 out of 27 participants. All data were analysed using IBM SPSS 

20.0 for Windows. 

 

8.3 Results 

 

8.3.1 Intake at the test meal  

Test meal intake was lower in the MSG/IMP+ than MSG/IMP- conditions (P=.02) and 

after addition of protein (P=.001) (Figure 8.1 panel A).  The interaction between 

MSG/IMP and protein was non-significant. Energy compensation (COMPX) was 

significantly better (P=.04) after the high energy MSG/IMP+ protein-rich preload (70%) 

than the high energy MSG/IMP- protein condition (44%) (Figure 8.1 panel B). No 

significant effect of eating rate was observed. Similarly, no significant effects of order 

or gender were apparent on intake or COMPX measures. 
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Figure 8.1. Ad-libitum lunch intake (A) after fixed preload consumption of a high 

energy protein or low energy control with (  ) and without (  ) added MSG/IMP and 

(B) compensation for the extra energy ingested in the high energy protein-rich condition 

across added and no MSG/IMP conditions. Data are mean ±SE. Significant differences 

between added and no MSG/IMP conditions are indicated: * P<.05.  
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8.3.2 Rated hunger and fullness during the preload and test meal 

Appetite was predicted to change over the course of both preload and test meal intake 

depending on the presence of MSG/IMP and protein. Ingestion of MSG/IMP+ preloads 

resulted in an immediate significant increase in hunger after tasting compared to 

MSG/IMP- preloads (P=.03) but the addition of high energy protein did not alter hunger 

after tasting these soups (Figure 8.2), and fullness did not change significantly in any 

condition.  Hunger and fullness also did not differ significantly between preload 

conditions once all of the soup had been ingested, suggesting that the initial increase in 

hunger in MSG/IMP+ conditions was not sustained overall, although women were 

hungrier after consuming the soup in the MSG/IMP+ conditions than were men (P=.05), 

possibly suggesting a stronger appetizing effect of MSG/IMP in women.   

 

 

Figure 8.2. Change from baseline VAS hunger ratings after tasting low energy control 

or high energy protein soups with (  ) and without (  ) added MSG/IMP. Data are 

mean±SE. Significant differences between added and no MSG/IMP conditions are 

indicated: * P<.05. 

 

Hunger increased and fullness decreased significantly during the 45 minute inter-meal 

interval between preload and lunch but no significant differences were found between  

conditions. Men were significantly more hungry and less full after the 45 minute 

interval after MSG/IMP+ conditions than were women (P=.04).  
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The test meal significantly increased feelings of hunger after tasting (P=.01), possibly 

due to its palatability. However, an MSG/IMP*protein interaction indicated that hunger 

increased more than the MSG/IMP- control after tasting the pasta in the control 

MSG/IMP+ preload but was lower after tasting after protein MSG/IMP+ preload than 

the protein MSG/IMP- condition (P=.05) whilst fullness decreased after tasting the 

pasta after MSG/IMP- preloads (P=.05; Table 8.1). Hunger remained significantly 

elevated during the ad-libitum test meal after the high protein MSG/IMP- than 

MSG/IMP+ preloads (P=.05) and fullness remained higher during the test meal after the 

added protein MSG/IMP- condition than MSG/IMP+ (P=.03). However, rated fullness 

was lower during the test meal after the MSG/IMP+ than MSG/IMP- control condition. 

This indicates that the additional protein consumed may have improved the regulation 

of fullness but this does not relate to the lower test meal intake evident after MSG/IMP+ 

as compared to MSG/IMP- conditions (Figure 8.1).    

 

When gender was included in the analysis over the course of the meal a significant 

MSG/IMP*gender (p = .04) and time*gender interaction (p = .02) was evident in 

fullness evaluations with men rating fullness as lower and women rating fullness as 

higher during the test meal after MSG/IMP+ preloads. Indeed, men were less full before 

the meal, reduced feelings of fullness after tasting the meal but showed similar fullness 

to women at the end of the test meal whilst fullness increased in a linear fashion in 

women. No effects of order were found across any preload or test meal analyses of 

hunger or fullness. 
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Table 8.1. Changes in VAS hunger and fullness ratings before, after tasting and after intake of an ad-libitum main course after consumption 

of a low energy control or high energy protein-rich preload with and without added MSG/IMP¹. 

 

Rating Control Protein 

 

Hunger 

 MSG/IMP- MSG/IMP+ MSG/IMP- MSG/IMP+ 

Pre-meal 51.85 ± 2.2 55.37 ± 1.9  54.37 ± 1.7 51.37 ± 1.9 

Taste 57.74 ± 2.1
a,b

 59.59 ± 1.7
a,b

 58.22 ± 2.3
a
 53.52 ± 1.5

a
 

Post-meal 12.37 ± 1.5 12.44 ± 0.8 10.11 ± 0.9  12.19 ± 1.1 

Fullness Pre-meal 47.59 ± 2.4 40.96 ± 1.9 44.04 ± 1.6 47.67 ± 2.6 

Taste 44.30 ± 2.4
c
 40.63 ± 2.1 40.30 ± 2.3

c
 47.81 ± 2.3  

Post-meal 82.11 ± 1.3 80.63 ± 2.5 82.59 ± 1.3 80.81 ± 1.3 

¹ All data are mean ±SEM. All data were analysed using two-way repeated measures ANOVA with pair-wise analyses assessed using 

Bonferroni adjusted comparisons. 
a
 Statistically significantly different from pre-meal, main effect of time (P = 0.01). 

b
 Statistically 

significantly different from protein, interaction between MSG/IMP and protein (P = 0.05). 
c
 Statistically significantly different from 

MSG/IMP+, main effect of MSG/IMP (P = 0.05) 
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8.3.3 Sensory evaluations of the preload and test meal 

The MSG/IMP+ preloads were formulated to increase pleasantness and savouriness 

compared to control and protein-rich conditions. Sensory assessments confirmed that 

MSG/IMP+ soups were significantly more pleasant (P=.001), salty (P=.001) and 

stronger tasting (P=.002) than MSG/IMP- conditions. The protein-rich and control 

soups were perceived to be similarly pleasant and not aversive (Table 8.2). There were 

no significant differences across conditions for ratings of how filling, salty, savoury or 

strong the main course was but a significant effect of protein condition was found for 

ratings of pleasantness of the test meal (P=.01) with lower pleasantness ratings made 

after initially consuming the added protein preloads as compared to the control 

conditions. 

 

Table 8.2. VAS sensory ratings of low energy control and high energy protein-rich 

soups with (MSG/IMP+) or without (MSG/IMP-) added MSG/IMP.
a
  

Rating Control Protein 

 MSG/IMP- MSG/IMP+ MSG/IMP- MSG/IMP+ 

Filling 52.55 ± 1.7 52.59 ± 1.7 51.51 ± 1.9 49.78 ± 1.5 

Pleasant 60.41 ± 1.7  66.88 ± 1.5
b 

62.56 ± 1.5 70.48 ± 1.6
b 

Salty 43.26 ± 2.1 56.48 ± 1.9
b 

40.59 ± 2.5 50.89 ± 2.4
b 

Savoury 59.85 ± 1.8 62.37 ± 1.4 58.85 ± 1.5 63.37 ± 1.8 

Strong 51.96 ± 2.4 60.67 ± 1.8
b 

50.33 ± 2.3 58.00 ± 1.8
b 

Sweet 53.33 ± 2.2 54.81 ± 2.4 54.92 ± 2.4 51.44 ± 1.9 

a
 All data are mean ±SEM. All data was analysed using two-way repeated measures 

ANOVA. 
b
 Statistically significantly different from MSG/IMP- (Pleasant: P=0.001, 

Salty: P=0.001 and Strong: P=0.002) (N = 27) 
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8.4 Discussion 

 

The main results suggest that the addition of MSG/IMP to a test soup reduced 

subsequent intake at a test lunch, both when the soup was low-energy or had added 

protein, while addition of energy in the form of protein also reduced test lunch intake. 

The addition of MSG/IMP also increased the degree to which extra energy (largely from 

added protein) was compensated for by reduced lunch intake. When the soup was 

consumed, Addition of MSG/IMP+ also stimulated hunger on first tasting the soup but 

when combined with protein resulted in a faster decrease in appetite during the 

subsequent test meal. These results imply a bi-phasic effect of MSG/IMP on appetite, 

with umami flavour stimulating hunger due to increased palatability but subsequently 

acting to enhance satiety. Although we hypothesised that effects of umami on satiety 

may be due to MSG/IMP acting as a signal for the satiating characteristics of protein, 

here effects of IMP/MSG were independent of effects of added protein.  

 

The provision of a MSG/IMP+ preload acted to reduce subsequent test meal intake 

irrespective of the additional energy received in a protein-rich form. This effect of 

MSG+IMP combinations was not found previously (Carter, et al., 2011; Luscombe-

Marsh, et al., 2009), possibly due to those studies using control preloads naturally high 

in MSG+IMP. Likewise, our earlier studies on MSG alone (Masic & Yeomans, 2013a, 

2013b) only found enhanced satiety when MSG was consumed with added energy in the 

form of protein, but not carbohydrate only suggesting that the addition of IMP, which is 

naturally consumed in protein sources (Ninomiya, 1998), may have acted 

synergistically with MSG to amplify the umami signal and thus act as a more robust 

cue. Indeed, if MSG/IMP signalled the likely presence of protein, even in the low 

energy condition, this signal alone may have been sufficient to induce satiety, whereas a 

weaker MSG only cue needed actual protein to be present to be effective.  It is 

important to note that the addition of protein decreased intake more strongly than did 

addition of MSG/IMP, (further confirming the potency of protein in inducing satiety; 

Poppitt, McCormack, & Buffenstein, 1998; Weigle et al., 2005). However, 

compensation for the energy consumed in the high energy protein-rich condition was 

better with the addition of MSG/IMP, suggesting that energy regulation was further 

improved with the addition of these flavour enhancers than providing protein alone. The 

lack of interaction between protein and MSG/IMP on intake here contrasted with effects 
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of MSG alone (Masic & Yeomans, 2013b).  However, the combination of MSG/IMP 

and energy largely from protein generated evidence of stronger satiety during the ad-

libitum meal in terms of changes in ratings of appetite (more rapid decrease in hunger 

and increase in fullness) than did addition of MSG/IMP+ in the low-energy soup, 

suggesting that MSG/IMP may have enhanced satiety to some extent, but not sufficient 

to result in suppression of lunch intake beyond the additive effects of protein and 

MSG/IMP.  

 

As well as enhancing satiety, addition of MSG/IMP increased flavour pleasantness and 

increased rated hunger on tasting the soup, (the appetizer effect; Yeomans, 1996), 

irrespective of the addition of energy largely as protein.  This is the first study to report 

a clear appetizer effect of MSG/IMP, although appetizing effects of flavours associated 

with the presence of MSG have been reported (Yeomans, et al., 2008).  Despite an 

enhancement of pleasantness in the MSG/IMP+ conditions giving rise to an appetizer 

effect (Yeomans, 1996), no significant differences were noted in eating rates between 

the conditions. This effect may be more subtle and was not detected as the baseline 

eating rate was high due to the nature of the preload (as semi-liquids tend to be 

consumed at a faster rate than solids (Zijlstra, Mars, de Wijk, Westerterp-Plantenga, & 

de Graaf, 2008a)). A pronounced increase in saltiness and strength of flavour was 

observed in MSG/IMP+ soups but no influence of savoury was evident in line with our 

previous experiments with MSG (Masic & Yeomans, 2013a, 2013b). This may be due 

to the ambiguity surrounding the ‘savoury’ label for untrained assessors. It is also 

noteworthy that whereas addition of MSG/IMP increased soup pleasantness, addition of 

energy in the form of protein tended to reduce soup pleasantness, yet both 

manipulations subsequently increased satiety. 

 

There was some suggestion that women may have been more responsive to the 

appetizing effects of MSG/IMP+ preloads as hunger was maintained more strongly 

during preload intake by women than men. However, men felt hungrier 45 minutes after 

preload intake and early on during the ad-libitum meal than women after MSG/IMP+ 

preloads. This suggests that the women may have been more sensitive to the bi-phasic 

effect of MSG/IMP, maintaining higher hunger during preload intake due to palatability 

but then reducing hunger and maintaining fullness more over the post-ingestive period, 
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although the imbalance in numbers between men and women mean this has to be 

interpreted with caution.  

 

A potential way of further dissociating the potential for IMP as a protein cue would be 

to repeat this design using guanosine 5’-monophosphate (GMP) which also enhances 

MSG-induced umami flavour (Jinap & Hajeb, 2010) but is typically found in low 

protein foods (Yamaguchi & Ninomiya, 2000). Additional research should also explore 

the gastric effects of ingestion of MSG, IMP and GMP on the generation of satiety as 

peak effects are seen after 45 minutes (Masic & Yeomans, 2013a), potentially 

implicating the gut-based glutamate receptors (Kondoh & Torii, 2008; Niijima, 2000; 

Tome, et al., 2009). This may also determine whether added MSG/IMP encourages 

slower gastric emptying in line with effects of protein (Tome, et al., 2009). 

 

Overall, combining MSG and IMP in a soup preload acted to both increase flavour and 

immediate appetite and reduce subsequent ad-libitum test meal intake irrespective of the 

macronutrient content of the soup. This is the first study to report a biphasic action of 

MSG/IMP, and implies that increased liking at one eating occasion can lead to better 

regulation at the next. 

 

8.5 Author’s contributions to the manuscript 

MY and UM designed the research, UM conducted all experimental work and data 

collection. UM conducted the data analysis and manuscript writing with contributions 

from MY. UM had primary responsibility for the final content. Neither UM nor MY had 

any conflict of interest in the data collection, analysis or writing up of the study. 

 

8.6 Summary of key findings and directions for future research 

 The main findings suggest that the addition of MSG and IMP to a fixed portion 

of soup can act to reduce subsequent intake of a separate course 

 This was also found with the addition of energy in the form of protein but no 

interaction between MSG/IMP and protein was evident 

 Appetite ratings were not found to be influenced by added MSG/IMP; 

participants did not rate hunger or fullness as lower after added MSG/IMP 
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conditions despite consuming less at the subsequent course however, when 

MSG/IMP was combined with added protein rated hunger recovery was slower 

 This indicates that MSG/IMP may be a useful means of controlling appetite 

although future research is required to assess whether such an effect would occur 

in a high energy carbohydrate source or with added umami in the form of GMP 

which is found predominantly in plant sources 

 Future research should also aim to assess the effects of MSG on post-gastric 

satiety mechanisms and hormones to further understand the processes 

influencing appetite control 
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Appendix 8.1. Graphical depiction of the study design employed. 
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