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PREFACE 

The work described in this thesis was conducted at the Thermo-Fluid Mechanics 

Research Centre, University of Sussex as part of the MAGPI "Main Annulus Gas Path 

Interactions" European Union funded research project. Experimental investigations 

were carried out at the TSW "Turbine Stator Well" test facility at the University of 

Sussex. Under the guidance of principle investigator Dr. C. A. Long and previously 

Professor. P.R.N. Childs, a number of researchers have conducted experiments on the 

rig in support of MAGPI activities; including Dr. N. R. Atkins, Dr. D. D. Coren, J. R. 

Turner and the author. In order to support the results and findings of this thesis it is 

necessary to describe the test facility fully as well as to describe results obtained and 

published by the research group. Sections of this thesis pertaining to collective work are 

indicated at the beginning of each relevant Chapter.  
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Summary 
 
Gas turbine engine performance requires effective and reliable internal cooling over the 

duty cycle of the engine. Understanding the effectiveness of cooling flows when making 

life predictions for rotating components subject to the main gas path temperatures is 

crucial. A test facility has been developed at the University of Sussex incorporating a 

two stage turbine designed to support a European funded research project with the 

objective of enhancing the understanding of interactions between main annulus gas 

paths and secondary air systems. This thesis describes the specific contribution of the 

author to the research conducted at the test facility. 

 

Non-invasive gas seeding and concentration measurement techniques together with hot 

geometry displacement measurements have been developed to meet three distinct 

objectives: to determine inter-stage seal flows between rotor disc cavities; to provide 

data to quantify rim seal exchange flows between rotor stator cavities and the main 

annulus gas path for both bulk ingestion and egress conditions; and, to provide data to 

quantify the re-ingestion of cooling air egressed into the main annulus gas path. 

Detailed knowledge of these flows is vital to understanding the flow structures within 

rotor stator cavities and to optimise coolant delivery methods.   

 

Experimental results are presented for a number of cooling flow supply geometries and 

flow rates. The gas concentration measurement techniques developed and the results 

obtained are compared to traditional measurements as well as numerical simulations 

carried out by research project partners. This work develops the measurement 

techniques of rotor stator cavity flows and provides data suitable for the validation of 

improved thermo-mechanical and CFD codes, beneficial to the engine design process. 
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       mass flow of cooling/sealing air  

     mass flow of seeded cooling/sealing air  

               mass flow of seeded cooling air to wheelspace  

               mass flow into stator well cavity  

                   mass flow ingress  
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                 mass flow egress  

M   windage torque  

P   static pressure  

P0   total pressure  

r              local radius  

rl   labyrinth seal radius 

R   gas constant  

s   axial rotor-stator spacing  

sc   seal clearance  

T   static temperature  

To   total temperature  

TM   measured temperature 

TH   hot reference temperature 

TC   cold reference temperature 

t    interstage seal fin tip to tip distance  

Uϕ   uncertainty in normalised temperature 

       uncertainty in metal temperature 

   uncertainty in coolant temperature 

    uncertainty in hot gas temperature 

u   velocity  

Vϕ   tangential core velocity 

w   labyrinth seal fin tip width 

y   labyrinth seal fin height 

z   labyrinth seal fin tip clearance 
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Greek Symbols 

α      thermal expansion coefficient 

ε   sealing effectiveness  

εc   sealing efficiency, derived from concentration 

μ                      dynamic viscosity  

υ  kinematic viscosity  

vφ   tangential velocity component  

ρ  density  

γ  ratio of specific heats 

ω  angular velocity  

λT  turbulent flow parameter 

Ф0  non-dimensional sealing parameter 

ϕ  normalised temperature 

η  dilution ratio 

 

Dimensionless 

β   swirl ratio 

β*   swirl ratio (β when Cw = 0 ) 

Cm   momentum coefficient 

Cm,f   momentum coefficient of a free disc 

Cw  non-dimensional throughflow 

Cw,0   nondimensional supplied cooling/sealing flow 

Cw,f  nondimensional entrainment of a free disc 

Cw,ent   nondimensional entrainment of a partial disc 

Cw,min   minimum nondimensional flow to seal cavity 
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Cw,i   nondimensional ingress flow 

Cw,e     nondimensional egress flow 

Gc   gap ratio  

Reϕ  rotational Reynolds number 

Rew  axial flow Reynolds number 

Ta  Taylor number 

 

Subscripts 

0   sealing/cooling flow value 

1       upstream statorwell 

2    downstream statorwell 

e   egress flow value 

ent   entrainment of a partial disc 

i   ingress flow value 

min   minimum sealing requirement 

r   radial 

z   axial 

 

Abbreviations 

AXL   axial 
 
CFD               computational fluid dynamics 

CIR    circumferential 
 
CMM   coordinate measuring machine 
 
DEF     deflector plate 
 
DR   dilution ration 
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DVM         digital volt meter 

GC   gas concentration 

NDIR  non-dispersive infrared sensor 
 
NGV     nozzle guide vane 
 
PIV        particle imaging velocimetry 
 
PRT    Platinum resistance thermometer 
 
STR  straight 
 
TFMRC Thermo-fluid Mechanics Research Centre 
 
TSW    turbine stator well 
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1 Introduction 
 
 
Since their inception the efficiency of gas turbines has improved dramatically, 

however, the pressure to optimise these engines further through development and 

research is likely only to increase. This push for improvement, as with most 

technologies, is partly due to commercial and competition considerations. The main 

factor driving this need for improvement however, is the increasing cost of non-

renewable resources and the resulting operational costs over the life of an engine. 

Improvements are also driven by the need to reduce emissions to meet legislation 

targets.  

Auxiliary Systems 
Supply 

Compressor Bleed

Turbine Cooling

 

Figure 1-1: AE3007 axial gas turbine engine with compressor bleed takeoff, Rolls-Royce (2005) 
 
 
Figure 1-1 shows a cut away view of an axial gas turbine engine. The figure shows air 

being taken from a high pressure compressor stage and then passed along the central 

shaft for use in the engines secondary air system. Secondary air systems are required 

for a number of operations within gas turbines, including provision of sealing and 
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cooling air to the turbine, shown towards the rear of the central shaft, as well as 

powering auxiliary aircraft systems.  

 

Figure 1-2 shows a cross section of a two stage turbine where air from a compressor 

bleed provides internal cooling of turbine components. The turbine stator well (also 

referred to as rotor disc cavity) is cooled by the compressor bleed air by both sealing 

the rotor disc cavity from hot main annulus gas ingestion and also by removing heat 

from component surfaces by heat transfer. Within this thesis both 'cooling flow' and 

'sealing flow' are used interchangeably to describe this flow.  

Compressor 
Bleed Air 
Inlet

Rotor Disc 
Cavity

 

Figure 1-2: AE 3007 turbine cooling circuit, Rolls-Royce (2005) 
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The internal cooling and the prevention of hot main annulus ingestion is necessary to 

prevent overheating of turbine discs, which can lead to reduced component life and 

component failure. The use of compressor bleed air to perform this function however, 

has a detrimental effect on the cycle performance of the engine therefore reduction of 

the cooling flow requirement is of great interest to gas turbine manufacturers. In order 

to optimise the cooling flow detailed knowledge of the flow structures within turbine 

stator wells and the interaction with main annulus gas path flows is required. 

Interstage Seal Flow

Main Annulus 
Ingestion

Cooling Air 
Egress 

Supplied 
Cooling Air

Rotor

Stator Rotor

Drive Arm Interstage Seal

Downstream Stator 
Well

Upstream Stator 
Well

Rim Seal

 
Figure 1-3: Typical turbine stator well flows, Dixon et al (2012) 

 

Figure 1-3 shows the flows associated with a typical turbine stator well. The supplied 

cooling air can be seen entering the stator well radially through a component joining 

the two rotors, referred to as the drive arm. A proportion of the cooling air flow enters 

the upstream stator well where it mixes with ingested main annulus gas. Some of the 

cooling air may pass through the rim seal into the main annulus. The process through 
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which the cooling air is egressed and the main annulus air ingressed through the seal is 

referred to as rim seal exchange. This can be driven by rotationally driven flow 

structures within the stator well or by asymmetric pressure profiles in the main annulus.  

The mixture of ingested main annulus gas and cavity cooling air is then seen to pass 

through the interstage seal into the downstream stator well. The pressure drop and flow 

rate through the interstage seal affect the flow structure in the upstream stator well. 

Under certain conditions it is possible for cooling air egressed into the main annulus 

from the upstream stator well to contribute to the flow ingested into the downstream 

stator well. This is referred to as re-ingestion. 

 

This thesis describes the contribution of the author to research conducted on a two 

stage axial turbine test facility, designed for further understanding of the interaction of 

turbine stator well flows with the main annulus gas path. Both rim seal exchange and 

coolant re-ingestion are known to contribute to the flows within turbine stator wells 

however, these flows are difficult to capture with traditional measurement methods. 

The flows are also often complex and unsteady making modelling of the effects 

challenging. The authors research aims to describe the use of three distinct 

concentration measurement experiments where flows are seeded with a tracer gas, 

together with displacement measurements, to meet the following experimental 

objectives: 

 

 Investigate to what extent gas concentration measurements can be used to 

describe and quantify these flows 

 To provide experimental data for the calibration and development of modelling 

techniques 
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 Provide hot running clearances of test facility internal seals 

 Provide data to quantify interstage seal flows for a range of rig operating 

conditions and coolant supply geometries 

 Provide data to determine rim seal exchange flows for both bulk ingress and 

egress conditions for a range of rig operating conditions and coolant supply 

geometries 

 Provide data to quantify the extent to which egressed cooling air is re-ingested 

into downstream cavities  

 

Literature describing the mechanisms through which ingestion and egress take place in 

stator well cavities and the associated flow structures are reviewed in Chapter 2. The 

use of concentration measurements in experimental facilities is also discussed. The 

TSW "Turbine Stator Well" experimental facility located at the Thermo-fluids 

Research Centre at the University of Sussex on which the experimental investigations 

were conducted as well as the calibration and installation of instrumentation is 

described in Chapter 3 and Chapter 4. The test facility operation and data acquisition 

system are described in Chapter 5. The gas concentration experimental methodology, 

instrumentation calibration and measurement uncertainty are described in Chapter 6. 

The measurement and thermo-mechanical modelling of the test facility hot geometry is 

describe in Chapter 7. Temperature measurements and results obtained from the gas 

concentration experiments are described in Chapter 8 and Chapter 9 where results are 

presented for a number of cooling flow delivery geometries. The extent to which the 

research aims were met is described in Chapter 10, including recommendations for 

future work. 
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2 Review of Previous Work 

2.1 Introduction 

This chapter reviews previous studies of the flow behaviour in rotor-stator cavities, the 

interaction with main annulus flows and also the use of instrumentation and 

measurement techniques in similar experimental facilities. 

 

The review is primarily concerned with the mechanisms of ingestion through which 

main annulus gas can enter rotor-stator cavities. The primary flows are discussed, 

including the basic 'free disc' and shrouded 'rotor-stator' geometries. The effects of rim 

seal ingress and egress, main annulus conditions and inter-stage labyrinth seal demand 

are also discussed. The use of tracer gas as a non invasive sealing effectiveness 

measurement technique is also reviewed. 

2.2 The Free Disc 

The Free Disc model refers to a disc of radius b rotating at ω (rad/s) in a fluid of 

density ρ and dynamic viscosity μ, described by Dorfman (1963). Figure 2-1 shows the 

flows associated with a free disc, the most noteworthy being the "pumped" radial 

outflow and the corresponding balancing axial inflow. Assuming a no-slip condition at 

the disc surface the shear between the disc and fluid causes radial outflow in the 

boundary layer of velocity ur. By consideration of conservation mass, a flow in the 

axial direction of velocity uz must be entrained onto the disc in order to supply the 

radial outflow. 
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Figure 2-1: A rotating disc in an initially stationary fluid, Schlichting (1979) 

 

The value of the rotational Reynolds number, given in equation 2-1 is used as the 

criterion for transition from laminar to turbulent flow. For flow over a free disc this is 

considered turbulent for Reϕ > 3 × 105. 

 ܴ݁థ ൌ 	
ఘఠ௕మ

ఓ
		                                 Equation 2-1 

 
The entrained (or any other supplied) mass flow can be expressed in dimensionless 

form as: 

௪ܥ ൌ ௠ሶ

ఓ௕
	                                    Equation 2-2 

The non-dimensional moment coefficient Cm can be expressed as: 
 

௠ܥ ൌ ெ
భ
మ
ఘఠమ௕ఱ

			                                             Equation 2-3    

 
Von Karman (1921) solved Navier-Stokes equations for the free disc. Boundary 

conditions were applied and a one-seventh power law for the velocity profile to 
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produce four ordinary differential equations for an axisymmetric incompressible flow, 

producing the solutions for the free disc entrainment rate and momentum coefficient.   

௪,௙ܥ ൌ 0.219	ܴ݁థ
଴.଼                          Equation 2-4  

 

௠,௙ܥ ൌ 0.146	ܴ݁థ
ି଴.ଶ                        Equation 2-5 

 
 
Chew (1998) provided a relationship which allows the flow entrained by a partial disc 

with an inner radius a and outer radius b, could be related to the entrainment of a free 

disc. 

௪,௘௡௧ܥ ൌ ௪,଴ܥ ൤1 െ ቀ
௔

௕
ቁ
ହ
൨                    Equation 2-6 

  

 

2.3 Shrouded Rotor Stator Cavities in a Quiescent Environment 

Rotor stator cavities exist where a rotating disc is faced by a stationary disc, offset 

along the axis of rotation. The behaviour of rotor stator cavities are analogous to rotor 

disc cavities and are useful when describing the flows in cooled turbine disc cavities. 

Figure 2-2 shows the basic configuration of a shrouded rotor stator system, where the 

rotor has an angular velocity ω. A rotor stator cavity is said to be in a quiescent 

environment where there is no external flow above the shroud or seal. The basic 

geometry of the rotor stator is defined by the cavity outer radius b, the rotor stator axial 

gap s, and the seal clearance sc. Sealing flow is supplied to the rotor stator cavity at a 

non-dimensional rate Cw,0. The flow is entrained into the rotor boundary layer where it  

is pumped radially outward. Some of the sealing air then passes through the seal 

clearance to the external environment. For cases where the sealing flow Cw,0 is less than 

the minimum sealing flow requirement to seal the rotor stator cavity Cw,min, the 
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resultant pressure in the cavity due to the rotational effects can cause external air to be 

ingested  into the cavity. This is referred to as rotationally induced ingress. The 

ingested air travels down the face of the stator and from mass conservation this air can 

pass across the rotor stator gap into the rotor boundary layer. In rotor stator 

configurations where s/b > 0.1 this results in a 2D core region with distinct and separate 

rotor and stator boundary layers. Daily and Nece (1960) calculated the swirl ratio β of 

the core to be in the region of 0.4 relative to the rotor where: 

ߚ  ൌ
௏ഝ
ఠ௥

                                                            Equation 2-7 

 

Daily et al (1964) gave a correlation for the core velocity of a shrouded rotor stator 

cavity with a superimposed flow, where ߚ∗ ൌ  .when the flow Cw,0 = 0 ߚ

 

ఉ

ఉ∗
ൌ ቆ1 ൅ 12.74 ఒ೅

ሺ௥/௕ሻ
భయ
ఱ
ቇ
ିଵ

                  Equation 2-8 

 

The turbulent flow parameter λT describes the effect of the superimposed flow Cw,0  on 

the core, where the flow structure is rotationally dominated for low values of  Cw,0, and 

imposed flow dominated at high values of Cw,0. The turbulent flow parameter was 

defined by Owen and Rogers (1989) as: 

 

்ߣ ൌ
஼ೢ

ோ௘ഝ
బ.ఴ																																	 Equation 2-9 

 

A sink region exists in the vicinity of the clearance gap where mixing of the sealing 

flow and ingressed flow occurs, meaning that the fluid re-circulating around the cavity 

can be a mixture of the two flows. 
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Figure 2-2: Simple rotor stator cavity  

 

Bayley and Owen (1970) conducted experimental investigations of sealing air 

requirements of a shrouded rotor stator cavity with a simple axial gap seal within a 

quiescent environment, where there is no influence of an external flow, for rotational 

Reynolds numbers ≤ 4×106. A relationship was given relating the minimum sealing 

flow requirement to the axial seal gap, disc radius and rotational Reynolds number, 

shown in equation 2-10, where the gap ratio Gc = sc/b. 

௪,௠௜௡ܥ ൌ ܴ݁థ	௖ܩ	0.61                                        Equation 2-10 

 
 
Phadke and Owen (1980) offered a correlation resulting from a similar study for a 

larger range of seal gap ratios Gc, up to a rotational Reynolds number of Reϕ ≤ 1×106. 
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௪,௠௜௡ܥ ൌ 	௖ܩ	0.14
଴.଺଺ܴ݁థ                         Equation 2-11 

 
 
Phadke and Owen (1983) extended this work to include radial seals which compared 

with axial seals were found to require a lower value of Cw,min.  This was explained by a 

pressure inversion effect where increased rotational speed was found to increase 

pressure in the rotor stator cavity. This effect was attributed to an impinging jet across 

the seal. Figure 2-3 shows both an axial and radial seal with simplified geometry. The 

axial seal has a seal gap parallel to the axis of rotation while a radial seal has a seal gap 

perpendicular to the axis of rotation. Phadke and Owen (1988a) conducted a number of 

studies of the sealing characteristics of shrouded rotor stator cavities. In the first part of 

this series of investigations a rotor stator system was studied within a quiescent 

environment for a number of clearance ratios and rotational Reynolds numbers. The 

minimum sealing requirement for seven seal types were given. The results of this 

investigation were then compared to sealing air requirements in the presence of both 

axisymmetric and non axisymmetric external flow in Phadke and Owen (1988b) and 

Phadke and Owen (1988c). 

 

Figure 2-3: Simple axial and radial seal geometry 

ω ω

Axial Seal Radial Seal

SC

SC
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2.4 Shrouded Rotor Stator Cavities with an External Flow 

Although the case of shrouded rotor stator cavities in a quiescent environment is useful 

when describing the flows within a gas turbine engine rotor disc cavity, in practise the 

cavities will be subject to an external main annulus flow. A consequence of the 

presence of NGVs "Nozzle Guide Vanes" and rotor blades in the main annulus is 

complex three-dimensional flows which cause unsteady non-axisymmetric pressure 

profiles above rotor disc cavity rim seals. These pressure profiles drive externally 

induced ingestion. It is useful therefore to use shrouded rotor stator cavity models with 

external flows to examine the effects of this external pressure profile. 

 

Useful nondimensional flow rates for the study of rotor stator systems with an external 

flow include nondimensional ingress Cw,i and nondimensional egress Cw,e. The extent to 

which an imposed sealing flow Cw,o prevents ingestion into a rotor stator cavity can be 

described by the sealing effectiveness parameter:  

ߝ ൌ
஼ೢ,೚
஼ೢ,೐

                                    Equation 2-12 

 

In the second part of their investigation Phadke and Owen (1988b) conducted sealing 

experiments where the rotor stator cavity was subject to an external, near axisymmetric 

axial flow. This study did not attempt to recreate the main annulus flow feature 

associated with blade and nozzle rows. For all seal geometries tested it was shown that 

two ingress regimes existed. This effect was described by the ratio of the external flow 

axial Reynolds number to the in cavity rotational Reynolds number, Rew/Reϕ. For low 

values of  Rew/Reϕ the ingress was said to be rotationally dominated. For larger values 

of Rew/Reϕ the ingress was said to be externally induced. The value of Rew/Reϕ at which 

ingestion became externally dominated varied with seal geometry. 
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Abe et al (1979) conducted experimental investigations of externally induced ingress in 

a half stage axial turbine rig. It was shown that for externally induced ingress, the 

ingress rate was determined by the ratio of sealing air and main annulus flow velocities, 

the rim seal type and clearance. 

 

Dadkhah et al (1992) conducted experimental sealing effectiveness measurements in a 

axial turbine test facility with external flow. The test facility included two radial 

clearance seals, one with the stator upstream and a second with the rotor upstream. In 

each case the upstream component's shroud overlapped the downstream shroud. The 

test facility included guide vanes but did not include blade rows. Measurements showed 

that the minimum sealing flow requirement Cw,min was lower with the upstream stator 

configuration. However, where Cw,o was less than Cw,min the ingress levels were seen to 

be lower with the upstream rotor seal.  

 

Green and Turner (1994) conducted further experiments using this facility with the 

addition of rotor blades. It was observed that to completely seal a rotor stator cavity the 

in-cavity pressure needed to be equal to the maximum main annulus pressure occurring 

at the rotor blade leading edge. It was found however that the inclusion of the rotor 

blades improved sealing effectiveness. Bohn et al (2000) observed a similar effect, but 

for a different seal configuration found the opposite was true where the inclusion of 

rotor blades reduced sealing effectiveness. Gentilhomme et al (2003) conducted 

experimental and CFD "Computational Fluid Dynamics" investigations of  ingestion in 

a single stage axial turbine rig showing that for low sealing flow values the ingestion of 

high swirl main annulus air could increase swirl within the rotor stator cavity. 

 



14 
 

Roy et al (2007) conducted an investigation into the flow fields above rim seals which 

result in simultaneous ingress and egress from rotor stator cavities through 

experimental and CFD studies of a single stage axial turbine. The rotor stator cavity 

included blade and NGV row together with a radial overlap rim seal. Cavity sealing 

requirement measurements were made in the presence of an external axial flow. Figure 

2-4 shows a PIV "particle image velocimetry" image of instantaneous velocity vectors 

for a quadrant of the rotor stator cavity, 2.8 mm from the stator disc. The locations of 

the rim seal are shown by the dotted lines at the outer radius. The blade and NGV 

positions are indicated outside the rim seal. High tangential velocities of 55 rad/s were 

measured at the outer radius near the rim seal, fluctuating circumferentially with blade 

passing events. It was suggested that these areas of high tangential velocities resulted 

from ingested main annulus flow entering the rim seal area. The areas of lower 

tangential velocity near the rim seal were attributed to egressed air from the rotor stator 

cavity.  

 

Zhou et al (2009) continued work on this experimental facility testing a number of 

different  aspect ratio rotor stator cavities, b/s. Multiple regions of ingress and egress 

were observed through PIV measurements and concentration measurements showed 

that ingestion decreased with decreasing cavity aspect ratio. The results obtained from 

flow visualization techniques and concentration measurements were compared to three 

dimensional CFD solutions. It was found that the model under predicted ingestion 

which was attributed to the sector model failing to capture circumferentially rotating, 

low pressure areas in the vicinity of the rim seal.    



15 
 

 
Figure 2-4: Instantaneous velocity vector map in rotor disc cavity, Roy et al (2007) 

 
 
Mirzamoghadam et al (2008) conducted a CFD investigation of ingestion through a 

rotor stator cavity for a single stage turbine using engine representative geometry for 

Rew/Reϕ = 0.42. It was shown that the model predicted ingestion driven by main 

annulus pressure asymmetries even at high sealing flows. Design correlations predicted 

ingestion rates 18% lower than those shown by the CFD model. Rabs et al (2009) 

conducted a study of external rim seal ingestion driven by Kelvin-Helmholtz vortices 

which had been noted under certain conditions at rotor stator gaps in the absence of 

NGVs and blade rows. CFD studies were conducted on a 1.5 stage axial turbine based 

on an experimental facility. It was found that the inclusion of NGVs and rotor blades 

prevented the formation of the vortices except at high rates of imposed sealing air. For 

large values of Cw,o the effects were seen but greatly reduced when compared to those 

in the absence of NGVs and blade rows.    
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Owen (2009a) solved incompressible orifice flow equations for the case of rotationally 

induced ingress. Figure 2-5 was presented by Owen showing the variations in sealing 

effectiveness ε, nondimensional egress Cw,e and nondimensional  ingress Cw,i with 

imposed flow Cw,o. This is presented for the case where there is zero external swirl and 

the discharge coefficient for the ingress and egress paths through the rim seal are equal. 

For zero imposed flow, where the sealing effectiveness is zero, the rates of ingress and 

egress are equal and due purely to the external pressure asymmetry. As the imposed 

flow increases, the sealing effectiveness and egress rate are seen to increase until they 

reach unity as the imposed sealing flow reaches the entrainment rate. The ingress is 

seen to reduce to zero. Owen compared the experimental data of Graber et al (1987) to 

effectiveness and theoretical values obtained from the flow equations. The theoretical 

values showed close agreement for lower values of sealing effectiveness, however, at 

higher values they were found to over predict the sealing effectiveness. This was 

attributed to the effects of molecular and turbulent diffusion at low ingress rates. It was 

noted that the model may not be applicable for certain seal geometries and that further 

experimental data would be required to further test the model. 

 
Figure 2-5: Sealing effectiveness, ingress and egress with imposed sealing flow, Owen (2009a) 
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In part 2 of this publication Owen (2009b) solved the incompressible orifice equations 

for nonaxisymmetric externally-induced ingress and for combined  internal and 

externally induced ingress, using a saw tooth model to represent external 

circumferential variations in pressure and radial velocity. Figure 2-6 shows the 

variation in modelled effectiveness for both rotationally induced (solid lines) and 

combined internally and externally induced (dotted lines) cases for three values of the 

ingress to egress discharge coefficient ratio Cd,i/Cd,e.  

 

 
Figure 2-6: Variation of sealing effectiveness with imposed sealing flow, Owen (2009b) 

 
 
Good agreement was found between the saw tooth externally induced ingress model 

and the data of Johnson et al (2006) and Johnson et al (2008). It was concluded that 

where the egress discharge coefficient was equal to the ingress discharge coefficient the 

modelled values of effectiveness were in good agreement with published externally 

induced ingestion data, however more data was required to validate the suitability of 

the model to predict combined internally and externally induced ingress.   
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Zhou et al (2011a) used the orifice flow models described by Owen (2009) to estimate 

sealing effectivness at engine conditions. The calculated effectiveness based on the 

models of Owen vary with the discharge coefficient ratio and the minimum required 

sealing flow parameter, the values of which were determined statistically to best match 

empirical effectiveness data. It was shown that for rotationally induced ingress the 

values of the two parameters used by Zhou showed better agreement with the data of 

Graber et al (1987). For the case of externally induced ingress, good agreement was 

found between Zhou's calculated value of effectiveness, the data of Owen et al (2010) 

and the data of Johnson et al (2008). 

 

Zhou et al (2011b) also conducted CFD studies of ingestion through axial clearance rim 

seals. The results of these studies were compared to the sealing effectiveness number 

generated from orifice flow models and were found to support the orifice model 

assumption that ingress and egress is driven by pressure asymmetries in the main 

annulus. Figure 2-7 shows line contours of static pressure across the modelled turbine 

stage for two locations of the rotor blades with respect to the NGV row. Filled contours 

of radial velocity are also shown in the seal gap clearance between the blade and NGV 

rows.  Red contours lines of high static pressure and red contour areas of negative 

radial velocity in the seal gap indicate ingestion, while blue contours lines of lower 

pressure and blue contour areas of positive radial velocity indicate egress. For the 

image on the left, where the leading edge of the rotor blade and the trailing edge of the 

NGV are axially adjacent the high peak pressures are seen to be prominent. In the right 

hand image where the centre of the suction side of the blade is in line with the trailing 

edge of the NGV the areas of high pressure are greatly reduced.   
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Figure 2-7: Contours of static pressure at 5% annulus height, Zhou et al (2011b) 
 
 
 
Sangan et al (2011a) conducted an experimental investigation of externally induced 

ingress for both an axial and radial seal. Concentration and pressure measurements 

were made in a test facility, comprising of a single turbine stage and rotor stator cavity, 

to determine sealing effectiveness.  Orifice model calculated values of minimum 

sealing flow requirement correlated well to the experimentally obtained values. Sangan 

et al (2011b) also conducted experimental studies of rotationally induced ingress. 

Figure 2-8 shows experimentally obtained values of sealing effectiveness plotted 

against values obtained from orifice models for both externally and rotationally induced 

ingestion against the nondimensional sealing parameter, defined in equation 2-13. In 

both cases the radial seal was shown to require lower sealing flows to prevent 

ingestion.   
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Figure 2-8: Comparison of sealing effectiveness for externally and rotationally induced ingestion, 
Sangan et al(2011b) 

 
 

଴ߔ ൌ 	
஼ೢ,೚

ଶగீ೎ோ௘ഝ
                           Equation 2-13 

 
 
In multistage turbines, where sealing air is used to seal rotor disc cavities and is 

egressed into the main annulus flow, re-ingestion of this sealing air from the main 

annulus into a downstream seal can have a significant effect on the system 

performance. Figure 2-9 shows the paths of these flows between two rotor disc cavities, 

where the stationary stator row components are shown in dark green and the rotating 

section in yellow. Fluid egressed from the downstream seal of the first stator row can 

be seen mixing with hot main annulus gas and entering the upstream seal of the 

downstream stator. The rotor blades have been omitted for clarity. 
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Figure 2-9: Re-ingestion between two turbine stages, Guijarro Valencia et al (2012) 
 

The effect of the re-ingestion of sealing air from upstream cavities was investigated by 

Georgakis et al. (2007). A CFD study was conducted where sealing air was egressed 

from an upstream wheelspace at a rate of 1-2% of the external  main annulus flow. It 

was shown that re-ingestion of upstream egress provided a significant contribution to 

downstream stator well cooling, which was quantified as improving thermal 

effectiveness on the downstream cavity walls by 4-5%. In general the egress of sealing 

air into the main annulus is detrimental to the overall performance of a gas turbine, 

however, it can be advantageous if geometry and flow rates can be optimised to 

encourage re-ingestion of this sealing air back into a downstream stage.  
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2.5 Interstage Labyrinth Seals 

The primary function of the labyrinth seal is to limit flow from a high to low pressure 

cavity, where contact is not permitted due to high speed differentials between two 

components. Labyrinth seals are used in many gas turbine applications, where good 

sealing characteristics are required between rotating and stationary discs, the primary 

factors influencing the seal performance being seal clearance and the number of sealing 

fins. In multistage turbines interstage labyrinth seals are a common solution for 

controlling flow from upstream to downstream rotor disc cavities.  Figure 2-10 shows 

the use of axial labyrinth seals in a section of a three-shaft turbine. The blue shaded 

sections represent the rotating components of the turbine while the grey shaded sections 

represent stationary components associated with the NGV rows. Three fin labyrinth 

seals can be seen at the lower radius of the grey stationary components at the interface 

with the rotating section.    

 

Figure 2-10: Interstage labyrinth seal application in a three-shaft turbine, Rolls-Royce (2005) 
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The St. Venant (1871) Equations, with an appropriate discharge coefficient can be used 

to calculate seal mass flow rates through interstage labyrinth seals (Equation 2.14), 

Wittig et al (1987). The discharge coefficient CD is required to account for the fact that 

the St. Venant Equation was derived for use with a single circular cross section orifice. 
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Egli (1935) described an ideal labyrinth flow as the case where the kinetic energy of the 

leakage flow through the seal is zero at the downstream cavity, which can be 

considered similar to a single circular cross section orifice. The discharge coefficient 

therefore gives the ratio of the flow through a given labyrinth seal to the flow through 

an ideal labyrinth seal where the CD value accounts for the dependent parameters such 

as sealing fin geometry and number, shown in Equation 2-15. 
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																																	Equation 2-15 

 
 
The interstage labyrinth seal axial flow Reynolds and Taylor number are defined by the 

following expressions: 
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                               Equation 2-17 

 

 
Zimmermann and Wolff (1998) provided a review of seal discharge coefficients. Data 

was presented for a variety of configurations including number of sealing fins for 

'straight through' seals, the use of grooves at sealing fin tips, the use of honeycomb 
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structures on the sealing face as well as variation in sealing fin geometry and the use of 

stepped seals. Figure 2-11 shows a basic labyrinth seal with a twin fin configuration. 

This seal type can be considered a 'straight through' seal where the stationary surface of 

the seal is flat and does not contain pockets or grooves, the fins are of equal height y, 

and where the seal tip clearance z  (when s is seen on figures in Section 2.5 this should 

be taken as z) and the fin tip thickness w (when b seen on figures in Section 2.5 this 

should be taken as w) are consistent for each fin.   

 

Figure 2-11: Basic straight through labyrinth seal geometry 
 
 
 
Figure 2-12 shows discharge coefficient data presented for straight through seals with 

two or more sealing fins, for three values of the clearance ratio  z/w. The discharge 

coefficients are given against the axial Reynolds number. It was shown that the effect 

of the clearance ratio z/w was only evident below Rew = 2 x 104 except for the case of 

very small seal clearances.  
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Figure 2-12: Discharge coefficients for seals with greater than 2 fins, Zimmerman and Wolff(1998) 

 
Wittig et al (1987) examined the use of two dimensional numerical calculations to 

solve the time averaged Navier-Stokes equations. These calculations were compared to 

experimental results obtained from a test facility, including both a straight through and 

stepped seal arrangement. Figure 2-13 shows the results obtained for the straight 

through seal configuration with 1 and 6 fins for a range of seal clearance values and 

pressure ratios. Numerically calculated results are shown with solid symbols, while 

experimental data is shown with open symbols.  

 

Figure 2-13: Discharge coefficients for 1 and 6 fin straight through seals, Wittig et al (1987) 
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Good agreement was found between the multi fin experimental and calculated 

discharge coefficients. Calculated results for one and two fin seals showed little 

variation with seal gap when compared to the experimental values. This was attributed 

to the modelling of the intake to the seal having a much larger influence over the flow 

when compared to the multi fin models. It was also observed that the effects of rotation 

were only significant for small Reynolds numbers and high Taylor numbers. 

 
 
Gamal and Vance (2007) conducted studies on a number of labyrinth seal 

configurations on a test rig consisting of a high pressure supply flow of up to 6.89 bar, 

an external stationary seal and an internal rotating journal with a nominal diameter of 

101.6mm. The number, thickness and profiles of the sealing fin were altered and 

measurements of seal leakage rate and cavity pressure made. It was found that leakage 

rates could be reduced by up to 20% by doubling the thickness w of the sealing fins. 

The effect of the fin tip profile design of sealing performance was found to be largely 

influenced by the fin seal clearances. The effects of seal eccentricity were also studied, 

where it was found that increased eccentricity reduced sealing performance. Gamal and 

Vance (2007) provided summarised CD values for a number of 6, 8 and 12 fin seal 

configurations based on the publications of Shultz (1996), Gamel et al (2006) and Ertas 

(2005). 

 
Kim and Cha (2009) compared experimental data to CFD and a numerical analytical 

tool for both straight through and stepped configuration seals for a range of seal 

clearances. It was found that the CFD model more accurately predicted the seal 

behaviour in both configurations than the analytical tool. It was also noted that 

although the step seal performed better for larger clearances, this advantage diminished 

as the seal clearance reduced. Figure 2-14 shows discharge coefficient data presented 
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for a six fin straight through seal for a range of tip clearances. The discharge coefficient 

was seen to increase with both increased seal clearance and pressure ratio. Both 

Experimental and CFD data is given. 

 
Figure 2-14: Discharge coefficient with pressure ratio and clearance, Kim (2009) 

 
 

 
 

Figure 2-15: Discharge coefficient with fin number and tip clearance, PR = 1.5 bar, Kim (2009) 
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Figure 2-15 shows discharge coefficients for a straight through seal with one to six 

sealing fins. Both experimental and CFD data is presented for a number of tip 

clearances, at a seal pressure ratio of 1.5 bar. The discharge coefficient was seen to 

reduce with increased number of fins indicating increased sealing performance. 

 
Waschka et al (1992) conducted a number of experimental investigations into the effect 

of high rotational speeds on the discharge coefficient of straight through labyrinth seals. 

A number of tip clearances were tested across a range of Taylor and Reynolds numbers. 

The rotational effect was described by the ratio of these numbers, defined in equation 

2-16 and equation 2-17. This ratio describes the relationship between the axial and 

peripheral moment of flow through a seal.  

 

 Figure 2-16 shows results obtained for the effect of rotational speed for a range of 

Reynolds numbers for a fin tip clearance of 0.5 mm. It was found that at lower 

Reynolds numbers the discharge coefficient reduced with increased rotational speed. 

The rotational effect was seen to reduce with increasing Reynolds number. For the 

range of tip clearances measured it was found that the limiting Reynolds number for 

rotational effects ranged from 5000 to 10,000. Figure 2-17 shows the effect of the ratio 

Ta/Re on the discharge coefficient for a range of pressure ratios for a tip clearance of 

0.5 mm. For all clearances tested a critical ratio of Ta/Re ≈ 0.2 was found at which the 

discharge coefficient starts to dramatically reduce. Waschka et al (1992) attributed this 

to rotational effects becoming dominant, increasing flow resistance through the seal.  
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Figure 2-16: Rotational effects on the discharge coefficients as a function of Re, Waschka (1992) 
 
 

 
 

Figure 2-17: Rotational effects on the discharge coefficients as a function of the ratio Ta/Re, 
Waschka (1992) 
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2.6 Concentration Measurement Techniques 

In order to measure sealing effectiveness in rotor stator cavities a range of experimental 

techniques have been developed. The most commonly used techniques are temperature 

measurements, pressure measurement, flow visualisation and concentration 

measurements. Temperature measurements have been used to indicate ingress where a 

change in temperature indicates the presence of ingested hot gas. The process does 

however, present many challenges due to heat transfer between the rotor and stator 

surfaces and the cavity air. The effects of windage and frictional heating must also be 

accounted for. Pressure measurement can indicate ingestion, when the pressure inside 

the cavity is less than the pressure outside the rim seal. However, due to the complexity 

of the pressure profiles in the vicinity of the rim seal, capturing the unsteady variations 

is difficult and often requires additional numerical investigation. Flow visualisation 

techniques such as PIV offer insight into the complex flow structures in the vicinity of 

the rim seal, where a laser sheet is used to illuminate particles seeded into sealing or 

external flow. The presence of seeded gas in the cavity can also be used to indicate 

ingestion and hence identify Cw,min. The technique does not however offer the ability to 

directly quantify the rate of ingestion. Gas concentration measurements, where either 

the sealing air or external air is seeded with a tracer gas, offer the most direct method 

for quantifying sealing effectiveness. Where the imposed sealing flow Cw,o is seeded 

with tracer gas the sealing effectiveness is calculated from the concentration of the 

sealing flow co, the measured concentration cm and the ambient concentration ca: 

௖ߝ ൌ
௖೘ି௖ೌ
௖೚ି௖ೌ

                                 Equation 2-18 
 

Phadke and Owen (1988a) conducted a number of experimental concentration 

measurements. A traverse probe was located in the rotor-stator wheel-space through 
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which the concentration measurements were taken. The tracer gas, nitrous oxide, could 

be supplied to the rig through either the sealing flow, or to the external air outside the 

rim seal. In order to obtain Cw,min the sealing air was supplied with a known 

concentration of nitrous oxide. The rotational speed of the rig was then increased while 

keeping the coolant flow constant, until the concentration measured by the probe was 

seen to drop, indicating the point at which the supplied sealing air was insufficient to 

seal the wheel-space. The commissioning of the concentration instrumentation included 

testing of the time response of the infra-red gas analyser. It was found that reducing the 

bore of the sampling pipe reduced the response time of the analyser. 

 

Phadke (1988) investigated the effect of gas velocity through the analyser with two 

commissioning tests using a 50mm diameter pipe. The pipe was supplied with air of a 

known concentration of nitrous oxide. Concentration measurements were then taken 

using the experimental apparatus. For the first test, the sample gas velocity was said to 

be isokenetic. This is the case where gas passing through the analyser has the same 

velocity as that of the mean stream velocity being sampled. Measurements were taken 

from the centre of the pipe flow over a number of concentration levels. The results 

showed close agreement between the known seeding levels and the measured 

concentration. For the second test the 50mm pipe was supplied with a constant 

concentration level at three different sampling velocities, 0.4, 1.0 and 4.0 times the 

isokinetic velocity. Samples for each case were taken across the diameter of the pipe. 

The results showed that for a homogeneous mixture the measured concentration was 

independent of sampling velocity. 
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Dadkhah (1992) made gas concentration measurements via a traverse within the wheel-

space at four radial locations, r/b = 0.163, 0.411, 0.658, 0.905, using nitrous oxide as a 

tracer gas seeded into the sealing air. The concentration measurements were used to 

determine the amount of main annulus gas ingested as well as the distribution of the 

ingested gas in the wheel-space. The study showed, from the resulting concentration 

measurements,  where ingestion was present. The ingested gas entering the wheel-space 

was entrained onto the stator where it then proceeded down the face of the stator. The 

ingested gas then moved across the core of the wheel-space into the rotor boundary 

layer. The study showed that the highest dilution levels occurred at the higher radius of 

the wheel-space. Ingress mass flows were estimated by integration of the mean gas 

concentration levels. 

 

Gentilhomme et al (2003) introduced sealing air to the rotor cavity at a radius of r/b = 

0.55. Seeding gas was introduced to the sealing air prior to the cavity. Two operating 

conditions were tested, corresponding to in cavity rotational Reynolds numbers of Reϕ 

= 2.83 x 106 and Reϕ = 9.04 x 105. Nitrous oxide was used as the seeding gas for the 

higher Reynolds number condition and carbon dioxide for the lower Reynolds number 

condition. Concentration measurements were made at cavity radii of r/b = 0.4, 0.71, 

0.88 and 0.92. Nitrous oxide and carbon dioxide concentration was measured using 

infrared gas analysers. Concentration measurements were then used to calculate sealing 

efficiency.  

 

Dunn et al (2010) conducted concentration measurements in a single stage model gas 

turbine. Numerical simulations were compared to experimental results taken at a main 

annulus flow of Reynolds number Rew = 7.86 x 104 and a rotational Reynolds number 
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of Reϕ = 8.74 x 105.  Carbon dioxide was used as a tracer gas to measure ingestion 

levels. The purge air was seeded with carbon dioxide upstream of the injection point 

into the rotor-stator cavity. The injection point was at a radius of r/b = 0.78, below a 

rim seal consisting of two axially overlapping seals, the lower seal located on the rotor 

at a radius of r/b = 0.85. The purge air, pre injection into the cavity was kept at a 

constant volumetric concentration of 4.0 %. Concentration measurements were taken in 

the cavity at r/b = 0.22, 0.40, 0.55, 0.71, 0.88 (mid rim seal) and 0.93 (above rim seal). 

The uncertainty for the concentration measurements made by a NDIR gas analyser was 

given as +/- 0.11 %. Sealing effectiveness was then calculated. 

 

Figure 2-18: Sealing effectiveness with radial location r/b 
 
Figure 2-18 shows the local sealing effectiveness calculated for the six concentration 

measurement locations. The effectiveness at r/b = 0.93 of 0.23 suggests that purge air 

was present outside of the cavity and had passed through the rim seal. Similarly the 

sealing effectiveness of 0.9447 at r/b = 0.71 shows main annulus flow has reached the 

higher radius areas of the cavity, indicating that a rim seal exchange is taking place 

including local mixing between the main and purge flow in the vicinity of the rim seal. 
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Figure 2-19 shows the test facilities of Phadke and Owen (1988a), Dadkhah (1992), 

Gentilhomme et al (2003) and Dunn et al (2010). For each test facility the main 

external flow is indicated with a red arrow. The supply path of cooling/purge air is 

indicated with a blue arrow. Sampling locations are indicated with green dots and 

labelled with radial positions r/b. The test facilities of Phadke and Owen (1988a) and 

Dadkhah (1992) took samples via a traverse, indicated by the joining together of the 

sampling locations with a green line. Gentilhomme et al (2003) and Dunn et al (2010) 

used single point sampling locations located on the stator face of their respective test 

sections.    

 

 

Figure 2-19: Concentration measurement locations of four experimental test facilities 
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2.7 Summary 
 
The mechanisms through which the exchange of main annulus and rotor disc cavity 

sealing air takes place are generally understood. Through the use of rotor stator models 

analogous to rotor disc cavities the behaviour of such systems, including rotationally 

and externally induced ingestion, can largely be described through numerical models. 

However, for more complex, engine representative geometries and operating 

conditions, where both rotationally and externally induced ingestion can occur 

simultaneously, experimental data is required for validation of theoretical models. The 

most directly comparable experimental measurements of sealing efficiency and 

ingestion are obtained through concentration measurements as described in Section 2.6. 

 

The work presented by the author describes ingestion experiments conducted on a two 

stage axial turbine rig. The experimental rig is considered engine representative in 

terms of both geometry and operating conditions. This was achieved by careful 

consideration of the aerodynamic design of the test facility, reported by Woollatt 

(2002). This test facility includes representative sealing air supply geometry, rim seal 

geometry, interstage labyrinth seal geometry and blade profile geometry. Experimental 

methods through which the use of concentration measurements can be extended to 

attempt to quantify rim seal flows and re-ingestion flow are presented for a number of 

sealing flow supply geometries. 
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3 Test Facility Overview 
 

3.1 Introduction 
 

This chapter introduces the TSW test facility as well as the instrumentation and data 

acquisition system used to both control the rig and to record the required experimental 

data over the test matrix. The description of the system gives an overview of the 

experimental facility as well as detailed explanations of each subset of instrumentation.  

 

The design and build of the test facility, as well as the instrumentation of the test 

section was completed in collaboration with, Dr. N. R. Atkins, Dr. D. D. Coren, J. R. 

Turner and S. Davies under the guidance of principal investigator Dr. C. A. Long and 

previously Professor. P. Childs.  

 

The author did not join the program until after the initial planning, concept designs and 

preliminary build of the test facility had been completed. This work included the initial 

rig design layout, early modelling of rig flow requirements and selection of 

measurement locations. On joining the program the author was involved in the 

installation and commissioning of the test facility, including the development of the 

control systems and the manufacture and installation of the of instrumentation. The 

DAQ system development was led by J. R. Turner, the author assisted in the debugging 

and development of the system.      

 

The design and commissioning of the test facility is described in Coren et al (2010), 

included in Appendix C.     
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3.2 Test Facility External Systems 
 
The operation of the TSW rig requires close control of air supplies, cooling circuits and 

oil systems. In addition to controlling these parameters a dynamometer is required to 

control the rig speed and also to absorb the power produced by the turbine. Figure 3-1 

shows an overview of the system required to control and supply these flows and 

parameters. Main annulus air is supplied by a modified DART engine and compressor, 

described by Turner et al (2000). This flow is passed through a settling chamber before 

entering the rig in order to reduce asymmetries in the main annulus flow in the test 

section. A CFD investigation, reported in Coren et al (2010) found the bulk mean 

velocity in the settling chamber to be ≤ 1 ms-1. Using four total pressure rakes at 

different circumferential locations the total rig inlet pressure was found to be within ± 

1.5% of the dynamic head at 80 ms-1. An ATLAS ZX250 compressor supplies the 

cooling air to the test section, which can be seeded with carbon dioxide for 

concentration experiments. A Hydrovane compressor supplies a number of blown seals 

within the rig; it is also used to cool the rotating frame temperature measurement 

telemetry unit. Outside of the rig the Hydrovane is also used to control a number of 

pneumatic valves as well as to pressurise the dynamometer lubrication system. The 

main water circuit is required to supply the dynamometer. The water supply determines 

the load capabilities of the dynamometer and also removes heat. A water circuit is also 

used to cool the ATLAS cooling air before it enters the rig. Two oil circuits are 

required for the gearbox/shaft output of the rig. The first circuit which supplies the 

gearbox has a small water system to cool the oil. This oil supply is pumped by the 

gearbox. A second oil circuit which supplies the rig output shaft is not water cooled, 

however, it does include an external pump to increase oil supply pressure.        
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Figure 3-1: Test facility major component overview 

 

3.3 Test Section Air Supply 
 
The DART compressor consists of a Rolls-Royce two stage centrifugal compressor 

powered by a DART turboprop engine. When used to supply the TSW rig the 

compressor typically provides the rig with 4.8 kg/s of air at 2.9 bar abs, where the air 

temperature at the rig inlet ranges between 431 K and 438 K. The system is capable of 

supplying 10.5 kg/s of air at 3.3 bar abs. The supply line between the DART and rig 

inlet is heavily insulated, so small changes in the inlet temperature can be attributed to 

the atmospheric temperature seen during a test run.  

 

The ATLAS ZX250 compressor, manufactured by Atlas Copco, consists of an oil free 

screw type compressor capable of supplying 0.8 kg/s of air at a maximum pressure of 

7.5 bar abs. When used to supply cooling air to the TSW rig between 0.03 kg/s and 

0.075 kg/s is required at a pressure of between 1.7 bar abs and 3.7 bar abs depending on 
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operating conditions. An additional flow of between 0.001 kg/s and 0.014 kg/s can be 

utilised from the ATLAS for the balancing and vent flows associated with controlling 

the passage of the cooling air within the rig.    

 

The Hydrovane consists of an electrically driven sliding vane type compressor capable 

of supplying 0.1 m3/s of air at 8 bar abs. During operation of the TSW rig the 

Hydrovane is used to supply between 0.01 kg/s and 0.03 kg/s of air to cool the 

telemetry unit. The Hydrovane is also used to provide pressure to pneumatic valves, 

including two bypass valves, a control valve used to meter the ATLAS cooling air, and 

a DART emergency bypass valve which when cut vents the main annulus supply to the 

atmosphere rather than entering the test section. 

 

3.4 Drive Train and Dynamometer 
 
The power produced by the test rig is absorbed via a sluice gate type Heenan and 

Froude DPY590 dynamometer. A cross section of the dynamometer is shown in Figure 

3-2. The dynamometer consists of a rotor and stator system submerged in water. The 

action of the rotor and stator churning the water absorbs the power by doing work on 

the fluid. The loading of the dynamometer is changed by opening and closing the sluice 

gates to cut the interaction of the rotor and stator reducing the work done on the fluid. 

 

The dynamometer requires a constant water supply in order to operate. Work is done on 

the water as it passes through the dynamometer causing the water outlet temperature to 

increase. In order to avoid recirculation of water at the outlet temperature and also to 

avoid running at a total loss a large reservoir and cooling system is used. Figure 3-3 

shows the water system. The water tank, located in the test cell, holds 2270 litres of 
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water. The tank can be supplied directly with mains water to replace any loss from the 

system. 
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Figure 3-2: Heenan and Froude DPY590 dynamometer cross section 
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Figure 3-3: Dynamometer water circuit 
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The water is pumped to the dynamometer by an Ingersoll-Dresser pump, capable of 

supplying 200 litres per minute at 3.44 bar. A bypass valve located at the pump outlet 

allows pumped water to be directly fed back into the reservoir. This is used to control 

the water delivery pressure to the dynamometer. At the inlet to the dynamometer the 

water pressure is measured by a WIKA pressure gauge, visible to the operator.  

 

Under normal operating conditions the inlet pressure is maintained at just below 1 bar 

gauge. The pressure drop across the dynamometer can be controlled by the operator via 

a valve located on the exterior of the dynamometer. Opening the valve reduces the inlet 

pressure and increases outlet pressure, whilst closing the valve restricts the flow 

causing the inlet pressure to rise and the outlet pressure to drop. The outlet pressure is 

also measured via a WIKA pressure gauge visible to the operator. On exiting the 

dynamometer the water is pumped to a Guntner cooler unit, located externally above 

the test cell roof. The cooled water is then returned to the water tank. Although the 

system greatly reduces the temperature of the water during periods of extended 

running, at design point conditions the water temperature in the reservoir can be seen to 

rise. When this occurs valves can be opened which cause a proportion of the water to 

be drained. This can be done before or after the cooler. The lost water is replaced 

automatically by mains water which fills the tank when a level switch is activated. 

 

The rig drive train consists of a modified Gnome engine reduction gearbox with a 

modified oil feed system. The main features of the gearbox are shown in Figure 3-4. 

The power output shaft of TSW rig is connected to the gearbox via a polygon coupling. 

This directly turns a high speed shaft rotating at the test rig speed design speed of 
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10630 rpm. The high speed shaft is connected via helical gears to an intermediate speed 

shaft. This shaft includes the drive for the gearbox oil pump.  

 

Figure 3-4: Gnome reduction gearbox internals, Stefanis (2007) 
 
The intermediate shaft in turn is connected to the low speed shaft, the output of which 

is connected to the dynamometer via a flexible coupling. The gearbox gives a reduction 

ratio of 3.25:1, giving an output speed of approximately 3270 rpm when the TSW rig is 

at its design speed of 10630 rpm. The dynamometer is required to absorb 

approximately 400 kW of power from the TSW rig.  

 
Figure 3-5 shows the external oil circuit used to feed the gearbox during operation. Oil 

is drawn from a external tank by the internal gearbox pump. Once the oil has passed 

through the internal cooling circuit of the gearbox the oil is pumped to an external oil to 

water heat exchanger. From here the oil is returned to the oil tank reservoir. The 
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reservoir includes a breather which vents through a vapour extractor to atmosphere. By 

metering the flow rate of mains water to the heat exchanger the rig operator can control 

the temperature of the gearbox oil feed, to keep it at an optimum of ≈ 50°C - 70°C.   
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Figure 3-5: Gnome gearbox external oil circuit (Courtesy of Rolls-Royce plc) 
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Figure 3-6: TSW facility test cell arrangement 
 
Figure 3-6 shows the test facility cell arrangement, where the features described in this 

section are highlighted. 
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3.5 Test Rig Internal Components and Systems 
 
Figure 3-7 shows a cross section of the TSW rig. Although many features of the rig 

have not been labelled, an overview of the major components is given in order to 

provide descriptions of features which are shown in more detail later in this chapter. 

The inlet nose cone is located at the intake to the rig. The nose cone provides protection 

for the telemetry unit which is mounted on the front end of the main shaft and also 

directs the inlet flow to the main annulus. The telemetry unit which transmits the 

rotating frame temperatures to the data acquisition system is insulated from the main 

annulus air temperature by a section of Rohacell. The front end of the rig shaft is 

supported by a bearing, referred to as the upstream bearing. A blown seal located 

downstream of the telemetry unit provides cooling air to the unit and prevents the 

escape of test section air. The test section air supply enters the rig across the main 

annulus through a number of supply struts. The test section of the rig consists of a 

rotating assembly, which has two rotor blade rows, and a stationary section consisting 

of two NGV rows. 
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Figure 3-7: Cross section of TSW test facility 
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3.5.1 Test Section Air Supply Paths 
 
Figure 3-8 shows the air supply paths to the test section of the rig. The main annulus 

flow is represented by a red arrow. The main annulus flow rate at design speed is 

between 4.6 kgs-1 and 4.8 kgs-1. At the leading edge of stator 1 the inlet total air 

temperatures TINLET varied over the range 155 ≤ TINLET ≤ 167 °C. The inlet total 

pressures PINLET varied over the range 2.830 ≤ PINLET ≤  2.927 bar abs. This variation is 

the result of the atmospheric conditions seen over the test period and the effect on 

DART operating parameters from run to run. The cooling flow delivery to the test 

section is shown by a blue arrow. Cooling air flow is delivered to the test section at 

flow rates of between 29.8 gs-1 and 75.8 gs-1 corresponding to partial disc entrainment 

rates of 0.7 ≤ Cw,ent ≤ 1.44. The cooling air entry temperature measured at mp013, a 

thermocouple measurement location defined in Table 3-4, varied over the range 41.8 ≤ 

mp013 ≤ 65.6 °C . The path through the test section is shown in greater detail in section 

3.6.  
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Figure 3-8: TSW facility test section air supply paths 
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Figure 3-8 shows the air systems within the upstream wheelspace used to ensure the 

cooling flow reaches the test section at the required flow rate. A pressure balance 

between the lower wheelspace cavity and balance cavity is required to achieve this. The 

balance cavity can be supplied with air whilst the vent cavity can have flow removed. 

These flow paths are shown by the orange and green arrows. By close control of these 

flow rates it is possible to balance the pressures in the wheelspace to control the 

pressure difference across the two claw seals. This often involves a trade off in terms of 

air being egressed from the upper wheelspace cavity into the main annulus or main 

annulus air being ingested into the upstream wheelspace. The control of these flows 

and the effects on the wheelspace conditions are discussed in greater detail in chapter 4 

.  

3.6 Test Section Features 
 
Figure 3-9 shows the main features of the TSW rig test section. This area of the rig 

contains the most highly instrumented features and the geometries of interest. Cooling 

flow enters the test section from the lower wheelspace cavity and passes through eight 

coolant passage holes in rotor one to the lower supply cavity. From here the cooling air 

is supplied to the upstream stator well by one of two methods. The cooling air can 

either be passed directly through the drive arm via drive arm holes, or the cooling air 

can be passed through simulated lock plates in the Rotor 1 disc. The upstream cavity 

consists of the boundary created by the forward face of the stator foot, the drive arm, 

the upstream entrance of the interstage labyrinth seal, the Rotor 1 disc and the upstream 

rim seal. The air contained within the upstream stator well will pass through the 

upstream rim seal and interstage labyrinth seal at a given rate determined by rig 

operating conditions, rig geometry and fluid properties. Air exchanged through the 

upstream rim seal will interact with the main annulus flow, whilst air passing through 
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the interstage labyrinth seal will enter the downstream wheelspace. The downstream 

wheelspace is defined by the boundaries of the rear face of the stator foot, the exit of 

the interstage labyrinth seal, the drive arm and the upstream face of the Rotor 2 disc. 

Air which enters the downstream stator well will tend to flow through the downstream 

rim seal into the main annulus. Figure 3-10 gives the major dimensions of the test 

section in terms of the main annulus outer radius h. Figure 3-11 gives the major stator 

well dimensions in terms of the rotor stator spacing s. Quantitative test facility 

geometry is given in Appendix A. The journal publication by Eastwood et al (2012) is 

included in Appendix C.  
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Figure 3-9: Test section main features 
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Figure 3-10: Major test section dimensions in terms of main annulus outer radius h, Eastwood 

(2012) 
 

 
Figure 3-11: Stator well dimensions in terms of the rotor stator spacing s, Eastwood (2012) 
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3.7 Coolant Delivery Geometries 
 
The design of the TSW rig allows the rapid re-configuration of the coolant supply paths 

to the upstream stator well. The coolant supply geometries fall into the two main 

categories of drive arm insert geometries and lock plate slot geometries. The test 

section supply path for drive arm geometries is shown in Figure 3-12. This represents 

the general coolant supply path. The supply path can be altered by varying the number 

and circumferential spacing between the drive arm inserts. The effect of these changes 

was studied as part of the Phase 1 test matrix. The exit angle of the coolant from the 

inserts can also be altered. The effect of the coolant supply angles was studied as part 

of the Phase 2 test matrix. The drive arm geometries studied are summarised in 

Table 3-1. 

 

The general test section supply path for the lock plate slot geometries is shown in 

Figure 3-13. As with the drive arm geometries the coolant supply through the lock plate 

can be varied by altering the number and circumferential spacing between the lock 

plate slots. The lock plate supply geometries studied as part of the Phase 1 test matrix 

are shown in Table 3-2. 

 

In addition to the drive arm and lock plate slot geometries a third geometry type was 

studied as part of phase 2 testing, shown in Figure 3-14. This consists of an annular 

ring within the upstream stator well, referred to as a "deflector plate". The plate is 

attached to the foot via spacers which allows flow to pass to the rear of the plate. The 

geometry was developed in order to try to encourage coolant to become entrained by 

the rear face of rotor 1 rather than directly feeding the interstage seal flow. The 

deflector plate was run with both the 39 and 26 drive arm inserts previously tested as 
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part of the Phase 1. This geometry arose as a result of the CFD studies carried out by 

industrial partners of the Phase 1 data which suggested that the feature could encourage 

entrainment of coolant on to the Rotor 1 surface.   

Stator 1 Rotor 1
Stator 2

Drive arm
insert

 
Figure 3-12: Drive arm coolant supply path 

 
 

Test 
Phase 

Geometry 
no. 

Inserts Flow area 
(mm2) 

Circumferential 
spacing (deg) 

Insert design 

1 1 39 314 9.23 

 
 2 26 209 13.85 

 
 3 13 104 27.70 

 
2 1 39 162 9.23 (Angled axially 

25° towards rotor 1 
downstream face)  

 2 39 162 9.23 (Angled 
circumferentially 25°) 

 
 

Table 3-1: Drive arm coolant delivery geometries 
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Stator 1 Rotor 1
Stator 2

 
 

Figure 3-13: Lock plate slot delivery path 
 
 
 

 
Test 

Phase 
Geometry 

no. 
Lock plate 

slots 
Flow area 
(mm^2) 

Circumferential 
spacing (deg) 

Lock plate design 

1 1 39 70.2 9.23  

 
 

 2 26 46.8 13.85  

 
 

 3 13 23.4 27.70  

  
 

 
Table 3-2: Lock plate slot geometries 
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Figure 3-14: Deflector plate geometry 
 

3.8 Rotor Blades and NGV Geometry 
 

Table 3-3 gives a summary of the blades and NGVs shown in Figure 3-7. More detailed 

quantitative information for the main annulus geometry is given in Appendix A. 

 
 Stator 1 Rotor 1 Stator 2 Rotor 2 

Pitch/Chord 0.6806 0.7791 0.7301 0.7512 

Height/Axial Chord 1.199 2.188 1.233 2.568 

Inlet Mach number 0.1885 0.2763 0.2570 0.3014 

Exit Mach number 0.6563 0.6001 0.6529 0.6143 

Blade relative inlet flow angle (o) 0.00  36.68 19.02 23.32 

Blade relative exit flow angle (o) 70.07 65.36 64.60 59.33  

 
Table 3-3:Blade and NGV geometry, Stefanis (2007) 

 

3.9 Test Facility Design Point Summary 
 
Throughout this thesis reference will be made to "design point" or "test point"  

operation. This refers to the test facility reaching a steady state condition at which 

settled test data can be taken. A summary of the target operating conditions is given in 

Table 3-4. Control of the test facility to achieve these conditions is discussed in Chapter 

5. 
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Parameter Test Point Condition 

Rotational Speed (rpm) 10630 

Power Output (kW) <400 

Main Annulus Flow Rate (kgs-1) 4.8 

Cooling Flow Rate (kgs-1) 0.03 - 0.075 

Test Section Inlet Temperature (K) 430 - 440 

Test Section Inlet Pressure (bar abs) 2.9 

Test Section Pressure Ratio 2.7:1 

 
Table 3-4: Facility Design Point Conditions Summary 

 

3.10  Temperature Measurements 
 
A total of 154 separate temperature measurements can be made in the TSW rig. This 

section will describe the measurements which are taken on the major  rig components. 

These measurements relate directly to the research being undertaken. Other 

measurements are not included here. These relate to the monitoring of rig operational 

conditions such as bearing and telemetry unit temperatures as well as various points 

within the coolant delivery path. Although these are of high importance with regards to 

the rig operation and monitoring inlet conditions they do not offer direct measurements 

of test section temperatures and so are excluded from this section. The stationary 

components of the test section contain 73 K-type thermocouples at various locations 

including both metal and air temperature measurements. Figure 3-15 shows the 

measurements locations relating to Stator 1. Metal temperatures are shown as light 

blue, air temperatures as green.  

Table 3-5 gives the measurement location co-ordinates, where the axial datum is taken 

from the leading edge of the first NGV row.  Measurements taken at mp009 and mp013 

give the coolant delivery temperature to the test section. The measurement locations 

which run up the face of Stator 1 give temperature measurements relating to each of the 

cavities of the upstream wheelspace. The measurement point mp008 gives the metal 

temperature at the foot of the first NGV row.  
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Figure 3-15: Stator 1 temperature measurements 

 
Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp001 Metal temp 19.32 47  130 
mp002 Metal temp 22.32 84.14 250 
mp003 Metal temp 22.32 101.59 255 
mp004 Metal temp 22.32 110.25 313 
mp005 Metal temp 22.32 118.91 325 
mp006 Metal temp 22.32 133.59 340 
mp007 Metal temp 22.32 142.59 338 
mp008 Metal temp 11.18 151.11 114 
mp009 Metal temp -7.18 60 235 
mp010 Air temp 21.32 60  135 
mp011 Air temp 22.32 84.14 241 
mp012 Air temp 22.32 110.25 305 
mp013 Air temp -7.18 60 230 

 
Table 3-5: Stator 1 temperature measurement locations 

 
Figure 3-16 shows the temperature measurements taken at Stator 2; coordinates are 

given in Table 3-6. The measurement locations are positioned to monitor the metal and 

air temperatures relating to both the upstream and downstream stator well cavities. 
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Measurements are taken of the metal temperatures in the main annulus above each of 

the stator well rim seals. The locations also provide information on the upstream and 

downstream interstage seal conditions.  
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Figure 3-16: Stator 2 temperature measurements 

 
 

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp014 Metal temp 56.97 143.13 110 
mp015 Metal temp 66.43 139.41 115 
mp016 Metal temp 66.43 132.11 116 
mp017 Metal temp 66.43 120.8 117 
mp018 Metal temp 62.02 119.3 230 
mp019 Metal temp 62.02 115.3 234 
mp020 Metal temp 84.85 119.3 252 
mp021 Metal temp 74.43 132.11 118 
mp022 Metal temp 82.68 139.88 112 
mp023 Metal temp 83.9 143.23 232 
mp024 Metal temp 56.97 146.15 227 
mp025 Air temp 56.97 143.13 247 
mp026 Air temp 66.43 139.41 113 
mp027 Air temp 66.43 132.11 250 
mp028 Air temp 66.43 122.53 250 
mp029 Air temp 62.02 119.3 250 
mp030  Air temp 62.02 115.55 115 
mp031 Air temp 84.85 115.55 115 
mp032 Air temp 74.43 132.11 249 

 
Table 3-6: Stator 2 temperature measurement locations 
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The rotating assembly contains 81 K-type thermocouples. The measurement locations 

relating to Rotor 1 are shown in Figure 3-17. The co-ordinates of the measurement 

locations are given in Table 3-7. The locations chosen provide measurements of the 

coolant delivery temperature at the inlets to the coolant delivery geometries. The 

locations also provide measurements of the radial temperature gradient on the upstream 

face of the upstream stator well (the downstream face of Rotor 1). Due to the high 

rotational speed of the rotating assembly and the danger of damage to the 

thermocouples, each measurement location has three thermocouples in order to mitigate 

the danger of instrumentation losses.  

mp064,065,066

mp067,068,069

mp070,071,072
mp085,086,087

mp073,074,075

mp076,077,078
mp097,098,099

mp094,095,096

mp091,092,093

mp106,107,108

mp088,089,090

mp079,080,081

mp109,110,111

mp100,101,102

mp103,104,105

mp118,119,120

 
Figure 3-17: Rotor 1 temperature measurements 

 

Figure 3-18 shows the measurement locations relating to Rotor 2. The co-ordinates of 

the Rotor 2 measurement locations are given in Table 3-8. The locations give the radial 

temperature gradient along the downstream face of the downstream stator well (the 

upstream face of Rotor 2). They also provide measurements of the radial temperature 

gradient along the downstream face of Rotor 2. As with the Rotor 1 measurement 
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locations, each location has three thermocouples in order to mitigate the risk of 

instrumentation losses.  

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp064 Metal temp 33.711 79.45 252.25 
mp065 Metal temp 33.711 79.45 258.85 
mp066 Metal temp 33.711 79.45 261.475 
mp067 Metal temp 35.32 106.29 90 
mp068 Metal temp 35.32 106.29 90 
mp069 Metal temp 35.32 106.29 90 
mp070 Metal temp 35.32 118.79 5 
mp071 Metal temp 35.32 118.79 5 
mp072 Metal temp 35.32 118.79 5 
mp073 Metal temp 35.32 134.26 13.846 
mp074 Metal temp 35.32 134.26 13.846 
mp075 Metal temp 35.32 134.26 13.846 
mp076 Metal temp 31.32 143.98 65.192 
mp077 Metal temp 31.32 143.98 68.05 
mp078 Metal temp 31.32 143.98 69.583 
mp079 Metal temp 31.32 148.93 292.55 
mp080  Metal temp 31.32 148.93 290.433 
mp081 Metal temp 31.32 148.93 287.158 
mp082 Metal temp 35.32 118.79 250 
mp083 Metal temp 35.32 118.79 250 
mp084 Metal temp 35.32 118.79 250 
mp085 Metal temp 35.32 127.5 225 
mp086 Metal temp 35.32 127.5 225 
mp087 Metal temp 35.32 127.5 225 
mp088 Metal temp 43.92 79.45 100 
mp089 Metal temp 43.92 79.45 100 
mp090 Metal temp 43.92 79.45 100 
mp091 Metal temp 46.2 115.79 154.858 
mp092 Metal temp 46.2 115.79 151.6 
mp093 Metal temp 46.2 115.79 137.992 
mp094 Metal temp 40.82 127.5 160 
mp095 Metal temp 40.82 127.5 160 
mp096 Metal temp 40.82 127.5 160 
mp097 Metal temp 46.2 142.39 69.992 
mp098 Metal temp 46.2 142.39 68.517 
mp099 Metal temp 46.2 142.39 65.425 
mp100 Metal temp 49.03 147.01 293.542 
mp101 Metal temp 49.03 147.01 290.208 
mp102 Metal temp 49.03 147.01 284.55 
mp103 Air temp 45.07 91.802 250 
mp104 Air temp 45.07 91.802 250 
mp105 Air temp 45.07 91.802 250 
mp106 Metal temp 49.2 99.247 104 
mp107 Metal temp 49.2 99.247 104 
mp108 Metal temp 49.2 99.247 104 
mp109 Metal temp 49.2 111.8 316.033 
mp110 Metal temp 49.2 111.8 319.925 
mp111 Metal temp 49.2 111.8 313.008 
mp118 Air temp 58.05 99.286 335 
mp119 Air temp 58.05 99.286 335 
mp120 Air temp 58.05 99.286 335 

Table 3-7: Rotor 1 temperature measurement locations 
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Figure 3-18: Rotor 2 temperature measurements 

 
 

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp121 Metal temp 97.22 77.61 332 
mp122 Metal temp 97.22 77.61 332 
mp123 Metal temp 97.22 77.61 332 
mp124 Metal temp 94.67 119.99 43.925 
mp125 Metal temp 94.67 119.99 45.583 
mp126 Metal temp 94.67 119.99 50.62 
mp127 Metal temp 94.67 133.99 135.183 
mp128 Metal temp 94.67 133.99 140.158 
mp129 Metal temp 94.67 133.99 134.692 
mp130 Metal temp 94.67 142.07 227.283 
mp131 Metal temp 94.67 142.07 222.325 
mp132 Metal temp 94.67 142.07 231.45 
mp133 Metal temp 108.31 77.61 315 
mp134 Metal temp 108.31 77.61 315 
mp135 Metal temp 108.31 77.61 315 
mp136 Metal temp 110.66 119.99 45 
mp137 Metal temp 110.66 119.99 45 
mp138 Metal temp 110.66 119.99 45 
mp139 Metal temp 110.66 133.99 136.65 
mp140 Metal temp 110.66 133.99 141.617 
mp141 Metal temp 110.66 133.99 132.217 
mp142 Metal temp 110.66 140.34 228.75 
mp143 Metal temp 110.66 140.34 226.133 
mp144 Metal temp 110.66 140.34 223.383 

 
Table 3-8: Rotor 2 temperature measurement locations 

 
 



59 
 

Figure 3-19 shows the temperature measurement locations relating to the main annulus. 

The co-ordinates of the measurement locations are given in Table 3-9. Metal 

temperatures are taken at the inlet and exit of each NGV and blade row. Total air 

temperature measurements are taken in front of each NGV row and at the test section 

exit. The total air temperatures are shown as orange dots. The thermocouples used for 

the total air measurements taken in front of the NGVs are routed through the NGV so 

are given with both a circumferential co-ordinate and a relating NVG blade number. 

The installation of the instrumentation is shown in detail in chapter 4.   

mp042

mp033 mp034 mp035
mp036 mp037

mp038

mp051

mp041

mp040

mp039

mp046

mp045

mp044

mp043

mp050

mp049

mp048

mp047

mp267

 
 

Figure 3-19: Main annulus temperature measurements 
 
 

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp033 Metal temp -52.18 178 210 
mp034 Metal temp -5 178 210 
mp035 Metal temp 26.34 178 210 
mp036 Metal temp 51.18 178 210 
mp037 Metal temp 89.04 178 210 
mp038 Metal temp 143.87 178.35 10 
mp039 Total air temperature 0 173 144 (Blade 16) 
mp040 Total air temperature 0 168 144 (Blade 16) 
mp041 Total air temperature 0 163 144 (Blade 16) 
mp042 Total air temperature 0 158 144 (Blade 16) 
mp043 Total air temperature 56.97 172.5 227 (Blade 25) 
mp044 Total air temperature 56.97 167 227 (Blade 25) 
mp045 Total air temperature 56.97 161.5 227 (Blade 25) 
mp046 Total air temperature 56.97 156 227 (Blade 25) 
mp047 Total air temperature 150.66 172 47 
mp048 Total air temperature 150.66 166 47 
mp049 Total air temperature 150.66 160 47 
mp050 Total air temperature 150.66 154 47 
mp051 Metal temp 139.54 139.8 4 
mp267 Total air temperature 150.66 145.7 47 

 
Table 3-9: Main annulus temperature measurement locations 
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3.11  Test Section Pressures Measurements 
 
 
Figure 3-20 shows the static pressure measurements taken along the face of Stator 1. 

The co-ordinates of the measurement locations are given in Table 3-10. The upstream 

wheelspace, of which Stator 1 makes up the upstream face, is balanced under 

operational conditions in order to ensure the coolant is delivered to the test section as 

required and to limit the ingress of hot main annulus gasses. The wheelspace includes a 

balancing flow inlet and a vent which exits through the face of Stator 1. The pressure 

measurements are critical to this task. This is discussed in detail in Chapter 4.  

mp149,150

mp151

mp152

mp153

mp154

mp147,148

 
Figure 3-20: Stator 1 pressure measurements 

 
Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp147 Static pressure 21.32 72.83 271 
mp148 Static pressure 21.32 72.83 90 
mp149 Static pressure 22.32 84.14 280 
mp150 Static pressure 22.32 84.14 105 
mp151 Static pressure 22.32 101.59 60 
mp152 Static pressure 22.32 110.25 80 
mp153 Static pressure 22.32 118.91 73 
mp154 Static pressure 22.32 138.09 286 

 
Table 3-10: Stator 1 pressure measurement locations 
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Figure 3-21 shows the pressure measurement locations relating to Stator 2. The co-

ordinates of the measurement locations are given in Table 3-11. The measurements 

give information relating to the upstream and downstream stator wells as well as the 

upstream and downstream conditions of the interstage seal. A number of the pressure 

measurement locations are also used during the gas concentration experiments in order 

to pipe gas out of the rig to the gas analyser equipment, indicated by an asterisk in  

Table 3-11. This operation is covered in detail in chapter 4.  

Mp181,182

Mp179,180mp177,178

mp176
 

Figure 3-21: Stator 2 pressure measurements 
 

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp176 Static pressure 63.06 115.55 264 
mp177* Static pressure 66.43 130.11 235 
mp178* Static pressure 66.43 130.11 131 
mp179* Static pressure 74.43 130.11 227 
mp180* Static pressure 74.43 130.11 126 
mp181* Static pressure 77.81 115.55 189 
mp182* Static pressure 77.81 115.55 96 

 
Table 3-11: Stator 2 pressure measurement locations 

 
 
Figure 3-22 shows the pressure measurements made in the main annulus. The co-

ordinates of the measurement locations are given in Table 3-12. Static pressure 

measurements are made around the circumference of the rig between each NGV and 

blade row. Total pressure measurements are made at the leading edge of each NVG row 

and at the exit to the test section. The total pressure measurements are shown as purple 

dots. The locations of the total pressure measurements are given with both a 

circumferential location and a blade number relating to the blade through which the 

pressure tap is led out of the rig. 
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Figure 3-22: Main annulus pressure measurements 

 
 

Label Measurement Axial (mm) Radial (mm) Circumferential (deg) 
mp155 Static pressure -5 178 3 
mp156 Static pressure -5 178 80 
mp157 Static pressure -5 178 152 
mp158 Static pressure -5 178 224 
mp159 Static pressure -5 178 296 
mp160 Static pressure 26.34 178 8 
mp161 Static pressure 26.34 178 80 
mp162 Static pressure 26.34 178 152 
mp163 Static pressure 26.34 178 224 
mp164 Static pressure 26.34 178 296 
mp165 Static pressure 51.18 178 8 
mp166 Static pressure 51.18 178 80 
mp167 Static pressure 51.18 178 152 
mp168 Static pressure 51.18 178 224 
mp169 Static pressure 51.18 178 296 
mp170 Static pressure 89.04 178 8 
mp171 Static pressure 89.04 178 80 
mp172 Static pressure 89.04 178 152 
mp173 Static pressure 89.04 178 224 
mp174 Static pressure 89.04 178 296 
mp175 Static pressure 143.87 178.35 0 
mp183 Total pressure 0 173 10 (Blade 1) 
mp184 Total pressure 0 168 10 (Blade 1) 
mp185 Total pressure 0 163 10 (Blade 1) 
mp186 Total pressure 0 158 10 (Blade 1) 
mp187 Total pressure 0 173 134 (Blade 15) 
mp188 Total pressure 0 168 134 (Blade 15) 
mp189 Total pressure 0 163 134 (Blade 15) 
mp190 Total pressure 0 158 134 (Blade 15) 
mp191 Total pressure 0 173 276 (Blade 30) 
mp192 Total pressure 0 168 276 (Blade 30) 
mp193 Total pressure 0 163 276 (Blade 30) 
mp194 Total pressure 0 158 276 (Blade 30) 
mp195 Total pressure 56.97 172.5 240 (Blade 26) 
mp196 Total pressure 56.97 167 240 (Blade 26) 
mp197 Total pressure 56.97 161.5 240 (Blade 26) 
mp198 Total pressure 56.97 156 240 (Blade 26) 
mp199 Total pressure 150.66 172 228 
mp200 Total pressure 150.66 166 228 
mp201 Total pressure 150.66 160 228 
mp202 Total pressure 150.66 154 228 

Table 3-12: Main annulus pressure measurement locations 
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3.12  Control and Data Acquisition Overview 

The test rig employs a range of instrumentation consisting of k-type thermocouples, 

various pressure sensors, platinum resistance thermometers, various flow meters, eddy 

current displacement sensors and gas analysers. Figure 3-23 shows a schematic of the 

system including the measurement source, acquisition device and the connection path 

to the DAQ PC for each measurement type. The left hand column of the schematic 

shows the measurement sources, including the stationary and rotating frame 

temperature measurements and pressure measurements. Other devices such as flow 

meters, PRTs, concentration meters and inductive rotational speed measurements are 

also shown. The central column of the schematic shows the data acquisition devices, 

which receive the signals from the measurement devices. The data acquisition (DAQ) 

system includes a number of devices including Serial, Ethernet and SCXI devices. The 

output signals from the DAQ devices are handled via a National Instruments PXI 

system, shown on the right in the grey column. This step in the instrumentation path 

amplifies and consolidates all the measurement channels to allow transmission to the 

data logging terminal. The 280 instrumentation channels are logged via Labview 8.5 

Virtual Instrumentation, "VI" . The VI also allows real time monitoring of the rig 

during a test run and is discussed further in section 3.13.  

 

The DAQ equipment is located in a test cell adjacent to the rig. This allows the devices 

to operate in a temperature controlled environment, whilst being sufficiently close to 

the rig to allow direct connection of instrumentation. The equipment is contained in 

two dedicated cabinets, shown in Figure 3-24, which are in turn located within a 

temperature controlled area containing a Challenge air conditioning unit with a heating 
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capacity of 3.2 kW and a cooling capacity of 3.5 kW. The full enclosure is shown in 

Figure 3-25.  

 

 

Figure 3-23: Data acquisition system, Coren et al (2010)  
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Figure 3-24: Temperature controlled instrumentation cabinets 
 
 
 
 

 
 

Figure 3-25: Temperature controlled instrumentation enclosure 
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3.13  Labview VI 
 
The primary function of the Labview VI is to provide a graphical user interface (GUI) 

for the operator. The design and implementation of the VI was primarily conducted by 

J. T. Turner and is described by Coren (2010). Figure 3-26 shows the terminal from 

which the operator controls the test rig and the front end of the Labview VI. This 

allows the operator to monitor all measurement channels and rig parameters.   

 

Figure 3-26: Test Rig Operator Terminal 
 

The data is logged at a frequency of 0.5 Hz allowing it to be viewed in near real time. 

This is of particular importance in terms of monitoring the rig bearing and lubrication 

systems. Figure 3-27 shows the screen arrangement of the VI; each box represents a 

user screen, where the screen number is given in brackets. Screen 1 allows the user to 

assign a test number to the data to be taken and then start the VI to initiate the logging 

of the test data.  Once running, this screen allows the operator to monitor critical rig 

parameters including rotational speed, rig cooling and seal balancing flows, main 

annulus air supply conditions, dynamometer bearing and water temperatures, rig 

bearing and oil temperatures, and gearbox oil temperatures. This screen also provides 

the operator with instrumentation cold junction temperatures. This is particularly 

important for the rotating thermocouple telemetry unit. As this unit is mounted in the 
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inlet cone area of the rig the temperature must be closely monitored and the associated 

cooling flow controlled in order to keep the unit within its specified operating 

conditions. A summary of critical rig parameters monitored by the operator are given in  

Table 3-13.  

 
Figure 3-27: Labview VI rig operator system 

 

Parameter Critical Temperature (°C) 
Upstream Bearing 1  ≤ 110 
Downstream Bearing 1  ≤ 110 
Downstream Bearing 2  ≤ 110 
Turbine Shaft Oil Supply  ≤ 70 
Gearbox Shaft Oil Supply  ≤ 70 
Dynamometer Water Supply  ≤ 50 

 
Table 3-13: Critical rig parameters 

 

Due to the critical nature of the main parameters monitored through this screen an 

independent system is available to the operator. Located on this panel are the 

dynamometer controls which allow the rig speed to be closely controlled without the 

need to enter the test cell. Independent displays of rig speed and bearing temperatures 
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are located on the far right control panel, as seen in Figure 3-26. In the event of the 

Labview VI failing, these displays and controls could be used to safely shut down the 

rig. The front end screen is always visible to the rig operator due to the importance of 

the parameters which are monitored. However, the VI also has a second monitoring 

screen containing a number of tabs (screens 2-12 in Figure 3-27) which allows the 

operator to view data in more accuracy. Screen 2 shows all measured temperatures on 

the rotating assembly. The ability to view this data whilst running the test rig allows the 

operator to monitor temperatures on both faces of Rotors 1 and 2. 

 

Screen 3 of the VI allows the operator to monitor the stationary metal temperatures in 

the upstream wheel space, the upstream and downstream stator well cavities and the 

main annulus casing. The lower radius metal temperatures in the area of the coolant 

entry point to the upstream wheel space are of particular interest whilst running the rig 

due to the influence of the surrounding metal temperature on the bearings. 

 

Screen 4 of the VI allows the operator to monitor the stationary air temperatures within 

the rig. This includes temperatures in the three rotor-stator cavities as well as the 

coolant delivery temperature before entering the main test section of the rig. This 

measurement is of particular importance as it allows the heat pick up of the cooling air 

to be quantified before entering the main test section.  

 

Screen 5 of the VI allows the main annulus conditions to be monitored, including both 

total pressure and total temperature. Each group of four measurements is taken at 

identical circumferential and axial positions. The four measurements are however, 

spread across the main annulus at four separate radial positions. This is achieved by the 
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measurement devices being located in the leading edge of NGV blades. The 

measurements are taken at both Stator 1 and 2. The total pressure measurements taken 

at the leading edge of Stator 1 are taken in sets of four across three blades of various 

circumferential locations. This allows the operator to check circumferential uniformity 

of the main annulus flow at the test section inlet.  

 

Screen 6 on the VI allows the operator to monitor the static pressures within the 

upstream wheel space and the two stator well cavities. It also allows the operator to 

monitor the main annulus pressure at the outer annulus radius at each stage. The 

pressures in the upstream wheel space are of particular importance whilst the rig is 

running as these measurements indicate the sealing of the cooling air from main stream 

air ingress. This is a prominent part of the set up and operation of the rig, and is 

discussed in greater detail in Chapter 5. This screen also shows the static pressures 

across the front bearing/telemetry seal. These are monitored throughout the test to 

ensure the seal is balanced. If the telemetry unit cold junction temperatures are seen to 

increase to an unsatisfactory level the cooling flow to the unit can be increased.  

 

Screen 7 of the VI allows the operator to monitor the temperature of the rig cooling air 

at various points on its way to the test section. Due to the rig geometry it is a feature of 

the rig that a substantial amount of heat pick up occurs along the cooling air system. 

Various heat exchangers and insulated sections of pipe are in place to reduce the effects 

of heat transfer to the cooling air before entry to the rig, however, the internal supply 

path cannot be altered. The measurements on this tab allow this to be estimated 

between various points along the supply path.  
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Screen 8 of the VI is specifically designed to allow the operator to view all 

instrumentation concerned with the gas concentration experiments as well as estimated 

cavity flow rates based on the measurements. The primary indicators based in the 

central panel show the measured carbon dioxide levels as percentage volume for both 

gas analysers, the high range instrument, GC1, having a range of 0-10%, and the low 

range instrument a range of 0-1%. The central panel also shows the indicated carbon 

dioxide flow rate and the cooling flow rate to the test section. The estimated cavity 

flows shown on the tab are based on simplified calculations based on the measured 

flow rates and measured gas concentrations. They are shown simply as indicators of 

flow levels whilst conducting the various gas concentration experimental procedures. 

The full gas concentration experimental results are post-processed and are discussed in 

detail in Chapter 9.  

 

Screen 9 of the VI allows the operator to monitor the primary operating conditions of 

the rig in terms of non dimensional mass flow and the rig pressure ratio from inlet to 

exhaust. These values are plotted against the design point curve at regular intervals 

allowing the operator to make required changes to the main annulus supply flow until 

satisfactory values are reached.  

 

Screen 10 of the VI serves two functions. The first is to provide the operator with a 

graphical trace of the rig temperature history during a test run. This allows the operator 

an overview of the rig conditions during the warm up of the rig and also indicates how 

settled the rig conditions are. The second function of the tab is to indicate to the 

operator when the data from the rig can be considered settled. When the settling 

conditions are met the indicators at the bottom of the tab will light up green. This 
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occurs when an average of the stationary and rotating temperatures changes by less 

than a user specified value over a given time.  

 
Screen 11 of the VI is of particular importance to the operator during the rig warm up. 

The tab gives a temperature trace of the critical rig components, including bearing and 

lubrication fluid temperatures for the rig, gearbox and dynamometer. By viewing the 

temperature history of these components any unprecedented change can be far more 

apparent to the operator than looking at a single current value. The trace also allows the 

operator to make changes to the rig conditions before maximum temperatures are 

reached by examining temperature trends and acting before problems occur by, for 

example, increasing the cooling of gearbox oil, or reducing rig speed to bring down 

bearing temperatures. A sudden jump in temperatures on the trace could also be the 

first indicator that an operator would have of a component failure and allow a safe shut 

down of the rig.  

 

Screen 12 of the VI can be used by the operator to enter information concerning the test 

run, which is then saved in the test log file.  

 

3.14  Summary 
 
This chapter introduced the Turbine Stator Well test facility at the University of 

Sussex. The test facility external infrastructure has been described, including the test 

section air supplies, lubrication systems and water circuits. The facility test section air 

flows, instrumentation locations and data logging systems have also been described. 

The high density of instrumentation within the test section and the interchange-ability 

of cooling flow supply geometries allows experimental data to be taken for a wide 

range of stator well sealing conditions.   
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4 Test Facility Instrumentation  

4.1 Introduction 

 
In this chapter the test facility instrumentation will be discussed in detail. This will 

include the off rig calibration and instrumentation installation techniques used in order 

to ensure measurement accuracy requirements were met. The work presented in this 

chapter was conducted in collaboration with the authors of Coren (2010).  

 

4.2 Thermocouple Manufacturing Process 

 
The K-Type thermocouple was selected as the most suitable for the test facility and was 

used exclusively in the rig. A K-Type thermocouple consists of a Chromal and Alumel 

leg. The thermocouples were manufactured within the TFMRC workshop using an inert 

gas arc welding technique. The bead formed when the two wires of the thermocouple 

were welded, were examined under a microscope in order to ensure proper formation of 

the joint, which is the hot junction of the finished thermocouple. Any thermocouples 

which did not meet the required standard were stripped back and re-welded. Figure 4-1 

shows a variety of possible outcomes when welding thermocouples. Type 'A' shows a 

well formed example. The bead is the result of the two legs melting and forming a 

sphere. The bead is well formed and each leg of the thermocouple enters the bead at a 

similar angle. The legs are well spaced and unlikely to touch. Type 'B' shows an 

example where one leg of the thermocouple has not properly attached to the bead. This 

will not create the necessary circuit for the thermocouple to produce a voltage. This is 

often seen if the legs are not of equal length when welding. Type 'C' shows a case where 
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one leg of the thermocouple has broken out from the bead. Although this thermocouple 

would initially operate correctly the fact that one leg has not melted fully into the other 

suggests that the bead may be weak. This could lead to the thermocouple breaking 

easily. The extra lump of wire may also lead to measurement errors due to embedding 

issues. This is most often seen when the legs are of a slightly different length or are held 

too far apart when welding.  

 

Figure 4-1: Thermocouple bead types 
 
 
Type 'D' shows the case where although connected, one leg of the thermocouple is not 

part of the bead. This not only creates a weak joint but also creates a false junction. This 

would lead to any temperature data being taken using the thermocouple corresponding 

to the point where the legs meet, rather than the bead. Type 'E' shows the case where the 

bead is misshapen; this can manifest as surface bubbling, pitting or large sections of the 

bead missing. This can be caused by too high a power on the welder, the inert gas shield 

not being supplied around the weld properly or contamination of the leg material. Type 
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'F' shows the case of a small or misshapen bead. This is often the result of the power 

being set too low on the welder. Both types 'E' and 'F' will function correctly, however 

the beads are prone to failure and were not considered acceptable for the TSW rig. Only 

thermocouples which matched case 'A' were passed for use on the TSW rig.  

 

4.3 Initial Thermocouple Calibration Investigation 

Although standard calibration curves are available for K-Type thermocouples, material 

properties can vary between suppliers and batches. In order to reduce uncertainty due to 

this, the Chromal and Alumel wire used to manufacture the thermocouples was 

procured as a single batch. An initial batch of thermocouples was manufactured and a 

random sample taken for off rig calibration and testing. Figure 4-2 shows the layout 

used for the calibration. A single thermocouple was selected from the test. The 'hot 

junction', referring to the bead of the thermocouple was placed in a Jupiter 650B liquid 

bath. An Isotech, UKAS calibrated platinum resistance thermometer, 'PRT', was also 

placed into the liquid bath to give a reference temperature. Each leg of the thermocouple 

was connected to a digital volt meter (DVM) lead then submerged in a separate test tube 

containing calibration oil. Each of the test tubes was then placed in a  triple point ice 

bath. A full description of the procedure can be found in "TFMRC Laboratory 

Thermocouple Calibration Procedure 2006 document 06/TFMRC/TR255". The 

procedure can be summarised as: 

 

1. To create a triple point ice bath, an insulated container with a volume of 

approximately 1 litre is filled with crushed ice made from distilled water. 

Distilled water is then added to a level just below the top of the crushed ice. The 

PRT is then used to ensure the temperature of the ice bath is between 0 and 0.02 

°C. 
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2. The thermocouple is then placed in its entirety into the ice bath and its voltage 

output measured. If the ice bath is prepared correctly the resulting EMF should 

fall within ± 4 µV. 

3. The bead of the thermocouple is then attached to the tip of the PRT using copper 

tape and the pair are placed in the liquid bath. 

4. The temperature of the liquid bath is then increased in incremental steps over the 

calibration range, recording PRT reference temperatures and thermocouple 

voltage output. 

 

 

Figure 4-2: Traditional thermocouple calibration technique 
 
 
Initial calibrations showed that when the thermocouple was placed in the triple point ice 

bath, where both junctions are at an equal temperature, an unwanted EMF of up to 20 

µV (approximately 0.5 °C for a K-Type thermocouple) was present rather than the 

acceptable range of ± 4 µV. Further investigation showed that the calibration circuitry 

appeared sensitive to external temperature variation when the leads between the 

thermocouple and the DVM were heated. The operating temperature of the DVM was 

also shown to affect the measured EMF. In order to rectify this problem the original 

DVM leads were replaced with identical copper wires (i.e. taken from the same batch). 

The DVM was also allowed to reach operating temperature before beginning the 

calibration. With these changes in place the measured EMF, where both the hot and cold 
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junction were placed in the ice bath was found to be within the required ± 4 µV. Using 

this configuration the initial batch of nine thermocouples were calibrated. Figure 4-3 

shows the results obtained from a single thermocouple. The oil bath temperature is 

plotted against deviation from standard K-Type indicated temperature. The oil bath 

temperature was measured using the "laboratory PRT". This is a traceable platinum 

resistance thermometer which has been calibrated by a UKAS accredited third party and 

is used as the reference device at TRMRC. The indicated temperature is the temperature 

calculated using K-type thermocouple coefficients for the measured voltage output of 

the thermocouple; the deviation is the difference between this standard temperature and 

the measured PRT temperature. It was found that the temperature  measured by the PRT 

varied by as much as 0.3 0C from the standard indicated temperature obtained from 

standard k-Type tables.  

 
 

Figure 4-3: Initial thermocouple calibration 
 
From the single calibration, it was unclear if the deviation from the standard indicated 

temperature was due to the calibration process or a feature of the materials and 

manufacturing process being used for the thermocouples. This result prompted further 

investigation of the thermocouple batch.  Figure 4-4 shows the results of the calibration 

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Oil bath temperature (mV)

D
ev

ia
tio

n 
fr

om
 k

-t
yp

e 
in

di
ca

te
d 

te
m

pe
ra

tu
re

( 0 C
)



77 
 

procedure carried out on four thermocouples. The average of the four thermocouples is 

shown together with bars showing the maximum and minimum deviation from the 

average. Each thermocouple showed the same trend as the initial calibration, with a 

deviation from the standard K-Type indicated temperature of up to 0.3 0C. However, the 

deviation of each thermocouple from  the batch average was found to be within +/- 0.1 

0C. 

 
 

Figure 4-4: Initial thermocouple batch calibration 
 
 
These results obtained from this initial investigation suggested (given the accuracy of 

temperature measurement required) that it would be necessary to complete a calibration 

of each individual thermocouple to be used on the rig. In order to meet this objective a 

"through calibration" procedure was devised. "Through calibration" is a term used in 

this thesis to describe a method where all thermocouples to be used on the rig are 

connected to the data logging equipment via the exact path and channel number to be 

used during rig operation. This process is described in greater detail in section 4.6. In 

order to carry out the through calibration it was necessary to complete the installation of 

the data logging equipment, manufacture each thermocouple to be used on the test rig 

and to install and calibrate the cold junction temperature measurement instrumentation.   
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4.4 Stationary Thermocouple Cold Junction 

The stationary thermocouples for the TSW rig are connected via two National 

Instrument cards to the data acquisition system as shown in Chapter 3, Figure 3-23. In 

standard form the two NI-SCXI-1303 cards include both the input terminals to which 

the thermocouple legs are connected and also the cold junction reference temperature 

measurement. This is made via a thermistor bedded into a small aluminium plate on the 

rear face of the internal card. The original configuration is shown in  Figure 4-5. 

 

Figure 4-5: Standard NI card cold junction measurement 
 
 
This configuration was considered to be inadequate to provide the necessary accuracy 

for the cold junction reference temperature. In order to improve this measurement the 

casing of the NI cards was modified in order to accept a larger spreader plate which 

could house three platinum resistance thermometers. Figure 4-6 shows the casing of a 

NI card after being machined and prior to fitting of the larger spreader plate. Unlike the 

original thermistor which uses an internal  channel  to output the temperature of the card 

unit, the outputs of the three PRTs embedded in the larger spreader plate are measured 

independently by the Agilent 34970A DVM.   

Original thermistor 
and spreader plate 



79 
 

 

Figure 4-6: NI-SCXI-1303 machined ready for new spreader plate 
 
 

Figure 4-7 shows the new spreader plate, with the three locations for embedding the 

PRTs. The Plate is attached firmly to the thermocouple terminal board via four cap head 

screws, the threaded holes for which are shown. The other various tracks and cut outs 

are to allow clearance between the copper plate and the terminals of the card.    

 

 

Figure 4-7: Copper spreader plate prior to installation 

PRT locations 

Fixing holes 
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Figure 4-8 shows two views of an open SCXI-1303 module with the large copper 

spreader plate attached. The three PRTs are bonded to the underside of the plate, as 

close to the junctions of the thermocouples as possible, with epoxy resin. The lead outs 

from the three PRTs can be seen taped to the plate. The right hand view shows how the 

spreader plate is flush with the thermocouple terminal card. 

 

Figure 4-8: Open NI SCXI-1303 with spreader plate and PRTs attached 
 
 
Before final installation of the PRTs in the copper spreader plates the PRTs were 

calibrated. This process is described in the next section. 

4.5 Cold Junction PRT Calibration 
 
Figure 4-9 shows the equipment used for the stationary thermocouple cold junction 

temperature measurement PRTs calibration. Six PRTs were lowered into a Isotech 915 

parallel tube oil bath. These were connected via a terminal block to the Agilent DVM 

which directly measures the resistance across the PRTs, in turn connected via a NI PCI 
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to the data logging system. All reference temperature measurements made during the 

calibration process The laboratory reference PRT was submerged alongside the PRTs to 

be calibrated in the oil bath in order to give a reference temperature.  

 
Figure 4-9: Stationary thermocouple cold junction PRT calibration 

 
 
The oil bath was set at a number of temperatures, covering the expected operating range 

of the PRTs.  Although not shown by this diagram, the PRTs were also submerged in a 

triple point ice bath, prepared as described in section 4.3, in order to produce calibration 

points at 0 0C. Figure 4-10 shows the calibration results for the six PRTs, where change 

in resistance of each PRT is plotted against PRT temperature. The PRTs were seen to 

produce resistances of between +/- 0.05 Ohms of the batch average. If an average of the 

batch was used to produce a general coefficient for the PRTs this would result in an 

uncertainty of +/- 0.1 0C. However, due to the high level of accuracy required for the 

test rig, coefficients for each individual PRT were produced by applying a fit to each set 

of data.   

 

Once the PRTs had been installed in the new copper spreader plates and attached to the 

NI SCXI-1303 card, a single card was plugged into an SCXI 1102B amplifier in the 

SCXI 1000 chassis. This is the instrumentation route for the stationary thermocouples as 

shown in Chapter 3, Figure 3.23. 
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Figure 4-10: Cold junction PRT calibration, Turner et al (2008) 
 
 

 

Figure 4-11: SXCI-1303 card connected to SXCI-1000 chassis 
 
 
Figure 4-11shows the card plugged into the SCXI 1000 chassis. The blue PRT leads can 

be seen exiting the front of the card. The card casing had been removed and no 

thermocouples were attached to the card. The SCXI 1000 chassis was then powered up, 

making the NI SCXI-1303 card live. The PRT temperature readings were then taken, 
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using the Agilent 34970A.  Despite the addition of the copper plate, upon reviewing the 

calibration data, a temperature gradient of 0.4 °C was measured between the three PRTs 

on the single card. This gradient was examined further in order to rule out the 

possibility of a calibration error for the PRTs. Two methods were used in order to 

confirm the gradient. A spot check of the card temperatures was made by attaching a 

thermocouple to the PRT locations with conductive copper adhesive tape. These 

measurements  showed a temperature gradient of similar magnitude across the PRT 

locations. Further locations across the card were then tested using the same method. The 

higher temperatures on the plate were located in the area of the card closest to the NI-

SCXI-1000 amplifiers. It was concluded from this test that heat from the amplifiers was 

the cause of the gradient. In order to verify this an infrared camera system was used. 

 

 

Figure 4-12: Infrared image of NI-SCXI-1303 card 
 

Figure 4-12 shows an infrared image of the SCXI module whilst powered up.  The 

results from the infrared camera showed a similar gradient across the PRT locations, of 

PRT locations 
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around 0.5°C, as the thermocouple spot checks and the PRT measurements. The 

infrared  images also showed that some locations on the card reached temperatures of 

over a degree more than the card average. This area is shown as yellow in Figure 4-12. 

  

It was concluded from these investigations that the gradient across the SCXI card was 

unacceptable given the accuracy required for the stationary thermocouple 

measurements. A method was required to move the SCXI cards away from the SCXI 

1000 chassis and amplifiers. In order to achieve this, break out leads were required 

between the SCXI-1303 cards and SCXI-1102B units. However an "off the shelf" 

solution was not available for the given hardware. Although extension leads were 

available from National Instruments which had the correct number of pins, these items 

were designed for alternative NI hardware and inverted the instrumentation channel 

paths. A number of these units were purchased and re-wired correcting the channel 

paths. The modified leads were extensively continuity tested to ensure correct channel 

transmission. It was also necessary to modify the SCXI-1303 card  casing in order to 

mechanically connect the lead to the module rather than rely on a push fit. Figure 4-13 

shows the casing of a SCXI-1303 module with the terminal card removed. The modified 

lead can be seen attached to the casing, together with the machined connector blocks 

used to connect the two. Figure 4-14 shows the terminal card inserted into the casing 

and screwed into position, providing the mechanical fixing of the lead to the card 

terminals. The top half of the casing has been removed in order to show the connection. 

A number of thermocouples can be seen leading from the terminals, out through the 

opposite side of the card. Under normal operation the top casing is sandwiched between 

the front and back side of the casing before the final assembly of the unit. 
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Figure 4-13: SXCI-1303 card casing attached to modified NI lead 
 

 
Figure 4-14: Modified SCXI 1303 with top casing removed

PRT 2
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Figure 4-15: SCXI-1303 card in isothermal box 

 
 

The extension lead reduces thermal gradients across the card by moving the 

thermocouple terminals away from possible internal heat sources. The copper spreader 

plate reduces thermal gradients across the card due to its high thermal conductivity. 

However by increasing the internal thermal conductivity of the card it becomes more 

susceptible to changes in external temperatures. In order to reduce this the SCXI cards 

were placed in individual isothermal boxes. Figure 4-15 shows the modified SCXI-1303 

card with the modified extension cable placed within an isothermal box. The isothermal 

boxes were manufactured using a casing of MDF. Rohacell insulation was then milled 

to shape to hold the SCXI cards and cables. This was glued into the MDF casings. The 

image on the left of Figure 4-15 shows the arrangement with both the top half of the 

Rohacell and the MDF removed. The casing of the SCXI card has also been removed. 

The image on the right shows the arrangement with the top half of the Rohacell 

insulation in place.  
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Figure 4-16 shows cold junction temperatures as measured by three reference 

temperature PRT's in a single SCXI-1303 module, with the stated modifications, across 

a typical test run cycle. The deviation between all PRT's from the single module average 

are less than +/- 0.065 K. The total deviation across all modules was less than +/- 0.25 

K, with a total drift in module average temperature over a 3 hour run of less than 0.6 K.  

 

Figure 4-16: SCXI-1303 cold junction temperature variation 
 

4.6 Stationary Thermocouple Calibration 
 
 
Following the initial thermocouple investigations and the resulting improvements made 

to the data acquisition system it was decided that off rig batch calibration of the test rig 

thermocouples would not be sufficient. A through calibration technique was selected as 

the most efficient and accurate method of calibration. This involves calibrating each 

thermocouple individually for its given channel, using the exact measurement 

instrumentation to be used in the final instrumentation system. Figure 4-17 shows the 

instrumentation path used for the calibration. Rather than being in their measurement 
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positions on the rig, the thermocouples were placed into a Isotech liquid bath. The 

laboratory reference PRT was also placed within the liquid bath. Other than these two 

additions the thermocouple outputs were measured and logged via the exact path as 

used during rig operation. 

 
 

Figure 4-17: Stationary thermocouple calibration instrumentation path 
 

Figure 4-18 shows a diagram of the calibration equipment within the Isotech bath. The 

bath consists of a large bath of oil, in the centre of which is a large aluminium block, 

into which instruments can be lowered. The bath then pumps oil, heated to a required 

temperature, over the block. Due to the installation method for the stationary 

thermocouples it was necessary to prevent any calibration oil coming into contact with 

the thermocouple leg insulation material as it would prevent proper bonding of the 

thermocouples to the measurement surfaces of the test rig. In order to achieve this a 

calibration "bomb" was manufactured. This consists of a large bomb shaped copper 

block into which glass tubing is bonded. The glass tubing extends above the bath oil 

level allowing thermocouples to be fed down to the required depth within the bath 

without making contact with the oil. The bomb also has a hole of the same depth as the 

thermocouple glass tube holes into which the reference PRT can be placed.   
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Figure 4-18: Isotech bath layout 
 
 
 
Figure 4-19 shows the liquid bath set points for the stationary thermocouple calibration. 

The Isotech bath has its own internal heater and thermostat to maintain the oil 

temperature. The cycle shown was completed over a 14 hour period allowing 30 

minutes for each calibration point to be reached. Data was then taken from the last 

minute of each point, from which the calibration co-efficient of each thermocouple and 

channel combination were calculated. 
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Figure 4-19: Isotech liquid bath temperature set points, Turner et al (2008) 

 
 
Figure 4-20 shows the results of the stationary thermocouple calibration, where the 

voltage output of the thermocouples is plotted against the reference temperature PRT for 

each set point.  

 
Figure 4-20: Stationary thermocouple voltage output, Turner et al (2008) 

 



91 
 

The calibration data was used to create fits for each individual channel from which 

coefficients for each thermocouple were obtained. These coefficients were then re-

applied to the voltage data recorded during the calibration. Figure 4-21 shows the 

deviation of the resultant temperature measurement made by each thermocouple against 

the PRT reference temperature. The deviation was found to be less than +/- 0.1 K by 

Turner et al (2008). 

 

 
Figure 4-21: Deviation of post processed thermocouple temperature data from reference 

temperature, Turner et al (2008) 
 

4.7  Stationary Thermocouple Installation 
 
In this section examples will be given of the techniques used throughout the rig to 

install the stationary thermocouples. Although not subject to the loads associated with 

the high rotational speeds of the thermocouples installed on the rotating components of 

the rig, the stationary thermocouples require mounting methods which both protect the 

thermocouples from accidental damage over prolonged test periods but also avoid 

embedding errors. Figure 4-22 shows an example of stationary thermocouples installed 

on the stationary face of the upstream wheelspace. The thermocouples are identifiable 
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by the small dark tracks on the face of the disc. These tracks are machined to allow the 

last part of the thermocouples legs before the bead to be laid flat against the disc. For 

metal temperature measurements the bead is also bonded to the disc face, in contact 

with the metal. For air thermocouple measurements the thermocouple bead is left 

between 0.5mm and 1mm proud of the component surface. The tracks, with the 

thermocouple laid inside, are then smoothed over with a resin to restore the flat face of 

the disc. The remaining length of the thermocouple passes through the face of the disc, 

from where it is led out from the rig through the aerodynamic struts in the main annulus 

and then to the data logger. 

 

 
Figure 4-22: Stator 1 thermocouple installation 

 
 
Figure 4-23 shows an image of air thermocouples installed on the stator 1 nozzle guide 

vane row. The thermocouple beads can be seen standing proud of the leading edge of 

the guide vane. The resin used to set the thermocouples into the vane can be seen as 

small black circles on the surface. The thermocouples are fed to the vane by means of a 

slot running from the outer to inner radius of the vane on the suction side. From here 

four small holes are drilled through from the leading edge into the slot. The 

thermocouples are fed through the four holes, into the main slot, then radially 
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downwards to join the forward thermocouple route out of the rig used by the 

thermocouples shown in Figure 4-22.  Figure 4-24 shows air thermocouples being 

installed in the second nozzle guide vane row on stator 2. This image shows the suction 

side of the vane before being filled with Duralco 4525-IP epoxy resin. The 

thermocouple wires can be seen laid within the milled slot in the vane. In this case, 

unlike the NGV 1 vane, the thermocouple leads can be seen leaving the blade radially 

outwards.  

 
Figure 4-23: NGV 1 air thermocouples 

 
Figure 4-24:NGV 2 air thermocouple installation 
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Where thermocouples were installed within vane rows, as shown in  Figure 4-23 and 

Figure 4-24, prior to the vane tracks being machined, castings were made of the profile 

in order to provide a mould for the underside of the vane. 

 

 

Figure 4-25: Female vane mould and clamp system 

 

Figure 4-25 shows the mould along with an image of the mould being used to set resin 

in  NGV 1 vane. An outer clamping piece can be seen laid across the outer radius of the 

vane row and held in place by a number of g-clamps.  

 

Figure 4-26: Re-profiled NGV 1 vane 
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Figure 4-26 shows the vane with the mould removed. The re-profiled section made from 

black resin can be seen to follow the original profile of the vane. Figure 4-27 shows the 

complete assembly of Stator 2 of the test section. Both halves of the casing can be seen 

bolted together, forming the annulus ring of the stator well foot. Red overbraid is used 

to protect the thermocouples from abrasion and damage resulting from coiling and 

bending and is used for the full length of the thermocouples up until it reaches the data 

logging equipment. 

 

 
Figure 4-27: NGV2 in stator 2 assembly 

 

4.8 Rotating Thermocouple Calibration 
 
As with the stationary thermocouple measurements, the rotating thermocouples require 

accurate cold junction temperature measurements in order to provide the resolution 

required for the program. The PRTs selected to make this measurement for the 

stationary temperature measurements were considered to be suitable for the rotating 

frame instrumentation. However, unlike the stationary thermocouple location where the 

PRTs could be located within the data acquisition card, it was necessary to locate the 

PRTs within the telemetry unit, mounted at the front of the rotating section of the rig. 

The rotating thermocouple cold junctions are soldered to gold pins which are mounted 
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within a cap which plugs into the telemetry unit. Figure 4-28 shows one of the telemetry 

caps with a PRT bonded into the unit. The four wires from the PRT have been soldered 

to the four pins shown (the thermocouple pins have not been located), allowing the 

signal to be transmitted via the telemetry unit. Prior to installation of the PRTs in the 

telemetry caps the PRTs were calibrated using the procedure outlined in section 4.4.  

 

 
 

Figure 4-28: PRT installed in telemetry unit cap 
 
 

 
Figure 4-29: Rotating PRT calibration points, Turner et al (2008) 
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Unlike the stationary measurement, PRTs where the resistance can be measured directly 

by the data logging system, the rotating PRT measurements are transmitted by the 

telemetry unit. This means that the data received from the telemetry unit is logged as a 

decimal count, where the value of the measurement channel is inferred from the 

magnitude of the decimal count. Figure 4-29 shows the decimal count returned by the 

telemetry unit for the rotating PRTs against the five set point temperatures measured by 

the reference PRT. A fit of the magnitude of the decimal count against the reference 

PRT temperature recorded for each PRT channel was then used in order to produce 

coefficients for each individual unit and channel. These coefficients were then used 

along with the original decimal count to obtain rotating PRT temperatures for each 

calibration point. Figure 4-30 shows the deviation of the PRT derived temperatures 

from the reference temperature. The deviation was found by Turner et al (2008) to be 

less than +/- 0.15 K. 

 

 
Figure 4-30: Rotating frame PRTs deviation from reference PRT, Turner et al (2008) 

 
 

Figure 4-31 shows the instrumentation path used for the calibration. As with the 

stationary thermocouple calibration, rather than being installed in the rig the 

thermocouples were placed within an oil bath. The thermocouples and cold junction 
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PRTs were plugged into the telemetry unit and the outputs were measured and logged 

via the exact path as used during rig operation. 

 
 

 
 

Figure 4-31: Rotating thermocouple calibration instrumentation path 
 
 
The calibration was conducted over a temperature range of 30 oC to 160 oC in 

increments of 5 oC.  The magnitude of the decimal count transmitted for each 

thermocouple channel along with the reference temperature was then used to produce 

coefficients for each of the rotating thermocouples.  Figure 4-32shows the deviation of 

the temperatures produced by using the coefficients to obtain temperatures for 27 of the 

rotating thermocouples. The representative uncertainty was given by Turner et al (2008) 

to be ±0.25 °C.   

 
Figure 4-32:Deviation of post processed thermocouple temperature data from reference 

temperature, Turner et al (2008)  
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4.9 Rotating Thermocouple Installation 
 
Although of low mass, the thermocouples installed on the rotating section of the test rig 

are subject to centrifugal loads due to the high speed of rotation. If improperly installed 

this can cause thermocouples to become detached, possibly damaging the rig. The 

Duralco epoxy resin used in the stationary installation was not considered sufficient for 

the rotating thermocouples in this respect. Figure 4-33 shows an example of the 

installation of the beads of rotating thermocouples within the rig. It can be seen that the 

final run of the thermocouples legs, where still covered by insulation, are glued into the 

surface using the Duralco resin. The thermocouple bead has then been peened to the 

measurement surface. 

 

 
 

Figure 4-33: Rotating thermocouple embedding 
 

Figure 4-34 shows the route of the rotating thermocouples out of the rig. From the 

measurement locations on each disc the thermocouples pass through the centre of the 

discs (1). Once the cover plates are bolted down this section of the thermocouples is not 

exposed to the stator wells. The thermocouples then pass through a transfer hole to the 



100 
 

lower cavity of the rotating section (2). From here to the lower radius of the section the 

thermocouples are embedded in machined slots and secured using epoxy resin (3). From 

here the thermocouples pass through the centre of the rotor shaft to the telemetry unit 

bolted to the front of the shaft (4). 

 
Figure 4-34: Rotating thermocouple rig routing 

 
 
Figure 4-35 shows the thermocouples on the inner faces of the rotating section. As this 

section of lead out is not lying along a measurement surface it is not necessary to 

machine the face and resin in the thermocouples flush. This is also the area of greatest 

concern with regards to securing the thermocouples sufficiently for high speed test 

points. The figure shows how the thermocouples have been bunched and held down 

with spot welded covers. The bunch can be seen entering the transfer hole to the lower 

radius of the rotating section. Where the thermocouples are led to the individual 

measurement locations the thermocouples can be seen disappearing into the surface, 

where they pass through drilled holes to the measurement surface. 

1

2

3

4
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Figure 4-35: Upstream internal face, rotor 1 thermocouple routing 
 
 
 

Figure 4-36 shows the downstream face of rotor 1 prior to thermocouple installation. 

The machined tracks into which the thermocouples are embedded are shown. These 

allow the thermocouples to run from the transfer holes from the higher radius disc 

locations to the rotor shaft. The exit of the transfer hole from the higher radius section is 

seen at the end of the machined tracks. The hole through which the thermocouples pass 

to the central rotor shaft can be seen in the centre of the disc at the opposite end of the 

machined tracks. 

 
 

Figure 4-36: Rear face tracks, rotor 1 
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Figure 4-37 shows the assembled rotating section of the test rig. The image shows the 

complete assembly comprising two rotor discs and the rotor shaft. The upstream and 

downstream bearing carriers can also be seen. The rotating frame thermocouples can be 

seen leaving the end of the rotor shaft forward of the upstream bearing carrier.  

 

 
Figure 4-37: Assembled rotating section 

 
 
Figure 4-38 shows the telemetry unit module attached to the end of the rotor shaft. The 

thermocouples can be seen gathered and laid within the unit before installation of the 

telemetry unit cover plate. Although not visible in this image, the telemetry unit cold 

junction modules are positioned directly below the plate on which the thermocouples 

are laid. 
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Figure 4-38: Telemetry unit to rotating thermocouple installation 
 
 

4.10 Temperature Measurement Uncertainty 

Due to the importance of the thermocouple measurements to the MAGPI test program 

conducted on the TSW test rig, great care was taken in the calibration process as 

described in the previous sections of this chapter. Childs et al (2011) conducted a 

review of the temperature measurements toward the end of the test program. The 

representative uncertainty for all temperature measurements was found to be ± 0.3 K. 

The contributions to uncertainty identified by Childs et al (2011) are summarized in 

Table 4-1. 

Source of Uncertainty Mitigation Technique Uncertainty 

Wire Non-Homogeneity 
Thermocouples manufactured from common material 
batch 

- 

Calibration 
Through calibration technique of all DAQ temperature 
channels  

±0.1 K 

Measurement Junction  
Calibrated PRTs used for cold junction measurements of 
both stationary and rotating temperature measurements 

±0.1 K 

Thermocouple Extension 
Wires 

Extension wires removed by locating DAQ (in temperature 
controlled environment) near test facility  

- 

DAQ resolution 
PXI DAQ specified with resolution an order of magnitude 
smaller than required temperature resolution 

- 

Installation of 
Themermocoules 

Thermocouples peened into rig surface to reduce 
embedding errors 

±0.1 K 

Table 4-1: Sources of Temperature Measurement Uncertainty 
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In Chapter 8 rig metal temperatures TH are presented in normalised form ϕ, given in 

Equation 4-1. This allows the comparison of temperature measurement results between 

test runs where the temperature of the supplied coolant TC and the main annulus gas 

temperature TH may vary. 

߶ ൌ ்ಾି்಴
்ಹି்಴

                                    Equation 4-1 

 
The uncertainty in the normalised parameter ϕ can be evaluated by: 
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The uncertainties in the temperature measurements, ்ܷಾ, ்ܷ಴and ்ܷಹ are given the 

value obtained by Childs et al (2011) resulting in the equation for the normalised 

uncertainty of ϕ: 
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4.11 Pressure Transducer Calibration 
 
The Scanivalve pressure transducer units, used for all internal test section pressure 

measurements, were calibrated by a UKAS accredited third party. Three unit types were 

used for these measurements including a 0-50 psi unit, a 0-100 psi unit and a dual range 

unit consisting of channels capable of both of these  ranges. The uncertainty obtained 

after calibration was 0.017 % for the 0-50 psi units and 0.023 % for the 0-100 psi unit. 

This is reported in Turner et al (2008).   

 

A study was conducted in order to assess the angle sensitivity of the main annulus total 

pressure measurements. This was carried out in order to ensure representative 

measurements could be made, even with some misalignments between annulus flows 

and the probes in the leading edges of the NGV rows.   

 
 

Figure 4-39: Angle sensitivity test, Turner et al (2008)  
 
 
Figure 4-39 shows the dummy NGV used for the study as well as a diagram of the 

pressure tubing installation and swept angle used in the study. The opening of the 

pressure drilling was lightly countersunk in an attempt to reduce the angle sensitivity. In 

order to assess the sensitivity a jet was then directed onto the NGV. The NGV was 

rotated on an axis parallel to the leading edge and passing through the centre of the 

pressure inlet. Figure 4-40 shows the results of the study where the NGV has been 
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turned +/- 10 deg from the flow. The study was conducted for two jet velocities, where 

the data is presented in terms of the leading edge Reynolds number. The percentage 

error in total pressure  is calculated from the measured deviation from the maximum 

total pressure recorded where the NGV pressure tap is incident to the jet. The dynamic 

head is calculated at the maximum total pressure, where dynamic head = u2/2g. The 

variation in dynamic head with angle is then calculated by the variation in velocity u, 

where u is found from the variation in total pressure. The error in dynamic head at a 

given angle is then the deviation from the maximum. Up to an angle of +/- 5 deg the 

angle deviation from the flow stream shows little effect on the measured pressure.    

 

 
Figure 4-40: Angle sensitivity study results, Turner et al (2008) 
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4.12 Pressure Tap Installation 
 

Figure 4-41 shows examples of pressure taps installed within the test section. The 

locations shown are total pressure measurements from the leading edge of a  NGV on 

row 1. As with the thermocouples installed in similar locations, the profile was milled 

out. The instrumentation was then installed, and the NGV re-profiled using a female 

mould and Duralco resin. Total pressure measurements were made via bell mouthed 

tapping's with an internal diameter of 0.5 mm. Static pressure measurements were made 

via flush straight drilled tapping's with an internal diameter of 1.0 mm.  

 

 
 

Figure 4-41: NGV 1 total pressure taps 
 

Figure 4-42 shows the pressure tap lead out method during installation of the 

instrumentation. On the left a section of an NGV can be seen part assembled with a 

number of pressure tubes exiting the part. At this stage the tubing has been soldered into 

place on the back of a pressure tapping at a measurement location on the NGV part. As 

the test section is assembled the piping is routed through the rig, in this case through 

one of the aerodynamic struts passing through the main annulus, to the outer radius of 

the rig. The image on the right shows the piping exiting the rig where it is soldered to an 

intermediate manifold. From these manifolds, mounted on the outer rig casing, 
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connections to the Scanivalve pressure transducer units are made via flexible Scanivalve 

tubing which is easily routed and disconnected when necessary to gain access the the 

rig.  

 
 

Figure 4-42: Pressure tap lead out 
 
 
 

4.13 Pressure Tube Manufacturing Faults 
 
During the analysis of the phase one test data by Smith et al (2012), incompatibilities 

between pressure measurements and sealing flow rates in the upstream wheelspace were 

observed. Upon investigation by the research group at TFMRC, small manufacturing 

defects were discovered in the pressure tubing lead outs. Figure 4-43 shows the 

imperfections found in the tubing, and how once bent these imperfections can cause a 

rupture in the tubing wall.  

 
Figure 4-43: Manufacturer defect in pressure lead out tubing 
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Although the imperfections should not have been present, upon consultation with 

suppliers it was concluded that the initial imperfections were a result of the tubing being 

of re-drawn and welded type manufacture. The imperfections were a result of 

oxidisation of the chromium content. The pressure taps used in the wheelspace 

measurements required tight turns to exit the rig, leading to the failure at these 

measurement points. The faulty lines and those considered at risk, but not showing any 

evidence of failure, were replaced for phase two testing with seamless drawn tubing. 

For the early test points where the test section supply rates were affected by the 

erroneous measurements, augmented flow rates were used. The method through which 

this study was conducted and the flow rates corrected is discussed in Chapter 8.    

 

4.14 Flow Meters Calibration 
 
The main annulus mass flow measurement is made via a venturi section in the supply 

pipe work between the DART air supply and the pre-rig inlet settling chamber. The 

venturi parameters, designed to BS1042, are given in Table 4-2. The measurement 

equipment consists of a standard venturi test section, an upstream static pressure 

measurement, the inlet total temperature and the pressure drop across the section. The 

differential pressure measurement was made by a Mensor unit, calibrated by an 

accredited UKAS third party, giving an uncertainty of 0.015 % of span.  

 

Main Annulus (DART) Venturi Parameters 

D(mm) 250 

d(mm) 129.95 

β 0.52 

 
Table 4-2: Main annulus supply venturi parameters 
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The cooling flow and balancing flow supplied to the test section as well as the upstream 

wheelspace air vented from the rig are measured via hot film flow meters. Figure 4-44 

shows one of the instruments installed in the cooling flow air line prior to the rig. The 

sensor consists of the black section joined to the copper pipe by silicon connectors. The 

signal lead out can be seen plugged into the sensor. Within the sensor is a heated wire. 

As air flow passes over the wire it is cooled, reducing the resistance. The mass flow 

through the sensor is therefore proportional to the resistance. The meters were calibrated 

by a UKAS accredited third party to an uncertainty of  +/- 1.3 % of the measurement 

point. The flow meter calibrations were reported in Turner et al (2008).      

 

 
Figure 4-44: Hot Film Flow Meter installed in cooling air line 

 

4.15  Summary 
 
The calibration and installation of the TSW measurement instrumentation has been 

described in detail. Particular care has been taken with the preparation and calibration of 

thermocouples, which has resulted in a temperature measurement uncertainty of ± 0.3 

K.    
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5 Rig Operation Procedure 
 

5.1 Introduction 

In this chapter the start up, operation and shut down of the TSW rig will be discussed. 

This will highlight the necessary steps needed to ensure the required settled test points 

were reached at the required experimental parameters. However this section does not 

discuss operation of the DART air supply, other than monitoring of supply parameters 

to the TSW rig. A detailed description of the DART engine and its operation can be 

found in Turner et al (2000). Due to the long time scales of the TSW test program, close 

adherence to the operating procedure was vital in order to obtain repeatable, valid data. 

This section does not identify specific valves by location but rather gives an overview 

of  the methodology of the rig operation. Rig data will be presented in order to highlight 

the critical operating parameters. A full start up check list for the TFMRC air system 

can be found in Appendix B.   

 

5.2 Rig Pre-Start Up Procedure 
 
 
Before the rig is supplied with any airflow a number of initial checks are made. These 

are intended to allow monitoring of the rig during the rest of the start-up procedure and 

of the atmospheric operating conditions.   

 The atmospheric pressure is measured and recorded using a laboratory 

barometer. 
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 The data logging equipment is switched on. In order for the DAQ system to be 

identified on the data system network this must be done before the data logger 

PC is booted. 

 The instrumentation leads are checked for any disconnected channels. This is 

done at both the rig and DAQ ends of the connection. This step is of particular 

importance after a geometry change, where it is necessary to disconnect a 

number of pressure taps to aid removal of the top half of the rig casing. 

 The air conditioning unit in the DAQ room is set to 20°C. The unit is located 

within the DAQ cabinet. After the unit has been switched on the DAQ cabinet is 

closed for the duration of the test. 

 The large extractor fan in the roof of the TSW test cell is switched on. This is 

required in order to keep temperatures down in the test cell once the rig is 

operational. 

 The rig monitoring console is switched on. This provides the vital rig parameters 

in the event of a DAQ PC failure. 

 Finally the rig is turned by hand. This is done by turning the coupling between 

the TSW rig gearbox and dynamometer. This ensures the rig is free to rotate 

before any load is applied. 

 

After the initial checks the Hydrovane air supply is prepared. The Hydrovane supply is 

required for a number of pneumatic control valves as well as the telemetry module 

cooling air. It is also used to pressurise the dynamometer lubrication circuit.  

 All outlet valves from the Hydrovane are initially closed. The oil and water 

separators located on the Hydrovane line are emptied. 
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 The three phase isolator for the Hydrovane power supply is then switched on 

and the Hydrovane started. 

 Once the Hydrovane compressor has initially pressurised (identified by a change 

in compressor pitch) the outlet valve is opened. A large air storage tank is 

located immediately downstream of the Hydrovane. In the event of a Hydrovane 

failure the tank provides a limited amount of air supply to allow a shutdown of 

the rig before loss of control of the pneumatic valves. 

 The telemetry cooling flow rotameter is then opened allowing cooling flow to 

enter the rig. The path of the telemetry cooling flow through the rig is shown in 

Figure 5-1. The flow crosses the main annulus through aerodynamic struts 

before moving radially inwards toward the telemetry unit. 

 

 
 

Figure 5-1: Telemetry cooling supply path 
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 A drain valve is then opened between the Hydrovane and dynamometer. This 

allows excess water to be bled from the line. When no more moisture is seen to 

exit the valve, it is closed. 

 An air regulator is then opened on the DART line which pressurises the 

dynamometer oil mist lubrication system. The regulator for the lubrication 

system is set to 1bar gauge.  

 The safety blow off valve for the DART air supply is then checked. This valve is 

activated when the Hydrovane is pressurised and closes the blow off valve on 

the DART line. If the Hydrovane fails or the emergency stop button  is 

depressed the valve opens, venting the DART air to atmosphere and cutting off 

the main annulus flow to the TSW rig. The emergency stop button is pressed as 

part of the start up procedure. It must be manually re-set before the blow off 

valve can be re-closed. The test is done before the DART air supply is started.  

 

Once the pneumatic valves, which are controlled via Hydrovane air, are online the 

ATLAS Copco compressor can be started. The ATLAS compressor supplies both the 

main cooling flow and the upstream wheelspace balance flow as discussed in chapter 3.  

 Water valves are opened for the inlet air cooler. This is a water to air type cooler 

located just upstream of where the cooling air supply enters the test rig. 

 All ATLAS lines to the test rig and neighbouring test cells are closed. 

 The TSW main annulus inlet and exhaust valves are opened. In operation the 

DART provides mass flow through these valves.  Although not active at this 

point in the rig preparations, the valves are opened to prevent over pressurisation 

of the rig when the DART is started, which could lead to damage of internal rig 

seals and instrumentation. 
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 A number of ATLAS line valves are then opened so that when switched on the 

ATLAS air exits the line via a bypass valve which is open to atmosphere. 

 The compressor room extractor fan is then switched on. Without this in 

operating it is possible for the compressor room temperature to reach a level 

high enough to trip cut outs on both the ATLAS and Hydrovane compressors.  

 The ATLAS compressor is then started, with the output exiting via the bypass 

valve. 

 With the majority of the ATLAS output exiting via the bypass valve the ATLAS 

line valves are opened to allow some ATLAS air to path through an inline air 

drier. 

 Once through the drier, this proportion of air then exits to atmosphere via a 

second bypass valve. The first bypass valve is then slowly closed until the total 

mass flow from the ATLAS compressor is passing through the drier unit and 

then through the second bypass valve. 

 The rotameter supply for the cooling flow to the rig is then opened. With the 

second bypass valve fully open the flow rate into the rig is less than 10 gs-1. The 

bypass valve is then slowly closed and the rotameter opened until a cooling flow 

of the order required for the commencing test is reached and the ATLAS outlet 

pressure is approximately 3.2 bar.  

 

Once the Hydrovane and ATLAS air supplies have been set, the dynamometer is 

prepared to take load. This includes both the oil lubrication system and the water 

pressure across the load cell.  

 Initially, the three phase power supply is switched on. The automated load and 

unload buttons are checked. These allow the rig operator to change the 
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dynamometer setting from outside the test cell. During the set up procedure one 

operator is required in the test cell to confirm the required movement of the 

sluice gate lead screws while a second operator operates the controls. The lead 

screw is then set to a position to give a load equivalent to approximately half 

that required at full rig speed. 

 The dynamometer oil supply is then switched on. A visual check is made to 

confirm the lubrication circuit is working via a sight glass. The oil vapour 

extractor is turned on. 

 The dynamometer water supply and cooling system is then prepared. Supply 

valves for the water reservoir, pump system and cooler are opened. The pump is 

then switched on as well as the cooler fans. 

 The pump bypass valve and the dynamometer flow valves are then adjusted to 

give a dynamometer inlet pressure of approximately 20 psi and an exit pressure 

of approximately 10 psi. 

 Finally the rig to dynamometer gearbox lubrication system is opened. This 

system works from a passive pump so will not operate until the rig begins to turn 

over. 

5.3 Rig Start Up Procedure 
 
Once the steps outlined in section 5.2 have been completed the DART engine is started. 

This pressurises the main annulus supply line and almost immediately begins to turn the 

rig. Figure 5-2 shows an example of the speed increments of the rig, from stationary up 

to the design speed of 10630 rpm. The speed can be controlled by both altering the 

rotational speed of the DART engine, and therefore the mass flow through the rig, and 

also by altering the dynamometer load.    
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Figure 5-2: Rig speed steps during standard start up process 
 
 
The speed increments are necessary in order to preserve the life of the rig bearings. The 

bearings are sensitive to temperature in terms of both the working temperature of the 

grease and changes in loads due to the expansion and contraction of the surrounding 

material and bearing carriers. Thermal shock can also limit the useful life of the 

bearings.   

 
Figure 5-3: Rotating section bearing operating temperature history 
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Figure 5-3 shows the temperatures of the three rig bearings during the start up 

procedure. The bearing temperature is a function of the rotational speed, the 

surrounding metal temperature and the axial load placed on the bearings. The axial load 

is taken by the two downstream bearings. As the speed of the test rig is initially 

increased it can be seen that these two bearing see the steepest temperature gradient as 

the axial load on them increases. The downstream bearing temperature rises less quickly 

due to the lack of axial load; the main mode of bearing heating comes from the 

frictional heating due to the rotational speed. However, the temperatures of the upstream 

bearing and downstream bearings are seen to cross at a run time of around 9 minutes. At 

this point the rig temperatures have increased with the increased mass flow and 

temperature of the main annulus supply. However, the housing in which the two 

downstream bearings run also forms part of the coolant supply path, whereas the 

upstream bearing has no direct coolant supply. The coolant reduces the temperature of 

the material surrounding the downstream bearings, dropping the temperature below that 

of the upstream bearing.   

 
Over the course of the MAGPI program the rig bearing arrangement was updated. 

Initially the two downstream bearings were arranged back to back, however during 

early phase 1 testing high bearing temperatures were seen, exceeding the recommended 

bearing grease temperature. The downstream bearings were replaced with identical 15° 

tapered units, however the rearmost bearing was flipped axially so that both bearing 

tapers faced the same direction. This arrangement was used until the end of the phase 

one tests. For phase two testing the bearing arrangement was again examined and 

improvements made by increasing the taper angle of the two downstream bearings to 

25°.   
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Figure 5-4 shows the ISO bearing life predictions of Coren et al (2010) for the three 

bearing arrangements used in the test facility, where bearing life in hours is plotted 

against axial load. It can be seen that each increment in bearing arrangement 

substantially increases bearing life. The increase in bearing life is due to the increased 

ability of the arrangement to manage axial load, which in turn lowers bearing 

temperatures.  

 
Figure 5-4: Bearing life prediction for three bearing arrangements, Coren et al (2010) 

 

Figure 5-5 shows the five static pressure measurements taken at axial locations along 

the outer radius of the main annulus. The magnitude of the pressure and the pressure 

differential across each stage can be seen to increase with each increase in rig speed, 

where both the pressure and speed are a result of increased mass flow through the test 

section as the main annulus supply is increased. Close examination of Figure 5-2 shows 

a small step change in the rig rotational speed at 27 minutes which is not reflected in the 

main annulus pressures shown in Figure 5-5. This represents a point where the 
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dynamometer load has been reduced to increase rotational speed, without an increase in 

the main annulus mass flow.  

 
Figure 5-5: Main annulus static pressure 

 
 

 
Figure 5-6: Upstream wheelspace stationary metal temperatures 

 
 
Figure 5-6 shows the corresponding stationary metal temperatures in the upstream 

wheelspace. The temperatures can be seen to increase with each increase in rotational 

speed, where the resulting temperature rise is driven by the increase in the main annulus 

air supply temperature. The radial temperature gradient at any given point is a result of 
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the high radius main annulus temperature, conduction down the stator face and the 

lower radius temperatures which are largely controlled by the cooling flow rate. At the 

outer radius of the face at MP008 where the metal surface forms part of the main 

annulus the metal temperature is near the gas temperature. The temperature at MP008 

can be seen to respond quickly to increases in the main annulus temperature. As the 

radius of the measurement locations decreases the temperature drops towards the 

coolant temperature and the response to the changes in main annulus temperature 

reduces. 

 

5.4 Operating conditions 
 
Once the test rig has reached design speed, the cooling air supply rate is set to the 

desired level. Although cooling flow is supplied during the start up procedure, the flow 

rate can change as the pressure within the test section rises. The balance and vent supply 

must also be adjusted in order to ensure the cooling flow enters the test section rather 

than passing through the upstream wheelspace into the main annulus. This is achieved 

by equalising the pressure across the lower claw seal. When this is achieved the mass 

flow through the seal is a minimum and it can be assumed that the cooling flow passes 

through the lower radius chamber of the upstream wheelspace, through the rotor 1 

transfer holes and into the lower stator well cavity. Figure 5-7 shows an example of how 

these flow rates can be set. The main cooling flow of 40 gs-1 is shown as a blue arrow 

entering at the lower radius of the test section. In this instance the vent flow is higher 

than the balance flow, allowing the mid cavity pressure to be dropped.  
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Figure 5-7: Test section air mass flows 

 
 
 
Figure 5-8 shows the resulting pressures in the upstream wheelspace. The pressure 

within the wheelspace can be seen to reduce with radius in the cavities above the two 

claw seals. The two lower cavities, which lie either side of the lower cavity seal, can be 

seen to be at equal pressure.  

 
Figure 5-8: Upstream wheelspace static pressure 
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5.5 Data Settling 
 
Once the rig is up to design speed, the main annulus is at the required mass flow rate 

and the wheelspace flows have been set, the rig temperatures are allowed to settle 

before test point data is taken in. This ensures consistent seal gaps within the test 

section and stable flow rates. Depending on operating conditions this can take up to 45 

minutes, during which time all of the test rig parameters must be monitored and small 

adjustments made to mass flows and the dynamometer load to maintain the rig at the 

required operating conditions. In order for the test rig to be considered "settled" two 

temperature variation parameters must be met. These parameters were applied across 

the test matrix to ensure consistency. The two parameters consist of a limit to a moving 

average variation of rig metal temperatures. One parameter consists of a moving 

average of a selection of stationary temperatures and the other from a group of rotating 

temperatures. These temperatures were selected to cover both high and low radial 

positions, various axial locations and also the separate components which the test 

section consists of. The measurement locations were considered settled when the 

moving average of the temperatures was less than 0.2 K over a period of three minutes. 

Figure 5-9 shows near settled temperature data for the stationary face of the upstream 

stator well. The temperature can be seen to reduce with radius. Figure 5-9 shows near 

settled data for the rotating face.   
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Figure 5-9: Stationary stator well temperatures at a near settled condition 

 
 

 
Figure 5-10: Rotating stator well temperatures at near settled condition 
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5.6 Changing of Flow Rates 
 
 
For a given geometry a number of test points were required. These could often be 

obtained in the same test run. Once settled data was taken for a given point, the test 

section supplied was changed to the next required level. Figure 5-11 shows the 

upstream wheelspace supply between the end of a test point at a cooling flow of 30 gs-1 

to a settled point at a 55 gs-1. The balance and vent rates can be seen to be varied to 

match the new operating conditions. As the cooling supply rate increases the pressure in 

the lower radius cavity increases. This requires an increase in the balance supply to the 

inter-claw seal cavity in order to maintain the pressure balance across the lower claw 

seal. 

 
Figure 5-11: Test section air mass flows 

 
 
Figure 5-12 shows the corresponding wheelspace temperatures across the same period. 
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Figure 5-12: Upstream wheelspace stationary metal temperatures 

 

5.7 Rig Shut Down Procedure 
 
 
Once all settled data has been taken for a given test run, the rig is shut down in such a 

way as to prevent any damage to the rig in terms of thermal shock loads, or overheating 

due to the termination of cooling flows. The air, water and oil supplies are also returned 

to a safe state so as to be in the proper positions to start the next test and prevent 

damage to systems in the interval.  

 Initially, the DART air supply is gradually reduced to zero flow, resulting in a 

quick reduction in speed. 

 Cooling air supplies to the rig are maintained in order to prevent heat soak back 

from the hot outer radius of the rig to the low radius bearings. 

 The dynamometer water circuit pump is switched off to prevent damage to the 

dynamometer seals. During rig operation the dynamometer setting may be 

adjusted to a point which is acceptable whilst rotating but results in a high inlet 

pressure when returned to stationary. 
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 The rig is then left in this state until all the rig metal temperatures are below 

50°C. This is a nominal value well below that which could cause damage to rig 

components. 

 The dynamometer and gearbox oil supplies are then shut off.  

 The cooling air flow is then reduced by opening the ATLAS line bypass valves. 

Once fully open the ATLAS supply to the rig is closed off. The ATLAS 

compressor is then shut down 

 The Hydrovane telemetry cooling and pneumatic valve lines are then closed.  

 The dynamometer water circuit is closed to isolate the dynamometer and 

reservoir tank from the cooler circuit. The Hydrovane line air is then used to 

purge the cooler circuit. This is done to avoid freezing of coolant in the cooler 

which could lead to damage and a reduction in cooler efficiency. 

 Finally the Hydrovane compressor is shut down and all valves returned to pre-

test positions. 

 

5.8 Data Processing 
 

Once a run has been completed and the test rig shut down the data is processed into 

engineering units, saved and backed up. Figure 5-13 show the storage structure of the 

TSW rig data. The top level of storage contains directories for instrumentation reference 

data, calibration coefficients, commissioning data and test phase data. Both the 

instrumentation and calibration data files are referenced when converting test data to 

engineering units. Within the test phase folders are the run data files for each geometry 

run as part of a test phase. This level also contains an analysis folder for work pertaining 

to comparisons between geometries in the test phase. Within the geometry folder are the 
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test data folder and an analysis folder for comparison of different runs for a given 

geometry. The test run folder contains the individual test runs for a given geometry 

together with a run analysis folder and run plots folder.  

 

 
Figure 5-13: Test data storage structure 

5.9 Summary 
 
The operation of the TSW experimental facility has been described in order to highlight 

the complexities of operating such a test facility. The careful calibration and installation 

of instrumentation described in Chapter 4 together with closely controlled experimental 

procedures described in this chapter, ensured valid, high quality data was obtained 

across all experimental tests presented later in this thesis. 
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6 Gas Concentration Experiments 
 
 

6.1 Introduction 
 
In this chapter the instrumentation and experiments devised to satisfy the three distinct 

measurement objectives are discussed. 

  

 Provide data to quantify interstage seal flows for a range of rig conditions 

 Provide data to determine rim seal exchange flows for both bulk ingress and 

egress conditions 

 Provide data to quantify re-ingestion into the test cavity 

 

In order to meet these objectives three distinct experiments were devised. The 

experimental procedure for each is described in detail. The calculation method and 

equations used to estimate the flows for each experiment are also presented, including 

the derivation of uncertainty. In the second half of the chapter the measurement systems 

used to meet the objectives are introduced, together with information on the associated 

instrumentation. The carbon dioxide delivery and sampling system is discussed along 

with commissioning and proof of concept experiments. 

 

6.2 Interstage Seal Flow Experiment 
 
The Interstage labyrinth seal demand as discussed in Chapter 2 is one of the primary 

flows which affect the flow structure within the upstream stator well cavity. The 

displacement technique used to calculate this flow will be discussed in Chapter 7. In 
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order to support this technique an experimental method of measuring the seal flow was 

devised. Figure 6-1 shows the interstage seal flow experiment graphically. The ingress 

of main annulus gas into the cavity is shown as red, while the cooling flow (in this case 

being introduced through drive arm hole inserts) is shown by a blue arrow. A mixture of 

these two flows then passes through the interstage seal, shown as a green arrow. The 

carbon dioxide tracer gas, shown as orange, is injected directly upstream of the seal. A 

sample of the flow is then taken downstream of the seal. This is shown as a green and 

orange flow. As the carbon dioxide is injected at 100% concentration, the change in 

concentration, as measured at the downstream location, is a result of mixed stator well 

gas. This is calculated using Equation 6-1, where the mass flow through the interstage 

labyrinth seal ሶ݉ ௟, is a function of the mass flow of seeding gas ሶ݉ ௚ and the measured 

concentration ܿ௠ downstream of the seal. 

     	

ሶ݉ ௟ ൌ ቂ
௠ሶ ೒
௖೘
ቃ                Equation 6-1 

 
 
 
 A simple case is shown in Figure 6-2. As before the stator well gas is shown as a green 

arrow and the seeding gas flow as an orange arrow. Carbon dioxide is shown as being 

injected at 2 gs-1. The downstream concentration, shown as the mixed orange and green 

arrow, is measured at 5 %. Using Equation 6-1 this would indicate a seal flow of 40 gs-

1. This is a simplified case and ignores the ambient carbon dioxide content which will 

be present in the stator well gas, this is however accounted for when post processing 

results. Once an initial flow value has been measured the amount of ambient carbon 

dioxide can be estimated and the flow results adjusted accordingly. 
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Figure 6-1: Interstage seal experimental flows 
 
 
 
 
 

 
 

Figure 6-2: Simple seal flow case 
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6.3 Rim Seal Exchange Experiment 

The rim seal exchange experiment was designed to study the interaction of the stator 

well flows with the main annulus flow. It allows the estimation of rim seal exchange 

flows by using a summation approach to provide values of ingress and egress. The 

experimental results can also give an indication of flow structures and bulk ingestion or 

egress. Figure 6-3 shows the primary flows involved. The coolant flow is shown in blue, 

being introduced through either the simulated lock plate slots or the drive armholes. At 

the stator well rim seal both main annulus gas, shown in red, and coolant flow is 

present. For conditions where rim seal flow is bi-directional main annulus gas will 

ingress into the cavity, whilst mixed main annulus gas and coolant will egress back out 

of the rim seal. Depending on the stator well conditions a proportion of the main 

annulus and coolant will pass through the interstage seal to satisfy the seal demand. The 

concentration measurement locations are shown located on the stator in the upstream 

and downstream cavity. 

 

Figure 6-3: Rim seal experimental flows 
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In order to quantify these flow interactions the cooling flow is seeded with carbon 

dioxide tracer gas. Both the coolant and tracer gas are metered giving a known 

concentration before the mixture enters the test section. The tracer gas is injected into 

the coolant before it enters the rig, ensuring a homogeneous mixture. A concentration 

measurement is then taken within the stator well. The change in concentration together 

with a known interstage seal flow allows the rim seal exchange to be quantified. This 

method has the advantage of allowing the quantification of simultaneous ingress and 

egress through the rim seal flow. Figure 6-4 shows a comparison of a simple summation 

approach to the concentration measurement approach. For case A, a known cooling flow 

rate of 40 gs-1 has been used in conjunction with a known seal flow of 58 gs-1  to 

estimate the net ingestion of 18 gs-1. This approach is limited by the assumption that the 

rim seal flow is unidirectional. For case B, where the cooling flow and seal flow are of 

the same magnitude, but supported by a concentration measurement in the cavity, rim 

seal exchange can be quantified. If the GC measured was in the region of 66% of the 

supplied coolant concentration, giving a dilution ratio of 0.66, this would suggest 

around 20 gs-1 ingress. A summation of the flows would then show that 2 gs-1 is 

egressing through the rim seal back into the main annulus.    
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Figure 6-4: Comparison of summation and concentration approach 
 
 
The carbon dioxide flow ሶ݉ ௚ is mixed with the superposed cooling air flow ሶ݉ ௢ before 

entering the test section. The total mass flow rate of the seeded cooling flow ሶ݉ ௦, is then 

calculated. 

ሶ݉ ௦ ൌ ሶ݉ ௢ ൅ ሶ݉ ௚                              Equation 6-2 

 
 
From the known mass flows of carbon dioxide ሶ݉ ௚ and cooling air ሶ݉ ௢, the concentration 

ܿ௦ of the supplied seeded coolant flow ሶ݉ ௦ is calculated, taking into account the ambient 

carbon dioxide level. 

 

ܿ௦ ൌ ቂଵ଴଴
௠ሶ ೞ
ቃ ൈ ቄ ሶ݉ ௚ ൅ ൤ቂ

௠ሶ ೚
ଵ଴଴

ቃ ൈ  ଶ൨ቅ           Equation 6-3ܱܥ	ݐܾ݊݁݅݉ܣ

 
  

From the calculated delivery concentration ܿ௦ and the concentration measured in the 

stator well ܿ௠, a dilution ratio ߟ is calculated. For this experiment the dilution ratio ߟ 

can be used to indicated sealing effectiveness ߝ௖, where a value of 1 indicates no 
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ingestion into the cavity and a value of 0 indicates no coolant at the measurement 

location. 

ߟ ൌ ௖೘
௖ೞ

                                                 Equation 6-4 

 
 
The dilution ratio/sealing effectiveness ߝ௖ is then used to calculate the total flow into the 

cavity ሶ݉ ௖, which includes the imposed seeded coolant ሶ݉ ௦, and the ingested main 

annulus gas. 

ሶ݉ ௖ ൌ ቂ௠
ሶ ೞ
ఎ
ቃ                                             Equation 6-5 

 
 
The rim seal exchange values for seal ingress ሶ݉ ௜ and egress ሶ݉ ௘, can then be calculated. 

 

ሶ݉ ௜ ൌ ሶ݉ ௖ െ ሶ݉ ௦                           Equation 6-6 
 

 

ሶ݉ ௘ ൌ ሶ݉ ௖ െ ሶ݉ ௟																															Equation 6-7 
 
 
 

6.4 Re-Ingestion Experiment 
 
The re-ingestion test was devised to measure the amount of cooling air re-ingested into 

the stator well, where the cooling air had been egressed upstream of the stator well rim 

seal. Quantifying the re-ingestion of coolant gas is often difficult or impossible with 

temperature and pressure measurements alone. The main obstacle to this measurement 

is differentiating between re-ingested and normally supplied cooling air to a cavity. In 

order to address this an experiment was devised where the coolant supply paths to the 

stator well were blocked. Figure 6-5 shows the geometry and main flows for the 

experiment. It can be seen that both the drive arm holes and the simulated lock plates 

are blocked. The pressure balance and vent flow paths are also blocked. This ensures 
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that the coolant, shown as blue arrows must exit via the wheelspace rim seal into the 

main annulus. As the only path for the coolant to enter the stator well is through the 

stator well rim seal any, coolant detected in the stator well can be attributed to re-

ingestion. This ingestion will be a mixture of coolant and main stream gas, shown in 

red.  

 

 
Figure 6-5: Re-ingestion experimental flows 

 
 
Imposed sealing air ሶ݉ ௢, seeded with a known quantity of carbon dioxide ሶ݉ ௚, is 

supplied to the upstream wheelspace. The total supply of seeded air to the wheelspace 

ሶ݉ ௪, is calculated from these measured values.  

     	
ሶ݉ ௪ ൌ 	 ሶ݉ ௢ ൅ ሶ݉ ௚                         Equation 6-8 

 
 
The concentration of the coolant supplied to the wheelspace can then be calculated. 

 

ܿ௦ ൌ ቂଵ଴଴
௠ሶ ೢ
ቃ ൈ ቄ ሶ݉ ௚ ൅ ൤ቂ

௠ሶ ೚
ଵ଴଴

ቃ ൈ  ଶ൨ቅ    Equation 6-9ܱܥ	ݐܾ݊݁݅݉ܣ
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Concentration measurements are then taken in the upstream and downstream stator 

wells. The dilution ratio ߟ of the supplied wheelspace coolant flow concentration ܿ௦, 

and the measured stator-well concentration ܿ௠, can then be calculated. Unlike the rim 

seal experiment ߟ cannot be used as an indicator of sealing effectiveness ߝ௖ as there is 

no superposed flow to the stator well. 

ߟ ൌ ௖೘
௖ೞ
	                               Equation 6-10 

 
As the coolant delivery paths to the stator well are blocked the mass flow into the 

upstream stator well ሶ݉ ௖ must come from rim seal ingress and be equal to the interstage 

seal flow ሶ݉ ௟. For re-ingestion experimental results discussed later in the thesis the 

interstage seal flow is calculated from the displacement technique discussed in Chapter 

7. 

ሶ݉ ௖ ൌ 	 ሶ݉ ௟                               Equation 6-11 
 
 
The wheelspace flow which has been re-ingested into the stator-well ሶ݉ ௥ 	can now be 

calculated. 

 

ሶ݉ ௥ ൌ 	 ሶ݉ ௖ ൈ  Equation 6-12                        ߟ	
 

6.5 Gas Concentration Instrumentation 

The system installed on the TSW rig in order to acquire the data required to satisfy the 

experimental objectives is shown in Figure 6-6. Carbon dioxide is stored in a high 

pressure reservoir, shown in the bottom left of the figure. As the carbon dioxide leaves 

the reservoir and expands through the valve, the gas temperature reduces. In order to 

correct this, the carbon dioxide flows through an inline heater bringing the gas 

temperature back up to the required levels. This is discussed further later in this section. 

After exiting the heater the carbon dioxide passes through a Kobold flow meter. From 
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here the carbon dioxide can either be introduced into the coolant flow or directly into 

the rig through solenoid 7. When introduced into the coolant flow the carbon dioxide is 

injected upstream of the rig ensuring a homogenous mixture before the coolant enters 

the test section. The carbon dioxide is introduced after the cooling flow has been 

metered so that the ratio of each can be easily calculated. The lines connecting the 

solenoids to the rig are pressure lines during normal rig operation. The solenoids allow 

these lines to be broken when conducting the gas concentration experiments. Solenoid 7 

is unique in that this line is used to supply carbon dioxide to the rig rather than take gas 

samples. Solenoids 1-6 are connected to 6 distinct measurement locations within the rig. 

When solenoids 1-6 are being used to take gas samples the line is diverted from the 

Scanivalve units to the manifold shown at the top of the figure. From the manifold the 

gas is passed to the analyser. The analyser consists of two Nondispersive Infrared 

"NDIR" sensors. This is discussed further in section 6.9.  

 

Figure 6-6: Gas concentration supply and measurement system  
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6.6 Carbon Dioxide Supply 
 
 
Carbon dioxide was selected as the tracer gas for the experiments. Carbon dioxide was 

seen to be used successfully by both Gentilhomme et al (2003) and Dunn et al (2010). It 

is also easy to handle, is non corrosive and has a unique absorbance, making it suitable 

for use with the chosen gas analyser type, discussed in section 6.9. Nitrous oxide, as 

used by Phadke and Owen (1988a) and Dadkhah (1992) was discounted. Nitrous oxide 

can be more complex to handle and is also a strong oxidiser so can become unstable if 

contaminated. The carbon dioxide gas bottles are shown in Figure 6-7. Each bottle 

contains 25 kg of carbon dioxide. A maximum test time of 15 minutes at 10 gs-1 per gas 

concentration test point requires 9 kg of carbon dioxide. 

 

 
 

Figure 6-7: Carbon dioxide supply 
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Carbon dioxide can pose an asphyxiation risk, to mitigate against this risk both the test 

cell and facility control station were equipped with Carbon Dioxide alarms. 

 

6.7 Carbon Dioxide Flow Meter 
 
The flow meter used to measure the carbon dioxide mass flow into the rig or cooling air 

is shown in Figure 6-8. Carbon dioxide enters the meter from the left hand side from the 

inline heater via a 3/8” compression fitting. The carbon dioxide exits via a similar fitting 

on the right hand side. The output is connected to the valves controlling the flow to 

either the rig cooling flow or solenoid 7. The signal output is connected via a RS-232 

interface seen on the left hand side of the unit.   

 

 
 

Figure 6-8: Carbon dioxide mass flow meter 
 
The meter is a bypass capillary type system calibrated for carbon dioxide, the range of 

the meter being 0 - 5 gs-1 for an output of 0 – 10 Volts. The meter was calibrated at a 

gas temperature of 20 °C, with a measurement uncertainty of 0.05 % of full scale per °C 

variation.  
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6.8 In-Line Heater 
 
The uncertainty in seeding gas mass flow measurements due to gas temperature 

variation was identified during early commissioning runs of the seeding system. Due to 

the pressure drop from the carbon dioxide reservoir to the mass flow meter, the gas 

temperature was found to reduce by more than 10 0C from the ideal delivery 

temperature. An inline heater was installed to limit the gas temperature variation. Figure 

6-9 shows the gas delivery temperature to the mass flow meter for a number of heater 

configurations. Where data is presented for low pressure cases the carbon dioxide bottle 

regulator has been set to reduce the pressure drop between the bottle and flow meter. 

With no heating, the gas temperature was seen to drop below 15 0C for the low pressure 

case and 10 0C for the high pressure case. With the heater at full capacity the gas 

delivery temperature was seen to increase to over 30 0C for the high pressure case.  

 

Figure 6-9: Seeding gas temperature variation 
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6.9 Gas Analyser 
 
Non-dispersive infrared (NDIR) sensors were chosen for the gas concentration 

experiments. A NDIR sensor operates on the principle that molecules absorb light at 

specific wavelengths. The Lambert-Beer law states that the absorbance of a gas is 

directly proportional to its concentration. Carbon dioxide has strong absorbance at 4.26 

µm. The absorbance band is unique when compared to other gases so is easily detected. 

Figure 6-10 shows the basic layout of a NDIR sensor. Light is shone through the sample 

gas. The light which is not absorbed by the gas then passes through a filter to the 

detector.  

 

 

Figure 6-10: Basic NDIR sensor fundamental operation 
 
 
A bespoke analyser unit was constructed for the TSW rig gas concentration 

experiments. The unit is shown in Figure 6-11. Gas samples from the rig are split 

between two NDIR sensors, one sensor having a range of 0-1 % volumetric 

concentration of carbon dioxide, the second having a range of 0-10 % volumetric 

concentration. Once passed through the analysers the gas is vented to atmosphere. The 

voltage output of the sensors is connected through the TSW rig DAQ system. The 

NDIR sensors were calibrated using reference grade carbon dioxide mixed with 

reference grade nitrogen. The 0-1 % sensor was found to measure the reference gas 
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within +/- 0.003 %. The 0-10 % sensor was found to measure within +/- 0.005 % of the 

reference gas. 

 
 

 
 

Figure 6-11: TSW gas analyser unit 
 
 

6.10  Solenoid Measurement Locations 
 
The measurement locations corresponding to the solenoids are shown in Figure 6-12. 

Solenoid 7 is located directly upstream of the interstage seal and allows pure carbon 

dioxide to be injected at this point. Solenoids 1 and 2 are located directly downstream of 

the seal. Samples taken here give the carbon dioxide concentration of gas passing 

through the seal. Solenoids 3 and 4 are located in the downstream cavity around the mid 

height of the stator face and allow samples of the gas in the cavity to be taken. 

Solenoids 5 and 6 are located in the upstream cavity at the mid height of the stator face.   
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Figure 6-12: Gas concentration seeding and measurement radial and axial locations 
 
The gas concentration measurement locations are shown in their circumferential 

position in Figure 6-13. Solenoids 5 and 6, located in the upstream cavity, are spaced by 

104°. This allows measurements in the cavity to be compared for circumferential 

variation. Similarly, solenoids 3 and 4 in the downstream cavity are spaced by 101°. 

Solenoids 2 and 1 are located 75° and 168° from solenoid 7 respectively. 

 

 

Figure 6-13: Gas concentration seeding and measurement circumferential locations 
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6.11 Gas Concentration System Commissioning 

Before installation of the gas concentration system on the TSW rig, an off rig test was 

conducted. The test was devised to both test the seeding and measurement system as 

well as to test the data acquisition and processing techniques. Figure 6-14 shows the 

layout of the experimental apparatus. The main cooling air supply was attached to a 

length of steel pipe with a 75mm diameter. Cooling air was supplied to the pipe at a rate 

of 50 g/s. Carbon dioxide was then injected into the pipe. A sample of the air and 

carbon dioxide mixture was then taken from a tapping downstream of the injection 

point. The tapping was made 100 diameters downstream of the carbon dioxide injection 

point to ensure homogenous mixing of the seeding gas with the main flow. The gas 

sample was piped to the analyser and a concentration measurement taken before being 

vented to atmosphere. 

 

 
 

Figure 6-14: Pipe test gas seeding experiment 
 
 
Both the carbon dioxide and air entering the pipe were metered. The concentration was 

then calculated from these two values, corrected to allow for the ambient carbon dioxide 
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content in air. Figure 6-15 shows the carbon dioxide seeding rate supplied to the pipe 

against the calculated carbon dioxide concentration and the measured carbon dioxide 

concentration. The concentration calculated from the known air and carbon dioxide 

supply rates are shown as red markers. The blue markers represent the concentration 

measured by the analyser. For the flow rates tested it was found that the measured 

concentration value was within 0.1 % of the calculated supplied concentration. 

 

Figure 6-15: Pipe seeding test experiment results 
 

Once the analyser system had been installed on the TSW rig a second commissioning 

test was conducted. Both the rig inlet and outlet were closed. The rig was then supplied 

with cooling air which raised the rig pressure ensuring the pressure drop and mass flow 

through the gas analysers was representative of real gas concentration test conditions. A 

metered amount of carbon dioxide was then injected into the cooling air being supplied 

to the rig. Concentration measurements were then made at each of the six measurement 

locations in the test section individually. Figure 6-16 shows the measured concentration 
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for all six locations obtained for three carbon dioxide seeding flow rates. For each flow 

rate, the concentration measured at the six measurement locations were found to be 

within 0.1 %. 

 

Figure 6-16: Seeded coolant rig flood test 
 
 
The gas analyser does not have an auxiliary pump but relies on the pressure gradient 

between the sampling point and the drop to atmospheric pressure after the analysers to 

drive the flow. For an NDIR analyser the measurement is independent of the gas 

velocity, which was shown by Phadke (1988), as discussed in Chapter 2. The transport 

time of a gas sample to the analyser however is dependent on the velocity. During the 

second commissioning test the response time of the analysers from the opening of each 

solenoid was recorded and found to be less than 20 seconds. All test points taken during 

the gas concentration experiments were taken after 60 seconds of a solenoid opening.   
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6.12  Uncertainty of Gas Concentration Experiments 

The main sources of measurement uncertainty in the gas concentration experiments 

come from the cooling air supply ࢓ሶ ሶ࢓ the carbon dioxide seeding flow rate ,࢕  and the ࢍ

measured concentration ࢓ࢉ. These uncertainties are summarised in Table 6-1. 

 
Measurement Source of Uncertainty Uncertainty 

ሶ࢓  % Bosche Hot Film Flow Meter ±1.3 ࢕

ሶ࢓   Kobald Capillary Flow Meter ࢍ
± 0.005 % per deg from 

calibration gas temperature 

 % VAISALA Flow Meter ± 0.1 ࢓ࢉ

 
Table 6-1: Contributions to gas concentration measurement uncertainties 

 
The three experiments presented in Section 6.2, 6.3 and 6.4 are all based on these three 

measurements, where flows within the test section are calculated following the steps 

described. The uncertainty in each step of the three calculations can be determined from 

the general equation, where z = f(x,y,w..): 
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         Equation 6-13 

 

The equations required for the gas concentration experimental analysis fall into three 

forms. For gas concentration equations of the form ݖ ൌ ݔ േ  :ݕ
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            Equation 6-17 

 
 
The gas concentration experiments rely on the assumption of complete mixing at the 

measurement locations. This assumption and the impact of incomplete mixing are 

discussed in Chapter 9.   

 

6.13  Gas Concentration Experimental Procedure 
 
The gas concentration experiments are conducted in conjunction with the main test 

matrix runs, apart from the re-ingestion experiment which requires its own specific 

geometry, as discussed in section 6.4. Where conducted in conjunction with a main test 

matrix run the procedure for taking the gas concentration data is started once settled 

cooling flow data has been taken. The necessary requirements for settled data have been 

discussed in Chapter 4. The process of taking gas concentration data for each of the 

three experiments is discussed in this section.  

 

6.13.1  Interstage Seal Flow Experimental Procedure 
 
The experimental procedure for obtaining the interstage seal flow experimental data is 

as follows: 
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 The carbon dioxide regulator is connected to the carbon dioxide bottle 

designated for the test (seen in Figure 6-7) 

 The gas bottle valve is fully opened until the gauge reads 50-60 bar 

  The regulator is set to an outlet pressure of 10 bar (this can require adjustment 

once the carbon dioxide begins to flow) 

 Solenoid 7 is then opened. Under normal rig operation the scanivalve piping 

connected to model point MP176 is routed to the scanivalve pressure 

transducers. Once solenoid 7 is opened MP176 becomes the carbon dioxide 

seeding point. MP176 is no longer usable as a pressure measurement line until 

the solenoid is closed 

 The valve which allows the carbon dioxide to solenoid 7 is then opened and gas 

begins to flow into the rig. The valve is adjusted until a flow rate of between 3 – 

4 gs-1 is seen on the data acquisition VI 

 Solenoid 1 is then opened. Under normal rig operation the scanivalve piping 

connected to model point MP182 is routed to the scanivalve pressure 

transducers. Once solenoid 1 is opened MP182 is routed to the gas analyser and 

becomes a concentration measurement location. MP182 is no longer usable as a 

pressure measurement line until the solenoid is closed 

 The outlet to the gas analyser can be piped through a liquid in order to confirm a 

flow through the analyser 

 The concentration is logged for ten times the transportation time of the gas from 

the rig to the analyser 

 Solenoid 1 is then closed, returning MP182 to a pressure measurement model 

point 

 Solenoid 2 is then opened and a concentration measurement made from MP181 

 This is then repeated for solenoids 3 and 4, giving concentration measurements 

at MP180 and MP179 

 Once the required measurements have been taken the gas bottle regulator is 

closed. Solenoid 7 is left open at this point in order to de-pressurise the line 

 Solenoid 7 is then closed. Solenoids 1, 2, 3 and 4 are then opened to purge the 

gas analyser, returning the carbon dioxide levels to ambient 

 Solenoids 1, 2, 3 and 4 are then closed returning the rig to normal operating 

conditions 
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6.13.2  Rim Seal Exchange Experimental Procedure 
 
The experimental procedure for obtaining the rim seal exchange experimental data is as 

follows: 

 The carbon dioxide regulator is connected to the carbon dioxide bottle 

designated for the test (seen in Figure 6-7) 

 The gas bottle valve is fully opened until the gauge reads 50-60 bar 

  The regulator is set to an outlet pressure of 10 bar (this can require adjustment 

once the carbon dioxide begins to flow) 

 The valve which allows the carbon dioxide to enter the rig cooling air is then 

opened. The valve is adjusted until a carbon dioxide flow rate of 3 gs-1 is seen 

 Solenoid 3 is then opened. Under normal rig operation the scanivalve piping 

connected to model point MP180 is routed to the scanivalve pressure 

transducers. Once solenoid 3 is opened MP180 is routed to the gas analyser and 

becomes a concentration measurement location. MP180 is no longer usable as a 

pressure measurement line until the solenoid is closed 

 The concentration is logged for ten times the transportation time of the gas from 

the rig to the analyser 

 Solenoid 3 is then closed, returning MP180 to a pressure measurement model 

point 

 This is then repeated for solenoids 4, 5 and 6, giving concentration 

measurements at MP179, MP178 and MP177 

 Once the required measurements have been taken the gas bottle regulator is 

closed.  

 Solenoids 3, 4, 5 and 6 are then opened to purge the gas analyser, returning the 

carbon dioxide levels to ambient 

 Solenoids 3, 4, 5 and 6 are then closed returning the rig to normal operating 

conditions 

 

6.13.3  Re-Ingestion Experimental Procedure 
 
The re-ingestion experiment is conducted using the same procedure as the rim seal 

exchange experiment. The same measurement locations are used and similarly the 
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carbon dioxide is seeded into the cooling flow in the same way. However, as previously 

discussed, the geometry used is unique to the experiment so is not conducted after a 

main test matrix cooling flow rate. With the normal cooling flow supply routes blocked, 

with sealed blanking plates, the pressure in the upstream wheelspace cavity is greatly 

increased for a given flow rate. This ensures the seeded coolant exits via the upstream 

wheelspace rim seal only, as required for the experiment. This arrangement ensures that 

the only path for seeded coolant to reach the upstream stator well sampling point is 

through re-ingestion from the main annulus. This arrangement does however reduce the 

certainty to which ingestion into the downstream stator well cavity can be discounted, 

therefore during the design of the experiment it was noted that it was possible for air 

which had passed from the upstream cavity, through the interstage seal and into the 

downstream cavity to mix with main annulus air ingested through the downstream 

cavity rim seal. This would result in higher concentration measurements in the upstream 

stator well than the downstream, however it will be seen in Chapter 9 that re-ingestion 

rates calculated from both the upstream and downstream sampling locations agree 

within the bounds of uncertainty of the measurement. It would be highly unlikely for 

this to happen unless the assumptions made for the re-ingestion test to succeed were 

valid. These include good mixing of the re-ingested flow as it is ingressed through the 

upstream stator well rim seal, homogeneous mixture of air and carbon dioxide at the 

upstream measurement location, the re-ingested flow passing through the interstage seal 

and no or limited ingress of additional main annulus gas in the downstream stator well 

cavity.    

 

The increased upstream wheelspace pressure required for the re-ingestion experiment 

increases the axial load on the rotating assembly, increasing the axial load on the shaft 
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bearings which produces high bearing temperatures. In order to preserve the rig bearing 

it was necessary to run with a much reduced cooling flow rate compared to the 

interstage seal and rim seal exchange. Gas concentration results are given in Chapter 9.  

 

 

6.14  Summary 
 
The gas concentration experimental procedures devised to meet the three experimental 

objectives of the authors research have been described. The system through which the 

tracer gas is supplied to the test facility and the gas samples taken has been shown. The 

calibration of the instrumentation has been presented along with the derivation of the 

uncertainties of the gas concentration experiment equations from which the required 

flow rates are calculated.  
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7 Hot Geometry and Seal Flow Study 
 

7.1 Introduction 

The gas concentration experiments described in Chapter 6 are highly dependent on the 

ability to quantify internal seal flow rates, in particular the interstage seal flow. 

Although one of the gas concentration experiments was devised to directly take 

measurements of this seal flow, a second method of obtaining the interstage seal flow 

was also implemented. In this section a method of direct seal measurement is described, 

including measured rig hot geometry data, finite element modelling and numerical seal 

flow calculations. This Chapter expands on the work reported in Eastwood et al (2012), 

which can be found in Appendix C.  

7.2 Mechanics of Seal Movement 

The cross sectional area of the interstage labyrinth seal is the area defined in Figure 7-1. 

The lower radius edge of the seal passage is shown to be bounded by the surface of the 

rotating drive arm. The higher radius edge of the seal is shown to be bounded by the 

stationary stator foot. The seal inlet and outlet are defined by the respective ends of the 

stator foot.  

 
Figure 7-1: Interstage seal area 
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The relative axial and radial movement of the rig from its stationary position is a result 

of inertial rotating forces, pressure loading on turbine blades and discs, and thermal 

loading. At any given condition a combination of these parameters determines the 

expansion or contraction of the rig, directly affecting the overall area of the interstage 

seal. The major components of the rig are manufactured from titanium 318 and stainless 

steel 304, where the rotating assembly including the drive arm is titanium 318 and the 

stator foot stainless steel. Properties of particular importance include the co-efficient of 

thermal expansion and the thermal conductivity of the materials. In order to take direct 

interstage seal dimension measurements during test rig operation, two displacement 

sensors were installed in the TSW rig. 

 

7.3 Displacement Sensor Selection 

Displacement sensors were used in the rig to obtain accurate measurement of geometry 

changes in the vicinity of the stator well area, the results of which were used to 

determine the clearances of the interstage labyrinth seal and ring seals, both of which 

are fundamental in understanding the cooling flows and their interaction with the main 

annulus flow. Figure 7-2 shows the sensor locations. 

 

Figure 7-2: Cross section of test rig sensor locations 
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The large sensor located downstream of Rotor 2 is positioned in order to measure axial 

displacement, while the smaller sensor located on the stator well foot is positioned to 

measure radial displacement from the drive arm. In order to devise a practical and 

successful means of making these measurements the general requirements of possible 

sensors were considered. The system was required to operate at temperatures up to 400 

K and to be able to target a surface with a angular velocity of  over 1100 rad/s, whilst 

measuring displacements of the magnitude of 1×10-5 m. Micro-Epsilon Eddy current 

sensors were selected over similar systems, including optical and direct contact systems, 

due to their high precision and resolution of ±6 µm together with their suitability for the 

operating environment.  

 

It was noted during the assessment of the feasibility of using displacement sensors that a 

single radial sensor would not give a true measurement of seal clearance if the stator 

well foot and drive arm ran eccentrically. During the installation of the sensor both the 

drive arm and stator well foot were measured using a coordinate measuring machine 

(CMM) and found to be within tolerance. The rig rotating assembly, which includes the 

drive arm, was dynamically balanced before installation and runs on tapered bearings 

ensuring the centralisation of the assembly when subjected to axial load. The CMM 

measurements gave confidence in the variation of seal gap circumferentially of ±15μm. 

On consideration of this and also the desire to limit any disruption of flow through the 

seal it was concluded one sensor would be sufficient. This decision was supported by 

the correlation of modelled and measured seal displacements discussed in section 7.5.   

 

The systems selected to meet the requirements of the axial and tangential displacement 

measurements were the Micro-Epsilon U6 and SO5 sensors, with appropriate 
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supporting signal conditioning electronics. The conditioning electronics have two 

functions, the first of which is the oscillator electronics. This circuit provides an AC 

voltage to the sensor with a highly stable frequency and amplitude. The second function 

of the units is to output the measurement signal which is amplified and linearised. This 

circuit is known as the demodulator electronics. 

 

7.4 Calibration and Installation 
 
The calibration procedure for the sensors is best conducted using the actual measuring 

environment as this reduces uncertainties due to changes in operating environment and 

target geometry. However, due to constraints within the rig, the sensors could not be 

tested over their full measurement range, hence calibration of the sensors in their 

operational positions was not possible. It was necessary to complete the sensor 

calibration before rig assembly, which meant that the sensors could not be calibrated 

whilst subject to operating temperature and pressure. Figure 7-3 shows the 

instrumentation setup used to quantify the possible uncertainty of calibrating at ambient 

temperature. Each sensor was mounted on a traverse with a suitable target material at 

the midpoint of the sensor range. The traverse was then placed in an isothermal box and 

the voltage output recorded at ambient temperature. The box was then heated to rig 

representative temperatures. The change in sensor voltage was monitored. For each 

sensor the resultant measurement uncertainty due to temperature change from ambient 

to operating temperature was less than the dynamic resolution of the sensor (±6 µm and 

±5 µm).  
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Figure 7-3: Thermal calibration drift check 
 

Figure 7-4 shows the mounted U6 sensor in its calibration position; the blades of the 

Rotor can be seen protruding from under the stator. The offset distance was set by 

placing a feeler gauge of 0.6 mm between the sensor and rotor. Slip gauges were then 

placed around the circumference of the stator/rotor increasing the distance of the sensor 

from the rotor to 3.6 and 6.6 mm. The calibration process was then repeated, until the 

conditioning electronics produced the required output voltage at each range within the 

desired resolution.  

 

Figure 7-4: U6 axial sensor calibration process 
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Figure 7-5 shows the iterations of the calibration at each target range. Each of the final 

calibration iterations showed the sensor output to be repeatable to within + 0.015 V 

corresponding to a measurement uncertainty of + 0.009 mm. 

 

Figure 7-5: U6 axial sensor calibration results 

 
The radial sensor was calibrated using a similar method. The sensor was located in its 

operational position within the statorfoot. A target of the same geometry and material as 

the drive arm was then used to give sensor readings for three displacement values; this 

setup can be seen in Figure 7-6. 

 

Figure 7-6: SO5 radial sensor and target 
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As with the U6 axial sensor the calibration was repeated three times, with the sensor 

outputs being repeatable to within + 0.02 V, corresponding to a measurement 

uncertainty of + 0.001 mm. The resultant voltages from the three calibration iterations 

can be seen in Figure 7-7. 

 

Figure 7-7: SO5 radial sensor calibration results 
 

7.5 Thermo-Mechanical Modelling of Seal Movement 
 
 
The S05 sensor selected for the radial measurement provided the range and resolution 

required for the radial movement of the seal, however with increased accuracy, the 

measurement range of eddy current sensors reduces, the S05 sensor having a useful 

range of 0.5 mm. In order to ensure valid measurements from the sensor, the sensor 

must be placed in a position which ensures seal movement is within the useful range. At 

its minimum range the sensor is within 0.05 mm of the target surface, this must not be 

exceeded or the sensor can make contact with the target surface, resulting in damage to 

the sensor head. Prior to installation of the sensor within the test section a basic thermo-

mechanical model was run, using SC03, an in-house finite element modelling package 
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used by Rolls Royce plc. Figure 7-8 shows the basic geometry model used to assess 

possible seal movement. The geometry includes a 2D axisymmetric rotor and mock 

stator foot. The hub region connecting each rotor at the lower radius has been removed. 

Each rotor has been simplified to single thickness below and above the drive arm. The 

outer radius of both simplified rotors is set at the radius of rotor 1. The stator foot has 

been simplified to have a flat top of the same radius. The model is constrained at the 

bottom of each rotor for both axis of movement. The thermal expansion coefficient α for 

both the rotor and stator sections are given in Table 7-1. The stator is manufactured 

from Stainless Steel 304 and the rotor from Titanium 318.  

 
Titanium 318 Stainless Steel 304 

Temperature (K) α Temperature (K) α 
293 8.5 293 14.7 
400 9.1 400 16.3 
500 9.6 500 17.5 
600 10 600 18.6 
700 10.3 700 19.5 
800 10.6 800 20.2 

 
Table 7-1: Material properties for SC03 model, Touloukian (1975) 

 

 
 

Figure 7-8: Basic geometry model of test section 
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Figure 7-9: Contours of temperature on displaced model 
 
 

Figure 7-9 shows displacement results obtained from the model. The model is shown 

with contours of temperature. Temperatures were imposed on the model by creating 

boundary convection zones on the geometry. Normally these would be used to represent 

fluid boundaries, however by using artificially high heat transfer coefficients the 

convection zones can be used to impose surface temperatures to the model. The labelled 

red dots seen on the model represent model points from the test rig. The temperatures at 

these points, obtained from the model, were matched to temperature data taken from the 

rig in a run prior to installation of the radial sensor by altering the boundary convection 

zone temperatures. 
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The model was run at two conditions to evaluate the effects of both temperature and 

centrifugal growth.  Figure 7-10 shows results obtained at 9589 rpm, where temperature 

data is based on commissioning data from the experimental facility at 90% design 

speed. The results correspond to two nodes, one placed at a position representing the 

mounting point of the displacement sensor in the stator foot, the other representing the 

target area on the rotating drive arm. The top plot shows the displacement of each node. 

It can be seen that the node on the rotating section, shown as a red trace, moved radially 

outwards by 0.095 mm while the stationary node, shown as a green trace, has moved 

out radially by 0.16 mm. Despite the centrifugal growth of the rotating component and 

the similar radius of each node the stationary component shows significantly higher 

radial movement. This is due to the higher coefficient of thermal growth of the stainless 

steel. The second plot shows the change in relative position of the stationary node from 

the rotating node. It can be seen for this case that the seal gap has increased by 0.065 

mm.  

 
Figure 7-10: Component displacement and seal movement at 9589 rpm 
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Figure 7-11: Component displacement and seal movement at 10630 rpm 

 
 
 
Figure 7-11 shows the model run at a 10630 rpm condition. With increased rotational 

speed the displacement of the rotating node can be seen to increase to over 0.1 mm, 

decreasing the relative seal growth to below 0.6 mm. Although these models gave a 

good indication of the seal movement within the rig, it was only taken as a guide for 

installation of the sensor. Limitations of to the model include the simplified geometry 

and the lack of gas pressure on the components. The exclusion of the blade rows being 

the most likely contribution to inaccuracy due the underestimation of disc inertia, and 

the associated centrifugal growth of the discs.    
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7.6 Installation of Radial Sensor 
 
 
Once the movement of the seal was understood the sensor was installed in the test 

section. Figure 7-12 shows the sensor mounted in the top half of the NGV 2 casing 

component prior to the build up of the rig. The sensor output wire can be seen exiting 

the back of the sensor. In this image it has not yet been bonded to the component. 

However, the lead out track is visible, behind the sensor, through the rim seal and up the 

face of the NGV. From here the wire exits the rig via a drilled hole in the outer casing. 

Prior to using the sensor the lead out was set into the track using epoxy resin, smoothed 

back to the NGV profile. For the section of wire from the sensor exit to the component 

face a shaped metal tube was used to contain the lead, this can be seen in Figure 7-6.  

Although not ideal in terms of possible flow disruption in the downstream stator well 

cavity, the two lock nuts on the rear of the sensor are necessary to prevent movement of 

the sensor during rig operation.   

 

 
 

Figure 7-12: Radial sensor installed in stator foot 
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7.7 Full Structural Model for Seal Movement Calibration 
 
 
The radial displacement sensor data was not available for a number of the test matrix 

runs, due to development of the measurement technique. Because of the limitations of 

the basic model, presented in section 7.5, a full test section model was developed, again 

using SC03. The geometry used for the full model is shown in Figure 7-13, with 

contours of metal temperature. The model can be seen to include the full test section 

geometry. This includes the main annulus geometry and casing. Bolted and pressed joint 

faces between component faces are accounted for in terms of both thermal conductivity 

between components and mechanical movement. Where sections represent blades, 

NGV's or coolant passages within the rig and the section cannot be said to be 

axisymmetric, the section properties are set accordingly. Areas of the rig where an air 

gap is present for the entire circumference of the rig are treated as voids.  

 

 
 

Figure 7-13: Full radial displacement calibration model 
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As with the basic geometry model, the metal temperatures are imposed by using 

convection streams at the component surfaces, with artificially high heat transfer 

coefficients. It was necessary to validate the model before it was used with test 

conditions where the radial sensor was not installed to provide a seal clearance value. 

This was achieved by comparison of modeled seal clearances and rig results for runs 

where the sensor was installed. The metal temperatures at all model points within the 

test section were matched to test rig measurements, where the maximum allowable 

deviation was 3 °K and the average deviation was less than 1 °K. Figure 7-14 shows a 

comparison of the modeled seal clearance change against measured seal change. The 

measured seal change is shown as a blue trace and the six red crosses represent the 

values obtained from the thermo-mechanical model, where the test section and rig speed 

have been matched. The model was found to match the measured rig values to an 

uncertainty of 0.009mm, corresponding to an uncertainty of 10% of seal clearance 

change and 2.5% of total seal clearance.    

 

 
Figure 7-14: Comparison of predicted thermo-mechanical model and measured interstage seal 

radial clearance change 
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7.8 Test Matrix Seal Movement Calculations 
 
 
In this section results obtained for seal displacement and resulting seal flow rates will be 

presented for both modelled and measured geometries. Figure 7-15 shows an example 

of the modelled seal displacement, in this case for 55 gs-1 and 39 drive arm hole inserts. 

The deflection magnitude is shown at a 1:24 scale, with contours of metal temperature. 

 

 
Figure 7-15: Deformed seal shape 

 
 
Figure 7-16 shows the output of the thermo-mechanical model for a cooling flow rate of 

55 gs-1 for the 39 lock plate slot geometry. The radial movement of the rotating drive 

arm is shown in green, the radial movement of the stator foot is shown in blue and the 

resultant change in seal gap is shown in red. This method of seal movement calculation 

was used throughout for the first four test geometries. 
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Figure 7-16: Displacement results for 39 lock plate slot geometry with a cooling flow rate of 55 gs-1 

 
 
Figure 7-17 shows an example of radial seal movement from the nominal cold clearance 

as measured by the S05 sensor, for  a test run from which data was taken at the three 

specified cooling flow rates with 26 drive arm inserts and the deflector plate in place. 

Point 'A' on the trace shows the measured movement as main annulus air is initially 

passed through the test section. At this point the blade rows become loaded and an axial 

load is applied to the rotating section centralising the rotating section bearings. The 

internal seals of the rig also begin to pressurise directing more coolant to the stator foot, 

causing a slight contraction in the seal gap. As the rig metal temperatures begin to 

increase due to heat transfer from the main annulus air, thermal expansion of both the 

stator foot and drive arm cause the seal gap to open as indicated at point 'B'. Centrifugal 

growth of the seal is also seen to correspond to changes in rig speed. At point 'C' a 

feature can be seen where the rig speed has been dropped slightly then suddenly 

increased. At point 'D' the seal movement begins to stabilise as rig temperature 

variations begin to reduce, the fluctuations at this point being due to adjustments in rig 

speed, cooling flows and balancing flows in order to satisfy the conditions for the first 
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test point. Point 'E' indicates the seal movement at the first test point, for this example a 

cooling flow rate of 55 gs-1. Points 'F' and 'G' represent the change in seal gap for the 

cooling flow rates of 40 gs-1 and 30 gs-1. For all geometries where the displacement 

sensor was installed the seal gap was seen to increase with increased cooling flow rates. 

This is due to the increased cooling flow rates causing a higher temperature gradient 

from the lower radius of the rotating section to the main annulus. The cooler lower 

radius reduces the thermal expansion of the drive arm, increasing the gap to the stator 

foot. Point 'H' shows a sudden increase in the seal gap due to the rig being slowed after 

the final test point data has been taken, the increase resulting from the loss of centrifugal 

growth in the drive arm. Point 'I' indicated the closing of the seal gap as the test section 

begins to cool at the end of the test run. 

 
Figure 7-17: Radial seal displacement measurement for 26 drive arm holes with deflector plate 

 

Table 7-2 shows the change in nominal seal clearance for all test matrix geometries and 

flow rates, for which gas concentration data is presented in Chapter 8. Values obtained 

from the thermo-mechanical modelling method are indicted with an asterisk. All other 

values were obtained from direct seal movement measurement.   
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 30 g/s 40 g/s 55 g/s 
39 Drive Arm Holes - 0.1167* 0.1223* 
26 Drive Arm Holes - 0.1286* 0.1331* 
39 Lock Plate Slots - 0.1250* 0.1301* 
26 Lock Plate Slots - 0.1218* 0.1275* 
39 Axial Drive Arm Holes 0.0469 0.0786 0.0945 
39 Circumferential Drive Arm Holes 0.0510 0.0739 0.1057 
39 Drive Arm Hole + Deflector Plate 0.1174 0.1299 0.1397 
26 Drive Arm Hole + Deflector Plate 0.1007 0.1143 0.1338 

Table 7-2: Change in interstage seal radial clearance [mm] (* calculated from SC03 model) 
 

7.9 Test Matrix Seal Flow Calculation 
 
 
The St. Venant-Wantzell equation, discussed in Chapter 2, was used for all test 

geometries to calculate the interstage seal flow. For the purpose of this work, the 2D, 

non-rotating data of Wittig et al (1987) was used to estimate a CD. The tightest 

clearance tested, 0.5 mm, (together with 2.5, 1.5 and 1.0 mm) is close to the TSW seal 

and the geometry is similar. Specifically, the estimation of the CD value has been 

derived from an extrapolation of the 6 and 1 fin data, to a 0.3 mm clearance. An 

estimate for the 3 fin CD was derived from the numerical modelling of the Wittig et al 

(1987) data by Kim and Cha (2009). Based on their results, the 3 fin CD was estimated 

to be approximately 0.48. Figure 7-18 shows the measurement location used with 

Equation 2-14 to calculate the interstage seal flows. Model point mp030 was used to 

obtain a suitable upstream total temperature value T0. Model points mp176 and mp181 

provided the required upstream and downstream static pressure measurements from 

which to calculate the pressure ratio P2/P1. The seal area A was calculated from the 

nominal cold seal geometry and the seal displacement measurements shown in Table 

7-2. The resulting interstage seal flows are given in Table 7-3. 
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Figure 7-18: Seal flow parameter measurement locations 
 
 

 30 g/s 40 g/s 50 g/s 
39 Drive Arm Holes - 45.4742 47.2672
26 Drive Arm Holes - 47.3314 48.6634
39 Lock Plate Slots - 45.0755 46.0342
26 Lock Plate Slots - 44.6678 46.1789
39 Axial Drive Arm Holes 36.2607 40.1748 42.0589
39 Circumferential Drive Arm Holes 35.0499 37.2101 40.3266
39 Drive Arm Hole + Deflector Plate 43.7778 46.0456 48.6921
26 Drive Arm Hole + Deflector Plate 42.8879 45.0635 48.2871

 
Table 7-3: Interstage seal flow rates for all cooling flow supply geometries 

 
 
Figure 7-19 shows a comparison of seal flows calculated using a CD of 0.48 with the St. 

Venant-Wantzell equation, with seal flow results from CFD. The pressure ratio is the 

upstream to downstream seal pressure. The normalized seal flow is /Cww,,eenntt. The CFD 

results were found to be within 2% of the calculated values. The effect of rotation has 

been shown to reduce the discharge coefficient, Waschka et al (1992). The TSW seal is 

at the borderline between the axial and rotationally affected regimes, so the effect is not 

expected to be significant. 

MP030

MP176 MP181mp181mp176

mp030
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Figure 7-19:Comparison of CFD and calculated seal flows using a CD = 0.48, Eastwood et al (2012) 
 
 
 

7.10   Summary 
 
In this chapter an alternative method for the calculation of the interstage seal flow has 

been described. This technique, which includes both displacement measurements and 

thermo-mechanical models of the interstage seal gap to inform seal equation inputs, was 

devised to mitigate the possibility of the interstage seal gas concentration experiment 

providing unsuitable answers. The possibility of this situation occurring was considered 

high due to the exploratory nature of the interstage seal gas concentration experiment. 

However, the use of the technique described in this chapter can introduces large 

uncertainties when used for the rim seal exchange and re-ingestion gas concentration 

mass flow calculations. This is discussed in Chapter 9.  
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8 Results - Stator Well Temperature 
 

8.1 Introduction 
 

In this chapter experimental temperature data will be presented. Pressure data is also 

given to quantify pressure asymmetry in the main annulus. The temperature data is 

shown in normalised form for each geometry and cooling flow supply rate, across 

both test phases. The variation in normalised temperatures across test cases is used to 

indicate the flow regimes within the stator well, which will be used to inform 

conclusions made from gas concentration experimental results presented in Chapter 

9. The results presented in this chapter extend the work of Coren et al (2011).  

 

8.2 Main Annulus Pressure  
 
The study of the interactions of the main annulus gas with the stator well cooling 

flow is highly dependent on the ability to limit pressure asymmetry. As discussed in 

Chapter 2, previous studies have shown the effect of local pressure variation on the 

flow structure of a rotor stator cavity where the outer seal is  subject to an external 

flow. Figure 8-1 shows the measurement locations of the total pressure probes 

installed on the leading edge of the Stator 1 NGV row, at the inlet to the test section. 

The taps are placed in sets of four, spanning the main annulus, where each set of four 

is installed in a single NGV. The NGVs used being numbers 1, 15 and 30. The 

circumferential position of each set is given as α = 10 deg, 134 deg and 276 deg. The 

circumferential position is taken from the top centre of the rig, and then increases in 

a clockwise direction when viewed from the upstream position, looking in the 

direction of flow through the rig.  
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Figure 8-1: Test section inlet total pressure measurement locations 

 
 
 
Figure 8-2 shows the total pressure measurements at each of the measurement 

locations for each test point taken over the two test phases, where the pressures are 

presented in terms of percentage deviation from the mean inlet pressure. The results 

show that for each test point the total pressure deviation was less than +/- 0.5 % of 

the mean main annulus pressure. 

 
Figure 8-2: Total pressure asymmetry at test section inlet 
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8.3  Cooling Flow Rates 
 

The measurement of cooling flow delivery was discussed in Chapter 4 and shown to 

be made using hot film flow meters, with an uncertainty of +/- 1.3 % of the 

measurement point. The control of this flow through balancing of the wheelspace 

cavities, using the vent and balance flows was discussed in Chapter 5. A 

manufacturing fault found in the pressure lead out tubes of some of the wheelspace 

pressure measurements was also discussed in Chapter 4. This led to the lower claw 

seal being incorrectly balanced and additional air entering the coolant supply path 

from the balance flow during phase one testing. The pressure lines for mp148, 

mp150 and mp 154 were found to be undamaged giving correct measurements in the 

lower wheelspace cavity, the balance cavity and the upper wheelspace cavity. Model 

point mp151 was found to have a minimal leak, so was the focus of providing a 

corrected pressure in the vent cavity. This was achieved by considering inter cavity 

pressure gradients. These were estimated after consideration of rotational pressure 

recovery effects, superposed internal cavity flows and CFD results provided by 

industrial partners. All other pressure measurements in the wheelspace were 

discounted. Once mp151 had been corrected the cavity pressures were used with seal 

flow correlations, including allowances for hot running claw seal clearances, to 

estimate the additional balancing air entering the coolant flow. The hot running claw 

seal clearances were taken from the SC03 model described in Chapter 7. This study 

was conducted and documented by Coren (2010), and was reported by Dixon et al 

(2012) and Smith et al (2012).       

 
The average balance flow leakage into the cooling flow was found to be an 

additional 6.5% of the total cooling flow. The uncertainty of the additional balance 
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flow calculated was considered to be +/- 10 %. Considering the worst case additional 

cooling flow case, 13 lock plate slots, and using equation 6.14 the uncertainty of the 

augmented flows, which are a summation on the measured cooling flow and the 

additional balance flow can be considered +/- 2 %. 

 

Throughout this chapter comparisons are made between normalised temperature 

results for multiple geometries. In order to simplify these comparisons cooling flow 

rates are referred to at the nominal targeted flow rate for a given test point. The 

actual coolant flow rate however is presented where conclusions are drawn from 

these comparisons. Table 8-1 shows the achieved coolant flow rates for each phase 

one geometry. These are the augmented values previously discussed. Table 8-2 gives 

the measured flow rates for the phase 2 geometries, where the faulty pressure taps 

had been replaced and the lower claw seal was considered balanced.  

 

Geometry No. of flow 
features 

Target Flow 
30 gs-1 

Target Flow 
40 gs-1 

Target Flow 
55 gs-1 

Target Flow 
75 gs-1 

Drive Arm 
Inserts 

39 34.31 43.18 57.41 76.98 
26 33.58 43.36 56.81 73.91 
13 32.38 41.45 NA NA 

Lock Plate 
Slot 

39 33.92 43.92 58.60 76.36 
26 32.83 41.59 57.43 73.44 
13 36.09 45.92 NA NA 

Table 8-1: Phase 1 augmented cooling flow rates (+/- 2% uncertainty) 
 

Geometry Target Flow 
30 gs-1 

Target Flow 
40 gs-1 

Target Flow 
55 gs-1 

Target Flow 
75 gs-1 

39 Drive Arm Inserts 
 (Axial 25°)  

30.39 39.95 54.53 NA 

39 Drive Arm Inserts 
 (Circumferential 25°) 

29.64 39.28 54.31 NA 

39 Drive Arm Inserts  
(Straight Inserts + Deflector) 

29.67 39.86 53.72 NA 

26 Drive Arm Inserts  
(Straight Inserts + Deflector) 

29.82 39.97 53.42 NA 

Table 8-2: Phase 2 measured cooling flow rates (+/- 1.3 % uncertainty) 
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8.4 Normalised Temperature Methodology 
 
Due to the extended period over which test runs were conducted, variations in the 

main annulus air temperature, the supplied cooling flow temperature and the ambient 

pressures were seen for each test run. Temperature data in this section is presented in 

normalised form in order to aid comparison of the different geometries tested, where 

the normalised temperature is a ratio of the temperature difference between different 

model points. Equation 8-1 shows the form of the ratio, where the normalised 

temperature ϕ is a ratio of the temperature difference between the model point 

temperature to be normalised TM, and the coolant temperature at the test section inlet 

TC, and the temperature difference between the main annulus gas temperature TH and 

the coolant temperature TC. The uncertainty of this parameter due to the 

thermocouple measurements was derived in Chapter 4. All temperature data 

presented in normalised form includes error bars, where the uncertainty is of a 

similar magnitude to the data markers.  

 

 

Equation 8-1 
 
Figure 8-3 shows the selected hot and cold reference temperatures. The selected cold 

reference point is the air temperature thermocouple at mp010, where the supplied 

cooling air enters the upstream wheelspace, and the hot temperature is the air 

temperature thermocouple at mp040, at the leading edge of NGV 1 in the main 

annulus flow. With no cooling flow being supplied to the rig the test section would 

approach the main annulus gas temperature. The normalised temperature for a given 

model point therefore represents the extent to which the cooling flow has reduced the 

metal temperature. It can be considered as a measure of normalised temperature. A 



179 
 

normalised temperature of 1 would correspond to a metal temperature equal to the 

main annulus gas temperature at model point mp040. A normalised temperature of 0 

would correspond to a metal temperature equal to the coolant temperature at mp010.   

 

 
 

Figure 8-3: Normalised temperature reference model points 
 
 

8.5 Upstream Wheelspace Temperatures  

Figure 8-4 shows the model points for which measurements of metal temperatures 

are made on both the stationary and rotating face of the upstream wheelspace. The 

model points are positioned from low to high radius, where the low radius points are 

near the cooling flow inlet and the high radius points near the main annulus flow. 

 

Figure 8-5 shows the normalised temperatures of the stationary face of the upstream 

wheelspace against the measurement radial location r/b. The results shown are for 

the 26 straight through drive arm hole geometry, with the deflector plate in place, for 

nominal cooling flows of 30 gs-1, 40 gs-1 and 55 gs-1. The lowest radius model point 
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TCOLD
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mp001 is seen to have a normalised temperature of ϕ ≈ 0.3 at a nominal cooling flow 

rate of 30 gs-1, reducing to a value of ϕ ≈ 0.2 at a nominal flow rate of 55 gs-1.  

 
 

Figure 8-4: Upstream wheelspace normalised model point locations 
 

 
 

Figure 8-5: Normalised temperatures for 26 straight drive arm inserts and deflector plate 
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The location of mp001 is at a lower radius than the cooling flow inlet and below the 

wheelspace balance cavity, across which no main annulus gas can flow. The decrease 

in normalised temperature is driven by the increase in flow rate of the coolant and the 

corresponding drop in local metal temperature. Model point mp002 shows the same 

trend, where the normalised temperature decreases with increased coolant flow 

supply. However, the normalised temperature is higher than the value obtained at 

mp001 due to the higher radius location. Model points mp003, mp004 and mp005, 

again show the same trend, where ϕ decreases with increased coolant flow. These 

three model points correspond to the positions on the stator above the balance cavity. 

The gradient of ϕ is seen to become steeper between these three model points, where 

the metal temperature increases less with increased radius. This is attributed to the 

model points being effectively sealed off from the cooling air and dominated by 

conduction.  Model point’s mp006 and mp007 in the highest radius chamber show a 

very similar trend to the three model points in the chamber below. The normalised 

temperature at mp008 is seen to stay almost constant, this model point being adjacent 

to the hot main annulus gas flow. The slight improvement with increased cooling 

flow rate is due to the reduction in lower radius metal temperature and a change in 

the temperature gradient through the component. 

 
 
Figure 8-6 shows the normalised temperature for the rotating model points of the 

upstream wheelspace for the same geometry and cooling flow rates. For each group 

of thermocouples, where the thermocouple hot junctions are at similar radial  

locations, a mean temperature has been used to calculate the normalised metal 

temperature.  As with the stationary points, the lowest radius model points have the 

lowest normalised temperature, which increases with decreased cooling flow. 
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However, the change in ϕ with r/b for the lower two model points is greatly reduced 

when compared to the stationary points. This may be due to the fact that the cooling 

air reaches a higher radius up the back of rotor 1 before entering the stator well 

cavity. The higher radius points near to the main annulus flow show little or no 

improvement with increased cooling flow as seen with the stationary measurement 

positions. The top two radial positions lie within the uncertainty of the normalised 

parameter for all three cooling flow rates, where the temperature is dominated by the 

main annulus gas temperature and additional cooling flow has no effect. The change 

in ϕ with r/b for both the rotating and stationary measurement locations above r/b = 

0.8 is similar, where the temperature profile is dominated by conduction down the 

disc face. The normalised temperature at the high radius position of the rotating 

surface is lower than the high radius position of the stationary surface of the 

wheelspace. This is due to the lower metal temperatures at the higher radius of Rotor 

1 as compared to the higher radius temperatures of Stator 1 as the main annulus gas 

temperature reduces as it passes through each stage of the test section main annulus.  

 

Figure 8-6: Normalised Temperature on front face of Rotor 1 for 26 drive arm inserts and 
deflector plate 
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As the wheelspace is balanced to seal the lower cavity and ensure the cooling flow 

reaches the test section, and the geometry of the wheelspace is unchanged over the 

test phases, the trends shown for this geometry are representative of all the 

geometries tested. 

8.5.1 Normalised Rotating Upstream Stator Well Temperatures 

Figure 8-7 shows the thermocouple locations used to assess the normalised 

temperature on the rotating face of the upstream stator well cavity (rear face of Rotor 

1). The model points extend radially from the drive arm to the rim seal behind the 

blade row in the main annulus. TH and TC are taken from the locations shown in 

Figure 8-3.  

 
Figure 8-7: Rotor 1 rear face normalised temperature locations 

 

Model Point r/b 
mp109, mp110, mp111 0.7605 
mp091, mp092, mp093 0.7876 

mp094, mp096 0.8673 
mp097, mp098, mp099 0.9686 
mp100, mp101, mp102 1.0000 

 
Table 8-3: Rotor 1 rear face measurement location 
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Figure 8-8 shows the normalised temperature results for the rear face of Rotor 1, 

corresponding to the model points shown in Figure 8-7. Results are shown for all 

geometries and flow rates tested. Normalised temperature ϕ is plotted against the 

radial location given in Table 8-3 as a ratio of cavity height b. The geometry is not 

shown next to the plots, as it was for Figure 8-5 and Figure 8-6, in order to avoid 

obscuring the data. Flow rates are labelled for the first instance of each nominal 

cooling flow set. However for all axis, nominal cooling flow rates of 30 gs-1 are 

shown in black, 40 gs-1 nominal flow rates are shown in red, 55 gs-1 nominal rates are 

shown in blue and 75 gs-1 nominal flow rates are shown in green. The normalised 

temperature for thermocouples in the same radial position have been grouped and 

averaged. Error bars are included, where they are of a similar magnitude to the 

markers. For all geometries the normalised temperature at each radial location 

(except for those at r/b =1) are shown to reduce with increased cooling flow. 

 

Examination of the gradient between locations 0.97 ≤ r/b ≤ 1.00 can provide 

indication of the extent to which the cavity is sealed. Where d(r/b)/dϕ is large the 

temperature at r/b = 0.97 is approaching the main gas temperature, indicating ingress. 

As d(r/b)/dϕ decreases the temperature difference between r/b = 0.97 and the main 

gas temperature increases, with cooling air reaching the higher radius positions of the 

cavity. The cooling air reduces the metal temperatures by both heat transfer from the 

metal surface and also by preventing the ingestion of hot gas. For all geometries 

shown the gradient between 0.97 ≤ r/b ≤ 1.00 decreases with increased cooling flow, 

showing improved sealing. The lock plate geometries tend to show better sealing, 

particularly at lower cooling flow rates. It should be noted that the lock plate 

geometries at low flow rates had the highest deviations from nominal flow rates, 
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however even with this taken into consideration the results show at certain radii the 

nominal 30 gs-1 lock plate geometries resulted in lower normalised temperature than 

the nominal 40 gs-1 drive arm geometries. For example the data at the radial location 

r/b = 0.8673 for 13 lock plates slots at 36.09 gs-1 (30 gs-1nominal) shows a 

normalised temperature ϕ ≈ 0.35, while the 13 drive arm hole geometry at 41.45 gs-1 

(40 gs-1nominal) shows a normalised temperature ϕ ≈ 0.5. 

 

Comparison of the drive arm insert geometries to the lock plate slot geometries show 

a clear distinction between the temperature profile of the rotor. For the lock plate slot 

geometries where the coolant enters at a radius r/b≈ 0.87, the locations 0.76 ≤ r/b ≤ 

0.87 show a lower variation in normalised temperature than those seen for the drive 

arm geometries. For 0.87 ≤ r/b ≤ 1.00  the reverse is true; the increase in ϕ with r/b is 

higher for the lock plate geometries than for the drive arm geometries, suggesting 

better sealing of the cavity. This can be attributed to both the internal cooling of the 

rotor as the cooling flow passes through it, and also to the higher radius of the 

coolant entry into the cavity. This is discussed further in section 8.5.4. The cooler 

normalised temperatures at the higher radius of the rotor, resulting from the lock 

plate geometry, could be employed as the starting point for the design of coolant 

delivery geometries in production engines, focusing on reducing temperatures at 

blade root fixing points.  
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Figure 8-8: Rotor 1 rear face normalised metal temperature for all tested geometries and 

cooling flow rates 
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8.5.2 Normalised Stationary Upstream Stator Well Temperatures 

Figure 8-9 shows locations of the metal surface temperature model points on the 

front face of Stator 2, making up the stationary face of the upstream stator well, the 

model points being positioned radially outwards from the inner radius of the stator 

foot, up to the stationary section of the stator well rim seal in the main annulus path. 

TH and TC are taken from the locations shown in Figure 8-3. The radial location of 

the measurement points are given as a ratio of the cavity height r/b in Table 8-4. 

 
Figure 8-9: Normalised temperature locations on front face of Stator 2 

 
 
 
 

Model Point r/b 
mp019 0.7843 
mp018 0.8115 
mp017 0.8217 
mp016 0.8986 
mp015 0.9483 
mp014 0.9736 
mp024 1.0000 

 
Table 8-4: Stator 2 upstream face measurement location 
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Figure 8-10 shows the normalised temperature results for the front face of Stator 2 

corresponding to the model points shown in Figure 8-9. As for the rotating 

normalised temperatures shown in Figure 8-8 all geometries and flow rates are 

shown. Normalised temperature ϕ is plotted against the radial location given in Table 

8-4 as a ratio of cavity height r/b. Cooling flow rates are indicated in the same 

manner as Figure 8-8. Error bars are of a similar magnitude to the data markers. 

 

As was shown for the rotating profiles, the gradient between the two top radial 

locations offer an indication of the cooling and sealing performance for a given 

geometry and flow rate, for the stator this is between the radial locations 0.97 ≤ r/b ≤ 

1.00. When compared to the results for the rotor the gradients between the points are 

generally much larger, particularly for lower cooling flow rates. This is due to the 

entrainment of ingested main annulus gas on the underside of the stationary section 

of the cavity rim seal. The gradient is seen to reduce with increased cooling flow 

indicating improved cavity sealing.  

 

A similarly large gradient is seen at the low radius  0.78 ≤ r/b ≤ 0.81, which shows 

little variation with changes in cooling supply. This is the leading edge of the stator 

foot which sees the majority of the cooling flow even at low flow rates.   
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Figure 8-10: Stator 2 front face normalised metal temperature for all tested geometries and 

cooling flow rates 
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8.5.3 Comparison of Phase 1 Drive Arm Configurations 

 
In this section the three drive arm insert configurations tested as part of the phase 1 

test set are compared at each cooling flow rate. Figure 8-11 shows the normalised 

temperatures on the rear face of Rotor 1 with respect to radial position r/b, as 

described in Table 8-3. For 39, 26 and 13 drive arm inserts, nominal cooling flows of 

30 gs-1 , 40 gs-1 , 55 gs-1  and 75 gs-1  are shown (55 gs-1  and 75 gs-1  not tested for 13 

inserts). For the three higher cooling flows, a reduction in normalised temperature at 

each radius is seen on the rotor face as the number of inserts is reduced, except for 

the highest radius position r/b = 1 which is dominated by the main annulus gas 

temperature. At the lowest nominal cooling flow rate of 30 gs-1  this is not the case 

between 39 and 26 drive arm inserts, although again the 13 insert temperatures are 

lowest.  

 

Examination of the exact supplied cooling flows in Table 8-1 shows that for all drive 

arm configurations the cooling flow dropped slightly with reduced number of flow 

features, except for the case of nominal 40 gs-1, where the 26 drive arm configuration 

had a cooling supply rate of 43.36 gs-1 compared to 43.18 gs-1 for the 39 drive arm 

configuration. This further supports the observation that the normalised temperature 

reduced with reduced number of inserts. The improvement seen on the rotating face 

at low radius with reduced number of inserts suggests the cooling air is better 

entrained into the rotor boundary layer, suggesting a change in flow structure in the 

cavity. This is attributed to the higher radial momentum of the coolant from the drive 

arm holes when the number of flow features is reduced.  
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Figure 8-11: Rotor 1 rear face normalised metal temperature for all Phase 1 straight drive arm 
geometries and cooling flows 

 
 

Figure 8-12 shows this effect in the upstream stator well graphically, where Coren et 

al (2011) used coolant streamlines to demonstrate that the coolant impingement into 

the cavity increases significantly as the number of delivery holes reduces, increasing 

the amount available for entrainment onto the rotor face. It can be seen that with 39 

drive arm inserts the coolant directly feeds the interstage seal demand, whereas for 

the 13 drive arm hole case the coolant penetrates further into the cavity and is 

entrained onto the rotor disc. 
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Figure 8-12: Adiabatic flow visualisation of coolant delivery through 39 and 13 drive arm 
holes at 0.63 Cw,ent (Coren et al 2011) 

 
 
 

Figure 8-13 shows normalised temperatures on the front face of Stator 2, for the 

radial positions given in Table 8-4, corresponding to the same geometries and 

cooling flows shown in Figure 8-11. As was seen on the rotor, for the nominal 30 gs-

1  case the difference in normalised temperature between geometries does not show a 

strong trend. At nominal 40 gs-1 the lower radius temperatures are seen to reduce 

with reduced number of drive arm inserts. However this trend is not repeated at 

nominal 55 gs-1 and 75 gs-1. For the three higher cooling flow rates and 26 drive arm 

inserts, the high radius location is seen to increase in temperature when compared to 

the 39 insert cases. 
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Figure 8-13: Stator 2 front face normalised metal temperature for all Phase 1 straight drive arm 

geometries and cooling flows 
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55 gs-1  and 75 gs-1  are shown (55 gs-1 and 75 gs-1 not tested for 13 inserts). As for 
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closely examined with respect to the exact flow rates given in Table 8-1. As 

mentioned in Section 8.5.1 the cooling flow rates for the 13 lock plate slot 

geometries at the nominal 30 gs-1 showed the largest deviation in achieved cooling 

flow. However Figure 8-14 shows that the 30 gs-1 13 lock plate geometry, which had 

a flow rate of 36.09 gs-1 still has low normalised temperatures at the lower radius, 

even when compared to the nominal 40 gs-1 results for the 39 and 26 lock plate 

geometries, which had flow rates of 43.92 gs-1 and 41.59 gs-1 respectively. 

 

The lower radius rotor metal temperatures are all seen to be cooler than for the drive 

arm geometries. For both the drive arm and lock plate geometries the coolant supply 

path is identical up to the lower supply cavity, as was shown in Chapter 3. At this 

point the coolant either enters the upstream stator well cavity through the drive arm 

inserts, or for the lock plate geometries passes through rotor 1. The cooler rotor 

temperatures seen for the lock plate geometries can be attributed to a number of 

effects. The coolant is being injected into the upstream stator well at a higher radius 

than the drive arm geometries, where it is directly feeding the disc entrainment. It 

also has axial momentum which effects the way in which the coolant interacts with 

the cavity flows and boundary layer. Streamlines showing this were presented by 

Dixon et al (2012). The third mechanism by which the lock plates increase rotor 

cooling is through the internal cooling of the disc before the coolant is injected into 

the cavity. It is a complex task to separate the internal cooling effects from the 

coolant injection location and momentum effects and was not conducted as part of 

the MAGPI program. In order to fully decouple these effects it would be necessary to 

complete a conjugate analysis of conduction and convection within the rotor.  
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Figure 8-14: Rotor 1 rear face normalised metal temperature for all Phase 1 lock plate 
geometries and cooling flows 

 
 

Figure 8-15 shows normalised temperatures on the front face of Stator 2, for the 

radial positions given in Table 8-4, corresponding to the same geometries and 

cooling flows shown in Figure 8-14. Contrary to the result for the drive arm insert 

geometries, where little or no reduction was seen in the normalised stator 

temperature with reduced flow features or increased cooling flow, a large 

improvement is seen for 13 lock plate slots, even at lower cooling flow rates and for 

26 lock plate slots at the high cooling flow rate. This is attributed to a high axial 

momentum of the coolant at the exit of the lock plate slots increasing the coolant 

delivery to the stator. 
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Figure 8-15: Stator 2 front face normalised metal temperature for all Phase 1 lock plate 
geometries and cooling flows 
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effectively cool the rotor as they maintain the normalised temperatures seen with the 

straight insert even with the slightly reduced cooling flow. At 40 gs-1 nominal flow  it 

can be seen that the axially angled inserts result in lower normalised temperature at 

all radial position, the circumferentially angled inserts also show lower temperatures 

than the straight inserts however, not to the same extent as the axial inserts. Again 

consideration of Table 8-1 and Table 8-2 show the straight drive arm geometry had 

the highest flow rate, further supporting the improvement seen with the angled 

inserts. This trend is increasingly prominent at nominal 50 gs-1. For the axially 

angled inserts the improvement is a result of improved entrainment of coolant into 

the rotor boundary layer. The mechanism of improvement with the circumferentially 

angled insert is less clear, but is most likely to be a result of the effect on core 

rotation.   

 
Figure 8-16: Rotor 1 rear face normalised metal temperature for all angled 39 drive arm insert 

geometries and cooling flows 
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Figure 8-17 shows normalised temperatures on the front face of Stator 2 for the 

angled insert geometries. The results show that for both the angled insert cases the 

lower radius of the stator face had higher normalised temperatures when compared to 

the straight insert geometry, while the outer radius normalised temperatures are 

lower, resulting in a lower temperature gradient across the stator.  

 
Figure 8-17: Stator 2 front face normalised metal temperature for all angled 39 drive arm insert 

geometries and cooling flows 

 
Figure 8-18 shows coolant path lines based on contours of cooling effectiveness 
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also be seen that when compared to the 39 straight drive arm configuration shown in 

Figure 8-12 the amount of coolant impinging directly onto the lower radius of the 

stator foot is greatly reduced. 

 
Figure 8-18: Pathlines of cooling effectiveness, Axial insert geometry, 30 g/s-1, Dixon et al (2012) 
 

This results in the higher normalised stator temperature at the lower radial positions, 

where there is a reduction in the previously un-entrained cooling air in the vicinity of 

the stator. For the rotor it was seen that the axial angled inserts best cooled the rotor 

face, which might suggest that the stator with the axial inserts should then be the 

least well cooled. However, this does not seem to be the case as the stator 

temperatures at the lower radius for the circumferentially angled inserts are shown to 

be slightly higher.    

 

8.5.6 Comparison of Drive Arm and Deflector Plate Geometries 
 

In this section the 39 and 26 straight drive arm insert geometries from Phase 1 are 

compared to tests running the same inserts but with the stator well deflector plate in 

place. Figure 8-19 shows each geometry at nominal cooling flow rates of 30 gs-1, 40 

gs-1  and 55 gs-1. The Phase 1 geometries without the deflector are denoted "STR" 
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and the geometries with the deflector in place are denoted "DEF". At the lower 

nominal cooling flow rate of 30 gs-1 little difference is seen with the inclusion of the 

deflector for the 39 drive arm insert geometry, however it should be noted that the 

case with no deflector plate has an additional 4 gs-1. The 26 drive arm insert case 

with deflector plate shows a reduction in rotor temperatures at all radial locations, 

despite an additional 3 gs-1 of cooling flow for the 26 inserts without the deflector 

plate. The converse is true at nominal 40 gs-1 where the reduction in rotor 

temperatures, with the inclusion of the deflector, is more pronounced for the 39 insert 

case. At nominal 55 gs-1 the inclusion of the deflector shows reduced rotor 

temperatures for both 39 and 26 drive arm insert cases, despite lower cooling flow 

rates of 3 gs-1 when compared to the cases without the deflector in place. 

 
Figure 8-19: Rotor 1 rear face normalised metal temperature for 39 and 26 drive arm insert 

geometries, with and without deflector  
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Figure 8-20 shows normalised temperatures on the front face of Stator 2, for the 

drive arm insert geometries with and without the deflector. For all cooling flows the 

inclusion of the deflector plate is seen to both reduce high radius temperature whilst 

increasing low radius temperatures. The increase in lower radius temperatures is 

most likely the effect of the deflector plate preventing cooling flow from impinging 

onto the stator foot. The cause of the decrease in high radius temperature however, is 

less clear. It may be due to coolant attaching to the rotor and reaching the higher 

radius of the cavity or to the effect of the deflector on the core flow.   

 

Figure 8-20: Stator 2 front face normalised metal temperature for 39 and 26 drive arm insert 

geometries, with and without deflector 
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8.6 Summary 
 

In this chapter stator well temperatures have been presented for a range of cooling 

flow rates and supply geometry. The temperature data has been presented in 

normalised form in order to aid comparison between test runs and to highlight trends.  

 

It was shown that for all geometries tested the normalised temperature reduced with 

increased superposed flow, except for model points at r/b ≈ 1, dominated by hot gas 

temperatures. Lock plate slot geometries cooled Rotor 1 more effectively than the 

drive arm inserts, where the coolant both cooled the disc internally and directly fed 

the rotor boundary layer. This was particularly evident at low cooling flow rates. The 

normalised temperature profiles of the stator were more comparable between lock 

plate and drive arm geometries. 

 

At cooling flow rates ≥ 40 gs-1 the normalised temperatures were seen to reduce with 

reduced number of flow features for the straight drive arm inserts, suggesting 

improved entrainment of coolant on the rotor surface. Where the number of drive 

arm holes is reduced the increased radial momentum of the coolant is thought to 

increase the radius to which the coolant penetrates into the upstream stator well for a 

given flow rate. Contrary to this, for the lock plate slot geometries normalised rotor 

temperatures were seen to drop at the low cooling flow rates with a reduction in flow 

feature numbers. No improvement was seen between geometries in rotor temperature 

at high cooling flow rates. However, at high cooling flow rates the lock plate slot 

geometries showed much improved cooling of the stator as the number of flow 

features was reduced.  
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The Angled drive arm inserts showed only marginal improvement in rotor cooling, 

except for the higher cooling flow rate of 55 gs-1, where the axial angled inserts gave 

the lowest rotor temperatures, followed by the circumferential inserts. Both the axial 

and circumferentially angled inserts caused an increase in the stator temperature 

when compared to the straight drive arm inserts. 

 

For both the back to back tests of 39 drive arm inserts and 26 drive arm insert, with 

and without the deflector plate in place, the deflector plate was seen to improve 

cooling of the rotor. Interestingly the deflector plate had the effect of reducing the 

temperature gradient across the stator by both increasing low radius temperatures and 

reducing high radius temperatures.  

 

The geometry trends identified in this chapter are discussed further in Chapter 9 

where they are compared to gas concentration results. 
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9 Results - Concentration Measurements 

9.1 Introduction 

 
In this chapter results are presented from the gas concentration experiments, described 

in Chapter 6. The findings from the experiments are compared and contrasted with the 

results obtained from the temperature measurements shown in Chapter 8. The numerical 

modelling methods employed by fellow researchers are also compared to the results of 

the author. 

 

In this chapter the superposed cooling flow ሶ݉ ଴ has been given quantitatively, where 

nominal flow rates of 30 gs-1, 40 gs-1, and 55 gs-1 have been tested for multiple 

geometries. In order to compare these flow rates it is often useful to express them in 

terms of a nondimensional flow rate. For the case of a rotor stator cavity with an inner 

hub, such as the TSW facility, the cooling flow rate can be expressed in terms of the 

partial disc entrainment Cw,ent, which was defined in Chapter 2 Equation 2-6. The 

cooling flow rates 30 gs-1 ≤ 	 ሶ݉ ଴ ≤ 55 gs-1 can then be expressed as 0.71 ≤ Cw,ent  ≤ 1.04. 

These flow rates correspond to in cavity rotational Reynolds numbers of 1.71ൈ106 ≤ Reϕ 

≤ 1.86ൈ106. The corresponding external axial Reynolds number for the region above the 

upstream stator well rim seal is Rew = 1.75ൈ105 where Rew = uzr/ν. 
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9.2 Interstage Seal Flow Experimental Results 

 

Figure 9-1 show the measurement locations used during the interstage seal flow 

experiment described in Chapter 6, section 6.2. During normal rig operation these 

model points measure static pressure. When conducting gas concentration experiments 

the pressure tap lines are re-directed to the carbon dioxide gas analysers via the 

instrumentation path, described in Chapter 6.2. Model point mp176 is used as the 

carbon dioxide injection point, upstream of the interstage seal. Gas concentration 

measurements are taken at two model points downstream of the seal, mp181 and 

mp182, and at two model points in the downstream stator well cavity, mp179 and 

mp180. The gas concentration measurements are taken following the procedure 

described in 6.13.1.  

 

Figure 9-2 shows volumetric concentration measurements of carbon dioxide made at a 

cooling flow supply rate of 40 g/s for the phase 1 drive arm geometries. The 

concentration is plotted against the angular position from the seeding location. The 

measurements show a variation of over 1% volume between measurement locations. 

This was seen for each of the three geometries tested. In order to calculate the interstage 

seal flow rate using the method described in section 6.2 the assumption is made that the 

carbon dioxide injected upstream of the seal is fully mixed with the interstage seal flow. 

However, the concentration measurements suggest that full mixing has not occurred at 

the measurement locations.      
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Figure 9-1: Labyrinth seal flow experimental measurement points 
 
 

 
 

Figure 9-2: Concentration measurements made for 39 DAH, 26 DAH and 13 DAH, for 40 gs-1 
cooling flow at interstage seal exit and downstream cavity   

 
 

Where the axial velocity through the seal is of a similar or greater magnitude than the 

circumferential gas velocity through the seal it is unlikely that the carbon dioxide will 

sufficiently mix into the seal flow. This would result in areas of higher concentration, 

where the measurement locations could coincide with a "plume" of unmixed carbon 

dioxide. Figure 9-3 shows a visualisation of this effect, where a section of the rotating 
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surface of the seal has been unwrapped. The seeding location is shown, together with 

the two measurement locations immediately downstream of the seal. The figure shows 

how the measurement location at mp189 may be in a high concentration area, while 

mp182 is in a low concentration area. This would support the measurements shown in 

Figure 9-2.  

 
 

Figure 9-3: Carbon dioxide concentration plume 
 

The failure of the interstage seal flow experiment to produce suitable results was 

discovered early in the experimental testing schedule. Due to the inclusion of the 

secondary method of obtaining seal flow, described in Chapter 7, the author was able to 

continue with the two main concentration experimental objectives of quantifying rim 

seal exchange and measuring the re-ingestion of upstream cooling flow egress. In 

Section 9.3.2 and Section 9.4, where these results are discussed, all quantitative results 

which rely on a known interstage seal flow are based on the results reported in Chapter 

7. 

 

9.3 Rim Seal Exchange 
 
In this section results from the rim seal exchange experiment are presented. Figure 9-4 

shows a review of the fundamental flows studied in this experiment. Cooling flow is 

delivered to the stator well, seeded with a known flow rate of carbon dioxide seeding 
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gas, through a number of delivery geometries presented in Chapter 3. Concentration 

measurements are made in both the upstream and downstream stator well cavities. 

Through the calculation steps, described in detail in Chapter 6, the net ingress and 

egress through the upstream rim seal can be calculated. 

 

The results from the experiments are presented in two stages. Firstly in terms of dilution 

ratio, which is calculated using Equation 6-4. Presenting the results in this fashion 

allows comparison of the concentration results with normalised temperature data. The 

results from the summation of the calculated stator well flows are then presented and 

assessed for suitability of assessing rim seal exchange, as described by Equation 6-6 and 

Equation 6-7.  

 

 
Figure 9-4: Rim seal exchange flows, Eastwood (2012) 
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9.3.1 Dilution Ratio Measurements 
 
Figure 9-5 shows the dilution ratios measured for both the straight through drive arm 

insert geometries and the simulated lock plate slot geometries. Error bars are included 

which have been calculated according to the method described in Chapter 6. A dilution 

ratio of zero indicates that no seeded cooling air is present at the measurement point; a 

ratio of 1 indicates that no main annulus air is present. For both the 36 and 26 drive arm 

hole configurations, at the lower cooling flow rate of ~42 gs-1, a large variation was 

seen between the measurements taken in the upstream wheelspace and the 

measurements taken in the downstream wheelspace. The low dilution ratios measured at 

mp177 and mp178 in the upstream wheelspace indicate that the cooling air has not fully 

mixed with main annulus ingress into the cavity at the measurement points. A higher 

ratio is seen in the downstream cavity at mp179 and MP180, suggesting that the cooling 

air has more fully mixed with main annulus ingress air, as would be expected by the 

flows passing through the interstage seal. For these two geometries it appears that at low 

cooling flow rates the majority of the coolant directly feeds the interstage seal. The 

dilution ratios for the drive arm configurations at ~57 gs-1 show a similar effect, where 

the dilution ratio is lower for the upstream cavity. However, the difference is greatly 

reduced when compared to the ~42 gs-1 cases. This suggests that with increased cooling 

flow the coolant has more fully mixed at the upstream measurement locations, cooling 

at a higher radius in the cavity. This is supported by the temperature measurements 

obtained for the stator in Chapter 8 which showed improvements of 0.05 in normalised 

temperature for both the 39 and 26 drive arm insert geometries between the flow rates 

of 40 gs-1 and 55 gs-1, at the concentration measurement height of r/b = 0.86. 
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Figure 9-5: Dilution Ratio η for 39 and 26 Drive Arm Hole Geometries, & for 39 and 26 Simulated 
Lock Plate Slot Geometries 

 
 
 
Coren et al (2011) considered the effect of cooling supply rate to the rotor cavity. Figure 

9-6 shows stator well streamlines from a CFD study of the 39 drive arm hole geometry 

for two coolant flow rates of 0.63 Cw,ent and 1.08 Cw,ent. For 0.63 Cw,ent, where the 

supplied coolant flow rate is much lower than the disc entrainment it can be seen that 

the coolant does not penetrate to the higher radius areas of the stator well but directly 

feeds the interstage seal. For 1.08 Cw,ent the coolant has penetrated into the cavity.  
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Figure 9-6: Cavity streamlines for 39 drive arm configuration coloured by normalised absolute 
frame total temperature, Coren et al (2011) 

 

The results obtained for the lock plate slot geometries showed much closer agreement 

between the dilution values seen for the upstream and downstream measurement 

locations for cooling flow rates of ~42 g/s and ~57 g/s. This suggests that with lock 

plates the coolant has mixed fully with ingested main annulus air in both cavities as 

opposed to the drive arm geometries where the coolant had not fully mixed in the 

upstream cavity. This is due to the coolant being fed directly into the disc entrainment 

flow in the rotor boundary layer. This result indicates that the introduction of the 

cooling air through the lock plate slots has increased the amount of coolant present at 

the higher radius areas of the upstream stator well. As with the dilution ratios obtained 

for the drive arm tests, the ratios obtained for both the 26 and 39 lock plate slot 

geometries show an increased concentration measurement for the higher cooling flow.  

This shows that the higher cooling flow has reduced the ingress of main annulus gas 

into the upstream cavity. As expected for both 26 and 39 lock plate slots the dilution 

ratio is within 0.05 of being equal to 1, showing minimal ingestion through the rim seal. 
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This result was also supported by the temperature results reported in Chapter 8, where 

the rotor was seen to have significantly reduced temperatures compared to the drive arm 

insert geometries at the concentration measurement height. Interestingly, the 

temperature measurements did not show a strong corresponding reduction in 

temperature on the stator face. This led to the suggestion that the majority of the 

improvement seen for the lock plate slots was due to internal cooling of the rotor. It was 

also suggested that the increase in stator temperatures was due to the loss of coolant 

impinging on the lower radius of the stator foot which is seen for drive arm geometries, 

see Figure 9-6, resulting in higher conduction from the NGV platform. However, the 

concentration measurements show that the lock plate slots may in fact provide better 

sealing at the higher cooling flow rate conditions. This is discussed further in section 

9.3.2.    

 

Comparison of the drive arm and lock plate geometry downstream measurement 

locations, where the sampled gas has more completely mixed for both flow rates, shows 

that the dilution ratio increases with increased coolant flow. This indicates that for the 

higher coolant flow rate the upstream cavity has been more effectively sealed reducing 

the ingress of hot main annulus gas through the rim seal. The results also suggest 

generally worse sealing with fewer delivery holes. The temperature data suggested 

better sealing with reduced delivery holes however, when the rotor surface was 

considered, but showed an increase in higher radius stator temperature. This highlights 

one of the shortcomings of the gas sampling system used, where the limited number of 

sampling positions does not always give the full picture of the flow structures within the 

cavity. 
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Coren et al (2011) considered the effect of jet momentum in order to explain the 

variations in normalised temperature with changes in the number of flow features. It 

was concluded that increased jet momentum allows coolant to further penetrate into the 

cavity, re-distributing coolant in the cavity. Changes in normalised temperature were 

also attributed to the effect of the coolant jets on the core rotation of the cavity. 

 

 

Figure 9-7: Dilution ratio η for axially angled drive arm and Deflector Plate Geometries 
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Figure 9-7 shows the dilution results for the 39 axial and circumferentially angled drive 

arm geometries, as well as the 39 and 26 drive arm geometries with the deflector plate 

in place. Results are shown for cooling flow rates of ~ 32 g/s, ~42 g/s and ~55 g/s. The 

results obtained for the axially angled drive arm inserts show very close agreement 

between the measurements made in the upstream stator well and the downstream stator 

well, the values for the higher two flow rates closely matching those seen for the 

downstream measurements for 39 straight drive arm inserts. This suggests that the 

angled inserts encourage more coolant to be entrained into the rotor boundary layer, 

with the coolant reaching a higher radius of the cavity. The results obtained for the 

circumferentially angled inserts show a similar trend however, there remains a more 

notable difference between the upstream and downstream measurements. This was 

supported by the normalised temperature measurements for the two higher flow rates, 

where normalised rotor temperatures indicated the axially angled inserts were the most 

advantageous for reducing rotor temperatures, while the circumferentially angled insert 

gave only a small improvement. 

 
The results obtained for the 39 and 26 straight drive arm geometries with the deflector 

plate in place also show better agreement between the upstream and downstream 

measurements, suggesting the deflector plate increased the presence of coolant at the 

upstream stator well measurement positions. The temperature measurements obtained 

for these two geometries suggested that the higher radius of the stator was cooled. The 

coolant may therefore have passed “up and over” the deflector plate to the concentration 

measurement position. Figure 9-8 shows a study of flow aerodynamics within the stator 

wells conducted by Dixon et al (2012), based upon cooling effectiveness at a coolant 

flow rate of 30 g/s-1 for the deflector plate geometry. The plot shows that as the coolant 

enters the upstream cavity it passes to the upstream face of the deflector plate and is 
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then entrained onto the face of rotor 1 and pumped radially outwards to the rim seal 

region. The coolant then mixes with rim seal ingestion and then passes down the stator 

face to feed the labyrinth seal demand. 

 

 

Figure 9-8: Path lines of cooling effectiveness, Deflector plate geometry, 30 gs-1, Dixon et al (2012) 
 

9.3.2 Summation Results 
 
Although upstream dilution measurements were shown in the previous section, these 

only indicate the concentration of seeding gas at the upstream measurement point. 

Although useful for interpreting the penetration of seeded coolant into the cavity this 

makes the measurements less suitable for calculating the rim seal flows, as the coolant 

and mainstream ingress were shown not to be fully mixed at the measurement points. 

 

Figure 9-9 shows the indicated rim seal ingress and egress rates based upon the dilution 

measurements made in the downstream stator well cavity. Once the coolant and any 

ingress has passed through the interstage seal it is can be assumed that it is 

homogenously mixed, making the downstream dilution measurements more suitable for 

use in Equation 6-6 and Equation 6-7. The ingress and egress rates are shown for each 
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cooling flow rate and coolant delivery geometry. It should be noted at this point that the 

inclusion of the interstage seal flow in the rim seal egress calculation in Equation 6-7, 

introduced a large uncertainty. The error bars for the egress results are seen to be of 

almost the same magnitude as the experimentally measured variation. The rim seal 

ingress, which does not use the interstage flow, shows acceptable uncertainty limits. 

 

For all geometries tested the rate of upstream stator well rim seal ingestion, calculated 

using Equation 6-6, was seen to decrease with increased cooling flow supply. At the 

lower cooling flow rate ingress rates of between 16 gs-1 and 18 g/s-1 were measured for 

the four geometries tested. For the cooling flow rates at ~42 gs-1 ingestion was 

measured at between 9.5 gs-1 and 15.5 gs-1. At the higher cooling flow rate of ~55 gs-1 

ingestion rates were measured at between 0.6 gs-1 and 9 gs-1. As suggested in section 

9.3.1, at the higher cooling flow rate Figure 9-9 shows the 39 lock plate slot geometry to 

have lower ingress rates than the 39 drive arm holes geometry. The 26 lock plate slot 

geometry is also shown to have lower ingress rates than the 26 drive arm hole geometry. 

 

The egress rates from the upstream stator well, calculated using Equation 6-7, show a 

general trend of increased wheel space egress with increased cooling flow. At the lower 

cooling flow rate egress rates of ~ 6 gs-1 were measured for the two deflector plate 

geometries. Higher egress rates of ~13 gs-1 were measured for the axial and 

circumferentially angled drive arm inserts. For both of these sets of geometries the 

interstage seal flow was calculated from displacement sensor measurements. The higher 

calculated egress rates being a product of the lower interstage seal flows, showing the 

sensitivity of the experiment to this flow. The intermediate flow rate results show a 

similar range of egress rates despite the reduced ingestion into the cavity. Again this is a 
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product of the interstage seal flow and the associated uncertainty. As the cooling flow is 

increased and the drive arm is cooled the clearance of the seal increases giving rise to 

higher interstage seal flows and lowering the measured egress. The higher cooling flow 

rates show an increase in egress, with flow rates in the range of 12 gs-1 to 24 gs-1. Again 

however, the increase in egress rate is less pronounced than the decrease in ingestion 

due to opening of the interstage seal gap which in turn is due to cooling of the drive 

arm.  

 
 

Figure 9-9: Indicated upstream stator well rim seal ingestion ࢓ሶ ሶ࢓ and egress rates ࢏  ࢋ
 

9.4 Re-Ingestion Experimental Results 
 
 
In this section the results from the re-ingestion gas concentration experiment are 

presented. Figure 9-10 shows a brief review of the fundamental flows studied in this 
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experiment. The egressed cooling flow from the upstream wheelspace consists of both 

cooling air and carbon dioxide seeding gas. As part of the experimental procedure 

concentration measurements are made within the upstream and downstream stator well, 

in order to detect the re-ingestion of the wheelspace egress. By calculating the interstage 

seal flow, the mass flow rate of the re-ingestion can be determined. This method is 

discussed in detail in Chapter 6. 

 

 

Figure 9-10: Re-ingestion experimental flows 
 

Figure 9-11 shows the re-ingestion rates calculated from both the upstream and 

downstream measurement locations, using interstage seal mass flow rates calculated 

from displacement measurements made at the operating conditions. The calculated re-

ingestion rates are plotted against the total wheelspace supply rate, including the mass 
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flow rate of both cooling flow and seeded gas flow. The results presented include two 

repeated test points conducted during a separate test run. Re-ingestion at a measureable 

rate was detected during the experimental runs at all measurement locations. The re-

ingestion mass flow rate seems to increase with increased wheelspace egress across the 

tested range; however this is close to the bounds of uncertainty.   

 

 
 

Figure 9-11: Re-ingestion rates ࢓ሶ ࢘	calculated from concentration measurements made in the 
upstream and downstream stator wells 

 
Figure 9-12 shows the re-ingestion results for the same runs and measurement locations 

as the data shown in Figure 9-11. The data has been non-dimensionalised, where the re-

ingestion rates and wheelspace supply rates are presented as fractions of the calculated 

interstage seal flow. As the interstage seal demand can directly influence the ingress of 

gas into the stator well the re-ingestion rates can be re-evaluated when presented in this 
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manner, where the gradient of the repeat data appears to more closely match the first 

series of experimental data points. Again care must be taken due to the uncertainties 

introduced by the interstage seal flow.  

 
 

 
 

Figure 9-12: Re-ingestion as a fraction of interstage seal flow, ࢓ሶ ሶ࢓/࢘  ࢒
 
 
 
Figure 9-13 shows the re-ingestion rates as a fraction of wheelspace supply rate, plotted 

against wheelspace supply rates as a fraction of interstage seal flow. The previous 

figures show that the amount of re-ingested air detected in the stator wells seems to 

increase with increased wheelspace egress. When the re-ingestion rates are presented as 

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Wheelspace Supply as a Fraction of Interstage Seal Flow [g/s]

R
e

-I
n

g
e

st
io

n
 a

s 
a

 F
ra

ct
io

n
 o

f I
n

te
rs

ta
g

e
 S

e
a

l F
lo

w

 

 

MP178
MP177
MP178-Repeat
MP177-Repeat

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Wheelspace Supply as a Fraction of Interstage Seal Flow

R
e

-I
n

g
e

st
io

n
 a

s 
a

 F
ra

ct
io

n
 o

f I
n

te
rs

ta
g

e
 S

e
a

l F
lo

w

 

 

mp180
mp179
mp180-Repeat
mp179-Repeat



221 
 

a fraction of the wheelspace egress, the re-ingestion appears to be a constant fraction of 

the egress within the bounds of measurement uncertainty.  

 

Figure 9-13: Re-ingestion as a fraction of wheelspace supply rate,		࢓ሶ ሶ࢓/࢘ ࢝ 
 
 
However if the measurement uncertainty could be reduced, by means of an alternative 

seal flow measurement, yet the trends observed in Figure 9-13, which appear to show a 

negative gradient remained unchanged, then the results could be interpreted as 

suggesting that the proportion of egress which is re-ingested reduces as the rate of 

wheelspace egress increases. This could be attributed to higher radial momentum of the 

coolant as it exits the wheelspace rim seal, allowing some to coolant to pass through the 

main annulus boundary layer into the main flow from where it cannot then be re-

ingested. 

 
Figure 9-14 shows a CFD solution displaying streamlines which are seeded at the point 

of egress from the wheelspace. The wheelspace has not been modelled. The streamlines 

suggest that the coolant is initially entrained directly onto the blade foot boundary layer. 

The low momentum of the fluid causes it to be drawn up onto the blade suction surface 

as the gas approaches the tail of the blade and mixes with secondary flows. The CFD 

streamlines then suggest that the egressed coolant begins to lift from the foot into the 
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main annulus. This results in pockets of mixed coolant and main annulus gas, and areas 

of pure main annulus gas above the rim seal. The gas re-ingested into the stator well is 

drawn from these two gas mixtures. This would indicate that more coolant could mix 

out into the main annulus air as the momentum of the coolant through the wheelspace 

rim seal increases. This would reduce the amount of egressed gas present above the rim 

seal, therefore the gas drawn into the stator well would contain a lower concentration of 

coolant. This warrants further investigation.  

 

 
Figure 9-14: Streamlines of wheelspace egress, Eastwood et al (2012) 

 
 
 
Guijarro Valencia et al (2012), conducted a review of the numerical analysis methods 

used by the MAGPI work package 1 partners to try to capture this effect. Each partner 

conducted CFD studies on a geometry comprising of a 1/39 section of the rig 
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comprising of the two rotor rows of the rig, the intermediate NGV row and the upstream 

and downstream cavities.  

 

Table 9-1 shows the range of solutions run by the work package partners. These include 

a number of steady and unsteady industry standard solvers using a number of turbulence 

models. Flow rate fractions of between 0.46 and 0.59 of the interstage seal flow were 

modelled, corresponding to the ranges shown in Figure 9-12 and Figure 9-13. For each 

of the steady solutions, little or no re-ingestion was indicated, the highest being found 

with the Turbomeca solution which indicated 0.0417% of the wheelspace egress being 

re-ingested, compared to the values of around 6.5% seen in the experimental 

measurements. The low values calculated obtained from CFD analysis were attributed 

to two solver issues. Firstly we see in Figure 9-15 streamlines of main annulus and 

seeded egressed coolant. The egressed coolant, shown as turquoise streamlines was seen 

to pass over the rim seal boundary and fail to mix with the air being ingested into the 

upstream stator well.  

 

 Rolls-Royce SIEMENS University of 
Florence 

Turbomeca 

Grid PADRAM Hexa ICEM Hexa ICEM Hexa ICEM Tetra 
Grid Size 11.4 M 26.12M (fluid) 

1.92 M (solid) 
2.5 M 3.4M 

Solver HYDRA 6.1 CFX 12.0 CFX 12.1 Fluent 6.3 
Turb. model S-A wf 

k-ω SST 
k-ω SST k-ε  

standard with wf  
k-ε  
realized with wf 

y+ range ~1 2-3 30-300 30-100 
Interface Steady  

Mixing plane 
Steady  
Mixing plane 

Steady  
Mixing plane 

Steady  
Mixing plane 

Unsteady 
Sliding plane 

 Unsteady 
Sliding plane 

 

Heat transfer Adiabatic CHT Adiabatic rotor 
CHT stator 

Adiabatic 

Air Egress (Fraction 
interstage seal flow) 

0.59 0.46 0.59 0.46 
0.59 

Table 9-1: Work package partner CFD solution details, Guijarro Valencia et al (2012) 
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Figure 9-15: Streamlines of seeded coolant, Guijarro Valencia et al (2012) 
 
 
Secondly, the egressed air was seen to be drawn into the vortices from the trailing edge 

of the first row of rotor blades and into the main annulus flow. Although this effect most 

likely accounts for a large percentage of the coolant loss into the main annulus and the 

low re-ingestion rates measured experimentally, the steady state CFD solvers showed 

almost total loss through this mechanism. The unsteady solutions run by two of the 

industrial partners however, detected higher levels of re-ingestion, where levels 

corresponding to 1-2% of wheelspace egress were found. Although of the same 

magnitude as the levels found experimentally, the CFD solutions were still significantly 

lower than 6.5%.  Figure 9-16 shows streamlines of re-ingested coolant entering the 

upstream stator well cavity. The image on the left being for a steady solution where no 

coolant ingress is detected and the image on the right being for an unsteady solution 

where ingress is detected. The increase in ingress seen with the unsteady solutions was 

attributed to better modelling of the asymmetric pressure regions above the rim seal, the 

mechanism of re-ingestion suggested by the image shown in Figure 9-14.    
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Figure 9-16: Upstream stator well ingress streamlines for steady and unsteady solutions, Guijarro 
Valencia et al (2012) 

 
 

9.5 Summary 
 
 
The results of the three gas concentration experiments have been described and where 

appropriate compared to experimental and numerical data. The results of the interstage 

seal experiment were considered unsatisfactory due to variation in the concentration 

measurements made at the seal exit. In order for the experimental procedure to be valid 

full mixing of the tracer gas was required with the seal flow.  

 

Dilution ratio measurements from the rim seal exchange experiment were presented and 

compared to normalised temperature data. The general cavity sealing trends inferred 

from the dilution results were found to support the findings of the normalised 

temperature measurements.  
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The results obtained from displacement and thermo mechanical modelling techniques 

described in Chapter 7 were used to provide the necessary interstage seal flow rates for 

the rim seal and re-ingestion experiment. This did however introduce larger 

uncertainties into the mass flows calculated for rim seal egress and re-ingestion, limiting 

the conclusions that could be made about these flow rates in terms of trends with varied 

imposed cooling flows. The rate of re-ingestion of upstream coolant egress measured by 

the re-ingestion experiment gave levels of re-ingestion significantly higher than those 

found from CFD studies conducted by industrial partners. Although unsteady models 

were shown to predict some ingestion, it was suggested by Guijarro Valencia et al 

(2012) that an LES approach would improve numerical results for re-ingestion by better 

predicting diffusion of the coolant flow in the main annulus. Use of a 360° unsteady 

solution may also yield benefits by improving prediction of the tracer gas distribution 

above the rim seal, however both this technique and an LES approach would be 

extremely costly in computation time. 
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10 Conclusions 
 
 
This body of work describes the contribution of the author to experimental 

investigations conducted on an aero engine representative, two stage axial turbine test 

facility at the University of Sussex. The objectives of the research conducted by the 

author included: investigation of the extent to which gas concentration measurements 

could be used to describe and quantify interstage labyrinth seal flow, rim seal exchange 

flows and coolant re-ingestion; provide experimental data for the calibration and 

development of cavity modelling techniques; provide hot running clearances of test 

facility internal seals; provide data to quantify interstage seal flows for a range of rig 

operating conditions and coolant supply geometries; provide data to determine rim seal 

exchange flows for both bulk ingress and egress conditions for a range of rig operating 

conditions and coolant supply geometries; and, provide data to quantify the extent to 

which egressed cooling air is re-ingested into downstream cavities.  

 

10.1  Interstage Seal Flow 

The concentration measurements made to determine interstage seal flow rates were 

found to be unsuitable for the calculation method. Full mixing of the tracer gas with the 

interstage flow was required in order for this calculation to be successful. However, the 

concentration measurements made at the seal exit were found to vary circumferentially 

by ± 50% of the mean concentration value. 

 

A secondary method of obtaining interstage seal flow, including the use of displacement 

measurements and thermo mechanical modelling was implemented. The thermo 
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mechanical model was found to predict clearance changes to within 2.5% of nominal 

seal clearance. Calculated interstage seal flows based on measured and modelled seal 

displacement values were found to be within 2%. An uncertainty of ± 5% was applied to 

seal flow values obtained using this method.  

 

10.2  Rim Seal Exchange Experiment 

The rim seal exchange experiment provided concentration data suitable for comparison 

with normalised temperature measurements and numerical models, for cooling flow 

rates of 30 gs-1  55 gs-1, corresponding to in cavity Reynolds numbers of 

1.71 106 ≤ Reϕ ≤ 1.86 106 and Rew = 1.75 105. 

 

The mass flow of ingress  was shown to reduce from a mean value across all 

geometries of ~17 gs-1 to ~9 gs-1 as the cooling flow rate was increased, where the 

uncertainty of each geometry was found to be of the order of ± 0.5gs-1.  

 

Egress rate  was seen to increase from a mean value across all geometries of ~10 gs-1 

to ~18 gs-1 however, due to high uncertainties of ± 2.5 gs-1 associated with the 

calculation of the interstage seal flow, the results for egress rate were inconclusive.  

 

10.3  Re-Ingestion Experiment 

The re-ingestion experiment produced results showing re-ingestion rates of ~ 6.5% of 

the upstream wheelspace egress. Despite the uncertainty introduced by the use of 

calculated interstage seal flow to obtain this result, uncertainty in the measurement was 
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found to be ± 1%. Numerical solutions obtained by industrial partners failed to recreate 

this level of re-ingestion by some margin. The highest values of re-ingestion were 

obtained with unsteady models and were of the order of 1-2%. 

 

The results suggested a trend of reduced percentage re-ingestion with increased 

wheelspace egress. This was attributed to increased momentum of the coolant and a 

higher associated loss of coolant to the main annulus. However, this trend was within 

the bounds of uncertainty for the measurement. 

 

10.4  The Use of Concentration Measurements 

The use of concentration measurements to derive rotor cavity sealing effectiveness is a 

well established technique which is often used in experimental facilities of this type. 

The dilution ratios presented in this thesis from the rim seal exchange experiment use 

the same methodology and provide a data set suitable for comparison to numerical 

modelling techniques. 

 

The adaption of this method to directly measure rim seal exchange flow rates where an 

interstage seal flow also contributes to the cavity flow regime has been attempted by the 

author. The method has been shown to produce viable results for cavity ingress. 

Although egress has been shown and flow rates have been arrived at the, uncertainty in 

the measurement has made the result inconclusive. The technique however, is valid and 

with the implementation of the author’s recommendations for further work the 

uncertainty in the measurements could be easily reduced.  
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10.5  Recommendations for Further Work 

 
Concentration and normalised temperature data for a large range of sealing flow rates 

and coolant supply geometries has been provided in this thesis. It is recommended that 

this data be compared to CFD and numerical models to further enhance design methods 

for predicting turbine disc cooling. Both the lock plate slot and deflector plate 

geometries show promise in reducing disc temperatures by increasing entrainment of 

cooling flow to the rotor surface and improving sealing characteristics. The lock plate 

geometry achieves this by means of injecting the coolant at a higher cavity radius 

directly into the disc boundary flows, while the deflector plate actively redirects the 

coolant within the stator well towards the rotor disc. Both of these geometries could be 

further explored and developed for use in future engine design.   

 

The concentration experiments provided a methodology for direct measurement of net 

rim seal ingress and egress flows. The deficiency in this technique was shown to be the 

measurement of the interstage seal flow. This could be improved upon by including 

features to improve mixing of the tracer gas with the seal flow before the seal entrance, 

allowing direct measurement of the seal flow to be made. This could be achieved by 

injecting the tracer at multiple locations or using a diffuser upstream of the seal. 

However care must be taken not to disturb the flow physics or the inlet boundary 

conditions at the seal. To achieve this it is important to introduce tracer gas upstream of 

the seal to allow this to mix with the natural flow demanded by the pressure differential 

across the seal. 
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If successful concentration measurement of the seal flow could be achieved it would 

greatly reduce the complexity of both the rim seal exchange and re-ingestion 

experiments.   
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TSW Test Rig Start-up Procedure  

Test Number: 

Date: 

 

This  guide  is  intended  to  describe  the  operations  required  to  prepare  the  TSW  test  rig  for 

operation  where  the  main  annulus  air  is  supplied  by  the  Dart  compressor.  The  start  up 

procedure for the Dart may be found elsewhere. 

Preliminaries 

Power up measurement systems and visual checks in Test Cells 3 and 4. 

 

 Record atmospheric pressure using Laboratory barometer 

 Test Cell 3 Data logging equipment switched on – visual check for any loose leads 

 Test Cell 3 Air conditioning unit switched on and set to 20°C 

 Test Cell 4 extractor fan switched on to position 3 

 Test Cell 4 console switched on 

 Turn rig by hand 

Hydravane Compressor 

This compressor is located in the compressor room and provides the air required to drive the 

Test Cell  4 Dynamometer oil  spray  system,  Test Cell  4 Main Cooling  air  valve  and  the Dart 

bypass valve located in Test Cell 3. 

 

 Check that ¼ turn valve in far corner of Test Cell 1 is closed (TC1HV14) 

 Check that air supply valves in test Cell 3 and 4 are closed (TC3HV9‐10)(TC4HV2‐5) 

 Check that Rotameters outside Test Cell 4 are closed 

 Check Potentiometer on the Test Cell 4 control panel is set fully anticlockwise for 

fully closed  

 Check / empty oil and water separators at exit of reservoir tank  

 Check Hydravane outlet pipe valve is closed (CRV17) 

 Switch Isolator on 

 Switch Hydravane on using green button 

 Wait a few seconds for compressor note to change then fully open valve (CRV17) 

 Bleed of excess water from Yellow reservoir tank by cracking valve open and 

allowing water to escape through window via flexible tube – which must be held 

tightly. 
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 Open air valve in Test Cell 4 (TC4HV2) 

 Open Telemetry Cooling Rotameter to an indicated 200 L/min 

 Open airline drain valve in Test Cell 4 (TC4HV5) 

 Partially open airline valve, when excess water has drained, close drain valve 

(TC4HV4) 

 Fully open air valve and set regulator to 4 bar (TC4HV6) 

 Check Dynamometer oil mist system is at 1 bar, use regulator if adjustment required 

 Check Dart line blow off valve in Test Cell 2 is closed.  

Atlas Copco Compressor 

This compressor provides the cooling air to the TSW Test Rig. 

 Open water valve for inlet air cooler 

 Check that any Atlas pipeline valves in test Cell 1, 2, 3 and 5 are closed (TC1A7‐10) 

(TC2A5‐6) (TC3A4,9) (TC5A1‐2) 

 Fully open water valve in Cell 3 for cooling air heat exchanger 

 Check that Atlas line Butterfly valve in Test Cell 4 is closed (TC4A3) 

 Check that TSW main annulus inlet and exhaust valves are fully open DL8(TC4) DL6(O) 

 Plug in remote Atlas bypass controller and set fully anticlockwise for fully open 

 Check that Atlas Air Dryer valves in Compressor room are closed (CRV5‐6,10‐11) 

 Switch dryer on using green switch 

 Open compressor room doors 

 Check Atlas hot (insulated) outlet is closed (CRV1) and cool outlet is open (CRV2) 

 Check Atlas line valves so air diverted to dryer. (CRV3,12,18 = closed) (CRV7,8,9 = 

open)  

 Set compressor room extractor fan to 5, press on and then reset buttons to switch 

on 

 Switch Atlas Isolator on 

 Switch Atlas on using green button on control panel, Atlas will start up and air exits 

via bypass 

 In test cell 5, switch on small extract fan adjacent to window 

 Open dryer inlet slowly – leave to stabilize for 5 minutes (go to Dynamometer 

section) 

 Open dyer outlet slowly, then close CRV7. 

 Open dryer drain valve at rear of unit – repeat this every 20 minutes while running 

 Use potentiometer on control panel to open cooling air supply valve – 

approximately 7 turns to initiate opening 

 Open wheelspace balance supply Rotameter to an indicated 300 L/min 

 Open cooling air Rotameter to an indicated 1000 L/min (open quickly to avoid 

fluctuation) 

 Fully open potentiometer to open main cooling air valve 

 Check that Atlas output is approximately 3.2 bar when rig is running 
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Dynamometer 

Oil lubrication and power absorbing water flow systems. 

 

 Switch load control isolator on 

 Check load and unload buttons on control panel are functioning 

 Set load to mid position – leadscrew protrudes approximately 80 mm 

 Switch dynamometer oil tank valve open (check that oil is dripping) 

 Switch vapour extractor on 

 Open dynamometer oil system water cooler valve, 1/8th turn (valve in Test Cell 3) 

 Turn large red dynamometer water flow valve fully closed, then turn ¾ turns open 

 Turn bypass valve fully closed, then 6 turns out 

 Open valve in pipe connecting dynamometer exit to roof mounted chiller  

 Open valve at base of large black reservoir tank 

 Open mains water supply valve 

 Turn water pump on 

 Turn chiller fans on (check that fans are turning – view from windows upstairs) 

 Turn catch tank drain pump on 

 Check for approximately 10 to psi on the dynamometer gauges – once 

dynamometer is above 5000 rpm (inlet pressure will be higher while dynamometer 

is not rotating) 

Gearbox Lubrication 

Oil supplies for Turbine stage and gearbox. 

 

 Gearbox oil tank valve open 

 Switch oil pump on – check that gauge reads approximately 50 psi 
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Special Note for Post-Test Dynamometer Water Cooler Drain-Down 

In order  to  avoid  freezing,  the water  remaining  in  the  roof mounted water  cooler must be 

drained  at  the  end of  each  test.  This  requires  gravity draining of  the water  followed by  air 

purging, which requires the pressure provided by the Hydravane compressor. 

 

 Dynamometer water pump off 

 Black water tank mains water supply valve closed 

 Black water tank exit valve closed 

 Dynamometer water return valve closed 

 Roof cooler drains open (outside and in Test Cell 4) 

 Switch off Dynamometer catch tank pumps 

 Wait for water to finish draining 

 Ensure pressure in air line (check gauge) 

 Open valve to pressurise flying lead 

 Use flying lead to connect air line to water pipework to purge water from cooler 
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Experimental Investigation of
Turbine Stator Well Rim Seal,
Re-Ingestion and Interstage Seal
Flows Using Gas Concentration
Techniques and Displacement
Measurements
Gas turbine engine performance requires effective and reliable internal cooling over the
duty cycle of the engine. Life predictions for rotating components subject to the main gas
path temperatures are vital. This demands increased precision in the specification of the
internal air system flows which provide turbine stator well cooling and sealing. This in
turn requires detailed knowledge of the flow rates through rim seals and interstage laby-
rinth seals. Knowledge of seal movement and clearances at operating temperatures is of
great importance when prescribing these flows. A test facility has been developed at
the University of Sussex, incorporating a two stage turbine rated at 400 kW with an
individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows
internal cooling geometry to be rapidly reconfigured, while cooling flow rates of between
0.71 CW, ENT and 1.46 CW, ENT, may be set to allow ingress or egress dominated cavity
flows. The main annulus and cavity conditions correspond to in cavity rotational Reyn-
olds numbers of 1.71� 106< Reu<1.93� 106. Displacement sensors have been used to
establish hot running seal clearances over a range of stator well flow conditions, allow-
ing realistic flow rates to be calculated. Additionally, gas seeding techniques have been
developed, where stator well and main annulus flow interactions are evaluated by meas-
uring changes in gas concentration. Experiments have been performed which allow rim
seal and re-ingestion flows to be quantified. It will be shown that this work develops the
measurement of stator well cooling flows and provides data suitable for the validation of
improved thermo-mechanical and CFD codes, beneficial to the engine design process.
[DOI: 10.1115/1.4005967]

1 Introduction

The prevention of hot main stream gas ingress through turbine
rim seals is of great interest to gas turbine manufacturers. Hot gas
ingestion through rim seals into disk cavities can lead to the over-
heating of disks, reducing component life. It is commonly neces-
sary to provide cool sealing air to the disk cavities to prevent or
limit this ingestion of hot main annulus gas. The necessary coolant
flow rate is governed by flows prevalent to stator wells and the
exchange of the stator well flows with the main annulus flows at
the rim seal. The cooling air is supplied from various compressor
bleed locations. Since this directly affects the cycle performance
it is important that the sealing air required to prevent ingestion is
minimized. This paper discusses the use of gas concentration
(GC) measurement techniques together with direct seal clearance
measurements. The work is part of continuing investigations using
the multiconfiguration Turbine Stator Well (TSW) test facility at
the Thermo-Fluid Mechanics Research Centre (TFMRC) at the
University of Sussex. It is part of the EU FP6 MAGPI (Main
Annulus Gas Path Interactions) program, which has the purpose
of improving the understanding of interactions between cooling

and main stream flows. The TSW facility at the University of Sus-
sex was developed to study the interaction of stator well cooling
and main annulus air. A detailed overview of the test facility is
described by Coren et al. [1]. The rig can be run at engine repre-
sentative conditions with a number of stator well geometries,
allowing coolant delivery path and flow rate to be investigated. In
addition to the gas concentration instrumentation discussed within
this paper, the rig includes a high density of temperature and pres-
sure instrumentation. The results from two distinct GC experi-
ments are discussed. The first set of experiments looks at gas path
interaction in the vicinity of the rim-seals by quantifying the net
ingestion of main annulus flow into the upstream stator well cav-
ity. This was carried out across a range of cooling flows and deliv-
ery geometry. The second was conducted to obtain measurements
to confirm the presence of cool upstream wheelspace flows being
re-ingested into stator well cavities downstream. In support of
these tests displacement sensors have been installed which allows
a FEA model to be validated, which enables the calculation of hot
geometry.

2 Review of Flows

The stator well flow field comprises disk entrainment, rotor sta-
tor core flow, coolant, rim seal exchange and interstage seal flow.
In a rotor stator configuration where s/b> 0.1 the rotor and stator
can be assumed to have separate boundary layers with a 2D core
which rotates. Daily and Nece [2] showed that the swirl ratio, b, is
in the region of 0.4 relative to the rotor. Chew [3] provides a
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relationship (Eq. (3)) which allows the flow entrained by a partial
disk CW,ENT to be related to the free disk entrainment CW,0 (Eq. (2))
as demonstrated by Dorfman [4]. This is useful for the TWS rig
arrangement where the drive arm can be considered a disk hub.

The introduction of coolant into a stator well has a significant
influence on the flow structure. In the Sussex TSW rig coolant
may be introduced through either drive arm holes or bled through
simulated lock plate slots. For the purpose of this paper cooling
flows are given as a fraction of the disk entrainment CW, ENT.
Rotational Reynolds number is defined in Eq. (1). The density is
calculated from the temperature and static pressure taken at a ra-
dius r¼ 0.905b, corresponding to the mid height of the upstream
rotor stator cavity.

R eu ¼
qxb2

l
(1)

CW;O ¼ 0:219 R eu
0:8 (2)

CW;ENT ¼ CW;O 1� a

b

h i5
� �

(3)

where: CW;ENT ¼ flow entrained by a disk with inner hub, CW; o

¼ flow entrained by a free disk, a and b are the inner and outer
disk radii.

The flow of coolant, in particular the drive arm holes, due to
their low radius entry into the stator, can affect the interstage seal
inlet pressure and velocity. For cases where the supplied cooling
flow is less than the disk entrainment value, the stator flows are in
general dominated by entrainment flows and the interstage seal
flow. As the coolant flow rate increases and becomes greater than
the entrainment rate the stator flows become increasingly domi-
nated by the resulting changes in core flow. Owen and Phadke [5]
developed a correlation relating sealing coolant supply rates to
main annulus conditions for a variety of rim seal geometries.
Interstage seals are used to reduce the flow of air from upstream
to downstream stator wells. The seal flow is largely influenced by
clearance value and the pressure drop across the seal which is a
function of the upstream and downstream conditions including the
pressure drop over the stage in the main annulus. The seal flow is
calculated using the St. Venant-Wantzell equation for the ideal
flow together with a single discharge coefficient, CD, which
accounts for all of the dependent parameters.

_m ¼ CD
P1Affiffiffiffiffi

T0

p P2

P1

� �1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

Rðc� 1Þ 1� P2

P1

� �c�1
c

" #vuut (4)

Zimmerman and Wolff [6], Gamal and Vance [7] and Wittig
et al. [8] provided seal discharge coefficients for a number of seal
clearances, geometries and pressure ratios. Rim seal flows are
influenced by both the pressure drop across a stage as well as the
seal geometry and pressure drop across the interstage seal. Cir-
cumferential pressure asymmetries in the main annulus which
result from the flows associated with the blade rows can also have
a large influence on rim seal flows. This effect was shown by Gen-
tilhomme et al. [9]. The effect of the re-ingestion of cooling air
from upstream cavities was investigated by Georgakis et al. [10].
It was shown that re-ingestion of upstream egress provided signifi-
cant contribution to stator well cooling, which was quantified as
improving thermal effectiveness on the downstream cavity walls.

3 Previous Gas Concentration Studies

Phadke and Owen [11] conducted studies of a rotor-stator sys-
tem with seven distinct rim seal geometries, including axial, radial
and mitred seals. The seals were tested over a range of clearance
ratios and rotational Reynolds numbers. Tracer gas, nitrous oxide,
could be supplied to the rig through either the cooling flow, or to

the external air outside the rim seal. In order to measure the mini-
mum amount of cooling air required to seal the rotor-stator wheel-
space, the cooling air was supplied with a known concentration of
nitrous oxide. The rotational speed of the rig was then increased
while keeping the coolant flow constant, until the concentration
was seen to drop. This was considered to be due to the ingress of
air into the wheelspace, and indicated the point at which the sup-
plied cooling air was insufficient to seal the wheelspace. Dadkhah
et al. [12] conducted gas concentration experiments on two engine
representative seals, one where the wheelspace is upstream of a
rotor and a second where the wheelspace is downstream of a rotor.
Gas concentration measurements where made via a traverse
within the wheelspace at four radial locations, r¼ 0.163b, 0.411b,
0.658b, 0.905b, using nitrous oxide as a tracer gas seeded into the
cooling air. The concentration measurements were used to deter-
mine the amount of main annulus gas ingested as well as the dis-
tribution of the ingested gas in the wheelspace. The study showed
that where ingestion was present, the ingested gas entering the
wheelspace was entrained onto the stator, where it then proceeded
downwards. The ingested gas then moved across the core of the
wheelspace into the rotor boundary layer. The study also showed
that the highest dilution levels occurred at the higher radius of the
wheelspace. Ingress mass flows were estimated by integration of
the mean gas concentration levels. As part of an investigation into
ingestion through rim seals, Gentilhomme et al. [9] seeded cooling
air with nitrous oxide and carbon dioxide and then made concen-
tration measurements within the stator well. The results were
compared to unsteady CFD solutions and a basic ingestion model.
It was also shown through gas concentration results that the ratio
of seal to annulus flow velocity was useful when correlating inges-
tion rates. Green and Turner [13] used gas concentration techni-
ques to investigate ingestion into the upstream wheelspace of an
axial turbine. Using nitrous oxide as a tracer, gas concentration
measurements were used together with pressure measurements to
determine the level and distribution of ingestion. It was found that
ingestion was present, even at sealing flow rates where the sup-
plied sealing flow was greater than the disk entrainment. Dunn
et al. [14] used measurements of concentration, static pressure and
velocity together with numerical simulation to investigate the
flow fields in a single-stage model air turbine rotor-stator cavity.
Results showed circumferential static pressure variation in the
main annulus caused by large scale flow structures directly
affected the rim seal flow structure.

4 Facility Overview

The test facility at the University of Sussex consists of a two
stage axial turbine test section, rated to 400 kW, with an engine
representative geometry, at an overall design pressure ratio of
approximately 2.7:1. Hot main annulus air is supplied to the test
section by an adapted Rolls Royce DART 3 MW aero engine. The
air passes through a settling chamber and bellmouth to reduce
pressure asymmetry and swirl in the test section. A hydraulic dy-
namometer and 3:1 reduction gearbox are used to absorb the
power transmitted by the turbine. Cooling air is supplied to the
test section via an Atlas Copco ZT250 oil free compressor. Flow
control valves allow adjustments of þ/�0.1 gs21 to be made dur-
ing a test run. Both the annulus flow and cooling flow lines are
insulated. The cooling air supplied to the rig, including both the
main cooling flow and the balance flow, as well as the seal vent
air coming from the rig are measured by hot film flow meters.
These were calibrated to an accuracy of þ/�1.3% for the range of
mass flow for intended measurements. The main annulus mass
flow is measured using an upstream venturi. The stationary com-
ponents of the test section contain 73 K-type thermocouples at
various locations including both metal and air measurements. The
rotating assembly contains 81 K-type thermocouples at 27 distinct
locations. A Datatel radio telemetry system provides noncontact
transmission of the signals. The rig includes a number of pressure
measurements, which are used to monitor main annulus conditions
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and aid in the balancing of cooling system seals. The accuracy
obtained after calibration is within 0.017% of span for 0 to 3.5
bar. Figure 1 shows the major dimensions of the test section (at
the request of industrial partners these have been nondimensional-
ized). The dimensions are presented in terms of h, the radial dis-
tance from the rotor shaft to the outer radius of the main annulus.
Table 1 gives the blade and nozzle parameters of each stage.

5 Experimental Objectives

The GC measurements on the turbine stator well rig are
designed to satisfy two measurement objectives:

(i) obtain measurements of main annulus rim seal exchange
(ii) obtain measurements of flow re-ingested into the stator

well cavities

The measurement of the rim seal exchange was conducted with
geometry used as part of the cooling effectiveness studies. The re-
ingestion experiment however required a bespoke geometry to be
tested where the coolant delivery paths to the stator well were
blocked.

6 Gas Concentration Instrumentation

The development of the GC measurement system used for the
experiments described here required a dual species gas delivery,
sample handling and measurement system. Carbon dioxide was
selected due to its non corrosive property, having no detrimental
effect on the rig or piping materials. The carbon dioxide is deliv-
ered from a 25 kg supply at 50 bar. The carbon dioxide passes
through an inline heater to ensure the gas delivery temperature to
the seeding supply flow meter is within þ/�10 K of temperature
at which the meter was calibrated. This results in a seeding flow
rate uncertainty of þ/�0.01 gs�1. The metered seeding gas is then

introduced to the main cooling supply flow to provide a homoge-
neous gas mixture. Gas samples are taken from four locations
within the rig, two located in the upstream wheelspace and two in
the downstream wheelspace, each located at r¼ 0.905b.

Figure 2 shows the stator well dimensions, including the major
dimensions of the interstage seal and the upstream and down-
stream rim seals. The location of the drive arm inserts and simu-
lated lock plate coolant supply routes are also shown. The
locations of the gas concentration measurements are shown on the
stator foot as black dots, with the circumferential location noted.
The dimensions are presented in terms of s, the upstream rotor-
stator spacing. The gas samples are taken at a flow rate of less
than 0.002 CW, ENT which approached isokinetic conditions. Each
of the sampling locations are pressure taps during normal running
of the rig. A solenoid system allows the measurement to be
switched between gas sampling or pressure measurement. When
the solenoids are in the position to allow gas samples, the gas is
piped to the gas analyzer. The gas analyzer consists of two NDIR
infrared units run in series, having ranges of 0–1% and 0–10%
carbon dioxide content by volume. Due to the transport time of
the gas through the system the measurements are time averaged
values.

Fig. 1 Test section geometry

Table 1 Blade and nozzle parameters

Stator 1 Rotor 1 Stator 2 Rotor 2

Pitch/chord 0.6806 0.7791 0.7301 0.7512
Height/axial chord 1.199 2.188 1.233 2.568
Inlet mach number 0.1885 0.2763 0.2570 0.3014
Exit mach number 0.6563 0.6001 0.6529 0.6143
Inlet flow angle (deg) 0.00 36.68 19.02 23.32
Exit flow angle (deg) 70.07 65.36 64.60 59.33
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7 Measurement Validation

Before the installation of the instrumentation on the TSW rig
an external test was undertaken to prove the measurement method.
Metered ambient air was supplied to a length of pipe. A known
mass flow of carbon dioxide was then used to seed the ambient
air. Both of these mass flows were measured using the flow meters
to be used in the rig. A sample of the gas mixture was then taken
100 diameters downstream to ensure fully mixed flow, which was
then passed to the gas analyzers. The measured concentration was
compared to the ideal concentration calculated from the known
mass flows of air and carbon dioxide introduced to the pipe. This
was repeated with a variety of air to carbon dioxide ratio’s of rates
expected within the TSW rig. The measured data was found to be
within 1% of the calculated data across the seeding range. Once
installed in the TSW rig the entire GC seeding and sampling sys-
tem was tested on the rig. The test was conducted with the rotating
assembly stationary and with the rig inlet and outlet closed. This
allowed the rig to be pressurized, giving a pressure drop from the
rig to the gas analyzers of the magnitude that would be seen dur-
ing a full test matrix run. This also ensured a homogenous mix of
ambient air to carbon dioxide throughout the TSW rig. As with
the pipe test, a metered amount of ambient air and carbon dioxide
seeding gas was then supplied to the TSW rig. This was supplied
via the main cooling air path. Once the pressure in the rig had
reached the desired level, samples were taken from the rig mea-
surement points. The test was conducted at three seeding flow
rates. For each condition the measurement points showed the sam-
pling system to give repeatable results within 2%. This represents
the uncertainty of the system.

8 Rim Seal Exchange Experiments

The rim seal exchange experiments were designed to provide
information on the interaction of main annulus and cooling air
across the upstream stator well rim seal. The gas flows being

investigated are shown in Fig. 3. For these experiments, coolant
with a known concentration of carbon dioxide was introduced to
the test section through either drive arm holes or simulated lock
plate slots. Concentration measurements in the stator well were
then made. From the supplied and measured concentration, a dilu-
tion ratio is calculated. This, together with a known interstage seal
flow can be used to calculate the net rim seal exchange. Due to
the pressure ratio of the downstream stator well to the main annu-
lus it is assumed that the there is no/minimal ingress through the

Fig. 2 Stator well and seal dimensions

Fig. 3 Rim seal exchange experimental flows
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downstream stator well rim seal. Therefore, gas samples taken
from the downstream cavity give the concentration of the gas mix-
ture which has passed through the interstage seal and therefore
can be used to inform concentration measurements taken upstream
of the interstage seal.

Although it would be possible to measure the coolant delivery
rate, calculate the interstage seal flow and from summation alone
determine an average rim seal flow, this would not take into
account the possibility of a rim seal exchange. The technique used
here was developed to overcome the inherent uncertainties of a
direct summation approach to determining the rim seal flow. The
difference in the concentration measured in the stator wells as
compared to the delivery rate allows the total amount of main
annulus air entering the stator well to be calculated. Where the
addition of this value to the supplied cooling flow exceeds the
interstage seal flow, a rim seal exchange is indicated. This is
shown in the following analysis. The carbon dioxide is mixed
with the cooling air before entering the test section. The total
mass flow rate is then calculated.

_mSC ¼ _mC þ _mSG (5)

From the known mass flows of carbon dioxide and cooling air the
concentration of the supplied coolant is calculated, taking into
account the ambient carbon dioxide level.

GCSC ¼
100

_mSC

� �
� _mSG þ

_mC

100

� �
� Ambient CO2

� �� �� �
(6)

From the calculated delivery concentration and the concentra-
tion measured in the stator well a dilution ratio is calculated.

DR ¼ GCSW

GCSC

� �
(7)

The dillution ratio is then used to calculate the total flow into
the cavity, which includes the supplied coolant and ingested main
annulus gas.

_mUSW ¼
_mSC

DR

� �
(8)

From this value, the rim seal exchange values for seal ingress and
egress can be calculated

_mING ¼ _mUS W � _mSC (9)

_mEGR ¼ _mUSW � _mIS (10)

9 Re-ingestion Experiment

Quantifying the re-ingestion of coolant gas is often difficult or
impossible with temperature and pressure measurements alone.
The main obstacle to this measurement is differentiating between
re-ingested and normally supplied cooling air to a cavity. In order
to address this, a specific experiment was devised. This is shown
in Fig. 4. Both the drive arm holes and simulated lock plate slots
were blocked ensuring the direct coolant supply paths to the
stator-well cavity were closed. The upstream wheelspace was then
supplied with seeded cooling air. With the rig in this configura-
tion, all the seeded cooling flow passes up the wheelspace and
directly into the main annulus flow. This ensures that the only
path for coolant to reach the stator-well is by re-ingested from the
main annulus. The data reduction equations are outlined below.

Cooling air seeded with a known mass of carbon dioxide is sup-
plied to the upstream wheelspace. The total wheelspace supply is
calculated from these measured values.

_mWS ¼ _mC þ _mSG (11)

The concentration of the wheelspace supply can then be
calculated

G CWS ¼
100

_mWS

� �
� _mSG þ

_mC

100

� �
� Ambient CO2

� �� �� �
(12)

Concentration measurements are then taken in the stator wells.
As the coolant delivery paths are blocked total rim seal ingress
into the upstream stator well is equal to the interstage seal flow.

_mUSW ¼ _mIS (13)

The ratio of the supplied wheelspace coolant flow concentration
and the measured stator-well concentration can then be calculated.

DR ¼ GCSW

GCWS

� �
(14)

The wheelspace flow which has been re-ingested into the
upstream stator-well can then be calculated

_mRE ¼ _mUSW � DR (15)

10 Interstage Labyrinth Seal Flow Estimation

The TSW interstage labyrinth seal is a three fin straight through
seal with a 0.3 mm cold build clearance, set so that the seal
demand is lower than disk entrainment flow and coolant delivery.
It will be shown later that the hot running clearance is 0.4 mm.
This results in a clearance that is scaled down from typical engine
values, giving low rotational Reynolds numbers when compared
too much of the data in open literature. For the purpose of this
work, the 2D, nonrotating data of Wittig et al. [8] has been used to
estimate a CD. Their tightest clearance tested, 0.5 mm, (together
with 2.5, 1.5 and 1.0 mm) is close to the TSW seal and the geome-
try is similar. Specifically, the estimation of the CD value has been
derived from an extrapolation of the 6 and 1 fin data, too 0.3 mm
clearance. An estimate for the 3 fin CD was derived from the nu-
merical modeling of the Wittig et al. data by Kim and Cha [15].
Equivalent 2, 3, 4 and 5 fin predictions were made together with
the 1 and 6 fin cases. Based on their results, the 3 fin CD is
expected to be approximately 45% worse than the 6 fin value
in comparison to the single fin datum, which gives a CD estimate
of 0.48.

Fig. 4 Re-ingestion experimental flows
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Figure 5 shows a comparison of seal flows calculated using a
CD of 0.48 with the St. Venant-Wantzell equation, with seal flow
results from CFD. The pressure ratio is the upstream to
downstream seal pressure. The normalized seal flow is seal flow/
CW,ENT. The CFD results are within 2% of the calculated values.
The effect of rotation has been shown to reduce the discharge
coefficient. The TSW seal is at the borderline between the axial
and rotationally affected regimes, so the effect is not expected to
be significant.

11 Displacement Instrumentation

An experimental method was devised to measure hot running
geometry changes using eddy current displacement sensors. A
sensor for measuring axial movement in the rig is located down-
stream of rotor 2, while a second sensor is located on the stator
foot downstream of the interstage seal. This sensor measures the
change in radial gap of the seal which is of particular importance
when quantifying interstage seal flows. The space available and
operating environment dictated that a non contact system was
essential, which removes the possibility of contact errors and fric-
tional heating of the measurement surface. It was necessary to
complete the sensor calibration before rig assembly, meaning the
sensors could not be calibrated while subject to operating temper-
ature and pressure. In order to quantify the possible uncertainty of
calibrating at ambient conditions rather than operating conditions
an isothermal box was created in which each sensor could be
placed and output changes due to changes in temperature meas-
ured. For each sensor the resultant measurement uncertainty due
to temperature change from ambient to operating temperature was
less than the dynamic resolution of the sensor. The radial sensor
calibrations were found to be repeatable to within þ/�0.02 V,
corresponding to a measurement uncertainty of þ/�0.001 mm
over the 0.5 mm range.

Data from the radial sensor gives a direct measurement of the
net interstage seal movement. Figure 6 shows the seal movement
for a typical rig commissioning run as well as the associated rig
speed. Stator and rotor temperatures for the run are also shown.
The cooling flow rate has been kept constant so that the dominant
factor in the increasing rig temperatures seen are the result of
increasing hot main annulus flow. As the rig begins to rotate an
initial spike is seen in the seal gap as the blades load and the rotat-
ing assembly settles (point a). The seal gap can then be seen to
close as the stator temperatures initially drop (point b). However
the gap then begins to open as rig temperatures increase (point c).
The stator material has a coefficient of thermal expansion almost
40% greater than that of the rotor material. The higher radius part

of the seal where the sensor is mounted therefore expands more
than the lower radius rotating part of the seal despite the similar
temperature of the rotor and stator at a similar radius to the seal.
The seal gap can then be seen to settle once the temperatures sta-
bilize (point d).This pattern can be seen to repeat with each speed
increase up to 10,000 rpm where the seal gap has increased by
0.1 mm (point e). The seal cold build clearance of 0.3 mm has
therefore seen an increase of 33% highlighting the importance or
accurately predicting the hot geometry of such seals and the influ-
ence on the flows within the stator well. At the end of the run, a
sudden increase in seal gap is seen as the main annulus supply is
removed and the rotating assembly slows (point f). At this point
any centrifugal growth has been removed causing the rotating as-
sembly to reduce in radius, moving away from the stationary as-
sembly. The gap then begins to close up as the rig rapidly cools
(point g). The radial sensor was not installed for the duration of
the test matrix. In order to provide seal clearance values across
the TSW test matrix, a thermo-mechanical modeling capability
has been developed. A model constructed using the Rolls-Royce
in-house code SC03, was matched thermally by using test data
temperatures to inform model boundary conditions. The resulting
seal movement was then compared to the experimental values of
displacement taken from the radial sensor. The model was found
to predict the change of seal clearance to within 0.009 mm.

12 Rim Seal Exchange Experimental Results

Rim seal exchange GC measurements were taken with four rig
geometries at cooling flows of 0.77 CW, ENT and 1.04 CW, ENT

corresponding to in cavity rotational Reynolds numbers of
1.76� 106<Reu<1.86� 106. The four geometries studied,
including 26 and 39 drive arm holes and 26 and 39 simulated lock
plate bleed slots, are shown in Fig. 7.

The dilution ratios for the four measurement locations for both
drive arm configurations are shown in Fig. 8. A dilution ratio of

Fig. 5 Comparison of CFD and calculated seal flows
using CD 5 0.48. Upstream to downstream seal pressure
ratios 5 1.333 – 1.348.

Fig. 6 Radial sensor output, rotational speed and rotor-stator
temperatures for a full test cycle
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zero indicates that no seeded cooling air is present, a ratio of 1
indicates that no main annulus air is present. For both drive arm
hole configurations at 0.77 CW, ENT a large variation was seen
between the measurements taken in the upstream wheelspace and
the measurements taken in the downstream wheelspace. The
lower dilution ratio in the upstream wheelspace indicates that
the cooling air has not fully mixed with main annulus ingress into
the cavity. The higher ratio in the downstream cavity suggests the
cooling air directly feeds the interstage seal, so a higher concen-
tration is measured in the downstream cavity.

The dilution ratios for the measurement locations at
1.04 CW, ENT show a similar effect, where the dilution ratio is
lower for the upstream cavity. However the difference is greatly
reduced when compared to 0.77 CW, ENT. This suggests that with
increased cooling flow the coolant has more fully mixed at the
upstream measurement locations, cooling at a higher radius in the
cavity. This increase in cooling effectiveness at higher cavity ra-
dius is in agreement with the findings of Coren et al. [1] which
indicated cavity sealing in the vicinity of 1.04 CW, ENT. Fig. 9
shows stator well streamlines from a CFD study of the 39 drive
arm hole geometry for two coolant flow rates of 0.58 CW, ENT and
0.77 CW, ENT. For 0.58 CW, ENT, where the supplied coolant flow

rate is much lower than the disk entrainment it can be seen that
the coolant does not penetrate to the higher radius areas of the sta-
tor well but directly feeds the interstage seal. For 0.77 CW, ENT the
coolant has penetrated into the cavity. A detailed overview of this
study can be found in Coren [16]. Comparison of the downstream
measurement locations, where the sampled gas has more com-
pletely mixed for both flow rates, shows that the dilution ratio
increases with increased coolant flow. This indicates that for the
higher coolant flow rate the upstream cavity has been more effec-
tively sealed reducing the ingress of hot main annulus gas through
the rim seal. The results also suggest generally worse sealing with
fewer delivery holes. This is not yet fully understood.

The dilution ratios for the four measurement locations for both
lock plate slot configurations are shown in Fig. 10. The results for
the lock plate slot geometries showed much closer agreement
between the dilution values seen for the upstream and downstream
measurement locations for 0.77 CW, ENT and 1.04 CW, ENT. This
suggests that with lock plates the coolant has mixed fully with
ingested main annulus air in both cavities as opposed to the drive
arm geometries where the coolant had not fully mixed in the
upstream cavity. This is due to the coolant being fed directly into
the disk entrainment. This result indicates that the introduction of

Fig. 7 Cooling supply geometries

Fig. 8 Measured dilution ratios for 39 and 26 drive arm holes,
at cooling flow rates of 0.77 CW, ENT and 1.04 CW, ENT,
1.76 3 106 < Reu < 1.86 3 106

Fig. 9 Cavity streamlines for drive arm configuration colored
by normalized absolute frame total temperature, interstage seal
flow 5 0.9 CW, ENT

Fig. 10 Measured dilution ratios 39 and 26 lock plate slots, at
cooling flow rates of 0.77 CW, ENT and 1.04 CW, ENT,
1.76 3 106 < Reu < 1.86 3 106
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the cooling air through the lock plate slots has increased the
amount of coolant present at the higher radius areas of the
upstream stator well. This result is corroborated by the findings of
Coren et al. [16] which indicate greater upstream cavity mixing
with lock blade bleed slots when compared to drive arm hole
delivery. As with the dilution ratios obtained for the drive arm
tests, the ratios obtained for both the 26 and 39 lock plate slot geo-
metries show an increased concentration measurement for the
higher cooling flow. This shows that the higher cooling flow has
reduced the ingress of main annulus gas into the upstream cavity.
As expected for both 26 and 39 lock plate slots the dilution ratio
is within 0.05 of being equal to 1, showing minimal ingestion
through the rim seal. The increased sealing of the cavities for both
the drive arm and lock plate slots shown by the concentration
measurements are supported by the temperature measurements
discussed in Coren et al. [16]. Cooling effectiveness was seen to
increase with increased cooling flow. Temperature measurements
also support the findings from the lock plate slot tests where cool-
ant is thought to have penetrated further into the cavity and
increased cooling on the stator face when compared to similar
flow rates through drive arm hole geometries.

13 Re-Ingestion Experimental Results

The re-ingestion experiment was conducted at three wheelspace
egress rates, where Reu¼ 1.65� 106. This value is lower than
would be expected under normal rig conditions due to the lack of
cooling air being directly supplied to the rotor stator cavity.
Results are shown in Fig. 11 and Fig. 12 based on upstream and
downstream measurement locations. These results are based upon
interstage seal flows calculated with a hot running clearance cal-
culated using displacement sensor measurements and a CD of 0.5,

the CD value being increased from 0.48 to account for the increase
in seal area under hot running conditions. The egress and re-
ingestion rates are shown as fractions of interstage seal flow. Fol-
lowing publication of Paper GT2011-45874 [17] a minor leak was
found between the lock plate covers. In order to address this, the
seal gaps were sealed and the re-ingestion experiments repeated.
This activity included two tests between which the rig was
stripped in order to confirm the new seals had remained in place.
The new results show a lower rate of re-ingestion than previously
seen, however the trends remain the same as shown in Paper
GT2011-45874 [17].

Figure 13 shows the percentage of wheelspace egress which is
re-ingested into the stator cavity against the egress rate, where the
egress rate is given as a fraction of the main annulus flow. It can
be seen that although re-ingestion increases with increased egress
the percentage of the re-ingestion decreases. Figure 14 shows a
CFD solution displaying streamlines which are seeded at the point
of egress from the wheelspace. The wheelspace has not been mod-
eled. The streamlines suggest that the coolant would be initially
entrained directly on to the blade foot boundary layer. The low
momentum of the fluid causes it to be drawn up onto the blade
suction surface as the gas approaches the tail of the blade and
mixes with secondary flows. As such it is likely the coolant begins
to lift from the foot in to the main annulus. This results in pockets

Fig. 11 Measured re-ingestion rates for wheelspace egress
rates of 0.46IS to 0.59IS, Reu 5 1.65 3 106

Fig. 12 Measured re-ingestion rates for wheelspace egress
rates of 0.46IS to 0.59IS, Reu 5 1.65 3 106

Fig. 13 Percentage re-ingestion rates for wheelspace egress
expressed as a fraction of main annulus flow, Reu 5 1.65 3 106

Fig. 14 Streamlines of wheelspace egressed coolant
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of mixed coolant and main annulus gas and areas of pure main
annulus gas above the rim seal. The gas re-ingested into the stator
well is drawn from these two gas mixtures. The reduction in per-
centage re-ingestion with increased egress indicates that more
coolant is mixing with the main annulus air as the momentum of
the coolant through the wheelspace rim seal increases, which sim-
ply reduces the concentration at the rim seal.

14 Conclusions

A two stage turbine rig with a shrouded second stage has been
used to investigate ingestion in a turbine stator well. The rig ena-
bles investigation of coolant supplied by means of both coolant
supply holes in the drive arm as well as coolant supplied by means
of lock plate bleed slots. A noninvasive technique using tracer gas
seeding and detection together with displacement sensors has
been developed to provide measurements of rim seal exchange
flows and re-ingestion flows within a engine representative test
rig. Dilution ratio data from GC measurements has shown that as
the cooling flow rate in the stator well increases, the coolant mixes
more fully in the upstream stator well, providing more effective
cooling at a higher radius with an effective reduction of the
ingress of hot main annulus gas through the rim seal. At low flow
rates the coolant is thought to pass straight through the interstage
seal. Re-ingestion experiments have indicated that the percentage
of wheelspace egress re-ingested is in the region of 7% for the
range of realistic coolant flow rates explored, with the re-ingestion
reducing with increasing coolant flow. The GC results can be used
to determine the sealing effectiveness of a number of coolant flow
rates. The data is suitable for the progression and validation of
modern conjugate/coupled analysis tools.
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Nomenclature
a ¼ disk inner radius (m)

ASEAL ¼ circumferential seal area (m3)
b ¼ disk outer radius (m)

CD ¼ seal discharge coefficient
_m ¼ mass flow rate (kg s�1)
P ¼ static pressure (Pa)

P0 ¼ total pressure (Pa)
r ¼ local radius (m)
R ¼ gas constant for air (J kg�1 K�1)
s ¼ axial rotor-stator spacing (m)
T ¼ static temperature (K)

To ¼ total temperature (K)
l ¼ dynamic viscosity (kg m�1 s�1)

vu ¼ tangential velocity component (ms�1)
q ¼ density (kg m�3)
c ¼ ratio of specific heats
x ¼ rotational speed (rad s�1)

Dimensionless
CW, ¼ nondimensional throughflow, m b�1l �1

Reu ¼ rotational Reynolds number, qxr2l�1

b ¼ swirl ratio, vu rx �1

Subscripts
0 ¼ free disk flow value
1 ¼ upstream of interstage seal
2 ¼ downstream of interstage seal
C ¼ cooling air

EGR ¼ rim seal egress
ENT ¼ disk with inner hub flow value
ING ¼ rim seal ingress

IS ¼ interstage seal flow
RE ¼ re-ingested flow
SC ¼ seeded cooling air
SG ¼ seeding gas
SW ¼ stator well (either up or downstream)

USW ¼ upstream stator well
WS ¼ wheel space

Abbreviations
CFD ¼ computational fluid dynamics

DR ¼ dilution ration
GC ¼ gas concentration

NDIR ¼ nondispersive infrared sensor
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ABSTRACT 

Market competitiveness for aero engine power plant 
dictates that improvements in engine performance and 
reliability are guaranteed a priori by manufacturers. The 
requirement to accurately predict the life of engine components 
makes exacting demands of the internal air system, which must 
provide effective cooling over the engine duty cycle with the 
minimum consumption of compressor section air. Tests have 
been conducted at the University of Sussex using a turbine test 
facility which comprises a two stage turbine with an individual 
stage pressure ratio of 1.7:1. Main annulus air is supplied by an 
adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 
kg s-1. Cooling flow rates ranging from 0.71 to 1.46 Cw, ent, a 
disc entrainment parameter, have been used to allow ingress or 
egress dominated stator well flow conditions. The mechanical 
design of the test section allows internal cooling geometry to be 
rapidly re-configured, allowing the effect of jet momentum and 
coolant trajectory to be investigated. An important facet to this 
investigation is the use of CFD to model and analyse the flow 
structures associated with the cavity conditions tested, as well 
as to inform the design of cooling path geometry. This paper 
reports on the effectiveness of stator well coolant flow rate and 
delivery configurations using experimental data and also CFD 
analysis to better quantify the effect of stator well flow 
distribution on component temperatures. 

NOMENCLATURE 
a  Disc inner radius [m] 
A  Cross sectional area 
b  In-cavity disc outer radius [m] 
CD  Discharge coefficient 
Cp  Specific heat at constant pressure [J kgK-1] 
d  Inner Diameter [m] 
D  Outer diameter [m]    
N  Turbine speed [rpm] 
m  Mass flow rate [kg s-1] 

 

 

P  Static pressure [Pa] 
P0  Total pressure [Pa] 
r  Local radius [m] 
R  Universal gas constant 
s  Axial rotor-stator spacing [m] 
T  Static temperature [K] 
T0  Total temperature [K] 
vϕ  Tangential velocity component [ms-1] 
vz  Axial velocity component [ms-1] 
ω  Rotational speed [rad s-1] 
ρ  Density [kg m-3] 
μ  Dynamic viscosity [Pa s] 
 

Dimensionless 
Cw  Non-dimensional throughflow, m bμ

 -1 
G  Cavity aspect ratio, sb

-1 
Reϕ  Rotational Reynolds number, ρωb

2
μ

-1 
Rez  Annular seal Reynolds number, ρvz(D-d μ

-1 
β  Swirl ratio, vφ rω

 -1 

λT  Flow parameter, Cw Reϕ
-0.8

 
 

Subscripts 
0  Free disc flow value 
1  Station upstream of Stator 1, main annulus 
2  Station upstream of Rotor 1, main annulus 
3  Station upstream of Stator 2, main annulus 
4  Station upstream of Rotor 2, main annulus 
cold  Cold Reference value 
coolant  Coolant condition 
ent  Disc entrainment flow 
hot  Hot reference value 
inlet  Inlet condition 
metal  Metal condition 

s  Superposed flow value 
 

Abbreviations 
CFD  Computational Fluid Dynamics 
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INTRODUCTION 
This paper reports an experimental investigation into 

turbine stator well cavity cooling. Optimisation of the coolant 
and sealing flows in stator well cavities has potential benefits 
for both overall cycle efficiency and component life. As such, 
these themes provide the focus for the research here. In 
particular, the relationship between superposed cooling flow 
and rim seal ingestion, and the influence of coolant delivery 
geometry on cavity wall temperature distribution, is discussed 
here. Experimental findings are quantified in terms of a thermal 
effectiveness parameter, while CFD code has been used to 
reinforce understanding of the associated flow structures.  

The flow and heat transfer within the cavities adjacent to 
the hub of a turbine stage has a significant effect on the 
durability of the neighbouring components. Stator well flows 
are characterised by regions of entrainment, cores of highly two 
dimensional rotationally dominated flow, and shear driven 
mixing regions both within the cavity and at the rim seals. 
Superposed cooling flows are required in order to ensure that 
engine components are kept within their rated working 
temperatures, either by direct cooling or by means of pressure 
sealing wheelspace and stator well cavities to avoid ingestion 
from the hot main gas path. These cooling flows influence the 
flow structures otherwise prevalent in rotor-stator cavities. 

These phenomena represent the limits of Reynolds-
Averaged Navier Stokes (RANS) approaches. More 
computationally expensive Large Eddy Simulation (LES) and 
hybrid techniques hold much promise, in particular for the 
prediction of mixing and interactions in the shear dominated 
regions. With the increased adoption of conjugate methods, the 
requirement for high quality validation data is clear.  

Rig testing is often limited to a small number of 
geometrical variations before significant rebuild or re-
instrumentation becomes necessary. The experimental data 
presented have been obtained using the Turbine Stator Well 
(TSW) test facility at the Thermo-Fluid Mechanics Research 
Center (TFMRC) at the University of Sussex. This facility is 
described in more detail by Coren et al. [1]. The Sussex 
Turbine Stator Well test rig comprises a two stage turbine with 
an overall pressure ratio of 2.7:1 at design conditions. It 
features an easily configurable working section which can be 
modified in a matter of hours. A brief overview of the test 
facility is given here, including description of the main annulus 
and internal cooling geometries, their control and supply 
system, and instrumentation specifications. 

This work is part of the EU FP6 MAGPI (Main Annulus 
Gas Path Interactions) programme, which has the remit of 
improving current understanding of the interaction of cooling 
and main stream flows.  

Since investigations related to the flows in the vicinity of 
turbine stator wells requires discussion of the flow physics 
associated with rotor-stator cavities, a brief review is included.  

Rotor-Stator Flows 
A disc rotating in the presence of a quiescent viscous fluid 

will entrain fluid and drive it radially outward in a three 

dimensional viscous dominated boundary layer until it exits via 
the disc periphery. This is commonly referred to as the free disc 
case and provides useful reference for the study of rotating 
flows. 

Daily and Nece [2] showed that for a rotor-stator 
arrangement with an aspect ratio, G ≤ 0.1 and a circumferential 
sealing shroud, the working fluid recirculates around the cavity. 
Entrained flow pumped radially outward on the rotor surface is 
supplied by a radial inflow along the stator wall. These viscous 
boundary layer flows are separated by a two dimensional core 
which behaves inviscidly, and in the absence of 
circumferentially periodic protrusions, rotates at β ≈ 0.4. 

The rate at which the inviscid core rotates is a result of the 
rotor and stator boundary layers which form a viscous coupling 
and transmit a retarding force between the rotor and the stator. 
This was investigated by Owen and Rogers [3] who used a 
momentum integral approach to analyse this effect. The 
resultant relative tangential velocities that exist between the 
wall surfaces and the rotating core are proportional to the rate 
of frictional heating that occurs, which was investigated 
experimentally by Coren et al. [4].   

The rate of entrainment for a free disc is given by the 
relation of Dorfman [5] for turbulent flow, Equation 1, while 
entrainment for partial rotors, as commonly found in 
turbomachinery, may be related to this by the fit of Chew [6], 
Equation 2. 
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Where: hubinnerwithdiscabyentrainedFlowC entw ,  

discfreeabyentrainedFlowCw 0,  
 and a and b are the inner and outer disc radii 

 
The importance of accounting for disc pumped flow 

physics when modelling rotor-stator flows was demonstrated by 
Da Soghe et al. [7] who developed a design tool for solving 
steady one dimensional axisymmetric rotating cavity flows. The 
solutions predicted by the model were seen to more closely 
match experimental data and CFD predictions after developing 
correlations for disc friction. 

Superposed Cooling Flows 
Superposed cooling flows are required in order to provide 

direct cooling of critically loaded turbine components and to 
prevent bulk rim seal ingestion by pressure sealing the hub 
region cavities and wheelspaces from the got gas path. 

The minimum superposed throughflow required to achieve 
cavity sealing and avoid ingestion from the hot mainstream gas 
path may be estimated using correlations such as that of Owen 
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and Phadke [8]. The correlation of Owen and Rogers [3] 
provides such relation while accounting for circumferential 
pressure gradients in the main annulus, which were shown by 
Bunker et al. [9] to strongly influence rim seal flow exchanges. 
This was also investigated by Dixon et al. [10] using CFD. 

The superposed cooling rate required for cavity sealing is 
generally found to exceed the entrainment rate. Such rates of 
superposed flow alter cavity flow structures strongly. The flow 
regime may be conveniently evaluated using a non-dimensional 
relation. The following is appropriate for turbulent flow: 

 
8.0

  eRCwT
   Equation 3 

 
The entrainment capacity of the rotating disc is exceeded 

when λT ≥ 0.219, and radially dominated flow prevails. For 
values below this, flow may be considered to be rotationally 
dominated. 

Daily et al. [11] related the rate of superposed cooling flow 
and the resulting core rate, β, to the core rate in the absence of 
superposed flow, β*. Gartner [12] showed similarly that the 
presence of a two dimensional core was diminished as 
superposed flow was increased beyond the rate of disc 
entrainment. For these investigations, coolant was supplied 
axially from a non rotating source, such that increased coolant 
flow reduced core rates, ultimately flooding them with radial 
outflow dominated flow until free disc like flow structures and 
moment coefficients occurred. 

However, as applied to the case of turbine stator well 
cooling where the coolant is supplied from a hub mounted 
passage rotating at rotor rate, a radial outflow, where relative 
tangential velocities across the rotor boundary layer are reduced 
is of benefit; after consideration for the work required to bring 
the coolant up to rotor rotational rates via pre-swirl nozzles 
incorporated into a rotating hub, as investigated by Karabay et 

al. [13], the relationship between cooling flow and the core rate 
becomes advantageous. This was demonstrated by Andreini et 

al. [14] who performed CFD analysis to investigate the effect 
of angled coolant passages. 

Seal Flows 
In an idealised environment, cavity flows would be 

isolated from the main annulus. In practice, high speed rotor-
stator systems employ non-contact seals with finite clearance. 
This is set as small as possible, while accounting for thermal 
and rotational loads throughout the engine duty cycle, chiefly in 
order to reduce the superposed coolant required to achieve 
cavity sealing. 

Rim seal flows, in simplified terms, are affected by 
pressure gradients acting across them, the running clearance; 
and also circumferential pressure gradients in the main annulus, 
as described by Owen and Rogers [3] and Scanlon et al. [15]. 
Interstage labyrinth seals provide means of containing upstream 
cavity flows prior to them exiting via either the rim or 
interstage seals themselves. Interstage seal flow rates are 

dominated by the main annulus stage pressure drop and the 
effective area of the seal. Flow rates through rotor-stator 
labyrinth seals have been the attention of many studies, 
including that of Wittig et al. [16] who provided empirical 
correlation of seal geometries to standard seal flow equations, 
and Kim and Cha [17] who used the experimental data of 
Wittig to validate CFD models for rotating seal geometries. 

Summary 
Designing for cooling system effectiveness requires 

accurate prediction of the ingress and egress regime limits. For 
a given application, this requires consideration for superposed 
cooling flows, entrainment flows, interstage seal flows, and 
estimates of the minimum coolant required for cavity sealing. 
These flows are depicted, in simplified form in Fig. 1. 

 
Figure 1: Rotor-Stator Flow Structure Schematic 

In response, this paper presents data resulting from 
investigations carried out to determine the influence of the 
following cooling flow parameters; flow rate, cooling jet 
momentum, and flow trajectory. The experimental facility 
allows: 

Coolant flow rates to be set below the disc entrainment and 
interstage seal demand to allow bulk ingestion, or set 
sufficiently high as to flood and seal the cavity to allow bulk 
egress. 

The effective flow area of the coolant delivery passages to 
be altered such that, for a given rate of coolant, the momentum 
with which the flow enters the stator well cavity is increased, 
influencing cavity flow paths. 

The use of angled coolant delivery passages, in order to 
impart the coolant flow with a particular trajectory, with the 
aim of improving the cooling of targeted components. 
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TEST FACILITY OVERVIEW 
The test facility features a bespoke two stage turbine rated 

at 400 kW with blade geometry representative of modern gas 
turbines. A diagram of the test rig is given in Fig. 2. The rotor 
stages have 78 blades and the stators 39, which gives a 
convenient 2:1 repeat ratio for CFD. 

 
Figure 2: Schematic of the Test Rig Working Section 

The main annulus flow is provided by an adapted aero 
engine plant driven compressor as developed by Turner et al. 
[18]. Flow enters the test rig via a settling chamber and large 
bellmouth inlet to reduce circumferential non-uniformity and 
swirl. The mass flow rate is measured using a BS1042 standard 
venturi meter. The turbine power is absorbed by a hydraulic 
dynamometer via a 3:1 reduction gearbox. The main annulus 
operating conditions are given in Table 1. 
 

Overall Pressure Ratio < 2.7 
Power Output < 400 kW 
Mass flow rate 1 to 4.8 kgs-1 
Cooling flow rate 0.6 to 1.65 Cw,ent 
Tinlet 300 – 450 K 
Pinlet < 3.3  bar 
N (at design condition) 10,630 rpm 

Table 1: Test Rig Main Annulus Operating Conditions 

Of central importance to the design of the test rig is the 
ability to readily reconfigure the cooling system geometry. This 
is provided by a split main casing design which allows rapid 
access to the stator well cavities. 

Internal Air System 
The stator well cavity geometry has been designed to 

provide a nominal in-cavity Reynolds number of Reϕ = 2.0 x106 
at the main annulus design condition. Cooling flow rates have 
been specified to encompass the ingestion point, the selection 
process having been informed by a review of cavity sealing 
correlations. The maximum rate of superposed cooling flow 
allows the equivalent of 2.8 greater than the minimum 
suggested for cavity sealing by the correlations of Owen and 
Phadke [8]. The interstage labyrinth seal geometry has been set 
such that the seal flow may by exceeded by superposed cooling 

flow, allowing cavity flow conditions to be controlled by 
superposed coolant. The maximum cooling flow rate is 
equivalent to 1.8 times the interstage labyrinth seal flow 
requirement as predicted using the correlation of Wittig et al. 
[16] and the study of Kim and Cha [17]. This particular aspect 
of this work is presented in more detail by Eastwood et al. [19]. 
Taken together, this allows interstage seal demand to be 
satisfied and rim sealing to be achieved, with a safety factor 
included to account for the variation between the correlations 
used. Importantly, this allows cavity flow conditions from bulk 
ingestion to bulk egress to be tested. 

Non-dimensioning of the superposed cooling flow is useful 
in widening the range of applicability of the results obtained. 
The rate may be related to the minimum required to seal the 
cavity, or to the interstage seal demand, using one of the many 
correlations available from the literature. However, there is 
much variation between the results of these correlations, indeed 
this present work seeks to further clarify the conditions required 
for cavity sealing. Also, the interaction of superposed coolant 
with entrainment flows is of particular interest to this study. For 
these reasons, the superposed coolant has been defined here in 
terms of a disc entrainment parameter, using Equations 1 and 2. 
The data presented here relates to experiments where cooling 
flow is delivered in a variety of manners. Each of these 
different test cases results in a unique value of core rotation 
rate, β. As such, the free disc case, modified using Equation 2 
to account for the partial disc geometry in question, is 
considered to provide a non-ambiguous bench marked 
reference case, to which the superposed coolant rates may be 
equated to. The cooling system has been specified to allow 
coolant flow, Cw,s over the range 0.60 to 1.65 times the 
predicted disc entrainment, Cw,ent. For the cooling flow data 
presented here, rates of 0.71, 0.87, 1.13 and 1.46 Cw,ent have 
been used, which accounts for augmentation due to balance seal 
leakage flows.  

The cooling system air is supplied by an Atlas Copco 
ZT250 compressor and FD710 drier plant. The test rig internal 
air flow circuits are shown in Fig. 3. The cooling system air is 
ducted via aerodynamic struts into the hub region of the rig, 
similar ducting is used for the balance and vent flows. Coolant 
is delivered to the cavity first via transfer holes in the lower 
part of Stator 1, and then via transfer holes in the hub region of 
Rotor 1. A pressure balanced, double sided claw seal is used to 
reduced leakage of coolant flow up through the Stator 1 
wheelspace. The balance cavity is continuously monitored 
during tests to account for thermal growth of the claw seals. 
The balance supply is vented from a buffer cavity to maintain 
upstream wheelspace egress. Although the rig design permits 
both radial and axial delivery of coolant, radially administered 
coolant is the focus of this paper. The radial coolant passage 
design features 39 threaded holes equi-spaced around a hub 
ring, into which inserts drilled to form coolant passages may be 
installed. The air paths are insulated from the main annulus 
temperatures by Rohacell HF insulation. Bosch HFM 5 series 
hot-film air mass meters are used to measure the coolant, 
wheelspace balance and vent flows. They operate over the 

Rotating Assembly

Stator 1 Stator 2

Rotor 2Main Flow Path

Rotor 1
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range 0 to 100 gs-1 and were calibrated by a UKAS accredited 
third party. They give an uncertainty of ± 1.3 % of the 
measurement point. 

 
Figure 3: Internal Air System Schematic  

The influence of cooling flow jet momentum is facilitated 
by varying the number of drilled and blank radial flow passage 
inserts, as shown in Fig. 4. This arrangement allows 13, 26 or 
39 coolant passages to be incorporated, providing means to 
alter the momentum of a given rate of exiting coolant by a 
factor of three. Removable cover plates on the downstream face 
of Rotor 1 allow axially delivered coolant to be similarly 
regulated. Regular spacing in all cases discourages non-
axisymmetric cooling effects and simplifies balancing of the 
rotating assembly.  
 

Description Geometry 

39 Radial 
Passage 
Inserts 

 
26 Radial 
Passage 
Inserts 

 
13 Radial 
Passage 
Inserts 

 Figure 4: Radial Flow Passage Spacing Arrangements 

The influence of coolant trajectory is facilitated by means 
of angled coolant delivery inserts, as shown in Fig. 5. Using 
delivery passages with an angle from a reference straight radial 

outlet, the coolant may be imposed to follow a trajectory 
directed either axially towards the rotor face to encourage 
attachment with entrainment flows, or tangentially to pre-swirl 
the coolant against the direction of core rotation slippage. For 
the purposes of this study, axially directed coolant is 
considered. An angle of 25° has been used, which was informed 
by design phase CFD. 

 

Straight Radial Insert Axially Angled Radial Insert 

  

Figure 5: Straight and Axially Angled Radial Flow Passage Inserts 

Ensuring that the inserts are installed with the angled 
passage aligned in the correct direction is performed by means 
of bespoke alignment jigs. Through this process, a maximum 
angular deviation of 0.3° is achieved. 

Temperature Instrumentation 
The measurement locations of the thermocouples within 

the main test section of the rig are given in Fig. 6. In total, 81 
K-type thermocouples at 27 radial locations have been installed 
within the rotating assembly, including two air thermocouples 
used for coolant temperature measurements. 73 thermocouple 
measurement locations were used within the stationary 
components of the test rig, six of which are stator mounted air 
thermocouples. Total temperature measurements are made in 
the main annulus using probes set into the leading edge of 
Stator 1, Stator 2 and with a radial rake downstream of Rotor 2. 
This avoids the introduction of additional disturbances to the 
circumferential pressure gradients at the rim seal region.  

 
Figure 6: Temperature Measurement Locations 

Three thermocouples were used for each radial 
measurement location on the rotating components to mitigate 
thermocouple failures. In practice, a thermocouple mortality 
rate of 8 % has been found. 

 

Vent
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Coolant
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The thermocouple beads, with diameters ≤ 0.1 mm, are 
peened into the material surface as shown in Fig. 7. The lead-
out trails, which are led at least 10 diameters circumferentially 
before radially to avoid conduction errors, are secured to the 
rotating components by means of spot welded metallic straps. 
Peening with similar material, and flush mounting to minimise 
velocity effects, helps to reduce embedding errors. 

 
Figure 7: Thermocouple Installation Detail 

A Datatel 92 channel telemetry system is used for 
thermocouple signal acquisition. Each unit has an in house cold 
junction reference module with a PRT mounted in close thermal 
contact to thermocouple junctions. For a given test the point to 
point resolution appears to be within 0.1 K. Comprehensive 
through-calibration techniques have reduced uncertainties to 
the order of 0.3 K across a 12 month period.  

The stationary frame thermocouples are installed without 
the use of extension cables or plugs, directly into isothermal 
junction boxes with thick copper heat spreaders which have 
been fitted with PRT thermometers. These are logged using an 
Agilent 34970a DVM switch unit in 4-wire resistance mode. 
Combined with full through-calibration techniques, this reduces 
cold junction compensation errors to within 0.1 K.  

All through-calibration is performed by comparison against 
Isotech Secondary Standard reference equipment with a 
combined uncertainty in the region of 20 mK. The test data 
described here have been obtained at settled conditions, defined 
as a change of less than 0.1 K over a five minute period.  

In the interests of allowing cross comparison of test data, 
where small variations in main annulus and environmental 
conditions may be unavoidable, it is convenient to express 
temperature data in a normalised form; 
 

coldhot

coldmetal

TT

TT




     Equation 4 

 
This method is, however, classically ill conditioned and 

provides motivation for obtaining very low temperature 
measurement uncertainties. When the metal temperature, Tmetal, 
and coolant temperature, Tcold, are similar, as is the case at the 
lower regions of the cavity, small errors will dominate. For 
example, a temperature difference of 10 K would yield a 
potential uncertainty of ± 3 % Ө for an uncertainty of ± 0.3 K. 
Repeat testing over several months showed repeatability in 
normalised temperatures of approximately 1 % at worst; within 
measurement uncertainty, suggesting that the calibration 
uncertainties quoted are realistic under actual test conditions. 

Pressure Instrumentation 
The location of the pressure measurements within the main 

test section of the rig are shown in Fig. 8 These are used to 
determine the conditions in the stator well cavities, to measure 
flow rates of air supplied to the rig, and to allow balancing of 
the upstream wheel space. Total pressure measurements are 
made in the main annulus using probes set into the leading edge 
of the NGVs. The incidence sensitivity of the total pressure 
measurements is minimised by recessing the tapings All 
internal rig measurements use Scanivalve DSA 3217 scanner 
units. The orifice plate measurements use Rosemount 1151 
series (differential) and Mensor 6100 (absolute) transducers. 

 
Figure 8: Pressure Measurement Locations 

VISUALISATION CFD SET-UP AND ANALYSIS 
The CFD analysis presented here is adiabatic and intended 

for flow visualisation purposes; stator well cavity streamlines 
representing the flow structures associated with particular 
cooling flow cases provide a useful aid in interpreting the 
measured temperature data. The domain was split into four 
zones separated by mixing planes between the blade rows, and 
an interpolation, or frozen sliding plane, between the upstream 
and downstream cavities. These are illustrated in Fig. 9.  
 

 
Figure 9: CFD Domain Showing Thermodynamic Stations 

Mixing planes 

Total pressure inlet (P01, T01, experimentally measured) 

Interpolation plane 

1       3 4       2 
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The multi-block structured mesh was generated using the 
Rolls-Royce PADRAM code and features nine Million nodes. 
The grid density is biased somewhat towards the cavity. The 
mixing plane upstream of Stator 2 is set well beyond the 
stationary side of the rim seal in order to model the unsteady, 
albeit frozen, rotor exit flow field. Grid dependency, and the 
effect of unsteadiness is presented by Dixon et al. [10].  

Measured total pressure and temperature boundary 
conditions were used at stage inlet, and measured static 
pressure at the stage outlet. For the radial coolant injection, the 
mass flow rate is measured, but the actual total pressure is 
unknown. 

Rim seal flows are unsteady in nature, however the 
unsteadiness is only likely to be dominant at the point at which 
the cavity is almost sealed. The steady computations presented 
here represent several months of computational time on a 64 
CPU cluster. This work is part of an on-going study, the 
primary aim of which is to help validate Conjugate Heat 
Transfer (CHT) methods. The added fidelity of the unsteady 
model is considered less important than some of the other 
simplifications such as the use of an adiabatic solution. The 
steady state convergence showed oscillatory behaviour at the 
low coolant flow rates. The rim seal interactions are dominated 
by the unsteady Kelvin-Helmholtz (K-H) type interactions and 
the potential field of the rotor, as such the exact sealing 
boundary is not expected to be predicted. Also the Reynolds 
Averaged Navier-Stokes (RANS) approach is not well suited to 
the mixing and ingestion anyway. The computations are 
presented here simply to aid understanding of the flow. 

In order to establish confidence in the cavity CFD, main 
annulus and interstage labyrinth seal flows have also been 
modelled, and are described in this section below. 

Main Annulus Flow 
A comparison of the predicted and total pressure and 

temperature at 4 discreet locations on the Stator 2 leading edge 
is shown in Fig. 10. Data is presented for an intermediate 
coolant flow test case. The plot shows total temperature T03, 
normalised by the inlet total temperature T01 and total pressure 
P01 respectively, i.e. the inlet boundary conditions. The 
agreement at the middle two measurement locations is 
excellent. The worst case absolute temperature difference is 
±0.5 K for a stage temperature drop of ~50 K; this represents a 
fair comparison rather than the simple Kelvin value which 
would simple hide the variations. This is close to the combined 
measurement uncertainty of ±0.3 K. The total pressure values at 
the three upper locations are within 0.2 % of the measured 
value. These two middle locations are away from the majority 
of the loss and secondary flow structures. As such the close 
agreement of the values suggests that the overall operation of 
the stage is well modelled by the grid. 

At the upper and lower radial heights the CFD solution 
over-predicts the total temperature and pressure. At the upper 
radial location, the total temperature discrepancy is ~3 K, 
which represents 6 % of the stage total temperature drop. At the 

lower radial location, the total temperature discrepancy is ~1 K, 
which represents 2 % of the stage total temperature drop.  

At the lowest radial height the total pressure is over 
predicted by ~1 %. Although small this is approximately 30 % 
of the dynamic pressure at stator inlet.  

 
 

Figure 10: Comparison of Predicted and Measured Total Pressure 
and Temperature at the Inlet to Stator 2 

An area traverse of predicted total pressure and temperature 
ratio corresponding to a location close to the leading edge of 
Stator 2, but upstream of the mixing plane, is shown in Fig. 11. 

 
Figure 11: Total Pressure and Temperature Profiles at the Stator 2 

Leading Edge Plane 

The upper and lower radial heights correspond to the 
height at which the secondary flow structures impinge on the 
leading edge of the vane. As such, it is expected that the 
discrepancy is primarily due to the prediction of the secondary 
flows. The main stream grid is perhaps a little coarse, the use of 
a mixing plane removes all of the rotor-stator interactions, and 
the limitation of the Spalart-Allmaras (S-A) turbulence model 
to predict the mixing accurately are all likely to be significant. 
It should also be noted that there are steep gradients at these 
locations, so the predictions are also highly sensitive to the 
precise spatial location of the flow structures. The non-linear 
interactions of the upstream vane wake and vertical structures 
with the blade boundary layer and secondary flows are removed 
by the mixing plane. Blade row interactions of this type have 
been shown to account for 10 % of stage loss. 

Another factor at the hub, where the discrepancy in total 
pressure is found, is the lack of the upstream wheel space 
cavity on the model. Although the egress is limited to 
approximately, 2 gs-1, the presence of the cavity alone is likely 
to thicken the boundary layer at the very least. 

These variations are local, and the excellent tie-up in the 
core flow shows that the model is adequate to generate the 
boundary conditions at the rim seal. 
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Interstage Labyrinth Seal Flow 
Numerous articles have been published on labyrinth seal 

flows. The seal flow is modelled here using the St. Venant-
Wantzell equation for the ideal flow together with a single 
discharge coefficient, CD, which accounts for all of the 
dependent parameters. The discharge coefficient, CD, for the 
seal is a strong function of clearance. 

The TSW interstage labyrinth seal is a three fin straight 
through seal with a cold build clearance of 0.3 mm, which 
grows by approximately 30 % at the design condition. This has 
been set so that the seal demand is of a similar order to disc 
entrainment flow and also the superposed coolant, when Cw, s is 
approximately 0.7 Cw,ent. At the design condition, the 
throughflow Reynolds number, Rez is in the order of 7 x 103, 
and the ratio of axial to tangential velocity is approximately 
unity. For the purpose of this work, an initial flow estimate has 
been established using the two-dimensional, non-rotating data 
of Wittig et al. [16]. These authors considered the effects of 
rotation to be dominant only at low Reynolds numbers. An 
estimate for the three fin CD was derived from the numerical 
modelling of the Wittig et al. data by Kim and Cha [17]. Based 
on their results, a CD estimate of 0.48 has been used here.  

The CFD results have been compared with results from 
labyrinth seal flow models, using pressure ratios representative 
of the experimental conditions tested. Agreement was found to 
be within the range 0.5 to 2 % as the pressure ratio was 
increased. These seal flows provide the focus of the work 
described by Eastwood et al. [19]. 

RESULTS AND DISCUSSION 
The cooling effectiveness associated with cooling flow; 

rate, momentum, and trajectory are discussed here, in terms of 
temperature data obtained by experiment which has been 
normalised using Equation 4. The discussion is aided by either 
CFD results or flow diagrams. 

The effect of core rotation rate is not included in the 
normalisation as the interaction of the coolant and the rotating 
core is a component of the performance of a particular cooling 
arrangement in itself, which is essentially part of this study. 

As the coolant air temperature is measured at a lower 
radius than the cavity entry, the Euler work due to the change in 
radius is taken into account; ≤ 3 K for these cases, assuming the 
coolant enters and leaves the internal passage with little rotor 
relative swirl:  

 

  2
,0,0

1
r

c
TT

p

coolantcold    Equation 5 

 

Cooling Flow Rate 
The effect of coolant flow rate is described here with the 

aid of both experimental data and CFD results for the case of 
39 radial coolant delivery passages. Normalised measured 
metal temperatures are shown for the measurement locations on 

the rear face of Rotor 1 in Fig. 12, and for the front face of 
Stator 2 in Fig. 13. Fig.14 shows the predicted path of main 
stream and coolant flow gas, for the two lowest coolant flow 
rates. The streamlines are seeded from the Rotor 1 aft platform 
boundary layer and the coolant supply jet respectively. Fig. 15 
shows the rotor relative frame total temperature in the cavity at 
the four coolant flow rates. These figures may be used to help 
explain the temperature profiles observed in the measured data. 
The CFD predictions are used only to provide a qualitative 
prediction of the likely flow structure, in order to help interpret 
the measured profiles. 

Referring to Fig. 12, it is important to note that at all four 
coolant flow rates the normalised temperature is approximately 
constant at the location on the Rotor 1 exit platform (r/b = 1) as 
would be expected. The temperature gradient between the two 
highest radius locations, 0.97 ≤ r/b ≤ 1, is perhaps the most 
important part of the data set. Considering the titanium rotor, 
changes in temperature gradient at this location imply 
considerable changes in the local aerodynamic conditions, at 
least in terms of air temperature, if not heat transfer coefficient. 
At the lowest coolant flow rate, 0.71 Cw,ent, there is little change 
in gradient across all three high radius positions shown. As the 
coolant flow rate is increased to 0.86 Cw,ent, and 1.13 Cw,ent, the 
gradient increases, indicating that the coolant is penetrating to 
higher radial locations in the cavity. This is in agreement with 
the CFD results in Fig. 15 which indicate significant change in 
cavity flows for superposed coolant rates of ≤ 0.86 Cw,ent. A 
further increase in coolant flow rate from 1.13 to 1.46 Cw,ent, 
yields a lower increase in temperature gradient. This indicates 
that the cavity is likely to be well sealed and the changes in 
cavity flow structure are small. At the lower extreme of the 
cavity, there is a larger variation in normalised temperature with 
coolant flow rate. This is likely to be driven by conduction, 
rather than differences in local adiabatic effectiveness, since 
this is in the vicinity of the coolant delivery passages. Even at 
the lowest coolant flow rate, the coolant will circulate in the 
lower extremes of the cavity. This is in agreement with the CFD 
for the low cooling flow case shown in Fig. 14. Although the 
spatial gradient is higher at the lower measurement points, 
0.755 ≤ r/b ≤ 0.77, than the outer two, r/b = 0.97 ≤ r/b ≤ 1, 
there is less change in gradient with increased coolant flow. 

Referring to Fig. 13, an increase in the superposed cooling 
supply from 0.71 Cw,ent to 0.86 Cw,ent results in increased cooling 
at the cavity region of 0.77 ≤ r/b ≤ 0.945. This is likely to be 
due to localised cooling of the stator foot as coolant enters the 
cavity. For the majority of the cavity, 0.78 ≤ r/b ≤ 0.99, it is 
clear that the cavity is in contact with significant coolant 
between the supply conditions 0.71 Cw,ent and 0.86 Cw,ent. This is 
in agreement with the CFD shown in Fig. 15. Increasing the 
coolant rate to 1.46 Cw,ent results in no significant additional 
cooling at these locations. However, at the outer most radial 
location, r/b = 0.99, which is in the main annulus, normalised 
temperatures can be seen to be reduced significantly at cooling 
rates of ≤ 1.13 Cw,ent, indicating that rates sufficient for cavity 
sealing and bulk egress have been reached. This is in agreement 
with the CFD for higher coolant rates shown in Fig. 15. 
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Figure 12: Rotor 1 Rear Face Normalised Metal Surface 

Temperatures 

 

 
Figure 13: Stator 2 Front Face Normalised Metal Surface 

Temperatures 

 
Figure 14: Comparison of Predicted Coolant (Blue) and Mainstream 

(Red) Streamlines. 

 
Figure 15: Cavity Streamlines, Coloured by Normalised Absolute 

Frame Total Temperature 
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Jet Momentum 
Deeper penetration of the coolant streams into the cavity 

bears influence on the rate of core flow rotation, reducing the 
relative tangential velocity across the rotor boundary layers. 
Furthermore, for the split stator well cavities being considered 
here, deeper penetration encourages coolant to feed the Rotor 1 
entrainment flow rather than exit through the interstage seal to 
the downstream cavity. This was found to be particularly 
evident at low cooling flow rates. Since mass flow is constant 
and internal cooling effects may be largely neglected, axial as 
well as radial delivery geometry data are considered here. 

Fig. 16 shows results obtained for the downstream face of 
Rotor 1 in the form of normalised temperatures at a cooling 
flow of approximately 0.7 Cw,ent delivered radially. Reducing 
the effective flow area, by reducing the number of flow 
passages from 39 to 13, increases jet momentum threefold 
thereby increasing coolant flow impingement into the stator 
well cavity. Normalised temperatures are reduced in the vicinity 
of the hub region by up to 50 %, and in the region of the rotor 
periphery by approximately 20 %.  

Measurements for the upstream face of Rotor 2 are shown 
in Fig. 17. In the downstream cavity, the influence of jet 
momentum is diluted, since the cooling air will already have 
mixed with ingested gas in the upstream cavity. However, as 
the number of flow passages is increased to 39, normalised 
temperatures do decrease, suggesting that cooling effectiveness 
has increased. This is likely to be related to the amount of heat 
absorbed by the coolant in the upstream cavity prior to flowing 
through the interstage seal.  

 
Figure 16: Rotor 1, 0.7 Cw, ent, Radial Delivery 

 
Figure 17: Rotor 2, 0.7 Cw, ent, Radial Delivery 

It is interesting to note that at these conditions, the reduced 
adiabatic viscous heating corresponding to an arbitrary change 
in β from 0.5 to 0.7 would equate to a 15 % reduction in the 
normalised measured temperatures at the rotor periphery. This 
equates to approximately 50 % of the total measured change 
between 39 and 13 coolant passages, suggesting that the 
temperatures measured are a result of core rate change but also 
re-distribution of the coolant. 

Adiabatic flow visualisation CFD in Fig. 18 shows coolant 
delivered radially through 39 and 13 holes at 0.7 Cw,ent. 
Streamlines indicate that the level of cavity impingement 
increases significantly as the number of flow passages is 
reduced from 39 to 13. This is likely to result in greater 
attachment to Rotor 1 entrainment flows, and strongly 
reinforces the interpretation of the experimental data. 

 
Figure 18: CFD Showing Cavity Impingement Increasing as Radial 

Flow Passage Number is Reduced from 39 to 13 at 0.63 Cw, ent 

Data also obtained at a cooling flow rate of 0.7 Cw,ent but 
for axially delivered coolant shows broadly similar results. See 
Fig. 19. Reduced benefit at the cavity periphery, as compared to 
the radial geometry, is considered to be a generic characteristic 
of axial delivery passage geometry, which supplies coolant to 
this region for all momentum cases. Increased cooling at the 
hub region for the 13 passage case may be a result of 
recirculation local to the rotor face.  

 
Figure 19: Rotor 1, 0.7 Cw, ent, Axial Delivery 

At the higher cooling flow rates of 1.13 and 1.46 Cw,ent, 
tested for 26 and 39 passage geometries only, the cavity flows 
are dominated by the sheer magnitude of coolant flooding 
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cavity and the influence of jet momentum is less obvious. This 
is demonstrated in Fig. 20 by data obtained for radially 
delivered flow at 1.46 Cw,ent. 

 
Figure 20: Rotor 1, 1.46 Cw, ent, Radial Delivery 

Angled Delivery Geometry 
The angled insert design incorporates a flow passage 

inclined at 25°. This value was selected after an optimisation 
process involving design phase CFD investigations, which have 
been reported by Andreini et al. [14] and also a result of the 
angle and bore size permitted by the insert location drillings. 
Settled data obtained at 9800 rev/min, and also data obtained 
during commissioning tests at the design condition but not as 
well settled, have all shown improved cooling effectiveness on 
Rotor 1 at the cavity periphery. 

Normalised temperature data for the downstream face of 
Rotor 1, and also for the upstream face of Rotor 2, is shown for 
both straight and axially angled radial insert geometries in Fig. 
21. This data was obtained at a superposed cooling rate of 0.86 
Cw,ent, A flow schematic is also given, aiding the description of 
the altered flow structures associated with the geometry 
changes. The change in the radial temperature profiles between 
the results for the straight and angled geometries suggests that 
the coolant has successfully been re-directed; increasing the 
likely-hood of attachment to the rotor entrainment flows, rather 
than washing over the stator wall or exiting directly through 
interstage seal into the downstream cavity. Similarly to the jet 
momentum experiments, even at low cooling flow rates, the 
hub region is subject to effective cooling, by virtue of 
proximity to the coolant delivery point; this is illustrated by the 
CFD results shown in Fig. 14. It is of particular interest to see 
that for this intermediate cooling condition of 0.86 Cw,ent, with 
the introduction of an angled passage, cooling is re-directed to 
the cavity periphery significantly enough to result in a 10 % 
reduction in the normalised rotor temperature. The likely transit 
mechanism for this re-distribution is carriage within the disc 
entrainment flows. Corroborating this, the stator temperatures, 
while also reduced at the cavity periphery, are actually 
increased at the lower radii, indicative of re-circulated coolant 
which has been subject to heat pick-up.  

The reduction in adiabatic viscous heating corresponding 
to an arbitrary change in β from 0.5 to 0.7 would equate to 
approximately 70 % of the measured change in normalised 

temperature, suggesting that the reduced temperatures are 
strongly related to the core rate change, but also a result of re-
distribution of coolant. 

 

 

 
Figure 21: Normalised Temperature Data and Flow Structure 

Schematics for Straight and Axially Angled Radial Coolant Delivery, 
0.86 Cw, ent, 

CONCLUSIONS 
Developing an effective cooling system, where bulk 

ingestion is prevented and critical components are adequately 
cooled, requires a design process informed by the geometric 
characteristics and the associated flow physics of the target 
application. This approach, where the ingestion point is 
identified as a result of considering the interaction of the cavity 
flows, is essential in the quest to develop competitive engines. 

Normalised temperature data presented in this paper 
demonstrate that the ingestion region for turbine stator wells 
may be identified with respect to disc entrainment parameters 
when considered in conjunction with visualisation CFD and 
understanding of the flow physics present. 

It has been shown that the relative tangential velocities, 
and associated heating, that the highly stressed rotor is 
subjected to may be reduced by employing cooling path 
geometry that provides increased coolant delivery momentum. 
It has also been shown that, by taking advantage of already 
present entrainment flows, the trajectory of superposed cooling 
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flows may be specified to deliver coolant to preferred locations 
by means of angled coolant passage geometry features. Both 
approaches have been demonstrated to improve cooling 
effectiveness for a given rate of coolant. 

The rotor-stator cavities found in gas turbines are home to 
complex and composite flows during engine operation. The 
findings presented here demonstrate that improvements in 
cooling system design may be found by analysing and 
exploiting these flows. 
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ABSTRACT
Optimisation of cooling systems within gas turbine engines

is of great interest to engine manufacturers seeking gains in per-
formance, efficiency and component life. The effectiveness of
coolant delivery is governed by complex flows within the sta-
tor wells and the interaction of main annulus and cooling air in
the vicinity of the rim seals. This paper reports the develop-
ment of a test facility which allows the interaction of cooling air
and main gas paths to be measured at conditions representative
of those found in modern gas turbine engines. The test facility
features a two stage turbine with an overall pressure ratio of ap-
proximately 2.6:1. Hot air is supplied to the main annulus us-
ing a Rolls-Royce Dart compressor driven by an aero-derivative
engine plant. Cooling air can be delivered to the stator wells at
multiple locations and at a range of flow rates which cover bulk
ingestion through to bulk egress. The facility has been designed
with adaptable geometry to enable rapid changes of cooling air
path configuration. The coolant delivery system allows swift and
accurate changes to the flow settings such that thermal transients
may be performed. Particular attention has been focused on ob-
taining high accuracy data, using a radio telemetry system, as well
as thorough through-calibration practices. Temperature measure-
ments can now be made on both rotating and stationary discs with
a long term uncertainty in the region of 0.3 K. A gas concentra-
tion measurement system has also been developed to obtain di-
rect measurement of re-ingestion and rim seal exchange flows.
High resolution displacement sensors have been installed in or-
der to measure hot running geometry. This paper documents the
commissioning of a test facility which is unique in terms of rapid
configuration changes, non-dimensional engine matching and the
instrumentation density and resolution. Example data for each of
the measurement systems is presented. This includes the effect of
coolant flow rate on the metal temperatures within the upstream
cavity of the turbine stator well, the axial displacement of the rotor
assembly during a commissioning test, and the effect of coolant
flow rate on mixing in the downstream cavity of the stator well.

∗Correspondence to d.d.coren@sussex.ac.uk
†Now at the Whittle Laboratory, University of Cambridge

NOMENCLATURE

Symbols
a Disc inner radius [m]
b Disc outer radius [m]
N Turbine speed [rpm]
p Static pressure [Pa]
P Total pressure [Pa]
r local radius [m]
s Axial rotor-stator spacing [m]
ṁ Mass flow rate [kgs−1]
vφ Tangential velocity component [ms−1]
Tm Metal surface temperature [K]
ω Rotational speed [rad s−1]
ρ Density [kgm−3]

Dimensionless
Reφ Rotational Reynolds number, ρωb2µ−1

Cw Non-dimensional mass flow, ṁ(bµ)−1

β Swirl ratio, vφ(rω)−1

Subscripts
0 Free disc value at equal Reφ, stagnation value
s Superimposed flow value
ent Entrained flow value
seal Hot reference value
hot Hot reference value
cold Cold reference value

Abbreviations
CFD Computational Fluid Dynamics
PRT Platinum resistance thermometer
TSW Turbine Stator Well
R1 First stage rotor
R2 Second stage rotor
S1 First stage stator
S2 Second stage stator
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INTRODUCTION

This paper documents the design, development, and testing
of an advanced multi-configuration Turbine Stator Well (TSW)
test facility at the Thermo-Fluid Mechanics Research Center
(TFRMC) at the University of Sussex.

This particular work is part of the EU FP6 MAGPI (Main
Annulus Gas Path Interactions) programme, which has the remit
of improving current understanding of the interaction of cooling
and main stream flows. The test facility described in this paper
marks the evolution of existing apparatus described by Dixon [1].
Although many of the techniques used are the development or
refinement of existing methods, a complete revision of internal
geometry, coolant flow control, and instrumentation and logging
systems has resulted in a highly exploitable experimental resource
and represents a significant step forward in data density and qual-
ity for a facility of its type.

Within this paper, a brief review of works related to the flows
in the vicinity of turbine stator wells is given. Specifications for
the main annulus and internal cooling geometries and their con-
trol and supply systems are described. Details of instrumentation
type, location and calibration are given, along with examples of
data obtained for each measurement.

The flow and heat transfer within the cavities adjacent to the
hub of a turbine stage has a significant effect on the durability
of the neighboring components. Optimisation of the coolant and
sealing flows in these cavities has potential benefits for both over-
all cycle efficiency and component life.

Regardless of these benefits, accurate a priori prediction of
the flow and heat transfer within these cavities is of considerable
importance in itself. Stator well flows are characterised by regions
of entrainment, cores of highly two dimensional rotationally dom-
inated flow, and shear driven mixing regions both within the cav-
ity and at the outer seals. These phenomena represent the limits
of Reynolds-Averaged Navier Stokes (RANS) approaches, par-
ticularly simple isotropic turbulence modeling. More computa-
tionally expensive Large Eddy Simulation (LES) techniques hold
much promise, in particular for the prediction of mixing and inter-
actions in the shear dominated regions. However, wall bounded
flows are inherently problematic. In addition, with the increased
adoption of conjugate methods, the requirement (and the poten-
tial benefit) for high quality validation data is clear. However, it
is perhaps most useful to know where less computational costly
methods deliver sufficiently accurate results for engine design
purposes.

A justifiable criticism of more representative experimental
test facilities is the often lengthy time scales which are required to
build, commission and finally acquire useful data. Furthermore;
there is an inherent trade-off between the degree of approximation
to real engine conditions and the level of instrumentation density
and accuracy which is achieved in practice. Finally, testing is of-
ten limited to a single or small number of geometrical variations
without significant rebuild or re-instrumentation.

The redesign and re-instrumentation of the Sussex Turbine
Stator Well Facility (TSW) attempts to address these issues
through a highly configurable working section which can be mod-
ified in a matter of hours, combined with a unique level of instru-
mentation density and resolution.
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Figure 1. Schematic showing disc entrainment and 2-D core flow.

Entrainment driven

rotor-stator flow

2-D core

Pressure driven leakage
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Figure 2. General stator-well flow field.

GOVERNING FLOW PHYSICS
This section gives a brief summary of the dominant flow

physics in a typical turbine stator well combined with a review
of relevant research. Stator well flows are strongly influenced by
disc entrainment, rim and inter-stage seal geometry, coolant sup-
ply rate and orientation. An attempt has been made to examine
each factor in turn; however, in reality, the actual flow field is an
interaction of them all.

Disc Entrainment The viscous boundary layer of rotat-
ing disc entrains and pumps flow radially [2]. In a rotor-stator
cavity, this leads to a recirculation as shown schematically in Fig-
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ure 1. In general, disc entrainment flows can be considered in
relation to the flow which would be pumped by a free disc (Equa-
tion 1), at the same rotational Reynolds number, Reφ. The flow
pumped by a partial disc with an inner hub was derived analyti-
cally by Chew [3], who also presented a simple fit to express the
reduced flow in relation to that which would be pumped by a free
disc (Equation 2).

Cw,0 = 0.219Re0.8
φ (1)

Cw,ent =Cw,0

[
1−

(a
b

)5
]

(2)

The need to accurately predict disc pumped flow in models
was demonstrated by Soghe et al. [4] who developed a design
tool for solving steady one dimensional axi-symmetric rotating
cavity flows. The solutions predicted by the model were seen to
more closely match CFD data after developing correlations for
disc friction, which was also investigated by Coren et al. [5].

2-D Core Flow Owen and Rogers [6] showed that rota-
tional equilibrium damps fluid motion other than that tangential
to the axis of rotation (Taylor-Proudman Theory). For a suffi-
ciently wide spaced rotor-stator arrangement, the viscously dom-
inated near wall regions are separated by a core which rotates at
an intermediate velocity between the rotor and stationary stator
wall, this is shown schematically by the hatched regions in Fig-
ure 1. This core (or slip) velocity is described by the swirl ratio,
β, relative to the rotor. The effect of rotation and cavity aspect
ratio was investigated experimentally by Daily and Nece [7] who
showed that for geometry where s/b > 0.1, β is in the region of
0.4. A highly simplified schematic of the swirl ratio expected in
a two cavity TSW is shown in the lower section of Figure 1 (the
thickness of the viscously dominated boundary or Eckman layers
is exaggerated). The important feature of the 2-D core is that the
disc pumped recirculation is confined to the near wall region. As
such, small changes in the level of superposed coolant flow may
have a significant effect on the flow field within the cavity. The
presence of the hub, outer shroud, and coolant injection are all
expected to affect the swirl ratio.

Interstage Seal Flow Neglecting the coolant and en-
trainment flows for a moment, the flow through a stator well cav-
ity is driven by the static pressure drop across the stator vane.
Given this pressure drop, the leakage flow is governed by the
labyrinth seal demand. This leakage flow can be considered to
be superposed onto the disc driven re-circulation, as mentioned
above, radial flow is damped by the rotational equilibrium, so this
superposed leakage flow feeds (or interrupts) the viscously dom-
inated near wall recirculation. This is shown in simplistic terms
by the dotted lines in Figure 2.

Rim Seal Leakage Flow High speed rotor-stator sys-
tems require non-contact rim seals to accommodate complex
thermo-mechanical movements. The effective area of the rim is
dependent on the main-stream and cavity flow as well as the ac-

tual geometry. The blade potential fields produce a circumfer-
ential pressure gradient at the rim seals. The presence of non-
axisymmetric main annulus flow was shown by Gentilhomme et
al. [8] to reduce cavity sealing effectiveness by inducing circum-
ferentially separated regions of local ingestion.

A method for predicting circumferential pressure variation
and also ingestion rates was developed by Scanlon et al. [9] cali-
brated using data from two experimental facilities. It was shown
that accurate rim seal flow modeling is dependant upon capturing
pressure asymmetries which exist in the vicinity of the rim seals.

Velocity maps for a turbine rotor-stator cavity were produced
by Roy et al. [10] using PIV and supported by CFD. Both high
and low tangential velocity flows were measured around the cav-
ity rim seal. It was concluded that the high tangential velocity
flow was ingested main stream gas, whilst the low tangential ve-
locity fluid was cavity air. Bunker et al. [11] conducted studies on
a non-rotating wheelspace sector cascade into the effect of buffer
and trench cavities on the ingestion in the rim seal area, showing
that vane wake, blade bow wave, and local rim seal geometry all
have a dominant affect on the rim seal ingestion. Zhou et al. [12]
performed experiments using PIV to obtain velocity maps around
the rim seal area for a series of cavity geometries. Ingestion was
found to be decreased for narrow aspect cavities. Investigations
into the reduction and control of ingestion by Mirzamoghadam et
al [13], using CFD found that even at relatively high sealing flow
rates, ingress was strongly related to pressure asymmetry in the
main annulus.

For the effect of increased cooling air to be fully understood,
the presence of re-ingested air from upstream cavities must also
be considered. This was investigated by Georgakis et al. [14] con-
ducting CFD studies to investigate the effect of upstream coolant
injection into the mainstream flow being ingested into a turbine
stator well. The egress flow released upstream was shown to be
ingested into the stator cavity, improving the thermal effectiveness
at the cavity walls. The facility has also been instrumented with
gas concentration measurements in order to study re-ingestion.

Coolant Flow Finally, the presence of superposed coolant
flow also strongly influences cavity flow structures, as shown by
Gartner [15]. Cavity coolant flows may be supplied axially by
lock plate leakage flows or radially through a drive aim as indi-
cated in Figure 2. At low coolant flow rates, depending on the
particular geometry, a portion of the coolant may supply the seal
demand without interacting with the cavity. The residual coolant
will be entrained into the disc pumped recirculation. When the
recirculating coolant exceeds the amount required to feed the disc
entrainment flow it enlarges the viscously dominated near wall
region and interact with the shape and rotation of the 2-D core.
With sufficient flow, the coolant floods the cavity, disrupting the
rotationally dominated 2-D core.

Summary The flow field within a turbine stator well can
be characterised by the comparative magnitude of the supposed
flows to the disc pumped recirculation. The metal temperature,
and hence life, of the components within the cavity is highly sen-
sitive to this balance. As such, the test facility has been devised to
deliver coolant flow levels which cover bulk ingestion, where the
coolant is below the disc entrainment and inter-stage seal demand,
through to bulk egress where the coolant is more than sufficient to
flood and seal the cavity.
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Figure 3. Schematic of the Sussex TSW test facility.
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Figure 4. a) Test cell arrangement and b) rapid access rig casing

FACILITY OVERVIEW
The layout of the test facility is shown in Figure 3 and Fig-

ure 4a. The test facility features a two stage turbine rated at
400 kW with a generic blade geometry representative of modern
gas turbines. The average stator exit Mach numbers are approxi-
mately 0.7 which gives a near engine representative potential field
at the rim seals. The stages are approximately equally loaded and
have similar geometry. The rotor stages have 78 blades and the
stators 39 which gives a convenient 2:1 repeat ratio for CFD. The
design speed is 10,630 rpm at a mass flow of 4.8 kgs−1, inlet total
pressure of 3 bar and total temperature of 165∘C.

The rotating assembly is machined from Titanium-318 (4%
vanadium and 6% aluminium) with both rotors (R1 and R2 in
Figure 5) manufactured as a bladed disk (blisk). The stators (S1
and S2 in Figure 5) were machined from stainless steel as a bladed
ring (bling). Central to the design of the test rig is the ability to
reconfigure the cooling system geometry and this is provided by a
split main casing which allows rapid access to the stator well cav-
ities. This is shown in Figure 4b. The stator side of the inter-stage
seal is made from an abradable material. This was machined in-
situ, with the two halves of the casing assembled, in order to avoid
non-axisymmetric clearance. The seal has a cold build clearance
of 0.3±0.1 mm.

The main annulus flow is provided by an adapted aero engine
plant (Turner et al. [16]). All pipework is insulated to maximize
the temperature difference between the main and cooling flow cir-
cuits. The mass flow rate is measured using a venturi.

The main annulus flow enters the turbine via a large settling
chamber (Figure 3a) where the flow is accelerated through a bell-
mouth inlet (Figure 3b) to avoid swirl and pressure asymmetry.
The flow enters the tank through a showerhead distribution pipe
at the top of the tank. The performance of the settling tank/bell-
mouth system was checked using CFD before manufacture. The
residual pressure asymmetry was measured after the inlet con-

b

a

c

S1 R1 S2 R2

Figure 5. Detail of the TSW facility working section.

Figure 6. Detail of the Drive Arm (DA) a) and (ii) Lock Plate (LP) b)
coolant configurations

traction (Figure 3c) using four circumferentially distributed total
pressure rakes, with four radial tappings. Comparing equal radial
heights, the total pressures are within ±1.5% of the dynamic head
of the flow at 80 ms−1. The cooling air is cooled with a water-air
heat exchanger to 18∘C and delivered to the turbine via a mani-
fold (Figure 3d), and then through aerodynamic struts upstream
of the turbine stage (Figure 5a). The internal cooling system air is
supplied by an Atlas Copco ZT250 oil free compressor and Atlas
Copco FD700 dryer plant. The internal air system is described
in detail in the next section. The turbine exit flow passes over a
step diffuser (Figure 5c) and then ducted through a Rolls-Royce
Gnome exhaust casing (Figure 3h). After a 3.25:1 reduction gear-
box, the turbine drives a Heenan and Froude DPY 590 water brake
dynamometer (Figure 3f, g).

Stator Well Coolant Entry Geometry
The multi configuration approach used in the rig design pro-

vides potential for a wide range of flow features to be fitted. The
MAGPI programme features two test configurations. These are
shown in Figure 6. The Drive Arm (DA) geometry features a total
of 39 threaded inserts (Figure 6a), which allows for 13, 26 or 39
coolant delivery holes. Similarly, the simulated Lock Plate (LP)
leakage path geometry (Figure 6b) use 3 removable plates which
seal against the disc with silicon o-rings. A series of slots, 0.5 mm
wide by 16 mm radially, are spark eroded into the plates. Again
13, 26 and 39 flow features are possible. The flow area is equal
for the DA and LP geometries. For the lock plate configuration,
the coolant is fed through the R1 disc into a small annular plenum
formed by a cover-plate. This in turn feeds the annular cavity be-
hind the removable plates. Using the split main casing design,
both geometries may be reconfigured in a matter of hours.
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Figure 7. Contours showing 10x the hoop stress normalised by the the
ultimate tensile strength

Bearing Arrangement The rig has been designed with
quick geometry changes in mind. For this type of application,
the simplicity of grease packed bearings is highly desirable, al-
lowing simple driveshaft and bearing housing arrangements. Off
the shelf, ultra-precision bearings meet the speed and tempera-
ture, and axial load requirements. As part of the bearing selec-
tion process, shaft diameter, axial load capacity, alignment preci-
sion, temperature and speed were defined using predicted operat-
ing conditions. Bearing life calculations from a variety of man-
ufacturers were used for life estimates. A pair of sealed angular
contact bearings with phenolic cages were used at the downstream
end of the shaft. They are positioned in tandem to resist the ax-
ial load from the blades and the wheelspace pressures. A single
bearing with pre-load springs is used at the upstream end to ensure
that the bearings races cannot relax, maintaining radial and axial
alignment during start-up and shut-down transients. Several iter-
ations of bearing arrangement have been required. This includes
an increase from 15∘ to 25∘ angular contact angle. The bearing
life is a function of the actual test conditions. It is reduced both
by the high internal rig temperatures at low cooling flow rates,
and by increased axial load at high cooling flow rates. Typical
bearing life is in the region of 50 hours. The bearing tempera-
tures are monitored constantly through the test runs and replaced
as necessary. An oil lubricated bearing system, with the neces-
sary feed and scavenge pipes would have significantly increased
the re-build times and required complex and careful sealing.

Stress Analysis The structural integrity of the rotat-
ing assembly was assessed with a 2-D axis-symmetric thermo-
mechanical analysis using the Rolls-Royce plc in-house finite el-
ement modeling package. The blade loading is ignored, but other
non-axisymmetric features such as feed holes, bolt recesses and
lands were modeling using an equivalent thickness technique. As
expected, high stress regions were found in the vicinity of the var-
ious holes on R1, shown in Figure 7, but the worst case value
gives a safety factor of 10 on the ultimate tensile strength.

INTERNAL AIR SYSTEM
The pressure required to deliver the coolant and balance the

various cavities at a given coolant flow rate is set by the effective

Vent

Balance

Coolant

Figure 8. The turbine stator well test facility internal air system.

area of the transfer holes and the pressure loss of the coolant path
into the TSW cavity. A flow network model has been used to de-
termine the flow areas required to meet the target range of coolant
flow and geometry configurations.

Inter-stage seal clearance The inter-stage seal clear-
ance has been set so that the seal demand is of similar order, but
below the rate of disc entrainment. Estimates of seal discharge
coefficient from Wittig et al. [17] suggests that the inter-stage
seal demand, Cw,seal , would be in the region of 85% of the disc
entrainment, Cw,ent , at the cold build clearance of 0.3 mm.

Superposed coolant flow rate The maximum value of
the superposed cooling flow rate was estimating using the corre-
lation of Owen and Phadke [18], and the minimum flow rate is set
below the predicted lab seal demand.

Coolant delivery pressure balance The coolant is de-
livered to the stator well cavity through a series of aerodynamic
struts and then through a series of transfer holes at a low radius in
S1. The coolant is then driven through a series of rotating transfer
holes in R1 into the cavity beneath the drive arm. The coolant path
is shown by the blue shaded region in Figure 8. The coolant flow
rate is measured upstream of the rig. A pressure balance cavity
(or blown seal) is used to seal the coolant delivery path between
S1 and R1. This ensures that the coolant flow delivered to the
stator well cavity is neither lost up the wheel space nor contam-
inated by main annulus gas. The balance cavity is shown by the
purple shaded region of Figure 8. Balancing these flows is diffi-
cult in practice, however pressure differences of as low as 0.01 bar
have been achieved. Under these conditions, the excess flow from
the balance cavity is vented via transfer tubes such that rim seal
egress into the mainstream is maintained to be within ± 0.5 gs−1.
The vent path is shown by the orange shaded region in Figure 8.
The internal air transfer tubes are insulated from the main annu-
lus temperatures by means of a cylindrical shield of Rohacell HF.
Bosch HFM 5 series hot-film air mass meters are used to measure
the coolant, wheelspace balance and vent flows. They operate
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Figure 9. Internal air system network flow model.

over the range 0 to 100 gs−1 and were calibrated by a UKAS ac-
credited third party. They give an uncertainty of ±1.3% of the
measurement point.

Flow Network Modeling With the cooling flow capacity
and layout determined, precise dimensions for the flow paths were
defined using the Rolls-Royce in-house network analysis tool.

The tool was used to determine appropriate orifice sizes for
the drive arm inserts and simulated lock plates, sufficient for
the maximum flow case estimates. The seal clearances required
within the upstream wheelspace in order to satisfactorily pressure
balance the lower cavity were also determined. The model was
setup using estimated orifice discharge coefficients, vortex config-
urations and seal clearances. The complete flow network shown
in Figure 9 below.

As a result, the upstream wheelspace labyrinth seal clear-
ances have been reduced to 0.15 mm, and the flow area of drive
arm holes and lock plate slots was set at 8 mm2. This achieves the
full range of coolant conditions whilst satisfying bearing require-
ments.

INSTRUMENTATION
The following sections detail the various instrumentation sys-

tems together with example data.

Main Annulus Instrumentation
Total temperature and pressure measurements are made in the

main annulus using probes set into the leading edge of S1, S2 and
with a radial rake downstream of R2. This avoids the introduction
of additional disturbances to the circumferential pressure gradi-
ents at the rim seal flows. The incidence sensitivity of the total
pressure measurements is minimized with a 2 mm diameter by
1.5 mm deep recess before the actual pressure tap. This geome-
try was tested using a spare NGV leading edge piece and a free
jet calibration rig at representative Reynolds numbers. The yaw
sensitivity is extremely low; in the region of 0.5% of a dynamic
head for a incidence angle range of ±10∘. The total temperature
measurements are made with air thermocouples which protrude
from the leading of S1 and S2. Situated at the stagnation point,
the recovery errors are negligible.

Pressure Measurement
Pressure measurements are made throughout the test rig to

measure flow rates of air supplied to the rig and to balance the
upstream wheel space as well as to determine the conditions in
the stator well cavities. The locations are shown in Figure . All
internal rig measurements use a series of Scanivalve 3217 scan-
ner units (uncertainty of within 0.017% of span for the 0 to 50
psi units, 0.023% of span for the 0 to 100 psi units). The ori-
fice plate measurements pressure use Rosemount 1151 series dif-
ferential transducers (uncertainty of within 0.031% of span) and
Mensor 6100 absolute transducers (uncertainty within 0.015% of
span).

Data Acquisition System
The Data Acquisition (DAQ) system is built around a Na-

tional Instruments PXI system architecture. The system utilises a
combination of PXI, SCXI, Ethernet and Serial communication.
A total of 280 channels are monitored, including instrumentation
points and rig safety measures, and logged using a Labview 8.5 VI
at approximately 0.5 Hz. A complete system schematic is shown
in Figure 10. The on-line logging system is shown in Figure . The
measured data is overlaid onto a graphical representation of the
facility, and a tabbed window system displays the 280 channels in
convenient sub groups, such as metal temperature, main annulus
properties, and cavity pressures (Figure 11). All DAQ hardware is
housed in temperature controlled cabinets to ensure the equipment
operates close to the rated calibrated temperatures. The cabinets
are located in a room adjacent to the test cell, allowing the ther-
mocouples to be plugged in directly to the cold junction terminals
without the use of thermocouple extension wires.

TEMPERATURE INSTRUMENTATION
The importance of establishing low temperature measure-

ment uncertainty is demonstrated by considering the propagation
of uncertainty in the common expressions used to derive nor-
malised metal temperatures, θ, and metal effectiveness, ε:

θ =
Tm −Tcold

Thot −Tcold
(3)

ε =
Thot −Tm

Thot −Tcold
(4)

These equations are classically ill-conditioned, which is eas-
ily seen by considering the effect of small errors as the measured
metal temperature approaches either the cold or hot reference tem-
perature. The amplification of uncertainty approaches infinity in
this extreme case. In practice, the radial temperature difference
down the disc has been maximised by insulating the main annu-
lus delivery, and significant internal insulation to minimise the
heat pickup of the coolant prior to the TSW entry point. However,
considerable attention has been made to the reduction of temper-
ature measurement uncertainty.

A total of 81 K-type thermocouples at 27 radial locations
have been installed within the rotating assembly, while 73 ther-
mocouple measurement locations were used within the stationary
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Figure 10. Schematic of the complete data acquisition system.

Figure 11. TSW facility control and logging panel.

components of the test rig. Six of which are stator mounted air
thermocouples.

The measurement locations are shown in Figure 12, and the
instrumented rotating assembly is shown in Figure 13.

Three thermocouples are used for each radial measurement
location on the rotating components to give triple redundancy. In
practice only 6 thermocouples out of the 81 have failed in ap-
proximately 18 months; importantly, not more than 2 at any radial
location. The thermocouple beads are peened into the material
surface and the thermocouple wires were secured to the rotating
components by means of spot welded metallic straps. The wires
are led circumferentially, along an isotherm, for at least 10 diam-
eters. Detail of a typical installation can be seen in Figure 12.
The beads themselves are ∼0.1 mm. The peening helps to reduce
embedding errors, but they have not yet been quantified.

Static Pressure

Total Pressure

Metal-Surface Temperature

Air Temperature

Figure 12. Schematic showing the instrumentation locations.

A 92 channel Datatel radio telemetry system (shown in Fig-
ure 5, (b)). The system comprises 6 individual units connected in
a parallel bus. Each unit has an in house cold junction reference
module with a PRT mounted in close thermal contact to thermo-
couple junctions. The resistance of the PRT is measured on a ded-
icated 4-wire resistance channel. This channel is normally used
to enable a remote cold junction; particularly useful with high
cost thermocouple extension wires. However, in this situation it
reduces the rotating frame cold junction compensation errors to
within 0.1 K. In addition to the metal surface temperatures, the air
temperature is measured at the location of the coolant entry into
the DA inserts or into the transfer holes in rear of R1 for the LP
geometry.

The stationary thermocouples are installed without extension
cables or plugs. Again in-house cold junction referencing has
been used to reduce the uncertainty to 0.1 K. National Instruments
SCXI 1303 thermocouple input cards have been modified by the
addition of 5 mm thick copper heat spreader plates, monitored
with 3 embedded PRTs to check for spatial non-uniformity. The
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Figure 13. The rotating assembly and detail of the thermocouple installa-
tion.

units are installed within Rohacell HF insulated boxes, within a
temperature stabilised instrumentation room.

A through-calibration technique has been used for the cali-
bration of all thermocouples and cold junction referencing PRTs.
The entire data acquisition chain including the thermocouples,
cold junctions, amplifiers and acquisition cards are calibrated by
comparison against a national laboratory standard reference sys-
tem. The calibrations use an Isotech 915 parallel tube oil bath,
an Isotech SPRT and a TTI-2 resistance measurement system. A
custom copper equalisation block is submerged within the oil bath
and enables all 81 thermocouples to be calibrated in a single batch
(the calibrations take approximately 24 hours per run). This ref-
erence system gives a comparison uncertainty of ∼20 mK which
is an order of magnitude lower than the target uncertainty of the
thermocouples. The calibrations show that both the the thermo-
couples and PRT cold junctions give typically single point uncer-
tainties in the region of 0.1 K. Once installed into the discs, recal-
ibration to these levels is impractical. As such, spare drift check
thermocouples are installed in both the telemetry, and stationary
frame measurement systems. These are recalibrated between test
phases to track the any system drift. Typical recalibrations af-
ter a 6 month period indicate a system drift of 0.1 K. Despite it
being common practice, in reality these uncertainties cannot be
considered independent or normal in distribution so a worst case
6 month combined uncertainty for all of the temperature measure-
ments of 0.3 K is considered to be realistic. This propagates to a
practical uncertainty in normalised temperature and effectiveness
in the region of 1% for the coolant flow rate conditions discussed
in the proceeding sections.

Data has been taken with the rig in the 26 DA configuration
with a coolant flow rate of 55 gs−1 (or approximately 1.1 Cw,ent )
before and after a complete strip and re-assembly (approximately
3 months apart). A histogram of the difference in effectiveness,
ε are shown in Figure 17 for the 38 distinct radial locations in
and around the stator well cavity. The standard deviation gives an
estimate of the 95% confidence interval ±1.5%.

However, the resolution of local temperature differences (or
gradients) on a specific test is far better. Figure 15shows raw data
from three thermocouples at the same radial location, just below
the rim seal on the rear face of R1. All three locations read to
within a spread of 0.1 K, which is similar in magnitude to the
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Figure 14. Typical temperature time history (S2).
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Figure 15. Temperature measurement uniformity.

noise. In fact MP97 and MP99, which are physically next to each
other, show single point differences of less than 0.025 K.

Example Data
Temperature time histories for measurement points on S2 for

a typical test run are shown in Figure ??. Two distinct cooling
flow rate conditions are shown, 1.45 and 1.73Cw,ent . The settling
criterion is for a temperature change of less than 0.1 K, over a 5
minute period, based on 1 minute long running average.

Temperature time histories during a thermal transient, typi-
cal of those performed during normal testing, where the cooling
rate is decreased from 1.47-0.6Cw,ent , is shown for locations on
the upstream face of stator 2 in Figure 16. This transient data
clearly shows the different time constants at each location, and
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Figure 17. Histogram of the difference in effectiveness for the back to
back tests.

the different radial temperature gradients at the two cooling flow
rates. At the higher coolant flow rate of 1.47Cw,ent , the tempera-
ture gradient at the outer two locations indicates that the coolant
is flooding the cavity. In comparison, at the lower coolant flow
rate of 0.6Cw,ent , there is little temperature gradient at the outer
two locations, in fact the inner location is hotter that the main
stream facing location, possibly indicating windage heating of the
already hot main annulus ingested gas.

The temperature profiles on the rear of R1 and front of S2
for a complete range of coolant flow, for a 39 DA hole config-
uration are shown in Figures 18 and 19 respectively. As the
coolant flow is increased, there is a significant change in gradient
at the upper two measurement locations. The temperature profile
on the upstream face of S2 shows little change between the 1.1
and 1.46Cw,ent flow rates indicating the that cavity is likely to be
flooded with coolant.

HOT GEOMETRY
Displacement sensors have been installed to give accurate

measurement of hot running geometry. These provide a means of
determining the inter-stage and upstream wheel space labyrinth
seal clearances at operating conditions. Measurement of the hot-
running inter-stage seal clearance is vital to the interpretation of
the data. Figure 20 shows a schematic of the sensor locations.

The sensor downstream of R2 measures axial displacement,
and the sensor on the stator well foot measures the radial dis-
placement at the drive arm. Micro-Epsilon U6 and SO5 eddy cur-
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Figure 18. Normalised temperature profile on the rear face of R1 for a
range of coolant flow rates.
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Figure 19. Normalised temperature profile on the front face of S1 for a
range of coolant flow rates.

rent sensors with supporting signal conditioning electronics are
used which give a resolution of ±6µm. The sensors are calibrated
against mock targets, and checked at representative test tempera-
tures in a heated box. The calibration set-up for the radial sensor
is shown in Figure 21.

A plot of the axial movement between R2 and the exit stage
during a commissioning run can be seen in Figure 22. At point A,
a small gap increase can be seen, this is due to a small thrust load
exerted on the rotating part of the telemetry unit, generated due
to an increase in telemetry cooling air which is not balanced until
the rig is rotating. At point B a peak gap can be seen as the blade
loading causes a movement due to the initial flow of main annulus
air. At point C, the gap can be seen to reduce as the rig speed
and pressure load on each stage increase. At point D, the rig is at
design speed and inlet pressure, the gap is at its minimum running
value due to the maximum load. By point E the gap has increased
slightly as the hub region of the rig warms. By point F the rig
has reached settled conditions and the gap is constant. Between
points F and G the cooling flow is increased, causing an increase
in the gap due to changes in the relative temperature of the rotor
and stator. At point H, the shut down procedure is started. The
gap can be seen to open up as the pressure load on the rotating
assembly is reduced. As the rig comes to a complete stop at point
I, the gap reduces as a step change. At point J a small spike in the
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Figure 22. Axial rotor movement during a commissioning test.

gap can be seen as the cooling flow is shut off, causing a drop in
the axial load on the rotor. Finally at point K, contraction of the rig
can be seen in steps as the casing contracts faster than the rotating
assembly. The step characteristic is the result of contraction forces
being opposed by shaft bearing stiction, whilst stationary.

Figure 23. Gas concentration schematic.

GAS CONCENTRATION INSTRUMENTATION
The complex flow interactions that exist in the cooling flows

of a gas turbine engine are difficult to quantify. In order to ad-
dress this problem a carbon dioxide delivery and detection system
has been installed. The work has been informed by Phadke and
Owen [19] who used flow visualisation, pressure and concentra-
tion measurements to investigate the sealing of a shrouded rotor-
stator system. The tests were conducted over seven geometries
including axial-clearance, radial-clearance and mitred seals. The
new rig system has been designed so that it can be configured for
three distinct experiments:

1. The re-ingestion of cool upstream wheelspace flows into the
stator well cavities;

2. Measurements of main gas path interaction in the vicinity of
turbine rim seals;

3. Measurements of inter-stage labyrinth seal flows.

A schematic of the system set-up is shown in Figure 23. CO2
may be seeded into both the main cooling flow and also the up-
stream wheelspace cavity balance flows. It may also allow be
injected upstream of the inter-stage seal through the stator well
foot.

Long pipe lines and an adjustable back pressure valve are
used to provide near iso-energetic conditions at the measurement
points. An in-line heater is used to maintain the C02 delivery tem-
perature. The complete system is checked by flooding the rig with
air seeded at a known concentration, at typical operating pres-
sures. The location to location repeatability of the concentration
measured at each point is of the order of 2%.

Example data
To investigate the rim seal exchange in the upstream stator

well cavity, the stator well cooling air is seeded with CO2 at
a known rate or concentration. The concentration measured at
the various tapings within the stator well indicates the dilution
or mixing of the coolant with the main annulus gas. Example
results obtained for two cooling flow rates are shown below in
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Figure 24. Dilution measurements in the upstream and down stream cav-
ities.

Figure ??. The dilution ratio presented below is the ratio of the
delivered to measured concentration. A value of 1 represents pure
coolant, and 0 indicates pure main annulus gas. The coolant flow
rates of 40 gs−1 and 55 gs−1 are estimated to be in the region of
90% and 110% of the disc entrainment flow respectively. Com-
paring the two cases, at the lower coolant flow rate, the dilution
ratio shows that comparatively little coolant is present at the Up-
stream (US) cavity measurement points. At the lower flow rate,
the Down Stream (DS) cavity measurement points indicate the
presence of more coolant, which suggests that the coolant flows
through the inter-seal seal to the DS cavity with little mixing. At
the higher flow rate, the coolant is expected to exceed the disc
entrainment. The increased dilution ratio confirms this, show-
ing that the coolant penetrates into the cavity with greater mixing
with the main stream ingestion before it gets to the DS cavity. The
variation in concentration measured in the US cavity at the higher
flow rate indicates a highly complex 3-D flow structure. This non-
axisymetric variation is fully mixed out by the time the mixture of
ingress and coolant reaches the DS cavity.

CONCLUSIONS
A test turbine test facility has been developed which allows

the measurement of high resolution temperature data, hot running
seal clearances and re-ingestion by means of a gas concentration
system. The design of the test rig architecture and flow systems
is such that a wide range of stator well flow regimes, centered
around cavity sealing conditions, may be composed at will. The
data available from the test rig allows the effects of a range of sta-
tor well cooling flows to be accurately quantified. The presence of
cavity ingestion resulting from the rim seal flow exchanges may
be quantified, as well as re-ingested flow using gas tracing tech-
niques. This data will be useful for the validation of the next
generation of conjugate/coupled analysis tools.
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