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Summary

Scalability is a challenging yet key aspect required for large scale quantum computing and

simulation using ions trapped in radio-frequency (rf) Paul traps.

In this thesis 171Yb+ ions are used to demonstrate a magnetic field insensitive qubit

which has a measured coherence time of 1.5 s, making it an ideal candidate to use for storing

quantum information. A magnetic field sensitive qubit is also characterised which can be

used for the implementation of multi-qubit gates using a potentially very scalable scheme

based on microwaves in conjunction with a static magnetic field gradient instead of using

lasers. However, the measured coherence time is limited by magnetic field fluctuations and

will prohibit high fidelity gate operations from being performed. To address this issue, the

preparation of a dressed-state qubit using a microwave based stimulated rapid adiabatic

passage (STIRAP) pulse sequence will be presented. This qubit is protected against the

noisy environment making it less sensitive to magnetic field fluctuations. The lifetime of

this qubit is measured to demonstrate its suitability for storing quantum information. A

powerful method for manipulating the dressed-state qubit will be presented and is used

to measure a coherence time of the qubit of 500 ms which is two orders of magnitude

longer compared to the magnetic field sensitive qubit. It will also be shown that our

method allows for the implementation of arbitrary rotations of the dressed-state qubit on

the Bloch sphere using only a single rf field. This substantially simplifies the experimental
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setup for single and multi-qubit gates.

Furthermore, this thesis will present a experimental setup capable of successfully oper-

ating microfabricated surface ion traps. This setup is then used to operate and characterise

the first two-dimensional (2D) lattice of ion traps on a microchip. A unique feature of the

microfabrication technique used for this device is the extremely large voltage that can be

applied which allows long ion lifetimes along with large secular frequencies to be measured,

demonstrating the robustness of this device. Rudimentary shuttling between neighbouring

lattice sites will be shown which could be used as part of a efficient scheme to load a large

lattice of ions. One of the many applications of a 2D lattice of ions lies in the field of

quantum simulations where many-body systems such as quantum magnetism, high tem-

perature superconductivity, the fractional quantum hall effect and synthetic gauge fields

can be simulated. It will be shown how making only minor modifications to the microchip

the ion-ion separation can be reduced sufficiently to offer an exciting platform for the

successful implementation of 2D quantum simulations. A theoretical investigation on the

optimal 2D ion trap lattice geometry will also be presented with the aim to maximise the

ratio of ion-ion coupling strength to decoherence from motional heating of the ions and to

laser induced off-resonant coupling.
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4.2 Not to scale partial 171Yb+ energy level diagram. (a) transitions used for
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4.7 Ramsey fringes between |0〉 and |0′〉. Following preparation in |0〉 a de-
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ifold of 171Yb+ where the degeneracy of the Zeeman states has been lifted

by a magnetic field. While |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 are coupled with
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5.6 (a) typical STIRAP pulse sequence where Ωp = 2π×25 kHz, tw = 300µs and
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2
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however an illustration of this can be found in chapter 4. The numbering
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measured which can be seen in table 5.1. . . . . . . . . . . . . . . . . . . . . 79
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5.12 Rabi oscillations between |0′〉 and |+1〉. A resonant 10 Vpp rf signal applied

to the LCR circuit sandwiched between two microwave π-pulses resonant

with |0〉 ↔ |+1〉 is applied for an increasing time t. The resulting Rabi

oscillations have a frequency of 2π×18 kHz. Each data point corresponds

to 100 measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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corresponds to 1000 measurements. . . . . . . . . . . . . . . . . . . . . . . . 86
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5.16 Rabi oscillations between |0′〉 and |D〉. Following preparation in |D〉 a rf

pulse resonant with |0′〉 ↔ |+1〉 is applied for an increasing amount of

time t which results in Rabi oscillations. To illustrate the robustness of the
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shows Rabi oscillations for a window of 1 ms after the rf has been applied for
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the data shown in (a). The Rabi frequency in (b) appears changed due to

slow fluctuations of experimental parameters. Each point in (a) corresponds
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5.17 Ramsey fringe between |0′〉 and |D〉. Following preparation in |D〉 a de-

tuned rf π/2-pulse is applied followed by a second detuned π/2-pulse after

a variable precession time t which results in Ramsey fringes. The period of

these fringes is measured to be 1/(160 Hz) indicating that the π/2-pulses

were 160 Hz off-resonant. Each point corresponds to 100 measurements. . . 91
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6.2 (a) Not to scale schematic of a cross section of the silicon-on-insulator wafer
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(b) Not to scale schematic of a cross section of the wafer after an optimised

60µm anisotropic buffered HF etch laterally under the silicon device layer.

This increases the path length to ground from 10µm to 120µm and allows

much larger voltages to be applied to the device. . . . . . . . . . . . . . . . 98
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6.3 (a) A image from a SEM of the finished microchip. The inset shows a close-

up of two of the hexagonal traps including the recessed ground electrode.

Letters A to H represent the lattice sites that were used during the exper-

iments presented in this chapter. (b) A image of the cross section of the

layered SOI structure at the interface between two compensation electrodes

taken using a SEM. The 60µm V-shaped undercut into the SiO2 layer is
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photons from the ion(s) is then collected using a imaging system. The red

dashed box indicates the position of the vacuum system. The numbering
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6.9 Picture of the final translation stage used to align the beams parallel to

the surface of the microchip. The numbers correspond to the numbering in
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7.1 Pictorial diagram of three ions in adjacent traps. The ions feel a Coulomb
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case with no state dependent force present. (b) Pictorial diagram showing

how the system reacts to the presence of a state dependent force, F . Here

the ions feel a change in the Coulomb force, δFC , due to the displacement

of the ions and a change in the restoring force, δFT . . . . . . . . . . . . . . 121

7.2 Diagrams showing the polygon radii R, the separation between the polygon

centrers, A, and the distance between the last polygon and the edge of the rf
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unit cells. The unit cells are indicated by dashed lines. . . . . . . . . . . . . 123



xxviii

7.3 Diagram showing the effect of varying the distance g on the scaled Ksim

value of the individual trapping sites. The Ksim values shown are scaled

with that of the central site. (a) Representation of a 5 by 5 square type lat-

tice array indicating the axis labelling. (b) Slice across the array (indicated

by the dotted line in (a)) for g/L values of 0.1, 0.2, 0.5 and 1. . . . . . . . . 126
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7.9 Graphs showing the value of kr (a), kA (b) and kR (c) as a function of the
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Chapter 1

Introduction

1.1 Quantum computing

Understanding the natural and social world we live in is a key motivator for perform-

ing research. To acquire an understanding of the ever increasing complex systems we

investigate, classical computers have become of fundamental importance. The classical

computer was first introduced by Alan Turing in 1936 [8] and nowadays builds on elemen-

tary physical elements called ‘bits’ which can have two possible states denoted 0 and 1.

While extremely efficient at executing many algorithms to solve deterministic problems,

the classical computer we know today has limitations. These limitations stem from cur-

rent computers obeying classical physics, which makes them extremely inefficient when

simulating quantum systems. It would therefore be desirable to develop a computer which

obeys the laws of quantum mechanics.

It was not until the work by Richard Feynman in 1982 that it was realised that a

controllable quantum system can be used to simulate a large quantum system considerably

more efficiently than a classical computer ever could [9]. In his work he used the example

of a photon where the direction of the polarisation represents two states, 0 and 1. Since

this system obeys the laws of quantum mechanics it can be in a superposition of 0 and 1.

We can refer to such a system as a quantum bit, or ‘qubit’. This qubit, which is made up

of the two orthogonal states |0〉 and |1〉, is described by

|Ψ〉 = α|0〉+ β|1〉 (1.1)

where α and β are two complex numbers and |α|2 + |β|2 = 1.

What this means is that the state of a quantum computer with N qubits can be in a

superposition of 2N states unlike the state of a classical computer which can only be in
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one of the 2N states at a time. A measurement of the system will cause the collapse of the

superposition and result in a random output. As pointed out by Feynman, repeating the

same experiment many times does however allow to extract the probability of the system

being in a certain state which is very useful when simulating the evolution of a quantum

system.

Taking this a step further, David Deutsch showed that it is possible for a quantum

gate operation, such as an entangling gate, to work in an analogous way to logic gates

in a classical computer and should therefore be capable of processing information [10].

The most significant difference is that due to the creation of entanglement the qubits of

the quantum computer can no longer be described as individual entities. The result of

this is that a operation on a single qubit will influence all the other qubits and can lead

to parallel quantum computing which can significantly increase the speed of a quantum

computer.

To make use of this computational power, impressive quantum computing algorithms

have been developed. One example is Shor’s factoring algorithm which can factor large

numbers [11]. Factoring large numbers is an essential part of current encryption schemes

since this is a inherently difficult task for classical computers. This algorithm has therefore

seen increasing interest from national security agencies. Another well known algorithm is

called Grover’s search algorithm [12]. As the name suggests it is an algorithm designed

to search through large unsorted databases. Due to the quantum mechanical behaviour

of a quantum computer the required search iterations are reduced to
√
N . In contrast, a

classical computer requires N/2 iterations.

A major limitation at the time was the requirement of every operation on the qubits

needing to be perfect in order for any algorithm to be successfully implemented. It was

therefore no surprise that with the introduction of error correction schemes [13] and fault

tolerant quantum computing [14] the interest in the field of quantum information grew

significantly. Following the proposal of these schemes, allowing quantum computing to be

performed despite non-optimal qubit operations, the focus shifted towards what physical

system could be used as a quantum computer. It was David DiVincenzo in 2000 who

listed 5 physical requirements to be met by any system being used which are [15]:

1. A scalable physical system with well characterised qubits - This means that the

system should allow for a large number of qubits to be used. It also means that the

qubit should be well understood including the Hamiltonian describing its internal

energy, the coupling between multiple qubits and the interaction between the qubit
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and external fields used for quantum operations.

2. The ability to initialise the state of the qubits - This means that it needs to be

possible to prepare the qubit in any arbitrary state with a high fidelity.

3. Long relevant decoherence times - The decoherence time of the qubit needs to exceed

the time it takes for gate operations to be performed which means that the qubit

needs to be well protected from the environment. The minimum the decoherence

time needs to exceed the gate time by is set by the error correction scheme used.

4. A universal set of quantum gates - To implement a universal set of gates the required

operations can be simplified to single qubit gates and one two-qubit gate operation

known as the controlled NOT (CNOT) gate.

5. A qubit-specific measurement capability - It must be possible to read-out the state

of single qubits without affecting other qubits which are part of the computation.

Keeping the above requirements in mind, there are several systems that are currently

being used with the aim to perform quantum computing. Examples of such systems include

optical systems such as photons [16], solid-state systems such as quantum dots [17], atomic

systems such as neutral atoms [18] and trapped ions [19]. Optical systems have been used

to perform exciting experiments and it can easily be seen how photons could be the ideal

carrier for transferring quantum information over large distances. Due to the difficulty

of confining a photon, storing of information is extremely difficult and requires a second

system. Solid-state systems have the advantage of being very scalable and offering a

platform for fast quantum gate operations however a challenge lies in the short coherence

times which limits the achievable gate fidelities. The internal states of atomic systems

on the other hand can be well protected from the environment and easily manipulated

using lasers or microwaves. While neutral atoms tend to suffer from a short lifetime,

trapped ions have been shown to have long coherence times and lifetimes and impressive

progress towards scaling to a large number of qubits has been made. This makes the

quantum computer based on trapped ions one of the most promising candidates for the

implementation of quantum computing.

1.1.1 Quantum computing using ions

Ions can be trapped in a Penning trap using a homogeneous static magnetic field and a

spatially inhomogeneous static electric field and many of the requirements for quantum
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computing have been implemented in such a trap [20]. The problem is that the ions

in a Penning trap are not stationary; instead they form a rotating crystal which makes

individual ion addressing and readout very challenging. A more common approach is to

trap ions in a radio-frequency (rf) Paul trap which uses oscillating and static electric fields.

The information can be encoded in two internal states of the ion which are either separated

by a optical frequency (optical qubit) or by a microwave/rf-frequency (hyperfine/zeeman

qubit).

Using ions as a quantum computer was first proposed by Cirac and Zoller in 1995 [19].

In their proposal single and multi-qubit gate operations are performed using well-controlled

laser beams which are tightly focused to individually address each ion. As a prerequisite

to performing the CNOT gate a collective mode of motion of the ions is cooled to the

ground state. To perform the CNOT gate the same mode is then used as an auxiliary

‘bus’ qubit which is used to transfer knowledge of the state of the ‘control’ qubit to the

‘target’ qubit. A simplified version of this gate was first implemented by Monroe et al. [21]

in 1995 using a single ion while the full scheme was first implemented by Schmidt-Kaler

et al. [22] in 2003 using a string of ions.

The Cirac and Zoller CNOT gate comes with two major experimental challenges. The

first is the requirement of having to ground state cool the mode that is being used as

the auxiliary qubit. The second challenge is the requirement of individual ion addressing

which is very difficult using lasers. While both challenges can be overcome they add to

the complexity of the experiment and can limit the achievable gate fidelity.

The above challenges were removed by the proposals and implementations of new gates

where ions do not have to be in the motional ground state and individual addressing is not

required either [23–30]. The gates are usually implemented by using a pair of bichromatic

Raman laser fields (in the case of a hyperfine qubit) where the frequencies are tuned such

that the upper (blue) and lower (red) motional sideband of the ions are near resonantly

addressed. Having removed some of the stringent requirements that come with the Cirac

and Zoller gate has lead to very impressive experimental demonstrations of multi-qubit

hot gates. This includes the entanglement of up to 14 ions [31] and the demonstration of

a entangling gate fidelity of 99.3% [32], both of which have been implemented using the

Mølmer-Sørensen scheme [23,25].

Nevertheless, there are problems with the above implementations when trying to scale

them up to many more ions and when trying to improve the gate fidelity. Technical

problems include fluctuations of the laser output which can be separated into frequency,
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phase and intensity fluctuations as well as the limited absolute intensity that can be

obtained. Furthermore, beam pointing instability and non-perfect beam quality can cause

infidelities even if it was possible to perfectly stabilise the laser output. While these

technical challenges could in principle be overcome with great effort, a more fundamental

problem is off-resonant coupling to states outside of the qubit subspace caused by the

Raman beams. This puts a limit on the maximum achievable gate fidelity [33]. On the

economic side, lasers can be very expensive to purchase and a lot of time and money has

to be spent on maintaining these systems.

A very promising solution to the stability and scalability issues that come with using

lasers to implement multi-qubit gate operations was proposed by Mintert and Wunderlich

[34] in 2001. Due to the long wavelength of microwaves (on the order of centimetres)

it is not possible to achieve a sufficiently strong coupling between the internal state of

the ion and its motion. However, as pointed out by Mintert and Wunderlich, by adding

a static magnetic field gradient and using a qubit made up of two states with different

magnetic moments a sufficient coupling, similar to that achieved using lasers, can be

achieved. The scheme is suitable for current multi-qubit gates that have so far been

experimentally realised using lasers and remove most of the laser specific limitations. A

important advantage of using microwaves is the non-existent spontaneous emission to

unwanted states which puts a fundamental limit on the achievable laser gate fidelity.

Another important advantage is the possibility of individually addressing ions in frequency

space due to the position dependant qubit energy splitting resulting from a magnetic field

gradient along a string of ions. On the technical side, microwave engineering is a very

mature field allowing extremely stable microwave fields to be generated at comparably low

costs. Microwaves also naturally address a large volume of space making them potentially

very useful when scaling any operation to many more ions.

The ability to individually address ions and resolve motional sidebands using this

scheme was first demonstrated by Johanning et al. [35]. This was followed by the im-

plementation of a two-ion gate by Khromova et al. three years later [36]. A different

scheme using a oscillating magnetic field gradient has also been proposed [37] and imple-

mented [38]. This scheme itself does not allow individual ion addressing however this can

be solved by using microwave near-field gradients [39].

Currently, the limiting factor in achieving very high gate fidelities using microwaves in

conjunction with a static magnetic field gradient stems from the difficulty of achieving high

magnetic field gradients and from magnetic field noise causing uncontrollable fluctuations
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of the energy of the magnetic field sensitive qubit state(s) [36]. To address this issue

microwave dressed-states can be used to significantly suppress the effect of magnetic field

noise [40]. In this scheme, microwaves are used to create a dressed-state which, while being

insensitive to magnetic field noise, is still sensitive to a magnetic field gradient. Combining

this dressed-state with a magnetic field insensitive bare state then results in a qubit which

is protected against noisy magnetic fields. Radio-frequency (rf) fields can then be used

to implement single and multi-qubit gate operations and should significantly improve the

currently achievable gate fidelities.

1.1.2 Scalable architectures for quantum computing and quantum sim-

ulation

While one of the main challenges lies in performing multi-qubit gate operations with a

fidelity high enough to be part of a large scale quantum computer, another challenge lies

in developing scalable architectures that allow thousands of ions to be stored, shuttled

and manipulated [41]. A core, successful ingredient in developing such architectures is the

use of state-of-the-art microfabrication techniques [42]. Microfabricated ion traps have al-

ready been used to shuttle ions [43,44] and perform two-qubit gate operations [38] which

mark important milestones towards the implementation of large scale quantum computing

with ions. Indeed, the realisation of such a computer still requires many challenges such

as limited two-qubit gate fidelities to be overcome however as pointed out by Feynman, a

collection of two-level systems could form part of a ‘quantum simulator’ to simulate large

quantum systems and outperform a classical computer [9]. Since a quantum simulation

is not based on multi-qubit gate operations, as is the case for a quantum computer, the

requirements for the successful implementation are less stringent. Following the exciting

proposal to use ions as effective spins to simulate many-body systems such as quantum

magnetism by Porras and Cirac in 2004 [45], many impressive small-scale quantum sim-

ulations have been implemented using a linear string of ions [46–52]. A focus now lies

on developing microfabricated architectures that allow trapping of a tightly spaced two-

dimensional (2D) lattice of ions which could be achieved using a lattice of individual rf

ion traps [53–55]. The experimental realisation of a quantum simulator based on such an

architecture has the potential to outperform a classical computer for the first time.



8

1.2 Thesis outline

This thesis is structured in the following way. The first part of the thesis presents the first

coherent manipulation experiments using 171Yb+ in our laboratory. It presents the imple-

mentation and novel manipulation of a dressed-state qubit which is resilient to magnetic

field fluctuations and will now be used for the implementation of high fidelity multi-qubit

gates based on microwave and radio-frequency (rf) fields in conjunction with a static mag-

netic field gradient. The second part presents work towards two-dimensional (2D) ion

lattices for the implementation of quantum simulations.

In more detail, chapter 2 outlines how an ion trap works and describes how specific

isotopes of ytterbium can be used as an ion in quantum information experiments. Chapter

3 reviews the main experimental setup and presents a heating rate measurement for the

trap used for some of the experiments shown in this thesis.

Chapter 4 describes how single qubit gate operations can be implemented. It also

describes how microwaves in conjunction with a static magnetic field gradient can be used

to individually address ions in frequency space and to couple the spin state to the mo-

tion of the ion. This is followed by the implementation of single qubit gate operations

where the qubit is made up of two states which are part of the 2S1/2 hyperfine manifold of

171Yb+. Two possible qubits are investigated, one of which is a magnetic field insensitive

qubit for which a coherence time of 1.5 s is measured. The second qubit consists of one

magnetic field insensitive and one magnetic field sensitive state. The coherence time of

this qubit is found to be approximately 500µs which limits its usefulness for high fidelity

multi-qubit gate operations. To address this issue chapter 5 presents the experimental

demonstration of microwave dressed-states to form a qubit which is insensitive to mag-

netic field noise but still suitable for multi-qubit gate operations. We measure a coherence

time of this qubit in the excess of 500 ms, a two orders of magnitude increase compared

to the magnetic field sensitive bare state qubit. We also present a novel method of ma-

nipulating the dressed-state qubit using only a single rf field which allows arbitrary qubit

rotations to be performed and significantly simplifies the experimental setup required for

the implementation of multi-qubit gate operations.

Chapter 6 presents the operation of a 2D ion trap lattice on a microchip. This includes

a brief description of the specialised fabrication method used which allows very large volt-

ages to be applied to the microchip. Trapping of the first 2D lattice of ions on a microchip

will be shown along with shuttling between lattice sites which could be used as part of a

scheme to load larger ion lattices. Chapter 7 addresses the question of the optimal 2D lat-
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tice geometry which maximises the effective spin-spin coupling rate between neighbouring

ions while minimising sources of decoherence such as motional heating and spontaneous

emission. It will also be shown how simple modifications to the microchip design could

offer a platform for the successful implementation of 2D quantum simulations.
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Chapter 2

The rf Paul trap and the Yb ion

The experiments presented in this work rely on the radiofrequency (rf) ion trap which is

used to strongly confine ions for a long period of time. The rf ion trap was invented by

Wolfgang Paul in the late 1950’s following which Wineland et al. [56] and Neuhauser et al.

[57] independently demonstrated laser-cooling of trapped Mg+ and Ba+ ions respectively

in 1978. Since then the rf (Paul) ion trap has been used in fields such as cavity quantum

electrodynamics [58], atomic clocks [59–61] and quantum information [41,53, 62, 63]. Due

to the major impact of the rf ion trap on a variety of scientific research fields Wolfgang

Paul shared the 1989 Nobel prize in Physics [64].

Focusing on the field of quantum computing using trapped ions, a variety of different

ion species have been used in experiments including Mg+ [65], Ca+ [66], Cd+ [67], Ba+ [68],

Be+ [21], Sr+ [69] and Yb+ [70,71]. No consensus has yet been reached as to which species

is most suitable for quantum information processing and it is likely that it will depend on

the specific experimental requirements. The experiments presented in this work use Yb+

and it will be the focus of this chapter to present this ion in more detail along with an

explanation of the underlying principle of the rf Paul trap.

2.1 The ion trap

When first thinking about how to design a device to confine a charged particle one might

think that this can simply be achieved by using a number of static electric fields. However,

the well known Earnshaw’s theorem states that it is not possible to confine a charged

particle in three dimensions using static electric fields. This is a consequence of Laplace’s

equation which, for the case of working in free space, is given by

∇2φ(x, y, z) = 0 (2.1)



11

where φ(x, y, z) is a three-dimensional electric potential. Fortunately, it is possible to

solve this problem and confine charged particles by replacing the static electric fields with

a oscillating electric field. Such a field produces a time dependant potential φ(x, y, z, t)

which can be described by

φ(x, y, z, t) = U
1

2
(α1x

2 + β1y
2 + γ1z

2) + V cos(ΩT t)
1

2
(α2x

2 + β2y
2 + γ2) (2.2)

where U and V are the voltages of the applied static and time dependant fields respectively

and ΩT is the frequency of the time dependant voltage. In order to satisfy Laplace’s

equation and confine charged particles it is a good starting point to get as close as possible

to ensuring that

− (α1 + β1) = γ1 > 0 and α2 = −β2, γ2 = 0. (2.3)

or

α1 = β1 = γ1 = 0 and α2 + β2 = −γ2 (2.4)

By satisfying the above conditions it is possible to design trapping structures which allow

confining of charged particles. Examples of such structures will now be given.

2.1.1 Two-dimensional quadrupole trap

An example of a geometry which produces a potential that satisfies the conditions shown

in equation 2.3 is shown in figure 2.1. This trap structure is often referred to as a two-

dimensional quadrupole trap or a linear Paul trap. Applying a static, as well as oscillating

field, to two opposite electrodes and the same field but out of phase by π to the remaining

two electrodes results in a total quadrupole potential given by [72]

φp(x, y, t) = (U − V cos(ΩT t))

(
x2 − y2

2r2
0

)
. (2.5)

This provides radial confinement along the x and y-axis and results in a uniform potential

along the z-axis near the centre of the trap. While this does not provide confinement in

the z-axis, this can be achieved by positioning electrodes at either end of the trap which

are often referred to as end cap electrodes. An alternative method involves only applying

a oscillating field to two of the hyperbolic electrodes and applying a static voltage to the

other two electrodes which can be segmented to provide confinement along the z-axis. A

trap similar to this is shown in chapter 3.
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(U-Vcos(ΩTt))/2 

(Vcos(ΩTt)-U)/2 

Figure 2.1: Illustration of a linear Paul trap consisting of four hyperbolic electrodes.

Ion motion

The motion of an ion in a potential created by a linear Paul trap is an important exper-

imental parameter that needs to be considered and has been studied in great detail. A

very brief summary will be given here following [42].

The motion of an ion can be described in two ways. One way gives a good approxima-

tion of the motion and will be considered first. The second way allows us to get a more

complete understanding of the motion and will be considered later.

When considering the motion of an ion in a harmonic potential we find that the fre-

quency of this motion has to be small compared to the frequency used to create the

trapping potential. This allows us to time average the force an ion experiences in a inho-

mogeneous field over an oscillation to get a pseudopotential. This is known as the pseu-

dopotential approximation [73]. The pseudopotential for a voltage of the form V cos ΩT t

applied to the linear Paul trap shown in figure 2.1 is given by [74]

ψ =
e2

4mΩ2
T

|∇V (x, y, z)|2 (2.6)

for a single ion where |∇V (x, y, z)2| is the gradient of the potential and m is the mass of

the ion. The ion motion inside this pseudopotential can now be approximated as secular

harmonic motion which greatly simplifies the ion dynamics. The secular frequency is given

by [74]

ν2
i =

e2

4m2Ω2
T

∂2

∂i2
(
|V (x, y, z)|2

)
(2.7)
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where i corresponds to the x, y or z-axis of motion and the derivative is taken at the

minimum of |V (x, y, z)|2.

The pseudopotential approximation is very useful for simulating a trap and obtaining

a good approximation of the ion motion as it only requires a electrostatics problem to be

solved. However, a more complete understanding of the ion motion is sometimes required.

In this case the time dependant nature of the potential given in equation 2.5 needs to be

taken into account as this can superimpose an oscillation with frequency ΩT to the secular

motion of the ion. The equations of motion for an ion trapped in a potential given by

equation 2.5 can be written as [72]

∂2x

∂t2
= −

( e
m

) ∂φp(x, y, t)
∂x

= − e

mr2
0

(U − V cos(ΩT t))x (2.8)

∂2y

∂t2
= −

( e
m

) ∂φp(x, y, t)
∂y

=
e

mr2
0

(U − V cos(ΩT t)) y (2.9)

∂2z

∂t2
= −

( e
m

) ∂φp(x, y, t)
δz

= 0. (2.10)

where, again, we can see that the potential from the rf field does not provide any confine-

ment along the z-axis.

By using the chain rule and making the following substitutions

a =
4eU

mr2
0Ω2

T

. q =
2eV

mr2
0Ω2

T

, ζ =
ΩT t

2
(2.11)

the equations of motion can be written in the form of the Mathieu equations given by [72]

∂2x

∂ζ2
= − (a− 2q cos(2ζ))x = 0 (2.12)

∂2y

∂ζ2
= (a− 2q cos(2ζ)) y = 0. (2.13)

The Mathieu equations can be solved using the Floquet theorem [75]. By solving the

Mathieu equations of motion we find that there exist various combinations of a and q

which result in stable ion motion. Figure 2.2 (a) shows a stability diagram with the green

and red regions illustrating stable motion in the x and y direction respectively. Stable

regions for trapping ions can be found by ensuring that a and q parameters are chosen

which provide stable motion in both of these directions. An example of such a region can

be found when focusing on small a and q parameters as illustrated by the orange region

in figure 2.2 (b). This is the most commonly used region for trapping ions.
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(a) (b)

Figure 2.2: (a) Stability diagram illustrating stable regions of motion along the x-axis
(green) and y-axis (red) of motion. (b) An example of a stable region along the x as well
as the y-axis (orange) which can be used to trap ions.

2.1.2 Micromotion

The Floquet theorem can be used to solve the Mathieu equations for the case where a = 0

and q � 1. The resultant ion trajectory along the x-axis is then given by [6]

x(t) = κ cos(νxt)
(

1 +
qx
2

cos(ΩT t)
)

(2.14)

where κ is a constant which depends on the initial conditions. We can see that the ion

trajectory is made up of the secular motion, with frequency νx as well as a fast oscillatory

motion at the frequency of the trapping field, ΩT . This fast oscillatory motion is known

as micromotion. While the so called intrinsic micromotion caused by the ion being driven

away from the rf nul due to the extent of the wave packet can not be compensated for,

it is indeed possible to compensate for extrinsic micromotion. Extrinsic micromotion is

often caused by static offset fields which cause a constant shift of the ion away from the rf

nil. This can be compensated for by incorporating static voltage electrodes into the trap

structure.

Figure 2.3 illustrates the motion of an ion with a secular frequency of νx/2π =

1 MHz trapped in a potential characterised by ΩT /2π = 35 MHz and q = 0.1. We can

see the low frequency but large amplitude secular motion as well as a high frequency but

small amplitude micromotion where the amplitude of the micromotion is proportional to

the distance of the ion from the rf nil position. While recent experiments have made use of

micromotion [39,76], it often is an undesirable effect and generally needs to be minimised
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Figure 2.3: Motion of an ion trapped in a quadrupole field described using equation
2.14. The motion consists of large amplitude secular motion with a frequency of νx/2π =
1 MHz and small amplitude micromotion with a frequency of ΩT /2π = 35 MHz. The
stability parameters are a = 0 and q = 0.1. Clearly visible is the position dependant
amplitude of the micromotion which is proportional to the distance of the ion from the rf
nil.
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as much as possible.

We can therefore see that strings of ions trapped in a linear Paul trap will exhibit

little micromotion in the uniform potential along the z-axis. This makes this type of trap

an ideal tool for scalable quantum computing experiments. Such experiments can involve

shuttling of ions [74] as well as the coherent interaction between many ions in a single

potential well [31,52]. A linear Paul trap was therefore chosen to be used for the coherent

manipulation experiments shown in this thesis.

2.1.3 Three-dimensional quadrupole trap

The conditions for the second case shown in equation 2.4, which consists only of oscillating

components, can be met by using a three-dimensional (3D) quadrupole trap as pointed

out by Wolfgang Paul [64]. An example of such a trap can be seen in figure 2.4. The

U+Vcos(ΩTt) 

Figure 2.4: Schematic of a 3D quadrupole trap with one hyperbolic ring electrode and two
hyperbolic endcap electrodes. The potential is created by applying a oscillating voltage
on the ring while keeping the two endcaps at ground or vice versa.
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trap consists of a hyperbolic ring electrode and two hyperbolic endcap electrodes. The

oscillating voltage is either applied to the ring electrode with the endcaps held at ground

or vice versa. If required, a static voltage can be applied along with the oscillating voltage.

The total potential at any point in such a trap is given by [77]

φc(x, y, z) = (U + V cos(ΩT t))

(
x2 + y2 − 2z2

r2
0

)
(2.15)

where r0 is the distance between the ion and the nearest electrode. The motion of an

ion in this type of trap can be described using the same method used for the linear Paul

trap. We then find that such a trap only provides one point where the potential from

the oscillating voltage is minimum, making it ideal for experiments with one ion. A trap

analogous to the trap shown here is used in the experiments shown in chapter 6.

2.2 Doppler cooling

Ions are generally formed and cooled using lasers. The common choice of laser cooling is

Doppler cooling. In order to understand the principle of Doppler cooling we first consider

an ion which, for simplicity, we approximate as a closed two-level system where the photon

scattering rate from the excited level is given by [78]

dN

dt
=

s0γ/2

1 + s0 +
(

2∆
γ

)2 (2.16)

where γ is the natural linewidth of the transition, ∆ is the detuning from resonance, and

s0 is the saturation parameter. The saturation parameter is given by [78]

s0 ≡
2|Ω|2

γ2
=

I

Is
(2.17)

where Ω is the Rabi frequency and I is the intensity of the laser beam. Is is the saturation

intensity and is given by [78]

Is ≡
πγhc

3λ3
(2.18)

where h is the Planck constant, c is the speed of light in vacuum and λ is the transition

wavelength.

We now consider the motion of an ion in a potential. Due to the motion the applied

laser beam will appear Doppler shifted to the ion. This instantaneous Doppler shift is

given by ∆D = k · ν where k is the wavevector of the beam and ν is the velocity of the
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ion. If in equation 2.16 we define ∆ = ∆L + ∆D we can see that the scattering rate not

only depends on the detuning of the laser field but also on the velocity of the ion. The

consequence of this is that for a red detuned (−∆L) laser beam, the highest probability

of the ion absorbing one photon and obtaining a momentum kick of −~k1 corresponds to

when the ion travels in the opposite direction to the laser beam (∆D is positive). The

following emission event will impart a momentum kick of equal size to the ion, however,

due to the isotropic nature of the spontaneous emission, the process of absorption and

emission will impart a net force on the ion which is in the opposite direction to the laser

beam. The trapping potential will provide a restoring force and ensure the ion remains

trapped despite the net force on the ion. The overall cooling results from the red detuned

laser beam which ensures that many more photons will be absorbed and scattered when

the ion travels with high velocity in opposite direction to the propagation of the laser beam

compared to when the ion travels with low velocity or in the same direction as the beam

propagation. Ensuring that the red detuned laser beam has a component along all three

axes of motion then allows the efficient cooling of the ion motion along all axes. However,

Doppler cooling does not allow to cool to the absolute zero temperature. Instead, the

momentum imparted onto the ion during each photon emission event limits the minimum

achievable temperature using Doppler cooling and is given by [79]

kBT =
~γ
2

(2.19)

where kB is the Boltzmann constant.

For many experiments a lower temperature is required. A common method for further

reducing the temperature of the ion as far as to the motional ground state is resolved

sideband cooling which has been implemented using lasers [80,81] and microwave radiation

[38].

2.3 The Ytterbium ion

Ytterbium (Yb) has seven naturally occurring stable isotopes which are shown in table

2.1 along with their nuclear spin and natural abundance and has been used in numerous

different research fields. Many experiments, including most experiments shown here, only

require the use of a single isotope. For this case an enriched sample can be obtained. The

abundance of readily available enriched samples are also shown in table 2.1 for each stable

1Here, the minus sign indicates that the momentum kick is in the opposite direction to the motion of
the ion.



19

Isotope Nuclear Spin Natural Abundance % Enriched Abundance %
168Yb 0 0.135 13-24
170Yb 0 3.03 > 78
171Yb 1/2 14.31 > 95
172Yb 0 21.82 > 97
173Yb 5/2 16.13 > 92
174Yb 0 31.84 > 98
176Yb 0 12.73 > 96

Table 2.1: Table showing naturally occurring stable Yb isotopes along with their nuclear
spin and natural abundance. For experiments which require only one particular isotope a
enriched Yb sample can be obtained. The commonly available abundance of such a sample
for the different Yb isotopes is also shown [2].

isotope [2]. Of particular importance is 171Yb+ due to its spin 1/2 nature for which a

sample with a enriched abundance of > 95% can be obtained.

The use of Yb in the field of ion trap quantum computing has seen a rapid growth

in recent years. This is in part due to the energy levels being easily addressable using

commercially available lasers and the spin 1/2 nucleus of 171Yb+ resulting in a hyperfine

structure that can be used to define qubit states with a very long lifetime which are simple

to prepare, manipulate and detect. Furthermore, Yb has been used in some very impressive

experiments such as the creation of entanglement using lasers [82,83] as well as microwave

radiation [36] demonstrating its high potential for future quantum computing experiments.

Also, the main 2S1/2 ↔2P1/2 cooling transition is driven by light near 369.5 nm for which

optical fibres are readily available which is important for experiments that, for example,

involve the transfer of quantum states between spatially separated systems [82]. For these

reasons Yb was chosen for the experiments presented in this work.

2.3.1 Ionisation

Yb can be ionised to form Yb+ ions by several different methods. The two most common

are electron impact ionisation and photoionisation. While electron impact ionisation is the

experimentally simpler method, it results in large amounts of charge build up on electrode

surfaces, perturbing the trapping fields and leading to uncontrolled micromotion [84].

One of the most critical advantages of using photoionisation however is the possibility of

performing isotope selective ionisation. Photoionisation is therefore chosen for ionising Yb

in the experiments presented in this work.

Ionising Yb using photoionisation is possible using a combination of different lasers.
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Isotope 1S0 ↔ 1P1

wavelength [nm]
170Yb+ 398.91051(6)
171Yb+ 398.91070(6)
172Yb+ 398.91083(6)
174Yb+ 398.91114(6)
176Yb+ 398.91144(6)

Table 2.2: Table showing the resonant wavelengths for the 1S0 ↔ 1P1 transition used to
ionise various Yb isotopes [3].

The partial energy level diagram of neutral Yb in figure 2.5 illustrates some different pos-

sibilities. The first simply involves using one laser near 199 nm. Light at this wavelength

however is extremely expensive to obtain and since the transition goes directly to the

continuum it does not allow for isotope selective ionisation. The second method involves a

two-stage ionisation process where laser light near 398.9 nm, resonant with the 1S0 ↔ 1P1

transition, is used in combination with laser light near 394 nm. While this does allow

for isotope selective ionisation this process can be made more cost efficient by using the

398.9 nm light in combination with the already present 369.5 nm laser light required for

Doppler cooling. The isotope selective 398.9 nm wavelengths used in the experiments are

shown in table 2.2 and were taken from [3].

2.3.2 ’Even’ Yb isotopes

Following ionisation, Yb+ ions are laser cooled using light resonant with the transitions

shown in the gross energy level diagram in figure 2.6. The gross energy level diagram

is universal for all stable Yb isotopes, the only difference being the isotope dependant

transition wavelengths and the presence of the hyperfine structure for the isotopes with

a non-zero nuclear spin. The strong 2S1/2 ↔ 2P1/2 dipole transition with a linewidth

of γ/2π = 19.6 MHz is used for Doppler cooling and fluorescence detection. This is not

a closed cycle as the ion will decay to the 2D3/2 state rather than the 2S1/2 state with

a probability of 0.5%. To depopulate this state, light near 935 nm resonant with the

2D3/2 ↔ 3[3/2]1/2 dipole transition is used. From the 3[3/2]1/2 state the population can

then decay back to the 2S1/2 state forming a closed cooling cycle. It is also possible for

the ion to reach the 2F7/2 state as a result of inelastic collisions with background gas when

the ion is in 2D3/2 causing a transition to 2D5/2, followed by decay to the 2F7/2 state. For

our vacuum pressure of ≈ 10−12 Torr this process occurs once every few hours. In order



21

369.5 nm

Continuum 

1P1 

1S0 

398.9 nm

394 nm

199 nm

Figure 2.5: Partial energy level diagram of neutral Yb illustrating three methods of pho-
toionisation.

to depopulate the F -state light near 638 nm resonant with the 2F7/2 ↔ 1[5/2]5/2 dipole

transition is used. From the 1[5/2]5/2 state the population then decays to the 2D3/2 state

and thereby returning population back into the cooling cycle.

2.3.3 171Yb+

171Yb+ possesses a nuclear spin of one-half which results in a hyperfine doublet structure

shown in figure 2.7. The hyperfine structure of the 2S1/2 level is ideal for the use as a qubit

in quantum computing experiments where the qubit is formed of the 2S1/2|F = 0〉 state

and one of the 2S1/2|F = 1〉 Zeeman states. This is due to the extremely long lifetimes

and the possibility of efficiently preparing and detecting each qubit state.

While light near 369 nm and 935 nm can be used to drive the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉

and 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 transition respectively the hyperfine structure re-

quires additional transitions to be driven. Due to off-resonant coupling between the

2P1/2|F = 0〉 and 2P1/2|F = 1〉 states population can decay into the 2S1/2|F = 0〉 state.

Light which is 14.7 GHz detuned can be used to drive the 2S1/2|F = 0〉 ↔ 2P1/2|F = 1〉

transition. An alternative method is using microwave radiation near 12.6 GHz to couple
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Figure 2.6: Gross energy level diagram of Yb+ ions showing the required transitions to
be driven for Doppler cooling and repumping (solid lines). Also shown are the decay
channels (dashed lines). The transition near 369 nm which has a natural linewidth of
γ/2π = 19.6 MHz is used for Doppler cooling. Population decayed into the 2D3/2 state is
transferred back to the 2S1/2 ground state via the 3[3/2]1/2 state using light near 935 nm.
Population trapped in the 2F7/2 state due to inelastic background collisions is transferred
back to the main cooling cycle via the 1[5/2]5/2 state using light near 638 nm. The lifetimes
and branching ratios are from [6].
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2S1/2|F = 0〉 ↔ 2S1/2|F = 1〉. From the 2P1/2|F = 1〉 state, population can also decay to

the 2D3/2|F = 2〉 state. This requires additional light near 935 nm to be used to drive the

2D3/2|F = 2〉 ↔3[3/2]1/2|F = 1〉 transition. To depopulate the 2F7/2 hyperfine manifold

light at 638.610 nm and 638.616 nm is used. A description of how light at the required

transition wavelengths are created in our laboratory can be found in chapter 3. The pro-
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Figure 2.7: Energy level diagram of 171Yb+. The nuclear spin of one-half results in a
doublet hyperfine structure which requires additional transitions to be driven. Transitions
required to be driven by lasers (solid lines) as well as the decay channels (dashed lines)
are shown.

cess of state preparation and detection is described in chapter 4. Furthermore, the qubit

can be formed of magnetic field insensitive as well as magnetic field sensitive states de-

pending on the experimental requirements which allows various different methods to be

used for the implementation of gate operations. This will also be discussed in more detail

in chapter 4.
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Chapter 3

Experimental setup and initial

experiments

Performing experiments with ions is a challenging yet exciting task and requires a so-

phisticated experimental setup. This includes an ion trap to confine the ion(s) in space,

placed inside a ultra-high vacuum (UHV) system to prevent collisions between the ions

and residual gas. It also includes many optical components in conjunction with laser sys-

tems and frequency stabilisation setups to cool and manipulate the ions. Furthermore,

a setup to provide stable and clean trapping fields and a very sensitive imaging setup to

detect photons being scattered from the ions is required. This chapter will briefly outline

the core experimental setup used for a large proportion of the work presented in this thesis

followed by a characterisation of the ion trap which includes a heating rate measurement.

The extension to the setup described here which is required for a new vacuum system is

described in chapter 6 where that particular experiment is described in more detail. The

work presented in this chapter builds on the fantastic work of previous PhD students and

references to their theses will be made when more detailed information about the setup is

required and available in their work.

3.1 Optical setup

The ionisation, cooling and manipulation of Yb+ ions requires laser light of several different

wavelengths to be generated and manipulated before being directed into the ion trap. For

the work presented in this thesis laser light is required for ionisation and cooling as well as

for state preparation and detection of ions. As shown in chapter 2 laser light near 369 nm,

399 nm, 638 nm and 935 nm is required for trapping and cooling of the various different
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Yb isotopes. The optical setup used to achieve this is shown in figure 3.1.
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Figure 3.1: Diagram of the optical setup used to cool as well as state prepare and detect
Yb+ ions. Flipper mirrors are used to direct the laser light into fibres which either guide
the light to the optical setup used for the trap shown in this chapter or to a different
optical setup used for a trap which will be discussed in chapter 6.
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3.1.1 Lasers

All lasers shown in figure 3.1, apart from the 369 nm system, are homebuilt external cavity

diode laser (ECDL) systems. The 369 nm system is a commercially obtained frequency

doubled system. All lasers can be locked to a stable reference laser at 780 nm via transfer

cavities which itself is locked to an atomic transition within Rubidium (Rb).

The ECDLs use the Littrow configuration for their feedback grating [85, 86]. In this

configuration the first order diffracted narrow linewidth beam from the grating is reflected

back into the laser diode to stimulate emission. The zeroth-order beam is then used in

the experiment. Since the diffraction grating splits the laser light up into its different

spectral components, simply changing the angle of the diffraction grating will change the

wavelength of the light reflected back into the diode and therefore change the wavelength

the laser outputs at. Changing the angle of the diffraction grating also changes the angle of

the zeroth-order and hence the output angle of the laser beam for the experiments. Given

the small tuning ranges that are required, this was not found to be a problem during our

experiments. If this was found to be a problem, a Littman-Metcalf configuration [87] for

the ECDLs should be chosen. Larger changes in wavelength can be obtained by changing

the band gap energy within the diode. This can be achieved by changing the temperature

of the diode as well as by changing the current. A picture of a typical ECDL used in our

setup can be seen in figure 3.2. A detailed description with all design parameters of the

homebuilt laser systems used in our experiments can be found in the thesis of Dr. James

McLoughlin [77].

399 nm photoionisation laser

For ionisation of Yb isotopes, light near 399 nm is required and is obtained using a home-

built ECDL system. The Sanyo laser diode1 output is collimated with a Thorlabs aspheric

lens2. The diffraction grating used to form the external cavity is also a Thorlabs part3.

The laser has an output power of ≈ 4 mW.

369 nm Doppler cooling Laser

Laser light near 369 nm required for Doppler cooling on the 2S1/2 ↔ 2P1/2 transition in Yb

is obtained by using a frequency doubled system4. Here, light at 739 nm is first amplified

1Part number: DL-4146-301S
2Thorlabs. Part number: C330TM-B
3Thorlbas. Part number: GH13-1210
4Toptica Photonics. Part number: TA-SHG 36
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Figure 3.2: Picture of a typical ECDL setup used in the experiment.

to a power of ≈ 350 mW using a tapered amplifier before a bow-tie cavity with a Lithium

Triborate (LBO) crystal is used for second-harmonic generation to obtain a wavelength of

369 nm with an output power of up to 60 mW. When 171Yb+ is used, the laser is tuned

to the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition, as that particular transition is the main

one used for laser cooling. Due to off-resonant coupling, population can get trapped in

2S1/2|F = 0〉. To depopulate this state the 739 nm light can be modulated at 7.35 GHz us-

ing a bulk phase electro optic modulator (EOM)5. Once frequency doubled, the resultant

positive sideband at 14.7 GHz can then be used to drive the 2S1/2|F = 0〉 ↔ 2P1/2|F = 1〉

transition. In order to drive 2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 for state preparation the current

of the 739 nm diode is modulated at a frequency of 1.05 GHz. This results in sidebands at

2.1 GHz after frequency doubling.

935 nm repump laser

To repump any population trapped in the 2D3/2 manifold back to the main 369 nm cool-

ing cycle, light near 935 nm is required. This is achieved using another homebuilt ECDL

system comprising of a 935 nm diode from Roithner6 and a aspheric lens7 and diffraction

grating8 from Thorlabs. This setup results in a maximum output power of ≈ 20 mW.

While the available power can be used to power broaden the transition enough to bridge

5New Focus. Part number: 4851
6Part number: RLT940-100GS
7Thorlabs. Part number: C330TM-B
8Thorlabs. Part number: GH13-1210
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the hyperfine splitting of the 2D3/2 and 3[3/2]1/2 manifold which is useful for trapping

and cooling the ion, state preparation and detection requires the possibility of driv-

ing 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉 or 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 respectively.

The laser power is therefore reduced and the wavelength is tuned on resonance with

2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉. For state preparation the laser current is modulated at

a frequency of 3.1 GHz using a bias-tee and the resultant negative first-order sideband is

used to drive 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉.

638 nm repump laser

Following a background collision, population can get trapped in the 2F7/2 manifold which

we have observed to occur no more than once every couple of hours. To depopulate this

state by coupling 2F7/2 ↔ 1[5/2]5/2 we use a homebuilt ECDL system comprising of a

638 nm diode from Sanyo9 and a aspheric lens10 and diffraction grating11 from Thorlabs.

This setup produces a stable output power of ≈15 mW. In order to bridge the hyperfine

splitting in 171Yb+ the laser wavelength is scanned using a 10 Hz modulation which is

applied to the current and piezo control box.

3.1.2 Laser stabilisation

Cooling as well as state preparation and detection requires lasers with a narrow linewidth

which are stable in wavelength over the course of an experiment which can take sev-

eral hours. Using the ECDL design described above already significantly stabilises the

linewidth of the laser to ≤ 1 MHz [85]. However, the output wavelength from a laser is

very sensitive to drifts in temperature and current and is also affected by acoustic noise.

Effects from acoustic noise are minimised by placing the homebuilt laser systems inside a

wooden box which is heavily insulated with soundproof material12.

Further frequency stabilising the 369 nm and 935 nm lasers used for cooling as well as

state preparation and detection requires a very stable reference such as an atomic tran-

sition. Unfortunately there are no suitable elements which have a frequency splitting

corresponding to the laser frequencies used to cool Yb+ ions. The element with a tran-

sition closest to the 739 nm light used to obtain 369 nm light is rubidium (Rb). In our

experimental setup we therefore use a separate 780 nm laser which is locked to the D2

transition line of 87Rb and then use cavities to transfer the stability of the 780 nm laser to

9Part Number: DL-6148-030
10Thorlabs. Part number: A390TM-B
11Thorlabs. Part Number: GH13-24v
12Noise Stop Systems Ltd. Part number: NSSF7 Floor system 1 mm
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the other lasers. An overview of the locking setup will be given here however more details

can be found in the thesis of Dr. Robin Sterling [88]

The 780 nm laser is set up in a ECDL configuration and consists of a Sharp 784 nm diode13

with an output power of 120 mW and a diffraction grating14 and collimating lens15 from

Thorlabs. The wavelength can be pulled down to 780 nm using appropriate current and

temperature settings. In this configuration the typical output power is ≈ 80 mW.

The 780 nm laser is locked to the D2 transition line of 87Rb. Since the Doppler-

broadened transition has a linewidth of ≈ 500 MHz, a Doppler-free method is used. The

780 nm beam is separated into two beams called the pump and the probe beam. The

two beams are passed into a Rb vapour cell so that they are counter-propagating and

overlapped. The intensity of each beam after having passed through the vapour cell is

monitored on a photodiode. Due to the counter-propagating nature of the beams, they

will each saturate Rb atoms with opposite velocity. When on resonance, the zero-velocity

atoms will be saturated however this will be dominated by the pump beam which has a

higher power of ≈ 1.4 mW. This results in the probe beam with a power of 0.15 mW to

saturate less atoms compared to the off-resonance case. Subtracting these two signals

results in a Doppler-free background and allows individual hyperfine transitions to be

resolved. The laser diode is current modulated at 100 kHz and a lock-in amplifier is

then used to obtain an error signal. The lock-in amplifier multiplies the signal from the

photodiode with the same 100 kHz signal used for the modulation which acts as a bandpass

filter. It then differentiates the resultant signal as to provide a means of determining which

side of the resonant peak the signal corresponds to. This differentiated output is then sent

to a proportional integration (PI) controller which provides the feedback signal to the

780 nm piezo control box.

The stability of the 780 nm laser is transferred to the cooling and repumper lasers using

transfer cavities. The cavities are Fabry-Pérot confocal cavities which each consist of two

mirrors. A high reflectivity coating has been applied to the mirrors corresponding to the

wavelengths used. The 935 nm laser is stabilised using a scanning cavity arrangement. The

beam is overlapped with the 780 nm beam using a polarising beam splitter (PBS) and sent

into the cavity. A second PBS is used to separate the two beams coming out of the cavity

which are then sent to individual photodiodes. The two photodiode signals are captured

by a Data Aquisition (DAQ) card and analysed using a LabVIEW program16. By applying

13Thorlabs. Part number:GH0781JA2C
14Thorlabs. Part number: GH13-18V
15Thorlabs. Part number: C150TM-B
16The LabVIEW program is explained in the thesis of Dr. James Siverns [89]
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a 70 Hz oscillating voltage to a ring piezo attached to one of the cavity mirrors the length

of the cavity is varied; transmission peaks corresponding to the 780 nm and 935 nm laser

beams are then obtained. A LabVIEW program monitors the separation between the

780 nm and 935 nm peaks and keeps it constant using a proportional, integration and

differential (PID) code to produce a feedback signal which is sent to the 935 nm piezo

control box.

Locking the 935 nm laser via a transfer cavity which is controlled through LabVIEW

is inherently slow and only has an update rate of around 10 Hz. This is sufficient for the

repumper, however a faster lock is desirable for the main cooling laser and can be achieved

by using a dual-resonance lock.

For the dual-resonance lock, the 780 nm and 739 nm laser beams are both passed

through a second Fabry-Pérot confocal cavity and the output is aligned onto individual

photodiodes using the same method as described above. Instead of scanning the cavity,

simultaneous resonant transmission of both laser beams through the cavity is achieved by

first aligning the 780 nm beam through a AOM in double-pass configuration. The AOM

shifts the frequency of the laser beam corresponding to the applied frequency and the

double-pass configuration removes the frequency dependence of the spatial beam output.

The frequency used to drive the AOM is then used to tune the frequency of the 780 nm laser

beam into resonance with the cavity. The cavity length is then locked to the 780 nm beam

using a homebuilt PID controller. A side-of-fringe lock is used to lock the 739 nm beam

to the cavity using another homebuilt PID controller. A side-of-fringe lock was chosen

as applying a modulation with sufficient depth to the 739 nm diode would have been

unnecessarily challenging. Since this setup does not require any slow scanning of the

cavity and time consuming computation through LabVIEW, the update rate of the locking

feedback signal is increased to ≈ 1 kHz which is sufficient for the upcoming experiments.

3.2 Imaging the ion

Photons near 369 nm from the main cooling transition are collected from the ion using a

imaging system. In order to achieve high state detection fidelities it is important for the

imaging system to have a high collection efficiency, while minimising collection of ambient

light and 369 nm light scattered from the electrodes. There are two possible destinations for

the collected light. The first is a electron multiplication charge coupled device (EMCCD)

which we currently use during beam alignment and initial trapping of the ion but will

also be used for multi-ion state detection in future experiments. The second destination
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is a photon multiplier tube (PMT). We currently use this device for all experiments that

require analysis of the number of photons collected such as state detection. A simple way

of switching between these two detection devices is therefore needed.

The imaging system was designed with the possibility of having a second vacuum

system sharing the same EMCCD and PMT in mind. This second vacuum system was

indeed installed a couple of years later for experiments described in chapter 6. The imaging

setup for those experiments is therefore presented there to make it easier for the reader

to get an overview of the setup used to perform these experiments. The imaging system

presented here was used for all other experiments presented in this work.
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Figure 3.3: Not to scale illustration of the imaging setup used to collect photons near
369 nm from the ion. A triplet is used to initially collect the photons followed by a doublet
defining the final magnification. Motorised flipper mirrors are used to switch between two
experiments as well as between the EMCCD and PMT.

A schematic of the imaging system designed by Dr. James Siverns17 can be seen in

figure 3.3. The majority of the magnification is provided by a triplet lens positioned

23.5 mm from the ion. The triplet has a magnification of MT = −23.4 and produces an

image 549.7 mm behind the triplet. A iris can be used at the image position to block any

unwanted scatter from the electrodes. A doublet consisting of a f1 = 200 mm lens and a

f2 = 300 mm lens which when positioned at a distance of 199 mm and 303 mm from the

image and object position respectively results in a doublet magnification of MD = −1.5.

The total magnification given by MTOT = MTMD is then 35.1. This results in an area

17A detailed description can be found in his thesis [89]
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of 300µm by 300µm to be imaged using the EMCCD array. After the doublet, a filter

ensures only 369 nm light makes it to the detection device. A motorised flipper mirror is

then used to either direct the photons to the EMCCD array18 or the PMT19. The collection

efficiency of this setup is measured by comparing the expected scatter rate of the ion to

the number of photons detected on the PMT. For this setup the collection efficiency is

≈ 0.1%.

3.3 Vacuum system

For ions to be trapped with a sufficiently long lifetime it is required to place the ion trap in

a ultra-high vacuum (UHV) environment where pressures are on the order of 10−12 Torr.

Such pressures can be achieved using a sophisticated vacuum system.

To be useful for the experiments performed in our research group the vacuum system

has to fulfil some important design criteria. It is important the vacuum system is able

to house symmetric as well as asymmetric traps. With this comes the requirement of

allowing laser access from various angles and also ensuring that the beams are able to exit

the chamber to minimise unwanted photon scattering. Furthermore, some of the traps

used have many static voltage electrodes. The vacuum system therefore needs to allow at

least 90 dc connections to be made between the trap and the outside environment.

The first generation vacuum system designed to address the above criteria was used in

the experiments shown in chapter 4 and 5 and will be described here20. A different vacuum

system was used for the experiments shown in chapter 6 and will be described as part of

that chapter. The completely assembled first generation vacuum system can be seen in

figure 3.4. To provide sufficient space and optical axis for symmetric and asymmetric traps

the main chamber consists of a hemisphere21 and a octagon22. The chamber is connected

to the rest of the vacuum system positioned at the correct height above the optical table

using a custom T-piece. The achievable laser access is shown in figure 3.5. The four 1.33”

viewports used for optical access are made of UV-grade fused quartz silica and have a anti-

reflection (AI) coating for the wavelengths used (369 nm, 399 nm, 638 nm and 935 nm). A

custom recessed UV-grade fused quartz silica viewport used for photon collection from the

ion has a AI coating for 369 nm only. The ion trap is mounted inside the chamber using

18Andor. Part number: iXon 885
19Hamamatsu. Part number: H8259-01
20For a more detailed description including all design parameters the thesis from Dr. Altaf Nizamani

should be referred to [90]
21Kimball Physics. Part Number: MCF450-MH10204/8-A
22Kimball Physics. Part Number: MCF450-SO20008-C
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RGA
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Figure 3.4: Picture of the vacuum system used to trap Yb ions.

a mounting bracket shown in figure 3.5. This bracket is attached to the chamber using

special groove grabbers23 and consists of 90 gold-plated receptacles held in place between

two PEEK plates. The arrangement of the receptacles has been designed to hold a 101-

pin CPGA chip carrier24. Electrical connection between the receptacles and the outside

is made via kapton wires which connect to two 50 pin D-sub feedthrough connectors.

The atomic ovens which provide a flux of neutral Yb to the trapping centre are also part

of the mounting bracket. This ensures good alignment with the trapping centre. The ovens

are made of a stainless steel tube which is spot welded to copper wire using constantan

(copper-nickel alloy) foil. The spot weld provides sufficient resistance to resistively heat

the ovens when a current is applied. The oven setup consists of two ovens for symmetric

and two ovens for asymmetric traps. Each pair of ovens consists of one filled with natural

Yb and one filled with 95% enriched 171Yb. The reason for having natural and enriched

ovens has to do with the experimental overhead involved in trapping 171Yb+. For initial

trapping and calibration it is advantages to choose the natural oven to trap 174Yb+. If

an experiment requires 171Yb+ ions then the enriched ovens can be used to reduce the

probability of trapping unwanted isotopes.

To obtain and maintain a low pressure, an ion pump25 and a titanium sublimation

23Kimball Physics. Part number: MCF450-GG-CT02-A
24Global Chip Material. Part Number: PGA10047002
25Varian StarCell. Part Number: 9191145
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Atomic ovens for
asymmetric ion trap

Chip bracket

Atomic oven for
symmetric ion trap

Groove grabbers

Pin Receptacles

Beams for symmetric trap

Beams for asymmetric trap

Figure 3.5: Drawing of the chamber which holds the ion trap. Laser access for symmetric
as well as asymmetric traps is shown. Also shown is the chip bracket which sits inside the
chamber. The chip bracket holds the ion trap in place and provides electrical connection
to kapton wires via pin receptacles. Neutral Yb is supplied to the trapping region using
atomic ovens.
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pump26 (TSP) is used. The ion pump is continuously running however the TSP is only

used for a couple of days after baking the system to obtain a operating pressure of ≈ 10−12

Torr. The pressure is measured using a ion gauge27. A residual gas analyser28 (RGA) is

also part of the system and is a useful tool to obtain information about contaminants in

the system during leak testing.

Using this setup a pressure of 10−12 Torr has been reached and maintained for several

years.

3.4 Macroscopic linear Paul trap

The linear Paul trap outlined in this section was designed by Dr. Robin Sterling [88] and

was the first ion trap to be used in the group. It was therefore designed with the aim to

make the challenging initial trapping process as simple as possible. This includes ensuring

a sufficiently large ion-electrode distance to minimise 369 nm scatter off the electrodes,

minimise heating of the ion and ensure a trap depth of ≥1 eV. An illustration of the two

layer symmetric trap is shown in figure 3.6. The trap electrodes are made out of stainless

steel and have a 5µm thick gold coating to improve the surface smoothness. The static

voltage electrodes are segmented, with the four outer electrodes providing confinement

along the axial direction. The two centre electrodes allow for rotation of the principal

axis and cover a length of ≈ 1 mm along the z-axis however in the experiment they are

generally used for micromotion compensation. Radial confinement is provided by the two

rf electrodes. In order to be able to fully compensate for stray electric fields, which cause

excess micromotion, three cylindrical gold coated compensation rods are used. Two of

these rods are connected together. The static voltage electrodes are isolated from each

other via PEEK spacers which also help align each electrode during the assembling process.

Electrical isolation from the vacuum system is achieved by using a PEEK base which the

trap is mounted onto. The assembled trap is shown in figure 3.7. Assembling this trap

was not easy and resulted in non-optimal electrode positions and electrode 1 shorting to

ground. Using the imaging system the position of each electrode was measured after the

assembly and the potentially disruptive process of baking the vacuum system. The rf and

static voltage electrodes were found to be separated by 554±14µm in the y-direction and

343±14µm in the x-direction. This results in a ion-electrode distance of 325±10µm.

26Varian. Part number: 9160050
27Varian. Part number: 9715015
28ExTorr. Part number: XT200M
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Figure 3.6: Schematic of the two layer symmetric linear Paul trap. Each layer comprises
of three segmented static voltage electrodes and one rf voltage electrode. Static voltage
electrodes 1, 3, 4 and 6 provide confinement in the axial direction. Static voltage electrodes
2 and 5 allow for rotation of the principal axis. Confinement in the radial direction is
provided by the two rf electrodes. Three compensation rods of which two are connected
together provide further flexibility when compensating for stray fields.

Figure 3.7: Picture of the macroscopic linear Paul trap before it was placed inside the
vacuum chamber.
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Electrode Voltage (V)

rf 680(10)

1 GND

2 0

3 167.76(1)

4 148.88(1)

5 7.36(1)

6 25.03(1)

Comp 1 169.22(1)

Comp 2 -2.70(1)

Table 3.1: Table showing voltages used to trap ions which also correspond to the voltages
used to obtain the pseudopotential shown in figure 3.8. Electrode 1 is shorting to ground
due to the imperfect trap assembly process and the rf drive frequency ΩT /2π = 21.34 MHz.

Using the measured electrode positions the trapping potential is simulated using CPO29

which uses a boundary element method (BEM) solver. With the obtained basis func-

tions it is possible to simulate the pseudopotential for given rf and static voltages. The

parameters used in the simulation are summarised in table 3.1. The pseudopotential

for these parameters is shown in figure 3.8 from which the trap depth is determined to

be 4.9±0.2 eV. From the same simulation the secular frequencies are determined to be

(νx, νy, νz)/2π = (2.146, 2.094, 1.019) MHz.

0400 200 0 200 400

0

200

100

0

100

200

x µm

y
µ

m


Low eV

High eV

Figure 3.8: Pseudopotential of the ion trap for the parameters given in table 3.1 with a
trap depth of 4.9±0.2 eV.

The trap characterised by the above numbers has been used for the relevant experi-

ments shown in this thesis. It should be noted that the trap in operation at the time of

29Charged particle optics. From www.electronoptics.com
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writing this thesis now includes magnets which provide a static magnetic field gradient at

the trap centre. Due to the disruptive work that was required to place the magnets close

to the trap the relative positions of the electrodes have changed. As a consequence the

rf and static voltage electrodes are now separated by 317±14µm in the x-direction and

533±14µm in the y-direction with a ion-electrode distance of 310±10µm.

3.5 High Q helical resonator

Creating a stable, high voltage and low noise rf trapping potential is critical to achieve

a large trap depth and to minimise heating of the ion [91]. One way of achieving this is

through the use of a high quality factor (Q) helical resonator. Figure 3.9 shows a typical

(a) (b)

Antenna

Main coilShield

Ground rod

rf input to
antenna

Grounding
BNC cap

rf output and
ground pin

Figure 3.9: (a) shows the inside of a resonator where the shield, main coil, antenna and
ground rod are clearly labelled. (b) shows the closed up resonator as used in experiments
where the rf input to the antenna, the rf output and the grounding rods are labelled.

helical resonator used in our experiments where the main helical coil, the antenna and the

shield is clearly labelled. Using a helical resonator provides impedance matching of the

rf source to the ion trap setup and allows high voltages to be applied. It also provides

very good filtering of noise if a high Q can be achieved and thereby reduces the power at

unwanted frequencies. This provides higher voltages per input power, resulting in deeper

trapping potentials and larger achievable secular frequencies. The Q of the resonator is

therefore a very important parameter to maximise. The ion trap resonator system can

be represented as a series LCR circuit where the Q and resonant frequency f0 are given
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Resonator design parameters

Shield diameter (mm) 76±1

Shield height (mm) 105±1

Coil diameter (mm) 52±2

Coil wire diameter (mm) 4.0±0.1

Winding pitch (mm) 7±3

Number of turns 73
4

Table 3.2: Table showing the design parameters of the resonator.

by [92]

Q =
1

R

√
L

C
(3.1)

and

f0 =
1√
LC

(3.2)

respectively where R is the resistance, C the capacitance and L the inductance of the ion

trap-resonator system. It is important to not exceed the maximum voltage that can be

applied to the particular ion trap in use which is often given by the breakdown voltage [93].

The peak voltage over the ion trap is given by [92]

Vpeak = κ
√

2PQ (3.3)

where κ = (L/C)1/4 and P is the rf input power.

Designing a resonator with the desirable resonant frequency capable of achieving a

high Q is a challenging task. To make this task simpler we have therefore put together a

design guide with detailed explanations of the ion-resonator system [92].

Using the design guide, a resonator with parameters shown in table 3.2 was built for a

trap with a resistance of R ≈ 0.1Ω and a capacitance of C = 17±2 pF. The resonator was

found to have an unloaded Q of 574±46 and a resonant frequency f0 of 87.46±0.30 MHz.

Upon connecting the resonator to the ion trap, the Q was found to be 200±20 while f0

was found to be 21.49±0.30 MHz.

Once an ion has been trapped it is possible to determine κ. This is done by measuring

the secular frequency of the ion for a given rf input power and Q. Simulating the trapping

potential required to achieve these secular frequencies then allows us to determine the rf

voltage which is used to calculate κ using equation 3.3. For the resonator and trap shown

here a κ of 12.9±1.4 was calculated which matches the theoretical prediction for the ion

trap-resonator system [92]. Knowing κ allows us to determine the rf voltage at the ion for
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Isotope 1S0 ↔ 1P1
2S1/2 ↔ 2P1/2

2[3/2]1/2 ↔ 2D3/2

wavelength [nm] wavelength [nm] wavelength [nm]
170Yb+ 399.91051(6) 369.52364(6) 935.19751(19)
171Yb+ 399.91070(6) 369.52604(6) 935.18768(19)
172Yb+ 399.91083(6) 369.52435(6) 935.18736(19)
174Yb+ 399.91114(6) 369.52494(6) 935.17976(19)
176Yb+ 399.91144(6) 369.52550(6) 935.17252(19)

Table 3.3: Table showing resonant wavelengths used for different Yb isotopes. For
efficient cooling a red detuned wavelength for the 1S0 ↔ 1P1 transition is used.
For 171Yb+ the wavelengths correspond to the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 and
2[3/2]1/2|F = 1〉 ↔ 2D3/2|F = 1〉 transition.

any input rf power.

3.6 Initial trapping experiments

The setup described so far in this chapter can be used to successfully trap Yb+ ions. To

bring the laser light to the centre of the ion trap the output from each of the relevant

laser systems passes through various optical components and is then coupled into single

mode fibres as shown in figure 3.1. The output from the 369 nm and 399 nm fibres are

overlapped using a narrow bandpass filter30. The overlapped beams are then overlapped

with the output from the 638 nm fibre using a dichroic mirror. The combined beams are

then aligned to the trapping centre via xyz translation stages, using the trap electrodes

as reference points. The output from the 935 nm fibre is aligned to the trapping centre in

orthogonal direction to the other beams.

The wavelengths used for trapping various isotopes are shown in table 3.3. The reso-

nant wavelengths for the 1S0 ↔ 1P1 transition was determined using a fluorescence spot

technique [3]. The values for this transition, which are given in table 3.3, correspond to

an angle of 63◦ between the atomic beam and the ionisation laser beams. The resonant

wavelength for the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 and 2[3/2]1/2|F = 1〉 ↔ 2D3/2|F = 1〉

transitions were determined in our laboratory using the experimental setup described in

this chapter [7].

Neutral Yb is produced by applying a current of ≈ 7 A to the atomic oven for ≈ 4

minutes. To ionise and trap ions the appropriate wavelengths for the required Yb isotope

are set, the parameters shown in table 3.1 are applied and the beam intensities are set to

30Semrock. Part number: FF01-370136
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approximately 0.4 W/ cm2, 0.6 W/ cm2, 8.0 W/m2 and 7.0 W/m2 for the 369 nm, 399 nm,

638 nm and 935 nm beams respectively. Images of ions taken with the EMCCD array

are shown in figure 3.10. The secular frequencies of a single 174Yb+ ion were measured

(c)

(b)

(a)

Figure 3.10: Pictures of trapped ions with fluorescence indicating the position of individual
174Yb+ ions. The picture in the middle illustrates the possibility of trapping multiple
isotopes which is shown by a dark ion as part of the ion string. Lowering the radial
confinement by reducing the rf voltage causes the ions to undergo a second order phase
transition and form a zig-zag structure.

by applying an ac voltage to one of the static voltage electrodes. When the frequency

of the ac voltage corresponds to the secular frequency along one of the axis of motion

the ion will be excited and destabilise. This manifests itself in a drop in the measured

fluorescence. Performing this measurement for all three axis of motion resulted in secular

frequencies of νz/2π = (1.030 ± 0.001) MHz, νx/2π = (2.069 ± 0.001) MHz and νy/2π =

(2.110± 0.001) MHz to be measured.

Trapping 171Yb+ requires additional experimental overhead due to its hyperfine struc-

ture. As discussed in section 3.1.1, various sidebands are applied to the lasers to address

this. Furthermore, a static magnetic field to lift the degeneracy of the 2S1/2|F = 1〉 Zee-

man states is required to prevent coherent population trapping which significantly reduces

the scattering rate [94]. The static magnetic field is created using three pairs of Helmholtz

coils positioned around the vacuum chamber. Each coil has a diameter of 18 cm and con-

sists of 80 turns. Applying a current of ≈ 3 A to one pair of the coils results in a B-field of

≈ 10 Gauss at the position of the ion. Using three pairs of coils, one for each axis, allows

to accurately change the direction of the B-field (quantisation axis) with respect to the
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trap axis and is an important flexibility to have for experiments where the angle between

the quantisation axis and the field used to manipulate the ions is critical.

3.6.1 Heating rate measurement

A very important property of an ion trap is the heating rate trapped ions experience when

no laser cooling is present. One method of measuring heating rates is to perform resolved

sideband spectroscopy [95] however the required Raman beams were not available at the

time. An alternative method allows a heating rate to be extracted from the fluorescence

profile of a initially hot ion which is being laser cooled using the Doppler cooling laser

beam [1].

To extract a heating rate of the ion the cooling laser is blocked for a sufficiently long

time. The laser is then unblocked and the fluorescence measured on a PMT. Using the

fluorescence signal, the energy of the ion at the time the cooling beam was applied can

be determined. The experiment is then repeated for an increasing time the cooling beam

is blocked for and a heating rate is extracted. The method uses a 1D model so it is

important that heating is dominant along one axis only. To satisfy this requirement it is

important to note that noise which is near resonant with the secular motion of the ion

causes heating and scales as 1/f where f is the frequency of the noise. Treating heating

as being dominant along one axis only is therefore a good approximation if one ensures

that the secular frequency of the two radial modes of motion are much larger compared

to that of the axial mode of motion. In the experimental setup presented here this can

be achieved by lowering the voltage on the outer static voltage trap electrodes. We can

now consider the motion of the ion along the axial direction only. The motion along this

axis will increase when the temperature of the ion increases and affect the instantaneous

Doppler shift given by ∆D = −kzνz, where kz is the wave vector of the Doppler cooling

laser beam in the z-direction, νz is the velocity of the ion along the same direction and

the negative sign indicates that a photon will only be absorbed when the ion travels in

the opposite direction to the propagation of the cooling beam.

The scattering rate of an ion depends on the probability of the laser light being resonant

with the atomic transition and is therefore a function of the instantaneous Doppler shift

and the transition linewidth L. Considering many ion oscillations we can say that the

scattering rate depends on the overlap of the instantaneous Doppler shift probability

function PD(∆D) with the line shape of the transition L. This is illustrated in figure 3.11

where two cases are considered. Figure 3.11 (a) shows the overlap for a hot ion where
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Figure 3.11: The overlap between the probability density of the Doppler shift PD(∆D)
(solid line) and the transition linewidth L (dashed line) [7]. (a) shows the case for a hot
ion where the maximum Doppler shift is greater than the linewidth resulting in a small
overlap. This reduces the scatter rate. (b) shows the case for a Doppler cooled ion which
results in a bigger overlap and increases the scatter rate.

the maximum instantaneous Doppler shift ∆max from a laser with a small detuning from

resonance, ∆, is greater than L. It can be seen that the overlap between PD(∆D) and L

is poor which means there is only a small amount of time when the Doppler cooling light

is on resonance with the atomic transition and results in a low scattering rate. Figure

3.11 (b) on the other hand shows the case for a cold ion and we can see that the overlap

is significantly better and results in a higher scattering rate. This therefore allows us to

determine the initial temperature of the ion by simply observing the scattering from the

ion.

A full mathematical description of how the scattering rate from the ion relates to the

initial temperature of the ion is given in [1] and only a very brief summary will be given

here.

Recooling the ion after a initial time of heating from the environment is a process

over many ion oscillations. The energy change during one oscillation compared to the

total cooling process is therefore small, allowing us to average the scattering rate over

one oscillation. This average scattering rate dN
dt during one oscillation of the ion is given

by [1, 7] 〈
dN

dt

〉
=

∫
dN

dt
PD(∆D)d∆D (3.4)

where dN
dt is the instantaneous scattering rate. Looking at figure 3.11 (a) we can see that

PD(∆D) is effectively constant over the linewidth of the cooling transition. This allows

us to factor out PD(∆D) and write
〈
dN
dt

〉
in terms of the energy of the ion at time t, the

initial energy E0 which corresponds to the energy of the ion just before the cooling laser
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beam is applied, the mass of the ion m and the saturation parameter s to give [1, 7]

〈
dN

dt

〉
(E(E0, t)) =

1√
E(E0, t)

sL2

2
√

2
mkz(1 + s)3/2

. (3.5)

The thermal distribution of the ion energy just before recooling can be described using a

1D-Maxwell-Boltzmann distribution PB(E0) which allows the average scattering rate of

the ion at time t to be written as [1, 7]

〈
dN

dt

〉
E0

=

∫ ∞
0

PB(E0)

〈
dN

dt

〉
(E(E0, t))dE0. (3.6)

We can now use equation 3.6 and fit it to the observed scattering from a initially hot ion

which is being Doppler cooled to determine the energy of the ion just before the cooling

beam is applied. Repeating this experiment for different delay times during which the

cooling laser is blocked and the ion is heated then allows us to determine the heating rate.

Initial cooling Variable delay

4 ms

AOM369 

PMT

Time

Measurement

Figure 3.12: Illustration of the experimental sequence used to determine the heating rate.
The sequence starts by a period of initial cooling of the ion before the cooling beam is
blocked using a AOM to heat the ion for a variable length of time. The cooling beam
is then unblocked and a PMT is used to measure the fluorescence for 4 ms divided into
50µs bins.

In order to determine the heating rate of our trap a single 174Yb+ ion is used. To

ensure that heating is dominant along the axial direction the trapping voltages are altered

to give secular frequencies of (νz, νx, νy)/2π = (0.178, 2.069, 2.110)±0.001 MHz. Setting

∆ = 6±2 MHz, s = 1.0±0.2 and L = 40±5 MHz we then use an AOM to block the cooling

beam to heat the ion. When the cooling beam is unblocked a PMT is used to measure

the fluorescence from the ion. The fluorescence measurement is 4 ms long and is split
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into 50µs long bins. The experimental sequence is shown in figure 3.12. The sequence is

repeated 500 times and the data is averaged. This data, showing the measured fluorescence

during initial cooling after a 5 second delay, is shown in figure 3.13 and is used to determine

the initial energy of the ion. Repeating this experiment and plotting the determined initial

energy against delay times of 1, 3, 5 and 7 seconds, as shown in figure 3.7, then allows

us to determine the heating rate ṅ. Here the initial ion energy has been converted to

motional quanta using n = E0/~νz.

3 4

Figure 3.13: The fluorescence measured during a 4 ms detection window after the ion has
been left uncooled for 5 s.

Figure 3.14: A plot showing the change in initial energy of the ion which has been converted
to motional quanta n for different delay times.

To determine the relationship between the heating rate and the secular frequency the

above measurements are repeated for axial secular frequencies of νz/2π = (287, 355)±1 kHz.

The result of this can be seen in figure 3.15 and confirms the expected ṅ ∝ 1/ν2
z relation-
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ship.

Figure 3.15: A plot showing the heating rate ṅ for different axial secular frequencies
illustrating a 1/ν2

z dependency.

The heating of an ion has been shown to be a function of the electric field noise density

SE(νz) [91]. The heating rate can therefore be given by

ṅ =
q2

4m~νz
SE(νz) (3.7)

where q is the charge of the ion. For a 1/ν2 dependency of ṅ we can scale out the secular

frequency and calculate SE(1 MHz) = 3.6 ± 0.9 × 10−11V 2m−2Hz−1. This is consistent

with previous measurements for similar ion traps at room temperature [42].
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Chapter 4

Single qubit manipulation

In order for a quantum computer to be used successfully we require the implementation

of single qubit gates as well as two qubit gates [96]. Any two-level quantum system can

be used as a qubit however the focus in this work will lie on trapped ions which each

are treated as a spin-1/2 system and the qubit, in this chapter, is formed by two of the

hyperfine states in the 2S1/2 ground state of 171Yb+. While a two qubit gate such as the

CNOT gate is implemented by entangling two separate ions, a single qubit gate such as

the NOT gate is implemented using qubit rotations. These single qubit rotations allow an

arbitrary state of the form α|0〉 + β|1〉 to be prepared and will be the main focus of this

chapter.

Before any qubit rotations can be performed we require the capability of efficiently

preparing the qubit in a known state. We also need to be able to detect the state of

the qubit after any operation has been performed. A typical experimental sequence to

implement a single qubit gate is shown in figure 4.1. The experimental sequence starts

with the ion being Doppler cooled. The ion is then prepared in a well defined state using

optical pumping before microwave radiation is used to perform any single qubit gates. The

qubit is then read out using optical radiation and a PMT is used to detect the photons from

the ion. The photons are also counted during Doppler cooling to monitor the fluorescence

rate of the ion. This allows to ensure that no ions are lost and the beam intensities are

stable over the course of an experiment.

4.1 State preparation and detection

To implement state preparation and detection, light near 369 nm resonant with one of the

2S1/2 ↔ 2P1/2 transitions is used. In addition, to depopulate the 2D3/2 states, light near
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Cooling Preparation
Coherent

manipulation
Detection

Microwaves

PMT

Time

AOM369

3692.1

9353.1

Figure 4.1: An illustration of a typical experimental sequence. The sequence starts by
Doppler cooling the ion. 2.1 GHz sidebands are then applied to the 369 nm light which
is then sent to the ion for state preparation. This is followed by a sequence of coherent
manipulation using microwave radiation. 369 nm light is then used for state detection
and the photons are collected using a PMT. Photons are also collected during cooling to
monitor the fluorescence rate of the ion.



49

935 nm resonant with one of the 2D3/2 ↔ 3[3/2]3/2 transitions is used. This is shown in

figure 4.2 (a) and (b).
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Figure 4.2: Not to scale partial 171Yb+ energy level diagram. (a) transitions used for
state preparation in the 2S1/2|F = 0〉 state. (b) transitions used for state detection. If the
ion is in 2S1/2|F = 0〉 only a few photons will be scattered and we define this to be the
dark state (|0〉). If the ion is in one of the three 2S1/2|F = 1〉 states many photons will be
scattered and we define this to be the bright state (|−1〉, |0′〉, |+1〉).

4.1.1 State preparation

Figure 4.2 (a) shows the preparation sequence used to optically pump the ion into the

2S1/2|F = 0〉 = |0〉 state. This is achieved using light near 369 nm with the positive first-

order 2.1 GHz sideband resonant with the 2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 transition. From

2P1/2|F = 1〉 the ion can then decay to |0〉. Since the ion can also decay into the 2D3/2 man-
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ifold, the carrier and the positive first-order 3 GHz sideband of light near 935 nm is used

to drive the 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 and the 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉

transition respectively. From here the ion will decay back into the 2S1/2 manifold.

Using 8µW of 369 nm light focused to a beam waist of 20µm (intensity of 0.4 W/m2)

and 1 mW of 935 nm light focused to a beam waist of 150µm (intensity of 6.67 W/m2) the

ion is optically pumped to the |0〉 state after ≈ 1 ms. The preparation time is limited by

the maximum 2.1 GHz sideband strength of 0.02% with respect to the carrier that can be

achieved while maintaining the stability of the 369 laser during switching. The sideband

strength can be significantly improved by using a EOM1 with which we expect to achieve

a sideband strength of 20%. This is expected to reduce the preparation time to ≈ 1µs,

similar to the preparation time achieved by other ion trapping groups using 171Yb+ [6].

4.1.2 State detection

After coherent manipulation of the ion we use a fluorescence technique to determine if the

ion was in |0〉 or one of the 2S1/2|F = 1〉 states. This is achieved using 369 nm light resonant

with the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition. If the ion is in 2S1/2|F = 1〉, this is a cy-

cling transition provided that 935 nm light resonant with the 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉

transition is applied. The fluorescence from the ion decaying from the 2P1/2|F = 0〉 to the

2S1/2|F = 1〉 state can then be collected. This is called the bright state. If the ion is in |0〉

the light field is off-resonant from 2P1/2|F = 1〉 by 14.7 GHz since 2S1/2|F = 0〉 ↔ 2P1/2|F = 0〉

is a forbidden transition. This results in no photons being scattered by the ion and is called

the dark state although unwanted counts can arise from scattered light and dark counts

from the photon measuring device. A simple threshold can then be used to distinguish

between the two states. The threshold is set so that if zero, one or two photons are de-

tected during the detection sequence the ion is said to be in the dark state and if more

than two photons are detected the ion is said to be in the bright state.

Theoretical limitations of the achievable detection fidelity are discussed in detail in ref-

erence [97] and arise from off-resonant coupling to the 2.1 GHz detuned 2P1/2|F = 1〉 state

which can cause the ion to transition from the bright to the dark state. Another process

that can limit the fidelity is off-resonant excitation from 2D3/2|F = 1〉 to 3[3/2]1/2|F = 1〉

which also transfers the bright to the dark state. These processes, as well as background

light and dark-counts in the photon detection device, serve to limit the ability to distin-

guish the two states.

1Newport. Model: 4441
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Using a detection window of 800µs, histograms for the bright and dark state can be

produced and are shown in figure 4.3. The fidelity of state detection is determined by

how well we can distinguish between the bright and the dark state for a given threshold.

Since the histogram for the bright state (red histogram) overlaps with the histogram for

the dark state (blue histogram) the two states cannot be perfectly distinguished from

each other resulting in photons being associated with the incorrect state. For the above

parameters a detection fidelity of 0.93 is measured. More sophisticated techniques exist

to improve the detection fidelity by looking at the arrival times of the photons [98] and

will be implemented in the future.
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Figure 4.3: Histogram of the number of photons detected during a 800µs detection
sequence after initial preparation in either 2S1/2|F = 0〉 (blue) or 2S1/2|F = 1〉 (red).
For detection we apply 8µW of 369 nm light focused to a beam waist of 20µm res-
onant with 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉. If the ion is prepared in 2S1/2|F = 0〉 the
incident light is 14.7 GHz off-resonant resulting in only a few photons being scattered.
If the preparation sequence includes an additional microwave π-pulse resonant with
2S1/2|F = 0〉 ↔ 2S1/2|F = 1〉 to prepare the ion in 2S1/2|F = 1〉 the light is on reso-
nance and many photons are scattered. The histogram for each state is the result of 1000
measurements.

4.2 Single qubit operations

As discussed above, the qubit is formed of two long lived hyperfine states which can for

example be labelled as |0〉 and |1〉 and are separated by an energy gap ~ω0. Later on |1〉



52

will often be replaced by |−1〉, |0′〉 or |+1〉 depending on the atomic state that is being

used as part of the qubit. The qubit is well confined in a harmonic potential in which the

motion of the ion can be described by the harmonic oscillator eigenstates |n〉 separated

by ~νi where νi is the secular frequency of the chosen axis of motion. The Hamiltonian of

this system is given by (the following mathematical derivation closely follows [77,99,100])

Ĥ0 =
~ω0

2
σ̂z + ~νi

(
â†i âi +

1

2

)
(4.1)

where, σ̂z =

 1 0

0 −1

 = (|0〉〈0| − |1〉〈1|) is a Pauli spin operator and â†i and âi are the

phonon creation and annihilation operators respectively. In the following discussion the

weakly confined z-axis of motion will be considered.

The qubit can be manipulated using a resonant electromagnetic field. With a qubit

splitting of ω0 = 2π×12.6 GHz the interaction with the qubit is dominated by a magnetic

dipole coupling and the Hamiltonian is therefore given by

ĤEM = −~µ · ~B (4.2)

where, ~µ is the magnetic dipole moment and ~B is the time-varying applied magnetic

field. For a field with frequency ω propagating parallel to the z-axis we can expand the

Hamiltonian in equation 4.2 to read

ĤEM = −~µ · ẑ Bz
2

[
ei(kz−ωt+φ) + e−i(kz−ωt+φ)

]
(4.3)

where k = 2π/λ is the wavenumber.

Applying the identity operator Î = (|0〉〈0| + |1〉〈1|) twice we can write the scalar

product as

~µ · ẑ = (|0〉〈0|+ |1〉〈1|)~µ · ẑ(|0〉〈0|+ |1〉〈1|). (4.4)

Noting that 〈0|~µ · ẑ|0〉 = 0, 〈1|~µ · ẑ|1〉 = 0 and 〈0|~µ · ẑ|1〉 = 〈1|~µ · ẑ|0〉 this can be written as

~µ · ẑ = 〈0|~µ · ẑ|1〉(|0〉〈1|+ |1〉〈0|) (4.5)

which can be simplified to

~µ · ẑ = 〈0|~µ · ẑ|1〉(σ̂+ + σ̂−) (4.6)
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where σ̂+ =

 0 1

0 0

 = |0〉〈1| and σ̂− =

 0 0

1 0

 = |1〉〈0| are the raising and lowering

operators respectively. Defining the Rabi frequency Ω as [78]

Ω = −Bz
~

(〈1|~µ · ẑ|0〉), (4.7)

the Hamiltonian in equation 4.3 can be written as

ĤEM =
~Ω

2
(σ̂+ + σ̂−)

[
ei(kz−ωt+φ) + e−i(kz−ωt+φ)

]
. (4.8)

We can now transform to the interaction picture with respect to H0 given by ĤI =

eiĤ0t/~ĤEMe
−iĤ0t/~ and perform the rotating wave approximation (RWA) resulting in an

interaction Hamiltonian

ĤI =
~Ω

2

[
σ̂+e

i(η(â†eiνt+âe−iνt)+∆+φ) + h.c.
]

(4.9)

where ∆ is the detuning from resonance and the position operator has been expanded in

terms of the creation and annihilation operators where z =
√

~/2mν
(
â+ â†

)
. This allows

us to write kz = η
(
â+ â†

)
where η is the Lamb-Dicke parameter given by [99]

η = k

√
~

2mν
(4.10)

which is the ratio of the position spread of the ground state wavefunction of the ion to

the wavelength of the field used to manipulate the qubit.

Due to the Doppler effect, the ion will see a large spectrum of the field applied. By

satisfying the Lamb-Dicke criterion given by [99]

η2 (2n+ 1)� 1 (4.11)

we ensure that the ion will only couple to the carrier or the first red or blue motional

sideband. To first order in η, we can therefore rewrite the interaction Hamiltonian in

equation 4.9 as

ĤI =
~Ω

2

[
σ̂+

(
1 + iη

(
â†eiνt + âe−iνt

))
ei(φ−∆t) + h.c.

]
. (4.12)

By appropriately setting the detuning from resonance, ∆, it is possible to drive carrier

(|0, n〉 ↔ |1, n〉), blue sideband (|0, n〉 ↔ |1, n+ 1〉) or red sideband (|0, n〉 ↔ |1, n− 1〉)
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transitions. To see this, we set ∆ = 0 (carrier transition) which simplifies the Hamiltonian

in equation 4.12 and gives

Ĥc
I =

~Ω

2

(
σ̂+e

iφ + σ̂−e
−iφ
)
. (4.13)

General qubit gates, corresponding to rotating the state vector to any point on the Bloch

sphere, can now be implemented by simply setting the phase φ of the field (and recalling

that σ̂z = −iσ̂xσ̂y). For instance, by setting φ = 0 we get

Ĥc
I =

~Ω

2
(σ̂+ + σ̂−) =

~Ω

2
σ̂x. (4.14)

This corresponds to rotations around the x-axis. If instead we set φ = π/2 we get

Ĥc
I =

~Ω

2
i (σ̂+ − σ̂−) =

~Ω

2
σ̂y (4.15)

which corresponds to rotations around the y-axis.

A coupling to the first blue or red sideband of motion is achieved by setting an ap-

propriate detuning ∆ and ensuring that the resolved-sideband limit given by Ω � ν is

satisfied. In order to couple to a red sideband of motion we set ∆ = −ν and φ = 0 and

perform another RWA with respect to ν. This results in an interaction Hamiltonian, to

first order, which is of the form of the Jaynes-Cummings Hamiltonian [101] and is given

by

Ĥrs
I =

~Ω

2
iη
(
âσ̂+ + â†σ̂−

)
(4.16)

which removes one phonon of motional energy while exciting the internal state of the ion

and therefore results in a coupling between the internal state and the motional state.

In order to couple to the blue sideband of motion we set ∆ = ν and again φ = 0. In

the same manner as before we now obtain a Hamiltonian of the form of the anti-Jaynes-

Cummings Hamiltonian [101] given by

Ĥbs
I =

~Ω

2
iη
(
â†σ̂+ + âσ̂−

)
. (4.17)

This Hamiltonian adds one phonon of motional energy when the internal state is excited,

where the extra energy comes from the applied field used to implement the coupling.

These couplings between the internal state of the ion and its motion can then be used in

multi-ion entangling operations via the Coulomb interaction [19,23,26,28].

It is important to note the η dependence in equation 4.16 and 4.17 which affects the
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Rabi frequency of the coupling to the motional sidebands. In the regime where a motional

coupling to the nearest red or blue motional sideband is dominant (Ω� ν and the Lamb-

Dicke criterion in equation 4.11 is satisfied), the Rabi frequency for the red sideband

coupling (|0, n〉 ↔ |1, n− 1〉), Ωrs, and the blue sideband coupling (|0, n〉 ↔ |1, n+ 1〉),

Ωbs, can be expressed as [99]

Ωrs = Ωη
√
n (4.18)

and

Ωbs = Ωη
√
n+ 1 (4.19)

respectively. We can therefore see that in order to produce a significant motional sideband

coupling rate, a sufficiently large η is required.

The qubit states considered in this work are separated by ω0 = 2π × 12.6 GHz. For

a secular frequency of ν = 2π × 200 kHz and a field propagating parallel to the axis of

motion of a 171Yb+ ion we find η = 3.6 × 10−6. In other words, the coupling strength is

approximately 6 orders of magnitude smaller compared to the carrier which in practice

means sidebands can not be seen using just microwave radiation.

To overcome this problem a common approach is to use a two-photon stimulated

Raman process. This process involves using two non co-propagating fields in the optical

wavelength regime, with a frequency difference corresponding to the energy splitting of

the two qubit states, which couple the qubit states to an excited state. The two fields

are detuned far from resonance allowing the excited state to be adiabatically eliminated

[102], leaving an effective two-level system of the form described above. By choice of the

frequency difference between the two fields it is possible to drive a motional sideband

with a typical Lamb-Dicke parameter on the order of η ≈ 0.1, a significantly stronger

coupling. There are however drawbacks to using optical light fields. While it is possible

to approximate the three-level system as an effective two-level system, decoherence in

the form of off-resonant coupling to the excited state, light intensity fluctuations and

phase fluctuations between the two fields can limit the fidelity of the gate operation [102].

Furthermore, laser systems are generally expensive, require a lot of maintenance and it

is not immediately obvious how gate operations using such complex laser systems can be

scaled to 100s of ions in an economical fashion.

By contrast, the field of microwave engineering is very mature and offers very stable,

comparably cheap, and easy to maintain frequency sources. Microwaves can also easily

be amplified and transmitted to the ions using a microwave horn which covers a large
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volume of space. Furthermore, microwaves directly couple the two qubit states without

the use of a third excited state which removes one of the main limitations of using lasers.

The problem with using microwaves is the negligibly small Lamb-Dicke parameter as well

as not being able to individually address ions since the wavelength of microwaves is on

the order of several centimetres and ion-ion separations are usually on the order of a few

micrometers (this results in the microwaves being distributed across the whole trapping

region(s)). A solution to these problems is the use of microwaves in conjunction with a

static magnetic field gradient as proposed by F. Mintert and C. Wunderlich [34].

Individual addressing

For a 171Yb+ ion in a static magnetic field, the Zeeman states of the ground state 2S1/2

manifold shift in frequency which is proportional to the magnetic field strength. To first

order, the shift in frequency is given by

ω0 =
∆E

~
= gFmFµBB (4.20)

where gF is the Landé factor (gF = 1 for the 2S1/2|F = 1〉 states), mF is the magnetic

quantum number (mF = 0,±1 correspond to the three mF states in the F = 1 manifold),

µB is the Bohr magneton and B is the magnitude of the magnetic field at the ion. Using

a inhomogeneous magnetic field along the z-axis of the form B = B0 + z∂zB where ∂zB is

the magnetic field gradient along the z-axis and B0 is an offset magnetic field, the position

dependant Zeeman shift is given by

ω0(z) =
gFmFµB(B0 + z∂zB)

~
. (4.21)

We can therefore see that the Zeeman shift is position dependant if a magnetic field

gradient is present. For multiple ions the separation of resonance frequency between ion i

and ion j can be expressed as

∆ω0(zi, zj) =
gFmFµBδz∂zB

~
(4.22)

where δz = zi − zj is the separation between ion i and ion j located at position zi and zj

respectively.

We can see that for this scheme to work it is important for the qubit to be made

up of at least one non-zero mF state which in 171Yb+ corresponds to either one of the

2S1/2|F = 1,mF = ±1〉 states. Choosing the mF = +1 state as one of the two qubit states
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in ion 1 and 2, which are subjected to a magnetic field gradient of 10 T/m and are sepa-

rated by 10µm, we can calculate the individual resonances between the two qubits to be

separated by ∆ω0(1, 2)/2π = 1.39 MHz. This illustrates that by using a moderately strong

static magnetic field gradient it is possible to individually address single ions in frequency

space by simply tuning the microwave field to the appropriate resonant transition [35]. A

visual representation of this can be seen in figure 4.4.

2S1/2    

F = 0

F = 1
m  = +1f 
m  = 0f 
m  = -1f 

En
er

gy
 (E

)

Position (z)

Magnetic �eld strength (B)

∆ω0

Figure 4.4: A schematic of two ions separated in space and subjected to a inhomogeneous
magnetic field. The first-order magnetic field sensitive Zeeman states mF = ±1 have a
position dependant energy. This allows qubits to be individually addressed in frequency
space by simply tuning the applied frequency to the appropriate transition.

Coupling between internal and motional states

The main problem with using microwaves, however is that the Lamb-Dicke parameter is

negligibly small and it will be the focus of this section to demonstrate how a effective

Lamb-Dicke parameter can be derived which results in a non-negligible coupling between

the internal and motional states.

We have seen that a magnetic field gradient results in a position dependant Zeeman

energy. This produces a state-dependant force that when added to the harmonic trapping

potential gives an equilibrium position of the ion that depends on its internal state. A sim-

ple spin-flip with microwave radiation can therefore come with an extra state-dependant

momentum kick and it is the aim of the following derivation to illustrate how this modifies

the Hamiltonian. The derivation closely follows [34,100,103].

In the following, the qubit is made up of the 2S1/2|F = 0〉 and |F = 1,mF = +1〉 states
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which are subjected to a static magnetic field gradient along the z-axis, the same axis along

which the motion of the ion will be considered. The Hamiltonian given in equation 4.1

now has a position dependant level splitting. We can expand ω0(z) around the position

z0 of the harmonic trapping potential as a Taylor series which to first order gives

ω0(z) = ω0(z0) + δzω0(z)(| z − z0 |). (4.23)

For a single ion (z0 = 0) and recalling that z =
√

~/2mν
(
â+ â†

)
, we can now re-

express equation 4.1 as

Ĥ0 =
~ω0(0)

2
σ̂z +

~νεc
2

(
â+ â†

)
σ̂z + ~ν

(
â†â+

1

2

)
(4.24)

where,

εc =
δzω0(z)

ν

√
~

2mν
. (4.25)

This can be simplified by performing a Polaron transformation given by Ĥ ′0 = ÛĤ0Û
† and

Ĥ ′EM = ÛĤEM Û
† where Û = eεc(a

†−a)σ̂z/2 to give

Ĥ ′0 =
~ω0(0)

2
σ̂z + ~νâ†â (4.26)

and

Ĥ ′EM =
~Ω

2

(
σ̂+e

εc(â†−a) + σ̂−e
−εc(â†−a)

)(
eiη(a

†+a−εcσ̂z)−i(ωt+φ) + e−iη(a
†+a−εcσ̂z)+i(ωt+φ)

)
(4.27)

respectively.

As for the case with no magnetic field gradient we can now transform into the inter-

action picture (Ĥ ′I = eiĤ
′
0t/~Ĥ ′EMe

−iĤ′0t/~) and perform the RWA to get [34,84,100]

Ĥ ′I =
~Ω

2

[
σ̂+e

i(ηeff(â†eiνt+âe−iνt)+∆+φ) + h.c.
]
. (4.28)

This Hamiltonian is equivalent to the Hamiltonian shown in equation 4.9 apart from η

being replaced by an effective Lamb-Dicke parameter ηeff given by [100]

ηeff =
√
η2 + ε2c . (4.29)

We have already shown that η is negligibly small when using microwave radiation allowing
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us to write

ηeff ≈ εc =
δzω0(z)

ν

√
~

2mν
(4.30)

where ηeff is proportional to the magnetic field gradient. For a static magnetic field

gradient of δzB(z) = 50 T/m and a secular frequency of ν = 2π×200 kHz, ηeff is calculated

to be 0.085 which is of comparable size to Lamb-Dicke parameters obtained for optical

wavelengths. Microwaves in conjunction with a static magnetic field gradient are therefore

a possible alternative for the implementation of coupling internal and motional states and

for the realisation of multi-qubit gates [34,40,104].

4.2.1 Characterisation of the bare state qubits

The qubit considered in this work is formed of two long lived hyperfine states in 171Yb+.

Depending on the choice of states the qubit can be made to be magnetic field insensi-

tive or magnetic field sensitive. The magnetic field insensitive qubit is formed of the

2S1/2|F = 0,mf = 0〉 = |0〉 and 2S1/2|F = 1,mf = 0〉 = |0′〉 states where both states are

first-order magnetic field insensitive. If a magnetic field sensitive qubit is required then the

magnetic field insensitive state |0〉 can be combined with either 2S1/2|F = 0,mf = +1〉 =

|+1〉 or 2S1/2|F = 0,mf = −1〉 = |−1〉 which are both magnetic field sensitive.

The qubit can simply be manipulated by the use of microwave radiation at 12.6 GHz and

changing the frequency allows selecting between the magnetic field sensitive and insensitive

qubit. The microwaves are generated using a 12.6 GHz synthesised frequency generator2

which pass through a switch before being amplified3 (gain of 30 dB). The amplified signal

is then applied to the ions via a microwave horn positioned 4 cm from the ion’s position,

making a 45◦ angle with the quantisation axis which is defined by a 9.8 G field. The quan-

tisation axis is making a 90◦ angle with the weak trap axis. A picture of the microwave

horn setup can be seen in figure 4.5.

Decoherence

An important property of a qubit is how long it retains its coherence, where the loss of

coherence is known as decoherence. Any decoherence results in a loss of information of

the quantum system and therefore needs to be minimised as much as possible. One source

of decoherence is the limited lifetime of the state, also known as the T1 time. Since the

lifetime of the hyperfine states is on the order of years [105] it is disregarded in this work.

2HP 83712B
3Microwave amps AM25-12-13-30-33
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Trapping center 
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Figure 4.5: Picture showing the setup of the microwave horn with respect to the ion trap.
The microwave horn is making a 45◦ angle with the quantisation axis. The quantisation
axis is making a 90◦ angle with the weak trap axis and is parallel with the imaging tube.
The coils used for defining the quantisation axis are not shown here.

Decoherence can also result from non-optimal coherent manipulations which will affect

any subsequent gate operations. Other sources of decoherence include the instability of

the microwave oscillator and often limits the achievable coherence time of magnetic field

insensitive qubits [6].

When working with a magnetic field sensitive qubit the main source of decoherence

stems from ambient magnetic field fluctuations. These fluctuations cause the energy of

the Zeeman states and therefore the phase relationship between the two qubit states to

fluctuate. This dephases a qubit superposition of the form α|0〉+ eiφβ|+1〉, where φ is the

acquired phase of one of the qubit states with respect to the other qubit state. Therefore,

after some free evolution time the superposition will decay into a mixed state which will

eventually result in the probability of detecting one of the qubit states to approach 0.5.

The decoherence due to this dephasing can be determined by measuring the free evolution

time required for this to happen. This is known as the phase coherence time, also referred

to as the T2 time.

The magnetic field fluctuations in our setup are partly caused by the 50 Hz ac mains

noise. The experimental sequence used in this work is therefore triggered off a fixed point

on the 50 Hz cycle to minimise this source of decoherence. Nevertheless, magnetic field

fluctuations are still a major source of decoherence which is shown later on.
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Magnetic field insensitive qubit

In order to characterise the magnetic field insensitive qubit (|0〉 and |0′〉), coherent ma-

nipulations are performed by implementing the experimental sequence shown in figure

4.1. During the coherent manipulation window, microwaves with a frequency of ω =

12.642848 GHz and a power of ≈ 1 W resonant with the |0〉 ↔ |0′〉 transition are applied

for an increasing period of time t which results in Rabi oscillations with a Rabi frequency

of Ω = 2π × 342 kHz, as shown in figure 4.6.
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Figure 4.6: Rabi oscillations between the first-order magnetic field insensitive |0〉 and
|0′〉 states. The transition is driven by applying one watt of microwave radiation at
12.642848 GHz to a microwave horn positioned 4 cm from the ion, producing oscillations
with a Rabi frequency of Ω = 2π×342 kHz. Each point corresponds to 100 measurements.

To determine the T2 coherence time of this qubit we perform a Ramsey-interference

experiment [106]. One way of obtaining Ramsey fringes is by applying two π/2 microwave

pulses with a fixed phase and a small detuning from resonance. The two pulses are

separated by a precession time t giving the state vector time to precess. Varying this

precession time then results in Ramsey fringes and are shown in figure 4.7. Here, the

Ramsey fringes have a period of 1/(281 kHz) indicating that the two π/2 pulses are off-

resonant by 281 kHz. In order to obtain an understanding of the level of coherence after

a specific precession time the experiment can be modified. In this experiment we first

apply a on-resonant microwave π/2 pulse with fixed phase, creating an equal superposition

between |0〉 and |0′〉. After a fixed precession time t a second π/2 pulse with a variable
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phase φ is applied before the state of the ion is detected.
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Figure 4.7: Ramsey fringes between |0〉 and |0′〉. Following preparation in |0〉 a detuned
π/2 microwave pulse is applied followed by a second π/2 pulse after a variable precession
time t which results in Ramsey fringes with a period of 1/(281 kHz) indicating that the
π/2 pulses were 281 kHz off-resonant. Each point corresponds to 100 measurements.

To implement this experiment the microwave setup is required to be changed to allow

for the two π/2 pulses to be of different phase. This is achieved by using a two-channel

frequency source4. A switch is used to choose between the two rf signals (0.1-30 MHz),

each of same frequency but different phase, before being mixed with the 12.6 GHz signal

from the microwave oscillator using a mixer5. As before, the resultant signal is then sent to

the microwave horn via a switch and an amplifier. This setup is shown in figure 4.8. Using

this setup and Ramsey pulse sequence, a Ramsey fringe as shown in figure 4.9 (a) was

obtained for a precession time t = 15 ms. As discussed above, any dephasing between the

two qubit states will eventually lead to a mixed state. We therefore repeat the experiment

for an increasing precession time t and plot this versus the contrast of the Ramsey fringe.

This can be seen in figure 4.9 (b). Using an exponential fit, we calculate a coherence

time of 1.5 s. This is likely limited by magnetic field fluctuations through the second-order

Zeeman shift of the qubit states [71].

While this demonstrates that this qubit is suitable for the implementation of single

4Agilent 33522A
5Mini-Circuit ZX05-153LH-S+
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Figure 4.8: A schematic of the microwave setup used to implement Ramsey fringes. A
two-channel frequency source is used to generate two rf signals of the same frequency but
different phase. Fast switching between the two signals is achieved via a switch. The
signal is then mixed with a microwave signal with a frequency near 12.6 GHz after which
it is being sent to a microwave horn via another switch and a amplifier.

qubit gates and for storing quantum information, it is not suitable for the coupling between

internal and motional states using the approach described above due to the very weak

coupling of the qubit states to an external magnetic field. We therefore require a qubit

which uses at least one magnetic field sensitive state which is described below.

Magnetic field sensitive qubit

A magnetic field sensitive qubit in the 2S1/2 ground state of 171Yb+ can be formed using

the |0〉 and |−1〉 state. Here, |−1〉 is a first-order magnetic field sensitive state.

Rabi oscillations between |0〉 and |−1〉 are induced using the same method as described

above however this time using a microwave frequency of ω = 12.627648 GHz. As can be

seen in figure 4.10 (a), the contrast of the Rabi fringes is fast decaying and the coherence

time does not exceed 500µs. This is due to the aforementioned ambient magnetic field

fluctuations which cause a dephasing of the qubit. In contrast, figure 4.10 (b) shows

Rabi oscillations between the magnetic field insensitive states |0〉 and |0′〉 extending over

a period of 4 ms during which no decay of the contrast is observed. This reflects the

coherence time of this qubit measured in the previous section.

We can see that while single qubit operations can be implemented using the magnetic

field sensitive qubit and coupling the internal and motional states for multi-ion gate opera-

tions using the scheme described in section 4.2 should be possible, the short coherence time
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Figure 4.9: (a) Following preparation in |0〉 a resonant π/2 microwave pulse with fixed
phase transfers the qubit into an equal superposition of |0〉 and |0′〉. After a fixed precession
time t a second π/2 pulse with variable phase is applied resulting in Ramsey fringes. In
this case t = 15 ms. Each point consists to 100 measurements. (b) Coherence measurement
of a qubit made up of the magnetic field insensitive |0〉 and |0′〉 states. Ramsey fringes as
shown in (a) are taken for different delay times t between the two microwave π/2 pulses.
A exponential fit to the decaying contrast of the Ramsey fringes over time results in a
coherence time of 1.5 s.
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Figure 4.10: (a) Rabi oscillations between the first-order magnetic field insensitive state
|0〉 and the magnetic field sensitive state |−1〉. The transition is driven by applying
on-resonant microwaves at 12.627648 GHz. The fast decay of coherence is due to ambient
magnetic field fluctuations which the |−1〉 state is very sensitive to. Each point corresponds
of 100 measurements. In contrast, (b) shows Rabi oscillations between the first-order
magnetic field insensitive states |0〉 and |0′〉 over a period of 4 ms during which no decay
in contrast is visible. Each point corresponds of 200 measurements.
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is a significant drawback for achieving high fidelities. A scheme to extend the coherence

time of this qubit has been experimentally implemented [107] and used to demonstrate

two-ion gate operations [103]. Nevertheless, while the work is very impressive, the achiev-

able gate fidelity was low compared to those achieved in the optical regime. To address

this issue and, for the first time, allow multi-qubit gate operations to be performed in the

fault-tolerant regime, a step-changing approach which decouples this qubit from the noisy

environment while still being sensitive to a static magnetic field gradient is required. This

is the focus of the next chapter.
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Chapter 5

Dressed-states

We have seen in chapter 4 that in order to implement multi-qubit gate operations using

microwave radiation the energy separation of the two qubit states should have a large

dependency on the magnetic field. While manipulation of such qubit is possible this de-

pendence means that the coherence time is low, putting a limit on the achievable gate

fidelity. The main source of decoherence stems from ambient magnetic field fluctuations

making it desirable to implement a scheme that decouples the qubit from the environ-

ment. Such decoupling can be achieved using a series of pulses that each flip the state of

the system and is often called bang-bang control [108]. It can also be achieved using a

continuous driving of the qubit [109]. More recently these processes have been optimised

theoretically [110] leading to impressive experimental demonstrations of a significantly

decoupled qubit from the environment [111,112].

Timoney et al. [40] introduced a scheme in which the qubit is formed by microwave-

dressing two magnetic field sensitive states. The resultant dressed-state is magnetic field

insensitive and is combined with a magnetic field insensitive bare state to form a new

‘clock-state like’ dressed-qubit. Manipulation of the qubit is possible using rf fields and

allows the implementation of rotations around a specific axis in the x-y plane on the

Bloch sphere only. The coherence time of their qubit was found to be more than two

orders of magnitude longer compared to the magnetic field sensitive qubit, making it a

very attractive qubit for the implementation of multi-qubit gates. We have implemented

this scheme to obtain a dressed-state qubit and developed a experimentally simpler to

implement method which allows direct manipulation of the dressed-state qubit around

any axis in the x-y plane using a single rf field [113].

This chapter is structured in the following way. First, the scheme proposed by Timo-

ney et al. will be summarised. Our scheme is then presented, highlighting the differences
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as well as advantages and disadvantages. As part of the experimental section the prepara-

tion of the dressed-state is demonstrated and we investigate the effects on the preparation

fidelity when varying experimental parameters. This is followed by a lifetime measure-

ment of the dressed-state. Our modified scheme is then used to implement single qubit

rotations and we show that Rabi oscillations can be maintained for more than two orders

of magnitude longer compared to the magnetic field sensitive bare states.

5.1 Theory

A dressed-state is an eigenstate of the Hamiltonian which describes an atomic system

being driven by near resonant electromagnetic fields. Microwave-dressed states can be im-

plemented in the 2S1/2 ground state hyperfine manifold of 171Yb+ as demonstrated by Ti-

money et al. [40]. In their scheme the |+1〉 = 2S1/2|F = 1,mF = +1〉, |0〉 = 2S1/2|F = 0〉,

|0′〉 = 2S1/2|F = 1,mF = 0〉 and the |−1〉 = 2S1/2|F = 1,mF = −1〉 states are used, as

shown in figure 5.1, where only the first-order Zeeman effect has been taken into account.

|+1>

|-1>

|0>

|0’>

Ωmw 

Ωmw 

λ0

ω0

Figure 5.1: Not to scale energy level diagram of the 2S1/2 ground state hyperfine manifold
of 171Yb+ where the degeneracy of the Zeeman states has been lifted by a magnetic field.
Here |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 are coupled with resonant microwave radiation inducing
Rabi oscillations with angular frequency of Ωmw.

The Hamiltonian describing the unperturbed system is given by

Ĥ0 = −~ω0|0〉〈0|+ ~λ0 (|+1〉〈+1| − |−1〉〈−1|) (5.1)

where ω0 is the hyperfine splitting between the two clock states and λ0 is the frequency
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splitting between |0′〉 and the two magnetic field sensitive states |+1〉 and |−1〉, corre-

sponding to the first-order Zeeman shift. The |+1〉, |0〉 and |−1〉 states are coupled using

resonant microwave radiation giving an additional term in the Hamiltonian of

Ĥmw =
~Ωmw

2

(
eiω+1 |+1〉〈0|+ eiω−1 |−1〉〈0|+ h.c.

)
(5.2)

where Ωmw is the Rabi frequency of the two dressing fields, ω±1 = ω0 ± λ0 and the phase

of the driving fields has been set to zero. Moving into the interaction picture ĤI
mw =

eiĤ0t/~Ĥmwe
−iĤ0t/~ and performing the RWA, we can write the interaction Hamiltonian

as

ĤI
mw =

~Ωmw

2
(|+1〉〈0|+ |−1〉〈0|+ h.c.) . (5.3)

The eigenstates of this Hamiltonian are

|D〉 =
1√
2

(|+1〉 − |−1〉) (5.4)

|u〉 =
1

2
|+1〉+

1

2
|−1〉+

1√
2
|0〉 (5.5)

|d〉 =
1

2
|+1〉+

1

2
|−1〉 − 1√

2
|0〉. (5.6)

The interaction Hamiltonian in equation 5.3 can now be written in terms of these dressed-

states as

ĤI
mw =

~Ωmw√
2

(|u〉〈u| − |d〉〈d|) . (5.7)

|D〉 is a equal superposition of the magnetic field sensitive states |+1〉 and |−1〉 making

it useful for experiments that require motional coupling using magnetic field gradients as

described in chapter 4.

While the bare states |+1〉 and |−1〉 quickly dephase as a result of magnetic field

fluctuations, dephasing of |D〉 is suppressed. This can be seen by treating the magnetic

field fluctuations as a perturbation of the form

Ĥp = ~λ0(t) (|+1〉〈+1| − |−1〉〈−1|) (5.8)

which is added to the total Hamiltonian Ĥ0 + Ĥmw. The perturbation remains unchanged

when moving into the interaction picture as it commutes with Ĥ0 given in equation 5.1.
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Writing the perturbation in the dressed-state basis gives

ĤI
p =

~λ0(t)√
2

(|D〉〈u|+ |D〉〈d|+ h.c.) (5.9)

from which we can see that magnetic field fluctuations will drive population from |D〉

to |u〉 and |d〉. It becomes obvious from equation 5.7 that these states are separated by

an energy gap corresponding to ~Ωmw/
√

2 which is also illustrated in figure 5.2. Only

magnetic field fluctuations with a frequency at or near Ωmw/
√

2 will therefore lead to

dephasing of |D〉.

|u>

|D>

|d>

Ωmw/√2 

Ωmw/√2 

Figure 5.2: Energy level diagram of the dressed states |D〉, |u〉 and |d〉 when |0〉 ↔ |+1〉
and |0〉 ↔ |−1〉 are coupled with strength Ωmw. It can be seen that there is an energy
gap between |D〉 and the unwanted states |u〉 and |d〉 of Ωmw/

√
2. Only magnetic field

fluctuations near Ωmw/
√

2 will therefore cause decoherence of |D〉.

In the work by Timoney et al. manipulation of the dressed-state is achieved by coupling

|+1〉, |0′〉 and |−1〉 using rf radiation as shown in figure 5.3. The Hamiltonian describing

the rf part of the system is given by

Ĥrf =
~Ωrf

2

(
ei(λ0t+φrf )|+1〉〈0′|+ ei(λ0t−φrf )|−1〉〈0′|+ h.c.

)
(5.10)

where Ωrf is the Rabi frequency induced by the rf field and λ0 and φrf is the frequency

and phase of the rf field respectively.

As was done for the Hamiltonian describing the interaction with the microwave fields

we can transform Ĥrf into the interaction picture (ĤI
rf = eiĤ0t/~Ĥrfe

−iĤ0t/~) and perform

the RWA to get

ĤI
rf =

~Ωrf

2

(
eφrf |−1〉〈0′|+ e−φrf |+1〉〈0′|+ h.c.

)
. (5.11)
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Figure 5.3: Not to scale energy level diagram of the 2S1/2 ground state hyperfine manifold
of 171Yb+ where the degeneracy of the Zeeman states has been lifted by a magnetic field.
While |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 are coupled with resonant microwave radiation with
Rabi frequency Ωmw, the dressed state qubit consisting of |D〉 and |0′〉 can be manipulated
using an rf field to couple |0′〉 to |+1〉 and |−1〉 with Rabi frequency Ωrf .

We can then re-write this Hamiltonian in the dressed-state basis to give

ĤI
rf =

~Ωrf

2

(
cosφrf (|u〉+ |d〉) 〈0′| −

√
2i sinφrf |D〉〈0′|+ h.c.

)
. (5.12)

The total Hamiltonian in the interaction picture (ĤI
t = ĤI

mw + ĤI
rf ) can now be written

as

ĤI
t =

~Ωmw

2
(|u〉〈u| − |d〉〈d|) +

~Ωrf

2

(
cosφrf (|u〉+ |d〉) 〈0′| −

√
2i sinφrf |D〉〈0′|+ h.c.

)
.

(5.13)

We see that by setting the phase φrf to π/2 the rf part of the total Hamiltonian becomes

ĤI
rf =

~Ωrf√
2
i (|0′〉〈D| − |D〉〈0′|) (5.14)

which corresponds to a σy rotation on the Bloch sphere (equivalent to that shown in

equation 4.15) where the qubit consists of the dressed-state |D〉 and clock-state |0′〉. We

can see from equation 5.18 that while φrf = π/2 maximises the coupling between the two

qubit states, varying this phase not only changes the coupling but also leads to coupling

between |0′〉 and |u〉 and |d〉. This coupling therefore drives population out of the qubit

subspace causing decoherence. Simply varying the phase to change the axis in the x-

y plane about which a given rotation is being performed, as is the case for a standard
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two-level system, is not possible using this scheme and therefore limits its usefulness.

5.1.1 Alternative dressed-state manipulation scheme

So far we have only considered the first-order Zeeman shift resulting in the energy of |0〉 and

|0′〉 being unaffected by the applied magnetic field. We therefore have that the frequency

splitting, λ0, between |0′〉 and |+1〉 and between |0′〉 and |−1〉 is the same. For typical

magnetic field strengths used in ion trap experiments (on the order of 10 Gauss) only

considering the first-order Zeeman shift is not sufficient and it is possible to develop a new

method to manipulate the dressed-state qubit which takes advantage of the second-order

Zeeman shift.

To determine the second-order Zeeman shift we consider the |0′〉 state for which the

Breit-Rabi formula simplifies to [114]

∆E =
~ω0

4

−1 + 2

√
1 +

(
2µBB

~ω0

)2
 . (5.15)

From this the relative angular frequency shift of |0′〉 due to the second-order Zeeman effect

can be expressed as

δω =
ω0

2

−1 +

√
1 +

(
2µBB

~ω0

)2
 . (5.16)

For the case of a applied B-field strength of 10 Gauss the frequency difference between

the two rf transitions is 2δω/2π = 15.5 kHz. If Ωrf � 2δω then we can selectively couple

either |0′〉 ↔ |+1〉 or |0′〉 ↔ |−1〉 using a single rf field. This is illustrated in figure 5.4.

While the microwave part in equation 5.7 remains unchanged, the rf part in equation 5.11

becomes

ĤI
rf =

~Ωrf

2

(
e−iφrf |+1〉〈0′|+ h.c.

)
(5.17)

when using a single rf field to couple |0′〉 ↔ |+1〉, ignoring the far from resonant |0′〉 ↔ |−1〉

transition. When writing this in the dressed-state basis the Hamiltonian becomes

ĤI
rf =

~Ω′rf
2

(
e−iφrf |D〉〈0′|+ h.c.

)
+

~Ω′rf

2
√

2

(
e−iφrf (|u〉+ |d〉) 〈0′|+ h.c.

)
(5.18)

where Ω′rf = Ωrf/
√

2. We know that |0′〉 is separated from |u〉 and |d〉 by an energy gap

corresponding to Ωmw/
√

2. Satisfying Ω′rf � Ωmw therefore allows us to ignore the second
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Figure 5.4: Not to scale energy level diagram of the 2S1/2 ground state hyperfine manifold
of 171Yb+ where the degeneracy of the Zeeman states has been lifted by a sufficiently
strong magnetic field to cause |0′〉 to obtain a relative energy shift δω due to the second-
order Zeeman effect. This causes |0′〉 ↔ |+1〉 and |0′〉 ↔ |−1〉 to have non-equal transition
frequencies. A single rf field can therefore be used to manipulate the dressed-state qubit
by selectively coupling |0′〉 to |+1〉 (shown here) or to |−1〉 with Rabi frequency Ωrf .
|0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 are coupled with resonant microwave radiation with Rabi
frequency Ωmw to create the dressed-state qubit.

part in equation 5.18 and we have

ĤI
rf =

~Ω′rf
2

(
e−iφrf |D〉〈0′|+ h.c.

)
. (5.19)

Arbitrary single qubit operations can now be implemented and only requires a single rf

field as long as Ωrf � δω and Ω′rf � Ωmw. Furthermore, this scheme halves the number

of rf fields required to implement a Mølmer and Sørensen type multi-qubit gate operation.

A drawback of this scheme compared to the previously proposed and implemented scheme

is that the Rabi frequency Ω′rf is suppressed by a factor of
√

2 and is also limited by the

achievable Rabi frequency of the microwave fields (Ωmw). The latter can be addressed by

further amplifying the microwave fields before they are sent to the microwave horn which

would significantly increase Ωmw. Additional increases in Ωmw can be achieved by reducing

the distance between the microwave horn and the ion(s) by placing the horn inside the

vacuum system. It is also possible to use a microwave waveguide on a microfabricated

surface trap to increase Ωmw [38].
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5.1.2 STIRAP

Preparation of the dressed-state |D〉 can not be achieved in the same way one usually

prepares a bare atomic state. In this work |D〉 is prepared using a partial Stimulated

Raman Adiabatic Passage (STIRAP) process. For illustrative purposes we first consider

a three-level system and a complete STIRAP pulse sequence process as shown in figure

5.5 (a) and (b) respectively. STIRAP is often used to transfer population between two

|A>

|B>

|C>

Ω+ 
Ω_ 

Time

R
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ts 

Figure 5.5: Illustration of STIRAP. (a) shows three states coupled together using two
fields with Rabi frequency Ω− and Ω+ to transfer population from |A〉 to |B〉 via state |C〉
which, if done correct, does not get populated. (b) shows the two Gaussian Rabi frequency
pulse envelopes of FWHM width tw separated in time ts in a counter-intuitive order where,
in order to transfer population from |A〉 to |B〉, |B〉 and |C〉 are coupled first to create a
coherent superposition. The second pulse then couples |A〉 to this superposition.

states, |A〉 and |B〉, via a third state, |C〉, where direct transition is forbidden. While

it would seem natural to achieve this by first applying a π-pulse to transfer population

from |A〉 to |C〉 followed by a second π-pulse transferring population from |C〉 to |A〉, the
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intermediate state |C〉 is often one which induces significant decoherence and should be

avoided. A special feature of STIRAP is that population is transferred between state |A〉

and |B〉 without populating |C〉. This is achieved using a adiabatic non-intuitive Gaussian

pulse sequence shown in figure 5.5 (b) where |B〉 and |C〉 are coupled before |A〉 and |C〉.

Adiabatic in this case means that the environment of the ion created by the driving fields,

in this case the STIRAP pulses, changes slow enough for the instantaneous eigenstates

(adiabatic states) of the system to follow so that the dark state, which only connects the

initial and final state, is populated at all times [115].

We use Gaussian envelopes for the STIRAP pulses which are defined by

Ω+(t) = ΩP exp

− t2

2
(
tw/2
√

2 ln 2
)2

 (5.20)

Ω−(t) = Ωp exp

− (t− ts)2

2
(
tw/2
√

2 ln 2
)2

 (5.21)

where ΩP is the maximum amplitude of the Gaussian waveform which also corresponds to

the peak Rabi frequency, ts is the separation between the two pulses and tw is the width

of the waveform.

For the case of the ground state hyperfine manifold of 171Yb+ shown in figure 5.1,

|A〉, |B〉 and |C〉 correspond to |+1〉, |−1〉 and |0〉 respectively. Figure 5.6 (a) shows a

typical STIRAP pulse sequence used in our experiments where, for illustrative purposes,

Ωp = 2π × 25 kHz, tw = 300µs and ts = 350µs. Figure 5.6 (b) shows the result of a

numerical simulation of the population of the three involved bare states and the dressed-

state |D〉, |u〉 and |d〉 and it shows how the population evolves after preparation in |+1〉

when subjected to the non-intuitive pulse sequence shown in figure 5.6 (a).

The steps involved in transferring population between |+1〉 and |−1〉, during which

|D〉 is populated using STIRAP, are as follows (compare with figure 5.6):

1. The population is transferred to state |+1〉.

2. A resonant pulse is applied to couple the unpopulated states |0〉 and |−1〉. While

this does not change the population of |+1〉 it does create a coherent superposition

between states |0〉 and |−1〉.

3. After some time delay a second pulse resonant with the |+1〉 ↔ |0〉 transition is

applied which couples |+1〉 to the superposition. This leads to the dark state to



76

evolve from the bare state |+1〉 via the dressed state |D〉 = 1√
2

(|+1〉 − |−1〉) to the

bare state |−1〉 without populating |0〉. The population in |D〉 is maximised when

Ω− = Ω+ i.e. when the Rabi frequencies of the two transitions are equal. Any non-

adiabatic processes will lead to population in |0〉 and therefore lead to a reduced

transfer efficiency and indeed a reduced preparation efficiency of |D〉.

While we can see that STIRAP is a useful way of transferring population between two

states it also becomes obvious that it is a great tool for preparing |D〉. The population

in |D〉 is maximised at the crossing of the two pulses where the amplitudes are equal. If

we want to maintain the population in |D〉 for some time we simply hold the amplitudes

constant at their crossing. During this hold the qubit is formed of |D〉 and |0′〉 and can

be manipulated using a rf field as described above. Following qubit manipulation, the

STIRAP pulse sequence simply carries on which transfers any population in |D〉 to |−1〉

while leaving population in |0′〉 unaffected. This allows state detection of the dressed-state

qubit using the bare states.

5.2 Experimental setup

Preparing the dressed-state requires two Gaussian pulses in the microwave regime sepa-

rated in time. These pulses need to be held at a constant amplitude for a certain amount

of time before the pulse sequence is resumed. The experimental setup to achieve this is

shown in figure 5.7. During the hold, when the population in |D〉 is maximised, a rf field

is required to manipulate the dressed-state qubit. In this section the experimental setup

used for generating the required microwave and rf fields is also described.

5.2.1 Microwave setup

To implement microwave dressed-states for a single ion, two microwave fields coupling

|+1〉 ↔ |0〉 and |−1〉 ↔ |0〉 are required. We achieve these fields using the setup shown

in figure 5.7 where the output from a high frequency source1 is frequency mixed with the

two outputs from a two-channel low frequency source2. The two low frequency signals are

first combined using a power splitter/combiner3. The high frequency signal is then mixed

with the combined low frequency signals using a high frequency mixer4. Here, the mixer

produces first order-sidebands corresponding to the microwave frequency plus and minus

1HP 83712B
2Agilent 33522A
3Mini-Circuit ZMSC-2-2
4Mini-Circuit ZX05-153LH-S+
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Figure 5.6: (a) typical STIRAP pulse sequence where Ωp = 2π×25 kHz, tw = 300µs and
ts = 350µs. (b) numerical simulation of the population of the bare states |+1〉, |0〉 and
|−1〉 as well as the dressed state |D〉 = 1√

2
(|+1〉 − |−1〉), |u〉 = 1

2 |+1〉 + 1
2 |−1〉 + 1√

2
|0〉

and |d〉 = 1
2 |+1〉 + 1

2 |−1〉 − 1√
2
|0〉 when subjected to the pulse sequence shown in (a).

While STIRAP is shown to transfer population from |+1〉 to |−1〉 without populating
the intermediate state |0〉 it can also be seen that population in |D〉 is maximised at the
crossing point of the two STIRAP pulses.



78

each of the two low frequency signals. It is then possible to use, for example, the positive

first-order sideband corresponding to one of the low frequency signals to couple |−1〉 ↔ |0〉

and the first order positive sideband corresponding to the other low frequency signal to

couple |+1〉 ↔ |0〉. The other two sidebands are far off-resonant and do not effect the

experiment.

To produce the required complex waveforms such as Gaussian pulses with a hold at

a specific point in time to prepare |D〉, the two waveforms are created using LABVIEW

running on an FPGA which has its own digital-to-analog converter (DAC). The waveforms

are then each mixed with one of the two low frequency signals using low frequency mixers5.

When the waveform is mixed with the low frequency signal the mixer acts like a dynamic

switch where the amplitude of the waveform determines the amplitude of the low frequency

output.

Before the STIRAP pulse sequence is applied to the ion we prepare the ion in |−1〉 or

|+1〉 using a microwave π-pulse and require a further π-pulse after STIRAP as part of the

detection sequence. We therefore require the microwave setup to also be able to output

a constant microwave signal just before and after the STIRAP pulse sequence. While in

principle the same analog outputs used for the complex waveform generation could be

used, in practice it is easier to switch between different analog outputs. To achieve this a

fast analog switch is used between the output of the FPGA and the low frequency mixer

to switch between a constant voltage (corresponding to a constant microwave output) and

the waveforms required to implement the STIRAP pulse sequence.

The final microwave setup can be seen in figure 5.7 where the final switch, amplifier

and microwave horn as shown in chapter 4 are not shown. Figure 5.8 shows the analog

signal, as measured on a oscilloscope, sent to the low frequency mixers where the violet

and blue coloured pulses correspond to the signal measured at point 3 and 4 in figure 5.7

respectively. Clearly visible is the STIRAP pulse sequence which is sandwiched in between

two π-pulses as part of the state preparation and detection sequence. The green signal

corresponds to a TTL pulse which turns the rf field on for single qubit manipulation via

a rf switch.

Table 5.1 shows typical powers and frequencies used in the experiments shown in this

chapter along with the resultant output after the final mixer 6. The final frequencies and

corresponding powers (before amplification using the setup shown in chapter 4) used to

5Mini Circuit ZX05-1L-S+
6Only first-order terms are considered as they are used in the experiment however one has to be aware

of higher-order terms due to the non-linear properties of a mixer and ensure they do not couple to any
unwanted transitions.
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Figure 5.7: Illustration of the microwave setup used in this chapter to prepare |D〉. Two
low frequency signals are individually mixed with either a constant voltage to implement
single qubit gates or a pulse envelope corresponding to the required Gaussian STIRAP
pulses. Two switches are used to switch between the two different voltage profiles. The
two signals are then combined before being lifted into the microwave regime using a high
frequency mixer which mixes the two signals with a 12.6 GHz signal. The output is then
passed through a switch, amplifier and microwave horn which is not shown here however
an illustration of this can be found in chapter 4. The numbering corresponds to points
at which the frequency and power of the signals was measured which can be seen in table
5.1.

Figure 5.8: Picture of the analog pulse sequence used for STIRAP. The violet and blue
signals are measured using a oscilloscope connected to points 3 and 4 in figure 5.7 respec-
tively. The green signal corresponds to a TTL pulse sent to the rf switch for single qubit
manipulation during the hold of the STIRAP.
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Number Frequency Power Transition

1 2.210 MHz -1 dBm

2 29.636 MHz 0 dBm

3 Gaussian/dc 0.61 V

4 Gaussian/dc 0.61 V

5 12.626859 GHz 6 dBm

6

12.626859 GHz -37 dBm
12.629066 GHz (+2.210 MHz ) -18 dBm |0〉 ↔ |−1〉
12.624646 GHz (-2.210 MHz ) -18 dBm

12.656492 GHz (+29.636 MHz ) -18 dBm |0〉 ↔ |+1〉
12.597220 GHz (-29.636 MHz ) -18 dBm

Table 5.1: Table showing typical frequencies and corresponding powers used in the ex-
periments in this chapter measured at six different points of the experimental setup as
illustrated by the numbering in figure 5.7. The number in the bracket illustrates which
low frequency signal mixed with the 12.6 GHz signal to obtain the quoted resultant fre-
quency. The powers given for number 3 and 4 correspond to the peak power of the Gaussian
waveform. Also shown is which frequency of the resultant spectrum couples to the desired
transitions. The numbers shown here correspond to a Rabi frequency of 2π×25 kHz once
the signal has been amplified using the setup shown in chapter 4.

couple |0〉 ↔ |−1〉 and |0〉 ↔ |+1〉 are also shown. Following amplification this results in

a Rabi frequency of 2π×25 kHz .

The comparably low Rabi frequency is not a fundamental limit and it should be possible

to increase this by upgrading the microwave setup. The current limits of the setup are

the inexpensive mixers which have a high conversion loss. Furthermore the third-order

intercept point (IP3) of the mixers is comparably low. This means that in order to keep

unwanted intermodulations to a minimum, the power of the signals being mixed have to

be kept low which limits the achievable Rabi frequency. Using more sophisticated mixers

with a higher IP3 and lower conversion losses, together with a pre-amplification stage,

should then allow us to improve the achievable Rabi frequency by an order of magnitude.

This would be comparable to the achieved clock state Rabi frequency shown in chapter

4 where the amplifier was directly fed by the 12.6 GHz source. Further increases of the

Rabi frequency are possible using a microwave waveguide integrated into a surface trap

with which Rabi frequencies on the order of megahertz have been reported [38].

5.2.2 Radio frequency (rf) setup

The dressed-state qubit formed of |D〉 and |0′〉 can be manipulated by applying an rf field

resonant with either |+1〉 ↔ |0′〉 or |−1〉 ↔ |0′〉. In this chapter we choose the rf field to

be resonant with |+1〉 ↔ |0′〉. For typical B-field strengths used in our experiments (≈ 10

G) the Zeeman splitting is on the order of 10 MHz.
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To broadcast the rf to the ion a signal corresponding to the Zeeman splitting is used

to drive a simple resonant LCR circuit as shown in figure 5.9. The inductance is created

50 Ω

21-40 pF

6 x 10-6 H

Figure 5.9: Illustration of the resonant LCR circuit used to broadcast rf to the ion.

using a coil which transmits the rf to the ion. A 50Ω resistor is used to impedance match

the source7 to the rest of the circuit and a variable capacitor is used to be able to tune

the resonant frequency. The coil creating the inductance and transmitting the rf field

to the ion is designed to fit inside the recessed part of the front imaging viewport, as

shown in figure 5.10, which reduces the distance to the ion to ≈1 cm. The radius of the

coil is ≈1 cm and consists of 3 turns which results in an inductance of 6 × 10−6H. For a

capacitance range of 21-40 pF the achievable resonant frequency range was measured to be

10-14 MHz. This was measured by using a directional coupler8 to measure the amplitude

of the rf signal reflection from the LCR circuit as a function of the applied rf frequency.

Resonance then corresponds to the minimum reflection. While a larger number of turns

would be advantageous to increase the magnetic field at the ion, the capacitance would

have to be reduced to maintain a constant resonant frequency and was limited by the

adverse effects from stray capacitances.

Characterisation

To ensure that this setup will be able to drive transitions between the Zeeman states in

the 2S1/2|F = 1〉 manifold, without the need for any amplification, a simple experiment

using the bare states was performed. The experiment consists of applying 10 Vpp of rf

resonant with |+1〉 ↔ |0′〉 to the LCR circuit for an increasing time to observe Rabi oscil-

lations. State detection using light near 369 nm does not allow us to distinguish between

population in |0′〉 and |+1〉 and therefore requires using the experimental sequence shown

in figure 5.11. Following the population being optically pumped into |0〉 the population is

7Stanford research systems, model: DS345
8Mini-Circuits, Part Number: ZDC-20-3
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Coil

Trap

Figure 5.10: Picture showing the placement of the coil inside the recessed part of the front
imaging viewport. Also shown is the ion trap which is ≈1 cm away from the centre of the
coil.

- pulse Rabi pulse - pulse

Microwaves

Time

rf

|0> |+1> |+1> |0’> |+1> |0>
π π 

Figure 5.11: Experimental pulse sequence to drive and detect Rabi oscillations between
the Zeeman states in the 2S1/2|F = 1〉 manifold. The laser pulses for state preparation
and detection are not shown.
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transferred to |+1〉 using a microwave π-pulse resonant with |0〉 ↔ |+1〉. We then apply rf

resonant with |+1〉 ↔ |0′〉. For the state detection sequence to distinguish between |0′〉 and

|+1〉 after the rf pulse has been applied, a microwave π-pulse first returns any population

left in |+1〉 back to |0〉. This results in many photons being detected if the population

is in |0′〉 and no photons being detected if the population is in |0〉 which corresponds to

|+1〉 at the end of the rf pulse. Using this pulse sequence we can detect Rabi oscillations

between |+1〉 and |0′〉 which are shown in figure 5.12. The Rabi frequency is measured to

be 2π×18 kHz which is sufficient for the experiments in this chapter.
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Figure 5.12: Rabi oscillations between |0′〉 and |+1〉. A resonant 10 Vpp rf signal applied
to the LCR circuit sandwiched between two microwave π-pulses resonant with |0〉 ↔ |+1〉
is applied for an increasing time t. The resulting Rabi oscillations have a frequency of
2π×18 kHz. Each data point corresponds to 100 measurements.

5.3 Robustness of dressed-state preparation

The robustness of STIRAP in ions has already been investigated experimentally [116]

using lasers. Here the focus was on the effect of the separation between the two pulses

on the transfer efficiency of STIRAP. A wide range of separations from the intuitive to

the non-intuitive order of the pulses were investigated. The robustness was studied in

more detail theoretically, looking at effects on the transfer efficiency of STIRAP from

parameters such as pulse width, pulse separation and ion motion [117]. Furthermore, an

investigation using microwaves has also been performed [40].
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To determine the robustness of preparation of |D〉 for our experimental setup the

transfer efficiency between |+1〉 and |−1〉 using STIRAP is considered. Since our state

detection method does not allow us to distinguish between |+1〉 and |−1〉 we add a final π-

pulse to swap the population between |−1〉 and |0〉. The complete experimental sequence

to implement STIRAP therefore becomes:

1. After a period of Doppler cooling the ion is prepared in |0〉.

2. A π-pulse resonant with |0〉 ↔ |+1〉 transfers the population to |+1〉.

3. The STIRAP pulse sequence described in section 5.1.2 is then used to transfer pop-

ulation to |−1〉 via the dark state |D〉. Any imperfections during STIRAP will cause

the population in |−1〉 to be reduced.

4. A π-pulse resonant with |−1〉 ↔ |0〉 is applied to swap the population between |−1〉

and |0〉.

5. The state detection sequence is used to detect the state of the ion. Any population in

|0〉 due to imperfections in the STIRAP sequence is transferred to |−1〉 via the final

π-pulse. Also, this π-pulse does not effect any population in |0′〉 or |+1〉. Therefore,

any imperfections during the STIRAP process which lead to a reduction in the

transfer efficiency as well as population in |D〉 will lead to a bright result (many

photons being scattered) during state detection. A successful STIRAP however will

lead to a dark result (no photons being scattered). We therefore have a simple

method of determining the fidelity of our STIRAP pulse sequence.

With this experimental sequence we can now investigate the robustness of STIRAP with a

focus being on the pulse width (tw) and the pulse separation (ts) for a fixed Rabi frequency

(ΩP).

Previous work has already demonstrated that the highest transfer efficiency is achieved

for on resonant microwave fields of equal coupling strengths [40]. We therefore perform

the following experimental steps before the start of an experiment involving the use of

STIRAP:

1. A frequency sweep over the |0〉 ↔ |+1〉 transition using one of the low frequency

signals (recall that this will then be mixed with a microwave signal) is performed.

The resonant frequency from this sweep can be determined to within ≈ 1 kHz with-

out too much overhead on the time it takes to obtain these measurements9. This
9Determining a more accurate resonant frequency was found to have no measurable effect on the STI-

RAP transfer efficiency.
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frequency is then programmed into the frequency source

2. A Rabi flopping experiment, as described in chapter 4, is then performed to deter-

mine the π-time.

3. Step 1 is performed for the |0〉 ↔ |−1〉 transition.

4. Step 2 is performed for the |0〉 ↔ |−1〉 transition to check if the two π-times are

equal.

5. If the π-times for the two transitions are different, they are altered using the output

power of the rf frequency source until they are equal.

Having calibrated the experimental setup we first consider the effects of the pulse width

on the transfer efficiency. This is done for a peak Rabi frequency of 2π × 25 kHz and a

pulse separation of ts = 356µs. The dependence of the probability of being in |F = 1〉 on

the pulse width is shown in figure 5.13. Each data point consists of 1000 measurements

and tw was varied in steps of 50µs. We can see that STIRAP is extremely robust to

changes in tw and the maximum transfer efficiency of ≈ 91% (excluding infidelities from

state preparation and detection) is observed for tw in the range of 150-650µs. The transfer

efficiency slowly decreases for larger pulse widths as the pulse separation, which is kept

constant, becomes less optimum. In other words, for a fixed pulse separation the overlap

between the two pulses increases with an increase in pulse width. The effect of varying

the separation or overlap between the two pulses is shown below.

The measured transfer efficiency of our STIRAP pulse sequence is currently limited by

the detection efficiency as described in chapter 4 and the achievable peak Rabi frequency.

Increasing the peak Rabi frequency will allow for shorter STIRAP pulses while remaining

in the adiabatic regime which will increase the transfer rate and thereby reduce the effects

from noise. Both points will be addressed in future experiments and should significantly

improve the achievable fidelity.

An investigation into the dependence of the pulse separation (ts) on the transfer effi-

ciency has also been undertaken. Here the peak Rabi frequency again is 2π × 25 kHz and

will be kept at this level for the experiments shown in this chapter and tw = 450µs. The

pulse separation is varied between 0 and 720µs with the results shown in figure 5.14.

Again, STIRAP is shown to be very robust over a large range of ts and a maximum

transfer efficiency is observed for a ts in the range of 120-485µs.

In this section the calibration of the experimental setup to ensure that both STIRAP

pulses are on resonance with their respective transitions and the two π times are equal
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Figure 5.13: The effect of the FWHM of the two pulses on the transfer efficiency is shown.
The data has been taken with a fixed pulse separation of ts = 356µs and a peak Rabi
frequency of 2π×25 kHz. A maximum transfer efficiency is observed for tw in the range of
150-650µs. Each data point corresponds to 1000 measurements.
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Figure 5.14: The effect of the separation between the two pulses on the transfer efficiency
is shown. The data has been taken with a fixed pulse width of tw = 400µs and a peak
Rabi frequency of 2π×25 kHz. A maximum transfer efficiency is observed for ts in the
range of 120-485µs. Each data point corresponds to 1000 measurements.
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has been described. The dependence of tw and ts on the STIRAP transfer efficiency was

then investigated. Following this investigation the pulse width and separation are set to

tw = 450µs and ts = 356µs respectively for the remaining experiments shown in this

chapter.

5.4 Lifetime measurement of dressed-state

We have shown that the population in |D〉 is maximised at the cross-over of the two

STIRAP pulses where Ω+ = Ω−. At this point we can use the states |D〉 and |0′〉 as

a qubit. To determine how useful this qubit is for quantum information processing it is

important to determine the lifetime of |D〉.

The lifetime of |D〉 is measured by modifying the STIRAP pulse sequence as shown

in figure 5.15 (a). In section 1 of figure 5.15 (a) the Gaussian pulses prepare |D〉 and the

sequence is interrupted and the amplitude held constant at the point where Ω+ = Ω−.

In the experiments shown in this chapter the microwave Rabi frequency during the hold,

Ωmw, is measured to be 2π × 16 kHz. The amplitudes are then held constant for a length

of time th in section 2. This is followed by the STIRAP pulse sequence resuming which

transfers any population left in |D〉 to |−1〉 during section 3. Following a final π pulse

transferring population between |−1〉 and |0〉 the population in |0〉 is measured. We can

perform this experiment for an increasing th and measure the decay in population in |0〉

which corresponds to the population in |D〉. This is shown in figure 5.15 (b). A fully

decohered state |D〉 will correspond to a measured population in |0〉 of 1/3 since there are

three states involved in the STIRAP process. Using an exponential fit the lifetime of |D〉

is found to be 550 ms. Magnetic field fluctuations are most dominant in the low frequency

range [111, 118]. Since |D〉 is susceptible to noise corresponding to Ωmw/
√

2, increasing

the Rabi frequency of the dressing fields will reduce the susceptibility to low frequency

magnetic field noise and is therefore expected to further increase the lifetime of |D〉.

5.5 Coherent manipulation of a dressed-state qubit

The possibility of implementing arbitrary rotations of the dressed-state qubit using a single

rf field is one of the advantages of our method and will be demonstrated in this section.
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Figure 5.15: (a) shows an illustration of the STIRAP pulse sequence used to measure
the lifetime of |D〉. The illustration is split into three sections. Section 1 prepares |D〉
following initial preparation in |+1〉. In section 2 the STIRAP is paused at the point where
the population in |D〉 is maximum. The amplitude of the pulses are now held constant for
time th. In section 3 the STIRAP pulse sequence is resumed and any population in |D〉
is transferred to |−1〉. (b) shows a lifetime measurements of |D〉 where the population in
|0〉 has been measured following the STIRAP pulse sequence shown in (a) for various hold
times th. The peak Rabi frequency was 2π×25 kHz while the Rabi frequency during the
hold was 2π×16 kHz and tw = 450µs and ts = 356µs. Using an exponential fit the lifetime
of |D〉 is calculated to be 550 ms. Each data point corresponds to 1000 measurements.
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5.5.1 Rabi oscillations

During the hold time of STIRAP the dressed-state qubit is formed of |D〉 and |0′〉 and

can be manipulated using a single rf field resonant with |0′〉 ↔ |+1〉. To ensure that the

rf field is on resonance we first prepare |D〉 and then perform a frequency sweep of the rf

field during the hold of STIRAP. The resonant frequency is then programmed into the rf

source. Rabi oscillations are induced in the same way as for the bare states described in

chapter 4 once the dressed-state qubit has been prepared. During the hold of STIRAP

we apply 5 Vpp of rf resonant with |0′〉 ↔ |+1〉 to the LCR circuit described above for an

increasing amount of time. When the rf is only being applied for a very short amount of

time most population will remain in |D〉 and will be transferred to |0〉 via the second half

of STIRAP and a final π-pulse. This will lead to no photons being scattered during state

detection. When increasing the time the rf field is being applied for, more population will

be transferred to |0′〉 where it is unaffected by the second half of STIRAP and the final

π-pulse. The resultant Rabi oscillations between |D〉 and |0′〉 are shown in figure 5.16.

Rabi oscillation data is shown from 0 to 2 ms in figure 5.16 (a) and from 100 to 101 ms in

figure 5.16 (b). The Rabi frequency in (a) is measured to be Ω′rf = 2π×1.9 kHz. The decay

in amplitude of the Rabi oscillations can be used to determine the minimum T2 time of the

qubit and has been measured to be 500 ms, close to the absolute limit set by the lifetime

of |D〉. This is an increase of three orders of magnitude compared to the magnetic field

sensitive bare states and further demonstrates the robustness of this dressed-state qubit.

The Rabi frequency in figure 5.16 (b) appears changed due to slow drifts of experi-

mental parameters. For example, heating of the components in the LCR matching circuit

can cause small effects on the amplitude of the rf signal applied to the ion. While there is

little heating and a resultant small drift in amplitude for short rf pulses, the small drift in

amplitude of the rf signal and Rabi frequency for every Rabi oscillation will add up and

result in a measurable change in Rabi frequency when the rf has been applied for over

100 ms during which many Rabi oscillations have occurred.

5.5.2 Ramsey experiment

In chapter 4 a Ramsey experiment was performed where we used two resonant π/2-pulses,

separated in time. Here the phase of the second π/2-pulse was varied. Our current rf

setup does not allow for such an experiment to be performed on the dressed-state qubit.

However, to demonstrate that arbitrary rotations can indeed be performed using our

method we simply detune the two rf π/2-pulses from resonance. The detuning is chosen
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Figure 5.16: Rabi oscillations between |0′〉 and |D〉. Following preparation in |D〉 a rf
pulse resonant with |0′〉 ↔ |+1〉 is applied for an increasing amount of time t which results
in Rabi oscillations. To illustrate the robustness of the dressed-state qubit (a) shows
Rabi oscillations during the first 2 ms and (b) shows Rabi oscillations for a window of
1 ms after the rf has been applied for 100 ms. The Rabi frequency is measured to be Ω′rf =
2π×1.9 kHz based on the data shown in (a). The Rabi frequency in (b) appears changed
due to slow fluctuations of experimental parameters. Each point in (a) corresponds to 100
measurements and 50 for each point in (b).
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to satisfy δrf � Ω′rf to not affect the nature of the π/2-pulses. The separation in time

between these two pulses will cause the rf field and the qubit to obtain a relative phase

with each other. This changes the axis on the Bloch sphere the second π/2-pulse operates

on and therefore leads to Ramsey fringes. This is shown in figure 5.17. From the period

of the fringes a detuning from resonance of 160 Hz is inferred.
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Figure 5.17: Ramsey fringe between |0′〉 and |D〉. Following preparation in |D〉 a detuned rf
π/2-pulse is applied followed by a second detuned π/2-pulse after a variable precession time
t which results in Ramsey fringes. The period of these fringes is measured to be 1/(160 Hz)
indicating that the π/2-pulses were 160 Hz off-resonant. Each point corresponds to 100
measurements.

In future experiments changes to the rf setup which will involve adding a second rf

source, switches and a combiner will allow for a T2 measurement to be performed in a way

as was described in chapter 4.

5.6 Summary

Quantum gates using microwave radiation in conjunction with a static magnetic field

gradient require the use of at least one magnetic field sensitive state. These states are

very susceptible to magnetic field fluctuations which limits the achievable coherence time

and resultant gate fidelity. In this chapter a dressed-state qubit which is less sensitive

to magnetic field fluctuations is presented following the work by Timoney et al. [40]. A
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new method to manipulate the dressed-state qubit is then presented which significantly

simplifies the experimental setup and allows for arbitrary qubit rotations to be performed

by simply changing the phase of the rf field. A STIRAP pulse sequence is used to prepare

the dressed-state qubit and an investigation into the preparation efficiency as a function

of STIRAP parameters shows the robustness of this process. A lifetime measurement of

the dressed-state is then presented to determine the usefulness of the qubit for quantum

information processing using our experimental setup. The lifetime is found to be 550 ms.

To demonstrate our new method of dressed-state qubit manipulation we use a single rf

field to implement Rabi oscillations and use this measurement to determine the minimum

T2 time which is found to be 500 ms, close to the dressed-state lifetime. A single rf field is

also used to implement Ramsey fringes which demonstrates that arbitrary qubit rotations

can be implemented using our method by simply changing the phase of the rf field.

Future improvements to the microwave setup to increase the Rabi frequency of the

dressing fields is expected to significantly improve the preparation efficiency of the dressed-

state and further improve the coherence time of the qubit. With this and improvements to

the rf setup, multi-qubit gate operations as suggested by Timoney et al. [40] should allow

for high fidelities to be achieved. This has the potential to outperform laser driven gates

and provides an exciting platform for the implementation of microwave based quantum

technology.
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Chapter 6

Two-dimensional ion trap lattice

on a microchip

6.1 Introduction

The introduction of microfabrication techniques to the field of ion trapping has lead to

the development of impressive microfabricated radio-frequency (rf) ion trap devices [42].

Using such devices, all the building blocks for scalable quantum computing have been

demonstrated [41], including ion combination and separation and shuttling through junc-

tions [43, 44] as well as two-qubit gate operations [38]. A drawback of current micro-

fabricated ion traps stems from the ions at the rf nil naturally forming a 1-dimensional

string, limiting their usefulness for applications that require the formation of arbitrary

2-dimensional (2D) ion lattices. Penning traps offer a platform for a 2D lattice of ions,

but the rotating crystal makes individual ion addressing and readout experimentally chal-

lenging, and the lattice geometry is limited to the naturally forming Wigner crystal [20].

There are many potential applications for a 2D ion lattice including B-field and E-field

sensing [119], force detection [120], interactions between neutral atoms and ions [121] and

cluster state quantum computing [122]. Another application for a 2D ion lattice is in

the field of analogue quantum simulation where the Hamiltonian of a complicated many-

body system can be realised and its properties measured [123, 124]. Examples of many-

body systems that can be simulated include quantum magnetism [125], high temperature

superconductivity [126], the fractional quantum hall effect [127] and synthetic gauge fields

[128].

We have already seen some very impressive small scale quantum simulations using rf

ion traps [46–52] for which one-dimensional strings of ions were used. In order to simulate
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more complicated systems it has been proposed to develop a 2D quantum simulator which

consists of a 2D lattice of individual rf ion traps [45,53,54]. In their proposals single ions

are trapped in individual rf ion traps and placed close enough together for the ions to

interact with neighbouring ions via the Coulomb force. Such a system has the potential

to reach a regime classical computers currently cannot operate in. So far, experimental

progress towards a 2D lattice of ions has been limited to trapping dust particles and clouds

of ions using a wire mesh [129] and above PCB boards [130].

The challenge lies in developing microfabrication techniques that allow a scalable 2D

lattice of rf ion traps to be fabricated with the long term goal to reduce the ion-ion

separation enough for coherent interactions to be measured. The optimum trap geometries

of such a device have been well studied [92,131] and will be discussed in detail in chapter

7.

In operating a microfabricated ion surface trap, restrictions on the rf voltage that

can be applied due to low flashover voltages exist [42, 132]. The flashover voltage is the

voltage at which electric discharge occurs between two conductors that are separated by

an insulator. This prohibits a large trap depth and ion-electrode distance, d, which limits

the achievable ion lifetime and secular frequencies. The result of a small ion-electrode

distance is a large heating rate of the ion motion which scales as d−4 [133] limiting the

fidelity of motion dependant qubit gate operations. It is therefore desirable to increase

the maximum rf voltage that can be applied to microfabricated devices. Being able to

apply large voltages to devices such as microelectromechanical systems (MEMS) would

also be useful in the field of nanoelectrospray thruster arrays for spacecraft [134–137] as

the maximum achievable electric field directly impacts the achievable thrust.

In this chapter a general microfabrication process to achieve large breakdown voltages

in microfabricated devices is shown and this advance is used to fabricate a 2D lattice of

rf ion traps on a microchip. This advance can also be used for other surface electrode

ion trap geometries. We use this device to demonstrate, for the first time, a 2D lattice

of 174Yb+ ions, deterministic trapping of multiple ions at lattice sites and rudimentary

ion shuttling between lattice sites. Since this is a microfabricated device it addresses the

challenge of scaling 2D ion lattices to a large number of ions and brings us a step closer to

reducing the ion-ion separation to a point where quantum simulations can be performed.

Furthermore, this device is suitable for 2D sensing applications. The work in this chapter

is based on the work we have shown in [138].

This chapter is structured as follows. First, a brief description of the fabrication of
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the microchip is given. The experimental setup including a new vacuum system, and the

optical setup is then described. Experimental results are then presented and discussed

which includes secular frequency and ion lifetime measurements, the demonstration of a

2D lattice of singly trapped ions and rudimentary shuttling between individual lattice

sites.

6.2 Microfabrication of a 2D lattice of ion traps on a mi-

crochip

As the name microfabrication suggests, it involves the fabrication of structures on the

micrometer scale and has lead to many advances in the field of ion trap quantum tech-

nology. While macroscopic scale traps are still widely used and have many advantages

for certain experiments, microfabricated ion traps offer a very promising route towards

realizing devices with very small electrode structures which can hold and move hundreds,

if not thousands, of ions.

One of the most common microfabricated ion trap is the asymmetric (surface) trap [42]

which is the focus of this chapter. Here, the electrodes which provide the trapping fields

are in one plane and the ion is trapped tens of micrometers above it. Laser beams for

ionisation and cooling are aligned parallel to the surface.

There are some considerations that have to be taken into account when working with a

surface trap. Compared to macroscopic ion traps, the microfabricated asymmetric coun-

terpart provides a much lower trap depth. Furthermore, the ion is trapped very close

to the surface, making it more susceptible to electric field noise causing heating of the

motional state of the ion. A low ion height also makes aligning laser beams close to the

surface, while minimising scatter off the electrodes, challenging. Furthermore, microfabri-

cated devices make use of semi-conductors which compared to metals used in macroscopic

traps have a higher resistance and capacitance which needs to be taken into account when

applying the trapping fields. This causes a higher power dissipation which is given by [42]

PD ≈
1

2
V 2C2RΩ2 (6.1)

where V is the voltage applied to the device, C is the capacitance, R is the resistance and

Ω is the drive frequency. A higher power dissipation causes heating of the device and can

limit the maximum voltage that can be applied. However it should be noted that flashover

voltages are often the greater limitation. Being able to apply large voltages to the device
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is often desirable as this increases the trap depth and allows the trap to be designed

with a larger ion height. A method to substantially increase the flashover voltage of a

microfabricated ion trap will be discussed in more detail below. A comprehensive overview

of different microfabricated ion traps and their corresponding fabrication techniques has

been written by M. Hughes et al. [42].

The microchip shown in this chapter was fabricated by H. Rattanasonti at the Uni-

versity of Southampton, to a design and fabrication process created by Dr. R. Sterling. A

detailed description of the fabrication and design is found in his thesis [88], and will be

briefly summarised below.

6.2.1 Fabrication process

In order to keep the fabrication as simple as possible the process steps are kept to a

minimum and are made up of standard processes which can easily be performed in the

clean room.

To start off with a commercially available silicon-on-insulator (SOI) wafer1 is used. A

SOI wafer has already been used by Britton et al. to fabricate a linear ion trap [139].

Here, a different fabrication process is shown which allows extremely large voltages to be

applied to the device. This advance is then used to fabricate and operate a 2D lattice of

ion traps on a microchip. The SOI wafer consists of a 600µm thick silicon handle layer

which is degenerately n-doped with arsenic, on top of which is a 10µm thick layer of silicon

dioxide (SiO2) followed by a 30 µm thick device layer of silicon with the same doping as

the handle layer. A thick oxide layer was chosen to increase the path length between the

electrodes and the handle layer and to reduce the capacitance between the rf electrode

and ground. A schematic of this wafer is shown in Fig. 6.1.

During fabrication of the device several micrometers of photosensitive photoresist are

spun evenly on top of the device layer. Once baked, the required electrode pattern is

transferred to the wafer using a pre-drawn mask which protects certain areas of the pho-

toresist from a UV light source. The unprotected areas of the silicon device layer are then

etched away using a deep reactive ion etch. This exposes the SiO2 which is isotropically

etched away by placing the structure into a hydrofluoric (HF) bath. The electrodes are

then coated in an adhesion layer of chrome and 500 nm of gold. Using a gold layer as part

of the electrode structure mitigates the aforementioned problem of the large resistance of

semiconductor materials compared to that of metals used in macroscopic traps. The final

1The wafer was obtained from Ultrasil Corporation with the silicon having a resistivity of 0.001-0.005
Ω cm.
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Figure 6.1: Schematic of the silicon-on-insulator (SOI) wafer used in the fabrication of the
microchip consisting of a 600µm thick silicon handle layer which is degenerately n-doped
with arsenic, a 10µm thick layer of silicon dioxide (SiO2) and a 30µm thick device layer
of silicon with the same doping as the handle layer.

layers of the structure can be seen in figure 6.2 (a).

A common problem that has been observed in microfabricated ion traps is low flashover

voltages [42, 132]. A large oxide layer which increases the path length between the elec-

trodes and the handle layer only results in modest increases in the flashover voltage and

would not be sufficient to operate the microchip shown in this chapter. To substantially

increase the flashover voltage a specialised fabrication technique was developed. Since the

voltage breakdown usually occurs across the SiO2 (insulator) surface rather than through

the SiO2 bulk it would be advantageous to increase the path length between the device

and handle layer. This is achieved by wafer bonding two SOI wafers with 5µm thick oxide

surfaces together which then forms the 10µm thick SiO2 layer. We now find that when

we remove the SiO2 layer during the buffered HF etch to expose the handle layer that

there is an increased etch rate developing along the interface where the two substrates

were bonded together. This leads to an anisotropic etch laterally under the electrodes.

By applying the buffered HF etch for 130 - 140 minutes, a 60µm V-shaped undercut is

achieved which is illustrated in figure 6.2 (b). This increases the path length between

the device and handle layer from approximately 10µm to 120µm and results in flashover

voltages which are measured to be Vdc = 1298(5) V and Vrf = 1061(32) V [93]. This is a

substantial increase compared to the flashover voltages of ≈ 150 V observed by Britton et
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Figure 6.2: (a) Not to scale schematic of a cross section of the silicon-on-insulator wafer
structure which includes a 500 nm layer of gold. By using various etches it is possible
to make the required electrode patterns. The 10µm thick SiO2 layer prevents electrical
breakdown with the silicon handle layer and ensures a low capacitance required to keep
the power dissipation to a minimum. (b) Not to scale schematic of a cross section of the
wafer after an optimised 60µm anisotropic buffered HF etch laterally under the silicon
device layer. This increases the path length to ground from 10µm to 120µm and allows
much larger voltages to be applied to the device.
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al. [139] and allows us to successfully operate the microchip presented in this chapter.

6.2.2 The microchip

The fabrication process described above is used to fabricate a microchip with recessed

ground electrodes within a 2D electrode geometry. Here the gold coated device layer

pattern provides the trapping fields with the handle layer held at ground. This was the

first 2D lattice of ion traps on a microchip and the first microfabricated ion trap in our

laboratory so it was decided to start off with a comparably large ion height, which is set

by the electrode geometry, to reduce heating of the ions and to minimise scatter off the

surface from the laser beams. Unlike in other microfabricated ion traps the trap depth

will be large despite the large ion height due to the high voltages that can be applied to

the microchip.

The microchip consists of 29 individual hexagonal shaped traps which are arranged in

a triangular lattice and each capable of trapping an ion. This allows each ion to have up

to six nearest neighbours with an ion-ion separation of 270.5µm. The smallest separation

between the polygons is 20µm. For this geometry the ion-electrode distance is 156µm.

Due to the recessed ground electrode, the ion height from the top of the device layer is

116µm. The lattice is surrounded by six larger electrodes which static voltages can be

applied to in order to globally compensate for stray electric fields. These can shift the

position of the ions and induce unwanted micromotion. In this trap, compensating each

ion individually which is part of a large ion lattice is not possible. This will however be

possible in future traps currently being fabricated using a different fabrication method by

adding individual control electrodes for every polygon. A scanning electron microscope

(SEM) is used to produce an image of the fabricated microchip which can be seen in figure

6.3 (a) with the inset showing two hexagonal traps made up of the gold coated rf electrode

as well as the recessed ground electrode. The 60µm V-shaped undercut into the SiO2

layer ensuring large voltages can be applied to the lattice is shown in figure 6.3 (b) where

a SEM has been used to take a image of the cross-section of the layered SOI structure.

To allow the microchip to be placed inside a vacuum chamber and to be electrically

connected to a vacuum system feedthrough, conductive glue2 is used to attach the handle

layer of the chip to a Ceramic Pin Grid Array (CPGA) chip carrier. A wire-bonder is then

used to connect the rf, ground and static voltage electrodes to gold bond pads on the chip

carrier. The bond pads make a connection with 100 pins at the back of the chip carrier

2Epoxy Technology, Part number: EPO-TEK H21D
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Figure 6.3: (a) A image from a SEM of the finished microchip. The inset shows a close-up
of two of the hexagonal traps including the recessed ground electrode. Letters A to H
represent the lattice sites that were used during the experiments presented in this chapter.
(b) A image of the cross section of the layered SOI structure at the interface between two
compensation electrodes taken using a SEM. The 60µm V-shaped undercut into the SiO2

layer is clearly visible.
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which are then used to connect to a feedthrough inside the vacuum system. A picture of

this can be seen in figure 6.4.

Bond
pads

Pins

Wire-
bonds

Microchip

Chip 
carrier

Figure 6.4: Picture of the microchip mounted onto a CPGA chip carrier. The electrodes
are connected to the backside pins via wire-bonds.

6.3 Experimental setup

Due to the experimental setup described in chapter 3 being used for other experiments, a

new setup which will be described in this section had to be designed and built to allow the

microchip to be operated. This includes a new vacuum system which was built with the

capability to house symmetric as well as asymmetric ion traps. The system also provides

a number of feedthroughs allowing the application of high power microwaves and currents

which will be of importance in future experiments. A new imaging system which allows a

large area of the microchip to be imaged and which can share the same photon detection

devices as described in chapter 3 was also required. With a new vacuum system comes a

new optical setup that had to be put in place and aligned. Since the vacuum system will

operate a surface trap, a way of precisely aligning the laser beams close to the surface of

the microchip also had to be designed.

6.3.1 Vacuum system

The vacuum system used in the experiments described in this chapter is based on a design

by James Sayers and Dr. Robin Sterling whose thesis should be referred to for a more

detailed description of the design [88]. This section will focus on the important parts of

the system as well as changes that were made to the design to make it more suitable for

our experiments.
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A picture of the fully assembled vacuum system can be seen in figure 6.5. A special

Resonator 100 pin feedhrough Ion pump TSP

Ion gauge High power 
feedthrough

Microwave
feedthrough

Surface trap
inside chamber

Imaging
tube

All metal
valve

Figure 6.5: Picture of a new vacuum system designed to accommodate both symmetric
and asymmetric traps and used for the experiments shown in this chapter.

feature of the system is the capability of holding symmetric as well as asymmetric ion traps

in the hemisphere, into which laser beams can simply be aligned via its eight viewports.

Another important feature is the ability to transmit high power microwaves and currents

to future microchips. The hemisphere houses a chip bracket made up of two PEEK plates

sandwiched together by two metal clamps. The chip carrier holding the microchip can be

mounted inside the hemisphere using this chip bracket. Pin receptacles (male part) in the

PEEK are used to connect the pins from the chip carrier with pin receptacles (female part)

crimped to 100 UHV compatible Kapton ribbon wires 3. These cables are then connected

to a flange with two 50 pin sub miniature D-type feedthroughs 4. The pins used to connect

to each electrode are shown in appendix A. The chip bracket can be moved forward and

backward allowing accurate alignment with the Yb ovens and the front viewport used by

3Allectra, Part number: 380-D50FXPR-500
4Allectra, Part number: 210-D50-C100-2
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the imaging system for photon collection. A picture of the microchip mounted inside the

vacuum system can be seen in figure 6.6.

Chip carrier

Yb ovensChip bracket

MicrochipKapton wires
Viewport for 
laser access

Figure 6.6: A picture of the chip carrier, holding the microchip, mounted onto the PEEK
chip bracket inside the hemisphere. For this picture the front viewport through which the
ions are imaged has been removed. Clearly visible is one of the viewports that can be
used to align laser beams along the surface of the microchip. Two ovens which can be
used to resistively heat a sample of either natural (left) or enriched (right) Yb are shown.
Some of the 100 Kapton ribbon wires used to make electrical connections between two sub
miniature feedthroughs and the microchip can also be seen.

Evacuation of vacuum system

In order to evacuate the system it is connected to a turbo pump until a pressure of 10−6

torr is reached. The system is then leak tested and appropriate components are outgassed.

A large homebuilt oven is then used to bake the system at 200◦C for approximately 12

days. A pressure of ≈ 10−9 torr is reached after the temperature has been reduced back

down to room temperature. A titanium sublimation pump is then used to reduce the

pressure to ≤ 10−11 torr. A detailed description of how we reduce the pressure inside the

vacuum system is shown in appendix B.

In a previous design of the vacuum system the ion gauge was positioned close to the

ion pump. During the evacuation procedure we however experienced problems with the

filament of the ion gauge blowing out several times. An investigation into this problem
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lead to the conclusion that when turning on the ion pump it can release titanium dust into

the system and coat the ion gauge filament if close by. When turning on the ion gauge the

sharp temperature rise of the tungsten filament can cause alloying between the titanium

and the tungsten which will change the electrical properties of the filament and cause it

to blow out. A elbow and nipple was therefore used to move the ion gauge much further

away from the ion pump and we have not experienced any problems of this nature since

then.

6.3.2 Imaging of ions

To detect ions trapped on the microchip the setup shown in figure 6.7 is used to collect

the fluorescence resulting from the decay on the 369 nm 2S1/2 to 2P1/2 transition. It

partly consists of a triplet with a magnification Mtr of -12.29 which is placed 25 mm away

from the ion to initially collect the photons, reduce spherical aberration and provide a

magnification. A focused image is formed 396 mm after the triplet where an iris can be

used to spatially filter the image without affecting the photons from the ion. A doublet

EMCCD

PMT

Ion

Triplet Doublet

Flipper
mirror

Flipper
mirror

Photons from
second experimental

setup (chapter 3)

25 mm 396 mm S1 = 236 mm S2 = 57 mm

S
3

 =
 2

5
0

 m
m

Iris

Figure 6.7: Imaging setup used to detect fluorescence at 369 nm from trapped ions. The
fluorescence is collected using a triplet. The image is then focused through an iris to
remove any unwanted scatter before a doublet magnifies the image onto a EMCCD or a
PMT via a bandpass filter and two motorised flipper mirrors.

made up of two plano-convex lenses is then used to determine the final magnification of

the image. The combined magnification of the triplet Mtr and the doublet Md gives the
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total magnification Mt of the imaging setup and is given by

Mt = Mtr +Md. (6.2)

For a 500µm by 500µm area of the microchip surface to be viewed on a detector with a

detector size of 8000µm by 8000µm, the total required magnification is calculated to be

16. Using equation 6.2, the required magnification of the doublet is therefore -1.30.

The doublet magnification in terms of the object distance (distance between the iris

and the doublet), S1, and the image distance (distance between the doublet and the

detector), S2 + S3, is given by

Md =
S1

S2 + S3
. (6.3)

A relationship between these distances to the focal length of the two lenses in the doublet,

f1 and f2, is given by
1

S1
− 1

S2 + S3
=

1

f1
+

1

f2
. (6.4)

The required magnification of the doublet can be achieved by careful choice of the lenses

as well as the position of the doublet. Using focal lengths of f1 = 400 mm and f2 =

200 mm and setting S1 = 236 mm and S2 + S3 = (57 + 250) mm the required doublet

magnification and total magnification of -1.30 and 16 respectively can be obtained.

This setup is mounted inside a lens tube which can be moved to view different areas

of the microchip via a XYZ translation stage. The lens tube directs the fluorescence into

a light-tight metal box. Inside this box, a motorised flipper mirror (allowing photons to

be detected from either of the two experimental setups) directs the fluorescence through

a bandpass filter. This filter is used to filter out any unwanted light which is not at

369 nm. A second flipper mirror is then used to direct the fluorescence to the electron-

multiplying charge-coupled device (EMCCD) or the photon multiplier tube (PMT). In

the experiments presented in this chapter only the EMCCD is used. However future

experiments will require the use of the PMT.

6.3.3 Optical setup

There are some important factors to take into consideration when designing the optical

setup for the operation of a surface trap. The laser beams need to be very close to

the surface of the microchip. To ensure scattering off the surface is minimised, a clean

Gaussian beam profile is required. Furthermore, the beams are required to move in a

direction perpendicular to the surface of the microchip for their alignment to coincide
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with the ion height. This needs to be achieved while maintaining their parallel alignment

to the surface to ensure a lattice of trapping sites can be addressed at the same time.

The optical setup used for the experiments in this chapter is shown in figure 6.8. Single

mode fibres are used to send the light required for ionisation (399 nm), cooling (369 nm)

and repumping (935 nm) from the laser setup described in chapter 3 to the optical setup

described here. The 369 and 399 are overlapped using a bandpass filter which transmits

light at 369 nm but reflects light at 399 nm. A dichroic mirror is then used to overlap

these UV beams with the 935 beam. A lens mounted to the 399 translation stage allows

to optimise the beam size and more importantly allows the beam to be directed to specific

trapping regions within the lattice that is being laser cooled. In order to focus all beams

to the trapping regions and be able to alter the beam height from the microchip while

maintaining its parallel alignment with the chip a final translation stage is required. A

schematic of the final translation stage is shown in figure 6.8. The final mirror labelled 2 is

attached to the green platform. The position of this platform and indeed the final mirror

can be adjusted using the micrometer labelled 1 and is used in the experiment to adjust

the beam height from the chip. Focusing the beams to the trapping regions is achieved

by mounting a lens to a platform shown in red which in turn is mounted on top of the

green platform. The position of the focal point of the beams can be changed using the

micrometer labelled 3 which adjusts the position of the red platform and the final lens.

Since the red platform is mounted on top of the green platform, with the top part of each

platform being moved with the relevant micrometer, adjusting the beam height does not

affect the position of the focal point and adjusting the position of the focal point does not

affect the beam height. A picture of the translation stage can be seen in figure 6.9.

Charge build up on the surface

Charge build up on the surface of any trap is an undesirable effect as it shifts the ion

away from the rf nil causing micromotion. Due to its time varying nature it also makes

the required level of micromotion compensation using static voltage electrodes very un-

predictable and time consuming.

The atomic oven alignment in our setup is non-optimal resulting in the possibility of

Yb being deposited on the gold coated surface of the microchip. Unfortunately Yb has a

work function of 2.6 eV and can therefore be charged up by 369 nm light, which has an

energy of 3.36 eV, if it is deposited on a dielectric. While gold is not a dielectric, it is very

likely that parts of the surface contain a thin dielectric layer due to imperfect cleaning of
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Figure 6.8: Schematic of the optical setup. Light at 369 nm, 399 nm and 935 nm is guided
from the main experimental setup shown in chapter 3 to the setup shown here using single
mode fibres. The beams are overlapped and focused to the trapping sites. Lenses mounted
on XYZ translation stages are used for careful and reproducible beam alignment at the
trapping sites. A beam positioning camera is used to monitor the position and profile of
the beams and is a useful tool to ensure that all beams are overlapped. Scattered photons
from the ion(s) is then collected using a imaging system. The red dashed box indicates the
position of the vacuum system. The numbering refers to the beam alignment procedure
discussed in section 6.3.3.
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Figure 6.9: Picture of the final translation stage used to align the beams parallel to the
surface of the microchip. The numbers correspond to the numbering in figure 6.8. The
red dashed line illustrates the beam path.

the microchip. Any exposure of the surface to 369 light should therefore be avoided. Any

required beam steering onto the surface of the microchip for alignment purposes should

be done at the lowest possible laser intensity and only if absolutely necessary.

To reduce the frequency at which 369 light has to be steered onto the surface of the

microchip for alignment purposes, a beam sampler is used to direct a small proportion

of the laser beams after the final lens onto a CCD array5. This allows to continuously

monitor the position of the beams as well as ensure that all beams are overlapped. To

ensure that the overlap and the profile of the beams on the CCD corresponds to the case

at the microchip, great care is taken to match the distance between the final lens all laser

beams pass through and the CCD array to the distance between the final lens and the

microchip. Since the CCD is extremely sensitive to the intensity of the beams a filter6

is added to the beam path. A specific point on the CCD now corresponds to where ions

can be trapped on the microchip (once calibrated to a trapped ion) and the beams can

simply be aligned to that point whenever any misalignment has taken place instead of

going through the beam alignment procedure explained below which requires beams to be

5Basler, Part number: acA1300-30gm
6Thorlabs, Part number: NE10A-A 350-700 nm
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steered onto the surface of the microchip.

Aligning beams to the microchip

Before the beams are aligned along the surface of the microchip, the following steps are

carried out:

• the beam intensities are reduced as much as possible. Prolonged exposure of the

beams to the chip surface should be avoided whenever possible.

• the beams are coarsely aligned through the hemisphere passing in between the mi-

crochip and the large window used to image the ions.

• the distance between the final lens and the trapping region is coarsely matched to

the focal length using the micrometer labelled as 3 in figure 6.8.

• the 369, 399 and 935 beams are overlapped with each other.

Once the 369, 399 and 935 beams are overlapped with each other the 399 and 935

beams are blocked using their respective iris. Using the final mirror labelled as 2 in figure

6.8, which is mounted to the green platform, the 369 beam is angled towards the surface

of the microchip. The scatter visible on the EMCCD is then used to ensure the beam is

addressing the correct region of polygons. The micrometer labelled as 1 which adjusts the

position of the final mirror labelled 2 and the horizontal adjustment of that same mirror

is then used to walk the 369 beam until it is parallel to the surface. To check if the beam

is parallel to the surface the micrometer labelled as 1 is adjusted until the beam starts

to clip the surface which manifests itself as scatter on the microchip which is visible on

the EMCCD. If the level of scatter is approximately constant across the microchip then

the beam is aligned parallel to the surface with an accuracy sufficient for the experiments

presented in this chapter. The beam height is now adjusted to coincide with the ion height

of 116µm using the micrometer labelled 1.

The irises of the 399 and 935 beam are now opened. Due to chromatic aberration it

is likely that the beams will not be properly overlapped any more after the 369 beam has

been aligned to the trapping regions. We therefore use the CCD setup shown above to

make small adjustments to the alignment of the 399 and 935 beam to ensure all beams

are of similar size and are overlapped. Once ions have been trapped, the pixel numbers

corresponding to the beam positions on the CCD array are noted down and used for future

beam alignment purposes.
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Resonator design parameters

Shield diameter (mm) 108±2
Shield height (mm) 120±2
Coil diameter (mm) 42±2

Coil wire diameter (mm) 5.0±0.1
Winding pitch (mm) 9±3

Number of turns 6.75± 0.25

Table 6.1: Table showing the design parameters of the resonator used to apply a oscillating
trapping field to the microchip.

6.3.4 Resonator

The oscillating trapping potential is applied to the microchip via a helical resonator, similar

to the resonator described in chapter 3. The design parameters differ to account for the

larger capacitance and resistance of the microchip. The parameters of the resonator for

a microchip with a capacitance of C = 26 ± 2 pF and a resistance of ≈ 10 Ω are shown

in table 6.3.4. A picture of the resonator can be seen in figure 6.10. Once attached to

the microchip the resonant frequency f0 was found to be 32.2 ± 0.2 MHz and the Q was

measured to be 160± 20.

Main coil

Shield
Antenna

Figure 6.10: Picture of the resonator used to apply a oscillating trapping potential to the
microchip.

6.4 Experimental results

In this section we present measurements which characterise the microchip and demon-

strate, for the first time, trapping of single ions in two dimensions using a lattice of

individual microfabricated rf ion traps.

In order to trap single Yb ions on the microchip the following general steps need to be

performed:
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• Align the ionisation, cooling and repumping beams to the required trapping sites

using the method described in section 6.3.3. Any required beam steering onto the

surface of the microchip for alignment purposes should be performed with the lowest

possible laser intensity to minimise charge build up.

• Block all laser beams.

• Apply the rf and static voltages to the electrodes.

• Wait approximately one hour to reduce any effects from charge build up on the

surface from aligning the laser beams.

• Apply the required laser power.

• Resistively heat the atomic oven to produce a neutral Yb flux at he trapping sites

until the required number of ions are trapped.

6.4.1 Secular frequency and ion lifetime measurements

To trap a single 174Yb+ ion above polygon A (see figure 6.3) an rf power P = 4 W at a

drive frequency ΩD/2π = 32.2 MHz is applied to the microchip via the helical coil resonator

described above. At this stage all other electrodes are held at ground. The pseudopotential

of the microchip 116µm above the surface (corresponding to the ion height) is shown in

figure 6.11. The 369, 399 and 935 laser beams with powers of approximately 200µW,

100µW and 4 mW respectively are focused down to a beam waist at the trapping region

of approximately 200µm. A picture of a single crystallised ion trapped above polygon

A is shown in figure 6.12. To measure the secular frequencies of the ion a 3 V peak-to-

peak oscillating voltage is applied to electrode Comp 1. When the oscillation frequency

corresponds to the frequency of the ion motion along one of the axis of motion, a ‘fuzzing

out’ like behaviour of the ion, or more precisely a reduction in fluorescence, can be observed

on the EMCCD. The ion secular frequencies along the principal axes were measured to

be (νx, νy, νz)/2π = (1.58, 1.47, 3.30) ± 0.01 MHz. These measurements, together with

numerical simulations, predict a trap depth of 0.42(2) eV, corresponding to a voltage V

applied to the microchip of 455(3) V. Using the relationship between the power applied

to a resonator of a given Q and the rf voltage applied to the microchip given by [92]

V = κ
√

2PQ, (6.5)
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Figure 6.11: Pseudopotential of the microchip 116µm above the surface, which corre-
sponds to the ion height, for a 174Yb+ ion, a drive frequency of ΩD/2π = 32.2 MHz and a
voltage of 455 V.

Figure 6.12: Picture of a single crystallised ion trapped above polygon A. The additional
scatter stems from 369 nm light hitting the edges of the polygon.
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κ is calculated to be 13.57. Determining κ allows us to calculate the voltage at the

microchip for any given power applied to the resonator.

By reducing the rf voltage to 125 V the minimum achievable secular frequency the ion

can easily be trapped at is measured to be νy/2π ≈ νz/2π ≈ 0.5 MHz.

As the number of ions in the lattice grows the ion lifetime becomes increasingly impor-

tant due to the disruptive nature on remaining ions in the lattice when trying to replace a

lost ion. The lifetime of an ion in our lattice with cooling light was measured to be ∼ 90

minutes. This was likely limited by background collisions and can be increased by aligning

light at 638 nm into the trapping region to depopulate the 2F7/2 state which population

can be transferred to from the 2D3/2 state via background collisions (see chapter 3). By

blocking the 369 laser light, which interrupts the cooling cycle of the ion, for an increasing

length of time, the lifetime of the ion without cooling was measured to be ≥ 5 minutes.

6.4.2 Two-dimensional ion lattice

Using this microchip allows trapping of a 2D lattice of ions. This requires the beam

profile of the laser beams to be altered to cover several rows of trapping regions. There

are several ways of achieving this. One possibility would be to align a beam along one

row, allow the beam to exit the vacuum system using a viewport on the opposite side from

where the beam entered the vacuum system and then reflect the beam back but displaced

to address the next row of trapping regions. This process could be repeated until the

required number of rows are addressed with laser light. This would be particularly useful

if the available beam intensity limits the beam size to only one row of trapping regions.

In our case sufficient beam powers are available to shape the beam profile into a sheet

of light to address three rows. The beam profiles are reshaped by replacing the final

lens before the beam enters the vacuum system with a cylindrical lens which has a focal

length of 150 mm. The 369, 399 and 935 beam sizes at the microchip are measured to

be ≈ 900µm by 50µm. The beam powers of the 369, 399 and 935 are measured to be

1.5 mW, 0.9 mW and 4 mW respectively.

A 2D lattice of ions is trapped by repeating the trapping procedure multiple times

until the lattice consists of the required number of ions. Due to the large trap depth this

process is greatly simplified as the ion loss rate during trapping is low. A picture of a

2D ion lattice consisting of 6 crystallised ions trapped in adjacent lattice sites (sites C,

D, E, F, G and H) is shown in figure 6.13. Nevertheless, due to the stochastic nature of

trapping ions and due to problems with loosing ions via background collisions this was
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very challenging. Furthermore, repeatedly running the atomic ovens made it increasingly

difficult to trap ions which is expected to be caused by coating of the electrodes. A larger

lattice of ions can in principle be trapped, however the viewable area is currently limited

by our imaging system. Furthermore, obtaining a larger lattice requires the oven to be

run for an even longer time or run more often making it increasingly likely to lose already

trapped ions due to collisions with background gas as well as increasing the possibility

of uncontrollably trapping multiple ions in one lattice site. A potential solution to this

problem is discussed later on in this chapter.

270.5 µm

Figure 6.13: A 2D lattice of ions trapped above lattice sites C, D, E, F, G and H (see
figure 6.3) with an ion-ion separation of 270.5µm.

From a quantum simulation point of view it has been suggested that when investigating
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Bose-Hubbard physics, such as superfluid-Mott insulator transitions, defects in the lattice

can result in site-dependant phonon tunneling rates [126]. Such defects can consist in the

form of a missing ion within the lattice of ions as shown in figure 6.13 where lattice site

B does not have an ion. A defect could also be trapping multiple ions in a single lattice

site which is part of a larger lattice of ions, which would allow for the simulation of spin

models with spin greater than 1/2 [45].

To test if defects could be created on this microchip we first ensure that the 399

ionisation beam is aligned to the appropriate lattice site of interest. By repeating the

trapping procedure multiple times it is then possible to load more than one crystalised ion

into a single lattice site. A picture of three ions can be seen in figure 6.14.

Figure 6.14: A lattice defect consisting of three ions in a single lattice site.

6.4.3 Ion shuttling between lattice sites

During the work with this 2D lattice of rf ion traps, several issues related to the long term

successful operation of these lattices became apparent. Over time it became more difficult

to trap crystallised ions due to micromotion. While micromotion of a single ion can be

compensated for using the large electrodes surrounding the lattice it was found that the

voltages required to do this for a given lattice site varied over time and made trapping and

compensating ions more challenging the more trapping attempts were performed with this

microchip. This could be caused by the atomic beam of neutral atoms required during

the loading process as this can deposit a layer of Yb on the electrodes of the microchip.

Scatter from the laser beams used for trapping can then ionise these atoms due to the

photoelectric effect which causes a charge to build up on the electrodes. Furthermore, due

to the stochastic nature of trapping ions, it can take many trapping attempts to realise

the ion lattice geometry one would want for their specific experiment. Not only does this
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increase coating of the electrodes, the time required for loading the required geometry can

lead to ions which had already been trapped being removed from the trapping potential

via background collisions.

It is therefore advantageous to find a way to efficiently trap the required lattice geom-

etry of ions without degrading the performance of the 2D lattice. One way to achieve this

would be to trap ions in a specific zone on the microchip followed by shuttling of the ions

to their desired positions.

To demonstrate the feasibility of this scheme a single ion is shuttled from lattice site

E (refer to figure 6.3) to D and back to E again. This is illustrated in figure 6.15. Here, a

single ion is trapped and laser cooled in lattice site E during step 1. During step 2 the rf

voltage is reduced to minimise the rf barrier between the individual sites while a series of

voltage profiles are then applied to the static voltage electrodes which transport the ion

to lattice site D. Following another period of laser cooling of the ion in site D during step

3, similar voltage profiles are used to shuttle the ion back to site E. The only difference in

the voltage profile is a reverse of the voltage on comp 3 and 6. The ion is then being laser

cooled in site E during step 5.

While the microchip presented in this chapter does not allow shuttling protocols to be

applied to individual lattice sites, the addition of local electrodes to each trapping site will

address this in future microchip designs. This will also allow for site specific micromotion

compensation which will significantly simplify trapping large lattices of ions and shuttling

ions between different lattice sites.

6.5 Conclusion

The work presented in this chapter has demonstrated a fabrication process which signifi-

cantly increases the voltage that can be applied to microfabricated devices. This advance

was then used to fabricate a 2D lattice of rf ion traps on a microchip. We characterised the

microchip by trapping a 2D lattice of ions, by measuring ion lifetimes and by measuring

secular frequencies which are used to calculate the trap depth. The large trap depth that

can be achieved due to the high voltages that can be applied to the microchip significantly

simplified the successful demonstration of the first 2D lattice of 174Yb+ ions using rf ion

traps on a microchip. This result offers many potential uses in experiments involving 2D

force measurements, B-field and E-field sensing and with further advances could offer a

platform for cluster state generation and quantum simulation.

During the operation of the microchip the difficulty of loading and maintaining a 2D
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Figure 6.15: In step 1 a single ion is laser cooled in site E. A voltage profile shown in step
2 is used to shuttle the ion to site D. The ion is then being laser cooled in site D during
step 3. A similar voltage profile but with the voltages on comp 3 and 6 reversed is then
applied during step 4 to shuttle the ion back to site E. Finally, the ion is laser cooled in
site E during step 5.
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lattice of ions became apparent which stems from the disruptive effect on already trapped

ions and on the surface of the microchip when trapping ions. We have therefore also shown

the possibility of performing rudimentary shuttling operations between neighbouring lat-

tice sites which could be part of a scheme to load large ion lattices.

In quantum simulations the interaction between ions located in separate potential

wells is mediated via the Coulomb force. This dipole-dipole interaction between two ions

separated by a distance A is given by [140,141]

Ĥc = −~Ωex

2
(a1a

†
2 + a†1a2) (6.6)

where ai and a†i are the harmonic oscillator creation and annihilation operators of ion i

and the coupling strength between the motional states is given by [140,141]

Ωex =
q1q2

2πε0
√
m1m2ν1ν2A3

(6.7)

where qi and mi is the charge and the mass and νi the secular frequency of the correspond-

ing ion. We can see from equation 6.7 that Ωex ∝ 1/A3 indicating that the ions should

be placed as close together as possible. For 171Yb+ ions trapped on the microchip pre-

sented in this chapter with an ion-ion separation of A = 270.5µm, the coupling strength

Ωex = 2π× 4 Hz for a secular frequency of ν/2π = 0.5 MHz. This coupling strength is not

sufficient for quantum simulations and is considerably lower than that achieved between

individual wells on linear surface traps [140,141]. Since we now have a scalable approach

to produce 2D lattices of rf ion traps on a microchip the next major step towards the

successful implementation of a 2D quantum simulation is the fabrication and operation of

a microchip where the ion-ion separation is small enough to observe a coupling between

the ions.

To achieve this goal it is desirable to answer the question of what would be the opti-

mum geometry of an ion trap lattice which maximises the ratio of an effective spin-spin

interaction rate between neighbouring ions to the decoherence rate from effects such as

ion heating. The answer to this question along with an explanation of how an effective

spin-spin coupling between ions can be achieved will be discussed in the next chapter.

At the end of that chapter, in section 7.8, I will come back to the lattice presented in

this chapter and illustrate how simple modifications to the microchip design shown in

this chapter should allow interaction rates suitable for the implementation of 2D quantum

simulations to be achieved.
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Chapter 7

Optimisation of two-dimensional

ion trap arrays for quantum

simulation

7.1 Introduction

It was demonstrated in the previous chapter that it is indeed possible to create a two-

dimensional (2D) lattice of individually trapped ions on a microchip. Since this is a

microchip it can be scaled to many more ions. On the route to the successful implementa-

tion of 2D quantum simulations with ions, the challenge now lies in developing a optimal

2D lattice geometry which maximises the coupling rate between neighbouring ions while

minimising decoherence detrimental to the experimental realisation of quantum simula-

tions. We thereby ensure that the highest possible quantum simulation fidelity can be

achieved using the most efficient experimental setup. Determining this optimal geome-

try is the main focus of our work presented in [55]. This paper is shown in this chapter

however small alterations have been made where necessary.

In order to create this optimal 2D lattice of trapped ions a repeating 2D surface geome-

try is required which takes the coupling rate as well as sources of decoherence into account.

Decoherence due to anomalous heating is a major issue for large scale quantum simula-

tions. As this heating scales approximately as r−4 [91], where r is the ion height above the

trap surface, it is advantageous for ions to be trapped high above the surface. However,

when individual surface microtraps are placed close together (increasing the coupling rate

between neighbouring ions), so that their separation is less than around twice the ion

height, the individual electric fields start to overlap and distort the resulting trapping
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fields [131]. In extreme cases this can lead to the traps combining to produce a singular

trapping zone. To compensate for this the electrode structure has to be altered when op-

erating within this regime [131]. Schmied et al. [131] have investigated surface-electrode

geometries and developed an algorithm that optimises geometries to maximise the electric

field curvatures of individual trapping sites for arbitrary ion heights and separations. In-

dividual trapping sites shown in [131,142] were optimised using this algorithm leading to

non-intuitive electrode patterns which can contain many isolated radio-frequency (rf) and

static voltage electrodes. Another proposal [130] which works outside this regime uses rf

electrodes with controllable rf voltages to lower trap frequencies and decrease ion-ion dis-

tances and, therefore, increase coupling rates. However, this requires the use of multiple

independent rf electrodes and individually controllable rf voltages posing an additional

experimental complication.

In this chapter the focus will lie on the optimisation process for ion trap topologies

based on a single island of rf electrode, reducing the requirement for buried rf wires

and multiple rf electrodes. The development of an optimum lattice geometry where the

ratio of coupling rate to the decoherence rate due to ion heating is maximised and made

homogeneous across the lattice is achieved by minimising the secular frequencies of the

trapping sites. This is done whilst, simultaneously, keeping the trapping depths above

a minimum trap depth (for illustrative purposes 0.1 eV is used) to allow for successful

operation of the proposed 2D lattice designs. The optimal lattice topologies considered

in this work are for hexagonal, square and centred rectangular lattices. An investigation

is also carried out on how optimal geometries depend on the overall lattice size. This is

followed by a discussion of the choice of and scaling for experimental parameters such as

rf voltage, drive frequency, ion mass and electric field noise density.

7.2 Ion-ion interactions and Lattice Geometry

7.2.1 Ion-ion interactions

The equilibrium position of the ions is determined by the total potential dominated

by forces such as the trapping force, FT = −mxν2
i , and the coulomb force, FC =

−e2/(4πε0A
2), between the individual ions. Laser beams or magnetic field gradients can

be used to impart an additional force to the ions which displace the ion(s) depending on its

internal state. The ratio of the change in the Coulomb force to the change in the restoring

force due to this displacement is given by [45]
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β =
e2

2πε0mν2A3
=

Ωex

ν
, (7.1)

where A is the ion-ion spacing, ν is the trap’s secular frequency, m is the mass of the

ion and Ωex is the coupling strength of the coulomb interaction defined in the previous

chapter. There are two regimes to consider. When β > 1, the change in the Coulomb

force, δFC , due to the displacement of an ion is dominant over the change in the restoring

force, δFT . This results in an interaction over a large number of trapping sites. When

β < 1, the opposite is true resulting in an interaction which decays rapidly across the

array and generally only acts on nearest neighbour ions. Trapping ions in a 2D lattice

of microtraps makes it possible to satisfy the condition that β < 1 allowing systems with

short range interactions to be simulated. In the case where β < 1 the interaction strength,

or state dependant coupling rate, can be given as [45]

J =
βF 2

~mν2
(7.2)

where F is the magnitude of the state dependant force applied to each ion. We will

consider how this force is applied later in this chapter. An illustration of this interacting

system is shown in figure 7.1.

Figure 7.1: Pictorial diagram of three ions in adjacent traps. The ions feel a Coulomb
force indicated by the springs between each ion and can be placed in two different states
indicated by their colour. (a) Pictorial diagram showing the case with no state dependent
force present. (b) Pictorial diagram showing how the system reacts to the presence of a
state dependent force, F . Here the ions feel a change in the Coulomb force, δFC , due to
the displacement of the ions and a change in the restoring force, δFT .

It is important to consider sources of decoherence when designing a 2D ion trap array.

The internal state of an ion can remain coherent for 10’s of seconds [143, 144]. However,

motional decoherence due to anomalous heating of ions will be an important factor during
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quantum operations within small scale ion traps as the implementation of spin dependant

couplings involves the use of motional states of the ion. The coupling, J , will be observable

if the coupling time, TJ = 1/J , is less than the motional decoherence time in the system

and, therefore, the ratio of these two times is an important parameter and is given by

Ksim =
Tṅ
TJ

(7.3)

where [91],

Tṅ =
4mν~
e2SE(ν)

. (7.4)

Here SE(ν) is the electric field noise density [42, 91]. In order for an interaction to occur

on faster time-scales than the decoherence in the system, we require Ksim > 1 and it is

the aim of the optimisation process presented in this chapter to optimise the geometry in

order to maximise this parameter. To acquire an understanding of how a geometry can

affect Ksim it is necessary to determine its form with respect to the geometry variables.

The form of TJ can be found by substituting equation 7.1 into 7.2 and is given by

TJ =
2πε0m

2ν4A3~
e2F 2

. (7.5)

The Ksim parameter can then be expressed as

Ksim =
2F 2

SE(ν)πε0mν3A3
. (7.6)

The secular frequency, ν, of a trapped ion [145] can be expressed as a function of α defined

as

α =
V

Ω
(7.7)

where V is the amplitude of the rf voltage applied to the trap and Ω is 2π times the drive

frequency in Hz, yielding,

ν =
eV ηgeo√
2mΩr2

=
eαηgeo√

2mr2
(7.8)

where r is the height of an ion above the surface, e is the charge of an electron and ηgeo is

an efficiency factor which can range between zero and one depending on the form of the

geometry [145].

The secular frequency given in equation 7.8 can then be used along with SE(ν) =
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Ξr−4ν−1, where Ξ is a coefficient that can be experimentally obtained and depends on

the temperature and surface of the trap electrodes (see [42] for a listing) to re-express

equation 7.6 in the form

Ksim =
4F 2mr8

Ξα2η2
geoπε0A

3
. (7.9)

To further understand how the geometry effects the Ksim value we will now introduce the

parameters of a lattice geometry and relate them to equation 7.9.

7.2.2 Two-dimensional ion trap lattice geometry

A lattice is a regular tiling of a space by a primitive unit cell. In total there exist five types

of cell which can be used to form a 2D lattice: centred rectangular, hexagonal and square

as shown in figure 7.2, and rectangular and oblique [146]. The rectangular and oblique

structures are not considered in this work due to their non-uniform ion-ion distances.

Previous works [129, 130] concentrate on lattices created from square unit cells and the

previous chapter presented the operation of a hexagonal lattices [138].

Figure 7.2 shows the polygon-polygon separation which is equal to the ion-ion distance,

A, in equation 7.9. The polygon radius, R, along with the separation, will determine the

height above the surface at which the ion is trapped, r, with larger polygon radii yielding

higher ion heights. Another variable to be considered is the gap between the outer polygon

in the array to the edge of the rf electrode, g. This can be used to alter the homogeneity

of the individual trapping sites within the array. In general, a non-homogeneous system

results in spin dependant coupling rates which are a function of the lattice site, posing a

significant problem for the scalability of such an array [147].

Figure 7.2: Diagrams showing the polygon radii R, the separation between the polygon
centrers, A, and the distance between the last polygon and the edge of the rf electrode
(shown in grey), g. (a) Diagram showing a three by four ion trap surface array consisting of
six sided polygons arranged with square unit cells. (b) Diagram showing a similar surface
array arranged into hexagonal unit cells. (c) Diagram showing a surface array arranged
into centred rectangular unit cells. The unit cells are indicated by dashed lines.
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7.3 Simulation of lattices

To determine the electric field produced by a two-dimensional array a method based on

the Biot-Savart like law described by Oliveira and Miranda [5] was used. This method

calculates the electric field produced by an arbitrarily shaped two-dimensional electrode

which is held at a potential V whilst the rest of the plane is held at a potential of zero.

The electric field observed at a given point, X, in space due to such an area held at a

potential and bounded by a path C is given by [5]

E(X) =
V

2π

∮
C

(x− x′)× ds
|x− x′|3

(7.10)

where the curve, C, bounds the electrode and x′ and x are vectors that locate the source

point and field point respectively. By calculating the electric field in this manner an

assumption is made that there is no gap between the areas held at the potential, V , and

the areas held at zero. In microfabricated surface traps, gaps between the electrodes

are required and typically range from 3 µm - 10 µm [42]. If, however, these gaps are

small in comparison to the electrode structures they will not alter the trapping fields

significantly [4, 43, 142]. The electric fields of individual electrodes can then be combined

to determine potential nils and, therefore, trapping positions in the 2D trap lattice, using

the numerical Gauss-Newton algorithm. The secular frequencies, trap depths and ion

heights at these positions can then be determined.

To calculate the error of the numerical integration, Bjoern Lekitsch undertook a study

in which he compared simulations of five wire symmetric surface trap geometries with

different central static electrode and rf rail widths in the gapless plane approximation

using the method of Oliveira and Miranda [5] to results obtained with analytical equations

described by House [4]. In all the geometries simulated the two rf rails were of equal width.

Similarly to House, the outer static voltage electrodes were approximated as an infinitely

long ground plane although the length of the inner rails were set to 3000 µm instead of

infinite. A selection of the simulation results are shown in table 7.1.

In these results a general error for the ion heights and secular frequencies of less than

2% and 3% respectively was found, which leads to a maximum error in Ksim of 10%. For

the following simulations it is therefore assumed that the maximum Ksim error is 10%.

Additionally, numerical simulations of the geometries were carried out using methods

described in [148], which indicate similar errors and trends for the ion height and secular

frequency as the results obtained with the Biot-Savart like method.
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Electrode parameters Simulations House equations

rf width central static rf Volt. rf freq. r ν r ν
[µm] electrode width [V] [MHz] [µm] [MHz] [µm] [MHz]

[µm]

100 50 250 75 55.8 6.86 55.9 6.87

100 50 500 60 55.8 4.29 55.9 4.29

200 100 250 30 110.1 2.17 111.8 2.20

200 100 500 40 110.1 3.26 111.8 3.30

500 150 250 20 165.4 1.48 167.7 1.52

500 150 500 25 165.4 2.37 167.7 2.43

Table 7.1: Table showing the secular frequency, ν, and ion height, r, for different five wire
surface trap geometries as calculated by the analytical method in House [4] and simulated
by the method used in this work based on the Biot-Savart like law [5].

7.4 Lattice geometry optimisation

In this section we show how the parameters of the lattice geometry R, A, g and n (as

discussed in section 7.2.2) can be optimised to achieve the highest possible Ksim value

across the lattice for a given set of experimental parameters. To do this, we first show

how to maximise the homogeneity of individual site properties over the lattice by varying

the distance between the outer polygon in the lattice to the edge of the rf electrode, g,

and show how this scales with the lattice size. These homogeneous lattices are then used

to calculate the optimum number of sides, n, a polygon within the lat sticehould possess

in order to maximise Ksim. A method for the optimisation of the polygon radii, R, and

separation, A, of a lattice is then described along with a discussion on how these vary with

increased lattice size and ion mass.

7.4.1 Increasing the homogeneity of Ksim across the lattice

A homogenous Ksim accross the whole lattice is achieved by ensuring that the secular

frequencies, ion height and trap depth is homogenous across all the individual lattice

sites. As shown in figure 7.3, Ksim of the trapping sites in a lattice of length L can be

altered to approach a common value if the distance, g, between the edge of the outer

polygon and the edge of the rf electrode containing the polygon lattice is adjusted. As the

value of g is increased, the Ksim value of the sites towards the centre drops and the outer

sites Ksim value rises, resulting in the properties converging towards each other. If the

distance g is increased further beyond the point at which maximum homogeneity occurs

the outer site properties drift away from those of the central sites and, therefore, decrease

the homogeneity of the array.
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In order to simplify the optimisation process in this chapter it is desirable to provide a

value of g which is universal for all lattice sizes. The value of g is therefore given in units

of lattice side length, L. The lattice side length is determined by the polygon separation,

A, and radius, R, and can be expressed as

L = (M − 1)A+ 2R, (7.11)

where M is the number of lattice sites along one side of an array.

Figure 7.3: Diagram showing the effect of varying the distance g on the scaled Ksim value
of the individual trapping sites. The Ksim values shown are scaled with that of the central
site. (a) Representation of a 5 by 5 square type lattice array indicating the axis labelling.
(b) Slice across the array (indicated by the dotted line in (a)) for g/L values of 0.1, 0.2,
0.5 and 1.

In order to quantify the arrays homogeneity, H is defined as the average deviation of Ksim

of each lattice site from the Ksim of the central site and is given by

H =
1

N

N∑
n=1

∣∣∣∣1− Ksimn

Ksimcentre

∣∣∣∣ (7.12)

where N is the total number of trapping sites in the lattice.

Figure 7.4 shows H for a five by five square type unit cell lattice for 0 < g/L < 1.5.

The maximum homogeneity, and thus the optimum g/L, is found when H is minimised.

The error associated with H is given by

σH =

√
N(σKsim)2 +N(σKsimcentre)

2

N
(7.13)

where the error on all Ksim values is 10%, as shown in section 7.3. This yields an overall

fractional error on H of 0.13/
√
N .

Now that we have determined how to optimise g/L for a given number of lattice sites
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Figure 7.4: Graph showing the average deviation of the Ksim of each lattice site from the
Ksim of the central site, H, for a five by five square type unit cell lattice for 0 < g/L < 1.5.
The error on H is given by 0.13√

N
H and the error of the minimum of H is determined by

observing the spread of g/L which agrees, within error, with the minimum position.

Lattice Type a b B

Square 0.20±0.01 5.21±0.38 0.74±0.03

Hexagonal 0.39±0.08 3.76±1.40 0.54±0.14

Centre Rectangular 0.31±0.04 7.84±2.43 0.76±0.11

Table 7.2: Table showing a and b values for the fits which describe g/L as a function of
the number of sites in the lattice.

N we can find out how the optimum g/L scales with a change in N . Figure 7.5 shows the

optimum g/L for hexagonal, central rectangular and square unit cell lattices of different

sizes. The curves are found to be described by an equation of the form g/L = a+ bN−B

with a, b and B values for different lattice types shown in table 7.2. For large lattices, the

optimum g/L is found to become independent of N , as trapping sites close to the edge of

the lattice are influenced only by the electric field created by that edge. In small lattices,

however, the optimum g/L increases as the effect of the electric field from the opposite

edge of the lattice increases.

7.4.2 Optimising the number of polygon sides

Let each site be a polygon of n sides. We now investigate the optimum number of polygon

sides, n, providing the highest Ksim value on the central trapping site.

To ensure the results are universal for all lattice geometries, g/L is set to the value

which maximises the homogeneity of each lattice, and all other parameters are scaled by
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Figure 7.5: Graph showing the optimum g/L as a function of the total number of trapping
sites, N, for square lattices (square markers), hexagonal lattices (circular markers) and
centre rectangular lattices (diamond markers). The curves are given by g/L = a+ bN−B

with a, b and B values for different lattice types shown in table 7.2.

normalising Ksim to that of an identical geometry with polygons of 100 sides. This also

allows comparison between the different types of lattices.

Figure 7.6: Graph showing the relationship between the number of polygon sides and
Ksim for square (square markers), hexagonal (circular markers) and central rectangular
(diamond markers) unit cell lattices. The dashed lines show the asymptotes of 1 and 0.95
of the scaled Ksim value.

Figure 7.6 shows the scaled Ksim for the central site as the number of polygon sides is

varied. As the number of sides is increased the value of Ksim approaches an asymptote,

shown by the upper dashed line. This indicates that the best geometry will be made from

circular electrodes. However, simulation times grow with increasing polygon side number
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and so it is advantageous to reduce this number to a minimum. It is shown that ≈95% of

the maximum achievable Ksim (indicated by the lower dashed line) can be achieved with

around ≥25-30 sides in the polygons.

7.4.3 Optimisation method for polygon separation and radius

In this section we now maximise Ksim of any arbitrary geometry. We can then go on to

determine optimum geometries and show how they scale and, ultimately, are determined

by α = V/Ω. The value of g which was found to give the maximum Ksim homogeneity

across the lattice in section 7.4.1 will be used here. Furthermore, the number of sides

for each polygon is set to 25 as this was found to provide a good approximation to the

optimum circular geometry while keeping the simulation time at a minimum, as shown in

section 7.4.2.

When considering any fixed arbitrary geometry, equation 7.9 shows that Ksim can be

maximised by reducing the value of α. However, the minimum achievable α is limited by

the lowest usable trap depth, as the trap depth is proportional to α2 and is given by

TD =
ζe2α2

π2m
(7.14)

where e is the charge of an ion and ζ is a geometrical factor which is a function of A and

R [4].

We can now focus on finding optimal geometries which we define as geometries, which

yield the highest value of Ksim for a given value of α. This will be carried out by fixing

the trap depth at a reasonable minimum value (we use 0.1 eV for illustration purposes)

which, as discussed above, provides the maximum Ksim for a given geometry, and then

investigate the dependence of α on the polygon radius, separation and ion height. To

determine these dependencies a Ksim contour plot is made by calculating Ksim over a

range of polygon separation, A, and radius, R, with a resolution of 1µm. The range of

polygon radius and separation used should not create traps with inter-well barriers of less

than the minimum trap depth. To ensure this, the polygon radius was kept to less than a

third of the polygon separation. For each combination of polygon separation and radius,

a value of α which yields the minimum trap depth is found and, thus, maximises the Ksim

of the particular geometry. By following this method one can obtain the α required to

achieve the minimum trap depth, the ion height, r, and Ksim for each geometry. From

the resulting data the polygon separation and radius which yields the highest Ksim for a

given α (the optimum geometry) can then be found. A graphical example of such data is



130

shown in figure 7.7.

Figure 7.7: Example graph showing how the Ksim (absolute values indicated by numbers
on contour lines) varies as a function of polygon radius and separation. The graph also
indicates that the value of α increases as the radius and separation are increased. This
data was obtained using the method described in section 7.4.3 with a polygon separation
and radius resolution of 1 µm and a minimum trap depth of 0.1 eV. The value of α in
the figure ranges from zero to ≈ 1.5 VMHz−1. The impossible region describes geometries
where individual trapping sites start to combine to a single one and so posses a polygon
radius, R, greater than or equal to a third of the polygon separation, A.

It can be seen from this method and the example data in figure 7.7 that the highest

Ksim will be achieved with an infinite value of α, R and A. However, other effects may

limit the magnitude of α. In order to determine a limit on α it is, therefore, necessary

to describe the various lattice and trapping field dependant properties (such as secular

frequency, ion height and Ksim) in terms of α.

In order to do this we first need to plot the optimum parameters (polygon radius,

separation and ion height) as a function of α, as shown in figures 7.8(a), (b) and (c) which

allows us to determine linear relationships of the form

r = krα (7.15)

A = kAα (7.16)

and

R = kRα (7.17)

for the optimal geometries. The values of kr, kA and kR are dependant on the number of

trapping sites in a lattice, as shown in figures 7.9(a),(b) and (c) respectively, for lattices

made from square type unit cells of polygons.
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Figure 7.8: Graphs showing the ion height (a), polygon separation (b) and polygon radius
(c) of an optimised lattice as a function of the ratio α. In all cases the plots are shown
using α = V/Ω where Ω is 2π times the drive frequency in Hz, and for lattices made from
square unit cells of polygons with 81 sites and for 171Yb+ ions.

Figure 7.9: Graphs showing the value of kr (a), kA (b) and kR (c) as a function of the
number of trapping sites, N . In all cases the plots are shown using α = V/Ω where Ω
is 2π times the drive frequency in Hz and are for arrays made from square unit cells of
polygons using 171Yb+ ions.
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It is important to stress that equations 7.15, 7.16 and 7.17 are only valid in the case

of optimal geometries, which depend solely on α. With this in mind, it is now possible to

re-express the secular frequency given in equation 7.8 to describe the secular frequency of

an ion trapped on an optimised geometry by

ν =
eηgeo√
2k2

rmα
. (7.18)

In the same manner Ksim given in equation 7.9 can also be re-expressed to describe

that given by an optimised geometry and now reads as

Ksim =
4F 2mk8

rα
3

Ξη2
geoπε0k

3
A

. (7.19)

Equation 7.19 shows that, for optimal geometries, Ksim is proportional to α3 (as the value

of α determines the electrode dimensions to be used) and so, to produce an array with a

high Ksim for a given number of lattice sites (as kr and kA are a function of the number

of trapping sites), a large value for α is preferable. Equations 7.16 and 7.17 show that

the optimum geometry size is proportional to α. It, therefore, follows that larger lattice

geometries will produce larger values of Ksim. This effect is illustrated in figure 7.7 which

shows Ksim as a function of polygon radius and separation. For optimised lattices, the

optimal radius and separation will fall on a line described by A = (kA/kR)R, with higher

values of α required for higher values of separation and radius as shown in equations 7.16

and 7.17 respectively.

The heating rate in ion traps has a strong dependency on the ion height (∝ 1/r4) [91].

A large Ksim is achieved with large values of α, resulting in large ion heights, as shown in

equation 7.15. It, therefore, can be concluded that a different scaling of the heating rate

(for example in cryogenic systems) does not change the optimisation process and optimal

geometries.

It has now been shown that the optimal geometry for a given minimum trap depth

and ion mass is determined solely by the value of α and does not depend on the scaling

of the heating rate.

Optimal geometries and their Ksim values (in units of 1/α3) can now be found by

creating contour plots (such as shown in figure 7.7) for different numbers of lattice sites,

N , lattice unit cell type and ion mass, m. The error on the Ksim value, calculated from

equation 7.9, was determined to be ±10% by comparing the secular frequency and ion

heights obtained using the lattice geometry optimisation program with those predicted by
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House’s analytical solutions for a five wire surface trap geometry [4].

7.5 Optimisation results and analysis

In this section, optimum polygon separations, A, and radii, R, are obtained using the

method outlined above for square, hexagonal and centre rectangular unit cell type lattices.

These are shown as a function of lattice size and ion mass with the experimental constraint,

α, scaled out. Throughout this optimisation example, 171Yb+ ions will be used unless

otherwise stated.

Figure 7.10 shows how the optimum scaled radius, R/α, and separation, A/α, of

polygons vary as a function of lattice size for 171Yb+ ions. As explained in the previous

section we have assumed a minimum trap depth of 0.1 eV for illustrative purposes. It

can be seen from this figure that as the size of the lattice increases, the optimum polygon

radius and separation asymptotically tend towards values representative of an infinitely

large lattice. This is expected as once a lattice becomes large enough, the addition of

extra lattice sites will represent only a small change in the overall electrode geometry and,

therefore, produce a small change in the electric field produced by the geometry. When

the lattice is small however, additional lattice sites will represent a larger change in the

geometry and will, therefore, cause a larger change in the electric field. Figure 7.11 shows

how the scaled Ksim/(F 2α3) scales as a function of the number of lattice sites, N , using

scaled optimum polygon radii, R/α, and separations, A/α. The state dependant force

F will be considered in more detail in section 7.6.2. Due to the dependence of Ksim on

the geometry, the relationship between Ksim/(F2α3) and the number of sites is expected

to be of similar form to that for optimal polygon radii, R/α, and separation, A/α, with

the maximum Ksim/(F2α3) asymptotically tending towards a value representative of an

infinitely large lattice.

Using the data shown in figures 7.10(a), 7.10(b) and 7.11 the optimum radii and

separation of the polygons were found to follow a c+ dN−E and f + gN−G relationship,

respectively, while the maximum Ksim/(F2α3) follows a k+ lN−Q trend. The values of c,

d, E, f , g, G k, l, and Q are shown in tables 7.3, 7.4 and 7.5.

Using the data shown in figures 7.12(a) and 7.12(b) the optimum radii and separation

of the polygons as a function of the ion mass was found to follow a o+pm−0.5 and q+sm−0.5

relationship, respectively, with values of o, p, q and s shown in tables 7.6 and 7.7. Figure

7.13 shows how the optimum Ksim/(F2α3) varies as a function of the mass of the trapped

ion, m, for 220 (square unit cells) and 225 (hexagonal and centred rectangular unit cells)
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Lattice Type c [(µm MHz)/V ] d [(µm MHz)/V ] E

Square -5±1 101±7 0.29±0.03

Hexagonal 1±3 85±6 0.40±0.08

Centre Rectangular -2±2 68±6 0.34±0.05

Table 7.3: Table showing c, d and E values for the fits which describe R/α as a function
of the number of sites in the lattice.

Lattice Type f [(µm MHz)/V ] g [(µm MHz)/V ] G

Square -136±7 457±5 0.15±0.01

Hexagonal 13±24 547±288 0.48±0.21

Centre Rectangular 40±15 831±282 0.57±0.13

Table 7.4: Table showing f and g and G values for the fits which describe A/α as a
function of the number of sites in the lattice.

Lattice Type k [ MHz3/(N2V 3)] l [ MHz3/(N2V 3)] Q

Square -(2.69±2.97)×1034 (3.09±1.31)×1036 (0.61±0.13)

Hexagonal (0.52±6.00)×1033 (3.51±1.54)×1036 (0.86±0.12)

Centre Rectangular -(3.09±6.12)×1035 (5.23±5.11)×1037 (0.65±0.26)

Table 7.5: Table showing k, l and Q values for the fits which describe Ksim/(F2α3) as a
function of the number of sites in the lattice.

Figure 7.10: (a) Graph showing how the optimum polygon radius, R/α, varies as a function
of the number of sites. (b) Graph showing how the optimum polygon separation, A/α,
varies as a function of the number of sites. For both (a) and (b) the results shown are for
square (square markers), hexagonal (circular markers) and centre rectangular (diamond
markers) unit cell lattices with 171Yb+ ions.
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Figure 7.11: Graph showing how the optimum Ksim/(F2α3) varies as a function of the
number of sites for optimum lattices with 171Yb+ ions. This is shown for square (square
markers), hexagonal (circular markers) and centre rectangular (diamond markers) unit
cell lattices. Here F is a state dependant force applied to the ions in the lattice.

Lattice Type o [(µm MHz)/V ] p [(µm MHz)/V amu]

Square -56±6 138±10

Hexagonal -34±7 88±11

Centre Rectangular -48±3 110±6

Table 7.6: Table showing o and p values for the fits which describe R/α as a function of
ion mass.

trapping sites. It is found that the optimum Ksim/(F2α3) scales as u+ vm−0.5, with the

values of u and v shown in table 7.8.

We note, as shown in figure 7.12, that as the mass of the ion is increased, the polygon

radii and separation will have to be decreased in order to provide trapping regions with

a depth of above 0.1 eV for a given α for 220 (square unit cells) and 225 (hexagonal and

centred rectangular unit cells) trapping sites. It is also clear to see that ions with lighter

masses will provide higher Ksim/(F
2α3) values but will require larger lattice geometries

compared to heavier ions.

Lattice Type q [(µm MHz)/V ] s [(µm MHz)/V amu]

Square -176±47 489±65

Hexagonal -311±15 678±22

Centre Rectangular -402±28 911±51

Table 7.7: Table showing q and s values for the fits which describe A/α as a function of
ion mass.
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Figure 7.12: (a) Graph showing how the optimum polygon radius varies as a function of
the ion mass for 220 (square type unit cells) and 225 (hexagonal and centre rectangular
type unit cells) trapping sites. (b) Graph showing how the optimum polygon separation
varies as a function of the ion mass. In both graphs this is shown for square (square
markers), hexagonal (circular markers) and centre rectangular (diamond markers) unit
cell lattices and the polygon radii and separations are scaled with α.

Figure 7.13: Graph showing how the optimum Ksim/(F2α3) varies as a function of the
ion mass for 220 (square type unit cells (circular markers)) and 225 (hexagonal and centre
rectangular type unit cells (square markers and diamond markers respectively)) trapping
sites.

Lattice Type u [ MHz3/(N2V 3)] v [ MHz3/(N2V 3amu)]

Square -(5.25±3.00)×1035 (7.96±1.72)×1036

Hexagonal -(1.25±0.60)×1035 (5.08±1.29)×1036

Centre Rectangular -(2.56±1.28)×1034 (3.27±0.86)×1036

Table 7.8: Table showing u and v values for the fits which describe Ksim/(F2α3) as a
function of the ion mass.
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7.6 Constraints on α

In this section the considerations which could limit the value of α are discussed. To do

this it will be shown how the power dissipation in a chip trap, the quantum simulation

error and the interaction time vary as a function of α. This is important as from this a

value of α can be determined for a given experiment, which will be shown in section 7.7.

7.6.1 Power dissipation in optimised arrays

The power dissipation of an ion trap chip is determined by the voltage, V , frequency, Ω,

as well as the capacitance and resistance of the lattice trap itself. This may, for a given

capacitance and resistance, affect the value of α (the ratio between the rf voltage and

drive frequency) which can be used. As the value of α is used to determine the optimum

polygon radii and separation of a geometry, as shown in figure 7.10, for a given number

of sites, N , and stability parameter, q, it is important to know how the power dissipation

varies as a function of α.

The power dissipation of a chip is approximately given by [42]

PD ≈
1

2
V 2C2RΩ2, (7.20)

where C and R are the capacitance and resistance of the chip. It is not possible to apply

any combination of V and Ω to a geometry as they must be chosen so that the ion is

stably trapped which is determined by the stability parameter [129,145]

q =
2eηgeoV

mr2Ω2
=

2eηgeoα

mr2Ω
(7.21)

and should be between zero and 0.9, where e is the charge of an electron.

The ion height, r, of ions trapped in the optimised lattices shown in this work have

been found to be linearly proportional to α. This relationship is shown in figure 7.8 (a)

with the constant of proportionality, kr found to be ≈ 60.7 mV−1s−1 for the example case

of a square type lattice with 81 sites using 171Yb+ ions. Considering one particular ion

height, r0, substituting for r0 = krα0 and rearranging equation 7.21 for Ω yields

Ω0 =
2eηgeo
mk2

rα0q
. (7.22)

This equation can be re-expressed for V0 by noting that V0 = Ω0α0 and is given by
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V0 =
2eηgeo
mk2

rq
. (7.23)

Equations 7.22 and 7.23 show that, for a given ion mass, m, ion height, r0, stability

parameter, q, and number of trapping sites in the array (as kr is a function of the number

of trapping sites), there is one unique voltage, V0, and unique parameter α0. This means

that a given ion height (and, therefore, a chosen value of α) determines both the voltage

and drive frequency to be applied to the trap.

To express the power dissipation, PD, in terms of α equation 7.22 and 7.23 can be

substituted into equation 7.21 giving

PD =
8e4C2R

k8
rm

4q4α2
. (7.24)

Equation 7.24 shows that as α is increased, the power dissipated is reduced. This means

that the power dissipation is low for high values of α and, as high values of α provide high

values of Ksim (see figures 7.11 and 7.13), power dissipation will not impact on producing

high values of Ksim in optimised geometries. However, a low value of α will result in a

high power dissipation in the chip and, so, the maximum allowable power dissipation in a

chip will determine the lowest α which can be applied to a geometry.

7.6.2 Quantum simulation error

An upper limit on α can be obtained from an estimation of the error of a quantum

simulation one could perform using an optimised lattice. Using the method described

in [149], the error for the simulation of the Ising model is given by

E0 ≈
1

2
η2
∑
j

(2n+ 1)
〈[[

O(t), σzj (t)
]
, σzj (t)

]〉
. (7.25)

Here n is the mean radial phonon number of the ions, O is the observable of the quantum

simulation and η is a parameter which characterises ion displacements caused by the state

dependant force and is given by [149]

η =
F
√

~/(2mν)

~ν
(7.26)

where m is the mass of a trapped ion and ν/2π is its secular frequency.

If O is an M -site observable then there exist M non-vanishing commutators (for ex-

ample a two-site correlation function (M = 2) or a spin average (M = 1)) and so the error
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on the simulation will not be dependant on the number of ions, N , in the array [149]. The

error in equation 7.25 can now be re-written as

E0 ≈
F 2M(n+ 1

2)

2~mν3
. (7.27)

Equations 7.19 and 7.27 show that both the Ksim and the error of the simulation, E0,

are proportional to the square of the state dependant force, F . It follows that the way

in which this force is applied to the ions will determine the dependence of the simulation

error on α. In what follows this state dependant force is assumed to either be applied by

laser beams or magnetic field gradients. Both cases will be analysed.

To calculate the laser power required to achieve a force, F , it is assumed, for illustrative

purposes, that the laser beam is focused to a sheet given by 25 µm multiplied by the width

of the array. The laser intensity required to provide a state dependant force, F , can be

provided by a laser beam of power, P . If the output power of the laser used is assumed to

be constant, then the force applied to the ions will be dependant on α. This is because the

lattice size is dependant on α and, therefore, so will the spacial area of the beam required

to impart a force onto the ions. It is, therefore, required to express this force as a function

of α. The intensity of a beam required to provide a state dependant force, F , is given

by [29]

I0 =
F∆λIsat
π~γ2

(7.28)

where ∆ is the detuning of the laser from resonance, λ is the wavelength of the laser, Isat

is the saturation intensity of the ion and γ is 2π times the natural transition linewidth.

The power of a laser beam is given by

P = I0a (7.29)

where a is the spacial area to which the beam is focused. The beam is assumed to be

focused to form a light sheet across the array with an area given by a = (ns − 1)AW =

(ns − 1)kAαW , where ns is the number of trapping sites (or polygons) along one side of

the array and W is the width of the light sheet. By using equations 7.28 and 7.29 the

force applied to the ions by a laser power, P , can be expressed as

F =
π~Pγ2

a∆λIsat
. (7.30)
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The form of E0 for the case of lasers applying the state dependant force can now be

found by using equations 7.18, 7.30 and the general error equation 7.27 yielding

E0laser =
4
√

2

9

π2~2

e3

Mk6
rγ

4m2P 2α(n+ 1
2)

η3
geo(ns − 1)2k2

AW
2∆2λ2I2

sat

. (7.31)

It follows that both, the Ksim and simulation error E0, will decrease with increasing laser

detuning, ∆. Therefore, the optimum detuning, for a given laser power and α, corresponds

to the lowest detuning which provides the required Ksim. The optimum detuning to achieve

the lowest simulation error for 171Yb+ will be discussed in section 7.6.3.

Magnetic fields can also be used to provide the state dependant force, F , and is given

by [126]

Fî =

(
~
2

)
∂iω

〈
σ(̂i)
〉

(7.32)

where ω = γgbi is the position dependant spin resonance frequency with γg = e/me being

the gyromagnetic ratio and i is the x, y or z direction. The magnetic field gradient b is

assumed to arise from a magnetic field of the form B = B0 + b̂i, where B0 is a constant

magnetic field offset. From this, the state dependant force, Fî, produced from a magnetic

field gradient, bî, is found to be

Fî ≈
~ebî
2me

(7.33)

where me and e is the mass and charge of an electron respectively. If one assumes the

magnetic field is created by a current carrying wire located on the surface of a polygon,

at a distance a from the centre of the polygon and making an angle of 45◦ with respect to

the x-axis then the magnetic field gradient will be of the form

br′ =
µ0I

2πr′2
. (7.34)

Here µ0 is the permeability of free space, I is the current flowing through the wire and r′2

is the distance squared of the ion from the current carrying wire and is equal to r2 + a2

where r is the ion height. We assume, for simplicity, that the distance a scales linearly

with α with a constant of proportionality of ka in order to keep the angle of r′ to the

x-z plane, θ, independent of α. As the ion height is known to scale linearly with α, from

equation 7.15, it is possible to express the magnetic field gradient along r′ as
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br′ =
µ0I

2πα2 (k2
r + k2

a)
. (7.35)

The component of this magnetic field gradient in the x-z plane can now be shown to be

bx,z =
µ0I cos θ

4πα2 (k2
r + k2

a)
. (7.36)

The form of Ksim for the case of magnetic field gradients applying the state dependant

force can be found by using equations 7.18, 7.33, 7.36 and the general error equation 7.27

yielding

E0mag =

√
2

64

~µ0

π2m2
ee

k6
rm

2I2 cos2 θM
(
n+ 1

2

)
η3
geo (k2

r + k2
a)

2 α
. (7.37)

Equations 7.31 and 7.37 show that the quantum simulation error is proportional to α

for a state dependant force created by a laser beam and proportional to α−1 for a magnetic

field gradient created by current carrying wires. For the case of laser beams the α scaling

implies that as α is increased (yielding larger Ksim values and geometries as shown in

section 7.4.3) the quantum simulation error will rise and, therefore, provide an upper limit

on the value of α. For the magnetic field gradient case the upper limit on α comes from

the current creating the gradient. While the α scaling for the quantum simulation error

using magnetic field gradients implies that a larger α is advantageous, the current required

to achieve a given magnetic field gradient scales as α2 as can be deduced from equation

7.35. The maximum current that one can apply to the lattice therefore provides an upper

limit for α.

It is also interesting at this point to note the different scaling of the laser and magnetic

field gradient forces with α given in equations 7.30 and 7.32 respectively. The laser force

can be seen to be ∝ α−1 as it is a function of the inverse of the laser sheet cross section, a,

which is ∝ α1. The magnetic gradient force, on the other hand, is ∝ α−2 as it is a function

of the magnetic field gradient br′ which is ∝ α−2 due to r′ having a linear relationship

with α in the geometry considered.

7.6.3 Spontaneous emission

When applying the state dependant force to the ions using a laser beam, additional de-

coherence will occur via spontaneous emission. The spontaneous emission rate is given

by [33,150]
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S =
γg2

6

(
1

∆2
+

2

(∆fs −∆)2

)
(7.38)

where γ is 2π times the linewidth in Hz, ∆ is the laser detuning from resonance, ∆fs is

the fine structure splitting of the ion (≈ 100 THz for 171Yb+) and g is the single photon

Rabi frequency given by

g = γ

√
I0

2Isat
. (7.39)

Here, I0 is the laser intensity and Isat is the saturation intensity of the ion. It is possible to

express the single photon Rabi frequency in terms of the laser power, P , by using equation

7.29 giving

g = γ

√
P

2(ns − 1)kAαWIsat
. (7.40)

It is now possible to describe an additional parameter, Lsim, which describes the ratio

of interaction rate to the spontaneous emission rate as

Lsim =
TS
TJ

(7.41)

where

TS =
1

S
. (7.42)

It has been shown that the detuning which minimises the effect of spontaneous emission

is ≈ 33 THz for 171Yb+ [151]. It, therefore, follows that the value of Lsim will be maximised

with this detuning. This additional parameter is analogous to the parameter Ksim in

equation 7.3 and is also required to be greater than unity, just like the original Ksim, when

considering a state dependent force created using laser light. If magnetic field gradients

are to be used to apply the state dependent force then Lsim is not relevant.

7.6.4 Other considerations

It is important to note here that an increase in α will increase the time taken for ion-ion

interactions to take place in optimised lattice structures, as we will show in equation 7.44.

Equation 7.5 gives an expression for the time taken for an ion-ion interaction to occur in

any given fixed lattice structure. This can be expressed for optimised lattice structures by

including the expressions for the ion-ion separation (polygon separation, A) and secular
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frequency, ν, from equations 7.16 and 7.18 respectively, to yield

TJ =
e2πε0~

2

η4
geok

3
A

k8
rF

2m2α
. (7.43)

An expression to give the interaction time in optimised lattices as a function of α can

now be arrived at by using equations 7.43 and 7.30,

TJ =
9

8

e2ε0
π~

η4
geok

3
A((ns − 1)kAw)2∆2λ2I2

satα

k8
rγ

4P 2m2
. (7.44)

Equation 7.44 clearly shows that as α is increased, the time taken for an ion-ion interaction

will increase and, so, it may be preferable to limit the magnitude of α after taking into

account the effects on Ksim. A similar equation can also be derived for the use with

magnetic field gradients. It is also important to note here that increasing the laser power,

P , will increase the value of Lsim as the spontaneous emission rate is proportional to

P whereas the coupling rate is proportional to P 2 as shown in equations 7.38 and 7.44

respectively.

With the use of the equations derived in this section, optimal geometries can be cal-

culated given certain experimental parameters. A example case study will be described in

the following section.

7.7 Example case study

In this section, an example case will be presented to show how a 2D lattice for the use

in quantum simulations can be designed using the work in this chapter, whose successful

operation is within reach of current technology when using lasers. The magnetic field

gradient case is then considered to create a state dependant force and it is found that this

may be more challenging to realise.

From equation 7.23 we can see that there is a unique voltage for a given mass, m, lattice

type and stability parameter, q. For this example case, a lattice comprised of square type

unit cells with 9 trapping sites for 171Yb+ ions with a stability parameter q = 0.5 is chosen.

Using these parameters the voltage can now be determined by calculating kr. kr can be

found by plotting the ion height of an optimised lattice against α, as shown in figure 7.8

(a), and finding the gradient of this linear relationship. For this example case kr ≈ 98

mV−1s−1. Using this result and equation 7.23 the unique voltage is found to be ≈ 34 V

where ηgeo has been calculated to be ≈ 0.145.

The α dependant polygon radius and separation can be calculated by producing the
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corresponding graphs in figure 7.10, using the method described in section 7.4.3, for the

lattice type and ion to be used. For this example case the optimum radius and separation

of the polygons in terms of α is ≈ 45α µm and ≈ 174α µm respectively.

The next step is to choose a laser detuning from resonance and a maximum acceptable

error, E0, to be tolerated. For 171Yb+, as explained in section 7.6.3, the optimum detuning

is ≈ 33 THz giving a wavelength of ≈ 355 nm which is therefore used in this example case

together with a maximum acceptable error of 0.25. Note that in this example case the

array is assumed to be at cryogenic temperatures which corresponds to an electric field

noise density three orders of magnitude less than at room temperature. We can see from

equation 7.31 that α needs to be minimised in order to keep the quantum simulation

error low. The minimum α is determined by the lowest ion height one can easily achieve

which for this example case we choose to be equal to 30 µm. For this case we find α ≈ 0.3

V MHz−1. Having determined α we find the optimum radius and separation to be equal to

≈ 14 µm and ≈ 52 µm respectively which results in Ωex/2π = 92 Hz for a secular frequency

of ν/2π = 3.2 MHz. To calculate the required laser power, equation 7.31 should be set

to the maximum acceptable error and solved for the laser power, which is found to be ≈

7.3 W assuming the ions to be cooled to n� 1 and M = 1 (one side average observable).

These conditions provide a coupling rate J/2π = 90 Hz with a β ≈ 2.8×10−5. This laser

power can, for example, be achieved using a commercially available diode pumped solid

state (Coherent Paladin range) or fibre (Coherent Talisker range) laser system. Table 7.9

summarises all parameters for this example case study.

Figure 7.14 shows the effect a change of α and laser power, P , has on the quantum

simulation error (solid curves), Ksim (dashed curves) and Lsim (dotted lines). The cross

corresponds to the 2D lattice designed in this example case which represents the optimum

case in terms of achieving the highest Ksim and Lsim for a maximum quantum simulation

error of 0.25. One should note that the main limitations in achieving lower quantum

simulation errors stem from the lowest achievable ion height (lowest α) and magnitude of

electric field noise density. Figure 7.14 also shows that higher values of Ksim and Lsim can

be achieved with any given geometry (given by the value of α) by simply increasing the

power of the laser. However, this can only be achieved at the expense of higher quantum

simulation errors.

State dependant forces can also be created using magnetic field gradients as described

in section 7.6.2. Figure 7.15 shows the Ksim (solid curves) and the quantum simulation

error (dashed curves) as a function of the magnetic field gradient, b, and α for traps
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α R [µm] A [µm] ∆ [THz] P [W] M Ksim Lsim E0

0.3 14 52 33 7.3 1 35.6 14.4 0.25

Table 7.9: Table summarising the parameters for a 3 by 3 square type unit cell lattice at
cryogenic temperature as shown in the example case study.

α [V MHz --1]

Figure 7.14: Graph showing the quantum simulation error (solid curves), Ksim (dashed
curves) and Lsim (dotted lines) for a three by three square type unit cell lattice with
171Yb+ ions as a function of α and laser power. Here traps are operated at cryogenic
temperature. The cross indicates the example case.
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operated at cryogenic temperature. Here we use 171Yb+ ions in a three by three square

unit cell array. As described in section 7.6.2, E0 ∝ α−1 indicating that a large α is

advantageous. The limit on the maximum α is dependant on the maximum current one

can apply to the geometry. Using equation 7.35 it is possible to calculate the current

required to create a desired magnetic field gradient. In order to illustrate the magnitude

of currents required we assume ka = kr, which will result in an angle θ = 45◦ (as shown

in section 7.6.2). We also set α to ≈ 0.3, determined by the lowest achievable ion height

which, for illustration purposes, we have set to 30 µm. The reason for choosing the

minimum α value can be seen when considering equation 7.35 which clearly shows that,

for a given magnetic field gradient, I ∝ α2. In the magnetic field gradient case, the chosen

α sets Ksim and E0. For this case, again, we choose M = 1, n � 1, Ksim = 2 and

E0 ≈ 0.01 which requires a magnetic field gradient of ≈ 33,000 Tm−1 and is indicated

by the cross on figure 7.15. This is achievable with a current of ≈ 1,200 A yielding a

coupling rate J/2π = 38 Hz and a β ≈ 2.8×10−8. From this simple example case one

can conclude that using magnetic field gradients to provide state dependant forces for the

use in quantum simulations using the methods and trap designs shown in this chapter is

quite challenging. However, geometries trapping ions in chains allow for sizeable magnetic

gradient induced couplings [152] and, so, a detailed investigation into optimising the wires

used for producing magnetic field gradients in the geometries discussed in this chapter

could improve results.

7.8 Modification of the 2D ion trap lattice on a microchip

In chapter 6 we presented the successful operation of a 2D ion trap lattice on a microchip.

While the microchip has many applications, the ion-ion separation of 270.5µm results in

a coulomb coupling strength Ωex/2π = 4 Hz for a secular frequency of ν/2π = 0.5 MHz

which is insufficient for the implementation of quantum simulations. As has been shown in

this chapter it should however be possible to produce a lattice with a significantly reduced

ion-ion separation, to achieve coupling strengths suitable for quantum simulations. Due

to the simple fabrication technique of the microchip presented in chapter 6 a lattice, based

on the optimisation process shown in this chapter, with a much smaller ion-ion separation

can be fabricated simply by using a different wafer thickness and a modified fabrication

mask.

The modified microchip would consist of an SOI wafer with a 2.5µm thick device

layer and two 1.25µm thick oxide layers wafer bonded together. The width of the handle



147

Figure 7.15: Graph showing the quantum simulation error (dashed curves) and the Ksim

(solid curves) of a three by three square type unit cell lattice with 171Yb+ ions as a function
of α and magnetic field gradient. Here traps are operated at cryogenic temperatures.
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layer remains the same to ensure that the wafer does not break. The hexagon radius

and separation would be 13µm and 32µm respectively which would result in an ion-ion

separation of 32µm and an ion height of 15µm. For a secular frequency of ν/2π = 1 MHz

the coulomb coupling strength would be Ωex/2π = 1.3 kHz. Using a 355 nm laser with

a power of 2.4 W focused to a light sheet of width 160µm and depth 30µm an effective

spin-spin coupling rate of J/2π = 1.2 kHz could be achievable which would result in

a quantum simulation error E0 = 0.25 (as in the example case, M = 1). At this ion

height the electric-field noise density at a cryogenic temperature of 6 K is estimated to

be SE(ν) ≈ 1.6× 10−11V 2m−2Hz−1 using figure 20 in reference [42] which, for the above

secular frequency, results in a heating rate of ṅ = 540s−1. We therefore find that Ksim =

14.2 and Lsim = 29.1. We can see that by making simple modifications to the microchip

successfully operated in chapter 6, the coupling strength can be increased significantly and

offers a exciting platform for the implementation of 2D quantum simulations.

7.9 Conclusion

Two-dimensional arrays of surface ion traps have the potential to provide a technology

with which quantum simulations can be performed. In order for ion traps to be used

successfully for this purpose a greater understanding is required of how the various ge-

ometry parameters affect the ions trapped above them. Throughout this chapter square,

hexagonal and centre rectangular unit cell arrays of microtraps have been modelled in the

gap-less plane approximation using the Biot-Savart like law in electrostatics [5]. Decoher-

ence due to motional heating [91] was then compared to the ion-ion interaction [45] to

provide a ratio used to describe how much faster an ion-ion interaction occurs in compari-

son to the motional decoherence, Ksim. This chapter investigated how various parameters

in the array can be adjusted in order to optimise the device’s ability to perform quantum

simulations and shows how the interactions can be made as homogeneous as possible over

the device. It has been shown how the homogeneity of the Ksim across an array can be

altered by varying the distance from the outer polygon to the edge of the rf electrode. The

distance required to maximise the Ksim homogeneity is also shown to vary as a function

of the total size of the lattice. The number of polygon sides, n, required to maximise Ksim

has also been found.

It has also been shown that the Ksim of a given lattice geometry can be maximised by

reducing the value of α. However, as α reduces so does the trap depth. This results in the

conclusion that the maximum Ksim of a geometry can be achieved by reducing the value
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of α until the trap depth reaches a reasonable minimum value.

Using this information, optimal geometries as a function of α have been presented. This

has been achieved by finding the relationships of polygon separation and radius with α for

optimal geometries. It was found that, for these optimal geometries, Ksim scales as α3.

The individual polygon separation and radius were found to posses a linear relationship

with α and, therefore, larger geometries have been found to produce larger values of Ksim.

Therefore, the optimal lattice geometry is dependent solely on the value of α for a given

ion mass and number of trapping sites in the array.

A case study for determining an optimum geometry consisting of 9 trapping sites

arranged into square type unit cells for 171Yb+ ions has also been presented. It was shown

how the value of α can be chosen (and, therefore, the geometry dimensions) by taking

into account the laser power (or static magnetic field gradient) required to produce a

state dependant force acting on the ions, the Ksim and the error on the simulation. From

this it has been found that to carry out quantum simulations with reasonable Ksim and

error values it is preferable to use traps held at cryogenic temperatures as this reduces

decoherence due to heating effects on the ions. Other methods known to significantly

decrease the anomalous heating rate include pulsed laser electrode cleaning [153] and

Argon-ion beam electrode cleaning [154].

Finally, it was shown how making changes to the lattice geometry of the successfully

operated microchip presented in chapter 6 has the potential to offer an exciting platform

for the implementation of 2D quantum simulations.



150

Chapter 8

Conclusion

The work presented in this thesis is part of a large effort in the Ion Quantum Technology

(IQT) group at the University of Sussex to develop scalable quantum technology. The

first part of the thesis covered the first coherent manipulation experiments using 171Yb+

in our laboratory and led to the implementation and novel manipulation of a dressed-state

qubit which is resilient to magnetic field fluctuations. This qubit will now be used for the

implementation of high fidelity multi-qubit gates based on microwave and radio-frequency

(rf) fields in conjunction with a static magnetic field gradient. The second part of the thesis

focused on developing a scalable architecture for the implementation of two-dimensional

(2D) quantum simulations using a lattice of ions on a microchip.

In more detail, a magnetic field sensitive as well as a magnetic field insensitive qubit

in the 2S1/2 ground state of a 171Yb+ ion has been characterised. It was found that the

magnetic field insensitive qubit has a coherence time of 1.5 s demonstrating its usefulness

for storing quantum information. A promising scheme for implementing multi-qubit gate

operations is based on using microwaves in conjunction with a static magnetic field gradient

[34]. Since this scheme requires the qubit states to have different magnetic moments, a

magnetic field sensitive qubit has been characterised and the coherence time was found

to be ≈ 500µs which is limited by magnetic field fluctuations. Such fluctuations are

known to limit the achievable gate fidelity [36]. To circumvent this problem we have

used microwave dressed-states to create a new qubit which is robust against magnetic

field fluctuations but still remains sensitive to a magnetic field gradient [40]. We have

characterised this qubit by measuring the lifetime of the dressed-state which was found to

be 550 ms. A new method to manipulate the dressed-state qubit has also been presented

which allows arbitrary qubit rotations on the Bloch sphere to be implemented using only

a single rf field [113]. This method was used to measure a coherence time of 500 ms, close
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to the lifetime of the dressed-state. Furthermore, our method significantly simplifies the

experimental setup required for multi-qubit gate operations.

Towards the realisation of scalable 2D quantum simulations a novel fabrication tech-

nique has been presented that allows very large voltages to be applied to microfabricated

devices. This is of particular interest in the field of microfabricated ion traps as the max-

imum achievable ion height and trap depth are limited by the voltage that can be applied

to the trap. We have used this advance to demonstrate the first successful operation of

a 2D lattice of ion traps on a microchip [138]. The microchip was characterised by mea-

suring the secular frequencies of an ion and the ion lifetime with and without Doppler

cooling. Ion shuttling between lattice sites has also been demonstrated which could be

part of a scheme to load large ion lattices and refill a lattice site when an ion has been lost.

An important question to answer is what would be the optimum geometry of an ion trap

lattice to maximise the ratio of the ion-ion coupling strength to the sources of decoherence

such as motional heating of the ions and off-resonant excitation to unwanted states. It

was shown how to arrive at an answer to this question for a given set of experimental

constraints and an example for a 3 by 3 lattice of 171Yb+ ions [55] was given. While the

ion-ion spacing on our particular microchip is too large for quantum simulations we follow

our optimisation method and illustrate how simple modifications to the microchip design

would allow for 2D spin lattices to be simulated.

8.0.1 Discussion and future work

The successful implementation of a microwave dressed-state qubit with a coherence time of

500 ms together with a simple method to perform arbitrary qubit rotations offers a exciting

platform for the implementation of scalable high fidelity multi-qubit gate operations. Cur-

rently the limiting factor in achieving a longer coherence time and a higher dressed-state

preparation fidelity is the achievable Rabi frequency of the dressing fields. The achievable

Rabi frequency is limited by the amplifier we currently use before sending the signal to the

microwave horn and by the frequency mixer we use to mix the low frequency signals with

the 12.6 GHz signal. We plan to increase the Rabi frequency by adding a pre-amplification

stage to the microwave generation setup. We also plan to use more sophisticated mixers

which can be driven with a higher local oscillator power and thereby allow a higher out-

put power for a given intermodulation strength to be achieved. More long term, the Rabi

frequency could also be increased by using a waveguide integrated into a microfabricated

surface trap [38].
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To implement a microwave-dressed two-qubit Mølmer and Sørensen gate using a similar

method to that described by Timoney et al. [40], we require our rf generation setup to be

updated to produce four individually controlled rf fields. We also require a static magnetic

field gradient which can be created using permanent magnets or by using current carrying

wires embedded in a microfabricated surface trap. Recently, we have added four in-

vacuum rare earth nickel coated samarium cobalt magnets to our setup and a preliminary

magnetic field gradient of ≈ 24 T/m has been measured. We have so far used this to

individually address two ions in frequency space and to resolve motional sidebands. The

next step is to use this magnetic field gradient in conjunction with microwave dressed-

states to implement a high fidelity two-qubit gate. The successful implementation of such

a gate would immediately be scalable to more ions by making simple modifications to the

microwave and rf generation setup.

The microchip used to successfully trap a 2D lattice of ions which was presented in

this thesis was the first microfabricated surface trap in the group [138] and its operation

revealed a number of challenges that need to be overcome on the route to implementing

2D quantum simulations. A challenge in operating the microchip was micromotion which

changed every time the atomic ovens were used to trap ions and continuously degraded

the performance of the chip. This is expected to be caused by charge build up due to Yb

coating on the surface of the microchip and can only be compensated for globally using the

static voltage electrodes surrounding the lattice. Micromotion, together with ion losses

during loading due to background collisions, made trapping of large lattices of ions very

challenging. It also made shuttling of ions difficult as the voltage profiles required to

successfully move an ion between neighbouring lattice sites changed every time a new ion

was loaded. To address this issue future microchip designs will incorporate a lip to block

part of the atomic flux and thereby minimise Yb coating. Furthermore, static voltage

electrodes will be added to each lattice site to allow micromotion to be compensated

separately at every site. This will also allow for site dependant secular frequencies to

be achieved. Finally, the rudimentary shuttling of ions between lattice sites presented

in this thesis could be used as part of a loading scheme based on trapping in an area

of the lattice which will not be used for the experiment and on shuttling operations to

fill the required lattice sites. As already discussed in chapter 7 the ion-ion spacing of

the lattice can be reduced significantly by modifying the microchip design and together

with the modifications illustrated above this has the potential to provide a very exciting

architecture for the implementation of 2D quantum simulations.
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Appendix A

Electrical connections

This appendix shows the appropriate connections between the two 50 pin feedthroughs,

the chip bracket and the electrodes of the microchip. Figure A.1 (a) shows a schematic

of the chip bracket to illustrate which pin receptacle on the chip bracket is connected to

which pin on the two 50 pin feedthroughs. The corresponding numbering of the two 50

pin feedthroughs is shown in figure A.1 (b).

The pins on the two 50 pin feedthroughs used for the electrodes on the microchip are

shown in table A.1.

Electrode Pin number

Comp 1 99, 40
Comp 2 86, 76, 83
Comp 3 77, 97, 95
Comp 4 8, 35
Comp 5 41, 10, 26
Comp 6 19, 27, 44

GND plane 13, 15, 29, 31, 49, 73

Table A.1: Table showing the electrodes on the microchip and the pin numbers they are
connected to on the two 50 pin feedthroughs. The numbering corresponds to that shown
in figure A.1 (b).



168

rf 39 95 49 37 36 15 50 1 23 13 46 47 28 2 GND 

29 3 88 21 27 18 19 38 26 24 32 45 12 33 

70 6 55 35 14 31 40 34 17 41 44 43 

89 22 4 7 20 5 11 16 10 9 

49 37 36 15 50 1 23 13 46 

25 92 96 63 90 57 59 86 56 53 54 

93 74 0 76 99 62 75 98 73 91 72 71 

61 65 64 81 67 66 60 83 82 80 100 87 85 

71 97 94 52 58 78 51 68 84 79 69 42 30 

A    B    C     D    E     F     G    H    I     J      K     L    M    N   O    P    Q 

A    B    C     D    E     F     G    H    I     J      K     L     M     N    O    P    Q 

1 
2 

3 

4 

5 

6 

7 

8 

9 
10 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

(a)

(b)

Figure A.1: (a) shows which pin receptacle on the chip bracket is connected to which
pin on the two 50 pin feedthroughs. The rf and ground pins are connected to a separate
feedthrough to connect to the helical resonator. (b) shows a schematic of the two 50 pin
feedthroughs on a flange where the numbering corresponds to the numbers given in (a).
The red lines indicate the actual shape of the feedthroughs.
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Appendix B

Baking procedure

This appendix aims to describe the procedure of reaching pressures of ≈ 10−11 Torr in the

vacuum system used to operate the two-dimensional lattice of ion traps on a microchip.

The temperature and pressure of the vacuum system over the course of the evacuation

process is shown in figure B.1. After the vacuum system has been assembled and the
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Figure B.1: Picture of a new vacuum system designed to accommodate both symmetric
and asymmetric traps and used for the experiments shown in this chapter.

microchip put in place the system is moved into a homebuilt oven after which the following

steps were performed:
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• A turbo pump is connected to the all metal valve of the vacuum system via a 1.5

meter long metal hose. The turbo pump reduces the pressure of the system to ≈ 10−5

Torr within 3 hours.

• The microchip, atomic ovens and titanium sublimation pump (TSP) are outgassed.

The microchip is outgassed by applying the voltage required to trap via a helical

resonator for one hour. The atomic ovens are outgassed by applying 6 A to each

oven for 15 minutes. Care must be taken that the current used to outgass the ovens

is below the current required to produce a flux of Yb atoms. The TSP is outgassed

by applying 30 A to each filament for 30 minutes.

• A temperature sensor is attached to the 100 pin feedthrough flange and to the

large viewport used for collecting fluorescence from the ions. These are the most

temperature sensitive parts of the vacuum system and therefore need to be carefully

monitored during baking.

• The vacuum system is wrapped in tin foil. The viewports and feedthroughs are

wrapped in at least 5 layers of foil to minimise the effects of heat spots.

• Another temperature sensor is attached at the top of the hemisphere.

• All heating elements are electrically tested.

• The oven is closed and the main fan speed is turned to maximum to ensure good

circulation of air. It is important to remember to turn the small fan on as this

ensures that the main fan does not overheat.

• The oven temperature is gradually increased at a rate of no more than 15◦C per hour

until a temperature of 200◦C is reached (measured using the temperature sensor

which is connected to the control unit of the heating elements. This typically takes

one day which can be seen in figure B.1. One should ensure that the temperature

difference between the sensor readings from under the foil and outside of the foil

does not exceed 10◦C.

• When the pressure has settled the ‘external’ ion pump which is part of the turbo

pump setup is turned on.

• After approximately three hours the ‘internal’ ion pump which is part of the vacuum

system is turned on.

• The ion gauge of the vacuum system is turned on.
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• After a further two hours the oven door is opened and the all metal valve is closed

(hand tight) as quickly as possible to minimise the drop in temperature inside the

oven. The turbo pump is then turned off. The external ion pump remains running

to maintain a low pressure inside the metal hose. This ensures that a low pressure

can be reached inside the vacuum system despite the all metal valve not being closed

properly.

• On days 9 and 10, after the pressure has levelled off at ≈ 10−9 Torr, the temperature

of the vacuum system is reduced at a rate of 15◦C following which the all metal valve

is closed properly, the metal hose is disconnected and the system is moved to the

optical table.

• Over the following 4 to 5 days the TSP is fired for one minute every two hours after

which a pressure of ≈ 10−11 Torr is reached.
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