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Summary

Solar generated hydrogen as an energy source is green, sustainable, with a high
energy density. One day the majority of current fossil fuel based technology could
be replaced with hydrogen technology reducing CO2 emission drastically. The goal
in this research is to explore hybrid metal oxide photocatalysts in the pursuit of
achieving highly efficient photoanodes for use in photoelectrochemical cells (PEC).
Achieving high efficiencies of hydrogen production in photoelectrochemical cells is
the key challenge for the commercialisation of PEC technology as a viable, sustain-
able, hydrogen source; limited only by the lifetime of the sun and the resources of
the metal oxide materials.

In this research TiO2, Fe-Ti-O, ZnO, and Zn2TiO4 are the photocatalysts ex-
plored. Alloys of Ti-Fe-O showed improvement over TiO2, whilst a hybrid hetero-
structure of ZnO/Zn2TiO4/TiO2 enhanced photocurrent densities significantly. A
barrier layer in the photoanode achieved localised exciton separation and reduction
of recombination rates by inhibiting back flow of electrons after injection into the
TiO2 layer.

Nanotubes are created by the simple electrochemical process of anodisation. The
nanotube composition depends on the anode material. To control the composition of
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the anode, iron and titanium are co-deposited onto a substrate using electron beam
evaporation. The introduction of iron into titania nanotubes engineered the band
gap, lowering the band gap energy to that of iron oxide whilst the positions of the
conduction and valence bands with respect to the oxidation and reduction potentials
of water remained favourable. Fe-Ti-O nanotubes showed remarkable photocurrent
density improvement compared to TiO2 nanotubes.

ZnO nanostructures deposited by vapour transport mechanisms showed vari-
ability in the morphology of the structures, as governed by the growth dynamics.
Herein, it is shown that an electronically favourable situation arises by the forma-
tion of a ZnO-Zn2TiO4-TiO2 heterostructure and a high photocatalytic activity is
reported. The structure is composed of a large surface area ZnO nanorod photoab-
sorber formed on a Ti foil which forms a Zn2TiO4 barrier layer between ZnO and
TiO2. The Zn2TiO4 layer inhibits electron transport toward the surface of the pho-
toanode whilst encouraging charge transport to the hydrogenation electrode. The
heterostructure interfacial surface area is extended through the utilisation of TiO2

nanotubes, which demonstrated a 20.22 % photoelectrochemical efficiency under UV
illumination.

Surface modification of ZnO nanorods with aerosol assisted chemical vapour
deposited TiO2 nanoparticles enhanced photocurrent densities of the ZnO rods,
improving charge separation of excitons created within the TiO2 nanoparticles.

ZnO nanotubes formed via a novel route using chemical bath deposition of ZnO
is investigated, an annulus ZnO seed layer facilitated the site specific growth of ZnO
nanotubes whilst a uniform seed layer formed ZnO nanorods.
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Chapter 1

Introduction

Over the next twenty years energy consumption worldwide is expected to double

and fossil fuels are currently the largest supplier of energy. Fossil fuels are close to

exhaustion, expensive and have a negative impact on the environment and climate.

This has sparked a global effort to search for sources of energy which are not dam-

aging to the environment and able to produce energy for the long term. Initiatives

for nuclear fusion are promising, with a large scale international team constructing

a nuclear fusion reactor (ITER) capable of fusing deuterium and supplying energy.

However the cost of constructing a fusion plant is significant. Renewable energies

could provide a long term source of energy, with feasible construction costs. For

renewable energy to be considered a key energy supplier it needs to be less costly

and more efficient than the current means of energy production.

The EU have created policies which aim to supply 20 % of total energy by

renewable technologies by 2020,1 cutting down global green house gas emission and

stimulating the renewable energy industry. In 2011, 9.4 % of the UK’s total energy

production were provided by renewable sources, with a goal to fulfil 15 % of total

energy production through renewable sources by 2020.2 A goal of 50 % CO2 emission

reduction by 2020 is proposed for the EU. The UK Nuclear facilities are also in

expansion to meet CO2 reduction targets. The need for development of carbon

capture, carbon reduction and renewable energy technologies is essential in meeting

any of the proposed emission targets for the EU and worldwide.
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1.1 Current Non-Solar Renewable Energy Tech-

nologies

Fossil fuels are finite and the CO2 emission is damaging to the environment, while

the environment itself could provide answers to sustainable energy production.

Figure 1.1 illustrates the energy produced by different renewable sources since

2008, a sharp increase in all of them is present and photovoltaic (PV) energy gen-

eration exhibits exponential growth at a current low capacity.
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Figure 1.1: Plot of energy generated by renewable sources in the UK over the past
5 years.3,4

A clearer comparison between growth rates of the overall renewable electricity

contribution and solar PV contribution, plotted in Figure 1.2, shows the higher

growth rate of PV compared to total renewable energy produced.

This suggests that solar technologies could potentially become the dominant

source of renewable energy if the trend continues. Below, I will analyse the charac-

terisation and performance of major available renewable energy sources.
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Figure 1.2: Plot showing the relative growth of energy generated by photovoltaics
compared to the total renewable energy generated.

1.1.1 Biomass Energy

Biological material can be converted into fuel and release energy through combus-

tion in which CO2 emission is inevitable.5,6 Agriculturally produced biomass can

inhabit a large area of land, which could have otherwise been used for other forms

of farming. On the other hand, biomass supplied in the form of waste products is

beneficial in the context of waste management of the otherwise unused abundant

waste. Biomass energy sources may be renewable but still involve carbon cycles in

the environment which will have a negative impact through global warming. Bio-

mass materials can include landfill waste, sewage sludge, biodegradable municipal

solid waste, animal biomass and plant biomass. Biomass is useful in the disposal of

waste but is damaging to the environment overall.

1.1.2 Wind Turbine Technologies

Wind turbine technology makes up a large fraction of the renewable energy supplied

to the UK in the current green energy portfolio; it is a carbon zero energy source

after installation but has disadvantages.7 The main disadvantages of wind turbines

are sound pollution caused by the rotation of the turbines on land which could be

environmentally destructive for wildlife. Also manufacturing cost of turbines are

significant and contribute to CO2 emission. Energy production is dependant on

weather conditions. During low wind speed periods, less energy is produced, whilst



4

excess wind could supply more energy than demand.

1.1.3 Hydroelectricity

Hydroelectricity is abundant, clean and safe. Water can be stored in reservoirs

during periods of low demand and resupplied later. Water flows through a turbine,

operating a generator and producing electricity. The Hoover Dam in Nevada supplies

Las Vegas with renewable energy, with little impact to the environment. The largest

issue in the construction of a hydroelectric plant is how it affects the ecology of an

area and is restricted to areas with flowing water available. Small hydro power

plants run off rivers and accounts for most of the hydroelectricity produced in the

UK, with approximately 120 sites producing 100 MW.8

1.2 Solar Technologies

Solar energy is the most abundant form of renewable energy, essentially a natural

nuclear fusion reactor. At high temperatures thermal radiation governed by nuclear

reactions at the core of the sun follow a black body distribution. Photons carry a

momentum and energy which can be utilised by thermal, photo or radiative pro-

cesses. The sun provides approximately 3×1024 joules a year of energy to the earth;

only 0.1 % of the earths surface covered with 10 % efficient solar cells would satisfy

our global energy demands.9

The power of the sun can be harnessed in a variety of ways.10 Thermal heat can

be utilised in heating water via light absorption. Light can be used in solid-state

and chemical processes, either a direct route to produce electricity (PV, DSSC), or

by storing the energy chemically (photocatalytic water splitting or thermal chemical

conversions).

Light passes through the atmosphere during passage to the surface of the earth.

On entering the atmosphere of earth, light undergoes many absorption and scattering

events before illuminating technology on ground level. The length of the lights path

is defined as the air mass (AM) followed by a factor (AMX), where X is the number

of times the light has travelled with respect to the height of the atmosphere from

ground. The characterisation of the performance of solar cell technology requires
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a standard spectral irradiance reference. The most commonly used is the AM1.5

spectral irradiance distribution. This is the irradiance of solar illumination after

travelling an optical distance of 1.5 times through the atmosphere, after undergoing

scattering and absorption events. AM1.5 corresponds to a situation where the sun is

at an illumination angle of 48.19◦ (AM = 1/cos(48.19) = 1.5) relative to the normal

of the surface of the earth. Air mass coefficient 0 is the spectral irradiance above

the atmosphere, both spectra are shown in Figure 1.3. The usable power of light is

less than the light above the atmosphere, and typically a value of 1000 W/m2 or 100

mW/cm2 is standardised in literature for an irradiance distribution of AM1.5.11,12

Also, it is important to mention the averaged irradiance over 24 hours on an equinox

is 395 W/m2. The calculation takes into account the varying values of irradiance

from dawn to dusk.
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Figure 1.3: Plot of the standard terrestrial solar spectral irradiance distributions,
AM 1.5 and AM 0.13,14

The large increase in PV technologies generating electricity in the UK is indic-

ative of the growing interest in solar technologies, a comparison of total renewable

energy output and PV technology output is shown in Figure 1.2.

Solar technologies can be classified under two categories, solid-state photovoltaic

(PV) cells and photoelectrochemical (PEC) cells. Photovoltaic cells and photoelec-

trochemical cells both rely on semiconductor materials utilised as photosensitive
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electrodes. A solid-state PV commonly consists of a bulk Si P-N diode and more

recently thin film semiconductors. A dye sensitised solar cell (DSSC) contains a

sensitiser which absorbs light, and a photoexcited electron is injected into the semi-

conductor supplying a potential and current to a load, the electrolyte redox reactions

on the cathode and anode are reversed so the net reaction is zero and only electricity

is generated and there is no change of the chemical environment.

A photoelectrochemical water splitting cell incorporates a semiconductor which

absorbs light and the photoexcited charge carriers chemically transform the elec-

trolyte producing chemical energy (hydrogen, energy is stored as chemical bonds).

This is photoelectrolysis of water, generating hydrogen under solar illumination.

Solid-state photovoltaics have been shown to be the most efficient solar cell, but

also expensive. DSSC PV solar cells are cheaper in construction and materials,

but the efficiency has yet to reach that of solid-state photovoltaics. The low cost

of DSSC solar cells make it an attractive avenue for new solar cell technologies.

Photoelectrolysis cells produce hydrogen and is unique compared to other solar cells

as the energy generated in the process is not directly formed as electricity. The

energy carrier is in the form of hydrogen and can be electrochemically converted to

electricity at a later time. This is advantageous over storing energy in batteries which

incurs inherent losses during charging and discharging cycles (which also reduces the

lifetime of a battery), and storage. Although fuel cells also incur losses, such as heat

loss, fuel loss and losses due to storage, the overall longevity of a fuel cell and rapid

refuelling drives the attraction of fuel cells over batteries in vehicle technology.

Understanding solar technology requires understanding the mechanism of photo-

excited charge carrier creation. Semiconductors are photosensitive materials; they

can conduct electricity under illumination of photons with energies higher than the

band gap of the material.

Table 1.1 compares the levelised costs of various renewable technologies discussed

earlier and non-renewable energy sources as of 2011. The cost of non-renewable

sources are generally lower than that of renewable sources, and biomass can vary

significantly in cost as well as CO2 emission. Currently, large hydroelectricity plants

are the most cost effective form of CO2 free renewable energy, whilst solar energy

is the most expensive, however the cost of solar technology is expected to drop
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dramatically as technology matures.15 This is not true for the other forms of re-

newable energy whose prices are in the midst of saturation as efficiencies and cost

effectiveness have nearly reached optimum conditions. Thus it is expected over the

next decade solar technologies could compete with fossil fuels with respect to cost

effectiveness.

Technology Price (pence/KWh)

Nuclear 8-10

Coal 10-15

Gas 5-11

Biomass 6-14

Offshore wind 12-14

Onshore wind 9-10

Hydroelectricity (5-16 MW) 7.2

Hydroelectricity (< 5 MW) 13

Solar ( > 50 kW) 24

Table 1.1: Levelised costs of non-renewable and renewable energy sources, includ-
ing capital costs, fixed operating costs and variable operating costs.16,17

1.2.1 Semiconductor Fundamentals

Crystalline materials exhibit electronic properties based on the binding nature of the

atoms to the lattice. Vibrational behaviour of atoms in the crystal lattice produces

a band structure, whereby certain energies are forbidden due to the creation of

standing waves where group velocity vanishes (Bragg reflections) forming bands of

allowed energy states and forbidden zones.18,19

In terms of the nearly free electron theory, the free electron potential is perturbed

by a periodic lattice potential which inevitably forms standing waves. The highest

occupied energy band is the valence band (electrons in this band are responsible for

covalent bonding), whilst the lowest unoccupied energy band is the conduction band

(electrons move freely and conduct in this band). Charge carriers near the top of the

valence band and the bottom of the conduction band determine the semiconductor
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properties.

For the tight binding approach, molecules bond with one and another and in-

troduce a symmetric electron wavefunction and an antisymmetric electron wave-

function, these correspond to the bonding and antibonding energy levels (orbitals)

respectively. With increasing number of atoms the number of energy levels also

increase with slightly different energies due to the Paul Exclusion principle. As the

number of atoms reach macroscopic levels (1023) these energy levels become con-

tinuous and are no longer distinguishable from each other. The gap between the

antibonding and bonding bands is associated with the band gap (Eg) of the material.

The highest occupied molecular orbital (HOMO) is the valence band and the lowest

unoccupied molecular orbital (LUMO) is the conduction band.

An electron excited to the conduction band will leave a positive charge in the

valence band, which behaves like a particle. This is a convenient way to attribute

properties of missing electrons rather than taking into account all the filled electron

states in the valence band. The semiconductor is p-type if holes are the charge

carrier responsible for conductivity, and n-type if electrons are the majority charge

carrier.

This band structure and electron occupation of the bands determine whether a

crystal is a conductor, semi-conductor or an insulator as illustrated in Figure 1.4;

there are three possible scenarios;

a The valence band is filled and conduction bands partially filled by electrons; elec-

trons are free to conduct. The material is a metal obeying free electron theory.

b The conduction band is empty and valence band full at 0K. When at ambient

temperatures a small number of electrons can occupy the conduction band (and

holes can occupy the valence band) according to the Fermi distribution. The

material is a semiconductor since the Eg can be surpassed by thermal/optical

excitations creating an exciton pair (electron-hole pair).

c The conduction band is empty and the valence band full at 0K, but the energy

difference (Eg) between the bands is large (typically > 4 eV) and cannot be

easily overcome. The material is an insulator in this case as there are no charge

carriers free to conduct electricity.
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Figure 1.4: The electronic band structures of solid-state materials, (a) a material
with the conduction band partially filled and valence band full is a metal, (b) a
band gap under 4 eV is semiconductor and (c) a band gap larger than 4 eV is an
insulator.

The energy gap and the required wavelength of light to excite electrons from

the valence band the conduction band can conveniently be calculated using λ =

1240/Eg, the derivation of which is demonstrated in equations 1.1 to 1.4.

E(joules) = hν = hc

λ
(1.1)

E(eV) = hc

eλ
(1.2)

E = 1.24× 10−6

λ
(1.3)

λ(nm) = 1240
Eg(eV)

(1.4)

1.2.2 Solid-State Photovoltaics (PV)

The foremost solar technology in use today is solid-state crystalline photovoltaic

semiconducting photo diodes. The p-n semiconductor diode converts sunlight dir-

ectly into a potential and current.20,21 These have limitations; the energy produced

is either utilised immediately or stored in batteries. Storing energy in batteries

adds to the complexity of the solar device, increasing construction costs. Single

crystal/polycrystalline Si photovoltaic cells can be considered the first generation

photovoltaic cells. Second generation thin film solar cells can be produced at a lower

cost; as large surface areas can be achieved with limited material.22 Semiconductors
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with a direct band gap and high absorption coefficient are expensive, using thin

films reduces overall cost as layers of only a micron are necessary. Greater efficien-

cies are achievable using Cu(In,Ga)Se2 (CIGS) thin films,23 with band gap values

ranging from 1 eV to 1.7 eV (1240 nm to 729.4 nm) depending on gallium content.

Since the peak spectral irradiance of the sun is at a wavelength of approximately

475 nm, which in terms of energy is 2.6 eV, a large portion of sunlight can be har-

nessed with CIGS technology. CuInSe2 (CIS) thin films (no Ga) have the lowest

band gap of the CIGS family.24,25 Printable photovoltaics have been proposed in

literature utilising a semiconductor ink which could in principle lead to a conveni-

ent mass manufacturing process at economically lower costs.26 Multi-junction solar

cell technology is relatively new and considered second generation photovoltaics.

The construction of multi-junction solar cells involves the deposition of thin films of

various semiconductor materials forming several p-n junctions, each with a different

band gap/absorption energy, this allows a larger spectrum of light to be harnessed in

the generation of electricity. The largest inherent loss of a single junction solar cell is

the sensitivity of the cell to various wavelengths of light, by tuning the junctions to

absorb different wavelengths higher efficiencies are possible with a theoretical limit

of 87 % compared to 34 % for single junction cells according to the Shockley-Queisser

limit. The Shockley-Queisser limit is the limit set on the maximum theoretical ef-

ficiency of a single p-n junction solar cell and is widely considered one of the most

important contributions in the field. It was first calculated by William Shockley

and Hans Queisser in 1961,21 the upper limit of 33.7 % corresponds to an ideal

single junction solar cell with an Eg of 1.34 eV. The Shockley-Quesser limit takes

into account spectrum losses (where photons with an energy lower than the band

gap cannot be utilised), radiative recombination (where electron-hole pairs recom-

bine and cannot be used in the generation of electricity) and blackbody radiation

(inherent losses due to the temperature of the solar cell).

• First Generation PV cells are capable of 25 % efficiency, but costly.

Si crystalline/polycrystalline bulk (25 %)27 p-n junctions. (Eg = 1.12 eV)

GaAs (18.4 %),28 InP (22.1 %)29 and CdTe (16.7 %)30 are efficient but

expensive.
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• Second Generation PV cells are capable of 12.7-20 % efficiency, and relatively

inexpensive since thin films require less material.

Si thin film (19.1 %)31 and polycrystalline Si (20.4 %)32 solar cells.

CuInSe2 (CIS - 12 %)33 (Eg = 1 eV) and Cu(In,Ga)Se2 (CIGS - 19.6 %)25

(Eg = 1.6 eV)

• Third Generation PV cells are capable of 10-12 % efficiency, with the exception

of multi-junction solar cells.

Organic (polymer) solar technology (10 %)34

Nanocrystalline solar cells (10.1 %)35

Dye sensitised solar cell (not solid-state) (12 %)36

Multi-junction solar cells. (41.6 %)37

The Fermi level is the maximum energy level filled with electrons at absolute

zero as defined by the Fermi Dirac function. But since the Fermi level is a statistical

measurement it is possible for it to be positioned within the band gap. The position

of the Fermi level in a semiconductor defines the nature of the conductivity of the

semiconductor, if the Fermi level is closer to the valence band than the conduction

band, the majority charge carriers are the holes. For a semiconductor with a Fermi

level closer to the conduction band the majority charge carriers are electrons.

When two semiconductors are in contact their Fermi levels align and the con-

duction band and valence band bend at the immediate vicinity of the junction in

equilibrium due to electron and hole flow across the semiconductors, shown in Figure

1.5. This vicinity is the depletion zone, and an electric field is present in this region

due to the flow of the charge carriers at the conjoining bands. The electrons combine

with the holes (annihilation - indicated by the blue star) and leave behind positive

ions, and negative ions on the p-type side, leaving a small width with limited charge

carriers (i.e. depleted of charge carriers) creating a space charge layer.

In the practical construction of a p-n solar cell diode, a bulk boron doped p-

type Si wafer and the surface of the Si wafer is doped with phosphorous or arsenic

introducing an n-type Si layer, after which it is subsequently coated with a contact

grid and antireflection coating. The circuit is completed with a contact on the base of
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Figure 1.5: Band diagram of a p-type semiconductor in contact with an n-type
semiconductor, charge carriers flow and annihilate at the vicinity of contact repres-
ented by the star. Leaving a region with few charge carriers (depletion zone) with
positively charges ionised donors in the n region, and negatively charged ionised
acceptors in the p region.

the p-type Si. Photons enter the material and produce an exciton pair. The electric

field associated with the depletion zone separate the charges, and electricity flows

through an external load. The mechanism and working of a PV diode is illustrated

in Figure 1.6, electron hole pairs generated by photon absorption are influenced by

the electric field in the depletion zone.

Currently solid-state crystalline silicon photovoltaics accounts for over 90 % of

the solar cell market.38 Photovoltaic systems require batteries to store energy when

supply outweighs demand, this increases the size, complexity and cost of the system.

1.2.3 Photoelectrochemical Solar Cells (PEC)

Recent research has led to technological advancement allowing cheaper and abund-

ant metal oxide semiconductor materials (TiO2) to be incorporated into an electro-

chemical cell to either supply a potential and current or produce hydrogen and store

energy chemically.9
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electrons filling holes leaves positive ions on the n side and negative ions on p side.

Dye Sensitised Solar Cells (DSSC’s)

Gratzel described the modern DSSC in 1988 along with Brian O’Reagan, and first

reported a 7 % efficiency in 1991,39 by 1993 the same group achieved a DSSC with

a 10 % efficiency.40 High efficiencies are possible due to the nanostructured TiO2

surface, increasing the dye loading of the larger surface area of TiO2. Additionally

the liquid electrolyte is in contact with the entire surface area of the TiO2 photoan-

ode. Knowledge of organic dyes generating electricity under illumination has been

known since the 60’s, but previous attempts had been unsuccessful, due to unstable

low surface area photoanodes. A nanostructured TiO2 intermediate semiconductor

solved many of the issues, yet electrolyte/sensitiser stability still poses an issue.

A photon absorbed by the dye molecule (sensitiser) promotes the molecule from

the ground state to an excited state S*. In this excited state, electrons from the

sensitiser are injected into the TiO2 conduction band (S* → S+ + e−). The elec-

tron travels to the conductive glass and around the circuit to the platinum counter

electrode. The oxidised dye molecules S+ relax back to the ground state after re-

ceiving electrons from the iodide (I−), the redox couple I−/I−
3 will undergo a series

of oxidations and reductions completing the circuit. A load can be placed along this

circuit and provided with power, the mechanism for which is shown in Figure 1.7.

The abundancy and low cost of TiO2 are advantageous in the construction of

a DSSC, but ruthenium based dyes and platinum coatings can increase the cost
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significantly. However, scientific efforts aim to reduce the need for costly dyes by

exploring other sensitisers.41
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Figure 1.7: Band diagram of a dye sensitised solar cell, in this case an FTO coated
with a TiO2 mesoporous film serving as the photoanode. A simple description of
the process of light absorption and charge transport in the PEC.

Photocatalytic Water Electrolysis

Michael Faraday first formulated the laws of electrolysis in 1833 and coined many

of the terms still in use today, these laws led to electrochemistry becoming a sub-

ject in it’s own right.42,43 Although decades earlier electrolysis of water was dis-

covered to produce hydrogen in 1789 by Jan Rudolph Deiman and Adriaan Paets

van Troostwijk.44,45 The process was improved by William Nicholson and Anthony

Carlisle using a voltaic pile as a DC power source supplying electrons to the cathode

with a certain potential.46,47

Photoelectrochemistry was first discovered by Becquerel in 1839 in the form of

the ‘Becquerel effect’,48 whereby two electrodes immersed in an electrolyte produced

an electrical current under illumination. Much later, the understanding of photo-

electrochemistry was cemented by Brattain and Garret in 1954; through the study

of chemical reactions on the surface of a germanium semiconductor electrode under
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illumination. Brattain and Garret showed that the chemical reactions are influ-

enced by controlling the semiconductor properties and exposing the electrode to

illumination.49

The first experimental confirmation of photoelectrochemical decomposition of

water was observed by Fujishima and Honda in 1972, using a TiO2 photoanode.50

The solar photoelectrochemical decomposition of water has emerged as a widely

studied area of research. Advancement in nanotechnology has allowed the observa-

tion of smaller features as well as the ability to create nanostructured photoanodes,

thereby increasing the surface area of the photoanode. This has led photoelec-

trochemical water splitting research to achieve higher efficiencies, and a possible

solution to the storage of energy produced by the sun.51

The work in this thesis concentrates on nanostructured photoanode design for

PEC solar hydrogen production. The sun provides photons for absorption by a

material (semiconductor) which creates electron-hole pairs, these electron-hole pairs

aid in the decomposition of a H2O molecule, separating hydrogen and oxygen. The

reaction taking place at each of the electrodes is shown in equations 1.5 to 1.7 for

highly acidic electrolytes. In an alkaline solution, reactions are facilitated by OH−

ions rather than protons. These reactions are shown in equations 1.8 to 1.10. The

redox potentials are given in both the reversible hydrogen electrode (RHE) scale

and the normal hydrogen electrode (NHE) scale. The hydrogen generated can then

be transported to a storage medium for later use as a fuel.

2 hν −− 2 e− + 2 h+ Acidic conditions (pH 0) (1.5)

2 h+ + H2O(l) −−
1
2

O2(g) + 2 H+
aq 1.23 V RHE/NHE (1.6)

2 H+ + 2 e− −− H2(g) 0 V RHE/NHE (1.7)

2 hν −− 2 e− + 2 h+ Basic conditions (pH 14) (1.8)

2 OH−
aq + 2 h+ −−

1
2

O2(g) + H2O(l) 1.23 V RHE (0.43 V NHE) (1.9)

2 H2O(l) + 2 e− −− 2 OH− + H2(g) 0 V RHE (-0.8 V NHE) (1.10)
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The charge carriers need to have an energy difference greater then 1.23 eV in an

ideal PEC, which is the minimum energy required to split water into hydrogen and

oxygen determined by the Gibbs free energy of the reaction.52,53

The Gibbs free energy is a measure of the free energy of the evolution of a

chemical system and the spontaneity of the reaction; if the change in G is negative,

∆G = ∆H − T∆S, a spontaneous reaction can occur and produce a voltage during

the reaction, i.e a battery. If the change in Gibbs free energy is positive the reaction is

not spontaneous, and in this case the electrochemical cell is said to be electrolytic and

requires a voltage for the reaction to take place, this is the case in photoelectrolytic

water splitting. The relationship between voltage and the change in Gibbs free

energy is described by equation 1.11.

∆GT,P = −welectrical = QV = −nFE (1.11)

The rate of hydrogen generation can be expressed as R(H2) = Iphoto

nF
where F is

the Faraday constant (9.6485×104 C/mol), n is the number of moles of electrons it

takes to produce one mol of hydrogen, Iphoto is the photocurrent, E is the electrode

potential and welectrical is the electrical work done.

The conversion of one molecule of H2O to H2 and 1
2O2 is ∆G = 237.2 kJ/mol.

This is equivalent to 1.23 eV per electron transferred according to equation 1.11

where the number of moles of electrons is two for generating 1 mol of hydrogen.

The sun radiates 1000 W/m2 on the surface of the earth at a penetration depth of

1.5 times the atmosphere. A 10 % efficient ideal PEC cell coverage of 1 m2 (with

a photopower output density of 100 W/m2, at half of 1.23 V gives a photocurrent

of 162 A) can generate 3 g / 34 L (standard temperature and pressure - STP) of

hydrogen per hour, this is an equivalent of 0.432 MJ energy content (120 Wh).

The process of water photoelectrolysis is depicted in Figure 1.8, the photosensit-

ive anode absorbs light creating an exciton pair. The photoanode (working elec-

trode) is the electrode where the oxygen evolution reaction occurs (OER) and the

hydrogen evolution reaction (HER) occurs on the Pt counter electrode (cathode).

The quality of the photoanode determines the OER rate and is the electrode of

interest. The photoexcited electron traverses the circuit and is injected into the

electrolyte to be utilised in the reduction of water, generating hydrogen. On the
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photoanode surface, a hole is injected into the electrolyte oxidising the water and

bubbling oxygen.
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Figure 1.8: Band diagram of the fundamental mechanism of water electrolysis.

In practice about 2 eV is required to overcome the energy losses relating to

reaction kinetics and charge transfer through electrical leads and the electrolyte

i.e. the electrode overpotentials and ohmic potentials. The electrode overpotential

results from low activity of the electrodes in the electrolyte, which is also known

as the activation overpotential. The ohmic loss is due to resistive losses in the cell.

The overpotential must be minimised to obtain high efficiency. For example, the use

of co-catalysts can assist in reducing the overpotential for a given redox reaction to

take place.

1.3 Utilising Nanostructured Metal Oxides

Photoanode Fundamentals

The metal oxide semiconductor used as a photoanode must satisfy a number of

conditions to be considered applicable for PEC water splitting applications. Firstly,

the band edges must straddle the water reduction and oxidation potentials; secondly,

the band gap energy should be such that a large portion of the solar spectrum can
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be harvested. Only photons with a high enough energy (hν) to surmount the band

gap of the photoanode can be absorbed to create an exciton pair.

Unfortunately, the most stable metal oxide semiconductors have a band gap

energy in the UV range.54 For example, TiO2 has a band gap energy of 3.2 eV

(λ (nm) = 1240/Eg) which is the equivalent of a photon with a wavelength of 387

nm. The UV range of the solar spectrum is only a fraction to the whole spectrum,

ideally the semiconductor should have a band gap in the 2 eV range thereby utilising

the visible part of the spectrum. Recent attempts have been driven toward doping

and surface modification to improve electronic properties of the photoanodes or

engineering band gaps including the introduction of donor and acceptor levels to

the band structure.55–61

Band bending occurs at the interface between the semiconductor and liquid elec-

trolyte in the photo electrochemical cell when the Fermi levels of the semiconductor

and the chemical potential of the redox couple of the electrolyte are in equilibrium.62

A potential can reduce the band bending until the conduction band minimum (CBM)

and valence band maximum (VBM) are unbent, and an accumulation layer is no

longer present (no space charge layer) at the interface, the potential when this situ-

ation arises is called the flat band potential (Vfb).

The electrolyte Fermi level (chemical potential) is between the O2 and H2 redox

couple and is dependent on the concentration of the ions in the electrolyte. The

chemical potential is a function of the Gaussian type distribution of redox states.

A space charge layer forms at the semiconductor/electrolyte interface, if the

chemical potential of the electrolyte is lower than the Fermi level of the semicon-

ductor, electrons flow from the semiconductor into the electrolyte under illumina-

tion and equilibrium after contact. This leaves positive ions on the surface of the

semiconductor. Negatively charged ions congregate on the electrolyte side of the

interface, and this space charge double layer region at the interface is known as the

Helmholtz layer. The band bending is due to the congregation of charges at the

interface similar to the mechanism of a p-n junction.

By applying a positive bias to the photoanode the photoexcited electrons flow

from the semiconductor to the counter electrode. This charge flow raises the Fermi

level of the Pt counter electrode (charge carrier density increases in the Pt). Thereby,
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simultaneously increasing band bending and encouraging charge separation. Also,

if the conduction band is lower than the proton reduction potential, raising the Pt

counter electrode Fermi level supplies the electrons with enough energy to reduce

water.

If the PEC cell is based on a single n-type semiconductor material, the band gap

must straddle the reduction and oxidation potentials and the Fermi level of the semi-

conductor must be above the electrolyte redox couple Fermi level for the reduction

reaction to take place. The CBM must be more negative than the proton reduction

potential (0 V vs RHE) and the VBM must be more positive than the oxidation

potential (+1.23 eV). TiO2, ZnO and zinc titanate all satisfy this requirement. Iron

oxide does not, Fe2O3 has a high oxidative power due to the lower position of the

valence band edge (2.4 VRHE, over a volt larger than the oxidation potential) yet

the conduction band is not high enough for reduction to occur. However applying

an external voltage raises the Fermi level of the counter electrode (the bulk Fermi

level) and consequently lowers the CBM/VBM edges with respect to the electrolyte

redox couple, it is then possible for the electron to traverse the circuit with enough

energy to reduce the water.

The conduction band and valence band edges are affected by the pH of the elec-

trolyte, and shift with 59 mV×pH with respect to the vacuum energy.63 Increasing

the pH of the electrolyte raises the band edges. Unfortunately this is also true for

the reduction and oxidation potentials. The band edges therefore remain fixed with

the reduction and oxidation potentials. Hence, positioning the band edges into a

more favourable straddling position is not possible by solely altering the pH of the

system.

Typically most metal oxide semiconductors are n-type due to the non-stoichiometric

nature under typical synthesis conditions,65–67 the crystal structure can be metal rich

or oxygen deficient which raises the Fermi level. Some metal oxides are oxygen rich

or deficient of metal under synthesis conditions, these non stoichiometric conditions

results in p-type behaviour.

Some metal oxide band positions are shown in Figure 1.9, versus energy (eV vs

RHE) and the reduction and oxidation potentials are plotted in dashed lines. The

first few are relevant to this work, the others are useful for future work. The values
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Figure 1.9: Band positions of a selection of metal oxides and metal oxide alloys,
illustrating their position with respect to H2O oxidation and H2 reduction poten-
tials.64

of the band positions and band gaps are summarised in Table 1.2.64

For metal oxides, the valence band maximum (VBM) is determined by the 2p

orbital of oxygen, whilst the conduction band minimum (CBM) is determined by

the cation electronic structure and empty orbitals. The fluctuation of the VBM is

due to the symmetry of the crystal, and the electronic structure of the neighbouring

cations. In the case of ZnO, the filled 2p levels of O2− and empty 4s levels of Zn2+

are seperated when the ions are bought together to form a solid. Reading from

the energy diagram in Figure 1.9, chromium titanate (Cr2Ti2O7), for example, is a

suitable candidate for unassisted water splitting, the CBM and VBM straddles the

redox couple potentials and the band gap allows photoexcitation in the visible light

range (2.3 eV is 540 nm, green absorbtion) utilising a significant portion of the solar

spectrum. The only practical issue whether chromium titanate is sufficient for water

splitting, is if the VBM position provides enough overpotential to facilitate oxidation

reactions (OER) on the surface of the photoanode and charge carrier mobility within

the chromium titanate crystal.

Advantages of Nanomaterial Photoanodes

Nanostructuring materials can significantly enhance the surface area of the material

and will subsequently increase the electrolyte/semiconductor contact surface area.

A larger surface area of the electrolyte/semiconductor junction can facilitate a larger
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Metal Oxide CBM (eV vs RHE) ± 0.1 V VBM (eV vs RHE) ± 0.1 V Band gap Eg (eV)

TiO2 -0.1 3.1 3.2

ZnO -0.2 3.1 3.3

Fe2O3 0.4 2.7 2.3

FeTiO3 0.2 2.4 2.2

Fe2TiO5 0.6 2.6 2.0

Zn2TiO4 -1 2.2 3.2

ZnFe2O4 0 2 2

Zn1.5 Fe1Ti0.5O4 -0.1 2.2 2.3

BiO3 0.4 3.2 2.8

CaTiO3 -0.8 2.7 3.5

CdO 0.6 2.7 2.1

In2O3 0.5 2.8 2.3

Nb2O5 -0.2 3.2 3.4

NbO2 0.5 3.5 3.0

PbO 0.4 3.2 2.8

SnO2 0.4 3.9 3.5

WO3 0.2 2.6 2.8

ZrO2 -1.3 3.7 5.0

Cr2Ti2O -0.4 2 2.4

Table 1.2: Band edges and band gaps of the various metal oxides plotted in Figure
1.9.

number of oxidation evolution reactions.

Ordered nanomaterial semiconductors provide advantageous charge transport

routes. Also, 1D wires and tubes can act as optical waveguides if the dimensions

are in the order of the wavelength of the illumination of interest. 1D alloy nanoma-

terials can create an array of tunable properties, controlling band gaps by alloying

semiconductors and controlling structure based optoelectronic properties.68

Metal oxides play a crucial role in physics, chemistry and material science, metal

elements are able to form a wide variety of oxide compounds. The ease of processing

metal oxides is a great advantage in the development of devices, which is versatile

and cost effective. A challenge in finding materials for photoanodes is discovering

hybrid metal oxides with superior stability in electrolytes, whilst retaining beneficial

band positions i.e. absorption greater than 1.23 eV and straddling the redox poten-
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tials. Nanostructured materials further reduce costs compared to bulk materials, if

expensive elements are used, a large surface area is achievable with limited material.

Research into heterostructure metal oxides provides the opportunity of engineer-

ing band gaps and electronic properties. Alloying metal oxides and creating a hybrid

oxide with a preferential band gap has been extensively researched. Heterostructure

junctions utilise surface electronic state dynamics,69 improving charge transport in

the structure. A variety of scenarios are possible which are illustrated in Figure

1.10.
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Figure 1.10: Three types of heterostructure semiconductors are classified according
to their position between each other. Type I and type II can be utilised as a
photoanode material, whilst type III is not useful for photocatalytic water splitting.

For a Type I heterojunction, a wide and narrow band gap material are in contact.

One could be UV sensitive and the other could be sensitive to visible light. The redox

power is determined by the narrow band material. A Type II heterojunction is a

junction between materials with different Fermi levels and work functions but similar

band gaps. A typical situation is a p-n junction, electron energy will be determined

by the CBM of the n-type material and hole energy is determined by the VBM of the

p-type material. A broken gap heterostructure is a type III heterojunction where

the band positions of either material do not straddle the redox potentials. Oxidation

and reduction reactions will be stunted in a type III heterostructure serving as a

photoanode. Therefore it is essential to enable precise control of the electronic

structure to maximise the light absorption and determine appropriate positions for

the CBM and VBM.
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1.4 Hydrogen, Fuel of the Future?

Amongst the benefits of hydrogen is the versatility in direct energy conversions;

thermal, mechanical and electrical energy conversions are all possibilities.70

Hydrogen is a lightweight fuel and is the richest in energy per unit mass of any

fuel. Hydrogen as a fuel for a combustion engine has an optimum thermodynamic

efficiency of 38 % and is 8 % higher than that of petrol.71,72 Hydrogen is also

a carbon zero fuel, since oxidation (combustion) of hydrogen produces only water

as a by-product. However, at the high temperatures involved in the combustion

of hydrogen, harmful nitrogen oxides may be produced. An efficient way of using

hydrogen as a clean gas fuel is to use it in a fuel cell. Hydrogen has an energy density

of 120 MJ/kg, whilst petrol has an energy density of 44.4 MJ/kg.73 Hydrogen has

a much higher energy density, which coupled with the zero carbon emission, makes

it an ideal candidate as a clean fuel for the future. The detailed structure and

mechanism of a hydrogen fuel cell will be discussed later in section 1.4.

Current methods of hydrogen production are costly, non-renewable and CO2

emissive, limiting the development of a mainstream hydrogen economy.

The key challenges of progressing to an oil-free hydrogen economy are achieving

low mass to weight ratio hydrogen storage methods,74 and renewable methods of

hydrogen production with higher efficiencies. If these challenges are tackled, a future

powered simply by the sun and water will significantly change our way of life as a

society.

Current Methods (CO2 Emissive) of Hydrogen Production

Currently the major production of hydrogen is chemically extracting hydrogen from

fossil fuels (96 %), which inevitably still contributes to CO2 emission.75

The methods of extracting hydrogen are;

• Steam reforming of natural gas or methane (hydrocarbons)76–80

CH4 + H2O → CO + 3H2

CO + H2O → CO2 + H2

• Partial oxidation of methane81–83
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CH4 + 1
2O2 → CO + 2H2

CO + H2O → CO2 + H2

• Autothermal reforming of hydrocarbons84–87

2CH4 + O2 + CO2 → 3H2 + 3CO + H2O (exothermic due to oxidation)

CO + H2O → CO2 + H2

• Gasification of coal88–92

3C + O2 + H2O → H2 + 3CO

CO + H2O → CO2 + H2

In all of the above processes carbon plays a significant role and the final products are

H2 and by-product of CO2. Ultimately hydrogen produced this way is not beneficial

to the environment and if used in transport will contribute to CO2 emission unless an

effective way to either store or convert CO2 back into hydrocarbons are developed.

Cleaner methods of hydrogen production are required before it can be considered as

a renewable, CO2 neutral fuel.

CO2 Neutral Methods of Hydrogen Production

Alternatively the four key green solar hydrogen generation systems include:

• Photoelectrochemical cells (PEC)

– Electrolytes in a cell undergo photocatalytic reaction due to a light sens-

itive anode, facilitating water electrolysis.93

• Photovoltaic (PV) cells as an electrolyser

– A DC current supplied via photovoltaics facilitate water electrolysis.94

• Photobiological systems

– Living organisms produce hydrogen under illumination (photosynthesis

of algae or cyanobacteria).95

• Thermal decomposition of a metal oxide (thermochemical cycles).
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– Sunlight can be focused to create a high temperature beam. The heat

associated with the beam decomposes a metal oxide, which in turn is

oxidised in the presence of water, and generates H2.96

– ZnO → Zn + 1
2O2 (2300 K ∆ H = 557 kJ/mol)

– Zn + H2O → ZnO + H2 (700 K ∆ H = -63 kJ/mol)

A PV and an electrolyser system is a two part configuration, a solid-state photo-

voltaic provides the electrons under illumination. The electrons are utilised in the

decomposition of water. The choice of photovoltaic diode dictates the range of light

absorbed. Thus, by employing a PV semiconductor with a band gap of approx-

imately 2.4 eV a large portion of the solar spectrum can be harnessed. However,

there is extra energy cost which is lost in overcoming the overpotentials of the redox

reactions. Additionally, the storage of the water splitting module increases the com-

plexity of the system.97 A high photocurrent may be possible but a significant

amount of this electric output is wasted to drive the overpotential, this is not true

for a PEC where the band bending of the semiconductor-liquid interface actually

decreases the overpotential. Less energy is wasted in a PEC, and a larger portion

of the suns irradiance can be utilised in directly splitting water.

Water splitting can also occur by photobiological processes.98,99 For example,

when algae are deprived of sulphur they start producing hydrogen rather than oxy-

gen through photosynthesis. A hybrid biophotoanode has recently been shown to

produce hydrogen at double the efficiency of iron oxide photoanodes, the photoan-

odes are created by cross coupling iron oxide with phycocyanin.100 Phycocyanin is

a light harvesting protein and when integrated with a hematite film enhances light

absorption.

Thermochemical cycles utilise the decomposition of metal oxides in the presence

of water, splitting water as the chemical reactions occur.101–104 Iron oxide,105,106

copper oxide107 and zinc oxide108–110 are just a few of the metal oxides that can

undergo the cyclical process of decomposition and oxidation at reasonable temper-

atures, producing hydrogen as the by-product. This method of hydrogen production

is useful when heat is available as a waste product of a process, or under magnified

solar illumination. The work in heating the metal oxide is the major influence in

overall output efficiency.
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This work will concentrate on photoelectrode designed for photoelectrochemical

cells.9 A PEC has many advantages over the other hydrogen production methods

described, the simple design of a PEC results in lower energy losses compared to an

electrolyser-electrolyte configuration, and far less energy waste than a thermocyclical

process which outputs inherent wasted heat. While, photobiological systems seem

promising, the research is not as well grounded as photoelectrochemical cells and

not as flexible when it comes to choice of biological materials for the construction

of the generators. The materials in the construction of a PEC primarily consist of

the semiconductor photoanode, of which a countless number of metal oxide/nitride

alloys can be explored.

Hydrogen Storage

Once hydrogen is generated, it will immediately require effective storage. This is

essential for the practicality and portability of the technology. The DOE target for

the volumetric capacity storage of hydrogen was 28 g H2/L in 2010 and 40 g H2/L

in 2015.111

Current efforts are geared toward incorporating hydrogen into solid matrices,112

which can adsorb hydrogen effectively for storage and easily extracted for later

use.113 Hydrogen stored on graphene pillars was predicted to store hydrogen with a

high mass/weight ratio, storing up to a volumetric capacity of 41 g H2/L.114

Along with carbon based storage (graphene/CNT/bucky balls), metal hydrides

and metal oxides such as ZnO115 and TiO2
113 have all garnered considerable interest.

Metal organic frameworks (MOFs), metal oxide frameworks and activated carbon

bind molecular hydrogen to the surfaces via Van der Waals interactions (physisorp-

tion). Metal/chemical hydrides trap atomic hydrogen via a strong chemical bond

which consequently requires high temperatures (150-200 ◦C) to release hydrogen.116

Metal decorated polymers could provide a lightweight matrix to store hydro-

gen, with short molecular adsorption and desorption times.117 Interestingly in the

inverse scenario a polymer outer layer can protect hydride nanocomposites from

O2 and H2O,118 allowing a selective gas permeability for hydrogen adsorption and

desorption.
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Fuel Cells

The generated hydrogen can release its energy through an efficient fuel cell operated

at a relatively low temperature and pressure, these conditions are essential for the

safety and longevity of commercial technology. Here I will discuss some technical

details of a modern hydrogen fuel cell.

Fuel cells work in the opposite sense of water electrolysis and were first developed

practically by Francis Thomas Bacon in 1959, whilst the principle was first demon-

strated much earlier by Sir William Grove in 1839.119 The principle is illustrated in

Figure 1.11 for two types of fuel cell, (a) the polymer exchange membrane fuel cell

and (b) a solid oxide fuel cell. The conversion of hydrogen to water through reverse

electrolysis allows an obtainable work of 237 kJ/mol (H2O Gibbs free energy) and

can reach high theoretical efficiencies. Whilst chemically converting hydrogen to

water (combustion) inherently produces heat and is approximately 50 % efficient,

thereby obtaining only 143 kJ/mol of work from the 286 kJ/mol available (enthalpy

of combustion).120

Fuel cells are classified according to the materials used as the electrolyte. A list

of a few types of fuel cells include:

• Polymer exchange membrane fuel cell (PEMFC)121,122

– A PEMFC operates at low temperatures, ranging from 30-100 ◦C. The

ionic flow of charge is facilitated by hydrogen ions, the reaction is shown

in Figure 1.11(a). The electrodes are decorated with Pt catalysts to assist

in the electrochemical reaction.

• Solid oxide fuel cell (SOFC)123

– Oxygen ions are the charge carriers in an SOFC, the ionic flow in the

solid oxide electrolyte is a thermally activated process and require tem-

peratures ranging from 500-1000 ◦C. A variety of materials are utilised

in the electrode material of an SOFC. The construction of an SOFC is

illustrated in Figure 1.11(b).

• Alkaline fuel cell (AFC)
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– OH− is the charge mediator in the aqueous electrolyte and operates in

a temperature range from 50 ◦C to 200 ◦C, the alkaline fuel cell has the

highest efficiency of 60 % whilst the efficiency of a PEMFC is between

25-58 % and an SOFC is below 43 %. A key issue of the AFC is the

formation of potassium carbonate which blocks the pores of the cathode

and reduces the ionic conductivity of the electrolyte.

• Molten carbon fuel cell (MCFC)

– CO2−
3 is the charge carrier and operates at 650 ◦C, the molten electrolyte

is composed of lithium-potassium carbonate salt heated to high temper-

atures. A significant advantage of an MCFC is that non-noble metal

electrodes can be used, for example a nickel anode and nickel oxide cath-

ode are able to facilitate the electrochemical reaction.

A solid electrolyte enables a simple construction of the cell. A solid polymer

membrane serves as the electrolyte in PEM fuel cells and platinum incorporated

porous carbon electrodes serve as anode and cathode. The platinum is the catalyst

in the electrodes which react with hydrogen removing electrons from the atoms. The

hydrogen ions can conduct through the polymer membrane and react with oxygen

at the cathode forming water. The PEM cell is illustrated in Figure 1.11(a).

Solid-state electrochemistry is not new; Faraday discovered PbF2 and Ag2S can

conduct electricity through the motion of ions,124–126 and can either have negligible

electron transport or can conduct both ions and electrons (intercalation electrode).

A key advantage of using a solid electrolyte in a fuel cell is the reduced complication

in construction, where all constituent electrodes and electrolyte can be deposited

layer by layer and form a convenient cell, without the need for membranes and

liquid (requiring seals). Metal oxide electrolytes have been known since 1884 when

Warburg demonstrated Na+ ions can be transported through glass (SiO2).127 Later

Nernst found ZrO2 doped with Y2O3 can conduct oxide ions; an ionic current passing

through the crystal oxide produces white light and was proposed as a unique form

of electric light.128,129

Solid oxide fuel cells on the other hand require high operating temperatures

(1000 ◦C), with the high operating temperatures the choice of materials used in the
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Figure 1.11: Illustration of the mechanisms of a PEMFC (a) and an SOFC (b),
conducting H+ and O2− ions respectively.

construction of the fuel cell are limited and poses problems for long term stability

of the cell. The three most commonly used electrolytes are yttria-stablised zirconia

(YSZ), doped ceria (CeO2) and lanthanum gallate (LaGaO3).130 In the case of a

metal oxide electrolyte the charge carriers are negatively charged oxygen ions. Oxy-

gen is supplied at the cathode and reacts with electrons, the oxygen ions migrate

through the metal oxide and react with hydrogen at the anode forming water. The

cathode material determines the oxidation reaction and determines efficiency of the

cell. Lanthanum manganites and lanthanum cobaltites are metal oxide semiconduct-

ors which show good catalytic properties at high temperatures. Recent progress has

shown a material composed of strontium doped lanthanum manganites (LSM)131,132

possesses good properties as a cathode material, i.e. good electronic conductivity

and matching heat expansion coefficient with YSZ. It is also less prone to chro-

mium poisoning and demonstrates lower power losses at lower temperatures. For

the anode, nickel is a cheap high performing material in catalysing the oxidation of

hydrogen and can be alloyed with the electrolyte material to form a better epitaxial

junction. Generally both electrodes are porous to allow easy and dispersed access
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of gas to the electrode/electrolyte interface.

Solid oxide fuel cells can operate using other hydrogen compounds as the fuel

at the anode, since oxygen ions are the charge carriers and can react with other

hydrogen based fuels. At the high temperatures required, an in situ steam reforming

process can provide the electrode with hydrogen.

1.5 Thesis Overview

The thesis is devised of 7 chapters, the first 3 of which aim to provide the reader

with the theory of methods used in the research reported herein.

Chapter 2 outlines the analytical tools used in the course of this research; a

scanning electron microscope is an essential tool in the analysis of morphology of

nanostructures, whilst X-ray diffraction gives insight to the crystallography and

composition of materials synthesised. The purpose of controlling morphology and

composition of nanomaterial photoanodes is to improve the performance of the pho-

toanode for the purpose of photocatalytic water splitting. The photoelectrochemical

testing utilising the photoanodes in photocatalytic water splitting gives a direct in-

sight into the properties and performance of the materials.

The synthesis of the unique architecture nanostructure metal oxides took several

forms, as described in chapter 3, each of which have benefits and drawbacks. The

fabrication of thin films of transition metals by electron beam evaporation provides

a versatility of choice for the thin film material.

Syntheses routes of structures took many forms including; vapour transport syn-

thesis, anodisation, aerosol assisted chemical vapour deposition and chemical bath

deposition.

The work is focused on three transition metals, Ti, Fe, and Zn, and their ox-

ide counter parts. Chapter 4 concentrates on the synthesis of Fe-Ti-O nanotubes.

Employing e-beam evaporation to form a thin film metal substrate, the thin film

undergoes electrochemical anodisation which produces nanotubes through an oxid-

ation/dissolution process. The purpose of employing two transition metals in the

photoanode material is to engineer the band gaps and utilise a greater spectrum of

light than is possible with TiO2 alone. The band gap of TiO2 is UV sensitive whilst
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Fe2O3 is sensitive to visible light encompassing more of the usable solar spectrum,

the Fe2O3 CBM position is less favourable than the TiO2 CBM, where the CBM is

more positive than the reduction potential of water. Through the alloying of the

materials it is possible to achieve a smaller band gap than TiO2 and maintain fa-

vourable band positions. It is successfully shown that with the introduction of iron

to the titanium nanotube structure, the photoelectrochemical performance of the

nanotubes as a photoanode improves and the H2 generation rate doubles compared

to bare TiO2 nanotubes.

Vapour transport methods proved insightful and versatile, as highlighted in

chapter 5 which explores ZnO synthesis by vapour transport mechanisms. It is

possible to synthesise a multitude of structures by controlling synthesis conditions.

ZnO rods formed on a Ti foil proved an efficient photoanode, we have established a

thin TiO2 layer forms on the Ti foil initially, and a Zn2TiO4 layer forms at the in-

terface between this TiO2 layer and the ZnO rods, this introduced a heterostructure

capable of increased photoefficiency due to better charge separation at the interface.

This improvement was insightful for the architectural design explored in chapter

6 to improve efficiency by creating a 3D electronically favourable structure; ZnO

rods created within TiO2 nanotubes increased the surface area of the heterostruc-

ture junction improving light absorption and charge separation significantly, hence

enhancing photopower density output significantly compared to TiO2 nanotubes or

ZnO rods alone.

Novel photoanodes created by AACVD, VS and CBD are explored in chapter 7.

TiO2 coated ZnO rods showed improvement in photopower density ouput, though

is limited to a sparse coverage of the rods. A mesopourous ZnO film created by

AACVD showed significant photocurrent but not as high as the crystalline counter-

parts, crystallinity plays a crucial role in the high photocurrents attributed to the

ZnO/Zn2TiO4/TiO2 heterostructure. Chemical bath deposition of ZnO structures

created a one step nanotubular array of ZnO. An initial ZnO annulus seed layer

instigated the site specific growth of ZnO, forming a nanotubular structure from the

initial ring framework.
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Chapter 2

Analytical Methods

The materials produced in this work are novel in structure and composition. Mor-

phological information of materials created are obtained using a scanning electron

microscope with a resolution of only a few nm. The composition of materials can

be analysed by energy dispersive X-rays which supply elemental analysis inform-

ation, whilst a deeper characterisation of the crystal structure and composition is

carried out with X-ray diffraction. X-ray diffraction provides important details of

the fundamental structures created, including crystallinity and crystal orientation.

Photoelectrochemical testing is an important characterisation technique of the

materials for use as a photoanode, that is the efficiency of hydrogen production

under illumination and recording the current-potential relationship. This allows the

photopower density output of the solar cell to be calculated and the quality of the

material as a photoanode assessed.

2.1 Scanning Electron Microscope (SEM)

The scanning electron microscope133 is a critical analytical tool in the analysis of

nanostructures. The SEM provides a method to observe morphology and character-

ise composition of materials. Optical microscopes are limited by the Abbe diffraction

limit (∼ d = λ/2.8 for modern optics where d is the resolvable feature size); with a

limited resolution of approximately 180 nm for green light, well above the resolution

required to image structures as small as 50 nm. A scanning electron microscope is

not limited to this resolution and can achieve a few nm resolution.
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The fundamental mechanism behind the electron microscope is the observation

of electron interaction with a material rather than photon (optical) interaction, an

electron has a smaller de Broglie wavelength. The derivation of the de Broglie

wavelength of an electron under a bias is shown in equation 2.2 to 2.4 and the re-

lativistic form is shown in equation 2.5 where p is momentum, h is Planck’s constant,

λ is the de Broglie wavelength, eV is the electron voltage and me is the electron

mass. The diffraction limit is reached when the wavelength of the electron beam

is similar to the dimensions of the material under study. For an electron micro-

scope, the typical electron energy ranges from 5 to 30 keV, which corresponds to a

de Broglie wavelength range of 0.017 nm to 0.007 nm respectively. Therefore, the

diffraction limit will be less than 0.02 nm for a transmission electron microscope

(TEM). For an SEM the resolution is determined by the electron beam profile.

λ = h

p
(2.1)

eV = 1
2

mev
2 (2.2)

p = mev =
√

2eV me (2.3)

λ = h√
2eV me

(2.4)

λ = h√
2meeV + eV

c2

(2.5)

An electron source accelerates a stream of high energy electrons toward a sample

surface which are decelerated upon striking the surface where a number of scattering

events take place. Secondary electrons are released, after bombardment, from the

atoms close to the surface. In such cases, the resolution is limited to 2-5 nm due

to the beam profile and the electron mean free path. These secondary electrons are

detected, and a morphological image is built-up. Characteristic X-ray’s produced

by relaxation of electrons to lower orbitals in atoms close to the surface can give

compositional information.
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2.1.1 Electron Source

Electrons are ejected from a metal filament through thermionic emission.134 A

current is applied across a tungsten filament at the top of the column of an electron

microscope, Figure 2.1. The current heats the filament via resistive heating, and the

electrons in the filament gain enough kinetic energy to overcome the work function

of the material. A high positive voltage of +5-20 kV is applied to the extraction

anode near the filament of the electron gun, this bias provides the electrons with a

high kinetic energy; accelerating electrons through the column. The SEM requires

a vacuum environment to avoid scattering inside the column as well as to allow

thermionic emission to occur. The vacuum is maintained by a diffusion pump backed

by a roughing rotary pump.

Stage

manipulator

Stage

Thermionic electron gun

Anode

Condenser lenses 

Scanning coils

Objective lens

Aperture

Secondary electron

detector

Cryogenically cooled

X-ray detector

Figure 2.1: Schematic of a scanning electron microscope.

The stream of electrons passes through a series of magnetic fields which controls

size, shape and position of the electron beam. In Figure 2.1, the column is shown and

pathway of the electron beam. The electrons traverse the first magnetic field, the

condenser lenses, which confines the e-beam reducing the beam size and adjusting

the shape. The aperture removes any unwanted stray electrons.

The second set of lenses determine the position of the beam on the sample surface
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and are controlled to image the surface in a scanning mode, similar to a CRT screen,

raster scanning the material. The final sets of lenses converges the electron beam

into a fine and focused beam; these are the objective lenses. Inside the objective

lenses is the stigmator, the stigmator is a set of coils that have two dimensional

control (x-y) of the beam and corrects any astigmatism of the beam, forming a

round sharp electron beam focusing on the object (the scanning and stigmator are

inside of the objective lenses).

2.1.2 Morphology Imaging

Secondary electrons are the most commonly detected electrons for topological ana-

lysis in an SEM; these are low energy electrons ejected from an atom, due to the

incident electron beam. The electrons typically have energies below 50 eV and

are emitted a few nanometres from the surface. Secondary electrons are generated

through an Auger process by a high energy electron scattering process, the incidence

of the high energy electrons causes the ionisation of the core electron of the sample,

which leaves a core hole in it’s absence. The upper level electrons will relax into

the core level and release the binding energy in the form of photons. The photon

energy is strong enough to cause ejection of other electrons (secondary electron) in

the upper level, loosely bound to the nuclei. The advantage of using secondary elec-

trons to image the surface, is that the distinctive low energy of the electrons allows

it to be separated from the primary electrons (beam) in the background, achieving

a good image contrast. In addition to the high contrast, the low energy secondary

electrons also have a small mean free path, which restricts the probe depth; and

guarantees a high resolution. The combination of high contrast and high resolution

gives the ultimate quality of the topographical surface image.

Backscattered electrons (BSE) are high energy incident electrons elastically de-

flected within the sample material; under the influence of the nuclei of the atoms

in the material. The BSE detector (not installed in our SEM) is usually positioned

as close to the normal of the target surface as possible; usually very close to the

e-beam. Heavy atoms (high atomic number) have a larger positive charge of the

nucleus, and a higher chance of electrons deflecting in the direction of the detector

at high energies. Therefore the contrast of the backscattered electron image is dom-
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inated by the atomic weight and it can be used to distinguish between plastic and

metal containing domains. The electrons penetrate a few microns depth from the

surface of the sample material before deflecting either once or several times (before

it reaches close enough to the radius of a nucleus), which is dissimilar to secondary

electrons where electrons are ejected very close to the surface (a few nm) due to a

limited electron mean free path. The backscattered detection can reveal composi-

tional information as materials with a higher atomic mass appear brighter; a larger

flux of back scattered electrons are observed with a heavier/larger nucleus.

Evehard-Thornley Detector

Our SEM has a secondary electron detector installed, which obtains the topological

information of the sample under investigation. The Everhart-Thornley detector,135

illustrated in Figure 2.2, enhances the secondary electron signal after an electron

undergoes an avalanching process. A few electrons enter the detector and are amp-

lified into millions of electrons detected as a signal. The signal is too weak without

an avalanching process.

Waveguide

DynodesAnode
Scintillator

Collector grid 

(a few hundred

 V, +VE for SE)

Photocathode

~10 kV

hν
e-

e-

10nF

100kΩ

Signal

1kV

1MΩ

Figure 2.2: Secondary electron detector. The collector grid is positive to attract
low energy secondary electrons..

In order to eliminate the high energy primary and backscattered electrons, the

SE detector is mounted horizontally, parallel to the sample surface. The detector

(Everhart-Thornley detector) consists of a Faraday cage which is positively charged

(tens to hundreds of volts) to attract low energy electrons which are then amplified

by an electron multiplier (dynodes). The electron will then be accelerated further

towards the phosphor coated screen at the front of the photomultiplier tube. The

emitted photons propagate through a waveguide into the photomultiplier tube. The
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photons travel through the wave guide and strike a photoanode, producing electrons.

The electrons travel through the photomultiplier cavity striking dynodes (at a bias

of +100 V); these photoelectrons generate secondary electrons at the dynodes giving

off excess electrons. An avalanching effect of multiplying electrons results in millions

of electrons produced from a single electron; to allow detection at the anode. The

signal produced at the anode is amplified and registered on a cathode ray tube

(CRT) screen synchronised as a function of beam position on the sample.

2.1.3 Compositional Analysis - EDX

An X-ray detector can also be installed in the SEM to detect the X-ray fluorescence

generated in the electron scattering process and used to analyse the composition

of the sample under investigation. The energy dispersive X-ray (EDX) detector

measures the energy of the X-rays created via the bombardment of electrons striking

a sample surface. These X-rays are emitted after a core electron is ejected and an

upper electron relaxes to the core level. The energy of the X-ray corresponds to

the binding energy difference between the core level and upper level. Thus each

element has it’s own distinctive X-ray emission, independent of the kinetic energy

of the primary electron. The primary signals are due to an electron relaxing via the

Kα transitions, where an electron in the L shell replaces a missing electron in the K

shell. Other transitions can also generate X-ray fluorescence but at a lower energy.

Together with the Kα emission, it is possible not only to identify the elements in

the sample, but also quantify their relative concentration. Figure 2.3 illustrates the

premise.

The detector is a solid-state device, a few mm thick. The p-i-n (PIN) diode

detector is a p-type material and n-type material sandwiched between an insulator.

A -1 kV bias is applied to the contacts and as a high energy photon (X-ray) passes

through the device a cascade of electron-hole pairs form creating a voltage pulse

across the device. The device is cooled using liquid nitrogen (LN) to reduce the con-

ductivity of the excitons (silicon and lithium are typically used as the semiconductor

and insulator respectively).
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Figure 2.3: X-ray emission via a kα transition.

2.2 X-ray Diffraction (XRD)

Our lab is also equipped with a SIEMENS D500 X-ray Diffractometer. The Cu

target X-ray source (electrons bombard Cu, producing X-rays) emits X-rays at a

characteristic CuKα1 wavelength of 1.54 Å, other wavelengths are too weak or are

cut off by a filter. A Bragg-Brentano configuration is adopted, in which the sample

is attached to a rotating stage and the detector is attached to a secondary rotating

stage. The detector rotates at twice the angle of the sample holder.136

The X-rays enter crystal structures and are reflected by the atoms in the lattice,

causing constructive and destructive interference of the reflected waves at certain

angles. The angle at which constructive interference occurs is defined by the spacings

of the lattice and the wavelength of the X-ray; following Bragg’s Law.137 The

deflection geometry is illustrated in Figure 2.4.

Figure 2.4 shows that the X-ray has travelled an extra length between consecutive

planes of the lattice. Constructive interference occurs when the X-ray’s are reflected

at consecutive planes in phase, this happens when the extra length travelled by an X-

ray is a multiple of the wavelength. This is only possible because X-ray wavelengths

are comparable to lattice spacings. The material will have many of these consecutive

planes, and the cumulative effect produces narrow fringes or Bragg peaks at the

angles corresponding to the separation of particular sets of planes.

nλ = 2dhkl sin θ (2.6)
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Figure 2.4: Illustration of Bragg’s law, if the spacing between planes of atoms is
close to the wavelength of the photons the constructive interference can be easily
detected.

The detector arm rotates by 2θ as the sample rotates by θ. This is convenient

as it is possible to keep the X-ray source stationary, and the detector is always in

the line of sight of the reflected X-ray beam.

In glancing angle mode, the X-ray source strikes the sample at a set angle, and

the detector arm rotates by theta. In this case, the signal pattern is localised to

the illuminated spot and the angle of sample entry. This is usually used for loose

samples, but can also be used to analyse a specific depth or part of the sample under

investigation. The reflected beam is weaker compared to the theta/2-theta mode.

To analyse the X-ray diffraction spectra, Igor pro software suite was primar-

ily used for data analysis and technical graphing whilst X-ray diffraction software

packages powderx and X’Pert HighScore Plus are used for the quantification of the

patterns. Diffraction peak fitting is analysed using open source algorithms.138

The XRD pattern produced, consists of a series of diffraction peaks. The position

of which are determined by the lattice spacings of the material under inspection.

The Bragg equation relates angle of constructive interference and the consecutive

spacings of planes. The full width half maximum width (FWHM) of the peaks is

determined by the crystallite domain size following the Scherrer equation (equation

2.7) published in 1918.139 Where B(2Θ) is the FWHM, λ is the wavelength of the

X-rays, θ is half the 2θ value of the peak, L is the crystallite domain size and K is

the Scherrer constant/shape factor. The FWHM is measured in radians.
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B(2Θ) = Kλ

L cos θ
(2.7)

The Scherrer equation shows the peak width is inversely proportional to the

crystallite size; large single crystals will have a narrow full width half maximum.

The Scherrer constant can range from 0.8 to 1.2 in powder samples according to the

geometry of the crystallite, it is also known as the shape factor. Scherrer reported

a value of 0.93 for the Scherrer constant for crystals with cubic symmetry. In this

thesis the crystallite size is used qualitatively, as an indication of the magnitude of

single phase crystallite sizes and the geometry of crystals.

In other words, as the number of diffracting planes in well defined spacings

increases the brighter and more well defined the constructive interference peaks

becomes.

Peak widths get broader with decreasing crystallite size, the crystallite size

broadens at larger 2θ values due to the instrumental profile and optical config-

uration, better results are gained from peaks between 30◦ and 50◦ (2θ).

The peak height is an approximation of the peak intensity, and the peak area

is the real measure of the peak intensity. The peak height depends on the number

of crystallites diffracting X-rays, and can be used to determine the composition of

the sample. If the material exhibits a preferred orientation the peak height will be

intense at the Bragg angle corresponding to the preferred orientation.

Typical XRD spectra recorded from ZnO powder, TiO2 powder and a Ti foil are

shown in Figure 2.5. For the majority of materials created in this work, a Ti foil

served as a substrate for growth of materials and it is useful to differentiate these

peaks. TiO2 is the staple metal oxide studied in the work herein, knowledge of the

crystal structure of the powder helps ascertain a background profile for the mater-

ials. ZnO is extensively studied through chapters 5-7 and a background profile of

randomly orientated powder crystallites is fundamental in illustrating the alignment

of ZnO formed in later chapters.

Tables 2.1 to 2.3 contain the data of diffraction peaks collected from the samples

in Figure 2.5. These materials will be dominant in the XRD patterns in the following

chapters. Standard P25 TiO2 powder is purchased from Sigma Aldrich, with a

particle size of 21 nm. Values of crystallite size in Table 2.2 can be averaged as a
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Figure 2.5: Peak patterns for ZnO powder, TiO2 (P25) powder, and a Ti foil.
The important characteristics of the peaks for analysis are highlighted; interatomic
distances, crystalline size and contents of the unit cell can be characterised by peak
analysis.
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ZnO (hkl) 2θ Peak height Peak area Crystallite d

(◦) (counts) (counts◦) size (nm) (Å)

(100) 31.80 10155.60 3243.09 30.62 2.81

(002) 34.45 7888.57 2519.14 30.83 2.60

(101) 36.25 18683.40 5966.36 30.98 2.48

(102) 47.55 4482.95 1670.18 27.58 1.91

(110) 56.60 7462.68 2383.13 33.44 1.63

Table 2.1: XRD analysis of ZnO powder. Average crystallite size of 30.69 nm.

TiO2 (hkl) 2θ Peak height Peak area Crystallite d

(◦) (counts) (counts◦) size (nm) (Å)

(101)a 25.06 18339.5 10151.3 17.40 3.55

(110)r 27.24 2739.08 1399.52 18.94 3.27

(101)r 35.78 1471.63 751.91 19.34 2.51

(004)a 37.64 4427.84 2827.97 15.55 2.39

(200)a 47.82 6703.55 3710.57 18.58 1.90

(105)a 53.72 4489.62 4492.31 10.53 1.71

(211)a 54.86 4197.31 2502.03 17.77 1.67

Table 2.2: XRD analysis of TiO2 powder. Average crystallite size of 16.87 nm.
Anatase is represented by a and rutile by r.

whole obtaining a value of 16.87 nm or averaging between 30◦-50◦ which can be more

accurate. The average crystallite size is 17.82 nm between 30◦-50◦. The crystallite

size is only 3-4 nm smaller than the particle size. Therefore P25 powder is almost

made up of single crystals.

ZnO powder has larger crystallites than p25, the data is given in Table 2.1.

Average crystallite size is 29.68 nm between 30◦ and 50◦, and 30.69 nm for all the

peaks. The lattice parameters of ZnO are c = 5.2 Å and a = b = 3.25 Å and the

volume of a ZnO wurtzite unit cell is 23.83Å2.140 To gain some perspective, a single

crystallite contains over half a million unit cells of wurtize ZnO.

Titanium foil serves as a substrate for a variety of the hybrid photoanode con-

structed in this work. These peaks serve merely for reference when they are present
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Ti (hkl) 2θ Peak height Peak area Crystallite d

(◦) (counts) (counts◦) size (nm) (Å)

(100) 35.22 1958.51 708.82 27.26 2.55

(004) 38.54 18703.80 4778.30 38.99 2.34

(101) 40.26 13322.60 4254.44 31.36 2.24

(002) 53.12 7821.07 2164.57 37.99 1.72

Table 2.3: XRD analysis of a Ti foil. Average crystallite size of 33.9 nm.

in an XRD pattern. Present Ti peaks give insight into the X-ray penetration depths

in to a sample where titanium serves as a substrate, if they are present we know that

the X-rays are diffracting from the substrate as well as structures in close proximity

to the surface. This allows determination of the spatial composition of the roots of

ZnO rods or roots of titania nanotubes.

2.3 Photo-Electrochemistry Overview

Electrochemistry is a subject with many useful applications that are fundamental to

modern science and technology. These include batteries, fuel cells, electrochromic

displays, electrophoresis and electro plating (galvanising). In the most basic form,

electrochemistry is the study of chemical reactions at the surface of two electrodes

(metal conductor/semiconductor/carbon) in contact with an electrolyte. An elec-

trolyte is a conducting medium where the charge carriers are ions. The electrolyte

is typically a liquid containing an ionic species but can also be of the form of a

solid/non aqueous based electrolyte, i.e. ionically conductive polymers, metal ox-

ides and fused salts. Liquid electrolytes have the advantage of forming a complete

electronic junction by direct contact with the whole surface area of an electrode,

providing a large ionic conductivity.

Two different metals have two different Fermi levels, and in contact the Fermi

levels (chemical potential) of the system must be the same (in equilibrium) as there

is electron flow between one and the other. Thus when two metals are in contact the

work function of one metal raises as the Fermi levels equilibrate, this shift results in

a potential difference when the two metals are in contact. Figure 2.6 illustrates the
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energy and potential difference caused by a shift of the work function of a metal as

it reaches equilibrium, the work function is the energy required to remove a bound

electron from a material. The contact potential is the difference between the work

functions of the materials when the Fermi levels are equal, divided by the electronic

charge. This is the Volta effect.

εfεf

Φ Φ1 2

PD = Φ1Φ2 -
e

- WorkfunctionΦ

PD Potential di"erence

Φ1Φ2 -

Φ2Φ1

Figure 2.6: Illustration of electron states of two metals in contact, a contact
potential difference equal to the shift of the work function divided by charge forms.

An electrochemical cell requires at least two electrodes, and usually only one

electrode reaction is of interest. The reactions taking place at each of the electrodes

can be considered two half-cell reactions. The electrode of interest is the working

electrode, and the electrode which completes the circuit is the counter electrode.

Characterisation of a half reaction requires a well understood reference electrode. A

reference electrode is self-contained within an electrolyte of constant composition.

The behaviour is well documented, and the potential of the reaction is known to a

precise degree.

The reference electrode I have chosen to adopt is the silver-silver chloride elec-

trode (Ag/AgCl), which is a silver wire coated with silver chloride contained in a

saturated KCl solution (0.197 V vs. NHE). A saturated KCl solution is used, as the

potential is known to a precise degree through measurements. Measuring the beha-

viour of a half cell reaction requires measuring the potential of the working electrode

with respect to the reference electrode, whilst a counter electrode completes the cell.

There are several scales with which the potential can be compared, the most

convenient form is the reversible hydrogen electrode (RHE) because the oxidation

and reduction potentials of water remain fixed at any pH. The pH of the electrolyte

shifts the oxidation and reduction potentials of water with respect to the normal
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hydrogen electrode (NHE) and vacuum energy according to the Nernst relation given

in equation 2.8. In this work, an Ag/AgCl reference electrode is adopted, which is

fixed with NHE. 0 V vs Ag/AgCl (E0
Ag/AgCl) is equivalent to a potential of 0.197 V

vs NHE. The relationship between potential scales in acidic and alkaline electrolytes

are shown in Figure 2.7.

ERHE−−EAg/AgCl + 0.059 pH + E0
Ag/AgCl (2.8)

ERHE is the potential vs RHE and EAg/AgCl is the potential vs an Ag/AgCl

reference electrode.

It’s important to note that in an alkaline electrolyte (pH = 14) 0 V vs RHE

is equivalent to -1.023 V vs Ag/AgCl, and 1.23 V vs RHE is equivalent to 0.207

V vs Ag/AgCl. These values allow us to calculate the onset potential and optimal

photocurrent at 1.23 V (RHE). All photoelectrochemical measurements in this work

are conducted in an electrolyte solution of 1 M KOH (purchased from Sigma Aldrich)

in deionised water with a pH value of 14.

For a two electrode electrochemical setup, the potential is measured as the re-

versible hydrogen electrode. At approximately 0.4 V (RHE) the oxygen evolution

reaction begins, this indicates the overpotential for the oxygen evolution full cell

reaction is 0.4 V (RHE) which is partially due to the flat band potential between

the photoanode and electrolyte, and recombination in the space charge layer, hole

trapping or hole accumulation at the surface of the photoanode.141,142

2.3.1 Experimental setup of a solar water splitting cell

Developing efficient solar hydrogen generation is the goal of this work, providing

chemical energy (H) from abundant sources. Increasing efficiency to 10 % could

allow commercialisation of PEC water splitting.

A photoelectrode serves as the anode, and a platinum counter electrode as the

cathode. The potential is measured in respect with the reference electrode and the

working electrode (photoanode). The current is measured between the photoanode

and counter electrode (A platinum (Pt) foil is used in our experiment). A semicon-

ductor, upon illumination with an energy greater than the band gap, excite electrons
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Figure 2.7: Potential scales of the reversible hydrogen electrode (RHE), normal
hydrogen electrode (NHE) and silver/silver chloride electrode (Ag/AgCl) for acidic
and basic conditions. NHE and Ag/AgCl are both fixed with vacuum, and the redox
potentials of all three are pH dependant. RHE is pH independent, and the hydrogen
redox potential remains at 0 VRHE for any pH.

from the VBM into the CBM. The electrons commute the circuit of the electrochem-

ical cell to the platinum counter electrode where hydrogen evolution occurs. Oxygen

evolution occurs at the photoanode surface, the hole counter part is injected into

the electrolyte; oxidising the water. Figure 2.8 shows the experimental setup of the

glass photo-electrochemical cell specially constructed by the University of Sussex

glass blower workshop. The three sectioned cell contain compartments for each of

the electrodes and the connectors between the compartments can be fitted with a

semi-permeable membrane which would allow accurate measurements of hydrogen

evolution.
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Figure 2.8: Three electrode photo-electrochemical setup. The electrolyte consists
of a 1 M KOH solution, and a saturated Ag/AgCl reference electrode is utilised in
measuring the potential.

2.3.2 Light Sources

Xenon Lamp

A 300 watt xenon lamp (Compact Illuminator 6000CI, ORC) provided the illumin-

ation for the majority of the photoelectrochemical investigations. The spectrum of

the xenon lamp, Figure 2.9, closely matches the solar spectrum which suggests that

the xenon arc lamp is an excellent choice to simulate solar energy. The spectrum was

recorded on a USB UV-Visible spectrometer (Ocean Optics). The light intensity is

dominated by the visible portion of the spectrum with a small amount of UV. The

slightly oscillating part of the spectrum intensity close to the peak wavelength is due

to interference effects of the CCD array detector, this is indicated by the matching

positions of the maxima of the interference effects for both the solar and the xenon

lamp spectra and therefore the oscillation present is light source independent.

The solar spectrum has a larger intensity in the UV range between 350 nm and

400 nm (3.54 eV to 3.1 eV) compared to the xenon lamp, unfortunately this is in the

energy range of absorption of the band gaps of the materials explored in this work.

Thus, the xenon light source encompasses a large range of unusable wavelengths and

it is undemonstrative to calculate efficiency using the xenon light source alone. To

calculate photoefficiency, it is convenient to measure the UV response under a set
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Figure 2.9: Output spectrum of xenon light source, and natural sunlight. The
golden curve is the solar spectrum and the purple curve is the spectrum of a xenon
lamp. During measurement of the spectrum the intensity of the beam is reduced as
to avoid damaging the CCD sensor of the UV-visible spectrometer.

illumination intensity, which will give us the UV photoefficiency.

Xenon Lamp, with a UV Transmitting Filter Installed

The xenon light source is fitted with a transmission filter allowing only UV light to

pass; i.e. opaque to other wavelengths. The Hoya U-340 lens spectrum in Figure 2.10

shows the UV intensity peak, ranging from 300 nm to 400 nm. This allows the UV

response of the photoanode to be measured and the photoefficiency in the UV range

to be calculated. The intensity output of the xenon lamp with the filter fitted is 35

mW/cm2, and the area under illumination of the sample is 1 cm2. Comparatively,

at sea level, approximately 6 % of the sun’s radiation energy is within the UV

spectrum, this is approximately 6 mW/cm2. Taking this into account, the UV

efficiencies can be divided by 6 to find an approximate value for the efficiency under

AM1.5 irradiance.

The UV output of the xenon lamp with the filter fitted is less intense than the

UV output of the whole beam of the xenon lamp, as the filter lens has a maximum

transmittance of 75 % ± 5 %. The photopower output densities of the photoanode

material under investigation will reduce accordingly, by approximately 25 % than

the same material under xenon light illumination excluding the filter.
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Figure 2.10: Output spectrum of xenon light source (300 W) with a UV transmis-
sion filter in place (Hoya U-340).

Cold Cathode Fluorescent Lamp light source

The cold cathode light source is a low wattage bulb, the power density output of

which is a 800 µW/cm2. A mercury vapour discharge causes a fluorescent coating

to emit visible light, with photon energies close to the band gap of the materials

under study (3-3.2 eV). The spectrum in Figure 2.11 shows the high intensity peak

at various wavelengths, notably, the peak at 370 nm is ideal for the materials under

investigation (γϵ = 3.35 eV).

The CCFL is an inexpensive solution to long term stability studies of materials,

as the bulbs can be replaced easily and the photoanode under investigation can be

illuminated for days. The intensity output is far less than the xenon lamp, which also

increases the bulb lifetime compared to a xenon lamp. Although frequent switching

reduced the lifetime significantly resulting in the replacement of 3 bulbs over 48

hours.

2.3.3 Efficiency Analysis of the Photoanodes

In this research, an EA160 Potentiostat (eDAQ solutions) is used to control potential

and measure current, and the majority of I-V scans were conducted at a rate of 10

mV/s from -1.2 V to 1.5 V. Igor WaveMetrics software is utilised in the analysis of

the I-V data to calculate efficiencies and plot photocurrent densities.

The performance of the photoelectrochemical cell (PEC) is determined by the

solar conversion efficiency.93
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Figure 2.11: Output spectrum of a cold cathode fluorescent lamp (CCFL) light
source.

ηc = ∆G0(H2O)R(H2)− VBiasIphoto

IradA
(2.9)

ηc = Power stored in hydrogen - Power input from power supply
Power from the light source

(2.10)

Where ηc is the cell efficiency, ∆G0 is the standard Gibbs energy of water splitting

(∆G = −nFE, E = 1.23V ), R(H2) is the rate of hydrogen generation (R(H2) =
Iphoto

nF
), VBias is the bias applied to the PEC, Iphoto is the photocurrent of the cell and

IradA is the illumination energy density. The efficiency is calculated using equation

2.11.

ηc = (1.23V − VRHE)Iphoto

PInput

(2.11)

Where PInput = IradA, VRHE is the reversible hydrogen electrode potential cal-

culated from the measured bias (Ag/AgCl). Equation 2.11 assumes a perfect PEC,

with no overpotential losses and ideal counter electrode. This will give an under-

estimate as it will not take into account the flat band potential or losses. The

open circuit potential can be used to calculate efficiency neglecting overpotential

losses and the flat band potential. This is shown in equation 2.12, where ηp is the

photoanode efficiency, VMeas is the measured potential and VOC is the open circuit

potential.143
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ηp = (1.23− (VMeas − VOC))Iphoto

Pinput

(2.12)
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Chapter 3

Synthetic Methods

Nanomaterials are materials which have features with dimensions ranging from 1 nm

to 100nm; controlling features of structures at this scale can increase the surface area

of the structures by orders of magnitude. Control of the 3D architecture of materials

of interest not only benefit from increased photocatalytic activity but can vastly

improve optical and electronic properties of the material. This work will focus on the

development of technologies to create sophisticated 3D architectures of metals and

metal oxides in order to maximise the photoefficiency of nanostructured photoanodes

in a watersplitting PEC. Techniques utilised include simple PVD techniques, vapour

transport methods, electrochemical anodisation and chemical bath deposition.

3.1 Electron Beam Evaporation

Electron beam (e-beam) evaporation allows the deposition of thin metal films, these

metal films will serve as the precursor metal in the anodisation process to create

nanotubes. It is possible to control layer by layer deposition, creating a 3D nanotube

architecture and forming a multi-junction metal oxide structure with varying band

gaps along the length of the nanotubular array, allowing a broader absorption energy

range of the solar spectrum. E-beam evaporation is a useful tool for doping which

is highly controllable with a guaranteed homogeneous distribution.

In order to create thin films of metals via physical vapour deposition (PVD), a

high temperature is needed. A versatile way to deposit a controllable thickness and

composition of metals is through direct evaporation of a slug of the target metal.
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Most metals require a high temperature to evaporate material from the surface (

> 1300 ◦C), it is difficult to achieve these temperatures with convection heating

equipment (such as furnaces or convection ovens). Electron beam evaporation is

an effective physical vapour deposition technique; where electrons are propelled via

thermionic emission and a bias voltage to then bombard a crucible. The advantage

of e-beam heating is that the heat is focused and directed by the emission current

and bias voltage, heating only the crucible and material contained. So the environ-

ment is relatively cold and only a small heating power is required to achieve high

temperatures. As such it is relatively simple to construct the e-beam facility and

maintain a highly stable evaporation process.

Thermionic emission and e-beam evaporation both require high vacuum condi-

tions to avoid scattering by impurities, oxidation of the thin film and sacrificing

the heating filament. In this work I designed and assembled a PVD system for

developing 3D nanomaterials. The e-beam evaporator is installed in a high vacuum

chamber shown in Figure 3.1(a), the setup consists of:

1. Electron Beam Evaporator

2. Vacuum Chamber

3. High Voltage Supply

4. Current Supply

5. Backing Rotary Pump

6. A Turbo Molecular Pump

7. An Ion Pump

8. Pirani Gauge/meter

9. Ionisation Gauge

10. Ionisation Gauge Controller

11. Stage/Sample Manipulator (with heating coils)
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Figure 3.1: Electron beam evaporator experimental setup, the evaporator operates
in high vacuum conditions and the chamber is shown in the photo in Figure (a).
Figure (b) illustrates the basic premise of e-beam evaporation, and the crucible and
filament circuit.

The electron beam evaporator (inset) consists of either a graphite (inner dia-

meter of 8 mm, 13 mm long) or a molybdenum (Mo) (inner diameter of 4 mm, 10

mm long) crucible surrounded by a 0.15 mm diameter tungsten wire. Graphite has

a high sublimation temperature (3652 K) making it an ideal container for high tem-

perature processes exhibiting limited damage over repeated heating cycles. Mo also

has a high melting temperature (2900 K) with the ability to withstand high temper-

ature processes that also doesn’t change shape or soften the material, the cyclical

heating treatment did however damage the structure of the crucible. An advantage

of using Mo is the ease of which repairs can be carried out using spot welding. Tung-

sten (W) is the most commonly used metal in the construction of resistive heating

filaments, including traditional vacuum light bulbs and the SEM’s electron gun. The

main reason for this is the high temperatures that W can withstand, with a melting

temperature of 3683 K/3410 ◦C, the other reasons include the strength, workability

and the conductivity of the material which allows the ability to spot weld tungsten

for repairs when the filament ‘burns out’. The tungsten wire serves as the thermi-

onic electron source; current passes through the tungsten filament causing resistive
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heating thus increasing the energy of the electrons to overcome the work function of

tungsten. The +ve high voltage (∼1 kV) between the crucible and tungsten attracts

the electrons towards the crucible. This bombardment heats the crucible kinetically.

The heating mechanism and structure of the e-beam heating configuration is shown

in Figure 3.1(b). The current collected by the crucible to the earth is the emission

current (Ie).

The temperature of the crucible and precursor is proportional to the heating

power supplied by the electrons bombardment. Heating power is determined by

equation 3.1, where Ph is the heating power, Ie is the emission current and VB is the

bias voltage between the filament and crucible. The heating power relates directly

to the number of electrons striking the crucible and the kinetic energy the electrons

impart with each collision. Typical bias voltages range from 800 V to 1 kV and

emission currents range from 50 mA to 80 mA, for iron and titanium respectively.

The heating powers range from 28 W to 70 W.

Ph = Ie × VB (3.1)

At high temperatures the source material evaporates at a controlled rate, with

the rate of evaporation dependent on the vapour pressure and temperature of the

precursor. The crucible position is optimised with respect to the line of sight with

the substrate, i.e. the substrate faces the crucibles aperture. During the deposition,

the substrate temperature can be independently controlled with heating filaments

installed to the holding plate. The deposition rate can be controlled to the nm

scale, and significant deposition rates are achievable allowing thick films to grow

(microns).

3.1.1 Maintaining a High Vacuum Environment

A series of vacuum pumps maintain the high vacuum environment required for

evaporation of the metal anode and to avoid oxidation of the thin film. The high

vacuum environment also prevents scattering of the electron beam and the metal

source beam, providing a direct path of the electron beam and evaporated metal

vapour as well as increasing the lifetime of the heating filament. The system is
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‘pumped’ down by multiple vacuum pumps at a variety of stages towards reaching a

high vacuum. I used a rotary pump, a turbo molecular pump, a titanium sublimation

pump and an ion pump. The stainless steel chamber is customised with a selection

of ports, and it is possible to utilise several e-beam evaporators simultaneously. The

pressure of the chamber is monitored with two pressure gauges. One is a Pirani

gauge for readings from atmosphere to 1.10−4 mbar, and the second is an ion gauge

with a range from 1.10−3 mbar to 1.10−12 mbar, the sensitivity to low pressure is

limited by photoelectric noise created by electrons striking the grid of the ion gauge

and emitting X-rays.

Rough Rotary Pump

Rotor

Fluid/Air

Vanes

Figure 3.2: Illustration of the mechanism of pumping by a rotary vane pump, the
air is driven through to the outlet by vanes attached to a rotor.

The chamber environment achieves a rough vacuum using a rotary vane pump,

a common tool found in most chemistry labs. Vanes are attached to a rotor which

is eccentrically supported on a cycloidal cam. The rotor and vanes sweep the gas

from the inlet to the outlet. The space between the rotor and the cavity is limited

between ports to restrict gas return, Figure 3.2 illustrates the basic mechanism.

The purpose of the rotary pump is to achieve pressures down to 1.10−4 mbar. This

prevents damage of the turbo molecular pump once in operation.
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Turbo Molecular Pump

The turbo molecular pump achieves a high vacuum range from 1.10−4 mbar to 1.10−9

mbar. The pump consists of a series of turbine rotors with multiple blades; molecules

bombard the series of blades and flow through the outlet to the rotary pump and

exhaust, shown in Figure 3.3. The high vacuum is achieved by the high speed of the

blade rotation rate, ranging from 20,000 - 90,000 revolutions per minute. In practical

design, a rotor is followed by a stator (a stationary set of blades) consecutively, the

molecules collide with the rotor and strike the stator and then continue to the next

set.

Rotary pump

Fluid FlowTurbine Rotor 

Several Blades

Motor

Figure 3.3: Basic mechanism of a turbo molecular pump, the rotors have multiple
angles blades and the rotation pushes molecules from the top set of blades to the
lower sets and travel through to the rotary backing pump.

Titanium Sublimation Pump

The titanium sublimation pump (TSP) consists of a titanium filament. The titanium

filament is heated by a large current (40 amps), reaching the titanium sublimation

temperature through resistive heating. The highly reactive Ti vapour coats the inner

surface of the vacuum chamber, residual gas in the chamber will react with the clean

Ti film on the chamber walls and form a solid product. In conjunction with the Ti

evaporated through e-beam evaporation, a dual pumping process occurs.
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Ion Pump

An ion pump is attached to the base of the vacuum chamber, and can reach pressures

of 10−5 to 10−11 mbar. An ion pump has no moving parts and doesn’t require oil

or produce vibrations, thus is a low maintenance piece of equipment. The basic

premise of an ion pump is illustrated in Figure 3.4.

Tubular Anodes

Ti Cathodes

Permanent

  Magnets

N

+5 - 7 kV

+

+

+

+

e-

e-

e-

e-

Ti

Ti

Ti

S

Figure 3.4: Illustration of a sputter ion pump. Tubular anodes and magnetic
field form multiple penning traps in parallel. Electrons in the penning trap move
in helical patterns under an axial magnetic field of 0.1 T, ionising a higher density
of neutral atoms. Ionised atoms sputter Ti, which reacts with gas and coats the
internal cavity with fresh Ti.

An ion pump can be composed of multiple penning traps which confines electrons.

Electrons (and secondary electrons after ion impact) are emitted from the cathode

under an electric field (+5-7 kV) and move in a helical trajectory due to the axial

magnetic field along the tubular anodes. The electron cloud in turn ionises neutral

atoms of the gas, the ions are accelerated to the Ti cathodes (the magnetic field

has negligible effect on heavy ions). The ion impacts the Ti cathode and releases Ti

atoms, sputtered inside the cavity. The sputtered Ti atoms react with chemically

reactive gases thereby pumping the cavity. The impacting ions have significant

energy (a few keV) and penetrate deeply into the Ti cathode surface tens of atoms
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deep. This is useful for pumping non-reactive gas atoms which would otherwise be

unaffected by the sputtered Ti atoms.

3.1.2 Deposition Conditions and Rates

The deposition rate directly relates to the temperature and vapour pressure of the

metal precursor, the distance between the source and substrate and the quality of

the vacuum. Evaporation from a liquid surface was experimentally confirmed to be

proportional to (Pv − P ) by Heinrich Hertz where Pv is the vapour pressure and P

is the pressure acting on the surface.144 Rate of evaporation cannot be increased

by additional heat without increasing the equilibrium vapour pressure of the liquid.

Knudsen145 modified the Hertz relation with an additional term (αv) to take into

account of evaporant vapour molecules reflected back to the surface, which do not

contribute to the evaporant flux. This is known as the sticking coefficient.

Equation 3.2 shows the Hertz-Knudsen relation including sticking coefficient. Ne

is the number of evaporant molecules, Ae is the area of the evaporation source, m is

the molecular mass of the evaporant, kB is Boltzmann’s constant, T is the absolute

temperature, Pe(T ) is the vapour pressure of the evaporant and P is the hydrostatic

pressure acting on the surface.

dNe

Aedt
= αv

( 1
2πmkBT

) 1
2 1

r2 (Pe(T )− P ) (3.2)

Langmuir showed in 1913 that the Hertz-Knudsen relation also applies to evap-

oration from free solid surfaces (Langmuir evaporation) and is independent of the

residual gas pressure as the resistance due to the residual gas pressure is negligible.

The Langmuir-Knudsen relation (equation 3.3) shows the quantitative relationship

between the various factors and mass deposition rate per unit area of source sur-

face.146

Rm = Cm

(
M

T

) 1
2 1

r2 Pe(T ) (3.3)

Where Rm (kg/m2s) is the mass deposition rate, Cm =
(

1
2π×kB

) 1
2 , M is the

molecular mass and r is the distance between the precursor and substrate. The 1/r2

term takes into account the inverse square law due to the material beam radiating

radially in 3d space from a point source.
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Taking into account angular dependance of the substrate with respect to the

crucible, the Langmuir-Knudsen relation can be expressed as in equation 3.4.

Rm = Cm

(
M

T

) 1
2

cos θ cos φ
1
r2 Pe(T ) (3.4)

Where θ and φ are the angles of the crucible aperture surface normal and the

position of the substrate, and the angle of the substrate normal with respect to the

crucible position respectively, these are illustrated in Figure 3.5. A manipulator shaft

accommodates the substrate where the thin film is formed, centred in the vacuum

chamber. The manipulator shaft allows the growth to be halted by adjusting the

substrate position out of the line of sight of the crucible φ = 90 according to Figure

3.5. At large θ and φ the mass deposition rate is significantly limited, The maximum

rate of deposition can be achieved when θ and φ approach 0◦.

φ
θ

r

Figure 3.5: Illustration of the substrate position and angular dependence with
respect to the crucible.

The thickness deposition rate dh
dt

can be expressed by equation 3.5.

dh

dt
= Rm

ρ
(3.5)

Where ρ is the precursor density. Combining equations 3.3 & 3.5 and assuming

θ = φ = 0, we can simplify the equations to equation 3.6.
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dh

dt
= Cm

ρ

(
M

T

) 1
2 1

r2 Pe(T ) (3.6)
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Figure 3.6: The maximum thin film deposition thickness rate of the e-beam evap-
orator (P=0). The y-axis is logarithmic, illustrating the sensitivity of evaporation
rate with respect to temperature.

The precursor vapour pressure is temperature dependent, a comparison of Fe

and Ti deposition rates depending on temperatures are shown in Figure 3.6. Fe

requires a lower temperature to maintain the same rate of deposition as Ti due to

the higher vapour pressure of iron, the Pe of iron at 2091 K being ten times larger

than the Pe of Ti at 2171 K. The vapour pressures Ti and Fe are obtained147 and

substituted into the Langmuir-Knudsen relation to plot the evaporation rate. The

evaporation rate increases exponentially with crucible temperature as the vapour

pressure is related to temperature by Pe = P0e
− L

RT where L is the latent heat of

vapourisation and R is the molar gas constant.

3.2 Anodisation

Anodisation is an electrolytic passivation process, where the metal undergoing oxid-

ation is placed into an electrolyte bath as the anode. For example to develop TiO2

nanotubes, a Ti substrate serves as the anode in the electrolyte bath. The electro-

lyte controls the chemical oxidation and dissolution of the metal substrate and to

assist in ion transportation. The electrolyte composition includes water to assist
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in oxidation of the surface of the metal substrate. For creating nanostructures the

anodisation is normally accompanied by a dissolution process facilitated by an acid

and fluoride. The dissolution process is essential for generating a porous structure

and to maintain the anodisation rate.

An electric field is applied to direct the oxidation and oxide dissolution pro-

cess, and encourage vertical nanotubular growth. The concentrations of the various

parts of the electrolyte are dependent on the metal used in the anodisation process.

Oxidation and dissolution rates are metal and metal oxide specific.

F
-

F
-

F
-

Metal substrate

+ -

Counter electrode

DC Power supply

A Data 

Logger

Figure 3.7: Anodisation experimental setup, an electrolyte bath containing two
electrodes (one is the substrate) are connected to a computer via a data acquisition
module and a voltage is applied across the two electrodes.

Figure 3.7 shows the electrochemical bath in which anodisation takes place, usu-

ally a DC bias of 60 V is applied between a counter electrode (Ti) and the target

metal substrate serving as the anode. Equation 3.7 and 3.8 represent the oxidation

reaction occurring at the surface of titanium and iron in electrolyte containing wa-

ter. These are the metals specific to the hybrid nanostructures synthesised in this

work. Equations 3.9 & 3.10 illustrate the chemical dissolution process occurring on

the TiO2 and Fe2O3 surfaces respectively.

Ti + 2 H2O→ TiO2 + 2 H2 (3.7)
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2 Fe + 3 H2O→ Fe2O3 + 3 H2 (3.8)

TiO2 + 6 F− + 4 H+→ [TiF6]
2− + 2 H2O (3.9)

Fe2O3 + 12 F− + 6 H+→ 2 [FeF6]
3− + 3 H2O (3.10)

Initially oxide pores are formed within the first 5 mins, thereafter, electric-field

driven F− ions dissolve the oxide pores and oxidation occurs within the pores sim-

ultaneously with dissolution. The dissolution will thin the oxides at the bottom

of the pores which allows further anodisation. This continuous process creates a

nanotubular structure when the oxidation and dissolution rates are balanced. If the

anodisation rate is too fast, a thick layer of oxide will form at the bottom of the

nanotubes which will limit the anodisation current and in some cases only a densely

packed thin film of oxide is formed instead of nanotubes. If dissolution rate is too

fast; fragmented, short nanotubes will form and the overall length of the nanotubes

is limited by the dissolution rate.

Figure 3.8 illustrates the anodisation current as a function of anodisation time

in the process of anodising a titanium plate to form TiO2 nanotubes. Figure 3.8(a)

represents the anodisation of titanium pre-treated with acidic solution; partially

covering the surface with hydroxide islands. In this case the hydroxide islands was

created by exposing Ti to HF solution before anodisation. The anodisation current

drops rapidly as the hydroxide islands behave as surface catalytic centres. The quick

formation of an oxide layer is represented by a quick reduction in the anodisation

current. Figure 3.8(b) is a typical current-time curve (clean surface) where oxy-

gen evolution occurs in the initial stages of anodisation, through the electrolysis of

water as indicated by the initial high anodisation current. In this case the sample

was mechanically polished with diamond paste to remove residual oxides and de-

fects. Therefore at the initial stage, the electrochemical potential is directly applied

through the electrolyte promoting the water hydrolysis reaction. Following the an-

odisation process, eventually both samples form an oxide layer which is attributed

to the initial exponential decay of the curve.

The growth process is clearer from Figure 3.8(a) showing the pore and tube

formation in steps labelled as D2, D3 and D4. The initial decay represents the

formation of an oxide layer, followed by the formation of a porous structure indicated
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Figure 3.8: Current-Voltage (I-V) curves illustrating the formation of nanotubes,
current is directly related to the electrochemical oxidation process and is indicative
of surface area of the anode. (a) is the anodisation current-voltage curve for a
pretreated Ti foil to form hydroxide islands on the surface, and (b) is the anodisation
current-voltage relationship of a mechanically polished Ti plate.

by a rapid decrease of the anodisation current in the D1 region (not labelled). This

increases the surface area of the titanium anode, thereby increasing the current

density in the D2 region. From D3 to D4 the porous structure extends into a tubular

array during a dissolution process. As the tubes become longer the ion conductance

in and out of the tube becomes smaller, which results in a steady current density.

3.3 Vapour Transport Synthesis

Vapour liquid solid (VLS) and vapour solid (VS) synthesis of nanostructures are

are forms of vapour transport synthesis in a chemical vapour deposition (CVD)

process.148 The deciding factors in the formation of metal oxide nanostructures are

the surface reactions and condensation of the vapour. The condensation and surface

reactions are dependant on the vapour partial pressures of the metal and oxygen,

the temperature of the reaction zone and the flow rate of the carrier gas.

Vapour processing techniques are an actively and widely researched topic,149

creating unique nanostructures with useful applications.150

For the growth of ZnO materials Zn vapour is carried into the reaction zone,

where it is oxidised on the substrate. The carrier gas can consist of oxygen if growth

temperatures are below 500 ◦C; at high temperatures oxygen is diluted with an inert

carrier gas.
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Zn vapour is introduced by two different methods in this work. The first method

to create Zn vapour is through the carbothermal decomposition of ZnO with graph-

ite, where the reaction is shown in equation 3.11. The powders are mixed at a 1:1

ratio by mass with a weight of 0.15 g each and finely mixed with a pestle and mortar.

The temperature of the furnace is ramped to 1100 ◦C for synthesis and the crucible

containing the precursor is placed into the centre of the furnace with the substrate

placed above the precursor, followed by the introduction of Ar as the carrier gas.

2 ZnO + C→ 2 Zn + CO2 (3.11)

The second method of introducing Zn vapour to the reactor is by direct evap-

oration of Zn powder. Vapour produced from a pure Zn powder requires lower

temperatures, the Zn oxidises and then solidifies on the surface of the substrates

during condensation. Temperatures can range from 450 ◦C to 750 ◦C (> 420 ◦C,

higher than the melting point of Zn) and the consequence of changing temperatures

results in change of morphology due to the varying partial pressures of Zn vapour

and O2. Which also effects the growth rate. The low temperatures required for the

vapourisation of Zn allows a wider choice for substrate to be used in the reaction.

Water cooling coils

Tube furnace

Alumina crucible (porous)

Substrates

Argon carrier gas

Rotary pump

Flow meter 
+

Zr

Fe
Si

a

b

Figure 3.9: Vapour transport deposition setup. Figure (a) shows the placement of
the various substrates with respect to the crucible; Zn powder is placed directly un-
der the substrates. Figure (b) is a photo of the horizontal tube furnace (Eurotherm)
where vapour transport reactions are carried out.

Figure 3.9 shows a photo of the setup used for the vapour transport synthesis, and

Figure 3.10 illustrates the position of the substrate with respect to the precursor

under deposition synthesis conditions. The reactor is made up of a quartz tube
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Porous Alumina  Crucible

Quartz Reactor
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Furnace Supplies Heat

Zinc Oxide Rods

Figure 3.10: The substrate rests on the lips of the crucible, above the Zn precursor.

inserted into a horizontal tube furnance (Eurotherm), thus, the vapour production

technique is restricted to temperatures below 1200 ◦C. As this temperature is below

the softening point of quartz. In the case of direct metal vapourisation, the melting

point of the precursor must be below this value. Carbothermal decomposition of

ZnO requires temperatures above 800 ◦C, whilst vapourisation of Zn only requires

temperatures above 420 ◦C.

The size of structures grown depends largely on the Zn and O vapour partial

pressures and concentrations, as well as the occupation time in condensation region

of the reactor. The reaction temperature dictates the vapour pressures. Whilst the

flow rate of Ar (carrier gas) effects the time the vapour spends in the condensation

zone (occupation time) as well as the oxygen concentration introduced into the re-

actor. At lower concentrations, an increase in mean free path of the oxide monomers

reduces the size of the nanoparticles. These parameters are manipulated to achieve

a variety of shapes and forms of ZnO nanostructures.

3.3.1 Vapour Liquid Solid Growth & Vapour Solid Growth

Vapour Liquid Solid (VLS) growth was first described by Wagner. VLS is the

mechanism of crystal growth by precipitation from a liquid seed supersaturated

with the vapour material, at the liquid-solid interface. The solid crystal solidifies

from the root and the liquid remains at the top. VLS was first demonstrated using

silicon as the precursor to form Si whiskers up to a micron in diameter, gold was

utilised as the catalytic seed with a reaction temperature of 1050 ◦C.151

Temperatures required for VLS growth are determined by the precursor vapour-



67

isation temperature and the melting point of the catalytic seeds utilised as growth

sites. Nanoparticles are typically used for seeding, reducing the size of the initial

nucleation sites as well as having a lower melting temperature than their bulk coun-

terpart. A eutectic melting point of the seed and substrate further reduces the

temperatures required.

Vapour Solid (VS) growth temperatures are dependent on the precursor vapour-

isation temperature alone. A number of transition metals can be used as the seed

and ordered growth is possible if the lattice of the substrate closely matches that of

ZnO (i.e. GaN, sapphire etc). The Zn vapour is partially oxidised on the surface of

the catalyst during vapour transport, raising the melting point temperature and is

further oxidised by the oxygen in the environment forming solid ZnO structures.
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Figure 3.11: Illustration of the ZnO wurtzite structure. The miller indices of
directions and faces are highlighted.

It is convenient to describe the miller indices of a hexagonal structure using a

4 index scheme, this takes into account the 3 directions of symmetry in the x-y

plane. Figure 3.11 illustrates the respective planes and directions of a ZnO wurtzite

crystal structure and their 3 index scheme counterparts. For a set of planes it is

convenient to use the notation {hkil}, for example, the set of planes of {011̄0} include

(011̄0), (01̄10), (1̄010), (101̄0), (11̄00) and (1̄100). Similarly a set of directions are

represented by <hkil>, whilst a singular direction is represented by [hkil].



68

In both cases the ZnO solidifies and grows preferentially in the c-axis [0001].

The ZnO wurtzite structure can be described as alternating planes of tetrahedrally

coordinated Zn2+ and O2− ions. These are stacked along the c-axis. The oppos-

itely charged ions results in positively charged (0001) planes and negatively charged

(0001̄) planes, this results in a large surface energy for these polar surfaces. The

wurtzite ZnO therefore has a normal dipole moment along the c-axis. During vapour

transport the initial ZnO nucleus exposes a high energy polar surface, the incoming

vapour favourably adsorbs on the polar surface exposing a polar surface, this pro-

cess is repeated over time thereby forming 1D ZnO structures (nanowires/nanorods).

The next fastest growth directions are in the lateral directions, such that the {21̄1̄0}

and {011̄0} sets of surfaces are the most commonly observed surfaces, this facilit-

ates the radial growth of the ZnO nanorodular structures, as well as forming unique

structures.

Since high temperatures are required (1000-1350 ◦C) to carbothermally reduce

ZnO, the seed can also be at high enough temperatures to be in a liquid phase,

depending on the position of the substrate in the reactor and can thus be classified

as VLS growth. Silicon is used as a substrate; as it can withstand high temper-

atures. A variety of seeds can be used, with the temperatures required to melt

these seeds varying significantly and thus changing the growth dynamics. Alumina

seeded Si demonstrated bunching of ZnO rods, while a gold seeded surface creates

a homogenous array of ZnO rods.

The versatility of VLS growth allows a variety of nanostructures to be made up

of different elements, for example TiC,152 Si,153,154 MgO,155 CdS,156,157 ZnCdS158

and ZnS159 nanowires have all been realised.

VS growth is different to VLS in that the growth of the crystal does not involve

a liquid catalyst. Nucleation sites are determined by the defects on the surface

of the substrates and impurities or aberrations on the surface where metal vapour

adheres and begins a self-seeding process. It constitutes a direct nanostructure

growth method onto a substrate. TiO2 nanowires form at a temperature of 1050
◦C,160 and the formation of such 1D structures are well documented161 and but not

completely understood. Solid seeds can be utilised as nucleation sites, and even

in high temperature conditions the Zn/seed alloy may not undergo melting and a
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vapour solid reaction may be erroneously identified as a vapour liquid solid reaction

(VLS). Heterostructures such as TiO2/SiO2 core/shell co-axial tube arrays have been

created using VS deposition.162

3.3.2 AACVD

Aerosol assisted chemical vapour deposition (AACVD) is a convenient technique

for creating homogenous films with a high deposition rate.163,164 The choice of

precursor used for the deposition is countless, as the solvent containing the metal

precursor does not undergo thermal evaporation to create a vapour.165 However, it is

required that the precursor is soluble in a solvent, since the solution is ultrasonically

vapourised and carried to a heated substrate. The vapour will adhere to the hot

surface and is decomposed/oxidised forming an oxide of the chosen material. Carbon

nanotubes formed via AACVD has been realised166 as well as polymer deposition167

demonstrating the range of possible materials that can be deposited by AACVD.

In the AACVD process an ultra sonic transducer vibrates at a high frequency

causing the liquid to vibrate quickly, cavitation occurs in the solution creating small

vacuum pockets. Any liquid close to the pocket evaporates as the vacuum pockets

bursts (in the case of ultra sonic bath cleansers, these tiny pockets are formed on a

surface and the bursting action is accompanied by a force, pulling off contaminants

from the surface). The gas particles are fine, in the micrometre diameter range,

which are airborne and can be transported by gas flow to deposit homogenously

onto a substrate.

The substrate can be heated either by a horizontal bed or a furnace. Furnace

heating inherently coats the quartz reactor tube. If the thin film material required

is a metal oxide, the heat assists in the oxidation of the metal precursor vapour on

the surface to form the nanostructures or thin films.

The AACVD deposition setup is illustrated in Figure 3.12, this shows the hot

bed cold wall reactor configuration. The bed consisted of an aluminium block with

a heater cartridge inserted into the centre, the cartridge is controlled with a power

supply. This configuration will have a higher deposition rate compared to using a

furnace (hot wall reactor) to heat the substrate, as the heat is concentrated on a

small surface and vapour decomposes/oxidises solely on the substrate. A cold trap
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is connected to the outlet if the solvents pose a health and safety risk.

Ar carrier gas Outlet to atmosphere

Quartz tube 

Solvent

Aerosol 

Ultrasonic piezo-electric transducer

Dc 

Power supply

  Aluminum block

containing heating 

         cartridge

Heated substrate

Figure 3.12: Illustration of the AACVD deposition setup, an aluminium block
(heating cartridge inserted within) is heated with substrate in contact with the
block. The heating block and substrate are contained within a quartz tube reactor.

For developing hybrid oxide materials, I developed a CVD growth apparatus

with the ability to use a combination of AACVD and vapour transport (VS) de-

position. In-situ AACVD deposition can assist in doping a ZnO structure during

VS growth, which combined with the versatility of precursor choice increases the

freedom to create heterostructures with various concentrations of transition metal

oxides. The combined setup is shown in Figure 3.13. AACVD growth can be con-

ducted immediately after a VS reaction, thereby surface coating the ZnO structure

with a material which could benefit the photocatalytic properties of the structure.

In this work I have demonstrated enhanced photoelectrochemical behaviour of ZnO

rods by decorating the rods with titania nanoparticles.

Ar carrier gas Outlet to atmosphere

Horizontal tube furnace

Quartz tube

Solvent

Aerosol 

Ultrasonic piezo-electric transducer

Figure 3.13: Combined AACVD and vapour transport deposition setup, the quartz
tube is heated in the furnace where vapour transport growth takes place and a
subsequent AACVD deposition is carried out.
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The independent control of the feeding rate of a precursor during a vapour trans-

port growth is highly attractive, as usually the system is closed and the precursor

can only be controlled by placement in the reactor and mass of the precursor. Addi-

tional precursor can be fed with multiple elements during the growth, controlling the

concentration ratio. The key issue is whether the VS growth temperatures match the

specific temperature of the AACVD deposition of the precursor under investigation.

3.4 Chemical Bath Deposition (ZnO)

In the case the substrate cannot be heated to high temperatures, such as plastic,

chemical bath deposition (CBD) can be utilised in the formation of ZnO nanostruc-

tures. CBD is a form of wet chemical growth which can be conducted at much lower

temperatures than the methods previously described.168 This allows a high degree

of freedom for the substrate employed as temperatures only range from 50 ◦C to 95
◦C depending on the solvent used in the chemical transformation.

Chemicals with a base nature decompose the Zn precursor, and create hydroxide

ions which in turn form zinc hydroxide. The hydroxide undergoes condensation into

ZnO, the adsorption sites are dependent on how chemically active the seed is and are

preferential on the polar faces (0001)/(0001̄) of the ZnO wurtzite structure. Growth

is preferential in the [±0001] direction due to the polar surfaces of the (0001)/(0001̄)

planes, similar to the process of rodular growth under vapour transport conditions.

This is the fundamental mechanism in the formation of arrayed ZnO nanorods and

nanowires in aqueous solution.169

A seeded substrate is required, and a convenient way of coating a thin film of the

seed layer is to use a spin coater. Our home built system allows fast spin rates which

dry the solution containing the seed precursor and the centrifugal forces spread the

film evenly. The substrate is then heated to convert the precursor into a thin film of

ZnO seeding crystals. The annealing temperature is dependent on the substrate used

for the CBD reaction. Zinc acetate dihydrate is usually used as the seed precursor

Zn(O2CCH3)2(H2O)2 (Purchased from Sigma-Aldrich - CAS 5970-45-6), which is

dissolved in a solvent.

For the growth solution, typically a 1:1 ratio of either Zinc acetate (ZnAc) or Zinc
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nitrate (Zn(NO3)2) and Hexamethylenetetramine (HMTA) (the latter two chemic-

als are also purchased from Sigma-Aldrich - CAS 10196-18-8 and CAS 100-97-0

respectively) are dissolved in a solvent (deionised water). The solution is kept under

heated conditions from several hours to days. The chemical reactions proceed to

form nanostructures of ZnO which are dependent on seeding, growth temperature,

and duration of growth. HMTA decomposes into NH3 and ultimately OH− ions

thereby increasing the solutions pH gradually. These OH− ions react with Zn2+ and

form solid ZnO, reducing the pH in the process. The chemical reaction during the

growth is shown in equations 3.12 to 3.15. Nanorods grow as the crystal forms in

a preferential orientation from the initial adsorption sites and the lateral growth is

restricted by orientation of the crystal faces and the size of the ZnO seed.

(CH2)6N4 + 6 H2O←→ 4NH3 + 6 HCHO (3.12)

NH3 + H2O←→ NH+
4 + OH− (3.13)

Zn2+ + 2 OH−←→ Zn(OH)2 (3.14)

Zn(OH)2←→ ZnO + H2O (3.15)



73

Chapter 4

Fe-Ti-O Nanotube Composite

Formation via Anodisation.

The first photoanode to be utilised in the photoelectrochemical decomposition of

water by Fujishima and Honda in 1972 was a TiO2 anode, under UV light illumin-

ation.50 Since then many semiconductors have been investigated and TiO2 remains

one of the best candidates as a photoelectrode for water splitting due to its charge

transfer properties and stability in an electrolyte.170–176 TiO2 has a large band gap

and requires photons of energy greater than 3.2 eV. Photons with an energy of

3.2 eV have a wavelength in the UV range (387 nm). Efforts are concentrated to

decrease the band gap energy of TiO2, to encompass visible light absorption; for

example carbon177,178 and nitrogen doping179 have shown to reduce the band gap of

titania. Transition metal doping of titania have also shown promising photocatalytic

properties, extending the normal absorption edges of anatase and rutile to longer

wavelengths.180 TiO2 mesoporous structures used in dye sensitised solar cells is a less

costly promising route in the construction of a photoanode, the abundant material

has been shown to reach solar efficiencies of 7 %.181

Fe2O3 nanostructures have recently been reported to exhibit good qualities as a

photoelectrode in the use of water splitting.182–184 The valence band minimum is

significantly below the oxidation potential of water (> 1 V), and holes have sufficient

energy for the water redox reaction. Another advantage is the low value of the band

gap energy, which is not limited to the UV, and can absorb visible wavelengths

less than 560 nm (2.2 eV). A key concern is the poor minority charge mobility
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(0.2 cm2V−1s−1)185 of iron oxide which results in shorter diffusion lengths (2-4 nm)

and increased rate of recombination. Heterostructures of metal oxides have demon-

strated improvements over single component photoelectrodes.186,187 Heterostructure

counterparts of the iron electrode can assist in increasing charge mobility, either by

creating a junction where field assisted separation of excitons can take place, or

charge is injected into the secondary semiconductor thereby reducing recombination

rates.

Titanium dioxide production starts with the mining of naturally occurring il-

menite (FeTiO3), which poses a question whether an iron titanate material can be

produced close to the initial manufacturing process of TiO2 at a considerably lower

cost. It is shown in this work iron titanate performs better as a water splitting pho-

toelectrode and could be produced at an industrial scale at a lower cost. A mining

facility could produce TiO2 as well as water splitting photoanodes simultaneously

through the use of furnaces and appropriate materials possibly creating nanorods,

which can be produced through high temperature growth.

It has been demonstrated by Hussain and Siddiqa that doping of TiO2 nanotubes

with Fe and Cr can drastically effect the band gap of the material. Reducing the

bare titania nanotubes band gap from 3.25 eV to 1.85 eV with Cr and Fe doping.188

Yet preferential band positions remain. Fe-Ti-O could be ideal for water splitting,

utilising visible light absorption in the process of photocatalytic water reduction.

4.1 TiO2 Nanotube Formation

A variety of methods of TiO2 nanotube formation have been reported. The most

common methods are template synthesis and anodisation.189 Other methods of

nanotube synthesis are well documented including hydrothermal methods,190 and

low temperature self-assembling chemical growth methods.191 It is possible to grow

TiO2 nanowires using VS reactions,160 electrospinning,192,193 radio frequency evap-

oration194 and hydrothermal techniques.195 A variety of other TiO2 nanostructures

have been demonstrated experimentally, amongst these are nanorods and nanowalls

created via metal-organic chemical vapour deposition (MOCVD),196 as well as ti-

tania nanofibers (electrospinning).197 TiO2 is a well researched material in literature,
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and the catalytic behaviour of TiO2 is well understood.170

Anodisation is a convenient templateless technique which allows a high level of

control in the synthesis of titania nanotubes.198–200 The titania nanotube dimensions

are determined by the synthesis conditions. Hydrothermal and chemical routes are

notoriously difficult in the control of the morphologies of the titania nanotubes.

Also, template based synthesis require further steps in the synthesis procedure,

which is costly and time consuming. The anodisation process creates a vertically

aligned tubular array which are advantageously utilised as a photoanode. The mor-

phology allows effective charge transport and provides a large surface area of the

semiconductor/electrolyte interface for the redox reactions to take place.

The material serving as the anode in the anodisation process will dictate the

metal oxide formed, either a metal foil or a thin film of the metal can serve as

the anode. I will show that in both cases ordered nanotubes are formed, creating

titanium dioxide nanotubes by utilising a Ti foil or a Ti thin film on conductive glass,

and creating iron oxide nanotubes utilising a Fe foil or a thin film of Fe deposited

on conductive glass.

Figure 6.4 shows a well-ordered TiO2 NT array created on a Ti foil substrate, the

anodisation potential is potentiostatically set at 60 V. The electrolyte is composed

of 2 % water and 0.3 % NH4F in an ethylene glycol solution. The anodisation

is conducted for one hour, achieving a nanotube length of 10 µm with an inner

diameter 109.2 nm ± 13.3 nm and outer diameter of 166.7 nm ± 15.5 nm.

4.2 Fe2O3 Nanotube Formation

Fe2O3 has recently attracted a renewed interest. The encouraging optical, semicon-

ducting and magnetic properties of Fe2O3 has resulted in an increase of volume of

research conducted in its use for a variety of material applications from drug deliv-

ery201 and pigments202 to optical devices. Fe2O3 nanotubes can be formed through

the use of a variety of methods including sol gel,203 hydrothermal, CVD, surfact-

ant assisted synthesis,204 as well as template synthesis205 as discussed earlier and

finally, electrochemical synthesis (anodisation).206 The availability and durability

of Fe2O3, as well as non-toxicity, makes Fe2O3 highly attractive as a cost effective
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Figure 4.1: SEM micrograph of TiO2 nanotubes of varying magnification (a)
×15,000 (b) ×45,000 and (c) ×5,600, grown using a Ti foil serving as the substrate
anode.
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material for photoelectrochemical cells. Gratzel et al reported a high performing

silicon doped Fe2O3 photoanode207 and Ingler and Khan have reported a self-biased

tandem photoelectrochemical cell based on p-n Fe2O3 photoanodes.208

The band gap of Fe2O3 is 1 eV smaller than TiO2, photons with energies greater

than 2.2 eV can create an exciton pair. This makes Fe2O3 an ideal candidate for

visible light absorption, unfortunately the conduction band (CBM) is lower than

the H+/H2 redox potential (more positive). The electrons created via excitation

require additional energy to overcome the potential difference between the redox

potential and CBM, therefore unassisted water splitting cannot occur using an Fe2O3

photoanode without significant alterations to the band structure. The flat band

potential is much greater for an Fe2O3 anode compared to TiO2 where both band

edges straddle both redox potentials. On the otherhand the valence band minimum

(VBM) of Fe2O3 is much lower (more positive) than the O2 /H2O redox potential,

and holes have sufficient energy to assist in the oxidation of water, for the reactions

to be balanced a bias is required to increase the energy of the electrons in the Fe2O3

to overcome the difference between the CBM and H+/H2 redox potential.

In this work I developed an anodisation method to create vertically aligned Fe2O3

nanotubular arrays. The nanotube array is directly synthesised on an iron foil which

can serve as the photoanode in a photoelectrochemical cell, the nanotubular struc-

ture shows effective charge transport along the ordered tubes, enhancing photo-

electrochemical properties. The semiconductor/electrolyte contact surface area of a

nanotubular array is increased drastically compared to a planar surface, resulting in

a larger area for the redox reaction to take place and immediate charge separation

close to the surface of the tubes.

The high solubility of iron oxide was found to raise the dissolution rate. To

counter the high dissolution rate the concentration of ammonium fluoride dissolved

in the electrolyte is reduced in accordance. The dissolution is directly affected by

the concentration of the F− ions and the pH of the electrolyte. The electrolyte in

which the anodisation is carried out is composed of 2 % H2O and 0.15 % NH4F in

ethylene glycol.

At the beginning of the anodisation process, a passivation oxide layer is imme-

diately formed under the influence of an applied potential, oxidising iron to form a
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thin layer of Fe2O3, the reaction is shown equation 3.8.206,209,210 The fluoride ion is

released from the NH4F and propagates through the electrolyte (under bias) towards

the anode, dissolving Fe2O3 as shown in reaction 3.10. This field assisted dissolution

process is directionalised, which results in an initial porous structure forming and

then creating a nanotubular array; as with TiO2. Nanotube formation continues

until there is an equilibrium between the oxidation rate and chemical dissolution

rate; this is repassivation.211
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Figure 4.2: SEM micrographs of Fe2O3 nanotubes, grown using a Fe foil serving
as the substrate at the magnifications of (a) ×15,000, (b) ×9500, (c) to (e) ×15000,
and (f) ×30,000.

The thickness after 40 mins anodisation at 60 V with electrodes 4 cm apart is

385 nm ± 44 nm with an inner diameter of 29.4 nm ± 6.6 nm and outer diameter

of 67 nm ± 9 nm as shown in Figure 4.2(a) to (f). This is much smaller than the

TiO2 nanotubes formed and is possibly due to a higher solubility of iron oxide and a

faster oxidation rate, which has directionalised the dissolution process further. The

fluorine ions dissolute with a larger ratio toward the Fe foil anode than laterally.

4.2.1 Ti Thin Film PVD on to a FTO Substrate

Here, I will present the fabrication of a semiconductor nanostructure formed on

conducting glass, this provides the possibility of creating a transparent photoanode.

Fabricating the photosensitive material onto a transparent substrate increases the

photoefficiency of the photoelectrochemical cell as it allows multiple passes of light
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through the photoanode. Also on a transparent substrate light can be illuminated

from behind the nanotubes close to the Ti/TiO2 interface. Electron-hole pairs cre-

ated close to the metal/metal oxide interface have shorter distances to travel within

the oxide and is not limited to the nanotube film thickness. The difficulty remains

in the durability of the conductive film in deposition environments. Fluorine doped

tin oxide coated glass is commonly used as a conducting glass and is economically

viable due to the low cost of manufacture.212,213 In this work the anodisation is

performed in identical conditions as discussed earlier in the creation of titania nan-

otubes. Anodisation is performed until the film becomes transparent, the Ti film

remaining on the substrate will be of the order of a few hundred nanometres and

the TiO2 nanotubes are vertically aligned above the film. SEM micrographs of the

nanotubes formed are shown in Figure 4.3(a) to (f) at various magnifications and

areas of the sample, which illustrates the homogeneity of the nanotube film.
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Figure 4.3: SEM micrograph of TiO2 nanotubes formed using a thin film of Ti
evaporated onto FTO (fluorine tin oxide) glass at various magnifications, (a) ×5000,
(b) ×9000 (c) ×850, (d) ×7500 (e) ×1400 and (f) ×2600.

Initially a thin film of titanium is deposited on a FTO substrate, a titanium slug

serves as the Ti precursor, using an e-beam evaporator constructed in a high vacuum

chamber; discussed in chapter 3.1. The high vacuum chamber is evacuated to a

pressure of 2.10−6 mbar via a turbo molecular pump, assisted by a backing rotary

pump. The crucible consisted of a molybdenum cup, surrounded by a tungsten

filament. The tungsten filament is heated via resistive heating by supplying the
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filament with a current of 4.6 A utilising a current supply. This is sufficient enough

to activate thermionic emission of electrons. The bias between the crucible and

the filament is 900 V. Adjustments are made to sustain a suitable heating power

(emission current × bias). The high melting temperature of Ti (1668 ◦C) required

a heating power close to 70 W and above (emission current ranged from 70 mA

to 80 mA). Deposition rates depend on the heating power of the system; at 70

W, approximately 100 nm/hr of Ti is deposited onto the substrate in the centre of

the chamber, as calibrated by SEM thickness measurements. Deposition rate could

be increased by moving the substrate closer to the electron beam evaporator, or

increasing heating power.

The FTO/thin film substrate is placed into the anodisation bath using a special

holder which has conductive foils to maintain a closed circuit between the titanium

film and cathode, the film was anodised for 40 mins at a bias of 60 V in an electrolyte

of 3 % H2O and 0.3 % NH4F in ethylene glycol. The increase in water and F−

ion concentration compared with the electrolyte used in the anodisation of iron, is

adjusted to reflect the lower rate of dissolution of TiO2. The anode and cathode are

separated by 4 cm. This created nanotubes 2.5 µm ± 0.1 µm long with a 99.7 nm

± 12.4 nm inner diameter and 140 nm ± 18 nm outer diameter, shown at various

magnifications in the SEM micrographs presented in Figure 4.3(a) to (f).

4.3 Co-Evaporated Fe/Ti Thin Film, and the Form-

ation of Nanotubes

The e-beam evaporator I constructed in this work can deposit up to 4 metals simul-

taneously, allowing a two dimensional architecture of varying compositions of four

metals. This freedom of compositional structure of the thin film can be advantage-

ously controlled to construct multiple band gap nanotubes via anodisation. In this

work I will concentrate on two transition metals, namely Ti and Fe and control the

composition of Fe-Ti-O nanotubes forming a three dimensional architecture. The

evaporation of transition metals require crucibles (the container of the precursor)

with high melting points and durability at high temperatures. I utilised molyb-

denum (m.p. 2623 ◦C) for Iron evaporation and graphite (m.p.sublimes 3652 ◦C)
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for Ti evaporation. The degradation of molybdenum after multiples evaporations

proved expensive and wasteful. Graphite crucibles are cheaper, more convenient

and proved durable compared to the Mo crucible. The less conductive properties,

meant graphite required higher bias and heating current to achieve similar heating

powers as before with the Mo crucible. A 1 kV bias is applied between the crucible

and filament. The multiple evaporations or simultaneous evaporations lasted several

hours or in some cases multiple sessions. The heating power for the Fe evaporator

is maintained at 50 W and Ti evaporator at 100 W, a thick layer of Ti is initially

deposited to improve lattice match of the thin film and Ti foil. This reduces strain

once the metal has cooled. Iron is slowly added as not to mismatch the lattice of the

thin films significantly. Once the thickness of the film is sufficient to avoid interfacial

stress, the mixture of Fe-Ti can be deposited.

The samples are rinsed with ethanol, then water and sonicated for 3 mins before

undergoing anodisation. A variety of Fe-Ti-O nanotubes are shown in the SEM

micrographs in Figure 4.4(a) to (c), each with a varying elemental Fe content.

The dimensional data is for the Fe-Ti-O nanotubes (Figure 4.4) with varying

composition as summarised in Table 4.1. The values are compared with pure TiO2

and Fe2O3 nanotubes. Energy dispersive X-ray (EDX) measurements are carried

out on the nanotubular array to determine the composition of the material.

Composition of Length Inner Diameter Outer Diameter Wall Thickness Figure

Fe-Ti-O NT’s (µm) (nm) (nm) (nm)

TiO2 10 109 ± 13 167 ± 16 29 ± 7 4.1

2 % Fe 10 77 ± 10 123 ± 8 23 ± 5 4.4 (c)

7 % Fe 11 51 ± 6 102 ± 17 25 ± 6 4.4 (b)

10 % Fe 16.2 47 ± 13 87 ± 17 20 ± 8 4.4 (a)

Fe2O3 0.385 29 ± 7 67 ± 9 19 ± 4 4.2

Table 4.1: Dimensions of Fe-Ti-O nanotubes with varying Fe content.

The TiO2 nanotubes discussed in Chapter 4.1 were synthesised in an electrolyte

with higher F− ion concentration (2 % H2O and 0.3 % NH4F in ethylene glycol)

than for the Fe doped nanotube samples (2 % H2O and 0.15 % NH4F in ethylene

glycol) in Table 4.1. With increasing Fe content the nanotubes inner and outer

diameters reduce, the size has reduced by more than half from 2 % Fe content to
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(a) 10% Fe content on Ti plate

(b)  7% Fe content on Ti plate

(c)  2% Fe content on Ti plate
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Figure 4.4: SEM micrographs of Fe-Ti-O nanotubes formed on a Ti foil, with
various ratios of Fe-Ti content. (a) shows nanotubes with a 10 % content with
varying magnification, i-×1500 and ii-×6250. (b) shows a 7 % content concentration
nanotubular array, i-×14,500 and ii-×7500 and (c) is a sample with the lowest
concentration of Fe at magnifications of i-×20,000 ii-×6,000 iii-×8,000 and iv-×3500.
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10 % Fe content. The thickness of the nanotube walls also decrease with increasing

Fe content. It is possible, by increasing iron content the solubility of the thin film

increases, increasing the dissolution rate as more iron is added to the composition

of the thin film. If this is the case, the formation of the initial pores of the tubes

would be smaller in diameter and the oxidation and dissolution will be guided by

the initial pore size. The length of the nanotubes are all of the same order with the

exception of the iron oxide nanotubular array, which could be due to the cracking

of the tubular array and the entire array could not be distinguished.

4.4 TiO2 and Fe2O3 Nanotube Formation on Com-

plementary Substrates

The e-beam evaporator I constructed in this work allows the evaporation of multiple

metals simultaneously. Evaporating varying concentrations of Ti and Fe to create

nanotubes with varying band gaps along the length of the nanotubes can enhance

the absorption properties of the nanotubular array. The tips of the tubular array can

be composed of a higher Ti concentration forming a UV absorbing material closer

to the illumination source, longer wavelengths penetrate further into the material

where they can be absorbed by the higher iron content nanotubes where the band

gap approaches that of iron oxide (2.2 eV), closer to the thin film metal contact.

The deposition of Fe onto a substrate required less heating power than Ti, due to

the higher vapour pressure of Fe and lower melting temperature (1538 ◦C compared

to the Ti melting point of 1668 ◦C). The heating power is controlled to be kept at

28 W, which is under half of the heating power for a similar deposition rate of Ti.

The filament current depends on the morphology of the tungsten (length) and is

controlled according to target emission current at a fixed bias voltage. The bias is

maintained at 700 V with a filament current of 9.5 A, the emission current is 40 mA.

Figure 3.6 illustrates the rate of deposition in m/min for iron and titanium under

perfect vacuum conditions. For a deposition rate of 1 nm/min, Ti (1900 K) requires

an additional 300 K compared to Fe (1600 K). Figure 4.5(a) are SEM micrographs

of TiO2 nanotubes formed by anodising a thin film of Ti, which was evaporated

on a Fe foil. Figure 4.5(b) are the SEM micrographs of a Fe-Ti mixture thin film
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evaporated and anodised on a Ti foil. The electrolyte in which the anodisation is

carried out is composed of; 2 % H2O and 0.15 % NH4F in ethylene glycol.

(a) Ti evaporated on Fe foil

(b) Fe/Ti evaporated on Ti foil

5μm

5μm2μm

1μm

i ii

iii

Figure 4.5: Examples of a thin film evaporated onto a substrate and anodised,
(a) TiO2 nanotubes formed using a thin film of Ti evaporated on a Fe foil with
magnifications of i-×17,500 and ii-×4000, (b) Fe with Ti evaporated on a Ti foil,
and nanotubes formed of the Fe-Ti-O thin film with magnifications of i-×16,250 and
ii-×7000.

The TiO2 nanotubes formed by anodisation of Ti evaporated onto a Fe substrate

formed a porous structure and the tubes are masked by debris. The inner pore

diameter is 33.5 nm ± 8.3 nm, the smaller diameter compared to TiO2 nanotubes

formed on a Ti plate could be a result of the increased conductivity of the iron

electrode, the same potential used in the anodisation process results in a higher

anodisation current and rate of dissolution. Also the low concentration of F− ions

and water reduced the lateral oxidation and dissolution process. The thickness of

the Ti layer is unclear, two layers are present, each approximately 400 nm thick.
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These two layers could be composed of a TiO2 nanotube array and a Fe2O3 nanotube

array, or two layers of TiO2 nanotube arrays. The Ti/Fe oxide nanotubes formed

on a Ti plate are more distinguishable and have an inner diameter of 44 nm ± 8

nm, an outer diameter of 73.3 nm ± 7 nm and are approximately 4.3 µm long. The

electrolyte used is identical in the synthesis of both nanotube arrays.

4.4.1 Titanium and Iron stacked Thin Film on Conductive

Glass

In this work I created Fe-Ti-O nanotubes on conductive glass in an identical process

of forming TiO2 nanotubes on FTO described in Chapter 4.2.1, with the addition

of Fe in the deposition process. Forming the tubes on conductive glass has the same

advantages as described with TiO2 on FTO, and an additional optical absorption

enhancement due to the reduction of the band gap of the nanotubes by the incor-

poration of iron in the nanotubular array. A problem with using FTO glass is the

sensitivity of adhesion of the thin films directly after evaporation; the initial in-

stability of the film is caused by the attack of moisture at the interface between the

metal and FTO glass. The hydroxide formed is super hydrophilic whilst the metal

surface is normally hydrophobic. Therefore, high interface tension exists between

the FTO and metal, which is released through the peeling of the thin film from the

substrate. This can be overcome by evaporating a thin film of Ti before the mix-

tures are evaporated. The high reactivity of freshly evaporated titanium will help

in the adhesion of the thin film on the FTO glass substrate. The Ti layer is initially

evaporated for one hour, followed by a Fe-Ti mixture for another hour. This process

is repeated to form layered deposition of the two metals with varying Fe content in

a stacking fashion. In the hope to distinguish the varying iron content along the

nanotubular array using EDX elemental mapping.

Anodisation is performed in an electrochemical bath. The FTO/thin film is

fitted into a substrate holder and contact is made from the top of the thin film. A

40 mins anodisation is carried out at a potentiostatic potential of 60 V using the

same electrolytes used to create Fe2O3 nanotubes.

During the anodisation the film undergoes a variety of colour changes, from

purple (1 min), silver (2 min) to yellow gold in the first 5 mins. The thin film then



86

becomes darker, and eventually becomes gold after going through several colour

stages (maroon after 10 mins, green after 13 mins and turquoise after 15 mins,

reaching gold with a dark purple layer at the bottom of the substrate after 30

mins). This is indicative of the varying wavelengths of absorption of the thin film

(the complementary colour of the reflecting colour) as iron content changes through

the nanotubular film. A darker film indicates a larger spectrum range of visible

light absorption due to varying Fe concentration as nanotubes form, which will

enhance the light harnessing properties of the material over TiO2 alone (during

TiO2 anodisation the film turns gold from silver). The nanotubes themselves are

transparent (as seen with TiO2 nanotubes formed on FTO), so the metal oxide film

layer on the thin film must be the material which undergoes the colour changes at

various concentrations.

2μm

1μm 2μm

1μm

a b

c d

Figure 4.6: SEM micrographs of Fe-Ti-O nanotubes with 26 % Fe content on
FTO substrate, with magnification of (a) ×27,500, (b) ×15,000, (c) ×27,500 and
(d) ×14,000.

The mixtures were similar to the form discussed earlier, with varying thicknesses

and Fe-Ti ratios. Figure 4.6(a) to (d) shows the SEM micrographs of ordered Fe-
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Ti-O nanotubes with an overall 26 % Fe content synthesised on FTO glass, the

associated EDX spectrum is shown in Figure 4.7.

The tubes formed have an inner diameter of 67.2 nm ± 12.5 nm, and an outer

diameter of 118.8 nm ± 12.3 nm, the walls of the tubes are significantly larger (25.8

nm ± 6.2 nm) than the 10 % Fe content nanotubes formed on a Ti foil when it should

be smaller with increasing Fe content. This indicates the FTO conductive glass

affects the dissolution process, and conductivity of the electrochemical anodisation

circuit. Generally good quality nanotubes are formed, although some of the walls of

the nanotubes are fragmented, possibly due to the fast dissolution rate of iron oxide.

The tubes are straight without kinks and defects with a length of approximately 2

µm (1.94 µm ± 0.04 µm).
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Figure 4.7: EDX spectrum of 26 % Fe content Fe-Ti-O nanotubes on FTO sub-
strate.

In Figure 4.7, the Si signal is contributed from the glass substrate and the Sn

signal originates from the FTO thin film on the glass substrate. Thus it is expec-

ted that the FTO thin film underneath the Fe-Ti-O nanotubes is maintained after

performing e-beam evaporation and anodisation on the substrate. There are two Ti

peaks resolvable in the spectrum, the Kα transition at 4.5 keV and the Kβ at 4.93

keV. The peaks at 6.4 keV and 7 keV are contributed from the Fe Kα and Kβ trans-
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itions, respectively. The detector installed on our SEM is not sensitive to oxygen.

Quantitative analysis shows that 26 % of Fe is present in the Fe-Ti-O nanotube film.

The nanotubes formed consistently, though stacking was not clear in the elemental

mapping mode of the SEM. This could be due to the sensitivity or dynamic range

of the SiLi XRF detector in the X-ray range, or due to migration of the iron during

anodisation.

4.5 Photoelectrochemical Analysis

The photoelectrochemical properties of the Fe-Ti-O nanotubes are analysed using a

three electrode electrochemical cell discussed in chapter 3. The electrolyte solution

is 1 M KOH deionised water. The reference electrode used is an Ag/AgCl electrode

and a Pt foil serves as the counter electrode. In an alkaline solution, the Nernst

equation (equation 2.8) is used to calculate the reversible hydrogen electrode (RHE)

potential to measure optimum operating conditions, as the redox potentials of water

are fixed with potential vs RHE.

A potential sweep from -1 V to +1 V, across the reference electrode and working

electrode (photoanode), is controlled using a potentiostat. The current is measured

across the platinum counter electrode and working electrode. The excitons created in

the photoanode material during illumination (full beam of the xenon lamp, not filters

were employed) are separated under the influence of the potential and the electron

traverses the circuit reducing water on the platinum electrode surface. Meanwhile,

holes created close to the surface of the photoactive material can travel into the

electrolyte solution and oxidise the water generating oxygen on the surface of the

photoanode.

The Fe-Ti-O nanotubes formed directly after anodisation are partly amorphous;

resulting in high recombination rates under illumination. The charge mobility in the

metal oxide is highly dependant on the crystal quality. High quality crystals form

perfect band structure and channels for charge transport, whilst for an amorphous

sample the high density of defects and their associated charge will result in exciton

trapping and increased rates of recombination, thereby reducing the photoefficiency

of the photoanode. In order to improve the charge mobility the crystal quality of the
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Figure 4.8: Photocurrents I-V plots of Fe-Ti-O comparing a non-annealed
(amorphous) sample with the same sample annealed (higher crystallinity). The
spiking and chopped light profiles are artefacts of the electronic switching of the
xenon light source, rather than a property of the photoanode. The onset poten-
tial of -0.56 VAg/AgCl is the equivalent of 0.43 VRHE, which would be the potential
required in a two electrode electrochemical cell.
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nanotubes has to be improved by thermal annealing. Here, I annealed the samples

in air ramping up to a temperature of 550 ◦C. This resulted in a dramatic increase of

the crystal quality accompanied by the significant increase in the photocurrent, the

effects of annealing and crystallinity were studied once the X-ray diffractometer was

installed in our laboratory. Higher crystallinity results in fast pathways for electron

transport. Annealing could also transforms the rutile into anatase throughout the

surface of the TiO2 nanotubes, the iron oxide into haematite or form a mixture of

iron titanates through-out the nanotubular structure.
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Figure 4.9: EDX spectrum of Fe-Ti-O nanotubes grown on a Ti foil with varying
Fe content.
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In an amorphous material, there are many more opportunities for charge carriers

to scatter and recombine; the diffusion length of the electron will be very limited. In

an ordered structure, the electron has a greater chance of travelling further without

scattering thereby allowing a more effective separation of the charge carrier (e−

& h+). Figure 4.8 shows the significant difference in quality of the photoanode

depending on whether the material is annealed or not. Annealed samples achieve a

much greater photocurrent density. For comparison, a mobile phone battery outputs

on average a current of 120 mA, this could be provided by a watersplitting module

with a photoanode area of 6 cm by 10 cm ( 120mA
2mA/cm2 ) under illumination and a bias

of 1.025 VRHE.

The chemical composition of the Fe-Ti-O nanotubes was determined using EDX

analysis. The EDX spectra are shown in Figure 4.9, and the varying content of

Fe and Ti relative to one and another is clearly resolved, quantitative analysis of

the spectra determined the relative concentrations of Fe and Ti. The samples were

photoelectrochemically tested, Figure 4.10 shows the photocurrent densities of 5

samples examined with various concentrations of Fe. Inset are the photopower

density curves of each of the materials.
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Figure 4.10: Photocurrents I-V plots of Fe-Ti-O nanotubes grown on a Ti foil of
varying Fe content. Inset are the photopower density curves for these materials.

The onset potential increases with iron content, this could be a consequence of

the band structure alteration of the iron titanate nanotubes. Lowering the band
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Iron Pmax I1.23VRHE V0mA/cm2 Vonset

content (mW/cm2) (mA/cm2) (VAg/AgCl) (VRHE)

0 % 0.463 0.952 -0.63 0.394

2.20 % 0.531 1.019 -0.619 0.405

23 % 0.724 1.152 -0.529 0.495

38 % 0.757 1.411 -0.556 0.468

83 % 0.867 1.499 -0.48 0.544

Table 4.2: Photoelectrochemical data for various compositions of Fe-Ti-O nan-
otubes. Potentials are measured vs Ag/AgCl unless stated otherwise.

edges with respect to the redox potential. This would consequently require a higher

potential for an upward bending of the band to occur close to the surface of the

photoanode. Also, if the conduction band is below the reduction potential, extra

energy is required for the electron to facilitate the hydrogen evolution reaction.

Onset potential can also increase if there is an increase of hole accumulation close

to the nanotube/electrolyte interface due to the structural and electronic properties

of the Fe-Ti-O nanotubular structure as well as defects.

The FeTiO3 CBM position is 0.2 VRHE below the proton reduction potential

(0 VRHE), yet Fe2TiO5 is significantly lower at 0.6 VRHE. Iron oxide has a CBM

position of 0.4 VRHE, and titanium dioxide is the most favourable at -0.1 VRHE, 0.1

V above the proton reduction potential, these positions are shown in Figure 1.9.

Another possibility is that titanium dioxide and iron oxide form independently

throughout the nanotubular structure and the titania conduction band remains

above the proton reduction potential. A charge injection process could provide the

titania conduction band with electrons excited from iron oxide, a bias then assists

in the flow of the charge carrier to complete the electrical circuit.

Figure 4.10 shows a comparison of current-voltage behaviour of the various Fe-

Ti-O nanotubes investigated, and Figure 4.11 shows the respective maximum pho-

topower output densities for varying composition. For Pure TiO2 nanotubes the

output photopower density is 0.46 mW/cm2, which is the lowest value amongst the

samples, and with a small amount of elemental Fe present in the nanotubular array

structure the power output density increases by 15 %. With almost a quarter of Fe
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Figure 4.11: Maximum photopower density of Fe-Ti-O nanotubes with varying
content of iron.

present in the Fe-Ti-O nanotubes, the maximum power density has nearly doubled

to 0.72 mW/cm2, and with 38 % Fe content the power output density is almost

the same with a value of 0.76 mW/cm2. The best power density output produced

with a photoanode is a photoanode of a composition consisting mostly of iron, 83

% Fe content shows double the photo power density output (0.87 mW/cm2) com-

pared to pure titania nanotubes. The increase in photocurrent and power density is

attributed to engineering of the band gap of the material. The band gap decreases

with increasing Fe content in the Fe-Ti-O structure and the value of the band gap

saturates once the concentration of Fe content reaches 50 %.214 The band gap will

approach that of Fe2O3 as more Fe is incorporated into the nanotubular array (2.2

eV is well within the visible range). Allowing a much larger portion of the spectrum

of the xenon light source to be utilised into the photoelectrochemical conversion of

water into hydrogen.

4.6 Conclusion

In this work, I have demonstrated the ability to control the 3D architecture of iron-

titanium-oxide composite nanotubes. Physical vapour deposition by electron beam

evaporation proved effective in creating thin films of titanium and iron with varying

concentrations. These thin films were anodised to form a highly ordered nanotube

array, which demonstrated improved photocurrents and photoefficiencies through
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the engineering of the band gaps of the nanotubular array photoanode. Increasing

iron content in the composite nanotubes reduced the band gap, whilst the band

edges of the material remained in favourable positions with respect to the redox

couple potentials.

The e-beam evaporator constructed herein can be utilised further to create a

multi layered semiconducting black leaf structure. For which UV wavelengths are

absorbed closer to the light source and the wavelengths being absorbed widen along

the length of the tubes, allowing visible light to be absorbed close to the roots of

the nanotubular array.
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Chapter 5

Zinc Oxide Nanostructures formed

by Vapour Transport Processing

Zinc oxide is a wide direct band gap semiconductor; the band gap is 3.3 eV and

is comparable to that of TiO2. However, ZnO tends to have a higher conductivity

than TiO2. The wurtzite crystal structure of ZnO has noncentrical symmetry and

high energy polar surfaces. The hexagonal crystal structure promotes higher elec-

tron mobility in crystalline samples of ZnO. The crystal structure is illustrated in

Figure 3.11 with associated miller indices of directions and planes of the wurtzite

crystal structure. The possibility of creating high quality large bulk single crystals

with favourable electronic and optical properties has revived interest in ZnO as a

semiconductor. The electron mobility of ZnO is high at 200 cm2/Vs with a low

effective mass (0.24 me).215,216

1D ZnO nanostructures are the most commonly synthesised ZnO structures. The

natural crystal dynamics of growth assists in the preferential growth in one direction,

creating nanorods,217,218 and nanowires.115 A fast growth rate in the [0001] direction

of the wurtzite structure is due to high energy polar surfaces on this face, where the

precursor preferably adsorbs to this high energy surface. There is also relatively fast

growth along the lateral faces, but not as much as they are lower energy non polar

faces. With high Zn vapour partial pressures growth in the c-axis and the lateral

faces balance to form rods.219

ZnO can be utilised in a variety of applications making it a highly attractive

semiconductor to research. The exceptional electrical and optical properties, as
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well as the self-forming crystal dynamics means ZnO is advantageous as a semi-

conductor material. ZnO nanorods and nanowires are relatively easy to produce,

and have good charge carrier transport properties and high crystalline quality which

open up possibilities of utilising ZnO in gas sensing applications220–222 and field ef-

fect transistors (FETs).223 The tetrahedrally bonded oxygen atoms and zinc atoms

which forms a ZnO crystal, results in a non-centrosymmetric structure, such that

the crystal undergoes a lattice distortion under applied pressure, resulting in local

dipole moments. This piezoelectric property and the large electromechanical coup-

ling properties of ZnO make it an attractive material in the design of piezoelectric

generators. The piezoelectric effect can be enhanced by controlling the nanostruc-

ture morphology, i.e. nanobelts demonstrate large piezoelectric coefficients.224 The

optoelectronic properties of ZnO make it a promising photosensitive material, which

can be applied to dye sensitised solar cells.225 Altering the structure can enhance

the photosensitivity; by reducing the band gap or creating heterostructures capable

of enhanced optoelectronic properties. For example, doping ZnO with nitrogen,226

QD sensitisation of ZnO structures227 or creating a CIGS/ZnO heterostructure.25

These examples either engineer the band gap to enhance absorption or create elec-

tronically favourable situations. In this work I demonstrate a ZnO-Zn2TiO4-TiO2

heterostructure enhances the electronic properties at the interface of the junctions,

which improves charge transport in the photoelectrochemical cell.

P-type ZnO is notoriously difficult to synthesise but recent reports have suggested

doping ZnO with Sn to achieve this feat.228 The p-n ZnO material has been utilised

in the construction of solid-state p-n-junction nanolasers.229,230 A p-n junction ZnO

structure created in one step will have far reaching possibilities, especially in the

advancement of ZnO self-driven devices. The electric field associated with the p-n

junction will separate excitons close to the junctions, which in turn can drive the

water splitting reaction.

5.1 Vapour Transport Nanostructure Synthesis

To reiterate synthetic methods, VLS (vapour liquid solid) occurs when a eutectic

alloy liquid droplet forms and provides site specific nucleation sites. ZnO nucleates
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at these sites and grows following the supersaturation of the liquid droplet with

the Zn vapour, incremental nanowire growth proceeds thereafter pushing the seed

upward (the seed remains at the top of the nanowire).

VS (Vapour solid) is similar to that of VLS, with the exclusion of liquid seed

catalytic growth sites. Instead, a self-catalysing process occurs on the surface of the

substrate,231,232 or a solid seed serves as a nucleation site. The choice of seed and

the temperature of the seed determines which reaction is driving the growth process.

In the VLS method, the growth temperature has to be higher than the melting

point of the eutectic seed. Whilst for the VS method, the growth temperatures can

be lower.

5.1.1 Carbothermal ZnO decomposition

Vapour transport synthesis of decomposed ZnO is conducted in a quartz tube inser-

ted inside a horizontal tube furnace (Eurotherm) the setup is shown diagrammat-

ically in Figure 3.9 in chapter 3. High temperatures are required for the reductive

decomposition of ZnO (∼2000 ◦C), the presence of graphite reduces the decomposi-

tion temperature to approximately 1000 ◦C via a carbothermic reaction route shown

in equation 5.1. The Zn vapour and residual oxygen later react to form ZnO crys-

tals. Graphite reduces ZnO into Zn, which has a low melting point (m.p. ∼420 ◦C)

and the reactor temperature is higher than the boiling point of Zn (b.p. 907 ◦C).

Thus, the Zn immediately forms vapour and is carried by the Ar gas with flow rates

between 100 to 200 standard cubic centimetres per minute (SCCM) (the reactor is

initially evacuated to 1.10−3 mbar). The growth rate is determined by the reductive

decomposition reaction. The growth temperature dictates the vapour partial pres-

sures of the Zn vapour and O2 and accordingly changes the morphology of the zinc

oxide structures grown.233,234

2 ZnO + C→ 2 Zn + CO2 (5.1)

In order to investigate the effects of seeding on morphology of the nanostructures,

I used VLS and VS methods with Zn generated by reduction of ZnO with graphite.

I chose Au (Figure 5.1), Al2O3 (Figure 5.2), and TiO2 (Figure 5.3) nanoparticles as
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seeds deposited on a Si substrate. Most of these seeds are inert and stable at high

temperatures, the only difference is that gold is a metallic non-polar seed, whilst

metal oxides are polar for certain crystal faces.

Gold is frequently used as a seed in literature and is easy to deposit.235 A gold

sputterer is composed of an evacuated chamber filled with Ar and a gold target that

is negatively biased by 5 kV, which will discharge the Ar gas and form a plasma and

Ar+ ions in the chamber. The positively charged Ar cation bombards the negatively

charged gold target, releasing Au clusters from the surface of the target. The Au

clusters generated will then be deposited onto the substrate.

Spin coating of TiO2 is conducted on a Si wafer, the spin solution consisted of

5 % wt TTIP (titanium tetra isopropoxide is purchased from Sigma-Aldrich CAS-

546-68-9) and 7 % wt PVA (polyvinyl alcohol is purchased from Sigma-Aldrich

CAS-9003-20-7) in deionised water. PVA is added to the solution to increase viscos-

ity and achieve faster spin rates (800 RPM). Ti compounds are extremely sensitive

to moisture and a slow spin rate could cause an inhomogeneous coating. The coated

Si is heated to 500 ◦C to thermally oxidise the titanium compound, achieving nan-

oparticle seeding (50-200 nm) homogenously coating the surface of the Si wafer.

Aluminium oxide seeding is achieved via dip coating a Si wafer in a 0.5 M solution

of Al(NO3)3 (aluminium nitrate is purchased from Sigma-Aldrich CAS-7784-27-2)

in deionised water, and annealed at 450 ◦C for 30 mins to form alumina.

Si wafers are used as substrates as they can withstand the high temperatures

required and do not deform, Si has a melting point of 1,414 ◦C. The size of the

particulate seeding is critical for lower temperatures as the size can dictate the

melting temperature of the seed. The seed should also be a good catalyst for growth

as a nucleation site. The gold nanoparticles are liquid by the time 1000 ◦C has been

reached. The liquid undergoes supersaturation by the Zn vapour and precipitates

solid ZnO crystals, condensing into ZnO rods if VLS is the driving mechanism. If

the Zn/seed alloy remains solid at reaction temperatures, a VS mechanism takes

place and oxidation of Zn on the solid nucleation sites initiates a ZnO seed and the

formation of ZnO structures.

The reaction conditions are as follows, the ZnO and graphite powders are finely

mixed with a pestle and mortar and placed in an alumina crucible. The crucible is
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placed in the centre of a quartz reactor positioned inside a horizontal furnace, the

reactor is evacuated to 1.10−3 mbar and Ar is introduced with a flow rate of 100

SCCM. The samples are placed 5-8 cm from the centre of the furnace and a heating

ramp rate of 50 ◦C/min is maintained until 1050 ◦C is reached, and the reaction

takes place for one hour.
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Figure 5.1: SEM micrographs of ZnO structures grown via a vapour transport
reaction (1050 ◦C) on a sputter coated Au seeded Si wafer substrate. (a) and
(b) show the ZnO nanorods formed at the edges of the Si substrate, with sharp
terminated ends and organised growth at ×7,500 and ×1,500 magnifications. (c)
and (d) show some of the larger structures formed on the Si wafer, where accelerated
growth has formed combs with features greater than 10 µm. (e) to (g) show the
ordered array of nanorods at low magnifications (×75 to ×100) to illustrate the
density of the forest of ZnO nanorods. (h) and (i) shows a unique sheet like formation
of ZnO (×2000 and ×750 respectively).

Figure 5.1(a) to (i) shows a few examples of the ZnO structures formed on a

gold seeded Si wafer, the rods formed have a large diameter of 1.55 µm ± 0.28 µm

and are highly ordered. The sharp tip seen in Figure 5.1(a) and (b) show the tip

to be terminated at an angle of 30◦, exposing the {011̄2} set of planes. Figure 5.1d

shows a large ZnO comb, the teeth are hexagonally formed in layers orientated in the
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[0001] direction. The length of the teeth are 17.7 µm ± 1.336 µm with a diameter

of 2.55 µm ± 0.3 µm. The base of the comb is a planar lateral surface of ZnO

which is 7.67 µm ± 0.8 µm wide. The lengths of the rods/whiskers measured in

Figure 5.1(g), is 71.79 µm ± 11.3 µm. The growth is very organised in Figure 5.1(a)

to (g), and the Au liquid seed and Zn vapour likely underwent supersaturation at

these temperatures, though it is not clear whether gold is present at the top of the

structures. It is uncertain whether the reaction underwent a VLS or VS process.

Figure 5.1(h) and (i) show connective growth between the long whiskers of ZnO,

forming tripod morphologies. These morphologies were present at the edge of the

sample and could possibly be due to sparse seeding on these areas.
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2μm
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Figure 5.2: SEM micrographs of ZnO structures grown via vapour transport de-
position of alumina seeded Si wafer substrates. (a) shows a high magnification
(×11,000) SEM micrograph of the bunched ZnO rods formed at an angle to the sur-
face, whilst (b) shows large bunched rods formed laterally on the surface (×3,000).
(c) shows a top down view of the rectangular ZnO rod array (×9,000), illustrating
the varying dimensions of the rectangular rods. (d) is a low magnification (×3000)
micrograph of a selected area of the substrate.
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Figure 5.2(a) to (d) shows SEM micrographs at various magnifications, of bunch-

ing of rectangular ZnO rods on an Al2O3 seeded Si substrate. The rods lay on the

surface rather than precipitate between the substrate and seed. The aluminium ox-

ide seed provides nucleation sites on the surface of the alumina particle, by taking

into consideration the high melting point of alumina it is likely the ZnO condensed

on the surface rather than supersaturating a liquid seed and precipitating solid ZnO.

The ZnO structure have an average width of 286 nm ± 35.5 nm and a length of

9.5 µm, which is significantly smaller than the gold seeded Si. The bunching could

be possibly due to the lattice structure of aluminium oxide. The Zn vapour con-

denses in epitaxially favourable lattice positions on the alumina rectangular lattice,

gradually forming multiple rectangular rods. The Sapphire (Al2O3) c-axis and ZnO

a-axis have almost no lattice mismatch (4[011̄0]ZnO = 12.996 Å & [0001]Al2O3 =

12.99 Å), so the ZnO preferably adsorbs to the lattice in this orientation growing

along the c-axis. Restrained by the rectangular lattice of the (112̄0)Al2O3 plane, the

ZnO rods form in a rectangular tilted ZnO form dominated by the initial lattice

strain determined by the alumina.236

Similar structures are observed in the literature, in an Al doped ZnO vapour

solid reaction, where Zn and Al powder are alloyed under high pressure and tem-

perature and then serve as the vapour source for the reaction. It was demonstrated

a rectangular array of ZnO rods form, synthesised in the c-axis on a Si substrate,

with the side facets of the rods belonging to the (21̄1̄0) and (101̄0) planes.237 The

varying rectangular dimensions were explained by the formation of an initial ZnO

belt in the [011̄0] direction with periodic thickness due to Al redistribution, followed

by rodular growth along the c-axis out of the sheets to form a rectangular array of

ZnO rods. In our case, there is two dimensional growth in the [011̄0] and [21̄1̄0]

directions, followed by c-axis growth of rectangular rods.

Figure 5.3 shows SEM micrographs of vapour transport deposition of ZnO on

a TiO2 nanoparticle seeded silicon wafer. The temperature of the substrate was

controlled to be approximately 700 ◦C; controlling the substrate temperature can

alter the condensation rate and growth rate. Here I investigate the influence of

growth rate on the crystal morphology and explore the possibility of developing

a variety of structures in order to optimise for different applications. Dendritic
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Figure 5.3: SEM micrograph of ZnO structures grown via VLS with a spin coated
TiO2 seeded Si wafer substrate. (a) and (b) are SEM micrographs of structures
formed in the low temperature zone (×400 and ×100 magnification respectively),
and (c)-f) are formed in the high temperature zone, with low magnifications (c)
×500, (d) ×250 (e) ×400 and (f) ×750.

structures form across the surface of the substrate when growth rate is restricted

and Zn vapour solidifies rapidly on the surface at a low flow rate, with low seeding

density; shown in Figure 5.3 (a) & (b). The dendrimer shapes have a unique 90

degree symmetry. In other words the features may be either folded or rotated by

90 degrees. This is indicative of growth along the (2̄110), (21̄1̄0), (01̄10) and (011̄0)

faces, and exposing the top of the structure with the (0001) face with limited vertical

growth. The dimensions of the dentritic ZnO structures range from 500 nm to 40 µm,

one of the structures is labelled in Figure 5.3(a). The TiO2 seeding density dictates

the density of ZnO structures formed, with sparse seeding, limited nucleation sites

dictate the initial growth and interconnecting ZnO structures. Figure 5.3 (c)-(f) are

SEM micrographs of ZnO webbed nanobelt/flower mats formed in the hot zone of

the furnace on TiO2 seeded silicon. The substrate is at a temperature of 1050 ◦C

and zinc vapour attaches to the TiO2 nanoparticulate surfaces and undergoes self-

catalysing condensation after initiating growth on the lateral crystal faces forming

horizontal belts with an average length of 7.35 µm ± 1.5 µm and a width of 858

nm ± 200 nm. The coverage of TiO2 is a factor in the morphology of the ZnO

webbed mats. Figure 5.3(d) shows a dense forest of horizontal belts formed on

a dense seeding layer and with high growth rates, while magnified portions are
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shown in the SEM microgaphs in Figure 5.3(e) and (f). ZnO grown via chemical

bath deposition have shown similar morphology where lateral growth is dominant

compared to the [0001] direction,238 in which lowered concentrations of zinc acetate

and Hexamethylenetetramine were used during the chemical bath growth process.

5.1.2 Direct Zn Powder Evaporation

Here, I demonstrate the formation of ZnO nanorods through direct Zn evaporation

of pure Zn powder. This has the advantage of requiring lower temperatures (450 ◦C

and above) than is needed to decompose ZnO/graphite into Zn vapour. This opens

up the possibility for a greater choice of substrates which can be used in the reaction.

More importantly, it opens up a wider window of experimental temperatures and

better control of the growth dynamics. To investigate the effect of seeding and

substrate on the growth process of ZnO, vapour transport deposition was conducted

on Si with three types of seeds, shown in Figure 5.4, and on three different substrates,

shown in Figure 5.5.

In this experimental work, 1 g of Zn powder (purchased from Sigma-Aldrich CAS

7440-66-6) is placed in a porous alumina boat and the substrates placed over the

Zn powder. The alumina boat is placed into the centre of the quartz reactor within

a horizontal furnace. The quartz reactor is evacuated using a rotary pump and Ar

with varying flow rates is introduced into the reactor. The temperature was raised

by 50 ◦C/min up to 650 ◦C, and this temperature was maintained for 20 mins. All

experiments are conducted in this fashion, with Ar flow rate ranging from 50 SCCM

to 1000 SCCM depending on the ZnO structure desired. The Ar gas carries oxygen

from the environment into the reactor.

Figure 5.4(a) shows SEM micrographs of a direct Zn vapour transport deposition

of ZnO on a bare Si surface with a flow rate of 80 SCCM, i shows a high magnification

portions, whilst ii-iii show the low magnification SEM micrographs of the substrate,

illustrating the ZnO rod density on the surface . The diameter of the ZnO rods are

426 nm ± 58 nm, with a length of 5.145 µm ± 0.76 µm.

During the same reaction, a gold seeded silicon wafer produced very similar

rodular structures with larger lengths. Figure 5.4(b) i and ii show high magnification

SEM micrographs of the rods created and iii shows the coverage of the rods on the
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Figure 5.4: SEM micrograph of ZnO rods grown via a vapour transport reaction
on a bare (a) i-×7,500, ii-×1,125, iii-×625, Au (b)i-×15,000, ii-×5,000, iii-×1000,
and ZnO (c)i-×2,200, ii-×850, iii-×1000 seeded Si wafer substrate.

substrate, with a diameter of 810 nm ± 123 nm and a length of 22.81 µm ± 1.5 µm.

Figure 5.4(c) i to iii shows SEM micrographs of ZnO rods grown on ZnO seeded

Si at different magnifications, with a smaller diameter (426 nm ± 58 nm) and a

longer length (31.76 µm ± 2.9 µm) than the ZnO nanorods formed on a gold seeded

silicon wafer. The increase in aspect ratio could possibly be due to the size of the

initial ZnO seed, and the diameter could be restricted by the size of the seed. Thus,

growth along the length of the rod is enhanced due to the lateral restriction. In all

cases the growth is directed in the c-axis, exposing the (0001) face on the top of the

rod and the ±(011̄0), ± (101̄0) and ±(11̄00) planes on the sides of the rods. The

hexagonal shape of the ZnO rods is evident in the SEM micrographs.

Three substrates are placed in the quartz reactor, and ZnO rods are grown under
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Figure 5.5: SEM micrograph of ZnO rods grown via a vapour transport reaction on
a Zr substrate (a)i-×30,000, ii-×2,200, iii-×600, Ni substrate (b)i-×2,000 ii-×750,
iii-×300, and Fe substrate (c)i-×15,000, ii-×350, iii-×1000.

a vapour transport reaction under identical conditions as the seeded substrates. In

Figure 5.5(a) ZnO rods formed on a zirconium substrate were the longest of the rods

formed in the reaction, having a diameter of 288 nm ± 43 nm and length of 11.18

µm ± 1.6 µm. ZnO grown on a nickel substrate were larger in diameter (431 nm ±

43 nm), but under a third the length (3.83 µm ± 0.08 µm) of the rods formed on

Zr; a cross section of the array of ZnO rods can be seen in Figure 5.5(b) i. At lower

magnifications, ii to iii, the ordered ZnO rodular array is densely spread across the

substrate. The Ni substrate may form an oxide layer by thermal oxidation during

the temperature ramp, NiO has been shown to have good catalytic properties for
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the growth of well aligned nanowires239 with similar dimensions to the structures

reported here.

The ZnO condensation on an Fe substrate formed ZnO rods with a diameter of

675 nm ± 93 nm and length of 9.014 µm ± 1.34 µm, shown in Figure 5.5c i to iii

at different magnifications. The rods have a larger diameter than the other ZnO

rods formed on the Zr and Ni substrates under the same conditions, which could

possibly be due to the higher reactivity of Fe. It is also possible that Fe2O3 formed

on the surface of the Fe foil by thermal oxidation and the Fe2O3 layer catalysed the

ZnO vapour condensation reaction more effectively. It has been suggested ZnO can

undergo VLS reaction routes catalysed by a liquid Fe2O3/Si nanoparticle alloy.240

It has been shown that ZnO rods form on a variety of substrates and seeds with

similar morphology. The dimensions do not vary much between one and another,

indicating seed and substrate do not contribute to the growth process after growth is

initiated. ZnO rods with a hexagonal morphology has formed on all of the samples.

The ZnO growth through the condensation of Zn vapour, produced by the evapora-

tion of Zn powder, is a self-catalysed process, and it is possible to choose a variety

of substrates to form ZnO rods.

5.1.3 Morphology Control

Environmental conditions dictate the morphology of ZnO structures during the

vapour-solid growth. Local temperature and vapour pressures change according

to position, further from the centre of the furnace substrates are cooler, changing

the condensation dynamics. Also occupation time of Zn vapour in the growth zone

of ZnO can determine the size and morphology of the structures produced. A variety

of morphologies are represented in Figure 5.6 with notable planes identified. Figure

5.6(a) shows the morphology of a nanorod or nanowire the definition of which de-

pends on the aspect ratio, for a small aspect ratio (i.e. 1:50) it is the former and for

a large aspect ratio (i.e 1:1.104) it is the latter. Figure 5.6(b) shows a nanoneedle

which is generally a rod with gradually decreasing radii of the (0001) plane toward

the tip of the rod. If the upper planes are at an angle of 30◦ with respect to the

length of the needle then we can assign these planes to the {01̄1̄2} set of planes.

Figure 5.6(c) is a nanonail structure, where the diameter of the rod increases toward
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the tip of the rod; the opposite process of the nanoneedle.
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Figure 5.6: A variety of possible morphologies of ZnO, (a) is a simple nanorod or
nanowire, (b) is a nanoneedle, (c) is a nanonail and (d) is a nanobelt, on which a
nanocomb (e) can form.

It is possible to change the dimensions of ZnO rods by controlling the vapour

pressures of oxygen and zinc; this is achieved by controlling temperature or carrier

gas flow. At higher vapour pressures growth is enhanced in all directions.

Nanoribbons241–243 shown in the SEM micrographs in Figure 5.7(a) to (d) are

formed at a growth temperature of 650 ◦C for 20 mins under an Ar flow rate of

150 SCCM on a Ti foil substrate. In this case, a primary ribbon grows along the

[21̄1̄0] direction with a width of 1.3 µm ± 0.2 µm; illustrated in Figure 5.6(d).

Teeth of the comb form in the c-axis direction [0001] and have grown to a length

of 3.372 µm ± 0.22 µm with an average diameter of 400 nm ± 64 nm; illustrated

in Figure 5.6(e).244,245 ZnO forms a ribbon as the [21̄1̄0] growth rate is enhanced,

on which further rod/wires grow in the c-axis along the ribbon. The formation of

the ribbon could be due to an increased Ar flow in the condensation area, which

increases the oxygen concentration close to the growth sites, thereby increasing the

oxidation rate of the Zn and accelerating growth. The side surfaces of the combs

are the ±(011̄0) faces. Double sided combs also can grow if the growth in the [0001̄]



108

direction becomes as preferential as the [0001] directions growth.243 Nanobelts have

a useful morphology for piezoelectric applications246,247 allowing a crystal lattice

distortion with a favourable bending modulus, and due to the non-centrosymmetric

structure of ZnO induces a voltage by inducing electric dipole moments in the crystal

structure.

50μm

20μm 10μm

50μm

a

c d

b

[0001]
[2110]

Figure 5.7: SEM micrographs of ZnO structures on a Ti foil substrate, forming
ribbons and comb structures grown via VS at a growth temperature of 650 ◦C.
The combs are close together on the substrate, shown at varying magnifications (a)
×500, (b) ×550, (c) ×1500, and (d) ×2250 .

The growth of nanonails is similar to earlier examples of nanorod growth, the

SEM micrographs are shown in Figure 5.8 (a) to (d). The reaction temperature, 550
◦C, and Ar flow rate (50 SCCM) determined the morphology. The average diameter

of the rods is 450 nm ± 140 nm, whilst the head of the nail has a diameter of

1.57 µm ± 0.18 µm and an overall length of 10.6 µm ± 1.2 µm. At lower growth

temperatures, compared with the carbothermal method of Zn vapour generation,

the vapourisation of zinc off the growth site is reduced. Under such conditions the

overall growth rate is controlled by the oxygen partial pressure, which controls the
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Figure 5.8: SEM micrographs of ZnO nanonail structures grown via VS using a
Ti substrate. Nanonails which have formed in the centre of the substrate, shown at
varying magnification, (a) ×8750, b ×2500 (c) ×3500, (d) ×1000.

zinc oxidation rate. At the interface between the top of the seed and Zn vapour, the

growth rate is controlled by the fine balance of the Zn vapourisation rate and Zn

oxidation rate. The former is controlled by the growth temperature and the latter

is controlled by both growth temperature as well as the oxygen partial pressure. As

temperature increases, the oxygen vapour partial pressure raises which subsequently

increases growth in the lateral faces forming the head of the nail.

Nanoneedles form at even lower growth temperatures, 450 ◦C. Figure 5.9(a) to

(c) show SEM micrographs at various magnifications of ZnO nanoneedles formed

with an average diameter of 400 nm ± 85 nm and length of 4.5 µm ± 0.6 µm.

This suggests that if the growth temperature is further reduced, the supply of Zn

vapour is reduced to the level that controls the overall growth rate. The deficit of Zn

vapour will cause the reduction of lateral growth resulting in a smaller rod diameter.

The reduced overall growth rate results in the ZnO structure slowly forming in the

[0001] direction, and lateral faces build up gradually forming a sharp tip as the ZnO
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Figure 5.9: SEM micrographs of ZnO needle structures grown via VS using a Ti
substrate, at a low reaction temperature (450 ◦C). (a) shows a dense forest of the
ZnO needles (×1000), whilst (b) is a high magnification SEM micrograph of the
needles (×3500). (c) shows the density and homogeneity of the needles of a large
sampled area at a magnification of ×2000.
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nanoneedle forms.

Tetrapods can be synthesised by vapourising Zn in a precursor mix of Zn/TiO2 in

ambient atmosphere248 at temperatures reaching 1000 ◦C. The legs of the multipods

are aligned in the c-axis.249 Initially a ZnO nucleus condenses which is not a single

crystal and has no particular alignment with several polar faces. Growth is initiated

on the polar faces and legs form along the [0001] direction with a crystalline nature.

Tetrapods tend to grow in atmospheric pressures.250,251 Although this is not the

case in Figure 5.10 where the reaction chamber is evacuated and Ar is introduced

at a rate of 200 SCCM.

Figure 5.10(a)-(c) show SEM micrographs of multi-legged ZnO structures densely

packed formed on a mechanically polished Ti foil with a growth temperature of 550
◦C for 20 mins; the foil is sanded and then polished with 0.5 µm diamond paste,

reducing aberrations on the surface thereby reduces nucleation points on the surface.

The hot surface of the substrate is ideal for the ZnO to attach and adhere after

initial growth. The nucleation initiates above the surface of the substrate252 via a

self-nucleation process. Tetrapods have been shown to form in ambient atmosphere,

with nitrogen or impurities in the air acting as nucleation sites. The self-nucleation

occurs above the plate which has been treated to remove dirt and as much aberration

as possible. The average diameter of the centre of the leg is 1.97 µm ± 0.26 µm,

and the average length is 8.5 µm ± 1.5 µm. The large diameter of the multipods

compared to rodular structures indicate the growth rate is higher, a different seeding

process is taking place where Zn vapour self-catalyses and ZnO rapidly condenses

on the initial Zn seed.

20μm10μm 50μm

ba c

Figure 5.10: SEM micrographs of ZnO multipod structures grown via VS on a
polished Ti substrate, shown here at various magnifications of (a) ×2000, (b) ×625
and (c) ×250.

Under low temperature growth conditions it is possible to grow ZnO hierarchical
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structures.253 In Figure 5.11 (a) & (b), an initial ZnO rod is formed in the [0001]

direction and ZnO grows on the sides of the rods. This was completed on a Zr

substrate at 450 ◦C, for 20 mins with an Ar flow rate of 200 SCCM. Lao et al

used indium oxide to grow a nanorod core where the ZnO grew hierarchical from

the sides with various degrees of symmetry.253 In our case, the ZnO rods self-seed

the hierarchically growth. It is doubtful the Zr created a core rod. Another group,

Wang et al,244 used tin oxide and zinc oxide as source materials to create hierarchical

structures. The tin is used to initiate nucleation for the initial ZnO rod growth which

continues on the sides of the hexagonal rods. Let’s assume the middle core is the

ZnO rod terminated with the (0001) face, the side of the rods will be the ±(011̄0), ±

(101̄0) and ±(11̄00) faces. An increase in growth rate on these lateral faces extend

into arms in the corresponding direction, exposing the (0001) face on the top of the

arms. The average length of the arms of the hierarchical ZnO structures are 1.76

µm ± 0.2 µm with a diameter of 452 nm ± 37 nm.

5μm 20μm

a b

Figure 5.11: SEM micrographs of ZnO spinal structures grown via VS using a Ti
substrate, hierarchical ZnO structures are formed at low temperatures and vapour
pressures. (a) is a high magnification SEM micrograph of the structure (×5000),
and (b) shows a large area containing multiple spinal structures at low magnification
(×900).

The growth kinetics and the nanostructure morphology can be manipulated by

control of the Ar gas flow, which introduces a higher concentration of oxygen into

the reactor with higher flow rates. The larger flux of oxygen carried by the argon

increases the oxidation rate of the Zn vapour, enhancing growth rates. Thus, a

stepped control of the Ar flow produces smaller rods onto larger rods. The growth

is conducted at a temperature of 650 ◦C and initially a high flow rate of Ar is set to
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1 l/min (1000 SCCM) and midway through the reaction is reduced to 100 SCCM,

Figure 5.12(a) & (b) shows the ZnO structures created under these conditions. The

initial rods have a diameter of 3 µm ± 0.27 µm and upon this rod, 696 nm ± 194

nm diameter rods continue to grow. Complex 3D structures can be designed and

created by altering the gas flow rate during the growth process.

Similarly, if the reaction temperature is changed during ZnO rod growth the

oxygen and zinc partial vapour pressure are effected, reducing or increasing growth

of the ZnO rods. Figure 5.12 (c) & (d) show rods initially ramped to 650 ◦C at a

high rate of 100 ◦C/min. The Ar carrier gas flow is set to zero, stunting further

growth. The reactor cools down to 600 ◦C and the Ar carrier gas is reintroduced.

At a lower temperature the O2 and Zn partial vapour pressure are lower, thereby

reducing condensation and oxidation rates of Zn, reducing the size of the rod. The

initial rod has diameter of 2.1 µm and the upper rod is 1.1 µm, illustrating the

sensitivity of the growth rate with Zn and O2 partial pressures.

Staged Ar carrier gas flow during the growth process varies the oxygen concen-

tration in the reactor. The growth begins with a low carrier gas flow (100 SSCM)

and is increased to 1 l/min (1000 SSCM) after 5 mins, an increase of carried oxygen

from atmosphere is introduced into the quartz reactor. Instead of growing larger

diameter rods onto smaller diameter rods, growth is initiated on the side faces of the

rod. Figure 5.13 shows the branched structures formed when this situation arises.

ZnO rods have formed on a cross platform, as shown in Figure 5.13(a), the arms

of the cross are 10 µm long with a width of 0.5 µm. ZnO rods have formed on

the surface of the cross, the 90◦ symmetry indicates the arms of the platform have

formed in the ±(21̄1̄0) and ±(01̄10) planes, exposing the (0001) and (0001̄) faces at

the top and bottom. The growth on the top of the surface, (0001), is initiated and

forms smaller rods on the cross. The smaller rods have a diameter of 317 nm ± 50

nm and a length of 4.9 µm ± 0.4 µm.

Figure 5.13(b) shows an inner core rod, with branched ZnO rods formed on the

sides of the rod. The smaller rods have a diameter of 293 nm ± 44 nm and a length

of 3.4 µm ± 0.3 µm. and the inner core has a diameter of 1.44 µm ± 0.23 µm and

a length of approximately 10 µm. The smaller rods have formed at an angle of 120◦

with respect to the long axis of the large ZnO inner rod.
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Figure 5.12: SEM micrographs of diameter controlled ZnO rodular growth, an
example of rods of a smaller diameter extended from rods with a large diameter, (a)
and (b) are formed by lowering Ar flow in the reaction chamber with magnifications
of ×2,000 and ×750, (c) and (d) are formed by reducing the temperature during
growth at magnifications of ×6,000 and ×10,000 respectively.

Growth of flowering ZnO structures were also present, very large structures and

long rods formed on the ends of the leafs of the ZnO nanoflower. In Figure 5.13(c)

the diameter of the flower is 40 µm whilst in (d) the diameter is 100 µm. In both

cases, the centre of the flower has an increase of lateral growth of the ZnO structure

and the side facets are visibly larger. The diameter of the smaller rods are on average

701 nm ± 316 nm for both of the structures. The increase of oxygen concentration,

by increasing Ar flow, has accelerated growth in the c-axis forming very fine rods

on a larger ZnO structure.

A summary of the various morphologies and conditions of growth are given in

Table 5.1. The growth temperature and the flow rate of Ar are the key parameters,

and in the table other conditions such as position on substrate and treatment of

substrate are also outlined.



115

5μm 5μm

50μm20μm

a b

c

10μm

500nm

d

120˚

Figure 5.13: SEM micrographs of ZnO structures nucleated from a variety of
crystal faces in situ, multi-nucleation sites create branched structures. (a) and (b)
show rods formed on various planes of ZnO at magnifications of ×4000 for both.
Whilst, (c) and (d) show ZnO flowers with long rods formed on the petals at a low
magnification of ×750 and ×300 respectively.

Morphology Temperature (◦C) Ar Flow Rate (SCCM) Extra Conditions Figure

Rods/Wires 650 80-1000 centre 5.5 & 5.6

Belts/Combs 650 150 largely on edges 5.7

Nails 550 50 everywhere 5.8

Needles 450 80 everywhere 5.9

Multipods 550 200 polished surface 5.10

Hierarchical 450 200 Zr substrate 5.11

Small rods 650 1000 down to 100 10 mins each 5.12(a)-(b)

on Large rods 650 to 600 100 10 mins each 5.12(c)-(d)

Flowers/Branched 650 100 up to 1000 5 mins low and 15 mins high 5.13

Table 5.1: Conditions for selective ZnO nanostructure morphologies.
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5.2 XRD Analysis of the Crystal Structure of ZnO

Nanorods Formed on a Ti Foil

In this work I have investigated the photoelectrochemical properties of ZnO rods

formed on a Ti foil substrate. The reaction temperature is 650 ◦C, and the tem-

perature is ramped from room temperature to the reaction temperature at a rate

of 50 ◦C/min. The vapour transport reaction takes place for 20 mins. The ZnO

nanorod thin film formed under these conditions are shown in the SEM micrographs

in Figure 5.14(a) to (d) at varying magnifications.

10μm

50μm

10μm

20μm

a b

dc

Figure 5.14: SEM micrograph of ZnO rods grown via VS on a Ti foil substrate at
different magnifications, (a) and (b) high magnification (×1500 & ×1750 respect-
ively) and (c) and (d) at low magnification (×300 and ×750 respectively), under
investigation using XRD and photoelectrochemical analysis.

X-ray diffraction of the samples, Figure 5.15, shows the presence of a predom-

inant sharp ZnO (light green fill) c axis (0001) peak, and significant ZnO (100),

(101) and (102) peaks at the corresponding 2θ values of 34.44◦, 31.84◦, 36.28◦ and

47.56◦ respectively. The (002)/(0001) phase is the most dominant peak (highest

relative intensity), indicating the growth of the rods have a preferred [002]/[0001]

orientation. The average crystallite domain size is 37.21 nm as determined from

equation 2.7, which is 21 % larger than the crystallite size of randomly orientated
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ZnO powder (30.69 nm). This indicates ZnO rods have larger coherent diffraction

domains. Hence, a longer range order compared to powder samples. Lattice con-

stants for the ZnO rods are a = 3.2503 Å and c = 5.208 Å.

The ZnO peaks are much larger than other crystal structures present, and in-

set of Figure 5.15 are magnified portions of the spectrum. On the left is a 40×

magnification of the spectrum, and on the right is a 20× magnification of the plot.

TiO2 (cyan fill) can now be identified in the sample, and mostly of a rutile crystal

structure, with peaks of (110), (111), (210) and (211) planes at the corresponding

2θ values of 27.5◦, 40.1◦, 42.14◦, and 43.26◦. The TiO2 peaks have a much lower

intensity compared to ZnO, and is formed on the surface of the Ti foil. The crys-

tallite size varied drastically from 18 nm to 59 nm, the comparable physical size of

the film of TiO2 is likely the cause of the variation in crystallite size. The Ti foil

(purple fill) can be clearly identified within the XRD spectrum with peak intensities

over 500 counts, indicating the X-rays are sampling the substrate.

The thin film of TiO2 must be formed by the thermal oxidation of the Ti foil

surface, and rutile is the most thermodynamically stable phase of TiO2 at high

temperatures. The size of the initial particles determine formation of TiO2 crystal

phases, anatase is thermodynamically stable for small particles (< 10 nm), and

above 35 nm rutile is the most stable phase. Intermediately to these is brookite

which is thermodynamically stable for moderately sized particles. In our case, the

Ti foil is a bulk material and rutile is the likeliest phase formed by thermal oxidation.

An anatase (004) peak at 38.38◦ is present, the formation of which could be due to

the smaller sized granular features on the Ti surface undergoing thermal oxidation,

and abberations which are below 10 nm.

Interestingly, Zn2TiO4 has formed on the material. This can only have been

formed between the TiO2 thin film and the roots of the ZnO rods. The mass

transportation limit sets the maximum size of the Zn2TiO4 film beneath the ZnO

rods. The two peaks present at 29.78◦ (220) and 35.1◦ (311) have a small crystallite

phase domain of 7.25 nm and 12.87 nm. The crystallite domain size might be

restricted by the physical dimensions of the Zn2TiO4 film between the rods and

TiO2 film, and if so, the thickness of the film will be in the order of 10 nm. The

XRD data of the ZnO rods formed on a Ti foil is summarised in Table 5.2 as analysed
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Figure 5.15: The top spectrum shows the ZnO standard, and the bottom XRD
plot is the ZnO rods grown via VS on a Ti foil substrate. The middle plots are
magnified (40× on left and 20× on right )in order to show the low intensity peaks.
The presence of Zn2TiO4 is clear in the middle magnified plots.
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using the Igor software suite.

Material (hkl) 2θ 2θ ref. Peak Peak Crystallite d (Å)

(◦) (◦) height area size (nm)

ZnO (100) 31.84 31.77 3559 1060.8 32.81 2.8105

(002) 34.44 34.42 18476 4720.1 38.54 2.6040

(101) 36.28 36.25 8142 1906.7 42.25 2.4761

(102) 47.56 47.54 2907 804.5 37.13 1.9118

(110) 56.64 56.60 1049 312.7 35.84 1.6250

Zn2TiO4 (220) 29.78 29.83 73 97.9 7.25 3.0003

(311) 35.1 35.14 317 242.9 12.87 2.5566

TiO2 (110)r 27.5 27.91 122 62.3 18.95 3.2434

(004)a 38.36 37.84 164 76.8 21.26 2.3465

(111)r 40.10 41.72 225.4 38.4 58.77 2.2486

(210)r 42.14 44.83 155 85.8 18.21 2.1443

(211)r 54.26 55.11 90 153.3 6.20 1.6905

Ti (002) 38.92 38.42 753 160.3 46.85 2.314

(101) 40.48 40.17 574 317.7 18.11 2.2283

(102) 53.00 53.01 476 131.7 37.97 1.7277

Table 5.2: XRD data of ZnO rods formed on a Ti foil. The crystallite size is
determined from the FWHM using equation 2.7 and the lattice spacing is determined
using equation 2.6. The reference values are taken from the International Centre
for Diffraction Data, JCPDS numbers: ZnO - 36-1451, Zn2TiO4 - 25-1164, TiO2
(a-anatase) - 21-1272, TiO2 (r-rutile) - 21-1276 and Ti - 44-1294.

Figure 5.16 shows the structure proposed in accordance with the diffraction peaks

observed. A TiO2 thin film forms at high temperatures (650 ◦C) on the surface of a

Ti foil due to thermal oxidation, the TiO2 acts as a seeding layer for the growth of

ZnO, and Zn vapour attaches to the seed and partially oxidises. The first few layers

of deposited ZnO is in direct contact with TiO2, and reacts with the TiO2 thin film

forming Zn2TiO4. The chemical transformation can be expressed as equation 5.2.

The ZnO vapour facilitates further growth on the zinc titanate complex, dominated

by the c-axis growth direction of the crystal, forming ZnO nanorods. The reac-
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tion between the TiO2 and ZnO at the nanorod/substrate interface create Zn2TiO4

through a unilateral diffusion process, limited by the mass transportation limit, i.e.

the Zn2TiO4 forms solely at the roots of the ZnO nanorods.

TiO2 + 2 (ZnO)→ Zn2TiO4 (5.2)

Ti Substrate

TiO2 Layer

Zn2TiO4 Layer

ZnO Nanorods

Figure 5.16: Initially an oxide film forms at temperatures above 500 ◦C on the
titanium surface, thereafter ZnO begins growth at self-nucleation sites on the surface
and growth occurs in the c-axis, whilst migration occurs at the roots of the rods
and the oxide film and zinc titanate forms. Due to the mass transportation limit,
Zn2TiO4 can only be formed at the interface of TiO2 and ZnO.

5.3 Photoelectrochemical Tests

The main application and motivation for developing the nanostructured metal oxide

semiconductors are for the harvesting of solar energy through water splitting. The

advantage of the nanorod structure is that it allows the mass transportation of the

electrolyte between the rods whilst maintaining a large surface area to facilitate the

surface electrochemical reactions. Photoelectrochemical tests are performed in the

setup as shown in Chapter 3, the electrolyte consisted of 1 M KOH in water; with

a pH of 14. A xenon lamp simulates the solar spectrum and a surface area of 1

cm2 is illuminated. A potentiostat scans the potential and measures the current

using a three electrode configuration, the potential is measured between a satur-

ated Ag/AgCl reference electrode and working electrode. The current is measured

between the Pt counter electrode (cathode) and working electrode (photoanode) and
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is directly proportional to hydrogen generation at the cathode surface.

A typical I-V curve is shown in Figure 5.17, corresponding to the sample in the

SEM micrographs shown in Figure 5.14, which show good quality well ordered rods

with an average diameter of 1.664 µm ± 0.141 µm and a length of 15.5 µm ± 2.3 µm.

The staggered curve (blue) recorded the current as the illumination was chopped

during the potential sweep, the chopper consisted of an opaque card which intermit-

tently covered the xenon lamps beam rather than electronic switching of the lamp,

which was the method utilised in the previous chapter. The curve demonstrates a

fast response rate between successive switching, which indicates a true photo re-

sponse in the electrochemical scanning process. A sharp response rate is indicative

of high electron mobility in the photoanode structure. The current curve when the

illumination is absent is represented by the black curve (dark current), the near zero

value of the dark current illustrates the large red curve is solely a photoinduced

current. The purple curve represents the power density output of the photoanode,

calculated using the onset potential and ignoring overpotential losses using equa-

tion 5.3. Where, Pp is the output power density of the photoanode provided by the

electrical energy generated by photons used to generate hydrogen at the counter

electrode. VMeas is the measured potential, VOC is the open circuit potential when

the photocurrent is zero, 1.23 V is the standard potential of water electrolysis, and

can be considered the short circuit potential in terms of solar cell analysis, i.e VSC =

1.23 - VOC . Iphoto is the photocurrent measured from the structures under illumin-

ation. The onset potential (VOn) is the open circuit potential measured relative to

the RHE potential scale (0 VRHE ≡ -1.023 VAg/AgCl pH=14) and gives a quantitative

value for the flat band potential if there are no other overpotential losses or hole

accumulation/recombination at the photoanode surface.

Pp = (1.23− (VMeas − VOC))Iphoto (5.3)

V RHE
On = V

Ag/AgCl
OC − (−1.023) (5.4)

A direct comparison of the photoelectrochemical efficiency between TiO2 nan-

otubes and ZnO nanorods is presented in Figure 5.18. The TiO2 nanotubular array
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Figure 5.17: Photocurrent (Right axis) measurements under xenon lamp illumina-
tion (no filters), I-V plot, of ZnO rods grown on a Ti foil plate, with Zn2TiO4 at the
interface between TiO2 and ZnO. Left axis corresponds to the photopower density
output.

is 2 µm thick, and the outer diameter of the nanotubes is 133 nm, with an inner

diameter of 83 nm. Whilst the ZnO rods are 15.6 µm long with a diameter of 1.66

µm. The TiO2 nanotube array should out perform the ZnO rods, due to the larger

surface area of the TiO2 nanotubes as well as shorter distance required for charge

transport to the metal film contact. The surface area of one rod is approximately

80 µm2, whilst the surface area of TiO2 nanotubes closely packed in a hexagonal

area of the same size is 140 µm2. Thus, the surface area and morphology are similar

enough to compare the two materials. The photocurrent for the TiO2 nanotubular

array reaches 20 mA/cm2 at 1 V vs Ag/AgCl, whilst ZnO rods on a Ti foil reach

30 mA/cm2 at 1 V vs Ag/AgCl. ZnO has a maximum power density output of 8.2

mW, whilst the TiO2 nanotubes have a maximum power density of 6.4 mW, the ZnO

rodular array on a Ti foil with a Zn2TiO4 barrier layer is 22 % more photoefficient

than the TiO2 nanotubular array. The onset potential for both materials are very

close to one and another, for TiO2 the VOn is 0.36 VRHE and for ZnO the VOn is 0.4

VRHE, this indicates that the band edge positions for the two materials are similar.

The high photocurrent density of ZnO rods could not only be attributed to

the high electron mobility within ZnO (200 cm2V−1s−1 for ZnO compared to 30

cm2V−1s−1 for TiO2), but due to a staggered interfacial semiconductor heterostruc-

ture at the root of the ZnO rods. The interfacial heterostructure is formed by ZnO

on top of a TiO2 thin film, with Zn2TiO4 in between which provides a charge barrier
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layer, effectively separating exciton pairs.
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Figure 5.18: Photocurrent density of TiO2 nanotubes compared to ZnO rods grown
on a Ti foil, with Zn2TiO4 at the interface between TiO2 and ZnO. Inset: power
densities of both photoanodes have a similar peak power output.

Figure 5.19 shows the photocurrent density of a ZnO nanorod array formed

on a Ti foil substrate over a period of 48 hours at a potentiostatic potential of

1.5 V. The potential is applied between the photoanode and Pt cathode in a two

electrode cell configuration using a 1 M KOH electrolyte. The sample was under

bias and illumination for 2 days to illustrate the stability of the photoanode, with a

7 % reduction in the photocurrent. The photoanode is highly durable, and a large

photocurrent is maintained. The light source used is a 36 W cold cathode fluorescent

lamp CCFL with a UV wavelength range with a peak at 365 nm (Figure 2.11 shows

the spectrum, with an intensity of 800 µW), classified as UVA, rather than the more

powerful 300 W xenon lamp. A CCFL lamp has the advantage of time and thermal

stability, so it is suitable for the longevity test. The light source was intermittently

switched on and off, which demonstrates the current is photoinduced and to observe

photoresponse of the structure. The slow decay of the photocurrent is partly due to

the degradation of the bulbs of the light source, due to frequent switching.

Hydrogen generation was measured using a bubble flow meter, the three elec-

trode configuration was utilised and a potential of 1 VAg/AgCl is applied between the

photoanode and reference electrode. The current measured between the photoanode
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Figure 5.19: Photocurrent density plotted at a potentiostatic potential (1.2 V) over
two days in a two electrode electrochemical setup. A potential is applied between
the photoanode and a Pt foil counter electrode.

and Pt counter electrode was 22 mA/cm2. The hydrogen collected from the Pt foil

cathode compartment of the cell was directed through a 6 mmOD (3 mmID) glass

tube containing a bubble, the distance the bubble moves in a given time directly

relates to the flow rate of the gas. The generation of hydrogen was measured to be

1.018 cm3/hr. According to R(H2) = I
nF

, a photocurrent of 22 mA should produce

6.9× 1016 molecules of hydrogen, i.e. 0.41 mmol/hour or 4.6 ml per hour (same as

cm3/hr). This value is larger than the measured value, which is possibly due to the

movement of hydrogen within the electrolyte. This could be avoided by employing a

semi permeable membrane between compartments of the photoelectrochemical cell.

Most metal oxides are non-stoichiometric under typical laboratory/synthesis con-

ditions, which changes the electrical properties of the material. TiO2 and ZnO are

both n-type with a Fermi level close to the conduction band due to the excess of

metal in the materials (raising the Fermi level). The metal rich nature of these ma-

terials means the semiconductors are more likely to contain oxygen vacancies and

metal interstitials. Oxygen deficient materials are n-type in nature, whilst oxygen

rich and metal deficient materials are p-type oxides (CoO, NiO, FeO, MnO, Cu2O

Cu2O UO2).65–67

A (upward) flatband potential is introduced when the semiconductor and electro-

lyte are in galvanic contact. The lower work function of the n-type semiconductor

and higher work function electrolyte allows electron transfer events when in con-

tact raising or lowering the bands close to the junction, Figure 5.20. Sandwiched

between the zinc oxide and titanium dioxide is a zinc titanate layer which has a
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Figure 5.20: Schematic of band positions of solid/solid interfaces as well as
solid/liquid interface. The ZnO acts as a photoabsorber and the Zn2TiO4 acts
as a barrier layer effectively seprating electrons and holes.

conduction band higher than either of the other conduction bands. This creates an

additional barrier potential; from Figure 5.20 it is possible to see a spatial pathway

for the electron, from creation in any of the semiconductor materials and effect-

ively being separated, where energy is needed to overcome the potential barrier for

recombination to occur. The voltage is such that electrons traverse through the

circuit to the Pt electrode and reduces water on the surface of the Pt electrode;

meanwhile the holes facilitate oxygen evolution reactions (OER) at the surface of

the nanostructured photoanode and electrolyte interface.

The energy levels of the three oxides64,254 composing the heterostructure is shown

in Figure 5.21. In contact, the conduction and valence bands bend toward each other

forming a staggered multibarrier heterostructure. Holes and electrons are separated

at the interfaces of the type II staggered heterostructure.

5.4 Thickness Controlled Rods and Photocurrents

The thickness of the ZnO nanorod thin film can be controlled by the overall growth

time at fixed conditions. Through a number of reactions under identical vapour

conditions, differing only in reaction time and Zn precursor, a range of ZnO nanor-

ods/nanowires were examined photoelectrochemically to determine the quality of
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Figure 5.21: The three energy levels of the oxide semiconductors. All have a
similar Fermi level and the CB/VB bands lay outside the water oxidation/reduction
potentials, thereby allowing them to be candidates for water-splitting photoelectrode
material.

performance in relation to the length of ZnO nanorods. The thickness of the films

were measured using the cross sectional view of the sample in the SEM. Examples of

cross-sectional SEM micrographs used to measure the thickness of the ZnO nanorod

film are shown in Figure 5.22, with thicknesses of (a) 10.8 µm, (b) 7.6 µm and (c)

30 µm. The effect of the film thickness on the maximum photopower density output

is plotted in Figure 5.23.

10μm 100μm20μm

a b c

Figure 5.22: SEM micrographs of series of typical cross-sectional measurements
carried out to measure the thickness of ZnO nanorod thin films grown on a Ti foil
substrate. (a) Average thickness of 10.8 µm ± 0.9 µm, (b) average thickness of 7.6
µm ± 0.2 µm and lastly (c) average thickness of 30 µm ± 3 µm.

Longer nanorods have a larger surface area in contact with the electrolyte and
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have a higher probability of photon capture under illumination, but also could suffer

a higher rate of exciton recombination. Increasing the thickness of the ZnO nanorod

thin film is expected to contribute to an increase in photoefficiency, but as shown in

Figure 5.23 the photoefficiency saturates after a thickness of 10 µm is reached. This

is attributed to the length and density of rods which inhibit the path of photons

which could have otherwise been utilised in electron generation close to the metal

contact, where recombination rates would be reduced.
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Figure 5.23: Plot of peak photopower density output of a variety of lengths of
ZnO rods, all rods are grown via VS reaction at a reaction temperature of 650 ◦C.

The diameters of the ZnO rods varied only slightly for different samples. Thus,

the largest factor contributing to the efficiency of the photoanode would be the

length. The diameter of the nanorods are expected to have less of an effect, if

the overall surface area is constant. The increased charge pathways to the circuit

will largely effect recombination of electron hole pairs and the number of electrons

which can be harnessed for the water splitting process. For thick films, the efficiency

reaches a steady value as the increasing photocatalytic surface area and probability

of photons capture begin to compete with the losses of usable charge carriers via

exciton recombination and obstructed photon path.
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5.5 Growth of ZnO Structures in a KOH Rich

Environment

The morphology and photoefficiency of ZnO nanostructures could also be affected

by subtle changes in the chemistry of the growth environment. Here I examine the

effects of adding KOH into the growth environment on the thin film structure and

properties. 0.5 ml of 1 M KOH solution is added to the precursor and a boat contain-

ing 5 ml of 1 M KOH is placed upstream from the substrate. Growth is conducted

under typical VS conditions with a temperature ramp rate of 50 ◦C/min reaching

the growth temperature of 650 ◦C and maintaining the growth temperature for 20

mins. The results are surprising; photoelectrochemical properties of the material

have enhanced significantly. The increase in photocatalytic behaviour could be due

to defects or doping of ZnO. The defects in the crystal lattice could be caused by in

situ dissolution process, this or the K doping of the ZnO structure could introduce

new donor and acceptor levels between the valence band and conduction band.216

The morphology has changed significantly with the inclusion of KOH compared

to the rods formed under identical conditions without KOH; the structures are

multi-faceted cup-like structures and pyramid shaped gems. Figure 5.24(a) shows

a low magnification SEM micrograph of the surface of the substrate. The average

diameter of the gems are 4 µm, with a range of diameters from 1.9 µm to 7.3 µm.

Figure 5.24(b) shows an SEM micrograph of a cup like structure which is almost a

complementary form of the gems, rather than pyramid facets directed outward they

are imposed into the structure. Figure 5.24(c) shows the relative positions of cups

and gems, the density of gems are greater than that of the cups.

With added KOH, when Zn is vapourised, nanosized clusters of KOH particles

form and are transported to the substrate. The addition of the KOH in the ZnO

crystal could form defects which will affect the growth of ZnO rods and possibly

improve band structure properties of the material. The local defects could be in the

form of potassium zincate, as described in equations 5.5 & 5.6. Such defects could

interfere with the growth of the normal rods.

ZnO + 2 KOH + H2O−−K2Zn(OH)4 (5.5)



129

10μm10μm

b c

20μm

a

Figure 5.24: SEM micrograph of unique multi-faceted micro-structures of ZnO
gems, growth via VS at a temperature of 650 ◦C on a Ti foil substrate. 1 M KOH is
mixed with the Zn powder precursor and additionally placed in a crucible upstream
from the Ar flow.

K2Zn(OH)4−−K2ZnO2 + 2 H2O (5.6)

On the same sample, growth is accelerated closer to the boat containing the KOH

upstream of the carrier gas and rods are 20 times larger than the nanorods formed

without KOH present. At this size the dynamics of growth is unclear, the structures

are formed with interesting selective growth faces with a 6 fold symmetry. The 6

fold symmetry indicates the faces experiencing selective growth are the {101̄0} faces,

i.e. the lateral faces of the hexagonal wurtzite crystal structure. In Figure 5.25(a)

the 6 fold symmetry is clear and the rod has a diameter of 20 µm with the {11̄02}

faces exposed creating an hexagonal pyramid tip (these faces are semipolar), Figure

5.25(b) shows branched growth from the micro sized rods, with a core diameter of
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Figure 5.25: SEM micrograph of unique micro-structures of ZnO rods, growth via
VS at a temperature of 650 ◦C on a Ti foil substrate. ZnO undergoes accelerated
growth and form Multi faceted rodular shapes, with 6 fold symmetry.

10 µm with the branches extending the diameter to 30 µm. The latter two SEM

micrographs, (c) & (d), show a mix of 3 fold symmetry with the 6 fold symmetry, in

the 3 fold symmetry the (112̄0), (2̄110) and (12̄10) faces have a faster growth rate.

The diameter of both core rods are 20 µm. The structural growth is possibly due

to the potassium ions substituting Zn sites and interstitial sites resulting in higher

reactivity on surface faces.
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Figure 5.26: XRD plot of ZnO structures formed on a Ti foil in a KOH rich
environment.

The crystal characterisation of the structure created was analysed utilising X-ray
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diffraction. The XRD peak spectrum is shown in Figure 5.26, the peaks are very

similar to the growth of ZnO without KOH. Indicating growth is preferential in the

c-axis as it is with nanorods. The ZnO peaks have half the intensity than that of

ZnO rods grown excluding KOH, the peak area magnitude of ZnO microstructure

of the (0001) peak is 2770 arb. units compared to 4720 arb. units for the ZnO

rods excluding KOH. This is due to the dense forest of 16 µm long ZnO rods on

the Ti plate, whilst including KOH in the growth environment created dense large

structures but does not extend as far out of the substrate. Thus, we can approximate

the ZnO microstructure film thickness to be 8-10 µm, which is reasonable as the

diameter of the ZnO gems have a similar size (4-7 µm).

The TiO2 peak at 40.2◦ has a peak height almost three times larger than the

TiO2 formed under typical nanorod growth conditions, this indicates a thicker layer

of TiO2 has formed in the initial stage of growth, possibly due to the higher oxygen

or OH− content in the growth environment.

The Zn2TiO4 peak at 35.16◦ (311) has a peak height similar to that of ZnO rods,

and is twice as narrow as the same peak of the ZnO nanorods crystal structure.

The particle size calculated using the Scherrer equation for a K-value of 1 gives the

value of the crystallite size as 24.4 nm, almost twice the crystallite size of Zn2TiO4

without KOH addition, 12.87 nm, shown in Table 5.2. A similar amount of zinc

titanate is present compared with ZnO nanorods without KOH addition.

The photocurrent measurements carried out are shown in Fig 5.27, the xenon

lamp utilised for illumination can be fitted with a ultraviolet transmitting, Hoya

U-340 Filter, the spectrum of the illumination with filter in place is shown in Figure

2.10. The filter enables the UV energy conversion of the photoanode to be invest-

igated, the intensity output of the xenon lamp with the filter fitted is 35 mW/cm2.

The filter has a maximum transmittance value of 75 %, and some UV intensity is lost

compared to the full beam of the xenon lamp. The solid lines are the photocurrent

densities measured against potential vs. Ag/AgCl, the values reach a maximum of

40 mA at 1.2 VAg/AgCl with the full beam and 17 mA under UV irradiation. The

onset potential can be considered as the flat band potential between the electrolyte

and semiconductor, the onset potential is 0.056 VRHE for the whole beam and 0.05

VRHE under UV illumination. The value is very close to 0 VRHE, close to the value
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Material (hkl) 2θ Peak Peak Crystallite d (Å)

(◦) height area size (nm)

ZnO (100) 31.8 1608 410.8 38.27 2.814

(002) 34.44 11831 2770.6 42.04 2.604

(101) 36.28 3389 937.94 35.75 2.476

(102) 47.54 1033 329.88 32.18 1.913

(110) 56.66 678 274.25 26.41 1.624

Zn2TiO4 (311) 35.16 265.9 107.56 24.39 2.552

TiO2 (004)a 38.4 811 362.58 22.27 2.344

(111)r 40.2 1209 334.61 36.18 2.243

(210)r 42.14 150 38.321 39.44 2.144

Ti (004) 38.98 682.9 159.92 42.59 2.311

(102) 52.98 639 190.45 35.25 1.728

Table 5.3: XRD analysis of ZnO structures grown with KOH addition. Average
crystallite size of 32.61 nm. Lattice constants of ZnO are a = 3.2495 Å c = 5.2079
Å.

required to create an unassisted water splitting system. The near zero value of the

flat band potential indicates the band edges of the material are higher (more neg-

ative) than the ZnO nanorods formed without KOH, and there is approximately a

50 mV difference between the Fermi level of the semiconductor microstructure and

chemical potential of the electrolyte, i.e the redox potential.

The maximum output photopower density of the structure is 10.9 mW/cm2 under

full beam illumination and 7.4 mW/cm2 under UV illumination, the maximum UV

photoefficiency is 21.1 %. At 1.23 VRHE the photocurrent density is 31.7 mA/cm2

and 15.15 mA/cm2 under full beam and UV illumination respectively. The 3.5 mW

difference in photopower between the UV and full beam of the xenon lamp is due to

the transmittance of the filter, cutting out a portion of the higher frequencies. The

photocurrent of the material under full beam illumination at 1.2 VAg/AgCl is over

double the photocurrent of the material under UV illumination (filter fitted), the

large difference suggests a small amount of sensitivity toward longer wavelengths of

visible light, and not only just due to the reduced intensity of the lamp in the UV
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Figure 5.27: Photocurrent density plots (I-V curve, left axis) of the ZnO structures,
red curve represents the photocurrent density of the material illuminated by a 300
W xenon lamp without filters; the purple curve represents the UV photoresponse,
utilising a UV transmission filter in the xenon lamp beam.

spectrum.

Youn et al255 created similar pyramid pits after etching a hydrothermally created

ZnO bulk film, exposing Zn terminated faces. In the investigation of the pyramid

pits, the PL spectra showed oxygen vacancy defects and Zn interstitial defects of

the structure. If the morphology of the pits are indicative of the surface defects

this would explain the improved photocatalytic behaviour. Electron paramagnetic

resonance (EPR) measurements would provide experimental confirmation of oxygen

vacancy defects in the structure.256,257

5.6 Conclusion

Vapour transport deposition is a direct route to create ZnO structures of varying

morphologies, the growth temperature and carrier gas flow controls the diameter and

structure of ZnO formed. Direct vapourisation of Zn powder consistently formed

ZnO nanorods and are not inhibited by the seeding or substrate. ZnO rods formed on

a Ti foil demonstrated high photopower densities and outperformed TiO2 nanotubes

with a larger surface area, which were expected to perform better than the ZnO

structure. A Zn2TiO4 barrier layer is introduced at the roots of the ZnO rods,

which encourage exciton separation and promote effective photocurrent flow.

With the introduction of KOH in the reaction conditions, microstructures of
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ZnO formed. The doping of the ZnO effected the band structure of the material,

enhancing the photoabsorption and electronic transport in the material. Unique

multifaceted growth was exhibited in the formation of ZnO micro rods, either the

encompassed potassium or increase in oxygen enhanced the growth rate of ZnO, and

selective face growth with 6 fold symmetry.
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Chapter 6

Zinc Oxide Nanotubes and Rods

on Titanium Nanotubes

An improvement of photoelectrochemical properties by constructing a heterostruc-

ture photoanode composed of TiO2-Zn2TiO4-ZnO is evident in Chapter 5. Further

improvement is possible by increasing the surface area of this heterostructure; allow-

ing a larger region of the photoanode to effectively separate charges after a photo-

excitation. Here, the ambitious plan is to take advantage of the porous structure

of vertically aligned TiO2 nanotubes, which will serve as a substrate in conjunction

with the effective vapour solid deposition technique to develop ZnO nanostructures.

The unique vertical hollow heterostructure will have a large surface area to facil-

itate surface reactions. The large diameter channels allow transportation of the

electrolyte close to the substrate, and a 3D interface layer of TiO2/Zn2TiO4/ZnO

encourages better charge separation. Figure 6.1 illustrates the steps of forming the

TiO2/Zn2TiO4/ZnO structure. Initially Zn condenses on the inner surface of the

TiO2 nanotubes creating a Zn2TiO4 coating following the topology of the TiO2 nan-

otube substrate. ZnO oxide forms inside the coating as TiO2 is limited, and the

ZnO tubular structure grows as the vapour condenses inside and on the lips of the

titania nanotubes.

Figure 6.2 (a)-(c) are the SEM micrographs showing the realisation of the tu-

bular TiO2/Zn2TiO4/ZnO structure, forming ZnO tubes contained in a Zn2TiO4

coated TiO2 nanotubular array. Initially a TiO2 nanotube array (a) is created via

anodisation of a Ti foil, a brief VS reaction (b) fills the nanotubes with ZnO and
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TiO2

Zn2TiO4

Figure 6.1: Concept illustration of the growth process mechanism during VS de-
position of ZnO.

forms a Zn2TiO4 thin layer at the interface of the core/shell structure. A further 20

min VS deposition completely fills the TiO2 nanotubes with rodular/tubular ZnO

structures (c).

10 μm1 μm1 μm

(a) TiO2 nanotube array substrate (b) 3 minute VS ZnO reaction (c) 20 minute VS ZnO reaction

Figure 6.2: SEM micrographs of the series of steps taken to create a ZnO struc-
ture inside TiO2 nanotubes. (a) the TiO2 nanotubular array which serves as the
substrate, (b) an initial vapour transport reaction fills the tubes with Zn2TiO4 and
ZnO, and (c) a 20 mins VS reaction forms ZnO tubes.

Magnified SEM micrographs of the Zn2TiO4 coated titania nanotubes in Figure

6.3(a) shows that rodular growth of ZnO has yet to begin after an initial 3 min

VS reaction at a reaction temperature of 650 ◦C. The inner lining of the tubes

is brighter in the SEM micrograph, indicating a formation of an element with a

different electronic structure than the titania tubes. Once rodular growth begins, the

growth on the lips of the titania and in the bottom of titania occurs simultaneously;

growth on the lips could be more dominant than at the centre. Either way, ZnO

hexagonal tubes form on the surface, Figure 6.3(b), tubular growth is assisted by

the titania nanotube framework and as the tubular ZnO grows, the diameter of the

ZnO tubes enlarges due to the lateral growth of the ZnO.
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2 μm1 μm500 nm

(a) 3 minute VS ZnO reaction

           on a TiO2 NT array.

(b) 20 minute VS ZnO reaction

             on a TiO2 NT array.

(c) 20 minute VS ZnO reaction 

            on a clean Ti foil.

Figure 6.3: SEM micrographs of magnified sections of the two latter steps of the
ZnO nanotube formation. (a) Shows the limited ZnO deposition and (b) shows the
complete formation of ZnO. (c) Shows ZnO rods formed on a clean Ti foil.

Clear sharp edged hexagonal rods form if the same VS deposition conditions are

applied to a clean Ti foil serving as substrate. Figure 6.3(c) shows ZnO deposited

via VS on a polished Ti foil take the form of ZnO hexagonal rods and not tubular.

6.1 Material Synthesis

6.1.1 Titanium Dioxide Nanotubes

Initially a TiO2 nanotubular array is created via anodisation; a polished titanium

plate served as the anode and another Ti foil as a cathode. The electrolyte bath

consisted of 2 % H2O and 0.6 % NH4F in ethylene glycol solution. A potential

of 60 V is supplied between the electrodes (5 cm apart) through the electrolyte.

The thickness of the titania nanotube array film depends on the length of time

of the anodisation duration. An anodisation of one hour creates a thickness of 2

µm long tubes. Homogenous titanium dioxide nanotubes are highly ordered, SEM

micrographs of the tubes are shown in Figure 6.4, the average outer diameter of the

tubes are 133 nm ± 12.2 nm and inner diameter is 83.9 nm ± 15.9 nm.

The titanium dioxide nanotube array will serve as the substrate in the VS reac-

tion, the TiO2 nanotube array exposes a large surface area of TiO2 where Zn2TiO4

can form during the introduction of Zn vapour.
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5μm

Figure 6.4: SEM micrographs of a high quality TiO2 nanotube array formed via
anodisation using 2 % H2O and 0.6 % NH4F in a solution of ethylene glycol.

6.1.2 Zinc Oxide Nanotubular Growth

Zinc Oxide VS growth is conducted in a quartz reactor within a tube furnace as

described in chapter 3.

A TiO2 NT array is placed on the top of an alumina (porous) crucible containing

the Zn powder precursor. The crucible is placed toward the centre of the quartz

reactor/furnace. The quartz reactor is evacuated to a pressure of 1.10−3 mbar. Ar

is used as the carrier gas, with a flow rate of 120 SCCM. The temperature of the

crucible is elevated to 650 ◦C, at a rate of 50 ◦C per min. This temperature is held

until the condensation reaction is complete.

Initial Zinc Oxide Growth inside Tubes

A limited reaction helps elucidate the understanding of the initial formation of ZnO

within the titania tubes. This is achieved through limiting the Zn precursor as well

as maintaining the reaction temperature for a limited time. The growth is stunted

if a carrier gas is not present (oxygen is carried by Ar), it is possible to quench the
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reaction simply by eliminating the flow of Ar. 0.25 g of Zn precursor is placed in

the crucible. The temperature of the reactor is ramped up to 650 ◦C and held for 3

mins. The Ar flow rate is eliminated and the reactor cools slowly.

500nm

2μm 2μm

2μm

2μm

1μm

a b c

d e f

Figure 6.5: SEM micrographs of a TiO2 nanotubular array coated with Zn2TiO4
during vapour deposition. A small amount of ZnO is formed at the bottom of
the tubes by adopting a limited VS deposition. The various magnification of the
micrographs are (a) ×20,000 (b) ×11,000 (c) ×35,000 (d) & (e) ×7500 and (f)
×6250.

From Figure 6.5, the TiO2 NT array is still exposed; ZnO did not grow over

the tubes. The ZnO must form within the tube or on the lips of the tubes. The

energy dispersive X-ray (EDX) spectrum analysis shows a 50 % content of elemental

titanium and zinc. In Figure 6.6 presence of Zn is clear from the peak at the

Kα transition at 8.5 keV, whilst the ZnO structures are not visible in the SEM

micrograph of the titania nanotubes after a limited deposition. The penetration

depth of the electrons in the SEM is a few µm, the 50 % content of both metal

elements implies that the TiO2 is coated with Zn, and ZnO has formed within the

tubular structure. It can be seen Figure 6.5(a) some growth of the ZnO has sprouted

from the TiO2 tubes; this accelerated growth could be due to the alignment of the

ZnO initial seed growth. Preferential growth occurs in the [002] direction, if a

considerable amount of ZnO attaches to the base of the titanium nanotube in this

alignment, growth could be accelerated. Also from Figure 6.5(c) a contrast difference

between the inner diameter of the tube and the outer diameter is clear. This could

be due to the centre being coated with zinc titanate or zinc oxide, which will have



140

8000

6000

4000

2000

0

In
te

n
si

ty
 (

A
rb

.)

20181614121086420

Photon evergy (keV)

Zn

Ti

Ti

Zn
Zn

2 μm 

Figure 6.6: Energy dispersive X-ray spectrum of zinc titanate coated titania nan-
otubes containing a small amount of ZnO inside the tube. (inset is the SEM micro-
graph of the area sampled).

different electron scattering properties. An element resolved scan could not resolve

the elemental structure at this magnification. The tubes exposed in the middle have

a smaller inner diameter compared to the TiO2 nanotubes imaged from above the

film in Figure 6.5(d). Both outer diameters are very similar with a value of 130 nm

± 13 nm and the inner diameter of the exposed TiO2 nanotube array is 80 nm ±

14 nm whilst the SEM micrograph exposing half the tube has an inner diameter of

47.7 nm ± 8.35 nm. The 30 nm difference suggests a 15 nm thick Zn2TiO4 film is

present in the inner lining of the tube.

6.1.3 Growth of a Zinc Oxide Nanotubular Structure on a

Titanium Dioxide Nanotube Framework

The reaction took place over 20 mins at a reaction temperature of 650 ◦C and 2

g of Zn precursor, the temperature was ramped up from room temperature to 650
◦C at a rate of 50 ◦C/min. ZnO grown within the TiO2 nanotubes formed novel

morphologies. The Zinc oxide forms on the lip of the titanium dioxide nanotubes

and from the bottom. As the ZnO tube/rod height becomes greater than the TiO2

nanotube depth, the growth around the ZnO circumference is greater than in the



141

centre, forming a tubular hexagonal structure.

10μm

20μm 100μm

10μm

a b

c d

Figure 6.7: SEM micrographs of a ZnO tubular structures created via VS reaction
at 650 ◦C, for a 20 min duration. (a) shows a ZnO nanotube at a high magnification
(×2000) and (b) ×3000, coverage of ZnO tubes on the titania nanotube framework
substrate is visible at lower magnifications (c) ×900 and (d) ×350 .

This is clearly seen from the high magnification SEM micrograph in Figure 6.7(a).

The formation of ZnO tubular structures were unique and unexpected. The length

of the ZnO structure is 19.36 µm ± 1.74 µm, and the diameter of the heads of the

ZnO tubular structure is 1.75 µm ± 0.34 µm. The inner diameter is much smaller

with a size of 368 nm ± 143 nm and varied significantly from one tube to another.

6.2 XRD analysis

X-ray diffraction (XRD) measurements were performed on three samples, one sample

is a limited VS reaction on TiO2 NT’s, the second is the full VS reaction on TiO2

NT’s and the third is of ZnO rods formed on a Ti foil for comparison; these are

shown in Figure 6.8. Figure 6.8(a) shows the XRD spectrum of a 3 min VS reaction

in titania nanotubes, there is limited ZnO growth whilst a substantial amount of
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Zn2TiO4 is present on the substrate. The TiO2 (101) anatase phase is the prominent

feature of the XRD spectrum. Increasing the growth duration and precursor material

aligned ZnO nanotubular rods form in the (0001) direction, the spectrum is shown

in Figure 6.8(b). The ×20 magnified plot inset of the full spectrum shows that

the Zn2TiO4 (220) content relative to the anatase (101) does not change as much

as the ZnO (002). Table 6.1 shows the value of relative intensities of the Zn2TiO4

(220) and ZnO (002) planes with respect to the anatase (101) face, this indicates

the formation of the Zn2TiO4 layer occurs in the early stages of growth, and that

the Zn2TiO4 has formed on the inner surface of the TiO2 nanotubes, limited by the

available Ti cations on the surface. After further deposition (reaction duration) ZnO

forms above the TiO2/Zn2TiO4 heterostructure and Zn2TiO4 formation saturates.

The large intensity of the Ti (102) diffraction peak in the spectra (the peak at

53◦ with a peak height ranging from 300 counts to 1158 counts depending on the

thickness of the nanostructure film) indicates the XRD sampling depth includes the

substrate (penetration depth of X-rays). Due to the excellent penetration of X-rays

through the materials, the concentration of each metal oxide component is directly

proportional to the associated XRD peak intensities. The surface area of TiO2 is

related to the signal intensity of anatase and rutile in the XRD spectrum.

TiO2 (101) a Zn2TiO4 (220) ZnO (002)

3 min reaction 10 2.68 7.46

20 min reaction 10 4.26 200.37

Table 6.1: Ratio of relative intensities of peaks at a chosen face of three materials.

Tables 6.2 & 6.3 contain the XRD data of the ZnO nanotubular structures grown

on TiO2 nanotubes, for the initial reaction and the full reaction respectively. From

this data we can assess the crystal properties of the structures created and compare

with the data of ZnO rods formed on a Ti foil from Table 5.2 in Chapter 5. The

crystallite size is calculated using the Scherrer equation (2.7), the crystallite size

is the average size of a coherent scattering domain. Crystallite domain size could

also be affected by the physical dimensions of the particles, if the dimensions of the

particle are comparable to the crystallite size the calculated size will be a measure

of the dimensions of the particle. For the 3 min growth the crystal sizes of ZnO
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Figure 6.8: X-ray Diffraction pattern spectra for (a)i limited deposition of ZnO in
a titania nanotube array, (b)i TiO2/Zn2TiO4/ZnO tubular structure and (c)i ZnO
rods grown on a Ti foil (root heterostructure). Associated SEM micrographs of the
materials are shown on the right.
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at the 34.9◦ and 56.36◦ peaks are 14.9 nm and 13.9 nm respectively, and are much

smaller than the crystal sizes of the surrounding peaks with an average of 30.7 nm.

These peaks correspond to the (002) face and the {110} lateral faces. This indicates

the growth in the [002] direction has begun, but the growth of the thin film has yet

to reach the estimated crystallite size as the growth of the film is orientated in the

[002] direction.

A ZnO thin film with a thickness of approximately 14 nm forms over the zinc

titanate in the [002] direction determined by the crystallite size, matching closely to

the inner diameter difference in the SEM micrographs of the 3 min growth reaction

in Figure 6.5(a) compared to Figure 6.5(c).

Material (hkl) 2θ Peak Peak Crystallite d (Å)

(◦) height area size (nm)

ZnO (100) 31.6 2030 605.04 32.79 2.831

(002) 34.9 2328 1536.41 14.94 2.571

(101) 36.06 1788 609 29.0 2.491

(102) 47.86 1166 397.17 30.2 1.901

(110) 56.36 634 485.90 13.92 1.632

Zn2TiO4 (220) 29.66 884 526.95 16.32 3.012

(311) 35.58 379.741 202.11 18.56 2.523

(400) 42.46 500 340.63 14.81 2.129

TiO2 [101)a 25.08 3102 990.59 30.17 3.551

(110)r 27.18 406 207.44 18.93 3.2808

(004)a 37.62 2330 1041.69 22.22 2.391

(105)a 53.76 960 592.7 17.08 1.705

(211)r 54.88 3644 252.04 15.55 1.673

Ti (004) 38.2 1362 348.01 38.95 2.356

(101) 39.98 1190 253.34 47.0 2.255

(102) 52.76 1158 345.14 35.22 1.735

Table 6.2: XRD data of ZnO formed in nanotubes after a small reaction.

Under identical conditions, VS deposition of Zn vapour on a clean Ti foil results
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in limited TiO2 formation and accordingly less Zn2TiO4 formation. Figure 6.8(c)

shows the XRD spectrum of aligned ZnO rods created via VS deposition on a Ti

foil substrate for comparison. The peaks for TiO2 and Zn2TiO4 are apparent at

40X magnification of the spectrum (left inset). The peak height for TiO2 (004)

anatase is 164 (counts) for ZnO rods on a thin film of TiO2 on a Ti foil, whilst, for

ZnO condensed in TiO2 nanotubes the peak height increases by a factor of 14 to

2330 (counts), the volume (and therefore surface area) of TiO2 present has increased

significantly by utilising TiO2 nanotubes as a framework for ZnO deposition. Since

there is a larger surface area of TiO2, there is consequently a larger volume of

Zn2TiO4 formed at the interface between the condensed ZnO and TiO2 nanotube

framework. The Zn2TiO4 peak height has increases from 73 counts to 884 counts

for the (220) peak at 29.7◦, from ZnO forming on planar Ti foil to ZnO condensed

in TiO2 nanotubes.

Comparing these values to the intensities of the same peaks in full growth of

ZnO nanotubes in TiO2 nanotubes, it is evident the surface areas of TiO2 and

Zn2TiO4 have increased considerably compared to the Zn2TiO4 formed at the roots

of ZnO rods grown on a planar thin film of TiO2. Thus, a TiO2 framework on which

Zn2TiO4 forms at the initial stages of growth has increased the surface area of the

TiO2/Zn2TiO4/ZnO heterostructure interfaces

The ZnO (002) crystallite size is approximately 46 nm after a 20 min growth

reaction. The large value of crystallite size for the ZnO nanotubes (46.3 nm) in the

(002) compared to the surrounding peaks (average value of 24.3 nm) is indicative of

long range crystallite domain order in the [002] direction. This is not true for ZnO

nanorods formed on a Ti foil where crystal size is similar for each of the peaks with

an average value of 37.3 nm, and crystallite domain size is equal in all directions

whilst the growth of the crystal is preferential in the [002] direction, indicated by

the high intensity peak in the (002) plane.

The relative intensity of the c-axis and lateral planes (ZnO (002)
(100)) corresponds to

the aspect ratio of the rodular structures. Thus, a large relative intensity indicates

longer rods and smaller diameter rods. The ZnO tubes formed in the TiO2 nanotubes

have a much higher ZnO (002)
(100) intensity ratio (ZnO (002)

(100) = 58) compared to ZnO rods

formed on a Ti foil (ZnO (002)
(100) = 5.2), this indicates the the aspect ratio of the
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Material (hkl) 2θ Peak Peak Crystallite d (Å)

(◦) height area size (nm)

ZnO (100) 31.96 320 156.09 22.97 2.800

(002) 34.62 18541 4525.16 46.26 2.591

(101) 36.42 592.34 260.23 25.83 2.467

(102) 47.68 284.65 104.21 32.19 1.907

(110) 56.8 294.07 215.32 16.74 1.621

Zn2TiO4 (220) 30.02 422.63 247.56 19.05 2.977

(311) 35.28 850 477.14 20.15 2.544

(400) 42.94 147.42 115.14 14.83 2.106

TiO2 (101)a 25.46 878.81 364.63 26.64 3.498

(110)r 27.6 70.7 136.32 5.757 3.232

(004)a 37.98 529.8 323.27 18.68 2.369

(200)a 48.2 371.2 181.21 24.19 1.888

(105)a 54.08 267.8 182.98 17.71 1.696

(211)r 55.34 110.1 86 15.59 1.66

Ti (004) 38.6 404.2 138.12 33.43 2.332

(101) 40.32 411.1 120.41 39.21 2.237

(102) 53.14 314.6 138.23 27.44 1.723

Table 6.3: XRD data of ZnO formed in nanotubes.

structure has increased by a factor of ten, and the ZnO tubes formed in TiO2

nanotubes have a smaller diameter along the X-ray path (if length is assumed to be

the same). From the SEM micrographs in Figure 6.7(b) the diameter of the tube

closer to the TiO2 nanotube array is 390 nm, this is consistent with the XRD peaks

and the TiO2 nanotubes restricted lateral growth of ZnO in the initial stages of the

growth.

Still, the ZnO rods formed on a Ti foil ZnO (002)
(100) intensity ratio is larger than

the intensity ratio of ZnO powder ( (002)
(100) = 0.78), the rods length to diameter aspect

ratio is approximately 7, which is close to the dimensions measured (15.6 µm long

with a diameter of 1.66 µm and aspect ratio of 9.4).
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6.3 Photo-electrochemical Applications; the Split-

ting of Water

6.3.1 Experimental Analysis

The photoelectrochemical properties of the structures was experimentally examined

in a photoelectrochemical cell (PEC) using a three electrode cell configuration as

described in chapter 2.3.1. A potentiostat performs a potential scan (with respect

to a saturated Ag/AgCl reference electrode) whilst measuring the photocurrent gen-

erated between the working (photoanode) and the counter electrode. The setup is

shown in Figure 2.8. A reference electrode is used because the half-cell potential is

well known.

6.3.2 Photoelectrochemical Performance of Photoanodes un-

der different Illumination Sources

Photoanode Performance under Xenon light source Illumination

A light source, a 300 watt xenon lamp (Compact Illuminator 6000CI, ORC) with a

focusing lens, acts as the solar simulator. The spectrum of a xenon light source is

shown in Figure 2.9 in chapter 2.

1 M KOH in water serves as the electrolyte in the PEC cell; A basic electrolyte

was chosen, instead of an acidic electrolyte, for the purpose of protecting the metal

oxide nanomaterials such as ZnO which might suffer dissolution under acidic condi-

tions. The oxidation reaction is the most demanding of the two reactions (OER and

HER), as it’s a 4 electron process. The advantage of shifting the O2/OH− potential

upwards (more negative), by increasing the pH, is that it increases the overpotential

of the photoanode, which will help to increase the rate of oxygen evolution. The

optimum conditions for effective water splitting requires the fine balance of the reac-

tion rate on both the anode and the cathode for the generation of H2 and O2 (HER

and OER). The amount the O2/OH− potential is shifted is given by the Nernst

equation, this is shown in equation 6.1, the same is true for the hydrogen H2O/H2

potential (equation 6.2).
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EO2/OH− = E0
O2/OH− − 0.059× pH (NHE) (6.1)

EH2O/H2 = E0
H2O/H2 − 0.059× pH (NHE) (6.2)
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Figure 6.9: Current-Voltage (I-V) curve testing the properties of
TiO2/Zn2TiO4/ZnO tubular structure, the red curve illustrates the photocur-
rent under illumination of a 300 W Xe lamp. The purple curve represent the power
density. Inset: Spectrum of the xenon lamp.

A photocurrent density (I-V) plot is shown in 6.9 for the ZnO tubular hetero-

structure, with a photocurrent density of 32.6 mA/cm2 at 1.23 V - VOC , and a

maximum power density of 10.8 mW/cm2, significantly larger than materials repor-

ted thus far. The photocurrent density at 1.23 VRHE is 25.4 mA/cm2, and the onset

potential is 0.59 VRHE. The quality of the nanostructure film can be determined

through the response time as it is indicative of electron and hole mobility within the

material, and magnitude of the photocurrent density. The photoresponse is sharp,

illustrated by the blue curve which represents the photocurrent under intermittently

switched illumination. The xenon light source irradiance spectrum intensity is dom-

inant in the visible light range and with the same overall intensity solar irradiance

is 5 times more intense in the UV range, shown in Figure 2.9. Therefore, it is unin-

structive to measure the efficiency of the photoanode with the intensity of the xenon

light source. A UV transmission filter is employed to calculate the UV efficiency of
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the photoanode material.

Photoanode Performance under Xenon Light Illumination with a UV

Transmission Filter Fitted

The xenon light source is fitted with a transmission filter allowing only UV light to

pass and is opaque to other wavelengths. The spectrum in Figure 2.10 shows the

UV intensity peak, ranging from 300 nm to 400 nm, anything below 387.45 nm can

be utilised in generating excitons (> 3.2 eV).
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Figure 6.10: Photocurrent density and power density measurements of the
TiO2/ZnO tubular structure as a photoanode, under illumination of a xenon light
source with UV filter (Ultraviolet Transmitting, Visible Absorbing Filter, Hoya U-
340 ) in place. Inset: Spectrum of the illumination after passing the filter.

The photocurrent measurements are shown in Figure 6.10, where the red curve

is the photocurrent density, the black curve is the dark current, and the blue curve

represents the current under intermittent illumination. The short circuit photocur-

rent is 15 mA/cm2 (1.23 V - VOC), and 1.23 VRHE is 14.2 mA/cm2. The onset

potential is the same as without the filter at 0.64 VRHE. The purple curve is the

power density output of the photoanode, and has a maximum photopower density

of 7.077 mW/cm2, which is only 30 % lower than the power density under full beam

illumination.

The efficiency of the ZnO tubular heterostructure under the illumination of a

xenon lamp with a UV transmitting filter (Ultraviolet Transmitting, Visible Absorb-
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ing Filter, Hoya U-340 ) is significant, The ZnO tubular heterostructure demon-

strates outstanding UV photoconversion, reaching a maximum photoefficiency of

20.22 %, under 35 mW/cm2 UV illumination.

ba

Figure 6.11: A voltage prevents a large portion of excitons created from recombin-
ing and re-emitting light. (a) is a photo of the beam spot on the photoanode surface
under open circuit conditions and (b) shows that the beam spot dims drastically
under applied potential (1.2 VRHE).

The ZnO heterostructure is formally a 3D layered thin film structure with 3 dif-

ferent materials with the sequence of TiO2, Zn2TiO4 and ZnO, the electrical field

applied cross three films will depend on the film thickness, charge mobility and cur-

rent flow within the films. ZnO is well know for its photoluminescence properties,

with a large exciton binding energy. Under UV illumination white photolumines-

cence is observed, Figure 6.11(a) shows the beam spot on the substrate in electrolyte

under open circuit conditions, and Figure 6.11(b) shows the same beam spot under

a bias of 1.2 V, the beam spot wavelength has changed from white light to a near

UV wavelength. With an applied potential across the three material heterostruc-

ture the electric field will drive charge movement and separation within the anode

reducing exciton recombination therefore eliminating the white photoluminescence.

The white light luminescence possibly originates from interfacial exciton transitions,

ZnO white luminescence can also originate from radiative defects within the band

gap emitting different colours to form white light. Without bias, native, defect free

ZnO has a photoluminanscence peak with strong UV emission centred at 375 nm.

Zinc oxide/zinc titanate composite materials produced by sol gel methods enhanced

green emission in photoluminescence spectra as documented by Song et al.258
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Figure 6.12: Photocurrent measurement (I-V curve) of the TiO2/Zn2TiO4/ZnO
tubular structure under illumination of a low power (800 µW) UV lamp (CCFL).
Inset: Spectrum of the CCFL lamp.

Photoanode Performance under Cold Cathode Fluorescent Light (CCFL)

Illumination

The low power absorption of UV light can give further insight into the UV sensitivity

of the photoanode material. For low power UV excitation analysis, I used a 36 W

(4× 9 W) cold cathode fluorescent (CCFL) lamp enclosed light source with the

PEC inserted in the light chamber. The light intensity measured in the chamber is

approximately 800 µW/cm2. A broad intense peak centred at 370 nm contributed to

the major light output, and surpasses the wavelength required to excite an electron

hole pair (3.35 eV) in all three materials of the heterostructure by ∼0.1 eV. The

photoanode is immersed in the electrolyte, and the front and back surfaces are

illuminated inside the light cavity. The photoelectrochemical measurements are

conducted on a large surface area (2.5 cm2 each side), illustrating the nanotubular

structure is formed homogenously on the surface of the Ti foil substrate.

The photocurrent densities are plotted in Figure 6.12; the red line represents the

photocurrent generated by the photoanode under illumination, the black line shows

almost zero current under no illumination. The blue curve is the photocurrent of the

photoanode under intermittent illumination, and the purple parabola represents the

output photopower density (µW/cm2) of the photoanode structure. A cold cathode

fluorescent lamp light source (350-400 nm) showed 34.4 % (Pmax = 275 µW/cm2)
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photoconversion efficiencies. The response time is fast, illustrated by the blue curve

in the figure where lights are turned on and off in a fraction of a second. The

photocurrent at 1.23 VRHE is 0.65 mA/cm2, the short circuit photocurrent is 0.79

mA/cm2 and the onset potential is 0.59 VRHE.

Comparison of Various Photoanodes

Figure 6.13 illustrates the I-V curve of the ZnO grown in TiO2 nanotubes and com-

pares between various materials serving as photoanodes. The photocurrent density

achieved with the TiO2/Zn2TiO4/ZnO structure surpasses both TiO2 nanotubes as

well as ZnO nanorods formed on a Ti foil, with a value of 42 mA/cm2 compared to

20.1 mA2 and 31 mA2 respectively at 1 VAg/AgCl.

The initial limited VS reaction showed a similar performance to that of titanium

nanotubes, this implies the zinc titanate does not contribute much to the enhanced

photocurrent exhibited by the TiO2/Zn2TiO4/ZnO heterostructure and that zinc

oxide is the photoactive material of the photoanode. The three tier heterostruc-

ture is the reason for the better overall performance of the TiO2/Zn2TiO4/ZnO

heterostructure due to improved charge carrier separation and mobility.

Inset of Figure 6.9 is the corresponding photopower output density plotted

against potential (vs Ag/AgCl) and the photopower output density of the TiO2-

Zn2TiO4-ZnO heterostructure. Efficiency is clearly improved compared to both ZnO

rods on a titanium plate as well as titania nanotubes. A comparison of photoelec-

trochemical data in Table 6.4 shows the TiO2/Zn2TiO4/ZnO heterostructure has

enhanced properties compared to the other materials. The maximum power density

of the ZnO in TiO2 nanotubular heterostructure reaches 11.36 mW/cm2 compared

to 6.42 mW/cm2 maximum power density of TiO2 nanotubes.

An initial VS deposition of ZnO formed a thin film of Zn2TiO4 on the inner

surface of titania nanotubes. Controlling the parameters and limiting the VS de-

position creates a TiO2-Zn2TiO4 structure with a 3 min ZnO growth reaction. The

photoelectrochemical performance of the coated titania tubes is slightly less than

the TiO2 nanotubes, inferring the Zn2TiO4 is not the primary photoactive material

generating large photocurrent densities. The surface area of the semiconductor in-

creases the oxidation reaction area and area of absorption. The significant increase
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Figure 6.13: Photocurrent measurements, I-V Curves, of TiO2/Zn2TiO4/ZnO tu-
bular structure, Zn2TiO4 coated titania nanotubes, ZnO rods formed on a polished
plate and a TiO2 nanotube array under illumination by a Xe light source. Inset is
the power density output (vs. Ag/AgCl) of each of the materials.

in photocurrent and power density of the ZnO nanotubular rods formed over the

Zn2TiO4-TiO2, is due to a combination of increased surface area and reduced exciton

recombination.

Material Pmax I1.23VRHE I1.23V −VOC
VOC I1VAg/AgCl Vfb

( mW/cm2) (mA/cm2) (mA/cm2) (V) (mA/cm2) (V)

ZnO nanorods

on a Ti foil 8.23 17.83 26.04 -0.624 31.03 0.399

TiO2

nanotubes 6.42 13.45 16.85 -0.664 20.09 0.359

3min reaction

on TiO2 NT’s 5.72 11.61 13.33 -0.714 15.17 0.309

20min reaction

on TiO2 NT’s 11.36 25.39 34.81 -0.666 41.91 0.357

Table 6.4: Photoelectrochemical data for the variety of photoanodes assessed. The
TiO2/Zn2TiO4/ZnO tubular structure outperformed all others.
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Photoelectrochemical water splitting efficiency of the ZnO/Zn2TiO4/TiO2 het-

erostructure is higher compared to ZnO nanorods and TiO2 nanotubes. High tem-

perature synthesis of a ZnO nanostructure in a TiO2 nanotubular array has formed

a zinc titanate coating within the inner walls of the tubes, the ZnO nucleates on

the zinc titanate and c-axis crystal growth dominates Zn condensation. The large

surface area of the inner walls of the TiO2 nanotubes results in the formation of a

larger surface area of the TiO2/Zn2TiO4/ZnO heterostructure junction. The high

crystallinity in the c-axis of the ZnO contributes largely to the high electron mo-

bility, and also acts as a wave guide for incoming photons which can be absorbed

closer to the heterostructure.

The barrier layer at the ZnO/Zn2TiO4/TiO2 interfaces reduces the exciton re-

combination rate, thereby producing a larger flux of electrons, with energies capable

of reducing the water that can travel to the platinum counter electrode. The electron

and hole separate after an electron tunnels or is transported into the TiO2 layer;

the electron cannot overcome the potential barrier to recombine with the hole. The

hole enters the electrolyte to efficiently oxidise the water.

The position of band gaps for the application of water splitting are advantageous.

The conduction band edge of anatase is close to the reduction potential of water,

whilst the conduction band and valence band of Zn2TiO4 are ideal for photoreduction

of water, i.e. reduction potential for hydrogen generation is between the bands. Both

anatase and Zn2TiO4 have a band gap of 3.2 eV and ZnO has a band gap of 3.3

eV respectively. Taking into account the peak energy of the solar spectrum is 2.5

eV and the requirement of 1.23 eV to split water, all three materials are suitable

candidates as photoanodes for photocatalytic water splitting.

6.4 Conclusion

Here, I have demonstrated a 3D architecture of TiO2/Zn2TiO4/ZnO photoanode

shows large photoefficiencies, and outperformed ZnO rods formed on a Ti foil as

well as TiO2 nanotubes. The increase in surface area of the Zn2TiO4 barrier layer

sandwiched between the ZnO nanorod photoabsorber and TiO2 thin film, discour-

ages recombination of electron and hole pairs over a larger area. The higher density
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of photoexcited electrons can then be utilised in the hydrogen evolution reaction

on the Pt counter electrode. This is achieved by depositing ZnO via a vapour

transport mechanism into a TiO2 nanotubular array. At the junction of ZnO and

TiO2, Zn2TiO4 is formed unilaterally by thermal oxidation. The Zn2TiO4 barrier

layer is composed of a thin film, small enough for electrons to tunnel from the ZnO

CBM into the TiO2 CBM under a bias, whilst the higher CBM of Zn2TiO4 restricts

backflow of the electrons.
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Chapter 7

Novel Deposition Methods -

AACVD and CBD and the

Formation of Novel

Nanostructures

A deposition process is affected by the delivery of the nutrients for the growth

of nanomaterials and there is a fine balance between delivery and the growth rate.

Here, I have developed effective aerosol and aqueous solution deposition methods for

achieving low temperature delivery of the growth particles through aerosol assisted

CVD and chemical bath deposition, which allows us to grow nanomaterials either

in ambient conditions or in a solution. An advantage of low temperature growth

includes less restriction and a wide range of materials can be used as a substrate.

A sequential method of VS deposition followed by AACVD was developed to

create hybrid metal oxide nanostructures, in order to develop interfaces with inter-

esting electronic properties for improving light absorption and charge separation. A

ZnO mesoporous thin film deposited by direct AACVD, illustrates the versatility of

the technique and the possibility of depositing a variety of thin metal oxide films.

Chemical bath deposition produced unexpected results, creating ZnO tubular

structures in addition to vertically aligned nanorods, depending on the properties

of the seeding layer. The temperature of the substrate remain below 100 ◦C. Thus,

substrate choice is larger; polymer, glass, paper and metal foil can all be adopted
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as substrates.

7.1 Aerosol Assisted Chemical Vapour Deposition

(AACVD)

The vapour deposition setup is altered to include the additional function of aerosol

assisted vapour deposition. The principle and setup of AACVD are explained in

chapter 2, in which an aerosol vapour is created via ultrasonic vibrations of a solu-

tion. The aerosol vapour is carried by inert gas to the reaction zone. The reaction

zone is at a temperature such that the vapour will decompose and solidify onto the

hot surface. There are two methods of heating to accomplish this; a cold walled

horizontal bed configuration, and a hot wall reactor.

In a cold wall horizontal bed reactor configuration, the substrate is placed on a

heating block which is maintained at the reaction temperature. In this case nuc-

leation of the metal oxides is concentrated on the surface of the substrate, the

solidification and growth occurs solely on the substrate surface. Since the vapour is

a very fine particle mist (∼ µm’s), the growth is homogenous and controllable.

The hot wall reactor configuration utilises a horizontal tube furnace, in which

case the reaction zone is larger, but temperature control is of a higher accuracy. The

drawback is that the quartz reactor is also at the temperature required to nucleate

and oxidise the vapour; such that the inner surface of the quartz tube will be heavily

coated by the reactants. The solution has a limited capacity, a substantial quantity

of which will be wasted coating the quartz reactor.

AACVD is an emerging deposition technique; the versatility of the technique

allows a variety of material, organic and non-organic, to serve as a precursor for

deposition. Polymer precursors can create thin films, with hydrophobic proper-

ties,167 and tungsten solutions can create tungsten oxide thin films,259,260 ZnFe2O4

nanostructures261 and ZnO nanowires doped in situ with VS deposition with alu-

minium.262
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7.1.1 ZnO Nanorods Enhanced Photocatalytic Behaviour

Attributed to TiO2 Particulate Coverage

Hybrid materials have the following advantages over pure metal oxides, 1) It becomes

possible to widen the wavelength of light absorption. Metal oxides with different

band gaps can be designed and constructed within the 3D hybrid materials with the

consequence of broad absorption and possibly full solar spectrum absorption. 2) It

is possible to construct tandem structures with appropriately aligned Fermi levels

and band edges that can result in a device with higher electrical potential than a

pure metal oxide device. 3) within the hybrid materials, electronic junctions, such

as p-n junctions normally exists at the interfaces between different materials. Such

junctions facilitate a built-in electrical field which always helps for charge separation

within the region. Careful design of heterostructures with precise control of the 3D

metal oxide composition offers the possibility of a comprehensive optimisation of the

materials for harvesting solar energy. Here, the deposition of TiO2 nanoparticles on

a ZnO nanorodular array through the use of a combination of AACVD and VS

for creating hybrid heterostructures demonstrates the versatility of the technique

described.

ZnO has a higher electron mobility than TiO2, whilst TiO2 is stable in a basic

electrolyte solution. Using TiO2 as a photoabsorber and an oxidant for water and

the ZnO nanorod array as an ordered electron pathway; the performance of the

photoanode is predicted to increase. Photogenerated electrons created in the TiO2

nanoparticles are injected into the conduction band of ZnO under a bias. The

performance could be reduced with increasing TiO2 particle size, and denser coverage

of ZnO rods. Due to an increase of the electrons path in the TiO2 and an increase

in the chance of recombination. The ZnO will also undergo photoabsorption and

exciton creation. TiO2 nanoparticles decorating ZnO rods can significantly increase

the surface area at the semiconductor/electrolyte interface which will enhance the

oxidation reaction on the surface of the photanode.

Surface modification of TiO2 and ZnO nanostructures are heavily researched.263–266

For DSSC applications, the reasons are two fold; 1) increased surface area improves

dye loading which facilitates higher rates of redox reactions at the electrode surface,

and 2) sensitisation by incorporating a semiconductor with a larger absorption band-
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width that utilises visible light. A surface modified structure can improve the local

charge separation if the surface modifier band edges are higher than the framework

material, culminating in a favourable charge injection scenario, as well as spatial

separation of excitons close to the surface of the two media. The charge lowers

into the conduction band of the framework structure and will migrate the circuit to

the counter electrode. A higher crystalline framework structure enhances electron

transport properties.

Utilising TiO2 NP’s for surface modification of ZnO extends the surface area of

the structure compared to that of an unmodified ZnO structure, either by filling

tubular structure265 or interstitially between rodular structures.267 The absorption

bandwidth is not an important factor in this case, since the TiO2 and ZnO have

almost identical band gaps with a slight difference in their Fermi levels. Covering

the surface of ZnO rods with TiO2 nanoparticles increases the surface area and

improves local charge separation at the TiO2/ZnO interface.268,269 However it does

not improve charge injection and light absorption.

Additionally a thin coating of TiO2 can enhance the lifetime of the ZnO rods,270

which is unstable in highly acidic solution. The photoelectrode lifetime is a key

issue in the construction of a practical PEC cell. Photocorrosion of ZnO under UV

illumination contributes further to the instability of ZnO rods.

7.1.2 Sample Preparation

ZnO rods were formed via VS deposition with a Ti foil serving as the substrate.

The substrate is placed on the lips of a porous alumina crucible. The Zn powder

precursor is positioned underneath the substrate. The alumina boat is inserted into

the centre of the quartz reactor and tube furnace. The quartz tube is evacuated with

a rotary pump and Ar flows through the reactor at a rate of 100 SCCM. The furnace

achieved a temperature of 650 ◦C at a temperature ramp up rate of 50 ◦C/min. The

temperature is held for 20 mins.

AACVD growth of TiO2 particles on the ZnO rods was carried out under a

controlled environment. The aerosol is created from a titanium solution in a beaker

under the influence of ultrasonic vibration at room temperature. Ar (220 SCCM)

carrier gas is used to drive the aerosol into the reaction zone, and maintain the system
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pressure. The exhaust gas was purged through a liquid nitrogen trap before being

released. The aerosol solution consisted of 0.6 ml to 6 ml titanium tetraisopropoxide

(TTIP) dissolved in 50 ml methanol solvent depending on the coverage required.

ZnO rods on a Ti foil served as the substrate in this configuration, and a tem-

perature of 550 ◦C is maintained until the precursor solution is exhausted.

7.1.3 Material Analysis, EDX and SEM

The samples of ZnO rods decorated by TiO2 were investigated under the SEM in

Figure 7.1. Figure 7.1(a) i-iii shows SEM micrographs of the ZnO rod array at

different magnifications before the decoration of TiO2. The average diameter of the

ZnO rods are 1.11 µm ± 110 nm, the hexagonal morphology is an indication that

the ZnO growth is preferentially aligned in the c-axis.

Controlling TTIP concentration in methanol alters the mass deposition of titania

particles. 50ml of solution was used as a precursor, and the concentration of TTIP

determined the TiO2 particle coverage. The AACVD deposition was carried out until

the precursor was exhausted. Figure 7.1(b) i-iii shows the SEM micrographs of ZnO

rods (1.287 µm ± 0.12 µm in diameter) decorated lightly with TiO2 nanoparticles

(395 nm ± 41 nm in diameter) at three magnifications. The titania is faintly visible

in the SEM micrographs, the ZnO rods have formed a well ordered array across the

surface of the Ti foil, with a high density and vertical alignment (Figure 7.1(b) ii).

With increasing elemental titanium content (EDX quantitative analysis) NP ag-

gregation occurs. Figure 7.1(c) i-iii show the titania decorated ZnO rods with a 4 %

Ti content; the rods have a diameter of 1.063 µm ± 0.12 µm and the TiO2 particles

are clearer to observe in the micrograph. The TiO2 NP’s have a diameter of 416

nm ± 131 nm, which is consistent with previous Ti concentrations. The aerosol

dispersed by the agitation of TTIP in methanol consists of ∼ 400 nm sized particles

of TiO2 once the reaction zone has been reached. The lower magnification SEM

micrographs show that the rods are dense and evenly formed over a large area. For

8 % Ti content the ZnO rods have a diameter of 1.326 µm ± 83 nm with a TiO2

average particle size of 460 nm ± 105 nm.

As the concentration of Ti content increases to 12 % coverage, shown in the

SEM micrographs in Figure 7.1(d) i-iii, the NP’s have aggregated at the top of rods
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Figure 7.1: SEM micrographs of ZnO rods grown via VS deposition (a) at various
magnifications of i-×3,500, ii-×3,000, iii-×750, and with various AACVD depos-
itions of TiO2 particulates ranging from 0.5 % (b) i-×1,500, ii-×1,200, iii-×550, 4
% (c) i-×3,000, ii-×1,200, iii-×350, and 12 % (d) i-×4,500, ii-×1,750, iii-×750, Ti
content overall. The titania is noticeable in the SEM micrographs, as concentration
increases.
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which is clearly seen in Figure 7.1(d) i. At lower magnification (ii-iii) the density

of the rods show they are homogenously dispersed across the surface. The flow rate

of Ar determines the occupation time of the aerosol in the condensation zone, with

a high flow rate (220 SCCM) the aerosol has limited time to reach lower section of

the rods and aggregate on the top, increasing the surface area of the top. Thus, the

particles have a larger probability of condensing on the top of the rod. This has

created a TiO2 bulb on the top of the rod with a larger diameter of 1.037 µm ±

0.091 µm; the ZnO rods serving as the substrate have a smaller diameter initially

compared to previous samples with a 367 nm ± 50 nm diameter. The associated

EDX spectruma for each of these materials are plotted in Figure 7.2, the Ti and

Zn peaks are labelled and show the increasing Ti Kα,β peak areas as Ti coverage

increases. Inset of Figure 7.2 is an example of an area sampled by EDX,

Figure 7.3 shows an elemental map using EDX of an area of the sample where

flowering ZnO rods are decorated with TiO2 nanoparticles. Significant elemental Ti

is adhered to the surface of the flowering ZnO rods. This shows the Ti detected by

the EDX analysis is of the decorated Ti on the ZnO, rather than the substrate.

7.1.4 Photoelectrochemical Analysis of Structures Created

In order to investigate the effect of TiO2 decoration of ZnO rods for the purpose of

a photoanode, photoelecrochemical analysis was performed in a three electrode pho-

toelectrochemical cell; the potential is controlled via a potentiostat simultaneously

measuring the photocurrent generated at the Pt counter electrode. A saturated

Ag/AgCl reference electrode is utilised during the current-voltage (I-V) measure-

ments. The photocurrent is proportional to the hydrogen generated (2e− produces

one hydrogen molecule). The photocurrent characteristics define the quality and

efficiency of the photoanode material. A 1 M KOH in deionised water serves as

the electrolyte. A 300 watt xenon light source (Compact Illuminator 6000CI, ORC)

with a focusing lens acts as the solar simulator. The photoelectrochemical setup is

discussed in Chapter 2.3.1, which shows the photoelectrochemical cell and positions

of the electrodes.

I-V curves for the various concentrations of TiO2 decorated ZnO rodular array

photoanodes are shown in Figure 7.4, the black curve represents bare ZnO rods,
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Figure 7.2: Energy dispersive X-ray spectra of ZnO rods coated by titania particles
with a 0.5 % Ti content, 4 % Ti content, 8 % Ti content and 12 % Ti content. Inset
is an SEM micrograph of ZnO rods coated with titania and a 4 % Ti content.

SE Image Ti resolved image Zn resolved image

Figure 7.3: Element resolved SEM micrographs of ZnO rods with a 4 % Ti con-
tent coverage, (a) SEM micrograph images of area sampled, (b) is the Ti resolved
micrograph, and (c) is the Zn resolved image. It can be seen that Ti(O2) coats the
surface of ZnO rods.
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and has a maximum power density output of 8.4 mW/cm2 and reaches a photo-

current of 26 mA/cm2 at a potential of 1 V vs Ag/AgCl. By decorating the ZnO

rodular array with TiO2 nanoparticles with an overall concentration of 0.5 % Ti

content (black curve), the power density output is enhanced by 22 % and a max-

imum photopower density output of 10.3 mW/cm2 is achieved. The photocurrent is

considerably higher at 1 V vs Ag/AgCl at 34.26 mW/cm2. Similar curvatures were

found for ZnO nanorods with and without TiO2 nanoparticles. This suggests that

adding TiO2 nanoparticles does not effect the chemistry of redox reactions at the

anode-electrolyte interfaces. This is not surprising since TiO2 and ZnO have similar

electronic structures.

30

20

10

0

C
u
rr

e
n
t 

D
e
n
s
it
y
 (

m
A

/c
m

2
)

1.00.50.0-0.5-1.0

Potential (V vs Ag/AgCl)

 ZnO rods

 0.5% Ti content 

 4% Ti content

 8% Ti content

 12% Ti content

10

8

6

4

2

0

P
h

o
to

p
o

w
e

r 
D

e
n

s
it
y
 (

m
W

/c
m

2
)

-1.0 0.0 1.0

Potential (V vs Ag/AgCl)

Dark currents

1.23 VRHE VOC +1.23

Figure 7.4: Photocurrent density (I-V) plots of titania sensitised ZnO rods of
various concentrations of Ti.

The photopower density maximum of the TiO2 decorated ZnO rod array with a 4

% Ti content (blue curve) reaches a value similar to bare ZnO rods of 8.45 mW/cm2

and a photocurrent density of 29.15 mA/cm2, 4 mA/cm2 higher than bare rods. This

is possibly due to the thickness of the congregated TiO2 particles on the surface of

the ZnO rods. At a certain thickness, spatial exciton separation enhancement no

longer occurs. This is because the electrons path toward the ZnO rod becomes too
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long within the amorphous TiO2 structure. Consequently the electrons bombard

multiple TiO2 NP’s during their passage in a random walk fashion. This passage is

further than the diffusion length of electrons in amorphous TiO2. Electrons also need

to acquire a small additional energy to be injected into the higher ZnO conduction

band which slightly inhibits electron transport to the Pt electrode, this is illustrated

in Figure 7.5.
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Figure 7.5: Energy levels of TiO2 and ZnO relative to the redox reaction potentials.
ZnO has slightly higher band edges, and require a small (0.1 V) bias for the electrons
to traverse the TiO2 into the ZnO framework.

With increasing Ti content the effects of the higher rates of recombination are

evident in the photocurrent density, and with an 8 % Ti content (magenta curve)

in the TiO2 nanoparticle coating, the photopower density has reduced by 27 % to

6.07 mW/cm2 compared to bare ZnO rods. Increasing the density of the coating

further to 12 % Ti content (cyan curve) drop the photopower density maximum to

2.94 mW/cm2. The photoelectrochemical data is summarised in Table 7.1.

The TiO2 nanoparticles are advantageous with sparse coverage of ZnO rods,

and photocurrent density is enhanced with Ti concentrations below 4 %. The low
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Ti Pmax I1.23VRHE I1.23V −VOC
V0mA/cm2 I1VAg/AgCl

content (mW/cm2) (mA/cm2) (mA/cm2) (VAg/AgCl) (mA/cm2)

0 % 8.44 19.69 23.33 -0.724 26.28

0.5 % 10.3 24.08 30.57 -0.719 34.26

4 % 8.46 19.71 24.89 -0.725 29.15

8 % 6.07 16.18 19.48 -0.781 22.7

12 % 2.94 7.55 19.258 -0.78 12.89

Table 7.1: Photoelectrochemical data for TiO2 decorated ZnO rods, with varying
Ti content.

coverage results in smaller distances between the photoabsorbtion sites and nano-

particle/rod interface. Increasing the coverage of ZnO rods with TiO2 to a creation

of a ZnO/TiO2 core shell structure, will result in a mesopourous titania shell redu-

cing the diffusion length of the electrons significantly. A large surface area increases

the rate of oxygen evolution reaction and adversely a large volume also increases

the rate of recombination.

Light coverage of titania nanoparticles on ZnO rods has improved the photoeffi-

ciency of the ZnO rod structures serving as a photoanode. Excitons created within

the TiO2 particles are more likely to escape the particle before recombining. This

charge injection into the ZnO rods separates the excitons spatially, under a bias.

The additional surface area of the structure increases the semiconductor/electrolyte

surface contact, increasing the photoabsorbtion and effectiveness of oxidation reac-

tions.

The photo efficiency of ZnO nanorod anode can be improved not only by modi-

fying its surface with TiO2 nanoparticles, but also by increasing its surface area.

The overall efficiency is determined by the light absorption efficiency, charge re-

combination rate, charge mobility and charge potential for redox reactions. The

light absorption is expected to improve by engineering the band gap and increasing

the thickness of the film. Although a reduced band gap could improve the visible

light sensitivity, it will sacrifice the charge potential for redox reactions. Mean-

while, simply increasing the thickness could restrict electrons pathways towards the

cathode.
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In the next sections, the fabrication of large surface area films is explored, which

could improve the rate of surface reactions at the interfaces between the solid elec-

trode and the liquid phase electrolyte. For such heterogeneous reactions, the react-

ant concentration of the solid that can affect the reaction kinetics, is specified by

its effective surface area. The large surface corresponds to high solid concentration

and offers faster reactions.

Firstly, a porous ZnO film is deposited using the direct AACVD method which

yields a large surface area to facilitate oxidation evolution reactions. Secondly, a

unique seeding method utilising chemical bath deposition is demonstrated, which can

create vertically aligned tubular ZnO nanostructures that could double the effective

surface area of the original ZnO nanorods.

7.2 Photocatalytic Properties of a ZnO Mesopor-

ous Film

AACVD was originally developed for creating semiconductor thin films, the de-

position of a homogenous ZnO thin film on a Ti substrate is demonstrated. The

properties of the thin film as a photoanode is explored via photoelectrochemical

analysis. The ZnO thin film was deposited using a precursor of zinc acetate (ZnAc)

dissolved in water at a concentration of 0.1 M. The reaction temperature is 650 ◦C,

and argon flow rate is 100 SCCM. A Ti foil is coated with gold using a gold sputterer;

the thin film of gold is annealed at a temperature of 550 ◦C. A gold thin film layer

prevents the formation of TiO2 on the surface of the Ti foil, so that the properties

of the ZnO film can be analysed without a heterostructure present. The AACVD

deposition continued until precursor exhaustion, a thin ZnO mesopourous film forms

on the surface of the substrate. These are shown in Figure 7.6, the particle size of

the ZnO is 0.95 µm ± 0.2 µm, with a film thickness of 2.11 µm.

7.2.1 Photoelectrochemical Analysis

The thin film of ZnO shows significant photoelectrochemical performance, as seen in

Figure 7.7. The surface area of the mesopourous film introduces a large surface area

of solid/electrolyte contact. The large area of solid/electrolyte contact results in a
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10μm

Figure 7.6: SEM micrograph of ZnO mesoporous film created via aerosol assisted
chemical vapour deposition (AACVD).

higher number of photon absorptions close to the surface and the rate of oxidation

of water is enhanced. Holes oxidise water and can be effectively separated from

the respective electron which can migrate to the counter electrode and reduce the

water, the mesopourous structure is disadvantageous compared to rods due to the

poor electron transport and scattering properties of the disordered material, hence

a greater opportunity for the electrons and holes to recombine after separation.
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Figure 7.7: Photocurrent density I-V plot the ZnO thin film shows significant pho-
toelectrochemical activity. The purple curve represents the power density output.

As it is possible to deposit thin films of ZnO, the distance between the conductive

interface of the substrate and the sites of exciton creation is limited, reducing exciton

recombination close to the surface. The electrons path will be that of a random walk

across the mesopourous film. In the case of ZnO rods, the length dependency of the
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photoefficiency is a competition between surface area, against recombination effects

as the lengths of the rods increase.

A mesoporous ZnO films shows good photocatalytic behaviour, this is illustrative

of the photoelectronic properties of unaligned ZnO. The photopower density peaks

at 3.71 mW/cm2, under half the photopower density of aligned ZnO rods on a Ti foil.

Alignment and crystallinity is vital in creating fast pathways for electrons to achieve

significant diffusion length. Charge carriers in the crystalline film have significant

path lengths before recombination. The photocurrent profile could be used as a

standard reference compared to other ZnO structures.

Here, the possibility of creating a porous metal oxide film with a photocurrent

of 7.5 mA/cm2 at 1.23VRHE has been demonstrated. More importantly, with the

AACVD method it is possible to develop other transition metal oxides and deposit

the thin films in a layer by layer fashion. Enabling the ability to control the electronic

structure of a 3D material with precise control of the band gap and optical properties.

Future work utilising AACVD could be in the form of creating a perfect black ‘leaf’

for harvesting solar energy.

7.3 ZnO Nanorods and Nanotubes Formed via

Chemical Bath Deposition (CBD)

Chemical bath deposition is a convenient low temperature aqueous synthesis method

used to create nanostructures.168 Growth Temperatures range from 50 ◦C to 100
◦C in a water based solution, the low temperature allows freedom in the choice of

substrate utilised for growth; from plastic to glass to metals. An expansion of the

deposition method into printed metal oxide nanostructures is a viable route to low

cost solar cells.271

ZnO undergoes a similar process of growth as in the vapour transport mechan-

isms. The deposition requires a seeding layer of ZnO, which initiates growth in the

[0001] direction of the ZnO hexagonal wurtzite crystal structure. The Zn2+ exposed

on the (0001) plane reacts with OH− ions to form ZnO. The reaction continues in

a consecutive fashion, forming ZnO nanorods aligned in the [0001] direction. The

OH− ions are supplied by the decomposition of hexamethylenetetramine (HMTA).
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The aqueous method of ZnO crystal formation was first reported by Vergés et

al in 1990,272 demonstrating ZnO rodular crystals form in a solution of zinc nitrate

(0.05 mol dm−3) and HMTA (0.05 mol dm−3) at a growth temperature of 100 ◦C

for a duration of 30 mins.

The reaction taking place in the growth solution can be expressed as follows:273,274

(CH2)6N4 + 6 H2O→ 6 HCHO + 4 NH3

NH3 + H2O⇀↽ NH+
4 + OH−

2 OH− + Zn2+→ Zn(OH)2→ ZnO + H2O

Literature is rich with applications of low temperature grown ZnO rods,275,276 the

mild temperature and versatility of the growth mechanism means that scalable

growth is possible to produce large volume devices.271

ZnO rod arrays created by the CBD method are site specific, which opens up

the possibility of creating devices in situ by growing rods directly on to electrodes.

A piezogenerator has been demonstrated using this method.277

Nanotubes of ZnO are usually formed by a two step formation process via CBD

and a dissolution process. The majority of articles presenting ZnO nanotubes have

been reported using this chemical route.278 Initially rods are created using normal

synthesis conditions. The CBD nanorods are placed in a bath of alkaline or acidic

solution for 1 hour at 80 ◦C, the basic solution causes dissolution of the centre of

the rod. The dissolution rate is greater in the (0001) face direction, as a result of

the higher reactivity of the high energy (0001) polar surface.

One step nanotube formation via chemical bath deposition frequently adopts

an in situ etching of ZnO rods in either basic or acidic growth solutions.279,280 In

this work, a one step growth of ZnO nanotubes in a neutral growth environment

is demonstrated. Since the ZnO growth is site specific, the ZnO seed layer on the

substrate was manipulated to achieve a ZnO annulus, a tubular structure extends

from the initial ZnO annulus, forming ZnO nanotubes through a bottom up growth

approach.
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7.3.1 Sample Preparation

Nanorod Preparation

Nanorods are formed on an FTO glass substrate, the substrate is coated with ZnO

nanoparticles with an average diameter of 300 nm. A solution of 1 M ZnAc in

deionised water served as the seeding solution, which is dispersed on the surface of

the FTO via spin coating at a rate of 300 rpm which disperses an even coating. The

FTO substrate and seed were then annealed at a temperature of 360◦C for one hour

to form ZnO crystals homogenously spread across the surface.

The substrate is placed into a beaker containing 100 ml of growth solution (10

mM zinc nitrate and 10 mM HMTA in deionised water), the beaker and substrate

are inserted into a convection oven and a growth temperature of 85 ◦C is maintained,

until the solution has evaporated (18 hours). The seed dictates the initial size and

sites of the rods, and a further growth period enhances the diameter and length of

the ZnO nanorods.

Figure 7.8(a) shows the morphology of a typical growth, where ZnO rods are

well ordered with an average diameter of 335 nm ± 109 nm and a length of 3 µm.

A less well ordered area of rods are shown in 7.8(b). The hexagonal features are

clear, thus, it is expected the growth of the nanorods are aligned in the c-axis of the

wurtzite crystal structure.

5μm 5μm

a b

Figure 7.8: SEM micrograph of ZnO rods, utilising low temperature chemical bath
deposition methods at magnifications of (a) ×4,000 and (b) ×3,500.
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Nanotube Preparation

ZnO nanotubes are prepared by creating an initial annulus of ZnO crystals which

serve as the seeding layer on the FTO glass substrate, on this ring, ZnO crystals

precipitate and form tubes during the growth process. The seeding solution, con-

taining 1 M zinc acetate (ZnAc) in deionised water, is adjusted with the addition

of 0.6 g polyvinyl alcohol (PVA) in 10 ml of solution. The PVA is dissolved in the

seeding solution overnight using a magnetic stirrer and heating plate. The solution

is spin coated onto the FTO substrate using a higher spin rate (800 rpm) to take

into account the higher viscosity of the solution as a consequence of adding PVA.

The sample is coated several times to ensure a good coverage. The substrate is

annealed in a convection oven at 360 ◦C for 1 hour.

The kinetics governing the evaporation of the water solution during annealing

determines the morphology and size of the seed, and is a crucial step in the formation

of the ZnO nanotubes reported here. To achieve the ZnO annulus seed, the droplet

containing the PVA will experience contact line pinning, and as the outer edges

evaporate at a faster rate than the rest of the droplet solution is drawn from the

bulk to the edges via capillary flow replenishing the liquid evaporating from the

edge.281,282 With raising temperature the convective flow of the liquid increases,

pronouncing the ring or annular formation. This process is known as the coffee-ring

effect.

Unlike the ZnO rods seeding discussed in the previous section, where without

PVA the 1 M ZnAc solution decomposes into spherical ZnO crystals. The droplet

evaporates evenly as the radial contact lines of the droplet are not pinned to the

surface. Thus, the droplet gradually reduces in size during evaporation and a spher-

ical/circular ZnO crystal remains on the substrate after thermal decomposition.

The seeded substrate is placed in a beaker containing the growth solution (10

mM zinc nitrate (ZnO(NO3)2), 10 mM hexamine (HMTA) dissolved in water) at

a temperature of 85 ◦C for 18 hours; the beaker is covered with foil to reduce loss

of growth solution. Figure 7.9(a) shows a low magnification SEM micrograph of

the ZnO nanotubular array after 18 hours in the growth solution, the average outer

diameter is 267 nm ± 63 nm and in average inner diameter of 107 nm ± 62 nm.

Figure 7.9(b) & (c) shows high magnification SEM micrographs of the nanotubular
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a

b c

d

Figure 7.9: SEM micrograph of ZnO micro/nano tubes formed via chemical bath
deposition at magnifications of (a) ×7,500 (b) ×23,000 and (c) ×13,000 whilst (d)
is an SEM micrograph of the seeding layer at a magnification of ×10,000. Images
courtesy of Adward Lee and Teo Mertanen

structures created on the conductive glass. The hollow structure is discernible from

Figure 7.9(b), which shows an example of a large ZnO nanotube with an outer

diameter of 1.05 µm and an inner diameter of 893 nm. Figure 7.9(d) is the SEM

micrograph of the annulus ZnO crystal seeds before growth of the nanotubes, the

outer and inner diameter of the ring can be clearly distinguished, with averages

diameters of 375 nm ± 88 nm and 174 nm ± 58 nm, respectively.

7.3.2 Photoelectrochemical Analysis

In Figure 7.10 the red curve illustrates the photocurrent density, the blue is pho-

tocurrent density under chopped illumination and black is the dark current. The

chopped illumination photocurrent density has anodic spikes present. These an-

odic spikes are due to electron and hole trapping in the structure. The photopower

density is plotted as the purple curve, reaching a peak maximum of 1.275 mW/cm2.

The low performance compared to other materials reported in this work could

be due to the following factors; the crystallinity of the tubes are of a low quality or

contact between the ZnO and the SnO coating of the FTO could be compromised.

The low surface area and rod density contributes to the low photocurrent density.

Further work in creating denser forests of ZnO tubes by this method could possibly

improve the photoelectrochemical properties. Zn2TiO4 and TiO2 are not present
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in this structure. Creating a ZnO nanotube array via CBD with similar densities

and dimensions to the ZnO nanotubes formed in Chapter 6 and comparing the

photoelectrochemical behaviour may demonstrate the role of the heterostructure in

the photocatalytic improvement of high temperature synthesised ZnO structures on

a Ti foil.
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Figure 7.10: Photocurrent density (I-V) plots of ZnO tubes grown via CBD.

The lengths of the tubes change with time and the growth begins as a tubular

template rather than a dissolution process (i.e. bottom up tubular growth). An

annular ZnO crystal seed initially forms due to evaporation of the droplet and surface

pinning of the edges of the solution droplet, and provides the nucleation sites for

ZnO formation gradually building up the tubular structure.

7.3.3 Conclusion

Utilisation of novel deposition techniques opens up new possibilities for creating

a 3D architecture of otherwise heat sensitive materials by aerosol assisted vapour

deposition. The simple setup allows a precise control over the introduction of the

deposition material in an ambient environment. The increase in photocurrent dens-

ity of lightly decorated TiO2 nanoparticles on a ZnO nanorodular array illustrates

the vital role exciton separation plays. It was also demonstrated that AACVD can

deposit homogenous thin films of ZnO which can be extended to almost any metal

oxide, through the control of the ingredients of the solution fitted on the ultrasonic
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transducer to create the aerosol. Temperature of the substrate is not a vital com-

ponent in the formation of the thin film, and mild temperatures could facilitate thin

film deposition.

Chemical bath deposition of ZnO nanostructures is a low temperature process

which showed versatility in the formation of ZnO nanostructures. Importantly the

growth process is site specific and control of the seed allowed a bottom up template

growth process of ZnO nanotubes formed at a temperature below 100 ◦C. This

method can be extended into creating devices through the control of the seeding

density and structured profiles.
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Chapter 8

Future Work

The work conducted herein has demonstrated the possibilities of band gap engineer-

ing and the manipulation of materials to create interfacially electronically favourable

heterostructures. Firstly, by alloying Ti with Fe to form Fe-Ti-O nanotubes, and

secondly, by forming a ZnO-Zn2TiO4-TiO2 heterojunction. Both of which showed

improvement of the output photopower density, one as a result of a larger absorp-

tion bandwidth and the other a result of improved charged separation close to the

interfaces of the heterostructure.

At the time of synthesis of the Fe-Ti-O nanotubes XRD was unavailable for

the analysis of the crystal structures formed. It would be beneficial to repeat the

deposition and anodisation of varying iron content in the Fe-Ti-O nanotubes to

assess whether iron titanates have formed during the anodisation process. Not only

will this insight give completion to the studies performed herein, but will also be

informative for the development of future experiments relating to iron oxide.

For all of the materials studied, experimental confirmation of band gap energies

would be fruitful for the analysis of the materials. This can be achieved through the

use of Diffuse Reflectance UV-Vis spectrometry (DR-UV-Vis) which measures the

wavelength range at which the materials absorb light, the absorption profile can then

be assessed to calculate the band gap energy.283 The experimental characterisation

of the flat band potential for the materials synthesised can be further elucidated via

capacitance measurements; using the Mott-Schottky equation to determine the flat

band potential.62

The next logical step in terms of material synthesis would be to combine zinc
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and iron oxide, Zn-Fe-O, this could be achieved by AACVD, e-beam evaporation

or chemical bath methods reported earlier. ZnFe2O has a band gap well within

the visible range (2 eV - 620 nm) and the band edge positions are more favourable

compared to Fe2O3, shown in Figure 1.9. Yet, the conduction band is approximately

0.05 V below the H+ reduction potential which questions the stability of the material

in an electrolyte. The conduction band can be shifted above the H+ reduction

potential, such that both band edges straddle the redox potentials, by introducing

Ti to form Zn1.5FeTi0.5O4.284

For example, iron, zinc and titanium can be deposited onto a substrate using

the electron beam evaporators constructed in this work, which can then be anodised

to form nanotubes. These nanotubes should be sensitive to visible light with the

added benefit of multiple channels to facilitate oxidation reactions on the surface

of the inner tubes. The thin film could also be composed of varying concentrations

of Fe content, starting from Zn1.5FeTi0.5O4 and ending in Zn2TiO4, whereby the

CBM remains well above the H+ reduction potential and the absorption range is

broadened from UV to visible light from the tip to the roots of the nanotubes.

Another method could be to simultaneously deposit iron and titanium from

precursors solution via AACVD whilst a vapour solid reaction of ZnO is performed.

Hopefully forming Zn1.5FeTi0.5O4 nanorods on a Ti foil thus increasing the surface

area of the visible photosensitive material.

In conclusion, this work has demonstrated versatile methods to create nanostruc-

tures and the hybrid metal oxide nanomaterials synthesised have outperformed their

single metal oxide counterparts. The insights drawn from these experiments can be

utilised in the construction of new hybrid metal oxide photoanodes and spur further

improvement for the photoelectrochemical decomposition of water.
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