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DEVELOPMENT OF A PARTICLE IN CELL CODE FOR THE SIMULATION OF DUAL

STAGE ION THRUSTERS

SUMMARY

This thesis focuses on the design, development and testing of a two dimensional particle in

cell (PIC) code (PICSIE) written in Matlab. The code is applied to the specific problem

of modelling the performance of dual stage ion thrusters. The code simulates one full

aperture within dual stage ion thruster systems, focusing on the flow of ions through the

aperture. Only the ions have been included in the simulation in order to minimize running

time.

The results produced by the simulation code are compared with results obtained from the

vacuum chamber testing of the DS4G prototype, along with results from other simulation

codes and research papers in order to verify the performance of the simulation code.

The Dual-Stage 4-Grid (DS4G) and Dual-Stage 3-Grid (DS3G) thrusters are both sim-

ulated in order to compare the performance of the two thrusters and assess the benefits

and disadvantages of including the fourth grid in a dual stage thruster system. Different

grid configurations are simulated in order to find the most efficient configuration of the

ion optics and accelerating voltages for each thruster, with the aim being to find the con-

figurations that produce the maximum particle momentum, thrust and specific impulse

while minimizing the rate of erosion of the ion optics and maximising the efficiency of

the thruster. These simulations are applied to the problem of deciding if the advantages

provided in using a 4th grid outweigh the disadvantages compared to the 3 grid design.

The results show that if erosion due to backstreaming ions is disregarded, including the

fourth grid in the thruster design results in no apparent advantages in terms of the perfor-

mance parameters studied in this work. The only noticeable difference between the three

and four grid cases is a significant increase in the change in ion momentum observed when

the fourth grid is not included in the design. The conclusion of the work is that the fourth

grid should not be included in the dual stage design unless a very long lifetime is required

and it is thought that erosion due to backstreaming will prevent the three grid thruster

from fulfilling this criteria.

The concept of propagating waves through the plasma within the ion thruster discharge

chamber is investigated, with the aim of discovering any benefits and improvements in

performance that may arise and forming a conclusion on whether further study on the

topic of waves within the discharge chamber may be beneficial. No improvements in per-

formance parameters were observed in this work, although further study in the area may

show benefits to introducing waves into the plasma.
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1 Introduction

1.1 Motivation

In this section the motivation for undertaking this work is discussed. Firstly, due to the

lack of flight testing opportunities the computer based simulation studies of ion engines

play an important role in research and development. Testing in a vacuum chamber is

expensive due to the size of the chamber and the length of time required in high vacuum

conditions, and whilst use of a simulation can only ever be used as a complementary tool

in the design and testing of a thruster and cannot replace vacuum chamber testing, it pro-

vides an efficient and cost effective way of analysing performance factors such as projected

lifetime and thrust produced. The basic physics within an ion thruster are better revealed

within a simulation and more comprehensive diagnostic techniques can be employed com-

pared with those available in a vacuum chamber, providing a more detailed view of the

performance of an engine and the motion of particles within it.

During the design process the most efficient engine configuration needs to be found in or-

der for the engine to perform at the required standard, based on the mission requirements;

it would be extremely time consuming to manufacture many variations of the same engine,

and the cost would be prohibitive. An optimized configuration of many parameters needs

to be found before an engine can be manufactured and tested; a simulation allows the

configuration of an engine to be manipulated and the effects of the changes observed in a

time and cost effective way.

A wide range of research has already been carried out on the issue of simulating ion

thruster performance, as will be discussed in the Literature Review in Section 3. Pro-

ducing an alternative simulation tool allows comparison between simulation results and

provides a different perspective when investigating a research question, allowing a problem

to be approached from several different angles and either providing confirmation that a

conclusion is accurate or indicating that further work should be done in a particular area.

1.2 Research Aims

The primary aim of this research is to produce a particle in cell code to facilitate the study

of dual stage ion thrusters; the simulation will study the flow of plasma through a single

grid aperture, producing a range of diagnostic parameters including the change in ion

momentum and the number of ions impacting on the grids. The simulation code will be

verified by comparing its results to those obtained during testing of a DS4G prototype in

a vacuum chamber and those obtained by other researchers from simulations of the DS3G.

Once the simulation code is deemed to be producing accurate results, the aim of this

work is firstly to come to a conclusion on whether including a fourth grid in a dual stage

system is worthwhile in terms of performance benefits while taking into account the added

complexity that would come from the inclusion of the grid. This research will then aim
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to find an optimized grid configuration based on target parameters.
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2 Introduction to Ion Thrusters

The desire to explore space and gain knowledge of what lies beyond our planet has long

been a motivator for technological development. The use of ion thrusters in space travel

will allow humans to explore further into space than was previously possible, and the use

and development of this technology is vital for the continued exploration of our area of

the galaxy.

This section will provide an introduction to the concept of ion thrusters, including the

techniques used to produce the ions from the chosen propellant and a discussion on dif-

ferent types of ion thrusters, both those currently in operation and those being studied as

possibilities for use in space travel in the future. A history of ion propulsion in space will

be provided, along with details of space missions that will use ion thrusters for propulsion

in the near future.

2.1 Introduction to Ion Propulsion

Ion propulsion is a technique in which a gas (usually xenon, a colourless, odourless, heavy

noble gas) is given an electric charge, producing an ionized gas. The ions are then acceler-

ated to around 30 km/s and emitted from the spacecraft, producing thrust (NASA, 2008).

Ion engines are highly efficient compared with chemical engines, although the thrust pro-

duced is considerably lower (0.09N of thrust can be produced by an ion engine, compared

to between 450N and 2250N for a chemical rocket (NASA, 2008)). This means that ion

engines cannot be used for take-off through the Earth’s atmosphere, or any other situa-

tions where high acceleration and thrust are required, but could be a much better choice

for travel in space than chemical engines. Although a chemical engine is more powerful,

the duration of thrust is much less than that possible with an ion engine, due to the

amount of propellant needed by the chemical engine. The cargo-to-propellant ratio for

a typical chemical rocket is 1:2 while the ratio for an ion engine is around 4:1 (Prado,

2002). NASA’s Deep Space 1 carried 81kg of xenon propellant, enough to fuel the engine

for 20 months (NASA, 2008), whereas ESA’s Galileo carried 925kg of propellant which

was used in 30 manoeuvres during the gravity-assisted trip to Jupiter (Hamilton, 2009).

With current technology an ion engine can operate continuously for several years. NASA’s

Deep Space 1 achieved a speed of up to 4.5km/s, around ten times the maximum speed

of a spacecraft using a chemical engine (Deep Space 1, 2001); the maximum velocity (or

the available change in velocity ∆V ) depends on the amount of propellant carried. The

rocket equation states that

∆V = Ispg0 ln
Mi

Mf
(2.1)

Where Mi and Mf are the initial and final spacecraft masses, ∆V is the required change

in spacecraft velocity, g0 is the gravitational constant and Isp is the specific impulse. It

can be seen that to maximise the useful payload, the Isp should be maximised. The Isp is
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given by

Isp =
F

ṁg0
(2.2)

Where F is the thrust and ṁ is the propellant mass flow rate, which is given by

ṁ = QM (2.3)

Where Q is the propellant particle flow rate in particles per second and M is the mass of

the particle (Goebel and Katz,2008). Specific impulse is expressed in units of seconds and

is a measure of the propellant fuel consumption rate (Charles, 2009). A high specific im-

pulse shows high propellant efficiency. Ion thrusters achieve much higher specific impulse

than chemical rockets, making ion propulsion well suited for travel in space. Chemical

rockets can usually produce an Isp of around 200-400s while ion thrusters can generate Isp

of several thousand (Boyd, 2011). As much less propellant is needed to be stored aboard

an ion thruster this means that the vehicle can be smaller and lighter than a chemical

rocket, reducing the launch cost.

The ions are accelerated either by electrostatic or electromagnetic forces. Conventional

ion thrusters use electrically charged grids to accelerate the ions and are known as gridded

ion engines or GIEs, but several other methods are also available, all of which will be

discussed in Section 2.3. The thrust produced by an ion thruster is given by the time rate

of change of the momentum, and can be written as

F = ṁvex (2.4)

Where vex is the average exhaust velocity. The mass utilization efficiency and thruster

efficiency are often used for comparison between thrusters. The mass utilization efficiency

ηm defines the amount of ionized propellant versus un-ionized propellant. It is also known

as the propellant utilization efficiency. It is given by

ηm =
ṁi

ṁp

Ib
q

M

ṁ
(2.5)

Where Ib is the ion beam current and q is the charge of an ion. The thruster efficiency ηT

is defined as

ηT =
F 2

2ṁPin
(2.6)

Where Pin is the total electric power used by the thruster (Goebel and Katz, 2008).

2.2 Ionization Techniques

2.2.1 Electron Bombardment

The most common technique used to ionize propellant in an ion thruster is electron bom-

bardment. Electrons are injected by a discharge cathode into the discharge chamber
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where the propellant is confined; these electrons collide with the neutral propellant atoms,

knocking electrons off the atoms and resulting in two negatively charged electrons and one

positively charged ion (NASA,2012). NASA’s NSTAR and NEXT thrusters and QinetiQ’s

T5 and T6 thrusters (all discussed in Section 2.4) use electron bombardment for ionization.

2.2.2 Electron Cyclotron Resonance

Another technique used to ionize propellant is electron cyclotron resonance. The pro-

pellant is confined within a magnetic field in the discharge chamber and microwaves are

injected into this region at the electron cyclotron resonance frequency, as defined by the

magnetic field B .

wc =
qB

M
(2.7)

This energises electrons which collide with the neutral propellant atoms, resulting in ion-

ization. The Japanese Space Agency’s Hayabusa used electron cyclotron resonance to

ionize the propellant, using magnetic rings (∼ 0.3T) and a 2.4GHz wave emission (Ahedo,

2011).

2.2.3 Confining Propellant for Ionization

Efficient propellant utilization requires confinement of the propellant in order to allow

maximum ionization; a magnetic field is often used to confine the propellant in order

to maximise utilization (Ahedo, 2011). High strength magnets are placed around the

edges of the discharge chamber; as electrons approach the discharge chamber walls they

are redirected back into the centre of the discharge chamber by the magnetic field. This

maximises the length of time the propellant atoms are within the discharge chamber

and therefore maximising the chances of ionization and the propellant utilization (NASA,

2012).

2.3 Ion Thrusters Overview

2.3.1 Gridded Ion Thrusters - Principles of Operation

In a conventional gridded ion engine (GIE), ions are accelerated by means of an electric

field generated by electrodes within the thruster known as the ion optics or grids. Each

grid has thousands of apertures, which act as lenses to focus the ions through the grid,

forming ion jets. Collectively these jets are known as the ion beam.

The grids on NASA’s NSTAR ion engine have around 15000 apertures (Brophy, 2002); the

apertures allow some of the neutral xenon gas to leak out, however the grid is designed

to minimize the loss of un-ionized propellant (Brophy, 2002). The ratio of the mass flow

rate in the form of ions in the exhaust to the total mass flow rate into the engine is called

the propellant utilization efficiency, given in Eq. 2.5 (Brophy, 2002). The exhaust velocity

of the ion beam depends on the voltage applied to the grids; this voltage is theoretically

unlimited. As a large amount of positive ions are expelled in the ion beam, an equal
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amount of negatively charged particles must also be expelled in order to keep the overall

charge of the exhaust beam neutral. A cathode called the neutraliser is located in the

downstream area of the thruster and expels the necessary electrons, preventing spacecraft

charging. ESA’s SMART-1 thruster uses xenon gas with a flow rate of 0.3mg/s through

the neutralizer (Brophy, 2002).

GIEs normally use two or three grids; the screen grid, the accelerator grid and sometimes

a deceleration grid. The screen grid is charged highly positive, the accelerator grid slightly

lower but still positive and systems which use the deceleration grid have it charged slightly

negative. Some systems include the deceleration grid in order to protect the accelerator

grid from erosion due to backstreaming ions, which will be discussed in Section 3, but

this greatly increases the complexity of the thruster. The grids are charged in this way

to produce an electric field gradient in order to accelerate the particles. The ions are

generated in the region of high positive charge and follow the electric field lines towards

the area with the lower charge. The charges of the grids and the distances between them

must be carefully chosen to maximise efficiency; at high voltage differences (approaching

5kV) between the screen and accelerator grids some ions collide with the second grid,

(see discussion of erosion in Section 3), causing damage by increasing the aperture size

via erosion of the grid material and thereby reducing the lifetime of the thruster (ESA,

2006). The Dual-Stage 4-Grid (DS4G) ion engine was developed to mitigate this problem

and is discussed in Section 4. Grid transparency and alignment must satisfy conflicting

requirements of maximising the extracted current, minimizing ion impaction on the grids,

maintaining structural integrity and producing a low divergence ion beam (Ahedo, 2011),

and research is still being undertaken in this area.

2.3.2 Other Electrostatic Thrusters - Non Gridded

GIEs are classed as electrostatic thrusters as they use electric fields to accelerate ions; other

electrostatic thrusters include Hall Effect thrusters and FEEP thrusters, which have the

advantage of using methods other than grids to produce the electric field to accelerate the

particles, thereby removing the problem of reduced thruster lifetime due to grid erosion.

Field Emission Electric Propulsion Thruster

The Field Emission Electric Propulsion engine is a low thrust, high accuracy, non gridded

electric propulsion system used for maintaining satellite positions. It produces between

0.01 and 0.1mN of thrust compared to 92mN produced by NASA’s NSTAR thruster (ESA,

2009) and an Isp of around 10,000s (Martinez-Sanchez and Pollard, 1998). The liquid

metal caesium is used as propellant; it flows between a set of metal surfaces ending in

a slit measuring one micron across (see Figure 2.1). The propellant is held in place by

surface tension until an electric field is generated, causing cone shapes to be formed in

the propellant which produce ions from the tips, generating thrust (ESA, 2009). Several

tests have verified the operation of the FEEP thrusters and they will be used on ESA and

NASA’s joint mission LISA Pathfinder (Scharlemann et.al., 2011). However the use of
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Figure 2.1: FEEP engine diagram (Marcuccio et.al., 1997)

FEEP is limited by the very low thrust/power ratio, which limits the use of FEEP to low

thrust precision control such as satellite stationkeeping (Martinez-Sanchez and Pollard,

1998).

Hall Effect Thrusters

Figure 2.2: SPT Hall Thruster and TAL Hall Thruster diagrams (ESA,2004)

Hall Effect thrusters (HETs) (see Figure 2.2), or closed drift thrusters, can be classified

as both electrostatic and electromagnetic. The propellant, usually xenon, is ionized by an

electron current generated by a cathode; in order to produce an adequate plasma density

for propulsion (ne =∼ 1017−1018m−3) and near total propellant ionization, the axial elec-

tron current is inhibited by applying a near-radial magnetic field of a few hundred Gauss

(Ahedo, 2011). The ions are highly magnetized and move with an azimuthal (ExB) drift

(otherwise known as a Hall current) and are accelerated under the electrostatic field im-

pressed by the negative cathode (Martinez-Sanchez and Pollard, 1998). The lower voltages,

smaller amount of electric points to control and the larger ion current density compared

to conventional GIEs make the HET electrically simpler and more compact than a con-

ventional GIE. A commercial HET typically provides a specific impulse of 3000s - 8000s

using xenon as a propellant, but has a low thrust efficiency of 50-55% (compared with 65-

70% in a conventional GIE), a shorter lifetime and a larger plume divergence, which could

potentially cause damage due to energetic particles impacting on the spacecraft (Ahedo,
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2011). Hall Effect thrusters are divided into two types, stationary plasma thrusters (SPT)

and thrusters with anode layer (TAL) based on geometric and material differences and

the different physical processes that take place within the discharge plasma (ESA, 2004).

The first use of a Hall effect thruster as the primary propulsion for space travel was on

ESA’s SMART-1 spacecraft, which was launched in 2003 and produced an average thrust

of 67mN (Estublier et.al., 2007). Modern HETs tend to be dual mode, enabling operation

at high thrusts (such as for orbit insertion) or high specific impulses (such as for satellite

stationkeeping) (Ahedo, 2011).

2.3.3 Electromagnetic Thrusters

Electromagnetic thrusters use magnetic fields to accelerate ions, thereby producing thrust.

Helicon Double Layer Thruster

Figure 2.3: Top down schematic of HDLT attached to CHI KUNG diffusion chamber
(Charles et.al., 2008)

The Helicon Double Layer Thruster was developed by Australia National University. It

generates thrust by accelerating a radio frequency (RF) generated plasma across a double

layer that forms in the presence of a diverging magnetic field (Charles, 2009). The double

layer is a strong drop in potential over a narrow distance within the plasma, which is

formed during plasma breakdown and remains stable afterwards, and this electric field

accelerates the ions (Charles, 2009). The Australia National University (ANU) is currently

researching the HDLT; Figure 2.3 shows a top down schematic of the HDLT attached

to the CHI KUNG diffusion chamber. The schematic shows the solenoids along with

the corresponding magnetic field lines (shown in red) and magnetic field magnitude, and

the retarding field energy analyser (REFA), which is used to measure the current versus

discriminator voltage characteristic (Charles et.al., 2008).
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Magnetoplasmadynamic Thruster

The magnetoplasmadynamic thruster (MPDT) accelerates particles by way of the com-

bined effects of a thermal pressure gradient and the Lorentz force defined in Eq. 2.8

(Ahedo, 2011). The Lorentz force is the force on a point charge (an idealized model of a

particle with an electric charge) due to electromagnetic fields and is given by

F = q(E+ vxB) (2.8)

where q is the charge of the particle, E is the electric field and B is the magnetic field

As the electric current returns to the power supply through the cathode a magnetic field of

around 0.1T is created. This field reacts with the electric current flowing from the anode

to the cathode, creating the Lorentz force (see Figure 2.4)(NASA, 2010).

Figure 2.4: MPD Thruster diagram (Martinez-Sanchez and Pollard, 1998)

A low discharge current Id between electrodes results in low magnetic pressure, B ∝ Id,

which results in poor mass utilization and high electrode losses. As a result of this the

MPDT has the requirement of high discharge current, making it a high power device only

(Ahedo, 2011). The MPDT has several shortcomings; thrust efficiency is low (∼ 40%) due

to high power losses at the electrode sheaths and the high ionization cost, secondly the

electrode erosion rate is high, limiting the lifetime to below 1000h, and thirdly the high

power requirement has hindered research and testing. It has been suggested that the use

of lithium as a propellant and using multichannel hollow cathodes may reduce the cathode

erosion while increasing thrust efficiency (Ahedo, 2011). The thrust is proportional to the

magnetic pressure created by the thruster. Thruster efficiency of around 50% has been

achieved in testing with hydrogen used as propellant and around 10N of thrust can be

produced (Kubota, 2009).

VASIMR

The Variable Specific Impulse Magneto Rocket (known as VASIMR) uses a helicon plasma

source, ion cyclotron resonance (ICR) to heat the plasma and a magnetic nozzle to ac-

celerate the heated plasma. The VASIMR concept has been under development since the
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early 80s; however it must still prove reliable operation and propulsive merits (Ahedo,

2011). Its advantages include the ability to vary the thrust and specific impulse generated

by the rocket and it is suggested that if hydrogen is used as a fuel then due to hydro-

gen’s properties as a radiation shield (hydrogen is effective in reducing neutron energies

by elastic scattering processes) astronauts could be better protected against the dangers

of radiation exposure during space travel (NASA, 2003).

Figure 2.5: Diagram of VASIMR operation (Ad Astra, 2009)

The electrode-less design of the VASIMR (see Figure 2.5) makes it suitable for high power

density and long component life due to a reduction in plasma erosion and other material

complications (Longmier et.al., 2011). Trajectory studies have shown that a propulsion

system of this type offers substantial savings in system mass and/or flight time relative

to fixed specific impulse thrusters (Glover et.al., 2005). In VASIMR the available power

is divided between the plasma source and the ion cyclotron resonance absorption (ICRA)

system which delivers additional energy to the ions in the plasma (Glover et.al., 2005).

The engine has the potential for long lifetime, due primarily to the radial magnetic confine-

ment of the plasma in the quasi-neutral flowing plasma stream, which acts to significantly

reduce the plasma impingement on the materials of the rocket core (Longmier et.al., 2011).

The gas (xenon, argon, but typically hydrogen) is injected into a tube surrounded by

magnets and a series of two RF antennas (known as couplers). The section with the first

RF coupler is known as the helicon section, in which a right-hand circularly polarized

wave is launched into the plasma (Cassady et.al., 2010). Utilizing this type of source to

directionally produce a plasma flow into a high magnetic field with no wasted propellant

is a key issue; scaling to a high magnetic field and power has proven to enhance the mass

utilization of the thruster (Squire et.al., 2007).

A balance has to be achieved between the mass flow rate of the propellant and the input

RF power provided in the helicon stage to achieve an efficient helicon plasma source. The

VX-200 prototype can utilize up to 40kW of RF power with a maximum flow rate of
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150mg/s of argon propellant (Cassady et.al., 2010).

The ionized gas, now a cold plasma (a ’hot’ plasma is almost fully ionized whereas in a

’cold’ plasma only a fraction of the propellant has been ionized), flows downstream and

enters the second section of the engine. This section, with the second RF coupler, is known

as the Ion Cyclotron Heating (ICH) section (Ad Astra, 2009). ICH was chosen as a result

of a theoretical analysis performed by Breizman and Arefiev (2004) which indicated that

virtually all the energy in an ion cyclotron wave would be transferred to ion perpendicular

energy in a very small volume at a point on the gradient of a magnetic nozzle. Highly

efficient absorption was predicted along with the prediction that all ions would receive

nearly the same energy boost, meaning that ions would leave the nozzle with a narrow

energy distribution (Glover et.al., 2005). The plasma is energized further in this section,

using left hand polarized slow mode waves launched from the high field side of the ion

cyclotron resonance (Longmier et.al., 2011). For a slow mode wave, the total pressure

(the sum of particle pressure and magnetic pressure) is approximately constant across the

background field. Field aligned gradients of the total pressure drive slow mode waves, and

slow waves carry energy predominantly along the background field (Kivelson and Russel,

1995). In the ICH section of the VASIMR engine the plasma reaches temperatures greater

than 106 (one million) degrees Kelvin (Ad Astra, 2009). This process differs from the ion

cyclotron resonance utilized in tokamak fusion plasmas as the particles in the VASIMR

engine pass through the coupler only once due to rapid absorption of ion cyclotron waves

by the high speed plasma flow (Longmier et.al., 2011). This motivated the elimination of

the magnetic bottle which featured in the original design of the VASIMR engine (Glover

et.al., 2005).

Figure 2.6: Old VASIMR concept - with magnetic bottle (Glover et.al., 2005)

The 1980’s VASIMR concept can be seen in Fig.2.6. The magnetic bottle is made up of

the central cell coils and the magnetic mirrors, the aim of which was to trap the plasma

while it undergoes ion cyclotron resonant heating (ICRH) (Glover et.al., 2005).

The thermal motion of the ions around the magnetic field lines is mainly perpendicular to

the direction of travel so the magnetic nozzle at the rear of the engine is needed to convert
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this energy into a directed motion and thereby produce useful thrust (NASA, 2004). The

plasma accelerates in an expanding magnetic field, a process described by conservation

of the first adiabatic invariant µ, as the magnetic field strength decreases in the exhaust

region of the engine (Longmier et.al., 2011). The first adiabatic invariant is defined as

µ =
mv2

⊥

2B
(2.9)

It is conserved when the length scale of the variation of the magnetic field is much greater

than the cyclotron radius of the motion.

ρL ≪ L =| B

▽B
| (2.10)

2.3.4 A Comparison between Technologies

Ion Thruster Propellant

Power
Requirements
(kW)

Isp (s)
Max Thrust
(mN)

NSTAR Xenon 2.3 1900-3100 92

NEXT Xenon 7.7 4300 236

HiPEP Xenon 20-50 6000-9000 670

DS4G Xenon 250 19,300 2500

Hall Effect T220 Xenon 10 2450 500

FEEP Liquid Caesium 0.006 10,000 1
Helicon Dou-
ble Layer
Thruster

Hydrogen and others 1.5 2000 90

MPDT Hydrogen, Lithium 100 10,000 100,000

VASIMR Xenon, Argon 200 30,000 5700

T5 Xenon 4.3 3550 166

T6 model thruster Xenon 4.5 4300 143

Table 2.1: Table showing a comparison between the power requirements, thrust and spe-
cific impulse for several ion thrusters that are currently being researched or have been used
in the past. For thrusters that have not yet been flown in space, such as the Dual-Stage
4-Grid thruster, values come from theory and experimentation

It can be seen from Table 2.1 that the VASIMR can produce the highest specific impulse

of the thrusters compared above, and has the second highest power requirement after

the Dual-Stage 4-Grid (DS4G) ion thruster. The FEEP thruster has the lowest power

requirement, but also produces the lowest thrust. It can be seen that xenon is most

commonly used as a propellant.

2.4 Past, Current and Future Research and Missions

2.4.1 History and Past Missions

Ion thrusters were first used in space in 1964 when two thrusters were launched on a brief

ballistic flight, known as Space Electric Rocket Test 1 (SERT 1), during which the 8cm
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cesium contact ion thruster failed to operate due to a high-voltage electrical short circuit

while the 10cm mercury electron bombardment thruster operated successfully for 31 min-

utes (NASA, 2008). This mission was followed by SERT II and an Advanced Technology

Satellite (ATS 6), which demonstrated the long lifetime achievable by electric propulsion

(Wilbur et.al., 1998). Many more successful tests followed and ion propulsion systems have

been widely used for satellite stationkeeping. Electron bombardment ion engines with di-

ameters of 1.3cm to 150cm and input powers of 7W to 130kW have been built and tested

(Brophy, 2002). The first time an ion propulsion system was used as the main means of

spacecraft propulsion was the NASA Solar Technology Application Readiness (NSTAR)

thruster which was used on the Deep Space 1 spacecraft (DS1) from 1998 to 2001. The

NSTAR engine was remotely programmable from the ground, enabling engineers to adjust

the operation of the thruster as necessary. DS1 achieved an exhaust velocity of 35kms,

much greater than the maximum of 4km/s exhaust velocity achieved by a chemical rocket

(Deep Space 1, 2001). The NSTAR engine had a screen grid voltage of 1075V, accelerator

grid voltage of -180V and could deliver a total ∆V of 4.5km/s (Brophy, 2002). The op-

erating parameters of the NSTAR ion engine were chosen to minimise the production of

doubly charged ions, which are responsible for most of the erosion that occurs inside the

discharge chamber. When operating at full power, approximately 11% of the ion beam

current is composed of doubly charged ions (Brophy, 2002).

ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the first in

a series of ‘Earth Explorer Core Missions’ and was launched in March 2009 with the goal

of mapping the Earth’s gravity field. The original 12 months of mapping were completed

in 2011, but due to lower fuel consumption than anticipated ESA decided to extend the

mission to the end of 2012 (ESA, 2012). The satellite flies in a sun-synchronous dawn-dusk

orbit at an altitude of 260km. GOCE uses a QinetiQ T5 Kaufman-type ion thruster with

a 10cm diameter for stationkeeping; it has a thrust range of 1 to 20mN with operating

power between 55W and 585W and produces a specific impulse ranging between 500s

and 1500s. One stated requirement for the GOCE mission thruster was a minimum life-

time of 1000 on/off cycles and the T5 can provide 8500 on/off cycles (Edwards et.al., 2004).

In 2003 the Japanese Aerospace Exploration Agency (JAXA) launched the MUSES-

C/Hayabusa mission with the aim of landing the craft on an asteroid in order to collect

samples and then returning it to Earth. Hayabusa was the first spacecraft to perform a

flyby of Earth using an ion engine as the main thrusters (The Planetary Society, 2010). It

carried 65kg of propellant for the ion engine and reached peak thrust of 0.015N, achieving

a velocity of 4km/s and a ∆V of 1.4km/s (Kuninaka, 2008). Microwave discharge ion en-

gines were used, which employ electron cyclotron resonance (ECR). Solid electrodes were

eliminated in the ECR section in order to make the ion engines more durable and reliable,

as in traditional ion engines the solid electrodes are critical parts and cause flaking of

sputtered material, leading to grid shorts (Kuninaka, 2008). Hayabusa’s ion engines had a

diameter of 10cm; four engines were installed and three can generate thrust simultaneously
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(Kuninaka, 2008). However JAXA has had trouble with the ion engines on the Hayabusa

spacecraft. Of the four engines, A, B, C and D, thruster A was never used due to the

engine being found to be ‘unstable’ after launch, thrusters B and D failed due to failed

neutralisers, and the neutraliser in thrusters C was near failure during 2010. However

JAXA engineers discovered a way around this problem; they used the neutraliser from

thruster A to neutralise the ion beam from thruster B (The Planetary Society, 2010).

With thruster C operational and kept in reserve, and thrusters A and B working in this

configuration, Hayabusa returned to Earth in June 2010 (JAXA, 2010). Combining two

thrusters in this way has never been tested on Earth but an emergency circuit enabled

the engineers to modify the thrusters in this way. The two thrusters working together re-

quires twice as much power as is standard; 5kg of propellant was needed to gain 0.2km/s

acceleration over 2000 hours (The Planetary Society, 2010).

ESA used ion propulsion on the SMART-1 mission which launched in 2003 and aimed to

halo orbit the moon and use infra-red and x-rays to search the south pole of the moon for

water. The SMART-1 mission made use of the Hall effect, whereby a current flowing across

a magnetic field creates an electric field directed sideways to the current, which is used to

accelerate the ions. Solar panels were used to power the mission and the engine generated

a thrust of 0.07N, accelerating the spacecraft at a rate of 0.2 millimetres per second per

second (ESA, 2009a). At launch, SMART-1 carried 82kg of xenon. As electric propulsion

(EP) can produce undesired effects such as contamination and erosion of surfaces due

to deposition of sputtered material and ion impingement, SMART-1 was fitted with the

EP Diagnostics Package (EPDP). A retarding-potential analyzer (RPA) measured the ion

energy and current density distribution, a Langmuir probe (LP) measured the plasma

potential, electron density and electron temperature and a quartz-crystal microbalance

(QCM) provided contamination data (Estublier, 2008). A summary of these missions

along with current and planned missions utilizing ion thrusters as the method of propulsion

is provided in Table 2.2.

2.4.2 Current and Future Missions

There are several interesting missions planned for the near future which will utilize the

technology of ion propulsion.

The main aim of NASA’s Dawn mission is to investigate the conditions and processes

acting at the beginnings of the solar system by studying two complementary protoplan-

ets within the asteroid belt, Ceres and Vesta (Rayman et.al., 2006). Dawn launched in

September 2007, arrived at Vesta in July 2011 and spent 14 months orbiting the rocky

asteroid. It departed Vesta in September 2012 and is due to arrive at Ceres in Febru-

ary 2015; the primary mission is scheduled to end in July 2015 (NASA, 2011). The ion

propulsion system is an expanded version of that used on Deep Space 1 and consists of

three 30cm thrusters. At the maximum thrust level, with an input power of 2.6kW the

thrust is 92mN and at the lowest input power of 0.5kW the thrust is 19mN. The specific
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impulse produced ranges between 1900s and 3200s (Rayman et.al., 2006).

Researchers at Ad Astra have developed a VASIMR prototype, the VX-200, which is cur-

rently undergoing testing in a vacuum facility. Operating with argon propellant, the pro-

totype reached full power in September 2009 and produced thrust of 5.7N with thruster

efficiency of 72% (Ad Astra, 2009). Ad Astra expect to send a flight version of the

VASIMR, the VF-200, to the International Space Station in 2014, where performance can

be measured without the pressure constraints found in ground based space simulation

chambers (Ad Astra, 2009).

BepiColombo is a joint mission between ESA and the Japan Aerospace Exploration Agency

(JAXA) under ESA leadership. The BepiColombo mission consists of two spacecraft which

will orbit Mercury; the Mercury Planetary Orbiter built by ESA which will study the sur-

face and interior of the planet, and the Mercury Magnetospheric Orbiter built by JAXA

which will study the magnetosphere. It is due to be launched in 2016 and should arrive

at Mercury in January 2024 (ESA, 2012a). The BepiColombo transfer module will be

equipped with four of QinetiQ’s T6 ion thrusters, an update of the T5 thruster currently

in use on ESA’s GOCE spacecraft. A prototype of the T6 was tested at the Jet Propulsion

Laboratory; at full power (4.5kW) it produced 143mN of thrust and a specific impulse

of 4120s with efficiency of 64%, and optimization for lower flow rates produced a specific

impulse of 4300s with efficiency of 66% (Snyder et.al., 2010).

The LISA (Laser Interferometer Space Antenna) Pathfinder is a joint ESA/NASA mission

to demonstrate the Laser Interferometer Space Antenna technologies in free-fall, includ-

ing Gravitational Reference Sensing, drag-free attitude control, micro-Newton thrusters

and interferometry with free falling mirrors (ESA, 2012b).The reason for this mission is

that some of the technology cannot be used on the ground due to Earth-induced noise

(McNamara, 2009) The LISA Pathfinder will carry two payloads, ESA’s LISA Technol-

ogy Package (LTP) which aims to demonstrate that a test mass can be put in a pure

gravitational free-fall within one order of magnitude of the requirements of LISA, and

NASA’s Disturbance Reduction System (DRS), which will maintain the position of the

spacecraft with respect to the proof mass (ESA, 2012b). The LISA Pathfinder will use

FEEP thrusters which have been developed to match the mission requirements; it will be

the first time that ESA will operate a spacecraft with micro-Newton thrusters as the only

form of propulsion (ESA, 2012b). It is due to launch in 2014 and the operational phase

of the mission will last for approximately 12 months.
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Mission Name Organization Mission Dates Propulsion System

SERT 1 NASA 1964 Cesium contact - failed; Kauffman type - successful

SERT 2 NASA 1970 - 1981 Kauffman type

Deep Space 1 NASA 1998 - 2001 NSTAR thruster

GOCE ESA 2009 - 2012 T5

Hayabusa JAXA 2003 - 2012 Microwave discharge

SMART-1 ESA 2003 - 2006 Hall effect

Dawn NASA 2007 - present Expanded version of NSTAR

BepiColombo ESA / JAXA 2015 T6

LISA Pathfinder ESA / NASA 2014 FEEP

Table 2.2: Table showing a summary of past, current and planned missions utilizing ion
thrusters as the method of propulsion

This chapter has introduced the concept of ion thrusters, providing an overview of the

techniques in use today and the differences between the main types of ion thrusters. A

table has been provided for comparison purposes showing performance parameters for a

selection of thrusters currently being researched or have been researched in the past, and

the use of ion thrusters in past, current and future missions as been discussed. The next

section will examine work published by other researchers, focusing on the simulation of

ion thrusters.
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3 Literature Review

In this section a range of research using simulation codes to study ion thrusters is exam-

ined, with the main topics of research being plasma flow through the ion optics, erosion

of the ion optics, the effects of varying the grid potentials and charge-exchange collisions.

As the aim of this work is to produce a functioning simulation code, it is important to

have knowledge of the research that has already been done and the techniques that are

in use; this will provide an opportunity to see where any potential gaps in the knowledge

base may exist, and to find the most appropriate techniques and up to date theories in

order to complete this work.

Wang et.al. (2003a) state that ion engines present a wide range of problems relating to

plasma flow. They note that plasma flow can be separated into four categories

1) Plasma flow inside the discharge chamber

2) Ion optics plasma flow

3) Near-spacecraft thruster plume – generally focusing on the interactions between the

ion thruster plume and the thruster itself

4) Far-field thruster plume – generally focusing on interactions between the thruster

plume and the space plasma environment

The research in this thesis is investigating the ion optics plasma flow with regard to per-

formance parameters and rates of erosion. The ions are focused through the thruster

by the grids, forming beamlets of ions which combine at the thruster exit to form the

thruster plume. The rate of erosion of the ion optics is key in determining the lifetime of

the thruster; however it is important to balance the expected lifetime of the thruster with

other key performance parameters such as specific impulse, thrust, change of momentum

and power efficiency.

Several plasma simulation codes exist, including OOPIC (Tech-X, 2012), VORPAL (Tech-

X, 2012), IGUN, and PBGUNS (FAR-TECH, 2012). Often a particle-in-cell (PIC) code

is used to simulate charged ions, where each simulation ion represents a large number of

real ions. The PIC technique is described in Section 5.

Detailed investigation has been done into the plasma flow around the ion optics by many

researchers; several simulations have been developed and some researchers have compared

their simulation results with experimental results to validate their models. Peng et.al.

(1993) developed a 2D single aperture PIC-MCC (particle-in-cell - Monte Carlo collision)

code and extended it to a 3D multiple aperture simulation using a null MCC technique to

study grid erosion due to charge-exchange (CEX) ions; Wang et.al. (2003a) developed a

3D PIC-MCC multi-aperture code to study erosion of the NSTAR thruster optics; Tartz

et.al. (2008) developed a code based on IGUN to perform 2D simulations in order to

study sputtering and erosion of ion optics; Chang et.al. (2008) developed a 3D PIC-MCC
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code using a null Monte Carlo collision (MCC) technique to study plasma flow through

the optics and ‘pits and grooves’ erosion; Zhong et.al. (2010a) developed a 2D axisym-

metric PIC code to study the influences of accelerator grid voltage on the plasma sheath

upstream of the screen grid and the ion extraction through typical ion optics; Sun et.al.

(2010) developed a 2D PIC-MCC code to investigate the erosion of ion optics within a

three-grid electron cyclotron resonance (ECR) ion thruster. The Monte Carlo Collisions

(MCC) method is often combined with the PIC method and is a way of modelling colli-

sions between particles, in which each particle is tested for a collision and the appropriate

action is performed if a collision occurs. Coletti et.al. (2010) and Coletti and Gabriel

(2010) used an ffx code to study dual-stage thrusters, presenting parameters for the ion

optics in order to achieve specific impulses of 10,000s and 61,000s and investigating the

possible lifetime of the Dual-Stage 3-Grid (DS3G) thruster. The results of the work by

Coletti et.al. and Coletti and Gabriel will be compared with results obtained from the

simulation code written for this thesis in order to verify the performance of the code.

Dual-stage ion thrusters will be discussed in more detail in Section 4.

When the ion beamlets are well focused (meaning there is no direct primary ion impaction

on the accelerator grid), accelerator grid erosion is caused by the formation of charge-

exchange ions; as the velocity of these ions is negligible when they are created, the erosion

pattern is determined by the electric field in the deceleration region (Peng et.al, 1993).

There is a potential gradient in the transverse direction (perpendicular to the beam prop-

agation direction) due to the positive space charge in the ion beamlet and this gradient

forces CEX ions out of the primary beam and into the geometric centres between apertures.

Experimental observation [(Patterson and Verhey, 1990) and (Rawlin, 1988)] have shown

that maximum accelerator grid erosion occurs at the geometric centre between apertures

for a hexagonal geometry two-grid accelerator system (Peng et.al., 1993).

Peng et.al. (1993) used a modified 2D PIC-MCC simulation method to study this prob-

lem. The original 2D single aperture model did not produce the erosion pattern found

in ground tests, so the researchers extended the code to a 3D multiple aperture code in

which the hexagonal symmetry of the grids was modelled explicitly, which did produce

the pitted pattern observed in ground tests. As the hexagonal symmetry was assumed

the simulation used a cross section with a 30 degree by 60 degree triangle, comprising

only one twelfth of an aperture. As the charge-exchange collision rate is energy and time

dependant a null collision Monte Carlo technique was used in the simulation to simulate

charge-exchange collisions and sputtering, which will be discussed in more detail in Section

3. The mean extracted ion velocity was determined using the Bohm criterion (where the

velocity is determined from the electron temperature and the ion mass) with an assumed

electron temperature of 1.5eV. A neutral plasma was assumed to exist at the upstream

boundary of the simulation domain and the plasma density was determined from a given

beam current of 3.2A. Sputtering yields for xenon ions impinging on a molybdenum sur-

face were taken from Rosenberg and Wehner (1962) and it was assumed that sputtering
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yield is independent of the angle of incidence of the impacting ions. Sputtering yields

for molybdenum range between 0.06 atoms/ion at an ion energy level of 100eV to 1.06

atoms/ion at an ion energy level of 600eV (Rosenberg and Wehner, 1962). It was also

assumed that no geometry changes resulted from the sputtering process. This means that

the calculations are valid only for small erosion depths and the simulation is said to be

unsuitable for results comparison with experiments in which full penetration of the grid

material occurs.

The 3D code produced the concentration of sputtering between grid apertures as seen in

experiments and Peng et.al. (1993) stated that

‘the roughly triangular shape and orientation of these erosion contours are

exactly the same as observed in experiments’.

In experiments the mass loss from the downstream surface of the accelerator grid was

around 17.8g whereas the simulation produced a result of 23.3g after 890 simulated hours.

The approximate total mass of the simulated grids are not stated in the research paper.

Wang et.al. (2003a) presented an overview of results from ion thruster modelling studies

performed in support of NASA’s Deep Space 1 mission and NSTAR thruster, focusing

on ion optics plasma flow and near-spacecraft plume. The simulation code used in this

work was originally developed in 1993. For computational efficiency the researchers built

upon the orthogonal grids and a finite-difference based formulation. An orthogonal grid

is where the grid is formed by two sets of lines perpendicular to one another, producing a

grid of squares. A method of sub-gridscale placement of boundaries explicitly includes the

location of the ion optics in relation to the grid in the finite-difference form of Poisson’s

equation.

∇2φ(x, y) =
−ρ(x, y)

ǫ0
(3.1)

(Birdsall and Langdon, 1985)

where ρ(x, y) is the charge density of the system and ǫ0 = 8.854x10−12F/m is the permit-

tivity of free space. ǫ0 is often set as 1 within simulation codes in order to simplify the code.

Poisson’s equation (Eq.3.1) becomes the five-point finite difference form shown in Eq.3.2

in two dimensions and is then solved for all of the potential φj,k including all appropriate

boundary conditions. The aim of finite difference equations is to find an approximate

solution to differential equations. In the finite difference method the derivatives in the

differential equations are replaced with finite difference approximations, resulting in a finite

algebraic system of equations to be solved in place of the differential equation (LeVeque,

2007).

(φj−1 − 2φj + φj+1)k
∆x2

+
(φk−1 − 2φk + φk+1)j

∆y2
= −ρj,k (3.2)
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(Birdsall and Langdon, 1985)

Where ∆x and ∆y are the mesh spacings in the x and y directions. The main part of

the simulation used by Wang et.al. (2003) has a formulation similar to other ion optics

codes [such as that used by Peng et.al. (1993)] and is a particle-ion Boltzmann-electron

PIC-MCC code for simulations on ion time scale. A 3D PIC code is used, in which mul-

tiple apertures can be included explicitly in the simulation domain. Wang et.al. (1998)

stated that the complex geometries of ion optics are best simulated using tetrahedral cells

or unstructured grids and finite-element based formulations to match the geometry of the

optics, although this can be significantly more computationally intensive than a standard

orthogonal grid PIC code. In the orthogonal grid code the location in memory of quantities

defined in neighbouring cells can be found trivially via indexing, while in an unstructured

grid the neighbours of a cell must be found by lookups in a table or other methods re-

quiring additional memory references (ibid.). No assumptions were made to simplify the

upstream and downstream boundary conditions, and the upstream sheath and ion beam

extraction from the discharge plasma were determined self-consistently in the simulation.

The model includes three PIC codes, an ion beamlet code, a neutral particle code and

a charge-exchange ion code. The propellant ions, charge-exchange ions and neutrals are

treated as macro-particles and the electrons are modelled as an isothermal fluid. In the

simulation the ion beamlet code is used to simulate ion beam extraction from the discharge

plasma and the neutral particle code is used to track the flow of the un-ionized particles

of propellant. Once a steady state was achieved for beam ions and neutral particles they

were frozen and the charge-exchange ion code was activated, in which particles representing

charge-exchange ions are generated in the simulation domain according to the calculated

volumetric charge-exchange ion production rate using Equation 3.3.

dncex

dt
= nb(

−→x )nn(
−→x )vbσcex (3.3)

(Wang et.al., 2003a)

where the beam ion density nb(x) is determined by the ion beamlet code and the neutral

density nn(x) by the neutral particle code. The charge-exchange ion collision cross section

σcex is based on experimental data by Pullins et.al. (2000).

The code was applied to the ion optics plasma flow for the NSTAR ion thruster, per-

formed for the nominal conditions presented in Table 3.1. The number of cells used in the

simulation domain is 30x30x400 with a grid resolution corresponding to the Debye length

in the discharge plasma (λD ≈ 0.0037cm). The Debye length gives an estimate of the

spatial scale over which a plasma ion influences its surroundings, for example a spacecraft

can develop a net charge, which will perturb the plasma in the immediate vicinity of the

spacecraft. This region is known as the plasma sheath, and the scale size of this region will

be λD (Kivelson and Russel, 1995). The approximate number of macro-particles used in
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the simulation is 1.8 million and that used in the charge-exchange simulation is 9 million.

Wang et.al. (2003a) describe the process of the simulation as follows:

‘The propellant ions are extracted from the upstream discharge plasma to form

beamlets through the apertures. The beamlets eventually become mixed and neu-

tralized in the far-downstream region. The charge-exchange ions born down-

stream of the accelerator grid, on the other hand, will backflow towards the

accelerator grid’.

By tracking the ions that impinge upon the grid, the distributions of impingement current

density, incident energy and incident angle on the grid surface can be obtained. This

allows the depth of erosion on the grid due to charge-exchange ion impingement to be

calculated.

The nominal geometric and operating parameters for the NSTAR ion engine optics were

given as follows:

Hole diameter Grid thickness Voltage

Screen grid 1.91mm 0.38mm 1074V

Accelerator grid 1.14mm 0.51mm -180V
Centre-to-
centre hole
spacing

Screen-to-accel grid gap Total accelerating voltage

2.21mm 0.58mm 1100V

Table 3.1: Geometric and operating parameters for the NSTAR ion engine (Wang et.al.,
2003a)

During testing of the NSTAR thruster, laser profilometer measurements and post-test

destructive examinations were performed to measure erosion on the accelerator grid; these

measurements were used to validate the simulation model. When the measured erosion

pattern and depth were compared with the simulation results it was found that

‘the simulation not only accurately predicts the erosion pattern but also gives

excellent quantitative agreement with erosion measurements’

(Wang et.al., 2003a)

Tartz et.al. (2008) developed a 2D grid erosion simulation, in which the ion beam and

grid erosion features were simulated for a given grid configuration and thruster parameter

set and was then extended to a dynamic simulation, allowing the evolution of grid erosion

with operation time to be studied when taking mission profiles into account. They state

that the simulation has been validated by experimental results obtained from short ero-

sion experiments, a 3,000 hour accelerated wear test performed by IOM and EADS Space

Transportation on the RIT-10 and RIT-22 thrusters.

A commercial 2D ion trajectory code ‘IGUN’, a code written for simulating ion extrac-

tion from plasmas, has been used for the simulation of ion extraction and single beamlet
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formation. The neutral density distribution, caused by neutral particles escaping from

the plasma chamber, was simulated under the assumption of molecular flow and diffuse

reflection by the walls and grid surfaces. Due to the axial symmetry of the grid hole the

calculations were performed in two dimensions. The charge-exchange density was obtained

from the neutral density and the beamlet ion current density, and as the charge-exchange

ions are said to only have a weak influence on the beamlet space charge distribution due

to the small number of CEX ions compared to the primary ions, the new ions can be

inserted into the original IGUN simulation of the beamlet. For the sputter yield model a

revised version of the Bohdansky formula shown in Eq.3.4 combined with the Yamamura

formula shown in Eq.3.6 was used. Sputtering is defined as the removal of surface atoms

from solid surfaces within the discharge chamber, including the discharge chamber walls

and ion optics, due to the impaction of energetic particles. Sputtering is quantified by

the sputtering yield, Y, which is defined as the mean number of atoms removed from the

impacted surface per incident ion (Garćıa-Rosales et.al., 1994)

Y (E0,α=0 ◦C = QsTF
n (ε)(1 − (

Eth

E0
)2/3)(1 − Eth

E0
)2 (3.4)

where E0 is the projectile energy, α is the angle of incidence, sTF
n is the nuclear stopping

cross section of the atom and ε is the reduced energy, given by

ε = E0
M2

M1 +M2

aL
Z1Z2e2

(3.5)

(Garcia-Rosales et.al., 1994)

M1 and M2 are the masses of the projectile and the target atom respectively, Z1 and Z2

are the nuclear charges, aL is the Lindhard screening length and e is the electron charge.

Y (E0, α) = Y (E0, α = 0)(cosα)−f exp{f [1− (cosα)−1]cosαopt} (3.6)

(Yamamura et.al., 1983)

where αopt is the angle which corresponds to the maximum of the sputtering yield.

Parameters were determined from measurements the researchers made of relevant grid ma-

terials. The erosion rate profile on the grid surfaces led to changes of the grid hole profile.

The IGUN simulation code was extended to investigate the time evolution of the erosion;

once the original simulation finished the erosion was simulated for a predefined time step,

assuming constant beamlet and erosion parameters during the time period. Each surface

point was moved according to the local erosion rate and any loops that formed within the

code were removed. The simulation was then restarted with the new grid shape and this

was repeated until either the defined time limit was reached or the grid was said to be

‘substantially damaged’. It was found that the lifetime estimate based on the starting ero-

sion patterns produced too short a lifetime estimate due to the erosion pattern changing

over time.



23

Tartz et.al. (2008) define the end-of-life of the accelerator grid as the time when the first

accelerator grid hole diameter (originally 1.2mm in diameter on the RIT-XT thruster)

reaches the screen grid hole diameter (1.9mm in diameter on the RIT-XT thruster); they

state that this is a conservative definition because with such a grid structure further

operation would be expected.

Measured Simulated

Iacc 0.6mA 0.54mA

Idecel 0.05mA 0.03mA

Mass loss accelerator 0.11mg/h 0.09mg/h

Ave. erosion rate 61nm/h 70nm/h

Mass loss decelerator 0.02mg/h 0.049mg/h

Ave. erosion rate ≈0 2.8nm/h

Table 3.2: Comparison between measured and simulated results (Tartz et.al.,2008)

In order to validate the simulation an accelerated grid wear test was performed on a three

grid system made from high density graphite. The test was performed at ‘erosion acceler-

ated’ conditions at a low mass utilization of 47%, in which erosion was increased in a ‘well

defined ’ way. A good agreement with simulated values was achieved, in which a smooth

centered erosion profile (the shape formed by erosion) on the downstream side and an

almost flat erosion profile on the upstream side was produced. It was extrapolated that,

assuming steady erosion, the end-of-life state would be reached after 5000h. After 1300h

of testing a centre-dented erosion profile evolved on the upstream side; It was stated that

this profile could not be explained by the considered erosion process and it was assumed

that this resulted from changes in plasma properties occurring after this time. A compar-

ison between measured values and simulated values can be seen in Table 3.2.

Chang et.al. (2008) defined two accelerator grid end-of-life scenarios; firstly that the

grid lifetime may be defined by the point where electron backstreaming can no longer

be prevented by the existing power supply due to aperture enlargement, or secondly by

structural failure due to ‘pits and grooves’ material loss. It is stated that the first scenario

is believed to dominate grid erosion in a space where neutral particles for charge-exchange

collisions come only from the thruster and not background gas present in a testing fa-

cility. They presented a three-dimensional PIC-MCC code which was applied to model

ion optics plasma flow for a 20cm ion thruster. An 800 hour experiment was performed

and the erosion depth of the accelerator grid was measured using the Depth-From-Focus

(DFF) method; these measurements were compared with the simulation results. DFF is a

method of extracting depth information from two dimensional images, and was chosen for

use in this case because of the difficulty in measuring erosion due to the small dimensions

of the grid structure.

The simulation was based on Birdsall and Langdon’s (1985) PIC method and used Xenon

gas with molybdenum optics. The MCC method with the null-collision technique was

used to simulate the CEX collisions between the Xenon atoms and ions. Only primary



24

ions were included in the model, secondary ions were ignored, as the primary ions form the

main part of the extracted ion beam. The four planes parallel to the z axis used Neumann

boundary conditions. The Neumann boundary condition gives the normal derivative
dφ

dn
on a surface, often set as 0. Test particles were injected into the simulation domain at each

time step; test particles were assumed to start their trajectories at the upstream boundary

with a Bohm velocity, which is determined only from the electron temperature and the

ion mass, in the z direction and Maxwellian velocity in the x and y direction. One test

particle in the simulation represented around 500 propellant ions and there was around

700,000 test particles in the simulation. In each time step the particles were accelerated

by the electric field; Newton’s 2nd law was applied to the movement of the test particles

and the density of the electrons was given by the Boltzmann relationship. The electron

temperature at the upstream boundary was 5eV and at the downstream boundary was

15eV.

It was seen in the simulation that the Xenon ions were focused and extracted by the ion

optics to form an ion beam. All particles passed through the grid hole and none directly

impinged on the grid as a result of the focusing of the beam. It was seen that the potential

contours in the simulation domain changed once the test particles entered the simulation

domain. The potential iso-surfaces in the downstream region of the accelerator grid, which

were originally flat planes, became strongly concave. The reason given for this change is

that the ion number density ni and electron number density ne changed in Eq.3.7 after the

entrance of the test particles. The Xenon ions were accelerated towards the grid surfaces

by the concave electric field and produced the ‘pits and grooves’ erosion pattern that can

be seen in Figure 3.1.

▽2φ = − e

ε0
(ni − ne) (3.7)

Chang et.al. (2008) stated that the electron density distribution mainly depends on the

local electric potential distribution. It was expected that electrons should be restricted

in the discharge chamber and the ion beam downstream of the calculation domain and it

was shown in the simulation results that this happened as expected. It was found that

the boundary of electrons was concave, as can be seen in Figure 3.2, which was said to

show that the plasma in the discharge chamber had a concave sheath; this result agreed

with experimental results.

It was also stated that after a CEX collision, if the energy of the CEX ion was high enough

it would hit the grid surface and lead to erosion. No threshold energy value for erosion was

provided in the research paper. The ’pits and grooves’ erosion pattern was found, where

the most severe erosion lies in the centre of three grid holes and erosion is also found

between these pits. This erosion pattern can be seen in Fig.3.1. This ‘pits and grooves’

pattern that was found was said to be in good agreement with reported patterns found in

previous research. Chang et.al. state that the simulation results are ‘reasonably consis-

tent ’ with the measured erosion depth, except in the simulation region x > 0.2 where a
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Figure 3.1: Erosion pattern around a single aperture on the downstream face of the
accelerator grid of the NSTAR thruster: photograph(left) and results from a simulation
performed by Wang et.al. (2003a)

large difference is found between the simulation result and measured data. It is suggested

that this is due to a modelling error in the simulation - what type of error is not stated.

The relationship between the accelerator grid current and potential was studied and it was

found that the accelerator grid current decreases with increased grid potential. The reason

given for this is that when the potential increases, the plasma in the discharge chamber

is focused into an ion beam and extracted by the optics, and therefore the grid current

decreases. Grid current is caused by two types of impingement of charged particles on

the grid surface; firstly if the plasma is not well focused into beamlets then ions would

impact on the grid surface, and secondly any ions generated in CEX collisions would be

attracted by the negative potential of the accelerator grid and impinge on the grid surface.

CEX ions can impact on different parts of the accelerator grid; in this research only ero-

sion of the downstream surface of the accelerator grid was studied, but the authors state

that the impingement of ions on the grid hole’s wall, which will enlarge the hole, is a se-

rious problem (known as barrel erosion) and will be studied in further work by the authors.
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Figure 3.2: Electron density (Chang et.al, 2008)

A two dimensional axisymmetric PIC model was used by Zhong et.al. (2010a) to study

the influence of accelerator grid voltage on the plasma sheath upstream of the screen grid

and the ion extraction through typical ion optics. They state that grid erosion caused by

direct impingement of beam ions and sputtering of CEX ions is one of the primary causes

of failure. It is also stated that any direct impingement of beam ions on the grid is caused

by poor focusing of the optics.

A single set of grid apertures was chosen as the simulation domain and the movement of

ions was calculated under an electrostatic assumption. It is stated that the assumption of

axisymmetry is only valid if the aperture radius is much less than the size of the hexagon

around the aperture; however it is said to be ‘approximately valid ’ in this model if the ion

beamlet is well focused. Only single-charged ions were considered in the simulation. A

uniform mesh with 200x54 cells was used for the simulation domain and 40 test particles

were injected into the domain at the upstream boundary in each time step, which was

1.5x10−5s. At the end of the simulation there were 70,000 test particles in the simulation

domain, with each representing 10,000 ions. The ion distribution was studied and it was

found that near the downstream surface of the accelerator grid the ion number in the

beamlet boundary is higher than that in the central line, as can be seen in Fig. 3.3.

The authors state that this is caused mainly by the focusing effect of the optics. The

potential distribution was also studied and compared with data collected from experi-

ments. It was found that the potential distribution found in the simulation was different

to the experimental results but the shapes were in good agreement, and the electrostatic

field distribution upstream of the screen grid obtained by the simulation was said to be

‘reasonable’. Zhong et.al. (2010a) state that

‘the simulation result is similar to the experimental data, which also indicated

that our code can simulate the ion extraction through the ion optics’.

The simulation showed a plasma sheath forming upstream of the screen grid; the potential



27

Figure 3.3: Ion distribution within a single screen grid and accelerator grid aperture. A
low density of ions can be seen along the centre line of the apertures, while a higher
number of ions can be seen near the downstream surface of the accelerator grid. (Zhong
et.al., 2010a)

of the screen grid is negative relative to the discharge chamber plasma, which causes ions

approaching the sheath to be attracted towards the screen grid while electrons are repelled

back into the plasma. This causes the electron density to drop rapidly in the sheath. The

position of the sheath boundary was designated as the place where the ratio of electron

density to ion density is equal to 0.1. Sheath position and shape are affected by many

parameters; when the accelerator grid voltage is less negative, the sheath is positioned

close to the screen grid with relatively small curvature and near the upstream surface of

the screen grid the sheath was found to be convex to the screen grid aperture. This caused

a large number of ions to directly impinge on the accelerator grid. When the accelerator

grid became more negative the sheath moved gradually closer to the plasma and the

sheath shape changed accordingly. The sheath near the upstream surface of the screen

grid became convex to the side boundaries with a large curvature; this caused the beamlet

to have a large divergence angle. The simulation showed that the saddle point potential

increased with the increase of the accelerator voltages; as the accelerator grid voltage

increases the possibility of electron backstreaming increases. If the saddle point potential

is higher than the beam plasma potential it will cause a large number of electrons to

pass back through the aperture, which could cause erosion within the discharge chamber.

As a result of this, Zhong et.al. state that the accelerator grid voltage should be kept

sufficiently negative to prevent backstreaming. Wang et.al. (1998) stated that

‘electron backstreaming is undesirable because it reduces thruster efficiency;

each electron which backstreams into the discharge chamber consumes as much

power as a singly ionized propellant ion but does not produce thrust’.

Sun et.al. (2010) simulated a three-grid electron cyclotron resonance (ECR) ion thruster,

looking into the erosion of the ion optics and aiming to extend the previous work of Chen

(2009). The electrons are regarded as a fluid and assumed to be collisionless and the ions
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are regarded as particles and the neutral atoms are set as background. The collisions

between ions and atoms are described by the Monte Carlo collision (MCC) method. The

computational domain is a two-dimensional axisymmetric structure including a half aper-

ture and a half grid. The three grids (screen, accelerator and decelerator) are electrically

isolated from one another and the screen grid potential Vs is set slightly below the plasma

potential to extract the ions and screen out the electrons. The accelerator grid (the middle

grid) potential Va is set to a negative potential to provide the accelerating field and the

decelerator grid (downstream) potential Vd is usually set at 0V. The mesh sizes of the

space satisfy the constraint of the Debye length λD, which in a warm plasma is

△z,△r < 3λD (3.8)

(Birdsall and Langdon, 1985)

In this study the mesh size is chosen as ∆z= ∆r= 5 x 10−5m with a 176x36 uniform mesh

adopted in the whole computational domain.

At each time step beamlet ions are injected into the simulation domain from the upstream

boundary and the secondary ionized ions are neglected in the simulation due to their

small number. The absorption boundary conditions are adopted in the upstream and

downstream surfaces and also for the ions which collide with the surface of the grids. For

the top and bottom boundaries the reflection boundary condition is used. Boundaries are

often chosen to be reflecting when in reality particles would be passing into the next aper-

ture domain and other particles would be flowing into the domain being studied; therefore

particles can be reflected back into the simulation domain and considered to be particles

flowing in from the neighbouring aperture domains. The velocities of the neutral atoms

are around two orders of magnitude lower than those of ions because the neutral atoms

are unaffected by the electric field; hence the neutral atoms are set as the background gas,

which is unchanged in the code. Only the collisions between ions and the background gas,

including elastic collisions and charge-exchange (CEX) collisions are considered.

Most of the results in this study were obtained in a steady state, meaning that the number

of particles in the simulation domain remain constant. When looking at the electric

potential it was found that CEX collision has little influence on the potential distribution,

because of the small fraction of CEX ions compared to the fast moving beamlet ions. A

sharp potential drop was found from the upstream of the screen grid to the downstream

of the accelerator grid, causing a large axial electric field to accelerate the ions to a higher

velocity. On the centre line there is a minimum potential point near the downstream edge

of the accelerator grid called the ‘saddle point’, as can be seen in Fig.3.4. The potential

at this point is important to limit electron backstreaming; numerically the saddle point

potential was calculated as -12.7V to limit backstreaming. The conclusion was drawn that

the design of the current optics satisfies the requirement to prevent electron backstreaming;

in this study the saddle point potential was found to be 147.5V according to a model by

Williams et.al. (2003) and it is stated that this result indicates that the simulation results

are reasonable.
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Figure 3.4: Electric potential along the central line and the line through the grids, with
CEX collisions (Sun et.al., 2010)

Figure 3.5: Schematic of CEX ion trajectories in three grid (top) and two grid (bottom)
ion optics (Sun et.al., 2010)

The ion number density was plotted and it was found the ion number density out of the

beamlet region was more than two orders of magnitude lower than the value near the cen-

tre line. When CEX collision was neglected the beamlet ions could pass through the grid

apertures successfully, without colliding with the grids. Sun et.al. stated that the effect of

CEX ions colliding with the accelerator grid are significant; some parts of the CEX ions

moved towards the upstream side of the accelerator grid while some parts collide with the

accelerator grid aperture directly as ‘barrel’ erosion, while other parts move back from the

downstream and cause ‘pits and groves’ erosion. Barrel erosion causes the enlargement of

grid apertures. This was said to confirm the analysis of the accelerator grid erosion types

illustrated in the paper. A comparison of the screen currents in the two grid and three

grid cases was shown and it was stated that the decrease in the accelerator grid current

in the three grid case was due to the decelerator grid preventing the ‘pits and grooves’

CEX ions from the downstream side. The beamlet velocities in the two cases were similar

but the back flow velocity behind the accelerator grid in the three grid case is a little

higher than in the two grid case, due to the stronger axial negative electric field in the
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gap between the accelerator grid and decelerator grid. It is suggested that the differences

in potential gradient in the two cases confirms this; the potential gradient behind the

accelerator grid in the three grid case was steeper than that of the two grid case, due to

the influence of the zero potential at the decelerator grid. It was also stated that in the

three grid case the potential behind the decelerator grid sustains a potential of around 0,

matching the central line potential shown in Fig.3.4, whereas in the two grid case there

is a strong potential drop behind the accelerator grid. The smooth variation in potential

behind the decelerator grid is said to effectively decrease the energies of ions flowing back

from far downstream. Although these ions can still collide with the downstream edge

of the decelerator grid it is suggested that the damage is so minimal that the erosion of

the decelerator grid is almost negligible in the optics system. It is also stated that the

decelerator grid can decrease the divergence angle of the beamlet flow and prevent the

sputtering materials from moving into the plume region and causing damage to the space-

craft. This is suggested to be an advantage of the three grid system when compared to the

two grid, however it has been suggested that the benefits of reducing erosion due to CEX

ions provided by the decelerator grid are outweighed by the added complexity (Goebel and

Katz, 2008). The ion trajectories in the two grid and three grid cases are shown in Fig.3.5.

Miyasaka et.al. (2010) developed a three dimensional particle-in-cell (PIC) code based

on the flux-tube code developed by Nakano et.al. (2007). This code treats ion fluxes

as flux-tubes and is stated to have a low calculation cost and high accuracy levels. In

the code the time is integrated by the 4th order Runge-Kutta method and electric po-

tential distributions are obtained from Poisson’s equation using a finite element method

(FEM). The finite element method is a method for finding an approximate solution for a

simplified model. The simplified model is reduced to a form which is solvable by a finite

number of numerical operations (Szabo and Babuska, 1991). The computational cost of

the simulation is minimized by the use of parallelization and application of symmetry

conditions. A rectangular, two grid geometry with 7 hole grids is employed, as was used

by Hayakawa (2007), with grid sizes in the discharge and neutralizing regions determined

from the respective Debye lengths. Ions, electrons and neutrals are all tracked as particles,

and elastic and charge-exchange collisions are evaluated using a direct simulation Monte

Carlo method (DSMC).

Collided ions were distinguished by the type of collision and it was found that elastically

collided ions and multiple-collided ions (ions which have collided with neutrals more than

once) were observed in almost all regions of the simulation domain. In Fig.3.6 the distri-

bution of non-collided ions, collided ions and electrons within the simulation domain are

shown.

It was found that charge-exchange ions were mainly generated in the beamlet region

from the screen grid hole to the downstream area. The ratio of multiple-collided ions to

total collided ions was found to be around 5%, which is stated to be significant. Erosion
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Figure 3.6: Three dimensional distribution of collided and non-collided ions and electrons
(Miyasaka et.al, 2010)

distributions were calculated from a semi-empirical equation developed by Yamamura

et.al. (1983). Current ratios of the accelerator grid current to the beamlet current were

evaluated; for the upstream and inner surfaces a ratio of 1.3% was calculated, and a value of

2.7% was calculated for the downstream surface. These values were said to agree well with

experimental values. Ions constituting the accelerator grid current to the inner surface

were comprised of 93% charge-exchange ions and 7% multiple-collided ions, and on the

downstream surface comprised of 92% charge-exchange ions and 8% multiple-collided ions.

The ratios of multiple-collided ions on the inner and downstream surfaces were higher than

the ratio existing in the entire region, suggesting that ’investigations of the behaviours of

multiple-collided ions are important in evaluations of grid erosion’. It was also found that

charge-exchange ions that impact on the downstream surface and the inner surface of grid

holes play a key role in the erosion of the accelerator grid, and that the tendencies of the

collision energy of multiple-collided ions are different from those of the charge-exchange

ions. The researchers also stated that

’the characteristics of the collided ions, including the collision distribution and

energy, indicate that high-accuracy analyses of the motions of collided ions,

including the multiple-collided ions, are important for quantitative evaluations

of grid erosions’.

Zhong et.al. (2010b) used a two dimensional PIC code to simulate half of one aperture

pair within a two grid ion thruster. The top and bottom boundaries were designated

as Neumann boundaries while the upstream boundary where particles were injected and

the downstream boundary where particles left the simulation domain were designated as

Dirichlet boundaries. Any ions impacting on the grids were deleted from the simulation.

Zhong et.al. state that near the ion optics system the magnetic field is negligible com-

pared with the electric field and can be ignored within the simulation. Electrons within

the simulation were treated as a non-collisional isothermal (constant temperature) fluid,
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and ions were injected at each timestep with axial velocity satisfying the Bohm criterion

and radial velocity following a Maxwellian distribution. Updated velocities and trajec-

tories of the ions were obtained using a leapfrog integration scheme with second-order

accuracy in the time step. In the leapfrog integration scheme, the positions and velocities

are ’leapfrogged’ over one another, with one being advanced between full timesteps while

the other is advanced by half timesteps.

The charge-exchange (CEX) collisions were calculated using an MCC method, and any

CEX ions produced were then tracked by the PIC method along with the primary ions

until impacting on the grids or exiting the simulation domain. The number of CEX ions

in a cell is given by

Ncex = Ninnvrσcex∆t (3.9)

where Ni is the number of primary ions within the cell, ∆t is the timestep, nn is the

number density of neutral atoms, vr is the relative velocity of the collision pair and σcex

is the CEX collision cross section, given by

σcex = (a− blnvr)
2x10−20 (3.10)

where the constants a and b are equal to -0.8821 and 15.1262 respectively. It was found

that the CEX ions exert little influence on the electric potential distribution within the

simulation, and it is suggested that this is due to the small number of CEX ions compared

to the amount of primary ions. The primary ions were found to achieve maximum velocity

near the centre of the accelerator grid hole, with a lower radial velocity than axial velocity.

CEX ions were found to be present in almost all regions of the beamlet in varying amounts.

CEX ions produced in the large radial site upstream of the screen grid were accelerated

to impinge on the screen grid (see Fig.3.7, trajectory A), and were said to have velocities

too low to cause obvious damage. However CEX ions produced in the small radial site

upstream of the screen grid were generally accelerated past the accelerator grid aperture

and are said to do no harm to the optics system but deteriorate the performance of the

thruster (trajectory B).

Any CEX ions produced between the downstream surface of the screen grid and the up-

stream surface of the accelerator grid were accelerated out of the beamlet (see C and D

marked trajectories, Fig.3.7). Some of these struck the upstream surface of the accelerator

grid, causing sputtering due to high velocity, while others were accelerated onto the inner

surface of the accelerator grid aperture, causing a gradual increase in diameter. CEX ions

produced within the accelerator grid aperture also impacted on the inner surface of the

aperture (see trajectory E) causing aperture enlargement which would eventually result

in electron backstreaming. CEX ions produced downstream of the accelerator grid were

mainly found to accelerate towards the downstream surface of the grid, causing the ‘pits

and grooves’ erosion pattern as seen in Fig3.1. Any CEX ions formed just downstream
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Figure 3.7: Behaviour of CEX ion trajectories (Zhong et.al., 2010)

of the grids are stated to have relatively small velocities and therefore cause only slight

erosion, while CEX ions formed further downstream impact with a higher velocity due to

the large potential difference experienced, causing the majority of the erosion (trajectory

F).

The conclusion reached by the researchers is that any damage caused to the screen grid

caused by CEX ions is minimal due to the slow impact velocities, while erosion of the

accelerator grid is more serious, especially on the downstream side of the grid.

Figure 3.10: Particle streamlines, specific impulse 10,000s (Coletti et.al., 2010)

Coletti et.al. (2010) used a 3 dimensional ffx simulation code in order to study dual stage

ion thrusters. The ffx code analyses a 3 dimensional rectangular region, using a uniformly

spaced Cartesian mesh with each direction having a different mesh spacing, following the

flow chart shown in Fig. 3.8 (Farnell et.al., 2003). They discovered that the fourth grid
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Figure 3.8: Flowchart of the ffx simulation code (Farnell et.al., 2003)

Figure 3.9: Beam ion density, specific impulse 10,000s (Coletti et.al., 2010)

in the Dual-Stage 4-Grid thruster (discussed further in Section 4) was not necessary (as

suggested by Goebel and Katz, 2008) and provided thruster specifications in order to pro-

duce specific impulses of 10,000s and 6,100s. The beam ion densities and ion streamlines

for the 10,000s case are shown in Fig.3.9 and Fig.3.10.

This work was then extended by Coletti and Gabriel (2010), using a grid geometry shown

in Table 3.3. It was found that using the specified geometry no direct ion impingement

occurred and CEX ion impingement was found to be lower in the DS3G than in the

reference gridded ion engine (GIE).

Grid power loading and erosion rates were also found to be lower in the DS3G, and erosion
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Aperture radius Grid thickness Voltage

Grid 1 1mm - 8120V

Grid 2 0.7mm 4x Grid 1 6120V

Grid 3 0.7 - 1mm 4x Grid 1 -120V

Grid spacing Centre Edge

1st - 2nd 0.5mm 1mm

2nd - 3rd 1.5mm 1.5mm

Table 3.3: Table showing grid parameters chosen by Coletti and Gabriel (2010)

of the second grid in the DS3G was found to occur very fast for the first 5000 hours of op-

eration and then become very slow. The third grid was found to display almost no change

in aperture radius with a marked decrease in thickness over time; this is said to be due to

most of the impaction on the third grid coming from CEX ions produced downstream of

the grid and therefore impacting on the downstream side of the grid, resulting in thickness

reduction and pits and grooves erosion. Grooves with a depth of around 0.1mm and pits

of around 0.25mm in depth were discovered; these values are close to those measured on

the NSTAR ion optics. The predicted lifetime for the DS3G was said to be around 45,000

hours, compared with the lifetime of the reference GIE of 37,000 hours. The researchers

conclude that the DS3G provides improved performance when compared to the reference

GIE without any reduction in lifetime expectations, and suggest that the next step is to

build a prototype of the DS3G in order to confirm the results achieved through simulation.

This chapter has provided an overview of research performed in the area of performing sim-

ulations of ion thrusters. As the dual stage ion thruster concept is fairly new there is less

research available than for other ion thruster designs, providing an area of research where

significant contributions may be made. It has been suggested that the dual stage design

should not include the fourth grid from the original concept; this work will aim to build

upon this idea, comparing the two designs and looking at the issue from a different per-

spective to the research discussed above. Gaining multiple views on an issue is important

in order to reach an appropriate conclusion, therefore this work will stand alongside the

research on dual stage thrusters already in existence, providing an alternative simulation

tool which will look at different aspects of the research question.
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4 Dual Stage Ion Thrusters

4.1 The Dual-Stage 4-Grid Ion Thruster

This section will provide an introduction to the concept of the dual stage ion thruster, a

recent concept that takes the idea behind the conventional gridded ion engine and manip-

ulates the original design in order to produce a more effective ion thruster. The dual stage

ion thruster has been chosen as the focus of this work as it further develops the concept

of the gridded ion engine, providing substantial improvements in performance over the

traditional gridded ion engine. This means that missions requiring a high specific impulse

not achievable using traditional gridded ion engines can now be attempted with the dual

stage design.

The Dual-Stage 4-Grid ion engine (known as the DS4G) was developed at ANU (the Aus-

tralian National University) for ESA (the European Space Agency) and was successfully

tested in 2005 in a space simulation chamber (ANU, 2010). The concept was proposed

by D. Fearn, with inspiration being taken from Controlled Thermonuclear Reactor (CTR)

experiments, in which ion sources are used to inject highly energised neutral particles into

fusion reactor experiments (Bramanti and Walker, 2006). Two stage ion sources are used

in these fusion experiments as it was found that with a single stage ion source a decrease of

beam power flux density was unavoidable with the increase of acceleration energies above

a certain threshold due to electric breakdown problems (Ohara, 1978).

The gridded ion thrusters discussed in Section 1 use two or three grids to accelerate the

ions, whereas the DS4G employs 4 accelerating grids. This additional fourth grid, when

used in an optimised configuration, could theoretically make the DS4G thruster up to 10

times more efficient than current state-of-the-art ion thrusters. Schematic diagrams of

the four grid system can be seen in Fig. 4.1. In a gridded thruster with a two or three

grid configuration the ions are extracted and accelerated in one stage, and due to physical

constraints (desire to avoid high-voltage breakdown) the extraction potential between the

first and second grids is limited to 5kV, which limits the maximum thrust density the

engine can produce. The DS4G enables the extraction and acceleration to be separated

into two separate stages, allowing very high accelerating potentials (up to 30kV) to be

applied to the second stage without any adverse effects to the extraction stage (ANU,

2010). This high acceleration potential allows a high velocity to be reached while using

light gases such as hydrogen as fuel (Bramanti and Walker, 2006).

It is suggested that a single 20cm diameter DS4G thruster could operate at 250kW power

to produce a 2.5N thrust and a specific impulse of 19,300s using Xenon propellant oper-

ating at a 30kV beam potential (Bramanti and Walker, 2006). The very high ion beam

potentials on the grids that would be possible with the 4-grid design would significantly

increase the exhaust velocity, specific impulse, power density and thrust density compared

with 3-grid thrusters. However this high performance ’comes at the expense of a high
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Figure 4.1: Schematics of the four accelerating grids (top) and the full discharge chamber
(bottom) (Bramanti and Walker, 2006)

power-to-thrust ratio’ (approx. 110 W/mN), therefore the DS4G would likely only be

compatible with lightweight power systems (Bramanti et.al., 2009). The addition of the

fourth grid also greatly increases the complexity of the thruster. In the DS4G the screen

grid has the same function as in a conventional GIE and the second grid is the extraction

grid, the function of which is to provide a potential difference in order to extract the ion

current. The extraction grid does not aim to accelerate ions to high velocities. The third

grid in the system is the acceleration grid, where a very high potential difference can be

applied with relation to the extraction grid, enabling high specific impulse to be obtained

while maintaining a constant ion beam current density, making an increase in thrust den-

sity possible (Coletti and Gabriel, 2010).

The screen grid would be at a high positive potential, providing the initial acceleration

for the ions. The extraction grid would be at a high positive potential slightly lower than

that of the screen grid, with V12 giving the extraction potential.
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Figure 4.2: Voltage profile of the grids in the DS4G (Coletti et.al., 2010)

V12 = V1 − V2 (4.1)

The acceleration grid would be at a slightly negative potential, providing a large potential

difference for acceleration as can be seen in Fig. 4.2 and reducing or preventing electron

backstreaming; the deceleration grid would be at a zero voltage (Coletti and Gabriel,

2010). Research by Coletti et.al. (2010) suggests that the DS4G system theoretically

only provides advantages over a conventional GIE in terms of thrust density if the voltage

difference applied in the second stage is 0.6 times that of the first stage or greater; however

this does not take into account ion impingement and related problems. The acceleration

to extraction voltage ratio is given by

Γ =
V2 − V3

V1 − V2
(4.2)

The research states that due to the added complexity of the fourth grid, the DS4G would

be a viable option for values of Γ greater than 1, as operation at low values of Γ result

in a decrease in the extraction current (Coletti et.al., 2010). This means that the DS4G

thruster may only be suitable for missions where the required thruster performance would

call for a configuration with a high voltage difference in the second stage. This constraint

would not apply to the DS3G thruster discussed in Section 4.3 due to the removal of the

fourth grid, meaning that the three grid version of the thruster may be applicable to a

wider range of potential missions.

During testing in 2005 the prototype thruster produced an exhaust plume with total

acceleration potentials as high as 30kV and a velocity of 210km/s, four times faster than

other competing thrusters (ANU, 2010). The prototype thruster was operated in the 1-

2kW power range with a thruster diameter of 5cm, though due to high power density it is

scalable to power levels of almost 1MW with a 50cm beam diameter (Walker et.al., 2006).
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4.2 Testing

4.2.1 The DS4G Prototype

The original aim of the prototype testing was to produce and test a Single Aperture

Four Electrode (SAFE) configuration with an aperture diameter of 1mm. However it was

decided that in order to fully demonstrate the DS4G concept a system consisting of four

electrodes, each containing 43 apertures of a 1mm diameter, would be produced and tested

(Bramanti and Walker, 2006).

The prototype DS4G thruster was based on a 5cm diameter cylindrical ceramic discharge

chamber and was fuelled with Xenon gas. The RF discharge was energised by a 3-turn

antenna coiled around the discharge chamber, biased to the screen grid voltage and was

fed from an RF system operating at 13.56MHz. The high voltage 4 grid system was then

attached to the discharge chamber. However this set up is not applicable for use in space

and was intended to demonstrate the principle of the thruster and identify any critical

issues for the future (ibid).

The prototype consisted of three major subsystems; the mechanical subsystem including

the clamping mechanism, the Radio-Frequency (RF) subsystem comprising of the gas

injector, ceramic plasma source tube, 3-turn antenna, stand of transformer, impedance

matching box and RF generator, and the high voltage (HV) subsystem comprising of the

grid module, two HV power supplies and one LV power supply.

Figure 4.3: Schematic and photograph of the DS4G prototype (Bramanti and Walker,
2006)

The test campaign for the DS4G took place in two phases, conducted by the Advanced

Concepts Team from ESA with support from the Electric Propulsion Section and ANU.

The testing took place in the CORONA vacuum facility at ESTEC during November

2005 and May 2006. The RF CORONA test facility (CTF) enables both pressure and

temperature to be controlled in order to simulate real life scenarios. The aim of the

test campaign was firstly to demonstrate the feasibility of the four grid thruster concept,
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secondly to verify the improvements in performance when compared to traditional GIEs,

and thirdly to investigate critical design issues and technological challenges (Bramanti and

Walker, 2006).

4.2.2 Test Results

The first stage of testing began with thermal and high voltage breakdown tests. The

thruster was found to be able to operate with RF plasma discharge at power levels of

up to 600W for over 45 minutes, providing the researchers with high levels of confidence

in the RF subsystem operation. Voltages on the first two grids reached 30kV and 27kV

respectively in the vacuum conditions during the breakdown tests, providing confidence

in the HV subsystem.

The SAFE configuration was used to demonstrate reliable extraction of high voltage beams

without ion impingement, then testing began on the 43 aperture prototype (Bramanti and

Walker, 2006). The first stage of testing of the 43 aperture DS4G prototype was consid-

ered a success and the thruster produced excellent results in terms of thrust, SI, beam

density and beam divergence. Negligible (around 1%) direct ion impingement on the grids

was recorded, and propellant utilization efficiency was high at around 70%. However as

this stage of testing was only intended to demonstrate the principle of the thruster the

grid ion optics were not optimised and efficiency was low (ibid).

In the second stage of testing in 2006 the aim was to improve the efficiency, using a revised

grid design with an increased open area ratio of 61%. Higher electrical efficiency, total

efficiency, total thrust and power densities were achieved. Mass utilization was improved

from 70% to 80%-96% by specific targeting of the beam current in relation to mass flow

rate, compared to 85%-92% achieved by conventional ion thrusters.

Typical test case Best value Operating parameters

Thrust (mN) 2.7 5.4 Beam potential (kV) 10 - 17.5

Beam potential (kV) 15 17.5 Extraction potential (kV) 1.5 - 5

Specific impulse (s) 14000 14500
First electrode
(beam) current
mA

4 - 33

Mass utilization efficiency 0.96 0.96 RF power (W) 20 - 316

Electrical efficiency 0.66 0.75 Beam power (W) 80 - 398

Total efficiency 0.63 0.7 Total efficiency 0.4 - 0.7

Beam divergence (deg) 4.6 - 5.3 3.8 Electrical efficiency 0.5 - 0.75

Total power (W) 300 614 Beam divergence 3.8 - 6.2

RF power (W) 101 316 Mass flow rate (mg/s) 0.01 - 0.05
Thrust density
(total) (mN/cm2)

0.86 1.7 Beam diameter (cm) 2

Total beam power
density (W/cm2)

64 126 Grid open area ratio 61%

Table 4.1: DS4G laboratory prototype operational parameters and performance results
during the second stage of testing in May 2006 (Bramanti and Walker, 2006)

The table above shows the performance statistics of the DS4G during the second stage of

testing. However these values are pessimistic as they assume that all currents collected
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by the extraction and accelerator grids are due to direct ion impingement and so the grid

currents have been subtracted from the beam current and this reduced beam current has

been utilized in calculating the above performance parameters. It is not possible to assess

actual impingement currents with available data. When the extraction and acceleration

grid currents were ignored the performance statistics increase to typically 3.7mN at the

nominal 2.7mN thrust level and to 6.75mN at 5.4mN (Bramanti and Walker, 2006). These

results have been taken from the executive summary of the testing, which concludes that

‘future benefits justify the research and development effort made’

(Bramanti and Walker, 2006).

4.3 The Dual-Stage 3-Grid Ion Thruster

4.3.1 Justification for Removal of the Deceleration Grid

A modified design of the DS4G, known as the Dual-Stage 3-Grid (DS3G) ion thruster,

has been suggested by Coletti et.al. (2010). This research suggests the removal of the

deceleration grid which is used in the DS4G at a zero voltage, with its sole function being

to limit the downstream erosion by charge-exchange (CEX) ions and prevention of pits-

and-grooves erosion. In conventional GIEs this function is provided in some systems by

the third grid; Goebel and Katz state in their book ‘Fundamentals of Electric Propulsion:

Ion and Hall Thrusters’ (2008) that although the three grid systems have a potentially

longer life than the two grid systems due to this reduction in erosion and generate less

sputtered material into the plume that can be deposited on the spacecraft, these benefits

are offset by the increased complexity of including the third grid in the system. Coletti

et.al. (2010) suggest that this same principle be applied to the DS4G thruster, resulting

in a dual stage, three gridded system and greatly reducing the complexity of the thruster.

The third grid in the DS3G changes the erosion pattern normally found within traditional

GIEs; CEX ions produced between the first two grids impact on the extraction grid instead

of the accelerator grid, causing aperture enlargement. It is suggested that widening of the

extraction grid aperture has less severe consequences than widening of the accelerator grid

aperture (Coletti and Gabriel, 2012). Any CEX ions produced between the second and

third grids are accelerated downstream due to the large potential difference in the area,

causing no damage to the ion optics (Coletti and Gabriel, 2012).

Lifetime analysis carried out by Coletti and Gabriel (2010) suggests that the third grid

results in a longer lifetime compared with traditional GIEs. As erosion occurs within the

ion optics and the apertures widen the minimum centerline potential increases; once this

value exceeds a certain threshold electrons start backstreaming into the thruster, causing

high power losses and defocusing the beam, resulting in failure of the thruster. It was

found that the minimum centerline potential was consistently higher for a typical GIE

than for the DS3G, resulting in a longer operating lifetime for the DS3G (ibid). The

authors extrapolated their data to predict lifetime of the thrusters, finding a value of
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about 25,000 hours for the typical GIE and about 50,000 hours for the DS3G, showing a

significantly longer potential lifetime for the DS3G.

4.3.2 Suggested Operational Parameters

Coletti and Gabriel (2010) presented a design for the ion optics of the DS3G. They suggest

that for optimum performance the apertures on the screen grid should be around 1mm

in diameter, while the extraction grid and acceleration grid aperture diameters should be

around 30% smaller. The apertures on the acceleration grid should be the same as the

extraction grid apertures at the centre and the same as the screen grid at the edge.The

extraction grid and acceleration grid thicknesses should be four times that of the screen

grid. The gap between the first and second grids was chosen to be 0.5mm at the centre

of the grids and increasing to 1mm at the edges of the grids while the gap between the

second and third grids should be constant, with the best value found to be 1.5mm. This

value was selected in order to maximise the focusing of the ion beam while avoiding ion

impingement and arcing between the grids (Coletti and Gabriel, 2010). The suggested

voltages for the grids are 8120V for the screen grid, 6120V for the extraction grid and

-250V for the acceleration grid. The main parameters are summarised in the table below.

Thickness Aperture diameter (mm) Voltage (V)

Screen grid - 1 8120

Extraction grid 4x screen grid 0.7 6120

Acceleration grid 4x screen grid 0.7 - 1 -250

Table 4.2: Table showing a summary of the suggested operational parameters for the grids
on the DS3G

4.4 Engineering Issues Relevant for Study by Simulation

4.4.1 Erosion and Sputtering

As a result of the high plasma temperature and density in the discharge chamber, internal

erosion of the discharge chamber materials may become apparent over long operation.

Bramanti et.al. (2009) suggest that application of sputter-resistant coatings (ie graphite

or tantalum) would alleviate this problem, as would constructing the discharge chamber

from graphite. Grid erosion due to sputtering is of high concern; high acceleration between

extraction and acceleration grids ensure a low beam divergence and by limiting extraction

potential (to below 5kV) and beam current density it can be ensured that extracted beam-

lets are well within their grid holes (Coletti and Gabriel, 2010). However despite this some

ion impingement will occur (including charge-exchange ions) and it has been suggested

that manufacturing grids from low sputter rate materials (such as graphite) would be pru-

dent to minimize the effects of sputtering. Coletti and Gabriel (2010) suggest that in the

DS3G ion thruster system, erosion is due to CEX ions as when the chosen gap of 1.5mm

between the extraction grid and acceleration grid is used, no direct ion impingement occurs.
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It is known that accelerator grid erosion is caused mainly by the formation of charge-

exchange (CEX) ions, which are created by charge-exchange collisions between fast beam

ions and neutral propellant atoms. This theory was first presented by Kerslake in 1963.

Since the ion source is never perfect it will always have some neutral efflux out of the

thruster; charge-exchange collisions are inevitable (Peng et.al., 1993). Accelerator grid

lifetime can be defined either by the point where electron backstreaming can no longer be

prevented by the power supply due to aperture enlargement, or by structural failure due

to ‘pits-and-grooves’ material loss. Fig. 4.4 shows where within the thruster the CEX ions

are produced which cause the two types of erosion. The former mechanism is believed

to dominate grid erosion in space, where neutrals for CEX collisions come only from the

thruster, not the source gas within a vacuum facility (Chang et.al., 2008).

Figure 4.4: Figures showing where CEX ions are produced, causing the two types of
erosion. Left: barrel erosion causing aperture enlargement. Right: pits and grooves
erosion

Experiments have shown that the maximum erosion occurs at the geometric centre be-

tween apertures for a hexagonal geometry two-grid system. As the velocities of CEX

ions are negligible when created the charge-exchange erosion pattern is determined by the

electric field in the deceleration region. There is a potential gradient in the transverse

direction due to the positive space charge inside the ion beam, which tends to force CEX

ions out of the primary beam and into this geometric centre between apertures. This is

where the lowest potential occurs and therefore where maximum sputtering erosion occurs

(Peng et.al., 1993). The charge-exchange collision rate is energy and time dependant.

Accelerator grid erosion also occurs via ion bombardment (Chang et.al., 2008).

As stated above, it has been found that the extra grid in the DS3G results in altered

erosion patterns when compared to a traditional GIE. CEX ions produced between the

first two grids result in increased aperture size (known as ’barrel erosion’) on the extraction

grid as opposed to on the acceleration grid in a traditional GIE. Any CEX ions produced

between the second and third grid are accelerated out of the thruster due to the high

potential gradient in the area, causing no damage to the ion optics (Coletti and Gabriel,

2012).
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4.4.2 Maximization of Key Performance Parameters

Key performance parameters for ion thrusters include the thrust, specific impulse, change

in momentum, power efficiency and rate of erosion. In this work the layout of the ion op-

tics along with the voltages applied to them for both the DS3G and DS4G will be studied

and manipulated in order to attempt to find the most efficient configuration in terms of

the parameters stated above.

This chapter has provided an introduction to the concept of dual stage ion thrusters, which

this work will now focus on. The following chapter will discuss some current simulation

techniques and will then introduce the simulation code that has been written for this work,

including the steps the simulation code takes and the method used to verify the simulation

in order to ensure that the simulation code is producing accurate results.
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5 Simulation Development

This chapter will focus on the simulation code. It will begin with a short introduction to

the different simulation methods available and will then discuss the simulation code that

has been written for this work. The sections below will include a discussion on the main

equations used within the simulation code, the method used to choose the original input

parameters and a discussion on verification of the simulation performance and results.

5.1 Simulation Techniques

5.1.1 Particle In Cell

Figure 5.1: Flowchart showing the PIC process (Birdsall and Langdon, 1985)

When simulating the motion of particles it would be far too time consuming to calculate

the forces acting on each particle individually. In particle in cell (PIC) simulations a

mathematical grid is imposed on the simulation domain; the charge density is calculated

at the grid points by interpolating charge from the particle positions, the potential and

the electric field values are calculated from the charge density, the fields can then be in-

terpolated back to the particle positions and the new particle positions can be calculated

(Smith, 2006). This process is shown in the flowchart in Fig.5.1. A single simulation

particle represents a large number of real particles, and is known as a ’super particle’.

In the simulation code the particle parameters are first inputted in real values and con-

version factors are then applied to calculate the charge of the super particle. Conversion

factors are used to change many of the input parameters relating to the simulation into



46

computer units in order to streamline the program and reduce complexity.

The particle-in-cell method has been chosen to produce a simulation code for this work

and will be discussed in more detail later in this section.

5.1.2 MHD

The simplest method of modelling the behaviour of a plasma while including most of the

macroscopic properties of a plasma in fluid model is the magnetohydrodynamics (MHD)

method, consisting of a single composite fluid (hydrodynamic) model with Lorentz force

effects for the plasma along with Maxwell’s equations for the electromagnetic fields (Callen,

2006). In MHD simulations the plasmas are highly polarizable, quasi-neutral fluids, and

the electric fields are calculated self-consistently from Ohm’s law, Ampere’s law and the

charge continuity equation, therefore use of Gauss’ law is not required. A wide range

of phenomenon can be described by the MHD equations in small gyroradius, magnetised

plasmas. The MHD method is stated to be ’the fundamental, lowest order model used in

analysing magnetised plasmas’ (Callen, 2006)

5.1.3 Hybrid

In a hybrid simulation code one or more of the plasma species are treated as a fluid while

the rest are treated as particles. For example in several codes simulating the behaviour

of ion thruster optics the ions are treated as particles using standard particle-in-cell tech-

niques while the electrons are treated as a fluid.

5.2 PIC Techniques

5.2.1 Particle Position Weighting Schemes

The calculations used to interpolate the particle positions to the grids and then the fields

back to the particles are called weighting, and the chosen order of the weighting scheme

determines the shape of the simulation superparticles. The same weighting scheme should

be used to firstly weight the particles to the grids and then to interpolate the force on

the particles from the electric field in order to eliminate self-force, ensure conservation of

momentum and prevent numerical instabilities arising in the code (Birdsall and Langdon,

1985).
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Figure 5.2: Diagram of zero order (left) and first order (right) weighting schemes in one
dimension (Birdsall and Langdon, 1985)

Zero order weighting, known as nearest grid point (NGP), counts the number of particles

within one grid’s width of a grid point j and assigns the number to that point. This leads

to the particle having a rectangular shape of width ∆x. The advantage of this weighting

method is that it is not computationally intensive, as only one grid point look up needs

to be done per field calculation. Diagrams of the weighting schemes and resulting particle

shapes for zero and first order weighting in one dimension are shown in Fig. 5.2. However

particles entering or exiting grid cells lead to sharp fluctuations in the fields, so to reduce

the noise in the fields a higher order weighting scheme is required.

First order weighting, during which the charge of the particle is linearly weighted to the

four nearest grid points (in two dimensions), produces fields with less noise than NGP

weighting but is more computationally intensive, requiring three more grid look-ups in

each time step. This method is also known as cloud-in-cell (CIC) as the particles appear

as finite sized rigid clouds, particle-in-cell (PIC) or bilinear weighting. The weights for

bilinear weighting scheme are given by

ρj,k = ρc
(∆x− x)(∆y − y)

∆x∆y
(5.1a)

ρj+1,k = ρc
x(∆y − y)

∆x∆y
(5.1b)

ρj+1,k+1 = ρc
xy

∆x∆y
(5.1c)

ρj,k+1 = ρc
(∆x− x)y

∆x∆y
(5.1d)

where ρc is the charge of the superparticle.

Second and higher order weighting schemes use quadratic or cubic splines in order to

round off the roughness in particle shape and further reduce noise in the charge density



48

and fields. Second order weighting (quadratic spline or QS) distributes the charge of each

particle between nine grid points, resulting in an almost circular particle shape.Higher

order weighting schemes require additional computing power and therefore the compu-

tational intensity should be balanced against acceptable levels of noise appearing in the

fields. In this simulation code the first order weighting scheme was chosen.

5.2.2 Field Calculations

At the beginning of each simulation run the static potential distribution and hence the

electric fields are calculated using Matlab’s built in PDEtool. These fields are produced by

the voltages applied to the grids and other areas of the discharge chamber. Poisson’s equa-

tion is solved on a triangular mesh using Dirichlet boundary conditions on the boundaries

of the simulation domain and the resulting field results are imported into the simulation

code, and the grid is converted from triangular to rectangular. The computational mesh is

shown in Fig. 5.3 and the potential distribution within the simulation domain calculated

using the PDEtool within Matlab, along with arrows showing the strength and direction

of the electric field, is shown in Fig. 5.4. Dirichlet boundary conditions specify the value

of the solution at the boundary, whereas Neumann boundary conditions specify the value

of the derivative of the solution at the boundary (LeVeque, 2007).

TriangleQuality =
4a

√
3

h21 + h22 + h23
(5.2)

The accuracy of the calculation results depends on the sizes and shapes of the compu-

tational mesh applied to the domain. The quality of the mesh is particularly important

along the boundary of the simulation domain, as it should be fine enough to resolve the

boundary layer equations in detail. A poor quality computational mesh can slow the cal-

culation speed and introduce large round-off error into the results (Shewchuk, 2002). The

computational mesh shown in Fig. 5.3 is colour coded according to the quality of the

triangles within the mesh. The quality of each triangle is calculated using Eq.5.2, where

a is the area of the triangle and h1,h2 and h3 are the side lengths of the triangle. If the

triangle quality is greater than 0.6 it is said to be of an acceptable quality. It can be

seen in Fig. 5.3 that all the mesh triangles have a quality of 0.7 or higher therefore the

calculation should produce results that have an acceptable degree of accuracy.
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Figure 5.3: The computational mesh, colour coded to show the quality of each triangle.
The three pairs of white areas represent the accelerator grids within the DS3G thruster

Figure 5.4: Initial potential within the simulation domain, with arrows showing the direc-
tion and strength of the electric field. Potential given in volts, arbitrary computer units
along x and y axis of simulation domain

At each following timestep the dynamic fields resulting self consistently from the particle

movement are calculated. The charge densities within the simulation domain due to the

particles are weighted to the grid points using the weighting scheme shown in Eq.5.1 and

become the right hand side of Poisson’s equation, shown in Eq.5.3.

▽2φ =
−ρ(x, y)

ε0
(5.3)
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The electric fields can then be calculated from φ using

E(x) = −▽ φ(x) (5.4)

The PDEtool was chosen for the calculation of the initial fields because it provided a

slightly more accurate result than was obtained by using a command line prompt. Within

the simulation, Poisson’s equation is solved using a built-in function of Matlab (poicalc),

in which the solution is obtained from the charge densities at the grid points by sine

transforms in the first direction and a tridiagonal matrix solution in the second direction,

on the rectangular mesh. The triangular mesh used for the initial field calculations is

converted to a rectangular mesh in the simulation code in order to allow it to be used with

the chosen Matlab function.

5.2.3 Choice of Input Parameters

In many simulation codes the parameters and variables are normalized to optimise the

numerical calculations. Parameters are originally defined in the simulation code in real

units, then conversion factors are applied in order to obtain the parameters in computer

units, similar to natural units. This is done to simplify calculations within the simulation

code, and at the end of the simulation any relevant output parameters such as particle

velocity are converted back into real units. Some parameters, such as the super particle

mass M and the plasma frequency ωp are set as 1 within the simulation code. ε0 in Pois-

son’s equation (Eq. 5.3) is also set to 1 within the code. All conversion factors used within

the simulation code were taken from work by Birdsall and Langdon (1985) and a full list

is shown in Appendix A.

For the first part of the research, in which grid configurations and voltages were manipu-

lated in order to produce a stated specific impulse, the starting grid configurations were

taken from work on the DS3G by Coletti and Gabriel (2010) and from data on the proto-

type DS4G shown in Table 4.1. The starting voltage V1 for each required specific impulse

is given by

V1 =
1

2

Mi

q
(g0Isp)

2ηm (5.5)

where ηm is the propellant utilization efficiency, taken from results obtained from test-

ing of the DS4G prototype, Mi is the ion mass, q is the charge of an ion and Isp is the

required specific impulse.

The minimum voltage required for the third grid (V3) in order to avoid electron back-

streaming (where electrons flow backwards from the beam plasma into the thruster) is

given by

V3 = Vbp + T ln[2
Ie
Ib

√

π
Me

Mi

V1 − Vbp

T
] (5.6)
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(Coletti et.al., 2010)

where Vbp is the beam plasma potential, which can be set to 0 for the first estimate, T

is the electron temperature in eV,
Ie
Ib

is the maximum backstreaming to ion beam current

ratio, which is set as 0.001.

The table below shows the starting voltages calculated using Eq. 5.5 and Eq. 5.6 for

specific impulses of 10,000s and 15,000s.

Specific Impulse (s) V1 V3 (minimum required)

10,000 6294V -41.3V

15,000 14,163V -39.3V

Table 5.1: Voltages calculated from Eq. 5.5 and Eq. 5.6 for specific impulses of 10,000s
and 15,000s

5.3 Diagnostic Techniques

5.3.1 Electric Field, Potential, Charge Density

Plots were produced showing the original potential, φ, at timestep 1, the charge density, ρ

contributed to the system by the ions entering the simulation domain and the electric field.

Examples can be seen in Figs. 5.5 to 5.9. The following figures show example results for

the DS3G simulation, where the first grid has an applied voltage of 14,000V, the second

13,000V and the third 0V.

Figure 5.5: Potential within the simulation domain at timestep 1. The strong change in
potential can be seen in the gap between the second and third grids. Units of potential
are shown in real units (in V), simulation dimensions in arbitrary computer units
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Figure 5.6: Potential at a later timestep once particles were travelling through the system.
A slight alteration in the potential within the second aperture can be seen when compared
to the previous figure, due to the presence of simulation superparticles. Units of potential
are shown in real units (in V), simulation dimensions in arbitrary computer units

Figure 5.7: Charge density contribution from the particles within the simulation domain.
The accelerator grids are not shown in this figure. Units of charge density shown in real
units (Cm−2), simulation dimensions in arbitrary computer units.
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Figure 5.8: X component of the electric field. Units of electric field shown in real units
(V/m), simulation dimensions in arbitrary computer units.

Figure 5.9: Y component of the electric field. Units of electric field shown in real units
(V/m), simulation dimensions in arbitrary computer units

These diagnostics are useful for showing that the field equations within the simulation

code are producing accurate results.

5.3.2 Velocity and Momentum

The change of momentum and exit velocities produced by the simulation can be compared

to that calculated theoretically from the voltage applied to the ion optics using Eqs. 5.7

and 5.8.

The exit velocity of the ions passing through the right side of the simulation domain is
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used to calculate the specific impulse and thrust produced, using Eqs. 5.10 and 5.9.

The theoretical change of momentum is calculated from the impulse equation,

△p = q
△V

△x
△ t (5.7)

where △t is the change in time, △V is the potential drop over the distance △x and q is

the charge on an ion.

The theoretical exit velocity of the ions is calculated from

vE =

√

2qVb

M
(5.8)

where Vb is the net voltage within the system, q is the charge of an ion and M is the mass

of an ion.

The thrust produced within the simulation is calculated using

F = ṁivE−sim (5.9)

where ṁi is the mass flow rate of the ionized propellant and vE is the exit velocity of the

ions leaving the simulation domain.

The specific impulse produced within the simulation is calculated from the thrust, F ,

using the following equation

Isp =
F

ṁpg
(5.10)

where ṁp is the mass flow rate of propellant in kg/s, taken from the prototype DS4G test

results and g is the acceleration of gravity, 9.81m/s2.

5.4 Software

Several programs exist for the general simulation of plasmas, for example OOPIC, VOR-

PAL and IGUN. It was decided that a PIC code would be self written for the simulation

of ion thruster optics in order to aid understanding of the processes occurring within the

ion thruster and to be used as a design tool.

The software package Matlab was chosen to write the code due to previous familiarity

with the use of the software along with availability of built in functions relevant to the

PIC code.

There are several advantages to writing and developing a new PIC code; firstly, writing a

code from the basics builds understanding of the theories and equations behind the func-

tioning of ion thrusters and motion of the ions. A simple simulation code can be written

at first, and then built upon until the required level of complexity is achieved.

Disadvantages include the length of time that is needed to fully develop a functioning

simulation, including the debugging process which can be particularly time consuming.
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Any further research has to wait until the code is fully functioning and producing accurate

results.

5.5 The Simulation Code

5.5.1 Development of the Simulation Code

A simple PIC code for simulating the flow of solar wind around a charged plate, written

by L. Brieda (2010) and available online was studied to gain an understanding of the

basics of particle in cell simulation techniques. A basic PIC simulation of a single set of

apertures was then produced, in which nearest grid point weighting was used and the ma-

jority of variables were not normalised. Results plots were produced showing the potential

distributions, electric fields and charge density distributions to ensure the simulation was

producing realistic results.

Once this simple code was producing acceptable results it was extended; the weighting

system was changed to first order, and the normalization scheme defined by Birdsall and

Langdon (discussed in section 5.2) was employed in order to simplify the simulation pro-

cess. The conversion factors were then applied to any results produced in order to display

them in SI units for comparison and verification purposes.

Several parts of the code, for example the initialisation of the simulation domain including

the position of the ion optics, the weighting of the particles to the grids and the calculation

of the potential distribution using Poisson’s equation were placed in separate m-files to

create functions to be called by the main Matlab script. This was done to aid reading of

the code and simplify the modification and debugging process. The simulation code was

named PICSIE (Particle in Cell Simulation for Ion Engines) and shall be referred to as

such throughout this work.

A timestep of ∆t = 0.2 in computer units was chosen, converting to a timestep of

∆t = 4.5∗10−9s in real units. This timestep was found to provide results with a good level

of accuracy when compared to results taken from other research on the DS3G and results

from testing of the DS4G prototype (see Section 4.2), while allowing a full evolution of

the simulation, run to the steady state condition (to the point where changes in results

from timestep to timestep become minimal) to be completed within 13 hours.
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Figure 5.10: Particle positions within the 4-grid simulation domain, colour coded with
respect to particle velocity in computer units - particle clumping occurring

Figure 5.11: Particle positions within the 4-grid simulation domain, colour coded with
respect to particle velocity in real units - no particle clumping occurring

A larger timestep of ∆t = 1 produced instabilities whereby particles appeared in clumps
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within the simulation domain. This is shown in Fig.5.10. The particle positions are colour

coded according to velocity, and it can be seen that the velocities of the particles are

not evolving consistently as they pass through the simulation domain. With the smaller

timestep it can be seen in Fig.5.11 that the particle positions are much more uniform as

they flow through the simulation domain, and the velocities of the particles (as denoted

by the colour coding) increase uniformly as the particles progress through the simulation

domain.

5.5.2 Iteration Process

At t=0 the simulation parameters are converted to computer units and initial field results

are imported into the simulation code. Particles are then injected along the left hand side

of the simulation domain, randomly spaced and with a Maxwellian velocity distribution.

The bilinear weighting system is then applied using the group of equations shown in Eq.5.1

in order to interpolate the particle positions to the grid points and thereby calculate the

charge density on the grid. The potential distribution and electric field are then calculated

using equations (5.3) and (5.4), and the same weighting system is then used to weight the

calculated fields back to the particles. The forces acting on each particle can then be

calculated, and the new particle velocity and hence the new particle position can then

be calculated. After normalization the leapfrog particle mover (Birdsall and Langdon,

1985) uses Eq. 5.11. The leapfrog scheme is an explicit, second order integration method,

in which the discretization of the variables (position and velocity) are staggered in time

(Oran and Boris, 1987).

(
v∆t

∆x
)new = (

v∆t

∆x
)old +

q

m

Eold(∆t)2

∆x
(5.11a)

(
x

∆x
)new = (

x

∆x
)old + (

v∆t

∆x
)new (5.11b)

The boundary conditions of the simulation are then applied; reflective boundaries are ap-

plied at the left, upper and lower edges of the simulation domain, and particles are allowed

to flow freely out the right side of the simulation domain. As particles cross the boundary

at the right the velocity of each particle and its position on the y axis are recorded for

analysis purposes. The boundaries on the ion optics are set to absorb any particles that

come in contact with them, meaning that the particles are counted then deleted from the

simulation.

Reflective boundary conditions are applied on the upper and lower boundaries as in a

real ion thruster particles passing through where these boundaries are in the simulation

domain would pass into the next aperture area, and a similar amount of particles would

be flowing the other way, from the neighbouring apertures into the studied aperture area.

Therefore any particles crossing the boundaries can be reflected and considered to be par-

ticles that have passed into the simulation domain from the neighbouring aperture area.
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On the left side of the simulation domain, any particles that cross that boundary, exiting

the simulation domain, would be drawn back towards the ion optics by the electric fields

and therefore a reflective boundary can be applied at this point.

Once the boundary conditions have been applied, the timestep is advanced and the cycle is

repeated. Once a set number of timesteps is reached, final calculations are done, including

the specific impulse, thrust, change in momentum and power efficiency for diagnostic

purposes. The flowchart in the following section shows the order of the simulation stages

in PICSIE.
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5.6 Program Flow Chart

Figure 5.12: Flowchart showing the order of steps taken within PICSIE
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5.7 Simulation Geometry

The length conversion factor Lf results in one cell width ∆x = ∆y = C in computer units

being equal to 0.06mm, as shown in the calculation below.

C(computerunits) ∗ Lf = C(realunits) (5.12)

0.2 ∗ 3.0388 ∗ 10−4 = 6.0776 ∗ 10−5(m)

The relevant simulation geometry parameters were then calculated from this value, in-

cluding the total size of the simulation domain, the aperture sizes and the ion optics

diameters.

5.8 Verification of Simulation Results

5.8.1 Dual-Stage 4-Grid Results Comparison

The table below shows a comparison between the results obtained from the prototype

DS4G thruster tested in a vacuum chamber in 2006, and the results obtained from PICSIE.

Grid Voltage Parameter Prototype Test Results Simulation Results

Screen 15,000 Thrust (mN) 2.7 - 5.4 5.13

Extraction 13,000 Specific Impulse (s) 14,000 17,455

Accelerator -200 Power Efficiency 0.4 - 0.7 0.65

Decelerator 0

Aperture size 0.7 - 1mm

Table 5.2: A comparison between results taken from the results of the testing of the DS4G
prototype in a vacuum chamber and results obtained from the DS4G version of PICSIE

It can be seen from the table above that while the simulation result for the specific impulse

is slightly higher than that obtained from the prototype testing, possibly due to the fact

that the prototype set up was not optimized, the simulation results for thrust and power

efficiency fall within the range obtained by the prototype.

5.8.2 Dual-Stage 3-Grid Results Comparison

The table below shows a comparison between the results presented by Coletti et.al. (2010)

from their simulation of the DS3G ion thruster and the results obtained from PICSIE.

It can be seen from Table 5.3 that the results from PICSIE match very closely with those

obtained by Coletti et.al. (2010) from their ffx simulation code. The result obtained for

the thrust matches exactly and the result obtained for the specific impulse is only very

slightly different.

The tables above show that both versions of PICSIE are producing results consistent with

both experimental tests (Table 5.2) and simulations developed by other researchers (Table

5.3).



61

Grid Voltage Parameter

Result taken
from Coletti
et.al. (2010)

Simulation result

Screen 8120 Thrust (mN) 3 3

Extraction 6120 Specific Impulse (s) 10,000 10,244

Acceleration -120 Power Efficiency Not Stated 0.51

Aperture size 0.7 - 1mm

Table 5.3: A comparison between results taken from simulation research by Coletti et.al.
(2010) and results obtained from the DS3G version of PICSIE

5.8.3 Comparison of Calculated and Simulated Parameters

DS4G DS3G

Calculated △p 7.1 ∗ 10−18 7.4 ∗ 10−18

Simulated △p 6.6 ∗ 10−18 1.1 ∗ 10−17

Table 5.4: This table shows values for change of ion momentum for both the DS3G and
DS4G, comparing values from theoretical calculations to those produced by PICSIE

The table above shows that the 4 grid version of PICSIE is producing slightly more

accurate results in terms of change of ion momentum than the 3 grid code, when comparing

the values produced by PICSIE to those calculated from Eq.5.7. However the results

produced be the 3 grid version of PICSIE can still be considered to be reasonably accurate.

5.9 Research to be Carried Out

The first part of the research using PICSIE makes use of both the three grid and four grid

versions of the code. Initial voltages were chosen as detailed in Section 5.2.3 in order to

produce two specific impulses, 10,000s and 15,000s, as would be set by the functional re-

quirements of a design for a specific space mission. During the planning stages for a space

mission, scientists would look for an engine that can produce specified results in terms

of thrust, specific impulse, power efficiency and lifetime. Therefore it is important that

the design of a thruster can be manipulated in order to change the resulting performance

parameters if the thruster is to be suitable for a wide range of missions. This stage of

the research will show that the two thruster designs can be manipulated to produce two

specific performance parameters without showing a negative impact on other performance

indicators, as would be required if the thrusters were chosen for a space mission.

The voltages and ion optics layout were varied in order to find the most efficient combina-

tion of acceleration voltage and grid layout to produce the desired specific impulse. Once

the most efficient configurations for each case are found, the three grid and four grid cases

can be compared in an attempt to verify the suggestion made by Coletti et.al. (2010) that

the fourth grid in the dual stage system provides benefits that are outweighed by the added

complexity of including the extra grid. Including the extra grid means additional work

in manufacturing and installing the grid, and provides another component of the thruster
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that may fail. Therefore it is important in terms of both design and manufacturing effort,

and expected thruster performance, that conclusions are reached regarding the benefits

and disadvantages of including the fourth grid in the dual stage thruster design.

The second part of the research focuses on the three grid layout. An accelerating voltage

of 15,000V was applied to the ion optics in PICSIE and the grid layout was then manip-

ulated in order to find the configuration that produced the best results in terms of high

thrust, high specific impulse, high power efficiency and low ion impaction on the grids.

The parameters varied within the simulation were grid diameter, aperture diameter and

spacing between the grids. This would allow comparisons to be made with other types of

ion thruster, showing which thruster would produce better performance at an optimum

configuration when the applied voltage is set at a certain level. It is possible that the

parameters of a space mission may specify a maximum power output or available voltage,

therefore it is important that a method of finding the most efficient thruster configuration

for a set voltage is known in order to make the thruster available to compete on the open

market for space mission contracts. Finding the most efficient grid configuration for a

set voltage can reveal a lot about the internal physics of a gridded ion thruster discharge

chamber; small changes in measurements can result in large changes in output parameters.

In the third part of the research a wave was propagated through the plasma in the dis-

charge chamber, through the grid apertures. The aim of this was to see if the wave would

result in improvements in key performance parameters, possibly resulting in a method

of achieving improved performance in gridded ion thrusters without requiring significant

increases in power consumption or major redesign efforts. If it was found that ions within

the apertures were propelled through the thruster by the motion of the wave it may be

possible to produce a thruster that required very little voltage applied to the grids but

could still achieve good results in terms of thrust or specific impulse, meaning that less

fuel would need to be carried on the spacecraft and therefore reducing the weight of the

craft, or allowing the spacecraft to operate at distances far away from the sun where solar

power cannot be used.

This chapter has introduced the simulation code that will be used in this research, in-

cluding the techniques used in the simulation code and an introduction to the research

questions that will be studied in this work. The following chapter will present some results

obtained from the simulation.
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6 Simulation Results and Analysis

This chapter presents results obtained from the simulation code, focusing on the problems

that were introduced in the previous chapter.

6.1 Specific Impulse: 10,000s

The specific impulse, which is one of the measures of the performance of the ion thruster,

represents the force produced by the thruster with respect to the amount of propellant

used per unit of time. It is calculated within PICSIE from

Isp =
T

ṁg0
(6.1)

where T is the thrust calculated in PICSIE and ṁ is the mass flow rate of propellant, the

value of which was taken from results from the testing of the DS4G prototype thruster

in a vacuum chamber. This was used as it came from a real situation as opposed to a

simulation and although the prototype was not fully optimized it provides an idea as to

the true performance of the thruster. The same parameters were used for the three grid

simulation, as it can be assumed that the two thruster designs are identical up to the point

where the grids begin and therefore parameters such as the mass flow rate of propellant

can be assumed to be the same for the two designs.

When designing an ion thruster for a particular mission the design will be based on ∆V

mission requirements, including the specific impulse the thruster should produce. The

simulation runs detailed in this section focused on varying the grid layout and voltage

profile within the thruster with the aim of producing a chosen specific impulse, and as

such could be used as a design tool.

With the aim of producing a specific impulse of 10,000s, a higher value than would be

produced by a traditional ion thruster but not approaching the theoretical maximum that

could be produced by a dual-stage thruster, the grid configurations and applied voltage

profiles for both the 3 grid and 4 grid cases were manipulated with the aim of finding the

configuration that would result in the best performance for the two thrusters. Parameters

used to measure the performance include the thrust, change of ion momentum, beam

focusing and power efficiency, against the constraint of achieving a particular specific

impulse.

6.1.1 Dual-Stage 4-Grid Simulation

Once the simulation reached a steady state, calculations were performed on the output

values to determine several key parameters for analysis purposes, in particular engine

performance. Outputs produced by the simulation runs included

• the exit velocities of the ions
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• their point of exit on the y-axis, providing information on ion beam collimation and

therefore the degree to which the ion optics are focusing the ion beam

• the amount of simulation ions that collided with the accelerating grids and were

absorbed

The specific impulse, thrust, power efficiency and change in ion momentum produced by

the simulated thruster and the ion beamlet focusing could then be examined in terms of

their underlying cause.

Parameter Initial Value Parameter Initial Value

Screen voltage 6294V Screen thickness 0.5mm

Extraction voltage 4294V Other grids 1mm

Acceleration voltage -200V Grid spacings 0.5mm/1mm/1mm

Deceleration voltage 0V Aperture diameter 1mm/0.7mm

Table 6.1: Table showing initial input values for the four grid layout, aiming to produce a
specific impulse of 10,000s

Initial input parameters were taken from information on the testing of the DS4G proto-

type and from theoretical calculations, and are shown in Table 6.1. The input values were

then varied to observe the results with an aim of improving performance.

A selection of performance plots produced by the 4 grid version of PICSIE are shown

below, along with tables showing descriptions of the varied parameters where necessary.

Figure 6.1: Line plot showing the specific impulse and change in momentum produced by
the simulation when the total accelerating voltage applied to the grids was varied
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Figure 6.2: Line plot showing the specific impulse produced by the simulation and the
number of ions impacting on the acceleration grid when the total accelerating voltage
applied to the grids was varied

Run No. Description

1 Drop of 1000V in the Extraction stage, Grid 3 set at -100V

2 Drop of 2000V in the Extraction stage, Grid 3 set at -100V

3 Drop of 2000V in the Extraction stage, Grid 3 set at -150V

4 Drop of 2000V in the Extraction stage, Grid 3 set at -200V

5 Drop of 3000V in the Extraction stage, Grid 3 set at -100V

6 Drop of 1500V in the Extraction stage, Grid 3 set at -100V

Table 6.2: Table showing a description of the simulation runs where the voltage profile
applied to the accelerating grids was varied from a set screen grid voltage

Figure 6.3: Line plot showing the specific impulse and change in momentum produced by
PICSIE for simulation runs in which the voltage profile across the grids was varied. A
description of the simulation runs is shown in Table 6.2
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Run No. Description

Screen Aperture Extraction Aperture Acceleration Aperture

1 0.9mm 0.6mm 0.6mm

2 1mm 0.7mm 0.7mm

3 1.5mm 1.05mm 1.05mm

4 1.5mm 1.2mm 1.2mm

Table 6.3: Table showing a description of the simulation runs where the aperture size was
increased with run number

Figure 6.4: Line plot showing the specific impulse produced by PICSIE and the percentage
of simulation ions that collided with the extraction grid for simulation runs in which the
aperture size was increased. A description of the simulation runs is shown in Table 6.3

Run No. Description: Gap1/Gap2/Gap3

1 0.5mm/1mm/1mm

2 0.5mm/2mm/1mm

3 1mm/2mm/1mm

4 0.5mm/2mm/2mm

Table 6.4: Table showing the simulated variations in spacings between the accelerating
grids
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Figure 6.5: Line plot showing the specific impulse and change in ion momentum produced
by PICSIE for simulation runs in which the spacings between the accelerating grids were
varied, with a fixed voltage profile. A description of the simulation runs is shown in Table
6.4

It can be seen in Fig.6.1 that as the total applied voltage is increased the Isp and average

change in ion momentum also increase. The total applied voltage is the voltage difference

between the first grid and the third grid (as the fourth grid is set to 0V).

It can be seen in Fig.6.3 that the highest average change in ion momentum was produced

in Run no.3, where a voltage drop of 2000V was applied in the extraction stage and a

voltage of -150V was applied to the acceleration grid. An increase of almost 1% can be

seen when compared to the previous simulation run.

The spacings between the grids were varied, with run numbers and corresponding mea-

surements shown in Table 6.4. Gap 1 refers to the spacing between the screen grid and

extraction grid, Gap 2 refers to the spacing between the extraction grid and acceleration

grid, while Gap 3 refers to the spacing between the acceleration grid and deceleration

grid. It can be seen in Fig.6.5 that the two lines indicating changes in specific impulse and

change in ion momentum do not share the same gradient. While both parameters increase

steadily throughout the simulation runs the specific impulse increases at a slightly higher

rate than the change in momentum. The aperture sizes were then varied, starting with

measurements slightly smaller than those suggested in previous research (see Section 3)

and increasing to a maximum aperture size of 1.5mm for the first grid. The simulation

run numbers corresponding to the different aperture sizes can be seen in Table 6.3.

6.1.2 Dual-Stage 3-Grid Simulation

Initial input values for the three grid version of PICSIE were taken from other researchers’

work on the DS3G thruster (Coletti et.al., 2010) and from theoretical calculations (Equa-

tions 5.5 and 5.6). These initial values are shown in the table below. These inputs were
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then adjusted to observe the results.

Parameter Initial Value Parameter Initial Value

Screen Voltage 6294V Screen Thickness 0.5mm

Extraction Voltage 4294V Extaction/Acceleration Thickness 2mm

Acceleration Voltage -120V Extraction gap/Acceleration gap 0.5mm/2.5mm

Aperture Diameter - Screen/others 1mm/0.7mm

Table 6.5: Table showing the initial input parameters for the three grid layout, aiming for
a specific impulse of 10,000s

The plots below show the connection between increase in specific impulse and increases in

ion momentum produced by PICSIE and in the amount of simulation ions being absorbed

by the extraction grid as the total voltage applied to the accelerating grids was altered.

Figure 6.6: Line plot showing the specific impulse and change in momentum produced by
PICSIE when the total accelerating voltage applied to the grids was varied
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Figure 6.7: Line plot showing the specific impulse produced by the simulation and the
amount of simulation ions colliding with the extraction grid when the total accelerating
voltage applied to the grids was varied

The similar gradients of the increase in specific impulse and the increased change of mo-

mentum can be seen in Fig.6.6, although a slight cross over can be seen at 7500V, sug-

gesting a strong correlation between specific impulse and change in momentum. However,

although the three grid and four grid cases produce similar specific impulse values, the aver-

age change in ion momentum observed in the two cases are strikingly different. Therefore,

although it can be said that as the specific impulse increases so does the average change

in ion momentum, a specific value of specific impulse cannot be linked to a specific value

of change in momentum.

6.2 Specific Impulse: 15,000s

The simulation process was then repeated with the aim of producing a specific impulse

of 15,000s. It can be deduced from Equation 2.1 that a higher specific impulse would

maximise the useful payload of a spacecraft, therefore an ion thruster than could produce

a specific impulse of 15,000s, considered high in comparison to other thrusters, would be

desirable.

6.2.1 Dual-Stage 4-Grid Simulation

Initial values for the grid layout are as shown in Table 6.1, and initial values for the voltage

profile are shown in Table 6.6.
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Grid Voltage

Screen 14,163V

Extraction 12,163V

Acceleration -100V

Deceleration 0V

Table 6.6: Table showing the initial voltage profile for the four grid layout, aiming to
produce a specific impulse of 15,000s. Actual specific impulse produced:16,478s

Figure 6.8: Line plot showing the specific impulse and change in momentum produced by
the simulation when the total accelerating voltage applied to the grids was varied

Figure 6.9: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the total accelerating voltage
applied to the grids was varied
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Run No. Description: Gap1/Gap2/Gap3

1 0.5mm/1mm/1mm

2 0.5mm/2mm/1mm

3 1mm/2mm/1mm

4 0.5mm/2mm/2mm

Table 6.7: Table showing the simulated variations in spacings between the accelerating
grids

Figure 6.10: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the spacings between the accel-
erating grids was varied. Refer to Table 6.7 for description of simulation runs.

Figure 6.11: Line plot showing the specific impulse and change in ion momentum produced
by PICSIE when the spacings between the accelerating grids were varied. Refer to Table
6.7 for description of simulation runs.

The spacings between the grids were varied, with simulation run numbers and correspond-

ing measurements shown in Table 6.7. Gap 1 refers to the spacing between the screen grid
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and extraction grid, Gap 2 refers to the spacing between the extraction grid and accelera-

tion grid, while Gap 3 refers to the spacing between the acceleration grid and deceleration

grid. Figure 6.8 shows the changes in specific impulse and average change in ion momen-

tum as the total applied voltage was increased; as previously observed, there is a strong

correlation between the two parameters. This correlation can also be observed in Figure

6.11 as the spacings between the grids are varied. Figure 6.9 shows a strong negative

correlation between the number of ions impacting on the extraction grid and the specific

impulse produced by the thruster as the voltage is increased. This is possibly due to

the increased voltage forcing a greater degree of beam collimation on the ion beamlet,

reducing impact on the grids. It can be seen in Fig.6.10 that while the specific impulse

increases throughout the simulation runs there is more variation in the number of ions

impacting on the extraction grid. However despite seemingly large variations in ion im-

paction when compared to specific impulse, due to the scale of the graph these variations

in ion impaction are small (around 3% variation).

6.2.2 Dual-Stage 3-Grid Simulation

With an aim of producing a target specific impulse of 15,000s using the three grid thruster

layout, the initial grid layout was as shown in Table 6.5 and the initial voltage profile is

shown in the table below.

Grid Voltage

Screen 14,163V

Extraction 12,163V

Acceleration -120V

Table 6.8: Table showing the initial voltage profile for the three grid layout, aiming to
produce a target specific impulse of 15,000s. Actual specific impulse produced: 16,484s

Figure 6.12: Line plot showing the specific impulse and change in momentum produced
by PICSIE when the total accelerating voltage applied to the grids was varied
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The strong positive correlation between specific impulse and average change in ion

momentum that has been observed above can be seen again in Figure 6.12. However due

to the scale on the figure the increase in specific impulse shown in the figure is significantly

greater than the increase in the average change in ion momentum.

Figure 6.13: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the total accelerating voltage
applied to the grids was varied

In Figure 6.13 sharp fluctuations in the number of ions impacting on the extraction

grid can be seen. However, it can be observed that due to the scale on the axis these

fluctuations account for changes of less than 1% in real terms and the effect is not as

dramatic as the figure suggests.

6.3 Optimization of the DS3G Configuration

This part of the research focuses on applying a set voltage profile to the accelerating grids

within the three grid thruster and varying the configuration of the grids, with the aim

of producing the maximum possible specific impulse and change in ion momentum while

minimising the amount of simulation ions impacting on the grids and achieving the best

focusing of the ion beamlet.

Accelerating Grid Applied Voltage

Screen Grid 15,000V

Extraction Grid 14,000V

Acceleration Grid -100V

Table 6.9: Table showing the voltage profile applied to the three grid layout
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Figure 6.14: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the gap between the screen grid
and extraction grid was varied

Figure 6.15: Line plot showing the specific impulse and change in momentum produced
by PICSIE when the gap between the screen grid and extraction grid was varied
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Figure 6.16: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the gap between the extraction
grid and acceleration grid was varied

The plots shown in Fig.6.14 to Fig.6.16 show the variation in the specific impulse produced

by PICSIE as the spacings between the grids are varied along with the amount of particles

impacting on the second grid, which relates to the focusing of the ion beam. A higher

number of ions impacting on the extraction grid indicates poor collimation of the ion beam,

indicating that the grids are not properly focusing the ions through the apertures. Figure

6.14 shows a strong negative correlation between the specific impulse and the number of

ions impacting on the grids as the extraction stage gap is varied. A larger extraction

stage gap results in a higher specific impulse and fewer ions impacting on the grid, sug-

gesting that the size of this gap impacts on the degree of collimation of the ion beamlet.

Figure 6.15 shows that the average change in ion momentum also increases as the extrac-

tion stage gap increases; however the correlation between these two parameters is not as

strong in this case as in the results presented in the previous sections, suggesting that an-

other parameter has an impact on the degree of correlation between these two parameters.

Figure 6.15 shows a sharp increase in the number of ions impacting on the extraction grid

at an acceleration stage gap of around 1.25mm. In previous figures showing the impact of

ions on the extraction grid the small scale on the axis has led to the effect of small changes

being exaggerated in the figure. However this is not the case here, as it can be observed

that at around 1.25mm an increase of around 10% occurs. Although further simulation

runs using acceleration stage gaps around this length would be needed to achieve a firm

understanding of the reason for this increase, it suggests that an acceleration stage gap of

1.25mm should be avoided.
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Figure 6.17: Line plot showing the specific impulse produced by PICSIE and the amount
of simulation ions colliding with the extraction grid when the diameters of the second and
third grids were varied

Figure 6.18: Line plot showing the specific impulse and average change in ion momentum
produced by PICSIE when the diameters of the second and third grids were varied

A less significant increase (of around 6%) in the number of ions impacting on the grid can

be seen in Figure 6.17 for a grid thickness of 1.3mm, suggesting that this grid thickness

should be avoided in order to achieve a good degree of beam collimation. Figure 6.18

shows a small increase in the average change in ion momentum at this grid thickness,

although due to the scale on the figure the difference in real terms is very small.
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Parameter Chosen Value

Grid Thickness: Screen/Extraction/Acceleration 0.7mm/2mm/2mm

Grid Spacing: Gap1/Gap2 0.6mm-0.9mm/2.5mm

Aperture diameter 1mm/0.7mm

Parameter Simulation Result

Specific Impulse 17,280s

Thrust 5.1mN

Change in Momentum 1.7e-17 kg m/s

Table 6.10: Table showing the chosen values for the accelerating grids layout and the
results produced by PICSIE for a total applied voltage of 15,000V

For a total applied voltage of 15,000V the grid configuration producing the best results

as determined by specific impulse, thrust, change in ion momentum and beam collimation

and the results produced by PICSIE are shown in Table 6.10. A thrust of 5.1mN and a

specific impulse of 17,280s were found to be the maximum available for the set voltage

while minimizing the ions impacting on the grids and maximising the ion beamlet focusing,

as determined by the spread of exiting ions along the y axis of the simulation domain.

Figure 6.19: Histogram showing the distribution of particle exit velocities, in real units
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Figure 6.20: Scatter plot of the particle distribution within the simulation domain, colour
coded with respect to the velocity of the particles. Simulation dimensions shown in com-
puter units, colour coded in real units

Plots taken from a simulation run using the values shown in Table 6.3 are shown in

Figs.6.19 and 6.20. The distribution of the particle velocities as they exit the simulation

domain is shown in Fig.6.19 and a scatter plot of the particle positions within the simu-

lation domain is shown in Fig.6.20, colour coded to show the velocity of the particles.

Figure 6.19 shows the distribution of particle velocities as they exit the simulation domain;

the distribution is still approximately Maxwellian, corresponding to the Maxwellian distri-

bution of the particle velocities as they entered the simulation. The particles maintaining

their velocity distribution indicates that the majority of particles receive roughly the same

increase in velocity when passing through the thruster. Figure 6.20 shows that the par-

ticle velocities increase at the expected points within the simulation domain, receiving a

significant increase in velocity as they approach the acceleration grid.

6.4 Introducing Waves Into the Thruster

This part of the research focuses on using a directed wave within the plasma to test the

novel idea of propelling the particles through the ion engine. The aim is to discover

whether propagating a wave through the plasma within a dual-stage ion thruster could

increase the specific impulse, thrust and change in momentum produced by the thruster.

The reasoning behind beginning an investigation into the concept of propagating a wave

through the plasma within the discharge chamber is that it was thought that if a wave

travels through the centre of a grid aperture, any ions that happen to be in the path of the

wave would be propelled along by the motion of the wave, potentially increasing the speed

of these particles. However there could be negative consequences to this, for example if

the motion of the wave forces particles out of the collimated ion beamlet and into the

grids, resulting in erosion, or results in increased interaction between the ion beamlets in
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neighbouring grid apertures.

6.4.1 Oscillating Grid Potentials

An attempt was made to introduce a wave into the plasma within the simulation domain.

Firstly an oscillating potential was applied to the ion optics; two frequencies of oscillation

were simulated, firstly with the potential changing at each timestep and secondly changing

every 5 timesteps. The aim was to oscillate the potential at a frequency that corresponded

to the time taken for a particle to pass from one grid aperture to the next. Two frequencies

of oscillation were examined due to the fact that the time taken for a particle to pass from

the first aperture to the second is greater than that taken for a particle to pass from the

second to the third aperture. Two oscillating frequencies were studied, firstly oscillating

the screen grid potential between 15,500V and 14,500V and then oscillating the screen

grid potential between 15,000V and 0V. The extraction grid potential followed a reverse

pattern in each case, while the acceleration grid oscillated between -150V and -50V in the

first case and remained at -100V in the second case.

Oscillation each ∆t Oscillation each 5 x ∆t

Specific Impulse (s) 16.786 16,817

Change of Momentum (kg m/s) 1.65e-17 1.65e-17

Thrust (mN) 4.9 4.9

Ions Impacting on Extraction Grid (%) 19.6 19.2

Table 6.11: Table showing the results obtained when oscillating grid potentials

Optimized Grid Layout

Specific Impulse (s) 16,848

Change of Momentum (kg m/s) 1.67e-17

Thrust (mN) 5

Ions Impacting on Extraction Grid (%) 19.7

Table 6.12: Table showing the results produced by the optimized grid configuration

This method of introducing a wave into the plasma was found to produce no changes in

specific impulse, thrust and change in ion momentum when compared to the standard

fixed potential grid system, as can be seen in Table 6.11 and Table 6.12. It was therefore

considered to be an unproductive route and no further research was pursued in this direc-

tion during this work. An alternative method of propagating a wave through the discharge

chamber was then investigated.

6.4.2 Ion Acoustic Waves

An ion acoustic wave was propagated through the centre of the simulated aperture to see

if this would affect the performance of the thruster. There were many possible types of

waves that could have been chosen for this work and there was no particular reason behind

the choosing of the ion acoustic wave. The intention of this was to investigate the concept
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of waves within the discharge chamber plasma, and if no benefits were found or if negative

consequences resulted from this type of wave being used within the ion thruster there are

many other types of waves which could be investigated.

The equation of momentum for the ions in an ion acoustic wave is

min{
dv

dt
+ (v · ∇)v} = −γkB(Ti + Te)∇n (6.2)

where mi is the mass of an ion, n is the number density of the ions, v is the ion velocity, γ

is the heat capacity ratio, kB is the Boltzmann constant and Ti,e are the ion and electron

temperatures. The phase velocity of the ion acoustic wave is given by

ω

k
=

√

γ

kB0(Ti+Te)
mi (6.3)

The simulation code was modified to include the ion acoustic wave, propagating it through

the centre of the grid apertures. During the simulation, any particles that happened to

be in the path of the wave had their motion manipulated to correspond to interaction be-

tween the wave and the ions. Changes of direction and acceleration due to the wave were

applied to the particles along with the standard leapfrog particle mover used throughout

this work. An ion acoustic velocity of 1200m/s was used in the simulation (Goebel and

Katz, 2008).

Ion Acoustic Wave Optimized Grid Layout

Specific Impulse (s) 16,854 16,848

Change of Momentum kg m/s 1.66e-17 1.67e-17

Thrust (mN) 5 5

Ions Impacting on Extraction Grid (%) 19.7 19.7

Table 6.13: Table showing a comparison of the results produced when introducing an ion
acoustic wave into the plasma and the results produced when using the optimized grid
configuration

A comparison of the results produced during this simulation run and the results produced

by the optimised grid layout is shown in Table 6.13.
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Figure 6.21: Histogram showing the distribution of particle exit velocities, in real units,
when an ion acoustic wave was propagated through the plasma inside the ion thruster

It can be seen when comparing the particle exit velocity distributions shown in Fig. 6.19

and Fig. 6.21 that the inclusion of a wave in the ion thruster system produces no sig-

nificant changes in terms of ion exit velocity when compared to the optimised three grid

configuration discussed earlier. There were also no differences found in terms of change in

ion momentum or beamlet focusing.

The results show no effect arising from the introduction of an ion acoustic wave within the

discharge chamber. This lack of impact was unexpected, and may be due to the effects

being very subtle, or due to assumptions made within the simulation hiding any effects

that may have occurred. Other types of waves may produce a more obvious effect, either

positive or negative, and although no benefits were found during this work this would be

an interesting avenue of research to continue in the future. A full investigation of the

concept of propagating waves though the discharge chamber would take significant modi-

fication of the simulation code, and will be considered for future work.

In this chapter the results obtained using the simulation code PICSIE have been presented.

The following chapter will discuss these results, aiming to reach some conclusions on the

original research questions.
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7 Discussion

This chapter will discuss the results presented in the previous chapter. Conclusions will

be presented on the configurations chosen for the two thrusters in order to produce two

different specific impulses, a comparison of the performance of the two thrusters and a

conclusion on whether the three grid or four grid thruster design should be the focus of

research. A set voltage is then applied to the three grid configuration and a conclusion is

reached on the most efficient grid configuration for that voltage profile.

7.1 Specific Impulse: 10,000s

7.1.1 Dual-Stage 4-Grid Simulation

The results produced during the simulation runs aiming to produce a specific impulse

of 10,000s are shown in Section 7.1, with the results for the four grid thruster shown in

Section 7.1.1.

In Fig.6.2 a reduction then sudden sharp increase can be seen in the change in ion momen-

tum for the four grid case, with the sudden increase corresponding with a small increase

in specific impulse. This shows that as the total applied voltage increases from 5500V

to 6300V the number of ions impacting on the extraction grid decreases while the spe-

cific impulse increases steadily. When the total applied voltage reaches 6300V the specific

impulse increases slightly while the number of ions impacting on the grid increases dra-

matically. However at higher voltages, while the specific impulse continues to gradually

increase, the number of ions impacting on the extraction grid decreases. This suggests

that a total accelerating voltage of 6300V should be avoided for this grid configuration as

it may result in high erosion levels on the extraction grid.

It can be seen in Fig.6.4 that the number of ions colliding with the extraction grid remains

the same for runs no.3 and no.4 (a description of the parameters used for each simulation

run can be found in Table 6.3); this suggests that the large screen grid aperture results in

such poor beam collimation that even a larger extraction grid aperture could not make a

difference to the number of ions impacting on this grid.

The results produced by PICSIE were analysed and the most efficient voltage profile and

accelerating grid layout were found. The aim of this was to achieve the required specific

impulse (10,000s) with high power efficiency and good focusing of the ion beam. Poor

focusing results in loss of thrust and ions in the plume can impact on the outer parts of

the spacecraft causing damage, therefore minimal ion beam divergence is required (Goebel

and Katz, 2008).
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Parameter Chosen Value

Screen Grid Voltage 5900V

Extraction Grid Voltage 3900V

Acceleration Grid Voltage -100V

Deceleration Grid Voltage 0V

Aperture diameter - Screen/Others 1mm/0.7mm

Grid Thicknesses Screen grid: 0.5mm, Others:2mm

Grid Spacings - Gap1/Gap2/Gap3 0.5mm/2mm/1mm

Table 7.1: Table showing the parameters chosen to provide the most efficient performance
for the 4 grid thruster while producing a target specific impulse of 10,000s

An acceleration grid voltage of -100V was chosen along with a drop of 2000V in the

extraction stage. It can be seen in Fig.6.3 that this was the configuration for Run No.2

(described in Table 6.2) and resulted in the highest specific impulse. Although Run No.3

(with an acceleration grid voltage of -150V) produced a higher change in ion momentum,

there was a reduction in specific impulse compared to Run No.2. The aperture diameters

were chosen to be 1mm for the Screen Grid and 0.7mm for the other grids; this corresponds

to Run No.2 in Fig.6.4. It can be seen that although these parameters produce a slightly

lower specific impulse when compared to the other runs (described in Table 6.3) it also

resulted in the lowest number of ions impacting on the extraction grid, showing that these

aperture diameters resulted in the highest degree of beam collimation. Having a higher

degree of beam collimation reduces barrel erosion within the grid apertures, resulting in

increased thruster lifetime; these aperture diameters were chosen because they produced

a degree of beam collimation which would have the least impact on thruster lifetime.

7.1.2 Dual-Stage 3-Grid Simulation

The results for the three grid version of PICSIE aiming to produce a specific impulse of

10,000s can be seen in Section 6.1.2. It can be seen in Fig.6.7 that a saturation level

seems to be reached on the amount of particles impacting on the extraction grid at a

total applied voltage of 7000V suggesting that increasing voltage above this point does

not reduce beam collimation at the first grid, while a slight drop is seen at 8000V. Further

simulation runs would be needed to discover whether this saturation effect is found with

all grid configurations and initial starting voltages. A linear increase can be seen in the

specific impulse as the total applied voltage is increased.

The results produced by PICSIE were analysed with the aim of achieving a balance between

high specific impulse, high thrust, high power efficiency and low ion impaction on the grids,

finding the most efficient voltage profile and accelerating grid layout were found to achieve

a target specific impulse of 10,000s.
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Parameter Chosen Value

Screen Grid Voltage 6000V

Extraction Grid Voltage 5000V

Acceleration Grid Voltage -100V

Aperture diameter 1mm/0.7mm

Grid Thicknesses Screen grid: 0.5mm, Others:2mm

Grid Spacings - Gap1/Gap2 0.5mm/2.5mm

Table 7.2: Table showing the parameters chosen to provide the most efficient performance
for the 3 grid thruster while producing a target specific impulse of 10,000s

An extraction stage voltage drop of 1000V was found to produce the required specific

impulse while maintaining a good degree of ion beamlet collimation, therefore keeping

barrel erosion to a minimum. This will help extend the lifetime of the thruster by reducing

the widening of grid apertures. The grid apertures were chosen to be the same as for the

four grid case, as the same pattern of results was found when manipulating the aperture

diameter. An acceleration stage gap of 2.5mm was chosen, a value slightly higher than

the 2mm chosen for the four grid design. This was due to the larger distance providing

an increase in the average change in ion momentum without negatively impacting on the

beam collimation.

7.2 Specific Impulse: 15,000s

7.2.1 Dual-Stage 4-Grid Simulation

The results from the simulation of the four grid thruster with parameters chosen with the

aim of producing a specific impulse of 15,000s can be seen in Section 6.2.1.

It can be seen in Fig.6.9 that as the total applied voltage increases, the specific impulse

increases while the number of ions impacting on the extraction grid decreases. Although

this was not seen in the results for a specific impulse of 10,000s it is possible that there

is a causal relationship, with the reduced specific impulse at lower voltages being a direct

result of the large number of ions impacting on the extraction grid, or that the higher

voltages result in a greater degree of beam collimation at the screen grid, resulting in

fewer ions impacting on the extraction grid.

The results produced by PICSIE were analysed and the most efficient voltage profile and

accelerating grid layout were found for a target specific impulse of 15,000s.
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Parameter Chosen Value

Screen Grid Voltage 9500V

Extraction Grid Voltage 8500V

Acceleration Grid Voltage -200V

Deceleration Grid Voltage 0V

Aperture diameter 1mm/0.7mm

Grid Thicknesses Screen grid: 0.5mm, Others:2mm

Grid Spacings - Gap1/Gap2/Gap3 0.5mm/2mm/1mm

Table 7.3: Table showing the parameters chosen to provide the most efficient performance
for the 4 grid thruster while producing a target specific impulse of 15,000s

The grid aperture diameter in this case corresponds to that chosen for the 10,000s case.

This is because the same effects were seen when manipulating the aperture diameter, and

maintaining a good degree of beam collimation is an important aspect for achieving efficient

thruster performance without compromising potential lifetime. The same grid spacings

were also chosen in this case, suggesting that it is the applied voltage that needs to vary

to achieve a certain specific impulse while the thruster configuration remains efficient for

a range of applied voltages and resulting specific impulses. A deceleration grid voltage of

-200V was chosen, a lower value than that chosen for the 10,000s case; this was found to

maintain a good degree of beam collimation without negatively impacting on the resulting

thrust and specific impulse.

7.2.2 Dual-Stage 3-Grid Simulation

The results from the simulation of the three grid thruster aiming to produce a specific

impulse of 15,000s can be seen in Section 6.2.2. The correlation between specific impulse

and change in ion momentum seen in previous results can also be seen in Fig.6.12. In

Fig.6.13 a steady increase in specific impulse can be seen as the applied voltage is in-

creased, while the number of ions impacting on the extraction grid varies. However the

amount of impacting ions is varying by only around 0.5%, as the scale on the right hand

side of Fig.6.13 indicate that this plot shows a zoomed in view of the results. These results

would appear as a fairly straight line with a slightly negative gradient when viewed on a

larger scale. This corresponds to results seen in Fig.6.9, although to a lesser degree.

The results produced by PICSIE were analysed and the most efficient voltage profile and

accelerating grid layout were found to produce a target specific impulse of 15,000s.
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Parameter Chosen Value

Screen Grid Voltage 10,000V

Extraction Grid Voltage 9000V

Acceleration Grid Voltage -100V

Aperture diameter 1mm/0.7mm

Grid Thicknesses Screen grid: 0.5mm, Others:2mm

Grid Spacings - Gap1/Gap2 0.5mm/2.5mm

Table 7.4: Table showing the parameters chosen to provide the most efficient performance
for the 3 grid thruster while producing a specific impulse of 15,000s

A total applied voltage of 10,000V was found to produce the required specific impulse of

15,000s. An acceleration stage gap of 2.5mm was chosen; it can be seen in Figure 6.16

that the number of ions impacting on the grid remained stable for an acceleration stage

gap of 1.5mm or larger up to a gap of 2.5mm while the specific impulse produced in the

simulation increased with the size of the gap. Therefore the gap of 2.5mm was chosen

to produce the maximum possible specific impulse without an increase in the number

of impacting particles. In Figure 6.17 a sharp increase in the number of ions impacting

on the extraction grid can be seen when the extraction grid and acceleration grid have

diameters of 1mm, therefore this grid thickness should be avoided. Thicknesses of 2mm

were chosen in order to produce a high specific impulse and change in ion momentum (as

shown in Figure 6.18) while limiting the increase in the number of particles impacting on

the extraction grid.

7.3 Comparison of the 3 and 4 Grid Thrusters Simulation Results

For a desired specific impulse of 10,000s a comparison of the chosen thruster parameters

and simulation results is shown in the table below.

Parameter Simulated DS4G Simulated DS3G

Screen Grid Voltage 5900V 6000V

Extraction Grid Voltage 3900V 5000V

Acceleration Grid Voltage -100V -100V

Aperture Diameter 1mm/0.7mm 1mm/0.7mm

Grid Spacings 0.5mm/2mm/1mm 0.5mm/2mm

Grid Thickness 0.5mm/2mm 0.5mm/2mm

Parameter DS4G Simulation Result DS3G Simulation Result

Specific Impulse (s) 10,280 10,183

Thrust (mN) 3 3

Power Efficiency 0.426 0.43

Change in Ion Momentum (kg m/s) 4.02e-18 9.97e-18

Table 7.5: Table showing a comparison between applied voltages, grid configuration and
simulation results for the 3 and 4 grid versions of PICSIE aiming to produce a specific
impulse of 10,000s

It can be seen in Table 7.5 that the simulated three and four grid thrusters employ a

slightly different voltage profile; this can also be seen in 7.1. The total applied voltage

is slightly greater (100V greater) in the three grid case, and the four grid case uses an

extraction stage drop of 2000V while the three grid case uses a drop of 1000V. This shows
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that including the fourth grid in the thruster design means that a greater drop in voltage

in the extraction stage is required to achieve the same specific impulse. This implies that

the three grid design is more efficient, requiring a more gentle potential gradient in order

to produce the same results. However, applying a more gentle potential gradient to the

extraction stage could have an impact on erosion patterns, which would be an interesting

area for further study. An acceleration voltage of -100V was found to produce the best

performance in both cases in terms of maximum thrust, high power efficiency and a good

degree of beam focusing. The same aperture diameters, grid thicknesses and grid spacings

are used for both cases. The most striking difference between the three grid and four grid

cases are the change in ion momentum produced in the simulation; this is significantly

higher in the three grid case; there is no obvious reason for this difference, and further

study in this area would be beneficial to fully understand the consequences of the high

average change in ion momentum.

Figure 7.1: Figure showing the voltage profiles for the DS4G and DS3G to produce a
specific impulse of 10,000s

The specific impulses produced in both cases were close to the desired specific impulse of

10,000s; the four grid simulation produced a specific impulse of 10,280s while the three

grid simulation produced 10,183s and both cases produced a total thrust of 3mN. The

power efficiency was slightly higher in the three grid case, 0.43 compared with 0.426, but

the main difference between the two cases was the change in ion momentum produced by

PICSIE. The four grid case produced a change in momentum of 4.02e-18 kg m/s while the

three grid case produced a change in momentum of 9.97e-18 kg m/s, providing a significant

improvement (almost 150%) over the four grid case.

For a desired specific impulse of 15,000s a comparison of the chosen thruster parameters

and simulation results is shown in the table below.
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Parameter DS4G Chosen Value DS3G Chosen Value

Screen Grid Voltage 9,000V 10,000V

Extraction Grid Voltage 8,000V 9,000V

Acceleration Grid Voltage -200V -100V

Aperture Diameter 1mm/0.7mm 1mm/0.7mm

Grid Spacings 0.5mm/2mm/1mm 0.5mm/2.5mm

Grid Thickness 0.5mm/2mm 0.5mm/2mm

Parameter DS4G Simulation Result DS3G Simulation Result

Specific Impulse (s) 15,252 15,103

Thrust (mN) 4.5 4.4

Power Efficiency 0.544 0.557

Change in Ion Momentum (kg m/s) 6.01e-18 1.49e-17

Table 7.6: Table showing a comparison between applied voltages, grid configuration and
simulation results for the 3 and 4 grid versions of PICSIE aiming to produce a specific
impulse of 15,000s

Figure 7.2: Figure showing the voltage profiles for the DS4G and DS3G to produce a
specific impulse of 15,000s

For a desired specific impulse of 15,000s, the most efficient grid configuration and voltage

profile and key simulation results are shown in Table 7.6. It can be seen that the three

grid case employs a total applied voltage that is 1000V greater than that employed in the

four grid case, as can be seen in Fig. 7.2, while both configurations have a drop of 1000V

in the extraction stage and have a voltage difference of only 100V at the acceleration grid.

The aperture diameters and accelerating grid thicknesses are the same in both cases. For

the four grid layout the grid spacings are the same as for the 10,000s case shown in Table

7.5, however for the three grid case an acceleration stage gap of 2.5mm is employed for

a specific impulse of 15,000s, compared with a gap of 2mm for a specific impulse of 10,000s.

From Table 7.6 it can be seen that

• The specific impulses produced by the three and four grid layouts are close to the
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required specific impulse of 15,000s; the four grid layout produced a specific impulse

of 15,252s and the three grid layout produced a specific impulse of 15,103s

• The thrust produced by the four grid case is slightly higher than that produced by

the three grid case, 4.5mN compared to 4.4mN

• The power efficiency is slightly higher for the three grid layout, 0.557 compared to

0.544 for the four grid layout

As for the case of a target specific impulse of 10,000s, the major difference between the

three and four grid layouts is the change in ion momentum produced. The four grid layout

produces a change in momentum of 6.01e−18 kg m/s, while the three grid layout produces

a much higher value of 1.49e−17 kg m/s. It can be assumed that the lower change in

momentum in the four grid case is due to the deceleration grid; while aiming to reduce

erosion of the thruster the fourth grid also results in a decreased ion momentum when

compared to that achieved without the deceleration grid.

Comparing the three and four grid results for the specific impulses of 10,000s and 15,000s,

it can be seen that for both cases the three grid layout requires a slightly higher applied

voltage to produce the required specific impulse. The two grid layouts are identical for

both cases, with the exception being a larger acceleration stage gap of 2.5mm is employed

for the three grid thruster in the 15,000s case. Increasing the acceleration stage gap by

0.5mm may have an impact on the erosion patterns within the thruster, possibly altering

the potential lifetime of the thruster. In future research the changes in erosion patterns

should be studied to ensure that the larger acceleration gap would not have a negative

impact on thruster lifetime.

It can be seen from Tables 6.5.and 6.6 that in order to produce the lower specific impulse

of 10,000s the four grid design needs a stronger potential gradient in the extraction stange,

while this is not needed in the 15,000s case. The potential gradient would have an effect on

the erosion patterns in the area and downstream of the extraction stage, and this should

be studied further before a conclusion can be reached on which scenario produces better

results in terms of both efficiency and erosion. This would only be an issue for missions

requiring a specific impulse lower than 15,000s, as it can be seen that this difference be-

tween the thruster designs is not apparent for the higher specific impulse.

In both specific impulse cases the three grid layout produces a slightly better power effi-

ciency; however the differences between the power efficiency values are small and may not

impact on a choice between the two thrusters. The major difference between the three and

four grid layouts in both specific impulse cases is the change in ion momentum produced

by PICSIE. The change in momentum produced by the three grid layout is significantly

higher than that produced by the four grid layout, which would be a significant factor

when it came to deciding between the two layouts for a mission. It is clear that removing

the fourth grid has a major impact on the change in momentum of the ions within the
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simulation; however the reasons for this making such a large difference to the result are

not clear and should be studied further.

This chapter has provided a discussion of the results presented in the previous chapter.

The conclusions reached during this work will be presented in the following chapter.

7.4 Optimization of the DS3G Configuration

The results from the simulation runs aiming to find an optimized configuration for the

three grid thruster while using a set voltage profile can be seen in Section 6.3.

Fig.6.14 shows a drop of around 8% in the number of ions impacting on the extraction

grid as the extraction stage gap is increased and displays a negative correlation between

the specific impulse and the number of ions impacting on the grid. It can be seen that a

larger spacing between the screen grid and extraction grid provides better results in terms

of a high specific impulse, high change in ion momentum and low ion impaction on the

extraction grid, as did a spacing of 2.5mm between the extraction grid and acceleration

grid.

It can be seen in Fig.6.17 and Fig.6.18 that grid diameters of 2mm for the extraction grid

and acceleration grid provides a compromise between obtaining a high specific impulse

and change in ion momentum while restricting the amount of simulation ions impacting

on the extraction grid. Figs 6.14 and 6.15 show clear benefits in terms of increased specific

impulse, change in ion momentum and reduced ion impaction on the extraction grid as

the extraction stage and acceleration stage gaps are increased. A maximum extraction

stage gap of 1mm and a maximum acceleration stage gap of 2.7mm were simulated. It has

been stated that the distance between the first two grids should be less than the diameter

of the screen grid apertures to maximise perveance, which is the amount of current that

the accelerator grids can extract and focus into the ion beam for a given applied voltage

(Goebel and Katz, 2008). Therefore an extraction stage gap of 0.7mm was chosen, to

allow for widening of the screen grid apertures through erosion.

A peak in the graph showing the simulation ions impacting on the extraction grid at a

diameter of 1.25mm can be seen in Fig.6.17. This is an unexpected value although it may

be due to natural variation and the change is made more obvious due to the scale used on

the plot.

The results originally presented in the previous chapter have been discussed above; the

chosen configuration parameters for the two thruster designs have been presented, chosen

in order to produce two specific impulses. The two designs have been compared, and

a conclusion has been reached on whether the fourth grid provides benefits in terms of

thruster performance compared to the three grid design. An optimized configuration for

the three grid design has been presented for a given applied voltage. The conclusions
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reached during this work will be summarized in the following chapter.
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8 Conclusions

The conclusions reached during this work are presented in this chapter. The first con-

clusion reached in this work is that the code developed produced consistent results when

compared with test data and results (see Section 5.8) and could be utilized as a design

tool for the study of ion engine performance.

The three and four grid thrusters were simulated with the aim of producing specific

impulses of 10,000s and 15,000s, chosen as values likely to be design requirements of

space missions in the future for different purposes. The requirement for the design of the

thrusters for the BepiColombo mission was to achieve a specific impulse of 4300s (Benkhoff

et.al., 2010) and it is expected that higher specific impulses will be required for future mis-

sions. The accelerating grids layout and applied voltage profiles were varied in PICSIE

and the parameters chosen from the results of these simulations are presented in Table

6.5, Table 6.7, Table 6.10 and Table 6.12. The simulation results indicate that a large

screen grid aperture results in such poor beam collimation that even a larger extraction

grid aperture could not reduce the number of ions impacting on the grid, and that for the

three grid case a saturation level seems to be reached on the amount of particles impact-

ing on the extraction grid at a total applied voltage of 7000V, suggesting that increasing

voltage above this point does not reduce beam collimation at the first grid.

It has been suggested (see Section 4) that the use of the fourth grid in the dual stage

thruster is not necessary. Its main function is to shield the thruster from backstreaming

CEX ions, and while this can increase the lifetime of the thruster it also greatly increases

its complexity in terms of construction and hence its reliability as it provides one more

part that has the potential to fail. Once the most efficient parameters for the two desired

specific impulses had been found, the three and four grid cases for each specific impulse

were compared; the results of this comparison can be found in Tables 7.5 and 7.6. The

results indicate that an acceleration grid voltage of -100V produces the best performance

for both the three grid and four grid thrusters, in terms of maximum thrust, high power

efficiency and a good degree of beam focusing.

The input and output parameters were similar for the three and four grid layouts for both

specific impulse cases, with the major exception being the change in ion momentum pro-

duced by the simulations. In both the 10,000s and 15,000s case the change in momentum

produced was significantly higher (over 100% higher) for the three grid layout than for

the four grid layout, as shown in Tables 7.5 and 7.6; a reduction in ion momentum was an

unexpected result of including the fourth grid in the thruster.

The inclusion of the fourth grid in the thruster produces no apparent advantages to the

thruster when the backstreaming of CEX ions was disregarded and actually results in a

significantly lower change in ion momentum being produced by the thruster, as shown

in Tables 7.5 and 7.6. Hence the conclusion of this work is that the fourth grid should



93

not be included in the dual stage thruster system, unless a very long lifetime is required

and it is expected that a three grid thruster could not fulfil this requirement. In order to

discover the expected lifetime extension as a result of including the fourth grid, CEX ions

would need to be included in PICSIE; this is discussed in Section 9 as possible further work.

A set voltage profile was then applied to the three grid layout, and the grid configuration

was manipulated to find the most efficient layout in terms of producing a high specific

impulse, thrust and change in ion momentum while maximising ion beamlet focusing (and

therefore minimizing erosion of the grids as a result of ions impact), as described in Section

6.3. Results of this optimization can be found in Table 6.10; the results indicate that the

maximum specific impulse that can be achieved with this chosen voltage profile without

increasing erosion rates is 17,280s. The results also show that increasing the extraction

stage gap results in a drop in the number of ions impacting on the extraction grid, and

a negative correlation can be seen between the specific impulse and the number of ions

impacting on the grid.

It was thought that propagating a wave through the plasma within the ion thruster could

result in improved performance; firstly the potentials applied to the accelerating grids were

oscillated. No improvement was observed in performance of the thruster, as can be seen

in Section 6.4.1; no significant changes in performance parameters were apparent, with

specific impulse, thrust, change in ion momentum and beamlet focusing remaining very

close to those produced by the optimised grid configuration presented earlier.

Secondly an ion acoustic wave was simulated in the centre of the accelerator grid aper-

tures, as described in Section 6.4.2. As for the oscillating grid potentials no improvement

in performance parameters was observed; specific impulse, thrust, change in ion momen-

tum and beamlet focusing remained very close to those produced by the optimised grid

configuration presented earlier.

The lack of change in the performance parameters observed after introducing waves into

the discharge chamber plasma was unexpected. This may be due to the effects being very

subtle, or hidden by assumptions made in the simulation. It is possible that other types

of waves may have a more noticeable effect.

This chapter has discussed the conclusions reached during this work. The following chapter

will discuss some potential areas for future work, leading from the conclusions reached

during this research and from some interesting results obtained from the simulation code

that couldn’t be investigated further due to time constraints.



94

9 Further Work

This chapter will discuss some possible areas for future work, including extending the

simulation code PICSIE and examining in more detail some interesting results that were

produced by the simulation code.

A major cause of reduced lifetime in ion thrusters is widening of the grid apertures due

to CEX ions. A potential next stage in this research would be to extend PICSIE to in-

clude these CEX ions, in order to attempt to predict the total expected lifetime of the ion

thruster. As the expected lifetime of the thruster would play a key role when choosing

a thruster for a potential space mission it would be important to know that the thruster

design could fulfil potential lifetime requirements. Extending the simulation domain to

include the entire discharge chamber of the thruster when studying erosion would pro-

vide more insight into erosion and its consequences. Sputtering taking place within the

discharge chamber can affect other areas of the thruster, allowing sputtered material to

build up in areas where it may have negative consequences. Producing a simulation of the

entire discharge chamber area would allow the flow of sputtered material to be examined,

analysing the benefits of the materials recommended to reduce sputtering and finding

methods to reduce the erosion process.

Alternatively the code could be extended to simulate two or more apertures in two dimen-

sions, allowing the interaction of the individual ion beamlets to be studied. The interaction

between ion beamlets could alter performance of the thruster, and engineering the thruster

design in order to minimize the negative impacts of ion beam interaction would play an

important role in designing an efficient engine.

PICSIE is currently being used by two undergraduate students in the Engineering depart-

ment at Sussex University as a research tool. The students will be adapting the code to

fit their own research aims of studying material performance at boundaries and plume

collimation to improve specific impulse.

Some of the results presented in this work may have consequences that were not apparent

when using the simulation code PICSIE. When manipulating the two thruster designs

with the aim of producing a specific impulse of 10,000s it was found that the three grid

design required a more gentle potential gradient in the acceleration stage compared to

the four grid design in order to produce the same specific impulse. The differences in

potential gradient in the area may have an impact on erosion, both from ions leaving the

ion beam to impact on the grids and from backstreaming ions. The apparent efficiency

of the three grid design in this case may actually result in increased erosion within the

thruster, or alternatively may result in reduced erosion within the thruster. All aspects of

a design choice should be studied before a firm conclusion is reached, so this would be an

interesting area for further study.
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A similar issue arises in the 15,000s specific impulse case; it can be seen in Table 7.6 that

a slightly larger acceleration stage gap of 2.5mm is used in the three grid case, compared

to a gap of 2mm in the four grid case. A 25% increase in the acceleration stage gap com-

pared to the four grid case could have significant impact on erosion patterns, particularly

in terms of ions escaping the ion beam and impacting on the grids, resulting in potential

barrel erosion. It is clear that investigation of erosion patterns would be a key area for

future work, as it is possible that decisions made during this research could have an impact

on erosion rates and therefore potential lifetime of the thruster.

One of the main differences between the two thruster designs was the change in ion mo-

mentum produced by the thrusters, with the change in ion momentum being significantly

higher in the three grid case compared to the four grid case. The reasons for this difference

in performance are not clear and this would be an interesting area for further study.

The concept of introducing waves into the plasma within the discharge chamber was stud-

ied briefly. No apparent benefits were found, although it is possible that there were subtle

effects that went unnoticed or that assumptions made within the simulation code hid any

potential effects. The lack of impact of propagating waves through the discharge chamber

was unexpected, so it is possible that investigating this concept in more detail would make

it possible to utilize this concept in order to improve the performance of all gridded ion

thrusters. There are many types of waves that could be investigated, and it is possible

that although the two wave types investigated in this work did not show any effect another

type of wave may have a more dramatic impact on thruster performance. This would be

a major area of work, with the physical interaction between the motion of the waves and

the particles within the thruster having potentially unexpected consequences in other ar-

eas, for example impacts on erosion rates and thruster lifetime or altering the interaction

between the ion beamlets and within the thruster plume. The simulation code would need

to be greatly extended in order to study this in detail.

In Figure 6.2 a sharp increase in the number of ions impacting on the extraction grid

can be seen at a voltage of 6300V. The reasons for this striking increase are not clear,

therefore running a number of simulations with voltages around 6300V to get a clearer

understanding of what is occurring at this point would be beneficial. This increase in

the number of ions impacting on the grid could result in increased erosion, leading to a

potentially reduced lifetime. Therefore it would be useful to study this in more detail

and reach a conclusion on whether this particular grid configuration and voltage profile

should be avoided due to the reduced collimation of the ion beamlet leading to increased

ion impaction on the extraction grid.

This chapter has suggested several potential research areas for future work. It is clear that

there are many areas of research into which this work could be extended, all complimenting

this work in different ways.
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Appendices

Appendix A - Conversion Factors

The conversion factors shown here were used in PICSIE to peform conversions between

real units and computer units.

Time conversion factor:

TF =
ωpCOMP

ωp

Thermal velocity conversion factor:

VthF =
Vth

VthCOMP

Drift velocity conversion factor:

VdriftF =
Vdrift

VdriftCOMP

Length conversion factor:

LF = VthF ∗ TF

Number density conversion factor:

NdF =
Nd

NdCOMP

Charge conversion factor:

QF =
q

qmacro

NdF



104

Mass conversion factor:

MF =
Mi

MCOMP

Energy conversion factor:

WF = MF ∗ V 2
thF

Potential conversion factor

φF =
WF

QF

Electric field intensity conversion factor

EF =
φF

LF

Magnetic induction conversion factor

BF =
MF

TF ∗QF

Charge density conversion factor

ρF =
QF

LF
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Appendix B - Matlab Code

This section contains sample code for the PICSIE simulation, including the main code and

the functions called within in.
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Main code

%%%%%%%%%%%%%%%%%%%%%%%%%%

%%ION THRUSTER PIC CODE%%%

%%Ellie Bramer%%

%%%%PICSIE%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Clear variables, close all figures

clear variables

close all

%Identify global variables needed for functions

global C Lx Ly M K vth v_drift Te N nx ny p np nnp insertp Vp Xp MomentumX MomentumY

Cden Rho phi EF it Optics1 Optics2 Optics3 Optics4 i j a b c d e f g h h1 h2 h3 h4

mp_q PhiO1 PhiO2 PhiO3 PhiO4 SW PCOUNT;

%%Simultion domain%%

nx = 26; %No. of nodes in x direction

ny = 10; %No. of nodes in y direction

N = nx*ny; %No. of nodes

%%Constants%%

RE0 = 8.854e-12; %Permittivity of a vacuum REAL

E0 = 1; %E0 COMPUTER

EPSI = 1; %EPSI = 1/E0

QE = 1.602e-19; %Elementary charge

Kb = 1.381e-23; %Boltzmann constant

AMU = 1.661e-27; %Atomic mass unit

Mi = 2.18024e-25; %Xenon ion mass (kg) REAL

Rqm = 7.14e5; %Charge to mass ratio of Xenon (q/m) REAL

QM = 1; %Charge to mass ratio COMPUTER

q = 5; %Charge of Xenon ion REAL

%Plasma parameters

n0 = 1.5e17; %Density in #/m^3 REAL

Te = 5; %Electron temperature in eV

T = 500; %Plasma temperature in K

Wc = 0; %As plasma is unmagnetised
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%ST = 5.31*DL; %Sheath thickness

phiref = 10; %Reference potential REAL

Max = 200000; %Max no. of particles

%SCALING AND CONVERSION FACTORS%

%Wp and Time%

Wp = 1; %Wp COMPUTER

RWp = sqrt(n0*q^2/RE0*Mi); %Wp REAL

Tf = Wp/RWp; %Time CONVERSION FACTOR

%Velocity%

vthR = sqrt(Kb*Te/Mi); %Thermal velocity REAL

vth = 0.1; %Thermal velocity COMPUTER

Vthf = vthR/vth; %Thermal velocity CONVERSION FACTOR

v_drift = 4*vth; %V_drift COMPUTER

v_driftR = 7000; %V_drift REAL

v_driftF = v_driftR/v_drift; %V_drift CONVERSION FACTOR

%Length%

lambdaD = 69*sqrt(T/n0); %Debye length REAL

DL = vth/Wp; %Debye length COMPUTER

Lf = Vthf*Tf; %Length conversion factor

Fpe = Wp/(2*pi);

Tp = 1/Fpe;

%%%%%%%%%%%%Simulation Domain, length, cell size, time%%%%%%%%%%%%

C = 4*DL; %Cell size

dx = 4*DL;

Lx = (nx-1)*C; %Domain length in x direction

Ly = (ny-1)*C; %Domain length in y direction

dt = 0.5; %Time step

ts = 500; %No. of time steps

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Number density%

RNd = (n0^0.333)*lambdaD; %Number density REAL - no of real particles per

lambdaD

Nd = Max*(DL/Lx); %Number density COMPUTER - no of macroparticles

per LD

Nf = RNd/Nd; %Number density CONVERSION FACTOR

Tp = 1/(9*sqrt(Nd)); %Plasma period

RN0 = 2.5e11; %Plasma density REAL

N0 = RN0/Nf; %Plasma density COMPUTER

%Charge and mass%

mp_q = Wp^2/(QM*Max/Lx); %Macroparticle charge COMPUTER

Qf = q/(mp_q/Nf); %Charge CONVERSION FACTOR



108

M = mp_q/QM; %Mass COMPUTER

M = 1;

Mf = Mi/M; %Mass CONVERSION FACTOR

%Other%

Wf = Mf*Vthf^2; %Energy CONVERSION FACTOR

phiF = Wf/Qf; %Potential (Phi) CONVERSION FACTOR

Ef = phiF/Lf; %E-field intensity CONVERSION FACTOR

Bf = Mf/(Tf*Qf); %Magnetic induction CONVERSION FACTOR

RhoF = Qf/Lf; %Charge density CONVERSION FACTOR

K = (vth^2*M)/Te; %Boltzmann constant COMPUTER

%Potentials%+

phiREF = 30; %Reference potetial REAL

phi0 = phiREF/phiF; %Reference potential COMPUTER

RPhiO1 = 30000; %Optics 1 potential REAL - 30kV

PhiO1 = RPhiO1/phiF; %Optics 1 potential COMPUTER

RPhiO2 = 27000; %Optics 2 potential REAL - 27kV

PhiO2 = RPhiO2/phiF; %Optics 2 potential COMPUTER

RPhiO3 = -400; %Optics 3 potential REAL - -0.4kV

PhiO3 = RPhiO3/phiF; %Optics 3 potential COMPUTER

RPhiO4 = 0; %Optics 4 potential REAL - 0V

PhiO4 = RPhiO4/phiF; %Optics 4 potential COMPUTER

%%Initialize particles%%

Xp = zeros(Max,2); %Particle positions

Vp = zeros(Max,2); %Particle velocities

insertp = (ny-1)*20; %Insert 20 particles per cell

flux = Nd*v_drift*Ly; %flux of entering particles

npt = flux*dt; %number of real particles created per timestep

SW = npt/insertp; %specific weight, real particles per macroparticle

%insertp = 50;

phi = ones(nx,ny)*phi0; %Initial potential set to phi0

np = 0; %Clear particles

nnp = 0; %Clear extracted particles

O1 = 0;

O2 = 0;

O3 = 0;

O4 = 0;

E = [0 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%x range for each optics

a=6;

b=9;

c=11;

d=14;

e=16;

f=19;

g=21;

h=24;

%y max for each optics

h1=floor(ny/2);

h2=floor(ny/2);

h3=floor(ny/2);

h4=floor(ny/2);

%initialize optics and boundary conditions

init1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Display to show program is running

disp([’Solving....’])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MAIN LOOP

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for p=1:np

Xp(p,:) = Xp(p,:)/dx; %Normalize Xp and Vp

Vp(p,:) = (Vp(p,:)*dt)/dx;

end

for it=1:dt:ts %Repeat for set no of time steps

%Reset field quantities

Rho = zeros(nx,ny); %Rho

Cden = zeros(nx,ny); %Charge distribution
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Pd = zeros(nx,ny); %Plasma density - for diagnosis only

%%%%%%%%%%%%%%Insert particles%%%%%%%%%%%%%%%%%%%%%%%%%%

%Check no of particles is within set limit

if (np+insertp>Max)

disp([’Max no. of particles reached’])

break

end

%Insert particles at each time step%

%Insert particles randomly across Y and in first cell of X - Poisson

%distribution

Xp(np+1:np+insertp,1)=poissrnd(2,insertp,1)*C; %X position

Xp(np+1:np+insertp,2)=poissrnd(2,insertp,1)*(Ly/2); %Y position

%Maxwellian velocity distribution, include thermal and drift velocity

a = M/(2*K*Te); %Maxwellian

M = 4*a^(3/2)*exp(-a*vth^2)*vth^2/(sqrt(pi));

Vp(np+1:np+insertp,1)=v_drift+rand(insertp,1)*vth*M;

Vp(np+1:np+insertp,2)=0.5*rand(insertp,1)*vth*M;

if Xp(p,2)>ny

Xp(p,2) = ny - (Xp(p,2)-ny);

Vp(p,2) = -Vp(p,2);

end

pcountf;

np=np+insertp;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Weight particles to grids%%

weightPtoG;

Rho0 = mp_q*N0/Nd; %Charge density of each macroparticle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Poisson%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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poissoncalc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Electric field%%

EF = -gradient(phi);

%%%%%%%%%%%%%%%%%%%%%%%%%%%Insert new particles%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MomentumX = zeros(np,1);

MomentumY = zeros(np,1);

for p=1:np

MomentumX(p) = M*Vp(p,1);

MomentumY(p)= M*Vp(p,2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%Move particles%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p=1;

while(p<=np) %loop over particles

if Xp(p,1)<Lx

x = Xp(p,1); %X grid point

y = Xp(p,2); %Y grid point

xgp = int8(x);

ygp = int8(y);

if xgp<1

xgp = floor(xgp+1);

else

xgp = round(xgp);

end %Round to integer

if ygp<1

ygp = 1;

elseif ygp>ny-1

ygp = ny-1;

else

ygp = round(ygp); %Round to integer

end

%%%%%%%%%%%

%Electric field
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E1 = int8(EF(xgp,ygp));

E2 = int8(EF(xgp+1,ygp));

E3 = int8(EF(xgp,ygp+1));

E4 = int8(EF(xgp+1,ygp+1));

E = [E1 E1]*((C-xgp)*(C-ygp)/(C*C)); %contribution from (i,j)

E = E+ [E2 E2]*(xgp*(C-ygp)/(C*C)); %(i+1,j)

E = E + [E3 E3]*((C-xgp)*ygp/(C*C)); %(i,j+1)

E = E + [E4 E4]*(xgp*ygp/(C*C)); %(i+1,j+1)

E = double(E);

end

F = QM*E;

A = QM*((E*dt^2)/dx); %Normalize

%Update position and velocity

Vp(p,:) = Vp(p,:)+A;

Xp(p,:) = Xp(p,:)+Vp(p,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%Effect of boundaries on particles%%%%%

for p=1:np

%%Reflective boundary at y=0, x=0, y=Ly

%Boundary at y=Ly

if (Xp(p,2)>ny)

if (Xp(p,2)>(ny+ny))

Xp(p,2) = ny-0.5;

Vp(p,2) = -Vp(p,2);

else

Xp(p,2) = ny-(Xp(p,2)-ny);

Vp(p,2) = -Vp(p,2);

end

end

%Boundary at y=0

if (Xp(p,2)<0)

if (Xp(p,2)<(-ny))

Xp(p,2) = 0.1;

Vp(p,2) = -Vp(p,2);

else

Xp(p,2) = -Xp(p,2); %Move particle back to domain
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Vp(p,2) = -Vp(p,2);

end

end

%Boundary at x=0

if (Xp(p,1)<0)

if (Xp(p,1)<(-nx))

Xp(p,1) = 0.1;

Vp(p,1) = -Vp(p,1);

else

Xp(p,1) = -Xp(p,1);

Vp(p,1) = -Vp(p,1);

end

end

%At x = Lx allow particle to continue past boundary out of

%simulation domain and count no. of particles

if (Xp(p,1)>nx)

nnp = nnp+1;

np = np - nnp;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Is particle within Optics1

if ((Xp(p,1)>=a && Xp(p,1)<b) && ...

(Xp(p,2)>1 && Xp(p,2)<h1))

in_opt1=true;

else

in_opt1=false;

end

%Optics 2

if ((Xp(p,1)>=c && Xp(p,1)<d) && ...

(Xp(p,2)>1 && Xp(p,2)<h2))

in_opt2=true;

else

in_opt2=false;

end

%Optics 3

if((Xp(p,1)>=e && Xp(p,1)<f) && ...

(Xp(p,2)>1 && Xp(p,2)<h3))

in_opt3=true;
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else

in_opt3=false;

end

%Optics 4

if ((Xp(p,1)>=g && Xp(p,1)<h) && ...

(Xp(p,2)>1 && Xp(p,2)<h4))

in_opt4=true;

else

in_opt4=false;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Absorbing boundary on optics

if (in_opt1)

Xp(p,:) = Xp(np,:); %Kill particle by replacing it with last particle

Vp(p,:) = Vp(np,:);

np = np - 1; %Reduce particle count

p = p-1; %Reduce particle

O1 = O1+1;

end

if (in_opt2)

Xp(p,:) = Xp(np,:); %Kill particle by replacing it with last particle

Vp(p,:) = Vp(np,:);

np = np - 1; %Reduce particle count

p = p-1; %Reduce particle index

O2 = O2+1;

end

if (in_opt3)

Xp(p,:) = Xp(np,:); %Kill particle by replacing it with last particle

Vp(p,:) = Vp(np,:);

np = np - 1; %Reduce particle count

p = p-1; %Reduce particle index

O3 = O3+1;

end

if (in_opt4)

Xp(p,:) = Xp(np,:); %Kill particle by replacing it with last particle

Vp(p,:) = Vp(np,:);
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np = np - 1; %Reduce particle count

p = p-1; %Reduce particle index

O4 = O4+1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p = p+1; %Move to next particle

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%PLOT RESULTS%%

if it == 1 %Plot at timestep 1

plot1

end

if (mod(it,25) == 0 || it==ts) %Plot every 25 timesteps

plot2

end

end



116

Function: init1

function init1

global nx ny j Optics1 Optics2 Optics3 Optics4 a b c d e f g h h1 h2 h3 h4;

%Optics 1 dimensions - Plasma grid

box(1,:) = [a b]; %X range

box(2,:) = [1 h1]; %Y range

%Define optics

Optics1 = zeros(nx,ny);

for j=box(2,1):box(2,2)

Optics1(box(1,1):box(1,2),j)=ones(box(1,2)-box(1,1)+1,1);

end

%Optics dimensions - Extraction grid

box(3,:) = [c d]; %X range

box(4,:) = [1 h2]; %Y range

%Define optics

Optics2 = zeros(nx,ny);

for j=box(4,1):box(4,2)

Optics2(box(3,1):box(3,2),j)=ones(box(3,2)-box(3,1)+1,1);

end

%Optics dimensions - Accel grid

box(5,:) = [e f]; %X range

box(6,:) = [1 h3]; %Y range

%Define optics

Optics3 = zeros(nx,ny);

for j=box(6,1):box(6,2)

Optics3(box(5,1):box(5,2),j)=ones(box(5,2)-box(5,1)+1,1);

end

%Optics dimensions - Ground grid

box(7,:) = [g h]; %X range

box(8,:) = [1 h4]; %Y range

%Define optics

Optics4 = zeros(nx,ny);

for j=box(8,1):box(8,2)
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Optics4(box(7,1):box(7,2),j)=ones(box(7,2)-box(7,1)+1,1);

end

end
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Function: weightPtoG

function weightPtoG

global np p Xp Cden C nx ny q

for p=1:np %loop over particles

if Xp(p,1)<nx

x = Xp(p,1); %X grid point

y = Xp(p,2); %Y grid point

xgp = int8(x);

ygp = int8(y);

if xgp<1

xgp = 1;

end

if xgp>(nx-1)

xgp = nx-1;

else

xgp = round(xgp);

end

if ygp<1

ygp = 1;

end

if ygp>(ny-1)

ygp = ny-1;

else

ygp = round(ygp); %Round to integer

end

Cden(xgp,ygp) = Cden(xgp,ygp)+((C-xgp)*(C-ygp)/(C*C));

Cden(xgp+1,ygp) = Cden(xgp+1,ygp)+(xgp*(C-ygp)/(C*C));

Cden(xgp,ygp+1) = Cden(xgp,ygp+1)+((C-xgp)*ygp/(C*C));

Cden(xgp+1,ygp+1) = Cden(xgp+1,ygp+1)+(xgp*ygp/(C*C));

end

end

end
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Function: poissoncalc

function poissoncalc

global phi Rho mp_q Optics1 Optics2 Optics3 Optics4 PhiO1 PhiO2 PhiO3 PhiO4 nx ny C Cden

%Rho = SW*mp_q*(Cden*npt)/(C*C); %Specific weight x

Rho = Cden*mp_q*SW;

%Reshape arrays into column vectors

PHI = reshape(phi, numel(phi),1);

rho = reshape(Rho, numel(Rho),1);

rho1 = reshape(rho,nx,ny);

%%%%%%%%%%%%%%%%%%%%%%

%Set boundary conditions - divide by RhoF to normalize

rho1(:,1) = 0; %Electric field on y=0;

rho1(:,ny) = 0; %Electric field on y=L;

rho1(nx,:) = 0; %Electric field on x=L;

rho1(1,:) = 0 ; %Electric field on x=0;

rho2 = rho1+(Optics1*PhiO1)+(Optics2*PhiO2)+(Optics3*PhiO3)+(Optics4*PhiO4);

PHI = reshape(PHI,nx,ny);

rho2 = rho2+PHI;

rho2 = reshape(rho2,numel(rho1),1);

%Solve Poisson equation

S = numel(rho2);

phi = poicalc(rho2,C,C,S,1);

%Reshape to nx by ny array

phi = reshape(phi,nx,ny);

end



120

Appendix C - Presentation at 33rd International Conference on Plasma

Physics [ICPP-2012], Venice, Italy, 2012

A poster was presented on this research at the 33rd International Conference on Plasma

Physics (Venice, November 14-16 2012) and is shown below along with the poster abstract.

Poster Abstract

Simulation of Dual Stage Ion Thruster Using a Particle in Cell Code

Background:

Traditional ion thrusters make use of two or three accelerator grids to accelerate ions and

thereby produce thrust. A recent concept is the dual stage ion thruster, in which the

extraction and acceleration of ions is split into two stages, allowing a higher accelerating

potential to be applied without adverse affects. Simulations are often used to model ion

thrusters, in order to attempt to improve performance and lifetime.

Method:

A two dimensional particle in cell code has been written in order to simulate the flow of

ions through a single aperture on dual stage ion thrusters. This code has been used to

simulate an aperture in the Dual-Stage 4-Grid (DS4G) ion thruster and the Dual-Stage

3-grid (DS3G) ion thruster. Original results were compared with results obtained through

testing of a DS4G prototype in a vacuum chamber and other simulations of the DS3G. The

parameters of the grids, including voltage applied to the grids, grid thickness, grid sep-

aration and aperture size were then varied in order to arrive at the optimum configuration.

Results:

Results will be presented showing the most efficient grid configuration and voltage profile to

produce certain specific impulses for the DS4G and DS3G ion thrusters in terms of thrust,

momentum, beam divergence and ion impaction on the grids, a key factor in determining

the lifetime of the thruster. The 3 grid and 4 grid configurations were compared in order

to decide whether the added complexity of the fourth grid makes a significant difference

to the performance of the thruster. The 3 grid simulation was then run with a set voltage

profile applied to the grids while the configuration was varied to find the most efficient

grid configuration in order to maximise the performance parameters stated above.
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Simulation of dual-stage ion thrusters using a particle-in-cell code

Ellie Bramer
Introduction

The Particle in Cell Code

Gridded ion engines use electrostatic forces 

to accelerate ions and produce thrust.

Dual stage ion thrusters separate ion 

extraction and acceleration into 2 stages, 

allowing higher acceleration potentials to be 

applied. This produces higher specific 

impulse (SI), exit velocity and thrust density.

The Dual-Stage 4-Grid (DS4G) ion thruster 

uses four grids, screen, extraction, 

acceleration and deceleration. It has been 

suggested [1] that the benefits provided by 

the fourth grid are outweighed by the added 

complexity of the thruster.

Simulations are often used to model the 

performance of ion thrusters

In a particle in cell (PIC) code, a 

mathematical grid is imposed on the 

simulation domain. Particle positions are 

interpolated to the grid, the field equations 

are performed on the grid and the fields are 

then interpolated back to

the particle positions. The new particle 

positions can then be calculated.

[2]
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A first order, or bilinear, weighting scheme 

was chosen for this simulation. In a first 

order weighting scheme the particle charge 

is linearly weighted to the four nearest grid 

points (in 2D). The weighting scheme is 

given by

Weighting Schemes

Field Equations

A singlesimulation particle represents a 

large number of real particles and is known 

as a ‘super particle’.

Where � C is the charge of the super particle, 

� x and � y are the grid spacings in the x and 

y directions.

The same weighting scheme is used to 

interpolate the particle positions to the grid 

and then the forces back to the particles.

And the electric field can be calculated 

from

Fig 1. Potential within the simulation 

domain. White areas are the accelerator 

grids. Potential in real units, x and y axis 

arbitrary computer units

Fig 2. X component of the electric field 

within the simulation domain, in real units

Fig 3. Y component of the electric field 

within the simulation domain.

Particle Mover

The fields can then be weighted back to 

the particles, and the new particle 

positions can be calculated using the 

leapfrog particle mover, using

The charge densities calculated at the 

grid points become the right hand side of 

Poisson’s equation

(1)

(2)

(3)

(4)

Results
Dual-Stage 4-Grid Thruster (DS4G)

The most efficient voltage profile and grid 

configuration to produce an Isp of 15,000s 

was found to be:

•Total applied voltage of 9,500V

•Screen grid diameter: 0.5mm

•Other grid diameters: 2mm

•Extraction stage gap: 0.5mm

•Acceleration stage gap:2mm

•Deceleration stage gap: 1mm

•Aperture diameter: 0.7 – 1mm

-- Power efficiency: 0.54

Dual-Stage 3-Grid Thruster (DS3G)

For an Isp of 15,000s:

•Total applied voltage of 10,000V

•Screen grid diameter: 0.5mm

•Other grid diameters: 2mm

•Extraction stage gap: 0.5mm

•Acceleration stage gap:2.5mm

•Aperture diameter: 0.7 – 1mm

-- Power efficiency: 0.56

Conclusions
The DS4G case required a lower applied 

voltage in order to produce an Isp of 15,000s, 

and produced a higher thrust and better beam 

focusing. However the DS3G produced a 

slightly higher power efficiency.

Although the main reason for the deceleration 

grid is to protect the thruster from 

backstreaming ions it does seem to provide 

some benefit in terms of thrust and beam 

focusing.
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