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Abstract 

Physics of laminar-to-turbulent transition in a separated-reattached flow 

subjected to two free-stream turbulence levels have been explored using 

Large-Eddy Simulation (LES). Separation of the laminar boundary layer 

occurs at a curvature change over a flat plate with a semi-circular leading 

edge. A numerical trip has been used to generate the targeted free-stream 

turbulence levels. A dynamic Sub-grid-scale (SGS) model has been 

employed and excellent agreement has been achieved between the LES 

results and the experimental data. 

Detailed investigation of the LES data has been carried out to explore the 

primary instability mechanism at low (< 0.2%) and high free-stream 

turbulence (5.6%). The flow visualisations and spectral analysis of the 

separated shear layer reveal that the two-dimensional Kelvin-Helmholtz 

instability mode, well known to occur at low free-stream turbulence levels, 

is bypassed at a higher level leading to earlier breakdown to turbulence.  

The whole transition process leading to breakdown to turbulence has been 

revealed clearly by the flow visualisations and the differences between the 

low and high free-stream turbulence cases are clearly evident. Coherent 

structures are also visualised using iso-surfaces of the Q-criterion and for 

the high free-stream turbulence case the spanwise oriented two-dimensional 

rolls, which are clearly apparent in the low free-stream turbulence case, are 

not visible anymore. Detailed quantitative comparisons between the present 

LES results against experimental data and the previous LES results at low 

free-stream turbulence using a staggered grid have been done and a good 

agreement has been obtained, indicating that the current LES using a co-

located grid with pressure smoothing can predict transitional flows 

accurately. 

Comprehensive spectral analysis of the separated shear layer at two free-

stream turbulence levels has been performed. Under very low free-stream 

turbulence condition, a distinct regular vortex shedding and trace of the 

low-frequency flapping phenomena were detected. Under the higher free-

stream turbulence however, a mild high-frequency activity was observed. 

No low frequency oscillations could be detected.  
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Chapter 1  

Introduction 

 

Separated flows are important in many engineering applications from cooling of 

small electronic devices to airfoil and turbo-machinery design. Understanding the 

physics of such flows is important; as separation can lead to dramatic changes in drag, 

lift and heat transfer rates. The stall phenomenon which is characterised by a loss in lift 

and increase of drag is related to separation of boundary layer. In the stall condition 

reattachment of the separated boundary layer is hindered or may never happen which 

will cause large recirculation regions. If a separated flow reattaches downstream, it 

causes the formation of a separation bubble; its characteristics are a crucial aspect of 

the engineering design process.  

Separation can be induced either in a flow containing sharp geometry gradients or 

by an adverse pressure gradient where the momentum in the boundary layer is not high 

enough to overcome the pressure gradient. Geometry induced separation happens in 

situations such as flow over a blunt plate and forward/ backward facing step geometries 

where the separation is fixed in space and happens at all values of Reynolds (Re) 

numbers (other than very low Re number in Stokes creeping flow). In a separation 

induced by adverse pressure gradient however, both separation and reattachment 

locations can change as flow parameters vary (Alving & Fernholz, 1996). 

Considering the state of the boundary layer at separation and reattachment, three 

main types of separation bubbles are recognisable in the literature; laminar, transitional, 

and turbulent. In the laminar separation bubble the flow at both separation and 

reattachment is laminar. The transitional separation bubble has a laminar separation 

while reattachment is turbulent, and a turbulent separation bubble is one where flow is 

already turbulent at separation. The attention in the current study is on the transitional 

separation bubble. Laminar boundary layer separation occurs in many practical 

problems such as low Re number flow of airfoils and flows over steps, obstacles, 
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humps and other forms of localised variations of a surface geometry. A feature of 

laminar separated flow is that it becomes unstable even at relatively low Re numbers 

and therefore it usually involves unsteadiness and is likely to undergo a transition to 

turbulence. Unsteady behaviour and the mean flow pattern in a separated flow are 

therefore expected to be affected by instability and transition phenomena.  

1.1 Motivation 

Separation bubbles especially those which fail to reattach may result in a significant 

loss of lift if they form over aircraft wings, and a subsequent loss of engine efficiency if 

they form in compressor/turbines. The problem is particularly important in aircraft 

engines. Airfoils optimised to deliver maximum power at takeoff conditions may 

experience boundary layer separation at cruise situations due to the low density of air 

and so the lower Reynolds numbers at altitude. Separation becomes complicated by 

boundary layer transition. A considerable fraction of the boundary layer on both sides 

of a turbine airfoil may be transitional (Mayle, 1991), so accurate prediction of 

transition location is essential for accurate prediction of separation. Predicting the 

transition is complicated and may depend on a number of factors, particularly the free-

stream turbulence intensity. Separation bubbles on flat plates subject to adverse 

pressure gradients have been considered in quite a few studies. Much has been learned 

from the work to date, but the nature of separated flow transition is still not completely 

clear, and existing models are still not as robust as needed for accurate prediction.   

The location where transition starts and the spatial extent within which transition 

takes place, are of crucial interest in engineering design and performance prediction 

applications. The transition process is also known to influence the behaviour of 

separation bubbles. Transition in the shear layer of a separated flow is important 

because if it is not triggered early enough, the shear layer is possible to develop further 

away from the wall and entrainment may not be enough to cause the reattachment. The 

role of laminar-turbulent transition in aerodynamics and heat transfer applications has 

motivated considerable efforts in theoretical, experimental, and computational studies 

of the phenomenon.  

To date, experimental data with high frequency instrumentation and modern 

computer calculation methods together with increased computational resources have 
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provided valuable understanding of the phenomenon. Experimental studies have 

provided fundamental knowledge of parameters influencing transition in bubbles, along 

with indications for related physical mechanisms. However, such data are limited in 

providing only limited temporal and spatial resolution of flow parameters and hence a 

thorough description of the transition process is very difficult if not impossible. 

Theoretical studies on the other hand, suffer from the limitation imposed by 

nonlinearity of the transition process at the later stages of transition. Building on the 

available experimental results some empirical correlation models have been proposed 

to predict the time-averaged structure and behaviour of separation bubbles however 

despite improvements such as introducing transition prediction methods, they are still 

unable to describe sufficiently the unsteady behaviour of transitional bubbles. Reliable 

transition models are essential for high performance airfoil design purposes and 

transition modelling techniques are in use to predict transition in such applications. 

Different approaches such as low-Re turbulence models and experimental correlations 

are employed (Langtry & Menter, 2005). Such models however, are reported to be of 

limited accuracy and non universal. Although most models in current use are semi-

empirical in nature, a comprehensive understanding of underlying physics of transition 

process is required for their development (Roberts & Yaras, 2005).  

Regarding the recent advancements in computing resources, the transitional bubble 

has increasingly been the subject of fundamental numerical studies. It is aimed in this 

research to simulate numerically a typical transitional bubble and supplement the 

current knowledge regarding the mechanisms and parameters involved in transition of a 

laminar separated flow. 

 

1.2 Instability and Transition 

For any system to be stable infinitesimal disturbances, which are always naturally 

present in any actual system, must not be amplified. Smooth laminar flows remain 

stable to small disturbances only when certain conditions are satisfied. When these 

conditions are not satisfied, the infinitesimal disturbances grow and the flow will shift 

to the chaotic turbulent condition through a sequence of events known as the transition 

process (instability of a laminar flow does not immediately lead to turbulence). It is 

known that the transition process is greatly affected by conditions such as the intensity 
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of fluctuations in the free stream and wall roughness. The sequence of events that lead 

to turbulence is also greatly dependant on flow situations; for example transition 

scenario in free shear flows such as mixing layers, jets, and wakes is different from that 

in wall-bounded shear flows (Kundu & Cohen, 2004).  

 

1.2.1 Instability Modes and Mechanisms  

Two fundamentally different instability mechanisms have been identified in 

hydrodynamic stability studies of laminar flows. Regarding the shape of the laminar 

velocity profile, if an inflection point exists in the profile the flow is unstable to small 

disturbances. This instability has been analysed theoretically by making an inviscid 

assumption in the equations describing the growth of disturbances, thus this type of 

instability was known as an inviscid instability (Schmid & Henningson, 2001). Velocity 

profiles of this type are common in the flows such as jets, mixing layers, wakes, and 

also in separated boundary layers. On the other hand, flows with laminar velocity 

profiles without inflection point are subject to viscous instability where inviscid theory 

predicts unconditional stability for this kind of profiles. Velocity profiles of this type 

are characteristic of boundary layer flows near solid walls in the absence of adverse 

pressure gradient.  

The primary instability mechanism at the interface between two parallel streams 

with different velocities (where velocity shear and a vortex sheet exist) is an inviscid 

instability called the Kelvin-Helmholtz (KH) mechanism. When there is a velocity 

difference between two streams of fluid, the resulting shear layer is generally unstable; 

any small perturbation continues to grow and the KH instability causes the sheet to roll 

up into discrete vortices. The inviscid instability results in formation of KH rolls in the 

following manner. An external perturbation leads to oscillation of the vortex sheet. This 

oscillation then causes a pressure difference along the sheet so that the amplitude of the 

oscillation grows. The upper and lower parts of the sheet are then convected by the 

upper and lower flows respectively leading to rolling up of the layer. 

A typical example of a flow with an inflection point is a jet flow. The transition 

process in a jet flow is schematically shown in Figure 1.1, where the KH instability is 

followed by further amplification and formation of stronger vortices through a pairing 
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process. Further downstream the vortices become distorted by the action of 3D 

disturbances and the flow breaks down to a large number of eddies leading to fully 

turbulent regime. A similar process is observed in other flows with an inflection point 

such as mixing layers and wakes.  

 

Fig. 1.1 Schematic of transition process in a jet flow (Versteeg & Malalasekera, 1995)  

 

Another possible mechanism for instability, the so-called Tollmien-Schlichting (TS) 

instability, is typically associated with attached boundary layer transition. This is a 

viscous instability whereby two-dimensional TS waves are superimposed on the 

laminar boundary layer. These unstable two-dimensional disturbances are called TS 

waves, which are amplified in the flow direction. In such flows without a point of 

inflection, viscous instability theory predicts that there is a finite region of Re number 

wherein infinitesimal disturbances are amplified. If the Re number is high enough 

initial linear instability takes place. Depending on the amplitude of the waves at 

maximum linear amplification, it is possible that the amplified waves are weakened 

further downstream and the flow remains laminar. However if the amplitude is large 

enough, TS waves undergo a secondary nonlinear instability mechanism. Secondary 

instabilities cause the TS waves to become 3D and develop into hairpin Λ-vortices 

(vortex formation), which eventually burst into turbulent spots. The turbulent spots 

initiate transition to fully turbulent boundary layer flow through lateral and longitudinal 

growth and merging, yielding a fully turbulent flow state at the end of the transition 

(Mayle, 1991; Schlichting & Gersten, 2000). A schematic of the transition process in a 
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flat plate boundary layer at low level of disturbances is shown in Figure 1.2. The 

process above is known as natural transition and can be summarised as follows; 

 The laminar boundary layer becomes susceptible to small disturbances at a critical 

Re number,  

 An instability in the form of 2D TS waves is developed,  

 Amplification of this instability takes place to a point where 3D instabilities grow 

and develop into vortices with large fluctuations,  

 Turbulent spots emerge in highly fluctuating regions of the flow,  

 Turbulent spots grow and convect downstream within the laminar layer, merging 

eventually into a fully developed turbulent boundary layer.  

 

Fig. 1.2 Schematic of natural transition in a flat plate boundary layer (Versteeg & Malalasekera, 1995) 

 

The transition process is well known to be sensitive to the disturbance level. Mayle 

(1991) distinguished between three main modes of transition; natural, bypass, and 

separated-flow transition. The “natural” transition as described above is the most basic 

mode and begins with a weak instability in the laminar boundary layer as first described 

by Tollmien and Schlichting (Schlichting & Gersten, 2000). It undergoes various stages 

of amplified instability before reaching to a fully turbulent state. 
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The second mode, the "bypass" transition, is brought about by large levels of 

disturbances in the external flow (such as free stream turbulence) and this mode 

completely bypasses the TS mode of instability. At high external turbulence levels, the 

first stages of the natural transition process are bypassed and turbulent spots are formed 

directly within the boundary layer by the influence of free stream turbulence. 

Finally, "separated-flow" transition is the case where transition occurs in the free 

shear layer which is formed on the outer edge of a separated laminar boundary layer 

and may or may not involve TS instability. In the case the flow reattaches and a bubble 

forms, the bubble length depends on transition process in the free shear layer and, in 

general, may involve all of the stages listed above for natural transition (Mayle, 1991). 

The transition mechanisms and role of free stream turbulence for this mode (i.e. 

separated flow transition) is not yet fully understood and the current study intends to 

shed more light on the mechanisms and working parameters involved in this mode of 

transition.  

 

1.2.2 Absolute vs. Convective Instability  

Efforts for better qualitative and quantitative descriptions of shear flows behaviour, 

have led to introduction of concepts such as absolute and convective instabilities. 

Establishment of whether any flow is absolutely or convectively unstable is argued as 

essential for flow control applications to determine how a control input can influence 

the global development of the flow. Two levels of instability description are possible: 

local (instability of the local velocity profile), and global (instability of the entire flow 

field) (Huerre & Monkewitz, 1990). Considering each streamwise location (local level), 

if localised disturbances can spread both upstream and downstream the velocity profile 

is said to be locally absolutely unstable. An absolutely unstable region is defined as a 

flow region where perturbations added locally are amplified temporally and spatially 

and as time passes, influence the entire absolutely unstable flow region (Gaster 1962, 

1965). In this case any transients produced by switching on the excitation or any 

residual background fluctuations will amplify and contaminate the entire region. Thus, 

for temporal and spatial amplification of disturbances in a transitional flow field 

absolutely unstable or absolutely sensitive regions need to be determined. In an 

absolutely unstable flow local absolute instability is dominant in a finite region. Shear 
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flows with a pocket of absolute instability may exhibit intrinsic dynamics where 

development of vortices do not depend on spatial amplification of external disturbances 

but rather on growth of initial local disturbances in time and temporally growing self-

excited global modes may be present. Based on this concept, introducing a probe in 

experimental studies of any absolutely unstable system demands excessive care as any 

small disturbance may significantly alter the nature of the flow (Huerre & Monkewitz; 

1985, 1990). 

On the other hand, if locally introduced disturbances are carried away from the 

source only downstream, the velocity profile is said to be locally convectively unstable. 

In a convectively unstable region the locally introduced perturbations will not influence 

the original location of perturbation at later times and the instability wave decays to 

zero at all points in the flow at large time. Disturbances are convected away as they 

amplify, eventually leaving the basic flow undisturbed. Any transients produced by 

switching on the excitation or background fluctuations are convected downstream, and 

spatially growing waves can be recognised at the excitation frequency. A convectively 

unstable flow is very sensitive to low-level forcing and the dominant frequency is 

sensitive to and dependent on the background turbulence intensity and spectral content 

(Huerre & Monkewitz, 1985). In other words, locally convectively unstable shear flows 

exhibit extrinsic dynamics where spatial development of unsteady flow is mainly 

determined by external excitation characteristics (frequency, amplitude, etc). In this 

case, the flow behaves as an amplifier of external disturbances.  

From the above descriptions one can conclude that fluid mechanical instabilities 

which start suddenly, e.g. as in the wake flow behind a body, are absolutely unstable 

whereas instability of a boundary layer in which transition occurs via several discrete 

instabilities are convectively unstable (Schlichting & Gersten, 2000). Schlichting & 

Gersten utilised these concepts and introduced two possible modes for transition: 1) a 

laminar-turbulent “sudden change” in the flow field when the instability becomes 

abruptly absolutely unstable, as for example in the wake behind a body in a flow, and 

2) a laminar-turbulent “transition” for convectively unstable flows where instability 

carries through several processes leading to turbulence. The subject of convective and 

absolute instabilities is very rich in theoretical content and comprehensive theoretical 
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background as applied to fluid flows has been addressed by Huerre & Monkewitz 

(1985, 1990) and Brevdo (1988).  

 

1.3 Computational Approach 

Computational Fluid Dynamics (CFD) is based on the basic idea of employing 

appropriate numerical algorithms to find solutions to the equations governing the fluid 

flow. Numerical simulations of flows are mainly used for two purposes; study of 

fundamental flow physics or, engineering analysis. 

In the first case, numerical simulation is used to describe the basic physical 

mechanisms governing the flow behaviour and help to understand, model, and control 

these mechanisms. In this kind of study, numerical simulation is required to produce 

highly accurate data. This implies that the physical model chosen to represent the fluid 

behaviour must be pertinent and the level of errors introduced by the numerical 

algorithm and the way they are used by the computers should be as low as possible. For 

the best possible accuracy, the simulation should provide data of high resolution and 

take into account all the space-time scales affecting the flow dynamics. This makes the 

problem difficult when the range of scales is very large, as it is in turbulent flows at 

high Re for example. 

For engineering analysis purposes on the other hand, numerical simulation is used 

to predict flow characteristics in the design phase and the aim is no longer to generate 

data for analysing the flow dynamics itself, but rather to predict the values of physical 

parameters that depend on the flow, e.g. stresses imposed on the bodies within the flow. 

Here the goal is to reduce the cost and time to develop a prototype. In this case, the 

restrictions on the quality of representation of the physical phenomena ease off 

compared to what is required in the fundamental studies and the description does not 

have to be as detailed as for fundamental studies.  

The significant feature of turbulent flows is the chaotic movement of fluid particles. 

These chaotic fluctuations of the flow variables can be instantaneously resolved by 

direct numerical simulation (DNS) of the exact governing equations. DNS solves the 

Navier-Stokes (NS) equations directly down to the smallest scales of the motion and 
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thus it is the ideal choice for studying fundamental features of transitional and turbulent 

flows. The challenge however is in the analysis of massive and apparently random data 

produced by DNS, as there are no criteria for selecting from it in a single lifetime of 

what is important. On the other hand, such simulations for real engineering problems 

are still impossible and can be applied only to simple flow problems at low Re 

numbers. This is due to the fact that the number of grid points required for sufficient 

spatial resolution is of the order of Re
9/4

 and Re
3
 for the CPU time (Pope, 2000). The 

common approach therefore is to account for the approximate effects of turbulence by 

employing appropriate turbulence models.  

A large range of turbulence models have been developed and turbulence modelling 

is a subject of ongoing research. Two main classes involving modelling of turbulence at 

different levels are Reynolds-Averaged Numerical Simulation (RANS) and Large-Eddy 

Simulation (LES). Some hybrid models have also been developed to utilise benefits of 

both RANS and LES approaches e.g. Detached-Eddy Simulation (DES) model where 

near-wall regions are solved using RANS mode and the rest of the flow is treated using 

the LES approach. 

   In the RANS approach, statistical averages of the solution are calculated directly, 

and this approach is predominantly used in engineering applications. An instantaneous 

variable is decomposed into the sum of a statistical average and a fluctuating part. The 

fluctuating part cannot be represented directly by the numerical simulation (closure 

problem) and must be included via a turbulence model. The statistical averaging 

operation is often associated with time-averaging and thus the mathematical model is 

that of the steady Reynolds- averaged NS equations. Through this averaging operation 

the number of scales in the solution can be considerably reduced. The statistical 

character of the solution however prevents a fine description of the physical 

mechanisms. This approach therefore is not usable for fundamental studies. 

LES on the other hand relies on a subgrid scale (SGS) model to account for smaller-

scale motions and resolves only larger scales. In LES the contribution of the large 

energy-carrying structures to momentum and energy transfer is computed directly and 

the effects of the small structures which are not resolved by the numerical scheme are 

modelled. LES represents a three-dimensional time-dependent solution of the 

governing equations. Compared with turbulence modelling based on the RANS 
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equations -where grid resolution must be on the order of mean flow- a higher grid 

resolution on the order of some turbulent scale is required. It is however still 

considerably cheaper than DNS regarding the required grid resolution at higher Re 

numbers.  

The unsteady and irregular behaviour of flows in transition and turbulent regimes 

make them very difficult to predict and understand. DNS or LES of flow equations are 

of primary interest for accurate and detailed study of the problem. An LES approach is 

employed in the current study, details of which are presented in the next chapter.   

 

1.4 Previous Work  

In this chapter, the current state of research on instability and transition within 

separated-reattached flows is reviewed. Earlier simulations were confined to 2D 

analysis (Pauley et al., 1990; Tafti & Vanka, 1991a; Ripley & Pauley 1993); for 3D 

cases, only primary (linear) instability was considered and full transition was not 

resolved (Tafti & Vanka, 1991b; Pauley, 1994; Rist, 1994). Numerical simulations with 

full resolution of transition to turbulence and downstream reattachment have been the 

subject of increasing research in the past decade.   

In the case of separation over a plate with a sharp leading edge, it is well known that 

in flow regimes of sufficiently low Re number (laminar bubble) the flow does not 

display any unsteadiness and the reattachment length is steady and increases with Re 

number (Lane & Loehrke, 1980). At higher Re numbers beyond this regime, 

transitional/turbulent bubble is formed and the separated shear layer becomes unstable 

after separation. This flow regime is characterised by formation of unsteady 3D 

coherent structures in the separated and reattachment regions where the reattachment 

point is not fixed and fluctuates about a mean value (the mean reattachment position is 

defined as the location where the time-averaged streamwise surface velocity becomes 

zero). Increased mixing and unsteadiness tends to reduce the mean reattachment length 

in the higher Re regime; this approaches a value of about 4-5 plate thicknesses after a 

Re number of about 700 -based on the free stream velocity and plate thickness- (Lane 

& Loehrke, 1980). Ota & Narita (1978) from their experimental studies of the turbulent 

separation bubble suggested that a reattachment length of 4-5 plate thicknesses would 
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be independent of Re number. In an experimental study at Re number of 26000, Kiya & 

Sasaki (1983), measured a reattachment length of 5 plate thickness. Numerical studies 

of Tafti & Vanka (1991a, b) showed higher reattachment lengths in contrast to the 

experiments mentioned above. It was argued that the shorter reattachment distance 

observed in the experiments was due to the effect of free stream turbulence which was 

not included in the simulations.  

1.4.1 Transition Mechanisms  

Many studies have revealed that in the absence of any finite magnitude 

environmental disturbances, transition in the separated shear layer of a separation 

bubble is dominantly initiated through the inviscid Kelvin-Helmholtz instability 

mechanism. This mode of instability closely resembles that of the planar free-shear 

layer in mixing layers and jets (Ho & Huerre, 1984). Transition in attached boundary 

layers under such conditions however is developed through the viscous TS instability 

with generally lower amplifications than the inviscid case (Schlichting & Gersten, 

2000; Ho & Huerre, 1984). 

The DNS of Spalart & Strelets (2000) for a bubble induced by an adverse pressure 

gradient over a flat plate under very low incoming disturbances ruled out the transition 

in the bubble to be caused by convective amplification of entry-region disturbances (TS 

instability, as in attached boundary layer transition). They reported a wavering 

behaviour of the separated shear layer while gradually moving away from the wall and 

then the formation of Kelvin-Helmholtz vortices. The Kelvin-Helmholtz vortices 

rapidly developed into 3D structures and a sudden transition without the occurrence of 

vortex pairing was reported. The numerical study of Yang & Voke (2001) revealed a 

primary 2D instability of a separated shear layer (induced by a smooth leading edge) 

via Kelvin-Helmholtz mechanism. A similar mechanism was also observed by Abdalla 

& Yang (2004, 2005) in the free shear layer of a separation bubble over a sharp leading 

edge. 

Rist & Maucher (2002) employed linear stability theory to analyse the effect of the 

shape of a velocity profile with reverse flow on the instability characteristics. Two 

regions with two different instability characteristics were observed; the outer separated 

shear layer region being unstable via an inviscid instability, and the inner near-wall 
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region of reverse flow with a viscous Re-dependent instability. The study revealed that 

depending on the distance of the separated layer from the wall and on the reverse flow 

intensity, one instability mode may dominate. A longer distance of the separated layer 

from the wall promotes the outer-layer inviscid mode whilst a higher intensity of 

reverse flow promotes the inner viscous instability. Later on Roberts & Yaras (2006) 

demonstrated that transition of a separated shear layer through the Kelvin-Helmholtz 

instability does not eliminate the existence of TS activity in the inner part of the flow. 

They emphasised the possibility of an interaction between the TS and Kelvin-

Helmholtz instability modes, where the roll up of shear layer vorticity into vortical 

structures occurred at the dominant TS frequency. This was also observed from the 

coarse DNS study of McAuliffe & Yaras (2008), where the TS activity in the separated 

shear layer was followed by roll up of spanwise vorticity into discrete vortical 

structures which are typical for the Kelvin-Helmholtz instability. In the study of 

McAuliffe & Yaras (2008) on transition of a bubble formed due to adverse pressure 

gradient, it was reported that the transition process in the separation bubbles shares 

features from both attached boundary layer and free shear layer. Several studies have 

shown that under certain conditions Kelvin-Helmholtz instability plays a dominant role 

in the transition process of separation bubbles. In a number of experimental studies it 

has also been suggested that the TS instability mechanism may play a significant role in 

the breakdown to turbulence of separation bubble (Volino & Bohl, 2004; Roberts & 

Yaras, 2003). For accurate prediction of the extent of the bubble and the characteristics 

of the turbulent boundary layer downstream of the reattachment, it may be important to 

identify whether the transition process in a separation bubble is dominated by the TS or 

Kelvin-Helmholtz mechanism. 

Recently McAuliffe & Yaras (2010) performed DNS of a separation bubble on a 

flat plate in an adverse pressure gradient with low incoming disturbances. Transition 

was initiated through receptivity of the separated laminar shear layer to small 

disturbances through the Kelvin-Helmholtz mechanism. Kelvin-Helmholtz instability 

developed in the separated layer, causing the vorticity in the shear layer to roll-up into 

distinct spanwise vortical structures; similar to the well-established instability 

characteristics of free shear layers. Examining the fluctuation levels in their study, two 

regions of instabilities with two fluctuation peaks was identified; one in the outer 

separated shear layer and the other in the reverse flow region near the wall. Based on 
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the linear stability analysis of Rist & Maucher (2002), they inferred that the instability 

would be characterised with the outer inviscid mode, as the dominant fluctuation peak 

was observed to occur in the separated shear layer. The coexistence of a less dominant 

near-wall fluctuation peak was associated with the presence of viscous TS instability. 

Along with the dominant inviscid Kelvin-Helmholtz instability leading to transition, the 

presence of this viscous instability near the wall was believed to play a role particularly 

in cases with high levels of reverse flow or thin separated shear layers. In the 

experimental study of Lang et al. (2004) similar fluctuation peaks in the inner and outer 

regions of separated flow had been observed. It seems that along with Kelvin-

Helmholtz instability being the dominant primary mechanism in most cases, TS 

instability is also possible to exist and might be significant in certain situations.  

The next stages of the transition process in separated shear layers after the dominant 

primary Kelvin-Helmholtz instability are less well understood and agreed. In planar 

free shear layers, the primary spanwise vortices generated by the Kelvin-Helmholtz 

instability are known to undergo an instability leading to the vortex pairing 

phenomenon (Ho & Huerre, 1984; Huang & Ho, 1990). Two sequential vortices rotate 

about each other and then merge while becoming stretched in the flow direction 

(Winant & Browand, 1974). This pairing of vortices is regarded as the governing 

secondary mechanism associated with growth of planar free shear layers (Ho & Huerre, 

1984). A similar vortex pairing phenomenon has also been reported in some separated 

shear layer studies (Abdalla & Yang, 2004; Malkiel & Mayle, 1996). It is however 

emphasised that the existence of pairing is only limited to low Re numbers (McAuliffe 

& Yaras, 2010). Abdalla & Yang (2004) in a study of separated flow over a sharp 

leading edge, demonstrated transformation of Kelvin-Helmholtz rolls into 3D structures 

occurring via an alternative secondary instability known as helical instability associated 

with helical pairing of vortices. This helical-pairing instability was introduced as the 

cause of transition from 2D Kelvin-Helmholtz rolls into 3D Lambda (Λ)-shaped and rib 

structures. The same authors (2005) reported a similar scenario wherein Kelvin-

Helmholtz rolls were transformed into Lambda-shaped vortices via a secondary 

instability mechanism (Fig 1.3). 
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Fig. 1.3 Low-pressure isosurfaces displaying the evolution of the Kelvin–Helmholtz Rolls into the so-called Lambda-

shaped vortices (Yang & Abdalla, 2005) 

 

Another noticeable aspect of planar free shear layers is their non-uniformity in the 

spanwise direction which is related to development of streamwise counter-rotating 

vortex pairs (Ho & Huerre, 1984). This 3D behaviour is assumed to be associated with 

a further secondary instability mechanism superimposed on the 2D primary instability, 

analogous to the scenario in attached boundary layer transition where streamwise 

stretching of TS waves sets in (Schlichting & Gersten, 2000). Huang & Ho (1990) 

associated the small-scale turbulence generation in planar free shear layers with the 

interaction between these streamwise vortices and the spanwise vortices emerging from 

the primary instability. Malkiel & Mayle (1996) assumed a similar interaction of 

streamwise and spanwise vorticity for transition in separation bubbles, but this 

interaction has not yet been confirmed in any studies of transitional separation bubbles. 

Yang & Voke (2001) observed non-uniform spanwise structures with slow 

development of 3D motions associated with peak-valley wave structures. Development 

of 3D motions via a secondary instability mechanism was related to distortion of 2D 

spanwise vortices and formation of a spanwise peak-valley wave structure. 
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In some studies of separation bubbles (Spalart & Strelets, 2000; Roberts & Yaras, 

2006; McAuliffe & Yaras, 2010), a rapid breakdown to turbulence occurring over a 

short streamwise distance has been reported. In DNS of Spalart & Strelets (2000) for a 

bubble over a flat plate with Re number of 36,500 (based on the length of the laminar 

separated layer and the edge velocity) and under very low incoming disturbances, the 

Kelvin-Helmholtz vortices developed into 3D structures very quickly and a sudden 

transition occurred without the occurrence of vortex pairing. In the study of McAuliffe 

& Yaras (2010) for a bubble over a flat plate with separation Re number of about 300 

(based on the momentum thickness and edge velocity) amplification of the Kelvin-

Helmholtz instability led to small-scale fluctuations developing within the braid (high-

shear) region between spanwise vortices. These fluctuations then led to stretching and 

reorientation of the spanwise structures into hairpin vortices, which were shed 

downstream. Small vorticity distortions in the roll-up region were associated with 

small-scale turbulence activity between the spanwise vortices, where breakdown was 

observed to happen in a time-periodic manner. These vorticity distortions then were 

convected with large scale spanwise vortices, leading to complete breakdown to small-

scale turbulence. Despite this breakdown to small-scale turbulence, spanwise vortical 

structures were observed to remain coherent downstream of transition. These structures 

however, were observed to become distorted and stretched resulting in some hairpin 

like structures. Similar hairpin structures were reported by Abdalla & Yang (2004a, b). 

It is believed that this reorientation of vorticity in the streamwise direction is a key 

mechanism for the reattachment process as it provides enhanced momentum exchange 

in the wall-normal direction. Similar structures in the reattachment region of turbulent 

separation bubbles were reported by Kiya & Sasaki (1983).  

It appears that, although not entirely understood at the later stages, transition in 

laminar separated flows generally develops through the following stages; 

 A primary 2D instability, 

 A secondary instability leading to significant 3D motions and,  

 A breakdown stage where fully turbulent flow emerges.  

Downstream of the bubble a boundary layer re-forms but initially not in a standard 

form. The turbulent boundary layer very slowly recovers to an equilibrium log-law 

turbulent boundary layer state. Castro & Epik (1998) studied experimentally the 



17 
 

boundary layer development following a separation bubble and observed the energetic 

outer layer decayed very slowly in the downstream direction, hindering the inner layer 

reaching a standard form. It is believed that large scale energetic structures around the 

reattachment point modify their mixing-layer-like nature very slowly to that of 

canonical boundary layers. Yang & Voke (2001) observed a turbulent boundary layer 

shortly after reattachment but establishment of a standard log-law boundary layer was 

reported to take longer distances beyond their computational box. Alam & Sandham 

(2000) reported this recovery to take seven bubble lengths downstream of the mean 

reattachment. McAuliffe & Yaras (2010) also observed a delayed recovery of the 

reattached turbulent boundary layer, which was attributed to slow decay of turbulence 

kinetic energy in the outer region, resulting from the large scale structures formed 

during the transition in separated shear layer.  

 

1.4.2 Shedding Phenomenon   

One of the fundamental features of turbulent separated-reattached flows are the 

different frequencies of vortex shedding, associated with different unsteady phenomena 

within the bubble and shear layer. In a steady laminar separation bubble one can define 

a reattachment point or line where the skin friction is zero. In transitional and turbulent 

separation bubbles however, the instantaneous flow field is highly unsteady around the 

‘mean’ reattachment point and the notion of a reattachment ‘point’ is misleading as it 

continuously varies with the time. In this case, it is possible that several small bubbles 

or vortices are periodically formed leading to a vortex shedding phenomenon. Tafti & 

Vanka (1991a) in their two-dimensional LES of a separation bubble on a blunt flat plate 

studied the effect of Re number. They considered four Re numbers (150, 250, 300, 

1000, based on the free stream velocity and plate thickness). It was reported that the 

bubble at the first three Re numbers showed steady separation and reattachment. 

However, with increased Re number to 1000, the flow field was reported to show 

unsteadiness with formation of spanwise vortices which were shed periodically from 

the reattachment region.  

Kiya & Sasaki (1983) in their experimental study of a turbulent bubble over a flat 

plate at high Re number (26000, based on free stream velocity and plate thickness), 

observed a peak frequency range of 0.6–0.8 U0/l from velocity and pressure spectra 
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(U0: free stream velocity, l: mean bubble length). This frequency band was stated to be 

the characteristic frequency of the large vortices shedding from the free shear layer of 

the bubble. Also a low frequency (0.12 U0/l) flapping motion of the shear layer was 

reported near the separation line and it was suggested that this low frequency flapping 

motion might be caused by the large scale shrinkage and enlargement of the bubble. 

This low frequency flapping reported by Kiya & Sasaki was also confirmed by Cherry 

et al., (1984) in a study of a similar configuration but at a higher Re number with 

transition very close to separation, and it was proposed that the phenomenon would be 

an inherent feature of turbulent bubbles. 

Tafti & Vanka (1991a, b) reported the roll up of a separated shear layer into 

spanwise vortices which then merged and shed downstream with a shedding frequency 

of 0.68 U0/l. A sequence of events of vortex formation, merging, and shedding was 

observed. In their 2D simulation (1991a), despite the experimentally observed 3D 

nature of the flow field in the non-laminar bubbles, the vortex shedding dynamics were 

accurately captured. However, time signals of surface pressure and velocity near the 

separation showed no sign of the low frequency flapping phenomenon near the 

separation as reported earlier by Kiya & Sasaki and Cherry et al. The 3D calculations 

of Tafti & Vanka could however capture the low-frequency flapping of the bubble. It 

was argued that their 2D calculations were unable to capture this phenomenon as it was 

essentially characteristic of 3D turbulent separation (Cherry et al., 1984). 

Yang & Voke (2001) observed vortex shedding from the separated shear layer on a 

flat plate with a semi-circular leading edge, although not periodic with a single 

frequency. The instantaneous reattachment position was reported to move over a 

distance up to 53% of the mean reattachment length. A characteristic shedding 

frequency variation in a range of 0.35-1.14 U0/l was reported- giving an average value 

of 0.77 U0/l which was comparable with the measured dominant shedding value of 0.65 

U0/l (Kiya & Sasaki 1983, 1985; Cherry et al. 1984). Yang & Voke also identified a 

low frequency peak within the velocity spectra and suggested that the low-frequency 

flapping (0.125-0.2 U0/l) observed in experimental studies was associated with large 

shrinkage of the bubble caused by a big vortex shedding at a lower frequency. Abdalla 

& Yang (2004a) in their LES of a transitional bubble over a plate with a sharp leading 

edge extracted a characteristic frequency in the range 0.7-0.875 U0/l along with some 
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less dominant modes between 0.3-0.6 U0/l. They inferred that this frequency content 

must be related to pairing of vortices as the same order of frequency had been reported 

for the pairing phenomenon behind a backward facing step (Delcayre, 1997). No low-

frequency flapping was observed. Abdalla (2004) proposed the low-frequency flapping 

was more apparent in the case of turbulent separation where rolled up vortices emerge 

even at the separation line. Yang & Abdalla (2009) studied the same problem but with 

higher free stream turbulence (2%) and reported a peak frequency band at about 0.8–0.9 

U0/l, in close agreement with the characteristic frequencies already measured in 

previous studies. Based on thorough spectral analysis, no low-frequency flapping was 

observed and since it was laminar flow at the leading edge (laminar separation), hence 

it was speculated that the low-frequency mode in separated–reattached flows may only 

appear in the case of turbulent separation as suggested earlier by Cherry et al. (1984). 

 

1.4.3 Absolute vs. Convective Instability  

Because of their importance in flow control (Huerre & Monkewitz, 1985; Yin et.al, 

2000) and transition to turbulence (Yeo et.al, 2001), convective and absolute 

instabilities in fluid flows have been considered in a number of studies. Huerre & 

Monkewitz (1985) theoretically studied absolute and convective instabilities of free 

shear layers. It was demonstrated that spatially growing waves can only be observed if 

the mixing layer is convectively unstable. A criterion was developed for the flow to be 

absolutely unstable -instability developing in time- and to be described in terms of 

temporally growing disturbances. 

Similarly, the possible presence of absolute instability regions in separation bubbles 

has been considered in some studies. Analysing local profiles of separated boundary 

layers, Hammond & Redekopp (1998) demonstrated that for certain profiles local 

absolute instability could be observed, depending on both reverse flow intensity and 

wall distance of the separated shear layer. These criteria were also confirmed by Rist & 

Maucher (2002) applying linear stability theory to local profiles of laminar separation 

bubble. A time-growing instability was identified in their 2D DNS of a laminar 

separation bubble. With the aid of special signal analysis techniques and a very low 

disturbance environment upstream of the bubble, it was observed that for a certain time, 

disturbances generated in the reattachment region amplified locally while shedding 
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upstream travelling waves. From their parametric study of velocity profiles along with 

2D DNS of transitional bubble, it was suggested that for occurrence of time-growing 

(absolute) instability, in addition to the maximum reverse flow an extra parameter of 

wall distance and intensity of separated shear layer must be considered. 

Alam & Sandham (2000) performed linear stability analysis of the mean flow 

velocity profiles obtained from their DNS data in the separated region. It was shown 

that for absolute instability to be sustained, reverse flow of the order of 15-20% was 

required (also Wissink & Rodi, 2003). A bubble with turbulent reattachment and 

maximum reverse flow of less than 8% was observed and thus the study concluded that 

the fundamental instability was convective in nature and the transition process was 

driven by convective instability. Spalart & Strelets (2000) however, in their DNS of a 

transitional bubble with very low inflow disturbances (less than 0.1% of free-stream 

velocity), dismissed the dependence of transitional flow on convective instability. Yang 

& Voke (2001) in their LES of a transitional bubble over a smooth leading edge 

observed a maximum reverse flow of less than 3% and hence discarded the existence of 

any absolute instability region in the bubble. Marxen et al. (2003) from their combined 

DNS and experimental studies on a laminar bubble under forced periodic disturbances 

concluded that transition was driven by convective amplification of a 2D TS wave 

while the dominant mechanism behind transition was an absolute secondary instability. 

Similar behaviour was proposed earlier by Maucher et al. (1997, 1998, 2000) where in 

the presence of large amplitude 2D wave, 3D modes were temporally amplified via an 

absolute secondary instability mechanism. 

Jones et al. (2008) performed a DNS of a separation bubble formed over an airfoil 

and applied linear stability analysis upon the mean flow, which showed the bubble to 

be convectively unstable and no absolute instability was observed. It was however 

speculated that the persistence of turbulence after elimination of forcing (upstream 

introduction of disturbances) could imply the presence of some mechanism other than 

convective growth of disturbances. They proposed that in the absence of convectively 

driven transition within the shear layer, a three-dimensional absolute instability of 2D 

vortex shedding behaviour would cause transition in a manner not being predicted by 

linear stability analysis of the time-averaged flow field. The instability was associated 
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with production of streamwise vortices in braid region between successive spanwise 

vortices. 

1.4.4 Role of Free Stream Turbulence  

It is known that free-stream turbulence (FST) is a key parameter influencing the 

characteristics of a separated shear layer and its following reattachment. FST increases 

the shear-layer entrainment rates, decreases the mean reattachment length, and results 

in an earlier transition to turbulence in the separated boundary layer. In attached 

boundary layer studies with low (less than 1%) FST levels, natural transition is known 

to take place, whereas at sufficiently high FST, bypass transition is the main 

mechanism. Although there is no definitive threshold, beginning of this bypass 

mechanism is known to be strongly affected by disturbance level and also receptivity of 

shear layer to this disturbance. Eddies and organized disturbances may interact with an 

adjacent initially laminar boundary through different mechanisms which their joint 

effects in any given flow is difficult to predict and to be understood. One may look at 

the entrainment or external mechanisms, whether perturbations in the boundary layer 

originate from an upstream edge or inlet and grow within the boundary layer or internal 

disturbances induce directly by external disturbances that move above the layer. This is 

the general question of receptivity paths for bypass transition (Jacobs & Durbin; 1998, 

Leib et.al; 1999). Another issue is how the fluctuations are transformed within the 

boundary layer and how the layer itself is changed. Only very low level forcing leads to 

natural transition via TS waves. Moderate or high level forcing leads to bypass 

transition via formation of localised turbulent spots without TS precursors. Once 

induced, these disturbances grow within the boundary layer, although their 

development may be influenced by inflection of the boundary layer and by the free-

stream distortion. When there is free-stream turbulence over the boundary layer, the 

question is whether free stream eddies are the primary source of transitional spots. In 

the research on bypass transition the issue of whether growth and final breakdown of 

the streaky structures arises from boundary layer internal dynamics, or from forcing by 

free-stream eddies is not fully understood. Such uncertainty is primarily due to 

experimental difficulties in following the details of the generation and growth of 

disturbances because of their randomness in space and time. 
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As mentioned earlier laminar flow is much more susceptible to separation than 

turbulent one and sometimes laminar separation is followed by transition that leads to 

reattachment of the turbulent flow. This is because the laminar shear layer is highly 

unstable and rolls-up into large Kelvin-Helmholtz vortices. In separated flows, 

transition is also possible to be accelerated by the separation along with influence of 

FST which is not yet fully understood especially at high levels of FST. Detailed 

response of a shear layer bounding a separated region to free-stream turbulence, is an 

open question. While we know that transition and reattachment locations move 

upstream significantly as FST increase and there are quantitative description of what 

happens under different FST conditions, the transition mechanism in not clear. To 

better describe the transition process and accurately predict or control it, an 

understanding of physical processes involved is essential. 

Hillier & Cherry (1981) studied the effects of FST on the mean and fluctuating 

pressure distributions on a blunt flat plate. It was shown that increased FST level 

caused a reduction in the bubble length which was reported to be not affected by 

turbulent length scale. Kalter & Fernholz (2001) studied the effect of FST on a 

boundary layer with an adverse pressure gradient and a closed reverse-flow region. It 

was shown that the added FST shortened the mean reverse-flow region or completely 

eliminated it. 

Castro & Haque (1988) provided detailed measurements of a separated region 

behind a flat plate with a splitter and studied how the different nature of the upstream 

flow can change the shear-layer structure. It was reconfirmed that FST leads to 

improvement in shear-layer entrainment rates and decreases the distance to 

reattachment. It also modified the low-frequency flapping motion of the shear layer. It 

was shown that FST caused an increased flapping motion of the shear layer just after 

separation, giving higher streamwise Reynolds stresses across the shear layer. A 

different turbulence structure around the reattachment was also reported as a result of 

FST. It was also speculated that different large eddy structures might also be present 

with FST.  

Transition in separated flow can potentially contain characteristics of either natural 

or bypass transition. To investigate separated flow transition, Hughes & Walker (2001) 

considered a flow with wakes, in which the FST between wakes ranged from about 1% 
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to about 3%, and the FST in the wakes was about 8%. They observed evidence of TS 

waves. Hatman & Wang (1999) and Volino & Hultgren (2001) studied transition in the 

shear layer over separation bubbles with low FST. Their spectral data showed clear 

evidence of an instability along with harmonics very similar to the Kelvin-Helmholtz 

instabilities observed in free shear layers. The difference in the unstable frequencies 

compared to free shear layers was associated with the presence of a wall on one side of 

the bubble. The same authors also considered higher FST cases and observed 

broadband unsteadiness in the spectra of the streamwise fluctuating velocity and spikes 

at discrete frequencies were not present (unlike with the low FST case). It was stated 

that transition for the high FST situations appeared to be through a bypass mechanism. 

Volino (2002a, b) experimentally studied boundary layer separation, transition and 

reattachment under low-pressure turbine airfoil conditions, at different Re with low and 

high FST levels. It was found that higher Re or FST level caused the transition to move 

upstream. The spectral analysis in the cases with low FST revealed sharp peaks, while 

for the high FST case more broadband peaks were observed. From the frequencies of 

the peaks it was suggested that a TS instability mechanism was behind the transition at 

both high and low FST cases.  

 Yang & Abdalla (2005) considered the effects of 2% FST on the large-scale 

structures present in a separated boundary layer transition. They reported a 14% 

reduction of the mean bubble length and an earlier breakdown of the separated 

boundary layer. It was demonstrated that with increased FST the position of first 

unsteadiness moved closer to the separation line. Increased rates of randomness of the 

flow and degraded coherency of the early stage structures along both the span and 

streamwise directions were also reported as consequences of the added FST. At 2% 

FST, 2D Kelvin-Helmholtz rolls were not as apparent as in the case with no FST, but 

still observable in the early part of the bubble. Lambda-shaped (hairpin) vortices could 

hardly be identified and streamwise structures were enlarged in the spanwise direction 

and shortened in the streamwise direction compared with the case of no FST. It was 

concluded that in the presence of 2% FST the primary instability of the free shear layer 

was still the same as in the no FST case (Kelvin-Helmholtz instability mechanism) but 

secondary instability was different and needed to be further investigated. 
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Recently Yang & Abdalla (2009) investigated whether FST can affect the low-

frequency shedding modes; their earlier studies with no FST did not show low 

frequency flapping.  From a thorough spectra analysis they reported that the low-

frequency flapping was also not observed with 2% FST. With a laminar flow at the 

leading edge (laminar separation) and 2% FST, they suggested that the low-frequency 

mode in separated–reattached flows may only appear in the case of turbulent 

separation, as suggested earlier (Cherry et al., 1984). A peak frequency band at about 

0.8–0.9 U0/l was also reported to occur at elevated FST, which was close to the 

characteristic frequencies already measured in previous studies (Kiya & Sasaki 1983, 

1985; Cherry et al., 1984). They described how at 2% FST shedding still occurs with a 

characteristic shedding frequency corresponding to the same value as for no FST 

condition, and inferred that the primary instability mechanism in the no FST case 

(Kelvin-Helmholtz instability) is still functioning in the presence of 2% FST. It was 

suggested that if the level of FST is increased further, a much more rapid transition may 

occur with a different transition mechanism, similar to the so called bypass transition in 

attached boundary layer flows. 

McAuliffe & Yaras (2010) studied the effect of elevated FST (1.45% at separation) 

on a laminar boundary layer separation over a flat plate induced by adverse pressure 

gradient. Compared to the low-disturbance case (0.1% FST at separation) where the 

Kelvin-Helmholtz instability developed in the separated shear layer, at the higher FST 

this mechanism was reported to be bypassed. Streamwise streaks resulting from 

filtering of FST into the laminar boundary layer appeared upstream of separation, 

providing the conditions necessary for turbulent spot productions in the separated shear 

layer. Turbulent spots then grew and merged leading to full turbulence. 

Palikaras et al. (2002) presented the effect of the free-stream velocity profile on the 

transition of separated flow on a flat plate. The flows examined were based on the T3L 

test case (ERCOFTAC Special Investigation Group for transition) where the separated 

boundary layer transition on a flat plate with a semi-circular leading edge was 

examined under various free-stream conditions regarding turbulence intensity and 

velocity magnitude. Two free-stream velocity distributions were studied; a uniform 

velocity and a mean shear velocity profile with positive gradient (               ). 
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It was reported that the existence of mean shear inlet velocity distribution reduced the 

length and thickness of the separation bubble.  

It is understood that there is some discrepancy about the transition mechanism in 

separated boundary layers, particularly under high FST conditions. Some of these 

differences may be due to physical differences in the boundary conditions of different 

studies. Although the general effect of FST on the increased entrainment rate and 

shorter bubble length is well known, the unsteady behaviour of the bubble and 

transition mechanisms involved in separated boundary layers particularly at higher FST 

conditions are less understood. The present study is particularly aimed at addressing 

this issue through spectral and coherent structures analysis of flow over a flat plate with 

semi-circular leading edge, at both high and low FST.  

 

1.5 Summary  

From the literature survey above it is understood that despite substantial work on 

transitional studies of the separation bubbles there are still open issues in the field.  In 

most cases inviscid instability via the Kelvin-Helmholtz mechanism is believed to be 

the first dominant instability mechanism acting within the separated shear layers. There 

are, however, some reports indicating that transition of a separated shear layer through 

the Kelvin-Helmholtz instability does not eliminate the existence of TS activity in the 

bubble. The viscous instability near the wall may play a role particularly in cases with 

high levels of reverse flow or thin separated shear layers. More studies are needed to 

understand the criteria for the presence or dominance of these two primary modes. 

More research is needed on the later- stage instabilities of separated-reattached flows 

which are not yet fully understood. Role of free-stream turbulence intensity in transition 

and unsteady characteristics of the separated-reattached flows is not well understood 

and hence is the subject of ongoing research. 

 

1.6 Objectives  

This project is aimed for LES of a transitional separation bubble over a flat plate 

with a semicircular leading edge (T3L case of ERCOFTAC, 1999). LES data will be 

used to investigate the separated-reattached flow with particular emphasis on the 
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primary transition mechanism involved. The focus will be on the role of high free-

stream turbulence on transitional characteristics of the bubble. This has a practical 

importance since typically high turbulence levels are present at some practical 

situations e.g. 5-10% in compressors and turbines. The main objectives of this research 

are outlined as follows;    

 To study the primary instability mechanism in a geometry-induced separated 

flow, 

 To study effects of high free-stream turbulence level on the KH instability of 

the shear layer observed at low turbulence levels, bubble dimension, and 

shedding frequencies associated with transitional separated-reattached flows, 

 To study large-scale coherent structures at various stages of transition and their 

evolution. 
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Chapter 2 

Governing Equations and Numerical Methods  
 

 

 

All motions of any Newtonian fluid are governed by Navier-Stokes (NS) equations. 

For the majority of flows of interest, analytical solution of equations is impossible and 

numerical methods have to be employed. As stated in the previous chapter, direct 

numerical simulation of the exact NS equations, i.e. without modelling of any terms, is 

very demanding in terms of high grid resolution and very small time steps required for 

capturing all the length and time scales present in the problem. The broad range of 

space and time scales involved in a problem; therefore, can significantly increase the 

computational cost. 

In LES, the flow field is spatially filtered; where the scales larger than the filter size 

are calculated directly using the filtered NS equations, and only scales smaller than the 

filter size have to be modelled. These small-scale turbulent motions are more universal 

and isotropic and recover faster to the equilibrium state compared to the larger eddies 

(Piomelli, 2001). This makes LES with sub-grid scale modelling more accurate than 

RANS and associated turbulence modelling techniques. Compared to DNS, LES is less 

expensive; as the small scale eddies are not resolved. 

 In LES any flow variable            is decomposed into a filtered (large-scale, 

resolved) part            , and a sub-filter (small, unresolved) part q'         ;  

                                 

The filtering applied to the NS equations removes the small turbulence scales. 

Filtering can be classified into two categories, explicit and implicit. Implicit filtering is 

a common approach where the finite volume grid is employed to decompose the flow 

field into resolved, and sub-grid (smaller than grid size) scales.  

(2.1) 
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For incompressible flow the filtered governing equations which describe the 

temporal and spatial development of large scale motions are; 

 

    

   
   

                                                                                                                                                       

    

  
 

 

   
          

 

 

   

   
  

     

     
 

    
 

   
 

       

Here,    
  is the subgrid-scale (SGS) stress tensor caused by nonlinearity of the 

convective term; 

   
                   

Equations (2.2) describe unsteady large scale random and three-dimensional fluid 

motions. Using a set of boundary conditions for the primitive variables and a model for 

the subgrid-scale stress tensor, these equations are solved numerically, to give    and   . 

Both SGS model and boundary conditions may significantly influence the simulation in 

terms of numerical stability and accuracy of the computed flow field. The following 

sections will discuss subgrid-scale modelling and inlet conditions for LES. 

 

2.1 Sub-Grid Scale Modelling 

The sub-grid scale tensor appeared in the filtered NS equations is unknown and has 

to be modelled. The SGS stress describes the effects of the unresolved scales on the 

resolved scales. The main function of a SGS model is in fact to model correctly the 

energy transfer between the different turbulence scales. The role of SGS modelling in 

LES depends on the computational grid resolution. The coarser the mesh, LES will 

resolve less, and more scales have to be considered by the SGS model. On the other 

hand, at the DNS limit where the mesh resolution is such that all scales are properly 

resolved, the SGS model does not play a significant role. 

(2.2) 

(2.3) 
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A common approach for SGS modelling is the Boussinesq eddy-viscosity 

assumption (Sagaut, 2001) where the SGS stresses are related to the large-scale strain-

rate   
   as follows:  

   
  

   

 
   

        
   

  
   

 

 
 
    

   
 

    

   
  

 

which assumes the energy transfer mechanism to be from the resolved to the subgrid 

scales, similar to the molecular diffusion mechanism represented by the diffusion term 

in the NS equations. Therefore the same mathematical structure can be used with the 

kinematic viscosity replaced by eddy viscosity   , and the closure will consist of 

determining an expression for   . Eddy viscosity is generally evaluated from algebraic 

relations to reduce numerical costs. The Smagorinsky model is a very simple eddy-

viscosity model which is based on the equilibrium hypothesis which implies that the 

small scales dissipate entirely and instantaneously all the energy they receive from the 

large scales. The Smagorinsky model is defined as; 

              

where    in the smagorinsky constant and depends on the flow type (for shear flows a 

value of 0.1 is suggested, but it was found that the separated flow can be highly 

affected by this constant). In the above equation,   is the filter width and is usually 

taken as twice the average grid size;                 .      is the magnitude of 

filtered strain rate tensor; 

          
     

   
    

 

2.1.1 Dynamic procedure 

Smagorinsky model is still often employed for performing LES. However it has a 

number of drawbacks. The model constant (Cs) has been accurately validated only for 

the simple flow of decaying turbulence. The same value of the model constant is often 

used for more complex flows in which it is not clear what the value should be. The 

presence of shear or the transition from laminar to turbulent flow are two of the factors 

(2.5) 

 

(2.6) 

 

(2.4) 
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that can affect its value (Piomelli, 1999). A priori knowledge of Cs is vital for correct 

behaviour of the model and it is this feature that can potentially limit its application to 

flows that have not been studied before. Besides, the Smagorinsky model does not 

allow the eddy viscosity to fade away in near-wall regions. Therefore, a damping 

function is required in order to satisfy this condition. Near the walls, the eddy viscosity 

   value may be reduced by introducing a damping function (Pope, 2000).   

A more sophisticated approach to overcome the near-wall behavior and other 

deficiencies of the original Smagorinsky model is the dynamic model approach. 

Dynamic subgrid modelling techniques have been developed and applied successfully 

to a range of flows recently. Dynamic models produce the variation of C near the solid 

walls naturally and hence use of the ad hoc damping functions such as the well known 

Van Driest type are unnecessary. The variation of C with Re number and with the flow 

type allows for reliable LES of transitional flows. For the dynamic model (Germano 

et.al, 1991; Lilly, 1992), the anisotropic part of the SGS stresses are parameterised by 

an eddy viscosity assumption (equation 2.4) and the eddy viscosity given by,  

            

where the coefficient C is determined using the least squire approach of Lilly (1992). A 

second coarser spatial filter, called the “test” filter is applied leading to the test-filtered 

equations of motion, with the caret signs representing the test-filtered variables. A 

subtest-scale (STS) stress Tij  is similarly approximated by;  

                 
   

With the test-scale shears defined similarly to those for the grid scale. Subtracting the 

test-filtered average of      from     : 

                          
    

  

The elements of L are the resolved components of the stress tensor associated with 

scales of motion between the test scale and the grid scale. These scales are normally 

called “test window”. The test-window stresses, can be explicitly evaluated by 

subtracting the test-scale average of equation 2.4 from 2.8 to obtain;  

(2.7) 

 

(2.8) 

 

(2.9) 
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where 

               
             

    

The value of C can be obtained from eq. 2.10 as follows. Q is defined as the square of 

the error in eq. 2.10, i.e;  

             
   

Upon setting ∂Q/∂C = 0, C is evaluated as; 

 

  
 

 
 
      

   
   

which represent the minimum of error Q. In the current simulation C is defined as; 

 

  
 

 
 
        

        
 

Where the angle brackets represent an average over the homogeneous spanwise 

direction z. The resulting C is a function of time and the inhomogeneous co-ordinates x 

and y. In finite volume calculations the test-filtered flow quantities can be computed by 

spatial averaging the calculated large scale variables over a few grid cells. In the current 

study, the averaging is performed over 9 cells. 

 

2.2 Inlet Conditions for LES  

In contrast to RANS approach, where all quantities specified at inlet boundary are 

usually constants (i.e., have only spatial variation but not changing in time), in LES the 

variables at inlet boundary change not only in space but also in time as it is usually 

turbulent flow at inlet. A method should be used to generate realistic turbulent 

fluctuations at the inlet. Turbulence at the inlet may have a significant contribution to 

the turbulence within the domain and have a great impact on the flow dynamics, and so 

the correct implementation of the inlet conditions is of considerable importance also a 

(2.10) 
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great challenge. There are several methods to generate turbulent inflow conditions. Two 

basic approaches are synthesis methods and precursor methods.  

In synthesis methods, artificial perturbations are added to the mean flow. 

Fluctuations are generated at the inlet with some specific characters. Successful 

simulations have been performed with this method (synthetic turbulence), using 

perturbations based upon Fourier series or other analytically generated disturbances 

(Keating et.al, 2004). The disturbances should lie in a reasonable range of acceptable 

values. If they are too small, turbulence will not be generated or supported and if too 

large, unphysical behaviour may happen. Estimate of reasonable magnitudes for 

disturbances may be obtained from previous simulations, if available for any specific 

application. In general, these magnitudes are ambiguous, and the quality of the solution 

can be judged only after the simulation. Because of the problems with generating 

correlations between velocity components, these methods can only offer an 

approximation of turbulence at the inlet which serves to trigger the development of 

realistic turbulence, and a section of domain must be provided for this to happen.  

 In precursor methods a separate calculation of turbulent flow is usually performed 

and information are extracted for use as the inlet condition for the main simulation. 

This kind of methods can provide realistic turbulence but of course very expensive too. 

The precursor simulation can be run concurrently with the main simulation, avoiding 

the problem of storing a large amount of data. A recycling-rescaling technique, first 

introduced by Spalart (1988) and simplified for incompressible flows by Lund et al. 

(1998) can be regarded one of precursor methods. This method is based on extracting 

profiles of dependent variables at some location downstream of the inflow boundary, 

rescaling, and then reintroducing them at the inflow plane in a dynamic manner. 

Normally, the flow between the recycled boundaries must be initialised by artificial 

disturbances in order to develop the flow into a realistic turbulent flow state. The 

advantage of this method is that the inflow is treated implicitly as part of the overall 

simulation.  

There are many cases where instead of a fully developed flow, a flow that matches 

some predefined parameters such as a known turbulence profile is advantageous. In this 

case the flow is modified either by introducing artificial body force terms, or by explicit 

correction of the velocities within this section, or by suitable modification of the 
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mapped data. By linking these techniques to a feedback control algorithm based on the 

discrepancy between computed values and desired values at a given location in the 

flow, it is possible to drive the flow towards the required flow conditions. Xiao et al 

(2010) developed a rescaling/recycling method based on the work of Pierce (2001) and 

Lund et al. (1998) where a rescaling and recycling technique is performed in the extra 

section upstream of the inlet-plane simultaneously with the main simulation and a 

separate precursor simulation is unnecessary. 

In the current LES two methods were used to mimic the free-stream turbulence and 

match the required free-stream turbulence condition as that of the experimental test 

case;   

 A rescaling/recycling procedure at an inlet block (Xiao et al, 2010), 

 A so-called numerical trip (Pokora et al., 2011) applied at an upstream plane 

normal to the free-stream.  

 

2.2.1 Rescaling/recycling method  

In this method, an extra inlet block is generated upstream of the actual inlet plane. 

The inflow condition for the inlet block is generated by recycling the velocity field of 

one plane downstream and mapping on the inlet plane. By rescaling the flow field over 

the entire inlet block, the flow will be statistically homogeneous in the streamwise 

direction. The target values for the mean velocity; 

                                     

and rms profiles i.e.; 

 ′         , ′         , ′          

at the inlet plane, need to be prescribed (inflow conditions are assumed spanwise 

homogeneous). The procedure below is then followed. 

The inlet block as well as the computational domain of interest is initialised. When 

initialising the velocity field at x-z planes with constant y in the inlet block, the 
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instantaneous turbulent velocity field is generated by superimposing white noise 

perturbations with the intensity of   ′         ,  ′         ,  ′          to the mean 

velocity                                     . 

Simulation is run on both the inlet block and the domain of interest simultaneously. 

The flow field of the inlet block is then rescaled at every time steps as follows; 

1. The mean velocity is calculated by space average in the x-z plane and time average 

with a weight that decreases exponentially backward in time; 

                                    
 

  
            

 

   

      

 

   

       

where < >xz represents the spatial averaging in the x-z plane, and          is the 

current instantaneous solution. 

2. The rms of the velocity field is calculated similarly: 

                         
       

 
                   

3. Velocity is then rescaled to create new instantaneous velocity field in the x-z plane 

at each y: 

              
  

         

        
                                   

 

4. The velocity field at a plane downstream in the inlet block is recycled back as the 

inflow conditions for the inlet block.  

The above process is applied to the other two velocity components V and W. 

 

2.2.2 Numerical trip 

In a separate simulation, a numerical tripping method (Pokora et al., 2011) was 

employed to generate the targeted high free-stream turbulence level. The trip is applied 
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to the free-stream at each computational time step in a manner that the solution is 

perturbed with small random white-noise disturbances (u', v', w') = U0.A (r1, r2, r3) in a 

plane parallel to the inflow (A is the disturbance level which can be adjusted according 

to the required turbulence level and r1, r2, r3 are components of a 3D random vector). 

These perturbation velocities imposed on the mean velocity components generate the 

instantaneous flow field. 

The perturbation is then applied to a stencil around the given cell with index (I, J, 

K) in the structured grid. As an example for the axial velocity, Figure 2.1 shows the 

perturbation distribution in K direction for a trip plane at a given I location.  

 

Fig. 2.1. Stencil showing the perturbation distribution in K direction for a trip applied at I  

 

The perturbations at neighboring cells are updated such that 1/2 of the perturbation 

magnitude is imposed upstream I-1 and downstream I+1 of tripping plane and also to 

the adjacent cells J ± 1 and K ± 1. Also 1/4 of the disturbance magnitude is imposed at 

next level cells i.e. J ± 2 and K ± 2. Hence for a trip applied at I location, axial velocity 

is updated such that; 
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This procedure leads to an increased coherence of the disturbance; hence more realistic 

free stream turbulence could be generated.  

 

2.3 Other Boundary Conditions 

A convective boundary condition is used ensuring the convection of the flow 

through the outlet plane. No-slip condition is used for all the solid walls. A periodic 

boundary condition is used in the spanwise direction. Periodic condition implies that 

the computational domain repeats itself an infinite number of times. 
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Chapter3  

Code Overview and Validation 

 

In order to achieve the objectives outlined in chapter 1, a CFD code is employed. 

Although some commercial codes allow the introduction of new models, they do not 

offer enough flexibility therefore in-house codes are preferred. Here the in-house code 

DELTA is used to obtain the solution over the multi-block structured grid around the 

T3L geometry. DELTA has been developed in the Aeronautical and Automotive 

Engineering Department of Loughborough University since 1994. Originally, it was an 

Euler code but later it was developed to compute RANS equations and further 

developed for LES. The code has already been used for the calculation of a wide range 

of cases; external/internal, compressible/incompressible, and free/wall-bounded flows 

(Page, 2005; Page et.al, 2002; Pokora et al., 2011). This is the first application of 

DELTA with a dynamic SGS model introduced to resolve a transitional flow. 

 

3.1 Characteristics of DELTA 

DELTA is based on the finite volume approach for the solution of NS equations. It 

uses collocated flow variables arrangement, on a curvilinear coordinate system, in 

combination with Rhie-Chow pressure smoothing, to avoid pressure-velocity 

decoupling. DELTA adopts the SIMPLE pressure correction method, designed to 

handle both incompressible and compressible flow cases. The code initialises a flow 

field and then solves the momentum equations to obtain some intermediate flow 

variable values. Because these values will not necessarily satisfy the continuity 

equation, they are corrected by using a pressure correction, dP. This pressure correction 

is calculated by a pressure correction equation, which is derived from the combination 

of the momentum and continuity equations. When the correct values for flow variables 

have been obtained, the procedure is repeated for the next time step. Central difference 

scheme was used to discretise diffusive terms and a 2
nd

 order upwind scheme for 

calculation of the convective fluxes. For the time integration either an Euler implicit or 

an explicit scheme can be used. A Gauss-Seidel line solver (Ferziger & Peric, 2001) is 
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used to solve the pressure correction equation. The LES filtering procedure is implicit 

where the grid is used as a spatial filter, avoiding the need for explicit filtering 

procedure. Parallel version of DELTA using Message Passing Interface (MPI) libraries 

is employed to enable parallel processing based on flow domain decomposition in order 

to speed up the simulation. 

A variety of grid file formats including mesh files created by ICEM can be 

imported. Input grids have to be structured, single or multi-block. For the boundary 

conditions and the exchange of information between the blocks, DELTA uses two extra 

rows of hallo-cells generated automatically along each face of every block. Boundary 

conditions are applied on the first row and the second is mainly used for the exchange 

of information in multi-block grids. DELTA has 150 subroutines where the main 

process of the program is governed by deltaFlow.f subroutine which is the base of the 

code controlling the order and application of different operations defined within the rest 

of the subroutines. Three user-defined files for controlling the simulation are; 1) a 

resource file (to set the parameters that govern the numerical and modelling issues of 

the simulation), 2) a boundary condition file, and 3) a topology file (to define the grid 

topology and the connections between faces of the blocks).  

 

3.2 Code Validation 

It is crucial that the flow at both laminar and fully turbulent states to be accurately 

computed, with ability to capture the full course of transition. The onset of instabilities 

and subsequent growth of disturbances within the shear layer should be accurately 

represented in order to correctly capture the transition location and its spatial extent 

towards a fully turbulent state. To assess the performance of the LES code in use with a 

dynamic subgrid scale model, it is validated against the well-established transitional 

separated-reattached over a flat plate with semi-circular leading-edge (T3L case of 

ERCOFTAC, 1999) at very low free-stream turbulence (Yang & Voke, 2001).  

The ERCOFTAC Special Investigation Group for transition, initiated the study of 

transition in 1991 to improve understanding of transition mechanisms. Detailed 

experimental measurements were provided for the flow over flat plates with sharp or 

semi-circular leading edges. Details of experimental setup and inlet conditions of T3L 
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cases can be found on the ERCOFTAC database (1999). Although limited in providing 

near wall resolution, these experimental data have been the benchmark for assessing 

various numerical models of transitional flow. Due to the simple geometric 

configuration and hence possibility of accurate measurements, this flow provides a 

good basis to examine the physics of laminar to turbulent transition through boundary 

layer separation. According to this test case, separated boundary layer transition on a 

flat plate with a semi-circular leading edge with radius R = 5 mm is examined under 

different free-stream velocity and turbulence intensities. Figure 3.1 shows the sketch of 

the experiment with the location marked where free-stream turbulence level is 

measured. Four different turbulence grid configurations at three inlet velocities 2.5, 5.0, 

and 10.0m/s were used resulting in FST levels from 0.2% (no turbulence grid), 0.65%, 

2.3%, and 5.6%.  

 

 

Fig.3.1.  Sketch of the experimental setup 

 

Matching the experimental Re and free stream conditions two cases with different 

FST levels at the leading edge were simulated in the current study at Re = 3450 based 

on the plate thickness and the uniform inlet velocity, one with FST levels nearly zero 

(0.2%) denoted as No-Free-Stream-Turbulence case (NFST) and one with FST = 5.6% 

denoted as FST case. In this section, the code is validated for the NFST case using the 
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experimental and LES data of Yang & Voke (2001). The FST case is studied in the next 

chapter. 

 

3.2.1 Flow configuration  

The flow geometry and computational grid are shown in Figure 3.2. LES domain 

extends 12D upstream and 16D downstream from the plate leading edge, 8.5D away 

from the plate in the free stream, and 8D in the spanwise direction (D = 10mm is the 

plate thickness, and co-ordinate origin located at the stagnation point). Using the multi-

block functionality, the domain is divided into 14 blocks with a grid resolution of (nx, 

ny, nz) = (310, 140, 64) for the outer region and a refined C-grid (420, 60, 64) around 

the plate covering the close wall region and the free shear layer region of the separation 

bubble, a total of 4.39 million mesh points. Based on the friction velocity at x/D = 10, 

which is far downstream from the separation bubble and well within the reattached 

turbulent boundary layer, y
+
 of the nearest cell to the wall is about 0.4, the streamwise 

mesh sizes vary from Δx
+
 = 3 to 55 and Δz

+
 is 24.  

The inflow velocity U0 is constant aligned with the plate and applied at x = -12D 

upstream. To mimic the low turbulence level (< 0.2%) of the experiment, small random 

disturbances (white noise) are imposed on the mean velocity components at the inflow 

as (u', v', w') = U0.A (r1, r2, r3), where A is the disturbance level (0.02 in current study) 

and r1, r2, r3 are components of a 3D random vector. A convective boundary condition 

is used ensuring the convection of the flow through the outlet plane. Periodic boundary 

condition is used in the spanwise direction. At lateral boundaries free-slip condition is 

applied and no-slip wall condition is applied at the plate surface. Time step used in the 

present LES is Δt = 5.0×10
-06

 sec (0.0025 D/U0) corresponding to a CFLmax value of 

0.5. 

The 2
nd

 order central differencing scheme was used for spatial discretisation of 

diffusive terms. For time discretisation, a single stage backwards Euler scheme has 

been found to be computationally more efficient to use. This is justified by small time 

step used in the present LES and hence no noticeable impact on the accuracy. The 

simulation ran for 10 flow-through times (112,000 time steps) to allow the flow to 

become well established and reach a statistically stationary state. The averaged results 
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were gathered over further 50 flow-through times (560,000 steps) with samples taken 

every 20 time steps (28,000 samples, with sampling frequency of 10,000 Hz) and 

averaged over spanwise direction too. Comparisons of stresses and mean velocity 

profiles using sampling frequency of 20,000 Hz (samples taken every 10 time steps) 

showed almost no difference in the mean flow statistics. Instantaneous flow fields and 

time trace of velocity components at certain points were also stored during the 

simulations for spectral analysis.   

 

 

Fig. 3.2. Computational domain and mesh 

 



42 
 

3.2.2 Results  

Time mean position of reattachment is an important aspect of separated-reattached 

flows. According to Le et al (1997) the mean reattachment location may be found via 

four methods; (1) location where the mean velocity      at the first grid point away 

from the wall, (2) location where the wall-shear stress     , or        , (3) 

location of the mean dividing streamline, or (4) by a p.d.f method in which the mean 

reattachment location is determined by the location of 50% forward flow fraction. It 

was reported that the first three methods were within 0.1% of each other and about 2% 

different from the p.d.f method. The first method was used in the current study to 

determine the mean reattachment length.    

Figure 3.3 shows the time-averaged velocity vectors. For the current transitional 

separated-boundary layer flow, the time averaged results are similar to a steady laminar 

separated flow but with different bubble shape and separation length. Figure 3.3 plainly 

shows a separation bubble starting from the separation point (the blend point where 

curvature changes) reattaching at a downstream location x = 34.97mm giving a mean 

reattachment length l of 2.997D. The measured mean reattachment length is about 

2.75D, hence the predicted length in the current study is over-predicted by about 9% 

while it is 2.59D in the LES of Yang and Voke (2001), under-predicted by about 6%. 

This is a reasonably good agreement considering the effect of difference in blockage 

ratio.  

 

 

Fig. 3.3. Time-averaged velocity vectors (NFST case) 

 

Streamwise variation of ratio of the maximum eddy viscosity to the kinematic 

(molecular) viscosity is presented in Figure 3.4. It is seen that the eddy viscosity ratio is 
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zero at separation, gradually increasing downstream of separation reaching a maximum 

value of approximately 3.0 downstream of the mean reattachment region and relaxing 

to a value around unity farther downstream.  

 

Fig. 3.4. Wall-normal maximum of the SGS viscosity νt/ν (NFST case) 

 

Figures 3.5 and 3.6 show the simulated mean streamwise velocity and rms of 

fluctuations. Mean and rms values are normalised by the inlet velocity (U0). Wall-

normal direction is normalised by the measured mean reattachment length l. For the 

mean velocity a very good agreement has been obtained between the current predicted 

profiles with the experimental data and LES results of Yang & Voke (2001) at all seven 

streamwise stations. There is hardly any difference between the current LES results and 

the LES results of Yang & Voke (2001) in terms of the mean velocity predictions while 

for the rms the present LES results have a slightly better overall agreement with the 

experimental data, especially at the 5
th

 location where the current predictions follow the 

experimental data much more closely although at the 6
th

 location the peak value is 

better predicted by Yang and Voke (2001). However, at the last location further away 

from the wall the current predictions are much better than the results by Yang and Voke 

(2001). It is also interesting to note that the present rms results show double peaks 

inside the separation bubble at the 2
nd

 and 3
rd

 locations, especially apparent at the 3
rd
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location whereas the LES results of Yang and Voke (2001) only show one peak. 

Unfortunately the measurements could not be done very close to the wall inside the 

bubble so that the first peak near the wall cannot be confirmed by the experimental 

data.  

 

Fig. 3.5. Mean streamwise velocity at seven streamwise stations (NFST-case), Left to right: x/l = 0.22, 0.44, 

0.66, 1.09, 1.27, 1.64, 2.55. Present LES (dashed), LES of Yang & Voke (solid line), Exp. Data (symbols) 

 

 

Fig. 3.6. rms streamwise velocity fluctuation u′ at seven streamwise stations (FST-case), Left to right: x/l = 0.22, 

0.44, 0.66, 1.09, 1.27, 1.64, 2.55. Present LES (dashed), LES of Yang & Voke (solid line), Exp. Data (symbols)  

 

Profiles of vertical velocity rms v', spanwise velocity rms w' and the shear stress u'v' 

are shown in Figures 3.7, 3.8, and 3.9. It can be seen that the agreement between the 

current predictions (dashed line) and the LES results of Yang and Voke (2001) is 
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similar to those of u'. Generally speaking the current predicted values for all three 

variables are smaller at all stations and the discrepancies are slightly larger at the 3
rd

 

and the last locations for all three quantities. This is understandable for the last location 

as the discrepancy between u' is also quite large. However this seems strange for the 3
rd

 

location initially but careful observation of the u' profiles at the same location may 

explain this. Although the predicted magnitude of u' at the 3
rd

 location from the current 

LES and the LES of Yang and Voke (2001) is similar but the profile shape is quite 

different, i.e., the current predicted profile has two peaks which means that quite 

different flow structures are predicted in that region, leading to bigger differences in v', 

w' and u'v'. At all other locations the agreement is reasonably good for all three 

variables.  

 

Fig. 3.7. Vertical velocity rms v′ at six streamwise stations (NFST case), Left to right: x/l = 0.22, 0.44, 1.09, 

1.27, 1.64, 2.55. Present LES (dashed), LES of Yang & Voke (2001) (solid line). 

 

 

Fig. 3.8.  Spanwise velocity rms w′ at six streamwise stations (NFST case), Left to right: x/l = 0.22, 0.44, 1.09, 

1.27, 1.64, 2.55. Present LES (dashed), LES of Yang & Voke (2001) (solid line). 
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Fig. 3.9. Shear stress u′v′ at six streamwise stations (NFST case), Left to right: x/l = 0.22, 0.44, 1.09, 1.27, 1.64, 

2.55. Present LES (dashed), LES of Yang & Voke (2001) (solid line). 

 

Figure 3.10 presents isosurfaces of instantaneous spanwise vorticity at three 

different time, showing the transition process. The laminar boundary layer starts 

developing from the mean stagnation point, and then separates at the blend point due to 

the curvature change, leading to unstable free shear layer formed in the separation 

bubble. It can be seen that the free shear layer becomes unstable at about x/D = 2.1 via 

an inviscid instability, Kelvin-Helmholtz instability observed also in the study by Yang 

& Voke (2001). Any small disturbances present grow downstream causing the 

deformation and distortion of the initial two-dimensional spanwise vortices. Further 

downstream those two-dimensional vortices become more distorted/deformed, and roll 

up leading to the formation of streamwise vortices associated with significant three-

dimensional motions, eventually breaking down at about the reattachment point and 

developing rapidly into a turbulent layer downstream. The instability and transition 

features of the NFST case will be revisited in the next chapter when comparing with the 

FST case. 
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Fig. 3.10. Isosurfaces of instantaneous spanwise vorticity at three different time 

  

3.3 Staggered vs. Co-located Grid 

There have been two main kinds of grid systems in the CFD community: staggered 

grid and co-located grid (also called non-staggered grid). In a co-located grid system all 

variables are stored at exactly the same location, e.g., at the centre of a cell, whereas in 

a staggered grid system velocity components and pressure are stored at different 

locations (pressure and other scalar quantities are usually stored at the cell centre and 

velocity components are stored at cell faces). Most of the compressible flow solvers 

have used the co-located grid since it is certainly beneficial to discretise the governing 

equations using the same control volume for all variables while different control 

volumes are needed for different variables in the staggered grid, leading to complexity 

and a large amount of computer memory, especially for complex geometry where non-

orthogonal mesh has to be used the co-located grid holds significant advantages over 

the staggered grid . However, it is rare for incompressible flow solvers to employ the 

co-located grid mainly due to the fact that  the use of such a grid system with a 

primitive variable formulation of the incompressible equations has been shown to 

produce nonphysical oscillations in the pressure field when central differencing to both 
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the continuity equations and the pressure gradient term in the momentum equations is 

applied. This causes the finite difference form of the momentum equations at even-

numbered nodes to depend only on pressures at odd-numbered nodes, while the 

momentum equations for odd-numbered nodes depend solely on pressures at even-

numbered nodes. Similarly, the continuity equation for an even-numbered node 

depends only on velocities at odd-numbered nodes, etc. If no pressure-density coupling 

exists, such as in an incompressible flow, no interaction exists between the pressures at 

adjacent nodes. This situation can permit two different pressure fields to coexist, giving 

rise to the nonphysical "checkerboard" pressure field. 

Rhie and Chow (1983) proposed a pressure-weighted interpolation method (called 

the Rhie and Chow pressure smoothing, which is equivalent to adding a 3
rd

 order 

pressure derivative term at the cell face, a kind of artificial dissipation term) to 

eliminate the checker-board pressure problem, which is widely used in the finite-

volume framework with co-located grid scheme. Miller and Schmidt (1988) carried out 

a detailed comparative study for two incompressible flow test cases, a flow in a shear-

driven cavity and a laminar contraction flow, using both staggered and co-located grids 

with the Rhie and Chow pressure smoothing. Their results show that the co-located grid 

produces more accurate predictions than the staggered grid. Peric, Kessler and 

Scheuerer (1988) performed incompressible flow calculations with the staggered and 

the co-located grid. Three test cases were considered: lid driven cavity flow, backward 

facing step flow and flow through a pipe with sudden contraction. Their results 

demonstrate that the accuracy are almost identical for both grids. The co-located 

method converges faster in some cases, and has advantages when extensions such as 

multigrid techniques and non-orthogonal grids are considereded. Another detailed 

comparative study was conducted by Melaaen (1992) using both the staggered and co-

located grids for three incompressible flow problems: rotating Couette flow, flow 

through gradual expansion channels and flow through axisymmetric constrictions. The 

results confirm that equal accuracy are achieved for both grids.  

All the comparative studies discussed above were carried out for steady state 

laminar flow problems and Zang, Street and Koseff (1994) calculated incompressible 

unsteady flow problems including LES of a rotating stratified upwelling flow in an 

irregular container using the co-located grid with the Rhie-Chow pressuring smoothing. 
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Their results compare reasonably well against experimental data but no direct 

comparison was made against any results obtained from the staggered gird. Breuer and 

Rodi (1994) applied LES with a co-located grid to predict fully developed 

incompressible trubulent flow through a 180
º
 bend square duct at Re = 56690 and their 

results are poor compared against available measurements due to mainly that the 

complicated secondary flow in the corner regions of the duct could not be captured 

properly with their grid resolution. Few LES of incompressible flow studies have been 

carried out using the co-located mesh so far and Morinishi et. al. (1998) demonstrated 

that it is much more difficult to develop fully conservative numerical schemes with the 

co-located grid whereas in LES it is absolutely crucial that the numerical methods 

should discretely conserve mass, momentum and kinetic energy.  For relatively simple 

geometries conservative property can be achieved on a staggered grid with second-

order central differencing scheme for incompressible flow. Furthermore, instantaneous 

large-scale turbulent structures need to be captured accurately in LES, which is 

fundamentally different from the RANS calculations, the numerical methods used in 

LES must represent the turbulence with sufficient accuracy and avoid the smearing 

effect brought about by any artificial dissipation. Therefore, staggered grids have been 

favoured by the LES community and successfully applied to many flow simulations 

(Nagarajan, Lele and Ferziger 2003; Tang, Yang and McGuirk 2004; Kobayashi, Ham 

and Wu 2008; Taylor and Sarkar 2008; Shetty et. al. 2010; Yuan, Xu and Khalid 2011). 

So far most of the transitional flow simulations have employed staggered grid (Yang 

and Voke 2001; Abdalla and Yang 2004&2005; Padilla and Neto 2008; McMullan, 

Gao and Coats 2009; Yang and Abdalla 2009) and LES of transitional flows using co-

located grids is very rare. Nevertheless as discussed above for complex solution 

domains with non-orthogonal mesh, a co-located variable arrangement holds significant 

advantages over the staggered one. In addition the full conservative property of the 

numerical schemes with the staggered grid cannot be ensured for complex solution 

domains with non-orthogonal mesh and hence it is very necessary to investigate the 

accuracy of LES using the co-located grid. 

The current LES of transitional separated flow used a co-located variable 

arrangement on a curvilinear coordinate system with Rhie-Chow pressure smoothing 

method. From the above comparison and discussion it is evident that the accuracy of 

the co-located grid arrangement with the Rhie-Chow pressure smoothing when applied 
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to separated boundary layer transition simulations is as good as using a staggered grid 

arrangement (judged from the comparisons of mean streamwise velocity and rms 

against the experimental data) which is consistent with the previous studies for steady 

flow calculations (Miller and Schmidt 1988; Peric, Kessler and Scheuerer 1988; 

Melaaen 1992) and unsteady flow calculations by Zang, Street and Koseff (1994). This 

is very encouraging as the co-located gird has distinct advantages over the staggered 

grid when computational domains are complex and non-orthogonal meshes have to be 

used. 
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Chapter 4 

Separated-Reattached Flow under Elevated 

Free-Stream Turbulence  
 

 

To investigate effects of considerably high free-stream turbulence level on transition of 

separated-reattached flow, T3L case presented in the previous chapter (for NFST case) 

is considered under turbulence intensity of 5.6%, referred to as FST case.     

Initially the recycling-rescaling method described in Chapter 2 was used to achieve 

the experimental FST level at the leading edge. However, unrealistic and somehow 

repeated bulks of turbulent structures appeared in the free stream (Figure 4.1) which 

was believed to notably influence the separated shear layer of interest in terms of 

evolution of coherent structures in the free shear layer and also shedding characteristics. 

The numerical trip method however appeared to produce more realistic turbulence in 

the free-stream approaching the plate. The numerical trip was applied at plane x = -10D 

upstream, where at each computational time step the solution was perturbed in the same 

manner as white noise described for NFST case, but additionally, half and quarters of 

generated disturbance magnitude are imposed on neighbouring cells as described in 

chapter 2. This method leads to an increased coherence of disturbances compared to the 

simple white noise perturbations. Figure 4.1 shows the instantaneous velocity field for 

the FST case using both recycling-rescaling and trip methods for free-stream turbulence 

generation. The tripping disturbance level A = 0.7 was adjusted so that the experimental 

turbulence intensity of Tu = 5.6% at the leading edge is achieved. A convective 

boundary condition is used ensuring the convection of the flow through the outlet 

plane. Periodic boundary condition is used in the spanwise direction. At lateral 

boundaries free-slip condition is applied and no-slip wall condition is applied at the 

plate surface. Time step used in the present LES is Δt = 5.0×10
-06

 sec. The simulation 

ran for 20 flow-through times to allow the flow to become well established and reach a 

statistically stationary state. Then the averaged results were gathered over further 80 

flow-through times with samples taken every 20 steps and averaged over spanwise 



52 
 

direction too. Instantaneous flow fields and time trace of velocity components and 

pressure at certain points were also stored during the simulations for spectral analysis. 

  

 

 

Fig. 4.1. instantaneous velocity field for the FST case using recycling-rescaling (top) and trip (down) methods 

for free-stream turbulence generation 

 

Figure 4.2 shows decay rate of the free-stream turbulence intensity and it can be 

seen clearly that a reasonably good agreement has been obtained between the LES 

prediction and the experimental data at y/D = 4.0 although the LES results show a 
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continuous decay further downstream while the measured turbulence intensity seems to 

be constant, not decaying anymore which is unusual. The difference was initially 

thought to be due to the fact that further downstream experimental data are available 

only at a lower vertical location of y/D = 1.5, but plotting the LES results at the same 

vertical location of y/D = 1.5 (dashed line) confirms that this is not the case as the LES 

results still show a continuous decay which seems to be logical. Nevertheless at the 

leading edge the LES results match the targeted experimental FST level of 5.6% very 

well, indicating that the numerical trip applied upstream is a successful technique for 

generating the required FST at the leading edge. 

 

       

Fig. 4.2. Decay of free-stream turbulence intensity for FST case (5.6% at leading edge), Solid line: 

y/D = 4.0; Dashed line: y/D =1.5  

 

4.1 Mean Flow Variables 

It is well known that increasing free-stream turbulence level will enhance shear-

layer entrainment rates, reduces the mean reattachment distance, and causes early 

transition to turbulence. Hillier and Cherry (1981) showed that increasing FST level 

would produce considerable contraction of the bubble length and Nakamura and Ozono 

(1987) reached similar conclusion in their study of effects on a separated and 

reattaching flow. Kalter and Fernholz (2001) studied the effect of FST on a boundary 

layer with an adverse pressure gradient and found that by adding FST the mean reverse 



54 
 

flow region was shortened or completely eliminated. Yang and Abdalla (2009) carried 

out LES of separated boundary layer transition over a flat plate with a blunt leading 

edge and their predicted mean bubble length reduced 14% when the free-stream 

turbulence level increased from about 0.2% to 2%. In the current study under 5.6% FST 

the predicted mean reattachment length (separation bubble length) is 1.2D, about 60% 

reduction compared with the NFST case (2.997D); see figures 4.3 and 3.3 showing the 

mean velocity fields for two cases. This is consistent with previous studies on the 

effects of FST to reduce the bubble size. 

 

 

Fig. 4.3. Time-averaged velocity vectors (FST case) 

 

Figures 4.4 and 4.5 present comparison between the current predicted mean 

streamwise velocity and rms of fluctuations with the experimental data for the FST case 

(Yang and Voke only carried out study for the NFST case). Excellent agreement has 

been obtained between the predicted mean profiles and the experimental data at all 

eight streamwise locations except the last station where the mean profile is slightly 

over-predicted. The predicted rms of streamwise fluctuations compare very well with 

the experimental data too in terms of both peak values and the location of peak value. 

There is a slight under-prediction at three streamwise locations (x = 17mm, 19mm, 

21mm) but overall a good agreement has been obtained. Since Δz
+
 is 24 which is much 

bigger than the minimum Δx
+
 and Δy

+
, a grid refinement has been carried out in the 

spanwise direction (increased from 64 nodes to 100 nodes) and the peak rms values 

obtained with the refined mesh closer to the experimental data as shown in Figure 4.6. 
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Fig. 4.4. Mean streamwise velocity at different streamwise stations (ETL-case), Present LES (solid lines), Exp. 

Data (symbols) 
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Fig. 4.5 rms streamwise velocity fluctuation u’ at different streamwise stations (ETL-case), Present LES (solid 

lines), Exp. Data (symbols) 

 

 

Fig. 4.6. rms streamwise velocity fluctuation u’ at different streamwise stations (ETL-case), coarser grid (solid 

lines), refined grid (dotted lines), Exp. Data (symbols) 
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4.2 Transition Process  

Under increased free-stream disturbances transition process and the flow structures 

involved are known to be remarkably different. As shown in Figure 4.7, disturbances in 

the free shear layer have larger amplitudes much earlier than NFST case at about x/D = 

0.8 due to disturbances from free-stream turbulence. Furthermore it can be seen that the 

flow in the attached thin boundary layer prior to separation is quite smooth, indicating 

that it is still laminar boundary layer but is already disturbed to some extent. Careful 

observation reveals that the spanwise vorticity in the FST case is distorted/deformed 

very early on and the attached thin laminar boundary layer prior to separation is not 

quite two-dimensional as some kind of streaky-like structures are visible. There is an 

increasing amount of evidence (Schlatter et al. 2008, Watmuff et al. 2010, Brandt & 

Henningson, 2004) that streaky streamwise-oriented structures confined in the laminar 

boundary layer are the beginning stage towards the so called "bypass" transition in 

attached boundary layer flows. Whether the Kelvin-Helmholtz mechanism observed in 

the NFST case is bypassed in the current study under high turbulence intensity is 

investigated below.   

 

Fig.4.7. Isosurfaces of instantaneous spanwise vorticity at three different time (FST case) 
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4.2.1 Discussion 

Figure 4.8 presents spanwise vorticity for both NFST and FST cases coloured by 

the magnitude of streanwise velocity fluctuation showing the whole transition process. 

It can be seen that for the NFST case, initially a steady free shear layer develops 

associated with formation of two-dimensional spanwise vortices; the free shear layer 

becomes unstable via an inviscid instability, Kelvin-Helmholtz instability as shown in 

the study by Yang and Voke (2001), and any small disturbances present grow 

downstream causing the deformation and distortion of the initial two-dimensional 

spanwise vortices. Further downstream those two-dimensional vortices become more 

distorted and deformed, and roll up leading to streamwise vorticity formation 

associated with significant three-dimensional motions, eventually breaking down at 

about the reattachment point and developing rapidly into a turbulent layer downstream. 

The transition process is quite similar for the FST case but the free shear layer becomes 

unstable much earlier (further upstream) due to disturbances from free-stream 

turbulence. The initial 2D spanwise vortices are so clearly visible in the NSFT case but 

are not so obvious in the FST case. 

 

 

Fig.4.8. spanwise vorticity for both NFST and FST cases coloured by the magnitude of streanwise velocity 
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Under very low free-stream turbulence, LES of Yang & Voke (2001) for a separated 

shear layer on a flat plate with a semi-circular leading edge and LES of Abdalla & 

Yang (2004) on a flat plate with a sharp leading edge proved vigorously for both cases 

that the free shear layer in the bubble is inviscidly unstable via the Kelvin–Helmholtz 

mechanism. Similar mechanism was reported by McAuliffe & Yaras (2010) who 

performed DNS of a separation bubble on a flat plate in adverse pressure gradient with 

low incoming disturbances. Many experiments have been carried out to study separated 

boundary layer transition at low free-stream turbulence level. Burgmann et al. (2008) 

studied a transitional separation bubble on the upper surface of an SD7003 airfoil using 

time-resolved and volumetric PIV measurements. It was shown from their 

measurements that the temporal dynamics of the vortex roll-up is initialised by the 

Kelvin–Helmholtz instability. McAuliffe & Yaras (2009) carried out a through 

experimental study on the nature of transition in a separation bubble and manipulations 

of the resultant breakdown to turbulence through passive means of control. Their results 

confirmed that the Kelvin-Helmholtz instability is the dominant transition mechanism 

for all conditions. Satta et al. (2010) performed experimental studies of the transition 

and separation processes occurring along the suction side boundary layer of a high-lift 

low pressure turbine profile under both steady and unsteady inflow conditions. Under 

steady inflow condition, their results show that the beginning of boundary layer 

transition occurs in correspondence of the separated shear layer, along the line of 

inflection points in the velocity profiles, where the velocity fluctuations are larger due 

to the shear layer instability taking place through the Kelvin-Helmholtz mechanism. 

Dahnert et al. (2012) based on their detailed experimental work concluded that the 

instability involved in the transition process of a separation bubble with low Reynolds 

number, low free-stream turbulence, and steady main flow conditions is the inviscid 

Kelvin-Helmholtz instability mode. 

It is known that free-stream turbulence results in an earlier transition to turbulence 

and hence usually a shorter separation bubble (Hillier & Cherry, 1981; Kalter & 

Fernholz, 2001; Yang & Abdalla, 2005). McAuliffe & Yaras (2010) studied the effect 

of elevated FST (1.45% at separation) on a laminar separated boundary layer due to an 

adverse pressure gradient over a flat plate. The Kelvin-Helmholtz instability observed 

in their low-disturbance case (0.1% FST at separation) was bypassed at the higher FST 

where streamwise streaks appeared upstream of separation in the laminar boundary 



60 
 

layer leading to production of turbulent spots in the separated shear layer. Bypass mode 

has also been observed in a few experiments on separation bubbles (Volino & Bohl 

2004; Volino, 2002), however in all cases separation took place after relatively long 

streamwise development of the attached boundary layer which had a big impact on the 

transition in the following separated free shear layer. In cases where separation is due to 

the leading edge geometry and the boundary layer separates immediately or very 

shortly after the leading edge, transition may be different. Yang & Abdalla (2005, 

2009) investigated effect of 2% FST at the sharp leading edge of a flat plate and 

observed that transition process started earlier with a reduction of 14% in the mean 

bubble length compared against the very low FST case. Nevertheless, 2D Kelvin-

Helmholtz rolls were still observable and the primary instability was shown to be the 

same (the KH mechanism) as in the low FST case. However, as appears from figure 

4.7, it is quite possible that under higher level of FST in the current study (5.6%) 

transition process in a separated boundary layer with the separation point fixed due to 

the leading edge geometry may take a quite different route, i.e., Kelvin-Helmholtz 

instability stage may be bypassed, similar to the so called “bypass transition” in 

attached boundary layer flows. To clarify this point, instability of the free shear layer 

formed in the separated-reattached flow is examined for the two free-stream turbulence 

cases addressed in the previous sections. 

 

4.3 Stability Analysis 

A. NFST case 

As can be seen from figure 4.8, a free shear layer takes form as the apparently-

laminar boundary layer separates from the edge of the blunt plate. For the NFST case 

The flow separates at the curvature change and the free shear layer is two-dimensional 

up to a distance downstream, where the instabilities and three-dimensionality set in.  

The free shear layer then undergoes the transition leading to the turbulent reattachment 

of the shear layer. This can be seen from figures 4.9 and 4.10 which show the 

instantaneous iso-surfaces of streamwise and spanwise velocity components at three 

arbitrary times. It can be seen evidently that the velocities at three different times are 

almost the same up to the streamwise location x/D = 1.9 with the spanwise velocity 

being zero showing that the the flow is two-dimensional and steady up to this station. 



61 
 

This velocity iso-surfaces drawn at velocity ranges of the shear layer indicate that the 

unsteadiness begins at streamwise location about x/D = 1.9. The instantaneous 

spanwise velocity first appears at this location until x/D = 2.1 where three-

dimensionality in the shear layer begin to increase dramatically. 

 

 

Fig.4.9. instantaneous iso-surfaces of the streamwise velocity at three arbitrary times (NFST case)  

 

The streamwise and wall-normal velocity components show the same sort of 

behaviour with the initial unsteady motions developing gradually and starting to grow 

very rapidly at about x/D = 2.1 where non-linear rapid growth and breakdown sets in. 

Examining the instantaneous streamwise velocity along the streamwise direction and at 

three different times, the initial incidence of the unsteadiness can be located by looking 

at the discrepancies between velocities at three different times. The difference between 
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the instantaneous velocities is hardly seen up to the region x/D = 2.0. The discrepancy 

becomes more noticeable downstream and clearly apparent at x/D = 2.1. Further 

downstream at x/D = 2.3 the streamwise velocities at different times are very distorted 

due to the unsteady large-scale motions inducing severe fluctuations. Development of 

the three-dimensional motions can be examined by following the variation of the 

instantaneous streamwise velocities along the spanwise direction at different 

streamwise locations. As can be seen from Figure 4.8, the spanwise variation of the 

instantaneous streamwise velocity amplifies along the streamwise direction. Up to x/D 

= 1.9 the streamwise velocity is smooth and flat in the span, which indicates that the 

flow is two-dimensional. Distortions can hardly be observed at x/D = 2.0 and increase 

gradually up to x/D = 2.3 where significant three-dimensional motions start to appear 

and then develop rapidly afterwards.  

 

 

Fig.4.10. instantaneous iso-surfaces of spanwise velocity component at three arbitrary times (NFST case)  

 

The breakdown of the laminar separated shear layer can also be clearly followed in 

figures 4.8 to 4.10 above. Low amplitude perturbations initially appear in the separated 
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laminar shear layer, followed by significant increase in the amplitude at about x/D = 

2.1. Moving towards the reattachment, the shear layer appears to become irregular at 

x/D = 2.3 followed by the full breakdown of the spanwise regularity at about x/D = 2.8 

within the reattachment region. Overall, snapshots of the vorticity and velocity 

components presented above provide qualitative information regarding the 

development of instability towards the three-dimensionality in the separated shear layer 

under virtually zero free-stream turbulence level (NFST case). 

To further clarify the instability of the shear layer developing from the stagnation 

point to the blend point where separation occurs and then further downstream, the 

growth of maximum turbulent kinetic energy (kmax, the spanwise-averaged peak value 

of k profile along the wall normal direction in the boundary layer and free shear layer) 

is presented in Figure 4.11. It can be seen clearly that kmax is zero in the attached thin 

boundary layer and starts to grow at about x/D = 1, well after the separation at a very 

low rate until at about x/D = 1.8 where kmax grows very rapidly at a much higher rate, 

reaching the peak at about x/D = 3.2.  

 

Fig.4.11. Development of the maximum turbulent kinetic energy (NFST case)  

 

Figure 4.12 shows contours of the spanwise vorticity at three instantaneous times in 

the mid-span plane, clearly indicating presence of the rolled up vortices in the region 
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x/D = 2-3. From this and velocity snapshots presented above it can be evidently 

observed that upstream of this region the vortices are initially two-dimensional 

reminiscent of the well-known Kelvin-Helmholtz instability.  

 

 

Fig.4.12. spanwise vorticity slices at three instantaneous times in the mid-span plane, (NFST case) 

To further support the presence of the Kelvin-Helmholtz instability of the separated 

shear layer, it is beneficial to analyse the results from linear stability theory. 

Considering the case of two uniform incompressible, inviscid fluids of densities ρ1 and 

ρ2 separated by a horizontal boundary, let the density ρ2 of the upper fluid be less than 

the density ρ1 of the lower fluid, yielding a stable arrangement in the absence of 

streaming i.e. when U1 = U2 = 0. Then for any difference U1 - U2, no matter how small 

it is, instability occurs for all wave-numbers greater than a minimum value. When the 

streaming takes place and disturbances of sufficiently small wavelengths are present, 
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the stability of the static configuration of layers in the absence of streaming is unable to 

restrain the instability. This is the Kelvin-Helmholtz instability mechanism as declared 

by Chandrasekhar (1981). To further explain whether the independence of the Kelvin-

Helmholtz instability on | U1 - U2 | is due to the sharp discontinuities in the ρ and U 

which have been assumed in its derivation, Chandrasekhar considered the case of 

continuous and linear variation of U and certain distribution of ρ (characterised by the 

Richardson number) and from the inviscid linear stability analysis concluded that for 

any values of the Richardson number there are always bands of wavelengths for which 

the Kelvin-Helmholtz instability occurs. When the Richardson number is zero, i.e. for 

constant density, the condition for the Kelvin-Helmholtz instability is 0 < Kh < 1.2785 

where K is the wave number and h is the shear layer thickness. Compared to the linear 

variation of the stream velocity discussed above, a more reasonable approximation to a 

separated shear layer is a hyperbolic tangent profile U=U0 tanh(y/d) shown in Figure 

4.13.a. Analysis of Chandrasekhar (1981) for instability of shear layer in this case when 

the Richardson number is zero (i.e. constant density), demonstrates that the shear layer 

is inviscidly unstable to disturbances in the range 0 < Kd < 1.0 (Figure 4.13).   

 

Fig.4.13. a) shear layer with the tanh velocity distribution and b) instability region for this shear layer 

(Chandrasekhar, 1981). For the Richardson number zero i.e. constant density across the layer, the shear layer is 

unstable to disturbances in the range 0 < Kd < 1.0  
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The instability criteria 0 < Kd < 1.0 from the linear stability theory discussed above 

is adopted to investigate the presence of KH instability in the current study. Figure 4.14 

shows a typical velocity profile in the separated region (x/l = 0.44) highlighting the 

shear layer within the free stream and the recirculation flow region.  

 

Fig.4.14. a typical velocity profile in the separated region (x/l = 0.44) highlighting the shear layer within the free 

stream and the recirculation flow region 

In the current study, the shear later thickness at the region where the unsteadiness 

sets in (about x/l = 0.2) is d = 0.056l and hence the unstable region for K is 0 < K < 

17.857/l. Spectral analyses of the separated shear layer at various locations are explored 

in the next section. It will be seen that for the NFST case a clear frequency content at 

about f = 146 Hz is dominant (Figure 4.15), in very close agreement with the spectra of 

Yang & Voke (2001) and equivalent to f = 0.86U0/l (l is the mean bubble length) which 

is close to the value previously predicted by Yang and Voke and the measured 

characteristic frequency discussed before. The wave number K is defined as K = 2πf/c 

where c is the wave speed (propagation speed of the rolled-up vortices). This value is 

assumed equal to the flow velocity at the inflection point, according to Yang & Voke 

(2001), Simoni et al. (2012) and confirmed by PIV results using the procedure 

proposed by Adrian et al. (2000) where different constant transformation velocities 

were subtracted from the instantaneous flow fields, and the most appropriate value in 

order to track KH vortices propagation was the velocity at the inflection point. At x/l = 

0.2 this equals c = 0.42U0 and hence K = 2πf/c = 12.86/l which satisfies the KH 
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instability criterion (0 < K < 17.857/l). It is hence confirmed that the instability 

mechanism at work in the current study at nearly zero free stream turbulence is through 

the Kelvin-Helmholtz instability mode. 

 

Fig.4.15. velocity spectra at x/D = 3.28, y/D = 0. 504, NFST case 

 

 

B. FST case 

Figure 4.16 shows the instantaneous iso-surfaces of the streamwise velocity with a 

spanwise slice at a downstream location. The first sign of perturbations can be observed 

at about x/D = 0.8 and perturbations become considerably larger at about x/D = 1.3.  

This can further be supported by the following figures depicting the spanwise snapshots 

of the velocity and pressure contours at three different times and at different stations 

moving along the streamwise direction. Figures 4.17-19 show the instantaneous 

velocity at different streamwise locations at different times. The discrepancy between 

velocities at three different times can hardly be seen at x/D = 0.6 (figure 4.17). The 

discrepancy between the instantaneous velocities grows downstream and becomes 

clearly apparent at x/D = 0.8 as shown in figure 4.18. Discrepancy becomes 

considerably larger at about x/D = 1.3 as can be seen in figure 4.19. From the 

instantaneous velocity contours at x/D = 0.6  it may be conjectured that even with the 

high free stream turbulence level considered, the separation is still laminar as the 

instantaneous velocity and pressure at x/D = 0.6 are more or less the same.  

Spanwise variation of the instantaneous streamwise velocities at different 

streamwise locations can also be seen in figures 4.16-19. At x/D = 0.8 the streamwise 
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velocity contours are not totally free from waviness and some weak distortions can be 

identified, an indication that at this early location of the separation bubble weak 

perturbations exist. Compared against figure 4.9, which shows the instantaneous 

velocities for the NFST simulation, it is apparent that the addition of free-stream 

turbulence has led to unsteady flow at much earlier stage. Comparing figures 4.16-19 to 

the results from NFST case, supports the idea that addition of the free-stream 

turbulence is speeding up the transition compared to the NFST case which is consistent 

with all the experimental results obtained up to date. 

 

Fig.4.16 instantaneous iso-surfaces of the streamwise velocity with a spanwise slice at x/D =1.6 (FST case) 

 

 

Fig.4.17 instantaneous U velocity at x/D = 0.6 at different times (FST case) 
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Fig.4.18 instantaneous U velocity at x/D = 0.8 at different times (FST case) 

 

 

FIG.4.19 instantaneous U velocity at x/D =1.13 at different times (FST case) 
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To further clarify the instability of the shear layer at high free-stream turbulence the 

growth of maximum turbulent kinetic energy in the shear layer is compared with the 

NFST case as presented in figure 4.20. The shear layer develops from the stagnation 

point to the blend point where separation occurs and then further downstream. It can be 

seen clearly that kmax is non-zero before separation for the FST case, decreasing slightly 

in the attached thin boundary layer since the flow accelerates along the semi-circular 

leading edge but starting to grow very rapidly after separation and reaching the peak in 

the separation bubble at about x/D = 1.1. The maximum turbulence energy profile along 

the plate for the FST case clearly shows that the attached thin boundary layer is 

receptive to the free stream turbulence before separation, carrying a small amount of 

turbulent kinetic energy at separation which grows very rapidly after the separation, 

leading to much earlier transition and breakdown to turbulent flow compared to the 

NFST case where kmax is zero in the attached thin boundary layer and starts to grow at 

about x/D = 1, well after the separation at a very low rate until at about x/D = 1.8 where 

kmax grows very rapidly reaching the peak at about x/D = 3.2.  

 

Fig. 4.20. Development of the maximum turbulent kinetic energy;  NFST case (solid line), FST case 

(dashed line) 

 

The above discussion has indicated that for the FST case a kind of “bypass” 

transition may have taken place, i.e., the Kelvin-Helmholtz instability is bypassed. To 
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further investigate this the Kd criteria applied to the NFST case is also followed here. 

According to the extensive spectral analysis presented in the next section, and unlike 

the NFST case, only a mild peak region could be observed in the region 0.8 < x/D < 

1.45 within the bubble shear layer. Figure 4.21 show the spectra at x/D = 1.03, y/D = 

0.528 where a mild characteristic frequency at about f = 670 Hz can be observed. This 

is equivalent to the average characteristic frequency f = 1.56U0/l. The wave speed c is 

equal to the velocity at the critical layer, i.e. the streamwise velocity at the inflection 

point (x/D = 1.03, y/D = 0.59), which is 0.61U0 so that the wave number K = 2πf/c = 

16.107/l. The shear layer thickness at this streamwise location (x/D = 1.03) is about d = 

0.1l and hence Kd = 1.61 which does not satisfy the Kelvin-Helmholtz instability 

criterion (0 < Kd < 1.0). The same calculation for the upstream location x/D = 0.83 

where shedding frequency first appears gives: f = 600 Hz (1.39U0/l), c = 0.59U0, K = 

2πf/c = 14.91/l, d = 0.09l, and Kd = 1.34 which also does not satisfy the Kelvin-

Helmholtz instability criterion (0 < Kd < 1.0). Therefore from all the evidences above it 

can be concluded that the primary Kelvin-Helmholtz instability observed under low 

free-stream turbulence is bypassed at the high free-stream turbulence level of 5.6% 

examined in the current study.  

 

Fig. 4.21. Power spectrum of streamwise velocity fluctuations u', v'  at x/D = 1.03, y/D = 0.528 (FST case) 

 

4.4 Spectral Analysis 

Of fundamental feature of separated-reattached flows is the potential presence of 

two different shedding frequencies ( Kiya & Sasaki 1983; Hillier & Cherry 1981a; 

Cherry et al. 1984; Castro & Haque 1987; Laura et al. 2003): a characteristic frequency 
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shedding mode which is associated with the usual large scale motions in the free shear 

layer and a low-frequency mode reflecting overall separation bubble growth/decay 

dynamics, the so called low-frequency shear layer flapping in the literature. In this 

section shedding characteristics of the separated-reattached flow and possible effect of 

FST is examined. 

  Kiya and Sasaki (1983) measured the cross-spectrum |Eu'v'| at the edge and centre 

of the shear layer over a blunt flat plate geometry at Re number of 26,000 based on the 

free stream velocity and the plate thickness. The cross spectra showed a peak at the 

frequency            (f is the shedding frequency, l is the mean separation bubble 

length and U0 is the free stream velocity) which was close to the peak frequency of 

measured power spectra for streamwise velocity and surface pressure fluctuations in the 

reattachment region. It was conjectured that these spectra peaks correspond to large-

scale vortices shedding from the separation bubble which they estimated to be 0.6 – 

0.8     . Near the separation at         , a high frequency periodic wave was 

detected, with the non-dimensional frequency       being approximately 30. This 

high-frequency component was interpreted as the frequency at which the rolled-up 

vortices in the shear layer pass through the position of the fixed hot-wire probe. They 

also reported a low-frequency flapping motion of the shear layer near the separation 

line. Their measured surface pressure spectrum at x/l = 0.2 had a clear peak at a much 

low frequency,        0.12. They suggested that this low frequency peak may be 

caused by a large-scale unsteadiness, possibly related to the shrinkage and enlargement 

of the separation bubble. Hillier and Cherry (1981) observed a peak in the pressure 

spectra at similar frequency range and stated it could be due to shear layer flapping near 

the separation line. This low-frequency flapping (     = 0.12) was also confirmed in 

the experiment of Cherry et al. (1984).  

    Separated flow behind a normal flat plate with a long central splitter plate was 

studied by Castro & Haque (1987), Hudy et al. (2003) and both the low and the 

characteristic frequency modes were detected too. However, for the same flow 

configuration Ruderich & Fernholz (1986) did not observe any dominant frequencies in 

their power spectra. Flow separation behind a backward-facing step showed both 

frequency modes in velocity measurements by Eaton & Johnston (1981). They 

suggested that the low-frequency motion may be associated with an instantaneous 
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imbalance between the entrainment rate from the recirculation zone and its resupply 

near the reattachment. Two frequency modes were also detected by Lee & Sung (2001) 

in their measured spectra of the surface pressure close to separation in a backward-

facing step flow. 

   Cherry et al. (1984) studied a separated–reattached flow over a blunt flat plate at a 

Reynolds number of 32,000 based on the free-stream velocity and the plate thickness. 

However, the difference was that the flow was laminar before but transition occurred 

very close to separation while in all cases mentioned above it was turbulent flow at 

separation. The measured power spectra of surface-pressure fluctuations near 

separation showed a low-frequency peak band estimated about       = 0.12. They 

suspected that transition was behind this behaviour but as transition occurred extremely 

close to separation and hence the transition effect was ruled out. As a result of this 

Cherry et al. (1984) suggested that the low-frequency flapping only occurs when it is 

turbulent flow at separation, not for transitional flow cases. This was later supported by 

the study of Abdalla & Yang (2005) for a separated–reattached flow over a blunt flat 

plate under very low free-stream turbulence where the flow at separation was laminar.  

   Several DNS studies of transition to turbulence within a laminar separation bubble 

have been carried out (Alam & Sandham 2000, Spalart & Strelets 2000, Marxen et al. 

2003, Marxen et al. 2004) and recently Jones et al. (2008) performed DNS of laminar 

separation bubbles on a NACA-0012 airfoil. However, the two shedding modes, 

especially the low-frequency shear layer flapping, were not shown in all those DNS 

studies. 

   It is well known that FST has a great impact on a separated-reattached flow, e.g.,  

increasing FST level would produce considerable contraction of the bubble length 

(Hillier & Cherry 1981), or even eliminate the reverse flow region completely (Kalter 

& Fernholz 2001). However, most of the previous studies did not address the effect of 

FST on the low-frequency flapping of the shear layer. Castro & Haque (1988) 

mentioned in  their study of a separated-reattached flow behind a normal flat plate with 

a long central splitter plate that FST led to an increased ‘flapping motion’ of the shear 

layer just after separation. Yang and Abdalla (2009) carried out a detailed numerical 

study of a separated boundary layer transition on a flat plate with a blunt leading edge 
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with 2% FST and their study did not show the existence of such a low-frequency 

flapping. 

In this section spectral analysis for both NFST and FST cases is presented to 

investigate frequency characteristics of the transitional separated shear layer under low 

and high free-stream turbulence. The results presented below correspond to 20,000 

samples taken every 20 time-steps at each point which is equivalent to 2.0 seconds, 

providing enough samples for reliable results over the relevant shedding frequency 

range (the maximum frequency that can be resolved is 5 kHz and the lowest is about 1 

Hz) as the typical low-frequency flapping occurs at about fl/U0 = 0.12 (Hillier & 

Cherry, 1981; Kiya & Sasaki, 1983; Cherry et al., 1984). For the current study this is 

equivalent to f = 20 Hz for the NFST case and f = 51.7 Hz for FST case so the low-

frequency flapping would happen every 0.05sec and 0.02sec respectively. This means 

that the samples collected over the time of 2.0 sec are able to cover 40 and 100 low-

frequency flapping cycles and should have been able to capture this low-frequency 

flapping if it exists in the current study. 

 

4.4.1 NFST case 

Extensive point data were stored at 12 streamwise stations covering the whole 

bubble length, and 7 wall-normal locations at each streamwise station to cover the 

bubble height from the very near wall region to the free stream above the free shear 

layer. Figure 4.22 shows the mean streamlines and the locations considered for spectral 

analysis. The coordinate origin is at stagnation point and separation occurs at blend 

point x/D = 0.5. The streamwise stations are: x/D = 0.33, 0.61, 0.86, 1.15, 1.46, 1.72, 

1.94, 2.19, 2.51, 2.87, 3.28, and 3.62. At each streamwise location, time traces of 

velocity components were collected at wall-normal locations y/D = 0.504, 0.516, 0.528, 

0.542, 0.558, 0.59, 0.85. The above mentioned locations are considered at four 

spanwise locations z/D = 2.0, 2.5, 3.0, 4.0. The figures below correspond to the mid 

spanwise location z/D = 4.0.  
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Fig.4.22. mean bubble streamlines and point locations for spectral analysis (12 streamwise stations with 7 wall-

normal locations each) 

Considering spectral characteristics of the free-stream near the leading edge and far 

away from the wall (figure 4.22, station 1, y/D = 0.85), the spectra for the velocity 

components u', v', w' are shown in figure 4.23 a, b, c, respectively which reflect the 

very low amplitude random (non-periodic) perturbations imposed on the free-stream 

flow. The spectra are quiet and do not show any high- or low-frequency contents. Since 

the spectra for u', v' and w' are quite similar at all other locations only u' and v' spectra 

are presented for the rest of the points. Close to the separation line and very close to the 

surface (figure 4.22, station 2, y/D = 0.504), the spectra for the velocity components u', 

v' are shown in figure 4.24a, b respectively. The u-spectrum clearly shows a peak at a 

frequency approximately 146 Hz. This is equivalent to 0.86U0/l, which is in close 

agreement with the experimental values discussed above. Other studies for separated 

reattached flows (different geometries) reported similar ranges of this value. Yang & 

Voke (2001) reported a value of 0.82U0/l in their LES for the same flow configuration. 

For the backward-facing step, Lee & Sung (2001) identified a value of f = 0.5U0/l. A 

frequency range of 0.5–0.8U0/l was reported by Mabey (1992) and Driver et al (1987) 

identified a frequency at f = 0.6U0/l. This frequency peak has been attributed to the 

shedding of large scale vortices from the separation bubble.  
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Fig.4.23. u', v', w' spectra at x/D = 0.33, y/D = 0.85, NFST case 
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Fig.4.24. u', v' spectra at x/D = 0.61, y/D = 0.504, NFST case 

 

Moving upward at the same x-location (figure 4.22, station 2, 2
nd

 – 6
th

 wall-normal 

locations: y/D = 0.516, 0.528, 0.542, 0.558, 0.59) figures 4.24 to 4.28 show the spectra 

of the streamwise and wall-normal velocity components. These positions extend from 

slightly below the center of the shear layer to the edge of shear layer. As can be seen 

from the figures, both the velocity components show the regular high shedding 

frequency at 146 Hz. The experimental work of Kiya & Sasaki (1983) and Cherry et al 

(1984) emphasised the fact that close to separation, the spectra is dominated by a low-

frequency content which they attributed to the flapping of the shear layer as discussed 

before. A low frequency activity was also reported in the LES of Yang of Voke (2001) 

for the same case with the low-frequency flapping fl/U0 = 0.12. However at this station 

close to the separation no apparent low-frequency peak can be observed.  
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Fig.4.24. u', v' spectra at x/D = 0.61, y/D = 0.516, NFST case  

 

 

Fig.4.25. u', v' spectra at x/D = 0.61, y/D = 0.528, NFST case  

 

 

Fig.4.26. u', v' spectra at x/D = 0.61, y/D = 0.542, NFST case  
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Fig.4.27. u', v' spectra at x/D = 0.61, y/D = 0.558, NFST case  

 

 

Fig.4.28. u', v' spectra at x/D = 0.61, y/D = 0.59, NFST case  

 

Moving downstream to the station 3 (x/D = 0.86) and then moving upward across 

the same wall-normal locations as discussed above, exactly the same regular shedding 

frequency with more pronounced peak is repeated. Figures 4.29 to 4.31 show the 

spectra of the streamwise and wall-normal velocity components at 1
st
, 3

th
, and 5

th
 

locations, from very close to the surface to the edge of shear layer. All the plots clearly 

show the regular shedding frequency identified previously. Figure 4.35 also shows trace 

of a very mild low-frequency activity f = 15-20 Hz (0.104 U0/l) besides the regular 

shedding frequency, in close agreement with the study of Yang of Voke (2001) for the 

same case. 
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Fig.4.29. u', v' spectra at x/D = 0.86, y/D = 0.504, NFST case 

 

Fig.4.30. u', v' spectra at x/D = 0.86, y/D = 0.528,  NFST case 

 

 

Fig.4.31. u', v' spectra at x/D = 0.86, y/D = 0.558, NFST case 
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Moving further downstream to the station 4 (x/D = 1.15) and then moving upward 

in the wall-normal locations as above, Figures A.1 to A.7 (Appendix) show the spectra 

of the streamwise and wall-normal velocity components at all the seven wall-normal 

locations, from very close to the surface to the free-stream. Again, for all locations 

within the shear layer, the spectra clearly show the regular shedding frequency 146 Hz 

except for the point located in the free-stream (figure A.7). Again a mild low frequency 

band appears at wall normal location y/D = 0.558, figure A.5.  

Moving further downstream to the station 5 (x/D = 1.46) and then moving upward 

in the wall-normal locations as above, the same frequency peak recurs. Figures A.8 to 

A.11 show the spectra of the streamwise and wall-normal velocity components at 1
st
, 

3
rd

, 5
th

, and 7
th

 wall-normal locations. For all locations within the shear layer, the 

spectra clearly show the regular shedding frequency as identified previously. No trace 

of low-frequency activity is apparent at this station. Moving further downstream to the 

station 6 (x/D = 1.72) and then moving upward in the wall-normal locations as above, 

the same frequency peak for the regular shedding dominates. Figures A.12 to A.14 

show the spectra of the streamwise and wall-normal velocity components at 1
st
, 5

th
, and 

7
th

 wall-normal locations. For all locations within the shear layer, the spectra clearly 

show the regular shedding frequency 146 Hz as identified in upstream locations. No 

apparent low frequency band can be seen at this station.  

Moving further downstream to the station 7 (x/D = 1.94) and then moving upward 

in the wall-normal locations as above, the same frequency peak dominates. Figures 

A.15 to A.17 show the spectra of the streamwise and wall-normal velocity components 

at 1
st
, 5

th
, and 7

th
  wall-normal locations. Again, for all locations within the shear layer, 

the spectra clearly show the regular shedding frequency 146 Hz as identified 

previously. No apparent low frequency band can be seen at this station. Moving further 

downstream to the station 8 (x/D = 2.19) and then moving upward from the near wall to 

the edge of the shear layer in the wall-normal locations as above, the same frequency 

peak appears. Figures A.18 to A.20 show the spectra of the streamwise and wall-normal 

velocity components at 1
st
, 5

th
, and 7

th
  wall-normal locations. For all locations within 

the shear layer, the spectra clearly show the regular shedding frequency 146 Hz as 

identified previously. Very mild low frequency activity of about f = 20 Hz can also be 

identified at y/D = 0.558 (Figure, A.19 a). Moving further downstream to the station 9 
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(x/D = 2.51) and then moving upward in the wall-normal locations as above, the same 

frequency peak can be identified. Figures A.21 to A.23 show the spectra of the 

streamwise and wall-normal velocity components at 1
st
, 5

th
, and 7

th
 wall-normal 

locations. For all locations within the shear layer, the spectra clearly show the regular 

shedding frequency f = 146 Hz. Again, a mild low frequency activity at about f = 20 Hz 

can be identified at y/D = 0.558. 

Moving further downstream to the station 10 (x/D = 2.87) and then moving upward 

in the wall-normal locations as above, the same regular shedding frequency peak 

prevails. Figures A.24 to A.26 show the spectra of the streamwise and wall-normal 

velocity components at 1
st
, 5

th
, and 7

th
 wall-normal locations. For all locations within 

the shear layer, the spectra clearly show the regular shedding frequency f = 146 Hz as 

identified previously. Also a mild low frequency of average f = 20 Hz can be identified 

at y/D = 0.558, Figure A.25a. Moving further downstream to the station 11 (x/D = 3.28) 

and then moving upward in the wall-normal locations as above, the same regular 

frequency peak is dominant. Figures A.27 to A.29 show the spectra of the streamwise 

and wall-normal velocity components at 1
st
, 5

th
, and 7

th
 wall-normal locations. For all 

locations within the shear layer, the spectra clearly show the regular shedding 

frequency f = 146 Hz as identified previously. No low-frequency activity can be seen.   

Finally at the last streamwise location i.e. station 12 (x/D = 3.62) and then moving 

upward in the wall-normal locations as above, Figures 4.32 – 4.38 show the spectra of 

the streamwise and wall-normal velocity components at 7 wall-normal locations. As 

can be seen there is no frequency peak and the spectra looks similar to a fully 

developed canonical boundary layer.  

 

Fig.4.32. u', v' spectra at x/D = 3.62, y/D = 0. 504, NFST case 
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Fig.4.33. u', v' spectra at x/D = 3.62, y/D = 0. 516, NFST case 

 

 

Fig.4.34. u', v' spectra at x/D = 3.62, y/D = 0. 528, NFST case 

 

 

Fig.4.35. u', v' spectra at x/D = 3.62, y/D = 0. 542, NFST case 
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Fig.4.36. u', v' spectra at x/D = 3.62, y/D = 0. 558, NFST case 

 

 

Fig.4.37. u', v' spectra at x/D = 3.62, y/D = 0. 59, NFST case 

 

 

Fig.4.38. u', v' spectra at x/D = 3.62, y/D = 0. 85, NFST case 
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The spectra of the velocity components were also investigated at spanwise planes 

z/D = 2.0, 2.5, 3.0. Data for these variables were stored in exact locations as for the 

midspan plane discussed above. Only spectra at z/D = 2.0 are shown here as the results 

at other plans are quite the same. Figures A.30 – A.32 show the spectra of the 

streamwise and wall-normal velocity components at z/D = 2.0 for station 3 at 2
st
, 4

th
, 

and 6
th

 wall-normal locations respectively. Both regular shedding frequency f = 146 Hz 

and low frequency band can be identified. Moving downstream at the same spanwise 

plane z/D = 2.0, Figures A.33 to A.38 show the spectra of the streamwise and wall-

normal velocity components for stations 7 and 11 (x/D = 1.94 and 3.28 ) at 2
st
, 4

th
, and 

6
th

 wall-normal locations. The regular shedding frequency f = 146 Hz observed in the 

midspan plane is also observable at z/D = 2.0. The same low frequency band of average 

f = 20 Hz observed in the midspan plane can also be identified in this spanwise plane at 

station 7 (figures A.33, 34, and 35).   

 

4.3.2 FST case 

It is of great interest to explore the effect of free-stream turbulence on the 

characteristic shedding frequency and hence the primary instability mechanism. Effect 

of higher FST (5.6% at leading edge) on spectral characteristics of transitional 

separated-reattached flow over a flat plate with semi-circular leading edge was also 

examined through extensive spectral analysis. Data were stored within 9 streamwise 

stations (covering the whole bubble and further the reattachment region), and 7 wall-

normal locations at each streamwise station (to cover the bubble height from the very 

near wall region to the free stream region above the free shear layer), to investigate the 

regular shedding and existence of low-frequency flapping at 5.6% FST. Figure 4.39 

shows the mean streamlines and the locations considered for spectral analysis. The 

coordinate origin is at stagnation point and separation occurs at blend point x/D = 0.5. 

The streamwise stations are: x/D = 0.33, 0.52, 0.65, 0.83, 1.03, 1.23, 1.45, 1.68, 1.93. 

At each streamwise location, time traces of velocities and pressure were collected at 

wall-normal locations y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85. The above 

mentioned locations are considered at four spanwise locations z/D = 2.0, 2.5, 3.0, 4.0. 

The figures below correspond to midspan plane z/D = 4.0. 
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Fig.4.39. mean streamlines and point locations for spectral analysis (FST case) 

At station 1 (x/D = 0.33) close to the separation line and very close to the wall (y/D 

= 0.504) the spectra for the velocity components are shown in figures 4.40 a, b, c, 

compared to the free stream spectra (grey lines). At this station very close to the 

separation line the spectra is quiet and does not show any spectacular high- or low-

frequency contents.  

 

Fig.4.40. spectra at x/D = 0.33, y/D = 0. 504 (a) u', (b) v', (c) w' (FST case) 
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Moving upward at the same x-location (station 1) and 2
nd

 to 7
th

 wall-normal 

locations (y/D = 0.516, 0.528, 0.542, 0.558, 0.59, 0.85) figures B.1 to B.6 (Appendix B)  

show the spectra of the streamwise and wall-normal velocity components compared to 

the free stream spectra. These positions extend from the attached boundary layer to the 

free-stream before the separation line. The spectra are quiet and do not show any 

spectacular high- or low-frequency contents. Spectra are similar for the velocity 

component so only u' spectra will be presented for the rest of the locations. Moving 

downstream to the station 3 (x/D = 0.65) and then moving upward across the same 

wall-normal locations as above, figures B.7 – B.13 show the spectra of the streamwise 

velocity components from the first to 7
th

 wall-normal locations (y/D = 0.504, 0.516, 

0.528, 0.542, 0.558, 0.59, 0.85). These positions extend from the very close wall region 

to the bubble shear layer and further to the free-stream. No traces of regular shedding or 

low frequency activity can be identified at this station. 

Moving downstream to the station 4 (x/D = 0.83) and then moving upward across 

the same wall-normal locations as discussed above, Figures 4.41 – 4.47 show the 

spectra of the streamwise velocity components from the first to 7
th

 wall-normal 

locations (y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). A very mild frequency 

peak region can be identified at y/D = 0.516 to y/D = 0.542 with average frequency 

about f = 600 Hz (1.39U0/l). No low frequency activity is apparent.  

 

Fig.4.41. spectra at x/D = 0.83, y/D = 0.504. (FST case) 
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Fig.4.42. spectra at x/D = 0.83, y/D = 0.516. (FST case) 

 

 

Fig.4.43. spectra at x/D = 0.83, y/D = 0.528. (FST case) 

 

 

Fig.4.44. spectra at x/D = 0.83, y/D = 0.542. (FST case) 
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Fig.4.45. spectra at x/D = 0.83, y/D = 0.558. (FST case) 

 

 

Fig.4.46. spectra at x/D = 0.83, y/D = 0.59. (FST case) 

 

 

Fig.4.47. spectra at x/D = 0.83, y/D = 0.85. (FST case) 
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Moving downstream to the station 5 (x/D = 1.03) and then moving upward across 

the same wall-normal locations as discussed above, Figures B.14 – B.20 show the 

spectra of the streamwise velocity components from the first to 7
th

 wall-normal 

locations (y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). Again, a mild frequency 

peak region can be identified at y/D = 0.516 to y/D = 0.542 with average frequency 

about f = 670 Hz (1.55U0/l). No low frequency activity can be observed. Moving 

downstream to the station 6 (x/D = 1.23) and then moving upward across the same 

wall-normal locations as discussed above, Figures B.21 – B.27 show the spectra of the 

streamwise velocity components from the first to 7
th

 wall-normal locations (y/D = 

0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). The mild frequency peak region with 

average about f = 600 Hz (1.39U0/l) up to y/D = 0.542 can be seen. No low frequency 

activity is apparent. Moving downstream to the station 7 (x/D = 1.45) and then moving 

upward across the same wall-normal locations as discussed above, Figures B.28 – B.34 

show the spectra of the streamwise velocity components from the first to 7
th

 wall-

normal locations (y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). Again the mild 

frequency peak region can be seen up to y/D = 0.542 exists. No trace of low frequency 

activity can be identified.  

Moving downstream to the station 8 (x/D = 1.68) and then moving upward across 

the same wall-normal locations as discussed above, Figures B.35 – B.41 show the 

spectra of the streamwise and wall-normal velocity components from the first to 7
th

 

wall-normal locations (y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). This station 

is in the reattachment region, and all the spectra at this station do not show any apparent 

frequency peak. Moving further downstream to the last station which is downstream of 

reattachment (station 9, x/D = 1.93) and then moving upward across the same wall-

normal locations as discussed above, Figures B.42 – B.48 show the spectra of the 

streamwise and wall-normal velocity components from the first to 7
th

 wall-normal 

locations (y/D = 0.504, 0.516, 0.528, 0.542, 0.558, 0.59, 0.85). It can be seen that in this 

station far in the reattached boundary layer, the spectra do not show any obvious 

frequency peak. 

The spectra of the velocity components were also investigated at z/D = 2.0, 2.5, 3.0. 

Data for these variables were stored in exact locations as for the spanwise location z/D 

= 4.0 (midspan plane) as discussed above. Figures B.49 – B.51 show the spectra of the 
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streamwise and wall-normal velocity components at z/D = 2.0, station 3 (x/D = 0.65) 

for 2
st
, 4

th
, and 6

th
 wall-normal locations. No regular shedding frequency or low-

frequency activity exist in this region. Since the spectra at other spanwise locations are 

quite similar so only spectra at plane z/D = 2.0 are presented to compare with those at 

the mid-span plane discussed above. Figures B.52 – B.54 show the spectra of the 

streamwise and wall-normal velocity components at z/D = 2.0, station 5 (x/D = 1.03), 

and 2
st
, 4

th
, and 6

th
 wall-normal locations. It can be seen that similar to the spectra at 

mid-span plane, a frequency peak region can also be identified with average frequency 

about f = 600 Hz (1.39U0/l). No low frequency activity is apparent in the shear layer.  

Figures B.55 – B.57 show the spectra of the streamwise and wall-normal velocity 

components at z/D = 2.0, station 7 (x/D = 1.45), and 2
st
, 4

th
, and 6

th
 wall-normal 

locations. Spectra are calm in both the regular shedding and low-frequency range and 

do not show any frequency peak. Moving downstream to station 9 (x/D = 1.93), figures 

B.58 – B.60 show the spectra of the streamwise and wall-normal velocity components 

at z/D = 2.0, and 2
st
, 4

th
, and 6

th
 wall-normal locations. Again similar to the mid-span 

plane, spectra are calm in both the regular shedding and low-frequency range and do 

not show any frequency peak. 

It can be concluded from the spectra analysis shown above that under high free 

stream turbulence level of 5.6% in the current study, much more chaotic motions in the 

free shear layer exist and the characteristic frequency peak clearly observed in the 

NFST case can be barely observed. Instead, a mild high-frequency shedding with 

average f = 1.45U0/l is present. These results along with previous studies at free stream 

turbulence levels up to 2% strongly indicate that the higher the level of free stream 

turbulence, the weaker is the frequency peak in the spectra and hence the shedding 

phenomena. As shown in the previous section, the weak shedding frequency values 

observed under the current 5.6% turbulence level suggest that the Kelvin-Helmholtz 

instability mechanism of the NFST case is no longer working at such high free stream 

turbulence.  
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4.3.3 Discussion 

The current LES study of a low Reynolds number transitional separated boundary 

layer at two different free-stream turbulence conditions shows a distinct regular vortex 

shedding and traces of very mild low-frequency flapping phenomena at very low free-

stream turbulence condition (NFST case). These low frequency excitation may be 

attributed to the flapping motion of the bubble often mentioned in the literature as 

reviewed in the previous sections. Under the higher free-stream turbulence (FST case) a 

high-frequency band is detected (higher than the characteristic frequency range of the 

regular shedding) and the low frequency oscillations no longer exist. 

The low-frequency flapping has been identified in a few experiments and numerical 

studies and believed to be due to the flapping of the shear layer. It has been associated 

with large-scale unsteadiness related to the shrinkage and enlargement of the separation 

bubble (Yang & Voke, 2001; Kiya & Sasaki, 1983) or low frequency up – down 

oscillations of the shear layer (Hain et al., 2009). Some numerical and experimental 

works have also suggested that the low-frequency flapping only occurs for turbulent 

separation and not for transitional flow cases (Abdalla & Yang, 2005; Cherry et al., 

1984) but the current study on a laminar separation flow under low free-stream 

turbulence level, still suggests the existence of low-frequency activity in the bubble. 

Nevertheless the physical explanation for the low frequency shedding is not yet fully 

understood.   
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Chapter 5 

Flow Visualisation 
 

 

 

To shed more light on the nature of the flow and the instabilities involved in the 

separated-reattached flow, coherent structures and their temporal/spatial evolution are 

investigated in this chapter. 

Many experimental studies have revealed that large-scale vortical coherent 

structures dominate the entrainment and mixing phenomena in free shear flows 

(Hussain, 1986). These large scale structures are such easily identifiable features within 

the flow commonly referred to as coherent structures. Understanding the physics of 

coherent structures is important for having a better insight into turbulence phenomena 

(such as entrainment and mixing, heat and mass transfer, drag and aerodynamic noise 

generation, etc.) and also for appropriate modelling of turbulence. Their topology and 

dynamics along with their evolution, interaction, and breakdown, would be beneficial 

in the study of shear flow development. It is known that the large scale motions in the 

flow provide the straining required for small-scale vorticity production. These small 

scale motions are characterised by large gradients (shear) and viscous diffusion of 

vorticity which cause the vorticity to spread into the non-shear region. Therefore, large 

scale structures would dominate the entrainment rate and thus shear flow transition 

(Tennekes & Lumley, 1972). 

It is well known that the turbulent shear flows are dominated by spatially coherent, 

temporally evolving vortical motions generally known as coherent structures (Cantwell, 

1981; Hussain, 1986). The primary structures in these flows seem to be dependent on 

the mean flow configuration e.g. geometry and the location of the solid-surface 

constraints. For example, large-scale spanwise vortices appear to dominate the 

dynamics in plane mixing layer (Brown & Roshko, 1974; Browand & Trout, 1974). For 

the plane boundary layer on the other hand, dominant structures may be a vortex with a 
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hairpin or horseshoe shape (Perry & Chang, 1982) and low-speed streaks (Schlatter et 

al. 2008; Watmuff et al. 2010; Brandt & Henningson, 2004). Analysing the coherent 

structures involved in the separated-reattached transitional flow may provide further 

insight into the transition process. 

Development and interactions of the coherent structures with background 

turbulence is governed by vortex dynamics which is a useful tool for understanding the 

turbulence phenomena such as; entrainment and mixing, mass and heat transfer, drag 

and aerodynamic noise, chemical reaction and combustion, and also for realistic 

modelling of turbulence (Hussain & Melander, 1991). Therefore a wide range of 

approaches have been developed to try to have a better understanding of the coherent 

structures and their dynamical roles in the turbulence. Different methods can be 

identified in the literature for investigating the coherent structures: wavelet analysis 

(Hui Li, 1998), conditional sampling (Jeong et al., 1997), pattern recognition (Scarano 

et al. 1999; Giralt & Ferre, 1993), proper orthogonal decomposition (Gordeyev & 

Thomas, 2000), and flow visualisation which is the traditional method for capturing the 

large coherent fluid motions.  

Despite considerable usage in the literature it seems that an approved universal 

definition for coherent structures does not yet exist. There is, however, no doubt about 

their important role in the dynamics of turbulent flows. Cantwell (1981) described 

coherent structures as spatially coherent and temporally evolving vortical structures. 

Glickman (1999) defined coherent structures as three-dimensional regions in a turbulent 

flow with characteristic structures and lifetimes in terms of velocity, temperature, etc., 

that are significantly larger or longer-lived than the smallest local scales. Sherif (1989) 

reported various definitions given to the coherent structures as: 

1. Large-scale organised motions,  

2. A pattern recurring in the flow which there is not necessarily an order to it 

showing random scale and velocities but fixed orientation, 

3. Predominant modes of instability, 

4. Flow entities that cause transport of momentum across a finite distance in a non-

diffusive way.  
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Ferziger (2005) stated that lack of regularity -either in time or in space- in the 

appearance of coherent structures in a particular flow, makes them difficult to define 

and describe. Hussain (1986) defined coherent structures as connected, large-scale 

turbulent fluid mass with a phase-correlated vorticity over its spatial extent. He 

introduced a triple decomposition where any instantaneous variable consisted of three 

components: mean component, the coherent component, and the incoherent turbulence. 

However, implicit in this decomposition is that the coherent structure is a perturbation 

of the time-mean flow while arguably coherent structure is the flow and not a mere 

perturbation. He then introduced a double decomposition so that the turbulent shear 

flow consisted of coherent and incoherent motions only, and governing equations with 

triple and double decomposition were derived. Robinson (1991) defined coherent 

structure as a three dimensional region of the flow over which at least one fundamental 

flow variable (velocity component, density, etc) exhibited significant correlation with 

itself or with another variable over a range of space and/or time that was significantly 

larger than the smallest local scales of the flow. Berkooz et al. (1993) defined coherent 

structure as organised spatial features of flow which repeatedly emerged (often in flows 

dominated by local shear) with a characteristic temporal life cycle. Lesieur (1997) 

described the coherent vortices as regions of the flow which satisfied following 

conditions: 

1. The vorticity concentration ω is high enough so that a local roll up of the 

surrounding fluid is possible, 

2. The vortices should keep their shape during a time far enough in front of the 

local turnover time ω
-1

, 

3. They should be unpredictable.  

Therefore high vorticity modulus ω can be a considered for coherent-vortex 

identification especially in the free shear flows e.g. Comte et al (1998) which 

extensively analysed streamwise vorticity dynamics of a mixing layer on the bases of ω 

– isosurfaces. However in the presence of a wall, the mean shear created by the no-slip 

condition is usually considerably higher than the typical vortical intensity of the near-

wall vortices and therefore more refined criterion is required to distinguish vortices 

from internal shear layers in these types of flows.  
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Dubief & Delcayre (2000) based on the definitions of Lesieur (1997) proposed a 

local minimum pressure criteria for vortex identification as a fluid parcel twisting 

around a vortex needed to be (in a frame moving with parcel) in approximate balance 

between centrifugal force and pressure-gradient effects and the pressure should 

decrease inside a vortex tube in order to counter balance the centrifugal force. Comte et 

al. (1998) and Robinson's (1991) used iso-surfaces of pressure to explore coherent 

structures in a turbulent boundary layer and suggested that as a vortex visualisation 

criterion the pressure criteria may be superior compared with the vorticity modulus. 

Nevertheless, the threshold to be used for proper iso-pressure surfaces strongly depends 

on the pressure surrounding the vortical structure and Abdalla (2004) speculated that in 

regions of high concentration of vortices, this criterion may fail to capture the details of 

the vortical structure.  

Hunt et al (1998) proposed a criterion incorporating some properties of both the 

vorticity and the pressure criterion known as the Q-criterion which is the second 

invariant of velocity gradient tensor   :  

  
 

 
                

Where                   and                    are the antisymmetric and the 

symmetric components of    respectively. In other words, Q is the balance between the 

rotation rate  
         and the strain rate           . Hence it can be implied that 

the positive Q iso-surfaces are indicative of the flow regions where the strength of the  

rotation take over the strain rate and so making the structures eligible to be identified as 

vortex envelops. 

Kelvin-Helmholtz rolls, Streaks, Hairpin vortices, Ribs and Lambda-shaped vortices 

are some of the common structures which are referred to as coherent structures in the 

literature. Streaky structures are characterised with narrow regions of low velocity fluid 

stretched in the streamwise direction (Kim et al., 1971; Smith & Metzler, 1983). 

Streamwise vortices are referred to as vortical structures which are predominantly 

oriented in the streamwise direction, although they may be bent and make an angle with 

the streamwise direction (Robinson, 1991). Kim et al. (1971) reported the streamwise 

vortices to be the dominant mode of oscillatory motions during the bursting. Spanwise 
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vortices are referred to as those primarily oriented in the spanwise direction and 

generally are produced as fluid of different velocities are twisted around as a result of 

Kelvin-Helmholtz instability. Hairpin vortices are those with two legs (quasi-

streamwise vortex pairs with opposite signs) and a tip (spanwise vorticity) (Head & 

Bandyopadhyay, 1981).  

Large scale vortical coherent structures in separated-reattached flows have been 

subject of much research. In the separation bubble the identification of vortices is more 

difficult compared with the zero-pressure gradient flows such as turbulent boundary 

layer and turbulent mixing layer. This is due to the fact that the vortices are 

comparatively weak in the laminar region leading to the transition and may 

considerably vary in strength near the reattachment and in the developing boundary 

layer. Generally, vortical structures in separated shear layers grow, merge and shed 

periodically from the reattachment region. The separated shear layer on a flat plate can 

be considered as a mixing layer modified by a recirculation zone below and an 

unsteady reattachment region. Some aspects of similarity of the flow structures 

visualised in the present study were found to be correlated with those present in the 

case of plain mixing layers and the backward-facing step. Winnant & Browand (1974) 

in their mixing layer experiment observed the mixing layer to be dominated by 

occurrence of quasi- two-dimensional spanwise vertical structures. It was observed that 

that adjacent pairs of vortices rolled around each other at some distance downstream. 

They believed that the viscous diffusion spread out the identities of the individual 

vortices, forming a single large vortex from the two originally distinct vortices. They 

believed this vortex pairing process to be the mechanism leading to the transition in the 

mixing layers. Since then the vortex pairing phenomenon is known as a 2D interaction 

whereby neighbouring vortices join together to form a large vortex.  

Kiya & Sasaki (1985) experimentally studied large scale structures within a bubble 

over a sharp leading edge. Existence of a counter-rotating vortex pair as hairpin 

vortices was identified. These hairpin-like vortices were reported to shed from the 

reattaching zone. Yang & Voke (2001) also reported hairpin vortices at around the 

mean reattachment point. In the study of Yang (2002) streaky structures, which are 

known to be associated with counter-rotating streamwise vortices, and hairpin vortices 

were observed around and after the reattachment. Detailed studies have been performed 
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by Abdalla and Yang (2004) to understand and visualise the large scale structures 

involved in the transition of separated boundary layers, where Kelvin-Helmhotlz rolls, 

Lambda-shaped and streamwise ribs were captured. Regarding the effect of geometry, 

very recently Abdalla et.al (2009) in a study of transitional separated-reattached flow 

over a surface mounted obstacle and a forward-facing step, demonstrated that the 

coherent structures such as the Lambda-shaped and rib-like vortices which are often 

associated with a flat plate boundary layer and also found in the separated-reattached 

flow over leading edge of a plate (Abdalla & Yang, 2004), are not common in the 

separated-reattached flow over obstacles and forward-facing steps.  

Yang & Abdalla (2005) considered the effects of 2% FST on the large-scale 

structures present in separated boundary layer transition. They reported a 14% 

reduction of the mean bubble length and an earlier breakdown of the separated 

boundary layer. It was demonstrated that with increased FST the position of first 

unsteadiness moved closer to the separation line. Increased rates of randomness of the 

flow and degraded coherency of the early stage structures along both the span and 

streamwise directions were also reported as consequences of the added FST. At 2% 

FST, 2D Kelvin-Helmhotlz rolls were not as apparent as in the case with no FST, but 

still observable in the early part of the bubble. Lambda-shaped (hairpin) vortices could 

hardly be identified and streamwise structures were enlarged in the spanwise direction 

and shortened in the streamwise direction compared with the case of no FST. It was 

concluded that in the presence of 2% FST the primary instability of the free shear layer 

was still the same as in the no FST case (Kelvin-Helmhotlz instability mechanism) but 

secondary instability was different and needed to be further investigated. 

 In the present chapter three vortex visualisation methods including the low-

pressure, high vorticity ω, and the positive Q iso-surfaces will be employed to visualise 

the flow structures. The flow filed of the separated-reattached flow under two free-

stream turbulence levels is visualised to elucidate large-scale vortical structures 

evolving in the separated shear layer and their development downstream of 

reattachment. The objective is that by processing the extensive LES data, the large-

scale structures associated with the separated boundary layer transition under the low 

and high free-stream turbulence could be revealed.  
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A .NFST case 

Two dimensional velocity and pressure contours (at the same instantaneous times) 

on the midspan x-y plane are presented in Figures 5.1 and 5.2 indicating vortex 

formation and shedding of vortical structures from the separated boundary layer. It can 

be seen from the velocity and pressure fields that the vortices begin to form from x/D = 

1.1 and become large and stronger as they move towards the reattachment region at 

about x/D = 3.0. The vortices then shed from the bubble while new structures taking 

form upstream in the shear layer. The vorticity roll up and shedding process can be 

more clearly seen by following sequential snapshots of the two dimensional spanwise 

vorticity as shown in figures 5.3 and 5.4. An incidence of two spanwise vortices 

merging together at about x/D = 2.8 could be detected as shown in figure 5.4. 

Visualisation through the three-dimensional low-pressure isosurfaces can be seen in 

figures 5.5 and 5.6 and 5.7. revealing several important features of the flow. At the 

beginning of Kelvin-Helmholtz instability, Kelvin-Helmholtz billows are shed 

downstream of the separation and grow in size as they travel downstream downstream. 

This is clearly displayed in figures showing the spanwise vortex tubes or rolls 

dominating the flow topology. 

The Kelvin-Helmholtz rolls grow up in size and are subjected to some waviness 

along the spanwise direction. It is clearly observed that the axis of the spanwise billows 

retain their perpendicular direction with the flow direction keeping their coherency and 

two-dimensional nature. The structures shown in these figures do support the idea that 

at least in some occasions, the process of pairing occurs in the current study for NFST 

case. By close inspection of figures 5.5 and 5.6 and 5.7 it can be seen that the above 

described two-dimensional spanwise coherent vortical structures become more 

distorted (specially the initially shed roll) while convecting downstream. 
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Fig. 5.1. Velocity Contours displaying vortex formation and shedding  
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Fig. 5.2. 2D pressure contours displaying vortex formation and shedding  
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Fig. 5.3. Snapshots of spanwise vorticity showing vorticity roll up and shedding  



103 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Sequential snapshots of spanwise vorticity showing vorticity roll up and pairing  
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Fig.5.5. Sequential three-dimensional isosurfaces of low-pressure (NFST case) 
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Fig.5.6. Sequential three-dimensional isosurfaces of low-pressure (NFST case) 
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Fig.5.7. Sequential three-dimensional isosurfaces of low-pressure (NFST case) 
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Evolution and breakdown of the two-dimensional Kelvin-Helmholtz rolls into 

organised Λ-shaped vortical structures after the reattachment region can be seen 

through the Q-criterion isosurfaces shown in figures 5.8, 5.9, and 5.10. Compared to 

the low-pressure criteria, it seems that the Q-criterion can be used to reveal better the 

structures of smaller scales than those visualised by the low-pressure field.   

 

 

 

 

Fig.5.8. Sequences of Q-isosurfaces showing two-dimensional Kelvin-Helmholtz rolls breakdown 

into horse-shoe vortices (NFST case) 
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Fig.5.9. Sequences of Q-isosurfaces showing two-dimensional Kelvin-Helmholtz rolls breakdown 

into horse-shoe vortices (NFST case) 
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Fig.5.10. Sequences of Q-isosurfaces showing two-dimensional Kelvin-Helmholtz rolls breakdown 

into horse-shoe vortices (NFST case) 
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Fig.5.11. Sequences of Q-isosurfaces showing two-dimensional Kelvin-Helmholtz rolls breakdown 

into horse-shoe vortices (NFST case) 
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Fig.5.12. Sequences of Q-isosurfaces showing two-dimensional Kelvin-Helmholtz rolls breakdown 

into horse-shoe vortices (NFST case) 
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Three-dimensional streamwise vorticity iso-surfaces at sequential times are shown 

in figures 5.13 to 5.16.  It can be seen that traces of streamwise vorticity appear in the 

early stages of transition at about x/D = 2.0. It can be seen that the main region of 

concentration of the streamwise vorticity is within the reattachment region x/D = 2.0-

4.0. This is where most of the transition events and reattachment take place. It appears 

that the emerging vortical structures are gradually lifted up and move away from the 

wall while becoming stretched along the axial direction. Overall, the streamwise 

vorticity shown in the figures 5.13 to 5.16 present rather organised and distinguishable 

longitudinal structures. 

 

 

 

 

Fig.5.13. Sequences of streamwise vorticity isodurfaces (NFST case) 
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Fig.5.14. Sequences of streamwise vorticity isodurfaces (NFST case) 
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Fig.5.15. Sequences of streamwise vorticity isodurfaces (NFST case) 
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Fig.5.16. Sequences of streamwise vorticity isodurfaces (NFST case) 

Figures 5.17, 5.18, and 5.19 show the three-dimensional spanwise vorticity iso-

surfaces where a plane vorticity sheet develop from the leading edge and starts to 

become unsteady at around x/D = 2.0 where three-dimensional motions develop rapidly 

as discussed in the previous chapter. The vorticity sheet eventually breaks down into 

severe longitudinal vortical structures in the reattachment region around x/D = 3.0 – 

4.0.  

 

Fig.5.17. spanwise vorticity isodurfaces (NFST case) 
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Fig.5.18. Sequences of spanwise vorticity isodurfaces (NFST case) 
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Fig.5.19. Sequences of spanwise vorticity isodurfaces (NFST case) 

 

 

B. FST case 

In the same manner as above for the NFST case, the pressure iso-surfaces, the Q-

criterion, and the vorticity field are also employed to visualise the flow structures for 

the FST case and to compare qualitatively with the NFST case. 

Figures 5.20, 5.21, and 5.22 show sequential pressure iso-surfaces for the FST case. 

The chaotic behaviour of the flow compared with the NFST case is apparent. No traces 

of the two-dimensional Kelvin-Helmholtz rolls could be identified through the low 

pressures field visualisations. The addition of free-stream turbulence with the intensity 

of 5.6% has smeared the coherent two-dimensional structures observed in the NFST 

case and resulted in earlier transition. 
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Fig.5.20. Sequences of low-pressure isosurfaces (FST case) 

 

 



119 
 

 

 

 

 

 

Fig.5.21. Sequences of low-pressure isosurfaces (FST case) 
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Fig.5.22. Sequences of low-pressure isosurfaces (FST case) 
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Figures 5.23, 5.24, 5.25, 5.26, 5.27, and 5.28 show sequential snapshots of the Q-

criterion isosurfaces depicting the flow structures developing in the FST case. Two-

dimensional structures associated with the Kelvin-Helmholtz instability as seen for 

NFST, are no longer visible at high free-stream turbulence level. Fot the NFST case, 

the spanwise oriented quasi-two dimensional rolls was clearly visible at the early stage 

of the bubble and then became distorted/deformed due to three-dimensional motion 

setting in as a result of a possible secondary instability. It was seen for the NFST case 

that some sorts of three-dimensional structures similar to the so called hairpin vortices 

appeared and eventually brokdown to turbulence at about or just after the reattachment. 

However, for the FST case it can be seen that spanwise oriented quasi-two dimensional 

Kelving-Helmholtz rolls are not visible anymore and spanwise irregularity appears at 

the early stage of the bubble in the separated shear layer leading to the formation of 

three-dimensional hairpin like structures, bypassing the stage where the Kelvin-

Helmholtz rolls would appear and leading to much earlier breakdown to turbulenece 

compared with the NFST case. 

 

 

Fig.5.23. Q- isosurfaces (FST case) 
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Fig.5.24. Sequences of Q- isosurfaces (FST case) 
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Fig.5.25. Sequences of Q- isosurfaces (FST case) 
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Fig.5.26. Sequences of Q- isosurfaces (FST case) 
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Fig.5.27. Sequences of Q- isosurfaces (FST case) 
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Fig.5.28. Sequences of Q- isosurfaces (FST case) 

 

Figures 5.29 show streamwise vorticity isosurfaces for the FST case. It can be seen 

that unlike the NFST case, streamwise vorticity appear from the early stage of 

separation and show much more unorganised features as compared with the NFST case.  
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Fig.5.29. Sequences of streamwise vorticity isosurfaces (FST case) 
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Spanwise vorticity field for the FST case are shown in figures 5.30. Similar to the 

NSFT case a plane vorticity sheet can be seen developing from the leading edge but 

with some irregularities associated with streaky structures. It can be seen that compared 

with the NFST case disturbances in the free shear layer have larger amplitudes much 

earlier at about x/D = 0.8 due to disturbances from free-stream turbulence. Furthermore, 

it can be seen that the flow in the attached thin boundary layer prior to separation is still 

rather smooth, indicating that it is still laminar boundary layer but is already disturbed 

to some extent. Close inspection of spanwise vorticity isosurfaces reveals that the 

spanwise vorticity in the FST case is distorted much earlier than the NFST case and the 

attached thin laminar boundary layer prior to separation is not quite two-dimensional 

and contain some kind of streaky-like structures encouraging the bypass transition of 

the separated shear layer as investigated in the previous chapter. 

 

 

 

 

Fig.5.30. Sequences of spanwise vorticity isosurfaces (FST case) 
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From the above visualisation of the flow structures for both NFST and FST cases 

the following conclusions regarding the effect of free-stream turbulence can be drawn: 

1. Free-stream turbulence results in an earlier breakdown of the separated shear 

layer. 

2. The spanwise coherence of structures are distorted and the vortical structures are 

no longer organised as seen at low free-stream turbulence condition. 

3. The two-dimensional Kelvin-Helmholtz instability seen at low free-stream 

turbulence condition is bypassed and the breakdown of shear layer occurs much 

earlier than the NFST case.  
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Chapter 6 

Concluding Remarks and Recommendations 
 

 

Two transitional separated-reattached flows developed over a flat plate with a semi-

circular leading edge (T3L test cases) at two free-stream turbulence levels have been 

investigated using Large Eddy Simulation (LES). A dynamic sub-grid scale model was 

employed where the sub-grid eddy-viscosity was calculated dynamically at each time 

step. A numerical trip method has been successfully used to generate a realistic 

turbulence field of high turbulence intensity. The numerical approach employed yields 

a very well agreement with experimental data regarding both the free-stream turbulence 

decay rate and the mean velocity profiles as well as the Reynolds stresses.  

The whole transition process leading to the breakdown of the separated shear layer 

has been shown through flow visualisation. Large scale coherent structures have been 

identified within the shear layer depicting the transition of process. For the NFST case, 

the two-dimensional Kelvin-Helmholtz rolls are the dominant large-scale structures 

prior to the reattachment. They grow in size as being convected downstream and are 

prone to unsteadiness as any small disturbances present grow downstream causing the 

distortion of the initial two-dimensional spanwise vortices. Further downstream these 

two-dimensional vortices become more distorted and roll up leading to the formation of 

streamwise vortices associated with significant three-dimensional motions. The Kelvin-

Helmholtz vortices eventually breakdown at about the mean reattachment point and 

develop rapidly into a turbulent layer downstream. The well-known hairpin vortices 

have been clearly shown at about the mean reattachment point.  

From the detailed analysis of the LES data it has been concluded that at low levels 

of free-stream turbulence, transition of the separated shear layer is initiated with the 

two-dimensional inviscid instability via the Kelvin-Helmholtz instability mechanism 

consistent with numerous studies on transition of the separated shear layer at low 

disturbance environment. 
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Detailed analysis of LES data for the case under 5.6% free-stream turbulence level 

reveal that transition occurs earlier compared with the NFST case with no presence of 

the Kelvin-Helmholtz rolls in the separated shear layer. In fact, for the FST case the 

instability analysis shows that the criterion for the Kelvin-Helmholtz instability to 

happen is not satisfied anymore. There are already disturbances in the attached thin 

boundary layer before separation and the disturbances grow very rapidly immediately 

after separation, leading to very rapid transition. This is further confirmed by 

visualising the transition process using isosurfaces of the vorticity and Q-criterion 

which prove that the transition process is quite different at such high level of free 

stream turbulence. The early stage where the Kelvin-Helmholtz instability dominates 

under low free-stream turbulence is bypassed under such elevated free-stream 

turbulence conditions similar to the bypass transition process in attached boundary 

layers. Under such free-stream turbulence level the mean reattachment length reduced 

by 60%, consistent with the findings of many numerical and experimental studies 

concerning the effect of free-stream turbulence in separated-reattached flow. From the 

extensive flow visualisation data it can also be concluded that the free-stream 

turbulence increased the randomness and reduced the coherency of the large-scale 

structures comparing with the NFST case. 

A detailed spectral analysis was performed for both the NFST and FST cases over 

the whole separation region. For the NFST case, it is revealed that fluctuations are 

amplified in the separated region within two frequency ranges; a regular shedding 

frequency and a low-frequency band. The dimensionless regular shedding frequency is 

in good agreement with many numerical and experimental studies and through the 

wave number analysis (the kh criteria) it proves that the Kelvin-Helmholtz instability is 

at work. Existence of the low-frequency band is believed in some literature to be due to 

the flapping of the shear layer associated with enlargement and shrinkage of the bubble.  

Detailed spectral analysis was also performed for the case at 5.6% free-stream 

turbulence. Only a mild peak region could be observed within the shear layer with a 

high-frequency range which does not satisfy the Kelvin-Helmholtz instability criterion. 

No trace of low-frequency activity as seen for the NFST case could be observed. This 

low frequency activity is not well understood and further investigation is needed. 
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The present study has shown that the accuracy of the co-located grid arrangement 

with the Rhie-Chow pressure smoothing when applied to separated boundary layer 

transition simulations is as good as using a staggered grid arrangement, which is 

consistent with the previous studies of mainly steady flow calculations. This is very 

encouraging as the co-located gird has distinct advantages over the staggered grid when 

computational domains are complex and non-orthogonal meshes have to be used but 

there is a general misconception in the incompressible LES community that the 

staggered gird is superior to the co-located gird.  

 

Scope for Further Research 
 

The current study employed LES to explore effects of reasonably high free-stream 

turbulence level on instability characteristics of separated boundary layer on a plate 

with a semi-circular leading edge. The focus has been on how the primary instability 

and shedding frequencies are affected by such high free-stream turbulence level. The 

later stages of the transition i.e. secondary instabilities leading to breakdown of the 

primary vortices into the smaller scales is still not well understood. Instances of 

vorticity pairing could be observed for the low free-stream turbulence case, however 

more research is required in this field to clarify the later stage instabilities leading to the 

breakdown. 

The low-frequency flapping hardly observed at very low free-stream condition but 

more research is required to clarify this so that a much better understanding can be 

achieved. 

Influence of free-stream turbulence on characteristics of the developing boundary 

layer downstream of the reattachment is an interesting aspect of the separated-

reattached flow and needs to be investigated further. 
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Appendices 
 

A.  Spectra for NFST case 

 

Fig.A.1. u', v' spectra at x/D = 1.15, y/D = 0.504, NFST case 

 

Fig.A.2. u', v' spectra at x/D = 1.15, y/D = 0.516, NFST case 

 

Fig.A.3. u', v' spectra at x/D = 1.15, y/D = 0.528, NFST case 
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Fig.A.4. u', v' spectra at x/D = 1.15, y/D = 0.542, NFST case 

 

 

Fig.A.5. u', v' spectra at x/D = 1.15, y/D = 0.558, NFST case 

 

 

Fig.A.6. u', v' spectra at x/D = 1.15, y/D = 0.59, NFST case 
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Fig.A.7. u', v' spectra at x/D = 1.15, y/D = 0.85, NFST case 

 

 

Fig.A.8. u', v' spectra at x/D = 1.46, y/D = 0.504, NFST case 

 

 

Fig.A.9. u', v' spectra at x/D = 1.46, y/D = 0.528, NFST case 
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Fig.A.10. u', v' spectra at x/D = 1.46, y/D = 0.558, NFST case 

 

 

Fig.A.11. u', v' spectra at x/D = 1.46, y/D = 0.85, NFST case 

 

 

Fig.A.12. u', v' spectra at x/D = 1.72, y/D = 0.504, NFST case 
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 Fig.A.13. u', v' spectra at x/D = 1.72, y/D = 0.558, NFST case 

 

 

Fig.A.14. u', v' spectra at x/D = 1.72, y/D = 0.85, NFST case 

 

 

Fig.A.15. u', v' spectra at x/D = 1.94, y/D = 0.504, NFST case 
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Fig.A.16. u', v' spectra at x/D = 1.94, y/D = 0.558, NFST case 

 

 

Fig.A.17. u', v' spectra at x/D = 1.94, y/D = 0.85, NFST case 

 

 

Fig.A.18. u', v' spectra at x/D = 2.19, y/D = 0.504, NFST case 
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Fig.A.19. u', v' spectra at x/D = 2.19, y/D = 0.558, NFST case 

 

 

Fig.A.20. u', v' spectra at x/D = 2.19, y/D = 0.85, NFST case 

 

 

Fig.A.21. u', v' spectra at x/D = 2.51, y/D = 0.504, NFST case 
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Fig.A.22. u', v' spectra at x/D = 2.51, y/D = 0.558, NFST case 

 

 

Fig.A.23. u', v' spectra at x/D = 2.51, y/D = 0.85, NFST case 

 

 

Fig.A.24. u', v' spectra at x/D = 2.87, y/D = 0.504, NFST case 
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Fig.A.25. u', v' spectra at x/D = 2.87, y/D = 0.558, NFST case 

 

 

Fig.A.26. u', v' spectra at x/D = 2.87, y/D = 0.85, NFST case 

 

 

Fig.A.27. u', v' spectra at x/D = 3.28, y/D = 0. 504, NFST case 
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Fig.A.28. u', v' spectra at x/D = 3.28, y/D = 0. 558, NFST case 

 

 

Fig.A.29. u', v' spectra at x/D = 3.28, y/D = 0. 85, NFST case 

 

 

Fig.A.30. u', v' spectra at x/D = 0.86, y/D = 0. 516 and spanwise plane z/D = 2.0 , NFST case 
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Fig.A.31. u', v' spectra at x/D = 0.86, y/D = 0. 542 and spanwise plane z/D = 2.0 , NFST case 

 

 

Fig.A.32. u', v' spectra at x/D = 0.86, y/D = 0. 59 and spanwise plane z/D = 2.0 , NFST case 

 

 

Fig.A.33. u', v' spectra at x/D = 1.94, y/D = 0. 516 and spanwise plane z/D = 2.0, NFST case 
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Fig.A.34. u', v' spectra at x/D = 1.94, y/D = 0. 542 and spanwise plane z/D = 2.0, NFST case 

 

 

Fig.A.35. u', v' spectra at x/D = 1.94, y/D = 0. 59 and spanwise plane z/D = 2.0, NFST case 

 

 

Fig.A.36. u', v' spectra at x/D = 3.28, y/D = 0. 516 and spanwise plane z/D = 2.0, NFST case 
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Fig.A.37. u', v' spectra at x/D = 3.28, y/D = 0. 542 and spanwise plane z/D = 2.0 , NFST case 

 

 

Fig.A.38. u', v' spectra at x/D = 3.28, y/D = 0. 59 and spanwise plane z/D = 2.0 , NFST case 
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B. Spectra for FST case 

 

Fig.B.1. spectra at x/D = 0.33, y/D = 0.516. (a) u', (b) v'. (FST case) 

 

 

Fig.B.2. spectra at x/D = 0.33, y/D = 0.528. (a) u', (b) v'. (FST case) 

 

 

Fig.B.3. spectra at x/D = 0.33, y/D = 0.542. (a) u', (b) v'. (FST case) 
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Fig.B.4. spectra at x/D = 0.33, y/D = 0.558. (a) u', (b) v'. (FST case) 

 

 

Fig.B.5. spectra at x/D = 0.33, y/D = 0.59. (a) u', (b) v'. (FST case) 

 

 

Fig.B.6. spectra at x/D = 0.33, y/D = 0.85 (Free stream) (a) u', (b) v' (FST case) 
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Fig.B.7. u' spectra at x/D = 0.65, y/D = 0.504. (FST case) 

 

 

Fig.B.8. spectra at x/D = 0.65, y/D = 0.516. (FST case) 

 

 

Fig.B.9. spectra at x/D = 0.65, y/D = 0.528. (FST case) 
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Fig.B.10. spectra at x/D = 0.65, y/D = 0.542. (FST case) 

 

 

Fig.B.11. spectra at x/D = 0.65, y/D = 0.558. (FST case) 

 

 

Fig.B.12. spectra at x/D = 0.65, y/D = 0.59. (FST case) 
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Fig.B.13. spectra at x/D = 0.65, y/D = 0.85. (FST case) 

 

 

Fig.B.14. spectra at x/D = 1.03, y/D = 0.504. (FST case) 

 

 

Fig.B.15. spectra at x/D = 1.03, y/D = 0.516. (FST case) 
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Fig.B.16. spectra at x/D = 1.03, y/D = 0.528. (FST case) 

 

 

Fig.B.17. spectra at x/D = 1.03, y/D = 0.542. (FST case) 

 

 

Fig.B.18. spectra at x/D = 1.03, y/D = 0.558. (FST case) 



152 
 

 

Fig.B.19. spectra at x/D = 1.03, y/D = 0.59. (FST case) 

 

 

Fig.B.20. spectra at x/D = 1.03, y/D = 0.85. (FST case) 

 

 

Fig.B.21. spectra at x/D = 1.23, y/D = 0.504. (FST case) 
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Fig.B.22.  spectra at x/D = 1.23, y/D = 0.516. (FST case) 

 

 

Fig.B.23. spectra at x/D = 1.23, y/D = 0.528. (FST case) 

 

 

Fig.B.24. spectra at x/D = 1.23, y/D = 0.542. (FST case) 
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Fig.B.25. spectra at x/D = 1.23, y/D = 0.558. (FST case) 

 

 

Fig.B.26. spectra at x/D = 1.23, y/D = 0.59. (FST case) 

 

 

Fig.B.27. spectra at x/D = 1.23, y/D = 0.85. (FST case) 
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Fig.B.28. spectra at x/D = 1.45, y/D = 0.504. (FST case) 

 

 

Fig.B.29. spectra at x/D = 1.45, y/D = 0.516. (FST case) 

 

 

Fig.B.30. spectra at x/D = 1.45, y/D = 0.528. (FST case) 
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Fig.B.31. spectra at x/D = 1.45, y/D = 0.542. (FST case) 

 

 

Fig.B.32. spectra at x/D = 1.45, y/D = 0.558. (FST case) 

 

 

Fig.B.33. spectra at x/D = 1.45, y/D = 0.59. (FST case) 
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Fig.B.34. spectra at x/D = 1.45, y/D = 0.85. (FST case) 

 

 

Fig.B.35. spectra at x/D = 1.68, y/D = 0.504. (FST case) 

 

 

Fig.B.36. spectra at x/D = 1.68, y/D = 0.516. (FST case) 
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Fig.B.37. spectra at x/D = 1.68, y/D = 0.528. (FST case) 

 

 

Fig.B.38. spectra at x/D = 1.68, y/D = 0.542. (FST case) 

 

 

Fig.B.39. spectra at x/D = 1.68, y/D = 0.558. (FST case) 
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Fig.B.40. spectra at x/D = 1.68, y/D = 0.59. (FST case) 

 

 

Fig.B.41. spectra at x/D = 1.68, y/D = 0.85. (FST case) 

 

 

Fig.B.42. spectra at x/D = 1.93, y/D = 0.504. (FST case) 
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Fig.B.43. spectra at x/D = 1.93, y/D = 0.516. (FST case) 

 

 

Fig.B.44. spectra at x/D = 1.93, y/D = 0.528. (FST case) 

 

 

Fig.B.45. spectra at x/D = 1.93, y/D = 0.542. (FST case) 
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Fig.B.46. spectra at x/D = 1.93, y/D = 0.558. (FST case) 

 

 

Fig.B.47. spectra at x/D = 1.93, y/D = 0.59. (FST case) 

 

 

Fig.B.48. spectra at x/D = 1.93, y/D = 0.85. (FST case) 
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Fig.B.49. spectra at x/D = 0.65, y/D = 0.516 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.50. spectra at x/D = 0.65, y/D = 0.542 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.51. spectra at x/D = 0.65, y/D = 0.59 and spanwise plane z/D = 2.0. (FST case) 
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Fig.B.52. spectra at x/D = 1.03, y/D = 0.516 and spanwise plane z/D = 2.0. (FST case) 

 

Fig.B.53. spectra at x/D = 1.03, y/D = 0.542 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.54. spectra at x/D = 1.03, y/D = 0.59 and spanwise plane z/D = 2.0. (FST case) 
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Fig.B.55. spectra at x/D = 1.45, y/D = 0.516 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.56.  spectra at x/D = 1.45, y/D = 0.542 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.57. spectra at x/D = 1.45, y/D = 0.59 and spanwise plane z/D = 2.0. (FST case) 
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Fig.B.58. spectra at x/D = 1.93, y/D = 0.516 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.59. spectra at x/D = 1.93, y/D = 0.542 and spanwise plane z/D = 2.0. (FST case) 

 

 

Fig.B.60. spectra at x/D = 1.93, y/D = 0.59 and spanwise plane z/D = 2.0. (FST case) 
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