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SUMMARY 

Small open reading frame genes (smORFs) are a new class of genes, which emerged 

from the revision of the idea that open reading frames have to be longer than 100 

codons to be  protein coding and functional. Although bio-informatics evidence 

suggests that thousands of smORF genes could exist in any given genome, proof of their 

functional relevance can only be obtained through their functional characterization. This 

work represents such a study for a Drosophila smORF (pncr003;2L), which was 

initially misannotated as a non-coding RNA because of its lack of a canonical long open 

reading frame. Here I show that pncr003;2L codes for  two small peptides of 28 and 29 

aa, expressed in somatic and cardiac muscles. After generating a null condition for this 

gene, I use the adult Drosophila heart as a system to assess the function of pncr003;2L. 

With this system, I show that the small pncr003;2L peptides regulate heart contractions 

by modulating Ca2+ cycling in cardiac muscles, with either lack or excess of function of 

these peptides leading to cardiac arrhythmias, and abnormal calcium dynamics. Finally, 

through an extensive homology study, I show that these small peptides share a great 

amount of structural and functional homology with the peptides encoded by the 

vertebrate smORFs sarcolipin (sln) and phospoholamban (pln), which act as major 

regulators of the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA), the channel 

responsible for calcium uptake into the ER following muscle contraction.  

 

These results highlight the importance of the pncr003;2L smORF and the Drosophila 

system, for the study of cardiac pathologies, but most importantly, they show that this 

family of peptides, conserved across evolution, represent an ancient system for the 

regulation of calcium trafficking in muscles. This work corroborates the prevalence, and 

relevance of this novel class of genes, and shows that closer attention should be given to 

smORFs in order to determine the full extent of their biological contribution. 
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Chapter I - General Introduction 

1- Small Open Reading Frame genes (smORFs); what are they and why are they so 
interesting? 

1.1- Genomic annotation methods favour canonical genes over smORFs. 
The basic rules of phenotypic inheritance between a living organism and its progeny 

were addressed for the first time by Gregor Mendel a century and a half ago. Since then, 

every branch of biology has pursued, in one way or another, the identification of the 

molecular mechanisms involved in the transmission of the inheritance of genetic 

information, and their “phenotypic impact” in organisms. The ultimate aim of this work 

is to contribute to this very cause, by unveiling the importance of small open reading 

frames genes (smORFs), one such component, which until now has been neglected.   

Most people would agree that the most important component of this inheritance 

mechanism is the gene. But what is a gene? At its origin, because of the lack of 

knowledge regarding its biological nature, the term had an abstract nature. It was coined 

by Wilhelm Johannsen in 1909 as “the special conditions, foundations and determiners 

which are present in the gametes in unique, separate and thereby independent ways by 

which many characteristics of the organism are specified” [1,2]. Today, after many 

major landmark achievements, which have allowed us to understand the molecular 

nature of entire genomes, because of the dizzying complexity with which we have been 

confronted, some of which will be discussed in the following sections, it is still tricky to 

precisely define what a gene is. For a matter of simplicty, and following the established 

central dogma of molecular biology stating that genomic information flows from DNA 

to RNA to protein, we could define, for the moment, a canonical gene as the DNA 

sequence containing the code necessary to generate a protein. This protein coding 

sequence is known as DNA coding sequence (CDS), when its known to encode for a 

protein, or as an open reading frame (ORF), referring to the stretch of nuecleotidic 

sequence, which starts with a  translational start codon (most commonly an ATG triplet 

although alternative start codons exist) and finishes with a stop codon.  
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Such genes have commonly been annotated by large databases / consortia, such as the 

National Centre of Biological Information (NCBI) or the European Molecular Biology 

Laboratory project known as Ensembl, with the ultimate aim of identifying and 

cataloguing all the genes within any given genome. Recently, the Encyclopedia of  

DNA Elements (ENCODE for humans, or MODENCODE for model organisms) 

consortia, have gone beyond gene annotation, having taken the task of annotating not 

only genes, but all coding elements within the human, and model organisms genomes; 

although this dissertation will touch on such other elements, the focus will remain on 

genes, as defined earlier. The process of gene annotation usually integrates 

computational de novo gene prediction, which requires the use of sophisticated 

algorithms often referred to as “gene finders”, and pair-wise alignment to the genome of 

experimentally supported sequences; usually, these are protein sequences obtained from 

publications describing the function of particular genes, or from libraries of 

complementary DNA (cDNA), expressed sequence tags (ESTs), or more recently from 

RNA sequencing (RNA-seq) reads.  

The annotation of de novo ORFs with computational prediction methods and, in 

general, the accurate annotation of genes, is not at all trivial. Allen et al. summarise this 

in their 2007 Genome research manuscript [3]  pointing out that the difficulties in 

creating accurate annotations arise for several reasons: “Sometimes the evidence for a 

gene is weak, consisting of just one gene prediction but no sequence homology, or just a 

single expressed sequence tag (EST) match. In other cases, the evidence is plentiful but 

contradictory: Different gene finders and protein sequence alignments may indicate 

many overlapping candidate genes, and more than one of these models may in fact be 

correct“. Importantly, they emphasise how time consuming the process of gene 

annotation can be, especially when the complexity of the prediction/evidence is such 

that human curation is required.   

The already challenging process of gene annotation is even more difficult for ORFs 

with small sizes, and as a consequence many genes with small ORFs (small ORFs 

belonging to a gene, and from which a functional peptide is produced, will hereby be 

referred as smORFs) may have escaped annotation. Basrai et al.[4], who argue in 

favour of this view, plotted a histogram representing the sizes of all ORFs in the yeast 

genome, superimposed over a histogram representing the sizes of all its annotated genes 

(Figure 1.1). What this plot shows is that although an immense number of short ORFs 
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exist in the yeast genome (they report 260,000 ORFs less than 100 codons long), the 

number of annotated genes encoding small ORFs is relatively very small (~100 genes). 

Although it is possible that genes with small ORFs may be simply sparse, several 

factors point to a scenario where they may be plentiful but misannotated.  First of all, 

their short sizes render most computational prediction methods inaccurate. Those 

methods are usually based on an assessment of the differences in nucleotide 

composition between coding and noncoding sequences, assessing parameters such as 

codon usage, sometimes referred to as codon adaptation index (CAI) [5]. CAI 

calculations take advantage of the fact that in different species codon usages are more or 

less biased as some amino acids appear to be preferentially encoded by certain codons 

rather than others.  
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Figure 1.1 

 

 

Figure 1.1: Stark contrast between number of short ORFs and annotated genes in 
the yeast genome. 

Size distributions of the total number of ORFs encoded in the S. cerevisiae genome 

(red) compared to the total number of annotated genes in the Saccharomyces Genome 

Database, as published in Basrai et al. (1997) [4]. The black line represents the 100 

amino acids size used as a cut-off for many genome annotation projects. 
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Although these statistical analyses are very effective for distinguishing long coding 

sequences, they become progressively less useful as ORF length decreases [4]. 

Furthermore, in order to minimize the number of false positives, these algorithms also 

integrate a series of other parameters, such as presence of  splice sites, promoter 

regions, translational start/stop sites, and poly-adenylation signals, but this approach 

also increases the chances for true ORFs not to be detected [6]. Small ORFs seem to be 

particularly susceptible to false negative predictions, as it is difficult to distinguish the 

relatively few biologically meaningful sequences, amongst the large number of artefact 

ORFs present in the genome by pure chance [4,7,8]. The small sizes of their protein 

coding region, also make smORFs less likely to be targeted by conventional random 

mutagenesis, which gives to these sequences fewer opportunities to have valuable 

experimental support. Because of these issues, only genes coding for ORFs of at least 

100 contiguous codons were designated for annotation in the yeast genome [9]. 

Although this decision makes sense since most of the 260,000 yeast ORFs could be 

artefacts, and it would be much more difficult and time consuming to accurately 

annotate them, it may have led to the loss of a considerable amount of smORFs coding 

for peptides with important biological functions. Importantly, this problem is not 

specific to yeast; the same 100 aa cut-off has been applied to gene annotation in 

mammals [10], and the size distribution of annotated genes in humans and fruit flies 

(Drosophila melanogaster) show a very similar steep drop in the number of genes 

coding for proteins under 100 aa long (Figure 1.2), although both organisms have an 

equally overwhelming amount of small ORFs in their genomes.    
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Figure 1.2 

 

Figure 1.2: Size distribution of annotated genes in humans and Drosophila 
melanogaster. 

 Size distribution (in codons) of (A) Human genes as annotated in the UNIPROT 

database, and (B) Drosophila melanogaster genes as annotated in FlyBase. Genes under 

50 and 100 aa are represented in red and orange respectively, genes of all others are in 

blue. The total number of annotated coding and putatively non-coding genes is indicated 

in the insets within each panel. Note the similar steep decay in the number of genes 

under 100 aa long as in Figure 1.1. 
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1.2- tarsal-less: The smallest protein coding gene, plays a big role in Drosophila 

development. 

In order to understand the significance of short ORFs in genomes, one could start by 

asking the following question: What is the smallest protein a gene can encode? 

Although there is no real answer to this question in terms of translational mechanisms, 

we could look at examples of known genes, and ask what the smallest protein known to 

be encoded by a gene is. Our group, and others have identified an eukaryotic gene, 

known as tarsal-less (tal), coding for 11-33 amino acid long peptides [11,12], the 

smallest reported to date (Figure 1.3A) [11,12,13]. These peptides —which have been 

experimentally confirmed to be translated and have been functionally characterised— 

can act as cell-cell signals [13] and participate in different developmental processes 

such as the establishment of the denticle belts and trachea in embryos, and the 

determination and morphogenesis of the adult leg segments [11]. In these contexts, the 

tal peptides have been shown to interact with and regulate major signalling pathways. 

Specifically, they regulate Notch [14], a highly conserved signalling pathway which 

plays a major role in cell fate determination [15], and this regulation has been shown to 

be mediated by the effects of tal on shaven-baby considered to be the master regulator 

of trichome formation [16]. Most importantly, homologues of tal have been identified 

throughout arthropods (Figure 1.3B), showing that this gene is not a rare occurrence in 

fruit flies, but a bona fide evolutionarily conserved family of genes.  

Apart from tal, only a handful of Drosophila genes (10 in total) are annotated as coding 

for proteins less than 30 aa long (see appendix 1). They include the ribosomal protein 

RpL41 of 25 aa —which is conserved in humans—, an accessory gland protein, Acp98, 

also 25 aa long, and 5 other predicted protein-coding genes with unknown biological 

functions.  

The example of tal proves that genes can code for peptides as small as 11 amino acids. 

It also shows —along, to some extent, with the few other examples of small protein 

coding genes— that such small peptides can play essential roles in a variety of 

biological processes. Uncharacterised smORFs may therefore represent an important 

part of our genomes.  
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Figure 1.3:  

Figure 1.3 tarsal-less, a smORF gene conserved across arthropods encodes four 

short peptides of 11-33 amino acids. (A) cDNA sequence of the tal clone LP10384. 

The amino acid sequence of the translated 1A, 2A, 3A, and AA peptides are represented 

in red capitals underneath their respective open reading frames. Conserved amino acids 

between the four small peptides are in bold and Kozak sequences underlined.  The B 

peptide in blue is not translated. (B) Graphic representation of the 440 million years 

(Myr) conservation of the tal gene family. tal and its homologues in other species as 

represented by either cDNAs (arrows) or genomic sequences (blunted arrows). This 

work was published in Galindo et al. (2007) [11]. 
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1.3 - Targeted computational approaches predict the existence of thousands of 

smORFs in several organisms. 

As it became evident that a pool of possible new protein coding genes with promising 

biological functions could be waiting to be discovered, a few attempts have been made 

to predict functional smORFs in the genomes of different species using targeted 

computational approaches. Hanada et al. [17] developed a “Coding Index” method 

based on hexamere sequence composition-statistics obtained from known coding and 

noncoding DNA sequences (CDSs and NCDSs respectively). In order to identify 

smORFs in the Arabidopsis thaliana genome, they combined the “Coding Index” study 

with analyses of conservation, transcription and purifying selection; protein coding 

regions, expected to be under purifying selection, should have a larger number of 

synonymous substitutions (Ks), which preserve the aa sequence than non-synonymous 

mutations (Ka), which change the aa sequence. They estimate that up to 3,241 short 

ORFs could be translated and belong to novel genes. A similar smORF search, was 

carried out by Frith et al. [18]  in the FANTOM collection of mouse  cDNAs. In that 

study, they used CRITICA (Coding Region Identification Tool Invoking Comparative 

Analysis), a gene prediction algorithm originally used for bacterial genomes, which 

integrates a purifying selection analysis of pair-wise aligned homologous regions into a 

hexamere sequence composition-analysis (similar to the one used by Hanada et al.) in 

order to increase its accuracy. They filtered their initial prediction of ~50,000 ORF 

candidates of all sizes for possible artefacts that may enrich the putative smORF 

portion, such as redundancy, sequencing errors, 5’truncation of the cDNAs, intron 

retention, and for short ORFs that overlap longer ORFs. They obtained 1,240 putative 

smORFs that could be translated, of which 495 lack similarity to any known protein. 

Interestingly, they compared their ORF prediction method with other commonly used 

“gene finders” such as Genescan, GeneID, Ensemble and Ecgene and found that 

although they all performed similarly well for long ORFs, the CRITICA method 

predicted many more smORFs, confirming the bias that the common methods have 

against short ORFs. What is also important to point out is that even the CRITICA 

method did not seem to perform very well with sequences under 50 aa, having failed to 

identify sarcolipin, a 30 aa well characterised smORF. Other considerations to take into 

account is that this study was performed on an extensive, although not exhaustive, 
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library of cDNA sequences instead of genomic DNA, and used a variety of conservative 

filters that may have removed bona fide smORFs in order to avoid possible false 

positive hits, which means, together with the above-mentioned 50 aa threshold, that 

their final estimation of 1,240 may probably be an underestimation of the number of 

smORFs in mice.  

Our own group performed a search for unannotated smORFs in the Drosophila 

melanogaster genome [19]. We opted for a conservation based approach, selecting the 

ORFs that appeared to be conserved in the Drosophila pseudoobscura genome at the 

amino acid sequence level, which eliminated the noise from silent mutations at the 

DNA sequence level. The two fly species having diverged approximately 25 to 55 

million years ago, it would be expected that putatively neutral sequences would not 

show any significant conservation. Conserved ORFs needed to have tBLASTn (Basic 

Local Alignment Search Tool using a translated nucleotide database) hits, with a 

stringent E value threshold of E=1x10-3, which was found to produce a false discovery 

rate of 7% using a set of random ORFs. Importanly, these sequences also needed to 

have a start and stop codon within 100 codons from the tBLASTn hit in the D. 

pseudoobscura genome. This way, from the 556,554 short ORFs initially detected in the 

D. melanogaster genome, 4,561 were considered to be conserved in the D. 

pseudoobscura genome; this is the upper estimate of the number of un-annotated 

smORFs in the Drosophila genome. We ran these sequences through a set of filters 

selecting for hallmarks of functionality such as synteny, which guarantees that 

similarity in the sequences is due to homology; evidence of purifying selection, 

selecting for sequences that pass a very conservative threshold of Ka/Ks<0.01; and 

evidence of transcription. In total, 401 sequences passed all the filters; this is our 

conservative estimate of un-annotated functional smORFs. As with the Frith et al. 

mouse study, this number is likely to be an underestimation, since we only considered 

ORFs encoded by contiguous nucleotides, thereby eliminating any possible ORF 

interrupted by an intron. Moreover, our filters also appear to be very conservative 

because only 7 out of 25 annotated smORFs with proteomics evidence of translation 

pass them all; most of the smORFs pass the conservation and transcription filters, but 

several fail the synteny and stringent purifying selection filters.  Interestingly, the upper 

and conservative pools of smORFs have size distributions with medians of <20 aa (19 

and 17 aa respectively), matching the range of sizes that current genome annotations 
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appear to be the most devoid of (Figures 1.1 and 1.4). The size distribution of these 

putative smORFs is very different from that of the subset of ORFs that show sequence 

conservation but not start and stop codon conservation, and is also very different from 

that of artificially generated equivalent control sequences submitted to the same pipeline 

(Figure 1.4C and D), showing that those distributions (and hence the smORFs 

generating them) are genuine, and not randomly generated. 

 A similar study,  in yeast [20], was performed using similar techniques to select for 

smORFs that are conserved across all fungi, transcribed, and with favourable codon 

adaptation indexes. 558 smORFs pass these criteria, and represent their estimate of 

putative un-annotated smORFs in yeast. 

Finally, a study performed in prokaryotes [21], which also used conservation, as well as 

the identification of prokaryotic ribosomal binding sites known as Shine-Dalgarno 

sequences, in order to identify novel smORFs, reported that up to 2,000 small ORFs 

between 16-50 aa long could be translated in E. coli.. Interestingly, it appears that the 

majority of these short peptides (39 out of 60 experimentally verified smORFs) have a 

predicted hydrophobic, single trans-membrane α-helix structure, indicating that most of 

those peptides may have a cell-membrane-related function. In accordance with this 

observation, they observed that the translation products of several of these putative 

smORFs, was preferentially detected in membrane rather than cytoplasmic fractions. 

Overall, the four independent studies in eukaryotes predict a similar proportion of un-

annotated smORFs within their respective organisms (between 5 to 25% new smORFs 

compared with annotated genes, depending on how conservative the thresholds are for 

these estimations), while the bacterial study proposes a larger estimate (almost 50% 

compared with annotated E. coli genes). All of these studies suggest that in the genomes 

of most species, short ORFs have indeed been under-annotated, and again, support the 

idea that smORFs are an abundant genomic element. 
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Figure 1.4: Size distribution of different pools of predicted smORFs in Drosophila 

melanogaster, as published in Ladoukakis et al. (2011) [19]. (A) 4,561 putative 

smORFs with conservation of sequence and start and stop codons in D. pseudoobscura, 

representing the upper estimate for the number of smORFs in Drosophila; (B) 401 

smORFs with conservation of sequence and start and stop codons in D. pseudoobscura, 

with a Ka/Ks score < 0.1,  and also present in syntenic and transcribed regions, this 

represents the conservative estimate of smORFs in Drosophila melangoster; (C) 43,197 

smORFs with tBLASTn hits with E-value < 1 × 10-3 representing putative smORFs 

with some kind of sequence conservation in D. pseudoobscura. (D) Comparison of size 

distribution cumulative densities between the 4,561 putative smORFs with conservation 

of sequence and start and stop codons in D. pseudoobscura (SS), and a subset of 

artificial smORF like controls composed of reverse stop-to-start control ‘smORFs’ 

passing the same filters. The size distribution of the candidate ‘real’ smORF is 

significantly different from that of the controls representing random short DNA 

sequences. 
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Figure 1.4 
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1.4 - Assessing the function of new smORFs 
Even if there is extensive evidence of the existence of several smORFs in different 

genomes, the attribution of biological functions to these short peptide coding genes 

would be the most convincing proof of their relevance, yet only few studies have 

directly addressed their function. One of the main reasons for this lack of functional 

analyses, apart from the fact that smORFs are a relatively recent discovery, may be that 

such analyses are hard to implement on a large scale. This is particularly true in 

eukaryotes where the generation of mutants, even with the most advanced genetic tools 

available, can still be challenging. Besides, this sort of functional characterisation would 

need a “reverse genetics” approach, in which the effect of disrupting the expression of a 

particular gene is unknown. Therefore, assessing the phenotype of the affected animals 

or cells is not necessarily straight forward; this will be discussed further in section 2.1 

of this chapter.  

Some of the studies that were discussed above, which focused on the detection of 

smORFs, provide limited evidence of their functionality. In the Frith et al. mouse study 

[18], the potential to have a biological function was inferred for the majority of their 

1,240 detected smORFs from their patterns of expression. Expression data obtained 

from tissue-specific micro-arrays shows that most of these mouse smORFs appear to be 

expressed in a highly tissue-specific manner rather than ubiquitously. Indeed the 

majority of those smORFs could be clustered into different groups sharing preferential 

expression in specific tissues, demonstrating that those smORFs may have a tissue 

specific function. A subset of these smORFs (25 of them) were tagged and transfected 

into HeLa cells; 14 of them resulted in peptide synthesis, some of them even showing a 

subcellular localisation, which correlated with their predicted secondary structures. 

These smORFs are therefore translated into peptides that may have specific cellular 

functions. In the Kessler et al. yeast study [20] the authors only examined the phenotype 

of a single smORF mutant, which lacked the ability to grow at 370C. 

Two other studies have focused primarily on the functional characterisation of smORFs, 

rather than on their detection, addressing the issue in a more high-throughput manner, 

taking advantage of the resources available for their model organisms, and scoring for 

specific phenotypes. In yeast, which is an organism relatively easy to manipulate 

genetically in order to generate mutants, Kastenmeyer et al. [22] generated a collection 

of strains carrying deletions for 140 smORFs, which they identified through a literature 
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search, and screened them for growth defects; 22 of those strains showed growth defects 

in different conditions including haploid growth, incubation at different temperatures, or 

with non-fermentable carbon sources, or with agents inducing DNA damage and cell 

replication arrest.  

 In Arabidopsis thaliana, an organism in which the generation of transgenic plants is 

relatively easily achieved, due to its susceptibility to horizontal gene transfer by 

Agrobacterium tumefaciens upon infection, Hanada et al. assessed the functionality of 

their previously predicted smORFs, by over-expressing several hundreds of them and 

screening for morphological defects in the plants [23]. For this screen they tested 473 

smORFs, deemed the most likely to be functional amongst the candidates from their 

previous work [17] because of their high levels of transcription, determined, again, by 

micro-array analysis of tissue specific mRNA extracts,  and evidence of conservation. 

49 of these smORFs (10%) produced morphological defects upon over expression, 

which is almost seven times higher than when over-expressing random canonical long 

ORFs (572 / 40,422, or 1.4%). However, it cannot be discounted that some of the 

smORF-induced phenotypes are actually due to regulatory effects of the RNA 

transcripts themselves, rather than to their translation products.  

Altogether, these studies show that a significant portion of novel smORFs have some 

sort of function. However, these studies have not elucidated the molecular / cellular 

functions of these smORFs. In order to achieve the functional characterisation of these 

genes at that molecular level, a more meticulous and targeted approach is necessary. 

 

2-Using Drosophila melanogaster as a system to functionally characterise a novel 
smORF 
 

2.1- Drosophila melanogaster is a good model to study the function of a novel 

smORF 

In this project, I focus on the functional characterisation a novel smORF in Drosophila 

melanogaster. This model organism has one of the most comprehensively annotated 

genomes, and yet, as mentioned above may still be incomplete with respect to small 

open reading frame genes. The case of tal was extremely important in highlighting the 

importance of smORFs, with some of the bioinformatics studies mentioned above citing 
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this example to justify their search for smORFs. However, the case of tal is almost 

unique, in the sense that very few other studies have identified the specific functions 

conveyed by a novel smORF gene. Therefore, the functional characterisation of another 

gene similar to tal could be considered as a case study that would reinforce the 

importance of smORFs, while contributing to our general knowledge of this class of 

genes.   

Drosophila melanogaster is a good model for this specific reverse genetics approach. 

The fruit fly, has been one of the most widely used models for genetic analyses for 

almost a century, and therefore a myriad of tools have been developed in this organism 

that make it possible to generate mutants lacking specific genes, or transgenic flies 

expressing genes in a tissue-specific manner.  All of these genetic manipulations can be 

achieved in a relatively short time and at a reasonable cost —two important 

considerations for a project like this, where the outcome is not necessarily guaranteed, 

given that nothing is known about the gene to be studied,  and in the worst-case scenario 

a reconsideration of the studied gene may be necessary. Most importantly, the fly, 

unlike other genetic models such as yeast, is a multicellular organism which has a 

variety of different tissues and behaviours. It should therefore be possible to narrow a 

phenotypical study, focusing on the tissues that show expression of the gene, while 

allowing for a range of different kinds of phenotypes to be observed.   

As mentioned in section 1.4 of this chapter, such a phenotypical study is not necessarily 

straightforward. In the best case scenario the gene would have a morphological 

function, in which case the organism could present visible defects in the tissues where 

the gene is expressed, although these could still be subtle enough to be missed. The 

gene could also have an essential cellular function, in which case the phenotype would 

be the lethality, or poor viability of the mutant organism, or an atrophy or absence of the 

tissues expressing the gene. On the other hand the gene could have a physiological or 

metabolic function, in which case the phenotype could be much harder to assess, since it 

may lead to a dysfunction that is not apparent unless a very specific method is employed 

to detect it. Similarly, the mutant organism could also present a behavioural rather than 

morphological phenotype. Finally, and in reference to the above-mentioned worst case 

scenario, it is possible that for a variety of reasons, like redundancy for example, a 

smORF mutant may simply generate no phenotype at all. This variety of phenotypes 

and outcomes is the reason why it is difficult to implement a high-throughput functional 
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screen for a large number of putative genes. A study focused on a single gene, on the 

other hand, could take advantage of all these possible outcomes to attribute a particular 

function to that gene; one could address the issue in some sort of  process of 

elimination, scoring for the most obvious phenotypes first, and moving to the more 

subtle ones, until a phenotype is detected. 

 

2.2-The putative noncoding RNA gene pncr003;2L is a very interesting candidate 

for this study 

In order to choose a good putative smORF candidate for this study, the best approach 

would be to consider a gene that fulfils all, or at least most of the parameters that have 

so far been linked with functionality, while being in a genomic position that favours its 

genetic characterisation. Such  a gene was identified amongst the list of genes described 

as noncoding by Tupy et al.[24], the study in which tal and RpL41 were erroneously 

deemed as non-coding. 

This putative non-coding RNA, annotated as pncr003;2L (for putative  non coding RNA 

003 in 2L) encodes for a short ORF of  28 amino acids, which has very similar scores as 

those of one of the tal  peptides of similar size ( tal AA, of 33 aa), when subjected to the 

conservative filters from the above-mentioned smORF detection pipeline in Drosophila 

[19] (Table 1.1). This short ORF, therefore, appears to be evolutionarily conserved, has 

undergone purifying selection, and has strong evidence of transcription, which 

altogether support its translation. Furthermore, pncr003;2L, along with its Drosophila 

pseudoobscura orthologue,  appears to be expressed in the embryonic somatic muscles 

[24]. This is interesting since tissue-specific expression has also been associated with 

functionality [18], but most importantly, while providing a context for focusing  the 

phenotypical study of this putative smORF coding gene. 

The  pncr003;2L gene is located in the left arm of the autosomal chromosome II, in a 

locus which does not overlap any other annotated gene, and most importantly, there is a 

transgenic line publically available from the Harvard Medical School Exelixis stock 

centre, which carries a transposon inserted in the putative 3’UTR of pncr003;2L. The 

implications of this insertion will be discussed in more detail in Chapter IV, where I 

will address different strategies to disrupt the expression of pncr003;2L, using this 

transposon. 
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Finally, being considered and currently annotated as a non-coding RNA,  pncr003;2L  

would be a particularly interesting candidate  for  a case study;  if found to be protein-

coding, it would provide yet another example, along with tal, that non-coding  genes 

may sometimes be misannotated.  
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Table Key: Dp: Drosophila pseudoobscura. Ka/Ks: non-synonymous mutations / 
synonymous substitutions  

  

Table 1.1 

 

  Table 1.1: The conservation scores of a small ORF encoded by pncr003;2L are 

very similar to those of translated tal AA peptide: A small open reading frame within 

the putatively non-coding gene pncr003;2L has strong transcriptional evidence, and  is 

conserved in Drosophila pseudoobscura (Dp), with similar tBLAStn values, and Ka/Ks 

scores as the tal AA peptide, which has been proven to be translated [11,25]. 

  

smORF codons translation tBLASTtn smORF in Dp  transcription Ka/Ks 

tal AA 33    Yes 4.00E-11 yes yes 0.03 

pncr003;2L 28  not known 8.00E-10 yes yes 0.19 
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2.3-Objectives  

2.3.a- Characterisation of the pncr003;2L transcript, and its encoded smORFs. 

The first part of this thesis focuses on the characterisation of the transcript expression 

and translation of pncr003;2l,  and  its aims  are:  1)  To provide an initial gene model 

for this gene based on the information currently available. 2) To assess its 

transcriptional expression throughout the life cycle of the fly, and 3) to test whether this 

small open reading frame-coding gene is translated. For this purpose, the expression of 

the pncr003;2L transcript is assessed using classical mRNA detection techniques such 

as in situ hybridisation  and  Reverse Transcription-Polymerase Chain Reaction (RT-

PCR), and its translation is tested by the generation of specific smORF-GFP (Green 

Fluorescent Protein) fusion constructs, which preserved the original context of 

translation of the small ORF.  

This work, covered in Chapter III, shows that pncr003;2L is expressed in embryonic 

somatic muscles, and provides evidence for the prevalent expression of this gene in 

muscle tissues throughout the life cycle of Drosophila, including cardiomyocytes in the 

larval and adult stages. Interestingly, it is shown that this gene encodes for two related 

small ORFs, both of which are shown to be translated, with their peptides having a 

membrane-like subcellular localisation. When expressed in the muscle tissues of 

transgenic flies, the peptides localise to the dyads; the structures where the T-tubules 

contact the sarcoendoplasmic reticulum (SER), and which ultimately control muscle 

contraction and relaxation through the release and uptake of calcium by the SER, which 

suggests that these peptides may have a physiological role during muscle contraction. 

2.3.b-Characterisation of the effects of the pBac{WH}fF02056 insertion, and 

its use to generate pncr003;2L null alleles. 

The second part of this thesis focuses on the use of the pBac{WH}F02056 transposable 

element as a tool to disrupt the expression of pncr003;2L, in order to characterise the 

function of this gene. The existence of this particular insertion was a determinant factor 

for the choice of the pncr003;2L putative smORF for this study, as it allows for the 

implementation of relatively well established genetics methods to generate null mutants. 

The aim of the work presented in Chapter IV, is firstly, to assess the effects of this 

insertion on the pncr003;2L smORF  gene, and secondly, to use this transposable 
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element in two different mutagenesis strategies to obtain a null condition for 

pncr003;2L.  

The first part of this work focuses on the identification of an interesting muscle 

phenotype associated with the pBac{WH}F02056 insertion, which happens to be 

similar, and additive to that of the major muscle gene Myosin heavy chain (Mhc). 

Although initially very interesting with regards to a possible function for the smORF 

gene, the work throughout this chapter shows that this phenotype is independent of 

pncr003;2L itself, and is caused by a background mutation linked to the 

pBac{WH}F02056 insertion. The background mutation was mapped, using a 

combination of genetic and molecular methods, to the Mhc locus itself, which explains 

the phenotypical observations.  

In the second part of this chapter, the pBac{WH} F02056 insertion was successfully 

used in two different mutagenesis methods, involving the generation of a specific small 

genomic deletion by taking advantage of the FRT recombination site within the 

pBac{WH} F02056 element, and the generation of genomic lesions via the use of 

ionising irradiation, which although non-specific, were screened to isolate a condition 

affecting the pncr003;2L locus.  The combination of the resulting mutants from these 

two methods led to the generation of a pncr003;2L null genotype.  Although the 

pncr003;2L null flies show no visible phenotype, which would be in accordance with 

the pncr003;2L gene having a subtle physiological function, this null condition can be 

used in more specialised muscle function assays to identify the function of the smORF 

gene. 

2.3.c-Functional assessment of pncr003;2L in a specific physiological context:  

The aim of the third part of this thesis is to use the information and tools gathered 

throughout this work, including the pncr003;2L null genotype, to attribute a function to 

the peptides encoded by this gene, within a specific physiological context . In Chapter 

V, an extensive analysis is presented, of the effects of pncr003;2L in the contracting 

heart, which is a system that has been proven to provide a sensitive, yet relatively 

simple, way to assess muscle contraction in Drosophila melanogaster [26,27,28,29]. 

The study presented in this chapter focuses on the effects of the peptides encoded by 

pncr003;2L in heart contraction, and the calcium dynamics underlying this process. In 

this study it is shown that lack or excess of function of pncr003;2L results in heart 
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arrhythmias and abnormal calcium transients during heart contraction, suggesting that, 

in accordance with its subcellular localisation, pncr003;2L has a physiological role in 

the regulation of calcium cycling during muscle contraction. 

2.3.d-  Identification of the molecular context of the pncr003;2L function 

through an extended homology search. 

The aim of the final part of this thesis, is to determine the specific molecular process by 

which the pncr003;2L peptides exert their function. For this, I explored the potential of 

a powerful protein homology search engine, named PHYRE2 (protein homology/ 

analogy recognition engine) [30], in order to identify possible homologous sequences 

for pncr003;2L, which may shed light onto the molecular function of its encoded 

peptides. This homology search method, which has been shown to be successful in 

identifying remote homologous sequences by searching for hits with structural as well 

as sequence similarity, identified Sarcolipin (sln), a human smORF known to regulate 

calcium function in muscles through the inhibition of the sarcoendoplasmic reticulum 

Ca2+   ATPase (SERCA), as a possible homologue for the pncr003;2L ORFs. The work 

presented in this chapter studies the functional relationship between the Drosophila 

SERCA homologue (Ca-P60a) and pncr003;2L and ultimately supports the homology 

between the vertebrate sarcolipin / phospholamban (pln) family of SERCA inhibitors 

and pncr003;2L, showing that pncr003;2L belongs to a highly conserved family of 

smORFs which constitute an ancient regulatory system of cardiac function, and muscle 

contraction.  
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Chapter II - Materials and methods. 

In this chapter I describe the materials and methods used for the elaboration of this 
thesis. 

2.1-Fly strains.   
Fly stocks and crosses were cultured at 25oC, in plastic tubes on a modified Lewis 

medium containing yeast, agar, cornmeal and glucose with Nipagen [31]. The Oregon-

Red (Or-R) line was used as wild-type strain. The following lines used in this work 

were obtained from the Bloomington Stock Centre (Listed in the order their order of 

appearance): 

 yw;;Dmef2-GaL4,  w;Dmef2-GaL4,UAS-mcd8RFP/Kr;   w;DfEd1153/CyO,                 

w;DfExcel 7067/ CyO,    w;DfExcel 8036 /CyO,    yw;P{lacW}Mhck10423/CyO,                  

w;∆2-3Sb b /Tm6b,  chif1 cn1 sca1 bw1 sp1/CyO,    P{ry=hsFLP}1,w; Adv /CyO,   w; b 

cn bw ,   w;Gla BC/ CyO,   w;DfED1102/ CyO,   w;DfBSC325/ CyO,  w;DfED1109 / 

CyO,  w;DfED2256 / CyO,     wPBac{ RB}CG42389e02963/CyO,    yw; 

Mi{MIC}ApepP MI01970/SM6a    w;Mi{ET1}CasMB08748 mdyMB08748/SM6a,    w;;UAS-

GCaMP3,   w; Ca-P60AKum295/CyO, 

The w; tin-GaL4 line was a gift from Manfred Frasch from the University of Erlangen-

Nuremberg. The pBac{RB} e01605 and the pBac{WH} F02056 lines were obtained 

from the Harvard Exelixis collection. 

2.2-Gamma ray mutagenesis. 
Gamma-ray mutagenesis was used to generate another deficiency (Df(2L)sclg6) 

spanning at least the 80 Kb genomic region between the genes CG13282 and ApepP, 

with an undetermined breakpoint somewhere in the 300 Kb region between ApepP and 

CG31784. Two to seven day old males, homozygous for the white mini-gene-bearing 

insertion pBac{WH} F02056 mapping to the 3’ UTR of pncr003:2L, were irradiated 

with 4500 rads of gamma-rays (using a 60Co source) and crossed to yw; CyO / Gla, Bc 

females; the progeny was then screened for loss of the white marker, and stable stocks 

were generated from each individual white eyed mutant. The span of these deficiencies 

was determined with the appropriate genetic complementation crosses and PCRs 

(Chapter IV, Figure 4.13).  
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2.3-RNA-extraction. 
RNA was isolated using the TRIzol reagent (Invitrogen). The tissues were frozen in dry 

ice, and homogenised using a sterile pestle in a 1.5 mL eppendorf tube containing 

200µL of TRIzol reagent, after homogenisation, 500 µL more of TRIzol were added. 

After addition of 200 µL of chloroform:isoamyl alcohol (24:1) the samples were 

incubated for 5 minutes at room temperature, spun to separate phases (12.00 x g, 4oC), 

and the resulting supernatant was transferred to a sterile, nuclease-free tube.  The RNA 

was then precipitated with 500 µL of isopropanol by centrifugation (10.00 x g, 4oC),  

and pellet washed with 75% ethanol before being re-suspended in 50 µL of nuclease-

free H2O. RNA samples were stored at -80ºC.  

 

2.4-DNA-extraction. 

Genomic DNA was isolated from 20-25 flies using the Wizard genomic DNA 

purification kit (Promega) following the instructions of the manufacturer. The flies were 

frozen in dry ice and homogenised, using a sterile pestle, in an eppendorf with 600 µL 

of chilled Nuclei Lysis Solution. The samples were incubated at 65oC for 30 minutes, 

followed by the addition of 3 µL of RNAse Solution and then incubated at 370C for 30 

more minutes. 200 µL of Protein Precipitation reagent were then added, and the samples 

vortexed and incubated on ice for 5 min. Proteins were precipitated by centrifugation at 

16,000 x g for 4 min. The supernatant was then transfered to a fresh eppendorf tube 

containing 600 µL of isopropanol, mixed, and centrifuged at 16.000 x g for 1 min. The 

supernatant was discarded, and 600 µL of 70% ethanol were added to the sample. The 

samples were centrifuged at 16.000 x g for 1 min and the supernatant discarded. The 

pellet was left to air-dry for 15 min, and rehydrated in 100 µL of rehydration solution 

for 1 hour at 65oC. DNA samples were stored at -20ºC. 

2.5-cDNA synthesis.  
cDNA was synthesised using the RETROscript kit (Ambion) following the protocol for 

the ‘Two-step RT-PCR with heat denaturation of RNA’ procedure provided by the 

manufacturer. 2 µg of total RNA was combined with oligo (dT) primers (2µL from a 

50µM stock solution) and nuclease-free water, then denatured at 80ºC before the 

addition of the remaining RT reagents: 10X RT buffer, dNTPs (2µL form a stock 

solution containing 2.5 mM of each dNTP), RNase inhibitor (0.25 units), and the M-

MLV Reverse Transcriptase (2.5 units). Reverse transcription of cDNA was done at 

42ºC for 1-2 hours. The reaction was stopped by inactivating the reverse transcriptase at 
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92ºC for 10 minutes. Newly synthesised cDNA was stored at -80ºC until ready to use in 

PCR reactions. 

2.6-Polymerase Chain Reaction (PCR).  
Standard PCR reactions were conducted using reagents provided in the Taq PCR Core 

Kit (QIAGEN). PCR reactions were prepared on ice to a total volume of  50 µl as 

follows: 5 µl 10X PCR buffer; 10 µl 5X Q-Solution; 1 µl MgCl2 (25mM); 1 µl dNTP 

mix (form a stock solution containing 2.5 mM of each dNTP); 1 µl of each 

forward/reverse specific primer (from a stock solution 100µM); 2 µl template cDNA; 

0.25 µl Taq DNA polymerase (5 Units/µl); H20 up to 50 µl.  

Long PCR reactions (yielding products longer than 3Kb), and reactions requiring a 

mutation free product (such as the fragments used to generate the CG21739 and 

pncr003;2L, pln, sln, rescue, over-expression and tagged constructs, see Plasmid 

construction, in this chapter ) were carried out using the Expand long template PCR 

system (ROCHE). PCR reactions were prepared on ice to a total volume of 50 µl as 

follows: 5 µl 10X PCR buffer; 1 µl DMSO; 1 µl MgCl2
 (25mM); 2.5 µl dNTP mix 

(form a stock solution containing 2.5 mM of each dNTP); 2.5 µl of each 

forward/reverse specific primer (from a stock solution 100µM) ; 2 µl template cDNA; 1 

µl DNA polymerase (5 Units/µl); H20 up to 50 µl. 

PCRs were performed using either a Techne TC-3000 or an Eppendorf  Mastercycler 

Gradient thermocycler. Cycling conditions were optimised based on specific primers, 

melting temperatures (Tm), and length of the expected PCR product. 

 Standard PCR conditions:  

DNA denaturation at 94ºC – 5 minutes  

25-30 cycles of:   -     denaturation at 94ºC – 30 seconds 

-     annealing at 5ºC below average primer Tm – 30 seconds,  

- extension at 72ºC – 30 seconds to 2 minutes (depending on target 
length)  

Extension at 72ºC – 10 minutes  

Hold: 4ºC 
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For semi-quantitative RT-PCRs, the reactions were initially performed with a series of 

different cycles, ranging from 15-35 cycles, in intervals of 5 cycles, in order to identify 

the number of cycles yielding an amount of product falling within the exponential phase 

of the PCR reaction. This number of cycles was used for experimental quantification.  

 
 

2.7 -List of primers: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FW: forward and RV: reverse 

ORFA / B GFP and mCherry constructs and pncr003;2L cloning 

mCherry HindIII FW 5' CAAGCTTGTGAGCAAGGGCGAGGAGGATA 3' 

mCherry HindIII RV 5' AAGCTTAGGGCTTGTACAGCTCGTCCATGCCGC 3' 

GFP HINDIII FV 5' AAGCTTGTGAGCAAGGGCGAGGAGCTG 3' 

GFP HINDIII RV 5' AAGCTTAGGGCTTGTACAGCTCGTCCATGCCGA 3' 

ORFA Hind-IIII FW 5' AAGCTTAATGTTTCCGGCAAGTAGATGGTCCTTAGGGCAGG 3' 

ORFA Hind-IIII RV 5' AAGCTTCAATACGGCATAGATGAGGTAGAGGAAGAAAAGC 3' 

ORFB Hind-IIII RV 5' AAGCTTGAAGGCGGCTTCGTAGAAGGCATAGA 3' 

ORFB Hind-IIII FW 5' AAGCTTGCCCACAGCCTCAAGTCACCCATGA 3' 

   

Exon2'Cdna FW 5' TCTCTCGAATTCTTTATTCCTGCAGTTTGTTGTTGCTGTT 3' 

Exon2'Cdna RV 5' TCTCTCGCGGCCGCAGTTATTGCGCGCCTTTAGCT 3' 

   

ORFA FW 5' GTGTGTGGCGGCCGCGTTGAGCCAAAGGCTTTCA 3' 

ORFA RV 5' CGTGTGTGGGTACCCTGCCCTAAGGACCATCTACT 3' 

   

ORFB FW 5' GTGTGTGTGAATTCTTAGGGCAGGACCAAAGCC 3' 

ORFB RV 5' TCTAGGCCCACAGCCTCAAGGCGGCCGCACACACAC 3' 

   
Myosin heavy chain exon 
sequencing    

   

fragment FW 1 5' ATCCCGCAATCCCCCATAGA 3' 
 fragment RV 1 5' TCGGATCGTAGTTAAAGCACCACA 3' 

fragment seq RV 1 5' GGTAGCAGCAGCATCAGCGG 3' 

   

fragment FW 2-3 5' CGCTATTGCTGCTGCTGTC 3' 
 fragment RV 2-3 5' GTGAGTGATTGGCGGTAGATAAG 3' 
 fragment seq FW 2-3 5' AATAGTATGCTTTTCTGA 3' 

fragment seq RV 2-3 5' AGAACATAGAACGCATACTTG 3' 

   

fragment FW 4-5-6 5' GAGCACTCGGAAAACTGAAA 3' 
 fragment RV 4-5-6 5' TGCCCTGGGAGACAATG 3' 
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fragment seq FW 4-5-6 5' TCGCCCGATACAAAAACTAA 3' 
 fragment seq RV 4-5-6 5' TGAACCTAAACCACAACTAAAAGA 3' 

   

fragment FW 12 5' CCCCAGAAGCTCCCAGAACAGT 3' 

fragment RV 12 5' CCAATTACCCCAGACAGTGACCAA 3' 
 fragment seq FW 12 5' ACAGTGTTGGTTCCGCTTAGTGC 3' 
    

 
fragment FW 13-14-15 

 
 
5' TCCACCGAATCGACCACACC 3' 

fragment RV 13-14-15 5' AAATACAGAGGCGAGAAGCGAGAG 3' 

fragment seq FW 13-14-15 5' ACCGCCGTCGAACCACCAC 3' 

fragment seq RV 13-14-15 5' TTTCCAAATAACCTTCAAT 3' 

   

fragment FW 19 5' CAAAACGTGTTCAGGGAGTGCT 3' 

fragment RV 19 5' CTGGGGCGGGAAAGTAGGAC 3' 

fragment seq FW 19 5' GTCGTACTCGTTATCGTTCTATCC 3' 

fragment seq RV 19 5' ATGGCCAGTAAATATGAATGAA 3' 

   

fragment FW 7 5' CACAAAGATAATGCCCAAGTCG 3' 

fragment RV 7 5' GGCATAGCTCATCGGTTCGTG 3' 

fragment seq FW 7 5' CACACTGCAAACACTTCACAC 3' 

   

fragment FW 8-9 5' TATCCGTAGCACCCGTAGG 3' 

fragment RV 8-9 5' TCCGCAGATTTCGATTCACAT 3' 

fragment seq FW 8-9 5' AAAAATGCTCAAAAACAAACC 3' 

fragment seq RV 8-9 5' GACATGACATAACAAACGAAAATA 3' 

   

fragment FW 10-11 5' CCACTAAAATTGTAAGGGGTAAG 3' 

fragment RV 10-11 5' TCAACGTGTGGGGATTCAA 3' 

fragment seq FW 10-11 5' CTAATGTGTTTTTGTAAGTCGTCT 3' 

fragment seq RV 10-11 5' GAAAGATACACTAGTCATACAAT 3' 

   

fragment FW 16 5' CTAAAACGACCCACCACCACTAAA 3' 

fragment RV 16 5' CCAGCTGTTCGCGGGCATCGTC 3' 

   

fragment seq FW 16 5' CGAAACCAAAATGCCACACTTACA 3' 
 fragment seq RV 16 5' GCTGCTGCTGGTAACGCTTGATG 3' 
    

fragment FW 17 5' AGGCCCTGCGCATGAAGAAGAAGC 3' 

fragment RV 17 5' ACGCGAGCAATATGAAAGGGAAGA 3' 

fragment seq FW 17 5' GGATCACGCCAACAAGGTAGGT 3' 
 fragment seq RV 17 5' TGGGCTTTCATATTTACTTTTT 3' 
    

fragment FW 18 5' TAGCCCTTAAGACCCCACAATGAC 3' 
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fragment RV 18 5' CGACAGCGAGACGATACGGATACT 3' 
 fragment seq FW 18 5' ATCAGCGCCATCTCCATTCACG 3' 

fragment seq RV 18 5' GCGGGAGTGGGAGGGATGAGTT 3' 

   

 N.B. "Seq" labelled primers are internal sequencing primers  

   

 

 

    

CG31739 rescue    

   

CG31739 mid NheI RV      5' TCTCTCGCTAGCATATCGTTTTGTTCATTACCG 3' 

CG31739 mid NheI FW        5' TCTCTCGCTAGCTTCATCAAATTGACTA 3' 

CG31739 FW                         5' TCTGGGGATGGAACTCA 3' 

CG31739 RV                        5' AAAAAGGCTTACTATACTGAACA 3' 

   
Semi-quantitative RT-
PCR    

   

pncr003;2L A, AB  RV    5' CTGTTCTTTGCGGTTGTTATTCAC 3' 
 pncr003;2L A, AB  FW        5' ACCTCATCTATGCCGTATTGTA 3' 
    

pncr003;2L B FW                5' TTAGCTACGAACGGTTGGAAATC 3' 

pncr003;2L B RV  5' CTGTTCTTTGCGGTTGTTATTCAC 3' 
    

pncr003;2L exon 2 FW 5' CCGCAACTTGTTCACCACCTT 3' 

pncr003;2L exon 2 RV 5' GACCATCTACTTGCCGGAAACATT 3' 

   

pncr003;2L exon 3 FW 5' CTCATCCTGGCCTTCCTGCTGTT 3' 

pncr003;2L exon 3 RV 5' GTGGGTGGTGGTTGGTGATGGT 3' 

   

MHC constitutive FW 5' TACGAGGAGGGCCAGGAGCAGTTG 3' 
 MHC constitutive  RV 5' GCGGGCGGCATCGACCATAGC 3' 
    

MHC 7d   spec FW 5' GAGATGTGCTTCCTCTCC 3' 

MHC 11e spec RV 5' AAGCACTTTCCGGCAGCA 3' 
    

Rp49.FW 5' CCAGTCGGATCGATATGCTAA 3' 

Rp49.RV 5' TCTGCATGAGCAGGACCTC 3' 

   

RNAi construct primers    

   

pncr003;2L RNAi RV 5' CACCGTTGAGCCAAAGGCTTTCA 3' 
 pncr003;2L RNAi FW 5' TAGAAGGCGGCTTCGTAGAA 3' 
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specific deficiency 
mapping    

   

fragment 1 / a FW 5' TCCAAGCGGCGACTGAGATG  3' 

fragment 1 / a RV 5' TGCCCAAGCCAAAACAGAC  3' 

   

fragment 2 FW 5' TCCAAGCGGCGACTGAGATG 3' 
 fragment 2 RV 5' CCGGCCTTGGCGTCATCT 3' 

   

fragment 3 /b FW 5' TCCAAGCGGCGACTGAGATG 3' 
 fragment 3 /b RV 5' TTTGTCGGTCAGTAGTTTCGCGC  3' 
    

gamma ray deficiency 
mapping    

   

CG13282 FW 5' GCCAGATTCGTGAAGCGTTCGG 3' 

CG13282 RW 5' TAAATGAAATTACATACATCAT 3' 

   

CG31739 FW 5' GGCCAGAGCAAGAAGGACTG 3' 

CG31739 RW 5' ATTTGTAACTATGAATATTAAA 3' 
 

2.8-Mhc exon sequencing. 
To sequence the 12 different genomic regions corresponding to the exons constituting 

the Mhc-RK IFM specific isoform, each of the fragments was amplified by a standard 

PCR reaction, using as template whole fly genomic DNA from either Or-R or 

w;pBac{WH}F02056 flies. After confirming that each reaction yielded a product of the 

expected size by gel electrophoresis, each PCR product was sequenced by the Eurofins 

company. The sequences from the Or-R and w;pBac{WH}F02056 strains were aligned 

with the reference sequence (as annotated in FlyBase) using the SEQ-Man software 

from the DNASTAR suite, and the discrepancies annotated as shown in Figure 4.8. 

2.9-Agarose gel electrophoresis.  
Visualisation of the various RNA, cDNA, and PCR products was done using standard 

agarose gel electrophoresis. 0.5-1.5% agarose gels were used, according to the expected 

product size, with 1X TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA) and 0.5 

µg/ml of ethidium bromide (Sigma). was added to the liquid agarose before pouring into 

the gel cast. DNA or RNA was combined with MassRulerTM DNA loading dye 

(Fermentas) at a proportion of 1 µl dye for every 5 µl of sample, and loaded alongside 

the MassRulerTM DNA Ladder Mix (80-10,000 bp fragments; Fermentas). Gel pictures 
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were taken using an Uvidoc gel documentation system (Uvitec Cambridge) and 

UviPhotoMW image analysis software.  

 

 

2.10-Minipreparation of plasmid DNA. 
 Plasmid DNA was isolated from bacterial cultures using the QIAprep Spin Miniprep 

Kit (QIAGEN) following the instructions provided by the manufacturer. 2 mL of 

overnight culture were spun to pellet the cells (3 min, 6800 X g) and supernatant 

discarded. Confirmation of the recovered plasmid identity was done via agarose gel 

electrophoresis, after digestion with appropriate restriction enzymes to confirm the 

cloning was successful. Plasmids were sequenced by the Eurofins company. 

2.11-Plasmid construction.  
Unless otherwise stated, all plasmids used in this work were obtained from the 

Drosophila Genomics Resource Center (DGRC). The UAS-pncr003:2L plasmid was 

generated by cloning the pncr003:2L cDNA from the RE28911 plasmid, into the 

pUAST-ATTB vector. To generate the pUAST-pncr003:2L ORFA-GFP and pUAST-

pncr003:2L ORFB-GFP constructs, the stop codons of either of the ORFA or ORFB 

coding sequences were replaced with a unique HindIII restriction site by inverse PCR of 

the RE28911 plasmid. The EGFP coding sequence was amplified from the EGFP-C1 

plasmid by PCR using HindIII primers that eliminated the start codon and allowed for 

the EGFP coding sequence to be cloned downstream and in frame of either pncr003:2L 

ORFA-HindIII or pncr003:2L ORFB-HindIII. The resulting pncr003:2L_ORFA-GFP 

and pncr003:2L _ORFB-GFP (ORFA-GFP and ORFB-GFP) constructs were cloned 

into the pUAST ATTB vector. For the UAS- pncr003:2L_ORFA and UAS-pncr003:2L 

_ORFB (ORFA/SclA and ORFB/SclB) constructs, a fragment comprising the ORFA or 

ORFB coding sequences including a small down-stream and up-stream region (86 and 

16 nt for ORFA and 46 and 16 nt for ORFB), which was enough to ensure the 

maintenance of the Kozak sequences and optimal PCR amplification, were amplified by 

PCR, and cloned into the pUAST-ATTB vector. The pncr003:2L FS cDNA, carries 

insertion mutations after the start codon of both ORFs A and B generating a frameshift, 

which gives rise to peptides of the same size but completely different aa sequences  

(ORFA FS: MAKPATCSPPLASWPSCFSSSTSSMHM, ORFB FS: 

MMRQKVCSPPSSSWPSCCSCSMPSTKAS). This cDNA was synthesised by 
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Eurogenetec, and cloned into the pUAST-ATTB vector to generate the UAS- 

pncr003:2L_FS construct. 

The method described by Kondo et al (2006) [32] was used to generate the RNAi 

pncr003:2L construct. For this, a region corresponding to nucleotides 1-330 from the 

RE28911 pncr003:2L cDNA was amplified by PCR and cloned into the pRISE vector. 

The N-terminal FLAG-Hemagglutinin pncr003;2L ORFA and pncr003;2L ORFB 

tagged constructs,  N-terminal FLAG-Hemagglutinin sln and pln tagged constructs, and  

the sln_ORFA and pln_ORFA constructs, were provided by Jose Ignacio Pueyo [33]. 

 The CG31739 rescue construct was generated by amplifying a 6695 bp genomic region 

(2L:16825305 – 16832100, as annotated in FlyBase) including the CG31739 gene in its 

entirety and 1900 bp of its upstream region, using two contiguous PCR reactions 

(Roche Expand Long Range) of 3696 and 3000 bp each, ligated through the addition of 

a unique NheI restriction site at the 3’ end of one product and 5’ end of the other. Each 

of the 3696 and 3000 bp products were subcloned into the TOPO-TA vector 

(Invitrogen), sequenced, and cloned sequentially into the pCaSpeR 5 vector, which was 

used for the generation of transgenic flies. 

All transgenic lines, except those indicated below, were generated at Bestgene, by 

PhiC31 integrase-mediated site-specific transgenesis into the third chromosome using 

the 24749 (86Fb) receiver strain. RNAi pncr003:2L, N-terminal tagged lines and 

CG31739 genomic rescue were generated at Bestgene, by conventional random P-

element transgenesis. 

2.12-Adult fly, and larvae dissections. 
For beating-heart video recordings and Ca2+ transcient measurements, female flies were 

collected within 24 hours after eclosion and reared for 8-12 days (or 25-30 days for 

ageing experiments) at 25oC. Semi-intact heart preparations were performed as 

described by Ocorr et al. [29]. Adult flies were anesthetised with Flynap (Carolina 

Biological Supply Company) (3-5 minutes), and immobilised dorsal side down on a 

small petri dish with a thin coating of petroleum jelly. The head and lower half of the 

thorax including the ventral thoracic ganglion and legs were cut off using fine 

iridectomy scissors. The samples were bathed in a freshly prepared artificial 

hemolymph solution (108 mM Na+, 5 mM K+, 2 mM Ca2+, 8 mM MgCl2, 1 mM 
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NaH2PO4, 4 mM NaHCO3, 10 mM sucrose, 5 mM trehalose, and 5 mM HEPES) 

adjusted to pH 7.1 and oxygenated for 15 minutes prior to the dissection. The ventral 

cuticle was removed, and all internal organs were carefully pulled out, leaving only the 

intact heart and abdominal fat bodies. Fat body was cleared away using a fine capilar-

based liposuction method. The samples were allowed to stabilise for 20 minutes with 

oxygenation before imaging. For adult indirect flight muscle immunohistochemistry, 

thoraces were frozen in dry ice, and bisected through the midline using a scalpel blade, 

and immediately fixed in 4% paraformaldehyde for 20 minutes before staining as 

described in section 2.19. For larval flat preparations, wandering third instar larvae were 

anaesthetised by submerging them in ice-cold 1X PBS for 5 minutes. The animals were 

then placed in a drop of cold 1X PBS on a stylgard plate and pinned ventral side down. 

A longitudinal incision across the dorsal midline was used to open the larvae; guts, 

CNS, nerves, and tracheae were removed and the cuticle pinned to the stylgard plate by 

the four corners resulting from the longitudinal incision. The samples were fixed in a 

drop of 4% paraformaldehyde for 20 minutes before staining as described in section 

2.20. 

2.13-Indirect Flight Muscle sarcomere length measurements. 
To measure sarcomere lengths, confocal images taken with a 60X water immersion 

objective, and the sarcomere lengths were measured directly from the LSM Image 

browser files, using Image J. For each genotype 200 sarcomeres were measured as 

follows: 10 sarcomeres were measured for 5 different myofibrils and this for 4 

individual thoraces, corresponding each to 4 different flies. One tailed, unpaired t-tests 

were performed to assess the statistical significance of the length differences, using the 

Graph-Pad prism 5 suite (GraphPad Software. Inc., La Jolla, CA). 

2.14-Simple motility assay. 
For the simple motility assay, the flies were individually captured from their vials and 

released on a constantly illuminated flat surface, at room temperature, using a fine 

suction tube, and their motility categorised in three different categories over a period of 

observation of 10 seconds: If the flies could take off and sustain flight, they were 

categorised as able to fly; if the flies could not take off and fly, but could still perform 

small jumps (of approximately 0.5 to 1 cm in length), they were categorised as able to 

jump; and if the flies were neither able to fly, nor jump, they were categorised as able to 

walk only.   
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 2.15-Flight assay. 
For the flight assay, 1 to 2 week old flies were dumped directly from their vials, in 

batches of 15-20 flies per assay, into a 2L measuring cylinder, in which a paraffin-

coated plastic sheet covered the inner surface of the cylinder. The flies were dumped 

through a funnel taped to the cylinder, to ensure they all go in through the middle of the 

aperture of the cylinder, and the cylinder itself was solidly taped to the ground to ensure 

that no tipping of the cylinder, which may bias the results, would occur. The plastic 

sheet was recovered after each assay, and the position of the flies scored according to a 

scale generated by dividing the total height of the cylinder into ten equal parts. A score 

of 0 represents the bottom of the cylinder, and scores of 1 and 10, represent the lowest 

and higher regions of the cylinder. The total number of flies in each region, for each 

genotype was plotted in a horizontal bar chart. 150 to 200 flies were assayed per 

genotype. This assay was performed at room temperature. 

2.16-Heart Video recordings and period measurements. 
Video recordings of hearts were acquired using a Leica DMRB microscope with a 10X 

PL FLUOTAR dry objective equipped with a high-resolution Hamamatsu digital 

camera (model C848-05G01). Time lapse recordings of beating hearts were obtained 

using the Simple-PCI 6 suite at 32 frames/second.  Based on the method of Ocorr et al. 

[27] to get a random sampling of the heart function from the flies, a single 20 second 

recording was made for each fly without previewing. Recordings were taken from 10-30 

flies per genotype. Image J was used to generate the kymographs (with the plug-in 

created by J. Rietdorf and A. Seitz) and for heart period measurements. The quick 

transition between the systolic and diastolic states of the heart, visualised in the 

kymographs as a straight line perpendicular to the time progression axis was used to 

delimit each heart period. Arrythmicity indeces were calculated by normalizing the 

standard deviation to the mean of all period measurements for each recording, over the 

median of that same recording [26]. The arrythmicity indecx values of each genotype 

was normalised over the arrythmicity of age-matched wild-type flies. The fractional 

shortening was calculated as the difference in percentage between diastolic heart 

diameter and systolic heart diameter over the diastolic heart diameter. These diameters 

were measured directly from the heart video recordings using Image J. For rescue 

experiments, each of the transgenes (UAS-pncr003:2L, UAS-pncr003:2L_FS, UAS-

pncr003:2L_ORFA, UAS-pncr003:2L_ORFB, UAS-pncr003:2L_FH-ORFA, UAS-

pncr003:2L_FH-ORFB, UAS-pln_ORFA and UAS-sln_ORFA) was expressed in 
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muscles by Dmef2-GaL4 in a Df pncr003;2L background. For excess of function 

experiments, each of the transgenes (UAS-pncr003:2L_ORFA, UAS-

pncr003:2L_ORFB, UAS-pln_ORF and UAS-sln_ORF) was expressed in muscles in a 

wild type background by Dmef2-GaL4. tin-GaL4 was also used in rescue experiments 

with the UAS-pncr003:2L and UAS-pncr003:2L_FS constructs. For the statistical 

analysis of these results, I used two-tailed Mann-Whitney U tests, which were 

performed using the Graph-Pad prism 5 suite (GraphPad Software. Inc., La Jolla, CA). 

2.17-Calcium fluorescent recordings. 
To visualise the Ca2+ transients during muscle contraction, I used the genetically 

encoded fluorescent Ca2+ sensor G-CaMP3  in the semi-intact heart preparations 

described above, and followed a method similar to that described in Lin et al. 2011  

[34]. Fluorescence measurements were made using a Zeiss laser scanning microscope 

LSM 510 on a Zeiss Axioskop 2 microscope, with a 10X Achroplan objective. For each 

beating heart preparation, a ten second time-lapse recording was taken over a strip of 

512/45 pixels, covering the heart along its antero-posterior axis. The time series were 

taken at a speed of 16.6 frames / second.  Using the LSM imaging suite (version 3.2), 

average fluorescence intensity was recorded for each time-lapse over an area of interest 

of 40/30 pixels, corresponding to the maximum width of the heart at the level of the 

base of the conical chamber at its most contracted state. In order to obtain average 

values of intensity / time for all animals, and because every heart has a unique beating 

frequency, I normalised the time scale for each calcium signal peak, in relation to the 

maximum value (to%) and the lowest, basal value (t100%). A 2nd order polynomial curve 

was fitted, using GraphPad Prism 5, in order to obtain comparable data points for all 

samples.  The intensity values were normalised to the most basal value of the recording, 

and all values at each time point were averaged for each genotype.  I used Dmef2-GaL4 

to drive the expression of the UAS-G-CaMP3 construct in muscles in the Df 

pncr003;2L background and compared the calcium transients of Df pncr003;2L mutants 

with that of their pncr003:2L heterozygous siblings (wild-type control). For rescue 

experiments, each of the rescue constructs (UAS-pncr003:2L, UAS-pln_ORFA and 

UAS-sln_ORFA) was driven in muscles together with UAS-GCaMP3 in a Df 

pncr003;2L background. For ectopic expression experiments, each of the ectopic 

expression constructs (UAS-pncr003:2L_ORFA, UAS-pncr003:2L_ORFB, UAS-

pln_ORF and UAS-sln_ORF) was driven in muscles together with UAS-G-CaMP3 in a 
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wild-type background. To take into consideration the buffering effect of the 10XUAS 

enhancer region within the rescue and ectopic expression constructs on the available 

pool of GaL4 molecules, and therefore on the GaL4 dependent fluorescence signal, I 

considered the ratios of fluorescence signal of the rescue and ectopic conditions over 

that of control animals where the non-functional UAS-pncr003;2L FS (expressing the 

pncr003;2L cDNA with frame-shifts in both ORFs A and B) was driven by Dmef2-

GaL4, in the same Df pncr003;2L background as for the rescue experiments, or wild-

type background for ectopic experiments. To render directly comparable the differences 

of calcium intensity across experiments done with different levels of UAS enhancers / 

GaL4 molecules, I plotted the ratios of the rescue conditions over  the Df pncr003;2L, 

Dmef2>pncr003;2L_FS control, relative to the average maximum amplitude of Df 

pncr003;2L (equivalent to the rescue experiment control with no UAS enhancers), and 

the ratios of the ectopic expression conditions over the Dmef2>pncr003;2L_FS control 

relative to the average maximum amplitude of the wild-type controls (equivalent to the 

ectopic experiment control with no UAS enhancers). All the values were then expressed 

as a percentage relative to the wild-type control. 

2.18-Intracellular action potential recordings. 
Intracellular recordings were performed, by Jeremy Niven, on the semi-intact heart 

preparations described above, with the addition of 120 µM Cytochalasin D (Sigma 

Aldrich) to the artificial haemolymph immediately prior to the recordings to reduce 

heart movement and allow for more stable recordings. Intracellular recordings were 

made from single cardiac myocytes in the anterior heart using electrodes pulled from 10 

cm borosilicate glass capillaries (1.0 mm outer diameter, 0.58 mm inner diameter; 

GC100F-10, Harvard Apparatus, http://www.harvardapparatus.co.uk) using a Sutter 

P97 puller (Sutter Instruments,http://www.sutter.com). These electrodes were filled 

with 2M potassium acetate to give typical resistances of 150-200 MOhms. All 

recordings were made using an NPI  SEC-05X amplifier (NPI 

Electronic, http://www.npielectronic.com).  

Throughout recordings the temperature of the flies was maintained between 22°C and 

24°C. Cardiac myocytes were identified by an approximately 50-60 mV drop in 

membrane potential and large (>45 mV) action potentials. Intracellular recordings with 

action potentials (APs) smaller than 45 mV were not included in the analysis. 

Spontaneous cardiomyocyte action potentials were recorded in bridge 
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mode. Intracellular recordings were digitised at 5 kHz using a CED micro1401 A/D 

conversion interface and Spike 2 software (Cambridge Electronic 

Design, http://www.ced.co.uk). The height of the APs (in mV from the resting potential) 

was analysed offline using custom-built software and verified by hand. Action 

potentials were classified as single or double peaks and their proportions assessed 

offline by hand. Double APs were characterised as two voltage peaks of full amplitude 

in which the intervening voltage did not fall below 30% of the total amplitude.   

2.19-In situ hybridisation. 
DIG-labelled RNA probes were generated from a 311 bp fragment corresponding to the 

third exon of pncr003:2L (nucleotides 212-523 of cDNA RE28911) following 

manufacturer procedures (Roche). The tissues were prepared in RNAse free conditions 

as follows: Drosophila embryos were dechorionated in bleach, devitillanised and fixed 

in a 1:1 heptane / paraformaldehyde mix for 20 minutes, and after several methanol 

washes, the embryos were then stored in methanol at -20oC.  Adult and larval tissues 

were prepared as described above in section 2.12. Embryos stored in methanol were 

allowed to warm up to room temperature, then rehydrated in a decreasing series of 

ethanol dilutions (90%, 70%, 50%, 30%), and washed several times with 1X PBT (1X 

PBS + 0.2% Tween-20). Larval and adult tissues were washed several times with 1X 

PBT (1X PBS + 0.2% Tween-20) to remove excess paraformaldehyde. The rehydrated 

embryos or adult and larval tissues were permeabilised using Proteinase K (3 µg/ml in 

PBT) (Roche) for 1 hour on ice. The reaction was stopped by washing two times with 2 

mg/ml glycine in PBT followed by several washes with 1X PBT. The embryos / tissues 

were incubated with 0.2 M HCl for 10 minutes to remove endogenous alkaline 

phosphatase activity,  washed several times in 1X PBT, and then post-fixed in 4% 

paraformaldehyde for 20 minutes. The embryos / tissues were prepared for 

hybridisation by first washing with a 1:1 solution of PBT:Hybridisation Solution (HS – 

a mixture of deionised formamide, 20X standard saline citrate, heparin (50 µg/ml), 

Tween-20 (0.1%), boiled salmon sperm (10 mg/ml), tRNA (0.5 ngr / mL), and nuclease 

free H2O) then washed with neat HS. The embryos / tissues were then pre-hybridised in 

HS for two or more hours in a 56ºC water bath. 200-500 ng of  DIG-labelled probe in 

HS was heated to 90ºC for one minute to relax any secondary mRNA structures, and 

allowed to hybridise with the embryos / tissues at 56ºC overnight. After hybridisation 

the samples were washed in HS (2 X 20 mins) and then slowly transferred to PBT in a 
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series of HS:PBT solutions (1:3, 1:1, 3:1), finally being brought down to room 

temperature in 1X PBT. Embryos were blocked for 2 hours in a solution of 1% bovine 

serum albumin (Sigma) and 5% normal horse serum (Vector Labs) in 1X PBT. After 

blocking, the tissues were incubated in a slow rotator at 4ºC overnight in a 1:1000 

dilution of α-DIG-AP (Roche) in PBT. The antibody was removed by washing the 

samples several times with PBT over 2 hours followed by three rinses with staining 

solution (5 M NaCl, 1 M Tris-HCl, 1M, pH7 .5, MgCl2, 0.2% Tween-20, and H2O). A 

developing solution was made by combining staining solution with 4.5 µl/ml NBT and 

3.5 µl/ml BCIP. Signal was allowed to develop in the dark and monitored periodically 

as to not overstain. The samples were then washed several times in 1X PBS before 

mounting on glass slides in Aqua-Poly/Mount (Polysciences) prior to imaging. 

2.20-Immunofluorescence. 
For immunofluorescence, the following  primary antibodies were used: mouse anti-discs 

large (DSHB) used at 1:5 dilution, mouse anti-GFP (Roche) used at 1:500, Rabbit anti-

RFP (Molecular Probes) used at 1;500, mouse anti-FLAG (Sigma) used at 1:1000, 

rabbit anti-GFP (Molecular Probes) used at 1:500, anti-SERCA (Ca-P60A)[35] was a 

gift from Mani Ramaswami and was used at 1:1000. Secondary antibodies used: anti-

mouse-FITC, anti-rabbit-FITC, anti-mouse-Biotin, anti-rabbit-Biotin, streptavididin-

rhodamine and streptavidin-FITC (Jackson ImmunoResearch). Samples were fixed in 

4% paraformaldehyde, washed in PBS, and PBTx (0.1% Triton X-100), blocked and 

incubated in in PBT (0.3% Triton X-100, 0.2% BSA) and mounted in Vectashield 

(Vector). Incubations were done overnight at 4oC for primary antibodies and for two 

hours at room temperature for secondary antibodies. Phalloidin-rhodamine and 

Phalloidin-Cy5 (Life Technologies) were used at 5:200, from 1.5 mL methanolic 

solution, with an incubation time of 20 minutes. 

Fluorescence imaging was performed by confocal microscopy (LSM, Carl Zeiss). LSM 

Image Browser, ImageJ and Adobe Photoshop software were used for image 

processing. 

2.21-Bioinformatics search for homologues. 
To search for structural homologues I used the PHYRE2 engine 

(http://www.sbg.bio.ic.ac.uk/phyre2/) [30] using as an input the sequence of the 

pncr003:2L ORFA peptide with the normal modelling mode. To search for sequence 

homologues an initial search, restricted to the same taxonomic clade, was carried out in 



38 
 

ESTs deposited in NCBI (http://www.ncbi.nlm.nih.gov/) using tBLASTn with default 

settings (Blosum-32 matrix, Expected threshold of matches obtained purely by chance 

of 10, using compositional adjustment and low complexity region filters), or maximally 

relaxed parameters (PAM-30 matrix, Expected threshold of matches obtained purely by 

chance of 1000, removing compositional adjustment and low complexity region filters). 

The top 100 hits were scrutinised for belonging to a smORF of less than 100aa with 

start and stop codons, in the correct orientation and non-overlapping with longer ORFs. 

The complete smORFs passing this filter were then aligned using ClustalW to the query 

and already identified orthologues of the same phylum. A consensus weighted by 

phylogeny was then extracted from the alignment and the process was iterated, carrying 

out a new tBLASTn search with the consensus sequence. When no more homologues 

from the same taxonomic class were obtained in a given iteration, the tBLASTn search 

was expanded to the next higher-order clade.  

2.22-Transmission Electron Microscopy. 
Adult flies were dissected as described above, and were treated for transmission 

electron microscopy as follows: the samples were fixed in 4% formaldehyde + 1% 

glutaraldehyde in PBS for 4 hours at room temperature, then overnight at 4 oC. They 

were then post-fixed in 1% (w/v) osmium tetroxide in PBS for 4h at room temperature, 

before being dehydrated in an ethanol series. After 2 X 30min in propylene oxide, they 

were left overnight in 50:50 propylene oxide:TAAB low viscosity resin (TLV; TAAB 

Laboratories Ltd., Aldermaston, UK), then infiltrated with TLV resin over several days, 

with a few resin changes, before polymerising at 60oC for 16 hours. Thin (100nm) 

sections were cut and stained with 0.5% (w/v) aqueous, 0.22µm-filtered uranyl acetate 

for 1h and subsequently lead citrate for 15 min. Sections were examined in a Hitachi-

7100 TEM at 100kV and images were acquired digitally with an axially-mounted (2K X 

2K pixel) Gatan Ultrascan 1000 CCD camera (Gatan UK, Oxford, UK). N.b.: The 

fixation and sample preparation steps were performed by Julian Thorpe, who also 

assisted in the acquisition of the images 
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Chapter III - Characterisation of the 
gene sequence, transcript expression, and 

translation of pncr003;2L. 

1- Introduction: 
 

The pncr003;2L gene is currently annotated as a non-coding RNA, and there are no 

indications of what its function could be. As an initial step to the functional 

characterisation of this gene, the work presented here will briefly review the 

information available in FlyBase with regards to the transcript sequence, and structure 

of this gene, in order to provide an initial “gene model” for this putative smORF.  

This work will then focus on the characterisation of the expression of the pncr003;2L 

gene. To characterise the function of any gene, and most particularly in this “reverse” 

genetics approach, it is essential to understand when and where the gene is expressed, as 

the patterns of expression of the gene provide valuable information which may already 

suggest a function for the gene, and would indicate, when and where to look for a 

phenotype once a mutant for this gene is available. One of the major aims of this 

chapter is therefore to provide a temporal and spatial landscape of the expression of the 

pncr003;2L transcripts during the life cycle of Drosophila melanogaster, using classical 

gene expression analysis tools such as in situ hybridisation and RT-PCR, which goes 

much beyond the current data presented by Tupy et al.[24], indicating that pncr003;2L 

is expressed in the embryonic somatic muscles.    

The other objective of this work is to assess the translation of the putative pncr003;2L 

transcript, which is currently considered as non-coding. In the general introduction of 

this thesis, the pncr003;2L gene has been portrayed  as having  promising evidence of 

being protein-coding, because within its transcript, a putative smORF was detected, 
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which passed a series of  stringent bioinformatics filters designed to distinguish 

potential small coding sequences (Table 1.1). The translation of this small ORF into a 

peptide remains, however, to be proven. In the work presented here, the translation of 

this smORF into a peptide will be assessed experimentally, using a specific smORF-

GFP (Green Fluorescent Protein) fusion construct, which is designed to preserve the 

original context of translation of the small ORF, by placing the GFP tag, in frame with 

the small ORF, within the pncr003;2L transcript. 

In this work I demonstrate that pncr003;2L is expressed, throughout the life cycle of 

Drosophila, in somatic and cardiac muscle tissues, and show that the gene encodes for 

but two related smORFs (ORFA and ORFB), which are both translated into peptides. I 

show that pncr003;2L is a complex gene, producing different isoforms, which can be 

regulated in a tissue-specific manner. Furthermore, I show that these peptides have a 

specific subcellular localisation to the dyads of muscle cells and to the plasma 

membrane and peri-nuclear structures, which may provide an insight into their function.  

2- Results: 

 

2.1- pncr003;2L codes for two small open reading frames with an optimal 
translation context  
The FlyBase annotation (Release 5.22 – Release 5.52) (Figure 3.1A), as well as the 

Tupy et. al manuscript [24] indicate that the pncr003;2L gene, which spans 4 Kbs on 

chromosome 2L, is transcribed into a 1Kb transcript composed  of  five exons (exons 1-

5). This transcript is supported by the existence of the complete cDNA clone RE28911, 

which is available from the Drosophila Genomics Resource Centre (DGRC) public 

depository, and has therefore been used as a template for many of the constructs and 

probes used here. In the FlyBase database, there is also an second, shorter transcript 

model for this gene, supported by a few ESTs, such as RE72983. Interestingly, the 

sequence corresponding to the first exon of that EST is different from the sequence from 

any of the exons that constitute the RE28911 cDNA and maps to a genomic region just 

upstream of exon 3, therefore the RE72983 EST represents a transcript produced by a 

different promoter, provided by an alternative exon, which, because of its position 

between exons 2 and 3, will be referred to as exon 2’ (Figure 3.1B).  
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An analysis of the RE28911 cDNA sequence, shows that pncr003;2L codes for the  

putative small open reading frame of 28 aa (ORFA), which was the subject of the study 

presented in Table 1.1 in the general introduction of this thesis. This transcript  also 

codes for another putative smORF of 29 aa (ORFB), located only 68 nt downstream of 

the ORFA stop codon, whose sequence is remarkably similar to that  of ORFA (Figure 

3.1C). These two short ORFs share high amino acid sequence similarity between them, 

implying that they may have been the subject of a local gene duplication event, giving 

rise to a transcript with a polycistronic configuration. It is interesting to note that tal, 

which is one of the most representative examples of functional smORFs characterised 

so far, is also polycistronic, and the peptides it encodes also share high amino acid 

sequence similarity between them (Figure 1.5A) [11], which may suggest that this kind 

of local gene duplication phenomenon leading to polycistronic transcripts could be 

common in this class of genes. 

The sequences surrounding the ATG start codons of both of the short ORFs encoded by 

pncr003;2L are very similar to the consensus Drosophila Kozak sequence (Figure 3.1D, 

as computed by V. Pereira) [36]. The Kozak consensus sequence is a nucleotide 

sequence motif present around the ATG start codon of eukaryote ORFs, which is known 

to be associated with an optimal translation context [37].  The presence of these 

sequences could therefore be considered as further evidence that the short ORFs within 

pncr003;2L are translated into proteins.  

Each of these two putative ORFs, ORF A and ORF B, are encoded in exons 2 and 3 

respectively. Therefore, the transcript represented by the RE72983 EST contains 

exclusively ORF B (Figure 3.1B). A DNA alignment between exon 2’, the alternative 

exon giving rise to this transcript, and exon 1 from RE28911, shows a good extent of 

conservation between these sequences (Figure 3.1E), a similarity which supports the 

gene duplication event that gave rise to the polycistronic transcript represented by 

RE28911. 
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Figure 3.1: pncr003;2L, contains two putative smORFs with an optimum context 

of translation. (A) Diagram representing the genomic locus of pncr003;2L on 

chromosomal arm 2L, as depicted in the FlyBase genome browser. Genes are indicated 

by blue arrows. The RE28911 cDNA and RE72883 EST are indicated underneath the 

pncr003;2L gene .  (B) magnification of the RE28911 cDNA and RE72883 EST, 

showing the position of ORFs A and B. (C) cDNA sequence of the pncr003;2L, clone: 

RE28911. The amino acid sequence of each putative peptide is represented in red 

capitals underneath their respective open reading frames. Conserved amino acids 

between the two peptides are in bold, and Kozak sequences are underlined. (D) Kozak 

sequence consensus, obtained from the comparison of the nucleotides surrounding the 

ATG start codon of 16,884 protein coding genes annotated in FlyBase (unpublished 

data from Pereira V. (2008)). (E) DNA alignment of exons 1 and 2’ showing their 

sequence conservation. 
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Figure 3.1 
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2.2- Expression of the pncr003;2L transcripts. 

In order to assess the temporal expression of pncr003;2L, I carried out reverse semi-

quantitative RT-PCRs on total RNA extracts from whole individuals at different stages 

of the Drosophila life cycle (Figure 3.2A). The stages assessed were: embryos, the three 

larval stages (L1, L2 and L3), a mixture of all pupal stages, and adults. A set of forward 

and reverse PCR primers (primers AB, A) were designed to anneal to exons 2 and 5 

respectively, in order to amplify an 800 base pairs (bp) fragment corresponding to the 

transcript associated with the RE98911 cDNA. A second set of primers (primers B) was 

designed to anneal to exons 2’ and 5, in order to confirm the existence of the alternative 

transcript associated with the RE72983 EST (Figure 3.2B).  

The profile obtained using the first set of primers (primers AB, A) was unexpected, 

since all stages showed three bands of 800, 700 and 500 bp (Figure 3.2A). After 

sequencing, these fragments were determined to correspond to three different mRNA 

isoforms of pncr002;2L (Figure 3.2B): The 800 bp band corresponds, as expected, to 

the same isoform as  RE28911 in which both exons 2 and 3, and thus ORFs A and B, 

are present; this transcript was named AB. The 700 bp band corresponds to another 

isoform, which also includes both exons 2 and 3, but excludes exon 4; this transcript 

was named AB’. The 500 bp band corresponds to an isoform which excludes exon 3, 

and therefore only encodes ORF A; this transcript was named A. The second set of 

primers, (primers B) gave rise to a single band of the expected size of 800 bp, which 

corresponds to the isoform associated with the RE72983 EST. Because this isoform 

only contains ORFB, it will be referred to as the B isoform.  Although all the transcripts 

are present in all developmental stages, the AB and AB’ transcripts show a stronger 

expression in embryonic stages, which diminishes in the subsequent larval and pupal 

stages, and appears quite weakly expressed in adults. The B transcript is more 

consistently expressed across the different developmental stages. The second set of 

primers produce the expected 800 bp band, which confirms the existence of the 

alternative isoform which uses exon 2’.  This band is also present during all the 

developmental stages tested, but is also quite weakly expressed in adults. 

 The differential expression of these alternative transcripts, which have different 

constitutions with respect to ORFs A and B, is interesting as it could provide a means to 

modulate the expression of these two smORFs across the life span of the fly. All of 

these isoforms are also consistent with a local duplication of the two first exons of the 
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original gene, which would be represented by the isoform A.  The duplicated exon 3 can 

be integrated into that original transcript to generate the AB transcript. Likewise the B 

isoform replicates the original transcript, but uses the duplicated exons instead (Figure 

3.2C). 

Having determined that overall these pncr003,2L transcripts and their respective ORFs 

A and B are expressed during all stages of the fly, their spatial patterns of expression of 

pncr003;2L were assessed by in situ hybridisation performed in whole embryos, and flat 

preparations of stage three larvae and adult abdomens, using a probe which anneals to 

exons 4-5, and therefore to all isoforms of pncr003;2L.  

In embryos, strong expression of pncr003;2L can be observed exclusively in the 

somatic muscles, which confirms the observations of Tupy et al. [24] (Figure 3.2D, F). 

Interestingly, this expression only manifests at the latest stages of embryogenesis 

(stages 13 onwards) at which point the muscles have already been determined, and fully 

differentiated [38] (Figure 3.2E). This relatively late onset of expression in muscles 

already suggests that these smORFs may have a function in mature muscles, rather than 

during their development. 

In the larva, the expression of pncr003:2L can still be detected in all somatic muscles, 

but at this stage, it is also present in cardiac muscles (Figure 3.2G). Interestingly, in 

adult abdominal regions the expression of pncr003;2L appears to be confined to cardiac 

muscles, as no expression could be detected in the abdominal somatic muscles (Figure 

3.2H).  
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Figure 3.2: Transcriptional expression of pncr003;2L.   

(A) Transcript expression profile obtained by RT-PCR at different stages of the life 

cycle of Drosophila. E: embryo; 1-3: first to third instar larvae; P: pupae (combination 

of all pupal stages); A: adult. The size of the bands, and the isoform they correspond to 

are indicated on the left of the gel. The primers used are indicated in purple (B) 

Diagram of the different isoforms obtained in the RT-PCR profile, indicating their exon 

(black rectangles) and ORF (red squares, labelled A or B) constitution, and the size of 

their expected PCR product (green lines). The position of the different sets of primers 

(primers AB,A or primers B) used in these PCRs are indicated by the purple arrows at 

the bottom of the diagram. (C) Diagram showing the conceptual duplication of exons 1 

and 2, leading to exons 2’ and 3. This model suggests that isoform A depicts the 

ancestral state of the gene (black squares and lines), and the duplication leads to the 

other alternative isoforms (orange squares and lines). Note that this duplication could 

have also taken place the other way around, with exons 2’ and 3 being duplicated into 

exons 1 and 2. (D-H) in situ hybridisation, obtained with a probe annealing to exons 3-5 

showing the expression of pncr003;2L in: (D) a  lateral view of stage 17 embryos,  

showing expression in al somatic muscles (compare with the right panel showing  the 

pattern obtained by driving GFP  with the muscle driver DMef2-GaL4; (E) Lateral view 

of  stage 14 embryo, showing no signal. (F) stage 17 Embryos showing signal in 

somatic muscles but not in the dorsal vessel (arrow). (G) Dorsal flat preparation of an 

L3 larva, showing expression in somatic (arrow head) and heart (arrow) muscles; (H) 

flat preparation the adult dorsal abdominal cuticle and associated muscles, showing 

expression of pncr003;2L in heart muscles (arrow) but not somatic muscles. 
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Figure 3.2 
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In order to determine whether pncr003;2L is expressed in the adult indirect flight 

muscles (IFMs), which follow a different developmental process to all other adult 

somatic muscles, I performed RT-PCRs with RNA extracted from hemi-thoraces devoid 

of all extremities and guts, leaving IFMs as the major contributors of RNA.  The 

obtained RT-PCR profile shows the presence of the three AB, A and B isoforms (Figure 

3.3A) indicating that pncr003;2L is also expressed in adult IFMs. In these muscles, all 

three isoforms are expressed in relatively similar proportions. The expression of 

pncr0032;L in IFMs is also supported by in situ hybridisation experiments  (Figure 3.3B 

and C) , which show that although high levels of background signal can be observed 

with the non-specific sense probe, the anti-sense probe produces a stronger signal. 

As stated above, there appears to be a differential expression of the different 

pncr003;2L transcripts during the development of the fly. In order to test whether there 

is also tissue specific expression of these isoforms, the IFM profile was compared with 

the profile obtained from RT-PCRs performed with RNA extracted from adult hearts. 

Interestingly the heart expression profile is quite different from that of IFMs; in hearts 

the A isoform is completely absent, and the B isoform is expressed at much higher 

levels than the AB isoform, and that the B isoform itself in IFMs. These results, 

therefore show that there is indeed a tissue specific regulation of the expression of the 

different pncr003;2L  isoforms. 
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Figure 3.3: The pncr003;2L transcripts are expressed in the Indirect Flight 

muscles, and show tissue specific expression. (A) Transcript expression profiles 

obtained by RT-PCR on extracts from adult thoraces devoid of heads, appendages and 

guts, leaving the indirect flight muscles (IFMs) as major contributors of tissue; or from 

heart extracts. The different isoforms, and primers are indicated as in Figure 3.2B. 

Notice the differences in the profiles between each tissue, notably, the absence of 

isoform A, and higher expression of isoform B in hearts. (B-C) in-situ hybridisation 

experiments showing that: (B) A strong signal in transversal (arrows) and longitudinal 

(arrow heads) indirect flight muscle is obtained when an anti-sense probe specific to 

pncr003;2L is used. (C) Only background signal is observed with the non-specific sense 

probe is used in the thoracic IFMs.  
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Figure 3.3 
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2.3- Translation of the pncr003;2L peptides. 

To prove that the pncr003;2L ORFs A and B are translated, the ORFs were tagged with 

GFP and transfected into S2 R+ culture cells. Two constructs were made where the GFP 

tag, devoid of its own start codon, was cloned in frame with either ORF A or ORF B at 

their C-terminus (Figure 3.4). This was accomplished by introducing a unique 

restriction site at the C-terminus of either ORF, using the circular vector carrying 

RE28911 as a template for a PCR reaction with primers that annealed to the C-teminus 

of the ORF in opposite directions, and which replaced the stop codon of the ORFs by 

the unique restriction site. This PCR reaction produced a linear product, which upon 

ligation of the GFP sequence was recircularised, giving rise to the tagged ORF 

constructs. It was important to implement this kind of strategy as it led to the tagging of 

the ORF while preserving the whole transcript sequence, including its 5’ and 3’ UTRs, 

therefore if translation is observed one can be sure that it is because of the endogenous 

context of the ORFs, rather than that of an artificial expression vector. In order to allow 

the tissue-specific expression of these pncr003;2L ORF A-GFP and pncr003;2L ORF 

B-GFP constructs in transgenic flies, they were  placed under the control of the widely 

used upstream activating sequence (UAS) promoter, which responds specifically to the 

yeast GaL4 transcription factor [39]. For this, the constructs were cloned into the 

pUAST attB vector, which also allowed their integration into transgenic flies into a 

specific locus [40]. 

Upon co-transfection into S2 R+ cells with an actin-GaL4 expression driver vector, a 

strong immunofluorescent GFP signal can be observed for both constructs (Figure 

3.5A-B). Both ORFs appear to be translated at similar levels, as the intensity of their 

fluorescence signal is comparable. Importantly, both peptides localise to membrane 

structures, including the plasma membrane and perinuclear endoplasmic reticulum 

(ER). This membrane localisation is indicated by the strong co-localisation between 

ORFA and the membrane bound RFP marker (mCD8-RFP) (Figure 3.5A-A’).  These 

results are therefore in complete agreement with the predictions presented in the 

introduction of this thesis, stating that these ORFs were very likely to be translated, 

while also showing that these peptides have a specific subcellular localisation.  
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Figure 3.4: Cloning strategy to assess the translation of the pncr003;2L ORF A and 

ORF B peptides. Diagram representing the ORF tagging strategy implemented to 

preserve the endogenous transcript sequences, and therefore the endogenous translation 

contexts of pncr003;2L ORFA and ORFB: The GFP sequence devoid of start codons 

was cloned in frame at the C-terminus of either ORF. For this a unique HindIII 

restriction site was introduced at the 3’ and 5’ termini of the GFP sequence by PCR, 

using a forward primer that removed the ATG. The HindIII site was introduced at the 3’ 

end of either ORF A or ORF B by PCR, using a circularised vector as template with 

primers facing opposite directions, which also removed the stop codon of the ORFs. 

The pncr003;2L ORF A and ORF B constructs were then cloned into the pUASt attB 

vector, which was used to transfect S2 R+ cells, or to generate transgenic flies, using 

site specific p-element transgenesis on the 86F8 FlyC31 Drosophila strain. The 

annealing sites of the primers are indicated by black arrows. 
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Figure 3.4 

 

 

 

  



54 
 

 

 

Figure 3.5  

 

Figure 3.5: ORF A and ORF B translation in cultured cells and muscles. (A-B) 

S2R+ Drosophila culture cells transfected with (A) pncr003;2L ORF A-GFP (A’’) and 

the membrane bound marker mCD8-RFP (A’); or (B) pncr003;2L ORF B-GFP (B’’) 

and  nuclear Ds-Red (B’) arrows show localisation to the membrane. (C-D) Epi-

fluorescence images of transgenic L1 larvae expressing either (C) pncr003;2L ORF A-

GFP or (D) pncr003;2L ORF B-GFP. Red dots outline the larva no fluorescent signal. 

(E-F) Adult IFMs expressing either (E) pncr003;2L ORF A-GFP or (F) pncr003;2L 

ORF B-GFP. Myofibrils are labelled with phalloidin rhodamine. Arrows indicate the 

localisation to the plasma membrane. Scale bars: 15 µm. All images, except (C) and (D) 

were acquired by confocal microscopy. Expression of both constructs in transgenic 

animals is driven in muscles by DMef2-GaL4. Scale bars: (A-B’’)= 5 µm; (C,D)= 100 

µm; (E-F’’)= 15 µm. 
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2.4- Subcellular localisation of the pncr003;2L peptides in situ 
In order to assess their translation in vivo, and in situ, these constructs were integrated 

into flies through site-directed P-element transgenesis [40]. The expression of these 

constructs was then driven in the muscles of the transgenic flies, using GaL4 under the 

DMef2 promoter. In these conditions, the pncr003;2L ORF A-GFP construct produces a 

strong GFP signal in muscles, readily detected from the  embryonic stage (not shown) 

and throughout the life cycle of the fly (see below). Furthermore the signal also appears 

to localise to the plasma membrane and perinuclear, ER-like structures (Figure 3.5E). 

The pncr003;2L ORF B-GFP construct, however, does not produce enough signal to be 

detected beyond background levels by fluorescence microscopy. A comparison between 

the GFP signal in either whole larvae, or adult indirect flight muscles, show the stark 

difference of expression between the two ORFs in either stage (Figure 3.5C - F). These 

results indicate that the polycistronic translation observed in S2 R+ cells does not take 

place in muscles, which suggests that some differences in the mechanisms that regulate 

this atypical kind of translation exist between S2 R+ cell cultures and muscles. 

Furthermore this inability to translate ORF B within a polysictronic transcript may also 

justify, or stem from, the existence of the alternative isoform B, which lacks the 

upstream ORF A, therefore allowing the translation of ORF B.  In agreement with this, 

transgenic animals expressing an ORF B-mCherry construct obtained with the same 

tagging procedure as described above, but using the B isoform instead of the AB 

isoform (leading to the pncr003;2LB ORF B-mCherry construct), show similar levels of 

translation to those observed by  the pncr003;2L ORF A-GFP construct (Figure 3.6A). 

The ORF A and ORF B peptides also show a great extent of co-localisation (Figure 

3.6B). 

Within the muscle fibres, the pncr003;2L peptides seem to localise in a specific pattern, 

of small punctate structures that outline the myofibrils. This pattern is apparent in larval 

somatic muscles (Figure 3.6A). In adults, a very similar pattern can be observed in the 

heart (Figure 3.7A), but it is more obvious in adult IFMs, which have much larger 

myofybrils, and therefore, offer a better resolution of these structures (Figure 3.7B).  

In IFMs, the pattern appears to be quite consistently that of approximately four punctate 

structures per sarcomere, located between the M and Z lines. A very similar pattern has 

been previously described in Drosophila adult IFMs for the Ryanodine receptor (RyR) 
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[41] (see inset in Figure 5.7C). The RyR is the intracellular calcium channel responsible 

for the release of calcium from the sarco-endoplasmic reticulum (SER) into the cytosol, 

which triggers muscle contraction. In cardiac muscles these channels are activated by 

calcium itself in a process known as calcium-induced calcium-release (CICR). The local 

amounts of Calcium ions necessary for CICR, are provided from the extracellular space 

through L-type voltage mediated calcium channels (L-CaCh) located at close proximity 

from the RyRs. In skeletal muscles, the L-CaCh are in physical contact with the RyR, 

and activate them directly. The RyRs are therefore located in a region of the SER which 

is in close apposition to an invagination of the muscle cell plasma membrane, which 

extends deeply into the muscle cell, allowing the transmission of the depolarising 

currents necessary for the activation of the L-CaCh all the way from the neuromuscular 

junction to the myofibril-associated SER (Figure 3.8). The junction between these 

membrane invaginations, known as T-tubules and the SER, is known as dyad (Figure 

3.7C, Figure 3.8), a structure which is at the core of the muscle excitation-contraction 

coupling system. 

Although, unfortunately no anti-RyR antibody could be obtained to confirm the co-

localisation between the RyR and the pncr003;2L peptides, it could be determined that 

these peptides largely co-localise with the T-tubule system, detected with anti Discs-

large, as described in [41] (Figure 3.7D).  

This very specific subcellular localisation, which points to a physiological role for these 

peptides, is not an artefact of the GFP tagging method used, since it can be reproduced 

with N-terminal FLAG-Hemagglutinin tagged peptides (FH-ORF A and FH-ORF-B) —

generated by Dr. Jose Pueyo [33]—, a completely different tag because of its nature, 

smaller size, and N –terminal localisation with respect to the ORF A and ORF B 

peptides (Figure 3.9A and B). Furthermore, this precise subcellular localisation is not 

due either, to their membrane bound structure. Indeed, other membrane bound markers, 

such as mCD8-RFP fail to reproduce the pattern observed with the pncr003;2L peptides 

(Figure 3.9C). This evidence suggests that the tagged peptides reflect the localisation of 

the endogenous peptides.  
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Figure 3.6 

 

 

Figure 3.6: ORF B is translated from the B isoform in situ, and has a similar 

expression and localisation as ORF A. (A-B) Larval somatic muscles expressing (A) 

pncr003;2L ORF A-GFP (A’’) and stained with phalloidin rhodamine (A’); or (B) 

pncr003;2LB ORF B-mCherry (B’) and pncr003;2L ORF A-GFP (B’’). Arrows indicate 

the localisation to the dotted structures outlining the myofibrils. A DAPI stained nucleus 

(blue) is shown in (A). The expression of these constructs is driven in muscles by 

DMef2-GaL4. All images were acquired by confocal microscopy. Scale bar: (A-B’’)= 

15µm. 
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Figure 3.7: The pncr003;2L peptides localise to the dyads. (A-B) expression of 

pncr003;2L ORF A-GFP (green) in (A) adult heart and (B)  IFMs. All samples are 

counterstained with phalloidin-rhodamine (red or cyan) to label the myofibrils.  DAPI 

stained nuclei are shown in blue. (C) Transmission electron micrograph of an IFM 

sarcomere showing the localisation of the dyads. The inset, (modified from Razzaq et 

al. [41] ) shows the localisation of the dyad associated Ryanodine receptor on a 

magnified confocal fluorescence image of an IFM sarcomere. (D) Expression of 

pncr003;2L ORF A-GFP in IFMs counterstained with T-tubule marker Discs-large 

(Dlg). Arrow heads point to dyads. Scale bars: (A, B, D)= 10 µm; (C)= 0.4 µm. 
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Figure 3.7 
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Figure 3.8: The dyad is at the core of calcium regulation and muscle contraction. 

Diagram of calcium trafficking during muscle contraction modified from Gwathmey 

J.K et al., 2011 [42]. Dyads are the cellular structures where the plasma membrane (T-

tubules) is in close apposition to the sarcoendoplasmic reticulum membrane (faded red 

ellipse). Muscle contraction is regulated by the intracellular levels of calcium. When the 

neuronal membrane potential is transmitted into the muscle cell, the L-type voltage 

activated calcium channels transport extracellular calcium into the cytoplasm. This 

calcium increase triggers the release of large amounts of calcium from the sarcoplasmic 

reticulum (SER) through the Ryanodine receptor (RyR) channels, inducing the 

contraction of the sarcomeres. Muscle relaxation is achieved by the depletion of calcium 

from the cytoplasm, through the sarcoendoplasmic reticulum calcium ATPase 

(SERCA), while sodium/calcium exchange pumps (NCX) and plasma membrane 

calcium ATPase pumps (PMCA) release calcium out into the extracellular space (the 

percentages indicate the estimated contribution of each pump towards the depletion of 

cytoplasmic calcium).  
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Figure 3.8 
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Figure 3.9 

 

Figure 3.9: The subcellular localisation of pncr003;2L ORF A and ORF B is not 

artifactual. Expression of (A) pncr003;2L FH-ORF A and (B) pncr003;2L FH-ORF B, 

kindly provided by J.I. Pueyo-Marques [33],  in adult IFMs counterstained with 

phalloidin rhodamine. Both peptides show the same localisation to the dyads as 

described in (Figure 3.8) (arrows). (C) Membrane bound RFP (mCD8-RFP, in green) 

shows a different localisation pattern with no particular enrichment in dyads, the signal 

seems to localise to z discs instead (arrows). Scale bars (A-C’)= 10µm. 
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3- Discussion: 
 

This work provides the basis for the functional characterisation of pncr003;2L, while 

portraying  a completely different picture of pncr003;2L compared with what has been 

previously described, particularly because it is shown here that pncr003;2L is a coding 

gene, rather than a non-coding RNA, because it  codes for two small ORFs of  28 and 

29 codons that are translated into peptides, and which can therefore be considered as 

bona fide smORFs. These smORFs are expressed in muscle tissues throughout the life 

cycle of Drosophila.  

The identification of a second coding ORF in the pncr003;2L gene, highlights another 

obvious unusual feature of pncr003;2L and tarsal-less, apart from the short size of their 

encoded peptides, which is their polycistronic nature. Although polycistronic genes are 

common in prokaryotes, they are very rare in most eukaryotes, with the Trypanosome 

and nematode genomes, being the only examples of eukaryotes where polycistronic 

transcripts have been widely detected. In Caenorhabditis elegans for example, at least 

2600 genes, representing 15% of the total number of genes in that organism, have been 

determined to belong to operons [43]. In other eukaryotes, only a handful of 

polycistronic transcripts have been described. In Drosophila for example, the gene 

coding for the Stoned A and B peptides (stn A and stn B), as well as the gene coding for 

the alcohol dehydrogenase and alcohol dehydrogenase related proteins (Adh and Adhr), 

are both known to produce di-cystronic transcripts encoding these polypeptides [44].  

Philogenetic analysis of stn and adh genes show that the polycistronic arrangement is 

the primitive state of the gene  [44], whereas the high amino acid conservation between 

ORF A and ORF  B, and between the tal smORFs, suggests that in the case of 

pncr003;2L (and also in the case of tal) this polycistronic arrangement may have been 

acquired upon a local duplication of the original locus.  

The apparent inability of dicistronic translation, in situ, for this gene in the tissues 

studied, together with the different alternative transcripts detected here, which in some 

cases, encode for only one of two smORFs, and have independent promoters, leading to 

differential tissue specific expression for each transcript, and therefore for each smORF, 

suggests that the case of the pncr003;2L ORFs A and B resemble more that of two 

separate paralogous genes, sharing the terminal region of their transcript by the 
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proximity of their duplication. In the case of tal, a similar duplication also seems to be 

at the origin of the observed polycistronic transcript. However, in that case, the lack of 

splicing in the original transcript may have forced the translation of the polycistronic 

ORFs. Because of the extensive sequence similarity of the pncr003;2L peptides on the 

one hand and tal peptides on the other, it is unlikely that the respective members of each 

of these two families of peptides have functions that differ dramatically from each other. 

This has in fact  been shown for tal, where each of the individual peptides is able to 

reconstitute the function of the whole polycistronic gene [11]. In the case of pncr003;2L 

however,  the observed tissue-dependent differential expression of each ORF may allow 

these sequences to be in some sort of adaptive evolutionary state, in which case subtle 

differences in their function may eventually, if not already, be observed.   

From their late onset of expression and their prevalence in muscles it could be inferred 

that their role would take place in mature muscles rather than in the developmental 

process of muscles. This functional prediction is reinforced by the very specific 

subcellular localisation of the peptides to the dyads, which suggests that these peptides 

may have some sort of role, like other proteins localised to those structures, in the 

physiological processes regulating muscle contraction. The fact that this subcellular 

localisation is independent from their ability to localise to the plasma membrane in 

S2R+ cells and muscle tissues, because other plasma membrane bound markers such as 

mCD8-RFP do not exhibit it, indicates that something else, possibly a functional 

partner, must be stabilizing the peptides to that position. 
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Chapter IV - The pBac {WH}F02056 
insertion, and its use to generate null 

mutants for pncr003;2L 

 

1- Introduction: 
 

To ascertain the pncr003;2L gene function in muscles and carry out a phenotypical 

characterisation of this gene, I needed to generate null mutants. Although, as a first 

approach, one could have considered using RNA interference [45], which is arguably 

easier to implement than conventional mutagenesis  protocols. It is important to keep in 

mind that RNAi is considered a “knockdown” rather than “knockout” approach [46]. 

Therefore, residual activity of the targeted gene may prevail, and this may be sufficient 

to conceal its mutant phenotype. Moreover, RNAi can sometimes produce artifactual 

phenotypes unrelated to the targeted gene itself [47,48]. Consequently, any phenotype, 

or lack of it, obtained by inducing RNA interference against pncr003;2L, would 

ultimately need to be validated against that of a null mutant, or at least against some sort 

of sophisticated control, like a genetic rescue refractory to RNAi.  

To generate a null mutant for pncr003;2L, it is possible to take advantage of a particular 

Drosophila strain which carries a transposable element (pBac {WH}F02056) mapped to 

the 3’UTR of pncr003;2L (Figure 4.1, Annex 3).  Transposable elements are capable of 

mobilising within the genome, sometimes inserting themselves in regions that may 

disrupt the expression of their neighbouring genes. They exist in the endogenous 

genomic sequences of all species, and their relevance is such that it has been suggested 
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that they have played a role in the overall shaping of higher eukaryote genomes [49]. 

Their ability to transpose, or mobilise, has been widely studied in Drosophila 

melanogaster, ultimately leading to the development of genetically engineered 

transposons, used as highly effective mutagenic reagents [50,51,52]. Such transposons 

have been designed to lack the sequence coding for the Transposase enzyme, which 

catalyses their mobilisation, and are therefore stable in the genome, unless the 

Transposase enzyme also becomes available. The extensive usage of transgenic 

transposons has led to the creation of several randomly generated libraries of strains 

carrying single transposon insertions, each affecting a specific gene or genomic region 

[53]. Depending on where these transposons are inserted, around or within their target 

genes (intron, UTRs, regulatory region, or ORF), they can have a range of effects on the 

expression of the gene, ranging from no effect at all (usually associated with intronic or 

UTR insertions) to total disruption, which would give rise to a null allele for that gene. 

The most severe effects are usually associated with insertions in the ORF, or regulatory 

regions of the gene.   

The pBac{WH}F02056 insertion, comes from the Exelixis collection [54].  The 

transposons used to generate this particular collection were engineered to carry the FLP 

recombination target (FRT) sequence [55], which allows them to be used to generate 

custom genomic deficiencies [56]. Like most other transposons used to generate these 

libraries, they also carry an insertion marker, namely a constitutively expressed version 

of the white gene coding for the protein responsible for the red pigment of the eye.  

In the first part of this chapter, I address the effects of the pBac{WH}F02056 insertion 

itself on pncr003;2L. I show that this insertion, which is homozygous viable, and which 

is located the 3’UTR of this gene, has an effect on the levels of pncr003;2L transcript 

detected in adult flies, hence representing a hypomorphic allele for this gene. I describe 

an interesting phenotype detected in this strain, which manifests in the adult indirect 

flight muscles (IFMs), a tissue where pncr003;2L is expressed  (Chapter III). The 

pBac{WH}F02056 IFMs have myofibrils with shorter sarcomeres. Interestingly, this 

phenotype appears to be additive to that generated by a happloinsufficiency of the 

Myosin heavy chain (Mhc) gene, which also leads to short sarcomeres. Although this 

initial observation seems to suggest that a promising genetic interaction exists between 

pncr003;2L and Mhc, the phenotypical analysis of different combinations of 

pncr003;2L and Mhc genetic conditions, led me to propose that this phenotype is due to 
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an associated mutation carried in the second chromosome of the pBac{WH}F02056 

strain, probably affecting the Mhc locus itself, rather than to the effect of the insertion 

on pncr003;2L.  This hypothesis was confirmed by mapping the allele responsible for 

the short sarcomere phenotype to the Mhc locus, using a combination of genetic and 

molecular methods. 

In the second part of this chapter, I describe two mutagenesis approaches, which make 

use both of the pBac{WH}F02056. The first approach, follows an FRT recombination 

protocol as described by Parks et al. [56], slightly  modified in order to facilitate the 

screening process for the flies carrying the putative deficiencies,  to generate a custom 

deficiency covering pncr003;2L and two other genes. The second approach consists of a 

γ-ray mutagenesis protocol, in which I screened for γ-ray induced DNA lesions 

interfering with the expression of the white gene carried by the pBac{WH}F02056 

insertion, and therefore affecting the genomic locus of pncr003;2L. These methods led 

to the generation of two small genomic deficiencies (Df(2L)12, and Df γ-ray 6), which, 

as trans-heterozygous, constitute a null condition of pncr003;2L (Df pncr003;2L). 

These pncr003;2L null flies are homozygous viable as adults, and are able to move and 

fly normally, and consistent with this, their IFM myofibrils have sarcomeres with a 

normal appearance. Although initially disappointing, this lack of a morphological 

phenotype is consistent with the assumption that the pncr003;2L peptides may play a 

physiological, rather than structural or morphological role.  

 

2- Results: 
 

2.1- The pBac {WH} F02025 line is hypomorphic for pncr003;2L and has a specific 

muscle phenotype.   

As already discussed, the effect of a transposable element insertion on the function of its  

“host” gene can vary from none to total disruption. It was therefore important to 

determine whether the pBac{WH}F02056  insertion (from now on referred to simply as 

F02056)  had an effect on the expression of the pncr003;2L transcripts.  For this, I 

carried out a semi-quantitative RT-PCR on whole fly RNA extracts, using PCR primers 

that amplify fragments corresponding to either of the two peptide coding exons 2 and 3. 

The bands corresponding to both exons are visibly weaker for the F02056 homozygous 
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flies, than for the wild-type (wt) controls (Figure 4.2C), indicating that the F02056 

insertion does affect the expression of pncr003;2L, leading  to a reduction  of the 

expression level of its transcripts, and thus it behaves like a hypomorphic allele of this 

gene.  

To look at the effects of this insertion on the motility of flies, I used a simple test to 

assess their flight capabilities consisting essentially of releasing individual flies on a flat 

surface, using a suction tube, and assessing whether they can fly away (see materials 

and methods, section 2.14) . This assay revealed that the flies homozygous for F02056 

seem to have a subtle flight defect, since almost a third of the transposon-carrying flies 

tested were unable to fly, in contrast with wild type flies, which were all flight able 

(Table 4.1). These results led me to focus on the morphology of IFMs, which are the 

main muscles responsible for flight in Dipterans, and importantly, where pncr003;2L is 

expressed (Chapter III, Figure 3.3).  Confocal microscopy on thoracic hemi-segments 

stained with phalloidin, shows visible defects in the organisation of the myofibrils in 

flies homozygous for the F02056 insertion (Figure 4.2A and B). The F02056 myofibrils 

have a slightly “wavy” appearance, compared to the very straight wild-type myofibrils, 

and often present some extent of splitting. The sarcomeres within the myofibrils also 

seem abnormally shorter in F02056 homozygous flies, displaying a square-like shape, 

as opposed to the rectangular shape observed in wild-type myofibrils. A quantification 

of the length of their sarcomeres indicates that F02056 homozygous flies have 

sarcomeres measuring 2.8µm in average, which is significantly shorter than wild-type 

sarcomeres, where the average length is 3.4µm (Figure 4.2A, B and D).  

2.2- The phenotype associated with the pBac {WH} F02025 line is enhanced by a 

Myosin heavy chain haploinsufficiency. 

If the observed phenotypes are indeed caused by the hypomorphic condition of 

pncr002;2L, one would expect that such phenotypes would become more pronounced if 

the levels of pncr003;2L were diminished further, by placing the chromosome carrying 

the F02056 insertion over a null allele, or a chromosome carrying a deficiency for that 

same chromosomal region. This genetic complementation test was carried out using the 

deficiencies Excel 8036 (Df 8036), and ED 1153 (Df ED 1153) (Figure 4.3A). Although 

both deficiencies entirely cover the pncr003;2L locus they both have a completely 

opposite effect over the F02056 insertion: The myofibrils from F02056 / Df 8036 flies 

have a wild-type-like appearance and normal sarcomeres lengths (Figure 4.3 B and E, 
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compare to figure 4.2A and B), whereas the myofibrils from F02056 / Df ED1153 flies 

seem to have an enhanced disrupted phenotype, displaying in particular much shorter 

sarcomeres than the F02056 homozygous flies; with the F02056 / Df ED1153 

sarcomeres measuring an average of 2µm   (Figure 4.3C and E). An important 

difference between these deficiencies is that Df ED1153 covers the Myosin heavy chain 

(Mhc) locus, whereas Df 8036 does not (Figure 4.3A). Mhc is one of the main 

components of the thick filaments within the myofibrils, and therefore a major 

component of the muscle contraction machinery, so much so, that Mhc null  alleles have 

a dominant flightless phenotype [57] (Table 4.1, Figure 4.15D). Consistent with this, 

heterozygous flies for Df Ed1153, which essentially represents a null allele for Mhc, are 

flightless, and interestingly, have a myofibril phenotype not too dissimilar from that of 

homozygous flies for F02056, with sarcomeres significantly shorter than wild type; 

measuring in average 3µm (Figure 4.3D and E). Two important conclusions from these 

genetic experiments are: a) that because the F02056 associated phenotype is completely 

corrected over a null allele for pncr003;2L (represented by the Df 8036), the F02056 

homozygous phenotype cannot be due to a hypomorphic condition of pncr003;2L; and 

b) that the enhancement of the F02056 associated phenotype seems to require a 

haploinsufficient condition for Mhc. Furthermore, the independent phenotypes of either 

Mhc heterozygous null, and homozygous F02056 are similar, both displaying shorter 

sarcomeres, and appear to be additive. Similar results indicating an F02056 dependent 

enhancement of the Mhc phenotype could be observed when examining the flight 

capabilities of the flies as described above. Flies carrying a Mhc null chromosome are 

flightless, but can perform very small jumps in their attempts to take-off. When such 

Mhc null chromosomes are trans-heterozygous over the F02056 insertion, the flies are 

no longer able to perform these small jumps, and are left only with the ability to walk 

(Table 4.1). 

  



70 
 

 

Figure 4.1 

 

Figure 4.1: Diagram representing the genomic landscape and genetic deletions 

surrounding pncr003;2L, and the structure of the pBac{WH}cF02056 insertion.  

(A) Diagram representing the genomic locus of pncr003;2L in chromosomal arm 2L, as 

depicted in the FlyBase genome browser. Genes are indicated by blue arrows. The 

pncr003;2L gene is highlighted in pink. Red lines represent the span of the different 

genomic deletions, and blue triangles the transposable element insertions, used in this 

study. (B) Schematic representation of the RE28911 cDNA, showing the position of 

ORFs A and B, and the approximate insertion site of the pBac{WH}F02056 element in 

the 3’UTR of pncr003;2L. (C) Diagram representing the different genetic elements 

within the pBac{WH}F02056 transposon is also represented, including the mini-white 

gene (white marker) and the FRT sequence. 
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Table 4.1 

 

Table 4.1: Initial characterisation of the motility of different genetic conditions 

affecting pncr003;2L. Initial characterisation of the motility of different genetic 

conditions affecting pncr003;2L, performed by a simple assay in which the flies of the 

indicated genotypes were released on a flat surface, and their motility scored according 

to three indicated categories. Flies that are haploinsufficient for Mhc (w;Df ED1153 / + 

and  w;Df 7067 / +) are flightless, but able to perform small jumps in most cases, 

whereas flies that are haploinsufficient for pncr003;2L (w;DfExel 8036 / +) can fly 

normally. Over the pBac{WH}F02056 insertion, the flightless phenotype of Mhc 

haploinsufficient flies is enhanced, as they all lose the ability to perform small jumps, 

but the pncr003;2L haploinsufficient flies can still fly normally. pBac{WH}F02056 

homozygous flies show an intermediate flightless phenotype. 

  

Genotype  n  percentage of flies able to :  

      Walk only   Jump  Fly  

w;Df ED1153 / +  35 14 83 0 

w;Df 7067 / +  19 21 79 0 

w;Df 8036 / +  20 0 0 100 

w;Df ED1153 / pBac{WH}F02056 30 100 0 0 

w;Df 7067 / pBac{WH}F02056  30 100 0 0 

w;Df 8036 /pBac{WH}F02056 30 0 0 100 

Or-R  30 0 0 100 

w;pBac{WH}F02056 30 20 7 73 
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Figure 4.2: The pBac{WH}F02056 insertion gives rise to a hypomorphic condition 

for pncr003;2L, and to a short sarcomere phenotype. 

 (A-B) Confocal microscopy images of hemithoraces stained with phalloidin-rhodamine 

(red), showing the myofibrils of longitudinal indirect flight muscles of (A) Or-R, wild-

type flies and (B) homozygous flies for the pBac{F02056} insertion. Nuclei are stained 

with DAPI (blue). The insets show a slightly magnified section of the images, 

representative sarcomeres are framed to highlight the differences in sarcomere shape 

and length between these genotypes. (C) Semi-quantitative RT-PCR on mRNA extracts 

of whole flies, using primers specific to either the exon 2, or exon 3 of pnr003;2L, 

showing the visible reduction in pncr003;2L expression in flies homozygous for the 

pBac{F02056} insertion. The primers to amplify the exon 2 and 3 fragments are 

represented in the diagram below the gel (purple arrows). (D) Quantification of the 

differences in sarcomere length between these genotypes, showing a significant 

difference between Or-R pBac{F02056} insertion, as indicated by a one-tailed unpaired 

t-test statistical analysis (t=10.57, p<0.0001) . n=200 sarcomeres, from 4 different flies 

per genotype. 
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Figure 4.2 
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Figure 4.3: The short sarcomere phenotype associated with the F02056 insertion 

seems to be enhanced by a Mhc haploinsufficiency. (A) Diagram representing the 

genomic locus of pncr003;2L in chromosomal arm 2L, annotated as in Figure 4.1 A.  

(B-D) Confocal microscopy images of hemithoraces stained with phalloidin-rhodamine 

(red), showing the myofibrils of longitudinal indirect flight muscles of (B) 

Df8036/F02056  flies, with a wild type appearance (C) ED1153 / F02056  flies, with an 

enhanced short sarcomere phenotype and (D) ED1153 / + flies with a similar short 

sarcomere phenotype as that of homozygous flies for the F02056 insertion. 

Representative sarcomeres are framed to highlight the differences in sarcomere shape 

and length between these genotypes. (E) Quantification of the differences in sarcomere 

length between these genotypes, showing a significant difference, as indicated by a one-

tailed unpaired t-test statistical analysis, between Or-R and homozygous flies for the 

F02056 insertion (t=10.57, p<0.0001), between homozygous flies for the F02056 

insertion and ED1153 / F02056 flies (t=5.97, p<0.0001), and between Or-R and 

ED1153 / + flies (t=4.72, p=0.0005). n=200 sarcomeres, from 4 different flies per 

genotype. Scale bar=10µm. 
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Figure 4.3 

  



76 
 

 

In order to confirm that Mhc is in fact the gene causing the phenotype, and the 

phenotypic enhancement observed with the deficiency Df ED1153, I tested whether 

these results could be replicated using a Mhc null allele (MhcK10423) instead of the 

deficiency Df ED1153. When heterozygous, the F02056 condition does not show any 

abnormalities in sarcomere shape, or size (Figure 4.4A), indicating that the phenotype is 

recessive, which agrees with the lack of phenotype observed with the Df 8036 over the 

F02056 chromosome. Like heterozygous flies for Df ED1153, MhcK10423 heterozygous 

flies also display the short sarcomere phenotype (Figure 4.4D and E), which is also 

enhanced over the F02056 insertion (Figure 4.4C and E), therefore confirming that both 

of these effects are linked to Mhc itself.  

2.3- Is there a strong genetic interaction between pncr003;2L and Mhc, or are these 

phenotypes produced by an associated Mhc allele? 

In genetic terms, there is a clear lack of complementation between the chromosome 

carrying the F02056 insertion and Mhc. If one were mapping the F02056 flightless / 

short-sarcomere allele, without knowing which gene was affected by the insertion, these 

results would strongly suggest that Mhc itself could be the affected gene. However we 

know that the insertion occurred in pncr003;2L (Figure 4.10C provides proof of the 

accurate mapping of the insertion site), which is another muscle-specific gene, so it 

could be possible that these effects arise, instead, from a strong genetic interaction 

between the two genes. A genetic interaction of this kind is particularly plausible 

because a similar genetic interaction has already been described in the past between a 

dominant Mhc null allele and another muscle specific gene. In that case, certain Mhc 

alleles were found to suppress the phenotype  of the hdp2 allele, which has been mapped 

to the troponin I gene [58,59], coding for an essential component of the tropo-myosin 

complex, which responds to the calcium concentration in the cytoplasm to allow or 

inhibit the actin-myosin interaction leading to muscle contraction. A particularly 

interesting element of that genetic interaction, relevant to the phenomenology so far 

described in this manuscript, is that the hdp2 allele is responsible for what is described 

as a “hypercontraction” phenotype, resulting in IFMs myofibrils with short sarcomeres 

[59,60]. Furthermore, because of the role of Troponin I, that phenotype is believed to 

arise from a misregulated response to calcium concentrations in the muscle [59]. What 

is interesting is that the shorter sarcomere phenotype associated with the F02056 
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insertion fits with this hypercontraction description, while the putative physiological 

function of pncr003;2L in the dyads, could also be linked to this phenotype. 

Such a genetic interaction between Mhc and pncr003;2L, however, attractive as it 

seems, is not entirely favoured by the results described thus far in this work. Up to now, 

it has been shown that a lower dosage of pncr003;2L is not the cause of the F02056 

associated phenotype, as the deficiency  Df8036 complements the F02056 insertion for 

the phenotype in question (Figure 4.3B). There seems to be a specific requirement of 

the F02056 chromosome for the manifestation of the short sarcomere phenotype. This 

could be explained by the F02056 insertion causing some kind of missense mutation 

leading to an aberrant behaviour of the peptides. However, this would only occur if the 

amino acid sequence of either of the peptides was compromised, and this is not the case, 

because the insertion occurred in the 3’ UTR of the gene, and both ORF sequences are 

intact in the F02056 line (see Annex 3 for sequences). The enhancement of the short 

sarcomere phenotype, observed when both Mhc and, seemingly, pncr003;2L are 

affected is also independent of the pncr003;2L dosage, because the F02056 insertion in 

trans over the Mhc allele (+, F02056, / Mhc, +) shows the enhancement (Figure 4.4C), 

but not the deficiency DfED1153 as heterozygous (Figure 4.3D), even though it 

completely removes both, the Mhc and  pncr003;2L loci, thereby resulting in 

comparable haplo-dosages for both genes (F02056,Mhc / +,+). 

The most straight forward, explanation for a complementation of the phenotype between 

the F02056 insertion and the pncr003;2L locus (as in Df 8036/ F02056), but lack of 

complementation between the F02056 insertion and  the Mhc locus (as in MhcK1042/ 

F02056), would be that the F02056 chromosome has a defect in the Mhc gene itself, 

probably caused by a background mutation in that particular pBac line, which is 

responsible for the short sarcomere phenotype, and which is independent of 

pncr003;2L. 
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Figure 4.4: The short sarcomere phenotype enhancement is caused by a Mhc 

haploinsufficiency. (A) Diagram representing the genomic locus of pncr003;2L in 

chromosomal arm 2L, annotated as in Figure 4.1 A, and representing the putative 

MhcF02056 allele.  (B-D) Confocal microscopy images of hemithoraces stained with 

phalloidin-rhodamine (red), showing the myofibrils of longitudinal indirect flight 

muscles of (B) + / F02056  flies, with a wild type appearance (C) F02056 / Mhc K10423 

flies, with an enhanced short sarcomere phenotype and (D) Mhc K10423 / +  flies with a 

similar short sarcomere phenotype as that of homozygous flies for the F02056 insertion. 

Representative sarcomeres are framed to highlight the differences in sarcomere shape 

and length between these genotypes. (E) Quantification of the differences in sarcomere 

length between these genotypes, showing a significant difference, as indicated by a one-

tailed unpaired t-test statistical analysis, between the following genotypes: Or-R and 

ED1153 / F02056 flies (t=19.59, p<0.0001), Or-R and ED1153 / + flies (t=4.72, 

p=0.0005), ED1153 / F02056 and ED1153 / + flies (t=9.55, p<0.0001), F02056 / + and 

Mhc K10423/ F02056 flies (t=18.02, p<0.0001), F02056 / + and Mhc K10423 / + flies 

(t=11.97, p=0.0005), Mhc K10423/ F02056 and Mhc K10423 / + flies (t=12.59, p<0.0001).  

n=200 sarcomeres, from 4 different flies per genotype. Scale bar (B-D)=10µm. 
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2.4- A pBac transposase-mediated reversion of F02056 restores pncr003;2L 

expression but still presents the short sarcomere phenotype. 

To test whether the short sarcomere is independent of the effect of F02056 on 

pncr003;2L, I induced the excision of the the pBac element, in order to revert the 

pncr003;2L gene to its original wild-type condition. Such a reversion, in this case, is 

expected to completely restore pncr003;2L, because F02056 is a pBac element, known 

for its property to produce precise excisions in which case the sequence of their host 

gene is perfectly restored upon transposition of the pBac element [54].  

An F02056 revertant was obtained using a standard reversion protocol (see Annex: 2). 

Briefly, the expression of the pBac Transposase was brought into into the F02056 line 

by means of a series of genetic crosses, and the F1 progeny was scored for the loss of 

the white marker carried by the F02056 insertion. Although in this revertant, the 

sequence of pncr003;2L and  its expression levels were restored as expected (Annex 3, 

Figure 4.5D), homozygous individuals still present the short sarcomere phenotype, and 

over the Df ED1153 they still show a strong enhancement of the phenotype (Figure 

4.5A,B and C). These results are in agreement with the existence of a background 

mutation in the F02056 chromosome, independent of the F02056 insertion itself, and 

responsible for the short sarcomere phenotype.  

  



81 
 

Figure 4.5: The short sarcomere phenotype is independent of the F02056 insertion. 

(A) schematic representation of the RE28911 cDNA, showing the position of ORFs A 

and B, and the excision event of the pBac{WH}F02056 element from the 3’UTR of 

pncr003;2L .  (B-C) Confocal microscopy images of hemithoraces stained with 

phalloidin-rhodamine (red), showing the myofibrils of longitudinal indirect flight 

muscles of (B) homozygous flies of the F02056 RV2 revertant, with a similar short 

sarcomere phenotype as that of homozygous flies for the F02056 insertion (C) F02056 

RV2/ ED1153 flies, with an enhanced short sarcomere phenotype. Representative 

sarcomeres are framed to highlight the differences in sarcomere shape and length 

between these genotypes. (D) Quantification of the differences in sarcomere length 

between these genotypes, showing a significant difference, as indicated by a one-tailed 

unpaired t-test statistical analysis, between homozygous flies for the F02056 RV2 

revertant and ED1153 / F02056 RV2 flies (t=5.53, p<0.0001).  n=200 sarcomeres, from 

4 different flies per genotype. (E) Semi-quantitative RT-PCR on mRNA extracts of 

whole flies, using primers specific to either the exon 2 or exon 3  of pnr003;2L (using 

the primers represented in Figure 4.2C), showing the comparable expression of 

pncr003;2L between the F02056 RV2 homozygous flies and wild type Or-R flies, and 

the visible reduction in pncr003;2L expression in flies homozygous for the pBac 

F02056 insertion. Scale bar: (B-C): 10µm.  
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2.5- Mapping of the putative Mhc associated allele. 
A way to test whether the background mutation maps, as hypothesised above, to the 

Mhc gene —leading to an allele which I will refer to as MhcF02056 — is  to map the allele 

to the Mhc locus by homologous recombination between the F02056 insertion and a 

nearby genetic marker (Figure 4.6A). Such a genetic marker should come from a gene 

with a visible and easily identifiable mutant phenotype, preferably homozygous viable 

(in order to be able test for the homozygous F02056 phenotype), with available alleles 

on the public stock centres, and located as near as possible to the Mhc locus.  chiffon 

(chif), a gene coding for a zinc-finger transcription factor, involved in the development 

of the embryonic chorion, and cuticular structures in general [61], was identified as a 

good genetic marker for this approach, because it fulfilled all of these criteria. 

Homozygous mutants for the chif1 allele have a clear “rough” eye, and scutellar bristle 

phenotypes, and its locus is some 400 Kb upstream of Mhc (Figure 4.6B). Because 

pncr00 3;2L is located 50 Kb downstream of Mhc, a chromosomal recombination 

between the chif1 and F02056 loci, would have approximately  1 in 9 chance to occur 

between the Mhc and pncr003;2L loci ( 450/50 = 9), therefore, of all chif  F02056 

recombinant chromosomes, about 1 / 9  should have lost the MhcF02056 allele  (Figure 

4.6C). A standard homologous recombination protocol in which the F1 progeny of the 

cross between w; chif1 cn1 sca1 bw1 sp1/ F02056 females and w; chif1 cn1 sca1 bw1 sp1 

males were screened for the chif rough eye, and thin bristle phenotypes, the retention of 

the white marker from the F02056 insertion, and the loss of the bw and sp phenotypes. 

This protocol yielded 4 chif1 F02056 recombinants out of 2,000 flies screened. Three 

out of the four recombinant lines recovered still presented the short sarcomere 

phenotype as homozygous for the  chif1 F02056 recombinant chromosome (Figure 

4.7A,B,C and G), but one of them (recombinant chif1 F02056 13) had  wild-type 

looking myofibrils, with sarcomere lengths similar to wild type (Figure 4.7D and G). 

Furthermore, over Df ED1153, the chif1 F02056 13 chromosome showed no 

enhancement of the short sarcomere phenotype (Figure 4.7F and H). Although the 

recovery of a recombinant which lacks the short sarcomere phenotype, at a rate which is 

not too dissimilar from that expected (1/4 compared to 1/9), is in agreement with the 

existence of the Mhc F02056 allele, this result only proves that the chromosomal locus of 

the background mutation is, as expected, downstream of chif, but its specific locus still 

needs to be determined. 
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Figure 4.6: Diagram representing the homologous recombination protocol 

implemented to map the putative MhcF02056 allele. (A) Diagram representing the 

genomic locus of pncr003;2L in chromosomal arm 2L, annotated as in Figure 4.1 A, 

highlighting the lack of complementation between the  putative MhcF02056 allele and the 

MhcK10423 allele,  and between the  MhcF02056 allele and the Df ED1153 covering the 

Mhc locus. (B) Broader genomic diagram of the pncr003;2L genomic locus, showing 

the genomic distance between the Chiffon, Mhc, and pncr003;2L genes. (C) Diagram 

showing the possible outcomes of the homologous recombination between chiffon and 

the F02056 insertion. For the putative Mhc F02056 allele to be recombined out of the 

F02056 chromosome, the recombination chiasm, leading to the chif F02056 

recombinant needs to occur between the Mhc and the pncr003;2L loci. This region 

represents about one ninth of the total length between the chiffon and pncr003;2L genes.  
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Figure 4.7: One out of four chif F02056 recombinants has lost the putative 

MhcF02056 allele. (A-F) Confocal microscopy images of hemithoraces stained with 

phalloidin-rhodamine (red), showing the myofibrils of longitudinal indirect flight 

muscles of (A) chif  F02056 recombinant 18, (B) chif  F02056 recombinant 4, (C) chif  

F02056 recombinant 14 and (D) chif  F02056 recombinant 13.While recombinants 18, 4 

and 14 show a short sarcomere phenotype similarly to the original F02056 insertion 

line, the chif  F02056 recombinant 13line has sarcomeres with normal appearance, 

indicating that the recombination in this line must have occurred between the Mhc and 

pncr003;2L loci. In accordance with this, (E) chif F02056 recombinant 14 /Df ED1153 

shows an enhancement of the short sarcomere phenotype, but (F) F02056 recombinant 

13 /Df ED1153does not. (G) Quantification of the differences in sarcomere length 

between the different chif F02056 recombinants, showing a significant difference, as 

indicated by a one-tailed paired t-test statistical analysis, between homozygous flies for 

the chif  F02056 recombinant 13 and homozygous flies for the chif  F02056 

recombinant 18  (t=5.99, p<0.0001), 14(t=11.84, p<0.0001), and  4 (t=6.08, p<0.0001). 

(H) Quantification of the differences in sarcomere length between the F02056 

recombinant 13 /Df ED1153 flies and F02056 recombinant 14 /Df ED1153flies, 

showing a significant difference, as indicated by a one-tailed unpaired t-test statistical 

analysis (t=16, p<0.0001). n=200 sarcomeres, from 4 different flies per genotype. Scale 

bar: 10 µm 
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2.6- A small intronic deficiency affecting the alternative splicing of Mhc could be 
responsible for the MhcF02056 allele. 
In order to confirm that the affected gene by this background mutation is Mhc, I looked 

for possible mutations in the Mhc gene that could explain the observed phenotypes. 

Because the putative MhcF02056 allele affects IFMs, I sequenced the genomic fragments 

corresponding to the exons that constitute the IFM specific Mhc transcript [62]. These 

genomic elements were amplified by PCR, using genomic DNA from wild-type and 

F02056 homozygous flies, cloned and sequenced (Figure 4.8A). There are several 

differences between the annotated genome and these two fly lines leading to 

synonymous substitutions, and two mutations leading to aa substitutions, in exons 8 and 

10, were detected in both wild-type and F02056 strains; none of these differences could 

explain the short sarcomere phenotype (Figure 4.8B). The only seemingly relevant 

difference between the two strains was a 32 nt deletion in the intronic sequence 

immediately upstream of exon 7c.  

This same region corresponding to exon 7 was amplified and sequenced in each of the 

four chif F02056 recombinants. Interestingly, the chif1 F0205613  does not have the 32 

nt deletion, whereas the other three recombinants do, indicating that the recombination 

that led to the loss of the short sarcomere phenotype did indeed occur, as predicted, 

between the Mhc and pncr003;2L loci.  

Regarding the cause of the Mhc allele, the 32 nt deletion affecting the intronic sequence 

prior to the alternative exon 7c could be quite an interesting candidate since introns can 

contain regulatory elements which regulate the splicing of their neighbouring exons 

[63,64]. This intronic deletion is located very near to the exon sequence (only 13 nt 

upstream of it) and has sequence stretches that appear to be enriched in pyrmidine bases 

(Figure 4.9A). This is interesting because pyrimidine rich motifs, known as 

polypyrimidine tracts, are located at a similar distance from the exon, and have been 

shown to play an important role in the determination of both, constitutive and 

alternative splicing events [63,65]. Alternative splicing is particularly important for the 

Drosophila Mhc gene.  

In vertebrates, there are at least 13 paralogues of the Mhc gene (known, in vertebrates, 

as MYH), and different tissues have been shown to express different members of the 
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MYH gene family: there are at least 2 MYH genes specific to non-muscle cells, 3 MYH 

genes specific to smooth muscles, and 8 MYH genes to specific striated muscles [66]. 

The Mhc/MYH protein has two main functional domains: a globular head domain, 

which has ATPase and actin-binding activities, and performs the motor function of the 

protein, and a rod domain, which is necessary for the formation of the myosin filaments. 

Some of the different MYH paralogues have been shown to have different ATPase rates, 

which could contribute to the different contractility speeds observed in different 

muscles  [67], therefore, the muscle specific requirement of these isoforms is important 

for the physiological function of the muscle.  

In Drosophila, there is a single Mhc gene, but it produces several different isoforms by 

alternative splicing (Figure 4.8A). The Mhc locus consists of 13 constitutive exons and 

5 groups of alternative exons, which are each composed of two to four related exons 

that are mutually exclusive. As in vertebrates, different Mhc isoforms are expressed in 

different kinds of muscles [62], and importantly, there is also evidence of this muscle 

specificity being important for muscle function. Indeed, an intronic mutation that leads 

to a defect in alternative splicing has  already been described to generate a homozygous 

viable allele of Mhc, with the affected flies displaying defects specifically in the IFMs 

[68]. That particular mutation affects the splicing of exon 9a, which, interestingly, like 

exon 7c, encodes for a portion of the motor globular head domain of the Mhc protein. 

Given the relevance of the muscle specific expression displayed by the different MYH 

paralogues in vertebrates, or by different Mhc isoforms in Drosophila, one could reason 

that this deficiency could give rise to the sarcomere phenotypes if it affects the splicing 

of the IFM specific exon 7c. To test this, I performed a semi-quantitative RT-PCR, from 

whole flies RNA, using primers designed to amplify the fragments corresponding to 

exon 7c -11e (Figure 4.9B), both preferentially included in the IFM specific Mhc 

isoform, in order to compare the presence of those particular exons between wild-type 

and F02056 homozygous flies. Surprisingly, the band corresponding to the 7c -11e 

fragment appears visibly stronger in the F02056 strain, while the fragments 

corresponding to constitutive Mhc exons, and to the ribosomal protein Rp-49, have 

comparable intensities in both strains (Figure 4.9C). This result is in line with a 

regulatory role of the missing intronic sequence on the alternative splicing of exon 7c, 

and with previous models suggesting that tissue specific binding of the Polypyrimidine 

tract binding protein (PTB) to the intronic region upstream of an alternative exon can 
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results in its exclusion [63]. As they stand, these results point to this 32 nt deletion, 

which affects the splicing of exon 7c as a possible cause for the myofibril phenotype 

observed in the F02056 line. These results, however, are only preliminary, because to 

confirm all the implications stated here (such as the binding of PTB, or other factors to 

the intronic DNA sequence deleted in the F02056 line) and to determine the specific 

effect of this misregulation would require extensive work, which, although very 

interesting, is beyond the scope of this thesis.  
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Figure 4.8: Molecular mapping of the MhcF02056 allele by sequencing the IFM 

specific Mhc exons. (A) Diagram representing the different alternative mRNA isoforms 

for the Drosophila Mhc gene. Constitutive exons are numbered in red and alternative 

exons in black. The 12 genomic fragments indicated in blue, corresponing to the exons 

and surrounding intronic sequences for the IFM specific Mhc-RK transcript [62], were  

amplified by PCR and sequenced. (B) Summary of the mutations found, with respect to 

the reference genome, by sequencing these genomic fragments. Mutations found in both 

wild-type and F02056 strains are coloured in green, mutations found in only one of the 

two strains, but unlikely to give rise to the mutant phenotype are coloured in blue, the 

unique mutation that may give rise to the phenotype is coloured in red.   
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Figure 4.9 

 

Figure 4.9: A specific small intronic sequence deletion in Mhc may be the cause of 

the MhcF02056 allele. (A) DNA sequence alignment of the intronic sequence prior to 

exon 7c, from Or-R, the original F02056 insertion line, and the different chif F02056 

recombinants. The small deficiency is present in the fly lines showing the short 

sarcomere phenotype. (B) Diagram representing the 12 genomic fragments, 

corresponding to the IFM specific Mhc-RK transcript, according to the data of Hasting 

et al. [62],which were  amplified by PCR and sequenced. Red arrows represent the 

primers used for the exon7c specific PCR, and for the Mhc constitutive PCR. (C) Semi-

quantitative RT-PCR on RNA extracts from whole flies, using primers to amplify 

specifically a fragment including exon 7c, or a fragment from constitutive exons 16 and 

17. 
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2.7- Using the F02056 insertion to generate a small, specific, FRT recombination-

mediated deficiency. 

Since the short sarcomere phenotype appears to be independent of pncr003;2L,  the 

phenotype and function of this smORF gene still remains undetermined.  It is possible 

that the reduced expression of pncr003;2L is still able to provide enough function to 

render its phenotype undetectable in the F02056 line. Therefore it was necessary to 

generate a null mutant for pncr003;2L.  Two mutagenesis strategies can be 

implemented, which take advantage of the F02056 insertion to specifically remove the 

pncr003;2L locus: The first one relies on the presence of the FLP recombination target 

(FRT) sequences present in the Exelixis transposons, to produce an FRT mediated 

recombination between two transposon-carrying homologous chromosomes, leading to 

the deletion of the genomic sequence between the two insertions in the recombinant 

chromosome [56] (Figure 4.10, Annex 3). For this, it was necessary to identify an 

Exelixis transposon, inserted as near as possible to the pncr003;2L locus, in an adequate 

orientation to allow for the correct recombination of the FRT sites [56]. This is the case 

for the pBac{RB}e01605 transposon selected for this protocol, inserted in the CG31739 

gene. The recombination between the pBac{RB}e01605 and pBac{WH}F02056  

transposons would generate a small deletion of 10 Kb, covering pncr003;2L and three 

more genes: CG31739, CG13282 and CG13283 (Figure 3.10A). The pBac{RB}e01605 

insertion is homozygous lethal, indicating that the CG31739 gene itself, coding for the 

Aspartyl/Asparaginyl-tRNA synthetase, has an essential function in the fly. The 

CG13282 and CG13283genes encode for metabolic genes (coding for a lipase and a 

metalopeptidase, respectively), which have very low levels of expression according to 

the FlyBase expression atlas. Because the resulting recombinant transposon, in this 

case, would retain the white marker —making it virtually indistinguishable from the 

parental chromosomes— the standard strategy to screen for recombinants would be to 

generate individual lines from several F1 flies in order to screen them by PCR [56].  To 

facilitate this screening process,  the genetic markers black (b), cinnabar (cn)  and 

brown (bw) were recombined into the parental pBac chromosomes generating the 

following lines: w; b pBac{WH}F02056 cn  and w;pBc {RB}e01605 bw. This way, the 

F1 could be screened over a b cn bw chromosome, and the e01605-F02066 cn 

recombinant chromosomes could be easily identified by the loss of the b (black) and bw 

(brown) recessive markers, which produce a distinctive darker cuticle and pale pink 

eyes, respectively  (Figure 4.10B, Annex 3). This protocol led to the recovery of a 
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dozen putative recombinants. Four of these lines were tested by PCR and successfully 

confirmed to be deficiency-carrying recombinants (Figure 4.10C). As expected, these 

specific deficiencies are homozygous lethal, dying as L1 larvae, which is also the 

lethality phase of the pBac{RB}e01605 homozygous animals. The CG31739 gene would 

therefore have to eventually be restored, through a genomic rescue construct, in order to 

have a null homozygous condition for pncr003;2L using this small specific deletion. 
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Figure 4.10: Generation of an FRT-mediated specific deficiency removing the 

pncr003;2L locus. (A) Diagram representing the genomic locus of pncr003;2L on 

chromosomal arm 2L, showing the position of the two transposons, pBac{RB}e01605 

and pBac{WH}F02056, used for the generation of an FRT-mediated specific genomic 

deletion. The region highlighted in green represents the specific genomic region 

removed by the deletion. (B) Diagram depicting the FRT-mediated recombination 

protocol leading to the generation of a specific deletion. The structures of both pBac 

elements are represented, showing that the FRT sites have the same orientation, and are 

therefore compatible with this recombination protocol. The region highlighted in green 

represents the specific genomic region removed by the deletion, and the chromosome 

highlighted in pink represents the recombinant chromosome carrying the deletion, and 

which has lost the b and bw genetic markers. The different genomic regions (1,2 and 3) 

amplified by PCR to confirm the deletions are indicated in red. Each of these regions 

were amplified by a combination of primers that anneal specifically to the transposable 

element sequence and to the genomic sequence flanking the insertion. (C) Recombinant 

chromosomes carrying the specific deletion yield only fragments 1 and 3 when their 

genomic DNA is used as template for PCR, in contrast with  the parental 

pBac{RB}e01605 line, which only amplifies fragment 1, and the parental 

pBac{WH}F02056 line, which only amplifies fragments 2 and 3. 
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2.8- Using the F02056 insertion to generate a directed γ-ray genomic lesion. 

The second mutagenesis strategy takes advantage of the white marker carried by the 

F02056 insertion. This method consisted of exposing young male flies, homozygous for 

the F02056 insertion, to a high dose of ionizing radiation (4,500r) from a γ-ray source. 

This dosage of radiation has been shown to be high enough to generate double stranded 

DNA breaks, which can lead to genomic rearrangements, including genomic 

deficiencies, whilst having a minimal effect on the viability and fertility of the irradiated 

flies [69]. The irradiated males were crossed to w;CyO/Gla Bc virgin females, and the 

F1 progeny was scored for the loss of the white marker, which indicates that such flies 

have inherited a genomic lesion in the pncr003;2L  locus (Figure 4.11).  Out of 30,000 

F1 progeny flies scored, 6 white eyed mutants (Df γ-ray 1 to 6) were recovered. Each of 

these mutants was mapped genetically, by crossing them to homozygous lethal alleles 

for several genes and deficiencies surrounding the pncr003;2L locus across a genomic 

area of some 600 kb (Figure 4.12A). This genetic mapping was complemented by a 

molecular confirmation of the deletion by PCR, using primers to amplify each of the 

boundaries of the F02056 insertion, and in some cases, other regions of the pncr003;2L, 

and neighbouring gene (Figure 4.12B, C and D). Two of these mutants, Dfs γ-ray 4 and 

5, are homozygous viable and complement all of the alleles and deficiencies in the 

region. For Df γ-ray 4, the PCR profile yielded both fragments, indicating that the lesion 

did not extend beyond the pBac element. For the Df γ-ray 5, only the 3’boundary of the 

transposon could be detected by PCR. However, it was possible to amplify a fragment 

within the 2nd Exon of pncr003;2L —using both genomic and cDNA templates—  

indicating that in this mutant the expression of pncr003;2L is not affected (Figure 

4.12C). Furthermore, it was also possible to amplify a fragment corresponding to a 

region within the 5th exon of pncr003;2L, upstream  of the F02056  insertion site, 

indicating that in the Df γ-ray5 line, the genomic damage did not extend much beyond 

the transposon in to the genomic region of pncr003;2L (Figure 4.12D). 

The other four mutants are homozygous lethal, and of these, Df γ-ray 1,2 and 3 fail to 

complement most of the genes or deficiencies in the region, indicating that these three 

mutants carry very large deficiencies, spanning larger regions than other already 

available  deletions in the area (including the specific deficiencies described above, and 

Df BSC325) (Figure 4.l2A). These three deficiencies also seem to cover the Mhc locus, 

and are therefore not very useful for the characterisation of a possible muscle 
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phenotype. The Df γ-ray 6 seems to complement the alleles upstream of pncr003;2L, 

including CG31739, and Mhc, but not the ones downstream, including ApepP, and to 

some extent the deficiency DfBSC325. Its PCR profile indicates that both boundaries of 

the F02056 insertion were lost (Figure 4.12B), altogether suggesting that this mutant 

carries a deficiency with a breakpoint between CG31739 and pncr003;2L. Most 

interestingly, it was not possible to amplify, by PCR, a fragment corresponding to the 

2nd exon of pncr003;2L, in flies carrying this new deletion Df γ-ray 6 over the 

deficiency Df ED1153, which completely covers the pncr003;2L locus (Figure 4.12C). 

This indicates that the Df γ-ray 6 also covers most, if not all of the pncr003;2L locus.  

The fact that this deletion is viable over Df ED1153, and over the CG31739 lethal allele, 

while covering most of pncr003;2L is extremely interesting, and even fortunate, 

because it should then also be viable over the specific deficiency described above, 

giving rise to a pncr003;2l null condition, which by-passes the need for a genomic 

rescue for the CG31739 gene discussed above. 

Crossing the deficiency Df γ-ray 6 over a specific deficiency (Df(12)) does indeed give 

rise to flies that are viable as adults, and which do not show any immediately visible 

defects. In these flies, it was not possible to amplify a genomic PCR fragment for 

pncr003;2L, nor CG13282, but it was possible to amplify a fragment corresponding to 

CG31739 (Figure 4.13B),  showing that one of the breakpoints of the Df γ-ray 6 

deletion has to be located between the two genes CG13282 and CG31739 (Figure 4. 

13A). Although the other breakpoint of the Df γ-ray 6 has not been molecularly 

mapped, the data from the genetic complementation experiments indicates that it should 

be located downstream of the ApepP gene and upstream of, or near to, the breakpoint of 

the deficiency Df ED1156 (See Figure 4.12A), hence, this deficiency completely covers 

the pncr003;2L locus.  When trans-heterozygous, the overlapping area between Df γ-ray 

6 and Df(12) produces  a synthetic deficiency, which will be referred to as Df 

pncr003;2L (Figure 4.13 A), and which represents a pncr003;2L null condition. In 

agreement with this, in situ hybridisation with a pncr003;2L specific probe shows no 

expression of pncr003;2L in Df pncr003;2L larvae (Figure 4.13 C-D) nor adults (Figure 

4.13 E-F). 
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Figure 4.11. 

 

 

Figure 4.11: Generation of a Gamma-ray induce a deletion targeting the 
pncr003;2L locus. Diagram representing the protocol followed to generate the gamma-
ray genomic lesions targeting the pncr003;2L locus. 
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Figure 4.12: genetic and molecular mapping of the Gamma-ray mutants targeting 

the pncr003;2L locus. (A) Diagram representing a 500Kb genomic region of 

chromosomal arm 2L,  surrounding  pncr003;2L,  showing the locus of the homozygous 

null alleles PBac{RB}CG42389 e02963, Mi{MIC}ApepPMI01970,  Mi{ET1} mdyMB08748, 

P{lacW}Mhck10423, and pBac{RB}CG31739 e01605, affecting the highlighted genes: 

CG42383,  ApepP, midway(mdy),Mhc, and Cg31739, respectively, and  the genomic 

deficiencies (red lines) used for the genetic complementation assay to genetically map 

the γ-ray mutants. Homozygous viable γ-ray mutant lines highlighted in green are 

homozygous viable, and in red are homozygous lethal. Solid and open circles represent 

complementation results with alleles and deficiencies, respectively. Green circles 

indicate complementation, and black circles lack of complementation. (B) PCR assay of 

the presence of the pBac{WH}F02056 transposon sequence using genomic DNA 

extracts of the indicated lines. The fragments amplified by the PCR reactions are 

indicated by the red lines, labelled as “a” and “b”, in the diagram. Each of these regions 

was amplified by a combination of primers which anneal specifically to the transposable 

element sequence and to the genomic sequence flanking the insertion. (C) PCR assay of 

the presence of the pncr003;2L sequence, using either genomic DNA extracts, or cDNA 

from RNA extracts, for each of the indicated genetic conditions.  (D) PCR assay to 

determine the extent of the γ-ray 5 genomic lesion, using genomic DNA extracts of the 

γ-ray 5 mutant line, or the F02056 insertion line. The “a” and “b” fragments are the 

same as those indicated in (B), and the Exon 5 region is indicated in the top diagram of 

this panel.  
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Figure 4.12 
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Figure 4.13 When trans-heterozygous, the deficiencies Df γ-ray 6 and Df 12, give 

rise to a homozygous viable null condition for pncr003;2L: (A) Diagram 

representing the molecular mapping of the γ-ray 6 breakpoint. The genomic regions 

amplified by the PCR reactions shown in (B) are indicated by open red squares (labelled 

1 to 3) above their respective genes. The regions removed by the deficiencies Df 

ED1153, the specific Df(12), and Df  γ-ray 6 are indicated. The grey area within Df γ-

ray 6 represents the possible region where the Df γ-ray 6 breakpoint could be located. 

The overlap between the regions removed by Df γ-ray 6 and Df(12) in flies trans-

heterozygous for these two deficiencies, represents the synthetic deficiency Df 

pncr003;2L, which completely removes pncr003;2L. (B) PCR assay to map the 

breakpoint of Df γ-ray 6, using genomic DNA from the indicated genotypes, and 

primers to amplify the three regions (1, 2 and 3) indicated in (A), showing that  Df  γ-

ray 6 removes pncr003;2L and the 5’region of CG13282, but does not remove the 3’ 

region of CG31739.and that over Df (12) it gives rise to a null condition for 

pncr003;2L. (C-F) in situ hybridisation experiments, using probes specific to the 

pncr003;2L transcript, performed in (C-D) L3 larvae and (E-F) adult abdomens. The 

strong expression of  pncr003;2L observed in (D) the somatic muscles (arrow heads) 

and heart (arrows) of wild-type larvae and  in (F) the wild-type adult heart (arrow 

heads),  is completely  lost in Df pncr003;2L tissues (C and E). Scale bars: 500µm. 
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Figure 4.13 
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These pncr003;2L null flies show no visible phenotype, and their IFM myofibrils have a 

wild-type appearance, with their sarcomeres measuring the average size of 3.4µm, 

showing that pncr003;2L is not responsible for any structural or morphological 

phenotype in these muscles (Figure 4.14 A and D). In order to assess their structure with 

a higher resolution, I used transmission electron micrographs to analyse the pncr003;2L 

myofibrils (Figure 4.14 E-H). No defects could be detected in neither transversal, nor 

longitudinal sections of the myofibrils. Importantly, the dyads, which are the particular 

structures where pncr003;2L peptides localise, also appeared to have a normal 

morphology and localisation.  

While these results could point to some sort of physiological role for pncr003;2L, they 

are also in accordance with the above statement that it is the MhcF02056
 allele, and not 

pncr003;2L, that is responsible for the short sarcomere phenotype. The deficiency Df 

(12) over a Mhc null allele does not show any enhancement of the short sarcomere 

phenotype, but the deficiency Df γ-ray 6 does (Figure 4.14 B, C and D), this is as 

expected since Df(12) comes from a recombination event, in which the MhcF02056 allele 

was lost, but Df γ-ray 6 still carries the same Mhc locus as the F02056 line.   

These pncr003;2L mutants do not appear to have a motility phenotype, in particular, 

their flight capabilities, which often correlate well with mutations affecting muscle 

function [70,71,72], seem to be normal in these mutants. This was confirmed using a 

method slightly more sophisticated than the test previously described, consisting of 

releasing the flies at the top of a large oil coated cylinder and recording at which height 

in the cylinder they landed [70] . Wild-type and Df pncr003;2L flies perform similarly 

in this test, with most flies getting stuck to the top two sections of the cylinder (Figure 

4.15 A and B). On the other hand flies homozygous for the F02056 insertion have a 

more homogenous distribution across the cylinder, with a higher number of flies falling 

at the very bottom of it (Figure 4.15 C), although these flies show a flight defect, this is 

not as severe as the “flightless” Mhc null condition, in which most flies fall at the 

bottom (Figure 4.15 D), and very few reach the top sections. These results are in 

agreement with the preliminary observations indicating that no motility issues exist in 

these pncr003;2L mutants, and confirm the slight flight defect observed for  the F02056 

line (Table 4.1). It is important to note that all of these results indicate that the MhcF02056 

allele is recessive, as opposed to a Mhc null allele, since no morphology or behavioural 

abnormalities associated with its homozygous condition were detected in the Df 
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pncr003;2L mutants, nor in F02056 heterozygous flies. This is important as any 

phenotype observed for the Df pncr003;2L condition in a more specialised muscle 

function study is likely to be associated with the pncr003;2L gene itself.  
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Figure 4.14: pncr003;2L null flies have no structural abnormalities in their muscle 

organisation. (A-C) Confocal microscopy images of hemithoraces stained with 

phalloidin-rhodamine (red), showing the myofibrils of longitudinal indirect flight 

muscles of (A) Df  γ-ray 6 / Df (12) flies (Df pncr003;2L mutants), with wild-type 

looking sarcomeres, (B) Df(12)/ Mhc K10423 flies, with a similar short sarcomere 

phenotype as that of haploinsifficient flies for Mhc  and homozygous flies for the 

F02056 insertion, and (C) Mhc K10423 / Df  γ-ray 6  flies, showing an enhancement of the 

short sarcomere phenotype. Scale bar:10 µm (D) Quantification of the differences in 

sarcomere length, showing a significant difference, as indicated by a one-tailed paired t-

test statistical analysis, between the Df(12)/ Mhc K10423 and Mhc K10423 / Df  γ-ray 6  

conditions (t=3.972, p<0.0032), and the Df  γ-ray 6 / Df (12) and Df (12) / Mhc K10423 

(t=5.128, p<0.0002). n=200 sarcomeres, from 4 different flies per genotype. (E-F) 

Transmission Electron Microscopy (TEM) micrographs of longitudinal sections of adult 

IFMs from (E) wild-type flies, and (F) Df pncr003:2L mutants, in both cases, regularly 

organised rows of sarcomeres, displaying similarly spaced Z and M bands, can be 

observed, as well as the dyads (arrows) and mitochondria (dark grey rounded structures) 

abutting the sarcomeres. These images reveal that no ultra structural defects exist in the 

sarcomeric structure and dyads (arrows) of Df pncr003:2L mutants. Scale bars: 1.5 µm. 

(G-H) TEM micrograph of transversal sections of indirect flight muscles in (G) wild-

type flies, and (H)  Df pncr003:2L mutants. In both cases the myofibrils appear as round 

structures showing a regular pattern of thin (actin) and thick (myosin) filaments, and 

with the dyads in close apposition to the sarcomeres (arrow), indicating that no 

structural abnormalities exist in the sarcomeres nor in the dyads of pncr003;2L muscles 

(arrow). Scale bars: 0.5 µm.  
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Figure 4.14 
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Figure 4.15 Quantitative flight assays indicate that pncr003;2L null flies can fly 

normally: (A-D) Horizontal bar charts representing the results of the flight assays (see 

methods, section 2.15) [70]. (A) Or-R flies, and (B) Df pncr003;2L flies perform 

equally well in this test, with most of the flies flying to the top of the cylinder. (C) 

F02056 homozygous flies have a more spread distribution across the cylinder, 

indicating a slight flight defect for these flies, compared to Or-R and Df pncr003;2L 

flies. (D) Flightless flies heterozygous for a Mhc null condition, fall in their great 

majority to the bottom of the cylinder. 
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Figure 4.15 
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2.9- Generation of pncr003;2L null backgrounds free of the MhcF02056 allele. 
Although the Df pncr003;2L flies show no behavioural or morphological phenotype, in 

IFMs, which indicated that the MhcF02056 is recessive these tissues, and most likely 

specific to indirect flight muscles, it may be necessary to rule out a possible implication 

of the MhcF02056 allele in other tissues. This is particularly the case, as the semi-

quantitative RT-PCR for the IFM specific exon 7c in whole flies, suggests that this exon 

may be expressed at higher levels than wild-type, and therefore the possibility exists 

that it may be misregulated in other tissues.  

Two strategies were implemented to remove the MhcF02056 allele from the pncr003;2L 

null background. The first strategy involves the genomic rescue of the CG31739 gene, 

in the Df(2l)12 background in order to allow this deficiency to be homozygous viable, 

while remaining a null for pncr003;2L.  For this genomic rescue, a genomic sequence of 

6,696 bp, including the CG31739 genomic sequence, and the upstream and downstream 

genomic regions between CG31739 and its neighbouring genes (Cas, and CG13282) —

included in an attempt to preserve the important regulatory regions of CG31739—, was 

amplified by PCR, sequenced, and cloned into the Drosophila transgenesis vector 

pCaSpeR 5, which was then used to generate transgenic flies (Figure 4.16). 

Homozygous viable insertions in chromosome II were selected, and linked by 

homologous recombination to the Df(2L)12 chromosome. Because both the genomic 

CG31739 (gCG31739) insertion and Df(2L)12 carry a white gene marker, it was 

possible to select for recombinants by screening for F1 males from the progeny of  

gCG31739/ Df(2L)12females and CyO/If males, with dark red eyes. These gCG31739, 

Df(2L)12 recombinant chromosomes are homozygous viable, showing that the construct 

is able to rescue the lethality of the CG31739 null condition, and the flies carrying them, 

like the Df pncr003;2L flies, do not present any visible abnormal phenotypes. 

The second strategy used another transposon-based method, known as P-element 

induced male homologous recombination [73]. This method takes advantage of a well 

described phenomenon associated with the transposition event of P-elements, in which 

the recombination of homologous chromosomes in males, which does not usually occur 

in Drosophila, takes place in a site specific way at the ends of the P-element insertion. 
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Because this method leads to homologous recombination in a site-specific manner, it 

has been widely used to map mutations in the Drosophila genome. In this case, it can be 

used to generate a recombinant between the Df γ-ray 6 deficiency, and a transposon 

inserted between Mhc and the Df γ-ray 6, replacing the MhcF02056 allele with a wild-type 

Mhc locus. This approach is very similar to that described above with the chiffon allele, 

but it offers the advantage of being site-directed, and therefore, there is no need to 

screen for positive recombinants by analysing their IFM phenotypes, while taking the 

“chance” factor out of the protocol.  The transposon insertion used for this method was 

the homozygous viable, white marker-carrying, P{SUPor-P} KG07247 P-element 

(Figure 4.17 A), which is inserted in the 5’UTR of the CG17928 gene —encoding for a 

fatty-acid desaturase, with low to moderate levels of expression. For this protocol the F1 

progeny of the cross between males carrying the P{SUPor-P}KG07247 insertion over 

the  b Df γ-ray 6 sp chromosome and the ∆2-3 transposase (w; P{SUPor-P}KG07247 / 

b Df γ-ray 6 sp; ∆2-3 /+), and females carrying the selection chromosome (w ; al b sp), 

were screened for recombinants having lost the b marker, gained the white+ marker, 

and retained the sp marker (Figure 4.17 B, Table 4.2). Two w; P{SUPor-P}KG07247, 

Df γ-ray 6 sp recombinants were recovered out of 3,120 flies scored in this screen, in 

which the genotypes of excision, and re-insertion events of the P-element were also 

observed (Table 4.2). These male recombinants are homozygous lethal, in accordance 

with the presence of the Df γ-ray 6 deficiency, and over the Df ED1153, which entirely 

removes the Mhc locus, the recombinant chromosomes do not show the enhancement of 

the short sarcomere phenotype (Figure 4.17 C). In accordance with this, sequencing the 

intronic sequence upstream of exon 7c in these male recombinant flies shows that the 

deficiency associated with the MhcF02056 allele is no longer there (Figure 4.17 D). Like 

with the original Df γ-ray 6 chromosome, flies carrying the male recombinant 

chromosome (P{ SUPor-P}KG07247, Df γ-ray 6 sp) over Df(2L)12, show no visible 

abnormalities.  
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Figure 4.16: Diagram representing the method followed to rescue the CG31739 

gene, in the Df(2L)12 background.  The genomic sequence of 6,696 bp, including the 

CG31739 gene sequence, and the upstream and downstream genomic regions between 

CG31739 and its neighbouring genes (Cas, and CG13282) was amplified by PCR, using 

a two step method, by amplifying two contiguous PCR fragments, annotated as 1 and 2, 

of 3Kb and 3.7 Kb, which were then ligated together by the addition of the unique NheI 

restriction site at the 3’ of the left fragment (1) and the 5’ of the right fragment (2). 

These two fragments were sequentially cloned into the pCaSpeR5Drosophila 

transgenesis vector, which was used to generate transgenic flies. Homozygous viable 

insertions in chromosome II were selected, and linked by homologous recombination to 

the Df(2L)12 chromosome. 
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Figure 4.16 
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Figure 4.17: Male recombination protocol to remove the MhcF02056 allele from 

the Df γ-ray 6 genetic background. (A) Diagram of the genomic locus of the insertion 

P{SUPor-P}KG07247 (KG07247),  inserted between Mhc and pncr003;2L, in the 

5’UTR of the CG17928 gene chosen for the male recombination protocol. (B) 

Schematic representation of the ∆2-3 transposase-mediated recombination event, which 

can take place in w; KG07247 / b Df γ-ray 6 sp; ∆2-3 /+ males. Male recombinant 

chromosomes can be screened by the loss of the b marker, the gain of the white+ 

marker, and retention of the sp marker. (C)  The male recombinant chromosome 

(KG07247, Df γ-ray 6 sp) has lost the ability to enhance the Mhc-related, short 

sarcomere phenotype, as indicated by the significant difference in sarcomere length, 

between the KG07247,Df γ-ray 6 sp / ED1153 and b Df γ-ray 6 sp / ED1153 conditions, 

as indicated by a one-tailed paired t-test statistical analysis (t=16.7, p<0.0001). n=200 

sarcomeres, from 4 different flies per genotype. (D)Alignment of the DNA sequences 

corresponding to the intronic sequence prior to exon7c of Mhc, form Or-R, KG07247,Df 

γ-ray 6 sp male recombinants, and the original b Df γ-ray 6 sp chromosome, showing 

that the male recombinant has lost the small intronic deficiency.  
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Figure 4.17 
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Table 4.2 

 

Table 4.2: Different genotypes recovered from the Male recombination protocol 

implemented to remove the MhcF02056 allele from the Df pncr003;2L genetic 

background. The excision and re-insertion classes correspond to natural transposition 

events of the P-element mediated by the ∆2-3 transposase. 

 

 
 

 

 

 
          

Class Genotype phenotype n 

parental b Mhc[F02056], Df γ-ray 6 sp /al b sp 
white eye, black, 

speck 
1459 

parental KG07247 (w+) /al b sp red eye 1375 

excision 
KG07247 (w+) excised chromosome /al b 

sp 
white eye 264 

re-insertion 
b Mhc[F02056], KG07247(w+),γ-ray 6 sp 

/ al b sp 
red eye, black, speck 20 

male 

recombinant 
KG07247(w+),γ-ray 6 sp / al b sp red eye, speck 2 

  
total: 3120 
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3- Discussion 
 

In this chapter I have described the use of a genetic tool, the transposable element, to 

generate a null condition for the pncr003;2L  smORF gene whose function I intended to 

characterise. However, this work took an unexpected detour, with the identification of a 

morphological phenotype associated with the line carrying the transposable element in 

question, but caused by a Mhc allele (MhcF02056) associated with the insertion bearing 

chromosome. In the context of the general usage of transposable elements as mutagenic 

reagents, this work exemplifies the issues that can arise from these kinds of background 

mutations. In this case the effect of the associated allele was particularly damaging, and  

unfortunate, because the phenotype it generated fitted well with the expression pattern 

and putative function of the pncr003;2L gene. This is one of the reasons why the 

characterisation of that background allele had to be so thorough, with that particular 

purpose having required a large amount of time, and the largest part of this chapter. The 

other reason is that the pBac{WH} F02056 line was essential for the mutagenesis 

methods on pncr003;2L, being the only available line that could be used to disrupt that 

particular smORF gene, therefore the effects of this insertion, and the chromosome 

carrying it, had to be fully understood.  

Regarding the MhcF02056 allele, the main purpose of this work was to map the genetic 

locus of this initially unmapped allele, in order to understand its relationship with 

pncr003;2L. In this respect, this work was successful, as the different genetic and 

molecular mapping methods used here, show that this allele is associated with the Mhc 

gene. Beyond the genetic mapping of this allele this study suggests that this allele does 

not affect the protein sequence of the IFM-specific Mhc isoform, but instead may arise 

from a misregulation of Mhc alternative splicing. This misregulation is probably caused 

by a genomic deletion in the intronic sequence prior to the alternative exon 7c, as shown 

by these preliminary results. 

The transposon-based mutagenesis strategies used here, were effective, producing the 

required null condition for pncr003;2L, which can now be used for the functional 

characterisation of pncr003;2L. 
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 Here I showed that this null condition has no apparent behavioural phenotype, since the 

pncr003.2L null flies have a normal motility in general, and their ability to fly seems to 

be unaffected. The ultra-structure of the myofibrils in indirect flight muscles, which 

have been shown to express these genes, also seem normal, showing that the Df 

pncr003;2L mutants also lack a morphological phenotype. These results could be in 

accordance with the subcellular localisation of these peptides in the dyads, pointing to a 

specialised physiological role for this gene, which may affect muscle function in a more 

subtle way, and would therefore require a more sensitive and detailed characterisation.  
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Chapter V- Using the Drosophila adult 
heart as a system for the phenotypical 

characterisation of pncr003;2L.  

 

1- Introduction: 
 

Through the work presented so far in this thesis I have shown that pncr003;2L codes for 

two peptides, which are expressed in somatic and cardiac muscles, where they localise 

to the dyads, a structure closely linked with the regulation of muscle contraction, and I 

have therefore proposed that these peptides may have a physiological function in the 

regulation of that process. On the other hand I have described the successful generation 

of a null condition for pncr003;2L, and have shown that this mutant does not present 

any morphological, nor gross behavioural phenotype, focusing on the indirect flight 

muscles, and the flight capabilities of the adult flies, respectively. These results have led 

me to suggest that the pncr003;2L gene may have a function in muscle contraction 

which may be too subtle to be detected by the gross, morphological and behavioural 

assay presented so far. Therefore, in order to characterise the function of this gene, there 

clearly seems to be a need to perform a more sensitive muscle function assay, which 

could identify subtle defects in muscle contraction. 

An aspect which has not yet been explored, is the shift of expression of the pncr003;2L 

gene, which in adult abdomens, ceases to be expressed in somatic muscles, but remains 

strongly expressed in the dorsal cardiac vessel, indicating that this gene may have a 

function in the contraction of the adult heart. This is particularly interesting in relation 

to the need of a more specific muscle contraction assay, because the adult Drosophila 

heart represents an accessible system in which to study muscle contraction. The 

Drosophila heart has long been considered as a powerful genetic system in which to 
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study the development of this organ, particularly  since the identification of the tinman 

(tin) cardiogenic gene in Drosophila [74].  The identification of tin in Drosophila led to 

the cloning of the Nkx2-5 gene in vertebrates [75], representing  one of the first steps in 

the recognition of the highly conserved developmental pathway of the cardiac system 

between fruit flies and humans [76]. Most recently, the development of functional 

assays, which allow the monitoring of cardiac activity in adult flies [26,27,28,29], has 

given rise to the emergence of Drosophila as an exceptional tool in which to study 

cardiac function and disease. The methods developed by the Bodmer lab, which allow 

to measure specific parameters such as heart rate, contractility and rythmicity in 

dissected adult hearts, are particularly appealing as they do not require any specialised 

electrophysiological equipment to be implemented, while being sensitive enough to 

detect even heart defects due to the background genetic variation in Drosophila [28]. A 

study carried out by the Bodmer lab, on the KCNQ potassium channel in Drosophila 

[27], is particularly interesting with respect to my own work. In that study it was shown 

that mutations in KCNQ, the Drosophila homologue of human KCNQ1, which is 

involved in myocardial repolarisation, and is associated with Torsades des Pointes 

arrhythmias and sudden death [77], also causes heart arrhythmias in Drosophila. That 

result is particularly interesting because it shows that the core mechanisms leading to 

the human disease are conserved in flies. On the other hand, regarding pncr003;2L, it is 

also interesting that those mutant flies with severe heart arrhythmias do not display any 

other morphological nor behavioural phenotypes. This is significant because it shows 

that the heart is a system that may be sensitive enough to detect a phenotype for 

pncr003;2L.  

Because of the subcellular localisation of the pncr003;2L peptides to the dyads, which 

is where the Ca2+ exchange that triggers muscle contraction and relaxation occurs, it is 

possible, if not likely, that these peptides may have a function in the regulation of Ca2+ 

cycling during muscle contraction. The adult Drosophila heart would also offer the 

possibility to test this hypothesis because, in combination with the genetically encoded 

GCaMP Ca2+ reporters, the adult heart has been shown to represent a good system in 

which to measure calcium handling, as shown by Lin et al. [34]. In their study, Lin et 

al. used a version of the GCaMP Ca2+ reporter to detect subtle Ca2+ transient differences 

in mutants for the Ca2+ responding TpnI protein. 
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In this chapter, I take advantage of the Drosophila adult heart system to demonstrate 

that pncr003;2L has a function in cardiac contraction. I show that even though 

Dfpncr003;2L  mutants show no morphological or structural defects in cardiac muscles, 

they present significantly more arrhythmic heart contractions than their wild-type 

counterparts. I demonstrate that this phenotype is specific to pncr003;2L, by means of 

genetic rescues, which also allow to demonstrate that both peptides encoded by 

pncr003;2L have a function which is equivalent. Furthermore, using the GCaMP3 Ca2+ 

reporter, I show that pncr003;2L has a function in the regulation of Ca2+ cycling during 

muscle contraction in cardiomyocytes. 

 

2- Results: 

2.1- pncr003;2L null flies do not display any morphological abnormalities in the 
adult heart. 
It has already been shown in this work that pncr003;2L does not affect the morphology 

of IFMs (Chapter IV, Figure 4.14), however that result cannot be extrapolated to all 

muscles, therefore the effects of pncr003;2L remain to be assessed in other kinds of 

pncr003;2L expressing muscles, including cardiac muscles. For such assessment a 

similar morphological analysis to that performed with IFMs (Chapter IV) was carried 

out focusing on cardiac muscles. The dorsal vessel of the adult fly  is composed of an 

unchambered thoracocephalic aorta and an abdominal, multi-chambered contractile 

heart marked by incurring sets of alary muscles, which have a suspensory function [78], 

and ostia cells, which serve as valves to allow the exchange of hemolymph from the 

abdominal cavity into the heart [79] (Figure 5.1A). The contractile abdominal heart 

vessel itself is composed of a monolayer of myoepithelial cells, or cardiomyocytes, and 

is covered ventrally by a layer of longitudinal, non-cardiogenic muscles, which also 

have a suspensory function.  Epifluoresence microscopy imaging of dorsal preparations 

of adult abdomens, using phalloidin-rhodamine to label all muscles, was used to assess 

the general structure of the cardiac tube and surrounding somatic muscles (Figure 5.1 B 

and C).  At this level the pncr003;2L null flies do not display any visible defects, with 

the hearts and surrounding somatic muscles of both wild-type and mutant flies having 

similar sizes and overall appearance. Confocal microscopy imaging, which allows to 

observe the organisation of sarcomeres with higher resolution, also shows that the 

ventral longitudinal muscles (Figure 5.1 D and E), and the cardiomyocytes themselves 
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(Figure 5.1 F and G), have a sarcomeric organisation, which is on the whole comparable 

to that of wild-type hearts. This apparently wild-type sarcomeric organisation was also 

assessed at the ultra structural level using TEM (Figure 5.1 H and I). The TEM 

micrographs, taken with a 5000X magnification, show that the Z discs and M bands 

display similar organisation (distance between them) and densities, in the sarcomeres of 

cardiac myocites of both, wild-type and pncr003;2L null hearts. These observations 

indicate that the absence of pncr003;2L does not affect the structure of the cardiac 

myofibrils, which is in agreement with this gene not having an effect in the overall 

morphology of the heart, and is in line with the previous results presented in this work, 

showing that pncr003;2L has no apparent  structural functions in IFMs.  
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Figure 5.1: The Df pncr003;2L null flies show no structural or morphological 
defects in heart muscles. 

(A) Diagram representing the dorsal cardiac vessel in the abdomen of adult flies, which 

is composed of an unchambered thoracocephalic aorta, and an abdominal multi-

chambered contractile heart marked by incurring ostia and sets of alary muscles. This 

diagram was modified from [78] .  (B-C) Epifluoresence images of phalloidin-

rhodamine stained dorsal abdominal segment, showing that the heart of Df pncr003;2L 

null flies (C) is morphologically similar to wild type flies (B).  (D-G ) Confocal 

Fluorescence micrographs of adult heart structures stained with phalloidin-rhodamine, 

showing that the sarcomeric organisation of (D, E) longitudinal ventral muscles, and (F-

G) cardiomyocytes is similar between (D, F) wild type hearts and (E, G) Df pncr003;2L 

mutant flies. Scale bars: 5µm.  (H, I) TEM micrograph of sarcomeres from 

cardiomyocytes of (H) Or-R, or (I) Dfpncr003;2L flies, showing that the ultrasctructure 

of the cardiomyocyte myofibrils is comparable between wild type and pncr003;2L null 

flies. Mitochondria (m), A bands, I bands, and Z discs are indicated. Scale bar: 0.5µm. 
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2.2- Recordings of live beating hearts show that Df pncr003;2L flies display 
arrhythmic heart contractions. 
Since the morphology of pncr003;2L expressing muscles, whether IFMs or cardiac 

muscles, seems normal, and since the peptides encoded in this smORF gene localise to 

the dyads, I have hypothesised that they may have a physiological function.  In this 

case, the phenotype of these mutants may become apparent if one focuses on how the 

muscles function, rather than on how they look. As a first approach to assess muscle 

contraction, I used a method previously described in the literature, used to record the 

endogenous contraction patterns of living heart preparations, which can essentially 

provide an indication of cardiac muscle function [26,27,29]. The power of this method 

is that because such patterns, in these preparations, are generated by the endogenous 

activity of the heart, through pacemaker cells located at the caudal end of the heart, and 

in the most anterior of the heart chambers, known as the conical chamber [80], these 

patterns can be recorded without the need to set up an electrophysiology setting to 

stimulate the muscles. The method consists of dissecting the flies in order to expose the 

contractile cardiac tube, while these are bathed in oxygenated Drosophila hemolymph 

saline [29]. In these conditions, it has been reported that the heart can remain beating for 

several hours after dissection —provided the saline solution is regularly replaced with 

fresh one [27,29]. In order to obtain this preparation, the abdomen of the fly is isolated 

from the rest of the body, thereby removing all components of the central nervous 

system. The ventral abdominal cuticle, gut and fat body are then carefully excised in 

order to expose the cardiac tube. The removal of the central nervous system is 

important, because unlike the myogenic, innervation-free larval heart, the adult heart is 

not entirely myogenic; it is innervated by Glutamatergic nerve terminals, which have 

been shown to be responsible for a phenomenon known as cardiac reversal, by which 

the peristaltic heart contractions which occur normally from the posterior to anterior 

ends is reversed [81]. By removal of CNS input these semi-intact preparations therefore 

allow us to study the intrinsic contractile activity of the heart [27]. After dissection to 

expose the heart, video recordings are then taken from these semi-intact preparations 

and used to produce a time-space-plot, also known as kymograph, which gives an 

account of the heart contraction patterns over an established period of time (of 20 

seconds, for all the recordings presented in this work) (Figure 5.2 A and B). 
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Interestingly, the kymographs from wild-type and Df pncr003;2L mutant flies show a 

very striking difference: The latter appear to present irregularities in the period lengths 

of their heart contractions, contrasting with the regular contraction patterns of wild-type 

flies (Figure 5.2 A and B). Arrhythmic heart contractions in Drosophila have previously 

been described using a similar method, for mutants of the gene coding for the potassium 

channel alpha subunit KCNQ1 homologue [27]. In that case, the arrhythmic behaviour 

was quantified using a parameter called “arrythmicity index”, which divides the 

standard deviation of period lengths, by the period length median. Using this same 

metrics, a significant difference was observed between wild-type and pncr003;2L null 

flies, which present an arrythmicity index two-fold that of wild-type hearts (Figure 5.2 

D). These arrhythmic events do not seem to affect the overall heart frequency (Figure 

5.2C), which remains very similar between wild-type and mutant hearts. Another 

parameter that can be obtained from these video recordings is the fractional shortening 

of the heart, which assesses the contractility capabilities of the cardiomyocytes by 

taking into account the difference in diameter between the most relaxed state (diastolic 

diameter) and the most contracted state (systolic diameter) of the heart. The hearts of 

pncr003;2L null  mutants and wild-type flies also showed no significant differences in 

fractional shortening, indicating that pncr003;2L does not have a major effect on the 

contractility of cardiac muscles (Figure 5.2C). Importantly, the increased arrythmicity 

was not observed with either of the two deficiencies that give rise to the Df pncr003;2L 

when these were assessed as heterozygotes (Df γ-ray 6 /+, and Df(2L)12 /+).These 

results show that the observed arrythmicity is specifically induced by the synthetic 

homozygous deficiency Df pncr003;2L, which completely removes  pncr003;2L 

(Figure 5.2 D). Because of the previously described allele affecting MhcF02056, 

associated with the deficiency Df γ-ray 6, it was necessary to rule out that this 

arrhythmic phenotype may be influenced by such allele. It is important to point out, 

however, that such an effect would seem unlikely because that particular Mhc allele is 

clearly recessive and seems to be specific to indirect flight muscles (Chapter IV).  



128 
 

Figure 5.2: The hearts of Df pncr003;2L mutants present heart arrhythmias. (A) 

Diagram representing the dorsal cardiac vessel in the abdomen of adult flies, showing 

the abdominal segment where measurements were taken, and still frames of a video 

recording of wild-type hearts with the heart in a diastolic, relaxed state, (left) and in a 

systolic (contracted) state. (B) Kymographs showing the pattern of heart contractions 

for wild-type and Df pncr003;2L mutant hearts. Pncr003;2L null hearts show irregular 

periods, some being abnormally long(asterisk). A normal heart period is indicated 

(green). (C) A quantification of heart frequency and fractional shortening show no 

significant difference between wild-type and pncr003;2L null flies regarding these 

parameters. (D) A quantification of the arrythmicity index (standard deviation of heart 

period / heart period median) shows that pncr003;2L null flies present a significantly 

higher arrythmicity than wild-type flies, as determined  by a two-tailed Mann Whitney 

statistical test,( U=202, p<0.005). No significant difference was detected in either of the 

two deficiencies (Df(2L)12, and Df γ-6) that generate Df pncr003;2L, when tested as 

heterozygous. n=15-20 flies per genotype.  
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In order to determine whether the arrhythmic phenotype is independent from the 

heterozygous Mhc allele, the same arrythmicity analysis was repeated with homozygous 

Df(2L)12 flies carrying the genomic rescue for CG31739 (Df(2L)12,gCG31739), and a 

Df pncr003;2L fly, which carries the male recombinant Df γ-ray 6 chromosome free 

from the MhcF02056 allele (CG17928KG07247
, Df γ-ray 6 / Df (2L)12). In both cases, very 

similar arrythmicity indeces were observed as for the original Df pncr002;2L, which 

confirms that the MhcF02056 allele is not involved in this phenotype (Figure 5.3 A and B). 

Furthermore, when an RNA interference construct specific to pncr003;2L is expressed 

in muscles with the Dmef2-GaL4 driver, which effectively reduces the expression of 

pncr003;2L (Figure 5.3 C), a very similar level of arrythmicity is observed  (Figure 5.3 

A and B). This result shows that the loss of function of pncr003;2L itself seems to be at 

the origin of this arrythmicity, which is important, considering that all of the above 

mentioned genomic deletions also remove two other genes (CG13282, and CG13283) 

which could also be responsible for the phenotype.   

2.3- pncr003;2L rescues the arrythmicity phenotype 
If the arrhythmic cardiac contractions presented by the  Df pncr003;2L synthetic 

homozygous deletion  and the different genetic conditions described above are 

exclusively due to the loss of function of pncr003;2L, it would be expected that this 

particular phenotype would be corrected by restoring the expression of pncr003;2L in 

the Df pncr003;2L mutant background.  

To test this, I generated a series of constructs designed to induce the expression of 

different versions of pncr003;2L; all under the control of the UAS promoter, and all 

used to generate transgenic flies with the PhiC31 integrase mediated system [40], with 

which all transgenic constructs are  inserted in the same specific site within the genome. 

This site specific trangenesis method ensures that the expression of these different 

constructs is not influenced by any positional effects [40], therefore any functional 

difference between them can be attributed to the nature of the construct itself.  

One of these constructs, called simply pncr003;2L, expresses the AB isoform, carrying 

both ORFs A and B (see Chapter III). This construct was obtained by cloning the 

RE28911 cDNA into the pUASt attB vector, and represents the full length version of 

one of the pncr003;2L transcripts, as endogenously expressed in the heart and somatic 

muscles. Another construct, carries a version of the same AB isoform in which a 
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frameshift has been introduced in both ORFs A and B (pncr003;2L FS). This transcript 

was obtained by de novo custom sequence synthesis (by Eurogentec), with the aim of 

using it as a control, in order to distinguish whether the function of the pncr003;2L gene 

is carried out by its two encoded peptides, whose amino acid sequences have been 

completely lost because of the frameshift, or by the RNA transcript itself, whose 

sequence remains relatively intact since only a few point mutations were required to 

create the frameshifts (Annex 3). When expressed in the muscles of Df pncr003;2L 

mutant flies using the Dmef2-GaL4 driver, the pncr003;2L construct rescued the 

arrythmicity to wild-type levels. On the other hand, the pncr003;2L FS construct or the 

expression of the Dmef2-GaL4 driver on its own had no effect on the mutant 

arrythmicity phenotype (Figure 5.4A and B).  

These results show that the arrythmicity is due to the loss of pncr003;2L and, more 

specifically, due to the loss of its peptide sequences. Using a heart specific driver 

(tinman-GaL4), which is expressed exclusively in the contractile cardiomyocytes 

[82,83] instead of the pan-muscular driver Dmef2-GaL4, also rescues the phenotype 

when used to drive the pncr003;2L construct, but fails to do so with the pncr003;2L FS 

construct (Figure 5.4B). This indicates that the function of the pncr003;2L is required 

specifically by cardiac cells, which I have shown to express the pncr003;2L transcripts 

(Chapter III). Although the pncr003;2L AB transcript carries both ORF A and ORF B, 

it was shown in Chapter III, that this transcript does not seem capable of polycistronic 

translation in vivo. This suggests that, in this case, the pncr003;2L ORF A peptide on its 

own, would be responsible for the observed rescue, and that this one peptide would 

therefore be sufficient to convey the function of the pncr003;2L gene in this context.  

 In order to test this and also to assess functionally each peptide, two more constructs 

carrying only one of the two ORF sequences each, were generated. These two 

constructs, called pncr003;2L ORFA, and pncr003;2L ORF B, only carry the fragment 

of the transcript corresponding to the ORF sequence including a stretch of some 100 nt 

upstream of each of them, which  includes their endogenous translation context. 

Interestingly, either of these two constructs was sufficient to rescue the arrhythmic 

phenotype (Figure 5.4B), indicating that, at least in this specific context, both ORFs 

convey a very similar function. Furthermore, each of the N-terminal FLAG-

Hemagglutinin tagged peptides constructs (FH-ORF A and FH-ORF-B), also rescue this 

phenotype (Figure 5.4B), which not only confirms that both peptides are functionally 
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equivalent, but also proves that the N-terminal FLAG-Hemagglutinin tag does not affect 

the function of the peptides and therefore that the subcellular localisation, in the dyads 

of the muscle cells, reported by these constructs in Chapter III is probably genuine.  

Since the results obtained so far indicate that the loss of function of pncr003;2L results 

in heart arrythmicity, I assessed whether the excess of function of these peptides would 

have any effect. Surprisingly, when expressed in a wild-type background both peptides, 

ORF A and ORF B, also give rise to an arrhythmic behaviour, similar to that observed 

with pncr003;2L loss of function (Figure 5.5A and C). In this case, similarly as with the 

rescue experiments, no significant increase in arrythmicity is detected when a 

frameshift-carrying construct is used in the same conditions of ectopic expression 

(Figure 5.5A and C). The other parameters assessed for the pnr003;2L  loss of function, 

such as frequency and fractional shortening, also seem unaffected by over-expression of 

either peptide, with respect to the pncr003;2L FS control line (Figure 5.5B). These 

results indicate that either loss or gain of function of the pncr003;2L peptides result in 

heart arrhythmias, suggesting that the process that involves these peptides is sensitive to 

their dosage. 
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Figure 5.3: The arrhythmias presented by Df pncr003;2L are specific to 

pncr003;2L and independent from the MhcF02056 allele. (A) Kymographs showing the 

pattern of heart contractions in wild-type flies  (Or-R),  flies expressing a pncr003;2L 

RNAi construct in  muscles, using Dmef2-GaL4 as a driver, and in the two null 

conditions for pncr003;2L free of the MhcF02056allele (Df(2L)12, gCG31739 and 

Df(2L)12 / KG7247, Dfγ-6 ).  Similar irregular heart periods, as those observed in 

Dfpncr003;2L, are displayed by the RNAi expressing line, and by the two null 

conditions for pncr003;2L free of the MhcF02056allele, showing that this phenotype is 

specific to the removal of the pncr003;2L locus. (B) A quantification of the arrythmicity 

index between these genotypes shows that the pncr003;2L RNAi knock-down and the 

(Df(2L)12, gCG31739 and Df(2L)12 / KG7247, Dfγ-6 ) pncr003;2L null conditions 

present a significantly higher arrythmicity than wild-type flies, as determined by a two-

tailed Mann Whitney test, (U=57, p<0.005,), (U=46, p<0.05) , and (U=9, p<0.002). 

n=10-15 flies per genotype. (C) Semi-quantitative RT-PCR on mRNA extracts of whole 

flies, showing that the expression of pncr003;2L is visibly reduced by the expression of 

the pncr003;2L RNAi construct (using the same primers as in Figure 4.2C). 
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Figure 5.3 
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Figure 5.4: The arrhythmias presented by Df pncr003;2L are corrected with 

different pncr003;2L expression constructs. (A) Kymographs showing the pattern of 

heart contractions in Df pncr003;2L flies expressing, in muscles, either a pncr003;2L 

rescue construct (Df pncr003;2L, Dmef2>pncr003;2L), or the frame shift carrying 

pncr003;2L-FS control (Df pncr003;2L, Dmef2>pncr003;2L FS).  The heart 

arrythmicity phenotype observed in Df pncr003;2L mutants is corrected in flies 

expressing the pncr003;2L rescue construct, but not in flies expressing the pncr003;2L-

FS control. (B) A quantification of the arrythmicity index shows that the flies 

expressing the pncr003;2L rescue construct have a significantly lower arrythmicity 

index than Df pncr003;2L mutants (U=160, p<0.05), whereas  flies expressing the 

pncr003;2L FS control construct, or carrying the Dmef2-GaL4 driver but no UAS-

expression construct have no significant effect. The arrythmicity is also significantly 

corrected in Df pncr003;2L flies expressing constructs carrying only the ORFA, or ORF 

B sequences, tagged with the N-terminal FLAG-Hemagglutinin tag (Df pncr003;2L, 

Dmef2>FH_ORFA, and Df pncr003;2L, Dmef2>FH_ORFB), or not ((Df pncr003;2L, 

Dmef2> ORFA, and Df pncr003;2L, Dmef2> ORFB), (U=103, p<0.05,), (U=97, 

p<0.05,) , (U=61, p<0.05) , (U=110, p<0.005),  respectively. (C)  The arrythmicity is 

significantly corrected by using the tinman-GaL4 cardiac specific driver instead of the 

pan-muscle driver Dmef2-GaL4, to express the pncr003;2L  rescue construct (Df 

pncr003;2L, tin>pncr003;2L), as determined  by a two-tailed Mann Whitney statistical 

test, (  (U=105, p<0.0005), but not the the pncr003;2L FS control construct (Df 

pncr003;2L, tin>pncr003;2L). n=15-20  flies per genotype. 
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Figure 5.4 
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Figure 5.5: pncr003;2L excess of function also leads to heart arrhythmia. (A) 

Kymographs showing the pattern of heart contractions in flies expressing, in muscles, 

either the pncr003;2L FS  control construct (Dmef2>pncr003;2L FS), or  the constructs 

expressing either  pncr003;2L ORFA  (Dmef2> pncr003;2L ORFA) or  pncr003;2L 

ORF B  (Dmef2> pncr003;2L ORFB). The over-expression of either the pncr003;2L 

ORFA  or pncr003;2L ORFB constructs in a wild type background, leads to arrhythmic 

heart contractions, this is not the case when the construct is expressed in the same 

background. (B) A quantification pncr003;2L FS  control of heart frequency and 

fractional shortening show no significant difference between the flies over-expressing 

the  pncr003;2L FS  controls and the flies expressing the pncr003;2L ORFA and ORF B 

transcripts, regarding these parameters. (C) A quantification of the arrythmicity index 

shows that the flies expressing the pncr003;2L ORFA or ORFB constructs have a 

significantly higher  arrythmicity index than wild type flies, as determined  by a two-

tailed Mann Whitney statistical test,(  (U=52, p<0.05),  (U=108, p<0.05), respectively, 

whereas  flies expressing the pncr003;2L FS control construct  have no significant 

effect. n=15-20 flies per genotype. 
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Figure 5.5 
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2.4- pncr003;2L mutants present abnormalities in their intracellular action 
potential recordings. 
Data obtained by Jeremy Niven [33], who performed intracellular action potential  (AP) 

recordings of cardiomyocytes in the Df pcncr003;2L  mutant lines in order to assess the 

physiological features of these cells, show that these mutants present specific 

abnormalities in their action potential patterns; while the wild type recordings show 

uniform patterns of APs, the mutant recordings sometimes show failed APs, and often 

show APs with a “double peak” appearance (Figure 5.6A). Interestingly, these 

abnormalities are not present in Df pncr003;2L animals expressing the pncr003;2L 

rescue construct, mirroring the results described above when assessing the cardiac 

arrhythmias. By quantifying the data provided by Jeremy Niven, I could show that the 

incidence of double action potentials is in fact significantly higher in Df pncr003;2L 

mutant hearts than wild type, or than in pncr003;2L rescued hearts  (Figure 5.6B). The 

heart failure events do not have a significantly higher incidence in the mutants because 

of the high variability of these events (Figure 5.6C), which is reflected by a significantly 

different variance between mutant and wild-type animals regarding these particular AP 

failure events. Similar to what has been observed with the heart contraction video 

recordings, the mutant condition showed no differences in AP frequencies compared to 

wild type flies (Figure 5.6 D). No differences were observed in AP amplitudes either 

(Figure 5.6E). These results suggest that individual cardiomyocytes, with their 

abnormalities in AP patterns, reflect the arrhythmic behaviour observed when assessing 

the heart as a whole organ.    
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Figure 5.6: pncr003;2L mutants have abnormal action potential patterns. (A) 

Sample traces of intracellular recordings, courtesy of J.E. Niven, from adult 

cardiomyocytes of wild-type (green); Df pncr003;2L (red); and Df pncr003;2L 

expressing the  pncr003:2L rescue construct (Df pncr003;2L, Dmef2>pncr003;2L) 

(blue), showing that Df pncr003;2L flies have defects in their action potential patterns, 

which are corrected by the expression of pncr003;2L. Arrows indicate “double” action 

potentials (AP). Arrowheads indicate failed action potentials. Grey dashed line indicates 

resting potentials. A sample peak from each trace (underlined) appears magnified. (B-C) 

Quantification of action potentials from intracellular recordings, showing average 

percentage of action Potentials (APs) with the double peak phenotype (B) and the 

percentage of failed APs per cell (C). The percentage of double APs is significantly 

higher in Dfpncr003;2L mutants, as assessed by a one-tailed Mann-Whitney U test, than 

in wild type (U=14, p<0.005), and than in Dfpncr003;2L flies expressing the 

pncr003;2L rescue construct (U=7, p<0.008). Although the difference in number of 

failed APs between Df pncr003;2L and the other genotypes is not statistically 

significant according to a Mann-Whitney U test, due to the high variability of the 

phenotype; an F-test shows that the difference in variance is statistically significant 

(F=20.42, p<0.0001). Thus, failed APs are rare in wild-type but they do appear 

erratically in Df(2L)scl mutants. (D-E) No significant differences in neither frequency 

(D) nor action potential amplitude (E) could be observed between these genotypes. n = 

8-16 cells per experiment. 
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Figure 5.6 
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2.5- pncr003;2L influences calcium levels during heart contraction. 

Having identified that pncr003;2L null flies have a defect in their heart contraction 

patterns, the next step in the functional characterisation of this gene would be to identify 

the underlying cause of this cardiac arrhythmia. In Chapter III, I showed that the 

pncr003;2L peptides localise to the dyads in indirect flight muscles and cardiac 

muscles. As explained in that chapter, the dyads are a structure at the centre of the 

muscle contraction process. This structure regulates the release of Ca2+ from the 

sarcoendoplasmic reticulum into the cytosolic space, which is necessary to trigger the 

conformational changes upon its binding to Troponin C of the Troponin-Tropo-myosin 

complex. This binding leads to the exposure of myosin binding sites on the actin 

filament, necessary for the acto-myosin interaction resulting in muscle contraction. 

Given the localisation of the pncr003;2L peptides to that particular structure, one could 

hypothesise that these peptides may have a role in the regulation of Ca2+ during heart 

contraction. In order to test this possible involvement of the pncr003;2L peptides in the 

Ca2+  cycling process, I took advantage of the genetically encoded Ca2+ reporter G-

CaMP3 [84], a chimeric fusion of the GFP and Ca2+ calmodulin (CaM)  proteins, which 

acts as a fluorescent indicator of Ca2+. In its Ca2+ free form, this chimeric protein has a 

conformation, which interferes with the chromophore domain of GFP, leading to a poor 

fluorescence signal, but in the presence of Ca2+, the conformational change of the Ca2+ 

bound CaM restores the chromophore domain of GFP, leading to a significant increase 

in fluorescence signal [85]. I used the living heart preparations described above, in 

combination with the G-CaMP3 reporter, to compare the Ca2+ -dependent fluorescence 

signal, or Ca2+ transients, between wild-type and pncr003;2L null flies during heart 

contraction (Figure 5.7). This approach is similar to that used to measure Ca2+ handling 

during heart contraction by Lin et al. [34]. The main differences between the approach 

implemented here, and the one previously reported by Lin et al., is that here confocal 

imaging instead of epifluoresence, is used to acquire time lapse series taken at 16.6 

frames / second (fps), which although slower than the 100fps obtained by Lin et al., is 

still sufficient to sample the contraction events occurring at 1-3 Hz. Also, and most 

importantly, here I use the G-CaMP3 Ca2+  reporter, which is significantly more 

sensitive, and yields less background noise than the GCaMP2 indicator used by Lin et 

al. [84].  
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The comparison between Ca2+ -dependent fluorescence recordings from wild-type and 

Df pncr003;2L hearts, in which GCaMP3 was expressed with the muscle specific 

Dmef2-GaL4 driver,  shows that the Ca2+ transients of pncr003;2L null hearts have a 

significantly wider amplitude, and steeper decay than wild-type (Figure 5.7A). These 

results indicate that pncr003;2L does indeed have a role in the regulation of calcium 

cycling during heart contraction. In order to plot average values of intensity over time 

for these transients, and because every heart has a unique beating frequency, for each 

peak, I focused on the decay phase, normalising the duration of the signal in relation to 

the maximum intensity value (representing the to% time point) and the lowest basal value 

(representing t100%). By focusing on the decay phase it was possible to fit a 2nd order 

polynomial curve to the data points of each peak, which were initially differentially 

distributed across the time axis, in order to obtain decay phase curves with the same 

data points for each peak, which can now be averaged (Figure 5.7 B). Following this 

procedure, Df pncr003;2L hearts show a calcium transient amplitude which is almost 

double that of wild-type hearts (Figure 5.7C). 

 A very similar difference in calcium amplitude, and decay can be observed between the 

Ca2+ transients of Df pncr003;2L hearts expressing the UAS-pncr003;2L rescue 

construct, and those of Df pncr003;2L hearts expressing the UAS-pncr003;2L FS 

control construct (Figure 5.8A), showing that the increment in amplitude of the Ca2+ 

dependent fluorescence signal, like the arrhythmic phenotype, depends on the 

expression of pncr003;2L. In line with these results, when the pncr003;2L ORFA, or the 

pncr003;2L ORFB constructs are over-expressed in a wild-type background, the 

calcium transients observed during heart contraction show the opposite effect to that 

observed with the Df pncr003;2L mutants. The calcium transients of pncr003;2L ORFA, 

or pncr003;2L ORFB expressing hearts show significantly decreased  amplitude when 

compared with the transients of hearts expressing the pncr003;2L FS controls (Figure 

5.8B). Overall, these results show that in agreement with their subcellular localisation in 

the dyads, the pncr003;2L peptides have a physiological role in the regulation of 

calcium cycling during the contraction of cardiac muscles, with the loss of function of 

these peptides increasing the amounts of calcium released upon contraction, and their 

excess of function reducing it. In these experiments, both the loss and excess of function 

of the pncr003;2L peptides, and therefore either higher or lower than normal amounts of 

calcium released upon muscle contraction, have been shown to produce arrhythmic 
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heart contractions, therefore,  it could be hypothesised that the regulation of calcium 

needs to be tightly regulated in order to ensure the rhythmic contractions observed in 

wild-type hearts. 
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Figure 5.7: pncr003;2L null mutants present Ca2+ transients with higher 

amplitudes during heart contraction. (A) Sample fluorescence confocal images of 

GCaMP3 expressing hearts in  systolic states, and their corresponding traces, showing 

raw calcium ∆F/F0 fluorescence intensities from 10 second recordings,  for wild-type 

control hearts (Dmef2>GCaMP3) and Df pncr003;2L hearts (Dfpncr003;2L, 

Dmef2>GCaMP3), showing that pncr003;2L null hearts have calcium transients with 

higher amplitudes. (B) Each peak was normalised in relation to its decay phase, 

normalising the duration of the signal in relation to the maximum intensity value 

(representing the to% time point) and the lowest basal value (representing t100%). By 

focusing on the decay phase it was possible to fit a 2nd order polynomial curve to the 

data points of each peak, which were initially differentially distributed across the time 

axis, in order to obtain decay phase curves with the same data points for each peak, 

which can now be averaged .  (C) Averaged G-Camp3 fluorescence signals of calcium 

transients normalised as in (B), and plotted in relation to the wild-type average 

maximum signal. Df pncr003;2L  hearts show significantly higher calcium transient 

amplitudes than wild type hearts,  as determined  by a two-tailed Mann Whitney 

statistical test, (U=7, p<0.005,**),  n=10 flies per genotype. 
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Figure 5.8: mutant rescues and over-expression effect of pncr003;2L in calcium 

transients. (A-B) Averaged GCaMP3 fluorescence signals of Ca2+ transients 

normalised as in Figure 5.7B, and plotted in relation to the wild-type average maximum 

signal. (A) Df pncr003;2L;GCaMP3  flies expressing the pncr003;2L rescue construct 

(Df pncr003;2L, Dmef2> pncr003;2L hearts show significantly reduced calcium 

transient amplitudes, similar to those of wild type hearts, compared to Df pncr003;2L; 

GCaMP3 mutants expressing the pncr003;2L FS control construct (Df pncr003;2L, 

Dmef2> pncr003;2L FS), which have relative amplitudes comparable to those observed 

in Df pncr003;2L  mutants. Statistical significance was determined by a two-tailed 

Mann Whitney statistical test, (U=5, p<0. 05), n=10 flies per genotype. 

(B) over-expression of the pncr003;2L ORFA and pncr003;2L ORFB  constructs in  a 

GCaMP3 genetic background  (Dmef2> pncr003;2LORFA and Dmef2> 

pncr003;2LORFB ) show significantly reduced calcium transient amplitudes,  compared 

to flies over-expressing the pncr003;2L FS control construct in the same genetic 

background (Df pncr003;2L, Dmef2> pncr003;2L FS). Statistical significance w as 

determined by a two-tailed Mann Whitney statistical test, (U=1, p<0.005), (U=5, 

p<0.05).  n= 8 to10 flies per genotype. 
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3. Discussion: 
 

In this chapter, through the use of the adult heart as a system to study the effects of 

pncr003:2L, I provide experimental evidence showing that the two smORFs encoded in 

the pncr003;2L gene, have a function in the regulation of Ca2+ in cardiomyocytes. I 

have shown here that the pncr003;2L null mutants, generated in Chapter IV, present 

heart arrhythmias, and calcium transients which have significantly higher amplitudes 

than wild type heart. 

Throughout the work presented here, a strong emphasis has been placed on showing 

that these abnormalities, in heart rhythm and Ca2+ transient amplitudes are due to the 

lack of function of the pncr003;2L gene itself, and more specifically to the peptides it 

encodes. 

First of all, I show that the heart morphology of pncr003;2L mutants, which was 

analysed at the whole organ, and at the ultra structural level, is comparable to that of 

wild type flies, indicating that the origin of the arrhythmias is physiological rather than 

morphological, which fits well with the phenomenology described throughout this thesis 

for the pncr003;2L gene, and most particularly with the localisation of its encoded 

peptides to the dyads. I show that the arrhythmia is also independent of the recessive 

MhcF02056 allele described in the previous chapter of this thesis, and present, in an 

heterozygous condition, in the Df pncr003;2L null condition, since neither the MhcF02056 

-carrying deficiency Df γ-6, nor the deficiency Df(2l)12, used to generate the Df 

pncr003;2L null condition, produce the arrythmicity phenotype as heterozygous. In line 

with these results, and showing that these phenotypes are not due to any sort of genetic 

interaction between a pncr003;2L null condition and the  Mhc F02056allele , the two Mhc 

F02056-free, null conditions for pncr003;2L (the CG17928KG07247
, Df γ-ray 6 and 

CG31739 (Df(2L)12,gCG31739), as well as the strong reduction of the pncr003;2L 

expression by means of the RNAi knock-down, show the same arrythmicity as Df 

pncr003;2L.  

The major proof of specificity comes from the genetic rescues of the arrythmicity and 

Ca2+ transient phenotypes by the different pncr003;2L constructs generated in this work. 

I have shown that the expression of the pncr003;2L construct, in either all muscles, with 

the Dmef2-GaL4 driver, or specifically in hearts, with the tin-GaL4 driver, is sufficient 
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to rescue the arrythmicity phenotype. Showing that both, the heart arrhythmias, and the 

function of pncr003;2L, are linked to the intrinsic function of the tinman expressing 

cardiomyocytes, where the expression of pncr003;2L is detected. 

This system, in which a phenotypic rescue by pncr003;2L is possible, allowed me to 

prove that the function of pncr003;2L is conveyed by its encoded peptides and not by 

the pncr003;2L mRNA itself, as shown by the lack of rescue —or over-expression 

phenotypes— when using the frame-shift carrying construct (pncr003;2L FS), in which 

only the smORF sequences are disrupted by a few punctual changes in the nucleotide 

sequence. Furthermore, this system allowed me to individually test the function of each 

of the ORFs encoded by the pncr003;2L gene. This was particularly interesting as the 

extensive similarity between these peptides appears to contrast with the tissue-specific 

expression patterns of some of the transcripts encoding them, as has been described in 

Chapter III, and therefore the question of their functional equivalence remained open. 

My results favour the hypothesis that both of the peptides encoded by this gene have an 

equivalent function, at least in this specific context, since they were both able to rescue 

the mutant arrythmicity and Ca2+ transient phenotypes, and to induce the same over-

expression phenotypes. Importantly, I also show here that the FH-tagged peptides are  

able to rescue the pncr003;2L null phenotypes as well, proving that the tag does not 

interfere with their function, and therefore showing that the subcellular localisation they 

reflect is unlikely to be artifactual. 

Regarding the effects generated by the lack, or excess of function of pncr003;2L, the 

fact that these two conditions have the opposite effect on the amplitude of the Ca2+ 

transients, and therefore in the Ca2+ dynamics during heart contraction, clearly points to 

a regulatory role of the pncr003;2L peptides over the Ca2+ cycling process. However, 

the relationship between the misregulation in calcium cycling, by either the lack or 

excess of function of pncr003;2L, and the observed arrhythmias is far from clear. One 

hypothesis could be that these two phenomena are unrelated, with the pncr003;2L 

performing two distinct functions, one  in Ca2+ regulation and another in the 

maintenance of heart rhythm by a different mechanism, however such a hypothesis 

would still not explain that the same arrhythmic phenotype is produced by both the 

excess and lack of function of pncr003;2L.  On the other hand, because there is 

evidence that the regulation of intracellular Ca2+ levels in vertebrate cardiomyocytes 

plays an important, and even essential, role in maintaining heart rhythm, by triggering 
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and regulating different ionic currents [86,87,88]. The hypothesis that in Drosophila, 

the concentration of Ca2+ needs to be tightly regulated in order to maintain the rhythmic 

contractions observed in wild-type hearts, seems more plausible. Indeed, there is also 

evidence in Drosophila, that disruption of Ca2+ levels in the heart produce arrhythmias 

[89]. In a way, the electrophysiological recordings of intracellular action potentials, 

provided by Jeremy Niven, which clearly show that individual mutant cardiomyocytes 

have action potentials with significant abnormalities compared to wild-type —or mutant 

flies expressing the rescue constructs— is in line with this hypothesis since the action 

potential of the cell is intrinsically linked to the ionic currents, which in vertebrate 

cardiomyocytes seem to be largely influenced by Ca2+.. Otherwise, these results provide 

another source of evidence, showing that the genotypes that present arrhythmias, also 

present a severe intracellular derangement which is likely to be linked with the observed 

misregulation of calcium.   

Overall, it can be concluded that this work has characterised the pncr003;2L gene and 

the peptides it encodes, as regulators of cardiac Ca2+ cycling  in  Drosophila 

melanogaster, and has linked this misregulation with heart arrhythmias in the Fly. 

These results not only show that the pncr003;2L smORFs  have an  important function 

in flies, highlighting the importance of smORF genes in general, but  also contribute by 

bringing forward the Drosophila adult heart, and this particular pncr003;2L-mediated 

Ca2+ regulation  system, as a possible  model to study  the relation between Ca2+ 

misregulation and heart arrhythmias, and therefore to contribute to our understanding of 

heart disease. 
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Chapter VI - Identification of the 
pncr003;2L smORF as a functional 

homologue of the vertebrate Sarcolipin / 
Phospholamban family of regulators of 

the sarcoendoplasmic reticulum 
Ca2+ATPase (SERCA). 

 

 

 

1- Introduction: 
 

I have shown, in the previous chapter of this thesis, that either the lack of function, or 

the over-expression, of the pncr003;2L peptides result in abnormal Ca2+ dynamics 

during heart contraction, and in heart arrhythmias. In accordance with the previous 

observation that the pncr003;2L peptides localise to the dyads, where the extrusion and 

uptake of Ca2+ during muscle contraction and relaxation occur, these phenotypes clearly 

indicate that  pncr003;2L has an effect on the regulation of  Ca2+ cycling in cardiac 

muscles. However, the molecular mechanism by which this regulation takes place 

remains to be determined.  

The identification of the functional context of a gene could be achieved by means of a 

genetic interaction screen, in order to identify the genes that, in a haploinsufficient or 

over-expressed condition, interact with pncr003;2L, by suppressing or enhancing the 

pncr003;2L  associated phenotypes. Before considering such a genetic screen for the 

characterisation of the functional context of pncr003;2L, and keeping in mind that this 

work should ultimately serve as a case study for the functional characterisation of 

smORFs, I explored the possibility of using an homology search approach, which could 

be applied in a more general way to other smORFs. This approach is based on standard, 

and modified BLAST searches, as well as on the use as a novel and powerful remote 
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homology search engine (PHYRE2) [30], which performs comparisons of predicted  

secondary structures, as well as sequence similarity, in order to search for other 

peptides, or protein domains, sharing some homology with the pncr003;2L peptides, 

and whose function may already be characterised. For such an approach, the very 

specific localisation and function of the pncr003;2L peptides identified so far, represent 

a way to narrow down the list of possible homologues to genes with similar 

characteristics. The identification of such homologues would provide an insight into the 

functional context of pncr003;2L, and the basis for experimental work, in order to 

validate the homology. 

An extended homology search of this kind constitutes, by itself, an important part of the 

characterisation of the pncr003;2L gene, by determining the extent of conservation of 

this smORF gene, which so far, is only known to be conserved in Drosophila 

pseudoobscura [24].  

In this chapter, through this extended sequence homology search, I describe the 

identification of the 30aa peptide encoded by sarcolipin (sln) as a possible homologue 

of pncr003;2L.  Interestingly, sln acts as a regulator of the sarcoendoplasmic Ca2+ 

ATPase in vertebrate muscles. I provide evidence supporting this homology by 

identifying intermediate homologues between the human and Drosophila sequences, 

and use the functional assessment methods described in Chapter V to provide further 

evidence supporting the functional homology between the pncr003;2L peptides and the 

Sarcolipin / Phospholamban family of calcium regulators. 

 

2- Results: 

2.1-A BLAST search identifies homologue sequences for pncr003;3L in dipterans. 
In the general introduction of this thesis, I have discussed how most bioinformatics 

methods, are generally ill-suited to dealing with the sequences of small peptides. These 

difficulties are exemplified by the use of basic local alignment tools (BLAST) in order 

to identify possible homologues for pcnr003;2L. In the original paper describing 

pncr003;2L as non-coding [24], it was shown that a pncr003;2L homologue exists in 

the Drosophila pseudoobscura genome, because a probe specific to the melanogaster 

gene sequence hybridises with specific targets in southern blots and in situ hybridisation 

experiments in pseudoobscura tissues. However, no homologues for this smORF gene 
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were identified for its peptide sequences using a BLAST search with standard 

parameters, in which the peptide sequences are used in a search for translated 

nucleotides (tBLASTn), from EST databases that include the Drosophila 

pseudoobscura mRNA sequences (Figure 6.1A). In order to improve the detection of 

homologues with tBLASTn, I modified the search parameters to better suit the 

alignment of small sequences:  I chose the PAM-30 substitution matrix instead of the 

standard Blosum-32 matrix, following the recommendations for sequences <35 aa long, 

provided by the provisional table of recommended substitution matrices from the NCBI 

BLAST help web-site (http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html), and I 

relaxed the search parameters. This relaxation of the parameters was achieved by 

increasing the expected threshold of matches obtained purely by chance from 10 to 

1000, and by removing compositional adjustment and low complexity region filters. 

With such optimised parameters it was possible to identify similar amino acid 

sequences for these peptides in most Drosophilids (including Drosophila 

pseudoobscura) and other dipterans, including other fly species (Glossina moristans and 

Sarcophaga crassipalpis) and mosquitoes (Aedes Aegipty, Anopheles gambiae, and 

Armigeres subalbatus) (Figure 6.1A). In all of these cases, the confidence of the 

sequence similarity between the pncr003;2L peptides and these hits is high (most 

having e-values of around 9e-06), and therefore homology between these sequences is 

quite likely. Furthermore, because the search was done in EST databases, it was 

possible to verify that the mRNA sequences of these hits did not contain other larger 

ORFs, and that the hits themselves corresponded to small ORFs of similar sizes to the 

pncr003;2L peptides, indicating that these are bona fide smORF homologues. Although 

these results expand the conservation of pncr003;2L, from what has so far been 

described (with the most distant homologue found before this search, being that in 

Drosophila pseudoobscura), none of the putatively homologous sequences identified 

have any functional annotations, which could help with the characterisation of the 

molecular function of the pncr003;2L peptides. 
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Figure 6.1: Initial analysis of sequence conservation and structure of the 

pncr003;2L peptides.  

(A) Results of the tBLASTn searches, using the pncr003;2L peptides on EST databases, 

using either standard parameters (Blosum-32 matrix, Expected threshold of matches 

obtained purely by chance of 10, using compositional adjustment and low complexity 

region filters), or maximally relaxed parameters (PAM-30 matrix, Expected threshold of 

matches obtained purely by chance of 1000, removing compositional adjustment and 

low complexity region filters). The use of standard parameters identifies no 

homologues, whereas relaxed parameters identify homologues confined within the 

Dipterans. Amino acid colours reflect hydrophobicity (with red the most, and blue the 

least hydrophobic residues). (B)   Different secondary structure prediction algorithms, 

from a web-base secondary structure prediction tool (http://npsa-pbil.ibcp.fr) predict an 

alpha-helical secondary structure for the pncr003;2L peptides. h: helical structure , c: 

random structure. 
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2.2- The incorporation of secondary structure comparison, using the PHYRE2 
homology search engine identifies the vertebrate sarcolipin smORF as a putative 
homologue for pncr003;2L . 
Interestingly, the pncr003;2L peptides and their homologues have a highly hydrophobic 

amino acid constitution, rich in Phelinalanine (F), Isoleucine (I), Leucine (L), Alanine 

(A) and Valine (V) residues (Figure 6.1A). I tested whether such an evident bias in the 

nature of the amino acids constituting these peptides may convey a particular secondary 

structure, using a web-based bioinformatics secondary structure prediction tool 

(http://npsa-pbil.ibcp.fr). For each of the pncr003;2L peptides, this software  produces 

an α-helical secondary structure  prediction with all of the algorithms used (Figure 

6.2B).  Such a hydrophobic, α-helical structure, along with the 28 and 29 amino acid 

sizes of these peptides, is reminiscent of the transmembrane domains of membrane-

bound proteins, which are often hydrophobic α-helical structures themselves, of about 

20 amino acids. Such a structure would be consistent with the membrane bound 

subcellular localisation described so far for these peptides (Chapter III).  

This prediction of a α-helical secondary structure for the pncr003;2L peptides allowed 

for a novel and powerful remote homology tool to be used in order to attempt the 

identification of  more distant pncr003;2L homologues, which may have a characterised 

molecular function. This tool, called PHYRE2 (standing for 

protein homology/analogy recognition engine), uses a so called profile-profile 

algorithm, which incorporates secondary structure comparison to a conventional 

sequence similarity search, in order to identify possible remote homologous proteins, 

sharing similar secondary structure predictions and aa sequences [30]. This kind of 

algorithm, has been shown to outperform other powerful remote homology search 

methods such as the position-specific iterated (PSI)-BLAST method [90], which uses 

iterative homology searches that take into account, for each step, statistical calculations 

of mutational propensities at each position [91].  

The PHYRE2 engine was used to identify possible homologues for one of the 

pncr003;2L peptides (pncr003;2L ORF A), and it yielded three hits (Figure 6.2A). One 

of these hits, corresponding to the Integrin α-m protein, only shares sequence similarity 

over a very small stretch of only 3 amino acids, and was therefore discarded. Another 

hit corresponds to one of the seven transmembrane domains of the Bacteriorhodopsin 

photoreceptor. Although such a match is interesting, because it is in line with the 
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transmembrane prediction discussed above, it is not very informative with regards to a 

possible functional homology at the molecular level, because no function for the 

Bacteriorhodopsin photoreceptor has been described in muscles, nor in calcium 

regulation. The third hit, however, is particularly interesting: First, unlike the other two 

hits, which correspond to large proteins of 1,200 and 300 aa, for the Integrin α-m and 

Bacteriorhodopsin proteins, respectively, this third putative homologue corresponds to 

another small, membrane peptide of 30 amino acids encoded by the human sarcolipin 

(sln) gene, which also happens to be a smORF gene (Figure 6.2A). Second, the Sln and 

pncr003;2L ORFA peptides have 7 identical residues, and 7 residues of similar nature 

over the  20 aa stretch highlighted as putatively homologous by PHYRE2, giving them 

an overall similarity score of 35%, which is higher than the 20% score obtained for the 

Bacteriorhodopsin protein. The sequence and structural similarities between the human 

Sln and Fruit fly pncr003;2L ORFA peptides, can be highlighted by a comparison of the 

structural diagrams that display the configuration for each of these peptides in the 

secondary structure either used, in the case of Sln, or generated, in the case of 

pncr003;2L ORFA, by PHYRE2 (Figure 6.2B). Indeed, such a diagram shows how, for 

this 20 aa stretch, the two peptides seem to be able to adopt remarkably similar 

structures, with identical, or very similar aa, in identical positions of the helix. Third, 

there is a striking similarity between the molecular function of Sln and the 

phenomenology so far described for the pncr003;2L peptides. Like pncr003;2L, sln is 

also a muscle specific gene, expressed exclusively in vertebrate somatic and cardiac 

muscles, where it has also been shown to regulate calcium cycling, via a direct physical 

interaction with the  Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) 

[92,93,94,95]. Altogether, these pieces of evidence indicate that pncr003;2L could be 

the putative Drosophila homologue of the vertebrate sln gene family. 
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Figure 6.2 The PHYRE2, structural and sequence homology search engine 

identifies Sln as a pncr002;2L homologue. (A) Results of a PHYRE2 search on EST 

databases, querying the pncr003;2L ORFA peptide. This search yielded three hits 

(Figure 6.2 A): One of these hits corresponds to the Integrin α-m protein, but only 

shares sequence similarity over a stretch of only 3 amino acids, another hit corresponds 

to one of the seven transmembrane domains of the Bacteriorhodopsin photoreceptor. 

And a third hit, with the best similarity score, corresponds to the human Sln 30 aa long 

peptide involved in calcium regulation in muscles. The colours in the aa alignments 

represent the CLUSTALW standard colours, regions with alpha-helical predictions are 

indicated by green helices. (B) Structural display of the aa configuration of the 20 aa 

stretches identified by PHYRE2 as homologous, showing that the pncr002;2L peptide 

and Sln could adopt very similar secondary structures. 
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2.3- A BLAST search using a phylogenetic consensus sequence between Dipteran 
pncr003;2L sequences and human Sarcolipin identifies homologues throughout the 
arthropoda phylum. 
In light of the striking similarities between these peptides, it could be argued that 

pncr003;2L and sln may belong to the same family of smORFs, having a function in 

calcium regulation which has been conserved across evolution, and which has so far 

been hidden by 1) the inaccurate annotation of pncr003;2L as non-coding, and 2) the 

inability of standard homology search tools to identify distant homologues with small 

sequences. If this homology is real, one would expect to find homologous peptides in 

other intermediate species. However a BLAST search using the pncr003;2L sequences 

as a query has already been shown, despite the most optimised parameters, to produce 

hits that remain confined within the dipteran order. 

 I reasoned that if the homology between pncr003;2L and sln is real, then a consensus 

sequence, obtained from an alignment of the different Dipteran pncr003;2L peptides and 

the human Sln peptide (Figure 6.3A), favouring the residues conserved between any of 

the members of the Diptera order, and the human species may produce hits 

corresponding to the sequences of intermediate species. This is indeed the case, as a 

tBLASTn search using such a consensus sequence, and the same optimised parameters 

as those used for the original tBLASTn search, yield hits across the arthropoda phylum, 

including sequences belonging to members of the hexapoda, crustacea, arachnida and 

xiphosura sub-phylums (Figure 6.3A). As with the original BLAST search, I verified 

that the mRNA sequences encoding each of these hits do not code for any longer ORFs, 

thereby confirming that these hits also correspond to smORF genes. Interestingly, the 

polycistronic arrangement observed in Drosophilids, and other Dipterans, such as 

Sarcophaga crassipalpis, can also be observed in other examples of these newly 

identified arthropods, such as Bombyx mori and Ixodes scapularis, whose transcripts 

contain multiple pncr003;2L-like ORFs (Figure 6.3A).  

The relationship between the pncr003;2L and Sln peptides is further supported by the 

fact that sequences of the more basal arthropods, such as those of arachnids (Ixodes 

scapularis) are similar enough to the vertebrate sequences to produce hits, upon the 

same tBLASTtn search as that performed above, corresponding to Sln in basal 

vertebrate species, and also corresponding to the 52 aa peptide encoded by 

phospholamban (pln), which is a paralogue of sln, also known to regulate calcium 
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cycling during muscle contraction in skeletal and cardiac muscles through a direct 

physical interaction with SERCA [96].   

Unlike Sln, which is composed of a small N-terminal luminal domain 7 aa long, a 

transmembrane domain, and a small C-terminal cytosolic domain 5 aa long, Pln has a 

relatively large N-terminal cytoplasmic domain of 30aa, and a transmembrane domain, 

which is related to that of Sln. An alignment of the pncr003:2L Dipteran peptides, Sln, 

and the transmembrane domain of the human Pln, reveals the patterns of conservation in 

this family of peptides.  In fact, several amino acid changes appear to be semi-

conservative between the Pln / Sln and pncr003;2L sequences, like in the cases of the 

phenylalanine (F)/ (Tyrosine)Y, and (Triptophan)W/(Tyrosine)Y, which represent a 

conservation in aromatic residues, in positions 37 and 48, respectively, and  likewise, 

most of the hydrophobic aa often alternate between Isoleucine (I) and Leucine (L) in 

different arthropod and vertebrate species. There also seems to be a prevalence of Serine 

(S) and Threonine (T) residues in the N-terminus of all of these peptides, as well as 

negatively charged Glutamatic acid residues (E). Interestingly, the sequence of the basal 

arthropod Ixodes_A peptide shows, a greater extent of sequence conservation when 

compared to a basal vertebrate sequence (Danio rerio), with 13 out of the 32 aa in the 

Ixodes_A peptide being identical, and 4 others of similar nature to those of Danio_Pln, 

and a conservation score of 21% as calculated by ClustalW, (compared to the score of 

17% for the human Pln and Drosophila pncr003;2L alignment) (Figure 6.3B). These 

results, which show patterns of conservation between the arthropod and vertebrate 

sequences, as well as higher conservation between basal arthropods and  basal 

vertebrates suggest that the sln /pln and pncr003;2L genes are part of the same family of 

smORFs, which appears to be conserved across evolution, with its origin predating the 

last common ancestor of these phyla, the Urbilaterian (Figure 6.4). 
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Figure 6.3: A tBLASTn search using the phylogenetic consensus between the 

pncr003;2L peptides  and Sln, identifies intermediate homologues. (A)The 

phylogenetic consensus sequence (ETRSLFTTFXILAILLFLL WLLYE) between the 

Dipteran pncr003;2L peptides and Sln, obtained by favouring the residues conserved in 

the Dipteran and human sequences (underlined residues), yield intermediate 

homologous sequences throughout arthropods when used as a query on a tBLASTn 

search with maximally relaxed parameters (PAM-30 matrix, Expected threshold of 

matches obtained purely by chance of 1000, removing compositional adjustment and 

low complexity region filters). The grey line delimits the hits identified by this 

consensus tBLASTn search, homologues from the craniata subphylum can be identified 

by a tBLSTn search querying for the basal arthropod sequences (crustacea / arachnida).   

(B) The sequence of pncr003;2L from basal arthropods, such as Ixodes A, and Ixodes B 

share greater similarity to basal vertebrate sequences, such as those of Danio rerio 

(zebra fish)  as shown by the alignment between Ixodes A and Danio_Pln, and Ixodes B 

and Danio_Sln, which shows more conservation than the alignments of the Drosophila 

peptides to either human_Pln or human_Sln, and producing vertebrate hits when using 

them as queries with the same tBLASTn search as in (A). Identical residues ( * ) and 

conservative residues ( : ) are indicated. 
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Figure 6.4 

 

Figure 6.4: The Sln and pncr003;2L smORFs seem to have a common bilaterian 
ancestor. 

 (A) Philogenetic tree showing the different taxonomic ranks where the Pln /Pln and 
pncr003;2L peptides have been identified by the homology searches performed in this 
work (Green circles), pointing to a possible common Bilaterian common ancestor. 
Question marks highlight the taxonomic ranks where no evidence for homologues of 
these   
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2.4- The pncr003;2L peptides co-localise, and interact genetically with Ca-P60A, 
the Drosophila melanogaster homologue of SERCA. 
The identification of the sln /pln smORF genes as possible homologues for pncr003;2L, 

would provide a specific molecular context for the function of the pncr003;2L peptides. 

Both Sln and Pln have been shown to negatively regulate the activity of SERCA, by 

binding to a site in the transmembrane domain of the Ca2+ ATPase. SERCA is a highly 

conserved gene, present in both animal and plant cells [97]. Although in vertebrates 

three SERCA paralogues have been identified, known as SERCA-1,2 and 3 —all of 

which can be regulated by the Sln /Pln peptides—, in Drosophila melanogaster a single 

gene, annotated as Ca-P60A, has been identified as a SERCA homologue [98]. 

Importantly, the Drosophila Ca-P60A gene, which shares 72% of identity with its 

vertebrate homologue [98], has been shown to regulate calcium cycling in Drosophila 

neurones, and in somatic and cardiac muscles [35,89]. 

In order to assess the possible interaction between the pncr003;2L peptides and the Ca-

P60A pump, I used a primary antibody specific to Ca-P60A, kindly provided by S. 

Sanyal [35], to study the localisation of the Ca-P60A pump in relation to the 

pncr003;2L peptides in IFMs and cardiac muscles. These Ca-P60A antibody stainings, 

which were performed in a genetic background expressing the pncr003;2L ORFA-GFP,  

or N-terminal FLAG-Hemagglutinin tagged construct pncr003;2L  FH-ORFA, show 

that the endogenous Ca-P60A pump co-localises perfectly with the pncr003;2L 

peptides, in the dyads and perinuclear membrane of IFMs (Figure 6.5A) and 

cardiomyocytes (Figure 6.5B). Although this co-localisation between the pncr003;2L 

peptides and Ca-P60A is a pre-requisite for a protein-protein interaction to occur 

between these two entities, and is therefore in agreement with such interaction, it does 

not prove that this interaction actually occurs. The physical interaction between the 

pncr003;2L peptides and Ca-P60A is supported by the work of J.I. Pueyo, and F.M.G. 

Pearl, performed in parallel to the work presented here (12), who performed 

biochemical and bioinformatics assays, respectively, both supporting the physical 

interaction between these entities. Their work is addressed in more detail in the 

discussion of this chapter.  

The evidence presented so far in this work —and in the work of J.I Pueyo and F.M.G 

Pearl—, strongly supports the homology between the pncr003;2L, and the sarcolipin 

and phosholamban genes. In order to reflect this homology, and because pncr003;2L is 
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in fact a coding gene and not a non-coding RNA, this smORF gene was renamed 

sarcolamban (scl).  

I have so far shown that the lack of function of scl, in a Df pncr003;2L (or Df scl) 

background produces heart contractions which are arrhythmic, and during which the 

calcium transients have larger amplitudes than wild type. If the function of scl is indeed 

homologous to that of pln and sln, which have been thoroughly proven to act as 

inhibitors of SERCA in vertebrates [92,94,95,96,99,100,101], it could then be stated 

that the arrythmicity and abnormal calcium transients observed in scl null flies would be 

due to the release of the inhibition of Ca-P60A by the Scl peptides. 

 In order to assess whether Ca-P60A has an effect on these arrythmicity and calcium 

transient phenotypes, I performed a genetic interaction assay between slc and Ca-P60A, 

taking advantage of a Ca-P60A homozygous lethal allele (Ca-P60AKum 295) generated by 

Sanyal et.al.  [35]. For this assay, the Ca-P60AKum 295 allele was introduced, as 

heterozygous, into the Df scl background. This genetic condition (Df γ-ray 6, Ca-

P60AKum 295/ Df(2L) 12,+ ) was achieved by placing over the deficiency Df(2L) 12, a 

recombinant chromosome in which the Ca-P60AKum295 allele was linked with the Df γ-

ray 6. This recombinant chromosome was obtained by screening the F1 progeny of b Df 

γ-ray 6 sp / Ca-P60AKum 295 females for the loss of the sp marker and retention of the b 

marker, and by testing the resulting recombinants for lethality over both Df γ-ray 6 and 

Ca-P60AKum 295. Interestingly, the heart arrythmicity is significantly corrected in Df γ-

ray 6, Ca-P60AKum 295/ Df(2L) 12,+  flies compared to Df scl flies (Df γ-ray 6, +/ Df(2L) 

12,+)  (Figure 6.6A and B). Similarly, the calcium transients of Df scl hearts have 

significantly larger amplitudes than those of Df γ-ray 6, Ca-P60AKum 295/ Df(2L) 12,+ 

hearts, which have the same amplitudes as wild-type controls (Figure 6.6C). These 

results indicate that the hemizigous condition of Ca-P60A is able to rescue the 

arrythmicity phenotype, as well as the abnormal calcium transient amplitudes observed 

in Df scl hearts. This correction of the scl null phenotypes, by the reduction of the Ca-

P60A genetic dosage, is in line with an inhibitory role of the Scl peptides on the Ca-

P60A enzyme, and most importantly, proves that scl and Ca-P60A are functionally 

linked.  
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Figure 6.5 

 

 

 

 

Figure 6.5: The pncr003;2L peptides co-localise with Ca-P60A, the Drosophila 

SERCA homologue, in the dyads. (A-A’’’) Confocal microscopy images showing the 

co-localisation of the pncr003;2L–GFP tagged peptides (green) and Ca-P60A SERCA 

(red) in the SER and dyads (arrowheads) surrounding the sarcomeres of indirect flight 

muscle myofibrils. (B-B’’’) Confocal microscopy images showing the co-localisation of 

the pncr003;2L FH-ORFA  tagged peptides (green) and Ca-P60A SERCA (red) in the 

SER and dyads (arrowheads) surrounding the sarcomeres (blue, phalloidin) of adult 

cardiomyocytes. Scale bars: (A-A’’) = 10µm; (B-B’’) =5µm. 
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Figure 6.6: pncr003;2L interacts genetically with  Ca-P60A. (A) Kymographs 

representing the pattern of heart contractions in Df (2L)scl  (Df γ-ray 6, + / Df(2L) 12,+) 

flies, showing an arrhythmic pattern of heart contractions, and Df(2L)scl carrying a Ca-

P60A null allele (Df γ-ray 6, Ca-P60AKum 295/ Df(2L) 12,+), showing a regular pattern of 

heart contractions. (B) A quantification of the arrythmicity index between these 

genotypes shows that the Df γ-ray 6, Ca-P60AKum 295/ Df(2L) 12,+ flies have a 

significantly lower arrythmicity than pncr003;2L null hearts, as determined by a two-

tailed Mann Whitney test, (U=22, p<0.003,). n=15-20 flies per genotype. (C) Averaged 

G-Camp3 fluorescence signals of calcium transients normalised as in Figure 5.7B, and 

plotted in relation to the wild-type average maximum signal. Df γ-ray 6, + / Df(2L) 12,+ 

hearts show significantly higher calcium transient amplitudes than Df γ-ray 6, Ca-

P60AKum 295/ Df(2L) 12,+ hearts,  as determined  by a two-tailed Mann Whitney 

statistical test, (U=5, p=0.0017),  n=10 flies per genotype. 
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Figure 6.6 
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2.5- The vertebrate Sln and Pln peptides partially recapitulate the function of the 
Scl peptides in flies. 
In order to further assess the homology between sln, pln, and scl at the functional level, 

I tested the functional equivalence between the vertebrate and Drosophila peptides 

within the context of Drosophila melanogaster. For this, different constructs were 

generated, and transfected into flies, in order to generate transgenic Drosophila lines 

expressing the vertebrate peptides.  

First, in order to compare the subcellular localisation of the vertebrate and Drosophila 

peptides, transgenic lines carrying N-terminal FLAG-Hemagglutinin tagged Sln (FH-

Sln) and Pln (FH-Pln) constructs were generated. These N-terminal tagged constructs 

were obtained by cloning the Sln or Pln ORFs into the same N-terminal FLAG-

hemaglutinin tag vector as that used for the FH-ORFA and FH-ORFB constructs. The 

FH-Sln and FH-Pln constructs were co-expressed with scl ORFA-GFP in muscles —

driven with the Dmef2-GaL4 driver— and their subcellular localisation assessed by 

immunohistochemistry (Figure 6.7). These double staining experiments show a perfect 

co-localisation between the Sln and Scl ORFA peptides (Figure 6.7A), and between the 

Pln and Scl ORFA peptides (Figure 6.7B) in the dyads and perinuclear membrane of 

IFM, which, is in agreement with the hypothesis that all of these peptides interact with 

the same protein (SERCA/Ca-P60a). 

Second, in order to compare the function of the Sln, Pln, and Scl peptides, I tested the 

ability of the vertebrate peptides to induce similar over-expression phenotypes as those 

obtained by over-expressing scl, or to rescue the scl null condition.  For this, transgenic 

constructs were generated, in which the scl ORF was substituted by either the sln or pln 

ORF, in the different scl constructs used for the rescue or over-expression experiments 

presented in Chapter V. This ORF substitution strategy was implemented in order to 

ensure that the expression context of the vertebrate peptides is as similar as possible to 

that of the Scl peptides.  

The over-expression of these constructs in a wild-type background, like the over-

expression of Scl itself, leads to an increase in the arrythmicity index (Figure 6.8A). In 

the case of Sln, the increase is very similar to that observed with the Scl peptides, 

compared to the over-expression of the pncr003;2L FS control, or to the control 
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experiments in which each of the UAS lines were present, but not the Dmef2-GaL4 

driver. The over expression of Pln, on the other hand,  produces a more pronounced 

arrythmicity, which is almost two fold in comparison with that produced by either the 

Sln or the Scl peptides.  Interestingly, the over-expression of either Sln or Pln leads to a 

similar reduction in the amplitude of the calcium transients as that observed with the Scl 

peptides (Figure 6.8B), indicating that in this over-expression conditions, the vertebrate 

Sln and Pln peptides affect the activity of SERCA in a similar way as the over-

expression of Scl (Figure 5.8)  

When either of the constructs carrying the Sln or Pln peptides, are expressed in the Df 

scl background, using the Dmef2-GaL4 driver, a small correction in the arrythmicity 

index can be observed compared with Df Scl  flies expressing the pncr003;2L FS 

control construct, however neither of these changes are statistically significant (Figure 

6.8C). Interestingly, the expression of Sln leads to a very minor reduction in the 

amplitude of the calcium transients of Df scl mutants, compared to the expression of the 

pncr003;2L FS control, which is not statistically significant (Figure 6.8D), and is 

therefore consistent with the minor effect that this particular vertebrate peptide has in 

the arrythmicity of the Df scl mutant hearts. On the other hand, the expression of Pln in 

the Df scl mutant background, leads to a significant reduction in the calcium transient 

amplitude, compared  with Df scl hearts expressing the pncr003;2L FS control (Figure 

6.8D), which is comparable with the reduction in amplitude induced by the expression 

of  scl in this same mutant background.  

Regarding Sln, it seems as though the effect of this particular peptide could be 

synergistic with the inhibition of Ca-P60A by Scl, to produce the observed arrythmicity 

and reduction in calcium transients upon its expression in a wild-type background, 

where Scl is normally expressed. However, the effect of Sln on its own seems 

insufficient to rescue the mutant phenotypes induced by the loss of function of Scl. 

In the case of Pln, it is interesting that its effects on calcium are similar to those of Scl, 

in both the rescue and over-expression conditions. There is however a discrepancy 

between the inability of this particular vertebrate peptide to fully rescue the arrhythmic 

phenotype, and its capacity to restore the calcium transients, which is almost as efficient 

as that of scl itself.   



 

 
 

 

Figure 6.7: The pncr003;2L peptides co

(A-B) Confocal microscopy images showing the c

tagged peptides (green) and

(red), or (B) N-terminal 

SER (arrows) and dyads (arrowheads) surrounding the sarcomeres

muscle myofibrils. Scale bar: (A
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Figure 6.7 

The pncr003;2L peptides co-localise with Sln and Pln in the dyads.

Confocal microscopy images showing the co-localisation of the pncr003;2L

peptides (green) and (A) N-terminal FLAG- Hemagglutinin tagged Sln (FH

terminal FLAG-Hemagglutinin Pln (FH-Pln) (red), in the 

and dyads (arrowheads) surrounding the sarcomeres of indirec

Scale bar: (A-B’’)=10µm. 

 

localise with Sln and Pln in the dyads. 

pncr003;2L-GFP 

tagged Sln (FH-Sln) 

in the perinuclear 

of indirect flight 
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Figure 6.8: Vertebrate Sln and Pln peptides partially recapitulate the function of 

the Scl peptides.  

 (A) Quantification of the arrythmicity induced by the over-expression of the vertebrate 

Sln and Pln peptides, compared to the Drosophila pncr003;2L ORFA and ORF B 

peptides. When either Sln or Pln are over-expressed in a wild-type background 

(Dmef2>Sln, and  Dmef2>Pln) they induce a significant increase in arrythmicity index, 

compared to the over expression of the pncr003;2L FS control construct, as determined  

by a two-tailed Mann Whitney statistical test, (U=125, p<0.0005)  and (U=108, 

p<0.0005), respectively. Notice the increase in arrythmicity by the over-expression of 

Sln is similar to that previously observed with the Drosophila peptides, while the 

increase in arrythmicity induced by the over-expression of Pln, is greater compared to 

the other conditions. The expression of the Pln or Sln constructs, without the Dmef-

GaL4 driver has no effect on arrythmicity.  n=10 flies per genotype.  

(B) Averaged GCaMP3 fluorescence signals of calcium transients normalised as in 

Figure 5.7B, and plotted in relation to the wild-type average maximum signal. Hearts 

over-expressing the Pln construct (Dmef2>Pln) show significantly reduced calcium 

transient amplitudes compared to hearts expressing the pncr003;2L FS control 

(Dmef2>pncr003;2L FS) as determined by a two-tailed Mann Whitney statistical test, 

(U=11, p=0.05). The hearts of flies expressing the Sln construct (Dmef2>Sln ) show a 

smaller reduction in calcium transient amplitudes compared to Df(2L)Scl hearts 

expressing the pncr003;2L FS (U=12, p=0.019). n=8-10 flies per genotype. 

(C) A quantification of the arrythmicity of pncr003;2L mutant conditions (Df(2L)scl), in 

which the vertebrate Sln or Pln peptides were expressed to test their capacity to perform 

a phenotypical rescue.  Df(2L)scl  mutants  expressing either Sln or Pln (Df(2L)scl , 

Dmef2>Sln, and  Df(2L)scl , Dmef2>Pln ) show a small reduction in arrythmicity index 

compared to Df(2L)scl  mutant hearts, or Df(2L)scl  expressing the pncr003;2L FS 

control, these reductions however were not significantly different. n=15-20 flies per 

genotype.          

(D Averaged G 

Camp3 fluorescence signals of calcium transients normalised as in Figure 5.7B, and 

plotted in relation to the wild-type average maximum signal. Df(2L)scl hearts  
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Figure 6.8 

expressing the Pln construct (Df(2L)scl , Dmef2>Pln ) show significantly reduced 

calcium transient amplitudes compared to Df(2L)scl hearts expressing the pncr003;2L 

FS control (Df(2L)scl , Dmef2>pncr003;2L FS)  as determined  by a two-tailed Mann 

Whitney statistical test, (U=4,P<0.005).   Df(2L)scl hearts expressing the Sln construct 

(Df(2L)scl , Dmef2>Sln ) show a very small reduction in calcium transient amplitudes 

compared to Df(2L)scl hearts expressing the pncr003;2L FS construct, which is not 

statistically significant. n=8-10 flies per genotype. 
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3- Discussion. 

3.1 A phylogenetic analysis supports the homology between Scl and Pln/Sln  
The work presented in this chapter proposes a molecular function for the regulation of 

pncr003;2L on Ca2+ cycling during cardiac muscle contraction by identifying the 

vertebrate sln /pln gene family, which are the main regulators of the Sarco-endoplasmic 

reticulum Ca2+ ATPase, as functional homologues of pncr003;2L. This homology was 

initially identified by the PHYRE2 homology search engine, and is supported by the 

existence of intermediate homologue sequences, which were identified in a tBLASTn 

search, using the phylogenetic consensus sequence between the Dipteran pncr003;2L 

peptides and human Sln.  

Although homologous sequences were not identified in all intermediate phylogenetic 

ranks between the arthropoda and craniata sub-phyla, the homology between the 

vertebrate and arthropod sequences is still favoured by the higher conservation of the 

more basal arthropod and vertebrate sequences, and by the prevalence of semi-

conservative amino acid changes between the Pln / Sln and  pncr003;2L (Scl) 

sequences.  Further supporting this homology, the work of J.P. Couso [33], who 

performed an extended phylogenetic analysis of these sequences, shows that it is 

possible to reconstitute, using the Sln, Pln and Scl sequences, and an unrelated control 

sequence of similar size, a phylogenetic tree which clusters the Sln, Pln and Scl groups 

together, while effectively out-grouping the unrelated sequence, and which accurately 

reconstitutes the phylogenetic distances between these sequences. 

 The lack of homologues in the other intermediate phylogenetic ranks, could be 

explained by the loss or divergence of these regulatory peptides, which may have either 

only been maintained in arthropods and vertebrates, or which may still be present in the 

other ranks, but with divergence to an extent that the BLAST search fails to identify 

them, similarly as when a query with the Scl sequence fails to identify Sln. 

Alternatively, it is possible that other intermediate species where these sequences have 

been conserved do not have enough coverage in their EST libraries to allow the 

identification of these sequences. If it is the case that this family of genes is conserved 

in other intermediate species, the ongoing generation of higher quality sequence 

libraries for these intermediate phyla and the development of increasingly powerful 

methods for remote homology identification, will certainly lead to their identification in 

the near future. 
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3.2 Evidence supporting the physical interaction between Scl and Ca-P60A 
Regarding the functional relation between scl and Ca-P60A, I firstly show that the Scl 

tagged peptides, whose subcellular localisation has been proven to be real throughout 

this work by different observations such as the lack of such patterns in other membrane 

bound markers, or the ability of these tagged peptides to rescue the Scl null phenotypes, 

co-localise extensively with the endogenous Ca-P60A in the dyads and perinuclear 

region of IFMs and cardiac myocytes. As stated in the results section of this chapter, 

this co-localisation is a pre-requisite for a protein-protein interaction to take place 

between Scl and Ca-p60A, but does not prove it.  The physical interaction between the 

pncr003;2L peptides and Ca-P60A is  supported by the work of J.I. Pueyo, and F.M.G. 

Pearl [33], who parallel to the work presented here, performed biochemical and 

bioinformatics assays, respectively, with both supporting the physical interaction 

between these entities. J.I. Pueyo performed an immunoprecipitation assay, in 

Drosophila S2R+ cells co-expressing either of the N-terminal Hemagglutinin-FLAG 

tagged pncr003;2L ORFA (FH-ORFA), pncr003;2L ORFB (FH-ORFB), Sln (FH-Sln) 

and Pln (FH-Pln) peptides, and Ca-P60A. In this assays, it was shown that both 

Drosophila peptides, and both vertebrate peptides, co-localise with Ca-P60A in S2R+ 

cells and were able to co-immunoprecipitate Ca-P60A, showing that the pncr003;2L 

peptides, as well as the vertebrate peptides, are able to bind Ca-p60A.  

This binding is further supported by the work of F.M.G Pearl, who modelled 

computationally the docking of the pncr003;2L ORF A and ORFB peptides onto Ca-

P60A, after building a structural model for the Scl and Ca-P60A protein structures by 

threading their sequences onto the secondary structures of  Pln, Sln, and SERCA. 

Importantly, these vertebrate structures were all obtained from an X-ray crystallography 

structural model of the Sln-Serca complex [102], which also served to guide the virtual 

dockings. The calculated binding energies obtained for the Scl peptides were very 

similar to those obtained for the Sln and Pln peptides, with their respective Ca-P60A or 

SERCA targets (See Annex 4). The Scl peptides are in fact predicted to be able to dock 

into the same transmembrane pocket, as Sln and Pln, with all of these peptides 

producing similar predicted energy shifts in the overall structure, which essentially 

indicates that the Drosophila and vertebrate peptides have comparable properties with 

respect to their binding their respective Ca-P60A or SERCA targets. Furthermore, the 

results of F.M.G Pearl also show that the key residues for the Sln and Pln binding to 
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SERCA, determined by the crystal structures and by the bioinformatics analysis, are 

conserved in the pncr003;2L peptides. 

3.3 Experimental evidence supporting the functional relation between Scl and Ca-
P60A, and the functional homology between Scl Pln/Sln  
In agreement with a physical interaction between Scl and Ca-P60A and the functional 

homology between Scl and the Sln/Pln peptides, the work presented here provides 

evidence of a functional interaction between Scl and Ca-P60A through the genetic 

interaction observed between these two genes. The results of this genetic interaction, in 

which the hemizygous condition of Ca-P60A rescues the abnormal calcium transients 

and the arrythmicity of scl null flies, are in line with the peptides encoded by this gene 

having an inhibitory effect on Ca-P60A.  These results fit with a model where the scl 

null condition would lift the Scl–mediated inhibition of Ca-P60A, leading to a 

constantly up-regulated enzymatic activity for this Ca2+ ATPase, which would be 

responsible for the abnormal Ca2+ transients and arrhythmia phenotypes.  In such a 

model, the reduction of the genetic dosage for Ca-P60 would indeed be expected to 

compensate for its excessive activity in the absence of Scl. 

Regarding the effects of Scl on the Ca2+ transients, and its inhibitory relation with Ca-

P60A, it needs to be highlighted that different studies, which have focused on the loss or 

excess of function of the Sln and Pln peptides in vertebrate cardiomyocytes, show 

changes in Ca2+ transient amplitudes in these conditions, which are remarkably similar 

to those presented in this work (See Annex 5) [99,103], with the lack of function of the 

vertebrate peptides producing calcium transients with higher amplitudes, and their 

excess of function, transients with lower amplitude, than wild type.  

The model to explain these variations in calcium transients in vertebrates, is that the 

enhanced activity of the SERCA pump, in Pln or Sln null conditions, is more effective 

in replenishing the sarco-endoplasmic reticulum (SER) with Ca2+, leading to higher 

concentrations of luminal calcium in this organelle. Because the rates of calcium release 

through the activated RyR, are regulated by the concentration of luminal Ca2+ and the 

intracellular cytoplasm [104,105], this higher luminal concentration leads to higher 

amounts of calcium being released, and to the higher amplitude in calcium transient. In 

over-expression conditions the opposite occurs, leading to lower amounts of Ca2+.stored 

and released by the SER, and to Ca2+ transients with lower amplitudes. Evidence 

supporting this model has recently been provided in a study which shows that both the 
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SERCA Ca2+ uptake and the SER calcium content, which was quantified by caffeine-

induced SER depletion, are both enhanced  in Sln and Pln double knock-down mice, 

with the mutant calcium transients being proportional to this elevated content [106]. 

Since the lack of function or over-expression of Scl in Drosophila has similar effects in 

Ca2+ dynamics to what has been described for vertebrates, this same model could also 

explain the differences in Ca2+ amplitude observed in Drosophila.  

Finally, in this work, I have assessed the functional equivalence of the vertebrate and 

Drosophila peptides, in light of the extensive evidence suggesting their functional 

homology. Although the vertebrate peptides do not recapitulate completely the function 

of the Scl peptides, which is not entirely unexpected given the extent of divergence 

between these sequences, their effects on the Ca2+ dynamics, in either the scl mutant 

rescue, or in over-expression experiments, are in agreement with these peptides having a 

similar function to that of the Scl peptides. One of the factors, which may contribute to 

these functional differences, is that in vertebrates it has been shown that although both 

Sln and Pln are inhibitors of SERCA,  the mechanisms of this inhibition are slightly 

different between these peptides with the inhibitory effect of Pln on SERCA calcium 

uptake being relieved at high calcium concentrations [103] whereas Sln is inhibitory 

even at high calcium concentrations [99,107]. As will be discussed in the general 

discussion, these differences arise from a different structural interaction between Sln 

and Pln. Since such differences exist already between these paralogues, it is conceivable 

that more or less subtle differences in the mechanisms of regulation of SERCA, or Ca-

P60A may exist between the vertebrate and Drosophila homologues, which may 

account for the lack of a full functional equivalence, particularly in the case of Sln, 

which was generally less effective in mimicking the effects of Scl than Pln. Another 

factor which may be important to consider is that it has been reported in the litterature 

that Sln and Pln can form a ternary complex with SERCA [108], and that this binding of 

Sln and Pln would be energetically more stable, according to bioinformatics models, 

than the binding of Sln alone [92]. Since Sln only produces a significant change in 

arrythmicity and calcium transient amplitude in an over-expression condition, and 

therefore in the presence of Scl, a similar mode, in which Sln potentiates the Scl/Ca-

P60A interaction, may explain this seemingly synergistic effect, if a similar ternary 

complex occurred between Scl, Sln, and Ca-P60a.   
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In these experiments Pln, was able to recapitulate the effects of Scl on the Ca2+ 

transients, but was unable to completely rescue the arrythmicity phenotype, while 

producing a much higher arrythmicity than Sln and Pln in an over-expression condition.  

This inability of Pln to fully rescue the arrythmicity phenotype of Df scl mutants could 

be linked with the much higher arrythmicity index observed in flies over-expressing 

Pln. It could be possible, for example, that this peptide, which is relatively different to 

both Scl and Sln, because of its larger cytoplasmic domain, may have an independent 

effect on heart rythmicity in flies, with regards to its regulation of Ca-P60A, which 

would explain the higher arrythmicity observed during its over-expression, and the lack 

of a full rescue of the arrhythmic phenotype, despite its behaviour, similar to Scl, 

regarding the calcium transients in these different conditions. It is important to note 

however, that the arrythmicity produced by the over-expression of Pln has a component, 

which is synergistic with the function of Scl, because the arrythmicity produced by the 

expression of Pln is much lower in an Scl null background than  in a wild-type 

background (compare Figures 6.8A and 6.8C). In this sense, one needs to bear in mind 

that the arrythmicity phenotype, as discussed in the previous chapter, could be 

considered as a secondary effect of the Ca2+ imbalance, whose cause is yet unclear, and 

therefore the rescue of the Ca2+ dynamics should be considered the most relevant result, 

which in this case, proves the functional homology between these peptides. 

 

3.4 Conclusion 
The scl / pln / sln family of smORFs, conserved from Drosophila  to humans, represent  

an ancient system for the regulation of Ca2+ cycling in muscles, and is one of the very 

few examples of small open reading frame genes conserved across such an evolutionary 

distance. The RpL41 ribosomal protein is the only other example of a peptide of under 

30 aa, conserved between flies and humans [109,110], although the functional 

homology between the Drosophila RpL41 and its human orthologue have not been 

thoroughly assessed yet. These results are therefore important for the field of smORFs, 

as they show that such conservation is possible in other small peptides, and most 

importantly, that it is possible to detect it when using the right methods. While this work 

exposes the limitations of conventional BLAST homology searches when applied to 

small sequences, it also shows how a more sophisticated homology search method, like 
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PHYRE2, can be remarkably effective in identifying remote homologues for small 

sequences, and in unveiling their biological functions. 
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Chapter VII - General Discussion. 

 

7.1 The Functional homology between Scl Sln and Pln. 
The work presented here supports the functional homology between the Scl, Pln, and 

Sln peptides, with regards to their inhibitory role on Ca2+ uptake by SERCA. The 

regulatory mechanisms leading to this inhibition and its effects in specific muscles and 

in the whole organism are beginning to be understood in mammals, where the 

relationship between Pln, Sln and SERCA is the target of extensive research. From my 

results, it is clear that the regulation of Ca2+ by Scl is necessary for the adequate 

function of the heart in flies. However, the complex patterns of expression, of the 

different scl isoforms show that a regulatory mechanism is already in place to control 

the expression, and therefore the function of these peptides in different kinds of 

muscles. My work provides a good starting point for future work to characterise the full 

extent of the effects of this Scl-mediated Ca2+ uptake regulation in flies, and the full 

extent of homology of this ancestral Ca2+ trafficking regulation mechanism between 

mammals and flies. 

7.1a Sln and Pln are reversible inhibitors of SERCA, regulated by their 
phosphorylation state. 
 In vertebrates, both Pln and Sln constitute a reversible mechanism to down-regulate the 

activity of SERCA by lowering its apparent affinity for Ca2+, based on the 

phosphorylation state of these peptides.  This Pln and Sln-dependent inhibition is lifted 

upon activation of the β-adrenergic pathway by β agonists such as epinephrine [96]. The 

activation of the β-adrenergic pathway leads to the phosphorylation and inactivation of 

both Pln and Sln, throughout protein Kinase A (PKA), which mediates the 

phosphorylation of Pln, at its Ser-16 residue, and throughout the Ca2+ /calmodulin 

dependent kinase II (CaMKII), which mediates the phosphorylation of both Pln and Sln, 

at their Thr-17 and Thr-5 residues, respectively [111] (Figure 7.1). These 
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phosphorylation events lead to the inactivation of the inhibitory effects of Sln and Pln 

on SERCA, and therefore to the upregulation of the SERCA activity, which is reflected 

by an increase in the force of muscle contraction [96].   

The regulation of Scl on Ca-P60A could also be reversible, in which case it would be 

important to determine whether the regulation of Scl is also dependent on its 

phosphorylation state. Although the phosphorylation of Pln takes place in its N-

terminus region, which is not conserved in Sln or Scl, the Sln threonine-5 residue 

appears to be conserved in different arthropods (including Bombus, Apis, Bombyx, 

Anopheles, and Drosophila mojavensis), but not in Drosophila melanogaster. However, 

a common feature of Scl in arthropods is the presence of serine residues in the N-

termini of their sequences; for Drosophilids, including D. melanogaster, these are in 

positions 2 or 6. Similarly, threonines 9 and 10 appear to be conserved across insects 

(Figure 7.2). The presence and conservation of some of these residues in arthropods, 

which are potential targets of phosphorylation, and the fact that during vertebrate 

evolution, different residues have been selected for the phosphorylation of Pln and Sln, 

allow for the idea that Scl could also be regulated by its phosphorylation state. This 

hypothesis would have to be tested experimentally, by in-vitro phosphorylation assays.  

7.1b Regulation of Ca-P60A by a β-adrenergic-like pathway? 
Another important element is that Drosophila lacks an adrenergic system, with neither 

epinephrine nor norepinephrine occurring normally in flies. Instead the fly uses 

octopamine (OA), which performs roughly similar functions in the fly as the adrenergic 

agonists in mammals, by stimulating different families of adrenergic-like OA receptors 

[112]. It would therefore be interesting to determine if the OA pathway regulates the 

inhibition of Ca-P60A by Scl, as the β-adrenergic pathway regulates the inhibition of 

SERCA by Sln/Pln.  

Although OA is found at high levels in the central and peripheral nervous tissues of the 

fly [113], where it acts as a neurotransmitter, circulating levels of OA have been 

observed in the haemolymph, particularly during conditions of stress, where OA plays a 

neurohormonal role [114]. Interestingly, in a recent study aimed at identifying the 

different effects of OA in the muscle physiology of Drosophila larvae, it has been 

reported that although OA has an effect on synaptic modulation, potentiating 

neuromuscular transduction, it also has an effect on the contractile force of the muscles 
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—as measured through a sensitive tension transducer [115]. Importantly, this effect is 

independent of its neuro-modulatory effect, and is mediated by a molecular mechanism 

intrinsic to the muscle cell [115]. In that study, it was proposed that the OA-mediated 

intramuscular effect, leading to muscle contraction strength-enhancement, would most 

likely occur through the activation of a β-adrenergic-like receptor, localised post-

synaptically on the muscle membrane, which would respond by inducing a second 

messenger system, possibly involving cyclic adenosyl monophosphate (cAMP), and 

PKA, and which would ultimately act on a yet unidentified target. A hypothesis, which 

was suggested to explain the intracellular mechanism leading to this increase in 

contraction strength, implicated the stiffening of the giant muscle protein Titin, which 

has a structural role in sarcomeres but also in their elastic properties [116].These 

observations are interesting, because they show that Drosophila muscles can respond 

directly to OA. One could even go further and hypothesise that Scl may be involved in 

those intramuscular effects. As shown in this work, scl is highly expressed in larval 

muscles and modulates Ca2+ dynamics in hearts. This hypothesis would make sense, 

considering that such an increase in muscle contraction strength, induced by an intrinsic 

molecular mechanism within the muscle, and which is activated by the β-adrenergic-

like pathway, is in line with the effects of Pln or Sln on mammalian muscles. A similar 

study, assessing the strength of muscle contraction and calcium dynamics in larval 

muscles —or cardiac muscles, with a sensitive enough tension transducer— would offer 

a particularly interesting context in which to study the relation between Scl and the β-

adrenergic-like pathway, and therefore the relation between the regulatory pathways 

that govern the activity of the Scl peptides in flies, and the Pln/Scl peptides in 

mammals. Furthermore, such a study would provide a unified function for scl across 

different types of muscles. 

OA has an effect on Drosophila larval muscles, similar to that of adrenaline in 

mammalian muscles, increasing muscle contractility. My results do not reflect an effect 

of Scl on the contractility of the heart. It is important to keep in mind, however, that in 

my case, the contractility was measured by the differences in fractional shortening, 

between Scl mutants and wild-type animals, which may not necessarily reflect the 

strength with which the cardiomyocites are contracting. In fact, in mice doubly mutant 

for Sln and Pln, where the link between Sln, Pln and cardiomyocyte contractility is well 

established, although young mice present an enhanced Ca2+ uptake activity by SERCA, 
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and higher amplitudes in their Ca2+ transients, no differences were observed in the 

cardiac fractional shortening of those animals. Older mice even presented a lower 

fractional shortening than wild-type, which is the opposite as would be expected from 

an enhancement in contractile strength, although this was attributed to the effects of 

cardiac hypertrophy on these mice [101]. These results suggest that the heart, in 

Drosophila and mammals, may already contract to its maximum capacity in wild-type 

animals, and therefore it may not be possible to observe larger than wild-type fractional 

shortenings. 

Regarding the behavioural observations presented in this study, showing no differences 

between scl null and wild-type adult flies, and stating that no obvious behavioural issues 

were observed in larvae, if Scl like Pln and Sln, had an effect on the contractile strength 

of the muscle, it is not necessarily easy to imagine what such effects would represent for 

the behaviour of the animal. Interestingly, even though Sln and Pln are also known to 

regulate Ca2+ in skeletal muscles, Sln/Pln double knock down mice are viable, have a 

normal morphological appearance, and there are no behavioural phenotypes reported for 

these mutants either, apart from the signs of cardiac hypertrophy in the heart with age 

[106]. It is possible, however, that a more meticulous analysis of larval motility, and 

flight capabilities, in Drosophila, which would take into account parameters such as 

crawling or flying speeds, for example, may shed light on the effect of this 

misregulation of Ca2+ dynamics in somatic muscles and on the organism as a whole.  

7.1c Mechanistic differences between the Pln and Sln inhibition of SERCA. 
In mammals, sln and pln are expressed in different kinds of muscles, with pln being 

preferentially expressed in cardiac muscles, and sln being preferentially expressed in 

skeletal muscles and cardiac atrial muscles [117,118]. The different paralogues of 

SERCA themselves are expressed in different tissues, with SERCA1 being expressed in 

skeletal muscles, SERCA2 in both skeletal and cardiac muscles, and SERCA3 in non 

muscle cells [97]. The expression of different SERCA paralogues has been shown to 

coincide with the different patterns of Sln and Pln, suggesting that Sln and Pln may 

preferentially inhibit specific SERCA paralogues in some contexts [108]. This 

differential expression of the pln and sln genes could reflect their different mechanisms 

regarding the inhibition of SERCA. As mentioned before in this work, Sln is able to 

inhibit the apparent Ca2+ affinity of SERCA at high concentrations, whereas Pln cannot. 

The mechanisms of these differences have recently been addressed by a study which 
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shows that Sln can bind to SERCA throughout the conformational changes of the 

ATPase, either in its Ca2+ rich form, or in its calcium depleted form [119], even though 

it does so preferentially in an ATP enriched intermediary state, as the one used to model 

the Scl and Ca-P60A interaction by F.M.G Pearl. On the other hand Pln is only able to 

bind the calcium depleted conformation of the ATPase. This implies that Sln can 

uncouple the ATP pump from Ca2+ transport, as it can maintain its inhibition while the 

ATP is hydrolysed, leading to a “futile” action of the pump, which has been associated 

with a function of Sln in muscle-based thermogenesis in mammals, and in which Pln is 

not implicated [120]. This particular mechanism can explain the higher expression of 

Sln in skeletal muscles, which have a more important contribution to thermogenesis 

than cardiac muscles. Another important difference is that even though Pln and Sln 

share extensive sequence similarities in their transmembrane domain and bind to 

SERCA within the same transmembrane groove, which is in accordance with the 

computational docking results of F.M.G. Pearl, Sln and Pln have been shown to interact 

with distinct SERCA residues within that groove [119].   

Because the Scl sequence has diverged from those of Sln and Pln, it could be possible 

that Scl itself interacts with different amino acids within the transmembrane groove of 

Ca-P60A, for which the Sln peptide may have less affinity. Such a scenario would 

explain that Sln is still able to bind Ca-P60A, as shown in the co-immunoprecipitations 

of J.I. Pueyo, but not with the sufficient affinity to entirely fulfil the function of Scl, as 

shown by the very limited rescue of the scl null calcium transients in this work. Pln on 

the other hand seems to be able to interact with Ca-P60A almost in the same way as Scl, 

at least with regards to calcium regulation. This result is interesting as it would place the 

Pln peptide, whose unique function is to dampen the activity of SERCA as opposed to 

Sln, which also participates in the generation of heat through this inhibition, as more 

closely related to Scl, despite its longer N-terminal domain. In agreement with these 

observations, the amino acid alignments for these peptides (Figure 6.3) seem to show 

consistently more similarity between the arthropod Scl and vertebrate Pln sequences 

than between Scl and Sln. Altogether, these results could indicate that the ancestral 

function of these peptides, conserved throughout evolution, was to dampen the activity 

of SERCA, with Sln then acquiring the ability to co-opt this process to generate heat. 

On the other hand, endothermy has long been known to exist in insects [121] with the 

activity of IFMs, where scl is expressed, being the main mechanism responsible for the 
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increase in insect body temperature. This increase in temperature can be dramatic, with 

the thorax of some flying insects, like bumblebees and moths, being able to reach 

temperatures above 40oC solely through the activity of IFMs [122]. In most flying 

insects this high muscle temperature is not only a consequence of IFM activity, but also 

a requirement to allow the muscles to generate the required wingbeat frequencies  

necessary for flight [121]. What is particularly interesting is that it has been 

demonstrated that honeybees have a mechanism to dynamically modulate their 

metabolic heat production, depending on the temperature of the air [123]. Furthermore, 

in Sphinx moths, it has been shown that the heart plays an essential role in regulating 

the thoracic temperature, by allowing thermal exchanges between the heat producing 

thorax and the cooler abdomen of the animals, preventing the thorax from overheating 

and allowing flight at higher ambient temperatures [122].  Overall, these observations 

indicate that in some insects, cardiac and IFMs have a functional relationship as, either 

direct or indirect, thermoregulators. It would be interesting to explore whether Scl, as 

Sln in vertebrates, is at all implicated in this thermogregulatory process, as this would 

provide another evolutionary context for the conservation of this mechanism for the 

regulation of Ca2+ uptake. 

In this work I have shown that like sln and pln, scl also presents tissue-specific 

expression for each of its different isoforms, which may lead to different ratios of 

ORFA / ORF B peptides being expressed in different muscles (like cardiac muscles and 

IFMs). The conservation of a mechanism between Drosophila and vertebrates that 

confers such a muscle-specific expression to SERCA regulators is very interesting as it 

indicates that this mechanism must be ancestral. In fact, if the Drosophila peptides were 

not found to be regulated by their phosphorylation state, nor by the β-adrenergic-like 

pathway, one could then hypothesise that the ancestral regulation of SERCA activity 

would have occurred through the regulation of the transcriptional expression of its 

inhibitors, in a “static” manner, possibly depending on the dosage of inhibitors 

expressed by different muscles, thereby conferring subtle physiological differences to 

different muscles. In this case, the acquisition of phosphorylation as a mechanism to 

regulate the inhibitory effects of the peptides, as it occurs in vertebrates, would have 

then allowed this regulatory process to become dynamic and responsive to the 

physiological needs of the organism. In the case of Drosophila, and considering the 

“static” regulation scenario, although my results suggest that both of these peptides are 



188 
 

equivalent in function (because they can both rescue the arrythmicity and calcium 

transients of pncr003;2L mutants, and induce the same over-expression phenotypes), it 

is also possible that like Sln and Pln, they may have subtle differences in their 

mechanism of inhibition of SERCA, which would contribute further to the 

physiological differentiation of muscles, beyond their mere dosage. It would therefore 

be interesting to perform similar Ca2+ uptake assays on Ca-P60A, with the two Scl 

peptides, as have been performed in mammals for Pln and Sln [92,94], because such 

assays, which directly measure the enzymatic activities and rates of the ATPase, may be 

sensitive enough to detect subtle differences between Scl ORF A and Scl ORB if these 

exist. 

 

7.1d Drosophila as a model for heart disease 
Finally, my results show that the misregulation of cardiac calcium in Drosophila is 

linked to heart arrhythmias. This relation between intracellular calcium alterations and 

heart arrhythmias is not new. In fact, the misregulation of Ca2+ represents a hot topic in 

cardiac research, because it is one of the main implications in heart disease [88], and 

within this topic, a great focus has been laid on SERCA. As it has been discussed in this 

work, the SER has the primary function of a Ca2+ store, which regulates muscle 

contraction by releasing Ca2+ into the cytosol, and relaxation by active re-uptake of 

calcium into the SER. SERCA induces muscle relaxation by transporting calcium into 

the SER, therefore lowering the cytosolic Ca2+ concentration. This Ca2+ uptake also has 

the effect of replenishing the SER, with a concentration of Ca2+, which will influence 

the amounts of Ca2+ released in the subsequent contraction events [124]. Other channels 

like the Plasma membrane Ca2+ ATPase (PMCA), or the Sodium /Calcium exchanger 

channel (NXC) also participate in the maintenance of Ca2+ homeostasis in the cell, but 

their contribution is significantly less than that of SERCA, contributing to 2%, 28%, 

and 70% of Ca2+ depletion from the cytosolic space, respectively [42]. The cytosolic 

concentrations of Ca2+
 can not only induce muscle contraction, by acting directly on the 

sarcomeres, but can also play a feedback role in regulating the currents that lead to 

muscle contraction in the first place. For example, the L-type voltage-dependent Ca2+ 

channel, which allows the entry of calcium into the cytosol, giving rise to the Ca2+ 

induced Ca2+ release by the RyR, is regulated by the cytosolic concentrations of Ca2+ 

[124]. Similarly, Ca2+ concentrations have also been shown, in humans, to directly 
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regulate a specific Na+ channel (hH1), through the action of CaM, with this interaction 

leading to a reduction in the inactivation rate of this channel, in similar way as has been 

associated with heart arrhythmias [87].  

On the one hand, cardiac dysfunction is often associated with reduced levels of SERCA 

expression [125,126,127]. This has led to the research on the effects of gene transfer 

mediated over-expression of SERCA as a therapeutic alternative for cardiac 

dysfunctions associated with this down regulation. These kinds of studies have reported 

promising results, showing the improvement of mice models of cardiac hypertrophy, 

upon adenoviral gene transfer of SERCA [128]. However, there is a sense of caution for 

this sort this approach, as over-expression of SERCA has also been shown to 

significantly increase the risk of acute arrhythmias and death in rat models for 

myocardial infarction [129]. 

The Drosophila model, as has been presented in this study, should be valuable for 

future research to elucidate the links between SERCA, Ca2+ misregulation and cardiac 

dysfunction. On the one hand, in Drosophila, the misregulation of Ca-P60 has also been 

shown to associated with heart arrhythmias [89] and cardiac dysfunction [130] . On the 

other, I have shown that in the adult Drosophila heart, like in vertebrate hearts, the 

misregulation of Ca2+ dynamics, by either the lack or excess of function of scl, is 

associated with a significant increase in cardiac arrhythmias, which can be corrected by 

either restoring the levels of expression of scl, or by modulating those of Ca-P60A, as 

shown in the case of scl lack of function. Therefore, in the Drosophila adult heart, it is 

possible to measure consistent Ca2+ transient differences between the different genetic 

conditions for scl and the net result of these on heart function. While this system 

benefits from the genetic tools available for the Drosophila model, it is also accessible 

to pharmacological experimentation, as different compounds such as specific channel 

inhibitors, can be added to the saline in which the semi-intact preparations bathe, as has 

previously been reported in larval preparations [131,132]. Furthermore, the work of 

Jeremy Niven has shown that it is also possible to measure the intracellular action 

potentials of Drosophila cardiomyocytes in these live semi-intact preparations. 

Altogether, the Drosophila heart model represents a truly comprehensive system in 

which it could be possible to elucidate the effects of SERCA and Ca2+ misregulation in 

the heart by precisely depicting the contribution of the different ion channels and 

currents, as well as the intracellular molecular pathways governing them.  
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7.2 Implications of this research on the field of smORFs  

7.2a The potential of smORFs 
In the general introduction of this thesis, I addressed the challenges that small ORFs 

represent for genome annotation and portrayed a scenario in which the current repertoire 

of coding genes for most organisms may be significantly incomplete because we may 

have missed potentially thousands of small open reading frames, encoding functional 

peptides such as tal, which codes for 11 aa -33 aa peptides, and which have a vital role 

in Drosophila. I addressed how different bioinformatics studies support such a scenario, 

by predicting the existence of hundreds of putatively coding, and therefore functional 

smORFs, in organisms that range from yeast to mice, and how further studies have 

provided experimental evidence that many of these smORFs are functional, leading to 

morphological defects when over-expressed, in the case of the Arabidopsis study [23], 

or to lack of growth in different mediums when excised, in the case of  the yeast study 

[22].   

In this work, I carried out a study, with the aim to determine the specific function of 

pncr003;2L, a gene that was initially annotated as a non-coding RNA, but which had 

elements suggesting that it may be a protein coding gene, according to one of those 

bioinformatics studies [19]. Through my work, I have shown that  pncr003;2L is indeed 

a protein coding gene, therefore validating the computational prediction methods and I 

have proven that these peptides, through their evolutionarily conserved mechanism of 

regulation for Ca2+ trafficking during muscle contraction, participate in an ancestral and 

major cellular process. Overall, these results urge us to carefully consider the potential 

of smORFs which can be hidden in the genome, and which could have major 

implications in the biology of the organisms encoding them.  

7.2b putatively non-coding RNAs could represent a rich source of smORFs 
Recently, the development of techniques which confer the ability to globally assess the 

transcription of genomes (initially through tilling arrays, and subsequently through 

RNA sequencing) portray an unexpected scenario where up to 70% of the genome 

appears to be transcribed in humans and flies [133,134].  A large proportion of that 

transcriptional signal corresponds to long intergenic non-coding RNAs (lincRNAs), 

which are putatively non-coding sequences, mostly on the basis of their lack of a long 

ORF, generally thought to act as “RNA guides” that recruit protein regulatory 
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complexes to specific genomic loci to control gene expression [135]. Current statistics 

from the genome reference consortium [136] indicate that in humans, there are 13,564 

lincRNAs, a huge number compared with the 20,769 genes annotated as protein coding 

[137]. In Drosophila, the current number of annotated non-coding genes, is also 

considerable although more modest, with 1,331 lincRNAs and 13,937 coding genes 

[138,139].   

From the example of scl presented here, and from that of tal, it would be conceivable to 

believe that such a vast proportion of putatively non-coding genes may represent a rich 

source of smORFs with important functions. This would in fact seem to be the case, as 

recent studies based on ribosome profiling (a technique, which uses ribosome protection 

to nucleases treatment in combination with RNA-seq to obtain a global snapshot of 

ribosome rich, and therefore translation prone sequences) suggest that at least half of the 

lincRNAs in mice and zebra fish have translational profiles similar to those of canonical 

protein-coding genes, which indicates that smORF encoding [140,141]. Therefore, the 

misannotation of lincRNAs may be widespread, with many smORFs awaiting 

characterisation in these transcripts. Another important technical development which 

may influence the discovery of new smORFs, is the development of more sensitive 

peptidomics techniques, which are able to detect novel small peptides, by using ORF 

libraries built from RNA-seq readings to analyse the data obtained from mass-

spectroscopy, instead of sequences for existing protein databases. A study using these 

methods has already identified 90 peptides, corresponding to novel smORFs, in a 

specific human cell line [142], of which 30 are under 30 aa long.  

7.2 c Contributions of this work as a case study for the functional characterisation 
of smORFs 
Given that the experimental evidence that supports the existence of large numbers of 

smORFs seems to be growing, it would be conceivable that, like scl, other smORFs may 

be conserved between remotely-related species. In this sense, this work has shown that 

standard BLAST searches are rather limited in their ability to identify homologues for 

sequences of small sizes, and may therefore have to be complemented with the use of a 

more sophisticated engine such as PHYRE2, which was able to identify the scl 

homologue in humans. The PHYRE2 prediction was particularly convincing after 

taking into consideration the expression patterns of the Drosophila and vertebrate 

genes, as well as their subcellular localisation. It would therefore be conceivable to use 
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this kind of information for large scale annotation of smORFs, or functional assays, if 

this engine was used to search for homology between novel sets of sequences. In that 

case, in order to support the homology one could compare the RNA-seq expression 

profiles of putative smORF homologues, in most cases available in data repositories, 

and their subcellular localisation in cell culture assays. For this to be possible, however, 

the PHYRE2 engine would have to integrate the possibility to search for similarities 

between custom libraries of  predicted structures corresponding to novel sequences, 

instead of comparing the predicted structure of a query sequence with the structures and 

sequences from a library of annotated proteins.  

Regarding the use of transposon based strategies to generate mutants for novel smORFs 

for a reverse genetics approach, as a case study, this work shows that these methods are 

effective, because it was possible to obtain a null condition for scl, but it also exposes 

some of their weaknesses. Apart from the, apparently remote possibility of having 

associated alleles (only 0.3-0.5% of the pBac stocks generated for the Exelixis 

collection were reported to have background mutations [54]), these weaknesses also lay 

on the extensive work required to generate and map the new mutations, and  

importantly, on the fact that other genes can also be affected by them, such as the 

CG31739, CG13282 and CG1328 genes in this case. These kinds of issues may justify 

the lack of functional studies undertaken on novel genes, such as smORF genes, despite 

having transposon insertions in, or near to, most genes in the Drosophila genome. As 

new methods and tools to target specific genes are emerging in the field of genetics, 

such as the recent improvement and simplification of the ends-out homologous 

recombination method, which used to be extremely laborious and very ineffective 

(requiring several generations of genetic crosses, and the screening hundreds of 

thousands of flies, in order to obtain a positive recombinant [143]), but would now yield 

a fair amount of positive recombinants in only a couple of generations of flies [144],  it 

is possible that the functional characterisation of novel genes, and particularly novel 

smORF genes, may become a more feasible, and wide-spread practice in the near future.  
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Figure 7.1 

 

 

Figure7.1: The inhibition of SERCA2a in cardiac muscles by the Sln and Pln 

peptides is regulated by the β-adrenergic in vertebrates. Diagram representing the 

regulatation of Sln and Pln by the β-adrenergic pathway, modified from [96]. Sln and 

Pln are inhibitors of SERCA2a, in cardiac muscles. The signal from the β-adrenergic 

receptor proceeds through Gs proteins to stimulate the formation of cyclic AMP (cAMP) 

by adenyl cyclase. Elevations of cAMP activate cAMP dependent protein kinase A 

(PKA) and Ca2+calmodulin dependent kinase II (CaMKII). PKA and CaMKII 

phosphorylate Phospholamban (PLN) and Sarcolipin and (SLN), and release their 

inhibitory effect on SERCA2a, leading to increased Ca2+ uptake, and release from the 

cytoplasmic stores, and to increased cardiomyocite contractility. 
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Figure 7.2 

 

 

Possible conserved phosphorylation sites in the Scl family of peptides

Alignment highlighting the N-termiuns Threonine and Serine residues (bold and 

underlined) known to be phosphorylated in vertebrates, and  showing patterns of 

rthropods, suggesting that the arthropod peptides may be subjected to 

phosphorylation-dependent regulation as their vertebrate homologues.
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Annexes 

 

 

 

 

Annex 1 

 

Annex 1: List of currently annotated genes coding for peptides under 30 amino 
acids long in Drosophila melanogaster. 

  

Currently annotated genes coding for peptides under 30 aa long 
in Drosophila melanogaster 

size(aa) name function 

      

11 tal-1A actin filament organisation; morphogenesis 

of an epithelium; imaginal disc-derived wing 

morphogenesis 

11 tal-2A 
11 tal-3A 
21 CG43178 unknown 

21 CG43200 unknown 

22 CG43172 unknown 

23 CG43171 unknown 

23 CG43201 unknown 

25 RpL41 ribosomal protein 

25 Acp98AB accessory gland protein 
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Generation of an FRT-mediated specific deficiency: 
 
Cross1 
 
w / FM7; b F02056 cn    X                    w hs-Flp  ; Adv / CyO   
 
                                                                                           
 
F1 w hs-Flp  / FM7 ; b F02056 cn  / CyO    
 
 
Cross 2  
 
w hs-Flp  /FM7 ; b F02056 cn  / CyO      X             w; e01605 bw             
 
 
 
 F2                            w hs-Flp  / w ; b F02056 cn  / e01605 bw             
 
   
              
 
Cross 3 
 
w hs-Flp  / w ; b F02056 cn  /  e01605 bw        X    w ; b cn bw  
 
 
 
 
 4 possible classes can be obtained:    
         
   

chromosome class: genotype: 

genetic 

markers: phenotype: 

parental 
w ; b F02056 cn  /  b cn bw 

black, 

cinnabar black cuticle, orange eye 

 
parental  w ; e01605 bw    /  b cn bw                     brown                      pale pink eye  

 
                                                                            

recombinant: 

 duplication by-product w ; b F02056-e01605 bw  /  b cn bw       black, brown          black cuticle, pale pink eye  

 
                      recombinant:  

specific deficiency w ; e01605-F02056 cn   /  b cn bw        cinnabar                        dark orange eye 
 

 
 
                                  Make stable stocks, over CyO Balancer, confirm by PCR 
 
 
 
 

Annex 2 (1/2) 

♂ 

♀ ♂ 

♂ ♀ 

This step selects and isolates recombinant 
events leading to the generation of a specific 
deficiency. 

♀ 

♀ 

♂ 

FLP is under a heat-shock response promoter, so at 
this stage the F2 progeny needs to be submitted to 
Heats-hock treatments (1 hour  / 37 C°, starting 2 
days after mating, and during 4 more Days), in 
order to activate the enzyme and promote the 
recombination of the 2 transposons at the FRT site. 

FLP is homozygous on the X chromosome, so this 
cross needs to be set up with Females FLP and 
males carrying the transposon, in order to ensure 
that all males in the F1 carry the transposon. 
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Reversion protocol using a Pbac F02056 -element and the pbac transposase : 

 
 
Cross 1 
 
w; pBac{WH} F02056           X        w ; CyO/If ; b ∆2-3 transposase, Sb / TM6b 
  
                                                                                          
    F1                w; pBac{WH} F02056 / CyO ; b ∆2-3 transposase, Sb / + 
 
 
The F1 is mosaic as the transposition event doesn’t occur in all the cells of the flies. A reversion will 
only be maintained in the progeny if it occurred in a germ-cell, and this contributes to the fertilisation 
event. The dysgenic flies are distinguishable by their mosaic eyes. 
 
Cross 2 
 
 F1          w; pBac{WH} F02056 / CyO ; b ∆2-3 transposase, Sb / +  X  w; CyO / if ; MKRS / TM6b 
 
 
 
     F2                    w: pBac{WH} F02056 / CyO ; MKRS or TM6b / + 
 
 

 
                                     

 
 

 

 

 

 

 

 

Annex 2 (2/2) 

 

 

Annex 2: Genetic protocols followed for the generation of the Specific FRT-
mediated deficiency and for the pBac{WH}F02056 reversion 

♂ 

♀ 

♂ 

♀ 

This step isolates 
each reversion 
event. White 
eyed F2 male 
revertants were 
selected to 
generate isogenic 
stable stocks. 
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Annex3:DNA alignments of pncr003;2L, from the pBac{WH}F02056 lines, and 
pncr003;2L FS construct. 

Annex 3(1/2): DNA alignment of the pncr003;2L RE28911 sequence from Or-R, and 

the pBac{WH} F02056, and pBac{WH} F02056 revertant (RV2) showing that the ORF 

sequences (pink) are conserved in all these conditions, notice that few other point 

mutations are present elsewhere in the transcript. The T/C nt substitution in position 361 

gives rise to a synonymous L/L mutation in ORF B. The region in blue represents the 

approximate insertion site of the pBac{WH}F02056 transposon. 

Annex 3(2/2): DNA alignment of the pncr003;2L RE28911 sequences used for the 

pncr003;2L construct and the pncr003;2L FS construct. Showing the nt substitutions 

(red) made to generate frame-shifts in both ORFs (pink).  
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Annex 4: The Scl peptides can be bioinformatically docked into Ca-P60A, similarly 

as the vertebrate Sln and Pln peptides into SERCA. (A-D) Molecular models of the 

Interaction between the Drosophila Scl peptides and Ca-P60A, and between the 

vertebrate Pln and Sln peptides and SERCA1a, courtesy of F.M.G Pearl. For this model 

the structure of Ca-P60A was modelled on the structure of SERCA1a in its “EI” 

intermediate structural conformation, using the published crystal structure of SERCA 

bound to Sarcolipin [102]. (A) Scl ORFA (magenta) and (B)Scl ORFB (purple) dock 

onto Ca-P60A (green) similarly as (C) Phospholamban (yellow) and (D) Sarcolipin 

(cyan) dock onto human SERCA1a. Peptide C-termini are facing downwards. 
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Annex 5: Sln and Pln inhibit the activity of SERCA, and their mutants produce 

cardiac calcium transients comparable to those of Scl null mutants.  

(A) Schematic representation modified from [94], of the homology between the PLB 

and SLN protein sequence, according to their different domains. Horizontal lines denote 

the membrane boundaries, and amino acids are shown in circles using their one letter 

code.  

 
(B) Illustration, modified from [94] , showing the different functional effects of PLB 

and SLN on SR Ca2+ uptake in vertebrate cardiomyocytes: In over expression 

conditions the inhibitory effect of PLB (PLB O.E) on SERCA calcium uptake is 

relieved at high calcium concentrations [103] whereas the SLN over-expression (SLN 

O.E) is inhibitory even at high calcium concentrations [99,107], indicating subtle 

differences in the mechanism of action of the two regulators.  

 

(C) Effects of the loss of function of the Pln and Sln inhibitors in the activity of SERCA 

in vertebrate cardiomyocytes, as presented by [101]. Sln and Pln double mutants show 

an important increase in calcium uptake by SERCA compared to wild-type conditions 

(Left),  The Calcium transient recordings of wild-type (Right, Top) and Sln and Pln 

double mutant cardiomyocytes (Right, Bottom), show a marked increase in calcium 

amplitude, very similar to that observed in Scl mutants . 
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Appendix 

 

 

Appended to this thesis is the manuscript, as published in the Science journal, in which 
much of the work presented in this thesis was included. 
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Conserved Regulation of Cardiac
Calcium Uptake by Peptides Encoded
in Small Open Reading Frames
Emile G. Magny,1 Jose Ignacio Pueyo,1 Frances M.G. Pearl,1,2 Miguel Angel Cespedes,1

Jeremy E. Niven,1 Sarah A. Bishop,1 Juan Pablo Couso1*

Small open reading frames (smORFs) are short DNA sequences that are able to encode small
peptides of less than 100 amino acids. Study of these elements has been neglected despite
thousands existing in our genomes. We and others previously showed that peptides as short as
11 amino acids are translated and provide essential functions during insect development. Here,
we describe two peptides of less than 30 amino acids regulating calcium transport, and hence
influencing regular muscle contraction, in the Drosophila heart. These peptides seem conserved for
more than 550 million years in a range of species from flies to humans, in which they have
been implicated in cardiac pathologies. Such conservation suggests that the mechanisms for heart
regulation are ancient and that smORFs may be a fundamental genome component that should
be studied systematically.

Thousands of small open reading frames
(smORFs) exist in animal and plant ge-
nomes, yet their relevance and functional-

ity has rarely been addressed because of their
challenging properties (1). Detection of small
peptides requires specific biochemical and bio-
informatics techniques that are rarely used in the
characterization of whole genomes. Thus, the num-
ber of translated smORFs and their biological func-
tions are still unknown. We and others previously
characterized a Drosophila gene, tarsal-less (tal/pri),
encoding four smORFs as short as 11 amino acids
that are translated and provide essential functions
during development (2–4). These results demonstrate
that extremely short smORFs can be functional
and suggest, when extrapolated by bioinformatics
and combined with the latest data from deep RNA
sequencing, that hundreds of smORF-encoding
transcripts exist in the fly genome (5). However, the
tal gene is a single example and seems present only
in arthropods (2, 3, 6), leaving the questions about
the conservation and wider relevance of smORFs
unanswered. The characterization of several smORFs
displaying conservation of amino-acid sequence,
translation, and biological function of the encoded

peptides throughout evolution would be a power-
ful indicator that smORFs represent an important
but neglected part of our genomes.

Using a bioinformatics method (5), we scruti-
nized the pool of polyadenylated, polysome-
associated putative noncoding RNAs in which
tal was initially included (7) and identified two
potentially functional smORFs of 28 and 29 amino
acids in the transcript encoded by the gene putative
noncoding RNA 003 in 2L (pncr003:2L) (Fig. 1A)
(6). Aswith tal, these smORFs have similar amino
acid sequences to one another and follow strong
Kozak sequences (fig. S1A). These peptides are
highly hydrophobic, with a predicted alpha-helical
secondary structure (fig. S1B).

We corroborated the structure and sequence
of the pncr003:2L transcript by means of reverse
transcription polymerase chain reaction (RT-PCR).
Next, we studied pncr003:2L expression bymeans
of in situ hybridization, which showed strong ex-
pression in somatic muscles and in the post-
embryonic heart (Fig. 1, B to D, and fig. S2, A to
F). We tested the in vivo translation and subcel-
lular localization of these peptides by generating
C-terminal green fluorescent protein (GFP)–tagged
fusions within the pncr003:2L cDNA of each
ORF and expressing these UAS-smORF-GFP
fusions (fig. S8) in muscles with Dmef2-Gal4.
We observed the GFP signal at the dyads (Fig. 1E
and fig. S1, C and D) (8)—the structures in which

the sarco-endoplasmic reticulum (SER) membrane
lies closest to both the plasma membrane and the
sarcomeres—in order to facilitate the conversion
of the voltage signal into calcium release and mus-
cle contraction (fig. S2G). Similar results were ob-
tainedwith N-terminal Flag-hemaglutinin-tagged
smORFs (UAS-FH-smORF) (Fig. 1F and figs. S1,
E and F, and S8).

To obtain a null mutant for pncr003:2L, we
generated two small overlapping deficiencies around
the{WH}f02056 insertion (Fig. 1A). Together,
these two deletions generate a synthetic homo-
zygous deficiency [“Df(2L)scl”] eliminating the
pncr003:2L transcript and the CG13283 and
CG13282 genes and represents our null condition
for the pncr003:2L locus, as corroborated with RT-
PCR and in situ hybridization (fig. S2, A to F).

Df(2L)scl mutants showed no behavioral or
morphological muscle phenotype, even at the ul-
trastructural level (fig. S2, H to Q). We analyzed
muscle function using time-lapse recordings of adult
fly hearts (9), which provide an excellent read-out of
muscle contraction (Fig. 2A). Df(2L)scl mutants
showed significantly more arrhythmic cardiac con-
tractions than those of wild-type flies (Fig. 2, A and
B; tables S5 and S6; andmovies S1 and S2). These
effects are due to a requirement for pncr003:2L pep-
tides and not the other genes removed in Df(2L)scl
because the phenotype (i) is mimicked by RNA in-
terference on pncr003:2L and (ii) is rescued by
restoring expression of UAS-pncr003:2L or either
of its encoded peptides inDf(2L)sclmutants, but is
not rescued by smORFs carrying frameshifts in the
peptide sequence (Fig. 2B, figs. S3A and S8, and
tables S5 and S6). Correspondingly, intracellular
electrophysiology recordings in cardiac cells show
irregular action potentials (APs), involving “dou-
ble” and occasionally failedAPs in the nonrescued
mutants (Fig. 2C, fig. S3C, and table S7).

Because the smORF peptides localize in the
dyads, we checked a possible physiological func-
tion related to Ca2+ trafficking during muscle
contraction by visualizing intracellular Ca2+ (9).
During heart contraction, the Ca2+ transients of
pncr003:2Lmutants showed significantly higher
amplitudes and steeper decay than those of wild-
type controls (Fig. 2D; fig. S3, D and E; and table
S8). Overexpression of either peptide in a wild-
type fly—but not of frameshifted smORFs—
produced reciprocal effects on Ca2+ transients but
similar arrhythmias toDf(2L)scl.Altogether, these
results suggest (i) a primary role for the pcnr003:2L
gene during Ca2+ trafficking at the SER, which
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Fig. 1. pncr003:2Lpeptide expression in muscles and
heart. (A) Annotated genomic region from the Flybase Genome
Browser displaying pncr003:02L, nearby genes and deficiencies
generated in this work, Df(2L)scl12 (green bar), and Df(2L)sclg6

(dark blue bar). As transheterozygous, these two deficiencies
generate a homozygous deletion (Df(2L)scl, red bar), eliminating
the pcnr003:2L transcript and theCG13283 andCG13282genes.
(B to D) Expression of pncr003:2LmRNA in Drosophila muscles
(arrowhead), in (B) stage 17 embryos; (C) larval somatic muscles
(arrowhead) and heart (arrow), and (D) in the adult heart (ar-
row). (E to E’’) ORFA-GFP expression (green; arrowheads) sur-
rounding the phalloidin-stained sarcomeres (magenta) in adult
transversal heart fibers. (F to F’’) FH-ORFA peptides display a
reticular pattern (green; arrowheads) in adult longitudinal
heart fibers labeled with phalloidin (magenta). Blue, 4´,6-
diamidino-2-phenylindole (DAPI)–stained nuclei.

Fig. 2. Role of pnrc003:2L in cardiac muscle contraction. (A) Kymo-
graphs comparing the pattern of heart contractions for wild-type and Df(2L)scl
hearts. The mutant shows irregular periods, some being abnormally long
(asterisk). A normal heart period is indicated (green). (B) Arrythmicity index of
pncr003:2L loss-of-function and rescue genotypes (left) and excess of function
genotypes (right), normalized to age matched wild-type controls (9). Columns
represent mean, and error bars represent SE. (C) Sample traces of intracellular
recordings from adult cardiomyocytes of wild-type (green); Df(2L)scl (red); and
Df(2L)scl rescued by UAS-pncr003:2L (blue). Arrows indicate “double” action

potentials. Arrowheads indicate failed action potentials. Gray dashed line
indicates resting potentials. Sample peaks from each trace (underlined) ap-
pear magnified. (D) Ca2+ transients during heart contraction of Df(2L)scl and
rescue genotypes (left) and gain-of-function genotypes (right) color-coded as
in (B). The fluorescent Ca2+ sensor G-CaMP3 was used to visualize calcium
levels. Y axis values are ratios of calcium dependent fluorescence on its decay
phase normalized to basal intensities and presented as percentages relative to
wild-type controls; x axis values are percentage of time from the point of
maximum transient amplitude.
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would be secondarily required for regular muscle
contraction; and (ii) that such a role is mediated
by the peptides encoded by the 28– and 29–amino
acid smORFs.

We searched for conservation of these smORFs
in other species by using Basic Local Alignment
Search Tool (BLAST) and only identified them in
other Drosophilids [withKa/Ks scores of <0.2 sup-
porting translation (10)]. Because the pncr003:2L
peptides have a predicted helical structure, we
searched for possible structural homologs (9) and
retrieved the 30–amino acid human sarcolipin

(Sln) peptide (Fig. 3A and tables S1 and S2) (11).
However, the Sln and pncr003:2L peptides dis-
play noticeable differences in their amino acid
sequences (Fig. 3B). If they were true homologs,
peptides with intermediate sequences should exist
in the stem lineages to both flies and humans.We
devised a bioinformatics protocol (9) to identify
possible pncr003:2L homologs in arthropods
(Fig. 3B and fig. S4) plus nonannotated homologs
of sln and its longer paralogue phospholamban
(pln) (Fig. 3B and fig. S4) (12), until basal arthropod
smORFs identified basal vertebrate homologs with

the expected intermediate amino acid changes
(fig. S4,A toC). Supporting their putative homology,
we found that (i) antibodies to sarcolipin recognize
the pncr003:2L peptides (Fig. 3, C and E, and fig.
S5, A and B), and (ii) threading the pncr003:2L
amino acid sequences on the Pln three-dimensional
(3D) structure (13) also produces a compatible
structure (Fig. 3D and tables S1 and S2).

A phylogenetic tree of all these peptides sug-
gests that Sln and Pln emerged from a gene du-
plication in vertebrates, whereas an independent
and more recent duplication in flies gave rise to

Fig. 3. Putative homology of sequence and structure
between human andDrosophila peptides. (A) Secondary
structure of the conserved domain [underlined in (B)] of
Sarcolipin (top) and Drosophila pncr003:2LORFA peptide (bot-
tom). Blue, nitrogen atoms; red, oxygen atoms. (B) Phyloge-
netic tree of vertebrate and arthropod (pncr003:2L, labeled
“Sarcolamban”) peptides. Asterisks indicate sequences identi-
fied in this study (supplementary data file S1). Putative an-
cestral consensus sequences (left) and further analysis (fig. S4)
(9) suggest that the two vertebrate peptides arose from a du-
plication of a single ancestor that also diverged independently
into the different arthropod Sarcolamban peptides. Analysis of
RNA (cDNA) sequences (arrows) indicates that all peptides arise
from single smORFs (red boxes) uninterrupted by exons, sug-
gesting that ancestral peptides were also encoded by smORFs.
(C) Western blots from Drosophila S2 cells showing that the
antibody to human Sarcolipin (left lanes) recognizes the Dro-
sophila FH-tagged Sarcolamban18-kD peptides SclA and SclB,
but not the 10-kD FH-tag alone. Right lanes show positive
controls, with antibody to HA recognizing all peptides. (D)
A compatible structure for Sarcolamban-A (magenta) is ob-
tained by threading it onto the C-terminal domain of ver-
tebrate Phospholamban (green). (E to E’’’) Drosophila FH-SclA
peptides (arrowheads) surrounding the sarcomeres (red) are
recognized by antibodies to Sarcolipin (green) and Flag (blue)
in larval somatic muscles.
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pncr003:2LORFA and ORFB peptides. The tree,
sequence alignments, and further bioinformatics
analysis (fig. S4, supplementary data file S1,
and tables S1 and S2) (9) are altogether compati-
ble with a single origin for the Sln, Pln, and
pncr003:2L peptides from an ancestral peptide-
encoding smORFof ~30 amino acids (Fig. 3B and
fig. S4B). We suggest that pncr003:2L and its ar-
thropod homologs should be renamed sarcolamban
(scl) in order to reflect their similarity and prob-
able homology to vertebrate sln and pln.

Conservation of smORFs across such an evo-
lutionary distance (>550 million years of diver-
gence) has not been described; therefore, we
scrutinized their functional homology. Sln and
Pln regulate Ca2+ traffic in mammal muscles by
dampening the activity of the Sarco-endoplasmic
ReticulumCa2+ adenosine triphosphatase (SERCA),
whose function is to retrieve Ca2+ from the cy-
toplasm back into the SER, leading to muscle
relaxation (fig. S2G) (14). The effects of remov-
ing sln upon the vertebrate muscle Ca2+ tran-
sients are remarkably similar to the effects we
observed in Df(2L)scl mutants (Fig. 2D) (15).
Furthermore, abnormal levels of Sln expression
have been related to human heart arrhythmias
(16), and Sln and Pln have been shown to bind
SERCA (17). In flies, the Scl peptides colocalize
with Drosophila SERCA (Ca-P60A) (Fig. 4A and
fig. S5C) and coimmunoprecipitatewith it (Fig. 4D).
Furthermore, the arrhythmia and abnormal tran-
sients of Df(2L)scl mutants are corrected by re-
ducing the function ofCa-P60A (Fig. 2, B to D), a
genetic interaction that is consistent with a down-
regulating role of Scl upon SERCA activity (18).
Last, threading the sequence of Ca-P60A onto the

3D structure of vertebrate SERCA produces a com-
patible structure that seems able to dock Scl sim-
ilarly to Sln and Pln binding to SERCA (Fig. 4, B
and C; fig. S5, D and E; and tables S3 and S4) (17).

Our studies suggest that Sln and Pln can bind
fly Ca-P60A and can resemble Scl function. Mod-
eling suggests that fly and vertebrate peptides
could bind each other’s SERCA (tables S3 and
S4), and indeed human peptides can pull down
fly Ca-P60A (Fig. 4D). Sln and Pln expressed in
fly muscles and cultured cells localize similarly to
Scl and Ca-P60A (Fig. 4E and figs. S5F and
S6) and produce arrhythmias and Ca2+ transients
similar to those produced by overexpressing fly
Scl peptides (Fig. 2, B and D). Furthermore, ex-
pression of human Pln in Df(2L)scl flies can
rescue themutant Ca2+ transients towardwild type,
and the strong arrhythmia phenotype of ectopic Pln
is itself reduced (Fig. 2, B and D).The human
peptide overexpression and rescue effects do not
completely reproduce those observed with fly pep-
tides, and this suggests that although this family
of peptides may share a regulatory function on
Ca2+ pumps, each seems finely tuned to its own
species-specific SERCA regulation.

Altogether, our results suggest that this family
of peptides may represent an ancient system for
the regulation of Ca2+ traffic, whose alteration
can result in irregular muscle contractions. We
propose that the Drosophila sarcolamban (scl)
gene, previously annotated as the long noncoding
RNA pncr003:2L, actually encodes two func-
tional smORFs of 28 and 29 amino acids that are
translated into bioactive peptides. The analysis
of related amino acid sequences across multiple
species is compatible with a conservation of these

peptides and their putative molecular structure
from flies to vertebrates, correlated with the con-
servation of their biological role in regulating
Ca2+ uptake at the SER. We speculate that this
remarkable conservation, together with previous
reports on the tal gene (2–4), might indicate that
smORFs can reveal both sequence conservation
and important biological functions. Bioinforma-
tics predictions (1, 5) and recent ribosomal pro-
filing data from vertebrates (19) suggest that
translated smORFs may be abundant. We believe
that smORFs cannot be dismissed as irrelevant,
but that their functionality should be considered
whenever encountered.
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formation (9). SclA docks onto Ca-P60A similarly as Phospholamban (yellow)
and Sarcolipin (fig. S5, D and E) onto human SERCA1a (C). Peptide C-termini

are down. (D) FH-tagged Drosophila SclA and SclB and the human Sln and
Pln peptides pull-down the 100-kD Drosophila Ca-P60A (revealed with
antibody to Ca-P60) from transfected S2 cells. Negative control lanes with
Flag-only peptides or beads without antibodies (“ONLY beads”) do not show
similar Ca-P60A signal. (E to E’’’) Human Sln peptides (green; arrowheads)
expressed in the Drosophila adult heart surround the sarcomeres (red; labeled
with antibody to Tropomyosin1). Blue, DAPI-stained nuclei (arrow).
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A Causative Link Between Inner
Ear Defects and Long-Term
Striatal Dysfunction
Michelle W. Antoine,1 Christian A Hübner,2 Joseph C. Arezzo,1 Jean M. Hébert1,3*

There is a high prevalence of behavioral disorders that feature hyperactivity in individuals with
severe inner ear dysfunction. What remains unknown is whether inner ear dysfunction can alter the
brain to promote pathological behavior. Using molecular and behavioral assessments of mice
that carry null or tissue-specific mutations of Slc12a2, we found that inner ear dysfunction causes
motor hyperactivity by increasing in the nucleus accumbens the levels of phosphorylated adenosine
3′,5′-monophosphate response element–binding protein (pCREB) and phosphorylated extracellular
signal-regulated kinase (pERK), key mediators of neurotransmitter signaling and plasticity. Hyperactivity
was remedied by local administration of the pERK inhibitor SL327. These findings reveal that a
sensory impairment, such as inner ear dysfunction, can induce specific molecular changes in the
brain that cause maladaptive behaviors, such as hyperactivity, that have been traditionally
considered exclusively of cerebral origin.

The inner ear contains the cochlea, devoted
to hearing, and the vestibular end organs,
dedicated to balance. In 20 to 95% of chil-

dren with severe hearing loss, auditory and ves-
tibular dysfunction occur concurrently (1, 2). In
such cases, there is a high incidence of behavioral

disorders that feature hyperactivity as a core di-
agnostic symptom (3–5). Although socioenviron-
mental variables have been proposed as risk
factors (6), it is unclear whether sensory impair-
ments, such as inner ear defects, can directly
induce specific changes in the brain that lead to

maladaptive behavior. In nonhuman vertebrates,
including rodents and frogs, surgical or pharma-
cological lesions to the vestibulo-auditory system
are also linked to long-term changes in locomotor
activity, although, to date, the associations be-
tween ear dysfunction and behavior remain un-
explained (7–9). Genetic mouse models of inner
ear dysfunction can exhibit increased levels of
locomotor hyperactivity (10), but because the
gene is mutated in the brain, as well as the inner
ear, the causal neural underpinnings of this be-
havior remain unknown.

Slc12a2 (also known as Nkcc1) is a gene that
encodes a sodium-potassium-chloride cotrans-
porter broadly expressed in tissues, including
the inner ear and central nervous system (CNS)
(11, 12). The Slc12a2 mutant mice used in this
study arose spontaneously in our mouse colony
and exhibit increased levels of motor hyperac-
tivity, including locomotion, circling, and head
tossing (Fig. 1, A and B; movie S1; and fig. S1A),
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Fig. 1. Slc12a2K842*/K842* mutants display a
dopamine receptor–mediated increase in loco-
motor activity that cannot be explained by dis-
ruption of Slc12a2 in the brain. (A) Traces and
(B) quantification of mouse locomotion in an open
field showing that haloperidol alleviates locomotor
activity and circling in Slc12a2K842*/K842* mice with-
out affecting grooming [***P < 0.0001; repeated
measures analysis of variance (ANOVA) with Bonferroni
post hoc comparison]. (C) Germline recombination
of Slc12a2fx/fx mice recapitulates the increased loco-
motion of the Slc12a2K842*/K842*mutant (P = 0.0032,
unpaired two-tailed test). Mice lacking Slc12a2 in the
neocortex and hippocampus (Emx1Cre/+;Slc12a2fx/rec),
striatum (Dlx5/6-Cre;Slc12a2 fx/fx), cerebellum
(En1Cre/+;Slc12a2fx/fx), and CNS (Nestin-Cre;Slc12a2fx/fx)
display normal levels of motor activity (unpaired
two-tailed test). (D) Germline recombination of
Slc12a2fx/fx also recapitulates the circling behavior
of the Slc12a2K842*/K842* mutants. n = 4 to 11 mice
per genotype. All data are means T SEM.
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