

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

PARTICIPANT DOMAIN NAME TOKEN

PROFILE FOR SECURITY ENHANCEMENTS

SUPPORTING SERVICE ORIENTED ARCHITECTURE

By

CHI PO CHEONG

Submitted For The Degree Of

Doctor of Philosophy

DEPARTMENT OF ENGINEERING AND DESIGN
SCHOOL OF ENGINEERING AND INFORMATICS

UNIVERSITY OF SUSSEX
BRIGHTON

UK

July 2014

I

DECLARATION

I hereby declare that this thesis has

not been and will not be, submitted in

whole or in part to another University

for the award of any other degree.

Signature: _____________

Chi Po Cheong

II

UNIVERSITY OF SUSSEX

CHI PO CHEONG – PHD ENGINEERING

PARTICIPANT DOMAIN NAME TOKEN
PROFILE FOR SECURITY ENHANCEMENTS

SUPPORTING SERVICE ORIENTED ARCHITECTURE

SUMMARY

his research proposes a new secure token profile for improving the existing Web

Services security standards. It provides a new authentication mechanism. This

additional level of security is important for the Service-Oriented Architecture (SOA),

which is an architectural style that uses a set of principles and design rules to shape

interacting applications and maintain interoperability. Currently, the market push is

towards SOA, which provides several advantages, for instance: integration with

heterogeneous systems, services reuse, standardization of data exchange, etc. Web

Services is one of the technologies to implement SOA and it can be implemented using

Simple Object Access Protocol (SOAP).

A SOAP-based Web Service relies on XML for its message format and common

application layer protocols for message negotiation and transmission. However, it is a

security challenge when a message is transmitted over the network, especially on the

Internet. The Organization for Advancement of Structured Information Standards

(OASIS) announced a set of Web Services Security standards that focus on two major

areas. “Who” can use the Web Service and “What” are the permissions. However, the

location or domain of the message sender is not authenticated. Therefore, a new secure

token profile called: Participant Domain Name Token Profile (PDNT) is created to

tackle this issue.

The PDNT provides a new security feature, which the existing token profiles do not

address. Location-based authentication is achieved if adopting the PDNT when using

Web Services. In the performance evaluation, PDNT is demonstrated to be significantly

faster than other secure token profiles. The processing overhead of using the PDNT with

other secure token profiles is very small given the additional security provided.

Therefore all the participants can acquire the benefits of increased security and

performance at low cost.

T

III

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Pou Wan Lei for introducing the University of

Sussex and Prof. Chris Chatwin to me so that I have the chance and the opportunity to

do this Doctoral research.

This thesis was made possible through the help and support of lots of people, mainly

from the University of Sussex, the School of Engineering and Informatics. In particular,

I would like to express the deepest appreciation to my supervisor Prof. Chris Chatwin,

who has the attitude and the substance of a genius. Without his guidance and persistent

help, this research is impossible. In addition, I also give my thanks to my supervisor Dr.

Rupert Young for all the help, patience and advice he gave me throughout my research.

And last but not the least; I would like to thank my wife and my mother, who always

give me spiritual support when I am working on my thesis.

1

TABLE OF CONTENTS
Summary ... 2

Acknowledgements ... 3

List of Figures ... 5

List of Tables... 8

Nomenclature .. 9

Chapter 1 - Introduction .. 11

1.1 Background ... 12

1.2 Evolution of Software Architecture Style ... 13

1.3 Motivation ... 16

1.4 Objectives .. 17

1.5 Innovations .. 18

Chapter 2 - A Literature Review of SOA, Web Services and Security 19

2.1 Service-Oriented Architecture (SOA) and Web Services 20

2.2 SOA-Based System ... 23

2.2.1 An SOA-Based Diseases Notification System (SOADNS) 24

2.2.1.1 System Overview .. 24

2.2.1.2 System Architecture .. 25

2.2.1.3 Advantages of SOADNS .. 28

2.2.1.4 Security consideration of SOADNS.. 29

2.3 Web Services Architecture .. 29

2.4 Classes of Web Services ... 30

2.4.1 REST-compliant Web Services.. 30

2.4.2 SOAP-based Web Services .. 34

2

2.4.3 RESTful Web Services versus SOAP-based Web Services 42

2.5 Web Services Security Challenges.. 44

2.6 Web Services Security Technologies .. 49

2.6.1 De facto Web Services security technologies .. 49

2.6.1.1 WS-Security Core Specification 1.1 ... 50

2.6.1.2 Web Service Security: Username Token Profile 1.1 55

2.6.1.3 Web Service Security: X.509 Certificate Token Profile 1.1 56

2.6.1.4 Web Services Security: SAML Token Profile 1.1 59

2.6.1.5 Web Services Security: Kerberos Token Profile 1.1 61

2.6.2 Non-standard Web Services security technologies .. 63

2.7 Conclusion .. 64

Chapter 3 - Participant Domain Name Token Profile (PDNT) 65

3.1 Introduction ... 66

3.2 Service Resource Record .. 68

3.3 Classification of WS-Security Token Profiles .. 70

3.4 Proposed Participant Domain Name Token .. 72

3.5 Processing Rules of Participant Domain Name Token 75

3.6 Security Enhancements ... 78

3.7 Security Scenarios ... 80

3.8 Security Considerations .. 82

3.9 Conclusion .. 83

Chapter 4 - Performance Evaluation and Analysis .. 84

4.1 Introduction ... 85

4.2 Performance Modeling .. 85

3

4.3 Experimental Results and Analysis ... 88

4.3.1 Evaluation Method and Assumptions .. 88

4.3.2 Test cases design .. 89

4.3.3 Message size of each secure token ... 90

4.3.4 Results of Test Case 1 .. 92

4.3.5 Results of Test Case 2 .. 94

4.3.6 Results of Test Case 3 .. 96

4.3.7 Results of Test Case 4 .. 98

4.3.8 Results Analysis ... 102

4.4 Advantages of Participant Domain Name Token.. 103

4.5 Conclusion .. 103

Chapter 5 - Design and Implementation of Participant Domain Name Token 104

5.1 Introduction ... 105

5.2 Building Web Services Platform ... 106

5.2.1 Web Container ... 107

5.2.2 Java Web Services API .. 107

5.3 Web Services Implementation Approaches .. 109

5.4 Implementation of Web Services in Bottom-up Approach 111

5.5 Web Services Security Libraries ... 116

5.6 Implementation of Participant Domain Name Token 117

5.6.1 The java.xml.soap Package .. 118

5.6.2 The org.xbill.DNS Package.. 121

5.6.3 The Participant Domain Name Package .. 123

5.7 Conclusion .. 125

Chapter 6 - General Discussion, Conclusion and Future Directions 126

4

6.1 General Discussion.. 127

6.2 Conclusions ... 134

6.3 Future Directions ... 135

7 - List of Journal and Conference Papers Published ... 137

8 - Bibliography .. 140

Appendix A - Source Code of Student Web Service and Testing Client 156

Appendix B - Source Code of PDNT ... 180

Appendix C - Source Code of Performance Evaluation ... 205

5

LIST OF FIGURES

Figure 1.1: The evolution of tier architecture ... 14

Figure 1.2: The Degree of source code reusability ... 15

Figure 2.1: High level architecture diagram of SOADNS .. 25

Figure 2.2: BPEL process of SOADNS .. 27

Figure 2.3: Web service architecture (Champion et al., 2002) ... 29

Figure 2.4: The components of SOAP .. 35

Figure 2.5: A pictorial representation of the SOAP message (Mitra N. et al., 2007) 36

Figure 2.6: An example of SOAP request message using HTTP protocol ... 38

Figure 2.7: An example of SOAP Response message using HTTP protocol ... 39

Figure 2.8: An example of Web Service Description Language .. 41

Figure 2.9: The conceptual representation of WS-Security core specification ... 51

Figure 2.10: Example of SOAP message encryption ... 52

Figure 2.11: Example of SOAP message signature .. 54

Figure 2.12: Example of username token use in a SOAP message .. 55

Figure 2.13: An Example of X.509 Certificate (ITU-T X.509, 2008) .. 57

Figure 2.14: Example of SOAP message with an embedded certificate using BinarySecurityToken 59

Figure 2.15: Example of SOAP message with SAML ... 61

Figure 2.16: Example of SOAP message with Kerberos .. 63

Figure 3.1: An example SOAP message using HTTP .. 68

Figure 3.2: A schema file of Participant Domain Name Token ... 73

Figure 3.3: An example SOAP Message using Participant Domain Name Token 74

Figure 3.4: Multiple SRV records used to provide load balancing and high availability 75

Figure 3.5: The processing flow of the Participant Domain Name Token Profile.................................... 76

6

Figure 3.6: The Web application security issues tackled by the corresponding WS-Security token

profiles .. 79

Figure 3.7: The enhancement of Web Services authentication security ... 80

Figure 4.1: An example of an employee record.. 89

Figure 4.2: SOAP message header for test case 1 .. 93

Figure 4.3: Latency in milliseconds for test case 1 ... 94

Figure 4.4: SOAP message header for test case 2 .. 95

Figure 4.5: Latency in milliseconds for test case 2 ... 96

Figure 4.6: SOAP message header for test case 3 .. 97

Figure 4.7: Latency in milliseconds for test case 3 ... 98

Figure 4.8: SOAP message header for test case 4 .. 101

Figure 4.9: Latency in milliseconds for test case 4 ... 102

Figure 5.1: The Web Services protocol stack ... 106

Figure 5.2: Communication between a JAX-WS Web Service and a Client (Oracle, 2010) 108

Figure 5.3: SOAPMessage object with no attachments (Oracle, 2010) .. 109

Figure 5.4: An example of creating a SOAP message using SOAP with Attachments API for Java (SAAJ)

 .. 109

Figure 5.5: Top-down and button-up implementation approaches to Web Services 110

Figure 5.6: Student Web Service .. 111

Figure 5.7: Service logic of student Web Service .. 111

Figure 5.8: Generate a student Web Service using Eclipse .. 112

Figure 5.9: Generate a student Web Service client using Eclipse .. 113

Figure 5.10: Using Eclipse Web Services Explore to test the student Web Service 114

Figure 5.11: A SOAP request message for invoking the student Web Service 114

Figure 5.12: A SOAP response message after invoking the student Web Service 115

Figure 5.13: Class hierarchy of package java.xml.soap.. 119

Figure 5.14: Interface hierarchy of package java.xml.soap .. 119

7

Figure 5.15: An Example of creating and sending a SOAP message using SAAJ 121

Figure 5.16: A Java method uses org.bill.DNS to retrieve a list of Service Records 122

Figure 5.17: The class constructor and a validation method of Participant Domain Name Token 124

Figure 5.18: A sample program using Participant Domain Name Token ... 124

8

LIST OF TABLES

Table 2.1: The mapping between RESTful operations and the HTTP method .. 32

Table 2.2: The API of RESTful Web Services and traditional web application 32

Table 2.3: Example of RESTful URI for acquiring particular resources .. 33

Table 2.4: Prefixes and namespaces used in this research .. 36

Table 2.5: The Content-Type used in SOAP request message ... 37

Table 2.6: Comparison of RESTful Web Services and SOAP-based Web Services 43

Table 2.7: Element of security for Web Services (Singhal A., et al., 2007) ... 45

Table 2.8: Traditional security threats (Schwarz J., et al., 2005).. 46

Table 2.9: Security challenges of Web Services (Schwarz J., et al., 2005) .. 48

Table 3.1: Examples of DNS record types ... 66

Table 3.2: WS-Security token profiles classification ... 72

Table 3.3: Namespaces are used in PDNT ... 73

Table 3.4: Fundamental of security element of Web Services ... 78

Table 3.5: Security Scenario 1 .. 81

Table 3.6: Security Scenario 2 .. 81

Table 3.7: Security Scenario 3 .. 81

Table 3.8: Security Scenario 4 .. 81

Table 4.1: Message size of each secure token profile in bytes ... 91

Table 4.2: Percentage increase of message size between Non-WSS and each secure token profile 91

Table 4.3: Latency in milliseconds for test case 1 .. 94

Table 4.4: Latency in milliseconds for test case 2 .. 96

Table 4.6: Latency in milliseconds for test case 4 .. 101

9

NOMENCLATURE

3-tier – Presentation tier, business logic tier and data tier.

Axis2 – a free core engine for Web Services, which is running on Apache.

Base64 Encoding – It uses radix-64 representation to represent binary data in an ASCII
string format.

BPEL – Business Process Execution Language is a standard to specify actions within
business process with Web Services.

CIA – Confidentiality, Integrity and Availability.

DCOM – It stands for Distributed Component Object Model. It is proposed by
Microsoft and is used for communication among software components over network.

Eclipse – a free, multi-language integrated development environment (IDE).

ESB – It stands for Enterprise Service Bus. It is used to design and implement the
interaction between different software applications.

ICANN – It stands for Internet Corporation for Assigns Names and Numbers.

IPSec – Internet Protocol Security is a protocol set for security Internet Protocol.

ISP – It stands for Internet Service Provider which is a telecommunication company
that provides Internet connection to users.

JAR – Java Archive is a file that uses to collect a set of Java class files and associated
metadata and resources.

Java API – An Application Programming Interface is a set of functions, modules, or
libraries, which are written by Java programming language.

JSP – It stands for Java Server Pages which is used for creating dynamically generated
Web Page using Java programming language.

OASIS – A non-profit consortium named Organization for the Advancement of
Structured Information Standards. It produces many standards for security, Cloud
computing, SOA, Web Services, etc.

Ontology – A set of concepts or knowledge within a domain, which are described by a
set of relationships and properties.

PKI – It stands for Public Key Infrastructure.

10

REST – It stands for Representation State Transfer that is an architectural style and is
used to implement Web Services with well-defined HTTP methods.

RPC – It stands for Remote Procedure Call. It allows a computer program to invoke a
routine or module in another computer program.

SAAJ – SOAP with attachments API for Java. It is a java library used to pars and
handle SOAP-based message.

SOA – Service-Oriented Architecture is a design architecture pattern used in the
software design phase.

SOAP – It stands for Simple Object Access Protocol, which is a specification for
exchanged structured information in XML format for implementation of Web Services.

SSL – Secure Sockets Layer is a cryptographic protocol that provides secure
communication over Internet.

TCP –It stands for Transmission Control Protocol. It is a connection-oriented protocol
and requires handshaking to establish end-to-end communication. It is one of the core
members the Internet Protocol Suite.

UDDI – Universal Description, Discovery and Integration. It is a self-description
language for a Web Service to registry themselves on the Internet.

UDP – It stands for User Datagram Protocol and is a message-based connectionless
protocol. It is one of the core members the Internet Protocol Suite.

W3C – It stands for World Wide Web Consortium.

White list – a list of IP addresses that is allowed to bypass the PDNT processing rules.

WSDL – Web Services Description Language is an interface description language
written in XML format. A method of Web Services can be described and invoked by
other Web Services.

WSS – It stands for Web Services Security. It is secure mechanisms to protect SOAP-
based message.

WSS4J – It stands for Web Services Security for Java. It is a Java implementation to
support OASIS Web Services Security specifications.

XML – It stands for Extensible Markup Language (XML) that defines a set of rules for
encoding a document.

XML Schema – a document uses to descript the structure of an XML document.

 11 INTRODUCTION

 CHAPTER 1

CHAPTER 1

- INTRODUCTION

 12 INTRODUCTION

 CHAPTER 1

1.1 Background

oftware architecture style is changing and is categorized in different areas

because as the size of the software increases so does: the complexity of

functional requirements, demand for inter-system communication, data

exchange between systems and integration with heterogonous systems. Shaw &

Clements (1996) requires that the architectural style is formalized into a set of design

rules that identify the kinds of components and connectors that may be used to compose

a system or systems, together with local or global constraints on the way the

composition is done. Meier et al. (2009) indicated that the architectural styles can be

organized by their key focus area which includes: communication, deployment, domain

and structure. They also describe examples of architecture style, for instance, Object-

Oriented architecture style, Message bus architecture style, etc. However, a large and

complex system is often a combination of different types of architecture styles, for

instance in building a public facing Web application. The selection of architecture style

is important because it will affect the software stability, expandability to support new

requirements, difficulty of application deployment and maintenance of the system,

especially for Internet-based or Web-based systems.

With the development of science and technology, new software architecture styles are

proposed, designed and adopted. The major evolution in networking moulds software

applications into new architectures, both in software and hardware architecture. The

invention of Local Area Network (LAN), Wide Area Network (WAN), IP protocol

(Postel J., 1981a), TCP protocol (Postel J., 1981b), Internet, etc. changed the software

architecture from standalone application to layered application. Tim Berners-Lee who is

the inventor of the World Wide Web (WWW) created the HTML, which is a computer

language for presenting web pages and other information in a web browser. The success

of the Internet and World Wide Web once again changed the software architecture from

layered application to cloud computing or distributed computing. The existing

distributed computing solutions such as CORBA, Java RMI imply tight coupling

between various components in a system. The required high level of coordination and

shared context among business systems from different organizations makes them

S

 13 INTRODUCTION

 CHAPTER 1

unreliable for open, low-overhead ubiquitous B2B e-business (Albreshne A. et al.,

2009).

1.2 Evolution of Software Architecture Style

The innovation of Remote Procedure Call (RPC) leads the software architecture style

into a new generation and it can be applied into many architecture styles. The RPC

enables a software application to call a software module, which runs on the same or

different machines. The RPC was first described in 1976 in RFC 707 and was adopted

by Xerox, Microsoft, etc. One of the examples of architecture styles is Client/Server

architecture, which uses RPC technology and divides a system into two applications,

one is a client that makes a request and the other is a server that handles the request, for

instance, a database server will return a result set when a client application makes a

request. The evolution of the Client/Server architecture style was migrated from 2-tier

to a multi-tier architecture and even to cloud computing because it can provide flexible

and reusable applications.

The two-tier architecture is simple but comes at the cost of lack of scalability. The

business logic in two-tier architecture can be placed in either the user interface

(presentation layer) or database (data tier) and the user interfaces directly access the

database. However, the most commonly adopted multi-tier architecture is the three-tier

architecture (3-tier). Basically the 3-tier style can be split into three tiers or layers, (1)

Presentation Tier, (2) Business Logic Tier and (3) Data Tier. In order to improve

reusability and flexibility of a complex system, more tiers or layers are added, for

instance, a new tier or layer is added to handle business workflow. The evolution of tier

architecture is shown in Figure 1.1. Each tier is independent of each other and it can be

upgraded or replaced individually without modifying other tiers.

 14 INTRODUCTION

 CHAPTER 1

Figure 1.1: The evolution of tier architecture

Cloud computing and grid computing have become buzzwords after Web 2.0. Godfrey

B. (2006) identifies that distributed computing works by splitting up the larger task into

smaller chunks, which can be performed at the same time independently of each other.

Grid computing is a distributed computing concept which is used for sharing and

integrating computing resources, it evolved from heterogeneous systems. Grid

computing aims to solve the common IT problem of dedicated and underutilized

hardware resources. It is also used to divide a large task into many tasks that run in

parallel on separate servers. The success of the Internet led to the concept of cloud

computing (Boss G. et al., 2007). A cloud computing infrastructure can do large-scale

processing and it is massively scalable. Due to the nature of the Internet, cloud

computing can break down the physical barriers and link the hardware and software

platforms in different global locations through the Internet. Thousands or millions of

computers can create an enormous machine pool. A complex and time-consuming task

running on a vast amount of computers can obtain an expected result within minutes

instead of weeks or months.

Many highly complex applications have moved to the World Wide Web (WWW)

platform which has caused the Internet to grow dramatically. Therefore, a new

architectural style was proposed and adopted in many Web-based systems; this is the

Service-Oriented Architecture (SOA). The degree to which source codes can be reused

is very important and has changed software engineering as shown in Figure 1.2.

Reusable modules and classes can reduce implementation time, testing time and has

Two-tier
Architecture

Three-tier
Architecture

N-tier
Architecture

 15 INTRODUCTION

 CHAPTER 1

eliminated application bugs. Service reuse is one of the main advantages of adopting

SOA. The service not only includes the business logics, it also includes the business

processes. Services can work together representing an implementation of a business

process or a business flow.

Figure 1.2: The Degree of source code reusability

The SOA has emerged over the past years as one of the preferred approaches for system

design, development, and integration (Davis, 2009). SOA is a design architecture

pattern used in the software design phase. An SOA-based system is a kind of distributed

system that splits and groups the business logics into a loosely coupled set of services,

usually called Web Services. SOA is not a technology but it is an architecture style and

it can be implemented in many different ways, such as CORBA or with other Remote

Procedure Call (RPC) technologies. However, Web Services is widely used to

implement an SOA-based system. Web Services is a message-based communication

between service provider and service consumer. Booth et al. (2004) identifies two

major classes of Web services architecture as illustrated in the following:

 REST-compliant Web services, in which the primary purpose of the service is to

manipulate XML representations of Web resources using a uniform set of

"stateless" operations; and

 Arbitrary Web services, in which the service may expose an arbitrary set of

operations.

•Procedures

•Functions Reuse
•Abstract Class

•Polymorphism

•Inheritance
Reuse Services Reuse

 16 INTRODUCTION

 CHAPTER 1

1.3 Motivation

Simple Object Access Protocol (SOAP) is one of the methodologies to implement

Service-Oriented Architecture (SOA). The SOAP protocol relies on Extensible Markup

Language (XML) for its message format. A structured message is used to exchange data

between service consumer and service provider in Web Services architecture. Therefore,

a secure Web Services system not only focuses on the security of the system itself (e.g.

hardware and software), but also on the confidentiality and Integrity of the message

exchange between participants throughout the Internet, which is an unsafe public

network, which is two components of the CIA (Confidentiality, Integrity and

Availability) Triad in the information security field. Parker D. (2002) also proposed an

alternative model, which named six atomic elements of information which include

confidentiality, possession, integrity, authenticity, availability and utility.

The SOAP-based Web Services uses WS-Security 1.1 OASIS standard which is

approved and published by Advancing Open Standards for the Information Society

(OASIS) to fulfill the security requirements in SOAP message exchanges among

participants. Moreover, the WS-Security 1.1 also provides security extensions for the

Web Services protocol stack to provide end-to-end message security. The following

specification and profiles make up the WS-Security 1.1 OASIS standard.

 WS-Security Core Specification 1.1

 Username Token Profile 1.1

 X.509 Token Profile 1.1.

 SAML Token Profile 1.1

 Kerberos Token Profile 1.1

 Rights Expression Language (REL) Token Profile 1.1

The WS-Security Core specification and five secure token profiles are based on

different existing security mechanisms and open standards including PKI, X.509,

Kerberos, or other algorithms. However, they are complex and produce a lot of

overhead, especially the X.509-based encryption and signature. If many SOAP

 17 INTRODUCTION

 CHAPTER 1

messages are exchanged between service consumer and service provider, the overhead

will be increased significantly. Moreover, as more secure token profiles are added to a

SOAP message, more overheads will be produced for parsing and handling SOAP

messages.

 “Who” can use the services, “What” is the authorization is tackled by the WS-Security

1.1 OASIS standard. However the “Where” is not handled or supported. For instance, a

user John is allowed to use or invoke a service and has been granted appropriate user

rights. According to the WS-Security 1.1 OASIS standard, the user can use or invoke

the services everywhere. It is a security hole if the services should only be provided for

a particular enterprise or domain. Therefore, a new secure token profile is needed to

solve this issue and integrated with WS-Security standard.

1.4 Objectives

Although there are several security standards currently available and adopted in a

SOAP-based message, they will produce a lot of overhead if one or more secure token

profiles are used in the SOAP message. In this research, the location of service

consumer and provider is taken into consideration for message exchange, parsing and

handling. The objectives include the following:

(i) Research on the WS-Security 1.1 OASIS standard, present the details.

(ii) Find out the limitations of WS-Security 1.1 OASIS standard.

(iii) Propose a new token profile to tackle the limitation found in Objective [ii].

(iv) Develop a parser and processor based on Objective [iii].

(v) Building a performance model to evaluate Objective [i] and Objective [iii].

(vi) Present the experimental results and analysis based on Objective [v].

 18 INTRODUCTION

 CHAPTER 1

1.5 Innovations

The WS-Security 1.1 OASIS standard is complex and produces a lot of overhead,

especially the XML encryption, XML signature and other PKI-based mechanisms.

However, the location of the service consumer and provider is not verified. It is a

security hole if a service should only be provided for a particular enterprise or domain.

The newly designed secure token profile incorporates one of the most widely used

Internet service information identity, the Domain Name Service (DNS). It can verify,

control and monitor the location of the service consumer or message sender. The newly

designed token can be used to reject invalid requests or responses, which come from

unknown or fake domains before parsing and processing the WS-Security 1.1 OASIS

secure token profiles. Therefore, the service provider or consumer can save processing

resources and handle more valid Web Services requests or responses.

 19 LITERATURE REVIEW

 CHAPTER 2

CHAPTER 2

- A LITERATURE
REVIEW OF SOA,

WEB SERVICES AND SECURITY

 20 LITERATURE REVIEW

 CHAPTER 2

2.1 Service-Oriented Architecture (SOA) and Web Services

ervice-orientation is a design paradigm comprised of a specific set of design

principles. The application of these principles to the design of solution logic

results in a service oriented solution logic. The most fundamental unit of

service-oriented solution logic is the service (Erl T., 2007). The architecture style

defining an SOA describes a set of patterns and guidelines for creating loosely coupled,

standards-based business-aligned. Service-Oriented Architecture is an IT strategy that

organizes the discrete functions contained in enterprise applications into interoperable,

standards-based services that can be combined and reused quickly to meet business

needs [BEA, 2005]. Erl T. (2005) indicated that the common tangible benefits of SOA

are:

1. Improved integration

2. Inherent reuse

3. Leveraging the legacy investment

4. Establishing standardized XML data representation

5. Focused investment on communications infrastructure

6. “Best-of-breed” alternatives

Artus (2006) also mentioned that Service-Oriented Architecture (SOA) offers a version

of IT flexibility enabling business agility. More and more enterprises are realizing that

SOA is a reality not a myth. The information systems landscape of most enterprises is

heterogeneous in nature and comprises of a combination of legacy and modern systems

(Kumari et al., 2008). A Gartner survey (Sholler, 2008) showed that more than 85

percent of Fortune 1000 companies are engaged in a service-oriented initiative, and that

the average SOA project has been in place for about 9 months. Another survey

(TechTarget/Forrester Research, 2010) showed that 47.4% of respondents work in

organizations where SOA projects are underway, and 30.9% have multiple SOA

projects underway. In terms of project scope, this work is seen as “enterprise-level” in

nature in 62.6% of the cases. Formal SOA offices or centers of excellence exist in

13.6% of organizations, up from 9.0% in a comparable 2009 survey. However, Lewis et

al., (2007) identified eleven common misconceptions about SOA including:

S

 21 LITERATURE REVIEW

 CHAPTER 2

1. SOA provides the complete architecture for a system

2. Legacy systems can be easily integrated into an SOA environment

3. SOA is all about standards and standards are all that is needed

4. SOA is all about technology

5. The use of standards guarantees interoperability among services in an SOA

environment

6. It is easy to develop applications based on services

7. It is easy to develop services anybody can use

8. It is easy to compose services dynamically at runtime

9. Services can only be business services

10. Testing applications that use services is no different than testing any other

application

11. SOA can be implemented quickly

Maamar Z. et al., (2011) indicated that Service-oriented architecture (SOA) and its

flagship implementation technology known as Web services have changed the way

software engineers design and develop today’s enterprise applications. SOA is not a

technology but it is an architecture style or architecture pattern. It is technology

independent and can be implemented by different remote procedure call technologies,

for instance, Common Object Request Broker Architecture (CORBA), Distributed

Component Object Model (DCOM), etc. The implementation of SOA applications is

made possible through the realization of Web Services (Lee et al., 2006). Mahmoud

(2005) identified that Web Services are the preferred standards-based way to realize

SOA. A Service-Oriented Architecture (SOA) can be implemented by a collection of

loosely coupling services, which can be invoked by each other to exchange information

between participants. Web Services are widely adopted and used to implement the SOA

because of the maturing set of standards.

Web Services, at a basic level, can be considered a universal client/server architecture

that allows disparate systems to communicate with each other without using proprietary

client libraries (Judith M., 2009). Web Services systems enable a high level of

decoupling as well as dynamic binding of services. Such systems are composed by

services, which contain behavior and messages. Services are found by applications

 22 LITERATURE REVIEW

 CHAPTER 2

using service discovery (Gottschalk K., 2000). There are many Web Services

definitions described in different books or Websites, Albreshne A. et al. (2009) gives

the following overview:

 A web service is any piece of software that makes itself available over the

internet and uses a standardized XML messaging system. XML is used to

encode all communications to a web service. For example, a client invokes a

web service by sending an XML message, then waits for a corresponding XML

response. Because all communication is in XML, web services are not tied to

any one operating system or programming language--Java can talk with Perl;

Windows applications can talk with UNIX applications.

 Web Services are self-contained, modular, distributed, dynamic applications that

can be described, published, located, or invoked over the network to create

products, processes, and supply chains. These applications can be local,

distributed, or Web based. Web services are built on top of open standards such

as TCP/IP, HTTP, Java, HTML, and XML.

 A web service is a collection of open protocols and standards used for

exchanging data between applications or systems. Software applications written

in various programming languages and running on various platforms can use

web services to exchange data over computer networks like the Internet in a

manner similar to inter-process communication on a single computer. This

interoperability (e.g., between Java and Python, or Windows and Linux

applications) is due to the use of open standards.

Therefore, a Web Service is an XML-based platform-independent protocol. Moreover,

it is also programming language independent, and can be implemented using different

programming languages. The Web Services can be distributed in both Internet and

Intranet and discovered through a simple mechanism. Nowadays, many commercial

products build-in Web Services technology, for instance, Web Services in Exchange

2013 or Exchange Web Service (EWS). EWS is a SOAP-based web service API that

you can use to communicate with Exchange. EWS uses HTTP POST requests to send

commands and data to the service endpoint (MSDN, 2013). Amazon also provides a

Web Services (AWS) infrastructure to their customers. It delivers a scalable cloud

 23 LITERATURE REVIEW

 CHAPTER 2

computing platform with high availability and dependability, offering the flexibility to

enable customers to build a wide range of applications. Helping to protect the

confidentiality, integrity, and availability of our customers’ systems and data is of the

utmost importance to AWS, as is maintaining customer trust and confidence (Amazon,

2013). Fusaro VA., et al., (2011) use AWS to deliver their biomedical cloud computing.

2.2 SOA-Based System

An SOA-based system is also a kind of distributed system and similar to the Internet-

based system. One of the major differences is the level of dependence on business

logics in the design phase. A traditional Internet-based system decomposes the business

logics into more tightly-coupled components but SOA splits it into loosely coupling

components and the SOA relies on components and creation of services. The other

difference is that the system architecture of a SOA-based system can be changed after

deployment. Therefore, a new service can be added in the system without stopping the

whole system. The potential benefits of SOA are services reuse, integration

improvement, leveraging the legacy investment and best of breed integration. SOA is

suitable to design a distributed, Internet-based, dynamic change, autonomous and non-

point to point system.

The following sections show an example which is designed in SOA and implemented

using Web Services. The example is “An SOA-based Disease Notification System”

(Cheong C. P. et al., 2009). It proposes a Diseases Notification System which is

designed using a SOA pattern. Disease notification is an import component of the

disease control systems. A successful diseases notification system will deliver positive

effects for human beings. The proposed system is designed and implemented by use of

the Business Process Execution Language for the business process layer and Enterprise

Service Bus for the connectivity layer. Therefore, it can cope with a dynamically

changing environment or requirements. Moreover, the proposed system can reduce the

notification process time and it can provide timely information on diseases notification.

 24 LITERATURE REVIEW

 CHAPTER 2

2.2.1 An SOA-Based Diseases Notification System (SOADNS)

Many computer-based systems or tools are used for monitoring of disease migration.

Some provide record-based information and some provide visual data, examples are

given by (Chang L. C. et al., 2005) and (Qian Z. et al., 2004). A location-based data

visualization system can be of great benefit for disease monitoring and tracking.

However, a successful disease control system is based on cumulative recording of the

occurrence of spreading diseases. Diseases notification and tracking is a vital

component in ensuring protection of public health. To prevent and control the spread of

infectious disease around the world, health organizations must monitor trends over time

not only in human diseases such as chickenpox, tuberculosis, plague, HIV, Severe

Acute Respiratory (SARS) especially, the spreading disease: Influenza-A H1N1, etc.

and even animal diseases such as bird flu H5N1 and H7N9.

2.2.1.1 System Overview

The SOA-based Diseases Notification System (SOADNS) utilizes medical standards to

exchange or identify notifiable diseases, including: International Classification of

Diseases (ICD) and Health Level Seven (HL7). A doctor can use the ICD code to

classify each disease. For instance, code “487” represents “Influenza” in ICD version

9CM and code “J11” represents “Influenza, virus not identified” in ICD version 10. The

SOADNS has two roles, one is service provider and the other is service consumer. For

instance, it provides services to the disease declarer and consumes service provided

from the local health authority. A service consumer can discover the service by the

Universal Description and Discovery and Integration (UDDI) or service brokers. Earlier

SOA-based systems can be implemented using different connection technologies such

as Distributed Component Object Model (DCOM) or Common Object Request Broker

(CORBA). However, the SOADNS uses Web services which will be implemented by

the Simple Object Access Protocol (SOAP), Web Service Definition Language (WSDL),

etc. to implement the system. Figure 2.1 shows the high level architecture of the

SOADNS. A clinic or a private doctor can declare notifiable diseases by use of a Web

interface provided by the local health authority. The Hospital acts as a service consumer

 25 LITERATURE REVIEW

 CHAPTER 2

and submits the notifiable diseases by use of a standard SOA client application using a

SOAP message format. The hospital can also act as a service provider to provide Web

services to other service consumers. For instance, it can provide the details of patient

records to the WHO if necessary. The SOADNS is designed as a standard application

package. Therefore, it can be deployed to every participant and only requires minor

changes in the business process layer.

Figure 2.1: High level architecture diagram of SOADNS

2.2.1.2 System Architecture

The SOADNS is composed of five layers including: presentation layer, service layer,

business process layer, connectivity layer and data layer. The presentation layer - the

client side uses a Web browser to input data, such as patient records and diseases

notification data. The service layer contains all the services provided from the proposed

system. The service can encapsulate one or more business logics of the system and it

 26 LITERATURE REVIEW

 CHAPTER 2

has an interface for the service consumer to interact with. Services are orchestrated into

business processes in the business process layer. The Business Process Execution

Language (BPEL) is used in this layer and it can specify which services should be

invoked and the sequence in which they are invoked, which can ensure the

business/work flow is in the correct order. Enterprise Service Bus (ESB) is used in the

connectivity layer. It can move, transform and route the clinical data within the internal

system and between the external systems in XML format. The data layer includes the

database of diseases notification data, demographic data and it can be used through an

adapter service defined in the connectivity layer, for instance, a database adapter service.

A. Service Layer

Service modeling is one of the vital processes to build a SOA-based System. The

process decomposes the business logics into several generic processes or services. There

are several core services in SOADNS including: CodeValidationService,

NotificationService, TaskService and DatabaseAdapterService. The NotificationService

is used for notifying guarders when a serious incident occurs via email, fax, pager or

SMS. The ICD Code is validated by the CodeValidationService. It can handle the

different versions of the disease codes. The TaskService is a human workflow task and

it can interweave human interactions with connectivity to the SOADNS. The human

task is linked to the Business Process Layer through a WSDL. In the SOADNS, the

TaskService is used for the human re-approval and re-confirmed for the disease being

monitored before notifying the emergency committee. DatabaseAdapterService

provides a bridge between the database and the business process layer. All the services

can interact with each other at the message level and are described in Web Service

Orchestration language.

B. Business Process Layer

The Business Process Execution Language (BPEL) is used in this layer for specifying

interactions with Web Services including the business logic and the execution order.

The BPEL process of SOADNS is shown in Figure 2.2. For instance, a doctor submits

 27 LITERATURE REVIEW

 CHAPTER 2

a notifiable disease through a web browser. The doctor can input different versions of

ICD code. Then, the BPEL process is invoked by a message from the application server

or ESB. The BPEL process writes the notifiable disease record to the database. The

BPEL process calls the CodeValidationService to valid the disease code. If the disease

code is valid, it will check whether it is required to notify a monitor or a committee

member by using NotifialeDiseaseDBAdapter. The committee or members of the WHO

may receive an alert message under certain circumstances. Finally, an email will be sent

back to a declarer for confirmation. If it is a confirmed case, the system will send an

alert message through SMS or a pager to the emergency committee. Otherwise, if it is a

suspected case, the system will only send an alert message via an email to a general

officer for example.

Figure 2.2: BPEL process of SOADNS

 28 LITERATURE REVIEW

 CHAPTER 2

C. Connectivity Layer

In a hospital environment, many different architecture systems, which include hardware

and software, are used for different purposes. For instance, a Health or Hospital

Information System is used for recording patient demographic and clinical information.

The Lab or laboratory management system (LMS) is used in the laboratory for the

management of the patient’s samples such as blood test samples. It requires an

interfacing program between the LMS and laboratory equipment. Different systems

produce outputs in different formats, such as text, XML, HL7, etc. Therefore, the

Enterprise Service Bus (ESB) can be used to put everything together. The ESB is

suitable for use in the hospital environment. It can collect the output coming from

different platforms and in different formats. It means that the disease code not only

comes from user input through a Web user interface, it can also be obtained from

heterogeneous systems automatically.

2.2.1.3 Advantages of SOADNS

The SOADNS is designed in a SOA style. Therefore, it can obtain the advantages of

SOA such as business logic reusability, loosely-coupled to other services, etc. The

BPEL and ESB are also used to make the system complete. The system can be

dynamically changed by modifying the BPEL process in the business process layer.

Therefore, the system is easy to spread and to deploy. The ESB is used in the SOADNS.

It can accommodate the data of existing medical systems, such as laboratory

management system, X-Ray management system, etc. The SOADNS is composed of

services, BPEL and ESB. Therefore, it increases flexibility, it is easy to change the

system architecture and it scales from a point to point solution to a distributed solution.

Moreover, the SOADNS can make diseases notification more effective and provide

timely information. It uses BPEL as a standards-based way of orchestrating all services.

The system architecture can be changed easily by modifying the business process layer

through BPEL. Therefore, the SOADNS can be deployed by different participants

without modifying the application source code. The ESB is used to collect notifiable

diseases data in different formats from heterogeneous systems. The proposed system is

a complete solution for diseases notification in and from different locations.

 29 LITERATURE REVIEW

 CHAPTER 2

2.2.1.4 Security consideration of SOADNS

One of the major security issues is who can submit a notifiable disease, for instance, a

private doctor, a clinic or even a hospital. Usually, a user or a participant can be

identified by a username with a password. Therefore, the SOADNS can adopt the

Username Token Profile, which is one of the secure token profiles collected in the

OASIS standard 1.1 to fulfill the user authentication requirement. However, “where”

can submit a notifiable disease is not handled and not verified in existing secure token

profiles. Therefore, a new secure token profile is a need to provide additional security

for use by SOANDNS.

2.3 Web Services Architecture

Web services provide a standard means of interoperating between different software

applications, running on a variety of platforms and/or frameworks. A Web service is a

software system designed to support interoperable machine-to-machine interaction over

a network. It has an interface described in a machine-processable format. Other systems

interact with the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards (Booth et al., 2004).

Figure 2.3: Web service architecture (Champion et al., 2002)

 30 LITERATURE REVIEW

 CHAPTER 2

The Web Services architecture basically consists of three roles, service requestor,

service provider and service registry as illustrated in Figure 2.3. The relationship

between these three roles is: a service provider defines and publishes a service

description to a service requestor or service registry; the service requestor finds a

desired service and retrieves the service description locally or from the service registry;

the service requestor uses service description to bind with and invoke the service

implementation from the service provider directly.

2.4 Classes of Web Services

Two major classes of Web services are defined by W3C. Representation State Transfer

(REST)-compliant Web services and arbitrary Web services, the “Big” Web services

technology. REST is neither a standard nor a protocol. It is an architectural style like the

client/server architecture. The arbitrary or “Big” Web Services is a web service which is

implemented by Simple Object Access Protocol (SOAP).

2.4.1 REST-compliant Web Services

RESTful Web Services are an alternative to Remote Procedure Call technologies like

SOAP and WS-* services (Schreier S., 2011). According to Fielding (2000),

Representational State Transfer is intended to evoke an image of how a well-designed

Web application behaves: Presented with a network of web pages (a virtual state-

machine), the user progresses through an application by selecting links (state

transitions), resulting in the next page (representing the next state of the application)

being transferred to the user and rendered for their use. REST defines a set of

architectural principles by which you can design Web services that focus on a system's

resources, including how resource states are addressed and transferred over HTTP by a

wide range of clients written in different languages (Rodriguez, 2008). Hansen (2007)

identified a set of constraints and architectural principles for the REST-style services as

illustrated in the following:

 31 LITERATURE REVIEW

 CHAPTER 2

 RESTful services are stateless. As Fielding (2000) writes in Section 5.1.3 of his

thesis, “each request from client to server must contain all the information

necessary to understand the request, and cannot take advantage of any stored

context on the server.”

 RESTful services have a uniform interface. This constraint is usually taken to

mean that the only allowed operations are the HTTP operations: GET, POST, PUT,

and DELETE.

 REST-based architectures are built from resources (pieces of information) that are

uniquely identified by URIs. For example, in a RESTful purchasing system, each

purchase order has a unique URI.

 REST components manipulate resources by exchanging representations of the

resources. For example, a purchase order resource can be represented by an XML

document. Within a RESTful purchasing system, a purchase order might be

updated by posting an XML document containing the changed purchase order to its

URI.

One of the major characteristics of the RESTful Web Services is the explicit use of

well-defined HTTP methods which are defined in RFC 2616. It maps the well-known

HTTP methods to four basic functions which are “create”, “read”, “update” and “delete”

(CRUD) operations as shown in Table 2.1. In a traditional Web application, it uses the

HTTP GET method with “query string” or “hidden field” which is defined in standard

HTML form to achieve the four basic functions (CRUD). However, this mechanism

changes the original design of HTTP protocol and it is inconsistent with the HTTP GET

method. An example of an Application Program Interface (API) between RESTful Web

Services and traditional Web application is shown in Table 2.2.

REST-based resource-oriented Architecture abstracts all the objects in the system as

resources and gives them their own unique resource identifiers. It provides various

resource services to the external environment through RESTful Web Services (Wang et

al., 2009). The RESTful utilizes Uniform Resource Identifier (URI) to identify

resources and uses uniform interface (HTTP methods) to manipulate information. It

 32 LITERATURE REVIEW

 CHAPTER 2

uses a directory structure-like URI to make a service consumer easily understand where

they can obtain the resources. Table 2.3 shows the examples of RESTful URI for

acquiring particular resources. The REST-style architecture is like the client/server

architecture, for instance, a client sends a request to a server and a result will be sent

back to the client after the server processes the request. It is similar to a user browsing a

web site on the Internet. For instance, a user browses a web site by sending an HTTP

request to a web server. The web server parses and processes the HTTP request and

returns a result depending on the HTTP method.

Table 2.1: The mapping between RESTful operations and the HTTP method

RESTful

Operations

HTTP method Description

Create POST Submit data to be processed by the

identified resources

Read GET Request a specific representation of a

resource

Update PUT Update a resource with the supplied

representation

Delete DELETE Deletes the specified resource

Table 2.2: The API of RESTful Web Services and traditional web application

Operation RESTful API Traditional Web API

Create POST /students HTTP/1.1

Content-Type: application/xml

…...

<?xml version=”1.0”?>

<student>

GET /addStudent?name=Peter HTTP/1.1

 33 LITERATURE REVIEW

 CHAPTER 2

 <name>Peter</name>

</student>

Read GET/students/Peter HTTP/1.1

Accept: application/xml

……

GET / getstudnet?name=Peter HTTP/1.1

Update PUT /students/Peter HTTP/1.1

Content-Type: application/xml

……

<?xml version="1.0"?>

<student>

 <name>David</name>

</student>

GET

/updatestudent?name=Peter&newname=David

HTTP/1.1

Delete DELETE/students/Peter HTTP/1.1

Accept: application/xml

……

GET /deleteStudent?name=Peter HTTP/1.1

Table 2.3: Example of RESTful URI for acquiring particular resources

URI Description

http://www.sussex.ac.uk/students Resources of students

http://www.sussex.ac.uk/students/1001 Resource of student ID 1001

http://www.sussex.ac.uk/schools Resources of schools

http://www.sussex.ac.uk/schools/Informatics Resource of school of Informatics

Due to the simplicity and flexibility, REST is suitable for a constrained environment.

Many Web clients and physical devices support HTTP protocol. It can easily cooperate

and integrate with different devices if security is not a major issue. In recent years, some

REST security protocols (Serme G., 2012), (Kosmajac D., 2012) have been proposed in

academia. However, they are not standard security protocols. SOAP-based Web

 34 LITERATURE REVIEW

 CHAPTER 2

Services has a De factor Web Services security standard. Therefore, it will be adopted if

security is a major concern.

2.4.2 SOAP-based Web Services

Simple Object Access Protocol is a lightweight protocol intended for exchanging

structured information in a decentralized, distributed environment. It uses XML

technologies to define an extensible messaging framework providing a message

construct that can be exchanged over a variety of underlying protocols. The framework

has been designed to be independent of any particular programming model and other

implementation specific semantics (Gudgin M. et al., 2007). Al-Zoubi et al. (2009)

identify that the SOAP-based Web Services are provided as Remote Procedure Calls

(RPC) on top of the Web (HTTP). SOAP is a protocol specification for exchanging

structured information in the implementation of Web Services in a computer network. It

relies on eXtensible Markup Language (XML) for its message format, and usually relies

on other Application Layer protocols for message negotiation and transmission

(Atadjanov A.J., 2010).

A method or a subroutine hosted in a local machine can be executed by a remote system

through an Application Programming Interface (API). However, a traditional API is

language-dependent and is only available for a particular programming language. A

Web service is a kind of distributed system and it provides APIs which can be used by

all systems on the Internet. Currently, SOAP is the most common way to implement

Web Services and it is a core component of the Web Services architecture. The SOAP is

a specification for exchanging structured messages between two computer systems via

common communication protocols. The components of SOAP are shown in Figure 2.4.

XML is used for exchanging information and HTTP, SMTP, etc are used for the

communication between participants.

 35 LITERATURE REVIEW

 CHAPTER 2

Figure 2.4: The components of SOAP

A valid SOAP message is a well-formed XML document, which is defined in the XML

1.0 specification. The SOAP message consists of a SOAP envelope, SOAP header and

SOAP body as illustrated in Figure 2.5. The SOAP envelope element identifies the

XML document as a SOAP message and indicates the start and the end of the SOAP

message. The SOAP header is an optional element, which provides application-specific

information for extending the functionality of a SOAP message. The SOAP body

element contains the method name with corresponding parameters of the Web Services

and the results after invoking the Web Services. It also contains a child element, a

SOAP fault element, which is used to indicate error messages while processing the

message. A SOAP message is encoded using XML and uses SOAP namespace and a

SOAP encoding style as shown in Table 2.4. Mitra N. and Lafon Y. (2007) indicate how

to invoke a SOAP RPC as shown in the following:

1. The address of the target SOAP node.

2. The procedure or method name.

3. The identities and values of any arguments to be passed to the procedure or method

together with any output parameters and return value.

4. A clear separation of the arguments used to identify the Web resource, which is the

actual target for the RPC, as compared with those that convey data or control

information used for processing the call by the target resource.

5. The message exchange pattern, such as HTTP POST and HTTP GET, which will

be employed to convey the RPC, together with an identification of the so-called

"Web Method"

6. Optionally, data, which may be carried as a part of SOAP header blocks.

XML message
Communication

Protocol SOAP

 36 LITERATURE REVIEW

 CHAPTER 2

Figure 2.5: A pictorial representation of the SOAP message (Mitra N. et al., 2007)

Table 2.4: Prefixes and namespaces used in this research

Prefix Namespace Notes

S11 http://schemas.xmlsoap.org/soap/envelope/ A normative XML schema document

for SOAP message version 1.1

namespace

S11:encodingStyle http://schemas.xmlsoap.org/soap/encoding/ indicates the encoding rules used to

serialize a SOAP message version 1.1

S12 http://www.w3.org/2003/05/soap-envelope A normative XML schema document

for SOAP message version 1.2

namespace

S12:encodingStyle http://www.w3.org/2003/05/soap-encoding indicate the encoding rules used to

serialize a SOAP message version 1.2

 37 LITERATURE REVIEW

 CHAPTER 2

Usually, the SOAP uses HTTP as a communication protocol, named SOAP HTTP

binding. A SOAP message is embedded in a HTTP request or HTTP response message

that complies with the SOAP encoding rules. A HTTP POST method is used for the

SOAP request message and uses HTTP Content-Type header to define MIME

(Multipurpose Internet Mail Extensions / Internet Media) type and character encoding.

An example of a SOAP request and response message is shown in Figure 2.6 and Figure

2.7. According to the RFC 3902, the Content-Type is defined by the MIME type of the

body as illustrated in Table 2.5. The Content-Length header represents the number of

bytes in the request and response body. In this example, a method “GetStudents” is sent

to a Web server with a parameter “studnetId” and the student information who student

id is A001 will be returned in XML format. The namespace and the schema of student

information are defined in the “http://www.sussex.ac.uk/student” in this example.

Table 2.5: The Content-Type used in SOAP request message

MIME media type name Application

MIME subtype name soap+xml

Required parameters None

Optional parameters charset: specified in RFC 3023

actions: used to specify the URI that

identifies the intent of the message.

 38 LITERATURE REVIEW

 CHAPTER 2

Figure 2.6: An example of SOAP request message using HTTP protocol

POST /student HTTP/1.1

Host: www.sussex.ac.uk

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"

 S12:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

 <S12:Body xmlns:ns="http://www.sussex.ac.hk/student">

 <ns:getStudents>

 <ns:studentId>A001</ns:studentId>

 </ns:getStudents>

 </S12:Body>

</S12:Envelope>

 39 LITERATURE REVIEW

 CHAPTER 2

Figure 2.7: An example of SOAP Response message using HTTP protocol

The Web Services Description Language (WSDL) is an XML format for describing

network services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information (Christense E., et al., 2001). A

SOAP client uses WSDL to locate Web Services and obtain a method description as

illustrated in Figure 2.8. Therefore, the client can know how to access the services. It

also indicates which transport protocol is used, for instance, the HTTP protocol.

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"

 S12:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

 <S12:Body>

 <getStudentsResponse xmlns:ns="http://www.sussex.ac.hk/student">

 <student>

 <studentId>A001</studentId>

 <firstName>Peter </firstName>

 <lastName>Chan</lastName>

 <gender>M</gender>

 <email>peter.chan@sussex.ac.uk</email>

 </student>

 <getStudentsResponse>

 </S12:Body>

</S12:Envelope>

 40 LITERATURE REVIEW

 CHAPTER 2

<definitions name="StudentService"

 targetNamespace="http://www.sussex.ac.uk/wsdl/StudentService.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:S11="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.sussex.ac.uk/wsdl/StudentService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:s0="http://www.ssussex.ac.uk/student/student.xsd>

 <message name="GetStudentRequest">

 <part name="studentId" type="xsd:string"/>

 </message>

 <message name="GetStudentResponse">

 <part name="student" type="s0:Student"/>

 </message>

 <portType name="Student_PortType">

 <operation name="getStudents">

 <input message="tns:GetStudentRequest"/>

 <output message="tns:GetStudentResponse"/>

 </operation>

 </portType>

 41 LITERATURE REVIEW

 CHAPTER 2

Figure 2.8: An example of Web Service Description Language

The WSDL document includes seven parts including definitions, types, message,

portType, binding and service elements, which are described in the following:

 The <type> element is used to define built-in data types that are used by the Web

Services. The built-in data types are defined in an XML schema file.

 <binding name="Student_Binding" type="tns:Student_PortType">

<s11:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getStudent">

 <s11:operation soapAction="getStudent"/>

 <input>

 <s11:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:studentservice"

 use="encoded"/>

 </input>

 <output>

 <s11:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:studentservice"

 use="encoded"/>

 </output>

 </operation>

 </binding>

 <service name="Studnet_Service">

 <documentation>WSDL File for StudentService</documentation>

 <port binding="tns:Student_Binding" name="Student_Port">

 <s11:address

 location="http://www.sussex.ac.uk/student/">

 </port>

 </service>

</definitions>

 42 LITERATURE REVIEW

 CHAPTER 2

 The <message> element defines the data format of each individual transmission

in the communication, in this example, one message represents the “getStudents”

request and the other is the response message. Each message can contain one or

more parts, which are the parameters of the message.

 The <portType> element is the most important WSDL element. It describes the

operations, which are provided by Web Services.

 The <binding> element indicates which communication protocol is used.

 The <Service> element defines the location of the Web Services.

SOAP relies on XML for its message format. In order to pass through the firewall to

support interoperable machine-to-machine interaction over the Internet, usually Hyper

Text Transfer Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP) is adopted as

the communication protocol. There are two different layers to secure the SOAP,

message level security and transport level security. The transport level security uses

layer 3 or layer 4 protocol to protect the data, such as IPSec, SSL, etc. However, it will

break the layer 3 security protection if there is an intermediary SOAP node between two

end points (Nordotten N. A., 2009). The message level security is working in layer 7,

the application layer. Therefore, the message level security is a proper method to protect

the message from end to end and the WS-Security 1.1 OASIS standard is adopted to

protect SOAP messages.

2.4.3 RESTful Web Services versus SOAP-based Web Services

Fielding (2000) writes that “REST-based architectures communicate primarily through

the transfer of representations of resources”. This is fundamentally different from the

Remote Procedure Call (RPC) approach that encapsulates the notion of invoking a

procedure on the remote server. The RPC messages typically contain information about

the procedure to be invoked or action to be taken, which is a similar mechanism to a

SOAP-based message. The REST-style Web Services or RESTful Web services

provider requires a more constrained architectural style, which provides a uniform set of

interfaces or operations, including create, retrieve update and delete. However, the

 43 LITERATURE REVIEW

 CHAPTER 2

SOAP-based Web Services provide arbitrary or application-specific interfaces, which

are invoked by the service consumer. Unlike SOAP-based Web Services, the RESTful

Web Services do not provide descriptions of the web service interface, such as Web

Services Description Language (WSDL). It must have an out-of-band agreement

between a service consumer and a service provider, for instance, sample code and API

documentation. Moreover, the RESTful Web Services only support HTTP in the

transport layer instead of other transport layer protocols, for example, FTP, SMTP, etc.

However, both of the SOAP-based and RESTful Web Services use an XML document

to exchange a message between service consumer and service provider. The major

characteristics of RESTful Web Services and SOAP-based Web Services are shown in

Table 2.6.

Table 2.6: Comparison of RESTful Web Services and SOAP-based Web Services

 RESTful Web Services SOAP-based Web Services

URI Resource-based Method-based

Message Format XML XML with SOAP

Envelope

Interface Definition None WSDL

Method name Uniform method Arbitrary method

Transport Protocol HTTP HTTP, SMTP, FTP, etc.

Transport Level Security SSL SSL

End-to-End Security None WS-Security 1.1 OASIS

standards

RESTful Web Services is an architectural style for building a distributed application. It

is not a standard or a protocol. But the SOAP is a standard, a protocol and it has been

 44 LITERATURE REVIEW

 CHAPTER 2

provided with a series of specifications. Both types of Web Services can use HTTP-

based authentication plus Secure Sockets Layer or Transport Layer Security (SSL / TLS)

to secure the communication between service consumer and service provider. However,

SOAP works with extra secure protocols, the WS-* specifications, which support end-

to-end message security. But the RESTful Web Service does not have this option and

does not provide any relative security standard. Therefore, this research will focus on

the security issues of the Web Services, which is implemented using SOAP.

2.5 Web Services Security Challenges

According to the definitions of “44 U.S.C. § 3542”, Information security means

protecting information and information systems from unauthorized access, use,

disclosure, disruption, modification, or destruction in order to provide –

A. Integrity, which means guarding against improper information modification or

destruction, and includes ensuring information non-repudiation and authenticity;

B. Confidentiality, which means preserving authorized restrictions on access and

disclosure, including means for protecting personal privacy and proprietary

information; and

C. Availability, which means ensuring timely and reliable access to and use of

information.

Confidentiality, Integrity and Availability (CIA) are three major aspects of security.

Security decisions must always be made with an understanding of the threats facing the

system to be secured (Zhang, 2010). Singhal A. et al. (2007) identify the elements of

security for Web Services as illustrated in Table 2.7. Schwarz J., et al. (2005) also

identifies the traditional security threats and security challenges of Web Services as

shown in the Table 2.8 and Table 2.9.

 45 LITERATURE REVIEW

 CHAPTER 2

The security challenges between service provider and service consumer can be divided

into two parts, one is in the communication / transport layer and the other is in the

message layer security. Usually, the security issues in the communication layer can be

solved by the Secure / Transport Socket Layer (SSL /TLS) if a SOAP message uses

HTTP as a communication protocol. Internet Protocol Security (IPSec) or other network

layer security protocols can be used to tackle the security issues in the network layer

(layer 3). However, this research only focuses on the message layer security of Web

Services.

Table 2.7: Element of security for Web Services (Singhal A., et al., 2007)

Element Description

Identification and Authentication Verifying the identity of a user, process, or

device, often as a prerequisite to allowing

access to resources in an information

system.

Authorization The permission to use a computer

resource, granted, directly or indirectly, by

an application or system owner.

Integrity The property that data has not been altered

in an unauthorized manner while in

storage, during processing, or in transit.

Non-repudiation Assurance that the sender of information is

provided with proof of delivery and the

recipient is provided with proof of the

sender’s identity, so neither can later deny

having processed the information.

Confidentiality Preserving authorized restrictions on

information access and disclosure,

 46 LITERATURE REVIEW

 CHAPTER 2

including means for protecting personal

privacy and proprietary information

Privacy Restricting access to subscriber or relying

party information in accordance with

Federal law and organization policy

Table 2.8: Traditional security threats (Schwarz J., et al., 2005)

ID Security Challenge Definition

T-01 Message Alteration The message information is altered by inserting,

removing or otherwise modifying information created

by the originator of the information and mistaken by the

receiver as being the originator’s intention. There is not

necessarily a one to one correspondence between

message information and the message bits due to

canonicalization and related transformation

mechanisms.

T-02 Confidentiality Information within the message is viewable by

unintended and unauthorized participants. (e.g. a credit

card number is obtained).

T-03 Falsified Messages Fake messages are constructed and sent to a receiver

who believes them to have come from a party other than

the sender. For example, Alice sends a message to Bob.

Mal copies some (or all of) it and uses that in a message

sent to Bob who believes this new action was initiated

by Alice. This overlaps with T-01. The principle is that

there is generally little value to saying a message has

not been modified since it was sent unless we know

who sent it.

 47 LITERATURE REVIEW

 CHAPTER 2

T-04 Man in the Middle A party poses as the other participant to the real sender

and receiver in order to fool both participants (e.g. the

attacker is able to downgrade the level of cryptography

used to secure the message). The term “Man in the

Middle” is applied to a wide variety of attacks that have

little in common except for their topology. Potential

designs have to be closely examined on a case-by-case

basis for susceptibility to anything a third party might

do.

T-05 Principal Spoofing A message is sent which appears to be from another

principal (e.g. Alice sends a message which appears as

though it is from Bob). This is a variation on T-03.

T-06 Forged claims A message is sent in which the security claims are

forged in an effort to gain access to otherwise

unauthorized information (e.g. A security token is used

which wasn't really issued by the specified authority).

The methods of attack and prevention here are

essentially the same as T-01.

T-07 Replay of Message

Parts

A message is sent which includes portions of another

message in an effort to gain access to otherwise

unauthorized information or to cause the receiver to

take some action(e.g. a security token from another

message is added).Note that this is a variation on T-01.

Like “Man in the Middle” this technique can be applied

in a wide variety of situations. All designs must be

carefully inspected from the perspective of what could

an attacker do by replaying messages or parts of

messages.

T-08 Replay A whole message is resent by an attacker

T-09 Denial of Service Amplifier Attack: attacker does a small amount of work

 48 LITERATURE REVIEW

 CHAPTER 2

and forces system under attack to do a large amount of

work. This is an important issue in design and perhaps

merits profiling in some cases.

Table 2.9: Security challenges of Web Services (Schwarz J., et al., 2005)

Security Challenge Definition

Peer Identification An act or process that presents an identifier to a system so that

the system can recognize a system entity and distinguish it from

other entities.

Peer Authentication The corroboration that a peer entity in an association is the one

claimed.

Data Origin

Identification

An act or process that presents an identifier to a system so that

the system can recognize a system entity and distinguish it from

other entities.

Data Origin

authentication

The corroboration that the source of data received is as claimed.

Data Integrity The property that data has not been changed, destroyed, or lost

in an unauthorized or accidental manner (see [RFC 2828]). It

includes transport data integrity and SOAP message integrity.

Data Confidentiality The property that information is not made available or disclosed

to unauthorized individuals, entities, or processes [i.e. to any

unauthorized system entity]. It includes transport data

confidentiality and SOAP message confidentiality.

Message

Uniqueness

The ability to insure that a specific message is not resubmitted

for processing.

 49 LITERATURE REVIEW

 CHAPTER 2

2.6 Web Services Security Technologies

Security is fundamentally about protecting assets. Assets may be tangible items, such as

operations or your customer database (Meier J.D. et al., 2008). Web application or Web

Service is one of the assets of a corporation or enterprise. It will expose the internal,

private and sensitive information to the public if a service is used or invoked by an

unauthorized user. Yamaguchi Y. et al. (2007) identified that when services are

composed together, it is important to consider not only the functional requirements but

also the nonfunctional requirements. Especially for security, the security requirements

for an application are commonly described in a policy like WS-SecurityPolicy. Web

Services security is one of the critical areas for research both in industry as well as in

academia. In recent years, many security solutions have been invented and implemented

including non-standard Web Services security technologies and de facto Web Service

security technologies.

2.6.1 De facto Web Services security technologies

OASIS (Organization for the Advancement of Structured Information Standards) is a

not-for-profit consortium that drives the development, convergence and adoption of

open standards for the global information society. OASIS announced a set of Web

Services Security Standards named WS-Security 1.1 OASIS standard, which were

approved by the Web Service Security (WSS) technical committee in November 28th

2006. The WS-Security 1.1 OASIS standard consists of one specification and six token

profiles, including:

 WS-Security Core Specification 1.1

 Username Token Profile 1.1

 X.509 Token Profile 1.1

 SAML Token Profile 1.1

 Kerberos Token Profile 1.1

 Rights Expression Language (REL) Token Profile 1.1

 SOAP with Attachments (SWA) Profile 1.1.

 50 LITERATURE REVIEW

 CHAPTER 2

The WS-Security Core Specification 1.1 utilizes two open W3C- approved standards,

XML Encryption and XML Signature to provide message integrity and confidentiality.

Because the core specification is designed to be extensible, other existing security

mechanisms can be applied and work with the core specification, for instance, the X.509,

SAML, Kerberos, Rights Expression Language. Therefore, five security-related token

profiles are proposed and approved by the Web Services Security Technical Committee

and can improve the security of Web Services.

2.6.1.1 WS-Security Core Specification 1.1

The WS-Security Core Specification is also named “Web Services Security: SOAP

Message Security 1.1”, which is written by Lawrence K. et al. (2006) and has been

published by OASIS. The specification utilizes the W3C-approved XML encryption and

XML signature standard to provide SOAP message integrity and confidentially.

Moreover, the specification is designed to be extensible. It defined a mechanism for

associating different types of security tokens with message content. Therefore, a range

of security protocols or user defined security protocols can work with a SOAP message

using this specification instead of fixed or limited security protocols. Figure 2.9 shows

the conceptual representation of the WS-Security Core specification. The specification

is an extension of the SOAP specification for building secure Web services and

provides three main features:

1. Define how to send a security token as part of a SOAP message.

2. Provide message integrity feature.

3. Provide message confidentiality.

As shown in Figure 2.9, a security header <wsse:Security> has been added into the

SOAP message header <soap:Header> to define a security framework and includes

extensibility mechanisms. The security header block defines different tags to contain

security-related information for the intended recipient. A recipient will parse the

message security information and obtain the details of the processing rules based on the

WS-Security core specification.

 51 LITERATURE REVIEW

 CHAPTER 2

Figure 2.9: The conceptual representation of WS-Security core specification

According to the WS-Security Core Specification, an XML Encryption security element

<xenc:EncryptionData>, which is based on the XML encryption standard is added into

<wsse:Security> security token block. The encryption element block carries the

required information for encryption processing. An example of SOAP message

encryption is shown in Figure 2.10. In this example, a public key which is specified in

the “<ds:KeyInfo>” element is used to encrypt the data.

 52 LITERATURE REVIEW

 CHAPTER 2

Figure 2.10: Example of SOAP message encryption

The <xenc:DataReference> element indicates which message part will be encrypted, the

message body is encrypted in this example. A common symmetric key shared by the

service provider and the service receiver is used for encrypting the message content. It

can also use a one-time symmetric key, which is carried in the <xenc:CipherValue>

element of the message. The one-time symmetric key is encrypted by a recipient public

key. Therefore, the recipient can decrypt the message using the private key.

<S11:Header>

<wsse:Security>

<xenc:EncryptedKey>

 <xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Webster</ds:X509IssuerName>

 <ds:X509SerialNumber>1325057813</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>

Gu0KEwiNTGI40UcjTnS6g/4/lsuwhVU5+gaCjOFsihQ4lViD/P7cPkzGBnhEHg
+oM8SB9AkXyuSnQ0PIMET9gai94kA62Mhm/8f/xaxShNtoGBCZ0Dixc5DGIAMm
z32wzHC1zbDUDnpQSp6hIP+IOM/SXSQavLZtMaDhxXYTaUtSJxyVHFGNUMfFAm
WI3H7x26/UIC3zNe0EDUkBPwcWvet5+vMvUnzNFxZyYXsU+yRE+D/+p8qtd3Ax
xzi5ou+qfQvlIL02d9PqCPt7fvyxqjZtuBN2XheCokUewMVqIG7UmaFfwAsEDG
thcEIyNGtX8726x3DYxFoKKY1R27f+fw==

 </xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#MsgBody"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 </wsse:Security>

</S11:Header>

 53 LITERATURE REVIEW

 CHAPTER 2

The WS-Security Core Specification allows the creation of a digital signature for the

SOAP message body. A signature is produced by the message creator and is used to

verify message origin and integrity. A message recipient uses the signature to determine

whether the message is altered during transmission. An example of a SOAP message

signature is shown in Figure 2.11. This specification also allows for multiple signatures

and signature formats to be attached to a message. A <ds:Signature> element, which is

added to the existing content of the <wsse:Security> header block is used to carry

signature-related information. For instance, within the <ds:Signature> element block,

the <ds:DigestMethod> element is used to identify the digest algorithm to be applied to

the signed object, RSA encryption and SH1 message digest algorithm is used in the

example. The encrypted message digest with base64 encoded value is shown within the

<ds:DigestValue> element block. The key information, which is used to encrypt the

encoded message digest is shown within <ds:KeyInfo> element block.

 54 LITERATURE REVIEW

 CHAPTER 2

Figure 2.11: Example of SOAP message signature

<wsse:Security>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>

 EVZpDUsThfZQeKXpgijgyLO5PbU=

 </ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

RCCAJjax942pxXOlCfazRgeNjVAZT8fRbcIICEyRwAeNljKNB4RvoT0u+g96oD
MTtACq5xxcf8cu85cP6+l5yrRizbTDQhhkBfNwkw7VDv/1eqszVkxPd96phNcm
TZ8rB2xXaJYgrkWoH0NkBqA5NvCrmH1ETpTtnOudDXTOLBo=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>

0Xrzq2zclIckhZQwbHiRqZQf3c4T3YsmWOj7jl9NyUCIrXR
3Hit1Q0kf3zCSzeo56MjEy2b8aw+GqGU+cK2r03NHygfOIB
cjGTioCExlPGuWbKMLIeBMzh5V3o2lsGM89sK8S07egngc4
cRcVN12vnj55i1KbXPeST90E3DoX+k=

 </ds:Modulus>

 <ds:Exponent>AQAB</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

</wsse:Security>

 55 LITERATURE REVIEW

 CHAPTER 2

2.6.1.2 Web Service Security: Username Token Profile 1.1

The Username Token profile is used with the Web Services Security (WSS)

specification and describes how to use Username Token. It describes how a web service

consumer can supply a username and a password to a service provider for the consumer

authentication. A <wsse:UsernameToken> token is used to carry user relative

information including username, password, etc.

Figure 2.12: Example of username token use in a SOAP message

An example of Username Token used with the WSS specification is shown in Figure

2.12. It illustrates using a password digest with a nonce and a create timestamp. The

digest value of password uses SHA-1 (Secure Hash Algorithm 1) message-digest

<S11:Header>

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>John</wsse:Username>

<wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordDigest">

 NtaIDHV2y+beT9ED5IUUck9dvqE=

</wsse:Password>

<wsse:Nonce EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">

 zgniDw==

</wsse:Nonce>

 <wsu:Created>

 2012-02-10T16:45:27+0800

 </wsu:Created>

 </wsse:UsernameToken>

 </wsse:Security>

</S11:Header>

 56 LITERATURE REVIEW

 CHAPTER 2

algorithm for cryptographic hash function. In order to prevent replay attacks, the

following equation is used to produce the password digest.

Password_Digest =Base64 (SHA-1 (nonce + created + password))

 (2.1)

Where:

 Base64: An encoding scheme that represents binary data in an ASCII string

format by translating it into a radix-64 representation.

 SHA-1: Secure Hash Algorithm 1 for message digest.

 Nonce: A random value that the sender creates to include in each Username

Token that it sends.

 Created: A timestamp is used to indicate the create time.

 Password: A password that is provided by the service provider.

2.6.1.3 Web Service Security: X.509 Certificate Token Profile 1.1

X.509 is an ITU-T (Telecommunication Standardization Sector of International

Telecommunication Union) standard for Public-key and attribute certificate frameworks.

The X.509 certificate token profile describes how to use the X.509 authentication

framework with the Web Services Security Specification 1.1. The binding information

of a Public-key to an entity and a set of attributes are stored in the X.509 certificate as

shown in Figure 2.13.

CertificateContent ::= Sequence {

Version Version Default v1,

serialNumber Certificate SerialNumber,

signature AlgorithmIdentifier {{SupportedAlgorithms}},

issuer Name,

 57 LITERATURE REVIEW

 CHAPTER 2

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueIdentifier IMPLICIT UniqueIdentifier OPTIONAL,

subjectUniqueIdentifier IMPLICIT UniqueIdentifier OPTIONAL,

extensions Extensions OPTIONAL

}

Figure 2.13: An Example of X.509 Certificate (ITU-T X.509, 2008)

A <wsse:KeyIdentifier> element that specifies the X.509 subject key identifier of the

signing certificate if using references to Subject Key Identifier. A user can be

authenticated, the identity of a message sender from a trusted source, named a

Certification Authority (CA). A CA is an entity, which issues digital certificates to the

ownership of a public key. It allows participants to verify or certify the other user’s

public key. CA is one of the components in Public-key infrastructure. A public key is

bound with respective user identity, which must be unique with each CA domain. A

user certificate can be trusted because the user certificate is signed by a well-known CA.

Based on the hierarchy of CA, chain of trust, which is an ordered list of certificates is

used to validate and verify the certificate issuer. The hierarchy of the CA has a tree

structure and the top-most is a root certificate, which is a self-signed certificate.

Therefore, a certificate receiver can verify a sender’s certificate and all intermediate

certificates.

The X.509 Certificate Token Profile describes the syntax and processing rules for the

use of the X.509 authentication framework with Web Services Security: SOAP Message

Security specification (Nadalin A. et al., 2006c). It describes how to store and carry the

sender’s X.509 certificate within a SOAP message and which elements are to be used to

retrieve key information. The key information can be used for the SOAP message

encryption and message signature. According to the X.509 Token Profile, three token

 58 LITERATURE REVIEW

 CHAPTER 2

references are supported by WSS: SOAP Message Security including: (Nadalin A. et al.,

2006c)

 Reference to a subject Key Identifier - The <wsse:SecurityTokenReference>

element contains a <wsse:KeyIdentifier> element that specifies the token data

by means of a X.509 SubjectKeyIdentifier reference. A subject key identifier

may only be used to reference an X.509v3 certificate.”

 Reference to a Binary Security Token - The <wsse:SecurityTokenReference>

element contains a wsse:Reference> element that references a local

<wsse:BinarySecurityToken> element or a remote data source that contains the

token data itself.

 Reference to an Issuer and Serial Number - The

<wsse:SecurityTokenReference> element contains a <ds:X509Data> element

that contains a <ds:X509IssuerSerial> element that uniquely identifies an end

entity certificate by its X.509 Issuer and Serial Number.

An example of a SOAP message, which uses a Binary Security Token to contain the

binary X.509 security token data is shown in Figure 2.14. It contains a

<wsse:BinarySecurityToken> element and a certificate is presented within this element

in binary format. The scope of the signature is defined by a <ds:Reference> element

within the <ds:SignedInfo> element.

 59 LITERATURE REVIEW

 CHAPTER 2

Figure 2.14: Example of SOAP message with an embedded certificate using BinarySecurityToken

2.6.1.4 Web Services Security: SAML Token Profile 1.1

The Security Assertion Markup Language (SAML), developed by the Security Services

Technical Committee of OASIS, is an XML-based framework for communicating user

<S11:Header>

 <wsse:Security>

 <wsse:BinarySecurityToken

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509" wsu:Id="x509cert00">

MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJH
QjEMMAoGA1UEChMDSUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEz
MTAwMDAwMFoXDTA3MDEzMTIzNTk1OVowMDELMAkGA1UEBhMCR0IxDDAKBgNV
BAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkqhkiG9w0BAQEF
AAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiog
ePsR6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8J
XPFzA+BqV63JqRgJyxN6msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ
9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhCAQ0EMhMwR2VuZXJhdGVkIGJ5
IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgGZQVRFU0B
VSy5JQk0uQ09ggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 ……

 </ds:SignedInfo>

 <ds:SignatureValue>

RCCAJjax942pxXOlCfazRgeNjVAZT8fRbcIICEyRwAeNljKNB4Rvo
T0u+g96oDMTtACq5xxcf8cu85cP6+l5yrRizbTDQhhkBfNwkw7VDv
/1eqszVkxPd96phNcmTZ8rB2xXaJYgrkWoH0NkBqA5NvCrmH1ETpT
tnOudDXTOLBo=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509cert00"

ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </wsse:Security>

</S11:Header>

 60 LITERATURE REVIEW

 CHAPTER 2

authentication, entitlement, and attribute information. The SAML is an XML-based

framework for exchanging security information. This security information is expressed

in the form of assertions about subjects, where a subject is an entity that has an identity

in some security domain (Maler E., et al., 2003). There are three kinds of statement or

functions defined in the SAML, including Authentication, Attribute and Authorization

Decision. The authentication, attribute and authorization decision statements can be

used to authenticate a subject at a particular time. What attributes are associated with a

particular subject. What authorizations are granted or denied to specify subject and to

specify resource. The major feature of SAML is to provide a Single Sign-on (SSO)

solution, which is used among Web Applications.

The SAML Token Profile defines the use of Security Assertion Markup Language

(SAML) assertions as security tokens, which are added into the <wsse:Security> header

block. The SAML assertions are used with XML signature to bind the subjects and

statements of the assertions to a SOAP message. With the XML signature, the assertion

statement integrity can be verified. Moreover, the issuer of the assertion statement can

be authenticated. An example of SAML is shown in Figure 2.15 (Monzillo R., 2006). A

<wsse:SecurityTokenReference> element is used to indicate, which security token

profile is used, the SAML V1.1 is used in this example. <saml:Assertion> element

contains assertion statements and can be interpreted as follows:

Assertion A was issued at Time T by issuer R subject to Conditions C

The value of the issuer attribute is the unique identifier of the SAML authority. A

<saml:NameIdentifier> element refers to a subject and defines the user id format in the

“nameidformat” property. In this example, it uses X.509 subject as a Nameidentifier.

 61 LITERATURE REVIEW

 CHAPTER 2

Figure 2.15: Example of SOAP message with SAML

2.6.1.5 Web Services Security: Kerberos Token Profile 1.1

Kerberos provides a means of verifying the identities of principles, (e.g., a workstation

user or a network server) on an open (unprotected) network (Neuman C. et al., 2005).

Kerberos is a computer network authentication protocol and was originally developed

for MIT’s Project Athena in the 1980s. It is designed in a client-server model and uses

<S12:Header>

 <wsse:Security xmlns:wsse="...">

 <saml:Assertion xmlns:saml="..."

 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"

 IssueInstant="2003-04-17T00:46:02Z"

 Issuer=”www.opensaml.org”

 MajorVersion="1"

 MinorVersion="1">

 <saml:AuthenticationStatement>

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format=“urn:oasis:names:tc:SAML:1.1:nameidformat:

 X509SubjectName”>

 uid=joe,ou=people,ou=saml-demo,o=baltimore.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:bearer

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 </saml:Assertion>

 </wsse:Security>

</S12:Header>

 62 LITERATURE REVIEW

 CHAPTER 2

secret-key cryptography to provide mutual authentication between client and server.

Kerberos was developed in 1983, released as open source in 1987 and became an IETF

standard in 1993. Nowadays, many operating systems are embedded with Kerberos

implementation including Apple Macintosh, Microsoft Windows and UNIX operating

systems. The most up to date Kerberos is version 5 and was published in RFC4120 in

2005. Based on the Kerberos authentication process, a client can use the shared secret,

which is stored in the Authentication Server (AS) or Key Distribution Center (KDC) to

obtain the Ticket Granting Ticket (TGT) and session key from the AS. The TGT and the

session key will be used for further communication with the Ticket Granting Server

(TGS).

The Kerberos Token Profile describes how to use Kerberos (Kerb) tickets (specifically

the AP-REQ packet) with the WSS: SOAP Message Security [WSS] specification, an

example is shown in Figure 2.16 (Nadalin A., et al., 2006d). The

<wsse:BinarySecurityToken> element with “http://docs.oasis-open.org/wss/oasiswss-

kerberos-token-profile-1.1# Kerberosv5_AP_REQ”, which is defined in ValueType

attribute is used to specify the adoption of Kerberos protocol in SOAP message. A

symmetric encryption algorithm is used if the Kerberos ticket is referenced as an

encryption key.

 63 LITERATURE REVIEW

 CHAPTER 2

Figure 2.16: Example of SOAP message with Kerberos

2.6.2 Non-standard Web Services security technologies

Although the WS-Security 1.1 OASIS standard has been published to protect a SOAP

message between two end-points, there is still significant research into Web Services

security. Authentication and authorization are the mechanisms to determine who you are

and what you are authorized to do. Both mechanisms are adopted in many information

systems and the difference between old and new technology is the implementation. The

authentication process may be as simple as a providing a username and password to an

authenticating system, or as complicated as using PKI authentication or a Kerberos

authentication system. Research reported by Genge B. et al., 2009, proposes a new

secure token to extend the WS-security for implementing existing secure protocols such

as ISO9798, Kerberos, etc. Other research, such as Damiani E. et al., 2002, designs and

<S12:Header>

 <wsse:Security xmlns:wsse="...">

 <wsse:BinarySecurityToken EncodingType="http://docs.

 oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-

1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/oasis-
wss225

 kerberos-token-profile-1.1#Kerberosv5_AP_REQ" wsu:Id="MyToken">

 boIBxDCCAcCgAwIBBaEDAgEOogcD...

 </wsse:BinarySecurityToken>

 ...

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#MyToken"

ValueType="http://docs.oasis-open.org/wss/oasis-wss-kerberos-
token232

 profile-1.1#Kerberosv5_AP_REQ">

 </wsse:Reference>

 </wsse:SecurityTokenReference>

 ...

 </wsse:Security>

</S12:Header>

 64 LITERATURE REVIEW

 CHAPTER 2

implements an Authorization Filter to provide authentication and authorization features

between a client and a SOAP gateway for all the SOAP requests. It also describes new

tokens or tags to provide the security features for instance, “userid”, “passwordhash”,

“role”, etc. However, it is not a new security mechanism to protect a SOAP message.

Authorization is the next process after authentication to determine which web services

and methods can be invoked by an authenticating user or a participant. Group-based

access control and role-based access control (Sandhu R.S., et al., 1996) are mostly used

to control the level of access rights within a system. Other similar models include task-

based access (Oh S. and Park S., 2003) and provision-based access control (Kudo M.,

2004). These models are static and require a pre-defined access level for each

participant.

2.7 Conclusion

In this chapter, it was explained why the Service-Orinted Articture (SOA) is such an

important architecture style and an example of an SOA-based system was discussed.

The research presented the relationship between SOA and Web Servcices. Two classes

of Web Services were discussed in this chapter, which are REST-compliant Web

Services and SOAP-based Web Services. REST-compliant Web Services is a resource-

based uniform interface Web Service and SOAP-based Web Services is a method-based

application-specific interface Web Service. This chapter also covered the major security

challenges of Web Services and the currently de facto and non-standards Web services

security technologies.

 65 PDNT

 CHAPTER 3

CHAPTER 3

- PARTICIPANT DOMAIN
 NAME TOKEN PROFILE (PDNT)

 66 PDNT

 CHAPTER 3

3.1 Introduction

he goal of domain names is to provide a mechanism for naming resources in

such a way that the names are usable in different hosts, networks, protocol

families, internets and administrative organizations (Mockapetris P., 1987).

The Domain Name System (DNS) is a hierarchical distributed naming system like a tree

structure for network devices, which connect to the Internet or internal network. Each

node in the domain naming tree has one or more zone files, which are used to store

resource records and is managed by a domain name server. The DNS is implemented in

client-server model and maintained by a distributed database system. A DNS client

issues a DNS query to a DNS server or DNS resolver using User Datagram Protocol

(UDP). The DNS resolver listens on port number 53 to handle the DNS query and

returns a Resource Record (RR) to the client. The resource record is the fundamental

element in the DNS and each record has its own type. The common format of resource

record is specified in RFC 1035 and the types of DNS record are shown in Table 3.1.

Table 3.1: Examples of DNS record types

Type Type Number RFC Description

A 1 RFC 1035 Address Record

LOC 29 RFC 1876 Location Record

MX 15 RFC 1035 Mail Exchange Record

NS 2 RFC 1035 Name Server Record

PRT 12 RFC 1035 Pointer Record

SRV 33 RFC 2782 Service Locator

TXT 16 RFC 1035 Text Record

The domain name is used to uniquely identify Internet resources such as a Web site, and

email system, etc. Domain name is human readable and it can be translated to the

numerical identifiers, the Internet Protocol (IP) address by the DNS. The IP address is

used by a machine and it can be used to locate an Internet service in the worldwide web.

For instance, the website of the University of Sussex, http://www.sussex.au.uk is

mapped to an IP address of 139.184.32.51. A user inputs an URL to a HTTP user agent,

T

 67 PDNT

 CHAPTER 3

which is a Web browser usually for browsing a website. A corresponding IP address

will be translated by one of the DNS records stored in the DNS server, which is

specified or configured in the user computer. A public DNS database is maintained by

domain name registrars who are accredited by the Internet Corporation for Assigned

Names and Numbers (ICANN). ICANN is a nonprofit organization and was founded in

1998 to oversee Internet-related tasks including Internet Protocol address spaces

assignment, top-level domain name space management, etc. ICANN also publishes the

complete list of top-level domain registries and domain name registrars. Usually, the

local Internet Service Provider (ISP) is the domain name registry and manages the

domain name database and the relationship with the domain name applicants. An

applicant can also apply for resource records, which are hosted in a local ISP. The rules

and regulations of applying domain name and resource records are defined by each local

ISP. The valid resource records are forwarded to other DNS systems and are used in

worldwide DNS clients.

A Web Services consumer, which is an application or software module sends a service

request or invokes a service method using HTTP protocol, an example is shown in

Figure 3.1. The HTTP request contains not only the requested information but also the

necessary information, which is used for responding back to the requester, for instance,

the requester’s IP address and port number, “192.168.1.1” and “8888” in this example.

Therefore, the requester IP address cannot be faked as the requester wants the result to

be sent back. The mapping between the IP address and domain name is stored in the

DNS, which is hosted by the Internet Service Provider (ISP). Usually, the ISP is a

trusted local telecommunication company. Therefore, the DNS records hosted by the

ISP are trusted and reliable. The Participant Domain Token Profile uses one of the DNS

resource records, the service resource record to validate the location or domain of

participants. The details of the service resource record are described in the next section.

 68 PDNT

 CHAPTER 3

Figure 3.1: An example SOAP message using HTTP

3.2 Service Resource Record

The mapping between IP address and Domain name or other resource records, for

instance MX record are stored in the zone file or database of the Domain Name System

(DNS). There are many types of record resources stored in the DNS. Each type of

resource record is defined Request for Comments (RFC) and has a particular function.

For instance, the “A Record”, the type code is “1”, which is used to return a 32-bit IPv4

address by giving a hostname. A Service resource record (SRV RR record) which is

defined in RFC 2782 (Gulbrabdsen A., et al., 2000) is one of the DNS resource records

and its type code is 33. The SRV RR allows administrators to use several servers for a

single domain, to move services from host to host with little fuss, and to designate some

hosts as primary servers for a service and others as backups. It is used to define the

location of the servers for specified services. For instance, Session Initiation Protocol

(SIP) uses the SRV record which is stored in the DNS to find or point to a SIP server,

which is listening on TCP port 5060 for SIP services. According to the RFC 2782, the

format of the SRV record is:

Content-Type: application/soap+xml;charset=UTF-8

Content-Length: 44501

Host: 192.168.1.1:8888

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.2 (java 1.5)

<?xml version="1.0" encoding="UTF-8" ?>

<S11:Envelope xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" >

 <S11:Body>

 ……

 </S11:Body>

</S11:Envelope>

 69 PDNT

 CHAPTER 3

_Service._Proto.Name TTL Class SRV Priority Weight Port Target

 (3.1)

Where:

 _Service: is service symbolic name. The name is a unique name, which is legal

for SRV lookup in the DNS database.

 _Proto: is the symbolic name of the desired protocol. _TCP and _UDP are the

most useful values for this field.

 Name: is the domain this RR refers to.

 TTL: is standard DNS time to live.

 Class: is standard DNS class field.

 SRV: Service record.

 Priority: is the priority of this target host. A client must attempt to contact the

target host with the lowest-numbered priority it can reach.

 Weight: is a server selection mechanism. The weight field specifies a relative

weight for entries with the same priority. Larger weights SHOULD be given a

proportionately higher probability of being selected. The range of this number is

between 0 and 65535.

 Port: is the port on this target host of this service. The port number range is

between 0 and 65535.

 Target: is the domain name of the target host. There must be one or more

address records (A Record) for this name.

The SRV record works with “A Record” because the target field defined in the SRV

record is pointing to an address record. Therefore, the corresponding hostname record

must be defined in the DNS. The proposed token profile utilizes the SRV record and

makes a little change to the meaning of the target field to be a self-defined host instead

of the remote host. Although the definition of the target field of RFC 2782 has a minor

change, it will not affect the existing usage because of different service names. The

proposed token profile can be implemented by using the following SRV record defined

in the DNS server.

 70 PDNT

 CHAPTER 3

_pdn_tcp.sussex.ac.uk 300 IN SRV 1 1 8080 soap.sussex.ac.uk

 (3.2)

Where:

 _pdn : service name for proposed token.

 _tcp : using TCP protocol.

 .sussex.ac.uk : domain of owner.

 300 : time to live, 300 seconds.

 IN : Internet class.

 SRV : Service record.

 1 : (0-65535). Lowest is high priority.

 1 : weight.

 8080 : port number of target host of desire service.

 soap.sussex.ac.uk : the name of the host that will provide this service.

However, it has changed the definition to message sender.

In this example, _pdn is used as a service name and uses TCP (_tcp) as the

communication protocol. The domain owner is “.sussex.ac.uk” and “time to live” is 300

seconds, which is the caching time in the DNS. Internet class (IN) and Service record

(SRV) must be used in this example. The priority and the weight are both set to 1 to

define that it has a high priority and lower weights. The port number is defined in port

8080 and all the requests must come from the corresponding IP address of

soap.sussex.ac.uk.

3.3 Classification of WS-Security Token Profiles

There are two layers of security challenges in adopting Web Services: the transport

layer security and message layer security. The transport layer security issue is addressed

by transport layer protocol. The most widely used transport protocol for Web Services is

 71 PDNT

 CHAPTER 3

HTTP and Hypertext Transfer Protocol Secure (HTTPS), this is one of the mechanisms

to satisfy transport layer security requirements. With HTTPS, a user agent or browser

adds an encryption layer of SSL/TLS to protect traffic. The objective of HTTPS is to

create a secure channel over an insecure channel, which can prevent the eavesdroppers

and man-in-middle attacks. However, the primary concern of this research is the

message layer security challenge.

The message layer security challenge can be addressed by WS-Security standards if

SOAP is adopted to implement a Web Service. The WS-Security standards consist of

one core specification and five secure token profiles. The processing model for WS-

Security with all five token profiles is no different from other security tokens defined in

the WS-Security core specification. The message processor or handler must do the

token validation and follow the processing rules, which are defined in related protocol

specifications, not in each token profile. All OASIS WSS token profiles involve

cryptology, encryption, signature mechanisms or Public Key Infrastructure (PKI) to

provide authentication and authorization features. The five secure token profiles focus

on two major areas. Who can use the Web Services and what are the permissions. The

classification of five WSS token profiles is shown in Table 3.2. Integrity is provided to

a SOAP-based Web Service using XML signature. Confidentiality is also provided

using XML encryption. Message uniqueness is provided by Username token profile

and other security issues are tackled by the other four secure token profiles. However,

the location or domain of Web Services participants is not handled and not verified in

existing secure token profiles. XML security standards also do not rely on location.

Therefore, a new secure token profile is proposed in this thesis to provide additional

security for use by Web Services.

 72 PDNT

 CHAPTER 3

Table 3.2: WS-Security token profiles classification

Area Secure Token Profile

Web Service Authentication (Who) Username Token Profile

X.509 Certificate Profile

Kerberos Token Profile

Security Assertion Markup Language

(SAML) Token Profile

Web Service Authorization (What) Rights Expression Language Token

Profile

Security Assertion Markup Language

(SAML) Token Profile

3.4 Proposed Participant Domain Name Token

The Participant Domain Name Token Profile (PDNT) is used with WSS: SOAP

Message Security specification (WSS). It describes how a participant supplies a Domain

Name token as a means of identifying the participant by domain name to authenticate

the participant location. In order to use PDNT in a SOAP message, the namespaces

which show in Table 3.3 are used and a new element block

<pdn:ParticipantDominNameToken> is introduced and added into the <wsse:Security>

block. The corresponding schema file of PDNT is shown in Figure 3.2. Within the

<pdn:ParticipantDominNameToken> element block, a <pdn:DomainName> element is

specified. An example of the use of PDNT is shown in Figure 3.3. It contains a

participant or a message sender domain name with the required format and it will be

translated to the IP address through the SRV resource record, which is stored in DNS.

The details of how to use the proposed token are illustrated in the next section.

 73 PDNT

 CHAPTER 3

Table 3.3: Namespaces are used in PDNT

Prefix Namespace

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

secext-1.0.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-utility-

1.0.xsd

pdn http://schema.sussex.au.uk/participant-domain-name-token-profile.xsd

Figure 3.2: A schema file of Participant Domain Name Token

<xsd:schema targetNamespace="http://schma.sussex.au.uk/participant-domain-name-
token-profile.xsd" xmlns="http://schema.sussex.au.uk/participant-domain-name-token-
profile.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="ParticipantDomainNameTokenType">

 <xsd:annotation>

 <xsd:documentation>

 This type represents a participant domain name token

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:sequence>

 <xsd:element name="DomainName"

 type="xsd:string" minOccurs="1" maxOccurs="1" />

 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="ParticipantDomainNameToken"

 type="wsse:ParticipantDomainNameTokenType">

 <xsd:annotation>

 <xsd:documentation>

 This element defines the pdn:ParticipantDomainNameToken element

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:schema>

 74 PDNT

 CHAPTER 3

Figure 3.3: An example SOAP Message using Participant Domain Name Token

In the above example, a service name with protocol type can be found within the

<pdn:DomainName> element block, which is _pdn_tcp.sussex.ac.uk. The Web Services

participants use the following rule or format to obtain the corresponding SRV resource

records. If the result is not saved in local DNS cache before, a DNS client will query a

DNS server to obtain the result and keep it in the local DNS cache to improve the

performance next time.

QNAME = _pdn_tcp.sussex.ac.uk, QCLASS=IN, QTYPE=SRV (3.3)

Based on SRV resource records, a service provider can validate a message sent by a

service consumer or vice versa. However, the message receiver must ask the message

sender to register the SRV resource records with the local ISP when the Participant

Domain Name token is implemented. The high availability can be supported by the

SRV resource records if multiple SRV records are defined in the DNS zone file as

<soap:Envelope xmlns:soap="..." xmlns:wsse="..."

Xmlns:pdn=="http://schma.sussex.au.uk/participant-domain-name-token-profile.xsd">

 <soap:Header>

 ...

 <wsse:Security>

 <pdn:ParticipantDomainNameToken>

 <pdn:DomainName>

 _pdn_tcp.sussex.ac.uk

 </pdn:DomainName>

 </pdn:ParticipantDomainNameToken>

 </pdn:Security>

 ...

 </soap:Header>

 ...

</soap:Envelope>

 75 PDNT

 CHAPTER 3

shown in Figure 3.4. The value of priority and weight fields are used to provide a

combination of load balancing and backup service. The first two records of the example

share a priority of 10. Therefore, the weight field is used by a client to determine which

server will be used. The value of the target field of the first record is

webservice1.sussex.ac.uk. It is pointing to an address record (A record) and is mapped

to a corresponding IP address. If more than one IP addresses are mapped to a single

address record, round robin DNS feature can be used, which is a load distribution

technique.

Figure 3.4: Multiple SRV records used to provide load balancing and high availability

3.5 Processing Rules of Participant Domain Name Token

The Participant Domain Name Token (PDNT) works with DNS records, which are

stored in the DNS server. Figure 3.5 shows the processing flow of the PDNT as

illustrated in the following.

1. A service consumer sends an HTTP request, which contains a SOAP message

for the service provider.

2. The service provider receives the HTTP request and parses the SOAP message.

A participant domain name can be obtained from the

<pdn:ParticipantDomainName> element block. The service provider sends a

SRV resource record query with the domain name to a local DNS server.

3. If the corresponding resource record cannot be found in the local ISP, then the

local ISP will do the recursive query worldwide. A host name defined in the

target field is returned and a second DNS query is executed to lookup the IP

_pdn_tcp.sussex.ac.uk 300 IN SRV 10 10 8080 webservice1.sussex.ac.uk

_pdn_tcp.sussex.ac.uk 300 IN SRV 10 20 8080 webservice2.sussex.ac.uk

_pdn_tcp.sussex.ac.uk 300 IN SRV 20 20 8080 webservice3.sussex.ac.uk

_pdn_tcp.sussex.ac.uk 300 IN SRV 20 30 8080 webservice4.sussex.ac.uk

 76 PDNT

 CHAPTER 3

address. A corresponding IP address can be resolved by the local ISP and is

returned to the service provider.

4. The location of a service consumer or message sender can be authenticated if the

following equation is valid. The results will be returned to the service consumer

if PDNT and other secure token profiles are validated.

 [IP Address]RemoteAddress = [IP Address]SA (3.4)

Where:

 RemoteAddress can be obtained from a container. The container is a

Web Service container or traditional Web server container, in JavaServer

Pages (JSP) language, it can obtain the message sender IP address by

executing request.getRemoteAddr().

 SA is a two-step procedure. First, it looks up a SRV resource record by

giving a standard SRV query string. Second, based on the SRV record, it

can obtain a canonical hostname and acquires an IP address by querying

an address record in DNS.

Figure 3.5: The processing flow of the Participant Domain Name Token Profile

 77 PDNT

 CHAPTER 3

To eliminate the overhead for processing an unknown or a fake request, the PDNT is

processed before other secure token profiles or other security standards such as X.509

Token Profile, Kerberos Token Profile, etc. In order to support high availability, load

balancing and services backup, the DNS server may return more than one SRV resource

record. The token processor uses priority and weight fields to determine the precedence

for use of the record’s data. One of the objectives of PDNT is to reject a fake request as

fast as possible, which will reduce the processing resources required to handle illegal

requests.

In order to handle a SOAP message which does not use or implement the proposed

token, a permitted domain list feature is included in the system. In other words, a

permitted domain list is a kind of whitelist, which is used to bypass the processing rule

of PDNT. The whitelist can use the IP address or an address record (A Record), which

is stored in the DNS server to control who is allowed to use the Web Services. If the IP

address is adopted, it will use it to compare the remote IP address directly. Otherwise,

the IP resolve step is processed before the comparison. The whitelist will be stored in a

secure location such as in a private database or a file in a private folder.

The location-based validation process utilizes one of the existing well-known Internet

infrastructures, the Domain Name System. Therefore, it can be trusted and is reliable. In

order to parse and verify the proposed token before any other security specifications,

arbitrary data encryption cannot be applied to the Participant Domain Name Token

profile. It means that the PDNT should be shown in plain text or Base64 encoded.

Although the domain name information is sent in plain text, it is not private or sensitive

information. The PDNT also must be processed before other secure token profiles

because it uses less processing time to validate a message. Depending on the security

requirements of the Web Services participants, the PDNT can be used in standalone or

with other existing secure token profiles. The performance evaluation of token profiles

is illustrated in the next chapter.

 78 PDNT

 CHAPTER 3

3.6 Security Enhancements

Singhal A. et al. (2007) identify that because a Web Service relies on some of the same

underlying HTTP and Web-based architecture as common Web applications, it is

susceptible to similar threats and vulnerabilities. The fundamentals of security concepts

are the Confidentiality, Integrity and Availability, the C-I-A Triad. Based on the

research of Web application security issues, Table 3.4 details the foundations of the

security element of Web Services and it can be tackled by WS-Security 1.1 OASIS

standard as shown in Figure 3.6. Although the basic security elements are solved by

secure token profiles, they have a limitation in authentication as illustrated in the next

section.

Table 3.4: Fundamental of security element of Web Services

Security Element Description

Authentication The identity of a Web Services consumer and provider. Who

invokes the Web Services? Who returns the result after

invoking a Web Service?

Authorization The permissions of Web Services operations for a specific

Web Services consumer. What can the Web Services

consumer do in a Web Service?

Confidentially The data or information exchange between Web Services

consumer and provider remains private and confidential. It

cannot be viewed by unauthorized users or eavesdroppers

who monitor the flow of traffic across a network. Moreover

the intermediary Web Services node cannot also view the

information.

Integrity Web Services Information can be modified or altered by

accident or deliberation. Integrity is the guarantee that the

data is protected and does not get modified by unauthorized

users.

 79 PDNT

 CHAPTER 3

Figure 3.6: The Web application security issues tackled by the corresponding WS-Security token profiles

The Participant Domain Name Token Profile (PDNT) is used to enhance the Web

Service authentication security methodology as shown in Figure 3.7. Although the

Username token profile, X.509 token profile and Kerberos token profile can also handle

the authentication issue; there is a limitation about the authentication of the location of

the service consumer and provider. The PDNT can remove this weak point of Web

Services authentication. The use of the PDNT has no new message-level threats beyond

identified for the PDNT itself. Replay attacks or man-in-the-middle attacks are not

threats for the PDNT. One potential threat is the DNS spoofing in ISP DNS. However,

this not only applies to PDNT but also to the Web Services architecture. Moreover, the

permitted domain list feature of PDNT can prevent an unauthorized domain to invoke

Web Services. Other security issues such as message modification and eavesdropping

can be addressed by using the integrity and confidentially mechanisms, which are

described in other secure token profiles.

A trusted third party is utilized to validate the location of a message sender. This is the

Internet Service Provider (ISP), which is the owner of the DNS and is a trusted third

party in the processing flow of PDNT. The ISP is an entity or company which

Authentication

Username Token
Profile

X.509 Token
Profile

Kerberos Token
Profile

Authorization

Right Expression
Language Token

(REL) Profile

SAML Token
Profile

Confidentially

WS-Security Core
Specification

Integrity

WS-Security Core
Specification

 80 PDNT

 CHAPTER 3

facilitates interactions between two parties who both trust the third party. Most ISPs are

telecommunication companies, which is also a trusted third party.

Figure 3.7: The enhancement of Web Services authentication security

3.7 Security Scenarios

There are a total of five secure token profiles for Web Services Security (WSS)

Standards after implementing the Participant Domain Token Profile. The following

scenarios present the security mechanisms and associated countermeasures that are

addressed by the different secure token profiles. The peer authentication security

scenario is shown in Table 3.5. It can be tackled using three secure profiles. The

message Integrity security scenario is shown in Table 3.6. SOAP message security

utilizes XML signature to prevent message alteration. Message confidentiality uses

XML encryption to prevent disclosing the content of a message as shown in Table 3.7.

The proposed token profile is used to solve location authentication, which is described

in Table 3.8.

User -based
Authentication

Location-based
Authentication

Web Services
Authentication

 81 PDNT

 CHAPTER 3

Table 3.5: Security Scenario 1

Scenario 1 SOAP Message Peer Authentication

Explanation A Web Service message sender and receiver must be able to authenticate

each of other.

Threats Man-in-middle, Sender Spoofing

Solutions 1. HTTPS X.509 sender authentication

2. Username Token Profile

3. X.509 Certificate Token Profile

Table 3.6: Security Scenario 2

Scenario 2 SOAP Message Integrity

Explanation A Message Receiver must be able to detect alternation or modification for

the content sent from another SOAP node.

Threats Message alteration, Falsified Messages

Solutions 1. SOAP Message Security – XML Signature

2. Transport layer integrity

Table 3.7: Security Scenario 3

Scenario 3 SOAP Message Confidentiality

Explanation A Message Receiver must be able to exclusively access confidential

content sent from another SOAP node.

Threats Confidentiality

Solutions 1. SOAP Message Security – XML Encryption

2. Transport layer confidentiality

Table 3.8: Security Scenario 4

Scenario 4 SOAP Message Peer Location Authentication

Explanation A Web Service message sender and receiver must be able to authenticate

the location each of other.

Threats Location Spoofing

 82 PDNT

 CHAPTER 3

Solutions 1. Participant Domain Name Token Profile

3.8 Security Considerations

There are some security considerations after implementing Participant Domain Name

Token (PDNT) profile. It does not mean that the PDNT has security holes or issues.

This section discusses the potential attacks and shows the suggestions for reducing

security risks.

The PDNT elements defined in a SOAP message are shown in plain text or Base64

encoded. It means that it will expose the sender’s domain name. However, the sender’s

domain name is self-defined information and it is stored in a Domain Name System

(DNS) as one of the resource records. Most of the resource records can be queried by a

client and it is public information used by Internet users. Therefore, the PDNT uses

plain text within an element that does not expose any private or security information to

the public.

One of the major roles of PDNT is to use the remote client IP address to compare with

an IP address which is retrieved from DNS. However, IP address spoofing may be

encountered. IP address spoofing means that the Internet Protocol (IP) packet is created

with a forged source IP address. The purpose of IP spoofing is to conceal the identity of

the sender or to impersonate another computer system. Usually, routers use the

destination IP address to forward packets through the Internet but ignore the source IP

address. The source IP address is only used by the destination client when it responds

back to the source machine. Forging the source IP address causes the responses to be

misdirected to another machine or discarded by intermediate network devices. A SOAP

message sending from a forged IP address machine to a Web Service provider will pass

the PDNT rules. If the sender modifies the source IP address of all the packets to a

permitted IP, it will not expose any sensitive data because the response message cannot

send back to a forged IP machine.

 83 PDNT

 CHAPTER 3

3.9 Conclusion

This chapter introduced the PDNT, its theory and its applications. It explains how the

PDNT can be used for rejecting an invalid SOAP request, which came from an

unknown domain or enterprise.

This chapter classified the defence area of each WS-Security token profile and WS-

Security core specification. The research found that the existing Web Service Security

standard focuses on two areas, which are user-based authentication and authorization.

However, the location of the participant or message sender is not verified. Therefore, a

new secure token profile has been designed and proposed, which is the Participant

Domain Name Token Profile (PDNT). This chapter presented the PDNT architecture,

syntax of the token and the processing rules. The PDNT provides a new security

enhancement for SOAP based Web Services, which is location-based authentication.

 84 PERFORMANCE EVALUATION

 CHAPTER 4

CHAPTER 4

- PERFORMANCE
EVALUATION AND ANALYSIS

 85 PERFORMANCE EVALUATION

 CHAPTER 4

4.1 Introduction

ecurity is one of the successful factors for the use of Web Services on the

Internet. Many Web Services security standards are designed and proposed,

such as OASIS Web Services Security. It provides end-to-end message security

properties including integrity, confidentiality and authentication. However, performance

is another vital factor for evaluating a security standard. The processing time is a key

indicator for measuring the performance of a new or existing security specification. As

more security mechanisms are adopted, additional performance overheads will be added

to process the Web Services using CPU processing time, large messages will consume

channel bandwidth. In the evaluation, a set of WS-security specifications have been

implemented and the Participant Domain Name Token Profile has also been designed

and developed. A client-server model is used to evaluate each of the security standards

to quantify the effect of the proposed new token.

4.2 Performance Modeling

In order to compare the performance of the Participant Domain Name Token Profile and

the five secure token profiles, which are: Usename Token Profile, X.509 Token Profile,

SAML Token Profile, Kerberos Token Profile and Rights Expression Language (REL)

Token Profile - performance measurements are defined. Juric M.B. et al., (1999)

defined a set of performance assessment frameworks for distributed object architecture.

The most commonly used performance metrics are response time (R) and throughput

(X). This research uses response time or latency time, which is the round-trip time of a

message between a sender and a receiver, as a performance metric. The round-trip time

does not include a registry lookup such as UDDI or other Web Service retrieval

mechanisms. The metric can be used to evaluate the proposed token profile and

compare it with other secure token profiles. The latency is defined by the following:

 Latency = T [Network Layer] + T [Application Layer] (4.1)

S

 86 PERFORMANCE EVALUATION

 CHAPTER 4

Where:

 T [Network Layer]: is the total transfer time of a message between sender and receiver

over the network. It consists of many factors. For instance, the number of

network devices involved, total delay time in each router or switch, which

network protocol is used, the quality of network infrastructure, the distance

between sender and receiver, etc.

 T [Application Layer]: The total processing time spent in the application level, which

includes message encoding / decoding, message parsing, security token profiles

handling time, total time spent in business logic, database processing time, etc.

However, the total time spent in the network layer is difficult to evaluate over the

Internet because it depends on the quality of network transmission and the network

devices capacity. Therefore, this thesis only focuses on the time spent in the application

layer which is defined as:

 T [Application Layer] = T [parsing] + T [security token profile handling] + T [business logic] + T [database] (4.2)

Where:

 T[parsing]: Total time spent in parsing an input stream into an XML document and

converting it to a W3C Document Object Model (DOM), which allows a

program to access and manipulate the content of the document.

 T[security token profile handling]: Total time spent in handling different secure token

profiles and corresponding mechanisms. For instance, XML Encryption, XML

Signature, etc.

 T[business logic]: represents the time spent in business logic.

 T[database]: Total time spent in Data Manipulation Language (DML). Most Web

Services applications work with a database to query database tables in order to

get the result back and return it to requesters.

 87 PERFORMANCE EVALUATION

 CHAPTER 4

The proposed token profile is used by a message receiver to authenticate the location of

a sender. Other secure token profiles are also used to validate a SOAP message by

different mechanisms. In order to compare the performance between proposed token

and other existing token profiles, the T[logic] and T[database] factors can be ignored in

the performance evaluation. It means that only parsing time and security token profile

handling time are taken into account.

Rayns C. et al. (2007) indicates that the CPU consumed by the parsing process is

affected by both the overall size of the message, and also by the number of XML

elements within the message. Therefore, the latency is not only one evaluation factor

but also the additional message size for adopting secure token profiles. For instance, to

apply the Username token profile in a Web Service, <wsse:Username>,

<wsse:Password>, <wsse:Nonce> and relative elements are used and added into the

<wsse:Security> element block in the SOAP message. <xenc:EncyptedKey>,

<xenc:EncryptionMethod> and relative elements are used if a SOAP message if it

requires encryption. The encrypted data is placed within the <xenc:CipherValue>

element block. The SOAP message size depends on which secure toke profiles are

adopted. A smaller message size gains a performance advantage, such as the reduction

of transfer time and parsing time.

In the performance evaluation, all the measurements are made with identical equipment

and environment. In order to eliminate the network and other configuration issues, Web

Service consumer and provider are running on an Intel Core2 Duo E8500 computer,

using Windows XP Professional with SP3, with 4GB RAM, and restarted before each

test case to ensure the same starting conditions. Both the Web Services consumer and

Web Services provider are developed using the Java programming language. The Java 2

Platform Enterprise Edition version 1.6.0_21-b07 and SOAP with Attachments API for

JAVA (SAAJ) are used for the development and testing environment. A DNS server is

installed and running on the same computer. DNS local cache is also enabled to

improve the performance of the DNS resolution process, which is used by the

 88 PERFORMANCE EVALUATION

 CHAPTER 4

Participant Domain Name Token. All the source codes for the performance evaluation

are presented in Appendix B.

4.3 Experimental Results and Analysis

The latency or response time performance metric is used to compare the proposed token

profile with three other WS-Security tokens, which include Username token profile,

XML Encryption and XML Signature. All test cases are tested with different message

sizes. Furthermore, when adopting the proposed token, its performance is compared

with three other WSS tokens. A millisecond timescale is used to compute latency for

each round-trip time between message sender and receiver.

4.3.1 Evaluation Method and Assumptions

A pure HTTP server has been developed using the Java language and Apache HTTP

client JAR is used to develop an HTTP client, which is used to send a SOAP message to

the HTTP server. Five java classes have also been developed as shown in the following:

 SOAPEncyrption.java

 SOAPDecryption.java

 SOAPSignature.java

 UserNameToken.java

 PaticipantDomainNameTokenHander.java

All classes are plugged into the pure HTTP server to handle SOAP messages with

different types of WSS. RSA 2048-bit is used for the asymmetric key algorithm and

AES 128-bit is used for the symmetric key algorithm, SHA is used to create a message

digest, which is used in the XML encryption, decryption, signature, and password digest.

Latency can be evaluated from the total time spent by the HTTP client when it sends a

SOAP request with secure token profiles to an HTTP server, which sends the

information back to the HTTP client. In order to evaluate the performance for different

sizes of SOAP messages, 100, 200, 300, 400, 500 employee records are included in the

message respectively. An example of an employee record is shown in Figure 4.1. Each

 89 PERFORMANCE EVALUATION

 CHAPTER 4

SOAP message contains the proposed token and one of the WSS tokens. It means that

the message size is identical during the performance comparison between the proposed

token and one of the WSS tokens. Each test case is repeated 100 times to obtain the

average latency. The average latency time is used for comparison between the proposed

token and WSS tokens.

Figure 4.1: An example of an employee record

4.3.2 Test cases design

According to the WS-Security 1.1 OASIS standard, there are five secure token profiles

and one core specification. They depend on existing security standards and some of

them are using a similar mechanism and algorithm. Therefore, not all the secure token

profiles are evaluated. For instance, the X.509 token profile uses a digital signature to

verify an X.509 certificate. It is the same as the XML signature token, which is used in

<employee>

 <firstName>David</firstName>

 <lastName>Ho</lastName>

 <gender>M</gender>

 <nationality>British</nationality>

 <dateOfBirth>1958-07-01</dateOfBirth>

 <phone>12-543325-8</phone>

 <maritalStatus>Married</maritalStatus>

 <address>No. 7 A Road</address>

 <city>Hong Kong</city>

 <country>China</country>

 <email>david.ho@myService.org</email>

 <empNo>101</empNo>

 <title>Manager</title>

 <department>Accounting</department>

 <hireDate>2005-01-05</hireDate>

</employee>

 90 PERFORMANCE EVALUATION

 CHAPTER 4

the WS-Security core specification. Therefore, after consolidation, four test cases have

been selected, designed and evaluated as shown in the following:

Test Case 1: Proposed Token vs. Username Token

Test Case 2: Proposed Token vs. XML Encryption Token

Test Case 3: Proposed Token vs. XML Signature Token

Test Case 4: Proposed Token vs. XML Encryption with Signature Token

Each test case has been divided into three sub-test cases, which contain (a) the proposed

token only; (b) one of the above WS-Security tokens; (c) proposed token with one of the

above WS-Security tokens. Each sub-test case is processed a hundred times to acquire

the average response time for each sub-test case of each record size.

4.3.3 Message size of each secure token

The size of a SOAP message depends on which secure tokens are used. Different secure

token profiles have different element blocks, types, attributes and syntax. For instance,

less than 10 elements consist of Username token profile. It is the least number of

elements compared to other WS-Security secure token profiles. Therefore, the message

size of a SOAP message header using the Username token profile is less than using

other WS-Security token profiles. A large SOAP message size will increase the

streaming time, network transfer time and parsing time for the message sender and

receiver. Table 4.1 and Table 4.2 show the message size and the percentage size

increase for each secure token profile. They are the minimum elements requirement for

use of each token profile. It means that only compulsory elements are used in each test

case and optional elements are not considered.

 91 PERFORMANCE EVALUATION

 CHAPTER 4

Table 4.1: Message size of each secure token profile in bytes

Number of Employees

Records

100 200 300 400 500

Non-WSS 44,511 88,511 132,511 176,511 220,511

PDNT 44,676 88,676 132,676 176,676 220,676

Username Token 45,054 89,054 133,054 177,054 221,054

PDNT + Username Token 45,204 89,204 133,204 177,204 221,204

Signature Token 45,515 89,515 133,515 177,515 221,515

PDNT + Signature Token 45,665 89,665 133,665 177,665 221,665

Encryption Token 61,946 122,152 182,364 242,576 302,784

PDNT + Encryption Token 62,096 122,302 182,514 242,276 302,934

Encryption + Signature Token 62,935 123,141 183,353 243,565 303,773

PDNT + Encryption +

Signature Token

63,085 123,291 183,503 243,715 303,923

Table 4.2: Percentage increase of message size between Non-WSS and each secure token profile

Number of Employees

Records

100 200 300 400 500

PDNT 0.37% 0.19% 0.12% 0.09% 0.07%

Username Token 1.22% 0.61% 0.41% 0.31% 0.25%

PDNT + Username Token 1.56% 0.78% 0.52% 0.39% 0.31%

Signature Token 2.26% 1.13% 0.76% 0.57% 0.46%

PDNT + Signature Token 2.59% 1.30% 0.87% 0.65% 0.52%

Encryption Token 39.17% 38.01% 37.62% 37.43% 37.31%

PDNT + Encryption Token 39.51% 38.18% 37.73% 37.51% 37.38%

Encryption + Signature Token 41.39% 39.13% 38.37% 37.99% 37.76%

PDNT + Encryption +

Signature Token

41.73% 39.29% 38.48% 38.07% 37.83%

Based on the results in Table 4.2, the message size of the Participant Domain Name

Token (PDNT) profile is the minimum and the Encryption Token Profile is the

maximum amongst WS-Security secure token profiles. Using WS-Security Token

 92 PERFORMANCE EVALUATION

 CHAPTER 4

Profiles, the size of a SOAP message is increased by 1.22% ~ 39.17% when the

message contains 100 employee records. However, it only increases by 0.37% if

adopting PDNT only. The message size overhead for using PDNT with each WS-

Security Token Profile is only increased by 0.34%. It is a major advantage of adopting

the PDNT because the message size is much less than adopting other WS-Security

token profiles and the overhead adds only a very small increase in message size. With

PDNT, the more employee records that are included in a SOAP message, the smaller the

relative percentage increase of message size and the overhead is decreased compared to

other WS-security token profiles.

4.3.4 Results of Test Case 1

In test case 1, a simple SOAP message, which contains both PDNT and Username token

are used for all sub-test cases. Using an identical message header can eliminate the

streaming time, network transfer time and parsing time issues because of the different

message header size issue. Therefore, identical message size can focus on the

processing time of token elements of each sub-test case. The message header of test

case 1 is shown in Figure 4.2. Each sub-test case only processes the specified tokens, for

instance, the first sub-test only processes the <pdn:ParticipantDominName> element

block and other relative elements, other WS-Security token profile elements within

<wss:Security> will be ignored.

 93 PERFORMANCE EVALUATION

 CHAPTER 4

Figure 4.2: SOAP message header for test case 1

Table 4.3 lists the results of the comparison between the proposed token and the

Username token. A message receiver only uses 7.53 milliseconds to process the

Participant Domain Name Token (PDNT), which is less than the message receiver,

which uses 8.48 milliseconds to process the Username tokens when the message

contains 100 employee records. It shows that PDNT is 12.74% faster to reject a Web

Services request if it comes from an invalid location or domain. The third sub test case

is to evaluate the performance when both tokens are required to be processed. When a

message passes the PDNT validation, it also requires processing of other tokens, the

Username tokens in this case. Table 4.3 and Figure 4.3 show that there is a 0.37%

processing overhead to process both tokens, this is a very small increase given the

additional security provided.

 <S11:Header>

 <wsse:Security>

 <pdn:ParticipantDominName>

 <pdn:DomainName>_pdn_tcp.ac.uk</pdn:DomainName>

 </pdn:ParticipantDominName>

 <wsse:UsernameToken>

 <wsse:Username>John</wsse:Username>

 <wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordDigest">

 NtaIDHV2y+beT9ED5IUUck9dvqE=

 </wsse:Password>

 <wsse:Nonce EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">

 zgniDw==

 </wsse:Nonce>

 <wsu:Created>2012-02-10T16:45:27+0800</wsu:Created>

 </wsse:UsernameToken>

 </wsse:Security>

 </S11:Header>

 94 PERFORMANCE EVALUATION

 CHAPTER 4

Table 4.3: Latency in milliseconds for test case 1

No. of Employee Records 100 200 300 400 500

PDNT 7.53 14.94 24.09 32.84 41.02

Username Token 8.48 15.93 24.64 33.28 41.05

PDNT + Username Token 8.52 16.23 25.24 34.75 43.34

Figure 4.3: Latency in milliseconds for test case 1

4.3.5 Results of Test Case 2

In test case 2, this research assumes that the decryption mechanism defined in the XML

encryption standard is used to validate a SOAP message if there are no other

authentication methods adopted. The message header of test case 2 is shown in Figure

4.4. As in test case 1, only the secure tokens, which are specified by each sub-test case

will be processed. The first sub-test case will handle the PDNT secure tokens. The

second sub-test case will process the encryption tokens. The third sub-test case will

handle both PDNT and encryption tokens. As shown in Table 4.4 and Figure 4.5,

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

100 200 300 400 500

M
ill

is
e

co
n

d

Number of Employee Records

PDNT

Username Token

PDNT + Username Token

 95 PERFORMANCE EVALUATION

 CHAPTER 4

significant performance gains can be realized by using the proposed token. The

processing time of adopting PDNT is more than 10 times faster than the decryption

process when a hundred employee records are contained in a SOAP message. A

message receiver can reject a message, which is sent from an unauthorized location as

fast as the XML decryption processing can be completed. Processing time is increased

by only 0.49% to process both tokens when a SOAP message contains 100 employee

records. Therefore, the overhead is not significant if both tokens are processed.

Figure 4.4: SOAP message header for test case 2

<S11:Header>

 <wsse:Security>

 <pdn:ParticipantDominName>

 <pdn:DomainName>_pdn_tcp.sussex.ac.uk</pdn:DomainName>

 </pdn:ParticipantDominName>

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
1_5"/>

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Webster</ds:X509IssuerName>

 <ds:X509SerialNumber>1325057813</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>

DpCR5OuxNJ9dupgjxHoTfO700LbwrtuQ83WVvSUOH4ZATyvKaAutUjW43cD22C
QD/qFFU8exrj51hsQQC5NOYKVNuMq1sUCHn26+h0XgmJD8gecz6dClZxA02kjE
SCDwYXMMuUCD46mDjGT6Qnf7M2kufaW8vnVJdOZsBF+lQWeGjCVfkmwQatj9UO
szLIAfZQ/vti/N4+DUVELqfCamsZz0lvrkvcVFqJVrYV2/i2OMkPxqz8dc7LqF
KC+r1XDfl+XVjzXsLmb7knpmhLi6jYO86n91g4Hgo4WMs/jYB6xdHMbHvqY7l2
U/xiAk45eV2dwhlxrqib1R0nbLj5SIrg==

 </xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#MsgBody"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 </wsse:Security>

</S11:Header>

 96 PERFORMANCE EVALUATION

 CHAPTER 4

Table 4.4: Latency in milliseconds for test case 2

No. of Employee Records 100 200 300 400 500

PDNT 4.76 11.04 15.79 21.65 32.99

XML Encryption Token

(Decryption Process)
71.00 86.34 103.63 121.78 138.71

PDNT + Encryption Token

(Decryption Process)
71.35 87.22 105.51 122.04 139.67

Figure 4.5: Latency in milliseconds for test case 2

4.3.6 Results of Test Case 3

An XML signature is used to ensure SOAP message integrity and the message is sent

from a known sender. A SOAP message header for test case 3 is shown in Figure 4.6.

Both PDNT and signature tokens are included in the message. Three sub-test cases will

be evaluated including the processing time of the PDNT, signature token and PDNT

with signature token. Table 4.5 and Figure 4.7 show the performance results of adopting

the PDNT, signature token, and PDNT with signature tokens. According to the results

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

100 200 300 400 500

M
ill

is
e

co
n

d

Number of Employee Records

PDNT

Encryption Token

PDNT + Encryption Token

 97 PERFORMANCE EVALUATION

 CHAPTER 4

of test case 3, it is 37.71% ~ 62.35% faster on average if adopting PDNT compared to

the signature token. The overhead of adopting both tokens is 0.40% ~ 0.43% on average.

Therefore, adopting the proposed token has a performance advantage as it can refuse an

invalid SOAP message faster.

Figure 4.6: SOAP message header for test case 3

<S11:Header>

 <wsse:Security>

 <pdn:ParticipantDominName>

 <pdn:DomainName>_pdn_tcp.sussex.ac.uk</pdn:DomainName>

 </pdn:ParticipantDominName>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-
xml-c14n-20010315#WithComments"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>yU/ypTa0GSC0kjjf23jgkSxxYf0=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

IlhHY/0hHFjaRbEMNpBL6urRDUhhboVv9XGb3AcYYLJyel0bNvpdPfBZNLMq7HyNtxEmrfJ
fghj1IWYAmrsOB7J9bZFSa1UkZpaCgpnhyC4e5dlCtZTK/CJTSkfuQ1RXSQrxHjfh1o9+SO
fpToTFMMaHRnY+/lAMRCOwhj725Xo=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>

miAhwTQHAyCYts1dP4WdEQFvg83cUFoiymuPPXksyYcU+/1X03Zlac7A4d
P/4U6+IRL2+J8cRvMbdy+X1kI/vEYDw1yI4T4snB7XOGxbDi0D80FYUD6a
/99e3nr098aT4sVF8eJfD6KUYzFiMP48CAmS59UaSv6AiK/9Le1/7I0=

 </ds:Modulus>

 <ds:Exponent>AQAB</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

</S11:Header>

 98 PERFORMANCE EVALUATION

 CHAPTER 4

Table 4.5: Latency in milliseconds for test case 3

No. of Employee Records 100 200 300 400 500

PDNT 8.22 15.10 24.00 28.69 32.92

XML Signature Token 11.32 20.55 31.61 45.08 53.45

PDNT + Signature Token 11.37 20.80 31.80 45.49 53.67

Figure 4.7: Latency in milliseconds for test case 3

4.3.7 Results of Test Case 4

Some Web Services applications require more security mechanisms to protect the

information between sender and receiver. Therefore, more than one secure token profile

is adopted in a SOAP message. Figure 4.8 shows the message header of test case 4. In

test case 4, PDNT, XML encryption and XML signature tokens are used in a single

SOAP message. The first sub-test case will only handle the PDNT token. The second

sub-test case processes both encryption and signature tokens. The last sub-test case

0.00

10.00

20.00

30.00

40.00

50.00

60.00

100 200 300 400 500

M
ill

is
e

co
n

d

Number of Employee Records

PDNT

Signature Token

PDNT + Signature Token

 99 PERFORMANCE EVALUATION

 CHAPTER 4

processes all three secure tokens, the PDNT, encryption and signature tokens. The result

of test case 4 is shown in Table 4.6 and Figure 4.9. It shows that the PDNT is faster

from 356.30% to 1417.62%, on average if only adopting PDNT compared to the

encryption with signature token. The overhead of adopting all three tokens is from

0.11% to 0.78% on average. Therefore, less than 1% overhead can gain an additional

security feature if using the PDNT.

 100 PERFORMANCE EVALUATION

 CHAPTER 4

<S11:Header>

 <wsse:Security>

 <pdn:ParticipantDominName>

 <pdn:DomainName>_pdn_tcp.sussex.ac.uk</pdn:DomainName>

 </pdn:ParticipantDominName>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-
xml-c14n-20010315#WithComments"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>yU/ypTa0GSC0kjjf23jgkSxxYf0=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

XQ85p6k/Q8xAdA6+bLUiGeSGe4DPe7WGAgfRmdD6QDpGIDIUS/z+4Fn2jSCxeiCq1wJn
Jjii/R8Hdhe2bWFQNQ7qlPoniuRTHL0TzTUkFBRQw7o+CHvATPokNWs0JmlheiMxdjKI
kfXts6wLLN5s4faJDmQXFK1bkPETQt1CQ7o=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>

xsZaGU62rvUPpYcCx4B2c0Z03K3CNQnEgfM7jA7zngvD3GkmkqeqR587vp7pD
F62migJ0+D2letCfyq5H3RYkNVukaVkbpSSQFzesJu+WyCg227O2LeudT58ie
v/7H24wJxcfr5oe3PltL0/rnHZ4nz/c5jXH4HmH/CpzBqd1f0=

 </ds:Modulus>

 <ds:Exponent>AQAB</ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

 101 PERFORMANCE EVALUATION

 CHAPTER 4

Figure 4.8: SOAP message header for test case 4

Table 4.6: Latency in milliseconds for test case 4

No. of Employee Records 100 200 300 400 500

PDNT 4.88 9.14 15.33 22.33 32.11

XML Encryption +

Signature Token
74.10 92.16 113.62 128.25 146.50

PDNT + Encryption +

Signature Token
74.56 92.50 114.51 130.84 146.66

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
1_5"/>

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Webster</ds:X509IssuerName>

 <ds:X509SerialNumber>1325057813</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>

JvKOLNz6qa52Wt2eq/9ECBIb2sjndjm1UzaY9wWBh8jdRPd0zn3rNk3DTNKxpqn+K
Q0qf5mmKMx+SLI7qyE+19Qa7bvsfGxaGnOTGIoYnxduEg02ypHFGtt1pHF3g9L+zu
20TBXj7aPB5EowCsUz1xjRI9PKKdpjGkCqQvLUeTalCOSAUp0hcpYqLklVZdnipOC
rng+CVuuoJ63/7SniC1RmzzWlX4LBBYucY4gPWiE/WURlb92sz1oHuTgr2BmFGDzY
RqOZcid80NV6OE1o5a5zcwsdibVgjjZogO5Wedv+vXjoDY+4gGAsCnlLWSzTkTof/
ARMzIjfRidyrrxjRA==

 </xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#MsgBody"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 </wsse:Security>

</S11:Header>

</S11:Header>

 102 PERFORMANCE EVALUATION

 CHAPTER 4

Figure 4.9: Latency in milliseconds for test case 4

4.3.8 Results Analysis

The latency of each test case includes the time for the message transfer between the two

end-points, XML parsing; secure token parsing; secure token processing and DNS

lookup for PDNT. However, the DNS lookup is not a time consuming process because

it always uses local server DNS cache after first time querying. The message transfer

time between client and server is also not a major consideration in this testing

environment because the client and server process is running on the same computer.

According to the results of four test cases, all results, which only adopt the PDNT token

are significantly faster than other secure token profiles. Moreover, the overhead of

adopting PDNT tokens with other secure token profiles is minor. Therefore, the PDNT

has a performance advantage.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

100 200 300 400 500

M
ill

is
e

co
n

d

Number of Employee Records

PDNT

Encryption + Signature
Token

PDNT + Encryption +
Signature Token

 103 PERFORMANCE EVALUATION

 CHAPTER 4

4.4 Advantages of Participant Domain Name Token

Three advantages accrue from the proposed Participant Domain Name Token (PDNT).

First, it provides one more security feature, which the WSS token profiles do not

include. The PDNT works with DNS to provide location or domain validation of a

SOAP message. Second, the PDNT has a performance advantage when compared with

WS-Security token profiles. The overheads of XML signature, XML encryption and the

five secure token profiles are significant. Therefore, using the proposed token, a service

provider can reject an unknown domain or faked SOAP request as soon as possible. The

proposed token is parsed and processed before the WS-Security core specification and

other secure token profiles are processed. Therefore, it can save server resources such as

CPU time, memory, energy, etc and handle more valid SOAP requests. Based on the

evaluation of the four test cases, it generates less than 1% overhead to adopt PDNT, this

is not a significant cost. Third, a permitted domain list feature is also provided. It acts

like a white list or approved list to control “Where” can invoke the Web Services

method. The PDNT is simple and easy to implement compared with other Web Service

security specifications and token profiles.

4.5 Conclusion

This chapter introduced a performance model for measuring the PDNT and WS-

Security token profiles because the performance is another vital factor to increase the

spread of a new security standard. Four test cases were seleted and designed in this

chapter. Each test case has been devided into three sub-test cases to give a detailed

comparsion. The total parsing time and the total token handling time are adopted as

performance metrics. According to the experimental results of the four test cases, the

research found that the PDNT is significantly faster than WS-Security token profiles.

Moreover, the processing overhead for adopting the PDNT with the WS-Security token

profiles is minor. Therefore, the PDNT gains significant performance advantages.

 104 IMPLEMENTATION OF PDNT

 CHAPTER 5

CHAPTER 5

- DESIGN AND
IMPLEMENTATION OF

PARTICIPANT DOMAIN NAME TOKEN

 105 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.1 Introduction

he Web Services protocol stack is a set of protocols which are used to define;

discover and implement the Web Services as illustrated in Figure 5.1. The

core protocol stack consists of five layers. The first layer is the transport layer,

which is responsible for transporting messages between applications, the service

consumer and service provider. The second layer is responsible for encoding a request

or responding to messages in a common XML format. The third layer is responsible for

describing the public interface to specific Web Services; centralizing services into a

common registry and providing publishing and finds functionality, for instance, what

methods can be invoked. It also encodes a request and request message to SOAP format.

The fourth layer is responsible for the enhancement of the SOAP message, including the

message security, message reliability, etc. The top layer is responsible for the services

orchestration. It uses Business Process Execution Language (BPEL), which is an

orchestration language for the Web Services interactions. Using the BPEL, the business

processes can be defined in XML-based language and exchange messages not only for

the internal system but also with the outside system.

To implement a Web Service, many technologies are involved. XML is a core

technology to encode the information. Web Services are a mix of XML and HTTP

protocol that can convert a message into a Web application. It uses XML to encode

methods, parameters and other information exchanges between service consumer and

service provider. SOAP, UDDI and WSDL are XML-based protocols and independent

of the OS platform and programming languages. The metadata of Web Services is

defined by the WSDL and listed and discovered by UDDI. WS-* standards are the

enhancements of Web Services including security, reliability, policy, atomic transaction,

coordination, etc.

T

 106 IMPLEMENTATION OF PDNT

 CHAPTER 5

 Figure 5.1: The Web Services protocol stack

5.2 Building Web Services Platform

There are two major platforms or frameworks to implement the Web Services, one is

J2EE (Java Platform, Enterprise Edition) and the other is Microsoft .NET. J2EE

provides APIs and runtime environment for developing and running enterprise software,

including network, Web Services, etc. J2EE extends the J2SE (Java Platform Standard

Edition), which provides APIs for interacting with file systems, network, graphic

interfaces, etc. The .NET Framework is a software framework developed by Microsoft

which runs on Microsoft Windows. It provides many libraries for developers to handle

the user interface, database access, cryptography, Web Services, etc. Although both

platforms support Web Services, the J2EE is platform gives independence. Therefore,

J2EE is adopted as the development platform for this research.

 107 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.2.1 Web Container

A Web Server, which is used to host static Web pages is replaced by a Web container or

modules-based Web server. Microsoft Internet Information Server (IIS) and Apache

HTTP server are the most commonly used Web servers. In “Java World”, a Web

container or Servlet container is an application running on the Web server to handle or

process Java Servlet and Java Server Pages. The container is an independent

environment and designed to run Java coding on a Web server. Apache Tomcat is one

of the most popular Non-commercial Web containers and Oracle WebLogic is a

commercial Web container. Modules based Web server is another solution to add

website functionality such as: Microsoft Internet Information Server (IIS). IIS has many

modules to form an application pool to provide different functionalities. Therefore, to

support Web Services, a Web container or modules based Web server must be used.

Web container or Servlet container is used because Java is the programming language

used in this research. Apache Tomcat is also used for the development and testing

environment. It is an open source software implementation of the Java Servlet and

JavaServer Pages technologies. Tomcat is an application server and runs behind the

HTTP server. It means that all the requests are handled by the HTTP server and passed

to Tomcat when they come across the intended Servlet container.

5.2.2 Java Web Services API

Java API for XML Web Services (JAX-WS) is a technology for building Web Services

as shown in Figure 5.2. JAX-WS allows developers to write message-oriented as well as

RPC-oriented Web Services. It uses XML-based protocol, SOAP is used to build a Web

service, it hides the complexity of the SOAP for the application developer. With JAX-

WS, an application developer does not need to parse and form a SOAP message.

However, in order to add a new security token profile on top of SOAP message, the

SOAP with Attachments API for Java (SAAJ) is used. The SAAJ goes on behind the

scenes in JAX-WS handlers and JAXR implementations. The advantages of using

SAAJ are shown in the following:

 Application developer can use the SAAJ API to write a SOAP message directly

 108 IMPLEMENTATION OF PDNT

 CHAPTER 5

 The SAAJ API allows a developer to make a method call by doing XML

messaging.

 Send and receive a SOAP message over the Internet using SAAJ.

 It conforms to the SOAP 1.1 and SOAP 1.2 specifications.

Figure 5.2: Communication between a JAX-WS Web Service and a Client (Oracle, 2010)

The SAAJ 1.3 specification is implemented in the javax.xml.soap package and provides

all the necessary APIs for creating, populating and sending request-response SOAP

messages. Figure 5.3 illustrates the structure of a SOAP message with no attachments

and an example for creating a SOAP message using SAAJ is shown in Figure 5.4. The

SAAJ is based on the SOAP standards and provides APIs for the developer to create an

XML message that conforms to the SOAP 1.1 or 1.2 specifications.

SAAJ is an API-based SOAP toolkit and can be used to create, read or modify SOAP

messages. The APIs include classes and interfaces that parse and handle SOAP

elements including SOAP envelope, header, body, and fault. SOAPMessage class is a

root class SOAP message. Based on the SOAP specification, there are three major

elements within a SOAP message including envelope element, header element and body

element. SOAPEnvelope, SOAPHeader and SOAPBody are the three interfaces defined

in SAAJ to represent the corresponding element.

 109 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.3: SOAPMessage object with no attachments (Oracle, 2010)

Figure 5.4: An example of creating a SOAP message using SOAP with Attachments API for Java (SAAJ)

5.3 Web Services Implementation Approaches

There are two approaches that are used to implement a Web Service from scratch as

illustrated in Figure 5.5. The first approach is termed “bottom-up” and the other is

public static SOAPMessage getSOAPMessage(InputStream in)

 try{

 MessageFactory factory = MessageFactory.newInstance();

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

 SOAPMessage soapMessage=factory.createMessage(mimeHeaders, in);

 soapPart = soapMessage.getSOAPPart();

 soapEnvelope = soapPart.getEnvelope();

 soapHeader = soapEnvelope.getHeader();

 soapBody=soapEnvelope.getBody();

 }catch(Exception e){

 e.printStackTrace();

}

 110 IMPLEMENTATION OF PDNT

 CHAPTER 5

termed “top-down”. In the bottom-up approach the source codes or Java methods are

implemented before writing the service description, the Web Services Description

Language (WSDL). The “top-down” approach starts with writing a contract or WSDL

and implements all necessary Java methods based on the Web Services description.

Figure 5.5: Top-down and button-up implementation approaches to Web Services

The bottom-up approach provides a quick and easy way to implement a Web Service

from existing coding. However when the Web Service is implemented from a

developers point of view, it may not address the needs of the consumers. The top-down

approach can address the consumer needs from the outset. It requires that the service

provider discusses the service contract with the consumer before any application coding

begins. It is designed from a business point of view. However, it may have

interoperability issues, for instance: data types, encoding and binding issues between

systems. The bottom-up strategy avoids the extra cost, effort, and time required to

deliver services via a top-down approach, it ends up imposing an increased governance

burden as bottom-up delivered services tend to have shorter lifespans and require more

frequent maintenance, refactoring, and versioning. The top-down strategy demands

more of an initial investment because it introduces an up-front analysis stage focused on

the creation of the service inventory blueprint. Service candidates are individually

defined as part of this blueprint so as to ensure that subsequent service designs will be

highly normalized, standardized, and aligned Erl T (2005). Therefore, there are no best

Contract or

Web Service

Description Language

Web Services

Interface

Web Services

Implementation

Top-down

approach

Bottom-up

approach

 111 IMPLEMENTATION OF PDNT

 CHAPTER 5

approaches to implement a Web Service. It depends on the enterprise architecture,

existing systems architecture and the business requirements.

5.4 Implementation of Web Services in Bottom-up Approach

Eclipse IDE, which is a software development environment, Java, Axis2 plug-in and

Tomcat are used to implement an example of a Web Service using the Bottom-up

approach. A student Web Service is designed and developed for this demonstration as

shown in Figure 5.6 and Figure 5.7.

Figure 5.6: Student Web Service

Figure 5.7: Service logic of student Web Service

Using the approach, the java source codes have been implemented before writing the

Web Services description. The example of the student Web Service is used to retrieve

student information by passing an argument of a student ID. Data Access Object (DAO)

is adopted to map a database object to a persistence object. One of the advantages of

package uk.ac.sussex.webservices.method;

import uk.ac.sussex.dao.StudentDao;

import uk.ac.sussex.entity.Student;

public class StudentService {

 public Student getStudnet(long studentId){

 StudentDao studentDao=new StudentDao();

 Student student=studentDao.getStudentById(studentId);

 return student;

 }

}

Student Web

Service Student ID Student

information

 112 IMPLEMENTATION OF PDNT

 CHAPTER 5

DAO is that it can provide data operations without exposing the details of the database,

for instance, the database structure, primary key or foreign key defined in the tables, the

one-to-many or many-to-one relationships between tables. The Eclipse IDE platform

can generate a Web Service and a client without writing any source code. A screenshot

of generating the student Web Service and the client using Eclipse is shown in Figure

5.8 and Figure 5.9. All the source codes of the student Web Service are presented in

Appendix A.

Figure 5.8: Generate a student Web Service using Eclipse

 113 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.9: Generate a student Web Service client using Eclipse

Using the Eclipse Web Services feature, all the required XML files and Web Service

Description Language (WSDL) have been generated, such as StudentService.wsdl.

Moreover, the student Web Service can be tested by a testing client that is also

generated by Eclipse as shown in Figure 5.9. A testing client can be a Web application

or a standalone application. In order to show the SOAP messages between sender and

receiver when invoking the student Web Service, the Eclipse Web Services Explore is

used as shown in Figure 5.10. It can monitor both directions of SOAP messages

including a Web Service request and response messages. In Figure 5.11, there is a

SOAP envelope with a simple body element to invoke the student Web Service by

calling the method name “getStudent” with an argument “studentId” and the value is set

to 1. The Tomcat Web container uses the Axis2 plug-ins to parse, process and construct

a SOAP response message as shown in Figure 5.12. This response message is simple

and uses the request tag “getStudent” plus “Return” label to return the result.

 114 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.10: Using Eclipse Web Services Explore to test the student Web Service

Figure 5.11: A SOAP request message for invoking the student Web Service

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://method.webservices.sussex.ac.uk"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <q0:getStudnet>

 <q0:studentId>1</q0:studentId>

 </q0:getStudnet>

 </soapenv:Body>

</soapenv:Envelope>

 115 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.12: A SOAP response message after invoking the student Web Service

In this section, the Eclipse Integrated Development Environment (IDE) and Java

Platform are adopted to demonstrate how to create a student Web Service and a stand-

alone Web Service application. The communication traffic or the SOAP request and

response messages can also be monitored by using the Eclipse Web Serves Explorer.

However, these are not the only tool to implement Web Services. Microsoft .Net, IBM

developerWorks, WebLogic, etc. can also be used to develop and deploy the Web

Services.

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<ns:getStudnetResponse xmlns:ns="http://method.webservices.sussex.ac.uk">

<ns:return xmlns:ax21="http://entity.sussex.ac.uk/xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ax21:Student">

<ax21:dateOfBirth xsi:nil="true"/>

<ax21:email>perter.gade@sussex.ac.uk</ax21:email>

<ax21:firstName>Peter</ax21:firstName>

<ax21:gender>M</ax21:gender>

<ax21:lastName>Gade</ax21:lastName>

<ax21:nationality>Genermy</ax21:nationality>

<ax21:phone>12345678</ax21:phone>

<ax21:studentId>1</ax21:studentId>

</ns:return>

</ns:getStudnetResponse>

</soapenv:Body>

</soapenv:Envelope>

 116 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.5 Web Services Security Libraries

Security is one of the major requirements for many types of computer systems,

especially for exchange of data over the Internet. Traditional information systems have

moved from the client-server model to Web Services. The implementation of Web

Services has been designed and developed, for instance, Apache Axis, Apache Axis2,

JAX-WS (Java API for XML Web Services), Microsoft .NET Framework, etc. Apache

Axis2 is a Web Services / SOAP / WSDL engine. It can send, receive and parse a SOAP

message. There are two layers of Web Services security. The first one is a transitional

Web security mechanism, which is done in the transport layer using SSL or TSL to

protect the communication path between sender and receiver. It is the point-to-point

protection. The second one is implemented in the message layer which applies to XML

documents that are sent as SOAP messages, it provides message confidentiality,

prevention of message alteration, etc. It is the end-to-end protection. To support secure

Web Services applications at the message level, the WS-Security standards or

specification are adopted. The WS-Security API for implementing the WS-Security core

specification and secure token profiles have been developed. There is a famous toolkit

which is used to implement the WS-Security specification, which is Apache WSS4J.

The Apache WSS4J project is one of the Java implementations of the primary security

standards for Web Services and it supports the following WS-Security standards:

 SOAP Message Security 1.1

 Username Token Profile 1.1

 X.509 Certificate Token Profile 1.1

 SAML Token Profile 1.1

 Kerberos Token Profile 1.1

 Basic Security Profile 1.1

Apache WSS4J is part of the Apache Web Services project and it provides a set of APIs

to implement WS-Security functionality of a SOAP message. The WSS4J is an

implementation of the OASIS Web Services Security specifications, which is a Java

library that can be used to sign, verify, encrypt and decrypt a SOAP message. This

library is independent and can use the WSS4J’s APIs directly in a standalone manner.

 117 IMPLEMENTATION OF PDNT

 CHAPTER 5

All the related classes and interfaces can be found in the org.apache.ws.security package.

It can be used as a library to sign and verify parts of, or the entire SOAP message and it

also interoperable with Java API for XML-based RPC (JAX-RPC) and Microsoft .NET-

based servers and clients. Using the WSS4J APIs, a Web Service can add WS-Security

functionality to enable the authenticity, integrity and non-repudiation.

However, the Apache WSS4J package is not adopted in this research because the

performance evaluation among the secure token profiles and proposed token needs to be

compared in a fair situation. The processing time or resources for parsing and

processing the secure token profiles will be evaluated in the pure version. Therefore, the

implementation of the secure token profiles is rewritten and the Participant Domain

Name Token is designed and programmed.

5.6 Implementation of Participant Domain Name Token

Web Services uses SOAP messages to represent remote procedure calls between client

and server. Therefore, a SOAP message parser is needed. The SOAP message parser is

software that reads a SOAP message and obtains the information from the message,

which will be manipulated in a program, for instance, an XML parser converts an XML

document into an XML DOM object, which can be manipulated in a Java program.

SOAP with Attachments API for Java (SAAJ) is used for mainly for the SOAP

messaging that goes on behind the scenes in JAX-RPC and JAXR implementations. The

SAAJ is adopted in the performance evaluation because it can read and write SOAP

messaging directly rather than use JAX-RPC. The SAAJ API conforms to the Simple

Object Access Protocol (SOAP) 1.1 specification and is implemented in the

java.xml.soap package. The SAAJ-related classes are located in the java.xml.soap

package and this package has all the APIs necessary for sending requests and

responding to a SOAP message. The Participant Domain Name Token profile is

implemented in Java language and uses “java.xml.soap.*” Java Achieve (JAR) to parse

a SOAP message. Other libraries such as “org.xbill.DNS.*” are used for SRV and

address resource record resolution. All the source codes of the PDNT implementation

are presented in Appendix B.

 118 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.6.1 The java.xml.soap Package

A SOAP message can be generated and sent manually but the SOAP with the

attachments API for Java (SAAJ) automates many of the required steps. The package

javax.xml.soap is a Java API for parsing, creating and building a SOAP message and it

extends their counterparts in the org.w3c.dom package. This package is defined in the

SOAP with attachments API for the Java (SAAJ) 1.3 specification. According to the

JavaTM Platform, Standard Edition 6 API specification, these package facilities the

following:

 create a point-to-point connection to a specified endpoint

 create a SOAP message

 create an XML fragment

 add content to the header of a SOAP message

 add content to the body of a SOAP message

 create attachment parts and add content to them

 access/add/modify parts of a SOAP message

 create/add/modify SOAP fault information

 extract content from a SOAP message

 send a SOAP request-response message

The java.xml.soap package extends DOM API to manipulate a SOAP message and

builds up a SAAJ tree. It is possible to use DOM APIs to add ordinary DOM nodes to a

SAAJ tree. However, the SAAJ APIs are still required to return SAAJ types when

examining and manipulating the tree. The interface of SAAJ is used for SOAP

messaging that provides a way to send XML documents in SOAP format over Internet

from a Java programming model. The class and interface hierarchy of package

java.xml.soap are shown in Figure 5.13 and 5.14. A Web Service application can send a

SOAP message directly using an object of SOAPConnection. A SOAP message object

can be created by using the MessageFactory object. The message object which is

created by MessageFactory contains the basic parts of a SOAP message including

SOAPEnvelop, SOAPHeader, SOAPBody, etc. Therefore, a Web Services application

can manipulate, send the SOAP message by use of these objects.

 119 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.13: Class hierarchy of package java.xml.soap

Figure 5.14: Interface hierarchy of package java.xml.soap

To create and send a SOAP message using SAAJ, five steps are required including:

 Creating a SOAP connection

 Creating a SOAP message

 java.lang.Object
o javax.xml.soap.AttachmentPart

 javax.xml.transform.dom.DOMResult (implements
javax.xml.transform.Result)

 javax.xml.soap.SAAJResult
o javax.xml.soap.MessageFactory
o javax.xml.soap.MimeHeader
o javax.xml.soap.MimeHeaders
o javax.xml.soap.SAAJMetaFactory
o javax.xml.soap.SOAPConnection
o javax.xml.soap.SOAPConnectionFactory
o javax.xml.soap.SOAPElementFactory
o javax.xml.soap.SOAPFactory
o javax.xml.soap.SOAPMessage
o javax.xml.soap.SOAPPart (implements org.w3c.dom.Document,

javax.xml.soap.Node)
o java.lang.Throwable (implements java.io.Serializable)

 java.lang.Exception

 javax.xml.soap.SOAPException

 javax.xml.soap.Name

 org.w3c.dom.Node

o org.w3c.dom.CharacterData

 org.w3c.dom.Text

 javax.xml.soap.Text (also extends

javax.xml.soap.Node)

o org.w3c.dom.Element

 javax.xml.soap.SOAPElement (also extends

javax.xml.soap.Node)

 javax.xml.soap.DetailEntry

 javax.xml.soap.SOAPBody

 javax.xml.soap.SOAPBodyElement

o javax.xml.soap.SOAPFault

 javax.xml.soap.SOAPEnvelope

 javax.xml.soap.SOAPFaultElement

o javax.xml.soap.Detail

 javax.xml.soap.SOAPHeader

 javax.xml.soap.SOAPHeaderElement

o javax.xml.soap.Node

 javax.xml.soap.SOAPElement (also extends

org.w3c.dom.Element)

 javax.xml.soap.DetailEntry

 javax.xml.soap.SOAPBody

 javax.xml.soap.SOAPBodyElement

o javax.xml.soap.SOAPFault

 javax.xml.soap.SOAPEnvelope

 javax.xml.soap.SOAPFaultElement

o javax.xml.soap.Detail

 javax.xml.soap.SOAPHeader

 javax.xml.soap.SOAPHeaderElement

 javax.xml.soap.Text (also extends org.w3c.dom.Text)

 javax.xml.soap.SOAPConstants

 120 IMPLEMENTATION OF PDNT

 CHAPTER 5

 Populating the message

 Sending the message

 Retrieving the reply

An example of using SAAJ is shown in Figure 5.15. The object of SOAPConnection is

used to make a one-way trip from one endpoint to another endpoint and uses HTTP Post

as a transport mechanism. After creating a SOAPConnection object, a SOAP message

object can be created by invoking createMessage() method, which is defined in a

MessageFactory class. The SOAP message object has four elements, which are

SOAPPart object, SOAPEnvelope object, SOAPBody object and SOAPHeader object.

The four objects can be retrieved from a SOAPMessage object by use of the

corresponding getter, such as using getBody() method to obtain a SOAPBody object.

An empty SOAPBody object will be generated when a new SOAP message object is

created. To manipulate or hold the content of a SOAPbody object, a

SOAPBodyElement object and Name object are used. The method createName() and

addBodyElement() of Name object and SOAPBodyElement objects are used to populate

a SOAP message. After creating and populating a SOAP message, the message can be

sent using a SOAPConnection object by invoking the call() method with an argument of

a URL object. The call blocks until it receives a response message. A response message

will be sent back from another endpoint, the response must be a SOAPMessage object.

Therefore, the response message content can be accessed using the same methods as

those for giving content to a message. The SOAPObody object can be acquired through

the SOAPMessage, SOAPPart or SOAPEnvelope Objects.

 121 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.15: An Example of creating and sending a SOAP message using SAAJ

5.6.2 The org.xbill.DNS Package

The proposed token profile uses a service record to authenticate a message sender. The

service record is one of the DNS records and can be retrieved by a DNS query. The

org.xbill.DNS or “dnsjava” package supports all record types defined in RFC 1035,

public static void main(String args[]) {

 try {

 //Create a SOAPConnection

 SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();

 SOAPConnection connection = factory.createConnection();

 //Create a SOAPMessage

 SOAPMessageFactory messageFactory = MessageFactory.newInstance();

 SOAPMessage message = messageFactory.createMessage();

 SOAPPart soapPart = messge.getSOAPPart();

 SOAPEnvelope envelope = soapPart.getEnvelope();

 SOAPHeader header = envelope.getHeader();

 SOAPBody body = envelope.getBody();

 header.detachNode();

 //Populate a SOAPMessage

Name bodyName = envelope.createName("GetStudentInfo","m",
"http://webservice.sussex.ac.uk");

 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

 Name name = envelope.createName("symbol");

 SOAPElement symbol = bodyElement.addChildElement(name);

 symbol.addTextNode("studentID");

 //Sending a SOAPMessage

 URL endpoint = new URL("http://webservice.sussex.ac.uk");

 SOAMessage response= connection.call(message, endpoint);

 // Close the SOAPConnection

 connection.close();

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

 122 IMPLEMENTATION OF PDNT

 CHAPTER 5

RFC 3596, RFC 2782, etc and is implemented in the Java programming language.

There are many applications using this package. Examples are shown in the following:

 CustomDNS – a customize DNS server written in Java

 CRSMail – a Java based E-Mail server

 Rabbit4 – a Web proxy server

 Eagle DNS – an authoritative DNS server

To implement the Participant Domain Name Token Profile, the org.xbill.DNS APIs are

used to retrieve the Service Record (SRV), which is stored in a DNS server. For

instance, a Web Service handler parses a SOAP message to construct a DOM tree and

obtains a participant domain name element, < pdn:ParticipantDominName > from the

tree. Then, the org.bill.DNS library will be invoked to acquire the relative Service

Record and Address Record. Figure 5.16 shows an example of a Java method using the

dnsjava package.

Figure 5.16: A Java method uses org.bill.DNS to retrieve a list of Service Records

 public List<String> getSrvRecord(String lookupService){

 List<String> hostList=new ArrayList<String>();

 Record [] records = new Lookup(lookupService, Type.SRV).run();

 if (records!=null){

 for (int i = 0; i < records.length; i++) {

 SRVRecord srvRecord=(SRVRecord) records[i];

 hostList.add(srvRecord.getTarget().toString());

 }

 }

 return hostList;

 }

 123 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.6.3 The Participant Domain Name Package

 A new java class to handle the proposed token named

“ParticipantDomainNameTokenHandler” has been designed and developed. A Java

class constructor and a validation method of the proposed token are shown in Figure

5.17 and an example of usage is shown in Figure 5.18. An instance, which is created

from the class of the ParticipantDomainNameToken (PDNT) has been tested on

different sizes of SOAP messages and it can work with other secure token profiles. All

the related classes and libraries are packed into a JAR file, which can be used and

plugged into different Web Services containers.

To instance the PDNT class, a SOAPMessage object is an argument or parameter for

creating the PDNT object. The PDNT will access the content of a SOAP message and

validate the domain name by calling the validate() method. The PDNT object accesses

the content of a SOAPMessage by using the SAAJ package. The TextContent of the

“pdn:ParticipantDomainName” and “pdn:DomainName” elements are obtained by

calling getElementsbyTagName method. The service record can be found within the

pdn:DomainName element. It is used to find out the corresponding address record and

compares it the IP address that the Web container shows.

The ParticipantDoaminNameToken (PDNT) is designed and developed in a standalone

Java package. It means that it can be plugged into different J2EE Web containers or

other Java libraries to implement or adopt the proposed token profile. All the related

java class files, associated metadata and resources are aggregated into one Java Archive

(JAR) file. The JAR file allows Java runtime to efficiently deploy a set of classes and

their associated resources.

 124 IMPLEMENTATION OF PDNT

 CHAPTER 5

Figure 5.17: The class constructor and a validation method of Participant Domain Name Token

Figure 5.18: A sample program using Participant Domain Name Token

public ParticipantDomainNameTokenHandler(SOAPMessage message){

 try{

 soapMessage=message;

 this.soapPart = soapMessage.getSOAPPart();

 this.soapEnvelope = soapPart.getEnvelope();

 this.soapHeader = soapEnvelope.getHeader();

 this.soapBody=soapEnvelope.getBody();

 if (soapHeader==null){

 soapHeader=

 MessageUtil.createSecureHeader(soapEnvelope); }

 }catch(Exception e){

 e.printStackTrace();

 }

}

public boolean validate(String senderIP){

 String lookupService=getLookupService();

 List <String> ipList=DNSClient.getAddressRecord(lookupService);

 for (int i=0;i<ipList.size();i++){

 if (ipList.get(i).equals(senderIP))

 return true;

 }

 return false;

}

public static void main(String[] args) {

 MessageFactory factory = MessageFactory.newInstance();

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml;charset=UTF-8");

 SOAPMessagesoapMessage=factory.createMessage(mimeHeaders,
 MessageUtil.readFileToInputStream("soapMessage.xml"));

 ParticipantDomainNameTokenHandler tokenHandler=new
 ParticipantDomainNameTokenHandler(soapMessage);

 tokenHandler.validate(senderIP);

 125 IMPLEMENTATION OF PDNT

 CHAPTER 5

5.7 Conclusion

This chapter presented the detailed implemention methodologies to develop the PDNT.

Because of the security issues with existing Web Service security standards, PDNT is

proposed and it has performance advantages that have been demonstrated by the

performance evaluation. The research uses Java as the major programming language to

implement the PDNT. Moreover, the Attachments API for Java (SAAJ) package or

toolkit is used for parsing a SOAP message. In order to work with DNS resource

records, the “dnsjava” package is also adopted. This package supports all record types

of the DNS resource record and it is implemented in the Java programming language.

All the classes to handle and process the PDNT were designed and developed.

Moreover, they were collected as a standalone Java package and aggregated into one

Java Archive (JAR) file. Therefore, it can be plugged into J2EE Web containers or

become a Java library for other systems use.

 126 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

CHAPTER 6

- GENERAL
DISCUSSION,

CONCLUSION AND
FUTURE DIRECTIONS

 127 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

6.1 General Discussion

n Organization must adapt to the changes in both external and internal

environments both to survive and gain the best return on investment. These

changes will affect the direction of business strategy, partnerships, mergers

and acquisitions. The IT architecture and systems must also evolve to fulfill the new

business environment and requirements, for instance, integration across enterprise

boundaries, system collaboration between partners, customers and suppliers. Therefore,

the IT architectures and systems must be designed to be flexible to reflect these changes.

Service-Oriented Architecture (SOA) is an IT architectural style and composed of

loosely coupled invokable software modules or services. Service-Oriented Architecture

(SOA) has gained widespread acceptance in different sectors. It allows reuse and

integration of existing IT assets, for instance: business logic reused and heterogeneous

systems integration. The concept of the SOA can be used in other frameworks, for

instance, Enterprise Service Bus (ESB) and Enterprise Application Integration (EAI).

The ESB is a messaging backbone to do the data conversion, format transformation,

routing, accept and deliver messages. The EAI is a framework to integrate a set of

applications within or across the enterprises. These frameworks can be developed or

implemented by a set of services and then they also become the Service-Oriented

Architecture.

The SOA is a preferred design and architecture style for integration of ubiquitous

computing resources. Traditionally designed ICT systems use an application style,

which is designed as a tightly coupled system; this is less effective and suffers from the

dependencies of each component. The invention of Service-Oriented Architecture (SOA)

makes each component system independent and permits a loosely coupled system. The

SOA can be adopted in a large complex system which includes many independent

components. For instance, online shopping applications are composed of different

functionalities like credit card authorization, currency conversion, best price searching,

etc. These components can be designed and implemented into several independent

services. The services can then be used in a single application or other applications.

A

 128 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

Services reuse is one of the advantages of adopting SOA. Moreover, adopting the SOA

can gain benefits in enterprise application integration, service reuse, leveraging the

legacy investment and best of breed integration. Therefore, SOA is suitable to design a

distributed, Internet-based, dynamic change, autonomous and non-point to point system.

The SOA can be implemented by a set of independent software units or services, with

interfaces that can be invoked to perform required tasks. It can be implemented by

SOAP-based Web Services, RESTful Web Services, Remote Procedure Call (RPC),

Distributed Component Object Model (DCOM), Common Object Request Broker

Architecture (CORBA) etc. However, Web Services are the most popular technology to

implement the SOA. A Web service is a kind of distributed system that provides APIs,

which can be used by all systems on the Internet. Unlike a traditional Application

Programming Interface (API), Web Services API is language-independent and can be

invoked by different languages on different platforms. There are two major classes of

Web Services: REST-compliant Web Services and SOAP-based Web Services. Both

have their advantages and disadvantages. The RESTful is simple and flexible but the

SOAP is a standard protocol, which includes more extensions and security mechanisms.

REST-compliant Web Service is also called RESTful Web Services. It is not a standard

and the message consists of XML and HTML. RESTful Web Services are a resource-

oriented architecture and uses Unique Resource Identifier (URI) to represent each object

in the system. RESTful focuses on interfacing with resources and changing their state. It

uses a directory structure-like URIs to show where a service consumer can acquire the

resources. Unlike other Web Services architecture, it works on resources directly rather

than invokes a function to work on resources. RESTful Web Services are stateless; the

state is maintained by being transferred from a client to a server and back to the client. It

uses a uniform set of stateless operations to parse and process a Web Service request. A

RESTful Web API is a Web API that utilizes HTTP and REST principles. All interfaces

are limited to the four HTTP commands. It makes explicit use of the HTTP methods,

which include GET, POST, PUT and DELETE to implement read, create, update and

delete functions (CRUD). RESTful Web Services do not use RPC to send a message

 129 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

Unlike RESTful, the SOAP-based Web Service not only supports HTTP protocol but

also SMTP, FTP and other communication protocols. Although RESTful Web Services

are simple and flexible compared with SOAP-based Web Services or stateful Web

Services, it does not provide any security mechanism to protect a message. In order to

protect the message content, HTTPS is used to secure the transmission of the message

over the network if the RESTful style is adopted. However, it does not provide end-to-

end protection. SOAP-based Web Services is highly extensible and it can cooperate

with many existing standards and protocols. WS-Security is a set of security standards

for SOAP-based Web Services which offers message confidentiality and message

integrity. It also provides user authentication, authorization and other security

mechanisms. Moreover, the state of a SOAP-based Web Service is maintained on the

server side. It means that state information is not kept on the client side even when the

session is still alive. Therefore, Simple Object Access Protocol is the most common way

to implement Web Services if security is a major concern. The SOAP is a specification

for exchanging structured messages between two end points via common

communication protocols such as Hypertext Transfer Protocol (HTTP). The major

security challenges between two end points are in the transport layer and message layer.

The transport level security uses layer 3 and layer 4 protocols to protect data, using

IPSec, SSL, etc. The message layer security is a proper method to protect the message

format from end-to-end and it operates on layer 7. The SOAP-based Web Services has

many in-built security mechanisms and extensions running on layer 7. It is a suitable

choice if the security is a major concern for the SOA-based system.

An example of a SOA-based system, which requires higher security is presented in this

research, named “An SOA-based Disease Notification System”. Disease notification is

one of the critical components for prevention and controlling the spread of infectious

disease within society and around the world. The proposed system uses medical

standards, for instance, International Classification Code (ICD) to exchange a notifiable

disease through the Internet. Three layers are used in the proposed system including the

service layer, business process layer and connectivity layer. In the service layer, a

service is a fundamental component of the Web Services. The business logics are

 130 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

decomposed into several generic services. All the services can interact with each other

at the message level in the business process layer and the execution order can be

specified and the business logic of inter-services programmed using the Business

Process Execution Language (BPEL). A precise and reliable laboratory test result can

indicate whether it is a notifiable disease. In a heterogeneous laboratory environment, a

laboratory test result is generated by an analyzer or a medical instrument. The results

that are printed out from the Laboratory Information Management System (LIMS) or

input to a health information system (HIS) manually for further investigation. However,

there are many different types of medical instruments in a hospital environment and

each of them produces medical results in different formats. In order expedite speed of

response issues; the Enterprise Service Bus (ESB) is used in the connectivity layer to

integrate everything together. The ESB does not only interface to all clinical

instruments, but also interfaces to LIMS and HIS. Therefore, the precise and reliable

laboratory test results can be delivered to the HIS on time, which is important during the

outbreak of disease.

A service provider deploys a Web Service for a service consumer to submit notifiable

diseases, for instance, a notifiable disease will be sent to a local health authority directly

when a hospital invokes a Web Service of local health authority or Centers for Disease

Control (CDC). The hospital can also act as a service provider to provide a Web Service

for a clinic to submit a notifiable disease to them. All the notifiable diseases can also be

sent to the World Health Organization (WHO) from different health authorities via a

Web Service, which is provided by the WHO. Existing WS-Security standards can

control who can submit a notifiable disease. However, it cannot handle where can

submit a notifiable disease. Location authentication is important for disease notification,

for instance, it does not allow submission of a SARS case outside of a hospital.

Additional authentication mechanisms can ensure case authenticity.

Security is important for the use of Web Services. However, performance is another

critical factor for evaluating a new security standard. Performance measurements have

been completed in this research to compare the existing secure token profiles, the WS-

 131 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

Security with the proposed token profile. Response time or latency time is adopted as a

performance metric to evaluate the round-trip time of a message between sender and

receiver. The latency time is affected by two factors, which are the total time spent in

the network layer and application layer. However, the total time spent in the network

layer is not considered because it is difficult to evaluate over the Internet. The total time

spent in the application layer is also affected by many factors including message size,

number of XML elements, parsing time, token handling time, total time spent in

business logic and database manipulation, etc. In this performance evaluation, all the

measurements are made with identical equipment and environment. The proposed token

requires a DNS lookup to acquire an SRV record for the domain validation. However it

is not a time consuming process because a local DNS cache is used after first time

querying. Therefore, the network issue and DNS lookup time can be ignored and only

latency time spent in the application layer is considered. A millisecond timescale is used

to compute latency for each round-trip time between message sender and receiver. Both

the Web Service provider and consumer are written in the Java programming language.

A pure HTTP server and HTTP client with necessary java library are used for the

performance evaluation.

Different sizes of SOAP messages were used for each test case and average latency time

is adopted for comparison between the proposed token and WS-Security tokens. The

size of a SOAP message depends on which secure tokens are used. According to the

message size evaluation of each secure token profile in this research, the message size

of the proposed token profile is the minimum and the encryption token profile is the

maximum, which is increased by 37%. Four test cases were selected and are tested with

different message sizes, which include the proposed token vs. (1) Username token; (2)

XML encryption token; (3) XML signature token; (4) XML encryption with signature

token. In each test case, the proposed token profile was used by a message receiver to

authenticate the location of a sender. WS-Security token profiles were used to validate a

SOAP message by different mechanisms. Each test case has been divided into three sub-

test cases, which was processed a hundred times to obtain the average latency for each

sub-test case of each record size.

 132 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

In the test case 1, the latency of processing Participant Domain Name Token (PDNT) is

12.74 % faster than username token profile when a message contains 100 employee

records. It is also 6.67%, 2.27%, 1.36% and 0.07% faster if adopted for 200, 300, 400

and 500 employee records respectively. The encryption token profile uses the most

processing time when compared with the other WS-Security secure token profiles. The

results are shown in test case 2. It is 238.13 % ~ 843.5% faster than the encryption

token profile when the proposed token is adopted. In test case 3, the latency of

processing PDNT is 30.3% ~ 50.39% faster than signature token profile. Finally, the

encryption token with signature token are selected to compare with the proposed token

for the performance evaluation and the results are shown in test case 4. It shows that the

PDNT is 257.12% ~ 884.62% faster than these two token profiles. Therefore, all test

case results show that the processing time for adopting the proposed token profile is

faster than the other secure token profiles. The four test cases also evaluate the overhead

to process the proposed token with each WS-Security token profile. In test case 1, if

both the proposed token and username token are used and processed, the processing

time is increased by 0.37%. It means that by adopting an additional token, the proposed

token there is a very small increase and it provides additional security. In test case 1, 2

and 3, it shows that the processing time is increased by less than 1% to process the

proposed token with encryption token, proposed token with signature token, proposed

token with encryption and signature token. Therefore, the overhead is not significant

and the system gains an additional security feature if using PDNT.

The security of an IT system has become one of the most important components of the

system, especially for Internet-based systems. In an organization, the primary security

device is a firewall and a SOAP message is designed to move across firewalls by using

HTTP protocol. However, most firewalls are a layer 3 security device and cannot

provide end-to-end message authentication, authorization, confidentiality and integrity.

In order to protect the content or data in a message, more than one security feature is

used in a single SOAP message. However, the more security mechanisms that are

adopted the greater will be the total processing time. In order to gain a performance

advantage the proposed token eliminates the overhead for processing an unknown or a

fake request, the PDNT is processed before other WS-Security secure tokens, such as

 133 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

username token, encryption token, signature token, and etc. Therefore, it can refuse a

fake request as fast as possible and does not need to process other secure tokens if it is

an illegal request, which will saves the processing resources to handle more requests.

In this research, message layer security has been taken into account in order to fulfill

three major aspects of security, integrity, confidentiality and availability. The SOAP

relies on XML for its message format and a SOAP message can be protected in the

message layer. We found existing message layer security mechanisms, which are

defined and collected in the OASIS standard 1.1. It does not only provide message

integrity and message confidentiality but also other secure token profiles including:

 Username Token Profile

 X.509 Token Profile

 SAML Token Profile

 Kerberos Token Profile

 Rights Expression Language Token Profile

Each token profile has defined a standard set of Web Services Security extensions to

profile particular security features. We found that the five secure token profiles focus on

two areas. Who can use the Web Services and what are the permissions. However, we

found that the location of a Web Service invoker is not handled and not verified in

existing secure token profiles. Other researchers also focus on the dynamic policy

assignment based on other techniques, for instance, data mining and ontology. The

location of service invoker is also ignored. Therefore, a location based verification is

needed to control “where” can use the Web Services.

 134 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

6.2 Conclusions

Existing standards on WS-Security and performance evaluation of the proposed token

have been presented in this thesis. The features, purposes and limitations of the OASIS

standard 1.1 have also been discussed. The research have found and achieved the

following:

1. Services-Oriented Architecture (SOA) is one of the preferred approaches for

system design and system integration, since integrated computing has become

ubiquitous.

2. Some SOA-based systems require higher security, for instance, the disease

notification system.

3. RESTful Web Services and SOAP-based Web Services are the widely used

technologies to implement Web Services.

4. Web Services is one of the technologies to implement SOA and Simple Object

Access Protocol (SOAP) is widely used to implement Web Services if security

is a major concern.

5. SOAP-based Web Services is an XML-based platform-independent protocol. It

is used for data exchange, method discovery and invocation between Web

Services applications.

6. WS-Security 1.1 OASIS is a security standard and specification to provide

message confidentiality, message integrity, user authentication, authorization

and other security mechanisms for SOAP-based Web Services.

7. The SOAP-based message can be protected in both the transport and message

layer protocol. Transport layer protection can be achieved by standard network

security protocol, for instance SSL, IPSec. The message layer is a proper

method to protect the message from one end to the other end. WS-Security 1.1

OASIS is an existing standard to protect a SOAP-based message, which

provides “who can use the services” and “what are the permissions” mechanisms.

8. There are no location-based mechanisms for the location authentication using

existing standards and research.

 135 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

A location-based authentication mechanism is proposed in this research, named

Participant Domain Name Token (PDNT). “Where can use the services” is handled by

the new proposed token and it is implemented in the Java language. Location

authentication is important for a SOA-based system which is required to monitor and

control “where” can invoke the Web Services. The Disease Notification System is an

example of a system which requires control of “where” can submit a notifiable disease

to ensure case authenticity. To adopt PDNT, the following libraries are required:

1. Java.xml.soap.* are used to parse a SOAP message.

2. Org.xbill.DNS.* are used for SRV and address resource record resolution.

All the relative classes are packed into a Java Achieve (JAR) file. A web container or a

Web Services system can plug this jar file into existing system architecture with minor

modification. Performance is another advantage to be gained by adopting the PDNT.

Based on the experimental results, which are presented in this thesis, the PDNT gains

significant performance advantage over other secure token profiles and the overhead for

adopting PDNT is minor. Therefore, all the participants can reap the benefits of

increased security and performance.

The proposed token provides a location-based authentication mechanism. It is not only

used to control an area but also control a country and region to invoke a service. The

PDNT can disallow a region that cannot invoke the Web Services, even though a user

has permission. Therefore, this new security token could have a significant impact in

combating industrial espionage by commercial organizations and National Security

Agencies.

6.3 Future Directions

OASIS Web Services Security standards do not only enhance a SOAP message to

provide message integrity and confidentiality but also define how to use the secure

token to enable the implementation of a wide range of protocols, such as Kerberos,

 136 DISCUSSION AND CONCLUSIONS

 CHAPTER 6

X.509. The proposed token enhances the WS-Security by adding a new secure token to

provide location-based authentication mechanisms. It also respects the WS-Security

specification, which fulfills the requirements to use the SOAP header for carrying

security information. The PDNT can be used for the authentication of a message sender

location. The newly designed token can be used to reject invalid requests or responses,

which come from unknown or fake domains before parsing and processing the other

secure token profiles.

The proposed secure token profile incorporates one of the most widely used Internet

service information identities, which is the Domain Name Service (DNS). It can verify,

control and monitor the location of the service consumer or message sender. An existing

DNS record is used to describe or show participant domain information, which is

Service Record (SRV), a DNS resource record for specifying the location of services.

However, the target field defined in the SRV record has been a little changed since the

original meaning to the self-defined. Therefore, it will confuse a user who follows the

SRV specification, the RFC2782.

In the future, a new type of DNS resource record should be considered to support the

proposed token. This record can be used to properly support the PDNT without

changing the usage of the SRV record. The Network Address Translation (NAT) is also

considered if a participant uses a firewall between internal network and Internet. One-

to-many NAT is usually adopted for multiple private hosts mapped to a public IP

address. If there are many departments within an organization invoking Web Services,

which are outside the organization, for instance, on the Internet, only a single public IP

can be used to validate all departments by the PDNT handler because of the NAT issue.

In the future, we will provide mechanisms to tackle this issue. Moreover, the PDNT

should be implemented in a real service consumer and service provider and become a de

facto Web Services secure token profile.

 137 PUBLISHED PAPER

 CHAPTER 7

7

- LIST OF JOURNAL
AND CONFERENCE

PAPERS PUBLISHED

 138 PUBLISHED PAPER

 CHAPTER 7

2012

Chi Po Cheong, Chris Chatwin, Rupert Young, “Performance Enhancement of WS-

Security Using Participant Domain Name (PDNT)”, 2012 9th International Joint

Conference on Computer Science and Software Engineering (JCSSE2012), 30 May – 1

June 2012, Bangkok, Thailand, pp. 214-219, ISBN 978-1-4673-1920-1, Won Best

Paper Award-Double Blind reviewed

Chi Po Cheong, Simon Fong, Pouwan Lei, Chris Chatwin, Rupert Young, Designing an

Efficient and Secure Credit Card-based Payment System based on ANSI X9.59-2006

with Web Services, Journal of Information Processing System, Korea, Information

Processing Society, Volume 8, Issue 3, 2012, pp. 495-520, ISSN: 1976-913X (Print),

ISSN: 2092-805X (Online)

2011

Chi Po Cheong, Chris Chatwin, Rupert Young, “A New Secure Token For Enhancing

Web Service Security”, 2011 IEEE International Conference on Computer Science and

Automation Engineering (CASE 2011), 10-12 June 2012, Shanghai, China, Volume 1,

pp. 45-48, ISBN 978-1-4244-8727-1

2010

Chi Po Cheong, Chris Chatwin, Rupert Young, “A Framework for Consolidating

Laboratory Data Using Enterprise Service Bus”, 2010 3rd IEEE International

Conference on Computer Science and Information Technology, 9-11 July 2010,

Chengdu, China, pp. 557-560, ISBN 978-1-4244-5537-9

 139 PUBLISHED PAPER

 CHAPTER 7

2009

Chi Po Cheong, Chris Chatwin, Rupert Young, “An SOA-based Disease Notification

System”, 7th International Conference on Information, Communications and Signal

Processing (ICICS 2009), 7-10 December 2009, Macau, China, pp. 1-4, ISBN 978-1-

4244-4656-8

Chi Po Cheong, Chris Chatwin, Rupert Young, “A RDF-based Semantic Schema

Mapping Transformation System for Localized Data Integration”, 3rd International

Conference on Anti-counterfeiting, Security, and Identification (ASID 2009), 20-22

August 2009, Hong Kong, China, pp. 144-147, ISBN 978-1-4244-3883-9

 140 BIBLIOGRAPHY

 CHAPTER 8

8
- BIBLIOGRAPHY

 141 BIBLIOGRAPHY

 CHAPTER 8

Addie R. G., Moffatt S., Dekeyser S., “Five examples of web-services for illustrating

requirements for security architecture”, 2011 International Conference on Data and

Knowledge Engineering, 6 September 2011, Milan, Italy, 2011, pp. 47-54. ISBN 978-1-

4577-0865-7

Albreshne A., Fuhrer P., Pasquier J., “Web Services Technologies: State of Art

Definitions, Standards, Case study”, 2009, URL

http://diuf.unifr.ch/drupal/softeng/sites/diuf.unifr.ch.drupal.softeng/files/file/publication

s/internal/WP09-04.pdf

Alrouh B., Ghinea G., “A Performance Evaluation of Security Mechanisms for Web

services”, International Conference on Information Assurance and Security, 18-20

August 2009, Xi’an, China, pp. 715-718. ISBN 978-0-7695-3744-3

Craig@AWS, “Amazon Web Services: Overview of security Process”, Amazon, 2013,

URL http://aws.amazon.com/articles/1697

Atadjanov A.J., “Exchanging bibliographic data with its full text by SOAP”, 2010 4th

International Conference on Application of Information and Communication

Technologies (AICT), 12-14 October 2010, Tashkent, Uzbekistan, 2010, pp. 1-2, ISBN

978-1-4244-6903-1

Al-Zoubi K., Wainer G., “Using REST Web-Services Architecture for Distributed

Simulation”, ACM/IEEE/SCS 23
rd Workshop on Principles of Advanced and

Distributed Simulation”, 22-25 June 2009, Lake Placid, NY, USA, 2009, pp.114 – 121,

ISBN 978-0-7695-3713-9

Artus D. J.N., “SOA realization: Service design principles”, IBM white paper, 2006,

URL http://www.ibm.com/developerworks/webservices/library/ws-soa-design/

Bartoletti M., Degano P., Ferrari G. L., Zunino R., “Semantics-Based Design for Secure

Web Services”, Software Engineering, IEEE Transactions, Volume 34, Issue 1, 2008,

pp. 33-49, ISSN 0098-5589

 142 BIBLIOGRAPHY

 CHAPTER 8

BEA Systems, “Domain Model For SOA: Realizing the Business Benefit of Service-

Oriented Architecture“, BEA white paper, 2005, URL

http://www.soablueprint.com/yahoo_site_admin/assets/docs/BEA_SOA_Domains_WP.

290214359.pdf

Booth D., Hass H., McCabe F., Newcomer E., Champion M., Ferris C., Orchard D.,

“Web Services Architecture”, W3C Working Group Note, 11 February 2004, URL

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

Boos G., Malladi P., Quan D., Legregni L., Hall H., “Cloud Computing”, IBM white

paper, IBM Corporation, 2007

Bray T., Paoli J., Sperbery-McQueen C.M., Maler E., Yergeau F., Cowan J.,

“Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation,

2006, URL http://www.w3.org/TR/xml11/

Brisco T., “DNS Support for load Balancing”, RFC 1794, IETF, 1995, URL

http://tools.ietf.org/html/rfc1794

Champion M., Ferris C., Newcomer E., Orchard D., “Web Services Architecture”, W3C

Working Draft, 14 November 2002, URL http://www.w3.org/TR/2002/WD-ws-arch-

20021114/

Change, L. C., Chiang H. K., Chiang W. Y., Smart-GIS: “A SVG-based tool for

Visualizing and Monitoring of SARS Movement”, 3rd International Conference on

Information Technology: Research and Education, 27-30 June 2005, pp. 282-286, ISBN

0-7803-8932-8

Chen S., Zic J., Tang K., Lavy D., “Performance Evaluation and Modeling of Web

Services Security”, IEEE International Conference on Web Services, 9-13 July 2007,

Salt Lake City, UT, USA, 2007, pp. 431-438, ISBN 0-7695-2924-0

Cheng F., Meinel C., “Design of Lock-Keeper Federated Authentication Gateway”, 11th

International Conference on Advanced Communication Technology, 15-18 February

2009, Phoenix Park, Dublin, Ireland, 2009, pp. 1041-1046, ISBN 978-89-5519-138-7

 143 BIBLIOGRAPHY

 CHAPTER 8

Chonka A., Zhou W., Xiang Y., “Protecting Web Services with Service Oriented

Traceback Architecture”, 8th IEEE International Conference on Computer and

Information Technology, 8-11 July 2008, Sydney, NSW, 2008, pp. 706-711, ISBN 978-

1-4244-2357-6

Christensen E., Curbera F., Meredith G., Weerawarana S., “Web Services Description

Language (WSDL) 1.1”, W3C Note, 15 March 2001, URL http://www.w3.org/TR/wsdl

Damiani E, De Capitani di Vimercati S., Paraboschi S., Samarati P., “Secure SOAP E-

Services”, International Journal of Information Security (IJIS), Volume 1, Issue 2, 2002,

pp. 100-115

Davis J., “Open Source SOA”, Manning Publications Co., May 2009, ISBN

1933988541

DeMartini T., Nadalin A., Kaler C., Monzillo R., Hallam-Baker P., “Web Services

Security Rights Expression Language (REL) Token Profile 1.1”, OASIS Standard, 1

February 2006, URL http://docs.oasis-open.org/wss/v1.1/oasis-wss-rel-token-profile-

1.1.pdf

Dierks T., Rescorla E., “The Transfer Layer Security (TLS) Protocol version 1.2”,

RFC5426, Network Working Group, 2008, URL http://www.ietf.org/rfc/rfc5246.­txt

Engelen R., Zhang W., “Identifying Opportunities for Web Services Security

Performance Optimizations”, IEEE Congress on Services – Part 1, 6-11 July 2008,

Honolulu, HI, USA , 2008, pp. 209-210, ISBN 978-0-7695-3286-8

Engelen V., R.A., Zhang W., “An Overview and Evaluation of Web Services Security

Performance Optimizations”, IEEE International Conference on Web Services, 23-26

September 2008, Beijing, China, 2008, pp. 137-144, ISBN 978-0-7695-3310-0

Erl T. “Service-Oriented Architecture: Concepts, Technology, and Design”, Prentice

Hall/PearsonPTR, 2005, ISBN 0131858580

Erl T. “SOA Principles of Service Design”, Prentice Hall/PearsonPTR, 2007, ISBN

0132344823

 144 BIBLIOGRAPHY

 CHAPTER 8

Fielding R. T., Irvine UC, Gettys J., Mogul J., Frystyk H., Masinter L., Leach P.,

Berners-Lee T. “Hypertext Transfer Protocol HTTP/1.1”, RFC2616, Network Working

Group, 1999, URL http://www.w3.org/Protocols/rfc2616/rfc2616.html

Fielding R. T., “Architecture Styles and the Design of Network-based Software

Architectures”, University of California, Irvine, PhD. Dissertation, 2000, URL

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Foster I., Zhao Y., Raicu I., Lu S., “Cloud Computing and Grid Computing 360-

Degree Compared”, Grid Computing Environments Workshop, 12-16 November 2008,

Austin, TX, USA, 2008, pp. 1-10, ISBN 978-1-4244-2860-1

Fusaro VA., Patil P., Gafni E., Wall D.P., Tonellato PJ., “Biomedical Cloud Computing

with Amazon Web Services”, PLOS Computational Biology, 2011,

doi:10.1371/journal.pcbi.1002147, URI

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002147

Hansen M. D., “SOA Using Java Web Services”, Prentice Hall Professional, 2007,

ISBN 0130449687

Genge B., Haller P., “Extending WS-Security to Implement Security Protocols for Web

Services”, International Conference on Recent Achievements in Mechatronics,

Automation, Computer-Sciences and Robotics, 20-21 March 2009, Tîrgu Mureş, 2009,

Volume 1, pp.105-112, ISSN 2065-5916

Godfrey B., “A primer on distributed computing”, 2006, URL

http://www.bacchae.co.uk/docs/dist.html

Gottschalk K., “Web Services architecture overview”, IBM Software Group, 2000,

URL http://www.ibm.com/developerworks/webservices/library/w-ovr/

Gu Y. S., Zhang B. J., Xu W., “Research and Realization of Web Services Security

Based on XML Signature”, International Conference on Networking and Digital Society,

30-31 May 2009, Guiyang, Guizhou, China, 2009, pp. 116-118, ISBN 978-0-7695-

3635-4

 145 BIBLIOGRAPHY

 CHAPTER 8

Gudgin M., Hadley M., Mendelsohn N., Moreau J. J., Nielsen H. F., Karmarkar A.

Lafon Y., “SOAP Version 1.2 Part 1 : Messaging Framework (Second Edition)”, W3C

Recommendation, 27 April 2007, URL http://www.w3.org/TR/soap12-part1/

Gudgin M., Hadley M., Mendelsohn N., Moreau J. J., Nielsen H. F., Karmarkar A.

Lafon Y., “SOAP Version 1.2 Part 2: Adjuncts (Second Edition)”, W3C

Recommendation, 27 April 2007, URL http://www.w3.org/TR/soap12-part2/

Gutierrez, C.; Fernandez-Medina, E.; Piattini, M., “PWSSec Process for Web Services

Security”, International Conference on Web Services, 18-22 September 2006, Chicago,

IL, USA, 2006, pp. 213-222, ISBN 0-7695-2669-1

Gulbrabdsen A., Vixie P., Esibov L., “A DNS RR for specifying the location of services

(DNS SRV)”, RFC 2052, IETF, 2002, URL www.ietf.org/rfc/rfc2782.txt

Gao L., Liu S. F., Lu H., “A Solution of Axis2 Message Routing and Web Services

Security”, 6
th International Conference on Pervasive Computing and Applications, 26-

28 October 2011, Port Elizabeth, South Africa, 2011, pp.384-388, ISBN 978-1-4577-

0209-9

Guo X., “A URL-Based System Model for Web Service Unified ID Authorization”,

International Conference on Image Analysis and Signal Proceedings, 11-12 April 2009,

Taizhou, China, 2009, pp. 324-326, ISBN 978-1-4244-3987-4

Iacono L. L., Rajasekaran H., “Secure Browser-based Access to Web Services”, IEEE

International Conference on Communication, 14-18 June 2009, Dresden, Germany,

2009, pp. 1-5, ISBN 978-1-4244-3435-0

ITU-T, X.509, “Information technology – Open systems interconnection – The

Directory: Public-key and attribute certificate frameworks”, INTERNATIONAL

STANDARD ISO/IEC 9594-8, ITU-T Recommendation, 11/2008, URL

http://www.itu.int/rec/T-REC-X.509-200811-I/en

Jia L., Zhang Z., “Research of Interoperability security between .net and J2EE”,

International Workshop on Intelligent Systems and Applications, 23-24 May 2009,

Wuhan, China, pp. 1-3, ISBN 978-1-4244-3893-8

 146 BIBLIOGRAPHY

 CHAPTER 8

Judith M. Myerson, “Web Service Architecture”, Tect, Chicago, USA, 2009, URL

http://www.onlinetechbooks.com/programming-

books/WEBSERVICES_ARCHITECTURES.pdf

Juric, M.B., Zivkovic, A., Hericko, M., Brumen, B., Welzer, T., Rozman, I.,

“Performance assessment framework for distributed object architectures”, Advances in

Databases and Information Systems, Springer Berlin Heidelberg, Lecture Notes in

Computer Science Volume 1691, 1999, pp 349-366, ISBN 978-3-540-66485-7

Kosmajac D., “Information systems security and security extension in Jersey RESTful

framework”, 20th Telecommunication Forum, 20-22 November 2012, Belgrade, Serbia,

2012, pp. 1556-1559, ISBN 978-1-4673-2983-5

Knap T., Mlynkova I., “Towards More Secure Web Services- Exploiting and analyzing

XML signature security issues”, Third International Conference on Research Challenges

in Information Science, 22-24 April 2009, Fez, 2009, pp. 49-58, ISBN 978-1-4244-

2864-9

Kudo M., “PBAC: Provision-based access control model”, International Journal of

Information Security, Springer-Verlag, February 2002, Volume 1, Issue 2, pp 116-130,

ISSN 1615-5262

Kumari G. P., Kandan B., Mishra., “Experience sharing on SOA based Heterogeneous

System Integration”, IEEE Congress on Services – Part I”, 6-11 July 2008, Honolulu,

HI, USA, 2008, pp. 107-108, ISBN 978-0-7695-3286-8

Lavarack T., Coetzee M., “Considering web services Security policy compatibility”,

Information Security for South Africa, 2-4 August 2010, Sandton, Johannesburg, 2010,

pp. 1-8, ISBN 978-1-4244-5493-8

Lavarack T., Coetzee M., “Web services security policy assertion trade-offs”, Sixth

International Conference on Availability, Reliability and Security (ARES), 22-26

August 2011, Vienna, 2011, pp. 535-540, ISBN 978-1-4577-0979-1

Lebanidze E., “Securing Enterprise Web Application at the Source: An Application

Security Perspective”, The Open Web Application Security Project (OWASP), 2012,

URL

 147 BIBLIOGRAPHY

 CHAPTER 8

https://www.owasp.org/images/8/83/Securing_Enterprise_Web_Applications_at_the_S

ource.pdf

Lee S. P., Chan L. P., Lee E. W., “Web Services Implementation Methodology for SOA

Application”, IEEE International Conference on Industrial Informatics”, 16-18 August

2006, Singapore, 2006, pp. 335-340, ISBN 0-7803-9700-2

Lewis G. A., Morris E., Simanta S., Wrage L., “Common Misconceptions about

Service-Oriented Architecture”, 6th International Conference on Commercial-off-the-

Shelf (COTS)-Based Software Systems, 26 Feb – 2 March 2007, Banff, Alta, 2007, pp.

123-130, ISBN 0-7695-2785-X

Li J., Li B., Li L., Che T., “A Policy Language for Adaptive Web Services Security

Framework”, Eighth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, 30 July – 1 August 2007,

Qingdao, China, 2007a, pp. 261-266, ISBN 978-0-7695-2909-7

Li J., Li B., Li L., Che T., “An Agent-based Policy Aware Framework for Web Services

Security”, IFIP International Conference on Network and Parallel Computing

Workshops, 18-21 September 2007, Liaoning, China, 2007b, pp. 849-854, ISBN 978-0-

7695-2943-1

Li Y., Peng Y. I., Zhan G. H., Zhang L., “The Research of Security Asynchronous Web

Services based on SOA Architecture”, IEEE International Conference on Networking,

Sensing and Control, 6-8 April 2008, Sanya, China, 2008 pp. 1332-1336, ISBN 978-1-

4244-1685-1

Liu Y., Yeap T. H., O’Brien W., “Securing XML Web Services with Elliptic Curve

Cryptography”, Canadian Conference on Electrical and Computer Engineering, 22-26

April 2007, Vancouver, BC, 2007, pp. 974-977, ISBN 1-4244-1020-7

Ma K., Song C. X., “Research on a Web Security Service System Structure Model”,

International Conference on Advanced Computer Theory and Engineering, 20-22

December 2008, Phuket, Thailand, 2008, pp. 884-887, ISBN 978-0-7695-3489-3

 148 BIBLIOGRAPHY

 CHAPTER 8

Maamar Z., Hacid H., Huhns M. N., “Why Web Services Need Social Network”, IEEE

Internet Computing, March – April 2011, Volume 15, Issue 2, pp. 90-94, ISSN 1089-

7801

Mahmoud Q. H., “Service-Oriented Architecture (SOA) and Web Services: The Road to

Enterprise Application Integration (EAI)”, Oracle Technology Network Article, April

2005, URL http://www.oracle.com/technetwork/articles/javase/soa-142870.html

Maler E. Mishra P., Philpott R., “Assertions and Protocols for the OASIS Security

Assertion Markup Language (SAML) V1.1”, OASIS Standard, 2 September 2003 URL

https://www.oasis-open.org/committees/download.php/3406/

Meier J.D., Farre C., Taylor J., Bansode P., Gregersen S., Sundararajan M., Boucher R,

“Improving Web Services Security-Scenarios and Implementation Guidance for WCF”,

WCF Security Guidance Project, Microsoft Corporation, February 2009, URL

http://msdn.microsoft.com/en-us/library/ff650794.aspx

Meier J. D., Hill D., Homer A., Taylor J., Bansode P., Wall L., Boucher Jr. R., Bogawat,

Lonnie A., “Microsoft Application Architecture Guide 2nd Edition”, October 2009, URL

http://msdn.microsoft.com/en-us/library/ff650706.aspx

Mitra N., Lafon Y., “SOAP Version 1.2 Part 0: Primer (Second Edition), W3C

Recommendation, 27 April 2007, URL http://www.w3.org/TR/soap12-part0/

Mockapetris P., “Domain Names – Implementation and Specification”, RFC 1035,

IETF, 1987, URL www.ietf.org/rfc/rfc1035.txt

Monzillo R., Kaler C., Nadalin A., Hallem-Baker P., “Web Services Security SAML

Token Profile 1.1”, OASIS Standard, 1 February 2006, URL http://docs.oasis-

open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

Moralis A., Pouli V., Grammatikou M., Papavassiliou S., Maglaris V., “Performance

Comparison of Web Services Security Kerberos Token Profile Against X.509 Token

Profile”, Third International Conference on Networking and Services”, 19-25 June 2007,

Athens, Greece, 2007, pp. 19-25, ISBN 978-0-7695-2858-9

 149 BIBLIOGRAPHY

 CHAPTER 8

Mourad A., Ayoubi S., Yahyaoui H., Otrok H., “New Approach for the Dynamic

Enforcement of Web Services Security”, Eighth Annual International Conference on

Privacy Security and Trust, 17-19 August 2010, Ottawa, ON, Canada, 2010, pp. 189-

196, ISBN 978-1-4244-7551-3

MSDN, “Web Services in Exchange 2013”, Microsoft, 19 February 2013, URL

http://msdn.microsoft.com/en-us/library/exchange/dd877012(v=exchg.150).aspx

Nadalin A., Kaler C., Monzillo R., Hallam-Baker P., “Web Services Security: SOAP

Message Security 1.1 (WS-Security 2004)”, OASIS Standard Specification, 1 February

2006, 2006a, URL http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf

Nadalin A., Kaler C., Monzillo R., Hallam-Baker P., “Web Services Security Username

Token Profile 1.1”, OASIS Standard Specification, 1 February 2006, 2006b, URL

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf

Nadalin A., Kaler C., Monzillo R., Hallam-Baker P., “Web Services Security X.509

Certificate Token Profile 1.1”, OASIS Standard Specification, 1 February 2006, 2006c,

URL http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-x509TokenProfile.pdf

Nadalin A., Kaler C., Monzillo R., Hallam-Baker P., “Web Services Security Kerberos

Token Profile 1.1”, OASIS Standard Specification, 1 February 2006, 2006d, URL

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

Nakayama K., Ishizaki T., Oba M., “Application of Web Services Security Using Travel

Industry Model”, The 2005 Symposium on Applications and the Internet Workshops,

31-04 January 2005, pp. 358-361, ISBN 0-7695-2263-7

Neuman C., Yu T., Hartman S., Raeburn K., “The Kerberos Network Authentication

Service (V5)”, RFC 4120, IETF, 2005, URL www.ietf.org/rfc/rfc4120.txt

Nordbotten N. A., “XML and Web Services Security Standards”, Journal of IEEE

Communications Surveys & Tutorials, Publisher IEEE Communications, Volume 11

Issue 3, pp. 4-21, 2009, ISBN: 1553-877X

 150 BIBLIOGRAPHY

 CHAPTER 8

Nurse J.R.C., Sinclair J.E., “BOF4WSS A Business-Oriented Framework for Enhancing

Web Services Security for e-Business”, Fourth International Conference on Internet and

Web Applications and Services, 24-28 May 2009, Venice/Mestre , 2009, pp. 286-291,

ISBN 978-1-4244-3851-8

Jendrock E., Ball J., Carson D., Evans I., Fordin S., Haase, K., “The Java EE 5 Tutorial

For Sun Java System Application Server 9.1”, Oracle Corporation, September 2010,

URL http://docs.oracle.com/javaee/5/tutorial/doc/

Oracle, “Java TM Platform, Standard Edition 6 API Specification”, Oracle, 2011, URL

http://docs.oracle.com/javase/6/docs/api/

Parker D., “Toward a New Framework for Information Security”, The Computer

Security Handbook (4th ed.), New York, John Wiley & Sons, Chapter 5, 2002, ISBN

0471412589

Peng D., Li C., Huo H., “An Extended UsernameToken-based Approach for REST-style

Web Service”, 2
nd IEEE International Conference on Computer Science and

Information Technology, 8-11 August 2009, Beijing, China, 2009, pp. 582-586, ISBN

978-1-4244-4519-6

Phan T., Han J., Mueller I., Malinda K., “SOABSE- An Approach to Realizing

Business-Oriented Security Requirements with Web Service Security Policies”, IEEE

International Conference on Service-Oriented Computing and Applications, 14-15

January 2009, Taipei, 2009- pp. 1-10, ISBN 978-1-4244-5300-9

Postel J., “Internet Protocol“, RFC 791, IETF, 1981, 1981a, URL

http://tools.ietf.org/html/rfc791

Postel J., “Transmission Control Protocol“, RFC 793, IETF, 1981, 1981b, URL

http://tools.ietf.org/html/rfc793

Oh S., Park S., “Task-role-based access control model”, Journal of Information System,

Elsevier Science Ltd, September 2003, Volume 28, Issue 6, pp. 533-562, ISSN 0306-

4379

 151 BIBLIOGRAPHY

 CHAPTER 8

Omar S., “A message-level security approach for RESTful services”, Master Thesis,

University of Oslo, 2011, URL https://www.duo.uio.no/handle/10852/8967

Qian Z., Zhang L., Yang J., Yang C., “Global SARS information WebGIS design and

development”, International Geosciences and Remote Sensing Symposium, IGARSS’04,

20-24 September 2004, Volume 5, pp. 2861-2863, ISBN 0-7803-8742-2

Qu Z., Ge, Y., Jiang K., Lu T., “Key Issues in Building Web-based Services”, Third

International Conference on Next Generation Web Services Practices, 29-31 October

2007, Seoul, Korea, 2007, pp. 119-122, ISBN 978-0-7695-3022-2

Quo C.F., Wu B., Wang M.D., “Development of a Laboratory Information System for

Cancer Collaboration Projects”, 27th Annual Conference on Engineering in Medicine

and Biology, Shanghai, China, 2007, ISBN 0-7803-8741-4

Rahaman M.A., Schaad A., “SOAP-based Secure Conversation and Collaboration”,

IEEE International Conference on Web Services, 9-13 July 2007, Salt Lake City, USA,

UT, 2007, pp. 471-480, ISBN 0-7695-2924-0

Rayns C., Clarke T., Conrad M., Wiese C., “SOAP Message Size Performance

Considerations”, IBM redbooks, IBM International Technical Support Organization, 29

August 2007, URL http://www.redbooks.ibm.com/abstracts/redp4344.html

Rodriguez A., “RESTful Web Services: The basic”, IBM developerworks, 06

November 2008, URL http://www.ibm.com/developerworks/webservices/library/ws-

restful/ws-restful-pdf.pdf

Sandhu R.S. , Coyne E.J. , Feinstein H.L., Youman C.E., “Role-based access control

models”, Journal of Computer, IEEE Computer Society Press Los Alamitos, CA, USA,

2 February 1996, Volume 29, Issue 2, pp. 38-47

Sanchez-Villeda H., Schroeder S., Polacco M., McMullen M., Havermann S., Davis G.,

“Development of an integrated laboratory information management system for the

maize mapping project,” Bioinformatics, US National Library of Medicine National

Institutes of Health, 1 November 2003, Volume 19, Issue16, pp. 2022-2030,

PMID:14594706

 152 BIBLIOGRAPHY

 CHAPTER 8

Serme G., Oliveria AS, Massiera J., Roudier Y., “Enabling Message Security for

RESTful Services”, 2012 IEEE 9th International Conference on Web Services (ICWS),

24-29 June 2012, Honolulu, HI, USA, 2012, pp. 114-121, ISBN 978-1-4673-2131-0

Schreier S., “Modeling RESTful applications”, Second International Workshop on

RESTful Design, March 2011, Hyderabad, India, ACM, 2011, pp. 15 -21, ISBN 978-1-

4503-0623-2

Shah D., Patel D., “Dynamic and Ubiquitous Security Architecture for Global SOA”, in

Proceedings of the Second International Conference on Mobile Ubiquitous Computing,

System, Services and Technologies, 29 September – 4 October 2008, Valencia, Spanish,

2008, pp. 482-487, ISBN 978-0-7695-3367-4

Shahgholi N., Mohsenzadeh M., Seyyedi M. A., Qorani S. H., “A new security

framework against Web Services’ XML attacks in SOA”, 2011 7th International

Conference on Next Generation Web Services Practices (NWeSP), 19-21 October 2011,

Salamanca, northwestern Spain, 2011a, pp. 314-319, ISBN 978-1-4577-1125-1

Shahgholi N., Mohsenzadeh M., Seyyedi M. A., Qorani S. H., “A New SOA Security

Framework Defending Web services Against WSDL Attacks”, 2011 IEEE Third

International Conference on Social Computing, 9-11 October 2011, Boston, MA, USA,

2011b, pp. 1259-1262, ISBN 978-1-4577-1931-8

Shaw M., Clements P., “A Field Guide to boxology: Preliminary Classification of

Architectural Styles for Software Systems”, The Twenty-First Annual International

Computer Software and Applications Conference, (COMPSAC ’97), 11-15 August

1997, Washington, DC, USA, 1997, pp. 6-13, ISBN 0-8186-8105-5

Sidharth N., Liu J., “IAPF A Framework for Enhancing Web Services Security”, 31
st

Annual International Computer Software and Applications Conference, 24-27 July 2007,

Beijing, China, 2007, pp. 23-30, ISBN 0-7695-2870-8

Singh S., Bawa S., “A Framework for Handling Security Problems in Grid Environment

using Web Services Security Specification”, International Conference on Semantics,

Knowledge and Grid, November 2006, Guilin, Guangxi, China, 2006 pp. 68, ISBN 0-

7695-2673-X

 153 BIBLIOGRAPHY

 CHAPTER 8

Sinha K.S., Sinha S., “Limitations of Web Service Security on SOAP Messages in a

Document Production Workflow Environment”, 16
th International Conference on

Advanced Computing and Communications, 14-17 December 2008, Chennai, Indian ,

2008, pp. 342-346, ISBN 978-1-4244-2962-2

Singhal A., “Web Services Security Challenges and Techniques”, Eighth IEEE

International Workshop on Policies for Distributed System and Network, 13-15 June

2007, Bologna, Italian, 2007, pp. 282, ISBN 0-7695-2767-1

Singhal A., Winograd T., Scarfone K., “Guide to Secure Web Services”,

Recommendations of the National Institute of Standards and Technology, U.S.

Department of Commerce, NIST Special Publication 800-95, August 2007, URL

http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf

Sholler D., “2008 SOA User Survey: Adoption Trends and Characteristics”, Gartner,

Inc., 26 September 2008, URL https://www.gartner.com/doc/765720

Tang K., Chen S., Levy D., Zic J., Yan B., “A Performance Evaluation of Web Services

Security”, 10
th IEEE International Enterprising Distributed Object Computing

Conference, October 2006, Hong Kong, China, 2006, pp. 67-67, ISBN 0-7695-2558-X

TechTarget / Forrester Research, “State of SOA 2010”, TechTarget, Inc., June 2010,

URL http://media.techtarget.com/searchSOA/downloads/TTAG-State-of-SOA-2010-

execSummary-working-523%5B1%5D.pdf

Tekli J.M., “SOAP Processing Performance and Enhancement”, IEEE Transactions on

Services Computing, Third Quarter, 24 February 2012, Volume 5, Issue 3, pp. 387-403,

ISSN 1939-1374

Thurow K., Gode B., Dingerdissen U., Stoll N., “Laboratory information management

systems for life sciences applications”, Organic Process Research and Development,

American Chemical Society, 17 September 2004, Volume. 8, Issue 6, pp. 970-982,

Tsai W.T., Fan C., Chen Y., Paul R., Chung J. Y., “Architecture Classification for

SOA-Based Application”, Ninth International Symposium on Object and Component-

Oriented Real-Time Distributed Computing,24-26 April 2006, Gyeongju, China, 2006,

pp. 295-302, ISBN 0-7695-2561-X

 154 BIBLIOGRAPHY

 CHAPTER 8

Wang J., Mao L., Cai., “A REST-based Approach to Integrate Enterprise Resources”,

International Forum on Computer Science-Technology and Applications”, 25-27

December 2009, Chongqing, China, Volume 3, 2009, pp. 219-223, ISBN 978-0-7695-

3930-0

World Health Organization, “International Classification of Diseases (ICD)”, WHO,

URL http://www.who.int/classifications/icd/en/

Wu J., Huang Z., “Proxy-based Web Service Security”, IEEE Asia-Pacific Services

Computing Conference, 9-12 December 2008, Yilan, Taiwan, 2008, pp. 1282-1288,

ISBN 978-0-7695-3473-2

Xu P., Liu W. Y., “A Research of On-Line Static Security Analysis Based on WEB

Services”, 2011 Asia-Pacific Power and Energy Engineering Conference, 25-28 March

2011, Wuhan, China, 2011, pp. 1-4, ISBN 978-1-4244-6253-7

Yamaguchi Y., Chung H.V., Teraguchi M., Uramoto N., “Easy-To-Use Programming

Model for Web Services Security”, The 2nd IEEE Asia-Pacific Services Computing

Conference, 11-14 December 2007, Tsukuba Science City, Japan, 2007, pp. 276-282,

ISBN 0-7695-3051-6

Yamany H. F., Capretz M. A. M., “Use of Data Mining to Enhance Security for SOA”,

Third International Conference on Convergence and Hybrid Information Technology”,

11-13 November 2008, Busan, South Korea, 2008, Volume 1, pp. 551-558, ISBN 978-

0-7695-3407-7

Yu X., Bai Y., “A Method for Accessing Trusted Services Based on Service-Oriented

Architecture”, International Conference on Information Assurance and Security, 18-20

August 2009, Xian, China, 2009, Volume 2, pp. 685-688, ISBN 978-0-7695-3744-3

Yang Z., Liu Q., Zhao C., “A Context Based Dynamic Access Control Model for Web

Service”, IEEE/IFIP International Conference on Embedded and Ubiquitous

Computing”, 17-20 December 2008, Shanghai, China, 2008, pp. 339-343, ISBN 978-0-

7695-3492-3

Zhang W., “Integrated Security Framework for secure Web Services”, 2010 Third

International Symposiums on Intelligent Information Technology and Security

 155 BIBLIOGRAPHY

 CHAPTER 8

Informatics”, 2-4 April 2010, Jinggangshan, China, 2010, pp. 178-183, ISBN 978-1-

4244-6730-3

Zhang Z., Wang K., Luan J., “A Combined Grid Security Approach Based on Web

Services Security Specifications”, ISECS International Colloquium on Computing,

Communication, Control, and Management, 3-4 August 2008, Guangzhou, China, 2008,

Volume 1, pp. 414-418, ISBN 978-0-7695-3290-5

Zhang J., “A Web Services-based Security Model for Digital Watermarking”, 2011

International Conference on Multimedia Technology, 26-28 July 2011, Hangzhou,

China, 2011, pp. 4805-4808, ISBN 978-1-61284-771-9

Zheng Y. H., “A Study on Network Security Technology Based on Web Service”, 2011

International Conference on Computer Science and Service System, 27-29 June 2011,

Nanjing , China, 2011, pp. 137-139, ISBN 978-1-4244-9762-1

Zhao F., Peng X., Zhao W., “Multi-Tier Security Feature Modeling for Service-

Oriented Application Integration”, Eighth IEEE/ACIS International Conference on

Computer and Information Science, 1-3 June 2009, Shanghai, China, 2009, pp. 1178-

1183, ISBN 978-0-7695-3641-5

156

APPENDIX

APPENDIX A

- SOURCE CODE OF STUDENT
WEB SERVICE AND TESTING CLIENT

157

APPENDIX

Student Web Service is mainly composed of three java program files and one wsdl:

1. StudnetService.java

2. StudentDao.java

3. Studnet.java

4. StudnetService.wsdl

StudnetService.java

package uk.ac.sussex.webservices.method;

import uk.ac.sussex.dao.StudentDao;

import uk.ac.sussex.entity.Student;

public class StudentService {

 public Student getStudnet(long studentId){

 StudentDao studentDao=new StudentDao();

 Student student=studentDao.getStudentById(1);

 return student;

 }

158

APPENDIX

}

StudnetDao.java

package uk.ac.sussex.dao;

import uk.ac.sussex.entity.Student;

public class StudentDao {

 public Student getStudentById(long studentId){

 Student student=new Student();

 student.setStudentId(studentId);

 student.setFirstName("Peter");

 student.setLastName("Gade");

 student.setGender("M");

 student.setNationality("Genermy");

 student.setPhone("12345678");

 student.setEmail("perter.gade@sussex.ac.uk");

 return student;

 }

}

159

APPENDIX

Studnet.java

package uk.ac.sussex.entity;

import java.util.Date;

public class Student {

 private long studentId;

 private String firstName;

 private String lastName;

 private String gender;

 private String nationality;

 private Date dateOfBirth;

 private String phone;

 private String email;

 public long getStudentId(){

 return studentId;

 }

 public void setStudentId(long studentId){

160

APPENDIX

 this.studentId=studentId;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public String getGender() {

 return gender;

 }

 public void setGender(String gender) {

161

APPENDIX

 this.gender = gender;

 }

 public String getNationality() {

 return nationality;

 }

 public void setNationality(String nationality) {

 this.nationality = nationality;

 }

 public Date getDateOfBirth() {

 return dateOfBirth;

 }

 public void setDateOfBirth(Date dateOfBirth) {

 this.dateOfBirth = dateOfBirth;

 }

 public String getPhone() {

 return phone;

 }

 public void setPhone(String phone) {

162

APPENDIX

 this.phone = phone;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

}

StudnetService.wsdl

 <?xml version="1.0" encoding="UTF-8" ?>

- <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:ns1="http://org.apache.axis2/xsd"

xmlns:ns="http://method.webservices.sussex.ac.uk" xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:ax21="http://entity.sussex.ac.uk/xsd" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" targetNamespace="http://method.webservices.sussex.ac.uk">

163

APPENDIX

 <wsdl:documentation>Please Type your service description here</wsdl:documentation>

- <wsdl:types>

- <xs:schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="http://entity.sussex.ac.uk/xsd">

- <xs:complexType name="Student">

- <xs:sequence>

 <xs:element minOccurs="0" name="dateOfBirth" nillable="true" type="xs:date" />

 <xs:element minOccurs="0" name="email" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="firstName" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="gender" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="lastName" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="nationality" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="phone" nillable="true" type="xs:string" />

 <xs:element minOccurs="0" name="studentId" type="xs:long" />

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

- <xs:schema xmlns:ax22="http://entity.sussex.ac.uk/xsd" attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://method.webservices.sussex.ac.uk">

 <xs:import namespace="http://entity.sussex.ac.uk/xsd" />

164

APPENDIX

- <xs:element name="getStudnet">

- <xs:complexType>

- <xs:sequence>

 <xs:element minOccurs="0" name="studentId" type="xs:long" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

- <xs:element name="getStudnetResponse">

- <xs:complexType>

- <xs:sequence>

 <xs:element minOccurs="0" name="return" nillable="true" type="ax21:Student" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </wsdl:types>

- <wsdl:message name="getStudnetRequest">

 <wsdl:part name="parameters" element="ns:getStudnet" />

165

APPENDIX

 </wsdl:message>

- <wsdl:message name="getStudnetResponse">

 <wsdl:part name="parameters" element="ns:getStudnetResponse" />

 </wsdl:message>

- <wsdl:portType name="StudentServicePortType">

- <wsdl:operation name="getStudnet">

 <wsdl:input message="ns:getStudnetRequest" wsaw:Action="urn:getStudnet" />

 <wsdl:output message="ns:getStudnetResponse" wsaw:Action="urn:getStudnetResponse" />

 </wsdl:operation>

 </wsdl:portType>

- <wsdl:binding name="StudentServiceSoap11Binding" type="ns:StudentServicePortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

- <wsdl:operation name="getStudnet">

 <soap:operation soapAction="urn:getStudnet" style="document" />

- <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

- <wsdl:output>

166

APPENDIX

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

- <wsdl:binding name="StudentServiceSoap12Binding" type="ns:StudentServicePortType">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

- <wsdl:operation name="getStudnet">

 <soap12:operation soapAction="urn:getStudnet" style="document" />

- <wsdl:input>

 <soap12:body use="literal" />

 </wsdl:input>

- <wsdl:output>

 <soap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

- <wsdl:binding name="StudentServiceHttpBinding" type="ns:StudentServicePortType">

 <http:binding verb="POST" />

167

APPENDIX

- <wsdl:operation name="getStudnet">

 <http:operation location="getStudnet" />

- <wsdl:input>

 <mime:content type="text/xml" part="parameters" />

 </wsdl:input>

- <wsdl:output>

 <mime:content type="text/xml" part="parameters" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

- <wsdl:service name="StudentService">

- <wsdl:port name="StudentServiceHttpSoap11Endpoint" binding="ns:StudentServiceSoap11Binding">

 <soap:address location="http://localhost:8881/SussexWebServices/services/StudentService.StudentServiceHttpSoap11Endpoint/" />

 </wsdl:port>

- <wsdl:port name="StudentServiceHttpSoap12Endpoint" binding="ns:StudentServiceSoap12Binding">

 <soap12:address location="http://localhost:8881/SussexWebServices/services/StudentService.StudentServiceHttpSoap12Endpoint/" />

 </wsdl:port>

- <wsdl:port name="StudentServiceHttpEndpoint" binding="ns:StudentServiceHttpBinding">

168

APPENDIX

 <http:address location="http://localhost:8881/SussexWebServices/services/StudentService.StudentServiceHttpEndpoint/" />

 </wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

Student Web Service Client is mainly composed of three java program files:

1. TestClient.java

2. StudentServiceSub.java

3. StudentServiceCallbackHandler.java

TestClient.java

package uk.ac.sussex.webservices.method;

import java.rmi.RemoteException;

import uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnet;

169

APPENDIX

import uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnetResponse;

import uk.ac.sussex.webservices.method.StudentServiceStub.Student;

public class TestClient {

 public static void main (String[] args) throws RemoteException {

 StudentServiceStub stub =new StudentServiceStub();

 GetStudnet getStudent= new GetStudnet();

 getStudent.setStudentId(new Long(1));

 GetStudnetResponse response=stub.getStudnet(getStudent);

 Student student=response.get_return();

 System.out.println(student.getFirstName());

 }

}

StudentServiceStub.java (Part of)

public uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnetResponse getStudnet(

uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnet getStudnet0)

170

APPENDIX

throws java.rmi.RemoteException

{

 org.apache.axis2.context.MessageContext _messageContext = null;

 try {

 org.apache.axis2.client.OperationClient _operationClient = _serviceClient

 .createClient(_operations[0].getName());

 _operationClient.getOptions().setAction("urn:getStudnet");

 _operationClient.getOptions().setExceptionToBeThrownOnSOAPFault(

 true);

 addPropertyToOperationClient(

 _operationClient,

 org.apache.axis2.description.WSDL2Constants.ATTR_WHTTP_QUERY_PARAMETER_SEPARATOR,

 "&");

 // create a message context

171

APPENDIX

 _messageContext = new org.apache.axis2.context.MessageContext();

 // create SOAP envelope with that payload

 org.apache.axiom.soap.SOAPEnvelope env = null;

 env = toEnvelope(getFactory(_operationClient.getOptions()

 .getSoapVersionURI()), getStudnet0,

 optimizeContent(new javax.xml.namespace.QName(

 "http://method.webservices.sussex.ac.uk",

 "getStudnet")), new javax.xml.namespace.QName(

 "http://method.webservices.sussex.ac.uk",

 "getStudnet"));

 // adding SOAP soap_headers

 _serviceClient.addHeadersToEnvelope(env);

 // set the message context with that soap envelope

 _messageContext.setEnvelope(env);

172

APPENDIX

 // add the message contxt to the operation client

 _operationClient.addMessageContext(_messageContext);

 // execute the operation client

 _operationClient.execute(true);

 org.apache.axis2.context.MessageContext _returnMessageContext = _operationClient

 .getMessageContext(org.apache.axis2.wsdl.WSDLConstants.MESSAGE_LABEL_IN_VALUE);

 org.apache.axiom.soap.SOAPEnvelope _returnEnv = _returnMessageContext

 .getEnvelope();

 java.lang.Object object = fromOM(

 _returnEnv.getBody().getFirstElement(),

 uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnetResponse.class,

 getEnvelopeNamespaces(_returnEnv));

 return (uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnetResponse) object;

173

APPENDIX

 } catch (org.apache.axis2.AxisFault f) {

 org.apache.axiom.om.OMElement faultElt = f.getDetail();

 if (faultElt != null) {

 if (faultExceptionNameMap

 .containsKey(new org.apache.axis2.client.FaultMapKey(

 faultElt.getQName(), "getStudnet"))) {

 // make the fault by reflection

 try {

 java.lang.String exceptionClassName = (java.lang.String) faultExceptionClassNameMap

 .get(new org.apache.axis2.client.FaultMapKey(

 faultElt.getQName(), "getStudnet"));

 java.lang.Class exceptionClass = java.lang.Class

 .forName(exceptionClassName);

 java.lang.Exception ex = (java.lang.Exception) exceptionClass

 .newInstance();

 // message class

 java.lang.String messageClassName = (java.lang.String) faultMessageMap

174

APPENDIX

 .get(new org.apache.axis2.client.FaultMapKey(

 faultElt.getQName(), "getStudnet"));

 java.lang.Class messageClass = java.lang.Class

 .forName(messageClassName);

 java.lang.Object messageObject = fromOM(faultElt,

 messageClass, null);

 java.lang.reflect.Method m = exceptionClass.getMethod(

 "setFaultMessage",

 new java.lang.Class[] { messageClass });

 m.invoke(ex, new java.lang.Object[] { messageObject });

 throw new java.rmi.RemoteException(ex.getMessage(), ex);

 } catch (java.lang.ClassCastException e) {

 // we cannot intantiate the class - throw the original

 // Axis fault

 throw f;

 } catch (java.lang.ClassNotFoundException e) {

 // we cannot intantiate the class - throw the original

175

APPENDIX

 // Axis fault

 throw f;

 } catch (java.lang.NoSuchMethodException e) {

 // we cannot intantiate the class - throw the original

 // Axis fault

 throw f;

 } catch (java.lang.reflect.InvocationTargetException e) {

 // we cannot intantiate the class - throw the original

 // Axis fault

 throw f;

 } catch (java.lang.IllegalAccessException e) {

 // we cannot intantiate the class - throw the original

 // Axis fault

 throw f;

 } catch (java.lang.InstantiationException e) {

 // we cannot intantiate the class - throw the original

 // Axis fault

 throw f;

176

APPENDIX

 }

 } else {

 throw f;

 }

 } else {

 throw f;

 }

 } finally {

 if (_messageContext.getTransportOut() != null) {

 _messageContext.getTransportOut().getSender().cleanup(

 _messageContext);

 }

 }

StudentServiceCallbackHandler.java

/**

 * StudentServiceCallbackHandler.java

 *

 * This file was auto-generated from WSDL

177

APPENDIX

 * by the Apache Axis2 version: 1.6.1 Built on : Aug 31, 2011 (12:22:40 CEST)

 */

 package uk.ac.sussex.webservices.method;

 /**

 * StudentServiceCallbackHandler Callback class, Users can extend this class and implement

 * their own receiveResult and receiveError methods.

 */

 public abstract class StudentServiceCallbackHandler{

 protected Object clientData;

 /**

 * User can pass in any object that needs to be accessed once the NonBlocking

 * Web service call is finished and appropriate method of this CallBack is called.

 * @param clientData Object mechanism by which the user can pass in user data

 * that will be avilable at the time this callback is called.

 */

 public StudentServiceCallbackHandler(Object clientData){

 this.clientData = clientData;

178

APPENDIX

 }

 /**

 * Please use this constructor if you don't want to set any clientData

 */

 public StudentServiceCallbackHandler(){

 this.clientData = null;

 }

 /**

 * Get the client data

 */

 public Object getClientData() {

 return clientData;

 }

 /**

 * auto generated Axis2 call back method for getStudnet method

 * override this method for handling normal response from getStudnet operation

179

APPENDIX

 */

 public void receiveResultgetStudnet(

 uk.ac.sussex.webservices.method.StudentServiceStub.GetStudnetResponse result

) {

 }

 /**

 * auto generated Axis2 Error handler

 * override this method for handling error response from getStudnet operation

 */

 public void receiveErrorgetStudnet(java.lang.Exception e) {

 }

 }

180

APPENDIX

APPENDIX B

- SOURCE CODE OF PDNT

181

APPENDIX

PDNT is mainly composed of three java program files:

4. ParticipantDomainNameTokenHandler.java

5. MessageUtil.java

6. DNSClient.java

ParticipantDomainNameTokenHandler.java

package soapMessage;

import java.util.List;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import client.DNSClient;

public class ParticipantDomainNameTokenHandler {

 private SOAPMessage soapMessage;

182

APPENDIX

 private SOAPPart soapPart;

 private SOAPEnvelope soapEnvelope;

 private SOAPHeader soapHeader;

 private SOAPBody soapBody;

 public ParticipantDomainNameTokenHandler(SOAPMessage message){

 try{

 soapMessage=message;

 this.soapPart = soapMessage.getSOAPPart();

 this.soapEnvelope = soapPart.getEnvelope();

 this.soapHeader = soapEnvelope.getHeader();

 this.soapBody=soapEnvelope.getBody();

 if (soapHeader==null){

 soapHeader=MessageUtil.createSecureHeader(soapEnvelope);

 }

 }catch(Exception e){

 e.printStackTrace();

 }

 }

 public void addDomainNameToken(String domainName){

 try{

183

APPENDIX

 soapEnvelope.addNamespaceDeclaration("pdn", MessageUtil.URI_PDN);

 SOAPElement security=(SOAPElement) soapHeader.getChildElements(soapHeader.createQName("Security", "wsse")).next();

 SOAPElement participantDominName=security.addChildElement("ParticipantDominName", "pdn");

 SOAPElement dn=participantDominName.addChildElement("DomainName", "pdn");

 dn.addTextNode(domainName);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public String getDomainName(){

 SOAPElement participantDominName=(SOAPElement) soapHeader.getElementsByTagName("pdn:ParticipantDominName").item(0);

 SOAPElement dn=(SOAPElement) participantDominName.getElementsByTagName("pdn:DomainName").item(0);

 String domainName=dn.getTextContent();

 return domainName;

 }

 public String getLookupService(){

 SOAPElement participantDominName=(SOAPElement) soapHeader.getElementsByTagName("pdn:ParticipantDominName").item(0);

 SOAPElement dn=(SOAPElement) participantDominName.getElementsByTagName("pdn:DomainName").item(0);

 String domainName=dn.getTextContent();

 return domainName;

184

APPENDIX

 }

 public boolean validate(){

 String lookupService=getLookupService();

 DNSClient.getAddressRecord(lookupService);

 return true;

 }

 public boolean validate(String senderIP){

 String lookupService=getLookupService();

 List <String> ipList=DNSClient.getAddressRecord(lookupService);

 for (int i=0;i<ipList.size();i++){

 if (ipList.get(i).equals(senderIP))

 return true;

 }

 return false;

 }

 public SOAPMessage getSoapMessage() {

 return soapMessage;

 }

185

APPENDIX

 public void setSoapMessage(SOAPMessage soapMessage) {

 this.soapMessage = soapMessage;

 }

 public SOAPPart getSoapPart() {

 return soapPart;

 }

 public void setSoapPart(SOAPPart soapPart) {

 this.soapPart = soapPart;

 }

 public SOAPEnvelope getSoapEnvelope() {

 return soapEnvelope;

 }

 public void setSoapEnvelope(SOAPEnvelope soapEnvelope) {

 this.soapEnvelope = soapEnvelope;

 }

 public SOAPHeader getSoapHeader() {

 return soapHeader;

186

APPENDIX

 }

 public void setSoapHeader(SOAPHeader soapHeader) {

 this.soapHeader = soapHeader;

 }

 public SOAPBody getSoapBody() {

 return soapBody;

 }

 public void setSoapBody(SOAPBody soapBody) {

 this.soapBody = soapBody;

 }

 public static void main(String[] args) {

 try{

 String senderIP="";

 MessageFactory factory = MessageFactory.newInstance();

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

 SOAPMessage soapMessage=factory.createMessage(mimeHeaders, MessageUtil.readFileToInputStream("soapMessage.xml"));

 ParticipantDomainNameTokenHandler tokenHandler=new ParticipantDomainNameTokenHandler(soapMessage);

187

APPENDIX

 tokenHandler.validate(senderIP);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

}

MessageUtil.java

package soapMessage;

import java.io.BufferedReader;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.StringReader;

import java.io.StringWriter;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.SecureRandom;

import java.util.Iterator;

188

APPENDIX

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.Node;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.apache.xml.security.c14n.Canonicalizer;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

189

APPENDIX

public abstract class MessageUtil {

 public static final String URI_DS="http://www.w3.org/2000/09/xmldsig#";

 public static final String URI_WSSE="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

 public static final String URI_WSU="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd";

 public static final String URI_XENC="http://www.w3.org/2001/04/xmlenc#";

 public static final String URI_PDN="http://www.w3.org/2001/04/pdn#";

 public static void dumpDocument(Node root) throws TransformerException {

 Transformer transformer = TransformerFactory.newInstance().newTransformer();

 transformer.setOutputProperty(OutputKeys.METHOD, "xml");

 transformer.setOutputProperty(OutputKeys.INDENT, "yes");

 transformer.transform(new DOMSource(root), new StreamResult(System.out));

 //transformer.transform(new DOMSource(root), sr);

 //return outText.toString();

 }

 public static void dumpDocument(org.w3c.dom.Node root) throws TransformerException {

// StringWriter outText = new StringWriter();

// StreamResult sr = new StreamResult(outText);

 Transformer transformer = TransformerFactory.newInstance().newTransformer();

 transformer.setOutputProperty(OutputKeys.METHOD, "xml");

 transformer.setOutputProperty(OutputKeys.INDENT, "yes");

190

APPENDIX

 transformer.transform(new DOMSource(root), new StreamResult(System.out));

 //transformer.transform(new DOMSource(root), sr);

 //return outText.toString();

 }

 public static void writeToFile(Node root,String fileName) {

 try{

 Transformer transformer = TransformerFactory.newInstance().newTransformer();

 File file=new File(fileName);

 transformer.transform(new DOMSource(root), new StreamResult(file));

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public static InputStream readFileToFlat (String fileName){

 try {

 File xmlFile=new File(fileName);

 BufferedReader br = new BufferedReader(new FileReader(xmlFile));

 String line;

191

APPENDIX

 StringBuilder sb = new StringBuilder();

 boolean addSpace=false;

 while((line=br.readLine())!= null){

 if (line.length()>0){

// String s=line.trim();

 String s=line.trim().replaceAll("\\r\\n", "");

 s.replaceAll("\\n", "");

 s=s.replaceAll("\\t", "");

 if (addSpace){

 if (!s.substring(0,1).equals("<")){

 sb.append(" ");

 addSpace=false;

 }

 }

 sb.append(s);

 if (!s.substring(s.length()-1).equals(">")) {

 addSpace=true;

 }

 }

 }

192

APPENDIX

 InputStream is = new ByteArrayInputStream(sb.toString().getBytes("UTF-8"));

 System.out.println ("file length="+sb.toString().length());

// System.out.println (sb.toString());

 return is;

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static InputStream readFileToInputStream (String fileName){

 try {

 FileInputStream fis = null;

 File xmlFile=new File(fileName);

 fis = new FileInputStream(xmlFile);

 return fis;

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

193

APPENDIX

 public static String readFileToString (String fileName){

 try {

 File xmlFile=new File(fileName);

 BufferedReader br = new BufferedReader(new FileReader(xmlFile));

 String line;

 StringBuilder sb = new StringBuilder();

 boolean addSpace=false;

 while((line=br.readLine())!= null){

 if (line.length()>0){

 String s=line.trim().replaceAll("\\r\\n", "");

 s.replaceAll("\\n", "");

 s=s.replaceAll("\\t", "");

 if (addSpace){

 if (!s.substring(0,1).equals("<")){

 sb.append(" ");

 addSpace=false;

 }

 }

 sb.append(s);

 if (!s.substring(s.length()-1).equals(">")) {

194

APPENDIX

 addSpace=true;

 }

 }

 }

 sb.append("\r\n\r\n");

 return sb.toString();

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static String serialize(Iterator elements){

 try {

 Transformer transformer = TransformerFactory.newInstance().newTransformer();

 StringWriter stw = new StringWriter();

 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

 transformer.setOutputProperty(OutputKeys.STANDALONE,"yes");

 transformer.setOutputProperty(OutputKeys.MEDIA_TYPE,"text");

 while (elements.hasNext()) {

// Element element = (Element) elements.next();

 Node element = (Node) elements.next();

 if (element!=null)

195

APPENDIX

 transformer.transform(new DOMSource(element), new StreamResult(stw));

 }

// return canonicalize(stw.toString());

 String result=stw.toString().replace("xmlns:xsi=\"http://www.w3.org/1999/XMLSchema-instance\" ", "");

 return result;

 }catch (Exception e) {

 System.out.println("error in serialize");

 e.printStackTrace();

 return null;

 }

 }

 public static String serialize(Element element){

 try {

 Transformer transformer = TransformerFactory.newInstance().newTransformer();

 StringWriter stw = new StringWriter();

 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

 transformer.transform(new DOMSource(element), new StreamResult(stw));

// return canonicalize(stw.toString());

 return stw.toString();

196

APPENDIX

 }catch (Exception e) {

 e.printStackTrace();

 return null;

 }

 }

 public static String serialize(NodeList content) throws Exception { //XMLEncryptionException {

 org.apache.xml.security.Init.init();

 Canonicalizer canon = Canonicalizer.getInstance(Canonicalizer.ALGO_ID_C14N_WITH_COMMENTS);

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 canon.setWriter(baos);

 canon.notReset();

 for (int i = 0; i < content.getLength(); i++) {

 canon.canonicalizeSubtree(content.item(i));

 }

 baos.close();

 return baos.toString("UTF-8");

 }

 public static String canonicalize(String xml){

197

APPENDIX

 try{

 org.apache.xml.security.Init.init();

 Canonicalizer canon = Canonicalizer.getInstance(Canonicalizer.ALGO_ID_C14N_WITH_COMMENTS);

 byte canonXmlBytes[] = canon.canonicalize(xml.getBytes());

 return new String(canonXmlBytes);

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static String readFile(String fileName){

 try {

 File xmlFile=new File(fileName);

 BufferedReader br = new BufferedReader(new FileReader(xmlFile));

 String line;

 StringBuilder sb = new StringBuilder();

 boolean addSpace=false;

 while((line=br.readLine())!= null){

 if (line.length()>0){

 String s=line.trim();

 s=s.replaceAll("\\t", "");

198

APPENDIX

 }

 }

 return sb.toString();

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static SOAPHeader createSecureHeader(SOAPEnvelope soapEnvelope) throws Exception{

 soapEnvelope.addNamespaceDeclaration("wsse", MessageUtil.URI_WSSE);

 SOAPHeader soapHeader=soapEnvelope.addHeader();

 soapHeader.addHeaderElement(soapEnvelope.createQName("Security","wsse"));

 return soapHeader;

 }

 public static KeyPair generateKeyPair(){

 try{

 //KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");

 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

199

APPENDIX

 kpg.initialize(1024, new SecureRandom());

 KeyPair keypair = kpg.generateKeyPair();

 return keypair;

 } catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static SecretKey GenerateSymmetricKey() throws Exception{

 String jceAlgorithmName = "AES";

 KeyGenerator keyGenerator = KeyGenerator.getInstance(jceAlgorithmName);

 keyGenerator.init(128);

 return keyGenerator.generateKey();

 }

 public static SecretKey GenerateKeyEncryptionKey() throws Exception {

 String jceAlgorithmName = "DESede";

 KeyGenerator keyGenerator = KeyGenerator.getInstance(jceAlgorithmName);

 SecretKey keyEncryptKey = keyGenerator.generateKey();

 return keyEncryptKey;

 }

200

APPENDIX

 public static Document stringToDocument(String plainText) {

 try{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 InputSource is = new InputSource(new StringReader(plainText));

 Document d = builder.parse(is);

 return d;

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static SOAPMessage getSOAPMessage(String fileName){

 try {

 MessageFactory factory = MessageFactory.newInstance();

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

 SOAPMessage soapMessage=factory.createMessage(mimeHeaders, MessageUtil.readFileToInputStream(fileName));

 return soapMessage;

201

APPENDIX

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static byte[] inputStreamToByteArray(InputStream in) throws IOException{

 ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);

 byte[] buffer = new byte[1024];

 int len;

 while((len = in.read(buffer)) >= 0){

 baos.write(buffer, 0, len);

 }

 in.close();

 baos.close();

 return baos.toByteArray();

 }

}

DNSClient.java

package client;

import java.util.ArrayList;

import java.util.List;

202

APPENDIX

import org.xbill.DNS.ARecord;

import org.xbill.DNS.Lookup;

import org.xbill.DNS.Record;

import org.xbill.DNS.SRVRecord;

import org.xbill.DNS.TXTRecord;

import org.xbill.DNS.Type;

public class DNSClient {

 public static List<String> getSrvRecord(String lookupService){

 try {

 List<String> hostList=new ArrayList<String>();

 Record [] records = new Lookup(lookupService, Type.SRV).run();

 for (int i = 0; i < records.length; i++) {

 SRVRecord srvRecord=(SRVRecord) records[i];

 hostList.add(srvRecord.getTarget().toString());

 }

 return hostList;

 }catch (Exception e){

 e.printStackTrace();

 return null;

203

APPENDIX

 }

 }

 public static String getARecord(String hostName){

 try{

 Record [] records = new Lookup(hostName, Type.A).run();

 ARecord aRecord=(ARecord) records[0];

 return aRecord.getAddress().toString();

 }catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static List<String> getAddressRecord(String lookupService){

 List<String> ipList=new ArrayList<String>();

 List<String> hostList=getSrvRecord(lookupService);

 for (int i=0;i<hostList.size();i++){

 ipList.add(getARecord(hostList.get(i)));

 }

204

APPENDIX

 return ipList;

 }

 public static void main(String[] args) {

 try{

 long startMillis = System.currentTimeMillis();

 System.out.println(DNSClient.getAddressRecord("_pdn._tcp.sussex.ac.uk"));

 long endMillis = System.currentTimeMillis();

 Long processingTime=endMillis-startMillis;

 System.out.println("Query Time:" + processingTime + "ms");

 }catch (Exception e){

 e.printStackTrace();

 }

 }

}

205

APPENDIX

APPENDIX C

- SOURCE CODE OF
PERFORMANCE EVALUATION

206

APPENDIX

The performance evaluation of PDNT is mainly composed of eight java program files:

1. HTTPServer.java

2. RequestProcessor.java

3. HTTPClient.java

4. SOAPDescruption.java

5. SOAPEncryption.java

6. SOAPSignature.java

7. UsernameToken.java

8. ParticipantDomainTokenHandler.java (shown in appendix A)

HTTPServer.java

package server;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

public class HTTPServer {

 private ServerSocket serverSocket;

 private static final int HTTP_PORT = 8888;

207

APPENDIX

 public void start(){

 start (HTTP_PORT);

 }

 public void start(int port){

 Socket socket;

 try{

 serverSocket=new ServerSocket(port);

 System.out.println("Server Started at port " + port);

 while (true) {

 socket=null;

// synchronized (serverSocket) {

 socket=serverSocket.accept();

// }

 socket.setSoTimeout(0);

 new RequestProcessor(socket).start();

 }

 } catch (Exception e){

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 HTTPServer httpServer=new HTTPServer();

208

APPENDIX

 httpServer.start();

 }

}

209

APPENDIX

RequestProcessor.java

package server;

import java.io.BufferedReader;

import java.io.ByteArrayInputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.PrintStream;

import java.net.Socket;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.SOAPMessage;

import org.apache.http.ProtocolVersion;

import org.apache.http.RequestLine;

import org.apache.http.message.BasicHttpEntityEnclosingRequest;

import org.apache.http.message.BasicRequestLine;

import soapMessage.ParticipantDomainNameTokenHandler;

import soapMessage.SOAPDecryption;

import soapMessage.SOAPSignature;

import soapMessage.UserNameToken;

public class RequestProcessor extends Thread{

210

APPENDIX

 private Socket client;

 private InputStream input;

 private PrintStream output;

 private Long processingTime;

 private long startMillis;

 private long endMillis;

 public RequestProcessor(Socket socket){

 try{

 startMillis = System.currentTimeMillis();

 client=socket;

 input =client.getInputStream();

 output = new PrintStream(client.getOutputStream());

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public void run(){

 try {

// System.out.println("Accepting HTTP Request");

 parse(input);

 sendResponse();

211

APPENDIX

 output.close();

 input.close();

 }catch(Exception e){

 e.printStackTrace();

 }

 }

 private void sendResponse(){

 String soapxml=buildSOAPResponse();

 output.println("HTTP/1.1 200 OK");

 output.println("Content-Type: text/xml; charset=utf-8");

 output.println("Content-length: "+ soapxml.length());

 output.println("");

 output.println(soapxml);

 output.flush();

 }

 private String buildSOAPResponse(){

 StringBuilder message= new StringBuilder();

 message.append("Processing Time:"+processingTime);

 return message.toString();

 }

 private RequestLine getRequestLine(String requestLine){

212

APPENDIX

 String[] line=requestLine.split(" ");

 String method=line[0];

 String uri=line[1];

 String protocolLine=line[2];

 String protocol=protocolLine.substring(0,protocolLine.indexOf("/"));

 String version=protocolLine.substring(protocolLine.indexOf("/")+1);

 String[] versionDetail=version.split("\\.");

 int major=Integer.parseInt(versionDetail[0]);

 int minor=Integer.parseInt(versionDetail[1]);

 ProtocolVersion protocolVersion=new ProtocolVersion(protocol,major,minor);

 return new BasicRequestLine(method,uri,protocolVersion);

 }

 public void parse(InputStream input) {

 try {

 BufferedReader in = new BufferedReader(new InputStreamReader(input));

 char [] data=null;

213

APPENDIX

 String line;

 line=in.readLine();

 BasicHttpEntityEnclosingRequest httpRequest=new BasicHttpEntityEnclosingRequest(getRequestLine(line));

 int contentLength=0;

 while (true) {

 line=in.readLine();

 String[] header=line.split(":");

 System.out.println(line);

 if (header.length>=2) {

 httpRequest.addHeader(header[0].trim(), header[1].trim());

 if (header[0].equals("Content-Length")){

 contentLength=Integer.parseInt(header[1].trim());

 data=new char[contentLength];

 }

 }

 if (line.equals("")){

 break;

 }

 }

 }catch (Exception e){

 e.printStackTrace();

 }

214

APPENDIX

 }

 private void handleSoapMessage(String soapData){

 try {

 SOAPMessage soapMessage=getSOAPMesssage(soapData);

 handleSoapMessageUserNameToken(soapMessage);

 endMillis = System.currentTimeMillis();

 processingTime=endMillis-startMillis;

 System.out.println(processingTime);

 }catch (Exception e){

 System.out.println("error in handleSoapMessage");

 }

 }

 private SOAPMessage handleSoapMessageDecryption(SOAPMessage soapMessage){

 SOAPDecryption soapDecrption =new SOAPDecryption(soapMessage);

 soapDecrption.decrypt();

 soapDecrption.getSoapPart().getFirstChild();

 return soapDecrption.getSoapMessage();

 }

 private void handleSoapMessageValidation(SOAPMessage soapMessage){

215

APPENDIX

 try{

 SOAPSignature soapSignature=new SOAPSignature();

 soapSignature.validation(soapMessage.getSOAPHeader());

 }catch(Exception e){

 e.printStackTrace();

 }

 }

 private void handleSoapMessagePDN(SOAPMessage soapMessage){

 try{

 ParticipantDomainNameTokenHandler tokenHandler=new ParticipantDomainNameTokenHandler(soapMessage);

 tokenHandler.validate();

 }catch(Exception e){

 e.printStackTrace();

 }

 }

 private void handleSoapMessageUserNameToken(SOAPMessage soapMessage){

 try{

 UserNameToken userNameToken=new UserNameToken(soapMessage);

 userNameToken.validatePasswordDigest();

 }catch(Exception e){

 e.printStackTrace();

 }

216

APPENDIX

 }

 private SOAPMessage getSOAPMesssage(String soapData){

 try{

 MessageFactory factory = MessageFactory.newInstance();

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

 SOAPMessage soapMessage=factory.createMessage(mimeHeaders, new ByteArrayInputStream(soapData.toString().getBytes("UTF-8")));

 return soapMessage;

 }catch (Exception e){

 System.out.println("error in getSOAPMessage");

 return null;

 }

 }

}

217

APPENDIX

HTTPClient.java

package client;

import java.io.BufferedReader;

import java.io.ByteArrayOutputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import org.apache.http.Header;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.HttpVersion;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.entity.StringEntity;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.params.BasicHttpParams;

import org.apache.http.params.HttpParams;

import org.apache.http.params.HttpProtocolParams;

import soapMessage.MessageUtil;

public class HTTPClient extends Thread {

 private String records="100";

218

APPENDIX

 private String fileName="soapMessagePDNUserName"+records+".xml";

 HttpClient httpclient=new DefaultHttpClient();

 public HTTPClient(){

 httpclient.getParams().setParameter("http.socket.timeout", new Integer(0));

 httpclient.getParams().setParameter("http.connection.timeout", new Integer(0));

 httpclient.getParams().setParameter("http.connection-manager.timeout", new Integer(0));

 HttpProtocolParams.setUserAgent(httpclient.getParams(), "soapClient/1.1 searchTemplate/1.0");

 }

 public void run(){

 try{

 this.parsing(this.submit());

 }catch(Exception e){

 System.out.println("Exception in run");

 }

 }

 private HttpParams getHttpParams(){

 HttpParams params = new BasicHttpParams();

 HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);

 HttpProtocolParams.setContentCharset(params, "UTF-8");

 HttpProtocolParams.setUserAgent(params, "HttpComponents/1.1");

 HttpProtocolParams.setUseExpectContinue(params, true);

219

APPENDIX

 return params;

 }

 public HttpResponse go(){

 try {

 HttpGet httpget = new HttpGet("http://www.pj.gov.mo");

 httpget.getParams().setParameter("http.socket.timeout", new Integer(0));

 return httpclient.execute(httpget);

 } catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public HttpResponse submit() throws Exception{

 StringEntity se=null;

 try {

 HttpPost httppost = new HttpPost("http://192.168.111.74:8888");

 httppost.getParams().setParameter("http.socket.timeout", new Integer(0));

 se = new StringEntity(buildSOAPRequest(),"UTF-8");

 se.setContentType("text/xml");

 httppost.setHeader("Content-Type","application/soap+xml;charset=UTF-8");

 httppost.setEntity(se);

 return httpclient.execute(httppost);

 }catch (Exception e){

220

APPENDIX

 System.out.println("Exception in submit");

 return null;

 }

 }

 public void parsing(HttpResponse response){

 try {

 System.out.println("parsing");

 HttpEntity entity = response.getEntity();

 Header httpHeaders[]=response.getAllHeaders();

 for (int i=0;i<httpHeaders.length;i++){

 Header header=httpHeaders[i];

 System.out.print(header.getName()+ ":");

 System.out.println(header.getValue());

 }

 if (entity != null) {

 InputStream instream = entity.getContent();

 BufferedReader in = new BufferedReader(new InputStreamReader(instream));

 char[] str=new char[Integer.parseInt(response.getHeaders("Content-length")[0].getValue())];

 in.read(str);

 System.out.println(new String(str));

 }

221

APPENDIX

 }catch (Exception e){

 System.out.println("Exception in parsing");

 }

 }

 private String buildSOAPRequest(){

 return MessageUtil.readFileToString(fileName);

 }

 public static void main(String[] args) {

 int noOfRequests=1;

 for (int i=0;i<noOfRequests;i++)

 {

 new HTTPClient().start();

 try {

 Thread.sleep(200);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

222

APPENDIX

SOAPDescription.java

package soapMessage;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import com.sun.org.apache.xml.internal.security.utils.Base64;

public class SOAPDecryption {

 private SOAPMessage soapMessage;

 private SOAPPart soapPart;

 private SOAPEnvelope soapEnvelope;

 private SOAPHeader soapHeader;

223

APPENDIX

 private SOAPBody soapBody;

 private byte[] symmetricKey;

 public SOAPDecryption(SOAPMessage message){

 try{

 this.soapMessage=message;

 this.soapPart = soapMessage.getSOAPPart();

 this.soapEnvelope = soapPart.getEnvelope();

 this.soapHeader = soapEnvelope.getHeader();

 this.soapBody=soapEnvelope.getBody();

 } catch (Exception e){

 System.out.println("exception in init");

 e.printStackTrace();

 }

 }

 public void decrypt(){

 try{

 SOAPElement cipherValue=(SOAPElement) soapHeader.getElementsByTagName("xenc:CipherValue").item(0);

 String keyEncryptedKey=cipherValue.getTextContent();

 symmetricKey=KeyManager.decryptSymmetricKey(Base64.decode(keyEncryptedKey));

224

APPENDIX

 cipherValue=(SOAPElement) soapBody.getElementsByTagName("xenc:CipherValue").item(0);

 String cipherText=cipherValue.getTextContent();

 String plainText=KeyManager.doSymantecDecryption(symmetricKey, KeyManager.Algorithm_AES, Base64.decode(cipherText));

 //Merge Node

 Document doc=MessageUtil.stringToDocument(plainText);

 Node newChild=doc.getChildNodes().item(0);

 Node oldChild=soapBody.getChildNodes().item(0);

 soapBody.removeChild(oldChild);

 Node importNode=soapPart.importNode(newChild, true);

 soapBody.appendChild(importNode);

 Node securityNode=soapHeader.getElementsByTagName("wsse:Security").item(0);

 Node encryptedKeyNode=soapHeader.getElementsByTagName("xenc:EncryptedKey").item(0);

 securityNode.removeChild(encryptedKeyNode);

 soapEnvelope.removeNamespaceDeclaration("xenc");

 }catch (Exception e){

 e.printStackTrace();

 }

 }

225

APPENDIX

 public SOAPPart getSoapPart() {

 return soapPart;

 }

 public void setSoapPart(SOAPPart soapPart) {

 this.soapPart = soapPart;

 }

 public static void main(String[] args) {

 try {

 SOAPMessage soapMessage=MessageUtil.getSOAPMessage("soapMessageEncrypted100.xml");

 SOAPDecryption soapDecrption =new SOAPDecryption(soapMessage);

 long startMillis = System.currentTimeMillis();

 soapDecrption.decrypt();

 long endMillis = System.currentTimeMillis();

 MessageUtil.dumpDocument(soapDecrption.getSoapPart());

 Long processingTime=endMillis-startMillis;

 }catch (Exception e){

 e.printStackTrace();

 }

 }

226

APPENDIX

 public SOAPMessage getSoapMessage() {

 return soapMessage;

 }

 public void setSoapMessage(SOAPMessage soapMessage) {

 this.soapMessage = soapMessage;

 }

}

227

APPENDIX

SOAPEncryption.java

package soapMessage;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.Node;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import org.w3c.dom.Element;

import com.sun.org.apache.xml.internal.security.utils.Base64;

public class SOAPEncryption {

 private SOAPMessage soapMessage;

 private SOAPPart soapPart;

 private SOAPEnvelope soapEnvelope;

 private SOAPHeader soapHeader;

 private SOAPBody soapBody;

 private byte[] symmetricKey;

 private String encryptedSymmetricKey;

228

APPENDIX

 public SOAPEncryption(SOAPMessage soapMessage){

 try{

 this.soapMessage=soapMessage;

 this.soapPart = soapMessage.getSOAPPart();

 this.soapEnvelope = soapPart.getEnvelope();

 this.soapHeader = soapEnvelope.getHeader();

 this.soapBody=soapEnvelope.getBody();

 if (soapHeader==null){

 soapHeader=MessageUtil.createSecureHeader(soapEnvelope);

 }

 symmetricKey=KeyManager.genSymmetricKey(KeyManager.Algorithm_AES);

 encryptedSymmetricKey=Base64.encode(KeyManager.encryptSymmetricKey(symmetricKey));

 } catch (Exception e){

 e.printStackTrace();

 }

 }

 public void encrypt(String referenceName){

 try {

229

APPENDIX

 addEncryptHeader(referenceName);

 String plainText=MessageUtil.serialize(soapBody.getChildElements());

 String cipherText=Base64.encode(KeyManager.doSymantecEncryption(symmetricKey, KeyManager.Algorithm_AES, plainText));

 while (soapBody.getChildElements().hasNext()){

 soapBody.removeChild((Node) soapBody.getChildElements().next());

 }

 SOAPElement EncryptedData=soapBody.addChildElement("EncryptedData", "xenc");

 SOAPElement encryptionMethod=EncryptedData.addChildElement("EncryptionMethod", "xenc");

 encryptionMethod.setAttribute("Algorithm", "http://www.w3.org/2001/04/xmlenc#aes128-cbc");

 SOAPElement CipherData=EncryptedData.addChildElement("CipherData", "xenc");

 SOAPElement CipherValue=CipherData.addChildElement("CipherValue","xenc");

 CipherValue.addTextNode(cipherText);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 private void addEncryptHeader(String referenceName){

 try{

 soapEnvelope.addNamespaceDeclaration("xenc", MessageUtil.URI_XENC);

 SOAPElement security=(SOAPElement) soapHeader.getChildElements(soapHeader.createQName("Security", "wsse")).next();

230

APPENDIX

 SOAPElement encryptedKey=security.addChildElement("EncryptedKey", "xenc");

 SOAPElement encryptionMethod=encryptedKey.addChildElement("EncryptionMethod", "xenc");

 encryptionMethod.setAttribute("Algorithm", "http://www.w3.org/2001/04/xmlenc#rsa-1_5");

 SOAPElement keyInfo=encryptedKey.addChildElement("KeyInfo","ds","http://www.w3.org/2000/09/xmldsig#");

 SOAPElement securityTokenReference=keyInfo.addChildElement("SecurityTokenReference","wsse");

 SOAPElement x509IssuerSerial=securityTokenReference.addChildElement("X509IssuerSerial", "ds");

 SOAPElement X509IssuerName=x509IssuerSerial.addChildElement("X509IssuerName", "ds");

 X509IssuerName.addTextNode(KeyManager.getIssuerName());

 SOAPElement x509SerialNumber=x509IssuerSerial.addChildElement("X509SerialNumber", "ds");

 x509SerialNumber.addTextNode(KeyManager.getIssuerSerialNumber());

 SOAPElement cipherData=encryptedKey.addChildElement("CipherData", "xenc");

 SOAPElement cipherValue=cipherData.addChildElement("CipherValue", "xenc");

 cipherValue.addTextNode(encryptedSymmetricKey);

 SOAPElement referenceList=encryptedKey.addChildElement("ReferenceList", "xenc");

 SOAPElement dataReference=referenceList.addChildElement("DataReference" , "xenc");

 dataReference.setAttribute("URI", referenceName);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public SOAPMessage getSoapMessage() {

 return soapMessage;

231

APPENDIX

 }

 public SOAPPart getSoapPart() {

 return soapPart;

 }

 public SOAPEnvelope getSoapEnvelope() {

 return soapEnvelope;

 }

 public SOAPHeader getSoapHeader() {

 return soapHeader;

 }

 public SOAPBody getSoapBody() {

 return soapBody;

 }

 public static void main(String[] args) {

 try {

 String records="500";

 long startMillis = System.currentTimeMillis();

 MessageFactory factory = MessageFactory.newInstance();

232

APPENDIX

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

 SOAPMessage soapMessage=factory.createMessage(mimeHeaders, MessageUtil.readFileToInputStream("soapMessage.xml"));

 SOAPEncryption soapEncryption=new SOAPEncryption(soapMessage);

 soapEncryption.encrypt("#MsgBody");

 long endMillis = System.currentTimeMillis();

 MessageUtil.writeToFile(soapEncryption.getSoapPart(),"soapMessageEncrypted"+records+".xml");

 Long processingTime=endMillis-startMillis;

 MessageUtil.dumpDocument(soapEncryption.getSoapPart());

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public byte[] getSymmetricKey() {

 return symmetricKey;

 }

 public void setSymmetricKey(byte[] symmetricKey) {

 this.symmetricKey = symmetricKey;

 }

233

APPENDIX

 public String getEncryptedSymmetricKey() {

 return encryptedSymmetricKey;

 }

 public void setEncryptedSymmetricKey(String encryptedSymmetricKey) {

 this.encryptedSymmetricKey = encryptedSymmetricKey;

 }

}

234

APPENDIX

SOAPSignature.java

package soapMessage;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.math.BigInteger;

import java.security.KeyFactory;

import java.security.KeyPair;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.spec.RSAPublicKeySpec;

import java.util.Collections;

import java.util.Iterator;

import javax.xml.crypto.dsig.CanonicalizationMethod;

import javax.xml.crypto.dsig.DigestMethod;

import javax.xml.crypto.dsig.Reference;

import javax.xml.crypto.dsig.SignatureMethod;

import javax.xml.crypto.dsig.SignedInfo;

import javax.xml.crypto.dsig.XMLSignature;

import javax.xml.crypto.dsig.XMLSignatureFactory;

import javax.xml.crypto.dsig.dom.DOMSignContext;

import javax.xml.crypto.dsig.dom.DOMValidateContext;

import javax.xml.crypto.dsig.keyinfo.KeyInfo;

235

APPENDIX

import javax.xml.crypto.dsig.keyinfo.KeyInfoFactory;

import javax.xml.crypto.dsig.keyinfo.KeyValue;

import javax.xml.crypto.dsig.spec.C14NMethodParameterSpec;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.MimeHeaders;

import javax.xml.soap.Node;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import org.w3c.dom.NodeList;

import org.w3c.dom.Text;

import com.sun.org.apache.xml.internal.security.utils.Base64;

public class SOAPSignature {

 public void sign(KeyPair keypair,String referenceName, SOAPHeader soapHeader){

 try {

 XMLSignatureFactory sigFactory = XMLSignatureFactory.getInstance();

 Reference ref = sigFactory.newReference(referenceName, sigFactory.newDigestMethod(DigestMethod.SHA1,

 null));

236

APPENDIX

 SignedInfo signedInfo = sigFactory.newSignedInfo(sigFactory.newCanonicalizationMethod(

 CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, (C14NMethodParameterSpec) null), sigFactory

 .newSignatureMethod(SignatureMethod.RSA_SHA1, null), Collections.singletonList(ref));

 KeyInfoFactory kif = sigFactory.getKeyInfoFactory();

 KeyValue kv = kif.newKeyValue(keypair.getPublic());

 KeyInfo keyInfo = kif.newKeyInfo(Collections.singletonList(kv));

 XMLSignature xmlSignature = sigFactory.newXMLSignature(signedInfo, keyInfo);

 PrivateKey privateKey = keypair.getPrivate();

 DOMSignContext sigContext = new DOMSignContext(privateKey, soapHeader.getFirstChild()); //include the signature element in
<wsse:Security>

 sigContext.putNamespacePrefix(XMLSignature.XMLNS, "ds");

 xmlSignature.sign(sigContext);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 public boolean validation(SOAPHeader soapHeader){

 try{

 NodeList nodeList=soapHeader.getElementsByTagName("ds:Signature");

 DOMValidateContext valContext = new DOMValidateContext(getPublicKeyFromHeader(soapHeader), nodeList.item(0));

 XMLSignatureFactory sigFactory = XMLSignatureFactory.getInstance();

 XMLSignature xmlSignature = sigFactory.unmarshalXMLSignature(valContext);

 boolean coreValidity=xmlSignature.validate(valContext);

237

APPENDIX

 if (coreValidity == false) {

 boolean sv = xmlSignature.getSignatureValue().validate(valContext);

System.out.println(Base64.encode(xmlSignature.getSignatureValue().getValue()));

 if (sv == false) {

 // Check the validation status of each Reference.

 Iterator i = xmlSignature.getSignedInfo().getReferences().iterator();

 for (int j=0; i.hasNext(); j++) {

 boolean refValid = ((Reference) i.next()).validate(valContext);

 }

 }

 } else {

 }

 return coreValidity;

 }catch (Exception e){

 e.printStackTrace();

 return false;

 }

 }

 public PublicKey getPublicKeyFromHeader(SOAPHeader soapHeader){

 try {

 NodeList nodeList=soapHeader.getElementsByTagName("ds:Modulus");

 Node node=(Node) nodeList.item(0);

238

APPENDIX

 Text text=(Text) node.getChildNodes().item(0);

 BigInteger mod=Base64.decodeBigIntegerFromText(text);

 nodeList=soapHeader.getElementsByTagName("ds:Exponent");

 node=(Node) nodeList.item(0);

 text=(Text) node.getChildNodes().item(0);

 BigInteger exp=Base64.decodeBigIntegerFromText(text);

 KeyFactory rsaFactory = KeyFactory.getInstance("RSA");

 RSAPublicKeySpec rsaKeyspec =new RSAPublicKeySpec(mod,exp);

 PublicKey publicKey = rsaFactory.generatePublic(rsaKeyspec);

 return publicKey;

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public static void main(String[] args) {

 try{

 long startMillis = System.currentTimeMillis();

 SOAPSignature soapSignature=new SOAPSignature();

 MessageFactory factory = MessageFactory.newInstance();

239

APPENDIX

 MimeHeaders mimeHeaders = new MimeHeaders();

 mimeHeaders.addHeader("Content-Type","text/xml; charset=UTF-8");

SOAPMessage soapMessage=factory.createMessage(mimeHeaders,
MessageUtil.readFileToInputStream("soapMessagePDNSigned100.xml"));

 SOAPPart soapPart = soapMessage.getSOAPPart();

 SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

 SOAPHeader soapHeader = soapEnvelope.getHeader();

 if (soapHeader==null){

 soapHeader=MessageUtil.createSecureHeader(soapEnvelope);

 }

 SOAPBody soapBody = soapEnvelope.getBody();

 System.out.println(soapSignature.validation(soapHeader));

 } catch (Exception e){

 e.printStackTrace();

 }

 }

}

240

APPENDIX

UsernameToken.java

package soapMessage;

import java.math.BigInteger;

import java.security.MessageDigest;

import java.security.SecureRandom;

import java.text.SimpleDateFormat;

import java.util.Date;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPHeader;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import com.sun.org.apache.xml.internal.security.utils.Base64;

public class UserNameToken {

 private SOAPMessage soapMessage;

 private SOAPPart soapPart;

 private SOAPEnvelope soapEnvelope;

 private SOAPHeader soapHeader;

 private SOAPBody soapBody;

241

APPENDIX

 final static String xsdDateFormat="yyyy-MM-dd'T'HH:mm:ssZ";

 private BigInteger nonce;

 private String created;

 private byte[] hash;

 public UserNameToken(){

 }

 public UserNameToken(SOAPMessage message){

 try{

 soapMessage=message;

 this.soapPart = soapMessage.getSOAPPart();

 this.soapEnvelope = soapPart.getEnvelope();

 this.soapHeader = soapEnvelope.getHeader();

 this.soapBody=soapEnvelope.getBody();

 if (soapHeader==null){

 soapHeader=MessageUtil.createSecureHeader(soapEnvelope);

 }

 }catch(Exception e){

 e.printStackTrace();

 }

 }

242

APPENDIX

 public boolean validatePasswordDigest(){

 SOAPElement userNameToken=(SOAPElement) soapHeader.getElementsByTagName("wsse:UsernameToken").item(0);

 SOAPElement passwordElement=(SOAPElement) userNameToken.getElementsByTagName("wsse:Password").item(0);

 String passwordDigest=passwordElement.getTextContent();

 SOAPElement nonceElement=(SOAPElement) userNameToken.getElementsByTagName("wsse:Nonce").item(0);

 String nonceBase64=nonceElement.getTextContent();

 SOAPElement createdElement=(SOAPElement) userNameToken.getElementsByTagName("wsu:Created").item(0);

 String created=createdElement.getTextContent();

 return validatePasswordDigest(nonceBase64, created, passwordDigest);

 }

 private BigInteger generateNonce(){

 try{

 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

 String randomValue=new Integer(random.nextInt()).toString();

 return new BigInteger(randomValue);

 }catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

 private String getDate(){

 return new SimpleDateFormat(xsdDateFormat).format(new Date());

243

APPENDIX

 }

 private Date dateParse(String date){

 try{

 return new SimpleDateFormat(xsdDateFormat).parse(date);

 }catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

 private byte[] getSha1Hash(String text){

 try{

 MessageDigest sha = null;

 sha = MessageDigest.getInstance("SHA-1");

 sha.update(text.getBytes());

 return sha.digest();

 }catch (Exception e){

 e.printStackTrace();

 return null;

 }

 }

 public String createPasswordDigest(String password){

244

APPENDIX

 nonce=generateNonce();

 created=getDate();

 hash=getSha1Hash(nonce+created+password);

 return Base64.encode(hash);

 }

 public String createPasswordDigest(BigInteger nonce,String created,String password){

 hash=getSha1Hash(nonce+created+password);

 return Base64.encode(hash);

 }

 public BigInteger getNonce() {

 return nonce;

 }

 public String getNonceBase64(){

 return Base64.encode(nonce);

 }

 public void setNonce(BigInteger nonce) {

 this.nonce = nonce;

 }

 public void setNonce(byte[] nonce){

245

APPENDIX

 this.nonce=new BigInteger(nonce);

 }

 public String getCreated() {

 return created;

 }

 public void setCreated(String created) {

 this.created = created;

 }

 public boolean validatePasswordDigest(String nonceBase64,String created,String passwordDigest){

 try{

 BigInteger n=new BigInteger(Base64.decode(nonceBase64));

 String digest=createPasswordDigest(n,created,"Test");

 if (digest.equals(passwordDigest))

 return true;

 else

 return false;

 }catch(Exception e){

 e.printStackTrace();

 return false;

 }

 }

246

APPENDIX

 public static void main(String[] args)throws Exception{

 UserNameToken un=new UserNameToken();

 System.out.println(un.validatePasswordDigest("zgniDw==", "2012-02-10T16:45:27+0800", "NtaIDHV2y+beT9ED5IUUck9dvqE="));

 }

}

	DPhil Coversheet
	Cheong, Chi Po

