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Summary 
 

Tyrosyl DNA phosphodiesterase 1 (TDP1) is an end-processing enzyme involved in the repair of abortive 

topoisomerase I (Top1) complexes. Although not essential for survival, a hypomorphic mutation in TDP1 

is linked to the autosomal recessive ataxia, spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). 

SCAN1 is a rare human condition linked with neurodegeneration and ataxic gait and patients are usually 

wheel chair bound by their early teens.  TDP1 primarily cleaves lesions at the 3’-end of DNA breaks and 

its most prominent substrate is stalled Top1 linked to the 3’-terminus of DNA. The enzymatic mechanism 

by which TDP1 functions are well understood and inhibitors are now being investigated for treatment of 

cancer. In contrast, the processes involved in TDP1 recruitment, localisation and regulation during the 

DNA damage response remain unclear. This thesis investigates how the evolutionarily driven N-terminus 

of TDP1, not conserved in lower Eukaryotes, is required for optimal cellular protection against genotoxic 

stress. I also characterise how post-translational modifications of TDP1 allow for efficient repair of 

transcriptionally associated, chromosomal single-strand breaks and uncover new protein interacting 

partners of TDP1 and their role in TDP1 mediated repair. 
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1.1 General introduction 
 

Organism development, metabolism, function, and reproduction are dependent on 

maintenance and faithful transmission of the genetic code. For duplication of the genetic 

material and translation into functional proteins DNA must be unravelled and then 

replicated or transcribed by the appropriate polymerases. Damage to DNA and/or 

failure to faithfully transmit the genetic code has been implicated in a myriad of 

diseases. 

 

Thankfully, a network of complex and intertwined repair systems have evolved 

corresponding to the type of damage that has occurred, leading to efficient and timely 

repair or cell death. There are several types of DNA repair pathways, which depend on 

the type of damage, the proteins involved, and the state of the cell (stage of cell cycle, 

or post-mitotic cells).  

 

This thesis focuses on tyrosyl DNA phosphodiesterase 1 (TDP1): a neuroprotective 

protein that if mutated in humans leads to spinocerebellar ataxia with axonal neuropathy 

1 (SCAN1). Although I will touch on other types of repair pathways in this 

introduction, I will mainly focus on TDP1 mediated repair and the single-strand DNA 

repair pathways that are associated with neurological disorders. 

 

1.2 Sources of DNA damage 
 

Whilst maintenance of the genetic code is imperative to cell and organism survival its 

chemical make-up and requirement for modification to allow cellular activities, such as 

replication and transcription makes it susceptible to unwanted chemical attack that can 

come from endogenous and exogenous sources (R. C. Gupta and Lutz, 1999; Lindahl, 

1993; Marnett, 2003). 
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1.2.1 Endogenous sources of DNA damage  
Endogenous damage occurs through by-products of reactions, primarily through 

reactive oxygen species, cellular enzymes and errors in DNA synthesis that result from 

within the cellular environment. 

 

1.2.1.1 Reactive oxygen species 

Existence within an aerobic environment means that reactive oxygen species (ROS) are 

an unavoidable consequence and occur as a by-product of normal cellular metabolism. 

Production of energy through reduction of oxygen within the mitochondria generates 

reactive oxygen intermediates such as hydroxyl radicals, superoxide radicals, and 

hydrogen peroxide (Chance et al., 1979; Floyd et al., 2001). Singlet oxygen atoms 

formed can also be reduced by neutrophils and macrophages as part of the immune 

response (Jackson and Loeb, 2001). These unstable oxygen species can interact with 

other cellular components to create secondary reactive intermediates. Ferric ion and 

nitric oxide are examples of these which lead to generation of more potent oxidants 

(Marnett, 2003). Due to the many reactive species formed (Calcerrada et al., 2011; J. M. 

Lee et al., 2002) and their ability to attack nucleic acid bases, deoxyribose residues, or 

the phosphodiester backbone, numerous types of DNA lesions can occur and levels of 

3-3000 adducts per cell have been observed (Marnett, 2003). If unrepaired, these lesions 

can lead to DNA base transitions and transcription stalling resulting in single and 

double-stranded breaks, all of which can result in apoptosis and disease. 

 

1.2.1.2 Methylation 

Whilst damage from reactive oxygen and nitrogen species are the most prevalent 

endogenous sources of damage to DNA it is not the only threat that DNA repair 

pathways have to cope with. Various cellular enzymes in metabolic pathways can also 

impact upon the fragile state of our genetic code. One particular example is that of S-

Adenosyl methionine (SAM). SAM is a small molecular co-substrate made up of ATP 

and methionine and is used in methylation reactions of DNA; an epigenetic mechanism 

for control of gene expression (Holliday and Ho, 1998a; 1998b). However, SAM can 

result in non-enzymatic methylation of DNA, which can be mutagenic (Rydberg and 
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Lindahl, 1982) and can lead to cytotoxic lesions blocking replication (Tudek et al., 

1992). 

 

1.2.1.3 Hydrolysis 

The N-glycosidic bond linking the base to the sugar phosphate backbone is labile under 

certain conditions, such as heating, alkylation of bases or cleavage by glycosylases as 

part of base excision repair (Hegde et al., 2008; Lindahl, 1993). Cleavage of the 

glycosidic bond leads to generation of an abasic site (AP). With an estimated 10 000 

lesions/human cell/day (Lindahl, 1993) AP sites are one of the most frequent lesions 

found in DNA with depurination occurring ~ 20 times more frequently that 

depyrimidination (Lindahl and Karlström, 1973).  

 

Due to preferential incorporation of adenine by polymerases, next to the AP site, during 

replication (Jackson and Loeb, 2001) if left un-repaired AP sites can induce base pair 

substitutions or frame-shift mutations leading to problematic DNA synthesis and 

ultimately mutagenesis (Jackson et al., 1998; Lawrence et al., 1990). 

	
  
1.2.1.4 Mismatch of bases 

Throughout replication and DNA repair, DNA polymerases are required to accurately 

copy the correct base opposite the template strand of DNA. In addition to the insertion 

of the matching base some E.coli and eukaryotic polymerases also contain intrinsic 

endo- and exonuclease activity to excise mismatch bases (Boyer et al., 2013). Although 

uncommon, DNA polymerases can introduce incorrect bases that if unrepaired will 

form permanent mutations that are passed down through replication. Proof-reading loss 

of function through mutation has been achieved in multiple organisms, including mice 

and unsurprisingly leads to an increase in mutagenesis and susceptibility to cancer 

(Kunkel, 2003; Lange et al., 2011). 

 

1.2.2 Exogenous sources of DNA damage 
 

There are a multitude of environmental and man-made chemicals that can either directly 

or indirectly affect the stability of DNA. 
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1.2.2.1 UV 

Ultraviolet (UV) light can be split into two types of damage: UV-A damage occurs 

indirectly and is a result of free radical production leading to reactive oxygen species 

that is discussed in 1.2.1.1. UV-B causes direct damage through the creation of 

pyrimidine dimers; cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-

pyrimidone photoproducts (6-4PPs) (Otoshi et al., 2000) and can interfere with base-

pairing during replication. Although translesion polymerases can by-pass this damage 

during replication, these polymerases also exhibit low fidelity and are prone to the 

insertion of adenine, thus causing G:C – A:T transitions during replication (Otoshi et 

al., 2000; Sale et al., 2012). Mutations in the nucleotide excision repair pathway that are 

responsible for the removal of UV induced damage can lead to Xeroderma 

pigmentosum; a rare disease resulting in sensitivity to sunlight and predisposition to 

skin cancer (Lehmann et al., 2011), typifying the mutational effect UV can have on 

DNA. 

	
  
1.2.2.2 Ionising radiation 

Ionising radiation (IR) involves the transfer of energy in the form of electromagnetic 

waves or particles that contain enough kinetic energy to excite and remove electrons 

from an atom. Natural sources of IR include cosmic rays and radioactive material from 

the earth as in the case of radon-derived α particles (Moore et al., 2014). Artificial 

(man-made) sources also occur from medical imaging, such as X-rays, radiation therapy 

and nuclear reactions. These sources can differ in the type of IR and are often referred 

to as high LET (linear energy transfer), such as alpha particles and low LET such as 

gamma rays or X-rays. High LET sources account for the majority of our exposure to 

IR and have a very high energy but short range and thus the DNA damage caused tends 

to be localized to a confined region, resulting in a myriad of chemical modifications at 

the DNA strand break (Hada and Georgakilas, 2008; World Health Organization, 2009). 

Low LET, such as X-rays have a lower energy but can travel much further distances. 

This causes DNA damage to be more sporadic, a stark contrast to high LET, and lesions 

are repaired with a greater speed (Eccles et al., 2011; Moore et al., 2014). DNA damage 

can also occur indirectly through IR as water molecules in the cell become ionized 

resulting in reactive oxygen species. Failure to repair these double-strand breaks can 

lead to cell death, mutations and has been linked to cancer (Heigener, 2011; S. Sun et 

al., 2007) . 
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1.3 DNA repair 
 

Successful and efficient repair from the wide array of damage has led to the need for 

multiple repair pathways. When damage causes a break in both strands of the DNA such 

as lesions within close proximity on either strand of the DNA, a signalling cascade for 

repair via the DNA double-strand break repair pathway occurs and if it fails, this 

damage can lead to cell death.  

 

1.3.1 DNA double-strand break repair 
 

The repair of double-strand breaks (DSBs) is represented by two major pathways; 

homologous recombination (HR) and non-homologous end-joining (NHEJ). 

 

1.3.1.1 Homologous recombination 

Homologous recombination uses a DNA template from a sister chromatid and as a 

result occurs only in proliferating cells, and is restricted to late S and G2 phases of the 

cell cycle (Kasparek and Humphrey, 2011). Once the double-strand break has occurred 

the MRN complex (MRE11, RAD50 and NBS1) binds to both sides of the DNA break 

through MRE11 (Figure 1.1). RAD50 tethers the broken ends of the DNA and NBS1 

causes activation of the ATM kinase through ATM autophosphorylation. Once active, 

ATM phosphorylates a multitude of other proteins such as BRCA1 and H2AX to form 

ϒH2AX, the first step in the signalling process (Goodarzi and Jeggo, 2012; Uziel et al., 

2003). This signals the recruitment and assembly of double-strand break repair 

complexes leading to chromatin restructuring/relaxation, resection of the damaged DNA 

termini by MRE11, C-terminal-binding protein interacting protein (CtIP) and 

exonuclease 1 (EXO1) (Eid et al., 2010; Sartori et al., 2007) and coating of the exposed 

DNA single-strand with Replication Protein A (RPA) (Jeppesen et al., 2011). 

Homology search is initiated and strand invasion occurs with the help of RAD54 and 

nucleoprotein filaments (made up of RAD51 monomers). Strand invasion leads to the 

formation of Holliday junctions. The polymerase then carries out the repair synthesis 
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before Ligase I seals the nicks creating a double Holliday junction. Once ligated, 

Holliday junctions can either be resolved by a resolvase such as GEN1 and SLX1/SLX4 

(Mimitou and Symington, 2009), creating crossover products, or dissolved by TOPO3α, 

BLAP75 and BLM RecQ helicase to generate non-crossover products (Kass and Jasin, 

2010).  Due to the error free repair HR appears to be the favoured mode of repair during 

the early stages of neuronal development. For a more comprehensive explanation of HR 

see reviews (Heyer et al., 2010; San Filippo et al., 2008). 

 

1.3.1.2 Non-homologous end-joining 

NHEJ occurs in both proliferating and terminally differentiated cells and is the only 

double-strand break repair pathway used in post-mitotic cells. Unlike HR, NHEJ does 

not require a sister chromatid as no template is required. Instead NHEJ modifies the two 

ends using various nucleases (Lees-Miller and Meek, 2003; Lieber et al., 2008) so that 

they are compatible (3’-hydroxyl and a 5’-phosphate), followed by ligation with DNA 

Ligase IV. Initially the DSB accrues the Ku70-Ku80 heterodimer to both ends of the 

break (Rivera-Calzada et al., 2007; Walker et al., 2001) (Figure 1.1). The binding of 

Ku70-Ku80 aligns the ends of the DNA through binding of the sugar phosphate 

backbone. These proteins form a complex with the catalytic sub-unit of DNA-PK 

(DNA-PKcs), which activates DNA end-processing by artemis (Goodarzi et al., 2006) 

and XRCC4, DNA ligase IV and XLF to facilitate the ligation of the DNA ends 

(Ahnesorg et al., 2006; Riballo et al., 2009). In contrast to HR NHEJ is not error free 

and use of this pathway can lead to gene rearrangements, deletions and mutations, 

causing post-replicative cells to be more vulnerable to DSBs. DNA repair deficiencies 

in either of these pathways has been linked to multiple disorders (O'Driscoll and Jeggo, 

2006). 
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Figure 1.1 DNA double-strand break repair 

The two main DNA double-strand break pathways are (A) non-homologous end-joining (NHEJ) and (B) 

homologous recombination (HR). NHEJ is initiated by binding of the KU70–KU80 heterodimer to both 

ends of the DNA break. This is followed by recruitment and activation of DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs). Two key functions of DNA-PKcs are to tether the broken DNA ends and 

to recruit various end-processing factors, such as Artemis. These end-processing enzymes prepare the 

DNA ends for re-ligation by the XRCC4–XLF–DNA LIG4 complex. Unlike NHEJ, which can function 

in all stages of the cell cycle, HR-directed DSB repair is restricted to the late S and G2 phases of growing 

cells. It is detected by the MRN (MRE11–RAD50–NBS1) complex and followed by DNA end-resection. 

DNA end-resection is highly regulated and requires the activity of several nucleases, including CtBP-

interacting protein (CtIP), the Resection generates long stretches of 3ʹ  single-stranded DNA that are 

coated by RPA. RAD51 then displaces RPA to form a RAD51–ssDNA nucleofilament. The 

nucleofilament searches for and binds with a homologous sequence elsewhere in the genome, to form a 

displacement D-loop, in which DNA synthesis is initiated to replace the DNA surrounding the former 

break site. Finally, depending on the type of HR, the D-loop is resolved either by dissociation of one of 

the invading strands (called synthesis-dependent strand annealing (SDSA)), or through migrating double 

Holliday junction intermediates that are cleaved by resolvases or dissolved by the BLM–RMI–TOP3α 

complex. Figure taken from (Panier et al., 2014) 
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1.3.2 Nucleotide excision repair 
 

Most of the genome of an organism at any given time is transcriptionally silent, whilst a 

small proportion is found to be transcriptionally active utilising transcription machinery 

to produce mRNA and protein for cellular function. It is therefore not surprising that 

helical distortion of the DNA from UV light, resulting in pyrimidine dimers (e.g 

cyclobutane dimers or 6,4-photoproducts) in transcriptionally silent regions and DNA 

lesions blocking RNA polymerases, in transcriptionally active genes, are repaired at 

different rates through two sub-pathways of nucleotide excision repair (NER). Damage 

in transcriptionally silent regions requiring NER is termed global genome-NER (GG-

NER), while removal of lesions blocking transcription machinery is called transcription 

coupled-NER (TC-NER). The most prominent difference between the sub-pathways is 

believed to be at the point of recognition; XPC-RAD23B identifies bulky distortions in 

the helix structure in GG-NER and initiation and recruitment of CSB, CDSA and XAB2 

for repair occurs through arrested RNA polymerases in TC-NER.  

 

Once the site of damage is identified both pathways amalgamate to form a common 

repair process. TFIIH a complex consisting of a 7 subunit core (XPD, XPB, P62, P52, 

P44, P34 and TTDA) and a 3 subunit (CDK7, Cyclin H and Mat1) coined cyclin 

activating kinase complex (CAK) is recruited to the site of damage. XPB and XPD, 5’-

3’ and 3’-5’ DNA helicases, found in the TFIIH complex, are then able to unwind the 

helix in proximity to the lesion located in the DNA. Following this, recruitment of XPA 

and RPA, resulting in the dissociation of the CAK complex and protection of the single-

stranded DNA allows the full opening of the DNA around the lesion to occur. This, in 

turn favours recruitment of XPG and XPF endonucleases to incise and remove a short 

stretch of single-stranded DNA of about 25-30 nucleotides containing the lesion. 

Polymerases are then recruited through PCNA, RPA and the clamp loader RCF to fill in 

the excised fragment. Finally, Lig I-FEN1, in S-phase, or Lig IIIα-XRCC1 throughout 

the cell cycle are recruited to seal the phosphate backbone and restore the integrity of 

the DNA. 
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1.3.3 Mismatch repair 
 

Correct structure of the helical DNA and maintenance of genetic integrity is dependent 

on the fidelity of DNA replication, and must follow the Watson-Crick base pairing 

sequence. This means that Guanine must always pair with a Cytosine and Adenine must 

be paired to a Thymine. Mismatch repair is responsible for scanning and maintaining 

this sequence by correcting mismatch base substitutions and insertion-deletion 

mismatches.  

	
  
Undamaged DNA is generally replicated with great efficiency and accuracy, due to high 

nucleotide selectivity of DNA polymerases and their ability to proof-read (a process that 

enables the polymerase to identify an incorrect base pair, reverse its direction by one 

base pair of DNA and excise the mismatched base) during replication. However, 

polymerases required for translesion synthesis increase the frequency of mismatch bases 

(Sale et al., 2012) and microsatellite lesions can cause polymerase slippage leading to 

insertion and deletion loops. It is not surprising then that defects in polymerase proof-

reading activity and defects in mismatch repair proteins results in an increase in 

mutation rates, microsatellite instability and disease (Goellner et al., 1997; Kunkel, 

2003; Lange et al., 2011; B. Liu et al., 1995; 1996). 

 

Helical distortions from mismatched bases are detected by one of the two major 

heterodimeric complexes MutS (made up of MutSα and MutSβ). Identification and 

binding of MutS drives the recruitment of multiple MutL complexes, consisting of 

MutLα, MutLβ and MutLγ, to the mismatch (Kunkel and Erie, 2005). Upon activation 

by binding PCNA and replication factor C MutL’s endonuclease activity generates a 

nick in the DNA backbone (Kunkel and Erie, 2005; Modrich, 1994). Exonuclease 1 can 

then remove a stretch of nucleotides containing the mismatch and is thought to stop, 

either on contact with an okazaki fragment (Genschel et al., 2002) or when it encounters 

a second nick, created by MutL (Hombauer et al., 2011). RPA coats the exposed single-

strand of DNA until replicative polymerases and the corresponding ligases repair the 

DNA (Ramilo et al., 2002). 
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1.3.4 Base excision repair 
 

Base excision repair removes small, non-helix-distorting base lesions; often caused by 

deamination, oxidation and alkylation (Lindahl and Wood, 1999). The base damage is 

recognized and removed by a specific mono- or bi- functional glycosylase, resulting in a 

single-strand DNA break which then converges into the same pathway as single-strand 

break repair as discussed in 1.3.5. 

 

Currently there are 11 known DNA glycosylases which fall into one of 6 structural 

superfamilies (Brooks et al., 2013). Whilst the DNA glycosylases are divided into 

structural superfamilies and have distinct substrate action, their mode of action is shared 

throughout. This encompasses a flipping action of the damaged base, resulting in a 

rotation of the substrate into the DNA glycosylases active pocket. The catalytic 

mechanism of cleavage is where DNA glyscosylases are further divided into mono- and 

bi- functional enzymes. Once the damaged base has been identified the N-glycosidic 

bond is cleaved through a nucleophilic attack leaving an abasic site. This glycosylase 

activity is found in both mono- and bi-functional enzymes. The bi-functional DNA 

glycosylases also contain a lyase activity that can convert the base lesion into a DNA 

single-strand break and therefore does not require AP endonuclease activity. There are 

currently 6 mono-functional DNA glycosylases (UNG, SMUG1, MBD4, TDG, MYH 

and MPG) and 5 bi-functional (OGG1, NTLH1, NEIL1, NEIL2 and NEIL3) (Jacobs 

and Schär, 2012).	
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1.3.5 Single-strand break repair 
 

Although not as toxic as DSBs, single-strand breaks (SSBs) are at least one order of 

magnitude more frequent than DSBs. SSBs occur as a result of direct damage with 

reactive oxygen species (degradation of the sugar-phosphate backbone), collision with 

transcription machinery (such as RNA polymerases), as an intermediate of base 

excision repair or due to stalled complexes of endogenous enzymes such as ligases and 

topoisomerase I (Top1). If left unrepaired these SSBs can block transcription, lead to 

double-strand breaks and can induce cell death (Figure 1.2) (Alano et al., 2010; 

Ljungman et al., 1999; Virág et al., 2013; Yu et al., 2002). 

 

In case of base damage, once repair is initiated by a lesion specific glycosylase followed 

by removal of the abasic site by apurinic/apyrimidinic endonuclease I (APE1), or to a 

lesser extent by tyrosyl DNA phosphodiesterase 1 (TDP1), the single-strand break core 

repair machinery follows four specific stages: Detection, end-processing, gap-filling and 

ligation (Figure 1.3) (Caldecott, 2007; 2003).   
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Figure 1.2 Outcome of DNA single-strand breaks if left unrepaired 

DNA single-strand breaks can arise from degradation of the sugar-phosphate backbone, alterations to 

DNA bases as a by-product of BER and through abortive Top1-complexes. Depending on the nature of 

the damage various chemical modifications can arise at the 3’ and 5’ end of the DNA break see Figure 

1.5. If these lesions are not repaired in a timely fashion then this can impact the cell in multiple ways. In 

replicating cells if the replication machinery encounters the lesion it can lead to replication fork collapse 

and result in the more toxic double-strand break and cell death. Collision with RNA polymerase and the 

transcription complex can result in stalled transcription, pre-mature termination of protein synthesis and 

incorporation of RNA loops. Finally, PARP, the molecular sensor of single-strand breaks, becomes 

activated when it encounters the break and since this requires NAD+ excessive activation can deplete the 

cell of NAD+ leading to apoptosis through release of the mitochondrial apoptosis inducing factor. 
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Figure 1.3 Enzymes involved in the repair of DNA single-strand breaks 

DNA single-strand break repair can be split into several categories. Firstly, the single-strand break is 

detected by PARP, which acts as a molecular sensor. Upon interaction with the single-strand break PARP 

becomes activated resulting in synthesis of Poly (ADP-ribose) chains. These chains are primarily bound 

to PARP but are also found on other proteins, such as XRCC1. Activation of PARP allows for chromatin 

remodelling and sequestration of the XRCC1 chaperone protein. XRCC1, the molecular chaperone, 

interacts with several key proteins in the next stages of repair. End-processing, thought of as the second 

step in the repair pathway allows specific enzymes, depending on the type of modifications at the breaks 

termini, to efficiently cleave the modification and restore the required 3’-OH and 5’-P for ligation. The 

penultimate step is that of gap filling and this can result in the divergence of this particular pathway. If 

only one nucleotide is required then this divergence leads to short-patch repair where XRCC1 and Lig 

IIIα are the main players. However, if more than one nucleotide is required then the long-patch repair 

pathway is involved in the last step, this incorporates FEN-1 to remove the protruding flap of single-

stranded DNA, PCNA and gap filling by Pol β, Pol δ or Pol ε before ligation. The last step in the repair 

pathway is the sealing of the phosphate backbone in an ATP dependent manner; a process carried out by 

Lig IIIα (short-patch repair) or Lig I (long-patch repair). Figure adapted from (Caldecott, 2007). 

 

 

 

 

 

 



	
  

	
  

15	
  

 

1.3.5.1 Detection: PARP 

Initially SSBs are rapidly detected by Poly(ADP-ribose) polymerase (PARP) resulting 

in activation and synthesis of Poly(ADP-ribose) chains in a nicotinamide adenine 

dinucleotide (NAD+) dependent manner. These chains are primarily bound to PARP but 

are also found on other proteins, such as XRCC1. The major source of PAR synthesis is 

carried out by PARP-1, an abundant and stable component of chromatin, and to a lesser 

extent PARP-2 (Fisher et al., 2007). PARP activation has multiple roles including 

chromatin remodelling via PARylation of histones (Beneke, 2012), and generation of 

ATP for ligation. One main function is the sequestration of X-ray repair cross-

complementing protein 1 (XRCC1) to the site of damage through binding of the central 

breast cancer susceptibility protein 1 domain (BRCT1) (Masson et al., 1998; Plo, 2003; 

Schreiber et al., 2002). The binding of PARP is a transient process and dissociation of 

PARP occurs through charge repulsion and catabolism of the chains by Poly (ADP-

ribose) glycohydrolase (PARG) to allow access to the break for the rest of the repair 

proteins. XRCC1 is a 69 kDa scaffold protein, that interacts with the nicked DNA and 

polymerase β through its N-terminal domain (Caldecott et al., 1996), Ligase IIIα 

through a C-terminal BRCT2 domain, polynucleotide kinase phosphatase (PNKP), and 

several end processing factors depending on the type and location (3’- or 5’-) of the 

damage. 

 

1.3.5.2 End-processing 

 The second step is coined “end-processing” and due to the numerous abnormal 5’- and 

3’-DNA termini caused by damage (Figure 1.4 and 1.4) the cell has evolved several 

key end-processing enzymes to restore the 3’-hydroxyl and 5’-phosphate required for 

ligation. Several of the autosomal recessive ataxias are involved within the end 

processing stage of the repair, including tyrosyl DNA phosphodiesterase 1 (TDP1), 

aprataxin (APTX) and PNKP.  

 

1.3.5.3 Gap filling 

The third step involved in the SSB repair is gap filling which is primarily carried out by 

Pol β to fill in the missing nucleotide. However, instances where more than 1 nucleotide 

gap filling have been demonstrated. This is a sub-pathway to base excision and single-

strand repair, denoted long-patch repair. Long-patch repair seems to function mainly in 
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S-phase and requires removal of the protruding flap by flap endonuclease 1 (FEN-1), 

PCNA and gap filling by Pol β, Pol δ or Pol ε.  

 

1.3.5.4 Ligation 

The fourth and final step requires the sealing of the DNA by DNA Ligase IIIα or DNA 

Ligase I for short patch and long patch repair respectively (Caldecott, 2007; Dianov and 

Parsons, 2007), although redundancy between these ligases has been demonstrated 

(Arakawa et al., 2012; Simsek et al., 2011).  
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Figure 1.4 DNA structure and damage modifying 3’ and 5’ phosphate backbone of DNA 

DNA is made up of a phosphate backbone, pentose sugar and base (guanine, cytosine, adenine and 

thymidine). Chemical instability leading to deamination, depurination, depyrimidination or hydrolysis of 

the phosphodiester backbone as well as reactive oxygen species and intermediates of DNA repair 

pathways can lead to single-strand breaks. These breaks can lead to different chemical modifications at 

the 5’ (lilac) or 3’ (blue) of the phosphodiester backbone. 
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Figure 1.5 Typical modifications at DNA breaks, cause and enzymes involved in repair 

Highlighted in lilac or blue are common chemical modifications occurring at the 5’ or 3’ end of the 

phosphate backbone of the damaged DNA, respectively. The required chemical ends needed to seal the 

backbone and restore the genetic integrity of the DNA are the 5’ phosphate and 3’ hydroxyl. Figure 

adapted from (Caldecott, 2008). 
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1.3.6 Ligase family 
 

The ligase family are involved in the last step of sealing the DNA phosphate backbone 

in an ATP dependent manner. Whether required for single-strand break repair (Lig IIIα, 

Lig I), mitochondrial repair (mito-Lig IIIα), sealing of okazaki fragments (Lig I) or 

double-strand breaks (Lig IV). Lig IIIα has already been shown to interact with TDP1 

(Chiang et al., 2010; Das et al., 2009; El-Khamisy et al., 2005) and has since been 

thought of as the main candidate for the final step in TDP1-mediated repair. There are 3 

Ligases found; Lig I, Lig IV and the evolutionary newer Lig III, which has two splice 

variants that are involved in nuclear or mitochondrial repair (Figure 1.6). They all 

contain a DNA-binding domin (DBD), adenylation domain (AdD) and an 

oligonucleotide-binding domain (OBD) that encircles the break in a ring-shaped 

architecture (Pascal et al., 2004).  

 

The DBD binds to the minor groove of DNA interacting with the phosphodiester 

backbone on both sides of the DNA break. This alters the curvature of the DNA in an 

underwound conformation and positions the DNA, exposing the nicked ends to residues 

that are important for the catalytic activity of the enzyme. The DBD interacts with the 

catalytic core of the ligase, consisting of the AdD and OBD, which encircles the DNA 

and enhances the stimulation of the end-joining activity of the Ligase. The catalytic core 

forms a covalent interaction with ATP through a lysine residue, forming a Lys-AMP 

and releasing an inorganic pyrophosphate. The DNA 5’ phosphate then attracts the Lys-

AMP forming a DNA-AMP intermediate. Finally, the orientation of the ligatable ends 

allows the 3’-OH to displace the AMP intermediate, resulting in covalent joining of the 

nicked end and restoration of the DNA (Ellenberger and Tomkinson, 2008). 

 

Homologs of DNA Lig I and IV are found in all eukaryotes, whereas Lig III is only 

found in vertebrates and is thought to be an evolutionarily newer ligase. 

 

1.3.6.1 Ligase I 

As mentioned previously Ligase I is found in all eukaryotes. Whilst a mitochondrial 

variant is found in yeast, only a nuclear enzyme is present in vertebrae. Human Lig I 

contains a replication factory targeting sequence in which it interacts with PCNA 
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through a PCNA interacting protein motif (PIP motif) (Levin et al., 1997; W. Song et 

al., 2009). Since the PCNA sliding clamp is involved in replication it makes Lig I the 

most suitable ligase to join okazaki fragments. It is therefore not surprising that ligase I 

deficiency results in an increase in okazaki fragments, although does not seem to affect 

cell proliferation rates (Arakawa et al., 2012; Henderson et al., 1985). The N-terminal 

domain also contains several phosphorylation sites which are substrates for cyclin-

dependent kinase. Phosphorylation of residues increases through the cell cycle reaching 

a peak as a hyper-phosphorylated ligase at the G2/M. Interestingly, Lig I is 

dephosphorylated in response to DNA damage and replication and only casein kinase II 

(CK2) phosphorylation at serine 66 is required for activation of the ligase activity, due 

to its importance in the ligase-AMP formation (Ferrari, 2003; Prigent et al., 1992). 

 

1.3.6.2 Ligase III 

Ligase III is only found in vertebrates and has two forms, α and β, generated by 

alternative splicing. Lig IIIβ is germ-cell specific and does not contain the C-terminal 

BRCT domain found in Lig IIIα. In addition, both of these splice variants also contain 

mitochondrial and nuclear versions; these are synthesised by alternative translation 

initiation mechanisms (Lakshmipathy and Campbell, 1999). 

 

The BRCT domain, known for its role in protein - protein interactions, found in Lig IIIα 

is required for the interaction with XRRC1 in the nuclear version. This forms a nuclear 

Lig IIIα-XRCC1 complex and is required to stabilise nuclear Lig IIIα. This is supported 

by the fact that Chinese hamster ovary cell lines EM9 and EMC11 (XRCC1 deficient 

cell lines) have reduced levels of DNA ligase IIIα (Caldecott et al., 1994; 1995; Nash et 

al., 1997). 

 

One other unique feature of Lig III is the zinc finger forming part of the DNA binding 

domain. This zinc finger is proposed to sense nicks and gaps in the DNA backbone and 

has been described in a jack-knife model. Lig IIIα is important for short-patch repair 

and has been implicated in alternative non-homolgous end-joining. Whilst the nuclear 

version is not critical for cell survival, since Lig III is the only known ligase involved in 

mitochondrial repair, loss of the mitochondrial Lig IIIα results in cell lethality (Gao et 

al., 2011; Lakshmipathy and Campbell, 2001; Simsek et al., 2011). 
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1.3.6.3 Ligase IV 

Unlike Lig I and III, Lig IV has only been identified to play a role in one repair 

pathway; the repair of double-strand breaks by non-homologous end-joining and in 

certain cells (B cells) V(D)J recombination. This is owing to the fact Lig IV has a 

propensity to ligate ends that are non-complementary. Similar to Lig IIIα Lig IV relies 

on an interaction with XRCC4 for stability. Inactivation of the mouse Ligase IV gene 

results in embryonic lethality and inactivation in human cell lines results in 

hypersensitivity to IR, due to defects in NHEJ (Barnes et al., 1998). Since homologous 

recombination cannot take place in post-mitotic cells it is not surprising that the 

developing Lig IV null embryos appear to die because of massive apoptosis in the 

central nervous system (Frank et al., 1998; 2000). Since Lig IV leads to embryonic 

lethality only hypomorphic mutations have been identified in patients, leading to 

microcephaly and immunodeficiency (O'Driscoll et al., 2001). 
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Figure 1.6 Ligase Family 

The ligase family all contain a DNA binding domain and catalytic core. For stability Lig IV and IIIα 

(nuclear) require interactions with molecular chaperone complexes XRCC4 and XRCC1, respectively and 

these interactions occur through their BRCT domain. Lig I contains a replication factory targeting 

sequence (RFTS) that is required for its interaction with PCNA. Unique to Lig IIIα is the zinc finger 

domain (ZnF) used to sense gaps and nick in the DNA backbone. As opposed to non-vertebrates Lig IIIα 

and not Lig I has variant containing a mitochondrial leader sequence (MLS) that allows it to be targeted 

to the mitochondria and is essential for cell survival. Figure adapted from (Ellenberger and Tomkinson, 

2008).	
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1.3.7 Protein-linked DNA single-strand breaks 
 

DNA Topoisomerases are a class of enzymes that release helical tension during 

transcription and replication, by creating nicks within the phosphate backbone on one or 

both strands of the DNA (Bermejo et al., 2007; Champoux, 2001; Deweese et al., 2008). 

DNA topoisomerase I (Top1) has also been shown to remove RNA bases from the DNA 

containing strands preventing formation of R loops, which comprise of RNA/DNA 

hybrids, that can lead to deleterious effects if unresolved (Tuduri et al., 2009). The 

release of positive and negative supercoiling by the Top family is a transient process 

with the equilibrium strongly favouring the sealing of the DNA backbone. This is to 

help limit the time in which the integrity of the DNA may be compromised. However, 

the topoisomerase DNA complex can become trapped forming a stalled Top-DNA 

adduct, otherwise known as an abortive Top complex. Abortive activity of Top1, due to 

collision with replication/transcription machinery, or as a result of DNA damage within 

close proximity to the enzyme can result in clastogenic and/or lethal DNA damage. 

Top1 becomes trapped through a covalently linked phosphodiester bond with the 3’-

terminus of DNA. Nucleolytic cleavage of the DNA by nucleases such as the MRN 

complex, ARTEMIS and CtIP, amongst others, have been shown to remove the stalled 

Top1 adducts, but this action has only been shown to be in effect on Top1 linked 

double-strand breaks (Connelly and Leach, 2004; Eid et al., 2010; Nakamura et al., 

2010; Pommier et al., 2006; Shrivastav et al., 2008). In contrast, TDP1, a member of the 

phospholipase D superfamily has been shown to hydrolyse the abortive Top1 complex 

after degradation of the topoisomerase by the ubiquitin proteasome.  

 

1.4 Tyrosyl DNA phosphodiesterase 1 
 

TDP1 was first reported in yeast and the human homologue was later reported (El-

Khamisy et al., 2005; S. W. Yang et al., 1996). A defect in human TDP1 was shown to 

cause accumulation of Top1-SSBs (El-Khamisy et al., 2005). TDP1 was later shown to 

be localised not just to the nucleus but also to the mitochondria (Das et al., 2010; Fam et 

al., 2013; Huang et al., 2013) and protects cells from a broad spectrum of DNA damage 

(Alagoz et al., 2013; El-Khamisy et al., 2005; 2007; Interthal et al., 2005a; Murai et al., 
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2012). TDP1’s primary function is to resolve abortive Top1 activity by hydrolysing the 

phosphodiester bond between the tyrosine residue of Top1 and the 3’-phosphate group 

(Davies et al., 2002a; 2002b; Murai et al., 2012). Together with TDP2, which 

hydrolyses the corresponding activity at the 5’-terminus (Cortes Ledesma et al., 2009; 

Zeng et al., 2011), are currently the only known human enzymes that display this 

activity in cells.  

 

In neurons, reactive oxygen species (ROS), collision with RNA polymerases and 

discontinuities through an inherent instability within the DNA have been shown to 

cause the formation of these stalled Top1 adducts. With the high oxidative load in the 

brain and high rates of transcription it is therefore logical that these trapped protein-

DNA links arise endogenously within cells. If left unrepaired these adducts have been 

shown to inhibit transcription by blocking the progression of RNA polymerase, and can 

lead to over activation of PARP depleting cellular levels of NAD+ and adenosine 

triphosphate (ATP), both of which could lead to neuronal cell death (Figure 1.7). Once 

the topoisomerase has been trapped on the DNA due to collision of the replication 

machinery or caused by damage within close proximity, the first step for removal is its 

degradation by the proteasome. Once degraded a small peptide fragment remains 

covalently attached to the 3’-phosphate. SUMOylated TDP1 is then recruited to the site 

of damage to hydrolyse the 3’-phosphotyrosine in a two-step reaction (Raymond et al., 

2004); leaving a 3’-phosphate and 5’-hydroxyl (J. J. R. Hudson et al., 2012; Plo, 2003). 

Because these termini are not compatible with ligation the phosphatase and kinase 

activity of PNKP is required to form the 3’-hydroxyl and 5’-phosphate needed for 

ligation. The importance of TDP1 in neurons is typified by a hypomorphic mutation in 

the protein leading to the autosomal recessive ataxia SCAN1. 
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Figure 1.7 Role of TDP1 in cycling and non-cycling cells  

Topoisomerase 1 is required to relieve topological strain during transcription and replication. Collision 

with RNA polymerases or lesions in close proximity to the Top1-DNA complex can lead to an abortive 

Top1-DNA complex in which the Top1 protein can become stuck to the 3’ of the DNA. Normally, if this 

situation arises Top1 becomes ubiquitylated and degraded by the 26S proteasome, leaving a 

3’phosphotyrosine and possible short peptide fragment. TDP1, a phosphodiesterase enzyme, can remove 

the tyrosine and peptide fragment from the 3’phosphate in a two-step reaction. In addition to this in 

cycling cells nucleases have also been found to remove this lesion. This then allows PNKP and single-

strand break repair machinery to repair the damaged DNA and seal the phosphodiester backbone. If TDP1 

is not present or its catalytic activity has been compromised due to a missense mutation, as found in 

SCAN1 patients, this 3’phosphotyrosine can lead to double-strand breaks, or depletion of NAD+ through 

over-activation of PARP and ultimately cell death. Post-mitotic cells also do not possess the error-free 

repair found in cycling cells through homlogous recombination. Taken together with the high 

transcriptional activity and oxidative load within the brain the hypomorphic mutation of TDP1 leads to 

cerebellar degeneration as seen in SCAN-1 but does not seem essential in cycling cells. Figure adapted 

from (El-Khamisy and Caldecott, 2007). 
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1.5 Diseases associated with defects in single-strand break 

repair 
 

Due to the high oxidative load, levels of transcription, and long lived nature of post-

mitotic cells in the brain the integrity of DNA is under constant threat. We possess a 

wide array of end-processing enzymes involved in the removal of lesions of termini of 

DNA single-strand breaks in order to efficiently restore the required 3’ hydroxyl and 5’ 

phosphate needed for successful ligation. It is therefore not surprising that mutations in 

several of the end-processing enzymes has been linked to neurological disorders, 

particularly autosomal recessive ataxias. In order to understand why these defects 

particularly effect the brain we must first understand the neural development of the 

brain, the requirement for long lived cells and the DNA repair processes needed for cell 

maintenance.	
  

 

1.5.1 Neural development 
 

Development of the neural circuit through induction, proliferation, migration and 

differentiation from progenitor stems cells during embryonic development requires 

faithful transmission of the genetic code, which is achieved under high replication and 

transcription stress (Bluml et al., 2012; Caviness et al., 1995; Sidman and Rakic, 1973). 

In addition, the maintenance of genetic integrity in terminally differentiated post-mitotic 

neural tissue is constantly challenged by the high level of transcription and metabolic 

activity, coupled with its limited regenerative capacity (McKinnon, 2009). It is therefore 

not surprising that defects in the DNA repair have been implicated in a myriad of 

neurological disorders (Jeppesen et al., 2011; Katyal and McKinnon, 2008; McKinnon, 

2009; Yüce and West, 2013). This chapter will review a subset of these disorders 

termed autosomal recessive ataxias. Examples of this class of disorders covered in this 

chapter include: ataxia oculomotor apraxia 1 (AOA1), ataxia oculomotor apraxia 2 

(AOA2), spinocerebellar ataxia with axonal neuropathy 1 (SCAN1), X-linked mental 

retardation (XLMR) and microcephaly, infantile-onset seizures, and developmental 

delay (MCSZ). The neurological component is the most deleterious effect in this 

particular class of disorders and the above examples show no signs of 
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immunodeficiency or cancer predisposition. Understanding the biochemistry of how 

defects in particular proteins impact neuronal integrity and survival will provide us with 

a solid foundation for design of future therapies, for which suitable animal models will 

be vital. 

 

Development of the neural circuit occurs through rapid proliferation of neural stem and 

progenitor cells within the ventricular and sub-ventricular zones (Sidman and Rakic, 

1973). These rapidly dividing cells then undergo rounds of differentiation and migrate 

to specific locations where they mature to form specialized neurons and glia. Inability to 

maintain genomic integrity during this process will often lead to microcephaly, 

neurodegeneration or brain tumors (Cox et al., 2006; Jeppesen et al., 2011; Rass et al., 

2007; Sailer and Houlden, 2012). During neurogenesis cells containing DNA lesions, 

single or double-strand breaks are readily replaced, and are therefore thought to favour 

apoptosis. However, by early childhood the majority of terminally differentiated cells 

have formed and are not as easily replaced. Within this context, the post-mitotic cells 

have to function throughout life under high oxidative loads making the DNA repair 

system extremely important (Fishel et al., 2007; Y. Lee et al., 2009; Y. Lee and 

McKinnon, 2007). Damage to the DNA can lead to progressive loss of neuronal 

structure and function resulting in a decline of neurons through apoptosis, thus leading 

to neurodegeneration, or accumulation of aberrant proteins that have been linked to 

degenerative diseases such as Alzheimer’s and Parkinson’s (Kulkarni and Wilson, 2008; 

McKinnon, 2009). Autosomal recessive ataxias are a class of inherited ataxias in which 

defects in DNA repair within end-processing enzymes are prominent (Figure 1.8). 
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Figure 1.8 Defects in end-processing enzymes and links to disease 

The plethora of chemical modifications found at the termini of DNA breaks requires a vast array of end-

processing enzymes to efficiently remove the inappropriate modification and allow the restoration of the 

3’ hydroxyl and 5’ phosphate required for ligation. Defects in these enzymes have been linked to several 

diseases, such as AOA1, SCAN1 and MCSZ. Whilst clinical features of patients can overlap primarily 

through neuronal degeneration (highlighted in the degeneration of the cerebellum in AOA1 and SCAN1 

patients compared to healthy adults (WT)) there are features that do not overlap. AOA1 patients exhibit 

occulomotor apraxia not seen in SCAN1 patients. A larger contrast is seen when mutations in PNKP, an 

enzyme involved in TDP1-mediated repair, leads to microcephaly and seizures, but shows no signs of 

neurodegeneration. MRI images were taken from (Le Ber et al., 2003; J. Shen et al., 2010; Takashima et 

al., 2002). 
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1.5.2 Autosomal recessive ataxias 
 

Ataxia-telangiectasia (AT) is the archetypal example and like most other recessive 

ataxias, AT results in severe degeneration of the cerebellum (Lakin et al., 1996; Y. Lee 

et al., 2001), a pathological trait it shares with ataxia oculomotor apraxia 1 (AOA1), 

ataxia oculomotor apraxia 2 (AOA2) and spinocerebellar ataxia with axonal neuropathy 

(SCAN1). In contrast to these other recessive ataxias AT patients also show a 

predisposition to cancer (Boultwood, 2001; Geoffroy-Perez et al., 2001). 

 

Dr Fogel has clinically classified autosomal recessive ataxias into three distinct groups: 

Friedrech ataxia-like, Friedrech ataxia-like with cerebellar atrophy and early onset 

ataxia with cerebellar atrophy (Fogel and Perlman, 2007). Why this phenotype is shared 

amongst these neurological disorders is still under investigation but a unique 

characteristic of the cerebellum is the extended postnatal development (Y. Lee et al., 

2009).  

 

The cerebellum is predominantly composed of three neuronal populations: granule cells, 

Purkinje cells and interneurons that make up three functional lobes. (1) The anterior 

lobe (paleocerebellum, or spinocerebellum) receives proprioceptive input from the 

spinal cord and controls muscles that regulate posture. (2) The posterior lobe 

(neocerebellum) is involved in the inhibition of involuntary movement by inhibitory 

neurotransmitters, such as GABA from the Purkinje cells. This plays an important role 

in fine motor coordination. The last lobe (3) known as the flocculonodular lobe, consists 

of the floccule and is involved in the maintenance of equilibrium, controlling balance 

and spatial orientation (Apps and Garwicz, 2005; Hibi and Shimizu, 2012).  

 

The hallmarks of these congenital ataxias are early onset cerebellar ataxia and this 

progressive degeneration prevents the cerebellum from integrating the sensory and 

visual inputs. Unsurprisingly, patients show loss of proprioception, vibration sense, 

balance and gait. Some manifestations also include hypotonia (decreased muscle tone) 

and dysarthria (problems with speech) (Espinós-Armero et al., 2005; Fogel and 

Perlman, 2007). Whilst exogenous sources of damage have yet to be implicated in these 
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diseases there are many endogenous sources that can compromise the integrity of the 

genome during neural development and within the terminally differentiated cells. 

 

1.5.3 Spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) 
 

SCAN1 is a rare form of ataxia diagnosed in a Saudi Arabian family caused by a 

missense mutation in the TDP1 gene (c.1478A>G) (Hirano et al., 2007; Takashima et 

al., 2002). This results in a histidine to an arginine substitution at position 493 (H493R) 

disrupting the active site and reducing the enzymatic activity by up to 25 fold. TDP1 

H493R can also become trapped to the 3’-phospahate of DNA after releasing the Top1 

complex and this is proposed to be more toxic than an inactive variant (Hirano et al., 

2007). The neuropathology of SCAN1 is progressive cerebellar atrophy, pes cavus, 

peripheral neuropathy and muscular atrophy. The clinical symptoms develop at a mean 

age of 15 years resulting in ataxic gait, seizures and senescence of pain, touch, and 

vibration senses within the extremities. Patients tend to be wheel chair bound by early 

adulthood. At a cellular level, patients exhibit mild hypercholesterolemia and 

hypoalbuminemia (Takashima et al., 2002).  

 

To test the hypothesis that neuronal degeneration was a result of the TDP1 defects, 

several labs created TDP1 knockout mice. Much like cells from SCAN1 patients, Tdp1-

/- mice cells show a hypersensitivity to camptothecin. The neuropathology of Tdp1-/- 

mice showed very mild age-dependent cerebellar degeneration, however, it did not fully 

recapitulate that of the human disorder (Katyal et al., 2007). These observations could 

have several possible explanations. Mice may have a redundant pathway to deal with 

stalled Top1 complexes not found in humans. The oxidative load in mouse neuronal 

cells could be considerably less than that of humans; therefore, with the average life 

span of mice being 2 years the accumulation of SSBs could be below the threshold to 

see significant cerebellar atrophy. A third possibility is that the H493R mutation is 

actually more toxic to the cell. Although this also seems unlikely since the Tdp1 H493R 

knock-in mice exhibit no or very mild phenotype (Boerkoel, personal communication 

with El-Khamisy). It is probable that a different explanation is more likely to explain 

the specific vulnerability of the human cerebellum and that degeneration is likely 

caused by defects in nuclear and mitochondrial repair (Fam et al., 2012). 
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1.5.4 Microcephaly, infantile-onset seizures, and developmental delay 

(MCSZ) 
 

As previously discussed polynucleotide kinase phosphatase is a bi-functional enzyme 

involved in the phosphorylation of 3’-termini of DNA and de-phosphorylation of the 5’-

phosphate; both intermediates in the repair of abortive Top1 complexes by TDP1. 3’-

phosphates are also the most common form of DNA damage created by ROS. The mode 

of action allows the correct termini for ligation in the last step of the repair pathway. 

Mutations in PNKP have recently been established in several patients from Arabic and 

European origin. This recessive disorder features microcephaly, infantile on-set seizures 

and developmental delay (J. Shen et al., 2010). MCSZ patients do not feature an 

increased incidence to cancer or immunodeficiency.  

 

At a cellular level all four mutations found in the PNKP gene resulted in lower cellular 

protein levels. Whilst two of the mutations also ablate cellular PNKP DNA 5′-kinase 

activity, reduction of 3’-phosphatase activity has yet to be demonstrated (Reynolds et 

al., 2012). As this enzyme is featured in the repair of Top1 linked breaks it is 

unsurprising that patient cell lines and A549 cells depleted for PNKP show 

hypersensitivity to camptothecin. Resistance of these cells to hydrogen peroxide 

damage is significantly lower than that of normal cells. Whilst there are some 

similarities between the neuropathology of MCSZ and SCAN1 patients (ultimate loss of 

neuronal cells) there is a striking contrast in neuronal phenotype. MCSZ patients exhibit 

microcephaly due to proliferation defects or cell loss during neurogenesis (J. Shen et al., 

2010). PNKP must therefore have a more pivotal role during development and its 

interaction with XRCC1 and XRCC4 point to multiple roles in single and double-strand 

break repair. Interestingly defects in ligase IV, a known protein interaction partner to 

XRCC4, also results in widespread apoptosis during neurogenesis, resulting in 

microcephaly (Barnes et al., 1998; O'Driscoll et al., 2001). Whether these features 

would recapitulate in animal models is yet to be tested.  
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1.5.5 X-linked mental retardation (XLMR) 
 

Cullins are a family of E3 ubiquitin ligases, containing a RING finger domain. These 

E3 enzymes are part of the hierarchical ubiquitin pathway and play role in the control of 

a variety of processes (H. C. Liu et al., 2012; Sarikas et al., 2011). Of interest, the 

cullin4 family (CUL4) consists of two paralogs, CUL4A and CUL4B that share a high 

sequence homology and can interact with the same protein substrates, indicating a 

redundancy. Interestingly, only mutations in the CUL4B protein have been linked to 

XLMR despite the ability to target the same substrates (Kerzendorfer et al., 2010). 

Topoisomerase 1 is one of the many substrates of CUL4B and this demonstrates a link 

between TDP1 and CUL4B for the repair of Top1 linked DNA breaks. As mentioned 

earlier, before removal of the 3’-phosphotyrosine by TDP1, the Top1 is degraded via 

the ubiquitin proteasome pathway. CUL4B patient cells and A549 cells with CUL4B 

knockdown show sensitivity to the Top1 poison camptothecin and increased formation 

of Top1 cleavage complexes (Kerzendorfer et al., 2010). Both sets of evidence pointed 

to CUL4B acting upstream of TDP1 to target Top1 for degradation. Although both 

TDP1 and CUL4B deficiency result in neural dysfunction, the cause of neural cell loss 

is likely to be fundamentally different. XLMR patients with CUL4B mutations are 

associated with mental and growth retardation, relative microcephaly and motor neuron 

impairment. There are no signs of cerebellar atrophy, as seen in SCAN1, but 

development of gait ataxia has been observed (Isidor et al., 2010; Zou et al., 2007). The 

substrate overlap between the two CUL4 paralogs could account for lack of cerebellar 

atrophy seen in XLMR patients. It may well be that CUL4A can target Top1 to the 

proteasome, but at a much slower rate. 

 

Mutations within CUL4A have not been linked to XLMR and in support of this Cul4a 

deficient mice showed no phenotypic attributes similar to that of patients with XLMR. 

The Cul4a-/- male mice were however sterile, and they also exhibited a stronger DNA 

damage response (L. Liu et al., 2009). Initially, early depletion of Cul4b mice caused 

embryonic lethality and therefore comparisons between XLMR patients and mouse 

models could not be observed. Recent work by two groups using a Cre/lox strategy 

enabled the creation of the Cul4b knockout mouse. Cul4b has been shown to be 
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important during mouse embryogenesis and although Cul4b mutant mice did not show 

any difference in the phenotypic attributes compared to the wild type mice, they 

displayed some XLMR-like behavioural phenotypes, linked to hippocampus related 

spatial learning, memory deficiencies, as well as increased epileptic susceptibility (Chen 

et al., 2012; L. Liu et al., 2012). 

 

1.5.6 Ataxia oculomotor apraxia 1 (AOA1) 
 

Ataxia oculomotor apraxia 1 is an autosomal recessive disorder that is caused by 

another mutation within an end-processing enzyme. AOA1 accounts for 10% of all 

recessive ataxias and has been found in patients from Japan, Europe and Africa 

(Moreira et al., 2001a). Onset of the disease is variable and appears anywhere between 1 

and 16 (mean of 5) years of age. AOA1 is clinically represented by early onset gait 

ataxia, dysarthia, oculomotor apraxia, cerebellar atrophy and late axonal peripheral 

motor neuropathy. Similar to SCAN1 the clinical biochemistry shows 

hypoalbuminaemia and hypercholesterolaemia (Date et al., 2001; Moreira et al., 2001b).  

 

Genetically, patients have shown mutations in the aprataxin gene that seem to be 

concentrated within the histidine triad domain. Functionally the full-length aprataxin 

consists of 3 domains; a forkhead associated domain, which shares homology with 

PNKP and can interact with XRCC4 and XRCC1, a histidine triad (HIT) domain and a 

DNA binding zinc finger domain. Genotyping has shown that the mutations leading to 

AOA1 appears to be concentrated to the HIT domain. Whilst aprataxin has been shown 

to cleave several DNA lesions in vitro, the HIT domain has a high activity for 5’-

adenosine monophosphate  (5’-AMP) termini, making it highly likely that this is its 

physiological substrate (Ahel et al., 2006; Rass et al., 2007). The last step in strand 

break repair is the sealing of DNA nicks, a process carried out by Ligase 1, 3 or 4 

depending on the repair pathway. The sealing of the breaks requires energy and is 

dependent on ATP. A 5’-AMP intermediate occurs during this biochemical process and 

a prediction is that an incomplete ligation cycle, or premature adenylation by the ligase 

would yield a 5’-AMP. Premature ligation has been supported by co-deletion of 

aprataxin with a 3’- processing enzyme that results in a synergistic defect in the cells’ 
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ability to repair oxidative damage (El-Khamisy et al., 2009). This modification would 

require removal before sealing of the DNA breaks can occur.  

 

There is conflicting evidence about how the defects result in neurodegeneration. Post 

mortem brain sections and fibroblasts from patients exhibited higher levels of oxidative 

damage, but neither lymphoblastoid cells from patients or mouse APTX-/- astrocytes 

showed defects in SSB repair (El-Khamisy et al., 2009; Reynolds et al., 2009). This is 

indicative of the low levels at which these lesions are formed endogenously. Neuronal 

cell death is probably due to the build-up of these lesions over time. This progressive 

degeneration could also account for the lack of phenotype seen in Aptx-/- mice. More 

recently, work from the Wilson lab has demonstrated that an isoform of aprataxin with 

an N-terminal extension localizes to the mitochondria and that these alternate transcripts 

were found at higher levels within the cerebellum (Sykora et al., 2011). Depletion of 

aprataxin in human SH-SY5Y neuroblastoma cells and primary skeletal muscle 

myoblasts resulted in mitochondrial dysfunction and reduced copy number. 

Furthermore, AOA1 patients shared striking similarities with patients linked to 

disorders of the mitochondria (Fogel and Perlman, 2007; Stemmler et al., 2010). Both 

patient types exhibit peripheral neuropathy and progressive ataxia, and at a biochemical 

level reported deficient coenzyme Q10 (Espinós-Armero et al., 2005), a known 

mitochondrial antioxidant and key component of the electron transport chain. 

 

1.5.7 Ataxia oculomotor apraxia 2 (AOA2) 
 

Although similar to AOA1, ataxia with oculomotor apraxia type 2 presents with a later 

onset, between 11 and 22 years of age. Phenotypically AOA2 shares many 

characteristics with AOA1, including oculomotor apraxia, sensory neuropathy, pes 

cavus, muscular weakness and cerebellar atrophy (in some patients). Due to the 

homogeneity of the disorder, apart from genotyping, differential diagnosis can be seen 

through deep tendon reflexes, which is actually increased compared to the decrease seen 

in AOA1 patients (Fogel and Perlman, 2007). In contrast to AOA1 laboratory analysis 

also shows normal albumin levels but high serum levels of the alpha-fetoprotein. The 

gene of interest has been mapped to c.9q34 and encodes for the protein senataxin. 

Unlike other recessive disorders, mutations within this protein have also been linked to 
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the autosomal dominant disorder juvenile amyotrophic lateral sclerosis (ALS4), due to a 

gain of function (Moreira et al., 2004). 

 

Functionally, senataxin is a putative RNA/DNA helicase that has been shown to play a 

major role in the removal of R-loops (formation of RNA-DNA hybrids) and replication 

fork stabilization (Alzu et al., 2012; Suraweera et al., 2009). This is further supported by 

its direct interaction with RNA polymerase II, and that addition of RNase H1 (an 

enzyme that resolves DNA/RNA hybrids) or a transcription inhibitor (alpha amanitin) 

leads to loss of senataxin foci (Yüce and West, 2013). So how does this lead to 

degeneration of neurons?  

 

Lesions through ROS, or protein-linked DNA breaks (PDBs) would lead to stalled 

transcription and a requirement for senataxin to resolve the DNA/RNA hybrid. Loss or 

reduced function of senataxin results in an increase in persistence of R-loops. This in 

turn can lead to DSBs and blockage of transcriptional progression (Alzu et al., 2012; 

Yüce and West, 2013). Whilst replicating cells can repair the double-strand breaks 

through HR, an error free process, neuronal cells (due to the lack of replication) would 

require NHEJ, increasing the chance for instability. As previously been discussed both 

of these consequences can result in cell death and evidence of this has previously been 

reported as senataxin -/- cells are sensitive to DNA damaging agents, particularly agents 

that introduce oxidative stress (Lavin et al., 2008). 

 

1.6 Neurodegeneration: a consequence of repair defect in the 

nucleus, mitochondria or both?  
 

Whilst defects in the repair of the above proteins can result in risk to the integrity of 

nuclear DNA, many of these enzymes have been also shown to localise and protect 

mitochondrial DNA (mtDNA) from damage. Mitochondria are small organelles within 

the cell that contain their own genetic material. They act as energy producing factories 

via the production of ATP through the electron transport chain (ETC) and these tiny 

organelles can produce approximately 65 kg of ATP everyday (Lane, 2006).  
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Whilst this production of energy is required for survival, a by-product of this process is 

an abundance of reactive oxygen species. Electrons are leaked through the electron 

transport machinery leading to production of intermediates that can pose a threat to 

DNA. Whilst the mitochondria possess a host of antioxidants and enzymes, such as 

superoxide dismutase (SOD), the location of the mtDNA within the inner mitochondrial 

membrane and their lack of protection through protective proteins such as histones 

make them especially susceptible to damage (Gough and Cotter, 2011). In fact it has 

been shown that there is up to 3-fold more oxidative damage to mtDNA and that once 

damaged these lesions persist for an extended period of time (E. K. Hudson et al., 1998; 

Yakes and Van Houten, 1997). Unlike nuclear DNA where approximately 97% of the 

DNA is non-coding, the majority, 93%, of mtDNA is transcribed and required for 

producing the components of the ETC (Taylor and Turnbull, 2005).  

 

Due to the size and nature of the mitochondria the repair proteins are actually 

transcribed in the nucleus and imported to the mitochondria through leader sequences. It 

is important to note that there is a large portion of mitochondria within the cerebellum 

and that damage above a certain threshold may lead to induction of cell death through a 

negative feedback to nuclear DNA damage and apoptosis. If we consider high ROS 

compromising mtDNA through oxidative damage then the components of the ETC 

transcribed from mtDNA may lead to improper function. This could lead to an increase 

in ROS, further damaging mitochondrial and nuclear DNA. It is therefore highly 

conceivable that mitochondrial damage could contribute to the pathology seen in these 

disorders. It would be interesting to create nuclear or mitochondrial knock-in proteins of 

an animal model that shows degeneration of the cerebellum with that particular 

knockout. Would either of these knock-in models alleviate, or completely remove the 

pathology seen in these knockouts? 
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1.7 Aims and objectives 
 

A defect in the catalytic activity of TDP1 leads to accumulation of DNA single-strand 

breaks in cells (El-Khamisy et al., 2005; Katyal and McKinnon, 2007) and in vitro a 

comparatively high concentration of TDP1 is required to achieve removal of the 

synthetic lesion (El-Khamisy and Caldecott, 2007; Raymond et al., 2004). So how does 

TDP1 overcome these issues in vivo? 

 

Also in higher eukaryotes TDP1 contains an N-terminal domain of ~ 150 amino acids 

that has not been crystallised with the catalytic C-terminal domain. Why is this N-

terminal domain required in higher eukaryotes and how does this affect the overall 

structure of TDP1? 

 

The main aim of the thesis is to characterize and identify novel mechanisms for the 

repair of DNA topoisomerase-mediated and oxidative stress-induced DNA breaks. 

Using in vitro biochemical analysis combined with in vivo studies I will investigate how 

TDP1 is recruited and retained at the sites of damage, through post-translational 

modifications and protein – protein interactions. I will also study the role for the N-

terminal evolutionarily domain of TDP1 and if it is required for optimal protection 

against genotoxic agents, and what function it may have in the cellular environment.  
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Chapter II 
 

 Materials and Methods 
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2.1 Materials 
 

Solutions were made up with distilled water unless otherwise stated. Materials and 

solutions were autoclaved at 125 °C for 15 minutes for sterilisation where possible. 

Filter sterilisation was carried out through a 0.2 µm filter (Nalgene). Storage was at 

room temperature unless stated. 

 

LB Broth 

(Autoclaved) 

 

LB Agar 

(Autoclaved) 

 

TAE (50x) 

2 M Tris 

50 mM EDTA 

5.71 % (1M) Glacial acetic acid 

 

TBE (10x) 

0.9 M Tris 

0.9 M Boric acid 

20 mM EDTA (pH 8.0) 

 

Towbin (10x) 

0.25 M Tris 

1.92 M Glycine 

 

Protein loading buffer (5x) 

250 mM Tris-Hcl (pH 6.8) 

500 mM DTT 

10 % w/v SDS 

0.5 % Bromophenol blue 
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50 % v/v Glycerol 

stored at -20 °C 

 

Tris-glycine Electrophoresis buffer (running buffer) 

25 mM Tris 

250 mM Glycine 

1 % SDS 

 

Western transfer buffer 

Towbin (1x) 

20 % methanol 

 

DNA loading dye 

0.25 % bromophenol blue 

40 % sucrose 

stored at 4 °C 

  

Phosphate-Buffered Saline (PBS) 

(Autoclaved) 

 

SOB medium 

0.5 % (w/v) yeast extract 

2 % (w/v) tryptone 

10 mM NaCl 

2.5 mM KCl 

20 mM MgSO4 

 

Transformation buffer 

250 mM KCl 

15 mM CaCl2.H2O 

10 mM PIPES 

(Sterile filtered) stored at 4 °C 
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2.2 Cloning and Molecular methods 
 

2.2.1 PCR, restriction digests and ligations 
 

PCR was carried out using FastStart Taq DNA Polymerase (Roche) according to the 

manufacturers guidelines. Amplified products were purified using the Qiagen PCR 

purification kit and protocol. Restriction endonuclease digests were performed with 

enzymes from NEB or Roche, and digests were set up according to the conditions 

recommended. Typically digests were left for 2.5 hours at 37 °C and Alkaline 

phosphatase (Roche) was added to the sample containing the vector after 2 hours. This 

was to prevent re-ligation of the plasmid without the DNA insert. Digests were run on a 

1 % agarose gel (1 % w/v in 1X TBE) and the appropriate bands were excised. DNA 

was then purified using the Qiagen gel extraction kit. Ligations were carried out using 

T4 DNA ligase (NEB) and samples were left at 16 °C for 3 hours. The ligated products 

were then transformed into E.coli DH5α cells (section 2.2.3) before being sent for 

sequencing (GATC). 

 

2.2.2 Site-directed mutagenesis 
 

Site-directed mutagenesis (SDM) reactions were carried out using the QuikChange 

method (Stratagene) on a plasmid DNA template. Primers homologous to the gene of 

interest that contained the desired mutation were used to amplify the whole gene 

containing plasmid by PCR. The reactions, total volume (25 µl), were then digested 

with 0.5 µl of Dpn1 (NEB) and left overnight at 37 °C. This was to ensure the 

methylated DNA template was fully digested and only the DNA containing the required 

mutation remained. The plasmid containing the mutation was then transformed into 

E.coli DH5α cells and sent for sequencing (GATC). Primers used for PCR and SDM’s 

are listed in table 2.2.1. 
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Table 2.2.1 DNA plasmids created and oligonucleotide 

sequences 
Plasmid Insert Species Cloning sites  Resistance Oligonucleotides*
pET16b-10HT TDP1v2 BL21 (DE3), DH5α XhoI/BamHI Amp
pET16b-10HT TDP1 S81E BL21 (DE3), DH5α XhoI/BamHI Amp
pET16b-10HT TDP1 Nter (1-150) BL21 (DE3), DH5α BamHI/EcoRIAmp N-termTDP1 FWD +REV2
pET16b-10HT TDP1 Cter (151-608) BL21 (DE3), DH5α BamHI/EcoRIAmp C-termTDP1 FWD2 +REV
pET16b-10HT TDP1 H493N BL21 (DE3), DH5α XhoI/BamHI Amp
pET16b-10HT TDP1 H493R BL21 (DE3), DH5α XhoI/BamHI Amp
pET16b-10HT TDP1 (1-150) K111R BL21 (DE3), DH5α SDM Amp N-termK111R FWD +REV
pET16b-10HT TDP1 (1-150) K139R BL21 (DE3), DH5α SDM Amp N-termK139R FWD +REV
pET16b-10HT TDP1 (1-150) K111R, K139R BL21 (DE3), DH5α SDM Amp N-termK111R/139R FWD +REV
pET16b-10HT TDP1 SIM2 BL21 (DE3), DH5α SDM Amp SIM2FWD +REV
pET16b-10HT TDP1 SIM3 BL21 (DE3), DH5α SDM Amp SIM3FWD +REV
pET16b-10HT TDP1 SIM4 BL21 (DE3), DH5α SDM Amp SIM4FWD +REV
pET16b-10HT TDP1 SIM5 BL21 (DE3), DH5α SDM Amp SIM5FWD +REV
pCI-myc-puro TDP1 H493R DH5α SDM Amp/puro PCI493R FWD +REV
pCI-myc-puro TDP1 (281-608) DH5α XhoI/NotI Amp/puro 281 FWD + PCI CTDP1 REV
pCI-myc-puro TDP1 (368-608) DH5α XhoI/NotI Amp/puro 368 FWD + PCI CTDP1 REV
pCI-myc-puro TDP1 (150-535) DH5α XhoI/NotI Amp/puro PCI NTDP1 FWD  + 535 REV
pCI-myc-puro TDP1 (150-416) DH5α XhoI/NotI Amp/puro PCI NTDP1 FWD  + 416 REV
pFlag-CMV Lig1 DH5α NotI/EcoRV Amp/neo
pCI-myc-puro TDP1 K111R DH5α SDM Amp/puro N-termK111R FWD +REV  

SDM = Site-directed mutagenesis 
Oligonucleotides* Sequence
N-termTDP1 FWD CGAGGATCCGATGTCTCAGGAAG
N-termTDP1 REV2 GCCGAATTCTCACTCCCCTGATGTCTCATACTC
C-termTDP1 FWD2 GCCGGATCCGGGCCAGGACATTTGG
C-termTDP1 REV CAAGAATTCTCAGGAGGGCAC
N-termK111R FWD GTGGTGATCAGAAAGGA 
N-termK111R REV CTTTCTCCTTTCTGATCA 
N-termK139R FWD CACAGGCTCAGAGAGGA 
N-termK139R REV CTTCCTCCTCTCTGAGCC 
SIM2 FWD CTAGAAGAAGGCGCCGCGGTTGTCATACAC
SIM2 REV GTGTATGACAACCGCGGCGCCTTCTTCATAG 
SIM3 FWD CTCAAGGAGTGGGCCGCTGTCATTCACAAG
SIM3 REV CTTGTGAATGACAGCGGCCCACTCCTTGAG
SIM4 FWD CTCTGAAACAAATGCTGCTCTTATTGGTTC 
SIM4 REV GAACCAATAAGAGCAGCATTTGTTTCAGAG 
SIM5 FWD GGAAAAAGCTCTGTTCCTGCTGCCTTGATCTATCC
SIM5 REV GGATAGATCAAGGCAGCAGGAACAGAGCTTTTTCC
PCI493R FWD GCAATGCCATGCCAAGGATTAAGACATATA
PCI493R REV TATATGTCTTAATCCTTGGCATGGCATTGC
281 FWD GCCCTCGAGACCTCCAACCTCATCCATGC
368 FWD GCCCTCGAGGGAAGTCAAAAAGATAATTGG
PCI CTDP1 REV GGGCGGCCGCTCAGGAGGGCACCCAC
PCI NTDP1 FWD GCCCTCGAGGGCCAGGACATTTGGGAC
535 REV GGGCGGCCGCTCAGCGGATCATCAGCTGGGTGC
 416 REV GGGCGGCCGCTCACAGCATGCTCTCTTTAAACTC  
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2.2.3 Competent cells and transformations 
 

2.2.3.1 E.coli DH5α cells 

500 ml of SOB media (section 2.1) was inoculated with a streak of DH5α cells in a 2 L 

flask. This was left to grow at 18 °C and 225 rpm to reach an OD600 of 0.6 (approx. 35-

40 hours). The cells were incubated on ice for 10 minutes then spun in a pre-chilled 

centrifuge (Sorvall legend RT centrifuge) at 3220 g for 10 minutes at 4 °C. The 

supernatant was discarded and cells were re-suspended in 160 mls of ice-cold 

transformation buffer (section 2.1) and placed back on ice for a further 10 minutes. 

Cells were centrifuged as above and supernatant discarded. Cells were re-suspended in 

20 mls of transformation buffer containing 7 % DMSO, left on ice for 10 minutes and 

then dispensed into pre-chilled Eppendorf tubes. Cells were then frozen in liquid 

nitrogen and stored at – 80 °C. 

 

2.2.3.2 Transformations 

DNA was transformed into DH5α cells for cloning whilst BL21 (DE3) cells were used 

for protein expression. Both followed the same transformation protocol described. 

 

50 µl of cells were transformed with either 1 µl of miniprep plasmid DNA or 5 µl of 

ligation product. Once the DNA had been added to the cells the sample was left on ice 

for 10 minutes, followed by a heat shock treatment at 42 °C for 45 seconds, then placed 

back on ice for a further 10 minutes. 100 µl of LB broth was then added to the cells and 

left to incubate at 37 °C and 225 rpm for 1 hour. 50 µl (from miniprep) of 150 µl (from 

ligation) was then spread onto LB agar (LB solidified with 1.5 % agar) plates, 

containing the appropriate antibiotic, and left overnight at 37 °C. Ampicillin or 

kanamycin was added to the LB agar plates at a final concentration of 50 µg/ml. 
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2.3 Electrophoresis and western blot analysis 
 

2.3.1 Electrophoresis of DNA 
 

DNA was typically resolved on a 1 % agarose gel (1 % agarose w/v dissolved in TBE), 

stained with ethidium bromide (~0.3 µg/ml). The gel was run at 100 V for 40-60 

minutes (depending on the resolution needed) in 1X TBE (section 2.1). Samples were 

loaded in 1X DNA loading buffer (section 2.1) and run alongside a 1 kb or 100 bp 

ladder. DNA was visualized by UV illumination using the Syngene InGenius 

Bioimaging system. For gel extraction gels were placed over a UV box and bands 

excised with a scalpel (section 2.2.1). 

 

2.3.2 Electrophoresis of proteins  
 

Proteins were resolved via Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoreses (SDS-PAGE gels), alongside precision plus dual colour protein 

standards (Biorad), using the XCell surelock gel system (Invitrogen). Samples were 

denatured in a final concentration of 1X protein loading buffer (section 2.1) and 

incubated at 99 °C for 5 minutes before loading. Gels were run at 190V through a 5 % 

stacking gel and resolving gel. The stacking gel consisted of 5 % acrylamide from a 30 

% acrylamide stock (National Diagnostics), 0.125 M Tris pH 6.8, 0.1 % (w/v) SDS, 0.1 

% (w/v) ammonium persulphate and 0.1 % (v/v) TEMED). The resolving gels were 

made up with 8, 10, 12 or 14 % acrylamide from a 30 % acrylamide stock (National 

Diagnostics). The resolving gel also consisted of 0.375 M Tris pH 8.8, 0.1 %  (w/v) 

SDS, 0.1 % (w/v) ammonium persulphate and 0.04 % (v/v) TEMED (N,N,N’,N’-

Tetramethylethylenediamine). The ammonium persulphate and TEMED were added to 

mixtures last, to allow polymerisation of the gel (Sambrook and Russell 2001) 

 

Gels were run in 1X running buffer (Materials, section 2.1) and then either transferred 

for western blot analysis, or stained. 
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2.3.2.1 Coomassie blue staining 

Gels were stained with Coomassie blue solution (50 % methanol, 10 % acetic acid, 0.05 

% (w/v) Coomassie blue) 

 

2.3.2.2 Silver staining 

Silver staining was carried out using the Biorad Silver Stain Plus kit according to 

manufacturer’s instructions. 

 

2.4 Western blots 
 

Protein samples were resolved on an appropriately sized gel. The gel was then washed 

with distilled water and transferred to a Hybond–C extra membrane (Amersham 

biosciences). The membrane was then transferred at 30V for 70 minutes using the XCell 

II Blot module kit (Invitrogen) in 1X transfer buffer (Materials, section 2.1). 

Membranes were then blocked for 1 hour in 5 % (w/v) non-fat dried milk (Marvel), 

dissolved in PBS and 0.1 % (v/v) Tween (PBST). This was followed by incubation with 

the primary antibody, made up in blocking buffer, for 1 hour at room temperature or 4 

°C overnight. Membranes were then washed with PBST for 5 minutes, and this step was 

repeated 3 times. The appropriate Horseradish peroxidase (HRP)-conjugated secondary 

antibody (diluted in blocking buffer) was then added to the membranes and left for 1 

hour at room temperature. A summary of the antibodies used can be found in table 

2.2.2. The membranes were then washed 3 times for 5 minute periods in PBST before 

detection with addition of ECL chemiluminescent reagents (GE Healthcare) as per 

manufacturers guidelines. Emission was captured with the autoradiograph film using 

the Xograph compact 4 automatic X-ray film processor. Quantification of blots was 

carried out by Gene Tools (SynGene), or ImageQuant software (GE Healthcare). 
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Table 2.2.2 Antibodies 
Name Source Species WB (dilution) MW (kDa) Source
Actin (AC-40) Mouse 1 in 2000 44 Sigma (A4700)
APE1 (NB100-101) Rabbit 1 in 1000 37 Novus Biologicals (NB100-101)
PCNA (PC10) Mouse 1 in 1000 29 Alan Lehman
Flag Mouse 1 in 3000 N/A Sigma (F3165)
His Mouse 1 in 1000 N/A Sigma (H1029-0.2mL)
pLigase 1 Mouse 1 in 1000 125 Neomarkers
Ligase 3 (TL25) Rabbit 1 in 2000 103 Keith Cadecott
Myc (9B11) Mouse 1 in 2000 N/A Cell Signaling (2276)
Sumo1 (D-11) H, M, R 1 in 500 can detect in lysate 11-20 Santa Cruz (sc-5308)
Sumo1 Rabbit 1 in 4000 not for detection in lysate 16-18 Active Motif (40120)
Sumo2/3 Rabbit 1 in 4000 not for detection in lysate 15, 18 Active Motif (40220)
Sumo2/3 Rabbit 1 in 3000 15, 18 Abcam (ab80986)
TDP1 Rabbit 1 in 2000 68 Abcam (ab4166)
TDP1 Rabbit 1 in 500 (detects C-terminus) 68 Eurogentec

Keith Caldecott 

 

 

2.5 Protein expression and purification  
 

2.5.1 Protein expression 
 

20 mls of LB broth in a 250 ml flask (containing 50 µg/ml of the appropriate antibiotic) 

was inoculated with a streak of colonies from BL21 (DE3) cells containing the plasmid 

DNA of interest. The flask was then left overnight at 37 °C and 225 rpm for 

approximately 18 hours until a 10 fold dilution of the culture (diluted in LB broth) gave 

an OD600 between 0.3 and 0.5. An inoculum volume of 20 mls was then added to 1 L of 

terrific broth (Melford), containing 50 µg/ml of the appropriate antibiotic and left at 37 

°C and 225 rpm until an OD600 between 0.9 and 1.0 was reached. The culture was then 

placed at 20 °C and 225 rpm for 1 hour and IPTG was then added to make a 1 mM final 

concentration. The culture was placed back in the 20 °C incubator and left overnight. A 

final OD reading was taken in the morning and cells were spun down at 5,000 rpm for 

15 minutes at 4 °C in a pre-chilled centrifuge. The supernatant was then discarded and 

the cell pellet was re-suspended in 20 mls of buffer (25 mM HEPES and 0.5 M NaCl 

pH 8.0) and stored at -20 °C 
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2.5.2 Protein purification 
 

2.5.2.1 Cell lysis 

Cell pastes were taken from the -20 °C to defrost. 20 mls of buffer A, (25 mM HEPES, 

500 mM NaCl, 10 mM imidazole and 10 % Glycerol at pH 8.0), and 240 µl of 100 mM 

PMSF (Phenylmethanesulfonyl fluoride) were added to re-suspend the cell pellet. The 

re-suspended cells were then placed on ice and sonicated at 40 % amplitude for 30 

seconds and then left to cool for 30 seconds. This process was repeated a further 6 

times. The sample was then spun at 10,000 rpm for 15 minutes @ 4 °C in a Beckman 

Coulter Avanti J-20XP centrifuge. A 400 µl aliquot was taken from the soluble fraction 

and labeled the load. 

 

2.5.2.2 Immobilised metal affinity chromatography (IMAC) purification 

 The supernatant was loaded onto a Ni+
 charged 1 ml HiTrap column (GE healthcare) 

attached to an FPLC in the cold cabinet. Before loading the column was washed with 

distilled water and equilibrated with 5 column volumes of buffer A. The protein sample 

was loaded onto the column at 1 ml/min and unbound proteins were removed with 10 

column volumes of buffer A. The column was then washed with 10 column volumes of 

80 mM imidazole (dissolved in buffer A) and 8 column volumes of 250 mM imidazole 

(dissolved in buffer A). 200 µl of each wash, termed flow through, 80 mM imidazole 

wash and 250 mM imidazole wash were reserved and a protein gel was run to identify 

which fractions contained the protein of interest. 25 µl or 75 µl of fractions, depending 

on UV trace, were added to 20 µl of 5X protein loading buffer and made up to a final 

volume of 100 µl with column buffer. Samples heated at 80 °C for 5 minutes before 3 – 

20 µl, depending on fraction, were loaded onto the gel. Fractions containing the fusion 

protein were dialysed against 0.5 L of pre-chilled 25 mM HEPES, 130 mM NaCl, 10 % 

Glycerol, 1 mM DTT pH 8.0 for 1.5 hours at 4 °C. This step was then repeated for a 

further 1.5 hours in fresh dialysis buffer. The sample was then snap-frozen in liquid 

nitrogen and stored at -80 °C. The Protein concentration was determined by Nanodrop 

(Thermo Scientific). 
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Table 2.2.3 Proteins expressed and purified 
Batch Purification Column  Concentration (mg/ml) Protein Molar Concentration (µM) Comments

OW110308a 1ml HiTrap HP 0.51 TDP1 S81A 7.15
OW110308b 1ml HiTrap HP 1.01 TDP1 S81E 14.17
OW110308C 1ml HiTrap HP 0.78 TDP1 H493N 10.94
OW111201B 1ml HiTrap HP 1.20 TDP1 v2 16.83
OW110225 1ml HiTrap HP 0.70 K111R 9.78
OW110127A 1ml HiTrap HP 0.38 TDP1(1-150) K111R 19.2 N-terminal truncations
OW110127B 1ml HiTrap HP 0.55 TDP1(1-150) K139R 27.79 N-terminal truncations
OW110127C 1ml HiTrap HP 0.80 TDP1(1-150) K111/139R 40.37 N-terminal truncations
OW101201 1ml HiTrap HP 0.53 TDP1(1-150) 26.82 N-terminal truncations
NA101201 1ml HiTrap HP 0.81 TDP1(151-608) 14.76
OW111021A 1ml HiTrap HP n/a TDP1 SIM1 ILLV - AALV n/a No expression of protein
OW110811A 1ml HiTrap HP 0.26 TDP1 SIM2 LRVV - AAVV 3.65 Potential contaminant at 65 kDa
OW110811B 1ml HiTrap HP 0.31 TDP1 SIM3 IDVI - AAVI 4.35 Potential contaminant at 65 kDa
OW110815A 1ml HiTrap HP 0.32 TDP1 SIM4 VYLI - AALI 4.49 Potential contaminant at 65 kDa
OW110815B 1ml HiTrap HP 0.28 TDP1 SIM5 LYLI - AALI 3.93 Potential contaminant at 65 kDa
OW111201C 1ml HiTrap HP 2.02 K111R 28.23  

 

2.6 Biochemical assays 
 

2.6.1 SUMOylation assay 
 

The SUMOylation assay used to identify the covalent interaction of TDP1 and its 

variants with SUMO 1, 2 and 3 was carried out following the SUMOlink SUMO-1 kit 

(Activemotif) manual. Purified His-TDP1 or His-TDP1 mutants (430 nM) were 

incubated with purified SAE1/SAE2 (50 nM), UBE2i (500 nM), and SUMO 1, 2 or 3 

(30 µM) in 50 mM Tris-HCl, pH 8.0; 50 mM NaCl; 5 mM MgCl2; 10% glycerol; and 

0.5 mM DTT, and 5 mM ATP (Activemotif). Reactions were incubated at 30 ºC for 3 

hours unless otherwise indicated, followed by fractionation on SDS-PAGE and analysis 

by western blotting using 1:4000 dilution of anti-SUMO1 (Activemotif), or a 1:200 

dilution of anti-TDP1 polyclonal antibodies (ab4166; abcam). Quantification of 

SUMOylated TDP1 was conducted using ECL and ImageQuant LASM4000 software, 

and normalised to total TDP1 immunoreactive signal. 

 

2.6.2 SUMO and TDP1 non-covalent binding studies 
 

2.6.2.1 Recombinant TDP1 binding to SUMO immobilised resin 

5 µg SUMO 1, 2 or 3 immobilised to beads (Enzo life sciences) were equilibrated by 

washing 3 times in 200 µl binding buffer (1 % (v/v) Triton, 300 mM NaCl, 25 mM 

HEPES and 10 % (v/v) Glycerol pH 8.0). 2.5 µg of recombinant His-TDP1 and TDP1 
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truncations were then added to the beads in a 500 µl volume (made up in binding 

buffer) and left to bind end-over-end for 3 hours at 4 °C. The samples were then spun in 

a pre-chilled centrifuge at 1,500 rpm, 4 °C for 2 minutes and supernatant was discarded. 

The beads were washed in 200 µl of binding buffer, re-spun, and supernatant removed. 

This process was repeated for 4 washes followed by the addition of 20 µl of 2X protein 

loading buffer. Sample boiled for 15-20 minutes, resolved on an SDS-PAGE gel and 

transferred for western analysis (see 2.4). 

 

2.6.3 Casein Kinase 2 phosphorylation 
 

3 µg of recombinant His-TDP1 was added to 2 µl of CK2 (NEB) in 10X CK2 reaction 

buffer (NEB), 400 µM ATP and samples made up to 10 µl in 25 mM HEPES, 130 mM 

NaCl at pH 8.0. Reactions were left for 2 hours at 30 °C before addition of protein 

loading buffer to stop the reaction. Varying concentrations of TBB (SIGMA) were pre-

incubated with CK2 for 1 hr at 30 °C before addition of recombinant TDP1. Samples 

were analysed through immunoblots or SDS-PAGE gel. 

 

For incubation with whole cell extracts 3 µg of recombinant His-TDP1 was added to 5 

µl of cell extract (HEK 293 cells) with the addition of ATP and magnesium chloride to 

final concentrations of 5 mM and 2 mM respectively. Samples left to incubate for for 30 

mins at 30 °C. Samples were fractionated and analysed by immunoblotting (see 2.4). 

 

2.7 Protein structure and folding 
 

2.7.1 Circular dichroism 
 

Recombinant proteins were dialysed in 30 mM sodium phosphate buffer, pH 7.4, and 

filtered immediately before the spectrum was obtained through 0.2-micron filters 

(Millipore). The concentration of recombinant proteins was accurately determined 

immediately before, during and after the CD scans, to ensure accurate secondary 

structure estimations. Samples were normalised to the lowest concentration (0.6 mg/ml), 

placed in a 0.2-mm quartz cuvette (Starna, Essex, UK) and measurements taken using a 

JASCO J-715 spectropolarimeter (JASCO). The CD spectra of the buffer alone was 
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subtracted from that of the sample, and time constant was set to 4 seconds with a scan 

rate at 50 nm/min. The bandwidth was 1 nm and the sensitivity set to standard. Scans 

were performed from 260 to 190 nm with a 0.1 nm data pitch and continuous scan 

mode. A Peltier device was used to maintain a temperature at 10 °C. The buffer 

baselines were subtracted and data represent the average of four independent 

experiments ± standard error of the mean (s.e.m.) 

 

2.7.1.1 Quantitative analysis of circular dichroism by Dichroweb 

Secondary structure analysis was conducted using three different algorithms; the 

variable selection method (CDSSTR) with reference data set 4, K2D and CONTIN from 

the Dichroweb server, which gave the best goodness-of-fits. 

 

2.7.2 Protein denaturation curves 
 

45 µl of 1 µM protein solution (25 mM HEPES, 130 mM NaCl, 10% Glycerol and 1 

mM DTT at pH 8.0) was added to 15 µl of 20 x SYPRO-Orange; resulting in a final 

protein concentration of 0.75 µM. A control of 45 µl of buffer (25 mM HEPES, 130 

mM NaCl, 10% Glycerol and 1 mM DTT at pH 8.0) with 15 µl of 20 x SYPRO-Orange 

was also carried out. 20 µl of each sample was aliquoted in triplicate into a 96 well 

plate. Protein melting experiments were carried out using the LightCycler 480 System II 

(Roche). The instrument was set up with a detection format of 465 nm as the excitation 

wavelength and 580 nm as the emission wavelength to detect SYPRO-Orange–specific 

signal. Melting curve fluorescent signal was acquired between 20 °C and 70 °C using a 

ramping rate of 0.03 °C s−1, and an acquisition of 20 data points per degree Celsius. 
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Analysis 

Melting temperatures (Tm) were determined in Prism by using a variation of the 

Boltzmann model from (Ericsson, Hallberg et al. 2006). 

 

 
 

Where an and ad are the slopes of the native and denatured baselines and bn and bd are 

the y-intercepts of the native and denatured baselines. Tm is the melting temperature; m 

describes the slope of transition. Data were normalised to a fraction of protein in its 

denatured state and presented as normalised relative fluorescence ± standard deviation. 

 

2.8 Mammalian cell culture  
 

2.8.1 Maintenance of cell lines  
 

Human HEK293T cells, were cultured at 37 °C and 5 % CO2 in Dulbecco’s essential 

medium (Gibco, Invitrogen) supplemented with 10 % foetal calf serum (FCS), 2 mM l-

glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin. Chicken DT40 cells, were 

cultured a 39 °C and 5 % CO2 with RPMI 1640 supplemented with 10 % FCS, 1 % 

chicken serum, 2 mM l-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin 

with 10-5 β-Me. 

 

2.8.2 Transfection 
 

2.8.2.1 Calcium phosphate transfection  

HEK293T cells from a fully confluent T75 flask were split and diluted 1 in 10 in fresh 

media (total 10 mls) per 10 cm plate. Plates were placed in the incubator (37 °C and 5 

% CO2) overnight. 2X HBS (section 2.1) was thawed at room temperature and 500 µl 

aliquots were made per transfection. Into a separate Eppendorf a maximum of 10 µg 

DNA (irrespective of number of plasmids used per transfection), 61 µl of CaCl2 (2 M 

stock) was added and made up to 500 µl with distilled water. Whilst bubbling the 2X 

HBS the DNA mixture was added drop-wise. The final mixture was then added drop-
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wise over the 10 cm plate and the cells were placed back in the incubator and left for 24 

hours (precipitate in the plate will be visible through the microscope. The media was 

then removed, washed with PBS and replaced with fresh media. Cells were then left in 

the incubator overnight ready for harvest the following day.  

 

2.8.2.2 Transfection by electroporation 

Stable cell lines. DT40 Tdp1-/- cells were transfected following method 1: Stable non-

targeted transfection of DT40 by Julian E. Sale (Reviews and Protocols in DT40 

Research, Subcellular Biochemistry Volume 40; Jean-Marie Buerstedde and Shunichi 

Takeda). 5 ng of linearized pcD2E vector containing G418 resistance and 15 ng of 

linearized Myc – tagged hTDP1, c-TDP1 or empty vector were mixed with 5.12 x 106 

cells in 0.5 mls ice cold PBS. Samples were then transferred to a Gene Pulser cuvette 

(Bio-Rad) with a 0.4 cm electrode gap and left for 10 mins at 4 oC. Using the Bio-Rad 

Gene Pulser samples were electroporated at 550 V and 25 uFD before being chilled on 

ice for 10 mins. Cells were then transferred to a 10 cm dish containing 20 mls of pre-

warmed media and left overnight at 39 °C. Cells were diluted in 80 mls of media 

supplemented with 2mg/ml G418 for selection and aliquoted into 200 µl samples in 4 x 

96 well plates. Cells were left for 7 days until colonies could be seen through the 

bottom of the wells. Once at approx. 2 mm diameter cells were transferred to 24 well 

plates with 1.5mls of pre-warmed media and left until full confluent (3 days). Cells 

were then harvested, samples fractionated on an SDS-PAGE gel and stable clones were 

detected through immunoblots (see 2.4). 

 

2.9 Cell harvest and lysis 
	
  

Media was removed and cells washed in ice cold PBS. Lysates were prepared from cells 

by re-suspension in 200 µl lysis buffer (20 mM HEPES pH 7.4, 0.5% NP40, 40 mM 

NaCl, 2 mM MgCl2, 1X protease inhibitor cocktail [Roche], 1X protease inhibitor 

cocktail [Roche] 20 mM NEM, 25 U/ml benzonase [Merck]) per 10 cm plate. Lysates 

were incubated for 30 minutes on ice, cleared by centrifugation at 13000 rpm at 4 °C for 

10 minutes. Supernatant was collected and the protein concentration determined by 

Bradford assay. Protein loading buffer was then added to lysate for western analysis, or 
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the NaCl concentration adjusted to 300 mM for co-immunoprecipitation, to examine 

protein-protein interaction.  

 

2.10 Co-immunoprecipitation 
 

Anti-Myc antibody (9E11; cell signalling), or Anti-Flag antibody (F3165; Sigma) was 

added to the lysate (section 2.9) and the mixture was rotated at 4 °C for 1 hour. 

Following centrifugation at 1500 rpm for 3 minutes, the supernatant was then added to 

protein G sepharose beads (Sigma), and allowed to bind end-over-end at 4 °C for 2 

hours. Beads were then washed 3 times with wash buffer (20 mM HEPES pH 7.4, 300 

mM NaCl) and re-suspended in protein loading buffer. Samples were boiled for 15-20 

minutes, resolved on an SDS-PAGE gel and transferred for western analysis. 

 

2.11 Creating stable cell lines in DT40 Tdp1-/- cells 
 

DT40 Tdp1-/- cells were complemented with Myc-TDP1, Myc-TDP1151-608 or Myc 

vector. 20 µg of protein encoded plasmid linearized along with 20 µg of pcD2E 

(containing G418 resistance). Samples were purified using ethanol precipitation and the 

concentration was measured by NanoDrop. 5.12 x 106 cells/transfection were re-

suspended in final volume 500 µl of ice cold PBS. 15 µg of DNA containing either the 

Myc-TDP1, TDP1151-608 or Myc vector and 5 µg of pcD2E was added to cells and 

transferred to a Gene Pulser cuvette (biorad) with a 0.4 cm electrode gap. Samples were 

left on ice for 10 mins before electroporation at 550 V and 25 uFD. Cells were placed 

on ice for a further 10 mins before addition of 20 mls of pre-warmed culture media to a 

10 cm plate. Plates incubated overnight at 39 °C and 5 % CO2. Samples were made up 

to 80 mls (total volume) with culture media containing 2 mg/ml G418 and aliquoted in 

200 µl fractions to a 96 well plate and left for 7 days until colonies were visible through 

the bottom of the plate. Wells containing 1 colony were then made up to 3 mls of media 

with 2 mg/ml G418 and aliquoted into 12 well plates for incubation at 39 °C. When 

fully confluent (3 days) the samples were processed and immunoblots analysed for 

clones expressing the protein of interest. 
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2.12 Viability assays 
 

Measurement of cellular sensitivity to DNA damaging agents. To measure the 

sensitivity of cells to CPT and MMS in the presence or absence of 0.5 µM PARP 

inhibitor  (Olaparib) 0.5 ml (1 × 105 cells in 10 ml) cells were mixed with 0.5 ml of 

media containing various concentrations of the drugs. Five hundred cells/well were 

seeded in triplicate into 96 well plates with 100 µl of medium/well. Plates were 

incubated at 39 °C for 72 hrs and cell viability determined using the CellTiter-Blue kit. 

20 µl of CellTiter-Blue solution added to each well, fluorescence 

(560(20)Ex/590(10)Em) measured using the GloMax®-Multi Detection System 

(Promega) and data analysed using SigmaPlot. Survival of untreated cells set to 100 %. 

Error bars represent standard error from 3 independent repeats. 

 

2.13 FACS analysis 
 

1 × 106 cells for each cell line were collected and pellets obtained by centrifugation at 

250 g in a benchtop centrifuge for 5 mins. The supernatant was removed and cells were 

washed twice with cold PBS. The cells were then re-suspended in 50 µl PBS and 1 ml 

of, ice cold, 70 % ethanol was added whilst vortexing. Aliquots were stored at –20 °C 

overnight. Cells were spun down, washed twice with PBS, and stained with 500 µl PBS 

containing 20 µg/ml propidium iodide and 50 µg/ml of RNase A. Re-suspended cells 

were analysed for DNA content on a FACS Canto flow cytometer and data processed 

with FACS Diva software (Becton Dickinson) 

 

2.14 DNA single-strand break assays 
 

2.14.1 Alkaline comet assay 
 

The alkaline comet assay was used to analyse induction of DNA strand breaks after 

treatment with various chaotropic agents. The assay conducted in alkaline conditions 

measures SSBs, alkali labile sites and DSBs, but because of their frequency the assay 
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primarily measures SSBs. Samples were processed on ice and in the dark to prevent 

induction of unwanted DNA damage, or repair. 

 

2.14.1.1 Preparation 

Frosted slides (Fisher) were coated with 0.6 % (w/v) electrophoresis grade agarose 

(Invitrogen) dissolved in 1X PBS. Cells were suspended in pre-chilled PBS and mixed 

with equal volume (150 µl) of 1.2 % low-gelling-temperature agarose (Sigma, type VII) 

maintained at 42 oC. Cell suspension was immediately layered onto pre-chilled frosted 

glass slides (Fisher) pre-coated with 0.6 % agarose and maintained in the dark at 4 oC 

until set, and for all subsequent steps. Slides were immersed in pre-chilled lysis buffer 

(2.5 M NaCl, 10 mM Tris-HCl, 100 mM EDTA pH 8.0, 1 % Triton X-100, 1 % DMSO; 

pH 10) for 1 hr, washed with pre-chilled distilled water (2 x 10 min), and placed for 45 

min in pre-chilled alkaline electrophoresis buffer (50 mM NaOH, 1 mM EDTA, 1 % 

DMSO). Electrophoresis was then conducted at 1 V/cm for 25 min, followed by 

neutralization in 400 mM Tris-HCl pH 7.0 for 1 hr. Finally, DNA was stained with Sybr 

Green I (1:10,000 in PBS) for 30 min. Average tail moments from 50 cells/sample were 

quantified from blindly coded slides using Comet Assay IV software (Perceptive 

Instruments, UK). 

 

2.14.2 Gyrosyl assay 
 

2.14.2.1 Preparation of oligonucleotide substrates: 

Oligonucleotides of 13mer with a 3’phosphotyrosyl bond conjugated with an FITC 

molecule were purchased from Midland Certified Reagent (Midland, TX, USA). 

 

2.14.2.2 TDP1 fluorescence assay: 

The assay was developed in 384 well black plates in a final reaction volume of 15 µl. 

Assay buffer was composed of 50 mM tris 8.0, 5 mM MgCl2, 80 mM KCl, 0.05% 

Tween 20 and 1mM DTT. 10 µl of TDP1 was dispensed into each well. Reactions were 

then initiated by addition of 5 µl substrate and plates were incubated at 25˚C. Final 

concentrations were 6.25pM of TDP1 and 10nM of substrate. Addition of quench 

reagent (2 µl Sensor + 30 µl Enhancer buffer) (Gyrasol Technologies, Kansas, USA) 

stopped the reaction and fluorescence was subsequently monitored with excitation and 
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emission wavelengths of λex 490nm and λem 520nm using a BMG Labtech Pherastar 

plate reader. In vitro 3’-tyrosyl-DNA phosphodiesterase 1 activity of whole cell extracts 

(WCE) was determined using the TDP1 fluorescence assay format in a 15 µl reaction 

volume containing 8 µl assay buffer, 5 µL of 30 nM oligonucleotide substrate and 2 µl 

of the indicated amounts (µg) of WCE diluted in lysis buffer. 

 

2.15 Mass spectroscopy 
 

Bands of interest were cut from the gel, using a clean scalpel that was rinsed with 

methanol and transferred to separate Eppendorfs. Once excised the instant blue stain 

was removed using a de-staining protocol:  

Samples were washed in 300 µl 50% MeCN at room temperature for 15 mins in a 

shaking incubator. Supernatant was then removed followed by the addition of 300 µl 25 

mM NH4HCO3, samples were again left to incubate at room temperature for 15 mins. 

The supernantant was removed and samples were washed with 300 µl 50% MeCN in 25 

mM NH4HCO3 and left shaking at room temperature for 15 mins. Samples were 

dehydrated using a speedvac for 5 mins with no heat. Once dehydrated the samples 

were rehydrated in 10 mM DTT solution (~50 µl or enough to cover the gel pieces) and 

left to incubate for 45 min at 50°C before undergoing alkylation. 

Alkylation: 

Samples were allowed to return to room temperature before the supernatant was 

removed and replaced with iodoacetamide solution. Samples were then left to incubate 

for 45 min in the dark, at room temperature. The supernatant was then removed before 

samples were again subject to dehydration, i.e. three changes of 50% MeCN, 25 mM 

NH4HCO3, with 5 min shaking between each change followed by 5 mins in speedvac 

with no heat.  

Samples were rehydrated in trypsin solution adding just enough to fully rehydrate so gel 

pieces grew back to their original size. Gel pieces were then covered with 25 mM 

NH4HCO3 and left overnight at 37°C. 

Formic acid was added to each sample to a final concentration of ~ 5%.  Samples were 
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then vortexed, spun down and the supernatant (peptides) transferred to a clean tube. 1X 

volume of MeCN, (equal volume to volume of gel pieces) was added to each sample 

and left to shake for 5 min. Supernatant was then added to the peptides and samples 

containing the peptide eluate was reduced to a final volume of ~ 8 µl, using a speedvac, 

with no heat. The peptide eluates were analysed using LTQ-OrbitrapXL following 

standard operating procedure. 
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Chapter III 
	
  
	
  

Results 1: The N-terminal evolutionarily driven domain of TDP1 
is required for optimal cellular protection against genotoxic 
stress  
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3.1 Introduction 
 

3.1.1 TDP1; discovery, substrate and mechanism of action 
 

TDP1 was first discovered by Nash et al (S. W. Yang et al., 1996) as they demonstrated 

a partially purified protein, extracted from Saccharomyces cerevisiae, that was capable 

of removing an abortive topoisomerase 1–DNA complex. This enzyme was able to 

hydrolyse the tyrosine-DNA phosphodiester linkage between DNA and Top1, leaving a 

3' phosphate and 5’ hydroxyl group (Davies et al., 2002b; 2002a; Debéthune et al., 

2002; Interthal et al., 2001) (Figure 3.1.1).  

 

Unlike many other “end-processing enzymes” the product resulting from hydrolysis by 

TDP1 does not leave the appropriate 5’ hydroxyl and 3’ phosphate required for ligation 

of the DNA backbone. Therefore PNKP, chaperoned by XRCC1, is also required: a 

protein that contains kinase activity, to phosphorylate the 5’ end of DNA and 

phosphatase activity to remove the 3’ phosphate and replace it with a hydroxyl group 

(Jilani et al., 1999; Plo, 2003; Weinfeld et al., 2011). This allows the corresponding 

ATP dependent ligase to re-ligate the DNA, restoring its integrity.  

 

TDP1’s primary substrate is that of the stalled Top1 complex (El-Khamisy et al., 2005; 

Katyal et al., 2007; S. W. Yang et al., 1996). The Top1 protein is an enzyme required to 

relieve supercoils within the DNA as a result of replication and transcription. The 

enzyme accomplishes this by creating a single-strand break within one strand of the 

DNA, forming a DNA-protein linked complex, and allows controlled rotation of the 

other strand to alleviate the supercoils (Champoux, 2001; Deweese et al., 2008; Leppard 

and Champoux, 2005). Top1 has also been shown to be a player in the prevention of R-

loops: RNA strands that get entwined with single-stranded DNA (as a result of 

transcription) by removing RNA bases from the DNA containing strands. This can lead 

to deleterious effects if untreated (Tuduri, Crabbe et al. 2009). 

  

The breaking of DNA by Top1 is a transient one and is required for the removal of 

helical torsion. Once the stress has been alleviated Top1 uses the OH group at the 3’-  

break of the DNA for re-ligation, without the requirement for a DNA ligase, and thus 
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recycling the Top1 protein. Unfortunately, if lesions are in close proximity to the Top1-

DNA adduct (Pommier, 2003; Pourquier and Pommier, 2001; Sordet et al., 2004), or if 

synthetic compounds such as camptothecin (CPT) (Hsiang et al., 1985) are used, Top1 

becomes unable to remove itself from the DNA and forms a Top1-linked DNA single-

strand break. It is also important to note that crystal structures of the Top1-DNA bound 

complex shows the 3’ phosphotyrosine residue buried within the DNA-Top1 complex, 

making its accessibility for hydrolysis difficult (Redinbo et al., 1998). Thus, it is 

predicted that once the abortive Top1-complex forms it is ubiquitylated and then 

degraded by the 26S proteasome (Debéthune et al., 2002; Desai et al., 1997; 2003; 

Interthal et al., 2005a). This mechanism leaves a tyrosine residue, and possibly small 

peptide sequence, covalently attached to a 3’ phosphate at the nick of the DNA. It is this 

substrate that can then be hydrolysed by TDP1. 

 

The abortive Top1 complex is not what causes toxicity to the cell; if this abortive 

complex remains, collision with the replication machinery, or transcriptional 

polymerases can result in double-strand breaks, DNA single-strand breaks and can 

impede the production of cellular proteins (El-Khamisy, 2006). Either of these 

outcomes can lead to cell death and defects in the repair pathway; stalled Top1 

complexes have been implicated in several diseases (El-Khamisy et al., 2005; 

Kerzendorfer et al., 2010; Takashima et al., 2002). 

 

The phosphosdiesterase domain of hTDP1 was crystallised by Davies et al in 2002 

(Davies et al., 2002b) and shows a tertiary structure composed of two α - β - α domains 

that contain the catalytic pocket with which the enzyme hydrolyses the 3’ tyrosine 

phosphate (Figure 3.1.1). Analysis of the protein sequence shows this enzyme belongs 

to the phospholipase D (PLD) superfamily (Interthal et al., 2001), all of which catalyze 

a phosphoryl transfer reaction. These families contain conserved HKD motifs that are 

responsible for the similar reaction chemistry and follow the sequence HxK(x)4D. 

Unlike other members of the PLD family TDP1 does not contain that aspartate residue 

but does have two motifs with conserved histidines and lysines at His263, Lys265, 

His493, and Lys495 (Interthal et al., 2001). Other conserved amino acid groups between 

TDP1 orthologs are Asn283, Gln294, Asn516, and Glu538. Due to the pseudo-twofold 

axis of symmetry residues Asn283 and Gln294 work in conjunction with His493 and 

Lys495, whilst Asn516, and Glu538 co-operate with His263 and Lys265 (Davies et al., 
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2002b; 2002a; Raymond et al., 2004). These residues help balance out the proton 

transfer and allow H493 to activate a water molecule by stabilizing the reaction 

intermediates. 

 

The mechanism of TDP1 has been elucidated and shown to be a two-step process: 

binding of the TDP1 substrate positions the phosphate moiety in the center of the active 

site where the histidine 263 can initiate the 1st nucleophilic attack, cleaving the 

phosphotyrosine and forming a phospho-TDP1 intermediate. The second step of the 

reaction involves H493, this histidine residue acts as a base that can activate a water 

molecule to hydrolyse the 3’phospho-His263 linkage. This restores the catalytic site of 

TDP1 and results in the release of the DNA containing a 3’ phosphate (Figure 3.1.2). 

 

It is not surprising then, that if the H263 is mutated to an alanine the TDP1 enzyme 

becomes catalytically dead, and no intermediate is formed. Evidence has been 

documented supporting the fact that the H493 is involved in the second step of the 

reaction, as mutation to an asparagine or arginine results in a significant reduction in 

catalytic activity, but the TDP1-DNA intermediate still occurs (Raymond et al., 2004). 

The latter histidine to arginine mutation at position 493 has been linked to 

spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) (El-Khamisy et al., 2005; 

Hirano et al., 2007; Takashima et al., 2002). 
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Figure 3.1.1 Cleavage of abortive Top1-DNA complexes by TDP1 

Topoisomerase 1 becomes trapped, due to lesions near the Top1-DNA adduct or chemicals that prevent 

the enzyme from recycling. This causes a prolonged covalent bond between the tyrosine of Top1 and 

phosphate on the 3- end of the DNA break (A). Top1 is then degraded to a small peptide fragment of 

unknown length with the 3’phosphotyrosine residue remaining. To repair the stalled moiety, the H263 of 

TDP1, through nucleophillic substitution, removes the Top1 fragment by donating a proton, hydrolysing 

the tyrosine residue and forming a 3-phosphohistidine bond (B) The H493 of TDP1 within its negative 

environment would then act as a base, abstracting a proton from a nearby water molecule (C). This 

‘activated’ water molecule would then act as the second nucleophile, resulting in the release and 

restoration of the H293 of TDP1, thus removing the protein from the DNA and leaving a 3’phosphate 

(D).  These DNA ends at either side of the DNA nick (3’phosphate and 5-hydroxyl) are not suitable for 

ligation. Consequently PNKP, an enzyme with phosphatase and kinase capabilities, is required in the last 

step to leave a 3’OH and 5’P for ligation (E). 

 



	
  

	
  

63	
  

 

 
Figure 3.1.2 Crystal structure of TDP1 

The crystal structure of TDP1 depicts the catalytic domain (left) and a magnification (right) of the 

catalytic pocket containing the histidines at positions 263 and 493, lysines at 265 and 495 and aspartic 

acid used in the two step nucleophilic attack to remove abortive Top1 complexes and other damaged 

DNA at the 3’ end (Davies et al., 2002b). 

 

 

3.1.2 TDP1’s role in SCAN1 
 

The importance of TDP1 was highlighted when a mutation at position 493 which 

changed a histidine to arginine was found and linked to the autosomal recessive disease 

SCAN1. At the molecular level this mutation was shown to have a 25-fold decrease in 

catalytic activity compared to the wild type protein (El-Khamisy et al., 2005; Interthal et 

al., 2005a). Furthermore, this mutation has an effect on the second nucleophillic 

substitution involved in the enzymatic action of TDP1. This second step is required for 

the recycling of TDP1 by the removal of the TDP1 protein from the bound DNA. As a 

result, this particular mutation can also cause TDP1 to become trapped on DNA, a 

process thought to be more toxic than the initial stalled topoisomerase complex 

(Hawkins et al., 2009; Interthal et al., 2005b).  

 

It was thought that the combination of the reduced ability for TDP1 to remove abortive 

Top1 complexes and the stalled TDP1-linked DNA led to degeneration of the 

cerebellum and the pathologies seen in SCAN1. This disease was initially thought to be 
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a result of defects in TDP1 mediated nuclear repair, but further investigations by our lab 

(unpublished) and others (Das et al., 2010) show a role for TDP1 in the mitochondria, 

leading to speculation that either, or both could be contributory to the pathology seen 

(Fam et al., 2013; 2012; Weissman et al., 2007). 

 

Patients with SCAN1 show progressive cerebellar atrophy, pes cavus, peripheral 

neuropathy and muscular atrophy. Clinically symptoms develop at a mean age of 15 

years and result in ataxic gait, seizures and senescence of pain, touch, and vibration 

senses within the extremities. Patients tend to be wheel chair bound by early adulthood. 

At a cellular level, patients exhibit mild hypercholesterolemia and hypoalbuminemia 

(Takashima et al., 2002) 
 

3.1.3 Chapter objectives 
 

TDP1 in yeast and higher eukaryotes have been shown to hydrolyse stalled Top1-DNA 

complexes, they also possess a highly conserved catalytic domain that contains the 

activity of the enzyme. However, in higher eukaryotes TDP1 has evolved a domain at 

the N-terminus, which possesses a much lower conservation between species, and in 

human’s spans 150 amino acids (25 kDa) in length (Figure 3.1.3). So if TDP1 in yeast 

can adequately remove Top1 from DNA why has the N-terminal in humans evolved? 

 

 Since TDP1 has been shown to have a role within the mitochondria, has the domain 

evolved for this sole purpose? It is a possibility since the N-terminus has been shown to 

interact with Ligase III (Chiang et al., 2010; Das et al., 2009), the only ligase that can 

access the mitochondria. There are however arguments that the N-terminus has evolved 

for more than just a mitochondrial role, as ligase III can also interact with XRCC1 for 

nuclear repair (Plo, 2003). This TDP1-Ligase III-XRCC1 mediated repair has been a 

common and accepted pathway of repair for Top1 damage within the nucleus 

(Caldecott, 2007). 
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Figure 3.1.3 Schematic of TDP1 

TDP1 consists of two domains, a catalytic domain denoted as the phosphodiesterase domain, which spans 

from amino acid 151 to 608 and is highly conserved throughout species. It contains a nuclear localization 

sequence and has histidine residues at positions 263 and 493 that are crucial for its catalytic activity. The 

H493 can be mutated to an arginine and has been found in patients with SCAN-1. The N-terminal domain 

(amino acids 1-150) is only found in higher eukaryotes and has a lower sequence homology between 

species. The N-terminal domain contains a nuclear localization sequence and in humans is 

phosphorylated at serine 81 by ATM and DNA-PK. 

 

 

This first chapter looks into what possible benefit and role the N-terminal domain of 

TDP1 may possess. To better understand the role of the N-terminal domain of TDP1 in 

vertebrate cells. I engineered DT40 Tdp1 -/- (a kind gift from Yves Pommier) by 

complementing them with Myc-tagged, human, full-length TDP1 (hTDP1) or the 

human catalytic domain of TDP1 (TDP1151-608).  Because chicken DT40 cells have well 

characterised repair pathways (Yamazoe et al., 2004) we could study the effect the loss 

of the N-terminal domain had on the protection against various DNA damaging agents. 

There is also a high degree of amino acid sequence identity between human and chicken 

Tdp1 (69 %) with all catalytic residues conserved (Figure 3.1.4); therefore, hTDP1 is 

predicted to act in a similar fashion to that of the endogenous chicken Tdp1. 
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Figure 3.1.4 Alignment of Human and Chicken Tdp1 amino acid sequence 

The amino acid sequences for human TDP1 (accession NP_060789) and chicken Tdp1 (accession 

XP_421313) share 69 % identity (letters) and 11 % similarity (+) giving a total of 80 % positive hits 

according to the NCBI BLASTP sequence alignment program.  
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3.2 Results 
 

3.2.1 Full-length TDP1 and the catalytic domain show no difference in 

activity, structure or stability 
 

To assess the impact of the N-terminal domain, full-length recombinant hexa-His 

tagged TDP1 and TDP1151-608 were expressed in E.coli and purified using a nickel 

charged column (Figure 3.2.1). These recombinant proteins were then used to 

determine if the N-terminal domain had an impact on the activity, structure or stability 

in vitro.  
 

3.2.1.1 The C-terminal domain does not demonstrate a reduction in enzymatic 

activity in vitro 

Whilst the catalytic sites of TDP1 reside in the C-terminal catalytic domain the N-

terminal domain could have an effect on the overall structure of the catalytic pocket by 

opening up the cleft and making it more accessible to the target substrate. Alternatively 

it could be important in the binding of the DNA phosphate backbone, thereupon 

orientating the catalytic sites into a better position to remove the 3’ lesion from DNA. 

To investigate the role the evolutionarily driven N-terminal domain may have on 

TDP1’s activity, recombinant TDP1 or TDP1151-608 were added to a fluorescence based 

activity assay.  

 

This assay was developed in-house and contains an oligo with a 3’ phospho-tyrosine 

(Figure 3.2.2), which mimics a stalled Top1 substrate. The tyrosine residue is 

covalently bound to a fluorescent molecule. This assay uses a trivalent metal ion sensor 

that is bound to the DNA phosphate backbone so it can quench the fluorescence of any 

fluorophore within close proximity by absorbing the electron transfer. Hence removal of 

the fluorophore containing tyrosine from the DNA results in fluorescence that can be 

recorded.  

 

6.25 pM of either full-length TDP1, TDP1151-608 or assay buffer was mixed with 10 nM 

of the oligo substrate. The reaction was left for 10 minutes at room temperature before 

fluorescence was recorded. Incubation of His-TDP1 or His-TDP1151-608 with the Top1-
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synthetic substrate resulted in an increase in fluorescence and therefore enzymatic 

cleavage of the 3’-phosphotyrosine. Results indicate that TDP1 and TDP1151-608 show 

no significant difference in enzymatic activity with respective average fluorescence 

units of 751 to 813 (30 mins), 1626 to 1426 (60 mins) or 2036 to 1917 (90 mins) 

(Figure 3.2.2). This indicates that the N-terminus has no impact upon activity of TDP1 

in vitro. The H493N mutant gave readings of 183, 195 and 324 at 30, 60 and 90 minute 

time points. This shows that mutation of H493 to an asparagine disrupts the catalytic 

activity of the enzyme, dramatically lowering the enzymes efficiency to hydrolyse the 

3’phosphotyrosine in the synthetic substrate. This decrease in activity supports previous 

data (El-Khamisy et al., 2005; Lebedeva et al., 2012; Raymond et al., 2004). 
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Figure 3.2.1 Purification of recombinant full-length human TDP1 and TDP1151-608 

N-terminal His-tagged recombinant hTDP1 and the truncated catalytic domain were expressed in E.coli 

under a T7 promoter. Bacterial cells were cultured (T0) before induction of expression by IPTG (T1). The 

lysed cells were then loaded onto a pre-packed nickel charged HiTrap column (Load). Unbound protein 

was then washed off in buffer (FT) and weakly bound proteins were eluted in buffer containing 100 mM 

imidazole (Wash). The protein of interest was eluted in 25 mM HEPES, 250 mM imidazole, 500 mM 

NaCl at pH 7.2 (lane TDP1 and TDP1151-608).  
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Figure 3.2.2 Removal of the N-terminal domain does not impact upon activity in vitro 

A 13’mer oligo with a 3’phosphotyrosine conjugated to a FITC molecule was synthesised. This also had a 

small molecular, non-fluorescent trivalent metal ion sensor (MnIII) (Gyrasol technologies, USA) that 

binds the phosphate backbone. This trivalent metal would quench the fluorescence of any fluor by 

electron transfer. Therefore removal of the fluorophore containing Tyrosine from the oligo, by an active 

TDP1 molecule, would allow fluorescence from the molecule to be recorded. 6.25 pM recombinant 

TDP1, TDP1 H493N or TDP1151-608 was mixed with 10 nM of the substrate. Reactions were then 

quenched at several time points and fluorescence was recorded using PHERAstar software on a BMG 

Labtech Pehrastar Plate reader. Analyses of data show no difference in activity between the full-length 

and catalytic domain of TDP1, whilst the H493N mutation severely inhibited activity. Error bars 

represent standard deviation from 3 independent repeats. 
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3.2.1.2 TDP1 and TDP1151-608 have no difference in thermal stability, or structure 

Next, we tested the thermal stability of the full-length TDP1 and TDP1151-608 using a 

dye that fluoresces when bound to hydrophobic regions of a protein. Recombinant wild 

type and TDP1151-608 were subject to Thermal denaturation profiling: a technique used to 

determine the stability and profile the unfolding of a protein (Rehman et al., 2011). 

Fluorescence values were obtained using the LightCycler 480 (Roche) and melting 

points determined using a variation of the Boltzmann model (Figure 3.2.3 B) (Ericsson 

et al., 2006). By comparing the denaturation curves proteins showed a similar unfolding 

pattern and resulted in Tm of 55.5 and 54.3 °C for the truncated and wild-type proteins 

respectively, indicating no loss in stability or difference in the unfolding pattern of the 

two proteins (Figure 3.2.3 A).  

 

We also compared the circular dichroism absorption spectrum of TDP1 and TDP1151-608, 

to investigate the secondary structure, through circular dichroism spectroscopy; a well-

known method for structural comparison (Lawton, 2002; Whitmore and Wallace, 2008). 

The two proteins resulted in two similar spectral graphs with negative bands at ~210 

and 220 nm, and positive bands at ~195 nm (Figure 3.2.4 A). High-tension voltage for 

both spectra was under 600 V (Figure 3.2.4 B) at the lowest analysed wavelength, a 

value required for interpretation of suitable data (Kelly et al., 2005). Subtraction of the 

TDP1151-608 plot from the wild-type gave a spectra not associated with any structure, 

when analysed using algorithms for secondary structure (Figure 3.2.4 C).  

 

To obtain a quantitative read out analysis of secondary structure using DichroWeb by 

the variable selection algorithm (CDSSTR), which provides superior fits for globular 

proteins (Lobley et al., 2002; Sreerama and Woody, 2000; Wallace, 2003; Whitmore 

and Wallace, 2008), revealed no major difference in α-helical or β-sheet content, 

suggesting no apparent change in structure between the catalytic domain and full-length 

TDP1 (Table 3.1). From these analyses we conclude that there is no significant change 

in structure or unfolding of the truncated protein compared to wild-type TDP1. 

Interestingly, the catalytic domain had already been crystallised (Davies et al., 2002b); 

so a comparison of the known alpha helix, beta sheet and unstructured content could be 

drawn with the quantitative read-out of DichroWeb. Alpha helix, beta sheet and 

unstructured content between the known crystal structure and interpretation of CD 
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spectra were quite similar (Table 3.2.2). This means that secondary structure analysis of 

the full-length protein by DichroWeb could be considered to be reasonably accurate.  

 

These results indicate that the majority of the N-terminal TDP1 domain is unstructured, 

a statement supported by in silico analysis of the theoretical structure of this domain 

when analysed by the 3D structural prediction software Phyre2 (Figure 3.2.5) (Kelley 

and Sternberg, 2009). Phyre2 software prediction of the TDP1 N-terminal amino acid 

sequence alone shows, mainly, an unstructured domain with some alpha helical content 

(Figure 3.2.5 A). Interestingly, when analysis of full-length TDP1 is carried out the 

software predicts no helical content within the N-terminal domain of TDP1 (Figure 

3.2.5 B). Both models for prediction support the CD data and DichroWeb analysis 

strengthening the idea that the evolutionarily driven domain is predominantly 

unstructured. 
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Figure 3.2.3 Loss of the N-terminal domain does not impact on stability in vitro 

0.75 µM of recombinant hTDP1 or hTDP1151-608 was mixed with SYPRO-orange, and melting profiles 

were obtained between 20 and 70 °C, using a ramping rate of 0.03 °C s− 1. Protein denaturing experiments 

were carried out using the LightCycler 480 System II (Roche). Data were normalized to a fraction of 

protein in its denatured state and presented as normalized relative fluorescence. Melting temperatures 

(Tm) were determined according to the Boltzmann model (Ericsson et al., 2006) (B) using the Prism 

software. Error bars represent standard deviation from 3 independent replicates. Loss of the N-terminal 

domain does not diminish the stability, unfolding pattern or melting temperature of the protein. 
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Figure 3.2.4 Comparison of hTDP1 and hTDP1151-608 using CD shows no gross structural difference  

Recombinant TDP1 or hTDP1151-608 in 30 mM sodium phosphate buffer (pH 7.4) was placed in a 0.2-mm 

quartz cuvette and the circular dichroism spectrum determined using a JASCO J-715 spectropolarimeter. 

Scans were performed from 260 to 195 nm and buffer baselines were subtracted (A). Data only recorded 

if the high-tension voltage (HT [V]) < 550 V (B). Subtraction of the hTDP1151-608 spectra from that of 

hTDP1 (C) results in a plot that analysis with secondary structure predicts no gross structure present.  
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Helix Sheet Others* NRMSD# 

(<0.25) 

CDSSTR 
Reference set 4 

TDP1 TDP1151-608 TDP1 TDP1151-608 

 
TDP1 TDP1151-608 

 
TDP1 TDP1151-608 

 

Secondary 
Structure  (%) 

19.2 19.4 28.4 28.8 52.4 51.8 0.22 0.24 

* Loops, turns, and unstructured 
#  Normalised root mean square deviation   

Table 3.2.1 Bioinformatics analyses of core secondary structure using CDSSTR algorithm 

Secondary structure analysis was conducted using the variable selection method (CDSSTR) with 

reference data set 4 from the Dichroweb server, which gave the best goodness-of-fits. NRMSD values 

were 0.22 and 0.24 for TDP1 and hTDP1151-608 respectively. 

 

A                                                                             B 

	
   	
  
 

Figure 3.2.5 Phyre2: N-terminus of TDP1 is mainly unstructured 

Amino acid sequences for TDP11-150 (A) and TDP1 (B) were analysed by the protein folding prediction 

site Phyre2. The hypothetical model shows the N-terminal protein of TDP1 to be largely unstructured, 

with some small alpha helices (A). Whilst in the full-length model the N-terminus, highlighted in cyan ( 

residues 1-10 highlighted in purple), is completely unstructured (B). This indicates, as hypothesised, that 

the N-terminal evolutionarily driven domain is predominantly unstructured in terms of secondary 

structure.  

 

Helix Sheet Others* 

TDP1151-608 

Crystal 
structure 

TDP1151-608 

Circular 
dichroism 

TDP1151-608 

Crystal structure 
TDP1151-608 

Circular 
dichroism 

TDP1151-608 

Crystal structure 
TDP1151-608 

Circular 
dichroism 

Secondary Structure  
(%) 

24 19.4 22 28.8 54 51.8 

* Loops, turns, and unstructured 
#  Normalised root mean square deviation  

!  

Table 3.2.2 Comparison between the crystal structure and predicted structure from CD 

Comparison of the secondary structure between the crystal structure (UniProtKB: Q9NUW8) and the 

predicted structure from CD data using CONTIN show similar levels of secondary structure. 
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3.2.2 Full-length hTDP1 is required for optimal protection against 

DNA damaging agents in DT40 cells, whilst hTDP1151-608 gives partial 

protection 
 

Since the catalytic domain and full-length TDP1 show no differences in activity, 

stability, or structure in vitro, it would be interesting to investigate what cellular 

function this domain may have. To study the in vivo role of the N-terminal domain of 

TDP1, stable cell lines expressing Myc-tagged full-length human TDP1 and Myc-

TDP1151-608 (catalytic domain) were created. These cell lines were made in DT40 cells 

for three reasons. Firstly, we already had Tdp1 -/- cells available in the lab; secondly, 

DT40 cells have a high ratio of targeted to random integration of transfected gene 

constructs (Buerstedde and Takeda, 1991) and finally they have well characterised 

repair pathways (Yamazoe et al., 2004).  

 

Once the cells had been transfected with linearized Myc-hTDP1, Myc-hTDP1151-608 or 

Myc vector, single colonies were screened by immunoblotting, using anti-Myc (9B11; 

Cell signalling), to detect the protein of interest (Figure 3.2.6). Positive clones were 

further analysed for cells expressing similar levels of Myc-hTDP1 and Myc-hTDP1151-

608, compared to the internal PCNA control, detected by anti-PCNA (PC10; Alan 

Lehman). Clone 13 (hTDP1) and clone 1 (hTDP1151-608) were selected due to similar 

levels of protein expression (Figure 3.2.6). 
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Figure 3.2.6 Complementation of DT40 Tdp1-/- with Myc-hTDP1, Myc-hTDP1151-608 or Vector 

DT40 TDP1-/- cells were complemented with Myc-TDP1, Myc-TDP1151-608 or Myc vector. Immunoblots 

analysed with anti-Myc antibody (9B11; cell signalling) show expression of full length Myc-hTDP1 in 

clones 13 and 14 whilst expression of Myc-hTDP1151-608   could be detected in clones 1, 2 and 18. Clone 

13 for Myc-hTDP1 and clone 1 for Myc-TDP1151-608 were selected due to similar expression levels when 

compared to the PCNA loading control. 
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3.2.2.1 Tdp1-/- DT40 cells, complemented with Myc, Myc-hTDP1 or Myc-

hTDP1151-608 maintain similar proliferation rates and cell cycle progression 

To rule out that any effects seen between the cell lines in the presence of DNA 

damaging agents would be due to defects in the repair to damage and not due to the 

detrimental effects caused by knocking out TDP1 in the chicken cells, proliferative rates 

of these cell lines were measured by counting cells over a period of days using a 

haemocytometer. Figure 3.2.7 A shows similar proliferation rates between all cell lines 

used in this chapter, indicating that removal of Tdp1 and complementation with Myc, 

Myc-hTDP1 or Myc-hTDP1151-608 had no detrimental effect on replication.  

 

To show that cell lines also had a similar fraction of their population in a particular 

phase of the cell cycle, cells were stained with 20 µg/ml propidium iodide and analysed 

using the FACS Canto flow cytometer (Figure 3.2.7 B). This was repeated on 3 

independent occasions. The graphs show that there was no significant difference in the 

stage of cell cycle between cell lines. The probability of any difference between stages 

of the cell cycle between the generated cell lines when compared to the WT cells was > 

0.44 (Students’ t-test). Taken together, these results indicate that all cell lines are 

replicating at a similar rate and that there is no significant difference in fractions of cells 

in different phases of the cell cycle. Consequently, differences between cell lines in the 

presence of DNA damaging agents would not be a result of differing replication rates or 

cell cycle populations. 

 

3.2.2.2 TDP1151-608 does not exhibit reduced activity in cell extracts 

Whilst recombinant full-length TDP1 showed no difference when compared to the 

catalytic domain in vitro, protein interactions with TDP1 or post-translational 

modifications of TDP1 within the cell could impact upon the activity of the enzyme. To 

investigate this possibility 1.2 µg of whole cell extracts expressing similar levels of 

Myc-hTDP1, Myc-hTDP1151-608 or Myc vector were then subjected to the fluorescence 

based activity assay previously described. Results indicate no significant difference in 

cleavage of the 3’ phosphotyrosine between the full-length and catalytic domain 

(Figure 3.2.8) with arbitrary fluorescent units of 3087 ± s.d 112.4 and 3259.67 ± s.d 

403.8 for the full-length and C-terminal domain respectively. This was not due to 

differences in expression levels of TDP1 as immunoblots show similar levels of 

expression (Figure 3.2.8). As expected, whole cell extract expressing Myc alone 
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showed little activity above basal amounts, with a reading of 281.33. Whilst nucleolytic 

cleavage of DNA could remove the 3’phosphotyrosine conjugated to a fluorophore, a 

result supported by previous work that demonstrates a capacity for other enzymes to 

carry out this role (Connelly and Leach, 2004; Eid et al., 2010; Nakamura et al., 2010) 

this has only ever been demonstrated to work on double-stranded DNA breaks 

(Shrivastav et al., 2008). We can conclude that the Myc vector and other proteins within 

the cell have no or little effect on the hydrolysis of the synthetic substrate. This data 

suggests that there is no difference in catalytic activity in cells extracts on a Top1-

mimic synthetic substrate. 

 

Since the activity of the full-length TDP1 and catalytic domain was similar, the next 

step was to see if they could provide equal protection against various DNA damaging 

agents. To determine this, cell viability assays were set up using a cell titre blue read-

out (Promega). Viable cells can metabolise resazurin to resorufin, which causes a colour 

change from blue to pink (Figure 3.2.9) this colour change emits a fluorescence at 590 

nm that can be measured using the GloMax®-Multi Detection System (Promega). The 

assay set up and concentrations of drugs were based on a previously published paper by 

the Pommier lab (Murai et al., 2012). Drug treatments were chronic and cells were left 

for 72 hours a 39 °C and 5 % CO2 before addition of cell titre blue. Once added, 

viability of cells with or without the drug were measured after a further 3 hours at 39 °C 

and 5 % CO2. 
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Figure 3.2.7 Characterisation of DT40 cells for cell cycle and proliferation 

(A) Cell proliferation rates were studied for 72 hrs for each cell line. Results indicate that TDP1 is not 

required for maintenance of DT40 growth as no difference in doubling times can be seen. (B) FACS 

analysis: 1 × 106 cells for each cell line collected and stained with propidium iodide. Cells were analysed 

for DNA content on a FACS Canto flow cytometer and data show that knocking out Tdp1 or expression 

of hTDP1 does not change the cell cycle profile in DT40 cells. (C) Bar charts for average proportion of 

cells in each phase of the cycle from 3 independent FACS analyses and error bars are represented by 

standard deviation (B).  
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Figure 3.2.8 Removal of the N-terminal domain does not impact upon activity in vivo 

A 13’mer oligo with a 3’phosphotyrosine conjugated to a FITC molecule was made. This also had a small 

molecular, non-fluorescent trivalent metal ion sensor (MnIII) (Gyrasol technologies, USA) that binds the 

phosphate backbone. 1.2 µg of whole cell extracts expressing similar levels of Myc-hTDP1, Myc-

hTDP1151-608 or Myc (indicated by immunoblots) were mixed with 10 nM substrate. Analyses of data 

show no difference in activity between the full-length and truncated catalytic domain of TDP1, whilst 

cells not expressing Tdp1 had little to no effect on the activity. 
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Figure 3.2.9 Cell viability assay: healthy cells metabolise Resazurin to Resorufin 

Cell titre blue was used to determine viable cells. The healthy cells are able to metabolise Resazurin to 

Resorufin, the latter emits fluorescence at 590 nm which can be detected using the GloMax®-Multi 

Detection System (Promega). This can also be seen through a colour change from blue to pink. 
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3.2.2.3 Protection of cell lines treated with different genotoxic agents shows that 

the TDP1151-608 gives partial resistance when compared to the full-length protein  

The first drug treatment was camptothecin (CPT): this is a plant alkaloid whose 

derivatives (topotecan, irinotecan and belotecan) are clinically approved anticancer 

agents for a broad spectrum of tumours (Hsiang et al., 1985; Liao, 2006; van 

Waardenburg, 2004). The molecular target is Top1 and the drug acts by blocking the re-

ligation step of the DNA backbone, trapping Top1 to the DNA resulting in an abortive 

Top1-DNA complex. 

 

Figure 3.2.10 A shows that in the presence of increasing concentrations of CPT wild-

type DT40 cells show resistance at the low nano-molar range. Even at 10 nM CPT 58 % 

of wild-type cells were still viable. In stark contrast, DT40 Tdp1 -/- cells showed a 

marked increase in sensitivity to the drug with as little as 30 % of cells still viable at the 

lowest dosage (2.5 nM CPT) and 3 % of cells viable in the presence of 10 nM CPT. 

DT40 Tdp1 -/- cells complemented with Myc-hTDP1 gave a resistance to the drug to 

similar levels of wild-type, with 47 % of cells still viable at 10 nM treatment. This 

shows that the high sequence similarity between chicken and human TDP1 allows the 

human homologue to protect cells against camptothecin and therefore Top1 induced 

breaks to a similar level in the DT40 cell line. Strikingly, cells complemented with 

Myc-hTDP1151-608, with no difference in catalytic activity (Figure 3.2.8) or protein 

expression (Figure 3.2.10 B) showed an intermediate resistance between Tdp1 

knockout cells and the hTDP1-complemented cells, with viability down to 6 % when 

treated with 10 nM CPT. A significant increase in sensitivity to CPT could be seen in 

Myc-hTDP1151-608 compared to the hTDP1 complemented cells.  

 

I next examined the effect of methyl methanesulphonate (MMS): a strong electrophile 

that attacks the nucleophilic centers in DNA, resulting in DNA base methylation (Kedar 

et al., 2012; Pegg, 1984). This can cause nuclear and mitochondrial damage to DNA. 

Methylation predominantly occurs on N7-deoxyguanosine and N3-deoxyadenosine, it 

can also methylate other oxygen and nitrogen atoms in DNA bases, although to a lesser 

extent. In the context of TDP1 mediated repair methylated bases can trap Top1 causing 

abortive Top1-complexes (Alagoz et al., 2013), demonstrating a requirement for TDP1 

to remove these trapped complexes. In addition to this, TDP1 has also been shown to 

contain a weak lyase activity that could be involved in the removal of AP sites and 3’-
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dRP’s that can form as a result of base excision repair (Lebedeva et al., 2012; Nilsen et 

al., 2012). This would mean that TDP1 could protect the cell in a Top1 independent 

manner and will be discussed in a later chapter. 

 

In the presence of the DNA damaging agent MMS the DT40 Tdp1-/- cells showed 

hypersensitivity compared to that of wild-type cells, whilst once again ectopic 

expression of the hTDP1 showed resistance to the drug to similar levels of the wild-type 

(Figure 3.2.10 C). Cell viability for wild-type cells and hTDP1 were 79 to 79 %, 65 to 

58 %, 38 to 30 % and 17 to 13 % respectively, for increasing amounts of MMS. 

Interestingly, Myc-hTDP1151-608 showed an intermediate level of protection with cell 

viabilities of 70 %, 37 %, 13 % and 6 %. Since TDP1 can remove stalled Top1 and has 

also been shown, in vitro and recently in vivo, to have a weak lyase activity (Lebedeva 

et al., 2012; Nilsen et al., 2012) it cannot be distinguished if this intermediate level of 

repair by the catalytic domain is due to defect in just Top1 associated repair or if the 

repair through the lyase activity is also somewhat compromised. To test this, knock 

down of Top1 in both full-length and the truncated cell line would need to be carried 

out, followed by treatment of these cells with MMS.  

 

Next I examined the effects of ionising radiation (IR), which results in a multitude of 

damage: abasic sites, single-strand breaks terminated by 3’-phosphoglycolate esters as 

well as cytotoxic double-strand breaks (Ward, 1988), and TDP1 has been shown to play 

a role in protecting cells against IR (El-Khamisy et al., 2007; Inamdar et al., 2002). 

Unlike the other two DNA damaging agents hTDP1-complemented cells did not protect 

DT40 cells to the same level to that of the wild-type cells (Figure 3.2.10 D). This was 

also noted in the Pommier lab (Murai et al., 2012) and shows that hTDP1 does not fully 

function in all the repair pathways in the DT40 environment. It should also be noted that 

differences in cell protection during these drug treatments between cells lines are not 

due to a difference in expression of protein (Figure 3.2.10 B). 
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Figure 3.2.10 hTDP1 protects cells against a variety of DNA damaging agents, whilst the catalytic 

domain TDP1151-608 provides partial protection  

Wild type DT40 cells and DT40 Tdp1 -/- expressing hTDP1 showed similar levels of protection against 

CPT (A) and MMS (C), but not IR (D). DT40 Tdp1 -/- cells were hyper sensitive to all 3 DNA damaging 

agents. Expression of hTDP1151-608 led to an intermediate protection against CPT and MMS and was 

significantly  more sensitive  when compared to cells complemented with hTDP1 (see asterisks). (B) 

Immunoblots of the Myc-TDP1151-608 and Myc-TDP1 stable cell lines probed with anti-Myc antibody 

(9B11; cell signaling) show no difference in expression levels of proteins. Error bars represent standard 

error of the mean of 3 independent experiments. Statistical analysis was done using the Student’s t-test, 

‘*’ denote P < 0.05 between hTDP1 and TDP1151-608 and ‘+’ denote P < 0.05 between TDP1151-608 and 

Tdp1 -/-; Myc. 
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3.2.3 Accumulation of DNA single-strand breaks in hTDP1151-608 

compared to hTDP1, is in part transcription dependent 
 

3.2.3.1 DT40 Tdp1-/- cells, and cells complemented with hTDP1151-608 accumulate 

more single-strand breaks than full-length hTDP1 

Since there is a difference in viability of cells between cell lines in the presence of DNA 

damaging agents the next step was to look at how the truncation and deletion of the 

TDP1 protein affects the repair of DNA at the molecular level. Alkaline Comet assays 

were employed to look at the response to CPT between these cell lines in terms of 

single-strand breaks (McArt et al., 2009). Cells expressing Myc-hTDP1, Myc-

hTDP1151-608 or Myc were treated with camptothecin for 1 hour. Cells were then lysed, 

DNA denatured (in alkali conditions), and neutralised before being run in a comet tank 

at 25 V for 30 minutes. Tail moments were then counted under a microscope after the 

addition of SYBR green. As expected, Tdp1 -/- cells gave a significant increase in 

single-strand breaks compared to that of hTDP1-complemented DT40 cells with tail 

moments of 5.5 and 2.3 respectively, whilst treatment with DMSO had no effect 

(Figure 3.2.11). As in the viability assays, previously described, hTDP1151-608 

demonstrated an intermediate effect, with less DNA single-stranded breaks than that of 

the knock out, but significantly more DNA single-stranded breaks than hTDP1 and 

resulted in a tail length of 3.2. The chicken genome sequence is about a third the size 

(1.2 billion bases) of the average mammalian genome (Homo sapiens 3 billion bases) 

and contains few macrochromosomes and many microchromosomes (Schmutz and 

Grimwood, 2004; Wallis et al., 2004). The difference between genome sizes could be 

responsible for the much smaller overall tail length seen in the alkaline comet assay 

when compared to human cell lines. Whilst TDP1151-608 only results in a small, but 

significant (p< 0.005; Student’s t-test), increase in single-stranded DNA breaks the 

defects seen still lead to a large increase in viability. 
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3.2.3.2 DT40 Tdp1-/- cells complemented with hTDP1151-608 accumulate more 

single-strand breaks than full-length hTDP1, and these appear to be transcription 

dependent 

To try and narrow down the type of Top1-breaks, which the catalytic domain alone 

could not repair, the comet assay was repeated with the transcription inhibitor DRB 

(Yamaguchi-Iwai et al., 1999; Zandomeni et al., 1982). Interestingly, upon addition of 

DRB (Zeng et al., 2012), prior to treatment with CPT, the level of single-strand breaks 

in the hTDP1151-608 drops to that of the hTDP1, whilst the difference in CPT treated 

cells without DRB was still significant (P < 0.005, t-test) (Figure 3.2.12). This indicates 

that the sub-optimal repair by removing the N-terminal domain is due to a defect in the 

repair of Top1 associated transcriptional breaks. 
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Figure 3.2.11 hTDP1151-608 accumulates a higher amount of DNA single-strand breaks than full-

length TDP1 

DT40 Tdp1-/- cells and cells stably expressing Myc-hTDP1 or Myc-hTDP1151-608 were mock treated with 

DMSO or 50 µM camptothecin ‘CPT’ for 1 hour and breaks quantified by the alkaline comet assay. The 

data presented is the average of n = 3 biological replicates ± s.e.m. Results show that there is significant 

difference in the amount of breaks between ‘CPT’ treated hTDP1 and hTDP1151-608 (Student’s t-test; P = 

0.005) and between hTDP1151-608 and Tdp1 -/- cells (P = 0.04). 
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Figure 3.2.12 The increase in accumulation of DNA single-strand breaks in hTDP1151-608 compared 

to the full-length protein is, in part, transcription dependent 

DT40 Tdp1-/- cells and cells stably expressing Myc-hTDP1 or Myc-hTDP1151-608 were mock treated with 

DMSO or 50 µM camptothecin ‘CPT’ for 1 hour; with or without previous incubation with 50 µM DRB 

‘DRB’ for 2 hours. Breaks quantified by the alkaline comet assay. Mean tail moments were quantified for 

50 cells per sample per experiment, and the data presented is the average of n = 3 biological replicates ± 

s.e.m. Statistics analysis was conducted using the Student’s t-test; results show that there is significant 

difference in the amount of breaks between ‘CPT’ treated hTDP1 and hTDP1151-608 (Student’s t-test; P = 

0.005), and upon addition of DRB the significance of breaks between the full-length and truncated TDP1 

is lost (P = 0.755). 
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3.3 Discussion 
 

During neurogenesis the cells within the brain undergo rapid proliferation, migration 

and differentiation. This process accounts for the brain mass of the individual and 

diseases associated with this process lead to microcephaly (O'Driscoll et al., 2001; J. 

Shen et al., 2010). Once matured, cells become terminally differentiated and the 

requirement for replicative repair proteins is no longer required. These cells have to 

function and survive throughout the individual’s life, and are not readily replaced. This 

then puts a high importance on the repair of transcription associated single-strand DNA 

breaks and protection against oxidative damage within these cells. The importance of 

this is typified by TDP1, as a H493R mutant is linked to SCAN-1, a neurodegenerative 

disease that leads to progressive degeneration of the cerebellum (El-Khamisy et al., 

2005; Takashima et al., 2002). The phenotype of this disease is thought to be due to the 

lower activity of TDP1 H493R, thus lowering the capability to remove stalled Top1-

DNA complexes in a timely manner. These un-resolved protein-linked single-stranded 

DNA breaks can lead to collision and stalling of transcription machinery and prevent 

progression of RNA polymerases to produce full-length proteins required for normal 

cellular activity. Over time accumulation of these breaks leads to cell death and the 

demise of post-mitotic tissue. 

 

The results reported indicate a role for TDP1’s N-terminal domain in the efficient and 

timely repair of transcriptionally associated breaks, highlighting the importance for this 

domain in the maintenance of post-mitotic cells. Whilst replication-associated double-

strand breaks are the most cytotoxic to the cell, other enzymes, termed nucleases; such 

as the MRN complex, XPF/ERCC1, Mus81, CtIP and ARTEMIS (Connelly and Leach, 

2004; Eid et al., 2010; Hamilton and Maizels, 2010; Nakamura et al., 2010; Hartsuiker 

et al, 2009) have been proposed to possess roles involved in the removal of stalled-Top1 

complexes; however, these have primarily been implicated in double-strand break repair 

(Shrivastav et al., 2008). Therefore, the N-terminal domain of TDP1 could be of 

particular importance to non-dividing cells, especially neurons. This proposition is 

enforced by my data here showing that, removal of the N-terminal domain results in a 
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marked defect in the protection conferred by TDP1 in DT40 cells, following 

camptothecin and MMS damage. 

 

We have shown for the first time that removal of the N-terminal domain does not 

impact upon activity of the enzyme in vitro, and that CD spectra and thermal 

denaturation profiling shows no difference in the unfolding pattern or core structure 

between the full-length TDP1 and catalytic domain. Thus, differences in ability to repair 

transcriptionally related Top1-linked DNA breaks, and potentially Top1 independent 

damage by MMS, is not due to loss of activity, change in structure or instability of 

TDP1151-608. These results demonstrate a requirement for the N-terminal domain of 

TDP1 in transcription associated DNA single-strand break repair and suggests a 

possible mode of action (Figure 3.3.1). 

 

Since removal of the N-terminal domain does not change activity, structure or stability 

it is plausible that the non-optimal cellular protection against DNA damaging agents 

seen when the N-terminal domain of TDP1 is removed, could be due to loss of a protein 

to protein interaction, or post-translational modification within this domain. These in 

turn could allow increased localisation to sites of damage, efficiency in detecting 

damage, or an ability to localise other required proteins to sites of damage allowing 

faster repair kinetics within the cell. 

 

One known interaction within the N-terminal domain of TDP1 is that of Lig IIIα but 

work discussed in chapter 5 and previously published work (Chiang et al., 2010; Das et 

al., 2009) demonstrates that loss of this interaction is not the reason for the defect in 

transcriptional associated TDP1 repair. Whilst working on this project an interaction of 

TDP1 with UBC9 (an E2 enzyme in the SUMO pathway) had been identified in our lab. 

I therefore tested the hypothesis that SUMO modification of TDP1 may occur at the N-

terminal domain, potentially explaining some of the phenotypes presented in this 

chapter. This work will be the focus of my next chapter.  
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Figure 3.3.1 The N-terminal domain of TDP1 is required for optimal DNA single-strand break 

TDP1 mediated transcription repair 

Collision of elongating RNA polymerase II with Top1 intermediates results in stalling of transcription 

and triggers partial degradation of Top1 to a small peptide. TDP1 can then remove the stalled Top1 

peptide from DNA termini. The N-terminal domain of TDP1 allows for optimal repair and restoration of 

transcription. The mechanism by which the N-terminus of TDP1 aids the efficient removal of abortive 

Top1 complexes during transcription is not known, but is not due to an increase in catalytic activity of 

TDP1.  
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Results 2: SUMOylation facilitates TDP1 driven chromosomal 
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4.1 Introduction 

 
4.1.2 Post-translational modification by SUMOylation 

 

Whilst the previous chapter established a role for the N-terminal domain of TDP1 to 

provide optimal protection against DNA damaging agents through TDP1 mediated 

repair, primarily through transcriptional repair, it does not give an insight or mechanism 

of how this is provided. 

 

Our lab identified an interaction between TDP1 and UBC9, the E2 ligase in the SUMO 

pathway. I therefore examined whether SUMOylation is a player in TDP1 mediated 

repair. This chapter shows that TDP1 is indeed modified by SUMO1, within the N-

terminus at lysine 111 and that this repair is directed through transcriptional TDP1 

mediated repair. Evidence for a non-covalent interaction between TDP1 and SUMO2/3 

is also described in this chapter.  

 

4.1.3 SUMO 
 

Post-translational modifications, such as phosphorylation, acetylation, ubiquitylation 

and SUMOylation provide a dynamic platform for altering the surface area of proteins, 

allowing signalling and interactions with other macromolecules to occur adding a 

dynamic switch for regulation of proteins and other molecules within cells. These 

modifications are essential for cell maintenance, division and viability and allow an 

intricate method for control of protein function.  

 

Small ubiquitin like modifier (SUMO) was discovered in 1996 (Boddy et al., 1996; 

Matunis et al., 1996; Okura et al., 1996; Z. Shen et al., 1996) and was named as 

ubiquitin-like protein because of the conserved ubiquitin-fold seen in the crystal 

structure (Bayer et al., 1998; Melchior, 2000). Although SUMO has a low sequence 
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homology to ubiquitin the SUMO pathway has many distinct features that are similar 

and can act as an antagonist to ubiquitylation (Bergink and Jentsch, 2009). 

 

Several genes encoding SUMO proteins have been identified, only 3 subtypes are 

known to be involved in the DNA damage repair pathway; SUMO1, SUMO2 and 

SUMO3. SUMO1 shares little sequence homology to SUMO2 and 3 whilst the latter 

have a high similarity and can be thought of as a subclass within the SUMO family 

(Kamitani et al., 1998). 

 

The interaction between proteins and members of the SUMO family has been observed 

via two distinct mechanisms: (1) SUMOylation, or (2) via SUMO interacting motifs 

(SIMS). SUMOylation allows the SUMO to covalently attach to a lysine residue within 

a protein through an isopeptide bond; the SIM interaction is a non-covalent one. 

 

4.1.4 SUMOylation 
 

Whilst the ubiquitin pathway contains a hierarchical structure: one E1 enzyme, several 

E2 enzymes and hundreds of E3 enzymes that confer selectivity to the target lysine of a 

particular protein, the SUMO pathway contains an E1 activating enzyme (AOS1/Uba2), 

but only one E2 conjugating enzyme (UBC9) and several E3 ligase enzymes (Figure 

4.1.1). Unlike the ubiquitin pathway, in vitro at least, no E3 enzyme is needed for 

SUMO modification of the target protein and selectivity seems to follow a consensus 

sequence within the target molecule ΨKxE, where Ψ is a large hydrophobic residue and 

K the acceptor lysine (Bossis and Melchior, 2006). The E3 enzyme within the SUMO 

pathway has been proposed to increase the efficiency of binding of the E2-SUMO 

conjugate to the acceptor lysine (Melchior, 2000) and could possibly be attributed to 

SUMOylation of proteins to other lysine residues that do not conform to the above 

sequence, termed non-consensus sequences. 
 

4.1.5 SUMO family 

 

Both SUMO2 and SUMO3 proteins have similar homology and contain consensus 

sequences that allow SUMO2/3 poly chains to form, whilst SUMO1 only appears to 
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form poly-SUMO chains in vitro (Saitoh and Hinchey, 2000). All three SUMO proteins 

contain a conserved ubiquitin-fold common to ubiquitin-like proteins and the three 

dimensional folds of SUMO1 and ubiquitin can be superimposed (Melchior, 2000), 

furthermore both possess a C-terminal double glycine allowing covalent attachment to 

an acceptor lysine residue forming an isopeptide bond.  

 

E1 enzyme 

Although the Ubiquitin pathway contains one E1 protein the SUMO E1 enzyme 

consists of a heterodimer; Uba2 and AOS1, the AOS1 component of SUMO E1 is 

similar to that of Ubiquitin’s E1 N-terminal and its’ C-terminal domain has a likeness to 

that of Uba2, which also contains the active site cysteine (Desterro et al., 1999; Johnson 

et al., 1997; Okuma et al., 1999). This enzyme is known as the activation enzyme, it 

requires ATP to adenylate the C-terminal Glycine residue of SUMO. The formation of a 

thioester bond with a cysteine residue in Uba2 occurs through a transesterfication 

reaction (Tatham, 2001). This complex then moves to the next stage of the cycle by 

transferring SUMO to the E2 enzyme (UBC9) (Figure 4.1.1). 

 

E2 enzyme 

UBC9 allows the transfer of SUMO onto itself and, in vitro at least, is the final step 

needed to SUMOylate a target protein (Okuma et al., 1999). The SUMO is transferred 

to the active site cysteine in UBC9 and once this has taken place UBC9 has been shown 

to contain a cleft that binds the consensus sequence ΨKxE in the target protein (Bernier-

Villamor et al., 2002; Tatham et al., 2003). The fact that UBC9 is known to bind these 

sequences is the reason people believe that the E3 enzyme is not required in vitro. This 

interaction means that proteins can be screened for potential SUMOylation through the 

yeast two-hybrid by looking at interactions with UBC9. 

 

E3 enzyme 

E3 enzymes are a family of enzymes that are thought to be required, in vivo, to increase 

the efficiency of SUMOylation and facilitate the transfer of SUMO to consensus and 

non-consensus sites within the target substrate. The E1 and E2 enzymes are sufficient to 

cause SUMOylation in vitro, but E3 enzymes (PIAS family, Pc2, TOPORS and 

RanBP2 amongst others) have been identified and have demonstrated the capability to 
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enhance SUMOylation in vitro and in vivo (Johnson and A. A. Gupta, 2001; Kagey et 

al., 2003; Kirsh et al., 2002; Pichler et al., 2002; Weger et al., 2005). 

 

SENPS 

Sentrin specific proteases (SENPS) are the last component of the SUMO pathway and 

these enzymes have two roles within this enclosed cycle. Firstly, SUMO proteins are 

transcribed as precursor that needs to be cleaved to allow exposure of the di-glycine on 

the SUMO C-terminal tail. This di-glycine is required for the conjugation of SUMO to 

target proteins. Mutation of these glycine residues prevents covalent attachment of 

SUMO and are used in vitro as a negative control. Secondly, the SENPS are needed to 

remove SUMO from the target protein to restore the free pool of SUMO maintaining 

the equilibrium of SUMOylated and non-SUMOylated proteins. On top of this 

SUMOylation can also be regulated through phospho-dependent SUMO motifs 

(PDSM’S) (Hietakangas et al., 2006). 

 

4.1.6 Phospho-dependent SUMO motif 

 

Other post-translational modifications, or sequences of negative amino acids proximal 

to the acceptor lysine can help regulate the levels of SUMOylation and act as a 

molecular switch for SUMO modification to occur. These sites are termed 

phosphorylation-dependent SUMOylation motifs and negatively charged amino acid-

dependent SUMOylation motifs (Anckar and Sistonen, 2007). The ability of other 

modifications to regulate SUMO modification allows an intricate pathway to allow 

interactions of other post-translational modifications such as ubiquitin and acetylation 

that may occur on the same lysine residue. 

 

4.1.7 SUMO interacting motifs – SIMS 

 

Proteins cannot only be modified covalently by the SUMO family but can also interact 

non-covalently; this occurs through SUMO interacting motifs (SIMS). This discovery 

meant that SUMOylation of one protein could create an interface for interaction with 

other proteins (Hannich et al., 2005; Minty et al., 2000). First characterised by Minty et 

al an SXS triplet was thought to be crucial for SIM interactions (Minty et al., 2000). 
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Further studies elucidated a core hydrophobic region consisting of the motif V/I-X-V/I-

V/I (J. Song et al., 2004). Flanking acidic regions were also later discovered to play a 

role in binding (Hannich et al., 2005; Hecker et al., 2006). Even if SIM interacting 

proteins have been observed to interact with SUMO2 and 3 it does not necessarily mean 

that they will interact with SUMO1, data by Hecker et al suggests that this could be 

down to charge of flanking proteins proximal and distal to the SIM site, and lists 

multiple proteins with confirmed SIM sites and their recognition motif (Hecker et al., 

2006).  

 

4.1.8 Molecular consequences of SUMOylation and SUMO-SIM 

interactions 

 

SUMOylation of a particular protein can have multiple outcomes that are difficult to 

predict (Figure 4.1.2). The effect can range from: changes in cellular localisation as 

seen in XRCC4 (Bergink and Jentsch, 2009), as an antagonist to ubiquitylation and, 

therefore protection against ubiquitin-mediated degradation, such is the case for IΚBα 

(Desterro et al., 1998), to attenuation of transcription by the recruitment of histone 

deacetylases (HDAC) (Shiio and Eisenman, 2003; S.-H. Yang and Sharrocks, 2004). 

Perhaps the most interesting outcome of SUMOylation was found for thymine DNA 

glycosylase (TDG). TDG is involved in the base excision repair pathway and is required 

to bind and excise mismatched bases. TDG binds tightly to the reaction product, the 

abasic site, and becomes trapped. SUMOylation causes a conformational change by 

interacting with an internal SIM site in TDG, thus reduces its affinity to DNA, releasing 

the enzyme into the nucleoplasm. SENPS then remove SUMO, enabling TDG to target 

new mismatched DNA (Baba et al., 2005; Hardeland et al., 2002; Smet-Nocca et al., 

2011). 
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Figure 4.1.1 SUMO conjugation and de-conjugation of target substrates 

(1) SUMO is translated as a precursor protein with a short C-terminal extension, which is cleaved of by 

SENP proteins to reveal a di-glycine C-terminal. (2) The mature SUMO is activated by the heterodimeric 

E1 enzyme (Uba2-AOS1). Activation is ATP dependent, and proceeds via a SUMO-adenylate 

intermediate, resulting in a covalent thioester linkage between SUMO and a cysteine residue in Uba2. 

Activated SUMO is then transferred to a cysteine in UBC9, the E2 conjugating enzyme (3). UBC9 

recognises and binds the consensus ΨKxE in the target protein and is sufficient to SUMOylate the target 

protein in vitro (dashed line). (4) In vivo, in conjunction with one of many substrate recognising E3 

SUMO ligases SUMO is transferred to a specific lysine residue within the target protein forming an 

isopeptide bond between the SUMO glycine tail and the acceptor lysine (5). The E3 enzyme is thought to 

allow for SUMOylation at non-consensus sites allowing for a wider range of targets to be SUMOylated. 

(6) De-conjugation of SUMO from the target substrate occurs through sentrin specific proteases (SENP) 

to allow SUMOylation to be a reversible and dynamic process and to maintain a free pool of SUMO 

proteins. Figure is adapted from (Dohmen, 2004; Geiss-Friedlander and Melchior, 2007). 
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Figure 4.1.2 Molecular consequences of SUMOylation and SUMO-SIM interactions 

Sumoylation can have several consequences for the modified protein. (1) SUMOylation can block 

interactions with target proteins and chemical modifications. One example of this is ubiquitylation that 

also occurs at lysine residues within a protein. Inhibition of ubiquitylation can prevent degradation of a 

particular protein.  (2) SUMOylation can provide a binding site for other proteins via a SUMO-SIM 

interaction, this allows reversible and controlled interactions with other proteins. Finally, SUMOylation 

can result in a conformational change of the target protein, this occurs through interaction of the SUMO 

with an internal SIM site within modified protein (3). Adapted from (Geiss-Friedlander and Melchior, 

2007) 
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4.1.9 Chapter objectives 

 

This chapter investigates the mechanisms, if any, by which TDP1 is regulated 

covalently or non-covalently by SUMOylation. Previous work in our lab has shown that 

TDP1 interacts with UBC9 using the yeast-two hybrid system. Does this mean 

SUMOylation regulates TDP1? To investigate this we first tested if a member of the 

SUMO family modifies TDP1, and then studied the role this may have in cells. In order 

to do this we mapped the TDP1 site/s of covalent attachment by SUMO, mutated these 

sites to prevent SUMOylation, and investigated what role SUMOylation of TDP1 has in 

the cell. To demonstrate that any effect seen was due to ablation of SUMOylation it was 

also necessary to rule out that the mutations in TDP1 does not affect the activity, 

stability or folding of the protein.  

 

I then examined if TDP1 could interact non-covalently with the SUMO family via 

internal SIM/s, and if so where these motifs are located in TDP1. These data showed for 

the first time that TDP1 is SUMOylated by SUMO1 and that this is required for 

localization of TDP1 to sites of DNA damage, that are in part transcription dependent.  
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4.2 Results 
 

4.2.1 TDP1 is SUMOylated at lysine 111 by SUMO1 in vitro and vivo  
 

4.2.1.1 TDP1 is SUMOylated in vitro  

In order to determine whether TDP1 could be modified by SUMO1, I expressed and 

purified recombinant His-hTDP1 in bacteria. Recombinant TDP1 was then incubated 

with components of the SUMO pathway (Figure 4.2.1); SAE1/SAE2 (50 nM), UBE2I 

(500 nM) and either 30 µM of SUMO1, SUMO2 SUMO3 or mutant versions, which 

harbours a di-glycine to di-alanine mutation to prevent covalent SUMO conjugation. 

Immunoblots were conducted using anti-TDP1 (Abcam) and anti-SUMO1, 2/3 

antibodies (Activmotif). Figure 4.2.2 B shows that TDP1 antibodies cross-reacted with 

a 72 kDa protein (representing unmodified TDP1) and one discrete prominent band was 

observed (~105 kDa), consistent with SUMO modification. To consolidate this, blots 

were additionally probed with anti-SUMO1, and SUMO2/3 antibodies. Notably, the 

~105 kDa band was strongly detected by anti-SUMO1, suggesting that TDP1 is 

primarily SUMOylated by SUMO1. Multiple faint bands were also detected in the anti-

SUMO blots when TDP1 was incubated in the presence of SUMO1, 2 or 3. These 

higher molecular weight bands were not detected in the mutant SUMO controls ‘MT’, 

suggesting that these bands were dependent on covalent modification by the SUMO 

proteins. Since these higher molecular weight bands were observed in the anti-SUMO 

blots but not the anti-TDP1 blot it is probable that they are due to contaminant proteins 

co-purified with recombinant TDP1 that are also targets for SUMOylation. 

 

Since p53 is known to be SUMOylated (Gostissa et al., 1999; Rodriguez et al., 1999), I 

employed recombinant p53 as a positive control. I observed a higher molecular weight 

band when p53 was incubated with SUMO1, but no band was detected when incubated 

with mutant SUMO1 (Figure 4.2.2 A). Thus, the reaction conditions enabled p53 to be 

covalently modified and that the di-glycine mutation was sufficient to ablate covalent 

attachment. 
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Although higher molecular weight bands are detectable when TDP1 was incubated with 

any of the WT SUMO proteins, quantification by ImageQuant of the slower migrating 

bands versus the total TDP1 protein showed that more than twice as much TDP1 was 

modified by SUMO1 (26 %) compared to SUMO2 (12 %) and SUMO3 (6 %) (Figure 

4.2.2 C). Taken together, these results suggest that TDP1 is primarily SUMOylated by 

SUMO1 in vitro. It is important to note that SUMO1 has a predicted molecular weight 

of ~11 kDa although it actually migrates at ~17.5 kDa on SDS-PAGE (Antoine et al 

2005); this means that if TDP1 is modified by one SUMO moiety at one lysine residue 

this should give a combined molecular weight of 89.5 kDa. Three possible scenarios 

might produce a SUMO-modified TDP1 of ~105 kDa: (i) two distinct lysine residues 

within TDP1 are equally modified at the same time (17.5 + 17.5 + 72 = 107 kDa), (ii) a 

di-SUMO conjugate is linked to a single lysine ((17.5 x 2) + 72= 107 kDa) or (iii) that 

the addition of a single SUMO1 retards the gel mobility of TDP1 in a greater than 

additive manner. We favour the latter explanation since mobility in SDS-PAGE for 

branched peptides or proteins is not linear, and largely depends on the spatial 

conformation adopted by the peptide. 

 

Unlike SUMO2 and SUMO3, SUMO1 does not contain the ψKXE sequence necessary 

to form SUMO polymers and, as a result, can only form a monomer in vivo (Tatham, 

2001). However, it is worth noting that in vitro experiments have demonstrated that 

poly-SUMO1 chains can form, although this is probably an artefact due to non-

physiological amounts of SUMO1 being present (Bossis and Melchior, 2006; Ulrich, 

2008). If this is the case, then the higher molecular weight band in Figure 4.2.2 B could 

be attributed to aberrant di-SUMO1 chain formation. However, I consider the third 

possibility outlined above as the most likely explanation as I did not observe any band 

at ~ 90 kDa that would fit with the modification of TDP1 at a single lysine with a single 

SUMO1 migrating at anticipated molecular weights. 
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            Components                 TDP1 +                        TDP1 + 
                (TDP1)                     SUMO1                     mtSUMO1 

ATP$ ATP$
AA"GG"

TDP1 

  75 kDa 

SDS-PAGE gel 

1 2 

 
 

Figure 4.2.1 In vitro components of the SUMOylation assay 

SUMOylation of protein requires: recombinant TDP1 (lane 1 shows purified TDP1 on an SDS-PAGE 

gel), E1 enzyme (SAE1/SAE2), E2 enzyme (UBE2I) and SUMO -1/2 or 3. The reaction is energy 

dependent and requires ATP. For a control a mutant SUMO containing a di-glycine to alanine mutation 

was used. This mutant prevents the isopeptide bond forming between the SUMOylated target lysine and 

glycine of SUMO.  
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Figure 4.2.2 TDP1 is primarily SUMOylated by SUMO1 in vitro 

 (A) Incubation of P53, a known target for SUMOylation, with SUMO1 results in a slower migrating 

band (SUMOylated P53) that could not be detected in the mutant SUMO1 reaction ‘MT’. This 

demonstrates that the reaction conditions used were suitable to obtain SUMOylated protein. (B) TDP1 is 

detected at 72 kDa with anti-TDP1. Slower migrating bands are also present when SUMO1, 2 or 3 are 

included in the reaction (marked by arrows, above 100 kDa). These higher molecular weight bands were 

not present in the mutant SUMO reactions ‘MT’ and immunoblots with anti-SUMO1, 2/3 confirmed the 

bands to be SUMOylated TDP1. (C) Quantification, using ImageQuant (GE Healthcare), of higher 

molecular weight pixel volume in SUMO1, 2 and 3 reactions vs total pixel volume of TDP1 in ‘MT’ 

lanes in the anti-TDP1 blot showed that TDP1 is primarily SUMOylated by SUMO1 in vitro. 
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4.2.1.2 TDP1 SUMOylation occurs within the N-terminus in vitro  

To identify potential lysine residues for SUMO conjugation, I entered the TDP1 protein 

sequence into the SUMOsp 2.0 (http://sumosp.biocuckoo.org/online.php) online server. 

The server scans for consensus Ψ-K-X-E and non-consensus motifs. Non-consensus 

motifs are previously identified sites where SUMOylation can occur but does not 

conform to the expected consensus region (Ren et al 2009). Five potential sites in TDP1 

were identified by in silico analysis (Figure 4.2.3). These were lysine residues at amino 

acid positions 111, 139, 231, 417 and 527. The first two residues conformed to the 

consensus motifs; both present in the N-terminal domain, whilst the last three were 

found in the catalytic domain and were type II non-consensus sites. It is important to 

note that covalent modification by SUMO does not automatically occur at these 

consensus sites and are used as a prediction to narrow down the most likely sites of 

SUMOylation  

 

To isolate the region of TDP1 where SUMOylation may occur, I next introduced N- and 

C-terminal domain truncations into TDP1 by PCR-mutagenesis; these were expressed 

and purified, resulting in His tagged N- and C-terminal TDP1 domain fragments (see 

Methods for details) and concentrations of proteins were confirmed by Nanodrop 

(Thermo Scientific). Once purified, both proteins were used in the in vitro 

SUMOylation assay (as above) and were analysed via immunoblots. Figure 4.2.4 B 

shows that in vitro SUMOylation of N-terminal TDP1 does occur, as illustrated by anti-

TDP1 blots. There was a prominent intense band just below 50 kDa that was not present 

when the mutant SUMO1 was used. The C-terminal TDP1-SUMO1 reaction resulted in 

a weaker band above the band corresponding to TDP1151-608 ~ 75 kDa, which was not 

present in the SUMO1 mutant reaction (Figure 4.2.4 A). It is important to point out that 

the Santa Cruz antibody used in the TDP1151-608 blot results in a very cloudy blot and 

therefore it is possible, although unlikely that SUMOylation can occur. 
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SUMOsp 2.0 was used as an online database to predict 
potential sites for SUMO modification . 
 
Prediction of consensus sites, Ψ-K-X-E: K111 and 139  
 
Prediction of non-consensus sites: K231, K417 and K527 
 
This analysis highlighted 5 potential sites: 
 
 
 
 

N"#term## Cataly,c#domain#

#K111##K139# #K231# ##K417# ###K527#

N"#term## Cataly,c#domain#

1" "150" "608"

 
Figure 4.2.3 In silico analysis highlights 5 potential sites for SUMOylation 

The amino acid sequence of full-length hTDP1 was entered into the SUMOsp2.0 database (Ren et al., 

2009). In silico anlaysis predicted 2 consensus sites, K111 and K139, corresponding to the Ψ-K-X-E 

amino acid sequence normally required for SUMOylation. The scan also recognised 3 non-consensus 

sites, all in the catalytic domain at lysine positions 231, 417 and 527. 
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Figure 4.2.4 TDP1 is SUMOylated in the N-terminus by SUMO1 in vitro 

500 nM recombinant His-TDP1151-608 (A), or His-TDP11-150  (B) were incubated with SUMO1 wild-type 

‘WT’, or SUMO1 harboring a di-alanine mutant ‘MT’ and the components of the SUMO pathway. 

TDP1151-608 probed with anti-TDP1 (Santa Cruz) is seen just below 50 kDa. There are no other prominent 

bands in the WT lane when compared to the MT lane. This indicates that TDP1151-608 is not a target for 

SUMOylation. (B) TDP11-150 was probed with anti-TDP1 (Abcam) and reveals two bands at 20 kDa, 

which is probably due to degradation of the recombinant truncated protein. There is also a prominent 

band at 50 kDa in the WT lane that (denoted by a blue arrow) that is not found in the MT lane consistent 

with posttranslational modification by SUMO. There are several bands above 50 kDa found in both the 

SUMO MT and WT lanes that are due to non-specific binding of the antibody (N.S). 
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4.2.1.3 TDP1 SUMOylation occurs within the N-terminus at K111 in vitro 

To study what effect SUMOylation might have on TDP1, I set out to identify at what 

site or sites the post-translational modification occurs. Mutation of the acceptor lysine 

to an arginine has been shown to prevent the covalent attachment of SUMO (Babic et al 

2006, Bachant et al 2002). It is therefore possible to establish the site, or sites of 

SUMOylation. Due to the unlikelihood of modification occurring in the C-terminal 

domain, only lysines in the N-terminal region of TDP1 were subjected to mutational 

analysis, K111R, K139R and K111R+K139R mutations were introduced into TDP1 by 

site directed mutagenesis, confirmed by sequencing, expressed, purified and analysed 

by Coomassie stain to confirm purity. K111R, K139R and K111/139R mutants were 

then analysed to see if either or both mutations affected the extent of SUMOylation.  

 

The wild-type TDP11-150 displayed a SUMO1-modified band at ~50 kDa (indicated by 

the black arrow), consistent with the 25-30 kDa increase in size with SUMOylation 

previously seen with full-length TDP1 (Figure 4.2.5). Interestingly, the K111R mutant 

showed a significantly reduced level of SUMO-modification compared to the wild-type, 

while the double K111R + K139R mutant showed no detectable SUMO-modification at 

all. Unexpectedly, the K139R single mutant actually showed a small increase in overall 

SUMOylation relative to wild type. This data suggests that K111 is the primary SUMO-

acceptor lysine in TDP1 (in vitro) and that K139, although peripherally influencing 

K111 SUMOylation is not in itself a primary site for modification.  
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Figure 4.2.5 N-terminal TDP1 mutants show varying amounts of SUMOylation 

500 nM of recombinant His-N-terminal TDP1 protein and mutants were added to the in vitro 

SUMOylation reaction. In the anti-TDP1 blot there was an unidentified band above 50 kDa in all lanes, 

indicated by a blue arrow. This was not picked up in the anti-SUMO1 blot and is probably due to non-

specific binding of the protein. The K139R TDP1 mutant actually showed an increased in the amount of 

SUMOylated TDP1 at 48 kDa (indicated by a black arrow), whilst the K111R mutant shows almost 

complete abrogation of modified protein. This was picked up in both anti-TDP1 and SUMO1 blots and 

was not present in the SUMO1mt lanes ‘MT’ indicating that TDP1 K111R is the main acceptor lysine for 

SUMOylation. 
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4.2.1.4 Mutation of lysine to arginine at 111 abrogates SUMOylation in vitro and in 

vivo 

In order to examine the hypothesis that K111 is the primary SUMOylation site, a 

K111R mutation in full-length TDP1 was generated, using the same methods described 

above for the truncated versions. The purified protein was then subject to the in vitro 

SUMOylation assay and immunoblot analysis confirmed that K111R mutation 

successfully prevents covalent modification by SUMO1 in the full-length TDP1 protein 

(Figure 4.2.6 A). In conjunction with this work, HEK293 cells (Jude) were co-

transfected with Myc-TDP1 and GFP or GFP1-SUMO1, and Myc-TDP1 K111R with 

GFP or GFP1-SUMO1. Cells were lysed and protein was fractionated on an SDS-

PAGE gel. Immunoblot analysis indicated a higher molecular weight band, consistent 

with SUMOylated TDP1, in the TDP1 + GFP-SUMO1 that was not detectable in the 

GFP + Myc-TDP1 fraction, or the TDP1 K111R fraction (Figure 4.2.5 B). Taken 

together this suggests that TDP1 is modified by SUMO1 at lysine 111 in vitro and in 

vivo. Blast sequence analysis of the N-terminal domain, using uniProt, demonstrates 

that the acceptor lysine residue and SUMO consensus was only conserved in higher 

eukaryotes (Figure 4.2.7). Combined with data from the first results chapter, one 

possible role for the N-terminal evolutionarily driven domain is to channel TDP1 driven 

reactions to deal with breaks associated with transcription, in a SUMOylation regulated 

process.  
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Figure 4.2.6 TDP1 is SUMOylated at lysine 111 in vitro and in vivo 

(A) Recombinant His-TDP1 ‘WT’ or TDP1 K111R ‘K111R’ were added to the SUMOylation reaction 

and probed with anti-TDP1 (Abcam) and anti-SUMO1 (Activmotif) (B) HEK293 cells transfected with 

the indicated TDP1 constructs and an empty GFP ‘-’ or GFP1-SUMO1 ‘+’ vector were fractionated on an 

SDS-PAGE gel and analysed with anti-TDP1 (Abcam), anti-SUMO1 (Santa Cruz) and anti-Actin 

(Sigma). Both immunoblots show that mutation of lysine 111 to arginine in TDP1 is sufficient to prevent 

modification by SUMO1. 
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Figure 4.2.7 Lysine at 111 is conserved in several higher eukaryotes 

BLAST sequence analysis of the TDP1 N-terminal domain identifies the SUMOylation consensus site 

with the acceptor K111 in humans (Homo sapiens; NP_001008744), is conserved in cattle (Bos taurus; 

NP_001180084; XP_874680), monkey (Pongo abelii; XP_002825063), chicken (Gallus gallus; 

XP_421313), frog (Xenopus tropicalis; NP_001039242), fish (Danio rerio; XP_700174) using uniProt 

software. 
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4.2.2 Mutation of lysine 111 to arginine does not alter protein 

structure, stability or catalytic activity 
 

Before examining what role SUMOylation of TDP1 may have, in a cellular context, we 

wanted to examine if the lysine to arginine mutation may have an impact on TDP1, in 

terms of activity, stability and structure.  

 

4.2.2.1 TDP1 and TDP1K111R give similar melting temperatures and unfolding 

patterns 

Recombinant wild-type and K111R TDP1 were subjected to thermal denaturation 

profiling; a technique used to determine the stability and the unfolding profile of 

proteins (Babic et al., 2006; Rehman et al., 2011). Fluorescence values were obtained 

using the lightcycler 480 (Roche) and melting points determined using a variation of the 

Boltzmann model (Ericsson et al., 2006). TDP1 and TDP1K111R showed a similar 

unfolding pattern and resulted in Tm’s of 55.5 and 54.3 °C for the mutant and wild-type 

respectively, indicating no detectable difference in the unfolding pattern between the 

two proteins (Figure 4.2.8 A).  

 

4.2.2.2 TDP1K111R does not result in a reduced activity compared to wild-type 

To compare the activity of the wild-type and K111R TDP1, decreasing concentrations 

(30, 15, 7 and 3 nm) of purified recombinant TDP1 or TDP1 K111R were incubated for 

1 hour at 37 °C with a 32P-radiolabelled duplex-nicked substrate (50 nM) harbouring a 

3’ phosphotyrosine ‘PY’ at the nick (Figure 4.2.8 B). The 3’-phosphotyrosine mimics 

the abortive complex of Top1, thus is a substrate for TDP1. If TDP1 is added to the 

reaction then hydrolysis of the phosphotyrosine bond should occur, leaving a 3’ 

phosphate which results in a faster migrating species termed ‘repair products’. Repair 

products were analysed by denaturing PAGE and phosphorimaging and reaction 

products ‘P’ were quantified relative to total labelled substrate ‘P + PY’ and percentage 

conversion to 3′-P. The wild-type TDP1 and K111R both demonstrate the same 

enzymatic capacity to hydrolyse the 3’ phosphotyrosine to a 3’phosphate (Figure 4.2.8 

C). This suggests that the missense mutation does not change the activity of TDP1. 
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4.2.2.3 TDP1K111R and TDP1 exhibit no significant structural differences  

Comparison of the TDP1 and TDP1K111R through circular dichroism spectroscopy, a 

well-known method for structural comparison (Lawton, 2002), resulted in two similar 

spectral graphs with negative bands at ~210 and 220 nm, and positive bands at ~195 nm 

(Figure 4.2.9 A). High tension voltage for both spectra was under 600 (Figure 4.2.9 B) 

at the lowest wavelength; a value required for accurate interpretation of data (Kelly et 

al., 2005) and subtraction of the K111R plot from the wild-type gave a spectra not 

associated with any structure (Figure 4.2.9 C). To obtain a quantitative read-out 

analyses of secondary structure was carried out using DichroWeb, by employing the 

variable selection algorithm (CDSSTR), which provides superior fits for globular pro-

teins (Greenfield, 2006; Lobley et al., 2002; Perez-Iratxeta and Andrade-Navarro, 

2008). This analysis revealed no significant difference in α-helical or β-sheet content (P 

> 0.5; t-test), suggesting no apparent change in structure (Table 4.2.1). This was also 

supported by the CONTIN and K2D algorithms (J. J. R. Hudson et al., 2012). From 

these analyses I concluded that there was no significant change in structure, unfolding, 

or catalytic activity of the mutant protein compared to the wild-type and that any 

cellular phenotype that might be observed is likely due to TDP1 K111R’s inability to be 

modified by SUMO1.  
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Figure 4.2.8 Removal of the N-terminal domain does not impact upon activity in vivo 

(A) 0.75 µM of recombinant hTDP1 or hTDP1 K111R was mixed with SYPRO-orange, and melting 

profiles were obtained between 20 and 70 °C. Mutation of the lysine to arginine does not diminish the 

stability, unfolding pattern or melting temperature of the protein. Error bars represent standard deviation 

from 3 independent replicates. (B) Decreasing concentrations (30, 15, 7 and 3 nm) of purified 

recombinant TDP1 or TDP1 K111R was incubated for 1 hour at 37 °C with a 32P-radiolabelled duplex-

nicked substrate (50 nM) harbouring a 3′-phosphotyrosine ‘PY’ at the nick (inset). Positions of the 32P-

radiolabelled substrate ‘PY’ and cleavage product ‘P’ are indicated by arrows and show that cleavage of 

the tyrosine is similar when TDP1 or TDP1 K111R are added to the substrate. (C) Reaction products ‘P’ 

were quantified relative to total labeled substrate ‘P + PY’ and percentage conversion to 3′-P from 

experiments conducted in (B) was quantified. This shows that mutation of TDP1 K111R does not impact 

on the cleavage of the tyrosine-phosphate. 
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Figure 4.2.9 Comparison of hTDP1 and hTDP1151-608 using CD shows no gross structural difference 

between the proteins 

Comparison of recombinant TDP1 and TDP1K111R through circular dichroism spectroscopy resulted in 

two similar spectral graphs with negative bands at ~210 and 220 nm, and positive bands at ~195 nm (A). 

This suggests that a lysine to arginine mutation has no impact on secondary structure. Data represent the 

average of four independent experiments ± s.e.m. Data was only recorded if the high-tension voltage (HT 

[V]) < 550 V (C). Subtraction of the hTDP1151-608 spectra from that of hTDP1 (B) results in a relatively 

flat line not indicative of any secondary structure. 

 

Helix Sheet Others* NRMSD# 

(<0.25) 

CDSSTR 
Reference set 4 

TDP1 TDP1 
K111R 

TDP1 TDP1 
K111R 

TDP1 TDP1 
K111R 

TDP1 TDP1 
K111R 

 

Secondary 
Structure  (%) 

16.3  ± 1.2 16.3  ± 0.3 29.0 ± 1.2 28.0  ± 0.6 55.3 ± 0.3 55.7  ± 0.9 0.04 0.05 

P value 
(n=3) 

1.00000 0.57792 0.74180 

*"Loops, turns, and unstructured 
#  Normalised root mean square deviation   

Table 4.2.1 Bioinformatics analyses of core secondary structure using CDSSTR algorithm 

Secondary structure analysis shows no significant difference in secondary structure between wild type 

TDP1 and TDP1K111R. Analysis was conducted using the variable selection method (CDSSTR) with 

reference data set 4 from the Dichroweb server, which gave the best goodness-of-fits. NRMSD values 

were 0.04 and 0.05 for TDP1 and hTDP1K111R respectively. 
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4.2.3 SUMOylation-deficient mutant accrues more DNA single-strand 

breaks that are in part transcription dependent 
 

4.2.3.1 TDP1 K111R mutant shows reduced survival in the presence of CPT 

To assess the impact the SUMO-deficient mutant may have in vivo another lab member 

infected Tdp1 -/- mouse embryonic fibroblasts (MEFs) with retrovirus particles 

containing vector alone (Tdp1 -/-; V) or encoding human TDP1 (Tdp1 -/-; hTDP1) or 

TDP1 K111R (Tdp1 -/-; hTDP1 K111R). To examine if hTDP1 K111R had an impact 

on cellular survival, we compared the three cell types for their ability to form 

macroscopic colonies following exposure to CPT. Tdp1 -/-; V cells were hypersensitive 

to CPT as expected and complementation with hTDP1 led to marked protection. 

Complementation with hTDP1K111R led to an intermediate level of protection (Figure 

4.2.10 A). These differences were not due to differences in protein expression, since 

immunoblots show a similar level of TDP1 and TDP1K111R (Figure 4.2.10 B). 
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Figure 4.2.10 TDP1 K111R mutant shows reduced survival in the presence of CPT 

(A) Tdp1 -/- MEFs complemented with empty vector or with vectors expressing wild-type TDP1 or 

TDP1 K111R. Survival was calculated by dividing the average number of colonies on treated plates by 

the average number of colonies on untreated plates and shows that hTDP1 helps protect Tdp1 -/- MEFs 

from CPT. Expression of hTDP1 K111R resulted in a better resistance to CPT than Vector alone but were 

more sensitive than cells expressing hTDP1. Error bars represent s.e.m for 3 independent experiments. A 

difference in survival was not due to levels of expression between TDP1 and TDP1 K111R (B). 
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4.2.3.2 TDP1 K111R accumulates more DNA single-strand breaks in the presence 

of CPT 

Since TDP1 K111R had a reduced survival rate in the presence of CPT when compared 

to the wild type TDP1, we wanted to see if the K111R mutant resulted in an increase in 

single-strand breaks in the presence of CPT, when measured by the alkaline comet 

assay. HEK293 cells expressing endogenous levels of TDP1 were transfected with 

GFP–SUMO1 and empty vector, or vectors encoding Myc–TDP1 or Myc–TDP1 

K111R. As expected, HEK293 cells expressing TDP1 accumulated four- to fivefold 

fewer SSBs compared with control cells (Figure 4.2.11). Cells expressing TDP1 

K111R accumulated two- to three- fold more single-strand breaks when compared with 

TDP1-expressing cells (P = 0.0169; student’s t-test). This defect was not due to 

differences in expression levels as confirmed by immunoblotting. With SUMOylation 

defective TDP1 mutant showing more CPT induced single-strand breaks and lower 

survival in comparison to the wild-type protein, the next step was to see if this defect 

was linked to transcriptionally associated breaks.  
 

4.2.3.3 Accumulation of DNA single-strand breaks is in part transcription 

dependant 

HEK293 cells were transfected with GFP–SUMO1 and empty vector, or vectors 

encoding Myc–TDP1 or Myc–TDP1 K111R. These cells were then pre-treated with 

DMSO ‘- DRB’ or 50 µM of the transcriptional inhibitor DRB ‘+ DRB’ for 2 hrs. 

DMSO ‘mock’, or 50 µM of CPT ‘CPT’ was then added to the cells for 1 hour at 37 °C. 

DNA single-strand breaks were then measured using the alkaline comet assay. Once 

again the TDP1 K111R mutant resulted in a 2-3fold higher average comet tail moment 

compared to the wild-type (Figure 4.2.12 A). Interestingly, pre-incubation with 

transcription inhibitor DRB resulted in no difference in comet tail moment (P=0.87; 

student’s t-test) between wild-type and mutant protein. Differences seen, once again 

could not be due to differences in protein expression levels as determined by 

immunoblots (Figure 4.2.12 B). These data support the data presented in the previous 

chapter where the N-terminal domain of TDP1 is involved in the repair of transcription 

associated breaks, suggesting that this effect is, at least in part, mediated via 

SUMOylation at lysine 111. 
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Figure 4.2.11 TDP1 K111R accumulates more DNA single-strand breaks in the presence of CPT 

(A) HEK293 cells were transfected with GFP–SUMO1 and empty vector ‘vector’, or vectors encoding 

Myc–TDP1 ‘TDP1’ or Myc–TDP1 K111R ‘TDP1 K111R’ using conditions that produce > 90% 

transfection efficiency. Cells were incubated with DMSO ‘mock’ or 50 µM camptothecin ‘CPT’ and 

DNA breaks quantified by alkaline comet assays. Mean tail moments were quantified for 50 cells per 

sample per experiment, and data are the average of n = 3 biological replicates ± s.e.m. (B) Lysate from 

cells used were analysed by immunoblotting. 
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subsequent 90-s observation period. We reason that inhibiting 
transcription may reduce the frequency of collision of Top1 inter-
mediates with elongating RNA polymerase II, thereby reducing the 
need for recruiting more GFP–TDP1K111R. We next quanti!ed the 
extent of transcription-associated SSBs using alkaline comet assays. 
For these experiments, we used HEK293 cells to achieve ~90% 
transfection e"ciency. If the di#erence in repair capacity observed 
between TDP1 and TDP1K111R was, at least in part, due to a role 
for TDP1 SUMOylation in repairing transcription-associated SSBs, 
then inhibiting transcription should ablate or reduce this di#erence. 
While cells expressing TDP1K111R accumulated a higher level of 
SSBs compared with TDP1 expressing cells, they both decreased to a 
comparable level following incubation with DRB (Fig. 8c,d; P = 0.78; 
t-test), suggesting that TDP1 SUMOylation contributes to the repair 
of transcription-associated SSBs. Taken together, these data suggest 
that TDP1 SUMOylation at K111 participates in the overall repair 
of transcription-dependent SSBs.

Discussion
Top1-linked DNA breaks underlie the clinical utility of an important 
class of anticancer drugs, and their progressive accumulation causes 
neurodegeneration in humans1,38–40. A key factor in the repair of 
Top1-breaks is TDP1, mutation of which causes the demise of post-
mitotic tissue. Here we report that TDP1 is a substrate for SUMO 
modi!cation, which occurs primarily at lysine 111 within the vertebrate- 
conserved N-terminal domain. SUMOylation promotes accumula-
tion of TDP1 at sites of DNA damage, thereby accelerating the rate of 
SSB repair and contributes, at least in part, to the repair of transcrip-
tion-generated SSBs, the major source of Top1-breaks in non-cycling 
cells. $ese observations raise the possibility of an important regula-
tory role in postmitotic tissue. Notably, ~4-fold di#erence in the rapid 
clearance of SSBs results in severe neurological dysfunction in murine 
model systems22 and has been linked to ataxia in humans1,41,42.

Collision of elongating RNA polymerase II with Top1 inter-
mediates results in stalling of transcription and triggers partial 

0

5

10

15

20

25

V
ec

to
r

T
D

P
1

T
D

P
1

K
11

1R

V
ec

to
r

T
D

P
1

T
D

P
1

K
11

1R

– DRB + DRB

Mock
CPT

A
v 

co
m

et
 ta

il 
m

om
en

t

TDP1
SUMO1

V
ec

to
r

T
D

P
1

K
11

1R

TDP1

CPT
DRB

– – – + +
++ –– –

TDP1
K111R

+
–

+
+

TDP1

Actin

P = 0.87

P = 0.02

100

110

120

130

140

150

C 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

TDP1–DRB
TDP1 + DRB
K111R–DRB
K111R + DRB

Time (s)

%
 F

lu
or

es
ce

nc
e

0

– D
RB

+ 
DRB

– D
RB

+ 
DRB

10

20

30

40

50

60

70

T
ot

al
 fl

uo
re

sc
en

ce
 (

ar
bi

tr
ar

y 
un

its
)

TDP1 TDP1
K111R

TDP1TDP1
SAE1/SAE2

UBE2I

SENPs

K111

SUMO1

Top1

RNA Pol II
Top1

RNA Pol II
Top1

peptide RNA Pol II

Collision of
Top1 complexes
with elongating

RNA Pol II 

Degradation of
Top1 to a

small peptide 

Removal of
Top1 peptide

by  TDP1 

Repair of Top1
breaks and
restoration

of transcription 

75

150

50

100

37

Enrichm
ent at

sites of dam
age

Figure 8 | Accumulation of TDP1 at sites of DNA damage is in part transcription dependent. (a) MRC5 cells expressing GFP–TDP1 or GFP–TDP1 K111R 
were incubated with DMSO ‘-DRB’ or with 50 M 5,6-dichlorobenzimidazole 1-b-D-ribofuranoside ‘ + DRB’ for 2 h at 37 °C. Cells expressing similar  
total GFP signal were irradiated with an ultraviolet A laser, and GFP–TDP1 accumulation at the site of damage was quantified. Data are the mean  s.e.m.  
of ~40 cells from n = 4 biological replicates. Note that the difference between the accumulation of GFP–TDP1 in the absence (yellow circles) and  
presence (yellow triangles) of DRB was statistically significant (P < 0.05, Student’s t-test). (b) Average total fluorescence  s.e.m. for cells analysed in a. 
(c) HEK293 cells were transfected with empty vector ‘vector’, Myc–TDP1 ‘TDP1’ or Myc–TDP1K111R ‘TDP1 K111R’ and GFP–SUMO1. Cells were incubated 
with DMSO ‘mock’ or treated with 50 M camptothecin ‘CPT’ with or without previous incubation with 50 M DRB for 2 h. DNA strand breakage was 
quantified by alkaline comet assays and presented as mean tail moment. Data are the average  s.e.m. from n = 3 biological replicates, where 50 cells 
per sample were blindly scored from each experiment. Statistical analyses (Student’s t-test) were conducted to compare the difference between TDP1 
and TDP1 K111R in the absence or presence of DRB, and the corresponding P-values are depicted. (d) Lysate from cells used for experiments in c were 
fractionated by SDS–PAGE and analysed by immunoblotting. (e) Collision of elongating RNA polymerases, such as RNA Pol II with Top1 intermediates, 
leads to stalling of the polymerase with subsequent proteasomal degradation of Top1, and possibly the stalled RNA Pol. We propose that these 
collision events recruit TDP1 to sites of polymerase stalling. TDP1 exists in equilibrium between unmodified (the majority) and a SUMOylated version 
(a tiny proportion), and the balance is maintained by the opposing activities of SUMO conjugation (SAE1/2, UBC9 and possibly a SUMO ligase) and 
deconjugation (SENPs). We show that TDP1 SUMOylation occurs primarily at K111 and propose that SUMOylated TDP1 is at least, in part, engaged  
in dealing with the transcription-blocking lesions.
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subsequent 90-s observation period. We reason that inhibiting 
transcription may reduce the frequency of collision of Top1 inter-
mediates with elongating RNA polymerase II, thereby reducing the 
need for recruiting more GFP–TDP1K111R. We next quanti!ed the 
extent of transcription-associated SSBs using alkaline comet assays. 
For these experiments, we used HEK293 cells to achieve ~90% 
transfection e"ciency. If the di#erence in repair capacity observed 
between TDP1 and TDP1K111R was, at least in part, due to a role 
for TDP1 SUMOylation in repairing transcription-associated SSBs, 
then inhibiting transcription should ablate or reduce this di#erence. 
While cells expressing TDP1K111R accumulated a higher level of 
SSBs compared with TDP1 expressing cells, they both decreased to a 
comparable level following incubation with DRB (Fig. 8c,d; P = 0.78; 
t-test), suggesting that TDP1 SUMOylation contributes to the repair 
of transcription-associated SSBs. Taken together, these data suggest 
that TDP1 SUMOylation at K111 participates in the overall repair 
of transcription-dependent SSBs.

Discussion
Top1-linked DNA breaks underlie the clinical utility of an important 
class of anticancer drugs, and their progressive accumulation causes 
neurodegeneration in humans1,38–40. A key factor in the repair of 
Top1-breaks is TDP1, mutation of which causes the demise of post-
mitotic tissue. Here we report that TDP1 is a substrate for SUMO 
modi!cation, which occurs primarily at lysine 111 within the vertebrate- 
conserved N-terminal domain. SUMOylation promotes accumula-
tion of TDP1 at sites of DNA damage, thereby accelerating the rate of 
SSB repair and contributes, at least in part, to the repair of transcrip-
tion-generated SSBs, the major source of Top1-breaks in non-cycling 
cells. $ese observations raise the possibility of an important regula-
tory role in postmitotic tissue. Notably, ~4-fold di#erence in the rapid 
clearance of SSBs results in severe neurological dysfunction in murine 
model systems22 and has been linked to ataxia in humans1,41,42.

Collision of elongating RNA polymerase II with Top1 inter-
mediates results in stalling of transcription and triggers partial 
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Figure 8 | Accumulation of TDP1 at sites of DNA damage is in part transcription dependent. (a) MRC5 cells expressing GFP–TDP1 or GFP–TDP1 K111R 
were incubated with DMSO ‘-DRB’ or with 50 M 5,6-dichlorobenzimidazole 1-b-D-ribofuranoside ‘ + DRB’ for 2 h at 37 °C. Cells expressing similar  
total GFP signal were irradiated with an ultraviolet A laser, and GFP–TDP1 accumulation at the site of damage was quantified. Data are the mean  s.e.m.  
of ~40 cells from n = 4 biological replicates. Note that the difference between the accumulation of GFP–TDP1 in the absence (yellow circles) and  
presence (yellow triangles) of DRB was statistically significant (P < 0.05, Student’s t-test). (b) Average total fluorescence  s.e.m. for cells analysed in a. 
(c) HEK293 cells were transfected with empty vector ‘vector’, Myc–TDP1 ‘TDP1’ or Myc–TDP1K111R ‘TDP1 K111R’ and GFP–SUMO1. Cells were incubated 
with DMSO ‘mock’ or treated with 50 M camptothecin ‘CPT’ with or without previous incubation with 50 M DRB for 2 h. DNA strand breakage was 
quantified by alkaline comet assays and presented as mean tail moment. Data are the average  s.e.m. from n = 3 biological replicates, where 50 cells 
per sample were blindly scored from each experiment. Statistical analyses (Student’s t-test) were conducted to compare the difference between TDP1 
and TDP1 K111R in the absence or presence of DRB, and the corresponding P-values are depicted. (d) Lysate from cells used for experiments in c were 
fractionated by SDS–PAGE and analysed by immunoblotting. (e) Collision of elongating RNA polymerases, such as RNA Pol II with Top1 intermediates, 
leads to stalling of the polymerase with subsequent proteasomal degradation of Top1, and possibly the stalled RNA Pol. We propose that these 
collision events recruit TDP1 to sites of polymerase stalling. TDP1 exists in equilibrium between unmodified (the majority) and a SUMOylated version 
(a tiny proportion), and the balance is maintained by the opposing activities of SUMO conjugation (SAE1/2, UBC9 and possibly a SUMO ligase) and 
deconjugation (SENPs). We show that TDP1 SUMOylation occurs primarily at K111 and propose that SUMOylated TDP1 is at least, in part, engaged  
in dealing with the transcription-blocking lesions.
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Figure 4.2.12 Accumulation of DNA single-strand breaks is in part transcription dependent 

HEK293 cells were transfected with empty vector ‘vector’, myc–TDP1 ‘TDP1’ or myc–TDP1K111R 

‘TDP1 K111R’ and GFP–sumo1. Cells were incubated with DMSO ‘mock’ or treated with 50 µM 

camptothecin ‘CPT’ with or without previous incubation with 50 µM DRB for 2 h. DNA strand breakage 

was quantified by alkaline comet assays and presented as mean tail moment. Data are the average ± 

s.e.m. From n = 3 biological replicates, where 50 cells per sample were blindly scored from each 

experiment. Statistical analyses (Student’s t-test) were conducted to compare the difference between 

TDP1 and TDP1 K111R in the absence or presence of DRB, and the corresponding P-values are depicted. 

(A) Lysate from cells used for experiments in (B) were fractionated by SDS–PAGE and analysed by 

immunoblotting. 
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4.2.4 TDP1 interacts non-covalently with SUMO2/3 
 

4.2.4.1 TDP1 interacts with SUMO2 in vitro 

Since TDP1 is SUMOylated at K111 by SUMO1 and TDG has been reported to interact 

covalently and non-covalently with SUMO (Smet-Nocca et al., 2011), we wanted to 

investigate if TDP1 could also interact with the SUMO family in a non-covalent 

manner, via a SUMO interacting motif (SIM). Recombinant His-TDP1 (0.23 µg) was 

mixed with protein G beads (negative control) or SUMO1, 2, 3 conjugated beads 

(ENZO life sciences) for 1 hour at 4 °C. After incubation samples were washed 5 times 

before protein analysis by immunobloting. TDP1 was found to interact non-covalently 

with SUMO2 and SUMO3, as intense bands were detected by anti-TDP1 (Eurogentec) 

in the SUMO2 and SUMO3 fractions ‘S2’, ‘S3’ when compared to the SUMO1 fraction 

‘S1’ or protein G beads ‘PG’ (Figure 4.2.13). 

 

4.2.4.2 TDP1 interacts with SUMO2 via the catalytic domain in vitro 

Next we wanted to map the site of the SIM/s. To do this recombinant His-TDP1, His-

TDP11-150 or His-TDP1151-608 were mixed with SUMO1, or SUMO2 conjugated beads 

following the method described in section 2.6.2.1. The input in (Figure 4.2.14 A) 

shows that less TDP1151-608 was added to the beads, but the immunoprecipitate displays 

a band corresponding to TDP1151-608 with a similar intensity as the full-length protein. 

On the other hand TDP11-150 gave a much weaker signal. None of the truncations, nor 

full-length protein showed an interaction with SUMO1 beads. These results could be 

interpreted in one of three ways: i) The N-terminal of TDP1 contains a SIM/s but has a 

much weaker interaction; ii) truncation of TDP1 moiety leads to the presentation of a 

SIM site/s that would otherwise be buried in the full-length protein, or finally iii) levels 

of protein used in this assay were much higher than would be found endogenously and 

therefore this weaker band seen when SUMO2 is mixed with TDP11-150 is an artefact of 

the experiment. To dissect these three possibilities, TDP1151-608, TDP11-150, or both 

TDP1151-608 and TDP11-150, were mixed with conjugated SUMO2 beads (Figure 4.2.14 

B). The immunoblot demonstrates that TDP1151-608 outcompetes the TDP11-150 domain 

when the same levels of protein were in the same fraction. This implies that the SIM/s 

are in the phosphodiesterase domain and that the weak interaction shown in the N-

terminal domain is probably an artifact of the assay. 
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Figure 4.2.13 TDP1 binds to SUMO2 non-covalently 

0.23 µg of recombinant His-TDP1 was mixed with 20 µl protein G ‘PG’, SUMO1 ‘S1’, SUMO2 ‘S2’, or 

SUMO3 conjugated beads (Activmotif). TDP1 was found at a much larger quantity in ‘S2’ and ‘S3' 

fractions compared to ‘S1’ or  PG negative control. 
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Figure 4.2.14 SUMO2 binds non-covalently to the catalytic domain of TDP1 

0.23 µg of recombinant His-TDP1 ‘WT’ TDP1151-608 ‘C’ or TDP11-150 ‘N’ were mixed with 20 µl SUMO1 

‘S1’ or SUMO2 ‘S2’ conjugated beads (Activmotif). Immunoblots with anti-TDP1 (Eurogentec) detected 

TDP1 and TDP1151-608 in the SUMO2 fraction whilst TDP11-150 was found at a much lower level (A). (B) 

Addition of TDP1151-608 and TDP11-150 to the same tube containing SUMO2 ‘N+C’ shows the catalytic 

domain out competes the N-terminal domain for binding to SUMO2. 
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4.2.4.3 Identification of SIM/s in TDP1 

To identify the site/s of the SUMO2 - TDP1 interaction conserved regions across 

homologues were analysed to see if they contain the generic SIM recognition motif. 

This follows the sequence V/I-X-V/I-V/I where X is any amino acid (Hannich et al., 

2005; Minty et al., 2000; J. Song et al., 2004). Sequence analysis identifies 6 potential 

sites: ILLV, LRVV, IDVI, VYLI and LGVL (Figure 4.2.15). SIM sites are 

hydrophobic regions that normally conform to a beta sheet structure (Kerscher, 2007). 

This would suggest that the two strongest candidates for the interacting motif were 

ILLV and LYLI. Intriguingly, TDP2, a newly discovered enzyme that possess 5’-TDP 

activity (Cortes Ledesma et al., 2009; Zeng et al., 2011), was found to have a SIM 

sequence of IDVI (Hecker et al., 2006) which is one of the candidates for TDP1. To 

determine if these sites were the location of the SIM the first two amino acids in these 

potential sites were mutated to harbor a di-alanine. These SIM mutations were then 

expressed and purified following the protocol for His-tagged proteins. 

 

4.2.4.4 Mutation of the first two amino acids in potential SIM sites results in 

instability and co-expression with GroEL 

Once purified SIM mutants: SIM1 (ILLV-AALV), SIM2 (LRVV-AAVV), SIM3 

(IDVI-AAVI), SIM4 (VYLI-AALI) and SIM5 (LYLI-AALI) were mixed with the 

SUMO2 conjugated beads and analysed by immunoblots to test it these mutants could 

still bind to the SUMO2 protein (Figure 4.2.16). The input shows that SIM mutants all 

seem to cause a truncation resulting in the same size fragment at ~ 62 kDa. SIM 2, 3 

and 5 gave faint bands consisting with the size of full-length TDP1 ~ 72 kDa. SIM4 

shows a second truncated product ~ 58 kDa. The immunoprecipitate shows that the 

truncation found in all SIM mutants was present, whilst the higher molecular weight 

band in SIM5 ‘SM5’ was no longer detectable. Both higher molecular weight signals 

were present in the SIM2 and 3 lanes and the truncation ~ 58 kDa found in the SIM4 

mutant input is also present (Figure 4.2.16 A). The conclusion from this experiment 

could be that the higher molecular weight band present in the SIM5 input but not 

detectable in the immunoprecipitate ablates SUMO2 binding. The lower molecular 

weight bands, seen as “truncations”, could be a result of an inherent instability of the di-

alanine mutations, but this seems unlikely because they should not all result in the exact 

same molecular weight. It is more probable that the di-alanine mutation causes folding 

issues with all mutants during expression of the proteins. As a result chaperone proteins 
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are accrued to help stabilize the misfolded protein. One common chaperone protein, 

which is known to co-purify with misfolded proteins is that of GroEL (Katayama et al., 

2009). GroEL is approximately 62 kDa in size and therefore the truncated band seen in 

all purifications on an SDS-PAGE gel (Figure 4.2.16 B) could in fact be GroEL. 

 

To test this SIM4 and SIM5, which both show this lower molecular weight protein on 

the SDS-PAGE gel (Figure 4.2.16 B) were analysed by western and probed with anti-

GroEL antibody (Pearl lab). Intense bands were seen at the weight corresponding to the 

“truncation” whilst no other bands were detected. This demonstrates that the truncated 

protein is in fact the heat shock protein GroEl. The ability of GroEL to co-purify with 

TDP1 SIM mutants and can bind to the Protein G beads means that these results could 

not be taken into account and an alternative method for SIM identification should be 

explored.   

 

4.2.4.5 TDP1 fragments within the catalytic domain causes loss of expression in 

vivo 

Circumvention of this problem could be obtained by creating truncations within the 

phosphodiesterase domain that would remove potential SIM sites. The crystal structure 

was studied and it was decided to create truncations within unfolded regions of the 

protein (Figure 4.2.17). This may help prevent folding issues and disturbances within 

the secondary structure. Initially four fragments were created: TDP1281-608, TDP1368-608, 

TDP1150-608 and TDP1150-416. These fragments were created in the PCI-Myc mammalian 

expression vector. Once sequenced TDP1 fragments were transfected into HEK293 

cells by calcium phosphate transfection, lysed and analysed by immunoblots. Bands 

detected in the TDP1151-608 lanes show that transfections were successful (Figure 

4.2.18). Unfortunately, none of the TDP1 fragments were detected, at levels detectable 

by anti-Myc. This means that SIM site determination could not be found using this 

method either. 
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SIM recognition motifs: V/I-X-V/I-V/I 
 
 
 
ILLV 
LRVV 
IDVI 
VYLI 
LYLI 
LGVL 
 

 
Figure 4.2.15 Sequence analysis predicts 6 potential SIM sites in TDP1 

SIM binding motifs are recognized with the amino acid sequence as V/I-X-V/I-VI with X being any 

amino acid. BLAST sequence analysis of the TDP1 and conserved regions between species identifies 6 

potential SIM binding sites. ILLV, LRVV, IDVI, VYLI, LYLI and LGVL.  
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Figure 4.2.16 Mutation of SIM sites results in truncation and expression of GroEL 

The first two amino acids of potential SIM sites were mutated to alanine. 0.23 µg recombinant His-TDP1 

‘WT’ or SIM mutants ‘SM2, SM3, SM4, SM5’ were mixed with SUMO2 conjugated beads. Immunoblot 

analysis (anti-TDP1; Eurogentec) was carried out to determine which TDP1 mutants would co-precipitate 

with SUMO2 (A). Due to a band being detected at the same molecular weight throughout all TDP1 

mutants that does correspond to the size of TDP1 an SDS-PAGE gel was run to see if this band was 

present after purification or if the proteins had degraded (B). The SDS-PAGE gel shows that there are 

bands in all the lanes at 62 kDa (highlighted in red) that is not present in the wild type protein. This 

means that the SIM mutants all result in a truncation of a similar size or a contaminant is present. The 

band size seen is correct size for the chaperone protein GroEL, which can co-purify with misfolded 

protien. To test this recombinant protein of SIM mutant 4 and 5 was run on a fresh SDS-PAGE gel 

transferred to a nitrocellulose membrane and probed for heat shock protein GroEL, using anti-GroEL 

antibody (C). The prominent band found in  (C) is of GroEL and means that the SIM mutants co-purify 

with this protein. 
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Figure 4.2.17 Determination of truncation points to map SIM motifs 

The crystal structure of TDP1151-608 was analysed to determine locations within the protein where 

truncations could be created within unstructured regions to remove potential SIMs. 
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Figure 4.2.18 Truncations within the catalytic domain results in loss of protein expression 

HEK293T cells were transfected with Myc-TDP1151-608, Myc-TDP1281-608, or Myc-TDP1150-416 using 

calcium phosphate transfection. Lysates were prepared from transfected cells by re-suspension in lysis 

buffer (20 mM HEPES pH 7.4, 0.5 % NP40, 40 mM NaCl, 2 mM MgCl2, 1 × protease inhibitor cocktail 

(Roche), 1 × phosphatase inhibitor (Roche), 20 mM NEM and 25 U/ml benzonase (Merck)) 10 % of total 

lysate was fractionated via SDS-PAGE and sample analysed by immunoblot using anti-Myc (9E11; cell 

signaling)  
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The last protocol to identify the location of SIM/s in TDP1 was to expose recombinant 

TDP1 to a tryptic digestion. Trypsin is known to cleave at the carboxy terminus of 

arginine or lysine, but not before proline (Olsen et al., 2004). If after a specific amount 

of time TDP1 is digested into multiple fragments then the SIM/s could be narrowed 

down to a particular fragment. Figure 4.2.19 shows that incubation of TDP1 with 

trypsin at a ratio of 1:50 results in rapid fragmentation, even after one hour. This would 

not give us the desired fragments to determine the peptide sequence that interacts with 

SUMO2. Incubation at a ratio of 1:250 displays a varied digestion of TDP1 after one 

hour, as seen by multiple bands at different molecular weight sizes. This could be used 

in conjunction with SUMO2 conjugated to beads to “fish” out the compatible 

fragments. These stretches of fragmented protein could then be scrutinized using a mass 

spec to detect the peptide fragments of TDP1 that bind to SUMO2/3. Further single or 

double amino acid substitutions could then be used to obtain a stably expressing TDP1 

that is unable to interact with SUMO2 or 3. This TDP1 SIM mutant could then be tested 

in vivo to determine what role the SIM interaction may have. 
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Figure 4.2.19 Fragmentation of TDP1151-608 by incubation with trypsin 

2.5 mg of recombinant His-TDP1151-608 was incubated with 0.05 mg, or 0.01 mg of trypsin and samples 

were taken at 1, 2, 3, 4 and 5 hours. Protein from these time points were then fractionated on an SDS-

PAGE gel and stained with Coomassie blue. 
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4.3 Discussion 
 

This chapter identifies that TDP1 is post-translationally modified by SUMO1. This 

modification has been shown in vitro and in vivo. Furthermore, SUMOylation occurs 

via TDP1’s evolutionarily driven N-terminal domain at lysine 111. In silico analyses of 

S. cerevisiae Tdp1 (Ren et al., 2009) also predicts no SUMOylation site when the amino 

acid sequence is scanned under high threshold conditions. Therefore, it appears that 

SUMOylation of TDP1 by SUMO1 is only found in higher eukaryotes. The lysine at 

position 111 in hTDP1 is conserved in several vertebrate species but does not seem to 

be induced by cellular damage (data not shown), as upon addition of CPT there is no 

increase in SUMOylation of TDP1. Instead this appears to be a house keeping 

modification where a basal amount of TDP1 is constantly SUMOylated. TDP1 

SUMOylation is not a static process and is maintained by activities of sumo conjugation 

(SAE1/2, UBC9) and de-conjugation (SENPs). The observation that TDP1 has a basal 

amount of SUMOylated TDP1 is supported by the fact that the majority of SUMO1, 

unlike SUMO2 and 3, within the cell is not freely available. Therefore, proteins 

modified by SUMO1 generally have a small fraction constantly conjugated to the 

SUMO1 molecule (Minty et al., 2000; Saitoh and Hinchey, 2000). 

 

We also demonstrate that mutation of lysine 111 to an arginine abrogates the covalent 

modification and sensitizes cells to camptothecin when compared to wild-type TDP1. 

Ablation of SUMOylation also results in an increase in single-strand DNA breaks when 

measured by the alkaline comet assay. Because lysine residues also serve as attachment 

sites for other modifications, we also show a similar defect in wild-type TDP1 cells 

when UBC9 is knocked down, and that this has no effect on cells expressing TDP1K111R 

(J. J. R. Hudson et al., 2012). This further consolidates the idea the defect observed is 

due to an inability for TDP1 to be covalently modified by SUMO1 at lysine 111. 

 

We show that SUMOylation of TDP1 does not change the catalytic activity of the 

protein, nor does the amino acid substitution from lysine to arginine at 111 that is used 

to abolish SUMOylation, and identify the role that SUMO modification of TDP1 has in 

cells. 
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We identify that SUMO modification of TDP1 is required for optimal protection against 

the DNA damaging agent camptothecin, and that this is, in part, transcription 

dependent. Furthermore, SUMOylation of TDP1 at K111 led to an increase in cellular 

concentration at sites of damage. When cells expressing GFP-TDP1 or GFP-TDP1 

K111R were subjected to ultraviolet A laser-induced DNA damage, GFP-TDP1 

accumulated to sites of damage more rapidly than TDP1 K111R and also resulted in a 

higher concentration of TDP1 at these sites. Additionally, inclusion of transcription 

inhibitor DRB before ultraviolet A laser-induced DNA damage led to reduction in 

TDP1 accumulation at sites of laser damage, this could mean that recruitment of 

SUMOylated TDP1 is also transcriptionally dependent (J. J. R. Hudson et al., 2012). 

The defect seen when TDP1 cannot be SUMOylated is also not due to a change in core 

structure of the K111R mutant as alpha helical and beta sheet content remain the same 

when measured by circular dichroism. The unfolding pattern and melting temperatures 

of TDP1 and TDP1K111R also remain similar and thought not to be the cause of the 

defect seen. 

 

The fact that TDP1 is SUMOylated in the N-terminal domain and that this is required 

for optimal cellular protection, in which, part of this is transcription dependent re-

enforces the conclusions of my first chapter and adds to the model for which the N-

terminus of TDP1 is required. It shows that TDP11-150 is needed to increase cellular 

concentrations of the enzyme to sites of transcriptionally associated Top1 damage, and 

that this process is facilitated by SUMOylation at lysine 111 by SUMO1. Furthermore, 

it establishes the importance the N-terminal has in post-mitotic cells as 

complementation of Tdp1 -/- quiescent cortical neural cells with human TDP1 or 

TDP1K111R revealed a role for K111 to maintain cell viability following CPT (J. J. R. 

Hudson et al., 2012). Taken together, we conclude that mutating the acceptor lysine 

(K111) to a non-SUMOylatable arginine results in defects in repairing single-strand 

breaks and highlights the role for this domain, particularly in post-mitotic cells. This 

discovery builds on the model of the first chapter (Figure 4.3.1) and identifies a role for 

SUMOylation of TDP1 in the repair of abortive Top1 complexes during transcription (J. 

J. R. Hudson et al., 2012). 
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Figure 4.3.1 Model for the repair of abortive Top1 complexes at sites of transcription 

Top1 can become trapped on the DNA and may collide with the transcription machinery. Once this 

occurs the Top1 enzyme undergoes ubiquitylation and is degraded by the 26S proteasome. SUMOylated 

TDP1 is then signalled to the site of damage and removes the 3’ tyrosine. This allows other members of 

the DNA repair machinery to repair the single-stranded break and allow transcription to progress. 

Collision of elongating RNA polymerases, such as RNA Pol II with Top1 intermediates, leads to stalling 

of the polymerase with subsequent proteasomal degradation of Top1, and possibly the stalled RNA Pol. 

We propose that these collision events recruit TDP1 to sites of polymerase stalling. TDP1 exists in 

equilibrium between unmodified (the majority) and a SUMOylated version, and the balance is maintained 

by the opposing activities of SUMO conjugation (SAE1/2, UBC9 and possibly a sumo ligase) and 

deconjugation (SENPs). We show that TDP1 SUMOylation occurs primarily at K111 and propose that 

SUMOylated TDP1 is at least, in part, engaged in dealing with the transcription-blocking lesions. 
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I have also demonstrated that TDP1 interacts with SUMO2 or 3 via TDP1’s catalytic 

domain. Unfortunately, due to problems with expression of TDP1 SIM truncations in 

vivo, or stability of TDP1 SIM mutants in vitro, I was unable to map the SIM/s that 

could allow us to determine what role this may have within cells. Interestingly, Chains 

of SUMO have been identified to bind covalently to Top1. Depending on how much of 

the Top1 peptide is left after degradation by the 26S proteasome the SUMO chains may 

act as a binding site for TDP1. This could increase the recruitment to the site of abortive 

Top1 complexes, or allow a specific orientation of TDP1 binding to increase the 

efficacy in which the enzyme hydrolyses the Top1 peptide from DNA. Ren et al have 

recently updated their database for post-translation modification (Ren et al., 2009) to 

now include SIM binding motifs. In silico analysis of the TDP1 protein identifies the 

sequence ILLVH at amino acid positions 224-228 as the only candidate to interact non-

covalently with SUMO under high or medium threshold conditions. Further work must 

be carried out to obtain a TDP1 SIM mutant that can be expressed in vivo to determine 

what role this SUMO-TDP1 non-covalent interaction has in cells. 
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Chapter V 
	
  

Results 3: The role of DNA ligases and CK2 during TDP1 
mediated repair 
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5.1 Introduction 
 

Tyrosyl DNA phosphodiesterase-1 (TDP1) protects cells from abortive Top1 activity by 

hydrolysing the 3’-phosphotyrosyl bond that links Top1 to a DNA single-strand break 

and is currently the only known human enzyme that displays this activity in cells. 

Following restoration of normal DNA termini, a DNA ligase is required to seal broken 

DNA strands and restore the integrity of the genetic material. 
 
5.1.2 Ligase family and TDP1 
 

TDP1 and Lig IIIα had been previously reported to interact via the N-terminus of TDP1 

(Chiang et al., 2010; Das et al., 2009; El-Khamisy et al., 2005) and therefore was 

thought to be a prime candidate for TDP1 nuclear and mitochondrial mediated repair. 

Unlike the other members of the ligase family Lig IIIα contains a mitochondrial leader 

sequence and is the only Ligase shown to be involved in mitochondrial DNA repair 

(Bentley et al., 2002; Ellenberger and Tomkinson, 2008; Lakshmipathy and Campbell, 

1999). A truncated version, splice variant, is nuclear bound and interaction with the 

XRCC1 scaffold protein is required for its stability (Caldecott et al., 1994; Nash et al., 

1997). This nuclear Lig IIIα has been linked with several single-strand break repair 

pathways and is currently thought to be the only ligase involved in TDP1 nuclear 

mediated repair. 

 

Surprisingly, depletion of Lig IIIα from human cells had no effect on the rapid repair of 

chromosomal Top1-linked DNA breaks (Jude, unpublished data). In striking contrast, 

DNA ligase I (Lig I), but not DNA ligase IV, deficient human cells exhibited marked 

defect in repairing chromosomal Top1-linked DNA breaks (Jude, unpublished data). 

These results prompted me to test if Lig I interacts with TDP1. Since homologues of 

Lig I are ubiquitous in Eukarya, whereas Lig IIIα appears to be restricted to vertebrates 

(Ellenberger and Tomkinson, 2008), I examined whether the association of Lig I and 

TDP1 occurs via the evolutionarily-conserved domain of TDP1. I show that whilst Lig 

IIIα interacts with the N-terminal vertebrate-conserved region of TDP1, Lig I interacts 



	
  

	
  

134	
  

with the C-terminal evolutionarily conserved domain. Our preliminary findings suggest 

a role for Lig I during TDP1-mediated nuclear DNA repair and suggest a distinct role 

for Lig IIIα likely through the repair of mitochondrial Top1-breaks. 
 

Interestingly, Ligase III appears to be only found in vertebrae and interacts via S81 of 

the N-terminal domain of TDP1, another evolutionarily developed domain conserved 

only in vertebrae. This then gives rise to the question of how the TDP1 enzyme with 

only the C-terminal domain being ubiquitously conserved throughout organisms could 

lead to repair from this type of damage in lower organisms without the aid of Lig IIIα? 

 

If Lig IIIα is in fact the main ligase involved in the sealing of the processed DNA 

termini then treatment of Lig IIIα depleted cells with camptothecin, a topoisomerase 1 

poison, should give a similar result to TDP1 knockout cells, or TDP1 defective SCAN 1 

cells found in SCAN 1 patients (El-Khamisy et al., 2005; Hirano et al., 2007; Interthal 

et al., 2005b; Takashima et al., 2002).  

 

5.1.3 Casein kinase II 
	
  
Whilst investigating the interaction of TDP1 and Lig I, I also identified that TDP1 was 

phosphorylated in vivo and demonstrated that phosphorylation of TDP1 occurs within 

the N-terminal domain of TDP1. Since TDP1 is SUMOylated at K111, which is found 

in the N-terminal domain of TDP1 we examined the regulation of SUMOylation 

through a phospho-dependent SUMOylation motif.   

 

TDP1 was already shown to be phosphorylated in response to damage by ATM and 

DNA-PK (Chiang et al., 2010; Das et al., 2009). These studies also rule out the 

possibility that TDP1 is phosphorylated by ATR. Thus, research into kinases that target 

protein interacting partners of TDP1 and that also possess the ability to constitutively 

phosphorylate proteins led us to further investigate casein kinase II (CK2) as a possible 

candidate. 

 

CK2 is a hetero-tetramer serine/threonine and to some extent tyrosine kinase that is 

composed of two alpha and two beta sub units (Hanks and Hunter, 1995; Meggio et al., 

1994; Vilk et al., 2008) Crystal structure analysis reveals that the catalytic kinase 
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activity is found within the two alpha subunits and has an extensive list of target 

substrates, with important roles in cell growth and survival (Meggio and Pinna, 2003; 

Pinna and Meggio, 1997).  

 

5.1.4 Chapter objectives 
 

In this chapter, I conducted a series of experiments to test if Lig I deficient cells are 

hypersensitive to the Top1 poison CPT and if Lig I interacts with TDP1, to support its 

role during nuclear repair of Top1-breaks. Since homologues of Lig I are ubiquitous in 

Eukarya, I then tested the hypothesis that the association of Lig I and TDP1 occurs via 

the evolutionarily conserved domain of TDP1. Investigations were also done to test if 

the interaction between Lig I and TDP1 was mediated by phosphorylation. The results 

of which lead to further experimental work into the phosphorylation of TDP1, the 

potential impact phosphorylation may have on TDP1 and if TDP1 is limited to 

phosphorylation by ATM and DNA-PK. 
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5.2 Results 
 

5.2.1 Ligase I and not ligase IIIα is implicated in TDP1-mediated 

nuclear repair 

 
5.2.1.1 Ligase I deficient cells results in hypersensitivity to camptothecin 

Our lab previously reported that TDP1 interacts with DNA Lig IIIα (Chiang et al., 

2010) (Figure 5.2.1), suggesting that it is the main ligase involved in the repair of 

nuclear Top1-mediated DNA damage. To test this hypothesis, Sherif El-Khamisy 

depleted Lig IIIα from human cells and quantified the extent of DNA breaks induced by 

the Top1 poison camptothecin using alkaline comet assays. Surprisingly, whilst TDP1 

deficient cells accumulated 5-fold more DNA breaks compared to control cells, breaks 

did not increase above background level in Lig IIIα-deficient cells (Jude, unpublished 

observations). This led to two possible conclusions; either other members of the ligase 

family were contributing to the repair in the absence of Lig IIIα, or Lig IIIα is not the 

main contributor to nuclear repair of abortive Top I complexes. To test the latter 

conclusion we examined whether DNA ligase IV, or Lig 1 could fulfil this function in 

vivo. Our lab compared Lig IV deficient human cells for their ability to repair Top1-

breaks. Similarly, CPT induced similar levels of breaks in both control and Lig IV 

deficient cells (data not shown), suggesting that Lig IV does not participate in this repair 

process. In striking contrast, initial experiments show that DNA Lig I deficient human 

cells (46BR), containing a hypomorphic mutation, accumulated more CPT-induced 

DNA breaks compared to control cells (Figure 5.2.2 A). Taken together, these results 

suggest one of two things. That Lig I and not Lig IIIα facilitates the repair of nuclear 

Top1-linked DNA breaks, or that there is a redundancy between ligase I and IIIα in 

nuclear repair of Top-linked DNA breaks. 

 

The later scenario seems most likely, as TDP1 has been shown to interact with the Lig 

IIIα-XRCC1 complex, a well-known component of single-strand break repair pathway 

(Caldecott, 2007; Reynolds et al., 2009). It is possible that the hypomorphic mutation in 

Lig I cells (Barnes et al., 1992; Ellenberger and Tomkinson, 2008; Prigent et al., 1994; 

Webster et al., 1992) leads to interaction with the DNA break, but has an inability to 

seal the phosphodiester backbone, thus acting as a competitive inhibitor to Lig IIIα. 
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Knockdown of Lig IIIα, Lig I and both ligases in cells should be carried out to answer 

which, or if both these ligases can play a role in TDP1-mediated repair. Single-strand 

DNA breaks observed could also be due to okazaki fragments, and should be ruled out 

by repeat experiments with replication inhibitor aphidicolin. 

 

5.2.1.2 The conserved catalytic domain of TDP1 is sufficient to maintain 

interaction with Lig I  

The results reported above prompted me to test whether Lig I does interact with TDP1, 

in a manner similar to that of Lig IIIα. For these experiments we ectopically expressed 

Flag-tagged Lig I and Myc-tagged TDP1 in HEK 293 cells. Immunoblots of the anti-

Myc immunoprecipitate (IP) revealed Flag-Lig I in IPs conducted from cells co-

expressing both Lig I and TDP1, but not in control cells expressing Flag-Lig I and Myc 

(Figure 5.2.2 B). We next examined whether Myc-TDP1 would be pulled down in a 

reverse IP. Flag-Lig I was pulled down using anti-Flag antibody (Figure 5.2.2 C) the 

immunoblots of the anti-Flag immunoprecipitate show that Myc-TDP1 is present in the 

Flag-Lig I IP but not in control cells. These results suggest that Lig I interacts with 

TDP1 in human cells. 

 

Homologues of Lig I are ubiquitous in Eukarya, whereas Lig IIIα appears to be 

restricted to vertebrates. Consistent with an evolutionarily driven requirement for Lig 

IIIα, we previously reported that it interacts with a domain of TDP1 that was only found 

in vertebrates (Chiang et al., 2010). To examine whether Lig I interacts with the more 

conserved domain of TDP1, we examined if the association of Lig I and TDP1 occurs 

via the evolutionarily conserved C-terminal domain. For these experiments we 

ectopically expressed Myc-TDP1 and Myc-TDP1151-608 and examined their association 

with Lig I by Co-IPs (Figure 5.2.3). The results establish that the interaction between 

Lig I and TDP1 occurs within the conserved C-terminal portion of TDP1, suggesting a 

similar mechanism of repair in lower eukarya to that found in vertebrates. 
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Figure 5.2.1 Interaction with hTDP1 and Ligase III occurs within the N-terminal domain of TDP1 

in DT40 cells 

(A) Myc-TDP1 or Myc empty vector were ectopically expressed in HEK293 cells. Proteins were 

immunopurified using anti-Myc antibody (9B11; cell signaling) and immunoblots were probed with anti-

Myc (9B11; 1:2000) or anti-Lig IIIα (TL25; 1:2000). Lig IIIα is found to co-purify with Myc-TDP1 but 

not Myc alone, suggesting an interaction between TDP1 and Lig IIIα. (B) DT40 cells expressing Myc-

hTDP1, Myc or Myc-TDP1151-608 were lysed and proteins immunopurified. Immunblots were probed with 

anti-Myc or anti-Lig IIIα antibody and blots show an interaction with Lig IIIα and hTDP1 but not with 

hTDP1151-608 indicating that IIIα interacts with the N-terminus of hTDP1. 
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Figure 5.2.2 Ligase I interacts with hTDP1 and ligase I deficient cells are hypersensitive to 

camptothecin 

(A) Wild type immortalized fibroblastS (1BR GPT), Wild type (1BR), Lig I deficient fibroblasts (46BR) 

and Lig I deficient immortalized fibroblasts (46BR GPT) cells were mock treated with DMSO or 15 µM 

camptothecin for 40 minutes and breaks quantified by the alkaline comet assay. The average tail length of 

50 cells were calculated and raw data of individual tail lengths is shown. Ligase I deficient cells have a 

larger tail moment when treated with CPT compared to the wild type cells. (B) Myc-TDP1 or Myc empty 

vector were ectopically expressed with Flag-Ligase I in HEK293 cells. TDP1 was immunopurified using 

anti-Myc antibody (9B11; cell signaling). Immunoblots were probed with anti-Myc and anti-Flag 

antibodies and showed that TDP1 co-purifies with Ligase I. (C) Flag-Ligase I or Flag empty vector were 

ectopically expressed with Myc-TDP1 in HEK293 cells. Flag-Ligase I was immunopurified using anti-

Flag antibody (F3165; Sigma). Immunoblots were probed with anti-Myc (9B11; 1:2000) and anti-Flag 

(F3165; 1:2000) antibodies and shows that Ligase I co-purifies with TDP1. 
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Figure 5.2.3 Ligase I interacts with hTDP1151-608 

Myc-TDP1, Myc empty vector or Myc-TDP1151-608 was ectopically expressed with Flag-Ligase I in 

HEK293 cells. TDP1 was immunopurified using anti-Myc antibody (9B11; cell signaling). Immunoblots 

were probed with anti-Myc (9B11; 1:2000) and anti-Flag (F3165; 1:2000) antibodies and demonstrates 

that TDP1 co-purifies with Ligase I via its’ catalytic domain. 
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5.2.2 TDP1 is a novel substrate for Casein Kinase II 
 

5.2.2.1 TDP1 is phosphorylated in vivo  

Because Lig I is hyper-phosphorylated by CK2 in a cell cycle dependent manner 

(Prigent et al., 1992) we wanted to test if the phosphorylation could play a role in the 

interaction with TDP1.  To test this we ectopically expressed Myc-TDP1 and Flag-Lig I 

in HEK 293 cells. After proteins were purified using Myc antibody, lambda 

phosphatase was added to one fraction and samples were left for 1 hour at 30 ° C. 

Samples were then washed 3 times in 25 mM HEPES and 150 mM NaCl, pH 7.4 

followed by fractionation by SDS-PAGE gel, and analysis. Immunoblots showed loss of 

the upper band corresponding to phosphorylated Lig I (Figure 5.2.4) but it did not seem 

to ablate interaction with TDP1. Unexpectedly, and perhaps more interesting was the 

faster migrating band of TDP1 in the lambda phosphatase treated fraction. Whilst TDP1 

was shown to be phosphorylated by ATM and DNA-PK at serine 81 (Das et al., 2009), 

a single phosphorylation site at S81 is unlikely to correspond to such a significant band 

shift. It is plausible that this is not the only phosphorylation event that occurs, and this 

shift in molecular weight could be due to a cluster of phosphorylation events. 

 

5.2.2.2 Phosphorylation of TDP1 occurs in the N-terminal domain 

Since TDP1 is phosphorylated at serine 81 we decided to investigate if the reduction in 

TDP1 band size when treated with lambda phosphatase was limited to either the 

catalytic domain or the N-terminal region of TDP1. Myc-TDP1, Myc-TDP11-150 and 

Myc-TDP1151-608 were transfected and expressed in HEK 293 cells. Proteins were 

immuno-purified using Myc antibody (9B11; Cell signalling) and subsequently treated 

with or without lambda phosphatase for 1 hr at 30 °C. Treatment with lambda 

phosphatase resulted in faster migrating bands for Myc-TDP1 and Myc-TDP11-150 when 

compared to control lanes (Figure 5.2.5 A and C) but no shift was seen in the catalytic 

domain (Figure 5.2.5 B). This led us to believe that there could be several 

phosphorylation events occurring within the N-terminal region of TDP1.  
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Figure 5.2.4 TDP1 is constitutively phosphorylated as treatment of TDP1 with Lambda 

phosphatase results in a faster migrating band, indicative of dephosphorylation  

Myc-TDP1 and Flag-Ligase I were ectopically expressed in HEK293 cells. TDP1 was immunopurified 

using anti-Myc antibody (9B11; cell signaling). Immunoblots were probed with anti-Myc and anti-Flag 

antibodies. Once purified buffer and Lambda phosphatase was added to one reaction ‘+’, whilst buffer 

alone was added to the control ‘-’. Addition of lambda phosphatase resulted in loss of the upper band of 

Ligase I, corresponding to faster migration due to dephosphorylation by the phosphatase. Unexpectedly, 

TDP1 is also seen to migrate at a faster rate upon treatment of lambda phosphatase. 
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Figure 5.2.5 In vivo phosphorylation of TDP1 occurs within the N-terminal domain 

Myc-TDP1 (A), Myc-TDP1151-608 (B), or Myc-TDP11-150 (C) were ectopically expressed in HEK293 cells. 

TDP1 was immunopurified using anti-Myc antibody (9B11; cell signaling) and immunoblots were probed 

with anti-Myc antibody (9B11; 1:2000). Once purified, buffer and Lambda phosphatase was added to one 

reaction ‘+’, whilst buffer alone was added to the control ‘-’. Addition of lambda phosphatase results in 

lower molecular weight proteins in the full-length TDP1 and TDP11-150 fractions, but no change is 

observed in the catalytic domain of TDP1. 
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5.2.3 Phosphorylation of TDP1 by CK2 inhibits SUMOylation, in vitro 
 

What might be the role of TDP1 phosphorylation? Phospho-dependent SUMOylation 

motifs are an intriguing way to add a level of control by acting as a molecular switch for 

SUMOylation. I first examined the role of S81 phosphorylation. Since the 

phosphorylation observed was found in the N-terminus of TDP1 and S81 is 

phosphorylated in response to damage we wanted to test if this could impact upon 

SUMOylation of TDP1, especially since we had previously identified TDP1 

SUMOylation at lysine 111 and that this site was in close proximity to phosphorylation 

at S81. In order to do this recombinant His-TDP1, His-TDP1 S81A (a phosphomutant) 

and His-TDP1 S81E (phosphomimetic) were purified using a nickel charged column. 

Protein concentrations were determined by the nanodrop and subjected to the in vitro 

SUMOylation assay (Activmotif) previously described in the second results chapter.  

 

Immunoblots for 3 independent experiments were analysed using the image quant 

software and percentage SUMOylation was calculated for TDP1 wild-type and mutants 

against loading controls (Figure 5.2.6). These repeats showed a reduced level of 

SUMOylation in the phosphomutant when compared to the wild-type protein. However, 

an increase in levels of SUMOylation was not observed in the phosphomimetic protein, 

although mutation of serine to glutamic acid in order to mimic serine phosphorylation 

does not always work. This probably means that an interaction with UBC9 (SUMO E2) 

and TDP1 occurs in the vicinity and mutation of the serine residue interferes with the 

binding. Since a slight decrease in SUMOylation was observed in the serine 81 to 

alanine mutation it is possible that this region is important for binding of UBC9 and 

therefore has a slight impact upon SUMOylation. 

 

Whilst SUMOylation of TDP1 is slightly affected by mutation of S81, this may not be 

the only phosphorylation site within the N-terminus. In 2004, the Caldecott group, 

identified a role for CK2 in maintaining the genetic integrity of mammalian cells by 

facilitating the rapid repair of chromosomal DNA single-strand breaks through 

phosphorylation of the molecular scaffold protein XRCC1 (Loizou et al., 2004; Parsons 

et al., 2010; Ström et al., 2011). Their results match several target criteria seen in the 

phosphorylation of TDP1. They found that XRCC1, like TDP1, was constitutively 
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phosphorylated in vivo, that upon treatment with calf intestinal phosphatase a large shift 

in gel mobility was seen, and that mass spectrometry revealed tri- and tetra-

phosphorylated species. The fact that XRCC1, a scaffold protein, is also in a complex 

with TDP1 during single-strand break repair makes CK2 an interesting candidate. 

 

I next examined the possibility that TDP1 phosphorylation by CK2 modulates 

SUMOylation. To test if TDP1 is a substrate for CK2 recombinant His-TDP1 was 

incubated at 30 °C for 2 hrs in the presence of 5 mM ATP with or without CK2 (NEB). 

Samples were fractionated on an SDS-PAGE gel and probed with anti-TDP1 (Abcam; 

1:2000). Figure 5.2.7 A shows when TDP1 is in the presence of CK2 a slower 

migrating band corresponding to an increase in molecular weight is observed. This shift 

was not seen in the control fraction, which led us to conclude that TDP1 is a substrate 

for CK2, at least, in vitro. To determine possible sites for phosphorylation the amino 

acid sequence of TDP1 was subject to in silico analysis. The table in Figure 5.2.7 B 

shows a number of potential sites for phosphorylation, interestingly all of which are 

found in the N-terminal domain of TDP1. 

 

The next step was to see if these phosphorylation events could affect the in vitro 

SUMOylation of TDP1. Therefore, TDP1 was phosphorylated by CK2 before addition 

to the SUMOylation reaction previously described in chapter III. A control sample 

without the addition of CK2 was also subject to analysis. Results show that 

phosphorylation of TDP1 by CK2 severely inhibits SUMOylation in vitro (Figure 5.2.7 

C and D). While this result appears to be intriguing, suggesting that CK2 could act as a 

molecular switch for TDP1 modification by SUMO1, we cannot rule out that the kinase 

activity of CK2 may act on the components of the SUMO pathway, inhibiting their 

activity. To test this, we first established conditions that would inhibit CK2 catalytic 

activity. Several concentrations of TBB (a known inhibitor of CK2) (Pagano et al., 

2008; Sarno et al., 2001) were pre-incubated with CK2 before addition of the kinase to 

TDP1. SDS-PAGE fractionation and Coomassie blue staining of these reactions showed 

that the lower concentration of TBB (400 µM) was enough to ablate the 

phosphorylation of TDP1 (Figure 5.2.8 A).  

 

Once the concentration had been identified, we next subjected recombinant TDP1 to 

CK2 that had, or had not, been pre-treated with the appropriate dose of TBB. Following 
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incubation of TDP1 with CK2 for 2 hours TBB was then added to both reactions for an 

additional hour, to prevent any impact CK2 might have on the efficiency of 

SUMOylation independently of TDP1. Reactions were then fractionated and analysed 

by immunoblotting. Whilst both reactions had CK2 and recombinant His-TDP1, pre-

incubation with TBB was enough to prevent phosphorylation of TDP1, as shown by the 

faster migrating band on the left hand side at ~ 75 kDa (Figure 5.2.8 B).  The un-

phosphorylated TDP1 also shows a higher molecular weight band at ~ 100 kDa that 

corresponds to SUMOylated TDP1. This band was not present in the lane that contains 

phosphorylated TDP1. Because TBB was added after the addition of CK2 but before the 

SUMOylation reaction we were able to conclude that it is the phosphorylation of TDP1 

by CK2 that negatively impacts SUMOylation and not phosphorylation of proteins in 

the SUMO pathway. 
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Figure 5.2.6 Mutation of TDP1 S81A reduces SUMOylation in vitro 

Purified His-TDP1, His-TDP1 S81A or His-TDP1 S81E (500 nM) were incubated with purified 

SAE1/SAE2 (50 nM), UBC9 (500 nM) and SUMO1 (30 µM) in 50 mM Tris–HCl, pH 8.0; 50 mM NaCl, 

5 mM MgCl2, 10% glycerol, 0.5 mM DTT and 5 mM ATP. Immunoblots for 3 independent experiments 

(top left middle and right panels) were analysed by image quant and the percentage SUMOylation was 

calculated for TDP1 wild-type and mutants (bar chart). SUMO blots were exposed 17 times longer than 

TDP1 blots and this was taken into account when calculating percentage of SUMOylated TDP1. Error 

bars represent standard error of the mean of 3 independent experiments. 

 



	
  

	
  

148	
  CK2$phosphoryla-on$and$interplay$with$SUMO$modifica-on$

CK2       -         +          
TDP1      +         + 
 ATP       +         + 

TDP1 

TDP1-
SUMO1 

SUMO1      +         +          

150 kDa 

100 kDa 

 75 kDa 

 75 kDa 

CK2       -         +          
TDP1      +         + 
 ATP       +         + 

 IB:  Anti-TDP1 

CK2       -         +          
TDP1      +         + 
 ATP       +         + 

TDP1 

TDP1-
SUMO1 

SUMO1      +         +          

150 kDa 

100 kDa 

 75 kDa 

A 

C D 

B 

Position Amino acid Kinase Peptide Score > 5.3 
2 S CK2 ******MSQEGDYGR 6.3 

13 S CK2 DYGRWTISSSDESEE 5.9 
14 S CK2 YGRWTISSSDESEEE 9.4 
15 S CK2 GRWTISSSDESEEEK 9.9 
18 S CK2 TISSSDESEEEKPKP 8.6 
91 S CK2 DLGWCLSSSDDELQP 6.9 
92 S CK2 LGWCLSSSDDELQPE 7.5 

147 T CK2 EEEDEYETSGEGQD 7.9 
148 S CK2 EEDEYETSGEGQDIW 5.8 

IB:Anti-TDP1 IB:Anti-TDP1 
 

 

Figure 5.2.7 TDP1 is phosphorylated by CK2 in vitro, reducing levels of SUMOylation 

(A) Purified His-TDP1, (500 nM) was incubated with ATP (400 µM), with ‘+’ or without ‘-’ 2 µl CK2 

(NEB). The immunoblot shows that in the presence of CK2 TDP1 runs at a higher molecular than TDP1  

- CK2. (B) In silico analysis reveals several potential sites for phosphorylation by CK2. (C and D) 2 µl of 

the 10 µl CK2-TDP1 reaction was subjected to SUMOylation followed by fractionation on SDS–PAGE 

and analyses by immunoblotting using anti-TDP1 antibodies (1:2,000; Abcam). Addition of CK2 to 

TDP1 decreases the levels of SUMOylation observed. 
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Figure 5.2.8 Phosphorylation of TDP1 and not components of the SUMO pathway ablate 

SUMOylation of TDP1 

(A) CK2 was pre-incubated with 0, 400 or 800 µM TBB for 1 hour at 30 °C before addition of 

recombinant His-TDP1. TDP1151-608 (last two lanes) was also incubated with CK2. Samples were 

fractionated by SDS-PAGE gel and stained with Coomassie blue. This shows that 400 µM TBB is able to 

prevent CK2 from phosphorylating TDP1 and that TDP1151-608 is not a substrate for CK2. (B) CK2 was 

pre-incubated with 400 µM TBB before addition of His-TDP1 (left lane) whilst added after the TDP1-

CK2 reaction (right lane asterisk). Both reactions were subject to SUMOylation (Activmotif), followed 

by fractionation and analysis by immunoblots using anti-TDP1 antibodies (1:2,000; Abcam). Results 

show that TDP1 phosphorylation and not phosphorylation of components of the SUMO pathway affect 

TDP1 SUMOylation. 
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5.2.4 TDP1 is phosphorylated by CK2 in whole cell extracts 
 

Since phosphorylation of TDP1 by CK2 regulates SUMOylation of TDP1 in vitro, we 

next tested if this would be recapitulated with whole cell extracts. One obstacle to 

overcome was that if CK2 phosphorylation of TDP1 was in fact constitutive it would be 

difficult to obtain an un-phosphorylated version of TDP1 without knocking down CK2. 

To circumvent this, recombinant TDP1 (500 nM) was incubated with or without whole 

cell extract (W.C.E) from HEK 293 cells for 30 mins at 30 °C before fractionation and 

immunoblot analysis with anti-TDP1 antibody. Analysis initially showed no changed in 

molecular weight of TDP1 in the presence or absence of W.C.E (Figure 5.2.9 A). 

Before ruling out phosphorylation of TDP1 we decided to repeat the experiment with 

the addition of ATP (5 mM) and Magnesium Chloride (2 mM). Figure 5.2.9 B shows 

that with the addition of ATP and Magnesium Chloride when TDP1 is in the presence 

of whole cell extract a shift in molecular weight occurs, as seen by the slower migrating 

band when compared to TDP1 without W.C.E.  

 

Since CK2 is found in both the nucleus and cytoplasm (Faust and Montenarh, 2000; 

Litchfield, 2003) we next decided to incubate recombinant TDP1 or TDP1 S81A with 

cytoplasmic or nuclear extract from HEK293 cells. In both cases TDP1 (+) and TDP1 

S81A (mt) resulted in slower migrating bands in the presence of nuclear or cytoplasmic 

extract as compared to incubation with buffer alone (Figure 5.2.9 C). This suggests that 

TDP1 can be phosphorylated by the nuclear or cytoplasmic extract, further indicating 

that TDP1 could be phosphorylated by CK2 and that mutation of serine to alanine at 

amino acid 81 does not have a major impact on phosphorylation of recombinant TDP1. 

 

We now had an established protocol for phosphorylation of recombinant TDP1 by cell 

extract and could use this with selective commercial inhibitors for specific kinases to 

identify if CK2 is the main kinase for the constitutive phosphorylation of TDP1.  Whole 

cell extract was treated with DMSO control, ATMi, ATRi, DNA-PKi or all three 

inhibitors for 1 hour at 30 °C. Treated cell extract, or buffer control, was then added to 

recombinant TDP1 in the presence of ATP (5 mM) and Magnesium Chloride (2 mM). 

Reactions were left for 30 mins at 30 °C before SDS-PAGE gel fractionation and 

immunoblotting with anti-TDP1 antibody (Abcam; 1:2000). When in the presence of 
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W.C.E, TDP1 was seen migrating at a higher molecular weight as previously shown. 

Interestingly, pre-treatment of W.C.E with the kinase inhibitors did not prevent 

phosphorylation of TDP1, not even when all three inhibitors were combined (Figure 

5.2.10 A). This indicates that the higher molecular weight of TDP1 when in the 

presence of cell extract was not due to ATM, ATR or DNA-PK. The next step was to 

see if incubation of cell extract with TBB could prevent the slower migration of TDP1 

in the presence of cellular extract.  

 

Whole cell extracts were pre-incubated with or without 400 µM TBB for 1 hour at 30 

°C before incubation with recombinant TDP1 for an additional 30 mins. Samples were 

fractionated and analysed by immunoblotting with anti-TDP1 antibody (Abcam; 

1:2000). Incubation of TDP1 with cell extract again resulted in a retardation of the band 

corresponding to TDP1 when compared to the control lane. Intriguingly, when cellular 

extract was pre-treated with TBB, a known CK2 inhibitor, TDP1 migration was similar 

to that of the control sample (Figure 5.2.10 B). This observation shows for the first time 

that TDP1 is phosphorylated by CK2 in vitro and by whole cell extracts, although TBB 

inhibition of other kinases cannot be ruled out. 

 

To discover the role of TDP1 phosphorylation by CK2 we used mass spectrometry to 

try to pinpoint the sites of phosphorylation. 14 mgs of DT40 whole cell extract 

containing Myc-hTDP1 was split into two fractions. One fraction was be treated with 

lambda phosphatase, as a negative control, and one fraction to be washed with buffer 

alone. TDP1 was purified using anti-Myc antibody (9B11; cell signaling). Fractions 

were washed 5 times in 20 mM HEPES, 150 mM NaCl at pH 7.4. 2 µl of lambda 

phosphatase, or buffer alone was then added to the purified fractions and samples were 

left for one hour. Samples were then fractionated on an SDS-PAGE gel and stained with 

instant blue (Expedeon). Bands corresponding to TDP1 and dephosphorylated TDP1 

were then excised, digested with trypsin and gel purified to a final volume of 5 µl before 

mass spec analysis. Although peptide identification of fragments showed a good 

coverage of the catalytic domain no fragments corresponding to the N-terminus of 

TDP1 could be found. The probable cause for the lack of N-terminal fragments captured 

by mass spec was the large stretches of acidic amino acids within this domain. This 

combined with an increase in negative charge due to the clusters of phosphorylation 

meant that these fragments could not fly.   
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Figure 5.2.9 Purified His-TDP1 and TDP1 S81A are phosphorylated in the presence of cell extract, 

in an ATP dependent manner 

(A) His-TDP1 (500 nM) was incubated with or without whole cell extract (W.C.E) from HEK 293 cells 

before fractionation and immunoblot analysis with anti-TDP1 antibody (Abcam; 1:2000). No shift in 

molecular weight could be seen between recombinant TDP1 and TDP1 treated with W.C.E. (B) His-

TDP1 (500 nM) was incubated with or without whole cell extract (W.C.E) from HEK 293 cells, in the 

presence of ATP (5 mM) and Magnesium Chloride (2 mM). Samples were fractionated and analysed by 

immunoblotting with anti-TDP1 antibody (Abcam; 1:2000) and shows that when in the presence of ATP 

and W.C.E recombinant TDP1 can be seen at a higher molecular weight. (C) His-TDP1 ‘+’, or His-TDP1 

S81A ‘mt’ (500 nM) was incubated in the presence or absence of with or without nuclear  ‘N’ or 

cytosolic ‘C’ extract from HEK 293 cells with ATP (5 mM) and Magnesium Chloride (2 mM). 

Immunoblot analysis shows that both TDP1 and TDP1 S81A in the presence of either nuclear or 

cytoplasmic extract results in a higher molecular weight band than TDP1, or TDP1 S81A control. 
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Figure 5.2.10 Purified His-TDP1 is phosphorylated by CK2 

(A) His-TDP1 (500 nM) was incubated in the presence ‘+’ or absence ‘-’ of whole cell extract (W.C.E) 

from HEK 293 cells.  Whole cell extracts were pre-incubated with or without 10 µM ATR, ATM, DNA-

PK inhibitors, or all three ‘3’ for 1 hour at 30 °C. Immunoblot analysis reveals that none of the kinase 

inhibitors are able to prevent phosphorylation of TDP1. (B) His-TDP1 (500 nM) was incubated in the 

presence ‘+’ or absence ‘-’ of whole cell extract (W.C.E) from HEK 293 cells. Whole cell extracts were 

pre-incubated with or without 400 µM TBB. The presence of TBB had a significant affect upon the 

phosphorylation of TDP1 in the presence of W.C.E. Immunoblot analysis revealed that in the presence of 

TBB, TDP1 is observed to run at the same molecular weight as recombinant TDP1 without W.C.E. 
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5.3 Discussion 
 

Previous work has shown that TDP1 interacts with ligase IIIα and is phosphorylated in 

response to DNA damage by ATM or DNA-PK. Our work reveals that while TDP1 

interacts with Lig IIIα this interaction is not critical for the repair of TDP1-mediated 

nuclear repair.  Our results confirm that whilst Lig IIIα interacts with the N-terminal 

vertebrate-conserved region of TDP1, the C-terminal evolutionarily conserved domain 

of TDP1 is sufficient to maintain the interaction with Lig I. Our results establish a role 

for Lig I during TDP1-mediated nuclear DNA repair.  

 

We show for the first time that TDP1 can interact with another member of the ligase 

family, Lig I and that this is mediated via TDP1’s catalytic domain. Preliminary results 

show that cells lacking an active Lig I show an increase in DNA single-strand breaks 

when measured using the alkaline comet assay. Further experiments must be done to see 

if these results can be repeated and that the damage seen is not due to okazaki fragments 

that are not sealed by Lig I during replication. Whilst the theory that Lig I accompanies 

TDP1-mediated nuclear repair and that the Lig III-TDP1 interaction is necessary for the 

efficient repair of mitochondrial DNA is an appealing one, further work must be done to 

rule out a redundancy between these ligases in the context of nuclear DNA repair. 

Mckinnons’ lab have already shown a redundancy between ligases I and IIIα, in terms 

of nuclear repair, when subjected to IR and hydrogen peroxide (Gao et al., 2011) and 

that Lig IIIα is critical for mitochondrial repair (Simsek et al., 2011) and this may well 

be the case in the context of chromosomal Top1-linked breaks brought on by CPT.  

 

Our studies also reveal that when Myc-TDP1, expressed in mammalian cells, is treated 

with lambda phosphatase we see a moderate shift in gel mobility when compared to the 

untreated sample. We further identify that this shift in gel mobility is only seen within 

the N-terminus of TDP1 and, moreover, with the use of inhibitors demonstrate that 

TDP1 is a novel substrate for CK2 in vitro. We also establish a possible role for CK2, in 

vitro, where phosphorylation of TDP1 by CK2 negatively regulates SUMOylation of 

recombinant TDP1. 
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With regards to phosphorylation, we have discovered a constitutive phosphorylation of 

TDP1 by CK2 and mapped this modification within TDP1’s evolutionarily driven N-

terminal domain. In vitro experiments point to a role in regulation of SUMOylation of 

TDP1, and that de-phosphorylation of TDP1 allows post-translational modification of 

TDP1 by SUMO1. This leads to the possibility that SUMOylation of TDP1 is in fact 

damage dependent. Whilst SUMO1 pools are predominantly in low supply (Minty et 

al., 2000; Saitoh and Hinchey, 2000), several proteins have been identified to be 

SUMOylated in response to damage (Mao et al., 2000; Wang et al., 2005). 

 

 The reason that previous experiments did not uncover SUMOylation of TDP1 in 

response to damage could be due to the fact that ectopic expression of TDP1 when 

looking at SUMOylation in vivo gave rise to over an 8 fold increase in levels of TDP1 

when compared to endogenous levels. It is therefore possible that this overexpression of 

TDP1 in cells meant that not all of the protein could be constitutively phosphorylated 

due to limiting supply of ATP or CK2. This could mean that the un-phosphorylated 

protein promoted SUMOylation of TDP1 independently of damage. 

 

A possible scenario is that at endogenous levels of TDP1, all of the protein is 

constitutively phosphorylated by CK2. This in turn prevents the binding of UBC9 and 

hence modification by SUMO1. Upon response to DNA damage a phosphatase could 

de-phosphorylate a proportion of TDP1, which in turn could then be SUMOylated 

allowing an increase in levels of TDP1 at the sites of damage. To support this theory 

and to identify what, if any, other roles phosphorylation of TDP1 by CK2 may have it is 

vital to identify the sites of phosphorylation. In order to do this mutation of serine and 

tyrosine residues, identified by in silico analysis, to alanines should be considered. 

Alternatively, mutation of these residues to glutamic acid (phosphomimics) could be 

carried out. If phosphorylation does indeed negatively regulate SUMOylation, then 

phosphomimic mutations should prevent SUMOylation from occurring in vivo, 

resulting in a phenotype similar to that of the TDP1 K111R mutant described in the 

previous chapter. 

 

One other possibility would be to overexpress CK2, if this is the rate-limiting step, in 

order to phosphorylate all ectopically expressed TDP1. Thus, upon overexpression of 
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CK2 SUMOylation of TDP1, if the theory holds true, should now be activated in 

response to DNA damage. 
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Chapter VI 

Discussion: Cellular and biochemical analyses of TDP1 mediated 
chromosomal break repair 
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6.1 Discussion 
 

This thesis demonstrates novel insights into the TDP1 repair pathway, elucidates new 

protein interacting partners and details the role of post-translational modifications of 

TDP1 at the cellular level. 

 

A hypomorphic missense mutation in TDP1 has been linked to the autosomal recessive 

ataxia spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and mutations in other 

end-processing enzymes gives rise to overlapping attributes seen in SCAN1 patients 

(El-Khamisy, 2011; Fogel and Perlman, 2007; Reynolds et al., 2012; Takashima et al., 

2002). Whilst Tdp1 depletion in mice shows a hypersensitivity to the Top1 inhibitor 

camptothecin, phenotypic attributes associated with SCAN1 patients, such as 

degeneration of the cerebellum are not fully recapitulated in the animal model (Katyal et 

al., 2007). Discussion between groups leads to different conclusions on why this might 

be the case. These range from the normal longevity of the mice when compared to 

humans, the differences in requirement for TDP1, and the postulations that TDP1 

H493R found in the human disease could lead to more toxic protein-DNA linked 

lesions than when TDP1 is fully absent (Hirano et al., 2007), although the latter 

possibility has been dismissed by the recent results of the Boerkoel lab (personal 

communication with Sherif El-Khamisy). 

 

Advancement in understanding and manipulation of technology has meant we can now 

investigate defective components of the DNA repair pathway that once would have 

caused embryonic lethality. Several groups are now using promoter-driven expression 

of Cre recombinase to knock out proteins in specific tissues. For example, the 

Mckinnon laboratory has used this method to gain an insight into the requirement for 

specific DNA ligases within the repair pathways, and has shown that XRCC1 repairs 

neural DNA damage and is important in the genesis of cerebellar interneurons in mice. 

(Gao et al., 2011; Y. Lee et al., 2009; Simsek et al., 2011).  

 

More recently this methodology has, for the first time, enabled the production of Cul4b 

deficient mice (Chen et al., 2012; Zhao and Y. Sun, 2012). These mice have 

demonstrated X-linked mental retardation-like symptoms and not just at the cellular 
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level. Mouse models for SCAN1 and AOA1 have given insights into the biochemistry 

behind the defects in repair, and have exhibited sensitivity to the same damaging agents 

found in patient cells lines. Unfortunately, for these recessive ataxias, they have not 

resulted in the neuropathological phenotypes found in humans. It is possible by creating 

knock-in mutants to increase ROS within the mouse brain; we could observe the 

cerebellar degeneration seen in patients. However, this may lead to further issues of 

whether the degeneration is due to the defect of the protein in question, or if the increase 

in ROS may saturate another component of the repair pathway. If this cannot be 

accounted for then the need for better model organisms will continue to grow. Model 

organisms that recapitulate the phenotypic pathology of patients will help to test 

therapies aimed at slowing the progression; through the help of ROS scavengers, by 

preventing the degeneration from occurring or by introducing the functional protein 

through lentiviral technology. Suitable models will also help us understand the 

neurotoxicity seen in several treatments for other diseases, such as cancer. 

 

So, what novel findings and conclusions can we draw from this thesis? 

 

In the first chapter, the data show for the first time that the N-terminal domain (only 

found in higher eukaryotes) is required for optimal protection against a variety of 

damaging agents. In vitro assays for recombinant full-length and the C-terminal domain 

of TDP1 show a similar catalytic activity, but in vivo viability and single-strand break 

repair assays elucidate a role for the N-terminal domain of TDP1 in conjunction with 

transcription. This is of particular interest for post-mitotic cells as they are not easily 

replaced and do not have the extra repair pathways found in the G2/S phase of the cell 

cycle in replicating cells. 

 

Our research supports previously published work by the Pommier group that hTDP1 

can sufficiently replace Tdp1 that is knocked out in chicken DT40 cells, even in the 

presence of genotoxic damaging agents such as CPT and MMS, but not IR (Alagoz et 

al., 2013; Murai et al., 2012). Furthermore, removal of the first 150 amino acids, 

corresponding to the N-terminal of TDP1, results in an increased sensitivity to CPT and 

MMS in terms of viability and at the level of DNA single-strand breaks when compared 

to full-length TDP1. Addition of transcription inhibitor DRB decreased the level of 

single-strand breaks, measured by the alkaline comet assay, found in the C-terminal 
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TDP1 stable cell line to levels comparable to the full-length protein. This implies a role 

for the N-terminal domain of TDP1 in the nuclear repair of transcriptionally associated 

breaks. 

The creation of stable full-length hTDP1 and TDP1151-608 in DT40 Tdp1 -/- cell lines in 

the first results chapter also gave us the opportunity to look at the role of PARP in 

TDP1-mediated repair and contributed to our most recent publication (Alagoz et al., 

2013). I found that pre-treatment of DT40 Tdp1 -/-; hTDP1 and DT40 Tdp1 -/-; 

hTDP1151-608 cells with the PARP inhibitor Olaparib prior to addition of CPT, resulted 

in cell viabilities comparable to Tdp1 -/- cells in the presence of CPT. Interestingly, 

addition of Olaparib to Tdp1 -/- cells prior to treatment with CPT showed no additive 

sensitivity (Alagoz et al., 2013). This indicated that TDP1 and PARP had a synergistic 

relationship in the repair of Top1-abortive complexes, a hypothesis confirmed by a 

concomitant publication (Das et al., 2014).  

 

Whilst an interesting observation in its own right upon treatment with a different 

genotoxic agent (MMS) hTDP1 cells pre-treated with Olaparib resulted in a better 

survival compared to Tdp1 -/- cells under the same conditions. If PARP is required in 

the repair of Top1-DNA abortive complexes by TDP1 then this means that TDP1 could 

possibly repair Top1 independent lesions. Further investigations including the knock 

down of Top1 by another member of the lab concluded that TDP1 could indeed repair 

abasic sites without the requirement for PARP (Alagoz et al., 2013). 

 

In summary the first results chapter showed: 

 

• The N-terminal domain of TDP1 is unstructured. 

• Loss of the N-terminal domain does not impact upon the structure, activity or 

stability TDP1. 

• The N-terminal domain of TDP1 is required for optimal protection against DNA 

damage. 

• The catalytic domain of TDP1 accrues more DNA single-strand breaks than full-

length TDP1. 

• The increase in DNA single-strand breaks due to removal of the N-terminus of 

TDP1 appears to be, in part, transcriptionally related. 
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The second results chapter builds on the discoveries of the first results chapter. We 

demonstrate a novel interaction between TDP1 and UBC9, the E2 enzyme of the 

SUMO pathway. Moreover, for the first time we show that TDP1 is covalently modified 

by SUMO1 and map the location of attachment to a lysine residue at position 111 in 

TDP1. This second results chapter looks at the effect SUMOylation has at the cellular 

level. Studies demonstrate that this modification occurs constitutively in cells, 

supporting the idea that the majority of SUMO1 is already conjugated to its target 

substrates, and that SUMOylation of TDP1 is required for the efficient repair of 

transcriptionally associated chromosomal single-strand breaks (J. J. R. Hudson et al., 

2012). This is particularly important in post-mitotic cells as high levels of oxidative 

stress and transcription can lead to stalled Top1-DNA complexes and abasic sites, both 

of which are repaired by TDP1. These cells are not easily replaced, are required to be 

long-lived and therefore repair of these lesions in a timely fashion is essential for 

survival. This importance is highlighted by the missense hypomorphic mutation in 

TDP1 leading to SCAN1, an autosomal recessive ataxia resulting in cerebellar atrophy 

(Takashima et al., 2002). 

 

Whilst not a complete story, the second chapter also provides evidence for a novel non-

covalent interaction between TDP1 and SUMO2, or 3. We further map the location to 

the catalytic domain of TDP1 but issues with the stability of TDP1 containing missense 

mutations in the potential SIM sites and problems with expression of the various TDP1 

fragments prevented us from pinpointing the motif/s with this domain. Promising initial 

experiments using tryptic digests to obtain soluble fragments of TDP1 has meant that 

mapping of the motifs is still a possibility. Furthermore, new in silico analysis strongly 

points to a particular interacting motif within TDP1 where multiple mutations in this 

short hydrophobic stretch maybe feasible to obtain a stable protein that can no longer 

physically interact with SUMO2 or 3. 

 

Important findings from the second results chapter include: 

 

• A novel covalent attachment of TDP1 at lysine 111 by SUMO1. 

• SUMOylation of TDP1 is constitutive and is required for optimal function. 

• SUMOylation localises TDP1 to sites of DNA damage that are in part 

transcriptionally dependent. 
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• TDP1 interacts non-covalently with SUMO2 and 3 via a SUMO interacting motif 

(SIM) 

• The SIM is located within the catalytic domain of TDP1. 

 

These findings have led to publication in Nature communications (J. J. R. Hudson et al., 

2012) and resulted in a reasonable foundation for a continued project investigating the 

role of the SUMO-TDP1 non-covalent interaction within cells. 

 

Finally the third results chapter establishes an interaction between TDP1 and Lig I, that 

has previously been unreported and suggests a role, whether a primary or redundant one 

in the repair of abortive nuclear Top1-DNA complexes. We also show that the catalytic 

domain of TDP1 is sufficient for the interaction with Lig I and suggest a possible role 

for repair in lower eukarya.  

 

Further investigations must be done to solidify the evidence that Lig I deficiency leads 

to an increase in single-strand DNA breaks in the presence of CPT and that the defect 

seen is not due to an increase in unrepaired okazaki fragments or through competitive 

inhibition of alternative ligases due to the hypomorphic nature of the Lig I in these cell 

lines (Ellenberger and Tomkinson, 2008). 

 

Cell lines comprising of Lig I, Lig IIIα, Lig IV single knock outs and Lig I Lig IIIα 

double knock outs will go a long way to answering these questions. 

 

Perhaps more intriguing was the discovery that TDP1 is constitutively phosphorylated 

by CK2, in a similar fashion to that of the previously published XRCC1 protein. The 

determination of the phosphorylation being limited to the N-terminal domain gives rise 

to several questions. Does ablation of SUMOylation at K111 in TDP1 constitute the 

sole reason we see sub-optimal protection against various damaging agents when we 

remove the N-terminal domain of TDP1, or is this only one part of many roles the N-

terminal domain has?  

 

Initial investigations allude to a role for CK2 phosphorylation of TDP1 in terms of 

SUMOylation. Previous studies allude to phosphodependent motifs proximal to the site 

of SUMOylation that can act as a molecular switch for inhibition or activation of 
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SUMOylation on a particular protein (Hietakangas et al., 2006). If this is the case then 

initial findings lean towards the idea that TDP1 is constitutively phosphorylated by CK2 

preventing SUMOylation at lysine 111. This means that a phosphatase de-

phosphorylates a small proportion of TDP1 and this fraction becomes SUMOylated in 

response to damage. 

 

Locating the sites of phosphorylation is key to determining the role it has on the cellular 

activity of TDP1. 

 

In summary this chapter presents several important findings: 

• Ligase IIIα is not required for repair of nuclear abortive Top1-DNA complexes. 

• Ligase I interacts with the catalytic domain of TDP1. 

• TDP1 is phosphorylated by CK2. 

• CK2 phosphorylation occurs within the N-terminal domain of TDP1. 

 

Overall this thesis identifies several novel TDP1 protein interacting partners; including 

the sealing of nicks through interaction with Lig I or Lig IIIα. The role the N-terminal 

domain has in the repair of transcriptionally associated chromosomal DNA single-

strand breaks through SUMOylation at K111R (J. J. R. Hudson et al., 2012), and that 

TDP1 is phosphorylated by CK2, within the N-terminus and that this may act as a 

molecular switch for TDP1 modification by SUMO1 in response to damage. 

 

During this thesis, the role for the evolutionarily driven N-terminal domain of TDP1 for 

optimal protection against DNA damage was further investigated by the Pommier 

group. Their studies showed that the N-terminus of TDP1 is required for the interaction 

with PARP (Das et al., 2014) and that PARylation is important for recruitment of 

XRCC1 and TDP1’s stability. This raises several interesting questions. 

 

Firstly, previous publications have shown a direct interaction with the N-terminal 

domain of TDP1 and Lig IIIα (Chiang et al., 2010), since Lig IIIα directly interacts with 

XRCC1 (Ellenberger and Tomkinson, 2008) why does TDP1 also need to interact with 

XRCC1 (Das et al., 2014)? 
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It is possible that the interaction between XRCC1 and TDP1 is required for nuclear 

repair whereas the direct action between Lig IIIα and TDP1 is part of the mitochondrial 

repair pathway. If this is the case then knock down or knock out of nuclear Lig IIIα 

would not affect the interaction between TDP1 and XRCC1 through a co-IP.  

 

Secondly, inhibition of PARP leads to instability of TDP1 as seen previously by 

mutation of S81 to an alanine, which prevents phosphorylation by ATM and DNA-PK. 

But, inhibition of PARP also leads to an increase in phosphorylation of TDP1 at S81. 

So which is more important for the stability of TDP1 - Parylation or phosphorylation? It 

would be interesting to look at the degradation rate of a TDP1 S81A mutant in the 

presence of PARP inhibitor and to see if this would further increase the instability of 

TDP1.  

 

Finally, why does inhibition of PARP that has an epistatic relationship with TDP1 

(Alagoz et al., 2013) result in an increase in phosphorylation at S81? It may well be a 

caveat within the cell programming that even though TDP1 can no longer repair Top1-

DNA breaks, because PARP is inhibited, it still leads to the phosphorylation of TDP1 as 

the cell does not recognize that TDP1 is functionally incapacitated.  

 

Since PARylation, phosphorylation of TDP1 by ATM and CK2, SUMOylation and 

protein interaction with XRCC1, Lig IIIα and PARP1, all occur within the N-terminal 

domain (the first 185 amino acids), does removal of this seemingly regulatory domain 

result in an incapacitation of TDP1 against genotoxic agents. The TDP1151-608 gave an 

intermediate level of protection against DNA damaging agents but initial studies show 

that this truncation may still interact with PARP. This leads us to believe that the 

PARP1 interaction occurs between amino acid 151 and 185 of TDP1. Therefore, does 

the removal of these 34 amino acids prevent TDP1 from reaching the site of damage 

either through PARylation? Cell viability assays using the DT40 Tdp1 -/-; hTDP1151-608 

stable cell line from the first results chapter compared to DT40 Tdp1 -/- expressing 

hTDP1186-608 and DT40 Tdp1 -/- cells would be particularly interesting. 

 

Data accumulated from this thesis and other labs show several novel mechanisms for 

TDP1 mediated repair and demonstrate a newer model for TDP1’s mode of action 
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(Figure 6.1). However, with new discoveries we also provide new questions and further 

work must be done in order to fully establish the role of TDP1 phosphorylation by CK2, 

the non-covalent interaction between SUMO2 and TDP1 and how SUMOylation of 

TDP1 results in localization to damage.  
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Figure 6.1 Schematic of TDP1 mediated nuclear repair 

Upon collision with a DNA or RNA polymerase, or if in close proximity to a DNA lesion, Top1 becomes 

trapped forming a protein-DNA conjugate, termed an abortive Top1 complex. Top1 then becomes 

ubiquitylated (1) and degraded by the 26 S proteasome. Post degradation a tyrosine, and possibly small 

peptide fragment remains linked to the 3’ phosphate of the nicked DNA (2). This 3’ phosphotyrosine is 

the primary substrate of TDP1. If this abortive complex is associated due to transcription then either 

TDP1 becomes SUMOylated at K111 due to removal of constitutively phosphorylated residues within 

TDP1’s N-terminal, or a small proportion of TDP1 that is constitutively SUMOylated (3) localizes to the 

site of damage (6). If not associated with blockage of RNA polymerases or DNA double-strand breaks 

arise then TDP1 becomes phosphorylated at S81 and PARylated within the N-termius due to the PARP1-

TDP1 complex (4, 5). PARylation recruits the molecular chaperone protein XRCC1 and both PARylation 

and phosphorylation lead to an increase in TDP1 stability. TDP1 is then recruited to the site of DNA 

damage (6). Once TDP1 localizes to the abortive Top1-DNA complex it catalyzes the removal of the 

tyrosine residue, leaving a 3’ phosphate and 5’ hydroxyl. Alternatively, replicating cells deficient in 

TDP1 can remove the lesion through endonuclease activity by creating a nick upstream of the break (6b). 

Once the lesion is removed the DNA is replaced and the backbone is sealed by Lig I or Lig IIIα. This 

restores the integrity of DNA and allows for replication restart and, or restoration of transcription. 
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