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Abstra
t

This thesis is 
on
erned with the derivation, numeri
al analysis and implementation of

high-order 
ompa
t �nite di�eren
e s
hemes for paraboli
 partial di�erential equations in

multiple spatial dimensions. All those partial di�erential equations 
ontain mixed deriva-

tive terms. The resulting s
hemes have been applied to equations appearing in 
omputa-

tional �nan
e.

First, we develop and study essentially high-order 
ompa
t �nite di�eren
e s
hemes in

a general setting with option pri
ing in sto
hasti
 volatility models on non-uniform grids

as appli
ation. The s
hemes are fourth-order a

urate in spa
e and se
ond-order a

urate

in time for vanishing 
orrelation. In the numeri
al study we obtain high-order numer-

i
al 
onvergen
e also for non-zero 
orrelation and non-smooth payo�s whi
h are typi
al

in option pri
ing. In all numeri
al experiments a 
omparative standard se
ond-order dis-


retisation is signi�
antly outperformed. We 
ondu
t a numeri
al stability study whi
h

indi
ates un
onditional stability of the s
heme.

Se
ond, we derive and analyse high-order 
ompa
t s
hemes with n-dimensional spatial

domain in a general setting. We obtain fourth-order a

ura
y in spa
e and se
ond-order

a

ura
y in time. A thorough von Neumann stability analysis is performed for spatial

domains with dimensions two and three. We prove that a ne
essary stability 
ondition

holds un
onditionally without additional restri
tions on the 
hoi
e of the dis
retisation

parameters for vanishing mixed derivative terms. We also give partial results for non-

vanishing mixed derivative terms. As �rst example Bla
k-S
holes Basket options are


onsidered. In all numeri
al experiments, where the initial 
onditions were smoothened

using the smoothing operators developed by Kreiss, Thomeé and Widlund, a 
omparative

standard se
ond-order dis
retisation is signi�
antly outperformed. As se
ond example the

multi-dimensional Heston basket option is 
onsidered for n independent Heston pro
esses,

where for ea
h Heston pro
ess there is a non-vanishing 
orrelation between the sto
k and

its volatility.
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Chapter 1

Introdu
tion

This thesis is 
on
erned with the derivation and analysis of numeri
al �nite di�eren
e

s
hemes for the solution of paraboli
 partial di�erential equations. We apply these s
hemes

to option pri
ing problems appearing in �nan
e, where the goal is to give an a

urate ap-

proximation of the fair pri
e of the option. In this introdu
tion, we give some e
onomi
al

ba
kground on options and a motivation for their use and importan
e. Then we give an in-

trodu
tion to the �nan
ial and numeri
al side of option pri
ing. We re
all di�erent sto
has-

ti
 models for the underlying asset pri
e, su
h as the Bla
k-S
holes model [BS73, Mer73℄

and the Heston model [Hes93℄, both in the single-asset 
ase as well as the multi-asset 
ase.

We derive, using the Lemma of It� [It�44, Irl98℄, partial di�erential equations whi
h arise

from the sto
hasti
 models. Methods of numeri
al analysis used to approximate partial

di�erential equations are de�ned, namely dis
retisation te
hniques using an equidistant

grid of the underlying spatial domains. Ne
essary 
onditions for von Neumann stability,

see for example [Str04℄, are given. The third se
tion of this 
hapter 
onsists of a resear
h

overview, where we give a brief survey on the resear
h done in option pri
ing from the

perspe
tive of numeri
al analysis. Finally, we give an overview, in whi
h we present the

main aims and a
hievements of this thesis.

1.1 E
onomi
al ba
kground

In this se
tion options are de�ned in an e
onomi
al sense, explaining whi
h rights ea
h

option 
erti�es, as well as de�ning the pay-o� of the option and when it 
an be exer
ised.

There is a huge variety of options traded in the �nan
ial market, for example European

Options, Ameri
an Options, Asian Options or other exoti
 options. First we want to give

a general de�nition of a �nan
ial option, e.g. who is involved in this 
ontra
t and what is

1



the purpose of it.

De�nition 1 (European Call/Put):

A European Call/Put represents a 
ontra
t between the writer (party whi
h sells the

option) and the holder (party whi
h buys the option). The 
ontra
t o�ers the buyer the

right, but not the obligation, to buy (Call) or sell (Put) an underlying asset S (e.g. a


ommodity or a sto
k) at an agreed �xed strike pri
e K > 0 on a spe
i�
 date T > 0. The

pay-o� at time T of the European Call/Put is thus

C(S, T ) = max(S −K, 0) for a Call and P (S, T ) = max(K − S, 0) for a Put,

where S ∈ Ω := [0,∞[ .

This de�nition, see e.g. [Wil98℄, illustrates that an option pri
e 
annot be negative,

as there is no obligation for the holder, but only a right. It also gives an idea, that there

is a huge variety of possible option types. With the de�nition of the European Call it is

easy to show why options are interesting and useful for the e
onomy. We give two short

examples for the use of options.

The �rst obvious usage for options is spe
ulation. If an investor thinks that the pri
e

of a spe
i�
 sto
k S will go up, he might want to buy an European Call on the sto
k for a

given strike K, whi
h is below the pri
e the investor expe
ts the sto
k to be at the exer
ise

time. Let us denote that the option was bought for a pri
e C0. The spe
ulation strategy

using the European Call gives a pro�t of max(S(T ) − K, 0) − C0 and thus a maximum

loss of C0, whi
h would be a total loss. But what happens in the other possible strategy

of spe
ulation, when buying the sto
k itself? It is possible that, against the own expe
ta-

tions, the sto
k pri
e would go down massively due to new information. The loss of the

strategy using the sto
k instead of the option is limited by the 
urrent sto
k pri
e. So

this strategy leads to a mu
h bigger potential loss, as the options on the sto
ks have a

mu
h lower pri
e than the sto
k itself. What happens in the 
ase of rising sto
k values?

When the sto
k pri
e is well above the strike pri
e, the di�eren
e between the pro�t of the

strategy using the sto
k dire
tly and pro�t of the strategy using the option on the sto
k

is C0. So with higher sto
k values the signi�
an
e of the di�eren
e of the pro�t of both

strategies de
lines in absolute terms, whereas there is a huge impa
t, should the pri
e of

the underlying de
line. So we 
an say that the se
urity of a lower potential loss is bought

with a slightly lower potential win. A European Put on the other side 
an be used for

2



spe
ulation, when the investor expe
ts the value of the underlying to de
line.

The more interesting approa
h for using options is hedging. The purpose of hedging is

to eliminate or redu
e risk. As an example we 
ould look at an airline. The airline has to

buy jet fuel in order for its aeroplanes to �y and fa
es a high risk 
on
erning �u
tuations

in the pri
e of jet fuel. This may 
reate a notable additional 
ost if the pri
e suddenly

in
reases signi�
antly. The hedging has the purpose to eliminate the risk of sudden spikes

in the jet fuel pri
e. Even though it might be slightly 
ostlier over the long run to 
reate

this prote
tion through options, a strong in
rease in the pri
e on the other hand may for
e

the 
ompany into insolven
y, if the in
rease were too strong and too sudden. Insuring

against this risk does not 
ome for free, as the pri
e of the European Call option is an

initial investment. If the jet fuel pri
e would not in
rease above the strike pri
e, the 
om-

pany has a loss of the initial pri
e of the option. One might interpret the additional 
ost of

hedging with options as distributing the �nan
ial load of the sudden in
rease of the pri
e

to a wider time-frame, whi
h is more bearable for the 
ompany. This means that there

is a slightly higher pri
e over a long time rather than a sudden huge payment at one. In

order to keep the 
ost of hedging low, it is important to know the fair pri
e of the options

used. Other possible hedging targets 
ould be, for example, 
urren
y ex
hange rates, or

the pri
e of produ
ed goods of a 
ompany. The goal of hedging with options is to make op-

erations of a 
ompany more predi
table, as the risk through pri
e �u
tuations is minimised.

In addition to standard European Calls/Puts we also 
onsider European Power Calls/Puts,

see e.g. [Ess04℄, whi
h only di�er in the pay-o�, when 
omparing them with plain European

options.

De�nition 2 (European Power Call/Put):

A European Power Call/Put represents a 
ontra
t between the writer (party whi
h sells

the option) and the holder (party whi
h buys the option). The 
ontra
t o�ers the buyer

the right, but not the obligation, to exer
ise the option, whi
h depends on an underlying

asset S (e.g. a 
ommodity or a sto
k), with an agreed �xed strike pri
e K > 0 on a spe
i�


date T > 0. The pay-o� at time T is

C(S, T ) =max(S −K, 0)p for a European Power Call and

P (S, T ) =max(K − S, 0)p for a European Power Put,

3



where p ∈ N≥1 and S ∈ Ω := [0,∞[ . This leads to C(·, T ), P (·, T ) ∈ Cp−1 (Ω).

The European options mentioned above all give the right to exer
ise the option only

at the expiration date T . It would be possible to generalise these options, by giving the

holder the possibility to exer
ise the option during the whole life time of the option, so

up to the expiration date instead of just at the expiration date. These options are 
alled

Ameri
an options (see e.g. [Wil98℄). For these kind of options one has to solve a free

boundary problem. This means that for ea
h point τ ∈ [0, T [=: Ωτ in time the interval

Ω 
an be split into two subintervals, namely Ω1(τ) = [0, Sb(τ)[ and Ω2(τ) = [Sb(τ),∞[,

where Sb(τ) denotes the free boundary. In one of those subintervals it is better to exer
ise

the option dire
tly, whereas in the other subinterval it is more bene�
ial for the investor to

wait and hold the option. At the free boundary the 
hoi
e between holding or exer
ising

the option is indi�erent. For an Ameri
an Put the interval Ω1(τ) is the region, where ex-

er
ising the option is favourable and Sb(τ) < K for τ ∈ Ωτ holds. When an Ameri
an Call

is examined, the region where it is bene�
ial to exer
ise the option is Ω2(τ). Additionally,

it holds Sb(τ) > K in this 
ase for τ ∈ Ωτ .

After de�ning European and Ameri
an options, let us 
onsider Asian options. We 
an

substitute the �nal pri
e of the sto
k at time T with the average of the market pri
e of the

underlying over the time-frame in the pay-o� of an European Option, using

A(0, T ) =
1

T

T
∫

0

S(t)dt.

This is 
alled a �xed strike Asian option [Wil98℄. It would also be possible to use the

di�eren
e of the sto
k value at time T and kA(0, T ) for some k > 0 in the pay-o�, whi
h

leads to a so-
alled �oating strike Asian option [Wil98℄. We see that both �xed and �oating

strike Asian options are path-dependent. These de�nitions already show that there exist

numerous possibilities on how other exoti
 options 
an be de�ned. In this thesis we fo
us

on European options.

Up to now we only 
onsidered options depending on a single underlying asset. But it is

possible to 
reate options, whi
h depend on several underlying assets instead of just one,

so-
alled Basket options. Analogously to the one-dimensional 
ase we start by de�ning a

European Basket Call/Put [RW07℄.
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De�nition 3 (European Basket Call/Put):

A European Basket Call/Put represents a 
ontra
t between the writer (party whi
h

sells the option) and the holder (party whi
h buys the option). In the basket 
ase the

option depends on the underlying assets S1, . . . , Sn for some n ∈ N≥1. The holder has the

right, but not the obligation, to exe
ute the option at the expiration date T > 0. The pay-o�

of the European Basket option is de�ned as

C(S1, . . . , Sn, T ) = max

(

n
∑

i=1

ωiSi −K, 0

)

for a Call and

P (S1, . . . , Sn, T ) = max

(

K −
n
∑

i=1

ωiSi, 0

)

for a Put. The value ωi ∈ R \ 0, ωi 6= 0, is 
alled the weight of ea
h underlying Si in the

option for i = 1, . . . , n. Additionally, it holds that
n
∑

i=1
ωi = 1.

For a given European Basket option we 
an say that n is unique, as the 
onstraint

ωi 6= 0 for i = 1, . . . , n holds. The European Basket Call/Put 
an be interpreted as a

European Call/Put on a portfolio given by the sto
ks Si with weights ωi for i = 1, . . . , n.

Analogously to the 
ase n = 1 it is possible to de�ne a European Power Basket option.

De�nition 4 (European Basket Power Call/Put):

A European Basket Power Call/Put with power p ∈ N≥1 represents a 
ontra
t between

the writer (party whi
h sells the option) and the holder (party whi
h buys the option).

The power basket option depends on the underlying assets S1, . . . , Sn for some n ∈ N≥1

with Si ∈ R≥0. The holder has the right, but not the obligation, to exe
ute the option at

the expiration date T > 0, where the pay-o� is

C(S1, . . . , Sn, T ) = max

(

n
∑

i=1

ωiSi −K, 0

)p

for a Call and

P (S1, . . . , Sn, T ) = max

(

K −
n
∑

i=1

ωiSi, 0

)p

for a Put, whi
h leads to C(·, T ), P (·, T ) ∈ Cp−1
(

R
n
≥0

)

. The weight ωi ∈ R of the underlying

Si is non-zero for i = 1, . . . , n. Additionally,
n
∑

i=1
ωi = 1 holds.
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We 
an observe that a European Power Call/Put is a European Power Basket Call/Put

with n = 1. Ameri
an, Asian and other exoti
 options 
an be de�ned analogously to the

one-dimensional 
ase. We fo
us, just as in the one-dimensional 
ase, on European Options.

1.2 Mathemati
al ba
kground

In the previous se
tion we have de�ned options from an e
onomi
al perspe
tive and shown

their importan
e to the �nan
ial world. But these de�nitions only de�ne the pri
e of the

option at the expiration date T > 0. If an investor wants to hedge with options, it is


ru
ial to know the 
urrent fair pri
e of an option, even though the expiration date still

lies in the future. We have to des
ribe the behaviour of the underlying assets and their

intera
tion with ea
h other, as they have an essential impa
t on the fair pri
e of an option.

To 
al
ulate a fair pri
e for a given option, one has to determine sto
hasti
 models for

the pri
e movement of the underlying asset(s) of the option, usually by applying sto
hasti


di�erential equations. There are di�erent possibilities to model an underlying asset. For

example drift and volatility of the asset 
ould be 
onstant over time, time dependent de-

terministi
 fun
tions or even sto
hasti
 pro
esses. In this thesis we fo
us on two di�erent

models, namely the Bla
k-S
holes model [BS73, Mer73℄, where the drift and volatility are


onstant over time, and the Heston model [Hes93℄, where the drift is 
onstant over time and

the volatility is a mean reverting sto
hasti
 pro
ess, whi
h itself has a 
onstant volatility.

Ea
h of those models is dis
ussed in the 
ase of a single underlying [BS73, Mer73, Hes93℄

as well as in a multi-dimensional setting [Wil98, DCGG13℄.

Sin
e this thesis is positioned in the �eld of numeri
al analysis, we revisit the derivation

of partial di�erential equations arising from the previously dis
ussed �nan
ial models and

give a link between sto
hasti
 and deterministi
 di�erential equations, using the Lemma

of It� [It�44, Irl98℄. The goal of this thesis is to a
hieve numeri
al approximations of the

solution of the deterministi
 partial di�erential equation with high a

ura
y. The �rst

ne
essary step is the dis
retisation of the problem. We de�ne a grid for the spatial domain

of the di�erential equations, whi
h is given by the underlying asset pri
es, as well as for

the time. Then we show how to dis
retise the derivatives appearing in the di�erential

equations. The general shape of a dis
rete s
heme is de�ned in a semi-dis
rete 
ase, whi
h

means that only the spatial dis
retisation is performed, as well as in the fully dis
retised


ase, where the time dis
retisation is 
arried out as well. Ne
essary 
onditions for stability
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are given, whi
h arise when performing a thorough von Neumann stability analysis (e.g.

[Str04℄).

1.2.1 Finan
ial ba
kground

When looking at a typi
al 
hart of a sto
k pri
e, we observe that the value of an underlying

asset does not behave smoothly over time. In fa
t, 
hanges in pri
e 
an appear very rapidly.

New information, whi
h 
ould be the publi
ation of the balan
e sheet, or a gain or loss

of an important 
ontra
t, 
an have a sudden positive or negative impa
t on the sto
k

pri
e. It is important to note that in the 
ase of a balan
e sheet it is not the published

performan
e of the 
ompany whi
h 
reates the 
hange in the value of the sto
k, but the

di�eren
e between the expe
ted and the a
tual performan
e. These previously established

expe
tations have already in�uen
ed the share-pri
e beforehand. If the 
ompany performs

better than expe
ted, the sto
k pri
e goes up. If the result is below the expe
tations the

pri
e of the sto
k goes down. The amount of 
hange in the share pri
e is depending on

the magnitude of the di�eren
e between expe
ted and a
tual performan
e of the 
ompany.

This means that we have to take this un
ertainty into 
onsideration when modelling the

underlying assets of an option. One possible way is to model this un
ertainty in the sto
k

pri
es is to use the Wiener pro
ess (e.g. [Pro04℄) and thus sto
hasti
 di�erential equations

(e.g. [Kij03℄).

De�nition 5 (Wiener Pro
ess/Brownian motion):

An adapted pro
ess W = (W (t))0≤t<∞ assuming values in R
n
for n ∈ N≥1 is 
alled an

n-dimensional Wiener Pro
ess or Brownian motion if

(i) for 0 ≤ s < t < ∞, W (t)−W (s) is independent of the �ltration Fs (in
rements are

independent of the past);

(ii) for 0 ≤ s < t, W (t) − W (s) is a Gaussian random variable with mean zero and

varian
e (t− s)C, for a given, non-random matrix C;

(iii) The Wiener Pro
ess starts at x ∈ R if P[W (0) = x] = 1.

Let (Ft)t∈[0,T ] be a family of sub-σ-algebras Ft ⊆ F with Fs ⊆ Ft for s < t. Then

F =
⋃

t∈[0,T ]

Ft is 
alled a �ltration, see [Shr04℄.

When looking at a typi
al sto
k 
hart, we usually observe a trend for a 
ertain time

period. The pri
e seems likely to move upward or downward, at least for the near future.
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This means that there has to be a 
omponent in the sto
k pri
e model representing this

drift. The volatilities of di�erent sto
ks have di�erent values, whi
h means that there has

to be an additional term in the model of an underlying representing the magnitude of the

volatility. This leads dire
tly to the use of sto
hasti
 di�erential equations, whi
h 
an also

be de�ned in a multi-dimensional setting.

De�nition 6 (Sto
hasti
 di�erential equation):

A sto
hasti
 di�erential equation is an integral equation of the form

X(t) −X(0) =

t
∫

0

µ (X(s), s) ds+

t
∫

0

σ (X(s), s) dW (s), (1.1)

where the se
ond integral term denotes an It� Integral (e.g. [Kij03℄) and X is a ve
tor of n ∈
N≥1 random variables and W is a ve
tor of n Wiener pro
esses. The ve
tor µ (X(t), t) ∈
R
n×1

denotes the drift and σ (X(t), t) ∈ R
n×n

the 
orrelation matrix between the Wiener

pro
esses. A widely used simpler notation for (1.1) is

dX(t) = µ (X(t), t) dt+ σ (X(t), t) dW (t).

The next step is to start modelling the behaviour of an asset pri
e in detail. We start

with modelling only a single underlying asset. The most basi
 way is to think of the drift

and volatility of the asset pri
e as 
onstant over time, but relative to the asset pri
e and

not in absolute terms. This leads to the geometri
 Brownian motion, see e.g. [Kij03℄.

De�nition 7 (Geometri
 Brownian motion):

Let W (t) be a Wiener Pro
ess, then the solution of

dX(t) = µX(t)dt+ σX(t)dW (t) for t > 0

is a geometri
 Brownian motion X(t) with 
onstant drift µ ∈ R and 
onstant volatility

σ ∈ R for the time t ∈ [0, T ]. We have

E[dX(t)] = µX(t)dt and V[dX(t)] = σ2X(t)2dt

as expe
ted value and varian
e.

The basis of modern option pri
ing is the Bla
k-S
holes model, whi
h has been proposed

by Fisher Bla
k and Myron S
holes [BS73℄ and independently by Robert Merton [Mer73℄.
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It des
ribes the motion of an underlying asset S with a geometri
 Brownian motion at

time t > 0 through

dS(t) = µS(t)dt+ σS(t)dW (t), (1.2)

where µ is the 
onstant drift and σ is the 
onstant volatility of the sto
k S. The introdu
-

tion of this model has led to a huge boost in the �eld of option pri
ing. It has been the

starting point for numerous forth
oming models of asset pri
e movement.

In reality, we 
an observe that assuming a 
onstant volatility and drift does not mat
h

the observed asset pri
e movements well. These assumptions 
an only be justi�ed when

looking at a short time period. Thus the �rst obvious extension to the geometri
 Brownian

motion is to have time dependent deterministi
 drift as well as volatility. This gives a more

realisti
 model, as we 
an observe that the volatility is lower in a bull market whereas it is

higher in a bear market, espe
ially if a 
rash o

urs. An ever rising sto
k pri
e is not very

realisti
 either, whi
h means that a 
hange in the drift over time is plausible. A pie
ewise


onstant drift might be a good possibility to mat
h the pri
e movement of the underlying.

These generalisations in 
omparison with the Bla
k-S
holes model [BS73, Mer73℄ 
an be

a
hieved using an It� pro
ess (see e.g. [Kij03℄).

De�nition 8 (It� pro
ess):

An It� Pro
ess is a generalised Wiener Pro
ess with expe
ted value a(x, t) and standard

deviation b(x, t). It has the form

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t).

The drift and the varian
e of the pro
ess are fun
tions of (X, t) and 
an 
hange over time.

Using deterministi
 fun
tions for the drift as well as volatility assumes that it is possible

to fore
ast both fun
tions up to some pre
ision, even for longer time periods. To be able

to explain important e�e
ts whi
h are present in real �nan
ial markets, e.g. the volatility

smile (or skew) in option pri
es, so-
alled sto
hasti
 volatility models have been introdu
ed

over the last two de
ades. In 
ontrast to the seminal Bla
k and S
holes model (1.2) or the

It� pro
ess, the underlying asset's volatility is not assumed to be 
onstant or deterministi
,

but is itself modelled by a sto
hasti
 di�usion pro
ess.
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De�nition 9 (Sto
hasti
 volatility model):

These sto
hasti
 volatility models are typi
ally based on a two-dimensional sto
hasti


di�usion pro
ess with two Brownian motions with 
orrelation ρ, i.e.

dW (1)(t)dW (2)(t) = ρdt.

On a given �ltered probability spa
e for the sto
k pri
e S(t) and the sto
hasti
 volatility

σ(t) one 
onsiders

dS(t) = µ̄S(t)dt+
√

σ(t)S(t)dW (1)(t),

dσ(t) = a(σ(t))dt+ b(σ(t))dW (2)(t),

where µ̄ is the drift of the sto
k, a(σ(t)) and b(σ(t)) are the drift and the di�usion 
oe�
ient

of the sto
hasti
 volatility.

There are di�erent sto
hasti
 volatility models having distin
t 
hoi
es for the evolution

of the volatility for t > 0, starting from an initial volatility σ(0) > 0. The most prominent

work in this dire
tion is the Heston model [Hes93℄, where

dσ(t) = κ∗
(

θ∗ − σ(t)
)

dt+ v
√

σ(t)dW (2)(t). (1.3)

Other sto
hasti
 volatility models are, e.g., the GARCH di�usion model [Dua95℄,

dσ(t) = κ∗
(

θ∗ − σ(t)
)

dt+ vσ(t)dW (2)(t), (1.4)

or the so-
alled 3/2-model (see, e.g. [Lew00℄),

dσ(t) = κ∗σ(t)
(

θ∗ − σ(t)
)

dt+ vσ(t)3/2dW (2)(t). (1.5)

In (1.3)-(1.5), κ∗, v, and θ∗ denote the mean reversion speed, the volatility of the volatility,

and the long-run mean of σ, respe
tively.

The previous examples 
onsidered the one-dimensional 
ase, so only allowing a single un-

derlying S. When examining Basket options, it is ne
essary to 
onsider models whi
h

in
lude several asset pri
es at the same time, where an intera
tion between the di�erent

underlying assets with ea
h other is in
luded. Higher dimensional sto
hasti
 di�erential

equations ful�l these aspe
ts. Ea
h underlying itself follows a sto
hasti
 pro
ess, where its

10



volatility 
ould be 
onstant or sto
hasti
 as well. The Wiener pro
esses in these models

are 
orrelated. These models 
an for example be used to pri
e European Basket options,

see De�nition 3. The �rst model we present is the multidimensional Bla
k-S
holes model

(e.g. [Wil98℄), where the volatility of ea
h underlying asset is 
onstant.

De�nition 10 (Multidimensional Bla
k-S
holes model):

The multidimensional Bla
k-S
holes model 
onsists of n ∈ N≥1 underlying assets Si,

i = 1, . . . , n. Ea
h of these assets follows a geometri
 Brownian motion,

dSi(t) = µiSi(t)dt+ σiSi(t)dW
(i)(t)

where µi is the drift and σi is the volatility of the asset Si for i = 1, . . . , n. The 
orrelation

between the assets is given by dW (i)(t)dW (j)(t) = ρijdt.

Analogously to the one-dimensional 
ase we 
an argue that a 
onstant volatility over

time for ea
h asset is not likely and a mean-reverting sto
hasti
 pro
ess for ea
h volatility

is a better approximation of reality. This leads to the multi-dimensional Heston model,

see for example [DCGG13℄, where ea
h underlying asset follows a Heston pro
ess.

De�nition 11 (Multidimensional Heston model):

Let there be n ∈ N≥1 sto
ks. In the multidimensional Heston model ea
h asset Si

follows a Heston-pro
ess,

dSi(t) =µiSi(t)dt+
√

σi(t)Si(t)dW
(1)
i (t), (1.6)

dσi(t) =κi (θi − σi(t)) dt+ vi
√

σi(t)dW
(2)
i (t), (1.7)

for 0 < t < T . We have µi as the drift of Si and κi, θi and vi as the mean reversion speed,

the long run mean and volatility of the volatility and dW
(1)
i and dW

(2)
i being Brownian

motions for i = 1, . . . , n. Additionally, there is dW
(1)
i dW

(1)
j = λijdt the 
orrelation between

the sto
k pri
es, dW
(1)
i dW

(2)
j = ρijdt the 
orrelation between the sto
k pri
es and the

volatilities and dW
(2)
i dW

(2)
j = ηijdt the 
orrelation between the volatilities.

It would of 
ourse be possible to use other sto
hasti
 volatility models, e.g. the

GARCH di�usion model or the 3/2 model similarly using equations (1.4) and (1.5) in

an n-dimensional setting as well.

Next, we re
all the Lemma of It�, whi
h plays an important role when trying to de-

rive partial di�erential equations from the above sto
hasti
 di�erential equations. First we
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re
all the one-dimensional Lemma of It� [It�44℄.

Lemma 1 (One-dimensional Lemma of It�):

Let V: R×R+ → R be a fun
tion, where V is twi
e 
ontinuously di�erentiable in the �rst

variable and 
ontinuously di�erentiable in the se
ond variable. Further let S(t) be an It�

pro
ess with drift f(S(t), t) and standard deviation g(S(t), t),

dS(t) = f(S(t), t)dt+ g(S(t), t)dW (t).

Then

dV (S(t), t) =

(

∂V (S(t), t)

∂S
f(S(t), t) +

∂V (S(t), t)

∂t
+

1

2

∂2V (S(t), t)

∂S2
g2(S(t), t)

)

dt

+
∂V (S(t), t)

∂S
g(S(t), t)dW (t)

holds. This means that V (S(t), t) is again an It� pro
ess with drift

∂V (S(t), t)

∂S
f(S(t), t) +

∂V (S(t), t)

∂t
+

1

2

∂2V (S(t), t)

∂S2
g2(S(t), t)

and standard deviation

∂V (S(t), t)

∂S
g(S(t), t).

As we 
al
ulate an approximation of the fair pri
e of basket options and thus dis
uss

multi-dimensional sto
hasti
 di�erential equations, we need to be able to derive partial

di�erential equations in those 
ases as well. The Heston pro
ess is a two-dimensional

sto
hasti
 pro
ess as well, even though the setting only in
ludes one underlying asset. In

order to a
hieve this we need to adopt the multi-dimensional Lemma of It� (e.g. [Irl98℄).

Lemma 2 (Multi-dimensional Lemma of It�):

Let X(t) be an n-dimensional It� pro
ess, for example

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t)

with

Xt =
(

X(1)(t), . . . ,X(n)(t)
)⊤

, Wt =
(

W (1)(t), . . . ,W (n)(t)
)⊤

,

a(X(t), t) = (a1(X(t), t), . . . , an(X(t), t))⊤ and b(X(t), t) =(bik(X(t), t))k=1,...,m
i=1,...,n .

Further we have g : Rn × [0,∞) → R
p
with g ∈ C2(Rn × [0,∞)). Then Y (t) = g(X(t), t)
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is again an It� pro
ess and for k = 1, . . . , p we have

dY (t)(k) =
∂gk
∂t

(X(t), t)dt+
n
∑

i=1

∂gk
∂xi

(X(t), t)dX(t)(i)

+
1

2

n
∑

i,j=1

∂2gk
∂xi∂xj

(X(t), t)dX(t)(i)dX(t)(j),

where dW (t)(i)dW (t)(j) = 〈dW (t)(i),dW (t)(j)〉dt with 〈dW (t)(i),dW (t)(j)〉 being the 
or-

relation between dW (t)(i) and dW (t)(j). Thus dtdt = 0, dW (t)(i)dt = 0 as well as

dtdW (t)(i) = 0 holds.

1.2.2 Numeri
al ba
kground

The previous parts of this Se
tion had ne
essary de�nitions in e
onomi
s, �nan
e and

sto
hasti
 as 
ontent. In this se
tion we give preliminaries from numeri
al analysis. To

start, we introdu
e a linear paraboli
 partial di�erential equation, depending on time and a

multi-dimensional spatial domain, and give some examples of partial di�erential equations

of this type appearing in option pri
ing. We introdu
e the dis
retisation of the spatial do-

main and show how we 
an use this grid to dis
retise the derivatives appearing in the linear

se
ond-order partial di�erential equation. The notation for a semi-dis
rete �nite di�eren
e

s
heme as well as a fully dis
retised �nite di�eren
e s
heme are introdu
ed. Finally, we

re
all a ne
essary 
ondition for von Neumann stability, see for example [Str04℄.

Linear se
ond-order paraboli
 partial di�erential equations are at the heart of this

thesis. In Chapter 2 we derive four di�erent essentially high-order 
ompa
t s
hemes to

approximate the numeri
al solution of the paraboli
 partial di�erential equation in a general

setting for a two-dimensional spatial domain. In Chapter 3 we derive high-order 
ompa
t

s
hemes for linear se
ond-order paraboli
 partial di�erential equations in multiple spa
e

dimensions.

De�nition 12 (n-dimensional linear se
ond-order paraboli
 partial di�erential equation):

An n-dimensional linear se
ond-order paraboli
 partial di�erential equation for

n ∈ N≥1 is an equation of the form

d
∂u

∂τ
+

n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= g in Ω× Ωτ , (1.8)

with initial 
ondition u0 = u(x1, . . . xn, 0), where Ω ⊂ R
n
is of an n-dimensional 
u-
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bi
al shape and Ωτ = ]0, τmax] with some �nal time τmax > 0 and subje
t to suitable

boundary 
onditions. Additionally, the 
oe�
ients ai(< 0), bij, ci, d and g are fun
-

tions of (x, τ) ∈ Ω × Ωτ for i, j ∈ {1, . . . , n}. As a 
ondition on the 
oe�
ients we have

ai (·, τ) , bij (·, τ) , ci (·, τ) , d (·, τ) ∈ C2 (Ω) for any τ ∈ Ωτ .

In addition to standard assumptions, we assume that the solution of (1.8) satis�es

u (·, τ) ∈ C6 (Ω) for any τ ∈ Ωτ as well as u (x, ·) ∈ C (Ωτ ) for any x ∈ Ω.

After de�ning a di�erential equation in a general sense, we derive spe
i�
 di�erential

equations whi
h arise from the �nan
ial models we have dis
ussed so far. We start in the

one-asset setting with the Bla
k-S
holes model and the sto
hasti
 volatility model. We also

derive the partial di�erential equations whi
h result from the multi-sto
k models, namely

the multi-dimensional Bla
k-S
holes model and the multi-dimensional Heston model.

Di�erential equation of the Bla
k-S
holes model

One example for a partial di�erential equation is the Bla
k-S
holes equation

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0. (1.9)

The derivation of this partial di�erential equation from the sto
hasti
 di�erential equation

of the Bla
k-S
holes model (1.2), whi
h uses Lemma 1 and standard arbitrage arguments,


an for example be found in [Wil98℄. We have also shown this derivation of [Wil98℄ in

Appendix A. The variable S ∈ R≥0 denotes the sto
k pri
e, whi
h has a 
onstant volatility

σ ≥ 0 over time. With r ≥ 0 we denote the risk-less interest rate and δ > 0 is the


ontinuous dividend. When dis
retising this problem we need to introdu
e an arti�
ial

boundary, namely a su�
iently large upper bound Smax > 0, whi
h leads to a spatial

domain Ω = [0, Smax]. The �nal and boundary 
onditions for this di�erential equation are

depending on the type of option dis
ussed. For a European Power Put with power p ∈ N≥1

and strike pri
e K > 0 the �nal 
ondition is

V (S, t) =max (K − S, 0)p .
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Di�erential equation of the sto
hasti
 volatility model

Any option pri
e V = V (S, σ, t) that follows a sto
hasti
 volatility model, 
ompare De�-

nition 9, solves the following partial di�erential equation

∂V

∂t
+
1

2
σS2σ

∂2V

∂S2
+ρb(σ)σS

∂2V

∂S∂σ
+
1

2
b2(σ)

∂2V

∂σ2
+
(

a(σ)−λ(S, σ, t)
)∂V

∂σ
+rS

∂V

∂S
−rV = 0,

(1.10)

where r > 0 is the (
onstant) riskless interest rate and λ(S, σ, t) denotes the market pri
e

of volatility risk, 
ompare [Wil98℄. This 
an be shown with appli
ation of the multi-

dimensional Lemma of It�, see Lemma 2, and standard arbitrage arguments. Equation

(1.10) has to be solved for the sto
k pri
e S, the volatility σ > 0, the time 0 ≤ t ≤ T ,

where T > 0, as well as subje
t to �nal and boundary 
onditions whi
h depend on the

spe
i�
 option that is to be pri
ed.

As usual, we restri
t ourselves to the 
ase where the market pri
e of volatility risk

λ(S, σ, t) is proportional to σ and 
hoose λ(S, σ, t) = λ0σ for some 
onstant λ0 > 0. This

allows to study the problem using the modi�ed parameters

κ = κ∗ + λ0, θ =
κ∗θ∗

κ∗ + λ0
,

whi
h is both 
onvenient and standard pra
ti
e. For similar reasons, some authors set the

market pri
e of volatility risk to zero.

The partial di�erential equation of the Heston model [Hes93℄ is then given by

∂V

∂t
+

1

2
σS2 ∂

2V

∂S2
+ ρvσS

∂2V

∂S∂σ
+

1

2
v2σ

∂2V

∂σ2
+ rS

∂V

∂S
+ κ(θ − σ)

∂V

∂σ
− rV = 0, (1.11)

where S ∈
[

0, Smax

]

with a 
hosen Smax > 0, σ ∈ [σmin, σmax] with 0 ≤ σmin < σmax

and t ∈ [0, T [ with T > 0, after imposing arti�
ial boundary 
onditions for S and σ in a


lassi
al manner.

Di�erential equation of the multi-dimensional Bla
k-S
holes model

The third model we want to dis
uss is the multi-dimensional Bla
k-S
holes model. There

are n ∈ N≥1 di�erent sto
k pri
es, namely Si for i = 1, . . . , n, whi
h ea
h follow a sto
hasti


pro
ess, see De�nition 10. In the 
ase n = 1, the partial di�erential equation is given by
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(1.9). For the 
ase n > 1 we obtain

∂V

∂t
+

1

2

n
∑

i=1

σ2
i S

2
i

∂2V

∂S2
i

+
n
∑

i,j=1
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n
∑

i=1

(r − δi)Si
∂V

∂Si
− rV =0. (1.12)

This equation 
an be derived using the multi-dimensional Lemma of It�, see Lemma 2, and

standard arbitrage arguments, see [Wil98℄. Ea
h sto
k pri
e Si has a 
onstant volatility

over time given by σi and a 
ontinuous dividend indi
ated by δi for i = 1, . . . , n. The


orrelation of the sto
k pri
es Si and Sj is given by ρij for i, j = 1, . . . , n and the risk-free

interest rate is denoted by r > 0. After introdu
ing a su�
iently large arti�
ial boundary

Smax
i > 0 for ea
h sto
k value we have Si ∈ [0, Smax

i ] and t ∈ [0, T ] for some T > 0. For a

European Power Put the �nal 
ondition is

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

with p ∈ N≥1 and strike pri
e K > 0.

Di�erential equation of the multi-dimensional Heston model

The last model we dis
uss is the multi-dimensional Heston model, see for example [DCGG13℄.

We start with the sto
hasti
 di�erential equation (1.6). Using the multi-dimensional

Lemma of It� and standard arbitrage arguments, we 
an derive the general multi-dimensional

Heston partial di�erential equation, see Appendix B, whi
h is given by

∂V

∂t
+

n
∑

i=1

rSi
∂V

∂Si
+

n
∑

i=1

κi (θi − σi)
∂V

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2V

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2V

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2V

∂σi∂σj
− rV − Λ = 0,

where Λ denotes the market pri
e of volatility risk. In a risk-neutral market we have Λ = 0,

in a risk-averse market there is Λ > 0 and in the unlikely event of a risk-prone market Λ

would be negative. We have to introdu
e arti�
ial boundaries for the sto
k pri
e Si and

the volatility σi, whi
h leads to Si ∈ [0, Smax
i ] for Smax

i > 0 and σi ∈ [σmin
i , σmax

i ] with

0 < σmin
i < σmax

i for i = 1, . . . , n. In the underlying sto
hasti
 model, ea
h volatility

σi follows a mean reverting sto
hasti
 pro
ess, whi
h has a volatility of vi > 0, a mean

reversion speed of κi > 0 and a mean of θi > 0 for i = 1, . . . , n. The risk-free interest rate

is denoted by r > 0. Sin
e ea
h sto
k Si follows a Heston pro
ess, we have three di�erent

possible 
orrelations. The �rst 
orrelation between the sto
k Si and the sto
k Sj is denoted

16



by λij , whereas ρij represents the 
orrelation between the sto
k Si and the volatility σj .

Finally, the 
orrelation between the volatilities σi and σj is denoted by ηij . For a linear

pri
e of volatility risk we have

Λ =

n
∑

i=1

αiσi
∂V

∂σi

with 
onstant αi > 0 for all i = 1, . . . , n, assuming a risk-averse market. Thus we 
an use

κi (θi − σi)− αiσi =(κi + αi)

(

κiθi
κi + αi

− σi

)

= κ̃i

(

θ̃i − σi

)

.

We observe that it is possible to obtain a risk-adjusted multi-dimensional Heston model

analogously to the derivation of the one-dimensional partial di�erential equation (1.11).

Dropping the tilde-signs for κ̃i and θ̃i leads to the risk-neutral or risk-adjusted multi-

dimensional Heston partial di�erential equation

∂V

∂t
+

n
∑

i=1

rSi
∂V

∂Si
+

n
∑

i=1

κi (θi − σi)
∂V

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2V

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2V

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2V

∂σi∂σj
− rV = 0. (1.13)

For a multi-dimensional Power Put with power p ∈ N≥1 the �nal 
ondition is given by

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

where

∑

i=1
ωi = 1 and ωi > 0 for i = 1, . . . , n, if short-selling is not allowed.

After de�ning the partial di�erential equations arising from di�erent sto
k pri
e models,

we need to introdu
e some notation for a dis
rete numeri
al s
heme, whi
h approximate

the solution of a given partial di�erential equation. The �rst step is to introdu
e a grid on

the given spatial domain.
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De�nition 13 (Grid of a spatial domain):

Let Ω ∈ R
n
for n ∈ N≥1 be of an n-dimensional 
ubi
al shape. Then we 
an write

Ω =

n
⊗

k=1

[

x
(k)
min, x

(k)
max

]

,

where −∞ < x
(k)
min < x

(k)
max < ∞ for k = 1, . . . , n. The n-dimensional grid of Ω is then

de�ned as

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik (∆xk) , 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

,

where ∆xk > 0 and Nk ∈ N≥1 and x
(k)
max = x

(k)
min+(Nk−1) (∆xk) for k = 1, . . . , n. By

◦
G

(n)

we denote the interior points of G(n)
. If ∆xk = h for some h > 0 and all k ∈ {1, . . . , n}

holds, then we use the notation G
(n)
h and

◦
G

(n)

h for the grid.

After introdu
ing the general n-dimensional grid we de�ne the 
ompa
t sten
il, whi
h


ould be 
ategorised as the neighbours of a given point x ∈ ◦
G

(n)
. Our goal is to derive

high-order 
ompa
t s
hemes. This means that we have to explain the meaning of '
ompa
t'.

When dis
retising a partial di�erential equation at a point of

◦
G

(n)
, we only want to use

the dis
rete solution at this point and its neighbours.

De�nition 14 (
ompa
t sten
il):

Let G(n)
be a n-dimensional grid. With a 
ompa
t sten
il Û(x) we denote the dire
t

neighbours of an inner point of the grid G(n)
. With x̂ = (xi1 , . . . , xin) ∈

◦
G

n
the 
ompa
t

sten
il is given by

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} (1.14)

where Ui1,...,in is an approximation of u (xi1 , . . . , xin).

After introdu
ing the grid and 
ompa
t sten
il, we now re
all the 
entral di�eren
e

dis
retisation of the derivatives appearing in the partial di�erential equation (1.8). With
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the 
entral �nite di�eren
e operator for ea
h dire
tion in spa
e, we have

∂2u

∂x2k
=Dc

kD
c
kUi1,...,in − (∆xk)

2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂u

∂xk
=Dc

kUi1,...,in − (∆xk)
2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

,

∂2u

∂xk∂xp
=Dc

kD
c
pUi1,...,in − (∆xk)

2

6

∂4u

∂x3k∂xp
− (∆xp)

2

6

∂4u

∂xk∂x3p
+O

(

(∆xk)
4
)

+O
(

(∆xk)
2(∆xp)

2
)

+O
(

(∆xp)
4
)

+O
(

(∆xk)
6

∆xp

)

(1.15)

for k, p ∈ {1, . . . , n} and k 6= p on the grid-points (xi1 , . . . , xin) ∈ ◦
G

(n)
, whi
h 
an be

proved using Taylor approximation.

After des
ribing dis
retisations, the natural next step is to introdu
e the notation for

a semi-dis
rete and fully-dis
rete �nite di�eren
e s
heme. Semi-dis
rete means that the

spatial dis
retisation is applied, but there is no dis
retisation in time. For a fully-dis
rete

s
heme the time-dis
retisation is performed as well.

De�nition 15 (Semi-dis
rete �nite di�eren
e s
heme):

A semi-dis
rete �nite di�eren
e s
heme whi
h is used to approximate the solution of

an n-dimensional linear partial di�erential equation (1.8) is of the form

∑

x̂∈G(n)

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g̃(x, τ) +O
(

hd
)

, (1.16)

where x̂ = (xi1 , . . . , xin) at time τ for ea
h point x ∈ G(n)
. With the fun
tion

Ui1,...,in(τ) : Ωτ → R,

where Ωτ is given by (1.8), we denote the approximation of u (xi1 , . . . xin , τ) at the point

(xi1 , . . . xin) ∈ G(n)
at time τ ∈ Ωτ . Mx and Kx depend on the 
oe�
ients of the derivatives

in (1.8) as well as the parti
ular type of spatial dis
retisation. In the spatial interior g̃ is

given by the method of derivation of the s
heme and the fun
tion g, whi
h is the right hand

side of the underlying partial di�erential equation (1.8). On the spatial boundaries g̃ 
an

additionally be in�uen
ed by the boundary 
onditions. This s
heme is 
alled semi-dis
rete

as a spatial dis
retisation is performed, whereas there is no dis
retisation in time. The


onsisten
y order in spa
e of this s
heme is d, when ∆xi ∈ O (h) for a step-size h > 0 for

i = 1, . . . , n.
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For the dis
retisation in time there are many possibilities. The Expli
it or Impli
it

Euler time dis
retisation or the Crank-Ni
olson type time dis
retisation are examples of

one-step methods. It would also be possible to apply multi-step methods, though one would

have to use one-step methods �rst to a
hieve the values at the needed starting points in

time.

The Expli
it and Impli
it Euler time dis
retisation only lead to �rst order 
onsisten
y

in time. The Expli
it s
heme even has restri
tions on the step-size in time. In order to

a
hieve a fully dis
rete s
heme, whi
h has fourth order 
onvergen
e (if stable) in terms of

h, the step-size in time has the restri
tion ∆τ ∈ O
(

h4
)

. This means that the number of

points in time grow very qui
kly.

The Crank-Ni
olson type time dis
retisation, see for example [Str04, Wil98℄, 
onverges

with order two, if stable, and has no time-step restri
tions. Hen
e, we apply the Crank-

Ni
olson time dis
retisation to our semi-dis
rete s
heme, as we then 
an a
hieve fourth

order 
onvergen
e (if stable) in terms of h, if ∆τ ∈ O
(

h2
)

. So we save two orders when


omparing this with the Expli
it or Impli
it Euler time-dis
retisation.

We write down the semi-dis
rete �nite di�eren
e s
hemes of our methods in detail in

order to make any time-dis
retisation method easily appli
able, whi
h means a 
hange of

the time-dis
retisation 
an be exe
uted qui
kly, if wanted. Sin
e we will use the Crank-

Ni
olson type time-dis
retisation for the above mentioned reasons, we give the following

de�nition of a fully dis
rete �nite di�eren
e s
heme, see for example [DF12a℄.

De�nition 16 (Fully dis
rete Crank-Ni
olson-type s
heme):

Let there be a semi-dis
rete �nite di�eren
e s
heme with 
onsisten
y order d ∈ N≥1 of

the form (1.16). When using an equidistant time grid of the form τk = k∆τ for k =

0, . . . , Nτ with Nτ ∈ N, the fully dis
rete s
heme using Crank-Ni
olson-type time

dis
retisation with step size ∆τ is given by

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in +O

(

hd
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)
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with ∆xi ∈ O (h) for i = 1, . . . , n and a stepsize h > 0,

Ax (xi1 , . . . , xin) := Mx (xi1 , . . . , xin) +
∆τ

2
Kx (xi1 , . . . , xin)

and

Bx (xi1 , . . . , xin) := Mx (xi1 , . . . , xin)−
∆τ

2
Kx (xi1 , . . . , xin)

on ea
h point x of the grid G(n)
, where Uk

i1,...,in
denotes the approximation of u at the point

(xi1 , . . . , xin) ∈ G(n)
and time τk with k ∈ {0, . . . , Nτ}. This system of equations has

to be solved for all points in time, starting with k = 0. The fun
tions Mx, Kx and g̃ are

de�ned as in the semi-dis
rete s
heme. Thus the fully dis
rete s
heme has se
ond order


onsisten
y in time and 
onsisten
y order d in spa
e.

We have now introdu
ed a fully dis
rete s
heme whi
h has 
onsisten
y order two in

time and d ∈ N≥1 in spa
e. The next step is to de�ne a high-order 
ompa
t s
heme.

De�nition 17 (High-order 
ompa
t �nite di�eren
e s
heme):

A high-order 
ompa
t �nite di�eren
e s
heme is a fully dis
rete s
heme using Crank-

Ni
olson-type time dis
retisation, as given in De�nition 16 with d = 4. Additionally, it

uses only points on the 
ompa
t sten
il (1.14). This means that for a high-order 
ompa
t

�nite di�eren
e s
heme we have

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in +O

(

h4
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)

with ∆xi ∈ O (h) for i = 1, . . . , n and a stepsize h > 0,

Ax (xi1 , . . . , xin) := Mx (xi1 , . . . , xin) +
∆τ

2
Kx (xi1 , . . . , xin)

and

Bx (xi1 , . . . , xin) := Mx (xi1 , . . . , xin)−
∆τ

2
Kx (xi1 , . . . , xin)

on ea
h point x ∈ G(n)
. The fun
tions Mx, Kx and g̃ are de�ned as in the semi-dis
rete

s
heme and Uk
i1,...,in

denotes the approximation of u at the point (xi1 , . . . , xin) ∈ G(n)
and

time τk with k ∈ {0, . . . , Nτ}. For a high-order 
ompa
t s
heme, additionally

Mx(x̂) =0 and Kx(x̂) = 0

21



holds for all x̂ ∈ G \ Û (x) and for all x ∈ ◦
G

(n)
. The s
heme is 
alled high-order, as we

a
hieve an overall fourth order 
onsisten
y in terms of h when using ∆τ ∈ O
(

h2
)

.

After de�ning a high-order 
ompa
t s
heme for a n-dimensional spatial domain with n ∈
N, we now want to de�ne an essentially high-order 
ompa
t s
heme for a two-dimensional

spatial domain.

De�nition 18 (Essentially high-order 
ompa
t �nite di�eren
e s
heme):

An essentially high-order 
ompa
t �nite di�eren
e s
heme is a fully dis
rete s
heme

using Crank-Ni
olson-type time dis
retisation, as given in De�nition 16 with n = 2. Addi-

tionally, it uses only points on the 
ompa
t sten
il (1.14). This means that for an essentially

high-order 
ompa
t �nite di�eren
e s
heme we have

N1
∑

i1=1

N2
∑

i2=1

Ax (xi1 , xi2)U
k+1
i1,i2

=

N1
∑

i1=1

N2
∑

i2=1

Bx (xi1 , xi2)U
k
i1,...,in + h2R2 +O

(

h4
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)

with ∆x1,∆x2 ∈ O (h) for a stepsize h > 0,

Ax (xi1 , xi2) := Mx (xi1 , xi2) +
∆τ

2
Kx (xi1 , xi2)

and

Bx (xi1 , xi2) := Mx (xi1 , xi2)−
∆τ

2
Kx (xi1 , xi2)

on ea
h point x ∈ G(2)
. We have

R2 = C
∂4

∂x41
, R2 = C

∂4

∂x42
,

R2 = C
∂4

∂x31∂x2
or R2 = C

∂4

∂x1∂x
3
2

.

The value C is neither depending on h nor on the fun
tion u. The fun
tions Mx, Kx and

g̃ are de�ned as in the semi-dis
rete s
heme and Uk
i1,i2

denotes the approximation of u at

the point (xi1 , xi2) ∈ G(2)
and time τk with k ∈ {0, . . . , Nτ}. For an essentially high-order


ompa
t s
heme, additionally

Mx(x̂) =0 and Kx(x̂) = 0
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holds for all x̂ ∈ G \ Û (x) and for all x ∈ ◦
G

(2)
, whi
h means that we just use points of the


ompa
t sten
il in the dis
retisation of the spatial interior.

We 
an see 
learly from the de�nition of an essentially high-order 
ompa
t s
heme, that

it has an overall 
onsisten
y order of two. But when the remaining se
ond order trun
ation

order is small enough, we 
an expe
t a fourth-order 
onvergen
e of the s
heme (if stable)

up to a 
ertain stepsize h∗. If the stepsize does get smaller than this 
riti
al stepsize, then

the s
heme has se
ond order 
onsisten
y. If we should have a wanted a

ura
y level, whi
h

is already ful�lled by the numeri
al s
heme when using a step-size up to h∗, then we will

have a fourth order 
onvergen
e of the s
heme (if stable) for the pra
ti
al usage.

Essentially high-order 
ompa
t s
hemes are espe
ially appli
able to situations, where

there is a 
ertain area of interest. It 
ould be possible, that we wish to zoom in an area

of interest. Transforming this grid into an equidistant grid 
ould lead to a partial di�er-

ential equation, whose 
oe�
ients do not ful�ll the 
onditions for a high-order 
ompa
t

s
heme (see Se
tion 3.3). We 
ould have good arguments regarding R2, that the essen-

tially high-order 
ompa
t s
heme gives 
an a
hieve a fourth-order 
onvergen
e rate up to

our wanted a

ura
y level. That would mean that there are no downsides when using the

essentially high-order 
ompa
t s
heme in 
omparison with the high-order 
ompa
t s
heme,

even though the essentially high-order 
ompa
t s
heme has a theoreti
al 
onsisten
y of

order two. In Se
tion 2.6 we show that this is possible for the Heston model.

Sin
e 
onsisten
y is already de�ned, we need to give 
onditions for stability to a
hieve


onvergen
e. In this thesis we perform a von Neumann stability analysis [Str04℄ for gen-

eral high-order 
ompa
t s
hemes with vanishing 
ross derivative terms in the two- and

three-dimensional 
ase. We give partial results for non-vanishing 
ross derivative terms

for n = 2, 3. The di�
ulty in the stability analysis lies in the high-dimensionality of the

problem and the non-
onstant 
oe�
ients of equation (1.8).

The von Neumann stability 
ondition is a ne
essary stability 
ondition for problems

with periodi
 boundary 
onditions, 
ompare [Str04℄. We apply the von Neumann stabil-

ity analysis for frozen 
oe�
ients, whi
h means we 
onsider the 
oe�
ients of (1.8) as


onstant, 
ompare [GKO13, Str04℄, to analyse the multi-dimensional high-order 
ompa
t

�nite di�eren
e s
hemes in De�nition 17. The most general statements about the dis-


rete 
ase 
an be found in [GKO13, MS10, SW88, Wad90℄ for hyperboli
 problems and in
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[RM67, Wid66℄ for paraboli
 problems. The frozen 
oe�
ients approa
h gives a ne
essary

stability 
ondition, whi
h slightly strengthened ensures overall stability [RM67℄.

De�nition 19 (Ne
essary von Neumann stability 
ondition):

Let

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in + ĝ(x, τk, τk+1)

at grid point x ∈ G(n)
and time τ = k∆τ be the fully dis
rete �nite di�eren
e s
heme. We

use

Un
i1,...,in = gneI(i1z1+...+inzn),

where I is the imaginary unit, gn is the amplitude at time level n, zi = 2πh/λi for the

wavelength λi ∈ [0, 2π[ for i = 1, . . . , n. Then the fully dis
retised �nite di�eren
e s
heme

satis�es the ne
essary von Neumann stability 
ondition, if for all zi the ampli�
ation

fa
tor G = gn+1/gn satis�es the relation

|G|2 − 1 ≤ 0. (1.17)

1.3 Resear
h overview and aims of the thesis

In this se
tion we give a brief overview on the mathemati
al resear
h whi
h has been done

in the �eld of option pri
ing, 
on
erning the derivation of analyti
al solutions or partial

di�erential equations arising from di�erent sto
k pri
e models. We also give examples for

various possible numeri
al s
hemes whi
h approximate the option pri
e, where we fo
us on

the resear
h on high-order 
ompa
t s
hemes. The mentioned literature naturally leads to

the aims of this thesis.

For some models and under additional restri
tions, 
losed form solutions to (1.10) 
an

be obtained by Fourier methods (see, e.g. [Hes93, Dür09℄). Another approa
h is to derive

approximate analyti
 expressions, see, e.g. [BGM10℄ and the literature 
ited therein. In

general, however, �even in the Heston model when the parameters are non 
onstant�

equation (1.10) has to be solved numeri
ally. Moreover, many (so-
alled Ameri
an) options

feature an additional early exer
ise right. Then one has to solve a free boundary problem

whi
h 
onsists of (1.10) and an early exer
ise 
onstraint for the option pri
e. For this
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problem one typi
ally has to resort to numeri
al approximations.

In the mathemati
al literature, there are a number of papers 
onsidering numeri
al

methods for option pri
ing in sto
hasti
 volatility models, i.e. for two spatial dimensions.

Finite di�eren
e approa
hes that are used are often standard, low order methods (se
ond

order in spa
e). Other approa
hes in
lude �nite element-�nite volume [ZFV98℄, multigrid

[CP99℄, sparse wavelet [HMS05℄, or spe
tral methods [ZK10℄.

Let us review some of the related �nite di�eren
e literature. Di�erent e�
ient methods

for solving the Ameri
an option pri
ing problem for the Heston model are 
ompared in

[IT08℄. The arti
le fo
usses on the treatment of the early exer
ise free boundary and uses

a se
ond order �nite di�eren
e dis
retization. In [IHF10℄ di�erent, low order ADI (alter-

nating dire
tion impli
it) s
hemes are adapted to the Heston model in order to in
lude the

mixed spatial derivative term.

High-order 
ompa
t s
hemes have been introdu
ed in �uid dynami
s for 
onve
tion

dominated partial di�erential equations, see e.g. [GMS84℄. With a high ratio of 
onve
tion

to di�usion the standard se
ond order �nite di�eren
e s
hemes using the 
entral di�eren
e

operator leads to non-physi
al os
illations in the numeri
al solution. A usage of the Up-

wind dis
retisation, whi
h resolves the problem of the os
illations, only has a �rst order


onvergen
e rate. The re�nement of the grid has to be very large and thus there is a huge


omputational 
ost when using the Upwind dis
retisation. This leads to the introdu
tion

of high-order 
ompa
t s
hemes (see e.g. [GMS84℄), whi
h have a fourth-order 
onvergen
e

rate and resolve the problem of os
illations in the numeri
al approximation as well. In �-

nan
e, we do not have su
h problems in the partial di�erential equations of option pri
ing

and are more interested in the higher 
onvergen
e order.

While most of [TGB08℄ fo
usses on high-order 
ompa
t s
heme for the standard (one-

dimensional) 
ase, in a short remark [TGB08, Se
tion 5℄ the sto
hasti
 volatility (two-

dimensional) 
ase is 
onsidered as well. However, the �nal s
heme is of se
ond order only

due to the low order approximation of the 
ross di�usion term. High-order �nite di�er-

en
e s
hemes (fourth order in spa
e) were proposed for option pri
ing with deterministi


(or 
onstant) volatility, i.e. in one spatial dimension, that use a 
ompa
t sten
il (three

points in spa
e), see for example [TGB08℄ for linear and [DFJ03, DFJ04, LK09℄ for fully
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non-linear problems.

More re
ently, a high-order 
ompa
t �nite di�eren
e s
heme for (two-dimensional) op-

tion pri
ing models with sto
hasti
 volatility has been presented in [DF12a℄. This s
heme

uses a uniform grid and is fourth order a

urate in spa
e and se
ond order a

urate in time.

Un
onditional (von Neumann) stability of the s
heme is proved for vanishing 
orrelation.

A further study of its stability, indi
ating un
onditional stability as well for non-zero 
or-

relation, is performed in [DF12b℄.

Our �rst aim in this thesis is to 
onsider extensions of the high-order 
ompa
t method-

ology for sto
hasti
 volatility models (1.10) to non-uniform grids. In general, the a

ura
y

of a numeri
al dis
retisation of (1.10) for a given number of grid points 
an be greatly

improved by 
onsidering a non-uniform mesh. This is parti
ularly true for option pri
ing

problems as (1.10), as typi
al initial 
onditions have a dis
ontinuity in their �rst derivative

at S = K, whi
h is the 
entre of the area of interest (`at-the-money'). The basi
 idea of our

approa
h is to introdu
e a transformation of the partial di�erential equation from a non-

uniform grid to a uniform grid (as in [Fou00℄). Then the high-order 
ompa
t methodology


an be applied to this transformed partial di�erential equation. It turns out, however, that

this pro
ess is not straight forward as the derivatives of the transformation appear in the

trun
ation error. Due to the presen
e of the 
ross-derivative terms, one 
annot pro
eed to


an
el terms in the trun
ation error in a similar fashion as in [DF12a℄ and the derivation

of a high-order 
ompa
t s
heme be
omes mu
h more involved. This derivation is a
hieved

in a general manner and then applied to the Heston model on a non-uniform grid. We are

able to derive a 
ompa
t s
heme whi
h shows high-order 
onvergen
e for typi
al European

option pri
ing problems.

After fo
ussing on sto
hasti
 volatility models, we now dis
uss the approa
h of high-

order 
ompa
t s
hemes in a more general manner. In the last de
ades, starting from early

e�orts of Gupta et al. [GMS84, GMS85℄ high-order 
ompa
t �nite di�eren
e s
hemes were

proposed for the numeri
al approximation of solutions to ellipti
 [SC96℄, later also for

paraboli
 partial di�erential equations [SC01, KZ02℄. These s
hemes are able to exploit

the smoothness of solutions to su
h problems and a
hieve a high-order (typi
ally stri
tly

larger than two in the spatial dis
retisation parameter) numeri
al 
onvergen
e rate while

generally having good stability properties. Compared to �nite element approa
hes, the
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high-order 
ompa
t s
hemes are very parsimonious and memory-e�
ient to implement

and hen
e prove to be a viable alternative if the 
omplexity of the 
omputational domain

is not an issue.

One 
ould in prin
iple a
hieve higher-order approximations also by in
reasing the 
om-

putational sten
il, but this leads to in
reased bandwidth of the dis
retisation matri
es and


ompli
ates formulations of boundary 
onditions. Moreover, su
h approa
hes sometimes

su�er from restri
tive stability 
onditions and spurious numeri
al os
illations. These prob-

lems do not arise when using a 
ompa
t sten
il.

Although applied su

essfully to many important appli
ations, e.g. in 
omputational

�uid dynami
s [SC95, LTF95, LT01℄ and 
omputational �nan
e [DFJ03, DFJ04, TGB08,

DF12a, DFH14℄, an even wider breakthrough of the high-order 
ompa
t methodology has

been hampered by the algebrai
 
omplexity that is inherent in this approa
h. The deriva-

tion of high-order 
ompa
t s
hemes is algebrai
ally demanding and hen
e these s
hemes

are often tailor-made for a spe
i�
 appli
ation or a rather smaller 
lass of problems (with

some notable ex
eptions as for example Lele's paper [Lel92℄). The algebrai
 
omplexity

is even higher in the numeri
al stability analysis of these s
hemes. Unlike for standard

se
ond-order s
hemes, the established stability notions imply formidable algebrai
 prob-

lems for high-order 
ompa
t s
hemes. As a result there are relatively few stability results

for high-order 
ompa
t s
hemes in the literature. This is even more pronoun
ed in higher

spatial dimension, as most of the existing studies with analyti
al stability results for high-

order 
ompa
t s
hemes are limited to a one-dimensional setting.

Most works fo
us on the isotropi
 
ase where the main part of the di�erential operator

is given by the Lapla
ian. Another layer of 
omplexity is added when the anisotropi
 
ase

is 
onsidered and mixed se
ond-order derivative terms are present in the operator. Few

works on high-order 
ompa
t s
hemes address this problem, and either study 
onstant 
o-

e�
ient problems [FK06℄ or spe
i�
 equations [DF12a℄.

Consequently, our se
ond aim in this thesis is to establish a high-order 
ompa
t method-

ology for a general 
lass of linear paraboli
 partial di�erential equation with time and spa
e

dependent 
oe�
ients and with mixed se
ond-order derivative terms in arbitrary spatial

dimension. Problems of this type arise frequently in 
omputational �uid dynami
s and

27




omputational �nan
e. We derive general 
onditions on the 
oe�
ients whi
h allow to ob-

tain a high-order 
ompa
t s
heme whi
h is fourth-order a

urate in spa
e and se
ond-order

a

urate in time. Moreover, we perform a thorough von Neumann stability analysis of the

Cau
hy problem in two and three spatial dimensions for vanishing mixed derivative terms,

and also give partial results for the general 
ase. As an appli
ation example we 
onsider

the pri
ing of European Power Put basket options with two and three underlying assets.

The partial di�erential equation features se
ond-order mixed derivative terms and is sup-

plemented by an initial 
ondition with low regularity. We use the smoothing operators

given by Kreiss et al. [KTW70℄ to restore high-order 
onvergen
e.

1.4 Stru
ture of this thesis

This thesis 
onsists of two major parts, one being the introdu
tion and appli
ation of essen-

tially high-order 
ompa
t s
hemes, whi
h 
an espe
ially be used for the use of non-uniform

grids, in a two-dimensional spatial domain and the other being the derivation, von Neu-

mann stability analysis and appli
ation of high-order 
ompa
t s
hemes in an n-dimensional

spatial domain.

In Chapter 2 we develop and study new essentially high-order 
ompa
t �nite di�eren
e

s
hemes in a general setting on a non-uniform grid, see De�nition 12 with n = 2. This

means that we have a fully dis
rete s
heme of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) + h2R2 +O
(

h4
)

,

where G
(2)
h is a grid on the re
tangle Ω ⊂ R

2
. We derive four di�erent essentially high-

order 
ompa
t s
hemes and thus the term R2, whi
h is depending on the version of the

dis
retisation, is of one of the following forms

R2 =C
∂4u

∂x41
, R2 = C

∂4u

∂x42
, R2 = C

∂4u

∂x31∂x2
or R2 = C

∂4u

∂x1∂x
3
2

,

where in ea
h 
ase C is independent of h and u. This means that the s
heme has an

analyti
al 
onsisten
y order two. We 
an a
hieve fourth-order 
onsisten
y up to a given

toleran
e, though, if R2 is small enough. We also derive 
onstraints on the 
oe�
ients of

the partial di�erential equation, whi
h give R2 ≡ 0 and thus a high-order 
ompa
t s
heme.
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We apply the essentially high-order 
ompa
t s
hemes to sto
hasti
 volatility models

in option pri
ing with non-uniform grids. This means that for a grid there is a fo
us on

the values around the strike pri
e K. The s
hemes are fourth-order a

urate in spa
e and

se
ond-order a

urate in time for vanishing 
orrelation, whi
h means that in this 
ase there

is R2 ≡ 0. In the numeri
al study we obtain high-order numeri
al 
onvergen
e as well for

non-zero 
orrelation and non-smooth pay-o�s whi
h are typi
al in option pri
ing. In all

numeri
al experiments a 
omparative standard se
ond-order dis
retisation is signi�
antly

outperformed. We 
ondu
t a numeri
al stability study whi
h indi
ates un
onditional sta-

bility of the s
heme.

In Chapter 3 we introdu
e and analyse a high-order 
ompa
t s
heme with n-dimensional

spatial domain in a general setting, see De�nition 12, whi
h means that our semi dis
rete

s
heme is of the form

∑

x̂∈G
(n)
h

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g(x, τ) +O
(

h4
)

.

We thus obtain fourth-order a

ura
y in spa
e and se
ond-order a

ura
y in time, when

using Crank-Ni
olson-type time-dis
retisation [Str04, Wil98℄. This leads to an overall 
on-

sisten
y order of four in terms of h if ∆τ ∈ O
(

h2
)

is used.

Next, we perform a von Neumann stability analysis, see for example [Str04℄, for spa-

tial domains with dimensions two and three, where we prove that the ne
essary stability


ondition (see De�nition 19) holds un
onditionally without additional restri
tions on the


hoi
e of the dis
retisation parameters for vanishing mixed derivative terms. We also give

partial results for non-vanishing mixed derivative terms.

In our numeri
al experiments, we apply the high-order 
ompa
t s
hemes to the partial

di�erential equation arising from the multi-dimensional Bla
k-S
holes model. In all nu-

meri
al experiments, where the initial 
onditions are smoothed for European Power baskets

with p = 1, 2 using the smoothing operators proposed by [KTW70℄, a 
omparative stan-

dard se
ond-order dis
retisation is signi�
antly outperformed. As a se
ond example, the

multi-dimensional Heston basket option is 
onsidered for n independent Heston pro
esses,

where for ea
h Heston pro
ess there is a non-vanishing 
orrelation between the sto
k and

its volatility. Due to the high-dimensionality of this model we only show the possibility of

29



a high-order 
ompa
t s
heme.

The �rst 
ontribution of this thesis to the �eld is the introdu
tion of essentially high-

order 
ompa
t s
hemes for general linear partial di�erential equations with spa
e- and

time-dependent 
oe�
ients in two spatial dimensions. These s
hemes have theoreti
al


onvergen
e of order two, but as most of the derivatives are dis
retised in fourth order


onsisten
y, one 
an a
hieve a fourth order 
onvergen
e (if stable) up to a 
ertain step-size

h∗ when the se
ond order remainder term of one of the four versions of the essentially

high-order 
ompa
t s
hemes is small. If the desired a

ura
y is already a
hieved with a

step-size up to the step-size h∗, then the s
heme has pra
ti
ally fourth order 
onvergen
e

for the usage. These s
hemes are espe
ially appli
able, if there is an area of interest in the

spatial domain. One 
ould rather want to zoom in the area of interest than to ful�l the


onditions on the partial di�erential equation for a high-order 
ompa
t s
heme. If there

is a good argumentation, why one of the versions of the essentially high-order 
ompa
t

s
hemes should 
onverge with fourth order up to the desired a

ura
y, then there is no

downside when 
omparing it with a high-order 
ompa
t s
heme for the pra
ti
al usage.

The se
ond 
ontribution is a generalisation of high-order 
ompa
t s
hemes for a linear

partial di�erential equation with spa
e- and time-dependent 
oe�
ients and mixed deriva-

tives, where we 
onstru
t the s
hemes for two and three spatial dimensions in detail and

give 
onditions on the 
oe�
ients for any higher dimensions of the spatial domain. Even a

von Neumann stability analysis is performed for vanishing 
ross-derivatives and frozen 
oef-

�
ients (in time and spa
e) with two and three spatial dimensions. This results into having

no further 
onditions on the 
oe�
ients of the partial di�erential equation for satisfying

the ne
essary von Neumann stability 
ondition. For non-vanishing 
ross-derivatives partial

stability results are given, where there are also no further restri
tions on the 
oe�
ients of

the partial di�erential equation.
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Chapter 2

Essentially high-order 
ompa
t

s
hemes applied to non-uniform grids

In this 
hapter we derive essentially high-order 
ompa
t �nite di�eren
e s
hemes to ap-

proximate the solution of a linear paraboli
 partial di�erential equation in a general setting

on a two-dimensional spatial domain. We apply the dis
rete s
hemes to the Heston model

[Hes93℄ on a non-uniform spatial grid for a European Put, 
ompare De�nition 1, and a

European Power Put, see De�nition 2.

2.1 Motivation for using essentially high-order 
ompa
t s
hemes

In this se
tion we give a motivation for the use of essentially high-order 
ompa
t s
hemes.

We introdu
e semi-dis
rete �nite di�eren
e s
hemes of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) +R2 +O
(

h4
)

.

The spatial domain is given by a re
tangle Ω ⊂ R
2
, whi
h is dis
retised by the uniform

grid G
(2)
h . Depending on the version of the essentially high-order 
ompa
t s
heme the

se
ond-order remainder term is of one of the following forms

R2 =h2C
∂4u

∂x41
, R2 = h2C

∂4u

∂x42
, R2 = h2C

∂4u

∂x31∂x2
or R2 = h2C

∂4u

∂x1∂x32
,

where in ea
h 
ase C is neither depending on h nor on u. Where at least one of the four

possible spe
i�
ations of R2 is small, it is possible to a
hieve fourth-order 
onsisten
y for

the resulting numeri
al s
heme up to a 
ertain step-size.
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The fo
us for the appli
ation of essentially high-order 
ompa
t s
hemes lies in the use

of non-uniform spatial grids, whi
h are employed whenever there exists a spe
i�
 area of

interest. In this situation we pla
e many points of the spatial grid in this region, whereas

there are only few points lo
ated in the remaining parts of the spatial domain. This se-


ures a higher a

ura
y in the area of interest due to the higher density of grid points. We

then perform another transformation to the di�erential equation with a zoom fun
tion,

whi
h establishes that the resulting transformed grid is uniform. This way it is possible

to perform the dis
retisation and the numeri
al analysis on a uniform grid and retain the

advantages of a fo
us of grid-points to the area of interest.

In the Heston model [Hes93℄ the area of interest is lo
ated around the strike pri
e,

so the area is only depending on the asset pri
e and not depending on the value of the

volatility. In this setting, the zoom fun
tion is a one-dimensional fun
tion whi
h only

depends on the sto
k pri
e. In this appli
ation we use a zoom fun
tion as proposed by

[TGB08℄ to transform the non-uniform grid into a uniform grid G
(2)
h . On this uniform grid

we apply the essentially high-order 
ompa
t s
hemes to approximate the fun
tion of the

option values. Hen
e the Heston model gives us the perfe
t setting to apply essentially

high-order 
ompa
t s
hemes.

2.2 Introdu
tion of the partial di�erential equation

In this se
tion we introdu
e the problem whose solution we aim to approximate numeri
ally.

We 
onsider a partial di�erential equation in two spatial dimensions and time, i.e. we use

the partial di�erential equation given in De�nition 12 with n = 2 and g ≡ 0. Thus we


onsider

duτ + a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = 0 ∈ Ω× Ωτ , (2.1)

with initial 
ondition u(x1, x2, 0) = u0(x1, x2), where ai = ai(x1, x2, τ) < 0, b12 =

b12(x1, x2, τ), ci = c(x1, x2, τ), d = d(x, y, τ) and u = u(x1, x2, τ) are fun
tions from

Ω×R≥0 to R, where Ωτ =]0, τmax] with τmax > 0 and Ω =
[

x
(1)
min, x

(1)
max

]

×
[

x
(2)
min, x

(2)
max

]

⊂ R
2

with x
(i)
min < x

(i)
max for i = 1, 2. The fun
tions ai (·, τ), b (·, τ), ci (·, τ), and d (·, τ) are 
on-
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sidered to be in C2(Ω) and u (·, τ) ∈ C6(Ω) for all τ ∈ Ωτ . Using duτ = −f gives

a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = f. (2.2)

A grid in x1� and in x2�dire
tion for Ω, re
all De�nition 13, is given by

G(2) =
{

(xi1 , xi2) ∈ Ω | xi1 = x
(1)
min + i1(∆x1), xi2 = x

(2)
min + i2(∆x2),

0 ≤ i1 ≤ N1 − 1, 0 ≤ i2 ≤ N2 − 1
}

,
(2.3)

where ∆x1 = (x
(1)
max − x

(1)
min)/(N1 − 1) and ∆x2 = (x

(2)
max − x

(2)
min)/(N2 − 1) are the step

sizes in ea
h dire
tion. With

◦
G

(2)
we identify the inner points of the grid G(2)

. We use

G
(2)
h and

◦
G

(2)

h , if ∆x1 = ∆x2 = h for some h > 0. On this grid we denote by Ui1,i2 the

dis
rete approximation of the 
ontinuous solution u at the point (xi1 , xi2) ∈ G(2)
. Using

the standard 
entral di�eren
e operator Dc
1 in x1-dire
tion and Dc

2 in x2-dire
tion we have

for k = 1, 2 the relations

∂u

∂xk
=Dc

kUi1,i2 −
(∆xk)

2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

, (2.4)

and

∂2u

∂x2k
=Dc

kD
c
kUi1,i2 −

(∆xk)
2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂2u

∂x1∂x2
=Dc

1D
c
2Ui1,i2 −

(∆x1)
2

6

∂4u

∂x31∂x2
− (∆x2)

2

6

∂4u

∂x1∂x32
+O

(

(∆x1)
4
)

(2.5)

+O
(

(∆x1)
2(∆x2)

2
)

+O
(

(∆x2)
4
)

+O
(

(∆x1)
6

∆x2

)

,

at the grid points (xi1 , xi2) ∈ G(2)
. We 
all a s
heme of high order if its 
onsisten
y error

is of order O
(

h4
)

for ∆x1,∆x2 ∈ O (h) for some h > 0. If we dis
retise the higher deriva-

tives ∂4u/∂x41, ∂
4u/∂x42, ∂

4u/(∂x31∂x2), ∂
4u/(∂x1∂x

3
2), ∂

3u/∂x31, and ∂3u/∂x32 appearing

in (2.4) and (2.5) with se
ond order a

ura
y, we obtain a s
heme with 
onsisten
y of or-

der four sin
e they are all multiplied by fa
tors of order two. We 
all a s
heme high�order


ompa
t if this 
an be a
hieved using the 
ompa
t nine-point 
omputational sten
il, whi
h

at the point (xi1 , xi2) is given by
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Ui1+1,i2+1

Ui1−1,i2−1

Ui1−1,i2+1

Ui1+1,i2−1Ui1,i2−1

Ui1,i2+1

Ui1−1,i2 Ui1+1,i2Ui1,i2

.

2.3 Auxiliary relations for higher derivatives

We pro
eed by giving auxiliary relations for the third and fourth order derivatives appearing

in (2.4) and (2.5). Expressions for the higher derivatives 
an be obtained by di�erentiating

the partial di�erential equation (2.2) in a formal manner without introdu
ing an additional

error. Di�erentiating equation (2.2) with respe
t to x1 and writing ∂3u/∂x31 as the subje
t

leads to

∂3u

∂x31
=− [c1]x1

a1

∂u

∂x1
− [a1]x1 + c1

a1

∂2u

∂x21
− [c2]x1

a1

∂u

∂x2
− [b12]x1 + c2

a1

∂2u

∂x1∂x2

− b12
a1

∂3u

∂x21∂x2
− [a2]x1

a1

∂2u

∂x22
− a2

a1

∂3u

∂x1∂x22
+

1

a1

∂f

∂x1
=: A1,

(2.6)

where [·]x1 and [·]x2 denote the �rst derivative of the 
oe�
ients of the partial di�erential

equation in x1 and x2, respe
tively. With the 
entral di�eren
e operator we 
an establish

a se
ond-order dis
retisation of A1 only using the 
ompa
t sten
il. As an example, we 
an

dis
retise

−1

1

−1

1−2

2

0 00
∂3u(xi1

,xi2
)

∂x2

1
∂x2

=
1

2(∆x1)
2
(∆x2)

+ǫ,
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where ǫ ∈ O
(

h4
)

, if ∆x1,∆x2 ∈ O (h) for some h > 0. Di�erentiating the partial di�eren-

tial equation (2.2) twi
e with respe
t to x1 and writing ∂4u/∂x41 as subje
t we have

∂4u

∂x41
=− [c1]x1x1

a1

∂u

∂x1
− [a1]x1x1 + 2[c1]x1

a1

∂2u

∂x21
− 2[a1]x1 + c1

a1

∂3u

∂x31
− [c2]x1x1

a1

∂u

∂x2

− [b12]x1x1 + 2[c2]x1

a1

∂2u

∂x1∂x2
− 2[b12]x1 + c2

a1

∂3u

∂x21∂x2
− b12

a1

∂4u

∂x31∂x2

− [a2]x1x1

a1

∂2u

∂x22
− 2[a2]x1

a1

∂3u

∂x1∂x22
− a2

a1

∂4u

∂x21∂x
2
2

+
1

a1

∂2f

∂x21
(2.7)

=:B1 −
b12
a1

∂4u

∂x31∂x2
,

where [·]x1 and [·]x1x1 denote the �rst and se
ond derivative with respe
t to x1, respe
tively.

Applying (2.6) and the 
entral di�eren
e operator we 
an dis
retise B1 with order two using

only points of the 
ompa
t sten
il. Writing equation (2.7) with ∂4u/(∂x31∂x2) as subje
t

we obtain

∂4u

∂x31∂x2
=

a1
b12

B1 −
a1
b12

∂4u

∂x41
. (2.8)

In order to �nd an auxiliary equation for ∂3u/∂x32 we �rst di�erentiate the partial di�er-

ential equation (2.2) on
e with respe
t to x2 and write ∂3u/∂x32 as subje
t, whi
h leads

to

∂3u

∂x32
=− [c2]x2

a2

∂u

∂x2
− [a2]x2 + c2

a2

∂u2

∂x22
− [c1]x2

a2

∂u

∂x1
− [b12]x2 + c1

a2

∂2u

∂x1∂x2

− b12
a2

∂3u

∂x1∂x
2
2

− [a1]x2

a2

∂2u

∂x21
− a1

a2

∂3u

∂x21∂x2
+

1

a2

∂f

∂x2
=: A2,

(2.9)

where [·]x2 denotes the �rst derivative with respe
t to x2. The term A2 
an be dis
retised

in a 
ompa
t manner at the order two using the 
entral di�eren
e operators.

Di�erentiating equation (2.2) twi
e with respe
t to x2 and writing ∂4u/∂x42 as subje
t

leads to

∂4u

∂x42
=− [a1]x2x2

a2

∂2u

∂x21
− 2[a1]x2

a2

∂3u

∂x21∂x2
− a1

a2

∂4u

∂x21∂x
2
2

− [a2]x2x2 + 2[c2]x2

a2

∂2u

∂x22

− [c2]x2x2

a2

∂u

∂x2
− 2[a2]x2 + c2

a2

∂3u

∂x32
− [c1]x2x2

a2

∂u

∂x1
− 2[b12]x2 + c1

a2

∂3u

∂x1∂x22

− [b12]x2x2 + 2[c1]x2

a2

∂2u

∂x1∂x2
− b12

a2

∂4u

∂x1∂x
3
2

+
1

a2

∂f

∂x22
(2.10)

=:B2 −
b12
a2

∂4u

∂x1∂x32
,
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where [·]x2 and [·]x2x2 denote the �rst and se
ond derivative with respe
t to x2, respe
tively.

The term B2 
an be dis
retised with order two on the 
ompa
t sten
il using equation (2.9)

and the 
entral di�eren
e operator. Equation (2.10) is equivalent to

∂4u

∂x1∂x32
=

a2
b12

B2 −
a2
b12

∂4u

∂x42
, (2.11)

Di�erentiating the partial di�erential equation (2.2) on
e with respe
t to x1 and on
e with

respe
t to x2 and writing ∂4u/(∂x31∂x2) as subje
t leads to

∂4u

∂x31∂x2
=

1

a1

∂2f

∂x1∂x2
− [c1]x1x2

a1

∂u

∂x1
− [b12]x1x2 + [c1]x1 + [c2]x2

a1

∂2u

∂x1∂x2

− [a2]x2 + [b12]x1 + c2
a1

∂3u

∂x1∂x
2
2

− a2
a1

∂4u

∂x1∂x
3
2

− [a1]x1x2 + [c1]x2

a1

∂2u

∂x21

− [a1]x1 + [b12]x2 + c1
a1

∂3u

∂x21∂x2
− b12

a1

∂4u

∂x21∂x
2
2

− [a1]x2

a1

∂3u

∂x31
(2.12)

− [c2]x1x2

a1

∂u

∂x2
− [a2]x1x2 + [c2]x1

a1

∂2u

∂x22
− [a2]x1

a1

∂3u

∂x32

=:C1 −
a2
a1

∂4u

∂x1∂x
3
2

,

where [·]x1 and [·]x2 denote the �rst derivative with respe
t to x1 and x2, respe
tively

and [·]x1x2 indi
ates the mixed se
ond derivative with respe
t to x1 and x2. Using the

equations (2.6) and (2.9) as well as the 
entral di�eren
e operators in x1- and x2-dire
tion

it is possible to dis
retise C1 at the order two on the 
ompa
t sten
il. Equation (2.12) is

equivalent to

∂4u

∂x1∂x32
=

a1
a2

C1 −
a1
a2

∂4u

∂x31∂x2
:= C2 −

a1
a2

∂4u

∂x31∂x2
. (2.13)

Finally, the expression C2 
an be dis
retised at the order two on the 
ompa
t sten
il as

well.

2.4 Derivation of essentially high-order 
ompa
t s
hemes

In order to derive a dis
rete s
heme we employ equations (2.4) and (2.5) in the partial

di�erential equation (2.2), whi
h gives

f =A0 −
a1(∆x1)

2

12

∂4u

∂x41
− a2(∆x2)

2

12

∂4u

∂x42
− b12(∆x1)

2

6

∂4u

∂x31∂x2

− b12(∆x2)
2

6

∂4u

∂x1∂x32
− c1(∆x1)

2

6

∂3u

∂x31
− c2(∆x2)

2

6

∂3u

∂x32
+ ε

(2.14)
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where

A0 :=a1D
c
1D

c
1Ui1,i2 + a2D

c
2D

c
2Ui1,i2 + b12D

c
1D

c
2Ui1,i2 + c1D

c
1Ui1,i2 + c2D

c
2Ui1,i2

and the error-term ε ∈ O
(

h4
)

if ∆x1,∆x2 ∈ O (h) for some h > 0 is used. A0 is only using

the 
ompa
t sten
il. We apply A1 and A2 for ∂3u/∂x31 and ∂3u/∂x32 dire
tly, as they do

not depend on any of the higher derivatives appearing in (2.14) and only use points of the


ompa
t sten
il in their dis
retisation. This leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12

∂4u

∂x41
− a2(∆x2)

2

12

∂4u

∂x42

− b12(∆x1)
2

6

∂4u

∂x31∂x2
− b12(∆x2)

2

6

∂4u

∂x1∂x
3
2

+ ε.

(2.15)

We have four fourth-order derivatives, namely ∂4u/∂x41, ∂
4u/∂x42 and the 
ross derivatives

∂4u/(∂x31∂x2) and ∂4u/(∂x1∂x
3
2), appearing in the above equation. For these four higher

derivatives we only have three auxiliary relations, being (2.7), (2.10), and (2.12). Thus

we have an underdetermined equation system and 
annot expe
t to be able to repla
e all

of the four higher derivatives in (2.15) in the general 
ase. This leads to four di�erent

versions of the dis
rete s
heme. For Version 1 the remainder term 
onsists of ∂4u/∂x41.

The se
ond version has ∂4u/∂x42 as part of the remaining se
ond-order error term. As the

third approa
h we have a s
heme whi
h has ∂4u/(∂x31∂x2) as part of the remainder term,

and �nally Version 4 dis
retises ∂4u/∂x41, ∂
4u/∂x42 and ∂4u/(∂x31∂x2) fully and leave a

se
ond order remainder term, whi
h in
ludes ∂4u/(∂x1∂x
3
2).

Equation (2.15) is the basis for the derivation of our di�erent dis
rete numeri
al

s
hemes. We use the auxiliary equations (2.7), (2.8), (2.10), (2.11), (2.12) and (2.13),

depending on whi
h of the higher derivative is supposed to be part of the se
ond-order

remainder term.

For ea
h version we de�ne the semi-dis
rete �nite di�eren
e s
heme, re
all De�nition

15 with g ≡ 0, whi
h we introdu
ed as

∑

x̂∈G
(2)
h

[Mx(x̂)∂τUi1,i2(τ) +Kx(x̂)Ui1,i2(τ)] = R2 +O
(

h4
)

, (2.16)

with x̂ = (xi1 , xi2) at time τ for ea
h point x ∈ ◦
G

(2)

h with ∆x1 = ∆x2 = h for some h > 0,


ompare De�nition 13 with n = 2. R2 is a se
ond order error-term, depending on the

dis
retisation version used.
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2.4.1 Derivation of Version 1

In this se
tion we derive the �rst essentially high order 
ompa
t s
heme. First we have to

apply the auxiliary equation for ∂4u/∂x42, given in (2.10), to (2.15), whi
h results in

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

a1(∆x1)
2

12

∂4u

∂x41

− b12(∆x1)
2

6

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x32
+ ε.

Using (2.13) gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

b12(∆x2)
2

12
C2

− a1(∆x1)
2

12

∂4u

∂x41
− b12

(

2a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x31∂x2
+ ε.

Finally, applying (2.8) gives Version 1

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

b12(∆x2)
2

12
C2

− a1
(

2a2(∆x1)
2 − a1(∆x2)

2
)

12a2
B1 +

a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41
+ ε.

(2.17)

The se
ond-order remainder term for Version 1 is given by

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41
. (2.18)

We observe that this s
heme has a general 
onsisten
y order of two, if ∆x1,∆x2 ∈ O
(

h2
)

for some h > 0. But if the se
ond order trun
ation error R2 is small enough, we 
an expe
t

a 
onvergen
e rate of order four up to a 
ertain step-size.

There is only one 
ase, in whi
h we 
an a
hieve a high-order 
ompa
t s
heme. Sin
e

a1 < 0, the 
ase a1 = 0, whi
h would lead to R2 = 0, is not allowed. But the 
ase

a1 ≡
(∆x1)

2

(∆x2)
2 a2

also results in R2 ≡ 0, whi
h means that we obtain a high-order 
ompa
t s
heme. So a

high-order 
ompa
t s
heme is possible when having a1 ≡ a2 and then using G
(2)
h as a grid.
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Using the 
entral di�eren
e operator in (2.17) at the point (xi1 , xi2) ∈
◦
G

(2)

h leads to

K̂i1−1,i2±1 =
a2[a1]x1

6a1h
∓ a1[b12]x1

12a2h
∓ a1[a2]x2

12a2h
+

a1[a2]x1

12a2h
± b12[a1]x1

8a2h
± b12[b12]x2

24a2h

+
b12[a2]x2

24a2h
− b12[b12]x1

24a2h
+

b212[a2]x1

24a22h
+

b12[a1]x2

24a1h
± b12c1

12a2h
− b12c2

12a2h

∓ a1b12[a2]x1

24a22h
∓ b12[a1]x1

6a1h
± b12[a2]x1c1

48a22
± b12[a2]x1 [b12]x2

48a22
∓ c1c2

24a2

∓ b212[a1]x2

24a2a1h
± b12[a1]x2 [b12]x1

48a2a1
± b12[a1]x2c2

48a2a1
+

b212
12a2h2

± [a1]x1c2
12a1

± [a1]x1 [b12]x1

12a1
± a1[b12]x1x1

48a2
∓ b12[b12]x1x2

48a2
± a1[c2]x1

24a2
∓ b12[c2]x2

48a2
(2.19)

∓ [a1]x1 [b12]x1

24a2
± c1[a2]x2

24a2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2
− c1

12h
± c2

12h

∓ [a1]x1c2
24a2

∓ c1[b12]x1

48a2
∓ [c1]x2

24
∓ [c2]x1

12
− [a2]x1

6h
± [a1]x2

12h
− [b12]x2

12h

∓ [b12]x2x2

48
− [a1]x1

12h
± [b12]x1

6h
∓ b12

4h2
+

a2
6h2

∓ [b12]x1x1

24
∓ b12[c1]x1

48a2
,

K̂i1+1,i2±1 =− a2[a1]x1

6a1h
∓ a1[b12]x1

12a2h
∓ a1[a2]x2

12a2h
− a1[a2]x1

12a2h
± b12[a1]x1

8a2h
± b12c1

12a2h

− b12[a2]x2

24a2h
± b12[b12]x2

24a2h
+

b12[b12]x1

24a2h
− b12[a1]x2

24a1h
+

[a1]x1

12h
± [c2]x1

12

− b212[a2]x1

24a22h
∓ b12[a1]x1

6a1h
∓ b12[a2]x1c1

48a22
∓ b12[a2]x1 [b12]x2

48a22
+

b12c2
12a2h

∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h
∓ b12[a1]x2 [b12]x1

48a2a1
∓ b12[a1]x2c2

48a2a1
± c1c2

24a2

+
b212

12a2h2
∓ [a1]x1c2

12a1
∓ [a1]x1 [b12]x1

12a1
∓ a1[b12]x1x1

48a2
± b12[b12]x1x2

48a2
(2.20)

∓ a1[c2]x1

24a2
∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
± [a1]x2

12h
+

[b12]x2

12h

± b12[c2]x2

48a2
± [a1]x1 [b12]x1

24a2
± [a1]x1c2

24a2
± c1[b12]x1

48a2
± [c1]x2

24
+

[a2]x1

6h

± b12[c1]x1

48a2
± [b12]x1

6h
± b12

4h2
+

c1
12h

± c2
12h

+
a2
6h2

± [b12]x1x1

24
± [b12]x2x2

48
,

K̂i1,i2±1 =∓ a1h[c2]x1x1

24a2
± h[c2]x1x2b12

24a2
± h[c2]x1 [a1]x1

12a2
± hc1[c2]x1

24a2
± hc2[c2]x2

24a2

∓ h[c2]x1 [a1]x1

6a1
∓ h[c2]x2 [a2]x2

12a2
− b12c2[a2]x1

12a22
± a1[b12]x1

6a2h
± a1[a2]x2

6a2h

− b12[a2]x1 [a2]x2

12a22
∓ b12[a1]x1

4a2h
∓ b12[b12]x2

12a2h
± b12[a1]x1

3a1h
∓ b12c1

6a2h
+

c22
12a2

+
c1[a2]x1

12a2
+

[a2]x1x2b12
12a2

− c2[a2]x2

12a2
∓ [b12]x1

3h
± c2

3h
− b12[a2]x1 [a1]x2

12a2a1
(2.21)
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− a1[a2]x1x1

12a2
− [a2]

2
x2

6a2
± a1b12[a2]x1

12a22h
± b212[a1]x2

12a2a1h
∓ hb12[a2]x1 [c2]x2

24a22

− [a1]x1 [a2]x1

3a1
+

b12[c2]x1

12a2
+

[a1]x1 [a2]x1

6a2
− b212

6a2h2
+

[c2]x2

6
∓ [a1]x2

6h

+
2a2
3h2

± h[c2]x2x2

24
± h[c2]x1x1

12
+

[a2]x1x1

6
+

[a2]x2x2

12
∓ hb12[c2]x1 [a1]x2

24a2a1
,

K̂i1±1,i2 =± a2[a1]x1

3a1h
± a1[a2]x1

6a2h
± b12[a2]x2

12a2h
∓ b12[b12]x1

12a2h
± b212[a2]x1

12a22h
∓ b12c2

6a2h

− b12c1[a1]x2

12a2a1
± h[c1]x1x1

12
± h[c1]x2x2

24
− [a1]

2
x1

3a1
+

[a1]
2
x1

6a2
+

a1
h2

+
c21

12a2

− [a1]x2 [a2]x2

6a2
− b12[a1]x1 [a1]x2

12a2a1
− a1[a1]x1x1

12a2
+

c2[a1]x2

12a2
+

c1[a1]x1

4a2

− c1[a1]x1

3a1
+

b12[c1]x2

12a2
− a1[c1]x1

6a2
+

[a1]x1x2b12
12a2

− b212
6a2h2

+
[c1]x1

3

± hc1[c1]x1

24a2
∓ [a2]x1

3h
+

[a1]x1x1

6
− b12[a2]x1 [a1]x2

12a22
∓ [b12]x2

6h
∓ [a1]x1

6h
(2.22)

± c1
3h

± h[c1]x1x2b12
24a2

∓ a1h[c1]x1x1

24a2
± h[c1]x1 [a1]x1

12a2
± hc2[c1]x2

24a2

− a2
3h2

∓ h[c1]x2 [a2]x2

12a2
∓ h[c1]x1 [a1]x1

6a1
+

[a1]x2x2

12
∓ hb12[c1]x1 [a1]x2

24a2a1

± b12[a1]x2

12a1h
∓ hb12[a2]x1 [c1]x2

24a22

and

K̂i1,i2 =
b12[a2]x1 [a2]x2

6a22
+

b12c2[a2]x1

6a22
− c22

6a2
+

[a2]
2
x2

3a2
+

2[a1]
2
x1

3a1
− [a1]

2
x1

3a2
− 2a1

h2

− c21
6a2

+
b12c1[a1]x2

6a2a1
+

b12[a1]x1 [a1]x2

6a2a1
+

b12[a2]x1 [a1]x2

6a2a1
+

[a1]x2 [a2]x2

3a2

+
a1[a1]x1x1

6a2
− c2[a1]x2

6a2
− c1[a1]x1

2a2
+

2c1[a1]x1

3a1
− b12[c1]x2

6a2
+

a1[c1]x1

3a2

− [a1]x1x2b12
6a2

+
a1[a2]x1x1

6a2
− [a2]x1x2b12

6a2
− c1[a2]x1

6a2
+

2[a1]x1 [a2]x1

3a1
(2.23)

+
c2[a2]x2

6a2
− b12[c2]x1

6a2
− [a1]x1 [a2]x1

3a2
+

b212
3a2h2

− 2[c1]x1

3
− [a1]x1x1

3

+
b12[a2]x1 [a1]x2

6a22
− [c2]x2

3
− 4a2

3h2
− [a1]x2x2

6
− [a2]x1x1

3
− [a2]x2x2

6
,

where K̂l,m is the 
oe�
ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
Re
all that we use [·]xk

as the �rst derivative with respe
t to xk and [·]xkxp as the se
ond

derivative, on
e in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2. Note that a, b1,2, c1 and c2

are evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . In the same way M̂l,m denotes the 
oe�
ient
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of ∂τUl,m (τ) for (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a2

M̂i1,i2±1 =
d

12
± hb12[d]x1

24a2
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ b12d[a2]x1h

24a22
± [d]x2h

12

M̂i1±1,i2 =
d

6
± h[d]x1

6
∓ a1h[d]x1

12a2
− a1d

12a2
∓ hd[a1]x1

6a1
± hd[a1]x1

12a2
± hdc1

24a2

∓ hdb12[a1]x2

24a2a1
± hb12[d]x2

24a2
(2.24)

M̂i1,i2 =
h2[d]x1x1

6
− a1h

2[d]x1x1

12a2
+

d

2
+

a1d

6a2
− h2[d]x1 [a1]x1

3a1
+

h2[d]x1 [a1]x1

6a2

+
h2[d]x1c1
12a2

− h2[d]x1 [a1]x2b12
12a2a1

+
h2b12[d]x1x2

12a2
+

h2[d]x2x2

12

+
h2[d]x2c2
12a2

− h2[d]x2 [a2]x2

6a2
− h2[d]x2 [a2]x1b12

12a22

Thus we have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈ ◦
G

(2)

h

and τ ∈ Ωτ . Kx and Mx are zero otherwise. This means that the dis
retisation only uses

points of the 
ompa
t sten
il and is of the form (2.16).

2.4.2 Derivation of Version 2

For developing the Version 2 s
heme the basi
 equation is again (2.15). To this equation

we apply (2.7), whi
h gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12

∂4u

∂x42

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

6

∂4u

∂x1∂x32
+ ε.

Using (2.12) we have

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

b12(∆x1)
2

12
C1

− a2(∆x2)
2

12

∂4u

∂x42
− b12

(

2a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x1∂x32
+ ε.
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Finally, applying (2.11) then gives as Version 2

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

b12(∆x1)
2

12
C1

− a2
(

2a1(∆x2)
2 − a2(∆x1)

2
)

12a1
B2 +

a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42
+ ε.

(2.25)

For Version 2 the se
ond-order remainder term is given by

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42
. (2.26)

We observe that this s
heme has a general 
onsisten
y order of two, if ∆x1,∆x2 ∈ O
(

h2
)

for some h > 0. If the se
ond order trun
ation error R2 is small enough, we 
an expe
t that

the s
heme has a 
onvergen
e rate order of four up to a 
ertain step-size. The 
oe�
ients

of the semi-dis
rete s
heme are given by

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

6a2h
+

b12[a2]x2

6a2h
∓ b12[a1]x1

24a1h
± [a2]x2

12h
∓ b12[b12]x1x2

48a1

± a2[b12]x2x2

48a1
∓ [b12]x2 [a2]x2

24a1
∓ b12[c1]x1

48a1
∓ b12[c2]x2

48a1
± [a1]x2

6h
− c1

12h

∓ c1[a2]x2

24a1
∓ c2[b12]x2

48a1
∓ b12[a2]x1

24a2h
+

a2b12[a1]x2

24a21h
± b12[a1]x2 [b12]x1

48a21

± a2[c1]x2

24a1
∓ c1c2

24a1
+

b212
12a1h2

± b12[b12]x2

24a1h
− b12[a2]x2

8a1h
− b12[b12]x1

24a1h

∓ b212[a1]x2

24a21h
± b12[a1]x2c2

48a21
∓ a2[a1]x2

12a1h
+

a2[b12]x2

12a1h
+

a1
6h2

± [a1]x1c2
24a1

(2.27)

± [a1]x1 [b12]x1

24a1
± c1[a2]x2

12a2
± [b12]x2 [a2]x2

12a2
∓ [c1]x2

12
∓ [c2]x1

24
− [a2]x1

12h

∓ c1[b12]x1

48a1
− [b12]x2

6h
± [b12]x1

12h
∓ b12

4h2
± c2

12h
+

b212[a2]x1

24a2a1h
− b12c2

12a1h

± b12[a2]x1c1
48a2a1

± b12[a2]x1 [b12]x2

48a2a1
∓ [b12]x1x1

48
∓ [b12]x2x2

24
± b12c1

12a1h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

6a2h
− b12[a2]x2

6a2h
∓ b12[a1]x1

24a1h
± [a2]x2

12h
± c1[a2]x2

24a1

± b12[b12]x1x2

48a1
± c2[b12]x2

48a1
± [b12]x2 [a2]x2

24a1
± b12[c1]x1

48a1
± b12[c2]x2

48a1

∓ a2[c1]x2

24a1
± c1c2

24a1
+

b212
12a1h2

± b12[b12]x2

24a1h
+

b12[a2]x2

8a1h
+

b12[b12]x1

24a1h

∓ b212[a1]x2

24a21h
∓ b12[a1]x2c2

48a21
∓ a2[a1]x2

12a1h
− a2[b12]x2

12a1h
+

a1
6h2

∓ [a1]x1c2
24a1

∓ [a1]x1 [b12]x1

24a1
∓ c1[a2]x2

12a2
∓ [b12]x2 [a2]x2

12a2
± [c1]x2

12
± [c2]x1

24
+

[a2]x1

12h
(2.28)
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± [a1]x2

6h
+

[b12]x2

6h
± [b12]x1

12h
± b12

4h2
+

c1
12h

± c2
12h

− a2b12[a1]x2

24a21h

∓ b12[a2]x1c1
48a2a1

∓ b12[a2]x1 [b12]x2

48a2a1
± [b12]x1x1

48
± [b12]x2x2

24
± b12c1

12a1h

+
b12c2
12a1h

∓ b12[a1]x2 [b12]x1

48a21
∓ a2[b12]x2x2

48a1
∓ b12[a2]x1

24a2h
± c1[b12]x1

48a1

− b212[a2]x1

24a2a1h
,

K̂i1,i2±1 =∓ h[c2]x1 [a1]x1

12a1
∓ h[c2]x2 [a2]x2

6a2
± a1[a2]x2

3a2h
+

[a2]
2
x2

6a1
+

c22
12a1

∓ [a2]x2

6h

± b12[a1]x1

12a1h
− b212

6a1h2
∓ b12[b12]x2

12a1h
± b12[a2]x1

12a2h
± b212[a1]x2

12a21h
± a2[a1]x2

6a1h

∓ a2h[c2]x2x2

24a1
± h[c2]x1x2b12

24a1
± hc1[c2]x1

24a1
± c2h[c2]x2

24a1
± h[c2]x2 [a2]x2

12a1

− [a2]
2
x2

3a2
− b12[a2]x1 [a1]x2

12a21
− a1

3h2
− c2[a2]x2

3a2
− [a1]x1 [a2]x1

6a1
+

[c2]x2

3

∓ [a1]x2

3h
∓ [b12]x1

6h
± c2

3h
+

a2
h2

± h[c2]x2x2

12
± h[c2]x1x1

24
− b12c2[a2]x1

12a2a1
(2.29)

∓ hb12[c2]x1 [a1]x2

24a21
− b12[a2]x1 [a2]x2

12a2a1
∓ b12[a2]x1h[c2]x2

24a2a1
+

[a2]x1x2b12
12a1

+
c1[a2]x1

12a1
+

b12[c2]x1

12a1
− a2[a2]x2x2

12a1
− a2[c2]x2

6a1
+

c2[a2]x2

4a1
∓ b12c1

6a1h

+
[a2]x1x1

12
+

[a2]x2x2

6
,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

3a2h
− b212

6a1h2
∓ b12[a2]x2

4a1h
∓ b12[b12]x1

12a1h
± h[c1]x1x1

24

+
c21

12a1
± h[c1]x2x2

12
− [a1]

2
x1

6a1
+

2a1
3h2

− b12[a2]x1 [a1]x2

12a2a1
− [a1]x2 [a2]x2

3a2

− c1[a1]x1

12a1
∓ a2h[c1]x2x2

24a1
± h[c1]x1x2b12

24a1
± hc1[c1]x1

24a1
± h[c1]x2 [a2]x2

12a1

− b12c1[a1]x2

12a21
+

[c1]x1

6
∓ [a2]x1

6h
∓ [b12]x2

3h
± c1

3h
∓ hb12[c1]x1 [a1]x2

24a21

+
b12[c1]x2

12a1
+

c2[a1]x2

12a1
− a2[a1]x2x2

12a1
+

[a1]x2 [a2]x2

6a1
+

[a1]x1x2b12
12a1

(2.30)

± a2b12[a1]x2

12a12h
∓ h[c1]x2 [a2]x2

6a2
∓ h[c1]x1 [a1]x1

12a1
∓ hb12[a2]x1 [c1]x2

24a2a1

+
[a1]x2x2

6
± b212[a2]x1

12a2a1h
± a2[b12]x2

6a1h
± hc2[c1]x2

24a1
− b12[a1]x1 [a1]x2

12a21

+
[a1]x1x1

12
∓ b12c2

6a1h
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and

K̂i1,i2 =− [a2]
2
x2

3a1
− c22

6a1
− c21

6a1
+

b212
3a1h2

+
b12[a2]x1 [a1]x2

6a21
+

2[a2]
2
x2

3a2
+

c1[a1]x1

6a1

+
[a1]

2
x1

3a1
− 4a1

3h2
+

2[a1]x2 [a2]x2

3a2
+

2c2[a2]x2

3a2
+

[a1]x1 [a2]x1

3a1
+

b12c1[a1]x2

6a21

+
b12[a2]x1 [a1]x2

6a2a1
+

b12[a1]x1 [a1]x2

6a21
− b12[c1]x2

6a1
− c2[a1]x2

6a1
+

a2[a1]x2x2

6a1

− 2[c2]x2

3
− 2a2

h2
− [c1]x1

3
+

b12[a2]x1 [a2]x2

6a2a1
+

b12c2[a2]x1

6a2a1
− [a2]x1x2b12

6a1
(2.31)

− [a1]x2 [a2]x2

3a1
− [a1]x1x2b12

6a1
− c1[a2]x1

6a1
− b12[c2]x1

6a1
+

a2[a2]x2x2

6a1

+
a2[c2]x2

3a1
− c2[a2]x2

2a1
− [a1]x1x1

6
− [a1]x2x2

3
− [a2]x1x1

6
− [a2]x2x2

3
.

Here K̂l,m is the 
oe�
ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
Again, [·]xk

denotes the �rst derivative with respe
t to xk and [·]xkxp the se
ond derivative,

on
e in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2. We note that a, b1,2, c1 and c2 are

fun
tions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . In the same way M̂l,m des
ribes the


oe�
ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a1

M̂i1,i2±1 =
d

6
± hb12[d]x1

24a1
−∓ a2h[d]x2

12a1
+± [d]x2h

6
− a2d

12a1
± hc2d

24a1
± hd[a2]x2

12a1

∓ hb12[a2]x1d

24a2a1
∓ hd[a2]x2

6a2

M̂i1±1,i2 =
d

12
± c1dh

24a1
∓ b12[a1]x2dh

24a21
± hb12[d]x2

24a1
∓ hd[a1]x1

12a1
± h[d]x1

12
(2.32)

M̂i1,i2 =
h2[d]x1c1
12a1

− h2[d]x1 [a1]x2b12
12a21

− h2[d]x1 [a1]x1

6a1
+

h2b12[d]x1x2

12a1
+

h2[d]x1x1

12

+
h2[d]x2x2

6
+

a2d

6a1
+

d

2
+

h2[d]x2c2
12a1

+
h2[d]x2 [a2]x2

6a1
− h2[d]x2 [a2]x1b12

12a2a1

− h2[d]x2 [a2]x2

3a2
− a2h

2[d]x2x2

12a1

We de�ne

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise, whi
h means that our dis
retisation is of the form

(2.16) and only uses the 
ompa
t sten
il.
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When looking at (2.26) we 
an see that there is only one valid 
ase in whi
h we 
an

a
hieve a high-order 
ompa
t s
heme. We 
an see in (2.1) that a2 ≡ 0 is not allowed, so

the 
ase

a1 ≡
(∆x1)

2

(∆x2)
2a2,

is the only valid possibility to a
hieve R2 ≡ 0. One spe
i�
 version of this 
ase is a1 ≡ a2

in 
ombination with the grid G
(2)
h for h > 0.

2.4.3 Derivation of Version 3

In order to derive Version 3, where the derivative ∂4u/(∂x31∂x2) is part of the remainder

term R2, we have to use (2.7) and (2.9) in (2.15), whi
h gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x32
+ ε.

Applying (2.13) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x2)
2

12
C2 +

b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2
+ ε.

(2.33)

Hen
e, for Version 3 the se
ond-order remainder term is given by

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2
. (2.34)

We 
an see that there are two valid 
ases, both of whi
h lead to R2 ≡ 0. The �rst 
ase,

like in Version 1 and Version 2, is

a1 ≡
(∆x1)

2

(∆x2)
2a2.

Therefore, when a1 ≡ a2 holds, it is possible to a
hieve a high-order 
ompa
t s
heme when

using G
(2)
h as a grid. The se
ond possibility is having

b12 ≡ 0.

In this 
ase there is no further 
ondition on the grid, whi
h means that only ∆x1,∆x2 ∈
O (h) has to hold for a high-order 
ompa
t s
heme.
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Using the 
entral di�eren
e operator in (2.33) at the point (xi1 , xi2) ∈
◦
G

(2)

h leads to

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
± b12[a1]x1

24a2h
± b12[b12]x2

24a2h
+

b12[a2]x2

24a2h
± b12c1

24a2h

+
a1

12h2
− b12[b12]x1

24a2h
∓ b12[a1]x1

12a1h
± b12[a2]x1c1

48a22
± b12[a2]x1 [b12]x2

48a22

+
b212[a2]x1

24a22h
+

b12[a1]x2

24a1h
∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h
± b12[a1]x2 [b12]x1

48a2a1

− b12c2
12a2h

∓ c1[b12]x1

48a1
∓ c1c2

48a1
∓ c1c2

48a2
± [a1]x1 [b12]x1

24a1
∓ b12[b12]x1x2

48a2

+
a2

12h2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2
∓ b12[c1]x1

48a2
∓ b12[c2]x2

48a2
∓ [c1]x2

24
(2.35)

∓ [c2]x1

24
− [a2]x1

12h
± [a1]x2

12h
− [b12]x2

12h
± [b12]x1

12h
∓ b12

4h2
− c1

24h

± c1[a2]x2

24a2
∓ [b12]x1x1

48
∓ [b12]x2x2

48
± b12c1

24a1h
± a1c2

24a2h
− a2c1

24a1h

± [a1]x1c2
24a1

± b12[a1]x2c2
48a2a1

+
b212

12a2h2
± c2

24h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
± b12[a1]x1

24a2h
± b12[b12]x2

24a2h
± c1c2

48a1
± b12c1

24a2h

− b212[a2]x1

24a22h
− b12[a1]x2

24a1h
∓ b12[a1]x1

12a1h
∓ b12[a2]x1c1

48a22
+

b12[b12]x1

24a2h

∓ b12[a2]x1 [b12]x2

48a22
− b12[a2]x2

24a2h
+

b12c2
12a2h

± b12[b12]x1x2

48a2
± [c1]x2

24

∓ b12[a1]x2 [b12]x1

48a2a1
± c1[b12]x1

48a1
+

a1
12h2

∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h

∓ b12[a1]x2c2
48a2a1

+
b212

12a2h2
± c1c2

48a2
∓ [a1]x1c2

24a1
± b12

4h2
+

c1
24h

± c2
24h

(2.36)

∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
± b12[c1]x1

48a2
± b12[c2]x2

48a2

± [c2]x1

24
+

[a2]x1

12h
± [a1]x2

12h
+

[b12]x2

12h
± [b12]x1

12h
∓ [a1]x1 [b12]x1

24a1

+
a2

12h2
± [b12]x1x1

48
± [b12]x2x2

48
± b12c1

24a1h
± a1c2

24a2h
+

a2c1
24a1h

,

K̂i1,i2±1 =± h[c2]x1x2b12
24a2

∓ h[c2]x1 [a1]x1

12a1
± hc2[c2]x2

24a2
∓ h[c2]x2 [a2]x2

12a2
∓ b12c1

12a2h

− b12c2[a2]x1

12a22
± a1[a2]x2

6a2h
∓ b12[a1]x1

12a2h
∓ b12[b12]x2

12a2h
− b12[a2]x1 [a2]x2

12a22

± b12[a1]x1

6a1h
− [a2]

2
x2

6a2
− a1

6h2
± b212[a1]x2

12a2a1h
∓ hb12[a2]x1 [c2]x2

24a22
∓ a1c2

12a2h

± a1b12[a2]x1

12a22h
+

c22
12a2

− c2[a2]x2

12a2
− [a1]x1 [a2]x1

6a1
+

b12[c2]x1

12a2
− b212

6a2h2
(2.37)
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∓ [a1]x2

6h
∓ [b12]x1

6h
± 5c2

12h
+

5a2
6h2

± h[c2]x2x2

24
± h[c2]x1x1

24
+

c1[a2]x1

12a1

+
[a2]x1x1

12
+

[a2]x2x2

12
∓ b12c1

12a1h
∓ hb12[c2]x1 [a1]x2

24a2a1
± hc1[c2]x1

24a1

+
[c2]x2

6
− b12[a2]x1 [a1]x2

12a2a1
+

[a2]x1x2b12
12a2

,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

12a2h
∓ b12[b12]x1

12a2h
± b212[a2]x1

12a22h
± b12[a1]x2

12a1h
∓ b12c2

6a2h

+
c21

12a1
± h[c1]x2x2

24
− [a1]

2
x1

6a1
+

5a1
6h2

∓ hb12[a2]x1 [c1]x2

24a22
− b12c1[a1]x2

12a2a1

+
[a1]x1x2b12

12a2
− b12[a1]x1 [a1]x2

12a2a1
± hc2[c1]x2

24a2
+

[a1]x2x2

12
∓ hb12[c1]x1 [a1]x2

24a2a1

± hc1[c1]x1

24a1
+

[c1]x1

6
∓ [a2]x1

6h
∓ [b12]x2

6h
± 5c1

12h
− a2

6h2
± h[c1]x1x2b12

24a2
(2.38)

∓ a2c1
12a1h

∓ h[c1]x2 [a2]x2

12a2
∓ h[c1]x1 [a1]x1

12a1
− b12[a2]x1 [a1]x2

12a22
+

[a1]x1x1

12

± h[c1]x1x1

24
− [a1]x2 [a2]x2

6a2
+

c2[a1]x2

12a2
− c1[a1]x1

12a1
+

b12[c1]x2

12a2
− b212

6a2h2

and

K̂i1,i2 =
b12[a2]x1 [a2]x2

6a22
+

b12c2[a2]x1

6a22
− c21

6a1
− c22

6a2
+

[a2]
2
x2

3a2
+

[a1]
2
x1

3a1
− 5a1

3h2

+
b12c1[a1]x2

6a2a1
− b12[c1]x2

6a2
− [c1]x1

3
− [c2]x2

3
− [a1]x1x1

6
+

b212
3a2h2

+
b12[a1]x1 [a1]x2

6a2a1
+

b12[a2]x1 [a1]x2

6a2a1
+

[a1]x2 [a2]x2

3a2
− c2[a1]x2

6a2
+

c1[a1]x1

6a1
(2.39)

− [a1]x1x2b12
6a2

− [a2]x1x2b12
6a2

+
c2[a2]x2

6a2
+

[a1]x1 [a2]x1

3a1
− b12[c2]x1

6a2

− 5a2
3h2

+
b12[a2]x1 [a1]x2

6a22
− c1[a2]x1

6a1
− [a1]x2x2

6
− [a2]x1x1

6
− [a2]x2x2

6
,

where K̂l,m is the 
oe�
ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
The �rst derivative with respe
t to xk is denoted by [·]xk

and the se
ond derivative, on
e

in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2, is represented by [·]xkxp . We re
all that

a, b1,2, c1 and c2 are fun
tions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . With M̂l,m we

des
ribe the 
oe�
ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ .
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Thus we have

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a2

M̂i1,i2±1 =
d

12
± hb12[d]x1

24a2
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ b12d[a2]x1h

24a22
± [d]x2h

12

M̂i1±1,i2 =
d

12
± h[d]x1

12
± c1dh

24a1
∓ hd[a1]x1

12a1
∓ hdb12[a1]x2

24a2a1
± hb12[d]x2

24a2
(2.40)

M̂i1,i2 =
h2[d]x2c2
12a2

− h2[d]x2 [a2]x2

6a2
− h2[d]x2 [a2]x1b12

12a22
+

h2b12[d]x1x2

12a2
+

h2[d]x1x1

12

+
h2[d]x1c1
12a1

− h2[d]x1 [a1]x1

6a1
− h2[d]x1 [a1]x2b12

12a2a1
+

h2[d]x2x2

12
+

2d

3

We get

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise and the s
heme is thus of the form (2.16).

2.4.4 Derivation of Version 4

In this part we derive Version 4 in whi
h the derivative ∂4u/(∂x1∂x
3
2) is part of the

se
ond-order trun
ation error R2. Using (2.7) and (2.10) in (2.15) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x
3
2

+ ε.

Now applying (2.12) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12
C1 +

b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x
3
2

+ ε.

(2.41)

For Version 4 the se
ond-order remainder term is

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32
. (2.42)
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There are two 
ases where R2 ≡ 0 and we obtain a high-order 
ompa
t s
heme. The �rst

is again

a1 ≡
(∆x1)

2

(∆x2)
2a2.

This means that if a1 ≡ a2 holds, one has to 
hoose G
(2)
h as the grid. The se
ond possibility

to a
hieve R2 ≡ 0 is by

b12 ≡ 0.

In this 
ase there are no further restri
tions on the step-sizes in x1- and x2-dire
tion. Using

the 
entral di�eren
e operator in (2.41) at the point (xi1 , xi2) ∈
◦
G

(2)

h gives

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
+

b12[a2]x2

12a2h
∓ b12[a1]x1

24a1h
− b12c2

24a2h
∓ b12[b12]x1x2

48a1

∓ b12[c1]x1

48a1
∓ b12[c2]x2

48a1
∓ c1[b12]x1

48a1
∓ c1c2

48a1
+

b212
12a1h2

± b12[b12]x2

24a1h

− b12[b12]x1

24a1h
∓ b12[a2]x1

24a2h
∓ b212[a1]x2

24a21h
± b12[a1]x2c2

48a21
+

a1
12h2

∓ c1c2
48a2

± [a1]x1c2
24a1

± [a1]x1 [b12]x1

24a1
± c1[a2]x2

24a2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2

∓ [c2]x1

24
− [a2]x1

12h
± [a1]x2

12h
− [b12]x2

12h
± [b12]x1

12h
∓ b12

4h2
− c1

24h
± c2

24h
(2.43)

+
a2

12h2
+

b212[a2]x1

24a1a2h
+

a2b12[a1]x2

24a21h
± b12[a2]x1c1

48a1a2
± b12[a2]x1 [b12]x2

48a1a2

∓ [b12]x2x2

48
± b12c1

12a1h
− b12c2

24a1h
± b12[a1]x2 [b12]x1

48a21
± a1c2

24a2h
− a2c1

24a1h

∓ [b12]x1x1

48
∓ [c1]x2

24
− b12[a2]x2

24a1h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
− b12[a2]x2

12a2h
∓ b12[a1]x1

24a1h
+

b12c2
24a2h

± b12[b12]x1x2

48a1

± b12[c1]x1

48a1
± b12[c2]x2

48a1
± c1[b12]x1

48a1
± c1c2

48a1
+

b212
12a1h2

± b12[b12]x2

24a1h

+
b12[b12]x1

24a1h
∓ b12[a2]x1

24a2h
∓ b212[a1]x2

24a21h
∓ b12[a1]x2c2

48a21
+

a1
12h2

± c1c2
48a2

∓ [a1]x1c2
24a1

∓ [a1]x1 [b12]x1

24a1
∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
(2.44)

± [c2]x1

24
+

[a2]x1

12h
± [a1]x2

12h
+

[b12]x2

12h
± [b12]x1

12h
± b12

4h2
+

c1
24h

± c2
24h

+
a2

12h2
− b212[a2]x1

24a1a2h
− a2b12[a1]x2

24a21h
∓ b12[a2]x1c1

48a1a2
∓ b12[a2]x1 [b12]x2

48a1a2

± [b12]x2x2

48
± b12c1

12a1h
+

b12c2
24a1h

∓ b12[a1]x2 [b12]x1

48a21
± a1c2

24a2h
+

a2c1
24a1h

± [b12]x1x1

48
± [c1]x2

24
+

b12[a2]x2

24a1h
,
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K̂i1,i2±1 =∓ h[c2]x1 [a1]x1

12a1
± hc2[c2]x2

24a2
∓ h[c2]x2 [a2]x2

12a2
± a1[a2]x2

6a2h
± b12[a1]x1

12a1h

∓ b12[b12]x2

12a1h
± b12[a2]x1

12a2h
± b212[a1]x2

12a21h
± h[c2]x1x2b12

24a1
± hc1[c2]x1

24a1

+
c22

12a2
− [a2]

2
x2

6a2
− a1

6h2
− c2[a2]x2

12a2
− [a1]x1 [a2]x1

6a1
− b12[a2]x1 [a1]x2

12a21

± 5c2
12h

+
5a2
6h2

± h[c2]x2x2

24
± h[c2]x1x1

24
∓ hb12[c2]x1 [a1]x2

24a12
− b212

6a1h2
(2.45)

− b12c2[a2]x1

12a1a2
∓ hb12[a2]x1 [c2]x2

24a1a2
+

[a2]x1x2b12
12a1

+
c1[a2]x1

12a1
+

b12[c2]x1

12a1

+
[a2]x1x1

12
+

[a2]x2x2

12
∓ b12c1

6a1h
∓ a1c2

12a2h
∓ [b12]x1

6h
− b12[a2]x1 [a2]x2

12a1a2

+
[c2]x2

6
∓ [a1]x2

6h
,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

6a2h
∓ b12c2

12a2h
+

c21
12a1

− b212
6a1h2

∓ b12[a2]x2

12a1h

± h[c1]x1x1

24
± h[c1]x2x2

24
− [a1]

2
x1

6a1
+

5a1
6h2

− b12[a2]x1 [a1]x2

12a1a2

+
c2[a1]x2

12a2
− c1[a1]x1

12a1
± h[c1]x1x2b12

24a1
± hc1[c1]x1

24a1
− b12c1[a1]x2

12a21

− b12[a1]x1 [a1]x2

12a21
∓ [b12]x2

6h
− a2

6h2
∓ hb12[c1]x1 [a1]x2

24a21
+

b12[c1]x2

12a1
(2.46)

+
[a1]x1x2b12

12a1
± b212[a2]x1

12a1a2h
± a2b12[a1]x2

12a21h
± hc2[c1]x2

24a2
∓ h[c1]x2 [a2]x2

12a2

∓ h[c1]x1 [a1]x1

12a1
∓ hb12[a2]x1 [c1]x2

24a1a2
+

[a1]x1x1

12
+

[a1]x2x2

12
∓ b12c2

12a1h

∓ a2c1
12a1h

∓ b12[b12]x1

12a1h
+

[c1]x1

6
− [a1]x2 [a2]x2

6a2
∓ [a2]x1

6h
± 5c1

12h

and

K̂i1,i2 =− c21
6a1

+
b212

3a1h2
+

b12[a2]x1 [a1]x2

6a21
− c22

6a2
+

[a2]
2
x2

3a2
+

[a1]
2
x1

3a1
− [a2]x1x1

6

+
[a1]x2 [a2]x2

3a2
− c2[a1]x2

6a2
+

c1[a1]x1

6a1
+

c2[a2]x2

6a2
+

[a1]x1 [a2]x1

3a1

+
b12[a1]x1 [a1]x2

6a21
− [c1]x1

3
− [c2]x2

3
− 5a2

3h2
− b12[c1]x2

6a1
− [a1]x1x2b12

6a1
(2.47)

+
b12c2[a2]x1

6a1a2
− [a2]x1x2b12

6a1
− c1[a2]x1

6a1
− b12[c2]x1

6a1
− [a1]x1x1

6
− 5a1

3h2

− [a1]x2x2

6
− [a2]x2x2

6
+

b12[a2]x[a1]x2

6a1a2
+

b12c1[a1]x2

6a21
+

b12[a2]x1 [a2]x2

6a1a2

where K̂l,m denotes the 
oe�
ient of Ul,m (τ) for l ∈ {i1 − 1, i1, i1 + 1} and m ∈ {i2 −
1, i2, i2 + 1}. Additionally, [·]xk

denotes the �rst derivative with respe
t to xk and [·]xkxp
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the se
ond derivative, on
e in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2. Again, a, b1,2,

c1 and c2 are fun
tions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . The value M̂l,m denotes

the 
oe�
ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a1

M̂i1,i2±1 =
d

12
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ hb12[a2]x1d

24a1a2
± hb12[d]x1

24a1
± [d]x2h

12

M̂i1±1,i2 =
d

12
± c1dh

24a1
∓ b12[a1]x2dh

24a21
∓ hd[a1]x1

12a1
± hb12[d]x2

24a1
± h[d]x1

12
(2.48)

M̂i1,i2 =
h2[d]x1x1

12
+

2d

3
+

h2[d]x2x2

12
+

h2[d]x1c1
12a1

+
h2[d]x2c2
12a2

− h2[d]x2 [a2]x1b12
12a1a2

+
h2b12[d]x1x2

12a1
− h2[d]x1 [a1]x1

6a1
− h2[d]x1 [a1]x2b12

12a21
− h2[d]x2 [a2]x2

6a2

We have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus the dis
retisation 
onsists only of points of

the 
ompa
t sten
il and is of the form (2.16).

2.5 Appli
ation to the Heston model on non-uniform grids

In this se
tion we apply our dis
rete s
hemes to the Heston model. Firstly, we transform

the partial di�erential equation of the Heston model (1.11) so that it assumes the form of

the partial di�erential equation (2.1). After that, we have a 
loser look at the se
ond-order

remainder terms of the four di�erent essentially high-order 
ompa
t s
hemes. Then we

apply the s
hemes to the Heston model and determine the 
oe�
ients of the semi-dis
rete

s
heme. Finally we dis
uss the boundary 
onditions and then use Crank-Ni
olson time

dis
retisation, 
ompare for example [Str04, Wil98℄.

2.5.1 Transformation of the partial di�erential equation and �nal 
on-

dition

In the appli
ation we fo
us our attention on the Heston model. The partial di�erential

equation of the Heston-model, re
all (1.11), is given by

Vt +
1

2
σS2σVSS + ρvσSVSσ +

1

2
v2σVσσ + rSVS + κ(θ − σ)Vσ − rV = 0, (2.49)
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where S ∈
[

0, Smax

]

with a 
hosen Smax > 0, σ ∈ [σmin, σmax] with 0 ≤ σmin < σmax and

t ∈ [0, T [ with T > 0, after imposing arti�
ial boundary 
onditions in a 
lassi
al manner.

The expression Vt denotes the di�erentiation of the option V with respe
t to t. The deriva-

tives VS , Vσ, VSS, Vσσ as well as VSσ are de�ned in an analogous way.

The �nal 
ondition as well as the boundary 
onditions, whi
h we dis
uss separately,

depend on the 
hosen option. In the 
ase of a European Power Put Option with power

p ∈ N we have the �nal 
ondition

V (S, v, T ) = max(K − S, 0)p. (2.50)

We apply the following transformations to (2.49) as in [DF12a℄,

Ŝ = ln

(

S

K

)

, τ = T − t, y =
σ

v
, u = erτ

V

K
,

where Ŝ ∈
[

Ŝmin, Ŝmax

]

with a 
hosen Ŝmin < 0 and

Ŝmax = ln

(

Smax

K

)

.

We then introdu
e a stri
tly monotonous zoom fun
tion

Ŝ = ϕ(x),

zooming around Ŝ = 0, with

x ∈
[

ϕ−1
(

Ŝmin

)

, ϕ−1
(

Ŝmax

)]

,

as well as ϕ(x) ∈ C4 (]xmin, xmax[) and setting f = −ϕ3
xuτ , we obtain from (2.49) the

following two-dimensional ellipti
 problem [Str04℄,

f =
−vy

2

[

ϕxuxx + ϕ3
xuyy

]

− ρvyϕ2
xuxy +

[vyϕxx

2
+
(vy

2
− r
)

ϕ2
x

]

ux

− κ
θ − vy

v
ϕ3
xuy,

(2.51)

where (x, y) ∈ Ω := [xmin, xmax]× [ymin, ymax], xmin < xmax and ymin < ymax. This means

that we use x1 = x and x2 = y in the derivation of the four di�erent essential high-order


ompa
t s
hemes.
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Remark 1:

Equations (2.18), (2.26), (2.34) and (2.42) show that we 
an obtain a high-order 
ompa
t

s
heme when either ρ = 0, v = 0, or (∆y)2 ≡ (∆x)2ϕ2
x. The 
onstraint (∆y)2 ≡ (∆x)2ϕ2

x,

however, implies that the fun
tion ϕ is a�ne linear and would not qualify as a zoom

fun
tion. In parti
ular, the 
hoi
e ϕ(x) = x would yield the high-order 
ompa
t s
heme

dis
ussed in [DF12a℄ (on a uniform grid), hen
e we fo
us on a zoom whi
h is not a�ne

linear.

2.5.2 Dis
ussion of se
ond-order remainder terms

In equations (2.17), (2.25), (2.33) and (2.41) we observe that all these s
hemes have a

formal general 
onsisten
y error of order two. On the other hand ea
h version only has one

remaining se
ond order term, whi
h is multiplied with either uxxxx, uyyyy , uxxxy, or uxyyy.

All other terms are dis
retised with fourth order a

ura
y. We 
all this an essentially high-

order 
ompa
t dis
retisation. To gauge the overall potential of the four dis
rete s
hemes

we obtain by negle
ting the remaining se
ond-order terms, it is pivotal to understand the

behaviour of these terms better. To this end we 
ompute a numeri
al solution using the

(se
ond-order) 
entral di�eren
e operator in x- and y-dire
tion dire
tly in equation (2.51),

and obtain by numeri
al di�erentiation (approximations of) the higher derivatives uxxxx,

uyyyy, uxxxy, and uxyyy appearing in the remaining se
ond order terms. Figure 2.1 shows

Figure 2.1: Remainder terms without O((∆x)2) fa
tor for Version 1 (upper left),

Version 2 (upper right), Version 3 (lower left), and Version 4 (lower right)

the remainder terms of se
ond order appearing in equations (2.17), (2.25), (2.33) and (2.41)

without the O(h2) fa
tor, where ρ = −0.1, ζ = 2.5, p = 1, and Smin = 49.6694. The values
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of these remainder terms determine if we 
an a
hieve a fourth-order 
onsisten
y, at least

up to a given minimal step size. Hen
e, low values for the remainder terms are favourable.

We observe that all for all plots have the highest values of the remainder terms o

ur near

the boundary x = 0. On the upper left plot in Figure 2.1 we see the remainder term

for Version 1. This term has by far the highest absolute values and the l2-norm of this

remainder term is 8.8×10−1
. This indi
ates that a numeri
al study of this s
heme may not

lead to a fourth-order 
onsisten
y error. On the upper right plot we have the remainder

term for Version 2, again without the O((∆x)2) fa
tor. The highest absolute value for

this is only about 4 × 10−3
, so very low when 
omparing it with the remainder term of

Version 1. The l2-norm for this plot is 3.1 × 10−4
, whi
h shows that Version 2 has a

signi�
antly higher 
han
e of produ
ing a fourth order 
onsisten
y error in the numeri
al

study than Version 1. The plot on the lower left side is showing the remainder term of

Version 3. This plot has higher values than Version 2, but lower values than Version 1.

With a l2-norm of 6.6×10−3
it has still a 
han
e to produ
e a good 
onsisten
y error. The

plot on the lower right shows the remainder term of Version 4. This plot has again very

low absolute values whi
h are only up to about 5× 10−3
. The l2-norm for this remainder

term is 3.1 × 10−4
. This indi
ates that we have a good 
han
e that Version 4 produ
es a

s
heme with fourth-order a

ura
y.

In the spe
ial 
ase that ϕ(x) = x and ∆x = ∆y = h we have (∆y)2 ≡ (∆x)2ϕ2
x, and

all four versions lead to exa
tly the same high order 
ompa
t s
heme,

f = A0 +
vyh2

24
B1 +

vyh2

24
B2 +

ρvyh2

12
C1 +

κ(θ − vy)h2

6v
A2 −

(vy
2 − r

)

h2

6
A1 + ε,

as in this 
ase C1 = C2 holds. This spe
i�
 high-order 
ompa
t s
heme without zoom is

dis
ussed in [DF12a℄.
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Remark 2:

The derivation of the s
hemes in this se
tion 
an be modi�ed to a

ommodate other sto
has-

ti
 volatility models as, e.g. the GARCH di�usion model (1.4) or the 3/2-model (1.5).

Using these models the stru
ture of the partial di�erential equation (1.10) remains the

same, only the 
oe�
ients of the derivatives have to be modi�ed a

ordingly. Similarly,

the 
oe�
ients of the derivatives in (2.6)-(2.13) have to be modi�ed. Substituting these in

the modi�ed expression for the trun
ation error one obtains equivalent approximations as

above.

Our 
on
lusion from the results in Figure 2.1 are that Version 2 and Version 4 seem to

be the best 
hoi
es to obtain small errors. The remainder term for Version 3 still has low

values, while Version 1 seems only to be able to produ
e a se
ond-order s
heme. Numeri
al

experiments whi
h we have 
arried out with all four versions of the s
heme indi
ate that

a
tually Version 3 is leading to the best results in terms of a

ura
y and stability. Hen
e,

in the remainder of this 
hapter we fo
us on this parti
ular s
heme.

2.5.3 Semi-dis
rete s
hemes

In Se
tion 2.4 we have derived essentially high-order 
ompa
t numeri
al s
hemes in a

general setting. In this se
tion we use these s
hemes to approximate a solution of the

partial di�erential equation of the Heston Model [Hes93℄, where we additionally introdu
e

a zoom into the area around the strike pri
e K.

We now 
onsider the ellipti
 equation (2.51) with f = −ϕ3
xuτ and we denote by Ui,j(τ)

the semi-dis
rete approximation of its solution u(xi, yj , τ) at time τ .

In this se
tion we de�ne the semi-dis
rete s
heme of the form

∑

ẑ∈G
(2)
h

[Mz(ẑ)∂τUi,j(τ) +Kz(ẑ)Ui,j(τ)] = 0, (2.52)

at time τ for ea
h point z ∈ ◦
G

(2)

h , where

◦
G

(2)

h denotes the inner points of the grid G
(2)
h ,


ompare De�nition 13. We have that Kz(ẑ) and Mz(ẑ) are operators with nine values

de�ned on the 
ompa
t sten
il around z ∈ ◦
G.
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Using the 
entral di�eren
e operator in (2.33) at the point z ∈ ◦
G leads to

K̂i+1,j±1 =
ϕ4
x

( vy
2 − r

)

24h
− vyϕ2

xϕxx

16h
+

( vy
2 − r

)

ϕ2
x

24h
− vyϕ3

x

24h2
+

vyϕxx

48h
− vyϕx

24h2

∓ ϕxκ (θ − vy)

24vh
∓ κϕ3

x (θ − vy)

24vh
± κ (θ − vy)

( vy
2 − r

)

ϕ2
x

24v2y
± vϕ2

x

48

± κ (θ − vy)ϕxx

48v
∓
( vy

2 − r
)

ϕ2
x

24y
± ϕ4

xκ (θ − vy)
( vy

2 − r
)

24v2y

∓ κ (θ − vy)ϕ2
xϕxx

16v
+ ρ2

[vyϕxx

12h
± vϕxx

8
− vyϕx

6h2

]

(2.53)

+ ρ

[

±ϕ2
xϕxx

(vy
2 − r

)

12
± vyϕ2

xx

12
∓
( vy

2 − r
)

ϕxx

24
± vyϕxxx

48ϕx
± ϕ2

xκ

24

± ϕx

( vy
2 − r

)

12h
± ϕ3

x

(vy
2 − r

)

12h
± vyϕxx

8hϕx
∓ vyϕxϕxx

24h
∓ vyϕ2

x

4h2

−ϕ2
xκ (θ − vy)

6hv
∓ vyϕ2

xx

16ϕ2
x

± vϕ2
x

24y
∓ vyϕxϕxxx

24

]

,

K̂i−1,j±1 =− K̂i+1,j±1 −
vyϕx

12h2
− vyϕ3

x

12h2
∓ ϕxκ (θ − vy)

12vh
∓ ϕ3

xκ (θ − vy)

12vh

− ρ2
vyϕx

3h2
+ ρ

[

±ϕx

( vy
2 − r

)

6h
± vyϕxx

4hϕx
± ϕ3

x

( vy
2 − r

)

6h
∓ vyϕxϕxx

12h

]

, (2.54)

K̂i±1,j =
vyϕ3

x

12h2
∓ hϕ2

xx

( vy
2 − r

)

6
∓ ϕ4

x

(vy
2 − r

)

12h
± 5

( vy
2 − r

)

ϕ2
x

12h
± yhvϕxxxx

48

− ϕxκ (θ − vy)

12vy
− 5vyϕx

12h2
± 5vyϕxx

24h
+

vϕx

12y
∓ ϕ2

xhv

24y
− ϕ3

x

(vy
2 − r

)2

6vy

+
vyϕxxx

24
∓ hϕxxv

24y
± hκ (θ − vy)ϕxx

24vy
+

( vy
2 − r

)

ϕxϕxx

12
∓ vyhϕxxϕxxx

16ϕx

± ϕxh
( vy

2 − r
)

ϕxxx

24
± vyϕ2

xϕxx

8h
∓ ϕ2

xh
( vy

2 − r
)2

ϕxx

6vy
± ϕ2

xhκ (θ − vy)

24vy
(2.55)

+ ρ2
[vyϕx

3h2
∓ vyϕxx

6h

]

+ ρ

[

vϕxx

4ϕx
∓ hϕxxv

24
∓ hvϕ2

xx

8ϕx
2

− ϕx

( vy
2 − r

)

6y

+
vϕx

12
∓ h

( vy
2 − r

)

ϕxx

6y
± ϕ2

xκ (θ − vy)

3hv

]

,

K̂i,j±1 =
ϕ3
xϕxx

(vy
2 − r

)

4
± ϕ3

xh
( vy

2 − r
)

κ (θ − vy)ϕxx

4v2y
∓ ϕ2

xhκ (θ − vy)ϕxxx

8v

− ϕ3
xκ

2 (θ − vy)2

6yv3
+

vyϕx

12h2
∓ ϕ3

xhκ

12y
± ϕ3

xhκ
2 (θ − vy)

12v2y
∓ 5κϕ3

x (θ − vy)

12vh

+
vyϕxϕ

2
xx

8
− 5vyϕ3

x

12h2
+

ϕ3
xv

12y
+

κϕ3
x (θ − vy)

12vy
+

κϕ3
x

6
± ϕxκ (θ − vy)

12vh
(2.56)
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± ϕxhϕ
2
xx
κ (θ − vy)

8v
− vyϕ2

xϕxxx

8
+ ρ2

vyϕx

3h2
+ ρ

[

±hϕxκ (θ − vy)ϕxx

4vy

±vyϕxϕxx

12h
∓ ϕ3

x

( vy
2 − r

)

6h
∓ vyϕxx

4hϕx
+

vϕxϕxx

4
∓ ϕx

( vy
2 − r

)

6h

]

and

K̂i,j =
vyϕ2

xϕxxx

4
− ϕ3

xϕxx

( vy
2 − r

)

2
− vyϕxϕ

2
xx

4
− ϕ3

xv

6y
− ϕ3

xκ (θ − vy)

6vy
− κϕ3

x

3

+
ϕ3
xκ

2 (θ − vy)2

3yv3
+

5vyϕx

6h2
+

5vyϕ3
x

6h2
−
(vy

2 − r
)

ϕxϕxx

6
+

ϕ3
x

( vy
2 − r

)2

3vy

− vϕx

6y
− vyϕxxx

12
+

ϕxκ (θ − vy)

6vy
− ρ2

2vyϕx

3h2
(2.57)

+ ρ

[

ϕx

( vy
2 − r

)

3y
− vϕxx

2ϕx
− vϕx

6
− vϕxϕxx

2

]

,

where K̂i,j is the 
oe�
ient of Ui,j(τ). For the sake of readability we drop the subindex i

on the derivatives of ϕ and the subindex j on y, respe
tively. Analogously, we have

M̂i+1,j±1 =M̂i−1,j∓1 = ±ρ
ϕ2
x

24
, M̂i,j±1 =

ϕ3
x

12
∓ ϕ3

xh

12y
± ϕ3

xhκ (θ − vy)

12v2y
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ρ

ϕ2
xh

12y
and (2.58)

M̂i,j =
2ϕ3

x

3
− ϕ3

xh
2ϕxx

(vy
2 − r

)

2vy
− ϕxh

2ϕ2
xx

4
+

ϕ2
xϕxxxh

2

4
− ρ

ϕxϕxxh
2

2y
,

as 
oe�
ients of ∂τUi,j(τ). Using z = (xi, yj) ∈
◦
G

(2)

h we have

Kz(ẑ) =K̂n1,n2 as well as Mz(ẑ) = M̂n1,n2 (2.59)

for ẑ = (xn1 , yn2) with n1 ∈ {i− 1, i, i+ 1} and n2 ∈ {j − 1, j, j + 1}. Mz and Kz are zero

otherwise.

2.5.4 Treatment of the boundary 
onditions

The �rst boundary is the boundary x = xmin, whi
h 
orresponds to the boundary at S = 0

of the original problem (2.49). For this boundary we have to dis
ount the option pri
e at

time T to the appropriate time. Taking into a

ount the transformations τ = T − t and

u = erτV/K this leads to the Diri
hlet boundary 
ondition

u(xmin, y, τ) = u(xmin, y, 0) ∀ τ ∈ [0, τmax] ∀ y ∈ [ymin, ymax].
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The next boundary we dis
uss is the boundary x = xmax, whi
h 
orresponds to the

boundary at S = Smax of the original problem. For a Power Put with power p ∈ N we

have

lim
S→∞

V (S, σ, t) = 0,

whi
h we approximate at the arti�
ial boundary Smax by VS(Smax, σ, t) = 0, VSS(Smax, σ, t) =

0, VSσ(Smax, σ, t) = 0, Vσ(Smax, σ, t) = 0 as well as Vσσ(Smax, σ, t) = 0. Using these ap-

proximations in (2.49) gives

Vt − rV = 0.

Using τ = T − t and u = erτV/K yields uτ = 0 and thus the Diri
hlet boundary 
ondition

u(xmax, y, τ) = u(xmax, y, 0) for all τ ∈ [0, τmax] and all y ∈ [ymin, ymax]. (2.60)

The third boundary to dis
uss is the boundary y = ymin with x /∈ {xmin, xmax}, whi
h

orresponds to the boundary σ = σmin with S /∈ {Smin, Smax}. We treat this boundary

just like the inner part of the 
omputational domain, using equations (2.53) to (2.57). This

requires the usage of ghost-points Ui−1,−1, Ui,−1 and Ui+1,−1 when dis
retising at the points

(xi, y0) ∈ G
(2)
h for i = 1, . . . , N − 1. Thus we need a fourth order a

urate expression for

the ghost-points Ui,−1 for i = 0, . . . , N . Using Taylor expansion, we get the extrapolation

Ui,−1 =4Ui,0 − 6Ui,1 + 4Ui,2 − Ui,3 +O
(

(∆y)4
)

for i = 0, . . . , N . The same pro
edure is used for the ghost-points for the matrix Mh when

using the equations in (2.58).

The last boundary we dis
uss is the boundary at boundary y = ymax with x /∈ {xmin, xmax},
whi
h is 
orresponding to the boundary σ = σmax with S /∈ {Smin, Smax} of the untrans-

formed problem. We treat this boundary similar as the boundary at ymin and use equations

(2.53) to (2.57). The s
heme then uses, when dis
retising at the points (xi, yM ) ∈ G
(2)
h for

i = 1, . . . , N − 1, the ghost-points Ui−1,M+1, Ui,M+1 and Ui+1,M+1 for i = 1, . . . , N − 1.

This means that we have to �nd an expression for the ghost-points Ui,M+1, i = 0, . . . , N .

We 
an approximate the values at these ghost-points again using Taylor approximation,
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leading to

Ui,M+1 = 4Ui,M − 6Ui,M−1 + 4Ui,M−2 − Ui,M−3 +O
(

(∆y)4
)

for i = 0, . . . , N . Again, the same pro
edure is used for the ghost-points for the matrix

Mh while using the equations in (2.58).

2.5.5 Time dis
retisation

With the results from the previous se
tions we obtain a semi-dis
rete system of the form

∑

ẑ∈G
(2)
h

[Mz(ẑ)∂τUi,j(τ) +Kz(ẑ)Ui,j(τ)] =g(z), (2.61)

for ea
h point z of the grid G
(2)
h , whi
h is de�ned in (2.3) for some h > 0. The fun
tion

g(z) has only non-zero values at the boundaries xmin and xmax.

We use a time grid of the form

{

∆τ

4
,
∆τ

2
,
3∆τ

4
,∆τ, 2∆τ, 3∆τ, . . .

}

,

where the �rst four time steps have step size

∆τ
4 and the following have ∆τ . For these �rst

four time steps, we use the impli
it Euler s
heme, and obtain

∑

ẑ∈G
(2)
h

[

Mz(ẑ) +
∆τ

4
Kz(ẑ)

]

Un+1
i,j =

∑

ẑ∈G
(2)
h

Mz(ẑ)U
n
i,j +

∆τ

4
g(z)

with n = 0, 1, 2, 3 for ea
h grid-point z ∈ G
(2)
h . This approa
h is suggested in [Ran84℄

when dealing with non-smooth initial 
onditions. For the following time steps we use a

Crank-Ni
olson-type time dis
retisation, 
ompare for example [Str04, Wil98℄, leading to

∑

ẑ∈G
(2)
h

[

Mz(ẑ) +
∆τ

2
Kz(ẑ)

]

Un+1
i,j =

∑

ẑ∈G
(2)
h

[

Mz(ẑ)−
∆τ

2
Kz(ẑ)

]

Un
i,j + (∆τ)g(z)

with n ≥ 4 on ea
h point z of the grid G
(2)
h . We observe that we have only non-zero values

on the 
ompa
t 
omputational sten
il as both Mx(x̂) and Kx(x̂) have this property. For

the Crank-Ni
olson time dis
retisation this 
ompa
t s
heme has 
onsisten
y order two in

time and four in spa
e for ϕ(x) = x and ρ = 0 or is essentially high-order 
ompa
t in spa
e

otherwise.
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2.6 Numeri
al experiments

In this se
tion we present the results of our numeri
al experiments for the 
ompa
t s
heme

using (2.53) � (2.58), whose boundary 
onditions were derived in Se
tion 2.5.4. If not

stated otherwise, we use the default model parameters

κ = 1.1, θ = 0.15, v = 0.1, r = ln(1.05), K = 100 and T = 0.25.

The initial 
ondition for the European (Power) Put after transformation as in Se
tion 2.5.1

is given by

u(x, y, 0) = Kp−1max
(

1− eϕ(x), 0
)p

, (2.62)

where the non-di�erentiable point of the initial 
ondition is at xK = ϕ−1(0).

2.6.1 Choi
e of the zoom fun
tion

In our numeri
al experiments we use the zoom fun
tion

Ŝ = ϕ(x) =
sinh(c2x+ c1(1− x))

ζ
, (2.63)

proposed in [TGB08℄, with c1 = asinh(ζŜmin), c2 = asinh(ζŜmax) and ζ > 0. The non-

di�erentiable point of the initial 
ondition is hen
e at

xK =ϕ−1(0) =
asinh(0)− c1

c2 − c1
=

−asinh(ζŜmin)

asinh(ζŜmax)− asinh(ζŜmin)
.

Using the de�nitions of c1 and c2 this 
an be rearranged to

Ŝmin =
sinh

(

xK

xK−1asinh(ζŜmax)
)

ζ
. (2.64)

Hen
e, Ŝmin 
an be set by 
hoosing xK in reasonable bounds as well as 
hoosing Smax,

whi
h gives Ŝmax, for a given ζ. The fa
t that xK 
an be 
hosen is very helpful, sin
e if

the non-di�erentiable point is on the grid the numeri
al 
onvergen
e order may be redu
ed

to two in pra
ti
e. Hen
e, we 
hoose the grid su
h that the point xK is in the middle of

two 
onse
utive grid points on the �nest grid. This pro
edure of shifting the grid has been

suggested for example in [TR00℄.
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Figure 2.2: Di�erent zoom examples with K = 100

In the numeri
al experiments reported below we 
hoose

Smin = KeŜmin , Smax = 2K, σmin = 0.05, σmax = 0.25.

Figure 2.2 shows the in�uen
e of the parameter ζ on the zoom in equation (2.63),

taking into a

ount both transformations, Ŝ = ln (S/K) and x = ϕ−1(Ŝ). The di�erent

values for xK , whi
h depends on ζ, are 
hosen in su
h a way that the fo
us on the values

around S = 0 is not too pronoun
ed, 
ompare equation (2.64). We observe that for smaller

values of ζ > 0 there is less zoom. So with ζ → 0 the zoom fun
tion is approa
hing the

linear transformation ϕ(x) = (Ŝmax − Ŝmin)x+ Ŝmin with x ∈ [0, 1]. With a larger value of

ζ there is a stronger fo
us on our area of interest around the exer
ise pri
e K.

The aim is to �nd an `optimal' value for ζ to be used in pra
ti
al 
omputations. The

larger ζ, the smaller the error around K, but on the other hand the error in other parts

of the domain in
reases when having a stronger zoom, sin
e an in
reasing number of grid

points in the area around K automati
ally results into a de
reasing amount of grid points

in other areas and vi
e versa. There has to be a balan
e between the error in the area

around K and the error in other parts of the domain. The overall order of 
onvergen
e

should be looked at to a
hieve this balan
e and thus to get a good value for ζ. We expe
t

the numeri
al 
onvergen
e order to in
rease at �rst with rising ζ and then de
rease again

after a 
ertain `optimal' strength of zoom is rea
hed.
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2.6.2 Numeri
al 
onvergen
e

We now study the numeri
al errors of the dis
retisation as h → 0 for �xed paraboli


mesh ratio ∆τ/h2, using di�erent values for ζ and ρ. We 
ompute an approximation of the

solution of the transformed problem, whi
h is given by equation (2.51), and then transform

it ba
k into the original variables. For the relative l2- and l∞-error plots a referen
e solution

is 
omputed on a �ne grid with h
ref

= 0.003125. For the relative l2-errors we use

‖U
ref

− U‖l2
‖U

ref

‖l2

and for the l∞-error we use

‖U
ref

− U‖l∞ ,

where U
ref

denotes the referen
e solution and U is the approximation. We expe
t the

error to behave like O
(

hk
)

for some k. If we plot the logarithm of the error against the

logarithm of the number of grid points, the slope of this log-log plot gives the numeri
al


onvergen
e order of the s
heme. Due to the initial 
ondition of the transformed problem

not being smooth everywhere, we observe that the log-log plots do not always produ
e

a straight line, e.g. for a plain vanilla Put option. For a smooth initial 
ondition, the

log-log plots of the errors give an almost straight line, e.g. for the Power Put option. The

numeri
al 
onvergen
e order indi
ated in the �gures below is always 
omputed as the slope

of the linear least square �t of the error points. For 
omparison, we additionally plot the

results for a standard dis
retisation (SD), whi
h means that the standard 
entral di�eren
e

operator is used in (2.51) as well as

ϕ(x) =
(

Ŝmax − Ŝmax

)

x+ Ŝmin.

In this way all dis
retisations 
onsidered here operate on the same spatial grid and a

meaningful 
omparison 
an o

ur. We use ∆τ = 0.4h2 for all 
onvergen
e plots, although

we note that the dependen
e of the numeri
al 
onvergen
e order on the 
hoi
e of the

paraboli
 mesh ratio is marginal. This is in line with the results of our numeri
al stability

study reported below in Se
tion 2.6.3.

Figures 2.3 and 2.4 show log-log plots of the relative l2- and l∞-error of the approxi-

mations with respe
t to the referen
e solution in the Heston-Hull-White model (ρ = 0) for

a European Put option for di�erent values for the number of grid points and with di�erent
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Figure 2.3: Relative l2-error Heston model,

ρ = 0
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Figure 2.4: Absolute l∞-error Heston model,

ρ = 0

zooms. In this way the in�uen
e of the zoom 
an be observed. The theoreti
al 
onsisten
y

order in this 
ase is four. Looking at the relative l2-error, we observe that the numeri
al


onvergen
e orders vary from 3.75 to 4.29, whi
h agrees very well with the theoreti
al or-

der for all zooms. We 
an also see that the 
onvergen
e order rises up to ζ = 5 and then

de
lines again, so ζ ≈ 5 seems to be the best 
hoi
e. The lowest relative l2-error is always

obtained when using ζ = 10.

A more useful error in pra
ti
e is probably the l∞-error, as it shows the highest di�er-

en
e between the referen
e solution and the approximation. When looking at Figure 2.4

we see that the l∞-error and the l2-error have a very similar behaviour. The 
onvergen
e

orders vary from 3.00 to 4.20, again having the best order for ζ ≈ 5. When using the

�nest grid the error for ζ = 5 and ζ = 10 are almost identi
al, but with rougher grids

the error with ζ = 10 is again 
learly the smallest. For both error plots we observe that

the zoom has its biggest impa
t when looking at a rough grid, be
ause the error then

de
reases signi�
antly with an in
reasing zoom. The high-order 
ompa
t dis
retisations

have signi�
antly lower error values and higher 
onvergen
e orders when 
omparing them

to the standard dis
retisation. Overall, 
hoosing ζ ≈ 5 for the Heston-Hull-White model

(ρ = 0) seems to be the best 
hoi
e with respe
t to the 
onvergen
e order.

In Figures 2.5 and 2.6 we plot the relative l2- and l∞-error for a European Put option

in the Heston model with ρ = −0.1. This means that the theoreti
al 
onsisten
y order is

only two, see equation (2.33). We observe in Figure 2.5 that the relative l2-error varies

between 3.40 and 4.14. These values are far above the theoreti
al 
onsisten
y order. In

fa
t, using the Version 3 dis
retisation s
heme we obtain a 
onvergen
e order 
lose to the

order using the Heston-Hull-White model. The order of the relative l2-error is again rising
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Figure 2.5: Relative l2-error Heston model,

ρ = −0.1
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Figure 2.6: Absolute l∞-error Heston model,

ρ = −0.1

up to ζ = 5 and de
lining afterwards, but has its lowest values when using ζ = 10. The l∞-

error in Figure 2.6 behaves similar to the l∞-error in the Heston-Hull-White model. Here

the 
onvergen
e order values vary between 3.00 and 4.09, having its highest value for ζ = 5.

With the �nest grid the di�eren
e of the error when using ζ = 10 and using ζ = 5 is again

very slim. The biggest impa
t of in
reasing the zoom in either error plot 
an be again seen

when having a rough grid, sin
e in
reasing the zooming leads to signi�
antly lower errors

in this 
ase. Similarly as in the Heston-Hull-White model the 
onvergen
e order results are

best when 
hoosing ζ = 5. For both errors we 
an again see that the essentially high-order


ompa
t dis
retisations have signi�
antly lower error values and higher 
onvergen
e orders

than the standard dis
retisation.
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Figure 2.7: Relative l2-error Heston model,

ρ = −0.4
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Figure 2.8: Absolute l∞-error Heston model,

ρ = −0.4

Figures 2.7 and 2.8 show the relative l2- and l∞-error for an European Put option in

the Heston model with ρ = −0.4. The theoreti
al 
onsisten
y orders of the errors are again
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two. In Figure 2.7 we 
an see that the 
onvergen
e order for the relative l2-error varies from

2.92 to 3.84, whi
h is again signi�
antly higher than the theoreti
al order. The 
onvergen
e

order deteriorates slightly for smaller values of ρ, but is still an order better than for the

standard dis
retisation. As expe
ted, the best 
onvergen
e order, whi
h is still very 
lose

to four, is a
hieved when using ζ = 5. From Figure 2.8 we �nd that for the l∞-error the


onvergen
e order gets lower with lowering the value of ρ. The 
onvergen
e orders vary

from 2.98 to 3.86, where ζ = 5 leads again to the highest value, whi
h is still 
lose to four

and thus highly above the theoreti
al value of the 
onsisten
y error order. As in the two

previous 
ases the zoom has his highest strengths for the relative l2-error as well as for

the l∞-error when using a very rough grid. For both the relative l2-error and the l∞-error

we 
an again see that the essentially high-order 
ompa
t s
hemes have signi�
antly lower

error values and higher 
onvergen
e orders than the standard dis
retisation.

From Figures 2.3 to 2.8 we re
over the numeri
al observation given in Se
tion 2.5.2 and


an 
on�rm that Version 3 leads to a high-order 
ompa
t s
heme.

For all of the dis
ussed European Put options, the best results for the 
onvergen
e

order is obtained when using ζ = 5. This value seems to give a good balan
e between

the error around K and the other regions for the zoom. Even though the s
heme has a

theoreti
al 
onsisten
y order equal to four only for the Heston-Hull-White model (ρ = 0),

the appli
ation showed that we a
hieve a numeri
al 
onvergen
e order 
lose to four for the

Heston model with ρ 6= 0 as well.

We now 
onsider the 
ase of European Power Put options in the Heston model. The

only di�eren
e to a plain vanilla European Put is that the �nal 
ondition is taken to the

power p, see (2.50), whi
h yields to (2.62) after transformation. The grid was shifted in a

similar manner as above, avoiding xk as a grid point.

It 
an be 
learly seen that in Figures 2.9 and 2.10, denoting the relative l2-error in the


ases ρ = 0 and ρ = −0.4 with p = 2, the lines in the log-log plots are mu
h 
loser to

straight lines than in the 
ases of the vanilla Put options with p = 1. This 
an be explained

with the initial 
ondition of the transformed problem being smoother. The 
onvergen
e

orders of the relative l2-errors range from 3.85 to 4.08 for the Heston-Hull-White (ρ = 0)

Power Put with power p = 2 and from 3.22 to 3.40 for the Power Put in the Heston

model with ρ = −0.4, where the orders are in
reasing with in
reasing zoom strength. The

di�eren
es of about 0.6 between the orders in the Heston model with ρ = 0 and ρ = −0.4

is not very large 
onsidering the di�eren
e of the theoreti
al orders. The 
onvergen
e order
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Figure 2.9: Relative l2-error Power Put He-
ston model, ρ = 0, p = 2
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Figure 2.10: Relative l2-error Power Put He-
ston model, ρ = −0.4, p = 2

for ρ = −0.4 is again far beyond its theoreti
al order of two. The standard dis
retisation

is signi�
antly outperformed by the high-order 
ompa
t s
hemes for ρ = 0 as well as the

essentially high-order 
ompa
t dis
retisations for ρ = −0.4 in terms of error values and


onvergen
e orders.
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Figure 2.11: Relative l2-error Power Put He-
ston model, ρ = 0, p = 3
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Figure 2.12: Relative l2-error Power Put He-
ston model, ρ = −0.4, p = 3

In Figures 2.11 and 2.12 we 
an see the 
onvergen
e orders in the Heston-Hull-White

model (ρ = 0) and the Heston model with ρ = −0.4 when p = 3. The di�eren
es between

the plots are not as big as the theoreti
al 
onsisten
y error order may indi
ate. Even

though in the Heston model with ρ = −0.4 the s
heme has a theoreti
al 
onsisten
y error

of order two, it produ
es a 
onvergen
e order from 3.50 to 3.69 depending on the zoom

strength ζ, whereas the orders in the Heston-Hull-White model with ρ = 0, where we

have a theoreti
al 
onsisten
y order of four, vary from 4.04 to 4.10. In both situations the

standard dis
retisation is outperformed in terms of 
onvergen
e order and error values.
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2.6.3 Numeri
al stability study

In the parti
ular 
ase of a uniform grid, i.e. ϕ(x) = x, the s
heme developed here redu
es to

the high-order 
ompa
t s
heme presented in [DF12a℄, where un
onditional (von Neumann)

stability [Str04℄ is proved for ρ = 0. An additional stability analysis performed in [DF12b℄

suggests that the s
heme is also un
onditionally stable for general 
hoi
e of parameters.

For the present s
heme on a non-uniform grid, a similar von Neumann analysis, analyti
al

or numeri
al, appears to be out of rea
h as the expression for the ampli�
ation fa
tor is

formidable and 
onsists of high-order polynomials in a two-digit number of variables. To

validate the stability of the s
heme for general parameters we perform additional numeri
al

stability tests. We remark that in our numeri
al experiments we observe a stable behaviour

throughout.

We 
ompute numeri
al solutions for varying values of the paraboli
 mesh ratio c =

∆τ/h2 and mesh width h. Plotting the asso
iated relative l2-norm errors in the plane

should allow us to dete
t stability restri
tions depending on c or show us os
illations that

o

ur for high 
ell Reynolds number (large h). This approa
h for a numeri
al stability

study was also used in [DF12a, DFJ03℄.

We show results for the European Put option in the Heston Model only, sin
e the Power

Puts only di�er in the initial 
onditions and give similar results. For our stability plots we

use c = k/10 with k = 1, . . . , 10, and a des
ending sequen
e of grid points in x-dire
tion,

starting with six grid points (sin
e x ∈ [0, 1], it follows that h ≤ 0.2), and doubling the

number of points (halving h) in ea
h step. The zoom parameter ζ = 5 is used.
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Figure 2.13: Stability plot of the relative l2-
error for ρ = 0
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Figure 2.14: Stability plot of the relative l2-
error for ρ = −0.4

Figures 2.13 and 2.14 show the stability plots for the Heston-Hull-White model (ρ = 0)

and for the Heston model with ρ = −0.4. We observe that the in�uen
e of the paraboli


mesh ratio c on the relative l2-error is only marginal and the relative error does not ex
eed
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8× 10−4
as a value for both stability plots. We 
an infer that there does not seem to be a

stability 
ondition on c for either situation. For in
reasing values of h, whi
h also result in

a higher 
ell Reynolds number, the error grows only gradually, and no os
illations in the

numeri
al solutions o

ur. The stability plot for the Heston model with ρ = −0.1 looks

similar and does not indi
ate any 
onditions on c or h either.

2.7 Summary

In this 
hapter we have presented a new essentially high-order 
ompa
t �nite di�eren
e

s
hemes to approximate the solution of the linear paraboli
 partial di�erential equation

duτ + a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = 0 ∈ Ω× Ωτ

with initial 
onditions u(x1, x2, 0), where Ω ⊂ R
2
is of re
tangular shape and Ωτ =]0, τmax],

see (2.1). Additionally, ai = ai(x1, x2, τ) < 0, b12 = b12(x1, x2, τ), ci = c(x1, x2, τ),

d = d(x, y, τ) and u = u(x, y, τ) are fun
tions from Ω × R≥0 to R. We introdu
e four

dis
rete s
hemes of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) +R2 +O
(

h4
)

,

where G
(2)
h is a uniform grid on Ω, see (13). The se
ond order remainder terms are given

by

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41

for Version 1,

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42

for Version 2,

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2

for Version 3 and

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32
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for Version 4, 
ompare (2.18), (2.26), (2.34) and (2.42). These remainder terms show that

it is possible to a
hieve a high-order 
ompa
t s
heme if

a1 =
(∆x1)

2

(∆x2)
2 a2 or b12 = 0.

We apply these s
hemes to option pri
ing under sto
hasti
 volatility on non-uniform

grids. The resulting s
hemes are fourth-order a

urate in spa
e and se
ond-order a

urate

in time for vanishing 
orrelation. In our numeri
al 
onvergen
e study we obtain high-order

numeri
al 
onvergen
e also for non-zero 
orrelation and non-smooth pay-o�s whi
h are

typi
al in option pri
ing. In all numeri
al experiments a 
omparative standard se
ond-

order dis
retisation is signi�
antly outperformed. We have 
ondu
ted a numeri
al stability

study whi
h seems to indi
ate un
onditional stability of the s
heme. In our numeri
al

experiments we observe a stable behaviour for all 
hoi
es of parameters.
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Chapter 3

High-order 
ompa
t s
hemes in

multiple spa
e dimensions

In this 
hapter we derive a high-order 
ompa
t s
heme for a general linear partial di�eren-

tial equation with multi-dimensional spatial domain. The spatial domain is of an 
ubi
al

shape. We start by setting the problem, the dis
retisation of the spa
e and a dis
retisation

of the derivatives appearing in the partial di�erential equation. Then auxiliary equations

for higher derivatives are 
al
ulated, with whi
h it is possible to derive 
onditions on the


oe�
ients on the partial di�erential equation for a high-order 
ompa
t s
heme. We de-

rive semi-dis
rete high-order 
ompa
t s
hemes for the dimensions two and three and apply

Crank-Ni
olson-type time dis
retisation, see for example [Str04, Wil98℄. A thorough von

Neumann stability analysis [Str04℄ is performed for frozen 
oe�
ients and vanishing mixed-

derivative terms and partial stability results are given for non-vanishing mixed-derivatives.

The multi-dimensional Bla
k-S
holes model is 
hosen as appli
ation. Ne
essary transfor-

mations of the di�erential equation of this model are performed in order to satisfy the


onditions for a
hieving a high-order 
ompa
t s
heme. The boundary 
onditions for the

resulting di�erential equation are examined and �nally results of numeri
al experiments

are dis
ussed.

3.1 Partial di�erential equation in an n-dimensional spatial

domain

This se
tion is 
on
erned with a paraboli
 di�erential equation with mixed derivative terms

in n spatial dimensions, see De�nition 12. When normalising in terms of uτ , so using d = 1
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in (1.8), the partial di�erential equation is given by

uτ +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
=g in Ω×Ωτ (3.1)

with initial 
ondition u0 = u(x1, . . . xn, 0), where ai = ai(x1, . . . xn, τ) < 0, bij = bij(x1, . . . xn, τ),

ci = ci(x1, . . . xn, τ) and g = g(x1, . . . xn, τ) are fun
tions from Ω × Ωτ to R for i, j ∈
{1, . . . , n} and i 6= j. The spatial domain Ω ⊂ R

n
is of n-dimensional 
ubi
al shape,

so Ω = Ω1 × . . . × Ωn and xi ∈ Ωi =
[

x
(i)
min, x

(i)
max

]

, x
(i)
min < x

(i)
max and x

(i)
min, x

(i)
max ∈ R for

i ∈ {1, . . . , n}. The domain in time is given by Ωτ = ]0, τmax] with τmax > 0. The fun
tions

a(·, τ), b(·, τ), c(·, τ) and g(·, τ) are assumed to be in C2(Ω) for any τ ∈ Ωτ , u(·, τ) ∈ C6(Ω)

and u is assumed to be di�erentiable in respe
t to τ in order to be able to a
hieve a high

order 
ompa
t s
heme. Introdu
ing f := −uτ + g we 
an rewrite (3.1) as

n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= f. (3.2)

3.1.1 Central di�eren
e approximation

We start by de�ning a grid on Ω,

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik∆xk, 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

,

(3.3)

where ∆xk =
x
(k)
max−x

(k)
min

Nk−1 > 0 are the stepsizes in the k-th dire
tion with Nk ∈ N for

k = 1, . . . , n. With

◦
G

(n)
we denote the interior of G(n)

. On this grid we denote with Ui1,...,in

the dis
rete approximation of the 
ontinuous solution u at the point (xi1 , . . . , xin) ∈ G(n)

at time τ ∈ Ωτ . Using the 
entral di�eren
e quotient D
c
k in xk-dire
tion we get

∂2u

∂x2k
=Dc

kD
c
kUi1,...,in − (∆xk)

2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂u

∂xk
=Dc

kUi1,...,in − (∆xk)
2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

, (3.4)

∂2u

∂xk∂xp
=Dc

kD
c
pUi1,...,in − (∆xk)

2

6

∂4u

∂x3k∂xp
− (∆xp)

2

6

∂4u

∂xk∂x3p
+O

(

(∆xk)
4
)

+O
(

(∆xk)
2(∆xp)

2
)

+O
(

(∆xp)
4
)

+O
(

(∆xk)
6

∆xp

)

,
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for k, p ∈ {1, . . . , n} and k 6= p on the gridpoints (xi1 , . . . , xin) ∈ ◦
G

(n)
. The error terms


ontain derivatives of u up to sixth order, thus we require u(·, τ) ∈ C6 (Ω) for all τ ∈ Ωτ .

Using the dis
retisations given in (3.4) on (3.2) gives

f =
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2

12

∂4u

∂x4i

−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x3j

]

−
n
∑

i=1

ci(∆xi)
2

6

∂3u

∂x3i
+ ε

(3.5)

where ε ∈ O
(

h4
)

if ∆xi ∈ O (h) for i = 1, . . . , n for a stepsize h. If the 
onsisten
y error is

in O
(

h4
)

for these spe
i�
 stepsizes, we 
all the s
heme high-order. In order to a
hieve a

high-order s
heme we have to �nd a se
ond-order dis
retisation of the derivatives

∂3u
∂x3

i

,

∂4u
∂x4

i

and

∂4u
∂x3

i ∂xj
for i, j ∈ {1, . . . , n} with i 6= j. We 
all the s
heme high-order 
ompa
t, if we


an do this using only the points from the 
ompa
t sten
il for x = (xi1 , . . . , xin) ∈
◦
G

(n)
.

Re
all from (1.14) that with Ui1,...,in ≈ u(xi1 , . . . , xin), we have

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} ⊂ G(n)

as the 
ompa
t sten
il. In Figure 3.1 we 
an see the two-dimensional 
ompa
t sten
il.

Ui1+1,i2+1

Ui1−1,i2−1

Ui1−1,i2+1

Ui1+1,i2−1Ui1,i2−1

Ui1,i2+1

Ui1−1,i2 Ui1+1,i2Ui1,i2

Figure 3.1: Compa
t sten
il in two dimensions

3.2 Auxiliary relations for higher derivatives

In this se
tion we 
al
ulate auxiliary relations for the higher derivatives appearing in (3.5).

These relations for the higher derivatives 
an be 
al
ulated by di�erentiating (3.2). In
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doing so no additional error is introdu
ed. Di�erentiating equation (3.2) with respe
t to

xk and writing

∂3u
∂x3

k

as subje
t leads to

∂u

∂x3k
=−

n
∑

i=1
i 6=k

ai
ak

∂3u

∂x2i ∂xk
−

n
∑

i=1
i 6=k

[ai]xk

ak

∂2u

∂xi
− [ak]xk

ak

∂2u

∂xk
−

n
∑

i,j=1
i<j

bij
ak

∂3u

∂xi∂xj∂xk

−
n
∑

i,j=1
i<j

[bij ]xk

ak

∂2u

∂xi∂xj
−

n
∑

i=1

ci
ak

∂2u

∂xi∂xk
−

n
∑

i=1

[ci]xk

ak

∂u

∂xi
+

1

ak

∂f

∂xk
=: Ak (3.6)

for k = 1, . . . , n, where [·]xk
denotes the �rst derivative in respe
t to xk. The relation for

Ak 
an be dis
retised using the 
entral di�eren
e operator with 
onsisten
y order two on

the 
ompa
t sten
il, as all derivatives of u in the above equation are only di�erentiated up

to twi
e in ea
h dire
tion. As an example we examine the two-dimensional 
ase, where we

have

1

−1

−1

10

0

2 −20
∂3u(xi1

,xi2
)

∂x1∂x2
2

= 1
2(∆x1)(∆x2)

2 +ǫ,

with ǫ ∈ O
(

h2
)

if ∆x1,∆x2 ∈ O (h), and the values on the right hand side are the


oe�
ients of the 
ompa
t grid, the positioning being a

ording to Figure 3.1. When we

di�erentiate (3.2) twi
e with respe
t to xk and write

∂4u
∂x4

k

as subje
t, we obtain

∂4u

∂x4k
=−

n
∑

i=1
i 6=k

[

ai
ak

∂4u

∂x2i ∂x
2
k

+
2[ai]xk

ak

∂3u

∂x2i ∂xk
+

[ai]xkxk

ak

∂2u

∂x2i

]

− 2[ak]xk

ak

∂3u

∂x3k
− [ak]xkxk

ak

∂2u

∂x2k

−
n
∑

i,j=1
i<j
i,j 6=k

[

bij
ak

∂4u

∂xi∂xj∂x
2
k

+
2[bij ]xk

ak

∂3u

∂xi∂xj∂xk
+

[bij ]xkxk

ak

∂2u

∂xi∂xj

]

−
k−1
∑

i=1

bik
ak

∂4u

∂xi∂x
3
k

−
k−1
∑

i=1

[

2[bik]xk

ak

∂3u

∂xi∂x
2
k

+
[bik]xkxk

ak

∂2u

∂xi∂xk

]

−
n
∑

j=k+1

bkj
ak

∂4u

∂xj∂x
3
k

−
n
∑

j=k+1

[

2[bkj ]xk

ak

∂3u

∂xj∂x
2
k

+
[bkj]xkxk

ak

∂2u

∂xj∂xk

]

(3.7)

−
n
∑

i=1

[

ci
ak

∂3u

∂xi∂x
2
k

+
2[ci]xk

ak

∂2u

∂xi∂xk
+

[ci]xkxk

ak

∂u

∂xi

]

+
1

ak

∂2f

∂x2k
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=:Bk −
k−1
∑

i=1

bik
ak

∂4u

∂xi∂x
3
k

−
n
∑

j=k+1

bkj
ak

∂4u

∂xj∂x
3
k

,

where [·]xkxk
denotes the se
ond derivative in xk-dire
tion. We 
an dis
retise Bk with

se
ond order 
onsisten
y on the 
ompa
t sten
il, when using the 
entral di�eren
e operator

and the auxiliary relations for Ak in (3.6) for k = 1, . . . , n. Di�erentiating equation (3.2)

on
e with respe
t to xk and on
e with respe
t to xp leads to

ak
∂4u

∂x3k∂xp
+ ap

∂4u

∂xk∂x3p

=−
n
∑

i=1
i 6=k,p

[

ai
∂4u

∂x2i ∂xk∂xp
+ [ai]xk

∂3u

∂x2i ∂xp
+ [ai]xp

∂3u

∂x2i ∂xk
+ [ai]xkxp

∂2u

∂x2i

]

− [ap]xk

∂3u

∂x3p

− [ap]xp

∂3u

∂x2p∂xk
− [ap]xkxp

∂2u

∂x2p
− [ak]xk

∂3u

∂x2k∂xp
− [ak]xp

∂3u

∂x3k
− [ak]xkxp

∂2u

∂x2k

−
n
∑

i,j=1
i<j

[

bij
∂4u

∂xi∂xj∂xk∂xp
+ [bij ]xk

∂3u

∂xi∂xj∂xp
+ [bij ]xp

∂3u

∂xi∂xj∂xk
+ [bij ]xkxp

∂2u

∂xi∂xj

]

−
n
∑

i=1

[

ci
∂3u

∂xi∂xk∂xp
+ [ci]xk

∂2u

∂xi∂xp
+ [ci]xp

∂2u

∂xi∂xk
+ [ci]xkxp

∂u

∂xi

]

+
∂2f

∂xk∂xp
=: Ckp,

where Ckp 
an be dis
retised on the 
ompa
t sten
il using Ak and Ap, as de�ned in equation

(3.6), and the 
entral di�eren
e operator for k, p = 1, . . . , n with k 6= p. We get

∂4u

∂x3k∂xp
=

Ckp

ak
− ap

ak

∂4u

∂xk∂x3p
. (3.8)

3.3 Conditions for a
hieving a high-order 
ompa
t s
heme

In this se
tion we derive 
onditions on the 
oe�
ients of the partial di�erential equation

(3.1) under whi
h a high-order 
ompa
t (HOC) s
heme is a
hievable. This means that we

only want to use points of the n-dimensional 
ompa
t sten
il for dis
retisation and a
hieve

a fourth-order s
heme for ∆xi ∈ O (h) for j = 1, . . . , n for a given stepsize h. Using

equations (3.6) and (3.7) in (3.5) leads to

f =ε+

n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

+

n
∑

k=1

k−1
∑

i=1

bik(∆xk)
2

12

∂4u

∂xi∂x
3
k

+

n
∑

k=1

n
∑

j=k+1

bkj(∆xk)
2

12

∂4u

∂xj∂x
3
k
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−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6

=
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

+

n
∑

i,k=1
i<k

bik(∆xk)
2

12

∂4u

∂xi∂x3k
+

n
∑

j,k=1
k<j

bkj(∆xk)
2

12

∂4u

∂xj∂x3k

−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
+ ε,

and thus

f =

n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

−
n
∑

i,j=1
i<j

bij
12

[

(∆xi)
2 ∂4u

∂x3i ∂xj
+ (∆xj)

2 ∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
+ ε.

Applying (3.8) then gives

f =
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12
+ ε

−
n
∑

i,j=1
i<j

bij(∆xi)
2Cij

12ai
−

n
∑

i,j=1
i<j

bij
6

∂4u

∂xi∂x3j

[

(∆xj)
2 − aj(∆xi)

2

ai

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
, (3.9)

where ε ∈ O
(

h4
)

, if ∆xi ∈ O (h) for i = 1, . . . , n for the stepsize h. From this we 
an


on
lude that in order to a
hieve a HOC s
heme, we need either

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai
(3.10)

for all i, j ∈ {1, . . . , n} with i 6= j. This means that in the 
ase bi,j ≡ 0 for all i, j ∈ 1, . . . , n,

it is possible to 
hoose the stepsize of the dis
retisations of the di�erent dimensions of the

spatial domain 
ompletely free, whereas in the other possible 
ases for a HOC s
heme there

are interdependen
ies for at least some stepsizes in the dis
retisation pro
ess.
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3.4 System matri
es for the semi-dis
rete general 
ase

In this se
tion we present the semi-dis
rete high-order 
ompa
t s
hemes for (3.1) for the


ases ai ≡ a for i = 1, . . . n in spatial dimensions n = 2, 3. We 
onsider this in 
ases where

the 
ross derivatives do not vanish. We observe from the 
onditions in (3.10) that ∆xi = h

for i = 1, . . . n has to be satis�ed. Thus we de�ne, analogously to (3.3), the grid

G
(n)
h :=

{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ikh, 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

, (3.11)

where h > 0 and Nk ∈ N and x
(k)
max = x

(k)
min + (Nk − 1)h for k = 1, . . . , n. With

◦
G

(n)

h , we

denote the interior of G
(n)
h . Our goal for this se
tion is to derive the semi-dis
rete s
hemes

of the form

∑

x̂∈G
(n)
h

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g̃(x, τ), (3.12)

at time τ for ea
h point x ∈ ◦
G

(n)

h , where the fun
tion g̃ :
◦
G

(n)

h × Ωτ → R depends on the

fun
tion d given in (3.1).

3.4.1 Semi-dis
rete two-dimensional s
heme

In this se
tion we derive the high-order 
ompa
t dis
retisation of (3.1) in spatial dimension

n = 2. In order to a
hieve a HOC s
heme, we assume that the 
oe�
ients of the partial

di�erential equation (3.1) ful�l a = a1 ≡ a2 with ∆x1 = ∆x2. Using this assumption, the


oe�
ients satisfy the ne
essary 
onditions given in (3.10) for a high-order s
heme. Using

the 
entral di�eren
e operator in (3.9), where the auxiliary relations (3.6), (3.7) and (3.8)

have already been employed, we 
onsider the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ . This

leads to

K̂i1,i2 =− b12[a]x1x2

3a
− b12[c2]x1

6a
+

b12[a]x2c1
6a2

+
2b12[a]x1 [a]x2

3a2
− [a]x2x2

3
− c21

6a

+
2[a]2x1

3a
− [a]x1x1

3
− 10a

3h2
− [c2]x2

3
− [c1]x1

3
− b12[c1]x2

6a
+

2[a]2x2

3a
− c22

6a
(3.13)

+
b212
3ah2

+
b12[a]x1c2

6a2
,
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K̂i1±1,i2 =
c2[a]x2

12a
− b212

6ah2
+

b12[a]x1x2

12a
− c1[a]x1

12a
∓ hb12[a]x2 [c1]x1

24a2
± h[c1]x1x1

24

∓ hb12[a]x1 [c1]x2

24a2
± h[c1]x2x2

24
+

c21
12a

± hc1[c1]x1

24a
∓ h[a]x1 [c1]x1

12a
+

2a

3h2

± hb12[c1]x1x2

24a
− b12[a]x2c1

12a2
± hc2[c1]x2

24a
∓ b12[b12]x1

12ah
± c1

3h
± b212[a]x1

12a2h
(3.14)

∓ h[a]x2 [c1]x2

12a
+

[c1]x1

6
− [a]2x1

6a
− [a]2x2

6a
+

[a]x2x2

12
+

[a]x1x1

12
∓ c2b12

6ah

+
b12[c1]x2

12a
− b12[a]x1 [a]x2

6a2
± b12[a]x2

6ah
∓ [b12]x2

6h
,

K̂i1,i2±1 =− c2[a]x2

12a
− b212

6ah2
+

b12[c2]x1

12a
+

b12[a]x1x2

12a
+

c1[a]x1

12a
∓ hb12[a]x2 [c2]x1

24a2

+
[c2]x2

6
∓ hb12[a]x1 [c2]x2

24a2
− [a]2x1

6a
− [a]2x2

6a
+

c22
12a

+
[a]x2x2

12
+

[a]x1x1

12

∓ b12[b12]x2

12ah
± h[c2]x2x2

24
± h[c2]x1x1

24
+

2a

3h2
± hc1[c2]x1

24a
∓ h[a]x1 [c2]x1

12a
(3.15)

− b12[a]x1 [a]x2

6a2
± hb12[c2]x1x2

24a
± c2

3h
− b12[a]x1c2

12a2
∓ h[a]x2 [c2]x2

12a

± hc2[c2]x2

24a
± b212[a]x2

12a2h
± b12[a]x1

6ah
∓ c1b12

6ah
∓ [b12]x1

6h
,

K̂i1±1,i2−1 =
b212

12ah2
∓ c1c2

24a
± [a]x2c1

24a
∓ b12[c2]x2

48a
± [a]x2 [b12]x2

24a
± [a]x1 [b12]x1

24a

± [a]x1c2
24a

∓ c1[b12]x1

48a
∓ b12[c1]x1

48a
∓ c2[b12]x2

48a
∓ b12[b12]x1x2

48a
∓ [c1]x2

24

∓ [c2]x1

24
∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ b12[b12]x2

24ah
± c2b12

12ah
± b12[b12]x1

24ah

± b12[a]x2 [b12]x1

48a2
± b12[a]x1c1

48a2
+

a

6h2
+

b212[a]x2

24a2h
± b12[a]x1 [b12]x2

48a2
(3.16)

± b12[a]x2c2
48a2

+
b12[a]x1

12ah
∓ b12[a]x2

12ah
− c1b12

12ah
− [b12]x1

12h
± [b12]x2

12h

∓ b212[a]x1

24a2h
∓ b12

4h2
− c2

12h
± c1

12h

as well as
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K̂i1±1,i2+1 =
b212

12ah2
± c1c2

24a
∓ [a]x2c1

24a
± b12[c2]x2

48a
∓ [a]x2 [b12]x2

24a
∓ [a]x1 [b12]x1

24a

∓ [a]x1c2
24a

± c1[b12]x1

48a
± b12[c1]x1

48a
± c2[b12]x2

48a
± b12[b12]x1x2

48a
± [c1]x2

24

± [c2]x1

24
± [b12]x1x1

48
± [b12]x2x2

48
+

b12[b12]x2

24ah
± c2b12

12ah
± b12[b12]x1

24ah

∓ b12[a]x2 [b12]x1

48a2
∓ b12[a]x1c1

48a2
+

a

6h2
− b212[a]x2

24a2h
∓ b12[a]x2c2

48a2
(3.17)

− b12[a]x1

12ah
∓ b12[a]x2

12ah
+

c1b12
12ah

∓ b12[a]x1 [b12]x2

48a2
+

[b12]x1

12h
± [b12]x2

12h

∓ b212[a]x1

24a2h
± b12

4h2
+

c2
12h

± c1
12h

,

where K̂l,m is the 
oe�
ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
We use [·]xk

as the �rst derivative in respe
t to xk and [·]xkxp as the se
ond derivative,

on
e in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2. Note that a, b1,2, c1 and c2 are

evaluated at (xi1 , xi2) ∈ ◦
G

(2)

h and τ ∈ Ωτ . Analogously we have that M̂l,m denotes the


oe�
ient of ∂τUl,m (τ) for l ∈ {i1 − 1, i1, i1 +1} and m ∈ {i2 − 1, i2, i2 +1} for ea
h point

(xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12
48a

, M̂i1,i2±1 =
1

12
∓ h[a]x2

12a
∓ b12h[a]x1

24a2
± c2h

24a
,

M̂i1±1,i2 =
1

12
∓ b12h[a]x2

24a2
± hc1

24a
∓ h[a]x1

12a
, M̂i1,i2 =

2

3
.

(3.18)

Additionally, we obtain with x ∈ ◦
G

(2)

h

g̃(x, τ) =

(

h2a2c1 − 2h2a2[a]x1 − b12h
2[a]x2a

)

[g]x1

12a3
+

h2[g]x1x1

12
+

b12h
2[g]x1x2

12a

+

(

h2a2c2 − b12h
2[a]x1a− 2h2a2[a]x2

)

[g]x2

12a3
+

h2[g]x2x2

12
+ g

(3.19)

for τ ∈ Ωτ . Note that a, b12, c1, c2 and g in (3.13) - (3.19) are fun
tions evaluated at

(xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . Thus we have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (3.12) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for x = (xi1 , xi2) ∈
◦
G

(2)

h

and τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus, the dis
retisation only uses points of

the 
ompa
t grid.
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3.4.2 Semi-dis
rete three-dimensional s
heme

In this se
tion we derive the high order 
ompa
t dis
retisation of (3.1) in spatial dimension

n = 3. Considering the 
onditions in (3.10) we observe that in the three-dimensional 
ase

we have three possibilities to satisfy the 
onditions and to 
reate a high order 
ompa
t

s
heme. The �rst way is that the 
oe�
ients satisfy

a = a1 ≡ a2 ≡ a3 with ∆x1 = ∆x2 = ∆x3.

The se
ond possibility to generate a high order 
ompa
t s
heme is

a = ap ≡ aq with ∆xp = ∆xq and bp,k ≡ bq,k ≡ 0,

where {p, q, k} = {1, 2, 3} and, without loss of generality, p ≤ k as well as q ≤ k hold. The

third way to be able to a
hieve a high-order 
ompa
t s
heme is by having

b1,2 ≡ b1,3 ≡ b2,3 ≡ 0.

Again, we fo
us on the 
ase a = a1 ≡ a2 ≡ a3. Using the 
entral di�eren
e operator in

(3.9), where we 
onsider an interior point (xi1 , xi2 , xi3) ∈
◦
G

(3)

h , leads to

K̂i1,i2,i3 =
b23[a]x2c3

6a2
+

b13[a]x1c3
6a2

− [c3]x3

3
− c21

6a
− c23

6a
− [a]x1x1

2
− [a]x2x2

2
− [a]x3x3

2

+
b13[a]x3c1

6a2
+

b12[a]x2c1
6a2

− 4a

h2
+

b13[a]x3 [a]x1

a2
+

b23[a]x3 [a]x2

a2
+

b23[a]x3c2
6a2

+
b12[a]x1 [a]x2

a2
+

b12[a]x1c2
6a2

− b13[c3]x1

6a
− c1[a]x1

6a
+

b223
3ah2

− b12[a]x1x2

2a

− c2[a]x2

6a
+

b213
3ah2

+
b212
3ah2

− c3[a]x3

6a
− b13[a]x1x2

2a
− b23[c2]x3

6a
− b12[c2]x1

6a

− b23[a]x2x3

2a
− b13[c1]x3

6a
− b23[c3]x2

6a
− b12[c1]x2

6a
− c22

6a
+

[a]2x1

a
+

[a]2x3

a

+
[a]2x2

a
− [c2]x2

3
− [c1]x1

3
,

and

K̂i1±1,i2−1,i3 =
b13[a]x3b12
24a2h

∓ b23[a]x3b12
24a2h

∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ [b12]x3x3

48
+

b12[a]x1

12ah

− b12c1
12ah

± b12c2
12ah

± b12[a]x1c1
48a2

± b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
∓ b12[a]x2

12ah

± b23[a]x2 [b12]x3

48a2
± b13[a]x1 [b12]x3

48a2
± b12[a]x2 [b12]x1

48a2
± b12[a]x2c2

48a2
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± b23[a]x3c1
48a2

± b23[a]x3 [b12]x2

48a2
− b12[b12]x2

24ah
± b13[a]x3 [b12]x1

48a2
± b13[a]x3c2

48a2

± b12[b12]x1

24ah
± b23[b12]x3

24ah
− b13[b12]x3

24ah
± b13b23

12ah2
+

[a]x2b
2
12

24a2h
− c2

12h
∓ b12

6h2

± c1
12h

+
a

6h2
− [b12]x1

12h
± [b12]x2

12h
∓ b23[b12]x2x3

48a
∓ b13[c2]x3

48a
∓ b12[b12]x1x2

48a

∓ b23[c1]x3

48a
∓ b12[c1]x1

48a
± [a]x1c2

24a
∓ c2[b12]x2

48a
+

b212
12ah2

∓ b13[b12]x1x2

48a

∓ c1[b12]x1

48a
± [a]x3 [b12]x3

24a
∓ c3[b12]x3

48a
± [a]x2c1

24a
∓ b12[c2]x2

48a
± [a]x1 [b12]x1

24a

± [a]x2 [b12]x2

24a
∓ c1c2

24a
∓ [c1]x2

24
∓ [c2]x1

24
,

where K̂k,l,m is the 
oe�
ient of Uk,l,m (τ) for k ∈ {i1 − 1, i1, i1 +1}, l ∈ {i2 − 1, i2, i2 +1}
and m ∈ {i3 − 1, i3, i3 + 1}. Due to the size of the 
oe�
ients, we only show examples

here. A full list of the 
oe�
ients 
an be found in the appendix, see (D.1) to (D.14). We

use [·]xk
as the �rst derivative in respe
t to xk and [·]xkxp as the se
ond derivative on
e

in xk- and on
e in xp-dire
tion with k, p ∈ 1, 2, 3. Note that a, b1,2, b1,3, b2,3, c1, c2 and

c3 are evaluated at (xi1 , xi2 , xi3) ∈ ◦
G

(3)

h and τ ∈ Ωτ . In a similar way we de�ne M̂k,l,m

as the 
oe�
ient of ∂τUk,l,m (τ) for k ∈ {i1 − 1, i1, i1 + 1}, l ∈ {i2 − 1, i2, i2 + 1} and

m ∈ {i3 − 1, i3, i3 + 1} with

M̂i1±1,i2−1,i3 =M̂i1∓1,i2+1,i3 = ∓ b12
48a

, M̂i1,i2,i3 =
1

2
,

M̂i1±1,i2,i3−1 =M̂i1∓1,i2,i3+1 = ∓ b13
48a

, M̂i1,i2±1,i3−1 = M̂i1,i2∓1,i3+1 = ∓ b23
48a

,

M̂i1±1,i2,i3 =
1

12
∓ hb12[a]x2

24a2
∓ hb13[a]x3

24a2
± hc1

24a
∓ h[a]x1

12a
,

M̂i1,i2±1,i3 =
1

12
∓ hb12[a]x1

24a2
∓ hb23[a]x3

24a2
± hc2

24a
∓ h[a]x2

12a
, (3.20)

M̂i1,i2,i3±1 =
1

12
∓ hb23[a]x2

24a2
∓ hb13[a]x1

24a2
± hc3

24a
∓ h[a]x3

12a
,

M̂i1±1,i2−1,i3−1 =M̂i1±1,i2+1,i3−1 = M̂i1±1,i2−1,i3+1 = M̂i1±1,i2+1,i3+1 = 0.

For the right hand side of (3.12) we have with x = (xi1 , xi2 , xi3) ∈
◦
G

(3)

h

g̃(x, τ) =

(

c1h
2a− 2h2[a]x1a− b12h

2[a]x2 − b13h
2[a]x3

)

[g]x1

12a2
+

b13h
2[g]x1x3

12a

+

(

c2h
2a− 2h2[a]x2a− b12h

2[a]x1 − b23h
2[a]x3

)

[g]x2

12a2
+

b23h
2[g]x2x3

12a

+

(

c3h
2a− 2h2[a]x3a− b13h

2[a]x1 − b23h
2[a]x2

)

[g]x3

12a2
+

h2[g]x1x1

12
(3.21)
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+
b12h

2[g]x1x2

12a
+

h2[g]x3x3

12
+

h2[g]x2x2

12
+ g

for τ ∈ Ωτ . Note again that a, b12, b13, b23, c1, c2, c3 as well as g are evaluated at

(xi1 , xi2 , xi3) ∈
◦
G

(3)

h and τ ∈ Ωτ . We have

Kx(xn1 , xn2 , xn3 , τ) = K̂n1,n2,n3 as well as Mx(xn1 , xn2 , xn3 , τ) = M̂n1,n2,n3

with n1 ∈ {i1 − 1, i1, i1 + 1}, n2 ∈ {i2 − 1, i2, i2 + 1} and n3 ∈ {i3 − 1, i3, i3 + 1} for x =

(xi1 , xi2 , xi3) ∈
◦
G

(3)

h and τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus the dis
retisation

only uses points of the 
ompa
t sten
il.

3.4.3 Stability analysis for the Cau
hy problem in dimensions n = 2, 3

In this se
tion we 
onsider the stability of the high-order 
ompa
t �nite di�eren
e dis
reti-

sation of (3.1) for n = 2, 3 for the spatial interior. The 
oe�
ients of the semi-dis
rete

s
heme are given in Se
tion 3.4.1 for two spatial dimensions and in Se
tion 3.4.2, when

three spatial dimensions o

ur. Those 
oe�
ients are non-
onstant, as the 
oe�
ients of

the paraboli
 partial di�erential equation (1.8) are non-
onstant. We also show stability

for spe
i�
 
ases for a non-vanishing 
ross derivative.

We 
onsider a von Neumann stability analysis, although our setting does not have

periodi
 boundary 
onditions, see e.g. [Str04℄. For both n = 2 and n = 3, we give a proof

of stability in the 
ase of vanishing 
ross derivative terms and frozen 
oe�
ients, whi
h

means that all possible values for the 
oe�
ients are 
onsidered, but as 
onstants, so the

derivatives of the 
oe�
ients of the partial di�erential equation appearing in the dis
rete

s
hemes are set to zero. This approa
h has been used as well in [GKO13, Str04℄ and

gives a ne
essary stability 
ondition, whereas slightly stronger 
onditions than the ones

established through frozen 
oe�
ients are su�
ient to ensure overall stability [RM67℄.

Stability analysis for the two-dimensional general di�erential equation

In this part we perform a von Neumann stability analysis [Str04℄ for the two-dimensional

high-order 
ompa
t s
heme, whi
h we derived in Se
tion 3.4.1. The analysis of the 
ase

with vanishing 
ross-derivative and frozen 
oe�
ients are 
arried out in detail. In the 
ase

of non-vanishing 
ross derivatives, only partial results are given.
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We apply n = 2 for De�nition 19, where we use a fully dis
rete high-order 
ompa
t

s
heme, as given in De�nition 17. This leads to the fully dis
retised �nite di�eren
e s
heme

1
∑

l1,l2=−1

Ax (xi1+l1 , xi2+l2)U
n+1
i1+l1,i2+l2

=

1
∑

l1,l2=−1

Bx (xi1+l1 , xi2+l2)U
n
i1+l1,i2+l2

+ ĝ(x, τn, τn+1)

(3.22)

at the point x = (xi1 , xi2) ∈
◦
G

(2)

h with

Ax (x̂) := Mx (x̂) +
∆τ

2
Kx (x̂) , Bx (x̂) := Mx (x̂)−

∆τ

2
Kx (x̂)

for x̂ ∈ G
(2)
h and h > 0, in whi
h we use

Un
j1,j2 = gneI(j1z1+j2z2)

for j1 ∈ {i1 − 1, i1, i1 + 1} and j2 ∈ {i2 − 1, i2, i2 + 1}, where I is the imaginary unit,

gn is the amplitude at time level n, z1 = 2πh/λ1 and z2 = 2πh/λ2 for the wavelengths

λ1, λ2 ∈ [0, 2π[. Then the fully dis
retised s
heme satis�es the ne
essary von Neumann

stability 
ondition for all z1, z2, when the ampli�
ation fa
tor G = gn+1/gn satis�es

|G|2 − 1 ≤ 0, (3.23)


ompare for example [Str04℄.

Theorem 1:

For a = a1 = a2 < 0 and b12 = 0, the fully dis
rete high-order 
ompa
t �nite di�er-

en
e s
heme given in (3.22) with 
oe�
ients de�ned in Se
tion 3.4.1, satis�es (for frozen


oe�
ients) the ne
essary stability 
ondition (3.23).

Proof: We de�ne

ξ1 = cos
(z1
2

)

, ξ2 = cos
(z2
2

)

, η1 = sin
(z1
2

)

and η2 = sin
(z2
2

)

.

In these new variables the stability 
ondition given in (3.23) in 
ombination with the def-

inition of the 
oe�
ients in the two dimensional 
ase, whi
h are de�ned in the equations

(3.13) to (3.18), used in (3.22), 
an be written as
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|G|2 − 1 =
NG

DG
.

We now want to dis
uss the numerator NG and the denominator DG separately. The

numerator 
an be written as

NG = 8ka
(

n4h
4 + n2h

2
)

,

where

n2 =8a2f1 (ξ1, ξ2) f2 (ξ1, ξ2)

and

n4 =f3 (ξ1) f4 (ξ1, ξ2) c
2
1 + f3 (ξ2) f4 (ξ2, ξ1) c

2
2

are non-negative sin
e

f1 (x, y) =x2 + y2 + 1 ≥ 0,

f2 (x, y) =2− x

(

y2 +
1

2

)

− y2

2
≥ 0,

f3 (x) =x2 − 1 ≤ 0,

f4 (x, y) =2x2y2 − x2 − 1 ≤ 0

as x, y ∈ [−1, 1]. We 
an see that NG ≤ 0 holds, as ξ1, ξ2 ∈ [−1, 1]. Now we 
onsider the

denominator DG, whi
h 
an be written as

DG = d6h
6 +

(

d4,2k
2 + d4,1k + d4,0

)

h4 + (d2,2k
2 + d2,1k)h

2 + d0,

where

d0 =16a4k2
(

2x2y2 + x2 + y2 − 4
)2 ≥ 0,

d2,1 =16a3f1 (ξ1, ξ2) f5 (ξ1, ξ2) ≥ 0,

d2,2 =4a2
[

9 (ξ1η1c1 + ξ2η2c2)
2 + 2f3 (ξ1) f6 (ξ1, ξ2) c

2
1 + 2f3 (ξ2) f6 (ξ2, ξ1) c

2
2

]

,

d4,0 =4a2f1 (ξ1, ξ2)
2 ≥ 0,
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d4,1 =− 4an4 ≥ 0,

d4,2 =
[

f3(ξ1)c
2
1 − 2η1η2ξ1ξ2c1c2 + f3(ξ2)c

2
2

]2 ≥ 0,

d6 =(ξ1η1c1 + ξ2η2c2)
2 ≥ 0,

be
ause a < 0 and

f5 (x, y) =2x2y2 + x2 + y2 − 4 ≤ 0

f6 (x, y) =2x2y4 − 5x2 − y2 + 4

as x, y ∈ [−1, 1]. We observe that f6 (x, y) 
hanges signs. We have for example f6 (0, 0) = 4

and f6 (1, 0) = −1. Thus, we 
annot determine the sign of d2,2 dire
tly. If we 
an �nd

some 
onditions on c1 and c2 to realise that d2,2 ≥ 0, then we 
an a
hieve DG ≥ 0 for

a ≤ 0 and the ne
essary stability 
ondition in (3.23) would be satis�ed.

If c1 = c2 = 0, then we have d2,2 = 0 and thus (3.23) would be satis�ed. Sin
e d2,2 is

symmetri
, we 
an say without loss of generality that c1 6= 0. Furthermore, as both c1 and

c2 are frozen 
oe�
ients, we set m = c2
c1
, whi
h leads to

d2,2 =4a2c21

[

9 (ξ1η1 + ξ2η2m)2 + 2f3 (ξ1) f6 (ξ1, ξ2) + 2f3 (ξ2) f6 (ξ2, ξ1)m
2
]

=: 4a2c21g (m) .

The fun
tion g (m) 
an be rewritten to

g (m) =η21f7 (ξ1, ξ2)m
2 + 18ξ1ξ2η1η2m+ η22f7 (ξ2, ξ1)

with

f7 (x, y) =4x4y2 − 2x2 − y2 + 8 ≥ −2x2 − y2 + 8 ≥ 5

In the 
ase η2 = 0 we have g(m) = η21f7 (ξ1, ξ2)m
2 ≥ 0 and thus d2,2 ≥ 0, whi
h leads to

(3.23) being satis�ed. In the 
ase η2 6= 0 we have η21f7(ξ1, ξ2) > 0, so the fun
tion g (m)

has a global minimum. This minimum is lo
ated at

m̂ =
−9ξ1ξ2η1

η2f7 (ξ1, ξ2)
,
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whi
h leads to

g (m̂) =
2η21f5 (ξ1, ξ2) f8

f7 (ξ1, ξ2)
,

where

f8 =6ξ21ξ
2
2 + ξ21 + ξ22 − 2ξ41ξ

2
2η

2
2 − 2ξ21η

2
1ξ

4
2 − 8 ≤ 0.

As we already know, f5 (ξ1, ξ2) ≤ 0, so we have

g(m) ≥ 0 for all m ∈ R,

and thus for a ≤ 0 we have that DG ≥ 0 and hen
e the von Neumann stability 
ondition

given in (3.23) is satis�ed.

Often it is most di�
ult to guarantee that (3.23) holds for extreme values of η1, η2, ξ1

and ξ2. We have the following result:

Lemma 3:

The high order 
ompa
t �nite di�eren
e s
heme given in (3.22), where the 
oe�
ients for

the two dimensional 
ase de�ned in Se
tion 3.4.1 are used, satis�es the ne
essary stability


ondition given in (3.23) on the 
orner points of ξ1 and ξ2, i.e. ξ1 = cos
(

z1
2

)

= ±1 and

ξ2 = cos
(

z2
2

)

= ±1.

Proof: Using sin
(

z1
2

)

=
√

1− ξ21 = 0 for ξ1 = ±1 and sin
(

z2
2

)

=
√

1− ξ22 = 0 for ξ2 = ±1

and simple evaluation, we have on ea
h 
orner point

|G| − 1 =
0

−36a2h4
= 0,

whi
h satis�es the restri
tion (3.23).

Stability study for the three-dimensional general di�erential equation

In this part we want to dis
uss the stability of a three-dimensional high-order 
ompa
t

s
heme, where the 
oe�
ients of the semi-dis
rete s
heme are given in Se
tion 3.4.2. We

�rst perform a thorough von Neumann stability analysis [Str04℄ in the 
ase of vanishing


ross derivative terms and frozen 
oe�
ients. We observe that there is no additional sta-

bility 
ondition in this 
ase. Then we give partial results in the 
ase of non-vanishing

85




ross-derivative terms.

In three dimensions, the fully dis
rete high-order 
ompa
t �nite di�eren
e s
heme at

the point x = (xi1 , xi2 , xi3) ∈
◦
G

(3)

h is given by

1
∑

l1,l2,l3=−1

Ax (xi1+l1 , xi2+l2 , xi3+l3)U
n+1
i1+l1,i2+l2,i3+l3

=

1
∑

l1,l2,l3=−1

Bx (xi1+l1 , xi2+l2 , xi3+l3)U
n
i1+l1,i2+l2,i3+l3 + ĝ(x, τn, τn+1)

(3.24)

with

Ax (x̂) := Mx (x̂) +
∆τ

2
Kx (x̂) , Bx (x̂) := Mx (x̂)−

∆τ

2
Kx (x̂)

for x̂ ∈ G
(3)
h and h > 0, see De�nition 17. We use

Un
j1,j2,j3 =gneI(j1z1+j2z2+j3z3)

for j1 ∈ {i1 − 1, i1, i1 + 1}, j2 ∈ {i2 − 1, i2, i2 + 1} and j3 ∈ {i3 − 1, i3, i3 + 1}, where
I is the imaginary unit, gn is the amplitude at time level n, z1 = 2πh/λ1, z2 = 2πh/λ2

and z3 = 2πh/λ3 for the wavelengths λ1, λ2, λ3 ∈ [0, 2π[. Then the fully dis
retised �nite

di�eren
e s
heme satis�es the ne
essary stability 
ondition, if for all z1, z2 and z3 the

ampli�
ation fa
tor G = gn+1/gn satis�es the relation

|G|2 − 1 ≤ 0. (3.25)

Theorem 2:

For a = a1 = a2 = a3 < 0 and b12 = b13 = b23 = 0, the fully dis
rete high-order 
ompa
t

�nite di�eren
e s
heme given in (3.24) with 
oe�
ients de�ned in Se
tion 3.4.2, satis�es

(for frozen 
oe�
ients) the ne
essary stability 
ondition (3.25).

Proof: We de�ne

ξ1 = cos
(z1
2

)

, ξ2 = cos
(z2
2

)

, ξ3 = cos
(z3
2

)

,

as well as

η1 = sin
(z1
2

)

, η2 = sin
(z2
2

)

and η3 = sin
(z3
2

)

.

In these new variables the stability 
ondition given in (3.25) in 
ombination with the
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de�nition of the 
oe�
ients in the three dimensional 
ase, whi
h are de�ned in the equations

(3.13) to (3.18), used in (3.24), 
an be written as

We 
an write

|G|2 − 1 =
NG

DG
,

where from a < 0 it follows that

NG = −8ak
(

n4h
4 + n2h

2
)

≤ 0,

as

n2 =4a2f1 (ξ1, ξ2, ξ3) [f2 (ξ1, ξ2) + f2 (ξ3, ξ1) + f2 (ξ2, ξ3)] ≤ 0,

n4 = [f3 (ξ1, ξ2) + f3 (ξ1, ξ3)] c
2
1 + [f3 (ξ2, ξ1) + f3 (ξ2, ξ3)] c

2
2 + [f3 (ξ3, ξ1) + f3 (ξ3, ξ2)] c

2
3

− η23 (ξ1η1c1 + ξ2η2c2)
2 − η22 (ξ1η1c1 + ξ3η3c3)

2 − η21 (ξ2η2c2 + ξ3η3c3)
2 ≤ 0,

be
ause of

f1 (x, y) =x2 + y2 + z2 ≥ 0,

f2 (x, y) =2x2y2 − x2 − 1 ≤ 0,

f3 (x, y) =x2y2
(

1− x2
)

+ y2
(

x2 − 1
)

≤ y2
(

1− x2
)

+ y2
(

x2 − 1
)

= 0,

when x, y, z ∈ [−1, 1] holds. The denominator DG 
an be written as

DG = d6h
6 +

(

d4,2k
2 + d4,1k + d4,0

)

h4 +
(

d2,2k
2 + d2,1k

)

h2 + d0,

where

d0 =16a4k2 [m1(ξ1, ξ2) +m1(ξ3, ξ1) +m1(ξ2, ξ3)]
2 ≥ 0,

d2,1 =16a3m2 (c1ξ1, c2ξ2, c3ξ3) [m1(ξ1, ξ2) +m1(ξ3, ξ1) +m1(ξ2, ξ3)] = 4an2 ≥ 0,

d2,2 =4a2
[

m6 (ξ1, η1, ξ2) c
2
1 + 2m7 (ξ3) ξ1ξ2η1η2c1c2 +m6 (ξ2, η2, ξ1) c

2
2

+m6 (ξ1, η1, ξ3) c
2
1 + 2m7 (ξ2) ξ1ξ3η1η3c1c3 +m6 (ξ3, η3, ξ1) c

2
3

+m6 (ξ2, η2, ξ3) c
2
2 + 2m7 (ξ1) ξ2ξ3η2η3c2c3 +m6 (ξ3, η3, ξ2) c

2
3

+m5 (η1, ξ2, ξ3) c
2
1 +m5 (η2, ξ1, ξ3) c

2
2 +m5 (η3, ξ1, ξ2) c

2
3

]
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d4,0 =4a2m2 (ξ1, ξ2, ξ3)
2 ≥ 0,

d4,1 =4an4 ≥ 0,

d4,2 =
[

η21c
2
1 + η22c

2
2 + η23c

2
3 + 2ξ1η1ξ2η2c1c2 + 2ξ1η1ξ3η3c1c3 + 2ξ2η2ξ3η3c2c3

]2 ≥ 0,

d6 = [ξ1η1c1 + ξ2η2c2 + ξ3η3c3]
2 ≥ 0,

with a < 0 and

m1 (x, y) =2x2y2 − x2 − 1 ≤ 2x2 − x2 − 1 = x2 − 1 ≤ 0,

m2 (x, y, z) =x2 + y2 + z2 ≥ 0,

m3 (x, y) =x2y2
(

1− x2
)

+ y2
(

x2 − 1
)

≤ y2
(

1− x2
)

+ y2
(

x2 − 1
)

= 0,

m4 (x, y) ==(1− x2)[x2(y2 − 1) + y2(x2 − 1)] ≤ 0,

m5 (x, y, z) =− 8x4y2z2 + 4x2y2z2 + 4x2 ≥ −8x2y2z2 + 4x2y2z2 + 4x2

=− 4x2y2z2 + 4x2 ≥ −4x2 + 4x2 = 0

m6 (x1, x2, y) =4x22x
2
1y

4 + (−8x22x
2
1 + 2x22)y

2 + x22 +
3

2
x21x

2
2 ∈ [0, 3]

m7 (x) =2x2(x2 − (1− x2)) + 7 ≥ 0

for x, y, z ∈ [−1, 1]. We still need to show d2,2 ≥ 0. Sin
e we 
annot determine the sign of

d2,2 dire
tly, we 
onsider three di�erent 
ases.

Having ξ22 = ξ23 = 1 leads to

d2,2 =4a2
[

2

(

−5

2
ξ21η

2
1 + 3η21

)

c21 +
(

−8η41 + 8η21
)

c21

]

≥4a2
[

2

(

−5

2
η21 + 3η21

)

c21 +
(

−8η21 + 8η21
)

c21

]

= 4a2c21η
2
1 ≥ 0

as η21 ≤ 1.

Se
ondly, we 
onsider c1 = c2 = c3 = 0. This leads dire
tly to d2,2 = 0.

From now on we have (c1, c2, c3) 6= (0, 0, 0). Sin
e d2,2 is symmetri
 in respe
t to c1, c2, c3

we 
an say without loss of generality that c1 6= 0. Additionally, we have
(

ξ22 , ξ
2
3

)

6=
(

1, 1
)

.
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Setting p2 := c2/c1 and p3 := c3/c1 gives

d2,2 =4a2c21
[

m6 (ξ1, η1, ξ2) + 2m7 (ξ3) ξ1ξ2η1η2p2 +m6 (ξ2, η2, ξ1) p
2
2

+m6 (ξ1, η1, ξ3) + 2m7 (ξ2) ξ1ξ3η1η3p3 +m6 (ξ3, η3, ξ1) p
2
3

+m6 (ξ2, η2, ξ3) p
2
2 + 2m7 (ξ1) ξ2ξ3η2η3p2p3 +m6 (ξ3, η3, ξ2) p

2
3

+m5 (η1, ξ2, ξ3) +m5 (η2, ξ1, ξ3) p
2
2 +m5 (η3, ξ1, ξ2) p

2
3

]

=:4a2c21
[

k11p
2
2 + k22p

2
3 + k12p2p3 + k1p2 + k2p3 + k0

]

=: 4a2c21g (p2, p3) .

In order to 
al
ulate the extremum of g (p2, p3)

∇g (p̂2, p̂3) =







2k11p̂2 + k12p̂3 + k1

k12p̂2 + 2k22p̂3 + k2






=







0

0







is ne
essary, whi
h leads to

p̂2 =
2k1k22 − k2k12
k212 − 4k211k

2
22

, p̂3 =
2k2k11 − k1k12
k212 − 4k211k

2
22

,

where we have

k212 − 4k211k
2
22 = q1q2q3

with

q1 =η2
2η3

2

q2 =− 2 ξ1
2ξ2

2 − 2 ξ1
2ξ3

2 − 2 ξ2
2ξ3

2 + ξ1
2 + ξ2

2 + ξ3
2 + 3 ∈ [0, 4]

q3 =8 ξ1
4ξ2

2ξ3
2 + 4 ξ1

2ξ2
4ξ3

2 + 4 ξ1
2ξ2

2ξ3
4 + 4 ξ2

4ξ3
4 − 4 ξ1

4ξ2
2

− 4 ξ1
4ξ3

2 − 22 ξ1
2ξ2

2ξ3
2 − 6 ξ2

4ξ3
2 − 6 ξ2

2ξ3
4 + 8 ξ1

2ξ2
2

+ 8 ξ1
2ξ3

2 + 20 ξ2
2ξ3

2 − 2 ξ1
2 − 3 ξ2

2 − 3 ξ3
2 − 6 ∈ [−9, 0].

There is q1q2q3 6= 0 for
(

ξ22 , ξ
2
3

)

6= (1, 1). Sin
e this is the unique root of ∇g, as k11, k22 ≥ 0,

we have a minimum at p2 = p̂2 and p3 = p̂3. Thus we get

g (p̂2, p̂3) = q4q5
q6
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where

q4 =2η21
(

2ξ21ξ
2
2 + 2ξ21ξ

2
3 + 2ξ22ξ

2
3 − ξ21 − ξ22 − ξ23 − 3

)

≤ 2η21
(

ξ21 + ξ22 + ξ23 − 3
)

≤ 0

q5 =8ξ41ξ
4
2ξ

2
3 + 8ξ41ξ

2
2ξ

4
3 + 8ξ21ξ

4
2ξ

4
3 − 4ξ41ξ

4
2 − 20ξ41ξ

2
2ξ

2
3 − 4ξ41ξ

4
3 − 20ξ21ξ

4
2ξ

2
3 − 20ξ21ξ

2
2ξ

4
3

− 4ξ42ξ
4
3 + 6ξ22ξ

4
1 + 6ξ41ξ

2
3 + 6ξ21ξ

4
2 + 57ξ21ξ

2
2ξ

2
3 + 6ξ21ξ

4
3 + 6ξ42ξ

2
3 + 6ξ22ξ

4
3

− 20ξ22ξ
2
1 − 20ξ21ξ

2
3 − 20ξ22ξ

2
3 + 3ξ21 + 3ξ22 + 3ξ23 + 6 ∈ [0, 9]

q6 =8ξ41ξ
2
2ξ

2
3 + 4ξ21ξ

4
2ξ

2
3 + 4ξ21ξ

2
2ξ

4
3 + 4ξ42ξ

4
3 − 4ξ22ξ

4
1 − 4ξ41ξ

2
3 − 22ξ21ξ

2
2ξ

2
3

− 6ξ42ξ
2
3 − 6ξ22ξ

4
3 + 8ξ22ξ

2
1 + 8ξ21ξ

2
3 + 20ξ22ξ

2
3 − 2ξ21 − 3ξ22 − 3ξ23 − 6 ∈ [−9, 0]

with q6 6= 0 for

(

ξ22 , ξ
2
3

)

6= (1, 1). With these three 
ases we have d2,2 ≥ 0, and hen
e

NG ≥ 0 follows. The 
ondition (3.25) is satis�ed.

Lemma 4:

The fully dis
rete high-order 
ompa
t �nite di�eren
e s
heme given in (3.24), where the


oe�
ients for the three-dimensional 
ase de�ned in se
tion 3.4.2 are used, satis�es the

ne
essary stability 
ondition given in (3.25) on the 
orner points of ξ1, ξ2 and ξ3, so ξ1 =

cos (z1/2) = ±1, ξ2 = cos (z2/2) = ±1 and ξ3 = cos (z3/2) = ±1.

Proof: Using sin (z1/2) =
√

1− ξ21 = 0 for ξ1 = ±1, sin (z2/2) =
√

1− ξ22 = 0 for ξ2 = ±1

and sin (z3/2) =
√

1− ξ23 = 0 for ξ3 = ±1 and simple evaluation, we obtain

|G| − 1 =
0

−36a2h4
= 0,

whi
h satis�es 
ondition (3.25).

3.5 Appli
ation to Bla
k-S
holes basket options

In this se
tion we want to show that the n-dimensional Bla
k-S
holes di�erential equation

satis�es, after transformations, the 
onditions (3.10) of a high-order 
ompa
t s
heme and


al
ulate the resulting s
heme for the interior of the grid. After that we look at the

boundary 
onditions for an n-dimensional spatial domain and �nally dis
uss the time

dis
retisation.
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3.5.1 Transformation of the n-dimensional Bla
k-S
holes equation

In the multidimensional Bla
k S
holes model, see De�nition 10, the sto
ks follow the

pro
esses

dSi(t) = (µi − δi)Si(t)dt+ σiSi(t)dWi(t), (3.26)

where Si is the i-th sto
k, whi
h has an expe
ted return of µi, a 
ontinuous dividend of

δi, and the volatility σi for i = 1, . . . , n and n ∈ N. The Sto
k Si follows a geometri


Brownian motion, so dWi is a Wiener pro
ess. The Wiener pro
esses are 
orrelated with

〈dWi, dWj〉 =: ρi,jdt for i, j = 1, . . . , n with i 6= j. The appli
ation of Itô's Lemma

and standard arbitrage arguments show that any option pri
e V (S, σ, t) solves the n-

dimensional Bla
k-S
holes partial di�erential equation,

∂V

∂t
+

1

2

n
∑

i=1

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i,j=1
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n
∑

i=1

(r − δi)Si
∂V

∂Si
− rV =0. (3.27)

The transformations

xi =
γ

σi
ln

(

Si

K

)

, τ = T − t and u = erτ
V

K
, (3.28)

where γ is a 
onstant s
aling parameter to assure that the resulting 
omputational domain

does not get too large, lead for i = 1, . . . , n to

uτ −
γ2

2

n
∑

i=1

∂2u

∂x2i
− γ2

n
∑

i,j=1
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1

[

σi
2

− r − δi
σi

]

∂u

∂xi
=0. (3.29)

When 
omparing this with (3.1), we see that

ai (x1, . . . , xn, τ) =
−γ

2
, bij (x1, . . . , xn, τ) =− γ2ρij,

ci (x1, . . . , xn, τ) =γ

(

σi
2

− r − δi
σi

)

, d (x1, . . . , xn, τ) =0, (3.30)

for i, j = 1, . . . , n and i < j. We �nd that the transformed partial di�erential equation

(3.29) with these 
oe�
ients satis�es the 
onditions given by (3.10), if ∆xi = h for a

stepsize h > 0 is used in the dis
retisation pro
ess. Hen
e we 
an obtain a high-order


ompa
t s
heme for any spatial dimension n ∈ N.
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Transformation of the �nal 
ondition

We have to de�ne whi
h kind of options we want to dis
uss. When looking at a European

Power-Put basket option, the �nal 
ondition of the partial di�erential equation (3.27) is

given by

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

where p is an integer,
n
∑

i=1
ωi = 1 and ωi ≥ 0 for i = 1, . . . , n if we have restri
tions regarding

short-selling. Using the transformations (3.28) leads to

u(x1, . . . , xn, 0) =Kp−1max

(

1−
n
∑

i=1

ωie
σixi
γ , 0

)p

, (3.31)

whi
h is the initial 
ondition for the partial di�erential equation (3.29). The budget 
on-

straint

n
∑

i=1
ωi = 1, and the optional no-short-selling restraints, ωi ∈ [0, 1] for i = 1, . . . , n,

still apply.

3.5.2 Semi-dis
rete two-dimensional Bla
k-S
holes equation

In this se
tion we apply our general two-dimensional semi-dis
rete s
heme, see Se
tion

3.4.1, to the two-dimensional Bla
k-S
holes equation. For 
reating the semi-dis
rete s
heme

(3.12) we have to apply (3.30), with n = 2 to (3.13) to (3.17), whi
h gives

K̂i1,i2 =− 2γ2ρ212
3h2

+
5γ2

3h2
+

(

σ1
2 − r−δ1

σ1

)2

3
+

(

σ2
2 − r−δ2

σ2

)2

3
,

K̂i1±1,i2 =
γ2ρ212
3h2

±
γ
(

σ1
2 − r−δ1

σ1

)

3h
∓

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

3h
−

(

σ1
2 − r−δ1

σ1

)2

6
− γ2

3h2
,

K̂i1,i2±1 =
γ2ρ212
3h2

±
γ
(

σ2
2 − r−δ2

σ2

)

3h
∓

γ
(

σ1
2 − r−δ1

σ1

)

ρ12

3h
−

(

σ2
2 − r−δ2

σ2

)2

6
− γ2

3h2
,

K̂i1±1,i2−1 =±

(

σ2
2 − r−δ2

σ2

)(

σ1
2 − r−δ1

σ1

)

12
−

γ
(

σ2
2 − r−δ2

σ2

)

12h
±

γ
(

σ1
2 − r−δ1

σ1

)

12h

−
γ
(

σ1
2 − r−δ1

σ1

)

ρ12

6h
±

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

6h
− γ2

12h2
± γ2ρ12

4h2
− γ2ρ212

6h2
,

K̂i1±1,i2+1 =
γ
(

σ2
2 − r−δ2

σ2

)

12h
∓

(

σ2
2 − r−δ2

σ2

)(

σ1
2 − r−δ1

σ1

)

12
±

γ
(

σ1
2 − r−δ1

σ1

)

12h

+
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

6h
− γ2

12h2
∓ γ2ρ12

4h2
− γ2ρ212

6h2
,
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where again K̂l,m is the 
oe�
ient of Ul,m (τ) for l ∈ {i1 − 1, i1, i1 + 1} and m ∈ {i2 −
1, i2, i2 + 1}. Similarly, using (3.30) with n = 2 in (3.18), we get

Mi1+1,i2±1 =Mi1−1,i2∓1 = ±ρ12
24

, Mi1,i2 =
2

3
,

Mi1±1,i2 =
1

12
∓

h
(

σ1
2 − r−δ1

σ1

)

12γ
, Mi1,i2±1 =

1

12
∓

h
(

σ2
2 − r−δ2

σ2

)

12γ
,

as 
oe�
ients of ∂τUl,m (τ). From (3.19) and (3.30), we get g̃(x, τ) = 0. We obtain a

semi-dis
rete s
heme of the form (3.12), where Kx and Mx are in time-dependent.

3.5.3 Semi-dis
rete three-dimensional Bla
k-S
holes equation

In this se
tion we give the semi-dis
rete s
heme (3.12) for the three-dimensional Bla
k-

S
holes basket option. Using (3.30) with n = 3 in (D.1) to (D.14) leads to

K̂i1,i2,i3 =

(

σ1
2 − r−δ1

σ1

)2

3
+

(

σ2
2 − r−δ2

σ2

)2

3
+

(

σ3
2 − r−δ3

σ3

)2

3
− 2γ2ρ212

3h2
− 2γ2ρ213

3h2

− 2γ2ρ223
3h2

+
2γ2

h2
,

K̂i1±1,i2,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

6h
−

(

σ1
2 − r−δ1

σ1

)2

6
∓

γ ρ12

(

σ2
2 − r−δ2

σ2

)

3h
+

γ2ρ212
3h2

− γ2

6h2

∓
γ ρ13

(

σ3
2 − r−δ3

σ3

)

3h
+

γ2ρ213
3h2

,

K̂i1,i2±1,i3 =±
γ
(

σ2
2 − r−δ2

σ2

)

6h
−

(

σ2
2 − r−δ2

σ2

)2

6
∓

γ ρ12

(

σ1
2 − r−δ1

σ1

)

3h
+

γ2ρ212
3h2

− γ2

6h2

∓
γ ρ23

(

σ3
2 − r−δ3

σ3

)

3h
+

γ2ρ223
3h2

,

K̂i1,i2,i3±1 =±
γ
(

σ3
2 − r−δ3

σ3

)

6h
−

(

σ3
2 − r−δ3

σ3

)2

6
∓

γ ρ13

(

σ1
2 − r−δ1

σ1

)

3h
+

γ2ρ213
3h2

− γ2

6h2

∓
γ ρ23

(

σ2
2 − r−δ2

σ2

)

3h
+

γ2ρ223
3h2

,

K̂i1±1,i2−1,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
−

γ
(

σ2
2 − r−δ2

σ2

)

12h
±

(

σ1
2 − r−δ1

σ1

)(

σ2
2 − r−δ2

σ2

)

12
− γ2

12h2

−
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ12

(

σ2
2 − r−δ2

σ2

)

6h
± γ2ρ12

6h2
− γ2ρ212

6h2
∓ γ2ρ13ρ23

6h2
,

K̂i1±1,i2+1,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
+

γ
(

σ2
2 − r−δ2

σ2

)

12h
∓

(

σ1
2 − r−δ1

σ1

)(

σ2
2 − r−δ2

σ2

)

12
− γ2

12h2

+
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ12

(

σ2
2 − r−δ2

σ2

)

6h
∓ γ2ρ12

6h2
− γ2ρ212

6h2
± γ2ρ13ρ23

6h2
,
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K̂i1±1,i2,i3−1 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
−

γ
(

σ3
2 − r−δ3

σ3

)

12h
±

(

σ1
2 − r−δ1

σ1

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

−
γ ρ13

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ13

(

σ3
2 − r−δ3

σ3

)

6h
± γ2ρ13

6h2
− γ2ρ213

6h2
∓ γ2ρ12ρ23

6h2
,

K̂i1±1,i2,i3+1 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
+

γ
(

σ3
2 − r−δ3

σ3

)

12h
∓

(

σ1
2 − r−δ1

σ1

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

+
γ ρ13

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ13

(

σ3
2 − r−δ3

σ3

)

6h
∓ γ2ρ13

6h2
− γ2ρ213

6h2
± γ2ρ12ρ23

6h2
,

K̂i1,i2±1,i3−1 =±
γ
(

σ2
2 − r−δ2

σ2

)

12h
−

γ
(

σ3
2 − r−δ3

σ3

)

12h
±

(

σ2
2 − r−δ2

σ2

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

−
γ ρ23

(

σ2
2 − r−δ2

σ2

)

6h
±

γ ρ23

(

σ3
2 − r−δ3

σ3

)

6h
± γ2ρ23

6h2
− γ2ρ223

6h2
∓ γ2ρ12ρ13

6h2
,

K̂i1,i2±1,i3+1 =±
γ
(

σ2
2 − r−δ2

σ2

)

12h
+

γ
(

σ3
2 − r−δ3

σ3

)

12h
∓

(

σ2
2 − r−δ2

σ2

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

+
γ ρ23

(

σ2
2 − r−δ2

σ2

)

6h
±

γ ρ23

(

σ3
2 − r−δ3

σ3

)

6h
∓ γ2ρ23

6h2
± γ2ρ12ρ13

6h2
− γ2ρ223

6h2
,

K̂i1±1,i2−1,i3−1 =±
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
±

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
±

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

± γ2ρ12
24h2

± γ2ρ13
24h2

− γ2ρ23
24h2

− γ2ρ12ρ13
12h2

± γ2ρ12ρ23
12h2

± γ2ρ13ρ23
12h2

,

K̂i1±1,i2+1,i3−1 =∓
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
∓

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
∓

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

∓ γ2ρ12
24h2

± γ2ρ13
24h2

+
γ2ρ23
24h2

± γ2ρ12ρ23
12h2

∓ γ2ρ13ρ23
12h2

+
γ2ρ12ρ13
12h2

,

K̂i1±1,i2−1,i3+1 =∓
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
∓

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
∓

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

± γ2ρ12
24h2

∓ γ2ρ13
24h2

+
γ2ρ23
24h2

∓ γ2ρ12ρ23
12h2

± γ2ρ12ρ13
12h2

+
γ2ρ13ρ23
12h2

,

K̂i1±1,i2+1,i3+1 =±
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
±

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
±

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

∓ γ2ρ12ρ13
12h2

− γ2ρ12ρ23
12h2

∓ γ2ρ13ρ23
12h2

∓ γ2ρ12
24h2

∓ γ2ρ13
24h2

− γ2ρ23
24h2

,

where K̂k,l,m is the 
oe�
ient of Uk,l,m (τ) for k ∈ {i1 − 1, i1, i1 +1}, l ∈ {i2 − 1, i2, i2 +1}
and m ∈ {i3 − 1, i3, i3 +1}. With M̂k,l,m, we de�ne the 
oe�
ient of ∂τUk,l,m (τ) similarly,

so we get

M̂i±1,j,m−1 =M̂i∓1,j,m+1 = ∓ρ13
24

, M̂i,j±1,m−1 =M̂i,j∓1,m+1 = ∓ρ23
24

,
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M̂i±1,j−1,m =M̂i∓1,j+1,m = ∓ρ12
24

, M̂i±1,j,m =
1

12
∓

h
(

σ1
2 − r−δ1

σ1

)

12γ
,

M̂i,j±1,m =
1

12
∓

h
(

σ2
2 − r−δ2

σ2

)

12γ
, M̂i,j,m±1 =

1

12
∓

h
(

σ3
2 − r−δ3

σ3

)

12γ
,

M̂i±1,j−1,m+1 =M̂i±1,j+1,m+1 = 0 M̂i±1,j−1,m−1 =M̂i±1,j+1,m−1 = 0, M̂i,j,m =
1

2
.

Applying (3.30) with n = 3 to (3.21) gives g̃(x, τ) = 0, similar as in the 
ase n = 2, where

x is a grid point in the interior of G
(3)
h . We obtain a semi-dis
rete s
heme of the form

(3.12), where Kx and Mx are time-independent.

3.5.4 Treatment of the boundary 
onditions

After deriving a high-order 
ompa
t s
heme for the spatial interior we now dis
uss the

boundary 
onditions.

Lower boundaries

The �rst boundary we dis
uss is Si = 0 for some i ∈ I ⊂ {1, . . . n} at time t ∈ [0, T [. On
e

the value of the sto
k is zero, it stays 
onstant over time, see (3.26). Thus using Si = 0

for i ∈ I in (3.27) leads to

∂V

∂t
+

1

2

n
∑

i=1
i/∈I

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i=1
i/∈I

(r − δi)Si
∂V

∂Si
− rV +

n
∑

i,j=1
i,j /∈I
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
=0.

Transforming this partial di�erential equation using (3.28) gives

−γ2

2

n
∑

i=1
i/∈I

∂2u

∂x2i
− γ2

n
∑

i,j=1
i,j /∈I
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1
i/∈I

[

σi
2

− r − δi
σi

]

∂u

∂xi
=f.

Comparing this di�erential equation with (3.1) we 
an see that the 
oe�
ients are again

given by (3.30) for i, j ∈ {1, . . . , n} \ I with i < j. So this leads again to a high-order

s
heme for these boundaries. The 
ase I = {1, . . . , n} leads to the Diri
hlet boundary


ondition

u(xmin
1 , . . . , xmin

n , τ) = u(xmin
1 , . . . , xmin

n , 0)

at time τ ∈]0, τmax], sin
e in that 
ase

∂u
∂τ = 0.

95



Upper boundaries

Upper boundaries are boundaries with Si = Smax
i for some i ∈ J ⊂ {1, . . . , n} at time

t ∈ [0, T [. For a su�
iently large Smax
i for i ∈ J , we 
an approximate

∂V (S1, . . . , Sn, t)

∂Si

∣

∣

∣

∣

Si=Smax
i

≡0

with Sk ∈
[

Smin
k , Smax

k

]

for k = {1, . . . , n} \ {i} for a European Power Put basket option.

Using this in (3.27) gives

∂V

∂t
+

1

2

n
∑

i=1
i/∈J

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i=1
i/∈J

(r − δi)Si
∂V

∂Si
− rV +

n
∑

i,j=1
i,j /∈J
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
=0

and leads, when using the transformations (3.28), to

−γ2

2

n
∑

i=1
i/∈J

∂2u

∂x2i
− γ2

n
∑

i,j=1
i,j /∈J
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1
i/∈J

[

σi
2

− r − δi
σi

]

∂u

∂xi
=f. (3.32)

Hen
e the upper boundaries show the same behaviour as the lower boundaries for a Euro-

pean Power Put basket and we 
an obtain a high-order 
ompa
t s
heme for these bound-

aries as well. As in Se
tion 3.5.4, we have the Diri
hlet boundary 
ondition

u(xmax
1 , . . . , xmax

n , τ) =u(xmax
1 , . . . , xmax

n , 0)

for τ ∈]0, τmax] if J = {1, . . . , n}.

3.5.5 Time dis
retisation

With the results from the previous se
tions we obtain a semi-dis
rete system of the form

∑

x̂∈G
(n)
h

[Mx(x̂)uτ (x, τ) +Kx(x̂)u(x̂, τ)] =g(x), (3.33)

for ea
h point x of the grid G
(n)
h as de�ned in (3.11). The fun
tions Kx,Mx, as well as

g are given through the spatial dis
retisation pro
ess and are not dependent on τ in our

example. Mx and Kx are only non-zero on the 
ompa
t n-dimensional sten
il. Thus, our

equation system given by (3.33) only has up to 3n entries on the grid G
(n)
h for uτ and u,

respe
tively. We have de�ned these non-zero 
oe�
ients, as well as g, in Se
tions 3.5.2 and
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3.5.3 for the 
ases n = 2 and n = 3, respe
tively.

We use an equidistant time grid of the form τ = k∆τ for k = 0, . . . , Nτ withNτ ∈ N and

a Crank-Ni
olson-type time dis
retisation, see [Str04, Wil98℄, with step size ∆τ , leading

to

∑

x̂∈G
(n)
h

[

Mx(x̂) +
∆τ

2
Kx(x̂)

]

u (x̂, τ +∆τ) =
∑

x̂∈G
(n)
h

[

Mx(x̂) −
∆τ

2
Kx(x̂)

]

u (x̂, τ) + (∆τ)g(x)

(3.34)

on ea
h point x of the grid G
(n)
h . This system of equations has to be solved for every time

step with τ = k∆τ for k = 0, . . . , Nτ . We 
an see dire
tly that we have only non-zero

values on the 
ompa
t sten
il, as the fun
tions Mx(x̂) and Kx(x̂) have this property. For

the Crank-Ni
olson time dis
retisation this 
ompa
t s
heme has 
onsisten
y order two in

time and four in spa
e.

3.6 Numeri
al experiments for Bla
k-S
holes Basket options

In this se
tion we dis
uss the numeri
al experiments for the Bla
k-S
holes basket Power

Puts in spatial dimensions n = 2, 3. The equation systems whi
h have to be solved over

time have been derived in Se
tion 3.5. A

ording to [KTW70℄, we 
annot expe
t fourth

order 
onvergen
e if the initial 
ondition is not smooth enough. This means, that we have

to smoothen the initial 
onditions for a Power Put with p = 1, 2. In [KTW70℄ suitable

smoothing operators are identi�ed in Fourier spa
e. Sin
e the order of 
onvergen
e of our

high-order 
ompa
t s
hemes is four, we have to use the smoothing operator Φ4, given by

it's Fourier transformation

Φ̂4(ω) =

(

sin
(

ω
2

)

ω
2

)4
[

1 +
2

3
sin2

(ω

2

)

]

.

This leads to the smooth initial 
ondition determined by

ũ0 (x1, x2) =

3h
∫

−3h

3h
∫

−3h

Φ4

(x

h

)

Φ4

(y

h

)

u0 (x1 − x, x2 − y) dx dy

in the 
ase n = 2 and

ũ0 (x1, x2, x3) =

3h
∫

−3h

3h
∫

−3h

3h
∫

−3h

Φ4

(x

h

)

Φ4

(y

h

)

Φ4

( z

h

)

u0 (x1 − x, x2 − y, x3 − z) dx dy dz
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in the 
ase n = 3 for any stepsize h > 0, where u0 is the original initial 
ondition and Φ4(x)

denotes the Fourier inverse of Φ̂4(ω), see [KTW70℄. If u0 is smooth enough in the inte-

grated region around (x1, . . . , xn), we have ũ0 (x1, . . . , xn) = u0 (x1, . . . , xn) for n = 2, 3.

That means that it is possible to identify the points where smoothing is ne
essary.
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non−differentiable vlaues
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Figure 3.2: Example smoothing points for n = 2, p = 1
Figure 3.2 gives an example of a grid with n = 2 on the left side and on the right side the

identi�ed gridpoints, where smoothing is ne
essary, and a graph of the non-di�erentiable

points of the initial 
ondition given in (3.31). The points were 
hosen in su
h a way that

we 
an be sure that the non-di�erentiable points have no in�uen
e on ũ0 (x1, x2) for those

points, whi
h are not shown in Figure 3.2 on the right hand side. We 
an see this as there

are always at least three grid-points above, below, left and right from the non-di�erentiable

points as long as it does not ex
eed the grid. Thus we 
an redu
e the ne
essary 
al
ulations

signi�
antly using this approa
h. As with h → 0, the smooth initial 
ondition ũ0 tends to-

wards the original initial 
ondition u0 given in (3.31). This means that the approximation

of the smoothed problem tends towards the true solution of (3.29).

We use the relative l2-error
‖U

ref

− U‖l2
‖U

ref

‖l2
,

for European Power Puts with p = 1, . . . , 4, as well as the l∞-error

‖U
ref

− U‖l∞

for European Power Puts with p = 1, 2, for examining the numeri
al 
onvergen
e rate,

where U
ref

denotes a referen
e solution on a �ne grid and U is the approximation. When

identifying the 
onvergen
e order of the s
hemes, we determine it as the slope of the linear

least square �t of the individual error points in the loglog-plots of error versus number of
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dis
retisation points per spatial dire
tion.

3.6.1 Numeri
al example with two underlying sto
ks

In this se
tion we show the numeri
al results for the 
onvergen
e rate of a two-dimensional

Bla
k-S
holes basket Power Put. We 
ompare the high-order 
ompa
t s
heme with the

standard s
heme, whi
h results from using the 
entral di�eren
e operator dire
tly in (3.29)

and n = 2 with no further a
tion, whi
h leads to a 
lassi
al se
ond order s
heme. We

look at plain European Puts as well as European Power Puts with power p = 2, 3, 4. In

the European Put and the European Power Put with power p = 2, we use the smoothing

operator suggested in [KTW70℄ for the Initial 
ondition given in (3.31). We use the values

σ1 = .25, σ2 = .35, γ = .25, δ1 = δ2 = 0, r = log(1.05),

ω1 = 0.35 = 1− ω2, and

∆τ

h2
= 0.4

for ea
h of the shown plots. The value for ∆τ/h2 has to be 
onstant, though the value 0.4

is just an example. The von Neumann stability analysis did not indi
ate any restri
tion

on this relation. We use the 
orrelations ρ12 = −0.8, ρ12 = 0 and ρ12 = 0.8 for the 
ase

K = 10.
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      HOC, ρ = −0.8 , order3.62
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Figure 3.3: Absolute l∞-error two-

dimensional Bla
k-S
holes Basket Power
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      HOC, ρ = −0.8 , order3.66
      HOC, ρ =  0   , order3.75
      HOC, ρ =  0.8 , order3.56
2nd order, ρ = −0.8 , order1.93
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Figure 3.4: Absolute l∞-error two-

dimensional Bla
k-S
holes Basket Power

Put, p=2 and smooth initial 
ondition

In Figures 3.3 and 3.4 we see 
onvergen
e plots 
on
erning the absolute l∞ error for a

European Put and a European Power Put, respe
tively. For the European Put we 
an

see that the high-order 
ompa
t s
hemes have a highly similar behaviour. The points are

almost identi
al ex
ept the one with the highest a

ura
y. The 
onvergen
e orders for the

high-order 
ompa
t s
hemes are between 3.62 and 3.73. The maximum absolute errors
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have a range from 10−6
to 10−2

. The standard dis
retisations have 
onvergen
e orders

from 1.51 to 1.77 and an error range from 10−3.5
to 10−1

. For all stepsizes the error of

the high-order 
ompa
t s
heme is visibly smaller than the one of the standard s
heme. So

the high-order 
ompa
t s
heme 
onsequently outmat
hes the standard dis
retisation in the

in�nity norm for the European Put.

In the 
ase p = 2, the 
onvergen
e plots for the high-order 
ompa
t s
hemes again look

highly similar ex
ept for the �nest grid. The 
onvergen
e rates thus have a range from

3.56 to 3.75 and an error range for the maximum norm from 10−6
to 10−1.5

. The higher

values of the errors 
an be explained with the higher magnitude of the initial 
ondition of

the European Power Put with p = 2 
ompared to the initial 
ondition of the European

Put, see (3.31). For the standard dis
retisation we 
an observe 
onvergen
e rates between

1.75 and 1.93 and a magnitude of the in�nity errors between 10−3
and 10−1

. For all

stepsizes the error of the se
ond order s
heme is higher than the error of the high-order


ompa
t s
heme, even though the di�eren
e is relatively small when having rough grids

with N = 11. We 
an state that the performan
e of the high-order 
ompa
t s
hemes is

signi�
antly better when 
omparing it to the standard dis
retisation, if the initial 
ondition

is smoothed a

ording to [KTW70℄.
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HOC, ρ = −0.8 , order =3.94
HOC, ρ =  0    , order =3.9
HOC, ρ =  0.8 , order =3.87
  2nd, ρ = −0.8 , order =1.85
  2nd, ρ =  0    , order =1.87
  2nd, ρ =  0.8 , order =1.77

Figure 3.5: l2-error two-dimensional Bla
k-
S
holes Basket Power Put, p=1 and smooth

initial 
ondition
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HOC, ρ = −0.8 , order =3.86
HOC, ρ =  0    , order =3.84
HOC, ρ =  0.8 , order =3.83
  2nd, ρ = −0.8 , order =2.14
  2nd, ρ =  0    , order =1.94
  2nd, ρ =  0.8 , order =1.82

Figure 3.6: l2-error two-dimensional Bla
k-
S
holes Basket Power Put, p=2 and smooth

initial 
ondition

In Figures 3.5 and 3.6 we 
an see the 
onvergen
e plots for a European Put (p = 1)

and a European Power Put with p = 2, respe
tively. For the European Put we 
an see

similar behaviour of the 
onvergen
e for ρ = −0.8, ρ = 0 and ρ = 0.8 for the high-order

s
hemes. The numeri
al 
onvergen
e rates for the high-order 
ompa
t s
hemes are between

3.87 and 3.94, whereas for the standard s
heme we observe a numeri
al 
onvergen
e rate

between 1.77 and 1.87 for the standard European Bla
k-S
holes basket Put. For a very
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small number of gridpoints, whi
h means 11 points in ea
h dire
tion, the se
ond order

s
heme 
an a
hieve the same error level, but due to the 
onvergen
e rates we 
an see that

the high-order 
ompa
t s
hemes outperform the se
ond-order s
hemes in ea
h 
ase of the


orrelation signi�
antly. Thus the smoothing of the initial 
ondition, whi
h is suggested by

[KTW70℄, eliminates the problems given by the initial 
ondition. The high-order 
ompa
t

s
heme thus outperforms the standard dis
retisation for a European Put signi�
antly.

In Figure 3.6 we 
an see a similar behaviour. Again, the smoothing resolves the prob-

lems 
reated by the initial 
ondition. The high-order 
ompa
t s
heme has 
onvergen
e

rates between 3.83 and 3.86, whereas the 
onvergen
e rates of the standard s
hemes are

between 1.82 and 2.14. Only for N = 11 the standard s
heme 
an generate the same error

level as the high-order 
ompa
t s
heme. After that the high-order 
ompa
t s
hemes, due

to their higher 
onvergen
e rates, in
rease the di�eren
e in the error levels. We 
an see

that the performan
e of the high-order 
ompa
t s
heme ex
eeds the one of the standard

s
heme 
onsequently in this 
ase as well.
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HOC, ρ = −0.8 , order =4.19
HOC, ρ =  0    , order =4.23
HOC, ρ =  0.8 , order =4.16
  2nd, ρ = −0.8 , order =2.06
  2nd, ρ =  0    , order =2.17
  2nd, ρ =  0.8 , order =2.15

Figure 3.7: l2-error two-dimensional Bla
k-
S
holes Basket Power Put, p = 3
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HOC, ρ = −0.8 , order =4.21
HOC, ρ =  0    , order =4.22
HOC, ρ =  0.8 , order =3.88
  2nd, ρ = −0.8 , order =2.08
  2nd, ρ =  0    , order =2.15
  2nd, ρ =  0.8 , order =2.12

Figure 3.8: l2-error two-dimensional Bla
k-
S
holes Basket Power Put, p = 4

In Figures 3.7 and 3.8 we see the 
onvergen
e of the relative l2-error for European Power

Puts with p = 3 and p = 4, respe
tively. The initial 
onditions were not smoothed, as

they are in Cp−1
. For p = 3, we have a 
onvergen
e order of the high-order 
ompa
t

s
hemes between 4.16 and 4.23. The high-order 
ompa
t s
hemes behave very similar for

ρ = −0.8, ρ = 0 and ρ = 0.8. Only the s
heme with ρ = 0.8 seems to have slightly higher

errors than the s
hemes with ρ = 0 and ρ = −0.8, but in terms of the 
onvergen
e order

these di�eren
es are negle
table. The standard dis
retisations show 
onvergen
e rates in

the range of 2.06 to 2.17. The three 
onvergen
e lines seem to be almost parallel, when

ex
luding the point for N = 11. The standard s
heme has the best results for ρ = 0,

followed by the s
heme with ρ = −0.8. Just like for the high-order 
ompa
t s
hemes
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the standard s
heme has its worst errors for the 
ase ρ = 0.8. Overall, the standard

dis
retisation is 
ompletely outperformed by the high-order 
ompa
t s
hemes for p = 3, as

even with the roughest grid there is a huge di�eren
e in the a
hieved relative l2-error.

In Figure 3.8 we 
an see the 
onvergen
e rates for p = 4. The 
onvergen
e rates for

the high-order 
ompa
t s
hemes are between 3.88 and 4.22. The 
ase ρ = 0 and ρ = −0.8

behave almost identi
al, whereas the l2-error of the s
heme for ρ = 0.8 de
lines slower

than in the other 
ases of ρ. The standard dis
retisations seem to be almost parallel from

the start, having 
onvergen
e rates between 2.08 and 2.15. Overall, we 
an say that in

these 
ases the values of the errors are signi�
antly lower with the high-order 
ompa
t

s
hemes when 
omparing it with the standard dis
retisation, even when the grid is very

rough and we a
hieve fourth order 
onvergen
e with our s
heme for European Power Puts

with p = 3, 4 using the original initial 
ondition.

3.6.2 Numeri
al example with three sto
ks

In this se
tion we perform numeri
al examples with three sto
ks, where we dis
uss two

di�erent s
enarios. One is that the sto
ks are independently identi
ally distributed and the

other s
enario 
onsists of three sto
ks being identi
ally distributed, but having 
orrelations.

The strike pri
e is K = 10 in both 
ases. We have Smax = 36 and Smin = 0.1 for ea
h

underlying. Furthermore, we have

δi = 0.01, σi = 0.3, ρ1,2 = −0.4, ρ1,3 = −0.1, ρ2,3 = −0.2

ωi = 1/3, r = ln(1.05), γ = 0.3, and T = 0.25, .

This means that the three sto
ks are equally weighted in the �nal 
ondition. Sin
e a �nite

di�eren
e s
heme with spatial dimension three is generally 
omputational intense, the

number of grid points per spatial dimension is limited. In order to have enough grid points

in time, we 
hoose ∆τ/h2 = 0.1. We 
ompare the standard dis
retisation with our high-

order 
ompa
t s
heme for European Power Puts with p = 3, 4. For the European Power

Puts with p = 1, 2 it would be possible to use [KTW70℄ again to smoothen the original

initial 
ondition. In the 
onvergen
e plots the s
enarios with 
orrelations are labelled as

"
", whereas the independently identi
ally distributed versions are marked as "n
". The

order mentioned in the �gures is the slope of the linear least square �t of the given error

points in the loglog plots.
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       HOC, nc, order 2.80
       HOC,   c, order 2.72
2nd order, nc, order 1.87
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Figure 3.9: l2-error log-log plot three-

dimensional Bla
k-S
holes Basket Power

Put, p = 3
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       HOC, nc, order 3.43
       HOC,   c, order 3.57
2nd order, nc, order 2.00
2nd order,   c, order 2.12

Figure 3.10: l2-error log-log plot three-

dimensional Bla
k-S
holes Basket Power

Put, p = 4

In Figure 3.9 we 
an see the 
onvergen
e of the relative l2-error for the standard se
ond-

order dis
retisation and our high-order 
ompa
t dis
retisation for a European Power Put

with p = 3. Even though the order of the high-order 
ompa
t s
hemes seems to be rather

low, being 2.72 in the 
ase with 
orrelation and 2.8 in the 
ase without 
orrelation, we


an 
learly see that this order originates from the error values of the roughest grid, having

N = 7 points in ea
h dire
tion. When leaving out these points, the order of 
onvergen
e

would be 3.31 for the 
ase with 
orrelation and 3.42 in the version with independent sto
k

pri
es. The standard se
ond order dis
retisations produ
e in both 
ases straight lines,

where the 
onvergen
e order is 1.86, when the sto
k pri
es are 
orrelated, and 1.87 for

the independent 
ase. The value of the error is lower in ea
h 
ase, when using the high-

order 
ompa
t dis
retisation. Overall we 
an say that the high-order 
ompa
t s
heme

outperforms the standard se
ond-order s
heme signi�
antly.

On the right hand side in Figure 3.9 we dis
uss an European Power Put with p = 4. We


an observe that in this 
ase the high-order 
ompa
t dis
retisation behaves 
loser to straight

line in both 
ases than for p = 3. The 
onvergen
e order is 3.57 when in
luding 
orrelation,

and 3.43 for vanishing 
orrelation. We 
an still observe that the 
onvergen
e lines for

the high-order 
ompa
t s
hemes are bent. When leaving out the �rst error points with

N = 7, we have a slope of 4.16 for non-vanishing 
orrelation, and 4.18, when the 
orrelation

between the sto
k pri
es vanishes. The standard dis
retisations a
hieve 
onsisten
y rates

of 2 in the 
ase of no 
orrelation and 2.12 when there is 
orrelation between the sto
k

pri
es. The values of the relative l2-errors for the di�erent number of grid points per

dire
tion is always lower for our high-order 
ompa
t s
heme than for the standard se
ond

order dis
retisation. We observe that the high-order 
ompa
t s
heme ex
eeds the standard

se
ond order 
onsequently for a European Power Option with p = 4 as well.
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3.7 Appli
ation to Heston basket options

In this se
tion we want to dis
uss the possibility of an appli
ation of high-order 
ompa
t

s
hemes to multi-dimensional Heston Basket options. Re
all that the riskneutral/risk-

adjusted multi-dimensional Heston partial di�erential equation is given by

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU,

see (1.13), where σi is the volatility of the sto
k Si for i = 1, . . . , n. Ea
h volatility σi

follows a sto
hasti
 pro
ess with long-term average θi and mean-reversion speed κi and the

volatility of the volatility is given by vi for i = 1, . . . , n. The 
orrelation between the sto
k

Si and the sto
k Sj is denoted by λij , whereas ρij represents the 
orrelation between the

sto
k Si and the volatility σj for i, j = 1, . . . , n. Using the transformations

xi = ln

(

Si

K

)

for i = 1, . . . , n, τ = T − t and u = erτ
U

K

leads to

0 =
∂U

∂τ
−

n
∑

i=1

(

r − viyi
2

) ∂U

∂xi
−

n
∑

i=1

κi
θi − viyi

vi

∂U

∂yi
−

n
∑

i,j=1
i 6=j

λij
√
viyi

√
vjyj

2

∂2U

∂xi∂xj
(3.35)

−
n
∑

i=1

viyi
2

∂2U

∂x2i
−

n
∑

i,j=1

ρij
√
viyi

√
vjyj

∂2U

∂xi∂yj
−

n
∑

i=1

viyi
2

∂2U

∂y2i
(3.36)

−
n
∑

i,j=1
i 6=j

ηij
√
viyi

√
vjyj

2

∂2U

∂yi∂yj
. (3.37)

When looking at the 
onditions on the 
oe�
ients of a partial di�erential equation for a

high-order 
ompa
t s
heme, see (3.10), we 
an see that in order to a
hieve a high-order


ompa
t s
heme

ρij =0 for i 6= j, ηij = δij and λij = δij (3.38)

need to hold, where δij denotes the Krone
ker-Delta for i, j ∈ {1, . . . , n}. Thus, it is pos-
sible to a
hieve a high-order 
ompa
t s
heme for n independent Heston pro
esses.
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With the multi-dimensional Bla
k-S
holes model we have already dis
ussed an exam-

ple, where a high-order 
ompa
t s
heme 
an be applied in an n-dimensional setting with

with n ∈ N. But when looking at equation (3.29) we 
an see that the 
oe�
ients are

neither spa
e nor time dependent. With the multi-dimensional Heston model we have an

example of an appli
ation for high-order 
ompa
t s
hemes with 
ross derivatives and spa
e

dependent 
oe�
ients in the partial di�erential equation.

We 
an see from equation (3.35) that the most fundamental example for a multi-

dimensional Heston basket option would be n = 1, whi
h means that the basket only


onsists of one asset and leads to the standard Heston model. A high-order 
ompa
t

s
heme for the Heston model has been dis
ussed in [DF12a℄.

A basket 
ontaining two assets would already lead to a partial di�erential equation

with four-dimensional spatial domain. It is not feasible to apply a �nite di�eren
e s
heme

to su
h a partial di�erential equation due to the 
urse of dimensionality. This means that

we do not apply the high-order 
ompa
t s
heme to the multi-dimensional Heston model,

but hold at showing that high-order 
ompa
t s
hemes are possible under the mentioned


ir
umstan
es.

3.8 Summary

In this 
hapter we have presented a new high-order 
ompa
t s
heme for a general linear

paraboli
 di�erential equation with time and spa
e dependent 
oe�
ients, in
luding mixed

se
ond-order derivative terms in n ∈ N≥1 spatial dimensions. The underlying problem is

given by

ut +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
=d in Ω× Ωτ

with initial 
ondition u0 = u(x1, . . . xn, 0) and suitable boundary 
onditions, where Ω ⊂ R
n

is a 
ubi
al spatial domain and Ωτ =]0, τmax] for a τmax > 0, see (3.1). We have shown

that in order to apply the high-order 
ompa
t s
heme to the di�erential equation, the


onditions

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai
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for all i, j ∈ {1, . . . , n} with i 6= j have to hold, 
ompare (3.10). The resulting high-order


ompa
t s
hemes are fourth-order a

urate in spa
e and se
ond-order a

urate in time. In a

thorough von Neumann stability analysis, where we fo
ussed on the 
ase of vanishing mixed

derivative terms and frozen 
oe�
ients, we were able to show that a ne
essary stability


ondition holds without further 
onditions in dimensions two and three. For non-vanishing

mixed derivative terms, we have shown partial results. We applied our high-order 
ompa
t

s
hemes to European Power Puts in the two- and three-dimensional Bla
k-S
holes Model,

whi
h is parti
ularly interesting as mixed se
ond-order derivative terms are essential in this

model. In all of the numeri
al experiments a 
omparative standard se
ond-order s
heme

has been signi�
antly outperformed. Finally, we have shown that it is possible to apply

high-order 
ompa
t s
hemes to the multi-dimensional Heston model in spe
i�
 
ases, see

(3.38).
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Chapter 4

Con
lusion

This thesis 
on
erns itself with the derivation and appli
ation of essentially high-order


ompa
t s
hemes as well as high-order 
ompa
t s
hemes for a general linear paraboli


partial di�erential equation,

dut +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= g in Ω× Ωτ (4.1)

with initial 
ondition u0 = u(x1, . . . xn, 0), where Ω ⊂ R
n
is an n-dimensional 
ube and

Ωτ = ]0, τmax] with �nal time τmax > 0 and suitable boundary 
onditions. The 
oe�
ients

ai < 0, bij and ai are fun
tions of (x1, . . . xn) and τ . Both numeri
al s
hemes, essentially

high-order 
ompa
t s
hemes as well as high-order 
ompa
t s
hemes, only use the 
ompa
t

sten
il

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} (4.2)

for a given grid

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik (∆xk) , 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

.

The value Ui1,...,in denotes the approximation of u (xi1 , . . . , xin) and for the grid we have

∆xk > 0, Nk ∈ N≥1 and x
(k)
max = x

(k)
min + (Nk − 1) (∆xk) for k = 1, . . . , n. When using

∆xi = h for i = 1, . . . , n, we write G
(2)
h .
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For essentially high-order 
ompa
t s
hemes, where we use n = 2 and g = 0 in (4.1),

the resulting numeri
al s
heme at point x = (xi1 , xi2) ∈
◦
G

(2)

h is of the type

1
∑

l1,l2=−1

Ax (xi1+l1 , xi2+l2)U
k+1
i1+l1,i2+l2

=

1
∑

l1,l2=−1

Bx (xi1+l1 , xi2+l2)U
k
i1+l1,i2+l2

+ ĝ(x, τk, τk+1) +R2 +O
(

h4
)

+O
(

τ2
)

at time τ = k∆τ with

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41

for Version 1,

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42

for Version 2,

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2

for Version 3 and

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32

for Version 4, see (2.18), (2.26), (2.34) and (2.42).

In Se
tion 2.5 we apply this s
heme to the Heston model with a zoom in the region

around the strike pri
e ('at the money'). We 
al
ulate the di�erent s
hemes and take a


loser look at the se
ond order remainder term. For all four versions of essentially high-

order 
ompa
t s
hemes we numeri
ally evaluate R2/h
2
, while using ∆x1 = ∆x2 = h in

a 
on
rete example. We observe that for Version 1 the se
ond order remainder term is

not small enough, whereas the values of the se
ond order remainder terms of Version 2,

Version 3 and Version 4 are small. This analysis is 
ru
ial for the appli
ation of essentially

high-order 
ompa
t s
hemes, as an appli
ation of the s
hemes with high values of the terms

R2/h
2
only leads to se
ond order 
onvergen
e.
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In Se
tion 2.6 we show numeri
al examples for Version 3, as this Version leads to the

best numeri
al results. In [KTW70℄ it is shown that the 
onvergen
e rate of a numeri
al

s
heme is bounded by the smoothness of the initial 
ondition. We over
ome this problem

by using Rana
her time stepping (see [Ran84℄) and grid shifting, where we set the grid

in a way that the non-di�erential points of the initial 
ondition are in the middle of two

grid-points of the �nest gid. For the Rana
her time stepping we �rst use four steps of

Impli
it Euler time dis
retisation with stepsize (∆τ)/4 and then use Crank-Ni
olson time

dis
retisation for all other time steps. This does not a�e
t the order of 
onvergen
e, as

the number of steps using the Impli
it Euler s
heme is �x, see [Ran84℄. The resulting


onvergen
e plots in the numeri
al examples are slightly bent for plain vanilla European

Put options. To show the in�uen
e of the initial 
ondition to the appearan
e of the 
on-

vergen
e plots we also examined Power Put options with power p = 2, 3. For these options

the initial 
ondition is in Cp−1 (Ω) and thus the 
onvergen
e plots show straight lines for

Power options.

In the numeri
al experiments we 
ompare di�erent zoom strengths with ea
h other,

using the zoom fun
tion given in [TGB08℄. The error in the numeri
al s
hemes mainly


omes from the area around the strike pri
e ('at the money'). Thus, it 
an be expe
ted

that the error de
lines with in
reasing the zoom for low values of ζ. But if the zoom is too

strong, there are barely any points of the grid in the remaining part of the spa
e, whi
h

leads to a domination of the errors arising from those parts in the overall error of the

s
heme. This behaviour regarding the zoom strength is exa
tly what we 
ould observe in

the numeri
al examples. The best 
onvergen
e rates are a
hieved at ζ = 5 for the spe
i�


zoom fun
tion we use, whi
h indi
ates that the optimal zoom strength should be around

this value.

Besides 
omparing the zoom strength we also 
ompare the 
orrelation ρ between the

asset value S and the volatility σ in our numeri
al experiments. For ρ = 0 the 
ross

derivative vanishes and thus the s
heme is a high-order 
ompa
t s
heme with theoreti
al


onvergen
e of order four. This is 
on�rmed by the numeri
al 
onvergen
e rate in the

performed tests. For non-vanishing 
orrelation we have an essentially high-order 
ompa
t

s
heme. With our numeri
al experiments we show that for those essentially high-order


ompa
t s
hemes the pra
ti
al 
onvergen
e rate orders are around 3.5, as the study of the

higher derivatives has suggested. This shows that we 
an zoom in the area of interest and
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still have a pra
ti
al order of four for the 
onvergen
e up to our wanted a

ura
y level.

For ea
h of the mentioned 
ases a standard se
ond-order �nite di�eren
e s
heme using the


entral di�eren
e operator is signi�
antly outperformed.

Finally, we perform a numeri
al stability study for vanishing and non-vanishing 
ross

derivative, whi
h suggests that there are no restri
tions on the mesh ratio (∆τ)/h2. We

have to point out that this result is not 
overed by the von Neumann stability analyis for

frozen 
oe�
ents in time and spa
e in Se
tion 3.4.3, as even for ρ = 0 the assumptions in

Theorem 1 are not ful�lled, sin
e the 
oe�
ients of uxx and uyy in equation (2.51) are not

identi
al.

In this thesis we introdu
e essentially high-order 
ompa
t s
hemes and show that it

is possible to use these s
hemes for option pri
ing, so having pra
ti
al fourth order 
on-

vergen
e up to a 
ertain stepsize h∗. This means that although we break the 
onditions

on the 
oe�
ients of linear partial di�erential equations for high-order 
ompa
t s
hemes

on purpose, we still a
hieve a pra
ti
al 
onvergen
e order of about four. An important

possible reason for not wanting to satisfy those 
onditions is the wish to zoom in a given

area of interest in the spatial domain, whi
h is the 
ase in our appli
ation to the Heston

model.

For high-order 
ompa
t s
hemes, where we use d = 1 in (4.1), the resulting numeri
al

s
heme at point x = (xi1 , . . . , xin) ∈
◦
G

(n)

h for n ∈ N≥1 is given by

1
∑

l1,...,in=−1

Ax (xi1+l1 , . . . , xin+ln)U
k+1
i1+l1,...,in+ln

=
1
∑

l1,...,in=−1

Bx (xi1+l1 , . . . , xin+ln)U
k
i1+l1,...,in+ln + ĝ(x, τk, τk+1) +O

(

h4
)

+O
(

τ2
)

at time τ = k∆τ . We observe that there is no se
ond-order remainder term for these

numeri
al s
hemes and thus we a
hieve a fourth-order 
onvergen
e in spa
e and a se
ond

order 
onvergen
e in time. Using ∆τ ∈ O
(

h2
)

thus leads to an overall fourth order 
on-

vergen
e in terms of h.
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We derive 
onditions on the 
oe�
ients su
h that a high-order 
ompa
t s
heme is

appli
able in an n-dimensional spatial setting. These 
onditions are given by

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai

for all i, j ∈ {1, . . . , n} with i 6= j. This shows that the appli
ation of a high-order 
ompa
t

s
heme is always possible, if the dis
ussed partial di�erential equation does not 
ontain


ross-derivatives. In that setting there are even no further restri
tions on the stepsizes

∆xi, besides ∆xi ∈ O (h). In all other possible 
ases there are at least some restri
tions

on the stepsizes.

In Se
tion 3.4.1 we present the 
oe�
ients of the high-order 
ompa
t s
heme for partial

di�erential equations of the type (4.1) with n = 2, d = 1 and a1 ≡ a2 in 
ombination with

∆x1 = ∆x2 = h. The 
oe�
ients for the s
heme for the three-dimensional spatial setting

are given in Se
tion 3.4.2 for the 
ase a1 ≡ a2 ≡ a3 and ∆x1 = ∆x2 = ∆x3 = h.

For frozen 
oe�
ients in time and spa
e as well as vanishing mixed-derivative terms,

we perform a von Neumann analysis for n = 2 and even n = 3. This analysis shows that

there are no further 
onditions on the 
oe�
ients of the partial di�erential equation to

ful�l the ne
essary von Neumann stability 
ondition. For non-vanishing 
orrelation we

only give partial results. A possible extension of these proofs is to relax the 
ondition

ai ≡ aj for i, j ∈ {1, . . . , n}, whi
h would allow us to give analyti
al stability results for

the appli
ation of Version 3 of the essentially high-order 
ompa
t s
hemes to the Heston

model with zoom for vanishing 
orrelation between the asset and the volatility.

In Se
tions 3.5 and 3.7 we show that it is possible to apply high-order 
ompa
t s
hemes

to the multi-dimensional Bla
k-S
holes model and the multi-dimensional Heston model,

respe
tively. In the multi-dimensional Bla
k-S
holes model the number of sto
ks is iden-

ti
al to the number of spatial domains in the partial di�erential equation. In the multi-

dimensional Heston model, we have n = 2m spatial domains, when looking atm underlying

assets. An appli
ation of the 
ase m = 1 
an be found in [DF12a℄. When there are two

underlying assets in the multi-dimensional Heston model, the resulting partial di�erential

equation has already four spatial dimensions. Due to the 
urse of dimensionality it is not

feasible to apply this numeri
ally and thus the multi-dimensional Heston model keeps be-

ing a theoreti
al appli
ation.
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In the numeri
al experiments for the multi-dimensional Bla
k-S
holes model we use

the smoothing operators suggested in [KTW70℄ on the initial 
ondition. A shifting of the

grid in 
ombination with Rana
her time-stepping is not possible in this setting due to the

lo
ation of the non-di�erentiable points after the transformation of the partial di�erential

equation. In the 
ase of two underlying assets we a
hieved a numeri
al 
onvergen
e order


lose to four or even slightly above for the high-order 
ompa
t s
heme in all experiments,

whether looking at European Power Puts of European Puts. When using the smoothing

operator even the 
onvergen
e plots for plain European Puts show straight lines. In the

three-dimensional 
ase we 
an see the 
urse of dimensionality. The 
omputational 
ost

does not allow to use many points in the grid in ea
h spatial dire
tion. For a European

Power Put with power four the 
onvergen
e orders are around 3.5, whereas the 
onver-

gen
e plots for a European Power Put with power three only show a 
onvergen
e order

around 2.7. The roughest grid 
onsists of only seven points per spatial dire
tion, though.

When deleting these points in the 
onvergen
e plots, the 
onvergen
e orders in
rease to

about 3.5. We 
an say that the s
hemes meet the expe
tations on the 
onvergen
e order

in all 
ases. As in the 
ase of essentially high-order 
ompa
t s
hemes we 
ompared the

high-order 
ompa
t s
hemes with a standard se
ond-order �nite di�eren
e s
heme using

the 
entral di�eren
e operator. The high-order 
ompa
t s
hemes 
onsequently outmat
hes

the standard s
heme in all given 
ases.

In this thesis we generalise the derivation of high-order 
ompa
t s
hemes to a setting

with spa
e- and time-dependant 
oe�
ients in an n-dimensional spatial domain. The 
o-

e�
ients of su
h s
hemes have been shown for n = 2, 3. A von Neumann stability analysis

has been performed for vanishing 
ross derivatives with frozen 
oe�
ients (in time and

spa
e) for n = 2 and even n = 3, whi
h lead to no further restri
tions on the 
oe�
ients.

The s
heme is applied numeri
ally to the multi-dimensional Bla
k-S
holes model, whi
h


on�rms the theoreti
al 
onvergen
e order of four through numeri
al experiments. For the

multi-dimensional Heston model it has been shown, that it is possible (with restri
tions)

to apply high-order 
ompa
t s
hemes in this setting, but due to the 
urse of dimensionality

a numeri
al dis
ussion of this example is not performed.
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For further resear
h it would be interesting to 
onsider extensions of this s
heme to

the Ameri
an option pri
ing problem, where early exer
ise of the option is possible. In

this 
ase one has to solve a free boundary problem. It 
an be written as a linear 
om-

plementarity problem whi
h 
ould be dis
retised using the s
hemes given here. To retain

the high-order 
onvergen
e, one would need to 
ombine the high-order dis
retisation or

essentially high-order dis
retisation with a high-order resolution of the free boundary. It

would have to be analysed, if the resulting Ameri
an option is smooth enough at the free

boundary to a
hieve a fourth-order 
onvergen
e, see [KTW70℄.

Another possible extension of the 
ontent of this thesis 
ould be to relax the 
onditions

on the 
oe�
ients of the partial di�erential equation in the von Neumann stability anal-

ysis. It would be possible to relax the 
onditions ai ≡ aj for i, j ∈ {1, . . . , n} while still

assuming ρi,j = 0. Another possible extension of the stability analysis would be to relax

the assumption ρi,j = 0, while still demanding ai ≡ aj for i, j ∈ {1, . . . , n}.

It would also interesting to see if it would be possible to a
hieve even higher 
onver-

gen
e rates (e.g. order six) and what the restri
tions on the 
oe�
ients of those s
hemes

would be for su
h s
hemes. It would have to be examined whether those s
hemes 
an be

implemented on the 
ompa
t sten
il or if a bigger 
omputational sten
il has to be used.

Trying to apply high-order 
ompa
t s
hemes to a rather general 
lass of non-linear

partial di�erential equations would also be a possible extension of the presented 
ontent.

An example of a non-linear partial di�erential equation appearing in �nan
e is the Bla
k-

S
holes equation with non-linear volatility, see e.g. [DFJ03℄,

Vτ +
1

2
σ(VSS)

2S2VSS + rSVS − rV = 0,

with a non-linearity volatility σ(VSS).
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Appendix A

Derivation of the Bla
k-S
holes

partial di�erential equation

In this part of the appendix we show the derivation of the partial di�erential equation of

the Bla
k-S
holes model of [Wil98℄. This derivation is shown as guideline for the derivation

of the multi-dimensional Bla
k-S
holes partial di�erential equation as well as the partial

di�erential equation of the Heston model, as those di�erential equations are derived in a

similar manner. In the Bla
k-S
holes model we have, re
all equation (1.2),

dS = µSdt+ σSdW, (A.1)

where µ is the drift of the sto
k S and σ its volatility and dW is a Wiener pro
ess. With

the Lemma of It�, see De�nition 1, we get

dV =

(

µS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+

∂V

∂t

)

dt+ σS
∂V

∂S
dW. (A.2)

If we now look at a portfolio of the stru
ture P = V − αS, we have

dP = dV − αdS. (A.3)

Using (A.1) and (A.2) in (A.3), we get

dP = σS

(

∂V

∂S
− α

)

dW +

(

µS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+

∂V

∂t
− αµS

)

dt.
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The portfolio P will be without risk, if we 
hoose α = ∂V
∂S . Without arbitrage

dP = rPdt

has to follow, as well as

dP =

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)

dt.

Comparing these two equations and using P = V − ∂V
∂S S the Bla
k-S
holes partial di�er-

ential equation follows, so

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0.
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Appendix B

Derivation of the multi-dimensional

Heston equation

In this appendix we want to derive the partial di�erential equation resulting from the

multi-dimensional Heston model. We have

dSi(t) =µiSi(t)dt+
√

σi(t)Si(t)dW
(1)
i (t)

dσi(t) =κi (θi − σi(t)) dt+ vi
√

σi(t)dW
(2)
i (t)

(B.1)

for i = 1, . . . , n, see De�nition 11. A

ording to the multidimensional Lemma of It�, see

Lemma 2, we set

Xi(t) =







Si(t) for i = 1, . . . , n

σi−n(t) for i = n+ 1, . . . , 2n,

as well as

ai(Xt, t) =







µiSi(t) for i = 1, . . . , n

κi−n (θi−n − σi−n(t)) for i = n+ 1, . . . , 2n

and

bij(Xt, t) =



















√

σi(t)Si(t) for i = j and i = 1, . . . , n

vi−n

√

σi−n(t) for i = j and i = n+ 1, . . . , 2n,

0 else.
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With

(dWt)i =







dW
(1)
i (t) for i = 1, . . . , n

dW
(2)
i−n(t) for i = n+ 1, . . . , 2n

we thus have

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

From the Lemma of It� it follows that

dU =
∂U

∂t
dt+

2n
∑

i=1

∂U

∂xi
dXi +

1

2

2n
∑

i,j=1

∂2U

∂xi∂xj
dXidXj

=
∂U

∂t
dt+

2n
∑

i=1

∂U

∂xi
dXi +

1

2

n
∑

i,j=1

∂2U

∂xi∂xj
dXidXj

+

n
∑

i=1

2n
∑

j=n+1

∂2U

∂xi∂xj
dXidXj +

1

2

2n
∑

i,j=n+1

∂2U

∂xi∂xj
dXidXj

(B.2)

with (dWt)i(dWt)j =< (dWt)i, (dWt)j > dt, dtdt = (dWt)idt = dt(dWt)i = 0. We have

∂U

∂xi
dXi =







∂U
∂Si

(

µiSidt+
√
σiSidW

(1)
i

)

i ∈ I

∂U
∂σ

î

(

κî
(

θî − σî
)

dt+ vî
√
σîdW

(2)

î

)

i ∈ J
(B.3)

with I = {1, . . . , n}, J = {n+ 1, . . . , 2n} and î = i− n. For i, j ∈ {1, . . . , n}, we have

∂2U

∂xi∂xj
dXidXj =

∂2U

∂Si∂Sj

(

µiSidt+
√
σiSidW

(1)
i

)(

µjSjdt+
√
σjSjdW

(1)
j

)

=
∂2U

∂Si∂Sj

[

µiSiµjSjdtdt+ µiSi
√
σjSjdtdW

(1)
j

+
√
σiSiµjSjdW

(1)
i dt+

√
σiSi

√
σjSjdW

(1)
i dW

(1)
j

]

=λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj
dt.

(B.4)

117



For i ∈ {1, . . . , n}, j̃ ∈ {n+ 1, . . . , 2n} and j = j̃ − n, there is

∂2U

∂xi∂xj̃
dXidXj̃ =

∂2U

∂Si∂σj

(

µiSidt+
√
σiSidW

(1)
i

)(

κj (θj − σj) dt+ vj
√
σjdW

(2)
j

)

=
∂2U

∂Si∂σj

[

µiSiκj (θj − σj) dtdt+ µiSivj
√
σjdtdW

(2)
j

+
√
σiSiκj (θj − σj) dW

(1)
i dt+

√
σiSivj

√
σjdW

(1)
i dW

(2)
j

]

=ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
dt

(B.5)

and �nally for ĩ, j̃ ∈ {n+ 1, . . . , 2n} with i = ĩ− n and j = j̃ − n, we 
an obtain

∂2U

∂xĩ∂xj̃
dXĩdXj̃ =

∂2U

∂σi∂σj

(

κi (θi − σi) dt+ vi
√
σidW

(2)
i

)(

κj (θj − σj) dt+ vj
√
σjdW

(2)
j

)

=
∂2U

∂σi∂σj

[

κi (θi − σi) κj (θj − σj) dtdt+ κi (θi − σi) vj
√
σjdtdW

(2)
j

+vi
√
σiκj (θj − σj) dW

(2)
i dt+ vi

√
σivj

√
σjdW

(2)
i dW

(2)
j

]

=ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
dt.

Using this, as well as (B.3), (B.4) and (B.5) in (B.2), gives

dU =





∂U

∂t
+

n
∑

i=1

µiSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt

+

n
∑

i=1

√
σiSi

∂U

∂Si
dW

(1)
i +

n
∑

i=1

vi
√
σi

∂U

∂σi
dW

(2)
i .

We now 
onsider a portfolio P = U −
n
∑

i=1
αiSi. For dP we thus get

dP =





∂U

∂t
+

n
∑

i=1

µiSi

(

∂U

∂Si
− αi

)

+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt

+
n
∑

i=1

√
σiSi

(

∂U

∂Si
− αi

)

dW
(1)
i +

n
∑

i=1

vi
√
σi

∂U

∂σi
dW

(2)
i ,
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where the previous equation and the des
ription of dSi in (B.1) for i = 1, . . . , n were used.

We see that using αi =
∂U
∂Si

for i = 1, . . . , n eliminates the portfolios dependen
y of the

Wiener Pro
esses dW
(1)
i . This way dP is still dependant on dW

(1)
i . If we take the expe
ted

value of dP we get E

[

dW
(2)
i

]

= 0 for i = 1, . . . , n,

E [dP ] =





∂U

∂t
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt.

(B.6)

as well as

E [dP ] = [rP + Λ] dt =

[

rU −
n
∑

i=1

rSi
∂U

∂Si
+ Λ

]

dt, (B.7)

where Λ determines the market pri
e of risk 
aused by the volatility. Λ is zero in a risk-

neutral market and bigger than zero in a risk-averse market. In the unlikely event of a

risk-loving market, Λ would be less than zero. With (B.6) and (B.7) we have the general

multi-dimensional Heston partial di�erential equation

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU − Λ

when dropping the dt. Let us now take a 
loser look at the market pri
e of risk. For a

risk-neutral market we have Λ = 0, as mentioned above. In a risk-averse market Λ 
ould

be a linear volatility-pri
e-fun
tion in the sense of

Λ =

n
∑

i=1

αiσi
∂U

∂σi

with a σj-independent αi for all i, j = 1, . . . , n, where we 
an use

κi (θi − σi)− αiσi =(κi + αi)

(

κiθi
κi + αi

− σi

)

= κ̃i

(

θ̃i − σi

)

.
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Dropping the tilde-signs of κ̃i and θ̃i leads to the risk neutral/risk-adjusted multi-

dimensional Heston partial di�erential equation

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU.
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Appendix C

Coe�
ients for Version 2 and

Version 4

In this se
tion we give the 
oe�
ients of the semi-dis
rete s
hemes for Version 2 and Version

4. We do not in
lude the 
oe�
ients for Version 1, as this version always resulted in a

se
ond-order numeri
al 
onvergen
e error in the numeri
al study.

C.1 Coe�
ients Appli
ation EHOC s
heme Version 2

When dis
retising equation (2.25) with the 
entral di�eren
e operator in x- and in y-

dire
tion, we get the following 
oe�
ients for the Version 2 s
heme

K̂i−1,j±1 =
vyϕ2

xϕxx

12h
± yϕ3

xκ

12h
± ϕ4

xκ θ r

12v2y
− vyϕx

12h2
− vyϕxx

24h
± yϕ4

xκ

24
+

ϕ2
xr

12h
± ϕxxκϕ

2
xθ

24v

− vyϕ2
x

24h
± ϕ4

xr

24y
∓ ϕ2

xr

12y
∓ yϕxxκϕ

2
x

24
∓ κϕ3

xθ

12hv
∓ ϕ4

xκ θ

24v
∓ ϕ4

xκ r

12v

+ ρ

[

∓ϕ2
x

( vy
2 − r

)

ϕxx

24
± vyϕxϕxxx

48
∓ vϕ2

x

12y
∓ vyϕ2

xx

48
± vϕ4

x

24y
∓ ϕ4

xκ

24
± vyϕ2

x

4h2

± ϕ3
x

( vy
2 − r

)

6h
± vyϕxϕxx

12h
+

ϕ4
xκ (θ − vy)

6hv

]

+ ρ2
[

− vyϕ3
x

6h2
∓ vϕ2

xϕxx

8
− vyϕ2

xϕxx

12h

]

,

K̂i+1,j±1 =− K̂i−1,j±1 ±
yϕ3

xκ

6h
− vyϕx

6h2
∓ κϕ3

xθ

6hv
± ρϕ3

x

(vy
2 − r

)

3h
± ρvyϕxϕxx

6h
− ρ2vyϕ3

x

3h2
,

K̂i,j±1 =− vyϕ3
x

2h2
± yϕ3

xκ

3h
∓ κϕ3

xθ

3hv
+

vϕ3
x

6y
∓ yϕxhϕ

2
xx
κ

8
∓ yϕ3

xhκϕxx

8
− ϕ5

xκ θ

4vy
− ϕ5

xκ
2θ2

6v3y

− vyϕ2
xϕxxx

8
∓ hϕ3

xκ

6y
∓ hϕ3

xκϕxx θ r

4v2y
− ϕ3

xϕxxr

4
− vϕ5

x

12y
− yϕ5

xκ
2

6v
∓ ϕ5

xhκ
2

12v

+
vyϕxϕxx

2

8
+

vyϕ3
xϕxx

8
± ϕ5

xhκ

12y
+

ϕ5
xκ

2θ

3v2
± hyϕ2

xκϕxxx

8
+

κϕ3
xθ

3vy
± hϕ3

xκϕxx θ

8v
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± hϕ3
xκϕxx r

4v
± ϕxhϕ

2
xx
κ θ

8v
± ϕ5

xhκ
2θ

12v2y
−∓ hϕ2

xκϕxxxθ

8v
+

vyϕx

6h2
+

ϕ5
xκ

12

ρ

[

vϕ3
xϕxx

4
± hϕ3

xκ (θ − vy)ϕxx

4vy
∓ ϕ3

x

(vy
2 − r

)

3h
∓ vyϕxϕxx

6h

]

+ ρ2
vyϕ3

x

3h2
,

K̂i±1,j =∓ hϕxxv

12y
∓ hϕxϕxxxr

24
∓ hϕ2

xv

12y
± vyϕ2

x

6h
± vyϕ2

xϕxx

6h
+

ϕ3
xr

6
± hϕ2

xx
r

6
+

vyϕxxx

24

− vϕ3
x

12y
± hϕxxvϕ

2
x

24y
∓ hvyϕ2

xϕxx

24
− vyϕ3

x

24
± hϕ2

xκϕxx θ

24vy
+

vyϕxϕxx

24
± hvyϕxxxx

48

∓ hvyϕ2
xx

12
+

vϕx

6y
− ϕxϕxxr

12
+

κϕ3
x

12
∓ hϕ4

xκ

24
± vyϕxx

6h
± ϕ4

xhv

24y
∓ hϕ2

xκϕxx

24

± hϕ2
xϕxx r

6
− ϕ3

xr
2

6vy
± hϕ4

xκ θ

24vy
∓ ϕ2

xhϕxx r
2

6vy
− κϕ3

xθ

12vy
± hvyϕxϕxxx

48
∓ ϕ2

xr

3h

∓ hvyϕxxϕxxx

16ϕx
− vyϕx

3h2
+ ρ2

[

vyϕ3
x

3h2
∓ vyϕ2

xϕxx

6h

]

+ ρ

[

vϕ3
x

12
+

vϕxϕxx

4

∓hϕxxvϕ
2
x

24
∓ hvϕ2

xx

8
∓ hϕ2

x

( vy
2 − r

)

ϕxx

6y
− ϕ3

x

( vy
2 − r

)

6y
± ϕ4

xκ (θ − vy)

3hv

]

and

K̂i,j =− κϕ3
x

6
+

vyϕ2
xϕxxx

4
− vyϕxϕ

2
xx

4
− ϕ5

xκ

6
+

vϕ5
x

6y
− vϕ3

x

6y
− vyϕxxx

12
+

2vyϕx

3h2

+
vyϕ3

x

h2
− 2ϕ5

xκ
2θ

3v2
+

ϕ3
xϕxxr

2
+

ϕxϕxx r

6
+

ϕ5
xκ θ

2vy
+

yϕ5
xκ

2

3v
− ϕ3

xr

3
− vyϕ3

xϕxx

4

− vyϕxϕxx

12
− κϕ3

xθ

2vy
− vϕx

3y
+

ϕ5
xκ

2θ2

3v3y
+

vyϕ3
x

12
+

ϕ3
xr

2

3vy

+ ρ [−vϕx
3ϕxx

2
− vϕx

3

6
− vϕxϕxx

2
+

ϕx
3
( vy

2 − r
)

3y
]− ρ2

2vyϕx
3

3h2
,

where K̂i,j is the 
oe�
ient of Ui,j(τ). De�ning M̂i,j as the 
oe�
ient of ∂τUi,j(τ), we get

M̂i+1,j±1 =M̂i−1,j∓1 = ±ρϕ4
x

24
,

M̂i,j±1 =− ϕ5
x

12
+

ϕ3
x

6
∓ ϕ3

xh

6y
± ϕ5

xh

12y
± ϕ5

xhκ (θ − vy)

12v2y
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ϕ4

xhρ

12y
and

M̂i,j =− ϕ3
xϕxxh

2
( vy

2 − r
)

2vy
− ϕxϕ

2
xx
h2

4
+

ϕ5
x

6
+

ϕ3
x

2
+

ϕ2
xh

2ϕxxx

4
− ρϕ3

xϕxxh
2

2y
.

Using these 
oe�
ients for the spatial interior in 
ombination with the treatment of the

boundary 
onditions in Se
tion 2.5.4 yields the Version 2 s
heme.
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C.2 Coe�
ients Appli
ation EHOC s
heme Version 4

In this part of the appendix we give the 
oe�
ients of the Version 4 s
heme. When

dis
retising equation (2.25) with the 
entral di�eren
e operator in x- and in y-dire
tion,

we get

K̂i±1,j =
vyϕ3

x

12h2
∓ hϕ2

xx

( vy
2 − r

)

6
∓ ϕ4

x

( vy
2 − r

)

12h
± 5

( vy
2 − r

)

ϕ2
x

12h
± yhvϕxxxx

48
∓ hϕxxv

24y

− ϕxκ (θ − vy)

12vy
− 5vyϕx

12h2
± 5vyϕxx

24h
+

vϕx

12y
∓ ϕ2

xhv

24y
− ϕ3

x

( vy
2 − r

)2

6vy
+

vyϕxxx

24

± ϕxh
( vy

2 − r
)

ϕxxx

24
+

(vy
2 − r

)

ϕxϕxx

12
∓ vyhϕxxϕxxx

16ϕx
± hκ (θ − vy)ϕxx

24vy

± vyϕ2
xϕxx

8h
∓ ϕ2

xh
( vy

2 − r
)2

ϕxx

6vy
± ϕ2

xhκ (θ − vy)

24vy

+ ρ2
[

vyϕ3
x

3h2
∓ vyϕ2

xϕxx

6h

]

+ ρ

[

vϕxϕxx

4
± ϕ4

xκ (θ − vy)

6hv
− ϕ3

x

( vy
2 − r

)

6y

+
vϕ3

x

12
∓ ϕ2

xh
( vy

2 − r
)

ϕxx

6y
∓ hϕxxvϕ

2
x

24
∓ hvϕ2

xx

8
± ϕ2

xκ (θ − vy)

6hv

]

,

K̂i,j±1 =
ϕ3
xϕxx

( vy
2 − r

)

4
± ϕ3

xh
( vy

2 − r
)

κ (θ − vy)ϕxx

4v2y
∓ ϕ2

xhκ (θ − vy)ϕxxx

8v
− 5vyϕ3

x

12h2

− ϕ3
xκ

2 (θ − vy)2

6yv3
+

vyϕx

12h2
∓ ϕ3

xhκ

12y
± ϕ3

xhκ
2 (θ − vy)

12v2y
∓ 5κϕ3

x (θ − vy)

12vh
+

vyϕxϕ
2
xx

8

+
κϕ3

x (θ − vy)

12vy
+

κϕ3
x

6
± ϕxκ (θ − vy)

12vh
± ϕxhϕ

2
xx
κ (θ − vy)

8v
− vyϕ2

xϕxxx

8
+

ϕ3
xv

12y

+ ρ2
vyϕ3

x

3h2
+ ρ

[

vϕ3
xϕxx

4
± hϕ3

xκ (θ − vy)ϕxx

4vy
∓ ϕ3

x

( vy
2 − r

)

3h
∓ vyϕxϕxx

6h

]

,

K̂i+1,j±1 =
ϕ4
x

( vy
2 − r

)

24h
− vyϕ2

xϕxx

16h
+

( vy
2 − r

)

ϕ2
x

24h
+

vyϕxx

48h
− vyϕx

24h2
− vyϕ3

x

24h2
∓ ϕxκ (θ − vy)

24vh

∓ κϕ3
x (θ − vy)

24vh
± κ (θ − vy)

(vy
2 − r

)

ϕ2
x

24v2y
± κ (θ − vy)ϕxx

48v
∓
(vy

2 − r
)

ϕ2
x

24y
± vϕ2

x

48

± ϕ4
xκ (θ − vy)

( vy
2 − r

)

24v2y
∓ κ (θ − vy)ϕ2

xϕxx

16v

+ ρ2
[

±vϕ2
xϕxx

8
+

vyϕ2
xϕxx

12h
− vyϕ3

x

6h2

]

+ ρ

[

∓ vyϕ2
x

4h2
± vϕ2

x

24y
± ϕ3

x

(vy
2 − r

)

6h

± ϕ4
xκ (θ − vy)

24vy
± vyϕ2

xx

48
± ϕ4

xκ

24
− ϕ2

xκ (θ − vy)

12hv
∓ ϕ2

xκ (θ − vy)

24vy
∓ vyϕxϕxxx

48

± vyϕxϕxx

12h
± ϕ2

x

( vy
2 − r

)

ϕxx

24
− ϕ4

xκ (θ − vy)

12hv

]

,

K̂i−1,j±1 =− K̂i+1,j±1 −
vyϕx

12h2
− vyϕ3

x

12h2
∓ ϕxκ (θ − vy)

12vh
∓ κϕ3

x (θ − vy)

12vh

− ρ2
vyϕ3

x

3h2
± ρ

[

ϕ3
x

(vy
2 − r

)

3h
± vyϕxϕxx

6h

]
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and

K̂i,j =
vyϕ2

xϕxxx

4
− ϕ3

xϕxx

( vy
2 − r

)

2
− vyϕxϕ

2
xx

4
− ϕ3

xv

6y
− ϕ3

xκ (θ − vy)

6vy
− κϕ3

x

3
− vϕx

6y

+
ϕ3
xκ

2 (θ − vy)2

3yv3
+

5vyϕx

6h2
+

5vyϕ3
x

6h2
−
( vy

2 − r
)

ϕxϕxx

6
− vyϕxxx

12
+

ϕ3
x

( vy
2 − r

)2

3vy

+
ϕxκ (θ − vy)

6vy
− ρ2

2vyϕ3
x

3h2
+ ρ

[

−vϕxϕxx

2
+

ϕ3
x (1/2 vy − r)

3y
− vϕ3

x

6
− vϕ3

xϕxx

2

]

,

where K̂i,j is the 
oe�
ient of Ui,j(τ). De�ning M̂i,j as the 
oe�
ient of ∂τUi,j(τ), we get

M̂i+1,j±1 =M̂i−1,j∓1 = ± ρ
ϕ4
x

24
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ρ

ϕ4
xh

12y
,

M̂i,j±1 =
ϕ3
x

12
± ϕ3

xhκ (θ − vy)

12v2y
∓ ϕ3

xh

12y
and

M̂i,j =
2ϕ3

x

3
− ϕ3

xϕxxh
2
(vy

2 − r
)

2vy
− ϕxϕ

2
xx
h2

4
+

ϕ2
xh

2ϕxxx

4
− ρ

ϕ3
xϕxxh

2

2y
.

Using these 
oe�
ients for the spatial interior in 
ombination with the treatment of the

boundary 
onditions in Se
tion 2.5.4 yields the Version 4 s
heme.
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Appendix D

General 
oe�
ients

three-dimensional HOC s
heme

In this part of the appendix we present all the 
oe�
ients of K̂k,l,m of Uk,l,m for k ∈
{i1−1, i1, i1+1}, l ∈ {i2−1, i2, i2+1} and m ∈ {i3−1, i3, i3+1} of the high-order 
ompa
t
s
heme in the three-dimensional 
ase. The di�erential equation (3.1) is dis
retised at the

point (xi1 , xi2 , xi3) ∈
◦
G

(3)

h a

ording to Se
tion 3.4.2 and we thus have

K̂i1,i2,i3 =
b23[a]x2c3

6a2
+

b13[a]x1c3
6a2

− [c3]x3

3
− c21

6a
− c23

6a
− [a]x1x1

2
− [a]x2x2

2
− [a]x3x3

2

+
b12[a]x2c1

6a2
+

b13[a]x3 [a]x1

a2
+

b23[a]x3 [a]x2

a2
+

b23[a]x3c2
6a2

+
b12[a]x1 [a]x2

a2

− b13[c3]x1

6a
− c1[a]x1

6a
+

b223
3ah2

− b12[a]x1x2

2a
− c2[a]x2

6a
+

b213
3ah2

− c22
6a

− c3[a]x3

6a
− b13[a]x1x2

2a
− b23[c2]x3

6a
− b12[c2]x1

6a
− b23[a]x2x3

2a
− b13[c1]x3

6a
(D.1)

+
b212
3ah2

+
b13[a]x3c1

6a2
− b12[c1]x2

6a
+

[a]2x1

a
+

[a]2x3

a
+

[a]2x2

a
− b23[c3]x2

6a

− 4a

h2
+

b12[a]x1c2
6a2

− [c1]x1

3
− [c2]x2

3
,

K̂i1±1,i2−1,i3 =
b13[a]x3b12
24a2h

∓ b23[a]x3b12
24a2h

∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ [b12]x3x3

48
− c2

12h

± b12c2
12ah

± b12[a]x1c1
48a2

± b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
± b23[a]x2 [b12]x3

48a2

+
b12[a]x1

12ah
∓ b12[a]x2

12ah
± b12[a]x2c2

48a2
± b23[a]x3c1

48a2
± b23[a]x3 [b12]x2

48a2

− b12[b12]x2

24ah
± b13[a]x3 [b12]x1

48a2
± b13[a]x3c2

48a2
± b12[b12]x1

24ah
± b23[b12]x3

24ah

± [b12]x2

12h
− b13[b12]x3

24ah
± b13b23

12ah2
+

[a]x2b
2
12

24a2h
∓ b12

6h2
+

a

6h2
− [b12]x1

12h
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∓ b13[c2]x3

48a
∓ b12[b12]x1x2

48a
∓ b23[c1]x3

48a
∓ b12[c1]x1

48a
± [a]x1c2

24a
± c1

12h

(D.2)

∓ b13[b12]x1x2

48a
∓ c1[b12]x1

48a
± [a]x3 [b12]x3

24a
∓ c3[b12]x3

48a
± [a]x2c1

24a

∓ c2[b12]x2

48a
± b12[a]x2 [b12]x1

48a2
± b13[a]x1 [b12]x3

48a2
∓ b12[c2]x2

48a
− b12c1

12ah

+
b212

12ah2
∓ b23[b12]x2x3

48a
± [a]x1 [b12]x1

24a
± [a]x2 [b12]x2

24a
∓ c1c2

24a

∓ [c1]x2

24
∓ [c2]x1

24
,

K̂i1±1,i2,i3 =± b23[a]x3b12
12a2h

± b23[a]x2b13
12a2h

∓ hb12[a]x1 [c1]x2

24a2
∓ hb23[a]x2 [c1]x3

24a2
+

c21
12a

∓ hb13[a]x3 [c1]x1

24a2
∓ hb23[a]x3 [c1]x2

24a2
± h[c1]x3x3

24
± h[c1]x2x2

24
± h[c1]x1x1

24

± hc1[c1]x1

24a
+

[a]x1x1

12
+

[a]x3x3

12
− b13[a]x3c1

12a2
∓ b13[b13]x1

12ah
± hc3[c1]x3

24a

∓ hb13[a]x1 [c1]x3

24a2
± hc2[c1]x2

24a
± hb13[c1]x1x2

24a
∓ h[a]x3 [c1]x3

12a
∓ [b12]x2

6h

∓ hb12[a]x2 [c1]x1

24a2
∓ b23[b13]x2

12ah
± b213[a]x1

12a2h
+

b13[c1]x3

12a
∓ c3b13

6ah
+

[a]x2x2

12

± hb23[c1]x2x3

24a
± hb12[c1]x1x2

24a
± b13[a]x3

6ah
− b12[a]x2c1

12a2
∓ h[a]x1 [c1]x1

12a
(D.3)

∓ b12c2
6ah

± b212[a]x1

12a2h
± b12[a]x2

6ah
∓ b12[b12]x1

12ah
∓ b23[b12]x3

12ah
± c1

6h
+

a

3h2

− b13[a]x3 [a]x1

6a2
− b23[a]x3 [a]x2

6a2
∓ [b13]x3

6h
− b12[a]x1 [a]x2

6a2
− c1[a]x1

12a

− b213
6ah2

− b212
6ah2

+
c3[a]x3

12a
+

b13[a]x1x2

12a
+

b23[a]x2x3

12a
− [a]2x3

6a
− [a]2x1

6a

+
c2[a]x2

12a
+

b12[a]x1x2

12a
+

[c1]x1

6
+

b12[c1]x2

12a
− [a]2x2

6a
∓ h[a]x2 [c1]x2

12a
,

K̂i1,i2±1,i3 =± b13[a]x3b12
12a2h

∓ hb13[a]x1 [c2]x3

24a2
∓ hb12[a]x1 [c2]x2

24a2
+

[a]x3x3

12
+

[c2]x2

6

± b13[a]x1b23
12a2h

∓ hb13[a]x3 [c2]x1

24a2
− b13[a]x3 [a]x1

6a2
− b12[a]x1 [a]x2

6a2
− b223

6ah2

± c2
6h

∓ hb23[a]x3 [c2]x2

24a2
∓ hb12[a]x2 [c2]x1

24a2
∓ hb23[a]x2 [c2]x3

24a2
+

[a]x1x1

12

∓ h[a]x1 [c2]x1

12a
± b12[a]x1

6ah
∓ b12c1

6ah
∓ b12[b12]x2

12ah
∓ b13[b12]x3

12ah
± [a]x2b

2
12

12a2h

∓ [b12]x1

6h
∓ b23c3

6ah
± hb12[c2]x1x2

24a
± hb23[c2]x2x3

24a
± hb13[c2]x1x2

24a
+

a

3h2

± hc2[c2]x2

24a
± b23[a]x3

6ah
− b23[a]x3c2

12a2
∓ b13[b23]x1

12ah
∓ b23[b23]x2

12ah
+

c22
12a

(D.4)
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± hc3[c2]x3

24a
∓ h[a]x3 [c2]x3

12a
± hc1[c2]x1

24a
± [a]x2b

2
23

12a2h
+

[a]x2x2

12
− b212

6ah2

− b12[a]x1c2
12a2

+
c1[a]x1

12a
+

b12[a]x1x2

12a
− c2[a]x2

12a
± h[c2]x1x1

24
+

c3[a]x3

12a

+
b13[a]x1x2

12a
+

b23[c2]x3

12a
+

b12[c2]x1

12a
± h[c2]x2x2

24
− [a]2x1

6a
± h[c2]x3x3

24

∓ [b23]x3

6h
+

b23[a]x2x3

12a
− [a]2x3

6a
− [a]2x2

6a
− b23[a]x3 [a]x2

6a2
∓ h[a]x2 [c2]x2

12a
,

K̂i1±1,i2+1,i3 =− b13[a]x3b12
24a2h

± [b12]x1x1

48
± [b12]x2x2

48
± [b12]x3x3

48
+

b12c1
12ah

− b12[a]x1

12ah

± b12c2
12ah

∓ b12[a]x1c1
48a2

∓ b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
∓ b23[a]x2 [b12]x3

48a2

∓ b23[a]x3b12
24a2h

∓ b12[a]x2 [b12]x1

48a2
∓ b12[a]x2c2

48a2
+

b13[b12]x3

24ah
∓ b12[a]x2

12ah

+
b12[b12]x2

24ah
∓ b13[a]x3 [b12]x1

48a2
∓ b13[a]x3c2

48a2
± b12[b12]x1

24ah
± b23[b12]x3

24ah

∓ b13[a]x1 [b12]x3

48a2
∓ b23[a]x3 [b12]x2

48a2
∓ b23[a]x3c1

48a2
∓ b13b23

12ah2
− [a]x2b

2
12

24a2h

± b23[b12]x2x3

48a
+

c2
12h

± b12
6h2

± c1
12h

∓ [a]x1c2
24a

+
[b12]x1

12h
± [b12]x2

12h
(D.5)

+
a

6h2
± b13[c2]x3

48a
± b12[b12]x1x2

48a
± b23[c1]x3

48a
± b12[c1]x1

48a
+

b212
12ah2

± b13[b12]x1x2

48a
± c1[b12]x1

48a
∓ [a]x3 [b12]x3

24a
± c3[b12]x3

48a
± b12[c2]x2

48a

∓ [a]x2c1
24a

∓ [a]x1 [b12]x1

24a
∓ [a]x2 [b12]x2

24a
± c1c2

24a
± [c1]x2

24
± [c2]x1

24

± c2[b12]x2

48a
,

K̂i1±1,i2−1,i3−1 =± [b13]x2

48h
∓ b13

24h2
± [b12]x3

48h
± [b23]x1

48h
± b12[b13]x1

96ah
± b13[b12]x1

96ah

± b23[b12]x2

96ah
± c3b12

48ah
± b13c2

48ah
∓ b13b23

24ah2
± b23[b13]x3

96ah
+

b12b13
24ah2

∓ b12
24h2

∓ [a]x2b13
48ah

∓ [a]x3b12
48ah

∓ b13[a]x1b12
48a2h

∓ [a]x1b23
48ah

± b23c1
48ah

(D.6)

∓ b23b12
24ah2

∓ b13[a]x3b23
48a2h

∓ b12[a]x2b23
48a2h

+
b23
24h2

± b13[b23]x3

96ah

± b12[b23]x2

96ah
,

K̂i1±1,i2+1,i3+1 =± [b13]x2

48h
± b13

24h2
± [b12]x3

48h
± [b23]x1

48h
± b12[b13]x1

96ah
± b13[b12]x1

96ah

± b23b12
24ah2

∓ b13[a]x3b23
48a2h

∓ b12[a]x2b23
48a2h

+
b23
24h2

± b13[b23]x3

96ah
± b12[b23]x2

96ah

± b12
24h2

∓ [a]x2b13
48ah

∓ [a]x3b12
48ah

∓ b13[a]x1b12
48a2h

∓ [a]x1b23
48ah

± b23c1
48ah

(D.7)
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± b23[b12]x2

96ah
± c3b12

48ah
± b13c2

48ah
± b13b23

24ah2
+

b12b13
24ah2

± b23[b13]x3

96ah
,

K̂i1±1,i2,i3−1 =∓ [c3]x1

24
∓ b13

6h2
− [b13]x1

12h
∓ b23[a]x2b13

24a2h
∓ [b13]x1x1

48
− c3

12h
± [b13]x3

12h

∓ [b13]x3x3

48
+

a

6h2
± [a]x3 [b13]x3

24a
∓ b12[c3]x2

48a
± [a]x1 [b13]x1

24a
∓ c1c3

24a

∓ b13[c3]x3

48a
∓ b13[c1]x1

48a
∓ c1[b13]x1

48a
∓ b23[b13]x2x3

48a
± [a]x2 [b13]x2

24a

∓ c3[b13]x3

48a
± b13[b13]x1

24ah
± b23[b13]x2

24ah
∓ b213[a]x1

24a2h
± c3b13

12ah
∓ b13[a]x3

12ah

+
b12[a]x2b13
24a2h

± c1
12h

+
b213

12ah2
∓ b13[b13]x1x2

48a
∓ b23[c1]x2

48a
± b23b12

12ah2

± [a]x1c3
24a

∓ [b13]x2x2

48
∓ c2[b13]x2

48a
± [a]x3c1

24a
± b23[a]x2c1

48a2
+

[a]x3b
2
13

24a2h

(D.8)

± b13[a]x1c1
48a2

± b12[a]x1 [b13]x2

48a2
± b13[a]x1 [b13]x3

48a2
± b23[a]x3 [b13]x2

48a2

± b23[a]x2 [b13]x3

48a2
∓ [c1]x3

24
± b12[a]x2 [b13]x1

48a2
+

b13[a]x1

12ah
− c1b13

12ah

± b12[a]x2c3
48a2

− b13[b13]x3

24ah
± b13[a]x3c3

48a2
− b12[b13]x2

24ah
∓ b12[b13]x1x2

48a

± b13[a]x3 [b13]x1

48a2
,

K̂i1,i2±1,i3−1 =∓ [c3]x2

24
∓ b23

6h2
− [b23]x2

12h
− c3

12h
∓ [b23]x1x1

48
∓ [b23]x2x2

48
∓ [a]x2b

2
23

24a2h

± [a]x3 [b23]x3

24a
∓ b13[a]x1b23

24a2h
∓ [b23]x3x3

48
+

b12[a]x1b23
24a2h

± b23[b23]x2

24ah

∓ b12[c3]x1

48a
∓ b23[c2]x2

48a
∓ b23[c3]x3

48a
± [a]x2c3

24a
± [a]x1 [b23]x1

24a
∓ c2c3

24a

∓ c3[b23]x3

48a
∓ b12[b23]x1x2

48a
∓ b13[c2]x1

48a
∓ b13[b23]x1x2

48a
± [a]x2 [b23]x2

24a

± c2
12h

+
a

6h2
± b23c3

12ah
∓ b23[a]x3

12ah
± b13[b23]x1

24ah
+

b223
12ah2

± [a]x3c2
24a

∓ b23[b23]x2x3

48a
∓ c2[b23]x2

48a
∓ [c2]x3

24
± b12b13

12ah2
− c2b23

12ah
± b23[a]x3c3

48a2
(D.9)

± b23[a]x3 [b23]x2

48a2
± b12[a]x1c3

48a2
± b13[a]x1 [b23]x3

48a2
± b23[a]x2 [b23]x3

48a2

± b12[a]x2 [b23]x1

48a2
+

b23[a]x2

12ah
± b12[a]x1 [b23]x2

48a2
± b13[a]x3 [b23]x1

48a2

± b23[a]x2c2
48a2

± b13[a]x1c2
48a2

− b23[b23]x3

24ah
− b12[b23]x1

24ah
+

b223[a]x3

24a2h

± [b23]x3

12h
∓ c1[b23]x1

48a
,
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K̂i1±1,i2+1,i3−1 =± [a]x2b13
48ah

∓ [b13]x2

48h
± b12

24h2
∓ c3b12

48ah
± b13b23

24ah2
− b23

24h2
∓ [b12]x3

48h

∓ b23b12
24ah2

± b13[a]x3b23
48a2h

± b12[a]x2b23
48a2h

± [a]x1b23
48ah

∓ b23c1
48ah

∓ b13c2
48ah

± [a]x3b12
48ah

∓ b13
24h2

− b12b13
24ah2

∓ [b23]x1

48h
∓ b12[b13]x1

96ah
∓ b13[b12]x1

96ah

(D.10)

∓ b23[b12]x2

96ah
∓ b12[b23]x2

96ah
± b13[a]x1b12

48a2h
∓ b13[b23]x3

96ah
∓ b23[b13]x3

96ah
,

K̂i1±1,i2−1,i3+1 =∓ [b13]x2

48h
∓ [b12]x3

48h
± [a]x3b12

48ah
∓ b12[b13]x1

96ah
∓ b13[b12]x1

96ah
− b12b13

24ah2

− b23
24h2

∓ b12
24h2

± [a]x2b13
48ah

± b13[a]x1b12
48a2h

± [a]x1b23
48ah

∓ b12[b23]x2

96ah

± b23b12
24ah2

± b13[a]x3b23
48a2h

± b12[a]x2b23
48a2h

∓ b13[b23]x3

96ah
∓ b23[b13]x3

96ah
(D.11)

∓ b23c1
48ah

∓ [b23]x1

48h
± b13

24h2
∓ b23[b12]x2

96ah
∓ c3b12

48ah
∓ b13c2

48ah
∓ b13b23

24ah2
,

K̂i1±1,i2,i3+1 =± [c3]x1

24
+

a

6h2
± b13

6h2
+

c3
12h

−∓ b23[a]x2b13
24a2h

± [b13]x1x1

48
± [b13]x3

12h

± [b13]x2x2

48
∓ [a]x3 [b13]x3

24a
± b12[c3]x2

48a
± b13[c3]x3

48a
∓ [a]x1 [b13]x1

24a

∓ [a]x3c1
24a

± b13[c1]x1

48a
± c1[b13]x1

48a
± b23[b13]x2x3

48a
∓ [a]x1c3

24a
± c1c3

24a

± c3[b13]x3

48a
± b12[b13]x1x2

48a
± b13[b13]x1

24ah
± b23[b13]x2

24ah
∓ b213[a]x1

24a2h

+
[b13]x1

12h
± c2[b13]x2

48a
± [b13]x3x3

48
∓ [a]x2 [b13]x2

24a
± c3b13

12ah
∓ b13[a]x3

12ah

∓ b13[a]x1c1
48a2

∓ b12[a]x1 [b13]x2

48a2
∓ b13[a]x1 [b13]x3

48a2
∓ b23[a]x3 [b13]x2

48a2
(D.12)

− b12[a]x2b13
24a2h

± c1
12h

+
b213

12ah2
± b13[b13]x1x2

48a
± b23[c1]x2

48a
∓ b23b12

12ah2

∓ b13[a]x3 [b13]x1

48a2
∓ b23[a]x2 [b13]x3

48a2
∓ b12[a]x2 [b13]x1

48a2
∓ b12[a]x2c3

48a2

± [c1]x3

24
− b13[a]x1

12ah
+

b13[b13]x3

24ah
∓ b13[a]x3c3

48a2
+

b12[b13]x2

24ah
+

c1b13
12ah

∓ b23[a]x2c1
48a2

− [a]x3b
2
13

24a2h
,

K̂i1,i2,i3±1 =− b23[a]x2c3
12a2

− b13[a]x1c3
12a2

∓ [b23]x2

6h
∓ [b13]x1

6h
± h[c3]x1x1

24
± h[c3]x3x3

24

± h[c3]x2x2

24
+

c23
12a

+
[a]x1x1

12
+

[a]x2x2

12
+

[a]x3x3

12
± b12[a]x1b23

12a2h
± c3

6h

+
[c3]x3

6
∓ hb13[a]x1 [c3]x3

24a2
− b13[a]x3 [a]x1

6a2
− b12[a]x1 [a]x2

6a2
+

c1[a]x1

12a

± b12[a]x2b13
12a2h

∓ hb12[a]x1 [c3]x2

24a2
∓ hb23[a]x2 [c3]x3

24a2
∓ hb23[a]x3 [c3]x2

24a2
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∓ hb13[a]x3 [c3]x1

24a2
∓ hb12[a]x2 [c3]x1

24a2
+

a

3h2
− b23[a]x3 [a]x2

6a2
+

b13[c3]x1

12a

+
b12[a]x1x2

12a
+

c2[a]x2

12a
− b213

6ah2
− c3[a]x3

12a
+

b13[a]x1x2

12a
± hc2[c3]x2

24a
(D.13)

+
b23[a]x2x3

12a
+

b23[c3]x2

12a
∓ c2b23

6ah
± b23[a]x2

6ah
∓ b23[b23]x3

12ah
∓ b12[b23]x1

12ah

± [a]x3b
2
13

12a2h
± b13[a]x1

6ah
∓ b13[b13]x3

12ah
∓ b12[b13]x2

12ah
∓ c1b13

6ah
± hb13[c3]x1x2

24a

± hc3[c3]x3

24a
± hb23[c3]x2x3

24a
∓ h[a]x1 [c3]x1

12a
∓ h[a]x2 [c3]x2

12a
∓ h[a]x3 [c3]x3

12a

± hb12[c3]x1x2

24a
− [a]2x1

6a
− [a]2x3

6a
− [a]2x2

6a
− b223

6ah2
± b223[a]x3

12a2h
± hc1[c3]x1

24a

and

K̂i1,i2±1,i3+1 =± [c3]x2

24
± b23

6h2
+

[b23]x2

12h
+

c3
12h

± [b23]x1x1

48
± [b23]x2x2

48
± [b23]x3x3

48

± b12[c3]x1

48a
∓ [a]x3 [b23]x3

24a
± b23[c2]x2

48a
± b23[c3]x3

48a
∓ [a]x2c3

24a
± c2c3

24a

± c3[b23]x3

48a
± b12[b23]x1x2

48a
± b13[c2]x1

48a
± b13[b23]x1x2

48a
∓ [a]x2 [b23]x2

24a

∓ b13[a]x1b23
24a2h

∓ [a]x1 [b23]x1

24a
∓ [a]x3c2

24a
− b12[a]x1b23

24a2h
± b23[b23]x2x3

48a

+
c2b23
12ah

± c2
12h

+
a

6h2
± b23c3

12ah
∓ b23[a]x3

12ah
± b13[b23]x1

24ah
± b23[b23]x2

24ah

∓ [a]x2b
2
23

24a2h
+

b223
12ah2

± c2[b23]x2

48a
± c1[b23]x1

48a
∓ b12b13

12ah2
− b23[a]x2

12ah
(D.14)

∓ b23[a]x3 [b23]x2

48a2
∓ b23[a]x3c3

48a2
∓ b13[a]x1 [b23]x3

48a2
∓ b23[a]x2 [b23]x3

48a2

∓ b23[a]x2c2
48a2

∓ b12[a]x1 [b23]x2

48a2
∓ b13[a]x3 [b23]x1

48a2
∓ b12[a]x2 [b23]x1

48a2

+
b23[b23]x3

24ah
+

b12[b23]x1

24ah
− b223[a]x3

24a2h
± [b23]x3

12h
± [c2]x3

24
∓ b13[a]x1c2

48a2

∓ b12[a]x1c3
48a2

.
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