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Abstract

This thesis is concerned with the derivation, numerical analysis and implementation of
high-order compact finite difference schemes for parabolic partial differential equations in
multiple spatial dimensions. All those partial differential equations contain mixed deriva-
tive terms. The resulting schemes have been applied to equations appearing in computa-

tional finance.

First, we develop and study essentially high-order compact finite difference schemes in
a general setting with option pricing in stochastic volatility models on non-uniform grids
as application. The schemes are fourth-order accurate in space and second-order accurate
in time for vanishing correlation. In the numerical study we obtain high-order numer-
ical convergence also for non-zero correlation and non-smooth payoffs which are typical
in option pricing. In all numerical experiments a comparative standard second-order dis-
cretisation is significantly outperformed. We conduct a numerical stability study which

indicates unconditional stability of the scheme.

Second, we derive and analyse high-order compact schemes with n-dimensional spatial
domain in a general setting. We obtain fourth-order accuracy in space and second-order
accuracy in time. A thorough von Neumann stability analysis is performed for spatial
domains with dimensions two and three. We prove that a necessary stability condition
holds unconditionally without additional restrictions on the choice of the discretisation
parameters for vanishing mixed derivative terms. We also give partial results for non-
vanishing mixed derivative terms. As first example Black-Scholes Basket options are
considered. In all numerical experiments, where the initial conditions were smoothened
using the smoothing operators developed by Kreiss, Thomeé and Widlund, a comparative
standard second-order discretisation is significantly outperformed. As second example the
multi-dimensional Heston basket option is considered for n independent Heston processes,
where for each Heston process there is a non-vanishing correlation between the stock and

its volatility.

il



Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in
part to another University for the award of any other degree. I also declare that this thesis
was composed by myself and that the work contained therein is my own, except where

explicitly stated otherwise.

Signature:

Christof Heuer

iii



Acknowledgements

First and foremost I would like to thank my advisor, Dr. Bertram Diiring for his support,
his patience and his advice throughout my entire time at the University of Sussex. He has
been providing a friendly atmosphere and it has been a pleasure to be his PhD student.
This thesis would not been possible without his help. Additionally, T would also like to
thank the University of Sussex for providing me with funding and giving me the opportunity
to study for a PhD. I also want to give thanks to Dr. Michel Fournié for his support and
his crucial contribution. I greatly enjoyed working with him. Furthermore, I also have to
express my gratitude to I'T Services, they always helped me out when there were problems.
In addition, I would like to thank the School Office for their help during my studies, be it
about queries about the workshops, needing help with organisatorical matters or anything
else. I especially would like to thank both Ansgar and Bertram for proofreading my thesis.
This was a great help speeding up the finishing the thesis. Finally, I express my gratitude
to my family and friends for their care and their support. They were always there when I
needed them. Thank you for motivating me as well as calming me down, whenever needed

or necessary.

v



Publication and author contributions

Here T detail the contribution of each author to the following paper.

Bertram Diiring, Michel Fournié and Christof Heuer, High-order compact finite differ-
ence schemes for option pricing in stochastic volatility models on non-uniform grids, J.

Comput. Appl. Math., 270(18): 767-789, 2014
e Bertram Diiring

— Helped to write introduction and conclusion.
— Constantly supervised and gave feedback.

— Had idea of stability plots.
e Michel Fournié

— Discovered the necessity of four different versions, which have second-order re-

mainder terms.

— Helped deriving the schemes using Maple.
e Christof Heuer

— Discovered the necessity of four different versions with second-order remainder

terms.
— Derived the schemes using Maple.
— Wrote main body of the paper.
— Implemented of the schemes in MATLAB.
— Performed and discussed numerical experiments (convergence plots, stability

plots).

o Chapter 2 is a generalisation of this paper. The application in Chapter 2 is also taken

from this paper.



Contents

1 Introduction 1
1.1 Economical background . . . . .. ... ... oL 1
1.2 Mathematical background . . . . . . ... ... ... ... oo 6

1.2.1 Financial background . . . . .. ... ... oo 7
1.2.2  Numerical background . . . . . . ... ... ... .. L. 13
1.3 Research overview and aims of the thesis . . . . . ... ... ... ... ... 24
1.4 Structure of this thesis . . . . . . . . .. ... 28

2 Essentially high-order compact schemes applied to non-uniform grids 31

2.1
2.2
2.3
24

2.5

2.6

Motivation for using essentially high-order compact schemes . . . . . . . .. 31
Introduction of the partial differential equation . . . . . . . ... ... ... 32
Auxiliary relations for higher derivatives . . . . . . . . ... ... ... ... 34
Derivation of essentially high-order compact schemes . . . . . . . ... ... 36
2.4.1 Derivation of Version 1. . . . . . .. . .. ... L. 38
2.4.2 Derivation of Version 2. . . . . . .. ... L oo 41
2.4.3 Derivation of Version 3. . . . . . ... ..o oo 45
2.4.4 Derivation of Version 4 . . . . . . .. ... Lo 48
Application to the Heston model on non-uniform grids . . . . .. ... ... 51

2.5.1 Transformation of the partial differential equation and final condition 51

2.5.2  Discussion of second-order remainder terms . . . . . ... ... ... 53
2.5.3 Semi-discrete schemes . . . . . . ... Lo o 55
2.5.4 Treatment of the boundary conditions . . . . ... ... .. .. ... 57
2.5.5 Time discretisation . . . . . . . . ... L Lo Lo 59
Numerical experiments . . . . . . . . .. .. Lo 60
2.6.1 Choice of the zoom function . . . . . . . .. ... ... ... ..., 60
2.6.2 Numerical convergence . . . . . . . . . ... Lo 62
2.6.3 Numerical stability study . . . . ... ... ... ... 0oL 67

vi



2.7 Summary . . ...

3 High-order compact schemes in multiple space dimensions

3.1 Partial differential equation in an n-dimensional spatial domain . . . . . . .
3.1.1 Central difference approximation . . . . . .. .. .. ... ... ...

3.2 Auxiliary relations for higher derivatives . . . . . . . ... .. .. ... ...

3.3 Conditions for achieving a high-order compact scheme . . .. .. ... ...

3.4 System matrices for the semi-discrete general case . . . . . . . . . ... ...
3.4.1 Semi-discrete two-dimensional scheme . . . . .. .. ... ... ...
3.4.2 Semi-discrete three-dimensional scheme . . . .. .. ... ... ...
3.4.3 Stability analysis for the Cauchy problem in dimensions n = 2,3

3.5 Application to Black-Scholes basket options . . . . . .. ... .. ... ...
3.5.1 Transformation of the n-dimensional Black-Scholes equation . . . . .
3.5.2 Semi-discrete two-dimensional Black-Scholes equation . . . . . ...
3.5.3 Semi-discrete three-dimensional Black-Scholes equation . . . . . . . .
3.5.4 Treatment of the boundary conditions . . . . .. .. ... ... ...
3.5.5 Time discretisation . . . . . . ... L

3.6 Numerical experiments for Black-Scholes Basket options . . . . . ... ...
3.6.1 Numerical example with two underlying stocks . . . . .. ... ...
3.6.2 Numerical example with three stocks . . . . . .. .. ... ... ...

3.7 Application to Heston basket options . . . . . . . .. ... ... ... ....

3.8 Summary . . ...

4 Conclusion

Appendix A Derivation of the Black-Scholes partial differential equation

Appendix B Derivation of the multi-dimensional Heston equation

Appendix C Coefficients for Version 2 and Version 4
C.1 Coefficients Application EHOC scheme Version 2 . . .. ... .. ... ...
C.2 Coefficients Application EHOC scheme Version 4 . . . . . .. ... .....

Appendix D General coefficients three-dimensional HOC scheme

vii

81

107

114

116

121
121
123

125



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Remainder terms Heston Model . . . . . .. . ... ... ... oL, 53
Different zoom examples with K =100 . . . . . . .. .. .. ... ... ... 61
Relative [?-error Heston model, p=0. . . . . . ... ... ... ....... 63
Absolute [*-error Heston model, p=0 . . . . . . .. . ... ... ... ... 63
Relative [2-error Heston model, p= —0.1 . . . . . . . ... ... ... .... 64
Absolute [*°-error Heston model, p=—0.1 . . . . . . ... ... . ... ... 64
Relative [2-error Heston model, p = —0.4 . . . . . . . ... ... .. ..... 64
Absolute [*°-error Heston model, p=—-04 . . . . . . . ... ... ... ... 64
Relative [2-error Power Put Heston model, p=0,p=2 . ... . ... ... 66
Relative I2-error Power Put Heston model, p = —04,p=2 . ... .. ... 66
Relative I2-error Power Put Heston model, p=0,p=3 . .. ... .. ... 66
Relative [2-error Power Put Heston model, p = —04,p=3 ... ... ... 66
Stability plot of the relative I2-error for p=0 . . . . .. . .. .. ... ... 67
Stability plot of the relative I2-error for p=—0.4 . . . . . .. .. ... ... 67
Compact stencil in two dimensions . . . . . . . . .. .. .. ... ...... 72
Example smoothing points forn =2, p=1 . . . .. ... ... ... .... 98

Absolute [*°-error two-dimensional Black-Scholes Basket Power Put, p=1 . 99

Absolute [*°-error two-dimensional Black-Scholes Basket Power Put, p =2 . 99

[2-error two-dimensional Black-Scholes Basket Power Put, p=1 . . . . . . . 100
I?-error two-dimensional Black-Scholes Basket Power Put, p=2 . . . . . .. 100
[2-error two-dimensional Black-Scholes Basket Power Put, p=3 . . . . . . . 101
[2-error two-dimensional Black-Scholes Basket Power Put, p=4 . . . . . . . 101

I%-error log-log plot three-dimensional Black-Scholes Basket Power Put, p = 3103
I2-error log-log plot three-dimensional Black-Scholes Basket Power Put, p = 4103

viii



Chapter 1

Introduction

This thesis is concerned with the derivation and analysis of numerical finite difference
schemes for the solution of parabolic partial differential equations. We apply these schemes
to option pricing problems appearing in finance, where the goal is to give an accurate ap-
proximation of the fair price of the option. In this introduction, we give some economical
background on options and a motivation for their use and importance. Then we give an in-
troduction to the financial and numerical side of option pricing. We recall different stochas-
tic models for the underlying asset price, such as the Black-Scholes model [BS73, Mer73|
and the Heston model [Hes93|, both in the single-asset case as well as the multi-asset case.
We derive, using the Lemma of Itd [[t644, Irl98|, partial differential equations which arise
from the stochastic models. Methods of numerical analysis used to approximate partial
differential equations are defined, namely discretisation techniques using an equidistant
grid of the underlying spatial domains. Necessary conditions for von Neumann stability,
see for example [Str04], are given. The third section of this chapter consists of a research
overview, where we give a brief survey on the research done in option pricing from the
perspective of numerical analysis. Finally, we give an overview, in which we present the

main aims and achievements of this thesis.

1.1 Economical background

In this section options are defined in an economical sense, explaining which rights each
option certifies, as well as defining the pay-off of the option and when it can be exercised.
There is a huge variety of options traded in the financial market, for example European
Options, American Options, Asian Options or other exotic options. First we want to give

a general definition of a financial option, e.g. who is involved in this contract and what is



the purpose of it.

Definition 1 (European Call/Put):

A European Call/Put represents a contract between the writer (party which sells the
option) and the holder (party which buys the option). The contract offers the buyer the
right, but not the obligation, to buy (Call) or sell (Put) an underlying asset S (e.g. a
commodity or a stock) at an agreed fized strike price K > 0 on a specific date T > 0. The
pay-off at time T of the European Call/Put is thus

C(S,T) = max(S — K,0) for a Call and P(S,T) =max(K —S,0) for a Put,

where S € Q :=[0,00][ .

This definition, see e.g. [Wil98], illustrates that an option price cannot be negative,
as there is no obligation for the holder, but only a right. It also gives an idea, that there
is a huge variety of possible option types. With the definition of the European Call it is
easy to show why options are interesting and useful for the economy. We give two short

examples for the use of options.

The first obvious usage for options is speculation. If an investor thinks that the price
of a specific stock S will go up, he might want to buy an European Call on the stock for a
given strike K, which is below the price the investor expects the stock to be at the exercise
time. Let us denote that the option was bought for a price Cjy. The speculation strategy
using the European Call gives a profit of max(S(7) — K,0) — Cp and thus a maximum
loss of Cp, which would be a total loss. But what happens in the other possible strategy
of speculation, when buying the stock itself? It is possible that, against the own expecta-
tions, the stock price would go down massively due to new information. The loss of the
strategy using the stock instead of the option is limited by the current stock price. So
this strategy leads to a much bigger potential loss, as the options on the stocks have a
much lower price than the stock itself. What happens in the case of rising stock values?
When the stock price is well above the strike price, the difference between the profit of the
strategy using the stock directly and profit of the strategy using the option on the stock
is Cy. So with higher stock values the significance of the difference of the profit of both
strategies declines in absolute terms, whereas there is a huge impact, should the price of
the underlying decline. So we can say that the security of a lower potential loss is bought

with a slightly lower potential win. A European Put on the other side can be used for



speculation, when the investor expects the value of the underlying to decline.

The more interesting approach for using options is hedging. The purpose of hedging is
to eliminate or reduce risk. As an example we could look at an airline. The airline has to
buy jet fuel in order for its aeroplanes to fly and faces a high risk concerning fluctuations
in the price of jet fuel. This may create a notable additional cost if the price suddenly
increases significantly. The hedging has the purpose to eliminate the risk of sudden spikes
in the jet fuel price. Even though it might be slightly costlier over the long run to create
this protection through options, a strong increase in the price on the other hand may force
the company into insolvency, if the increase were too strong and too sudden. Insuring
against this risk does not come for free, as the price of the European Call option is an
initial investment. If the jet fuel price would not increase above the strike price, the com-
pany has a loss of the initial price of the option. One might interpret the additional cost of
hedging with options as distributing the financial load of the sudden increase of the price
to a wider time-frame, which is more bearable for the company. This means that there
is a slightly higher price over a long time rather than a sudden huge payment at one. In
order to keep the cost of hedging low, it is important to know the fair price of the options
used. Other possible hedging targets could be, for example, currency exchange rates, or
the price of produced goods of a company. The goal of hedging with options is to make op-

erations of a company more predictable, as the risk through price fluctuations is minimised.

In addition to standard European Calls/Puts we also consider European Power Calls/Puts,
see e.g. [Ess04], which only differ in the pay-off, when comparing them with plain European

options.

Definition 2 (European Power Call/Put):

A European Power Call/Put represents a contract between the writer (party which sells
the option) and the holder (party which buys the option). The contract offers the buyer
the right, but not the obligation, to exercise the option, which depends on an underlying
asset S (e.g. a commodity or a stock), with an agreed fized strike price K > 0 on a specific

date T > 0. The pay-off at time T is

C(S,T) =max(S — K,0)" for a European Power Call and

P(S,T) =max(K — S,0)’ for a European Power Put,



where p € N>y and S € Q := [0,00[ . This leads to C(-,T), P(-,T) € CP~1(Q).

The European options mentioned above all give the right to exercise the option only
at the expiration date T'. It would be possible to generalise these options, by giving the
holder the possibility to exercise the option during the whole life time of the option, so
up to the expiration date instead of just at the expiration date. These options are called
American options (see e.g. |[Wil98]). For these kind of options one has to solve a free
boundary problem. This means that for each point 7 € [0,7T[=: , in time the interval
Q2 can be split into two subintervals, namely Q;(7) = [0, Sy(7)[ and Qa(7) = [Sp(7), 0],
where S,(7) denotes the free boundary. In one of those subintervals it is better to exercise
the option directly, whereas in the other subinterval it is more beneficial for the investor to
wait and hold the option. At the free boundary the choice between holding or exercising
the option is indifferent. For an American Put the interval ©;(7) is the region, where ex-
ercising the option is favourable and Sy(7) < K for 7 € Q. holds. When an American Call
is examined, the region where it is beneficial to exercise the option is Q9(7). Additionally,

it holds Sp(7) > K in this case for 7 € ;.

After defining European and American options, let us consider Asian options. We can
substitute the final price of the stock at time T" with the average of the market price of the

underlying over the time-frame in the pay-off of an European Option, using

T
A(0,T) = % / S(t)dt.
0

This is called a fized strike Asian option [Wil98]. It would also be possible to use the
difference of the stock value at time 7" and kA(0,T) for some k& > 0 in the pay-off, which
leads to a so-called floating strike Asian option [Wil98]. We see that both fixed and floating
strike Asian options are path-dependent. These definitions already show that there exist
numerous possibilities on how other exotic options can be defined. In this thesis we focus

on European options.

Up to now we only considered options depending on a single underlying asset. But it is
possible to create options, which depend on several underlying assets instead of just one,
so-called Basket options. Analogously to the one-dimensional case we start by defining a

European Basket Call/Put [RW07].



Definition 3 (European Basket Call/Put):
A FEuropean Basket Call/Put represents a contract between the writer (party which
sells the option) and the holder (party which buys the option). In the basket case the
option depends on the underlying assets Si,...,Sy for some n € N>i. The holder has the
right, but not the obligation, to execute the option at the expiration date T > 0. The pay-off
of the European Basket option is defined as

C(S1,...,5p,T) = max (Zwisi - K, 0)

i=1

for a Call and

P(S1,...,8,,T) = max (K — ZwiSi,0>
=1

for a Put. The value w; € R\ 0, w; # 0, is called the weight of each underlying S; in the
n

option for i =1,...,n. Additionally, it holds that »_ w; = 1.
i=1

For a given European Basket option we can say that n is unique, as the constraint
w; # 0 for i = 1,...,n holds. The European Basket Call/Put can be interpreted as a
European Call/Put on a portfolio given by the stocks S; with weights w; for i = 1,...,n.

Analogously to the case n = 1 it is possible to define a European Power Basket option.

Definition 4 (European Basket Power Call/Put):

A European Basket Power Call/Put with power p € N> represents a contract between
the writer (party which sells the option) and the holder (party which buys the option).
The power basket option depends on the underlying assets Si,...,Sy for some n € N>
with S; € R>g. The holder has the right, but not the obligation, to execute the option at
the expiration date T' > 0, where the pay-off is

n p
C(S1,...,5,,T) =max (Zwisi - K, 0)

i=1

for a Call and
n P
P(S1,...,8,,T) = max (K — ZwiSi,O>
i=1

for a Put, which leads to C(-,T), P(-,T) € CP~! (Rgo). The weight w; € R of the underlying
S; is non-zero for i =1,...,n. Additionally, Y w; = 1 holds.
=1

5



We can observe that a European Power Call/Put is a European Power Basket Call/Put
with n = 1. American, Asian and other exotic options can be defined analogously to the

one-dimensional case. We focus, just as in the one-dimensional case, on European Options.

1.2 Mathematical background

In the previous section we have defined options from an economical perspective and shown
their importance to the financial world. But these definitions only define the price of the
option at the expiration date T" > 0. If an investor wants to hedge with options, it is
crucial to know the current fair price of an option, even though the expiration date still
lies in the future. We have to describe the behaviour of the underlying assets and their

interaction with each other, as they have an essential impact on the fair price of an option.

To calculate a fair price for a given option, one has to determine stochastic models for
the price movement of the underlying asset(s) of the option, usually by applying stochastic
differential equations. There are different possibilities to model an underlying asset. For
example drift and volatility of the asset could be constant over time, time dependent de-
terministic functions or even stochastic processes. In this thesis we focus on two different
models, namely the Black-Scholes model [BS73, Mer73|, where the drift and volatility are
constant over time, and the Heston model [Hes93|, where the drift is constant over time and
the volatility is a mean reverting stochastic process, which itself has a constant volatility.
Each of those models is discussed in the case of a single underlying [BS73, Mer73, Hes93|
as well as in a multi-dimensional setting [Wil98, DCGG13].

Since this thesis is positioned in the field of numerical analysis, we revisit the derivation
of partial differential equations arising from the previously discussed financial models and
give a link between stochastic and deterministic differential equations, using the Lemma
of Tto [It644, Ir198]. The goal of this thesis is to achieve numerical approximations of the
solution of the deterministic partial differential equation with high accuracy. The first
necessary step is the discretisation of the problem. We define a grid for the spatial domain
of the differential equations, which is given by the underlying asset prices, as well as for
the time. Then we show how to discretise the derivatives appearing in the differential
equations. The general shape of a discrete scheme is defined in a semi-discrete case, which
means that only the spatial discretisation is performed, as well as in the fully discretised

case, where the time discretisation is carried out as well. Necessary conditions for stability



are given, which arise when performing a thorough von Neumann stability analysis (e.g.

[Str04]).

1.2.1 Financial background

When looking at a typical chart of a stock price, we observe that the value of an underlying
asset does not behave smoothly over time. In fact, changes in price can appear very rapidly.
New information, which could be the publication of the balance sheet, or a gain or loss
of an important contract, can have a sudden positive or negative impact on the stock
price. It is important to note that in the case of a balance sheet it is not the published
performance of the company which creates the change in the value of the stock, but the
difference between the expected and the actual performance. These previously established
expectations have already influenced the share-price beforehand. If the company performs
better than expected, the stock price goes up. If the result is below the expectations the
price of the stock goes down. The amount of change in the share price is depending on
the magnitude of the difference between expected and actual performance of the company.
This means that we have to take this uncertainty into consideration when modelling the
underlying assets of an option. One possible way is to model this uncertainty in the stock
prices is to use the Wiener process (e.g. [Pro04|) and thus stochastic differential equations

(e.g. [Kijo3]).

Definition 5 (Wiener Process/Brownian motion):
An adapted process W = (W (t))o<t<oo assuming values in R™ for n € Nxq is called an

n-dimensional Wiener Process or Brownian motion if

(1) for 0 < s <t < oo, W(t) —W(s) is independent of the filtration Fs (increments are

independent of the past);

(11) for 0 < s < t, W(t) — W(s) is a Gaussian random variable with mean zero and

variance (t — s)C, for a given, non-random matriz C;
(i1i) The Wiener Process starts at x € R if P[W(0) = z] = 1.
Let (-Ft)te[o,T] be a family of sub-c-algebras F; C F with Fy; C F; for s < t. Then
F = |J Fiiscalled a filtration, see [Shr04].

te[0,7

When looking at a typical stock chart, we usually observe a trend for a certain time

period. The price seems likely to move upward or downward, at least for the near future.



This means that there has to be a component in the stock price model representing this
drift. The volatilities of different stocks have different values, which means that there has
to be an additional term in the model of an underlying representing the magnitude of the
volatility. This leads directly to the use of stochastic differential equations, which can also

be defined in a multi-dimensional setting.

Definition 6 (Stochastic differential equation):

A stochastic differential equation is an integral equation of the form

X(t) — X(0) :/M(X(s),s) ds+/J(X(s),s)dW(s), (1.1)
0 0

where the second integral term denotes an Ité Integral (e.g. [Kij03]) and X is a vector of n €
N>1 random variables and W is a vector of n Wiener processes. The vector (X (t),t) €
R denotes the drift and o (X (t),t) € R™™ the correlation matriz between the Wiener

processes. A widely used simpler notation for (1.1) is
dX(t) = p(X(t),t)dt + o (X(t),t) dW(2).

The next step is to start modelling the behaviour of an asset price in detail. We start
with modelling only a single underlying asset. The most basic way is to think of the drift
and volatility of the asset price as constant over time, but relative to the asset price and

not in absolute terms. This leads to the geometric Brownian motion, see e.g. [Kij03].

Definition 7 (Geometric Brownian motion):

Let W(t) be a Wiener Process, then the solution of
AX(t) = uX (O)dt + o X (AW () fort >0

is a geometric Brownian motion X (t) with constant drift u € R and constant volatility

o € R for the time t € [0,T]. We have
E[dX(t)] = pX(t)dt and V[AX(t)] = o2 X (t)%dt

as expected value and variance.

The basis of modern option pricing is the Black-Scholes model, which has been proposed

by Fisher Black and Myron Scholes [BS73] and independently by Robert Merton [Mer73].



It describes the motion of an underlying asset .S with a geometric Brownian motion at

time ¢ > 0 through

dS(t) = pS(t)dt + oS(t)dW (¢), (1.2)

where p is the constant drift and o is the constant volatility of the stock S. The introduc-
tion of this model has led to a huge boost in the field of option pricing. It has been the

starting point for numerous forthcoming models of asset price movement.

In reality, we can observe that assuming a constant volatility and drift does not match
the observed asset price movements well. These assumptions can only be justified when
looking at a short time period. Thus the first obvious extension to the geometric Brownian
motion is to have time dependent deterministic drift as well as volatility. This gives a more
realistic model, as we can observe that the volatility is lower in a bull market whereas it is
higher in a bear market, especially if a crash occurs. An ever rising stock price is not very
realistic either, which means that a change in the drift over time is plausible. A piecewise
constant drift might be a good possibility to match the price movement of the underlying.
These generalisations in comparison with the Black-Scholes model [BS73, Mer73] can be

achieved using an It6 process (see e.g. [Kij03]).

Definition 8 (Itd process):
An Ité Process is a generalised Wiener Process with expected value a(x,t) and standard

deviation b(x,t). It has the form

AX(t) = a(X (), t)dt + b(X (L), t)dW (2).

The drift and the variance of the process are functions of (X,t) and can change over time.

Using deterministic functions for the drift as well as volatility assumes that it is possible
to forecast both functions up to some precision, even for longer time periods. To be able
to explain important effects which are present in real financial markets, e.g. the volatility
smile (or skew) in option prices, so-called stochastic volatility models have been introduced
over the last two decades. In contrast to the seminal Black and Scholes model (1.2) or the
It6 process, the underlying asset’s volatility is not assumed to be constant or deterministic,

but is itself modelled by a stochastic diffusion process.



Definition 9 (Stochastic volatility model):
These stochastic volatility models are typically based on a two-dimensional stochastic

diffusion process with two Brownian motions with correlation p, i.e.
AW () dw @ (t) = pdt.

On a given filtered probability space for the stock price S(t) and the stochastic volatility

o(t) one considers

dS(t) = pS(t)dt 4+ /o (t)S(t)dW D (¢),
do(t) = a(o(t))dt + b(o(t))dW P (1),

where [i is the drift of the stock, a(o(t)) and b(o(t)) are the drift and the diffusion coefficient

of the stochastic volatility.

There are different stochastic volatility models having distinct choices for the evolution
of the volatility for ¢ > 0, starting from an initial volatility ¢(0) > 0. The most prominent

work in this direction is the Heston model [Hes93|, where
do(t) = *(0° — o(t))dt + v\/a(t)dW @ (). (1.3)
Other stochastic volatility models are, e.g., the GARCH diffusion model [Dua95],
do(t) = &* (0" — o(t))dt +vo (t)dW @ (2), (1.4)
or the so-called 3/2-model (see, e.g. [Lew00]),
do(t) = K* o (t) (0% — o(t))dt + vo(t)*2dW (1) (1.5)

In (1.3)-(1.5), k*, v, and #* denote the mean reversion speed, the volatility of the volatility,

and the long-run mean of o, respectively.

The previous examples considered the one-dimensional case, so only allowing a single un-
derlying S. When examining Basket options, it is necessary to consider models which
include several asset prices at the same time, where an interaction between the different
underlying assets with each other is included. Higher dimensional stochastic differential

equations fulfil these aspects. Each underlying itself follows a stochastic process, where its

10



volatility could be constant or stochastic as well. The Wiener processes in these models
are correlated. These models can for example be used to price European Basket options,
see Definition 3. The first model we present is the multidimensional Black-Scholes model

(e.g. [Wil98]), where the volatility of each underlying asset is constant.

Definition 10 (Multidimensional Black-Scholes model):
The multidimensional Black-Scholes model consists of n € N> underlying assets S;,

i=1,...,n. Bach of these assets follows a geometric Brownian motion,
dSi(t) = 1;S; (t)dt + 0;5; (t)dW(i) (t)

where p; is the drift and o; is the volatility of the asset S; fori=1,...,n. The correlation
between the assets is given by AW () dW ) () = p;;dt.

Analogously to the one-dimensional case we can argue that a constant volatility over
time for each asset is not likely and a mean-reverting stochastic process for each volatility
is a better approximation of reality. This leads to the multi-dimensional Heston model,

see for example [DCGG13], where each underlying asset follows a Heston process.

Definition 11 (Multidimensional Heston model):
Let there be n € N>y stocks. In the multidimensional Heston model each asset S;

follows a Heston-process,

dS;(t) =psSs(t)dt + /o3 (£)S; ()W D (¢ (1.6)
doi(t) =#; (0; — o(t)) dt + vi\/ai(t)dWi@ ®), (1.7)

for0 <t <T. We have p; as the drift of S; and k;, 0; and v; as the mean reversion speed,
the long run mean and volatility of the volatility and dW-(l) and dWZ-(Q) being Brownian
motions fori = 1,...,n. Additionally, there is dWi(l)dW( ) = = \;;dt the correlation between
the stock prices, dWi(l)de@) = pi;dt the correlation between the stock prices and the
volatilities and dWZ-(Q)dW]-(Q) = n;;dt the correlation between the volatilities.

It would of course be possible to use other stochastic volatility models, e.g. the
GARCH diffusion model or the 3/2 model similarly using equations (1.4) and (1.5) in

an n-dimensional setting as well.

Next, we recall the Lemma of It6, which plays an important role when trying to de-

rive partial differential equations from the above stochastic differential equations. First we

11



recall the one-dimensional Lemma of Ito [It644].

Lemma 1 (One-dimensional Lemma of 1to):
Let V: R x Ry — R be a function, where V is twice continuously differentiable in the first
variable and continuously differentiable in the second variable. Further let S(t) be an Ité

process with drift f(S(t),t) and standard deviation g(S(t),t),
AS(t) = F(S(0), )t + g(S(1), AW (t).

Then

AV (S(t),t) = <%g)’t)f(5(t),t) n BV(git%t) n %3 Vé‘zg)’t)gg(S(t),t)> di

OV (S(t), 1)
T s

g9(S(t), t)dW (t)

holds. This means that V(S(t),t) is again an It6 process with drift

2
WO 15,1y 4 LWL LIVEUD o500,

As we calculate an approximation of the fair price of basket options and thus discuss
multi-dimensional stochastic differential equations, we need to be able to derive partial
differential equations in those cases as well. The Heston process is a two-dimensional
stochastic process as well, even though the setting only includes one underlying asset. In

order to achieve this we need to adopt the multi-dimensional Lemma of It6 (e.g. [Ir198]).

Lemma 2 (Multi-dimensional Lemma of 1td):

Let X (t) be an n-dimensional Ité process, for example
dX(t) = a(X(t),t)dt + b(X(t), t)dW (t)

with

a(X(8),1) = (@ (X (1),t), .-, an(X(),6) T and (X (2),t) =(br(X (1), 1) 0"

Further we have g : R" x [0,00) — RP with g € C*(R™ x [0,00)). Then Y (t) = g(X(t),t)

12



18 again an Ité process and for k =1,...,p we have

9 9
ay (t)® = 8gtk dt+zaik 1)dX ()@
1o~ _Po @) 3 x (1)
+§ij: Farg, (X DAX (X (),

where AW (£)DdW (1)) = (dW ()@, dW (£)0))dt with (dW ()@, dW (£)D)) being the cor-
relation between AW () and dW (t)V). Thus dtdt = 0, dW(#)Ddt = 0 as well as
dtdW (t)® = 0 holds.

1.2.2 Numerical background

The previous parts of this Section had necessary definitions in economics, finance and
stochastic as content. In this section we give preliminaries from numerical analysis. To
start, we introduce a linear parabolic partial differential equation, depending on time and a
multi-dimensional spatial domain, and give some examples of partial differential equations
of this type appearing in option pricing. We introduce the discretisation of the spatial do-
main and show how we can use this grid to discretise the derivatives appearing in the linear
second-order partial differential equation. The notation for a semi-discrete finite difference
scheme as well as a fully discretised finite difference scheme are introduced. Finally, we

recall a necessary condition for von Neumann stability, see for example [Str04].

Linear second-order parabolic partial differential equations are at the heart of this
thesis. In Chapter 2 we derive four different essentially high-order compact schemes to
approximate the numerical solution of the parabolic partial differential equation in a general
setting for a two-dimensional spatial domain. In Chapter 3 we derive high-order compact
schemes for linear second-order parabolic partial differential equations in multiple space

dimensions.

Definition 12 (n-dimensional linear second-order parabolic partial differential equation):
An n-dimensional linear second-order parabolic partial differential equation for

n € N>1 is an equation of the form

n n
ou .
+Za282+]z ”a (3x i:1cia—xi:g in Q x Q, (1.8)
i<j
with initial condition uy = u(xy,...xzy,,0), where Q@ C R™ is of an n-dimensional cu-
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bical shape and Q; = 0, Tmax| with some final time Tymax > 0 and subject to suitable
boundary conditions. Additionally, the coefficients a;(< 0), b, ¢, d and g are func-
tions of (z,7) € Q x Q, fori,j € {1,...,n}. As a condition on the coefficients we have
ai (1), bij (7) ¢ (1), d (-, 7) € C*(Q) for any T € Q.

In addition to standard assumptions, we assume that the solution of (1.8) satisfies

u (-, 7) €CO(Q) for any T € Q; as well as u(x,-) € C () for any x € Q.

After defining a differential equation in a general sense, we derive specific differential
equations which arise from the financial models we have discussed so far. We start in the
one-asset setting with the Black-Scholes model and the stochastic volatility model. We also
derive the partial differential equations which result from the multi-stock models, namely

the multi-dimensional Black-Scholes model and the multi-dimensional Heston model.

Differential equation of the Black-Scholes model

One example for a partial differential equation is the Black-Scholes equation

68—34—?%%—(7"—5)52—‘;’—7“‘/:0. (1.9)
The derivation of this partial differential equation from the stochastic differential equation
of the Black-Scholes model (1.2), which uses Lemma 1 and standard arbitrage arguments,
can for example be found in [Wil98]. We have also shown this derivation of [Wil98] in
Appendix A. The variable S € R>( denotes the stock price, which has a constant volatility
o > 0 over time. With » > 0 we denote the risk-less interest rate and § > 0 is the
continuous dividend. When discretising this problem we need to introduce an artificial
boundary, namely a sufficiently large upper bound Spax > 0, which leads to a spatial
domain ©Q = [0, Spax]. The final and boundary conditions for this differential equation are

depending on the type of option discussed. For a European Power Put with power p € N>

and strike price K > 0 the final condition is
V (S,t) =max (K — S,0)".

14



Differential equation of the stochastic volatility model

Any option price V' = V(S,0,t) that follows a stochastic volatility model, compare Defi-

nition 9, solves the following partial differential equation

v o1, 9V 2V 1, 8V v ooV
W+§US O'W—i‘pb((f)(fsasaa—i-ib (U)W—i-(a(a)—)\(S,U,t))a—U—i-TS%—rV—O,
(1.10)

where r > 0 is the (constant) riskless interest rate and A(S, o,t) denotes the market price
of volatility risk, compare [Wil98]. This can be shown with application of the multi-
dimensional Lemma, of Itd, see Lemma 2, and standard arbitrage arguments. Equation
(1.10) has to be solved for the stock price S, the volatility o > 0, the time 0 < t < T,
where T" > 0, as well as subject to final and boundary conditions which depend on the

specific option that is to be priced.

As usual, we restrict ourselves to the case where the market price of volatility risk
A(S,0,t) is proportional to o and choose A(S,0,t) = Ago for some constant \g > 0. This
allows to study the problem using the modified parameters

K*0*

=r"+A 0= ———
K=K —+ Ao, P

which is both convenient and standard practice. For similar reasons, some authors set the

market price of volatility risk to zero.

The partial differential equation of the Heston model [Hes93| is then given by

vV 1 LoV 2V 1, BV AV oV
ALY b AT PRI S — ) V= 1.11
5 +2JS 552 —|—pvaSaS@U+2v 053 —i—rSaS—i-/s:(H U)Ba rV=0, ( )

where S € [0, Smax] with a chosen Spax > 0, 0 € [Omin, Omax] With 0 < omin < Omax
and t € [0, T[ with T > 0, after imposing artificial boundary conditions for S and o in a

classical manner.

Differential equation of the multi-dimensional Black-Scholes model

The third model we want to discuss is the multi-dimensional Black-Scholes model. There
are n € N> different stock prices, namely S; for ¢ = 1,...,n, which each follow a stochastic

process, see Definition 10. In the case n = 1, the partial differential equation is given by
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(1.9). For the case n > 1 we obtain

o 1 2 WOV &
E+§; S’aSﬁ;p”%] Jasas +Z _TVZO‘ (1.12)
i<j

This equation can be derived using the multi-dimensional Lemma of 1td, see Lemma, 2, and
standard arbitrage arguments, see [Wil98|. Each stock price S; has a constant volatility
over time given by o; and a continuous dividend indicated by d; for ¢ = 1,...,n. The
correlation of the stock prices S; and S; is given by p;; for 4,7 = 1,...,n and the risk-free
interest rate is denoted by r > 0. After introducing a sufficiently large artificial boundary
Spmax > (0 for each stock value we have S; € [0, 5] and ¢t € [0,T] for some 7' > 0. For a

European Power Put the final condition is

n p
V(S1,...,Sn,T) =max (K — ZwiSi,0> ,
i=1
with p € N> and strike price K > 0.

Differential equation of the multi-dimensional Heston model

The last model we discuss is the multi-dimensional Heston model, see for example [DCGG13].
We start with the stochastic differential equation (1.6). Using the multi-dimensional
Lemma, of Itd and standard arbitrage arguments, we can derive the general multi-dimensional

Heston partial differential equation, see Appendix B, which is given by

WV & NV & BV 1 92V
o ;rs +Zm i =) 5 T3 JZIA”\/J_,\/—SS]%%
0%V
+ Z pl]\/a_l\/_vj 358 + Z nzjvzvj\/;i@m—Tv—AZO,
7] 1 7_] 1

where A denotes the market price of volatility risk. In a risk-neutral market we have A = 0,
in a risk-averse market there is A > 0 and in the unlikely event of a risk-prone market A
would be negative. We have to introduce artificial boundaries for the stock price S; and
the volatility o;, which leads to S; € [0, S7%] for SMa > ( and o; € [0, o] with
0 < oM < gMaX for 4 = 1,...,n. In the underlying stochastic model, each volatility
o; follows a mean reverting stochastic process, which has a volatility of v; > 0, a mean
reversion speed of k; > 0 and a mean of §; > 0 for i = 1,...,n. The risk-free interest rate

is denoted by r > 0. Since each stock S; follows a Heston process, we have three different

possible correlations. The first correlation between the stock S; and the stock S; is denoted
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by Ai;, whereas p;; represents the correlation between the stock S; and the volatility o;.
Finally, the correlation between the volatilities o; and o; is denoted by 7;;. For a linear

price of volatility risk we have

o oV
A= izlaidia—o_

i

with constant a; > 0 for all ¢ = 1,...,n, assuming a risk-averse market. Thus we can use

Kj (Gl — Ji) — ;05 :(Hi + Oéi) < /43292 - 0i> = I%Z' <0~z — Ui) .

We observe that it is possible to obtain a risk-adjusted multi-dimensional Heston model
analogously to the derivation of the one-dimensional partial differential equation (1.11).
Dropping the tilde-signs for £; and 6; leads to the risk-neutral or risk-adjusted multi-

dimensional Heston partial differential equation

) AN, | av 1< O’V
——i—ZTSZ’——i-ZIii (0; — oy + Z Nij\OiNT;SiSi s e aa
t gt dS; — 52 085;08;
" v 1 oV
+ Z pij@@v] aS a + Z nz]UzU]\/U_z\/_aO_ 80. —rV =0 (113)
i,j=1 t,j=1 ‘

For a multi-dimensional Power Put with power p € N> the final condition is given by

n p
V(S1,...,8,,T) =max (K—ZwiSi,O> ,
i=1

where >  w; =1 and w; > 0 for i = 1,...,n, if short-selling is not allowed.
i=1
After defining the partial differential equations arising from different stock price models,
we need to introduce some notation for a discrete numerical scheme, which approximate
the solution of a given partial differential equation. The first step is to introduce a grid on

the given spatial domain.
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Definition 13 (Grid of a spatial domain):

Let Q € R™ for n € N>1 be of an n-dimensional cubical shape. Then we can write

0 - @ [r,.al].
k=1

(k) (k)

where —oo < x5 < Tmax < 00 for k =1,...,n. The n-dimensional grid of Q is then

defined as

G(n) ::{(xil,...,min)eﬁ ’ .%'ZkZIL'(k) —i—ik(A.%'k),OSikSNk—lfO’l”/{::L...,n},

min

where Az, > 0 and N, € N>y and 2 = xffi)n—i—(Nk— 1) (Axg) fork=1,...,n. By Col(n)

we denote the interior points of G™ . If Axy, = h for some h > 0 and all k € {1,...,n}
holds, then we use the notation G;ln) and Cov’én) for the grid.

After introducing the general n-dimensional grid we define the compact stencil, which
could be categorised as the neighbours of a given point x € Cor’(n). Our goal is to derive
high-order compact schemes. This means that we have to explain the meaning of ‘compact’.
When discretising a partial differential equation at a point of Col(n), we only want to use

the discrete solution at this point and its neighbours.

Definition 14 (compact stencil):
Let G™ be a n-dimensional grid. With a compact stencil (7(36) we denote the direct
neighbours of an inner point of the grid G . With & = (Tiyy.ooyxs,) € G" the compact

stencil is given by

A

U (2) = {Ui+hr,....in+kn | km € {=1,0,1} form=1,...,n} (1.14)

where Uy, . s an approzimation of u (z;,,...,%;,).

n

After introducing the grid and compact stencil, we now recall the central difference

discretisation of the derivatives appearing in the partial differential equation (1.8). With
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the central finite difference operator for each direction in space, we have

aQu e (Axk)Q a4u

—axi =Dy DpUi, . i — Ta—x% +0 ((Axk)4) :

ou . (Azp)? 8u ,

axk _DkU217~~~7ln - 6 axz + O ((A‘Tk) ) )

U c e Tk u Ty U 4
. —DrDpUis,. i — - A
D210, k pU Lyeeoslin 6 (9x%(3xp 6 axkaxf’) +0 (( x) )

T 6
+ O ((Azi)*(Azy)*) +0 ((Azp)!) + 0O (ﬁg )

(n)

for k,p € {1,...,n} and k # p on the grid-points (z;,,...,x;,) € G , which can be

proved using Taylor approximation.

After describing discretisations, the natural next step is to introduce the notation for
a semi-discrete and fully-discrete finite difference scheme. Semi-discrete means that the
spatial discretisation is applied, but there is no discretisation in time. For a fully-discrete

scheme the time-discretisation is performed as well.

Definition 15 (Semi-discrete finite difference scheme):
A semi-discrete finite difference scheme which is used to approrimate the solution of

an n-dimensional linear partial differential equation (1.8) is of the form

S Mel@, )0 Vs iy (1) + Kol Uiy i (D] =G, 7) + O (hT) . (116)
zeG(n)

where & = (x4,,...,x;,) at time T for each point x € G . With the function
Ui17---7in(7—) : QT — R,

where Q. is given by (1.8), we denote the approzimation of u(x;,,...x;,,T) at the point
(Xiyy .. xy,) € G™ at time T € Q.. M, and K, depend on the coefficients of the derivatives
in (1.8) as well as the particular type of spatial discretisation. In the spatial interior g is
given by the method of derivation of the scheme and the function g, which is the right hand
side of the underlying partial differential equation (1.8). On the spatial boundaries g can
additionally be influenced by the boundary conditions. This scheme is called semi-discrete
as a spatial discretisation is performed, whereas there is no discretisation in time. The
consistency order in space of this scheme is d, when Ax; € O (h) for a step-size h > 0 for

1=1,...,n.
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For the discretisation in time there are many possibilities. The Explicit or Implicit
Euler time discretisation or the Crank-Nicolson type time discretisation are examples of
one-step methods. It would also be possible to apply multi-step methods, though one would
have to use one-step methods first to achieve the values at the needed starting points in

time.

The Explicit and Implicit Euler time discretisation only lead to first order consistency
in time. The Explicit scheme even has restrictions on the step-size in time. In order to
achieve a fully discrete scheme, which has fourth order convergence (if stable) in terms of
h, the step-size in time has the restriction AT € O (h4). This means that the number of

points in time grow very quickly.

The Crank-Nicolson type time discretisation, see for example [Str04, Wil98], converges
with order two, if stable, and has no time-step restrictions. Hence, we apply the Crank-
Nicolson time discretisation to our semi-discrete scheme, as we then can achieve fourth
order convergence (if stable) in terms of h, if AT € O (h2). So we save two orders when

comparing this with the Explicit or Implicit Euler time-discretisation.

We write down the semi-discrete finite difference schemes of our methods in detail in
order to make any time-discretisation method easily applicable, which means a change of
the time-discretisation can be executed quickly, if wanted. Since we will use the Crank-
Nicolson type time-discretisation for the above mentioned reasons, we give the following

definition of a fully discrete finite difference scheme, see for example [DF12a).

Definition 16 (Fully discrete Crank-Nicolson-type scheme):

Let there be a semi-discrete finite difference scheme with consistency order d € N>q of
the form (1.16). When using an equidistant time grid of the form 1, = kAT for k =
0,...,N; with N, € N, the fully discrete scheme using Crank-Nicolson-type time

discretisation with step size AT is given by

N- Ny,
Zl:---ZAx(%’l,---,%n Uﬁ'f'l’ Z ZB (Tiyy .- ﬂ:zn)Uk _J-n—i—(?(hd)

i1=1 in=1 i1=1 in=1

BT (50 m) + 0 7)) + 0 (A7)

+
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with Ax; € O (h) fori=1,...,n and a stepsize h > 0,

AT
A, (.%'il,...,.%'in) = M, (xi17"' ,.%'in) + 7Kx (wil,... ,win)

and

AT
Bz (xil,...,win) = Mx (.%'il,...,.%'in) - TKx (mil,...,xin)

on each point x of the grid G™ | where Ufiz” denotes the approzimation of u at the point
(Tiy,- o sxi,) € GM™ and time 7, with k € {0,...,N,}. This system of equations has
to be solved for all points in time, starting with k = 0. The functions M,, K, and g are
defined as in the semi-discrete scheme. Thus the fully discrete scheme has second order

consistency in time and consistency order d in space.

We have now introduced a fully discrete scheme which has consistency order two in

time and d € N>; in space. The next step is to define a high-order compact scheme.

Definition 17 (High-order compact finite difference scheme):

A high-order compact finite difference scheme is a fully discrete scheme using Crank-
Nicolson-type time discretisation, as given in Definition 16 with d = 4. Additionally, it
uses only points on the compact stencil (1.14). This means that for a high-order compact

finite difference scheme we have

Ny N, Ny Np,
Z R Z A, (.%'il, R ,(L‘Z‘n) Uzkl—,’—l,zn = Z S Z B, ((L‘Z‘l, o ,(L‘Z‘n) Ul'li,...,in +0 (h4)

i1=1 in=1 i1=1 in=1

(AQT) (9(@, ) + gz, Th41)) + O <(AT)2)

with Az; € O (h) fori=1,...,n and a stepsize h > 0,

AT
Ap (Tiyy ooy xg,) = My (24, ... x5,) + TK:B (Tiyyevy Xs,)

and

AT
By (g, x4,) = My (x4, ... x5,) — 7Kz (Tiyyvy X4,)

on each point x € G™ . The functions M, K, and § are defined as in the semi-discrete

. denotes the approzimation of u at the point (x;,,...,z;,) € G™ and

scheme and Uik
150452

time 1, with k € {0,..., N;}. For a high-order compact scheme, additionally
My () =0 and Ky (z)=0
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o(n)

holds for all & € G\ U (z) and for all z € G The scheme is called high-order, as we

achieve an overall fourth order consistency in terms of h when using AT € O (hz).

After defining a high-order compact scheme for a n-dimensional spatial domain with n €
N, we now want to define an essentially high-order compact scheme for a two-dimensional

spatial domain.

Definition 18 (Essentially high-order compact finite difference scheme):

An essentially high-order compact finite difference scheme is a fully discrete scheme
using Crank-Nicolson-type time discretisation, as given in Definition 16 with n = 2. Addi-
tionally, it uses only points on the compact stencil (1.14). This means that for an essentially

high-order compact finite difference scheme we have

N1 No N1 N2
S S A U = 3 3 Bl e UL, + R 4O (1)
i1=112=1 i1=112=1

(A7)

+ 255 (G me) + G, 7re1)) + O (A7)

2

with Az, Azxe € O (h) for a stepsize h > 0,

AT
AZ‘ (xil ’ x’ig) = Mx (x’ilaxig) + TKZ‘ (xil ) x’ig)
and
AT
BZ‘ (x’ilaxig) = Mx (x’ipxig) - TKZ‘ (‘T’ilaxig)
on each point x € G . We have
ot ot
Ry =C— Ry =C—
2 836‘1“ 2 a.%'é“
ot ot
Ry =C—5— Ry =C——.
2 O0x301y or Ox10w3

The value C is neither depending on h nor on the function uw. The functions M,, K, and
g are defined as in the semi-discrete scheme and Uﬁ i, denotes the approrimation of u at

the point (z;,,x:,) € G and time 7, with k € {0,..., N, }. For an essentially high-order

compact scheme, additionally



holds for all & € G\(}' (x) and for all x € COJ(Z), which means that we just use points of the

compact stencil in the discretisation of the spatial interior.

We can see clearly from the definition of an essentially high-order compact scheme, that
it has an overall consistency order of two. But when the remaining second order truncation
order is small enough, we can expect a fourth-order convergence of the scheme (if stable)
up to a certain stepsize h*. If the stepsize does get smaller than this critical stepsize, then
the scheme has second order consistency. If we should have a wanted accuracy level, which
is already fulfilled by the numerical scheme when using a step-size up to h*, then we will

have a fourth order convergence of the scheme (if stable) for the practical usage.

Essentially high-order compact schemes are especially applicable to situations, where
there is a certain area of interest. It could be possible, that we wish to zoom in an area
of interest. Transforming this grid into an equidistant grid could lead to a partial differ-
ential equation, whose coefficients do not fulfill the conditions for a high-order compact
scheme (see Section 3.3). We could have good arguments regarding Rs, that the essen-
tially high-order compact scheme gives can achieve a fourth-order convergence rate up to
our wanted accuracy level. That would mean that there are no downsides when using the
essentially high-order compact scheme in comparison with the high-order compact scheme,
even though the essentially high-order compact scheme has a theoretical consistency of

order two. In Section 2.6 we show that this is possible for the Heston model.

Since consistency is already defined, we need to give conditions for stability to achieve
convergence. In this thesis we perform a von Neumann stability analysis [Str04] for gen-
eral high-order compact schemes with vanishing cross derivative terms in the two- and
three-dimensional case. We give partial results for non-vanishing cross derivative terms
for n = 2,3. The difficulty in the stability analysis lies in the high-dimensionality of the

problem and the non-constant coefficients of equation (1.8).

The von Neumann stability condition is a necessary stability condition for problems
with periodic boundary conditions, compare [Str04]. We apply the von Neumann stabil-
ity analysis for frozen coefficients, which means we consider the coefficients of (1.8) as
constant, compare [GKO13, Str04], to analyse the multi-dimensional high-order compact
finite difference schemes in Definition 17. The most general statements about the dis-

crete case can be found in [GKO13, MS10, SW88, Wad90] for hyperbolic problems and in
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[RM67, Wid66] for parabolic problems. The frozen coefficients approach gives a necessary
stability condition, which slightly strengthened ensures overall stability [RM67].

Definition 19 (Necessary von Neumann stability condition):

Let

N1 Ny,
ZZAI (@iys - s i) Uzkljd’ Z ZB x“,...,xin)UZ]i in T (T, Ty Th11)
i1=1 in=1 i1=1 in=1
at grid point x € G and time T = kAT be the fully discrete finite difference scheme. We
use
I n<~n

UL = gheltcting)
where I is the imaginary unit, g" is the amplitude at time level n, z; = 2wh/\; for the
wavelength A\; € [0,27[ fori=1,...,n. Then the fully discretised finite difference scheme

satisfies the necessary von Neumann stability condition, if for all z; the amplification

factor G = g"*1/g" satisfies the relation

G2 -1 <0. (1.17)

1.3 Research overview and aims of the thesis

In this section we give a brief overview on the mathematical research which has been done
in the field of option pricing, concerning the derivation of analytical solutions or partial
differential equations arising from different stock price models. We also give examples for
various possible numerical schemes which approximate the option price, where we focus on
the research on high-order compact schemes. The mentioned literature naturally leads to

the aims of this thesis.

For some models and under additional restrictions, closed form solutions to (1.10) can
be obtained by Fourier methods (see, e.g. [Hes93, Diir09]). Another approach is to derive
approximate analytic expressions, see, e.g. [BGM10] and the literature cited therein. In
general, however, —even in the Heston model when the parameters are non constant—
equation (1.10) has to be solved numerically. Moreover, many (so-called American) options
feature an additional early exercise right. Then one has to solve a free boundary problem

which consists of (1.10) and an early exercise constraint for the option price. For this
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problem one typically has to resort to numerical approximations.

In the mathematical literature, there are a number of papers considering numerical
methods for option pricing in stochastic volatility models, i.e. for two spatial dimensions.
Finite difference approaches that are used are often standard, low order methods (second
order in space). Other approaches include finite element-finite volume [ZFV98], multigrid

[CP99], sparse wavelet [HMSO05|, or spectral methods [ZK10].

Let us review some of the related finite difference literature. Different efficient methods
for solving the American option pricing problem for the Heston model are compared in
[IT08]. The article focusses on the treatment of the early exercise free boundary and uses
a second order finite difference discretization. In [IHF10] different, low order ADI (alter-
nating direction implicit) schemes are adapted to the Heston model in order to include the

mixed spatial derivative term.

High-order compact schemes have been introduced in fluid dynamics for convection
dominated partial differential equations, see e.g. [GMS84]|. With a high ratio of convection
to diffusion the standard second order finite difference schemes using the central difference
operator leads to non-physical oscillations in the numerical solution. A usage of the Up-
wind discretisation, which resolves the problem of the oscillations, only has a first order
convergence rate. The refinement of the grid has to be very large and thus there is a huge
computational cost when using the Upwind discretisation. This leads to the introduction
of high-order compact schemes (see e.g. [GMS84]), which have a fourth-order convergence
rate and resolve the problem of oscillations in the numerical approximation as well. In fi-
nance, we do not have such problems in the partial differential equations of option pricing

and are more interested in the higher convergence order.

While most of [TGBO08| focusses on high-order compact scheme for the standard (one-
dimensional) case, in a short remark [TGBO08, Section 5| the stochastic volatility (two-
dimensional) case is considered as well. However, the final scheme is of second order only
due to the low order approximation of the cross diffusion term. High-order finite differ-
ence schemes (fourth order in space) were proposed for option pricing with deterministic
(or constant) volatility, i.e. in one spatial dimension, that use a compact stencil (three

points in space), see for example [TGBO08] for linear and [DFJ03, DFJ04, LK09] for fully
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non-linear problems.

More recently, a high-order compact finite difference scheme for (two-dimensional) op-
tion pricing models with stochastic volatility has been presented in [DF12a]. This scheme
uses a uniform grid and is fourth order accurate in space and second order accurate in time.
Unconditional (von Neumann) stability of the scheme is proved for vanishing correlation.
A further study of its stability, indicating unconditional stability as well for non-zero cor-

relation, is performed in [DF12b].

Our first aim in this thesis is to consider extensions of the high-order compact method-
ology for stochastic volatility models (1.10) to non-uniform grids. In general, the accuracy
of a numerical discretisation of (1.10) for a given number of grid points can be greatly
improved by considering a non-uniform mesh. This is particularly true for option pricing
problems as (1.10), as typical initial conditions have a discontinuity in their first derivative
at S = K, which is the centre of the area of interest (‘at-the-money’). The basic idea of our
approach is to introduce a transformation of the partial differential equation from a non-
uniform grid to a uniform grid (as in [Fou00]). Then the high-order compact methodology
can be applied to this transformed partial differential equation. It turns out, however, that
this process is not straight forward as the derivatives of the transformation appear in the
truncation error. Due to the presence of the cross-derivative terms, one cannot proceed to
cancel terms in the truncation error in a similar fashion as in [DF12a] and the derivation
of a high-order compact scheme becomes much more involved. This derivation is achieved
in a general manner and then applied to the Heston model on a non-uniform grid. We are
able to derive a compact scheme which shows high-order convergence for typical European

option pricing problems.

After focussing on stochastic volatility models, we now discuss the approach of high-
order compact schemes in a more general manner. In the last decades, starting from early
efforts of Gupta et al. [GMS84, GMSS85| high-order compact finite difference schemes were
proposed for the numerical approximation of solutions to elliptic [SC96], later also for
parabolic partial differential equations [SC01, KZ02|. These schemes are able to exploit
the smoothness of solutions to such problems and achieve a high-order (typically strictly
larger than two in the spatial discretisation parameter) numerical convergence rate while

generally having good stability properties. Compared to finite element approaches, the
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high-order compact schemes are very parsimonious and memory-efficient to implement
and hence prove to be a viable alternative if the complexity of the computational domain

is not an issue.

One could in principle achieve higher-order approximations also by increasing the com-
putational stencil, but this leads to increased bandwidth of the discretisation matrices and
complicates formulations of boundary conditions. Moreover, such approaches sometimes
suffer from restrictive stability conditions and spurious numerical oscillations. These prob-

lems do not arise when using a compact stencil.

Although applied successfully to many important applications, e.g. in computational
fluid dynamics [SC95, LTF95, LT01] and computational finance [DFJ03, DFJ04, TGB0S,
DF12a, DFH14|, an even wider breakthrough of the high-order compact methodology has
been hampered by the algebraic complexity that is inherent in this approach. The deriva-
tion of high-order compact schemes is algebraically demanding and hence these schemes
are often tailor-made for a specific application or a rather smaller class of problems (with
some notable exceptions as for example Lele’s paper [Lel92]). The algebraic complexity
is even higher in the numerical stability analysis of these schemes. Unlike for standard
second-order schemes, the established stability notions imply formidable algebraic prob-
lems for high-order compact schemes. As a result there are relatively few stability results
for high-order compact schemes in the literature. This is even more pronounced in higher
spatial dimension, as most of the existing studies with analytical stability results for high-

order compact schemes are limited to a one-dimensional setting.

Most works focus on the isotropic case where the main part of the differential operator
is given by the Laplacian. Another layer of complexity is added when the anisotropic case
is considered and mixed second-order derivative terms are present in the operator. Few
works on high-order compact schemes address this problem, and either study constant co-

efficient problems [FKO06] or specific equations [DF12a].

Consequently, our second aim in this thesis is to establish a high-order compact method-
ology for a general class of linear parabolic partial differential equation with time and space
dependent coefficients and with mized second-order derivative terms in arbitrary spatial

dimension. Problems of this type arise frequently in computational fluid dynamics and
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computational finance. We derive general conditions on the coefficients which allow to ob-
tain a high-order compact scheme which is fourth-order accurate in space and second-order
accurate in time. Moreover, we perform a thorough von Neumann stability analysis of the
Cauchy problem in two and three spatial dimensions for vanishing mixed derivative terms,
and also give partial results for the general case. As an application example we consider
the pricing of European Power Put basket options with two and three underlying assets.
The partial differential equation features second-order mixed derivative terms and is sup-
plemented by an initial condition with low regularity. We use the smoothing operators

given by Kreiss et al. [KTWT70] to restore high-order convergence.

1.4 Structure of this thesis

This thesis consists of two major parts, one being the introduction and application of essen-
tially high-order compact schemes, which can especially be used for the use of non-uniform
grids, in a two-dimensional spatial domain and the other being the derivation, von Neu-
mann stability analysis and application of high-order compact schemes in an n-dimensional

spatial domain.

In Chapter 2 we develop and study new essentially high-order compact finite difference
schemes in a general setting on a non-uniform grid, see Definition 12 with n = 2. This

means that we have a fully discrete scheme of the form

> [My(#,7)0:Usy iy (7) + Ko, 7)Usy 3y (7)] =g(z,7) + h*Ra + O (hY)
2eG?

where G;LQ) is a grid on the rectangle  C R?. We derive four different essentially high-
order compact schemes and thus the term Rs, which is depending on the version of the
discretisation, is of one of the following forms

otu 0tu ot ot
—, Re=C—-—, Ry= Ry =C-—F—,
ox’ 2 ox} 2 O0x301y o Ox103

Ry =C

where in each case C' is independent of A and w. This means that the scheme has an
analytical consistency order two. We can achieve fourth-order consistency up to a given
tolerance, though, if Ry is small enough. We also derive constraints on the coefficients of

the partial differential equation, which give Ry = 0 and thus a high-order compact scheme.
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We apply the essentially high-order compact schemes to stochastic volatility models
in option pricing with non-uniform grids. This means that for a grid there is a focus on
the values around the strike price K. The schemes are fourth-order accurate in space and
second-order accurate in time for vanishing correlation, which means that in this case there
is Ro = 0. In the numerical study we obtain high-order numerical convergence as well for
non-zero correlation and non-smooth pay-offs which are typical in option pricing. In all
numerical experiments a comparative standard second-order discretisation is significantly
outperformed. We conduct a numerical stability study which indicates unconditional sta-

bility of the scheme.

In Chapter 8 we introduce and analyse a high-order compact scheme with n-dimensional
spatial domain in a general setting, see Definition 12, which means that our semi discrete

scheme is of the form

> [Ma(#,7)0: Uiy (7) + K@, 7) Uiy i ()] =g(@,7) + O (1) .
a?:eGﬁL”)

We thus obtain fourth-order accuracy in space and second-order accuracy in time, when
using Crank-Nicolson-type time-discretisation [Str04, Wil98]. This leads to an overall con-

sistency order of four in terms of h if A7 € O (h2) is used.

Next, we perform a von Neumann stability analysis, see for example [Str04], for spa-
tial domains with dimensions two and three, where we prove that the necessary stability
condition (see Definition 19) holds unconditionally without additional restrictions on the
choice of the discretisation parameters for vanishing mixed derivative terms. We also give

partial results for non-vanishing mixed derivative terms.

In our numerical experiments, we apply the high-order compact schemes to the partial
differential equation arising from the multi-dimensional Black-Scholes model. In all nu-
merical experiments, where the initial conditions are smoothed for European Power baskets
with p = 1,2 using the smoothing operators proposed by [KTW70], a comparative stan-
dard second-order discretisation is significantly outperformed. As a second example, the
multi-dimensional Heston basket option is considered for n independent Heston processes,
where for each Heston process there is a non-vanishing correlation between the stock and

its volatility. Due to the high-dimensionality of this model we only show the possibility of
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a high-order compact scheme.

The first contribution of this thesis to the field is the introduction of essentially high-
order compact schemes for general linear partial differential equations with space- and
time-dependent coefficients in two spatial dimensions. These schemes have theoretical
convergence of order two, but as most of the derivatives are discretised in fourth order
consistency, one can achieve a fourth order convergence (if stable) up to a certain step-size
h* when the second order remainder term of one of the four versions of the essentially
high-order compact schemes is small. If the desired accuracy is already achieved with a
step-size up to the step-size h*, then the scheme has practically fourth order convergence
for the usage. These schemes are especially applicable, if there is an area of interest in the
spatial domain. One could rather want to zoom in the area of interest than to fulfil the
conditions on the partial differential equation for a high-order compact scheme. If there
is a good argumentation, why one of the versions of the essentially high-order compact
schemes should converge with fourth order up to the desired accuracy, then there is no

downside when comparing it with a high-order compact scheme for the practical usage.

The second contribution is a generalisation of high-order compact schemes for a linear
partial differential equation with space- and time-dependent coefficients and mixed deriva-
tives, where we construct the schemes for two and three spatial dimensions in detail and
give conditions on the coefficients for any higher dimensions of the spatial domain. Even a
von Neumann stability analysis is performed for vanishing cross-derivatives and frozen coef-
ficients (in time and space) with two and three spatial dimensions. This results into having
no further conditions on the coefficients of the partial differential equation for satisfying
the necessary von Neumann stability condition. For non-vanishing cross-derivatives partial
stability results are given, where there are also no further restrictions on the coefficients of

the partial differential equation.
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Chapter 2

Essentially high-order compact

schemes applied to non-uniform grids

In this chapter we derive essentially high-order compact finite difference schemes to ap-
proximate the solution of a linear parabolic partial differential equation in a general setting
on a two-dimensional spatial domain. We apply the discrete schemes to the Heston model
[Hes93] on a non-uniform spatial grid for a European Put, compare Definition 1, and a

European Power Put, see Definition 2.

2.1 Motivation for using essentially high-order compact schemes

In this section we give a motivation for the use of essentially high-order compact schemes.

We introduce semi-discrete finite difference schemes of the form

> Mu(2,7)0:Usy i (7) + K, 7)Uiy i (7)) =g(2,7) + Ry + O (h*).
2eG?

The spatial domain is given by a rectangle  C R?, which is discretised by the uniform
grid Ggf). Depending on the version of the essentially high-order compact scheme the
second-order remainder term is of one of the following forms

o'u
0z10x3’

ou
O0x30x9

0*u
40
0x5

0*u
40
Ox}

Ry =h*C Ry = h2C Ry = h2C or Ry = h’C

where in each case C' is neither depending on h nor on u. Where at least one of the four
possible specifications of Ry is small, it is possible to achieve fourth-order consistency for

the resulting numerical scheme up to a certain step-size.
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The focus for the application of essentially high-order compact schemes lies in the use
of non-uniform spatial grids, which are employed whenever there exists a specific area of
interest. In this situation we place many points of the spatial grid in this region, whereas
there are only few points located in the remaining parts of the spatial domain. This se-
cures a higher accuracy in the area of interest due to the higher density of grid points. We
then perform another transformation to the differential equation with a zoom function,
which establishes that the resulting transformed grid is uniform. This way it is possible
to perform the discretisation and the numerical analysis on a uniform grid and retain the

advantages of a focus of grid-points to the area of interest.

In the Heston model [Hes93| the area of interest is located around the strike price,
so the area is only depending on the asset price and not depending on the value of the
volatility. In this setting, the zoom function is a one-dimensional function which only
depends on the stock price. In this application we use a zoom function as proposed by

)

[TGBO08| to transform the non-uniform grid into a uniform grid Gf . On this uniform grid
we apply the essentially high-order compact schemes to approximate the function of the
option values. Hence the Heston model gives us the perfect setting to apply essentially

high-order compact schemes.

2.2 Introduction of the partial differential equation

In this section we introduce the problem whose solution we aim to approximate numerically.
We consider a partial differential equation in two spatial dimensions and time, i.e. we use

the partial differential equation given in Definition 12 with n = 2 and g = 0. Thus we

consider

dur + a1z, oz + 2Ugyzy + 012Uz 20 + C1UL, + Uz, =0 € Q X Q) (2.1)
with initial condition w(xi,x2,0) = wug(x1,x2), where a; = a;(z1,22,7) < 0, bio =
bia(x1,x9,7), ¢; = c(x1,22,7), d = d(x,y,7) and u = u(xy,x2,7) are functions from

QxR to R, where Q, =0, Tmax] with Tpax > 0 and Q = [xgi)n, mggx} X [xr(ii)n, xfﬁgx] C R?

with xg)m < 2 for i = 1,2. The functions a; (-, 7), b(-,7), ¢ (-,7), and d (-, 7) are con-
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sidered to be in C2(Q) and u (-,7) € C%(Q) for all 7 € §,. Using du, = —f gives
AUy zq + A2Ugyzy + D12Ug, 2y + CLUL, + CoUL, = f. (2.2)
A grid in x1— and in zo—direction for ), recall Definition 13, is given by

G® :{ @iy, 30,) € Q| iy = wighy +i1(Ax1), 24, = 2y, +i2(A2),
(2.3)

0<i] <Nj—1, 0§i2§N2—1},
where Az = (:cg{;x - $frlli)n)/(N1 — 1) and Axy = (xggx - ﬂjl(,ii)n)/(NQ — 1) are the step
sizes in each direction. With GO(2) we identify the inner points of the grid G?). We use
o(2
Gf) and G;l ), if Azy = Axzg = h for some h > 0. On this grid we denote by U;, ;, the
discrete approximation of the continuous solution u at the point (z;,, ;) € G®). Using

the standard central difference operator DY in x-direction and DS in z»-direction we have

for k = 1,2 the relations

ou o (Azy)? B3u 4
and
0*u c e (A'Ik)Q 'u 4
o7 ~PiPilinia = 35— g + 0 ((An)7).
0%u e (Az1)? O*u (Az)? 0w 4
Foom; 1DV~ =g G T 6 amaag T O (Ba)) (2.5)
A 6
+ O ((Aaﬂ1)2(Aw2)2) + O ((Ax2)4) +0 <( Aa;lz) > ,

at the grid points (z;,,,) € G®). We call a scheme of high order if its consistency error
is of order O (h*) for Azq, Azg € O (h) for some h > 0. If we discretise the higher deriva-
tives 0*u/0xt, 0*u/0xs, 0*u/(0x30x2), 0*u/(021073), 03u/0x3, and 0%u/Ox3 appearing
in (2.4) and (2.5) with second order accuracy, we obtain a scheme with consistency of or-
der four since they are all multiplied by factors of order two. We call a scheme high—order
compact if this can be achieved using the compact nine-point computational stencil, which

at the point (z;,,x;,) is given by
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2.3 Auxiliary relations for higher derivatives

We proceed by giving auxiliary relations for the third and fourth order derivatives appearing
in (2.4) and (2.5). Expressions for the higher derivatives can be obtained by differentiating
the partial differential equation (2.2) in a formal manner without introducing an additional

error. Differentiating equation (2.2) with respect to x1 and writing 93u/0x? as the subject

leads to
Pu e Ou ey, Fa@Pu ea)ey, Qu [bio)e, e 0P
oz} a1 Oz a1 Ox? a; Oxo aq 0x1012 (2.6)
b P el w P 10 '
a1 0230z a1 0x3 a1 011023 a1 0z b

where [-];, and [-];, denote the first derivative of the coefficients of the partial differential
equation in x1 and xo, respectively. With the central difference operator we can establish

a second-order discretisation of A; only using the compact stencil. As an example, we can

Pu(wi) wiy) 1
= €
Da3 0y 2(Az1)° (Axy) 0 0 0 Te
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where e € O (h*), if Az, Azy € O (h) for some h > 0. Differentiating the partial differen-

tial equation (2.2) twice with respect to 1 and writing 9*u/0z] as subject we have

@ _ [01]901961 % _ [al]ﬂﬁwl + 2[01]951 @ _ 2[a1]x1 +a @ _ [02]901961 %
31‘% B al 31‘1 al 895% al 31“% al 31‘2
[b12)2y2y + 2[c2)sy  O%u 2[b12)sy + 2 PPu bz Ou
- ay dx10xy a1 0220x9  ay 9230w,
 as)ers, @  2[aga, O3u _ap 0tu iﬁ (2.7)
a1 0x3 a1 Or10x3 a1 023023 ay 022 '
blg 34u
N 0x30xy

where [-];, and [-];, ., denote the first and second derivative with respect to x1, respectively.
Applying (2.6) and the central difference operator we can discretise By with order two using
only points of the compact stencil. Writing equation (2.7) with 0*u/(0z30z2) as subject

we obtain

4 4
Ou_ _op m0ou (2.8)
31‘18.%'2 b12 b12 8.%'1
In order to find an auxiliary equation for 8%u/0x3 we first differentiate the partial differ-

ential equation (2.2) once with respect to x9 and write 93u/0z3 as subject, which leads

to
Pu_ eday Ou agle, + 200 ci]a, Ou [bio)e, + a1 0P
ors as Oxo a9 Ox3 as Ox a9 021029 (2.9)
b P wladu o P 10 '
as 01023 az 0z  ax 0x30z9  ag Oxo T

where [-];, denotes the first derivative with respect to x2. The term Ay can be discretised

in a compact manner at the order two using the central difference operators.

Differentiating equation (2.2) twice with respect to o and writing 0*u/dz3 as subject

leads to
@ _ [al]xzm @ _ 2[0«1]9@2 Fu o &'u _ [a2]$2$2 + 2[02]302 @
(9x§‘ as 83:% as 833%83:2 as (9x%8x% as (9x%
eaJusas Ou 2lagle, + 2% [Cilage, Qv 2[big)e, +e1 Pu
as Oxo as oz} as Oxy as Ox10x3
_ Dodese, + 2]y 0w bz w1 0F (2.10)
as 0x10x2 a9 (9x18x§ as 83:% '
_.p, b2 0w
R a9 8$18$%,
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where [-];, and [-];,2, denote the first and second derivative with respect to x2, respectively.
The term By can be discretised with order two on the compact stencil using equation (2.9)

and the central difference operator. Equation (2.10) is equivalent to

*u as as 0*u
- 2B, 2.11
(%18@"% b12 2 b12 63:‘21’ ( )

Differentiating the partial differential equation (2.2) once with respect to z1 and once with

respect to zo and writing 9*u/(0z30z2) as subject leads to

du _i 32f _ [Cl]xlm % _ [b12]$1$2 + [Cl]xl + [02]902 u
(%‘}63:2 _a1 63:16332 aq 63:1 aq (%1(%2
_ [as]e, + [b12)e, + c2 & u a2 du _ [a1]e2s + [€1]as @
a1 Or10r3  ay Ox1073 a1 Ox?
B [al]xl + [blg]m +c o3 B bﬁ o4 B [al]m @ (2 12)
a1 0z20x9 a1 0x2023 a; Ox3 '
_ [62]11332 % _ [a2]x1x2 + [62]11 @ _ %@
a; Oxg ay (9x% aq (9x§
B as 0*u
It a_lawlﬁxg”

where [-];, and [],, denote the first derivative with respect to x; and x4, respectively
and [-]z,z, indicates the mixed second derivative with respect to z; and z2. Using the
equations (2.6) and (2.9) as well as the central difference operators in z;- and za-direction
it is possible to discretise C at the order two on the compact stencil. Equation (2.12) is

equivalent to

ot ot ot
oy S o M (2.13)
Ox10r5  as as x50 as 0x] 0z

Finally, the expression Cy can be discretised at the order two on the compact stencil as

well.

2.4 Derivation of essentially high-order compact schemes

In order to derive a discrete scheme we employ equations (2.4) and (2.5) in the partial

differential equation (2.2), which gives

al(Aazl)Q ot QQ(AQJQ)Q ot B b12(Ax1)2 *u

:A _— _— -
! 0 12 (9x‘11 12 (9x‘21 6 ax:{’@xg (2.14)
_ blg(Ax2)2 8411, _ 01(A$1)2 @ _ CQ(A.%’Q)2 @ +e -
6 (9x1(93:§’ 6 axi{’ 6 83:;’
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where
Ao :==a1 DID{U;, iy + a2 D5 D3U;, iy + bi2 DY D3U;, iy + 1 DYUs, iy + c2D5U;, 4,

and the error-term € € O (h?) if Azy, Azy € O (h) for some h > 0 is used. Ay is only using
the compact stencil. We apply A; and Ay for 93u/dz$ and 03u/0x3 directly, as they do
not depend on any of the higher derivatives appearing in (2.14) and only use points of the

compact stencil in their discretisation. This leads to

2 2 2 o4 2 o4
F Ay - c1(Azy) A co(Azo) A, a1 (Azy) a_z _ az(Azy) a_z
6 6 12 o1 12 91
2 4 2 4 (2.15)
_ blg(A.%'l) 0*u _ le(AfL'Q) 0*u Le
6 0x30x9 6 Or10x3

We have four fourth-order derivatives, namely 0*u/0x}, 9*u/0x3 and the cross derivatives
0*u/(0230x2) and 9*u/(0210x3), appearing in the above equation. For these four higher
derivatives we only have three auxiliary relations, being (2.7), (2.10), and (2.12). Thus
we have an underdetermined equation system and cannot expect to be able to replace all
of the four higher derivatives in (2.15) in the general case. This leads to four different
versions of the discrete scheme. For Version I the remainder term consists of 9*u/0x1.
The second version has 9*u/0x] as part of the remaining second-order error term. As the
third approach we have a scheme which has 9*u/(0z30x2) as part of the remainder term,
and finally Version 4 discretises 0%u/0x}, 0*u/0x4 and 0*u/(0x30x5) fully and leave a

second order remainder term, which includes 0%u/(9z10x3).

Equation (2.15) is the basis for the derivation of our different discrete numerical
schemes. We use the auxiliary equations (2.7), (2.8), (2.10), (2.11), (2.12) and (2.13),
depending on which of the higher derivative is supposed to be part of the second-order

remainder term.

For each version we define the semi-discrete finite difference scheme, recall Definition

15 with g = 0, which we introduced as

> IMu(2)0; Uiy in (1) + Ku(8)Uiy i (7)) = R2 + O (h*), (2.16)
zeq?)

2
with & = (z;,,x;,) at time 7 for each point z € éé) with Az = Axy = h for some h > 0,
compare Definition 13 with n = 2. Ry is a second order error-term, depending on the

discretisation version used.
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2.4.1 Derivation of Version 1

In this section we derive the first essentially high order compact scheme. First we have to

apply the auxiliary equation for 9*u/dz3, given in (2.10), to (2.15), which results in

c1(Azy)? ca(Axg)? az(Axq)? ai1(Azy)? 0*u
=Ag — A — Ay — By — —
f=4o 6 6 12 12 ot
blg(Axl)Z 84u b12(A$2)2 84u te
6 0x30wy 12 Ox10x3 '
Using (2.13) gives
C1 (Awl)Q CQ(A.%’Q)Q ag(Ax2)2 le(Ax2)2
=Ap — A — Ay — By —
f =4 6 ! 6 2 2 7 PR
_ al(Ax1)2 @ _ b12 (2&2(A$1)2 — al(A$2)2) 84u +e
12 Oz1 12as 0x30xo '
Finally, applying (2.8) gives Version 1
C1 (A,Il)z 62(A$2)2 ag(Axg)z blg(A$2)2
J=dom A A s e B O
(2.17)
_ al (2@2(A.%’1)2 — al(Ax2)2) B n al (ag(Ax1)2 — al(Ax2)2) @ L
12a; ! 12a, A
The second-order remainder term for Version 1 is given by
A 2 A 2 4
Ry i— a1 (a2(Az1)? — a1(Az2)?) 0 u (2.18)

12a, dxt

We observe that this scheme has a general consistency order of two, if Az, Axy € O (h2)
for some h > 0. But if the second order truncation error R, is small enough, we can expect
a convergence rate of order four up to a certain step-size.

There is only one case, in which we can achieve a high-order compact scheme. Since

a1 < 0, the case a; = 0, which would lead to Ry = 0, is not allowed. But the case

also results in Ry = 0, which means that we obtain a high-order compact scheme. So a

high-order compact scheme is possible when having a; = as and then using G,(f) as a grid.
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o (2
Using the central difference operator in (2.17) at the point (z;,,2;,) € G,g) leads to

- azlar]z, _ a1lbi2)z, _ a1]ag)z,  arfag)s, | bi2lai]s, n bi2[b12]xs

K 4. _
bl =T 12a2h 12a2h 12a2h Sagh 24ash
bislagls,  b12[bi2]a, n b35[az)z, . bi2[a1]z, bizer  biep
24a2h 24a2h 24a%h 24a1h 12a2h 12a2h
arbigaz]y,  biglails, | bizlag]z " big[ag]e, [b12]z,  C102
24a§h 6a1h 48@% 48a§ 24a9
bholar]e, | bio[ai]e,[bio)e, | br2lai]e,co biy [a1]z, co
24a2a1h 48(12&1 48&2(11 12a2h2 12(11
[a1]z: [b12]z; | a1[bi2leizr _ bi2[bi2)zizs | ailc2le, _ bi2[c2]a, (2.19)
120,1 480,2 48a2 24@2 48@2 '
arler [br2)ey | crlazle, _ colbroley | [br2]usl02]e, a1 | 2
24&2 24(12 48&2 24&2 12h 12h
[a1]eco _ a1lbio)ey  [c1]ay _ [e2ley  a2]wy | [a1]e,  [b12]as
24a9 48as 24 12 6h 12h 12h
[b12)ose,  [a1]ey | [b12]e,  b12 | a2 - [b12)ay2, _ bi2lei]s,
48 12h 6h 4h? 6h? 24 48ay
oo welale albely e, ales)s | belads | bia
1zl 6a1h 12ash 12ash 12ash Rash 12ash
_ bi2laz]z, | bi2[b12]es  b12[b12]ay _ bizai]z, + a1z, | [e2)a
24a2h 24a2h 24a2h 24a1h 12h 12
B bilas)e,  bielai]s,  bizlas]ecr  biafas]e, [b12)s biaco
24a3h 6aih 48a3 48a3 12ash
arbizaz)zs, _ blar)e,  biz[ai]e,[b12)e;  biz[ai]zca | cica
24a§h 24aq0a1h 48asaq 48asa1 24a9
n b3, [a1]zc2 _ [a1]e, [b12)z, _ ar[bi2)ziz | Di2[bi2)z iz, (2.20)
12a2h2 12(11 12&1 48&2 48&2 -
aleale, _ cifaz]e, | colbiz]ay  [br2les[anle, | [a1]a, N [b12],
24a9 24a9 48as 24a9 12h 12h
n biz[cale, | [a)u [b12]ay n [a1]z, c2 n c1[b12]z, n 1], n [ag]z,
48&2 24&2 24&2 48&2 24 6h
n bisler]sy | [b12ley , b2 | a1 2 | G2 [b12] 2121 " [512]@9[:2’
48as 6h 4h? 12h 12h 6h? 24 48
Koy = arhlcaleyzy | Ple2]ayzybi2 | hleale far]e, | heileals, | healeo]s,
12 240,2 24@2 12@2 24@2 240,2
- hlealo [ar]ey _ hlealeslaole,  brzcalaslsy, | a1lbiole, | aslazs,
6a1 12a9 12a% 6ash 6ash
_ bisfag]a, [asle,  bis[ar]e,  bialbio)e, | bizlai]s, - br2ar 3
12a3 4ash 12axh 3aih 6azh — 12a9
cilagle, | [agleizobiz  c2lasly, _ [b12]s L G bialas]s, [a1]a, (2.21)
120,2 120,2 12a2 3h 3h 12@2@1 '
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alasles,  [a2]7, | aibisfasle, | bialar)e, _ Pbizlas)e [co]es

12a, 6as 12a3h 12aza1h 24a3
e fagley | bizlea)e, | [aa)eifao)e, bR n [co)es _ [an]a,
3(11 12&2 6&2 6a2h2 6 6h
2ay h[CQ]mwQ h[CQ]xlm [aQ]xlxl [aQ]xzm hb1a [02]961 [al]m
— =+ +
+ 3h2 24 12 + 6 + 12 24a0a1
B 4 azlai]z, n arlagle, | bizlagle,  bialbiz)e, | blag)s,  biaco
itz 3a1h 6ash 12ash 12ash 12a:2h " 6ash
bipcilarle, | hleilerey | Bletase,  ladl3, | lwly, a1 |
- + + - + -1
12&2&1 12 24 3(11 6&2 h2 12(12
alaslag)e,  bilai]ai[ar]e,  arfar]ee, | colar]s, | afais,
6@2 12a2a1 120,2 12@2 40,2
Calae, | biolede,  aileds | laideebis by leids
3@1 12@2 6a2 120,2 6a2h2 3
heiler]e, _ ao)e, | [a1]ziar  bi2lag)e[ai]es _ [bro)e, _ [a1]a,
+ — 2.22
24as 3h T 6 122 oh oo 2P
Lo o hednwbe - atbledes, | bledslaie, | hela]s,
3h 24@2 24@2 120,2 240,2
a2 halss[as)e,  Rlei]s [a1]ey | [01]agzs - hb12[c1]e, [a1]a,
3h2 12(12 6(11 12 24(12&1
biala]z, _ hbi2las]e [c1]e,
12a1h 24a3
and
[ bialas]s, [as]s, i biacalagls, 5 n [a2]3, n 2ali,  [ali, 2a
2 6a3 6a3 6as 3as 3a1 3as h?
A bpalale, | biela]s(a]e | biles]s (a1, | (1] [as]s,
e +
6@2 6@2@1 6@2@1 6a2a1 3@2
4 al[al]mlml B 02[(11]:1:2 _ Cl[al]xl 201[(11]11 B le[CI]xQ al[cl]xl
6a2 6@2 2a2 3@1 6a2 3a2
_ [o]armsbin | aafan)eiey  [O2]eimbiz  cafoole, | 2lar)s (a2, (2.23)
6(12 6(12 6&2 6&2 3(11
N clasle,  bizleals  [a1]a [anla, n by 2eci)e  [a)ein
6@2 6@2 3a2 3a2h2 3 3
+ b12[a2]$1 [al]mz i [02]332 _ 4& i [al]mzm i [a2]$1$1 i [a2]$2$2
62 3 32 6 3 6

where K, is the coefficient of Uy, (1) for I € {iy —1,41,i1+1} and m € {ip — 1,49, i+ 1}.

Recall that we use [-];, as the first derivative with respect to x; and [-];, ., as the second

k
derivative, once in z3- and once in x,-direction with k,p € 1,2. Note that a, b1 2, ¢1 and ¢

2 -
are evaluated at (x;,,x;,) € é‘ﬁl ) and 7 € €. In the same way M ,, denotes the coefficient
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(2)

of 0:Up, (1) for (z;,,xi,) € éhz and time 7 € Q, with

- - biad
M 116041 =M 14,71 = £ 180y
M@'l it :i + hblz[d]m + dCQh d[ag]mh blgd[aglxlh + [d]mh
’ 12 24a9 24a9 12a9 24a3 12
Milil’b :éi h[d]xl - alh[d]xl B ald - hd[al]xl + hd[al]ml + hd01
6 6 12&2 12(12 6&1 12(12 24&2
hdb12 [al]m + hblg[d]m (2-24)
240,20,1 240,2
Mil 0 :h2[d]$1$1 . a1h2[d]x1$1 + C_i + &d _ h2[d]$1[a1]x1 + h2[d]x1 [al]m
’ 6 12a9 2 6as 3a1 6as
hQ[d]xlcl B hz[d]ml [al]mbl? + h2b12[d]$1$2 + hz[d]JBQJBQ
12&2 12(12&1 12&2 12
hQ[d]JBQCQ _ hz[d]m [a2]:v2 _ hQ[d]m [a2]$1b12
12ay 6as 12a3

Thus we have

A ~

Ko(Tn,, Xny, T) = Kpymy as well as My(2p,, Tny, T) = My, ny

o(2
in (2.16) with ny € {il — 1,271,201 + 1} and ng € {ig — 1,129,120 + 1} for (mil,xm) S Gl(m)

and 7 € Q,. K, and M, are zero otherwise. This means that the discretisation only uses

points of the compact stencil and is of the form (2.16).

2.4.2 Derivation of Version 2

For developing the Version 2 scheme the basic equation is again (2.15). To this equation

we apply (2.7), which gives

2 2 2 2 o4
F Ay - c1(Axy) A ca(Axg) A, a1 (Axy) B, as(Axs) 8_1:
6 6 12 12 x5
B blg(Axl)z 84u . blg(Axg)Q 84u te
12 9x30x: 6 Ox10x3
Using (2.12) we have
. Cl(Aﬁﬂl)z 62(A$2)2 al(A:cl)z blg(Axl)z
J =4 g i 6 2 O TR
_ GQ(A.%'Q)2 @ _ b12 (2@1 (A$2)2 — GQ(A$1)2) 84u +e
12 02 12a4 Ox10z3
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Finally, applying (2.11) then gives as Version 2

Azxp)? Axs)? Azxp)? Axp)?
Fedg— ci( 6361) A - e 6962) Ay a1(12361) B, - 512(12961) o

(2.25)

_ a9 (20,1(A.%'2)2 — ag(Ax1)2) B n a9 (al(Ax2)2 — ag(Ax1)2) @ Le

12a4 2 12a; ox} '

For Version 2 the second-order remainder term is given by
A 2 A 2 4

Ry @ (a1(Az2)? — az(Az1)?) 9 (2.26)

12a, dad

We observe that this scheme has a general consistency order of two, if Az, Axy € O (h2)
for some h > 0. If the second order truncation error Rs is small enough, we can expect that
the scheme has a convergence rate order of four up to a certain step-size. The coefficients

of the semi-discrete scheme are given by

o la1]sy _ arlagle, | bizlagle, _ bizlailsy | [a2)e,  bi2[bizeia,
neLREl T ok 6ash 6ash 24aih 12h 48a,
az[b12lugwy _ [b12]ws[az]a, _ bioler]s,  bisleols, | [a1]e, o
48a4 24a1 48aq 48a4 6h 12h
- cilasle, _ c2[b12]as _ bi2]as]s,  agbizfai]s, n bia[a1]z, [b12]2:
24a, 48a4 24ash 24a2h 48a?
n as[c1]e, - ez b2, n biabio]e,  biz[asle,  b12[bi2]a,
24(11 24&1 12a1h2 24a1h 8a1h 24a1h
bislarz, | biolai]seca _ aslai]s, — aslbials, ay [a1]z, c2
— 4 =T (297
T Toua?n 184 2ah T 12wk ot 2da 2
Ly [da[briz)ey | arazle, | [brz)eslac)es _ [e1les __ [e2]ey  a2]u
24a, 12a9 12a9 12 24 12h
- cilbioley  [bioles | [Dro)ey _ b2 | ca | blass,  bizeo
48(11 6h 12h 4h2 12h 24a2a1h 12a1h
" biglag)zic1 | bi2]as)e, [D12)es _ [D12]arar _ [D12)20as bi2cy
48@2@1 48a2a1 48 24 12a1h’
[ azlar]e, _ arfas]s,  bislagls, _ biolarls, | [ao]s, | cilag]s,
1+l 12a1h 6ash 6ash 24arh 12h 24a,
n bia[bi2)zizs | C2[bi2)zy | [b12]amla2)zs | bizlci]z, | biz[cala,
48&1 48(11 24(11 48&1 48&1
- azc1]z, L ac b3, bia[bi2]z,  bi2as]z,  bia[bi2]a,
24@1 240,1 12a1h2 24a1h 8a1h 24a1h
- b1sla1], - biala1]z,c2 - azlat]e,  aslbiole, | a1 _ [ai]s e
24a2h 48a? 12a1h 12a1h  6h? 24a,
[a1)oy [br2le, _ c1lazle, _ [brz]as[a2]e, | [erles | [c2]e N [a2], (2.28)

24a,q 12a, 12a4 12 24 12h
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K i1 =

Ki 41,

a1z, | [bi2)zs | [b12]ay |, D12 c1 2 asbi2(at]q,
+ + o2 a2 G0nliles
6h + 6h 12h 4h2 12h 12h 24a%h
biz[az]z c1 _ bialas)s, [bi2)as " [b12] 2121 " [b12] 205 " bi2cy
48a2a1 48@2@1 48 24 12a1h
n biaca _ bialai]es [D12]er _ a2[b12]asws _ bi2]as]s, | c1[biz]a,
12a1h 48@% 48a4 24ash 48a4
_ b%Q[QQ]ml
24a2a1h’
- hlea]a [a1]z, - hleales[azle, | a1laz]e, N [as]2, 3 [a2]z
12a1 6@2 3a2h 6a1 12@1 6h
L belaals, by bialbio)e, | biolasls, | bholar]s, | asfa1]a,
12a1h 6a1h2 12a1h 12a2h 12a%h 6a1h
azhlCcoluswy | hlealorwabia | heredlay | cohleals, | hlco]wsa2]a,
24@1 240,1 240,1 24@1 12@1
Clefi,  boles)yfa)e, a1 elas)e,  [ai]e[az)s | Le2ly
3a2 120,% 3h2 3a2 6@1 3
[a1]ey _ [b12]e, |, c2 | a2 | hlcalusas | Rlc2lie  biacoas]s,
+ =+ = + — 2.29
T3 6h  3h 12 12 24 a2
hbis[eols [a1]w,  brzlasls [@2]e, __ br2lacls, hlco]w, | [a2]wiwsb12
24a? 12asaq 24asay 12ay
. alasla; | bizleale,  a2laslese,  a2leale, | cofas]e,  bi2ar
12&1 12&1 12&1 6(11 4&1 6(11h
[a2]$1$1 [a2]$2$2
* 12 + 6 ’
4 aglarle, | biglagle, BT biglaglz, _ bi2[bio]sy n hlei]ea,
6a1h 3a2h 6a1h2 4a1h 12a1h 24
N A hledee,  [0]2, | 2010 bisfas)es[a1]e,  [a1]es[a0)a,
120,1 12 6@1 3h2 12a2a1 3a2
_ Cl[al]rl a2h[cl]mgx2 h[cl]xlxgbu hcl[cl]ml + h[cl]mg[a2]x2
12&1 24(11 24&1 24&1 12&1
~bialals, | [ele, - lagley - [b12]a, L a hbiz[ci]z [a1]a,
12a? 6 6h 3h 3h 24a?
bioleilsy | 2lan]e,  a2lai]unes | [ai)asla2]ey | [a1]aianb12
_ 2.30
* 12(11 + 12&1 12(11 + 6&1 * 12(11 ( )
L @ebiplai]e, _ hlees[a2]e, _ hledo[ar]e, o hbizlazay [e1]a,
12@12h 6a2 12@1 24a2a1
N laroszy bislasls, | as[biz]s, L hedleiley bizlar]as[arle
6 12a2a1h 6a1h 24@1 120,%
n [a1]z2 _ bi2ca
12 6a1h
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o [02]3252 _ ﬁ _ i biy biz[az]z, [a1]x, 4 2[02]9232 4 c1la]q,
2 3a; 6a; 6a;  3aih? 6a? 3as 6a;
a2, dar | 2[ai]s[ag]e, . 2c2]as]s, . [a1]zy [a2)e, | bi2ci[a1]u,
3a1  3h? 3as 3as 3a1 6a?
biglas)z a1z, bi2[ai]ei 1]z Di2ci]as c2[ai]zy  a2(ai]rem,
6a2a1 6a1 6@1 6@1 6a1
2lcolzy  2a2  [c1]zy, o bizlag)s[a2]e,  bi2c2las]s,  [a2]aa.b12
o N S - (2.31)
3 h2 3 6&2&1 6&2&1 6(11
lailaslas]e,  laalaasbiz cllasls, bizfea)s, n az(a2)zya,
3@1 6a1 6a1 6a1 6a1
+ a2[62]$2 i 62[(12]12 i [al]xlml i [al]mm _ [a2]$1$1 _ [a2]x2x2
3&1 2(11 6 3 6 3 '

Here f(l’m is the coefficient of Uy, (7) for [ € {iy —1,41,71+1} and m € {ia — 1,142,492 +1}.
Again, [-], denotes the first derivative with respect to z;, and [-], », the second derivative,
once in x;- and once in x,-direction with k,p € 1,2. We note that a, b2, ¢c1 and ¢y are
functions evaluated at (z;,,x;,) € Colf) and 7 € ;. In the same way ]\Zfl,m describes the

2
coefficient of 0-Uj ,, (7) at the point (z;,,xi,) € COJEL) and time 7 € Q, with

. . biad
M, 16001 =Miy—15,71 = £
1+1,d2£1 1—1,527F1 48a,
Mihhil :C_i + hblg[d]xl —T G,Qh[d]g[;2 —{—:l:[d]mh _ a2d + hCQd + hd[ag]m
6 240,1 120,1 6 120,1 24@1 120,1
hbialas]s,d _ hdlas].,
24(12(11 6&2
~ d Cldh blz[al]mdh hblz[d]m hd[al]xl h[d]xl
M; 114, =— =+ + + 2.32
i T % Sday T 24a] 24a; | 124 12 (2.32)
M o h? [d]xlcl h? [d]m [al]mbl? h? [d]m [al]xl h2b12[d]x1$2 h? [d]mwl
i1,i2 — - D) - + +
12a; 12a7 6aq 12a; 12
+ hQ[d]mm + aid + é + hQ[d]JBQCQ + hz[d]m [a2]x2 _ hQ[d]m [a2]x1b12
6 6&1 2 12&1 6&1 12&2&1
_ h2[d]$2 [aQ]m _ a2h2[d]$2x2
3&2 12&1
We define

A ~

Ky(xp,, ny, T) = Ky py  as well as My (@, , Tny, T) = Mp, no

o (2
in (2.16) with nq € {il —1,41,41 + 1} and ny € {ig —1,29,10 + 1} for (xil,a%) S GEL) and
7 € Q.. K, and M, are zero otherwise, which means that our discretisation is of the form

(2.16) and only uses the compact stencil.
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When looking at (2.26) we can see that there is only one valid case in which we can
achieve a high-order compact scheme. We can see in (2.1) that as = 0 is not allowed, so

the case
(A.%'l ) 2

(Azy)?

a] = as,

is the only valid possibility to achieve Ry = 0. One specific version of this case is a1 = ao

in combination with the grid Gf) for h > 0.

2.4.3 Derivation of Version 3

In order to derive Version 3, where the derivative 0*u/(0z30x9) is part of the remainder

term Ry, we have to use (2.7) and (2.9) in (2.15), which gives

cl(Ax1)2 CQ(A$2)2 al (A$1)2 GQ(A$2)2
=Ay — Ay — Ay — By — B
=40 6 1 6 2 19 1 19 2
_ blg(A.%'l)Q 3411, _ blg(Awg)Q 34u Te
12 3%‘;’8.%'2 12 8361836% i
Applying (2.13) leads to
A 2 A 2 A 2 A 2
F Ay - e ( 6531) a, - el 6332) A, a1(1;1) B, a2(12$2) B,
(2.33)
_ blg(A$2)20 i blg (al(Ax2)2 — GQ(A$1)2) 84u +e
12 7 12ay dr30ry
Hence, for Version 8 the second-order remainder term is given by
b A 2 A 2 4
Ry = 22 (01(Az2)° — ax(Aa1)’) 0w (2.34)

120,2 8$‘% 63:2 '

We can see that there are two valid cases, both of which lead to Ry = 0. The first case,

like in Version 1 and Version 2, is

Therefore, when a1 = as holds, it is possible to achieve a high-order compact scheme when

(2)
h

using G; as a grid. The second possibility is having

b12 =0.

In this case there is no further condition on the grid, which means that only Az, Az €

O (h) has to hold for a high-order compact scheme.
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Using the central difference operator in (2.33) at the point (x;,,z;,) € Colf) leads to

Ki 141 =

Ki 11,041 =

~

K igt1 = £

bi2[b12],
24a2h
bia[as]s, c1
48a%

b%Q[al]x2

bi2]az]e, biacy
24a9h 24a9h
bia[az]e, [D12]2,
48a%

bi2[a1]e,[b12)2,

biala1]a,
24a2h
bia[at]s,
12a1h

arbiafaz]s,

a1[as]s,
12a2h

bi2[b12]z,
24a2h

bi2[a1]z,

aslai]z,
12a1h
ay
12h2

6%2[a2]$1

* 24a1h

c1[b12]z;
48@1
c2[b12] 2,
48&2

24a2a1h
[a1]z, [b12]a,
24@1
biz[c1]a,
48&2
2]z, | [a1]es  [Dr2)e, | [b12]a
12h 12h 12h 12h
[612]1‘11‘1 [612]1‘21‘2 leCl
+
18 7 48 24ayh
bizlai]s,co bT 2
48a2a1 12a2h2 24h7

24a%h 48aqa
biaco
" 12ash
ag
12h2
[02]$1
24
cilaz)z,
24&2
[a1]zc2
24@1

24a2h
C1C2 C1C9
48@1 48a2

[b12] 2, [a2] 2,
24&2

b12[b12]21 20
48a2
[Cl]mz
24

bia[ca]e,
48&2
bz e
4h? 24h
ai1c2 asCy
24a2h<_ 24a1h

+

C1

:F

+

b12[b12]zs
24a2h
biz[az]q, c1
48@%
b12[b12] 2120
48&2
aibiafag)z,
24a22h
[a1]zic2 | b1
24&1 4h2
bi2[c1]a,
48@2
(b12]2,
12h
aicy
24a2h

c1e2 biact
48a1 24a2h
bi2[b12]a,
24a2h
[cl]$2
24
6%2[a1]$2
24a2a1h

bi2[ai]z,
24a2h
bislagle,  bizlails, _ bizlails
24a%h 24a1h 12a1h
bi2[az]z, [b12)z, _ bi2[as]z,
48a% 24a9h
big[ai]e,[bi2]s, | c1[biz)s,
48a2a1 48@1
biz[ai]z,c2 c1co
48asa; 48as
c1laslz, [b12]as [a2],
24@2 24a2
1 P () [b12] 2,
24 12h 12h
as [b12]
12h2

ai[az]z,
12a2h

as[a ]z,
12a1h

biaco
12a2h

al
12h2

_l’_

C2

24h

b1
12a2h2
ca[bi2)a,
48@2

1
— +
* 24h

bia[c2]e,
48a2
[a1]a, [b12]2,
24@1
ascy
24a1h’

:F

:F

[al]mz
12h

[b12]mgx2
+
48

biacy

* 24a1h

hlcalas [@2)a, biacy
12&2 12a2h

bia[bia]s,  bi2[ag]s, [as]a,

12ash 12a3

hbiz[az)z, [c2]s
24a3
bi2[c2]a,
12&2

h02 [02] o
24&2

b12[a1]z,

12a2h

b%2[a1]$2

12a2a1h

. 62[a2]x2 _
12&2

h{02]$1[a1]$1
12&1
ailaz)y,
6a2h
[02]22 a1
6@2 6h2
c
12&2

hlca)zyz,b12
24&2

biacalas)z,
12a3

biz[ai]e,

6a1h

arbizfaz)z,
12a3h

a1C2
12a2h
bty
6a2h2

[al]xl[QQ]ml
6&1
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(2.35)

(2.36)

(2.37)



h[02]$1$1 C1 [a2]$1

la1]e, _ [b12]ey | Bca | Baz | hlcalese,
+ — 4+ — &+ +
6h T 6h 120 o 24 24 124,
+ [a2]e1 2, n [a2]eyz,  brzer  hbia[co]e[a1]e, | heilcalq
12 12 12a1h 24&2(11 24(11
[colsy  Diz[as]ey[a1]s, | [a2]ziasb12
6 12@2@1 120,2 ’
By aglar]s, | bizlagle, _ bralbio)e, | bhlagls, | bizlai]e,  biac
b 6aih 12a5h 12a3h 12a2h 12ah " 6agh
n ci o Mleases [a1]2, | Ba1r _ hbizlagle [c1]ey,  brzcifan]a,
120,1 24 6a1 6h2 240,22 120,2@1
n [a1]a1zsb12 biz[a1]a; [a1]e, n heslet)e, | [at)aoes _ hbi2[ci]e[a1]e,
12(12 12(12&1 24&2 12 24(12(11
heiler]e, | letley,  lagle, _ [b12]e, | 5c1 az | hlct]ze,b12
+ + ——- =4+ ——=—= (2.38
2da;, 6 | 6h  6h  12h o2 2iay 239
azcr __ hleisslas]e, _ hlei]ei[an]s,  bizfas]e,[an]s, | [a1]ee,
12a1h 12&2 12(11 12(1% 12
L Hedazy [aalwfasle, | e2lails,  ala]ey | bizferls, b1
24 6a2 12@2 120,1 12@2 6a2h2
and
o biolasle [a9]e, | brocolas)e, d 3 e, | el bax
e 6a3 6a3 6a;  6az  3as 3a;  3h?
biacifar]a,  bizlci]e,  [c1]ey  [c2]en  [aa]aiay n b1
6&2&1 6(12 3 3 6 3a2h2
N biolarls [a1]e, | br2]asls, [a1]e, N la1]a,[ale,  c2lar]s, | aifails, (2.39)
6@2@1 6@2@1 3@2 6@2 6@1
aeiwsbiz [ag]eiasbio n c2[ag]a, n [a1]a, [a2]e, — biz[ca]ay
6(12 6&2 6a2 3a1 6a2
_ @ b12[a’2]1‘1[a’1]$2 _ Cl[GZ]wl _ [al]xzm _ [aQ]ﬂrlxl _ [a2]902x2
312 6aJ 6a1 6 6 6

where f(l’m is the coefficient of Uy, (1) for [ € {i1 —1,41,41+1} and m € {in—1,ia,i0+1}.

The first derivative with respect to xy is denoted by [-],, and the second derivative, once

k

in - and once in x,-direction with k,p € 1,2, is represented by [];,z,. We recall that

o(2 ~
a, by 2, c1 and ¢y are functions evaluated at (x;,,xi,) € Gl(l) and 7 € Q.. With M;,, we

o(2
describe the coefficient of 0,Uj ,, (7) at the point (z;,,x;,) € G,(l) and time 7 € Q..
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Thus we have

~ ~ biad
M 416041 =M, 15071 = 184y
~ d hblg[d]xl dCQh d[az]mh blzd[az]mh [d]mh
i1 =— = + +
Vel T Today T 24ay T 12a 2443 12
Milil 0 :i + h[d]ml + Cldh hd[al]ml hdblg[al]m + hb12 [d]mg (240)
’ 12 12 24&1 12(11 24(12(11 24(12
VA hQ[d]JBQCQ _ hz[d]m [a2]:v2 _ hQ[d]JBQ[a?]mlbl? + h2b12[d]$1$2 + hz[d]mlxl
o 12a, 6as 12a3 12a, 12
hQ[d]mcl _ h2[d]x1[a1]$1 _ hQ[d]m[al]mle + h2[d]x2$2 + 2_d
12@1 6@1 12a2a1 12 3
We get

A ~

Ky(xp,, ny, T) = Ky py  as well as My (@, , Tny, T) = Mp, no

in (216) with ny € {il —1,21,81 + 1} and ng € {ig —1,49,10 + 1} for (:cl-l,xiQ) S éf) and

T € Q;. K, and M, are zero otherwise and the scheme is thus of the form (2.16).

2.4.4 Derivation of Version 4

In this part we derive Version 4 in which the derivative 0%u/(0x10x3) is part of the

second-order truncation error Rs. Using (2.7) and (2.10) in (2.15) leads to

c1(Axq)? co(Axs)? aq(Axq)? as(Axs)?
potp- ATy bnf (@) ),
_blg(A.%'l)Q 34u _le(AI'Q)Q 34u Te
12 9x30xy 12 91023
Now applying (2.12) leads to
c1(Axq)? co(Axs)? ai(Axy)? as(Axs)?
pop- ATy lnf a(@n) | wbo),
(2.41)
_blg(Aazl)QC +b12 (a2(Az1)? — a1(Az2)?)  0*u e
12 ! 124, dr,023

For Version 4 the second-order remainder term is

Ry biz (a2(Az1)? — a1 (Az2)?)  0*u
2 12&1 8$18$%

(2.42)
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There are two cases where Ry = 0 and we obtain a high-order compact scheme. The first
is again
_ (Axy)?

a] = —=as.

(Azy)?
)

This means that if a1 = ag holds, one has to choose Gf as the grid. The second possibility
to achieve Ro = 0 is by

612 =0.

In this case there are no further restrictions on the step-sizes in x1- and xs-direction. Using

2
the central difference operator in (2.41) at the point (z;,,x;,) € COJEL) gives

[ az[a1]a, - a[ags, | bizlag]s, - biolarls,  bizea _ biz[bio]ayas
R DY) 12ash 12ash 2da;h  24ash 48a,
bizlci]z, _ bizlea]z, _ c1lbi2]z, . crc2 b3, b12[b12]zs
48&1 48&1 48(11 48(11 12a1h2 24a1h
_ big[bials, - biz[asls, b25lar]z, | bialai]s,co ap cico
24a1h 24ash 24a%h 48a3 12h2 7 48ay
L laleer | oo [broley | cilaz]e, _ cobioes | [Bro]es[az]e,
24@1 240,1 240,2 480,2 24@2
[eolay  [azley | [aales  [Brofen | [Brofey b2 et e (2.43)
24 12h 12h 12h 12h 4h? 24h 24h '
L 0 biolasle, | asbialai]e, L bl | biofas)e [bro]e
12h2 24a1a2h 24a%h 48@1@2 48a1a2
[012] 205 bizci  biaca | bislar]as[bi2]a, aicy  ac
48 12a1h  24aih 48a? 24ash  24a1h
- [b12]212, - 1] b12[a2]x27
48 24 24a1h
[ alar]e, _ aifas]s,  biglasls, _ biofarls, | bizea | biz[bioyian
ntliaEl 12a1h 12ash 12ash 24aih | 2dash 48a,
n bi2[c1]a, n bi2[c2]as n c1b12]a, L ac b3, b12[b12]z,
48a1 48a1 48@1 48a1 12a1h2 24a1h
bio[bia)e,  bizlasle,  biofaile, _ biafai]e,co ap cieo
24a1h 24ash 24a3h 48a? 12h2 7 48ay
[a1]zyc2  [aa]e [b12]z, _ crlag]e, | colbio)ey,  [b12]as[a2]e, (2.44)
24@1 240,1 240,2 480,2 24@2 '
[c2ler  [a2der | la1]as  [b12le | [012]an | D12 c1 c2
+ + + + — — —
24 + 12h 12h 12h 12h 4h? + 24h 24h
n ag b35[as)e, _ agbiafai]z, _ bizlag]z,c1 _ biz]as]s, [b12]z,
12h2 24a1a2h 24a%h 48@10,2 48a1a2
" [b12] 2025 n biacy biaca bi2[a1]e,[b12]2, aico ascy
48 12a1h ~ 24a:h 48a? 24ash  24a1h

" [b12] 2121 " (1], n bi2[az]z,
48 24 24a1h ’
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Kiigar =7 hlcala, [a1]ay | healcale,  Rlco]ay[as)]

T2 ai [a2]mz b12[a1]1'1
12(11 24(12 12(12 6a2h 12a1h

bia[bio)ey | bi2lasle, | b3slatle, | hle2)uzsbiz | heilcols
12(11 h 12a2h 12a%h 24&1 24&1

C 22, a1 clagle,  [ai]wi[a2)s,  brzlagls, [a1]a,

12a;  6az  6Gh? 12ay 6aq 12a2

+ 5& + % + h[CQ]xgxg + h[CQ]l‘lxl h612[02]1‘1[a1]l‘2 _ 6%2
12h 6h2 24 24 24a,2 6a1h?

_ biseslas]s, - hbi2]as]s, [c2)z, . [a2] 212,012 n cilagle, | bizleals
12(11&2 24(11&2 12&1 12(11 12(11
[ag)eya: + [as)wyzs __ br2ca £ me [bi2lay  bizfasls, [a2]a,
12 12 6a1h 12a2h 6h 12@1@2
[62]12 [al]mz
6 ' oh

:F

+

(2.45)

+

_l’_

- azlar]z, | bi2lazls, biaco c b3, bi2[az]z,
Kie1i, =+ + -
iz 6ayh Gash | 12a3h | 12a;  6ayh? | 12a1h
h[cl]xlml + h[cl]mgxg . [al]%l 5& . b12[a2]x1[a1]mg
24 24 6&1 6h2 12&1(12
ola]s,  ala]s n hlet]ayaybr2 n hey[ei]s,  bizer[ai]s,
12ay 12aq 24ay 24ay 12a2

_blas fa]e, - [biole, a2 hbiofer]s[ar]e, | bi2fci]s,
1247 6h G2 2407 120,

[a1]e2,012 | bolas)e, | asbiz[ai]e, | healcile,  hlei]as[asle,
12&1 12a1a2h 12a%h 24&2 12&2

hlei]e [a1]e,  hbizlag]e,[c1]s, [al]x1x1+[a1]m2x2 biaco
120,1 240,10,2 12 12 12a1h

a2es _ bualbioley | leley _ [@1)eslazle, - [a2]s, | 5er
12a1h 12a1h 6 6as 6h 12h

+

(2.46)

_|_

and

: o | by | bisfas]y[a1]a, ﬁJr a2]2, | [a1]Z,  [a2]eys,

T Bar | Bayh? 6a2 T 6as | 3ax | 3a 6

N [a1]as[as]z,  c2lan]a, n cila1]a, N c2las]a, N [a1]z, [az]a,
3(12 6(12 6(11 6&2 3(11

n 512[611]9[;12[@1]@ _ [c1]z: B [c2] 2, _ 5LL§ B bi2[c1]z, B [a1]z12,012 (2.47)
6ay 3 3 3h 6aq 6aq

biacoas]e,  |aolaiarbiz  cilasls,  biofco)e,  [@1]eiw,  Sar

6(11(12 6a1 6&1 6(11 6 3h2

ar)ese,  a2]ese, | bi2laslalar]s, | bizerfanls, | bizas]s [as]s,
6 6 6@1@2 GG% 6@1@2

11,02 —

where f(l’m denotes the coefficient of Uj,, (1) for [ € {iy — 1,41,y + 1} and m € {is —

1,i2,43 4+ 1}. Additionally, [];, denotes the first derivative with respect to xj and []s,z,

20



the second derivative, once in x- and once in x,-direction with k,p € 1,2. Again, a, by 2,

o (2 ~
c1 and co are functions evaluated at (z;,,x;,) € Gé) and 7 € Q.. The value M ,, denotes

o(2
the coefficient of 0;U} , (7) at the point (x;,,x4,) € GEL) and time 7 € Q, with

- A biad
My 10,01 =Miy—1571 = £
1+1,00+1 1—1i2F1 48a,
Mihmil :% ZZQh d[ag]mh hblg[ag]md + hblg[d]xl + [d]mh
a9 12@2 24a1a2 240,1 12
~ d Cldh blg[al]:mdh hd[al]xl hblg[d]xQ h[d]xl
M 414, === + + 24
1Lz T79 % 9lay 242 | 12a 24a, 12 (2.48)
Mil,iz :h2[d]x1$1 + 2_d + h2[d]$2x2 + h2[d]xlcl + h2[d]$202 _ h2[d]x2 [a2]$1b12
12 3 12 12a; 12ay 12a;1 a2
h2b12[d]x1$2 _ h2[d]$1[a1]x1 _ h2[d]$1[a1]x2b12 _ h2[d]x2[a2]$2
12@1 6a1 12@% 6@2
We have

Ko(Tn,, Xny, T) = Kpyny as well as  My(zp,, Tny, 7) = My, ny

in (216) with ny € {il —1,21,81 + 1} and ng € {ig —1,49,10 + 1} for (xil,xiQ) S éf)

and
T € Q,. K, and M, are zero otherwise. Thus the discretisation consists only of points of

the compact stencil and is of the form (2.16).

2.5 Application to the Heston model on non-uniform grids

In this section we apply our discrete schemes to the Heston model. Firstly, we transform
the partial differential equation of the Heston model (1.11) so that it assumes the form of
the partial differential equation (2.1). After that, we have a closer look at the second-order
remainder terms of the four different essentially high-order compact schemes. Then we
apply the schemes to the Heston model and determine the coefficients of the semi-discrete
scheme. Finally we discuss the boundary conditions and then use Crank-Nicolson time

discretisation, compare for example [Str04, Wil98].

2.5.1 Transformation of the partial differential equation and final con-
dition
In the application we focus our attention on the Heston model. The partial differential

equation of the Heston-model, recall (1.11), is given by

1 1
Vi + 505%&/55 + pvoSVs, + 5v%vm, +7SVs + k(0 — o)V, — 1V =0, (2.49)
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where S € [O, Smax] with a chosen Spax > 0, 0 € [Omin, Omax] With 0 < omin < Omax and
t € [0,T[ with T' > 0, after imposing artificial boundary conditions in a classical manner.
The expression V; denotes the differentiation of the option V' with respect to t. The deriva-

tives Vg, V, Vsg, Vi as well as Vg, are defined in an analogous way.

The final condition as well as the boundary conditions, which we discuss separately,
depend on the chosen option. In the case of a European Power Put Option with power

p € N we have the final condition
V(S,v,T) = max(K — S,0). (2.50)

We apply the following transformations to (2.49) as in [DF12a],

Szln<%>, T=T—1t, y:%, u:e”%,
where S € [S’min, S’max} with a chosen S'min < 0 and
S'max =In (%) .
We then introduce a strictly monotonous zoom function
S = p(x),
zooming around S =0, with
T € [go_l (Amin) ,90_1 <Amax)} )
as well as ¢(x) € C* (|Zmin, Tmaz|) and setting f = —@3u,, we obtain from (2.49) the

following two-dimensional elliptic problem [Str04],

—v v v
f :—y [pru:m + Spiuyy] - pvygpiuxy + [ YPra + (_y - T) Spi] Uy
2 2 2
(2.51)
0—vy 4
- K pru:lﬁ
where (%y) €= [xmin,xmax] X [yminaymax]a Tmin < Tmax and Ymin < Ymax- This means

that we use 1 = x and xo = y in the derivation of the four different essential high-order

compact schemes.
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Remark 1:

Equations (2.18), (2.26), (2.34) and (2.42) show that we can obtain a high-order compact
scheme when either p =0, v =0, or (Ay)? = (Az)?¢2. The constraint (Ay)? = (Az)?p2,
however, implies that the function ¢ is affine linear and would not qualify as a zoom
function. In particular, the choice p(x) = x would yield the high-order compact scheme
discussed in [DF12a] (on a uniform grid), hence we focus on a zoom which is not affine

linear.

2.5.2 Discussion of second-order remainder terms

In equations (2.17), (2.25), (2.33) and (2.41) we observe that all these schemes have a
formal general consistency error of order two. On the other hand each version only has one
remaining second order term, which is multiplied with either w;zzq, Uyyyy, Uzzry, OF Uzyyy-
All other terms are discretised with fourth order accuracy. We call this an essentially high-
order compact discretisation. To gauge the overall potential of the four discrete schemes
we obtain by neglecting the remaining second-order terms, it is pivotal to understand the
behaviour of these terms better. To this end we compute a numerical solution using the
(second-order) central difference operator in z- and y-direction directly in equation (2.51),
and obtain by numerical differentiation (approximations of) the higher derivatives u;zzy,

Uyyyys Uzzzy, aNd Ugyy, appearing in the remaining second order terms. Figure 2.1 shows

Figure 2.1: Remainder terms without O((Ax)?) factor for Version 1 (upper left),
Version 2 (upper right), Version 3 (lower left), and Version 4 (lower right)

the remainder terms of second order appearing in equations (2.17), (2.25), (2.33) and (2.41)
without the O(h?) factor, where p = —0.1, ¢ = 2.5, p = 1, and Sy, = 49.6694. The values
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of these remainder terms determine if we can achieve a fourth-order consistency, at least
up to a given minimal step size. Hence, low values for the remainder terms are favourable.
We observe that all for all plots have the highest values of the remainder terms occur near
the boundary £ = 0. On the upper left plot in Figure 2.1 we see the remainder term
for Version 1. This term has by far the highest absolute values and the [?>-norm of this
remainder term is 8.8 x 10~!. This indicates that a numerical study of this scheme may not
lead to a fourth-order consistency error. On the upper right plot we have the remainder
term for Version 2, again without the O((Az)?) factor. The highest absolute value for
this is only about 4 x 1073, so very low when comparing it with the remainder term of
Version 1. The [?>-norm for this plot is 3.1 x 10~%, which shows that Version 2 has a
significantly higher chance of producing a fourth order consistency error in the numerical
study than Version 1. The plot on the lower left side is showing the remainder term of
Version 3. This plot has higher values than Version 2, but lower values than Version 1.
With a [2-norm of 6.6 x 1073 it has still a chance to produce a good consistency error. The
plot on the lower right shows the remainder term of Version 4. This plot has again very
low absolute values which are only up to about 5 x 1073. The [?>-norm for this remainder
term is 3.1 x 10~*. This indicates that we have a good chance that Version 4 produces a
scheme with fourth-order accuracy.

In the special case that ¢(z) = x and Az = Ay = h we have (Ay)? = (Az)%¢2, and

all four versions lead to exactly the same high order compact scheme,

2 2 _ 2 v B2
vyh Byt pvyh cn k(0 — vy)h Ay — ( 5 r)

24 24 12 6v 6

A1+€7

as in this case C1 = (5 holds. This specific high-order compact scheme without zoom is

discussed in [DF12a].
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Remark 2:

The derivation of the schemes in this section can be modified to accommodate other stochas-
tic volatility models as, e.g. the GARCH diffusion model (1.4) or the 3/2-model (1.5).
Using these models the structure of the partial differential equation (1.10) remains the
same, only the coefficients of the derivatives have to be modified accordingly. Similarly,
the coefficients of the derivatives in (2.6)-(2.13) have to be modified. Substituting these in
the modified expression for the truncation error one obtains equivalent approrimations as

above.

Our conclusion from the results in Figure 2.1 are that Version 2 and Version 4 seem to
be the best choices to obtain small errors. The remainder term for Version & still has low
values, while Version 1 seems only to be able to produce a second-order scheme. Numerical
experiments which we have carried out with all four versions of the scheme indicate that
actually Version 8 is leading to the best results in terms of accuracy and stability. Hence,

in the remainder of this chapter we focus on this particular scheme.

2.5.3 Semi-discrete schemes

In Section 2.4 we have derived essentially high-order compact numerical schemes in a
general setting. In this section we use these schemes to approximate a solution of the
partial differential equation of the Heston Model [Hes93|, where we additionally introduce
a zoom into the area around the strike price K.

We now consider the elliptic equation (2.51) with f = —¢@3u, and we denote by U; ;(7)
the semi-discrete approximation of its solution w(x;,y;,7) at time 7.

In this section we define the semi-discrete scheme of the form

> M.(2)0,Ui (1) + K(2)U; ()] =0, (2.52)
zeG?

(2

2
at time 7 for each point z € Goh ), where Cov’;l) denotes the inner points of the grid Gt

Y

compare Definition 13. We have that K,(2) and M,(2) are operators with nine values

defined on the compact stencil around z € el
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Using the central difference operator in (2.33) at the point z € G leads to

o e (F o) vyeiew (o) en vyel | vbee s
LI 241 16 24h 24h? ~ 48h  24h?
pon (0 =) _ngbl0=y) KO0 ($1)¢? , o2
24vh 24vh 2402y 48
R (0= vy) pu (5 —r)er , war 0 —vy) (5 —7)
480 24y 2402y

K (9 - Uy) SD%SDH 2 [vygpm VPzrx VYPx
1 _ } 2.53
16v AT 8 612 (2.53)
Pavm (5 —71) | vyei, - (3 —7) e | WP , PhF
12 12 24 A8p, 24

+

+

+p

Pz (% - T) + gpi (% - T) + VY Pz VYPr Pz UySD%

12h 12h Sho, | 24h | 4n?
ik (0 —wy) - VPR | VPr _ VYPaPuma
6hv 1602 ~ 24y 24 '

Koo = — Foons oy — YPx vyps + ouk (0 —vy) _ @3k (0 —vy)
i—1,5%1 i+1,7+1 1272 1912 190h 1o0h

2 VYPx P (_ - T) VYPrx + gpi (% - T) Uy@x¢$Z] (254)

+ +
32 P 6h Ahepy 6h | 12h

) hv Prrrx

: s hel (B =) e (F o) S -r)ed |
12h 12h 18

Kitri =7gp2 6 i
2
Pk ( - vy) 5vy¢m VY P VP gpihv 803: (% - T)

120y 1202 © 24k 12y T 24y Guy
VYPuzz __ 1oz v + hi (0 — vy) Puw + (% - T) PoPazr _ VYhPrePags
24 24y 24vy 12 160,
2
prh (% — T) Pazz £ Uytpg%@m T (Pa%h (% B T) Prz + (P%hli (9 — Uy)
24 8h 6vy 24vy

_|_

+

(2.55)

VPzx hev h”@%x P (% — 7a)

4y 24 82 6y

VYPx - VYPax
3h? 6h

+p2[ ]+,o

vy 2 _
+wx¢h( r) pes , g2k (0 vy)]’

12 6y 3hv

R W,
Kot = O3 Pus (5

) i h (_ - T) K (9 - Uy) Pz T (Pih’f (9 - Uy) Pz
4 4v2y 8v
_ et (0 —w)® | vyes ghe | ghi? (0 —vy) 5k (0= vy)
6yv3 12h2 12y 1202y 12vh
WaPr _ Buyes  ppv K (0 —vy) Kok | par (0= vy)

TR T e T 12y 120y 6 120h

(2.56)
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Qohpr ke (0 —vy)  VYPrPmm | 2 VYPx hepati (0 = vy) us
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where f(w is the coefficient of U; ;(7). For the sake of readability we drop the subindex 4

on the derivatives of ¢ and the subindex j on y, respectively. Analogously, we have

2 3 3 3
9 ~ P v Pz g0$h nghK/ (9 B ’Uy)
M1 41 =M;_1 ;-1 = £p—=, M; ;11 == +
i+1,5+1 i—1,5F1 P24, 1,541 12 + 12y 12v2y
3 4 vy 2 2
9 P @zl (7 - T) 0rhP ozh
M1 =— + d 2.58
EL T T T 12y g Py M (2:58)
M, :290% _ gpihQ@m (% - T) B pah* 92, i 02 Pazah® _ pgngomhz
2% 3 21}?/ 4 4 2y P}

as coefficients of 0, U; j(7). Using z = (x4, y;) € Colf) we have

K.(3) =Knyn, aswellas M,(2) = M, ., (2.59)

for 2 = (n,,Yn,) withny € {i = 1,4,i+ 1} and ny € {j — 1,4,j5 + 1}. M, and K, are zero

otherwise.

2.5.4 Treatment of the boundary conditions

The first boundary is the boundary x = i, which corresponds to the boundary at S =0
of the original problem (2.49). For this boundary we have to discount the option price at
time T to the appropriate time. Taking into account the transformations 7 = 7T — ¢ and

u = €"7V/K this leads to the Dirichlet boundary condition

u(xmina Y, T) = u(xmina Y, O) Vr1e [Oa 7—max] Vye [ymina ymax]-
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The next boundary we discuss is the boundary x = Tyax, which corresponds to the
boundary at S = Shax of the original problem. For a Power Put with power p € N we

have
lim V(S,0,t) =0,
S—o00

which we approximate at the artificial boundary Spax by Vs (Smax, 0,t) = 0, Vss(Smax, 0, t) =
0, Vso(Smax;0,t) = 0, Vy(Smax,0,t) = 0 as well as Vy5(Smax, 0,t) = 0. Using these ap-

proximations in (2.49) gives
Vi—rV =0.
Using 7 =T —t and u = €""V/K yields u; = 0 and thus the Dirichlet boundary condition

U(Tmax, Y, T) = U(Tmax, Y, 0) for all 7 € [0, Tmax] and all y € [Ymin, Ymax)- (2.60)

The third boundary to discuss is the boundary y = ymin with & ¢ {Zmin, Tmax }, Which
corresponds to the boundary o = oy, with S € {Shin, Smax}. We treat this boundary
just like the inner part of the computational domain, using equations (2.53) to (2.57). This
requires the usage of ghost-points U;_1 _1, U; —1 and U;11,—1 when discretising at the points

(2

(wi,y0) € G} for i =1,...,N — 1. Thus we need a fourth order accurate expression for

the ghost-points U; _1 for i = 0,..., N. Using Taylor expansion, we get the extrapolation
Ui—1 =4U;p — 6U;1 +4U;2 — U3+ O ((Ay)4)

for i =0,...,N. The same procedure is used for the ghost-points for the matrix M} when

using the equations in (2.58).

The last boundary we discuss is the boundary at boundary y = ymax With & ¢ {Zmin, Tmax },
which is corresponding to the boundary o = opax with S ¢ {Smin, Smax} of the untrans-
formed problem. We treat this boundary similar as the boundary at ym,in and use equations

(2.53) to (2.57). The scheme then uses, when discretising at the points (x;,yar) € Gf)

for
1= 1, ce ,N — 1, the ghOSt—pOintS Ui—l,M-{—l; Ui,M-l—l and Ui—l—l,M-‘,—l for ¢ = 1,. .. ,N — 1.
N.

)

This means that we have to find an expression for the ghost-points U; ar11, % =0,...

We can approximate the values at these ghost-points again using Taylor approximation,
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leading to
Uivi1 = AU p — 6U; pr—1 + AU v—2 — Ui -3 + O ((Ay)*)

for i = 0,...,N. Again, the same procedure is used for the ghost-points for the matrix

M), while using the equations in (2.58).

2.5.5 Time discretisation

With the results from the previous sections we obtain a semi-discrete system of the form

> IML(2)0,Ui (1) + K(2)Ui ()] =g(2), (2.61)
zeG?

for each point z of the grid Gf), which is defined in (2.3) for some A > 0. The function

g(z) has only non-zero values at the boundaries xp,in, and Zyax.

We use a time grid of the form

E, E, ?)A—T,AT, 2AT,3AT, ... ¢,
4 " 2 4

where the first four time steps have step size % and the following have A7. For these first

four time steps, we use the implicit Euler scheme, and obtain

. AT R n e AT
> e+ e o= X e+ 5o
2eG? seqy?

with n = 0,1,2,3 for each grid-point z € Gf).

This approach is suggested in [Ran84|
when dealing with non-smooth initial conditions. For the following time steps we use a

Crank-Nicolson-type time discretisation, compare for example [Str04, Wil98], leading to

> e+ Gre|ut = 5 e - 56| v+ @ane

2eG?) eat?

with n > 4 on each point z of the grid Gf)

. We observe that we have only non-zero values
on the compact computational stencil as both M,(z) and K, (&) have this property. For
the Crank-Nicolson time discretisation this compact scheme has consistency order two in
time and four in space for p(z) = x and p = 0 or is essentially high-order compact in space

otherwise.
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2.6 Numerical experiments

In this section we present the results of our numerical experiments for the compact scheme
using (2.53) — (2.58), whose boundary conditions were derived in Section 2.5.4. If not

stated otherwise, we use the default model parameters
k=11, 0#=0.15 v=0.1, r=In(l.05), K =100 and T =0.25.

The initial condition for the European (Power) Put after transformation as in Section 2.5.1

is given by
u(z,y,0) = KP ' max <1 —_ 6%’(96), 0)p, (2.62)

where the non-differentiable point of the initial condition is at zx = ¢~1(0).

2.6.1 Choice of the zoom function

In our numerical experiments we use the zoom function

sinh(caz + ¢1(1 — x))
C )

S =o(x) = (2.63)

proposed in [TGB08|, with ¢; = asinh((gmin), cy = asinh(CS'maX) and ¢ > 0. The non-
differentiable point of the initial condition is hence at
asinh(0) — ¢; —asinh(¢Smin)

z =p 1 (0) = = ~ ~ .
x=¢~(0) C2 —C1 asinh({Smax) — asinh(¢{Smin)

Using the definitions of ¢; and ¢y this can be rearranged to

o sinh (xjyj lazinh(CSmaX)> |

(2.64)
Hence, S'min can be set by choosing zx in reasonable bounds as well as choosing Shax,
which gives Spax, for a given ¢. The fact that zx can be chosen is very helpful, since if
the non-differentiable point is on the grid the numerical convergence order may be reduced
to two in practice. Hence, we choose the grid such that the point xx is in the middle of
two consecutive grid points on the finest grid. This procedure of shifting the grid has been

suggested for example in [TR00].

60



200

~ (=25 x, = 231.5/320)
=5 (x, = 223.5/320)
=7.5 (x, = 215.5/320
150 ° 0 )
_{=10 (x, = 211.5/320)
» 100p
50
Qb= \ ‘ ‘
0 0.2 0.4 06 08 1

X

Figure 2.2: Different zoom examples with K = 100

In the numerical experiments reported below we choose
Soin = KeSmin S — 9K g = 0.05, 0max = 0.25.

Figure 2.2 shows the influence of the parameter ¢ on the zoom in equation (2.63),
taking into account both transformations, § = In (S/K) and = = ¢~ (S). The different
values for x g, which depends on (, are chosen in such a way that the focus on the values
around S = 0 is not too pronounced, compare equation (2.64). We observe that for smaller
values of ¢ > 0 there is less zoom. So with { — 0 the zoom function is approaching the
linear transformation ¢(x) = (Smax — Smin)x + S With z € [0,1]. With a larger value of
¢ there is a stronger focus on our area of interest around the exercise price K.

The aim is to find an ‘optimal’ value for ¢ to be used in practical computations. The
larger (, the smaller the error around K, but on the other hand the error in other parts
of the domain increases when having a stronger zoom, since an increasing number of grid
points in the area around K automatically results into a decreasing amount of grid points
in other areas and vice versa. There has to be a balance between the error in the area
around K and the error in other parts of the domain. The overall order of convergence
should be looked at to achieve this balance and thus to get a good value for (. We expect
the numerical convergence order to increase at first with rising ¢ and then decrease again

after a certain ‘optimal’ strength of zoom is reached.
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2.6.2 Numerical convergence

We now study the numerical errors of the discretisation as h — 0 for fixed parabolic
mesh ratio A7/h?, using different values for ¢ and p. We compute an approximation of the
solution of the transformed problem, which is given by equation (2.51), and then transform
it back into the original variables. For the relative [2- and [*-error plots a reference solution

is computed on a fine grid with hps = 0.003125. For the relative [2-errors we use

[Uret — Ull;2
[ Uret |2
and for the [®°-error we use
|Uret — Uljee,

where Uyes denotes the reference solution and U is the approximation. We expect the
error to behave like O (hk) for some k. If we plot the logarithm of the error against the
logarithm of the number of grid points, the slope of this log-log plot gives the numerical
convergence order of the scheme. Due to the initial condition of the transformed problem
not being smooth everywhere, we observe that the log-log plots do not always produce
a straight line, e.g. for a plain vanilla Put option. For a smooth initial condition, the
log-log plots of the errors give an almost straight line, e.g. for the Power Put option. The
numerical convergence order indicated in the figures below is always computed as the slope
of the linear least square fit of the error points. For comparison, we additionally plot the
results for a standard discretisation (SD), which means that the standard central difference

operator is used in (2.51) as well as

In this way all discretisations considered here operate on the same spatial grid and a
meaningful comparison can occur. We use A7 = 0.4h? for all convergence plots, although
we note that the dependence of the numerical convergence order on the choice of the
parabolic mesh ratio is marginal. This is in line with the results of our numerical stability

study reported below in Section 2.6.3.

Figures 2.3 and 2.4 show log-log plots of the relative [?- and [®-error of the approxi-
mations with respect to the reference solution in the Heston-Hull-White model (p = 0) for

a FEuropean Put option for different values for the number of grid points and with different
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Figure 2.3: Relative [?-error Heston model Figure 2.4: Absolute [**-error Heston model,

zooms. In this way the influence of the zoom can be observed. The theoretical consistency
order in this case is four. Looking at the relative [?-error, we observe that the numerical
convergence orders vary from 3.75 to 4.29, which agrees very well with the theoretical or-
der for all zooms. We can also see that the convergence order rises up to ( = 5 and then
declines again, so ( ~ 5 seems to be the best choice. The lowest relative [?-error is always

obtained when using ¢ = 10.

A more useful error in practice is probably the [*°-error, as it shows the highest differ-
ence between the reference solution and the approximation. When looking at Figure 2.4
we see that the [°°-error and the [?-error have a very similar behaviour. The convergence
orders vary from 3.00 to 4.20, again having the best order for ( ~ 5. When using the
finest grid the error for ( = 5 and ¢ = 10 are almost identical, but with rougher grids
the error with ¢ = 10 is again clearly the smallest. For both error plots we observe that
the zoom has its biggest impact when looking at a rough grid, because the error then
decreases significantly with an increasing zoom. The high-order compact discretisations
have significantly lower error values and higher convergence orders when comparing them
to the standard discretisation. Overall, choosing { = 5 for the Heston-Hull-White model

(p = 0) seems to be the best choice with respect to the convergence order.

In Figures 2.5 and 2.6 we plot the relative [?- and [*®-error for a European Put option
in the Heston model with p = —0.1. This means that the theoretical consistency order is
only two, see equation (2.33). We observe in Figure 2.5 that the relative {?-error varies
between 3.40 and 4.14. These values are far above the theoretical consistency order. In
fact, using the Version 8 discretisation scheme we obtain a convergence order close to the

order using the Heston-Hull-White model. The order of the relative I?-error is again rising
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up to ¢ = 5 and declining afterwards, but has its lowest values when using ( = 10. The [*°-

error in Figure 2.6 behaves similar to the [*°-error in the Heston-Hull-White model. Here

the convergence order values vary between 3.00 and 4.09, having its highest value for { = 5.

With the finest grid the difference of the error when using ¢ = 10 and using ¢ = 5 is again

very slim. The biggest impact of increasing the zoom in either error plot can be again seen

when having a rough grid, since increasing the zooming leads to significantly lower errors

in this case. Similarly as in the Heston-Hull-White model the convergence order results are

best when choosing ( = 5. For both errors we can again see that the essentially high-order

compact discretisations have significantly lower error values and higher convergence orders

than the standard discretisation.
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Figures 2.7 and 2.8 show the relative /- and [*-error for an European Put option in

the Heston model with p = —0.4. The theoretical consistency orders of the errors are again
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two. In Figure 2.7 we can see that the convergence order for the relative [?-error varies from
2.92 to 3.84, which is again significantly higher than the theoretical order. The convergence
order deteriorates slightly for smaller values of p, but is still an order better than for the
standard discretisation. As expected, the best convergence order, which is still very close
to four, is achieved when using ¢ = 5. From Figure 2.8 we find that for the [*°-error the
convergence order gets lower with lowering the value of p. The convergence orders vary
from 2.98 to 3.86, where ( = 5 leads again to the highest value, which is still close to four
and thus highly above the theoretical value of the consistency error order. As in the two
previous cases the zoom has his highest strengths for the relative [?-error as well as for
the [*-error when using a very rough grid. For both the relative [>-error and the [*°-error
we can again see that the essentially high-order compact schemes have significantly lower

error values and higher convergence orders than the standard discretisation.

From Figures 2.3 to 2.8 we recover the numerical observation given in Section 2.5.2 and

can confirm that Version & leads to a high-order compact scheme.

For all of the discussed European Put options, the best results for the convergence
order is obtained when using ¢ = 5. This value seems to give a good balance between
the error around K and the other regions for the zoom. Even though the scheme has a
theoretical consistency order equal to four only for the Heston-Hull-White model (p = 0),
the application showed that we achieve a numerical convergence order close to four for the

Heston model with p # 0 as well.

We now consider the case of European Power Put options in the Heston model. The
only difference to a plain vanilla European Put is that the final condition is taken to the
power p, see (2.50), which yields to (2.62) after transformation. The grid was shifted in a

similar manner as above, avoiding x; as a grid point.

It can be clearly seen that in Figures 2.9 and 2.10, denoting the relative [2-error in the
cases p = 0 and p = —0.4 with p = 2, the lines in the log-log plots are much closer to
straight lines than in the cases of the vanilla Put options with p = 1. This can be explained
with the initial condition of the transformed problem being smoother. The convergence
orders of the relative [?-errors range from 3.85 to 4.08 for the Heston-Hull-White (p = 0)
Power Put with power p = 2 and from 3.22 to 3.40 for the Power Put in the Heston
model with p = —0.4, where the orders are increasing with increasing zoom strength. The
differences of about 0.6 between the orders in the Heston model with p =0 and p = —0.4

is not very large considering the difference of the theoretical orders. The convergence order
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ston model, p =0, p =2 ston model, p = —0.4, p =2

for p = —0.4 is again far beyond its theoretical order of two. The standard discretisation
is significantly outperformed by the high-order compact schemes for p = 0 as well as the
essentially high-order compact discretisations for p = —0.4 in terms of error values and

convergence orders.
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In Figures 2.11 and 2.12 we can see the convergence orders in the Heston-Hull-White
model (p = 0) and the Heston model with p = —0.4 when p = 3. The differences between
the plots are not as big as the theoretical consistency error order may indicate. Even
though in the Heston model with p = —0.4 the scheme has a theoretical consistency error
of order two, it produces a convergence order from 3.50 to 3.69 depending on the zoom
strength (, whereas the orders in the Heston-Hull-White model with p = 0, where we
have a theoretical consistency order of four, vary from 4.04 to 4.10. In both situations the

standard discretisation is outperformed in terms of convergence order and error values.
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2.6.3 Numerical stability study

In the particular case of a uniform grid, i.e. p(x) = z, the scheme developed here reduces to
the high-order compact scheme presented in [DF12a|, where unconditional (von Neumann)
stability [Str04] is proved for p = 0. An additional stability analysis performed in [DF12b]
suggests that the scheme is also unconditionally stable for general choice of parameters.
For the present scheme on a non-uniform grid, a similar von Neumann analysis, analytical
or numerical, appears to be out of reach as the expression for the amplification factor is
formidable and consists of high-order polynomials in a two-digit number of variables. To
validate the stability of the scheme for general parameters we perform additional numerical
stability tests. We remark that in our numerical experiments we observe a stable behaviour
throughout.

We compute numerical solutions for varying values of the parabolic mesh ratio ¢ =
A7/h? and mesh width h. Plotting the associated relative [?>-norm errors in the plane
should allow us to detect stability restrictions depending on ¢ or show us oscillations that
occur for high cell Reynolds number (large h). This approach for a numerical stability
study was also used in [DF12a, DFJ03].

We show results for the European Put option in the Heston Model only, since the Power
Puts only differ in the initial conditions and give similar results. For our stability plots we
use ¢ = k/10 with £ = 1,...,10, and a descending sequence of grid points in z-direction,
starting with six grid points (since z € [0, 1], it follows that A < 0.2), and doubling the

number of points (halving h) in each step. The zoom parameter { = 5 is used.
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Figure 2.13: Stability plot of the relative [>- Figure 2.14: Stability plot of the relative [2-
error for p =0 error for p = —0.4

Figures 2.13 and 2.14 show the stability plots for the Heston-Hull-White model (p = 0)
and for the Heston model with p = —0.4. We observe that the influence of the parabolic

mesh ratio ¢ on the relative [?-error is only marginal and the relative error does not exceed
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8 x 10~ as a value for both stability plots. We can infer that there does not seem to be a
stability condition on c for either situation. For increasing values of A, which also result in
a higher cell Reynolds number, the error grows only gradually, and no oscillations in the
numerical solutions occur. The stability plot for the Heston model with p = —0.1 looks

similar and does not indicate any conditions on ¢ or h either.

2.7 Summary

In this chapter we have presented a new essentially high-order compact finite difference

schemes to approximate the solution of the linear parabolic partial differential equation
du; + AUz 3y + A2Ugoz, + b12u1‘11‘2 + g, + Cug, =0 € QxQ;

with initial conditions u(x1, z2,0), where Q C R? is of rectangular shape and Q. =0, Tmax],
see (2.1). Additionally, a; = ai(z1,z2,7) < 0, bya = bia(z1,22,7), ¢; = c(x1,22,7),
d = d(z,y,7) and v = u(z,y,7) are functions from Q x R>y to R. We introduce four

discrete schemes of the form

Z [Ma:(-i'7 T)aTU’il,i2 (T) + Ka&('@ T)Uilﬂé (T)] :g(x, T) + Ry + 0O (h4) ’

2eG?

where Gf) is a uniform grid on €, see (13). The second order remainder terms are given

by

al (ag(Ax1)2 — al(Ax2)2) @
12a, oz

for Version 1,

a9 (al(Ax2)2 — ag(Ax1)2) @
12a4 Bxg‘

for Version 2,

- b12 (a1 (A,IQ)Q — (IQ(Axl)Q) 84u
- 12a9 836:1"8362

Ry :

for Version 3 and

Ry e bi2 (a2(Az1)? — a1 (Axz)?) 0
2 12&1 83:183:%’
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for Version 4, compare (2.18), (2.26), (2.34) and (2.42). These remainder terms show that

it is possible to achieve a high-order compact scheme if

A 2
EAx1;2a2 or b12=O.
Z2

al =

We apply these schemes to option pricing under stochastic volatility on non-uniform
grids. The resulting schemes are fourth-order accurate in space and second-order accurate
in time for vanishing correlation. In our numerical convergence study we obtain high-order
numerical convergence also for non-zero correlation and non-smooth pay-offs which are
typical in option pricing. In all numerical experiments a comparative standard second-
order discretisation is significantly outperformed. We have conducted a numerical stability
study which seems to indicate unconditional stability of the scheme. In our numerical

experiments we observe a stable behaviour for all choices of parameters.
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Chapter 3

High-order compact schemes in

multiple space dimensions

In this chapter we derive a high-order compact scheme for a general linear partial differen-
tial equation with multi-dimensional spatial domain. The spatial domain is of an cubical
shape. We start by setting the problem, the discretisation of the space and a discretisation
of the derivatives appearing in the partial differential equation. Then auxiliary equations
for higher derivatives are calculated, with which it is possible to derive conditions on the
coefficients on the partial differential equation for a high-order compact scheme. We de-
rive semi-discrete high-order compact schemes for the dimensions two and three and apply
Crank-Nicolson-type time discretisation, see for example [Str04, Wil98]. A thorough von
Neumann stability analysis [Str04] is performed for frozen coefficients and vanishing mixed-
derivative terms and partial stability results are given for non-vanishing mixed-derivatives.
The multi-dimensional Black-Scholes model is chosen as application. Necessary transfor-
mations of the differential equation of this model are performed in order to satisfy the
conditions for achieving a high-order compact scheme. The boundary conditions for the
resulting differential equation are examined and finally results of numerical experiments

are discussed.

3.1 Partial differential equation in an n-dimensional spatial

domain

This section is concerned with a parabolic differential equation with mixed derivative terms

in n spatial dimensions, see Definition 12. When normalising in terms of ., so using d = 1
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n (1.8), the partial differential equation is given by

uT—}—;ai Zb”@ oz, —}—Z 8 =g inQxQ, (3.1)

7]7
1<J

with initial condition ug = w(x1, ...y, 0), where a; = a;(x1,... 25, 7) <0, bjj = bjj(21,...Tn, T),
¢i = ci(z1,...2pn,7) and g = g(z1,...2n,7) are functions from Q x Q, to R for i,j €
{1,...,n} and i # j. The spatial domain Q@ C R" is of n-dimensional cubical shape,
SO =0 x...xQ, and z; € Q; = { ffl)m,wgéx}, En)m < xgn)a and xfn)m,xg)ax € R for
i € {1l,...,n}. The domain in time is given by Q,; = |0, Tjax] With Tiax > 0. The functions
a(-,7), b(-,7), c(-,7) and g(-, 7) are assumed to be in C?(2) for any 7 € Q, u(-,7) € C%(£)

and u is assumed to be differentiable in respect to 7 in order to be able to achieve a high

order compact scheme. Introducing f := —u, + g we can rewrite (3.1) as
n n
0“u 0“u ou
b 3.2
2 2 e, T 2w .
i<

3.1.1 Central difference approximation

We start by defining a grid on €,

G™ 1:{(%‘17---,%”)69 | zj, = I(m)n—l—zkAxk 0<i, <N,—1fork=1,. },

(3.3)

(k) (k)
where Az, = % > (0 are the stepsizes in the k-th direction with N, € N for

1
k=1,...,n. With G( ™ we denote the interior of G™. On this grid we denote with U;, . ;,
the discrete approximation of the continuous solution u at the point (z;,,...,z;,) € G

at time 7 € €1;. Using the central difference quotient Dy, in x-direction we get

0u (Azy)? 0*u 4

— =D DU, . i, ——————— + O ((A ,

ou . Azy)? 93u

Fon =DiUi,..in — ( 6’“) 97 + 0 ((Azp)*) (3.4)
0%u B (Azp)? 0*u (Azp)? 9

+ O ((Azp)?)

=Dy DU, i,

0z0z) 6 Ox}dz, 6 dry0z

T 6
# 0 ((AaP(Aa, ) + 0 ((a)) + 0 ({521,
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for k,p € {1,...,n} and k # p on the gridpoints (z;,,...,z;,) € é(n)

. The error terms
contain derivatives of u up to sixth order, thus we require u(-,7) € C%(Q) for all 7 € Q..

Using the discretisations given in (3.4) on (3.2) gives

f= Z a; D¢ DSy + Z bij DS Du + Z ¢; Déu — Zn: ai(Azi)? O'u

1
=1 i,7=1 =1 12 axl
< i (3.5)
Z b (Az;)? 9'u N (Az;)? 0 ci(Axi)? 2 83 .
i,j=1 K 6 (93:?(%“]- 6 &’cl&c — 6
1<j

where ¢ € O (h4) if Az; € O(h) fori=1,...,n for astepsize h. If the consistency error is

in O (h4) for these specific stepsizes, we call the scheme high-order. In order to achieve a

By 9u

high-order scheme we have to find a second-order discretisation of the derivatives 9, -7

and 88:,,45‘” for i,7 € {1,...,n} with i # j. We call the scheme high-order compact, if we
J

9,(n)

can do this using only the points from the compact stencil for z = (x;,...,2;,) € G

Recall from (1.14) that with U;, ;. =~ w(x;,,...,%;,), we have
U (&) = {Usyshy.in it | km € {=1,0,1} form =1,...,n} c G™

as the compact stencil. In Figure 3.1 we can see the two-dimensional compact stencil.

Figure 3.1: Compact stencil in two dimensions

3.2 Auxiliary relations for higher derivatives

In this section we calculate auxiliary relations for the higher derivatives appearing in (3.5).

These relations for the higher derivatives can be calculated by differentiating (3.2). In
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doing so no additional error is introduced. Differentiating equation (3.2) with respect to

2 and writing 9 & 13‘ as subject leads to

ou i ai Pu B i @iz, 0*u  ags, 0%u B i bij Pu
0xd  “ ay 02201, A ox; ox, 4~ ap 0x;0x;0x)
k =1 ? =1 i,j=1 J
ik ik i<j

0%u e 0%u " [ei)e, Ou 1 of
o Z] Ty i . AEIR .
Z ap 0101, 01 ZZ: Z + — =: Ag (3.6)

ay Ox;0xy 4 ap Or; ai axk
i,j=1 =1 =1
1<j

for k =1,...,n, where [-|;, denotes the first derivative in respect to x;. The relation for
Aj can be discretised using the central difference operator with consistency order two on
the compact stencil, as all derivatives of u in the above equation are only differentiated up

to twice in each direction. As an example we examine the two-dimensional case, where we

OBu(wyy ,w4y) 1
= €
Ow10x3 2(Az1)(Azs)? T

with € € O (h?) if Azy,Azy € O(h), and the values on the right hand side are the

have

coefficients of the compact grid, the positioning being according to Figure 3.1. When we

differentiate (3.2) twice with respect to zj and write a—xfj as subject, we obtain
k

*u Zn: [ﬂ 0t n 2[aile, Pu n (@2, @} 2lar)e, PBu [ag)ez, O*u

(9—3:}4C T — lag 8x?8xi ay, 8x?8xk ay 83:? o 8—x,§_ ay 8—x,2§
i;ék
_ Z 4+ 2bijla, &*u 4 [bijlaya, 9%u
] ak (9xl(9x](9xk ap O0x;0xr;0xy ap  O0x;0x;
Z<_]
,J#k
_ Z Z [bzk‘]ﬂ% 0°u + [blk]ﬂﬁkﬂ% 0u
ak 3x,3xk — ak 8%3362 ap  Ox;0xy
— i %86.4; o i |:2[bk‘j] 8335 -+ [bkj]l‘kl‘k: 38,2; :| (3.7)
ikt a Ox; Ty, ikt af T;0%, Qg TjO0T}
B Z < Q[Ci]mk d%u n [cz]mkxk% L1 1 azf
ay (93: axk ap Ox;0x ap Ox; a axk
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k-1

:.Bk_zbz_'k o i by 0w
— ai Ox;0x3 G Oz ;03

where [-],z, denotes the second derivative in xj-direction. We can discretise By with
second order consistency on the compact stencil, when using the central difference operator
and the auxiliary relations for Ay in (3.6) for £ = 1,...,n. Differentiating equation (3.2)
once with respect to zj, and once with respect to z;, leads to

0*u n 0*u
a a
F Oz} Oy, P Oxy,0x3

__i Q‘L—}—[w] ﬂ_}_[w] ﬂ_}_[a‘] @ o] @
= Z zaxgaxkaxp il 6m§8xp ilzp 8902233% ilzprp ax? ol 3mg
i#k,p
b e (ks o~ 0 e — o), 35 = ok, S
plTp 89@%6% PITRTp 8%12) klxy axzaxp klxp 8%% klzgxy 8%%
3 (94u a?,u 83u 82u
"2 R e e o O e I e
1<j
n 83 o%u 92w ou azf
_ ; [Cz‘m + [Ci]ka + [cz']mpm + [Ci]xkxpa—xi Dorom, Chps

where C},, can be discretised on the compact stencil using A and A,, as defined in equation

(3.6), and the central difference operator for k,p = 1,...,n with k # p. We get

o*u  Crp  ap *u

—_— = . 3.8
83628361, ap  ag Bxkaxg (3.8)

3.3 Conditions for achieving a high-order compact scheme

In this section we derive conditions on the coefficients of the partial differential equation
(3.1) under which a high-order compact (HOC) scheme is achievable. This means that we
only want to use points of the n-dimensional compact stencil for discretisation and achieve
a fourth-order scheme for Az; € O(h) for j = 1,...,n for a given stepsize h. Using
equations (3.6) and (3.7) in (3.5) leads to

f=e+ ZainDfu—}— Z bij Di Dju + Zcinu — Z k"

. = . 5 12
=1 Z,J:'l =1 i=1
1<)
Y ’“ibik(mk)? 'y +i Z b (Azg)?
APt} ]
k=1 i=1 12 Oz; 0y k=1 j=k+1 12 O ;0x),
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Z bij (Az;)? 0% N (Az;)? 9*u " ci(A)? A,
ij=1 K 6 Oz30x; 6 8%335? — 6
1<J
n n n n
a;(Ax;)?B;
= Z a,Dfou + Z bUDfD]Cu + Z cinu — Z #
=1 i,j=1 i=1 i=1
1<j

+ Zn: bzk(Axk)z 84u + Zn: bkj(Axk)2 84u
.3 A3
et 12 O0x;0x;, e 12 Oz ;0x3,
i<k k<j

B Z b (Az;)? 9w N (Az;)? 9*u B i ci(Ax;)? A; N

39... 3
by 6  Ox;0z; 6 8%336] —
1<J

and thus

=Y aDiDfu+ Y by DfDSu+ Y ciDfu— Y =t

° - . 12
i=1 1,j=1 =1 =1
1<J
0*u O*u " ci(Axy)? A,

_ Ar:)2—— | — ) Tt .
Z 8x38x +(Az)) Ox;0x3 Z 6 te
ij=1 J J i=1
1<J

Applying (3.8) then gives

f= Z a; D Dfu + Z bij D Dju + Z ¢iDu — Z Y T te

- = - 5 12
i=1 27_]:1 i=1 =1
1<J
- bz‘j(A.%'i)2Cij ° bij 84u 2 a‘(Ami)Q ° Ci(A.%'i)2Ai
— ATy 7Y - Az )2 — 22 _ )
Z 12a; Z 6 Oz;0x3 (Azj) a; Z 6 » (39)
2,5=1 1,7=1 J i=1
1<j 1<j

where € € O (h4), if Az; € O(h) for i = 1,...,n for the stepsize h. From this we can
conclude that in order to achieve a HOC scheme, we need either

aj (A,IZ)Q

Q;

bij =0 or (A,Ij)2 = (310)

foralli,j € {1,...,n} with i # j. This means that in the case b; ; = 0 forall4,j € 1,...,n,
it is possible to choose the stepsize of the discretisations of the different dimensions of the
spatial domain completely free, whereas in the other possible cases for a HOC scheme there

are interdependencies for at least some stepsizes in the discretisation process.
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3.4 System matrices for the semi-discrete general case

In this section we present the semi-discrete high-order compact schemes for (3.1) for the
cases a; = a for i = 1,...n in spatial dimensions n = 2,3. We consider this in cases where
the cross derivatives do not vanish. We observe from the conditions in (3.10) that Az; = h
for i =1,...n has to be satisfied. Thus we define, analogously to (3.3), the grid

min

G;Ln) = {(wil,...,xin) €|z, = z® +igh,0 <i < Np—1for k= 1,...,n}, (3.11)

where h > 0 and N, € N and xﬁf&x = ngl)n + (Ng — 1)h for k =1,...,n. With Cor’én), we

denote the interior of Ggln). Our goal for this section is to derive the semi-discrete schemes

of the form

Z (My(2,7)0: Uiy, i (T) + Ky (2, 7)Ui, i (T)] =3(2,7), (3.12)
ieGEL”)

)

at time 7 for each point x € Cor’én), where the function § : Cov’én x Q0. — R depends on the

function d given in (3.1).

3.4.1 Semi-discrete two-dimensional scheme

In this section we derive the high-order compact discretisation of (3.1) in spatial dimension
n = 2. In order to achieve a HOC scheme, we assume that the coefficients of the partial
differential equation (3.1) fulfil @ = a1 = ay with Ax; = Axs. Using this assumption, the
coefficients satisfy the necessary conditions given in (3.10) for a high-order scheme. Using
the central difference operator in (3.9), where the auxiliary relations (3.6), (3.7) and (3.8)

2
have already been employed, we consider the point (z;,,z;,) € Cov’é) and time 7 € Q. This

leads to
RA L blZ[a]mm . blZ[CQ]m bl?[a]mcl 2b12[a]x1 [a]@ _ [a]mm _ ﬁ
01,62 3a 6a 6a2 3a? 3 6a
L2l (e W00 [ede  [odn _ bulale | 2B, G g
3a 3 32 3 3 6a 3a 6a '
N by | bizlals co
3ah? 6a® '
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K t14 = 02[(1]12 _ b%Q + b12[a]$1$2 _ Cl[a]ml hb12[a]$2 [Cl]l'l + h[Cl]JBlml
e 12a 6ah? 12a 12a 24a? 24
herler]a, hla]z, [c1]z, 2a

hb12 [a]fl'l [Cl]mz h[Cl]JBsz C%
+ — 4+ —
24a2 24 + 12a 24a 12a + 3h2

hbisleileay  br2lalescr | healeras  bralbioley | 1, blalal
24a 12a? 24a 12ah 3h 12a2h

+ h[a]mz [Cl]mz + [Cl]xl . [a]il . [a]%g + [a]:vzl'z + [a]mlxl c2bi2
12a 6 6a 6a 12 12 6ah

bizler]e,  bi2lalelale, | bilale,  [b12]s,
T e T 62 T 6an T 6n

+ (3.14)

mo o elde by | bizleslsy | bizlaeiss | cilale, _ hbio[als,[ea]s
11,421 12a 6ah2 12a 12a 12a 24a2

(S P 1 1 PO ) N 1 N N PR ) o

6 2442 6a 6a 12a 12 12

biobioley | hlealoge, | hleolwiay | 20 | herlea]s, o hlals[c2]ay
12ah 24 24 3h2 24a 12a
_ buofa]e[a]z, | hbifesluia, 2 bizlaluicr o hlalws[co]os

6a2 24aq 3h 1242 12a

healea)a, n biglale, | bi2lale, bz [bio]y
24a 12a2h 6ah 6ah 6h

_l’_

(3.15)

+

i b cicy | alz,cr _ biafeo]
i141ia—1 =

T2 L [a]JCQ [b12]x2 [a]m [b12]x1

12ah? 24a 24a 48a 24a 24a
[alz,ca  c1lbiz]e,  bi2lci]s,  c2lbi2]as  b12[b12]aras  [C1)as
24q i8a | 48a | 48a ' 48a | 24

[c2]ay _ [b12]a1an - b12]zozs _ b12[b12]z, |, c2bi2 | bizlbiz]a,
24 48 48 24ah 12ah 24ah

+

bio[a]ey [b12]e, | biolaleer | a | blylale, | bioale [b1o]e,
+ — + 1
48a2 48a2 6h2 24a2h 48a2 (3.16)
biglalzsca | bizlals,  biz[als,  cibiz [bio]s n [b12] 2,
48a2 12ah 12ah 12ah 12h 12h

bislalz, _ bio 2 c1

24a2h T 4h2  12h  12h

as well as
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5 b7, cicz _ lalg,er | bizea]e,  aluy[b12]e,  [a]e [b12]ay

Kii 41,6541 =
1Lt T 00R2 T 24 24a 484 24a 24a

[alzc2 | clbiz]z, | bizlci]z, | c2[bi2)as | D12[b12]arize | [C1)ao
24a + 48a + 48a + 48a + 48a + 24

n [c2], n [b12] 2121 n [b12] 2025 n bio[bi2]z, |, cobia | bialbia]s,
24 48 48 24ah 12ah 24ah
biga)e, [br12)ey _ bizlaleyer | a biylale,  biofa)s,co

—_— — 1
4842 1362 T 6h2 24a2h T 4842 (3.17)

B bizlalz,  biglalz, = cibiz _ biz]alg [bi2]s, n [b12] 2, " [b12] 2,
12ah 12ah 12ah 48a2 12h 12h
bolale;, | b2 e | a

24a2h a2 T 1on T 12

where K, is the coefficient of Uy, (1) for I € {iy —1,i1,i1+1} and m € {ip — 1,49, i+ 1}.

We use [];, as the first derivative in respect to z and [];, ., as the second derivative,

k

once in - and once in z,-direction with k,p € 1,2. Note that a, b12, ¢; and cp are
2 .

evaluated at (z;,,x;,) € él(l) and 7 € Q.. Analogously we have that M ,, denotes the

coefficient of 0, Uy, (1) for I € {41 —1,41,41 + 1} and m € {ig —1,ia,i2 4+ 1} for each point

(i), Tiy) € Colf) and time 7 € Q, with

~ A~ b12 A~ 1 h[a]m b12h[a]1'1 CQh
M. 4 M 1 412 o - 4 =2
i1+1,50£1 i1—1,i2F1 48a7 Q1,001 12 + 12a 24@2 24@7 (3 18)
M ‘ZLJFM ha _ hlae, 2
nELE2 79 2402 2a " 12¢ 7 TR T3
Additionally, we obtain with z € é](f)
- (h2a201 - 2h2a2[a]x1 - b12h2[a]m2a) [9]11 hQ[g]mlml b12h2[g]mlx2
g(x,7) = 3 + +
12a 12 12a (3 19)
(h2a262 - b12h2 [a]xla - 2h2a2[a’]x2) [g]:m + hQ[Q]xm +
1243 12 9

for 7 € Q.. Note that a,bis,c1,c2 and ¢ in (3.13) - (3.19) are functions evaluated at

(i), Tiy) € Colf) and 7 € Q. Thus we have

A ~

Ky(xp,, ny, T) = Ky py  as well as My (@, , Tny, T) = Mp, no

o(2
in (3.12) with ny € {il — 1,417,841 + 1} and ny € {ig —1,29,10 + 1} for x = (xil,a%) € Gl(m)

and 7 € Q.. K, and M, are zero otherwise. Thus, the discretisation only uses points of

the compact grid.
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3.4.2 Semi-discrete three-dimensional scheme

In this section we derive the high order compact discretisation of (3.1) in spatial dimension
n = 3. Considering the conditions in (3.10) we observe that in the three-dimensional case
we have three possibilities to satisfy the conditions and to create a high order compact

scheme. The first way is that the coefficients satisfy
a=a1 =ay=a3 with Az = Axy = Axs.
The second possibility to generate a high order compact scheme is
a=ap=a, with Azx,=Az, and b, =b,; =0,

where {p,q,k} = {1,2,3} and, without loss of generality, p < k as well as ¢ < k hold. The

third way to be able to achieve a high-order compact scheme is by having
bi2 =b13=ba3=0.

Again, we focus on the case a = a1 = a2 = a3. Using the central difference operator in

. . . . o (3
(3.9), where we consider an interior point (z;,, Zi,, Tis) € G,(1 ), leads to

Ko oo = 623[a]x203 b13[a]xlc3 _ [03]953 _ ﬁ _ ﬁ _ [a]ﬂﬁwl _ [a]mm _ [a]x:wa
ot 6a> 6a> 3 6a  6a 2 2 2
N bislalsser | bislalsper  da | bislals,lals, N bas[alzs [alz, N bas[alzs 2
6a2 6a2 h? a? a? 6a2
bizlala,[aley | bizlaleicz  buslesley  cilale, | B33 Diglaleas
a? 6a2 6a 6a 3ah? 2a
_ olals, | b bl cslales,  bislaluie,  Doslealsy  Dizleals
6a 3ah? = 3ah? 6a 2a 6a 6a
 bslalaney,  buslei]e,  baslesle,  Diglcile, G n lalz, n [al?,
2a 6a 6a 6a 6a a a
+ [a]iz _ [02]962 _ [Cl]xl
a 3 3 7

and

- bis[alzsbi2  baslalzsbiz  [D12]erey  [D12]wsws  [D12]zsas | bi2la]s,
Kiyst iy, =
nELi-Lis = o o T T ogge) 8 48 T 48 12ah
biac1 | bizea | bizfalz e | bialale [b12)es - blale,  bi2[alz,

12ah = 12ah 48a? 48a2 24a2h 12ah

baz[a)z, [b12)2; " bizlalz, [b12)as " biz[alz, [D12]z, | bi2]alsz,co
48a? 48a? 48a? 48a2

+
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baslalaser | boslales[biole,  Di2[bio)e, | bisalag[bio]e, | bislalssco

+
48a2 48a2 24ah 48a2 48a2
oy bizlbioley | baslbioes  bia[biofes | bisbes n la]2,0%5 ey bi2
24ah 24ah 24ah 12ah2 24a2h 12h = 6h2
c1 a [b12]zy | [D12)as _ b23[b12]woas _ b13[C2]as _ b12[b12]21a0
e T
12h T2 T 12n 121 i8¢ | 48z | 48
- bas[c1]es - bi2[c1]a, n [alz,c2 _ calbi2]as b2, b13[012)21 20
48a 48a 24a 48a 12ah? 48a
- cilbrzley  [alag [b12]as - cs[brzlas , [alesr - bialeale,  [a]uy [br2]ay
48a 24a 48a 24a 48a 24a
[a]zy [b12]ey 10 [c1]ey _ [co)ay
24a " 24q T 24 T 24 7

where IA(M’m is the coefficient of Uy, (7) for k € {31 —1,41,41 + 1}, L € {ia —1,i,i2 + 1}
and m € {iz — 1,i3,i3 + 1}. Due to the size of the coefficients, we only show examples
here. A full list of the coefficients can be found in the appendix, see (D.1) to (D.14). We
use [-];, as the first derivative in respect to x3, and [];,., as the second derivative once
in z3- and once in x,-direction with k,p € 1,2,3. Note that a, b1 2, b13, b2 3, c1, c2 and
c3 are evaluated at (z,,xi,, Tiy) € COJELB) and 7 € Q. In a similar way we define Mk,l,m
as the coefficient of 0;Up i, (1) for k € {iy — 1,41,41 + 1}, I € {is — 1,i2,i2 + 1} and
m € {is — 1,43, i3 + 1} with

- - b12 - 1
M 410—1,i3 =My 51041545 = F 18q’ M, iy = ok
7 AT 7 A S o A o A
i111,i9,i3—1 11 F1,i9,i3+1 48a7 i1,40F1,i3—1 i1,i2F1,i3+1 480,’
b hbifae,  hbislale, ke - hlals,
nElizis T 24a2 24a? 24a T 12a
~ 1 hb12 [a]m hb23 [a]m h62 h[a]m
M. Lo 1 3 4 = 2 3.20
iiElis =79 T o 0 24a2 24a T 12a (3:20)
~ 1 hb23 [a]m hb13 [a]ml th h[a]m
M. — + = 3
iizisEl =79 T o 0 24a2 2da T 12a
Mh:l:lﬂg—l,ig—l :Milil,ig-f—l,i;g—l - Mi1:|:1,i2—17i3+1 - Mi1:|:17i2+1,i3+1 =0.
o(3
For the right hand side of (3.12) we have with = = (x;,, x4,, Tiy) € Gl(l)
_ _ (@h?a—2h%[a]ya — bioh®[a]e, — bish®[ale,) [9ler  b13h%[g)eias
glz,m) = 1242 T 1o
(C2h2a —2h? [a]mga - b12h2 [a]ml - b23h2 [a]:vg) [g]:vz b23h2 [g]mgmg
+ 5 +
12a 12a
(C3h2a — 2h? [a]mga - b13h2 [a]ml - b23h2 [a’]:m) [9]2133 h? [g]mlxl
+ 5 + (3.21)
12a 12
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b12h2[g]ar1ar2 h2[g]x3$3 h2[g]ar2x2
T T2 T Y

for 7 € Q.. Note again that a, b12, b13, ba3, ¢1, C2, 3 as well as g are evaluated at

o(3
(Tiy s Tiy, Tiy) € GEL) and 7 € Q,. We have

Ko(Tny, Tngs Tng, T) = Ky noms  as well as My (2, Tnys Ty, T) = My ng s

with n; € {il —1,41,21 + 1}, ng € {ig — 1,490,129 + 1} and ng3 € {ig —1,13,13 + 1} for z =
o(3
(Xiys Tiy, Tig) € GEL) and 7 € Q.. K, and M, are zero otherwise. Thus the discretisation

only uses points of the compact stencil.

3.4.3 Stability analysis for the Cauchy problem in dimensions n = 2,3

In this section we consider the stability of the high-order compact finite difference discreti-
sation of (3.1) for n = 2,3 for the spatial interior. The coefficients of the semi-discrete
scheme are given in Section 3.4.1 for two spatial dimensions and in Section 3.4.2, when
three spatial dimensions occur. Those coefficients are non-constant, as the coefficients of
the parabolic partial differential equation (1.8) are non-constant. We also show stability

for specific cases for a non-vanishing cross derivative.

We consider a von Neumann stability analysis, although our setting does not have
periodic boundary conditions, see e.g. [Str04]. For both n = 2 and n = 3, we give a proof
of stability in the case of vanishing cross derivative terms and frozen coefficients, which
means that all possible values for the coefficients are considered, but as constants, so the
derivatives of the coefficients of the partial differential equation appearing in the discrete
schemes are set to zero. This approach has been used as well in [GKO13, Str04] and
gives a necessary stability condition, whereas slightly stronger conditions than the ones

established through frozen coefficients are sufficient to ensure overall stability [RM67].

Stability analysis for the two-dimensional general differential equation

In this part we perform a von Neumann stability analysis [Str04] for the two-dimensional
high-order compact scheme, which we derived in Section 3.4.1. The analysis of the case
with vanishing cross-derivative and frozen coefficients are carried out in detail. In the case

of non-vanishing cross derivatives, only partial results are given.
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We apply n = 2 for Definition 19, where we use a fully discrete high-order compact

scheme, as given in Definition 17. This leads to the fully discretised finite difference scheme
1 1
+1
Z Ay (xi1+l1 > xi2+l2) Uiri+l17i2+l2 - Z By (xilJrll ’ xi2+l2) U£+l1’i2+l2
l1,l2=71 l17l2:*1 (322)

+ g(xﬂ-nﬂ-n—i—l)

2
at the point © = (x;,,x;,) € COJEL) with

for z € G;LQ) and A > 0, in which we use

ani 2J2 = gnel(]1Z1+J2Z2)

for j1 € {i1 — 1,41,41 + 1} and jo € {ig — 1,i9,i2 + 1}, where I is the imaginary unit,
g™ is the amplitude at time level n, z; = 2wh/A\; and z9 = 27wh/Ag for the wavelengths
A1, Ay € [0,27]. Then the fully discretised scheme satisfies the necessary von Neumann

stability condition for all z1, zo, when the amplification factor G = g"*!/¢" satisfies
IG|? —1 <0, (3.23)

compare for example [Str04].

Theorem 1:
For a = a1 = a2 < 0 and bio = 0, the fully discrete high-order compact finite differ-
ence scheme given in (3.22) with coefficients defined in Section 3.4.1, satisfies (for frozen

coefficients) the necessary stability condition (3.23).

Proof: We define

& = cos (%) ;€ = cos <%> ,n1 = sin (%) and 7 = sin <%> .

In these new variables the stability condition given in (3.23) in combination with the def-
inition of the coefficients in the two dimensional case, which are defined in the equations

(3.13) to (3.18), used in (3.22), can be written as
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N,
G2 —1=2C5.
D¢

We now want to discuss the numerator Ng and the denominator Dg separately.

numerator can be written as
NG = 8ka (n4h4 + n2h2) s
where

ne =8a*f1 (&1,&) fo (&1,&)

and

ny =f3(&1) f1 (§1,6) G + f3(&2) f1(€2,61) ¢

are non-negative since

fi(zy) =" +y* + 1 >0,
hlew=2-o (v +3) -4 >0,

f3(z) =2 -1 <0,
fi(z,y) =22%y* —a® — 1 <0

The

as z,y € [—1,1]. We can see that Ng < 0 holds, as &;,& € [—1,1]. Now we consider the

denominator D¢, which can be written as

D¢ = dgh® + (daok® + dy1k + dao) h* + (dook® + do1k)h? + do,

where
do =16a*k? (2x2y2 + 22+ — 4)2 >0,
dy1 =160 f1 (€1,6) f5 (61, 2) 20,

dy 9 =4a” {9 (E1mier + Eamaca)” + 23 (€1) fo (61,&2) f +2f3 (&) fo (&2.61) 03] :

dao =4a* f1 (&1, &) 20,
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dyn = —4any >0,
2
dap = [f3(&1)c] — 2mme&i&acics + f3(€2)c3) >0,

ds = (E1mic1 + Eamaca)? >0,
because a < 0 and

f5(xy) =20y +2° +y* — 4 <0

fo (x,y) =20%y* — 52® — + 4
as z,y € [—1,1]. We observe that fs (x,y) changes signs. We have for example f5 (0,0) = 4
and f¢(1,0) = —1. Thus, we cannot determine the sign of dyo directly. If we can find
some conditions on c¢; and cp to realise that doo > 0, then we can achieve Dg > 0 for
a < 0 and the necessary stability condition in (3.23) would be satisfied.
If ¢ = ¢ = 0, then we have dyo = 0 and thus (3.23) would be satisfied. Since dy o is

symmetric, we can say without loss of generality that ¢; # 0. Furthermore, as both ¢; and

¢y are frozen coefficients, we set m = i—i, which leads to

dao =4a2ct |9 (E1m + Eamam)® + 2f3 (€1) fo (€1,62) + 213 (&2) fo (&2, 61) mz] =: da’clg(m).

The function g (m) can be rewritten to

g (m) =ni f7 (€1, &) m* + 18& Eammam + 13 f1 (€, &1)
with
fr(xy) =da'y® — 22> - +8 > 22" — > +8 > 5

In the case 72 = 0 we have g(m) = n? f7 (£1,&)m? > 0 and thus da s > 0, which leads to
(3.23) being satisfied. In the case 7o # 0 we have 72 f7(£1,£2) > 0, so the function g (m)

has a global minimum. This minimum is located at

—9&1&em
n2.f7 (&1,62)’

m:
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which leads to

201 fs (6,8 fr
g () = fr(&,&)

where
fs =667€3 + &7 + &3 — 261€5m; — 26¥niE; — 8 < 0.
As we already know, f5(£1,&2) < 0, so we have
g(m) >0 for all m € R,

and thus for ¢ < 0 we have that Dg > 0 and hence the von Neumann stability condition

given in (3.23) is satisfied. O

Often it is most difficult to guarantee that (3.23) holds for extreme values of 7y, 72, &1

and &;. We have the following result:

Lemma 3:

The high order compact finite difference scheme given in (3.22), where the coefficients for
the two dimensional case defined in Section 3.4.1 are used, satisfies the necessary stability
condition given in (3.23) on the corner points of & and &, i.e. £ = cos (%1) = =£1 and

& =cos (%) = +1.

Proof: Using sin (%1) = /1 —¢& =0for & = +1 and sin (%2) =/1—-¢& =0for & =+1

and simple evaluation, we have on each corner point

0
N R S
€] —36a2ht 0,

which satisfies the restriction (3.23). O

Stability study for the three-dimensional general differential equation

In this part we want to discuss the stability of a three-dimensional high-order compact
scheme, where the coefficients of the semi-discrete scheme are given in Section 3.4.2. We
first perform a thorough von Neumann stability analysis [Str04] in the case of vanishing
cross derivative terms and frozen coefficients. We observe that there is no additional sta-

bility condition in this case. Then we give partial results in the case of non-vanishing
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cross-derivative terms.

In three dimensions, the fully discrete high-order compact finite difference scheme at
3
the point = = (x4, iy, Tis) € COJEL) is given by

1

n+1
Z Ay (xil +> Tig+las Tig+ls ) Ui1 +l1,i2+12,i3+13
l1,l2,l3=—1

1 (3.24)

n A
BJ»‘ (wil‘i’ll y Lig+la» xi3+ls) Ui1+l1,i2+l2,i3+l3 + g(x, Tn, Tn+1)
l1,l2,l3=—1

with

for z € G;LB) and h > 0, see Definition 17. We use

n

no J1z1+j222+7323)
J1,J2,]3

gnel(

for j1 € {i1 — 1,i1,41 + 1}, jo € {ia — 1,ia,io + 1} and j3 € {iz — 1,i3,i3 + 1}, where
I is the imaginary unit, ¢" is the amplitude at time level n, z; = 27h/A\1, 20 = 2wh/Xs
and z3 = 27h/\g for the wavelengths A1, Ay, A3 € [0,27[. Then the fully discretised finite
difference scheme satisfies the necessary stability condition, if for all z;, zo and z3 the

amplification factor G = ¢g"*! /g™ satisfies the relation
IG]*—1<0. (3.25)

Theorem 2:
Fora=a1 =as = a3 <0 and bio = big = bag = 0, the fully discrete high-order compact
finite difference scheme given in (3.24) with coefficients defined in Section 3.4.2, satisfies

(for frozen coefficients) the necessary stability condition (3.25).

Proof: We define

&1 = cos (%) , & =cos (%) , &3 = cos <%3> )
as well as
n(3) m=sin(y) md om=sin()
=S — =S —_ a. =S el BN
m n 5 ) 2 n 5 nd 73 n 5
In these new variables the stability condition given in (3.25) in combination with the
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definition of the coefficients in the three dimensional case, which are defined in the equations
(3.13) to (3.18), used in (3.24), can be written as

We can write

Na
Dq’

G —1=
where from a < 0 it follows that
Ng = —8ak (nsh* + nah®) <0,

as

ne =4a’ f1 (&1,&,63) [f2 (€1,62) + f2 (&3,61) + fa (€2,&3)] <0
ny = [f3 (€1, &) + f3 (€1, &)] & + [f3 (&2, 1) + f3 (&2, 83)] &3 + [f3 (&3, &) + f3 (3, &2)] 3

— 02 (Exmer + Eamaca)” —n3 (Ermer + Eamzes)” — 02 (Exmpca + E3macs)? <0
because of
fi(@y) =2®+y* +2° >0,
fo(z,y) =22%y* —2® — 1 <0,
f3(z.y) =2°y® (1 —2®) + ¢ (a* — 1) <y?(1-a?) +y* (e - 1) =0,

when z,y, z € [—1, 1] holds. The denominator D¢ can be written as
D¢ = dgh® + (dagk® + daik + dag) h* + (dook® + dok) h* + do,
where

do =16a"k [m1 (&1, &) +ma(&3,61) + ma (2, &) >0,
da1 =160%m3 (161, €26, €383) [ma (€1, €2) + ma (s, €1) +ma (&, &) = dany >0,
dy o =4a® [mg (£1,m1,&2) 6 + 2m7 (€3) E1&ammacica + me (S2,72,€1) &
+mg (€1,m,€3) ¢ + 2my7 (&) Eu&ammscics +me (§3,13,€1) €5
+ 1 (E2,1,&3) & + 2m7 (&1) Ea&amamzcacs + me (€3,73, 62) 3

+ms (11, 2, €3) €f +ms (1o, €1, €3) €3 + ms (03, &1, &) 3]
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dao =4a*my (€1, &2,&3)° >0,

dq1 =4any >0,
.22 2 2 22 2
dao = [nici +mycs + n3cs + 28imanpcica + 26 m&snzeics + 26malanzcacs]” >0,

ds = [E1m1¢1 + Eomacy + E3mzes)? >0,

with ¢ < 0 and

my (z,y) =22%y% — 2% -1 <22? — 2?2 —1=2%-1<0,
ma (2,9, 2) =22+ 2+ 22 > 0,
ms (z,y) =2y> (1 — xg) + ¢ (wQ — 1) < y? (1 — wQ) + 42 (gzc2 — 1) =0,

s (,9) ==(1 — 22) 22 — 1) + 422 — 1)] <0,
ms (z,y,2) = — Sxty? 2% + 42y 2% + 42? > —8x2y22% + 4ay? 2% + 42?
= — 422?22 + 42® > 472 + 422 =0

ma (e1,22,) =daaly’ + (~Sodod + 203y’ + o + 5ot} <03
my (z) =202 (2® — (1 — 2?)) + 7 >0

for x,y,z € [—1,1]. We still need to show da 2 > 0. Since we cannot determine the sign of

da 2 directly, we consider three different cases.

Having &3 = €3 = 1 leads to
dy =ta [2(~Getaf + 3t ) &+ (s + 50t
>4a> [2 <—gvﬁ + 377%) c+ (—877% + 8n7) cf] = 4a’cnt >0
as 7 < 1.

Secondly, we consider ¢; = ¢y = c¢3 = 0. This leads directly to da 2 = 0.

From now on we have (c1, ¢, ¢3) # (0,0,0). Since da 2 is symmetric in respect to c¢1, c2, 3

we can say without loss of generality that ¢; # 0. Additionally, we have (53,{%) #* (17 1).
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Setting po := co/c1 and ps := c3/cy gives

d2 =4a*ct [me (E1,m1, &) + 2mr (€3) E1€ammapa + me (E2,72,€1) D)
+me (1,1, €3) + 2m7 (E2) E1&ammsps + me (3,713, 1) P
+mg (€2,712, 63) P3 + 2m7 (§1) Ea&amanzpaps + me (€3,73, E2) D3
+ms (M1, &2, 63) +ms (12, &1, €8) P3 + ms (03, €1, &) 3]

=a’c} [k11p3 + koop3 + kiopaps + kips + kops + ko| =: 4a®cig (pa, p3) -

In order to calculate the extremum of g (p2, p3)

o 2k11p2 + k12p3 + k1 0
Vg (p2,p3) = =
k12p2 + 2ka2p3 + ko 0
is necessary, which leads to
) :2]€1k22 — koki2 _ 2kok11 — kik12
T T A A TN A
where we have
k%2 - 4/?%1/?%2 = 419243
with
q1 277227732

g =— 261267 — 2612637 — 26267 + 62 + &P+ &2 +3 € 0,4]
g3 =816 + 4676167 + 467676 + 46761 — 4667
— 46767 - 226°6°67 — 6667 — 667G +84%8)?°

+ 861767 +206,%67 — 267 — 367 — 367 — 6 € [-9,0].

There is q1¢q2qg3 # 0 for (5%, {g) # (1,1). Since this is the unique root of Vg, as k11, kaz > 0,

we have a minimum at ps = po and p3 = p3. Thus we get

Do D — 449
g(p2,p3) = %L1
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where

qu =207 (26765 + 26765 + 26565 — €7 — &5 — &5 -3) <2 ({ + & +65-3) <0

g5 =8E1E3¢65 + 8E1E5ES + BETEES — ALIE — 20616365 — AL]E] — 206763¢5 — 20676563
— 46365 + 663¢] + 6E1ET + 66165 + BTETERES + 66163 + 66,65 + 66363
— 206367 — 206765 — 206363 + 3E7 + 363 + 363 + 6 € [0,9]

go =8EIEFET + 4616265 + ALTERES + 46365 — AE3€1 — 46165 — 2267655

— 66365 — 66365 + BEET + 8ELES + 206365 — 267 — 3¢5 — 365 — 6 € [—9,0]

with gg # 0 for (5%,{%) # (1,1). With these three cases we have dyo > 0, and hence
N¢g > 0 follows. The condition (3.25) is satisfied. O

Lemma 4:

The fully discrete high-order compact finite difference scheme given in (3.24), where the
coefficients for the three-dimensional case defined in section 3.4.2 are used, satisfies the
necessary stability condition given in (3.25) on the corner points of £&1,& and &3, so & =

cos (z1/2) = £1, & = cos (22/2) = £1 and & = cos (23/2) = £1.

Proof: Using sin (21/2) = \/1 — &2 =0 for & = £1, sin (22/2) = /1 — &2 =0 for & = +1
and sin (23/2) = \/1 — & = 0 for & = +1 and simple evaluation, we obtain

0
N R
€] —36a2ht 0,

which satisfies condition (3.25). O

3.5 Application to Black-Scholes basket options

In this section we want to show that the n-dimensional Black-Scholes differential equation
satisfies, after transformations, the conditions (3.10) of a high-order compact scheme and
calculate the resulting scheme for the interior of the grid. After that we look at the
boundary conditions for an m-dimensional spatial domain and finally discuss the time

discretisation.
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3.5.1 Transformation of the n-dimensional Black-Scholes equation

In the multidimensional Black Scholes model, see Definition 10, the stocks follow the

processes

dS;(t) = (i — 6:)Si(t)dt + 03.S:(t)dW; (1), (3.26)

where S; is the i-th stock, which has an expected return of u;, a continuous dividend of
d;, and the volatility o; for ¢ = 1,...,n and n € N. The Stock S; follows a geometric
Brownian motion, so dW; is a Wiener process. The Wiener processes are correlated with
(dW;, dW;) =: p;;dt for 4,5 = 1,...,n with ¢ # j. The application of It6’s Lemma
and standard arbitrage arguments show that any option price V(S,0,t) solves the n-

dimensional Black-Scholes partial differential equation,

OV 1§~ o WOV &
il — =0. 2
5 —1—2;—1 7S; 852 + ]E lpZ]J,J]SS]asaS + E rV =0. (3.27)
R

The transformations

~ Ty <%> , 7T=T—t and u= e”%, (3.28)

oF)

where 7y is a constant scaling parameter to assure that the resulting computational domain

does not get too large, lead for i = 1,...,n to
_—z L, zpz ﬂz ] iy (3.20)
Ox? by J(? (3x ox;
i<j
When comparing this with (3.1), we see that
_7 _ 2
a; (X1, ..., Tp,T) =5 bij (T1,...,%n, T) = — Y pij,
. 5
ci (1, ., mpy,T) = <%—T Z>, d(x1,...,2pn,7) =0, (3.30)
of}

fori,5 = 1,...,n and ¢ < j. We find that the transformed partial differential equation
(3.29) with these coefficients satisfies the conditions given by (3.10), if Az; = h for a
stepsize h > 0 is used in the discretisation process. Hence we can obtain a high-order

compact scheme for any spatial dimension n € N.
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Transformation of the final condition

We have to define which kind of options we want to discuss. When looking at a European
Power-Put basket option, the final condition of the partial differential equation (3.27) is
given by

n p
V(Si,...,5,T) =max (K—ZwiSi,O> )
i=1

n

where p is an integer, > w; = 1 and w; > 0 fori = 1,...,n if we have restrictions regarding
i=1

short-selling. Using the transformations (3.28) leads to

i=1

n . p
w(x1, ..., oy, 0) =KP~ max (1 —> wie ,0) , (3.31)

which is the initial condition for the partial differential equation (3.29). The budget con-
n

straint Y w; = 1, and the optional no-short-selling restraints, w; € [0,1] for i = 1,...,n,
i=1

still apply.

3.5.2 Semi-discrete two-dimensional Black-Scholes equation

In this section we apply our general two-dimensional semi-discrete scheme, see Section
3.4.1, to the two-dimensional Black-Scholes equation. For creating the semi-discrete scheme

(3.12) we have to apply (3.30), with n = 2 to (3.13) to (3.17), which gives

2 92 2 <ﬂ - _7’—51) <Q _ r—62>2
[}'~~:_27p12+5l+ 2 a1 n 2 a2
11,22 3h2 3h2 3 3 5
2
o r—4 o r—o: o r—4
By =P ] (71— all) L2 (72— 022>p12 B <71— all) a
111,22 3h2 3h 3h 6 3h2,
2 9 (ﬂ _ ﬂ) <ﬂ . r—51> <Q _ r—62)2 9
R‘.Ailzwpl?ify 2 02 :ny 2 o1 P12_ 2 o2 e
21,22 3h2 3h 3h 6 352
g —4 g -9 o —0 o 5
f( + <72_T022> <71_T011) 7<72_7’022) iv(%_rall)
i11i—1 = —
’ 12 12h 12h
o _r=4§ o2 _ r—02
_7(2 "1>p12i7(2 02>p12_ " i’Y2P12_’Y2p%Q
6h 6h 12h2 4h? 6h2
e () (3o (o) (-2
i1x1l,i0+1 — 19h F 9 on
o1 r—=01 o2 T—02
+’)’p12<2 ol)i'Y(Q 02)P12_ 2 :|:72pl2_72p%2
6h 6h 12p2 © 4h? 6h2
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where again K, is the coefficient of Uy, (1) for I € {iy — 1,41,i; + 1} and m € {iy —

1,142,792 + 1}. Similarly, using (3.30) with n =2 in (3.18), we get

P12 2
M 11i041 =M 14071 = iﬁ7 M;, i, =3
-5 -9
LI C k) R NN € k)
i1+1,12 _12 + 12’)/ ) i1,42%1 _12 + 12’)/ )

as coefficients of 0;U;, (7). From (3.19) and (3.30), we get g(z,7) = 0. We obtain a

semi-discrete scheme of the form (3.12), where K, and M, are in time-dependent.

3.5.3 Semi-discrete three-dimensional Black-Scholes equation

In this section we give the semi-discrete scheme (3.12) for the three-dimensional Black-

Scholes basket option. Using (3.30) with n =3 in (D.1) to (D.14) leads to

g_mQ @_mz
2 o1 2 o2

2
o3 _ r—03
( 37 o ) 2%l 29%0s

Ki17i27i3 = 3 + 3 + 3 3h2 312
%055 29
R
2
o r—o o r—o a r—9;
. _iV <71_o—11> B <71_o—11> $7p12(72_ a22> N Yria 7%
71 12,13 —
o r—34
IR Gt
3h 3h2 "’
2
o r—0 o r—0 o r—=9
_K‘ﬂ'_i7<§—7f>_(§—7f>¢7mﬂé—<ﬁ>+v%ﬁ_ji
11,22 13
o3 _ r—903
- 7 P23 ( 2 " oy > n P33
3h 3h2 7
2
o r—9o o r—9o o r—¢
o .il—:|37 <73—0—33> - <73—(,—33> :':7/)13(71_ Ull> N ’)’2p%3_ 5
11,12,13 -
o r—94
qE7/)23 (72 - 022> N V2 p2s
3h 3h2 7
b ea (@) 1 (E-) (3o (p-5)
it1,ig—1,i3 = 12h 12h 12 12h?
o1 _ r=b1 o2 _ r=0y
B 7Y P12 ( 3 o1 > N Y P12 ( 2 o2 > 4 72p12 B 72P%2 - ’72/713/)23
6h 6h 6h>  6h? 6h*
e () () () e
i1£1,40+1i3 = 125 12h + 12 12h2
o1 _ r=0; o2 _ r=0
N Y P12 ( 3 o1 > n Y P12 ( 2 o2 > - ’)/2/)12 B 72/)%2 + '72;013/023
6h 6h 6h2 6h2 6h2
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a _r=6 g3 _ r=b o _r=0)(gs __r=ds 9
~ Y 2 o1 v 2 o3 2 o1 2 o3 Y
Kii41,i5,i5—1 =% - +

12h 12h 12 - 12R2
o1 _ r=0 o3 _ r=03

B Y P13 ( 2 o1 > + 7 P13 ( 2 o3 > + 72/)13 . '72/)%3 72P12P23

6h 6h 6h2 6h2 6h? '

_5 —§ -4 =4
B oot <%_T‘”1> ;! <%_TJ33) ¥ <%_TJ—11) <%_TJ—33) _

i1£1,42,i3+1 120 12h 12 12h2
oL _ r=0 o3 _ r=03

N v P13 ( ) o1 ) n 7 P13 ( 2 o3 ) v2p13 B Y pis 4 Vpr2pas

6h 6h 6h2 6h2 6h?

7(&_@) 7(@_ﬂ> (Q_m>(ﬁ_ﬂ> 9

~ 2 o 2 o 2 o 2 o

Kijigt1,i3-1 =+ : o : - 7
e 12h 12h 12 12h2

o2 _ r=02 o3 _ r=03
s < 5 o ) N v P23 ( 2 3 ) n Vs 05 - Vp12pis
6h 6h 6h2 6h2 6h2 ’

’y (Q _ 7«752) (ﬁ _ 7‘753) (Q _ 7‘*52> (ﬁ _ ﬂ) 2

Ky gy = 22 IR AP L A
i1,i0F1,i3+1 12h 12h 12 12h2
Y2 p12p13 ’szgs

+%023 <%—%) iW)23 (%_T;;SS) - 2p23i B
6h 6h 6h2 6h2 6h2 ’
X Y P23 <%— T;fl) v P13 (%— T;fQ) v P12 (%—%)
Ki +1i-1,i5-1 =% Sah + 7 + I
’YQP12 ’YQP13 _ 72P23 _ 72P12P13 72P12P23 72P13P23
24h? 24h2 24h2 12h2 12h2 12R2

. Y P23 <%—%) v P13 (%—%) v P12 (%—%)
Ki +1i0+1,i5—1 = F YT F Sah == S

72,012 72P13 W2P23 W2P12P23 72/)13!)23 W2P12P13
2402 T 24R? | 24R? 12n2 T 12n2 T 12n2

P Y P23 <% - T;fl) Y P13 (% - —T;;h) v P12 (% - —T;f?’)
i1£1,i0—1,i3+1 = F 54h + 54h + 54h

72,012 - 72P13 n W2P23 - W2P12P23 + 72/)12!)13 n W2P13P23
24h? 24h2 24h2 12h2 12h2 12R2 7’

P Y P23 <% - —T;fl) N Y P13 (% - T;fQ) N v P12 (% - —";;53)
ttliztlis+l = 24h 24h 24h

V’p1ap1s 7 p1apas - Y2 p13pas - VP12 - Yoz Yps
12h? 1272 12h2 " 24h2 T 24 T 2427

[\

where IA(kJ’m is the coefficient of Uy, (7) for k € {31 —1,41,41 + 1}, L € {ia —1,i,i9 + 1}
and m € {ig —1,i3,i3+ 1}. With Mk7l7m, we define the coefficient of 0; Uy, (7) similarly,

so we get

9 9 P13 » ” P23
Mit1,jm—1 =Mix1,jm+1 = o0 M; j+1,m—1 =M; j:1,m+1 = o0
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p12 ~ 1 h (% - rO’ll)

Misrj-1m =Mig1jeim = F5 Misctjm =15 F — 137
Lo MEE) 1 m(E )
1,jE1,m _12 + 129 5 i,j,mEl — 12 + 12y ,
y y y ’ - 1
Mig1,j-1,m+1 =Mix1,j+1,m+1 =0 Mit1j-1,m—1 =Mit1,j41,m—1 =0, Mijm=

Applying (3.30) with n = 3 to (3.21) gives g(z,7) = 0, similar as in the case n = 2, where
3)

x is a grid point in the interior of Gg . We obtain a semi-discrete scheme of the form

(3.12), where K, and M, are time-independent.

3.5.4 Treatment of the boundary conditions

After deriving a high-order compact scheme for the spatial interior we now discuss the

boundary conditions.

Lower boundaries

The first boundary we discuss is S; = 0 for some ¢ € I C {1,...n} at time ¢ € [0,T[. Once
the value of the stock is zero, it stays constant over time, see (3.26). Thus using S; = 0

for i € I in (3.27) leads to

oV 1 2 2PV ¢ v 9’V
o0t _Z 5 P 952 +Z V4 ;1'%‘”"155] 95,05,
z¢[ z§ZI :ﬁg
1<J

Transforming this partial differential equation using (3.28) gives

n

i —6;] 0
R
zgé[

7.]_ =
ij¢I Z¢I
1<J

Comparing this differential equation with (3.1) we can see that the coefficients are again
given by (3.30) for i,5 € {1,...,n} \ I with ¢ < j. So this leads again to a high-order
scheme for these boundaries. The case I = {1,...,n} leads to the Dirichlet boundary

condition

at time 7 €]0, Timax], since in that case ‘g” =0.
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Upper boundaries

Upper boundaries are boundaries with S; = S for some i € J C {1,...,n} at time

t € [0,T[. For a sufficiently large S;"** for i € J, we can approximate

OV (Si,...,Sn,t)
5

=0

Si=gmax

with S € [Spin, Spax] for k = {1,...,n} \ {i} for a European Power Put basket option.

Using this in (3.27) gives

OV 1 5o v o*v
E‘Fi; ZSZBSQ+Z —rV + JZIPZJO'ZO']SSJBS@S =0
i¢J zgéJ i:j¢J
1<)
and leads, when using the transformations (3.28), to
0%u “[o; r—26] ou
2 7 7
X gL i _ — . 32
Z¢J jﬁJ i¢J
1<)

Hence the upper boundaries show the same behaviour as the lower boundaries for a Euro-
pean Power Put basket and we can obtain a high-order compact scheme for these bound-

aries as well. As in Section 3.5.4, we have the Dirichlet boundary condition

w(x™, ™) =u(e L 2, 0)

for 7 €]0, Tmax) if J ={1,...,n}.

3.5.5 Time discretisation

With the results from the previous sections we obtain a semi-discrete system of the form

Z [M,(2)ur(z,7) + Ki(2)u(z, 7)] =g(x), (3.33)

xEG’(n)

for each point x of the grid G( ") as defined in (3.11). The functions K, M,, as well as
g are given through the spatial discretisation process and are not dependent on 7 in our
example. M, and K, are only non-zero on the compact n-dimensional stencil. Thus, our

n)

equation system given by (3.33) only has up to 3™ entries on the grid G;L for u, and wu,

respectively. We have defined these non-zero coefficients, as well as g, in Sections 3.5.2 and
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3.5.3 for the cases n = 2 and n = 3, respectively.

We use an equidistant time grid of the form 7 = k Arfor k =0,..., N, with N € N and
a Crank-Nicolson-type time discretisation, see [Str04, Wil98], with step size A, leading

to

Y @+ @ @ ran= Y (0@ - ST K@)|u@E ) + (@

(3.34)

)

on each point x of the grid Gg" . This system of equations has to be solved for every time
step with 7 = kAT for kK = 0,..., N,. We can see directly that we have only non-zero
values on the compact stencil, as the functions M, (Z) and K,(Z) have this property. For
the Crank-Nicolson time discretisation this compact scheme has consistency order two in

time and four in space.

3.6 Numerical experiments for Black-Scholes Basket options

In this section we discuss the numerical experiments for the Black-Scholes basket Power
Puts in spatial dimensions n = 2,3. The equation systems which have to be solved over
time have been derived in Section 3.5. According to [KTW70], we cannot expect fourth
order convergence if the initial condition is not smooth enough. This means, that we have
to smoothen the initial conditions for a Power Put with p = 1,2. In [KTW70| suitable
smoothing operators are identified in Fourier space. Since the order of convergence of our
high-order compact schemes is four, we have to use the smoothing operator @4, given by

it’s Fourier transformation

Oy (w) = (m (%)>4 [1 + gsmﬂ (%)} .

This leads to the smooth initial condition determined by

|E

3h 3h
~ X
Qg (21, 22) = / / Dy <E> Dy <%> uo (1 — , 22 —y)dx dy
31 3h
in the case n = 2 and
3h 3h 3h
. x 2
Qg (x1, 22, 23) = / / / P,y (ﬁ) Dy <%> D,y <ﬁ) ug (T — 2,22 — Yy, 23 — 2)dx dy dz

—3h —3h =3h
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in the case n = 3 for any stepsize h > 0, where g is the original initial condition and ®4(x)
denotes the Fourier inverse of ®4(w), see [KTW70|. If ug is smooth enough in the inte-
grated region around (z1,...,x,), we have ug (z1,...,%,) = ug (z1,...,2y,) for n = 2,3.

That means that it is possible to identify the points where smoothing is necessary.

1 1
+ gridpoints
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Figure 3.2: Example smoothing points forn =2, p=1
Figure 3.2 gives an example of a grid with n = 2 on the left side and on the right side the

identified gridpoints, where smoothing is necessary, and a graph of the non-differentiable
points of the initial condition given in (3.31). The points were chosen in such a way that
we can be sure that the non-differentiable points have no influence on g (21, z2) for those
points, which are not shown in Figure 3.2 on the right hand side. We can see this as there
are always at least three grid-points above, below, left and right from the non-differentiable
points as long as it does not exceed the grid. Thus we can reduce the necessary calculations
significantly using this approach. As with h — 0, the smooth initial condition g tends to-
wards the original initial condition ug given in (3.31). This means that the approximation

of the smoothed problem tends towards the true solution of (3.29).

We use the relative [2-error
[Uret — Ull2
HUrele2

for European Power Puts with p = 1,...,4, as well as the [*°-error
||lJ}ef - lf|h°0

for European Power Puts with p = 1,2, for examining the numerical convergence rate,
where Uyer denotes a reference solution on a fine grid and U is the approximation. When
identifying the convergence order of the schemes, we determine it as the slope of the linear

least square fit of the individual error points in the loglog-plots of error versus number of
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discretisation points per spatial direction.

3.6.1 Numerical example with two underlying stocks

In this section we show the numerical results for the convergence rate of a two-dimensional
Black-Scholes basket Power Put. We compare the high-order compact scheme with the
standard scheme, which results from using the central difference operator directly in (3.29)
and n = 2 with no further action, which leads to a classical second order scheme. We
look at plain European Puts as well as European Power Puts with power p = 2,3,4. In
the European Put and the European Power Put with power p = 2, we use the smoothing

operator suggested in [KTW70] for the Initial condition given in (3.31). We use the values

g1 = .25, g9 = .35, Y= .25, 51 = (52 = 0, r= log(1.05),

AT

W1:0.35:1—w2, ﬁ:04

and

for each of the shown plots. The value for A7/h? has to be constant, though the value 0.4
is just an example. The von Neumann stability analysis did not indicate any restriction

on this relation. We use the correlations pjs = —0.8, p12 = 0 and p1o = 0.8 for the case

K =10.

—+  HOC,p=-08, order3.62
. -+ HOC,p=0 ,order3.73
10 -+ HOC,p= 03, order3.73
—»-2nd order, p=-0.8, orderl.51
10 —4-2nd order,p= 0 , orderl.77
-v-2nd order, p= 0.8, order1.66

error

absolute |

7 )

2 3

Number of gridpoints each dimension
Figure 3.3: Absolute [*°-error two-
dimensional Black-Scholes Basket Power
Put, p—1 and smooth initial condition

—+ HOC,p=-08, order3.66
} -+ HOC,p=0 ,order3.75
10+ -+ HOC,p= 08, order3.56
—-2nd order, p =-0.8 , order1.93|
2 —4+-2nd order,p= 0 , order.81
-¥-2nd order,p= 0.8, orderl.75

error

absolute |

10 !

2 3

Number of gridpoints each dimension

Figure 3.4 Absolute [*°-error two-
dimensional Black-Scholes Basket Power

Put, p—2 and smooth initial condition

In Figures 3.3 and 3.4 we see convergence plots concerning the absolute [* error for a
European Put and a European Power Put, respectively. For the European Put we can
see that the high-order compact schemes have a highly similar behaviour. The points are
almost identical except the one with the highest accuracy. The convergence orders for the

high-order compact schemes are between 3.62 and 3.73. The maximum absolute errors
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have a range from 1076 to 1072. The standard discretisations have convergence orders
from 1.51 to 1.77 and an error range from 1073 to 10~!. For all stepsizes the error of
the high-order compact scheme is visibly smaller than the one of the standard scheme. So
the high-order compact scheme consequently outmatches the standard discretisation in the
infinity norm for the European Put.

In the case p = 2, the convergence plots for the high-order compact schemes again look
highly similar except for the finest grid. The convergence rates thus have a range from
3.56 to 3.75 and an error range for the maximum norm from 107 to 10715, The higher
values of the errors can be explained with the higher magnitude of the initial condition of
the European Power Put with p = 2 compared to the initial condition of the European
Put, see (3.31). For the standard discretisation we can observe convergence rates between
1.75 and 1.93 and a magnitude of the infinity errors between 102 and 10~!. For all
stepsizes the error of the second order scheme is higher than the error of the high-order
compact scheme, even though the difference is relatively small when having rough grids
with N = 11. We can state that the performance of the high-order compact schemes is
significantly better when comparing it to the standard discretisation, if the initial condition

is smoothed according to [KTW70].

1 —2

10 10
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Figure 3.5: [2-error two-dimensional Black- Figure 3.6: [2-error two-dimensional Black-
Scholes Basket Power Put, p=1 and smooth Scholes Basket Power Put, p=2 and smooth
initial condition initial condition

In Figures 3.5 and 3.6 we can see the convergence plots for a European Put (p = 1)
and a European Power Put with p = 2, respectively. For the European Put we can see
similar behaviour of the convergence for p = —0.8, p = 0 and p = 0.8 for the high-order
schemes. The numerical convergence rates for the high-order compact schemes are between
3.87 and 3.94, whereas for the standard scheme we observe a numerical convergence rate

between 1.77 and 1.87 for the standard European Black-Scholes basket Put. For a very
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small number of gridpoints, which means 11 points in each direction, the second order
scheme can achieve the same error level, but due to the convergence rates we can see that
the high-order compact schemes outperform the second-order schemes in each case of the
correlation significantly. Thus the smoothing of the initial condition, which is suggested by
[KTWT70], eliminates the problems given by the initial condition. The high-order compact
scheme thus outperforms the standard discretisation for a European Put significantly.

In Figure 3.6 we can see a similar behaviour. Again, the smoothing resolves the prob-
lems created by the initial condition. The high-order compact scheme has convergence
rates between 3.83 and 3.86, whereas the convergence rates of the standard schemes are
between 1.82 and 2.14. Only for V = 11 the standard scheme can generate the same error
level as the high-order compact scheme. After that the high-order compact schemes, due
to their higher convergence rates, increase the difference in the error levels. We can see
that the performance of the high-order compact scheme exceeds the one of the standard

scheme consequently in this case as well.
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Figure 3.7: [2-error two-dimensional Black- Figure 3.8: [?-error two-dimensional Black-
Scholes Basket Power Put, p =3 Scholes Basket Power Put, p =4

In Figures 3.7 and 3.8 we see the convergence of the relative {?-error for European Power
Puts with p = 3 and p = 4, respectively. The initial conditions were not smoothed, as
they are in CP~!. For p = 3, we have a convergence order of the high-order compact
schemes between 4.16 and 4.23. The high-order compact schemes behave very similar for
p=—0.8 p=0and p =0.8. Only the scheme with p = 0.8 seems to have slightly higher
errors than the schemes with p = 0 and p = —0.8, but in terms of the convergence order
these differences are neglectable. The standard discretisations show convergence rates in
the range of 2.06 to 2.17. The three convergence lines seem to be almost parallel, when
excluding the point for N = 11. The standard scheme has the best results for p = 0,
followed by the scheme with p = —0.8. Just like for the high-order compact schemes
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the standard scheme has its worst errors for the case p = 0.8. Overall, the standard
discretisation is completely outperformed by the high-order compact schemes for p = 3, as

even with the roughest grid there is a huge difference in the achieved relative [?-error.

In Figure 3.8 we can see the convergence rates for p = 4. The convergence rates for
the high-order compact schemes are between 3.88 and 4.22. The case p =0 and p = —0.8
behave almost identical, whereas the [2-error of the scheme for p = 0.8 declines slower
than in the other cases of p. The standard discretisations seem to be almost parallel from
the start, having convergence rates between 2.08 and 2.15. Overall, we can say that in
these cases the values of the errors are significantly lower with the high-order compact
schemes when comparing it with the standard discretisation, even when the grid is very
rough and we achieve fourth order convergence with our scheme for European Power Puts

with p = 3,4 using the original initial condition.

3.6.2 Numerical example with three stocks

In this section we perform numerical examples with three stocks, where we discuss two
different scenarios. One is that the stocks are independently identically distributed and the
other scenario consists of three stocks being identically distributed, but having correlations.
The strike price is K = 10 in both cases. We have Spa.x = 36 and Spin = 0.1 for each

underlying. Furthermore, we have

52‘ = 0.01, g; = 0.3, P12 = —0.47 P1,3 = —0.1, P2,3 = —-0.2

wi=1/3, r=1In(1.05), =03, and 7T =0.25,.

This means that the three stocks are equally weighted in the final condition. Since a finite
difference scheme with spatial dimension three is generally computational intense, the
number of grid points per spatial dimension is limited. In order to have enough grid points
in time, we choose A7/h? = 0.1. We compare the standard discretisation with our high-
order compact scheme for European Power Puts with p = 3,4. For the European Power
Puts with p = 1,2 it would be possible to use [KTW70] again to smoothen the original
initial condition. In the convergence plots the scenarios with correlations are labelled as
"c" whereas the independently identically distributed versions are marked as "nc". The
order mentioned in the figures is the slope of the linear least square fit of the given error

points in the loglog plots.
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Figure 3.9: [%-error log-log plot three- Figure 3.10: [%-error log-log plot three-
dimensional Black-Scholes Basket Power dimensional Black-Scholes Basket Power
Put, p=3 Put,p=4

In Figure 3.9 we can see the convergence of the relative I2-error for the standard second-
order discretisation and our high-order compact discretisation for a European Power Put
with p = 3. Even though the order of the high-order compact schemes seems to be rather
low, being 2.72 in the case with correlation and 2.8 in the case without correlation, we
can clearly see that this order originates from the error values of the roughest grid, having
N = 7 points in each direction. When leaving out these points, the order of convergence
would be 3.31 for the case with correlation and 3.42 in the version with independent stock
prices. The standard second order discretisations produce in both cases straight lines,
where the convergence order is 1.86, when the stock prices are correlated, and 1.87 for
the independent case. The value of the error is lower in each case, when using the high-
order compact discretisation. Overall we can say that the high-order compact scheme
outperforms the standard second-order scheme significantly.

On the right hand side in Figure 3.9 we discuss an European Power Put with p = 4. We
can observe that in this case the high-order compact discretisation behaves closer to straight
line in both cases than for p = 3. The convergence order is 3.57 when including correlation,
and 3.43 for vanishing correlation. We can still observe that the convergence lines for
the high-order compact schemes are bent. When leaving out the first error points with
N =7, we have a slope of 4.16 for non-vanishing correlation, and 4.18, when the correlation
between the stock prices vanishes. The standard discretisations achieve consistency rates
of 2 in the case of no correlation and 2.12 when there is correlation between the stock
prices. The values of the relative I?-errors for the different number of grid points per
direction is always lower for our high-order compact scheme than for the standard second
order discretisation. We observe that the high-order compact scheme exceeds the standard

second order consequently for a European Power Option with p = 4 as well.
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3.7 Application to Heston basket options

In this section we want to discuss the possibility of an application of high-order compact
schemes to multi-dimensional Heston Basket options. Recall that the riskneutral/risk-

adjusted multi-dimensional Heston partial differential equation is given by

n

U~ 0U aU 1< U
== +;r5ia—&+2m (6:=00) 5+ 5 Jz:l)\”\/a_z\/—s Sﬂasas
82U o2U

n
1
+ i]z_:l Pij\/Oir/TjV;S; 158,00, 90, -+ 5 ]Z:I NijViVj\/Tir/T; 80280 —rU,
see (1.13), where o; is the volatility of the stock S; for ¢ = 1,...,n. Each volatility o;
follows a stochastic process with long-term average 6; and mean-reversion speed x; and the
volatility of the volatility is given by v; for ¢ = 1,...,n. The correlation between the stock

S; and the stock S; is denoted by \;;, whereas p;; represents the correlation between the

stock S; and the volatility o; for 4,5 = 1,...,n. Using the transformations

S
xi:1n<EZ> fori=1,...,n, 7=T—t and u:e”E

leads to

U E”: <T - w‘?h’) oU E”‘:MMO_U B i Nij/Vili/05Y; 02U (3.35)

or . 2 / Ox; . v;i  Oy; ] 2 0x;0x;
1£]
vlyla U - " vy 02U
Zz; 2 (9x ]Z:l ARG L 83: 8y ; 2 ayf (3.36)
i1 2 8y28yj
i#£]

When looking at the conditions on the coefficients of a partial differential equation for a
high-order compact scheme, see (3.10), we can see that in order to achieve a high-order

compact scheme

pij =0 fori#j, myy =205 and Ay =0y (3.38)

need to hold, where d;; denotes the Kronecker-Delta for 4,5 € {1,...,n}. Thus, it is pos-

sible to achieve a high-order compact scheme for n independent Heston processes.

104



With the multi-dimensional Black-Scholes model we have already discussed an exam-
ple, where a high-order compact scheme can be applied in an n-dimensional setting with
with » € N. But when looking at equation (3.29) we can see that the coefficients are
neither space nor time dependent. With the multi-dimensional Heston model we have an
example of an application for high-order compact schemes with cross derivatives and space

dependent coefficients in the partial differential equation.

We can see from equation (3.35) that the most fundamental example for a multi-
dimensional Heston basket option would be n = 1, which means that the basket only
consists of one asset and leads to the standard Heston model. A high-order compact

scheme for the Heston model has been discussed in [DF12al.

A basket containing two assets would already lead to a partial differential equation
with four-dimensional spatial domain. It is not feasible to apply a finite difference scheme
to such a partial differential equation due to the curse of dimensionality. This means that
we do not apply the high-order compact scheme to the multi-dimensional Heston model,
but hold at showing that high-order compact schemes are possible under the mentioned

circumstances.

3.8 Summary

In this chapter we have presented a new high-order compact scheme for a general linear
parabolic differential equation with time and space dependent coefficients, including mixed
second-order derivative terms in n € N> spatial dimensions. The underlying problem is

given by

with initial condition ug = u(x1,...x,,0) and suitable boundary conditions, where Q C R"
is a cubical spatial domain and Q, =]0, Tax] for a Tmax > 0, see (3.1). We have shown
that in order to apply the high-order compact scheme to the differential equation, the
conditions

a;j(Awz;)?

a;

bij =0 or (ij)Q =
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for all 4,5 € {1,...,n} with i« # j have to hold, compare (3.10). The resulting high-order
compact schemes are fourth-order accurate in space and second-order accurate in time. In a
thorough von Neumann stability analysis, where we focussed on the case of vanishing mixed
derivative terms and frozen coefficients, we were able to show that a necessary stability
condition holds without further conditions in dimensions two and three. For non-vanishing
mixed derivative terms, we have shown partial results. We applied our high-order compact
schemes to European Power Puts in the two- and three-dimensional Black-Scholes Model,
which is particularly interesting as mixed second-order derivative terms are essential in this
model. In all of the numerical experiments a comparative standard second-order scheme
has been significantly outperformed. Finally, we have shown that it is possible to apply

high-order compact schemes to the multi-dimensional Heston model in specific cases, see

(3.38).
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Chapter 4

Conclusion

This thesis concerns itself with the derivation and application of essentially high-order
compact schemes as well as high-order compact schemes for a general linear parabolic

partial differential equation,

dut—i-ZaZ +Zb”a o7, Zn:cla“ = inQxQ.  (41)
i,j=1 =1
1<J

with initial condition uy = u(xq,...2zy,,0), where Q C R™ is an n-dimensional cube and
Q; =)0, Tmax| with final time 7, > 0 and suitable boundary conditions. The coefficients
a; < 0, b;j and a; are functions of (z1,...x,) and 7. Both numerical schemes, essentially
high-order compact schemes as well as high-order compact schemes, only use the compact

stencil

A

U () ={Ui,+k1,...in+kn | km € {=1,0,1} form =1,...,n} (4.2)
for a given grid

G .= {($i1,---,$z‘n) €|, = ngi)n—}—ik (Azy),0 <ix < N —1for k= 1,...,n}.
The value U;,._;, denotes the approximation of u(z;,,...,z;,) and for the grid we have
Az > 0, N € N>; and nggx = ngl)n + (N — 1) (Azxyg) for K = 1,...,n. When using

Ax; =hfori=1,... n, we write Gf).
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For essentially high-order compact schemes, where we use n = 2 and g = 0 in (4.1),

2
the resulting numerical scheme at point x = (z;,,x;,) € COJEL) is of the type

1 1

k+1 _ A k
E Ay (xi1+l1’xi2+l2) Ui1+l17i2+l2 = § By (mil-i-ll ) x22+12) Uz‘1+ll,i2+l2
l1,la=—1 l1,la=—1

+ g(z, T, Thy1) + Ra+ O (h4) + 0O (7'2)
at time 7 = EAT with

aq ((IQ(Axl)Q — al(A$2)2) @
12as oz}

for Version 1,

a9 (al(Ax2)2 — ag(Ax1)2) @
12ay ox}

for Version 2,

. b12 (a1 (A,IQ)Q — (IQ(A$1)2) 84u

Ry :
2 12as 836:1"8362

for Version 8 and

B blg (GQ(A$1)2 — a1 (A(L‘Q)2) 84u

Ry :
2 12&1 83:183:;’

for Version 4, see (2.18), (2.26), (2.34) and (2.42).

In Section 2.5 we apply this scheme to the Heston model with a zoom in the region
around the strike price ('at the money’). We calculate the different schemes and take a
closer look at the second order remainder term. For all four versions of essentially high-
order compact schemes we numerically evaluate Rp/h?, while using Az; = Axy = h in
a concrete example. We observe that for Version 1 the second order remainder term is
not small enough, whereas the values of the second order remainder terms of Version 2,
Version 3 and Version 4 are small. This analysis is crucial for the application of essentially
high-order compact schemes, as an application of the schemes with high values of the terms

Ry/h? only leads to second order convergence.
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In Section 2.6 we show numerical examples for Version 3, as this Version leads to the
best numerical results. In [KTW70] it is shown that the convergence rate of a numerical
scheme is bounded by the smoothness of the initial condition. We overcome this problem
by using Ranacher time stepping (see [Ran84]) and grid shifting, where we set the grid
in a way that the non-differential points of the initial condition are in the middle of two
grid-points of the finest gid. For the Ranacher time stepping we first use four steps of
Implicit Euler time discretisation with stepsize (A7)/4 and then use Crank-Nicolson time
discretisation for all other time steps. This does not affect the order of convergence, as
the number of steps using the Implicit Euler scheme is fix, see [Ran84|. The resulting
convergence plots in the numerical examples are slightly bent for plain vanilla European
Put options. To show the influence of the initial condition to the appearance of the con-
vergence plots we also examined Power Put options with power p = 2, 3. For these options
the initial condition is in CP~1 (Q) and thus the convergence plots show straight lines for

Power options.

In the numerical experiments we compare different zoom strengths with each other,
using the zoom function given in [TGBO8]. The error in the numerical schemes mainly
comes from the area around the strike price (at the money’). Thus, it can be expected
that the error declines with increasing the zoom for low values of ¢. But if the zoom is too
strong, there are barely any points of the grid in the remaining part of the space, which
leads to a domination of the errors arising from those parts in the overall error of the
scheme. This behaviour regarding the zoom strength is exactly what we could observe in
the numerical examples. The best convergence rates are achieved at ( = 5 for the specific
zoom function we use, which indicates that the optimal zoom strength should be around

this value.

Besides comparing the zoom strength we also compare the correlation p between the
asset value S and the volatility ¢ in our numerical experiments. For p = 0 the cross
derivative vanishes and thus the scheme is a high-order compact scheme with theoretical
convergence of order four. This is confirmed by the numerical convergence rate in the
performed tests. For non-vanishing correlation we have an essentially high-order compact
scheme. With our numerical experiments we show that for those essentially high-order
compact schemes the practical convergence rate orders are around 3.5, as the study of the

higher derivatives has suggested. This shows that we can zoom in the area of interest and
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still have a practical order of four for the convergence up to our wanted accuracy level.
For each of the mentioned cases a standard second-order finite difference scheme using the

central difference operator is significantly outperformed.

Finally, we perform a numerical stability study for vanishing and non-vanishing cross
derivative, which suggests that there are no restrictions on the mesh ratio (A7)/h?. We
have to point out that this result is not covered by the von Neumann stability analyis for
frozen coefficents in time and space in Section 3.4.3, as even for p = 0 the assumptions in
Theorem 1 are not fulfilled, since the coefficients of u,, and uy, in equation (2.51) are not

identical.

In this thesis we introduce essentially high-order compact schemes and show that it
is possible to use these schemes for option pricing, so having practical fourth order con-
vergence up to a certain stepsize h*. This means that although we break the conditions
on the coefficients of linear partial differential equations for high-order compact schemes
on purpose, we still achieve a practical convergence order of about four. An important
possible reason for not wanting to satisfy those conditions is the wish to zoom in a given
area of interest in the spatial domain, which is the case in our application to the Heston

model.

For high-order compact schemes, where we use d = 1 in (4.1), the resulting numerical

. o(n) -
scheme at point = (x;,,...,2;,) € G}~ for n € N> is given by
1
k+1
Yo A @it T ) USRS

lly---vinzfl

1
= Z Bx (xi1+l17 s 7$in+ln) Ui]jJrll,...,inJrln + g(.%', Tk> TkJrl) + 0O (h4) +0 (T2)
lly---vinzfl
at time 7 = kKA7. We observe that there is no second-order remainder term for these
numerical schemes and thus we achieve a fourth-order convergence in space and a second
order convergence in time. Using A7 € O (hz) thus leads to an overall fourth order con-

vergence in terms of h.
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We derive conditions on the coefficients such that a high-order compact scheme is
applicable in an n-dimensional spatial setting. These conditions are given by
a;(Ax;)?
bij =0 or (A{Ej)2 = ](72)
a;

forall 4,57 € {1,...,n} with ¢ # j. This shows that the application of a high-order compact
scheme is always possible, if the discussed partial differential equation does not contain
cross-derivatives. In that setting there are even no further restrictions on the stepsizes
Ax;, besides Ax; € O (h). In all other possible cases there are at least some restrictions

on the stepsizes.

In Section 3.4.1 we present the coefficients of the high-order compact scheme for partial
differential equations of the type (4.1) with n = 2, d =1 and a; = as in combination with
Axy1 = Axzo = h. The coefficients for the scheme for the three-dimensional spatial setting

are given in Section 3.4.2 for the case a1 = a9 = a3 and Ax; = Axy = Az = h.

For frozen coefficients in time and space as well as vanishing mixed-derivative terms,
we perform a von Neumann analysis for n = 2 and even n = 3. This analysis shows that
there are no further conditions on the coefficients of the partial differential equation to
fulfil the necessary von Neumann stability condition. For non-vanishing correlation we
only give partial results. A possible extension of these proofs is to relax the condition
a; = aj for 4,5 € {1,...,n}, which would allow us to give analytical stability results for
the application of Version 3 of the essentially high-order compact schemes to the Heston

model with zoom for vanishing correlation between the asset and the volatility.

In Sections 3.5 and 3.7 we show that it is possible to apply high-order compact schemes
to the multi-dimensional Black-Scholes model and the multi-dimensional Heston model,
respectively. In the multi-dimensional Black-Scholes model the number of stocks is iden-
tical to the number of spatial domains in the partial differential equation. In the multi-
dimensional Heston model, we have n = 2m spatial domains, when looking at m underlying
assets. An application of the case m = 1 can be found in [DF12a]. When there are two
underlying assets in the multi-dimensional Heston model, the resulting partial differential
equation has already four spatial dimensions. Due to the curse of dimensionality it is not
feasible to apply this numerically and thus the multi-dimensional Heston model keeps be-

ing a theoretical application.
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In the numerical experiments for the multi-dimensional Black-Scholes model we use
the smoothing operators suggested in [KTWT70| on the initial condition. A shifting of the
grid in combination with Ranacher time-stepping is not possible in this setting due to the
location of the non-differentiable points after the transformation of the partial differential
equation. In the case of two underlying assets we achieved a numerical convergence order
close to four or even slightly above for the high-order compact scheme in all experiments,
whether looking at European Power Puts of European Puts. When using the smoothing
operator even the convergence plots for plain FEuropean Puts show straight lines. In the
three-dimensional case we can see the curse of dimensionality. The computational cost
does not allow to use many points in the grid in each spatial direction. For a European
Power Put with power four the convergence orders are around 3.5, whereas the conver-
gence plots for a Furopean Power Put with power three only show a convergence order
around 2.7. The roughest grid consists of only seven points per spatial direction, though.
When deleting these points in the convergence plots, the convergence orders increase to
about 3.5. We can say that the schemes meet the expectations on the convergence order
in all cases. As in the case of essentially high-order compact schemes we compared the
high-order compact schemes with a standard second-order finite difference scheme using
the central difference operator. The high-order compact schemes consequently outmatches

the standard scheme in all given cases.

In this thesis we generalise the derivation of high-order compact schemes to a setting
with space- and time-dependant coefficients in an n-dimensional spatial domain. The co-
efficients of such schemes have been shown for n = 2,3. A von Neumann stability analysis
has been performed for vanishing cross derivatives with frozen coefficients (in time and
space) for n = 2 and even n = 3, which lead to no further restrictions on the coefficients.
The scheme is applied numerically to the multi-dimensional Black-Scholes model, which
confirms the theoretical convergence order of four through numerical experiments. For the
multi-dimensional Heston model it has been shown, that it is possible (with restrictions)
to apply high-order compact schemes in this setting, but due to the curse of dimensionality

a numerical discussion of this example is not performed.
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For further research it would be interesting to consider extensions of this scheme to
the American option pricing problem, where early exercise of the option is possible. In
this case one has to solve a free boundary problem. It can be written as a linear com-
plementarity problem which could be discretised using the schemes given here. To retain
the high-order convergence, one would need to combine the high-order discretisation or
essentially high-order discretisation with a high-order resolution of the free boundary. It
would have to be analysed, if the resulting American option is smooth enough at the free

boundary to achieve a fourth-order convergence, see [KTW70].

Another possible extension of the content of this thesis could be to relax the conditions
on the coefficients of the partial differential equation in the von Neumann stability anal-
ysis. It would be possible to relax the conditions a; = a; for 7,5 € {1,...,n} while still
assuming p; ; = 0. Another possible extension of the stability analysis would be to relax

the assumption p; ; = 0, while still demanding a; = a; for i,j € {1,...,n}.

It would also interesting to see if it would be possible to achieve even higher conver-
gence rates (e.g. order six) and what the restrictions on the coefficients of those schemes
would be for such schemes. It would have to be examined whether those schemes can be

implemented on the compact stencil or if a bigger computational stencil has to be used.

Trying to apply high-order compact schemes to a rather general class of non-linear
partial differential equations would also be a possible extension of the presented content.
An example of a non-linear partial differential equation appearing in finance is the Black-

Scholes equation with non-linear volatility, see e.g. [DFJ03|,
1
V: + 50(‘/55)252‘/55 +rSVg —rV =0,

with a non-linearity volatility o(Vsg).
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Appendix A

Derivation of the Black-Scholes

partial differential equation

In this part of the appendix we show the derivation of the partial differential equation of

the Black-Scholes model of [Wil98|. This derivation is shown as guideline for the derivation

of the multi-dimensional Black-Scholes partial differential equation as well as the partial

differential equation of the Heston model, as those differential equations are derived in a

similar manner. In the Black-Scholes model we have, recall equation (1.2),

dS = pSdt + o SdW,

(A1)

where p is the drift of the stock S and o its volatility and dW is a Wiener process. With

the Lemma of It6, see Definition 1, we get

OV 1, ,0%V OV oV
a5 277 952 T ot S

av = <,u5—+—0 S — 4+ — |dt+oS—dW.
If we now look at a portfolio of the structure P =V — a.S, we have
dP =dV — adS.

Using (A.1) and (A.2) in (A.3), we get

B ov oV 1, ,0°V oV
dP-JS(aS—a>dW+<,uSaS+205852 T
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The portfolio P will be without risk, if we choose a = 8_\§_ Without arbitrage

dP = rPdt

has to follow, as well as

OV 1 4, ,0%V

Comparing these two equations and using P =V — g—‘S/S the Black-Scholes partial differ-

ential equation follows, so

oV o 1, 282V B
ot +r565+20’5 aS2—rV—0.
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Appendix B

Derivation of the multi-dimensional

Heston equation

In this appendix we want to derive the partial differential equation resulting from the

multi-dimensional Heston model. We have

dSi(t) =i Si(t)dt + /o (1) Sy (1) AW, (1)

(B.1)
doi(t) =k (0; — o4(t)) dt + v; \/mdwi@) (t)
for i = 1,...,n, see Definition 11. According to the multidimensional Lemma of It6, see

Lemma 2, we set

X(0) Si(t) fori=1,...,n
Oi—n(t) fori=n+1,...,2n,

as well as

CLZ'(Xt,t) =
Kin (Oi—n — 0i—n(t)) fori=n+1,...,2n

{ wiSi(t) fori=1,...,n

and

Voi(t)S;(t) fori=jandi=1,...,n
bij(Xe,t) =4 vin\/oin(t) fori=jandi=n+1,...,2n,

0 else.
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With

(@) dWl-(l)(t) fori=1,...,n
t); =
aw® (t) fori=n+1,...,2n

1—n

we thus have
dX; = a(Xy, t)dt + b( Xy, t)dW;.

From the Lemma of It6 it follows that

2n

1 02U
———dX;dX;
Or;0x;
7]7
1 ~ U ———dX;dX; B.2
D0, (B.2)
’l,jf
n 2n 1 2n 82
dXidX» - ———dX;dX;
+;]§:1a ity 2 Db

with (th) (th)] =< (th)l, (th) > dt, dtdt = (th)ldt = dt(th)Z = 0. We have

8—UdX' _ g—g(i (,Uz‘Sz‘dt + \/U_iSidWi(l)) 1el (B3)
8xi % (Ki (9; — 0';) dt + ’U;\/O_'%dWi(z)) 1€ J

with I ={1,...,n}, J={n+1,...,2n} and i =i —n. For i, € {1,...,n}, we have

5w, XX =550 (riSidt + /aisiaw V) (St + /38w,
__ QU [Msm Sjdtdt + 1:5i,/75.9;dtdw
9S;08; et 7R, (B.4)
/T3S S;dW D dt + \/a_isi\/a—jsjdwi“)dwj(”}

82
A GGIE Sy 55, dt.
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Foriec {l,...,n},j€{n+1,...,2n} and j = j — n, there is

0*U 0*U (1) (2)
et AXidX; =g (isidt + vaisiaw ) (i, (6; = ;) dt + v, /75aW )
02U

95,00, [”’SZ“J (0; — o)) dtdt + p;Sivj/odtdW

VTS (05— 03) AWVt + VS aawVaw |
02U

and finally for 7,5 € {n 4+ 1,...,2n} with i =7 —n and j = j — n, we can obtain

31‘28%’3 v J _80iao'j

0*U @
:80'200]' |:I€i (0; — o) Kj (9]‘ — O’j) dtdt + k; (0; — o) Uj@dtdwj

2 2
GUdX _3U<A(0

+vin/oirj (05 — o) dWi(Q)dt + vi\/0iv; \/U—J'sz‘(z)dWJ@)]

0’U
:nijvivj\/g_i\/a—jmdt

Using this, as well as (B.3), (B.4) and (B.5) in (B.2), gives

= = 8U 1 o*U
Z'MZ ‘|‘Z’% i — O ‘|‘ ZAZJf\/_SS]@S@S
i,j=1

02U
+ZPU\/_\/_UJ 858 -+ 5 Z%Uz”a\/g_z\/_jm

i,j=1 i,j=1

+Z\/_S dVV(1 +Z v; alg—UdW@)

n
We now consider a portfolio P =U — Y «;S;. For dP we thus get

i=1

U < oU - 8U 1 02U

'95,05;

1,7=1

02U
+ZPZJ\/E\/—”J asa -+ 5 anﬂwy\/ff_i\/ff_jm

1,7=1 1,7=1

- oU ° oU
+> \aiSi <as - ozl-> AW 3" i/ AW
i=1 v i=1
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where the previous equation and the description of dS; in (B.1) for i = 1,...,n were used.
We see that using «o; = g—gi for ¢ = 1,...,n eliminates the portfolios dependency of the
Wiener Processes dVVi(l). This way dP is still dependant on dWi(l). If we take the expected
value of dP we get [dWi(z)} =0fori=1,...,n,

o & aU 1 ¢ 9*U
E[dP] = | — i (0 —o ;
aP) = |Gy + 2l 70t 3 ]Zlmffssjasas
’ (B.6)
+Z NN -+ 5 Z ViV 0-627(] dt
o= P T3S asa o Vi poia; |
as well as
E[dP] =[rP + Aldt = |rU — er dt, (B.7)

where A determines the market price of risk caused by the volatility. A is zero in a risk-
neutral market and bigger than zero in a risk-averse market. In the unlikely event of a
risk-loving market, A would be less than zero. With (B.6) and (B.7) we have the general

multi-dimensional Heston partial differential equation

U < o aU 1 02U
= o i(0;—o iV i
0 8t+i1TSaSi+Zm( + ]Z:l)\] U\/—SS]&S(?S
- ?U 1
+ Z Pij\/Tin/Tj0;Si 98,00, -t 5 Z 77@]”@”3\/0_2\/_80 do; rU—A
i,j=1 i,5=1 ‘

when dropping the dt. Let us now take a closer look at the market price of risk. For a
risk-neutral market we have A = 0, as mentioned above. In a risk-averse market A could

be a linear volatility-price-function in the sense of

- ou
A = izlaidia—o_

i

with a oj-independent o; for all 4,j = 1,...,n, where we can use

Kj (Gl — Ji) — ;05 :(Hi + Oéi) < K;iei — 0i> = I%Z' <9~z — Ui) .

Ki +
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Dropping the tilde-signs of £; and 6; leads to the risk neutral /risk-adjusted multi-

dimensional Heston partial differential equation
n

o & oU 8U 1 02U
0=or+ er +Zm =) 50t 5 Z)\” az\/—ssjasiasj

=1 2,7=1

02U
+ZP2J\/_\/_”J 856 -t 5 Z%U@%\/E\/U_jm—ﬂf

7] 1 1,]= 1
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Appendix C

Coefhicients for Version 2 and

Version 4

In this section we give the coefficients of the semi-discrete schemes for Version 2 and Version
4. We do not include the coefficients for Version 1, as this version always resulted in a

second-order numerical convergence error in the numerical study.

C.1 Coefficients Application EHOC scheme Version 2

When discretising equation (2.25) with the central difference operator in z- and in y-

direction, we get the following coefficients for the Version 2 scheme

Ry WP | YORE | QROT VYo Wow | YPLR L PT | Pak ¢l
=Lyl 12h 12h ~ 1202y  12R2  24h 24 ' 12h 24v
UYL | Pl PR YPmber _ RER0 . Ppk0 gk
24h 24y 12y 24 12hv 24v 12v
N st0§ (5 —7) b | vYPrPum - VPR VPR | VPp _ PiR | VYPE
P 24 48 12y T 48 T 24y ' 24 42
L P (5 =T) | et L #ar (0 —vy)
6h 121 6ho
% |- vyps - VP2 Pz _ VY PR Paz
Gh2 8 12n |’
3 3 3 (vy 2 3
. . yoin  wyes k30 pos (1) | poypspa  proyed
Kitqioq = — Ks 1507 & _ + + —
i1 ELELE TG T 62 T 6he 3h 6h 3h2
Ryiy = — VYRS L YR - Koyl L v - ypahol K - YOIhE pur  ORRE PoR%6?
" 2h2 3h 3hv 6y 8 8 4oy 6v3y
VYR Pu MRk - ho3k pulr O3 pmr v ypok? - pahK®
8 6y 4v2y 4 12y 6v 120
v 2 yed Shk 5k20  hyoik K30 ho3k 0
i YPrx Pz i YPzPaz + Pz + Pz + YPz K Pazx + Pz + Pk Paz
8 8 12y 3v?2 8 3vy 8v
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hoak Oaat | P k0 OORE20  hORK Qpl | vYor | 3R
i i 2 - :F + p) +
4v 8v 1202y 8v 6h 12

U@i@xz + h@i’f (9 - Uy) Pz - Qpi (% - T) - VYPrPax + p2 vy@i
4 4oy 3h 6h 3h2’

+

Kions = hpast _ Mpaurat _ hp3v | vYPE  VYPT P N par | honr L VY
12y 24 12y 6h 6h 6 6 24
_ U@i 4 hSDmUSDgZC - hvy@%@m _ vygpi + h@?g”@xze i VYPrPrx 4 hvyPazes
12y 24y 24 24 24vy 24 48
hoygh, | Vos _ Gofmt | K¢s bR | 0Yom pzhv _ hOZK u
12 6y 12 12 24 6h 24y 24
h 2 3,.2 h 4 0 2h 2 39 h 2
PrPax” Pl + Pzl - Pr!VPazT™ K Py + VYPrPrzz Pzl
6 6vy 24vy 6vy 12vy 48 3h

MY Pz Pras  VYPx | o | VYPD vysoisom} N [wi L Ve

T T 6, 3Rz P |32 T eh 12 4

howved  hvel,  her (B o) er  ea(F o) | pan (6w
24 8 6y 6y 3hv

+

K. . = _ _
I 6 4 4 6 61 6y 12 3h2
VYPs 205K | PiPml | PuPwt | $aRO YO’ 9T 0heiee

h? 3v2 2 6 20y 3v 3 4

W KPR0 Ve @ak?0” wyen et

12 2uy 3y 3vdy 12 vy
+ [_ U‘:OJCB(PM: _ U(PxB i VPz P + 90:133 (% - T)] 2 27}3/@903
P 2 6 2 3y 3p2

v RYD | UYChPme  UYPsPl | $aF L U9s | Va | WP | 2004

where K; ; is the coefficient of U; ;(). Defining M; ; as the coefficient of 9,U; ;(7), we get

4
My 61 =M 1551 = i%,
N 5 3 3h 5p 5hi (6 —
MZ]:I:IZ_&—F&:F()O$ :l:(p$ :l:(p$ '%( Uy),
’ 126 6y 12 1202y
- 3 A (YW _ 2y, ap
Mi:l:lj:ﬁq:@x (2 ):l:(pm Pz Pr pand
© 12 12vy 8 12y
N Papml® (F 1) @een b 0h  ¢r iR peipwh’
/[/7] - - - .
2vy 4 6 2 4 2y

Using these coefficients for the spatial interior in combination with the treatment of the

boundary conditions in Section 2.5.4 yields the Version 2 scheme.
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C.2 Coefficients Application EHOC scheme Version 4

In this part of the appendix we give the coefficients of the Version 4 scheme. When

discretising equation (2.25) with the central difference operator in z- and in y-direction,

we get
R‘ ) :Uyﬂp?; T h@%x (% - T) T Soi (% - T) + 5 (% - T) 302 + yhvtpamxz + h‘pzxv
=L T o2 6 12h 12h 48 24y
2
_ e O —vy)  Soypn | 50yom | ven p2ho O3 (3 =1)" | vy
120y 12h2 24h 12y = 24y 6vy 24
+ SD:Bh (% - T) Prax 4 (% - T) PrPrx vyh@zx@zxz + hk (9 - Uy) Pz
24 12 169, 24vy
2
+ vy@%@xz T Qpih (% - T) Paz + gD%hli (9 — vy)
8h 6vy 24vy
Lo L wekem) | 0eem e (0 vy) 03 (9 —r)
3h? 6h 4 6hv 6y
(oo (S ) em  hewvel  hven, | ik (0= vy)
12 6y 24 8 6hv ’
B _Fape (5 ) | Eeh (5 1)k (0 —vy) pw - pahk (0 = vy) pum  Hoyel
nit 4 A2y 8v 12h2
AR (0 —w)? | vyes _ gihe | Qbhe® (0 —vy) Bkl (0-vy) | vyesel,
6yv3 12h2 12y 1202y 12vh 8
rea (0 —vy) Koy | ek (0—vy) | pohpinr (0 =0y)  vyoseun | 92V
12vy 6 12vh 8v 8 12y
LU | v heek (0= vy) e P (32 7) oyt
3h? 4 4vy 3h 6h ’
LE =) wien | (-4 e (-
Kooy, = P22 _ e (5 Pr  VYPr  VYPr  VYPy _ Pak (0 —vy)
s 24h 16h 24h 48h  24h?  24h? 24vh
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24vh 2402y 48v 24y 48
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2402y 16v
L LU VYOI VYL n ijytpi L vt wa($ o)
8 124 6h2 4h? T 24y 6h
ok (0 —vy) | vypl, | $or gk (6 —vy) - par (6 —vy) - UYPaPum
24vy 48 24 12hv 24vy 48
L UWPaPa | $r (5 T) e phn (60— vy)
12h 24 12hv ’
B f o wee vyey ek (0—vy) kg (6 —vy)
=Lkl HLIELT PRz T 12p2 120k 120k
oyl . (2 G k) I
3h2 3h 6h
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and

e O Cave (B —1)  vyeepl, v @ik (0—wvy) kel ve,
" 4 2 4 6y 6oy 3 6y
3.2 2 3 vy 3 (w _ )2
Pk (9 - Uy) VY Py dVY Py, . ( 2 T) PaPax VY Prrx Pz ( 2 T)
3yv3 6h? 6h? 6 12 3vy
L a0 —vy) o 20y N T pa (1/20y —7) vl v9iom
6vy 3h? 2 3y 6 2 '

where f(w is the coefficient of U; (7). Defining MZ] as the coefficient of 0.U; ;(7), we get

. . "
Miy1,j01 =Mi—1,j5.1 = ipz—z,
N e eah(F o) | plhow _ oih
itl,j — + F ,
12 12vy 8 12y
Ny Py $ahe (O —vy) gk
z,j:l: 12 12,02y 12y
N 20 Pepml (1) punh? | i o ; O3 puh?
,J 3 2vy 4 4 2y .

Using these coefficients for the spatial interior in combination with the treatment of the

boundary conditions in Section 2.5.4 yields the Version 4 scheme.
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Appendix D

(zeneral coefficients

three-dimensional HOC scheme

In this part of the appendix we present all the coefficients of IA(kJ’m of Uy 1m for k €
{i1—1,i1,91+1}, 1 € {ia—1,i9,i9+1} and m € {ig—1,43,i3+ 1} of the high-order compact
scheme in the three-dimensional case. The differential equation (3.1) is discretised at the

3
point (x4, T4y, Tiy) € é,g) according to Section 3.4.2 and we thus have

K . b3 [a]ZBQC3 b13[a]xlc3 [03]:133 Sl C3 [a]mlxl [a]mzm [a]msxs
11,912,413 — — _

6a? 6a2 3 6a 6a 2 2 2
bizlala,c1 | biglalsslale, | boslalsslale, | boslalosea | biz[als [als,
6a? a? a? 6a? a?
bislesley  cilale, | 033 biolalee,  e2lale, | by
6a  6a 3ah? 2a "~ 6a 3ah?  6a
cslales  bislaleia,  Doslcolss  bizleals,  boslafusas  Dis[cilas (D.1)
6a 2a 6a 6a 2a 6a

B buliee  boleds, [l [, bl
3ah? 6a2 6a a a a 6a

4a b12[a]$102 [01]3&1 _ [CQ]M

h2 6a2 3 3

o bizlals; bz - baslalosbiz _ [b1o)urar _ [D12lwsws _ [D12)wges 2
uEliz=lis 24a2h 24a2h 48 48 48 12h

bizca | biofalz e | bialale [b12les _ bylale, | bos[ale, [b1o)es

12ah 48a2 48a? 24a2h 48a2

bizlaly, _ bizla)s, " biglalz,c2 | bazlalg,c n b23[a] 5 [b12) s
12ah 12ah 48a2 48a2 48a2

_ bi2[b12]zs " bi3[a]zs [b12) 2, " biz[a)z,co " bi2[b12]z, " b23[b12] 24

24ah 48a2 48a? 24ah 24ah

[b12]ss  bis[bizles | bisbas  [a]e,bly  bio a [b12]s,

+ — + —
12h 24ah 12ah? * 24a2h 6h?  6h? 12h

+
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K 410,05

Kij g1,y =

=+

bislealuy __ bizabrzlasw, __ bslei]wy __ biofci]ey | [alwic2 | 1
48a 48a 48a 48a 24a 12h
(D.2)
big[bi2)zizs _ Ci1bi2)z, n [a]zs 01225 €3[012]2s n [a]z,c1
48a 48a 24a 48a 24a
ca[briz]w, | biofalea[broley | bislafe [brofes _ brzlco]e,  br2cn
48a 48a2 48a2 48a 12ah
bty bas[b12)asas | [a]z, [b12] (@], [b12] 16y
2T :|: xr1 Tl :|: X2 T2
T T T 8a 24a 240 | 24a
[01]332 [62]11
T s Tag
bozlalusbiz | baslalusbiz _ hbislale[c1]e,  hboslaley[cr]ey |
12a2h 12a2h 242 242 12a
hb13[a]x3 [Cl]xl hb23[a]$3 [01]902 + h[cl]mwa + h[cl]mxz + h[cl]$11‘1
2402 242 24 24 24
heilen]a, n [a]a, i [aayas  brslalescr _ biglbis]e, | hesci]a,
24a 12 12 12a2 12ah 24a
hbizlale, [e1]wy | healcr]ey | Pbis[er]aiw, _ hlaluglerles o [br2)a,
24a? 24a 24a 12a 6h
hbiglaley[c1]e,  boslbisle, | DP3lae n bislci]as  c3bis n [ zyes
24a2 12ah 12a2h 12a 6ah 12
hbgs(c1]esas | hbi2[ci]wiwy | bislales  bizlala,c1 _ hlala, [c1]e, (D.3)
24a 24a 6ah 12a2 12a
biaca | bylale, | biz[ale,  bialbia)e,  bas[bio)es | @ a
+ + + — —
6ah 12a2h 6ah 12ah 12ah 6h4+ 3h2
bislalzs[ale,  bosla]aslale, _ [b13]e;  bizlalsi[ale,  cilals,
6a2 6a2 6h 6a2 12a
b%?, o b%Q + C3[a]ll¢3 + b13[a]$1$2 b23[a]$2$3 _ [a]i‘a o [a]i‘l
6ah?  6ah? 12a 12a 12a 6a 6a
clale, | bi2[afeie, | [c1]a . biolere, a2, _ hlale,[ei]a,
12a 12a 6 12a 6a 12a ’
b13[alzyb12 - hbiz[alz, [co)zs _ hbi2]alz, [c2]a, n @] 255 n 2]y
12a2h 24a2 24a? 12 6
biglale,bos _ hbislalsy[calsy  bislaluglale,  bizlals[ale, B35
12a2h 242 6a? 6a? 6ah?
C2 hbas [a]:vs [02]332 hb12 [a]mz [62]11 hbas [a]JBQ [02]333 [a]xlml
6h T 24a2 T 24a2 T a2 T 12
hla)e, [c2]a n bialale,  biocr  bia[bio]e,  b13[biz)es | [alenbis
12a 6ah 6ah 12ah 12ah 12a2h
[b12]e, _ bages | hbiolealoiw, | hbos[coluses | hbisleo)eis, | @
6h 6ah 24a 24a 24a 3h2
healea)z, | boslales,  baslalesca _ big[bos]z, _ b2s[bas)a, 3
+ — —= (D4
24a 6ah 12a2 12ah 12ah + 12a (D4)
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+ hc3[02]x3 h[a]wa [02]963 + hey [02]901 + [a]xzb%?; + [a]mm _ 6%2
24a 12a 24a 12a2h 12 6ah?
_bilalyee | alals, | bielalee,  c2fa]e, | hleolaias N csla]ug
12a2 12a 12a 12a 24 12a
b13[a]x1m2 b23[02]x3 + le[CQ]xl + h[CZ]J:gxg i [a]il + h[CZ]xgxg
12a 12a 12a 24 6a 24
[b23]:v3 bas [a]mz x3 [a]%s [a]iz bas [a]ll?s [a]mz h[a]mz [62]12
6h 12  6a  6a 6a2 12a
- biglalzsbi2 | [bi2)zizr | [b12)aozs | [D12)2szs  bi2e1 bi2]als,
Kintriatiin == =5 2y 18 T 48 T a8 " T2ah  12ah
L boer  bldser - biofaly, biole, - blolale _ baslale, [broeg
12ah 48a2 48a2 24a?h 48a2
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24a2h 48a2 48a2 24ah 12ah
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24ah 48a2 48a2 24ah 24ah
bislale, [bi2les _ boslales[b12)e, _ bos[alsscr _ bizbes  [als,bis
4842 4842 4842 12ah?  24a2h
ba3[b12]zoas Co b12 c1 [alzic2  [bi2]s " [b12) 2,
223002lwar | 2y P12 4 G (D.5)
48a 12h 6h? 12h 24a 12h 12h
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+ 6h? 48a + 48a + 48a + 48a + 12ah?
" big[bi2)zizs | Ci[bi2)zy _ [@]as[D12])as " c3[b12] s " biz[ca)z,
48a 48a 24a 48a 48a
- laloscr _ [aloy [br2]oy __ [@las[brzley | c1c2 | [erley | [e2]wy
24a 24a 24a 24a 24 24
ca[b12]z,
+ 48a
]%ﬁ . . -+ [b13]5’32 bz [b12]$3 + [b23]:v1 b12[b13]11 b13[b12]x1
Eliz s~ A8h " 24n2 T 48h 48h 96ah 96ah
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96ah 48ah = 48ah ' 24ah? 96ah 24ah?
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T2 T u8ah T 48ah 48421 8ah © asan (DY
- basbia _ bizlalz;b23 _ biz[a)z,bos ba3 b13[b23) 5
24ah? 48a2h 48a2h 24h2 96ah
" 512[523]@7
96ah
o [b13)w, | D13 [b12]as | [b23)ey | bi2[bis]ey | b13[bi2)s,
hELizHl s+ A8h T 24h T 48h 48h 96ah 96ah
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Ki 415051 =F

K irt1,is—1 = F

baz[bi2]e, , c3biz | bizca | bigbaz  biabiz | bos[bis]a,
96ah 48ah = 48ah = 24ah?  24ah? 96ah ’

[eslay b3 [bisley __ boslalusbis __ [brslwse, 3 [bisla
24 T 6h2 12k 2ah T 48 120~ 12
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