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Abstrat

This thesis is onerned with the derivation, numerial analysis and implementation of

high-order ompat �nite di�erene shemes for paraboli partial di�erential equations in

multiple spatial dimensions. All those partial di�erential equations ontain mixed deriva-

tive terms. The resulting shemes have been applied to equations appearing in omputa-

tional �nane.

First, we develop and study essentially high-order ompat �nite di�erene shemes in

a general setting with option priing in stohasti volatility models on non-uniform grids

as appliation. The shemes are fourth-order aurate in spae and seond-order aurate

in time for vanishing orrelation. In the numerial study we obtain high-order numer-

ial onvergene also for non-zero orrelation and non-smooth payo�s whih are typial

in option priing. In all numerial experiments a omparative standard seond-order dis-

retisation is signi�antly outperformed. We ondut a numerial stability study whih

indiates unonditional stability of the sheme.

Seond, we derive and analyse high-order ompat shemes with n-dimensional spatial

domain in a general setting. We obtain fourth-order auray in spae and seond-order

auray in time. A thorough von Neumann stability analysis is performed for spatial

domains with dimensions two and three. We prove that a neessary stability ondition

holds unonditionally without additional restritions on the hoie of the disretisation

parameters for vanishing mixed derivative terms. We also give partial results for non-

vanishing mixed derivative terms. As �rst example Blak-Sholes Basket options are

onsidered. In all numerial experiments, where the initial onditions were smoothened

using the smoothing operators developed by Kreiss, Thomeé and Widlund, a omparative

standard seond-order disretisation is signi�antly outperformed. As seond example the

multi-dimensional Heston basket option is onsidered for n independent Heston proesses,

where for eah Heston proess there is a non-vanishing orrelation between the stok and

its volatility.
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Chapter 1

Introdution

This thesis is onerned with the derivation and analysis of numerial �nite di�erene

shemes for the solution of paraboli partial di�erential equations. We apply these shemes

to option priing problems appearing in �nane, where the goal is to give an aurate ap-

proximation of the fair prie of the option. In this introdution, we give some eonomial

bakground on options and a motivation for their use and importane. Then we give an in-

trodution to the �nanial and numerial side of option priing. We reall di�erent stohas-

ti models for the underlying asset prie, suh as the Blak-Sholes model [BS73, Mer73℄

and the Heston model [Hes93℄, both in the single-asset ase as well as the multi-asset ase.

We derive, using the Lemma of It� [It�44, Irl98℄, partial di�erential equations whih arise

from the stohasti models. Methods of numerial analysis used to approximate partial

di�erential equations are de�ned, namely disretisation tehniques using an equidistant

grid of the underlying spatial domains. Neessary onditions for von Neumann stability,

see for example [Str04℄, are given. The third setion of this hapter onsists of a researh

overview, where we give a brief survey on the researh done in option priing from the

perspetive of numerial analysis. Finally, we give an overview, in whih we present the

main aims and ahievements of this thesis.

1.1 Eonomial bakground

In this setion options are de�ned in an eonomial sense, explaining whih rights eah

option erti�es, as well as de�ning the pay-o� of the option and when it an be exerised.

There is a huge variety of options traded in the �nanial market, for example European

Options, Amerian Options, Asian Options or other exoti options. First we want to give

a general de�nition of a �nanial option, e.g. who is involved in this ontrat and what is

1



the purpose of it.

De�nition 1 (European Call/Put):

A European Call/Put represents a ontrat between the writer (party whih sells the

option) and the holder (party whih buys the option). The ontrat o�ers the buyer the

right, but not the obligation, to buy (Call) or sell (Put) an underlying asset S (e.g. a

ommodity or a stok) at an agreed �xed strike prie K > 0 on a spei� date T > 0. The

pay-o� at time T of the European Call/Put is thus

C(S, T ) = max(S −K, 0) for a Call and P (S, T ) = max(K − S, 0) for a Put,

where S ∈ Ω := [0,∞[ .

This de�nition, see e.g. [Wil98℄, illustrates that an option prie annot be negative,

as there is no obligation for the holder, but only a right. It also gives an idea, that there

is a huge variety of possible option types. With the de�nition of the European Call it is

easy to show why options are interesting and useful for the eonomy. We give two short

examples for the use of options.

The �rst obvious usage for options is speulation. If an investor thinks that the prie

of a spei� stok S will go up, he might want to buy an European Call on the stok for a

given strike K, whih is below the prie the investor expets the stok to be at the exerise

time. Let us denote that the option was bought for a prie C0. The speulation strategy

using the European Call gives a pro�t of max(S(T ) − K, 0) − C0 and thus a maximum

loss of C0, whih would be a total loss. But what happens in the other possible strategy

of speulation, when buying the stok itself? It is possible that, against the own expeta-

tions, the stok prie would go down massively due to new information. The loss of the

strategy using the stok instead of the option is limited by the urrent stok prie. So

this strategy leads to a muh bigger potential loss, as the options on the stoks have a

muh lower prie than the stok itself. What happens in the ase of rising stok values?

When the stok prie is well above the strike prie, the di�erene between the pro�t of the

strategy using the stok diretly and pro�t of the strategy using the option on the stok

is C0. So with higher stok values the signi�ane of the di�erene of the pro�t of both

strategies delines in absolute terms, whereas there is a huge impat, should the prie of

the underlying deline. So we an say that the seurity of a lower potential loss is bought

with a slightly lower potential win. A European Put on the other side an be used for

2



speulation, when the investor expets the value of the underlying to deline.

The more interesting approah for using options is hedging. The purpose of hedging is

to eliminate or redue risk. As an example we ould look at an airline. The airline has to

buy jet fuel in order for its aeroplanes to �y and faes a high risk onerning �utuations

in the prie of jet fuel. This may reate a notable additional ost if the prie suddenly

inreases signi�antly. The hedging has the purpose to eliminate the risk of sudden spikes

in the jet fuel prie. Even though it might be slightly ostlier over the long run to reate

this protetion through options, a strong inrease in the prie on the other hand may fore

the ompany into insolveny, if the inrease were too strong and too sudden. Insuring

against this risk does not ome for free, as the prie of the European Call option is an

initial investment. If the jet fuel prie would not inrease above the strike prie, the om-

pany has a loss of the initial prie of the option. One might interpret the additional ost of

hedging with options as distributing the �nanial load of the sudden inrease of the prie

to a wider time-frame, whih is more bearable for the ompany. This means that there

is a slightly higher prie over a long time rather than a sudden huge payment at one. In

order to keep the ost of hedging low, it is important to know the fair prie of the options

used. Other possible hedging targets ould be, for example, urreny exhange rates, or

the prie of produed goods of a ompany. The goal of hedging with options is to make op-

erations of a ompany more preditable, as the risk through prie �utuations is minimised.

In addition to standard European Calls/Puts we also onsider European Power Calls/Puts,

see e.g. [Ess04℄, whih only di�er in the pay-o�, when omparing them with plain European

options.

De�nition 2 (European Power Call/Put):

A European Power Call/Put represents a ontrat between the writer (party whih sells

the option) and the holder (party whih buys the option). The ontrat o�ers the buyer

the right, but not the obligation, to exerise the option, whih depends on an underlying

asset S (e.g. a ommodity or a stok), with an agreed �xed strike prie K > 0 on a spei�

date T > 0. The pay-o� at time T is

C(S, T ) =max(S −K, 0)p for a European Power Call and

P (S, T ) =max(K − S, 0)p for a European Power Put,

3



where p ∈ N≥1 and S ∈ Ω := [0,∞[ . This leads to C(·, T ), P (·, T ) ∈ Cp−1 (Ω).

The European options mentioned above all give the right to exerise the option only

at the expiration date T . It would be possible to generalise these options, by giving the

holder the possibility to exerise the option during the whole life time of the option, so

up to the expiration date instead of just at the expiration date. These options are alled

Amerian options (see e.g. [Wil98℄). For these kind of options one has to solve a free

boundary problem. This means that for eah point τ ∈ [0, T [=: Ωτ in time the interval

Ω an be split into two subintervals, namely Ω1(τ) = [0, Sb(τ)[ and Ω2(τ) = [Sb(τ),∞[,

where Sb(τ) denotes the free boundary. In one of those subintervals it is better to exerise

the option diretly, whereas in the other subinterval it is more bene�ial for the investor to

wait and hold the option. At the free boundary the hoie between holding or exerising

the option is indi�erent. For an Amerian Put the interval Ω1(τ) is the region, where ex-

erising the option is favourable and Sb(τ) < K for τ ∈ Ωτ holds. When an Amerian Call

is examined, the region where it is bene�ial to exerise the option is Ω2(τ). Additionally,

it holds Sb(τ) > K in this ase for τ ∈ Ωτ .

After de�ning European and Amerian options, let us onsider Asian options. We an

substitute the �nal prie of the stok at time T with the average of the market prie of the

underlying over the time-frame in the pay-o� of an European Option, using

A(0, T ) =
1

T

T
∫

0

S(t)dt.

This is alled a �xed strike Asian option [Wil98℄. It would also be possible to use the

di�erene of the stok value at time T and kA(0, T ) for some k > 0 in the pay-o�, whih

leads to a so-alled �oating strike Asian option [Wil98℄. We see that both �xed and �oating

strike Asian options are path-dependent. These de�nitions already show that there exist

numerous possibilities on how other exoti options an be de�ned. In this thesis we fous

on European options.

Up to now we only onsidered options depending on a single underlying asset. But it is

possible to reate options, whih depend on several underlying assets instead of just one,

so-alled Basket options. Analogously to the one-dimensional ase we start by de�ning a

European Basket Call/Put [RW07℄.

4



De�nition 3 (European Basket Call/Put):

A European Basket Call/Put represents a ontrat between the writer (party whih

sells the option) and the holder (party whih buys the option). In the basket ase the

option depends on the underlying assets S1, . . . , Sn for some n ∈ N≥1. The holder has the

right, but not the obligation, to exeute the option at the expiration date T > 0. The pay-o�

of the European Basket option is de�ned as

C(S1, . . . , Sn, T ) = max

(

n
∑

i=1

ωiSi −K, 0

)

for a Call and

P (S1, . . . , Sn, T ) = max

(

K −
n
∑

i=1

ωiSi, 0

)

for a Put. The value ωi ∈ R \ 0, ωi 6= 0, is alled the weight of eah underlying Si in the

option for i = 1, . . . , n. Additionally, it holds that
n
∑

i=1
ωi = 1.

For a given European Basket option we an say that n is unique, as the onstraint

ωi 6= 0 for i = 1, . . . , n holds. The European Basket Call/Put an be interpreted as a

European Call/Put on a portfolio given by the stoks Si with weights ωi for i = 1, . . . , n.

Analogously to the ase n = 1 it is possible to de�ne a European Power Basket option.

De�nition 4 (European Basket Power Call/Put):

A European Basket Power Call/Put with power p ∈ N≥1 represents a ontrat between

the writer (party whih sells the option) and the holder (party whih buys the option).

The power basket option depends on the underlying assets S1, . . . , Sn for some n ∈ N≥1

with Si ∈ R≥0. The holder has the right, but not the obligation, to exeute the option at

the expiration date T > 0, where the pay-o� is

C(S1, . . . , Sn, T ) = max

(

n
∑

i=1

ωiSi −K, 0

)p

for a Call and

P (S1, . . . , Sn, T ) = max

(

K −
n
∑

i=1

ωiSi, 0

)p

for a Put, whih leads to C(·, T ), P (·, T ) ∈ Cp−1
(

R
n
≥0

)

. The weight ωi ∈ R of the underlying

Si is non-zero for i = 1, . . . , n. Additionally,
n
∑

i=1
ωi = 1 holds.
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We an observe that a European Power Call/Put is a European Power Basket Call/Put

with n = 1. Amerian, Asian and other exoti options an be de�ned analogously to the

one-dimensional ase. We fous, just as in the one-dimensional ase, on European Options.

1.2 Mathematial bakground

In the previous setion we have de�ned options from an eonomial perspetive and shown

their importane to the �nanial world. But these de�nitions only de�ne the prie of the

option at the expiration date T > 0. If an investor wants to hedge with options, it is

ruial to know the urrent fair prie of an option, even though the expiration date still

lies in the future. We have to desribe the behaviour of the underlying assets and their

interation with eah other, as they have an essential impat on the fair prie of an option.

To alulate a fair prie for a given option, one has to determine stohasti models for

the prie movement of the underlying asset(s) of the option, usually by applying stohasti

di�erential equations. There are di�erent possibilities to model an underlying asset. For

example drift and volatility of the asset ould be onstant over time, time dependent de-

terministi funtions or even stohasti proesses. In this thesis we fous on two di�erent

models, namely the Blak-Sholes model [BS73, Mer73℄, where the drift and volatility are

onstant over time, and the Heston model [Hes93℄, where the drift is onstant over time and

the volatility is a mean reverting stohasti proess, whih itself has a onstant volatility.

Eah of those models is disussed in the ase of a single underlying [BS73, Mer73, Hes93℄

as well as in a multi-dimensional setting [Wil98, DCGG13℄.

Sine this thesis is positioned in the �eld of numerial analysis, we revisit the derivation

of partial di�erential equations arising from the previously disussed �nanial models and

give a link between stohasti and deterministi di�erential equations, using the Lemma

of It� [It�44, Irl98℄. The goal of this thesis is to ahieve numerial approximations of the

solution of the deterministi partial di�erential equation with high auray. The �rst

neessary step is the disretisation of the problem. We de�ne a grid for the spatial domain

of the di�erential equations, whih is given by the underlying asset pries, as well as for

the time. Then we show how to disretise the derivatives appearing in the di�erential

equations. The general shape of a disrete sheme is de�ned in a semi-disrete ase, whih

means that only the spatial disretisation is performed, as well as in the fully disretised

ase, where the time disretisation is arried out as well. Neessary onditions for stability
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are given, whih arise when performing a thorough von Neumann stability analysis (e.g.

[Str04℄).

1.2.1 Finanial bakground

When looking at a typial hart of a stok prie, we observe that the value of an underlying

asset does not behave smoothly over time. In fat, hanges in prie an appear very rapidly.

New information, whih ould be the publiation of the balane sheet, or a gain or loss

of an important ontrat, an have a sudden positive or negative impat on the stok

prie. It is important to note that in the ase of a balane sheet it is not the published

performane of the ompany whih reates the hange in the value of the stok, but the

di�erene between the expeted and the atual performane. These previously established

expetations have already in�uened the share-prie beforehand. If the ompany performs

better than expeted, the stok prie goes up. If the result is below the expetations the

prie of the stok goes down. The amount of hange in the share prie is depending on

the magnitude of the di�erene between expeted and atual performane of the ompany.

This means that we have to take this unertainty into onsideration when modelling the

underlying assets of an option. One possible way is to model this unertainty in the stok

pries is to use the Wiener proess (e.g. [Pro04℄) and thus stohasti di�erential equations

(e.g. [Kij03℄).

De�nition 5 (Wiener Proess/Brownian motion):

An adapted proess W = (W (t))0≤t<∞ assuming values in R
n
for n ∈ N≥1 is alled an

n-dimensional Wiener Proess or Brownian motion if

(i) for 0 ≤ s < t < ∞, W (t)−W (s) is independent of the �ltration Fs (inrements are

independent of the past);

(ii) for 0 ≤ s < t, W (t) − W (s) is a Gaussian random variable with mean zero and

variane (t− s)C, for a given, non-random matrix C;

(iii) The Wiener Proess starts at x ∈ R if P[W (0) = x] = 1.

Let (Ft)t∈[0,T ] be a family of sub-σ-algebras Ft ⊆ F with Fs ⊆ Ft for s < t. Then

F =
⋃

t∈[0,T ]

Ft is alled a �ltration, see [Shr04℄.

When looking at a typial stok hart, we usually observe a trend for a ertain time

period. The prie seems likely to move upward or downward, at least for the near future.
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This means that there has to be a omponent in the stok prie model representing this

drift. The volatilities of di�erent stoks have di�erent values, whih means that there has

to be an additional term in the model of an underlying representing the magnitude of the

volatility. This leads diretly to the use of stohasti di�erential equations, whih an also

be de�ned in a multi-dimensional setting.

De�nition 6 (Stohasti di�erential equation):

A stohasti di�erential equation is an integral equation of the form

X(t) −X(0) =

t
∫

0

µ (X(s), s) ds+

t
∫

0

σ (X(s), s) dW (s), (1.1)

where the seond integral term denotes an It� Integral (e.g. [Kij03℄) and X is a vetor of n ∈
N≥1 random variables and W is a vetor of n Wiener proesses. The vetor µ (X(t), t) ∈
R
n×1

denotes the drift and σ (X(t), t) ∈ R
n×n

the orrelation matrix between the Wiener

proesses. A widely used simpler notation for (1.1) is

dX(t) = µ (X(t), t) dt+ σ (X(t), t) dW (t).

The next step is to start modelling the behaviour of an asset prie in detail. We start

with modelling only a single underlying asset. The most basi way is to think of the drift

and volatility of the asset prie as onstant over time, but relative to the asset prie and

not in absolute terms. This leads to the geometri Brownian motion, see e.g. [Kij03℄.

De�nition 7 (Geometri Brownian motion):

Let W (t) be a Wiener Proess, then the solution of

dX(t) = µX(t)dt+ σX(t)dW (t) for t > 0

is a geometri Brownian motion X(t) with onstant drift µ ∈ R and onstant volatility

σ ∈ R for the time t ∈ [0, T ]. We have

E[dX(t)] = µX(t)dt and V[dX(t)] = σ2X(t)2dt

as expeted value and variane.

The basis of modern option priing is the Blak-Sholes model, whih has been proposed

by Fisher Blak and Myron Sholes [BS73℄ and independently by Robert Merton [Mer73℄.
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It desribes the motion of an underlying asset S with a geometri Brownian motion at

time t > 0 through

dS(t) = µS(t)dt+ σS(t)dW (t), (1.2)

where µ is the onstant drift and σ is the onstant volatility of the stok S. The introdu-

tion of this model has led to a huge boost in the �eld of option priing. It has been the

starting point for numerous forthoming models of asset prie movement.

In reality, we an observe that assuming a onstant volatility and drift does not math

the observed asset prie movements well. These assumptions an only be justi�ed when

looking at a short time period. Thus the �rst obvious extension to the geometri Brownian

motion is to have time dependent deterministi drift as well as volatility. This gives a more

realisti model, as we an observe that the volatility is lower in a bull market whereas it is

higher in a bear market, espeially if a rash ours. An ever rising stok prie is not very

realisti either, whih means that a hange in the drift over time is plausible. A pieewise

onstant drift might be a good possibility to math the prie movement of the underlying.

These generalisations in omparison with the Blak-Sholes model [BS73, Mer73℄ an be

ahieved using an It� proess (see e.g. [Kij03℄).

De�nition 8 (It� proess):

An It� Proess is a generalised Wiener Proess with expeted value a(x, t) and standard

deviation b(x, t). It has the form

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t).

The drift and the variane of the proess are funtions of (X, t) and an hange over time.

Using deterministi funtions for the drift as well as volatility assumes that it is possible

to foreast both funtions up to some preision, even for longer time periods. To be able

to explain important e�ets whih are present in real �nanial markets, e.g. the volatility

smile (or skew) in option pries, so-alled stohasti volatility models have been introdued

over the last two deades. In ontrast to the seminal Blak and Sholes model (1.2) or the

It� proess, the underlying asset's volatility is not assumed to be onstant or deterministi,

but is itself modelled by a stohasti di�usion proess.
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De�nition 9 (Stohasti volatility model):

These stohasti volatility models are typially based on a two-dimensional stohasti

di�usion proess with two Brownian motions with orrelation ρ, i.e.

dW (1)(t)dW (2)(t) = ρdt.

On a given �ltered probability spae for the stok prie S(t) and the stohasti volatility

σ(t) one onsiders

dS(t) = µ̄S(t)dt+
√

σ(t)S(t)dW (1)(t),

dσ(t) = a(σ(t))dt+ b(σ(t))dW (2)(t),

where µ̄ is the drift of the stok, a(σ(t)) and b(σ(t)) are the drift and the di�usion oe�ient

of the stohasti volatility.

There are di�erent stohasti volatility models having distint hoies for the evolution

of the volatility for t > 0, starting from an initial volatility σ(0) > 0. The most prominent

work in this diretion is the Heston model [Hes93℄, where

dσ(t) = κ∗
(

θ∗ − σ(t)
)

dt+ v
√

σ(t)dW (2)(t). (1.3)

Other stohasti volatility models are, e.g., the GARCH di�usion model [Dua95℄,

dσ(t) = κ∗
(

θ∗ − σ(t)
)

dt+ vσ(t)dW (2)(t), (1.4)

or the so-alled 3/2-model (see, e.g. [Lew00℄),

dσ(t) = κ∗σ(t)
(

θ∗ − σ(t)
)

dt+ vσ(t)3/2dW (2)(t). (1.5)

In (1.3)-(1.5), κ∗, v, and θ∗ denote the mean reversion speed, the volatility of the volatility,

and the long-run mean of σ, respetively.

The previous examples onsidered the one-dimensional ase, so only allowing a single un-

derlying S. When examining Basket options, it is neessary to onsider models whih

inlude several asset pries at the same time, where an interation between the di�erent

underlying assets with eah other is inluded. Higher dimensional stohasti di�erential

equations ful�l these aspets. Eah underlying itself follows a stohasti proess, where its
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volatility ould be onstant or stohasti as well. The Wiener proesses in these models

are orrelated. These models an for example be used to prie European Basket options,

see De�nition 3. The �rst model we present is the multidimensional Blak-Sholes model

(e.g. [Wil98℄), where the volatility of eah underlying asset is onstant.

De�nition 10 (Multidimensional Blak-Sholes model):

The multidimensional Blak-Sholes model onsists of n ∈ N≥1 underlying assets Si,

i = 1, . . . , n. Eah of these assets follows a geometri Brownian motion,

dSi(t) = µiSi(t)dt+ σiSi(t)dW
(i)(t)

where µi is the drift and σi is the volatility of the asset Si for i = 1, . . . , n. The orrelation

between the assets is given by dW (i)(t)dW (j)(t) = ρijdt.

Analogously to the one-dimensional ase we an argue that a onstant volatility over

time for eah asset is not likely and a mean-reverting stohasti proess for eah volatility

is a better approximation of reality. This leads to the multi-dimensional Heston model,

see for example [DCGG13℄, where eah underlying asset follows a Heston proess.

De�nition 11 (Multidimensional Heston model):

Let there be n ∈ N≥1 stoks. In the multidimensional Heston model eah asset Si

follows a Heston-proess,

dSi(t) =µiSi(t)dt+
√

σi(t)Si(t)dW
(1)
i (t), (1.6)

dσi(t) =κi (θi − σi(t)) dt+ vi
√

σi(t)dW
(2)
i (t), (1.7)

for 0 < t < T . We have µi as the drift of Si and κi, θi and vi as the mean reversion speed,

the long run mean and volatility of the volatility and dW
(1)
i and dW

(2)
i being Brownian

motions for i = 1, . . . , n. Additionally, there is dW
(1)
i dW

(1)
j = λijdt the orrelation between

the stok pries, dW
(1)
i dW

(2)
j = ρijdt the orrelation between the stok pries and the

volatilities and dW
(2)
i dW

(2)
j = ηijdt the orrelation between the volatilities.

It would of ourse be possible to use other stohasti volatility models, e.g. the

GARCH di�usion model or the 3/2 model similarly using equations (1.4) and (1.5) in

an n-dimensional setting as well.

Next, we reall the Lemma of It�, whih plays an important role when trying to de-

rive partial di�erential equations from the above stohasti di�erential equations. First we
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reall the one-dimensional Lemma of It� [It�44℄.

Lemma 1 (One-dimensional Lemma of It�):

Let V: R×R+ → R be a funtion, where V is twie ontinuously di�erentiable in the �rst

variable and ontinuously di�erentiable in the seond variable. Further let S(t) be an It�

proess with drift f(S(t), t) and standard deviation g(S(t), t),

dS(t) = f(S(t), t)dt+ g(S(t), t)dW (t).

Then

dV (S(t), t) =

(

∂V (S(t), t)

∂S
f(S(t), t) +

∂V (S(t), t)

∂t
+

1

2

∂2V (S(t), t)

∂S2
g2(S(t), t)

)

dt

+
∂V (S(t), t)

∂S
g(S(t), t)dW (t)

holds. This means that V (S(t), t) is again an It� proess with drift

∂V (S(t), t)

∂S
f(S(t), t) +

∂V (S(t), t)

∂t
+

1

2

∂2V (S(t), t)

∂S2
g2(S(t), t)

and standard deviation

∂V (S(t), t)

∂S
g(S(t), t).

As we alulate an approximation of the fair prie of basket options and thus disuss

multi-dimensional stohasti di�erential equations, we need to be able to derive partial

di�erential equations in those ases as well. The Heston proess is a two-dimensional

stohasti proess as well, even though the setting only inludes one underlying asset. In

order to ahieve this we need to adopt the multi-dimensional Lemma of It� (e.g. [Irl98℄).

Lemma 2 (Multi-dimensional Lemma of It�):

Let X(t) be an n-dimensional It� proess, for example

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t)

with

Xt =
(

X(1)(t), . . . ,X(n)(t)
)⊤

, Wt =
(

W (1)(t), . . . ,W (n)(t)
)⊤

,

a(X(t), t) = (a1(X(t), t), . . . , an(X(t), t))⊤ and b(X(t), t) =(bik(X(t), t))k=1,...,m
i=1,...,n .

Further we have g : Rn × [0,∞) → R
p
with g ∈ C2(Rn × [0,∞)). Then Y (t) = g(X(t), t)
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is again an It� proess and for k = 1, . . . , p we have

dY (t)(k) =
∂gk
∂t

(X(t), t)dt+
n
∑

i=1

∂gk
∂xi

(X(t), t)dX(t)(i)

+
1

2

n
∑

i,j=1

∂2gk
∂xi∂xj

(X(t), t)dX(t)(i)dX(t)(j),

where dW (t)(i)dW (t)(j) = 〈dW (t)(i),dW (t)(j)〉dt with 〈dW (t)(i),dW (t)(j)〉 being the or-

relation between dW (t)(i) and dW (t)(j). Thus dtdt = 0, dW (t)(i)dt = 0 as well as

dtdW (t)(i) = 0 holds.

1.2.2 Numerial bakground

The previous parts of this Setion had neessary de�nitions in eonomis, �nane and

stohasti as ontent. In this setion we give preliminaries from numerial analysis. To

start, we introdue a linear paraboli partial di�erential equation, depending on time and a

multi-dimensional spatial domain, and give some examples of partial di�erential equations

of this type appearing in option priing. We introdue the disretisation of the spatial do-

main and show how we an use this grid to disretise the derivatives appearing in the linear

seond-order partial di�erential equation. The notation for a semi-disrete �nite di�erene

sheme as well as a fully disretised �nite di�erene sheme are introdued. Finally, we

reall a neessary ondition for von Neumann stability, see for example [Str04℄.

Linear seond-order paraboli partial di�erential equations are at the heart of this

thesis. In Chapter 2 we derive four di�erent essentially high-order ompat shemes to

approximate the numerial solution of the paraboli partial di�erential equation in a general

setting for a two-dimensional spatial domain. In Chapter 3 we derive high-order ompat

shemes for linear seond-order paraboli partial di�erential equations in multiple spae

dimensions.

De�nition 12 (n-dimensional linear seond-order paraboli partial di�erential equation):

An n-dimensional linear seond-order paraboli partial di�erential equation for

n ∈ N≥1 is an equation of the form

d
∂u

∂τ
+

n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= g in Ω× Ωτ , (1.8)

with initial ondition u0 = u(x1, . . . xn, 0), where Ω ⊂ R
n
is of an n-dimensional u-
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bial shape and Ωτ = ]0, τmax] with some �nal time τmax > 0 and subjet to suitable

boundary onditions. Additionally, the oe�ients ai(< 0), bij, ci, d and g are fun-

tions of (x, τ) ∈ Ω × Ωτ for i, j ∈ {1, . . . , n}. As a ondition on the oe�ients we have

ai (·, τ) , bij (·, τ) , ci (·, τ) , d (·, τ) ∈ C2 (Ω) for any τ ∈ Ωτ .

In addition to standard assumptions, we assume that the solution of (1.8) satis�es

u (·, τ) ∈ C6 (Ω) for any τ ∈ Ωτ as well as u (x, ·) ∈ C (Ωτ ) for any x ∈ Ω.

After de�ning a di�erential equation in a general sense, we derive spei� di�erential

equations whih arise from the �nanial models we have disussed so far. We start in the

one-asset setting with the Blak-Sholes model and the stohasti volatility model. We also

derive the partial di�erential equations whih result from the multi-stok models, namely

the multi-dimensional Blak-Sholes model and the multi-dimensional Heston model.

Di�erential equation of the Blak-Sholes model

One example for a partial di�erential equation is the Blak-Sholes equation

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0. (1.9)

The derivation of this partial di�erential equation from the stohasti di�erential equation

of the Blak-Sholes model (1.2), whih uses Lemma 1 and standard arbitrage arguments,

an for example be found in [Wil98℄. We have also shown this derivation of [Wil98℄ in

Appendix A. The variable S ∈ R≥0 denotes the stok prie, whih has a onstant volatility

σ ≥ 0 over time. With r ≥ 0 we denote the risk-less interest rate and δ > 0 is the

ontinuous dividend. When disretising this problem we need to introdue an arti�ial

boundary, namely a su�iently large upper bound Smax > 0, whih leads to a spatial

domain Ω = [0, Smax]. The �nal and boundary onditions for this di�erential equation are

depending on the type of option disussed. For a European Power Put with power p ∈ N≥1

and strike prie K > 0 the �nal ondition is

V (S, t) =max (K − S, 0)p .
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Di�erential equation of the stohasti volatility model

Any option prie V = V (S, σ, t) that follows a stohasti volatility model, ompare De�-

nition 9, solves the following partial di�erential equation

∂V

∂t
+
1

2
σS2σ

∂2V

∂S2
+ρb(σ)σS

∂2V

∂S∂σ
+
1

2
b2(σ)

∂2V

∂σ2
+
(

a(σ)−λ(S, σ, t)
)∂V

∂σ
+rS

∂V

∂S
−rV = 0,

(1.10)

where r > 0 is the (onstant) riskless interest rate and λ(S, σ, t) denotes the market prie

of volatility risk, ompare [Wil98℄. This an be shown with appliation of the multi-

dimensional Lemma of It�, see Lemma 2, and standard arbitrage arguments. Equation

(1.10) has to be solved for the stok prie S, the volatility σ > 0, the time 0 ≤ t ≤ T ,

where T > 0, as well as subjet to �nal and boundary onditions whih depend on the

spei� option that is to be pried.

As usual, we restrit ourselves to the ase where the market prie of volatility risk

λ(S, σ, t) is proportional to σ and hoose λ(S, σ, t) = λ0σ for some onstant λ0 > 0. This

allows to study the problem using the modi�ed parameters

κ = κ∗ + λ0, θ =
κ∗θ∗

κ∗ + λ0
,

whih is both onvenient and standard pratie. For similar reasons, some authors set the

market prie of volatility risk to zero.

The partial di�erential equation of the Heston model [Hes93℄ is then given by

∂V

∂t
+

1

2
σS2 ∂

2V

∂S2
+ ρvσS

∂2V

∂S∂σ
+

1

2
v2σ

∂2V

∂σ2
+ rS

∂V

∂S
+ κ(θ − σ)

∂V

∂σ
− rV = 0, (1.11)

where S ∈
[

0, Smax

]

with a hosen Smax > 0, σ ∈ [σmin, σmax] with 0 ≤ σmin < σmax

and t ∈ [0, T [ with T > 0, after imposing arti�ial boundary onditions for S and σ in a

lassial manner.

Di�erential equation of the multi-dimensional Blak-Sholes model

The third model we want to disuss is the multi-dimensional Blak-Sholes model. There

are n ∈ N≥1 di�erent stok pries, namely Si for i = 1, . . . , n, whih eah follow a stohasti

proess, see De�nition 10. In the ase n = 1, the partial di�erential equation is given by
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(1.9). For the ase n > 1 we obtain

∂V

∂t
+

1

2

n
∑

i=1

σ2
i S

2
i

∂2V

∂S2
i

+
n
∑

i,j=1
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n
∑

i=1

(r − δi)Si
∂V

∂Si
− rV =0. (1.12)

This equation an be derived using the multi-dimensional Lemma of It�, see Lemma 2, and

standard arbitrage arguments, see [Wil98℄. Eah stok prie Si has a onstant volatility

over time given by σi and a ontinuous dividend indiated by δi for i = 1, . . . , n. The

orrelation of the stok pries Si and Sj is given by ρij for i, j = 1, . . . , n and the risk-free

interest rate is denoted by r > 0. After introduing a su�iently large arti�ial boundary

Smax
i > 0 for eah stok value we have Si ∈ [0, Smax

i ] and t ∈ [0, T ] for some T > 0. For a

European Power Put the �nal ondition is

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

with p ∈ N≥1 and strike prie K > 0.

Di�erential equation of the multi-dimensional Heston model

The last model we disuss is the multi-dimensional Heston model, see for example [DCGG13℄.

We start with the stohasti di�erential equation (1.6). Using the multi-dimensional

Lemma of It� and standard arbitrage arguments, we an derive the general multi-dimensional

Heston partial di�erential equation, see Appendix B, whih is given by

∂V

∂t
+

n
∑

i=1

rSi
∂V

∂Si
+

n
∑

i=1

κi (θi − σi)
∂V

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2V

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2V

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2V

∂σi∂σj
− rV − Λ = 0,

where Λ denotes the market prie of volatility risk. In a risk-neutral market we have Λ = 0,

in a risk-averse market there is Λ > 0 and in the unlikely event of a risk-prone market Λ

would be negative. We have to introdue arti�ial boundaries for the stok prie Si and

the volatility σi, whih leads to Si ∈ [0, Smax
i ] for Smax

i > 0 and σi ∈ [σmin
i , σmax

i ] with

0 < σmin
i < σmax

i for i = 1, . . . , n. In the underlying stohasti model, eah volatility

σi follows a mean reverting stohasti proess, whih has a volatility of vi > 0, a mean

reversion speed of κi > 0 and a mean of θi > 0 for i = 1, . . . , n. The risk-free interest rate

is denoted by r > 0. Sine eah stok Si follows a Heston proess, we have three di�erent

possible orrelations. The �rst orrelation between the stok Si and the stok Sj is denoted
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by λij , whereas ρij represents the orrelation between the stok Si and the volatility σj .

Finally, the orrelation between the volatilities σi and σj is denoted by ηij . For a linear

prie of volatility risk we have

Λ =

n
∑

i=1

αiσi
∂V

∂σi

with onstant αi > 0 for all i = 1, . . . , n, assuming a risk-averse market. Thus we an use

κi (θi − σi)− αiσi =(κi + αi)

(

κiθi
κi + αi

− σi

)

= κ̃i

(

θ̃i − σi

)

.

We observe that it is possible to obtain a risk-adjusted multi-dimensional Heston model

analogously to the derivation of the one-dimensional partial di�erential equation (1.11).

Dropping the tilde-signs for κ̃i and θ̃i leads to the risk-neutral or risk-adjusted multi-

dimensional Heston partial di�erential equation

∂V

∂t
+

n
∑

i=1

rSi
∂V

∂Si
+

n
∑

i=1

κi (θi − σi)
∂V

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2V

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2V

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2V

∂σi∂σj
− rV = 0. (1.13)

For a multi-dimensional Power Put with power p ∈ N≥1 the �nal ondition is given by

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

where

∑

i=1
ωi = 1 and ωi > 0 for i = 1, . . . , n, if short-selling is not allowed.

After de�ning the partial di�erential equations arising from di�erent stok prie models,

we need to introdue some notation for a disrete numerial sheme, whih approximate

the solution of a given partial di�erential equation. The �rst step is to introdue a grid on

the given spatial domain.
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De�nition 13 (Grid of a spatial domain):

Let Ω ∈ R
n
for n ∈ N≥1 be of an n-dimensional ubial shape. Then we an write

Ω =

n
⊗

k=1

[

x
(k)
min, x

(k)
max

]

,

where −∞ < x
(k)
min < x

(k)
max < ∞ for k = 1, . . . , n. The n-dimensional grid of Ω is then

de�ned as

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik (∆xk) , 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

,

where ∆xk > 0 and Nk ∈ N≥1 and x
(k)
max = x

(k)
min+(Nk−1) (∆xk) for k = 1, . . . , n. By

◦
G

(n)

we denote the interior points of G(n)
. If ∆xk = h for some h > 0 and all k ∈ {1, . . . , n}

holds, then we use the notation G
(n)
h and

◦
G

(n)

h for the grid.

After introduing the general n-dimensional grid we de�ne the ompat stenil, whih

ould be ategorised as the neighbours of a given point x ∈ ◦
G

(n)
. Our goal is to derive

high-order ompat shemes. This means that we have to explain the meaning of 'ompat'.

When disretising a partial di�erential equation at a point of

◦
G

(n)
, we only want to use

the disrete solution at this point and its neighbours.

De�nition 14 (ompat stenil):

Let G(n)
be a n-dimensional grid. With a ompat stenil Û(x) we denote the diret

neighbours of an inner point of the grid G(n)
. With x̂ = (xi1 , . . . , xin) ∈

◦
G

n
the ompat

stenil is given by

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} (1.14)

where Ui1,...,in is an approximation of u (xi1 , . . . , xin).

After introduing the grid and ompat stenil, we now reall the entral di�erene

disretisation of the derivatives appearing in the partial di�erential equation (1.8). With
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the entral �nite di�erene operator for eah diretion in spae, we have

∂2u

∂x2k
=Dc

kD
c
kUi1,...,in − (∆xk)

2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂u

∂xk
=Dc

kUi1,...,in − (∆xk)
2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

,

∂2u

∂xk∂xp
=Dc

kD
c
pUi1,...,in − (∆xk)

2

6

∂4u

∂x3k∂xp
− (∆xp)

2

6

∂4u

∂xk∂x3p
+O

(

(∆xk)
4
)

+O
(

(∆xk)
2(∆xp)

2
)

+O
(

(∆xp)
4
)

+O
(

(∆xk)
6

∆xp

)

(1.15)

for k, p ∈ {1, . . . , n} and k 6= p on the grid-points (xi1 , . . . , xin) ∈ ◦
G

(n)
, whih an be

proved using Taylor approximation.

After desribing disretisations, the natural next step is to introdue the notation for

a semi-disrete and fully-disrete �nite di�erene sheme. Semi-disrete means that the

spatial disretisation is applied, but there is no disretisation in time. For a fully-disrete

sheme the time-disretisation is performed as well.

De�nition 15 (Semi-disrete �nite di�erene sheme):

A semi-disrete �nite di�erene sheme whih is used to approximate the solution of

an n-dimensional linear partial di�erential equation (1.8) is of the form

∑

x̂∈G(n)

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g̃(x, τ) +O
(

hd
)

, (1.16)

where x̂ = (xi1 , . . . , xin) at time τ for eah point x ∈ G(n)
. With the funtion

Ui1,...,in(τ) : Ωτ → R,

where Ωτ is given by (1.8), we denote the approximation of u (xi1 , . . . xin , τ) at the point

(xi1 , . . . xin) ∈ G(n)
at time τ ∈ Ωτ . Mx and Kx depend on the oe�ients of the derivatives

in (1.8) as well as the partiular type of spatial disretisation. In the spatial interior g̃ is

given by the method of derivation of the sheme and the funtion g, whih is the right hand

side of the underlying partial di�erential equation (1.8). On the spatial boundaries g̃ an

additionally be in�uened by the boundary onditions. This sheme is alled semi-disrete

as a spatial disretisation is performed, whereas there is no disretisation in time. The

onsisteny order in spae of this sheme is d, when ∆xi ∈ O (h) for a step-size h > 0 for

i = 1, . . . , n.
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For the disretisation in time there are many possibilities. The Expliit or Impliit

Euler time disretisation or the Crank-Niolson type time disretisation are examples of

one-step methods. It would also be possible to apply multi-step methods, though one would

have to use one-step methods �rst to ahieve the values at the needed starting points in

time.

The Expliit and Impliit Euler time disretisation only lead to �rst order onsisteny

in time. The Expliit sheme even has restritions on the step-size in time. In order to

ahieve a fully disrete sheme, whih has fourth order onvergene (if stable) in terms of

h, the step-size in time has the restrition ∆τ ∈ O
(

h4
)

. This means that the number of

points in time grow very quikly.

The Crank-Niolson type time disretisation, see for example [Str04, Wil98℄, onverges

with order two, if stable, and has no time-step restritions. Hene, we apply the Crank-

Niolson time disretisation to our semi-disrete sheme, as we then an ahieve fourth

order onvergene (if stable) in terms of h, if ∆τ ∈ O
(

h2
)

. So we save two orders when

omparing this with the Expliit or Impliit Euler time-disretisation.

We write down the semi-disrete �nite di�erene shemes of our methods in detail in

order to make any time-disretisation method easily appliable, whih means a hange of

the time-disretisation an be exeuted quikly, if wanted. Sine we will use the Crank-

Niolson type time-disretisation for the above mentioned reasons, we give the following

de�nition of a fully disrete �nite di�erene sheme, see for example [DF12a℄.

De�nition 16 (Fully disrete Crank-Niolson-type sheme):

Let there be a semi-disrete �nite di�erene sheme with onsisteny order d ∈ N≥1 of

the form (1.16). When using an equidistant time grid of the form τk = k∆τ for k =

0, . . . , Nτ with Nτ ∈ N, the fully disrete sheme using Crank-Niolson-type time

disretisation with step size ∆τ is given by

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in +O

(

hd
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)
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with ∆xi ∈ O (h) for i = 1, . . . , n and a stepsize h > 0,

Ax (xi1 , . . . , xin) := Mx (xi1 , . . . , xin) +
∆τ

2
Kx (xi1 , . . . , xin)

and

Bx (xi1 , . . . , xin) := Mx (xi1 , . . . , xin)−
∆τ

2
Kx (xi1 , . . . , xin)

on eah point x of the grid G(n)
, where Uk

i1,...,in
denotes the approximation of u at the point

(xi1 , . . . , xin) ∈ G(n)
and time τk with k ∈ {0, . . . , Nτ}. This system of equations has

to be solved for all points in time, starting with k = 0. The funtions Mx, Kx and g̃ are

de�ned as in the semi-disrete sheme. Thus the fully disrete sheme has seond order

onsisteny in time and onsisteny order d in spae.

We have now introdued a fully disrete sheme whih has onsisteny order two in

time and d ∈ N≥1 in spae. The next step is to de�ne a high-order ompat sheme.

De�nition 17 (High-order ompat �nite di�erene sheme):

A high-order ompat �nite di�erene sheme is a fully disrete sheme using Crank-

Niolson-type time disretisation, as given in De�nition 16 with d = 4. Additionally, it

uses only points on the ompat stenil (1.14). This means that for a high-order ompat

�nite di�erene sheme we have

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in +O

(

h4
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)

with ∆xi ∈ O (h) for i = 1, . . . , n and a stepsize h > 0,

Ax (xi1 , . . . , xin) := Mx (xi1 , . . . , xin) +
∆τ

2
Kx (xi1 , . . . , xin)

and

Bx (xi1 , . . . , xin) := Mx (xi1 , . . . , xin)−
∆τ

2
Kx (xi1 , . . . , xin)

on eah point x ∈ G(n)
. The funtions Mx, Kx and g̃ are de�ned as in the semi-disrete

sheme and Uk
i1,...,in

denotes the approximation of u at the point (xi1 , . . . , xin) ∈ G(n)
and

time τk with k ∈ {0, . . . , Nτ}. For a high-order ompat sheme, additionally

Mx(x̂) =0 and Kx(x̂) = 0
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holds for all x̂ ∈ G \ Û (x) and for all x ∈ ◦
G

(n)
. The sheme is alled high-order, as we

ahieve an overall fourth order onsisteny in terms of h when using ∆τ ∈ O
(

h2
)

.

After de�ning a high-order ompat sheme for a n-dimensional spatial domain with n ∈
N, we now want to de�ne an essentially high-order ompat sheme for a two-dimensional

spatial domain.

De�nition 18 (Essentially high-order ompat �nite di�erene sheme):

An essentially high-order ompat �nite di�erene sheme is a fully disrete sheme

using Crank-Niolson-type time disretisation, as given in De�nition 16 with n = 2. Addi-

tionally, it uses only points on the ompat stenil (1.14). This means that for an essentially

high-order ompat �nite di�erene sheme we have

N1
∑

i1=1

N2
∑

i2=1

Ax (xi1 , xi2)U
k+1
i1,i2

=

N1
∑

i1=1

N2
∑

i2=1

Bx (xi1 , xi2)U
k
i1,...,in + h2R2 +O

(

h4
)

+
(∆τ)

2
(g̃(x, τk) + g̃(x, τk+1)) +O

(

(∆τ)2
)

with ∆x1,∆x2 ∈ O (h) for a stepsize h > 0,

Ax (xi1 , xi2) := Mx (xi1 , xi2) +
∆τ

2
Kx (xi1 , xi2)

and

Bx (xi1 , xi2) := Mx (xi1 , xi2)−
∆τ

2
Kx (xi1 , xi2)

on eah point x ∈ G(2)
. We have

R2 = C
∂4

∂x41
, R2 = C

∂4

∂x42
,

R2 = C
∂4

∂x31∂x2
or R2 = C

∂4

∂x1∂x
3
2

.

The value C is neither depending on h nor on the funtion u. The funtions Mx, Kx and

g̃ are de�ned as in the semi-disrete sheme and Uk
i1,i2

denotes the approximation of u at

the point (xi1 , xi2) ∈ G(2)
and time τk with k ∈ {0, . . . , Nτ}. For an essentially high-order

ompat sheme, additionally

Mx(x̂) =0 and Kx(x̂) = 0
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holds for all x̂ ∈ G \ Û (x) and for all x ∈ ◦
G

(2)
, whih means that we just use points of the

ompat stenil in the disretisation of the spatial interior.

We an see learly from the de�nition of an essentially high-order ompat sheme, that

it has an overall onsisteny order of two. But when the remaining seond order trunation

order is small enough, we an expet a fourth-order onvergene of the sheme (if stable)

up to a ertain stepsize h∗. If the stepsize does get smaller than this ritial stepsize, then

the sheme has seond order onsisteny. If we should have a wanted auray level, whih

is already ful�lled by the numerial sheme when using a step-size up to h∗, then we will

have a fourth order onvergene of the sheme (if stable) for the pratial usage.

Essentially high-order ompat shemes are espeially appliable to situations, where

there is a ertain area of interest. It ould be possible, that we wish to zoom in an area

of interest. Transforming this grid into an equidistant grid ould lead to a partial di�er-

ential equation, whose oe�ients do not ful�ll the onditions for a high-order ompat

sheme (see Setion 3.3). We ould have good arguments regarding R2, that the essen-

tially high-order ompat sheme gives an ahieve a fourth-order onvergene rate up to

our wanted auray level. That would mean that there are no downsides when using the

essentially high-order ompat sheme in omparison with the high-order ompat sheme,

even though the essentially high-order ompat sheme has a theoretial onsisteny of

order two. In Setion 2.6 we show that this is possible for the Heston model.

Sine onsisteny is already de�ned, we need to give onditions for stability to ahieve

onvergene. In this thesis we perform a von Neumann stability analysis [Str04℄ for gen-

eral high-order ompat shemes with vanishing ross derivative terms in the two- and

three-dimensional ase. We give partial results for non-vanishing ross derivative terms

for n = 2, 3. The di�ulty in the stability analysis lies in the high-dimensionality of the

problem and the non-onstant oe�ients of equation (1.8).

The von Neumann stability ondition is a neessary stability ondition for problems

with periodi boundary onditions, ompare [Str04℄. We apply the von Neumann stabil-

ity analysis for frozen oe�ients, whih means we onsider the oe�ients of (1.8) as

onstant, ompare [GKO13, Str04℄, to analyse the multi-dimensional high-order ompat

�nite di�erene shemes in De�nition 17. The most general statements about the dis-

rete ase an be found in [GKO13, MS10, SW88, Wad90℄ for hyperboli problems and in
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[RM67, Wid66℄ for paraboli problems. The frozen oe�ients approah gives a neessary

stability ondition, whih slightly strengthened ensures overall stability [RM67℄.

De�nition 19 (Neessary von Neumann stability ondition):

Let

N1
∑

i1=1

. . .

Nn
∑

in=1

Ax (xi1 , . . . , xin)U
k+1
i1,...,in

=

N1
∑

i1=1

. . .

Nn
∑

in=1

Bx (xi1 , . . . , xin)U
k
i1,...,in + ĝ(x, τk, τk+1)

at grid point x ∈ G(n)
and time τ = k∆τ be the fully disrete �nite di�erene sheme. We

use

Un
i1,...,in = gneI(i1z1+...+inzn),

where I is the imaginary unit, gn is the amplitude at time level n, zi = 2πh/λi for the

wavelength λi ∈ [0, 2π[ for i = 1, . . . , n. Then the fully disretised �nite di�erene sheme

satis�es the neessary von Neumann stability ondition, if for all zi the ampli�ation

fator G = gn+1/gn satis�es the relation

|G|2 − 1 ≤ 0. (1.17)

1.3 Researh overview and aims of the thesis

In this setion we give a brief overview on the mathematial researh whih has been done

in the �eld of option priing, onerning the derivation of analytial solutions or partial

di�erential equations arising from di�erent stok prie models. We also give examples for

various possible numerial shemes whih approximate the option prie, where we fous on

the researh on high-order ompat shemes. The mentioned literature naturally leads to

the aims of this thesis.

For some models and under additional restritions, losed form solutions to (1.10) an

be obtained by Fourier methods (see, e.g. [Hes93, Dür09℄). Another approah is to derive

approximate analyti expressions, see, e.g. [BGM10℄ and the literature ited therein. In

general, however, �even in the Heston model when the parameters are non onstant�

equation (1.10) has to be solved numerially. Moreover, many (so-alled Amerian) options

feature an additional early exerise right. Then one has to solve a free boundary problem

whih onsists of (1.10) and an early exerise onstraint for the option prie. For this
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problem one typially has to resort to numerial approximations.

In the mathematial literature, there are a number of papers onsidering numerial

methods for option priing in stohasti volatility models, i.e. for two spatial dimensions.

Finite di�erene approahes that are used are often standard, low order methods (seond

order in spae). Other approahes inlude �nite element-�nite volume [ZFV98℄, multigrid

[CP99℄, sparse wavelet [HMS05℄, or spetral methods [ZK10℄.

Let us review some of the related �nite di�erene literature. Di�erent e�ient methods

for solving the Amerian option priing problem for the Heston model are ompared in

[IT08℄. The artile fousses on the treatment of the early exerise free boundary and uses

a seond order �nite di�erene disretization. In [IHF10℄ di�erent, low order ADI (alter-

nating diretion impliit) shemes are adapted to the Heston model in order to inlude the

mixed spatial derivative term.

High-order ompat shemes have been introdued in �uid dynamis for onvetion

dominated partial di�erential equations, see e.g. [GMS84℄. With a high ratio of onvetion

to di�usion the standard seond order �nite di�erene shemes using the entral di�erene

operator leads to non-physial osillations in the numerial solution. A usage of the Up-

wind disretisation, whih resolves the problem of the osillations, only has a �rst order

onvergene rate. The re�nement of the grid has to be very large and thus there is a huge

omputational ost when using the Upwind disretisation. This leads to the introdution

of high-order ompat shemes (see e.g. [GMS84℄), whih have a fourth-order onvergene

rate and resolve the problem of osillations in the numerial approximation as well. In �-

nane, we do not have suh problems in the partial di�erential equations of option priing

and are more interested in the higher onvergene order.

While most of [TGB08℄ fousses on high-order ompat sheme for the standard (one-

dimensional) ase, in a short remark [TGB08, Setion 5℄ the stohasti volatility (two-

dimensional) ase is onsidered as well. However, the �nal sheme is of seond order only

due to the low order approximation of the ross di�usion term. High-order �nite di�er-

ene shemes (fourth order in spae) were proposed for option priing with deterministi

(or onstant) volatility, i.e. in one spatial dimension, that use a ompat stenil (three

points in spae), see for example [TGB08℄ for linear and [DFJ03, DFJ04, LK09℄ for fully
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non-linear problems.

More reently, a high-order ompat �nite di�erene sheme for (two-dimensional) op-

tion priing models with stohasti volatility has been presented in [DF12a℄. This sheme

uses a uniform grid and is fourth order aurate in spae and seond order aurate in time.

Unonditional (von Neumann) stability of the sheme is proved for vanishing orrelation.

A further study of its stability, indiating unonditional stability as well for non-zero or-

relation, is performed in [DF12b℄.

Our �rst aim in this thesis is to onsider extensions of the high-order ompat method-

ology for stohasti volatility models (1.10) to non-uniform grids. In general, the auray

of a numerial disretisation of (1.10) for a given number of grid points an be greatly

improved by onsidering a non-uniform mesh. This is partiularly true for option priing

problems as (1.10), as typial initial onditions have a disontinuity in their �rst derivative

at S = K, whih is the entre of the area of interest (`at-the-money'). The basi idea of our

approah is to introdue a transformation of the partial di�erential equation from a non-

uniform grid to a uniform grid (as in [Fou00℄). Then the high-order ompat methodology

an be applied to this transformed partial di�erential equation. It turns out, however, that

this proess is not straight forward as the derivatives of the transformation appear in the

trunation error. Due to the presene of the ross-derivative terms, one annot proeed to

anel terms in the trunation error in a similar fashion as in [DF12a℄ and the derivation

of a high-order ompat sheme beomes muh more involved. This derivation is ahieved

in a general manner and then applied to the Heston model on a non-uniform grid. We are

able to derive a ompat sheme whih shows high-order onvergene for typial European

option priing problems.

After foussing on stohasti volatility models, we now disuss the approah of high-

order ompat shemes in a more general manner. In the last deades, starting from early

e�orts of Gupta et al. [GMS84, GMS85℄ high-order ompat �nite di�erene shemes were

proposed for the numerial approximation of solutions to ellipti [SC96℄, later also for

paraboli partial di�erential equations [SC01, KZ02℄. These shemes are able to exploit

the smoothness of solutions to suh problems and ahieve a high-order (typially stritly

larger than two in the spatial disretisation parameter) numerial onvergene rate while

generally having good stability properties. Compared to �nite element approahes, the
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high-order ompat shemes are very parsimonious and memory-e�ient to implement

and hene prove to be a viable alternative if the omplexity of the omputational domain

is not an issue.

One ould in priniple ahieve higher-order approximations also by inreasing the om-

putational stenil, but this leads to inreased bandwidth of the disretisation matries and

ompliates formulations of boundary onditions. Moreover, suh approahes sometimes

su�er from restritive stability onditions and spurious numerial osillations. These prob-

lems do not arise when using a ompat stenil.

Although applied suessfully to many important appliations, e.g. in omputational

�uid dynamis [SC95, LTF95, LT01℄ and omputational �nane [DFJ03, DFJ04, TGB08,

DF12a, DFH14℄, an even wider breakthrough of the high-order ompat methodology has

been hampered by the algebrai omplexity that is inherent in this approah. The deriva-

tion of high-order ompat shemes is algebraially demanding and hene these shemes

are often tailor-made for a spei� appliation or a rather smaller lass of problems (with

some notable exeptions as for example Lele's paper [Lel92℄). The algebrai omplexity

is even higher in the numerial stability analysis of these shemes. Unlike for standard

seond-order shemes, the established stability notions imply formidable algebrai prob-

lems for high-order ompat shemes. As a result there are relatively few stability results

for high-order ompat shemes in the literature. This is even more pronouned in higher

spatial dimension, as most of the existing studies with analytial stability results for high-

order ompat shemes are limited to a one-dimensional setting.

Most works fous on the isotropi ase where the main part of the di�erential operator

is given by the Laplaian. Another layer of omplexity is added when the anisotropi ase

is onsidered and mixed seond-order derivative terms are present in the operator. Few

works on high-order ompat shemes address this problem, and either study onstant o-

e�ient problems [FK06℄ or spei� equations [DF12a℄.

Consequently, our seond aim in this thesis is to establish a high-order ompat method-

ology for a general lass of linear paraboli partial di�erential equation with time and spae

dependent oe�ients and with mixed seond-order derivative terms in arbitrary spatial

dimension. Problems of this type arise frequently in omputational �uid dynamis and
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omputational �nane. We derive general onditions on the oe�ients whih allow to ob-

tain a high-order ompat sheme whih is fourth-order aurate in spae and seond-order

aurate in time. Moreover, we perform a thorough von Neumann stability analysis of the

Cauhy problem in two and three spatial dimensions for vanishing mixed derivative terms,

and also give partial results for the general ase. As an appliation example we onsider

the priing of European Power Put basket options with two and three underlying assets.

The partial di�erential equation features seond-order mixed derivative terms and is sup-

plemented by an initial ondition with low regularity. We use the smoothing operators

given by Kreiss et al. [KTW70℄ to restore high-order onvergene.

1.4 Struture of this thesis

This thesis onsists of two major parts, one being the introdution and appliation of essen-

tially high-order ompat shemes, whih an espeially be used for the use of non-uniform

grids, in a two-dimensional spatial domain and the other being the derivation, von Neu-

mann stability analysis and appliation of high-order ompat shemes in an n-dimensional

spatial domain.

In Chapter 2 we develop and study new essentially high-order ompat �nite di�erene

shemes in a general setting on a non-uniform grid, see De�nition 12 with n = 2. This

means that we have a fully disrete sheme of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) + h2R2 +O
(

h4
)

,

where G
(2)
h is a grid on the retangle Ω ⊂ R

2
. We derive four di�erent essentially high-

order ompat shemes and thus the term R2, whih is depending on the version of the

disretisation, is of one of the following forms

R2 =C
∂4u

∂x41
, R2 = C

∂4u

∂x42
, R2 = C

∂4u

∂x31∂x2
or R2 = C

∂4u

∂x1∂x
3
2

,

where in eah ase C is independent of h and u. This means that the sheme has an

analytial onsisteny order two. We an ahieve fourth-order onsisteny up to a given

tolerane, though, if R2 is small enough. We also derive onstraints on the oe�ients of

the partial di�erential equation, whih give R2 ≡ 0 and thus a high-order ompat sheme.
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We apply the essentially high-order ompat shemes to stohasti volatility models

in option priing with non-uniform grids. This means that for a grid there is a fous on

the values around the strike prie K. The shemes are fourth-order aurate in spae and

seond-order aurate in time for vanishing orrelation, whih means that in this ase there

is R2 ≡ 0. In the numerial study we obtain high-order numerial onvergene as well for

non-zero orrelation and non-smooth pay-o�s whih are typial in option priing. In all

numerial experiments a omparative standard seond-order disretisation is signi�antly

outperformed. We ondut a numerial stability study whih indiates unonditional sta-

bility of the sheme.

In Chapter 3 we introdue and analyse a high-order ompat sheme with n-dimensional

spatial domain in a general setting, see De�nition 12, whih means that our semi disrete

sheme is of the form

∑

x̂∈G
(n)
h

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g(x, τ) +O
(

h4
)

.

We thus obtain fourth-order auray in spae and seond-order auray in time, when

using Crank-Niolson-type time-disretisation [Str04, Wil98℄. This leads to an overall on-

sisteny order of four in terms of h if ∆τ ∈ O
(

h2
)

is used.

Next, we perform a von Neumann stability analysis, see for example [Str04℄, for spa-

tial domains with dimensions two and three, where we prove that the neessary stability

ondition (see De�nition 19) holds unonditionally without additional restritions on the

hoie of the disretisation parameters for vanishing mixed derivative terms. We also give

partial results for non-vanishing mixed derivative terms.

In our numerial experiments, we apply the high-order ompat shemes to the partial

di�erential equation arising from the multi-dimensional Blak-Sholes model. In all nu-

merial experiments, where the initial onditions are smoothed for European Power baskets

with p = 1, 2 using the smoothing operators proposed by [KTW70℄, a omparative stan-

dard seond-order disretisation is signi�antly outperformed. As a seond example, the

multi-dimensional Heston basket option is onsidered for n independent Heston proesses,

where for eah Heston proess there is a non-vanishing orrelation between the stok and

its volatility. Due to the high-dimensionality of this model we only show the possibility of
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a high-order ompat sheme.

The �rst ontribution of this thesis to the �eld is the introdution of essentially high-

order ompat shemes for general linear partial di�erential equations with spae- and

time-dependent oe�ients in two spatial dimensions. These shemes have theoretial

onvergene of order two, but as most of the derivatives are disretised in fourth order

onsisteny, one an ahieve a fourth order onvergene (if stable) up to a ertain step-size

h∗ when the seond order remainder term of one of the four versions of the essentially

high-order ompat shemes is small. If the desired auray is already ahieved with a

step-size up to the step-size h∗, then the sheme has pratially fourth order onvergene

for the usage. These shemes are espeially appliable, if there is an area of interest in the

spatial domain. One ould rather want to zoom in the area of interest than to ful�l the

onditions on the partial di�erential equation for a high-order ompat sheme. If there

is a good argumentation, why one of the versions of the essentially high-order ompat

shemes should onverge with fourth order up to the desired auray, then there is no

downside when omparing it with a high-order ompat sheme for the pratial usage.

The seond ontribution is a generalisation of high-order ompat shemes for a linear

partial di�erential equation with spae- and time-dependent oe�ients and mixed deriva-

tives, where we onstrut the shemes for two and three spatial dimensions in detail and

give onditions on the oe�ients for any higher dimensions of the spatial domain. Even a

von Neumann stability analysis is performed for vanishing ross-derivatives and frozen oef-

�ients (in time and spae) with two and three spatial dimensions. This results into having

no further onditions on the oe�ients of the partial di�erential equation for satisfying

the neessary von Neumann stability ondition. For non-vanishing ross-derivatives partial

stability results are given, where there are also no further restritions on the oe�ients of

the partial di�erential equation.
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Chapter 2

Essentially high-order ompat

shemes applied to non-uniform grids

In this hapter we derive essentially high-order ompat �nite di�erene shemes to ap-

proximate the solution of a linear paraboli partial di�erential equation in a general setting

on a two-dimensional spatial domain. We apply the disrete shemes to the Heston model

[Hes93℄ on a non-uniform spatial grid for a European Put, ompare De�nition 1, and a

European Power Put, see De�nition 2.

2.1 Motivation for using essentially high-order ompat shemes

In this setion we give a motivation for the use of essentially high-order ompat shemes.

We introdue semi-disrete �nite di�erene shemes of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) +R2 +O
(

h4
)

.

The spatial domain is given by a retangle Ω ⊂ R
2
, whih is disretised by the uniform

grid G
(2)
h . Depending on the version of the essentially high-order ompat sheme the

seond-order remainder term is of one of the following forms

R2 =h2C
∂4u

∂x41
, R2 = h2C

∂4u

∂x42
, R2 = h2C

∂4u

∂x31∂x2
or R2 = h2C

∂4u

∂x1∂x32
,

where in eah ase C is neither depending on h nor on u. Where at least one of the four

possible spei�ations of R2 is small, it is possible to ahieve fourth-order onsisteny for

the resulting numerial sheme up to a ertain step-size.
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The fous for the appliation of essentially high-order ompat shemes lies in the use

of non-uniform spatial grids, whih are employed whenever there exists a spei� area of

interest. In this situation we plae many points of the spatial grid in this region, whereas

there are only few points loated in the remaining parts of the spatial domain. This se-

ures a higher auray in the area of interest due to the higher density of grid points. We

then perform another transformation to the di�erential equation with a zoom funtion,

whih establishes that the resulting transformed grid is uniform. This way it is possible

to perform the disretisation and the numerial analysis on a uniform grid and retain the

advantages of a fous of grid-points to the area of interest.

In the Heston model [Hes93℄ the area of interest is loated around the strike prie,

so the area is only depending on the asset prie and not depending on the value of the

volatility. In this setting, the zoom funtion is a one-dimensional funtion whih only

depends on the stok prie. In this appliation we use a zoom funtion as proposed by

[TGB08℄ to transform the non-uniform grid into a uniform grid G
(2)
h . On this uniform grid

we apply the essentially high-order ompat shemes to approximate the funtion of the

option values. Hene the Heston model gives us the perfet setting to apply essentially

high-order ompat shemes.

2.2 Introdution of the partial di�erential equation

In this setion we introdue the problem whose solution we aim to approximate numerially.

We onsider a partial di�erential equation in two spatial dimensions and time, i.e. we use

the partial di�erential equation given in De�nition 12 with n = 2 and g ≡ 0. Thus we

onsider

duτ + a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = 0 ∈ Ω× Ωτ , (2.1)

with initial ondition u(x1, x2, 0) = u0(x1, x2), where ai = ai(x1, x2, τ) < 0, b12 =

b12(x1, x2, τ), ci = c(x1, x2, τ), d = d(x, y, τ) and u = u(x1, x2, τ) are funtions from

Ω×R≥0 to R, where Ωτ =]0, τmax] with τmax > 0 and Ω =
[

x
(1)
min, x

(1)
max

]

×
[

x
(2)
min, x

(2)
max

]

⊂ R
2

with x
(i)
min < x

(i)
max for i = 1, 2. The funtions ai (·, τ), b (·, τ), ci (·, τ), and d (·, τ) are on-
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sidered to be in C2(Ω) and u (·, τ) ∈ C6(Ω) for all τ ∈ Ωτ . Using duτ = −f gives

a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = f. (2.2)

A grid in x1� and in x2�diretion for Ω, reall De�nition 13, is given by

G(2) =
{

(xi1 , xi2) ∈ Ω | xi1 = x
(1)
min + i1(∆x1), xi2 = x

(2)
min + i2(∆x2),

0 ≤ i1 ≤ N1 − 1, 0 ≤ i2 ≤ N2 − 1
}

,
(2.3)

where ∆x1 = (x
(1)
max − x

(1)
min)/(N1 − 1) and ∆x2 = (x

(2)
max − x

(2)
min)/(N2 − 1) are the step

sizes in eah diretion. With

◦
G

(2)
we identify the inner points of the grid G(2)

. We use

G
(2)
h and

◦
G

(2)

h , if ∆x1 = ∆x2 = h for some h > 0. On this grid we denote by Ui1,i2 the

disrete approximation of the ontinuous solution u at the point (xi1 , xi2) ∈ G(2)
. Using

the standard entral di�erene operator Dc
1 in x1-diretion and Dc

2 in x2-diretion we have

for k = 1, 2 the relations

∂u

∂xk
=Dc

kUi1,i2 −
(∆xk)

2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

, (2.4)

and

∂2u

∂x2k
=Dc

kD
c
kUi1,i2 −

(∆xk)
2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂2u

∂x1∂x2
=Dc

1D
c
2Ui1,i2 −

(∆x1)
2

6

∂4u

∂x31∂x2
− (∆x2)

2

6

∂4u

∂x1∂x32
+O

(

(∆x1)
4
)

(2.5)

+O
(

(∆x1)
2(∆x2)

2
)

+O
(

(∆x2)
4
)

+O
(

(∆x1)
6

∆x2

)

,

at the grid points (xi1 , xi2) ∈ G(2)
. We all a sheme of high order if its onsisteny error

is of order O
(

h4
)

for ∆x1,∆x2 ∈ O (h) for some h > 0. If we disretise the higher deriva-

tives ∂4u/∂x41, ∂
4u/∂x42, ∂

4u/(∂x31∂x2), ∂
4u/(∂x1∂x

3
2), ∂

3u/∂x31, and ∂3u/∂x32 appearing

in (2.4) and (2.5) with seond order auray, we obtain a sheme with onsisteny of or-

der four sine they are all multiplied by fators of order two. We all a sheme high�order

ompat if this an be ahieved using the ompat nine-point omputational stenil, whih

at the point (xi1 , xi2) is given by
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Ui1+1,i2+1

Ui1−1,i2−1

Ui1−1,i2+1

Ui1+1,i2−1Ui1,i2−1

Ui1,i2+1

Ui1−1,i2 Ui1+1,i2Ui1,i2

.

2.3 Auxiliary relations for higher derivatives

We proeed by giving auxiliary relations for the third and fourth order derivatives appearing

in (2.4) and (2.5). Expressions for the higher derivatives an be obtained by di�erentiating

the partial di�erential equation (2.2) in a formal manner without introduing an additional

error. Di�erentiating equation (2.2) with respet to x1 and writing ∂3u/∂x31 as the subjet

leads to

∂3u

∂x31
=− [c1]x1

a1

∂u

∂x1
− [a1]x1 + c1

a1

∂2u

∂x21
− [c2]x1

a1

∂u

∂x2
− [b12]x1 + c2

a1

∂2u

∂x1∂x2

− b12
a1

∂3u

∂x21∂x2
− [a2]x1

a1

∂2u

∂x22
− a2

a1

∂3u

∂x1∂x22
+

1

a1

∂f

∂x1
=: A1,

(2.6)

where [·]x1 and [·]x2 denote the �rst derivative of the oe�ients of the partial di�erential

equation in x1 and x2, respetively. With the entral di�erene operator we an establish

a seond-order disretisation of A1 only using the ompat stenil. As an example, we an

disretise

−1

1

−1

1−2

2

0 00
∂3u(xi1

,xi2
)

∂x2

1
∂x2

=
1

2(∆x1)
2
(∆x2)

+ǫ,
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where ǫ ∈ O
(

h4
)

, if ∆x1,∆x2 ∈ O (h) for some h > 0. Di�erentiating the partial di�eren-

tial equation (2.2) twie with respet to x1 and writing ∂4u/∂x41 as subjet we have

∂4u

∂x41
=− [c1]x1x1

a1

∂u

∂x1
− [a1]x1x1 + 2[c1]x1

a1

∂2u

∂x21
− 2[a1]x1 + c1

a1

∂3u

∂x31
− [c2]x1x1

a1

∂u

∂x2

− [b12]x1x1 + 2[c2]x1

a1

∂2u

∂x1∂x2
− 2[b12]x1 + c2

a1

∂3u

∂x21∂x2
− b12

a1

∂4u

∂x31∂x2

− [a2]x1x1

a1

∂2u

∂x22
− 2[a2]x1

a1

∂3u

∂x1∂x22
− a2

a1

∂4u

∂x21∂x
2
2

+
1

a1

∂2f

∂x21
(2.7)

=:B1 −
b12
a1

∂4u

∂x31∂x2
,

where [·]x1 and [·]x1x1 denote the �rst and seond derivative with respet to x1, respetively.

Applying (2.6) and the entral di�erene operator we an disretise B1 with order two using

only points of the ompat stenil. Writing equation (2.7) with ∂4u/(∂x31∂x2) as subjet

we obtain

∂4u

∂x31∂x2
=

a1
b12

B1 −
a1
b12

∂4u

∂x41
. (2.8)

In order to �nd an auxiliary equation for ∂3u/∂x32 we �rst di�erentiate the partial di�er-

ential equation (2.2) one with respet to x2 and write ∂3u/∂x32 as subjet, whih leads

to

∂3u

∂x32
=− [c2]x2

a2

∂u

∂x2
− [a2]x2 + c2

a2

∂u2

∂x22
− [c1]x2

a2

∂u

∂x1
− [b12]x2 + c1

a2

∂2u

∂x1∂x2

− b12
a2

∂3u

∂x1∂x
2
2

− [a1]x2

a2

∂2u

∂x21
− a1

a2

∂3u

∂x21∂x2
+

1

a2

∂f

∂x2
=: A2,

(2.9)

where [·]x2 denotes the �rst derivative with respet to x2. The term A2 an be disretised

in a ompat manner at the order two using the entral di�erene operators.

Di�erentiating equation (2.2) twie with respet to x2 and writing ∂4u/∂x42 as subjet

leads to

∂4u

∂x42
=− [a1]x2x2

a2

∂2u

∂x21
− 2[a1]x2

a2

∂3u

∂x21∂x2
− a1

a2

∂4u

∂x21∂x
2
2

− [a2]x2x2 + 2[c2]x2

a2

∂2u

∂x22

− [c2]x2x2

a2

∂u

∂x2
− 2[a2]x2 + c2

a2

∂3u

∂x32
− [c1]x2x2

a2

∂u

∂x1
− 2[b12]x2 + c1

a2

∂3u

∂x1∂x22

− [b12]x2x2 + 2[c1]x2

a2

∂2u

∂x1∂x2
− b12

a2

∂4u

∂x1∂x
3
2

+
1

a2

∂f

∂x22
(2.10)

=:B2 −
b12
a2

∂4u

∂x1∂x32
,
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where [·]x2 and [·]x2x2 denote the �rst and seond derivative with respet to x2, respetively.

The term B2 an be disretised with order two on the ompat stenil using equation (2.9)

and the entral di�erene operator. Equation (2.10) is equivalent to

∂4u

∂x1∂x32
=

a2
b12

B2 −
a2
b12

∂4u

∂x42
, (2.11)

Di�erentiating the partial di�erential equation (2.2) one with respet to x1 and one with

respet to x2 and writing ∂4u/(∂x31∂x2) as subjet leads to

∂4u

∂x31∂x2
=

1

a1

∂2f

∂x1∂x2
− [c1]x1x2

a1

∂u

∂x1
− [b12]x1x2 + [c1]x1 + [c2]x2

a1

∂2u

∂x1∂x2

− [a2]x2 + [b12]x1 + c2
a1

∂3u

∂x1∂x
2
2

− a2
a1

∂4u

∂x1∂x
3
2

− [a1]x1x2 + [c1]x2

a1

∂2u

∂x21

− [a1]x1 + [b12]x2 + c1
a1

∂3u

∂x21∂x2
− b12

a1

∂4u

∂x21∂x
2
2

− [a1]x2

a1

∂3u

∂x31
(2.12)

− [c2]x1x2

a1

∂u

∂x2
− [a2]x1x2 + [c2]x1

a1

∂2u

∂x22
− [a2]x1

a1

∂3u

∂x32

=:C1 −
a2
a1

∂4u

∂x1∂x
3
2

,

where [·]x1 and [·]x2 denote the �rst derivative with respet to x1 and x2, respetively

and [·]x1x2 indiates the mixed seond derivative with respet to x1 and x2. Using the

equations (2.6) and (2.9) as well as the entral di�erene operators in x1- and x2-diretion

it is possible to disretise C1 at the order two on the ompat stenil. Equation (2.12) is

equivalent to

∂4u

∂x1∂x32
=

a1
a2

C1 −
a1
a2

∂4u

∂x31∂x2
:= C2 −

a1
a2

∂4u

∂x31∂x2
. (2.13)

Finally, the expression C2 an be disretised at the order two on the ompat stenil as

well.

2.4 Derivation of essentially high-order ompat shemes

In order to derive a disrete sheme we employ equations (2.4) and (2.5) in the partial

di�erential equation (2.2), whih gives

f =A0 −
a1(∆x1)

2

12

∂4u

∂x41
− a2(∆x2)

2

12

∂4u

∂x42
− b12(∆x1)

2

6

∂4u

∂x31∂x2

− b12(∆x2)
2

6

∂4u

∂x1∂x32
− c1(∆x1)

2

6

∂3u

∂x31
− c2(∆x2)

2

6

∂3u

∂x32
+ ε

(2.14)
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where

A0 :=a1D
c
1D

c
1Ui1,i2 + a2D

c
2D

c
2Ui1,i2 + b12D

c
1D

c
2Ui1,i2 + c1D

c
1Ui1,i2 + c2D

c
2Ui1,i2

and the error-term ε ∈ O
(

h4
)

if ∆x1,∆x2 ∈ O (h) for some h > 0 is used. A0 is only using

the ompat stenil. We apply A1 and A2 for ∂3u/∂x31 and ∂3u/∂x32 diretly, as they do

not depend on any of the higher derivatives appearing in (2.14) and only use points of the

ompat stenil in their disretisation. This leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12

∂4u

∂x41
− a2(∆x2)

2

12

∂4u

∂x42

− b12(∆x1)
2

6

∂4u

∂x31∂x2
− b12(∆x2)

2

6

∂4u

∂x1∂x
3
2

+ ε.

(2.15)

We have four fourth-order derivatives, namely ∂4u/∂x41, ∂
4u/∂x42 and the ross derivatives

∂4u/(∂x31∂x2) and ∂4u/(∂x1∂x
3
2), appearing in the above equation. For these four higher

derivatives we only have three auxiliary relations, being (2.7), (2.10), and (2.12). Thus

we have an underdetermined equation system and annot expet to be able to replae all

of the four higher derivatives in (2.15) in the general ase. This leads to four di�erent

versions of the disrete sheme. For Version 1 the remainder term onsists of ∂4u/∂x41.

The seond version has ∂4u/∂x42 as part of the remaining seond-order error term. As the

third approah we have a sheme whih has ∂4u/(∂x31∂x2) as part of the remainder term,

and �nally Version 4 disretises ∂4u/∂x41, ∂
4u/∂x42 and ∂4u/(∂x31∂x2) fully and leave a

seond order remainder term, whih inludes ∂4u/(∂x1∂x
3
2).

Equation (2.15) is the basis for the derivation of our di�erent disrete numerial

shemes. We use the auxiliary equations (2.7), (2.8), (2.10), (2.11), (2.12) and (2.13),

depending on whih of the higher derivative is supposed to be part of the seond-order

remainder term.

For eah version we de�ne the semi-disrete �nite di�erene sheme, reall De�nition

15 with g ≡ 0, whih we introdued as

∑

x̂∈G
(2)
h

[Mx(x̂)∂τUi1,i2(τ) +Kx(x̂)Ui1,i2(τ)] = R2 +O
(

h4
)

, (2.16)

with x̂ = (xi1 , xi2) at time τ for eah point x ∈ ◦
G

(2)

h with ∆x1 = ∆x2 = h for some h > 0,

ompare De�nition 13 with n = 2. R2 is a seond order error-term, depending on the

disretisation version used.
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2.4.1 Derivation of Version 1

In this setion we derive the �rst essentially high order ompat sheme. First we have to

apply the auxiliary equation for ∂4u/∂x42, given in (2.10), to (2.15), whih results in

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

a1(∆x1)
2

12

∂4u

∂x41

− b12(∆x1)
2

6

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x32
+ ε.

Using (2.13) gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

b12(∆x2)
2

12
C2

− a1(∆x1)
2

12

∂4u

∂x41
− b12

(

2a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x31∂x2
+ ε.

Finally, applying (2.8) gives Version 1

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a2(∆x2)
2

12
B2 −

b12(∆x2)
2

12
C2

− a1
(

2a2(∆x1)
2 − a1(∆x2)

2
)

12a2
B1 +

a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41
+ ε.

(2.17)

The seond-order remainder term for Version 1 is given by

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41
. (2.18)

We observe that this sheme has a general onsisteny order of two, if ∆x1,∆x2 ∈ O
(

h2
)

for some h > 0. But if the seond order trunation error R2 is small enough, we an expet

a onvergene rate of order four up to a ertain step-size.

There is only one ase, in whih we an ahieve a high-order ompat sheme. Sine

a1 < 0, the ase a1 = 0, whih would lead to R2 = 0, is not allowed. But the ase

a1 ≡
(∆x1)

2

(∆x2)
2 a2

also results in R2 ≡ 0, whih means that we obtain a high-order ompat sheme. So a

high-order ompat sheme is possible when having a1 ≡ a2 and then using G
(2)
h as a grid.
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Using the entral di�erene operator in (2.17) at the point (xi1 , xi2) ∈
◦
G

(2)

h leads to

K̂i1−1,i2±1 =
a2[a1]x1

6a1h
∓ a1[b12]x1

12a2h
∓ a1[a2]x2

12a2h
+

a1[a2]x1

12a2h
± b12[a1]x1

8a2h
± b12[b12]x2

24a2h

+
b12[a2]x2

24a2h
− b12[b12]x1

24a2h
+

b212[a2]x1

24a22h
+

b12[a1]x2

24a1h
± b12c1

12a2h
− b12c2

12a2h

∓ a1b12[a2]x1

24a22h
∓ b12[a1]x1

6a1h
± b12[a2]x1c1

48a22
± b12[a2]x1 [b12]x2

48a22
∓ c1c2

24a2

∓ b212[a1]x2

24a2a1h
± b12[a1]x2 [b12]x1

48a2a1
± b12[a1]x2c2

48a2a1
+

b212
12a2h2

± [a1]x1c2
12a1

± [a1]x1 [b12]x1

12a1
± a1[b12]x1x1

48a2
∓ b12[b12]x1x2

48a2
± a1[c2]x1

24a2
∓ b12[c2]x2

48a2
(2.19)

∓ [a1]x1 [b12]x1

24a2
± c1[a2]x2

24a2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2
− c1

12h
± c2

12h

∓ [a1]x1c2
24a2

∓ c1[b12]x1

48a2
∓ [c1]x2

24
∓ [c2]x1

12
− [a2]x1

6h
± [a1]x2

12h
− [b12]x2

12h

∓ [b12]x2x2

48
− [a1]x1

12h
± [b12]x1

6h
∓ b12

4h2
+

a2
6h2

∓ [b12]x1x1

24
∓ b12[c1]x1

48a2
,

K̂i1+1,i2±1 =− a2[a1]x1

6a1h
∓ a1[b12]x1

12a2h
∓ a1[a2]x2

12a2h
− a1[a2]x1

12a2h
± b12[a1]x1

8a2h
± b12c1

12a2h

− b12[a2]x2

24a2h
± b12[b12]x2

24a2h
+

b12[b12]x1

24a2h
− b12[a1]x2

24a1h
+

[a1]x1

12h
± [c2]x1

12

− b212[a2]x1

24a22h
∓ b12[a1]x1

6a1h
∓ b12[a2]x1c1

48a22
∓ b12[a2]x1 [b12]x2

48a22
+

b12c2
12a2h

∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h
∓ b12[a1]x2 [b12]x1

48a2a1
∓ b12[a1]x2c2

48a2a1
± c1c2

24a2

+
b212

12a2h2
∓ [a1]x1c2

12a1
∓ [a1]x1 [b12]x1

12a1
∓ a1[b12]x1x1

48a2
± b12[b12]x1x2

48a2
(2.20)

∓ a1[c2]x1

24a2
∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
± [a1]x2

12h
+

[b12]x2

12h

± b12[c2]x2

48a2
± [a1]x1 [b12]x1

24a2
± [a1]x1c2

24a2
± c1[b12]x1

48a2
± [c1]x2

24
+

[a2]x1

6h

± b12[c1]x1

48a2
± [b12]x1

6h
± b12

4h2
+

c1
12h

± c2
12h

+
a2
6h2

± [b12]x1x1

24
± [b12]x2x2

48
,

K̂i1,i2±1 =∓ a1h[c2]x1x1

24a2
± h[c2]x1x2b12

24a2
± h[c2]x1 [a1]x1

12a2
± hc1[c2]x1

24a2
± hc2[c2]x2

24a2

∓ h[c2]x1 [a1]x1

6a1
∓ h[c2]x2 [a2]x2

12a2
− b12c2[a2]x1

12a22
± a1[b12]x1

6a2h
± a1[a2]x2

6a2h

− b12[a2]x1 [a2]x2

12a22
∓ b12[a1]x1

4a2h
∓ b12[b12]x2

12a2h
± b12[a1]x1

3a1h
∓ b12c1

6a2h
+

c22
12a2

+
c1[a2]x1

12a2
+

[a2]x1x2b12
12a2

− c2[a2]x2

12a2
∓ [b12]x1

3h
± c2

3h
− b12[a2]x1 [a1]x2

12a2a1
(2.21)
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− a1[a2]x1x1

12a2
− [a2]

2
x2

6a2
± a1b12[a2]x1

12a22h
± b212[a1]x2

12a2a1h
∓ hb12[a2]x1 [c2]x2

24a22

− [a1]x1 [a2]x1

3a1
+

b12[c2]x1

12a2
+

[a1]x1 [a2]x1

6a2
− b212

6a2h2
+

[c2]x2

6
∓ [a1]x2

6h

+
2a2
3h2

± h[c2]x2x2

24
± h[c2]x1x1

12
+

[a2]x1x1

6
+

[a2]x2x2

12
∓ hb12[c2]x1 [a1]x2

24a2a1
,

K̂i1±1,i2 =± a2[a1]x1

3a1h
± a1[a2]x1

6a2h
± b12[a2]x2

12a2h
∓ b12[b12]x1

12a2h
± b212[a2]x1

12a22h
∓ b12c2

6a2h

− b12c1[a1]x2

12a2a1
± h[c1]x1x1

12
± h[c1]x2x2

24
− [a1]

2
x1

3a1
+

[a1]
2
x1

6a2
+

a1
h2

+
c21

12a2

− [a1]x2 [a2]x2

6a2
− b12[a1]x1 [a1]x2

12a2a1
− a1[a1]x1x1

12a2
+

c2[a1]x2

12a2
+

c1[a1]x1

4a2

− c1[a1]x1

3a1
+

b12[c1]x2

12a2
− a1[c1]x1

6a2
+

[a1]x1x2b12
12a2

− b212
6a2h2

+
[c1]x1

3

± hc1[c1]x1

24a2
∓ [a2]x1

3h
+

[a1]x1x1

6
− b12[a2]x1 [a1]x2

12a22
∓ [b12]x2

6h
∓ [a1]x1

6h
(2.22)

± c1
3h

± h[c1]x1x2b12
24a2

∓ a1h[c1]x1x1

24a2
± h[c1]x1 [a1]x1

12a2
± hc2[c1]x2

24a2

− a2
3h2

∓ h[c1]x2 [a2]x2

12a2
∓ h[c1]x1 [a1]x1

6a1
+

[a1]x2x2

12
∓ hb12[c1]x1 [a1]x2

24a2a1

± b12[a1]x2

12a1h
∓ hb12[a2]x1 [c1]x2

24a22

and

K̂i1,i2 =
b12[a2]x1 [a2]x2

6a22
+

b12c2[a2]x1

6a22
− c22

6a2
+

[a2]
2
x2

3a2
+

2[a1]
2
x1

3a1
− [a1]

2
x1

3a2
− 2a1

h2

− c21
6a2

+
b12c1[a1]x2

6a2a1
+

b12[a1]x1 [a1]x2

6a2a1
+

b12[a2]x1 [a1]x2

6a2a1
+

[a1]x2 [a2]x2

3a2

+
a1[a1]x1x1

6a2
− c2[a1]x2

6a2
− c1[a1]x1

2a2
+

2c1[a1]x1

3a1
− b12[c1]x2

6a2
+

a1[c1]x1

3a2

− [a1]x1x2b12
6a2

+
a1[a2]x1x1

6a2
− [a2]x1x2b12

6a2
− c1[a2]x1

6a2
+

2[a1]x1 [a2]x1

3a1
(2.23)

+
c2[a2]x2

6a2
− b12[c2]x1

6a2
− [a1]x1 [a2]x1

3a2
+

b212
3a2h2

− 2[c1]x1

3
− [a1]x1x1

3

+
b12[a2]x1 [a1]x2

6a22
− [c2]x2

3
− 4a2

3h2
− [a1]x2x2

6
− [a2]x1x1

3
− [a2]x2x2

6
,

where K̂l,m is the oe�ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
Reall that we use [·]xk

as the �rst derivative with respet to xk and [·]xkxp as the seond

derivative, one in xk- and one in xp-diretion with k, p ∈ 1, 2. Note that a, b1,2, c1 and c2

are evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . In the same way M̂l,m denotes the oe�ient
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of ∂τUl,m (τ) for (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a2

M̂i1,i2±1 =
d

12
± hb12[d]x1

24a2
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ b12d[a2]x1h

24a22
± [d]x2h

12

M̂i1±1,i2 =
d

6
± h[d]x1

6
∓ a1h[d]x1

12a2
− a1d

12a2
∓ hd[a1]x1

6a1
± hd[a1]x1

12a2
± hdc1

24a2

∓ hdb12[a1]x2

24a2a1
± hb12[d]x2

24a2
(2.24)

M̂i1,i2 =
h2[d]x1x1

6
− a1h

2[d]x1x1

12a2
+

d

2
+

a1d

6a2
− h2[d]x1 [a1]x1

3a1
+

h2[d]x1 [a1]x1

6a2

+
h2[d]x1c1
12a2

− h2[d]x1 [a1]x2b12
12a2a1

+
h2b12[d]x1x2

12a2
+

h2[d]x2x2

12

+
h2[d]x2c2
12a2

− h2[d]x2 [a2]x2

6a2
− h2[d]x2 [a2]x1b12

12a22

Thus we have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈ ◦
G

(2)

h

and τ ∈ Ωτ . Kx and Mx are zero otherwise. This means that the disretisation only uses

points of the ompat stenil and is of the form (2.16).

2.4.2 Derivation of Version 2

For developing the Version 2 sheme the basi equation is again (2.15). To this equation

we apply (2.7), whih gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12

∂4u

∂x42

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

6

∂4u

∂x1∂x32
+ ε.

Using (2.12) we have

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

b12(∆x1)
2

12
C1

− a2(∆x2)
2

12

∂4u

∂x42
− b12

(

2a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x1∂x32
+ ε.
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Finally, applying (2.11) then gives as Version 2

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

b12(∆x1)
2

12
C1

− a2
(

2a1(∆x2)
2 − a2(∆x1)

2
)

12a1
B2 +

a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42
+ ε.

(2.25)

For Version 2 the seond-order remainder term is given by

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42
. (2.26)

We observe that this sheme has a general onsisteny order of two, if ∆x1,∆x2 ∈ O
(

h2
)

for some h > 0. If the seond order trunation error R2 is small enough, we an expet that

the sheme has a onvergene rate order of four up to a ertain step-size. The oe�ients

of the semi-disrete sheme are given by

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

6a2h
+

b12[a2]x2

6a2h
∓ b12[a1]x1

24a1h
± [a2]x2

12h
∓ b12[b12]x1x2

48a1

± a2[b12]x2x2

48a1
∓ [b12]x2 [a2]x2

24a1
∓ b12[c1]x1

48a1
∓ b12[c2]x2

48a1
± [a1]x2

6h
− c1

12h

∓ c1[a2]x2

24a1
∓ c2[b12]x2

48a1
∓ b12[a2]x1

24a2h
+

a2b12[a1]x2

24a21h
± b12[a1]x2 [b12]x1

48a21

± a2[c1]x2

24a1
∓ c1c2

24a1
+

b212
12a1h2

± b12[b12]x2

24a1h
− b12[a2]x2

8a1h
− b12[b12]x1

24a1h

∓ b212[a1]x2

24a21h
± b12[a1]x2c2

48a21
∓ a2[a1]x2

12a1h
+

a2[b12]x2

12a1h
+

a1
6h2

± [a1]x1c2
24a1

(2.27)

± [a1]x1 [b12]x1

24a1
± c1[a2]x2

12a2
± [b12]x2 [a2]x2

12a2
∓ [c1]x2

12
∓ [c2]x1

24
− [a2]x1

12h

∓ c1[b12]x1

48a1
− [b12]x2

6h
± [b12]x1

12h
∓ b12

4h2
± c2

12h
+

b212[a2]x1

24a2a1h
− b12c2

12a1h

± b12[a2]x1c1
48a2a1

± b12[a2]x1 [b12]x2

48a2a1
∓ [b12]x1x1

48
∓ [b12]x2x2

24
± b12c1

12a1h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

6a2h
− b12[a2]x2

6a2h
∓ b12[a1]x1

24a1h
± [a2]x2

12h
± c1[a2]x2

24a1

± b12[b12]x1x2

48a1
± c2[b12]x2

48a1
± [b12]x2 [a2]x2

24a1
± b12[c1]x1

48a1
± b12[c2]x2

48a1

∓ a2[c1]x2

24a1
± c1c2

24a1
+

b212
12a1h2

± b12[b12]x2

24a1h
+

b12[a2]x2

8a1h
+

b12[b12]x1

24a1h

∓ b212[a1]x2

24a21h
∓ b12[a1]x2c2

48a21
∓ a2[a1]x2

12a1h
− a2[b12]x2

12a1h
+

a1
6h2

∓ [a1]x1c2
24a1

∓ [a1]x1 [b12]x1

24a1
∓ c1[a2]x2

12a2
∓ [b12]x2 [a2]x2

12a2
± [c1]x2

12
± [c2]x1

24
+

[a2]x1

12h
(2.28)
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± [a1]x2

6h
+

[b12]x2

6h
± [b12]x1

12h
± b12

4h2
+

c1
12h

± c2
12h

− a2b12[a1]x2

24a21h

∓ b12[a2]x1c1
48a2a1

∓ b12[a2]x1 [b12]x2

48a2a1
± [b12]x1x1

48
± [b12]x2x2

24
± b12c1

12a1h

+
b12c2
12a1h

∓ b12[a1]x2 [b12]x1

48a21
∓ a2[b12]x2x2

48a1
∓ b12[a2]x1

24a2h
± c1[b12]x1

48a1

− b212[a2]x1

24a2a1h
,

K̂i1,i2±1 =∓ h[c2]x1 [a1]x1

12a1
∓ h[c2]x2 [a2]x2

6a2
± a1[a2]x2

3a2h
+

[a2]
2
x2

6a1
+

c22
12a1

∓ [a2]x2

6h

± b12[a1]x1

12a1h
− b212

6a1h2
∓ b12[b12]x2

12a1h
± b12[a2]x1

12a2h
± b212[a1]x2

12a21h
± a2[a1]x2

6a1h

∓ a2h[c2]x2x2

24a1
± h[c2]x1x2b12

24a1
± hc1[c2]x1

24a1
± c2h[c2]x2

24a1
± h[c2]x2 [a2]x2

12a1

− [a2]
2
x2

3a2
− b12[a2]x1 [a1]x2

12a21
− a1

3h2
− c2[a2]x2

3a2
− [a1]x1 [a2]x1

6a1
+

[c2]x2

3

∓ [a1]x2

3h
∓ [b12]x1

6h
± c2

3h
+

a2
h2

± h[c2]x2x2

12
± h[c2]x1x1

24
− b12c2[a2]x1

12a2a1
(2.29)

∓ hb12[c2]x1 [a1]x2

24a21
− b12[a2]x1 [a2]x2

12a2a1
∓ b12[a2]x1h[c2]x2

24a2a1
+

[a2]x1x2b12
12a1

+
c1[a2]x1

12a1
+

b12[c2]x1

12a1
− a2[a2]x2x2

12a1
− a2[c2]x2

6a1
+

c2[a2]x2

4a1
∓ b12c1

6a1h

+
[a2]x1x1

12
+

[a2]x2x2

6
,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

3a2h
− b212

6a1h2
∓ b12[a2]x2

4a1h
∓ b12[b12]x1

12a1h
± h[c1]x1x1

24

+
c21

12a1
± h[c1]x2x2

12
− [a1]

2
x1

6a1
+

2a1
3h2

− b12[a2]x1 [a1]x2

12a2a1
− [a1]x2 [a2]x2

3a2

− c1[a1]x1

12a1
∓ a2h[c1]x2x2

24a1
± h[c1]x1x2b12

24a1
± hc1[c1]x1

24a1
± h[c1]x2 [a2]x2

12a1

− b12c1[a1]x2

12a21
+

[c1]x1

6
∓ [a2]x1

6h
∓ [b12]x2

3h
± c1

3h
∓ hb12[c1]x1 [a1]x2

24a21

+
b12[c1]x2

12a1
+

c2[a1]x2

12a1
− a2[a1]x2x2

12a1
+

[a1]x2 [a2]x2

6a1
+

[a1]x1x2b12
12a1

(2.30)

± a2b12[a1]x2

12a12h
∓ h[c1]x2 [a2]x2

6a2
∓ h[c1]x1 [a1]x1

12a1
∓ hb12[a2]x1 [c1]x2

24a2a1

+
[a1]x2x2

6
± b212[a2]x1

12a2a1h
± a2[b12]x2

6a1h
± hc2[c1]x2

24a1
− b12[a1]x1 [a1]x2

12a21

+
[a1]x1x1

12
∓ b12c2

6a1h
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and

K̂i1,i2 =− [a2]
2
x2

3a1
− c22

6a1
− c21

6a1
+

b212
3a1h2

+
b12[a2]x1 [a1]x2

6a21
+

2[a2]
2
x2

3a2
+

c1[a1]x1

6a1

+
[a1]

2
x1

3a1
− 4a1

3h2
+

2[a1]x2 [a2]x2

3a2
+

2c2[a2]x2

3a2
+

[a1]x1 [a2]x1

3a1
+

b12c1[a1]x2

6a21

+
b12[a2]x1 [a1]x2

6a2a1
+

b12[a1]x1 [a1]x2

6a21
− b12[c1]x2

6a1
− c2[a1]x2

6a1
+

a2[a1]x2x2

6a1

− 2[c2]x2

3
− 2a2

h2
− [c1]x1

3
+

b12[a2]x1 [a2]x2

6a2a1
+

b12c2[a2]x1

6a2a1
− [a2]x1x2b12

6a1
(2.31)

− [a1]x2 [a2]x2

3a1
− [a1]x1x2b12

6a1
− c1[a2]x1

6a1
− b12[c2]x1

6a1
+

a2[a2]x2x2

6a1

+
a2[c2]x2

3a1
− c2[a2]x2

2a1
− [a1]x1x1

6
− [a1]x2x2

3
− [a2]x1x1

6
− [a2]x2x2

3
.

Here K̂l,m is the oe�ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
Again, [·]xk

denotes the �rst derivative with respet to xk and [·]xkxp the seond derivative,

one in xk- and one in xp-diretion with k, p ∈ 1, 2. We note that a, b1,2, c1 and c2 are

funtions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . In the same way M̂l,m desribes the

oe�ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a1

M̂i1,i2±1 =
d

6
± hb12[d]x1

24a1
−∓ a2h[d]x2

12a1
+± [d]x2h

6
− a2d

12a1
± hc2d

24a1
± hd[a2]x2

12a1

∓ hb12[a2]x1d

24a2a1
∓ hd[a2]x2

6a2

M̂i1±1,i2 =
d

12
± c1dh

24a1
∓ b12[a1]x2dh

24a21
± hb12[d]x2

24a1
∓ hd[a1]x1

12a1
± h[d]x1

12
(2.32)

M̂i1,i2 =
h2[d]x1c1
12a1

− h2[d]x1 [a1]x2b12
12a21

− h2[d]x1 [a1]x1

6a1
+

h2b12[d]x1x2

12a1
+

h2[d]x1x1

12

+
h2[d]x2x2

6
+

a2d

6a1
+

d

2
+

h2[d]x2c2
12a1

+
h2[d]x2 [a2]x2

6a1
− h2[d]x2 [a2]x1b12

12a2a1

− h2[d]x2 [a2]x2

3a2
− a2h

2[d]x2x2

12a1

We de�ne

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise, whih means that our disretisation is of the form

(2.16) and only uses the ompat stenil.
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When looking at (2.26) we an see that there is only one valid ase in whih we an

ahieve a high-order ompat sheme. We an see in (2.1) that a2 ≡ 0 is not allowed, so

the ase

a1 ≡
(∆x1)

2

(∆x2)
2a2,

is the only valid possibility to ahieve R2 ≡ 0. One spei� version of this ase is a1 ≡ a2

in ombination with the grid G
(2)
h for h > 0.

2.4.3 Derivation of Version 3

In order to derive Version 3, where the derivative ∂4u/(∂x31∂x2) is part of the remainder

term R2, we have to use (2.7) and (2.9) in (2.15), whih gives

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x32
+ ε.

Applying (2.13) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x2)
2

12
C2 +

b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2
+ ε.

(2.33)

Hene, for Version 3 the seond-order remainder term is given by

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2
. (2.34)

We an see that there are two valid ases, both of whih lead to R2 ≡ 0. The �rst ase,

like in Version 1 and Version 2, is

a1 ≡
(∆x1)

2

(∆x2)
2a2.

Therefore, when a1 ≡ a2 holds, it is possible to ahieve a high-order ompat sheme when

using G
(2)
h as a grid. The seond possibility is having

b12 ≡ 0.

In this ase there is no further ondition on the grid, whih means that only ∆x1,∆x2 ∈
O (h) has to hold for a high-order ompat sheme.
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Using the entral di�erene operator in (2.33) at the point (xi1 , xi2) ∈
◦
G

(2)

h leads to

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
± b12[a1]x1

24a2h
± b12[b12]x2

24a2h
+

b12[a2]x2

24a2h
± b12c1

24a2h

+
a1

12h2
− b12[b12]x1

24a2h
∓ b12[a1]x1

12a1h
± b12[a2]x1c1

48a22
± b12[a2]x1 [b12]x2

48a22

+
b212[a2]x1

24a22h
+

b12[a1]x2

24a1h
∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h
± b12[a1]x2 [b12]x1

48a2a1

− b12c2
12a2h

∓ c1[b12]x1

48a1
∓ c1c2

48a1
∓ c1c2

48a2
± [a1]x1 [b12]x1

24a1
∓ b12[b12]x1x2

48a2

+
a2

12h2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2
∓ b12[c1]x1

48a2
∓ b12[c2]x2

48a2
∓ [c1]x2

24
(2.35)

∓ [c2]x1

24
− [a2]x1

12h
± [a1]x2

12h
− [b12]x2

12h
± [b12]x1

12h
∓ b12

4h2
− c1

24h

± c1[a2]x2

24a2
∓ [b12]x1x1

48
∓ [b12]x2x2

48
± b12c1

24a1h
± a1c2

24a2h
− a2c1

24a1h

± [a1]x1c2
24a1

± b12[a1]x2c2
48a2a1

+
b212

12a2h2
± c2

24h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
± b12[a1]x1

24a2h
± b12[b12]x2

24a2h
± c1c2

48a1
± b12c1

24a2h

− b212[a2]x1

24a22h
− b12[a1]x2

24a1h
∓ b12[a1]x1

12a1h
∓ b12[a2]x1c1

48a22
+

b12[b12]x1

24a2h

∓ b12[a2]x1 [b12]x2

48a22
− b12[a2]x2

24a2h
+

b12c2
12a2h

± b12[b12]x1x2

48a2
± [c1]x2

24

∓ b12[a1]x2 [b12]x1

48a2a1
± c1[b12]x1

48a1
+

a1
12h2

∓ a1b12[a2]x1

24a22h
∓ b212[a1]x2

24a2a1h

∓ b12[a1]x2c2
48a2a1

+
b212

12a2h2
± c1c2

48a2
∓ [a1]x1c2

24a1
± b12

4h2
+

c1
24h

± c2
24h

(2.36)

∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
± b12[c1]x1

48a2
± b12[c2]x2

48a2

± [c2]x1

24
+

[a2]x1

12h
± [a1]x2

12h
+

[b12]x2

12h
± [b12]x1

12h
∓ [a1]x1 [b12]x1

24a1

+
a2

12h2
± [b12]x1x1

48
± [b12]x2x2

48
± b12c1

24a1h
± a1c2

24a2h
+

a2c1
24a1h

,

K̂i1,i2±1 =± h[c2]x1x2b12
24a2

∓ h[c2]x1 [a1]x1

12a1
± hc2[c2]x2

24a2
∓ h[c2]x2 [a2]x2

12a2
∓ b12c1

12a2h

− b12c2[a2]x1

12a22
± a1[a2]x2

6a2h
∓ b12[a1]x1

12a2h
∓ b12[b12]x2

12a2h
− b12[a2]x1 [a2]x2

12a22

± b12[a1]x1

6a1h
− [a2]

2
x2

6a2
− a1

6h2
± b212[a1]x2

12a2a1h
∓ hb12[a2]x1 [c2]x2

24a22
∓ a1c2

12a2h

± a1b12[a2]x1

12a22h
+

c22
12a2

− c2[a2]x2

12a2
− [a1]x1 [a2]x1

6a1
+

b12[c2]x1

12a2
− b212

6a2h2
(2.37)

46



∓ [a1]x2

6h
∓ [b12]x1

6h
± 5c2

12h
+

5a2
6h2

± h[c2]x2x2

24
± h[c2]x1x1

24
+

c1[a2]x1

12a1

+
[a2]x1x1

12
+

[a2]x2x2

12
∓ b12c1

12a1h
∓ hb12[c2]x1 [a1]x2

24a2a1
± hc1[c2]x1

24a1

+
[c2]x2

6
− b12[a2]x1 [a1]x2

12a2a1
+

[a2]x1x2b12
12a2

,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

12a2h
∓ b12[b12]x1

12a2h
± b212[a2]x1

12a22h
± b12[a1]x2

12a1h
∓ b12c2

6a2h

+
c21

12a1
± h[c1]x2x2

24
− [a1]

2
x1

6a1
+

5a1
6h2

∓ hb12[a2]x1 [c1]x2

24a22
− b12c1[a1]x2

12a2a1

+
[a1]x1x2b12

12a2
− b12[a1]x1 [a1]x2

12a2a1
± hc2[c1]x2

24a2
+

[a1]x2x2

12
∓ hb12[c1]x1 [a1]x2

24a2a1

± hc1[c1]x1

24a1
+

[c1]x1

6
∓ [a2]x1

6h
∓ [b12]x2

6h
± 5c1

12h
− a2

6h2
± h[c1]x1x2b12

24a2
(2.38)

∓ a2c1
12a1h

∓ h[c1]x2 [a2]x2

12a2
∓ h[c1]x1 [a1]x1

12a1
− b12[a2]x1 [a1]x2

12a22
+

[a1]x1x1

12

± h[c1]x1x1

24
− [a1]x2 [a2]x2

6a2
+

c2[a1]x2

12a2
− c1[a1]x1

12a1
+

b12[c1]x2

12a2
− b212

6a2h2

and

K̂i1,i2 =
b12[a2]x1 [a2]x2

6a22
+

b12c2[a2]x1

6a22
− c21

6a1
− c22

6a2
+

[a2]
2
x2

3a2
+

[a1]
2
x1

3a1
− 5a1

3h2

+
b12c1[a1]x2

6a2a1
− b12[c1]x2

6a2
− [c1]x1

3
− [c2]x2

3
− [a1]x1x1

6
+

b212
3a2h2

+
b12[a1]x1 [a1]x2

6a2a1
+

b12[a2]x1 [a1]x2

6a2a1
+

[a1]x2 [a2]x2

3a2
− c2[a1]x2

6a2
+

c1[a1]x1

6a1
(2.39)

− [a1]x1x2b12
6a2

− [a2]x1x2b12
6a2

+
c2[a2]x2

6a2
+

[a1]x1 [a2]x1

3a1
− b12[c2]x1

6a2

− 5a2
3h2

+
b12[a2]x1 [a1]x2

6a22
− c1[a2]x1

6a1
− [a1]x2x2

6
− [a2]x1x1

6
− [a2]x2x2

6
,

where K̂l,m is the oe�ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
The �rst derivative with respet to xk is denoted by [·]xk

and the seond derivative, one

in xk- and one in xp-diretion with k, p ∈ 1, 2, is represented by [·]xkxp . We reall that

a, b1,2, c1 and c2 are funtions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . With M̂l,m we

desribe the oe�ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ .
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Thus we have

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a2

M̂i1,i2±1 =
d

12
± hb12[d]x1

24a2
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ b12d[a2]x1h

24a22
± [d]x2h

12

M̂i1±1,i2 =
d

12
± h[d]x1

12
± c1dh

24a1
∓ hd[a1]x1

12a1
∓ hdb12[a1]x2

24a2a1
± hb12[d]x2

24a2
(2.40)

M̂i1,i2 =
h2[d]x2c2
12a2

− h2[d]x2 [a2]x2

6a2
− h2[d]x2 [a2]x1b12

12a22
+

h2b12[d]x1x2

12a2
+

h2[d]x1x1

12

+
h2[d]x1c1
12a1

− h2[d]x1 [a1]x1

6a1
− h2[d]x1 [a1]x2b12

12a2a1
+

h2[d]x2x2

12
+

2d

3

We get

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise and the sheme is thus of the form (2.16).

2.4.4 Derivation of Version 4

In this part we derive Version 4 in whih the derivative ∂4u/(∂x1∂x
3
2) is part of the

seond-order trunation error R2. Using (2.7) and (2.10) in (2.15) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12

∂4u

∂x31∂x2
− b12(∆x2)

2

12

∂4u

∂x1∂x
3
2

+ ε.

Now applying (2.12) leads to

f =A0 −
c1(∆x1)

2

6
A1 −

c2(∆x2)
2

6
A2 −

a1(∆x1)
2

12
B1 −

a2(∆x2)
2

12
B2

− b12(∆x1)
2

12
C1 +

b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x
3
2

+ ε.

(2.41)

For Version 4 the seond-order remainder term is

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32
. (2.42)
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There are two ases where R2 ≡ 0 and we obtain a high-order ompat sheme. The �rst

is again

a1 ≡
(∆x1)

2

(∆x2)
2a2.

This means that if a1 ≡ a2 holds, one has to hoose G
(2)
h as the grid. The seond possibility

to ahieve R2 ≡ 0 is by

b12 ≡ 0.

In this ase there are no further restritions on the step-sizes in x1- and x2-diretion. Using

the entral di�erene operator in (2.41) at the point (xi1 , xi2) ∈
◦
G

(2)

h gives

K̂i1−1,i2±1 =
a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
+

b12[a2]x2

12a2h
∓ b12[a1]x1

24a1h
− b12c2

24a2h
∓ b12[b12]x1x2

48a1

∓ b12[c1]x1

48a1
∓ b12[c2]x2

48a1
∓ c1[b12]x1

48a1
∓ c1c2

48a1
+

b212
12a1h2

± b12[b12]x2

24a1h

− b12[b12]x1

24a1h
∓ b12[a2]x1

24a2h
∓ b212[a1]x2

24a21h
± b12[a1]x2c2

48a21
+

a1
12h2

∓ c1c2
48a2

± [a1]x1c2
24a1

± [a1]x1 [b12]x1

24a1
± c1[a2]x2

24a2
∓ c2[b12]x2

48a2
± [b12]x2 [a2]x2

24a2

∓ [c2]x1

24
− [a2]x1

12h
± [a1]x2

12h
− [b12]x2

12h
± [b12]x1

12h
∓ b12

4h2
− c1

24h
± c2

24h
(2.43)

+
a2

12h2
+

b212[a2]x1

24a1a2h
+

a2b12[a1]x2

24a21h
± b12[a2]x1c1

48a1a2
± b12[a2]x1 [b12]x2

48a1a2

∓ [b12]x2x2

48
± b12c1

12a1h
− b12c2

24a1h
± b12[a1]x2 [b12]x1

48a21
± a1c2

24a2h
− a2c1

24a1h

∓ [b12]x1x1

48
∓ [c1]x2

24
− b12[a2]x2

24a1h
,

K̂i1+1,i2±1 =− a2[a1]x1

12a1h
∓ a1[a2]x2

12a2h
− b12[a2]x2

12a2h
∓ b12[a1]x1

24a1h
+

b12c2
24a2h

± b12[b12]x1x2

48a1

± b12[c1]x1

48a1
± b12[c2]x2

48a1
± c1[b12]x1

48a1
± c1c2

48a1
+

b212
12a1h2

± b12[b12]x2

24a1h

+
b12[b12]x1

24a1h
∓ b12[a2]x1

24a2h
∓ b212[a1]x2

24a21h
∓ b12[a1]x2c2

48a21
+

a1
12h2

± c1c2
48a2

∓ [a1]x1c2
24a1

∓ [a1]x1 [b12]x1

24a1
∓ c1[a2]x2

24a2
± c2[b12]x2

48a2
∓ [b12]x2 [a2]x2

24a2
(2.44)

± [c2]x1

24
+

[a2]x1

12h
± [a1]x2

12h
+

[b12]x2

12h
± [b12]x1

12h
± b12

4h2
+

c1
24h

± c2
24h

+
a2

12h2
− b212[a2]x1

24a1a2h
− a2b12[a1]x2

24a21h
∓ b12[a2]x1c1

48a1a2
∓ b12[a2]x1 [b12]x2

48a1a2

± [b12]x2x2

48
± b12c1

12a1h
+

b12c2
24a1h

∓ b12[a1]x2 [b12]x1

48a21
± a1c2

24a2h
+

a2c1
24a1h

± [b12]x1x1

48
± [c1]x2

24
+

b12[a2]x2

24a1h
,
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K̂i1,i2±1 =∓ h[c2]x1 [a1]x1

12a1
± hc2[c2]x2

24a2
∓ h[c2]x2 [a2]x2

12a2
± a1[a2]x2

6a2h
± b12[a1]x1

12a1h

∓ b12[b12]x2

12a1h
± b12[a2]x1

12a2h
± b212[a1]x2

12a21h
± h[c2]x1x2b12

24a1
± hc1[c2]x1

24a1

+
c22

12a2
− [a2]

2
x2

6a2
− a1

6h2
− c2[a2]x2

12a2
− [a1]x1 [a2]x1

6a1
− b12[a2]x1 [a1]x2

12a21

± 5c2
12h

+
5a2
6h2

± h[c2]x2x2

24
± h[c2]x1x1

24
∓ hb12[c2]x1 [a1]x2

24a12
− b212

6a1h2
(2.45)

− b12c2[a2]x1

12a1a2
∓ hb12[a2]x1 [c2]x2

24a1a2
+

[a2]x1x2b12
12a1

+
c1[a2]x1

12a1
+

b12[c2]x1

12a1

+
[a2]x1x1

12
+

[a2]x2x2

12
∓ b12c1

6a1h
∓ a1c2

12a2h
∓ [b12]x1

6h
− b12[a2]x1 [a2]x2

12a1a2

+
[c2]x2

6
∓ [a1]x2

6h
,

K̂i1±1,i2 =± a2[a1]x1

6a1h
± b12[a2]x2

6a2h
∓ b12c2

12a2h
+

c21
12a1

− b212
6a1h2

∓ b12[a2]x2

12a1h

± h[c1]x1x1

24
± h[c1]x2x2

24
− [a1]

2
x1

6a1
+

5a1
6h2

− b12[a2]x1 [a1]x2

12a1a2

+
c2[a1]x2

12a2
− c1[a1]x1

12a1
± h[c1]x1x2b12

24a1
± hc1[c1]x1

24a1
− b12c1[a1]x2

12a21

− b12[a1]x1 [a1]x2

12a21
∓ [b12]x2

6h
− a2

6h2
∓ hb12[c1]x1 [a1]x2

24a21
+

b12[c1]x2

12a1
(2.46)

+
[a1]x1x2b12

12a1
± b212[a2]x1

12a1a2h
± a2b12[a1]x2

12a21h
± hc2[c1]x2

24a2
∓ h[c1]x2 [a2]x2

12a2

∓ h[c1]x1 [a1]x1

12a1
∓ hb12[a2]x1 [c1]x2

24a1a2
+

[a1]x1x1

12
+

[a1]x2x2

12
∓ b12c2

12a1h

∓ a2c1
12a1h

∓ b12[b12]x1

12a1h
+

[c1]x1

6
− [a1]x2 [a2]x2

6a2
∓ [a2]x1

6h
± 5c1

12h

and

K̂i1,i2 =− c21
6a1

+
b212

3a1h2
+

b12[a2]x1 [a1]x2

6a21
− c22

6a2
+

[a2]
2
x2

3a2
+

[a1]
2
x1

3a1
− [a2]x1x1

6

+
[a1]x2 [a2]x2

3a2
− c2[a1]x2

6a2
+

c1[a1]x1

6a1
+

c2[a2]x2

6a2
+

[a1]x1 [a2]x1

3a1

+
b12[a1]x1 [a1]x2

6a21
− [c1]x1

3
− [c2]x2

3
− 5a2

3h2
− b12[c1]x2

6a1
− [a1]x1x2b12

6a1
(2.47)

+
b12c2[a2]x1

6a1a2
− [a2]x1x2b12

6a1
− c1[a2]x1

6a1
− b12[c2]x1

6a1
− [a1]x1x1

6
− 5a1

3h2

− [a1]x2x2

6
− [a2]x2x2

6
+

b12[a2]x[a1]x2

6a1a2
+

b12c1[a1]x2

6a21
+

b12[a2]x1 [a2]x2

6a1a2

where K̂l,m denotes the oe�ient of Ul,m (τ) for l ∈ {i1 − 1, i1, i1 + 1} and m ∈ {i2 −
1, i2, i2 + 1}. Additionally, [·]xk

denotes the �rst derivative with respet to xk and [·]xkxp
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the seond derivative, one in xk- and one in xp-diretion with k, p ∈ 1, 2. Again, a, b1,2,

c1 and c2 are funtions evaluated at (xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . The value M̂l,m denotes

the oe�ient of ∂τUl,m (τ) at the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12d

48a1

M̂i1,i2±1 =
d

12
± dc2h

24a2
∓ d[a2]x2h

12a2
∓ hb12[a2]x1d

24a1a2
± hb12[d]x1

24a1
± [d]x2h

12

M̂i1±1,i2 =
d

12
± c1dh

24a1
∓ b12[a1]x2dh

24a21
∓ hd[a1]x1

12a1
± hb12[d]x2

24a1
± h[d]x1

12
(2.48)

M̂i1,i2 =
h2[d]x1x1

12
+

2d

3
+

h2[d]x2x2

12
+

h2[d]x1c1
12a1

+
h2[d]x2c2
12a2

− h2[d]x2 [a2]x1b12
12a1a2

+
h2b12[d]x1x2

12a1
− h2[d]x1 [a1]x1

6a1
− h2[d]x1 [a1]x2b12

12a21
− h2[d]x2 [a2]x2

6a2

We have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (2.16) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for (xi1 , xi2) ∈
◦
G

(2)

h and

τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus the disretisation onsists only of points of

the ompat stenil and is of the form (2.16).

2.5 Appliation to the Heston model on non-uniform grids

In this setion we apply our disrete shemes to the Heston model. Firstly, we transform

the partial di�erential equation of the Heston model (1.11) so that it assumes the form of

the partial di�erential equation (2.1). After that, we have a loser look at the seond-order

remainder terms of the four di�erent essentially high-order ompat shemes. Then we

apply the shemes to the Heston model and determine the oe�ients of the semi-disrete

sheme. Finally we disuss the boundary onditions and then use Crank-Niolson time

disretisation, ompare for example [Str04, Wil98℄.

2.5.1 Transformation of the partial di�erential equation and �nal on-

dition

In the appliation we fous our attention on the Heston model. The partial di�erential

equation of the Heston-model, reall (1.11), is given by

Vt +
1

2
σS2σVSS + ρvσSVSσ +

1

2
v2σVσσ + rSVS + κ(θ − σ)Vσ − rV = 0, (2.49)
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where S ∈
[

0, Smax

]

with a hosen Smax > 0, σ ∈ [σmin, σmax] with 0 ≤ σmin < σmax and

t ∈ [0, T [ with T > 0, after imposing arti�ial boundary onditions in a lassial manner.

The expression Vt denotes the di�erentiation of the option V with respet to t. The deriva-

tives VS , Vσ, VSS, Vσσ as well as VSσ are de�ned in an analogous way.

The �nal ondition as well as the boundary onditions, whih we disuss separately,

depend on the hosen option. In the ase of a European Power Put Option with power

p ∈ N we have the �nal ondition

V (S, v, T ) = max(K − S, 0)p. (2.50)

We apply the following transformations to (2.49) as in [DF12a℄,

Ŝ = ln

(

S

K

)

, τ = T − t, y =
σ

v
, u = erτ

V

K
,

where Ŝ ∈
[

Ŝmin, Ŝmax

]

with a hosen Ŝmin < 0 and

Ŝmax = ln

(

Smax

K

)

.

We then introdue a stritly monotonous zoom funtion

Ŝ = ϕ(x),

zooming around Ŝ = 0, with

x ∈
[

ϕ−1
(

Ŝmin

)

, ϕ−1
(

Ŝmax

)]

,

as well as ϕ(x) ∈ C4 (]xmin, xmax[) and setting f = −ϕ3
xuτ , we obtain from (2.49) the

following two-dimensional ellipti problem [Str04℄,

f =
−vy

2

[

ϕxuxx + ϕ3
xuyy

]

− ρvyϕ2
xuxy +

[vyϕxx

2
+
(vy

2
− r
)

ϕ2
x

]

ux

− κ
θ − vy

v
ϕ3
xuy,

(2.51)

where (x, y) ∈ Ω := [xmin, xmax]× [ymin, ymax], xmin < xmax and ymin < ymax. This means

that we use x1 = x and x2 = y in the derivation of the four di�erent essential high-order

ompat shemes.
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Remark 1:

Equations (2.18), (2.26), (2.34) and (2.42) show that we an obtain a high-order ompat

sheme when either ρ = 0, v = 0, or (∆y)2 ≡ (∆x)2ϕ2
x. The onstraint (∆y)2 ≡ (∆x)2ϕ2

x,

however, implies that the funtion ϕ is a�ne linear and would not qualify as a zoom

funtion. In partiular, the hoie ϕ(x) = x would yield the high-order ompat sheme

disussed in [DF12a℄ (on a uniform grid), hene we fous on a zoom whih is not a�ne

linear.

2.5.2 Disussion of seond-order remainder terms

In equations (2.17), (2.25), (2.33) and (2.41) we observe that all these shemes have a

formal general onsisteny error of order two. On the other hand eah version only has one

remaining seond order term, whih is multiplied with either uxxxx, uyyyy , uxxxy, or uxyyy.

All other terms are disretised with fourth order auray. We all this an essentially high-

order ompat disretisation. To gauge the overall potential of the four disrete shemes

we obtain by negleting the remaining seond-order terms, it is pivotal to understand the

behaviour of these terms better. To this end we ompute a numerial solution using the

(seond-order) entral di�erene operator in x- and y-diretion diretly in equation (2.51),

and obtain by numerial di�erentiation (approximations of) the higher derivatives uxxxx,

uyyyy, uxxxy, and uxyyy appearing in the remaining seond order terms. Figure 2.1 shows

Figure 2.1: Remainder terms without O((∆x)2) fator for Version 1 (upper left),

Version 2 (upper right), Version 3 (lower left), and Version 4 (lower right)

the remainder terms of seond order appearing in equations (2.17), (2.25), (2.33) and (2.41)

without the O(h2) fator, where ρ = −0.1, ζ = 2.5, p = 1, and Smin = 49.6694. The values
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of these remainder terms determine if we an ahieve a fourth-order onsisteny, at least

up to a given minimal step size. Hene, low values for the remainder terms are favourable.

We observe that all for all plots have the highest values of the remainder terms our near

the boundary x = 0. On the upper left plot in Figure 2.1 we see the remainder term

for Version 1. This term has by far the highest absolute values and the l2-norm of this

remainder term is 8.8×10−1
. This indiates that a numerial study of this sheme may not

lead to a fourth-order onsisteny error. On the upper right plot we have the remainder

term for Version 2, again without the O((∆x)2) fator. The highest absolute value for

this is only about 4 × 10−3
, so very low when omparing it with the remainder term of

Version 1. The l2-norm for this plot is 3.1 × 10−4
, whih shows that Version 2 has a

signi�antly higher hane of produing a fourth order onsisteny error in the numerial

study than Version 1. The plot on the lower left side is showing the remainder term of

Version 3. This plot has higher values than Version 2, but lower values than Version 1.

With a l2-norm of 6.6×10−3
it has still a hane to produe a good onsisteny error. The

plot on the lower right shows the remainder term of Version 4. This plot has again very

low absolute values whih are only up to about 5× 10−3
. The l2-norm for this remainder

term is 3.1 × 10−4
. This indiates that we have a good hane that Version 4 produes a

sheme with fourth-order auray.

In the speial ase that ϕ(x) = x and ∆x = ∆y = h we have (∆y)2 ≡ (∆x)2ϕ2
x, and

all four versions lead to exatly the same high order ompat sheme,

f = A0 +
vyh2

24
B1 +

vyh2

24
B2 +

ρvyh2

12
C1 +

κ(θ − vy)h2

6v
A2 −

(vy
2 − r

)

h2

6
A1 + ε,

as in this ase C1 = C2 holds. This spei� high-order ompat sheme without zoom is

disussed in [DF12a℄.
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Remark 2:

The derivation of the shemes in this setion an be modi�ed to aommodate other stohas-

ti volatility models as, e.g. the GARCH di�usion model (1.4) or the 3/2-model (1.5).

Using these models the struture of the partial di�erential equation (1.10) remains the

same, only the oe�ients of the derivatives have to be modi�ed aordingly. Similarly,

the oe�ients of the derivatives in (2.6)-(2.13) have to be modi�ed. Substituting these in

the modi�ed expression for the trunation error one obtains equivalent approximations as

above.

Our onlusion from the results in Figure 2.1 are that Version 2 and Version 4 seem to

be the best hoies to obtain small errors. The remainder term for Version 3 still has low

values, while Version 1 seems only to be able to produe a seond-order sheme. Numerial

experiments whih we have arried out with all four versions of the sheme indiate that

atually Version 3 is leading to the best results in terms of auray and stability. Hene,

in the remainder of this hapter we fous on this partiular sheme.

2.5.3 Semi-disrete shemes

In Setion 2.4 we have derived essentially high-order ompat numerial shemes in a

general setting. In this setion we use these shemes to approximate a solution of the

partial di�erential equation of the Heston Model [Hes93℄, where we additionally introdue

a zoom into the area around the strike prie K.

We now onsider the ellipti equation (2.51) with f = −ϕ3
xuτ and we denote by Ui,j(τ)

the semi-disrete approximation of its solution u(xi, yj , τ) at time τ .

In this setion we de�ne the semi-disrete sheme of the form

∑

ẑ∈G
(2)
h

[Mz(ẑ)∂τUi,j(τ) +Kz(ẑ)Ui,j(τ)] = 0, (2.52)

at time τ for eah point z ∈ ◦
G

(2)

h , where

◦
G

(2)

h denotes the inner points of the grid G
(2)
h ,

ompare De�nition 13. We have that Kz(ẑ) and Mz(ẑ) are operators with nine values

de�ned on the ompat stenil around z ∈ ◦
G.
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Using the entral di�erene operator in (2.33) at the point z ∈ ◦
G leads to

K̂i+1,j±1 =
ϕ4
x

( vy
2 − r

)

24h
− vyϕ2

xϕxx

16h
+

( vy
2 − r

)

ϕ2
x

24h
− vyϕ3

x

24h2
+

vyϕxx

48h
− vyϕx

24h2

∓ ϕxκ (θ − vy)

24vh
∓ κϕ3

x (θ − vy)

24vh
± κ (θ − vy)

( vy
2 − r

)

ϕ2
x

24v2y
± vϕ2

x

48

± κ (θ − vy)ϕxx

48v
∓
( vy

2 − r
)

ϕ2
x

24y
± ϕ4

xκ (θ − vy)
( vy

2 − r
)

24v2y

∓ κ (θ − vy)ϕ2
xϕxx

16v
+ ρ2

[vyϕxx

12h
± vϕxx

8
− vyϕx

6h2

]

(2.53)

+ ρ

[

±ϕ2
xϕxx

(vy
2 − r

)

12
± vyϕ2

xx

12
∓
( vy

2 − r
)

ϕxx

24
± vyϕxxx

48ϕx
± ϕ2

xκ

24

± ϕx

( vy
2 − r

)

12h
± ϕ3

x

(vy
2 − r

)

12h
± vyϕxx

8hϕx
∓ vyϕxϕxx

24h
∓ vyϕ2

x

4h2

−ϕ2
xκ (θ − vy)

6hv
∓ vyϕ2

xx

16ϕ2
x

± vϕ2
x

24y
∓ vyϕxϕxxx

24

]

,

K̂i−1,j±1 =− K̂i+1,j±1 −
vyϕx

12h2
− vyϕ3

x

12h2
∓ ϕxκ (θ − vy)

12vh
∓ ϕ3

xκ (θ − vy)

12vh

− ρ2
vyϕx

3h2
+ ρ

[

±ϕx

( vy
2 − r

)

6h
± vyϕxx

4hϕx
± ϕ3

x

( vy
2 − r

)

6h
∓ vyϕxϕxx

12h

]

, (2.54)

K̂i±1,j =
vyϕ3

x

12h2
∓ hϕ2

xx

( vy
2 − r

)

6
∓ ϕ4

x

(vy
2 − r

)

12h
± 5

( vy
2 − r

)

ϕ2
x

12h
± yhvϕxxxx

48

− ϕxκ (θ − vy)

12vy
− 5vyϕx

12h2
± 5vyϕxx

24h
+

vϕx

12y
∓ ϕ2

xhv

24y
− ϕ3

x

(vy
2 − r

)2

6vy

+
vyϕxxx

24
∓ hϕxxv

24y
± hκ (θ − vy)ϕxx

24vy
+

( vy
2 − r

)

ϕxϕxx

12
∓ vyhϕxxϕxxx

16ϕx

± ϕxh
( vy

2 − r
)

ϕxxx

24
± vyϕ2

xϕxx

8h
∓ ϕ2

xh
( vy

2 − r
)2

ϕxx

6vy
± ϕ2

xhκ (θ − vy)

24vy
(2.55)

+ ρ2
[vyϕx

3h2
∓ vyϕxx

6h

]

+ ρ

[

vϕxx

4ϕx
∓ hϕxxv

24
∓ hvϕ2

xx

8ϕx
2

− ϕx

( vy
2 − r

)

6y

+
vϕx

12
∓ h

( vy
2 − r

)

ϕxx

6y
± ϕ2

xκ (θ − vy)

3hv

]

,

K̂i,j±1 =
ϕ3
xϕxx

(vy
2 − r

)

4
± ϕ3

xh
( vy

2 − r
)

κ (θ − vy)ϕxx

4v2y
∓ ϕ2

xhκ (θ − vy)ϕxxx

8v

− ϕ3
xκ

2 (θ − vy)2

6yv3
+

vyϕx

12h2
∓ ϕ3

xhκ

12y
± ϕ3

xhκ
2 (θ − vy)

12v2y
∓ 5κϕ3

x (θ − vy)

12vh

+
vyϕxϕ

2
xx

8
− 5vyϕ3

x

12h2
+

ϕ3
xv

12y
+

κϕ3
x (θ − vy)

12vy
+

κϕ3
x

6
± ϕxκ (θ − vy)

12vh
(2.56)
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± ϕxhϕ
2
xx
κ (θ − vy)

8v
− vyϕ2

xϕxxx

8
+ ρ2

vyϕx

3h2
+ ρ

[

±hϕxκ (θ − vy)ϕxx

4vy

±vyϕxϕxx

12h
∓ ϕ3

x

( vy
2 − r

)

6h
∓ vyϕxx

4hϕx
+

vϕxϕxx

4
∓ ϕx

( vy
2 − r

)

6h

]

and

K̂i,j =
vyϕ2

xϕxxx

4
− ϕ3

xϕxx

( vy
2 − r

)

2
− vyϕxϕ

2
xx

4
− ϕ3

xv

6y
− ϕ3

xκ (θ − vy)

6vy
− κϕ3

x

3

+
ϕ3
xκ

2 (θ − vy)2

3yv3
+

5vyϕx

6h2
+

5vyϕ3
x

6h2
−
(vy

2 − r
)

ϕxϕxx

6
+

ϕ3
x

( vy
2 − r

)2

3vy

− vϕx

6y
− vyϕxxx

12
+

ϕxκ (θ − vy)

6vy
− ρ2

2vyϕx

3h2
(2.57)

+ ρ

[

ϕx

( vy
2 − r

)

3y
− vϕxx

2ϕx
− vϕx

6
− vϕxϕxx

2

]

,

where K̂i,j is the oe�ient of Ui,j(τ). For the sake of readability we drop the subindex i

on the derivatives of ϕ and the subindex j on y, respetively. Analogously, we have

M̂i+1,j±1 =M̂i−1,j∓1 = ±ρ
ϕ2
x

24
, M̂i,j±1 =

ϕ3
x

12
∓ ϕ3

xh

12y
± ϕ3

xhκ (θ − vy)

12v2y
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ρ

ϕ2
xh

12y
and (2.58)

M̂i,j =
2ϕ3

x

3
− ϕ3

xh
2ϕxx

(vy
2 − r

)

2vy
− ϕxh

2ϕ2
xx

4
+

ϕ2
xϕxxxh

2

4
− ρ

ϕxϕxxh
2

2y
,

as oe�ients of ∂τUi,j(τ). Using z = (xi, yj) ∈
◦
G

(2)

h we have

Kz(ẑ) =K̂n1,n2 as well as Mz(ẑ) = M̂n1,n2 (2.59)

for ẑ = (xn1 , yn2) with n1 ∈ {i− 1, i, i+ 1} and n2 ∈ {j − 1, j, j + 1}. Mz and Kz are zero

otherwise.

2.5.4 Treatment of the boundary onditions

The �rst boundary is the boundary x = xmin, whih orresponds to the boundary at S = 0

of the original problem (2.49). For this boundary we have to disount the option prie at

time T to the appropriate time. Taking into aount the transformations τ = T − t and

u = erτV/K this leads to the Dirihlet boundary ondition

u(xmin, y, τ) = u(xmin, y, 0) ∀ τ ∈ [0, τmax] ∀ y ∈ [ymin, ymax].
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The next boundary we disuss is the boundary x = xmax, whih orresponds to the

boundary at S = Smax of the original problem. For a Power Put with power p ∈ N we

have

lim
S→∞

V (S, σ, t) = 0,

whih we approximate at the arti�ial boundary Smax by VS(Smax, σ, t) = 0, VSS(Smax, σ, t) =

0, VSσ(Smax, σ, t) = 0, Vσ(Smax, σ, t) = 0 as well as Vσσ(Smax, σ, t) = 0. Using these ap-

proximations in (2.49) gives

Vt − rV = 0.

Using τ = T − t and u = erτV/K yields uτ = 0 and thus the Dirihlet boundary ondition

u(xmax, y, τ) = u(xmax, y, 0) for all τ ∈ [0, τmax] and all y ∈ [ymin, ymax]. (2.60)

The third boundary to disuss is the boundary y = ymin with x /∈ {xmin, xmax}, whih
orresponds to the boundary σ = σmin with S /∈ {Smin, Smax}. We treat this boundary

just like the inner part of the omputational domain, using equations (2.53) to (2.57). This

requires the usage of ghost-points Ui−1,−1, Ui,−1 and Ui+1,−1 when disretising at the points

(xi, y0) ∈ G
(2)
h for i = 1, . . . , N − 1. Thus we need a fourth order aurate expression for

the ghost-points Ui,−1 for i = 0, . . . , N . Using Taylor expansion, we get the extrapolation

Ui,−1 =4Ui,0 − 6Ui,1 + 4Ui,2 − Ui,3 +O
(

(∆y)4
)

for i = 0, . . . , N . The same proedure is used for the ghost-points for the matrix Mh when

using the equations in (2.58).

The last boundary we disuss is the boundary at boundary y = ymax with x /∈ {xmin, xmax},
whih is orresponding to the boundary σ = σmax with S /∈ {Smin, Smax} of the untrans-

formed problem. We treat this boundary similar as the boundary at ymin and use equations

(2.53) to (2.57). The sheme then uses, when disretising at the points (xi, yM ) ∈ G
(2)
h for

i = 1, . . . , N − 1, the ghost-points Ui−1,M+1, Ui,M+1 and Ui+1,M+1 for i = 1, . . . , N − 1.

This means that we have to �nd an expression for the ghost-points Ui,M+1, i = 0, . . . , N .

We an approximate the values at these ghost-points again using Taylor approximation,
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leading to

Ui,M+1 = 4Ui,M − 6Ui,M−1 + 4Ui,M−2 − Ui,M−3 +O
(

(∆y)4
)

for i = 0, . . . , N . Again, the same proedure is used for the ghost-points for the matrix

Mh while using the equations in (2.58).

2.5.5 Time disretisation

With the results from the previous setions we obtain a semi-disrete system of the form

∑

ẑ∈G
(2)
h

[Mz(ẑ)∂τUi,j(τ) +Kz(ẑ)Ui,j(τ)] =g(z), (2.61)

for eah point z of the grid G
(2)
h , whih is de�ned in (2.3) for some h > 0. The funtion

g(z) has only non-zero values at the boundaries xmin and xmax.

We use a time grid of the form

{

∆τ

4
,
∆τ

2
,
3∆τ

4
,∆τ, 2∆τ, 3∆τ, . . .

}

,

where the �rst four time steps have step size

∆τ
4 and the following have ∆τ . For these �rst

four time steps, we use the impliit Euler sheme, and obtain

∑

ẑ∈G
(2)
h

[

Mz(ẑ) +
∆τ

4
Kz(ẑ)

]

Un+1
i,j =

∑

ẑ∈G
(2)
h

Mz(ẑ)U
n
i,j +

∆τ

4
g(z)

with n = 0, 1, 2, 3 for eah grid-point z ∈ G
(2)
h . This approah is suggested in [Ran84℄

when dealing with non-smooth initial onditions. For the following time steps we use a

Crank-Niolson-type time disretisation, ompare for example [Str04, Wil98℄, leading to

∑

ẑ∈G
(2)
h

[

Mz(ẑ) +
∆τ

2
Kz(ẑ)

]

Un+1
i,j =

∑

ẑ∈G
(2)
h

[

Mz(ẑ)−
∆τ

2
Kz(ẑ)

]

Un
i,j + (∆τ)g(z)

with n ≥ 4 on eah point z of the grid G
(2)
h . We observe that we have only non-zero values

on the ompat omputational stenil as both Mx(x̂) and Kx(x̂) have this property. For

the Crank-Niolson time disretisation this ompat sheme has onsisteny order two in

time and four in spae for ϕ(x) = x and ρ = 0 or is essentially high-order ompat in spae

otherwise.
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2.6 Numerial experiments

In this setion we present the results of our numerial experiments for the ompat sheme

using (2.53) � (2.58), whose boundary onditions were derived in Setion 2.5.4. If not

stated otherwise, we use the default model parameters

κ = 1.1, θ = 0.15, v = 0.1, r = ln(1.05), K = 100 and T = 0.25.

The initial ondition for the European (Power) Put after transformation as in Setion 2.5.1

is given by

u(x, y, 0) = Kp−1max
(

1− eϕ(x), 0
)p

, (2.62)

where the non-di�erentiable point of the initial ondition is at xK = ϕ−1(0).

2.6.1 Choie of the zoom funtion

In our numerial experiments we use the zoom funtion

Ŝ = ϕ(x) =
sinh(c2x+ c1(1− x))

ζ
, (2.63)

proposed in [TGB08℄, with c1 = asinh(ζŜmin), c2 = asinh(ζŜmax) and ζ > 0. The non-

di�erentiable point of the initial ondition is hene at

xK =ϕ−1(0) =
asinh(0)− c1

c2 − c1
=

−asinh(ζŜmin)

asinh(ζŜmax)− asinh(ζŜmin)
.

Using the de�nitions of c1 and c2 this an be rearranged to

Ŝmin =
sinh

(

xK

xK−1asinh(ζŜmax)
)

ζ
. (2.64)

Hene, Ŝmin an be set by hoosing xK in reasonable bounds as well as hoosing Smax,

whih gives Ŝmax, for a given ζ. The fat that xK an be hosen is very helpful, sine if

the non-di�erentiable point is on the grid the numerial onvergene order may be redued

to two in pratie. Hene, we hoose the grid suh that the point xK is in the middle of

two onseutive grid points on the �nest grid. This proedure of shifting the grid has been

suggested for example in [TR00℄.
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Figure 2.2: Di�erent zoom examples with K = 100

In the numerial experiments reported below we hoose

Smin = KeŜmin , Smax = 2K, σmin = 0.05, σmax = 0.25.

Figure 2.2 shows the in�uene of the parameter ζ on the zoom in equation (2.63),

taking into aount both transformations, Ŝ = ln (S/K) and x = ϕ−1(Ŝ). The di�erent

values for xK , whih depends on ζ, are hosen in suh a way that the fous on the values

around S = 0 is not too pronouned, ompare equation (2.64). We observe that for smaller

values of ζ > 0 there is less zoom. So with ζ → 0 the zoom funtion is approahing the

linear transformation ϕ(x) = (Ŝmax − Ŝmin)x+ Ŝmin with x ∈ [0, 1]. With a larger value of

ζ there is a stronger fous on our area of interest around the exerise prie K.

The aim is to �nd an `optimal' value for ζ to be used in pratial omputations. The

larger ζ, the smaller the error around K, but on the other hand the error in other parts

of the domain inreases when having a stronger zoom, sine an inreasing number of grid

points in the area around K automatially results into a dereasing amount of grid points

in other areas and vie versa. There has to be a balane between the error in the area

around K and the error in other parts of the domain. The overall order of onvergene

should be looked at to ahieve this balane and thus to get a good value for ζ. We expet

the numerial onvergene order to inrease at �rst with rising ζ and then derease again

after a ertain `optimal' strength of zoom is reahed.
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2.6.2 Numerial onvergene

We now study the numerial errors of the disretisation as h → 0 for �xed paraboli

mesh ratio ∆τ/h2, using di�erent values for ζ and ρ. We ompute an approximation of the

solution of the transformed problem, whih is given by equation (2.51), and then transform

it bak into the original variables. For the relative l2- and l∞-error plots a referene solution

is omputed on a �ne grid with h
ref

= 0.003125. For the relative l2-errors we use

‖U
ref

− U‖l2
‖U

ref

‖l2

and for the l∞-error we use

‖U
ref

− U‖l∞ ,

where U
ref

denotes the referene solution and U is the approximation. We expet the

error to behave like O
(

hk
)

for some k. If we plot the logarithm of the error against the

logarithm of the number of grid points, the slope of this log-log plot gives the numerial

onvergene order of the sheme. Due to the initial ondition of the transformed problem

not being smooth everywhere, we observe that the log-log plots do not always produe

a straight line, e.g. for a plain vanilla Put option. For a smooth initial ondition, the

log-log plots of the errors give an almost straight line, e.g. for the Power Put option. The

numerial onvergene order indiated in the �gures below is always omputed as the slope

of the linear least square �t of the error points. For omparison, we additionally plot the

results for a standard disretisation (SD), whih means that the standard entral di�erene

operator is used in (2.51) as well as

ϕ(x) =
(

Ŝmax − Ŝmax

)

x+ Ŝmin.

In this way all disretisations onsidered here operate on the same spatial grid and a

meaningful omparison an our. We use ∆τ = 0.4h2 for all onvergene plots, although

we note that the dependene of the numerial onvergene order on the hoie of the

paraboli mesh ratio is marginal. This is in line with the results of our numerial stability

study reported below in Setion 2.6.3.

Figures 2.3 and 2.4 show log-log plots of the relative l2- and l∞-error of the approxi-

mations with respet to the referene solution in the Heston-Hull-White model (ρ = 0) for

a European Put option for di�erent values for the number of grid points and with di�erent
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Figure 2.3: Relative l2-error Heston model,

ρ = 0
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ζ = 2.5 (order 3.73)
ζ = 5    (order 4.20)
ζ = 7.5 (order 3.59)
ζ = 10  (order 3.00)
SD       (order 1.72)

Figure 2.4: Absolute l∞-error Heston model,

ρ = 0

zooms. In this way the in�uene of the zoom an be observed. The theoretial onsisteny

order in this ase is four. Looking at the relative l2-error, we observe that the numerial

onvergene orders vary from 3.75 to 4.29, whih agrees very well with the theoretial or-

der for all zooms. We an also see that the onvergene order rises up to ζ = 5 and then

delines again, so ζ ≈ 5 seems to be the best hoie. The lowest relative l2-error is always

obtained when using ζ = 10.

A more useful error in pratie is probably the l∞-error, as it shows the highest di�er-

ene between the referene solution and the approximation. When looking at Figure 2.4

we see that the l∞-error and the l2-error have a very similar behaviour. The onvergene

orders vary from 3.00 to 4.20, again having the best order for ζ ≈ 5. When using the

�nest grid the error for ζ = 5 and ζ = 10 are almost idential, but with rougher grids

the error with ζ = 10 is again learly the smallest. For both error plots we observe that

the zoom has its biggest impat when looking at a rough grid, beause the error then

dereases signi�antly with an inreasing zoom. The high-order ompat disretisations

have signi�antly lower error values and higher onvergene orders when omparing them

to the standard disretisation. Overall, hoosing ζ ≈ 5 for the Heston-Hull-White model

(ρ = 0) seems to be the best hoie with respet to the onvergene order.

In Figures 2.5 and 2.6 we plot the relative l2- and l∞-error for a European Put option

in the Heston model with ρ = −0.1. This means that the theoretial onsisteny order is

only two, see equation (2.33). We observe in Figure 2.5 that the relative l2-error varies

between 3.40 and 4.14. These values are far above the theoretial onsisteny order. In

fat, using the Version 3 disretisation sheme we obtain a onvergene order lose to the

order using the Heston-Hull-White model. The order of the relative l2-error is again rising
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Figure 2.5: Relative l2-error Heston model,

ρ = −0.1
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ζ = 2.5 (order 3.63)
ζ = 5    (order 4.09)
ζ = 7.5 (order 3.59)
ζ = 10  (order 3.00)
SD       (order 1.71)

Figure 2.6: Absolute l∞-error Heston model,

ρ = −0.1

up to ζ = 5 and delining afterwards, but has its lowest values when using ζ = 10. The l∞-

error in Figure 2.6 behaves similar to the l∞-error in the Heston-Hull-White model. Here

the onvergene order values vary between 3.00 and 4.09, having its highest value for ζ = 5.

With the �nest grid the di�erene of the error when using ζ = 10 and using ζ = 5 is again

very slim. The biggest impat of inreasing the zoom in either error plot an be again seen

when having a rough grid, sine inreasing the zooming leads to signi�antly lower errors

in this ase. Similarly as in the Heston-Hull-White model the onvergene order results are

best when hoosing ζ = 5. For both errors we an again see that the essentially high-order

ompat disretisations have signi�antly lower error values and higher onvergene orders

than the standard disretisation.
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ζ = 2.5 (order 3.55)
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Figure 2.7: Relative l2-error Heston model,

ρ = −0.4
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ζ = 2.5 (order 3.42)
ζ = 5    (order 3.86)
ζ = 7.5 (order 3.59)
ζ = 10  (order 2.98)
SD       (order 1.68)

Figure 2.8: Absolute l∞-error Heston model,

ρ = −0.4

Figures 2.7 and 2.8 show the relative l2- and l∞-error for an European Put option in

the Heston model with ρ = −0.4. The theoretial onsisteny orders of the errors are again
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two. In Figure 2.7 we an see that the onvergene order for the relative l2-error varies from

2.92 to 3.84, whih is again signi�antly higher than the theoretial order. The onvergene

order deteriorates slightly for smaller values of ρ, but is still an order better than for the

standard disretisation. As expeted, the best onvergene order, whih is still very lose

to four, is ahieved when using ζ = 5. From Figure 2.8 we �nd that for the l∞-error the

onvergene order gets lower with lowering the value of ρ. The onvergene orders vary

from 2.98 to 3.86, where ζ = 5 leads again to the highest value, whih is still lose to four

and thus highly above the theoretial value of the onsisteny error order. As in the two

previous ases the zoom has his highest strengths for the relative l2-error as well as for

the l∞-error when using a very rough grid. For both the relative l2-error and the l∞-error

we an again see that the essentially high-order ompat shemes have signi�antly lower

error values and higher onvergene orders than the standard disretisation.

From Figures 2.3 to 2.8 we reover the numerial observation given in Setion 2.5.2 and

an on�rm that Version 3 leads to a high-order ompat sheme.

For all of the disussed European Put options, the best results for the onvergene

order is obtained when using ζ = 5. This value seems to give a good balane between

the error around K and the other regions for the zoom. Even though the sheme has a

theoretial onsisteny order equal to four only for the Heston-Hull-White model (ρ = 0),

the appliation showed that we ahieve a numerial onvergene order lose to four for the

Heston model with ρ 6= 0 as well.

We now onsider the ase of European Power Put options in the Heston model. The

only di�erene to a plain vanilla European Put is that the �nal ondition is taken to the

power p, see (2.50), whih yields to (2.62) after transformation. The grid was shifted in a

similar manner as above, avoiding xk as a grid point.

It an be learly seen that in Figures 2.9 and 2.10, denoting the relative l2-error in the

ases ρ = 0 and ρ = −0.4 with p = 2, the lines in the log-log plots are muh loser to

straight lines than in the ases of the vanilla Put options with p = 1. This an be explained

with the initial ondition of the transformed problem being smoother. The onvergene

orders of the relative l2-errors range from 3.85 to 4.08 for the Heston-Hull-White (ρ = 0)

Power Put with power p = 2 and from 3.22 to 3.40 for the Power Put in the Heston

model with ρ = −0.4, where the orders are inreasing with inreasing zoom strength. The

di�erenes of about 0.6 between the orders in the Heston model with ρ = 0 and ρ = −0.4

is not very large onsidering the di�erene of the theoretial orders. The onvergene order
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ζ = 7.5   (order 3.85)
ζ = 10    (order 3.99)
ζ = 12.5 (order 4.08)
ζ = 15    (order 4.08)
SD         (order 2.33)

Figure 2.9: Relative l2-error Power Put He-
ston model, ρ = 0, p = 2
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ζ = 7.5   (order 3.22)
ζ = 10    (order 3.30)
ζ = 12.5 (order 3.36)
ζ = 15    (order 3.40)
SD         (order 2.33)

Figure 2.10: Relative l2-error Power Put He-
ston model, ρ = −0.4, p = 2

for ρ = −0.4 is again far beyond its theoretial order of two. The standard disretisation

is signi�antly outperformed by the high-order ompat shemes for ρ = 0 as well as the

essentially high-order ompat disretisations for ρ = −0.4 in terms of error values and

onvergene orders.
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ζ = 7.5   (order 4.04)
ζ = 10    (order 4.05)
ζ = 12.5 (order 4.10)
ζ = 15    (order 4.10)
SD         (order 2.07)

Figure 2.11: Relative l2-error Power Put He-
ston model, ρ = 0, p = 3

10
1

10
2

10
310

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of gridpoints in x−direction

re
la

tiv
e 

l2  e
rr

or

 

 

ζ = 7.5   (order 3.50)
ζ = 10    (order 3.56)
ζ = 12.5 (order 3.63)
ζ = 15    (order 3.69)
SD         (order 2.08)

Figure 2.12: Relative l2-error Power Put He-
ston model, ρ = −0.4, p = 3

In Figures 2.11 and 2.12 we an see the onvergene orders in the Heston-Hull-White

model (ρ = 0) and the Heston model with ρ = −0.4 when p = 3. The di�erenes between

the plots are not as big as the theoretial onsisteny error order may indiate. Even

though in the Heston model with ρ = −0.4 the sheme has a theoretial onsisteny error

of order two, it produes a onvergene order from 3.50 to 3.69 depending on the zoom

strength ζ, whereas the orders in the Heston-Hull-White model with ρ = 0, where we

have a theoretial onsisteny order of four, vary from 4.04 to 4.10. In both situations the

standard disretisation is outperformed in terms of onvergene order and error values.
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2.6.3 Numerial stability study

In the partiular ase of a uniform grid, i.e. ϕ(x) = x, the sheme developed here redues to

the high-order ompat sheme presented in [DF12a℄, where unonditional (von Neumann)

stability [Str04℄ is proved for ρ = 0. An additional stability analysis performed in [DF12b℄

suggests that the sheme is also unonditionally stable for general hoie of parameters.

For the present sheme on a non-uniform grid, a similar von Neumann analysis, analytial

or numerial, appears to be out of reah as the expression for the ampli�ation fator is

formidable and onsists of high-order polynomials in a two-digit number of variables. To

validate the stability of the sheme for general parameters we perform additional numerial

stability tests. We remark that in our numerial experiments we observe a stable behaviour

throughout.

We ompute numerial solutions for varying values of the paraboli mesh ratio c =

∆τ/h2 and mesh width h. Plotting the assoiated relative l2-norm errors in the plane

should allow us to detet stability restritions depending on c or show us osillations that

our for high ell Reynolds number (large h). This approah for a numerial stability

study was also used in [DF12a, DFJ03℄.

We show results for the European Put option in the Heston Model only, sine the Power

Puts only di�er in the initial onditions and give similar results. For our stability plots we

use c = k/10 with k = 1, . . . , 10, and a desending sequene of grid points in x-diretion,

starting with six grid points (sine x ∈ [0, 1], it follows that h ≤ 0.2), and doubling the

number of points (halving h) in eah step. The zoom parameter ζ = 5 is used.
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Figure 2.13: Stability plot of the relative l2-
error for ρ = 0
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Figure 2.14: Stability plot of the relative l2-
error for ρ = −0.4

Figures 2.13 and 2.14 show the stability plots for the Heston-Hull-White model (ρ = 0)

and for the Heston model with ρ = −0.4. We observe that the in�uene of the paraboli

mesh ratio c on the relative l2-error is only marginal and the relative error does not exeed
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8× 10−4
as a value for both stability plots. We an infer that there does not seem to be a

stability ondition on c for either situation. For inreasing values of h, whih also result in

a higher ell Reynolds number, the error grows only gradually, and no osillations in the

numerial solutions our. The stability plot for the Heston model with ρ = −0.1 looks

similar and does not indiate any onditions on c or h either.

2.7 Summary

In this hapter we have presented a new essentially high-order ompat �nite di�erene

shemes to approximate the solution of the linear paraboli partial di�erential equation

duτ + a1ux1x1 + a2ux2x2 + b12ux1x2 + c1ux1 + c2ux2 = 0 ∈ Ω× Ωτ

with initial onditions u(x1, x2, 0), where Ω ⊂ R
2
is of retangular shape and Ωτ =]0, τmax],

see (2.1). Additionally, ai = ai(x1, x2, τ) < 0, b12 = b12(x1, x2, τ), ci = c(x1, x2, τ),

d = d(x, y, τ) and u = u(x, y, τ) are funtions from Ω × R≥0 to R. We introdue four

disrete shemes of the form

∑

x̂∈G
(2)
h

[Mx(x̂, τ)∂τUi1,i2(τ) +Kx(x̂, τ)Ui1,i2(τ)] =g(x, τ) +R2 +O
(

h4
)

,

where G
(2)
h is a uniform grid on Ω, see (13). The seond order remainder terms are given

by

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41

for Version 1,

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42

for Version 2,

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2

for Version 3 and

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32
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for Version 4, ompare (2.18), (2.26), (2.34) and (2.42). These remainder terms show that

it is possible to ahieve a high-order ompat sheme if

a1 =
(∆x1)

2

(∆x2)
2 a2 or b12 = 0.

We apply these shemes to option priing under stohasti volatility on non-uniform

grids. The resulting shemes are fourth-order aurate in spae and seond-order aurate

in time for vanishing orrelation. In our numerial onvergene study we obtain high-order

numerial onvergene also for non-zero orrelation and non-smooth pay-o�s whih are

typial in option priing. In all numerial experiments a omparative standard seond-

order disretisation is signi�antly outperformed. We have onduted a numerial stability

study whih seems to indiate unonditional stability of the sheme. In our numerial

experiments we observe a stable behaviour for all hoies of parameters.
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Chapter 3

High-order ompat shemes in

multiple spae dimensions

In this hapter we derive a high-order ompat sheme for a general linear partial di�eren-

tial equation with multi-dimensional spatial domain. The spatial domain is of an ubial

shape. We start by setting the problem, the disretisation of the spae and a disretisation

of the derivatives appearing in the partial di�erential equation. Then auxiliary equations

for higher derivatives are alulated, with whih it is possible to derive onditions on the

oe�ients on the partial di�erential equation for a high-order ompat sheme. We de-

rive semi-disrete high-order ompat shemes for the dimensions two and three and apply

Crank-Niolson-type time disretisation, see for example [Str04, Wil98℄. A thorough von

Neumann stability analysis [Str04℄ is performed for frozen oe�ients and vanishing mixed-

derivative terms and partial stability results are given for non-vanishing mixed-derivatives.

The multi-dimensional Blak-Sholes model is hosen as appliation. Neessary transfor-

mations of the di�erential equation of this model are performed in order to satisfy the

onditions for ahieving a high-order ompat sheme. The boundary onditions for the

resulting di�erential equation are examined and �nally results of numerial experiments

are disussed.

3.1 Partial di�erential equation in an n-dimensional spatial

domain

This setion is onerned with a paraboli di�erential equation with mixed derivative terms

in n spatial dimensions, see De�nition 12. When normalising in terms of uτ , so using d = 1
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in (1.8), the partial di�erential equation is given by

uτ +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
=g in Ω×Ωτ (3.1)

with initial ondition u0 = u(x1, . . . xn, 0), where ai = ai(x1, . . . xn, τ) < 0, bij = bij(x1, . . . xn, τ),

ci = ci(x1, . . . xn, τ) and g = g(x1, . . . xn, τ) are funtions from Ω × Ωτ to R for i, j ∈
{1, . . . , n} and i 6= j. The spatial domain Ω ⊂ R

n
is of n-dimensional ubial shape,

so Ω = Ω1 × . . . × Ωn and xi ∈ Ωi =
[

x
(i)
min, x

(i)
max

]

, x
(i)
min < x

(i)
max and x

(i)
min, x

(i)
max ∈ R for

i ∈ {1, . . . , n}. The domain in time is given by Ωτ = ]0, τmax] with τmax > 0. The funtions

a(·, τ), b(·, τ), c(·, τ) and g(·, τ) are assumed to be in C2(Ω) for any τ ∈ Ωτ , u(·, τ) ∈ C6(Ω)

and u is assumed to be di�erentiable in respet to τ in order to be able to ahieve a high

order ompat sheme. Introduing f := −uτ + g we an rewrite (3.1) as

n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= f. (3.2)

3.1.1 Central di�erene approximation

We start by de�ning a grid on Ω,

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik∆xk, 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

,

(3.3)

where ∆xk =
x
(k)
max−x

(k)
min

Nk−1 > 0 are the stepsizes in the k-th diretion with Nk ∈ N for

k = 1, . . . , n. With

◦
G

(n)
we denote the interior of G(n)

. On this grid we denote with Ui1,...,in

the disrete approximation of the ontinuous solution u at the point (xi1 , . . . , xin) ∈ G(n)

at time τ ∈ Ωτ . Using the entral di�erene quotient D
c
k in xk-diretion we get

∂2u

∂x2k
=Dc

kD
c
kUi1,...,in − (∆xk)

2

12

∂4u

∂x4k
+O

(

(∆xk)
4
)

,

∂u

∂xk
=Dc

kUi1,...,in − (∆xk)
2

6

∂3u

∂x3k
+O

(

(∆xk)
4
)

, (3.4)

∂2u

∂xk∂xp
=Dc

kD
c
pUi1,...,in − (∆xk)

2

6

∂4u

∂x3k∂xp
− (∆xp)

2

6

∂4u

∂xk∂x3p
+O

(

(∆xk)
4
)

+O
(

(∆xk)
2(∆xp)

2
)

+O
(

(∆xp)
4
)

+O
(

(∆xk)
6

∆xp

)

,
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for k, p ∈ {1, . . . , n} and k 6= p on the gridpoints (xi1 , . . . , xin) ∈ ◦
G

(n)
. The error terms

ontain derivatives of u up to sixth order, thus we require u(·, τ) ∈ C6 (Ω) for all τ ∈ Ωτ .

Using the disretisations given in (3.4) on (3.2) gives

f =
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2

12

∂4u

∂x4i

−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x3j

]

−
n
∑

i=1

ci(∆xi)
2

6

∂3u

∂x3i
+ ε

(3.5)

where ε ∈ O
(

h4
)

if ∆xi ∈ O (h) for i = 1, . . . , n for a stepsize h. If the onsisteny error is

in O
(

h4
)

for these spei� stepsizes, we all the sheme high-order. In order to ahieve a

high-order sheme we have to �nd a seond-order disretisation of the derivatives

∂3u
∂x3

i

,

∂4u
∂x4

i

and

∂4u
∂x3

i ∂xj
for i, j ∈ {1, . . . , n} with i 6= j. We all the sheme high-order ompat, if we

an do this using only the points from the ompat stenil for x = (xi1 , . . . , xin) ∈
◦
G

(n)
.

Reall from (1.14) that with Ui1,...,in ≈ u(xi1 , . . . , xin), we have

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} ⊂ G(n)

as the ompat stenil. In Figure 3.1 we an see the two-dimensional ompat stenil.

Ui1+1,i2+1

Ui1−1,i2−1

Ui1−1,i2+1

Ui1+1,i2−1Ui1,i2−1

Ui1,i2+1

Ui1−1,i2 Ui1+1,i2Ui1,i2

Figure 3.1: Compat stenil in two dimensions

3.2 Auxiliary relations for higher derivatives

In this setion we alulate auxiliary relations for the higher derivatives appearing in (3.5).

These relations for the higher derivatives an be alulated by di�erentiating (3.2). In
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doing so no additional error is introdued. Di�erentiating equation (3.2) with respet to

xk and writing

∂3u
∂x3

k

as subjet leads to

∂u

∂x3k
=−

n
∑

i=1
i 6=k

ai
ak

∂3u

∂x2i ∂xk
−

n
∑

i=1
i 6=k

[ai]xk

ak

∂2u

∂xi
− [ak]xk

ak

∂2u

∂xk
−

n
∑

i,j=1
i<j

bij
ak

∂3u

∂xi∂xj∂xk

−
n
∑

i,j=1
i<j

[bij ]xk

ak

∂2u

∂xi∂xj
−

n
∑

i=1

ci
ak

∂2u

∂xi∂xk
−

n
∑

i=1

[ci]xk

ak

∂u

∂xi
+

1

ak

∂f

∂xk
=: Ak (3.6)

for k = 1, . . . , n, where [·]xk
denotes the �rst derivative in respet to xk. The relation for

Ak an be disretised using the entral di�erene operator with onsisteny order two on

the ompat stenil, as all derivatives of u in the above equation are only di�erentiated up

to twie in eah diretion. As an example we examine the two-dimensional ase, where we

have

1

−1

−1

10

0

2 −20
∂3u(xi1

,xi2
)

∂x1∂x2
2

= 1
2(∆x1)(∆x2)

2 +ǫ,

with ǫ ∈ O
(

h2
)

if ∆x1,∆x2 ∈ O (h), and the values on the right hand side are the

oe�ients of the ompat grid, the positioning being aording to Figure 3.1. When we

di�erentiate (3.2) twie with respet to xk and write

∂4u
∂x4

k

as subjet, we obtain

∂4u

∂x4k
=−

n
∑

i=1
i 6=k

[

ai
ak

∂4u

∂x2i ∂x
2
k

+
2[ai]xk

ak

∂3u

∂x2i ∂xk
+

[ai]xkxk

ak

∂2u

∂x2i

]

− 2[ak]xk

ak

∂3u

∂x3k
− [ak]xkxk

ak

∂2u

∂x2k

−
n
∑

i,j=1
i<j
i,j 6=k

[

bij
ak

∂4u

∂xi∂xj∂x
2
k

+
2[bij ]xk

ak

∂3u

∂xi∂xj∂xk
+

[bij ]xkxk

ak

∂2u

∂xi∂xj

]

−
k−1
∑

i=1

bik
ak

∂4u

∂xi∂x
3
k

−
k−1
∑

i=1

[

2[bik]xk

ak

∂3u

∂xi∂x
2
k

+
[bik]xkxk

ak

∂2u

∂xi∂xk

]

−
n
∑

j=k+1

bkj
ak

∂4u

∂xj∂x
3
k

−
n
∑

j=k+1

[

2[bkj ]xk

ak

∂3u

∂xj∂x
2
k

+
[bkj]xkxk

ak

∂2u

∂xj∂xk

]

(3.7)

−
n
∑

i=1

[

ci
ak

∂3u

∂xi∂x
2
k

+
2[ci]xk

ak

∂2u

∂xi∂xk
+

[ci]xkxk

ak

∂u

∂xi

]

+
1

ak

∂2f

∂x2k
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=:Bk −
k−1
∑

i=1

bik
ak

∂4u

∂xi∂x
3
k

−
n
∑

j=k+1

bkj
ak

∂4u

∂xj∂x
3
k

,

where [·]xkxk
denotes the seond derivative in xk-diretion. We an disretise Bk with

seond order onsisteny on the ompat stenil, when using the entral di�erene operator

and the auxiliary relations for Ak in (3.6) for k = 1, . . . , n. Di�erentiating equation (3.2)

one with respet to xk and one with respet to xp leads to

ak
∂4u

∂x3k∂xp
+ ap

∂4u

∂xk∂x3p

=−
n
∑

i=1
i 6=k,p

[

ai
∂4u

∂x2i ∂xk∂xp
+ [ai]xk

∂3u

∂x2i ∂xp
+ [ai]xp

∂3u

∂x2i ∂xk
+ [ai]xkxp

∂2u

∂x2i

]

− [ap]xk

∂3u

∂x3p

− [ap]xp

∂3u

∂x2p∂xk
− [ap]xkxp

∂2u

∂x2p
− [ak]xk

∂3u

∂x2k∂xp
− [ak]xp

∂3u

∂x3k
− [ak]xkxp

∂2u

∂x2k

−
n
∑

i,j=1
i<j

[

bij
∂4u

∂xi∂xj∂xk∂xp
+ [bij ]xk

∂3u

∂xi∂xj∂xp
+ [bij ]xp

∂3u

∂xi∂xj∂xk
+ [bij ]xkxp

∂2u

∂xi∂xj

]

−
n
∑

i=1

[

ci
∂3u

∂xi∂xk∂xp
+ [ci]xk

∂2u

∂xi∂xp
+ [ci]xp

∂2u

∂xi∂xk
+ [ci]xkxp

∂u

∂xi

]

+
∂2f

∂xk∂xp
=: Ckp,

where Ckp an be disretised on the ompat stenil using Ak and Ap, as de�ned in equation

(3.6), and the entral di�erene operator for k, p = 1, . . . , n with k 6= p. We get

∂4u

∂x3k∂xp
=

Ckp

ak
− ap

ak

∂4u

∂xk∂x3p
. (3.8)

3.3 Conditions for ahieving a high-order ompat sheme

In this setion we derive onditions on the oe�ients of the partial di�erential equation

(3.1) under whih a high-order ompat (HOC) sheme is ahievable. This means that we

only want to use points of the n-dimensional ompat stenil for disretisation and ahieve

a fourth-order sheme for ∆xi ∈ O (h) for j = 1, . . . , n for a given stepsize h. Using

equations (3.6) and (3.7) in (3.5) leads to

f =ε+

n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

+

n
∑

k=1

k−1
∑

i=1

bik(∆xk)
2

12

∂4u

∂xi∂x
3
k

+

n
∑

k=1

n
∑

j=k+1

bkj(∆xk)
2

12

∂4u

∂xj∂x
3
k
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−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6

=
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

+

n
∑

i,k=1
i<k

bik(∆xk)
2

12

∂4u

∂xi∂x3k
+

n
∑

j,k=1
k<j

bkj(∆xk)
2

12

∂4u

∂xj∂x3k

−
n
∑

i,j=1
i<j

bij

[

(∆xi)
2

6

∂4u

∂x3i ∂xj
+

(∆xj)
2

6

∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
+ ε,

and thus

f =

n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12

−
n
∑

i,j=1
i<j

bij
12

[

(∆xi)
2 ∂4u

∂x3i ∂xj
+ (∆xj)

2 ∂4u

∂xi∂x
3
j

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
+ ε.

Applying (3.8) then gives

f =
n
∑

i=1

aiD
c
iD

c
iu+

n
∑

i,j=1
i<j

bijD
c
iD

c
ju+

n
∑

i=1

ciD
c
iu−

n
∑

i=1

ai(∆xi)
2Bi

12
+ ε

−
n
∑

i,j=1
i<j

bij(∆xi)
2Cij

12ai
−

n
∑

i,j=1
i<j

bij
6

∂4u

∂xi∂x3j

[

(∆xj)
2 − aj(∆xi)

2

ai

]

−
n
∑

i=1

ci(∆xi)
2Ai

6
, (3.9)

where ε ∈ O
(

h4
)

, if ∆xi ∈ O (h) for i = 1, . . . , n for the stepsize h. From this we an

onlude that in order to ahieve a HOC sheme, we need either

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai
(3.10)

for all i, j ∈ {1, . . . , n} with i 6= j. This means that in the ase bi,j ≡ 0 for all i, j ∈ 1, . . . , n,

it is possible to hoose the stepsize of the disretisations of the di�erent dimensions of the

spatial domain ompletely free, whereas in the other possible ases for a HOC sheme there

are interdependenies for at least some stepsizes in the disretisation proess.
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3.4 System matries for the semi-disrete general ase

In this setion we present the semi-disrete high-order ompat shemes for (3.1) for the

ases ai ≡ a for i = 1, . . . n in spatial dimensions n = 2, 3. We onsider this in ases where

the ross derivatives do not vanish. We observe from the onditions in (3.10) that ∆xi = h

for i = 1, . . . n has to be satis�ed. Thus we de�ne, analogously to (3.3), the grid

G
(n)
h :=

{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ikh, 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

, (3.11)

where h > 0 and Nk ∈ N and x
(k)
max = x

(k)
min + (Nk − 1)h for k = 1, . . . , n. With

◦
G

(n)

h , we

denote the interior of G
(n)
h . Our goal for this setion is to derive the semi-disrete shemes

of the form

∑

x̂∈G
(n)
h

[Mx(x̂, τ)∂τUi1,...,in(τ) +Kx(x̂, τ)Ui1,...,in(τ)] =g̃(x, τ), (3.12)

at time τ for eah point x ∈ ◦
G

(n)

h , where the funtion g̃ :
◦
G

(n)

h × Ωτ → R depends on the

funtion d given in (3.1).

3.4.1 Semi-disrete two-dimensional sheme

In this setion we derive the high-order ompat disretisation of (3.1) in spatial dimension

n = 2. In order to ahieve a HOC sheme, we assume that the oe�ients of the partial

di�erential equation (3.1) ful�l a = a1 ≡ a2 with ∆x1 = ∆x2. Using this assumption, the

oe�ients satisfy the neessary onditions given in (3.10) for a high-order sheme. Using

the entral di�erene operator in (3.9), where the auxiliary relations (3.6), (3.7) and (3.8)

have already been employed, we onsider the point (xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ . This

leads to

K̂i1,i2 =− b12[a]x1x2

3a
− b12[c2]x1

6a
+

b12[a]x2c1
6a2

+
2b12[a]x1 [a]x2

3a2
− [a]x2x2

3
− c21

6a

+
2[a]2x1

3a
− [a]x1x1

3
− 10a

3h2
− [c2]x2

3
− [c1]x1

3
− b12[c1]x2

6a
+

2[a]2x2

3a
− c22

6a
(3.13)

+
b212
3ah2

+
b12[a]x1c2

6a2
,
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K̂i1±1,i2 =
c2[a]x2

12a
− b212

6ah2
+

b12[a]x1x2

12a
− c1[a]x1

12a
∓ hb12[a]x2 [c1]x1

24a2
± h[c1]x1x1

24

∓ hb12[a]x1 [c1]x2

24a2
± h[c1]x2x2

24
+

c21
12a

± hc1[c1]x1

24a
∓ h[a]x1 [c1]x1

12a
+

2a

3h2

± hb12[c1]x1x2

24a
− b12[a]x2c1

12a2
± hc2[c1]x2

24a
∓ b12[b12]x1

12ah
± c1

3h
± b212[a]x1

12a2h
(3.14)

∓ h[a]x2 [c1]x2

12a
+

[c1]x1

6
− [a]2x1

6a
− [a]2x2

6a
+

[a]x2x2

12
+

[a]x1x1

12
∓ c2b12

6ah

+
b12[c1]x2

12a
− b12[a]x1 [a]x2

6a2
± b12[a]x2

6ah
∓ [b12]x2

6h
,

K̂i1,i2±1 =− c2[a]x2

12a
− b212

6ah2
+

b12[c2]x1

12a
+

b12[a]x1x2

12a
+

c1[a]x1

12a
∓ hb12[a]x2 [c2]x1

24a2

+
[c2]x2

6
∓ hb12[a]x1 [c2]x2

24a2
− [a]2x1

6a
− [a]2x2

6a
+

c22
12a

+
[a]x2x2

12
+

[a]x1x1

12

∓ b12[b12]x2

12ah
± h[c2]x2x2

24
± h[c2]x1x1

24
+

2a

3h2
± hc1[c2]x1

24a
∓ h[a]x1 [c2]x1

12a
(3.15)

− b12[a]x1 [a]x2

6a2
± hb12[c2]x1x2

24a
± c2

3h
− b12[a]x1c2

12a2
∓ h[a]x2 [c2]x2

12a

± hc2[c2]x2

24a
± b212[a]x2

12a2h
± b12[a]x1

6ah
∓ c1b12

6ah
∓ [b12]x1

6h
,

K̂i1±1,i2−1 =
b212

12ah2
∓ c1c2

24a
± [a]x2c1

24a
∓ b12[c2]x2

48a
± [a]x2 [b12]x2

24a
± [a]x1 [b12]x1

24a

± [a]x1c2
24a

∓ c1[b12]x1

48a
∓ b12[c1]x1

48a
∓ c2[b12]x2

48a
∓ b12[b12]x1x2

48a
∓ [c1]x2

24

∓ [c2]x1

24
∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ b12[b12]x2

24ah
± c2b12

12ah
± b12[b12]x1

24ah

± b12[a]x2 [b12]x1

48a2
± b12[a]x1c1

48a2
+

a

6h2
+

b212[a]x2

24a2h
± b12[a]x1 [b12]x2

48a2
(3.16)

± b12[a]x2c2
48a2

+
b12[a]x1

12ah
∓ b12[a]x2

12ah
− c1b12

12ah
− [b12]x1

12h
± [b12]x2

12h

∓ b212[a]x1

24a2h
∓ b12

4h2
− c2

12h
± c1

12h

as well as
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K̂i1±1,i2+1 =
b212

12ah2
± c1c2

24a
∓ [a]x2c1

24a
± b12[c2]x2

48a
∓ [a]x2 [b12]x2

24a
∓ [a]x1 [b12]x1

24a

∓ [a]x1c2
24a

± c1[b12]x1

48a
± b12[c1]x1

48a
± c2[b12]x2

48a
± b12[b12]x1x2

48a
± [c1]x2

24

± [c2]x1

24
± [b12]x1x1

48
± [b12]x2x2

48
+

b12[b12]x2

24ah
± c2b12

12ah
± b12[b12]x1

24ah

∓ b12[a]x2 [b12]x1

48a2
∓ b12[a]x1c1

48a2
+

a

6h2
− b212[a]x2

24a2h
∓ b12[a]x2c2

48a2
(3.17)

− b12[a]x1

12ah
∓ b12[a]x2

12ah
+

c1b12
12ah

∓ b12[a]x1 [b12]x2

48a2
+

[b12]x1

12h
± [b12]x2

12h

∓ b212[a]x1

24a2h
± b12

4h2
+

c2
12h

± c1
12h

,

where K̂l,m is the oe�ient of Ul,m (τ) for l ∈ {i1−1, i1, i1+1} and m ∈ {i2−1, i2, i2+1}.
We use [·]xk

as the �rst derivative in respet to xk and [·]xkxp as the seond derivative,

one in xk- and one in xp-diretion with k, p ∈ 1, 2. Note that a, b1,2, c1 and c2 are

evaluated at (xi1 , xi2) ∈ ◦
G

(2)

h and τ ∈ Ωτ . Analogously we have that M̂l,m denotes the

oe�ient of ∂τUl,m (τ) for l ∈ {i1 − 1, i1, i1 +1} and m ∈ {i2 − 1, i2, i2 +1} for eah point

(xi1 , xi2) ∈
◦
G

(2)

h and time τ ∈ Ωτ with

M̂i1+1,i2±1 =M̂i1−1,i2∓1 = ± b12
48a

, M̂i1,i2±1 =
1

12
∓ h[a]x2

12a
∓ b12h[a]x1

24a2
± c2h

24a
,

M̂i1±1,i2 =
1

12
∓ b12h[a]x2

24a2
± hc1

24a
∓ h[a]x1

12a
, M̂i1,i2 =

2

3
.

(3.18)

Additionally, we obtain with x ∈ ◦
G

(2)

h

g̃(x, τ) =

(

h2a2c1 − 2h2a2[a]x1 − b12h
2[a]x2a

)

[g]x1

12a3
+

h2[g]x1x1

12
+

b12h
2[g]x1x2

12a

+

(

h2a2c2 − b12h
2[a]x1a− 2h2a2[a]x2

)

[g]x2

12a3
+

h2[g]x2x2

12
+ g

(3.19)

for τ ∈ Ωτ . Note that a, b12, c1, c2 and g in (3.13) - (3.19) are funtions evaluated at

(xi1 , xi2) ∈
◦
G

(2)

h and τ ∈ Ωτ . Thus we have

Kx(xn1 , xn2 , τ) = K̂n1,n2 as well as Mx(xn1 , xn2 , τ) = M̂n1,n2

in (3.12) with n1 ∈ {i1 − 1, i1, i1 + 1} and n2 ∈ {i2 − 1, i2, i2 + 1} for x = (xi1 , xi2) ∈
◦
G

(2)

h

and τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus, the disretisation only uses points of

the ompat grid.
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3.4.2 Semi-disrete three-dimensional sheme

In this setion we derive the high order ompat disretisation of (3.1) in spatial dimension

n = 3. Considering the onditions in (3.10) we observe that in the three-dimensional ase

we have three possibilities to satisfy the onditions and to reate a high order ompat

sheme. The �rst way is that the oe�ients satisfy

a = a1 ≡ a2 ≡ a3 with ∆x1 = ∆x2 = ∆x3.

The seond possibility to generate a high order ompat sheme is

a = ap ≡ aq with ∆xp = ∆xq and bp,k ≡ bq,k ≡ 0,

where {p, q, k} = {1, 2, 3} and, without loss of generality, p ≤ k as well as q ≤ k hold. The

third way to be able to ahieve a high-order ompat sheme is by having

b1,2 ≡ b1,3 ≡ b2,3 ≡ 0.

Again, we fous on the ase a = a1 ≡ a2 ≡ a3. Using the entral di�erene operator in

(3.9), where we onsider an interior point (xi1 , xi2 , xi3) ∈
◦
G

(3)

h , leads to

K̂i1,i2,i3 =
b23[a]x2c3

6a2
+

b13[a]x1c3
6a2

− [c3]x3

3
− c21

6a
− c23

6a
− [a]x1x1

2
− [a]x2x2

2
− [a]x3x3

2

+
b13[a]x3c1

6a2
+

b12[a]x2c1
6a2

− 4a

h2
+

b13[a]x3 [a]x1

a2
+

b23[a]x3 [a]x2

a2
+

b23[a]x3c2
6a2

+
b12[a]x1 [a]x2

a2
+

b12[a]x1c2
6a2

− b13[c3]x1

6a
− c1[a]x1

6a
+

b223
3ah2

− b12[a]x1x2

2a

− c2[a]x2

6a
+

b213
3ah2

+
b212
3ah2

− c3[a]x3

6a
− b13[a]x1x2

2a
− b23[c2]x3

6a
− b12[c2]x1

6a

− b23[a]x2x3

2a
− b13[c1]x3

6a
− b23[c3]x2

6a
− b12[c1]x2

6a
− c22

6a
+

[a]2x1

a
+

[a]2x3

a

+
[a]2x2

a
− [c2]x2

3
− [c1]x1

3
,

and

K̂i1±1,i2−1,i3 =
b13[a]x3b12
24a2h

∓ b23[a]x3b12
24a2h

∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ [b12]x3x3

48
+

b12[a]x1

12ah

− b12c1
12ah

± b12c2
12ah

± b12[a]x1c1
48a2

± b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
∓ b12[a]x2

12ah

± b23[a]x2 [b12]x3

48a2
± b13[a]x1 [b12]x3

48a2
± b12[a]x2 [b12]x1

48a2
± b12[a]x2c2

48a2
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± b23[a]x3c1
48a2

± b23[a]x3 [b12]x2

48a2
− b12[b12]x2

24ah
± b13[a]x3 [b12]x1

48a2
± b13[a]x3c2

48a2

± b12[b12]x1

24ah
± b23[b12]x3

24ah
− b13[b12]x3

24ah
± b13b23

12ah2
+

[a]x2b
2
12

24a2h
− c2

12h
∓ b12

6h2

± c1
12h

+
a

6h2
− [b12]x1

12h
± [b12]x2

12h
∓ b23[b12]x2x3

48a
∓ b13[c2]x3

48a
∓ b12[b12]x1x2

48a

∓ b23[c1]x3

48a
∓ b12[c1]x1

48a
± [a]x1c2

24a
∓ c2[b12]x2

48a
+

b212
12ah2

∓ b13[b12]x1x2

48a

∓ c1[b12]x1

48a
± [a]x3 [b12]x3

24a
∓ c3[b12]x3

48a
± [a]x2c1

24a
∓ b12[c2]x2

48a
± [a]x1 [b12]x1

24a

± [a]x2 [b12]x2

24a
∓ c1c2

24a
∓ [c1]x2

24
∓ [c2]x1

24
,

where K̂k,l,m is the oe�ient of Uk,l,m (τ) for k ∈ {i1 − 1, i1, i1 +1}, l ∈ {i2 − 1, i2, i2 +1}
and m ∈ {i3 − 1, i3, i3 + 1}. Due to the size of the oe�ients, we only show examples

here. A full list of the oe�ients an be found in the appendix, see (D.1) to (D.14). We

use [·]xk
as the �rst derivative in respet to xk and [·]xkxp as the seond derivative one

in xk- and one in xp-diretion with k, p ∈ 1, 2, 3. Note that a, b1,2, b1,3, b2,3, c1, c2 and

c3 are evaluated at (xi1 , xi2 , xi3) ∈ ◦
G

(3)

h and τ ∈ Ωτ . In a similar way we de�ne M̂k,l,m

as the oe�ient of ∂τUk,l,m (τ) for k ∈ {i1 − 1, i1, i1 + 1}, l ∈ {i2 − 1, i2, i2 + 1} and

m ∈ {i3 − 1, i3, i3 + 1} with

M̂i1±1,i2−1,i3 =M̂i1∓1,i2+1,i3 = ∓ b12
48a

, M̂i1,i2,i3 =
1

2
,

M̂i1±1,i2,i3−1 =M̂i1∓1,i2,i3+1 = ∓ b13
48a

, M̂i1,i2±1,i3−1 = M̂i1,i2∓1,i3+1 = ∓ b23
48a

,

M̂i1±1,i2,i3 =
1

12
∓ hb12[a]x2

24a2
∓ hb13[a]x3

24a2
± hc1

24a
∓ h[a]x1

12a
,

M̂i1,i2±1,i3 =
1

12
∓ hb12[a]x1

24a2
∓ hb23[a]x3

24a2
± hc2

24a
∓ h[a]x2

12a
, (3.20)

M̂i1,i2,i3±1 =
1

12
∓ hb23[a]x2

24a2
∓ hb13[a]x1

24a2
± hc3

24a
∓ h[a]x3

12a
,

M̂i1±1,i2−1,i3−1 =M̂i1±1,i2+1,i3−1 = M̂i1±1,i2−1,i3+1 = M̂i1±1,i2+1,i3+1 = 0.

For the right hand side of (3.12) we have with x = (xi1 , xi2 , xi3) ∈
◦
G

(3)

h

g̃(x, τ) =

(

c1h
2a− 2h2[a]x1a− b12h

2[a]x2 − b13h
2[a]x3

)

[g]x1

12a2
+

b13h
2[g]x1x3

12a

+

(

c2h
2a− 2h2[a]x2a− b12h

2[a]x1 − b23h
2[a]x3

)

[g]x2

12a2
+

b23h
2[g]x2x3

12a

+

(

c3h
2a− 2h2[a]x3a− b13h

2[a]x1 − b23h
2[a]x2

)

[g]x3

12a2
+

h2[g]x1x1

12
(3.21)
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+
b12h

2[g]x1x2

12a
+

h2[g]x3x3

12
+

h2[g]x2x2

12
+ g

for τ ∈ Ωτ . Note again that a, b12, b13, b23, c1, c2, c3 as well as g are evaluated at

(xi1 , xi2 , xi3) ∈
◦
G

(3)

h and τ ∈ Ωτ . We have

Kx(xn1 , xn2 , xn3 , τ) = K̂n1,n2,n3 as well as Mx(xn1 , xn2 , xn3 , τ) = M̂n1,n2,n3

with n1 ∈ {i1 − 1, i1, i1 + 1}, n2 ∈ {i2 − 1, i2, i2 + 1} and n3 ∈ {i3 − 1, i3, i3 + 1} for x =

(xi1 , xi2 , xi3) ∈
◦
G

(3)

h and τ ∈ Ωτ . Kx and Mx are zero otherwise. Thus the disretisation

only uses points of the ompat stenil.

3.4.3 Stability analysis for the Cauhy problem in dimensions n = 2, 3

In this setion we onsider the stability of the high-order ompat �nite di�erene disreti-

sation of (3.1) for n = 2, 3 for the spatial interior. The oe�ients of the semi-disrete

sheme are given in Setion 3.4.1 for two spatial dimensions and in Setion 3.4.2, when

three spatial dimensions our. Those oe�ients are non-onstant, as the oe�ients of

the paraboli partial di�erential equation (1.8) are non-onstant. We also show stability

for spei� ases for a non-vanishing ross derivative.

We onsider a von Neumann stability analysis, although our setting does not have

periodi boundary onditions, see e.g. [Str04℄. For both n = 2 and n = 3, we give a proof

of stability in the ase of vanishing ross derivative terms and frozen oe�ients, whih

means that all possible values for the oe�ients are onsidered, but as onstants, so the

derivatives of the oe�ients of the partial di�erential equation appearing in the disrete

shemes are set to zero. This approah has been used as well in [GKO13, Str04℄ and

gives a neessary stability ondition, whereas slightly stronger onditions than the ones

established through frozen oe�ients are su�ient to ensure overall stability [RM67℄.

Stability analysis for the two-dimensional general di�erential equation

In this part we perform a von Neumann stability analysis [Str04℄ for the two-dimensional

high-order ompat sheme, whih we derived in Setion 3.4.1. The analysis of the ase

with vanishing ross-derivative and frozen oe�ients are arried out in detail. In the ase

of non-vanishing ross derivatives, only partial results are given.
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We apply n = 2 for De�nition 19, where we use a fully disrete high-order ompat

sheme, as given in De�nition 17. This leads to the fully disretised �nite di�erene sheme

1
∑

l1,l2=−1

Ax (xi1+l1 , xi2+l2)U
n+1
i1+l1,i2+l2

=

1
∑

l1,l2=−1

Bx (xi1+l1 , xi2+l2)U
n
i1+l1,i2+l2

+ ĝ(x, τn, τn+1)

(3.22)

at the point x = (xi1 , xi2) ∈
◦
G

(2)

h with

Ax (x̂) := Mx (x̂) +
∆τ

2
Kx (x̂) , Bx (x̂) := Mx (x̂)−

∆τ

2
Kx (x̂)

for x̂ ∈ G
(2)
h and h > 0, in whih we use

Un
j1,j2 = gneI(j1z1+j2z2)

for j1 ∈ {i1 − 1, i1, i1 + 1} and j2 ∈ {i2 − 1, i2, i2 + 1}, where I is the imaginary unit,

gn is the amplitude at time level n, z1 = 2πh/λ1 and z2 = 2πh/λ2 for the wavelengths

λ1, λ2 ∈ [0, 2π[. Then the fully disretised sheme satis�es the neessary von Neumann

stability ondition for all z1, z2, when the ampli�ation fator G = gn+1/gn satis�es

|G|2 − 1 ≤ 0, (3.23)

ompare for example [Str04℄.

Theorem 1:

For a = a1 = a2 < 0 and b12 = 0, the fully disrete high-order ompat �nite di�er-

ene sheme given in (3.22) with oe�ients de�ned in Setion 3.4.1, satis�es (for frozen

oe�ients) the neessary stability ondition (3.23).

Proof: We de�ne

ξ1 = cos
(z1
2

)

, ξ2 = cos
(z2
2

)

, η1 = sin
(z1
2

)

and η2 = sin
(z2
2

)

.

In these new variables the stability ondition given in (3.23) in ombination with the def-

inition of the oe�ients in the two dimensional ase, whih are de�ned in the equations

(3.13) to (3.18), used in (3.22), an be written as
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|G|2 − 1 =
NG

DG
.

We now want to disuss the numerator NG and the denominator DG separately. The

numerator an be written as

NG = 8ka
(

n4h
4 + n2h

2
)

,

where

n2 =8a2f1 (ξ1, ξ2) f2 (ξ1, ξ2)

and

n4 =f3 (ξ1) f4 (ξ1, ξ2) c
2
1 + f3 (ξ2) f4 (ξ2, ξ1) c

2
2

are non-negative sine

f1 (x, y) =x2 + y2 + 1 ≥ 0,

f2 (x, y) =2− x

(

y2 +
1

2

)

− y2

2
≥ 0,

f3 (x) =x2 − 1 ≤ 0,

f4 (x, y) =2x2y2 − x2 − 1 ≤ 0

as x, y ∈ [−1, 1]. We an see that NG ≤ 0 holds, as ξ1, ξ2 ∈ [−1, 1]. Now we onsider the

denominator DG, whih an be written as

DG = d6h
6 +

(

d4,2k
2 + d4,1k + d4,0

)

h4 + (d2,2k
2 + d2,1k)h

2 + d0,

where

d0 =16a4k2
(

2x2y2 + x2 + y2 − 4
)2 ≥ 0,

d2,1 =16a3f1 (ξ1, ξ2) f5 (ξ1, ξ2) ≥ 0,

d2,2 =4a2
[

9 (ξ1η1c1 + ξ2η2c2)
2 + 2f3 (ξ1) f6 (ξ1, ξ2) c

2
1 + 2f3 (ξ2) f6 (ξ2, ξ1) c

2
2

]

,

d4,0 =4a2f1 (ξ1, ξ2)
2 ≥ 0,
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d4,1 =− 4an4 ≥ 0,

d4,2 =
[

f3(ξ1)c
2
1 − 2η1η2ξ1ξ2c1c2 + f3(ξ2)c

2
2

]2 ≥ 0,

d6 =(ξ1η1c1 + ξ2η2c2)
2 ≥ 0,

beause a < 0 and

f5 (x, y) =2x2y2 + x2 + y2 − 4 ≤ 0

f6 (x, y) =2x2y4 − 5x2 − y2 + 4

as x, y ∈ [−1, 1]. We observe that f6 (x, y) hanges signs. We have for example f6 (0, 0) = 4

and f6 (1, 0) = −1. Thus, we annot determine the sign of d2,2 diretly. If we an �nd

some onditions on c1 and c2 to realise that d2,2 ≥ 0, then we an ahieve DG ≥ 0 for

a ≤ 0 and the neessary stability ondition in (3.23) would be satis�ed.

If c1 = c2 = 0, then we have d2,2 = 0 and thus (3.23) would be satis�ed. Sine d2,2 is

symmetri, we an say without loss of generality that c1 6= 0. Furthermore, as both c1 and

c2 are frozen oe�ients, we set m = c2
c1
, whih leads to

d2,2 =4a2c21

[

9 (ξ1η1 + ξ2η2m)2 + 2f3 (ξ1) f6 (ξ1, ξ2) + 2f3 (ξ2) f6 (ξ2, ξ1)m
2
]

=: 4a2c21g (m) .

The funtion g (m) an be rewritten to

g (m) =η21f7 (ξ1, ξ2)m
2 + 18ξ1ξ2η1η2m+ η22f7 (ξ2, ξ1)

with

f7 (x, y) =4x4y2 − 2x2 − y2 + 8 ≥ −2x2 − y2 + 8 ≥ 5

In the ase η2 = 0 we have g(m) = η21f7 (ξ1, ξ2)m
2 ≥ 0 and thus d2,2 ≥ 0, whih leads to

(3.23) being satis�ed. In the ase η2 6= 0 we have η21f7(ξ1, ξ2) > 0, so the funtion g (m)

has a global minimum. This minimum is loated at

m̂ =
−9ξ1ξ2η1

η2f7 (ξ1, ξ2)
,
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whih leads to

g (m̂) =
2η21f5 (ξ1, ξ2) f8

f7 (ξ1, ξ2)
,

where

f8 =6ξ21ξ
2
2 + ξ21 + ξ22 − 2ξ41ξ

2
2η

2
2 − 2ξ21η

2
1ξ

4
2 − 8 ≤ 0.

As we already know, f5 (ξ1, ξ2) ≤ 0, so we have

g(m) ≥ 0 for all m ∈ R,

and thus for a ≤ 0 we have that DG ≥ 0 and hene the von Neumann stability ondition

given in (3.23) is satis�ed.

Often it is most di�ult to guarantee that (3.23) holds for extreme values of η1, η2, ξ1

and ξ2. We have the following result:

Lemma 3:

The high order ompat �nite di�erene sheme given in (3.22), where the oe�ients for

the two dimensional ase de�ned in Setion 3.4.1 are used, satis�es the neessary stability

ondition given in (3.23) on the orner points of ξ1 and ξ2, i.e. ξ1 = cos
(

z1
2

)

= ±1 and

ξ2 = cos
(

z2
2

)

= ±1.

Proof: Using sin
(

z1
2

)

=
√

1− ξ21 = 0 for ξ1 = ±1 and sin
(

z2
2

)

=
√

1− ξ22 = 0 for ξ2 = ±1

and simple evaluation, we have on eah orner point

|G| − 1 =
0

−36a2h4
= 0,

whih satis�es the restrition (3.23).

Stability study for the three-dimensional general di�erential equation

In this part we want to disuss the stability of a three-dimensional high-order ompat

sheme, where the oe�ients of the semi-disrete sheme are given in Setion 3.4.2. We

�rst perform a thorough von Neumann stability analysis [Str04℄ in the ase of vanishing

ross derivative terms and frozen oe�ients. We observe that there is no additional sta-

bility ondition in this ase. Then we give partial results in the ase of non-vanishing
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ross-derivative terms.

In three dimensions, the fully disrete high-order ompat �nite di�erene sheme at

the point x = (xi1 , xi2 , xi3) ∈
◦
G

(3)

h is given by

1
∑

l1,l2,l3=−1

Ax (xi1+l1 , xi2+l2 , xi3+l3)U
n+1
i1+l1,i2+l2,i3+l3

=

1
∑

l1,l2,l3=−1

Bx (xi1+l1 , xi2+l2 , xi3+l3)U
n
i1+l1,i2+l2,i3+l3 + ĝ(x, τn, τn+1)

(3.24)

with

Ax (x̂) := Mx (x̂) +
∆τ

2
Kx (x̂) , Bx (x̂) := Mx (x̂)−

∆τ

2
Kx (x̂)

for x̂ ∈ G
(3)
h and h > 0, see De�nition 17. We use

Un
j1,j2,j3 =gneI(j1z1+j2z2+j3z3)

for j1 ∈ {i1 − 1, i1, i1 + 1}, j2 ∈ {i2 − 1, i2, i2 + 1} and j3 ∈ {i3 − 1, i3, i3 + 1}, where
I is the imaginary unit, gn is the amplitude at time level n, z1 = 2πh/λ1, z2 = 2πh/λ2

and z3 = 2πh/λ3 for the wavelengths λ1, λ2, λ3 ∈ [0, 2π[. Then the fully disretised �nite

di�erene sheme satis�es the neessary stability ondition, if for all z1, z2 and z3 the

ampli�ation fator G = gn+1/gn satis�es the relation

|G|2 − 1 ≤ 0. (3.25)

Theorem 2:

For a = a1 = a2 = a3 < 0 and b12 = b13 = b23 = 0, the fully disrete high-order ompat

�nite di�erene sheme given in (3.24) with oe�ients de�ned in Setion 3.4.2, satis�es

(for frozen oe�ients) the neessary stability ondition (3.25).

Proof: We de�ne

ξ1 = cos
(z1
2

)

, ξ2 = cos
(z2
2

)

, ξ3 = cos
(z3
2

)

,

as well as

η1 = sin
(z1
2

)

, η2 = sin
(z2
2

)

and η3 = sin
(z3
2

)

.

In these new variables the stability ondition given in (3.25) in ombination with the
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de�nition of the oe�ients in the three dimensional ase, whih are de�ned in the equations

(3.13) to (3.18), used in (3.24), an be written as

We an write

|G|2 − 1 =
NG

DG
,

where from a < 0 it follows that

NG = −8ak
(

n4h
4 + n2h

2
)

≤ 0,

as

n2 =4a2f1 (ξ1, ξ2, ξ3) [f2 (ξ1, ξ2) + f2 (ξ3, ξ1) + f2 (ξ2, ξ3)] ≤ 0,

n4 = [f3 (ξ1, ξ2) + f3 (ξ1, ξ3)] c
2
1 + [f3 (ξ2, ξ1) + f3 (ξ2, ξ3)] c

2
2 + [f3 (ξ3, ξ1) + f3 (ξ3, ξ2)] c

2
3

− η23 (ξ1η1c1 + ξ2η2c2)
2 − η22 (ξ1η1c1 + ξ3η3c3)

2 − η21 (ξ2η2c2 + ξ3η3c3)
2 ≤ 0,

beause of

f1 (x, y) =x2 + y2 + z2 ≥ 0,

f2 (x, y) =2x2y2 − x2 − 1 ≤ 0,

f3 (x, y) =x2y2
(

1− x2
)

+ y2
(

x2 − 1
)

≤ y2
(

1− x2
)

+ y2
(

x2 − 1
)

= 0,

when x, y, z ∈ [−1, 1] holds. The denominator DG an be written as

DG = d6h
6 +

(

d4,2k
2 + d4,1k + d4,0

)

h4 +
(

d2,2k
2 + d2,1k

)

h2 + d0,

where

d0 =16a4k2 [m1(ξ1, ξ2) +m1(ξ3, ξ1) +m1(ξ2, ξ3)]
2 ≥ 0,

d2,1 =16a3m2 (c1ξ1, c2ξ2, c3ξ3) [m1(ξ1, ξ2) +m1(ξ3, ξ1) +m1(ξ2, ξ3)] = 4an2 ≥ 0,

d2,2 =4a2
[

m6 (ξ1, η1, ξ2) c
2
1 + 2m7 (ξ3) ξ1ξ2η1η2c1c2 +m6 (ξ2, η2, ξ1) c

2
2

+m6 (ξ1, η1, ξ3) c
2
1 + 2m7 (ξ2) ξ1ξ3η1η3c1c3 +m6 (ξ3, η3, ξ1) c

2
3

+m6 (ξ2, η2, ξ3) c
2
2 + 2m7 (ξ1) ξ2ξ3η2η3c2c3 +m6 (ξ3, η3, ξ2) c

2
3

+m5 (η1, ξ2, ξ3) c
2
1 +m5 (η2, ξ1, ξ3) c

2
2 +m5 (η3, ξ1, ξ2) c

2
3

]
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d4,0 =4a2m2 (ξ1, ξ2, ξ3)
2 ≥ 0,

d4,1 =4an4 ≥ 0,

d4,2 =
[

η21c
2
1 + η22c

2
2 + η23c

2
3 + 2ξ1η1ξ2η2c1c2 + 2ξ1η1ξ3η3c1c3 + 2ξ2η2ξ3η3c2c3

]2 ≥ 0,

d6 = [ξ1η1c1 + ξ2η2c2 + ξ3η3c3]
2 ≥ 0,

with a < 0 and

m1 (x, y) =2x2y2 − x2 − 1 ≤ 2x2 − x2 − 1 = x2 − 1 ≤ 0,

m2 (x, y, z) =x2 + y2 + z2 ≥ 0,

m3 (x, y) =x2y2
(

1− x2
)

+ y2
(

x2 − 1
)

≤ y2
(

1− x2
)

+ y2
(

x2 − 1
)

= 0,

m4 (x, y) ==(1− x2)[x2(y2 − 1) + y2(x2 − 1)] ≤ 0,

m5 (x, y, z) =− 8x4y2z2 + 4x2y2z2 + 4x2 ≥ −8x2y2z2 + 4x2y2z2 + 4x2

=− 4x2y2z2 + 4x2 ≥ −4x2 + 4x2 = 0

m6 (x1, x2, y) =4x22x
2
1y

4 + (−8x22x
2
1 + 2x22)y

2 + x22 +
3

2
x21x

2
2 ∈ [0, 3]

m7 (x) =2x2(x2 − (1− x2)) + 7 ≥ 0

for x, y, z ∈ [−1, 1]. We still need to show d2,2 ≥ 0. Sine we annot determine the sign of

d2,2 diretly, we onsider three di�erent ases.

Having ξ22 = ξ23 = 1 leads to

d2,2 =4a2
[

2

(

−5

2
ξ21η

2
1 + 3η21

)

c21 +
(

−8η41 + 8η21
)

c21

]

≥4a2
[

2

(

−5

2
η21 + 3η21

)

c21 +
(

−8η21 + 8η21
)

c21

]

= 4a2c21η
2
1 ≥ 0

as η21 ≤ 1.

Seondly, we onsider c1 = c2 = c3 = 0. This leads diretly to d2,2 = 0.

From now on we have (c1, c2, c3) 6= (0, 0, 0). Sine d2,2 is symmetri in respet to c1, c2, c3

we an say without loss of generality that c1 6= 0. Additionally, we have
(

ξ22 , ξ
2
3

)

6=
(

1, 1
)

.
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Setting p2 := c2/c1 and p3 := c3/c1 gives

d2,2 =4a2c21
[

m6 (ξ1, η1, ξ2) + 2m7 (ξ3) ξ1ξ2η1η2p2 +m6 (ξ2, η2, ξ1) p
2
2

+m6 (ξ1, η1, ξ3) + 2m7 (ξ2) ξ1ξ3η1η3p3 +m6 (ξ3, η3, ξ1) p
2
3

+m6 (ξ2, η2, ξ3) p
2
2 + 2m7 (ξ1) ξ2ξ3η2η3p2p3 +m6 (ξ3, η3, ξ2) p

2
3

+m5 (η1, ξ2, ξ3) +m5 (η2, ξ1, ξ3) p
2
2 +m5 (η3, ξ1, ξ2) p

2
3

]

=:4a2c21
[

k11p
2
2 + k22p

2
3 + k12p2p3 + k1p2 + k2p3 + k0

]

=: 4a2c21g (p2, p3) .

In order to alulate the extremum of g (p2, p3)

∇g (p̂2, p̂3) =







2k11p̂2 + k12p̂3 + k1

k12p̂2 + 2k22p̂3 + k2






=







0

0







is neessary, whih leads to

p̂2 =
2k1k22 − k2k12
k212 − 4k211k

2
22

, p̂3 =
2k2k11 − k1k12
k212 − 4k211k

2
22

,

where we have

k212 − 4k211k
2
22 = q1q2q3

with

q1 =η2
2η3

2

q2 =− 2 ξ1
2ξ2

2 − 2 ξ1
2ξ3

2 − 2 ξ2
2ξ3

2 + ξ1
2 + ξ2

2 + ξ3
2 + 3 ∈ [0, 4]

q3 =8 ξ1
4ξ2

2ξ3
2 + 4 ξ1

2ξ2
4ξ3

2 + 4 ξ1
2ξ2

2ξ3
4 + 4 ξ2

4ξ3
4 − 4 ξ1

4ξ2
2

− 4 ξ1
4ξ3

2 − 22 ξ1
2ξ2

2ξ3
2 − 6 ξ2

4ξ3
2 − 6 ξ2

2ξ3
4 + 8 ξ1

2ξ2
2

+ 8 ξ1
2ξ3

2 + 20 ξ2
2ξ3

2 − 2 ξ1
2 − 3 ξ2

2 − 3 ξ3
2 − 6 ∈ [−9, 0].

There is q1q2q3 6= 0 for
(

ξ22 , ξ
2
3

)

6= (1, 1). Sine this is the unique root of ∇g, as k11, k22 ≥ 0,

we have a minimum at p2 = p̂2 and p3 = p̂3. Thus we get

g (p̂2, p̂3) = q4q5
q6
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where

q4 =2η21
(

2ξ21ξ
2
2 + 2ξ21ξ

2
3 + 2ξ22ξ

2
3 − ξ21 − ξ22 − ξ23 − 3

)

≤ 2η21
(

ξ21 + ξ22 + ξ23 − 3
)

≤ 0

q5 =8ξ41ξ
4
2ξ

2
3 + 8ξ41ξ

2
2ξ

4
3 + 8ξ21ξ

4
2ξ

4
3 − 4ξ41ξ

4
2 − 20ξ41ξ

2
2ξ

2
3 − 4ξ41ξ

4
3 − 20ξ21ξ

4
2ξ

2
3 − 20ξ21ξ

2
2ξ

4
3

− 4ξ42ξ
4
3 + 6ξ22ξ

4
1 + 6ξ41ξ

2
3 + 6ξ21ξ

4
2 + 57ξ21ξ

2
2ξ

2
3 + 6ξ21ξ

4
3 + 6ξ42ξ

2
3 + 6ξ22ξ

4
3

− 20ξ22ξ
2
1 − 20ξ21ξ

2
3 − 20ξ22ξ

2
3 + 3ξ21 + 3ξ22 + 3ξ23 + 6 ∈ [0, 9]

q6 =8ξ41ξ
2
2ξ

2
3 + 4ξ21ξ

4
2ξ

2
3 + 4ξ21ξ

2
2ξ

4
3 + 4ξ42ξ

4
3 − 4ξ22ξ

4
1 − 4ξ41ξ

2
3 − 22ξ21ξ

2
2ξ

2
3

− 6ξ42ξ
2
3 − 6ξ22ξ

4
3 + 8ξ22ξ

2
1 + 8ξ21ξ

2
3 + 20ξ22ξ

2
3 − 2ξ21 − 3ξ22 − 3ξ23 − 6 ∈ [−9, 0]

with q6 6= 0 for

(

ξ22 , ξ
2
3

)

6= (1, 1). With these three ases we have d2,2 ≥ 0, and hene

NG ≥ 0 follows. The ondition (3.25) is satis�ed.

Lemma 4:

The fully disrete high-order ompat �nite di�erene sheme given in (3.24), where the

oe�ients for the three-dimensional ase de�ned in setion 3.4.2 are used, satis�es the

neessary stability ondition given in (3.25) on the orner points of ξ1, ξ2 and ξ3, so ξ1 =

cos (z1/2) = ±1, ξ2 = cos (z2/2) = ±1 and ξ3 = cos (z3/2) = ±1.

Proof: Using sin (z1/2) =
√

1− ξ21 = 0 for ξ1 = ±1, sin (z2/2) =
√

1− ξ22 = 0 for ξ2 = ±1

and sin (z3/2) =
√

1− ξ23 = 0 for ξ3 = ±1 and simple evaluation, we obtain

|G| − 1 =
0

−36a2h4
= 0,

whih satis�es ondition (3.25).

3.5 Appliation to Blak-Sholes basket options

In this setion we want to show that the n-dimensional Blak-Sholes di�erential equation

satis�es, after transformations, the onditions (3.10) of a high-order ompat sheme and

alulate the resulting sheme for the interior of the grid. After that we look at the

boundary onditions for an n-dimensional spatial domain and �nally disuss the time

disretisation.
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3.5.1 Transformation of the n-dimensional Blak-Sholes equation

In the multidimensional Blak Sholes model, see De�nition 10, the stoks follow the

proesses

dSi(t) = (µi − δi)Si(t)dt+ σiSi(t)dWi(t), (3.26)

where Si is the i-th stok, whih has an expeted return of µi, a ontinuous dividend of

δi, and the volatility σi for i = 1, . . . , n and n ∈ N. The Stok Si follows a geometri

Brownian motion, so dWi is a Wiener proess. The Wiener proesses are orrelated with

〈dWi, dWj〉 =: ρi,jdt for i, j = 1, . . . , n with i 6= j. The appliation of Itô's Lemma

and standard arbitrage arguments show that any option prie V (S, σ, t) solves the n-

dimensional Blak-Sholes partial di�erential equation,

∂V

∂t
+

1

2

n
∑

i=1

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i,j=1
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n
∑

i=1

(r − δi)Si
∂V

∂Si
− rV =0. (3.27)

The transformations

xi =
γ

σi
ln

(

Si

K

)

, τ = T − t and u = erτ
V

K
, (3.28)

where γ is a onstant saling parameter to assure that the resulting omputational domain

does not get too large, lead for i = 1, . . . , n to

uτ −
γ2

2

n
∑

i=1

∂2u

∂x2i
− γ2

n
∑

i,j=1
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1

[

σi
2

− r − δi
σi

]

∂u

∂xi
=0. (3.29)

When omparing this with (3.1), we see that

ai (x1, . . . , xn, τ) =
−γ

2
, bij (x1, . . . , xn, τ) =− γ2ρij,

ci (x1, . . . , xn, τ) =γ

(

σi
2

− r − δi
σi

)

, d (x1, . . . , xn, τ) =0, (3.30)

for i, j = 1, . . . , n and i < j. We �nd that the transformed partial di�erential equation

(3.29) with these oe�ients satis�es the onditions given by (3.10), if ∆xi = h for a

stepsize h > 0 is used in the disretisation proess. Hene we an obtain a high-order

ompat sheme for any spatial dimension n ∈ N.
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Transformation of the �nal ondition

We have to de�ne whih kind of options we want to disuss. When looking at a European

Power-Put basket option, the �nal ondition of the partial di�erential equation (3.27) is

given by

V (S1, . . . , Sn, T ) =max

(

K −
n
∑

i=1

ωiSi, 0

)p

,

where p is an integer,
n
∑

i=1
ωi = 1 and ωi ≥ 0 for i = 1, . . . , n if we have restritions regarding

short-selling. Using the transformations (3.28) leads to

u(x1, . . . , xn, 0) =Kp−1max

(

1−
n
∑

i=1

ωie
σixi
γ , 0

)p

, (3.31)

whih is the initial ondition for the partial di�erential equation (3.29). The budget on-

straint

n
∑

i=1
ωi = 1, and the optional no-short-selling restraints, ωi ∈ [0, 1] for i = 1, . . . , n,

still apply.

3.5.2 Semi-disrete two-dimensional Blak-Sholes equation

In this setion we apply our general two-dimensional semi-disrete sheme, see Setion

3.4.1, to the two-dimensional Blak-Sholes equation. For reating the semi-disrete sheme

(3.12) we have to apply (3.30), with n = 2 to (3.13) to (3.17), whih gives

K̂i1,i2 =− 2γ2ρ212
3h2

+
5γ2

3h2
+

(

σ1
2 − r−δ1

σ1

)2

3
+

(

σ2
2 − r−δ2

σ2

)2

3
,

K̂i1±1,i2 =
γ2ρ212
3h2

±
γ
(

σ1
2 − r−δ1

σ1

)

3h
∓

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

3h
−

(

σ1
2 − r−δ1

σ1

)2

6
− γ2

3h2
,

K̂i1,i2±1 =
γ2ρ212
3h2

±
γ
(

σ2
2 − r−δ2

σ2

)

3h
∓

γ
(

σ1
2 − r−δ1

σ1

)

ρ12

3h
−

(

σ2
2 − r−δ2

σ2

)2

6
− γ2

3h2
,

K̂i1±1,i2−1 =±

(

σ2
2 − r−δ2

σ2

)(

σ1
2 − r−δ1

σ1

)

12
−

γ
(

σ2
2 − r−δ2

σ2

)

12h
±

γ
(

σ1
2 − r−δ1

σ1

)

12h

−
γ
(

σ1
2 − r−δ1

σ1

)

ρ12

6h
±

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

6h
− γ2

12h2
± γ2ρ12

4h2
− γ2ρ212

6h2
,

K̂i1±1,i2+1 =
γ
(

σ2
2 − r−δ2

σ2

)

12h
∓

(

σ2
2 − r−δ2

σ2

)(

σ1
2 − r−δ1

σ1

)

12
±

γ
(

σ1
2 − r−δ1

σ1

)

12h

+
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ
(

σ2
2 − r−δ2

σ2

)

ρ12

6h
− γ2

12h2
∓ γ2ρ12

4h2
− γ2ρ212

6h2
,
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where again K̂l,m is the oe�ient of Ul,m (τ) for l ∈ {i1 − 1, i1, i1 + 1} and m ∈ {i2 −
1, i2, i2 + 1}. Similarly, using (3.30) with n = 2 in (3.18), we get

Mi1+1,i2±1 =Mi1−1,i2∓1 = ±ρ12
24

, Mi1,i2 =
2

3
,

Mi1±1,i2 =
1

12
∓

h
(

σ1
2 − r−δ1

σ1

)

12γ
, Mi1,i2±1 =

1

12
∓

h
(

σ2
2 − r−δ2

σ2

)

12γ
,

as oe�ients of ∂τUl,m (τ). From (3.19) and (3.30), we get g̃(x, τ) = 0. We obtain a

semi-disrete sheme of the form (3.12), where Kx and Mx are in time-dependent.

3.5.3 Semi-disrete three-dimensional Blak-Sholes equation

In this setion we give the semi-disrete sheme (3.12) for the three-dimensional Blak-

Sholes basket option. Using (3.30) with n = 3 in (D.1) to (D.14) leads to

K̂i1,i2,i3 =

(

σ1
2 − r−δ1

σ1

)2

3
+

(

σ2
2 − r−δ2

σ2

)2

3
+

(

σ3
2 − r−δ3

σ3

)2

3
− 2γ2ρ212

3h2
− 2γ2ρ213

3h2

− 2γ2ρ223
3h2

+
2γ2

h2
,

K̂i1±1,i2,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

6h
−

(

σ1
2 − r−δ1

σ1

)2

6
∓

γ ρ12

(

σ2
2 − r−δ2

σ2

)

3h
+

γ2ρ212
3h2

− γ2

6h2

∓
γ ρ13

(

σ3
2 − r−δ3

σ3

)

3h
+

γ2ρ213
3h2

,

K̂i1,i2±1,i3 =±
γ
(

σ2
2 − r−δ2

σ2

)

6h
−

(

σ2
2 − r−δ2

σ2

)2

6
∓

γ ρ12

(

σ1
2 − r−δ1

σ1

)

3h
+

γ2ρ212
3h2

− γ2

6h2

∓
γ ρ23

(

σ3
2 − r−δ3

σ3

)

3h
+

γ2ρ223
3h2

,

K̂i1,i2,i3±1 =±
γ
(

σ3
2 − r−δ3

σ3

)

6h
−

(

σ3
2 − r−δ3

σ3

)2

6
∓

γ ρ13

(

σ1
2 − r−δ1

σ1

)

3h
+

γ2ρ213
3h2

− γ2

6h2

∓
γ ρ23

(

σ2
2 − r−δ2

σ2

)

3h
+

γ2ρ223
3h2

,

K̂i1±1,i2−1,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
−

γ
(

σ2
2 − r−δ2

σ2

)

12h
±

(

σ1
2 − r−δ1

σ1

)(

σ2
2 − r−δ2

σ2

)

12
− γ2

12h2

−
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ12

(

σ2
2 − r−δ2

σ2

)

6h
± γ2ρ12

6h2
− γ2ρ212

6h2
∓ γ2ρ13ρ23

6h2
,

K̂i1±1,i2+1,i3 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
+

γ
(

σ2
2 − r−δ2

σ2

)

12h
∓

(

σ1
2 − r−δ1

σ1

)(

σ2
2 − r−δ2

σ2

)

12
− γ2

12h2

+
γ ρ12

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ12

(

σ2
2 − r−δ2

σ2

)

6h
∓ γ2ρ12

6h2
− γ2ρ212

6h2
± γ2ρ13ρ23

6h2
,
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K̂i1±1,i2,i3−1 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
−

γ
(

σ3
2 − r−δ3

σ3

)

12h
±

(

σ1
2 − r−δ1

σ1

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

−
γ ρ13

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ13

(

σ3
2 − r−δ3

σ3

)

6h
± γ2ρ13

6h2
− γ2ρ213

6h2
∓ γ2ρ12ρ23

6h2
,

K̂i1±1,i2,i3+1 =±
γ
(

σ1
2 − r−δ1

σ1

)

12h
+

γ
(

σ3
2 − r−δ3

σ3

)

12h
∓

(

σ1
2 − r−δ1

σ1

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

+
γ ρ13

(

σ1
2 − r−δ1

σ1

)

6h
±

γ ρ13

(

σ3
2 − r−δ3

σ3

)

6h
∓ γ2ρ13

6h2
− γ2ρ213

6h2
± γ2ρ12ρ23

6h2
,

K̂i1,i2±1,i3−1 =±
γ
(

σ2
2 − r−δ2

σ2

)

12h
−

γ
(

σ3
2 − r−δ3

σ3

)

12h
±

(

σ2
2 − r−δ2

σ2

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

−
γ ρ23

(

σ2
2 − r−δ2

σ2

)

6h
±

γ ρ23

(

σ3
2 − r−δ3

σ3

)

6h
± γ2ρ23

6h2
− γ2ρ223

6h2
∓ γ2ρ12ρ13

6h2
,

K̂i1,i2±1,i3+1 =±
γ
(

σ2
2 − r−δ2

σ2

)

12h
+

γ
(

σ3
2 − r−δ3

σ3

)

12h
∓

(

σ2
2 − r−δ2

σ2

)(

σ3
2 − r−δ3

σ3

)

12
− γ2

12h2

+
γ ρ23

(

σ2
2 − r−δ2

σ2

)

6h
±

γ ρ23

(

σ3
2 − r−δ3

σ3

)

6h
∓ γ2ρ23

6h2
± γ2ρ12ρ13

6h2
− γ2ρ223

6h2
,

K̂i1±1,i2−1,i3−1 =±
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
±

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
±

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

± γ2ρ12
24h2

± γ2ρ13
24h2

− γ2ρ23
24h2

− γ2ρ12ρ13
12h2

± γ2ρ12ρ23
12h2

± γ2ρ13ρ23
12h2

,

K̂i1±1,i2+1,i3−1 =∓
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
∓

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
∓

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

∓ γ2ρ12
24h2

± γ2ρ13
24h2

+
γ2ρ23
24h2

± γ2ρ12ρ23
12h2

∓ γ2ρ13ρ23
12h2

+
γ2ρ12ρ13
12h2

,

K̂i1±1,i2−1,i3+1 =∓
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
∓

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
∓

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

± γ2ρ12
24h2

∓ γ2ρ13
24h2

+
γ2ρ23
24h2

∓ γ2ρ12ρ23
12h2

± γ2ρ12ρ13
12h2

+
γ2ρ13ρ23
12h2

,

K̂i1±1,i2+1,i3+1 =±
γ ρ23

(

σ1
2 − r−δ1

σ1

)

24h
±

γ ρ13

(

σ2
2 − r−δ2

σ2

)

24h
±

γ ρ12

(

σ3
2 − r−δ3

σ3

)

24h

∓ γ2ρ12ρ13
12h2

− γ2ρ12ρ23
12h2

∓ γ2ρ13ρ23
12h2

∓ γ2ρ12
24h2

∓ γ2ρ13
24h2

− γ2ρ23
24h2

,

where K̂k,l,m is the oe�ient of Uk,l,m (τ) for k ∈ {i1 − 1, i1, i1 +1}, l ∈ {i2 − 1, i2, i2 +1}
and m ∈ {i3 − 1, i3, i3 +1}. With M̂k,l,m, we de�ne the oe�ient of ∂τUk,l,m (τ) similarly,

so we get

M̂i±1,j,m−1 =M̂i∓1,j,m+1 = ∓ρ13
24

, M̂i,j±1,m−1 =M̂i,j∓1,m+1 = ∓ρ23
24

,
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M̂i±1,j−1,m =M̂i∓1,j+1,m = ∓ρ12
24

, M̂i±1,j,m =
1

12
∓

h
(

σ1
2 − r−δ1

σ1

)

12γ
,

M̂i,j±1,m =
1

12
∓

h
(

σ2
2 − r−δ2

σ2

)

12γ
, M̂i,j,m±1 =

1

12
∓

h
(

σ3
2 − r−δ3

σ3

)

12γ
,

M̂i±1,j−1,m+1 =M̂i±1,j+1,m+1 = 0 M̂i±1,j−1,m−1 =M̂i±1,j+1,m−1 = 0, M̂i,j,m =
1

2
.

Applying (3.30) with n = 3 to (3.21) gives g̃(x, τ) = 0, similar as in the ase n = 2, where

x is a grid point in the interior of G
(3)
h . We obtain a semi-disrete sheme of the form

(3.12), where Kx and Mx are time-independent.

3.5.4 Treatment of the boundary onditions

After deriving a high-order ompat sheme for the spatial interior we now disuss the

boundary onditions.

Lower boundaries

The �rst boundary we disuss is Si = 0 for some i ∈ I ⊂ {1, . . . n} at time t ∈ [0, T [. One

the value of the stok is zero, it stays onstant over time, see (3.26). Thus using Si = 0

for i ∈ I in (3.27) leads to

∂V

∂t
+

1

2

n
∑

i=1
i/∈I

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i=1
i/∈I

(r − δi)Si
∂V

∂Si
− rV +

n
∑

i,j=1
i,j /∈I
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
=0.

Transforming this partial di�erential equation using (3.28) gives

−γ2

2

n
∑

i=1
i/∈I

∂2u

∂x2i
− γ2

n
∑

i,j=1
i,j /∈I
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1
i/∈I

[

σi
2

− r − δi
σi

]

∂u

∂xi
=f.

Comparing this di�erential equation with (3.1) we an see that the oe�ients are again

given by (3.30) for i, j ∈ {1, . . . , n} \ I with i < j. So this leads again to a high-order

sheme for these boundaries. The ase I = {1, . . . , n} leads to the Dirihlet boundary

ondition

u(xmin
1 , . . . , xmin

n , τ) = u(xmin
1 , . . . , xmin

n , 0)

at time τ ∈]0, τmax], sine in that ase

∂u
∂τ = 0.

95



Upper boundaries

Upper boundaries are boundaries with Si = Smax
i for some i ∈ J ⊂ {1, . . . , n} at time

t ∈ [0, T [. For a su�iently large Smax
i for i ∈ J , we an approximate

∂V (S1, . . . , Sn, t)

∂Si

∣

∣

∣

∣

Si=Smax
i

≡0

with Sk ∈
[

Smin
k , Smax

k

]

for k = {1, . . . , n} \ {i} for a European Power Put basket option.

Using this in (3.27) gives

∂V

∂t
+

1

2

n
∑

i=1
i/∈J

σ2
i S

2
i

∂2V

∂S2
i

+

n
∑

i=1
i/∈J

(r − δi)Si
∂V

∂Si
− rV +

n
∑

i,j=1
i,j /∈J
i<j

ρijσiσjSiSj
∂2V

∂Si∂Sj
=0

and leads, when using the transformations (3.28), to

−γ2

2

n
∑

i=1
i/∈J

∂2u

∂x2i
− γ2

n
∑

i,j=1
i,j /∈J
i<j

ρij
∂2u

∂xi∂xj
+ γ

n
∑

i=1
i/∈J

[

σi
2

− r − δi
σi

]

∂u

∂xi
=f. (3.32)

Hene the upper boundaries show the same behaviour as the lower boundaries for a Euro-

pean Power Put basket and we an obtain a high-order ompat sheme for these bound-

aries as well. As in Setion 3.5.4, we have the Dirihlet boundary ondition

u(xmax
1 , . . . , xmax

n , τ) =u(xmax
1 , . . . , xmax

n , 0)

for τ ∈]0, τmax] if J = {1, . . . , n}.

3.5.5 Time disretisation

With the results from the previous setions we obtain a semi-disrete system of the form

∑

x̂∈G
(n)
h

[Mx(x̂)uτ (x, τ) +Kx(x̂)u(x̂, τ)] =g(x), (3.33)

for eah point x of the grid G
(n)
h as de�ned in (3.11). The funtions Kx,Mx, as well as

g are given through the spatial disretisation proess and are not dependent on τ in our

example. Mx and Kx are only non-zero on the ompat n-dimensional stenil. Thus, our

equation system given by (3.33) only has up to 3n entries on the grid G
(n)
h for uτ and u,

respetively. We have de�ned these non-zero oe�ients, as well as g, in Setions 3.5.2 and
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3.5.3 for the ases n = 2 and n = 3, respetively.

We use an equidistant time grid of the form τ = k∆τ for k = 0, . . . , Nτ withNτ ∈ N and

a Crank-Niolson-type time disretisation, see [Str04, Wil98℄, with step size ∆τ , leading

to

∑

x̂∈G
(n)
h

[

Mx(x̂) +
∆τ

2
Kx(x̂)

]

u (x̂, τ +∆τ) =
∑

x̂∈G
(n)
h

[

Mx(x̂) −
∆τ

2
Kx(x̂)

]

u (x̂, τ) + (∆τ)g(x)

(3.34)

on eah point x of the grid G
(n)
h . This system of equations has to be solved for every time

step with τ = k∆τ for k = 0, . . . , Nτ . We an see diretly that we have only non-zero

values on the ompat stenil, as the funtions Mx(x̂) and Kx(x̂) have this property. For

the Crank-Niolson time disretisation this ompat sheme has onsisteny order two in

time and four in spae.

3.6 Numerial experiments for Blak-Sholes Basket options

In this setion we disuss the numerial experiments for the Blak-Sholes basket Power

Puts in spatial dimensions n = 2, 3. The equation systems whih have to be solved over

time have been derived in Setion 3.5. Aording to [KTW70℄, we annot expet fourth

order onvergene if the initial ondition is not smooth enough. This means, that we have

to smoothen the initial onditions for a Power Put with p = 1, 2. In [KTW70℄ suitable

smoothing operators are identi�ed in Fourier spae. Sine the order of onvergene of our

high-order ompat shemes is four, we have to use the smoothing operator Φ4, given by

it's Fourier transformation

Φ̂4(ω) =

(

sin
(

ω
2

)

ω
2

)4
[

1 +
2

3
sin2

(ω

2

)

]

.

This leads to the smooth initial ondition determined by

ũ0 (x1, x2) =

3h
∫

−3h

3h
∫

−3h

Φ4

(x

h

)

Φ4

(y

h

)

u0 (x1 − x, x2 − y) dx dy

in the ase n = 2 and

ũ0 (x1, x2, x3) =

3h
∫

−3h

3h
∫

−3h

3h
∫

−3h

Φ4

(x

h

)

Φ4

(y

h

)

Φ4

( z

h

)

u0 (x1 − x, x2 − y, x3 − z) dx dy dz
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in the ase n = 3 for any stepsize h > 0, where u0 is the original initial ondition and Φ4(x)

denotes the Fourier inverse of Φ̂4(ω), see [KTW70℄. If u0 is smooth enough in the inte-

grated region around (x1, . . . , xn), we have ũ0 (x1, . . . , xn) = u0 (x1, . . . , xn) for n = 2, 3.

That means that it is possible to identify the points where smoothing is neessary.
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Figure 3.2: Example smoothing points for n = 2, p = 1
Figure 3.2 gives an example of a grid with n = 2 on the left side and on the right side the

identi�ed gridpoints, where smoothing is neessary, and a graph of the non-di�erentiable

points of the initial ondition given in (3.31). The points were hosen in suh a way that

we an be sure that the non-di�erentiable points have no in�uene on ũ0 (x1, x2) for those

points, whih are not shown in Figure 3.2 on the right hand side. We an see this as there

are always at least three grid-points above, below, left and right from the non-di�erentiable

points as long as it does not exeed the grid. Thus we an redue the neessary alulations

signi�antly using this approah. As with h → 0, the smooth initial ondition ũ0 tends to-

wards the original initial ondition u0 given in (3.31). This means that the approximation

of the smoothed problem tends towards the true solution of (3.29).

We use the relative l2-error
‖U

ref

− U‖l2
‖U

ref

‖l2
,

for European Power Puts with p = 1, . . . , 4, as well as the l∞-error

‖U
ref

− U‖l∞

for European Power Puts with p = 1, 2, for examining the numerial onvergene rate,

where U
ref

denotes a referene solution on a �ne grid and U is the approximation. When

identifying the onvergene order of the shemes, we determine it as the slope of the linear

least square �t of the individual error points in the loglog-plots of error versus number of
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disretisation points per spatial diretion.

3.6.1 Numerial example with two underlying stoks

In this setion we show the numerial results for the onvergene rate of a two-dimensional

Blak-Sholes basket Power Put. We ompare the high-order ompat sheme with the

standard sheme, whih results from using the entral di�erene operator diretly in (3.29)

and n = 2 with no further ation, whih leads to a lassial seond order sheme. We

look at plain European Puts as well as European Power Puts with power p = 2, 3, 4. In

the European Put and the European Power Put with power p = 2, we use the smoothing

operator suggested in [KTW70℄ for the Initial ondition given in (3.31). We use the values

σ1 = .25, σ2 = .35, γ = .25, δ1 = δ2 = 0, r = log(1.05),

ω1 = 0.35 = 1− ω2, and

∆τ

h2
= 0.4

for eah of the shown plots. The value for ∆τ/h2 has to be onstant, though the value 0.4

is just an example. The von Neumann stability analysis did not indiate any restrition

on this relation. We use the orrelations ρ12 = −0.8, ρ12 = 0 and ρ12 = 0.8 for the ase

K = 10.
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      HOC, ρ = −0.8 , order3.62
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2nd order, ρ = −0.8 , order1.51
2nd order, ρ =  0   , order1.77
2nd order, ρ =  0.8 , order1.66

Figure 3.3: Absolute l∞-error two-

dimensional Blak-Sholes Basket Power

Put, p=1 and smooth initial ondition
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      HOC, ρ = −0.8 , order3.66
      HOC, ρ =  0   , order3.75
      HOC, ρ =  0.8 , order3.56
2nd order, ρ = −0.8 , order1.93
2nd order, ρ =  0   , order1.81
2nd order, ρ =  0.8 , order1.75

Figure 3.4: Absolute l∞-error two-

dimensional Blak-Sholes Basket Power

Put, p=2 and smooth initial ondition

In Figures 3.3 and 3.4 we see onvergene plots onerning the absolute l∞ error for a

European Put and a European Power Put, respetively. For the European Put we an

see that the high-order ompat shemes have a highly similar behaviour. The points are

almost idential exept the one with the highest auray. The onvergene orders for the

high-order ompat shemes are between 3.62 and 3.73. The maximum absolute errors
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have a range from 10−6
to 10−2

. The standard disretisations have onvergene orders

from 1.51 to 1.77 and an error range from 10−3.5
to 10−1

. For all stepsizes the error of

the high-order ompat sheme is visibly smaller than the one of the standard sheme. So

the high-order ompat sheme onsequently outmathes the standard disretisation in the

in�nity norm for the European Put.

In the ase p = 2, the onvergene plots for the high-order ompat shemes again look

highly similar exept for the �nest grid. The onvergene rates thus have a range from

3.56 to 3.75 and an error range for the maximum norm from 10−6
to 10−1.5

. The higher

values of the errors an be explained with the higher magnitude of the initial ondition of

the European Power Put with p = 2 ompared to the initial ondition of the European

Put, see (3.31). For the standard disretisation we an observe onvergene rates between

1.75 and 1.93 and a magnitude of the in�nity errors between 10−3
and 10−1

. For all

stepsizes the error of the seond order sheme is higher than the error of the high-order

ompat sheme, even though the di�erene is relatively small when having rough grids

with N = 11. We an state that the performane of the high-order ompat shemes is

signi�antly better when omparing it to the standard disretisation, if the initial ondition

is smoothed aording to [KTW70℄.
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HOC, ρ = −0.8 , order =3.94
HOC, ρ =  0    , order =3.9
HOC, ρ =  0.8 , order =3.87
  2nd, ρ = −0.8 , order =1.85
  2nd, ρ =  0    , order =1.87
  2nd, ρ =  0.8 , order =1.77

Figure 3.5: l2-error two-dimensional Blak-
Sholes Basket Power Put, p=1 and smooth

initial ondition
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HOC, ρ = −0.8 , order =3.86
HOC, ρ =  0    , order =3.84
HOC, ρ =  0.8 , order =3.83
  2nd, ρ = −0.8 , order =2.14
  2nd, ρ =  0    , order =1.94
  2nd, ρ =  0.8 , order =1.82

Figure 3.6: l2-error two-dimensional Blak-
Sholes Basket Power Put, p=2 and smooth

initial ondition

In Figures 3.5 and 3.6 we an see the onvergene plots for a European Put (p = 1)

and a European Power Put with p = 2, respetively. For the European Put we an see

similar behaviour of the onvergene for ρ = −0.8, ρ = 0 and ρ = 0.8 for the high-order

shemes. The numerial onvergene rates for the high-order ompat shemes are between

3.87 and 3.94, whereas for the standard sheme we observe a numerial onvergene rate

between 1.77 and 1.87 for the standard European Blak-Sholes basket Put. For a very
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small number of gridpoints, whih means 11 points in eah diretion, the seond order

sheme an ahieve the same error level, but due to the onvergene rates we an see that

the high-order ompat shemes outperform the seond-order shemes in eah ase of the

orrelation signi�antly. Thus the smoothing of the initial ondition, whih is suggested by

[KTW70℄, eliminates the problems given by the initial ondition. The high-order ompat

sheme thus outperforms the standard disretisation for a European Put signi�antly.

In Figure 3.6 we an see a similar behaviour. Again, the smoothing resolves the prob-

lems reated by the initial ondition. The high-order ompat sheme has onvergene

rates between 3.83 and 3.86, whereas the onvergene rates of the standard shemes are

between 1.82 and 2.14. Only for N = 11 the standard sheme an generate the same error

level as the high-order ompat sheme. After that the high-order ompat shemes, due

to their higher onvergene rates, inrease the di�erene in the error levels. We an see

that the performane of the high-order ompat sheme exeeds the one of the standard

sheme onsequently in this ase as well.
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HOC, ρ = −0.8 , order =4.19
HOC, ρ =  0    , order =4.23
HOC, ρ =  0.8 , order =4.16
  2nd, ρ = −0.8 , order =2.06
  2nd, ρ =  0    , order =2.17
  2nd, ρ =  0.8 , order =2.15

Figure 3.7: l2-error two-dimensional Blak-
Sholes Basket Power Put, p = 3
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HOC, ρ = −0.8 , order =4.21
HOC, ρ =  0    , order =4.22
HOC, ρ =  0.8 , order =3.88
  2nd, ρ = −0.8 , order =2.08
  2nd, ρ =  0    , order =2.15
  2nd, ρ =  0.8 , order =2.12

Figure 3.8: l2-error two-dimensional Blak-
Sholes Basket Power Put, p = 4

In Figures 3.7 and 3.8 we see the onvergene of the relative l2-error for European Power

Puts with p = 3 and p = 4, respetively. The initial onditions were not smoothed, as

they are in Cp−1
. For p = 3, we have a onvergene order of the high-order ompat

shemes between 4.16 and 4.23. The high-order ompat shemes behave very similar for

ρ = −0.8, ρ = 0 and ρ = 0.8. Only the sheme with ρ = 0.8 seems to have slightly higher

errors than the shemes with ρ = 0 and ρ = −0.8, but in terms of the onvergene order

these di�erenes are negletable. The standard disretisations show onvergene rates in

the range of 2.06 to 2.17. The three onvergene lines seem to be almost parallel, when

exluding the point for N = 11. The standard sheme has the best results for ρ = 0,

followed by the sheme with ρ = −0.8. Just like for the high-order ompat shemes
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the standard sheme has its worst errors for the ase ρ = 0.8. Overall, the standard

disretisation is ompletely outperformed by the high-order ompat shemes for p = 3, as

even with the roughest grid there is a huge di�erene in the ahieved relative l2-error.

In Figure 3.8 we an see the onvergene rates for p = 4. The onvergene rates for

the high-order ompat shemes are between 3.88 and 4.22. The ase ρ = 0 and ρ = −0.8

behave almost idential, whereas the l2-error of the sheme for ρ = 0.8 delines slower

than in the other ases of ρ. The standard disretisations seem to be almost parallel from

the start, having onvergene rates between 2.08 and 2.15. Overall, we an say that in

these ases the values of the errors are signi�antly lower with the high-order ompat

shemes when omparing it with the standard disretisation, even when the grid is very

rough and we ahieve fourth order onvergene with our sheme for European Power Puts

with p = 3, 4 using the original initial ondition.

3.6.2 Numerial example with three stoks

In this setion we perform numerial examples with three stoks, where we disuss two

di�erent senarios. One is that the stoks are independently identially distributed and the

other senario onsists of three stoks being identially distributed, but having orrelations.

The strike prie is K = 10 in both ases. We have Smax = 36 and Smin = 0.1 for eah

underlying. Furthermore, we have

δi = 0.01, σi = 0.3, ρ1,2 = −0.4, ρ1,3 = −0.1, ρ2,3 = −0.2

ωi = 1/3, r = ln(1.05), γ = 0.3, and T = 0.25, .

This means that the three stoks are equally weighted in the �nal ondition. Sine a �nite

di�erene sheme with spatial dimension three is generally omputational intense, the

number of grid points per spatial dimension is limited. In order to have enough grid points

in time, we hoose ∆τ/h2 = 0.1. We ompare the standard disretisation with our high-

order ompat sheme for European Power Puts with p = 3, 4. For the European Power

Puts with p = 1, 2 it would be possible to use [KTW70℄ again to smoothen the original

initial ondition. In the onvergene plots the senarios with orrelations are labelled as

"", whereas the independently identially distributed versions are marked as "n". The

order mentioned in the �gures is the slope of the linear least square �t of the given error

points in the loglog plots.
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Figure 3.9: l2-error log-log plot three-

dimensional Blak-Sholes Basket Power

Put, p = 3
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       HOC, nc, order 3.43
       HOC,   c, order 3.57
2nd order, nc, order 2.00
2nd order,   c, order 2.12

Figure 3.10: l2-error log-log plot three-

dimensional Blak-Sholes Basket Power

Put, p = 4

In Figure 3.9 we an see the onvergene of the relative l2-error for the standard seond-

order disretisation and our high-order ompat disretisation for a European Power Put

with p = 3. Even though the order of the high-order ompat shemes seems to be rather

low, being 2.72 in the ase with orrelation and 2.8 in the ase without orrelation, we

an learly see that this order originates from the error values of the roughest grid, having

N = 7 points in eah diretion. When leaving out these points, the order of onvergene

would be 3.31 for the ase with orrelation and 3.42 in the version with independent stok

pries. The standard seond order disretisations produe in both ases straight lines,

where the onvergene order is 1.86, when the stok pries are orrelated, and 1.87 for

the independent ase. The value of the error is lower in eah ase, when using the high-

order ompat disretisation. Overall we an say that the high-order ompat sheme

outperforms the standard seond-order sheme signi�antly.

On the right hand side in Figure 3.9 we disuss an European Power Put with p = 4. We

an observe that in this ase the high-order ompat disretisation behaves loser to straight

line in both ases than for p = 3. The onvergene order is 3.57 when inluding orrelation,

and 3.43 for vanishing orrelation. We an still observe that the onvergene lines for

the high-order ompat shemes are bent. When leaving out the �rst error points with

N = 7, we have a slope of 4.16 for non-vanishing orrelation, and 4.18, when the orrelation

between the stok pries vanishes. The standard disretisations ahieve onsisteny rates

of 2 in the ase of no orrelation and 2.12 when there is orrelation between the stok

pries. The values of the relative l2-errors for the di�erent number of grid points per

diretion is always lower for our high-order ompat sheme than for the standard seond

order disretisation. We observe that the high-order ompat sheme exeeds the standard

seond order onsequently for a European Power Option with p = 4 as well.
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3.7 Appliation to Heston basket options

In this setion we want to disuss the possibility of an appliation of high-order ompat

shemes to multi-dimensional Heston Basket options. Reall that the riskneutral/risk-

adjusted multi-dimensional Heston partial di�erential equation is given by

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU,

see (1.13), where σi is the volatility of the stok Si for i = 1, . . . , n. Eah volatility σi

follows a stohasti proess with long-term average θi and mean-reversion speed κi and the

volatility of the volatility is given by vi for i = 1, . . . , n. The orrelation between the stok

Si and the stok Sj is denoted by λij , whereas ρij represents the orrelation between the

stok Si and the volatility σj for i, j = 1, . . . , n. Using the transformations

xi = ln

(

Si

K

)

for i = 1, . . . , n, τ = T − t and u = erτ
U

K

leads to

0 =
∂U

∂τ
−

n
∑

i=1

(

r − viyi
2

) ∂U

∂xi
−

n
∑

i=1

κi
θi − viyi

vi

∂U

∂yi
−

n
∑

i,j=1
i 6=j

λij
√
viyi

√
vjyj

2

∂2U

∂xi∂xj
(3.35)

−
n
∑

i=1

viyi
2

∂2U

∂x2i
−

n
∑

i,j=1

ρij
√
viyi

√
vjyj

∂2U

∂xi∂yj
−

n
∑

i=1

viyi
2

∂2U

∂y2i
(3.36)

−
n
∑

i,j=1
i 6=j

ηij
√
viyi

√
vjyj

2

∂2U

∂yi∂yj
. (3.37)

When looking at the onditions on the oe�ients of a partial di�erential equation for a

high-order ompat sheme, see (3.10), we an see that in order to ahieve a high-order

ompat sheme

ρij =0 for i 6= j, ηij = δij and λij = δij (3.38)

need to hold, where δij denotes the Kroneker-Delta for i, j ∈ {1, . . . , n}. Thus, it is pos-
sible to ahieve a high-order ompat sheme for n independent Heston proesses.
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With the multi-dimensional Blak-Sholes model we have already disussed an exam-

ple, where a high-order ompat sheme an be applied in an n-dimensional setting with

with n ∈ N. But when looking at equation (3.29) we an see that the oe�ients are

neither spae nor time dependent. With the multi-dimensional Heston model we have an

example of an appliation for high-order ompat shemes with ross derivatives and spae

dependent oe�ients in the partial di�erential equation.

We an see from equation (3.35) that the most fundamental example for a multi-

dimensional Heston basket option would be n = 1, whih means that the basket only

onsists of one asset and leads to the standard Heston model. A high-order ompat

sheme for the Heston model has been disussed in [DF12a℄.

A basket ontaining two assets would already lead to a partial di�erential equation

with four-dimensional spatial domain. It is not feasible to apply a �nite di�erene sheme

to suh a partial di�erential equation due to the urse of dimensionality. This means that

we do not apply the high-order ompat sheme to the multi-dimensional Heston model,

but hold at showing that high-order ompat shemes are possible under the mentioned

irumstanes.

3.8 Summary

In this hapter we have presented a new high-order ompat sheme for a general linear

paraboli di�erential equation with time and spae dependent oe�ients, inluding mixed

seond-order derivative terms in n ∈ N≥1 spatial dimensions. The underlying problem is

given by

ut +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
=d in Ω× Ωτ

with initial ondition u0 = u(x1, . . . xn, 0) and suitable boundary onditions, where Ω ⊂ R
n

is a ubial spatial domain and Ωτ =]0, τmax] for a τmax > 0, see (3.1). We have shown

that in order to apply the high-order ompat sheme to the di�erential equation, the

onditions

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai
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for all i, j ∈ {1, . . . , n} with i 6= j have to hold, ompare (3.10). The resulting high-order

ompat shemes are fourth-order aurate in spae and seond-order aurate in time. In a

thorough von Neumann stability analysis, where we foussed on the ase of vanishing mixed

derivative terms and frozen oe�ients, we were able to show that a neessary stability

ondition holds without further onditions in dimensions two and three. For non-vanishing

mixed derivative terms, we have shown partial results. We applied our high-order ompat

shemes to European Power Puts in the two- and three-dimensional Blak-Sholes Model,

whih is partiularly interesting as mixed seond-order derivative terms are essential in this

model. In all of the numerial experiments a omparative standard seond-order sheme

has been signi�antly outperformed. Finally, we have shown that it is possible to apply

high-order ompat shemes to the multi-dimensional Heston model in spei� ases, see

(3.38).
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Chapter 4

Conlusion

This thesis onerns itself with the derivation and appliation of essentially high-order

ompat shemes as well as high-order ompat shemes for a general linear paraboli

partial di�erential equation,

dut +
n
∑

i=1

ai
∂2u

∂x2i
+

n
∑

i,j=1
i<j

bij
∂2u

∂xi∂xj
+

n
∑

i=1

ci
∂u

∂xi
= g in Ω× Ωτ (4.1)

with initial ondition u0 = u(x1, . . . xn, 0), where Ω ⊂ R
n
is an n-dimensional ube and

Ωτ = ]0, τmax] with �nal time τmax > 0 and suitable boundary onditions. The oe�ients

ai < 0, bij and ai are funtions of (x1, . . . xn) and τ . Both numerial shemes, essentially

high-order ompat shemes as well as high-order ompat shemes, only use the ompat

stenil

Û (x̂) = {Ui1+k1,...,in+kn | km ∈ {−1, 0, 1} for m = 1, . . . , n} (4.2)

for a given grid

G(n) :=
{

(xi1 , . . . , xin) ∈ Ω | xik = x
(k)
min + ik (∆xk) , 0 ≤ ik ≤ Nk − 1 for k = 1, . . . , n

}

.

The value Ui1,...,in denotes the approximation of u (xi1 , . . . , xin) and for the grid we have

∆xk > 0, Nk ∈ N≥1 and x
(k)
max = x

(k)
min + (Nk − 1) (∆xk) for k = 1, . . . , n. When using

∆xi = h for i = 1, . . . , n, we write G
(2)
h .
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For essentially high-order ompat shemes, where we use n = 2 and g = 0 in (4.1),

the resulting numerial sheme at point x = (xi1 , xi2) ∈
◦
G

(2)

h is of the type

1
∑

l1,l2=−1

Ax (xi1+l1 , xi2+l2)U
k+1
i1+l1,i2+l2

=

1
∑

l1,l2=−1

Bx (xi1+l1 , xi2+l2)U
k
i1+l1,i2+l2

+ ĝ(x, τk, τk+1) +R2 +O
(

h4
)

+O
(

τ2
)

at time τ = k∆τ with

R2 :=
a1
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a2

∂4u

∂x41

for Version 1,

R2 :=
a2
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a1

∂4u

∂x42

for Version 2,

R2 :=
b12
(

a1(∆x2)
2 − a2(∆x1)

2
)

12a2

∂4u

∂x31∂x2

for Version 3 and

R2 :=
b12
(

a2(∆x1)
2 − a1(∆x2)

2
)

12a1

∂4u

∂x1∂x32

for Version 4, see (2.18), (2.26), (2.34) and (2.42).

In Setion 2.5 we apply this sheme to the Heston model with a zoom in the region

around the strike prie ('at the money'). We alulate the di�erent shemes and take a

loser look at the seond order remainder term. For all four versions of essentially high-

order ompat shemes we numerially evaluate R2/h
2
, while using ∆x1 = ∆x2 = h in

a onrete example. We observe that for Version 1 the seond order remainder term is

not small enough, whereas the values of the seond order remainder terms of Version 2,

Version 3 and Version 4 are small. This analysis is ruial for the appliation of essentially

high-order ompat shemes, as an appliation of the shemes with high values of the terms

R2/h
2
only leads to seond order onvergene.
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In Setion 2.6 we show numerial examples for Version 3, as this Version leads to the

best numerial results. In [KTW70℄ it is shown that the onvergene rate of a numerial

sheme is bounded by the smoothness of the initial ondition. We overome this problem

by using Ranaher time stepping (see [Ran84℄) and grid shifting, where we set the grid

in a way that the non-di�erential points of the initial ondition are in the middle of two

grid-points of the �nest gid. For the Ranaher time stepping we �rst use four steps of

Impliit Euler time disretisation with stepsize (∆τ)/4 and then use Crank-Niolson time

disretisation for all other time steps. This does not a�et the order of onvergene, as

the number of steps using the Impliit Euler sheme is �x, see [Ran84℄. The resulting

onvergene plots in the numerial examples are slightly bent for plain vanilla European

Put options. To show the in�uene of the initial ondition to the appearane of the on-

vergene plots we also examined Power Put options with power p = 2, 3. For these options

the initial ondition is in Cp−1 (Ω) and thus the onvergene plots show straight lines for

Power options.

In the numerial experiments we ompare di�erent zoom strengths with eah other,

using the zoom funtion given in [TGB08℄. The error in the numerial shemes mainly

omes from the area around the strike prie ('at the money'). Thus, it an be expeted

that the error delines with inreasing the zoom for low values of ζ. But if the zoom is too

strong, there are barely any points of the grid in the remaining part of the spae, whih

leads to a domination of the errors arising from those parts in the overall error of the

sheme. This behaviour regarding the zoom strength is exatly what we ould observe in

the numerial examples. The best onvergene rates are ahieved at ζ = 5 for the spei�

zoom funtion we use, whih indiates that the optimal zoom strength should be around

this value.

Besides omparing the zoom strength we also ompare the orrelation ρ between the

asset value S and the volatility σ in our numerial experiments. For ρ = 0 the ross

derivative vanishes and thus the sheme is a high-order ompat sheme with theoretial

onvergene of order four. This is on�rmed by the numerial onvergene rate in the

performed tests. For non-vanishing orrelation we have an essentially high-order ompat

sheme. With our numerial experiments we show that for those essentially high-order

ompat shemes the pratial onvergene rate orders are around 3.5, as the study of the

higher derivatives has suggested. This shows that we an zoom in the area of interest and
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still have a pratial order of four for the onvergene up to our wanted auray level.

For eah of the mentioned ases a standard seond-order �nite di�erene sheme using the

entral di�erene operator is signi�antly outperformed.

Finally, we perform a numerial stability study for vanishing and non-vanishing ross

derivative, whih suggests that there are no restritions on the mesh ratio (∆τ)/h2. We

have to point out that this result is not overed by the von Neumann stability analyis for

frozen oe�ents in time and spae in Setion 3.4.3, as even for ρ = 0 the assumptions in

Theorem 1 are not ful�lled, sine the oe�ients of uxx and uyy in equation (2.51) are not

idential.

In this thesis we introdue essentially high-order ompat shemes and show that it

is possible to use these shemes for option priing, so having pratial fourth order on-

vergene up to a ertain stepsize h∗. This means that although we break the onditions

on the oe�ients of linear partial di�erential equations for high-order ompat shemes

on purpose, we still ahieve a pratial onvergene order of about four. An important

possible reason for not wanting to satisfy those onditions is the wish to zoom in a given

area of interest in the spatial domain, whih is the ase in our appliation to the Heston

model.

For high-order ompat shemes, where we use d = 1 in (4.1), the resulting numerial

sheme at point x = (xi1 , . . . , xin) ∈
◦
G

(n)

h for n ∈ N≥1 is given by

1
∑

l1,...,in=−1

Ax (xi1+l1 , . . . , xin+ln)U
k+1
i1+l1,...,in+ln

=
1
∑

l1,...,in=−1

Bx (xi1+l1 , . . . , xin+ln)U
k
i1+l1,...,in+ln + ĝ(x, τk, τk+1) +O

(

h4
)

+O
(

τ2
)

at time τ = k∆τ . We observe that there is no seond-order remainder term for these

numerial shemes and thus we ahieve a fourth-order onvergene in spae and a seond

order onvergene in time. Using ∆τ ∈ O
(

h2
)

thus leads to an overall fourth order on-

vergene in terms of h.
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We derive onditions on the oe�ients suh that a high-order ompat sheme is

appliable in an n-dimensional spatial setting. These onditions are given by

bij = 0 or (∆xj)
2 =

aj(∆xi)
2

ai

for all i, j ∈ {1, . . . , n} with i 6= j. This shows that the appliation of a high-order ompat

sheme is always possible, if the disussed partial di�erential equation does not ontain

ross-derivatives. In that setting there are even no further restritions on the stepsizes

∆xi, besides ∆xi ∈ O (h). In all other possible ases there are at least some restritions

on the stepsizes.

In Setion 3.4.1 we present the oe�ients of the high-order ompat sheme for partial

di�erential equations of the type (4.1) with n = 2, d = 1 and a1 ≡ a2 in ombination with

∆x1 = ∆x2 = h. The oe�ients for the sheme for the three-dimensional spatial setting

are given in Setion 3.4.2 for the ase a1 ≡ a2 ≡ a3 and ∆x1 = ∆x2 = ∆x3 = h.

For frozen oe�ients in time and spae as well as vanishing mixed-derivative terms,

we perform a von Neumann analysis for n = 2 and even n = 3. This analysis shows that

there are no further onditions on the oe�ients of the partial di�erential equation to

ful�l the neessary von Neumann stability ondition. For non-vanishing orrelation we

only give partial results. A possible extension of these proofs is to relax the ondition

ai ≡ aj for i, j ∈ {1, . . . , n}, whih would allow us to give analytial stability results for

the appliation of Version 3 of the essentially high-order ompat shemes to the Heston

model with zoom for vanishing orrelation between the asset and the volatility.

In Setions 3.5 and 3.7 we show that it is possible to apply high-order ompat shemes

to the multi-dimensional Blak-Sholes model and the multi-dimensional Heston model,

respetively. In the multi-dimensional Blak-Sholes model the number of stoks is iden-

tial to the number of spatial domains in the partial di�erential equation. In the multi-

dimensional Heston model, we have n = 2m spatial domains, when looking atm underlying

assets. An appliation of the ase m = 1 an be found in [DF12a℄. When there are two

underlying assets in the multi-dimensional Heston model, the resulting partial di�erential

equation has already four spatial dimensions. Due to the urse of dimensionality it is not

feasible to apply this numerially and thus the multi-dimensional Heston model keeps be-

ing a theoretial appliation.
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In the numerial experiments for the multi-dimensional Blak-Sholes model we use

the smoothing operators suggested in [KTW70℄ on the initial ondition. A shifting of the

grid in ombination with Ranaher time-stepping is not possible in this setting due to the

loation of the non-di�erentiable points after the transformation of the partial di�erential

equation. In the ase of two underlying assets we ahieved a numerial onvergene order

lose to four or even slightly above for the high-order ompat sheme in all experiments,

whether looking at European Power Puts of European Puts. When using the smoothing

operator even the onvergene plots for plain European Puts show straight lines. In the

three-dimensional ase we an see the urse of dimensionality. The omputational ost

does not allow to use many points in the grid in eah spatial diretion. For a European

Power Put with power four the onvergene orders are around 3.5, whereas the onver-

gene plots for a European Power Put with power three only show a onvergene order

around 2.7. The roughest grid onsists of only seven points per spatial diretion, though.

When deleting these points in the onvergene plots, the onvergene orders inrease to

about 3.5. We an say that the shemes meet the expetations on the onvergene order

in all ases. As in the ase of essentially high-order ompat shemes we ompared the

high-order ompat shemes with a standard seond-order �nite di�erene sheme using

the entral di�erene operator. The high-order ompat shemes onsequently outmathes

the standard sheme in all given ases.

In this thesis we generalise the derivation of high-order ompat shemes to a setting

with spae- and time-dependant oe�ients in an n-dimensional spatial domain. The o-

e�ients of suh shemes have been shown for n = 2, 3. A von Neumann stability analysis

has been performed for vanishing ross derivatives with frozen oe�ients (in time and

spae) for n = 2 and even n = 3, whih lead to no further restritions on the oe�ients.

The sheme is applied numerially to the multi-dimensional Blak-Sholes model, whih

on�rms the theoretial onvergene order of four through numerial experiments. For the

multi-dimensional Heston model it has been shown, that it is possible (with restritions)

to apply high-order ompat shemes in this setting, but due to the urse of dimensionality

a numerial disussion of this example is not performed.
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For further researh it would be interesting to onsider extensions of this sheme to

the Amerian option priing problem, where early exerise of the option is possible. In

this ase one has to solve a free boundary problem. It an be written as a linear om-

plementarity problem whih ould be disretised using the shemes given here. To retain

the high-order onvergene, one would need to ombine the high-order disretisation or

essentially high-order disretisation with a high-order resolution of the free boundary. It

would have to be analysed, if the resulting Amerian option is smooth enough at the free

boundary to ahieve a fourth-order onvergene, see [KTW70℄.

Another possible extension of the ontent of this thesis ould be to relax the onditions

on the oe�ients of the partial di�erential equation in the von Neumann stability anal-

ysis. It would be possible to relax the onditions ai ≡ aj for i, j ∈ {1, . . . , n} while still

assuming ρi,j = 0. Another possible extension of the stability analysis would be to relax

the assumption ρi,j = 0, while still demanding ai ≡ aj for i, j ∈ {1, . . . , n}.

It would also interesting to see if it would be possible to ahieve even higher onver-

gene rates (e.g. order six) and what the restritions on the oe�ients of those shemes

would be for suh shemes. It would have to be examined whether those shemes an be

implemented on the ompat stenil or if a bigger omputational stenil has to be used.

Trying to apply high-order ompat shemes to a rather general lass of non-linear

partial di�erential equations would also be a possible extension of the presented ontent.

An example of a non-linear partial di�erential equation appearing in �nane is the Blak-

Sholes equation with non-linear volatility, see e.g. [DFJ03℄,

Vτ +
1

2
σ(VSS)

2S2VSS + rSVS − rV = 0,

with a non-linearity volatility σ(VSS).
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Appendix A

Derivation of the Blak-Sholes

partial di�erential equation

In this part of the appendix we show the derivation of the partial di�erential equation of

the Blak-Sholes model of [Wil98℄. This derivation is shown as guideline for the derivation

of the multi-dimensional Blak-Sholes partial di�erential equation as well as the partial

di�erential equation of the Heston model, as those di�erential equations are derived in a

similar manner. In the Blak-Sholes model we have, reall equation (1.2),

dS = µSdt+ σSdW, (A.1)

where µ is the drift of the stok S and σ its volatility and dW is a Wiener proess. With

the Lemma of It�, see De�nition 1, we get

dV =

(

µS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+

∂V

∂t

)

dt+ σS
∂V

∂S
dW. (A.2)

If we now look at a portfolio of the struture P = V − αS, we have

dP = dV − αdS. (A.3)

Using (A.1) and (A.2) in (A.3), we get

dP = σS

(

∂V

∂S
− α

)

dW +

(

µS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+

∂V

∂t
− αµS

)

dt.
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The portfolio P will be without risk, if we hoose α = ∂V
∂S . Without arbitrage

dP = rPdt

has to follow, as well as

dP =

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)

dt.

Comparing these two equations and using P = V − ∂V
∂S S the Blak-Sholes partial di�er-

ential equation follows, so

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0.
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Appendix B

Derivation of the multi-dimensional

Heston equation

In this appendix we want to derive the partial di�erential equation resulting from the

multi-dimensional Heston model. We have

dSi(t) =µiSi(t)dt+
√

σi(t)Si(t)dW
(1)
i (t)

dσi(t) =κi (θi − σi(t)) dt+ vi
√

σi(t)dW
(2)
i (t)

(B.1)

for i = 1, . . . , n, see De�nition 11. Aording to the multidimensional Lemma of It�, see

Lemma 2, we set

Xi(t) =







Si(t) for i = 1, . . . , n

σi−n(t) for i = n+ 1, . . . , 2n,

as well as

ai(Xt, t) =







µiSi(t) for i = 1, . . . , n

κi−n (θi−n − σi−n(t)) for i = n+ 1, . . . , 2n

and

bij(Xt, t) =



















√

σi(t)Si(t) for i = j and i = 1, . . . , n

vi−n

√

σi−n(t) for i = j and i = n+ 1, . . . , 2n,

0 else.
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With

(dWt)i =







dW
(1)
i (t) for i = 1, . . . , n

dW
(2)
i−n(t) for i = n+ 1, . . . , 2n

we thus have

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

From the Lemma of It� it follows that

dU =
∂U

∂t
dt+

2n
∑

i=1

∂U

∂xi
dXi +

1

2

2n
∑

i,j=1

∂2U

∂xi∂xj
dXidXj

=
∂U

∂t
dt+

2n
∑

i=1

∂U

∂xi
dXi +

1

2

n
∑

i,j=1

∂2U

∂xi∂xj
dXidXj

+

n
∑

i=1

2n
∑

j=n+1

∂2U

∂xi∂xj
dXidXj +

1

2

2n
∑

i,j=n+1

∂2U

∂xi∂xj
dXidXj

(B.2)

with (dWt)i(dWt)j =< (dWt)i, (dWt)j > dt, dtdt = (dWt)idt = dt(dWt)i = 0. We have

∂U

∂xi
dXi =







∂U
∂Si

(

µiSidt+
√
σiSidW

(1)
i

)

i ∈ I

∂U
∂σ

î

(

κî
(

θî − σî
)

dt+ vî
√
σîdW

(2)

î

)

i ∈ J
(B.3)

with I = {1, . . . , n}, J = {n+ 1, . . . , 2n} and î = i− n. For i, j ∈ {1, . . . , n}, we have

∂2U

∂xi∂xj
dXidXj =

∂2U

∂Si∂Sj

(

µiSidt+
√
σiSidW

(1)
i

)(

µjSjdt+
√
σjSjdW

(1)
j

)

=
∂2U

∂Si∂Sj

[

µiSiµjSjdtdt+ µiSi
√
σjSjdtdW

(1)
j

+
√
σiSiµjSjdW

(1)
i dt+

√
σiSi

√
σjSjdW

(1)
i dW

(1)
j

]

=λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj
dt.

(B.4)
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For i ∈ {1, . . . , n}, j̃ ∈ {n+ 1, . . . , 2n} and j = j̃ − n, there is

∂2U

∂xi∂xj̃
dXidXj̃ =

∂2U

∂Si∂σj

(

µiSidt+
√
σiSidW

(1)
i

)(

κj (θj − σj) dt+ vj
√
σjdW

(2)
j

)

=
∂2U

∂Si∂σj

[

µiSiκj (θj − σj) dtdt+ µiSivj
√
σjdtdW

(2)
j

+
√
σiSiκj (θj − σj) dW

(1)
i dt+

√
σiSivj

√
σjdW

(1)
i dW

(2)
j

]

=ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
dt

(B.5)

and �nally for ĩ, j̃ ∈ {n+ 1, . . . , 2n} with i = ĩ− n and j = j̃ − n, we an obtain

∂2U

∂xĩ∂xj̃
dXĩdXj̃ =

∂2U

∂σi∂σj

(

κi (θi − σi) dt+ vi
√
σidW

(2)
i

)(

κj (θj − σj) dt+ vj
√
σjdW

(2)
j

)

=
∂2U

∂σi∂σj

[

κi (θi − σi) κj (θj − σj) dtdt+ κi (θi − σi) vj
√
σjdtdW

(2)
j

+vi
√
σiκj (θj − σj) dW

(2)
i dt+ vi

√
σivj

√
σjdW

(2)
i dW

(2)
j

]

=ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
dt.

Using this, as well as (B.3), (B.4) and (B.5) in (B.2), gives

dU =





∂U

∂t
+

n
∑

i=1

µiSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt

+

n
∑

i=1

√
σiSi

∂U

∂Si
dW

(1)
i +

n
∑

i=1

vi
√
σi

∂U

∂σi
dW

(2)
i .

We now onsider a portfolio P = U −
n
∑

i=1
αiSi. For dP we thus get

dP =





∂U

∂t
+

n
∑

i=1

µiSi

(

∂U

∂Si
− αi

)

+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+

n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt

+
n
∑

i=1

√
σiSi

(

∂U

∂Si
− αi

)

dW
(1)
i +

n
∑

i=1

vi
√
σi

∂U

∂σi
dW

(2)
i ,
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where the previous equation and the desription of dSi in (B.1) for i = 1, . . . , n were used.

We see that using αi =
∂U
∂Si

for i = 1, . . . , n eliminates the portfolios dependeny of the

Wiener Proesses dW
(1)
i . This way dP is still dependant on dW

(1)
i . If we take the expeted

value of dP we get E

[

dW
(2)
i

]

= 0 for i = 1, . . . , n,

E [dP ] =





∂U

∂t
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj



 dt.

(B.6)

as well as

E [dP ] = [rP + Λ] dt =

[

rU −
n
∑

i=1

rSi
∂U

∂Si
+ Λ

]

dt, (B.7)

where Λ determines the market prie of risk aused by the volatility. Λ is zero in a risk-

neutral market and bigger than zero in a risk-averse market. In the unlikely event of a

risk-loving market, Λ would be less than zero. With (B.6) and (B.7) we have the general

multi-dimensional Heston partial di�erential equation

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU − Λ

when dropping the dt. Let us now take a loser look at the market prie of risk. For a

risk-neutral market we have Λ = 0, as mentioned above. In a risk-averse market Λ ould

be a linear volatility-prie-funtion in the sense of

Λ =

n
∑

i=1

αiσi
∂U

∂σi

with a σj-independent αi for all i, j = 1, . . . , n, where we an use

κi (θi − σi)− αiσi =(κi + αi)

(

κiθi
κi + αi

− σi

)

= κ̃i

(

θ̃i − σi

)

.
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Dropping the tilde-signs of κ̃i and θ̃i leads to the risk neutral/risk-adjusted multi-

dimensional Heston partial di�erential equation

0 =
∂U

∂t
+

n
∑

i=1

rSi
∂U

∂Si
+

n
∑

i=1

κi (θi − σi)
∂U

∂σi
+

1

2

n
∑

i,j=1

λij
√
σi
√
σjSiSj

∂2U

∂Si∂Sj

+
n
∑

i,j=1

ρij
√
σi
√
σjvjSi

∂2U

∂Si∂σj
+

1

2

n
∑

i,j=1

ηijvivj
√
σi
√
σj

∂2U

∂σi∂σj
− rU.
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Appendix C

Coe�ients for Version 2 and

Version 4

In this setion we give the oe�ients of the semi-disrete shemes for Version 2 and Version

4. We do not inlude the oe�ients for Version 1, as this version always resulted in a

seond-order numerial onvergene error in the numerial study.

C.1 Coe�ients Appliation EHOC sheme Version 2

When disretising equation (2.25) with the entral di�erene operator in x- and in y-

diretion, we get the following oe�ients for the Version 2 sheme

K̂i−1,j±1 =
vyϕ2

xϕxx

12h
± yϕ3

xκ

12h
± ϕ4

xκ θ r

12v2y
− vyϕx

12h2
− vyϕxx

24h
± yϕ4

xκ

24
+

ϕ2
xr

12h
± ϕxxκϕ

2
xθ

24v

− vyϕ2
x

24h
± ϕ4

xr

24y
∓ ϕ2

xr

12y
∓ yϕxxκϕ

2
x

24
∓ κϕ3

xθ

12hv
∓ ϕ4

xκ θ

24v
∓ ϕ4

xκ r

12v

+ ρ

[

∓ϕ2
x

( vy
2 − r

)

ϕxx

24
± vyϕxϕxxx

48
∓ vϕ2

x

12y
∓ vyϕ2

xx

48
± vϕ4

x

24y
∓ ϕ4

xκ

24
± vyϕ2

x

4h2

± ϕ3
x

( vy
2 − r

)

6h
± vyϕxϕxx

12h
+

ϕ4
xκ (θ − vy)

6hv

]

+ ρ2
[

− vyϕ3
x

6h2
∓ vϕ2

xϕxx

8
− vyϕ2

xϕxx

12h

]

,

K̂i+1,j±1 =− K̂i−1,j±1 ±
yϕ3

xκ

6h
− vyϕx

6h2
∓ κϕ3

xθ

6hv
± ρϕ3

x

(vy
2 − r

)

3h
± ρvyϕxϕxx

6h
− ρ2vyϕ3

x

3h2
,

K̂i,j±1 =− vyϕ3
x

2h2
± yϕ3

xκ

3h
∓ κϕ3

xθ

3hv
+

vϕ3
x

6y
∓ yϕxhϕ

2
xx
κ

8
∓ yϕ3

xhκϕxx

8
− ϕ5

xκ θ

4vy
− ϕ5

xκ
2θ2

6v3y

− vyϕ2
xϕxxx

8
∓ hϕ3

xκ

6y
∓ hϕ3

xκϕxx θ r

4v2y
− ϕ3

xϕxxr

4
− vϕ5

x

12y
− yϕ5

xκ
2

6v
∓ ϕ5

xhκ
2

12v

+
vyϕxϕxx

2

8
+

vyϕ3
xϕxx

8
± ϕ5

xhκ

12y
+

ϕ5
xκ

2θ

3v2
± hyϕ2

xκϕxxx

8
+

κϕ3
xθ

3vy
± hϕ3

xκϕxx θ

8v
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± hϕ3
xκϕxx r

4v
± ϕxhϕ

2
xx
κ θ

8v
± ϕ5

xhκ
2θ

12v2y
−∓ hϕ2

xκϕxxxθ

8v
+

vyϕx

6h2
+

ϕ5
xκ

12

ρ

[

vϕ3
xϕxx

4
± hϕ3

xκ (θ − vy)ϕxx

4vy
∓ ϕ3

x

(vy
2 − r

)

3h
∓ vyϕxϕxx

6h

]

+ ρ2
vyϕ3

x

3h2
,

K̂i±1,j =∓ hϕxxv

12y
∓ hϕxϕxxxr

24
∓ hϕ2

xv

12y
± vyϕ2

x

6h
± vyϕ2

xϕxx

6h
+

ϕ3
xr

6
± hϕ2

xx
r

6
+

vyϕxxx

24

− vϕ3
x

12y
± hϕxxvϕ

2
x

24y
∓ hvyϕ2

xϕxx

24
− vyϕ3

x

24
± hϕ2

xκϕxx θ

24vy
+

vyϕxϕxx

24
± hvyϕxxxx

48

∓ hvyϕ2
xx

12
+

vϕx

6y
− ϕxϕxxr

12
+

κϕ3
x

12
∓ hϕ4

xκ

24
± vyϕxx

6h
± ϕ4

xhv

24y
∓ hϕ2

xκϕxx

24

± hϕ2
xϕxx r

6
− ϕ3

xr
2

6vy
± hϕ4

xκ θ

24vy
∓ ϕ2

xhϕxx r
2

6vy
− κϕ3

xθ

12vy
± hvyϕxϕxxx

48
∓ ϕ2

xr

3h

∓ hvyϕxxϕxxx

16ϕx
− vyϕx

3h2
+ ρ2

[

vyϕ3
x

3h2
∓ vyϕ2

xϕxx

6h

]

+ ρ

[

vϕ3
x

12
+

vϕxϕxx

4

∓hϕxxvϕ
2
x

24
∓ hvϕ2

xx

8
∓ hϕ2

x

( vy
2 − r

)

ϕxx

6y
− ϕ3

x

( vy
2 − r

)

6y
± ϕ4

xκ (θ − vy)

3hv

]

and

K̂i,j =− κϕ3
x

6
+

vyϕ2
xϕxxx

4
− vyϕxϕ

2
xx

4
− ϕ5

xκ

6
+

vϕ5
x

6y
− vϕ3

x

6y
− vyϕxxx

12
+

2vyϕx

3h2

+
vyϕ3

x

h2
− 2ϕ5

xκ
2θ

3v2
+

ϕ3
xϕxxr

2
+

ϕxϕxx r

6
+

ϕ5
xκ θ

2vy
+

yϕ5
xκ

2

3v
− ϕ3

xr

3
− vyϕ3

xϕxx

4

− vyϕxϕxx

12
− κϕ3

xθ

2vy
− vϕx

3y
+

ϕ5
xκ

2θ2

3v3y
+

vyϕ3
x

12
+

ϕ3
xr

2

3vy

+ ρ [−vϕx
3ϕxx

2
− vϕx

3

6
− vϕxϕxx

2
+

ϕx
3
( vy

2 − r
)

3y
]− ρ2

2vyϕx
3

3h2
,

where K̂i,j is the oe�ient of Ui,j(τ). De�ning M̂i,j as the oe�ient of ∂τUi,j(τ), we get

M̂i+1,j±1 =M̂i−1,j∓1 = ±ρϕ4
x

24
,

M̂i,j±1 =− ϕ5
x

12
+

ϕ3
x

6
∓ ϕ3

xh

6y
± ϕ5

xh

12y
± ϕ5

xhκ (θ − vy)

12v2y
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ϕ4

xhρ

12y
and

M̂i,j =− ϕ3
xϕxxh

2
( vy

2 − r
)

2vy
− ϕxϕ

2
xx
h2

4
+

ϕ5
x

6
+

ϕ3
x

2
+

ϕ2
xh

2ϕxxx

4
− ρϕ3

xϕxxh
2

2y
.

Using these oe�ients for the spatial interior in ombination with the treatment of the

boundary onditions in Setion 2.5.4 yields the Version 2 sheme.
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C.2 Coe�ients Appliation EHOC sheme Version 4

In this part of the appendix we give the oe�ients of the Version 4 sheme. When

disretising equation (2.25) with the entral di�erene operator in x- and in y-diretion,

we get

K̂i±1,j =
vyϕ3

x

12h2
∓ hϕ2

xx

( vy
2 − r

)

6
∓ ϕ4

x

( vy
2 − r

)

12h
± 5

( vy
2 − r

)

ϕ2
x

12h
± yhvϕxxxx

48
∓ hϕxxv

24y

− ϕxκ (θ − vy)

12vy
− 5vyϕx

12h2
± 5vyϕxx

24h
+

vϕx

12y
∓ ϕ2

xhv

24y
− ϕ3

x

( vy
2 − r

)2

6vy
+

vyϕxxx

24

± ϕxh
( vy

2 − r
)

ϕxxx

24
+

(vy
2 − r

)

ϕxϕxx

12
∓ vyhϕxxϕxxx

16ϕx
± hκ (θ − vy)ϕxx

24vy

± vyϕ2
xϕxx

8h
∓ ϕ2

xh
( vy

2 − r
)2

ϕxx

6vy
± ϕ2

xhκ (θ − vy)

24vy

+ ρ2
[

vyϕ3
x

3h2
∓ vyϕ2

xϕxx

6h

]

+ ρ

[

vϕxϕxx

4
± ϕ4

xκ (θ − vy)

6hv
− ϕ3

x

( vy
2 − r

)

6y

+
vϕ3

x

12
∓ ϕ2

xh
( vy

2 − r
)

ϕxx

6y
∓ hϕxxvϕ

2
x

24
∓ hvϕ2

xx

8
± ϕ2

xκ (θ − vy)

6hv

]

,

K̂i,j±1 =
ϕ3
xϕxx

( vy
2 − r

)

4
± ϕ3

xh
( vy

2 − r
)

κ (θ − vy)ϕxx

4v2y
∓ ϕ2

xhκ (θ − vy)ϕxxx

8v
− 5vyϕ3

x

12h2

− ϕ3
xκ

2 (θ − vy)2

6yv3
+

vyϕx

12h2
∓ ϕ3

xhκ

12y
± ϕ3

xhκ
2 (θ − vy)

12v2y
∓ 5κϕ3

x (θ − vy)

12vh
+

vyϕxϕ
2
xx

8

+
κϕ3

x (θ − vy)

12vy
+

κϕ3
x

6
± ϕxκ (θ − vy)

12vh
± ϕxhϕ

2
xx
κ (θ − vy)

8v
− vyϕ2

xϕxxx

8
+

ϕ3
xv

12y

+ ρ2
vyϕ3

x

3h2
+ ρ

[

vϕ3
xϕxx

4
± hϕ3

xκ (θ − vy)ϕxx

4vy
∓ ϕ3

x

( vy
2 − r

)

3h
∓ vyϕxϕxx

6h

]

,

K̂i+1,j±1 =
ϕ4
x

( vy
2 − r

)

24h
− vyϕ2

xϕxx

16h
+

( vy
2 − r

)

ϕ2
x

24h
+

vyϕxx

48h
− vyϕx

24h2
− vyϕ3

x

24h2
∓ ϕxκ (θ − vy)

24vh

∓ κϕ3
x (θ − vy)

24vh
± κ (θ − vy)

(vy
2 − r

)

ϕ2
x

24v2y
± κ (θ − vy)ϕxx

48v
∓
(vy

2 − r
)

ϕ2
x

24y
± vϕ2

x

48

± ϕ4
xκ (θ − vy)

( vy
2 − r

)

24v2y
∓ κ (θ − vy)ϕ2

xϕxx

16v

+ ρ2
[

±vϕ2
xϕxx

8
+

vyϕ2
xϕxx

12h
− vyϕ3

x

6h2

]

+ ρ

[

∓ vyϕ2
x

4h2
± vϕ2

x

24y
± ϕ3

x

(vy
2 − r

)

6h

± ϕ4
xκ (θ − vy)

24vy
± vyϕ2

xx

48
± ϕ4

xκ

24
− ϕ2

xκ (θ − vy)

12hv
∓ ϕ2

xκ (θ − vy)

24vy
∓ vyϕxϕxxx

48

± vyϕxϕxx

12h
± ϕ2

x

( vy
2 − r

)

ϕxx

24
− ϕ4

xκ (θ − vy)

12hv

]

,

K̂i−1,j±1 =− K̂i+1,j±1 −
vyϕx

12h2
− vyϕ3

x

12h2
∓ ϕxκ (θ − vy)

12vh
∓ κϕ3

x (θ − vy)

12vh

− ρ2
vyϕ3

x

3h2
± ρ

[

ϕ3
x

(vy
2 − r

)

3h
± vyϕxϕxx

6h

]
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and

K̂i,j =
vyϕ2

xϕxxx

4
− ϕ3

xϕxx

( vy
2 − r

)

2
− vyϕxϕ

2
xx

4
− ϕ3

xv

6y
− ϕ3

xκ (θ − vy)

6vy
− κϕ3

x

3
− vϕx

6y

+
ϕ3
xκ

2 (θ − vy)2

3yv3
+

5vyϕx

6h2
+

5vyϕ3
x

6h2
−
( vy

2 − r
)

ϕxϕxx

6
− vyϕxxx

12
+

ϕ3
x

( vy
2 − r

)2

3vy

+
ϕxκ (θ − vy)

6vy
− ρ2

2vyϕ3
x

3h2
+ ρ

[

−vϕxϕxx

2
+

ϕ3
x (1/2 vy − r)

3y
− vϕ3

x

6
− vϕ3

xϕxx

2

]

,

where K̂i,j is the oe�ient of Ui,j(τ). De�ning M̂i,j as the oe�ient of ∂τUi,j(τ), we get

M̂i+1,j±1 =M̂i−1,j∓1 = ± ρ
ϕ4
x

24
,

M̂i±1,j =
ϕ3
x

12
∓ ϕ4

xh
( vy

2 − r
)

12vy
± ϕ2

xhϕxx

8
∓ ρ

ϕ4
xh

12y
,

M̂i,j±1 =
ϕ3
x

12
± ϕ3

xhκ (θ − vy)

12v2y
∓ ϕ3

xh

12y
and

M̂i,j =
2ϕ3

x

3
− ϕ3

xϕxxh
2
(vy

2 − r
)

2vy
− ϕxϕ

2
xx
h2

4
+

ϕ2
xh

2ϕxxx

4
− ρ

ϕ3
xϕxxh

2

2y
.

Using these oe�ients for the spatial interior in ombination with the treatment of the

boundary onditions in Setion 2.5.4 yields the Version 4 sheme.
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Appendix D

General oe�ients

three-dimensional HOC sheme

In this part of the appendix we present all the oe�ients of K̂k,l,m of Uk,l,m for k ∈
{i1−1, i1, i1+1}, l ∈ {i2−1, i2, i2+1} and m ∈ {i3−1, i3, i3+1} of the high-order ompat
sheme in the three-dimensional ase. The di�erential equation (3.1) is disretised at the

point (xi1 , xi2 , xi3) ∈
◦
G

(3)

h aording to Setion 3.4.2 and we thus have

K̂i1,i2,i3 =
b23[a]x2c3

6a2
+

b13[a]x1c3
6a2

− [c3]x3

3
− c21

6a
− c23

6a
− [a]x1x1

2
− [a]x2x2

2
− [a]x3x3

2

+
b12[a]x2c1

6a2
+

b13[a]x3 [a]x1

a2
+

b23[a]x3 [a]x2

a2
+

b23[a]x3c2
6a2

+
b12[a]x1 [a]x2

a2

− b13[c3]x1

6a
− c1[a]x1

6a
+

b223
3ah2

− b12[a]x1x2

2a
− c2[a]x2

6a
+

b213
3ah2

− c22
6a

− c3[a]x3

6a
− b13[a]x1x2

2a
− b23[c2]x3

6a
− b12[c2]x1

6a
− b23[a]x2x3

2a
− b13[c1]x3

6a
(D.1)

+
b212
3ah2

+
b13[a]x3c1

6a2
− b12[c1]x2

6a
+

[a]2x1

a
+

[a]2x3

a
+

[a]2x2

a
− b23[c3]x2

6a

− 4a

h2
+

b12[a]x1c2
6a2

− [c1]x1

3
− [c2]x2

3
,

K̂i1±1,i2−1,i3 =
b13[a]x3b12
24a2h

∓ b23[a]x3b12
24a2h

∓ [b12]x1x1

48
∓ [b12]x2x2

48
∓ [b12]x3x3

48
− c2

12h

± b12c2
12ah

± b12[a]x1c1
48a2

± b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
± b23[a]x2 [b12]x3

48a2

+
b12[a]x1

12ah
∓ b12[a]x2

12ah
± b12[a]x2c2

48a2
± b23[a]x3c1

48a2
± b23[a]x3 [b12]x2

48a2

− b12[b12]x2

24ah
± b13[a]x3 [b12]x1

48a2
± b13[a]x3c2

48a2
± b12[b12]x1

24ah
± b23[b12]x3

24ah

± [b12]x2

12h
− b13[b12]x3

24ah
± b13b23

12ah2
+

[a]x2b
2
12

24a2h
∓ b12

6h2
+

a

6h2
− [b12]x1

12h
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∓ b13[c2]x3

48a
∓ b12[b12]x1x2

48a
∓ b23[c1]x3

48a
∓ b12[c1]x1

48a
± [a]x1c2

24a
± c1

12h

(D.2)

∓ b13[b12]x1x2

48a
∓ c1[b12]x1

48a
± [a]x3 [b12]x3

24a
∓ c3[b12]x3

48a
± [a]x2c1

24a

∓ c2[b12]x2

48a
± b12[a]x2 [b12]x1

48a2
± b13[a]x1 [b12]x3

48a2
∓ b12[c2]x2

48a
− b12c1

12ah

+
b212

12ah2
∓ b23[b12]x2x3

48a
± [a]x1 [b12]x1

24a
± [a]x2 [b12]x2

24a
∓ c1c2

24a

∓ [c1]x2

24
∓ [c2]x1

24
,

K̂i1±1,i2,i3 =± b23[a]x3b12
12a2h

± b23[a]x2b13
12a2h

∓ hb12[a]x1 [c1]x2

24a2
∓ hb23[a]x2 [c1]x3

24a2
+

c21
12a

∓ hb13[a]x3 [c1]x1

24a2
∓ hb23[a]x3 [c1]x2

24a2
± h[c1]x3x3

24
± h[c1]x2x2

24
± h[c1]x1x1

24

± hc1[c1]x1

24a
+

[a]x1x1

12
+

[a]x3x3

12
− b13[a]x3c1

12a2
∓ b13[b13]x1

12ah
± hc3[c1]x3

24a

∓ hb13[a]x1 [c1]x3

24a2
± hc2[c1]x2

24a
± hb13[c1]x1x2

24a
∓ h[a]x3 [c1]x3

12a
∓ [b12]x2

6h

∓ hb12[a]x2 [c1]x1

24a2
∓ b23[b13]x2

12ah
± b213[a]x1

12a2h
+

b13[c1]x3

12a
∓ c3b13

6ah
+

[a]x2x2

12

± hb23[c1]x2x3

24a
± hb12[c1]x1x2

24a
± b13[a]x3

6ah
− b12[a]x2c1

12a2
∓ h[a]x1 [c1]x1

12a
(D.3)

∓ b12c2
6ah

± b212[a]x1

12a2h
± b12[a]x2

6ah
∓ b12[b12]x1

12ah
∓ b23[b12]x3

12ah
± c1

6h
+

a

3h2

− b13[a]x3 [a]x1

6a2
− b23[a]x3 [a]x2

6a2
∓ [b13]x3

6h
− b12[a]x1 [a]x2

6a2
− c1[a]x1

12a

− b213
6ah2

− b212
6ah2

+
c3[a]x3

12a
+

b13[a]x1x2

12a
+

b23[a]x2x3

12a
− [a]2x3

6a
− [a]2x1

6a

+
c2[a]x2

12a
+

b12[a]x1x2

12a
+

[c1]x1

6
+

b12[c1]x2

12a
− [a]2x2

6a
∓ h[a]x2 [c1]x2

12a
,

K̂i1,i2±1,i3 =± b13[a]x3b12
12a2h

∓ hb13[a]x1 [c2]x3

24a2
∓ hb12[a]x1 [c2]x2

24a2
+

[a]x3x3

12
+

[c2]x2

6

± b13[a]x1b23
12a2h

∓ hb13[a]x3 [c2]x1

24a2
− b13[a]x3 [a]x1

6a2
− b12[a]x1 [a]x2

6a2
− b223

6ah2

± c2
6h

∓ hb23[a]x3 [c2]x2

24a2
∓ hb12[a]x2 [c2]x1

24a2
∓ hb23[a]x2 [c2]x3

24a2
+

[a]x1x1

12

∓ h[a]x1 [c2]x1

12a
± b12[a]x1

6ah
∓ b12c1

6ah
∓ b12[b12]x2

12ah
∓ b13[b12]x3

12ah
± [a]x2b

2
12

12a2h

∓ [b12]x1

6h
∓ b23c3

6ah
± hb12[c2]x1x2

24a
± hb23[c2]x2x3

24a
± hb13[c2]x1x2

24a
+

a

3h2

± hc2[c2]x2

24a
± b23[a]x3

6ah
− b23[a]x3c2

12a2
∓ b13[b23]x1

12ah
∓ b23[b23]x2

12ah
+

c22
12a

(D.4)
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± hc3[c2]x3

24a
∓ h[a]x3 [c2]x3

12a
± hc1[c2]x1

24a
± [a]x2b

2
23

12a2h
+

[a]x2x2

12
− b212

6ah2

− b12[a]x1c2
12a2

+
c1[a]x1

12a
+

b12[a]x1x2

12a
− c2[a]x2

12a
± h[c2]x1x1

24
+

c3[a]x3

12a

+
b13[a]x1x2

12a
+

b23[c2]x3

12a
+

b12[c2]x1

12a
± h[c2]x2x2

24
− [a]2x1

6a
± h[c2]x3x3

24

∓ [b23]x3

6h
+

b23[a]x2x3

12a
− [a]2x3

6a
− [a]2x2

6a
− b23[a]x3 [a]x2

6a2
∓ h[a]x2 [c2]x2

12a
,

K̂i1±1,i2+1,i3 =− b13[a]x3b12
24a2h

± [b12]x1x1

48
± [b12]x2x2

48
± [b12]x3x3

48
+

b12c1
12ah

− b12[a]x1

12ah

± b12c2
12ah

∓ b12[a]x1c1
48a2

∓ b12[a]x1 [b12]x2

48a2
∓ b212[a]x1

24a2h
∓ b23[a]x2 [b12]x3

48a2

∓ b23[a]x3b12
24a2h

∓ b12[a]x2 [b12]x1

48a2
∓ b12[a]x2c2

48a2
+

b13[b12]x3

24ah
∓ b12[a]x2

12ah

+
b12[b12]x2

24ah
∓ b13[a]x3 [b12]x1

48a2
∓ b13[a]x3c2

48a2
± b12[b12]x1

24ah
± b23[b12]x3

24ah

∓ b13[a]x1 [b12]x3

48a2
∓ b23[a]x3 [b12]x2

48a2
∓ b23[a]x3c1

48a2
∓ b13b23

12ah2
− [a]x2b

2
12

24a2h

± b23[b12]x2x3

48a
+

c2
12h

± b12
6h2

± c1
12h

∓ [a]x1c2
24a

+
[b12]x1

12h
± [b12]x2

12h
(D.5)

+
a

6h2
± b13[c2]x3

48a
± b12[b12]x1x2

48a
± b23[c1]x3

48a
± b12[c1]x1

48a
+

b212
12ah2

± b13[b12]x1x2

48a
± c1[b12]x1

48a
∓ [a]x3 [b12]x3

24a
± c3[b12]x3

48a
± b12[c2]x2

48a

∓ [a]x2c1
24a

∓ [a]x1 [b12]x1

24a
∓ [a]x2 [b12]x2

24a
± c1c2

24a
± [c1]x2

24
± [c2]x1

24

± c2[b12]x2

48a
,

K̂i1±1,i2−1,i3−1 =± [b13]x2

48h
∓ b13

24h2
± [b12]x3

48h
± [b23]x1

48h
± b12[b13]x1

96ah
± b13[b12]x1

96ah

± b23[b12]x2

96ah
± c3b12

48ah
± b13c2

48ah
∓ b13b23

24ah2
± b23[b13]x3

96ah
+

b12b13
24ah2

∓ b12
24h2

∓ [a]x2b13
48ah

∓ [a]x3b12
48ah

∓ b13[a]x1b12
48a2h

∓ [a]x1b23
48ah

± b23c1
48ah

(D.6)

∓ b23b12
24ah2

∓ b13[a]x3b23
48a2h

∓ b12[a]x2b23
48a2h

+
b23
24h2

± b13[b23]x3

96ah

± b12[b23]x2

96ah
,

K̂i1±1,i2+1,i3+1 =± [b13]x2

48h
± b13

24h2
± [b12]x3

48h
± [b23]x1

48h
± b12[b13]x1

96ah
± b13[b12]x1

96ah

± b23b12
24ah2

∓ b13[a]x3b23
48a2h

∓ b12[a]x2b23
48a2h

+
b23
24h2

± b13[b23]x3

96ah
± b12[b23]x2

96ah

± b12
24h2

∓ [a]x2b13
48ah

∓ [a]x3b12
48ah

∓ b13[a]x1b12
48a2h

∓ [a]x1b23
48ah

± b23c1
48ah

(D.7)
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± b23[b12]x2

96ah
± c3b12

48ah
± b13c2

48ah
± b13b23

24ah2
+

b12b13
24ah2

± b23[b13]x3

96ah
,

K̂i1±1,i2,i3−1 =∓ [c3]x1

24
∓ b13

6h2
− [b13]x1

12h
∓ b23[a]x2b13

24a2h
∓ [b13]x1x1

48
− c3

12h
± [b13]x3

12h

∓ [b13]x3x3

48
+

a

6h2
± [a]x3 [b13]x3

24a
∓ b12[c3]x2

48a
± [a]x1 [b13]x1

24a
∓ c1c3

24a

∓ b13[c3]x3

48a
∓ b13[c1]x1

48a
∓ c1[b13]x1

48a
∓ b23[b13]x2x3

48a
± [a]x2 [b13]x2

24a

∓ c3[b13]x3

48a
± b13[b13]x1

24ah
± b23[b13]x2

24ah
∓ b213[a]x1

24a2h
± c3b13

12ah
∓ b13[a]x3

12ah

+
b12[a]x2b13
24a2h

± c1
12h

+
b213

12ah2
∓ b13[b13]x1x2

48a
∓ b23[c1]x2

48a
± b23b12

12ah2

± [a]x1c3
24a

∓ [b13]x2x2

48
∓ c2[b13]x2

48a
± [a]x3c1

24a
± b23[a]x2c1

48a2
+

[a]x3b
2
13

24a2h

(D.8)

± b13[a]x1c1
48a2

± b12[a]x1 [b13]x2

48a2
± b13[a]x1 [b13]x3

48a2
± b23[a]x3 [b13]x2

48a2

± b23[a]x2 [b13]x3

48a2
∓ [c1]x3

24
± b12[a]x2 [b13]x1

48a2
+

b13[a]x1

12ah
− c1b13

12ah

± b12[a]x2c3
48a2

− b13[b13]x3

24ah
± b13[a]x3c3

48a2
− b12[b13]x2

24ah
∓ b12[b13]x1x2

48a

± b13[a]x3 [b13]x1

48a2
,

K̂i1,i2±1,i3−1 =∓ [c3]x2

24
∓ b23

6h2
− [b23]x2

12h
− c3

12h
∓ [b23]x1x1

48
∓ [b23]x2x2

48
∓ [a]x2b

2
23

24a2h

± [a]x3 [b23]x3

24a
∓ b13[a]x1b23

24a2h
∓ [b23]x3x3

48
+

b12[a]x1b23
24a2h

± b23[b23]x2

24ah

∓ b12[c3]x1

48a
∓ b23[c2]x2

48a
∓ b23[c3]x3

48a
± [a]x2c3

24a
± [a]x1 [b23]x1

24a
∓ c2c3

24a

∓ c3[b23]x3

48a
∓ b12[b23]x1x2

48a
∓ b13[c2]x1

48a
∓ b13[b23]x1x2

48a
± [a]x2 [b23]x2

24a

± c2
12h

+
a

6h2
± b23c3

12ah
∓ b23[a]x3

12ah
± b13[b23]x1

24ah
+

b223
12ah2

± [a]x3c2
24a

∓ b23[b23]x2x3

48a
∓ c2[b23]x2

48a
∓ [c2]x3

24
± b12b13

12ah2
− c2b23

12ah
± b23[a]x3c3

48a2
(D.9)

± b23[a]x3 [b23]x2

48a2
± b12[a]x1c3

48a2
± b13[a]x1 [b23]x3

48a2
± b23[a]x2 [b23]x3

48a2

± b12[a]x2 [b23]x1

48a2
+

b23[a]x2

12ah
± b12[a]x1 [b23]x2

48a2
± b13[a]x3 [b23]x1

48a2

± b23[a]x2c2
48a2

± b13[a]x1c2
48a2

− b23[b23]x3

24ah
− b12[b23]x1

24ah
+

b223[a]x3

24a2h

± [b23]x3

12h
∓ c1[b23]x1

48a
,
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K̂i1±1,i2+1,i3−1 =± [a]x2b13
48ah

∓ [b13]x2

48h
± b12

24h2
∓ c3b12

48ah
± b13b23

24ah2
− b23

24h2
∓ [b12]x3

48h

∓ b23b12
24ah2

± b13[a]x3b23
48a2h

± b12[a]x2b23
48a2h

± [a]x1b23
48ah

∓ b23c1
48ah

∓ b13c2
48ah

± [a]x3b12
48ah

∓ b13
24h2

− b12b13
24ah2

∓ [b23]x1

48h
∓ b12[b13]x1

96ah
∓ b13[b12]x1

96ah

(D.10)

∓ b23[b12]x2

96ah
∓ b12[b23]x2

96ah
± b13[a]x1b12

48a2h
∓ b13[b23]x3

96ah
∓ b23[b13]x3

96ah
,

K̂i1±1,i2−1,i3+1 =∓ [b13]x2

48h
∓ [b12]x3

48h
± [a]x3b12

48ah
∓ b12[b13]x1

96ah
∓ b13[b12]x1

96ah
− b12b13

24ah2

− b23
24h2

∓ b12
24h2

± [a]x2b13
48ah

± b13[a]x1b12
48a2h

± [a]x1b23
48ah

∓ b12[b23]x2

96ah

± b23b12
24ah2

± b13[a]x3b23
48a2h

± b12[a]x2b23
48a2h

∓ b13[b23]x3

96ah
∓ b23[b13]x3

96ah
(D.11)

∓ b23c1
48ah

∓ [b23]x1

48h
± b13

24h2
∓ b23[b12]x2

96ah
∓ c3b12

48ah
∓ b13c2

48ah
∓ b13b23

24ah2
,

K̂i1±1,i2,i3+1 =± [c3]x1

24
+

a

6h2
± b13

6h2
+

c3
12h

−∓ b23[a]x2b13
24a2h

± [b13]x1x1

48
± [b13]x3

12h

± [b13]x2x2

48
∓ [a]x3 [b13]x3

24a
± b12[c3]x2

48a
± b13[c3]x3

48a
∓ [a]x1 [b13]x1

24a

∓ [a]x3c1
24a

± b13[c1]x1

48a
± c1[b13]x1

48a
± b23[b13]x2x3

48a
∓ [a]x1c3

24a
± c1c3

24a

± c3[b13]x3

48a
± b12[b13]x1x2

48a
± b13[b13]x1

24ah
± b23[b13]x2

24ah
∓ b213[a]x1

24a2h

+
[b13]x1

12h
± c2[b13]x2

48a
± [b13]x3x3

48
∓ [a]x2 [b13]x2

24a
± c3b13

12ah
∓ b13[a]x3

12ah

∓ b13[a]x1c1
48a2

∓ b12[a]x1 [b13]x2

48a2
∓ b13[a]x1 [b13]x3

48a2
∓ b23[a]x3 [b13]x2

48a2
(D.12)

− b12[a]x2b13
24a2h

± c1
12h

+
b213

12ah2
± b13[b13]x1x2

48a
± b23[c1]x2

48a
∓ b23b12

12ah2

∓ b13[a]x3 [b13]x1

48a2
∓ b23[a]x2 [b13]x3

48a2
∓ b12[a]x2 [b13]x1

48a2
∓ b12[a]x2c3

48a2

± [c1]x3

24
− b13[a]x1

12ah
+

b13[b13]x3

24ah
∓ b13[a]x3c3

48a2
+

b12[b13]x2

24ah
+

c1b13
12ah

∓ b23[a]x2c1
48a2

− [a]x3b
2
13

24a2h
,

K̂i1,i2,i3±1 =− b23[a]x2c3
12a2

− b13[a]x1c3
12a2

∓ [b23]x2

6h
∓ [b13]x1

6h
± h[c3]x1x1

24
± h[c3]x3x3

24

± h[c3]x2x2

24
+

c23
12a

+
[a]x1x1

12
+

[a]x2x2

12
+

[a]x3x3

12
± b12[a]x1b23

12a2h
± c3

6h

+
[c3]x3

6
∓ hb13[a]x1 [c3]x3

24a2
− b13[a]x3 [a]x1

6a2
− b12[a]x1 [a]x2

6a2
+

c1[a]x1

12a

± b12[a]x2b13
12a2h

∓ hb12[a]x1 [c3]x2

24a2
∓ hb23[a]x2 [c3]x3

24a2
∓ hb23[a]x3 [c3]x2

24a2
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∓ hb13[a]x3 [c3]x1

24a2
∓ hb12[a]x2 [c3]x1

24a2
+

a

3h2
− b23[a]x3 [a]x2

6a2
+

b13[c3]x1

12a

+
b12[a]x1x2

12a
+

c2[a]x2

12a
− b213

6ah2
− c3[a]x3

12a
+

b13[a]x1x2

12a
± hc2[c3]x2

24a
(D.13)

+
b23[a]x2x3

12a
+

b23[c3]x2

12a
∓ c2b23

6ah
± b23[a]x2

6ah
∓ b23[b23]x3

12ah
∓ b12[b23]x1

12ah

± [a]x3b
2
13

12a2h
± b13[a]x1

6ah
∓ b13[b13]x3

12ah
∓ b12[b13]x2

12ah
∓ c1b13

6ah
± hb13[c3]x1x2

24a

± hc3[c3]x3

24a
± hb23[c3]x2x3

24a
∓ h[a]x1 [c3]x1

12a
∓ h[a]x2 [c3]x2

12a
∓ h[a]x3 [c3]x3

12a

± hb12[c3]x1x2

24a
− [a]2x1

6a
− [a]2x3

6a
− [a]2x2

6a
− b223

6ah2
± b223[a]x3

12a2h
± hc1[c3]x1

24a

and

K̂i1,i2±1,i3+1 =± [c3]x2

24
± b23

6h2
+

[b23]x2

12h
+

c3
12h

± [b23]x1x1

48
± [b23]x2x2

48
± [b23]x3x3

48

± b12[c3]x1

48a
∓ [a]x3 [b23]x3

24a
± b23[c2]x2

48a
± b23[c3]x3

48a
∓ [a]x2c3

24a
± c2c3

24a

± c3[b23]x3

48a
± b12[b23]x1x2

48a
± b13[c2]x1

48a
± b13[b23]x1x2

48a
∓ [a]x2 [b23]x2

24a

∓ b13[a]x1b23
24a2h

∓ [a]x1 [b23]x1

24a
∓ [a]x3c2

24a
− b12[a]x1b23

24a2h
± b23[b23]x2x3

48a

+
c2b23
12ah

± c2
12h

+
a

6h2
± b23c3

12ah
∓ b23[a]x3

12ah
± b13[b23]x1

24ah
± b23[b23]x2

24ah

∓ [a]x2b
2
23

24a2h
+

b223
12ah2

± c2[b23]x2

48a
± c1[b23]x1

48a
∓ b12b13

12ah2
− b23[a]x2

12ah
(D.14)

∓ b23[a]x3 [b23]x2

48a2
∓ b23[a]x3c3

48a2
∓ b13[a]x1 [b23]x3

48a2
∓ b23[a]x2 [b23]x3

48a2

∓ b23[a]x2c2
48a2

∓ b12[a]x1 [b23]x2

48a2
∓ b13[a]x3 [b23]x1

48a2
∓ b12[a]x2 [b23]x1

48a2

+
b23[b23]x3

24ah
+

b12[b23]x1

24ah
− b223[a]x3

24a2h
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