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Abstract 

 

The research reported in this thesis has examined means of enhancing the performance 

of the Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter for 

target detection in Forward Looking Infra-Red (FLIR) imagery acquired from a 

helicopter and border security FLIR camera in northern Kuwait. The data acquired with 

these FLIR sensors allows real-world evaluation of the comparative performance of the 

various filters that have been developed in the thesis. The results obtained have been 

quantified using well known performance measures such as Peak to Side-lobe Ratio 

(PSR) and Total Detection Error (TDE). The initial focus was to study the effect of 

modifying the OT-MACH parameters on the correlation metrics. A new optimisation 

technique has been presented, which computes statistically the filter alpha parameter 

associated with controlling the response of the filter to clutter noise. A further 

modification of the OT-MACH filter performance using the Difference of Gaussian 

bandpass filter (named the D-MACH filter) as a pre-processing stage has been 

described. The D-MACH has been applied to several test images containing single and 

multiple targets in the scene.  Enhanced performance of the modified filter is 

demonstrated with improved metrics being obtained with less false side peaks in the 

correlation plane, especially when multiple targets are present in the test images.  

 

A further pre-processing technique was investigated using the Rayleigh distribution as a 

pre-processing filter (named the R-MACH filter).  The R-MACH filter has been applied 

to multiple target types with tests conducted across various image data sets.  The filter 

demonstrated an improvement over the Difference of Gaussian filter in terms of 
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reducing the number of parameters needing to be tuned whilst producing further 

enhanced correlation plane metrics.  

 

Finally, recommendations for future work has been made to improve the use of the OT-

MACH filter in target detection and identification. A novel training image 

representation is proposed for further investigation, which will minimise the 

computational intensity of using the MACH filter for unconstrained object recognition. 
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1. Chapter 1     Introduction 

 

1.1 Background  

 

Image processing techniques have been widely used in different fields and domains. 

Such fields nowadays are unlimited and have become an everyday experience for even a 

non-technical person. Applications include what we see in hospitals or at the dentist, for 

example, where x-rays and CT scans play an important part of the diagnosis procedure. 

An important field that we will be focusing on in this thesis is the defence and security 

usage of image processing technology.  

There are several natural pattern recognition operations carried out by humans and other 

animals on a daily basis. A classical example is the ability of a person to recognise a 

face. In most cases of natural pattern recognition, the capability is a function of the 

brain’s ability in which the recognisable pattern is imprinted in the memory and 

compared with the sensed reality in order to carry out the recognition.  

One of the main drives in image processing is to mimic Nature’s ability to perform 

pattern recognition using the image as a classifiable pattern. Out of all image processing 

techniques, correlation pattern recognition is the research area chosen for detailed 

investigation in this thesis. Correlation pattern recognition techniques are used in the 

detection, tracking, recognition, identification and localisation of defined objects and 

targets [1]–[11]. 
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1.2 Pattern recognition  

 

The encyclopaedia Britannia defines Pattern Recognition as:  

“The imposition of identity on input data, such as speech, images, or a stream of text, by 

the recognition and delineation of patterns it contains and their relationships. Stages in 

pattern recognition may involve measurement of the object to identify distinguishing 

attributes, extraction of features for the defining attributes, and comparison with known 

patterns to determine a match or mismatch. Pattern recognition has extensive 

application in astronomy, medicine, robotics and remote sensing by satellites”  

 

Bow and Sing [12] give the definition: “Pattern recognition can broadly be defined as a 

process to generate a meaningful description of data and a deeper understanding of a 

problem through manipulation of a large set of primitive and quantifying data”  

 

The main goal in pattern recognition is thus to make an observation and generate a 

classification from this. The observation can be anything which can be classified as a 

signal. A signal may comprise any information such as speech data, video sequences, 

images or multi-dimensional signals. One of the main applications of pattern 

recognition is in the Automatic Target Recognition (ATR) field that is predominantly 

used in the defence and security sectors which is the main focus in this thesis. The aim 

of ATR is to classify the input observation into either a natural or man-made object. The 

classification can go further to higher levels to classify objects such as cars, tanks, 

trucks, ships, aircraft and many more.  

There are several pattern recognition paradigms, in one of which the use of training data 

is made as opposed to feature detection and subsequent pattern classification. The use of 
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images of a specified object as training data has become an important technique used 

when performing real-time recognition of targets or patterns [12]–[16].  

Correlation methods in pattern recognition have been applied to many useful 

applications such as: character recognition, speech recognition, image based object 

recognition, medical anomaly recognition and analysis, satellite imagery interpretation, 

on-land object detection, target acquisition and many more [12].  

 

1.3 Correlation pattern recognition  

 

Correlation is an accurate and general method that can be used in multiple applications 

such as, but not limited to, automatic target recognition (ATR), optical character 

recognition (OCR), Biometric pattern recognition (BPR) and Satellite based aerial 

recognition (SBAR). The use, design and analysis of correlation based pattern 

recognition requires a background of linear systems theory, random variables and 

processes, matrix and vector methods, detection and estimation theory, digital signal 

processing (DSP), digital image processing (DIP) and optical processing. Correlation as 

a technique arises from probability theory wherein two random variables (RV), but in 

our case two patterns or signals, are correlated or compared so as to determine their 

degree of similarity. In pattern recognition, the correlation result is used to determine 

how similar or dissimilar a test object is from a training pattern set [12], [17].  

 

Digital correlation is the most commonly used technique in modern pattern recognition 

systems.  The target image and the reference pattern (generated from training image 

sets) are usually represented in the form of discrete two dimensional arrays. These 
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image arrays are derived from an optical sensing device after converting the analogue 

data to digital data. The correlation function can be computed by one of two methods, 

namely, directly in the spatial domain or via the spatial frequency domain obtained by 

discrete Fourier transformation. 

 

The direct correlation computation can be performed using a digitized input scene 

r[m,n] with a digitized  target image defined as s[m,n]. The two digitised functions are 

shifted and summed to obtain a direct correlation output c[m,n]. The resultant 

correlation c[m,n] can thus be expressed as follows: 

 

∑∑
= =

−−=
Ns

k

Nr

l
nlmkrlksnmc

1 1
],[],[],[     Eq. 1.1 

 

 s[k,l]and r[k,l] are zero when k and l lie outside the support for the images. The 

resultant correlation output of c[m,n] is of size (Ns +Nr)2 where the complete 

computation requires (NsNr)2 multiplications. Thus the direct correlation computation is 

cumbersome due to the requirement for repeated floating point or multi-bit fixed-point 

multiplications between the images. 

Digital correlation carried out via the spatial frequency domain is predominantly 

implemented using the fast Fourier transform (FFT) method. The use of FFT is more 

efficient as compared to the direct computation method. The desired correlation can be 

performed using the following steps [18]–[20]: 

 

a. Compute S[k,l] and R[k,l], the N x N two dimensional discrete Fourier 

transforms of the target image s[m,n] and the training image set r[m,n]. 



31	
  

	
  

b. Multiply S[k,l] by R*[k,l] to obtain C[k,l], where the R*[k,l] is the complex 

conjugate of R[k,l], the training image set discrete Fourier spectrum. 

c. Perform an N x N inverse two-dimensional discrete Fourier transform of C[k,l] 

to obtain the correlation output c[m,n] [12], [21]–[26]. 

 

Whatever the method of computation, if the target signal is the same as the training 

signal the result is called an auto-correlation and if the target signal is different from the 

training signal the result is called a cross-correlation [12], [22], [27], [28]. 

 

In correlation pattern recognition (CPR) the main aim is to assign a target object to one 

of a set of multiple classes. This capability of correlation pattern recognition is clearly 

very useful in defence and security operations such as surveillance, intelligence and 

subsequent decision cycles.  

Figure 1.1 shows a block diagram of the major generic steps involved in data driven, 

bottom-up image pattern recognition [12].  

 

 

Figure 1.1 Image pattern recognition process 

 

In such a pattern recognition scheme, a training set of images are processed with a 

selected method to extract the pre-determined features and segmented into classifiable 

pattern classes. This can then be used to obtain classification of subsequent test patterns 

input to the system. 
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Correlation pattern recognition adds a top-down process template matching process to 

these stages and provides a powerful means of using training images to implement a 

classifier [29].   

 

Correlation based classification methods differ from alternative classification systems 

such as probabilistic methods. Probabilistic methods tend to classify objects based on 

various extracted feature sets. The main disadvantage of probabilistic methods is the 

need for extensive testing and performance evaluations due to the wide range of 

expected patterns. Correlation based methods on the other hand do not require extensive 

testing since the target can be represented as a single known set of patterns derived from 

the object to be classified. 

 

Much information can be extracted from an image. Different image types give different 

information that can be extracted as, for example, in colour images, grey scale images 

and thermal images. Throughout this thesis, the main focus has been on thermal 

imaging due to its ability to give important and prominent information about the target 

objects of interest in almost all weather conditions and at night.  

 

1.4 Forward looking infra-red (FLIR) 

 

Infrared is one of the bands of the used in the thermal camera consistes of three basic 

ranges, namely far infrared, min wave the near infrared. the far infrared or also called as 

long wave infrared (LWIR) cameras, operate at 8 to 12 µm and can be used to visualise 

heat sources such as hot engine parts or human body heat from a few kilometres range. 
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Longer range viewing is often difficult with LWIR due to the infrared light being 

absorbed, scattered and refracted by air and water vapour. 

 

Mid-wave infrared (MWIR) cameras operate in the 3 to 5 µm range of the spectrum. 

The MWIR frequencies are less affected by water vapour absorptions than are those 

used in the LWIR. A drawback of IR cameras is the requirement for the use of 

expensive sensor arrays and cooling systems such as cryogenic cooling modules. 

 

 

 

Figure 1.2 Full electromagnetic spectrum with infra-red range highlighted  

 

FLIR systems detect the emitted infrared radiation from heated objects in the scene, 

which is then used to form a 2-D thermal image. Shown in Figure 1.2, are the three 

infrared wavelengths starting from near, middle and ending with the far infrared. A 

typical thermal camera system can be described in terms of a breakdown of modules as 

shown in Figure 1.3.  
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Figure 1.3 Basic thermal camera system  

 

The infrared waves that lie between 0.76 and 100 microns are passed through a lens, 

which for the longer wavelengths must be fabricated from germanium. The thermal 

radiation is thus imaged onto a thermal detector array which is made of Indium 

Antimonide (InSb) or Mercury Cadmium Telluride (MCT) as in the HRC ranger FLIR 

camera used to obtain some of the images employed in the thesis research. After A/D 

conversion, the sensor output passes through a series of signal processing stages as 

shown in Figure 1.3. An example of the FLIR image output using a long range HRC 

camera is also shown in Figure 1.3 as the resultant image from the signal processing 

module. 

 

For the work of this thesis, video and still images have been acquired using various 

platforms and real-world targets in order to provide realistic data for the assessment of 

the detection and recognition capabilities of the filters examined. The videos have been 

acquired in both day and night conditions to simulate the effect of solar heating on the 

target vehicles.  
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The advantages of the FLIR imaging system for military use is clear: it can be used in 

all-weather conditions; it is very difficult to detect the FLIR system as it is fully 

passive; and there is difficulty to hide or camouflage the heat emitted from the target 

objects.   

 

1.5 FLIR in defence and security applications  

 

In the last 50 years, defence and security research has contributed much to image 

processing technologies [30]–[44]. One of the main focuses has been the pattern 

recognition and target identification support system. The use of imaging support 

systems and technologies gives useful information that can be used in targeting, 

navigation, decision-making and surveillance etc.  In this section, several examples will 

be discussed to illustrate the way in which thermal imaging can be used in defence and 

security applications.  
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(a) 

   

(b)                          (c) 

Figure 1.4 FLIR image samples (a) Road at night time using normal camera and FLIR (b) 

Coastguard patrol boat FLIR image (c) Apache helicopter FLIR image.  

 

In Figure 1.4(a) a comparison is made between a FLIR camera and a normal, visible 

wavelength, camera where, with the latter, only the road lit by the car lights can be seen. 

The FLIR image shows a deer that was not visible with the normal camera. Navigation 

is a hazardous operation, especially at night where the human eye or a visible 

wavelength camera cannot operate due to the low lighting conditions. 

 

Figure 1.4(b) and 1.4(c), show the hot parts of the target objects such as the engine and 

exhaust. The information gathered could be used, for instance, to determine if the 

engine is running or for approximately how long it has been idle. 
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(a)                    (b) 

Figure 1.5 (a) British warrior armour with engine on (b) T90 tank static with engine off 

 

During the data collection, the author has directed the movement of five different 

vehicles and arranged for the starting of their engines for 30 minutes to give a realistic 

targeting scenario. An Apache helicopter hovered around those targets and videoed the 

scene as directed in order to provide views from different orientations of the vehicles.    

 

Figure 1.5(a) shows a British warrior armour vehicle with a hot body due to the heat 

produced by the engine. Figure 1.5(b) shows an old T90 tank on a display stand with no 

engine. It is very clear that the FLIR imaging gives vital information about the vehicle 

or target state. From this information, an experienced operator can reliably estimate the 

target type and time of operation. However, the lack of experienced operators requires 

researches to devise an advisory system that gives automatic identification and targeting 

information. The existing systems now in operation give an advisory and prioritise a 
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target according to the threat imposed characterised by, for instance, distance, speed and 

angle of attack.  

1.6 Detection, recognition and identification theory  

 

In the 1950’s, John Johnson, a scientist at the United States Army Night Vision and 

Electronic Sensor Directorate (NVESD) developed an observation analysis theory 

where he stages and quantifies the visual surveillance approach which has become 

known as Johnson's criteria [45]. Detection, recognition and identification are the 

classification cycle used now in almost every defence and security organisation.  

 

 

 

 

 

 

 

 

Figure 1.6  FLIR image with target detection in the scene 
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Figure 1.7 FLIR image with recognised targets 

 

                                (a)                        (b) 

Figure 1.8 FLIR image with identified targets (a) Human and car targets (b) walking male target 

 

Figures 1.6 to 1.8 show good examples of the visual classification cycle. An example of 

target detection can be seen in Figure 1.6 were only two target blobs can be seen and we 

cannot gather any more information about the target type or identity. Figure 1.7 shows 

better target details that can lead to the recognition of the targets as a human and a car. 

Figure 1.8 clearly shows enough detail and target information that make the 

identification more certain.  Figure 1.8(a) shows a male beside a four wheeled drive car 



40	
  

	
  

and with the appropriate operator knowledge this can be identified to be a Nissan Patrol 

made between 1997 – 2009. Figure 1.8(b) shows a male aged in his 20’s or 30’s with a 

hot drink in his hand and a watch on his right wrist. Although this detailed information 

may seem to be not needed, in real life scenarios the smallest amount of information can 

be very important in making an operational decision.  

1.7 Correlation filter development 

 

As previously discussed, correlation is a signal processing method of measuring 

similarity between two input signals. The signal can result from images or other 

waveforms; the correlation gives a quantitative measure of the match between the two 

signals.  There are two types of correlation: auto-correlation and cross-correlation. 

When two identical input functions are correlated with each other it is known as auto-

correlation, whereas, when two dissimilar functions are correlated the operation is 

called cross-correlation. Equation 1.2 below shows discrete cross-correlation of two 

different functions, f and g, implemented in the spatial domain.   

 

      Eq. 1.2 

 

The most basic form of correlation filter is the matched filter. There are a few 

drawbacks to basic correlation filters for pattern recognition: 

 

c m,n( ) = f i, j( )g i+m, j+n( )
j
∑

i
∑
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a. The correlation pattern recognition filters have very large bandwidth, thus 

leading to the impracticality of using these methods for classifying similar 

targets for real time applications. 

b. The sensor noise and background clutter is often neglected in the design of 

simple correlation based filters. 

c. The filter has some scale or rotation invariance but less than that of an 

appropriately multiplexed filter. 

 

The main intention behind correlation pattern recognition research is to overcome these 

limitations by modifying the filter function to accommodate for the limitations of the 

matched filter. Hester and Casasent made a major contribution to the field in 1980 with 

the formulation of the synthetic discriminant function (SDF) that allows multiple 

training image sets to be included in a single filter design [46]. A variety of synthetic 

discriminant function (SDF) based filters have been proposed since then to 

accommodate various kinds of arbitrary distortions in the filter training images caused 

by changes in the viewing angle, scale and rotation of the target object [47]–[53]. 

 

The main issues to be considered and overcome in designing improved correlation 

filters are that the filter should be invariant to distortions, supress clutter noise and be 

able to obtain a distinguishable correlation peak for classification purposes. 

 

It was reported in the early research literature concerned with the design of  correlation 

filters that the SDF filters failed to adequately meet any of the above design 

requirements [54]. Optimisation and hence improvements to overcome the known 

negative characteristics of the SDF which involved rigorous developments in the area of 
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minimum variance synthetic discriminant functions were made by Kumar in 1986 [55]. 

Kumar reported that the minimum variance synthetic discriminant function (MVSDF) 

filters need to be considered as optimum filters that are tolerant to the effects of additive 

Gaussian white noise on classification results. 

 

The major drawback of implementing the MVSDF, and subsequent improvements, 

included the inversion of a large covariance matrix and this involved intensive 

computations. The computational intensity and the lack of tolerance to clutter noise 

(that does not have a white power spectrum) provided major challenges to improving 

the performance of the filters.  

A variation to the SDF family that received good attention in the pattern recognition and 

automatic target recognition community is the minimum average correlation energy 

(MACE) filter proposed and developed by Mahalanobis et al [56]. The MACE filter 

proved to be capable of generating detectable correlation peaks by suppressing image 

based clutter. However, it remained too sensitive to image distortions thus challenging 

the ATR community to continue to innovate in the field of correlation pattern 

recognition filters [57]. 

 

Mahalanobis et al [58] went on to propose the maximum average correlation height 

(MACH) filter to overcome the hard constraints involved in the SDF based filter 

designs which require the correlation peak heights to be pre-specified with constant 

value [58], [59]. The hard constraint requirement is unnecessary as it limits the number 

of possible SDF results and in any case is unlikely to be effective since there is a low 

probability of correlating the filter function with a target test image in exactly the same 

orientation as that of any of the views included in the training set. 
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The MACH filter theory thus provides a better filter solution by removing the peak-

height constraint from the SDF based design pattern recognition filters. The MACH 

filter design includes the minimisation of an average similarity measure (ASM) that 

leads to a compact set of correlation planes that resemble each other and exhibit the 

least possible variation. This approach of statistically correlating the filter function 

makes it more robust as compared to the pattern recognition filters previously designed.  

Many improvements have since been made in the literature to the MACH filter design 

to accommodate various application requirements. Shaug and Chen, used a Mexican hat 

approach to overcome distortion [11].Others authors such as Lui and Luo,  have 

introduced the Action MACH [60][73] to address motion activity. 

 

The main motivation of the work in this thesis involves modifying the frequency 

domain optimal trade-off (OT-MACH) filter design, by employing various band-pass 

filtering techniques to assist in obtaining more accurate target detection and recognition 

results [59]. Analyses have been carried out of the OT-MACH performance measures to 

improve upon its performance. The results and subsequent discussion of such 

improvements to the OT-MACH filter are reported in this thesis to provide possible 

enhancements to the solution of difficult target detection and classification problems. 

  

1.8 Achievements 

 

The Optimal Trade-off Maximum Average Correlation Height  (OT-MACH) filter has 

been tested and  improved in this thesis. Testing was focused initially on the setting of 
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the filter parameters to try to optimise performance. It has been found that the β 

parameter is the main drive for the overall OT-MACH filter behaviour. Further 

investigation and tests were conducted and concluded that the noise parameter in the 

OT-MACH transfer function can be  automatically computed using the statistics of the 

input image intensities. This technique simplifies the filter design and decreases the 

computational processing power needed to compute the OT-MACH transfer function. 

Further, an additional bandpass filter has been incorporated into the OT-MACH filter 

based on the Difference of Gaussian (DoG) filter. This additional filter acts as a pre-

processer and has been shown to result in improvements on the discrimination ability of 

the overall composite filter. Moreover,  a method of automating selection of the DoG 

filter standard deviation setting has been proposed. In subsequent chapters, an 

alternative pre-processing filter has been introduced, namely the Rayleigh distribution 

filter.  The incorporation of the Rayleigh filter into the OT-MACH filter resulted better 

detection accuracy when the filter was applied to highly cluttered backgrounds and 

difficult target detection scenarios such as human detection in thermal infra-red 

imagery.  This new pre-processing filter led to very promising target identification 

results when incorporated into a two stage process of detection/segmentation and 

identification.  Finally, some novel ideas for representing the filter training set images 

are outlined in a concluding section on future work. 

 

1.9 Thesis chapter organisation 

 

The thesis is divided into several chapters that discuss the problems of performance 

enhancement of correlation pattern recognition filters, in particular, by improving the 
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OT-MACH filter and its usability as a target detection filter. Chapter 2 of the thesis 

deals with the generic derivation and related considerations regarding the OT-MACH 

filter. Chapter 2 goes on to discuss the performance measures used to quantify the 

performance of the OT-MACH filter. Chapter 3 describes parameter optimisation 

methodologies for minimising the computational intensity involved in designing and 

using the OT-MACH filter. Chapter 4 describes the improvements to the OT-MACH 

filter performance implemented by pre-processing the original filter with a Difference 

of Gaussian (DoG) bandpass filter. Results are presented to demonstrate the 

improvements to the filter metrics and accuracy of target detection obtained when using 

the bandpass DoG filter. Chapter 5 discusses the Rayleigh distribution filter based OT-

MACH filter (R-MACH) and demonstrates that the R-MACH filter further reduces the 

multiple parameter tuning issues involved in using the OT-MACH filter for target 

detection purposes. A novel method of using a two stage R-MACH filter sequence for 

not only the detection but also in the identification of targets is introduced. The results 

obtained with this method are then discussed and evaluated.   Finally, Chapter 6 

presents conclusions drawn from the results achieved in the thesis along with a 

discussion of possible future research to further improve the use of correlation pattern 

recognition filters for target detection and identification in realistic scenarios.  
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2. Chapter 2  Pattern Recognition Correlation Filters 

 

2.1 Chapter organisation  

 

The chapter begins with a brief introduction to correlation filters and discusses their 

features and advantages in the pattern recognition domain. It then presents the OT-

MACH filter and its derivation in section 2.3.  A parametric study concerning the OT-

MACH filter function design parameters presented in section 2.4. A through discussion 

of filter training is conducted in section 2.5. Section 2.5 also provides an introduction to 

training image summation and a discussion of the effect of illumination differences 

between real and 3D data. The chapter progresses with a discussion of correlation 

response issues due to background clutter and rotational distortions in section 2.6. 

Various performance matrices and quantification measures of the correlation plane are 

presented in section 2.7.  The chapter then gives a brief discussion of target constraint 

assumptions in section 2.8. Several conclusions have been drawn and discussed in detail 

in section 2.9.  

 

2.2 Introduction  

 

Correlation filters have been extensively used in the world of defence and security [6], 

[31], [62], [77]–[86]. Their ability to discriminate objects or targets from a cluttered 

background makes correlation filters a very powerful tool that can be used in 

demanding real time applications. Correlation filters are very well known for their 
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ability to provide shift-invariance and distortion tolerance, which makes their use 

attractive for pattern recognition applications. 

 

In 1994, Mahalanobis et al [58] introduced an unconstrained correlation filter named the 

Maximum Average Correlation Height (MACH) filter [58]. The MACH filter is one of 

the most effective filter design algorithms since it permits the control of three important 

features in pattern recognition: 

 

a. Correlation peak localisation. 

b. Distortion tolerance. 

c. Suppression of noise/clutter. 

 

There have been several derivatives of the MACH filter during the past years. In 1997, 

Mahalanobis and co-workers introduced the optimal trade-off maximum average 

correlation height filter OT-MACH [59], in which statistical analysis of the OT-MACH 

filter showed it to be the optimal filter for target detection with high background clutter.  

However, Alkanhal et al. [63] have discussed the high false alarm rate in the correlation 

results generated by background clutter when using the OT-MACH filter. A new matrix 

has been introduced in Alkanhal named the All-Image Correlation Height (AICH) to 

replace the Average Similarity Matrix (ASM) in the filter design. These improvements 

lead to the Extended-MACH (EMACH) that shows a reduction in false alarms caused 

by side peaks in the correlation plane. 

 

A filter bank needed to detect a dynamic object with in plane, out-of-plane and scale 

distortion is a demanding task. Goyal et al [65]  introduced a wavelet modified OT-
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MACH to overcome the computational difficulties. By looking at the research 

conducted on improving the OT-MACH performance, the potential areas of research 

into OT-MACH filter design can be broken down into three main areas as shown in 

Figure 2.1 below, each of which the research reported in this thesis addresses in turn.   

 

 Figure 2.1 OT-MACH areas of research interest 

 

2.3 OT-MACH filter derivation  

 

Extensive research has been carried out on correlation filters over the past forty years 

[10], [49], [58], [81], [85], [87]–[97]. Their unique ability in discriminating objects 

from a highly cluttered backgrounds has made them one of the main techniques used in 

difficult pattern recognition problems encountered in defence and security applications. 

Correlation pattern matching or recognition provides a mechanism for comparing two 

image signals. It has the benefit of being shift-invariant so it can also provide tracking at 

no extra computational cost. The relation below describes the one dimensional basic 

correlation operation: 

∫ ∫
∞

∞−

∞

∞−

++= dadbbyaxgyxfyxc ),(),(),( *     Eq. 2.1 
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where e is a dummy variable and the function, c(x,y), gives a measure of the similarity 

of the functions f(x,y) and g(x,y). The function f(x,y) is referred to as the input signal and 

the function g(x,y) as the target signal. However, when dealing with discrete images, as 

outlined in Chapter 1, it is more common to express the integral in the form of a discrete 

two-dimensional summation: 

 

C(m,n) = f(i, j )
j
∑

i
∑ g(i+m, j+n)

*     Eq. 2.2 

 

where i and j are the 2-D pixel co-ordinates. For larger images this can be 

computationally intensive and in order to reduce latency, the computation can be carried 

out via the Fourier domain, which can be expressed: 

 

)]),([)].,([(),( *1 yxgFyxfFFyxc −=      Eq. 2.3 

 

where the F(.) indicates a Fourier transform operation and the F-1(.) denotes the inverse 

Fourier transform, of the functions contained within the brackets. In a discrete image, 

Equation 2.3 is therefore computed by two forward fast Fourier transforms (FFTs), a 

complex multiply between the spectrum of the input image and the conjugate spectrum 

of the reference image, and then an inverse fast Fourier transform (IFFT). Since it is 

convenient for the answer to be real, the modulus squared of c(x,y) is used by 

convention. 

The component F [g*(x,y)] in Equation 2.3 can be regarded as a filter function. This is 

the most basic form of the correlation filter and is also known as the matched filter. It 
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has been frequently observed that the correlation filter has some disadvantages and 

limitations [91].  These have been overcome by modifying the filter function for better 

target discrimination, scale and rotation invariance and also to cope with clutter noise 

[91]. The synthetic discriminate function filter concept was proposed in an attempt to 

overcome these difficulties [48], [49]. This had some limitations due to the hard 

constraints imposed on the correlation peak values by the design method. 

 

The maximum average correlation height filter (MACH) was subsequently proposed by 

Mahalanobis et al. [58]. The MACH filter allows a better filter solution by removing the 

peak-height constraint from the various SDF based design techniques [47]. The filter 

design includes the minimisation of an average similarity measure (ASM) that leads to a 

compact set of correlation planes that resemble each other and exhibit the least possible 

variation [2]. This statistical approach to the correlation filter design process makes the 

filter more robust as compared to other designs based on SDFs with hard constraints 

[98]. The MACH filter maximises the relative height of the average correlation peak 

with respect to the expected distortions. 

 

In order to understand the OT-MACH filter it is useful to review its derivation as made 

in [12]. It is assumed that the training set consists of N true-class images and M images 

from the false-class. Each of these images contain p pixels, where p = u x v (size of the 

image). The ith training image is denoted by Xi (u,v) and is represented in the frequency 

domain by a p x 1 vector Xi , obtained by lexicographically reordering its 2-D FFT. The 

filter transfer function is denoted by a p x 1 vector h.  

The correlation of the ith training image with the filter function can then be expressed in 

the frequency domain as: 
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ci = Xih      Eq. 2.4 

where Xi is a p x p diagonal matrix containing the elements of  training image spectra. 

Equation (2.4) denotes the FFT of the ith correlation output. The Average Squared Error 

(ASE) is then defined as a measure that quantifies the deviation of the correlation plane 

with respect to an ideal shape factor f. ASE can be expressed as:    

 

)()(1
1

*
xi

N

i
xi MXMX

N
ASE −−= ∑

=

    Eq. 2.5
 

 

where Xi is the diagonal matrix of the training images, Mx is the average of Xi and * 

indicates the conjugate transpose of the vector.  

 

    Eq. 2.6 

This determines the minimum value of the function and so yields [12]: 

 

hXcf iOptimum ==      Eq. 2.7 

 

where the bars indicate the mean values are taken. Substituting the optimum shape 

factor expression in Equation (2.7) the average similarity measure (ASM) of the 

training-set correlation planes is obtained. This is defined as follows: 

 

∇ f (ASE) =
2
N i=1

N

∑ Xi − px( ) = 0
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Eq. 2.8

 

                Eq. 2.9
 

where, 

                               Eq. 2.10 

The MACH filter is designed so that it not only minimises the ASM and the correlation 

energy of the false class images but also maximises the on-axis peak of the average 

training-set correlation plane. 

The intensity of the on-axis peak of the average training set correlation plane can be 

expressed as: 

      
Eq. 2.11 

The average correlation energy (ACE) of the false-class images is given as: 

    Eq. 2.12 

     
Eq. 2.13 

     Eq. 2.14 

 

where, in Equation (2.12), Xi is the diagonal matrix containing the elements of the 2-D 

FFT of the ith false class image arranged in a vector form, and 

 

ASM =
1
N

Xi − X( )
i=1

N

∑
∗

Xi − X( )

= h*Sxh
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=
∑
1

1

c(0, 0)
2
= h*MxMx

*h

ACE = 1
N

h*
i=1

n

∑ XiX
*
ih

= h*( 1
N
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     Eq. 2.15 

The average correlation height (ACH) is defined as: 

 

∑ == XhXh
N

W i
T1

    Eq. 2.16 

    

The OT-MACH then seeks to minimise the energy function: 

 

)()()()()( ACHASMACEONVhE δγβα −++=   Eq. 2.17 

 

*
x

T
xx mhhShhDhChh δγβα −++= +++     Eq. 2.18 

 

where α, β, δ, and γ are variables whose sum equals one, ONV is the output noise 

variance, ACE is the average correlation energy, ASM is the average similarity measure, 

and ACH  is the average correlation height. In Equation 2.18, C is related to the power 

spectral density matrix of the additive noise, Dx is the diagonal average power spectral 

density of the training images and Sx is the denotes the similarity matrix of the training 

images.  The ACE now refers to the true class of the training images. Rearranging this 

gives us [2]:  

 

    Eq. 2.19 

 

Dx =
1
N

XiX
*

i=1

N

∑

h = mx
*

αC +βDx +γSx
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where, α, β and γ are non-negative OT parameters, mx is the frequency domain average 

of the training vector. Since the correct information for the additive noise value is not 

available at all times, a statistical method has been implemented to automatically set 

this value [99], so allowing the parameter α to be removed from the transfer function. 

Dx is the diagonal average power spectral density of the training images and Sx denotes 

a similarity matrix of the training images as given by Equations (2.8) and (2.10), above.  

 

The different values of β and γ control the OT-MACH filter’s behaviour to match 

different application requirements. For the work presented in this thesis, , OT-MACH 

parameters β and γ have been set to unity in order to analyse and test the behaviour of a 

fixed parameter OT-MACH filter modified only with a variable band-pass pre-

processing filter. 

 

A sub-set of the training images can be used to compute the OT-MACH filter transfer 

function as expressed by Equation (2.18). Correlation planes obtained by correlating the 

filter function with an in-class image can be represented as a correlation mesh plot, an 

example being shown in Figure 2.2. 
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Figure 2.2  Correlation plot for an in-class target image correlated with the OT-MACH filter 

function 

 

However, the idealised response shown in Figure 2.2 quickly deteriorates when the 

input object does not exactly match one of the stored templates or there is significant 

background clutter in the scene. To try and improve the performance of the OT-MACH 

filter, we have applied band pass pre-processing filters to the OT-MACH filter in order 

to explicitly force a band pass response and eliminate both low and high spatial 

frequency components that disrupt the filter response [74].  

 

2.4 OT-MACH filter parameter study 

 

From the derivation summarised in the last section, it can be seen there are three 

parameters in the OT-MACH filter frequency domain transfer function, symbolised as 

α, β and γ:  

 

                  
Eq. 2.20 h = mx

*

αC +βDx +γSx
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These are the three OT-MACH parameters used to control the OT-MACH filter to 

produce the desired output. The parameter alpha (α) controls the additive noise added to 

the filter to reduce the output noise variance [59]. The beta parameter (β) controls the 

diagonal average power spectral density of the training images and the gamma 

parameter (γ) controls the similarity matrix of the training images, which is defined in 

Equation 2.10. 

    

In Equation 2.10, the term N denotes the total number of training images considered for 

the filter design, the terms Xi and Mx denote the Fourier transform of the ith training 

image and the mean of the summation of all training image spectra, respectively. It can 

be seen by looking at the OT-MACH transfer function in Equation (2.20) that there are 

three main drivers of the filter design. The additive noise incorporated into the filter, the 

training image complex spectra that generate the similarity matrix and the power 

spectral density terms. These terms collectively control the filter performance in target 

detection scenarios.  

 

It is also very important to take in to account the human interaction with the filter in real 

time scenarios were the logical adjustment and fine tuning of the parameters are 

required for a successful result.  
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2.5 Filter training image study 

 

There are multiple aspects that need to be focused on when looking at training image 

optimisation for robust filter design as discussed in the following sections. 

 

2.5.1 Training image summation blurring   

There is a limitation on the number of training images that can be used in the filter 

design. It has been determined for the application with FLIR images and the test data 

collected that the number of training images used in the OT-MACH filter can vary from 

just a single image to a maximum of around 8-10 images depending on the target image 

complexity. The correct number of training images in the filter design is vital, since this 

also affects the correlation peak quality and discrimination ability from a cluttered 

background. If the number of images exceeds about ten in the filter, then  a result will 

be generated in which most of the features of the training image information will be 

lost. On the other hand, too few number of training images will lack the information 

needed to train the filter and will result in poor recognition and false alarms, especially 

in video sequences where the object is changing orientation with respect to the camera.  

Several training images are added with a double precision in order to compute a 

rotationally multiplexed reference image before utilising the training images in the filter 

design. A few examples of rotationally multiplexed reference images are shown in 

Figure 2.3(a), (b) and (c). 
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(a) 

  

(b)         (c) 

Figure 2.3  (a) 5 training images multiplexed together. (b) 15 training images multiplexed. (c) Two 

training images multiplexed.  

 

Figure 2.3(a) shows an acceptable number of training images rotationally multiplexed 

and it is clear that the image features are preserved. Figure 2.3(b) illustrates the over-

trained filter image, were most of the information lost is due to over multiplexing of the 

images and so loos of detail. Finally, Figure 2.3(c) shows two images in the training set, 

which also has about the minimum information required for a successful training of the 

OT-MACH filter. 
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The effect of the number of training images can also be seen in the correlation plane. 

Figure 2.4 shows the correlation result of an OT-MACH filter trained with 1, 5 and 15 

training images, respectively. 

 

 

(a)                   (b) 

 

 

(c)      (d) 

Figure 2.4  (a) Input image with M1A2 tank and M113 personal carrier  (b) Correlation result for 

OT-MACH with 1 training image.   (c) Correlation result for OT-MACH with 5 training images.  

(d) Correlation result for OT-MACH with 15 training images 

 

Figure 2.4(b) shows the correlation result of an OT-MACH trained with only one M1A2 

tank training image. There are two peaks present in the correlation plane for both the 

true and false targets. As discussed, there is not enough information in the training 

images to allow the OT-MACH to detect the true target. Figure 2.4(c) shows the 

acceptable training image number, i.e. five, which results in the sharper and higher peak 
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at the true target location at the bottom of the input image (Figure 2.4(a)), in this case 

the Abrams M1A2. Figure 2.4(d) shows a result of the correlation with an OT-MACH 

over-trained with 15 training images and is clearly showing two very high and similar 

peaks of both true and false targets.  

 

2.5.2 Illumination effect using real and 3D data 

When using FLIR imagery it is very important to take into consideration the 

illumination of the target compared to the background. The heat signature emitter from 

the target, which generates a grey scale pattern, was measured and used to superimpose 

it on the 3D models that have been designed.  Figure 2.5 below shows the two types of 

training images both before and after the superimposing of the FLIR texture.  

 

   

(a)       (b) 

Figure 2.5 3D Nissan patrol cars (a) without FLIR texture and (b) with FLIR texture. 

 

The OT-MACH filter was trained with two-dimensional projected views of the 3D 

CAD models using several out-of-plane rotations (0° to 360°) of the selected targets.  

As an example dataset we employed 2D representations of a 3D model of a Nissan 

Patrol vehicle to train the OT-MACH filter. The training images are rendered for 
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different rotation angles (between 0 to 360 degrees) as shown in Figure 2.6. The OT-

MACH filter will then be trained with 5-10 training images as determined to be suitable 

for this particular application. Multiple OT-MACH filters needed to be trained to cover 

the overall rotations of the target present in the real time dynamic scenarios.  

 

 

Figure 2.6 An example of a Nissan Patrol training dataset (angle of rotation between 0 and 360 

degrees) 

 

The use of two-dimensional views of the 3D model of the target as training images 

allows the OT-MACH filter to efficiently detect real targets due to the presence of 

enhanced and complete edges in comparison to training images derived directly from a 

FLIR camera. Figures 2.7(a) and (b) shown below depict the real training image and a 

2D representation of the target derived from a 3D model. 
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(a)       (b) 

Figure 2.7 Nissan Patrol training images (a) Real training image, (b) 3D training image    

 

The ability to render the 3D models to match the FLIR signature of the target objects 

makes it possible to efficiently correlate against the FLIR data. In contrast, the 

degradation of the edges that is present in the actual target data makes it less effective as 

a source of training images to detect targets in varied conditions. The ultimate solution 

would be to be able to design and render the 3D models of any target description, which 

can be used in any desired detection scenario.  

The training sets have been made for several types of military and civilian vehicles. The 

texture of the models has been modified to match the FLIR texture in order to improve 

the recognition capability to the OT-MACH filter with FLIR imagery.  Tests have been 

conducted on five different vehicles, as listed below:  

a. M1A2 Abrams tank 

b. British Warrior armoured vehicle 

c. M113 armoured personnel carrier 

d. Military truck  

e. Nissan patrol car 

f. Military HUMVEE  
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Figure 2.8 below shows an examples of a single training image from different training 

sets used for the different targets employed in the research conducted.   

 

     

(a)                   (b)             (c) 

     

(d)                   (e)             (f) 

Figure 2.8 Multiple target Training images, (a) Nissan Patrol car, (b) M113 troop carrier, (c) 

military HUMVEE, (d) military Truck, (e) British warrior armour and (f) M1A2 tank.    

 

2.6 Correlation response disruption due to background clutter noise and 

rotational distortion 

 

There has been a considerable amount of research focused on finding an effective 

method to reduce the deleterious effects of background clutter and rotational distortion 

on the correlation result [65], [69], [89], [90], [93], [100]. The improvements were 
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introduced to boost the discrimination ability for the required target against other 

objects and also to reduce the false alarms generated. Statistical, mathematical and pre-

processing stages have been applied to the OT-MACH filter design to enhance target 

detection in cluttered backgrounds.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.9 Correlation result with high background clutter with multiple targets in the scene  (a) 

British warrior armoured vehicle and M1A2 tank (b) M1A2 tank with M113 personal carrier (c) 

British warrior armoured vehicle and military truck 
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Figure 2.9 shows some examples of the Apache data set where high clutter is present. It 

is clearly evident that the clutter has a significant effect on the target discrimination 

when using the OT-MACH filter. Thus the need of a technique to reduce the 

background noise disruption in the correlation process is vital.  

 

Rotational distortion is also one of the technical difficulties in pattern recognition 

scenarios. In-plane and out-of-plane rotational distortion reduction techniques are very 

much needed, especially for real-time target detection and tracking. The OT-MACH 

filter can accommodate to a certain extent minor distortion due its inherent capability of 

distortion tolerance. A filter bank approach has been used to accommodate large 

changes in the target orientation in addition to the individual filter multiplexing of 

training images described in Section 2.5.1. A few hundred OT-MACH filters are each 

trained with several training images in different rotational view ranges to cover all 

aspects of the target view. However, such an extensive process of applying many 

correlations to each frame in real-time scenarios will clearly require very high 

computational power.  

 

2.7 Performance metrics and quantification of correlation response 

 

Several correlation performance metrics have been discussed in the literature to quantify 

and compare different filter designs. Kumar and Hassebrook [101] originally presented 

a now commonly employed approach to evaluate correlation filter performance. In 

addition to the correlation performance metrics introduced by Kumar and Hassebrook, 
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others have been presented to quantify the correlation result realistically and accurately. 

The metrics are as follows:    

  

a. Peak-to-sidelobe ratio (PSR). 

b. Peak-to-correlation energy (PCE). 

c. Area at half peak height (AHH). 

d. Number of peaks at half the maximum peak height (NPHH). 

e. Total detection error (TDE). 

 

2.7.1 Peak-to-sidelobe ratio 

The peak-to-sidelobe ratio (PSR) is a measure of the correlation peak quality. The peak 

height is compared to the surrounding sidelobe peak values and the PSR is given as:  

 

c

PeakPSR
σ

µ−
=      Eq. 2.21 

where µ is the mean and σc is the standard deviation of the correlation plane pixel 

intensities in a defined region around the peak. This is taken to be within a 5 x 5 pixel 

masked region and, together with the surrounding sidelobe region of a defined size, is 

used to compute the PSR. It is a common measure used to describe the peak quality and 

the degree of match between the target and the input image. Its application to a typical 

correlation response is illustrated in Figure 2.10. 
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Figure 2.10 Peak-to-sidelobe ratio estimation 

 

2.7.2 Peak-to-correlation energy 

The peak-to-correlation energy (PCE) measures the correlation peak sharpness and is 

given as [101]:  

    

Eq. 2.22 

 

where Nx and Ny are the x and y dimensions of the correlation plane and COPI is the 

correlation output peak intensity i.e.: 

 

                                               
Eq. 2.23 

 
  

where C(x,y) is the correlation peak magnitude. The PCE measurement compares the 

peak correlation energy to the overall correlation plane energy. Higher PCE values 
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indicate a better correlation peak output and thus a better detection of the true target 

objects. This measure is predominantly used for single target object scenarios [102] due 

to the fact that the measure is based on one single correlation peak in the correlation 

plane.  

 

2.7.3   Area at half peak height (AHH) 

Traditionally, peak width at half of the peak height (PWHH) is a well-known 

measurement of peak quality (to give an indication of peak localisation). For a 2D 

correlation peak, PWHH will not result in a consistently accurate measurement of the 

peak width since the correlation peak is not uniform in both dimensions. The examples 

below in Figures 2.11(a) and (b), show a  correlation peak and its cross-section at half 

the peak height.  

 

 

 (a)                   (b) 

Figure 2.11 An example peak with a cross-section at half the peak height. (a) Correlation peak. (b) 

Peak cross section  

 

From these images it is clear that the peak is oval in shape. Thus the width measurement 

would be different if measured along the x-axis and the y-axis.  A more useful measure 

would be the peak area at half the peak height (AHH) which will reflect a consistent 
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measurement for any peak width shape. The area will be a scalar whose value 

corresponds, for example, to the total number of pixels in the white area of the 

thresholded binary image shown in Figure 2.11.  

 

2.7.4   Number of peaks at half the maximum peak height (NPHH) 

A further measurement will be employed that indicates the number of peaks at half the 

maximum peak height (i.e. at half of the detection peak height).  This will indicate how 

well the filter detects the true target versus the false targets or clutter. It also gives an 

indication of the peak quality when the peaks start to become scattered as the amount of 

clutter noise exceeds an acceptable value, as shown below in Figure 2.12(a).  

 

    

(a)                              (b) 

  

(c)                                  (d)                     (c) 

Figure 2.12  (a) and (b) Correlation plane with a detection peak and some false alarm peaks. (c) and 

(d) An apparently isolated correlation peak that is actually three peaks located closely together 
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Although the peak in Figure 2.12(c) appears localised, upon close examination of the 

peak structure we find that, due to a non-optimal setting of the filter parameter values, 

the peak is in fact fractionated which will lead to false detections.  

2.7.5 Total detection error (TDE) 

The total detection error gives a measure of the OT-MACH filter performance when the 

OT-MACH parameters are changed along with the additional other filter parameters 

that are added to the OT-MACH filter as described below. The TDE is used to calculate 

how many times a single peak is present in the correlation plane, so representing a 

successful detection. The TDE is given as:  

 

100det ×
−

=
total

ectiontotal

R
RRTDE     Eq. 2.24 

 

where the total run, Rtotal, is calculated as the number of increments over which the OT-

MACH  β and γ parameter values are varied in the range of 0 and 1, while testing for 

detection of the target in a particular scenario. Rdetection is the number of detections 

counted in the run. The TDE is thus calculated as the number of failed detections 

divided by the total number of runs performed which indicates the overall performance 

of the correlation process and can be used to find the best parameter range generating 

the least false detections.  
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2.8 Target constraint assumptions  

 

In this thesis, the focus has been toward a specific application of the use of FLIR 

imagery in defence and security applications. The research has been focused on the 

improvement of the OT-MACH filter performance using multiple methods and 

techniques. There have been some assumptions during data collection and testing. The 

research has been conducted only on the FLIR imagery data acquired from the Kuwait 

Armed Forces using multiple sensors. The FLIR images were at high resolutions and 

the target heat signature was between medium heat (18oC) and high heat (45oC). Target 

scale and out-of-plane rotations were approximately fixed during the testing. Minor 

changes to scale and out-of-plane rotation were accepted and accommodated by the OT-

MACH filter distortion tolerance capability. Target occlusion was also assumed to be no 

more that 10 - 20 percent in any scenario. A quality measure has been introduced to 

refine the quantification process. The resultant correlation peak of the true target can 

only be counted as a true detection peak if there are no other peaks in the correlation 

plane that exceed 50% of the detection peak height. Introducing such a criterion should 

give a better, more accurate and reliable result. Figure 2.13(a) shows a detection peak 

with no other side peaks or false alarms in the correlation plane.  Figure 2.13(b) shows a 

discarded target detection example due to the presence of other peaks whose height 

exceeds 50% of the detection peak.  
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(a)            (b) 

Figure 2.13 (a) An acceptable correlation result. (b) Non-acceptable correlation result. 

 

2.9 Summary  

 

This chapter has introduced the Optimal Trade-off Maximum Correlation Height (OT-

MACH) filter design considerations in detail. As described in Section 2.3, there is an 

important need for optimising the filter to assist in target detection in various 

environmental conditions. The OT-MACH optimisation problems discussed in Section 

2.4 illustrate the importance of the various parameters of the filter transfer function. An 

optimisation study of these parameters has been undertaken and is described in detail in 

Chapter 3.  

One of the important filter design research criteria, namely the selection of the number 

of training images in the dataset used to create the filter transfer function, is discussed in 

detail in Section 2.5. It is concluded that there is an optimum number of training images 

that can be used to construct a near to ideal filter. Out-of-plane rotational multiplexing 

of the training images in order to attain computational efficiency is also detailed, along 

with conclusions regarding the number of training images possible in a single filter. 

Illumination effects when using real and 3D training data have been discussed, along 
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with considerations concerning the mapping of FLIR data texture information onto the 

CAD target model to improve the accuracy of the model and allow improved target 

detection. Section 2.6 discusses background clutter noise reduction and rotational 

distortion effects in the design of the OT-MACH filter. Section 2.7 has described the 

classical performance metrics for correlation filter performance assessment such as PSR 

and PCE. Furthermore, new performance metrics are also introduced, namely: Area of 

peak at half-height (AHH); Number of peaks at half maximum height (NPHH) and 

Total detection error (TDE), which are discussed in detail as additional performance 

metrics to support quantification of the filter performance. The chapter is concluded 

with discussion of the target constraints used in the work discussed in this thesis.  
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3. Chapter  3  OT-MACH filter parameter optimisation 

3.1 Chapter organisation  

 

The chapter starts with an illustration of the OT-MACH parameters and their role in 

controlling the filter behaviour. The section 3.3 addresses the optimisation of the OT-

MACH filter in detail. Section 3.3 also discusses various test results whilst keeping the 

OT-MACH filter parameters at unity. The noise term contained in the filter function is 

optimised using multiple statistical measures discussed in section 3.4. The proposed 

modification of the OT-MACH filter is justified and evaluated using several results, 

which are presented in section 3.5. The chapter is concluded in section 3.6.    

 

3.2 Introduction  

 

The optimisation of the OT-MACH filter α, β and γ parameters has been investigated 

over the last decade by a number of research groups [2], [3], [12], [58], [62], [66], [74], 

[98]. The main focus of the effort was to improve the performance of the OT-MACH 

filter correlation result by finding a suitable value for these parameters.  Each of the 

parameters controls part of the OT-MACH transfer function in order to adjust the filter 

according the desired result. The alpha (α) parameter controls the output noise variance, 

the beta (β) parameter controls the average correlation energy and the gamma (γ) 

parameter controls the average similarity matrix. When setting the beta parameter to a 

low value the OT-MACH filter will have a better peak sharpness but will have 

increased sensitivity to intra-class target object distortions. Changing the value of the 

alpha parameter will result in an increase of the robustness of the filter to distortions and 
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to noise but it will reduce the correlation peak sharpness. In order to obtain the desired 

OT-MACH behaviour, the parameters must be balanced in such a manner that allows 

the correct compromise between distortion tolerance, discrimination ability and noise 

robustness of the filter [12].  

 

3.3 OT-MACH filter parameter optimisation method  

 

In this section, the behaviour of the OT-MACH filter has been tested while changing the 

controlling parameters. The OT-MACH parameters are changed one at a time while the 

others are kept at unity. The parameter values have been pre-selected to 14 values 

within the range 0 to 1 and the resultant OT-MACH filter behaviour recorded. The test 

was carried out on three different images from a real-world scenario video sequence. 

The OT-MACH filter was trained each time with suitably rendered CAD training 

images to discriminate the target result from the cluttered background. Figure 3.1 below 

shows the four target images and a sample of the training images that were used in this 

test. 
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(a) 

  

(b) 

  

(c) 
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(d) 

Figure 3.1  Input and training image samples used for the OT-MACH parameter testing: (a), (b) 

Nissan patrol real and training image; (c) M1A2 real and training image and (d) British warrior 

real and training image 

 

The initial testing was made with a simple input image as shown in Figure 3.1(a) with 

only slight clutter in the background. Figure 3.1(b) shows a Nissan patrol, Figure 3.1(c) 

shows an M1A2 tank and Figure 3.1(d) shows a British warrior armoured vehicle. 

Tables 1 to 4 show the result of the PSR results recorded when changing each OT-

MACH parameter in turn while the other two are kept at a value of unity for the test 

images shown in Figure 3.1 
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α 

β = γ = 1 
α PSR 

β 

α = γ = 1 
β PSR 

γ 

β = α = 1 
γ PSR 

0.00001 49.63 0.00001 17.59 0.00001 79.70 

0.0001 49.68 0.0001 17.65 0.0001 76.70 

0.001 49.85 0.001 18.19 0.001 76.70 

0.01 51.12 0.01 19.87 0.01 76.64 

0.1 56.89 0.1 46.17 0.1 76.05 

0.2 60.26 0.2 58.56 0.2 75.41 

0.3 62.68 0.3 64.80 0.3 74.80 

0.4 64.52 0.4 68.21 0.4 74.20 

0.5 65.95 0.5 70.10 0.5 73.62 

0.6 67.09 0.6 71.09 0.6 73.07 

0.7 67.99 0.7 71.50 0.7 72.53 

0.8 68.83 0.8 71.55 0.8 72.00 

0.9 70.02 0.9 71.36 0.9 71.50 

1 71.01 1 71.01 1 71.01 

 

Table 3.1  PSR values obtained as a result of OT-MACH parameter changes for image shown in 

Figure 3.1(a) 

 



81	
  

	
  

 

(a)       (b) 

 

(c) 

Figure 3.2 PSR results for Nissan patrol image shown in Figure 3.1(a) for OT-MACH parameter 

changes: (a) PSR versus alpha parameter change; (b) PSR versus beta parameter change and (c) 

PSR versus gamma parameter change 
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α 

β = γ = 1 
α PSR 

β 

α = γ = 1 
β PSR 

γ 

β = α = 1 
γ PSR 

0.00001 0 0.00001 10.21 0.00001 94.32 

0.0001 0 0.0001 0 0.0001 94.32 

0.001 0 0.001 19.01 0.001 94.32 

0.01 99.4 0.01 47.93 0.01 94.33 

0.1 98.64 0.1 75.97 0.1 94.37 

0.2 97.84 0.2 82.42 0.2 94.37 

0.3 97.16 0.3 85.79 0.3 94.34 

0.4 96.55 0.4 88 0.4 94.3 

0.5 95.99 0.5 89.58 0.5 94.23 

0.6 95.48 0.6 90.79 0.6 94.15 

0.7 95 0.7 91.74 0.7 94.05 

0.8 94.55 0.8 92.52 0.8 93.95 

0.9 94.13 0.9 93.17 0.9 93.84 

1 93.72 1 93.72 1 93.72 

 

Table 3.2  PSR values obtained as a result of OT-MACH parameter changes for the image shown in 

Figure 3.1(b) 
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                                      (a)           (b) 

 

(c) 

Figure 3.3 PSR results for Nissan patrol image shown in Figure 3.1(b) for OT-MACH parameter 

changes: (a) PSR versus alpha parameter change; (b) PSR versus beta parameter change and (c) 

PSR versus gamma parameter change 
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α 

β = γ = 1 
α PSR 

β 

α = γ = 1 
β PSR 

γ 

β = α = 1 
γ PSR 

0.00001 17.16 0.00001 2.88 0.00001 15.92 

0.0001 17.16 0.0001 3.11 0.0001 15.92 

0.001 17.15 0.001 5.20 0.001 15.92 

0.01 17.05 0.01 14.36 0.01 15.91 

0.1 16.15 0.1 16.91 0.1 15.76 

0.2 15.43 0.2 17.68 0.2 15.61 

0.3 14.86 0.3 17.72 0.3 15.46 

0.4 15.17 0.4 17.47 0.4 15.13 

0.5 15.43 0.5 17.14 0.5 15.41 

0.6 15.63 0.6 16.82 0.6 15.55 

0.7 15.77 0.7 16.52 0.7 15.68 

0.8 15.88 0.8 16.28 0.8 15.80 

0.9 15.96 0.9 16.15 0.9 15.68 

1 16.01 1 16.01 1 16.01 

 

Table 3.3 PSR values obtained as a result of OT-MACH parameter changes for image shown in 

Figure 3.1(c) 
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 (a)          (b) 

 

(c) 

Figure 3.4  PSR results for M1A2 tank image shown in Figure 3.1(c) for OT-MACH parameter 

changes: (a) PSR versus alpha parameter change; (b) PSR versus beta parameter change and (c) 

PSR versus gamma parameter change 
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α 

β = γ = 1 
α PSR 

β 

α = γ = 1 
β PSR 

γ 

β = α = 1 
γ PSR 

0.00001 24.09 0.00001 3.05 0.00001 20.08 

0.0001 24.09 0.0001 3.20 0.0001 20.08 

0.001 24.10 0.001 4.55 0.001 20.09 

0.01 24.18 0.01 21.33 0.01 20.10 

0.1 24.16 0.1 24.30 0.1 20.25 

0.2 23.48 0.2 24.82 0.2 20.42 

0.3 22.62 0.3 24.70 0.3 20.57 

0.4 21.73 0.4 24.31 0.4 20.71 

0.5 20.84 0.5 23.82 0.5 20.85 

0.6 20.01 0.6 23.31 0.6 20.98 

0.7 20.44 0.7 22.80 0.7 21.11 

0.8 20.81 0.8 22.32 0.8 21.23 

0.9 21.15 0.9 21.32 0.9 21.35 

1 21.46 1 21.46 1 21.46 

 

Table 3.4   PSR values obtained as a result of OT-MACH parameter changes for image shown in 

Figure 3.1(d) 
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  (a)          (b) 

 

(c) 

Figure 3.5    PSR results for British Warrior image shown in Figure 3.1(d) for OT-MACH 

parameter changes: (a) PSR versus alpha parameter change; (b) PSR versus beta parameter 

change and (c) PSR versus gamma parameter change 

 

By looking at the above results, shown in Figures 3.2 to 3.5, it is noticeable that 

variation of the parameter γ does not affect the PSR values to any great extent. It is also 

observed that the α and β parameters have a prominent effect on the resultant PSR. 

 

It can be observed that when the input image contains a target in a less cluttered 

background we obtain a gradually increasing PSR response followed by a relatively 

steady state region of the PSR response for change in parameter values, whereas for 

noisy and cluttered background target images the PSR response is limited to a certain 
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range due to the presence of the high clutter noise which creates side peaks in the 

correlation plane. 

 

Several conclusions can be drawn from looking at the PSR results for the four tests 

conducted. The first two tests images, which involves the Nissan patrol vehicle as a 

target, was acquired in northern Kuwait where the background is almost clutter noise 

free. The background clutter intensity is minor and does not considerably affect the 

correlation peak compared to the other test images. In contrast to this, Figure 3.1(c) and 

3.1(d) show images obtained with an Apache helicopter mounted FLIR from 

environments where the background clutter is far stronger. In addition, the sharp edges 

resulting from the overlay information from the flight computer are also prominent in 

the images.  

 

The α parameter controls the noise variance or the amount of noise injected to the filter 

transfer function to help suppress the background clutter [12].  The second parameter 

investigated was the β parameter. The PSR values show a more or less constant 

response to changes of the β parameter except at low values less than 0.1. The effect of 

changing the β parameter is the main drive for the OT-MACH filter behavioural 

changes. It has a direct effect on the correlation plane result and the detection peak 

shape. In all the tests that have been conducted, the main control in tuning of the OT-

MACH filter response is achieved by varying the β parameter. 

 

That last parameter to look at is the γ parameter. This parameter has a very minimal 

effect when optimising the performance of the OT-MACH filter and the correlation 
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result. It can be seen from the results above, that the range of change in the PSR result 

when changing the γ parameter is very narrow.  

 

3.4 Noise parameter optimisation  

 

Optimisation of the OT-MACH parameters has been investigated in the literature [66], 

[74]. Since full information for the additive noise value, C, is not available at all times 

[2], [58], several methods have been used to estimate this and set an optimal value of 

the additive noise input to the filter design. The most common method is the use of the 

white noise covariant matrix given below [31]:  

 

     Eq. 3.1 

 

where σ2 is the variance about the average input image and I is the identity matrix of 

the same size as the training image. An alternative technique involves use of the current 

input image statistics to adaptively set the additive noise value in the filter, which 

allows a continuous up-date of the filter transfer function as and when the input 

changes.  

A model of the power spectral density has also been employed to set the additive noise 

value [8]. However, to make this work well, a low frequency cut-off has to be 

predefined to optimise the correlation results.   

 

However, the technique employed in the work presented in this thesis uses the ratio of 

the input image standard deviation and mean which is then used for the additive noise 

€ 

C =σ2I
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term in the filter transfer function, calculated at every frame of a video sequence to 

generate the statistical value of C. Thus the C value is given by:  

 

C = σ
µ

     Eq. 3.2 

where σ is the current input image standard deviation and µ is the current input image 

mean. This is known as the coefficient of variation [103]–[105]. The coefficient of 

variation is a probability measure utilising the input image information variation in 

order to automatically compute the noise constant. The dynamic calculation of  C  for 

every input image allows us to set the parameter α (multiplying the C value) to unity 

[74]. Thus we are only left with the two parameters, β and γ, to optimise in the filter 

transfer function in order to obtain a useful correlation output. 

 

3.5 Modified OT-MACH evaluation 

 

As discussed in the previous section, the OT-MACH filter can be evaluated by changing 

the β and γ values whilst keeping the α parameter unity due to the fact that the noise 

term can be adaptively calculated statistically from the current image [74]. Initially, to 

build a test benchmark, the tests were carried out with all the OT-MACH parameters set 

to unity. The OT-MACH parameters β and γ were then changed incrementally between 

0 and 1 to obtain the optimal parameter combination.  The test involves eight input 

images from multiple platforms with targets to be detected as shown in Figure 3.6 

below.   
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(a)                                 (b)                                 (c) 

     

(d)                                  (e)                                 (f) 

    

(g)                                 (h) 

Figure 3.6   Test images used in the OT-MACH evaluation (a), (b) and (c) showing the Nissan 

Patrol at various times of day and night (d) British warrior armour and military truck (e) M1A2 

tank and M113 personal carrier (f) British warrior and M1A2 tank (g) M1A2 tank and British 

warrior (h) British warrior 
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Table 3.5 below shows the unity OT-MACH test results for the input images shown in 

Figure 3.6.  

 

 

Test images PSR TDE 

a 93.72 99.48 

b - 100 

c - 100 

d - 100 

e - 100 

f - 100 

g 47.01 99.48 

h - 100 

 

Table 3.5 Unity parameter OT-MACH correlation results. The dash indicates false or no 

detections. 

 

It can be seen clearly that the unity OT-MACH does not perform well when correlated 

with almost all the test images shown in Figure 3.6.  

A next stage of testing was then conducted by changing the OT-MACH parameters β 

and γ in a range between 0 and 1. The α parameter can be kept set to unity due the 

adaptive calculation of the statistical value of C [74] .The ranges selected for the β and γ 

parameters are shown in Table 3.6 below. 
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α β γ 

1 0.00001 0.00001 

1 0.0001 0.0001 

1 0.001 0.001 

1 0.01 0.01 

1 0.1 0.1 

1 0.2 0.2 

1 0.3 0.3 

1 0.4 0.4 

1 0.5 0.5 

1 0.6 0.6 

1 0.7 0.7 

1 0.8 0.8 

1 0.9 0.9 

1 1 1 

 

Table 3.6  Pre-defined beta and gamma OT-MACH parameters 

A combination of the two pre-defined parameters (with α kept set to unity) shown in 

Table 3.6 have been used and the resultant OT-MACH filters have been correlated with 

the test images shown in Figure 3.6. The process has been repeated 196 times to cover 

the whole range of combination possibilities of the OT-MACH filter parameters. 

 

 

 



94	
  

	
  

Test images Beta (β) Gamma (γ) PSR TDE 

a 1 0.05 94.35 5.61 

b 1 0.5 73.62 40.3 

c 0.01 0.0025 32.91 94.89 

d 0.1 0.025 28.55 81.12 

e 1x10-3 0.005 22.07 98.97 

f 1x10-3 0.05 36.46 95.97 

g 1 0.05 48.13 55.10 

h 0.2 0.9 29.73 75 

 

Table 3.7 OT-MACH optimal parameter values and corresponding PSR and TDE values 

 

In comparison to the results obtained with the OT-MACH filter with the β and γ 

parameters set to unity, a great improvement has been achieved in the filter PSR and 

TDE performance as shown in Table 3.7. Sample graphical results are shown below in 

Figures 3.7 to 3.11.  

 

 

                (a)                                          (b)         (c) 

Figure 3.7 OT-MACH test result for target (c) in Figure 3.6. (a) Unity parameter OT-MACH 

correlation result.  (b) Test image.  (c) Optimal parameter OT-MACH correlation result.   
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The Nissan patrol test images shown in Figure 3.6(a), 3.6(b) and 3.6(c) have been 

acquired in different orientations and at different acquisition times. The same car has 

been imaged in the daytime in Figure 3.6 (a) and (b) and at night time in Figure 3.6(c), 

which shows less heat emitted from the Nissan Patrol. Figure 3.6(a), acquired in the 

daytime, shows most of the Nissan Patrol emits heat from its body due the high ambient 

temperature and also engine heat.  All of the Nissan Patrol data set has been acquired in 

the northern part of Kuwait, where the heat dramatically affects the signature of the car, 

which then changes the texture of the Nissan Patrol.  

 

Figure 3.8(a) shows the unity parameter OT-MACH filter correlation plane result. The 

optimal parameter settings computed using the pre-set values between 0 and 1 are 

shown in Figure 3.8(c).  From Figure 3.8(a) and Figure 3.8(c) it can be seen when 

comparing the results for the test images that there is a high similarity between the 

correlation results for unity and optimal parameter correlation plane respectively. This 

is due to the low interference from the relatively uniform background clutter contained 

in the test image shown in Figure 3.8(b). But it should also be noted that although the 

detection peak heights are very similar, there are slight peak height difference between 

the two   correlation planes results.   
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               (a)                                           (b)                                       (c) 

Figure 3.8 OT-MACH test result for target (a) in Figure 3.6. (a) Unity OT-MACH correlation 

result (b) test image (c) Optimal parameter OT-MACH correlation result.   

 

 

                (a)                                           (b)                                       (c) 

Figure 3.9 OT-MACH test result for target (d) in Figure 3.6. (a) Unity parameter OT-MACH 

correlation result. (b) Test image.  (c) Optimal parameter OT-MACH correlation result.   

 

 

                (a)                                           (b)                                       (c) 

 

Figure 3.10 OT-MACH test result for target (e) in Figure 3.6. (a) Unity parameter OT-MACH 

correlation result.(b) Test image.  (c) Optimal parameter OT-MACH correlation result.   
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                (a)                                           (b)                                       (c) 

Figure 3.11 OT-MACH test result for target (f) in Figure 3.6. (a) Unity parameter OT-MACH 

correlation result. (b) Test image.  (c) Optimal parameter OT-MACH correlation result.   

 

The results shown in Figures 3.9 to 3.11 shows great improvement to the overall 

correlation plane and the detected peak after altering the OT-MACH parameters from 

unity to obtain the optimal parameters. The unity parameter OT-MACH achieves no 

detection with 100% TDE as shown in Table 3.5, whereas the optimal parameter OT-

MACH achieves a PSR value of 73.62 with a TDE of only 40.3, as summarised in 

Table 3.7.    

 

These test images have highly cluttered backgrounds and contain the flight overlay at 

the top and bottom of the images. The flight data overlay effects the correlation 

performance due to its sharp edges, which generate multiple false detection peaks in the 

correlation plane. However, by choosing the right balance of the OT-MACH optimal 

parameters the performance of the filter can be improved and the high clutter noise can 

be overcome.  
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3.6 Summary  

 

In this chapter, the OT-MACH filter parameter variations have been examined and their 

effect on achievable PSR correlation values determined for three different types of 

target object in various degrees of background clutter. These tests were conducted to try 

and arrive at near optimal relative settings of these parameters for good performance of 

the OT-MACH filter. From the tests conducted it was determined that the β parameter is 

the main drive for the overall OT-MACH filter behaviour. On the other hand, γ 

parameter has the minimal effect on the filter resultant behaviour.  

 

The noise parameter in the OT-MACH transfer function denominator has been 

considered and it was concluded that it is possible to automatically compute the noise 

parameter value using the available statistics of the input image intensities. Thus the 

additive noise can be computed using the ratio of the standard deviation and mean of the 

input image intensity values whilst maintaining a setting of the α parameter to unity. 

This simplifies that the filter design and decreases the computational requirements in 

deriving the ideal OT-MACH filter transfer function by setting two, rather than three, 

parameters. In order to justify this conclusion, several results have been presented and 

discussed.  

 

In Chapter 4, further enhancements have been applied to the OT-MACH filter by using 

a bandpass Difference of Gaussian (DoG) filter. The resulting improvements in 

performance are discussed in detail.    
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4. Chapter 4     The Difference of Gaussian modified OT-MACH (D-

MACH) filter performance assessment 

4.1 Chapter organisation  

 

The chapter begins with brief introduction to the difference of Gaussian modified OT-

MACH (D-MACH) filter. The Difference of Gaussian filter theory along with the 

discussions of its transfer function are presented in section 4.3.  Section 4.3 also 

presents a novel method of using the DoG filter as a pre-processing bandpass filter with 

the OT-MACH filter. The evaluation of the D-MACH is discussed with various result 

tabulations and graphs in section 4.4. A unique method of automatic adjustment of the 

DoG filter is detailed in 4.5. The effect of the DoG pre-processing filter on the 

correlation result also described in section 4.5. Section 4.6 summarises and concludes 

the chapter.   

 

4.2 Introduction  

 

In the previous chapters the effort was focused towards the optimisation the OT-MACH 

filter parameters in order to achieve better target detection. In this chapter, the focus is 

on selecting the required spatial frequencies for filtering using a band pass pre-

processing filter. The use of a band bass filter prior to the OT-MACH filter is described 

in this chapter named the Different of Gaussian modified OT-MACH filter (D-MACH). 

Several real time images have been tested using the D-MACH filter and the results 

compared with the OT-MACH filter. Further enhancement has been achieved by 

choosing the appropriate band pass of the DoG filter determined by analysing the set of 
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training images used in the OT-MACH filter. The chapter concludes with an overall 

performance plot showing that the D-MACH filter achieves less false detection peaks in 

the correlation plane.  

 

4.3 Difference of Gaussian (DoG) filter 

 

Band pass filtering, as the name suggests, allows a set of frequencies in the selected 

band to pass through in the filtering process. It can be used in pattern recognition where 

the required band of spatial frequencies in the image being filtered is known. In order to 

help explain the effect of a band pass filter on target images, Figure 4.1(a) and 4.1(b) 

show an image and its spatial frequency domain representation along with the frequency 

band region of interest that contains most of the image information required for 

effective matched filtering. 

 

 

(a)                                     (b) 

Figure 4.1  (a) Spatial domain representation of Nissan Patrol (b) Frequency domain magnitude 

plot of Nissan Patrol spatial frequency spectrum showing bandpass useful in pattern recognition 
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The Difference of Gaussian (DoG) filter is implemented in the spatial frequency domain 

of the target as a band pass filter. It can be calculated as a convenient approximation to 

a scale normalised Laplacian of Gaussian (LoG) filter [106],[48]. The spatial domain 

numerical approximation of a Laplacian of a Gaussian filter has a high tendency to have 

a ringing effect that is avoided if the filter is generated with a higher numerical accuracy 

in the spatial frequency domain. The ringing effect results in the appearance of spurious 

or ring like edges near the sharp transitions of the OT-MACH filter impulse response. 

Thus, the frequency domain implementation of the DoG filter is preferred since it 

avoids these deleterious effects [106]. 

 

 Figure 4.2 Band pass function generated by DoG filter   

 

The DoG function is defined as the difference of two differently scaled Gaussian 

functions with different standard deviation values. The DoG filter can thus be 

expressed, in the frequency domain, as: 
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where the σ1 and σ2 represent the different standard deviations of the two Gaussian 

functions comprising the filter. The ratio between the two sigma values, σr = σ2/σ1 , is 

maintained at 1.6 as this will generate the closest approximationof  the DoG filter to a 

Laplacian of a Gaussian filter and so result in an optimal performance as a band-pass 

filter [106]. 

 

 

Figure 4.3 DoG based band pass filters for different standard deviation values σr (a) σr = 0.5 pixels 

(b) σr = 6 pixels and (c) σr = 20 pixels 

 

Figure 4.3 shows 2D plots of the DoG filter as applied to the OT-MACH filter, for the 

values of σr indicated i.e. the centre of the array is the zero frequency point and the 

edges of the array represent the maximal spatial frequencies calculated. The standard 

deviation value ranges between 0.5 and 20 pixels.  

 

 

Figure 4.4 DoG filter cross section in the spatial frequency domain  



104	
  

	
  

A cross sectional central frequency magnitude plot of the DoG filter is shown in Figure 

4.4 with the ratio σr being 1.6. It is to be noted that the standard deviation ratio is 

maintained at 1.6 pixels for optimal performance, as this results in a null zero frequency 

response [104].  A two stage test has been conducted to evaluate the performance of the 

OT-MACH filter when modified by a difference of Gaussian (DoG) band pass filter 

acting as a pre-processing function. Initially, a test benchmark for the OT-MACH filter 

is established to see the effect of changing the parameters on the filter performance. The 

DoG filter is then applied to the OT-MACH filter, as illustrated in Figure 4.5 below, 

and the modified performance evaluated.  

 

Figure 4.5 Testing process for the D-MACH filter 



105	
  

	
  

A double precision addition of several training images is performed to compute a 

rotationally multiplexed reference image. The reference image obtained after the 

addition is divided by N, the total number of training images to produce a multiplexed 

reference image which is used in fabricating the OT-MACH filter. 

 

A fast Fourier transform (FFT) is applied to the multiplexed image to obtain a 

frequency domain representation of the training set. The FFT image is centered by 

shifting the zero component of the fast Fourier tranform to the center of the spectrum. 

This is done by swapping the first quadrant with the third quadrant and second quadrant 

with the fourth quadrant,thus obtaining a shifted FFT training spectrum with which to 

design the OT-MACH filter. 

 

The OT-MACH filter is designed and computed according the Equation 2.20 to obtain 

h, the OT-MACH filter function.  The Difference of Gaussian filter is then applied to 

the filter function to obtain the bandpass filtered filter function which is then utilised to 

perform frequency domain multiplication between the test image conjugate spectrum. 

This is then inverse Fourier transformed to a correlation plane which is then subjected 

to the set threshold and performance measurement criteria to decide whether the test 

image contains an in-class or out-of-class target object. The tests conducted involve 

eight input images from multiple platforms with targets to be detected as shown in 

Figure 4.6 below.   
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(a)                                 (b)                                (c) 

     

(d)                                (e)                                 (f) 

   

(g)                                (h) 

Figure 4.6   Test images used in the D-MACH evaluation (a) Nissan Patrol daytime (b) Nissan 

Patrol from rear (c) Nissan Patrol night time (d) warrior armour and a truck (e) M1A2 tank and 

M113 personal carrier (f) and (g) British warrior and M1A2 tank (h) British warrior armour.  
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4.4 D-MACH filter evaluation  

 

The addition of the difference of Gaussian filter to the OT-MACH filter (which we 

designate as the D-MACH filter) improves the overall OT-MACH filter performance. 

Target discrimination ability, overall noise suppression and higher PSR values are 

produced when the DoG pre-processing filter is employed. The overall correlation plane 

is improved with less side peaks and so false detection peaks. The evaluations have 

been carried out with the OT-MACH α parameter set to unity and the noise matrix C 

automatically calculated from the input image as described in Chapter 3 [74]. The β and 

γ parameters are varied between 0.00001 and 1. A comparison of the frequency domain 

responses between the OT-MACH filter as shown in Figure 4.7(a) and D-MACH filter 

as shown in Figure and 4.7(b). The β and γ parameters are kept at unity for this 

comparison and the DoG filter σr  ratio is set to 1.6.  

 

 

                               (a)                                                                    (b)  

Figure 4.7  (a) 2D plot of OT-MACH spectral amplitude and (b) 2D plot of D-MACH spectral 

amplitude 
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a 1 0.05 94.35 5.61 0.5 0.025 1 93.01 0 

b 1 0.5 73.62 40.3 0.4 0.0025 3 65.78 3.57 

c 0.01 0.0025 32.91 94.89 1 0.25 7 25.16 16.83 

d 0.1 0.0025 28.55 81.12 1 0.5 9 18.56 1.53 

e 0.001 0.025 22.07 98.97 1x10-4 0.01 5 26.46 94.9 

f 0.001 0.05 36.46 95.91 0.01 0.25 5 42.8 91.82 

g 1 0.5 48.13 55.1 1 0.5 3 49.62 36.32 

h 0.2 0.9 29.73 75 1 0.05 6 31.65 1.53 

 

Table 4.1 OT-MACH and D-MACH performance comparison 

 

                  (a)                                                            (b) 

 

(c)                                      (d) 
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  (e)                                                       (f) 

 

(g)                                                            (h) 

Figure 4.8 D-MACH correlation performance results with varying DoG filter σr values as shown in 

the x-axis (a) Test image 4.6(a) PSR & TDE result, (b) Test image 4.6(b) PSR & TDE result, (c) 

Test image 4.6(c) PSR & TDE result, (d) Test image 4.6(d) PSR & TDE result, (e) Test image 4.6(e) 

PSR & TDE result, (f) Test image 4.6(f) PSR & TDE result, (g) Test image 4.6(g) PSR & TDE 

result and (h) Test image 4.6(h) PSR & TDE result 

 

Figure 4.8 illustrates the overall effect of adding the DoG pre-processing filter to the 

OT-MACH filter. It shows two measurements: PSR, which indicates the correlation 

peak quality; and TDE, which reflects the overall correlation plane behaviour in terms 

of the number of false peaks. The optimal range is clearly in a region where a high PSR 

and low TDE can be simultaneously obtained.   
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It can be observed from the comparison Table 4.1 that the D-MACH filter performance 

is better than the OT-MACH filter with respect to the PSR values obtained and the 

corresponding TDE values for each test image evaluated. It can be ascertained that the 

TDE obtained for the D-MACH filter is far better when it comes to finding targets with 

less false alarms in various test conditions. Particularly, the test image in Figure 4.6(d) 

shows a TDE result of 1.53% of error for the D-MACH filter whereas the TDE for the 

same test image when evaluated with the OT-MACH filter was 81.12%. Thus the D-

MACH filter shows greater robustness in its response to the different test images.  

 

Test image 

Figure 4.6 

Sigma (σmin) 

in pixels  

Sigma (σmax) 

in pixels 

(a) 2 9 

(b) 3 8 

(c) 2 10 

(d) 8 15 

(e) 5 10 

(f) 4 10 

(g) 2-2 20-20 

(h) 4 15 

 

Table 4.2 D-MACH optimal regions 

 

It can be observed from Figure 4.8 that there is an optimal region for each test image 

where PSR is high and the corresponding TDE is low. This observation for the D-
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MACH filter gives a minimum and maximum σr value in which the optimal region 

lies, as shown in Table 4.2. It can be seen that for test images 4.6 (a), (b) and (c) the 

range of the optimal regions is very similar. The structure of the background clutter is 

similar in these images, which then leads to the similarity in the extent of the optimal 

ranges of σr. Test result graphed in Figure 4.8(g) shows two very narrow optimal 

regions. Thus it indicates two limited detection windows within the whole range.  This 

is due to the very cluttered background and object similarity in these images.  

 

4.5 Automatic adjustment of the Difference of Gaussian band pass filter  

 

The Difference of Gaussian filter has been used in conjunction with the OT-MACH 

filter by other researchers who achieved a noticeable improvement in overall filter 

performance [77], [99]. In this work, the DoG filter parameters have to be manually set 

by choosing appropriate values of the standard deviation parameters σ1 and σ2 that 

control the band pass location of the filter. These parameters are application dependent 

and affect the correlation output result in different ways depending on the complexity of 

the input image. Having such restrictions on the requirement to select the right value for 

the band pass of the DoG filter manually rules out the use of such a filter in a real time 

application where the input image changes rapidly.  

 

4.5.1 DoG Filter parameter automatic adjustment 

There is clearly a need for the automation of selection of the DoG filter standard 

deviation due to the number of parameters that must be correctly set in both the OT-
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MACH and DoG filters to obtain useful results [75]. Consideration is now given to the 

correct setting of these parameters. 

 

The two-dimensional projected views of the 3-D CAD model of a given reference 

object are combined to form a single multiplexed reference template image to represent 

the target vehicle at different in-plane rotations. The 2-D discrete Fourier transform of 

the multiplexed template image will represent the spatial frequencies of the template 

only without any disruption from additional spatial frequency content arising from noise 

or clutter which will be present in a typical input training image. The high magnitude of 

the lower spatial frequency terms contained in the template spectrum are used to 

determine the correlation response diameter in the frequency domain which is 

multiplied by two to compute the value of the σ1 parameter of the DoG filter. The value 

of the σ2 parameter of the DoG filter is then computed by multiplying σ1 by 1.6 in order 

to obtain the ideal shape of the DoG filter, as discussed previously [106] [100].  

 

Since the spatial frequency spectrum of the input image contains spatial frequency 

content originating from the background clutter as well as the reference template, the 

Difference of Gaussian filter band pass location is set according to the high amplitude 

central spatial frequency of the multiplexed reference image spectrum so as to exclude 

the higher spatial frequency terms largely generated by the background clutter present 

in the input scenes. Figure 4.9 shows the multiplexed reference training image in the 

spatial domain and its corresponding spatial frequency power spectrum. 
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        (a)                                  (b) 

Figure 4.9 Multiplexed training image shown in: (a) the spatial domain and (b) the spatial 

frequency power spectrum of the image 

 

The DoG filter parameters σ1 and σ2 are set keeping a ratio between them of 1.6 so a 

correctly formed DoG function is produced using the measured diameter information 

using the relations shown in Equations 4.2 and 4.3 below: 

 

π
areaspecDspec
_.4

=     Eq. 4.2 

specD21 =σ      Eq. 4.3 

 

When applied the to the OT-MACH filter, the DoG pre-processing filter will be limited 

to a relatively narrow bandwidth the transmitted spatial frequencies, as shown in Figure 

4.10 below. 
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            (a)                               (b) 

Figure 4.10 (a) OT-MACH spatial frequency domain magnitude and (b) OT-MACH after applying 

the DoG pre-processing filter 

 

The DoG filter is applied to an OT-MACH filter with the α, β and γ parameters kept 

fixed at unity and kept unchanged throughout the whole set of tests conducted to 

evaluate D-MACH, with the results shown in Figure 4.11. Detection has been achieved 

with test images in several scenarios, detectable output correlation peaks being 

produced in each case. 

 

 

 

 

v u 

M
ag

ni
tu

de
  

v u 

M
ag

ni
tu

de
  



115	
  

	
  

 

(a)                (b) 

 

(c)                (d) 

Figure 4.11 Comparison of correlation results using the OT-MACH and D-MACH filters on 

indicated test images: (a) test image 4.6(a), (b) test image 4.6(c), (c) test image 4.6(d), (d) test image 

4.6(f)  

 

Figure 4.11 shows the correlation results for the four input images from the two 

different platforms employed. Each result shows the OT-MACH and D-MACH 

magnitude spectra and the correlation results from each filter as mesh plot 

representations. The result consist of four diagrams, top-right show the input image with 

the target detection diamond, top-left shows the resultant correlation peak, bottom-right 
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shows the OT-MACH mesh plot and bottom-left shows the OT-MACH result after DoG 

filtering.  

 

4.5.2 The effect of the DoG pre-processing filter on the correlation results 

Applying the DoG pre-processing filter to the OT-MACH filter improves the 

correlation results, as can be seen by the results presented in Table 4.1 and Figure 4.11 

with β the and γ parameters kept fixed at unity, as discussed in the previous sections. 

However, the method can also be used to reduce the number of false peaks present in 

the correlation plane when changes to the OT-MACH β and γ parameter values between 

0 and 1 are made. Figure 4.12 shows two surface plots derived from the correlation 

planes obtained from test image 4.6(c), firstly without a DoG pre-processing filter, and 

then with the filter applied. 

 

 

(a)                             (b) 

Figure 4.12  Surface plot, generated from test image 4.6(c) of the number of correlation peaks 

above half the maximum peak height for varying beta and gamma values between 0 and 1: (a) 

without the DoG pre-processing filter, (b) with the DoG pre-processing filter 

 

From the surface plots shown in Figure 4.12, it is clear that by applying the DoG pre-

processing filter there is a considerable improvement in the single peak detection over 
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most of the ranges of the β and γ parameter values. Even at the extremes of the graph 

range, where β is less than 0.3 and γ is greater than 0.7, the number of peaks present in 

the correlation plane that are more than half that maximum peak height drops 

significantly from 20 peaks to only 6 by using D-MACH filter. Thus the addition of the 

DoG pre-processing filter produces a significant improvement in the performance of the 

OT-MACH filter when applied to difficult detection problems with high background 

clutter.  

 

4.6 Summary  

 

Chapter 4 introduces the Difference of Gaussian (DoG) band pass filter in combination 

with the OT-MACH filter. The DoG filter acts as a pre-processor to the OT-MACH 

filter prior the correlation with the test input image. Initially, as described in Chapter 3, 

the OT-MACH filter was evaluated by changing the α, β and γ parameters in the 

transfer function of the filter. With all these parameters set to unity, the OT-MACH 

filter does not produce a useable result when used with images containing high cluttered 

backgrounds since the β and γ OT-MACH filter parameters are incorrectly set to reject 

such clutter. Tests were presented in Chapter 3 to find the optimal values of the OT-

MACH parameters by the changing the β and γ parameters whilst keeping the α value 

set to unity and using an adaptive input image noise model [74].  

In this chapter, the Difference of Gaussian (DoG) filter has been added to the OT-

MACH filter as pre-processing filter and the resulting performance enhancements 

evaluated. The results have been quantified by two measurements, notably the PSR and 

TDE values obtained from the correlation planes generated by the filters. 
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The D-MACH filter has multiple parameters that need to be adjusted i.e. the β and γ 

parameters of the OT-MACH filter and also the DoG pre-processing filter standard 

deviation setting to control its band pass location. Automation of the setting of the DoG 

pre-processing filter standard deviation has been proposed in this chapter and the 

resulting encouraging performance improvement of the D-MACH filter over the 

unmodified OT-MACH filter has been discussed, particularly when dealing with 

difficult images containing a high clutter background. The correlation peaks generated 

are sharper and a more stable overall correlation plan is produced with fewer false 

peaks.  

 

Chapter 5 proposes and then assesses an alternative improvement method to the OT-

MACH filter, which uses a Rayleigh distribution filter as a pre-processing filter in place 

of the DoG filter. Both pre-processing filters are evaluated and compared with the aim 

of producing a better correlation result than when using the OT-MACH filter alone.  
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5. Chapter 5      OT-MACH performance improvement with Rayleigh 

distribution pre-processing filter 

 

5.1 Chapter Organisation 

 

The chapter begins with an introduction to the Rayleigh distribution based band pass 

filter and presents a motivation to use the filter with an OT-MACH filter for detection 

and identification purposes. Section 5.3 introduces the test data set used for the 

Rayleigh distribution pre-processed OT-MACH filter (named the R-MACH filter) 

evaluation. Section 5.4 discusses the Rayleigh distribution filter in detail along with a 

description of the filter transfer function. A comparison study between the Difference of 

Gaussian and Rayleigh distribution band pass filter based OT-MACH filters have been 

conducted in detail in section 5.5. Section 5.6 addresses a novel method of utilising the 

R-MACH filter for human detection in FLIR camera sequences. A two stage approach 

for identification of targets using the R-MACH filter is introduced in section 5.7 

followed by section 5.8 which details the need for identification in security and 

surveillance situations in real-world applications. Section 5.9 presents the two stage 

approach of identification in detail along with an explanation of each stage involved. 

Finally, the two stage R-MACH identification results involving various targets is 

presented and analysed to validate the proposed identification process. The chapter 

concludes with a summary and conclusions in section 5.11. 
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5.2 Introduction 

 

A Rayleigh distribution filter assisted Optimal Trade-off Maximum Average 

Correlation Height (OT-MACH) filter for target recognition in FLIR imagery is 

proposed in this chapter. The Rayleigh distribution filter is applied to the OT-MACH 

filter in order to eliminate high frequency noise and to enhance the performance of the 

filter for recognising targets in highly cluttered scenes. The performance enhancement 

obtained by using the Rayleigh distribution filter with the OT-MACH filter, which we 

name the R-MACH filer, is evaluated and compared with the D-MACH filter described 

in the previous chapter i.e. the OT-MACH filter employing the Difference of Gaussian 

(DoG) band pass filter. In this chapter, the Rayleigh distribution filter is compared to 

Difference of Gaussian filter and shown to make further improvement to the OT-

MACH filter performance. The effect of the standard deviation setting on both the 

Rayleigh distribution filter and the Difference of Gaussian filter applied to the OT-

MACH filter is also presented and assessed with several examples in order to determine 

the enhancements given by the Rayleigh filter in comparison to the DoG filter for robust 

target recognition. 

 

5.3 FLIR test data set for R-MACH evaluation  

 

FLIR videos have been acquired in both day and night conditions to simulate the effect 

of solar heating on the target vehicles. Five target vehicles have been tested with the 

correlation filters being assessed, as listed below:  
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a. M1A2 Abrams tank 

b. British Warrior armoured vehicle 

c. M113 armoured personnel carrier 

d. Military truck  

e. Nissan patrol vehicle 

 

Screenshots of the acquired videos are shown in Figures 5.1 and 5.2, from which the 

nature of the background clutter is clear. The aim of the proposed technique is to 

discriminate a pre-defined target object from the highly cluttered background, which 

includes the information overlay as shown in the FLIR images in Figure 5.2 and also 

other test images without and screen overlays as shown in Figure 5.1. 

 

 

(a) Target  1    (b) Target 2                       (c) Target 3 

Figure 5.1 Example FLIR images of  Nissan patrol vehicle showing different heat signatures and 

orientations (a) Nissan patrol in day time (b) and (c) Nissan patrol at night time 

 

The first set of FLIR images, shown in figure 5.1, contains a Nissan patrol vehicle. The 

images have been acquired by a FLIR Ranger HRC imager with a 640x480 focal plane 

array operating in a wavelength range 3-5 µm, which is used for border security in 
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Northern Kuwait. The IR video sequences from this sensor have been recorded at 

various times of the day and night, which affects the car heat signature, as illustrated by 

the example frames shown in Figure 5.1. 

 

 

(a) Target  4     (b) Target 5          (c) Target 6 

Figure 5.2 Example FLIR images of multiple targets acquired by the Apache helicopter FLIR 

sensor (a) British warrior armour and military truck (b) M1A2 tank and British warrior and (c) 

M1A2 tank and M113 personal carrier 

 

5.4 Rayleigh distribution filter 

 

A correlation filter design has to make a compromise between tolerance to intra-class 

distortions of the target object, such as changes in orientation angle, and resistance to 

similar non-target objects and clutter in the input scene. The OT-MACH filter allows 

this compromise to be made by appropriate adjustment of the α, β and γ parameters to 

set relative weighting between the three terms in the filter transfer function. In Chapter 

3, only the OT-MACH β and γ parameters needed to be set to achieve the desired filter 

behaviour as the noise matrix was adaptively calculated from the current input image 

which allowed the α parameter to be kept fixed a unity [74].  

 



124	
  

	
  

The filter then will be band pass in nature; however, the work presented in Chapter 4 

has shown that by explicitly forcing a band pass structure on the filter to ensure, in 

particular, that the high amplitude low frequency spectral components are fully 

suppressed, can enhance further the performance of the OT-MACH filter. To 

accomplish this, a difference of Gaussian (DoG) pre-processing filter has been 

introduced, as described  in Chapter 4.  

In this chapter an alternative band pass filter constructed using a Rayleigh filter function 

is introduced and its performance compared with the DoG filter. The Rayleigh filter is 

described by the Rayleigh probability density function: 

    
Eq. 5.1 

where a radial co-ordinate, r, is used to produce an isotropic, circularly symmetric 2-D 

distribution and  is the standard deviation parameter that controls the filter width. The 

Rayleigh filter is applied to the OT-MACH filter transfer function as a pre-processing 

filter in place of a DoG filter.  

 

Figure 5.3 Rayleigh probability density function plot at σ values of  0.7, 1.5 and 3    

In pixels showing the sharp cut-off at low spatial frequencies  
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As illustrated in Figure 5.3, the Rayleigh distribution has the characteristic of a sharp 

fall-off at the centre of the (circularly symmetric) distribution which when applied in the 

frequency domain will remove the zero and low spatial frequency content of the filter 

transfer function.  The filter falls smoothly towards higher spatial frequencies and so 

acts as a band pass pre-processing filter to the OT-MACH filter.  

Justification for using the Rayleigh probability density function is that it describes the 

distribution of the magnitude of a complex number when the real and imaginary 

components are uncorrelated and normally distributed with equal variance. Since the 

complex Fourier spectral components of a natural image may be expected, at least 

approximately, to possess these statistics it seems reasonable to employ the Rayleigh 

distribution in the Fourier domain to ensure the band pass nature of the pattern 

recognition filter.  

 

 

(a) σ  = 0.1                         (b) σ  = 0.6                          (c) σ  = 1 

Figure 5.4 Rayleigh filter function mesh plots with different values of the standard deviation, σ (a) 

σ = 0.1 , σ = 0.6 and (c) σ = 1 

 

It can be seen from Figure 5.4, increasing the standard deviation value of the Rayleigh 

filter increases its band pass. In this Chapter, the effect of using the Rayleigh filter with 

different σ values ranging between 0 and 1 is examined. It is evident that a minor 
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change to the standard deviation value generates a large effect on the output. The 

Rayleigh filter is very sensitive to changes of σ, but the fact that only a single parameter 

requires alteration minimises the computation needed to obtain an optimum band pass 

for the filter.  

 

5.5 Test results and comparisons between filter responses 

 

In this section a comparison of the results achieved by pre-processing the OT-MACH 

filter with the Rayleigh filter and the DoG filter is made. A sample result for the Nissan 

Patrol target vehicle is shown in Figure 5.5, where the OT-MACH transfer function, 

correlation plane and the correlated target image with a detection dot to verify the target 

location, are also shown. The tests have been carried out with different standard 

deviation ranges for both the Rayleigh and DoG filters. Table 5.1 below shows the 

standard deviation values employed. 

 

Rayleigh 

filter σ 
0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

DoG 

filter σ 
0.5 1 2 3 4 5 6 7 8 9 10 15 20 

 

Table 5.1 The standard deviation range for both Rayleigh and DoG filters 



127	
  

	
  

 

(a)                                            (b)                                   (c) 

Figure 5.5 Target 3 sample result, (a) OT-MACH filter transfer function power spectrum, (b) 

correlation plane, (c) target detection 

 

Figure 5.5(a) shows the OT-MACH filter power spectrum. It can be observed that it 

contains some high spatial frequency components, which have not been sufficiently 

attenuated by the transfer function.  This makes the filter less tolerant to the clutter 

background present in the FLIR test images. Figure 5.5(b) displays the mesh plot of the 

correlation plane obtained for the target object shown in Figure 5.5(c). 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.6 DoG filtered OT-MACH transfer functions, correlation plane plots and the target 

detected for the range of standard deviation values indicated for Target 3 using the following σr 

values: (a) σr = 1 (b) σr = 2 (c) σr = 4 (d) σr = 6 (e) σr = 8 (f) σr = 10 
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It can be seen from the results shown in Figure 5.6, that the standard deviation value 

change required to obtain an effective band pass for robust target detection in the case 

of D-MACH is very large. Figure 5.6 (a) using σr = 1 shows a poor performance due to 

the presence of many side lobes or false detection peaks, thus making it difficult to 

obtain a sustained detection when the target is moving in a video sequence. At the 

higher value of σr = 4, the detection peaks observed in the correlation plane exhibit 

much less side lobe structure. When the σr value increases the detection peak gradually 

gets better as seen in Figure 5.6 (d) and 5.6(e), until it reaches a point where σr = 10 as 

shown in Figure 5.6 (f) where the peak loses its sharpness and also the side lobe false 

detection increases due to the smaller band pass of the DoG filter which rejects most of 

the needed frequencies to match the target. This makes the application of appropriate 

standard deviation selection for the DoG filter difficult for accurate target detection 

from highly cluttered scenes.  
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(c) 

 
(d)  

 
(e) 

 

(f) 

Figure 5.7  R-MACH filter transfer functions, correlation plane plots and the targets detected for 

the range of standard deviation for Target 3 using the following σ values: (a) σ = 0.09 (b) σ = 0.2 (c) 

σ = 0.4 (d) σ = 0.6 (e) σ = 0.8 (f) σ = 1 

 

It can be seen from Figure 5.7 that the standard deviation value change required to 

obtain an optimal band pass filter for robust target detection in the case of the R-MACH 
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filter is less sensitive and ranges between 0 and 1. This makes the application of the 

standard deviation appropriate selection for the Rayleigh filter easier for accurate target 

detection in cluttered FLIR scenes.  

It can be observed in Figure 5.7(a), where σ = 0.09, that the band pass of the Rayleigh 

filter is broader thus allowing a wide frequency response but still allows matching of the 

target. However, the correlation plane contains many side lobes which could confuse 

the target detection. In Figure 5.7 (c), where σ = 0.4, it can be observed that the band 

pass obtained for the Rayleigh filter is much more limited and this results in a 

correlation plane with a clearly detectable peak for the target and the side lobes which 

could result in  false detection are suppressed. As the σ goes higher and approaches 

unity it can be observed that the side lobes suppression improves still further and a 

sharper peak is obtained at the target location in the correlation plane as shown in 

Figure 5.7 (d) and 5.7(e). When the σ value for the Rayleigh filter is equal to 1, as 

shown in Figure 5.7 (f), it can be observed that the detection peak becomes broader but 

the side lobes remain suppressed, thus validating the assertion that the R-MACH filter σ 

value is tolerant in tuneability for accurate detections. This in turn makes the σ value 

selection easier when compared to correct selection of σr for the DoG filter based OT-

MACH (D-MACH) filter.   

 

The tests have been carried out on different target images with the addition of the 

Rayleigh filter and the DoG filter. The standard deviation of the pre-processing filters 

has been altered and the performance enhancement to the OT-MACH filter assessed as 

a result. The detection criterion used for a true positive is that only a single correlation 

peak is produced by the filter with no other peaks in the correlation plane exceeding half 
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of the maximum detection peak. If the correlation plane has one or more peaks 

exceeding half the maximum peak height, it will be regarded as a false positive 

detection.  

 

Detection window Range 

Target 
RAY DoG 

σmin σmax σmin σmax 

1 0.07 1 0.5 20 

2 0.07 1 0.5 20 

3 0.07 1 6 15 

4 0.07 0.3 4 20 

5 0.07 0.2 6 20 

6 0.2 1 1 7 

 

Table 5.2 True positive detection range when changing the standard deviation values for the 

Rayleigh and DoG pre-processing filters. 

 

It can be seen from Table 5.2, a wider range of standard deviation values is required by 

the DoG pre-filtered OT-MACH to achieve a successful performance level for target 

detection compared to the Rayleigh filter. These results indicate that the Rayleigh filter 

may be preferable to the DoG filter as a pre-processor to the OT-MACH in order to 

improve its detection capability.   
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The performance measures PSR and PCE are plotted in Figure 5.8 versus standard 

deviation for both the Rayleigh and DoG pre-processed OT-MACH filter for the three 

target images shown in Figure 5.1. 

 

 

 

(a)                                           (b)                      (c) 

Figure 5.8 Correlation performance measure plots containing ideal detection regions for the R-

MACH and DoG pre-filtered OT-MACH filters for: (a) Target 1 (b) Target 2 and (c) Target 3 

 

In Figure 5.8,the red line in the graphs indicates the DoG filtered OT-MACH PSR or 

PCE values and the blue dotted line indicates the R-MACH filter PSR or PCE values 

for different standard deviation settings of the pre-processing filters. The plots show 

four axes: the top x-axis depicts the DoG filter standard deviation variation; the bottom 

x-axis depicts the Rayleigh filter standard deviation variation; the left y-axis shows the 

performance measure of the Rayleigh filter and the right y-axis shows the performance 

measure of the DoG filter. The ideal detection region for each target is highlighted 

based on high PSR and high PCE correlation performance measures as tabulated in the 

Table 5.3 below. 



134	
  

	
  

 

Ideal performance measures in the detection region 

Filter RAY DoG 

Target 1 2 3 1 2 3 

σ 1 0.9 1 1 0.09 0.5 

PSR 94.05 75.62 33.09 93.11 64.47 26.09 

PCE 0.321 0.0191 0.0036 0.0314 0.0144 0.0018 

 

Table 5.3 For Target 1, 2 and 3 in Figure 5.1, ideal performance measures in the detection region 

 

Table 5.3 indicates that the overall composite filter performance is better when using 

the Rayleigh filter rather than the DoG filter as the OT-MACH pre-processing filter for 

Targets 1, 2 and 3 (shown in Figure 5.1) with higher PSR and PCE values being 

produced by the Rayleigh pre-processing filter. 

 

 

(a)                                          (b)                       (c) 

Figure 5.9 Correlation performance measure plots showing the ideal detection regions for the R-

MACH and DoG pre-filtered OT-MACH filters for: (a) Target 4 (b) Target 5 and (c) Target 6  
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Ideal performance measures in the detection region 

Filter RAY DoG 

Target 4 5 6 4 5 6 

σ 0.1 0.2 0.4 7 6 0.1 

PSR 21.42 23.43 37.58 20.075 18.19 38.68 

PCE 0.0014 0.0017 0.0039 0.0013 0.001 0.0051 

 

Table 5.4 Target 4, 5 and 6 ideal performance measures in the detection region for each filter. 

 

Table 5.4 shows that the performance measures are also improved when using the 

Rayleigh pre-processing filter as compared to the DoG pre-processing filter with higher 

PSR and higher PCE being obtained for targets 4 and 5. However, for Target 6 (shown 

in Figure 5.2) the PSR and PCE values obtained using the DoG pre-processing filter are 

better. 

 

It can be seen from Tables 4 and 5 that the R-MACH filter performance is sufficient for 

robust target detection for most of the images tested in contrast to that obtained using 

the DoG pre-filtered OT-MACH filter. It is evident from the FLIR dataset on which the 

tests were conducted that the optimal Rayleigh standard deviation parameter value may 

be selected based on the combination of higher PSR and PCE values.   
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5.6 Human detection using the R-MACH filter 

 

The importance of Human detection in computer vision has lead researchers to focus on 

the topic for many years due to the threat caused by human intervention in secure 

environments [6], [95], [107]–[111]. An improvement to the Optimal Trade-off 

Maximum Average Correlation Height (OT-MACH) filter with the addition of a 

Rayleigh distribution filter has been used to detect humans in FLIR imagery scenes. The 

Rayleigh distribution filter is applied to the OT-MACH filter to provide a sharper low 

frequency cut-off which improves the OT-MACH filter performance in terms of target 

discrimination. The OT-MACH filter has been trained using a Computer Aided Design 

(CAD) model of the target object and tested on the corresponding real target object in 

high clutter environments acquired from a FLIR sensor. Evaluation of the performance 

of the Rayleigh modified OT-MACH filter is reported in this section for the recognition 

of humans present within a FLIR image data set. 

 

5.6.1 Human FLIR imagery  

Some examples of the data used to test the OT-MACH filter’s ability to discriminate 

and detect a pre-defined human from a cluttered background scene are shown in Figure 

5.10 below. 
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(a)                                 (b)                           (c) 

     

(d)                                  (e)                                     (f) 

Figure 5.10 FLIR imagery from multiple sensors showing human activity: (a) walking man in a 

wood (b) walking man on a road(c) a man together with two cars (d) a man in a wood (e) a man 

with a single car (f) walking man in the desert  

 

The filter has been tested with real data sets from different platforms and application 

scenarios. The Nissan patrol data was acquired by the Ranger HRC FLIR imager with a 

640x480 focal plane array operating between 3-5 µm wavelengths and is used for 

border security in Northern Kuwait. The test images in Figure 5.10 show grayscale level 

indicating the temperature of the object with white the hottest and black the coolest. 

 

The OT-MACH filter was trained with two-dimensional views derived from rendered 

CAD models of a human. Several out-of-plane rotations (0° to 360°) of the selected 

humans have been used. Figure 5.11 shows a few examples of the training set images. 
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Figure 5.11 Example training images - 3D CAD models of human 

 

The advantage of using FLIR images over visible band images is the ability to 

discriminate the humans from the background due to their thermal difference. The use 

of two-dimensional projected views (derived from CAD models) as the training images 

enables the OT-MACH filter to efficiently detect humans in the scenes and is due to the 

presence of enhanced and complete edges in the training set as compared to the actual 

target data set. The rendering of the CAD models to match the FLIR signature of the 

target allows them to be more effectively correlated against the FLIR data. The ultimate 

solution will be the capability to design and render 3D models of any target description, 

which can then be used in any desired detection scenario.  

 

5.6.2 Results demonstrating Human detection in varying clutter backgrounds 

Detecting humans in cluttered backgrounds is a demanding task, especially when using 

FLIR imagery in which the heat signature of the object is the main means of detection. 

The Rayleigh distribution modified OT-MACH filter has been used for human detection 

in this research. Combining the two filters has the advantage of improving the OT-

MACH filter performance, as previously demonstrated for vehicle recognition. 
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Tests have been conducted on the test FLIR images both with, and without, the use of 

the Rayleigh distribution filter. Much work has been conducted to optimise the OT-

MACH parameters α, β and γ in order to improve the filter discrimination ability 

[36],[38]. For the current application the OT-MACH parameters β and γ have been 

fixed to a value of 0.001 and the α parameter is set automatically using the statistical 

information of the input target image, as previously described [58]. The β and γ 

parameter values settings have been found in the testing performed to be near optimal 

for all the test images. Although it is possible to get better discrimination ability by 

adjusting the parameters between tests, for this comparison both filters are fixed with 

the same parameter values to unify the benchmark setting for both filters. Initially, the 

FLIR images were tested without the addition of the Rayleigh distribution filter and 

then the same tests were conducted with the use of the Rayleigh distribution filter as a 

pre-processing stage to the OT-MACH filter to yield the results presented below.     

 

5.6.3 Human detection test result  

Multiple tests were conducted on the sample images, with example correlation plots and 

PSR results shown in the figures and tables below. 
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(a)                                       (b) 

Figure 5.12 Detection result for Human figure shown in 5.10(a): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH  Rayleigh modified filter correlation plane  

 

Image β γ OT-MACH PSR R-MACH PSR 

5.10 (a) 0.001 0.001 24.93 39.45 

 

Table 5.5 PSR result for image 5.10(a)  

 

 

(a)                                       (b) 

Figure 5.13 Detection result for Human figure shown in 5.10(b): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH  Rayleigh modified filter correlation plane 
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Image β γ OT-MACH PSR R-MACH PSR 

b 0.001 0.001 24.93 31.88 

 

Table 5.6 PSR result for image 5.10(b) 

 

(a)                                       (b) 

Figure 5.14 Detection result for Human figure shown in 5.10(c): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH Rayleigh modified filter correlation plane 

 

Image β γ OT-MACH PSR R-MACH PSR 

c 0.001 0.001 - 28.44 

 

Table 5.7 PSR result for image 5.10(c)  
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(a)                                       (b) 

Figure 5.15 Detection result for Human figure shown in 5.10(d): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH Rayleigh modified filter correlation plane 

 

Image β γ OTMACH PSR R-MACH PSR 

d 0.001 0.001 18.04 26.16 

 

Table 5.8 PSR result for image 5.10(d) 

 

(a)                                       (b) 

Figure 5.16 Detection result for Human figure shown in 5.10(e): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH Rayleigh modified filter correlation plane 
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Image β γ OT-MACH PSR R-MACH PSR 

e 0.001 0.001 - 25.24 

 

Table 5.9 PSR result for image 5.10(e)  

 

 

(a)                                       (b) 

 

Figure 5.17 Detection result for Human figure shown in 5.10(f): (a) is the OT-MACH correlation 

plane and (b) is the OT-MACH Rayleigh modified filter correlation 

 

Image β γ OT-MACH PSR R-MACH PSR 

f 0.001 0.001 10.05 24.7 

 

Table 5.10 PSR result for image 5.10(f) 

 

The above results clearly show how the addition of the Rayleigh distribution filter 

improves the OT-MACH overall performance. It can be observed that the PSR result is 

higher with the addition of the Rayleigh distribution filter. It can be seen from Figure 
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5.14 and 5.16 shown above that the OT-MACH filter did not manage to suppress the 

background clutter enough, which resulted in high false peaks exceeding half of the 

detection peak, which therefore affected the PSR result. The addition of the Rayleigh 

distribution filter can also be seen to have produced a sharper correlation peak and a 

much more stable correlation plane that makes the detection of the human in the scene 

more reliable. Thus the addition of the Rayleigh filter to the OT-MACH filter has 

produced a noticeable improvement to the PSR results achieved for the task of human 

detection in cluttered FLIR imagery reported in this section.  

 

It can thus be concluded that humans can thus be detected in cluttered FLIR imagery. 

The OT-MACH filter parameters have been modified to find the optimal settings that 

were determined to be 0.001 for both the β and γ parameters. The frequency domain 

application of the Rayleigh filter to the OT-MACH filter function was employed to 

enhance the discrimination capability of the filter design, leading to a reduction in the 

number of peaks present in the correlation plane by tuning the filter to an appropriate 

band pass to provide a suitable compromise in filter response between distortion 

tolerance and resistance to clutter. The overall results obtained have shown a significant 

improvement to the correlation plane and subsequent target detection over use of the 

unmodified OT-MACH filter alone. The proposed technique thus allows a good starting 

point for the further optimisation of the R-MACH filter to allow better detection and 

recognition of human targets in highly cluttered FLIR scenes. 
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5.7 Identification in defence and security applications  

5.7.1 Target identification using two stage R-MACH 

 

Several identification methods have been researched in the literature to help the 

decision cycle in defence and security applications [1], [112]–[117]. The Rayleigh 

enhanced OT-MACH filter (R-MACH) can be efficiently used for ascertaining the 

target classification thereby giving a feasibility of identification. In this section a novel 

two-stage process of utilising the R-MACH filter is discussed to arrive at some 

conclusions on target identification. In the previous sections it has been determined that 

an R-MACH filter has improved performance when compared to a normal OT-MACH 

or D-MACH filter for real time target detection scenarios. The normal two stage 

correlation process, as detailed in section 5.7.5 below, that requires intensive computing 

is moderated because of the use of simplified tuning of the standard deviation of the 

Rayleigh filter. The following sections introduce an important application utilising the 

R-MACH filter in real-time identification of various targets together with a brief 

description of the use of two-dimensional cross sections of 3D models of the targets for 

training of the filter. 

 

In defence and security applications, gathering quality information about an object or a 

target of interest gives the operator information that leads to identifying the target so the 

right action can be taken accordingly in real time situations. There are multiple systems 

used in operational fields that give the identity of a plane, ship or other vehicle targets, 

collectively called Identification Friend or Foe (IFF) systems. The IFF system is pre-fed 

with the information related to the vehicles, ships or planes and exchanged, for instance, 
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among the authorities’ private Air Traffic Control line (ATC) to keep track of the plane 

with positive identification information. Such systems are used in the defence world 

where they help the operator to accurately characterise the target to be either friendly, 

enemy, natural or possibly unknown and so assists in making a successful tactical 

decision [118]–[120].  The drawback of such systems is that they uses a radio signal 

which is an active process and so could be jammed, hidden or changed during the 

operation.  

 

In the following section, a decision support system concept that helps the operator to 

identify the target is proposed using an image processing technique. There are multiple 

advantages when using an image based identification system in defence and security 

applications since it is a passive system and so cannot be detected or interrupted which 

gives the operator a solid advantage in real time operation.   

 

5.7.2 Two stage target identification process 

 

As an illustrative example of the proposed two-stage R-MACH identification process 

use is made of 3D model snapshots as training images and a video sequence acquired by 

an Apache helicopter of multiple targets in a high clutter background. 

 

5.7.3 Training images used in the identification process 

The OT-MACH filter was trained with two-dimensional projected views of the 3D 

models of the target objects. Several out-of-plane rotations (0° to 360°) of the selected 



147	
  

	
  

targets have been used. Figure 5.18 shows an example projection from the training data 

set.  

 

     

(a)                                 (b)               (c) 

 

(d) 

Figure 5.18 2-D Training images: (a) M1A2 tank (b) military truck (c) M113 personal carrier (d) 

British Warrior armour  

 

5.7.4 Test images used for identification evaluation 

Intensive tests have been carried out on 15 real world FLIR images acquired by an 

Apache helicopter for several targets. The images contain single and multiple targets in 

the scene. Examples of the target types that have been tested with the proposed 

techniques are shown in Figure 5.19.  
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(a)            (b)               (c) 

     

(d)            (e)                (f) 

Figure 5.19 FLIR test images showing different targets: (a) M113 personal carrier and M1A2 tank 

(b) M1A2 tank and British warrior armour (c) British warrior armour and M113 personal carrier 

(d) British warrior armour and military truck (e) M113 personal carrier and M1A2 tank (f) M113 

personal carrier and military truck 

 

5.7.5 Two stage R-MACH identification methodology 

 

The identification process utilises a two stage R-MACH correlation as shown in Figure 

5.21 and 5.22. The first stage of the identification process involve creating a rotational 

multiplexed training image by adding and dividing the resultant image by the total 

number of the training images summed together in the space domain. This step is 

considered as a training image preparation step for the OT-MACH filter design. The 

filter is designed as given in equation (2.19) after performing a fast Fourier transform 

on the multiplexed image. The computed OT-MACH filter function h  is then 
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appropriately bandpass filtered using the Rayleigh filter as a pre-processing filter in 

order to improve the performance of the OT-MACH filter in detecting the trained target 

in a test image. A further fast Fourier transform is then performed on the spatial domain 

input test image and complex multiplied with the R-MACH transfer function in the 

frequency domain and then inverse fast Fourier transformed to obtain a correlation 

plane output. The region of interest (ROI) is located in the resultant correlation plane 

using threshold statistics. The target image is then passed on to a segmentation module 

that isolates the target out from the background using background segmentation and 

morphological operations.  

 

 

(a)            (b)   (c) 

Figure 5.20 Target segmentation using morphological operations: (a) Region of interest sliced 

image (b) Segmented image (c) Masked image 

 

Figure 5.20(a) shows a selected region of interest image that results from the first stage 

correlation. The image then further segmented and the cluttered background removed to 

reduce the false peak generation prior to the second stage correlation as shown in Figure 
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5.20(b). The mask in which the target is located in the target image is created as shown 

in Figure 5.20(c). Several morphological operations have been applied to obtain the 

output as shown in the flow chart in Figure 5.21. The three-stage method of 

morphologically processing and re-imposing the detected target is carried out as shown 

in Figure 5.20. The actual texture of the target from the input image is then re-imposed 

to the centre of a blank training template image thus creating a training image for the 

Stage 2 of the identification process as shown in Figure 5.21.  

 

Figure 5.21 Stage 1 of the R-MACH identification process 
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In Stage 2 of the identification process the background-removed centred target image is 

used to ascertain the identity of the detected target from amongst a bank of various OT-

MACH filter functions of several possible targets, namely: the Warrior, M1A2, 

HUMVEE, M113 and military truck. Each of these possible targets are used to create a 

bank of OT-MACH filters which is Rayleigh filtered using a set of Rayleigh standard 

deviation parameters as shown in the flow chart in Figure 5.22. In this way,  a bank of 

R-MACH filters for each possible target is formulated in order to identify the target 

obtained from the test image in Stage 1. Each of the R-MACH filter transfer functions 

of the possible targets are cross-correlated with the target image obtained in the Stage 1 

to obtain a number of correlation planes for each set of Rayleigh parameters. The final 

step of the Stage 2 identification process involves measuring the PSR for each of the 

correlation planes obtained. The PSR values obtained in each parameter iteration are 

then used to plot analytic graphs. In an optimal region of the best PSR measurements 

the target identity can be confirmed, thus concluding the Stage 2 of the target 

identification process. 

 



152	
  

	
  

 

Figure 5.22 Stage 2 of the R-MACH identification process  
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5.8 R-MACH identification study result  

 

Several R-MACH based identification results are presented in this section to help assess 

the functionality, accuracy and validation of the identification technique using the two 

stage process presented in the previous section.  

 

The following results are presented as combined plots of PSR versus sigma  order to 

perform target identification. The observations show that there is always a true detection 

range in sigma for a particular target in the presence of the target and/or non-targets. 

However, it must be emphasised that the σr ranges must be adjusted for a particular 

reference object since the ranges vary between reference objects. It can also be observed 

that there is a high similarity in  the behaviour of the plot for each target when 

compared with the plots of several non-targets. As an example, it can be seen that the 

target M113 PSR plots shown in Figure 5.23(b), 5.25(b), 5.27(c) and 5.28(b) have a 

similar pattern.  

 

In the Figure 5.23(a), an M113 personal carrier and an M1A2 tank are used as test 

images for the two-stage R-MACH process. The targets are detected using the first R-

MACH filter, to be then passed into a segmentation and morphological module to slice 

out the target texture into a zero background test image prior to subsequent 

identification in Stage 2 using the optimised parameter R-MACH filter. 
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(a) 

 

(b)                         (c) 

 

Figure 5.23 Target identification result for image shown in Figure 5.19(a): (a) Test image with 

M113 personal carrier and M1A2 tank  (b) PSR result for R-MACH trained with M1A2 training 

set (c) PSR result for R-MACH trained with M113 personal carrier training set 

 

Figures 5.23(b) and (c) present graphs of PSR against sigma values, from which it is 

possible to ascertain the target identity. This is done by plotting the PSR obtained for 

the same test image using different R-MACH filters designed for the M1A2 tank, 

Warrior, Humvee, Truck and M113 personal carrier target objects, respectively. The 

plots suggest that target 1, which is the M1A2 in the test image, shows a prominent PSR 

with sigma values between 10 and 14 on the x-axis of the graph, whereas   when target 2 
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is correlated, which is M113 personal carrier, the PSR shows highest values for sigma 

values less than 6, which is nearer the ideal sigma ranges of the Rayleigh filter. From 

the graphs it can be observed that the two stages R-MACH identification process 

identifies the M113 and M1A2 for the respective target inputs, the PSR showing high 

values over wide ranges of the sigma values of the R-MACH filter. Thus a relatively 

simple decision making process can be used to ascertain the presence of the target and 

its identity utilising the comparison of each PSR result produced from the R-MACH 

filter for each target object over a range of sigma values.  

 

Similarly, a British warrior armour vehicle and the M1A2 tank are present in the same 

test image shown in Figure 5.24(a) and are used to test the identification the targets 

separately using the two stage process. It can be observed that even though the British 

warrior armour contains a lot of clutter in its foreground and background due to the 

presence of overlays and text, the graphs presented in Figure 5.24(b) and (c) show 

promising identification results.  

 

 

 

 

 

 



156	
  

	
  

 

(a) 

 

(b)                     (c) 

Figure 5.24 Target identification result for image shown in Figure 5.19(b): (a) Test image with 

British warrior armour and M1A2 tank  (b) PSR result for R-MACH trained with M1A2 training 

set (c) PSR result for R-MACH trained with British warrior armour training set 

 

Figure 5.24(b) and (c) show the PSR behaviour for each target separately when 

correlated with R-MACH filters trained on different targets. From the graphs presented 

it can be seen that the M1A2 based PSR shows prominence in the ideal Rayleigh sigma 

regions, then diminishes and merges with the PSR obtained for the British warrior 

armour vehicle as well as those for the other targets being considered. A similar result 

can be observed in the Figure 5.24(c) for the British warrior armour vehicle PSR values 

compared with all other target PSRs obtained using the British warrior as a target.  
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Furthermore, a different view of a test image containing the M113 and M1A2 targets is 

used as a test case to evaluate the two-stage R-MACH identification process as shown 

in Figure 5.25(a). The graphical test results for PSR versus R-MACH sigma values for 

the M1A2 and M113 are presented in Figure 5.25(b) and (c), respectively.  

 

Figure 5.25(a) shows the test image containing the M113 personal carrier and the 

British warrior armour vehicle. The PSR comparison results against correlation of the 

M113 and British warrior armour target with the bank of R-MACH filters designed for 

different targets is shown in Figure 5.25(b) and (c), respectively. 
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(a) 

 

(b)                     (c) 

Figure 5.25 Target identification result for image shown in Figure 5.19(c): (a) Test image with 

M113 personal carrier and British warrior armour (b) PSR result for R-MACH trained with M113 

personal carrier training set (c) PSR result for R-MACH trained with British warrior armour 

training set 

From the graphical results obtained for the M113 and British warrior targets in Figure 

5.25(b) and (c), respectively, it can be observed that the good PSR performance is 

achieved  for each in turn when used as a target reference.  In order to validate the 

identification process, Figure 5.26(a) presents a test image containing a military truck 

and a British warrior armour vehicle. When using the two stage R-MACH filter 

identification processes, each target obtained separately as a test image in Stage one of 

the procedure is evaluated by plotting the PSR obtained against R-MACH filters trained 

for different targets, as shown in Figure 5.26(b) and (c). The results shown in Figure 
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5.26(b) and (c) can be used to deduce that when the input target is a military truck the 

PSR obtained is high in the ideal performance sigma region, as shown in Figure 5.26(b).  

A similar result is obtained when the target used as a template derived from Stage one 

of the process is a British warrior, as shown in Figure 5.26(c). Further results validating 

the two stage R-MACH identification process are presented in Figure 5.27, Figure 5.28. 

Figure 5.28(a) shows a test image with a different view containing the British warrior 

and a military truck. The results of the PSR versus sigma plots for each target in Figure 

5.26(a) are presented in Figure 5.26(b) and (c) for the British warrior and military truck, 

respectively. 

 

(a) 

 

(b)                   (c) 

Figure 5.26 Target identification result for image shown in Figure 5.19(d): (a) Test image with 

military truck carrier and British warrior armour (b) PSR result for R-MACH trained with 
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military truck training set (c) PSR result for R-MACH trained with British warrior armour 

training set 

 

Figure 5.27(a) shows a test image containing an M1A2 tank and an M113 Personnel 

carrier captured in a different view. Figure 5.27(b) and (c) shows the PSR plots for each 

of them, considered separately as targets for correlation. 

 

 

(a) 

 

(b)                  (c) 

Figure 5.27 Target identification result for image shown in Figure 5.19(e): (a) Test image with 

M1A2 tank and M113 personal carrier (b) PSR result for R-MACH trained with M1A2 tank 

training set (c) PSR result for R-MACH trained with M113 personal carrier training set 
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Figure 5.28(a) shows a test image containing a military truck and an M113 Personnel 

carrier in close proximity and Figure 5.28(b) and (c) show the PSR plots for each of 

them considered separately as targets for correlation. 

 

(a) 

 

(b)                  (c) 

Figure 5.28 Target identification result for image shown in Figure 5.19(f): (a) Test image with 

military truck and M113 personal carrier (b) PSR result for R-MACH trained with M113 personal 

carrier training set (c) PSR result for R-MACH trained with military truck training set 

 

It has been noted that the PSR values obtained for each target is unique for that target 

test image. A series of tests have been conducted to illustrate and support the idea being 

presented. Multiple R-MACH filters are trained with several target training sets each in 

order to find the unique corresponding PSR values. Correlation of the multiple R-

MACH filters with the same test image containing the target across various sigma 



162	
  

	
  

values have been tested and the PSR values are plotted in the graphs presented in this 

section  for comparison and analysis. 

 

5.9 Summary 

 

In this Chapter, the Rayleigh distribution filter is proposed as a pre-processing filter for 

the OT-MACH filter. It is concluded that the Rayleigh pre-processing filter gives 

improved performance over the DoG pre-processing filter when used with the OT-

MACH filter in real time target detection scenarios using FLIR imagery. It has been 

noted that the Rayleigh filter simplifies the tuning of the standard deviation of the pre-

processing filter for robust target detection due to its requirement for only a narrow 

range of variation of this single parameter.  

 

Several comparison results tabulating the PSR and PCE for the FLIR target images with 

and without overlay clutter have been made. It is concluded that the R-MACH filter 

results in a better PSR and so demonstrates improved performance when employed as a 

pre-processing filter for the OT-MACH filter. The additional advantage of using the 

Rayleigh filter is that it has only one standard deviation term to be controlled as 

compared to the DoG filter which has two. The standard deviation values of the true 

positive detection range for the Rayleigh filter are between 0.07 and 1 whereas for the 

DoG filter the range lies between 0.5 and 20.  

 

The Chapter also introduces Human detection using the R-MACH filter which is 

compared with an OT-MACH filter for detection accuracy based on the resulting PSR 
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values produced. It has been shown in this Chapter that the PSR values obtained by 

using R-MACH are improved over those obtained using an unmodified OT-MACH 

filter for Human detection. The use of the R-MACH filter thus allows a good starting 

point for the further optimisation of the OT-MACH filter design to allow better 

detection and recognition of Human targets from within highly cluttered FLIR imagery. 

A novel method of detecting Humans in several situational awareness scenarios is 

presented, to be further enhanced as discussed in the Future work section in Chapter 6. 

       

It has also been established that vision based identification of targets is of the most 

importance in security and surveillance real-time situations helping to reduce the human 

error involved in suspect detection and awareness in any covert activity in hostile 

environments.   

 

The identification of targets is introduced in the final sections of this chapter, where the 

emphasis is on utilising the R-MACH filter and assessing its feasibility for use as an 

identification filter which is discussed in detail. A two stage approach for identifying 

target objects and analysing the PSR result to arrive at a conclusion regarding the 

identity of the target is evaluated and several test results are presented and discussed. A 

graphing method which involves plotting the PSR values versus the Rayleigh filter 

standard deviation value is presented to assess multiple correlation results resulting 

from R-MACH filters trained for different targets. It has been validated that for a certain 

ideal sigma range of Rayleigh filter, PSR based identification is possible.  
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Chapter 6 

 

Conclusions and further work 
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6. Chapter 6   Conclusions and further work  

6.1 Conclusion  

 

In this thesis, correlation pattern recognition filters have been studied in detail in order 

to arrive at improvements to the OT-MACH filter, particularly when this is applied to 

FLIR imagery for defence and security applications. In the first part of the thesis, an 

introduction to the theory and also the practicalities involved in target detection, 

recognition and identification used in military and allied domains has been given. 

The second chapter of the thesis introduces the optimal trade-off maximum correlation 

height (OT-MACH) filter and its derivation. The requirement to optimise the filter for 

target detection in several environmental conditions has been considered in detail. The 

parameters of the OT-MACH filter have been detailed and utilised in finding a solution 

to the optimisation problems involved with the filter design. It is clearly identified that 

the selection of training images to construct the optimal performance filter is an 

important issue in achieving ideal results. Out-of-plane rotational multiplexing of the 

training images in order to attain computational efficiency is also discussed, along with 

conclusions regarding the number of training images possible in a single filter. 

Illumination effects when using real and 3D training data have been discussed, along 

with considerations concerning the mapping of FLIR data texture information onto the 

CAD target model to improve the accuracy of the model and allow improved target 

detection. Important factors that affect the OT-MACH filter performance, namely the 

background clutter noise and rotational distortion effects, have been discussed in detail 

to establish that the performance of the filter can be assessed using various statistical 

correlation plane parameters. The classical performance metrics for correlation filter 
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performance assessment such as PSR and PCE are discussed to measure and optimise 

the filter performance. Furthermore, new performance metrics are also introduced, 

namely: Area of peak at half-height (AHH); Number of peaks at half maximum height 

(NPHH) and Total detection error (TDE), which are discussed in detail as additional 

performance metrics to support quantification of the filter performance. 

 

Chapter 3 of the thesis examines the OT-MACH filter parameter variations and their 

effect on achievable PSR correlation values determined for various types of targets in 

simple to challenging background clutter. Further tests are conducted to arrive at near 

optimal relative settings of these parameters for good performance of the OT-MACH 

filter. From the tests and results discussed it is concluded that the β parameter is the 

main drive for the overall OT-MACH filter behaviour and γ has a minimum effect.  

The noise parameter in the OT-MACH transfer function denominator has been 

considered and it has been concluded that it is possible to automatically compute the 

noise parameter value using the available input image intensity statistics. Thus the 

additive noise can be computed using the ratio of the standard deviation and mean of the 

input image intensity values whilst maintaining a setting for the α parameter of unity. 

The simplification of the filter design and decrease in the computational requirements in 

deriving the ideal OT-MACH filter transfer function by setting two, rather than three, 

parameters is the outcome of these considerations. In order to justify this conclusion, 

several results have been presented. 

 

In Chapter 4 of the thesis, further improvements of the OT-MACH filter performance is 

achieved by using a bandpass pre-processing filter in conjunction with the OT-MACH 

filter. The advantages of using the Difference of Gaussian (DoG) filter in this role with 
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the OT-MACH filter function have been described. The DoG filter is thus used as a pre-

processor to the OT-MACH filter prior to the complex multiplication with the test input 

image spectrum. Evaluation the OT-MACH filter performance with changes of the α, β 

and γ parameters in the transfer function is carried out for various FLIR imagery based 

targets. It is concluded that with all the parameters set to unity, the OT-MACH filter 

does not produce a useable result when used with images containing high cluttered 

backgrounds since the β and γ OT-MACH filter parameters are incorrectly set to reject 

such clutter. The Difference of Gaussian (DoG) filter was added to the OT-MACH filter 

as pre-processing filter (which was named the D-MACH filter) and the resulting 

performance re-evaluated. The results have been quantified by two measurements, 

notably the PSR and TDE values obtained from the correlation planes generated by the 

filters. 

The D-MACH filter has multiple parameters that need to be adjusted i.e. the β and γ 

parameters of the OT-MACH filter and also the DoG pre-processing filter standard 

deviation setting to control its band pass. Automation of the setting of the DoG pre-

processing filter standard deviation has been proposed in this Chapter and the resulting 

encouraging performance improvement of the D-MACH filter over the OT-MACH 

filter has been discussed, particularly when dealing with difficult images containing a 

high clutter background. The correlation peaks generated are sharper and a more stable 

overall correlation plan is produced with fewer false peaks.  

 

Chapter 5 discusses further improvement to the OT-MACH filter by using the Rayleigh 

distribution filter as a pre-processer to the OT-MACH filter (which was named as the R-

MACH filter). It has been shown that the Rayleigh distribution filter simplifies the 

problem of the tuning of the standard deviation of the pre-processing filter for robust 
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target detection due to its requirement for only a narrow range of variation of this single 

parameter. Several comparison results tabulating the PSR and PCE for the FLIR target 

images with and without overlay clutter have been analysed. It is further concluded that 

the R-MACH filter results in a better PSR and demonstrated improved performance 

when employed as a pre-processing filter for the OT-MACH filter on a target detection 

test. The standard deviation values of the true positive detection range for the Rayleigh 

filter are between 0.07 and 1, whereas for the DoG filter the range lies between 0.5 and 

20.  

 

Chapter 5 also utilises the R-MACH filter but for Human detection scenarios in FLIR 

imagery data. It is compared with the OT-MACH filter for detection accuracy based on 

the resulting PSR values. The PSR values obtained using the R-MACH filter are 

improved as compared to those obtained using a normal OT-MACH filter for detecting 

Human targets. It is been established that the use of R-MACH filter promises better 

detection capability, as an improved version of the OT-MACH filter, for challenging 

highly cluttered FLIR imagery data. 

 

The overall achievements of this thesis are listed below.    

 

• It has been found that the β parameter is the main drive for the overall OT-

MACH filter behaviour and the γ parameter has a minimal effect on the filter 

transfer function. 

•  The noise factor Cx in the OT-MACH transfer function can be automatically 

computed using the statistics of the input image intensities as presented in in Al-

Kandri et al [74].  
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• Additional bandpass filtering has been incorporated into the OT-MACH filter 

based on the Difference of Gaussian (DoG) filter. This additional filter acts as a 

pre-processor and has been shown to result in improvements in the 

discrimination ability of the overall composite filter as described in Al-Kandri et 

al [75].  

 

• Further improvement has been suggested for automating selection of the DoG 

filter standard deviation setting as has been proposed in Al-Kandri et al [75].  

 

• An alternative pre-processing filter has been introduced, namely the Rayleigh 

distribution filter.  The incorporation of the Rayleigh filter into the OT-MACH 

filter resulted better detection accuracy when the filter was applied to highly 

cluttered backgrounds and difficult target detection scenarios such as human 

detection in thermal infra-red imagery as described in Al-Kandri et al [33], [76].  

 

6.2 Future work  

 

Further to the work conducted in this thesis, several innovative improvements can be 

attempted. The following two main approaches are outlined as a proposal for intended 

future work in the area of target detection using correlation pattern recognition filters. 

These are for improvements in the approach of using training images in designing the 

filter and the use of the PSR quantification for classification. 
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An important step in the design of the OT-MACH filter is the selection of training 

images for a particular target. The thesis has discussed the reasons for the limitation to 

the number of the training images that can be used in constructing a single multiplexed 

filter for ideal performance. This limitation forces the construction of a bank of filters to 

accommodate, for instance, scale and orientation invariant target detection for a single 

target. A possible approach to solve this limitation is to introduce a different 

representation of the training image set. An orthographical representation of the 3D 

model of a target can be used as training set for the OT-MACH filter construction. 

Figure 6.1 illustrates the orthographical representation example of an M1A2 tank in a 

particular scale. Using this projection, each view of the orthographical representation of 

the target is multiplexed to construct the OT-MACH filter reduces a need to develop a 

bank of filters to cover all orientations of the reference object. Although there are some 

limitations to this approach, the method could assist in reducing the computational 

intensity of generating a reference template for target detection for a particular scale. 
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(a) 

   

       (b)                                              (c) 

   

      (d)                                             (e) 

Figure 6.1 M1A2 orthographical representation: (a) Plan view of M1A2 tank (b) and (c) Side view 

of the  M1A2 tank (d) Front view of the M1A2 tank (e) Back view of the M1A2 tank 

 

A second possible approach to present the training images that could contain maximum 

information and so minimise the number of training images used, is the unfolding or 
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UV mapping technique. UV mapping is the process of making a 2D representation out 

of a 3D model. The letters U and V are used to represent the axes of the 2D projected 

plane derived from the 3D representation in x, y and z axes as shown in Figure 6.2 

[120].  

 

 

Figure 6.2 UV mapping of 3D model 

 

It can be seen in Figure 6.2 that the 2D representation displays almost all the 

information contained in the original 3D model [120]. A similar process could be 

applied to the training images for most of the targets that can be represented as a 3D 

model, an example being shown in Figure 6.3. 

 

 

Figure 6.3 British warrior UV mapped 
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