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Abstract

Let M be an n-dimensional compact (or noncompact without boundary) manifold on which a one parameter

family of Riemannian metrics g(t), t ∈ [0, T ) is defined. We say (M, g(t)) is a solution to the Ricci flow if it

evolves by the following nonlinear system of weakly parabolic partial differential equation (PDEs)

∂

∂t
g(x, t) = −2Rc(x, t), (x, t) ∈M × [0, T ],

with g(x, 0) = g(0), where Rc stands for the Ricci curvature. We take the view-point of PDEs to study the above

system in relation to some problems in Geometric Analysis, namely, monotonicity and estimates of eigenvalues

and heat kernel of a Riemannian manifold.

This thesis is divided into three parts of five chapters. The first part as contained in Chapter one is purely

introductory, where we give an expository overview of the theory and applications of the Ricci flow. Most of

the results of this study are in part two. Precisely, in Chapter two, we derive monotonicity of the first nonzero

eigenvalue of a Laplacian form operator under the action of Ricci flow (n ≥ 2) using Perelman’s idea of entropy

formulas. The consequence of this allows us to rule out the existence of nontrivial breathers. We also give the

conditions on which Einstein metrics shrink. Chapters three and four are devoted to the analysis of conjugate heat

kernel, here, we couple the Ricci flow to the conjugate heat equation defined on M ,

−∂u
∂t
−∆g(t)u+Rg(t)u = 0, (x, t) ∈M × [0, T ],

where ∆g(t) is the usual Laplace-Beltrami operator depending on the metric and the scalar curvature Rg(t) is the

metric trace of Rc. We obtain certain localized and global gradient estimates for all positive solutions to the con-

jugate heat equation. With the aid of Sobolev embedding, log-Sobolev inequality and a new entropy functional, we

obtain some sharp upper bounds for the conjugate heat kernel, as a by-product, we derive log-Sobolev inequalities

from Sobolev inequalities for the Ricci flow. The third part forms the last chapter, which is on the application of

heat flow monotonicity approach to proving some functional-geometric inequalities, here, we deal with the family

of Brascamp-Lieb inequalities as a model.
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1

Introduction and Background

0.1 Introduction

T he Ricci flow is a nonlinear system of geometric evolution partial differential equations on a Riemannian

manifold. It has been a means of deforming a background metric to obtain an ’improved form’ and has

greatly helped to understand the geometry and topology of the underlying manifold. Since its introduction in 1982

by Richard Hamilton [87], it has gained stupendous interests among mathematicians and physicists, this is not

unconnected with the breakthroughs associated with its applications, a very much celebrated of which, is the proof

of Thurston’s Geometrization Conjecture for 3-manifolds by Grisha Perelman [126, 127, 128] and the consequent

solution to the longstanding Poincaré Conjecture. Indeed the Poincaré Conjecture had been listed as one of the

seven Millennium Prize Problems by the Clay Mathematics Institute in 2000. The Ricci flow on a 2-Dimensional

manifold also leads to a complete proof of the Poincaré-Koebe Uniformization Theorem by Richard Hamilton [88]

and Bennett Chow [60]. Similarly, the recent proof of differentiable sphere theorem by Simon Brendle and Richard

Schoen [35, 36] with the use of Ricci flow needs to be celebrated, see also [34]. The Ricci flow has raised hope

of several applications in Mathematics, Physics and other Natural Sciences. It can in fact be said that Ricci flow

is a connecting point for many fields of Mathematics be it Analysis, Geometry, Topology, Theoretical Physics and

Applied Mathematics.

This thesis is divided into three parts of five chapters. The first part as contained in Chapter 1 is purely in-

troductory, where we give an expository overview of the theory and applications of the Ricci flow. We take the

view-point of PDEs to study this system of partial differential equations (Ricci Flow) in relation to some problems

in Geometric Analysis, namely, monotonicity and estimates of eigenvalues and heat kernel of a Riemannian man-

ifold. Although the Ricci flow is not strictly parabolic because of diffeomorphism invariance of the Ricci-tensor

(presence of Bianchi identity), we notice that all the associated geometric quantities, especially curvatures evolve

along the flow by heat-type equations. Combining this fact with some classical results relating to the spectrum

and heat kernel of Riemannian manifolds, one is adequately equipped to investigate further the behaviour of these

geometric objects under the Ricci flow. Motivated by this, we investigate the monotonicity property of eigenvalues

of certain operator under the Ricci flow in Chapter 2. The basic idea here follows from the energy and entropy
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formulas of Perelman, the consequence of which we use to rule out the existence of nontrivial breathers. The

results are extended to the normalized case and we are able to give conditions on which Einstein metrics shrink. It

is well known that eigenvalues, eigenfunctions, Laplacian and Heat kernel are closely related, certain behaviours

and applications of these objects become more obvious through one of the groundbreaking papers of Perelman

[126]. We combine some classical idea of Peter Li and S-T Yau [112] with Perelman’s to study the conjugate

heat-type equation coupled to the Ricci flow and estimate its minimal positive solution, which we refer to as con-

jugate heat kernel in Chapters 3 and 4. While the estimates obtained in Chapter 3 are of Li-Yau-Hamilton Harnack

type, Chapter 4 focuses on different approaches to obtain bounds for heat kernel. The main ingredients used in

this chapter includes Sobolev embedding for Ricci flow and a new entropy functional, as a by-product, we derive

log-Sobolev inequalities for the Ricci flow.

The last part of this thesis is contained in Chapter 5 which is on the elegant application of heat flow mono-

tonicity to the proof of a family of functional-geometric inequalities, namely, Brascamp-Lieb inequalities. This

chapter may be considered independent as the subject is interesting on its own right and we treat it as such by

developing the theory from Euclidean-analytic point of view, but the connection is in the fact that the applica-

tions of such inequalities are becoming more obvious in PDEs and Geometric analysis, hence the need for their

generalization to ’full’ diffeomorphic setting.

The basic elements of Riemannian Geometry used in this thesis are included in the Appendix A while Ap-

pendix B gives detail background of eigenvalues of Laplacian and heat kernels of Riemannian manifolds. For

completeness, the proofs of Perelman’s energy and entropy formulas are presented in appendix C.

0.2 Riemannian Manifolds, Metrics and Connections

Here we give an overview of the concept of Riemannian manifold and its analysis, the aim of which is to fix

notation that are adopted throughout this thesis. Appendices A and B illuminate further on the concept and provide

other elements of Riemannian Geometry as transpired in the thesis. Informally, a manifold is a topological space

whose each point has a neighbourhood which looks like Euclidean space. Lines and circles are one dimensional

examples while the sphere and the torus are examples in 2-dimension, they are called surfaces. Riemannian

manifolds are usually the object of study in Riemannian Geometry. It is a real smooth manifold equipped with

inner product called Riemannian metric which varies from point to point on the tangent space. See the following

[53, 54, 59, 79, 104] and other standard references on Riemannian Geometry for details.

Riemannian Metrics

For a manifold M and any point p ∈ M , the tangent space TpM can be characterised as the set of derivations

of algebra of germs at p of C∞ functions on M i.e., the tangent vectors are directional derivatives [15]. Local

coordinates (ui) gives a basis for TpM consisting of partial derivative operators ∂
∂xi .
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A (r, s)− tensor at p ∈M is an element of T rs (M). We also define the bundle of (r, s)− tensor on M by

T rsM =
⋃
p∈M

(TpM) =
⋃
p∈M

T ∗pM ⊗ TpM. (0.2.1)

Let TM and T ∗M denote the tangent and cotangent bundles of a manifold M respectively. We also define a

(r, s)-tensor B as a smooth section of the bundle (T ∗M)⊗r ⊗ (TM)⊗s. In local coordinate system (xi), induced

by a chart φ : U → Rn, U ⊆M , the tensor B has coordinate representation

B = Bk1,...,ks
l1,...,lr

dxl1 ⊗ ...⊗ dxlr ⊗ ∂

∂xk1
⊗ ...⊗ ∂

∂xks
, (0.2.2)

with

Bk1,...,ks
l1,...,lr

= B
( ∂

∂xl1
, ...,

∂

∂xlr
, dxk1 , ..., dxks

)
.

Let u, v ∈ TpM with

u = ui
∂

∂xi

∣∣∣
p
, v = vi

∂

∂xi

∣∣∣
p
,

we call ui ∂
∂xi vectors and ujdxj covectors. We write ∂i as an abbreviation for the ∂

∂xi and ∇i for the covariant

derivative in the direction of ∂
∂xi .

Let (Mn, g) be an n−dimensional manifold M equipped with metric g. Our manifold Mn refers to a second

countable Hausdorff topological space locally homeomorphic to some open subset of n-dimensional Euclidean

space Rn.

Definition 0.2.1. A Riemannian metric on a smooth manifold M is a tensor field g, section of the bundle S2T ∗M ,

symmetric and positive definite at each point p ∈ M . A Riemannian metric determines an inner product on each

tangent space TpM , written as

〈X,Y 〉 := g(X,Y ), (X,Y ∈ TpM).

Let {xi} be a local coordinate system, a tensor field g can be locally expressed on U as

g = gijdx
i ⊗ dxj or g = gijdx

idxj ,

where ⊗ denotes tensor product and gij = gji is a smooth function on U . g therefore provides a bilinear function

on TpM at every point p ∈M. The metric inverse of gij is denoted by gjk so that gijgjk = δki .

Definition 0.2.2. Any n-dimensional smooth manifold endowed with such a smooth metric described above is

called a Riemannian manifold. Henceforth, the pair (Mn, g) is referred to as Riemannian manifold.

We denote the induced volume element on manifold M by dµ =
√
detgdxi and the components of the metric

by gij = g(∂i, ∂j), where ∂i = ∂
∂xi . The Levi-Civita connection is defined by

∇∂i∂j = Γkij∂k, (0.2.3)
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where ∂k (which will be sometimes written as ∇k) denotes the covariant derivative in the ∂
∂xk

direction, while its

Christoffel’s symbols are given by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij). (0.2.4)

The Riemannian curvature tensor of M is a (1, 3) tensor given by

R(∂i, ∂j)∂k = Rkijk∂k

and its component defined by

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓpjkΓlip − ΓpikΓljp, (0.2.5)

it is equivalent to a (0, 4) tensor

Rijkl = ∂iΓjkl − ∂jΓikl + ΓpjkΓipl − ΓpikΓjpl. (0.2.6)

The curvature tensor satisfies the following identities

Symmetric identity : Rijkl = −Rjikl = −Rijlk = Rklij

First Bianchi identity : Rijkl +Riklj +Rilkj = 0

Second Bianchi identity : ∇rRijkl +∇kRijlr +∇lRijrk = 0.

The Ricci curvature tensor of first kind is a symmetric (0, 2) − tensor defined by contracting the Riemannian

tensor as follows

Rij ≡ Rkijk = ∂kΓkij − ∂jΓkik + ΓpijΓ
k
pk − ΓpikΓkpj , (0.2.7)

while the scalar curvature is the trace of the Ricci tensor and defined by

R = gijRij . (0.2.8)

When there is a chance of confusion, we use Rm, Rc and R to mean Riemannian tensor, Ricci tensor and Scalar

curvature tensor respectively.

A Riemannian metric is said to be Einstein metric if its Ricci tensor is a scalar multiple of the metric at each

point, that is, for some constant λ

Rij(g) = λgij everywhere.

Taking the trace of both sides gives a relation that involves Scalar curvature as

λ =
1

n
R,

where n is the dimension of the Manifold. Thus, the constant of proportionality λ for Einstein manifolds is related

to the scalar curvature R and the Einstein condition is written as

Rij(g) =
1

n
Rgij .
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We therefore define the Einstein tensor G as a 2− tensor field

Gij = Rij(g)− 1

2
R gij . (0.2.9)

Its trace in n- dimensions, obtained by contracting with metric tensor gij , is

G =
2− n

2
R.

Einstein tensor is also called trace-reversed Ricci tensor because it is the negative of the Ricci tensor’s trace.

Taking the trace of the second Bianchi identity twice yields the Contracted Second Bianchi Identity

gij∇iRjk =
1

2
∇kR,

which is equivalent to the Einstein tensor Rij(g)− 1
2Rgij being divergence-free;

div
(
Rij(g)− 1

2
R gij

)
= 0. (0.2.10)

Notice that the first trace yields

gir∇rRijkl = ∇jRkl −∇kRjl,

which implies that the divergence of Rm is the exterior covariant derivative of Rc considered as a 1-form with

values in the tangent bundles. (This is done by multiplying the Second Bianchi Identity by girgkl).

Lemma 0.2.3. ([68, Lemma 6.57]) If g and h are two Riemannian metrics on an n− dimensional Riemannian

manifold and they are related by time scale factor φ ( i.e g = φh), then, the various geometric quantities scale as

follows

gij =
1

φ
hij , Γkij(g)

= Γkij(h)
, Rlijk(g) = Rlijk(h), Rijkl(g) = φRijkl(h),

Rij(g) = Rij(h), R(g) =
1

φ
R(h) and dµ(g) = φ

n
2 dµ(h)

Laplace-Beltrami Operator

Recall that the Laplacian of a function is defined as the divergence of the gradient of that function, that is,

∆f = div grad f = ∇ · ∇f.

The Laplacian operator ∆ is a second-order differential operator in the n-Euclidean space. Now, extending the

Laplacian to act on tensor bundles over a Riemannian Manifold (Mn, g), then it becomes the connection Laplacian,

that is, the divergence of the covariant derivative.

Definition 0.2.4. Let T be any tensor field defined on the tensor bundle T kl (M), the connection Laplacian is then,

the trace of the second covariant derivative with metric g, denoted by

∆T = trg∇2T, (0.2.11)

where ∇ is the Levi-Civita connection associated with the metric g.
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We can then write

∆T = gpq(∇p∇qT )(
∂

∂xj1
, ...

∂

∂xjl
, dxi1 , ...dxik).

If the tensor bundle is simply T 0M , we have

∆f = div ∇f = gij∇i∇jf

= gij
( ∂2f

∂xi∂xj
− Γkij

∂f

∂xk

)
.

This Laplacian is often called Laplace-Beltrami Operator.

Suppose (M, g) is an oriented smooth manifold with the volume defined as

V olg = µg =
√
detg dx1 ∧ ... ∧ dxn,

where ′∧′ is the wedge product. The divergence (div) of X on the manifold is defined as the scalar function

(divX)µg := LXµg, (0.2.12)

where LX is the Lie-derivative along vector field X . (Notice that Lie derivative of metric is expressed in local

coordinate as (LXg)ij = ∇iXj +∇jXi). Then

div X =
1√
detg

∂

∂xi
(
√
detgXi).

We also define the gradient of f as

(grad f)i = ∂if = gij
∂

∂xj
f.

Combining the definition of the gradient and divergence, we obtain the formula for the Laplace-Betrami operator

on a scalar function f as

∆f = div grad f =
1√
detg

∂

∂xi

√
detg gij

∂

∂xj
f. (0.2.13)

More generally, the Laplacian operator acting on tensor is given by

∆ = div ∇ = traceg∇2 = gij∇i∇j = ∇i∇i.

Consider the commutator of ∆ and ∇ on any function f ∈ C∞(M), we have the Ricci identity

∆∇if = ∇k∇i∇jf = ∇i∇j∇kf −Rijkl∇kf, (0.2.14)

which implies that

∆∇if = ∇i∆f +Rij∇jf. (0.2.15)

By Bochner formula, we define for a gradient vector field,

1

2
∆|∇u|2 = |∇2u|2 + 〈∇∆u,∇u〉+Rc(∇u,∇u). (0.2.16)

A variant of which is given for any function f ∈ C∞(M) as

∆|∇f |2 = 2|∇∇f |2 + 2Rij∇if∇jf + 2∇if∇i(∆f). (0.2.17)
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0.3 Outline of the Thesis

This section mainly highlights the results of each chapter in this thesis. For each chapter, we give a detailed

introduction, background and motivations of every studied topic. All the assumptions, statements of results and

their proofs are stated explicitly as well. The Ricci flow will be a connecting point up to Chapter 4, while the last

chapter will be treated independently.

Chapter 1

Chapter 1 is purely introductory, it provides detailed background on the theory and applications of the Ricci flow.

We start with a brief history of the subject, we then present Ricci flow as a nonlinear evolution partial differential

equation. We discuss some special solutions with examples, evolutions of geometric quantities under the flow and

existence problem for the flow. We conclude this chapter with statements of maximum principles which are used

extensively in the remaining chapters.

Chapter 2

In Chapter 2 we study evolution and monotonicity of the first eigenvalue of Laplacian-type operator under the

Ricci flow via Perelman’s energy functional. In Section 2.2, we introduce some classical energy functionals and

lay emphasis on Perelman entropy and its geometric consequences. Let (Mn, gij(t)) be a closed manifold for a

Riemannian metric gij(t) and a smooth function f on Mn, Perelman’s Energy functional F [126] on pairs (gij , f)

is defined by

F(gij(t), f) =

∫
Mn

(R+ |∇f |2)e−fdµ, (0.3.1)

where gij and R are metric components and scalar curvature respectively. Perelman [126] proved

Lemma 0.3.1. The coupled modified Ricci flow equation with a backward heat equation

∂gij
∂t

= −2(Rij +∇i∇jf)

∂f

∂t
= −∆f −R

(0.3.2)

is a gradient flow for the energy functional F(g(t), f(t)).

The above lemma is discussed in Lemma 2.2.2. Notice that the second equation in the coupling is a backward

heat equation, which can be solved backward in time. Conjugating away the infinitesimal diffeomorphism converts

(0.3.2) to
∂gij
∂t

= −2Rij

∂f

∂t
= −∆f + |∇f |2 −R.

(0.3.3)
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Precisely
d

dt
F(gij(t), f(t)) = 2

∫
Mn

|Rij +∇i∇jf |2e−fdµ. (0.3.4)

In particular F(gij(t), f(t)) is monotonically nondecreasing in time and the monotonicity is strict unless Rij +

∇i∇jf = 0.

Perelman defines

λ(gij) = inf
{
F(gij , f) : f ∈ C∞c (M),

∫
M

e−fdµ = 1
}
, (0.3.5)

where the infimum is taken over all smooth functions f . Setting e−f =: u2, then the functional F is written as

F =

∫
Mn

(Ru2 + 4|∇u|2)dµ with

∫
M

u2dµ = 1. (0.3.6)

Then λ(g) is the first non zero (least) eigenvalue of the self adjoint modified operator −4∆ + R and the non-

decreasing monotonicity of F implies that of λ. As an application, Perelman was able to rule out the existence of

nontrivial steady or expanding Ricci breathers on closed manifolds.

In Section 2.3, we construct a new family of entropy functionals which proves to be monotonically nondecreas-

ing.

Definition 0.3.2. Let (Mn, g) be a closed n-dimensional Riemannian Manifold, f : Mn → R be a smooth

function on Mn, define a functional on pairs (gij , f) by

FB =

∫
M

(1

2
|∇f |2 +R

)
dm, (0.3.7)

where dm := e−fdµ. (see Definition 2.3.2).

The functional FB is a variant of Perelman’s energy functional F , though expected to behave in a similar

manner, it differs from the later by the introduction of constant 1
2 . We also define a family of functional FBC as

FBC =

∫
M

(|∇f |2 + 2CR)dm, (0.3.8)

where C ≥ 1
2 , C ∈ R. When C = 1

2 , this is Perelman’s F functional [126], C = 1 is a specific case we consider

and C = 1
2k, k ≥ 1, we have Li-Fk-family [109]. Precisely, we prove the following

Let gij(t) and f solves the system (0.3.3) in the interval [0, T ), then,

d

dt
FB(gij , f) =

∫
M

|Rij +∇i∇jf |2dm+

∫
Mn

|Rij |2e−fdµ, (0.3.9)

d

dt
FBC = 2

∫
M

|Rij +∇i∇jf |2dm+ 2(2C − 1)

∫
M

|Rij |2dm ≥ 0. (0.3.10)

Particularly, define

µC(gij) = inf
{
FBC(gij , f) : f ∈ C∞c (M),

∫
M

e−fdµ = 1
}
, (0.3.11)

where the infimum is taken over all smooth functions f . The normalisation
∫
M
e−fdµ = 1 makes e−fdµ a

probability measure and ensures a meaningful infimum. We prove (see Theorem 2.3.7)
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Theorem 0.3.3. Let (Mn, gij(t)), t ∈ [0, T ) be a solution of the Ricci flow, then, the least eigenvalue µC(gij) of

(−2∆ + CR) is diffeomorphism invariance and non-decreasing. The monotonicity is strict unless the metric is a

steady gradient soliton.

The above results are extended to the case of normalized flow in Section 2.4. The results here confirm that either

expanding or steady breathers on compact manifold are necessarily Einstein. In the last section, we construct a

new family of entropies over shrinkers (shrinking Ricci soliton), which allows us to obtain the conditions over

which Einstein metric shrinks under both normalized and unnormalized Ricci flow. Although we assume that

our manifold has no boundary, the results can be carried over directly to the case with empty boundary. Recall

Perelman’s shrinker entropyW

W(g, f, τ) :=

∫
M

[
τ(R+ |∇f |2) + f − n

]
(4πτ)−

n
2 e−fdµ, (0.3.12)

Here, Perelman [126] proved that if (g(t), f(t), τ(t)) solves the following system

∂gij
∂t

= −2(Rij +∇i∇jf),

∂f

∂t
= −∆f −R+

n

2τ
,

dτ

dt
= −1.

(0.3.13)

Then
d

dt
W(g, f, τ) =

∫
M

2τ |Rij +∇i∇jf −
1

2τ
gij |2udµ, (0.3.14)

where
∫
M
udµ is a constant. Similar to the above we have the following entropies over shrinkers

Definition 0.3.4. Let (M, g) be a closed n-dimensional Riemannian Manifold, we define a family of entropy

functionalWBC as

WBC = τ

∫
M

[
|∇f |2 + 2C

(
R+

1

τ
(f − n)

)]
udµ, (0.3.15)

where C ≥ 1
2 , C ∈ R. When C = 1

2 , this is Perelman’sW entropy [126].

Theorem 0.3.5. Let (M, gij(t), f(t), τ(t)), t ∈ [0, T ), solve the system (0.3.13), where f evolves by a backward

heat equation, then,WBC is monotonically non-decreasing. In particular, we have

d

dt
WBC = 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ+ 2(2C − 1)τ

∫
M

|Rij −
1

2τ
gij |2udµ ≥ 0. (0.3.16)

Moreover, the monotonicity is strict unless

Rij +∇i∇jf −
1

2τ
gij = 0 and Rij −

1

2τ
gij = 0. (0.3.17)

(See Theorem 2.5.6).
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Chapter 3

Chapter 3 of this thesis is organised as follows; Section 3.2 introduces the theory of conjugate heat equation

and gives a quick review of how one can view Perelman’s differential Harnack estimate as Li-Yau type and how

it provides an alternative proof of a localised version of his entropy monotonicity formula. The main result of

Section 3.3 is contained in Theorem 3.3.1, where we establish a point-wise differential Harnack inequality for all

positive solutions of the conjugate heat equation on manifold evolving by the Ricci flow.

Theorem 0.3.6. Let u ∈ C2,1(M × [0, T ]) be a positive solution to the conjugate heat equation Γ∗u = (−∂t −

∆ + R)u = 0 and the metric g(t) evolve by the Ricci flow in the interval [0, T ) on a closed manifold M with

nonnegative scalar curvature. Suppose further that u = (4πτ)−
n
2 e−f , where τ = T − t, then for all points

(x, t) ∈ (M × [0, T ]), we have the Harnack quantity

P = 2∆f − |∇f |2 +R− 2n

τ
≤ 0. (0.3.18)

Then P evolves as

∂

∂t
P = −∆P + 2〈∇f,∇P 〉+ 2

∣∣∣Rij +∇i∇jf −
1

τ
gij

∣∣∣2 +
2

τ
P +

2

τ
|∇f |2 +

4n

τ2
+

2

τ
R. (0.3.19)

for all t > 0. Moreover P ≤ 0 for all t ∈ [0, T ].

As an application of this, we derive the corresponding Harnack estimate under a mild assumption that the scalar

curvature remains nonnegatively bounded. Here is the statement of the result (see Corollary 3.3.3 for the proof):

Corollary 0.3.7. (Harnack Estimates). Let u ∈ C2,1(M × [0, T )) be a positive solution to the conjugate heat

equation Γ∗u = 0 and g(t), t ∈ [0, T ) evolve by the Ricci flow on a closed manifold M with nonnegative scalar

curvature R. Then for any points (x1, t1) and (x2, t2) in M × (0, T ) such that 0 < t1 ≤ t2 < T , the following

estimate holds
u(x2, t2)

u(x1, t1)
≤
(τ1
τ2

)n
exp

[ ∫ 1

0

|γ′(s)|2

2(τ1 − τ2)
ds+

(τ1 − τ2)

2
R
]
, (0.3.20)

where τi = T − ti, i = 1, 2 and γ : [0, 1] is a geodesic curve connecting points x1 and x2 in M.

We do hope the above results can be improved by removing the non negativity constraints on the curvatures.

There is another important result in this section (Subsection 3.3.2), where we establish a localised form of the

Harnack and gradient estimates obtained. The main idea is the application of the Maximum principle on some

smooth cut-off function. It was the basic idea used by Li and Yau in [112], however our computation is more

involved as the metric is also evolving. Let d(x, y, t) be the geodesic distance between x and y with respect to the

metric g(t), define

Q2ρ,T := {(x, t) ∈M × (0, T ] : d(x, p, t) ≤ 2ρ}.

The following is the statement of the localised estimate (see Theorem 3.3.4):
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Theorem 0.3.8. Let u ∈ C2,1(M × [0, T ]) be a positive solution to the conjugate heat equation Γ∗u = (−∂t −

∆ + R)u = 0 defined in geodesic cube Q2ρ,T ⊂ M and the metric g(t) evolves by the Ricci flow in the interval

[0, T ] on a closed manifold M with bounded Ricci curvature, say Rc ≥ −Kg, for some constant K > 0. Suppose

further that u = (4πτ)−
n
2 e−f , where τ = T − t, then for all points Q2ρ,T ⊂M , we have the following estimate

|∇u|2

u2
− 2

ut
u
−R ≤ 4n

1− 4δn

{
1

τ
+ C

(
1

ρ2
+

√
K

ρ
+
K

ρ
+

1

T

)}
, (0.3.21)

where C is an absolute constant depending only on the dimension of the manifold and δ is such that δ < 1
4n .

In Section 3.4, we introduce a dual entropy formula which surprisingly interpolates between Perelman’s en-

tropy [126] for conjugate heat equation on an evolving manifold and the Ni’s modified entropy formula [122]

for linear heat equation on static manifolds. Here, we will use dV (x) instead of our usual notation dµg(t) of the

volume form to indicate that volume is kept fixed throughout the time of evolution for the heat equation on a closed

n-dimensional manifold (M, g(t)). The results described here are contained in our submitted paper [1].

Definition 0.3.9. Let u = u(x, t) be a positive solution to the heat equation( ∂
∂t
−∆

)
u(x, t) = 0. (0.3.22)

Let f : M × (0, T ] → R be smoothly defined as u = (4πt)−
n
2 e−f with

∫
M
u(x, t)dV (x) = 1. We introduce a

generalized family of entropies by

Wε(f, t) =

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

] e−f

(4πt)
n
2
dV (x), (0.3.23)

where 0 < ε2 ≤ 4π.

From this entropy formula, we also recover the corresponding differential Harnack inequality and gradient

estimate for the fundamental solution (see Theorem 3.4.4), which in fact, holds for all positive solutions to the heat

equation.

Theorem 0.3.10. Let M be a closed Riemannian manifold. Assume that u = (4πt)−
n
2 e−f is a positive solution

to the heat equation Γu = (∂t −∆)u = 0, then, we have the following monotonicity formula forWε(f, t) defined

in (0.3.23)

d

dt
Wε(f, t) = −

∫
M

[
ε2t

2π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
+
(

1− ε2

4π

)
|∇f |2

]
e−f

(4πt)
n
2
dV (x) (0.3.24)

with (f, t) satisfying ∫
M

e−f

(4πt)
n
2
dV (x) = 1 (0.3.25)

and 0 < ε2 ≤ 4π.
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Theorem 0.3.11. LetM be a closed manifold with nonnegative Ricci curvature andH(x, y, t) = H = (4πt)−
n
2 e−f

be the heat kernel, where H tends to a δ-function as t → 0 and satisfies
∫
M
HdV (x) = 1. Then for all t > 0, we

have

Pε =
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π
≤ 0. (0.3.26)

Here, we have a family of entropy formulae for the conjugate heat equation on manifold evolving by the Ricci

flow forward in time.

Wε(g, f, τ) =

∫
M

[ε2τ
4π

(R+ |∇f |2) + f − nε2

4π
+
n

2
ln
(4π

ε2

)] e−f

(4πτ)
n
2
dµ, (0.3.27)

where τ = T − t > 0 and R = R(x, t) is the scalar curvature. Let u = u(x, t) be a positive solution to the

conjugate heat equation on a complete compact manifold with metric g = g(x, t) evolving by the Ricci flow. Let

u =
e−f

(4πτ)
n
2

satisfies

∫
M

e−f

(4πτ)
n
2
dµ = 1.

Then

(−∂t −∆ +R)u = 0

and the following (see Theorem 3.4.13):

Theorem 0.3.12. Let (M, g(t)), t ∈ [0, T ) be a solution of the Ricci flow ∂tgij = −2Rij(g). Let u : M ×

[0, T )→ (0,∞) solves the conjugate heat equation (−∂t −∆ + R)u = 0. The entropy functionalWε(g, f, τ) is

nondecreasing by the formula

d

dt
Wε(g, f, τ) ≥ ε2τ

2π

∫
M

∣∣∣Rij + fij −
1

2τ
gij

∣∣∣2udµ ≥ 0 (0.3.28)

for 0 < ε2 ≤ 4π.

As it is well known that entropy functional are intimately related to functional inequalities, we will apply the

monotonicity proved in this section to derive a family of logarithmic Sobolev inequalities in the next chapter.

Chapter 4

The results of this chapter will appear in [2]. In the first part we prove an upper estimate on the conjugate heat

kernel of the manifold evolving by the Ricci flow, it turns out that the estimate depends on the best constants in

Sobolev inequality for the Ricci flow due to Q. Zhang in [157] and the bound on the scalar curvature. Here is the

statement of the result (see Theorem 4.2.1):

Theorem 0.3.13. Let (M, g(x, t)), t ∈ [0, T ] be a solution to the Ricci flow with n ≥ 3 and F (x, t; y, s) be the

fundamental solution to the conjugate heat equation (conjugate heat kernel under Ricci flow). Then for a constant

Cn depending on n only, the following estimate holds

F (x, t; y, s) ≤ Cn(∫ t+s
2

s
e

2
n
P (τ)

α(τ)A(τ)dτ ·
∫ s
t+s
2

e−
2
n
P (τ)

A(τ) dτ

)n
4

(0.3.29)
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for 0 ≤ s < t ≤ T , where α(τ) =
ρ−1− 2

n τ

ρ−1 , R(g0) ≥ ρ being the infimum of the scalar curvature taken

at the initial time, P (τ) =
∫ t
s
(B(τ)A−1(τ) − 1

2φ(τ))dτ , with A(t) and B(t) being positive constants in the

Zhang-Ricci-Sobolev inequality and φ(t) is the lower bound for the scalar curvature.

In a special case where the scalar curvature is nonnegative at the starting time of the flow, one obtains a bound

similar to the one in the fixed metric case.

Corollary 0.3.14. Let the assumptions of the above theorem hold. Suppose further that the scalar curvature is

nonnegative at time t = 0 (i.e., R(x, 0) ≥ 0). Then for a constant C̃n depending on n and the best constant in

Euclidean Sobolev embedding, the following estimates hold

F (x, t; y, s) ≤ C̃n
(t− s)n2

(0.3.30)

for 0 ≤ s < t ≤ T .

The exact value of C̃n is computed in the proof. Its value in the case R(x, 0) = 0 is different from that of the

case R(x, 0) > 0.

In the second part of this chapter, upper estimates arising from the monotonicity of the Wε(f, t) entropy

formula are obtained. The main ingredients used here are logarithmic Sobolev inequalities and ultracontractivity

property of the conjugate heat semigroup. It is well known that Gross logarithmic Sobolev inequality [83] is

equivalent to Nelson’s hypercontractive inequality [121], both of which may imply ultracontractivity of the heat

semigroup. (See [71, 72, 107, 152]). Our results establish this under the Ricci flow. Precisely, let there exists finite

positive constants A0 and B0 depending only on n, g0, lower bound for the Ricci curvature and injectivity radius

of M . For any u ∈W 1,2(M, g0), such that

‖u‖ 2n
n−2
≤ A0‖∇u‖2 +B0‖u‖2, (0.3.31)

where m ≥ 3 and ‖ · ‖q = (
∫
M
| · |qdµg)

1
q , 1 ≤ p <∞. We can then write (0.3.31) as(∫

M

u
2n
n−2 dµg0

)n−2
n ≤ A

∫
M

(
4|∇u|2 +Ru2

)
dµg0

+B

∫
M

u2dµg0
, (0.3.32)

where

A =
1

4
A0, and B =

1

4
A0 supR−(·, 0) +B0

since R(x, 0) + supR−(·, 0) = R+(x, 0)−R−(x, 0). R denotes the scalar curvature. We have the following (see

Theorems 4.3.2 and 4.4.1):

Theorem 0.3.15. LetM be a compact Riemannian manifold of dimension n ≥ 3. Let the solution to the Ricci flow

exist for all time t ∈ [0, T ) with bounded scalar curvature for all t ≥ 0. Assume the Sobolev embedding (0.3.31)

holds, then for finite positive constants A and B depending on n, A0, B0, lower bound for Rg0
and T , there hold

for each t ∈ [0, T ) and u ∈W 1,2(M)(∫
M

u
2n
n−2 dµg

)n−2
2 ≤ A

∫
M

(
|∇u|2 +

1

4
Ru2

)
dµg +B

∫
A

u2dµg, (0.3.33)
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∫
M

u2 lnu2dµg(t) ≤ σ2

∫
M

(4|∇u|2 +Rv2)dµg(t) −
n

2
lnσ2 + (t+ σ2)β1 +

n

2
ln
nA

2e
, (0.3.34)

if λ0 = inf‖u‖2=1

∫
M

(4|∇u|2 + Ru2)dµg0
, that is, λ0 is the first eigenvalue of the operator −∆ + 1

4R. Here

σ > 0, β1 = 4A−1
0 B0 + supR−(·, 0).

Finally, for some constant C depending on n, t, T,A0, B0 and supR(·, 0), there holds the following estimate

F (x, T ; y) ≤ CT−n2 (0.3.35)

for the positive solution to the conjugate heat equation F associated to the Ricci flow.

The three results in the above theorem are essentially equivalent, their proofs occupy Sections 4.3 and 4.4.

Chapter 5

Chapter 5 is on the elegant application of heat flow monotonicity to the proof of a family of functional-geometric

inequalities, namely, Brascamp-Lieb inequalities. This chapter may be considered independent from the remaining

thesis as the subject is interesting in its own right and we treat it as such by developing the theory from Euclidean-

analytic point of view.

The set up is as follows: For natural numbersm,n, nj ∈ N, n ≥ nj , 1 ≤ j ≤ m, define positive real numbers

pj > 0, such that
m∑
j=1

pjnj = n. (0.3.36)

Let Bj : Rn → Rnj be surjective linear maps from Rn onto Rnj such that their common kernel ∩mj=1Bj = {0}.

This condition forces
∑m
j=1 pjB

∗
jAjBj to be isomorphism, where B∗j is the adjoint of Bj and Aj is a positive-

definite nj × nj matrix.

Brascamp-Lieb constant is defined as follows

D(pj) =
det
(∑m

j=1 pjB
∗
jAjBj

)
∏m
j=1

(
detAj

)pj . (0.3.37)

In this case, each fj is a centred gaussian function, i.e,

fj = exp(−π〈Ajx, x〉). (0.3.38)

Let C1 and C2 respectively be the smallest and largest constant such that for all fj , 1 ≤ j ≤ m∫
Rn

m∏
j=1

f
pj
j (Bj(x)) dx ≤ C1

m∏
j=1

(∫
Rnj

fj

)pj
(0.3.39)

and ∫ ∗
Rn

sup
x=

∑m
j=1 pjB

∗
j xj , xj∈R

nj

m∏
j=1

f
pj
j (xj) dx ≥ C2

m∏
j=1

(∫
Rnj

fj

)pj
. (0.3.40)
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Here, the symbol
∫ ∗ means outer integral. By a Theorem of Lieb [106], see also [13], both inequalities (0.3.39)

(Bracamp-Lieb inequalities) and (0.3.40) (Reverse Brascamp-Lieb inequalities) are well known to be saturated

by centred Gaussian functions. It was conjectured by Brascamp and Lieb in [32], that Gaussian functions give the

best constants and proved by Lieb in [106] and simultaneously by Beckner in [18]. F. Barthe in [13] reproved

Lieb’s result using the method of optimal transport and simultaneously derived the dual result for the case of

inequality (5.2.9) as conjectured by Lieb. In fact, the constants C1 and C2 can be computed explicitly as

C1 = sup
fj

∫
Rn
∏m
j=1 f

pj
j (Bj(x)) dx∏m

j=1

( ∫
Rnj fj(xj) dxj

)pj =

( ∏m
j=1(detAj)

pj

det
(∑m

j=1 pjB
∗
jAjBj

)) 1
2

= D−
1
2

and

C2 = inf
fj

∫
Rn
∏m
j=1 f

pj
j (Bj(x)) dx∏m

j=1

( ∫
Rnj fj(xj) dxj

)pj =
det
(∑m

j=1 pjB
∗
jABj

) 1
2

∏m
j=1(detAj)

pj
2

= D
1
2 ,

where both the infimum and the supremum are taken over the class of all Gaussian functions with minimum near

the origin.

We discuss details of this using Barthe’s arguments and show that many geometric inequalities actually have

their generalisation in Brascamp-Lieb inequalities (see Lemma 5.2.2). In the above description of Brascamp-Lieb

Inequality we have used linear transformation and Lebesgue measure, we like to submit that the strength of this

family of inequalities is the flexibility to live in a more generalized setting. Hence, we collect some sort of variants

due to various authors in section 5.2.

However, our major aim in this chapter is to prove the inequalities in (0.3.39) and (0.3.40) via heat flow mono-

tonicity. This type of approach as noticed by Carlen-Lieb-Loss [52], Barthe-Cordero-Erasquin [16] and Bennett-

Carbery-Christ-Tao [24] tends to generate sharp constants and identify extremisers. We prove this generalisation

in Theorem 5.3.1 for linear setting and Theorem 5.4.6 for multilinear setting (the argument adopted here follows

in spirit those of Bennett-Carbery-Christ-Tao [24, 25]).

At a first glance one may wonder if there is any connection at all between the subject of this chapter and

those of the first part of this thesis. The last section of this chapter highlights where the connections lie. Firstly,

we note that Brascamp-Lieb inequalities generalize Young’s convolution inequality which is equivalent to Nel-

son’s hypercontractive estimates and logarithmic Sobolev inequalities both of which are related to the entropy in

’Euclidean-Gaussian’ setting. In fact, another connection is in the fact that the applications of such inequalities

are becoming more obvious in PDEs and Geometric analysis, hence the need for their generalization to ’full’ dif-

feomorphic setting. We do acknowledge that putting Brascamp-Lieb inequalities in a diffeomeorphic setting is not

straightforward, and is the topic of current research.
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Chapter 1

Basics of Ricci Flow

1.1 The Ricci Flow - An Overview and Brief History

F ormally, the Ricci flow is a system of evolution for a one-parameter family of Riemannian metrics g(x, t) on

a smooth manifold M by the following nonlinear system of second order weakly parabolic partial differential

equations
∂

∂t
gij(x, t) = −2Rij(x, t), (1.1.1)

which becomes strictly parabolic modulo out the group of diffeomorphism of the underlying manifold. Here

Rij(x, t) is the (0, 2)-Ricci curvature tensor. The factor 2 in the system (1.1.1) is not very important but the

negative sign ensures the flow remains forward in time, in fact, it shows that positive curvature is contracted while

the negative curvature is dilated (we shall consider examples to illustrate this later). Introduced in a seminal paper

by R. Hamilton in 1982 [87] as an initial value problem together with initial data g(x, 0) = g0, the Ricci flow was

to attack geometrization conjecture (classification of three manifolds by William Thurston). In the same seminar

paper Hamilton was able to show its short time existence though not by standard parabolic theory, he employed a

”powerful analytic tool” called Nash-Moser implicit function theorem. Not quite later that Dennis DeTurck [73]

found a simplified way of doing this, his approach popularly called DeTurck’s trick follows from modification

of the flow by a time-dependent change of variables, which breaks the diffeomorphism invariance of the flow

equation, thus, making it parabolic.

Meanwhile, a classical problem in differential geometry is to find canonical metrics of Riemannian manifolds.

By canonical metrics we mean metrics of constant curvature whose existence often yields useful geometric and to-

pological implications. A well known example is the classification of Gauss curvature metrics of simply connected

Riemannian surfaces, the uniformization theorem. The geometric flows play fundamental roles in achieving this

objective, see R. Schoen [131] for Yamabe flow, Mullin [119] for curvature shortening flow, G. Huisken [98], mean

curvature flow and Eells and Sampson [76] for harmonic maps heat flow. It can be said that Hamilton was mo-
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tivated by the paper of Eells and Sampson [76] on harmonic maps heat flow to prove existence of harmonic maps

into targets of non-positive sectional curvature. Considering his effort to extend the result of Eells and Sampson

to the case of manifold with boundary [86]. His propositional idea was to study 3-manifolds with positive Ricci

curvature and he obtained the following;

Theorem 1.1.1. ([87]). Let M be a closed 3-Riemannian manifold whose initial metric admits a strictly positive

curvature, then, M admits a metric of constant sectional curvature. Moreover, M is diffeomorphic to the 3-sphere

or its quotient by a finite group of isometries.

The proof of the above consists in showing that volumetric version of (1.1.1) (Volume preserving Ricci flow

(1.1.2)) is obtained by re-parametrizing in time scale and homothety for all time t ∈ [0,∞) and converges to a

metric of constant sectional curvature. Invariably, the Poincaré conjecture follows immediately one is able to show

that an homotopic spherical space form admits a positive Ricci curvature metrics. More generally, Elliptization

conjecture would follow from showing that any closed 3-manifold with finite fundamental group admits a metric

with positive Ricci curvature

Theorem 1.1.2. (William Thurston’s Elliptization Conjecture). A closed 3-manifold with finite fundamental group

has a Riemannian metric of constant positive sectional curvature. Then, it is homeomorphic to the 3-sphere (via

the covering map).

Thus, proving the elliptization conjecture would prove the Poincaré conjecture as a corollary.

Theorem 1.1.3. (The Poincaré Conjecture). Every simply connected closed 3-manifold is diffeomorphic to the

3-sphere S3.

It was obvious that in applications we might need the volume of the manifold to be preserved throughout the

evolution. To achieve this, Hamilton also introduced the normalized counterpart which differs from (1.1.1) by a

cosmological constant
∂

∂t
gij(x, t) = −2Rij(x, t) +

2

n
rgij(x, t). (1.1.2)

Here, r denotes the average value of the scalar curvature of the metric g(x, t). The evolution equations (1.1.1)

and (1.1.2) are essentially equivalent, any solution to (1.1.1) can be transformed to that of (1.1.2) by a rescaling

procedure.

Shortly after Hamilton’s first result, Shing-Tung Yau suggested to him that the Ricci flow could be an appropri-

ate tool to attack the structure theorem for three-manifolds in general. Hamilton then proved many important res-

ults ranging from the uniformization of surfaces, maximum principle for tensors, Harnack estimates for curvatures,

monotonicity of entropy formula, all with Ricci flow. He actually laid the foundation for the programs towards a

complete solution of the Poincaré conjecture and Thurston’s geometrization conjecture via the Ricci flow. (Cf.

[39] Collected Papers on Ricci Flow, Series in Geometry and Topology).
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Basically, Hamilton’s program states that starting with any given compact three-manifold endowed with an

arbitrary initial metric without any curvature assumption, the Ricci flow may develop singularities in finite time. In

this case, the unbounded regions (a small neighbourhoods of the points of singularities), need to be dealt with by

performing topological surgeries on them and then continue to run the Ricci flow, this process should be repeated

each time singularities are developed. If one can find only a finite number of surgeries during finite time interval

and if the true behaviour of solution of the Ricci flow with surgery is well understood, then, one would see clearly

the topological structure of the initial manifold. The major obstacles was the verification of what is now called

Hamilton’s Little Loop Lemma [92], which is a certain local injectivity radius estimate and the verification of

discreteness of surgery times. In the late 2002 and 2003, G. Perelman [126, 128] came out with ingenuity that

allowed him to remove the obstacles that remained in the program of Hamilton. His paper [127] gives details of

how topological surgeries are performed on the 3-dimensional Ricci flow (see also [58, 94] for Ricci flow with

surgeries on 4-manifolds). Perelman showed that all singularities are modelled by self-similar solutions (Ricci

soliton). Perelman’s breakthrough is unprecedented as it provides a complete proof of Poincaré conjecture which

earned him a Fields medal, though he turned down the prize based on his opinion that Richard Hamilton deserved

more credit.

1.2 Examples and Special Solutions of the Ricci Flow

1.2.1 Examples

The Ricci flow governs the evolution of a given metric which converges in some sense to an Einstein metric. A

Riemannian metric is said to be Einstein if its Ricci curvature is a scalar multiple of the metric at each point, (see

Section 0.2 and [27] for details on Einstein metrics).

Lemma 1.2.1. Suppose (M, g) is an Einstein manifold with initial metric g0, then the solution of the Ricci flow is

governed by

g(t) = (1− 2λ0t)g0.

Proof. Let Rij(g0) = λ0g0 for some λ0 ∈ R. Let g = λ(t)g0. Since Ricci tensor is scale-invariant, we have

Rij(g) = Rij(λg0) = Rij(g0) = λ0g0.

Indeed
∂

∂t
gij = λ′g0 = −2Rij(g) = −2λ0g0.

The problem is reduced to solving the ODE

λ′(t) = −2λ0, λ(0) = 1.
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Figure 1.1: Shrinking Sphere

Examples 1.2.2. (Shrinking, Steady and Expanding Solutions)

The cases λ > 0, λ = 0 and λ < 0 corresponds to shrinking, steady and expanding solutions respectively.

Thus, running the Ricci flow with standard round metric on Sn, Euclidean metric on Rn or Hyperbolic metric

on Hn illustrates each case. In particular, for the round unit sphere (Sn, gcan), we have

Rc(g0) = (n− 1)gcan

and the evolution is

g(t) = (1− 2(n− 1)t)gcan.

With this the sphere collapses to a point at a finite time T = 1
2(n−1) (called the singular point), that is, the Ricci

flow on Sn has a finite time singularity where the diameter of the manifold goes to zero and the curvature explodes

to +∞. The Ricci flow is stationary on standard Euclidean metric (Rn, gEuc) and any other Ricci-flat manifold

(Riemannian manifold with vanishing Ricci curvature), while hyperbolic metric (manifold with constant sectional

curvature −1) expands homothetically for all time.

Example 1.2.3. (The Ricci flow on product manifolds)

Consider the geometry of product of spherical and euclidean metrics such as Sn−k × Rk. The Ricci flow acts on

the factor metrics separately, thus, as Sn−k is shrinking, Rk remains steady.

A perfect illustration for this is the 3-dimensional shrinking cylinder S2×R,where S2 factor shrinks homothet-

ically while R factor remains unchanged. As a consequence, the solution becomes singular in finite time and the

manifold converges in the pointed Gromov-Hausdorff sense to R.

The above examples have shown that an Einstein metric is a special solution of the Ricci flow. In particular, if

it is of positive scalar curvature, it will shrink homothetically at finite time while that of negative scalar curvature

expands homothetically for all times and the Ricci-flat Einstein metric is a stationary solution.
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Figure 1.2: Shrinking Round Cylinder

1.2.2 Ricci Soliton

There is a larger class of self-similar solutions than the uniformly shrinking or expanding solutions given in the

above examples. These special solutions are called the Ricci solitons. In this case, we modify the flow by a

one-parameter group of diffeomorphisms ϕt and define a time−dependent vector field X from it.

Definition 1.2.4. Let {ϕt}, t ∈ I be a one-parameter family of diffeomorphisms, ϕt : M →M, and {g(t)}t∈I be

a one-parameter family of Riemannian metrics defined on M . Given a smooth scalar function β(t) > 0, we call a

solution g(t) of (1.1.1) a Ricci sloliton, if it is a pull back of g0, i.e.,

g(t) = β(t)ϕ∗t g0. (1.2.1)

This simply means that in a Ricci soliton all the Riemannian manifolds (Mn, g(t)) are isometric up to a scale

factor that is allowed to vary with time. Therefore, the Ricci flow equation is equivalent to

Rc(g0) +
1

2
LXg0 = λg0 (1.2.2)

for any λ(t) = − 1
2β
′(t), where X is a vector field on M and LXg0 is the Lie derivative of the evolving metric. If

the vector field X is the gradient of a function, say f , then the solution is called a gradient Ricci soliton and (1.2.2)

becomes

Rij +∇i∇jf = λgij , (1.2.3)

where λ is the homothety constant. The case β′(t) < 0, β′(t) = 0 or β′(t) > 0 corresponds to shrinking, steady

or expanding gradient soliton. Clearly, a Ricci soliton is an Einstein metric if X vanishes identically.

Lemma 1.2.5. Suppose the flow (M, g(t)), 0 ≤ t < T , where g(t) = β(t)ϕ∗t g0, is a solution of the Ricci flow,

then, there exists a vector field X on M such that (M, g0, X) satisfies (1.2.2). Conversely, given any solution

(M, g0, X) of (1.2.2), then, there exist a one-parameter family of diffeomorphism ϕt of M and scalar function

β(t) such that g(t) of (1.2.1) solves the Ricci flow.

Proof. Suppose g(t) = β(t)ϕ∗t g0 is a solution of the Ricci flow (1.1.1) and we assume that ϕ0 = IdM , then, it is
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seen at once that β(0) = 1, so that we have

−2Rc(g0) =
∂g(t)

∂t

∣∣∣
t=0

= β′(0)ϕ0go + β(0)ϕ0LY (0)g0

= β′(0)g0 + LY (0)g0,
(1.2.4)

where Y (t) = 1
β(t)X is the family of vector fields generating the diffeomorphism ϕt. Comparing (1.2.2) and

(1.2.4), we have λ = − 1
2β
′(0) and X = Y (0), hence g0 satisfies (1.2.2).

Conversely, suppose that g0 satisfies (1.2.2). Define

β(t) = 1− 2λt

and define a one-parameter family of vector fields Y (t) = 1
β(t)X(x). Let ϕt be the diffeomorphism generated

by the family Y (t), where ϕ0 = IdM and define a smooth one-parameter family of a metrics on M by g(t) =

β(t)ϕ∗t g0. Then,

∂g(t)

∂t
= β′(t)ϕ∗t g0 + β(t)ϕ∗t g0LY (t)g0

= ϕ∗t (β
′(t) + β(t)LY (t))g0

= ϕ∗t (−2λ+ LX)g0

= ϕ∗t (−2Ric(g0)) = −2Rc(ϕ∗t g0)

since Ric(αg) = Ric(g) for any α > 0, it follows that

∂g(t)

∂t
= −2Rc(g(t)).

Therefore g(t) is a solution of the Ricci flow (1.1.1).

Examples 1.2.6. Rotationally symmetric Cigar and Bryant Solitons are stationary solutions to the Ricci flow.

Consider a complete Riemann surface (Σ, gΣ) with gΣ = u(x, t)gEuc, where gEuc is the standard Euclidean

metric on R2, u(x, t) = 1
e4εt+x2+y2 , and ε > 0. Given the initial metric gΣ(0) = 1

1+x2+y2 gEuc, then (Σ, gΣ)

gives a stationary Ricci flow whose curvature decays exponentially. (Cigar soliton was introduced by R. Hamilton

and called Witten’s Black Hole in Physics). The analogy of Cigar soliton in higher dimension is referred to Bryant

soliton. The Cigar soliton has positive curvature and is asymptotic to a cylinder of finite circumference at infinity.

The Bryant soliton has positive sectional curvature, linear curvature decay and volume growth of geodesic balls of

radius ρ on the order of ρ(n+1)/2.

1.3 Evolution of Geometric Quantities

More interestingly, all the geometric quantities associated with the underlying manifold evolve as the Riemannian

metric evolves along the Ricci flow, most importantly, the curvature tensors evolve by some nonlinear heat-type
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equations, this also serves as motivation to considering the behaviours of some other important geometric quantities

such as eigenvalues and heat kernel of the manifold under the Ricci flow. The evolutions are summarised below,

detailed proofs can be found in [4, 41, 69, 68, 87].

Lemma 1.3.1. If a one-parameter family of metric g(t) solves the Ricci flow (1.1.1), then, the inverse metric, the

Christoffel’s symbol, the volume element and the Laplacian evolve as follows

∂

∂t
gij = 2gikgjlRkl (1.3.1)

∂

∂t
Γkij = −gkl

(
∂iRjl + ∂jRil − ∂lRij

)
(1.3.2)

∂

∂t
dµ = −Rdµ (1.3.3)

∂

∂t
∆g(t) = 2Rij · ∇i∇j . (1.3.4)

Notice that Levi-Civita connection is not a tensor but it is determined by Christoffel’s symbols whose time

derivative is also a tensor.

Proof. Assuming that
∂

∂t
gij = hij ,

where hij is a symmetric tensor. Recall also that

gijgjl = δil ,

then ( ∂
∂t
gijgjl

)
= 0 =

( ∂
∂t
gij
)
gjl + gij

( ∂
∂t
gjl

)
.

Therefore ( ∂
∂t
gij
)
gjl = −gij(hjl)

∂

∂t

(
gij
)

= −gikgjlhkl.

Taking hij = −2Rij , part 1 of the lemma is proved.

∂

∂t
Γkij =

1

2

∂

∂t
gkl
(
∂igjl + ∂jgil − ∂lgij

)
+

1

2
gkl
(
∂i

( ∂
∂t
gjl

)
+ ∂j

( ∂
∂t
gil

)
− ∂l

( ∂
∂t
gij

))
working in a normal coordinate about a point p, we have ∂igjk(p) = 0 for all i, j, k and from the fact that

∂iAjk = ∇iAjk, we get
∂

∂t
Γkij =

1

2
gkl
(
∇i

∂

∂t
gjl +∇j

∂

∂t
gil −∇l

∂

∂t
gij

)
.

Therefore

∂

∂t
Γkij =

1

2
gkl
(
∇ihjl +∇jhil −∇lhij

)
. (1.3.5)
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Since both sides of (1.3.5) are components of tensors, it then holds as a tensor equation for any coordinate systems.

Part 2 is proved.

In local coordinates, the volume form is written as dµ =
√
detgdx1 ∧ ... ∧ dxn, then,

∂

∂t
dµ =

∂

∂t

(√
detgdxi ∧ ... ∧ dxn

)
.

By chain rule of differentiation

∂

∂t

(√
detg

)
=

1

2

1√
detg

∂

∂t
detg =

1

2

1√
detg

∂detg

∂gij

∂gij
∂t

=
1

2

√
detggijhij =

1

2
trh
√
detg,

therefore
∂

∂t
dµ =

1

2
trh dµ,

hence part 3 of the Lemma is proved.

Define

∆gf = [gij(∂i∂j − Γkij∂k)f ],

then,

∂

∂t

(
∆gf

)
=
[
gij(∂i∂j − Γkij∂k)f

]
=
( ∂
∂t
gij
)
∇i∇jf − gij

( ∂
∂t

Γkij

)
∇kf + gij(∂i∂j − Γkij∂k)

∂

∂t
f

=
( ∂
∂t
gij
)
∇i∇jf + ∆

∂

∂t
f.

Therefore
∂

∂t
∆g =

( ∂
∂t
gij
)
∇i∇j , (1.3.6)

where

gij
( ∂
∂t

Γkij

)
= gij

[1

2
gkl
(
∇i

∂

∂t
gjl +∇j

∂

∂t
gil −∇l

∂

∂t
gij

)]
= gkl

[
gij∇i

( ∂
∂t
gjl

)
− 1

2
gij∇l

( ∂
∂t
gij

)]
= 0

by the contracted second Bianchi identity. Application of part 1 of the lemma to (1.3.6) proves part 4.

Theorem 1.3.2. (Evolution of Curvature Tensors). Let g(t) be a solution to (1.1.1), the Riemannian curvature

tensor (Rijkl), Ricci curvature tensor (Rij) and the scalar curvature tensor (R) respectively evolve as follows

∂

∂t
Rijkl = ∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

−(RpiRpjkl +RpjRipkl +RpkRijpl +RplRijkp)
(1.3.7)
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∂

∂t
Rij = ∆Rij + 2gkpglqRkijlRpq − 2gklRikRjl (1.3.8)

∂

∂t
R = ∆R+ 2|Rij |2, (1.3.9)

where Bijkl = −gprgqsRpiqjRrksl = −RqpijR
p
qlk, and ∆ is the Laplace-Beltrami operator with respect to

evolving metric g(t).

Proof. Evolution of Riemann curvature tensor. We write (1, 3)-Riemann curvature tensor

Rpijl = ∂iΓ
p
jl − ∂jΓ

p
il + ΓkirΓ

r
jl − ΓpjrΓ

r
il

and

∂

∂t
Rpijl =

∂

∂t

(
∂iΓ

p
jl − ∂jΓ

p
il

)
+
( ∂
∂t

Γkir

)
Γrjl + Γkir

( ∂
∂t

Γrjl

)
−
( ∂
∂t

Γpjr

)
Γril − Γpjr

( ∂
∂t

Γril

)
= ∂i

( ∂
∂t

Γpjl

)
− ∂j

( ∂
∂t

Γpil

)
.

Now using the contraction Rijkl = gkpR
p
ijl, we have

∂

∂t
Rijkl = gkp

( ∂
∂t
Rpijl

)
+
( ∂
∂t
gkp

)
Rpijl

= gkp

{
∇i
[
− gpq(∇jRlq +∇lRjq −∇qRjl)

]
−∇j

[
− gpq(∇iRlq +∇lRiq −∇qRil)

]}
− 2RkpR

p
ijl

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik

+∇j∇iRlk −∇i∇jRlk − 2RkpR
p
ijl.

By interchanging covariant derivatives and using Bianchi identity property of Riemann curvature tensor, we have

∇j∇iRlk −∇i∇jRlk = Rijkpg
pqRqk

= −RijlpgpqRqk −RijkpgpqRql

and

RkpR
p
ijl = Rijplg

pqRqk

so that

∇j∇iRlk −∇i∇jRlk = −2Rijplg
pqRqk

= −RijlpgpqRqk −RijkpgpqRql − 2Rijplg
pqRqk

− gpq(RijkpRql +RijplRqk).
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Therefore

∂

∂t
Rijkl = ∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik

− gpq(RijkpRql +RijplRqk).

We then conclude the proof with the following claim: Let (M, g) be a smooth manifold, the Laplacian of the

Riemannian tensor satisfies

∆Rijkl =


∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik

−2(Bijkl −Bijlk −Biljk +Bikjl)

+gpq(RqjklRpi +RiqklRpj)

 . (1.3.10)

Consider the linearity of covariant derivative over the second Bianchi identity as follows

∇p∇qRijkl +∇p∇iRjqkl +∇p∇jRqikl = 0,

recall also that the connection Laplacian of any tensor field is the trace of the second covariant derivative with the

metric g, therefore

∆Rijkl = (trg∇2R)ijkl = gpq∇p∇qRijkl = gpq(−∇p∇iRjqkl −∇p∇jRqikl)

= gpq∇p(−∇iRjqkl −∇jRqikl)

= gpq∇p(∇iRqjkl −∇jRqikl).

The first term on the RHS of the last equality is due to antisymmetric property. Now by commuting covariant

derivative on this term we have

∇p∇iRqjkl = ∇i∇pRqjkl + (R(∂i, ∂p)R)(∂q, ∂j , ∂k, ∂l), (1.3.11)

using the second Bianchi identity and contracting with the metric on the first term on the RHS of (1.3.11), follow

from this calculation∇i∇pRqjkl = ∇i∇kRjqlp −∇i∇lRjqkp, we arrive at

gpq∇i∇pRqjkl = gpq(∇i∇kRjqlp −∇i∇lRjqkp)

= ∇i∇kRjl −∇i∇lRjk.

The second term on the RHS of (1.3.11) can be written as

(R(∂i, ∂p)R)(∂q, ∂j , ∂k, ∂l) = RripqRnjkl +RripqRqnkl +RripqRqjnl +RripqRqjkn

= grs(RpiqsRrjkl +RpijsRqrkl +RpiksRqjrl +RpilsRqjkr)

gpq(R(∂i, ∂p)R)(∂q, ∂j , ∂k, ∂l)

= gpqgrs(RpiqsRrjkl +RpijsRqrkl +RpiksRqjrl +RpilsRqjkr).
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Contracting each term on the right hand side of the last expression as follows

gpqgrsRpiqsRrjkl = grsRisRrjkl = gpqRiqRpjkl (1.3.12)

gpqgrsRpijsRqrkl = gpqgrsRpijs(−Rrkql −Rkqrl)

= gpqgrs(RpijsRqlrk −RpijsRkqrl)

= RqpijR
p
qlk −R

q
pijR

p
kql = Bijlk −Bijkl

(1.3.13)

gpqgrsRpiksRqjrl = gpqgrs(−RipskRqjrl) = −Bikjl (1.3.14)

gpqgrsRpilsRqjkrl = RqiplR
p
qjk. (1.3.15)

Combining the identities (1.3.11) -(1.3.15 ), we obtain

gpq∇i∇pRqjkl = ∇i∇kRjl −∇i∇kRjk (1.3.16)

− (Bijkl −Bijlk −Biljk +Bikjl) + gpqRiqRpjkl. (1.3.17)

Therefore

∆Rijkl = gpq∇p∇iRqjkl − gpq∇p∇jRqikl

= ∇i∇kRjl −∇i∇lRjk − (Bjikl −Bijlk −Biljk +Bikjl) + gpqRpjklRqi

−∇j∇kRil +∇j∇lRik + (Bjikl −Bjilk −Bjlik +Bjkil)− gpqRpjklRqj

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik + gpq(RpjklRqi +RipklRqj)

− 2(Bijkl −Bijlk −Biljk +Bikjl),

since B is a quadratic term in the Riemann tensor satisfying Bijkl = Bjilk = Bklij . Equation (1.3.7) then follows

immediately.

Proof of evolution of Ricci curvature tensor. Contracting Riemann curvature tensor we have

Rij = glkRijkl,

then
∂

∂t
Rij =

∂

∂t

(
glkRijkl

)
= glk

∂

∂t
(Rijkl) +

( ∂
∂t
glk
)
Rijkl.

Using formula (1.3.1), we obtain

∂

∂t
Rij = glk

∂

∂t
(Rijkl)− 2glpgkqRpqRijkl,

inserting the result of evolution of Riemann curvature tensor we obtain

∂

∂t
Rij = glk

{
∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

− (RpiRpjkl +RpjRipkl +RpkRijpl +RplRijkp)
}
− 2glpgkqRpqRijkl
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and compute

glk∆Rijkl = ∆Rij

2glk(Bijkl −Bijlk +Bikjl −Biljk) = 2glkBijkl − 2glk(Biljk +Bijlk)− 2glkBiljk

= 2glk(Bijkl − 2Biljk) + 2gprgqsRpiqkRjl.

It is obvious that Bijkl − 2Biljk = 0 from the Bianchi identity, similarly,

glk(RpiRpjkl +RpjRipkl+R
p
kRijpl +RplRijkp)

= gpqRqiRpj + gpqRqjRip + gpqRqkRip + glkgpqRijkpRql

= 2gpqRqjRjp + 2glkgpqRijkpRql.

It therefore follows by putting these results together that

∂

∂t
Rij = ∆Rij + 2gprgqsRpjkqRrs − 2gpqRqiRjp,

which ends the proof of evolution of Ricci curvature tensor.

Proof of evolution of Scalar curvature tensor. Similarly R = gijRij and

∂

∂t
R = gij

∂

∂t
(Rij) +

( ∂
∂t
gij
)
Rij

= gij(∆Rij + 2gkpglqRkijlRpq − 2gklRikRjl)− gikgjlhklRij

= ∆R+ 2gikgjlRijRkl.

Equation (1.3.9) follows at once. This then completes the proof of Theorem 1.3.2.

Similarly, we have the following evolution equations under the Normalized Ricci flow. Suppose g̃(t) solves

(1.1.2), we have

∂

∂t
g̃ij = 2(R̃ij − r

n
g̃ij)

∂

∂t
R̃ = ∆̃R̃+ 2|R̃ij |2 −

2r

n
R̃

∂

∂t
dµ̃ = (r − R̃)dµ̃

∂

∂t
∆̃g̃ = 2R̃ij · ∇̃i∇̃j −

2r

n
∆̃g̃.

1.4 Short-time Existence and Uniqueness

As we have remarked, the Ricci flow is a system of nonlinear weakly parabolic equation and the proof of its

short-time existence by R. Hamilton does not follow from standard parabolic PDEs theory. In his proof [87],

Hamilton used a ”powerful analytic tool” called Nash-Moser implicit function theorem. Not quite later that Dennis
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DeTurck [73] found a simplified way of doing this, his approach is popularly called DeTurck’s trick. In this

section, we discuss the linearization of the Ricci tensor and show that the degeneracy of the equation is due to the

diffeomorphism group of the manifold which acts as the gauge group of the flow. We then give a brief description of

the DeTurck approach to establishing existence and uniqueness of the Ricci flow via a modified evolution equation,

which turns out to be strictly parabolic. This enables us to apply the standard parabolic theory. See for instance

Cao and Zhu [41], the books by Chow and Knopf [68] and Topping [147]. The papers [136, 137] contain details

of the case when Ricci flow is defined on a complete noncompact manifold.

1.4.1 Linearization of the Ricci tensor

Our intention here is to get the linearised form of the Ricci tensor and understand what is meant for an evolution

equation on a vector bundle to be parabolic. We shall, however, see that the Ricci flow is weakly parabolic for the

metric g. Consider
∂gij
∂t

= Q(g) = −2Rij(g), (1.4.1)

on the vector bundle S2T ∗M . We regard the Ricci tensor Rij as a nonlinear partial differential operator with

respect to the metric g, i.e.,

Rij = Rc : Γ(S2
+T
∗M)→ Γ(S2T ∗M),

where S2
+T
∗M is a space of positive definite symmetric tensor and S2T ∗M is a space of symmetric tensor.

Recall that the Riemannian curvature tensor given by

Rkijl := ∂iΓ
k
jl − ∂jΓkil + ΓkipΓ

p
jl − ΓkjpΓ

p
il,

has its index lowered to Rijkl = gkpR
p
ijl and its contraction

gklRijkl = Rij

gives the Ricci tensor. Then we have

−2Rij = −2
{
∂kΓkij − ∂iΓkkj + ΓkkpΓ

p
ij − ΓkipΓ

p
kj

}
. (1.4.2)

Since the Christoffel’s symbols are defined by

Γkij = 1
2g
kl(∂igjl + ∂jgil − ∂lgij),

−2Rij = ∂i

{
gkl(∂kgjl + ∂jgkl − ∂lgkj)

}
− ∂k

{
gkl(∂igjl + ∂jgil − ∂lgij)

}
+ 2ΓkkpΓ

p
ij − 2ΓkipΓ

p
kj

= ∂i

{
gkl(∂jgkl)

}
− ∂k

{
gkl(∂igjl + ∂jgil − ∂lgij)

}
+ 2ΓkkpΓ

p
ij − 2ΓkipΓ

p
kj

= gkl
{
∂i∂jgkl − ∂i∂kgjl − ∂j∂kgil + ∂k∂lgij

}
+ Lower Order Derivatives.
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Thus, the linearization of the Ricci tensor is (h is the variation of g )

−2
{
D(Rc)(h)

}
ij

= −2
∂

∂t
(Rc(g(t))

∣∣∣
t=0

= gkl
{
∂i∂jhkl − ∂i∂khjl − ∂j∂khil + ∂k∂lhij

}
, (1.4.3)

whereD(Rcg) : Γ(S2T ∗M)→ Γ(S2T ∗M) and its principal symbol in the direction ζ is a bundle homomorphism

σ̂[D(Rcg)(ζ)] : Γ(S2
+T
∗M)→ Γ(S2T ∗M),

which by replacing the covariant derivative ∂i in (1.4.3) by the covector ζi, is defined as(
σ̂[D(Rcg)](ζ)(g̃)

)
ij

= −1

2
gkl
(
ζiζjhkl − ζiζkhjl − ζjζkhil + ζkζlhij

)
. (1.4.4)

If the principal symbol is isomorphism for every 1-form ζ and some section h, then, we say that the nonlinear

operator Q is elliptic at h and the corresponding evolution equation (1.4.1) is parabolic.

1.4.2 Ricci flow as weakly parabolic

Consider the principal symbol of the linearized equation obtained above, it is easy to see that this symbol will

not certainly be elliptic, since for any ζi whatsoever, we can define hjk = ζjζk and the symbol (1.4.4) evaluates

to zero. The symbol possesses zero eigenvalues, which shows the equation is not strictly parabolic. To see this,

consider (1.4.4) and assume ζ has length 1, since the function is homogeneous, we choose coordinates at a point

such that

gij = δij =

 1, i = j

0, i 6= j.

and ζ = (1, 0, ..., 0). A simple calculation yields(
σ̂[DQ(g)](ζ)(h)

)
ij

= hij + δi1δj1(h11 + ...+ hnn)− δi1h1j − δ1jh1i,

that is, 

(
σ̂[DQ(g)](ζ)(h)

)
11

= h22 + h33 + · · ·+ hnn(
σ̂[DQ(g)](ζ)(h)

)
1j

= 0, j 6= 1(
σ̂[DQ(g)](ζ)(h)

)
ij

= hij , i 6= 1, j 6= 1.

There is actually a good reason for the presence of these zero eigenvalues (see [87] for details). The fact that

the principal symbol σ̂[D(Rcg)](ζ) of the nonlinear partial differential operator Rcg has a nontrivial null space is

intimately related to the fact that the Ricci curvature tensor has a property of diffeomorphism invariance, that is,

φ∗(Rc(g)) = Rc(φ∗g).

The failure of the ellipticity is due to the consequence of diffeomorphism invariance which also implies Bianchi

identities.
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1.4.3 DeTurck Approach

We are concerned with short-term existence and uniqueness of the Ricci flow, despite the fact that the linearized

Ricci tensor is a non-strict elliptic second order differential operator.

Theorem 1.4.1. (Hamilton [87]) Let (M, g) be a compact Riemannian manifold. Then there exists a constant

T > 0 such that the initial value problem for the Ricci flow admits a unique smooth solution on M for all time

t ∈ [0, T ).

For noncompact case see W-X. Shi [136]. Next, we briefly describe DeTurck approach to proving the above

theorem. The first step in this direction is to define a modified Ricci flow (Ricci-DeTurck flow) by adding an extra

term from Lie derivative of the metric with respect to certain time-dependent vector field to the Ricci-Hamilton

flow equation 
∂gij(t)

∂t
= −2Rij(g) +∇iWj +∇jWi

g(0) = g0,

(1.4.5)

where

Wj = gjkg
pq
(

(Γg)
k
pq − (Γg̃)

k
pq

)
and (Γg̃)

k
pq are the Christoffel’s symbols associated with Levi-Civita connection of the background metric g̃, and

show that the system is strictly parabolic. Note that Wj is a time-dependent 1-form which is g-dual to the vector

W k = gpq
(

(Γg)
k
pq − (Γg̃)

k
pq

)
. Now, it is easy to see that if gij(x, t) solves the Ricci flow (1.1.1) and a one-

parameter group of diffeomorphism ϕt is defined on M , then the pull-back metric

g̃ij(x, t) = ϕ∗t gij(x, t) (1.4.6)

solves 
∂

∂t
g̃ij(x, t) = −2Rij(x, t) +∇iWj +∇jWi = E(gij)

g̃ij(x, 0) = g̃ij(x).

(1.4.7)

Notice that the RHS of (1.4.7) implies

E(gij) = gkl
{
∂i∂jgkl − ∂i∂kgjl − ∂j∂kgil + ∂k∂lgij

}
+

1

2
gpq
{
∂i∂qgpj + ∂i∂pgqj − ∂i∂jgpq

}
+

1

2
gpq
{
∂i∂qgpj + ∂i∂pgqj − ∂i∂jgpq

}
+ Lower Order Term

= gkl∂k∂lgij + Lower Order Term.

Thus, its principal symbol is (gklζkζl)g̃ij , i.e,
(
σ̂[DE(g)](ζ)(g̃)

)
ij

= |ζ|2g̃, which gives an ellipticity condition.

Hence the system (1.4.7) is strictly parabolic. The description above shows that the Ricci-DeTurck flow has a

short-time solution on a compact manifold follow from the standard parabolic theory.
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The next step is to modify such a solution in order to obtain a solution of the original Ricci-Hamilton flow

(1.1.1). To do this, the following Lemma will be very useful.

Lemma 1.4.2. Let Wt be a time-varying dependent vector field on a compact manifold M . Then, there exists a

unique one parameter family of diffeomorphism φt : M →M defined on the interval 0 ≤ t ≤ ∞, such that


dφt(x)

dt
= −W (φt(x), t), x ∈M, t ∈ [0, T )

φ0 = IdM .
(1.4.8)

As long as there exists a solution g(t) of (1.4.7), the one parameter family of vector fields W (t) (as defined by

(1.4.5)) exists for t ∈ [0, ε). By solving the ODE in the Lemma above and by the compactness of M , all φt(p)

exist and remain diffeomorphism for as long as diffeomorphism exists for p ∈M (see Lee [105, pp 451] for flows

of time-dependent vector field) and solution g(t) also exists for t ∈ [0, T ). Therefore, the family of the metric

g(t) := (φt)∗(ḡ(t))

is a solution of (1.4.7) if ḡ(t) also exists and indeed, ḡ(0) = g(0) = g0 because φ0 = IdM . Next, we show that

g(t) is a solution of the Ricci-DeTurck flow. Compute

∂

∂t
g(t) =

∂

∂t

(
(φt)∗ḡ(t)

)
= (φt)∗

∂

∂t

(
ḡ(t)

)
+ L(φt)∗(

∂
∂tφt)

(
(φt)∗ḡ(t)

)
= (φt)∗

[
− 2Rc(ḡ(t)) + L(φt)∗(φ∗t [W (t)])

(
g(t)

)]
= −2Rc(g(t)) + LW (t)g(t).

Since the Ricci -DeTurck flow (1.4.7) is strictly parabolic, we are sure of a unique solution g(t) and once we have

g(t), we can obtain the diffeomorphism φt by solving the non-autonomous ODE (1.4.8) in Lemma 1.4.2. We

however observe that

ḡ(t) := φ∗t (g(t))

is a solution of Ricci-Hamilton flow. This is presented in the following Theorem.

Theorem 1.4.3. The time- dependent metric ḡ(t) := φ∗t (g(t)) is a solution of the Ricci flow equation (1.1.1)
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Proof.

∂ ¯g(t)

∂t
=
∂φ∗t g(t)

∂t
=

∂

∂s

∣∣∣
s=0

(φ∗t+sg(t+ s))

= φ∗t

( ∂
∂t
g(t)

)
+

∂

∂s

∣∣∣
s=0

(φ∗t+sg(t))

= φ∗t (−2Rc(g(t)) + LW (t)g(t)) +
∂

∂s

∣∣∣
s=0

(φ∗t+sg(t))

= −2Rc(φ∗t g(t)) + φ∗tLW (t)g(t)) +
∂

∂s

∣∣∣
s=0

(φ∗t+sg(t))

= −2Rc(φ∗t g(t)) + φ∗tLW (t)g(t)) +
∂

∂s

∣∣∣
s=0

(
(φ−1
t ◦ φt+s)∗φ∗t g(t))

)
= −2Rc(φ∗t g(t)) + φ∗tLW (t)g(t))− L(φ−1

t )∗W (t)(φ
∗
t g(t))

= −2Rc(φ∗t g(t)).

The equality in the second to the last follow from the identity

∂

∂s

∣∣∣
s=0

(
φ−1
t ◦ φt+s)

)
= (φ−1

t )∗

( ∂
∂s

∣∣∣
s=0

φt+s

)
= (φ−1

t )∗W (t).

The proof is complete.

Next thing to show is that ḡ(t) is indeed a unique solution for the Ricci flow.

On the uniqueness of the Ricci flow

The fact that the Ricci-DeTurck flow is strictly parabolic and satisfies the standard uniqueness conditions may not

be enough to conclude that the solution to the Ricci flow is unique. This is simply due to the following argument;

starting with two solutions of the Ricci flow which agree at time t = 0 on the same interval, modifying them by

diffeomorphisms to get two solutions of the Ricci-DeTurck flow also with identical initial conditions so that the

modified solutions may be the same. Notice that the diffeomorphisms used depend on the solutions to the Ricci

flow themselves, so the modified solutions may not be the same if the solutions to the Ricci flow chosen differ.

Then the uniqueness of the Ricci-DeTurck flow breaks down. For this, we need an alternative way of establishing

the uniqueness of the Ricci flow and the way out is by reparametrization of diffeomorphism by the harmonic map

heat flow which is equally strictly parabolic.

The argument is then reduced to a basic question: Do DeTurck’s diffeomorphisms satisfy the harmonic map

heat flow?. This has been answered in affirmative (Cf. Chow and Knopf [68, Lemmma 3.27] and Hamilton [92]).

Therefore, we conclude with the following: Suppose (M, ḡ(t)) is a solution of the Ricci flow and that a family

of diffeomorphism ϕt is a solution of the harmonic map heat flow with respect to ḡ(t) and background metric g̃,

if g(t) := (ϕt)∗ḡ(t) is a unique solution of the Ricci-DeTurck flow, we claim that a solution of ḡ(t) of Ricci-

Hamilton flow is unique. Suppose, we have two solutions of Ricci flow, ḡ1(t) and ḡ2(t), satisfying the initial

condition ḡ1(0) = ḡ2(0), choose (ϕ1)t, the harmonic map flow with respect to ḡ1(t) and g̃, also, (ϕ2)t as the
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harmonic map flow with respect to ḡ2(t) and g̃. Then

g1(t) = ((ϕ1)t)∗ḡ1(t) and g2(t) = ((ϕ2)t)∗ḡ2(t)

are both solutions of the Ricci-DeTurck flow. Therefore, by uniqueness of solution of (1.4.7), g1(t) = g2(t) for all

t ≥ 0 in their common interval of existence. Hence, both (ϕ1)t and (ϕ2)t satisfy the system of ODE in Lemma

1.4.2, generated by the same vector field W k. Thus, ϕ1(x, t) = ϕ2(x, t) as long as they exist, and

ḡ1(t) = (ϕ1)∗t g1(t) = (ϕ2)∗t g2(t) = ḡ2(t).

This concludes the uniqueness of the Ricci flow.

1.5 Ricci flow on Surfaces

Here, we briefly describe how closed surfaces can be deformed using Ricci flow. By a closed surface we mean a

compact 2-manifold without boundary, if it is simply connected, then it is topologically equivalent to a 2-sphere.

The Ricci flow was first understood in dimensions higher than 2, since it provides a complete classification of

three manifolds (as mentioned earlier). Ricci flow is easily visualised on surfaces such as sphere, torus, cylinder,

since they are more familiar, thus, the aforementioned ideas can be better explained in the Ricci flow on closed

surfaces and geometric computations are carried out with less difficulties. In this case also, Ricci flow and Yamabe

flow 1 are the same, which make the local existence of the flow easily obtainable. The Ricci flow in 2-dimension is

conformal and if the total surface area should be preserved during the evolution, Ricci flow will definitely converge

to a constant Gaussian curvature metric everywhere in the conformal class, that is, the limiting metric is conformal

to the background metric and of course to metric g(t) at any time t. This provides a proof of Uniformization

Theorem of Poincaré and Koebe (See Hamilton [88], Chow [60] and Chen, Lu and Tian [57]. However, it is much

more difficult to establish the convergence of the Ricci flow when the Euler characteristic of the surface is positive.

On surfaces M2, the normalized Ricci flow becomes

∂

∂t
g = (r −R)g, (1.5.1)

where r = A−1
∫
M2 RdA, the average of the scalar curvature R of M2, A is the total surface area, dA is the area

element of metric g on M2 and
∂

∂t
A =

∫
M2

(r −R)dA = 0. (1.5.2)

Thus, the total surface area is preserved along the flow. The integral of R over the surface M2 gives the Euler class

χ(M2). Recall the Gauss-Bonnet formula (1.5.3) on a closed surface (M2)

1

2π

∫
M2

KdA = χ(M2) = 2(1− γ(M2)), (1.5.3)

1Yamabe flow is the negative L2-gradient flow of the total scalar curvature of a Riemannian manifold in a given conformal class. It was

also introduced by Richard Hamilton [88] to tackle Yamabe problem [131], see also [62].
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where χ(M2) is the Euler characteristic, γ(M2), the genus and K the Gaussian curvature of M2. Here 2K = R,

then ∫
M2

RdA = 4πχ(M2). (1.5.4)

In fact, Gauss Bonnet formula accounts for the relation between the topology and geometry of the underlying

manifold as we can see that the sign of r can be determined explicitly even independent of g,

r = χ(M2) =
1

4π

∫
M2

RdA. (1.5.5)

For example, if we consider a topological 2-sphere whose genus is 0, then, χ(M2) = 2 and
∫
S2 Rdµ = 8π.

Uniformization of Surfaces

Uniformization theorem implies that every smooth surface admits a unique conformal metric, which classifies

surfaces into three families using the sign of the curvature. This is a classical result in Riemannian geometry,

that is, every simply connected surface is conformally equivalent to one among the Riemann spheres, the complex

plane and the open disk. In this direction, Ricci flow greatly helps in the classification of closed two-dimensional

manifolds into three families of constant positive, zero or negative curvature, as it is used in the classification of

closed three manifold (Geometrization Conjecture). The procedure is to run Ricci flow on smooth surface and

allow the metrics to be deformed over time such that the scalar curvature evolves as a reaction-diffusion equation

and eventually becomes constant. The limiting metric is the uniformizing metric which classifies the universal

covering space of the surface into one of the three canonical geometries. We now state an important result of Ricci

flow on Surfaces due to R. Hamilton [88].

Theorem 1.5.1. Let (M2, g0) be a closed surface, there exists a unique solution g(t) of (1.5.1) for all time t.

Moreover,

1. the metric g(t) converges to a metric g∞ of constant curvature as t→∞, when r ≤ 0.

2. If R(g0) > 0, then the metric g(t) converges to a positive constant curvature metric at time t→∞.

The above result together with the work of B. Chow [60] give a complete proof of the uniformization of surfaces

using the Ricci flow. The main point of contention here lies in the class of positive Euler characteristics where

the existence of gradient shrinking soliton uses Kazdan-Warner identity which itself assumes the uniformization

theorem. Detail of this is contained in the book [68, Chapter 5], also see [57]) for a new proof of uniformization

theorem without Kazdan-Warner identity.

1.6 Maximum Principles

The maximum principles are one of the fundamental properties possessed by second order parabolic equations. In

general, the theories assert that any pointwise bounds that hold for a smooth solution of the heat equation at the
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initial time t = 0 also hold for all times t > 0. The theories are rich enough to admit geometric heat equation

on compact manifolds, specifically, they are used to give the description of the Ricci flow and show that certain

pointwise inequalities on the initial data of Ricci flow equation are preserved by the evolution. Consequently, we

can obtain estimates on curvatures and show that Ricci flow preserves the nonnegativity of the curvature operator.

We only give some statements of the maximum principles here. For general discussion, see Protter and Weinberger

[129]. The theories have been developed for tensors and vector bundles by Hamilton in [87] and for general survey

in the context of Ricci flow, see for instance the books [68, 69, 147].

Proposition 1.6.1. Let (M, g(t)) be a family of Riemannian manifolds and X(t) a family of smooth vector fields

for t ∈ [0,∞). Suppose that u ∈ C∞(M × [0,∞),R) satisfies the heat-type inequality

∂

∂t
u(x, t) ≥ ∆gu(x, t) + 〈X,∇u〉(x, t). (1.6.1)

Let there exists a constant α ∈ R such that u(x, 0) ≥ α for all x ∈M , then u(x, t) ≥ α for all x ∈M and t ≥ 0.

The above proposition is the scalar maximum principle which compares the solution of the heat equation with

that of the associated ordinary differential equation. It also applies to the heat equation when reaction term is

introduced, the reaction term can either be linear or nonlinear. Consider the nonlinear heat equation with reaction

term

∂u

∂t
= ∆g(t)u+ 〈X(t),∇u〉+ F (u), (1.6.2)

where F : R → R is a locally Lipschitz function, g(t) and X(t) are as defined above. We call u a supersolution

(or subsolution) if the equality in (1.6.2) is replaced with ” ≥ ”(or” ≤ ”).

Theorem 1.6.2. Let g(t) be a one-parameter family of Riemannian metrics on compact manifold M , let a C2-

function u : Mn × [0, T )→ R be a supersolution of (1.6.2) i.e., it satisfies the follow inequality
∂u

∂t
≥ ∆gu+ 〈X,∇u〉+ F (u)

u(0) = α

(1.6.3)

where X(t) is a time-dependent family of vector field and F is locally Lipschitz continuos. Then

u(x, t) ≥ φ(t) (1.6.4)

for all (x, t) ∈M × [0, T ], (0 < T <∞), where φ(t) satisfies the ordinary differential equation
dφ(t)

dt
= F (φ(t))

φ(0) = α.

(1.6.5)

Maximum principles are applied in Chapter 3.
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Chapter 2

Eigenvalues and Entropy Monotonicity

Formulas under The Ricci Flow

2.1 Introduction

Here, we consider an n-dimensional compact manifold Mn, n ≥ 2, on which a one parameter family of

Riemannian metrics gij(t), t ∈ [0,∞) is defined. We refer to (Mn, g(t)) as the solution of the Ricci flow, if

it satisfies the following nonlinear evolution partial differential equation

∂

∂t
gij = −2Rij , (2.1.1)

written in local coordinate, where Rij is the Ricci curvature tensor of the manifold. The Ricci tensor can be

linearised to obtain

Rij =
−1

2
∆g(gij) +Qij(g

−1, ∂g), (2.1.2)

where ∆g is the Laplace-Beltrami operator acting on manifold (Mn, g) and Qij(g−1, ∂g) is a lower order term,

quadratic in inverse of g and its first order partial derivative. Hence, the Ricci flow equation is a heat-like (diffusion-

reaction) equation. For example, in the usual Euclidean space, the Laplace-Beltrami operator is exactly the usual

Laplace operator

∆ =

n∑
i,j=1

∂2

∂xi∂xj
, (2.1.3)

where we can consider the eigenvalue problem for the Laplacian as follows

−∆ui = λiui

and have the sequence

0 ≤ λ0 < λ1 ≤ λ2 ≤ .... ≤ λi −→∞, (i→∞)
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as the eigenvalues of the Laplacian, repeated according to their geometric multiplicities, where any ui correspond-

ing to λi is the eigenfunction, the eigenspace being finite dimension. In this respect, various eigenvalue problems

arise, such as

−∆u = λu in Ω ⊆ Rn, ∂Ω = ∅ (2.1.4)

so also Dirichlet (u = 0 on ∂Ω) and Neumann (∂u∂ν = 0 on ∂Ω), where ν is the unit normal vector exterior to the

boundary of Ω, in case the boundary is nonempty. These can easily be generalised to the Riemannian Manifold

(Mn, g) with or without boundary, where the Laplace-Beltrami operator is viewed as a self-adjoint operator on

L2(Mn) and Mn has a pure point spectrum of a sequence of eigenvalues {λi}ni=1 and the eigenfunction ui form

orthonormal basis of L2(Mn) with ||ui||L2(Mn) = 1. Detail discussion on the spectrum of Riemannian manifold

is included in Appendix B.

In this chapter, we consider boundaryless manifold (the results also holds when the boundary is empty). In

this case, the first eigenvalue is equal to zero, because, here the constant functions are non trivial solutions of the

eigenvalue problem, while the first eigenvalue is always positive if a boundary exists. Studying the behaviours of

eigenvalues of Laplacian operator is not out of place as its properties such as monotonicity, multiplicity, asymp-

totic etc. provide us with rich information about the topology and geometry of the underlying manifold. In the

first of his three groundbreaking papers [126], G. Perelman introduces the energy functional F and shows that

it is non-decreasing along the modified Ricci flow coupled with certain conjugate heat equation. He establishes

that monotonicity of F implies that of the first non-zero eigenvalue of the operator −4∆ + R and applies the

monotonicity to rule out nontrivial steady and expanding breathers on compact manifold. Note that Ricci breathers

correspond to periodic orbits which we do not usually expect since Ricci flow is a heat-type equation (see Defini-

tion 2.2.4 for detail). In [115], L. Ma shows that the eigenvalues of Laplace-Beltrami operator on compact domain

of Riemannian manifold associated with the Ricci flow is non-decreasing but with nonnegativity assumption on

the scalar curvature R. X. Cao has since extended this result to the eigenvalues of the operator −∆ + R
2 [42]. In

[43] the monotonicity of eigenvalue of −∆ + cR, c ≥ 1
4 is established without sign assumption on the curvature

operator and both compact steady and expanding Ricci breathers are trivial. In [108] a family of functional Li- Fk,

which happens to be nondecreasing under the Ricci flow is constructed and the result extended to rescaled Ricci

flow in [109]. It turns out that the Ricci flow is a special case of the rescaled Ricci flow. More interestingly, these

results can be extended to any other Laplacian-type operator under a closed Riemannian manifold. For instance,

the first eigenvalue of p-Laplace operator (p ≥ 2) with Einstein metric is monotonically non-decreasing [153], In

this case, when p = 2, the main result coincides with that of [115]. See also [110] for results in harmonic maps

flow coupled to the Ricci flow.

Throughout this chapter, we adopt Einstein summation convention, where the volume element on manifold√
|g|dx1

∧
...
∧
dxn = dµ, metric g(∂i, ∂j) = gij , where ∂i = ∂

∂xi are the components of the metric. The Levi-

Civita connection is defined by ∇∂i∂j = Γkij∂k, while its Christoffel’s symbols are given by Γkij = 1
2g
kl
(
∂igjl +
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∂jgil − ∂lgij
)
, Rij and R are the Ricci and scalar curvature tensors respectively, where R = gijRij , the trace

of Ricci tensor. The contracted second Bianchi identity is given as gij∇iRjk = 1
2∇kR and the inner product

〈p, q〉 :=
∫
Mn g

ikgjlpijqkldµg for any two tensors p and q. We sometimes write M instead of Mn to mean

Manifold of dimension = n without fear of confusion.

The rest of the chapter follows; in Section 2.2, we discuss some classical energy functionals and lay emphasis

on Perelman entropy and its geometric consequences. In Section 2.3, we construct a new family of entropy func-

tionals which proves to be monotonically nondecreasing, we also discuss the monotone properties of eigenvalues

of the geometric operator ”−2∆ + CR”, where C ≥ 1
2 , and R, a scalar curvature, under the Ricci flow, while

the results of Section 2.3 are extended to the case of normalized flow in Section 2.4. The results here confirm that

expanding or steady breathers on compact manifold are necessarily Einstein. We also construct a new family of

entropy over shrinkers which allows us to obtain conditions over which Einstein metrics shrink.

2.2 Classical Energy Functionals

2.2.1 Total Scalar Curvature

We obtain the derivative of the total scalar curvature on a closed manifold (Mn, g(t)) as

∂

∂t

∫
M

Rdµ =

∫
M

(1

2
(trgh)R− hijRij

)
dµ, (2.2.1)

which coincides with the first variation of the classical Einstein-Hilbert functional H =
∫
M
Rdµ by using the

following variation formulas

∂gij
∂t

= hij ,
∂R

∂t
= −∆(trgh) + δ2h− 〈h,Rc〉,

where δ2h = gijgpq∇j∇qhip and 〈h,Rc〉 = gijgklhikRjl. Specifically,

∂

∂t
H(gij) =

∫
M

[
−∆(trgh) + δ2h− 〈h,Rc〉+

R

2
trh
]
dµ

=

∫
M

[R
2
〈g, h〉 − 〈h,Rc〉

]
dµ

=

∫
M

hij
(R

2
gij −Rij

)
dµ,

where Gij = Rij − R
2 gij is the Einstein tensor. Then, we have

∂

∂t
H(gij) =

∫
M

−hijGijdµ =

∫
M

〈h,∇H(g)〉dµ

and then obtain
∂

∂t
g = ∇H(g) (2.2.2)

as the gradient flow ofH(g). For the gradient flow of the Einstein-Hilbert functional, we have (modified by multi-

plication factor 2)
∂

∂t
gij = −2Rij +Rgij = −2Gij , (2.2.3)
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which is not parabolic even weakly, thus, we can not readily establish its solution even for a short time. We note

that the weak part of (2.2.3) coincides with the Ricci flow, while the remaining term arises from the presence of

the volume element dµ, which itself is time-evolving.We shall however deal with this in Section 2.3.

Remark 2.2.1. We call g stationary of H(g) if δH(g) = 0 for all h ∈ S2T ∗M . Since Gij = Gji, then Gij = 0

on M . Taking the trace, we have

0 ≡ G =
2− n

2
R (2.2.4)

So in dimension n 6= 2, this implies R ≡ 0 on M and therefore Rc ≡ 0 on M (Ricci flat manifold), then the

functional becomes invariant under deformations. It is now clear that the Ricci flow is not a gradient flow of a

functional over the space of smooth metric but can be formulated as a gradient-like flow. The key to achieving this

is to look for functionals whose critical points are Ricci solitons, this is contained in the work of Perelman [126]

as we briefly survey in the next section.

2.2.2 The Perelman’s F-Energy and its Consequences

In this section, we discuss Perelman’sF -energy as introduced by Grisha Perelman in a truly groundbreaking paper

[126] and give some of the geometric consequences of its monotonicity under the Ricci flow. Many authors have

given exposition on this subject, some of which include [4, 64, 69, 101, 135].

Let (Mn, gij(t)) be a closed manifold for a Riemannian metric gij(t) and a smooth function f on Mn, Perel-

man’s Energy functional [126] on pairs (gij , f) is defined by

F(gij(t), f) =

∫
Mn

(R+ |∇f |2)e−fdµ. (2.2.5)

The introduction of function f has embedded the space of Riemannian metric in a larger space (see also [64, 101]).

The energy functional (2.2.5) can be expressed in two other ways, namely

F(gij(t), f) =

∫
Mn

(R+ ∆f)e−fdµ, (2.2.6)

which clearly follows from the fact that∫
M

∆(e−f )dµ = 0 =

∫
M

(−∆f + |∇f |2)e−fdµ

and

F(gij(t), f) =

∫
M

(R+ 2∆f − |∇f |2)e−fdµ. (2.2.7)

For any diffeomorphism ϕ : M →M , we have

F(ϕ∗g, f ◦ ϕ) = F(g, f)

and for any constants α > 0 and β

F(α2g, f + β) = αn−2 e−βF(g, f).
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Thus, the F-energy functional is diffeomorphism invariant but not scale invariant. Now taking the smooth vari-

ations of metric g and f as δgij = hij and δf = K for some function K : M → R respectively with H := trghij ,

we have the following variation formula

δF(gij(t), f) =

∫
M

[
−∆H +∇i∇jhij − hijRij + 2〈∇f,∇K〉 − hij∇if∇jf

+(R+ |∇f |2)(
H

2
−K)

]
e−fdµ.

(2.2.8)

Applying integration by parts to some terms in the variation formula (C.1.2), we obtain

δF(gij(t), f) =

∫
M

[
− hij(Rij +∇i∇jf) + (2∆f − |∇f |2 +R)(

H

2
−K)

]
e−fdµ. (2.2.9)

Keeping the volume measure static, i.e., letting dm := e−fdµ, then δ(dm) = 0 implies H = 2K (see Appendix

C for detail), and we can then consider the L2-inner product on space of metric g with respect to the measure dm

as 〈pij , qij〉M =
∫
M
〈pij , qij〉dm, then we have

∇Fm(g) = −(Rij +∇i∇jf). (2.2.10)

This leads us to consideration of theL2- gradient flow

hij =
∂gij
∂t

= −2(Rij +∇i∇jf) for 2Fm(g),

where f is defined by the above. This is a Ricci flow modified by diffeomorphism generated by the gradient

of f 1, indeed, it is equivalent to the Ricci flow. Perelman proved that the F-energy functional is monotonically

nondecreasing under the following coupled system of modified Ricci flow and backward heat equation.

Lemma 2.2.2. The coupled modified Ricci flow equation with a backward heat equation
∂gij
∂t

= −2(Rij +∇i∇jf)

∂f

∂t
= −∆f −R

(2.2.11)

is a gradient flow.

Notice that the second equation in the coupling is a backward heat equation, which can be solved backward in

time. Conjugating away the infinitesimal diffeomorphism converts the gradient flow (2.2.11) to
∂gij
∂t

= −2Rij

∂f

∂t
= −∆f + |∇f |2 −R.

(2.2.12)

1The symmetric tensor−(Rij +∇i∇jf) is the L2 gradient flow of the functional F =
∫
M (R+ |∇f |2)dm, where f := log dµ

dm
. Thus,

given a measurem, we may consider the gradient flow (gij)t = −2(Rij +∇i∇jf) for Fm(g). For generalm, this flow may not exist even

for a short time, however, when it exists, it is just the Ricci flow modified by diffeomorphism
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This is done by invoking Lemma 1.2.5. Intuitively, if the diffeomorphism is generated by flowing along the time-

dependent vector field X(t) = ∇f , then, the equation for g and f become (gij)t = −2(Rij +∇i∇jf) + L∇fg

and ft = −∆f − R + L∇ff , where LX is the Lie derivative along the vector field X . Using these together with

the fact that L∇fg = 2∇∇f and L∇ff = |∇f |2, we will obtain the Ricci flow (2.2.12) (See (0.2.12) for the

definition of Lie derivative).

Precisely
d

dt
F(gij(t), f(t)) = 2

∫
Mn

|Rij +∇i∇jf |2e−fdµ. (2.2.13)

In particular F(gij(t), f(t)) is monotonically nondecreasing in time and the monotonicity is strict unless Rij +

∇i∇jf = 0.

Having established the nondecreasing monotone feature of the energy F for the Ricci flow, we now want to

develop a control quantity for Ricci flow but we must eliminate f . Define

λ(gij) = inf
{
F(gij , f) : f ∈ C∞c (M),

∫
M

e−fdµ = 1
}
, (2.2.14)

where the infimum is taken over all smooth functions f . Setting e−f =: u2, then the functional F is written as

F =

∫
Mn

(Ru2 + 4|∇u|2)dµ with

∫
M

u2dµ = 1. (2.2.15)

Then λ(g) is the first non zero (least) eigenvalue of the self adjoint modified operator−4∆+R and the nondecreas-

ing monotonicity ofF implies that of λ. As an application, Perelman was able to rule out the existence of nontrivial

steady or expanding Ricci breathers on closed manifolds. Let u0 > 0 be the corresponding eigenfunction, then the

following

−4∆u0 +Ru0 = λ(gij)u0

is satisfied with L2-norm of u0 equals 1 and f0 = −2 log u0 is a minimizer. λ(gij) = F(gij , f0) and f0 satisfy the

equation

−2∆f0 + |∇f0|2 −R = −λ(gij).

Below are the properties of the functional λ on a closed manifold (For detail see [68, pp. 206]).

1. Lower bound for λ.

F(gij(t), f) ≥ min
x∈M

R(x)

∫
M

e−fdµ = min
x∈M

R(x) = Rmin

and in particular

λ(g) ≥ Rmin.

2. Diffeomorphism invariance.

If φ : M →M is a diffeomorphism, then

λ(φ∗g) = λ(g).
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3. Existence of a smooth minimizer.

There exists f ∈ C∞(M) with
∫
M
e−fdµ = 1 such that

λ(g) = F(g, f) i.e, λ(g) =

∫
M

(R+ |∇f |2)e−fdµ.

4. Upper bound for λ

λ(g) ≤ 1

V ol(g)

∫
M

Rdµ.

This can be seen by choosing f = log V ol(gij) such that∫
M

e−fdµ = 1 and λ(g) ≤
∫
M

(R+ |∇f |2)e−fdµ.

5. Scaling.

λ(cg) = c−1λ(g).

On the Monotonicity of λ. The monotonicity of F implies the monotonicity of λ under the Ricci flow.

Lemma 2.2.3. ([64, Lemma 5.25] If gij(t), t ∈ [0, T ] is a solution to the Ricci flow, then,

d

dt
λ(gij(t)) ≥

2

n
λ2(gij(t))

and λ(gij(t)) is nondecreasing in t ∈ [0, T ].

Proof. Let f0 be a minimizer of (gij(t0), f0) for any t0 ∈ [0, T ], so that

λ(gij(t0)) = F(gij(t0), f0). (2.2.16)

Solving the backward heat equation 
∂f

∂t
= −∆f + |∇f |2 −R.

f(t0) = f0

(2.2.17)

on [0, T ], then
d

dt
F(gij(t), f(t)) ≥ 0, for all time t ≤ t0. (2.2.18)

We then have that

λ(gij(t)) ≤ F(gij(t), f(t)) for t ≤ t0 (2.2.19)

since the constraint
∫
M
e−fdµ is preserved under (2.2.17). We now recall the monotonicity formula for F under

the Ricci flow
d

dt
F(gij(t), f(t)) = 2

∫
M

|Rij +∇i∇jf |2e−fdµ. (2.2.20)
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By (2.2.16) - (2.2.19), we have

λ(gij(t)) ≤ F(gij(t), f(t)) ≤ F(gij(t0), f0) = λ(gij(t0)) (2.2.21)

and

d

dt
λ(gij(t))

∣∣∣
t=t0
≥ d

dt
F(gij(t), f(t))

∣∣∣
t=t0

= 2

∫
M

|Rij +∇i∇jf |2e−fdµg(t0)

≥ 2

∫
M

1

n
(R+ ∆f)2e−fdµg(t0)

≥ 2

n

(∫
M

(R+ ∆f)e−fdµg(t0)

)2

=
2

n
λ2(gij(t0)),

(2.2.22)

where f = f0 is the minimizer. Hence, it is clear from the above that λ(gij(t)) is nondecreasing under the Ricci

flow.

Definition 2.2.4. (Breathers): A metric gij(t) which solves the Ricci flow is called a breather if for some t1, t2,

such that t1 < t2, the metric gij(t2) = αφ∗t gij(t1) for some constant α > 0 and diffeomorphism φt : M → M.

The cases α < 1, α = 1 and α > 1 correspond to shrinking, steady and expanding breathers. Steady, shrinking or

expanding Ricci solitons are trivial breathers for which metric gij(t1) and gij(t2) differ only by diffeomorphism

and scaling for t1 and t2.

Remark 2.2.5. If we consider the Ricci flow as a dynamic system on the space of Riemannnian metrics modulo

diffeomorphism and scaling, the Ricci breathers correspond to the periodic orbits while the Ricci soliton are fixed

points. Since the Ricci flow is a heat-type equation, we expect that there are no periodic orbits except fixed points.

For example, Ricci flat metric is a steady gradient soliton (i.e., a fixed point of a dynamic system). e. g. Hamilton’s

Cigar soliton on the 2-dimensional manifold Σ = R2 with conformal metric

gΣ =
dx2 + dy2

1 + x2 + y2

and the gradient function f := log
√

1 + x2 + y2.

An important example of gradient shrinking soliton is the Gaussian soliton for which the metric gij is just the

Euclidean metric on Rn, α = 1 and f = − |x|
2

2 .

Proposition 2.2.6. Let gij(t) be a solution of the Ricci flow, we have

1. λ(φ∗t gij) = λ(gij) for any diffeomorphism φt : M →M.
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2. λ(gij(t)) is nondecresing and the monotonicity is strict unless Rij +∇i∇jf = 0.

3. A steady breather is necessarily a steady gradient soliton.

Proof. 1. λ(φ∗t gij) = inf F(φ∗t gij , f)) = inf F(gij , f) = λ(gij).

2. Let f0 be a minimizer for any t0 with
∫
M
e−fdµ = 1, we solve the backward heat equation
∂f

∂t
= −∆f −R+ |∇f |2

f(t0) = f0

(2.2.23)

and obtain a solution f(t) for t ≤ t0 which satisfies
∫
M
e−fdµ = 1 and the monotonicity formula (2.2.13).

Since F(gij , f) is nondecreasing, then we have

λ(gij(t)) ≤ F(gij(t), f(t)) ≤ F(gij(t0), f0) = λ(gij(t0)). (2.2.24)

Suppose the monotonicity is not strict, i.e., for any solution gij(t) for a Ricci flow, there exists t1 < t2 such

that

λ(gij(t2)) = λ(gij(t1)).

Let f(t2) be the minimizer of F at time t2 so that

λ(gij(t2)) = F(gij(t2), f(t2)).

Assuming that f(t2) solves the backward heat equation
∂f

∂t
= −∆f −R+ |∇f |2

f(t2) = f2

(2.2.25)

for t ∈ [t1, t2].

By monotonicity formula for F and the definition of λ, we have

λ(gij(t1)) ≤ F(gij(t1), f(t1)) ≤ F(gij(t2), f2) = λ(gij(t2)) (2.2.26)

for all t ∈ [t1, t2].

Since λ(gij(t1)) = λ(gij(t2)) and λ(gij(t)) is monotone, we have

F(gij(t), f(t)) = λ(gij(t)) ≡ const. for t ∈ [t1, t2].

Therefore f(t) is the minimizer for F(gij(t)) and d
dtF(gij(t), f(t)) ≡ 0. Hence we have∫

M

|Rij +∇i∇jf |2e−fdµ ≡ 0

for all t ∈ [t1, t2]. Thus, Rij +∇i∇jf = 0 for all t ∈ [t1, t2].
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3. We recall that gradient Ricci soliton satisfies

Rij(g) +∇i∇jf = αgij ,

then a steady breather (case α = 0 ) is necessarily a steady gradient Ricci soliton.

2.2.3 Nonexistence of Nontrivial expanding Breathers.

This case is more subtle than the previous, to deal with it we need a scale invariant version

λ̃(gij) = λ(gij)V
2
n (gij),

here, V = V ol(gij) is the volume of the manifold M . The reason for this is that λ(g) is not scale invariant, e.g.,

λ(cg) = c−1λ(g). Thus λ̃(gij) is normalized and we can see that λ̃(cg) = λ̃(g) for any c > 0. So the invariant λ̃

is potentially useful for expanding and shrinking breathers. The scaling invariance is shown as follows; consider

the scaling g̃ = c · g and f̃ := f + n
2 ln c for any c > 0. We need to scale f since it must satisfy the normalization

constraint
∫
M
e−f̃dµ̃ =

∫
M
e−fdµ = 1. Then we scale

dµ̃ =
√
det(g̃)dx =

√
det(c · g)dx =

√
cndet(g)dx = c

n
2

√
det(g)dx = c

n
2 dµ,∫

M

e−f̃dµ̃ =

∫
M

e−feln c−n/2cn/2dµ =

∫
M

e−fdµ = 1, R̃ := R(g̃) = c−1R(g)

and |∇f̃ |2g̃ = g̃ij∇if̃∇j f̃ = (cgij)∇if∇jf = c−1|∇f |2g, since ∇if̃ = ∇if.

Using the above scalings we calculate

λ̃(g(t)) = V
2
n (g̃) · λ(g̃) =

(∫
M

dµ̃
) 2
n · inf

f

{∫
M

(
R(g̃) + |∇f̃ |2g̃

)
e−f̃dµ̃ with

∫
M

e−f̃ = 1

}

=
(∫

M

c
n
2 dµ

) 2
n · inf

f

{∫
M

c−1
(
R+ |∇f |2g

)
c−n/2e−fcn/2dµ with

∫
M

e−feln c−n/2cn/2dµ = 1

}

= c
n
2 ·

2
n

(∫
M

dµ
) 2
n · inf

f

{
c−1

∫
M

(
R+ |∇f |2g

)
e−fdµ with

∫
M

e−fdµ = 1

}
= V

2
n (g)λ(g).

We notice that the quantity λ̃(g(t)) is not monotone in general. Next we state and prove a result for the monoton-

icity of λ̃(g(t)) under Ricci flow when it is nonpositive.The proof is included for completeness, Cf [64] .

Proposition 2.2.7. Let λ̃(gij(t)) be as described above;

1. λ̃(gij) is non decreasing along the Ricci flow whenever it is nonpositive and the monotonicity is strict unless

gij(t) is expanding gradient soliton.
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2. An expanding breather is necessarily an expanding gradient soliton.

Proof. Let f(t) solve the backward heat equation

∂f

∂t
= −∆f + |∇f |2 −R

at t ≤ t0 with
∫
M
e−fdµ = 1 and f0 be a minimizer of

λ(gij(t)) = inf F(gij(t), f(t)), t = t0.

From equation (2.2.22), we have that

d

dt
λ(gij(t)) ≥

d

dt
F(gij(t), f(t))

∣∣∣
t=t0

= 2

∫
M

|Rij +∇i∇jf |2e−fdµg(t0).

Since λ̃ is Lipshchitz continuous, the time derivative exists in the sense of forward difference quotients. Hence we

compute

d

dt
λ̃(gij(t)) =

d

dt

(
λ(gij(t))V

2
n (gij(t))

)
= V

2
n (gij(t))

d

dt
λ(gij(t)) + λ(gij(t))

d

dt

(
V

2
n (gij(t))

)
≥ V 2

n

∫
M

2|Rij +∇i∇jf |2e−fdµ+
2

n
V

2−n
n λ

dV

dt

= 2V
2
n

∫
M

|Rij +∇i∇jf |2e−fdµ+
2

n
V

2−n
n

∫
M

(R+ ∆f)e−fdµ

∫
M

(−R)dµ

= 2V
2
n

∫
M

|Rij +∇i∇jf |2e−fdµ−
2

n
V

2−n
n

∫
M

Rdµ

∫
M

(R+ ∆f)e−fdµ,

where we have used the identity dV/dt = −
∫
M
Rdµ (Cf Lemma 1.3.1) and λ = inf F =

∫
M

(R + ∆f)e−fdµ.

Hence

1

2
V −

2
n
d

dt
λ̃ ≥

∫
M

|Rij +∇i∇jf |2e−fdµ−
1

n

∫
M

(R+ ∆f)e−fdµ · V −1

∫
M

Rdµ

=

∫
M

|Rij +∇i∇jf −
1

n
(R+ ∆f)gij |2e−fdµ+

1

n

∫
M

(R+ ∆f)2e−fdµ

− 1

n

∫
M

(R+ ∆f)e−fdµ ·
∫
M
Rdµ

V
= RHS.

The last inequality is due to the following identity;

|Rij +∇i∇jf |2 = |Rij +∇i∇jf −
1

n
(R+ ∆f)gij |2 +

1

n
(R+ ∆f)2.

Recall the upper bound of λ i.e, λ ≤ 1
V

∫
M
Rdµ which implies

λ =

∫
M

(R+ ∆f)2e−fdµ ≤ 1

V

∫
M

Rdµ.

Suppose λ(gij(t0)) ≤ 0, then
∫
M

(R+ ∆f)2e−fdµ ≤ 0 and the last term in the RHS becomes

− 1

n

∫
M

(R+ ∆f)e−fdµ ·
∫
M
Rdµ

V
≥ 1

n

(
−
∫
M

(R+ ∆f)e−fdµ
)(∫

M

(R+ ∆f)e−fdµ
)

= − 1

n

(∫
M

(R+ ∆f)e−fdµ
)2

.
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Therefore at t = t0, we have

1

2
V −

2
n
d

dt
λ̃ ≥

∫
M

|Rij +∇i∇jf −
1

n
(R+ ∆f)gij |2e−fdµ

+
1

n

∫
M

(R+ ∆f)2e−fdµ− 1

n

(∫
M

(R+ ∆f)e−fdµ
)2

≥
∫
M

|Rij +∇i∇jf −
1

n
(R+ ∆f)gij |2e−fdµ

since
∫
M
e−fdµ = 1, hence

d

dt
λ̃ ≥ 2V

2
n

∫
M

|Rij +∇i∇jf −
1

n
(R+ ∆f)gij |2e−fdµ ≥ 0.

This ends the proof of the first part of the theorem, noticing that equality holds if and only if

Rij +∇i∇jf −
1

n
(R+ ∆f)gij = 0.

Thus, g(t) is an expanding gradient soliton.

Next, we consider the evolution of the volume and we would necessarily have

dV

dt
> 0, for some t ∈ [t1, t2].

Let g(t) be an expanding breather on [t1, t2] with g(t2) = αφ∗g(t1), where α > 1 and φ : M → M is a

diffeomorphism, We know that V (g(t2)) > V (g(t1)) and for some t1 < t0 < t2

0 ≤ d

dt
log V

∣∣∣
t=t0

=
−
∫
M
Rdµ

V (g(t0))
≤ −λ(g(t0))

by definition of λ(gij(t)). It follows that on an expanding breather on [t1, t2],

λ̃(g(t)) = λ(g(t))V
2
n (g(t)) < 0, for some t ∈ [t1, t2].

By statement 1, λ̃(g(t)) is increasing whenever it is negative, we then have

λ̃(g(t1)) < λ̃(g(t2)) < 0 for all t ∈ [t1, t2]

unless we are on an expanding gradient soliton.

But the diffeomorphism and scaling invariance of λ̃(g(t)) imply

λ̃(g(t1)) = λ̃(g(t2)).

Therefore an expanding breather must be an expanding gradient soliton.

We conclude this section with the following

Corollary 2.2.8. ( [64, pp.213]). Expanding or steady breathers on a compact manifold are necessarily Einstein.
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Proof. From statement 1 of Proposition 2.2.7, we noticed that

Rij +∇i∇jf −
1

n
(R+ ∆f)gij = 0

for an expanding breather g(t). Since the monotonicity is strict, we have

R+ ∆f = C1(t), (2.2.27)

where C1 is a constant depending on time t. This is enough to conclude that g(t) could be steady gradient Ricci

soliton (equivalently to steady breathers). We now suppose g(t) is an expanding or steady gradient soliton. Com-

bining (5.5.8) with the fact that

2∆f +R− |∇f |2 = C2(t),

(the last equation follows from the structure of gradient Ricci solitons [64, Proposition 1.15]), where C2 is a

constant depending on t. We have

∆f − |∇f |2 = C2.

Since −
∫

∆(e−f )dµ = 0 =
∫

(∆f − |∇f |2)e−fdµ, then

∆f − |∇f |2 ≡ 0.

Thus by strong maximum principle, we conclude that f ≡ const. or since 0 =
∫

(∆f − |∇f |2)e−fdµ =

−2
∫
|∇f |2e−fdµ, f ≡ const. Hence Rij − 1

nRgij = 0 and gij is Einstein. (When n = 2, our conclusion

is vacuous).

Remark 2.2.9. As a corollary of the above, we again see that expanding or steady solutions on closed manifolds

are Einstein. In the case of shrinking solitons on closed manifolds, using the entropy functional, we shall see in a

later section that they are necessarily gradient shrinking solitons.

2.3 A New Family of Entropy Functionals

2.3.1 B-Energy Functional

To circumvent the difficulty encounter under Einstein-Hilbert functional, we can replace the evolving measure dµ

by some static measure dm and define a new functional

B =

∫
M

Rdm.

Now
dB
dt

=

∫
M

[
(∆R+ 2|Rij |2)dm+R

∂

∂t
dm
]

(2.3.1)
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since dm is static, we cannot apply divergence theorem which applies to evolving measure, we then set dm :=

e−fdµ for scalar function f : M → R and therefore obtain

dB
dt

=

∫
M

(∆R+ 2|Rij |2 −R
∂

∂t
f −R2)e−fdµ

=

∫
M

[
(∆R+ 2|Rij |2 −R(−∆f + |∇f |2 −R)−R2

]
e−fdµ

= 2

∫
M

|Rij |2e−fdµ+

∫
M

∆Re−fdµ+

∫
M

R(∆f − |∇f |2)e−fdµ

= 2

∫
M

|Rij |2e−fdµ,

where
∫
M

∆Re−fdµ =
∫
M
R∆e−fdµ =

∫
M
R(−∆f + |∇f |2)e−fdµ by using integration by parts.

Then, even by inspection, if the modified Ricci flow ∂gij
∂t = −2Rij − 2∇i∇jf is considered as an L2-gradient

flow of Perelman’s energy functional F , we can easily conclude that the Ricci flow ∂gij
∂t = −2Rij is also an

L2-gradient flow of our functional B.

Theorem 2.3.1. Let (Mn, gij(t)), t ∈ [0, T ) be a solution of the Ricci flow, then

d

dt
B(gij , f) = 2

∫
M

|Rij |2e−fdµ, (2.3.2)

where f = log
(
dµ
dm

)
and satisfies

∂

∂t
f = −∆f + |∇f |2 −R. (2.3.3)

In particular B(gij , f) is monotonically nondecreasing in time without sign assumption on the curvature operator

and the monotonicity is strict unless Rij ≡ 0. Moreover, there is no nontrivial Ricci breather except gradient

steady Ricci soliton, which is necessarily flat.

Proof.
∂

∂t
f =

∂

∂t
log
( dµ
dm

)
=

1

2
tr
( ∂
∂t
gij

)
=

1

2
gij
[
− 2(Rij +∇i∇jf)

]
= −R−∆f.

Modulo the diffeomorphism out of ∂
∂tgij = −2(Rij +∇i∇jf),

∂

∂t
f = −∆f + |∇f |2 −R

Then,
d

dt
B(gij , f) = 2

∫
M

|Rij |2e−fdµ ≥ 0,

where equality holds if and on if Rij ≡ 0. This implies that (Mn, gij(t)) is Ricci flat (steady gradient Ricci

soliton).

2.3.2 The Entropy Formula and its Monotonicity

In this section, we construct a new entropy formula for the Ricci flow, the motivations for this are the behaviour

of our functional B (Theorem 2.3.1 ) under the Ricci flow modulo diffeomorphism invariance and the classical
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results for Dirichlet energy functional for heat flow on Riemannian manifolds. It is well known that a typical heat

equation for a function f : Mn × [0,∞) → R on an n-compact manifold M (possibly without boundary) is a

gradient flow for the classical Dirichlet energy functional

E(f) :=
1

2

∫
Mn

|∇f |2dµ, (2.3.4)

since there is natural L2-inner product on S2T ∗M . An application of this is that any periodic (breather) solutions

to the heat equation are harmonic function which in fact must be constant in M . The Li-Yau gradient estimate for

the heat equation on complete Riemannian manifold suggests an entropy formula which was derived in [122] but

proved to be monotone decreasing with non-negativity condition on Ricci curvature.

Definition 2.3.2. Let (Mn, g) be a closed n-dimensional Riemannian Manifold, f : Mn → R be a smooth

function on Mn, define a functional on pairs (gij , f) by

FB =

∫
M

(1

2
|∇f |2 +R

)
dm, (2.3.5)

where dm := e−fdµ.

The functional FB is a variant of Perelman’s energy functional F , though expected to behave in a similar

manner, it differs from the later by the introduction of constant 1
2 .

Let δgij = hij and δf = K, where H = trghij , we have the first variation of FB as

δFB =

∫
M

−hij(Rij +∇i∇jf −
1

2
∇if∇jf)dm. (2.3.6)

The coupled modified Ricci flow equation with a backward heat equation
∂gij
∂t

= −2(Rij +∇i∇jf −
1

2
∇if∇jf)

∂f

∂t
= −R−∆f +

1

2
|∇f |2

(2.3.7)

is a gradient flow. Conjugating away the infinitesimal diffeomorphism converts (2.3.6) to (2.2.12).

Theorem 2.3.3. Let gij(t) and f solve the system (2.2.12) in the interval [0, T ), then,

d

dt
FB(gij , f) =

∫
M

|Rij +∇i∇jf |2dm+

∫
Mn

|Rij |2dm. (2.3.8)

Showing thatFB(gij , f) is monotonically non-decreasing in time, however, the monotonicity is strict, unlessRij ≡

0 and f is a constant.

Proof.

FB =

∫
M

(1

2
|∇f |2 +R

)
e−fdµ =

1

2

∫
M

(|∇f |2 +R)e−fdµ+
1

2

∫
M

Re−fdµ,

therefore
d

dt
FB(gij , f) =

1

2

d

dt
F +

1

2

d

dt
B.

The result then follows.
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Definition 2.3.4. Let (Mn, g) be a closed n-dimensional Riemannian Manifold, define a family of functional FBC
as

FBC =

∫
M

(|∇f |2 + 2CR)dm, (2.3.9)

where C ≥ 1
2 , C ∈ R. When C = 1

2 , this is Perelman’s F functional [126], C = 1 is a specific case we considered

and C = 1
2k, k ≥ 1, we have Li-Fk-family [108].

Remark 2.3.5. Our functional FBC is a variant of Perelman functional which uses certain multiple of Dirichlet

energy. Their monotonicities are consistent with each other.

Theorem 2.3.6. Let (Mn, gij(t)), t ∈ [0, T ) be a solution of the Ricci flow and f evolves by a conjugate heat

equation or satisfies e−f = dm
dµ , then, under the coupled system (2.2.12), FBC is monotonically non-decreasing.

In particular, we have

d

dt
FBC = 2

∫
M

|Rij +∇i∇jf |2dm+ 2(2C − 1)

∫
M

|Rij |2dm ≥ 0. (2.3.10)

Moreover, the monotonicity is strict unless Rij +∇i∇jf ≡ 0, i.e., there is no nontrivial breathers except steady

gradient Ricci soliton and the gradient function f is constant.

This shows that all steady breathers are gradient steady Ricci soliton with f = 0. An example of this is

Hamilton cigar soliton (2- dimensional R2) with conformal metric ds2 = dx2+dy2

1+x2+y2 and the gradient function

f = log
√

1 + x2 + y2.

Proof. The proof follows from a direct computation based on the previous results.

d

dt
FBC =

d

dt

∫
M

(|∇f |2 + 2CR)dm

=
d

dt

(∫
M

(|∇f |2 +R)dm+ (2C − 1)

∫
M

Rdm
)

=
d

dt
F + (2C − 1)

d

dt
B.

The monotonicity formula (2.3.10) follows at once. Therefore

d

dt
FBC(gij , f) ≡ 0

if and only if Rij ≡ 0 and f is a constant.

2.3.3 Eigenvalues and their monotonicity

In this subsection, we discuss the monotonicity properties of the least eigenvalue of a self adjoint modified operator

−2∆ + CR that occurs in our functional. This is important as it enables us gain controlled geometric quantity for

the Ricci flow.

µC(gij) = inf
{
FBC(gij , f) : f ∈ C∞c (M),

∫
M

e−fdµ = 1
}
, (2.3.11)
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where the infimum is taken over all smooth functions f . The normalisation
∫
M
e−fdµ = 1 makes dm a probability

measure and ensures a meaningful infimum.

Setting e−f =: u2, then, the functional FBC can be written in terms of u as

FBC =

∫
M

(2|∇u|2 + CRu2)dµ, with

∫
M

u2dµ = 1. (2.3.12)

Then µC(gij) = λ1(−2∆ +CR) is the least eigenvalue of the self-adjoint modified operator (−2∆ +CR). Let

v be the corresponding eigenfunction, then, we have

−2∆v + CRv = µC(gij)v

and fC = −2 log v is a minimiser of

µC(gij) = FBC(gij , fC).

By standard existence and regularity theories, the minimising sequence always exists.

Theorem 2.3.7. Let (Mn, gij(t)), t ∈ [0, T ) be a solution of the Ricci flow, then, the least eigenvalue µC(gij) of

(−2∆ + CR) is diffeomorphism invariant and non-decreasing. The monotonicity is strict unless the metric is a

steady gradient soliton.

Proof. Let φ : M →M be a one parameter family of diffeomorphism. For any diffeomorphism φ(t) we have

FBC(φ∗t gij , f ◦ φ) = FBC(gij , f),

then,

µC(φ∗t gij(t)) = FBC(φ∗t gij , fC) = FBC(gij(t), fC) = µC(gij(t)).

Solving the backward heat equation at any time t ∈ [0, t0) with initial condition f(t0) = f0, we know that f0

is a minimizer with
∫
M
e−fdµ = 1. So our solution f(t), t < t0 which satisfies e−fdµ is also a minimizer. By

Theorem 2.3.6, FBC(gij , fc) is non-decreasing, then we have

µC(gij(t)) = inf FBC(gij(t), f(t)) ≤ inf FBC(gij(t0), f(t0)) = µC(gij(t0)).

Thus, µC is nondecreasing under the coupled Ricci flow. Suppose the monotonicity is not strict, then, for some

times t1, t2, t1 < t2, the solution gij(t) of the Ricci flow satisfies

µC(gij(t1)) = µC(gij(t2)).

If f(t1) is a minimizer of FBC(gij(t), fc) at time t1, so that

µC(gij(t1)) = FBC(gij(t1), f(t1)).
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But by the monotonicity of FBC

FBC(gij(t1), f(t1)) ≤ FBC(gij(t2), f(t2)), t1 < t2,

= µC(gij(t2)).

The above inequality implies that

d

dt
µC(gij(t))

∣∣∣
t=t2
≥ d

dt
FBC(gij(t1), f(t1)) ≥ 0,

hence, the last part of the theorem follows clearly.

We conclude this section with the fact that there is no compact steady Ricci breather other than Ricci flat metric,

this is due to the diffeomorphism invariance of the eigenvalues. More details can be found in [42, Theorem 3],

[87, 99], [108, Theorem 55], [126].

2.4 Monotonicity Formula under the Normalized Ricci Flow

The normalized Ricci flow (NRF) is given [68] as

∂g̃ij
∂t

= −2R̃ij +
2

n
rg̃ij , (2.4.1)

where r = (V olg̃)
−1
∫
M
R̃dµ̃ is a constant, the average of the scalar curvature of M, and V olg̃ =

∫
M
dµ̃. The

factor r appearing in (2.4.1) keeps the volume of the manifold constant. Here, we extend the results from previous

sections (Theorems 2.3.1, 2.3.3, 2.3.6 and 2.3.7) to the case of the normalized Ricci flow. We recall that there is

a bijection between the Ricci flow (2.1.1) and the NRF (2.4.1), if we choose a normalization factor φ := φ(t) with

φ(0) = 1 such that g̃(t) = φ(t)g(t) and define a time scale t̃ =
∫ t

0
φ(τ)dτ , then g̃(t) solves (2.4.1) whenever g(t)

solves (2.1.1).

Remark 2.4.1. If r = 0, all the properties of the Ricci flow (2.1.1) including the monotonicity of the eigenvalues

of Laplacian hold without further alteration.

2.4.1 Monotonicity of the Entropy Formula

In this section, we extend some results in Section 2.3 to the case of NRF. Define a modified normalized Ricci flow

by
∂g̃ij
∂t

= −2R̃ij +
2

n
rg̃ij − 2∇̃i∇̃j f̃

and f̃ = log
(
dm
dµ̃

)
i.e.,

∂f̃

∂t
=

1

2
trg

∂

∂t
g̃ij =

1

2
g̃ij(−2R̃ij +

2

n
rgij − 2∇̃i∇̃j f̃)

= −R̃+ r − ∆̃f̃ .
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It is however clear that the coupled system
∂g̃ij
∂t

= −2(R̃ij −
r

n
g̃ij + ∇̃i∇̃j f̃)

∂f̃

∂t
= −∆̃f̃ − R̃+ r

(2.4.2)

is equivalent to (using the same idea of conjugating away the infinitesimal diffeomorphism as was used to convert

(2.2.11) to (2.2.12)) 
∂g̃ij
∂t

= −2R̃ij +
2

n
rg̃ij

∂f̃

∂t
= −∆̃f̃ + |∇f |2 − R̃+ r.

(2.4.3)

Now using Perelman’s energy functional, F̃ = φF i.e., F̃ =
∫
M

(|∇̃f̃ |2 + R̃)e−f̃dµ̃, we have

dF̃
dt

= 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃−
2r

n

∫
M

g̃ij(∇̃i∇̃j f̃ + R̃ij)e
−f̃dµ̃

= 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃−
2r

n
F̃ .

So, dF̃dt ≥ 0 whenever r ≤ 0 . Thus we have proved the following;

Theorem 2.4.2. Let (g̃ij , f̃) solves (2.4.3) in the interval [0, T ), then

dF̃
dt

= 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃−
2r

n
F̃ ≥ 0, (2.4.4)

when r ≤ 0.

Theorem 2.4.3. Suppose g̃ij(t) is a solution of (2.4.1) and we define energy functional

B̃ = B(g̃ij , f̃) =

∫
M

R̃e−f̃dµ̃, (2.4.5)

then,
dB̃
dt

= 2

∫
M

|R̃ij |2e−f̃dµ̃−
2r

n
B̃. (2.4.6)

Furthermore, B̃ is non-decreasing whenever r ≤ 0, where f̃ := log
(
dm
dµ̃

)
. The monotonicity is strict unless we

are on Ricci flat metric.

Proof.

dB̃
dt

= 2

∫
M

∂R̃

∂t
− R̃∂f̃

∂t
− R̃(r − R̃)e−f̃dµ̃

= 2

∫
M

[
∆̃R̃+ 2|R̃ij |2 −

2r

n
R̃− R̃(−∆̃f̃ + |∇̃f̃ |2 − R̃+ r)− R̃(r − R̃)

]
e−f̃dµ̃

= 2

∫
M

|R̃ij |2e−f̃dµ̃−
2r

n

∫
M

R̃e−f̃dµ̃,

where we have used evolution of R̃ as obtained in Section (1.3) and evolution of f̃ as in (2.4.3).



Chapter 2. Eigenvalues and Entropy Monotonicity Formulas 55

Therefore our new entropy functional (2.3.9) implies

F̃BC = FBC(g̃ij , f̃) =

∫
M

(|∇̃f̃ |2 + 2CR̃)e−f̃dµ̃ = F̃ + (2C − 1)B̃. (2.4.7)

Hence

d

dt
F̃BC = 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃+ 2(2C − 1)

∫
M

|R̃ij |2e−f̃dµ̃−
2r

n
F̃ − 2(2C − 1)

r

n
B̃

= 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃+ 2(2C − 1)

∫
M

|R̃ij |2e−f̃dµ̃−
2r

n
F̃BC

≥ 0, (where r ≤ 0).

Theorem 2.4.4. Let g̃ij(t), t ∈ [0, T ) solves the normalized Ricci flow and f̃ the conjugate heat equation under

the coupled system (2.4.3). Then, F̃BC is monotonically non-decreasing when r ≤ 0. More so, if r = 0, then the

monotonicity is strict, unless the metric g̃ij(t) is Ricci flat and f̃ is a constant function.

Our monotonicity formula does not classify the metric if r is negative, though this is not difficult to achieve,

we need a little modification (This case is done by J. Li [109, Theorem 1.4]).

2.4.2 Monotonicity of the least eigenvalue under the NRF

Let g(t) be an evolving solution of (2.4.1) on a compact Riemannian manifold, let λ̃ be the least nonzero eigenvalue

of the modified operator −2∆̃ + CR̃,C ≥ 1
2 at time t, i.e.,

λ̃ = inf F̃BC with e−f̃dµ̃, (2.4.8)

then, we have

dλ̃

dt
= 2

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2e−f̃dµ̃+ 2(2C − 1)

∫
M

|R̃ij |2e−f̃dµ̃−
2r

n
λ̃, (2.4.9)

when r is nonpositive. If r is strictly negative, we have the following version of Theorem 2.3.7.

Theorem 2.4.5. The least eigenvalue of −2∆̃ + CR̃ is diffeomorphism invariance and nondecreasing under the

normalized Ricci flow. The monotonicity is strict unless we are on the Einstein metric.

Proof. (a). The first part of the Theorem is modelled after the first part of the proof of Theorem 2.3.7.

(b). The second part can be seen using equation (2.4.9)

d

dt
λ̃ ≥ 0, where r ≤ 0.

(c). Examining (2.4.9), it is clear that it fails to classify the steady state of the least eigenvalue (as remarked in
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[109]), so we need a modified form of (2.4.9) to tell the class of Einstein metric involved, however, we have

dλ̃

dt
= 2

∫
M

∣∣∣R̃ij + ∇̃i∇̃j f̃ −
r

n
g̃
∣∣∣2e−f̃dµ̃+ 2(2C − 1)

∫
M

∣∣∣R̃ij − r

n
g̃
∣∣∣2e−f̃dµ̃− 2rλ̃

n

+
4r

n

∫
M

g̃ij(∇̃i∇̃j f̃ + R̃ij)e
−f̃dµ̃− 2

∫
M

∣∣∣ r
n
g̃
∣∣∣2e−f̃dµ̃+ 4(2C − 1)

r

n

∫
M

g̃ijR̃ij e
−f̃dµ̃

− 2(2C − 1)

∫
M

∣∣∣ r
n
g̃
∣∣∣2e−f̃dµ̃

= 2

∫
M

∣∣∣R̃ij + ∇̃i∇̃j f̃ −
r

n
g̃
∣∣∣2e−f̃dµ̃+ 2(2C − 1)

∫
M

∣∣∣R̃ij − r

n
g̃
∣∣∣2e−f̃dµ̃− 2rλ̃

n
+

4r

n
F̃BC −

4Cr2

n

= 2

∫
M

∣∣∣R̃ij + ∇̃i∇̃j f̃ −
r

n
g̃
∣∣∣2e−f̃dµ̃+ 2(2C − 1)

∫
M

∣∣∣R̃ij − r

n
g̃
∣∣∣2e−f̃dµ̃+

2r

n
(λ̃− 2Cr)

≥ 0

since by definition λ̃ ≤ Cr (λ̃ being the least eigenvalue, see relation (3.3.11)).

Corollary 2.4.6. Under the normalized Ricci flow, the following monotonicity formula holds

dλ̃

dt
= 2

∫
M

∣∣∣R̃ij + ∇̃i∇̃j f̃ −
r

n
g̃
∣∣∣2e−f̃dµ̃+ 2(2C − 1)

∫
M

∣∣∣R̃ij − r

n
g̃
∣∣∣2e−f̃dµ̃ ≥ 0. (2.4.10)

Equality is attained if and only if g̃(t) is Einstein and f̃ is a constant gradient function.

Thus, we can rule out the existence of nontrivial expanding (or steady) gradient Ricci breathers when r ≤ 0

except those that are gradient solitons. If C = 1
2 and r ≤ 0, we have the monotonicity formula

dλ̃

dt
= 2

∫
M

∣∣∣R̃ij + ∇̃i∇̃j f̃ −
r

n
g̃
∣∣∣2e−f̃dµ̃+

2r

n
(λ̃− 2Cr) ≥ 0 (2.4.11)

which simply implies that expanding (or steady) breathers are necessarily expanding (or steady) soliton. Specific-

ally when C = 1
2 , the fact that normalized Ricci flow preserve volume throughout the evolution and the fact that

the eigenvalue λ̃ is invariant with respect to diffeomorphism and scaling will at once yield the Perelman’s result

for nonexistence of nontrivial expanding breather as discussed in the previous section. See [126, 64] for details

and [109] for another version. In this case we just view λ̃ = Perelman’s λ̃ = λV
2
n , we can therefore conclude that

the monotonicity of our λ̃ under normalized Ricci flow is equivalent to the monotonicity of Perelman’s λ̃ under

unnormalized Ricci flow. Hence, we have as a corollary that expanding or steady breathers on compact manifold

are necessarily Einstein.

2.5 Perelman’sW -entropy Functional and Applications

Next, we introduce Perelman’s W-entropy as presented in [126]. This is a modification of F-energy functional

(discussed in the previous section) with inclusion of a positive scale parameter τ and combination of Nash entropy.

These combine nicely and the resulting entropy yields useful applications. It was used in [126] to prove that

shrinking breathers are necessarily shrinking gradient solitons, thus completing the proof of the existence of no
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nontrivial breathers other than gradient solitons and also to get a lower bound for the injectivity radius of the flow

to complete no local collapsing theorem, (also known as Hamilton’s Little Loop Conjecture).

2.5.1 TheW-entropy Functional and its Monotonicity

We define theW-entropy functional (as in [126])

W(g, f, τ) :=

∫
M

[
τ(R+ |∇f |2) + f − n

]
(4πτ)−

n
2 e−fdµ, (2.5.1)

where g(t) is a Riemannian metric on n-compact manifold M , f is a smooth function on M and τ is a positive

scale parameter. Recall from the previous sections, we have F-energy functional and Nash entropy (N(f) =∫
M
f e−f dµ, u = e−f , under the gradient flow)

F(gij(t), f) =

∫
Mn

(R+ |∇f |2)e−fdµ, N(u) = −
∫
M

u log u du.

Denoting u := (4πτ)−
n
2 e−f with

∫
M
u dµ = 1, equation (2.5.1) can be rewritten as

W(g, f, τ) = [τF +N(f)] (4πτ)−
n
2 − n. (2.5.2)

We note that theW-entropy is invariant with respect to diffeomorphism and under simultaneous scaling of τ and

g. That is, for any diffeomorphism φ : M →M , we have

W(φ∗t g, φ
∗
t f, τ) =W(g, f, τ)

and for any scaling factor c(t), we have

W(cg, f, cτ) =W(g, f, τ).

The scaling is included in Appendix C (see Lemma C.2.4).

As in the previous section, let δgij = hij , δτ = η and δf = K for some function K : M → R, where

H := gijhij . We have the following

Lemma 2.5.1. The first variation ofW-functional is

δ(h,K,τ)W(g, f, τ) =

∫
M

−τhij
(
Rij +∇i∇jf −

1

2τ
gij

)
u dµ+

∫
M

η
(
R+ ∆f − n

2τ

)
u dµ

+

∫
M

(H
2
−K − n

2τ
η
)[
τ
(
R+ 2∆f − |∇f |2

)
+ f − n− 1

]
u dµ.

Proof. See Lemma C.2.2 in Appendix C for the proof.

2.5.2 The functionalW and its gradient flow

Let us keep the volume measure fixed so that

δ
(∫

M

(4πτ)−
n
2 e−fdµ

)
= 0 =

H

2
−K − n

2τ
η
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and require that η = −1, thus τ is a quantity decreasing at a constant rate. We then obtain the gradient flow

∂gij
∂t

= −2(Rij +∇i∇jf),

with dτ
dt = η = −1, where f = − lnu− n

2 ln(4πτ) and ∂f
∂t = −∆f −R+ n

2τ . Hence, we have the gradient flow

in form of coupled modified Ricci flow 

∂gij
∂t

= −2(Rij +∇i∇jf),

∂f

∂t
= −∆f −R+

n

2τ
,

dτ

dt
= −1

(2.5.3)

and the following

Proposition 2.5.2. Let (g(t), f(t), τ(t)) be a solution of the system (2.5.3), we have the identity

d

dt
W(g, f, τ) =

∫
M

2τ |Rij +∇i∇jf −
1

2τ
gij |2udµ, (2.5.4)

where
∫
M
udµ is a constant. (See Proposition C.2.3 in Appendix C for the proof).

In a similar manner to the previous section, conjugating away the diffeomorphism generated by the vector

field ∇f from the system (2.5.3), we have the coupled system of the Ricci flow-bakward nonlinear heat equation

associated to the functionalW 

∂gij
∂t

= −2Rij ,

∂f

∂t
= −∆f + |∇f |2 −R+

n

2τ
,

dτ

dt
= −1

(2.5.5)

whose solutions are equivalent to those of the system (2.5.3) up to diffeomorphism and dilation.

As a corollary to the proposition (2.5.2), we have

d

dt
W(g(t), f(t), τ(t)) ≥ 0, (2.5.6)

which is theW-entropy monotonicity formula. Here, equality holds if and only if

Rij +∇i∇jf −
1

2τ
gij = 0 (2.5.7)

since we know that τ is a positive factor. The condition (2.5.7) implies that g(t) is a shrinking gradient soliton

which flows along ∇f . Before applying the monotonicity formula to complete the proof of the existence of no

nontrivial breathers, we consider two functionals µ(gij , τ) and ν(gij , τ), using theW-entropy functional.
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Define the minimizing problem

µ(gij , τ) := inf{W(gij , f, τ) : f ∈ C∞(M),

∫
M

udµ = 1}

and

ν(gij) := inf{µ(gij , τ) : τ > 0}.

Setting v := e−
f
2 , to show existence of a minimizer , then the functionalW can be expressed as

W(gij , f, τ) =

∫
M

[
τ
(
Rv2 + 4|∇v|2

)
− v2 log v2 − nv2

]
(4πτ)−

n
2 dµ

with
∫
M
v2(4πτ)−

n
2 dµ = 1.

We may assume that 4πτ = 1 without loss of generality and show that infimum of

I[v] =

∫
M

[
τ
(
Rv2 + 4|∇v|2

)
− v2 log v2 − nv2

]
(4πτ)−

n
2 dµ

is achieved over a set

A = {v ∈ H1(M) :

∫
M

v2dµ = 1}.

By Sobolev compactness imbedding, A is weakly closed in H1(M) and I is weakly lower semi-continuous. We

can equally show that I[·] is coercive on A. Let v ∈ A, then using the inequality log x ≤ x
1
n , ∀ x > 1,

interpolation and Hölder’s inequalities, we have ( n > 2)2∫
M

v2 log v2dµ ≤
∫
v>1

v2 log v2 ≤
∫
v>1

v2+ 2
n ≤

∫
M

v2+ 2
n dµ, (Interpolation inequalities)

≤ ε
∫
M

v2+ 4
n dµ + C(ε)

∫
M

v2dµ,
(
ε > 0,

∫
M

v2dµ = 1
)

≤ ε
(∫

M

v
2n
n−2

)n−2
n
(∫

M

v2dµ
) 2
n

+ C(ε), (Holder′s inequality)

≤ ε
(∫

M

|∇v|2dµ
)

+ C(ε), (Sobolev inequality).

Choosing ε = τ , we obtain3

I[v] =

∫
M

[
τ
(
Rv2 + 4|∇v|2

)
− v2 log v2 − nv2

]
(4πτ)−

n
2 dµ

≥
∫
M

[
τ
(
Rv2 + 4|∇v|2

)
− τ |∇v|2 − nv2

]
dµ− C(ε)

≥
∫
M

3τ |∇v|2dµ+ inf
x∈M

(τR− n)− C.

This proves the coercivity of I[·]. By direct method in Calculus of variation, we can obtain positive minimizer of

I[u]→ min in the set A = {v ∈ H1(M) :
∫
M
v2dµ = 1}. We can also minimize I[·] over the subset

A+ = {v ∈ H1(M) : v > 0,

∫
M

v2dµ = 1}.

2Observe that for any ε > 0, v1+2/nv ≤ εv2(1+2/n) + ε−1v2.
3Notice that the monotonicity of Perelman’sW-entropy is equivalent to a version of logarithmic Sobolev inequality. Both are equivalent to

the ultracontracitivity of the heat semigroup. We shall discuss this in the later chapter.
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Then v satisfies the Euler-Langrange equation and it follws that µ(g, τ) is achieved by a minimizer fτ satisfying

τ(2∆fτ − |∇fτ |2 +R) + fτ − n = µ(g).

Corollary 2.5.3. ([64, p.237], [126]) For any metric g on a closed manifold M and τ > 0, µ(g, τ) > −∞ and

tends to zero as τ → 0.

Proof. We follow Perelman’s argument [126, pp.9]. Let τ̃ > 0 be so small such that the Ricci flow gij(t) exists

on the interval 0 ≤ t ≤ τ̃ . Let u := (4πτ)−
n
2 e−f be the solution of the conjugate heat equation starting from

δ-function at t = τ̃ , τ(t) = τ̃ − t. ThenWτ̃ −Wt ≤ 0 andW(gij(t), f(t), τ(t))→ 0 as t→ τ̃ . therefore by the

monotonicity ofW , we have that

µ(gij , τ̃) ≤ W(gij(0), f(0), τ(0)) =W(gij(0), f(0), τ̃) < 0.

The proof of the inequalityW(gij(0), f(0), τ̃) < 0 can be made more explicit, see the proof of Proposition 3.2 in

[135].

Proposition 2.5.4. µ(gij(t), τ − t) is nondecreasing along the Ricci flow and the monotonicity is strict unless we

are on a shrinking gradient soliton. A shrinking breather is necessarily a shrinking gradient soliton.

Proof. Let g(t) be a solution to the Ricci flow defined on some interval [0, T ] and T < τ. Let f0 be a minimizer

of µ(g(t0), τ − t0) for any time t0 ∈ [0, T ]. We then solve the backward heat equation
∂f

∂t
= −∆f + |∇f |2 −R+

n

2τ

f(t0) = f0

(2.5.8)

and obtain a solution f(t) for t ≤ t0 which satisfies
∫
M

(4πt)−
n
2 e−f(t)dµg(t) = 1.

To prove the first part of statement 1 of the proposition, it suffices to show that

µ(gij(t), τ − t) ≤ µ(gij(t0), τ − t0).

Let us choose another function ϕ with
∫
M

(4πt0)−
n
2 e−ϕdµg(t0) = 1, such that

µ(gij(t0), τ − t0) = (τ − t0)

∫
M

e−ϕ
(
Rg(t0) + |∇ϕ|2g(t0)

)
(4π(τ − t0))−

n
2 dµg(t0)

+

∫
M

e−ϕ
(
ϕ− n

2
log(4π(τ − t0))− n

)
dµg(t0).

Since ∫
M

(4πt)−
n
2 e−f(t)dµg(t) =

∫
M

(4πt0)−
n
2 e−ϕdµg(t0) = 1.



Chapter 2. Eigenvalues and Entropy Monotonicity Formulas 61

We have

µ(gij(t), τ − t) ≤ (τ − t)
∫
M

e−f(t)
(
Rg(t) + |∇ϕ|2g(t)

)
(4π(τ − t))−n2 dµg(t)

+

∫
M

e−f(t)
(
f(t)− n

2
log(4π(τ − t))− n

)
dµg(t)

≤ (τ − t0)

∫
M

e−ϕ
(
Rg(t0) + |∇ϕ|2g(t0)

)
(4π(τ − t0))−

n
2 dµg(t0)

+

∫
M

e−ϕ
(
ϕ− n

2
log(4π(τ − t0))− n

)
dµg(t0)

= µ(gij(t0), τ − t0).

Therefore, we have

µ(gij(t), τ − t) ≤ W(gij(t), f(t), τ − t) ≤ W(gij(t0), f(t0), τ − t0) = µ(gij(t0), τ − t0)

for t ≤ t0. Suppose we are on a shrinking gradient soliton, the second inequality is strict. The proves the first part

of the theorem.

Let g(t) be a shrinking breather on [t1, t2] such that g(t2) = αφ∗g(t1) for some 0 < α < 1. Since the

W-functional is scaling and diffeomorphism invariant, then, we have

µ(gij(t1), τ − t1) = µ(αgij(t1), α(τ − t1)) = µ(gij(t2), τ − t2)

since τ is positive, say τ > 0,

α(τ − t1) = τ − t2 ⇒ τ =
t2 − αt1

1− α
.

Now define

τ(t) =
t2 − αt1

1− α
− t,

so that
dτ

dt
= 1, τ(t1) =

t2 − t1
1− α

τ(t2) = α
t2 − t1
1− α

and τ(t2) = ατ(t1).

Let f2 be a minimizer of

{W(g(t2), f2, τ(t2)) : f ∈ C∞(M),

∫
M

(4πτ)−
n
2 dµ = 1}

at t = t2, so thatW(g(t2), f2, τ(t2)) = µ(g(t2), τ(t2)).

Suppose f(t) solves the backward heat equation above on [t1, t2] with f(t2) = f2. By monotonicity formula

and definition of µ, we have

µ(g(t1), τ(t1)) ≤ W(g(t1), f(t1), τ(t1))

≤ W(g(t), f(t), τ(t))

≤ W(g(t2), f(t2), τ(t2)) = µ(g(t2), τ(t2))
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for all t ∈ [t1, t2], Since g(t1) = αφ∗g(t2) and τ(t2) = ατ(t1) by the diffeomorphism and scale invariance of µ,

we have

µ(g(t1), τ(t1) = µ(g(t2), τ(t2)).

This and the fact thatW(g(t), f(t), τ(t)) is monotone implies

W(g(t), f(t), τ(t)) = µ(g(t), τ(t)) ≡ const.

for t ∈ [t1, t2]. Thus f(t) is a minimizer forW(g(t), f(t), τ(t)) and d
dtW(g(t), f(t), τ(t)) ≡ 0, then, we have

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2e−fdµ = 0

for all t ∈ [t1, t2] and hence Rij +∇i∇jf − 1
2τ gij = 0 for all t ∈ [t1, t2]. This completes the proposition.

2.5.3 A new family of entropy over shrinkers

Here, we define a new family of entropy and discuss its variation formula under the Ricci flow.

Definition 2.5.5. Let (M, g) be a closed n-dimensional Riemannian Manifold, we define a family of entropy

functionalWBC as

WBC = τ

∫
M

[
|∇f |2 + 2C

(
R+

1

τ
(f − n)

)]
udµ, (2.5.9)

where C ≥ 1
2 , C ∈ R. When C = 1

2 , this is Perelman’sW entropy [126].

Theorem 2.5.6. Let (M, gij(t), f(t), τ(t)), t ∈ [0, T ), solve the system (2.5.5), where f evolves by a backward

heat equation, then,WBC is monotonically non-decreasing. In particular, we have

d

dt
WBC = 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ+ 2(2C − 1)τ

∫
M

|Rij −
1

2τ
gij |2udµ ≥ 0. (2.5.10)

Moreover, the monotonicity is strict unless

Rij +∇i∇jf −
1

2τ
gij = 0 and Rij −

1

2τ
gij = 0. (2.5.11)
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Proof. As usual our proof is by direct computation, hence we write

WBC = τ

∫
M

[
|∇f |2 + 2C

(
R+

1

τ
(f − n)

)]
udµ

= τ

∫
M

[(
|∇f |2 +R

)
+

1

τ
(f − n)

]
udµ+ (2C − 1)τ

∫
M

[
R+

1

τ
(f − n)

]
udµ

=W + (2C − 1)

∫
M

(τR+ f − n)udµ

dWBC
dt

=
dW
dt

+ (2C − 1)

∫
M

[
τ
∂R

∂t
−R+

∂f

∂t

]
udµ

= 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ

+ (2C − 1)

∫
M

[
τ(∆R+ 2|Rij |2)− 2R−∆f + |∇f |2 +

n

2τ

]
udµ

= 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ+ (2C − 1)

∫
M

[
2τ |Rij |2 − 2R+

n

2τ

]
udµ

= 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ+ 2(2C − 1)τ

∫
M

[
|Rij |2 −

1

τ
R+

n

4τ2

]
udµ

= 2τ

∫
M

|Rij +∇i∇jf −
1

2τ
gij |2udµ+ 2(2C − 1)τ

∫
M

|Rij −
1

2τ
gij |2udµ ≥ 0.

Corollary 2.5.7. Let (M, gij(t), f(t), τ(t)), t ∈ [0, T ) solve the coupled system (2.5.5), then, there is no nontrivial

shrinking Ricci breather other than shrinking gradient solitons.

Corollary 2.5.8. Let (M, g) be a closed Riemann manifold, then every shrinking Ricci breather must necessarily

be Einstein.

Theorem 2.5.9. Let (M, gij(t)), t ∈ [0, T ) be a solution of the Ricci flow, then, the least eigenvalue µC(gij) of

(−2∆ + CR) is diffeomorphism invariance and non-decreasing. The monotonicity is strict unless the metric is a

shrinking gradient soliton.

2.5.4 Extension to the Normalized Ricci Flow

Here, we classify the class of metrics satisfying the normalized Ricci flow with respect to the entropyW andWBC

in the Theorems 2.5.10 and 2.5.11. Specifically, we show conditions upon which shrinking breathers are Einstein.

For this purpose, we obtain the following coupled gradient flow-like for normalized Ricci flow associated to W

-energy after a simple calculation: 

∂gij
∂t

= −2(Rij −
r

n
gij +∇i∇jf)

∂f

∂t
= −∆f −R+ r +

n

2τ

dτ

dt
= −1.

(2.5.12)
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Conjugating away the diffeomorphism generated by the vector field∇f from the above system gives an equivalent

system 

∂gij
∂t

= −2Rij +
r

n
gij

∂f

∂t
= −∆f + |∇f |2 −R+ r +

n

2τ

dτ

dt
= −1.

(2.5.13)

Using Perelman’s W -entropy and diffeomorphism φ, we write W̃ = φW , since W is invariant with respect to

diffeomorphism. We therefore define the following

W̃ =

∫
M

[
τ(R̃+ |∇̃f̃ |2) + f̃ − n

]
ũdµ̃ (2.5.14)

and

W̃BC = τ

∫
M

[
|∇̃f̃ |2 + 2C

(
R̃+

1

τ
(f̃ − n)

)]
ũdµ̃, (2.5.15)

where u := (4πτ)−
n
2 e−f̃ with

∫
M
ũdµ̃. = 1.

Theorem 2.5.10. Let (M, g̃ij(t), f̃(t), τ(t), t ∈ [0,∞) solve the system (2.5.12) or (2.5.13). Then W̃ is monoton-

ically nondecreasing. Furthermore, the monotonicity is strict unless the metric is a gradient shrinking soliton.

Proof. By direct computation we have

dW̃
dt

= τ
dF̃
dt
− F̃ +

∫
M

∂f̃

∂t
ũdµ̃. (2.5.16)

Recall the evolutions of F̃ in (2.4.4) and f̃ in (2.5.13) under the normalized Ricci flow and use them in (2.5.16).

Then direct substitutions give

dW̃
dt

= 2τ

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2ũdµ̃−
2r

n
τ F̃ − F̃ +

∫
M

(
− ∆̃f̃ − R̃+ r +

n

2τ

)
ũdµ̃

= 2τ

∫
M

|R̃ij + ∇̃i∇̃j f̃ |2ũdµ̃− 2

∫
M

(
∆̃f̃ + R̃

)
ũdµ̃+

n

2τ

∫
M

ũdµ̃− 2r

n
τ
(
F̃ − n

2τ

)
= 2τ

∫
M

[
|R̃ij + ∇̃i∇̃j f̃ |2 −

1

τ

(
∆̃f̃ + R̃

)
+

n

4τ2

]
ũdµ̃− 2r

n
τ
(
F̃ − n

2τ

)
= 2τ

∫
M

|R̃ij + ∇̃i∇̃j f̃ −
1

2τ
g̃ij |2 ũdµ̃−

2r

n
τ
(
F̃ − n

2τ

)
.

It suffices to uphold the claim that

F̃ − n

2τ
≤ 0.

The prove of this claim is reserved till Subsection 3.4.3 where it will become more evident. Using this we have

dW̃
dt
≥ 0.
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Equality is attained here when we have the following

R̃ij + ∇̃i∇̃j f̃ −
1

2τ
g̃ij ≡ 0 and F̃ − n

2τ
≡ 0,

which are also equivalent, taking the trace of the former gives the later. The implication of all these is that Ricci

shrinking breathers must be gradient shrinking Ricci solitons.

Theorem 2.5.11. Let (M, g̃ij(t), f̃(t), τ(t)), t ∈ (0,∞) solve the system (2.5.12) or (2.5.13). Then W̃BC is

monotonically nondecreasing. However, the monotonicity is strict unless the metric is a gradient shrinking soliton

and Einstein.

Proof. As in the proof of Theorem 2.5.6, we write

dW̃BC
dt

=
dW̃
dt

+ (2C − 1)

∫
M

[
τ
∂R̃

∂t
− R̃+

∂f̃

∂t

]
ũdµ̃ (2.5.17)

I + II.

From the last theorem, we have that

I = 2τ

∫
M

|R̃ij + ∇̃i∇̃j f̃ −
1

2τ
g̃ij |2ũdµ̃−

2r

n
τ
(
F̃ − n

2τ

)
.

By direct substitution we have

II = (2C − 1)

∫
M

τ
[(

∆̃R̃+ 2|R̃ij |2 −
2r

n
R̃
)
− 2R̃− ∆̃f̃ + |∇̃f̃ |2 +

n

2τ
+ r
]
ũdµ̃

= (2C − 1)

∫
M

(
2τ |R̃ij |2 − 2R̃+

n

2τ

)
ũdµ̃+ (2C − 1)

∫
M

(
− 2r

n
τR̃+ r

)
ũdµ̃

= 2(2C − 1)τ

∫
M

|R̃ij −
1

2τ
g̃ij |2ũdµ̃− 2(2C − 1)

τ

n
r

∫
M

(
R̃− n

2τ

)
ũdµ̃.

Combining I and II with (2.5.17), we have the monotonicity formula

dW̃BC
dt

≥ 0

with r ≤ 0 when R ≥ n
2τ or r ≥ 0 when R ≤ n

2τ . The monotonicity is strict unless the solution is a gradient

shrinking soliton with

R̃ij + ∇̃i∇̃j f̃ −
1

2τ
g̃ij ≡ 0 and F̃ − n

2τ
≡ 0

and Einstein

R̃ij −
1

2τ
g̃ij ≡ 0 and R̃− n

2τ
≡ 0.

This ends the proof.
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Chapter 3

Differential Harnack Estimates for

Conjugate Heat Equation

3.1 Introduction

Gradient estimates and Harnack inequalities are indeed very powerful tools in geometric analysis as this is

evident for examples in the work of P. Li and S-T. Yau (1986) and G. Perelman (2002). The paper of Li

and Yau [112] paved way for the rigorous studies and many interesting applications of Harnack inequalities. In

that paper, they derived gradient estimates for positive solutions to the heat operator defined on closed manifold

with bounded Ricci curvature from which they obtained Harnack inequalities. These inequalities were in turn

used to establish various lower and upper bounds on the heat kernel. They also studied manifolds satisfying

Dirichlet and Neumann conditions. On the other hand, Perelman in [126] obtained a gradient estimate for the

fundamental solution on compact manifold evolving by the Hamilton’s Ricci flow. Perelman’s results for Harnack

estimates are unprecedented as they play a key factor in the proof of Poincaré conjecture. Meanwhile, shortly

before Perelman’s paper appeared online, C. Guenther [85] had found gradient estimates for positive solutions

to the heat equation under the Ricci flow by adapting the methodology of Bakry and Qian [9] to time dependent

metric case. As an application of her results, she got a Harnack-type inequality and obtained a lower bound for the

fundamental solution. She also studied existence and basic properties of these solutions. S. Kuang and Q. Zhang

[103] established a gradient estimate that holds for all positive solutions of the conjugate heat equation defined

on a closed manifold whose metric is evolving by the Ricci flow. X. Cao [44] also used Perelman’s approach

to establish a differential inequality for all positive solutions to the conjugate heat equation under the Ricci flow

with nonnegative condition on the scalar curvature. Immediate consequences of their results in [103] and [44]

are Harnack-type inequalities. Q. Zhang [156] derived local gradient estimates for positive solutions to the heat

equation coupled to the backward in time Ricci flow with lower bound assumption on the Ricci curvature. His
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gradient estimate was used to prove a Gaussian bound for the conjugate heat equation. In [8], they applied Zhang’s

method to prove both space-only and space-time gradient estimates for heat equation coupled to forward in time

Ricci flow, they also study manifolds with nonempty convex boundary evolving under the Ricci flow. Ecker, Knopf,

Ni and Topping [75] have a local result on gradient estimate in relation to mean value theorem and monotonicity

for heat kernel.

The study of the Ricci flow coupled to heat-type equation arose from R. Hamilton’s work [92], where he con-

ceived the idea of investigating Ricci flow coupled to harmonic maps heat flow. He combined this with his previous

results [89, 91] to study the formation of singularities in the Ricci flow. In [90], he provides a Harnack estimate on

Riemannian manifolds with nonnegative positive curvature operator. Hamilton [88] also proved Harnack estimates

for surfaces whose positive scalar curvature under the Ricci flow satisfies the heat equation with soliton potential.

B. Chow [60] completed the proof of Harnack estimate for surfaces of positive scalar curvature in general. Thus,

Harnack estimates of the Ricci flow on surfaces gives a control on curvature growth, while in higher dimension,

one uses the Harnack estimates to classify the ancient solutions of nonnegative curvature operators. Perelman’s

Harnack-type estimate is used to prove noncollapsing of the metric under the Ricci flow. As useful as Harnack in-

equalities are, they have also been discovered in other geometric flows; See the following- H-D. Cao [38] H-D. Cao

and L. Ni [40] and L. Ni [125] for heat equation on Kähler manifolds, B. Chow [61] for Gaussian curvature flow

and [62] for Yamabe flow, also B. Chow and R. Hamilton [67], and R. Hamilton [93] on mean curvature flow. The

following references among many others are found relevant [5, 45, 44, 63, 85, 113, 123, 138, 139, 140], see also

the following monographs [71, 111, 132] for theory of Harnack inequalities and [64, 65, 68, 69, 71, 117, 118, 158].

for theory and applications of Ricci flow.

The rest of this chapter is organised as follows; the next section introduces the theory of conjugate heat equation

and gives a quick review of how one can view Perelman’s differential Harnack estimate as Li-Yau type and how

it provides an alternative proof of a localised version of his entropy monotonicity formula. The main result of

Section 3.3 is contained in Theorem 3.3.1, where we establish a point-wise differential Harnack inequality for all

positive solutions of the conjugate heat equation on manifold evolving by the Ricci flow, as an application of this,

we derive corresponding Harnack estimate under a mild assumption that the Ricci curvature remains nonnegatively

bounded. There is another important result in this section (Subsection 3.3.2), where we establish a localised form

of the Harnack and gradient estimates obtained. The main idea is the application of the Maximum principle and

Bochner identity on some smooth cut-off function. It was the basic idea used by Li and Yau in [112], however our

computation is more involved as the metric is also evolving. In Section 3.4, we introduce a dual entropy formula

which surprisingly interpolates between Perelman’s entropy [126] for conjugate heat equation on an evolving

manifold and the Ni’s modified entropy formula [122] for linear heat equation on static manifolds. From this

entropy formula, we also recover the corresponding differential Harnack inequality and gradient estimate for the

fundamental solution, which in fact, holds for all positive solutions to the heat equation. As it is well known

that entropy functional are intimately related to functional inequalities, we will apply the monotonicity proved in
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this section to derive a family of logarithmic Sobolev inequalities in the next chapter. Larger part of the results

presented in this chapter will appear in [1].

3.2 The Conjugate Heat Flow and Entropy Monotonicity Formula

3.2.1 The Conjugate Heat equation

All the results here are due Perelman [126].

Definition 3.2.1. (The Conjugate Heat Operator). Let Γ := ∂t − ∆ be the heat operator acting on functions

u : M × [0, T ]→ R, where M × [0, T ] is endowed with the volume form dµ(x)dt. The conjugate (adjoint) to the

heat operator Γ is defined by

Γ∗ := −∂t −∆x +R, (3.2.1)

where ∆x is the Laplace-Beltrami operator with respect to space variable x and R is the scalar curvature.

We remark that for any solution g(t), t ∈ [0, T ] to the Ricci flow and smooth functions u, v : M × [0, T ]→ R,

the following identity holds ∫ T

0

∫
M

(Γu)vdµ(x)dt =

∫ T

0

∫
M

u(Γ∗v)dµ(x)dt. (3.2.2)

By direct application of integration by parts and the fact that the functions u and v are C2 with compact support

(since M is compact) and using evolution of dµ under the Ricci flow, it follows that∫ T

0

∫
M

(Γu)vdµ(x)dt =

∫ T

0

∫
M

(∂tu−∆u)vdµ(x)dt

=

∫ T

0

∫
M

(∂tu)vdµ(x)dt−
∫ T

0

∫
M

(∆u)vdµ(x)dt

= −
∫ T

0

∫
M

u∂tvdµ(x)dt−
∫ T

0

∫
M

uv(∂tdµ(x))dt−
∫ T

0

∫
M

u∆vdµ(x)dt

= −
∫ T

0

∫
M

u(∂tv −Rv + ∆v)dµ(x)dt

=

∫ T

0

∫
M

u(−∂t −∆ +R)vdµ(x)dt,

which proves the identity.

In a special case u ≡ 1, we have
d

dt

∫
M

vdµ = −
∫
M

Γ∗vdµ.

Proposition 3.2.2. Let u = (4πτ)−
n
2 e−f be a positive solution to the conjugate heat equation and ∂tτ = −1.

The evolution equation
∂f

∂t
= −∆f + |∇f |2 −R+

n

2τ
(3.2.3)
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is equivalent to the following evolution

Γ∗u = 0. (3.2.4)

Proof.

Γ∗u = (−∂t −∆x +R)(4πτ)−
n
2 e−f .

By direct calculation, it follows that

∂t[(4πτ)−
n
2 e−f ] = (

n

2τ
− ∂tf)(4πτ)−

n
2 e−f

∆[(4πτ)−
n
2 e−f ] = (−∆f + |∇f |2)(4πτ)−

n
2 e−f .

Then

Γ∗u =
(
− n

2τ
+ ∂tf + ∆f − |∇f |2 +R

)
u = 0.

Since u > 0, the claimed is then proved.

In the next, we want to briefly look at how Perelman-Harnack estimates on conjugate heat kernel implies Li-

Yau Harnack estimates. This section can be considered as a review of [126, section 9], where Perelman applied a

localised version of hisW-entropy to prove his pseudolocality theorem. Let g(t), t ∈ [0, T ) be a solution of the

Ricci flow and u be any C∞ function on M × [0, T ) such that Γ∗u = 0.

Definition 3.2.3. We say that H(x, τ ; y, σ) is a fundamental solution to the adjoint heat equation centred at (y, σ)

for x, y ∈M, σ < t ∈ [0, T ], if

Γ∗x,τH(x, τ ; y, σ) = 0

and

lim
τ→σ

H(x, τ ; y, σ) = δy(x)

for any x ∈M. The limit is in the sense of distributions.

Thus, H(x, τ ; y, σ) is the unique minimal positive solution to the equation (−∂τ −∆(x,τ) +R(x, τ))H(x, τ ; y, σ) = 0

lim
τ→σ

H(x, τ ; y, σ) = δy(x).
(3.2.5)

Lemma 3.2.4. The conjugate heat kernel satisfies the following properties.

1.
∫
M
H(x, τ ; y, σ)dµ(x,τ) = 1

2. H(x, τ ; y, σ)dµ(x,τ) is also the fundamental solution to Γ(y,σ) = ∂σ −∆(y,σ).

We shall also need asymptotic behaviour of the fundamental solution to the conjugate heat equation for small

τ . Let dτ (x, y) be the distance function with respect to the metric g(τ).
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Theorem 3.2.5. ( [65, 69, 124]) (Ricci flow adjoint heat kernel parametrix.) Let g(t), t ∈ [0, T ) be a solution of

the Ricci flow on closed n-dimensional manifold and H(x, τ ; y, 0) (i.e,H(x, y, τ)) be the fundamental solution to

the conjugate heat equation (3.2.5). Then, as τ → 0 we have

H(x, τ ; y, 0) ∼ (4πτ)−
n
2 exp

(
− d2

τ (x, y)

4τ

) ∞∑
j=0

uj(x, y, τ)τ j . (3.2.6)

By (3.2.6), it means that there exists T > 0 and a sequence uj ∈ C∞(M ×M × [0, T ]) such that

H(x, y, τ)− (4πτ)−
n
2 exp

(
− d2

τ (x, y)

4τ

) k∑
j=0

uj(x, y, τ)τ j := wk(x, y, τ)

with

wk(x, y, τ) = O(τk+1−n2 ),

as τ → 0 uniformly for all x, y ∈ M . The function u0(x, y, τ) can be chosen so that u0(x, x, 0) = 1. The proof

of this result is done by Garofalo and Lanconelli in [80] for the fundamental solution of the heat-type equation in

divergence form when there is no zeroth order term R(x, τ)u(x, τ). However, one can verify that the argument in

[80] can be carried over to the case of the adjoint heat equation. Alternatively, one may write

H(x, τ ; y, σ) ∼ E(x, τ ; y, σ)

∞∑
j=0

uj(x, y, τ)τ j ,

where E(x, y, τ) is the Euclidean Heat kernel.

3.2.2 Entropy Monotonicity Formula

Now, suppose that the Ricci flow g(t) is defined for t ∈ [0, T ], T <∞ and let u = (4πτ)−
n
2 e−f , where τ = T−t,

be a positive solution to the conjugate heat equation Γ∗u = 0. Define

v = [τ(2∆f − |∇f |2 +R) + f − n]u (3.2.7)

Proposition 3.2.6. [126] With the notation above, we have that

v = [(T − t)(2∆f − |∇f |2 +R) + f − n]u

satisfies

Γ∗v = −2(T − t)|Rij +∇i∇jf −
1

2(T − t)
gij |2u. (3.2.8)

Moreover, if u tends to a δ− function as t→ T , then vH ≤ 0 for all t < T, where vH = v with u(x, τ) replaced

by H(x, τ ; y, σ), the fundamental solution.

Proof.

v = [τ(2∆f − |∇f |2 +R) + f − n]u
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Let P = τ(2∆f − |∇f |2 +R) + f − n and ∂tτ = −1 since τ = T − t.

Γ∗Pu = (−∂t −∆ +R)(Pu)

= −∂tP · u− P∂tu−∆P · u− 2〈∇P,∇u〉 − P∆u+RPu

= −∂tP · u−∆P · u− 2〈∇P,∇u〉+ P Γ∗u

= −(∂t + ∆)P · u− 2〈∇P,∇u〉.

We can write

u−1Γ∗Pu = −(∂t + ∆)P − 2〈∇P, u−1∇u〉

= −(∂t + ∆)P + 2〈∇P,∇f〉

since f = − lnu− n
2 ln(4πτ) implies that ∇f = −∇uu = −u−1∇u.

Let us compute (∂t + ∆)P

∂P

∂t
=

∂

∂t

(
τ(2∆f − |∇f |2 +R) + f − n

)
=

∂

∂t
τ
(

2∆f − |∇f |2 +R
)

+ τ
∂

∂t

(
2∆f − |∇f |2 +R

)
+
∂

∂t
f

= −
(

2∆f − |∇f |2 +R
)

+ τ
∂

∂t

(
2∆f − |∇f |2

)
+ τ

∂

∂t
R+

∂

∂t
f.

Note that

2
∂

∂t
∆f = 2

∂

∂t

[
gij(∂i∂jf − Γkij∂kf)

]
= 2

∂

∂t
(gij)∂i∂jf + 2gij∂i∂j

∂

∂t
f − gij( ∂

∂t
Γkij)∂kf − gijΓkij∂k

∂

∂t
f

= 4Rij∂i∂jf + 2gij(∂i∂jf − Γkij∂k)
∂

∂t
f

= 4Rij∂i∂jf + 2∆
∂

∂t
f,

where we have used ∂
∂tΓ

k
ij = 0 and ∂

∂t (g
ij) = Rij by Lemma 1.3.1, since it is possible to work in local normal

coordinates.

∂

∂t
|∇f |2 =

∂

∂t

(
gij∂if∂jf

)
= 2Rij∂if∂jf + 2gij∂if∂j

∂

∂t
f

= 2Rij∂if∂jf + 2〈∇f,∇ ∂

∂t
f〉,

∂

∂t

(
2∆f − |∇f |2

)
= 4Rij∂i∂jf + 2∆

∂

∂t
f − 2Rij∂if∂jf − 2〈∇f,∇ ∂

∂t
f〉.

Combining these, we have

∂

∂t
P = −(2∆f − |∇f |2 +R) + τ

(
4Rij∂i∂jf + 2∆

∂

∂t
f − 2Rij∂if∂jf − 〈∇f,∇

∂

∂t
f〉+

∂

∂t
R
)

+
∂

∂t
f.
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Next is to compute

∆P = ∆
[
τ(2∆f − |∇f |2 +R) + f − n

]
= τ

[
2∆(∆f)−∆|∇f |2 + ∆R

]
+ ∆f

= τ
[
2∆(∆f)− 2|∇∇f |2 − 2〈∇f,∆∇f〉 − 2Ric(∇f,∇f) + ∆R

]
+ ∆f,

we have used Bochner identity (0.2.17) in the last line. Therefore( ∂
∂t

+ ∆
)
P = −(2∆f − |∇f |2 +R) + τ

[
4Rij∂i∂jf + 2∆

∂

∂t
f − 2Rij∂if∂jf − 2〈∇f,∇ ∂

∂t
f〉

+ 2∆(∆f)− 2|∇∇f |2 − 2〈∇f,∆∇f〉 − 2Ric(∇f,∇f) +
∂

∂t
R+ ∆R

]
+
∂

∂t
f + ∆f

= (−∆f + |∇f |2 −R+
∂

∂t
f) + τ

[
4Rij∂i∂jf − 2Rij∂if∂jf + 2∆(

∂

∂t
f + ∆f +R)

+ 2|Rc|2 − 2〈∇f,∇ ∂

∂t
f〉 − 2|∇∇f |2 − 2〈∇f,∆∇f〉 − 2Ric(∇f,∇f)

]
= (−∆f + |∇f |2 −R+

∂

∂t
f) + τ

[
4Rij∂i∂jf − 2Rij∂if∂jf + 2∆|∇f |2 + 2|Rc|2

−∆|∇f |2 − 2〈∇f,∇|∇f |2〉+ 2〈∇f,∇∆f〉+ 2〈∇R,∇f〉
]
.

Now

2〈∇P,∇f〉 = 2〈∇(τ(2∆f − |∇f |2 +R) + f),∇f〉

= 2τ
[
2〈∇∆f,∇f〉 − 〈∇|∇f |2,∇f〉+ 〈∇R,∇f〉

]
+ 2|∇f |2.

Therefore

−
( ∂
∂t

+ ∆
)
P + 2〈∇P,∇f〉

= (∆f − |∇f |2 +R− ∂

∂t
f)− τ

[
4Rij∂i∂jf − 2Rij∂if∂jf + ∆|∇f |2

+ 2|Rc|2 − 2〈∇f,∇|∇f |2〉+ 2〈∇f,∇∆f〉+ 2〈∇R,∇f〉
]

+ 2τ
[
2〈∇∆f,∇f〉 − 〈∇|∇f |2,∇f〉+ 〈∇R,∇f〉

]
+ 2|∇f |2

= (∆f − |∇f |2 +R− ∂

∂t
f)− τ

[
4Rij∂i∂jf − 2Rij∂if∂jf + ∆|∇f |2

+ 2|Rc|2 + 2〈∇∆f,∇f〉
]

= (2∆f + 2R− n

2τ
)− τ

[
4Rij∂i∂jf + 2|∇∇f |2 + 2|Rc|2

]
= −2τ

[
2Rij∂i∂jf + |∇∇f |2 + |Rc|2 − 1

τ
(∆f +R− n

4τ
)
]

= −2τ
[
(Rij +∇i∇jf)2 − 1

τ
(∆f +R− n

4τ
)
]

= −2τ
[
(Rij +∇i∇jf)2 − 1

τ
(∆f +R) +

n

4τ2

]
= −2τ

∣∣∣Rij +∇i∇jf −
1

2τ
gij

∣∣∣2.



Chapter 3. Differential Harnack Estimates for The Conjugate Heat Equation 73

Hence

u−1Γ∗(Pu) = −2τ |Rij +∇i∇jf −
1

2τ
gij |2

and

Γ∗v = −2τ
∣∣∣Rij +∇i∇jf −

1

2τ
gij

∣∣∣2u.

The proposition above implies a monotonicity formula for

vH = [τ(2∆f − |∇f |2 +R) + f − n]H ≤ 0

where H = H(x, τ ; y, σ) is the conjugate heat kernel. This is Perelman’s differential Harnack Inequality. It

provides an alternative proof of the monotonicity formula for his W-entropy. Indeed, from the above, we can

develop an integral quantity, namely∫
M

vdµ =

∫
M

[τ(2∆f − |∇f |2 +R) + f − n]udµ

=

∫
M

[τ(2∆f − |∇f |2 +R) + f − n](4πτ)−
n
2 e−fdµ

=W(g(t), f(t), τ(t)).

The consequence of which is a localised version of Perelman’sW-entropy monotonicity formula. Thus

dW
dt

=
∂

∂t

∫
M

vdµ =

∫
M

(∂tv −Rv)dµ

=

∫
M

(
− Γ∗v −∆v

)
dµ

=

∫
M

−Γ∗vdµ

= 2(T − t)
∫
M

∣∣∣Rij +∇i∇jf −
1

2(T − t)
gij

∣∣∣2(4πτ)−
n
2 e−fdµ

Corollary 3.2.7. [126] Under the same assumption as above on a closed manifold M , if u tends to a δ-function

as t→ T and v ≤ 0 for all t ∈ T. Then it holds for any smooth curve γ(t) in M as follows

− d

dt
f(γ(t), t) ≤ 1

2
(R(γ(t), t) + |γ′(t)|2)− 1

2(T − t)
f(γ(t), t). (3.2.9)

Proof. We have from the monotonicity formula that

P = (T − t)(2∆f − |∇f |2 +R) + f − n ≤ 0,

which implies

∆f ≤ 1

2
|∇f |2 − 1

2
R− f

2(T − t)
+

n

2(T − t)
and the evolution of f that

∂

∂t
f = −∆f + |∇f |2 −R+

n

2(T − t)
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which in turn implies
∂

∂t
f +

1

2
R− 1

2
|∇f |2 − f

2(T − t)
≥ 0. (3.2.10)

On the other hand

− d

dt
f(γ(t), t) = −∂tf − 〈∇f, γ′(t)〉

≤ −∂tf +
1

2
|∇f |2 +

1

2
|γ′(t)|2,

where we have used Young’s inequality to obtain −〈∇f, γ′(t)〉 ≤ 1
2 |∇f |

2 + 1
2 |γ
′(t)|2.

The inequalities of this type are referred to as Perelman’s Harnack inequalities, they were originally proved by

Li and Yau [112] for the solution of linear parabolic equations on Riemannian manifolds. Hamilton [89, 91] used

his version called Li-Yau-Hamilton Harnack inequality for the solutions of backward heat equations on manifold

to prove monotonicity formulas for certain parabolic flows. This result is very important in the study of the Ricci

flow because the solutions which tend to dirac δ-function are essential to understand monotone functionals, which

are part of the machinery developed by Perelman to tackle Poincaré conjecture.

3.3 Differential Harnack Estimates

Let (M, g(t)), t ∈ [0, T ] be a solution of the Ricci flow on a closed manifold. Let u be a positive solution to the

conjugate heat equation, then we have the following coupled system.
∂gij
∂t

= −2Rij

−∂u
∂t
−∆g(t)u+Rg(t)u = 0,

(3.3.1)

which we refer to as Perelman’s conjugate heat equation coupled to the Ricci flow. We will prove Harnack estimates

for all positive solution of the adjoint heat equation in the above system. A differential Harnack estimate of Li-Yau

type yields a space-time gradient estimate for a positive solution to a heat-type equation, which when integrated

compares the solution at different points in space and time. We will later apply the maximum principle to obtain a

localized version of the estimates.

3.3.1 Harnack Inequality and Gradient Estimates.

The main result of this subsection is contained in Theorem 3.3.1 and as an application we arrived at Corollary

3.3.3, which gives the corresponding Li-Yau type gradient estimate for all positive solutions to the conjugate heat

equation in the system (3.3.1).

Theorem 3.3.1. Let u ∈ C2,1(M × [0, T ]) be a positive solution to the conjugate heat equation Γ∗u = (−∂t −

∆ + R)u = 0 and the metric g(t) evolve by the Ricci flow in the interval [0, T ) on a closed manifold M with
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nonnegative scalar curvature. Suppose further that u = (4πτ)−
n
2 e−f , where τ = T − t, then for all points

(x, t) ∈ (M × [0, T ]), we have the Harnack quantity

P = 2∆f − |∇f |2 +R− 2n

τ
≤ 0. (3.3.2)

Then P evolves as

∂

∂t
P = −∆P + 2〈∇f,∇P 〉+ 2

∣∣∣Rij +∇i∇jf −
1

τ
gij

∣∣∣2 +
2

τ
P +

2

τ
|∇f |2 +

4n

τ2
+

2

τ
R. (3.3.3)

for all t > 0. Moreover P ≤ 0 for all t ∈ [0, T ].

Note that u = (4πτ)−
n
2 e−f implies lnu = −f − n

2 ln(4πτ) and we can write (3.3.2) as

|∇u|2

u2
− 2

ut
u
−R− 2n

τ
≤ 0, (3.3.4)

which is similar to the celebrated Li-Yau [112] gradient estimate for the heat equation on manifold with nonnegative

Ricci curvature.

We need the usual routine computations as in the following;

Lemma 3.3.2. Let (g, f) solve the system (3.3.1) above. Suppose further that u = (4πτ)−
n
2 e−f with τ = T − t.

Then we have

(
∂

∂t
+ ∆)∆f = 2Rij∇i∇jf + ∆|∇f |2 −∆R

and

(
∂

∂t
+ ∆)|∇f |2 = 4Rij∇if∇jf + 2〈∇f,∇|∇f |2〉+ 2|∇∇f |2 − 2〈∇f, |∇R|2〉.

Proof. By direct calculation

∂

∂t
(∆f) =

∂

∂t
(gij∂i∂jf) =

∂

∂t
(gij)∂i∂jf + gij∂i∂j

∂

∂t
f

= 2Rij∂i∂jf + ∆(−∆f + |∇f |2 −R+
n

2τ
)

= 2Rij∇i∇jf −∆(∆f) + ∆|∇f |2 −∆R

then, ( ∂
∂t

+ ∆
)

∆f = 2Rij∇i∇jf −∆(∆f) + ∆|∇f |2 −∆R+ ∆(∆f)

= 2Rij∇i∇jf + ∆|∇f |2 −∆R

Part 1 is proved.

∂

∂t
|∇f |2 = 2Rij∂if∂jf + 2gij∂if∂j

∂

∂t
f

= 2Rij∂if∂jf + 2〈∇f,∇(−∆f + |∇f |2 −R+
n

2τ
)〉

= 2Rij∇if∇jf + 2〈∇f,∇|∇f |2〉 − 2〈∇f,∇∆f〉 − 2〈∇f,∇R〉
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then, ( ∂
∂t

+ ∆
)
|∇f |2 = 2Rij∂if∂jf + 2〈∇f,∇|∇f |2〉 − 2〈∇f,∇∆f〉 − 2〈∇f,∇R〉+ ∆|∇f |2.

Using the Bochner identity

∆|∇f |2 = 2|∇∇f |2 + 2〈∇f,∇∆f〉+ 2Rc(∇f,∇f)

we obtain the identity in part (2).

Proof. Proof of Theorem 3.3.1. Since P = 2∆f − |∇f |2 +R− 2n
τ and by direct computation and using Lemma

3.3.2, we have( ∂
∂t

+ ∆
)
P = 2

( ∂
∂t

+ ∆
)

∆f −
( ∂
∂t

+ ∆
)
|∇f |2 +

( ∂
∂t

+ ∆
)
R− ∂

∂t

(2n

τ

)
= 4Rij∇i∇jf + 2∆|∇f |2 − 2∆R− 4Rc(∇f,∇f)− 2〈∇f,∇|∇f |2〉

− 2|∇∇f |2 + 2〈∇f,∇R〉+ 2∆R+ 2|Rc|2 +
2n

τ2

= 4Rij∇i∇jf + 2|Rc|2 +
2n

τ2
− 2〈∇f,∇|∇f |2〉+ 2〈∇f,∇R〉

+ 2∆|∇f |2 − 4Rc(∇f,∇f)− 2|∇∇f |2

= 4Rij∇i∇jf + 2|Rc|2 +
2n

τ2
− 2〈∇f,∇|∇f |2〉+ 2〈∇f,∇R〉

+ ∆|∇f |2 − 2Rc(∇f,∇f) + 2〈∇f,∇∆f〉

= 4Rij∇i∇jf + 2|Rc|2 +
2n

τ2
+ 2|∇∇f |2 − 2〈∇f,∇|∇f |2〉

+ 2〈∇f,∇R〉+ 4〈∇f,∇∆f〉

= 4Rij∇i∇jf + 2|Rc|2 +
2n

τ2
+ 2|∇∇f |2 + 2〈∇f,∇P 〉

= 2|Rij +∇i∇jf |2 +
2n

τ2
+ 2〈∇f,∇P 〉.

By direct computation we notice that∣∣∣Rij +∇i∇jf −
1

τ
gij

∣∣∣2 = |Rij +∇i∇jf |2 −
2

τ
(R+ ∆f) +

n

τ2
,

which implies

2|Rij +∇i∇jf |2 +
2n

τ2
= 2
∣∣∣Rij +∇i∇jf −

1

τ
gij

∣∣∣2 +
4

τ
(R+ ∆f).

Also

4

τ
(R+ ∆f) =

2

τ
(R+ 2∆f) +

2

τ
R

=
2

τ
P +

2

τ
|∇f |2 +

4n

τ2
+

2

τ
R.
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Therefore, by putting these together we have( ∂
∂t

+ ∆
)
P = 2〈∇f,∇P 〉+ 2

∣∣∣Rij +∇i∇jf −
1

τ
gij

∣∣∣2 +
2

τ
P +

2

τ
|∇f |2 +

4n

τ2
+

2

τ
R,

which proves the evolution equation for P .

To prove that P ≤ 0 for all time t ∈ [0, T ], we know that for small τ , P (τ) < 0. We can use the Maximum

principle to conclude this. Notice that by the Perelman’sW-entropy monotonicity

Rij +∇i∇jf −
1

τ
gij ≥ 0

and strictly positive except when g(t) is a shrinking gradient soliton. So our conclusion will follow from a theorem

in [46, Theorem 4].

For completeness we show this; by Cauchy-Schwarz inequality and the fact thatR = gijRij and
∑
i,j gij = n,

we have

|Rij +∇i∇jf −
1

τ
gij |2 ≥

1

n
(R+ ∆f − n

τ
)2

and by definition of P

P +R+ |∇f |2 = 2(R+ ∆f − n

τ
).

Hence

2
∣∣∣Rij +∇i∇jf −

1

τ

∣∣∣2 ≥ 1

2n
(P +R+ |∇f |2)2.

Putting the last identity into the evolution equation for P yields

∂P

∂t
≥ −∆P + 2〈∇P,∇f〉+

1

2n
(P +R+ |∇f |2)2 +

2

τ
(P +R+ |∇f |2) +

4n

τ2

= −∆P + 2〈∇P,∇f〉+
1

2n
(P +R+ |∇f |2 +

2n

τ2
)2 +

2n

τ2
.

This implies that

∂P

∂τ
≤ ∆P − 2〈∇P,∇f〉 − 1

2n
(P +R+ |∇f |2 +

2n

τ2
)2 − 2n

τ2
.

Then

∂P

∂τ
≤ ∆P − 2〈∇P,∇f〉. (3.3.5)

Applying the maximum principle to the evolution equation (3.3.5) yields clearly that P ≤ 0 for all τ , hence, for

all t ∈ [0, T ).

The result here is an improvement on Kuang and Zhang’s [103] since it holds with no assumption on the

curvature. This result can also be compared with those of [45, 44] where they define a general Harnack quantity

for conjugate heat equation and derive its evolution under the Ricci flow. We have the following as an immediate

consequence of the above theorem.
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Corollary 3.3.3. (Harnack Estimates). Let u ∈ C2,1(M × [0, T )) be a positive solution to the conjugate heat

equation Γ∗u = 0 and g(t), t ∈ [0, T ) evolve by the Ricci flow on a closed manifold M with nonnegative scalar

curvature R. Then for any points (x1, t1) and (x2, t2) in M × (0, T ) such that 0 < t1 ≤ t2 < T , the following

estimate holds
u(x2, t2)

u(x1, t1)
≤
(τ1
τ2

)n
exp

[ ∫ 1

0

|γ′(s)|2

2(τ1 − τ2)
ds+

(τ1 − τ2)

2
R
]
, (3.3.6)

where τi = T − ti, i = 1, 2 and γ : [0, 1] is a geodesic curve connecting points x1 and x2 in M.

Proof. Let γ : [0, 1] be a minimizing geodesic connecting points x1 and x2 in M such that γ(0) = x1 and

γ(1) = x2 with |γ′(s)| being the length of the vector γ′(s) at time τ(s) = (1 − s)τ1 + sτ2, 0 ≤ τ2 ≤ τ1 ≤ T.

Define η(s) = lnu(γ(s), (1− s)τ1 + sτ2). Clearly, η(0) = lnu(x1, t1) and η(1) = lnu(x2, t2).

Integrating along η(s), we obtain

lnu(x2, t2)− lnu(x1, t1) =

∫ 1

0

( ∂
∂s

lnu(γ(s), (1− s)τ1 + sτ2)
)
ds

i.e.,

ln
(u(x2, t2)

u(x1, t1)

)
= lnu(γ(t), t)

∣∣∣1
0
.

By direct computation, we have on the path γ(s) that

∂

∂s
η(s) =

d

ds
lnu = ∇ lnu · γ′(s) +

∂

∂t
lnu

=
∇u
u
· γ′(s)− ut(τ1 − τ2)

u

= (τ1 − τ2)
(∇u
u
· γ′(s)

τ1 − τ2
− ut
u

)
.

From Theorem 3.3.1, we have
|∇u|2

u2
− 2

ut
u
≤ R+

2n

τ
,

which implies

−ut
u
≤ 1

2
(R+

2n

τ
)− |∇u|

2

2u2
.

By this, we have

d

ds
lnu ≤ (τ1 − τ2)

(∇u
u
· γ′(s)

(τ1 − τ2)
− |∇u|

2

2u2
+

1

2
(R+

2n

τ
)
)

= − (τ1 − τ2)

2

(∇u
u
− γ′(s)

(τ1 − τ2)

)2

+
(τ1 − τ2)

2

|γ′(s)|2

(τ1 − τ2)2
+

(τ1 − τ2)

2

(
R+

2n

τ

)
≤ |γ′(s)|2

2(τ1 − τ2)
+

(τ1 − τ2)

2

(
R+

2n

τ

)
.

Now integrating with respect to s, from 0 to 1, we have

lnu
∣∣∣1
0
≤
∫ 1

0

|γ′(s)|2

2(τ1 − τ2)
+

(τ1 − τ2)

2

∫ 1

0

Rds+ ln
(τ1
τ2

)n
, (3.3.7)
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exponentiating both sides, we get

u(x2, t2)

u(x1, t1)
≤
(τ1
τ2

)n
exp

[ ∫ 1

0

|γ′(s)|2

2(τ1 − τ2)
ds+

(τ1 − τ2)

2
R
]
.

3.3.2 Localising the Harnack and Gradient Estimate

We establish a localised form of the Harnack and gradient estimates obtained in the last subsection. The main idea

is the application of the Maximum principle on some smooth cut-off function. It was also the basic idea used by

Li and Yau in [112], this type of approach has since become tradition. It has been systematically developed over

the years since the paper of Cheng and Yau [56], see also [132, 154], however our computation is more involved

as the metric is also evolving. This local estimate is desirable to extend our result to the case the manifold is

noncompact [66], for example, in the monotonicity formula and mean value theorem considered in [75] a local

version is needed.

A natural function that will be defined on M is the distance function from a given point, namely, let p ∈ M

and define d(x, p) for all x ∈ M, where dist(·, ·) is the geodesic distance. Note that d(x, p) is only Lipschitz

continuous, i.e., everywhere continuously differentiable except on the cut locus of p and on the point where x and

p coincide. It is then easy to see that

|∇d| = gij∂id ∂jd = 1 on M \ {{p} ∪ cut(p)}.

Let d(x, y, t) be the geodesic distance between x and y with respect to the metric g(t), we define a smooth cut-off

function ϕ(x, t) with support in the geodesic cube

Q2ρ,T := {(x, t) ∈M × (0, T ] : d(x, p, t) ≤ 2ρ},

for any C2-function ψ(s) on [0,+∞) with

ψ(s) =

 1, s ∈ [0, 1],

0, s ∈ [2,+∞)

and

ψ′(s) ≤ 0,
|ψ′|2

ψ
≤ C1 and |ψ′′(s)| ≤ C2,

where C1, C2 are absolute constants depending only on the dimension of the manifold, such that

ϕ(x, t) = ψ
(d(x, p, t)

ρ

)
and ϕ

∣∣∣
Q2ρ,T

= 1.

We will apply the maximum principle and invoke Calabi’s trick [37] to assume everywhere smoothness of ϕ(x, t)

since ψ(s) is in general Lipschitz. We need Laplacian comparison theorem to do some calculation on ϕ(x, t). Here

is the statement of the theorem; Let M be a complete n-dimensional Riemannian manifold whose Ricci curvature
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is bounded from below by Rc ≥ (n − 1)k for some constant k ∈ R. Then the Laplacian of the distance function

satisfies

∆d(x, p) ≤


(n− 1)

√
k cot(

√
kρ), k > 0

(n− 1)ρ−1, k = 0

(n− 1)
√
|k| coth(

√
|k|ρ), k < 0.

(3.3.8)

For detail of the Laplacian comparison theorem see [69, Theorem 1.128] or the books [111, 132]. We are now set

to prove the localized version of the gradient estimate for the system (3.3.1).

Theorem 3.3.4. Let u ∈ C2,1(M × [0, T ]) be a positive solution to the conjugate heat equation Γ∗u = (−∂t −

∆ +R)u = 0 defined in geodesic cubeQ2ρ,T and the metric g(t) evolves by the Ricci flow in the interval [0, T ] on

a closed manifold M with bounded Ricci curvature, say Rc ≥ −Kg, for some constant K > 0. Suppose further

that u = (4πτ)−
n
2 e−f , where τ = T − t, then for all points in Q2ρ,T we have the following estimate

|∇u|2

u2
− 2

ut
u
−R ≤ 4n

1− 4δn

{
1

τ
+ C

(
1

ρ2
+

√
K

ρ
+
K

ρ
+

1

T

)}
, (3.3.9)

where C is an absolute constant depending only on the dimension of the manifold and δ such that δ < 1
4n .

Proof. Recall the evolution equation for the differential Harnack quantity

P = 2∆f − |∇f |2 +R− 2n

τ
,

∂

∂t
P ≥ −∆P + 2〈∇f,∇P 〉+ 2|Rij +∇i∇jf −

1

τ
gij |2 +

2

τ
P +

4n

τ2
+

2

τ
|∇f |2,

using the non negativity of the scalar curvature Multiplying the quantity P by tϕ, since ϕ is time-dependent we

have at any point where ϕ 6= 0 that

1

τ

∂

∂t
(τϕP ) = ϕ

∂P

∂t
+
∂ϕ

∂t
P − ϕP

τ

≥ ϕ
(
−∆P + 2〈∇f,∇P 〉+

2

τ
P +

4n

τ2
+

2

τ
|∇f |2

)
+ 2ϕ|Rij +∇i∇jf −

1

τ
gij |2 +

∂ϕ

∂t
P − ϕP

τ

= −∆(ϕP ) + 2∇ϕ∇P + 2〈∇f,∇P 〉ϕ+ P (∆ + ∂t)ϕ

+
4n

τ2
ϕ+

ϕP

τ
+

2

τ
ϕ|∇f |2 + 2ϕ|Rij +∇i∇jf −

1

τ
gij |2.

The last equality is due to derivative test on (ϕP ) at the minimum point as obtained in the condition (3.3.12) below.

The approach is to estimate ∂
∂t (τϕP ) at the point where minimum (or maximum) value for (τϕP ) is attained and

do some analysis at the minimum (or maximum) point. We know that the support of (τϕP )(x, t) is contained in

Q2ρ × (0, T ] since Supp(ϕ) ⊂ Q2ρ,T , where

Q2ρ := {(x, t) ∈M : d(x, p) ≤ 2ρ}, t = 0.
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Now let (x0, t0) be a point in Q2ρ,T at which (τϕP ) attains its minimum value. At this point, we have to assume

that P is positive since if P ≤ 0, we have the same estimate and (τϕP )(x0, t0) ≤ 0 implies (τϕP )(x, t) ≤ 0 for

all x ∈M such that the distance d(x, x0, t) ≤ 2ρ and the theorem will follow trivially.

Note that at the minimum point (x0, t0) we have by the derivative test that (0 ≤ ϕ ≤ 1)

∇(τϕP )(x0, t0) = 0,
∂

∂t
(τϕP )(x0, t0) ≤ 0 and ∆(τϕP )(x0, t0) ≥ 0. (3.3.10)

We shall obtain a lower bound for τϕP at this minimum point. Therefore

0 ≥ −∆(ϕP ) + 2∇ϕ∇P + 2〈∇f,∇P 〉ϕ+ P (∆ + ∂t)ϕ+
ϕP

τ

+
4n

τ2
ϕ+

2

τ
ϕ|∇f |2 + 2ϕ|Rij +∇i∇jf −

1

τ
gij |2.

(3.3.11)

By the argument in (3.3.10) and product rule we have

∇(ϕP )(x0, t0)− P∇ϕ(x0, t0) = ϕ∇P (x0, t0)

which means ϕ∇P can always be replaced by −P∇ϕ. Similarly,

−ϕ∆P = −∆(ϕP ) + P∆ϕ+ 2∇ϕ∇P, (3.3.12)

which we have already used before the last inequality. Notice that by direct calculation using product rule

∇ϕ∇P =
∇ϕ
ϕ
· ∇(ϕP )− |∇ϕ|

2

ϕ
P

and

2〈∇f,∇P 〉ϕ = 〈∇f,∇(ϕP )〉 − 〈∇f,∇ϕ〉P.

Putting the last two equations into (3.3.11) we have

0 ≥ −∆(ϕP ) + 2
∇ϕ
ϕ
· ∇(ϕP )− 2

|∇ϕ|2

ϕ
P + 2〈∇f,∇(ϕP )〉 − 2〈∇f,∇ϕ〉P

+ P (∆ + ∂t)ϕ+
ϕP

τ
+

4n

τ2
ϕ+

2

τ
ϕ|∇f |2 + 2ϕ|Rij +∇i∇jf −

1

τ
gij |2.

By using the argument in (3.3.10)

0 ≥ −2
|∇ϕ|2

ϕ
P − 2〈∇f,∇ϕ〉P + P (∆ + ∂t)ϕ+

ϕP

τ

+
4n

τ2
ϕ+

2

τ
ϕ|∇f |2 + 2ϕ|Rij +∇i∇jf −

1

τ
gij |2

 . (3.3.13)

Observe that for any δ > 0,

2|∇f ||∇ϕ|P = 2ϕ|∇f | |∇ϕ|
ϕ

P ≤ δϕ|∇f |2P + δ−1 |∇ϕ|2

ϕ
P

2|∇f ||∇ϕ|P ≤ δϕ|∇f |4P + δϕP 2 + δ−1 |∇ϕ|2

ϕ
P (3.3.14)
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and also that

|Rij +∇i∇jf −
1

τ
gij |2 ≥

1

n

(
R+ ∆f − n

τ

)2

.

It is equally clear that

P = 2∆f − |∇f |2 +R− 2n

τ
= 2
(
R+ ∆f − n

τ

)2

− |∇f |2 −R,

which implies

(P + |∇f |2 +R) = 2
(

∆f +R− n

τ

)
.

Therefore

2ϕ|Rij +∇i∇jf −
1

τ
gij |2 ≥

ϕ

2n

(
P + |∇f |2 +R

)2

.

Notice also that

(P + |∇f |2 +R)2(y, s) = (P + |∇f |2 +R+ −R−)2(y, s)

≥ 1

2
(P + |∇f |2 +R+)2(y, s)− (R−)2(y, s)

≥ 1

2
(P + |∇f |2)2(y, s)− (R−)2(y, s)

≥ 1

2
(P 2 + |∇f |4)(y, s)− ( sup

Q2ρ,T

R−)2

≥ 1

2
(P 2 + |∇f |4)(y, s)− n2K2,

where we have applied some inequalities, namely; 2(a − b)2 ≥ a2 − 2b2 and (a + b)2 ≥ a2 + b2 with a, b ≥ 0

and a lower bound assumption on Ricci curvature, Rij ≥ −K, which implies R = −nK =⇒ R− ≤ nK and

R = −R−. Hence

2ϕ|Rij +∇i∇jf −
1

τ
gij |2 ≥

ϕ

4n
P 2 +

ϕ

4n
|∇f |4. (3.3.15)

Wherever P < 0, we then obtain from (3.3.13) - (3.3.15) that

0 ≥
( 1

4n
− δ
)
ϕP 2 +

{
(δ−1 − 2)

|∇ϕ|2

ϕ
+ (∆ + ∂t)ϕ+

ϕ

τ

}
P

−
(
δ − 1

4n

)
ϕ|∇f |4 +

2

τ
ϕ|∇f |2 +

4n

τ2
ϕ,

using the inequality of the form m|∇f |4 − n|∇f |2 ≥ − n2

4m and multiplying by ϕ again (ϕ 6= 0), we have a

quadratic polynomial in (ϕP ) which we use to bound (ϕP ) in the following

( 1

4n
− δ
)

(ϕP )2 +

{
(δ−1 − 2)

|∇ϕ|2

ϕ
+ (∆ + ∂t)ϕ+

ϕ

τ

}
(ϕP )

−4n

τ2

( 1

1− 4nδ
− 1
)
ϕ2 ≤ 0.


. (3.3.16)
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Note that if there is a number x ∈ R satisfying inequality px2 + qx + r ≤ 0, when p > 0, q > 0 and r < 0, then

q2 − 4pr > 0 and we then have the bounds

−q −
√
q2 − 4pr

2p
≤ x ≤ −q +

√
q2 − 4pr

2p
,

which clearly implies
−q −

√
−4pr

p
≤ x ≤ q +

√
−4pr

p
.

Now, choosing δ such that δ < 1
4n and denoting

Z = (δ−1 − 2)
|∇ϕ|2

ϕ
+ (∆ + ∂t)ϕ,

we obtain

τ0ϕP ≥ −
4n

1− 4δn

{
τ0Z + ϕ+ 4ϕ

√
δn

}
.

Moreover, since τ0 ≤ τ ≤ T and 0 ≤ ϕ ≤ 1, we have

τP ≥ − 4n

1− 4δn

{
τZ + 1 + C3

}
,

where C3 depends on n and δ. It remains to estimate Z via appropriate choice of a cut function ϕ : M × [0, T ]→

[0, 1] such that ∂
∂tϕ,∆ϕ and |∇ϕ|

2

ϕ have appropriate upper bounds. The main difficulty with this kind of approach

lies in the fact that for any cut-off function, one gets different kind of estimates and therefore the cut-off function

in use must be chosen so related to the result one is looking for.

Define a C2-function 0 ≤ ψ ≤ 1, on [0,∞) satisfying

ψ′(s) ≤ 0,
|ψ′|2

ψ
≤ C1 and |ψ′′(s)| ≤ C2

and define ϕ by

ϕ(x, t) = ψ
(d(x, x0, t)

ρ

)
and we have the following after some computations

|∇ϕ|2

ϕ
=
|ψ′|2 · |∇d|2

ρ2ϕ
≤ C2

ρ2
,

and by the Laplacian comparison Theorem (3.3.8) we have

∆ϕ =
ψ′∆d

ρ
+
ψ′′|∇d|2

ρ2
≤ C1

ρ

√
K +

C2

ρ2

Next is to estimate time derivative of ϕ: consider a fixed smooth path γ : [a, b]→M whose length at time t is

given by d(γ) =
∫ b
a
|γ′(t)|g(t)dr, where r is the arc length. Differentiating we get

∂

∂t
(d(γ)) =

1

2

∫ b

a

∣∣∣γ′(t)∣∣∣−1

g(t)

∂g

∂t

(
γ′(t), γ′(t)

)
dr =

∫
γ

Rc(ξ, ξ)dr,
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where ξ is the unit tangent vector to the path γ. For detail see [68, Lemma 3.11]. Now

∂

∂t
ϕ = ψ′

(d
ρ

)1

ρ

d

dt
(d(x, p, t)) = ψ′

(d
ρ

)1

ρ

∫
γ

Rc(ξ(s), ξ(s))ds

≤
√
C1

ρ
ψ

1
2K.

Therefore

Z ≤ C ′2
ρ2

+
C1

ρ

√
K +

√
C1

ρ
K +

C2

ρ2
,

where C ′2 depends on n and δ. Hence

ϕP ≥ − 4n

1− 4δn

{
1

τ
+ C

(
1

ρ2
+

√
K

ρ
+
K

ρ
+

1

τ

)}
,

where C = max{C1, C2, C3}. The required estimate follows since both minimum and maximum points for (ϕP )

are contained in the cube Q2ρ,T .

3.4 Dual Entropy Formulae and the Gradient Estimates.

By now it is well known that entropy monotonicity formulas are closely related to the gradient estimate for the heat

equation (forward or backward). Perelman’sW-entropy formula and Li-Yau gradient estimates are ones of several

examples. Lei Ni [122] has considered this case for heat equation defined on a static manifold with nonnegative

Ricci curvature. This section is fashioned after his paper but can be considered as a generalisation of some of

his results in the paper. We introduce a family of dual entropy formula, dual in the sense that it generalises Ni’s

entropy formula for the forward heat equation on the one hand and also generalises Perelman’sW-entropy for the

adjoint heat equation on the other hand.

3.4.1 Gradient Estimates for Heat Equation on Static Manifold.

In this subsection, we will use dV (x) instead of our usual notation dµg(t) of the volume form to indicate that

volume is kept fixed throughout the time of evolution for the heat equation on a closed n-dimensional manifold

(M, g(t)).

Let u = u(x, t) be a positive solution to the heat equation Γu(x, t) = 0, i.e.,( ∂
∂t
−∆

)
u(x, t) = 0. (3.4.1)

Let f : M × (0, T ] → R be smoothly defined as u = (4πt)−
n
2 e−f with

∫
M
u(x, t)dV (x) = 1. We introduce

a generalized family of entropy by

Wε(f, t) =

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

] e−f

(4πt)
n
2
dV (x), (3.4.2)

where 0 < ε2 ≤ 4π.
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Throughout, we impose the condition of nonnegativity on the Ricci curvature of the underlying manifold

(M, g(t)).We remark that if ε2 = 4π, we recover the Perelman’s entropy as in the special case considered by Ni in

[122]. From this entropy formula we later derive the corresponding differential inequality and gradient estimate for

the fundamental solution, which in fact, holds for all positive solutions to the heat equation. The same entropy is

used to examine the surprising relation that exists between the entropy formula for heat equation and the conjugate

heat equation under the Ricci flow in the subsection after this.

Lemma 3.4.1. Let u = (4πt)−
n
2 e−f be a positive solution to the heat equation Γu = 0 on a closed Riemannian

manifold M . Then

(∂t −∆)|∇f |2 = −2f2
ij − 2〈∇f,∇|∇f |2〉 − 2Rijfifj (3.4.3)

and

(∂t −∆)(∆f) = −2f2
ij − 2〈∇f,∇|∇f |2〉 − 2〈∇f,∇∂tf〉 − 2Rijfifj . (3.4.4)

Moreover, if w = 2∆f − |∇f |2, then

(∂t −∆)w = −2f2
ij − 2Rijfifj − 2〈∇w,∇f〉. (3.4.5)

Proof. The proof follows from direct calculation as we did in Lemma 3.3.2.

From this generalized entropy formula, we will derive the corresponding differential Harnack inequality for

the fundamental solution to the heat equation on a static manifold. We remark that Kuang and Zhang [103] have a

result in this direction, it is stated here below

Theorem 3.4.2. ([103].) Let M be a closed Riemannian manifold with nonnegative Ricci curvature. Let u be the

fundamental solution to the heat equation with f = − lnu− n
2 ln(4πt), we have

t(α∆f − |∇f |2) + f − αn
2
≤ 0 (3.4.6)

for any constant α ≥ 1.

Indeed, if α = 2, this is exactly the differential inequality

t(2∆f − |∇f |2) + f − n ≤ 0

proved in [122]. Dividing through by α · t, with α ≥ 1 and t ≥ 0, we obtain

∆f − |∇f |
2

α
+

f

αt
− n

2t
≤ 0

as t → ∞, which is precisely the Li-Yau gradient estimate. For α > 2, the gradient estimate is an interpolation

of Perelman’s estimate and Li-Yau estimate. For 1 ≤ α ≤ 2, it is considered in [103], they remark that it can’t

be obtained directly from Perelman’s gradient estimate and Li-Yau estimate. In Euclidean space Rn, if u is the

fundamental solution to the heat equation then (3.4.6) becomes an equality.
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Proposition 3.4.3. Let M be any closed manifold, u = (4πt)−
n
2 e−f , any positive solution to the heat equation

Γu = (∂t −∆)u = 0 on M × (0.T ]. Denoting

Pε =
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π
, (3.4.7)

where 0 < ε2 ≤ 4π. Then

(∂t −∆)Pε ≤ −
ε2t

2π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
− 2〈∇Pε,∇f〉 −

(
1− ε2

4π

)
|∇f |2. (3.4.8)

Proof. Here we write

P̃ε =
ε2t

4π
w + f̃ +

n

2
ln
( 1

ε2t

)
− nε2

4π
.

Since f = − lnu − n
2 ln(4πt), taking u = e−f̃ implies f = f̃ − n

2 ln(4πt). we notice also that ∇f̃ = ∇f ,

∆f̃ = ∆f and f̃ij = fij , then (∂t −∆)f̃ = −|∇f̃ |2 − n
2t .

Now by direct differentiation and application of Lemma 3.4.1, we have the following computation

(∂t −∆)Pε =
ε2t

4π
(∂t −∆)w +

ε2

4π
w + (∂t −∆)f̃ +

∂

∂t

(n
2

ln
( 1

ε2t

)
− nε2

4π

)
=
ε2t

4π

(
− 2f2

ij − 2Rijfifj − 2〈∇w,∇f〉
)

+
ε2

4π
(2∆f − |∇f |2)− |∇f |2 − n

2t

=
ε2t

4π

(
− 2f2

ij −
2π

ε2
n

t2
− 2Rijfifj

)
+
ε2

4π
(2∆f − |∇f |2)− 2〈ε

2t

4π
∇w,∇f〉 − |∇f |2.

Notice that

2〈ε
2t

4π
∇w,∇f〉 = 2〈(∇Pε − f̃),∇f〉 = 2〈∇Pε,∇f〉 − 2|∇f |2.

Then we have

(∂t −∆)Pε ≤ −2
ε2t

4π

(
f2
ij +

π

ε2
n

t2
− 2
√
π

εt
∆f +Rijfifj

)
− 2〈∇Pε,∇f〉+

ε2

4π
|∇f |2 − |∇f |2

= −2ε2t

4π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
− 2〈∇Pε,∇f〉 −

(
1− ε2

4π

)
|∇f |2.

Theorem 3.4.4. Let M be a closed Riemannian manifold. Assume that u = (4πt)−
n
2 e−f is a positive solution to

the heat equation Γu = (∂t −∆)u = 0, then, we have the following monotonicity formula forWε(f, t) defined in

(3.4.2)

d

dt
Wε(f, t) = −

∫
M

[
ε2t

2π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
+
(

1− ε2

4π

)
|∇f |2

]
e−f

(4πt)
n
2
dV (x) (3.4.9)

with (f, t) satisfying ∫
M

e−f

(4πt)
n
2
dV (x) = 1 (3.4.10)

and 0 < ε2 ≤ 4π.
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Proof. Combining Proposition 3.4.3 with the fact that Γu = 0 and u∇f = −∇u, we have

(∂t −∆)(Pεu) = (∂t −∆)Pε · u+ Pε(∂t −∆)u− 2〈∇Pε,∇u〉

= −ε
2t

2π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
u− 2〈∇Pε,∇f〉u

−
(

1− ε2

4π

)
|∇f |2u− 2〈∇Pε,∇u〉.

Integrating over M , we have∫
M

Pεu =

∫
M

[ε2t
4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
udV (x)

=

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
udV (x)

+
2ε2t

4π

∫
M

(∆f − |∇f |2)udV (x)

=Wε(f, t),

in the sense that the second integral in the RHS vanishes on a closed manifold since (∆f − |∇f |2)u = −∆u.

Therefore

d

dt
Wε(f, t) =

∂

∂t

∫
M

Pεu dV (x)

=

∫
M

( d
dt
Pε u+ Pε

∂

∂t
u
)
dV (x)

=

∫
M

[
(∂t −∆)Pε u+ Pε(∂t −∆)u

]
dV (x)

=

∫
M

(∂t −∆)Pε udV (x),

where we have used integration by parts and Γu = 0. Using the evolution (∂t −∆)Pε from Proposition 3.4.3, we

get the desired result. Moreover, if the manifold has nonnegative Ricci curvature, i.e, Rij ≥ 0, it becomes obvious

from (3.4.9) that dWε/dt ≤ 0.

The monotonicity formula above may be viewed as a local version of the one discussed about in Chapter 2 of

this thesis, (i.e., Perelman’sW-entropy formula). In what follows, we want to show that the local entropy satisfies

a pointwise differential inequality for the heat kernel. We have the following fashioned after [122, Theorem 1.2]

with the proof follows from the argument of [118, Proposition 3.6].

Theorem 3.4.5. LetM be a closed manifold with nonnegative Ricci curvature andH(x, y, t) = H = (4πt)−
n
2 e−f

be the heat kernel, where H tends to a δ-function as t → 0 and satisfies
∫
M
HdV (x) = 1. Then for all t > 0, we

have

Pε =
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π
≤ 0. (3.4.11)
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Proof. Let h be any compactly supported smooth function for all t0 > 0. Suppose h(·, t) is a positive solution to

the backward heat equation (∂t + ∆)h = 0, (This is Perelman’s argument in [126, Corollary 9.3]), then, it is clear

that ∂
∂t

∫
M
HhdV = 0 and we have by direct calculation that

∂

∂t

∫
M

hPεHdV (x) =

∫
M

[
∂th(PεH) + h∂t(PεH)

]
dV (x)

=

∫
M

[
(∂t + ∆)h(PεH) + h(∂t −∆)PεH)

]
dV (x)

=

∫
M

h(∂t −∆)PεHdV (x)

≤ 0.

The inequality is due to Theorem 3.4.4 since Rij ≥ 0. We are left to showing that for everywhere posit-

ive function h(·, t), the limit of
∫
M
hPεHdV (x) is nonpositive as t → 0. We assume the claim apriori (i.e,

limt→0

∫
M
hPεHdV = 0) and conclude the result.

For completeness, we devote the next effort to justifying the claim

lim
t→0

∫
M

hPεHdV ≤ 0. (3.4.12)

Our argument follows from [118], for detail see [122, 124, 126], the calculation in [103] is also similar. If H tends

to a dirac δ-function, say at a point p ∈ M , for t → 0, then f satisfies f(x, t) → d2(p, x)
4t . This is in relation to l-

length of Perelman. 1 This yields

lim
t→0

∫
M

fhHdV ≤ lim sup
t→0

∫
M

d2(p, x)

4t
hHdV =

n

2
h(p, 0). (3.4.13)

Meanwhile, by the strong Maximum principle we have h(x, 0) > 0 and limt→0

∫
M
hHdV = h(x, 0), hence

by scaling argument, we assume that h(x, 0) = 1. All these will soon become clearer. Rewriting Pε and using

integrating by parts methods (namely,
∫
M

(∆f − |∇f |2)hHdV ), we have∫
M

PεhHdV =

∫
M

ε2t

4π
(|∇f |2 − n

2t
)hHdV − ε2t

2π

∫
M

〈∇f,∇h〉HdV

+

∫
M

fHhdV +
n

2

[
ln
(4π

ε2

)
− ε2

4π

] ∫
M

Hh dV.

Though, the H appearing in the last equation is actually the heat kernel on an evolving manifold in Ni’s result

[124] while h satisfies the forward heat equation, his argument still holds in our case, we only need the asymptotic

behaviour of heat kernel on a fixed metric. We should also note that since h(·, t0) is compactly supported and

by strong maximum principle we have h(·, t0), |∇h(·, t0)| and |∆h(·, t0)| bounded on M . This implies that there

exists a bounded solution h(·, t0). 2

1see also remark after Corollary 4.3 of [118]. If M ≡ Rn and p = 0 is the origin, we have l(x, t) =
|x|2
4t

and so u(x, t) =

(4πt)−
n
2 e−l(x,t) is not only a lower bound to the heat kernel (which is true on every closed manifold M with Rc ≥ 0) but it is in fact

equal to the kernel. This is the only case where l(x, t) = f(x, t).
2A solution given by the representation formula through the heat kernel to the backward heat equation is such a solution)
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It turns out that we need to show that there exists a constant B ≥ 0 which may depend on the geometry of the

underlying manifold and independent of t as t→ 0, such that
∫
M
PεhHdV ≤ B(n).

Now we claim that the first two terms on the right hand side of the last equation vanish as t → 0, we can see

this in the following argument. By integration by parts and the fact that∇H = −H∇f , we have

−t
∫
M

〈∇f,∇h〉HdV = t

∫
M

〈∇H,∇h〉dV = −t
∫
M

H∆hdV

is bounded since |∆h| is bounded as stated earlier. Thus, the second term is bounded and goes to zero as t→ 0.

we need a bound of Li-Yau type to obtain a bound for the first term |∇f |2, (Cf [55]), Here below is the statement

of the result (see [65, Corollary 16.23] and Souplet and Zhang [133]).

Lemma 3.4.6. [65, Corollary 16.23] On a complete Riemannian Manifold (M, g) with nonnegative Ricci curvature,

the following estimate holds for the gradient of the heat kernel H(x, y, t) and all δ > 0,

|∇H|2

H
≤ 2H

t

(
B(n) +

d2(x, y)

(4− δ)t

)
(3.4.14)

for all x, y in M and t > 0.

By the above we have for the heat kernel in the present case that

t

∫
M

|∇f |2 ≤ 2
(
B(n, δ) +

d2(x, y)

(4− δ)t

)
, (3.4.15)

which is also clearly seen to be bounded from above as t → 0 by the justification of asymptotic behaviour of the

heat kernel. 3 We have now reduced the analysis to

lim
t→0

∫
M

PεhHdV ≤ lim sup
t→0

∫
M

(
f +

nq

2

)
hHdV, (3.4.16)

where q = ln( 4π
ε2 )− ε2

4π . For simplicity, we can choose ε such that ε2 → 4π as t→ 0 so that the whole problem is

reduced to finding

lim
t→0

∫
M

(
f − n

2

)
hHdV. (3.4.17)

Using the asymptotic behaviour of the heat kernel, i.e, f ≈ d2

4t as t→ 0. Recall (Cf. [80, 116, 124]) as t→ 0

H(x, y, t) ∼ (4πt)−
n
2 exp

(d2(x, y)

4t

) ∞∑
j=o

uj(x, y, t)t
j := wk(x, y, t)

where d2(x, y) is the distance function and wk(x, y, t) satisfies uniformly for all x, y ∈M

wk(x, y, t) = O
(
tk+1−n2 exp

(δd2(x, y)

4t

))
3Better still the first term can be written as∫

M

ε2t

4π
(|∇f |2 −

n

2t
)hHdV =

ε2t

4π

∫
M

(∆f −
n

2t
)hHdV =

ε2t

4π

∫
M

(
|∇H|2

H2
−

∆H

h
−
n

2t
)hHdV,

where the last integrand is known to be nonpositive for all t by the Li-Yau gradient estimate.
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and δ is just a number depending only on the geometry of (M, g). The function can be chosen such that u0(x, y, 0) =

1. Though the above asymptotic result does not require any curvature assumption, a result due to Cheeger and Yau

[55] states that on manifold with nonnegative Ricci curvature (which is our case), the heat kernel satisfies

H(x, y, t) ≥ (4πt)−
n
2 exp

(d2(x, y)

4t

)
which implies

f(x, t) ≤ d2(x, y)

4t
.

Therefore

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
M

(d2(x, y)

4t
− n

2

)
h(y, t)H(x, y, t)dV (y)

= lim
t→0

∫
M

(d2(x, y)

4t
− n

2

)e−d2(x,y)/4t

(4πt)
n
2

H(y, t)dV (y).

It is easy to see that for any δ > 0, the integration of the above integrand in the domain d(x, y) ≤ δ converges

to zero exponentially fast. Therefore

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
d(x,y)≤δ

(d2(x, y)

4t
− n

2

)e−d2(x,y)
4t

(4πt)
n
2
h(y, t)dV (y). (3.4.18)

Whenever δ is chosen sufficiently small, d(x, y) is asymptotically sufficiently close to the Euclidean distance.

By standard approximation, we have

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
d(x,y)≤δ

( |x− y|2
4t

− n

2

)e−|x−y|24t

(4πt)
n
2
hp(y)dV (y), (3.4.19)

where hp is the pullback of h(·, 0) to the Euclidean space from the region d(x, y) ≤ δ.

Splitting the last integrand as in [103] we are left with

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ hp(x) lim

t→0

∫
Rn

( |x− y|2
4t

− n

2

)e−|x−y|24t

(4πt)
n
2
dV (y)

= hp(·) lim
t→0

∫
Rn

( |y|2
4t

e−
|y|2
4t

(4πt)
n
2

)
dV (y)− n

2
hp(·).

The last equality is due to convolution properties of the heat kernel. Lastly we show that the RHS evaluates to 0.

Recall, using standard Gauss integral, that∫
Rn
|y|2e−α|y|

2

dy = n
(∫ ∞
−∞

y2e−αy
2

dy
)(∫ ∞

−∞
e−αy

2

dy
)n−1

=
n

2

√
π

α3
·
(√π

α

)n−1

=
n

2α

(√π

α

)n
,

so that we have∫
Rn

( |y|2
4t

e−
|y|2
4t

(4πt)
n
2

)
dV (y) =

1

(4πt)
n
2
· n

4t

(∫ ∞
−∞

y2e−
1
4ty

2

dy
)(∫ ∞

−∞
e−

1
4ty

2

dy
)n−1

=
n

2
,

by taking α = 1/4t in the above. We can then conclude the claim.
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3.4.2 Differential Harnack Estimates for the Heat Kernel

The following differential Harnack quantity for linear heat equation on static manifold follows immediately as an

application of the results in the last subsection.

Corollary 3.4.7. Let M be a closed manifold with curvature bounded from below by Rc ≥ 0. Then we have

ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2

(
ln
(4π

ε2

)
− ε2

2π

)
≤ 0, (3.4.20)

where f = − ln(4πt)
n
2 H and H is the positive minimal solution to the heat equation( ∂

∂t
−∆x

)
H(x, y, t) = 0.

Remark 3.4.8. Note that the quantity 2∆f−|∇f |2 can be expressed as |∇u|
2

u2 − 2ut
u in terms of u, which is similar

to Li-Yau gradient estimate [112] on a manifold with nonnegative Ricci curvature, utu −
|∇u|2
u2 + n

2t ≥ 0. This is

equivalent to the differential Harnack inequality 2t∆f ≤ n , where f = − ln(4πt)
n
2 u, which can be regarded as

a generalized Laplacian comparison theorem in space for Heat kernel on M .

However, we have from (3.4.20) that

f ≤ n

2

[ ε2
2π
− ln

4π

ε2

]
− ε2t

4π
(2∆f − |∇f |2)

≤ n

2

[ ε2
2π
− ln

4π

ε2

]
− ε2n

8π
=
n

2

[ ε2
4π
− ln

4π

ε2

]
.

Define

Q(x, t) =
ε2

π
tf(x, t) (3.4.21)

(∂t −∆)Q(x, t) =
ε2

π
f(x, t) +

ε2

π
t(∂t −∆)f ≤ nε2

2π

[ ε2
4π
− ln

4π

ε2

]
. (3.4.22)

Still as ε = 2
√
π we recover Ni’s generalized Laplacian.

From Corollary 3.4.7, we have the differential Harnack inequality as follows

ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2

(
ln
(4π

ε2

)
− ε2

2π

)
≤ 0.

Multiplying through by − 2π
ε2t , we have

−∆f +
1

2
|∇f |2 − 2π

ε2t
f − nπ

ε2t

(
ln
(4π

ε2

)
− ε2

2π

)
≥ 0

−∆f +
1

2
|∇f |2 − 2π

ε2t
f +

n

2t
− nπ

ε2t
ln
(4π

ε2

)
≥ 0.

Recall that (∂t −∆)H = 0 implies ∆f = ∂tf + |∇f |2 + n
2t , then we have

−∂tf −
1

2
|∇f |2 − 2π

ε2t
f ≥ nπ

ε2t
ln
(4π

ε2

)
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∂tf +
1

2
|∇f |2 ≤ − 2π

ε2t
f − nπ

ε2t
ln
(4π

ε2

)
= − 2π

ε2t

(
f +

n

2
ln
(4π

ε2

))
.

From the Young’s inequality we have on the path γ(t) (γ(t) : [t1, t2] is a minimizing geodesic connecting points

x1 and x2 such that γ(t1) = x1 and γ(t2) = x2)

d

dt
f(γ(t), t) = ∂tf + 〈∇f, γ′(t)〉

≤ ∂tf +
1

2
|∇f |2 +

1

2
|γ′(t)|2

=
1

2
|γ′(t)|2 − 2π

ε2t

(
f +

n

2
ln
(4π

ε2

))
since we have from (3.4.20) that

f ≤ n

2

( ε2
4π
− ln

4π

ε2

)
,

inserting this quantity in the above inequality gives the following Harnack Estimates

d

dt
f(γ(t), t) ≤ 1

2
|γ′(t)|2 − n

4t
. (3.4.23)

After the usual integration of (3.4.23) and exponentiation we have the following

Corollary 3.4.9. With the notation and assumption of Corollary 3.4.7, we have the following differential Harnack

estimates
u(x2, t2)

u(x1, t1)
≤
( t1
t2

)n
4

exp
[1

2

∫ t2

t1

|γ′(t)|2dt
]
. (3.4.24)

Remark 3.4.10. If M is a closed manifold with nonnegative Ricci curvature and u = (4πt)−
n
2 e−f is the heat

kernel on M . ThenWε(f, t0) ≥ 0 for some t0 > 0, if and only if M is isometric to Euclidean space Rn. Recall

that we have obtained that d
dtWε(f, t) ≤ 0 andWε(f, t) ≤ 0 which in turn imply that we must haveWε(f, t) ≡ 0

for 0 ≤ t ≤ t0. For instance, in the case ε = 2
√
π, we have

|fij −
1

2t
gij |2 = 0 and fij −

1

2t
gij = 0.

Taking the trace of the above yields

t∆f − n

2
= 0. (3.4.25)

Because f(x, t) ≈ f̃(x, t) = d2(p,x)
4t for t small, we have limt→0 4tf = d2(p, x). Hence (3.4.25) implies that

∆d2(p, x) = 2n (3.4.26)

so that we can get for the area Ap(r) of ∂Bp(r) and the volume Vp(r) of the ball Bp(r), the following quotient

Ap(r)

Vp(r)
=
n

r
.

This shows that Vp(r) is exactly the same as the volume function of Euclidean balls.
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This argument shows that the Li-Yau Harnack inequality, which is equivalent to 2t∆f − n ≤ 0 for u =

(4πt)−
n
2 e−f becomes an equality if and only if the manifold M with Rc ≥ 0 is isometric to Rn and u is precisely

the heat kernel. If t = 1
2 and M = Rn, the inequalityWε(f, t0) ≥ 0 for ε2 = 4π, is equivalent to∫

Rn
(
1

2
|∇f |2 + f − n)(2π)−

n
2 e−fdV ≥ 0 (3.4.27)

for all f with the condition
∫
M

(2π)−
n
2 e−fdV = 1.

The above implies a sharp (Gross) logarithmic Sobolev inequality on Rn. For details about logarithmic-Sobolev

inequalities see for instance [83, 134, 152]. In the same vein our dual entropy also yields a version of logarithmic

Sobolev inequality. (This will be discussed in Chapter 4).

Remark 3.4.11. Note that fij −
√
π
εt gij ≥ 0 =⇒ ∆f ≥ n

√
π

εt which in turns =⇒ |∇u|2
u2 − ut

u ≥
n
√
π

εt .

It turns out thatWε(f, t) being finite with u being the heat kernel, also has strong topological and geometric

consequences. For instance, in the case M has nonnegative curvature, it implies that M has finite fundamental

group. In fact one can show that M is of maximum volume growth if and only if the entropyWε(f, t) is uniformly

bounded for all t ≥ 0, where u is the heat kernel. This analogy was originally discovered in [126] for ancient

solution to the Ricci flow with bounded nonnegative curvature, where Perelman claims that ancient solution to the

Ricci flow with nonnegative curvature operator is κ-noncollapsed if and only if the entropy is uniformly bounded

for any fundamental solution to the conjugate heat equation.

Lastly, in this subsection we make some comment to show how sharp the dual entropy is for the heat equation.

Recall

Wε(f, t) =

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
HdV (3.4.28)

with f = − ln(4πt)
n
2 H and

∫
M
HdV = 1 and 0 < ε2 ≤ 4π.

RewriteWε(f, t) as

Wε(f, t) =
ε2

4π

∫
M

(t|∇f |2 + f − n)HdV + (1− ε2

4π
)

∫
M

fHdV +
n

2
ln

4π

ε2

∫
M

HdV. (3.4.29)

Hence, we have the following

Proposition 3.4.12. For 0 < ε2 ≤ 4π, f = − ln(4πt)
n
2 H with

∫
M
HdV = 1, we have the following monotonicity

formula on a manifold with nonnegative Ricci curvature;

d

dt
Wε(f, t) ≤ −

ε2

2π
t

∫
M

(
|fij −

1

2t
gij |2 +Rijfifj

)
HdV. (3.4.30)

Proof. The proof follows from a straight forward computation onWε using the idea of [122, Theorem 1.1].

d

dt
Wε(f, t) =

ε2

4π

∂

∂t

(∫
M

t|∇f |2 + f − n
)
HdV + (1− ε2

4π
)
∂

∂t

(∫
M

fHdV
)
. (3.4.31)
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We are only left to justify the non-positivity of ∂
∂t

( ∫
M
fHdV

)
. Then we have by integration by parts

∂

∂t

(∫
M

fHdV
)

=

∫
M

( ∂
∂t
f H + f

∂

∂t
H
)
dV

=

∫
M

( ∂
∂t
f H + f∆H + f(

∂

∂t
−∆)H

)
dV

=

∫
M

( ∂
∂t

+ ∆
)
fHdV

=

∫
M

(2∆f − |∇f |2 − n

2t
)HdV,

where we have used the facts that ( ∂∂t −∆)H = 0 and ∂
∂tf = ∆f −|∇f |2− n

2t . Taking f = − ln((4πt)
n
2 H , then

the integrand in the RHS of the last equality becomes

2∆f − |∇f |2 − n

2t
=
|∇H|2

H2
− 2∆H

H
− n

2t
≤ 0, (3.4.32)

which is precisely the Li-Yau Harnack inequality since we are on nonnegative Ricci curvature manifold. Hence

our claim.

3.4.3 Generalization ofWε-Entropy for Conjugate Heat Equation.

Here, we have a family of entropy formula for the conjugate heat equation on manifold evolving by the Ricci flow

forward in time.

Wε(g, f, τ) =

∫
M

[ε2τ
4π

(R+ |∇f |2) + f − nε2

4π
+
n

2
ln
(4π

ε2

)] e−f

(4πτ)
n
2
dµ, (3.4.33)

where τ = T − t > 0 and R = R(x, t) is the scalar curvature. Let u = u(x, t) be a positive solution to the

conjugate heat equation on a complete compact manifold with metric g = g(x, t) evolving by the Ricci flow. If

u =
e−f

(4πτ)
n
2

satisfies

∫
M

e−f

(4πτ)
n
2
dµ = 1

then

Γ∗u = (−∂t −∆ +R)u = 0 (3.4.34)

and the following

Theorem 3.4.13. Let (M, g(t)), t ∈ [0, T ) be a solution of the Ricci flow ∂tgij = −2Rij(g). Let u : M ×

[0, T )→ (0,∞) solves the conjugate heat equation (−∂t −∆ + R)u = 0. The entropy functionalWε(g, f, τ) is

nondecreasing by the formula

d

dt
Wε(g, f, τ) ≥ ε2τ

2π

∫
M

∣∣∣Rij + fij −
1

2τ
gij

∣∣∣2udµ ≥ 0 (3.4.35)

for 0 < ε2 ≤ 4π.
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Proof. The entropy functional can be rewritten as

Wε(g, f, τ) =
ε2

4π

∫
M

(
τ(R+ |∇f |2) + f − n

)
udµ+ (1− ε2

4π
)

∫
M

fudµ+
n

2
ln

4π

ε2
. (3.4.36)

By direct computation we obtain

d

dt
Wε(g, f, τ) =

ε2

4π

∂

∂t

(∫
M

[
τ(R+ |∇f |2) + f − n

]
udµ

)
+ (1− ε2

4π
)
∂

∂t

(∫
M

fudµ
)
. (3.4.37)

Recall the quantity v defined in (3.2.7) by v = [τ(2∆f − |∇f |2 +R) + f − n]u and that it satisfies the conjugate

heat equation as in the following

Γ∗v = −2τ |Rij + fij −
1

2τ
gij |2u. (3.4.38)

It is then clear that equation (3.4.37) is reduced to

d

dt
Wε(g, f, τ) =

ε2

4π

∂

∂t

(∫
M

v dµ
)

+ (1− ε2

4π
)
∂

∂t

(∫
M

fudµ
)
. (3.4.39)

The problem is now reduced to evaluating the second integral on the RHS of the above equation (3.4.39), since we

already know that
∂

∂t

(∫
M

v dµ
)

=

∫
M

−Γ∗vdµ. (3.4.40)

Therefore we compute

∂

∂t

(∫
M

fudµ
)

=

∫
M

( ∂
∂t
f u+ f

∂

∂t
u−Rfu

)
dµ

=

∫
M

(
−∆f + |∇f |2 −R+

n

2τ

)
udµ

+

∫
M

f(−∆u+Ru)dµ−
∫
M

Rfudµ

=

∫
M

(−2∆f + |∇f |2)udµ+

∫
M

(
n

2τ
−R)udµ,

where we have used integration by parts on −
∫
M

∆fu = −
∫
M
f∆u. Rearranging the above we have

∂

∂t

(∫
M

fudµ
)

=

∫
M

(−R− 2∆f + |∇f |2)udµ+
n

2τ

∫
M

udµ

= −
∫
M

(R+ |∇f |2)udµ+
n

2τ

= −F +
n

2τ
,

where F =
∫
M

(R+ |∇f |2)udµ is the Perelman’s energy functional introduced in [126], which we have discussed

in Chapter 2 of this thesis. We however claim that

∂

∂t

(∫
M

fudµ
)

= −F +
n

2τ
≥ 0. (3.4.41)

By this claim and putting together equations (3.4.38), (3.4.39), (3.4.40) and (3.4.41), we have

d

dt
Wε(g, f, τ) ≥ ε2τ

2π

∫
M

∣∣∣Rij + fij −
1

2τ
gij

∣∣∣2udµ ≥ 0.
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This has proved the theorem. Next is to justify the claim (3.4.41) above. Recall from Chapter 2 the evolution of F

d

dt
F(g, f) = 2

∫
M

|Rij + fij |2udµ. (3.4.42)

Straightforward analysis, using elementary inequality and Cauchy-Schwarz inequality gives

|Rij + fij |2 ≥
1

n
(R+ ∆f)2 (3.4.43)

so that ∫
(R+ ∆f)udµ ≤

(∫
(R+ ∆f)2udµ

) 1
2
(∫

udµ
) 1

2

,

therefore (∫
(R+ ∆f)udµ

)2

≤
∫

(R+ ∆f)2udµ.

Hence by (3.4.42) and (3.4.43), we obtain

d

dt
F ≥ 2

n

∫
M

(R+ ∆f)2udµ. (3.4.44)

We can then solve
d

dt
F ≥ 2

n
F2, F ≥ 0.

This implies
dF
F2
≥ 2

n
dt

=⇒ − 1

F

∣∣∣T
t
≥ 2

n
(T − t) =⇒ 1

F(t)
− 1

F(T )
≥ 2

n
τ =⇒ 1

F(t)
≥ 2

n
τ +

1

F(T )
.

From here we can conclude as follows

(i). Suppose F(T ) > 0, then
1

F(t)
≥ 2τ

n
i.e,F(t) ≤ n

2τ
.

(ii). Suppose F(T ) ≤ 0, then F(t) ≤ 0 ≤ n
2τ for all t ∈ [0, T ), since we know that d

dtF ≥ 0.

Hence

F(t) ≤ n

2τ
for t ∈ [0, T ),

which proves the claim (3.4.41).
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Chapter 4

Bounds on the Conjugate Heat Kernel

under Ricci Flow

4.1 Introduction

Let M be a compact Riemannian manifold endowed with metric g(x, t) evolving by the Ricci flow in the

interval 0 ≤ t ≤ T , T is taken to be the maximum time of existence for the Ricci flow. Let u(x, t) be a

positive solution to the conjugate heat equation on M × [0, T ], we consider the following coupled system
∂tgij(x, t) = −2Rij(x, t), (x, t) ∈M × [0, T ],

(−∂t −∆ +R(x, t))u(x, t) = 0, (x, t) ∈M × [0, T ],

(4.1.1)

where Rij(x, t) is the Ricci curvature of the the metric g(t), its metric trace is called scalar curvature, denoted by

R(x, t) and ∆ is the usual Laplace-Beltrami operator depending on the metric. We obtain several upper bounds

for the fundamental solution (Heat kernel) to the conjugate heat equation defined on a compact manifold whose

metric is evolving by the forward Ricci flow. The system above is associated to Perelman’s monotonicity formula

which has been proven to be of fundamental importance in the analysis of Ricci flow. Perelman [126] proved a

lower bound for the heat kernel satisfying the above heat equation with application of the maximum principle and

his reduced distance, an outstanding feature of the estimate is that it does not require explicit assumption on metric

curvature, the information is being embedded in the reduced distance. In the present too, the bound obtained

in the first part of this chapter needs no explicit curvature assumptions, it rather depends on the Zhang-Ricci-

Sobolev constant [157], which in turn depends on the best constant in the usual Sobolev embedding controlled by

the infimum of the Ricci curvature and the injectivity radius of the underlying manifold. The motivation for this

was Q. Zhang’s result in [156], where he obtained upper bounds for conjugate heat kernel under backward Ricci
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flow, such bounds depend on Yamabe constant or Euclidean Sobolev embedding constant. He further showed that

this type of heat kernel upper bounds are proper extension of an on-diagonal upper bound in the case of a fixed

manifold, where one obtains a bound of the form

F (x, t; y, s) ≤ C(n) max{ 1

(t− s)n2
, 1}

with C(n) > 0 depending on n for all t > s and x, y ∈ M. We also give a special case of weakly positive scalar

curvature to support the above assertion. Recently, M. Bǎileşteanu [7] has adopted Zhang’s approach to obtain

similar estimate for the fundamental solution of the heat equation coupled to Ricci flow. Our calculation is based

on the ideas of both papers cited above. We remark that the similarity in our results is a justification of the fact that

heat diffusion on a bounded geometry with either static or evolving metric behaves like heat diffusion in Euclidean

space, many a times, their estimates even coincide. A result of Cheeger and Yau [55] has revealed that the heat

kernel of a complete manifold with bounded Ricci curvature can be compared with that of the space form whose

curvature determines the lower bound for the manifold’s Ricci curvature. In the second part of this chapter, sharp

upper estimates arising from the monotonicity of an entropy formula are obtained. The main ingredients used here

are logarithmic Sobolev inequalities and ultracontractivity property of the conjugate heat semigroup. It is well

known that Gross logarithmic Sobolev inequality [83] is equivalent to Nelson’s hypercontractive inequality [121],

both of which may imply ultracontractivity of the heat semigroup. (See [71, 72, 107, 152]). These results will

appear in [2].

In practice, the Ricci flow deforms and smoothens out irregularities in the metric to give a ”nicer” form and

thus, provides useful geometric and topological information on the manifold. The metric is bounded under the

Ricci flow and nonnegativity of curvature operator is preserved during the flow. (Cf. [64, 68, 69] for more on this

and detail of geometric and analytic aspect of the Ricci flow). For example, the evolution of scalar curvature is

governed by the following differential inequality, since |Rc|2 ≥ 1
nR

2,

∂

∂t
R ≥ ∆R+

2

n
R2.

Suppose R(g0) ≥ ρ, we can use maximum principle by comparing solution of the above inequality with that of

the following ODE 
dφ(t)

dt
=

2

n
(φ(t))2

φ(0) = ρ,
(4.1.2)

solving

φ(t) =
1

1
ρ −

2
n t
.

Therefore

R(g(t)) ≥ φ(t) =
1

1
ρ −

2
n t
. (4.1.3)

Coupling Ricci flow to the heat equation can be associated with some physical interpretation in terms of heat con-

duction process. Precisely, the manifold M with initial metric g(x, 0) can be thought of as having the temperature
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distribution u(x, 0) at t = 0. If we now allow the manifold to evolve under the Ricci flow and simultaneously allow

the heat to diffuse on M , then, the solution u(x, t) will represent the space-time temperature on M . Moreover, if

u(x, t) approaches δ-function at the initial time, we know that u(x, t) > 0, this gives another physical interpret-

ation that temperature is always positive, whence we can consider the potential f = log u as an entropy or unit

mass of heat supplied and the local production entropy is given by |∇f |2 = |∇u|2
u2 . Suffice to say that heat kernel

governs the evolution of temperature on a manifold with certain amount of heat energy prescribed at the initial

time.

We denote the fundamental solution to the conjugate heat equation by F (x, τ ; y, σ) ∈ (M × [0, T ] ×M ×

[0, T ], R). We now give a formal definition and some important properties of conjugate heat kernel.

Definition 4.1.1. We say that F (x, τ ; y, σ) is a fundamental solution to the adjoint heat equation centred at (y, σ)

for x, y ∈M,σ < τ ∈ [0, T ], if it satisfies the following system
(−∂t −∆(x,τ) +R(x, τ))F (x, τ ; y, σ) = 0

lim
τ→σ

F (x, τ ; y, σ) = δy(x)

(4.1.4)

for any x ∈M.

Thus, F (x, τ ; y, σ) is the unique minimal positive solution to the equation which from henceforth we refer to

as conjugate heat kernel.

Lemma 4.1.2. The conjugate heat kernel satisfies the following properties.

1.
∫
M
F (x, t; y, s)dµ(g(x, t)) = 1

2. F (x, t; y, 0) =
∫
M
F (x, t; z, t2 )F (z, t2 ; y, 0)dµ(g(z, t2 )) by the semigroup property (see Appendix B.4).

3. F (x, t; y, s) is also the fundamental solution to the heat equation in (y, s)-variables i.e,
(∂s −∆(y,s))F (x, t; y, s) = 0

lim
s→t

F (x, t; y, s) = δx(y).

(4.1.5)

4.
∫
M
F (x, t; y, s)dµ(g(y, s)) ≤ 1.

Other important properties of heat kernel such as existence, uniqueness, smoothness, symmetry have been

studied by many authors, C. Guenther in [85] and Garofalo and Lanconelli in [80] for examples.

4.2 Pointwise Upper Bound with Sobolev Inequality

In this section, we prove an upper estimate on the conjugate heat kernel of the manifold evolving by the Ricci flow,

it turns out that the estimate depends on the best constants in Sobolev inequality for the Ricci flow due to Q. Zhang
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in [157] and the bound on the scalar curvature. The main result of this section is the following

Theorem 4.2.1. Let (M, g(x, t)), t ∈ [0, T ] be a solution to the Ricci flow with n ≥ 3 and F (x, t; y, s) be the

fundamental solution to the conjugate heat equation (conjugate heat kernel under Ricci flow). Then for a constant

Cn depending on n only, the following estimate holds

F (x, t; y, s) ≤ Cn(∫ t+s
2

s
e

2
n
P (τ)

α(τ)A(τ)dτ ·
∫ s
t+s
2

e−
2
n
P (τ)

A(τ) dτ

)n
4

(4.2.1)

for 0 ≤ s < t ≤ T , where α(τ) =
ρ−1− 2

n τ

ρ−1 , R(g0) ≥ ρ being the infimum of the scalar curvature taken

at the initial time, P (τ) =
∫ t
s
(B(τ)A−1(τ) − 1

2φ(τ))dτ , with A(t) and B(t) being positive constants in the

Zhang-Ricci-Sobolev inequality and φ(t) is the lower bound for the scalar curvature.

As we mentioned earlier the approach requires no explicit condition on the curvature, and in a special case

where the scalar curvature is nonnegative at the starting time of the flow, one obtains a bound similar to the one in

the fixed metric case. Hence, the usefulness of this technique cannot be overemphasized, as it connects an analytic

invariant (the best constant in the Euclidean Sobolev imbedding ) to the geometry of the manifold M .

Corollary 4.2.2. Let the assumptions of the above theorem hold. Suppose further that the scalar curvature is

nonnegative at time t = 0 (i.e., R(x, 0) ≥ 0). Then for a constant C̃n depending on n and the best constant in

Euclidean Sobolev embedding, the following estimates hold

F (x, t; y, s) ≤ C̃n
(t− s)n2

(4.2.2)

for 0 ≤ s < t ≤ T .

The exact value of C̃n is computed in the proof. Its value in the case R(x, 0) = 0 is different from that of the

case R(x, 0) > 0.

In the next we give a brief discussion on the version of Sobolev embedding that will be used in the proof of the

main results of this section (Theorem 4.2.1 and Corollary 4.2.2).

4.2.1 The Sobolev Embedding

Let (M, g) be an n-dimensional (n ≥ 3) Riemannian manifold without boundary, it is well known that when M is

compact the Sobolev space Hq
1 (M) is continuously embedded in Lq

∗
(M) for any 1 ≤ q < n and 1

q∗ = 1
q −

1
n .

Here Hq
1 (M) is the completion of C∞(M) with respect to the standard norm

‖u‖q =
(∫

M

|∇u|qdµ(g)
) 1
q

+
(∫

M

|u|qdµ(g)
) 1
q

(4.2.3)

and the embedding of Hq
1 (M) in Lq

∗
(M) is critical. Similarly, the following Sobolev embedding inequality holds

true; for any ε ≥ 0, there exists a positive constant Bq(ε) such that for any u ∈ Hq
1 (M)(∫

M

|u|q
∗
dµ(g)

) 1
q∗ ≤ (K(n, q) + ε)

(∫
M

|∇u|qdµ(g)
) 1
q

+Bq(ε)
(∫

M

|u|qdµ(g)
) 1
q

, (4.2.4)
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where K(n, q), an explicit constant depending on n and q is the smallest constant having this property, (K(n, q)

is the best constant in the Sobolev embedding for Rn). See Aubin [6], Hebey [95] and Talenti [145] also Taheri

[141, 142, 144] for the impact of topology on Sobolev spaces and relation to twist theory). In other words, there

exist positive constants A and B such that for all u ∈W 1,2(M, g), we have(∫
M

u
2n
n−2 dµ(g)

)n−2
n ≤ A

∫
M

|∇u|2dµ(g) +B

∫
M

u2dµ(g). (4.2.5)

On the compact manifold whose metric evolves along the Ricci flow, Q. Zhang, [157], S-Y Hsu [97] and R. Ye

[155] have adopted Perelman W-entropy monotonicity formula to derive various Sobolev embedding that holds

for the case n ≥ 3. In this section we shall make use of Zhang’s version, here is the statement of his result;

Theorem 4.2.3. ([157] Let (M, g) be a compact Riemannian manifold with dimension n ≥ 3 whose metric evolves

by the Ricci flow in the interval t ∈ [0, T ]. Let there exist positive constants A and B for the initial metric g0 such

that the following Sobolev inequality holds for any u ∈W 1,2(M, g0)(∫
M

u
2n
n−2 dµ(g0)

)n−2
n ≤ A

∫
M

|∇u|2dµ(g0) +B

∫
M

u2dµ(g0). (4.2.6)

Then, there exist positive functions of time A(t) and B(t) depending only on the initial metric g0 and t such that

for u ∈W 1,2(M, g(t)), t > 0, it holds that(∫
M

u
2n
n−2 dµ(g(t))

)n−2
n ≤ A(t)

∫
M

(
|∇u|2 +

1

4
Ru2

)
dµ(g(t)) +B(t)

∫
M

u2dµ(g(t)), (4.2.7)

whereR is the scalar curvature of the metric g(t). Moreover, ifR(x, 0) > 0, thenA(t) andB(t) are in independent

of t.

We have from the Sobolev embedding for 1 ≤ q < n thatW 1,q(M) can be continuously embedded inLq
∗
(M),

i.e, there exists a constant C = C(n, q), such that

‖u‖Lq∗ (M) ≤ C(n, q)‖u‖W 1,q(M)

for all u ∈W 1,q(M). So by Holder’s inequality we have (p ≥ q)∫
M

|u|pdµ =

∫
M

|u|q|u|p−q ≤
(∫

M

|u|
qn
n−q dµ

)n−q
n
(∫

M

‖u‖
n
q (p−q)dµ

) q
n

. (4.2.8)

From the interpolation inequality∫
M

u2dµ ≤
(∫

M

u
2n
n−2 dµ

)n−2
n+2
(∫

M

udµ
) 4
n+2

(4.2.9)

for the case q = 2 and n ≥ 3. Then by Sobolev inequality for manifold evolving by the Ricci flow we have∫
M

u2dµ ≤
(
A(t)

∫
M

(
|∇u|2 +

1

4
Ru2

)
dµ(g(t)) +B(t)

∫
M

u2dµ(g(t))
) n
n+2

×
(∫

M

udµ(g(t))
) 4
n+2

.
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Let h(t) :=
( ∫

M
udµ(g(t))

) 4
n+2

, the last inequality becomes

∫
M

|∇u|2dµ(g(t)) ≥ 1

A(t)

(
h−1(t)

∫
M

u2dµ(g(t))
)n+2

n

−B(t)

A(t)

∫
M

u2µ(g(t))− 1

4

∫
M

Ru2µ(g(t)).

(4.2.10)

Thus, we have proved the following by using the bound on the scalar curvature (4.1.3) as discussed in the

introduction.

Lemma 4.2.4. With the hypothesis of Theorem 4.2.3 the following inequality holds∫
M

|∇u|2dµ(g(t)) ≥ 1

A(t)

(
h−1(t)

∫
M

u2dµ(g(t))
)n+2

n

−
(B(t)

A(t)
+
φ(t)

4

)∫
M

u2dµ(g(t))
)

. (4.2.11)

4.2.2 Proof of Theorem 4.2.1

Proof. We suppose here and thereafter that s = 0 without loss of generality. Since F (x, t; y, s) is the fundamental

solution, it then follows from its semigroup property and Cauchy-Schwarz inequality that

F (x, t; y, 0) =

∫
M

F (x, t; z,
t

2
)F (z,

t

2
; y, 0)dµ(g(z, t))

≤
(∫

M

F 2(x, t; z,
t

2
)dµ(g(z,

t

2
))
) 1

2
(∫

M

F 2(z,
t

2
; y, 0)dµ(g(z,

1

2
))
) 1

2

.

Traditionally, deriving an upper bound for each of the terms in the right hand side of the last inequality suffices to

settle the proof. In the present, the nature of the bounds to obtain depends on Sobolev embedding theorems on the

manifold evolving by the Ricci flow. Now denote, say

V (t) =

∫
M

F 2(x, t; y, s)dµ(g(x, t))

W (s) =

∫
M

F 2(x, t; y, s)dµ(g(y, s)).

Thus, the pointwise estimates on the quantities V (t) and W (t) will determine an upper bound for the fundamental

solution F (x, t; y, s). Approaches to obtaining bound for each of the quantities V (t) and W (t) differ slightly

due to the interpolation of the heat kernel between the conjugate heat equation in the variables (x, t) and the heat

equation in the variables (y, s), i.e.,

(−∂t −∆x +R(x, t))F (x, t; ·, ·) = 0

(∂s −∆y)F (·, ·; y, s) = 0.
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We first treat the case when F (x, t; y, s) solves the conjugate heat equation, that is, we want to estimate V (t). The

idea is to find an inequality involving V (t). Hence

V ′(t) =

∫
M

(2F∂tF −RF 2)dµ(x, t)

=

∫
M

2F (−∆F +RF )dµ(x, t)−
∫
M

RF 2dµ(x, t)

= 2

∫
M

|∇F |2dµ(x, t) +

∫
M

RF 2dµ(x, t).

Using Lemma 4.2.4, we arrive at

V ′(t) ≥ 2A−1(t)
(
h−1(t)

∫
M

F 2dµ(x, t)
)n+2

n − 2
(
B(t)A−1(t) +

1

4
φ(t)

)∫
M

F 2dµ(x, t)

+ φ(t)

∫
M

F 2dµ(x, t)

= 2A−1(t)
(
h−1(t)

∫
M

F 2dµ(x, t)
)n+2

n −
(

2B(t)A−1(t)− 1

2
φ(t)

)∫
M

F 2dµ(x, t).

The problem is reduced to solving the following ODE

V ′(t) + q(t)V (t) ≥ 2A−1(t)V (t)
n+2
n , (4.2.12)

where q(t) = 2B(t)A−1(t)− 1
2φ(t). Equation (4.2.12) is due to the fact that under variables (x, t), the fundamental

solution F satisfies ∫
M

F (x, t; y, s)dµ(x, t) = 1

and consequently then

h(t) =
(∫

M

Fdµ
) 4
n+2

= 1.

Notice that the resulting ODE (4.2.12) is true for any τ ∈ [s, t], we then solve it by using integrating factor method.

Denote Q(τ) =
∫
q(τ)dτ , the integrating factor is eQ(τ), therefore we have(

eQ(τ)V (τ)
)′
≥ 2A−1(τ)

(
eQ(τ)V (τ)

)n+2
n

e−
2
nQ(τ)

integrating from s to t (by separation of variables) since it is true for all τ ∈ [s, t], with the facts that

∫ t

s

(
eQ(τ)V (τ)

)′
(
eQ(τ)V (τ)

)n+2
n

dτ = −n
2

(
eQ(τ)V (τ)

)− 2
n

∣∣∣∣∣
t

s

=
n

2
eQ(t)V (t)

by taking the limit

lim
τ↘s

V (τ) =

∫
M

lim
τ↘s

F 2(x, τ ; y, s)dµ(x, t) =

∫
M

δ2
y(x)dµ(x, s) = 0, 1

1This follows from a property of dirac delta which says it is zero everywhere except at only one point where it is either undefined or has an

infinite value.
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we obtain the bound as follows

V (t) ≤

(
2
n

)n
2

e−Q(t)(
2
∫ t
s
e−

2
n
Q(τ)

A(τ) dτ
)n

2
=

(
1
n

)n
2

e−Q(t)( ∫ t
s
e−

2
n
Q(τ)

A(τ) dτ
)n

2
.

Taking Cn :=
(

1
n

)n
2

, we arrive at

∫
M

F 2(x, t; y, s)dµ(x, t) = V (t) ≤ Cne
−Q(t)( ∫ t

s
A−1(τ)e−

2
nQ(τ)dτ

)n
2
. (4.2.13)

The next is to estimate

W (s) =

∫
M

F 2(x, t; y, s)dµ(y, s).

Due to the asymmetry of the equation, the computation is slightly different. We recall that F (x, t; y, s) satisfies

the heat equation in the variables (y, s), then we similarly have

W ′(s) =

∫
M

(2F∂sF −RF 2)dµ(y, s)

=

∫
M

2F (∆F )−RF 2dµ(y, s)

= −2

∫
M

|∇F |2dµ(y, s)−
∫
M

RF 2dµ(y, s).

Using Lemma 4.2.4 again we arrived at

W ′(s) ≤ −2A−1(s)
(
h−1(s)

∫
M

F 2dµ(y, s)
)n+2

n

+ 2
(
B(s)A−1(s)

+
1

4
φ(s)

)∫
M

F 2dµ(y, s)− φ(t)

∫
M

F 2dµ(y, s)

= −2A−1(s)
(
h−1(s)

∫
M

F 2dµ(y, s)
)n+2

n

+
(

2B(s)A−1(t)− 1

2
φ(s)

)∫
M

F 2dµ(y, s).

(4.2.14)

We can further estimate the quantity h(s) =
( ∫

M
Fdµ

) 4
n+2

. Notice that contrary to what was obtainable in the

variable (x, t),
∫
M
F (x, t; y, s)dµ(y, s) ≤ 1, since the coordinate (x, t) are kept fixed here and we only integrate

in (y, s). Therefore

λ′(s) =
d

ds

(∫
M

F (x, t; y, s)dµ(y, s)
)

=

∫
M

∂sF (x, t; y, s)dµ(y, s)−
∫
M

R(y, s)Fdµ(y, s)

=

∫
M

∆y,sF (x, t; y, s)dµ(y, s)−
∫
M

R(y, s)F (x, t; y, s)dµ(y, s)

≤ −φ(s)

∫
M

F (x, t; y, s)dµ(y, s).

The last inequality is due to the fact that we are on compact manifold, where
∫
M

∆Fdµ = 0 and by the lower

bound on scalar curvature R due to the maximum principle.
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Now for any τ ∈ [s, t]

λ′(τ) ≤ −φ(τ)λ(τ)

λ′(τ)

λ(τ)
≤ −φ(τ) = − 1

ρ−1 − 2
nτ
,

integrating this from s to t we get

lnλ(t)− lnλ(s) ≤ n

2
ln(ρ−1 − 2

n
τ)
∣∣∣t
s

λ(t)

λ(s)
≤

(
ρ−1 − 2

n t

ρ−1 − 2
ns

)n
2

=⇒ λ(t) ≤

(
ρ−1 − 2

n t

ρ−1 − 2
ns

)n
2

λ(s),

we can show that λ(s) ≡ 1 as follows

λ(s) = lim
s↗t

∫
M

F (x, t; y, s)dµ(y, s) =

∫
M

lim
s↗t

F (x, t; y, s)dµ(y, t)

=

∫
M

δx(y) = 1,

combining these we have

h(t) =

(
ρ−1 − 2

n t

ρ−1 − 2
ns

)n
2 ·

4
n+2

=

(
ρ−1 − 2

n t

ρ−1 − 2
ns

) 2n
n+2

=: α
2n
n+2 .

By this (4.2.14) is now reduced to the following

W (s) ≤ −2A−1(s)α−2(s)
(∫

M

F 2dµ(y, s)
)n+2

n

+(2B(s)A−1(s)− 1

2
φ(s))

∫
M

F 2dµ(y, s),
(4.2.15)

we are then to solve the following ODE

W ′(s) ≤ −2A−1α−2W (s)
n+2
n + r(s)W (s), (4.2.16)

where r(s) = 2B(s)A−1(s) − 1
2φ(s). In the similar vein to the previous estimate, we also solve (4.2.16) using

integrating factor method. Denote R(τ) =
∫
r(τ)dτ , the integrating factor is e−R(τ). Therefore we have(

e−R(τ)W (τ)
)′
≤ −2A−1α−2

(
e−R(τ)W (τ)

)n+2
n

e
2
nR(τ),

integrating from s to t since it is true for any τ ∈ [s, t] we have immediately

W ′(s) ≤

(
2
n

)n
2

eR(s)(
2
∫ t
s

e
2
n
R(τ)

α2(τ)A(τ)dτ
)n

2
=

(
1
n

)n
2

eR(s)( ∫ t
s
α−2(τ)A−1(τ)e

2
nR(τ)dτ

)n
2
,

hence ∫
M

F 2(x, t; y, s)dµ(y, s) = W (s) ≤ Cne
R(s)( ∫ t

s
α−2(τ)A−1(τ)e

2
nR(τ)dτ

)n
2
. (4.2.17)



Chapter 4. Bounds on the Conjugate Heat Kernel under Ricci flow 106

We can then see from the computation above that

V (
t

2
) =

∫
M

F 2
(
x, t; z,

t

2

)
dµ
(
z,
t

2

)
=

Cne
−Q( t2 )( ∫ t

s
A−1(τ)e−

2
nQ(τ)dτ

)n
2

and

W (
t

2
) =

∫
M

F 2
(
z,
t

2
; y, 0

)
dµ
(
z,
t

2

)
=

Cne
R( t2 )( ∫ t

s

(
ρ−1− 2

n τ

ρ−1

)−2

A−1(τ)e
2
nR(τ)dτ

)n
2
.

Here we choose

P (
t

2
) =

∫ t
2

0

[
B(τ)A−1(τ)− 1

2
φ(τ)

]
dτ = Q(

t

2
) = R(

t

2
) with φ(t) :=

1

ρ−1 − 2
n t
.

Finally we obtain the bound

F (x, t; y, s) ≤ Cn(∫ t+s
2

s

(
ρ−1− 2

n τ

ρ−1

)−2

A−1(τ)e
2
nP (τ) ·

∫ s
t+s
2
A−1(τ)e−

2
nP (τ)dτ

)n
4
. (4.2.18)

The required estimate follows immediately.

4.2.3 Manifold with weakly positive scalar curvature

Note that if R(x, 0) ≥ 0, the maximum principle shows that it remains so as long as Ricci flow exists, for this case

we obtain a Sobolev type embedding from Lemma 4.2.4∫
M

|∇u|2dµ(g(t)) ≥ 1

A

(∫
M

u2dµ(g(t))
)n+2

2 − B

A

∫
M

u2dµ(g(t)), (4.2.19)

where A and B are absolute constant independent of time, in fact A = K(n, 2) is the best constant in Euclidean

Sobolev embedding and B can be taken to be equivalent to zero when R(x, 0) = 0.

In the case R(x, 0) > 0, we have λ′(τ) ≤ 0 showing that λ(τ) is decreasing, that is λ(τ) ≤ λ(s) = 1,

τ ∈ [s, t]. This implies that h(s) = h(t) = 1, then (4.2.16) becomes

W ′(s) ≤ −2A−1W (s)
n+2
n + r(s)W (s)

with r̃ = 2B
A and we obtain the estimate

W (s) ≤ Cne
R̃(s)

A−1
( ∫ t

s
(τ)e

2
nR(τ)dτ

)n
2
,

similarly

V (t) ≤ Cne
−R̃(t)

A−1
( ∫ t

s
(τ)e−

2
nR(τ)dτ

)n
2
.
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Putting these together we have a counterpart estimate to (4.2.18) as follows

F (x, t; y, s) ≤ Cn[
A−2

(∫ t+s
2

s
e

2
n R̃(τ)dτ ·

∫ s
t+s
2
e−

2
n R̃(τ)dτ

)]n
4
. (4.2.20)

Here, the denominator of the last inequality is simplified to[
A−2

(∫ t+s
2

s

e
2
n R̃(τ)dτ ·

∫ s

t+s
2

e−
2
n R̃(τ)dτ

)]n
4

=

[
n2

16B2

(
e

4B
nA ·

t+s
2 − e 4B

nA ·s
)(
e−

4B
nA ·

t+s
2 − e− 4B

nA ·t
)]n4

=

[
n2

16B2

(
1− e− 4B

nA ·
t−s

2

)2
]n

4

.

Therefore

F (x, t; y, s) ≤ Cn[
n

4B

(
1− e− 4B

nA ·
t−s

2

)]n2 ≤ C̃n
(t− s)n2

by Taylor series expansion (i.e., 1− e−z . z), where C̃n = Cn · (2A)
n
2 .

In the case R(x, 0) = 0, B(t) ≡ 0, R̃(t) = B
A t ≡ 0 and

F (x, t; y, s) ≤ Cn[
A−2

0

(∫ t+s
2

s
dτ ·

∫ s
t+s
2
dτ

)]n
4

=
Cn[

A−1
0

(
t−s

2

)]n
2

=
C̃n

(t− s)n2
, (4.2.21)

where C̃n = Cn · (2A0)
n
2 =

(
2
nk(n, 2)

)n
2

. This completes the proof of Corollary 4.2.2.

4.3 Logarithmic Sobolev Inequalities

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, the L2-Sobolev constants of (M, g) is defined

to be

CS(M, g) := sup
{
‖u‖ 2n

n−2
− V ol− 2

n (M, g)‖u‖2 : u ∈ C1(M), ‖∇u‖2 = 1
}
. (4.3.1)

Thus, CS(M, g) <∞ is the smallest number for which the L2-Sobolev inequality

‖u‖ 2n
n−2
≤ CS(M, g))‖∇u‖2 +

1

V ol
2
n

‖u‖2 (4.3.2)

holds true for all u ∈ W 1,2(M, g). Here the Lp-norm of a measurable function f with respect to the metric g is

defined by

‖f‖p,g = ‖f‖p :=
(∫

M

|f |pdµ
) 1
p

, 1 ≤ p <∞. (4.3.3)

Entropy and monotonicity formulas are intimately related to Sobolev-type inequalities (or functional inequalities

in general [143]). One of such entropies is Perelman’s one described in Chapter 2, which is a log-entropy energy
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relating to logarithmic Sobolev inequalities. The Sobolev and logarithmic Sobolev inequalities are essentially

equivalent, the latter however has an advantage of being dimensionless. As we can see, Sobolev inequality gives

information about the size of a function in terms of those information about the derivatives’ sizes of the function.

This is usually measured in terms of Lp-norm with p as large as possible, where in (4.3.2) above we have p =

2n/(n− 2). The implication of this is the loss of effectiveness by Sobolev inequality as n becomes larger, hence,

there was a need for an improvement. The problem of finding a replacement for Sobolev inequality which does not

depend on dimension necessitated the invention of logarithmic Sobolev inequality (which remains correct even for

n =∞) in the seventies, beginning with the work of E. Nelson [121]. In 1975, L. Gross [83] proved the following

Gaussian version of log-Sobolev inequalities∫
|f(x)|2 ln |f(x)|dν(x) ≤

∫
|∇f(x)|2dν(x) + ‖f‖22 ln ‖f‖2 (4.3.4)

for every weakly continuously differentiable function f with ‖ · ‖ being the L2-norm, ∇f ∈ L2 and Gaussian

measure dν(x) = (2π)−
n
n exp{− |x|

2

2 }dx is defined in terms of Lebesgue measure, dx. Gross relates this to

hypercontractivity inequality of Nelson [120], the log-Sobolev inequalities are also related to contractivity by

Gross in [84] and ultracontractivity properties of heat kernel semigroup by Davies and Simon in [72]. In fact, they

have become powerful fundamental tools in the analysis of functions which are uniform in the dimension of the

underlying space (for more details, see Davies [71], Lieb and Loss [107] and Weissler [152]).

We will show here that a family of log Sobolev inequalities on Riemannian manifold evolving by the Ricci flow

is a consequence of the L2-Sobolev inequality and the monotonicity property of our generalized dual entropyWε

introduced in (3.4.34) of Chapter 3. It is well known that Sobolev and log Sobolev inequalities are both equivalent

to a number of functional inequalities such as Nash, isoperimetric and heat kernel bound inequalities. In this

section, we obtain a family of log Sobolev inequalities along the Ricci flow which is in turn used to derive a sharp

upper bound of the form

‖u(·, T )‖∞ ≤ ecT (4πT )−
n
2 ‖u0(·, T )‖1 (4.3.5)

for the conjugate heat kernel. Evidently, such an estimate is sharp since a bound in the other direction can be

obtained by simply taking u0 ∈ Lp to be a delta function in

u(·, T ) = H ∗ u0 =

∫
M

H(·, T ; y)u0(y)dµ(y). (4.3.6)

Remarkably, one can adopt the approach of Davies [71] to establish this equivalence via the ultracontractive prop-

erty of the conjugate heat semigroup. Notice that this approach has been adopted by some authors, we mention the

following [97, 155, 157]. Another useful application of Logarithmic Sobolev inequality on manifold evolving by

Ricci flow are found in [48].

4.3.1 Derivation of Log-Sobolev Inequalities along the Ricci Flow

From the results of Aubin [6] and Hebey [95] for complete manifolds whose Ricci curvature is bounded from

below and injectivity radius is positive and bounded from above, we can assume the Sobolev embedding on the
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initial metric, since (M, g(0)) is a compact Riemannian manifold. Let there exist positive constants A0, B0 < ∞

such that for all u ∈W 1,2(M, g0),

‖u‖ 2n
n−2
≤ A0‖∇u‖2 +B0‖u‖2, (4.3.7)

where A0 and B0 depends only on n, g0, lower bound for the Ricci curvature and injectivity radius. We can then

write (4.3.7) as (∫
M

u
2n
n−2 dµg0

)n−2
n ≤ A

∫
M

(
4|∇u|2 +Ru2

)
dµg0

+B

∫
M

u2dµg0
, (4.3.8)

where

A =
1

4
A0, and B =

1

4
A0 supR−(·, 0) +B0

since R(x, 0) + supR−(·, 0) = R+(x, 0)−R−(x, 0). R denotes the scalar curvature. (See [157, Chapter 6]).

The usual way of deriving logarithmic Sobolev inequality follows from a careful application of Hölder’s and

Jensen’s inequalities, since log u is a concave function in which case∫
lnudw ≤ ln

∫
udw

with the assumption that
∫
dw = 1, we then obtain the following

Lemma 4.3.1. For any u ∈W 1,2(M, g0) with ‖u‖2 = 1∫
M

u2 lnu2dµg0
≤ n

2
ln
(
A

∫
M

(4|∇u|2 +Ru2)dµg0 +B
)
. (4.3.9)

See [97, 155, 157] for the proof.

Inequalities in (4.3.9) are usually estimated further by the application of an elementary inequality of the form

ln y ≤ αy − lnα− 1, α, y,≥ 0. Precisely, taking y = A
∫
M

(4|∇u|2 +Ru2
)
dµg0 +B in (4.3.9) gives us∫

M

u2 lnu2dµg0
≤ nα

2

{
A

∫
M

(4|∇u|2 +Ru2)dµg0
+B

}
− n

2
(1 + lnα)

=
nαA

2

∫
M

(4|∇u|2 +Ru2)dµg0
+
nαB

2
− n

2
− n

2
lnα.

(4.3.10)

We will now modify the arguments in both [155] and [157] to prove our results.

Theorem 4.3.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 and the metric g(t) evolve by

the Ricci flow. Assume that L2-Sobolev embedding (4.3.7) holds true with respect to the initial metric g(0) = g0.

Then, we have∫
M

u2 lnu2dµg(t) ≤
∫
M

σ2(4|∇u|2 +Ru2)dµg(t) −
n

2
lnσ2 + (t+ σ2)β1 +

n

2
ln
nA

2e
(4.3.11)

if λ0 = inf
‖u‖2=1

∫
M

(4|∇u|2 +Ru2)dµg0
,
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that is, λ0 is the first eigenvalue of the operator −∆ + R
4 . Furthermore, if λ0 is strictly positive for R(·, 0) > 0,

then ∫
M

u2 lnu2dµg(t) ≤
∫
M

σ2(4|∇u|2 +Ru2)dµg(t) −
n

2
lnσ2

+(t+ σ2)β1 +
n

2
ln
nA

2e
+ γλ0(g0),

(4.3.12)

where σ > 0, β1 = 4A−1
0 B0 + supR−(·, 0) and γ =

(
4π
ε2 −

1
2

)
> 0.

Notice that the logarithmic Sobolev inequalities in the above theorem are uniform for all time but deteriorates

as time becomes large. We however have as a corollary a uniform log Sobolev inequality along the Ricci flow

without any time restriction provided only λ0(g0) > 0.

Corollary 4.3.3. With the assumption of the above theorem, we have∫
M

u2 lnu2dµg(t) ≤ σ2

∫
M

(|∇u|2 +
R

4
u2)dµg(t) −

n

2
lnσ2 + c(M, g) (4.3.13)

for all u ∈ W 1,2(M, g) with ‖u‖2 = 1, where c(M, g) is a constant depending on the dimension n,A0, B0

nonpositive lower bound for R(g0) and a positive lower bound for λ0(g0).

Let us give the following brief remark before we state the proof of the theorem above.

Remark 4.3.4. Our results confirm the assertion made by R. Ye in [155] that a uniform logarithmic Sobolev

inequality such as the one in the corollary above without the assumption that λ0(g0) ≥ 0 is false in general. We

refer to Topping [147, Section 6.6] for detail on the Zeroth eigenvalue of −∆ + R
4 and Chapter 2 of this thesis for

the monotonicity of eigenvalues of Perelman’s F-energy. All the standard references on the subject of Ricci flow

listed in the Bibliography give account of this as well.

4.3.2 Proof of Theorem 4.3.2

Now, we consider a compact n-dimensional Riemannian manifold (M, g0), n ≥ 3. Let g = g(t) be a smooth

solution of the Ricci flow
∂

∂t
g(x, t) = −2Rc(x, t) (4.3.14)

on M × [0, T ), for some finite time T > 0, with initial metric g(x, 0) = g0.

Recall the familyWε-entropy functional introduced in (3.4.34) of Chapter 3

Wε(g, f, τ) =

∫
M

[ε2τ
4π

(R+ |∇f |2) + f − nε2

4π
+
n

2
ln
(4π

ε2

)] e−f

(4πτ)
n
2
dµ, (4.3.15)

where the number τ(t) = T − t > 0 and the function f ∈ C∞(M) smoothly satisfies∫
M

e−f

(4πτ)
n
2
dµ = 1.
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Taking an L2-solution v = v(x, t) of the conjugate heat equation

∂tv = −∆v +Rv (4.3.16)

to be v = e−f

(4πτ)
n
2

, we have proved that theWε(g, f, τ)-entropy functional is nondecreasing for 0 < ε2 ≤ 4π (see

Theorem 3.4.13).

Relating the entropyWε with the idea of logarithmic Sobolev inequalities we consider a function

u =
√
v =

e−
f
2

(4πτ)
n
4

(4.3.17)

such that
∫
M
u2dµ = 1. We also notice that (4.3.17) implies f = − lnu2 − n

2 ln τ − n
2 ln(4π), hence the entropy

(4.3.15) is rewritten as

Wε(g, f, τ) =
ε2

4π

∫
M

[
τ(4|∇u|2 +Ru2)− u2 lnu2

]
udµ− ε2

4π

n

2
ln τ

− ε
2

4π

n

2
ln(4π) + (1− ε2

4π
)

∫
M

fu2dµ− nε2

4π
+
n

2
ln

4π

ε2


. (4.3.18)

Define

W∗ε (g, u, τ) =
ε2

4π

∫
M

[
τ(4|∇u|2 +Ru2)− u2 lnu2

]
udµ (4.3.19)

and

µ∗ε (g, u, τ) = inf{W∗ε (g, u, τ) :

∫
M

u2dµ = 1}. (4.3.20)

Set T ∗ = t∗ + σ2 and τ(t) = T ∗ − t for 0 ≤ t ≤ t∗ for some fixed constant σ > 0. Then

d

dt
Wε(g, f, τ) =

d

dt
W∗ε (g, u, τ)− nε2

8π

d

dt
ln τ + (1− ε2

4π
)
∂

∂t

∫
M

fu2dµ+
n

2
ln

4π

ε2
≥ 0,

where the last inequality is due to Theorem 3.4.13 (monotonicity ofWε(g, f, τ)), the proof of which also reveals

that
∂

∂t

∫
M

fu2dµ = −F +
n

2τ
,

where F =
∫
M

(R+ |∇f |2)u2dµ is the Perelman’s energy functional. Let λ0 be the first eigenvalue of the operator

−∆ + R
4 , then, we know that λ0 = inf‖u‖2=1 F . Therefore we arrive at

d

dt
W∗ε ≥

nε2

8π

d

dt
ln τ + (1− ε2

4π
)λ0.

To continue this argument, we should note that either (4.3.16) and (4.3.17) implies that the function f = f(t)

satisfies the following backward heat equation

∂f

∂t
= −∆f + |∇f |2 −R+

n

2τ
(4.3.21)

with u = u(x, t) satisfying

∂u

∂t
= −∆u+

|∇u|2

u
+
R

2
u (4.3.22)
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on [0, t∗] with a given terminal value at t+ t∗ and g = g(t∗).

Let v0 be a minimizer of the entropyWε(g, f, τ0) for all v such that
∫
M
vdµg(t0) = 1. We can then solve heat

equation (4.3.21) backward in time with initial data f(t0) = f0 and v0 chosen at t = t0. Let uj be the solution of

the conjugate heat equation (4.3.22) at t = tj . We can define functions fj , j = 1, 2 by uj = e−
fj
2

(4πτj)
n
4
, j = 1, 2.

Then by the monotonicity ofWε(g, f, τ)-entropy (using Perelman’s approach, see also Proposition 2.5.4 in Chapter

2), we have for t1, t2 ∈ [0, t0], t1 ≤ t2

µε(g(t1), τ(t1)) = inf
‖v0‖g(t1)=1

Wε(g(t1), f(t1), τ(t1)) ≤ Wε(g(t1), f(t1), τ(t1))

≤ Wε(g(t2), f(t2), τ(t2)) = inf
‖v0‖g(t2)=1

Wε(g(t2), f(t2), τ(t2)) = µε(g(t2), τ(t2)).

It follows from the above that

µ∗ε (g(t1), τ(t1)) ≤ µ∗ε (g(t2), τ(t2)) +
nε2

8π
ln
τ1
τ2

for any t1 < t2, where τj = τ(tj), j = 1, 2, where µ∗ε is as defined in (4.3.20). Choosing t1 = 0 and t2 = t∗, we

then obtain

µ∗ε (g(0), t∗ + σ2) ≤ µ∗ε (g(t∗), σ2) +
nε2

8π
ln
t∗ + σ2

σ2
(4.3.23)

since 0 < t∗ < T is arbitrary, We can write (4.3.23) as

µ∗ε (g(t), σ2) ≥ µ∗ε (g(0), t+ σ2) +
nε2

8π
ln

σ2

t+ σ2
(4.3.24)

for all t ∈ [0, T ). 2

We now complete the proof of Theorem 4.3.2.

Proof. The next is to apply (4.3.10) with g = g0 to estimate µ∗ε (g(0), t + σ2). For any function u ∈ W 1,2(M, g)

with ‖u‖2 = 1 and choosing
nαA

2
= t+ σ2 =⇒ α =

8(t+ σ2)

nA0
,

then, the inequality in (4.3.10) becomes∫
M

u2 lnu2dµg0 ≤ (t+ σ2)

∫
M

(4|∇u|2 +Ru2)dµg0 +
n

2

8(t+ σ2)

nA0
B − n

2
ln

8(t+ σ2)

nA0
− n

2

= (t+ σ2)

∫
M

(4|∇u|2 +Ru2)dµg0
+ 4(t+ σ2)BA−1

0 −
n

2
ln(t+ σ2)

+
n

2

(
lnA0 + lnn− 3 ln 2− 1

)
.

Choosing ε2 ≤ 4π as before, it then follows that

µ∗ε (g(0), t+ σ2) ≥ nε2

4π

{1

2
ln(t+ σ2)− 4

n
(t+ σ)BA−1

0 −
1

2
(lnA0 + lnn− 3 ln 2− 1)

}
. (4.3.25)

2 The case t = 0 is optimal as equality is attained.
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Combining (4.3.24) and (4.3.25), we obtain

µ∗ε (g(t), σ2) ≥ nε2

8π
lnσ2 − nε2

π
(t+ σ2)BA−1

0 −
nε2

8π
(lnA0 + lnn− 3 ln 2− 1), (4.3.26)

which implies

ε2

4π

∫
M

[
σ2(4|∇u|2 +Ru2)− u2 lnu2

]
dµ ≥ nε2

8π
lnσ2 − nε2

π
(t+ σ2)BA−1

0 −
nε2

8π
ln
nA0

8e
.

Therefore∫
M

u2 lnu2dµ ≤
∫
M

σ2(4|∇u|2 +Ru2)dµ− n

2
lnσ2 + 4(t+ σ2)BA−1

0 −
n

2
ln
nA0

8e
. (4.3.27)

Choosing β1 = 4BA−1
0 = 4A−1

0 (B0 +A supR−(x, 0)) and A = A0

4 , we obtain the result.

With similar argument to the above, our entropy functional Wε(g, f, τ) yields another version of inequality

called Restricted Log Sobolev inequality since ε2 ≤ 4π. We state this result in the next theorem and then give a

sketch of the proof.

Theorem 4.3.5. (Restricted Logarithmic Sobolev Inequality). With the same notation and assumptions in the last

theorem, we have ∫
M

u2 lnu2dµg(t) ≤
ε2

4π

∫
M

σ2(4|∇u|2 +Ru2)dµg(t) −
n

2
lnσ2

+(t+ σ2)β2 +
n

2
ln
nπA

2ε2e
,

(4.3.28)

where β2 = ε2

π (A−1
0 B0 + supR−(x, 0)).

Proof. Following the same line of argument as before, we rewrite ( 4.3.15) to get a counterpart of (4.3.18) as

Wε(g, f, τ) =WR
ε (g, u, τ)− n

2
ln τ − n

2
ln(4π)− nε2

4π
+
n

2
ln

4π

ε2
(4.3.29)

with

WR
ε (g, u, τ) =

∫
M

[ ε2
4π
τ(4|∇u|2 +Ru2)− u2 lnu2

]
udµ, (4.3.30)

then we have
d

dt
WR
ε ≥

n

2

d

dt
ln τ.

Let µRε (g, τ) be the infimum ofWR
ε over all u satisfying ‖u‖22 = 1(i.e,

∫
M
u2dµ = 1). It then follows that

µRε (g(t1), τ(t1)) ≤ µRε (g(t2), τ(t2)) +
n

2
ln
τ1
τ2

for any t1 < t2, where τj = τ(tj), j = 1, 2. Choosing t1 = 0 and t2 = t∗. Since 0 < t∗ < T , we then obtain a

counterpart of (4.3.24) as follows

µRε (g(t), σ2) ≥ µRε (g(0), t+ σ2) +
n

2
ln

σ2

t+ σ2
(4.3.31)
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for all t ∈ [0, T ). We now apply (4.3.10) with g = g0 to estimate µRε (g(0), t + σ2). For any function u ∈

W 1,2(M, g) with ‖u‖2 = 1 and choosing

nαA

2
=
ε2

4π
(t+ σ2) =⇒ α =

2ε2(t+ σ2)

4nπA
=

2ε2(t+ σ2)

nπA0
,

then, the inequality in (4.3.10) becomes∫
M

u2 lnu2dµg0
≤ (t+ σ2)

ε2

4π

∫
M

(4|∇u|2 +Ru2)dµg +
2ε2(t+ σ2)

nπA0
B − n

2
ln

2ε2(t+ σ2)

4nπA
− n

2

= (t+ σ2)

∫
M

ε2

4π
(4|∇u|2 +Ru2)dµg +

ε2

π
(t+ σ)BA−1

0 −
n

2
ln(t+ σ2)

+
n

2

{
ln
nA

2
− ln

ε2

4π
− 1
}
.

It then follows that

µRε (g(0), t+ σ2) ≥ n

2
ln(t+ σ2)− ε2

π
(t+ σ2)BA−1

0 −
n

2

{
ln
nA

2e
− ln

ε2

4π

}
. (4.3.32)

Combining with (4.3.31), we obtain

µRε (g(t), σ2) ≥ n

2
lnσ2 − ε2

π
(t+ σ2)BA−1

0 −
n

2

{
ln
nA

2e
− ln

ε2

4π

}
, (4.3.33)

which implies ∫
M

u2 lnu2dµ ≤ ε2

4π

∫
M

σ2(4|∇u|2 +Ru2)dµ (4.3.34)

− n

2
lnσ2 +

ε2

π
(t+ σ2)BA−1

0 +
n

2

{
ln
nA

2e
− ln

ε2

4π

}
. (4.3.35)

The restricted log Sobolev inequality (4.3.28) for all g(t) follows immediately by choosing β2.

4.4 Heat Kernel Bound via Log Sobolev Inequalities

In the next, we apply the logarithmic Sobolev inequality obtained in the last section to derive an upper bound for the

conjugate heat kernel along the Ricci flow, demonstrating that there is a lot of geometric information embedded in

such inequalities. The basic ideas, due to Davies and Simon [72], relate Nelson’s hypercontractivity (see L. Gross

[83]) to ultracontractivity (see also [71]). These ideas always yield estimates with sharp constants, we modify the

argument in Q. Zhang [157] (see also [107, 158]) to prove our result.

Theorem 4.4.1. Let (M, g(x, t)), t ∈ [0, T ] be a solution to the Ricci flow with n ≥ 2 and H(x, t; y) be the

fundamental solution to the conjugate heat equation(
− ∂t −∆ +R(x, τ)

)
u(x, τ) = 0. (4.4.1)
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Then, for some positive finite constant C depending on n, t, T,A0, B0 and supR−(·, 0), there holds the following

estimates

H(x, T ; y) ≤ CT−n2 , (4.4.2)

where ∂tτ = −1 and A0, B0 are as defined in the last section.

Without loss of generality, we may assume u = u(x, t) to be a nonnegative solution of the conjugate heat

equation (4.4.1) on the interval [0, T ], where ∂tτ = −1. Let T > 0 and r(τ) : [0, T ] → [1,∞] be a continuously

differentiable increasing function such that r(0) = ∞ and r(T ) = 1. The function r(τ) = T
τ gives a perfect

example as we shall see below.

The idea here follows from the fact that if

u(x, t) =

∫
H(x, t; y)u0(y)dµ(y)

solves the heat equation, where H(x, t; y) is the heat kernel, then

sup
u6=0

‖u(·, t)‖∞
‖u(·, 0)‖1

= sup
x,y

H(x, t; y),

we may obtain estimation of time derivative for the logarithms of the quantity

‖u‖r(t) =
(∫

M

|u|r(t)dµg(t)
) 1
r(t)

as follows ∫ T

0

∂

∂t
ln ‖u‖r(t)dt = ln

‖u(·, t)‖∞
‖u(·, 0)‖1

.

Proof. By routine computation

∂t‖u‖r(t) = ∂t

(∫
M

|u|r(t)dµg(τ)

) 1
r(τ)

= − ṙ(τ)

r2(τ)
‖u‖r(τ) ln ‖u‖r(τ)

r(τ) +
‖u‖1−r(τ)

r(τ)

r(τ)

{
ṙ(τ)

∫
M

ur(τ) lnu dµg(τ)

+ r(τ)

∫
M

[
ur(τ)−1

(
−∆u+Ru

)
+ ur(τ)(−R)

]
dµg(τ)

}
.

Multiply both sides by r2(τ)‖u‖r(τ)
r(τ),

r2(τ)‖u‖r(τ)
r(τ) ∂t‖u‖r(t) = −ṙ(τ)‖u‖r(τ)+1

r(τ) ln ‖u‖r(τ)
r(τ) + r(τ)ṙ(τ)‖u‖r(τ)

∫
M

ur(τ) lnudµg(τ)

+ r2(τ)‖u‖r(τ)

∫
M

ur(τ)−1(−∆u)dµg(τ) + r2(τ)‖u‖r(τ)

∫
M

ur(τ)−1(Ru)dµg(τ)

− r(τ)‖u‖r(τ)

∫
M

ur(τ)R dµg(τ).
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By the application of integration by parts we have

r2(τ)‖u‖r(τ)

∫
M

ur(τ)−1(−∆u)dµg(τ) = r2(τ)‖u‖r(τ)

∫
M

∇(ur(τ)−1)∇u dµg(τ)

= r2(τ)(r(τ)− 1)‖u‖r(τ)

∫
M

ur(τ)−2|∇u|2dµg(τ),

hence

r2(τ)‖u‖r(τ)
r(τ) ∂t‖u‖r(t) = −ṙ(τ)‖u‖r(τ)+1

r(τ) ln ‖u‖r(τ)
r(τ) + r(τ)ṙ(τ)‖u‖r(τ)

∫
M

ur(τ) lnudµg(τ)

+ r2(τ)(r(τ)− 1)‖u‖r(τ)

∫
M

ur(τ)−2|∇u|2dµg(τ)

+ r(τ)(r(τ)− 1)‖u‖r(τ)

∫
M

R ur(τ)dµg(τ).

Further dividing both sides by ‖u‖r(τ), we obtain

r2(τ)‖u‖r(τ)
r(τ) ∂t

(
ln ‖u‖r(t)

)
= −ṙ(τ)‖u‖r(τ)

r(τ) ln ‖u‖r(τ)
r(τ) + r(τ)ṙ(τ)

∫
M

ur(τ) lnudµg(τ)

+r2(τ)(r(τ)− 1)

∫
M

ur(τ)−2|∇u|2dµg(τ)

+r(τ)(r(τ)− 1)

∫
M

R ur(τ)dµg(τ).

(4.4.3)

Denoting

v =
u
r(τ)

2

‖u
r(τ)

2 ‖2
=⇒ v2 =

ur(τ)

‖u‖r(τ)
r(τ)

then |∇v|2 =
r2(τ)

4‖u‖r(τ)
r(τ)

· ur(τ)−2|∇u|2

and

ln v2 = lnur(τ) − ln ‖u‖r(τ)
r(τ).

Therefore

ṙ(τ)

∫
M

v2 ln v2dµg(τ) = ṙ(τ)

∫
M

ur(τ)

‖u‖r(τ)
r(τ)

{
lnur(τ) − ln ‖u‖r(τ)

r(τ

}
dµg(τ)

=
ṙ(τ)r(τ)

‖u‖r(τ)
r(τ)

∫
M

ur(τ) lnur(τ)dµg(τ) − ṙ ln ‖u‖r(τ)
r(τ .

Plugging these into (4.4.3), we arrive at the following

r2(τ)∂t

(
ln ‖u‖r(t)

)
= ṙ(τ)

∫
M

v2 ln v2dµg(τ) + 4(r(τ)− 1)

∫
M

|∇v|2dµg(τ)

+ r(τ)(r(τ)− 1)

∫
M

Rv2dµg(τ)

= ṙ(τ)

∫
M

v2 ln v2dµg(τ) + (r(τ)− 1)

∫
M

(4|∇v|2 +Rv2)dµg(τ)

+ (r(τ)− 1)2

∫
M

Rv2dµg(τ).
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Using the choice r(τ) = T
τ , we have ṙ(τ) = − T

τ2 and r(τ)− 1 = T−τ
τ so that we write the last equality as

r2(τ)∂t

(
ln ‖u‖r(t)

)
= − T

τ2

∫
M

v2 ln v2dµg(τ) +
T − τ
τ

∫
M

(4|∇v|2 +Rv2)dµg(τ)

+
(T − τ

τ

)2
∫
M

Rv2dµg(τ)

=
T

τ2

{
τ(T − τ)

T

∫
M

(4|∇v|2 +Rv2)dµg(τ) −
∫
M

v2 ln v2dµg(τ)

}

+
(T − τ

τ

)2
∫
M

Rv2dµg(τ).

From log-Sobolev inequality (4.3.11) point of view, we may choose

σ2 =
4τ(T − τ)

T
≤ T

4

and we get

r2(τ)∂t

(
ln ‖u‖r(t)

)
≥ T

τ2

{
n

2
lnσ2 − n

2
ln
nA

2e
− (t0 + σ2)β1

}
+
(T − τ

τ

)2
∫
M

Rv2dµg(τ) (4.4.4)

and 3

∂t

(
ln ‖u‖r(t)

)
≥ 1

T

{
n

2
ln

4πτ(T − τ)

T
− n

2
ln
nπA

2e
− (t0 + σ2)β1 − T supR−(·, 0)

}
. (4.4.5)

Notice that (since σ2 ≤ T
4 )

(t+ σ2)β1 + T supR−(·, 0) = 4(t0 + σ2)
(
A−1

0 B0 +
1

4
supR−(·, 0)

)
+ T supR−(·, 0)

≤ (4t0 + T )A−1
0 B0 +

1

4
(4t0 + 5T ) supR−(·, 0).

Denoting D by

D ≡ n

2
ln
nπA

2e
+ (4t0 + T )A−1

0 B0,

substituting into (4.4.5) and integrating the result from 0 to T , we have

ln
‖u(·, T )‖r(T )

‖u(·, T )‖r(0)
≥ n

2T

∫ T

0

ln
4πτ(T − τ)

T
dt−D − 1

4
(4t0 + 5T ) supR−(·, 0)

=
n

2
ln(4π)− n

2
lnT − n+ n lnT −D − 1

4
(4t0 + 5T ) supR−(·, 0)

=
n

2
ln(4πT )− n−D − (4t0 + 5T ) supR−(·, 0).

This then yields

ln
‖u(·, T )‖1
‖u(·, T )‖∞

≥ n

2
ln(4πT )− n−D − 1

4
(4t0 + 5T ) supR−(·, 0),

3
(
T−τ
τ

)2 ∫
Rv2dµg(τ) =

(T−τ)2
τ2

∫
(R+ − R−)v2dµg(τ) ≥ − (T−τ)2

τ2 sup(M,g(τ)R
−(·, τ)

∫
v2dµg(τ) ≥

−T
2

τ2 sup(M,g(τ)R
−(·, τ), where we have used the fact that most negative part of the scalar curvature is non increasing along the

time.
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which implies

‖u(·, T )‖∞ ≤ ‖u(·, T )‖1
exp{ 1

4 (4t0 + 5T ) supR−(·, 0) +D + n}
(4πT )

n
2

.

Because

u(x, T ) =

∫
M

H(x, T ; y)u(y, 0)dµ(y)g(τ),

where H(x, T ; y) is the conjugate heat kernel, then

H(x, T ; y) ≤ exp(nD)

(4πT )
n
2

˙exp{1

4
(4t0 + 5T ) supR−(·, 0)}.

This ends the proof of the estimate (4.4.2).
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Chapter 5

Heat Flow Monotonicity and

Functional-Geometric Inequalities

5.1 Introduction

This chapter discusses an elegant application of heat flow monotonicity to the field of functional inequalities

with geometric inputs. We construct functionals involving the fundamental solution of heat equation in linear

and multilinear settings. The basic properties of heat diffusion semigroup, most especially, smoothness, posit-

ivity, and Markovian properties play crucial roles in deriving monotonicity formulae which in turn produce the

inequalities of the family of Brascamp-Lieb. Let us consider geometric inequality of the form

λ({fj} : 1 ≤ j ≤ m) ≤ Λ({fj} : 1 ≤ j ≤ m),

where fj are functionals defined on some functional spaces. Informally, the flow monotonicity approach to proving

this type of inequality relies on making an appropriate choice of monotone quantity for the flow, say for instance

nondecreasing, Q(t) of time, such that Q(t) goes to λ(·) and Λ(·) respectively as t approaches 0 from right and

goes to∞ from left, i.e.,

λ({fj} : 1 ≤ j ≤ m) = lim
t↘0

Q(t) ≤ lim
t↗∞

Q(t) = Λ({fj} : 1 ≤ j ≤ m).

This type of approach as noticed by Carlen-Lieb-Loss [52], Barthe-Cordero-Erasquin [16] and Bennett-Carbery-

Christ-Tao [24] tends to generate sharp constants and identify extremisers.

Throughout this chapter, we work in Euclidean setting as all the geometric-inequalities discussed here were

originally formed in Euclidean spaces, but we note that most of results presented lift favourably well into the more

general setting and can as well fit into the setting of Riemannian manifolds, though, they may require some more

technicalities. Firstly, we start the discussion with Lp-mixed norms and generalised Hölder’s inequality, since the
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integral inputs are naturally Lp-functions and Hölder’s inequalities are critical in the derivation of the geometric

inequalities discussed. Secondly, we give detail background on this family of inequalities and then later present

some results involving monotonicity formulas.

5.1.1 Generalized Hölder’s Inequality

Theorem 5.1.1. Let f ∈ Lp(Ω) be a nonnegative measurable function, Ω ⊂ Rn, a bounded domain and denote

the product ofm-Lp functions by
∏m
j=1 fj(x). For each 1 ≤ pj ≤ ∞ with

∑m
j=1 p

−1
j = 1, j ∈ Im = {1, 2, ...,m},

then
m∏
j=1

fj(x) ∈ L1(Ω)

and ∫
Ω

∣∣∣ m∏
j=1

fj(x)
∣∣∣dx ≤ m∏

j=1

||fj(x)||Lpj . (5.1.1)

More interestingly, there is a version of Hölder’s inequality for Lp-mixed norms. By Lp - mixed norms [3], we

have ∣∣∣∣∣∣f(x)
∣∣∣∣∣∣
Lp

=
∣∣∣∣∣∣. . .

∣∣∣∣∣∣ ||fj(x)||Lp1 (dx1)

∣∣∣∣∣∣
Lp2 (dx2)

. . .
∣∣∣∣∣∣
Lpm (dxm)

. (5.1.2)

Here, we have index vector p = (p1, p2, ..., pm), 1 ≤ pj ≤ ∞ for j ∈ Im = {1, 2, ...,m}. For a nonnegative

measurable f , the number ||fj(x)||Lpj (dxj) means Lpj -norm of a function f = f(x1, x2, ..., xm) with respect to

the variable xj , essentially,

||fj(x)||Lpj (dxj) =
(∫

Ωj

|f(· · · xj · · ·)|pjdxj
) 1
pj
, 1 ≤ pi ≤ ∞.

Generally speaking, a function f(x1, x2, ...xm) measurable in the product space (Ω, dx), Ω =
∏m
j=1 Ωj , dx =

dx1dx2 · · · dxm, belongs to Lp(Ω), if the number obtained after finding in succession the Lp1 -norm of f with

respect to x1, the Lp2 -norm of f with respect to x2 until lastly Lpm -norm of f with respect to xm, is finite.

Remark 5.1.2. The number obtained, finite or not, is denoted by ||f ||p or ||f ||Lp . In all the above and in what

follows || · ||p is not a norm for 0 ≤ p < 1.

Theorem 5.1.3. (Mixed Norms Hölder’s Inequality). Given 1 ≤ pj , qj , rj ≤ ∞, if fj ∈ Lpj (Ω) and gj ∈ Lqj (Ω)

such that p−1
j + q−1

j = r−1
j , j ∈ Im = {1, 2, ...,m}. Then, it holds that

||f(x)g(x)||r ≤ ||f(x)||p||g(x)||q,

where we have written the indices

p = (p1, p2, ..., pm), q = (q1, q2, ..., qm) and r = (r1, r2, ..., rm)

with p−1 + q−1 = r−1.
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Iterating the above inequality, we have mixed norms Hölder’s inequality for a product ofm-functions as follows

||
m∏
j=1

fj(x)||r ≤
m∏
j=1

||fj(x)||pj

with
∑m
j=1 p

−1
j = r−1.

Corollary 5.1.4. Given a nonnegative measurable functions gj , 1 ≤ j ≤ m and pj , r ≥ 1 such that
∑m
j=1 p

−1
j =

r−1, then

(∫
Ω

∣∣∣ m∏
j=1

gj

∣∣∣r dx) 1
r ≤

m∏
j=1

∣∣∣∣∣∣gj∣∣∣∣∣∣
pj
, (5.1.3)

Proof. We may use induction on m, starting with the case m = 2, then for any 1 ≤ p ≤ ∞ with 1
p + 1

q = 1
r , we

have ∫
Ω

∣∣∣ 2∏
j=1

gj

∣∣∣r dx =

∫
Ω

gr1g
r
2 dx ≤ ||g1||rp||g2||rp′ (5.1.4)

p′ is the conjugate exponent. Set p1 = pr and p2 = p′r such that p−1 + q−1 = r−1 as desired. Applying induction

method ∣∣∣∣∣∣m+1∏
j=1

gj

∣∣∣∣∣∣
r

=
∣∣∣∣∣∣ m∏
j=1

gj · gm+1

∣∣∣∣∣∣
r
≤
∣∣∣∣∣∣ m∏
j=1

gj

∣∣∣∣∣∣
q

∣∣∣∣∣∣gm+1

∣∣∣∣∣∣
pm+1

, (5.1.5)

where q−1 + p−1
m+1 = r−1. Since

∑m
j=1 p

−1
j = q−1, we may use the induction hypothesis to conclude that

∣∣∣∣∣∣ m∏
j=1

gj

∣∣∣∣∣∣
q
≤

m∏
j=1

∣∣∣∣∣∣gj∣∣∣∣∣∣
pj
. (5.1.6)

Combining (5.1.5) and (5.1.6) proves (5.1.3).

Generalization of Mixed Norms Hölder’s Inequality

Let Im = {1, 2, ...,m} ⊂ {1, 2, ..., n} = In and j = (j1, j2, ..., jm) be an m-tuple of integers in Im. Given a

point x = (x1, x2, ..., xn) ∈ Rn, let xj = (xj1 , xj2 , ..., xjm) be a point in Rm and dxj = dxj1dxj2 · · · dxjm and

ΩIn =
∏m
j=1 Ωj .

Theorem 5.1.5. Let fj be a nonnegative measurable function depending on the j − th component of xj and

fj ∈ Lpj (Ωj), where pj ≥ 1 with
∑
j∈Im p

−1
j = 1 and Ωj is the orthogonal projection of Ω onto m-dimensional

plane in Rn with the coordinates corresponding to the component of xj . Then

m∏
j=1

fj(xj) ∈ L1(ΩIn) (5.1.7)

and ∫
ΩIn

∣∣∣ m∏
j=1

fj(xj)
∣∣∣dxIn ≤ ∏

j∈Im

(∫
ΩIj

∣∣∣fj(xj)∣∣∣pj dxIj) 1
pj
. (5.1.8)
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A classical approach to proving the above statements is by combinatorial rearrangement and induction, see [3,

Lemma 4.24] and [78, Theorem 2.1]. A special case of the generalized mixed norms Hölder’s inequality is the

Loomis-Whitney Inequality due to L. H. Loomis and H. Whitney (1949), [114] (see also [31]).

5.2 Brascamp-Lieb Inequalities

For a natural number m and 1 ≤ j ≤ m, define m positive real numbers pj , m vectors vj in Rn, spanning vectors

and multilinear operator

Λ(f1, f2, · · ·, fm) =

∫
Rn

m∏
j=1

fj(〈x, vj〉)pj dx,

where fj , are nonnegative integrable functions. We define some constant C by the formula

C := inf
fj

∫
Rn
∏m
j=1 fj

(
〈x, vj〉

)pj
dx∏m

j=1

( ∫
R fj dx

)pj . (5.2.1)

By this, we can assert that C is the smallest constant for which an inequality of the form

Λ(f1, f2, · · ·, fm) ≤ C
m∏
j=1

(∫
R
fj dx

)pj
(5.2.2)

holds for all f : Rn → [0,∞). Equivalently, we can use the above to estimate the Lpj -norm of fj as follows∫
Rn

m∏
j=1

fj(〈x, vj〉)pj dx ≤ C
m∏
j=1

(∫
R
fj dx

)pj
. (5.2.3)

The best possible constant C in the above inequality is nondegenerate and can be computed explicitly, testing this

on functions which are strictly positive near the origin, it also can be shown that C is strictly positive.

The above description is geometric in nature and in fact can be viewed as Brascamp-Lieb inequality which

is originally due to H.J Brascamp and E. H. Lieb (1976) [32]. There, it was used to prove Young’s convolu-

tion inequality and its converse. Many other geometric inequalities such as Loomis-Whitney inequality, multi-

linear Hölder’s inequality, Brunn-Minkwoski inequality, Prékopa-Leindler inequality, Geometric Brascamp-Lieb

inequalities e.t.c, find their natural unification and generalizatiion in Brascamp-Lieb inequality. This family of

inequalities turns out to be a nice and powerful tool in geometric analysis, most especially in deriving sharp in-

equalities and estimating the best possible constant. Earlier on Beckner [18] in 1975 used it to re-derive a version

of Nelson’s hypercontractive inequality. Similarly, Weissler [152] relates this to heat semigroup estimates to ob-

tain sharp logarithmic Sobolev inequalities and Sobolev-Nirenberg inequalities (see also [49, 51, 74]). In the 90’s,

K. Ball, [10], [11],[12], discovered the applications of Brascamp-Lieb inequality for volume estimate of convex

bodies and reverse isoperimetric inequality.

We now state a standard definition of Brascamp-Lieb inequality and its converse, we then examine how it

generalizes some geometric inequalities.
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5.2.1 Brascamp-Lieb Constant and its converse

Definition 5.2.1. For natural numbers m,n, nj ∈ N, n ≥ nj , 1 ≤ j ≤ m, define positive real numbers pj > 0,

such that
m∑
j=1

pjnj = n. (5.2.4)

Let Bj : Rn → Rnj be surjective linear maps from Rn onto Rnj such that their common kernel ∩mj=1ker Bj =

{0}. This condition forces
∑m
j=1 pjB

∗
jAjBj to be isomorphism, where B∗j is the adjoint of Bj and Aj is a

positive-definite nj × nj matrix.

Brascamp-Lieb constant is defined as follows

D(pj) =
det
(∑m

j=1 pjB
∗
jAjBj

)
∏m
j=1

(
detAj

)pj . (5.2.5)

In this case, each fj is a centred Gaussian function, i.e,

fj = exp(−π〈Ajx, x〉). (5.2.6)

Equivalently, for nonnegative measurable functions fj ∈ Lqj (Rn), where qj = 1
pj

D(pj) = inf
fj

∫
Rn
∏m
j=1 fj(Bj(x)) dx∏m
j=1 ‖fj‖qj

. (5.2.7)

The optimal constant defined by the formula (5.2.7) is achieved by using Gaussian function of the form (5.2.6) and

computed explicitly by (5.2.5). Now, let C1 be the smallest constant such that for all fj , 1 ≤ j ≤ m∫
Rn

m∏
j=1

f
pj
j (Bj(x)) dx ≤ C1

m∏
j=1

(∫
Rnj

fj

)pj
(5.2.8)

and let C2 be largest constant such that for all fj , 1 ≤ j ≤ m∫ ∗
Rn

sup
x=

∑m
j=1 pjB

∗
j xj , xj∈R

nj

m∏
j=1

f
pj
j (xj) dx ≥ C2

m∏
j=1

(∫
Rnj

fj

)pj
. (5.2.9)

Here, the symbol
∫ ∗ means outer integral. By a Theorem of Lieb [106], see also [13], both inequalities (5.2.8) and

(5.2.9) are well known to be saturated by centred Gaussian functions, that is, the optimal for the constants in both

cases can be computed explicitly using centred Gaussian functions, thus

C1 = sup

{∫
Rn
∏m
j=1 g

pj
j (Bj(x)) dx∏m

j=1(
∫
Rn gj)

pj
, gj centred Gaussian on Rnj

}
(5.2.10)

C2 = inf

{∫
Rn
∏m
j=1 g

pj
j (Bj(x)) dx∏m

j=1(
∫
Rn gj)

pj
, gj centred Gaussian on Rnj

}
. (5.2.11)
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This was initially conjectured by Brascamp and Lieb in [32], that Gaussian functions give the best constant

and proved by Lieb in [106] and simultaneously by Beckner in [18]. F. Barthe in [13] reproved Lieb’s result using

the method of optimal transport and simultaneously derived the dual result for the case of inequality (5.2.9) as

conjectured by Lieb. We next follow the same line of Barthe’s argument to prove the following lemmas.

Lemma 5.2.2. ([13, Theorem 1]). With the notations of the definitions above

C1 = D−
1
2 C2 = D

1
2 and C1 · C2 = 1

using centred functions.

Proof. Let Aj be nj × nj be positive-definite matrices on Rnj and let Q be the quadratic form on Rn, defined by

Q(x) =
〈 m∑
j=1

pjB
∗
jAjBjx, x

〉
.

Define an associated Gaussian function

fj(x) = exp(−π〈Ajx, x〉),

then, by standard calculation of Gauss integral∫
Rnj

fj(x) dx =

∫
Rnj

exp(−π〈Ajx, x〉) dx = (detAj)
− 1

2 .

Similar computation yields∫
Rn

m∏
j=1

f
pj
j (Bj(x)) dx =

∫
Rnj

exp
(
− π

〈 m∑
j=1

pjB
∗
jAjBjx, x

〉)
dx = (detQ)−

1
2 .

Hence

C1 = sup

∫
Rn
∏m
j=1 f

pj
j (Bj(x)) dx∏m

j=1

( ∫
Rnj fj(xj) dxj

)pj =

( ∏m
j=1(detAj)

pj

det
(∑m

j=1 pjB
∗
jAjBj

)) 1
2

= D−
1
2 .

The supremum is taken over the class of all Gaussian functions with maximum near the origin.

Now define Q∗ to be the dual quadratic form of Q, on Rn by

Q∗(x) = sup
{
|〈x, y〉|2 : Q(y) ≤ 1

}
and

R(x) = inf
{ m∑

j=1

pj〈A−1xj , xj〉 : x =

m∑
j=1

pjB
∗
j xj , xj ∈ Rnj

}
,

we know that R(x) = Q∗(x) by a Theorem in [13]. Compute

|〈x, y〉|2 =
∣∣∣〈 m∑
j=1

pjB
∗
j xj , y〉

∣∣∣2 =
∣∣∣ m∑
j=1

〈p
1
2
j A
− 1

2
j xj , p

1
2
j A

1
2
j Bjy〉

∣∣∣2.
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By Cauchy-Schwarz inequality, we have

|〈x, y〉|2 ≤
( m∑
j=1

|p
1
2
j A
− 1

2
j xj |2

)( m∑
j=1

|p
1
2
j A

1
2
j Bjy|

2
)

=
( m∑
j=1

pj〈xj , A−1
j xj〉

)(
〈
m∑
j=1

pjB
∗
jAjBjy, y〉

)
.

We then compute ∫
Rnj

exp(−π〈x, A−1
j x〉) dx =

( 1

det(A−1
j )

) 1
2

= (detAj)
1
2

and ∫
Rn

m∏
j=1

fj(B
∗
jA
−1Bjx) dx =

∫
Rn

exp
(
− π

〈 m∑
j=1

pjB
∗
jA
−1Bjx, x

〉)
dx

=

(
1

det
(∑m

j=1 pjB
∗
jA
−1Bj

)) 1
2

=
(

det
( m∑
j=1

pjB
∗
jABj

)) 1
2

.

Therefore

C2 = inf

∫
Rn
∏m
j=1 f

pj
j (Bj(x)) dx∏m

j=1

( ∫
Rnj fj(xj) dxj

)pj =
det
(∑m

j=1 pjB
∗
jABj

) 1
2

∏m
j=1(detAj)

pj
2

= D
1
2 ,

The infimum is taken over the class of all Gaussian functions with maximum near the origin.

We recall from [24] that the following three conditions are necessary for finiteness of constants D,C1, or C2

i. Each Bj is surjective, ii. ∩mj=1KerBj = {0}, and iii.
∑m
j=1 pjnj = n.

Once the conditions above are satisfied, it can be proved for nj × nj positive-definite matrices, {Aj}, 1 ≤

j ≤ m and
∑m
j=1 pjB

∗
jAjBj =: M : Rn → Rn, positive semi-definite transformation, that the following are

equivalent

1. {Aj} is globally extremisable to

sup
Aj>0

( ∏m
j=1(detAj)

pj

det
(∑m

j=1 pjB
∗
jAjBj

)) 1
2

.

2. {gj(x)} = exp(−π〈Ajx, x〉 gives an exremal for inequality (5.2.8).

3. M is invertible and we have A−1
j = B∗jM

−1Bj for all 1 ≤ j ≤ m and M ≥ B∗l AlABl for all l.

See also Carbery [47] for detail proofs of the above.

In our description of Brascamp-Lieb Inequality so far, we have used linear transformation and Lebesgue meas-

ure, we like to submit that the strength of this family of inequalities is the flexibility to live in a more generalized

setting. Its wide variety of applications results from the fact that we are not restricted to using transformation

or even Lebesque measure only. Next, we collect some sort of variants due to various authors who have made

Brascamp-Lieb active over the years. The following give perfect references ([10, 11, 12, 13, 14, 15, 16, 17, 24, 26,

19, 32, 50, 78, 106].
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5.2.2 Brascamp-Lieb Inequality on Product Spaces

Consider arbitrary measure spaces (Ω, δ, µ) and (Ωj , δj , µj). Let Bj be surjective linear maps from Ω onto Ωj and

pj be exponents with 1 ≤ pj ≤ ∞, 1 ≤ j ≤ m. For the inputs {Bj , pj}, 1 ≤ j ≤ m, there exists a finite constant

D = D({Bj}nj=1, {pj}nj=1), such that∫
Ω

m∏
j=1

fj ◦Bj dµ ≤ D
m∏
j=1

(∫
Ωj

f
pj
j dµj

) 1
pj
, (5.2.12)

whenever fj ∈ Lpj (Ωj , µj), 1 ≤ j ≤ m, are nonnegative measurable.

An interesting illustration of this is when Ω =
∏m
j=1 Ωj , δ =

∏m
j=1 δj , µ =

∏m
j=1 µj and Bj is an orthogonal

projection of Ω onto Ωj , then B∗j becomes an inclusion map for each j. Indeed, if Ωj , 1 ≤ j ≤ m, are nonzero

subspaces of Rn, Ω ⊆ Rn and Bj are orthogonal projection of Rn onto Ωj , then, for all nonnegative measurable

functions fj on Ωj , we have∫
Ω

m∏
j=1

fj ◦Bj νn(x) dx ≤
m∏
j=1

(∫
Ωj

f
pj
j (y) νnjdy

) 1
pj
, (5.2.13)

where nj is the dimension of Ωj , nj ≤ n for each j and ν(x) is the corresponding Gaussian measure with respect

to Lebesgue measure dx. (see [78]).

5.2.3 Brascamp-Lieb Inequality on the Sphere

Let {ej}, 1 ≤ j ≤ n, be the standard orthonormal basis in Rn, such that Bj(x) on Sn−1 is defined as Bj(x) =

ej · x. Then, for all nonnegative measurable functions fj ∈ Lpj ([−1, 1]), 1 ≤ j ≤ n∫
Sn−1

n∏
j=1

fj(ej · x)dµ ≤
n∏
j=1

(∫
Sn−1

f
pj
j (ej · x)dµ

) 1
pj (5.2.14)

for all p ≥ 2. In the case p < 2, Carlen, Lieb and Loss [52] have shown that it is possible for the quantity in the

LHS to diverge while each integral on the RHS is finite. It has been shown as well that such a divergence is not

possible if each fj is square integrable. Indeed, for p ≥ 2 and n ≥ 3, there is equality in (5.2.14) if and only if fj

is constant for each j or at least one of f ′js is identically zero. This is due to Carlen, Lieb and Loss [52].

5.2.4 Rank-One Brascamp-Lieb Inequality

For m ≥ n, let {vj}, 1 ≤ j ≤ m be unit vectors in Rn and pj be positive exponents such that

m∑
j=1

pjvj ⊗ vj = In

for each j, where In is the identity on Rn. Then∫
Rn

m∏
j=1

f
pj
j (〈vj , x〉) dx ≤

m∏
j=1

(∫
R
fj

)pj
. (5.2.15)
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Here, 〈vj , x〉 is a linear functional on Rn and fj : R→ [0,∞) are measurable.

In this case, there will be equality if f ′js are identically zero or v′js form an orthonormal basis of Rn. F. Barthe

in [13] proves strict inequality if none of the f ′js is a Gaussian density. (The works of K. Ball [10, 11, 12] are in

rank one).

5.2.5 Loomis-Whitney Inequality

Let {ej}, 1 ≤ j ≤ n, n ≥ 2, be the standard basis of Rn, let πj : Rn → e⊥j be the orthogonal projection

onto ej , where e⊥j is the orthogonal complement of ej . Then, the constant D(p) = 1 for each pj = 1
n−1 , and∑n

j=1 pj = n
n−1 , while the constant is infinite for any other value of p, then, we have∫

Rn

n∏
j=1

fj(πj(x)) dx ≤
n∏
j=1

∣∣∣∣∣∣fj(x̂j)∣∣∣∣∣∣
Ln−1(Rn−1)

(5.2.16)

for fj ∈ Ln−1(Rn−1). Here x̂ denotes the coordinate being omitted. Notice that the condition
∑n
j=1 pj = n

n−1

defines a hyperplane containing the point ( 1
n−1 ,

1
n−1 , · · ·,

1
n−1 ) which is the only point for which the constant is

finite. See [25, 114].

5.2.6 Multilinear Hölder’s Inequality

Consider the notations of definition (5.2.1), whece Bj = In, euclidean identity on Rn, i.e, In : Rn → Rn, we

can compute the constant D(p) to be 1, such that
∑m
j=1 pj = 1, then, we have for all nonnegative measurable

functions fj ∫
Rn

m∏
j=1

fj(x) dx ≤
m∏
j=1

∣∣∣∣∣∣fj(x)
∣∣∣∣∣∣
pj
. (5.2.17)

5.2.7 Prékopa-Leindler

Let 0 < λ < 1 and f, g, h, be nonnegative integrable functions on Rn satisfying

h(λx+ (1−)y) ≥ f(x)λg(y)1−λ, ∀x, y ∈ Rn.

Then Prékopa-Leindler inequality says∫
Rn
h(x)dx ≥

(∫
Rn
f(x)dx

)λ(∫
Rn
g(x)dx

)1−λ
. (5.2.18)

This is equivalent to Brunn-Minkowski inequality when one sets f = 1A and g = 1B , the indicator functions of

set A,B ⊂ Rn, see [33] (and also [29]). Now to show how Brascamp-Lieb inequality (BLI) generalizes Prékopa-

Leindler inequality: consider the Reverse BLI (5.2.9), take m = 2, n1 = n2 = n, B1 = B2 = I : Rn → Rn,

p1 = λ and p2 = 1− λ, we can also compute D(p) = 1. Then we have∫ ∗
Rn

sup
{
f1(x1)λf2(x2)1−λ : x = λx1 + (1− λ)x2

}
dx ≥

(∫
Rn
f1(x)dx

)λ(∫
Rn
f2(x)dx

)1−λ
. (5.2.19)
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5.3 Main Theorem Via Heat Flow (Linear Setting)

Let m,n be integers. For 1 ≤ j ≤ m, let pj > 0 be positive real numbers, define surjective linear maps

Bj : Rn → Rnj such that B∗jBj = In, the Euclidean identity on Rn or equivalently
∑m
j=1 pjnj = n. Here the

common kernel for B′js is trivial which forces B∗j to be an isometric embedding in Rn for each j and B∗jBj is an

orthogonal projection from Rn to subspace Im(B∗j ).

Theorem 5.3.1. For 1 ≤ j ≤ m and nonnegative measurable functions fj , then it holds that

• Brascamp-Lieb Inequality ∫
Rn

m∏
j=1

f
pj
j (Bj(x)) dx ≤

m∏
j=1

(∫
Rnj

fj

)pj
(5.3.1)

and

• Reverse Brascamp-Lieb Inequality∫ ∗
Rn

sup
x=

∑m
j=1 pjB

∗
j xj , xj∈R

nj

m∏
j=1

f
pj
j (x) dx ≥

m∏
j=1

(∫
Rnj

fj

)pj
. (5.3.2)

5.3.1 Monotonicity Formula and the Proof of BLI

The aim of this section is to prove the inequality in (5.3.1) and ( 5.3.2). Here, we make use of the fundamental

solution of the heat equation. Let u(t, x) = Ptf(x) solve
∂u(t, x)

∂t
= div (u(t, x)∇ log u(t, x)), x ∈ Rn, t ∈ [0,∞)

u(0, x) = f(x),
(5.3.3)

where Pt is the heat semigroup operator.

Setting v := log f(x) at t = 0, we have the equation
∂v

∂t
= ∆v + |∇v|2

v|t=0 = log f
(5.3.4)

with the diffusion semigroup v(t, x) = logPtf(x). Following the idea introduced in [52], we can define nonlinear

heat semigroup

f(t, x) =
(
Ptf(x))2

) 1
2

to obtain a nonlinear heat flow
∂f(t, x)

∂t

∣∣∣∣∣
t=0

= ∆f(x) +
|∇f(x)|2

f(x)
.

Using the transformation Bj(x) of Rn onto Rnj , 1 ≤ j ≤ m, the nonlinear heat flow above is precisely written as

∂fj(t, Bj(x))

∂t
= ∆fj(t, Bj(x)) +

|∇fj(t, Bj(x))|2

fj(t, Bj(x))
. (5.3.5)
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We now define the functional

Φ(t) =

∫
Rn

m∏
j=1

fj(t, Bj(x)) dµ(x), (5.3.6)

which is known to be differentiable and smoothly continuous by the smoothing properties of the heat kernel semig-

roup for all t > 0.

Lemma 5.3.2. Let vj : Rn× [0,∞)→ R, 1 ≤ j ≤ m, be nonnegative solution of (5.3.4) such that vj are rapidly

decreasing at spatial infinity locally uniformly. Then Φ(t) is nondecreasing in time and specifically

Φ′(t) =
1

2

∫
Rn

∑
l 6=k

[
∇lvk −∇kvl

]2 m∏
j=1

fj(t, Bj(x)) dµ(x). (5.3.7)

Proof. Taking time derivative of Φ(t), and using (5.3.5), we have

Φ′(t) =
d

dt

(∫
Rn

m∏
j=1

fj dµ(x)
)

=

∫
Rn

( m∑
k=1

∂

∂t
fk

) m∏
j=1, j 6=k

fj dµ(x)

=

∫
Rn

m∑
k=1

(
∆fk +

|∇fk|2

fk

)
m∏

j=1, j 6=k

fj dµ(x)

=

∫
Rn

m∑
k=1

(
∆fk

) m∏
j=1, j 6=k

fj dµ(x) +

∫
Rn

m∑
k=1

( |∇fk|2
fk

) m∏
j=1, j 6=k

fj dµ(x).

Using integration by parts on the first term since the second integral is nonnegative, we have

Φ′(t) = −
∫
Rn

m∑
k, l=1

(
∇fk,∇fl

) m∏
j=1, j 6=k,l

fj dµ(x) +

∫
Rn

m∑
k=1

( |∇fk|2
fk

) m∏
j=1, j 6=k

fj dµ(x)

= −
∫
Rn

m∑
k,l=1

[
∇fk
fk
· ∇fl
fl
− |∇fk|

2

f2
k

]
m∏
j=1

fj dµ(x)

=
1

2

∫
Rn

m∑
k,l=1, k 6=l

[
|∇fk|2

f2
k

+
|∇fl|2

f2
l

− 2
∇fk
fk
· ∇fl
fl

]
m∏
j=1

fj dµ(x)

=
1

2

∫
Rn

m∑
k 6=l

[
∇fk
fk
− ∇fl

fl

]2 m∏
j=1

fj dµ(x)

=
1

2

∫
Rn

m∑
k 6=l

[
∇vk −∇vl

]2 m∏
j=1

fj dµ(x).

There is equality in (5.3.7) if and only if
∇fk
fk
− ∇fl

fl
= 0.

(i.e., if and only vj is a constant for each j but vj 6= 0.) Since we know that each fj is strictly positive and each vk

is positive, smooth and bounded for all time t > 0, we therefore conclude that the quantity Φ(t) is nondecreasing

for all t > 0.
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Proof. of the inequality (5.3.1). For any nonnegative measurable function fj , 1 ≤ j ≤ m, we have seen that

the functional Φ(t) is nondecreasing for all t > 0. Then, we have by the monotonicity property of Φ(t) that the

quantity

Φ̃(t) =

∫
Rn

m∏
j=1

f
pj
j (t, Bj(x))dµ(x)

is also nondecreasing for 0 < t <∞, therefore

lim sup
t→0

Φ̃(t) ≤ lim inf
t→∞

Φ̃(t).

By Fatou’s lemma, we have that ∫
Rn

m∏
j=1

f
pj
j (Bj(x)) ≤ lim sup

t→0+

Φ̃(t). (5.3.8)

Indeed, we have equality in (5.3.8), since limt→0 Ptf = f . It then suffices to prove that

lim inf
t→∞

Φ̃(t) ≤
m∏
j=1

(∫
Rnj

fj

)pj
. (5.3.9)

The proof of (5.3.9) can be made more rigorous but we give the outline here. Now, we observe that fj(t, x) depends

on Bjx not on x itself, then we have

fj(t, Bjx) = (4πt)−
nj
2

∫
Rnj

e−‖Bjx−z‖
2/4tfj(z) dµ(z).

Notice that each fj above solves the heat equation (5.3.3) with initial condition fj(0, x) = fj(Bj(x)) and we

rewrite

Φ̃(t) = (4πt)−
∑m
j=1 pjnj

2

∫
Rn

m∏
j=1

(∫
Rnj

e−||Bjx−z||
2/4tfj(z) dµ(z)

)pj
dµ(x).

Noting also that
∑m
j=1 pjnj = n. By rescaling argument, using uε(x) −→ ε−nv(xε ), ε > 0, we then have the

transformation (i.e., by making the change of variables x = εy, dx = εdy),

Φ̃(t) =
εn

(4πt)
n
2

∫
Rn

m∏
j=1

(∫
Rnj

e−
ε2

4t ||Bjy−z/ε||
2

fj(z) dµ(z)
)pj

dµ(y).

Choosing a scaling factor ε2 = 4πt, by convolution property and Fubini’s theorem, we have that

lim inf
t→∞

Φ̃(t) ≤
m∏
j=1

(∫
Rnj

∣∣∣fj(Bjy)
∣∣∣ dµ(y)

)pj ∫
Rn
e−π||z||

2

dµ(z).

The claim (5.3.9) then follows immediately, since by standard Gauss integral
∫
Rn e

−π||z||2dµ(z) = 1

or we just write

lim inf
t→∞

Φ̃(t) ≤
m∏
j=1

(∫
Rnj

∣∣∣fj(z)∣∣∣ dµ(z)

)pj ∫
Rn

(
e−π||Bjy||

2
)pj

dµ(y)

where we calculate∫
Rn

(
e−π||Bjy||

2
)pj

dµ(z) =

∫
Rn

exp(−π〈
m∑
j=1

pjB
∗
jBjy, y〉) = det(In) = 1.

This completes the proof of (5.3.1).
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Remark 5.3.3. Instead of heat semigroup approach used to prove the first inequality (5.3.1), we can apply the

Ornstein-Uhlenbeck semigroup, with the generator L := ∆ − 〈x, ∇〉 as introduced in [16] almost at the same

time heat flow semigroup was being launched in [52]. Ornstein-Uhlenbeck semigroup describes a diffusion process

with constant diffusion and linear drift. Their approach is an adaptation of the argument in [28] for the proof of

Ehrhand’s inequality vis a vis Prékopa-Leindler where a nonnegative Borel function f on Rn evolves by the Mehler

formula

Ptf(x) =

∫
f(x+

√
ty)dµn(y).

In fact, the limiting flow

Ptf(x)t→+∞ ∼ (2πt)−
n
2

(∫
fjdµ(y)

)
yields Prékopa-Leindler. C. Borell’s method was also adapted in [17] to derive Brunn-Minkwoski inequality.

Reverse Brascamp-Lieb inequality generalises both Prékopa-Leindler and Brunn-Minkwoski inequalities. The

description is as follows: The function f(t, x) = Ptf(x) solves

∂f

∂t
= Lf

and 
∂V

∂t
= LV + |∇V |2

V |t=0 = log f.
(5.3.10)

Define

α(t) =

∫ n∏
i=1

(Ptf)pj dµn,

which is known to be differentiable, using the Mehler’s formula under appropriate assumption, then, the limiting

flow results in α(0) ≤ α(+∞) to conclude the inequality. In the next section, we adapt their argument to prove

the reverse inequalities, theirs was used in the rank one setting.

Note that in our computation Pt is the usual heat semigroup operator.

Lemma 5.3.4. For x = (x1, x2, ..., xn) ∈ Rn and xj ∈ Rnj , 1 ≤ j ≤ m, if h : Rn → R+ and fj : Rnj → R+

satisfy

h(

m∑
j=1

pjB
∗
j xj) ≥

m∏
j=1

fj(xj)
pj , xj ∈ Rnj ,

then

H(

m∑
j=1

pjB
∗
j xj) ≥

m∑
j=1

pjFj(xj), xj ∈ Rnj ,

where H = logPth : Rn → R and Fj = logPtfj : Rnj → R.

Proof. Let h : Rn → R+and fj : Rnj → R+ be nonnegative measurable functions. Define

H(t, x) := logPth : Rn → R+ = [0,∞)
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and

Fj(t, x) := logPtfj : Rnj → R+ = [0,∞).

Consider the fundamental solution Ptf(x) of heat dynamics
∂u(t, x)

∂t
= ∆u(t, x)

u(0, x) = f(x).
(5.3.11)

Taking V := logPtf(x) at t = 0, we have the positivity-preserving evolution equation
∂V

∂t
= ∆V + |∇V |2

V |t=0 = log f(x).
(5.3.12)

By the hypothesis of the Lemma

h(x)−
m∏
j=1

fj(xj)
pj ≥ 0,

where
∑m
j=1 pjB

∗
jBjx = x ∈ Rn and xj ∈ Rnj , then, the quantity Q(t, x1, x2, ...., xm) : R× Rn1 × ....Rnm →

R+ defined by

Q(t, x1, x2, ...., xm) = H(t,

m∑
j=1

pjB
∗
jBjx)−

m∑
j=1

pjFj(t, xj) (5.3.13)

satisfies

Q(t, x1, x2, ...., xm)
∣∣∣
t=0
≥ 0.

The idea here is to show thatQ(t, ·) remains nonnegative throughout the evolution. Our effort is to derive positivity-

preserving evolution equation for Q(t, x) and then invoke standard theory of Maximum Principle for parabolic

equation. Noting that H and Fj are nonnegative and they satisfy the above equation (5.3.12) since h and fj satisfy

equation (5.3.11), then we obtain

∂H

∂t
(t,

m∑
j=1

pjB
∗
jBjx) = ∆H(t,

m∑
j=1

pjB
∗
jBjx) + |∇H(t,

m∑
j=1

pjB
∗
jBjx)|2 (5.3.14)

and
∂

∂t

m∑
j=1

pjFj(t, xj) =

m∑
j=1

pj∆Fj(t, xj) +

m∑
j=1

pj |∇Fj(t, xj)|2. (5.3.15)

The question now is; Does Q satisfy the same evolution equation satisfied by H and Fj ? Hence, it is expected

that from (5.3.13) - (5.3.15)

∂

∂t
Q(t, x1, x2, ...., xm) =

(
∆H(t,

m∑
j=1

pjB
∗
jBjx)−

m∑
j=1

pj∆Fj(t, xj)
)

+
(
|∇H(t,

m∑
j=1

pjB
∗
jBjx)|2 −

m∑
j=1

pj |∇Fj(t, xj)|2
)
.
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To answer the above question, we compute in a straightforward manner

∇xjQ = pjBj∇H − pj∇Fj

∇xj∇xkQ = pjpkBj(∇2H)B∗k − δjkpj∇2Fj .

Now

∆Q =

m∑
j=1

tr
[
pjB

∗
j∇xj∇xkQpkBk

]
= tr

[ m∑
j=1

pjB
∗
jBj(∇2H)

m∑
k=1

pkB
∗
kBk

]
− tr

[ m∑
j,k=1

δjkpjB
∗
j (∇2Fj)Bk

]
,

so we have

tr
[ m∑
j=1

pjB
∗
jBj(∇2H)

m∑
k=1

pkB
∗
kBk

]
=

m∑
j,k=1

tr
[
B∗j

(
pjpkBj(∇2H)B∗k

)
Bk

]
= tr∇2H = ∆H.

Similarly

tr
[ m∑
j,k=1

δjkpjB
∗
j (∇2Fj)Bk

]
=

m∑
j=1

tr
(
B∗j pj(∇2Fj)Bj

)
=

m∑
j=1

∇2Fj =

m∑
j=1

pj∆Fj .

By the identity
∑m
j=1 pjB

∗
jBj = In, we have that for all vector v ∈ Rn
v =

∑m
j=1 pjB

∗
jBjv

and

|v|2 = 〈v, v〉 = 〈
∑m
j=1 pjB

∗
jBjv, v〉 =

∑m
j=1 pj〈Bjv,Bjv〉.

(5.3.16)

Let us now focus attention on the lower order term, we have calculated

∇xjQ = pjBj∇H − pj∇Fj ,

then

|∇xjQ|2 = 〈∇xjQ,∇xjQ〉 =

m∑
j=1

pj |Bj∇H −∇Fj |2

= |∇H|2 −
m∑
j=1

|∇Fj |2.

Therefore Q satisfies the evolution equation

∂Q

∂t
= ∆Q+ |∇Q|2,
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while the principal term ∆Q is elliptic. Then, by standard Maximum Principle for Parabolic equation [77, 129],

and since Q(0, ·) ≥ 0, then Q(t, ·) ≥ 0 for all t > 0.

Hence by (5.3.13)

H(t,

m∑
j=1

pjB
∗
jBjx)−

m∑
j=1

pjFj(t, xj) ≥ 0. (5.3.17)

This ends the proof.

Corollary 5.3.5. If

h(x) ≤
m∏
j=1

fj(Bj(x))pj , x ∈ Rn,

then

Pth(x) ≤
m∏
j=1

Ptfj(Bj(x))pj , x ∈ Rn.

Proof. of the inequality (5.3.2). By the hypothesis of Lemma 5.3.4

h(x) = h(

m∑
j=1

pjB
∗
j xj) ≥

m∏
j=1

fj(xj)
pj , xj ∈ Rnj , x ∈ Rn,

we know that Q(0, ·) ≥ 0 and we have shown that the inequalities are preserved by the heat flow, then the reversed

BLI follows immediately from the limit t→ +∞, when choosing h(x) =
∏m
j=1 fj(x)pj . Clearly

Pth(x) = (4πt)−
n
2

∫
Rn
e−
‖x−y‖2

4t h(y)dy

and

m∏
j=1

Ptf
pj
j =

m∏
j=1

(
(4πt)−

n
2

∫
Rnj

e−
‖x−z‖2

4t fj(z)dz
)pj

= (4πt)−
∑m
j=1 pjnj

2

m∏
j=1

(∫
Rnj

e−
‖x−z‖2

4t fj(z)dz
)pj

.

Since the Lemma implies Pth(x) ≥
∏m
j=1 Ptfj(xj)

pj , then, we have

∫
Rn
e−
‖x−y‖2

4t h(y)dy ≥
m∏
j=1

(∫
Rnj

e−
‖x−z‖2

4t fj(z)dz
)pj

, (5.3.18)

where we have used the decomposition identity
∑m
j=1 pjnj = n. Taking t→ +∞, we arrived at

∫
Rn
h(y)dy ≥

m∏
j=1

(∫
Rnj

fj

)pj
.

This ends the proof of (5.3.2).
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5.4 Multilinear Heat Flow and Generalised BLI

In this section, we study further into how heat flow can help provide extrimisable gaussian for Brascamp-Lieb

constants, as a by-product, we give an explicit proof of the generalised Brascamp-Lieb inequality. Most of the

materials here are from [24, 25].

Definition 5.4.1. Consider the multilinear functional of the form

F
(
{fj}, 1 ≤ j ≤ m

)
=

∫
Rn

m∏
j=1

f
pj
j (Tj(x))dx, (5.4.1)

where Tj : Rn → Rnj is a surjective linear transformation, fj : Rnj → R, is a nonnegative measurable functions

and 1 ≤ j ≤ m and pj are m-positive exponents.

The question we set to revisit is this: For which m-tuples of pj and fj do we obtain

0 < sup
fj

∫
Rn
∏m
j=1 f

pj
j (Tj(x))dx∏m

j=1 ||fj ||Lpj
<∞? (5.4.2)

This question is not new and complete answers have been provided, though, through different approaches (see for

instance [13, 24, 25, 17, 47, 149, 150]). In the previous section, we have as well discussed the cases when the

Brascamp-Lieb constant is unity, here, we also follow the line of heat flow to give our answer in this respect. To

start with, we give results of [24, 25] as lemmas. Here H,Hj are Hilbert spaces of finite, positive dimensions,

equipped with canonical Lebesque measure.

Lemma 5.4.2. Let Tj : H→ Hj be surjective linear transformation. Let fj : Hj → R be nonnegative and (5.4.1)

holds for all 1 ≤ j ≤ m. Then

D(pj) = sup
fj

(
F{fj}, 1 ≤ j ≤ m

)
∏m
j=1

( ∫
fj

)pj <∞, (5.4.3)

if and only if

dim(H) =

m∑
j=1

pj dim(Hj) (5.4.4)

and

dim(V ) ≤
m∑
j=1

pj dim(Tj(V )) (5.4.5)

for every vector subspace V ⊆ H.

Here, dim(H) and dim(V ) are the dimensions of Hilbert space H and a vector space V respectively. Without

loss of generality, dim(H) can be associated with n of Rn, while the dimension of Hj can be associated with nj

of Rnj . For necessity and sufficiency of this result see [24, 25]. A local variant of this result is also given in the

following;
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Lemma 5.4.3. For all nonnegative measurable functions fj and for every subspace V ⊂ H. A necessary and

sufficient condition for

Floc

(
{fj}

)
≤ C

m∏
j=1

(∫
fj

)pj
(5.4.6)

to hold such that constant C <∞ exists is that

codimH(V ) ≥
m∑
j=1

pjcodimHj (Tj(V )), (5.4.7)

where codimH(V ) is the codimension of a vector subspace V of H.

Comparing conditions (5.4.5) and (5.4.7), we see that (5.4.5) provides a necessary and sufficient condition

governing a large scale geometry. The condition of Lemma (5.4.3) follows directly from that of Lemma (5.4.2)

by Hölders inequality. [25, Remarks 7.1] also gives instances where Lemma (5.4.3) is not subsumed in Lemma

(5.4.2).

In the next, we reprove the result of Barthe [13] to this setting of generalised Brascamp-Lieb inequality. Our

discussion follows purely from heat monotonicity approach. We first state the following definitions.

Definition 5.4.4. Let G : Rn → Rn be a positive definite symmetric linear transformation. A nonnegative

f : Rn → R is said to be of class G, if it takes the form

f(x) = (detG)
1
2

∫
Rn

exp(−π〈G(x− y), (x− y)〉)dµ(y), (5.4.8)

where µ is a finite positive measure on Rn with non zero total mass (if µ is a point mass, f is said to be of extreme

class G).

This means that a class G function can be expressed as a convolution of the centred gaussian exp(−π〈Gx, x〉)

with a finite positive measure on Rn. It can then be seen clearly (by using Fourier transform) that a class G

functions are smooth and strictly positive. Positive measure themselves are also taken to be of class +∞. A

function of the class A, say g(·) = exp(−π〈A·, ·〉) is of class G provided A ≤ G, so the standard centred gaussian

exp(−π〈G·, ·〉) will be called of class G.

We note that class A functions provide a class of solutions to the heat equation. Suppose a class Aj function

uj solves the heat equation

∂tuj = div(A−1
j ∇uj),

with initial data uj(0) = µ, where µ is finite positive measure. Then, by the fundamental solution to the heat

equation

uj(t, x) = (detAj/t)
1
2

∫
Rnj

exp(−π〈Aj(x− y), (x− y)〉/t)dµ(y)

then

uj(1, x) = (detAj)
1
2

∫
Rnj

exp(−π〈Aj(x− y), (x− y)〉)dµ(y).
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Definition 5.4.5. (Generalised Brascamp-Lieb Constants). We now define the generalised Brascamp-Lieb con-

stant

DG(pj) = sup
f of class G

D(pj)

D(pj) as defined in the section (5.2.1).

Here we have

DG(pj) = sup
Aj≤Gj

det(
∑m
j=1 pjT

∗
j AjTj)∏m

j=1(detAj)pj
,

if each fj is of class Gj , where Gj are gaussians, then

DG =
det(

∑m
j=1 pjT

∗
j GjTj)∏m

j=1(detGj)pj
> 0.

In this case, each Tj is surjective and their common kernel ∩mj=1KerTj = {0} and
∑m
j=1 pjnj = n.

Theorem 5.4.6. For Tj , fj , pj , 1 ≤ j ≤ m as defined before, we have

• Generalised Brascamp-Lieb Inequality∫
Rn

m∏
j=1

f
pj
j (Tj(x)) dx ≤ (DG)−

1
2

m∏
j=1

(∫
Rnj

fj

)pj
(5.4.9)

and

• Generalised Reverse Brascamp-Lieb Inequality∫ ∗
Rn

sup
x=

∑m
j=1 pjB

∗
j xj , xj∈R

nj

m∏
j=1

f
pj
j (x) dx ≥ (DG)

1
2

m∏
j=1

(∫
Rnj

fj

)pj
. (5.4.10)

Proof. Let u(t, x) = Ptf(x) be the solution to the heat equation

∂tu = div · ∇u

with the initial data u(x, 0) = f(x). By the closure properties of heat equation (see [20]), the quantity ũ(t, x) =∏m
j=1(Ptfj)

pj is a solution in the sense that

∂

∂t

m∏
j=1

u
pj
j =

m∑
k=1

pku
pk−1
k (∂tuk)

m∏
j 6=k

u
pj
j =

m∑
k=1

pk
uk

(∂tuk)

m∏
j=1

u
pj
j

=: ∆
( m∏
j=1

u
pj
j

)
and

div · ∇
( m∏
j=1

u
pj
j

)
= div

[ m∑
k=1

pku
pk−1
k (∇uk)

m∏
j 6=k

u
pj
j

]
= div

[ m∑
k=1

pk

(∇uk
uk

) m∏
j=1

u
pj
j

]
=

m∑
k=1

pk

(∆uk
uk
− |∇uk|

2

u2
k

) m∏
j=1

u
pj
j +

m∑
k=1

pk

(∇uk
uk

)(∇uk
uk

) m∏
j=1

u
pj
j

=

m∑
k=1

pk

(∆uk
uk

) m∏
j=1

u
pj
j =

m∑
k=1

pk
uk

(∂tuk)

m∏
j=1

u
pj
j .
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Now, it is clear from previous section (5.3.2) that the quantity

Φ(t) =

∫
Rn

m∏
j=1

u
pj
j (t, Tj(x))dµ(x)

is monotone nondecreasing for all time t > 0. Indeed, we can look at it from this perspective; taking time derivative

of Φ(t)

Φ′(t) =

∫
Rn

m∑
k=1

pk
uk

(∂tuk)

m∏
j=1

u
pj
j =

∫
Rn

m∑
k=1

pk
uk

(∆uk)

m∏
j=1

u
pj
j .

Let Vj = log uj (i.e, Vj(t, Tj(x)) = log uj(t, Tj(x))), then uj = eVj and

m∏
j=1

u
pj
j = e

∑m
j=1 pjVj and ∆uj = (∆Vj + |∇Vj |2)eVj = (∆Vj + |∇Vj |2)uj .

Hence

Φ′(t) =

∫
Rn

[ m∑
k=1

pk
uk

(
∆Vk + |∇Vk|2

)
uk

]
e
∑m
j=1 pjVj =

∫
Rn

[ m∑
k=1

pk

(
∆Vk + |∇Vk|2

)]
e
∑m
j=1 pjVj . (5.4.11)

Using integration by parts on the first term of the (5.4.11), we have∫
Rn

m∑
k=1

pk∆Vke
∑m
j=1 pjVj = −

∫
Rn

m∑
k=1

pk∇Vk ∇(e
∑m
j=1 pjVj )

= −
∫
Rn

m∑
j 6=k

pjpk∇Vj ∇Vk e
∑m
j=1 pjVj

= −
∫
Rn
|
m∑
k=1

pk∇Vk|2 e
∑m
j=1 pjVj ,

putting this back into (5.4.11), we obtain

Φ′(t) =

∫
Rn

[
− |

m∑
k=1

pk∇Vk|2 +

m∑
k=1

pk|∇Vk|2
]
e
∑m
j=1 pjVj .

Re-writing the first term of RHS of the last identity as follows (by uzing Jensen’s inequality and
∑m
k=1 pk ≤ 1)

|
m∑
k=1

pk∇Vk|2 ≤
m∑
k=1

pk|∇Vk|2,

reveals that Φ′(t) ≥ 0.

Next we have the following;

Lemma 5.4.7. Let Tj be surjective linear transformation. Suppose there are gaussians Aj ≤ Gj for all j such

that positive definite transformation

M =
∑
j=1

pjT
∗
j AjTj

is invertible and satisfies

A−1
j = T ∗jM

−1Tj
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for each 1 ≤ j ≤ m. Let ũj : Rnj × R→ R be the solution to the heat equation

∂tũj = div · (A−1
j ∇ũj)

with initial data ũj(1) at time t = 1. Suppose ũj(1) is of class Gj , then

ũj(t, x) = (detGj/t)
1
2

∫
Rnj

exp(−π〈Gj(x− y), (x− y)〉/t) dµj(y)

for some finite nonnegative measure µj on Rnj , 1 ≤ j ≤ m. Moreover, the quantity

Ψ(t) =

∫
Rn

m∏
j=1

ũ
pj
j (t, Tj(x))dµ(x)

is monotone nondecreasing for all time t ≥ 1. See Carbery [47] for detail.

The above lemma allows us to define a function

fj(1, x) =

∫
Rnj

exp(−π〈Aj(x− y), (x− y)〉)dµj(y)

of class Aj and define

F
(
{fj}, 1 ≤ j ≤ m

)
=

∫
Rn

m∏
j=1

f
pj
j (Tj(x))dµ(x)

and for y ∈ Rnj , we have

fj(y) = (detAj)
1
2

∫
Rnj

exp(−π〈Aj(y − z), (y − z)〉)dµj(z),

where ∂tfj = div(A−1
j ∇fj), fj(0) = µj for some nonnegative measure µj on Rnj . For each j we define measure

µ̃j on Rn by ∫
Rn
ϕ dµ̃j =

∫
Rnj

ϕ(T ∗j (TjT
∗
j )−1y)dµ̃j(y),

(here we have used surjectivity of Tj) and we observe that for x ∈ Rn,

f̃j(Tjx) = (detAj)
1
2

∫
Rnj

exp(−π〈T ∗j AjTj(x− y), (x− y)〉) dµ̃j(x),

then ∫
Rn

m∏
j=1

f
pj
j (Tj(x)) =

∫
Rn

m∏
j=1

[
(detAj)

1
2

∫
Rnj

exp(−π〈Aj(x− y), (x− y)〉)dµj(y)

]pj
dµ(x)

=

∫
Rn

m∏
j=1

(
detAj

)Pj
2

∫
Rnj

exp(−π〈
m∑
j=1

pjT
∗
j AjTj(x− y), (x− y)〉)dµj(y).

Using Dominated convergence theorem, taking the limit as t→∞, we have that

lim
t→∞

Ψ(t) =

m∏
j=1

(
detAj

)Pj
2

det
( m∑
j=1

pjT
∗
j AjTj

)− 1
2
m∏
j=1

||µj ||pj

=

( ∏m
j=1 detA

pj
j

det(
∑m
j=1 pjT

∗
j AjTj

) 1
2 m∏
j=1

(∫
Rnj

fj

)pj
.
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By monotonicity property Ψ(1) ≤ Ψ(∞) and we have, by Fatou’s Lemma, that

Ψ(1) =

∫
Rn

m∏
j=1

f
pj
j (Tj(x)).

Then, the result follows since by assumption Aj ≤ Gj , we can say that fj is of class Gj by limiting argument.

Remark 5.4.8. Putting BLI in a diffeomorphic setting seems not to be straightforward and of course it is a topic

of current research. Bennett, Carbery and Wright [26] treat the simplest case of Loomis-Whitney on submanifolds,

where no assumptions about the brackets of the underlying vector fields are made, they use combination of the

method of refinement and a tensoring argument. Since then, there has been the work of Bejenaru, Herr and Tataru

[19], also Bennett and Bez in [21] have attempted nonlinear BLI on submanifolds using an induction-on-scales

which is in the spirit of Bourgain [30] and seems to build on the work of Bejenaru-Herr-Tataru[19]. See also

Bennett, Bez, Carbery, Hundertmark [22] [23] for applications of heat flow monotonicity.

5.5 Justification for Brascamp-Lieb inequalities

At a first glance one may wonder if there is any connection at all between the subject of this chapter and those of

the first part of this thesis. This section highlights where the connections lie. Here we show that Brascamp-Lieb

inequalities generalize Young’s convolution inequality which is equivalent to Nelson’s hypercontractive estimates

and logarithmic Sobolev inequalities both of which are related to heat kernel bounds and the entropy in ’Euclidean-

Gaussian’ setting.

5.5.1 From BLI to Young’s inequality to Log-Sobolev inequality

The study of monotonicity in time of ‖f‖p is connected with the classical Young’s inequality in sharp form for

p > 1. The limiting case p → 1 leads to the monotonicity in time of the entropy. Then all the functional

inequalities can be put into a unified framework. For example, let 1 ≤ pj ≤ ∞ be as defined before such that∑m
j=1 p

−1
j = n− 1, Toscani [148] has shown that the heat flow monotonicity implies, for fj ∈ Lpj (Rn),

sup
x

∣∣∣f1 ? f2 ? · · · ? fm
∣∣∣ =

∣∣∣ ∫
(Rn)(m−1)

f1(x1)f2(x1 − x2) · · · fm(xm−1) dx1 dx2 · · · dxm−1

∣∣∣
≤

m∏
j=1

Cnpj‖f‖pj ,

where C2
pj = p

1/pj
j /p′

1/p′j
j , 1/pj + 1/p′j = 1, ∀ j.

Notice that the original proof of the sharp form is due to Beckner [18] and Brascamp and Lieb [32]. Equality is

attained if and only if f ′js are Gaussians. The sharp form can be derived from BLI (5.2.9) by taking m = 3, n1 =
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n2 = n3 = n and Bj : R2n → Rn, i = 1, 2, 3, such that B1(x, y) = x, B2(x, y) = x− y and B3(x, y) = y. In

this case we can compute D(pj) = C̃(p1, p2, p3)n = (Cp1
Cp2

Cp3
)n. This yields∫

(R2n)

f1(x)p1f2(x− y)p2f3(y)p3dx dy ≤ C̃(p1, p2, p3)n
(∫

Rn
f1

)p1
(∫

Rn
f2

)p2
(∫

Rn
f3

)p3

. (5.5.1)

Recall the heat semigroup e−t∆f = Pt ? f , where Pt is the Gaussian

Pt(x, y) = e−t∆(x, y) = (4πt)−n/2e−|x−y|
2/4t.

For any function f ∈ H1)(Rn) and a number ε > 0, the Log-Sobolev inequality is given by∫
(R2)

|f |2 log
(
|f |2/‖f‖22

)
dx ≤ ε2

π

∫
(R2)

|∇f |2dx− n(1 + log ε)‖f‖22 (5.5.2)

with equality if and only if f is up to translation, a multiple of exp
(
− π|x|2/2ε2

)
.

By Young’s inequality we see that e−t∆ maps Lp(Rn) into Lq(Rn) provided p ≤ q. Then the sharp log-

Sobolev inequality above follows by differentiating a sharp Young’s inequality at p = q = 2 for the heat semigroup.

This follows by writing

‖e−t∆f‖q ≤
(CrCp

Cq

)n
‖Pt‖r‖f‖p

with 1/p+ 1/r = 1 + 1/q ⇐⇒ 1/r′ + 1/p+ 1/q = 2. One then evaluates Gaussian integer ‖Pt‖r and obtains

‖e−t∆f‖q ≤
(Cp
Cq

)n( 4πt

(1/p− 1/q)

)−n2 (1/p−1/q)

‖f‖p.

Setting q = 2, this is essentially Nelson’s hypercontractive inequality [121] and the log-Sobolev inequality follows

after some elementary analysis (See Lieb and Loss’ book [107]).

5.5.2 Brascamp-Lieb inequalities (BLI) and the entropy

The original motivation for putting BLI on the sphere Sn−1 was to better understand a result on the subadditivity

of the entropy on Sn−1. Given a probability density µ on some measure space (Sn−1, µ), define entropy

S(f) =

∫
Sn−1

f log fdµ (5.5.3)

provided f log f is integrable. Define φj(x) on Sn−1 by φj(x) = ej · x, where {e1, ..., en} denote the standard

orthonormal basis in Rn. Then one has (Carlen-Lieb-Loss [52])
n∑
j=1

S(f(φj)) ≤ 2S(f), (5.5.4)

where f(φj) is the jth marginal of f , j = 1, 2, .., n and the constant 2 is the best possible.

Now given a probability measure µ on Riemannian manifold M , the entropy of a nonnegative function f :

M → Rn is defined by

S0(f) =

∫
M

f log fdµ−
(∫

M

fdµ
)

log
(∫

M

fdµ
)

=

∫
M

f log fdµ
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with
∫
M
fdµ = 1. Let f > 0 be a positive solution to the heat equation satisfying

∫
M
fdµ = 1, then, a straight-

forward computation shows that

d

dt
S0(f(t)) = −

∫
M

|∇ log f(x, t)|2f(x, t)dµ =: −F0(f(t))

and

d2

dt2
S0(f(t)) = − d

dt
F0(f(t)) = −2

∫
M

(
|Hess log f |2 +Rc(∇ log f,∇ log f)

)
fdµ.

By the above calculation, the entropy S0 for a positive solution to the heat equation on manifold is seen to be

monotone decreasing while its derivative is monotone nondecreasing on the condition that the Ricci curvature of

M is nonnegative. This shows the entropy is convex. We then have Bakry-Emery log-Sobolev inequality

S0(f) ≤ 1

2K
F . (5.5.5)

On the manifold whose Ricci curvature Rc satisfies Rc ≥ K for some constant k > 0.

Based on these we define the following

S(f(t)) := S0(f(t)) +
n

2
log(4πt) +

n

2
=

∫
M

(
log f +

n

2
log(4πt) +

n

2

)
fdµ

F(f(t)) := tF0(f(t))− n

2
=

∫
M

(
t|∇ log f |2 − n

2

)
fdµ.

Here, we have normalized S so that it remains identically zero for all time when f is the heat kernel. It is easily

shown that S is identically zero on M = Rn, the Euclidean space when f is the Euclidean heat kernel.

Notice by a straightforward computation

− d

dt

(
tS(f(t))

)
= F(f(t))− S(f(t)) =W((f)). (5.5.6)

Obviously, the entropyW(f(t)) reads

W(f(t)) =

∫
M

(
t
|∇f |2

f2
− log f − n

2
log(4πt)− n

)
fdµ.

and
d

dt
W =

1

t

d

dt

(
tF
)

= −2t

∫
M

(∣∣∣∇∇ log f − 1

2t
g
∣∣∣2 +Rc(∇ log f,∇ log f)

)
fdµ.

This is exactly Ni’s result in [122] which states thatW(f, t) is monotone nonincreasing on a closed manifold with

nonnegative Ricci curvature. In the case the manifold is Ricci flat this is indeed Perelman’s entropy monotonicity

formula [126] on a metric evolving by the Ricci flow.

Notice also by the application of integration by parts F(f(t)) can be written as

F(f(t)) =

∫
M

−
(
t∆ log f +

n

2

)
fdµ. (5.5.7)

This has a surprising connection to the Li-Yau gradient estimate. Clearly the quantity under the integral is equival-

ent to the Harnack quantity of Li-Yau

−
(
t∆ log f +

n

2

)
= −t

(∆f

f
− |∇f |

2

f2
+
n

2t

)
.
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Li-Yau gradient estimate [112] says F(f) ≤ 0 when Rc ≥ 0, which implies

ft
f
− |∇f |

2

f2
+
n

2t
≥ 0.

This is in turn equivalent to

t∆ log f − n

2
≤ 0, (5.5.8)

which can be viewed as a generalized Laplacian comparison theorem. Indeed, the Laplacian comparison theorem

on M is a consequence of (5.5.8) by applying inequality to the heat kernel and letting t tends to zero. One can

also see that limt→0 S(f(t)) = 0 for the heat kernel and hence S(f(t)) is monotone increasing on nonnegative

Ricci curvature manifold. Therefore, we haveW(f, t) ≥ 0 for the heat kernel for some t > 0 if and only if M is

isometric to Rn.

Let M be a complete Riemannian manifold with nonnegative Ricci curvature, then at t = 1/2, W holds on

M if and only if M is isometric to Rn, (See also Weissler [152]). This is indeed equivalent to Gross logarithmic

Sobolev inequalities [83] on Rn ∫
Rn

(1

2
|∇f |2 + f − n

) e−f

(4πt)−
n
2
≥ 0. (5.5.9)

Thus, there is a strong relation between the log-Sobolev inequality and the geometry of the manifold. Chapter 3 of

this thesis contains some applications of Ni’s entropy, Perelman’s entropy and Li-Yau Harnack inequalities while

Chapter 4 has some Log Sobolev inequalities and their variants.

5.5.3 Final Remark

The problem of considering Brascamp-Lieb type inequalities on manifolds suggests looking at certain ”nonlinear”

euclidean Brascamp-Lieb inequalities first, such as Bennett and Bez [21] and the simplest case of the so-called

nonlinear Loomis-Whitney inequality, Bennett, Carbery, Wright [26]. Earlier, Tao and Wright [146] considered

low dimensions where bracket assumptions are made. Since then there has been work of Bejenaru, Herr and Tataru

[19]. These problems seem quite difficult, at least to go substantially beyond what is in the above papers.

The authors also attempted to use heat-flow, and the paper [21] above is the product of this attempt, see [21,

Remark 2.1]. One of the difficulties with the heat-flow is that the equations need to depend on all of the mappings

Bj ; i.e. the jth - heat equation wants to depend on Bk for all k. Quite whether heat flow can work is yet unclear,

but Bennett and Bez in [21] were able to salvage an inductive argument that is morally a form of discrete-time heat

flow . It’s not clear that Riemannian geometry is the right setting either. Results in this direction are desirable.
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Appendix A

Aspects of Geometric Analysis

This Appendix provides a quick overview of some of the main analytic tools used throughout this thesis. The

detail can be found in any standard references on Geometric Analysis. For the purpose of this thesis we use

[3, 54, 59, 69, 77, 79, 95, 96, 105, 111, 132, 158].

A.1 Integration and Divergence Theorem

Given an oriented Riemannian manifold (M, g) with or without boundary, with an oriented atlas of charts (Uα, xα),

α ∈ I, where I is some set. A function f onM is measurable if, for every chart x : U → Rn, f ◦x−1 is measurable

on the image of U in Rn. For every covering {xα : Uα → Rn : α ∈ I} of M by charts with subordinate partition

of unity {φα : α ∈ I}, the Riemannian measure is given by

dµg =
∑
α

φα
√

det gαdx
1
α · · · dxnα,

where dxiα, i = 1, 2 · · · n is the density of Lebesgue measure on xα(Uα) ⊆ Rn. In particular, if X is a smooth

vector field, its divergence, divX , measures the infinitesimal distortion of volume by the flow generated by X . In

the case of manifold with boundary ∂M , the orientation on M defines an orientation on ∂M . Now let g̃ be an

induced Riemannian metric on ∂M , then, we have the volume form of g̃ defined by

dσg̃ = ινdµg|∂M ,

where ν denotes the outward unit normal vector field on ∂M and the interior product ιX is a skew-derivation for

vector field X (See Kobayashi and Nomizu [102, p. 35] and Jeffrey M. Lee [104, Chapter 9]). Thus, we have

ιXdµg

∣∣∣
∂M

= 〈X, ν〉gdσg̃ and the divergence of X can be defined as a quantity satisfying d(ιXdµ) = divXdµ.

Theorem A.1.1. ([69, Theorem 1.47] Divergence Theorem). Let (M, g) be a compact oriented Riemannian man-
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ifold, X , a smooth vector field at least C1 and ν, the outward unit normal vector field on ∂M . Then∫
M

divXdµ =

∫
∂M

〈X, ν〉gdσ. (A.1.1)

Furthermore, if M is closed, then ∫
M

divXdµ = 0. (A.1.2)

From the divergence theorem we have the following consequences (for details see Chavel [54] and Jeffrey M.

Lee [104].)

Theorem A.1.2. (Integration by Parts). Let (M, g) be an oriented Riemannian manifold with functions u, v ∈

C∞(M). Then ∫
M

[u∆v − v∆u]dµ =

∫
∂M

(
u
∂v

∂ν
− v ∂u

∂ν

)
dσ (A.1.3)

on a compact manifold. Furthermore, if M is closed we have∫
M

[u∆v − v∆u]dµ = 0. (A.1.4)

If v ∈ C1, we have ∫
M

[v∆u− 〈∇u,∇v〉g]dµ =

∫
∂M

u
∂u

∂ν
dσ (A.1.5)

on a compact manifold while ∫
M

v∆udµ = −
∫
M

〈∇u,∇v〉gdµ (A.1.6)

on a closed manifold.

Lemma A.1.3. Let X be a vector field, X = Xi∂i and f ∈ C∞c (M) be smooth function with compact support on

M . Then

〈−divX, f〉g = 〈X,∇f〉g = −
∫
M

1√
det g

f∂i(X
i
√

det g)
√

det g dxi.

Thus,

divX =
1√

det g
∂i(X

i
√

det g).

A.2 Sobolev Spaces and Inequalities

A.2.1 Weak Derivative and Euclidean Sobolev Spaces

We briefly recall some elementary facts about Sobolev spaces for open subsets of the Euclidean space. This is the

setting upon which the theory of Sobolev spaces on Riemannian manifold is built. For our discussions here we

refer to Hebey [95, 96]. Let Ω be a domain in Rn. Let u be a locally integrable function on Ω. Let α = (α1, ···, αn)

be a n-tuple of nonnegative integers, i.e., multi-index of length |α| =
∑n
j=1 αj .
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Definition A.2.1. A function v ∈ L1
loc(Ω) is called the αth-weak (distributional) derivative of u if∫

Ω

vϕdx = (−1)|α|
∫

Ω

u∂αϕ dx,

and we write ∂αu = v for all ϕ ∈ C∞c (Ω), where ∂α = ∂α1
x1
· · · ∂αnxn .

Definition A.2.2. For p ≥ 1 and k, a nonnegative integer, we define the Sobolev spaces of order k as

W k,p(Ω) =
{
u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), ∀ |α| ≤ k

}
,

with the norm

‖u‖k,p :=



( ∑
|α|≤k

∫
Ω

|∂αu|pdx
) 1
p

, 1 ≤ p <∞

∑
|α|≤k

‖∂αu‖L∞(Ω), p =∞.

A.2.2 Sobolev Spaces and Embedding on Riemannian Manifold

Let (M, g) be a smooth Riemannian manifold, for k integer and u : M → R smooth. Let ∇ku denote the kth

covariant derivative of u and |∇ku| be its norm defined in a local chart by

|∇ku| = gi1j1 · · · gikjk(∇ku)i1···ik(∇ku)j1···jk .

For any p ≥ 1 real and integer k, we set

Cpk(M) =
{
u ∈ C∞(M) :

∫
M

|∇ju|dµ < +∞, ∀j = 0, · · ·, k
}
.

When M is compact, one clearly has that Cpk(M) = C∞(M) for any k and any p ≥ 1. For u ∈ Cpk(M), set also

‖u‖Hpk (M) =

k∑
j=0

(∫
M

|∇ju|pdµ
) 1
p

. (A.2.1)

We define the Sobolev spaces Hp
k (M) as follows:

Definition A.2.3. Let (M, g) be a Riemannian manifold, k, an integer and p ≥ 1 real, the Sobolev space Hp
k (M)

is the completion of Cpk(M) with respect to ‖ · ‖Hpk .

Theorem A.2.4. Let (M, g) be a compact Riemannian manifold, Sobolev spaces Hp
1 (M) is continuously embed-

ded in Lp(M) for any 1 ≤ p ≤ n with Lp-norm defined by ‖u‖p =
( ∫

M
|u|pdµ

) 1
p

.

Note - Hp
1 (M) is the completion of C∞(M) with respect to the standard norm

‖u‖p =
(∫

M

|∇u|pdµ
) 1
p

+
(∫

M

|u|pdµ
) 1
p

.
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Theorem A.2.5. (Sobolev-Poincaré inequalities [96, Theorem 2.11]). Let (M, g) be a compact Riemannian man-

ifold of dimension n, q ∈ [1, n) be real and p real such that 1
p = 1

q −
1
n . There exists a positive constant C such

that for any u ∈ Hq
1 (M) (∫

M

|u− ū|p dµ
) 1
p ≤ C(M)

(∫
M

|∇u|q dµ
) 1
q

, (A.2.2)

where ū = 1
V ol(M)

∫
M
udµ.

Theorem A.2.6. Let (M, g) be a compact Riemannian manifold of dimension n. For any p ∈ [1, n), Hp
1 (M) ⊂

L
np
n−p (M), i.e, there exists a positive constant C(M, g) such that(∫

M

|u|
np
n−p dµ

)n−p
np ≤ C(M, g)

((∫
M

|∇u|pdµ
) 1
p

+
(∫

M

|u|pdµ
) 1
p

)
(A.2.3)

for all u ∈ Hp
1 (M).

A.3 Laplacian Comparison Theorem

Two fundamental results in Riemannian Geometry are the Laplacian and Hessian comparison theorems for distance

function. The idea of comparison theorems is to compare a geometric quantity on a Riemannian manifold with

the corresponding quantity on a model space. Typically, in Riemannian Geometry, model spaces have constant

sectional curvature. Now given k ∈ R, define

Hk(r) :=


(n− 1)

√
|k| cot(

√
|k|r), if k > 0,

n− 1

r
, if k = 0,

(n− 1)
√
|k| coth(

√
|k|r), if k < 0.

(A.3.1)

The function Hk(r) is the mean curvature of the (n − 1)-sphere of radius r in the complete simply connected

Riemannian manifold of constant sectional curvature k. The detail proof of the following theorem can be found in

books [111] by P. Li and [132] by Schoen and Yau.

Theorem A.3.1. Let (M, g) be a complete Riemannian manifold with Rc ≥ (n−1)k, where k ∈ R and if p ∈M ,

then for any x ∈M , where d(p, x) is smooth, we have

∆d(p, x) ≤ Hk(d(p, x)) (A.3.2)

on the whole manifold.

Remark A.3.2. The Laplacian comparison theorem holds in the distribution sense, that is, for any nonnegative

ϕ ∈ C∞c (M) with compact support, we have∫
M

d(p, x)∆ϕ(x)dµ(x) ≤
∫
M

CkHk(d(p, x))ϕ(x)dµ(x). (A.3.3)

At a point x, where d(p, x) is smooth the Laplacian of the distance function is the mean curvature of the distance

sphere (i.e., ∆d(p, x) = Hk). Thus, Theorem A.3.1 follows immediately.
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Appendix B

Eigenvalues and Heat Kernels of

Riemannian Manifolds

In this section, we restrict our discussions to compact manifold without boundary. While most of the results hold

for manifold with empty boundary, an appropriate boundary condition must be prescribed in the case the boundary

is nonempty. We refer to standard books on Geometric Analysis for details, see for examples Chavel [54], Davies

[71], Grigor’yan [82], Li [111] and Schoen and Yau [132].

B.1 Eigenvalues

Let (M, g) be a compact Riemannian manifold without boundary. The eigenvalue problem on M consists in

finding the pairs (λi, φi), i = 1, 2, ... which satisfies

∆φi = −λiφi, 1 (B.1.1)

where λi are real constants called the eigenvalues, φi are nonzero functions called the eigenfunctions and ∆ is the

usual Laplace-Beltrami operator, which is a self-adjoint elliptic operator on H1(M). By spectral theory, [54, 132]

M has a pure point (discrete) spectrum of a sequence of eigenvalues {λi}∞i=1 and the eigenfunctions φi form an

orthonormal basis of H1(M). The spectrum of M is Riemannian invariant, i.e, any two isometric Riemannian

manifolds have the same spectrum. In each case, the eigenfunctions form a vector space of finite dimension

(eigenspace) with the dimension referred to as the multiplicity of the eigenvalues. The implication of this is that

certain topological information about the geometry of the manifold are extracted from the spectrum and vice versa.

For this, many interesting questions arise in spectral geometry such as ”what information on (M, g) can be drawn

1Two natural choices of boundary conditions usually prescribed on (B.1.1) whenever M has nonempty boundary are; φ
∣∣∣
∂M

= 0 for

Dirichlet eigenfunction and ∂νφ
∣∣∣
∂M

= 0 for Neumann eigenfunction, where ν is the outward unit normal vector field on M.
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from the geometric information on σ(M, g) (the spectrum of the manifold (M, g)) and vice versa?”. Mark Kac

[100] in 1966 asked ”can one hear the shape of a drum?”

The Weyl asymptotic formula (Hermann Weyl) [54, 82] states that

λk ∼
4π2

V ol(Bn)2
·

(
k

V olM

) 2
n

as k →∞, (B.1.2)

where V ol(Bn) and V ol(M) are the volume of the unit Euclidean Ball and M respectively.

For each λk, we may choose the corresponding eigenfunction φk and we obtain another important concept in

the study of eigenvalues, the Mini-Max Principle as follows;

For any function f ∈ L2(M), we have

f =

∞∑
k=0

〈f, φk〉L2(M)φk

and

‖f‖2L2(M) =
∞∑
k=0

〈f, φk〉2L2(M),

since {φi}∞i=1 is orthonormal. For the fact that ∆ is a self-adjoint elliptic operator on L2(M), we have

λi = inf
f

∫
M
|∇f |2dµ∫

M
|f |2dµ

,

∫
M

ffjdµ = 0, i ≥ 1. (B.1.3)

This principle says in particular that λ1 > 0 is the biggest constant for which the following inequality (Poincaré

inequality) holds;∫
M

|∇f |2dµ ≥ C
∫
M

|f |2dµ, ∀f ∈ L2(M) and C ≤ λ1 is a constant. (B.1.4)

The study of eigenvalues of Laplacian further reveals the relationship between Sobolev embedding and Isoperi-

metric inequality. Faber and Krahn exploited this in the 1920s and obtained what is today known as Faber-Krahn

inequality. Jeffrey Cheeger applied similar argument in the early 70s to estimating the first eigenvalue of the Lapla-

cian [111]. A. Grigor’yan has also proved the equivalence of these inequalities. For more details see Chavel [54],

Davies [71], Grigor’yan [82] and Schoen and Yau [132].

Theorem B.1.1. (Sobolev Inequality [111]). LetMn be a compact Riemannian manifold without boundary. Then

there exists a constant Cs > 0 depending on n, n ≥ 2, such that

Cs

(∫
M

|f |
n
n−1

)n−1
n

≤
∫
M

|∇f |, ∀f ∈ L2(M). (B.1.5)

Theorem B.1.2. (Isoperimetric Inequality [111]). Let Mn, n ≥ 2 be a compact Riemannian manifold, Ω, a

domain with a compact closure in M , then there exists a constant CI > 0 independent of Ω, such that

CI

(
V ol(Ω)

)n−1
n ≤ V ol(∂Ω). (B.1.6)
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B.2 Bounds on Eigenvalues

P. Li and S-T. Yau developed methods of proving estimates on the least eigenvalues via the gradient estimates on

the first eigenfunction.

Theorem B.2.1. (Lower Bounds [111, 132]). Let (M, g) be a compact Riemannian manifold with nonnegative

Ricci curvature. Then

λ1 ≥
π2

4 diam(g)2
, (B.2.1)

where diam(g) is the diameter of (M, g).

Theorem B.2.2. (Eigenvalues Comparison Theorem [132]). Let (M, g) be any n-dimensional Riemannian

manifold with Rc(M) ≥ nk. Then for any x ∈M and r > 0, we have

λ1(B(x, r)) ≤ λ1(B(k, r)), (B.2.2)

where B(k, r) denotes a ball with radius r in the simply connected n-dimensional model manifold. Equality in

(B.2.2) holds if and only if B(x, r) is isometric to B(k, r).

Theorem B.2.3. (Monotonicity Formula for Eigenvalues). Let (M, g) be a Riemannian manifold and Ω1 ⊂

Ω2 ⊂M be two relatively compact domains. Then

λ1(Ω1) ≥ λ1(Ω2). (B.2.3)

The inequality is strict if the interior of Ω2\Ω1 is not empty.

B.3 Heat Kernel

We define the heat kernel to be the fundamental solution of the heat equation on a compact Riemannian manifold

(M, g) (dimension n ≥ 1) with a δ- function as the initial data. Suppose u ∈ C∞(M, [0,∞)) solves the heat

equation 
( ∂
∂t
−∆

)
u(x, t) = 0, x ∈M, t ∈ [0,∞)

u(x, 0) = f(x), f ∈ L2(M).
(B.3.1)

It then follows that the solution u(x, t) can be represented by

u(x, t) =

∫
M

HM (x, y; t)f(y)dµ(y). (B.3.2)

Here, HM (x, y; t) ∈ C∞(M ×M × R+) (or at least C2 in the spatial variable and C1 in the time variable) is the

Heat kernel of M . The heat kernel can in turn be represented in terms of eigenvalues and eigenfunctions of ∆ as

follows

HM (x, y; t) =

∞∑
i=1

e−λitφi(x)φi(y), (B.3.3)
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the series which converges for t > 0 and x, y ∈ M . This is a unique positive solution and symmetric in x and y,

however, the uniqueness is not true in general if M is non-compact. For detail see [54, 82, 111].

Example B.3.1. The most familiar example is the heat kernel on Rn (although Rn is not a compact Riemannian

manifold) which is given by

HRn(x, y; t) = (4πt)−
n
2 exp

{
− ‖x− y‖

2

4t

}
. (B.3.4)

It is symmetric in x and y and can be shown that

lim
t→0

1

(4πt)
n
2

∫
Rn
e−
‖x−y‖2

4t f(y)dy = f(x)

for all f ∈ L2(Rn).

Heat Kernel of a Torus TΓ [54] is given by

HTΓ
(x, y; t) = (4πt)−

n
2

∑
γ∈Γ

exp
{
− ‖x− y − γ‖

2

4t

}
. (B.3.5)

Here, a Torus TΓ is given by Rn/Γ, where Γ is a lattice in Rn. Let Γ∗ be the dual lattice; Γ∗ = {y∗ ∈ Rn :

〈x, y∗〉 ∈ Z,∀ x ∈ Γ}, the spectrum of TΓ is given by σ(TΓ) = {4π2‖y∗‖2 : y∗ ∈ Γ∗} and the associated

eigenfunctions by φy∗(x) = e2iπ〈x,y∗〉.

The heat kernel of 3-dimensional hyperbolic space H3
k (of the constant sectional curvature −k2) [81, 82] is

given by

HH3
k
(x, y; t) = (4πt)−

3
2

√
kr

sinh(
√
kr)

exp
{
− ‖x− y‖

2 − kt
4t

}
. (B.3.6)

B.4 Properties of Heat Kernel

In addition to smoothness, existence and uniqueness, we briefly list other important properties of the heat kernel

of a compact Riemannian manifold. For detail see [54, 81, 132, 85]. Let a Riemannian manifold M be compact,

then, there exists the heat kernel HM (x, y; t) ∈ C∞(M ×M × R+) such that

1. Heat equation

(∂t −∆x)H(x, y; t) = 0, x, y ∈M, t > 0

2. Initial condition

lim
t→0

H(x, y; t) = δy(x),

where δy(x) is a Dirac mass at y.

3. Symmetry

H(x, y; t) = H(y, x; t)
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4. Semi-group property

H(x, y; t) =

∫
M

H(x, z; t− s)H(z, y; s)dz.

We note that property (ii) above implies that limt→0

∫
M
H(y, x; t)f(y)dµ(y) = f(x) uniformly for every function

f that is continuous on M and every x ∈M.

Theorem B.4.1. (Comparison Theorem for Heat Kernel). Let M be a complete Riemannian manifold with

Rc(M) ≥ nk. The heat kernel H(x, y; t) of the ball B(x, r) with centre x fixed in M satisfies

HB(x, y; t) ≥ HV (d(x, y), t), (B.4.1)

where HV (d(x, y), t) is the heat kernel of the geodesic ball V (k, r) in the model space of sectional curvature k.

In the above theorem which is due to Cheng and Yau [55], HB(d(x, y), t) can be thought of as a function on

the geodesic ball B(x, r) in an obvious way. It is smooth on B(x, r)\{cut{x}}, where {cut{x} is the set of point

on the cut-locus. The following facts about heat kernel are well known too.

Theorem B.4.2. Let M be a compact Riemannian manifold, {ui} be an orthonormal basis of L2(M) consisting

of eigenfunctions and λi be the corresponding eigenvalues, then∫
M

HM (x, x; t)dµ(x) =

∞∑
i=0

e−λit, (B.4.2)

which is the trace of the heat kernel of M . Furthermore,

HM (x, y; t) ∼ (4πt)−
n
2 exp

(
− d2(x, y)

4t

) ∞∑
i=0

ui(x, y)ti (B.4.3)

as t→ 0.

In particular, the result of Cheng and Yau [55] implies that if (M, g) is a complete Riemannian manifold with

nonnegative Ricci curvature, then

HM (x, y; t) ≥ (4πt)−
n
2 exp

(
− d2(x, y)

4t

)
. (B.4.4)
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Appendix C

F- Energy andW-Entropy Monotonicity

Formulas

C.1 Monotonicity of Perelman’s F-Energy

The materials in this appendix are due to Perelman [126] and can be found in several books and papers such as

[4, 41, 64, 69, 101, 135, 147].

Let (Mn, gij(t)) be a closed n-manifold for a Riemannian metric gij(t) and a smooth function f on Mn,

Perelman’s Energy functional [126] on pairs (gij , f) is defined by

F(gij(t), f) =

∫
Mn

(R+ |∇f |2)e−fdµ. (C.1.1)

Now taking the smooth variations of metric g and f as δgij = hij and δf =: K respectively, where H := trghij ,

we have the following variation formulas by routine calculations (see Chow et al [64, p. 191-193])

δΓkij(g) =
1

2
gkl
(
∇ihjl +∇jhil −∇lhij

)
δΓkjk(g) =

1

2
gkl∇jhkl =

1

2
∇jH

δ(e−fdµ) =
(H

2
−K)

)
e−fdµ

δ|∇f |2 = hij∇if∇jf + 2〈∇f,∇K〉.

Lemma C.1.1. In a normal coordinates system with variation formulas above, we have

δRlijk =
∂

∂xi

[1

2
glp
(
∇jhkp +∇khjp −∇phjk

)]
− ∂

∂xj

[1

2
glp
(
∇ihkp +∇khip −∇phik

)]
δRjk =

∂

∂xi

[1

2
gip
(
∇jhkp +∇khjp −∇phjk

)]
− ∂

∂xj

[1

2
gip
(
∇ihkp +∇khip −∇phik

)]
δR = −∆H +∇j∇khjk − hjkRjk.
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Proof. The proofs are similar to those of evolution of curvatures earlier obtained in Chapter 1. (See also [68]).

With the above variational formulas, the first variation of F-functional is given by

δF(gij(t), f) =

∫
M

[
−∆H +∇i∇jhij − hijRij + 2〈∇f,∇K〉 − hij∇if∇jf

+(R+ |∇f |2)(
H

2
−K)

]
e−fdµ.

(C.1.2)

This variation formula above follows from a direct computation as follows

δF(gij(t), f) = δ
[ ∫

M

(
R+ |∇f |2

)
e−fdµ

]
=

∫
M

δ
(
R+ |∇f |2

)
e−fdµ+

(
R+ |∇f |2

)
δ
(
e−fdµ

)
=

∫
M

[
−∆H +∇i∇jhij − hijRij + 2〈∇f,∇K〉 − hij∇if∇jf

+ (R+ |∇f |2)(
H

2
−K)

]
e−fdµ.

Hence we have

Lemma C.1.2. [126]. The first variation of F is

δF(gij(t), f) =

∫
M

[
− hij(Rij +∇i∇jf) + (2∆f − |∇f |2 +R)(

H

2
−K)

]
e−fdµ. (C.1.3)

Proof. Applying integration by parts to some terms in the variation formula (C.1.2) to obtain∫
M

〈∇f,∇K〉e−fdµ =

∫
M

K∆(e−f )dµ =

∫
M

K(−∆f + |∇f |2)e−fdµ∫
M

∆H e−fdµ =

∫
M

H∆(e−f )dµ =

∫
M

H(−∆f + |∇f |2)e−fdµ∫
M

∇i∇jhije−fdµ =

∫
M

−〈∇e−f ,∇h〉dµ =

∫
M

hij

(
(∇f,∇f)−∇i∇jf

)
e−fdµ.

Therefore ∫
M

(−∆H + 2〈∇f,∇K〉)e−fdµ = 2

∫
M

(∆f − |∇f |2)(
H

2
−K)e−fdµ,

putting all these into (C.1.2), we have

δF(g, f) =

∫
M

[
2(∆f − |∇f |2)(

H

2
−K) + (R+ |∇f |2)(

H

2
−K)

]
e−fdµ

+

∫
M

[
hij

(
(∇f,∇f)−∇if∇jf

)
− hijRij − hij∇if∇jf

]
e−fdµ

=

∫
M

(
H

2
−K)(2∆f − |∇f |2 +R)e−fdµ+

∫
M

−hij(Rij +∇i∇jf)e−fdµ

From where the lemma follows.
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Theorem C.1.3. Let gij(t) and f(t) evolve by
∂gij
∂t

= −2Rij

∂f

∂t
= −∆f + |∇f |2 −R.

(C.1.4)

Then
d

dt
F(gij(t), f(t)) = 2

∫
Mn

|Rij +∇i∇jf |2e−fdµ.

In particular, F(gij(t), f(t)) is monotonically nondecreasing in time and the monotonicity is strict unless Rij +

∇i∇jf = 0.

Proof. Recall the first variation of F(g, f) and use ∂gij
∂t = −2Rij . Notice also that H2 = 1

2 trh = 1
2g
ij(−2Rij) =

−R and K = ∂f
∂t = −R−∆f + |∇f |2

d

dt
F =

∫
M

[−hij(Rij +∇i∇j) + (
H

2
−K)(2∆f − |∇f |2 +R)]e−fdµ

=

∫
M

−(−2Rij)(Rij +∇i∇jf) +
(1

2
gij(−2Rij)−

∂f

∂t

)(
2∆f − |∇f |2 +R

)
e−fdµ

=

∫
M

[
2Rij(Rij +∇i∇jf) +

(
−R− ∂f

∂t

)(
2∆f − |∇f |2 +R

)]
e−fdµ

=

∫
M

[
2Rij(Rij +∇i∇jf) +

(
∆f − |∇f |2

)(
2∆f − |∇f |2 +R

)]
e−fdµ.

Computing the second term in the RHS of the last equality using the identity −∆e−f = (∆f − |∇f |2)e−f ,

integration by parts and Ricci identity (see (0.2.14) - (0.2.15) ), we have∫
M

(∆f − |∇f |2)(2∆f − |∇f |2)e−fdµ =

∫
M

−∆e−f (2∆f − |∇f |2)dµ =

∫
M

−∇if∇i(2∆f − |∇f |2)e−fdµ

=

∫
M

−∇if
[
2∇j(∇i∇jf)− 2Rij∇jf − 2〈∇f,∇∇f〉

]
e−fdµ

= −2

∫
M

[
(∇if∇jf −∇i∇jf)∇i∇jf −Rij∇if∇jf − 〈∇f,∇∇f〉∇f

]
e−fdµ

= 2

∫
M

(
|∇i∇jf |2 +Rij∇if∇jf

)
e−fdµ.

Similarly, using integration by parts and the contracted second Bianchi identity, we have∫
M

(∆f − |∇f |2)Re−fdµ =

∫
M

(∆f)Re−fdµ−
∫
M

|∇f |2Re−fdµ

=

∫
M

−∇if∇jRe−fdµ

= 2

∫
M

∇i∇jfRije−fdµ− 2

∫
M

∇if∇jfRije−fdµ.

An alternative method is to fix the volume element dµ =
√

det gijdx and then show that
∫
M
e−fdµ is constant.

In fact, a direct calculation gives

∂

∂t
(e−fdµ) = (−∂f

∂t
−R)e−fdµ = (∆f − |∇f |2)e−fdµ = −∆(e−fdµ),
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It then follows that
d

dt

∫
M

e−fdµ = −
∫
M

∆(e−f )dµ = 0.

The result follows immediately.

C.2 Monotonicity of Perelman’sW-Entropy Functional

We define the entropy functional (as in [126])

W(g, f, τ) :=

∫
M

[
τ(R+ |∇f |2) + f − n

]
(4πτ)−

n
2 e−fdµ, (C.2.1)

where g(t) is a Riemannian metric on n-compact manifold M , f is a smooth function on M and τ is a positive

scale parameter. Let δgij = hij , δτ = η and δf = K, where H = gijhij . We have the following

Lemma C.2.1. Let u := (4πτ)−
n
2 e−f . Then

δ(u dµ) =
(H

2
−K − n

2τ
η
)
u dµ.

Moreover, fixing the volume measure (4πτ)−
n
2 e−fdµ, the relation H

2 −K −
n
2τ η = 0 holds.

Proof.

δ(u dµ) = δ
[
(4πτ)−

n
2 e−fdµ

]
= δ(e−fdµ)(4πτ)−

n
2 + δ((4πτ)−

n
2 )e−fdµ

=
(H

2
−K

)
(4πτ)−

n
2 e−fdµ+

(
− n

2τ

)
(4πτ)−

n
2 e−fdµ

=
(H

2
−K − n

2τ
η
)

(4πτ)−
n
2 e−fdµ.

Lemma C.2.2. The first variation ofW-functional is

δ(h,K,τ)W(g, f, τ) =

∫
M

−τhij
(
Rij +∇i∇jf −

1

2τ
gij

)
u dµ+

∫
M

η
(
R+ ∆f − n

2τ

)
u dµ

+

∫
M

(H
2
−K − n

2τ
η
)[
τ
(
R+ 2∆f − |∇f |2

)
+ f − n− 1

]
u dµ.

Proof. By straightforward calculation

δ(h,K,τ)W(g, f, τ) = δ
(
τ(4πτ)F(g, f) +

∫
M

(f − n)u dµ
)
,
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using the variation formula obtained for F in Lemma C.1.2, we have

δ
[
τ(4πτ)−

n
2 F(g, f)

]
= δ
[
τ(4πτ)−

n
2

]
F(g, f) + τ(4πτ)−

n
2 δ
[
F(g, f)

]
= (η − n

2
η)(4πτ)−

n
2 F(g, f) + τ(4πτ)−

n
2

∫
M

[
− hij

(
Rij +∇i∇jf

)
+
(

2∆f − |∇f |2 +R
)(H

2
−K

)]
e−fdµ

=
(

1− n

2

)(
η

∫
M

(R+ |∇f |2)e−fdµ
)

(4πτ)−
n
2

+

∫
M

−τ hij
(
Rij +∇i∇jf

)
(4πτ)−

n
2 e−fdµ

+

∫
M

τ
(H

2
−K

)(
2∆f − |∇f |2 +R

)
(4πτ)−

n
2 e−fdµ

=

∫
M

−τ hij
(
Rij +∇i∇jf

)
u dµ+

∫
M

η
(

1− n

2

)(
R+ |∇f |2

)
u dµ

+

∫
M

τ
(H

2
−K

)(
2∆f − |∇f |2 +R

)
u dµ

and

δ
[ ∫

M

(f − n)u dµ
]

=

∫
M

δ(f − n) u dµ+

∫
M

(f − n)δ(u dµ)

=

∫
M

K u dµ+

∫
M

(f − n)
(H

2
−K − n

2τ
η
)
u dµ

=

∫
M

[
K +

(H
2
−K − n

2τ
η
)

(f − n)
]
u dµ.

Combining these we have

δW(g, f, τ) =

∫
M

−τ hij
(
Rij +∇i∇jf

)
u dµ+

∫
M

η
(

1− n

2

)(
R+ |∇f |2

)
u dµ

+

∫
M

τ
(H

2
−K

)(
2∆f − |∇f |2 +R

)
u dµ+

∫
M

[
K +

(H
2
−K − n

2τ
η
)

(f − n)
]
u dµ

=

∫
M

−τ hij
(
Rij +∇i∇jf

)
u dµ+

∫
M

η
(

1− n

2

)(
R+ |∇f |2

)
u dµ

+

∫
M

(H
2
−K

)[
τ(2∆f − |∇f |2 +R) + f − n

]
u dµ+

∫
M

[
K − n

2τ
η(f − n)

]
u dµ

=

∫
M

−τ hij
(
Rij +∇i∇jf

)
u dµ+

∫
M

η
(
Rij +∇i∇jf

)
u dµ−

∫
M

−η(R+ ∆f)udµ

+

∫
M

η
(

1− n

2

)(
R+ |∇f |2

)
u dµ+

∫
M

(H
2
−K

)[
τ(2∆f − |∇f |2 +R) + f − n

]
u dµ

−
∫
M

n

2
η
[
(2∆f − |∇f |2 +R) + f − n

]
u dµ+

∫
M

n

2
η
[
(2∆f − |∇f |2 +R) + f − n

]
u dµ

+

∫
M

[
K − n

2τ
η(f − n)

]
udµ
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=

∫
M

−τ hij
(
Rij +∇i∇jf

)
u dµ+

∫
M

η
(
Rij +∇i∇jf

)
u dµ+

∫
M

−η(R+ ∆f)udµ

+

∫
M

η
(

1− n

2

)(
R+ |∇f |2

)
u dµ+

∫
M

(H
2
−K − n

2τ
η
)[
τ(2∆f − |∇f |2 +R)

+ f − n
]
u dµ+

∫
M

n

2
η
(

2∆f − |∇f |2 +R
)
u dµ+

∫
M

Kudµ

=

∫
M

(
− τhij + ηgij

)(
Rij +∇i∇jf

)
udµ+

∫
M

(H
2
−K − n

2τ
η
)[
τ(2∆f − |∇f |2 +R)

+ f − n
]
u dµ+

∫
M

Kudµ.

Applying integration by parts method to the last term in the RHS of the last equality∫
M

Ku dµ =

∫
M

δf udµ = −
∫
M

fδ(udµ)

= −
∫
M

f
(H

2
−K − n

2τ

)
udµ,

putting this back, we obtain the result. Hence we write

δ(h,K,τ)W(g, f, τ)


=

∫
M

(
− τhij + ηgij

)(
Rij +∇i∇jf −

1

2τ
gij

)
udµ

+

∫
M

(H
2
−K − n

2τ
η
)[
τ(2∆f − |∇f |2 +R) + f − n− 1

]
udµ.

(C.2.2)

The functionalW and its gradient flow

Let us keep the volume measure fixed so that

δ
(∫

M

(4πτ)−
n
2 e−fdµ

)
= 0 =

H

2
−K − n

2τ
η

and require that η = −1, thus τ is a quantity decreasing at a constant rate. We then obtain the gradient flow

∂gij
∂t

= −2(Rij +∇i∇jf)

with dτ
dt = η = −1, where f = − lnu− n

2 ln(4πτ) and ∂f
∂t = −∆f−R+ n

2τ . we have the following monotonicity

formula

Proposition C.2.3. Let (g(t), f(t), τ(t)) be a soliton of the system (2.5.3), we have the identity

d

dt
W(g, f, τ) =

∫
M

2τ |Rij +∇i∇jf −
1

2τ
gij |2udµ, (C.2.3)

where
∫
M
udµ is a constant.
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Proof. The result is obtained by a straightforward substitution of

hij =
∂gij
∂t

= −2(Rij +∇i∇jf),

K =
∂f

∂t
= −∆f −R+

n

2τ
,

∂τ

∂t
= η = −1

into the first first variation ofW , i.e, equation (C.2.2), we then have

d

dt
W(g(t), f(t), τ(t)) =

∫
M

2τ
(
Rij +∇i∇jf

)(
Rij +∇i∇jf −

1

2τ
gij

)
udµ

−
∫
M

(
R+ ∆f − n

2τ

)
udµ.

The second term of RHS of the last equation can be written as

−
∫
M

(
R+ ∆f − n

2τ

)
udµ = 2τ

∫
M

− 1

2τ
gij

(
Rij +∇i∇jf −

1

2τ
gij

)
udµ.

The result follows by substituting these back into (C.2.2).

Lemma C.2.4. Let λ > 0 be any constant and φ : M →M be any diffeomorphism. Then

W(λ · g, f, λ · τ) =W(g, f, τ) and W(φ∗t g, φ
∗
t f, τ) =W(g, f, τ).

Proof. By straightforward computation

W(λ · g, f, λ · τ) =

∫
M

[
λ · τ(R(λ · g) + (λ · g)ij∇if∇jf) + f − n

]
(4πλτ)−

n
2 e−f

√
det(λg)dx

=

∫
M

[
λ · τ(λ−1R(g) + λ−1gij∇if∇jf) + f − n

]
λ−

n
2 (4πτ)−

n
2 e−f

√
λndet(g)dx

=

∫
M

[
τ(R+ |∇f |2) + f − n

]
λ−

n
2 (4πτ)−

n
2 e−fλ

n
2

√
det(g)dx

=W(g, f, τ).

The invariance under diffeomorphisms is clear since we are dealing with geometric quantities. One can use co-

ordinates induced by φ for a proof.
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[6] T. Aubin, Problèmes Isopérimétriques et espace de Sobolev J. Diff. Geom. 1, 4(1976), 573-598. 101, 108
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10, No. 2 (2006)165-492. 22, 28, 153

[42] X. Cao, Eigenvalues of (−∆ + R
2 ) on Manifolds with nonnegative Curvature Operator, Math. Ann.

337(2)(2007), 435 - 442 37, 53

[43] X. Cao, First Eigenvalues of Geometric Operators under the Ricci Flow, Proceeding of AMS 136(11)(2008),

4075 - 4078. 37



Bibliography 163

[44] X. Cao, Differential Harnack estimates for backward heat equations with potentials under the Ricci flow. J.

Funct. Anal., 255(4)(2008),1024-1038. 66, 67, 77

[45] X. Cao, R. S. Hamilton, Differential Harnack estimates for time-dependent heat equations with potentials,

Geom. Funct. Anal., 19(4)(2009), 989-1000. 67, 77

[46] X. Cao, Z. Zhang, Differential Harnack estimates for parabolic equations, Com. and Diff. Geom. Springer

Proceedings in Mathematics 8, (2011), 87-98. 77

[47] A. Carbery, The Brascamb-Lieb Inequalities: Recent Developments, NAFSA Lectures, 2005. 125, 135, 139

[48] J. A. Carrillo, L. Ni, Sharp logarithmic Sobolev inequalities on gradient solitons and applications, Comm. in

Anal. and Geom. Vol. 17, 4(2010), 1-33. 108

[49] E. Carlen, Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal. 101

(1991), 194-211. 122

[50] E. Carlen, D. Cordero-Erausquin, Subadditivity of the Entropy and its relation to Brascamp-Lieb Inequalities,

Geom. Funct. Anal., 19(2009), 373-405. 125

[51] E. Carlen, M. Loss, Logarithmic Sobolev Inequalities and Spectral Gaps, (preprint) (2005). 122

[52] E.A. Carlen, E.H. Lieb, and M. Loss, A sharp analog of Young’s inequality on SN and related entropy

inequalities, J. Geom. Anal. 14 (3)(2004) 487-520 . 15, 119, 126, 128, 131, 141

[53] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston (1993). 2
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