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Abstract

Cosmological inflation is the leading candidate for the origin of structure in the Universe. How-

ever, a huge number of inflationary models currently exist. Higher-order statistics, particularly

the bispectrum and trispectrum, of the primordial curvature perturbation ζ can potentially be used

to discriminate between competing models. This can provide an insight into the precise physical

mechanism of inflation.

Current constraints on inflationary models using the amplitude fNL of the bispectrum are

quoted for specific templates. This results in much of the inflationary parameter space remaining

unexplored. By utilizing the symmetries of the underlying quasi-de Sitter spacetime to construct a

generic ‘effective field theory’ Lagrangian with adjustable parameters, one can encompass many

single-field models of inflation in a unifying framework. In the first part of this thesis we perform a

partial-wave decomposition of the bispectrum produced at horizon-exit by each operator in the ef-

fective Lagrangian, which we use to find the principal components using a Fisher-matrix approach.

This allows us to probe much more of the parameter space. Cosmic Microwave Background bis-

pectrum data is used to estimate the amplitude of each component, which can then translated into

constraints on particular classes of single-field models. We consider the implications for DBI and

ghost inflation as examples.

In the second part of this thesis we extend the transport formalism, first introduced by Mulryne,

Seery and Wesley, to calculate the trispectrum generated during superhorizon evolution in infla-

tionary models with multiple fields. We provide transport equations that track the evolution of the

local trispectrum non-linearity parameters τNL and gNL throughout inflation. We compute these

for several models as examples.
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Introduction

0.1 Prelude

We are living in a very exciting time, where it is possible to probe the very beginnings of our

Universe using sophisticated satellites and telescopes. The theory of inflation not only manages

to iron out the creases in the Standard Model of cosmology, but also offers a simple mechanism

to create the seeds of the stars and galaxies and is thought to be the source of the temperature

fluctuations in the Cosmic Microwave Background (CMB) radiation. Very importantly, inflation

makes some predictions that we are able to put to the test.

But the story doesn’t end there. Inflation is a stage in which the play and actors are unknown;

there are many different models of inflation, each with their own unique particles and interactions.

A tremendous theoretical and observational effort is underway to understand the precise details

of inflation by using even more intricate predictions to constrain these models. Not only will this

help shed more light on the early Universe, but it will also give us a greater insight into particle

physics at extremely high energies.

Inflationary models can be constrained using the statistics of the curvature perturbation ζ . The

predictions from the various inflationary models for the statistics of this observable are met with

precision measurements of the temperature and polarization of the CMB. By doing so, we aim to

understand the physical mechanisms that drove inflation.

In recent years, a great deal of attention has been focussed on using the higher-order statistics

of ζ to constrain the possible range of inflationary models, particularly the bispectrum and trispec-

trum. A reason for this is that the power spectrum, measuring two-point correlations of ζ , is not

sufficient to discriminate between the models.

One day we hope we will be able to pinpoint a single model for the origin of structure that

exactly describes our Universe. That goal is still a long way off, but in the last 20 years we have

made significant progress and so there is certainly reason to be hopeful for the future.

1
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“Each piece, or part, of the whole of nature is always merely an approximation to the complete

truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of

approximation, because we know that we do not know all the laws as yet. Therefore, things must

be learned only to be unlearned again or, more likely, to be corrected . . . The test of all knowledge

is experiment. Experiment is the sole judge of scientific ‘truth’.” –Richard Feynman.

0.2 Hot Big Bang cosmology

The Hot Big Bang (HBB) model has been so successful in describing the evolution of our Uni-

verse that it is now firmly established as the Standard Model of cosmology. Its foundations are

based on the premise that the density of the Universe is homogenous and isotropic with respect to

the largest scales, simply a restatement of the Cosmological Principle: that there are no preferred

locations or directions in the Universe. The HBB model posits that our Universe has expanded

and consequently cooled from an extremely hot, dense initial state. Underpinning this model is

substantial observational evidence. The first piece of compelling evidence came to light when Sli-

pher (1913) provided observational proof that the Universe was expanding, confirming that the

Universe must have been hotter and denser in the past.1 Objects are redshifting away from us at a

rate of v = Hr, where v is the recessional velocity, H is the Hubble parameter and r is the physical

distance to the object. Recent measurements from the Planck satellite have constrained the age of

the Universe to be 13.82 Gyr (Ade et al. 2013a).

The HBB model also provides a mechanism to explain the formation of light elements in the

Universe, a period known as ‘Big Bang Nucleosynthesis (BBN)’ (Schramm and Turner 1998;

Pagel and Tautvaisiene 1995). From an understanding of nuclear physics a Universe that was hot

and dense at early times would have facilitated the formation of Helium and Deuterium among

several other elements, but in smaller quantities. As well as providing an explanation for how the

light elements were produced, it also predicts their observed abundances to a very high precision,

1The discovery of the redshifting of galaxies is often incorrectly attributed to Hubble. More information can be

found on this page by John Peacock: http://www.roe.ac.uk/ jap/slipher/.
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thereby supplying even further evidence in favour of the model. 2 The epoch of BBN is thought

to have occurred during the first few minutes after the Big Bang, when the temperature of the

Universe cooled sufficiently for protons and neutrons to bind into atoms.

Arguably the most successful prediction of the HBB model was the existence of ‘relic radi-

ation’ (the ‘afterglow’ of the Big Bang) permeating the Universe with a black body spectrum, a

result of photons decoupling from electrons 380,000 years after the Big Bang during an epoch

known as recombination. This Cosmic Microwave Background (CMB) radiation was first dis-

covered by Penzias and Wilson (1965) and has since been under intense study. By 1990, with

the data from the NASA satellite mission COBE (Fixsen et al. 1996), it was clear that a Universe

consistent with a Hot Big Bang could have produced it. The most recent measurement of its mean

temperature is T0 = 2.7255±0.0006 (Aghanim et al. 2013), showing impressive uniformity to one

part in 105. The CMB has been shown to be isotropic, but assuming that we do not occupy a spe-

cial vantage point in the Universe then homogeneity can also be implied. Studying the statistical

properties of its temperature provides us with a wealth of data on the very early Universe. Com-

bining this with our understanding of high-energy particle physics gives us the unique possibility

to probe as far back as the very first few moments of the Universe, corresponding to huge energy

scales unattainable in terrestrial experiments.

Observations of the large scale structure in our Universe from galaxy surveys show that the

Universe is consistent with homogeneity and isotropy on large scales (Colless et al. 2001). These

observations have instilled confidence in the HBB model and as a result, we can use it as an arena

in which to conduct precision cosmology. The following section introduces the tools that are

needed in subsequent chapters.

Units.—The speed of light and Planck’s constant is set to unity throughout this thesis, c = ~ = 1.

The reduced Planck mass is defined as MP = (8πG)−1/2, where G is Newton’s constant. We

adopt the metric signature (−,+,+,+). Greek letters {α, β,γ, . . . } are chosen to denote spacetime

indices, whereas lowercase Roman indices {i, j, k, . . . } are used to denote solely spatial indices.

An overdot denotes a derivative with respect to proper time, e.g. ȧ ≡ da/dt and a prime denotes

a derivative with respect to conformal time (defined by (18)), e.g. a′ ≡ da/dη. In some cases we

denote a partial derivative with a comma ∂X/∂xµ = ∂µX = X, µ and a covariant derivative with a

semi-colon ∇Xµ = X;µ . They are related via

X µ
;ν = X µ

,ν + Γ
µ
νρX ρ (1)

2The first success of the Hot Big Bang model was the striking agreement between the BBN prediction for the

primordial Helium abundance and observations (Burles, Nollett and Turner 2001).
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where Γµνρ is the Christoffel symbol, which can be defined in terms of gµν , the metric, as

Γ
µ
νρ =

1
2
gµσ (∂ρgνσ + ∂νgρσ − ∂σgνρ ) (2)

FLRW metric.—The background evolution of the Universe is given by the maximally-symmetric

Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which has the appropriate form to de-

scribe a Universe that is homogeneous and isotropic on spatial 3D hypersurfaces of constant proper

time t (Weinberg 1972)

ds2 = −dt2 + a(t)2
(

dr2

1 − Kr2 + r2(dθ2 + sin2θdϕ2)
)

(3)

where r, θ, ϕ are polar co-ordinates and K is a parameter that characterizes the spatial curvature.

It has the values {+1,0,−1} for an open, flat or closed Universe respectively. All of the time

dependence is encoded in the scale factor a(t), a function that increases with time due to the

expansion of the Universe, which we normalize to be one at the present epoch a(t0) = 1, where

t = t0 corresponds to the present day. The scale factor relates physical distance dr and comoving

(i.e. moving with the expansion) distance dx via dr = adx.

The Riemann (curvature) tensor is defined as

Rµνβα ≡ ∂αΓ
µ
νβ − ∂βΓ

µ
να + Γ

µ
σαΓ

σ
νβ − Γ

µ
σβΓ

σ
να . (4)

The dynamics of gravity in the Universe is described by the Einstein-Hilbert action

SEH =

∫
d4x
√
−g

(
1
2

M2
P R − Λ

)
, (5)

where the quantity in the first square root is the determinant of the metric, g = det(gµν ), R is the

Ricci scalar, the contraction of the Ricci tensor Rµν and Λ is called the cosmological constant.

The Ricci tensor is itself the contraction of the Riemann curvature tensor Rµν = Rρµρν . Including

matter, described by the action SM =
∫

d4x
√
−gLM , the full spacetime action is given by

S = SEH + SM =

∫
d4x
√
−g

(
1
2

M2
P R − Λ + LM

)
. (6)

Einstein’s field equations are derived by varying (6) with respect to the spacetime metric gµν ,

yielding

Gµν ≡ Rµν −
1
2
gµνR =

1
M2

P

(
Tµν + Λgµν

)
, (7)

where Gµν is the Einstein tensor. The energy–momentum (EM) tensor (also known as the stress-

energy tensor) defined by

Tµν ≡ −2
∂LM

∂gµν
+ gµνLM , (8)

characterizes the matter content of the Universe. The homogenous and isotropic components of

the FLRW Universe can be described by a perfect fluid3 with an EM tensor in a generic inertial

3A perfect fluid defines one that is isotropic in its local rest frame so that T0i = 0.
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frame satisfying

T µν = (ρ + p)UµUν − pgµν (9)

where ρ denotes energy density, p is the pressure and Uµ (x, t) is the fluid 4-velocity describing

the fluid flow. The EM tensor satisfies conservation of energy

T µ
ν;µ = 0. (10)

The first diagonal component of this equation is known as the continuity (or fluid) equation

dρ
dt

+ 3H (1 + ω)ρ = 0, (11)

where the equation of state is given by ω = p/ρ. Integrating the continuity equation, assuming ω

is constant,4 gives

ρ ∝ a(t)−3(1+ω), (12)

therefore we see that non-relativistic matter (ωm = 0), which includes baryons and cold dark

matter (CDM), dilutes with the expansion as the volume scale ρm ∝ a(t)−3. The equation of

state for radiation (photons and neutrinos) is ωrad = 1/3 implying the energy density of radiation

redshifts as ρrad ∝ a(t)−4. A pure cosmological constant (vacuum energy), ωΛ = −1 results in the

energy density remaining constant. Solving for the time-time component of the Einstein equations

gives the Friedmann equation, essentially an evolution equation for the scale factor

H2 =
ρ

3M2
P

−
K
a2 +

Λ

3
, (13)

where the Hubble parameter H ≡ ȧ/a is the expansion rate. The present value H0 is measured

to be H0 = (67.4 ± 1.4)km s−1Mpc−1 (68%; Planck). Integrating (13) for matter, radiation

and vacuum energy domination respectively gives the solutions am(t) ∝ t2/3, arad(t) ∝ t1/2 and

aΛ ∝ exp(Ht). Combining the Friedmann equation with the continuity equation results in the

second Friedmann (acceleration) equation

ä
a

= −
ρ

6M2
P

(1 + 3ω) +
Λ

3
. (14)

We can recast the Friedmann equation in terms of a density parameter Ω that is a ratio of the total

energy density to the critical density,

Ω − 1 ≡
ρ

3M2
P H2

− 1 =
K

a2H2 ≡
ρ

ρcrit
− 1 (15)

where the critical density ρcrit = 3M2
P H2. We can also write it as

Ω(t) +ΩK (t) = Ωm(t) +Ωrad(t) +ΩΛ(t) = 1, (16)

4In general, the equation of state is a time-dependent parameter.
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where ΩK (t) ≡ −K/(a2H2) is the curvature density parameter and ΩΛ(t) ≡ Λ

3H2 . For all other

types of matter Ωi ≡ ρi/ρcrit. In a flat Universe, where K = 0, the density is given by ρ = ρcrit

and Ω = 1.

The cosmological redshift z of a given epoch is defined as

λobs

λemit
≡ 1 + z =

a(t0)
a(temit)

, (17)

where λemit is the wavelength of light that was emitted at temit and λobs is the wavelength we

observe the light to have now. The wavelength of light stretches with the cosmological expansion

so typically λobs > λemit. Using dr = adη we can define the comoving (particle) horizon η as the

maximum distance light could have travelled since the beginning of the Universe 5

η ≡

∫ a

0

da
a2H

=

∫ t

0

dt′

a(t′)
(18)

where η is also often referred to as conformal time dη ≡ dt/a.6

The number of e-foldings N , as in the number of times the Universe expands by a factor of e,

between a scale factor a1 at t1 and a2 at t2 is defined as

N ≡ ln
a2

a1
=

∫ t2

t1

H dt (19)

Scales and horizons.—A physical length scale λ can be written in terms of its wavenumber k,

as λ = 2πa/k, where k−1 is a comoving scale or “mode”. The Hubble radius, H−1, defines the

boundary of causal processes because it is an estimate of how far light can travel in a Hubble

time. 7 For this reason, we will use the term horizon and Hubble radius interchangeably to mean

H−1. 8 The region inside our horizon is often referred to as the “observable” Universe, which

is part of a much larger “unobservable” Universe that we are currently unable to communicate

with yet. Comoving scales that are inside the horizon are referred to as subhorizon, k > aH and

are in causal contact. Those modes that are outside the horizon are referred to as superhorizon,

k < aH . “Horizon crossing” is the point when a particular comoving scale passes outside the

horizon, which occurs at k = aH .

Despite its successes, the Hot Big Bang model leaves several important outstanding questions.

We discuss these in the next section, as well as introducing a speculative, but generally well-

accepted extension to the model that attempts to answer them.

5We have taken the beginning of the Universe to be a = 0. However, in practice our understanding of energy scales

above the Planck mass breaks down– corresponding to energy scales above 1.2209 × 1019GeV/c2.

6This coordinate is useful as it is comoving with the expansion.
7It can either be a distance or a time since we are using units where c = 1.
8This horizon should not be confused with the particle horizon (18).
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0.3 Introduction to cosmological inflation

The theory of cosmological inflation, a period of quasi-exponential expansion in the very early

Universe, was originally conceived by Guth (1981) as a means to resolve various puzzles regarding

initial conditions that cannot be explained by the HBB model alone. A number of other authors

were also working on the idea around the same time, including Brout, Englert and Gunzig (1978);

Starobinsky (1980); Kazanas (1980); Sato (1981); Linde (1982); Linde (1983); Albrecht and

Steinhardt (1982). This section will outline the motivations for inflation and give a brief overview

of the simplest slow-roll model.

0.3.1 Motivations for inflation

Our Universe is observed to be flat, 9 corresponding to K = 0. From (15) this corresponds to a

density parameter of Ω = 1 today. However, the comoving Hubble radius (aH)−1 increases as the

Universe evolves throughout matter and radiation dominated eras, i.e. our horizon grows with time

under the gravitational influence of matter satisfying the strong energy condition. Since Ω is so

close to one today, (15) implies that it must have been extremely close to one at earlier times, be-

cause the K
(aH )2 term will always serve to drive it away from one as the Universe evolves through-

out the radiation and matter dominated epochs. Using the Friedmann equation (13) and (12) we

can see that

Ω(t) − 1 ∝ Ka1+3ω (20)

This raises several related issues that puzzled cosmologists, broadly known as the flatness problem.

Why is the Universe so flat? Why is it flat at all? The Hot Big Bang model is unable to provide

answers to these questions.

A second problem with the HBB model is known as the horizon problem. Two photons sep-

arated by more than the comoving horizon size, given by (18), at decoupling, which corresponds

to an angular separation of about 2◦ on the current CMB sky if we assume the Universe has only

been radiation and matter dominated previously, could never have been causally connected be-

fore that time. Therefore they could not have equilibrated to the same temperature before they

were scattered at decoupling. Yet measurements from CMB experiments, such as the latest Planck

mission (Aghanim et al. 2013), revealed that the entire Universe is the same temperature to an

9100ΩK = −0.10+0.62
−0.65 95% C.L. (Planck+lensing+WP+highL+BAO) (Ade et al. 2013b)
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exceptional accuracy, with an almost perfect black body spectrum. How could two photons that

have never been able to exchange thermal information have the same temperature?

There is also the problem of “missing” relic particles. These particles, which include magnetic

monopoles (’t Hooft 1974), cosmic strings, topological defects, gravitinos and many others, are

not detected in the Universe but are predicted by many particle physics theories, so where are

they?

The temperature of the CMB is very homogeneous and isotropic, but with variations of O(10−5)

from the average. These “fluctuations” are thought to be sourced from tiny perturbations in the

underlying energy density of the very early Universe. Also, looking at the matter in the Universe

today on the very largest scales we see that it is also very uniform, but with inhomogeneities on

the (relatively) smaller scales of stars, galaxies and clusters. The same primordial perturbations

that seeded the temperature fluctuations in the CMB are also believed to grow via gravitational

instability into the large scale structure we see in the Universe today and their origin cannot be

explained using the standard HBB model alone. Clearly, finding a theory capable of producing

these cosmological density perturbations is of fundamental importance to our understanding of the

Universe.

None of the aforementioned problems invalidate the HBB model and all of them can be simply

included in the model as fine-tuned initial conditions. However, from a physics perspective this is

unsatisfactory. The key issue is why do we have a Universe that is flat, devoid of relic particles and

smooth on large scales with small-scale inhomogeneities? We require a dynamical mechanism

capable of generating these initial conditions for the subsequent Big Bang evolution.

0.3.2 Requirements for inflation

As Guth discovered, all of the above Big Bang issues can be elegantly resolved by inflation. It is

defined simply as a brief period in the very early Universe preceding the epochs of radiation and

matter domination, where the scale factor was accelerating, ä > 0, causing exponential expansion.

This would result in an approximately constant Hubble rate, H ≈ constant, and the comoving

Hubble radius (aH)−1 decreasing in time, unlike all other periods in the Universe’s history where

it always increases with time.

ä > 0 =⇒
d
dt

(
1

aH

)
< 0 (21)

Normal matter obeys the strong energy condition, which states that ρ + 3p > 0. From (14) it is

clear that the behaviour of normal matter can only cause the scale factor to decelerate, therefore
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Figure 1: Behaviour of comoving scales throughout the evolution of the Universe

the substance responsible for inflation needs to have very different behaviour to ordinary matter,

i.e. a fluid that violates the strong energy condition.

ä > 0 =⇒ ρ + 3p < 0 (22)

Assuming that density is always positive ρ > 0, then it is a fluid with negative pressure that is

required to dominate the energy density in order to generate accelerated expansion.

By inspection of (15), one can see that an inflationary epoch can resolve the flatness prob-

lem since ä > 0 and the consequent behaviour of the comoving Hubble radius will drive Ω(t)

extremely close to one, making |Ω(t) − 1| an attractor solution. As long as inflation lasts for a

sufficiently long time then Ω(t) will not deviate very far from one for the rest of history to the

present day, therefore the current spatial curvature of the observable Universe will be very close

to zero, consistent with what we observe.

Inflation also solves the horizon problem since it allows for a microscopically small, causally

connected patch of the Universe, which was in thermal equilibrium before inflation, to expand to

a size larger than the current observable Universe. So for example, some generic cosmological

comoving scale k−1 that we observe to be entering our horizon now was at some time in the past

inside the horizon, but the shrinking behaviour of the comoving horizon during inflation caused

it to pass outside the horizon and is only just re-entering now. This can be seen in Figure 1.

This means, as a result of inflation, that all the photons that we currently “see” in the observ-

able Universe shared a causal past. Since they were in causal contact, they were able to share

information about their temperature and reach thermal equilibrium. As a result, they are naturally

all at the same temperature today, thus solving the horizon problem. So by invoking an epoch

of inflation prior to the onset of radiation- and matter-dominated epochs we circumvent the need
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to specify flatness, homogeneity and isotropy as initial conditions. Inflation can also solve the

problem of missing particles: the abundances of these particles will be diluted to such an extent

by the accelerated expansion during inflation that they would be difficult to detect in the present

Universe. However, one must be careful because inflation can actually lead to the production of

topological defects such as domain walls or particles as it ends in some models. This issue is

discussed in Sakellariadou (2008). Therefore the inflationary model must be chosen such that it

ensures that these particles or effects are not produced. Even though solving the problems with

the HBB model was the reason inflation was invoked in the first place, inflation itself requires a

degree of fine-tuning– avoiding the production of these particles being one of them. The problems

with conditions for inflation will be discussed further in §0.3.4.

Later on we will see how inflation also offers a natural explanation for the origin of structure

and the small anisotropies observed in the CMB. Now we are left with the task of finding a con-

sistent model that will give us all of the above desired outcomes. Below we present the simplest

model of inflation.

0.3.3 Scalar field inflation

Current observations suggest that the cosmological constant is very small. In the early Universe it

will have negligible effect on the dynamics, so when considering inflation we will set Λ = 0. Dur-

ing inflation, the curvature redshifts away after a few e-foldings, therefore in the rest of this thesis

we will also set K = 0. In order for inflation occur, the dominant component driving the energy

density has to be a substance with an equation of state ω < −1/3. An ideal candidate with this

type of behaviour is a homogeneous scalar field ϕ(t). The hypothetical scalar field responsible for

inflation is dubbed the “inflaton”. The inflaton could be embedded in some high energy theory, but

for the purposes of considering the simplest case we can assume its presence and study its effects.

There are many different “models” of inflation that can all exhibit the appropriate inflationary

behaviour, but in some cases involve discernibly different physics. For example, different forms

for the self-interacting potential energy V (ϕ) of the scalar field correspond to different models of

inflation. Therefore inflation can be thought of as a framework containing thousands of models

that all satisfy the condition ä > 0. Our aim later will be to use observables as a way to constrain

these models in order to learn more about the dynamics of inflation. However, in the very simplest

case, the Universe during the inflationary epoch is thought to be filled with a single scalar field
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minimally10 coupled to gravity in curved spacetime, leading to the action (Maldacena 2003)

S =
1
2

∫
d4x
√
−g[M2

P R − (∇ϕ)2 − 2V (ϕ)] +
1
8

∫
∂M

d3x
√

hK, (23)

where the expression in the square brackets is the Lagrangian density L = LEH + LM . The first

term corresponds to the Einstein-Hilbert term (5) and next two terms characterize the matter con-

tent, in this case assumed to be dominated by a scalar field. The last term is known as the Gibbons-

Hawking-York boundary term, where the boundary of the spacetime manifoldM is denoted ∂M

and hµν is the induced metric on the boundary. The kinetic term (∇ϕ)2 is known as a canonical

kinetic term. Any deviation from this form for the kinetic term is known as non-canonical. The

scalar field ϕ can be split into a homogeneous background value ϕ0(t), which is independent of

position, with a small, spatially-varying perturbation δϕ(x, t), giving ϕ(x, t) = ϕ0(t) + δϕ(x, t).

The perturbations will be very important later on, but since δϕ(x, t) � 1, the background evol-

ution of the scalar field can be considered without it. By minimizing the action, δS = 0, with

respect to the scalar field, we get the following equation of motion for the background component

of the scalar field

ϕ̈0 + 3H ϕ̇0 +
dV (ϕ0)

dϕ
= 0, (24)

where the second term acts as Hubble drag, a friction term that acts to slow down the scalar field

as a result of the expansion of the Universe. On the assumption that all other components of the

Universe are negligible, the Friedmann equation can be written as

H2 =
1

3M2
P

(
1
2
ϕ̇0

2 + V
)
. (25)

Differentiating this equation and using the field equation (24) we get an equation for the evolution

of the Hubble parameter

Ḣ = −
ϕ̇0

2

2M2
P

. (26)

Using (8) and the Lagrangian density LM = (∇ϕ)2 − 2V (ϕ) we can write the energy–momentum

tensor describing the scalar field as

Tµν = ∂µϕ∂νϕ − gµν

(
1
2

(∇ϕ)2 + V (ϕ)
)
. (27)

10There are models in which the inflaton field non-minimally couples to gravity. Models of this kind will lead to terms

in the action of the form ξ
2 Rϕ2, where ξ is the coupling constant describing the strength of the interaction between the

inflaton and gravity. For simplicity, the coupling is assumed to be small, so ξ is set to zero and we say that the field is

minimally coupled.
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0.3.4 Slow-roll conditions

Comparing the EM tensor for the scalar field (27) with the EM tensor for a perfect fluid (9) we see

that the energy density and pressure of the scalar field can be expressed as

ρϕ =
1
2
ϕ̇0

2 + V (ϕ), (28)

pϕ =
1
2
ϕ̇0

2 − V (ϕ), (29)

where ϕ̇2/2 is the kinetic term and V (ϕ) is the potential energy. We can see from (29) that the

scalar field will have negative pressure whenever the potential energy dominates over the kinetic

energy

V (ϕ0) �
1
2
ϕ̇2, (30)

causing the inflaton to roll slowly, so that the kinetic term is not completely zero. This leads to

quasi-exponential expansion, sometimes referred to as quasi-de Sitter expansion. It is important

that the kinetic term is not exactly zero, which corresponds to a cosmological constant (a pure de

Sitter spacetime), because inflation would never end. 11 We also require that the inflaton accelerates

slowly in order for there to be enough inflation to solve the Big Bang problems

�����
dV (ϕ0)

dϕ

����� � |ϕ̈| (31)

Thus the inflaton potential is required to be nearly constant throughout inflation. Under these

approximations we can neglect the kinetic term in (25) and the ϕ̈ term in (24), leading to the

following slow-roll equations

H2 =
1

3M2
P

V, (32)

3H ϕ̇0 = −
dV (ϕ0)

dϕ
, (33)

which we can use to define the following slow-roll parameters

εH ≡ −
Ḣ
H2 , (34)

and

ηH ≡
˙εH

εHH
. (35)

11In the case where the kinetic term is exactly zero, (28) implies that the equation of state is precisely ω = −1 and

therefore non-dynamical. We need the equation of state to be dynamical otherwise the Universe will continue to inflate

forever.
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The slow-roll approximation corresponds to εH � O(1) and |ηH | � O(1). Inflation will occur

for εH < 1. The above parameters are written in the Hamilton-Jacobi formulation.12 We can also

write down potential slow-roll parameters

εV =
M2

P

2

(
V ′

V

)2

� O(1) (37)

and

ηV = M2
P

V ′′

V
� O(1). (38)

This form of the slow-roll conditions is helpful because the effect of the potential on inflation is

made more apparent. We can see that εV characterizes the slope of the potential and ηV character-

izes the curvature. Therefore, if we assume that the inflaton is initially displaced from its potential

minimum then inflation occurs if the potential is sufficiently flat for a sufficient amount of time in

order to achieve enough observable inflation. In the slow-roll limit the slow-roll parameters in the

two formalisms are related by εH → εV and ηH → ηV − εV. Figure 2 depicts the behaviour of the

potential during a period of slow-roll inflation. It is the vacuum energy that drives inflation and

will result in all other particles diluted to negligible quantities. The simplest model of inflation

satisfying the flatness conditions (37) and (38) has the potential

V ∝ ϕn . (39)

Models with a potential of this type are known as chaotic inflation, first proposed by Linde (1983).

Satisfying these slow-roll conditions requires a certain degree of fine-tuning of initial conditions to

ensure that the potential is flat enough that the scalar field is sufficiently displaced from its minima

to give the required amount of inflation. More sophisticated models of inflation may be embedded

in a high energy theory such as string theory, however, it still turns out that initial conditions need

to be specified. So even though inflation provides a dynamical mechanism to generate the initial

conditions for the Big Bang, it also requires us to specify initial conditions in order to obtain

enough inflation to solve the problems.

12In single-field inflation we can think of the scalar field as the time variable, allowing us to write the Friedmann

equation as [
H′(ϕ)

]2
−

3

2M2
P

H2(ϕ) = −
1

2M4
P

V (ϕ), (36)

which we now call the Hamilton-Jacobi equation. It enables us to consider the evolution of the scalar field in terms of

the more geometric quantity H (ϕ) instead of V (ϕ). This is known as the Hamilton-Jacobi formulation (Lyth and Liddle

2009).
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0.3.5 Duration of observable inflation

The amount of observable inflation can be characterized in terms of the number of e-folds between

when a scale k−1, corresponding to the largest structures we see, leaves the horizon and the end of

inflation. Using the slow-roll approximation (32) we can write (19) as

N ' −
8π
M2

P

∫ ϕend

ϕk−1

V
V ′

dϕ, (40)

where ϕk−1 is the field value when k−1 leaves the horizon and ϕend is the field value at the end

of inflation. To solve both the flatness and horizon problems requires approximately 60 − 70 e-

foldings of observable inflation to be compatible with current cosmological observations. Inflation

could have lasted longer than this, but 60 − 70 e-foldings of inflation ensures that any residual

spatial curvature or large-scale inhomogeneities will be on a scale well outside our current horizon

H−1
0 , which is our largest relevant cosmological scale. Observable inflation is usually is taken to

begin when the scale k−1 ∼ H−1
0 leaves the horizon during inflation.

0.3.6 Reheating

Inflation ends when the slow-roll conditions are violated, εH = 1. The scalar field will continue

to roll down the potential until it reaches the minimum. Here, a process known as “reheating”

occurs. The precise details of reheating vary depending on the model, but in all cases the aim

is to recover the Hot Big Bang. The oscillatory behaviour in the reheating minimum causes the

inflaton to redshift like matter. The coupling to other particles subsequently causes the inflaton to

gradually decay into the Standard Model particles thereby transferring all of its energy to reheat

the Universe.

0.4 Cosmological perturbations from inflation

The section above introduced a mechanism that causes the background to inflate, provided the

potential stays sufficiently flat throughout, which solves the flatness, horizon and relic particles

problems. However in this simplistic picture, there currently exist no perturbations. One of the

main successes of inflation is its ability to provide a mechanism to generate the source perturb-

ations from which structures originate. Later on we will see that predictions from models of
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Figure 2: In single-field, slow-roll models of inflation the inflaton field ϕ slowly rolls down the potential with speed ϕ̇. Observable

inflation commences when scales of cosmological interest leave the horizon. However, inflation could have begun much

earlier. Inflation ends when the inflaton reaches the minimum of the potential. There are small fluctuations δϕ about

inflaton’s background trajectory.

inflation can be met with precision measurements of statistical observables in the CMB. In this

section we will discuss how perturbations are generated in this simplest inflationary model.

0.4.1 Quantum fluctuations

One of the central points in quantum field theory is that all fundamental particles are an epiphen-

omenon of its associated underlying quantum field permeating the entirety of space. Quantum

fluctuations correspond to a small change in energy or brief excitation of the field allowed by

the uncertainty principle ∆E∆t ≈ h/2π. Therefore for a very brief time ∆t particles with energy

∆E can pop out of the “vacuum” and will quickly disappear again so that if we averaged over a

macroscopic period of time we would measure only an effect on the zero-point energy, such as

in the Casimir effect. Ordinarily these transient oscillations occurring at a quantum level have

no physical relevance, other than this contribution that is of the form of a cosmological constant.

However, during inflation these fluctuations play a vital role in describing how the initial perturb-

ations formed.

On a classical level inflation acts to ensure that the horizon size at the end of inflation lies well

within a “smooth”13 patch of the Universe in order to solve the problems with the Big Bang model.

However, it also results in tiny quantum mechanical fluctuations δϕ of some particular scale k−1

13It is smooth in the sense that it is spatially flat, in thermal equilibrium and devoid of relic particles.
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in the nearly free14 scalar field to pass outside the horizon during inflation due to the characteristic

decreasing behaviour of the comoving Hubble radius.

Inside the comoving Hubble horizon (aH)−1, the modes can oscillate. However, as inflation

continues, these modes pass outside the comoving horizon. The speed at which the wavelength

of the fluctuation becomes much larger than the horizon is so rapid that the fluctuation cannot

propagate in order to disappear again before it is stretched out of the sphere of causality. It gets

stuck with a nonzero amplitude. The modes are believed to undergo a quantum-to-classical trans-

ition (Lyth and Seery 2008; Lyth 1985b; Guth and Pi 1985; Polarski and Starobinsky 1996).

Outside the horizon the commutator of the inflaton field ϕ and its conjugate momentum π goes to

zero, [ϕ,π] → 0, which is believed to be evidence for this classicalization process, allowing us to

measure field correlations that have a persistent value. These modes remain superhorizon for the

remainder of inflation and in the absence of other fields,15 can no longer evolve until they are able

to re-enter the horizon much later in the Universe’s evolution, where their fate lies as the “prim-

ordial seeds” that then evolve under gravitational instability into the observed perturbations. It is

the study of these perturbations that enables us to constrain the dynamics of inflation. The tools

that particle physicists have been using for decades will enable us to make detailed predictions of

inflation. The first authors that performed such calculations include Guth and Pi (1982); Bardeen,

Steinhardt and Turner (1983); Sasaki (1986); Mukhanov (1985) and Lyth (1985a).

0.4.2 Perturbing the action

Now we are going to consider tiny perturbations in order to describe the small inhomogeneities

that we observe. As mentioned in the previous section, we can decompose the scalar field as

ϕ(x, t) = ϕ0(t) + δϕ(x, t), where ϕ0(t) describes the background classical evolution of the field

and δϕ(x, t) is a small perturbation. This is a fair assumption, given the very small size of the

inhomogeneities observed in the CMB. In the same manner as the scalar field, we split the metric

into an unperturbed and perturbed part. The unperturbed metric is just the standard FLRW metric

describing a flat, homogeneous and isotropic Universe. In conformal time dt ≡ adη this can be

expressed as

ds2 = a2
(
−dη2 + δi jdxidx j

)
(41)

ADM Formalism.— Due to coordinate reparametrization invariance associated with the action for

14A free field is non-interacting, i.e. only quadratic terms in the Lagrangian. The interaction terms, corresponding to

higher-order terms in the Lagrangian are responsible for non-Gaussianity as we shall see in the next section.
15We will consider more complicated scenarios later.
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the scalar field coupled to gravity, (23), there are other unphysical modes that can be “gauged

away” by an appropriate choice of foliation and threading. Choosing a foliation corresponds to

“slicing” our four-dimensional spacetime into three-dimensional hypersurfaces. The foliation and

threading that proves to be most convenient in this case is a 3 + 1 decomposition of the spacetime

into t = constant hypersurfaces. The threading in this case corresponds to the worldlines of

possible observers (Lyth and Liddle 2009). Each hypersurface has a spatial 3-metric

hi j ≡ a2(t)e2ψδi j , (42)

where ψ is a scalar fluctuation in the metric. The proper time between slices is given byN dt. This

is known as the Arnowitt-Deser-Misner (ADM) Hamiltonian formulation and the proper distance

between coordinates (t, xi ) and (t + dt, xi + dxi ) on two generic hypersurfaces is given by

ds2 = −N 2dt2 + hi j (dxi +N idt)(dx j +N jdt), (43)

where N is the lapse function and N i is the shift vector, which we can think of as Lagrange

multipliers because they appear without derivatives (Arnowitt, Deser and Misner 2008a). We

see in the limit that we have no perturbations, ψ = 0, N = 1 and N i = 0, we arrive at the

standard background metric (41). We can then rewrite the action (23) in the language of the ADM

formalism as (Arnowitt, Deser and Misner 2008b)

S =
1
2

∫
√

h[N R(3) − 2NV +N −1(Ei jEi j − E2) +N −1(ϕ̇ − N i∂iϕ)2 − N hi j∂iϕ∂jϕ] (44)

where R(3) is the Ricci scalar on the spatial hypersurfaces, Ei j = 1
2 (ḣi j − ∇iNj − ∇ jNi ) and

E = Ei
i . This action contains ten metric perturbations: one in N , three in Ni and six in hi j ,

and one scalar perturbation ϕ. However, we shall see in the next section that they are not all

independent and eight can be eliminated by solving for the constraints. We will only be left with

one physical propagating scalar degree of freedom ζ , the curvature perturbation. There are also

two physically propagating tensor degrees of freedom that correspond to gravitational waves. They

decouple from scalar perturbations at linear order so they can be ignored in this calculation. We

consider tensor perturbations in §0.4.5. In principle there are also vector perturbations, but they

decay rapidly in an expanding Universe in the absence of a continuous source. The scalar degree

of freedom ζ is split between the scalar field perturbation δϕ and the scalar metric perturbation

ψ. This is a result of the energy density being coupled to the metric via Einstein’s equations, i.e.

any perturbation in the density is also going to induce a perturbation (scalar gravitational “back-

reaction”) in the curvature of spacetime. The density and curvature are uniquely related by the

gauge invariant definition (Bardeen 1980)

ζ = ψ − H
δρ

ρ̇
(45)
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Since the scalar field ϕ is the dominant contribution to the energy density ρ during slow-roll in-

flation, this equation can be written as ζ = ψ − H δϕ
ϕ̇ . The curvature perturbation ζ is the true

physical degree of freedom, i.e. ψ and δϕ don’t get independent quantum fluctuations: only the

combination ζ gets an independent fluctuation. It is thought that all subsequent scalar perturba-

tions originated solely from this initial condition.16 It therefore completely describes the vacuum

fluctuations generated during inflation, which subsequently become classical perturbations after

they leave the horizon. ζ enables us to track the subsequent evolution of the perturbations long

after inflation ends because in single-field models it is not affected by reheating. When the scalar

field decays, it transfers all its energy into radiation, but the gauge-invariant quantity ζ remains

constant and it is conserved on superhorizon scales17 (Bardeen, Steinhardt and Turner 1983; Lyth

1985b; Weinberg 2004; Lyth, Malik and Sasaki 2005; Rigopoulos and Shellard 2003).

The comoving curvature perturbation ζ is an important tool for linking theory with observation

since it is possible to compare the correlation functions and other statistical observables predicted

from inflation with the observed ones, using data from the Cosmic Microwave Background.

Constraint Equations.—Varying (44) with respect to N and N i gives us the familiar Einstein

energy and momentum constraint equations

∇i[N −1(Ei
j − δ

i
jE)] = 0 (46)

R(3) − 2V − N −2(Ei jEi j − E2) − N −2ϕ̇2 = 0 (47)

Once we substitute these back into the action we will have successfully removed the metric per-

turbations associated with N and Ni .18 The constraints N and Ni will remove eight degrees of

freedom in total giving us the result advertised in the last section, namely ζ is the only true phys-

ically propagating scalar degree of freedom.

16This is only true if the perturbations are adiabatic, i.e. the relative perturbation δρX /ρ̇X for all the components

of the Universe is the same, where X denotes the species. An adiabatic perturbation is a perturbation in the overall

energy density. Trivially this is true for single-field slow-roll inflation. However, if more than one field species was

present during inflation then you can get independent perturbations in all species. In general, there can be a relative

perturbation between the densities of different species, known as isocurvature perturbations or isocurvature modes,

defined as SXY ≡ 3H (δρX /ρ̇X − δρY /ρ̇Y ). Different values of SXY label different inflationary trajectories and

therefore will in general lead to different values for the final value of the curvature perturbation ζ .
17By the end of inflation, ζ has a coherent value over a scale of ≈ 60 Hubble volumes. Reheating is a local process

and can in principle be different within each Hubble volume, therefore it would be a violation of causality for the

physics within one particular Hubble volume to change the value of ζ . This implies that ζ will be conserved. We have

assumed that there are no isocurvature modes present (Maldacena 2003). In the case of multiple fields, ζ will in general

be time-dependent - see §0.7.2.
18We can do this because they are non-dynamical, i.e. they enter in the Lagrangian without derivative terms.
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Choosing a Gauge.—However, we still need to fix a gauge as we still have some freedom in how

we choose our foliation of spacetime, i.e. our surfaces of constant time. A gauge is simply a

specification of a co-ordinate system and a gauge transformation encodes how to go from one

coordinate system (gauge) to another. We can choose to either have the single scalar degree of

freedom expressed in terms of the metric perturbation ψ, corresponding to spatial hypersurfaces

with uniform density δρ = 0, or in terms of a perturbation in the density δρ , 0, which corres-

ponds to spatially-flat hypersurfaces ψ = 0. In the former case, the perturbation will manifest itself

as a perturbation in the intrinsic curvature R(3) of the spatial slices, as it is related to ψ via (Wands

et al. 2000)

R(3) =
6K
a2 +

12K
a2 ψ +

4
a2∇

2ψ. (48)

It proves most physically intuitive to work in the comoving gauge corresponding to slices ortho-

gonal to comoving worldlines, i.e. in the local rest frame of the observer where the momentum

density T0i is zero. This is physically equivalent to hypersurfaces of uniform density on superhori-

zon scales,19 δρ = 0 and 3-metric hi j = a2(t)e2ζδi j from (45). Therefore, in the comoving gauge,

ζ = ψ and so characterizes the curvature to linear order (hence its name). There are many different

gauge choices, all with their own benefits. However, for the purposes of calculating observables

from scalar fluctuations during inflation it suffices to consider the comoving gauge or the spatially

flat gauge. Calculations in the comoving gauge can be tricky so we will sometimes find it simpler

to work in the spatially flat gauge, especially when considering multiple-field models.

Second Order Action.— Choosing first the comoving gauge and by setting Ni = ∂iψ +N i
T (with

∂iN
i
T = 020) and N = 1 +N1 (Maldacena 2003), we can now calculate the constraints (46)-(47)

to first order, resulting in (Maldacena 2003)

N1 =
ζ̇

H
, N

(1)
i = ∂iψ , where ψ = −

ζ

H
+ a2 ϕ̇2

2H2 ∂
−2 ζ̇ . (49)

Then we substitute these into (23), expand to second order, integrate by parts and use the back-

ground equation of motion, (24) to get the second order action

S2 =

∫
dt d3x aeζ

[ ζ̇
H

(
6H2 − 2V − ϕ̇2

)
+ 4

ϕ̇2

H2

(
a3

2
ζ̇2 −

a
2

(∂ζ )2
) ]
. (50)

By substituting in ζ = −va
√

2εV we arrive at the Mukhanov-Sasaki action (Mukhanov, Feldman

and Brandenberger 1992)

Sms =
1
2

∫
dη d3x

(
v′2 − (∂v)2 −

z′′

z
v

)
, (51)

19When the momentum density T0i = ϕ̇∂iϕ is zero it implies that ∂iϕ = 0 and so the scalar field takes a uniform

value on spatial hypersurfaces. This will only be true on superhorizon scales when pressure effects no longer contribute.
20Here, we have decomposed Ni into a scalar, irrotational and vector part, divergent-free but Ni only has 3 degrees

of freedom, so in order to write it like Ni = ∂iψ +N i
T

we need this extra condition.
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where z = a
√

2εV.

0.4.3 Power spectrum

Now that we have the second order action, we are in a position to calculate the two-point correlator.

We do this using the “in–in” formalism of quantum field theory that is discussed in more detail in

Appendix 1.A. The full Hamiltonian density for this system is

H = πζ̇ − L, (52)

where the canonically conjugate momentum is defined as

π =
∂L

∂ζ̇
. (53)

The Hamiltonian density can be split into a free part and an interacting part

H ≡ H0 +Hint (54)

whereH0 is the free Hamiltonian and contains only second order terms

H0 = 2εV

[
1
2
π2 +

a
2

(∂ζ )2
]

(55)

and Hint involves the interaction terms. We can write Hint = −Lint, where Lint is the Lagrangian

density of the third order action, (93). Splitting the Hamiltonian in this way corresponds to the

interaction picture. It is a hybrid of the Schrödinger picture, where states evolve in time, and

the Heisenberg picture, where the operators evolve in time. The free part H0 describes the back-

ground which is well-understood, with Hint acting as a small perturbation to the time-dependent

background. It is possible to describe ζI , where the subscript I denotes we are now working in the

interaction picture, by a superposition of harmonic oscillators21

ζI (x, t) =

∫
d3k

(2π)3 ζk(t)eik.x (56)

with each harmonic oscillator, or mode, ζk characterized by a comoving wavenumber k.

Assume that whilst the modes are far inside the horizon k � aH and η → −∞, the short-

wavelength limit, the spacetime is to a good approximation flat Minkowski. This choice of vacuum

corresponds to the Bunch-Davies vacuum (Bunch and Davies 1978), which is annihilated by the

positive frequency modes ζ+
I | 0〉 = 0. To quantize ζI we write

ζI (x, t) =

∫
d3k

(2π)3 {aI (k)uk (t) + a†I (−k)u∗k (t)}eik.x = ζ+
I (x, t) + ζ−I (x, t), (57)

21This is possible because the evolution of ζI is determined byH0 which describes a free field.
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and

πI (x, t) =

∫
d3k

(2π)3 {aI (k)u̇k (t) + a†I (−k)u̇∗k (t)}eik.x, (58)

where aI (k) and a†I (k) obey the following commutation relations

[
aI (k),aI (−k′)

]
= 0 ,

[
a†I (k),a†I (−k′)

]
= 0

[
aI (k),a†I (−k′)

]
= (2π)3δ(k + k′). (59)

Switching to conformal time, i.e. dη = 1/a dt, the linear order Mukhanov-Sasaki equation of

motion is

u′′k +

(
k2 −

z′′

z

)
uk = 0. (60)

The solutions to this equation are called mode functions uk (η). To find the correct normalization

for uk (η), remember the commutation relations between ζI and its conjugate momentum πI ≡

∂H0/∂ζ̇ = 2εVa2 ζ̇ are

[
ζI (k, η), πI (−k′, η)

]
=

i
2εV a2 δ(k + k′) (61)

where

ζI (k, η) = aI (k)uk (η) + a†I (k)u∗k (η) (62)

and

πI (k, η) =
(
aI (k)u′k (η) + a†I (k)u∗′k (η)

)
. (63)

where we have transformed to conformal time and we are now working in momentum space.

Therefore by computing (61), we find that the mode functions must satisfy the following Wron-

skian condition

2εV a2
(
uk (η)u∗′k (η) − u∗k (η)u′k (η)

)
= i. (64)

We require oscillatory behaviour far inside the horizon when η → −∞. Therefore the fully nor-

malized Bunch-Davies mode function is

uk (η) =
H√

4εVk3
(1 + ikη)e−ikη . (65)

In the limit corresponding to the Minkowski vacuum k � aH , the ikη term dominates and it

can be shown that the mode function has the required oscillatory behaviour (Chen 2010)

uk (η) = −
Hη
√

4εVk
e−ikη . (66)

Therefore we can write the two-point correlation function of the curvature perturbation as

〈0 | ζI (k1)ζI (k2) | 0〉 ≡ 〈0 | (ζ+
I (k1) + ζ−I (k1))(ζ+

I (k2) + ζ−I (k2)) | 0〉

=
H2

4εVk3
1

(2π)3(1 − ikη)(1 + ikη)δ(k1 + k2)

≡ Pζ (k)(2π)3δ(k1 + k2) as η → 0, (67)
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where the angular brackets denote a quantum expectation value, but outside the horizon we can

treat it as a classical ensemble average. The power spectrum of the perturbations is defined as

Pζ (k) =
H2

4εVk3 (68)

which is a measure of the variance of the fluctuations in Fourier space. It is often convenient to

define a dimensionless power spectrum

Pζ (k) =
k3

2π2 Pζ (k) =

(
H
ϕ̇0

)2 (
H
2π

)2 �����k=k∗

. (69)

where we used the fact that εV = ϕ̇2
0/2H2. The pivot scale k∗ is arbitrary and can be chosen for

convenience. The power spectrum is often parametrized by

Pζ (k) = As

(
k
k∗

)ns−1+(1/2)(dns/dlnk )ln(k/k∗ )

(70)

where ns is the spectral tilt and dns

dlnk is the running, which are defined below. In simple inflation

models, we assume we start with a vacuum state and therefore the outcome of the measurement

has a Gaussian distribution (Lyth and Liddle 2009). For purely Gaussian random fields, the modes

on different scales k are uncoupled and are only correlated via the reality condition ζ = ζ ∗. All the

statistical information of the perturbation is encoded in the power spectrum, which implies that all

even higher order correlators are determined by (67) and the odd correlators vanish.22 〈ζ〉 = 0 can

be chosen because it can always be absorbed into the unperturbed background.

0.4.4 Spectral tilt and running

The scalar spectral index is defined as

ns − 1 ≡
d ln(Pζ (k))

d ln k

�����k=k∗

≈ −6εV + 2ηV. (71)

where the second equality was derived by Liddle and Lyth (1992). A spectrum is scale-invariant,

corresponding to ns = 1, if it is independent of wavenumber k. In this case it known as a Harrison-

Zel’dovich spectrum (Harrison 1970; Zeldovich 1970). Any deviation from ns = 1 describes a

tilted spectrum. The spectrum is referred to as blue if ns > 1 and red if ns < 1. The simple

inflationary models discussed in §0.3.3 typically produce a slightly red spectrum of perturbations.

22A Gaussian field can be completely specified by its mean and variance, therefore we can only ever write higher

order correlators in terms of these variables. The variance corresponds to the two-point function, therefore all higher

order correlators must be in terms of the two-point correlator.
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The possible running of the spectral index is given by

αζ ≡
dns

dlnk
≈ −24ε2

V + 16εVηV − 2ξ2
V, (72)

where ξ2 is the second-order slow-roll parameter

ξ2
V = M4

P
V ′V ′′′

V 2 . (73)

0.4.5 Gravitational waves from inflation

The perturbations described in §0.4.2 are a result of quantum mechanical fluctuations in the density

that have been magnified by an inflationary epoch. However, in the same manner, there will be

quantum fluctuations in the gravitational field that will also be amplified by inflation. They are a

key prediction of many models of inflation with Einstein gravity. The perturbed spacetime metric

is

gµν = a2(η)[−dη2 + (δi j + γi j )dxidx j ] (74)

where |γi j | � 1. The perturbations in the gravitational field, γi j , are known as tensor modes or

“gravitational waves” and are characterized by

γi j = γ+e+
i j + γ× e×i j . (75)

The polarization tensors are given by e+,×
i j and the γ+,× are the two independent gravitational

wave amplitudes.

The power spectrum of gravitational waves is given by

Pt (k) =
2

M2
P

H2

π2

(
k

aH

)nt

(76)

where nt is the spectral index of the tensor perturbations

nt ≡
dlnPt (k)

dlnk
≈ −2εV (77)

The ratio of the spectrum of gravitational waves to the scalar perturbations spectrum is referred to

as the tensor-to-scalar ratio

r ≡
Pt (k∗)
Pζ (k∗)

= 8M2
P

(
V ′

V

)2

≈ 16εH (78)

The consistency relation r ≈ −8nt applies for slow-roll. A value of r gives us an upper bound on

the energy scale of inflation since the power spectrum is only dependent on the expansion rate at

that time (Linde 1983; Lyth 1984)

V = (1.94 × 1016GeV)4(r/0.12) (79)
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Figure 3: Artist’s impression of Planck satellite. Credit: ESA

The amplitude of the primordial curvature perturbation As, spectral index ns , running αs and

tensor-to-scalar ratio r provide us with the necessary link between inflationary models and ob-

servations. All of these observables can be measured with exceptional accuracy using statistical

information encoded in the temperature fluctuations in the CMB. The values predicted by any

given model act as a “fingerprint” of that particular model and therefore allows us to constrain

models of inflation using data. In the next section we outline the observational bounds on these

parameters.

0.5 Current observational constraints

The CMB is the oldest observable in our Universe. It provides a window into the Universe when

it was very young and has revolutionized our understanding of early Universe cosmology, partic-

ularly inflation.

We are now well into a era of precision cosmology where we can place constraints on the ob-

servables discussed above. The successor to the COBE satellite (Bennett et al. 1996) was WMAP,

which in 2012 released its final dataset after nine years of activity (Hinshaw et al. 2013) and

provided a huge amount of data. The ESA funded Planck surveyor satellite, shown in Figure 3,

provides the most precise data yet (Ade et al. 2013b). The improvement in their precision capabil-

ities can be seen in Figure 4. Due to the degeneracies in measuring cosmological parameters, con-

straints are normally combined with data from other experiments, such as BOOMERanG (Balloon
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Figure 4: Focus of satellites. Credit: NASA/JPL-Caltech/ESA

Figure 5: Planck. Credit: ESA

Observations Of Millimetric Extragalactic Radiation and Geophysics) experiment (Melchiorri et

al. 2000; Bernardis et al. 2000), Baryon Acoustic Oscillations (BAO) in galaxy distributions (Bas-

sett and Hlozek 2009) and supernovae surveys from the Hubble Space Telescope (HST) (Clocchi-

atti et al. 2006). Degeneracies occur as a result of several parameters having a similar affect on

the data, therefore making an independent measurement of a parameter from another experiment

can help break this degeneracy. For example, in Figure 7, we can see that the independent meas-

urement of r has helped break the degeneracy that exists between ns and r when only using the

Planck data.

The things we measure in the CMB are its temperature anisotropies. The latest full-sky tem-

perature anisotropy map from Planck is shown in Figure 5. The temperature fluctuations δT/T

can be expanded in spherical harmonics (Gradshteyn and Ryzhik 2007)

δT (n̂)
T

=

∞∑
`=1

+∑̀
m=−`

a`mỲ m (n̂), (80)

where the a`m are the multipoles measured in the CMB, Ỳ m (n̂) and n̂ represents an orientation
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Figure 6: Power Spectrum from Planck. Credit: ESA

on the sky. The temperature fluctuations are thought to have originated as a result of the perturb-

ations produced during inflation. The observed multipoles are linearly related to ζ , the primordial

curvature perturbation, via

a`m = 4π(−i)`
∫

d3k
(2π)3∆` (k)ζ (k)Ỳ m (k̂), (81)

where ∆` (k) is a transfer function encoding the evolution of the perturbations from inflation to

the surface of last scattering. Therefore by measuring statistical observables of the temperature

fluctuations, we can derive strong constraints on the perturbations from inflation.

The power spectrum from Planck, shown in Figure 6, provides a wealth of information on the

Universe.23 Here we will only focus on the constraints relevant for inflation. The amplitude of

the primordial curvature perturbation power spectrum (70) is very accurately constrained by the

Planck satellite to be (Ade et al. 2013b)

As = (2.23 ± 0.16) × 10−9, (82)

with pivot scale k∗ = 0.05Mpc−1. The spectral index is constrained assuming no running to

be (Ade et al. 2013b)

ns = 0.9603 ± 0.0073 (68% C.L.), (83)

which is a 5.4σ deviation from exact scale-invariance ns = 1. The bounds quoted on the running

23For more information, see the Planck results papers, which can be found at http://www.sciops.esa.int.
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Figure 7: 1σ and 2σ confidence limits for the spectral index versus tensor-to-scalar ratio, allowing running. We define r0.002 as the

primordial tensor-to-scalar ratio (78) at a pivot scale k∗ = 0.002Mpc−1. Image credit: BICEP2 collaboration.

of the spectral index are

αs = −0.011 ± 0.008 (68% C.L.; Planck+lensing+WP+highL). (84)

A measurement of the tensor-to-scalar ratio r has been hailed a “smoking gun” for inflation be-

cause it is difficult to produce in non-inflationary models. It is extremely difficult to measure

because the amplitude of the power spectrum of tensor modes is so much lower than the power

spectrum of the scalar modes. Planck intends to measure r < 0.1. In early 2014, the Background

Imaging of Cosmic Extragalactic Polarization (BICEP2) telescope (Ade et al. 2014a; Ade et al.

2014b) detected a tensor “B”-mode signal in the polarization of the CMB, measuring the tensor to

scalar ratio to be

r = 0.2+0.07
−0.05 (85)

disfavouring r = 0 at 5.9σ. Planck polarization data that is due to be released in late 2014 will

hopefully provide a confirmation of this result.

0.6 Contact with observations

To recap, the simplest model of inflation involves

• a single scalar field ϕ

• slowly-rolling
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• minimally coupled to Einstein gravity, described by the action (23)

• canonical kinetic term

• beginning in the Bunch-Davies vacuum state (65)

• a potential of the form (39)

As well as solving the problems with the standard Big Bang model, this simple model has very

clear predictions, which can be summarised as follows

• Perturbations that are almost scale-invariant (Bardeen, Steinhardt and Turner 1983)

• Perturbations that are adiabatic.

• The production of primordial gravitational waves

• The anticorrelation peak in the temperature-polarization (TE) cross-angular power spectrum

on large angular scales (l ∼ 150) is evidence for superhorizon fluctuations, which strongly

supports an inflationary origin for the perturbations. (Bennett et al. 2003; Kogut et al. 2003;

Spergel et al. 2003; Peiris et al. 2003)24

• Density perturbations that are Gaussian distributed

A huge success of inflation is that all but the last of the predictions above have been observationally

verified. The perturbations appear to be very consistent with Gaussianity (Ade et al. 2013d),

however there is still some possibility that this isn’t strictly true. Gaussianity is the default and

could be produced by a classical mechanism, e.g. perhaps a central-limit theorem-like effect.

However, if we detected a deviation from Gaussianity, this would provide strong support for an

inflationary (quantum mechanical) origin for the perturbations.

So far we have only considered the simplest inflationary model. However, there are many more

models that also predict values for these observables consistent with the current bounds. Any

modification to the simplest inflation model will typically result in microphysics that no longer

gives rise to purely Gaussian perturbations. They may predict some amount of non-Gaussianity, a

powerful tool that we can use to discriminate the microphysics of inflation.

Non-Gaussianity may be observed in the statistics of the CMB and therefore could potentially

offer a way to break the degeneracy between these models, giving an insight into the physics that

powered inflation. This will be the topic for the remainder of this thesis.

24During recombination, photons are interacting with free electrons via Thomson scattering. When two photons of

different intensities scatter with an electron at 90◦ the outgoing radiation has a net polarization. Measurements of this

polarization can be used in conjunction with the temperature data to further our understanding of inflation.
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0.7 Generalized inflationary scenarios

For the simplest models of inflation described above, the power spectrum, spectral index, running

and tensor-to-scalar ratio provides enough information to completely characterize the perturba-

tions arising from these models. However, if we consider more complicated models,25 where one

or more of the simple inflation model requirements outlined in §0.6 is modified, the parameter

space which we can probe becomes richer. Considering different models is a very important task

for several reasons. As it stands, we have introduced inflation as an “add-on” to the standard Big

Bang cosmological model without really understanding how it started or why. A key motivation

for considering more complicated models is that they can be embedded in a high-energy theory,

such as string theory. With few exceptions (e.g. Higgs inflation (Bezrukov and Shaposhnikov

2008)), all inflationary models, including the simplest scenario, involve field theory beyond the

Standard Model of particle physics. Therefore inflation provides an excellent opportunity to probe

physics beyond our current understanding and at energies much higher than can be reached by

experiments on earth.

The simplest inflationary scenario may not necessarily be the correct one so it is important to

consider every possible model allowed by the data. There are many different classes of models

with wide-ranging inflationary dynamics. It is not our intention to provide an inventory of all

possible models here. Lyth and Riotto have an excellent review of particle physics models of

inflation (Lyth and Riotto 1999), though it is a little out of date. A slightly more recent review of

developments can be found in Alabidi and Lyth (2006).

Inflation model-building has been a very active area ever since its inception. Even with con-

straints on the observables from the CMB slowly ruling out models, there are still swathes of viable

candidates. To constrain the plethora of models on the market in a systematic way we can divide

them into different classes. Classes of models that will not be considered here, but are equally im-

portant, include quasi-single-field models (Chen and Wang 2010), non-trivial vacua models (Chen,

Huang et al. 2007; Holman and Tolley 2008; Meerburg, Schaar and Corasaniti 2009; Ashoorioon

and Shiu 2011), feature models (Wang and Kamionkowski 2000b; Chen, Easther and Lim 2007;

Chen, Easther and Lim 2008) and many, many more. Here we will consider two important classes

of models important for the work presented in this thesis. The first is the class of single-field mod-

els that have non-trivial kinetic terms. The second is a class of models with an arbitrary number

of fields present during the inflationary expansion known as multiple-field models. We will now

25Each model is essentially an effective field theory that applies during inflation.
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provide a brief introduction to both in turn.

0.7.1 General single-field models

Models with non-canonical/higher derivative kinetic terms are abundant in the inflationary literat-

ure and have been studied by many authors. Examples that have been proposed in this category

include ghost inflation (Arkani-Hamed et al. 2004), DBI (Alishahiha, Silverstein and Tong 2004),

k-inflation (Armendariz-Picon, Damour and Mukhanov 1999) and many more (Chen, Huang et al.

2007). Every model has a unique Lagrangian that characterizes the inflationary dynamics that al-

lows us to calculate their predictions in the same way as outlined for the simple model considered

above.

Effective field theory for inflation.— It was first pointed out in Cheung et al. (2008) that many

single-field inflation models can be described by one unifying effective field theory (EFT) Lag-

rangian. The EFT Lagrangian is constructed by allowing all possible operators that are compatible

with the resulting symmetries of an inflating background spacetime. Each of these operators comes

with a coefficient that will determine its relative weighting. By adjusting these coefficients we can

obtain the limit corresponding to a particular existing single-field model, for example DBI or ghost

inflation. However, within the general framework of EFT these coefficients are free parameters,

therefore as well as encompassing models that have previously been well-studied, we also have

the capacity to probe regions of the large inflationary parameter space that lie out-with these spe-

cific realizations. Therefore the effective field theory for inflation is an insightful and efficient

method for studying single-field models. In Paper 1 we use the EFT approach in order to place

constraints on models in this class. The EFT approach does not include models with sharp features

or oscillations (Starobinsky 1992; Adams, Ross and Sarkar 1997; Adams, Cresswell and Easther

2001; Hailu and Tye 2007; Bean et al. 2008; Achucarro et al. 2011; Joy, Sahni and Starobinsky

2008; Hotchkiss and Sarkar 2010; Nakashima et al. 2011; Adshead et al. 2011). In this thesis,

we will only consider the effective field theory for single-field inflation. In multiple-field models

of inflation, the shift symmetry that organizes the operators in the effective field theory into an

expansion in powers of energy no longer holds due to the evolution of the perturbations outside

the horizon (Senatore and Zaldarriaga 2012). There are an infinite number of operators that could

be important at all energies, therefore the usefulness of the EFT approach is lost.
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0.7.2 Multiple-field models

Multiple-field models were first considered by Linde (1985); Kofman and Linde (1987); Silk

and Turner (1987). Many high-energy physics inspired inflationary models contain multiple

fields (Linde 2006; McAllister and Silverstein 2008). For example the string theory landscape (Suss-

kind 2003) and super-gravity theories (Binetruy et al. 2004; Choi et al. 2004). In order to account

for multiple fields during inflation, we can generalize the scalar field Lagrangian (23) to give (Sa-

saki and Stewart 1996; Nakamura and Stewart 1996)

S =
1
2

∫
d4x
√
−g

[
R − Gαβ∂µϕα∂µϕβ − 2V (ϕ)

]
(86)

There will also be generalizations of the background equations of motions and the slow-roll equa-

tions. The new fields lead to much richer dynamics. We recall that in single-field models, ζ is

conserved on superhorizon scales. Since there is only one field ϕ, there is only one inflationary

trajectory and a generic perturbation can be characterized by small shifts along the trajectory in the

1D field space. Perturbations along the trajectory are adiabatic as they only correspond to shifts in

the overall energy density. In multiple-field models it is not possible to describe a generic perturb-

ation purely in terms of an adiabatic perturbation. In general, there will be relative perturbations

between the densities of the different fields, i.e. non-adiabatic, or isocurvature, perturbations. As

an example, consider a two-field model with fields ϕ and χ and field perturbations δϕ and δ χ

respectively. The background trajectory (shown in purple) through the inflationary field space for

this model is depicted in Figure 8. It is convenient to decompose a generic perturbation into a basis

with a component along the trajectory and orthogonal to it. By definition, the adiabatic perturb-

ation δσad is the component of the perturbations along the trajectory. Isocurvature perturbations

δσiso are defined to be orthogonal to the adiabatic (curvature) perturbation. This component rep-

resents a displacement onto a different trajectory. Comparing with the earlier definition in §0.4.2,

adiabatic perturbations have no relative perturbation between the fields ϕ and χ, Sϕχ = 0. Iso-

curvature characterizes relative perturbations between species, i.e. Sϕχ ≡ δϕ/ϕ̇ − δ χ/ χ̇ , 0.

Isocurvature modes, if present can have a large effect on the evolution of the perturbations and

significant non-Gaussianities can be sourced. They can transfer power to the adiabatic mode on

superhorizon scales, resulting in non-linear evolution. One also must careful to track this non-

linear evolution potentially through reheating (a review of multiple fields and reheating can be

found in Bassett, Tsujikawa and Wands (2006)) and beyond, as ζ may continue to evolve sub-

stantially through the post-inflationary epoch, until all isocurvature modes have decayed. This is

referred to as the adiabatic limit (Elliston et al. 2011). Planck and its predecessors have found
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Figure 8: Phase space for a two-field inflationary model, where χ and ϕ correspond to the active fields. Adiabatic perturbations are

defined as those tangent to the ‘phase space flow’, i.e. the trajectory through the phase space. Isocurvature perturbations

are orthogonal to the trajectory. Adapted from Gordon et al. (2001).

no evidence for isocurvature modes at the epoch of recombination (Ade et al. 2013c) therefore all

isocurvature modes must decay before that time. In Paper 2 we use non-Gaussian observables to

constrain multiple-field models of inflation.

0.8 Non-Gaussianity

Non-Gaussianity has received a great deal of attention in recent years due to its potential ability

to break degeneracies amongst competing inflationary scenarios (Komatsu, Afshordi et al. 2009).

Different models of inflation predict different levels and shapes of non-Gaussianity therefore, by

making a precise measurement of it, we can potentially discriminate between them. Planck has

been able to place very stringent constraints on non-Gaussianity (Ade et al. 2013d). A free field

theory predicts a Gaussian spectrum of quantum fluctuations. A non-Gaussian signal may there-

fore allow us to investigate the microphysics of inflation much more thoroughly. A significant

detection of primordial non-Gaussianity would rule out all canonical slow-roll, single-field mod-

els (Maldacena 2003), which would imply that much richer physical dynamics were at work during

the inflationary epoch.

First introduced in Allen, Grinstein and Wise (1987) and worked on by several other au-

thors (Falk, Rangarajan and Srednicki 1993; Gangui et al. 1994; Wang and Kamionkowski 2000a;

Salopek and Bond 1990), non-Gaussianity became firmly established in the field of inflation after
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Figure 9: (a) Equilateral (b) squeezed and (c) folded shape configurations.

a ground-breaking paper by Maldacena (2003). The observationally relevant deviations are those

that occur on the level of the three-point function and four-point function, known in Fourier space

respectively as the bispectrum and trispectrum.

0.8.1 Bispectrum

For a Gaussian field, the three-point function vanishes by the rules of Gaussian statistics (Lyth and

Liddle 2009), therefore we can use it to determine deviations from Gaussianity. It has the general

form

〈ζ (k1)ζ (k2)ζ (k3)〉 = (2π)3δ3(k1 + k2 + k3)Bζ (k1, k2, k3) (87)

where the δ-function imposes the triangle closure condition. We can consider various triangular

momentum configurations. Common choices are: where the momenta are all approximately equal

k1 ≈ k2 ≈ k3, known as the “equilateral” limit; where one of the momenta is taken to zero k1 �

k2 = k3, dubbed the “squeezed” (or local) limit and the limit where k1 ≈ 2k2 ≈ 2k3, the so-called

“folded” (or flattened) configuration. These are shown in Figure 9. However, generally there are

many different shapes of non-Gaussianity depending on the overall dependence of Bζ (k1, k2, k3)

on the momenta. We discuss shapes further in §0.8.2. For convenience when making contact with

the data, standard templates are traditionally considered. A popular choice is the local template,

given by

Blocal
ζ (k1, k2, k3) ≡

6
5

f local
NL

[
Pζ (k1)Pζ (k2) + cyclic permutations.

]
, (88)

where f local
NL is a non-linearity parameter associated with the bispectrum. It is essentially a num-

ber that represents the amplitude of non-Gaussianity. Non-Gaussianity of this sort peaks in the
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squeezed configurations. Other choices include the equilateral template (Creminelli et al. 2006)

Bequil.
ζ (k1, k2, k3) ≡ 6A2 f equi

NL

(
−

1
k3

1 k3
2

−
1

k3
1 k3

3

−
1

k3
2 k3

3

−
2

k2
1 k2

2 k2
3

+

[
1

k1k2
2 k3

3

+ 5perms
])
, (89)

which has its dominant contribution in equilateral configurations, the flat template (Meerburg,

Schaar and Corasaniti 2009)

Bflat.
ζ (k1, k2, k3) ≡ 6A2 f flat

NL

(
1

k3
1 k3

2

+
1

k3
2 k3

3

+
1

k3
3 k3

1

+
3

k2
1 k2

2 k2
3

−

[
1

k1k2
2 k3

3

+ 5perms
])
, (90)

that has its maximal amplitude in the folded/flattened triangular configuration and the orthogonal

template (Senatore, Smith and Zaldarriaga 2010)

Borthog.
ζ (k1, k2, k3) ≡ 6A2 f ortho

NL

(
−

3
k3

1 k3
2

−
3

k3
1 k3

3

−
3

k3
2 k3

3

−
8

k2
1 k2

2 k2
3

+
3

k1k2
2 k3

3

+ 5perms
)
, (91)

which peaks in the both the flattened and equilateral limit. Constraints on fNL are typically quoted

for these templates. The latest constraints are quoted later in §0.8.7. The definitions above assume

that fNL is scale-independent, however it could have a weak scale-dependence offering even more

discriminating information. This situation is discussed in Byrnes, Gerstenlauer et al. (2010).

0.8.2 Bispectrum shapes

We can define a shape function as

Sζ (k1, k2, k3) ≡
Bζ (k1, k2, k3)
Bref(k1, k2, k3)

(92)

where Bref(k1, k2, k3) is an arbitrary reference bispectrum. Plotting the shape of the bispectra can

be a useful tool for visualising the different types of interactions occurring. In what follows we will

choose the reference bispectrum to be the constant bispectrum Bconst(k1, k2, k3) ∝ 1/(k1k2k3)2.

Defining the axes x = k1/k3 and y = k2/k3 and normalising the shape function to be 1 when it re-

sembles the equilateral configuration, the 3D function we plot is x2y2B(x, y,1)/B(1,1,1) (Babich,

Creminelli and Zaldarriaga 2004; Chen 2010). As an example we show shape plot for the equi-

lateral template in Figure 10. The shapes can also be plotted with a different parametrization

discussed in Fergusson and Shellard (2009).

0.8.3 Calculating the bispectrum: subhorizon scales

In this section we will first revisit the simplest inflationary model (single-field, slow-roll, Bunch-

Davies vacuum, Einstein gravity and canonical kinetic terms) and calculate its three-point function

using the approach discussed in §0.4.3 before considering more complex scenarios.
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Figure 10: Shape plot of the equilateral bispectrum template (89). Shape peaks when all the k’s are equal.

Third Order Action.—To calculate the three-point function we will first need to calculate the

action to third order, which can be obtained by plugging (49)26 into the action (44). Working in

the comoving gauge the action to third order in the perturbations is given by (Maldacena 2003)

S3 =

∫
dt d3x a3

[
ε2

Vζ ζ̇
2 − 2aε2

V ζ̇ (∂ζ )(∂ψ) + aε2
Vζ (∂ζ )2 +

a
2
εVη̇ζ

2 ζ̇

+
1
2
εV

a
∂ζ∂ψ∂2ψ +

εV

4a
∂2ζ (∂ψ)2

]
+ 2 f (ζ )

δL2

δζ
(93)

where the first order equation of motion is

δL2

δζ
= (a3εV ζ̇ ) − εV∂

2ζ (94)

and

f (ζ ) =
η

4
ζ2 +

1
H
ζ ζ̇ +

1
4a2H2

[
−(∂ζ )2 + ∂−2(∂i∂j (∂iζ∂j ζ ))

]
+

1
2a2H

[
(∂ζ )(∂ψ) − ∂−2(∂i∂j (∂iζ∂jψ))

]
, (95)

where ∂−2 is simply given by k−2 in Fourier space. We are now in a position to calculate the three-

point correlator using (93). As with the calculation of the two-point function, we make use of the

Schwinger-Keldysh “in–in” formalism. This procedure is detailed in Appendix 1.A where we

give an explicit calculation of the bispectrum arising from the effective field theory action (Bartolo

et al. 2010). Since conservation of the curvature perturbation on superhorizon scales implies that

the correlation functions also remain constant, it suffices to compute the correlation functions at

horizon-exit.

The final result for the three-point correlation function of the comoving curvature perturbation

26The higher order terms in N and Ni do not contribute, as in the second order case.
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in the simplest, singe-field, slow-roll model is found to be (Maldacena 2003)

〈ζ (k1,0)ζ (k2,0)ζ (k3,0)〉 =(2π)3δ(k1 + k2 + k3)
H4

M4
P

1
(k1k2k3)3

1
4ε2

V[
η

8

∑
k3
i +

εV

8

(
−

∑
k3
i +

∑
i, j

ki k2
j +

8
kt

∑
i� j

k2
i k2

j

)]
,

(96)

where kt = k1 + k2 + k3. From (68) and (88) it can be shown that this is proportional to a slow-roll

parameter

f local
NL ∼ O(εV, ηV). (97)

This suggests that no large non-Gaussianity can be generated in the simple inflation model (Ac-

quaviva et al. 2003; Maldacena 2003). However, single-field models with non-canonical kinetic

terms or having a violation of slow-roll for a period of time may produce detectable amounts of

non-Gaussianity with a peak in the equilateral configuration. This is a result of the non-standard

kinetic terms, which tend to produce large interaction terms at the horizon. Since in single-field

inflation there is no significant interaction between subhorizon and superhorizon modes, the only

modes that can participate in these interactions are the modes that cross the horizon at the same

time, where they will have similar wavelengths k1 ∼ k2 ∼ k3, corresponding to a peak in the

equilateral configuration (Chen 2010).

Gauge choices.— Alternatively we can choose to calculate the correlation functions in the spatially-

flat gauge in which we set ψ = 0 on the hypersurfaces of constant time. Therefore the perturbation

will manifest itself as a perturbation in the scalar field, ϕ = ϕ(0) + δϕ and the metric will just be

given by the usual background 3-metric

hi j = a2(δi j ) (98)

Sometimes this gauge will be more convenient, as it is technically simpler. However, it is not

possible to completely specify the perturbation in terms of the scalar field without any effect on the

metric. The perturbation will manifest itself as a “back-reaction” via the shift and lapse functions,

N and Ni , i.e.

N = 1 + a(δϕ) (99)

Ni = b(δϕ) (100)

hi j = a2(t)δi j (101)
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However, in the comoving gauge, the perturbation manifests itself as follows

N = 1 + c(δψ) (102)

Nj = d(δψ) (103)

hi j = a2(t)e2ψδi j , (104)

where a,b,c and d are functions. Therefore, in single-field inflation, in the comoving gauge we can

fully describe the perturbation solely in terms of the metric without having to consider any effects

in the inflaton field ϕ. This is a key advantage of working in the comoving gauge when considering

models with only one field. However, the spatially flat gauge and the comoving gauge are related

by a gauge transformation given to first order by (45) and all the results that we outlined above

can also be derived in the spatially flat gauge (Maldacena 2003). The spatially flat gauge is useful

when considering multiple fields because it is easier to keep track of isocurvature perturbations.

It has been shown that the non-Gaussianity generated on subhorizon scales in multiple-field

models is also negligible (Seery and Lidsey 2005). However, since ζ is no longer conserved on

superhorizon scales, this can lead to a significant amount of non-Gaussianity. It is possible to

extend the in–in calculation for multiple-fields to later times, such as the end of inflation. How-

ever, there exist much simpler methods for calculating the level of non-Gaussianity generated on

superhorizon scales that we introduce in §0.8.5.

0.8.4 Consistency condition

In the squeezed limit, k1 � k2 ' k3, k1 will cross the horizon much earlier than the other two

modes. As described in §0.4.1, when a mode passes out of the horizon, it WKB classicalizes.

Therefore it will just perturb the background and change the time the other two modes cross the

horizon by δt? = −ζ1/H since it merely amounts to a rescaling of the scale factor (Maldacena

2003). We deduce that

〈ζ (k1)ζ (k2)ζ (k3)〉 ∼ 〈ζ (k1)ζ (−k1)〉./
1
H

d
dt
〈ζ (k2)ζ (k3)〉?, (105)

where ./ signifies evaluation when k1 left the horizon and ? signifies evaluation when k2 and k3

left the horizon. Using (71) and rewriting d lnk = Hdt we can write27

ns − 1 ≡
d ln(Pζ (k))

d ln k
≈ −2ηV − 6εV =

1
H

d
dt

ln (〈ζ (k1)ζ (k2)〉) ���
?
. (106)

27k = aH , so d lnk = d lna + d lnH , but H ≈ const. during inflation. Therefore we see that d lnk = d lna
dt dt = Hdt.
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Rewriting the logarithm we see that

1
H

d
dt

(〈ζ (k2)ζ (k3)〉) = (ns − 1)〈ζ (k2)ζ (k3)〉, (107)

and substituting this into (105) we get a consistency condition (Maldacena 2003)

〈ζ (k1)ζ (k2)ζ (k3)〉 ∼ (2π)3δ(k1 + k2 + k3)(6εV − 2ηV)Pζ (k1)Pζ (k2). (108)

This relation must hold for single-field inflation and rules out models with single fields if it is

not satisfied. Unfortunately, observing a very long wavelength mode is severely constrained by

cosmic variance.

0.8.5 Calculating the bispectrum: superhorizon scales

In multiple-field inflation there can be non-linear evolution on superhorizon scales that is local in

space and therefore non-local in momentum space (Huston 2010), and which peaks in the squeezed

configuration k1 � k2 ' k3.

The most natural form for local non-Gaussianity is (Gangui et al. 1994; Verde et al. 2000;

Wang and Kamionkowski 2000b; Komatsu and Spergel 2001)

ζ = ζg −
3
5

f local
NL ? ζ2

g (109)

where ζg is Gaussian and ? denotes a convolution. This comes from performing a Taylor expan-

sion about ζg for superhorizon evolution in single-field inflation, where we have also assumed that

the background is an attractor.28 This form for the non-Gaussianity leads to a bispectrum of the

form of (88). The factor of 3/5 is historical.

δN method.— The separate universe assumption is a useful approach that enables us to invoke

the δN formalism that we will describe in this section. It simply states that at each spatial point,

the local29 evolution can be approximately described by that of an unperturbed Universe on su-

perhorizon scales k � aH (Lyth 1985b). This is because once each point has been smoothed

on a certain comoving scale k−1, it will have negligible spatial gradients and therefore will be

homogeneous. By also assuming local isotropy we are able to treat each position in the observ-

able Universe as a separate universe, thereby greatly simplifying the superhorizon evolution of

the perturbations (Lyth 1985a; Lyth and Rodriguez 2005b; Starobinsky 1985).

28This occurs when the fluctuation in π is determined by the fluctuation in ϕ
29Local refers to a region that is smaller than a certain smoothed patch, but adequately larger than the largest cosmo-

logical scale, H−1
0 .
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Figure 11: δN is the perturbation in the number of e-foldings from a spatially-flat slice ψ = 0 to a comoving slice δϕ = 0.

Invoking the separate universe assumption, the number of e-folds N between a perturbed scalar

field (spatially flat) hypersurface and a hypersurface with constant scalar field (comoving) is

δN = N (t,x) − N0(t), (110)

where N0(t) ≡ ln
[

a(t )
a(tin )

]
. The perturbation in the number of e-folds between two generic slices

ψ(x, t2) and ψ(x, t1) is

δN12(x) = δ

∫ t2

t1

1
a

da
dt

dt = ψ(x, t2) − ψ(x, t1). (111)

If we start from a spatially-flat slice ψ(x, t1) = 0 after the modes of cosmological interest have

crossed the horizon and choose to end on a comoving slice (where ψ = ζ from (45) since there is

no perturbation in the density), then we see that

ζ (x, t) ≡ δN (x, t) = N (x, t) − N0(t), (112)

schematically depicted in Figure 11. Expanding ζ as a Taylor series we get

ζ = Nαδϕα +
1
2

Nαβδϕαδϕβ + . . . (113)

where Nα = (∂N/∂ϕα ) etc. The first term in this expansion is precisely the gauge transformation

we encountered in (45), defined on a flat slice, namely ζ = Nαδϕα = −H δϕα
ϕ̇α

(Wands 2010).

Therefore we can write the two-point correlation function as (Chen 2010)

〈ζ (x1)ζ (x2)〉 = NαNβ〈δϕα (x1)δϕβ (x2)〉, (114)

Writing the three-point function in Fourier space we get (Lyth and Rodriguez 2005b; Seery and

Lidsey 2005)

〈ζ (k1)ζ (k2)ζ (k3)〉 =NαNβNγ〈δϕα (k1)δϕβ (k2)δϕγ (k3)〉

+
1
2

Nα1α2 NβNγ〈(δϕα1 ? δϕα2 )(k1)δϕβ (k2)δϕγ (k3)〉 + 2perms.,
(115)
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where the first term corresponds to the intrinsic non-Gaussianities. In standard single-field infla-

tion, the non-Gaussianity from both these contributions were of the same order (Maldacena 2003),

with neither contribution generating a detectable amount. However, multiple-field inflation can

generate a significantly large amount of local non-Gaussianity from superhorizon evolution due

to the presence of other light fields generating non-linearities. Assuming that field perturbations

on the initial slice (at horizon-exit) are Gaussian, the first term in (115) will remain negligible

∼ O(εV, ηV) (Zaballa, Rodriguez and Lyth 2006; Vernizzi and Wands 2006). Therefore we can

write the three-point correlation function as (Lyth and Rodriguez 2005a)

〈ζ (k1)ζ (k2)ζ (k3)〉 =
1
2

Nα1α2 NβNγ〈(δϕα1 ? δϕα2 )(k1)δϕβ (k2)δϕγ (k3)〉 + 2perms.. (116)

With this assumption we can write

fNL =
5
6

NαNβNαβ

(NγNγ )2 . (117)

The δN method can only be used to compute correlation functions analytically in a few special

cases such as separable potentials. In all other cases, the calculations must be performed numer-

ically. The drawback of δN is that the calculation of the N-derivatives relies on extracting finite

differences, which can quickly lead to large numerical errors if computing correlation functions

for a large number of fields.

Transport method.— The transport method introduced by Mulryne, Seery and Wesley (2010);

Mulryne, Seery and Wesley (2011) offers an alternative to computing correlation functions on

superhorizon scales. The transport equations evolve the correlations of the field fluctuations δϕ,

which involve straightforward ordinary differential equations, and therefore does not suffer as

much from numerical inaccuracies associated with the partial derivatives of the δN formalism. The

gauge transformation to express these correlation functions in terms of ζ is then simply performed

at the time we want to calculate the observables. It has a wide variety of applications. It can

compute two- and three-point functions (Mulryne, Seery and Wesley 2010; Mulryne, Seery and

Wesley 2011), as well as track the evolution of the spectral index (Dias and Seery 2012) and

running (Dias, Frazer and Liddle 2012). It can even be extended to compute n-point functions on

sub-horizon scales (Mulryne 2013). In Paper 2 we introduce the method in detail and demonstrate

how it can be used to compute the trispectrum non-linearity parameters discussed below.
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0.8.6 Trispectrum

As well as the bispectrum, the trispectrum can be used to quantify some deviations from Gaus-

sianity. The four-point correlator is non-zero in the Gaussian case, but in the non-Gaussian case it

will have an additional contribution (Zaldarriaga 2000)

〈ζ (k1)ζ (k2)ζ (k3)ζ (k4)〉c = (2π)3δ3(k1 + k2 + k3 + k4)Tζ . (118)

where the subscript c denotes the connected part and Tζ is the trispectrum, which for local non-

Gaussianity can be written in the form

Tζ (k1,k2,k3,k4) = τNL
[
Pζ (k13)Pζ (k3)Pζ (k4) + 11 permutations.

]
+

54
25

gNL
[
Pζ (k2)Pζ (k3)Pζ (k4) + 3 permutations.

]
. (119)

where k14 =| k1 + k4 |. τNL and gNL are non-linearity parameters associated with the trispectrum.

They each have a distinct k dependence.

All of the techniques introduced above for computing the primordial non-Gaussianity from the

bispectrum can be extended and applied to the trispectrum.

The first full in–in single-field slow-roll calculation of the trispectrum produced at horizon-

crossing was by Seery, Lidsey and Sloth (2007). They found that the trispectrum in these models

was predicted to be of order τNL < r/50, where r is the tensor-to-scalar ratio. This is too small to

ever be observed. Since ζ is conserved on superhorizon scales, no large non-Gaussianity can ever

be generated in these models, as in the bispectrum case.

However, in the case of multiple-field models, non-linear superhorizon evolution of the curvature

perturbation can generate a significant non-Gaussian signal. This can be calculated for a given

model using the δN formalism (Seery and Lidsey 2007; Byrnes, Sasaki and Wands 2006). The

four-point function expressed in the δN formalism is

〈ζ (k1)ζ (k2)ζ (k3)ζ (k4)〉c = NαNβNγNδ〈δϕα (k1)δϕβ (k2)δϕγ (k3)δϕδ (k4)〉c

+
1
2

Nα1α2 NβNγNδ
[
〈(δϕα1 ? δϕα2 )(k1)δϕβ (k2)δϕγ (k3)δϕδ (k4)〉

+ 3 perms.
]

+
1
4

Nα1α2 Nβ1β2 NγNδ
[
〈(δϕα1 ? δϕα2 )(k1)(δϕβ1 ? δϕβ2 )(k2)δϕγ (k3)δϕδ (k4)〉

+ 5 perms.
]

+
1
3!

Nα1α2α3 NβNγNδ
[
〈(δϕα1 ? δϕα2 ? δϕα3 )(k1)δϕβ (k2)δϕγ (k3)δϕδ (k4)〉

+ 3 perms.
]

(120)
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In the local model (119) we can write τNL and gNL in terms of these δN coefficients

τNL =
NαβNαβN βNγ

(NδNδ )3 (121)

gNL =
25
54

NαβγNαN βNγ

(NδNδ )3 (122)

In Paper 2, we introduce the transport method to calculate τNL and gNL in multiple-field models.

0.8.7 Current constraints on non-Gaussianity

The present observational data from the Planck 2013 dataset (Ade et al. 2013d) impose the follow-

ing constraints on the non-linearity parameters for the local, equilateral and orthogonal templates

f local
NL = 2.7 ± 5.8 (68% C.L.)

f equi
NL = −42 ± 75 (68% C.L.)

f ortho
NL = −25 ± 39 (68% C.L.)

The constraints on the non-linearity parameters associated with the trispectrum are

τNL < 2800 (95% C.L.; Planck)

gNL = (−3.3 ± 2.2) × 105 (68% C.L.; WMAP9)

Planck has not yet provided constraints for gNL, so we have used the most recent constraint from

WMAP9 data (Sekiguchi and Sugiyama 2013).

There are expected to be stronger constraints on f local
NL in the coming years from Large Scale

Structure (Bernardeau et al. 2002; Giannantonio et al. 2012), particularly from the ESA mission

EUCLID (Cimatti et al. 2009) due to be launched in 2020 and the Large Synoptic Survey Telescope

(LSST) (Ivezic et al. 2008). These will provide a three-dimensional data source and therefore

they include more information than we are currently able to extract from the CMB. However, an

added level of complexity when measuring the late-time Universe is separating the primordial

non-Gaussianity from any non-Gaussianities that could have arisen as a result of the significant

non-linear processing of the perturbations that occurred since inflation.

To be able to distinguish between the single-field slow-roll prediction for the local non-linearity

parameter (97) and a very small f local
NL , e.g. f local

NL ∼ O(1) will require more precise measurements.

It is not yet clear whether these will be attainable by future missions.
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0.9 Overview of the papers

The first part of this thesis uses the bispectrum of the temperature fluctuations in the CMB to

constrain generic models of single-field inflation. This is achieved by considering the EFT of in-

flation, introduced in §0.7.1. We calculate the bispectrum for each of the operators in the EFT

Langrangian arising from subhorizon evolution using the ‘in–in’ formalism that was discussed in

§0.8.3 and will be explained further in §1.A. We can then decompose the shape (92) of these oper-

ators into a basis of partial waves. We also perform the same decomposition on the observed CMB

bispectrum (using WMAP9 data), circumventing the need to consider the templates presented in

§0.8.1. We then construct a maximum likelihood estimator (MLE) for the free parameters in the

EFT Lagrangian, allowing us to constrain combinations of parameters describing the most general

single-field inflationary model.

The second part extends the transport formalism, introduced in §0.8.5, to compute the local

trispectrum non-linearity parameters τNL and gNL, defined by (119), generated by multiple field

models with canonical kinetic terms on superhorizon scales. This involves working in the spatially

flat gauge, tracking the evolution of the field perturbations using transport equations, which can be

derived in a number of ways. In §2.B we provide a derivation of the trispectrum transport equation

using a Gauss–Hermite expansion. We then provide a third-order gauge transformation in order

to express the correlation functions of the field perturbations in terms of correlation functions

of the observationally relevant quantity ζ , allowing us to compute the trispectrum non-linearity

parameters.
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Paper 1

Optimal bispectrum constraints on single-field models of inflation

Gemma J. Anderson, Donough Regan and David Seery

We use WMAP 9-year bispectrum data to constrain the free parameters of an ‘effective field

theory’ describing fluctuations in single-field inflation. The Lagrangian of the theory contains

a finite number of operators associated with unknown mass scales. Each operator produces a

fixed bispectrum shape, which we decompose into partial waves in order to construct a like-

lihood function. Based on this likelihood we are able to constrain four linearly independent

combinations of the mass scales. As an example of our framework we specialize our results to

the case of ‘Dirac–Born–Infeld’ and ‘ghost’ inflation and obtain the posterior probability for

each model, which in Bayesian schemes is a useful tool for model comparison. Our results

suggest that DBI-like models with two or more free parameters are disfavoured by the data by

comparison with single-parameter models in the same class.
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1.1 Introduction

Successive microwave-background surveys have accumulated some evidence for the inflationary

paradigm, in which structure in the universe was seeded by quantum fluctuations during an epoch

preceding the hot, dense phase where nucleosynthesis occurred (Ade et al. 2013; Hinshaw et al.

2013). But despite broad support for the overall framework, attempts to identify the precise de-

grees of freedom whose quantum fluctuations were relevant have met with less success. Whatever

microphysics underlay the putative inflationary epoch remains mysterious.

In scattering experiments, an abundance of observables—including, among others, branching

ratios, decay rates, and differential dependence on energy or angles—allow indirect access to mi-

crophysical information through reconstruction of the correlation functions, or ‘n-point functions’.

These measure interference between quantum fluctuations and encode information about the dy-

namics of the theory. It is the rich information which can be obtained from reconstruction of the

correlation functions which makes measurements in particle physics so constraining.

In cosmology our observables are more limited and so is the degree to which the n-point func-

tions can be reconstructed. Over a narrow range of scales, the n-point functions of the cosmic mi-

crowave background (‘CMB’) anisotropies are sensitive to the n-point functions of the primordial

‘curvature perturbation’, which is a calculable, model-dependent mix of the fluctuations imprinted

on the light fields of the inflationary epoch. This correspondence has been used for many years to

place restrictions on the inflationary model space from measurements of the CMB temperature and

polarization two-point functions. But if a three-point function of the CMB anisotropies could be

measured it would provide access to more nuanced and discriminating microphysical information.

Ideally we would like to observe systematic relationships between the n-point functions which

would point clearly to a quantum mechanical origin for the fluctuations. This is important because

it is unclear whether we could ever rule out a non-quantum origin (perhaps associated with new

but non-inflationary physics at early times) using only the two-point function.1

Measurements of the CMB temperature anisotropy have now reached sufficient accuracy that

it is feasible to estimate the three-point temperature autocorrelation function. The most precise

constraints come from the Planck2013 dataset (Ade et al. 2013). But despite the quality of the

measurements, the signal-to-noise for any particular combination of wavenumbers is still too low

1If the fluctuations were produced by a classical process, e.g. a thermal process, then, as a result of the central-limit

theorem, they would be random in nature. We would therefore not expect the correlation functions to have detailed

momentum dependences that are produced by quantum fluctuations.
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to allow the three-point function to be reconstructed directly. Instead, measurements are made by

picking an Ansatz or ‘template’ for the way in which the correlations change with wavenumber.

By comparing this template with the CMB data over many different combinations of wavenumber

it is possible to attain reasonable signal-to-noise. This comparison carries a considerable computa-

tional burden, so constraints from the data are typically reported as amplitudes for just a handful of

well-known templates, such as the ‘local’, ‘equilateral’ and ‘orthogonal’ shapes. These amplitudes

are often written f̂ local
NL , f̂ equi

NL , f̂ ortho
NL , and so on.2

A specific inflationary model will be characterized by a number Nλ of adjustable parameters

λi , 1 6 i 6 Nλ . These may include Lagrangian parameters which are analogues of masses and

couplings, but in multiple-field models may also include a specification of the initial conditions in

field-space. To apply constraints from f̂ local
NL , f̂ equi

NL , f̂ ortho
NL , . . . , to such a model its three-point func-

tion must be computed and projected on to each of these templates. This generates predictions for

each of the amplitudes f local
NL (λi ), f equi

NL (λi ), f ortho
NL (λi ), . . . . The results obtained by a microwave

background survey can then be converted into constraints on the underlying parameters λi .

This approach is perfectly reasonable, but there are reasons to expect that it may not be optimal.

First, if the set of templates does not cover the entire range of three-point correlations which can

be produced by adjusting the parameters λi then we are not making efficient use of the data: we

should measure the amplitude of more templates in order to obtain better constraints. But, as many

authors have pointed out, it is not clear a priori how large a range of templates is required, or how

they should be chosen.

Second, if our templates are chosen injudiciously then there will come a point of diminishing

returns at which no new information is gained because the shapes we are fitting are strongly cor-

related with shapes which have been tried before. This is a reflection of a more general problem:

the error bars reported for any set of amplitudes will typically be correlated, with the correlation

described by some covariance matrix. Without knowledge of these covariances we risk underes-

timating the uncertainties associated with our reconstruction of the parameters λi .

In this paper we take a different approach. We investigate the construction of maximum-

likelihood estimators for the Lagrangian parameters λi directly from the data. (Because noise

maps for the Planck2013 data release are not yet available, we use the WMAP 9-year dataset.) To

decide which templates to use, we catalogue the different types of correlation which can be pro-

duced in a well-specified class of models: those whose fluctuations are described the the effective

field theory of inflation (Cheung, Creminelli et al. 2008). We construct the Fisher matrix associ-

ated with these correlations and use it to determine the principal directions whose amplitudes can

2Here and throughout the remainder of the paper we distinguish quantities estimated from data by a hat.
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be measured efficiently. We account for the covariance between measurements of these amplitudes

and use them to place constraints on the underlying Lagrangian parameters.

Summary.—In §1.2 we briefly review the effective field theory approach to single-field inflation

and catalogue the operators arising from a general single-field action. In §1.3 we discuss the

calculation of bispectra corresponding to these operators, and point out a number of subtleties

which must be borne in mind when interpreting our results. In §1.4 we assemble the formalism

which is used to extract constraints from the CMB map: in §1.4.1 we construct the Fisher matrix

and use it to determine the principal directions which can be constrained efficiently, and in §2.6 we

report our measurements of their amplitudes from the 9-year WMAP dataset. §1.5 translates these

general constraints into the language of specific models, and §1.6 uses the framework of Bayesian

model comparison to gain some qualitative information regarding the type of model favoured by

the data. We conclude in §2.7. A short appendix tabulates the three-point functions used in the

main text.

Notation.—We use units in which c = ~ = 1, and define the reduced Planck mass MP to be

M−2
P = 8πG. Our index and summation conventions are explained in the main text.

1.2 Overview of the effective field theory of inflation

In this paper we focus on single-field models of inflation which terminate in a unique minimum,

which we refer to as the ‘reheating minimum’. In multiple-field models there are complications

associated with our freedom to set initial conditions. These determine the average field-space

trajectory followed by the region of the universe we choose to study. In a single-field model there

is a unique trajectory which terminates in the reheating minimum.

In both single- and multiple-field cases it is quantum fluctuations around this average field-

space trajectory which are inherited by the large-scale density perturbation, but where there is

no unique trajectory the calculation of these fluctuations is a serious computational challenge.

Their evolution must be followed until an ‘adiabatic limit’ has been reached, at which all iso-

curvature modes become exhausted (Weinberg 2003; Weinberg 2004a; Weinberg 2004b; Meyers

and Sivanandam 2011; Elliston, Mulryne et al. 2011). Normally this will require numerical meth-

ods. In contrast, the fluctuations produced in single-field inflation—or, more precisely, ‘single-

clock’ inflation (only one relevant degree of freedom)—typically do not evolve and can be com-

puted analytically under certain circumstances. Below, we discuss the precise conditions which
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are required.

Model parametrization.—Our aim is to estimate the Lagrangian parameters which characterize

a single-field inflationary model. How many such parameters are needed? The answer depends

on the range of behaviour which we allow. Cheung et al. gave an argument based on nonlinearly

realized Lorentz invariance which, under certain conditions, constrains the possible three-body in-

teractions between scalar perturbations on a smooth inflationary background (Cheung, Creminelli

et al. 2008). This is the ‘effective field theory of inflation’. In this section we briefly review their

construction.

The effective field theory is not used to describe the background cosmology, but only fluc-

tuations around it. Therefore it is agnostic regarding the precise mechanism of inflation. The

background is assumed to be described by a Robertson–Walker metric

ds2 = −dt2 + a2(t) dx2, (1.1)

where a(t) is the scale factor, t is cosmic time and H (t) = ȧ/a is the Hubble rate. Since the back-

ground is evolving it spontaneously breaks time-translation invariance (and therefore manifest

Lorentz invariance), but because the spatial slices are homogeneous and isotropic the background

remains manifestly invariant under spatial coordinate transformations. We will use the termino-

logy ‘coordinate transformations’ and ‘diffeomorphisms’ interchangeably.

Knowledge of the background evolution is equivalent to specifying H (t) as a smooth function

of t. The condition that the universe is ‘single-clock’ is that a coordinate system exists in which

only the metric carries fluctuations; in this coordinate system all fields needed to describe the mat-

ter sector are homogeneous, depending only on the time t. By analogy with similar constructions

in particle physics, Cheung et al. called this coordinate system the unitary gauge. Where the

matter sector is described by a single scalar field φ it corresponds to the gauge where fluctuations

δφ vanish, but this is not necessary.

To describe dynamics we require a Lagrangian. A Lagrangian which is manifestly invariant

under the unbroken (linearly-realized) group of purely spatial coordinate transformations will be

a function F which transforms as a scalar under these diffeomorphisms. Cheung et al. argued

that the most general such Lagrangian could be constructed as a scalar function of the metric

and the intrinsic and extrinsic curvature tensors on the spatial slices, together with their covariant

derivatives (Cheung, Creminelli et al. 2008). These may appear in arbitrary combinations with

t and the metric function g00, which are both invariant under spatial coordinate transformations.

Therefore,

Sgen =

∫
d4x
√
−g F

(
Rµνρσ ,Kµν ,∇µ ,g

00, t
)
. (1.2)
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By itself, this Lagrangian can describe fluctuations around any cosmological background with

linearly-realized spatial diffeomorphism invariance. Specializing it to the background H (t) fixes

the background and linear terms,

S =

∫
d4x
√
−g

( M2
P

2
R + M2

P Ḣg00 −M2
P (3H2 + Ḣ) +

∑
n>2

Fn
(
δRµνρσ , δKµν ,∇µ , δg

00, t
))
, (1.3)

where δRµνρσ and δKµν are, respectively, perturbations in the intrinsic and extrinsic curvature

tensors, and δg00 = g00 + 1 is the perturbation in the time–time metric function or ‘lapse’. The ar-

bitrary functions Fn are homogeneous polynomials of order n, and therefore the leading correction

to the first three terms appearing in (1.3) is quadratic.

We have not yet made use of the requirement that the full theory is invariant under time re-

parametrizations, t → t′ = t + ξ (x), where the translation ξ may be a function of position.3 On an

expanding cosmological background this symmetry is spontaneously broken. Nevertheless, once

a choice of spatially-invariant operators has been made in Eq. (1.3), the broken time-translation

symmetry is strong enough to fix the interactions of one scalar mode. To determine these interac-

tions we construct a new action by formally performing a time translation t → t′ = t − π. If we

promote π to a dynamical field which shifts linearly under time translations (that is, π → π′ = π−ξ

when t → t′ = t + ξ) then the total action becomes manifestly invariant. The field π represents

a scalar degree of freedom in the system, but its interactions are fixed uniquely by the combin-

ation of tensors appearing in the Fn , the background cosmology H (t), and the time translation

symmetry (Creminelli, Luty et al. 2006; Cheung, Creminelli et al. 2008; Cheung, Fitzpatrick et al.

2008; Weinberg 2008; Senatore, Smith and Zaldarriaga 2010)

For this formalism to be useful it must be possible to calculate each amplitude of interest

using states which contain no more than a handful of π particles, or π-lines in diagrammatic

terms. This is not generally true. But if all background fields are time-independent then rigid time

translations t 7→ t′ = t + ξ (with ξ a constant) are a global symmetry of the theory, no matter

what transformation law we ascribe to π. Therefore π must behave as a Goldstone boson: where

it appears in the action it must be accompanied by at least one derivative. In a process which takes

place at a well-defined characteristic energy scale E, each derivative will translate to a power of E.

The justification for neglecting diagrams which contain a large number of π-lines is then the same

as any effective field theory of Goldstone modes, enabling a perturbative expansion in powers of

E/M where M is some large mass scale characterizing the strength of the interactions. The mass

scale M characterizes the energy scale of the fundamental theory and therefore is necessarily much

larger than the energy scale at which we would like to calculate.

3An arbitrary action of the form (1.3) can describe theories with this symmetry, in addition to others which do not.
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For applications to inflation the background fields are not constant but slowly varying, so

rigid time translations are only an approximate symmetry. Therefore terms involving undifferen-

tiated powers of π may appear in the action, although suppressed by dimensionless factors which

measure the degree to which the global symmetry is broken. These generate effects which are

unaccompanied by powers of E/M and therefore may be important at all energies.4 However,

provided the approximate symmetry is sufficiently good that corrections to it are at least as small

as the first neglected power of E/M it is still possible to carry out a consistent calculation. During

inflation we are interested in the type of correlations induced by each operator between modes of

the quantized field near the epoch of Hubble exit, so the scale E will be of order the Hubble scale

H .

At sufficiently high energies E > Emix the Goldstone mode decouples from the remaining

degrees of freedom in δRµνρσ and δKµν . (The notation ‘Emix’ was introduced by Cheung,

Creminelli et al. (2008), who emphasized that below Emix the mixing with gravitational degrees of

freedom cannot be ignored.) If the decoupling scale Emix is at least modestly smaller than E = H

then it is possible to study how each operator generates correlations without including gravitational

fluctuations. In this paper we will work exclusively in the decoupling limit. With this assumption,

Bartolo et al. (2010a); Bartolo et al. (2010b) gave an effective action up to cubic terms,

SEFT =

∫
d4x
√
−g

{
M2

P Ḣ (∂µπ)2 + 2M4
2

[
π̇2 − π̇

(∂π)2

a2

]
−

4
3

M4
3 π̇

3

−
M̄3

1

2a2

[
−2H (∂π)2 +

(∂π)2∂2π

a2

]
−

M̄2
2

2a4

[
(∂2π)(∂2π) + H (∂2π)(∂π)2 + 2π̇∂2∂jπ∂jπ

]
−

M̄2
3

2a4

[
(∂2π)(∂2π) + 2H∂2π(∂π)2 + 2π̇∂2∂jπ∂jπ

]
−

2M̄3
4

3a2 π̇
2∂2π +

M̄2
5

3a4 π̇(∂2π)2 +
M̄2

6

3a4 π̇(∂i∂jπ)2 −
M̄7

3! · a6 (∂2π)3

−
M̄8

3! · a6 ∂
2π(∂i∂jπ)2 −

M̄9

3! · a6 ∂i∂jπ∂j∂kπ∂k∂iπ
}
.

(1.4)

Our notation has been chosen to match Bartolo et al. (2010a) and Bartolo et al. (2010b). The

mass scales M2, M3 and M̄1, . . . , M̄9 characterize the model under consideration.5 Terms dec-

4It is these terms which cause superhorizon evolution of the perturbations in multiple-field models. Their importance

at all scales is reflected in the fact that they remain relevant even when k/aH is very soft.
5To aid intuition, the powers of the Mi and M̄i appearing in Eq. (1.4) have been chosen so that the Mi and M̄i all

have dimensions of mass when using natural units in which c = ~ = 1. In some cases this means that positive integer

powers of masses appear, such as M4
3 , which can only be positive if M3 is real. In reality there is an undetermined sign

which we are suppressing, so that M4
3 should be regarded as an object which can be either positive or negative. The

associated mass scale is |M4
3 |

1/4.
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orated with a bar are associated with operators involving the extrinsic curvature δKµν , whereas

unbarred terms correspond to powers of δg00. In writing Eq. (1.4), Bartolo et al. did not include all

possible operators: they neglected higher-derivative operators containing derivatives of the form

∇µδg
00 and ∇λKµν , and from the lowest-derivative combinations for each Mi or M̄i they retained

only terms which gave a parametrically large contribution to the three-point function. We can

expect the higher-derivative operators to be small provided the mass scales Mi , M̄i are sufficiently

large, which is already the condition that the EFT is predictive. Therefore, although (1.4) does

not represent the most general set of interactions, it is reasonable to speculate that it may ap-

proximate the most general set of observable interactions for a smooth background H (t). In this

paper we only consider backgrounds which satisfy this smoothness requirement. The properties

of fluctuations over backgrounds which are not sufficiently smooth require a separate analysis; for

example, see Bartolo, Cannone and Matarrese (2013) and Adshead, Hu and Miranda (2013).

When is the decoupling approximation valid? Estimates for the scale Emix were given by Ch-

eung, Creminelli et al. (2008), but strictly this scale can be determined only when the Mi and M̄i

are known and therefore it must be checked a posteriori. As an example, in canonical single-field

inflation, Cheung et al. argued that Emix ∼ ε
1/2H , where ε ≡ −Ḣ/H2 is a measure of the degree

to which the global symmetry of rigid time translations is broken. If ε � 1 then a decoupling

regime can exist near the Hubble scale.

The scales Mi and M̄i can be adjusted to reproduce the results of well-known models includ-

ing canonical single-field inflation, Dirac–Born–Infeld inflation (Alishahiha, Silverstein and Tong

2004) and Ghost Inflation (Arkani-Hamed et al. 2004). Alternatively they may be allowed to float.

The action (1.4) then explores a range of interactions for fluctuations on a quasi-de Sitter back-

ground with nonlinearly realized Lorentz invariance, subject to the proviso (as described above)

that only the dominant term for each Mi and M̄i has been retained. In principle these mass scales

depend on time, but because we are taking the time-dependence of background quantities to be

very weak we will treat them as constants.

1.3 Calculation of the bispectrum

In this paper our aim is to estimate the parameters Mi , M̄i by using observations to indirectly

reconstruct the two- and three-point functions 〈ππ〉 and 〈πππ〉. By itself, π is not an observable

and neither are its correlations: the measurable quantity is the temperature fluctuation δT/T as a
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function of angular position on the sky. Typically this is decomposed into harmonics, generating

corresponding amplitudes a`m ,

δT (n̂)
T

=
∑
`m

a`mỲ m (n̂), (1.5)

where n̂ represents an orientation on the sky and Ỳ m (n̂) is a conventionally-normalized spherical

harmonic. The amplitude a`m can be predicted in terms of primordial quantities using the formula6

a`m = 4π(−i)`
∫

d3k
(2π)3∆` (k)ζ (k)Ỳ m (k̂), (1.6)

where the ‘curvature perturbation’ ζ = δ ln a(x, t) represents a fluctuation in the local scale factor

a(x, t). It can be related to π via ζ = −Hπ up to terms which vanish on superhorizon scales, i.e.

in the limit k/aH → 0, where k is the Fourier mode under consideration and aH is the comoving

wavenumber associated with the Hubble length.

In writing (1.6) we have assumed that, for each relevant Fourier mode, ζ (k) attains a practic-

ally time-independent value by some time during the radiation era. The transfer function ∆` (k)

describes the subsequent process by which this time-independent seed perturbation is taken up by

fluctuations in the primordial plasma and propagated to the surface of last scattering, where it con-

stitutes a temperature fluctuation δT . Under these circumstances, Eq. (1.6) shows that the n-point

functions of the a`m can be linearly related to the n-point functions of ζ (k), and therefore π(k),

provided we evaluate the curvature perturbation in (1.6) at a time when the O(k/aH) corrections

in the relationship between π and ζ are negligible.

Correlation functions of ζ .—Therefore, we must estimate the correlation functions of ζ at the

time they achieve their constant values. It is this requirement which makes the study of multiple-

field models challenging (Elliston, Mulryne et al. 2011; Dias, Ribeiro and Seery 2013), because it

is difficult to predict in advance when the time-independent epoch will occur. In single-field mod-

els the situation is simpler because the approximate global symmetry under rigid time translations

(together with certain technical assumptions) is sufficient to prove the operator statement ζ̇ = 0 in

the limit k/aH → 0 (Assassi, Baumann and Green 2013; Senatore and Zaldarriaga 2010; Senatore

and Zaldarriaga 2011; Senatore and Zaldarriaga 2012; Baumann and Green 2011; Baumann, Sen-

atore and Zaldarriaga 2011). Therefore all correlation functions of ζ are constant on superhorizon

scales, where |k/aH | is negligible. An important consequence of this result is that subleading

terms in the effective action (1.4) map to subleading terms in each n-point function (Dias, Ribeiro

and Seery 2013), so to obtain a lowest-order result there is no need to consider corrections to (1.4)

due to our neglect of time dependence in the Mi , M̄i .

6We have absorbed a conventional factor of 3/5 into the normalization of the transfer function.
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In perturbation theory, a three- or higher n-point function is computed by integrating the re-

action rate for an n-body interaction together with factors representing the available interaction

volume and the probability for suitable particles to be present. These techniques were first ap-

plied to inflation by Maldacena (2003) and later refined by various authors (Creminelli 2003;

Alishahiha, Silverstein and Tong 2004; Seery and Lidsey 2005b; Seery and Lidsey 2005a; Wein-

berg 2005; Chen et al. 2007; Burrage, Ribeiro and Seery 2011; Elliston, Seery and Tavakol 2012).

We refer to this literature for technical details. In this section we wish to emphasize that, in the

context of a general effective field theory, there are subtleties associated with computation of the

field mode functions. These represent the amplitude for single-particle excitations of the vacuum.

Therefore their properties significantly influence the n-point functions because they determine the

probability for particles to be present in the interaction region.

Bartolo et al. noted that the scales M1, M̄1, M̄2 and M̄3 in Eq. (1.4) are correlated with con-

tributions to the second-order effective action, and of these M̄2 and M̄3 generate kinetic terms

involving fourth-order derivatives. Kinetic terms of this type had previously been encountered in

the ‘Ghost Inflation’ scenario proposed by Arkani-Hamed et al. (2004). Such terms are problem-

atic because they imply that the mode functions can no longer be expressed in terms of elementary

functions. This obstructs analytic integration of the interaction rate and hence each n-point func-

tion. In scenarios which require these high-order kinetic terms, exact results for the correlation

functions typically require numerical calculation.

Bartolo et al. gave an explicit formula for the mode functions including the contribution of

fourth-order terms, expressed in terms of hypergeometric functions and generalized Laguerre poly-

nomials (Bartolo et al. 2010a), and performed an analysis of its influence on each n-point func-

tion (Bartolo et al. 2010a; Bartolo et al. 2010b). They concluded that the fourth-order terms could

significantly modify propagation deep within the horizon, but produced qualitatively similar res-

ults near the epoch of horizon exit. Since the correlations we are seeking to study are exponentially

dominated by interactions occurring near this epoch, this implies that an acceptable estimate of

the bispectrum shape can be obtained using a simpler mode function which does not account for

fourth-order contributions. The penalty for this approximation is an uncertainty in the amplitude,

which arises from a difference in normalization between the mode functions with and without

the inclusion of fourth-order terms. For more details we refer to the discussion in Bartolo et al.

(2010a) and Bartolo et al. (2010b).

In this paper we follow Bartolo et al. and estimate each bispectrum shape by neglecting the

influence of fourth-order terms. This means that our results must be interpreted with some care:

1. When applied to a model for which M̄2 = M̄3 = 0, our results are exact within the approx-
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imations which have already been discussed. In this case, we expect both our qualitative

and quantitative conclusions to be reliable.

2. When applied to a model for which at least one of M̄2 or M̄3 is nonzero, the normalization of

our bispectra will be incorrect for the reasons just explained. This uncertainty in normaliz-

ation affects the bispectrum for each operator in Eq. (1.4), not just those associated with the

scales M̄2 and M̄3—but we expect that it should be approximately the same for all of them.

In this scenario, our quantitative estimates for the mass scales Mi , M̄i are not reliable. How-

ever, qualitative conclusions regarding the relative importance of each operator should be

unaffected because ratios of these mass scales divide out any uncertainty in normalization.

To obtain reliable quantitative estimates of the mass scales when at least one of M̄2 or M̄3

is nonzero, it would be necessary to substitute numerical calculations of the bispectra in our

analysis. In addition, the likelihood function to be discussed in §1.4 would no longer be ap-

proximately Gaussian and the analysis to follow should be replaced by a more sophisticated

numerical exploration of the likelihood surface.

These modifications significantly increase the complexity of the analysis. They would cer-

tainly be required if observations provided pressure to include an M̄2 or M̄3 term in the

effective Lagrangian. At present, our view is that such a step in complexity is not justified

by the data.

1.4 Estimating the EFT mass scales

Bispectrum of curvature perturbation.—Under the approximations discussed in §1.3, the shapes

of the bispectra generated by each operator in Eq. (1.4) were plotted in Bartolo et al. (2010a).

We tabulate analytical results for the corresponding three-point functions (which were not given

explicitly in Bartolo et al. (2010a)) in Appendix 1.A. The total three-point function for ζ should

be obtained by summing these contributions, weighted by an appropriate mass scale Mi or M̄i .

In what follows it will be convenient to collect these mass scales, together with other nor-

malization factors, into dimensionless combinations λα given in Table 1.1. There are eleven in-

dependent mass scales and therefore eleven independent λα . We use Greek indices α, β, . . . ,

to label these scales and the corresponding Lagrangian operators, which we write abstractly as

Oα . Each index ranges over the values A, B, . . . , K , and the effective action is the combination
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SEFT =
∫

d4x
√
−g

∑
α λαO

α . We position indices so that the normal rules of the Einstein summa-

tion convention are respected, but for clarity we will usually write summations over these indices

explicitly. With these choices, we find

Bζ (k1, k2, k3) =
3
5

∑
α

λαBα (k1, k2, k3), (1.7)

where B labels the bispectrum, defined so that (for example)

〈ζ (k1)ζ (k2)ζ (k3)〉 = (2π)3δ(k1 + k2 + k3)Bζ (k1, k2, k3), (1.8)

and similarly for the π three-point function, which produces a bispectrum Bα for each operator

Oα . In Eq. (1.7) the normalization of each λα has been adjusted so that the Bα satisfy

Bα (k, k, k)
6Pζ (k)2 = 1, (1.9)

where Pζ (k) = 2π2As/k3 is the power spectrum andAs is the scalar amplitude. Each bispectrum

is evaluated at the equilateral point and in principle depends on the side length k. However,

because the n-point functions we study are nearly scale invariant (which for the bispectra implies

Bα (k, k, k) ∼ k−6), the precise choice of scale used to fix this normalization is unimportant. For

a precisely local bispectrum, our convention (1.9) would make the corresponding λα equal to

the conventional nonlinearity parameter f local
NL . In general, however, the Bα will not be local and

although each nonlinearity parameter such as f local
NL , f equi

NL , etc., will be a linear combination of the

λα , the coefficients in these combinations need not be simple.

Projection to the CMB bispectrum.—Eq. (1.6) shows that measurements of the microwave back-

ground anisotropies do not furnish information about Bζ directly, but only via correlation functions

of the a`m . The first such correlation function which contains accessible information regarding Bζ

is the three-point function 〈a`1m1 a`2m2 a`3m3〉. It is conventional to extract a combinatorical factor

G
l1l2l3
m1m2m3—the so-called ‘Gaunt integral’—which is nonzero only for allowed combinations of the

`i and mi . The remainder of the correlation function is written as a ‘reduced bispectrum’ b`1`2`3 ,

〈a`1m1 a`2m2 a`3m3〉 = b`1`2`3G
`1`2`3
m1m2m3

. (1.10)

Our task is to determine b`1`2`3 given Bζ . A strategy for doing so was developed by Fergus-

son, Liguori and Shellard (2010); Fergusson, Liguori and Shellard (2012); Fergusson, Regan and

Shellard (2012); Fergusson, Regan and Shellard (2010); Regan, Shellard and Fergusson (2010)

and extended by other authors (Byun and Bean 2013; Battefeld and Grieb 2011). We briefly re-

count the steps in this strategy, using the notation of Regan, Mukherjee and Seery (2013) and
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Parameter expressed as a mass scale

in terms of H H eliminated

λA
−

65
20736

1
π4ε3c4

sA
2
s

M̄3
1 H3

M6
P

−
65

648
√

2

1

πε3/2c5/2
s A

1/2
s

M̄3
1

M3
P

λB
−

85
10368

1
π4ε3c2

sA
2
s

M4
2 H2

M6
P

−
85

1296
1

π2ε2csAs

M4
2

M4
P

λC
−

325
62208

1
π4ε3c4

sA
2
s

M̄2
2 H4

M6
P

−
325
972

1
εc2

s

M̄2
2

M2
P

λD 5
3888

1
π4ε3A2

s

M4
3 H2

M6
P

5
486

cs

π2ε2As

M4
3

M4
P

λE
−

65
7776

1
ε3c4

sA
2
s

M̄2
3 H4

M6
P

−
130
243

1
εc2

s

M̄2
3

M2
P

λF 5
3888

1
π4ε3c2

sA
2
s

M̄3
4 H3

M6
P

5
√

2
243

1

πε3/2c1/2
s A

1/2
s

M̄3
4

M3
P

λG
−

65
46656

1
π4ε3c4

sA
2
s

M̄2
5 H4

M6
P

−
65

729
1
εc2

s

M̄2
5

M2
P

λH
−

65
186624

1
π4ε3c4

sA
2
s

M̄2
6 H4

M6
P

−
65

2916
1
εc2

s

M̄2
6

M2
P

λ I 115
69984 π4ε3c6

sA
2
s

M̄7H5

M6
P

460
√

2
2187

πA1/2
s

ε1/2c7/2
s

M̄7

MP

λJ 115
279936

1
π4ε3c6

sA
2
s

M̄8H5

M6
P

115
√

2
2187

πA1/2
s

ε1/2c7/2
s

M̄8

MP

λK
−

115
559872

1
π4ε3c6

sA
2
s

M̄9H5

M6
P

−
115

2187
√

2

πA1/2
s

ε1/2c7/2
s

M̄9

MP

Table 1.1: Parameters λα in terms of the coefficients in the Lagrangian. The speed of sound of the fluctuations is denoted by cs and

As is the amplitude of the power spectrum defined in (82).
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Regan, Gosenca and Seery (2013). First, for each bispectrum Bα one defines a corresponding

dimensionless ‘shape function’ Sα using a fixed reference bispectrum Bref,

Sα (k1, k2, k3) ≡
Bα (k1, k2, k3)
Bref(k1, k2, k3)

. (1.11)

In principle, our final predictions do not depend on the choice of Bref. In practice we will be

forced to make approximations, some of which may introduce a residual dependence on Bref. For

this reason it is helpful to choose a form which has good numerical properties; often it is a good

choice to fix a Bref which shares features similar to the Bα . In this paper we will use the ‘constant’

bispectrum (Fergusson and Shellard 2009),

Bref(k1, k2, k3) = 6
(

2π2As

k1k2k3

)2

. (1.12)

Second, one chooses a set of functions Rn which furnish at least an approximate basis for the

functions Sα . We define coefficients ααn so that

Sα (k1, k2, k3) ≈
∑
n

ααnR
n (k1, k2, k3). (1.13)

In practice it is only possible to retain a finite number of the Rn ,7 so they should be chosen to

give an acceptable approximation for each Sα using only a small number of modes. For details

regarding the construction of suitable Rn we refer to the literature (Fergusson, Regan and Shel-

lard 2010; Byun and Bean 2013; Battefeld and Grieb 2011). Our implementation uses 80 basis

functions and achieves correlations of greater than 99% for each template Sα . It follows that, to a

good approximation, the ζ bispectrum can be written

Bζ (k1, k2, k3) ≈
3
5

Bref(k1, k2, k3)
∑
n

∑
α

λαα
α
nR

n (k1, k2, k3). (1.14)

The map from ζ (k) to a`m expressed by Eq. (1.6) is linear, and therefore the observable quant-

ity b`1`2`3 must be proportional to a linear combination of the coefficients
∑
α λαα

α
n . Therefore

we can write

b`1`2`3 =
∑
n,m

Γn
mbn`1`2`3

∑
α

λαα
α
m =

∑
α

λαbα`1`2`3
, (1.15)

where bα
`1`2`3

is the reduced angular bispectrum associated with the operator Oα ,

bα`1`2`3
≡

∑
n,m

ααmΓn
mbn`1`2`3

, (1.16)

and the basis functions bn
`1`2`3

are defined in Fergusson, Liguori and Shellard (2010) and Regan,

Mukherjee and Seery (2013). They do not depend on any details of the cosmological model, which

7The error associated with this truncation is one place where residual dependence on the reference bispectrum Bref

can appear.
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is carried only by the ‘transfer matrix’ Γnm . This can be expressed as an integral over the linear

transfer function ∆` (k). The virtue of the approach of Fergusson, Shellard et al. is that calculation

of Γnm is numerically more tractable than calculation of an arbitrary bispectrum. Explicit formulae

for the bn
`1`2`3

and Γnm were given in Regan, Mukherjee and Seery (2013) and Regan, Gosenca

and Seery (2013). To compress notation we define ᾱαn ≡
∑

m Γn
mααm and β̄n =

∑
α λα ᾱ

α
n , from

which it follows that

b`1`2`3 ≈
∑
n

β̄nbn`1`2`3
. (1.17)

This projection procedure introduces correlations between the observable bispectra bα
`1`2`3

produced by different Lagrangian operators, even if the corresponding primordial bispectra Bα (k1, k2, k3)

are nearly uncorrelated. We will return to this issue in §1.4.1 below.

Comparison with data.—It follows from Eq. (1.17) that information about the observable bis-

pectrum from a microwave background survey can be reduced to estimates of the β̄n and their

covariances. We denote these estimates β̂n and write their covariance matrix Ĉmn ,

Ĉmn ≈ 〈∆ β̂m∆ β̂n〉, (1.18)

where ∆ β̂n is the deviation of the observed β̂n from its expected value, ∆ β̂n ≡ β̂n − β̄n . The

standard methods of linear algebra can be used to obtain an orthonormal combination of bispectra

from a Cholesky decomposition of this matrix (Fergusson, Liguori and Shellard 2010; Fergusson,

Liguori and Shellard 2012; Fergusson, Regan and Shellard 2012; Fergusson, Regan and Shellard

2010; Regan, Shellard and Fergusson 2010; Regan, Mukherjee and Seery 2013; Regan, Gosenca

and Seery 2013). In the interests of simplicity we assume this has been done, which makes Ĉmn

equal (for the rotated bispectra) to the identity matrix.8

For a set of measurements β̂n , the likelihood function L represents the probability that these

values would be observed given a particular model for their origin—in this case, the effective

8We estimate Ĉmn from the covariance matrix of the cubic needlet statistic, after changing basis to the Rn as

described in §II.B of Regan, Mukherjee and Seery (2013). (See also Regan, Gosenca and Seery (2013).) The signal-to-

noise for the bispectrum (1.18) is roughly( S
N

)2
≈ −2 ln L ≈

∑
mn

β̄m (Ĉ−1)mn β̄n , (1.19)

making Ĉmn a Fisher estimate of the covariance for the β̄n . Under the assumption that the bispectrum is small we

assume that this covariance matrix is a reasonable approximation to 〈∆βm∆βn〉.

To compute Ĉmn we use a suite of 50,000 Gaussian simulations, and for the change-of-basis coefficients we use a

suite of 1,000 non-Gaussian simulations. These simulations incorporate the effect of the WMAP beam and mask for

each channel, including noise with variance-per-pixel determined by the WMAP 9-year data release. In the rotated

basis, where we choose Ĉmn = δmn , all these details are transferred to the definition of the β̂n .
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Lagrangian (1.4) with parameters λα . Assuming that the non-Gaussianity is sufficiently weak that

the β̂n are Gaussian distributed, this probability can be written

L ( β̂n |λα ) =
1√

2π det Ĉ
exp

(
−

1
2

∑
m,n

(Ĉ−1)mn
∆ β̂m∆ β̂n

)
. (1.20)

Maximum likelihood estimator.—It is now simple to construct a maximum likelihood estimator

for the λα by finding the combination which has the greatest likelihood given the data. This gives

the estimate

λ̂α =
∑
β

b̂β (F̂ −1)βα , (1.21)

where b̂α is defined by

b̂α =
∑
m,n

β̂m (Ĉ−1)mn ᾱαn . (1.22)

The matrix F̂ is the Fisher matrix associated with the likelihood (1.20),

F̂ αβ = −
∂2 ln L

∂λα∂λβ
=

∑
m,n

ᾱαm (Ĉ−1)mn ᾱ
β
n . (1.23)

Truncating at the quadratic level, its inverse is formally the covariance matrix of the λ̂α ,

〈(λ̂α − λα )(λ̂β − λβ )〉 = (F̂ −1)αβ . (1.24)

In the rotated basis, where Ĉmn is defined to be the unit matrix, Eq. (1.23) makes F̂ αβ the square

of the matrix ᾱαn which expresses the decomposition of the angular bispectrum corresponding to

the operator Oα . In practice the Fisher formalism and Eq. (1.24) are likely to be trustworthy only

in the limit of sufficiently high signal-to-noise.9

The maximum likelihood estimator is an essentially frequentist concept, as is its variance (1.24).

In a Bayesian framework one should instead interpret (F̂ −1)αβ as the covariance of the posterior

probability distribution of the parameters λα , constructed from a single set of measurements β̂n ,

assuming that any prior probabilities for the λα are flat over the range of interest.

1.4.1 How many independent shapes?

This analysis applies provided the matrix F̂ αβ is invertible. However, invertibility may fail if two

linear combinations of the operators Oα produce nearly degenerate angular bispectra. This would

imply that F̂ αβ has an approximate null eigenvector.

9In the limit of high signal-to-noise the maximum likelihood estimator satisfies the Cramér-Rao bound and therefore

coincides with the Fisher result (Vallisneri 2008).
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The appearance of exact or approximate null eigenvectors implies that the likelihood function

is a singular Gaussian distribution: it does not vary along directions in parameter space which

correspond to the null eigenvectors. Therefore the variance of the maximum likelihood estim-

ator (1.24) is formally infinite for all λ̂α . To deal with this one should first discard those combina-

tions of parameters which are unconstrained by the likelihood function. This is necessary even in

the case of an approximate null eigenvector, because although the Fisher matrix may be formally

invertible it will usually be ill-conditioned. Therefore we should trust a numerical inversion only

if it is possible to compute F̂ αβ to very high accuracy. Typically this cannot be done because the

accuracy with which we know F̂ αβ is limited by our ability to estimate Ĉmn , and by the numerical

integrations required to compute ᾱαn . For a discussion of the issues involved in handling singular

Fisher matrices, see (for example) Vallisneri (2008).

Measures of correlation.—Two operators will produce degenerate bispectra if their decomposi-

tion coefficients ααm or ᾱαm are nearly the same. These two measures do not have to agree, because

(as explained on p. 70) the projection from ααm to ᾱαm can change the degree of correlation. The

Fisher matrix F̂ is constructed from angular bispectra, and therefore—as a point of principle—

the problematic degeneracies are those which occur for the ᾱαm . But in practice, for computation

reasons, it is sometimes more practical to use the ααm as a proxy.

To measure the correlation between two primordial bispectra B1 and B2 we introduce an inner

product, defined by

〈〈S1,S2〉〉 ≡

∫
V

dv S1(k1, k2, k3)S2(k1, k2, k3)ω(k1, k2, k3), (1.25)

where S1 and S2 are the corresponding shape functions, dv is an element of volume on the integra-

tion domainV (which corresponds to allowable triangular configurations of the momenta ki), and

ω is a weight function which can be chosen to suit our convenience. For a more detailed discussion

of Eq. (1.25) we refer to the literature (Fergusson, Liguori and Shellard 2010). We normalize the

Rn so that 〈〈Rm ,Rn〉〉 = δmn and therefore (1.13) implies

〈〈S1,S2〉〉 =
∑
n

α1
mα

2
m . (1.26)

When measuring correlations between angular bispectra it is helpful to account for the ability of

the WMAP instrument to distinguish between different shapes. This ability is measured by the

matrix (Ĉ−1)mn discussed in footnote 8 on p. 70. We define

〈〈b1
`1,`2,`3

,b2
`1,`2,`3

〉〉 =
∑
m,n

ᾱ1
m (Ĉ−1)mn ᾱ2

n . (1.27)
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Note that we write the inner product 〈〈·, ·〉〉 for both the primordial and angular bispectra, but they

are not equal; the definition is different depending whether it is taken between primordial or an-

gular bispectra. In either case it is conventional to measure the correlation between shapes by

defining a ‘cosine’,

cos(1,2) =
〈〈1,2〉〉

〈〈1〉〉1/2〈〈2〉〉1/2
, (1.28)

where ‘1’ and ‘2’ should be substituted by the appropriate angular or primordial bispectrum.

Principal directions.—To factor out the degenerate directions we diagonalize F̂ , finding a new

orthogonal matrix U and a nonnegative-definite diagonal matrix Σ so that F̂ = UΣUt where a

superscript ‘t’ denotes matrix transposition.10 The matrix U can be regarded as a rotation from the

operators Oα to a new set of operators Oα
′

which satisfy Oα
′

=
∑
α O

αUα
α′ , and likewise a new

set of dimensionless coefficients λα′ =
∑
α λαUα

α′ . The Lagrangian
∑
α λαO

α =
∑
α′ λα′O

α′

is invariant under a rigid rotation of this kind.

The presence of degeneracies means that the eigenvalues of F̂ vary significantly in magnitude.

The largest eigenvalues are

2.23 × 10−3, 1.70 × 10−4, 7.17 × 10−7, 1.22 × 10−9, and 1.20 × 10−14, (1.29)

with the remaining eigenvalues being of order 10−15 or smaller. We retain the first four, which

corresponds to a hierarchy between largest and smallest eigenvalues of ∼ 106.11 The correspond-

ing eigenvectors in parameter space yield four linear combinations λ1, λ2, λ3, λ4 which can be

constrained. It should be remembered that because the covariance matrix Ĉmn defined in (1.18)

depends on details of the WMAP experiment (including the masks, beam and noise properties as

described in footnote 8 on p. 70), the Fisher matrix and therefore the shapes corresponding to these

leading eigenvalues also depend on these details. They may vary between experiments, depending

on the varying sensitivity of each experiment to different regions of multipole-space. The precise

specification of the leading shapes given in Table 1.3, and we plot the shapes of the corresponding

primordial bispectra in Fig. 1.1.

Shapes of principal directions.—These shapes can be given an approximate interpretation in terms

of the standard templates. Fig. 1.1a is associated with the largest eigenvalue, and is therefore the

10In practice, it can happen that numerical inaccuracies cause F̂ to develop very small negative eigenvalues which

spoil simple diagonalization strategies. Where this occurs we perform a singular value decomposition, which cor-

responds to finding (possibly complex) unitary matrices U, V and a nonnegative-definite diagonal matrix Σ so that

F̂ = UΣVt. We discard complex directions and check that the results are stable under exchange of U and V.
11The hierarchy is too large to allow the numerical inversion of the rotated Fisher matrix Σα′β′ when keeping any

more than the first 4 principal components.



74
Optimal bispectrum constraints on single-field models of inflation

(a) O1 (b) O2

(c) O3 (d) O4

Figure 1.1: Bispectrum shapes generated by the operators Oα
′

corresponding to the constrainable parameter combinations λα′ .

These plots follow the conventions of Babich, Creminelli and Zaldarriaga (2004). For each Oα
′

the plotted quantity is

x2y2Bα′ (x, y, 1)/Bα′ (1, 1, 1) where x = k1/k3 and y = k2/k3 (no sum on α′).

best-measured shape. It exhibits significant correlations for x = y = 0.5, which corresponds

the ‘folded’ configuration (Meerburg, Schaar and Corasaniti 2009). Fig. 1.1b exhibits significant

correlations in the equilateral limit x = y = 1, and some anticorrelation in the folded configuration.

It can be regarded as an approximate ‘orthogonal’ shape (Senatore, Smith and Zaldarriaga 2010).

Together, a linear combination of these two configurations can be used to produce an approximate

‘equilateral’ shape. These results are consistent with the forecast of Byun and Bean (2013), who

suggested that (neglecting the local shape), the highest signal-to-noise should be achieved for

shapes similar to the folded and orthogonal templates. Note that Byun & Bean’s analysis was

based on a survey with Planck-like masks, beams and noise rather than the WMAP9 characteristics

adopted here.

Fig. 1.1c has an interior node, where—without our choice of signs—anti-correlations have a

local maximum in the interior of the allowed triangular region. This is quite different to the be-
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haviour of Figs. 1.1a–1.1b, in which local maxima only occur for extreme configurations on the

boundary of the allowed region. The shape of Fig. 1.1c is similar to a shape produced in a Galileon

theory by Creminelli, D’Amico et al. (2011), and later reproduced in a general Horndeski Lag-

rangian by Burrage, Ribeiro and Seery (2011) and Ribeiro and Seery (2011). Finally, Fig. 1.1d is a

complex shape containing an interior node together with substantial correlations in the equilateral

configuration. It represents something different from the shape of Fig. 1.1c, but it will be seen

in §2.6 below that it is rather weakly constrained by the data.

These results are consistent with the conclusions of Ribeiro and Seery (2011), who found that

in a very general single-field model12 it could be possible to produce a measurable signal in a mode

similar to that of Fig. 1.1c, or equivalently the Creminelli et al. shape (Creminelli, D’Amico et al.

2011), but that further orthogonal shapes would be difficult to measure.

Correlation of shapes.—We tabulate the correlation between these shapes in Table 1.2, and also

between these shapes and the standard CMB templates. The correlation is computed for the prim-

ordial bispectra using (1.25). In particular we note that, although the angular bispectra for the Oα
′

are orthogonal by construction, mapping back to the primordial bispectrum introduces some cor-

relation; for example, cos(O3,O4) = −0.62. This degradation is expected, because the increasing

covariance represented by (1.29) will cause noise to dominate over signal. Therefore the linear

relationship between the primordial and CMB n-point functions, implied by Eq. (1.6), is no longer

satisfied.

One can regard these results as a reflection of the fact that the first three operators O1, O2 and

O3 are reasonably well-measured, whereas the fourth operator O4 is only weakly constrained.

1.4.2 Results

A framework for estimating the β̂n from a CMB temperature map using wavelet or needlet meth-

ods was developed by Regan, Mukherjee and Seery (2013); Regan, Gosenca and Seery (2013).

and we refer to these papers for more details on the implementation of the estimator. Wavelets

(and needlets) offer several advantages as a means to decompose a CMB map due to their localiz-

ation in both scale and position. In addition, they allow for considerable data compression without

impairing the optimality of the estimator. For example, Curto, Martinez-Gonzalez and Barreiro

(2010) found that optimality could be achieved using only 15 wavelet scales, corresponding to 680

12Ribeiro et al. worked with a model for the fluctuations which is equivalent to the fluctuations in a general Horndeski

action. Although very permissive, this model is still less general than the full effective field theory (1.4).
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O1 O2 O3 O4

O1 1.00 −0.03 −0.11 −0.01

O2 −0.03 1.00 0.17 0.24

O3 −0.11 0.17 1.00 −0.62

O4 −0.01 0.24 −0.62 1.00

constant −0.95 −0.21 −0.09 0.00

equilateral −0.80 −0.57 0.03 −0.16

flat −0.73 0.19 −0.38 0.31

local −0.54 0.00 −0.29 0.02

orthogonal 0.36 −0.79 0.27 −0.35

Table 1.2: Cosines of the shapes appearing in Fig. 1.1 between themselves and the standard CMB templates. Inner products are

computed using (1.25) and the constant bispectrum as a reference.

triples. In this paper we also fix 15 such scales.

We apply these methods to 9-year data from the WMAP satellite (Hinshaw et al. 2013; Bennett

et al. 2013). After diagonalizing our Fisher matrix F̂ = UΣVt, we can rewrite Eq. (1.21) as

∑
α′



∑
α

λ̂αUα′

α


 Σα′β′ =

∑
β

b̂βUβ′

β , (1.30)

which has the same functional form as (1.21), with rotated coefficients λ̂α′ =
∑
α λ̂αUα′

α and b̂β′ =∑
β b̂βUβ′

β . The Fisher matrix for the constrainable parameters λα′ is given by Σα′β′ , which is the

diagonal matrix of the first 4 principal eigenvalues listed in Eq. (1.29). Therefore we can constrain

4 rotated parameters λα′ (corresponding to 4 linear combinations of the original parameters λα),

with covariance matrix 〈(λ̂α′ − λα′ )(λ̂β′ − λβ′ )〉 = (Σ−1)α′β′ . For the constrainable parameters

{λα′ } = {λ1, λ2, λ3, λ4} we find

Estimate

λ̂1 −22.9 ± 20.9

λ̂2 94.9 ± 76.7

λ̂3 −956 ± 1180

λ̂4 42400 ± 28600
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The quoted errors are 1σ and marginalized over the other λα′ . Contour plots for the best-fit values

of the parameters are shown in Fig. 1.3.

Senatore, Smith and Zaldarriaga (2010) obtained constraints on the amplitude of the ‘equi-

lateral’ and ‘orthogonal’ bispectrum templates from the 5-year WMAP data, and used these to

constrain a subset of terms in the effective Lagrangian (1.4). They concluded that each shape in-

cluded in their analysis could be approximately described by a linear combination of these two

templates, up to ∼ 90% correlation. However, they included only two of the operators in Eq. (1.4).

Our analysis demonstrates that it is possible to increase the number of linearly independent oper-

ators from two to four, although the estimate λ̂4 = 42400 ± 28600 shows that that sensitivity is

already decreasing markedly for the fourth parameter.

1.5 Constraints on models

In §1.4 we obtained constraints on certain linear combinations of the EFT scales Mi , M̄i . The

remaining linear combinations formally have infinite uncertainties because of degeneracies. To-

gether, these results summarize the information which can be recovered from the WMAP9 bis-

pectrum, but to apply them to specific models we must first match the mass scales Mi , M̄i . In

this section we give two examples of this programme for models of observational interest: the

Dirac–Born–Infeld model (‘DBI inflation’) and ‘Ghost inflation’.

Once the Mi , M̄i are known, the results of §1.4 would give four constraints on different com-

binations of these scales. Depending how many scales are needed to parametrize an individual

model, it may be possible to estimate some or all of them, or they may even be over-constrained.

The latter possibility indicates that the model is a poor fit for the data. Where more than four mass

scales are needed to characterize a model, the constraints pick out an observationally-allowed

subspace which is consistent with the CMB bispectrum measurements.

Methodology.— To map our four constraints for {λ1, λ2, λ3, λ4} onto a subset of the original

parameter space Mi , M̄i we minimize the value

X2 =

4∑
α′=1

[
λα′ (Mi , M̄i ) − λ̂α′

]2

Σ−1
α′α′

, (1.31)

where Σα′β′ is the diagonal matrix of principal eigenvalues listed in Eq. (1.29); λα′ (Mi , M̄i )

represents the value of the linear combination λα′ which would be predicted given a fixed choice

of mass scales Mi , M̄i ; and λ̂α′ represents the value estimated from the data in §1.4. With four
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constraints on the λα′ we can constrain up to four of the Mi , M̄i . In general, this approach will

allow us to find approximate estimates even in the case that a model is over-constrained.

We take X2 to be χ2-distributed with four degrees of freedom. The λα′ are constructed from a

linear combination of the β̂n , and we assume that the experimental error for each β̂n is independent

and Gaussian-distributed. Because the λα′ are chosen to be orthogonal, the experimental errors

on each λ̂α′ will be obtained from a nearly uncorrelated sum of Gaussians, and will therefore

also be nearly independent. This makes X2 approximately equal to a sum of four approximately

independent, unit Gaussians, and hence roughly χ2-distributed.

Confidence intervals for the Mi , M̄i could be determined by searching for suitable critical

values of the χ2 distribution. Alternatively, assuming that the λ̂α′ have uncorrelated Gaussian

errors, we could expand X2 to second order around the maximum likelihood point,

X2 = X2��mle +
∑
α′β′

∂2X2

∂λα′∂λβ′

�����mle
(
λα′ − λα′ ��mle) (λβ′ − λβ′ ��mle) + · · ·

= X2��mle + ∆X2,

(1.32)

and construct confidence contours at the nth-σ level by searching for critical values where ∆X2 =

n2. In principle these methods agree if the λ̂α′ are Gaussian and uncorrelated. We find that the

agreement is not quite exact, which we ascribe to a small residual correlation between the errors

on the λ̂α′ . The single-parameter constraints reported below are obtained using the second-order

expansion (1.32), which reproduces the Fisher-matrix estimates. For two or more parameters

we report constraints extracted from critical values of the full χ2-distribution with 4 degrees of

freedom.

DBI inflation.—The first example we consider is the ‘Dirac–Born–Infeld’ or ‘DBI’ inflationary

model.

The Dirac–Born–Infeld action describes fluctuations of a membrane moving in a warped trans-

verse space, or ‘throat’. Under certain circumstances it can describe an inflationary epoch in which

inflaton perturbations propagate at less than the speed of light from the perspective of a brane-

based observer, due to constraints imposed by the extradimensional covering theory. The small

sound speed means that these models can produce significant nongaussianities in the equilateral

mode.

Fluctuations in a single-field DBI model can be described by the effective action (1.4), retain-

ing only the B and D operators (Cheung, Creminelli et al. 2008),

λBO
B ∝ M4

2
1
a2 π̇(∂π)2 (1.33a)

λDO
D ∝ M4

3 π̇
3. (1.33b)
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This model does not involve the problematic scales M̄2, M̄3 which lead to normalization inac-

curacies for the single-particle mode functions and therefore we expect our estimates to be quant-

itatively reliable.

The original DBI model had a single free parameter and therefore M2 and M3 cannot be chosen

independently but are correlated as described below. Alternatively, one can consider a larger fam-

ily of DBI-like models which retain only these operators but allow M2 and M3 to vary. Following

Senatore et al., constraints are typically expressed using the parameters

1
c2

s
= 1 −

2M4
2

M2
P Ḣ

= 1 −
324
85

λB, (1.34a)

c̃3
( 1
c2

s
− 1

)
=

2M4
3 c2

s

M2
P Ḣ

= −
243
10

λD . (1.34b)

Causality requires the speed of sound cs to be less than or equal to unity. Since Ḣ < 0 during

inflation it follows that M4
2 must be positive (see footnote 5 on p. 62). If M4

2 & M4
P |Ḣ | then a

significant bispectrum can be generated. The reason for expressing constraints in terms of these

parameters is that it is not possible to determine M2 and M3 without simultaneously specifying Ḣ .

The original DBI model imposes the constraint c̃3 = 3(1 − c2
s )/2.

We estimate the joint constraints on λB and λD to be

λB = −1151 ± 760 (1.35a)

λD = 946 ± 584. (1.35b)

The Planck collaboration expressed their constraints in terms of fNL-like parameters f eft1NL and

f eft2NL . In our notation these correspond, respectively, to λB under the assumption λD = 0 and

λD under the assumption λB = 0. Using the 2013 dataset, the Planck collaboration reported the

bounds f eft1NL = 8 ± 73 and f eft2NL = 19 ± 57 (Ade et al. 2013). Using the same notation, we find

f eft1NL = 68.3 ± 103 (1.36a)

f eft2NL = 69.3 ± 79. (1.36b)

The Planck2013 errors represent an improvement of order 30%.

Alternatively, each bound can be expressed in terms of cs and c̃3. To compare with the con-

straints reported by the Planck collaboration we consider three possibilities. First, marginalizing

over c̃3 gives a conservative lower bound on cs,

cs > 0.010 at 95% confidence. (1.37a)
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Figure 1.2: Constraints on the DBI-like parameters cs, c̃3.

For comparison, Planck2013 found cs > 0.02 (Ade et al. 2013) at the same confidence level.

Second, imposing c̃3 = 0 gives

cs > 0.044 at 95% confidence. (1.37b)

Finally, assuming the strict DBI relation between cs and c̃3 leaves cs as a single free parameter.

We find

cs > 0.051 at 95% confidence. (1.37c)

Planck2013 obtained cs > 0.07 (Ade et al. 2013), also at 95% confidence. Eq. (1.37c) can also be

expressed as an fNL parameter for the DBI shape. This gives

f dbiNL = 69.6 ± 97.4. (1.38)

Finally, allowing both cs and c̃3 to vary results in a lower bound for cs and relatively weak con-

straints for c̃3, plotted in Fig. 1.2.

Similar bounds were reported by Senatore, Smith and Zaldarriaga (2010). Our construction

ensures that the bounds reported above correspond to the most accurate constraints which can be

achieved using this data set, because the shapes are explored using four rather than two orthogonal

directions in the likelihood (1.31). For example, using only the leading principal component to

construct the likelihood yields the constraint cs > 0.061 in the DBI model. This bound unduly

weights the component of the DBI shape along this principal direction, giving an overly optimistic

constraint when compared with the four-component result (1.37c).
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Ghost inflation.—Our second example is the ‘Ghost inflation’ model proposed by Arkani-Hamed

et al. (2004), in which inflation is driven by a so-called ‘ghost condensate’ which spontaneously

breaks Lorentz invariance in the background. The ghost condensate is described by a scalar field

φ whose time derivative gains a nonvanishing vacuum expectation value, 〈φ̇2〉 = M2 , 0. This

expectation value is time-independent and is not diluted as inflation proceeds.

In the effective theory, fluctuations around the background correspond to nonzero M̄2
2 and M̄2

3 ,

and the limit Ḣ → 0. This limit sets the quadratic spatial-derivative terms in (1.4) to zero, so that

the speed of sound is formally zero. The fluctuations are nevertheless propagating modes because

higher-order spatial derivative terms are present in the Lagrangian. The relevant EFT operators

are

λCO
C ∝

M̄4
2

a5

( H
2
∂2π(∂π)2 + π̇∂2∂iπ∂iπ

)
(1.39a)

λEO
E ∝

M̄2
3

a4

(
H∂2π(∂π)2 + π̇∂2∂iπ∂iπ

)
. (1.39b)

The arrangement of derivatives is identical up to a relative factor of 2 in the first term. In terms of

the mass scales M̄2 and M̄3 we have

λC = −
325

972c2
s ε

M̄2
2

M2
P

, (1.40a)

λE = −
130

243c2
s ε

M̄2
3

M2
P

. (1.40b)

The inclusion of factors of cs and ε is purely formal, since this model technically involves the

limits cs → 0 and ε → 0. Proceeding as for the DBI model we obtain the maximum-likelihood

estimates

λC = −3680 ± 2280 (1.41a)

λE = 3900 ± 2450. (1.41b)

Bartolo et al. observed that the operators (1.39a)–(1.39b) are nearly the same and chose to

aggregate them into a single term operator by introducing a common mass scale M̄0, satisfying by

M̄2
0 ≡ 2M̄2

3 /3 ≡ −2M̄2
2 . The λ corresponding to this aggregate operator [still defined to satisfy

the normalization condition (1.9)] represents an estimate of the amplitude of the ghost-inflation

bispectrum, and we label it λghost. As explained in §1.3, the ghost inflation model involves fourth-

order kinetic terms whose details we do not capture, and therefore the precise normalization of

this estimate is uncertain. We find

λghost = −68.4 ± 100.5. (1.42)
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For comparison, the Planck collaboration reported the constraint f ghost
NL = −23±88. Both estimates

agree that the bispectrum in this channel is consistent with zero within 1σ. In addition, this

comparison shows that, even in a case where the normalization uncertainty is important, our result

matches an exact calculation within a factor of order unity.

1.6 Model comparison using the bispectrum

The analyses of §§1.4–1.5 determine best-fit values for the λα , essentially in a frequentist sense,

assuming a fixed model for the underlying microphysical fluctuations. Therefore our conclusions

up to this point are restricted to parameter estimation.

Within this framework it is not possible to address questions such as whether the best-fit com-

bination for DBI inflation, Eqs. (1.35a)–(1.35b), represents a better description of the data than the

best-fit combination for Ghost inflation, Eqs. (1.41a)–(1.41b). These broader questions constitute

the province of model comparison. Recent work has addressed the issue of inflationary model

comparison based on measurements of the two-point function of the temperature anisotropy (Mar-

tin et al. 2013). It is much more challenging to perform a similar analysis based on the three-point

function. In this section we take some steps towards this objective within the framework described

in §§1.2–1.4.

For computational reasons we must impose limitations on the meaning of the term ‘model’.

Conceptually this should include whatever information is necessary to specify the value of each

observable. For example, the transfer matrix Γnm depends on the post-inflationary cosmological

history and in a global analysis the parameters which specify this history should be varied in addi-

tion to the inflationary parameters Mi , M̄i . However, this generates a large parameter space which

is expensive to search because calculation of Γnm is time-consuming. In this analysis we will fix

the transfer matrix using standard best-fit values for the post-inflationary history and address the

more restricted question of which inflationary model yields a better fit for the three-point function

given these assumptions.

Evidence for a model.—There is no single metric which unambiguously quantifies the evidence

for or against a particular model. One popular choice is the ‘Bayes factor’. For a particular set of

observations D and a pair of models M1 and M2, this is defined to be the ratio of likelihoods,

K12 =
P(D |M1)
P(D |M2)

=

∫
P(D |λ1,M1)P(λ1 |M1) dλ1∫
P(D |λ2,M2)P(λ2 |M2) dλ2

. (1.43)
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We use λ1, λ2 to schematically denote two different choices of the parameters λα which charac-

terize a particular model. Because M1 and M2 are different they may require a different number of

parameters.

The probabilities P(λi |Mi ) represent the prior probability, for each model, that a particular

parameter choice occurs. They must be chosen by hand. Where meaningful prior information

exists (for example, previous measurements of a parameter) this can be encoded using these prob-

abilities.

Empirical scales are used to give meaning to the Bayes factor. Commonly used examples

are due to Jeffreys or Kass and Raftery (1995). In Kass & Raftery’s prescription, ln K in the

range (1,3) is considered evidence in favour of M1, whereas ln K in the range (3,5) is considered

strong evidence and larger values of K are considered decisive. Ratios for which | ln K | < 1 are

uninformative.

Choice of priors.—In our case the λα represent Lagrangian coefficients. Some prior estimates

exist, but the datasets from which these were obtained are not independent of the 9-year WMAP

data used in this analysis. For this reason we disregard these prior constraints, and therefore some

other way must be found to justify the functional form of each prior.

If we insist that perturbation theory is valid then the λα should not be too large. This re-

quirement is convenient but not obviously necessary. However, for the purpose of performing

a concrete calculation we shall adopt it in what follows. In that case, the requirement that the

bispectrum generated by the operator Oα does not overwhelm the power spectrum Pζ is roughly

|λα |P
1/2
ζ . 1, and therefore |λα | . 104. This limit is helpful but gives no guidance regarding the

functional form of P(λα |M). To explore the range of outcomes we consider two possibilities:

• The ‘Jeffries prior’ P(λα ) ∝ |λα |−1. This choice assigns equal probability for each dec-

ade of |λα |: that is, for λα to be between 1 and 10, 10 and 100, and so on. The Jeffries

prior makes it relatively likely for |λα | to be near zero, and therefore can be regarded as

conservative.13

• The flat prior, for which P(λα ) is constant. This choice assigns equal probability to each

13Strictly, the Jeffries prior has a divergence at λα = 0. We regularize this by cutting out the region |λα | < 1 and

taking P(λα ) to be zero within it. We have checked that our results are robust to modest changes of the boundary

value. The choice of cutoff at unity is, of course, somewhat arbitrary. However, motivated by the fact that in the single

parameter case λα corresponds to the conventionally defined fNL parameter, we note that error bars on fNL for single

field inflationary models are at best expected to achieve values of order unity. Therefore, we shall regard λα = 1 as a

‘natural’ cutoff, but shall also consider the dependency of the results on the cutoff, by presenting results with cutoff at

0.01, i.e. at a value of order of the slow roll parameters.
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value of λα , and therefore makes it relatively more likely for |λα | to be large. It is less

conservative than the Jeffries prior in the sense that that it enhances the probability for the

Lagrangian (1.4) to predict observably large nongaussianities.

Examples

• First, consider the comparison between a trivial Gaussian model (M1) for which λα = 0 and

a DBI-like model (M2) with free parameter λB , 0.

Adopting the Jeffries prior, the Bayes factor between these models is

K21 =
1
I

exp
( χ2(λB = 0)

2

) ∫ 104

−104
exp

(
−
χ2(λB)

2

) dλB

|λB |
. (1.44)

The normalization factor I formally satisfies I =
∫ 104

−104 dλB/|λB |, although it is regularized

as described in footnote 13. We find ln K21 ≈ 0.63 which gives no preference for either

model. Note that there is an ‘Ockham’s razor’ penalty implicit in (1.44), because the para-

meter λB is allowed to float over a relatively large interval. For a flat prior this Ockham

penalty strongly disfavours the DBI model, producing ln K21 = −4.23. We conclude that

the data are not sufficient to overcome the ambiguity in specifying a prior.

The Bayes factor K21 is only one of a number of metrics which can be used to assess good-

ness of fit. Another is the Akaike ‘information criterion’, defined by AIC = χ2
mle + 2k,

where k measures the number of parameters in the model and is a proxy for the ‘Ock-

ham razor’ penalty of Eq. (1.43). The model with smallest AIC is preferred. We find

AIC1 − AIC2 = −1.56, which implies a preference for the trivial Gaussian model M1 in

comparison to a model with nonzero λB. The same preference is found if we allow any

other single Lagrangian parameter to be nonzero.

• Next, consider a third DBI-like model M3 in which the two parameters λB and λD (or,

equivalently, the parameters cs and c̃3 in the notation of §1.5) are allowed to float. We find

Jeffries prior

AIC difference | ln K |, cutoff=1 | ln K |, cutoff=0.01

M1 vs. M3 −0.94 1.26 0.75

M2 vs. M3 0.62 0.64 0.38

The Akaike information criterion prefers M1 to M3, but M3 to M2. Therefore the trivial

Gaussian model M1 is preferred overall, but if we discard this option then the information

criterion prefers a two-parameter fit (M3) to a single-parameter fit (M2).
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The Bayes factors are inconclusive, but it could be argued that they show a weak preference

for the opposite conclusion. We compute the Bayes factor using two different choices for

the regularization of the Jeffries prior; see footnote 13 on p. 84. A smaller cutoff increases

the weight of probability for the λα to be near zero, and therefore decreases the probability

that the model generates an observable signature. As we increase the lower limit for the

parameters λα to the ‘natural’ level λα = 1, the Bayes factor does not strongly discriminate

between a two- or three-parameter fit. However, it does marginally begin to disfavour a

two-parameter fit (M3) compared to the trivial model (M1). Therefore it appears that a fit

for a DBI-like model using more than two parameters becomes mildly in tension with the

data for ‘natural’ choices of the dimensionless scales λα .

The apparent discrepancy with the Akaike information criterion should be ascribed to a

stronger ‘Ockham’ or complexity penalty in the Bayes factor. The information criterion

down-weights each model by a fixed amount depending on the number of parameters,

whereas the Bayes factor attempts to account for the increased volume of parameter space

which becomes available. For example, using a flat prior instead of the Jeffries prior very

strongly disfavours the models M2 and M3.

1.7 Discussion and conclusions

The availability of high-quality maps of the CMB temperature anisotropy from the WMAP and

Planck missions means that it has become feasible to search for primordial three-point correla-

tions. Such correlations are typically predicted by any scenario in which the fluctuations have an

inflationary origin, due to microphysical three-body interactions among the light, active degrees of

freedom of the inflationary epoch. If detected, their precise form could provide decisive evidence

in favour of the inflationary hypothesis.

Unfortunately, due to issues of computational complexity, it is not yet possible to perform

a blind search for these primordial three-point correlations. Instead, we must search for signals

which we have some prior reason to believe may be present in the data. Therefore the amount of

information we manage to extract depends on which signals we choose to look for.

In this paper we have made a systematic search of the 9-year WMAP data for correlations

which could be produced in a very general model of single-field inflation, under the assumption

that the background evolution is smooth, yielding corresponding smooth and nearly scale-invariant
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correlation functions. This excludes models which contain sharp features or oscillations (Starob-

insky 1992; Adams, Ross and Sarkar 1997; Adams, Cresswell and Easther 2001; Hailu and Tye

2007; Bean et al. 2008; Achucarro et al. 2011; Joy, Sahni and Starobinsky 2008; Hotchkiss and

Sarkar 2010; Nakashima et al. 2011; Adshead, Hu, Dvorkin et al. 2011). It also excludes models

in which significant three-point correlations are generated by differences of evolution between re-

gions of the universe separated by super-Hubble distances. Correlations generated by this mechan-

ism are generally most significant in the ‘squeezed’ or soft limit, where the correlation is between

fluctuations on very disparate scales. Such correlations have been disfavoured by analysis of the

Planck2013 data release (Ade et al. 2013). By comparison, the 9-year WMAP data achieve a

smaller signal-to-noise for such configurations. The difference between the 9-year WMAP and

Planck2013 datasets is less pronounced for the momentum configurations which we probe, with

for example 1σ error bars on f equil
NL improving from 117 to 75.

The essential steps of our analysis were assembled in §§1.2–1.4. We begin with an effective

field theory which parametrizes the unknown details of three-body interactions between inflaton

fluctuations, but preserves nonlinearly realized Lorentz invariance. The effective theory is agnostic

regarding the physical mechanism which underlies inflation. We compute the bispectrum gener-

ated by each operator in the effective theory, and break these into principal components using a

Fisher-matrix approach. The amplitude of each principal component is recovered from the data,

after which the results can be translated into constraints on the mass scales which appeared in the

original effective theory. We find that no significant deviation from Gaussianity has been detec-

ted in any region of the inflationary parameter space. This conclusion is consistent with previous

analyses of the 9-year WMAP and Planck2013 datasets.

Our principal components are similar to those obtained by Byun & Bean, who forecast the

constraints which could be obtained from a Planck-like survey (Byun and Bean 2013). We find

that the best-constrained principal direction exhibits similarities to (in order) the flattened, ortho-

gonal and ‘Galileon’ templates. A fourth principal direction is more complex, but at best weakly

constrained.

The large space of models which fit into the class of single-field scenarios invites attempts to

identify best-fitting regions. To approach this problem we use the framework of Bayesian model

comparison. The results are at best weakly significant, but tend to disfavour models with more

parameters when compared to simpler cases with zero or one parameter. This is not surprising

given that the amplitude of each principal direction is consistent with zero. However, it should be

borne in mind that our analysis is restricted to smooth and nearly scale-invariant bispectra. It is

possible that a significant signal of a different type is hidden in the data. In some cases, n-point
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functions of this type can be described within the framework of effective field theory (Bartolo,

Cannone and Matarrese 2013). The analysis developed in §§1.2–1.4 could be applied immediately

to such scenarios given a suitable choice of basis functions Rn .
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1.A Three-point functions for the EFT operators

This appendix has been expanded from the version in the original paper to include more details

of the calculation of the three-point functions corresponding to each operator in the effective Lag-

rangian (1.4). The principal tool is Schwinger’s formulation of ‘in–in’ expectation values and

the corresponding expansion into diagrams due to Keldysh (Schwinger 1961; Bakshi and Ma-

hanthappa 1963a; Bakshi and Mahanthappa 1963b; Keldysh 1964). The technique was applied

to general relativity by Jordan, who used it to study the effective equations of motion obtained by

integrating out quantum fluctuations (Jordan 1986). It was imported into cosmology by Calzetta

and Hu (1987) and applied to inflation by Maldacena (2003) and subsequent authors (Weinberg

2005; Weinberg 2006).

In–in calculations.—Calculating inflationary correlation functions corresponds to computing an

expectation value of an operator O at a fixed time t∗, usually taken to be the end of inflation, given
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some ‘in’-state at very early times. So what we want to construct in this case are averages over

all subsequent field histories of the in-states, because in cosmology we have no prior information

on the out-states. Therefore we need to do an “in-in” calculation, instead of the usual “in-out”

calculations that are used in calculating transition amplitudes in standard scattering calculations,

where the “in” state at past infinity becomes an “out” state at future infinity. This expectation can

be computed in a couple of ways. The calculations of the propagator and bispectrum for the simple

inflation model in §0.4.3 and §0.8.3 were conducted using the Hamiltonian formulation (Malda-

cena 2003). In this appendix we will use the path integral formalism (Seery and Lidsey 2005b)

to calculate the bispectrum contributions arising from the EFT operators. Both ways are entirely

equivalent. This expectation value is

〈O〉∗ ≡ 〈in|O(t∗) |in〉, (1.45)

where the subscript ‘∗’ is used to denote evaluation of O at time t∗. In the present case, O will cor-

respond to a product of field operators evaluated at the same time but at distinct spatial positions.

Inserting a complete set of intermediate states labelled by the three-dimensional field config-

uration π(x,T ) at some arbitrary time T > t∗∫
[dπ(x,T )] |π(x,T )〉〈π(x,T ) | = 1, (1.46)

we conclude

〈O〉∗ =

∫
[dπ(x,T )] 〈in|π(x,T )〉〈π(x,T ) |O(t∗) |in〉, (1.47)

where the measure [dπ(x,T )] denotes integration over all field configurations (Peskin and Schroeder

1995). Each overlap in (1.47) can be written as a conventional Feynman path integral,

〈π(x,T ) |in〉 =

∫
[dπ]π (x,T )

in exp
[
iS(π)

]
(1.48)

with the integration running over all field histories π(x, t) which are consistent with the in-state

|in〉 in the far past, and which coincide with the configuration π(x,T ) at time T . The result is the

‘closed time path’ integral

〈O(t∗)〉 =

∫
[dπ+ dπ−]O(t∗) exp

[
iS(π+) − iS(π−)

]
δ[π+(T ) − π− (T )], (1.49)

with the independent integrations π+, π− running over field histories which are compatible with

the in-state but are unrestricted at late times. This is shown in Figure. 1.4.

The action now implicitly contains iε terms that implement the |in〉 vacuum as described

in Weinberg (2005). Eq. (1.49) admits an expansion into diagrams in which the Green’s func-

tions connecting only ‘+’ or only ‘−’ fields obey the usual Feynman boundary conditions, but are
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augmented by Green’s functions which mix the ‘+’ and ‘−’ labels and whose boundary conditions

are determined by the δ-function. For further details, see Weinberg (2005).

Figure 1.4: Schwinger’s closed time path integral.

Mode functions.—It was explained in §1.3 that we approximate the mode functions as Hankel

functions of order 3/2. Analytically, this corresponds to building Green’s functions from the mode

function

u(τ,k) =
iH√

4ε c̃sk3
(1 + ikc̃sτ)e−ikc̃sτ , (1.50)

and its complex conjugate. In this formula, τ = −
∫ ∞
t

dt′/a(t′) is the conformal time and c̃s is

a ‘generalized’ speed of sound. This will also contain iε terms, but they can be accounted for by

rotating the contour of integration over the action at −∞, which we will denote in future equa-

tions by −∞+. The procedure is analogous to performing a Wick rotation τ → iτ in Minkowski

space (Peskin and Schroeder 1995). In a model without fourth-derivative kinetic terms this will

usually be the phase velocity, determined from the ratio of coefficients of the spatial and temporal

kinetic terms. In other cases it may bear less relation to what would normally be thought of as

a phase velocity. Our notation coincides with that of Bartolo et al. (2010a) and Bartolo et al.

(2010b), to which we refer for further details; see especially the discussion below Eq. (2.6) in

Bartolo et al. (2010b). In writing Eq. (1.50) we have assumed that the in-state |in〉 contains zero

particles, corresponding to the ‘Bunch–Davies’ vacuum (Bunch and Davies 1978).

The general expression for the propagator (67) can be written as

〈ζ (k1, τ)ζ (k2, η)〉 = (2π)3δ(k1 + k2) ×


u(k1, τ)u∗ (k2, η) τ < η

u∗ (k1, τ)u∗ (k2, η) τ > η

(1.51)

Calculating three-point correlation functions amounts to setting the operator O(t∗) appearing

in (1.49) to be the product of three copies of the field π evaluated at a common time τ∗, but
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with different wave numbers

〈πk1πk2πk3〉 =

∫
[dπ] π(k1, τ∗)π(k2, τ∗)π(k3, τ∗) exp

[
iS(π)

]
, (1.52)

The action can be expanded order by order as follows S = S2 + S3 + . . . , where S2 is the second

order “Gaussian” action and S3 is the interaction action (1.4). Performing a Taylor expansion of

exp
[
iS3(π)

]
and keeping only the leading order non-zero contribution gives 14

〈πx1πx2πx3〉 =

∫
[dπ] exp

[
iS2(π)

]
π(k1, τ∗)π(k2, τ∗)π(k3, τ∗)

[
iS3(π)

]
, (1.53)

where the “external” momenta ki are associated with the time of observation τ∗. The three-point

function contribution from each operator in the EFT action (1.4) is computed by substituting the

operator into this equation. As an example we will detail the calculation of the three-point function

arising from OD = −4M4
3 π̇

3/3. Transforming to conformal time and using ζ = −Hπ to write the

correlation functions in terms of the observationally relevant quantity ζ we can use (1.53) to write

this operators contribution to the three-point function as

〈ζk1ζk2ζk3〉 =

∫
[dζ] exp

[
iS2(π)

]
ζ (k1, τ∗)ζ (k2, τ∗)ζ (k3, τ∗)∫ τ∗

−∞+

dη
∫

d3x
4
3

M3(t)4 1
H4η

∫
Πi

[ d3qi
(2π)3

]
ζ ′(q1, η)ζ ′(q2, η)ζ ′(q3, η)

exp
[
− i(q1 + q2 + q3) · x

]
,

(1.54)

where we written OD in Fourier space and have also used the fact that a = −1/Hη. The “internal”

momenta qi are associated with early times. Performing the d3x and [dζ] integrals we find

〈ζk1ζk2ζk3〉 =

∫ τ∗

−∞+

dη
∫

d3x
4
3

M3(t)4 1
H4η

∫
Πi

[ d3qi
(2π)3 (2π)3

]
δ(q1 + q2 + q3)

〈ζ (k1, τ∗)ζ ′(q1, η)〉〈ζ (k2, τ∗)ζ ′(q2, η)〉〈ζ (k3, τ∗)ζ ′(q3, η)〉

+ perms. + c.c.,

(1.55)

where we used Wick’s theorem to break up the correlation function into three copies of the propag-

ator (1.51) connecting internal and external momenta, where the permutations arise from all the

different ways to connect the internal momentum lines associated with the interaction with the

external physical momenta.

Using (1.51) and (1.50) it is straightforward to show that this reduces to

〈ζk1ζk2ζk3〉 = −
1
24

i(2π)3δ(k1 + k2 + k3)M3(t)4H?

( c̃s

ε

)3

(1 + ic̃sk1τ∗)(1 + ic̃sk2τ∗)(1 + ic̃sk3τ∗)exp[−ic̃sktτ∗]∫ τ∗

−∞+

dη η2exp[ic̃sktη] + perms. ,

(1.56)

14The first term in the Taylor expansion will be zero as a consequence of the Gaussian measure. Higher order terms

in S3(π) will be negligible as they will be down by a factor of slow-roll compared to the tree-level contribution.
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We are performing the calculations at horizon-crossing and the Hubble parameter is approxim-

ately constant during inflation so H ≈ H?. The integral can be computed by performing many

integrations by parts. The result is∫ τ∗

−∞+

dη η2eic̃sktη =
[ i
c̃skt

τ2
∗ +

2
c̃2

s k2
t

τ∗ +
2i

c̃3
s k3

t

]
eic̃sktτ∗ (1.57)

where the contour rotation at −∞ means that there are no boundary contributions from −∞ as we

expect. Substituting this back into (1.56) and ignoring terms O(τ∗) or higher because they will be

subleading around horizon-crossing, the final result is

〈ζk1ζk2ζk3〉 = −
1
4

(2π)3δ(k1 + k2 + k3)M3(t)4 H2
?

ε3k3
β

1
k3
t

(1.58)

with kt = k1 + k2 + k3 and k3
β = k1k2k3. Performing similar calculations for the other terms, the

three-point function contributions corresponding to the EFT operators in (1.4) are:

• OA = −M̄3
1 (∂π)2∂2π/2a4

Bζ (k1, k2, k3) ⊇
1
16

M̄3
1

H3
?

ε3c4
s
∏
i

k3
i

k2
1 k2 · k3 A1 + 1→2 + 1→3 ,

(1.59)

• OB = −2M4
2 π̇(∂π)2/a2

Bζ (k1, k2, k3) ⊇
1
8

M4
2

H2
?

ε3c2
s
∏
i

k3
i

k2
1 k2 · k3

(
1
kt

+
k2 + k3

k2
t

+
2k2k3

k3
t

)
+ 1→ 2 + 1→ 3 ,

(1.60)

• OC = −M̄2
2

[
H (∂2π)(∂π)2/2 + π̇∂2∂jπ∂jπ

]
/a4

Bζ (k1, k2, k3) ⊇
1
16

M̄2
2

H4
?

ε3c4
s
∏
i

k3
i

k2
1 k2 · k3

[
A1 + (k2

2 + k2
3 ) A2

]
+ 1→ 2 + 1→ 3 ,

(1.61)

• OD = −4M4
3 π̇

3/3

Bζ (k1, k2, k3) ⊇
1
2

M4
3

H2
?

ε3 ∏
i

ki

1
k3
t

,

(1.62)

• OE = −M̄2
3

[
H (∂π)2∂2π + π̇∂2∂jπ∂jπ

]
/a4

Bζ (k1, k2, k3) ⊇
1
8

M̄2
3

H4
?

ε3c4
s
∏
i

k3
i

k2
1 k2 · k3


A1 +

k2
2 + k2

3

2
A2


 + 1→2 + 1→3 , (1.63)
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• OF = −2M̄3
4 π̇

2∂2π/3a2

Bζ (k1, k2, k3) ⊇
1
2

M̄3
4

H3
?

ε3c2
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∏
i
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t

,

(1.64)
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(1.65)

• OH = M̄2
6 π̇(∂i∂jπ)2/3a4

Bζ (k1, k2, k3) ⊇ −
1
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M̄2
6

H4
?

ε3c4
s
∏
i

k3
i

k2
1 (k2 ·k3)2 A2 +1→2+1→3 ,

(1.66)

• OI = −M̄7(∂2π)3/3!a6

Bζ (k1, k2, k3) ⊇
1
4

M̄7
H5
?

ε3c6
s
∏
i

ki
A3 ,

(1.67)

• OJ = −M̄8∂
2π(∂j∂kπ)2/3!a6

Bζ (k1, k2, k3) ⊇
1
12

M̄8
H5
?

ε3c6
s
∏
i

k3
i

k2
1 (k2 ·k3)2 A3 +1→2+1→3 , (1.68)

• OK = −M̄9∂i∂jπ∂j∂kπ∂k∂iπ/3!a6

Bζ (k1, k2, k3) ⊇
1
4

M̄9
H5
?

ε3c6
s
∏
i

k3
i

(k1 · k2)(k1 · k3)(k2 · k3) A3 ,

(1.69)

where 1→ 2 etc. denotes permutations.
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+
15k3

β
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t


 ,

with k2
α = k1k2 + k1k3 + k2k3.
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(a) λ′1 versus λ′2 (b) λ′1 versus λ′3

(c) λ′1 versus λ′4 (d) λ′2 versus λ′3

(e) λ′2 versus λ′4 (f) λ′3 versus λ′4

Figure 1.3: 1σ (red) 2σ (blue) confidence regions for two out of four principal components λ̂α′ constrained by 9-year WMAP

data. The results show consistency with zero magnitude generally within 1 − 1.5σ, suggesting no strong evidence of

nongaussianity in the single field inflationary parameter space.



Paper 2

Transport equations for the inflationary trispectrum

Gemma J. Anderson, David J. Mulryne and David Seery

We use transport techniques to calculate the trispectrum produced in multiple-field inflation-

ary models with canonical kinetic terms. Our method allows the time evolution of the local

trispectrum parameters, τNL and gNL, to be tracked throughout the inflationary phase. We

illustrate our approach using examples. We give a simplified method to calculate the super-

horizon part of the relation between field fluctuations on spatially flat hypersurfaces and the

curvature perturbation on uniform density slices, ζ , and obtain its third-order part for the first

time. We clarify how the ‘backwards’ formalism of Yokoyama et al. relates to our analysis

and other recent work. We supply explicit formulae which enable each inflationary observable

to be computed in any canonical model of interest, using a suitable first-order ODE solver.
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2.1 Introduction

Cosmological inflation predicts the generation of a primordial perturbation, ζ , believed to have

seeded the temperature anisotropy of the cosmic microwave background (“CMB”) and the galaxy

density field. This fluctuation is sensitive to the physics that created it, and therefore different mod-

els of inflation typically generate perturbations with distinct statistical properties. These properties

can be observed by measuring their correlation functions. We expect this approach to provide the

most important observational constraints on an era of early-universe inflation.

What information is encoded in these correlation functions? The two-point function is nearly

determined by the symmetries of the background, rather than the choice of microphysics, although

useful information may be extracted from its scale dependence. The higher n-point functions are

much less constrained, but only the three- and four-point functions (the “bispectrum” and “trispec-

trum”) are likely to be measured in the near future. Canonical single field inflation predicts a bi-

and trispectrum which will be undetectable by present-day or near-future experiments (Maldacena

2003; Lyth and Rodriguez 2005; Seery and Lidsey 2005; Seery, Lidsey and Sloth 2007; Seery and

Lidsey 2007; Seery, Sloth and Vernizzi 2009). But if more than one field is active during inflation,

or noncanonical interactions are present, the three- and four-point functions can be measured and

their properties can discriminate between these possibilities.

Because of their observational relevance and constraining power, these “nongaussian” effects

have received considerable attention. During inflation, each comoving k-mode of a light scalar

field receives a perturbation when the corresponding physical scale crosses outside the horizon.

Once outside, causality forbids any exchange between neighbouring regions and therefore ζ must

be generated by reprocessing the local fluctuations. Where only a single degree of freedom ζg is

relevant, this gives (Starobinsky 1985; Sasaki and Stewart 1996; Lyth and Rodriguez 2005)

ζ (x) = ζg (x) +
3
5

fNL(ζ2
g (x) − 〈ζ2

g〉) +
9
25

gNLζ
3
g (x) + · · · , (2.1)

where all quantities are evaluated at the same time, and x labels a coarse-grained spatial position

with sub-horizon details smoothed out. This local character gives each correlation function a

very distinctive momentum dependence. At leading-order the bispectrum has only one possibility,

generated by the quadratic term in (2.1). Its amplitude is parametrized by the number fNL (Verde

et al. 2000; Komatsu and Spergel 2001), which may depend weakly on the smoothing scale. But

the trispectrum has two possibilities, generated respectively by the cubic term and the square of

the quadratic term. These are conventionally parametrized by the numbers τNL and gNL (Sasaki,
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Väliviita and Wands 2006; Boubekeur and Lyth 2006; Alabidi and Lyth 2006; Seery and Lidsey

2007; Byrnes, Sasaki and Wands 2006). In the single-field case, τNL does not appear in (2.1)

and can be expressed in terms of fNL; the precise relation is τNL = (6 fNL/5)2. Where more

than one light degree of freedom is present, they may all appear in Eq. (2.1) and this relation is

weakened to the Suyama–Yamaguchi inequality τNL > (6 fNL/5)2 (Suyama and Yamaguchi 2008;

Smith, LoVerde and Zaldarriaga 2011). The role of such relations in diagnosing the active particle

spectrum during inflation was recently emphasized by Assassi, Baumann and Green (2012).

Transport methods.—In this paper we explain how the non-linearity parameters τNL and gNL can

be calculated using “transport” methods.

Such calculations can already be carried out within the “δN formalism” (Starobinsky 1985;

Sasaki and Stewart 1996; Lyth and Rodriguez 2005), which requires a Taylor expansion of the

background solution in small displacements from a chosen initial condition. An expression for

τNL was given in this formalism by Alabidi and Lyth (2006). A comparable result for gNL was

provided by Sasaki, Väliviita and Wands (2006) in the context of a curvaton model, and later

generalized to an arbitrary number of light fields in Seery and Lidsey (2007). The “δN” Taylor

expansion leads to concise and attractive analytic results. But it is not ideally suited to numerical

implementation, because it relies on extracting small variations which can easily be swamped by

numerical noise.

In Seery, Mulryne et al. (2012) it was explained that the Taylor expansion can be understood

as a variational method to compute Jacobi fields for the flow of inflationary trajectories in phase

space. These fields can be used to explore local properties of any flow, and were introduced by

Jacobi in his reformulation of Hamiltonian mechanics into what is now Hamilton–Jacobi theory. In

inflation, they represent the geometrical structure which underlies perturbation theory in the long

wavelength limit. They recur in many areas of physics (see, e.g., Hawking and Ellis (1973) and

Visser (1993)), and have been much-studied in WKB approximations to the path integral (DeWitt-

Morette 1976; DeWitt-Morette and Zhang 1983; DeWitt-Morette, Zhang and Nelson 1983).

The Jacobi fields are the necessary ingredient to compute τNL and gNL, but it is not necessary

to use variational techniques to compute them. Their evolution can be determined equally well

using an ordinary differential equation—the ‘Jacobi equation’ (Jacobi 1837). The equivalence was

emphasized by DeWitt-Morette (1976). The Jacobi equation is usually preferable for numerical

implementation. It can be solved using conventional ODE techniques and is usually much more

stable against numerical noise. Jacobi methods are widely used in other applications, including

gravitational lensing (Lewis and Challinor 2006; Lewis 2012).
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With this motivation, one can ask whether it is possible to replace the “δN” Taylor expansion

with an approach based on the Jacobi equation. To do so, one gives an evolution equation for

each n-point function. Such equations were introduced in Mulryne, Seery and Wesley (2010) and

Mulryne, Seery and Wesley (2011) and were originally framed in real space.1 Real-space meth-

ods are adequate if one wishes to extract only the local part of the three-point function. But if

one wishes to include more general momentum-dependence or study n-point functions for n > 4,

where it is necessary to distinguish between “squeezed” and “collapsed” momentum configur-

ations, one must revert to Fourier space as it is not possible to do so in real space. In Seery,

Mulryne et al. (2012) it was explained how to formulate evolution equations for the full k-space

correlation functions, which can be integrated using an approach similar to the “line of sight integ-

ral” used to simplify solution of the Boltzmann equation. In Seery, Mulryne et al. (2012) this was

used to give formal but explicit expressions for the n-point functions in terms of the Jacobi fields

and their derivatives, and hence to demonstrate equivalence with the variational “δN formalism”

up the three-point function.

In this paper we specialize this method to the trispectrum. We write a transport equation

for the four-point function of field fluctuations δϕα defined on spatially flat slices. As in Seery,

Mulryne et al. (2012), this can be integrated in terms of Jacobi fields and reproduces the variational

formulae discussed above. In a second step, we express the correlation functions of ζ in terms of

those of the δϕα . At this point the required values of τNL and gNL can be extracted. However, our

method is not limited to obtention of the ζ correlation functions and can be deployed to determine

the correlation functions of both ζ and any isocurvature modes.

Outline.—In §2.2 we introduce the transport framework and extend it to third order. In §2.2.2 we

write down the full k-dependent equation which evolves the four-point function on superhorizon

scales. By studying the momentum-dependence of this equation, we can extract (in §2.2.3) the

coefficients of the “squeezed” and “collapsed” configurations. We give separate evolution equa-

tions for these.

In §2.3 we demonstrate that the transport (Jacobi) method is equivalent to the familiar Taylor

expansion of the separate universe formalism. We use our evolution equation to derive ordinary

differential equations which evolve the separate-universe Taylor coefficients forward in time, and

which supply the basis of an efficient numerical implementation. In §2.4 we finish the task of

1A similar formalism had been introduced earlier by Yokoyama, Suyama and Tanaka (2007); Yokoyama, Suyama

and Tanaka (2008), who gave evolution equations for the Taylor coefficients of the δN formalism rather than the n-point

functions directly. It was shown in Seery, Mulryne et al. (2012) that these formalisms are equivalent up to the 3-point

function. In §§2.3–2.5 we extend this equivalence to the 4-point function.
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extracting τNL and gNL by computing the relationship between ζ and the field fluctuations δϕα .

Our final expressions are given in §2.4.2. We supply explicit expressions which enable each

inflationary observable to be computed in any canonical model of interest, using a suitable first-

order ODE solver.

In §2.5 we describe the alternative backwards transport method introduced by Yokoyama et al.,

and extend it to accommodate the trispectrum parameters. We briefly comment on the relative

advantages of each formulation. In §2.6 we discuss some representative numerical results. Finally,

we conclude with a short discussion in §2.7.

Notation and conventions.—We set c = ~ = 1 and work in terms of the reduced Planck mass,

M2
P = (8πG)−1 where G is Newton’s constant. The species of light scalar fields are indexed by

Greek labels α, β, . . . , .

2.2 Transport Equations

After smoothing on a length scale k−1 � (aH)−1, the field value in each smoothed region of the

universe (“patch”) will evolve independently, as though it were in a homogeneous and isotropic

separate universe. Making use of the slow-roll approximation, and assuming that all fields are

canonically normalized and minimally coupled to Einstein gravity, Eq. (32) implies each smoothed

field ϕα evolves according to (Mulryne, Seery and Wesley 2010; Mulryne, Seery and Wesley 2011;

Seery, Mulryne et al. 2012)
dϕα
dN

= −M2
P
∂ ln V (ϕ)
∂ϕα

≡ uα , (2.2)

up to gradient-suppressed corrections. In writing (2.2) we have used the e-folding number dN =

H dt as a time variable, and t is cosmic time. The index α labels the species of light scalar fields

and uα can be interpreted as a flow vector describing the trajectory of the smoothed field in phase

space. In this paper we will take these indices to be contracted using the flat metric δαβ , so that

index placement is immaterial.

If desired the slow-roll approximation could be abandoned by passing to a Hamiltonian for-

mulation. The resulting transport equations are structurally identical, requiring only specification

of suitable initial conditions. This method was described in Mulryne, Seery and Wesley (2011)

and Seery, Mulryne et al. (2012) and later implemented by Dias, Frazer and Liddle (2012) for

the purpose of studying D-brane models of inflation. In this paper we will restrict ourselves to
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the slow-roll approximation, but our evolution equations are unchanged by this choice and can be

extended immediately to the full phase space.

2.2.1 Jacobi equation

The field value varies between coarse-grained patches. Picking a fiducial patch labelled by the

spatial position x, the field in a neighbouring patch at relative position r will be displaced by a

small amount δϕα ,

ϕα (x + r) ≈ ϕα (x) + δϕα (r). (2.3)

At a generic position, and provided the region under consideration is not too large, we can expect

|δϕα | to be small in comparison with |ϕα |. With these assumptions the evolution of δϕα can be

obtained by making a Taylor expansion of the velocity uα in the neighbourhood of the fiducial

trajectory. Hence,

dδϕα (r)
dN

= uαβ[ϕ(x)]δϕβ (r) +
1
2!

uαβγ[ϕ(x)]δϕβ (r)δϕγ (r)

+
1
3!

uαβγδ[ϕ(x)]δϕβ (r)δϕγ (r)δϕδ (r) + · · · ,

(2.4)

where uαβ[ϕ(x)] ≡ ∂βuα , uαβγ[ϕ(x)] ≡ ∂γuαβ and uαβγδ[ϕ(x)] ≡ ∂δuαβγ . We now exchange r

for a Fourier space description. To keep the resulting equations compact we employ the ‘primed’

DeWitt index convention introduced in Seery, Mulryne et al. (2012). In this notation, a compound

index such as α′ includes a field label α and a momentum label kα , and also indicates evaluation

at some common time of interest N . The summation convention applied to α′ implies integration

over momentum with measure d3kα/(2π)3, and summation over the species α. In this notation we

find

dδϕα′
dN

= uα′β′δϕβ′ +
1
2!

uα′β′γ′
(
δϕβ′δϕγ′ − 〈δϕβ′δϕγ′〉

)
+

1
3!

uα′β′γ′δ′
(
δϕβ′δϕγ′δϕδ′ − 〈δϕβ′δϕγ′δϕδ′〉

)
+ · · · .

(2.5)

Eq. (2.5) is the nonlinear Jacobi equation. We have subtracted a zero-mode to ensure the equation

of motion preserves 〈δφ〉 = 0 throughout the evolution. This amounts to discarding disconnected

terms in the correlation functions. The disconnected terms are ones that can be written as products

of lower correlation functions. The u-matrices contained in (2.5) inherit a dependence on the

fiducial region x through their dependence on the background fields, but the resulting connected

correlation functions depend only on statistical properties of the ensemble of smoothed fields.
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Explicitly, we find

uα′β′ ≡ (2π)3δ(kα − kβ )uαβ[ϕ(x)] (2.6)

uα′β′γ′ ≡ (2π)3δ(kα − kβ − kγ )uαβγ[ϕ(x)] (2.7)

uα′β′γ′δ′ ≡ (2π)3δ(kα − kβ − kγ − kδ )uαβγδ[ϕ(x)]. (2.8)

2.2.2 Evolution of correlation functions

The Jacobi equation (2.5) summarizes evolution in the ensemble of smoothed patches. The u-

matrices can be calculated using any suitable method, such as the long-wavelength limit of cos-

mological perturbation theory or the separate-universe approximation. However they are obtained,

they control not only the evolution of physical field fluctuations but also their correlation functions.

To show this we note that for any classical observable O not explicitly depending on time,

the time derivative of its expectation value satisfies d〈O〉/dN = 〈dO/dN〉, provided probability

is conserved.2 It also applies quantum-mechanically if O is a Heisenberg picture field. Transport

equations for the quantum case, similar to those we will develop here, were given by Andrews

(1985) and developed by Ballentine (1998). The classical limit was studied by Hepp (1974).

We define the two-point function Σα′β′ to satisfy

Σα′β′ ≡ 〈δϕα′δϕβ′〉. (2.9)

Recall that our index convention implies that each quantity on the right-hand side is evaluated at

the common time of interest, N . Differentiating this expression, and moving the time derivative

inside the expectation value as discussed above, we obtain an evolution equation for Σα′β′ ,

dΣα′β′
dN

=

〈
dδϕα′

dN
δϕβ′ + δϕα′

dδϕβ′
dN

〉
. (2.10)

Use of Eq. (2.5) allows the right-hand side to be rewritten in terms of u-matrices and correlation

functions. Working to the lowest relevant order,3 we conclude

dΣα′β′
dN

= uα′γ′Σγ′β′ + uβ′γ′Σγ′α′ + [ > 3p.f. ], (2.11)

where “[ > 3p.f. ]” denotes terms containing higher-order correlation functions which have been

omitted, beginning with the three-point function. Eq. (2.11) will be a good approximation whenever

2Technically, the probability distribution P must vanish sufficiently rapidly on the boundary of phase space that

uαP → 0 there, and therefore integration by parts inside the expectation value does not generate any boundary terms.
3Retaining higher-order contributions would reproduce the ‘loop corrections’ of the δN formalism; see Boubekeur

and Lyth (2006); Lyth and Seery (2008); Seery (2010).
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these higher-order correlation functions are negligible, which will usually be satisfied during an

epoch of quasi-exponential inflation. In that case, the correlation functions typically order their

amplitudes in powers of H2 (Jarnhus and Sloth 2008) making the relative error after translation to

ζ of order (H/MP)2 � 1. A similar procedure gives the evolution of the three-point function. We

define

αα′β′γ′ ≡ 〈δϕα′δϕβ′δϕγ′〉, (2.12)

and the corresponding transport equation is

dαα′β′γ′
dN

= uα′λ′αλ′β′γ′ + uα′λ′µ′Σλ′β′Σµ′γ′ + cyclic + [ > 4p.f. ], (2.13)

where “cyclic” denotes the two cyclic permutations of each term, and “[ > 4p.f. ]” again denotes

terms involving higher-order correlation functions which have been discarded, beginning with

the four-point function. As for the two-point function, Eq. (2.13) will be a good approximation

whenever these are negligible in comparison with the terms which have been retained.

Four-point function.—Eqs. (2.11) and (2.13) were given in Seery, Mulryne et al. (2012). In this

section, for the first time, we give the corresponding transport equation for the four-point function.

To do so, we must distinguish carefully between the connected and disconnected contributions.

The disconnected contributions are always present, even in the case of purely Gaussian statist-

ics, and therefore provide no new information. But if the perturbations develop some intrinsic

nongaussianity during their evolution, this is encoded in the connected part of the four-point func-

tion. To obtain it we subtract the disconnected terms from the full four-point function, and define

βα′β′γ′δ′ ≡ 〈δϕα′δϕβ′δϕγ′δϕδ′〉 − Σα′β′Σγ′δ′ − Σα′γ′Σβ′δ′ − Σα′δ′Σβ′γ′ . (2.14)

In statistical language, the four-point function 〈δϕα′δϕβ′δϕγ′δϕδ′〉 is the moment, and the con-

nected part βα′β′γ′δ′ is the cumulant.

The transport equation for βα′β′γ′δ′ is

dβα′β′γ′δ′
dN

=
(
uα′λ′ βλ′β′γ′δ′ + 3 cyclic

)
+

(
uα′λ′µ′αλ′β′γ′Σµ′δ′ + 11 cyclic

)
+

(
uα′λ′µ′ν′Σλ′β′Σµ′γ′Σν′δ′ + 3 cyclic

)
+ [ > 5p.f. ].

(2.15)

It can be obtained by various methods, including the Gauss–Hermite cumulant expansion used in

Mulryne, Seery and Wesley (2010), the method of generating functions used in Mulryne, Seery

and Wesley (2011) and the approach described above. We derive this equation in 2.B using the

Gauss–Hermite approach.
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2.2.3 Separation of local shapes

The transport equations (2.11), (2.13) and (2.15) evolve each correlation function in its entirety.

Although they are first order ordinary differential equations, they are not trivial to solve because

they couple the correlation functions associated with different k- and species labels.4 Indeed, the

coupled system can be regarded as simply a form of Boltzmann hierarchy. Like the hierarchy

used to compute CMB anisotropies it must be truncated—by discarding higher-order correlation

functions—if it is to be turned into a practical computational tool. We will see in §2.3 that it

admits a similar kind of formal solution. But if we wish only to track the evolution of the local

momentum shapes, then we can extract simpler “flavour” equations which do not involve the

continuum of k-modes. These are ordinary differential equations for a finite number of variables

and their numerical solution is straightforward.

Eqs. (2.11), (2.13) and (2.15) show that (at least to this order), each correlation function is

sourced by the correlation functions of lower order. Hence, we proceed inductively: if the k-

dependence of the two-point function is known, then it can be used to determine the local k-

dependence inherited by the three-point function and subsequently the four-point function.

Two-point function.—Since we anticipate approximate scale-invariance, we write the two-point

function as

Σα′β′ = (2π)3δ(kα + kβ )
Σαβ

k3
α

, (2.16)

where Σαβ has dimension of [mass]2 but is nearly independent of kα = kβ . It is this k−3
α de-

pendence which will be inherited by all higher n-point functions. The possible ways in which this

inheritance can happen correspond to the possible local (“squeezed” and “collapsed”) momentum

shapes.

We first require a transport equation for Σαβ . As described above, this is a flavour-only matrix,

carrying indices for the species of scalar fields but not momentum labels. Substituting (2.16)

into (2.11), we conclude
dΣαβ
dN

= uαλΣλβ + uβλΣλα . (2.17)

This is symbolically the same equation as the full k-space transport equation, Eq. (2.11), with

primed indices exchanged for unprimed ones.

4For example, the four-point function with momentum labels k1, k2, k3 and k4 couples to other correlation functions

with momenta k1 +k2, and so on. Had we retained loop corrections, these would make the hierarchy considerably more

complex because each correlation function no longer couples only to a few other isolated k-modes, but to the whole

phase space of soft superhorizon modes. Handling this is a computational challenge. For one approach see, eg., Huston

and Malik (2011).
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In practice, Σαβ carries a small dependence on the k-scale at which it is evaluated. This

k-dependence, typically characterized by a spectral index, can also be calculated by transport

methods; see Dias and Seery (2012). Recently Dias, Frazer & Liddle extended this method to

obtain the scale-dependence of the spectral index, or “running” (Dias, Frazer and Liddle 2012).

Three-point function.—Examination of the transport equation for the three-point function, Eq. (2.13),

shows that in a small time interval δN , the change to αα′β′γ′ is of the schematic form δα ∼

(u′α + u′′ΣΣ)δN , where a prime ′ applied to u indicates one of the field-space derivatives which

generate the index structure for the u-matrices. The u′α terms generate a change δα which is

proportional to the momentum-dependence already carried by α. Therefore this term can reorgan-

ize the amplitudes of these shapes, but introduces no new types of momentum dependence. New

shapes are sourced only by the ΣΣ terms.

Eq. (2.16) shows that the product ΣΣ must generate a shape of the form k−3
α k−3

β , and therefore

the most general structure which can be sourced during the evolution has the form

αα′β′γ′ ⊇ (2π)3δ(kα + kβ + kγ )
( aα |βγ

k3
βk3

γ

+
aβ |αγ
k3
αk3

γ

+
aγ |αβ
k3
αk3

β

)
, (2.18)

where we use the notation “⊇” to indicate that the three-point function contains this term together

with others which have not been written. The matrices aα |βγ carry information about the “fla-

vour”, but do not evolve the k-dependence. They are symmetric under exchange of β ↔ γ, but

need not possess further symmetries. The full three-point function corresponds to the sourced

contribution (2.18) plus an unsourced term appearing as its initial condition. The unsourced piece

is generated by quantum interference effects operating around the epoch of horizon exit, and typ-

ically has a very complicated momentum dependence (Seery and Lidsey 2005). However, its

amplitude is small in the canonical models to which we restrict attention in this paper (Lyth and

Zaballa 2005; Vernizzi and Wands 2006).

After substitution of (2.18) into the transport equation (2.13), we obtain an evolution equation

for aα |βγ ,
daα |βγ

dN
= uαλaλ |βγ + uβλaα |λγ + uγλaα |βλ + uαλµΣλβΣµγ . (2.19)

Eq. (2.19) strictly applies only when the momenta entering the correlation function are not too

dissimilar in magnitude. This is usually an acceptable approximation for CMB experiments, but a

more refined analysis might be required where larger hierarchies of scale exist. This issue is not

confined to the transport framework; it applies to results obtained using any method, including the

familiar δN Taylor expansion.

Four-point function.—Eqs. (2.17) and (2.19) were given in Seery, Mulryne et al. (2012). The
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same analysis applied to the four-point function shows that, in a small time interval δN , the change

in the connected part of the correlation function has the schematic form

δ β ∼ (u′ β + u′′αΣ + u′′′ΣΣΣ)δN. (2.20)

As for the three-point function, the term u′ β is simply a shift in the amplitude of shapes already

present in β. The sourced contributions are now u′′αΣ and u′′′ΣΣΣ. Of these, the ΣΣΣ term must

generate a shape of the form k−3
α k−3

β k−3
γ , which can be recognized as a gNL-type contribution

(Byrnes, Sasaki and Wands 2006).

The αΣ term is more complex, because the momentum δ-function in u′′ [see Eq. (2.7)] reor-

ganizes the momenta appearing in the denominators of the three-point function (2.18). Written

out explicitly, this term is

uα′λ′µ′αλ′β′γ′Σµ′δ′ = (2π)3
∫

d3kλ d3kµ δ(kα − kλ − kµ )δ(kλ + kβ + kγ )δ(kµ + kδ )

× uαλµ
Σµδ

k3
δ

( aλ |βγ
k3
βk3

γ

+
aβ |λγ
k3
λ k3

γ

+
aγ |βλ
k3
βk3

λ

)
,

(2.21)

plus the nontrivial permutations of α′, β′, γ′ and δ′. The first term in round brackets, ∼ k−3
β k−3

γ ,

has the form of a gNL-type contribution. But the remaining terms involve k−3
λ , and the δ-functions

in (2.21) show that kλ = kα + kδ . Therefore this term generates a different momentum shape; it is

the “collapsed” configuration, which corresponds to a τNL-type contribution (Byrnes, Sasaki and

Wands 2006). It follows that the most general structure sourced by time evolution can be written

βα′β′γ′δ′ = (2π)3δ(kα+kβ+kγ+kδ )
( gα |βγδ

k3
βk3

γk3
δ

+3 cyclic+
ταβ |γδ

k3
αk3

β |kα + kγ |3
+11 cyclic

)
, (2.22)

where the “cyclic” pieces refer to the cyclic permutations of the preceding terms. The matrix

gα |βγδ is symmetric under any exchange of β,γ, δ, but has no symmetries under permutations

involving α. The matrix ταβ |γδ is symmetric under the simultaneous exchanges α ↔ β and

γ ↔ δ, giving 12 independent elements.

Substitution of (2.22) into the transport equation (2.15) enables us to extract individual evolu-

tion equations for gα |βγδ and ταβ |γδ . They are

dgα |βγδ
dN

= uαλgλ |βγδ + uβλgα |λγδ + uγλgα |βλδ + uδλgα |βγλ

+ uαλµaλ |βγΣµδ + uαλµaλ |βδΣµγ + uαλµaλ |γδΣµβ + uαλµνΣλβΣµγΣνδ (2.23)

dταβ |γδ
dN

= uαλτλβ |γδ + uβλταλ |γδ + uγλταβ |λδ + uδλταβ |γλ

+ uγλµΣµαaδ |λβ + uδλµΣµβaγ |λα . (2.24)
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Note that the a-dependent source terms in the second line of (2.24) preserve the symmetry under

simultaneous exchange of the index pairs (α, β) and (γ, δ). We have dropped the initial value

of αα′β′γ′ , even though it appears in (2.15) as a source term and, as a matter of principle, could

appear in βα′β′γ′δ′ with a non-negligible coefficient. In 2.A we show that this will usually be

an acceptable approximation in models with canonically normalized scalar fields; the initial value

of αα′β′γ′ remains negligible provided |r fNL | . 1 throughout the evolution where r < 1 is the

tensor-to-scalar ratio. On the other hand, in non-canonical models where the initial value need not

be negligible it is important to retain this term (Renaux-Petel 2009).

2.3 Equivalence to Taylor expansion method

Eqs. (2.23)–(2.24) enable us to follow the evolution of the sourced, local-mode contributions to

the trispectrum. As we will explain in §2.4, after changing variable to ζ they allow us to calculate

the observable quantities τNL and gNL. However, they are quite different in appearance to the

familiar expressions of the “δN formalism”,5 which take the form of a Taylor expansion in the

initial conditions (Lyth and Rodriguez 2005).

The connexion between these methods was explored in Seery, Mulryne et al. (2012). By form-

ally integrating the transport equations, in a similar way to the “line of sight” integral used when

solving the Boltzmann equation, it is possible to demonstrate equality with the “δN” expressions.

In Seery, Mulryne et al. (2012) this analysis was given for the two- and three-point functions. Here

we extend it to include the four-point function.

Integrating factor.—The “line of sight integral” naturally expresses each correlation function in

terms of the underlying Jacobi fields. We briefly recapitulate the argument of Seery, Mulryne et al.

(2012). Without loss of generality, we write the two-point function in the form

Σα′β′ = Γα′i′Γβ′ j′Σi′ j′ . (2.25)

A suitable choice for Γα′i′ means it will function as an integrating factor. In writing (2.25) we

have introduced a new type of primed Latin index (i′, j′, . . . ). This has the same interpretation as

the primed Greek indices: i′ carries a flavour index i and a momentum label ki , which range over

the same values as α and kα . However, it indicates evaluation at a different time N0, as follows.

5Here and below, we use the term “δN formalism” to mean a Taylor expansion in the initial conditions, even if the

quantity being expanded is not N .
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Substitution of Eq. (2.25) in (2.11) shows that the terms involving uα′β′ can be removed if Γ is

chosen to satisfy
dΓα′i′

dN
= uα′β′Γβ′i′ . (2.26)

Comparison with Eqs (2.4)–(2.5) shows that Γα′i′ has an interpretation as a differential coefficient,

Γα′i′ =
∂ϕα′

∂ϕi′
=
∂ϕα (kα ,N )
∂ϕi (ki ,N0)

= δ(kα − ki )
∂ϕα (N )
∂ϕi (N0)

(2.27)

Eq. (2.27) is sometimes described as the “Jacobi map”. It has a formal solution in terms of a

path-ordered exponential

Γα′i′ = (2π)3δ(kα − ki ) P exp
(∫ N

N0

dN ′ uαi (N ′)
)
. (2.28)

In this expression, P denotes the path-ordering operator which rewrites its argument in order of

position on the trajectory: objects evaluated early on the trajectory appear to the right of objects

evaluated later. This path-ordered exponential is related to the inverse of the van Vleck matrix,

which is equivalent to the matrix of Jacobi fields. Reference to Eqs. (2.13) and (2.15) shows

that, in each transport equation, this choice for Γ will absorb the terms proportional to the n-point

function itself. Returning to the two-point function and discarding higher-order contributions, it

follows that the “kernel” Σi′ j′ can be obtained as an integral over the source terms. It is this

integral over sources which can be compared to the “line of sight” integral for the Boltzmann

equation.

With these choices, and working to leading order, there are no sources for the kernel Σi′ j′ .

Therefore it is constant, and equal to its initial condition set at horizon crossing. We write this

constant value Si′ j′ .

Three-point function.—When this method is applied to the three-point function, it transpires that

the kernel is sourced. Again without loss of generality, we write

αα′β′γ′ = Γα′i′Γβ′ j′Γγ′k ′Ai′ j′k ′ . (2.29)

We define ũi′ j′k ′ ≡ Γ−1
i′α′uα′β′γ′Γβ′ j′Γγ′k ′ and obtain

Ai′ j′k ′ = Ai′ j′k ′ +

[∫ N

N0

dN ′ ũi′m′n′ (N ′)Sm′ j′Sn′k ′ + 2 cyclic
]

+ O(H6). (2.30)

The integration constant Ai′ j′k ′ is the unsourced initial condition which was neglected above,

and the estimate O(H6) for the terms we have omitted assumes that the correlation functions order

themselves in increasing powers of H2 as described by Jarnhus and Sloth (2008). Defining

Γα′i′ j′ = Γα′m′

∫ N

N0

ũm′i′ j′ (N ′) dN ′ = (2π)3δ(kα − ki − k j )Γαm

∫ N

N0

ũmi j (N ′) dN ′,

= (2π)3δ(kα − ki − k j )Γαi j ,

(2.31)
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we conclude

αα′β′γ′ = Γα′i′Γβ′ j′Γγ′k ′Ai′ j′k ′ +
(
Γα′i′ j′Γβ′k ′Γγ′`′Si′k ′Sj′`′ + 2 cyclic

)
+ loops. (2.32)

It can be shown that the quantity Γαi j appearing on the right-hand side of (2.31) is equal to6

Γαi j =
∂Γαi

∂ϕ j (N0)
=

∂2φα (N )
∂ϕi (N0)∂ϕ j (N0)

, (2.33)

from which it follows that Eq. (2.32) is equivalent to the Lyth–Rodríguez Taylor expansion formula

for the three-point function (Lyth and Rodriguez 2005). Moreover, differentiation of (2.31) shows

that Γαi j satisfies the evolution equation

dΓαi j
dN

= uαβΓβi j + uαβγΓβiΓγ j . (2.34)

Four-point function.—The analysis for the four-point function is similar. We introduce the integ-

rating factor Γα′i′ ,

βα′β′γ′δ′ = Γα′i′Γβ′ j′Γγ′k ′Γδ′`′Bi′ j′k ′`′ . (2.35)

The kernel Bi′ j′k ′`′ is given by an integral over sources, as before, which are drawn from the

lower-order n-point functions. In this case they are the two- and three-point functions. Keeping

only leading-order terms, we find

Bi′ j′k ′`′ = Bi′ j′k ′`′ +
( ∫ N

N0

dN ′ ũi′p′q′ (N ′)Ap′ j′k ′ (N ′)Sq′`′ + 11 cyclic
)

+
( ∫ N

N0

dN ′ ũi′q′r ′s′ (N ′)Sq′ j′Sr ′k ′Ss′`′ + 3 cyclic
)

+ O(H8),
(2.36)

where we have defined ũi′ j′k ′`′ = Γ−1
i′α′uα′β′γ′δ′Γβ′ j′Γγ′k ′Γδ′`′ . The integration constantBi′ j′k ′`′

is the initial value of the four-point function at time N = N0, as for the three-point function. Tak-

ing the four k-modes entering the four-point function to have a similar time of horizon exit, and

the initial time N0 to be around this epoch, the initial condition was shown in Seery, Lidsey and

Sloth (2007) and Seery, Sloth and Vernizzi (2009) to be dominated by the correlations induced by

decay of gravitational waves into scalar quanta. It is negligible when the amplitude of the four-

point function is sufficiently large to be observable. On the other hand, the initial value of the

three-point function appears in the kernel Ap′ j′k ′ which forms part of the source integral (2.36),

and need not be entirely negligible. However, as discussed below Eqs. (2.23)–(2.24), and in more

detail in 2.A, its contribution to τNL or gNL is likely no more than O(1) for models with acceptable

| fNL |.

6Direct differentiation of Eq. (2.28) is subtle, because of the path-ordered exponential. It is simpler to differentiate

the Jacobi equation, Eq. (2.26), and then solve it using Γαi as an integrating factor.
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To relate (2.36) to the expressions produced by the Taylor expansion algorithm we must ex-

press Ap′ j′k ′ purely in terms of correlations at the initial time N0. Combining (2.30) and (2.36)

we find∫ N

N0

dN ′ ũi′p′q′ (N ′) Ap′ j′k ′ (N ′)

=

∫ N

N0

dN ′ ũi′p′q′ (N ′)
{
Ap′ j′k ′ +

∫ N ′

N0

dN ′′ ũp′r ′s′ (N ′′)Sr ′ j′Ss′k ′

+

∫ N ′

N0

dN ′′ ũ j′r ′s′ (N ′′)Sr ′p′Ss′k ′ +

∫ N ′

N0

dN ′′ ũk ′r ′s′ (N ′′)Sr ′p′Ss′ j′
}

(2.37)

The term involving Ap′ j′k ′ presents no difficulties. It makes a contribution to βα′β′γ′δ′ of the

form

βα′β′γ′δ′ ⊇ Γα′p′q′Γβ′ j′Γγ′k ′Γδ′`′Ap′ j′k ′Sq′`′ + 11 cyclic, (2.38)

where, as above, the symbol “⊇” indicates that the four-point function contains this contribution

among others. The other terms in (2.37) are nested integrals, and divide into two groups. One

involves a contraction between the two u-matrices, of the form ũi′p′q′ ũp′r ′s′ . We first focus on the

other two, which involve no contraction. After summing over permutations there are twenty-four

such terms. Consider the specific choice ũi′p′q′ ũ j′r ′s′ which appears in (2.37). In combination

with one of the terms generated by simultaneously exchanging i′ ↔ j′ and k′ ↔ `′ this generates∫ N

N0

dN ′
∫ N

N0

dN ′′ ũi′p′q′ (N ′)ũ j′r ′s′ (N ′′)Sr ′p′Ss′k ′Sq′`′

+

∫ N

N0

dN ′
∫ N

N0

dN ′′ ũ j′r ′s′ (N ′)ũi′p′q′ (N ′′)Sp′r ′Sq′`′Ss′k ′ , (2.39)

where we have relabelled the dummy indices p′ ↔ r′ and q′ ↔ s′. Now we can combine the

terms ∫ N

N0

dN ′
∫ N

N0

dN ′′
[
Θ(N ′′ 6 N ′) + Θ(N ′′ > N ′)

]
× ũi′p′q′ (N ′)ũ j′r ′s′ (N ′′)Sr ′p′Ss′k ′Sq′`′ . (2.40)

The Heaviside functions inside the square-brackets is equal to 1,7 so the combination can be writ-

ten as ∫ N

N0

dN ′
∫ N

N0

dN ′′ ũi′p′q′ (N ′)ũ j′r ′s′ (N ′′)Sr ′p′Ss′k ′Sq′`′ , (2.41)

7This is not strictly true. At the point N′ = N′′ this term gives a value of 2, but an integral does not depend on the

value of the integrand at any particular point and therefore for the purposes of doing the integral we can replace it with

1 everywhere.
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in which the integrals are no longer nested. Pairing all such terms in this way generates the 12

cyclic permutations of indices in (2.41). The corresponding contribution to the four-point function

is

βα′β′γ′δ′ ⊇ Γα′p′q′Γβ′r ′s′Γγ′k ′Γδ′`′Sp′r ′Ss′k ′Sq′`′ + 11 cyclic. (2.42)

Now focus on the contracted terms ũi′p′q′ ũp′r ′s′ . Summing over the permutations `′ →

{ j′, k′} is equivalent to symmetrization over {q′,r′, s′}. Therefore this term can be combined with

the ũi′q′r ′s′ source in (2.36), giving a total contribution to the four-point function of the form

βα′β′γ′δ′ ⊇ Γα′q′r ′s′Γβ′ j′Γγ′k ′Γδ′`′Sq′ j′Sr ′k ′Ss′`′ + 3 cyclic, (2.43)

where we have defined Γα′q′r ′s′ to satisfy

Γα′q′r ′s′ = Γα′i′

∫ N

N0

dN ′ ũi′q′r ′s′ (N ′)

+
(
Γα′i′

∫ N

N0

dN ′ ũi′p′q′ (N ′)
∫ N ′

N0

dN ′′ ũp′r ′s′ (N ′′) + [q′ → {r′, s′}]
)
.

(2.44)

As with the previous examples of Γ-matrices, the momentum dependence of Γα′q′r ′s′ is a pure

δ-function. It can be converted to a pure flavour matrix by the rule

Γα′q′r ′s′ = (2π)3δ(kα − kq − kr − ks )Γαqr s . (2.45)

By explicit differentiation and back-substitution, it can be shown that this flavour matrix satisfies

the ordinary differential equation

dΓαqr s
dN

= uαβΓβqr s +
(
uαβγΓβqrΓγs + 2 cyclic

)
+ uαβγδΓβqΓγrΓδs . (2.46)

We have already seen that the lower-order Taylor coefficients Γαi and Γαi j are determined by the

evolution equations (2.26) (with primed indices exchanged for unprimed ones) and (2.34); for an

extended discussion, see Seery, Mulryne et al. (2012). These equations provide an efficient means

to compute the “δN coefficients” numerically.

Returning to the four-point function, we must also include the initial condition

βα′β′γ′δ′ ⊇ Γα′i′Γβ′ j′Γγ′k ′Γδ′`′Bi′ j′k ′`′ . (2.47)

Repeating the steps described above, it can be shown that

Γαqr s =
∂Γαqr

∂ϕs (N0)
=

∂3ϕα (N )
∂ϕq (N0)∂ϕr (N0)∂ϕs (N0)

. (2.48)

Therefore we have reproduced the usual Taylor expansion formulae for the trispectrum. Specific-

ally, Eq. (2.47) matches (8) of Seery, Lidsey and Sloth (2007), and Eqs. (2.38), (2.42) and (2.43)

match (73), (74) and (75) of the same reference. These expressions were later given in slightly

more generality by Byrnes, Sasaki and Wands (2006). In the formulation given by these authors,

Eqs. (2.38), (2.42), (2.43) and (2.47) of this paper match (36) of Byrnes, Sasaki and Wands (2006).
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2.4 Transformation to the curvature perturbation

We now have the transport equations which evolve the n-point functions of the scalar field per-

turbations during inflation, up to and including n = 4. These can be obtained either by solving the

“shape equations”, Eqs. (2.23)–(2.24), or using Eq. (2.46) to evolve the Γ-matrices. For the latter

case, the initial conditions are Γαi = δαi at N = N0, with all other Γ-matrices zero there.

2.4.1 Curvature perturbation at third order

The scalar field fluctuations are not observable by themselves. At present we have observational

evidence only for a single primordial fluctuation—the density fluctuation, which is a nonlinear

and model-dependent combination of the field fluctuations. The appropriate combination can be

deduced from the displacement δN (measured in e-folds) between a fixed spatially-flat hyper-

surface and an adjacent uniform-density hypersurface with which it coincides on average. This

displacement is determined by the field configuration on the spatially flat hypersurface. Therefore

ζ = δN = δ[N (ϕα )], yielding

ζ = Nαδϕα+
1
2!

Nαβ (δϕαδϕβ−〈δϕαδϕβ〉)+
1
3!

Nαβγ (δϕαδϕβδϕγ−〈δϕαδϕβδϕγ〉)+· · · , (2.49)

where Nα = ∂N/∂ϕα and similarly for the higher derivatives. Note that these are ordinary partial

derivatives, with all quantities evaluated at the same time: they are not the nonlocal variational de-

rivatives which appear in the Lyth–Rodríguez Taylor expansion. In particular, we are not using the

δN formula (2.49) to account for any time dependence of the correlation functions; this is handled

by the transport equations. Eq. (2.49) is used solely to obtain the relationship between the δϕα and

ζ . There are various other ways in which this could be obtained. Malik and Wands (2009) gave

a comprehensive discussion from the viewpoint of traditional cosmological perturbation theory.

Another approach was used by Maldacena (2003). Eq. (2.49) has the advantage that it computes

the transformation only in the superhorizon limit k/aH → 0, which is all we require.

Calculation of the derivatives Nα , Nαβ and Nαβγ is tedious, although straightforward in prin-

ciple. Seery, Mulryne et al. (2012) used a raytracing method which gave the relation a geometrical

meaning. It would be interesting to apply this technique at third order, but it is helpful primar-

ily for analytic and geometric intuition rather than numerical optimization. Mulryne, Seery and

Wesley (2010) exploited the fact that any potential is separable for first order displacements to set

up constants of the motion, as originally done by Garcia-Bellido and Wands (1996); Vernizzi and



119
Transport equations for the inflationary trispectrum

Wands (2006). However, this method is relatively lengthy even for the second-order coefficient

Nαβ . Here we employ a simpler alternative.

We first focus on a single trajectory and measure the number of e-folds N accumulated along

it. During any period where the density decreases monotonically we may measure N as a function

of ρ. Consider the number of e-folds ∆N which elapse between some arbitrary point on the

trajectory (the “starting point”) and a nearby hypersurface of fixed density ρc . Under the slow-

roll approximation, the density at the starting point is simply the potential energy evaluated there.

Therefore we may express ∆N as a Taylor expansion in the difference ∆ρ = ρc − V ,

∆N = N (V + ∆ρ) − N (V ) =
dN
dρ
∆ρ +

1
2!

d2N
dρ2 ∆ρ

2 +
1
3!

d3N
dρ3 ∆ρ

3 + · · · . (2.50)

Note that the differential coefficients are ordinary derivatives taken along the trajectory. In Eq. (2.50)

they are evaluated at the starting point.

We now perturb the starting point by an amount δϕα while keeping the final hypersurface

fixed. In general δϕα will not be aligned with the inflationary trajectory used to construct the

ρ-derivatives in Eq. (2.50), which therefore vary. The same is true for the displacement ∆ρ.

Accounting for both these effects changes the total elapsed e-folds by an amount δ(∆N ). Finally,

to study fluctuations around the hypersurface ρ = ρc we take the limit ∆ρ → 0, after which

δ(∆N ) → ζ . The advantage of this method is that it uses the handful of low-order derivatives

appearing in Eq. (2.50) to isolate the limited information we require regarding local properties

of the transformation: higher-order information is discarded at the outset. This contrasts with

the constants-of-motion approach used in Mulryne, Seery and Wesley (2010), where high-order

information is implicitly kept through the majority of the computation, although it is never used.

Under a shift of the starting point we conclude

δ(∆ρ) = −Vαδϕα −
1
2!

Vαβδϕαδϕβ −
1
3!

Vαβγδϕαδϕβδϕγ − · · · . (2.51)

By retaining contributions to ρ from the kinetic energy, and evaluating the differential coefficients

in (2.50) without use of the slow-roll approximation, this approach could be extended to provide

the transformation from the full phase space variables δϕα , δϕ̇α to ζ . This was done in Dias,

Frazer and Liddle (2012).

Invoking the slow-roll approximation, we may calculate the derivative dN/dρ,

dN
dρ

����� =
dN
dt

dt
dV

�����γ = −
3H2

VαVα
= −

1
M2

P

V
VαVα

, (2.52)

where dV/dt is to be computed along the trajectory γ. Higher derivatives can be obtained in the

same way, by repeated differentiation with respect to t and use of the chain rule to convert these



120
Transport equations for the inflationary trispectrum

into derivatives with respect to ρ. We obtain

d2N
dρ2

����� = −
1

M2
P

(
1

VλVλ
− 2

VVαVβVαβ
(VλVλ )3

)
, (2.53)

d3N
dρ3

����� =
1

M2
P


4

VαVβVαβ
(VλVλ )3 − 12

V (VαVβVαβ )2

(VλVλ )5 + 4
VVαVαβVβγVγ

(VλVλ )4 + 2
VVαβγVαVβVγ

(VλVλ )4


 . (2.54)

The first and second-order variations are

Nα = −
dN
dρ

�����Vα , (2.55)

Nαβ = −
dN
dρ

�����Vαβ +
d2N
dρ2

�����VαVβ +
1

M2
P

(
VαAβ + VβAα

)
, (2.56)

which agree with existing expressions in the literature. (See below for the definition of Aα .) At

third order we find

Nαβγ = −
d3N
dρ3

�����VαVβVγ +

(
d2N
dρ2

�����VαVβγ + cyclic
)
−

dN
dρ

�����Vαβγ

+
1

M2
P

(
AαVβγ + cyclic

)
+

1
M2

P

(
BαβVγ + cyclic

)
+

1
M2

P

(
CαVβVγ + cyclic

)
.

(2.57)

The tensors Aα , Bαβ and Cα have been defined to satisfy

Aα =
Vα

VλVλ
− 2

VVκVκα
(VλVλ )2 (2.58)

Bαβ =
Vαβ

VλVλ
− 2

VκVκαVβ + VκVκβVα
(VλVλ )2 + 8

VVκVκαVεVεβ
(VλVλ )3 − 2

VVκαVκβ
(VλVλ )2 − 2

VVκVκαβ
(VλVλ )2 (2.59)

Cα =
Vαβ

VλVλ
+ 2

VαVκVκεVε
(VλVλ )3 − 12

VVκVκεVεVρVρα
(VλVλ )3 + 4

VVκVκεVεα
(VλVλ )3 + 2

VVκVκεαVε
(VλVλ )3 (2.60)

2.4.2 Inflationary observables

Finally, we must assemble all these contributions to obtain expressions for τNL and gNL. We find

Pζ = NαNβΣαβ (2.61)

6
5

fNL =
NαNβNγαα |βγ + NαβNγNδΣαγΣβδ

(NωNζΣωζ )2 (2.62)

τNL =
NαNβNγNδταβ |γδ + 2NαNβNγNλµaα |βλΣγµ + NαβNγδNλNµΣαγΣβλΣδµ

(NωNζΣωζ )3 (2.63)

54
25

gNL =
NαNβNγNδgα |βγδ + 3NαNβNγNλµaλ |αβΣγµ + NαβγNδNλNµΣαδΣβλΣγµ

(NωNζΣωζ )3 . (2.64)
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2.5 Alternative approaches

In this paper, our approach to calculating the statistics of the curvature perturbation has been to de-

velop transport equations for objects such as the n-point functions [Eqs. (2.11), (2.13) and (2.15)],

or their shape tensors [Eqs. (2.17), (2.19) and (2.23)–(2.24)]. The results of §2.3 show that this is

equivalent to the Lyth–Rodríguez Taylor expansion

δϕα = Γαiδϕi +
1
2!
Γαi jδϕiδϕ j +

1
3!
Γαi jkδϕiδϕ jδϕk + · · · , (2.65)

where we recall that objects with Greek indices are evaluated at time N , and those with Latin

indices at some earlier time N0, which is usually taken as the common time of horizon exit for the

k-modes under consideration.8

‘Forward’ and ‘backward’ methods.—To solve these equations we must supply a boundary con-

dition at N = N0, but we are free to choose how this is done: we may start either with N0 at

the initial epoch and evolve N forward to the time of interest, or fix N at this time and evolve

N0 backwards. These approaches are distinct but equally valid, because (at least during inflation)

there is no obstacle to computing the relevant initial conditions at any time of our choosing. The

transport equations we have described in this paper are of the forwards variety.

Eq. (2.65) shows explicitly what must be computed in order to completely characterize the

fluctuations δϕα at any given order. At first order in a d-field slow-roll model, we require the

d2 independent components of the Jacobi map Γαi . At second order there are d3 components

of Γαi j , reduced to d2(d + 1)/2 after accounting for symmetries. Finally, at third order there

are d4 components of Γαi jk , which reduce to d2(d + 1)(d + 2)/6 independent components after

symmetries. We conclude that to compute all two-point functions in such a model requires solution

of O(d2) differential equations. Likewise, all three-point functions requires O(d3) equations, and

all four-point functions requires O(d4) equations. This is to be expected, because there are O(dm )

independent m-point functions.

Autocorrelation functions of ζ only.—Sometimes we do not require all correlation functions, but

only the autocorrelation functions of ζ . In such cases it would be advantageous if an autonomous

set of transport equations could be set up for the Taylor coefficients of ζ rather than δϕα ,

δN = Niδϕi +
1
2!

Ni jδϕiδϕ j +
1
3!

Ni jkδϕiδϕ jδϕk . (2.66)

8Indeed, one can verify that inserting (2.65) into (2.5) and equating coefficients order-by-order reproduces the Γ-

matrix evolution equations with unprimed indices [Eqs. (2.26), (2.34) and (2.46)].
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This would require the solution of only O(dm−1) independent equations to obtain the m-point

function of ζ . This saving could be helpful in models with a large number of fields. There is cur-

rently no forwards formulation of this type but a set of backwards equations were given by Yokoy-

ama, Suyama and Tanaka (2007); Yokoyama, Suyama and Tanaka (2008), and later extended to

the trispectrum (Yokoyama, Suyama and Tanaka 2009).

The Taylor coefficients for N can be expressed in terms of the Γ-matrices,

Ni = NαΓαi (2.67)

Ni j = NαΓαi j + NαβΓαiΓβ j (2.68)

Ni jk = NαΓαi jk + NαβγΓαiΓβ jΓγk +
(
NαβΓβiΓα jk + 2 cyclic

)
. (2.69)

We could attempt to obtain forward transport equations by direct differentiation with respect to

time followed by use of the Γ-matrix evolution equations. But this does not generate a closed set

of autonomous equations because derivatives of the Nα ··· also appear, which obstruct an attempt

to eliminate the Γ-matrices in favour of their N counterparts.

Instead, the backwards equations of Yokoyama et al. can be derived as follows. As described

above, we fix N to be the late time of interest and aim to evolve N0 backwards. The backwards

evolution of Γαi can be obtained very simply by differentiating (2.65) while keeping δϕα fixed,

or alternatively by differentiating (2.28) with respect to N0. Whichever method is chosen, we

find dΓαi/dN0 = −Γα ju j i . Subsequently differentiating (2.67) with respect to N0 and using this

relation, we obtain an autonomous set of equations for Ni ,

dNi

dN0
= −Nju j i . (2.70)

This technique can be extended to higher orders, giving evolution equations for Ni j and Ni jk .9 We

find
dNi j

dN0
= −Nkuki j − Nikuk j − Njkuki , (2.73)

and
dNi jk

dN0
= −N`u`i jk −

(
Ni`u` jk + Njk`u`i + 2 cyclic

)
. (2.74)

The first of these was given in Seery, Mulryne et al. (2012). Here we have extended the method

to include Ni jk , which enables trispectrum quantities to be calculated. These equations should be

9The evolution equations for Γαi j and Γαi jk , which are required to obtain these results, are

dΓαi j
dN0

= −Γαmumi j − Γαimumj − Γαmjumi (2.71)

dΓαi jk
dN0

= −Γαmumi jk −
(
Γαimumjk + Γαmjkumi + 2 cyclic

)
. (2.72)
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solved with initial conditions chosen so that Ni , Ni j and Ni jk equal the transformation matrices

Nα , Nαβ and Nαβγ , respectively, at N0 = N .

If we require only the bispectrum of ζ and are prepared to take the field fluctuations at time

N0 to be Gaussian and uncorrelated with each other, then more is possible. Under these circum-

stances, Yokoyama et al. showed that the O(d2) equations for Ni j could be replaced by only O(d)

equations for an auxiliary quantityΘα = ΓαiNi (Yokoyama, Suyama and Tanaka 2008; Yokoyama,

Suyama and Tanaka 2007).

Constraint for first-order coefficients.—There is a further simplification which can be made

for the Ni system. Using the flow equation dφi = ui dN , it follows that the displacement dφi = ui

precisely tangent to the trajectory generates a change in the e-foldings required to reach the final

uniform density slice corresponding to

δN = uiNi = −1. (2.75)

This implies that one of the Ni can be determined algebraically in terms of the others, without

solving a separate differential equation. Therefore, in a two-field model, the Yokoyama et al.

equations (2.70) can be decoupled,

dNφ
dN0

=

(
uφ
uχ

uχφ − uφφ

)
Nφ +

uχφ
uχ

, (2.76)

where we have labelled the fields φ and χ. A similar equation can be given for Nχ , but it is

unnecessary because (2.75) can be used to obtain Nχ once Nφ is known. Although the possibility

of decoupling these equations is interesting, it confers no particular advantages.

A variation of the Yokoyama et al. formulation was recently given by Mazumdar and Wang

(2012) in which they pointed out the possibility of this decoupling in the two-field case, although

without making explicit use of the constraint (2.75). Their analysis is equivalent to the one presen-

ted here, and in Appendix A of Seery, Mulryne et al. (2012). Mazumdar & Wang ascribed the pos-

sibility of decoupling to the choice of coordinates used in their derivation. However, the evolution

equation (2.70) can be derived using any convenient method and is independent of such choices.

The argument above shows that decoupling is a consequence of the constraint (2.75), and is a

special feature of the two-field system. In a general d-field model, the best that can be obtained is

a coupled system of d − 1 equations.
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2.6 Numerical results

We now illustrate the transport approach using a number of concrete models. For each model, we

numerically solve Eqs. (2.17), (2.19) and (2.23)–(2.24), and use Eqs. (2.62)–(2.64) to determine

the values of fNL, τNL and gNL from horizon crossing onwards. We label the number of e-folds of

inflation from N = 0 at horizon exit.

2.6.1 Numerical Examples

D-brane model.—Our first example was studied by Dias, Frazer and Liddle (2012). It is an ap-

proximation to inflation driven by the motion of a D-brane in a warped throat, allowing for angular

degrees of freedom. In that study, the authors employed the transport approach to calculate the

distribution of observable parameters over a large number of realizations of their model. However,

they restricted attention to the spectrum and local-type bispectrum. Here we present the evolution

of the local-type trispectrum parameters for one typical realization.

The potential is given by

V = α0 + α1φ1 + α3φ
3
1 + βφ2, (2.77)

which contains an inflexion point in the φ1 direction. The φ1 and φ2 directions of the brane cor-

respond to the radial and angular directions respectively. Inflation occurs close to this inflexion

point. We choose α0 = 100M2M2
P , α1 = M2MP, α3 = 5M2/MP, β = 5M2MP, φ1exit = 0.5MP,

and φ2exit = 0.5MP, where the subscript ‘exit’ indicates these are the initial values of the fields at

horizon exit. M is an overall normalisation, which can be fixed to match the WMAP normalization

of the power spectrum. These initial conditions have been chosen to give 60-efolds of inflation,

taking inflation to end when ε = 1. Allowing the system to evolve past this point would lead to

erroneous results because we are employing slow-roll equations of motion. As explained in §2.2

this could be resolved by writing transport equations in the full phase-space. However, for simpli-

city, we do not do so here. In Fig. 2.1 we give the evolution of τNL, gNL, and (6 fNL/5)2 for this

choice of parameters and initial conditions.

For single-field models we recall that τNL = (6 fNL/5)2, which is relaxed to an inequality in

multiple-field models (Suyama and Yamaguchi 2008; Smith, LoVerde and Zaldarriaga 2011). The

use of the relative magnitude of τNL and (6 fNL/5)2 as a diagnostic of the spectrum of active fields

during inflation was emphasized by Smidt et al. (2010), who made a forecast of observational
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prospects. Very recently, Assassi, Baumann and Green (2012) gave precise formulae in terms of

the spectrum of single-particle states. This signature of multiple active fields is clearly visible in

Fig. 2.1, although in this realization the nongaussian parameters are too small to be observable. (As

a point of principle an inflexion point potential may give rise to a large local bispectrum (Elliston

et al. 2011a) and trispectrum (Elliston, Alabidi et al. 2012), via the hilltop mechanism suggested

by Kim, Liddle and Seery (2010). However, an observable signal can usually be obtained only for

finely tuned initial conditions and parameter choices.)
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Figure 2.1: Evolution of τNL, gNL and (6/5 fNL)2 for the inflexion-point potential (2.77). Initial conditions and parameter choices

are described in the main text.

Quadratic-exponential model.—Our second example was constructed by Byrnes, Choi and Hall

(2008) as an example of a product-separable model which could give rise to a large fNL for finely-

tuned initial conditions. It was later studied by Elliston et al. (2011b) and Huston and Christoph-

erson (2012).

The potential is

V = M4φ2
1e−λφ

2
2 . (2.78)

We choose the parameter values and initial conditions λ = 0.05/M2
P , φ1exit = 16MP, and φ2exit =

0.001MP, and fix M as before to match the WMAP normalization. These initial values also give

60-efolds of inflation. They have been chosen to select a background trajectory which gives rise

to significant nongaussianity. In Fig. 2.2, we present the evolution of the τNL and gNL parameters

in this model for the first time. The gNL parameter in this model is significantly smaller (though

non-zero) than fNL and τNL, which could not have been predicted in advance. We also show the
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evolution of (6 fNL/5)2. However, although the fNL and τNL parameters are large at the end of

inflation, it is important to note that the fluctuations are still evolving at this time. Therefore the

model is not predictive by itself: it must be supplemented by post-inflationary evolution, which

tracks the fluctuations until the surface of last scattering, or explains how all isocurvature modes

eventually decay.

0 10 20 30 40 50 60
−250

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

N

 

 

(6/5 f
NL

)2

τ
NL

g
NL

Figure 2.2: Evolution of τNL, gNL and (6/5 fNL)2 for the potential (2.78). Initial conditions and parameter choices are described in

the main text.

Non-separable hybrid model.—Finally, we present results for a hybrid-type potential in the large

field regime studied by Mulryne, Orani and Rajantie (2011). This is an example of a non-separable

potential. For general initial conditions, no analytic estimate is known for any of fNL, τNL or gNL,

even assuming slow-roll. Therefore numerical methods, such as our implementation of the trans-

port equations, become essential. The potential contains a hilltop region, and parameter choices

and initial conditions can be chosen so that the model is of the type discussed by Kim, Liddle and

Seery (2010). This gives rise to large nongaussianity for initial conditions sufficiently close to the

hilltop.

The potential satisfies

V = M4
[
1
2

m2φ2
1 +

1
2
g2φ2

1φ
2
2 +

λ

4

(
φ2

2 − v2
)2

]
, (2.79)

and we choose the parameter values g2 = v2/φ2
crit, m2 = v2, v = 0.2MP, φcrit = 20MP and λ = 5.

The initial conditions are φ1exit = 15.5MP and φ2exit = 0.0015MP. As above, these initial values

give 60-efolds of inflation and have been adjusted to produce significant nongaussianity. M is

adjusted as before. In Fig. 2.3, we present the evolution of the τNL and gNL parameters in this
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model for the first time. In contrast to the previous example, the statistics here approach constant

values before the end of inflation, reflecting the fact that isocurvature modes decay. We also give

the evolution of (6 fNL/5)2.
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Figure 2.3: Evolution of τNL, gNL and (6/5 fNL)2 for the potential (2.79). Initial conditions and parameter choices are described in

the main text.

2.7 Discussion and Conclusions

In this paper we have provided transport equations to evolve the four-point functions of a collection

of light scalar fields during an inflationary phase. The transport system can be thought of as a form

of Boltzmann hierarchy, and can be solved by similar methods. Since inflationary fluctuations

are typically close to Gaussian, connected correlation functions of increasing order are typically

decreasing in amplitude. Therefore only a few low-order functions are important in sourcing those

of higher order. Truncating the hierarchy to include only these sources generates the local-type

“squeezed” and “collapsed” configurations. We parametrize the amplitude of these configurations

with “shape tensors” for which we have supplied evolution equations. Expressing the correlation

functions of ζ in terms of those of the δϕα , it is possible to extract τNL and gNL. This analysis was

given in §2.2.

This method of integrating the transport hierarchy expresses the correlation functions in terms

of the Jacobi fields generated by the underlying phase space flow, and their derivatives. One can

regard this as a statement of the separate universe approximation. The “Jacobi map” relates these
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fields to the variation of a general solution of the equations of motion with respect to its constants

of integration. Using this equivalence, we have shown that the result reproduces the familiar Taylor

expansion used by Lyth & Rodríguez. The procedure can be viewed as an application of classical

Hamilton–Jacobi theory.

Our equations supply a toolkit which can be used to study the evolution of inflationary ob-

servables in any multi-field model of interest, provided all fields possess canonical kinetic terms.

There are two equivalent approaches. First, one can solve Eqs. (2.17), (2.19), (2.23) and (2.24) for

the shape tensors corresponding to the two-, three- and four-point functions, using suitable initial

conditions. Eqs. (2.61)–(2.63) can then be used to extract observables. Alternatively, one can solve

the evolution equations (2.26) (after exchanging primed for unprimed indices), (2.34) and (2.46)

for the Taylor coefficients of the “δN formalism”, applied to the field fluctuations. Once these are

known, Eqs. (2.67)–(2.69) can be used to exchange them for the Taylor coefficients of N itself.

The usual formulae then allow observables to be computed. If the spectral index or its running

are required, they can be extracted using the methods described by Dias and Seery (2012); Dias,

Frazer and Liddle (2012).

Assuming slow-roll, either method requires the solution of O(dm ) equations to obtain the m-

point functions of a d-field model. Since there are O(dm ) independent correlation functions it will

not be possible to reduce this asymptotic complexity. But if only the autocorrelation functions

of ζ are required, then it may be advantageous to use the ‘backwards’ formalism introduced by

Yokoyama, Suyama & Tanaka, in which one can reduce the number of equations to be solved

to O(dm−1) by forfeiting the possibility of obtaining correlation functions with insertions of iso-

curvature modes. [For clarity, we emphasize that the formalism of Yokoyama et al. correctly

accounts for the influence of these isocurvature modes on the evolution of the ζ correlation func-

tions. But it is not possible to determine mixed correlation functions, such as 〈ζ s〉, where s is

a field space direction orthogonal to ζ .] Unfortunately, it is often necessary to know something

about such correlation functions to determine whether unquenched isocurvature modes remain,

which could change the inflationary prediction by transferring their energy to the curvature fluctu-

ation during or after reheating. (We refer to Seery, Mulryne et al. (2012) for a more comprehensive

discussion.) But in some cases this may not be a concern, and where this is true our extension of

the formalism of Yokoyama et al. allows trispectrum parameters to be obtained.
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2.A Appendix: Contributions to the four-point function from the initial condition of

the three-point function

In this appendix we verify the claim made in §2.2.3, that the arbitrary initial condition for the

three-point function makes a negligible contribution to the sourced component of the four-point

function. In the text, this was used to conclude that the initial value need not be retained in

Eqs. (2.23)–(2.24).

It was first proved by Lyth & Zaballa that the initial condition for the three-point function

could be neglected in comparison with the sourced contribution whenever the sum of the two was

large enough to be observed (Lyth and Zaballa 2005). Their argument was later simplified by

Vernizzi and Wands (2006). The same result for the four-point function follows from the analysis

of Seery, Lidsey and Sloth (2007) and Seery, Sloth and Vernizzi (2009). However, we are unaware

of a similar demonstration for the question addressed in this appendix—the contribution of initial

value of the three-point function to the sourced component of the four-point function.

We work with the variational formulation of the separate universe approximation, as discussed

by Lyth and Rodriguez (2005). We write

ζ = Niδϕi +
1
2!

Ni jδϕiδϕ j + · · · , (2.80)

where the Latin indices i, j, . . . , have the same meaning as in the main text. We define the

trispectrum Tζ to be the four-point function with its momentum-conservation δ-function stripped

away,

〈ζ (k1)ζ (k2)ζ (k3)ζ (k4)〉 = (2π)3δ(k1 + k2 + k3 + k4)Tζ . (2.81)
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Using the initial value of the three-point function computed in Seery and Lidsey (2005), the cor-

responding contribution to the sourced part of Tζ can be written

Tζ ⊇ NiNj Nk Nmn

{
δim

H2
∗

2k3
1

H4
∗

8k3
2 k3

3 k3
14

∑
perms

ϕ̇ jδkn

2H∗

(
−3

k2
3 k2

14

kt
−

k2
3 k2

14

k2
t

(k2 + 2k14) +
k3

2

2
− k2k2

3

)
+ [k1 → {k2,k3}]

}
+ cyclic permutations k4 → {k1,k2,k3}

(2.82)

where “∗” denotes evaluation at horizon exit, kt = k1 + k2 + k14, the summation is over all

simultaneous permutations of the index set {β,γ, ε } and the momenta {k2,k3,k14}, and we have

defined k14 = |k1 + k4 |.

This contribution can be divided into an effective gNL, an effective τNL, and an ‘equilateral-

type’ term which does not fit naturally into either of the local-type shapes. The effective gNL can

be written

∆gNL =
25
72

NiNi j ϕ̇ j/H∗
(Nk Nk )2 (2.83)

(the placement of indices is immaterial in this and other expressions, since contraction occurs

under the Kronecker-δ), and the effective τNL is

∆τNL = −
1
2

NiNi j Nj

(Nk Nk )3 . (2.84)

These expressions can be simplified. Introducing the scalar-to-tensor ratio r and the spectral index

ns , we find

∆gNL =
25

1152
r (ns − 1 + 2ε∗) � 1 (2.85)

∆τNL = −
3
35

r fNL, (2.86)

where fNL is the sourced local-mode contribution to the three-point function. The gNL contribution

is clearly negligible. The τNL contribution is negligible provided |r fNL | . 1. Taking the bound

on r to be roughly r . 0.1, this term can be observationally relevant only if | fNL | & 50. This is

already on the verge of being ruled out by experiment, so the τNL contribution is likely to be no

more than O(1) in most acceptable models. It could perhaps be kept if very accurate estimates are

required.
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Finally, the equilateral-type term is

Tζ ⊇
H6
∗

8k3
1 k3

2 k3
3 k3

14

(
NiNi j

ϕ̇ j

4H∗
(Nk Nk )


−

8k2
2 k2

3

kt
− k14(k2

2 + k2
3 )




−
NiNi j Nj

4


−8

k2
14

kt
(k2

2 + k2
3 ) − k2

14(k2 + k3) − k2k3(k2 + k3)



)

+ [k1 → {k2,k3}] + (cyclic k4 → {k1,k2,k3})

(2.87)

The coefficients of these contributions are related to those of Eqs. (2.83) and (2.84), and will

therefore not typically be large.

2.B Appendix: Gauss–Hermite expansion method

The transport equation for the trispectrum given in this paper can be derived in a number of ways.

In this appendix we adopt a cumulant expansion procedure (Juszkiewicz et al. 1995; Bouchet and

Juszkiewicz 1993; Bouchet 1995; Fosalba, Gaztanaga and Elizalde 1999). This was the approach

taken in Mulryne, Seery and Wesley (2010) and Mulryne, Seery and Wesley (2011) to derive

the transport equation for the bispectrum. Here we extend the calculation to derive the transport

equation for the trispectrum.

2.B.1 Cumulant expansion

In each smoothed patch of the universe the value of the scalar field ϕ is described by a unique prob-

ability density function P(ϕ). From inflation we expect that any non-Gaussianity will be small,

and therefore it is a justifiable approximation that the higher-order moments will be a small cor-

rection to a Gaussian probability density function (pdf). In this case we can use a Gauss–Hermite

expansion method to perturb a Gaussian probability distribution function Pg (ϕ). This approach

has also been used by Taylor and Watts (2000) and also Juszkiewicz et al. (1995); Bouchet and

Juszkiewicz (1993); Bouchet (1995); Fosalba, Gaztanaga and Elizalde (1999); Matarrese, Verde

and Jimenez (2000); Amendola (2002); Watts and Coles (2003); Amendola (1996); Lam and Sheth

(2009); Seery and Hidalgo (2006); LoVerde et al. (2008).

To consider non-Gaussianity on the level of the trispectrum we perturb the pdf to fourth order

to give

P(ϕ) = Pg (ϕ)

1 +

αz
α′β′γ′

3!
Hα′β′γ′ (z) +

βzα′β′γ′δ′

4!
Hα′β′γ′δ′ (z) + . . .


, (2.88)
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where

Pg (ϕ) ≡
1

(det2πΣ)1/2 exp
(
−

z2

2

)
. (2.89)

The covariance matrix Σ is the two-point function for the field perturbations, reproduced here for

convenience, is given by

Σα′β′ ≡ 〈(ϕα′ − Φα′ )(ϕβ′ − Φβ′ )〉

= 〈δϕα′δϕβ′〉 (2.90)

which we can decompose as Σ = AAT, with AT denoting the matrix transpose of A. We can use

this matrix to define a new variable zα′ (δϕα′ ) = A−1
α′β′δϕα′ . The objects αz

α′β′γ′ = 〈zα′ zβ′ zγ′〉

and βzα′β′γ′δ′ = 〈zα′ zβ′ zγ′ zδ′〉 characterise the deviations from Gaussianity. They are respect-

ively the third and fourth order moments of the zα′ , corresponding to the skewness and kurtosis of

the pdf, shown in Figure. 2.4.

Figure 2.4: Plot showing a Gaussian (blue), Gaussian with skew (purple) and Gaussian with kurtosis (gold). Image credit: Sam

Young.

Their relation to the three- and four-point functions of the fields is

αα′β′γ′ = Aα′δ′Aβ′µ′Aγ′ν′αz
δ′µ′ν′ (2.91)

βα′β′γ′δ′ = Aα′δ′Aβ′µ′Aγ′ν′Aδ′κ′ βzδ′µ′ν′κ′ (2.92)

where

αα′β′γ′ ≡ 〈δϕα′δϕβ′δϕγ′〉 (2.93)

βα′β′γ′δ′ ≡ 〈δϕα′δϕβ′δϕγ′δϕδ′〉. (2.94)
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Hν′ is the ν′th Hermite polynomial defined by

Hα′β′ ...γ′ (z) = (−1)ν
′

exp
( zµ′ zµ′

2

)
∂ν
′

∂zα′∂zβ′ . . . ∂zγ′
exp

(
−

zµ′ zµ′

2

)
(2.95)

obeying the following normalisation condition∫ ∞

−∞

1
√

2π
e−ϕ

2/2Hν′ (z)Hµ′ (z) dz = ν′! δµ′ν′ . (2.96)

First multiplying (2.95) by zµ′ and using integration by parts we can write

zµ′Hα′β′ ...γ′ = (−1)ν
′

exp
( zλ′ zλ′

2

)
∂

∂zα′

(
zµ′

∂ν
′−1

∂zβ′ . . . ∂zγ′
exp

(
−

zλ′ zλ′
2

) )
−(−1)ν

′

exp
( zλ′ zλ′

2

)
δα′µ′

(
zµ′

∂ν
′−1

∂zβ′ . . . ∂zγ′
exp

(
−

zλ′ zλ′
2

) )
(2.97)

Pushing the zµ′ in the first term through the rest of the gradient terms we get

zµ′Hα′β′ ...γ′ = δα′µ′Hβ′ ...γ′ + δβ′µ′Hα′ ...γ′ + · · · + δγ′µ′Hα′β′ ...

+ (−1)ν
′

ez2/2 ∂ν
′

∂zα′∂zβ′ . . . ∂zγ′

(
zµ′e−z2/2

)
(2.98)

and using
∂

∂zµ′
e−z2/2 = −zµ′e−z2/2 (2.99)

to rewrite the last term we have derived the following identity that we will make use of in our

calculation

zµ′Hα′β′ ...γ′ = Hα′β′ ...γ′µ′ + δα′µ′Hβ′ ...γ′ + δβ′µ′Hα′ ...γ′ + · · · + δγ′µ′Hα′β′ ... . (2.100)

Differentiating Hα′β′ ...γ′ with respect to zµ′ gives

∂Hα′β′ ...γ′

∂zµ′
= (−1)ν

′

zµ′ez2/2
(

∂ν
′

∂zα′∂zβ′ . . . ∂zγ′
e−z2/2

)
+(−1)ν

′

ez2/2
(

∂ν
′+1

∂zα′∂zβ′ . . . ∂zγ′∂zµ′
e−z2/2

)
(2.101)

Using (2.100) to rewrite the first term we arrive at another important identity

∂Hα′β′ ...γ′

∂zµ′
= δα′µ′Hβ′ ...γ′ + δβ′µ′Hα′ ...γ′ + · · · + δγ′µ′Hα′β′ ... (2.102)

The derivative of zα′ is given by

∂zα′
∂t

=
∂A−1

α′β′

∂t
(ϕβ′ − Φβ′ ) − A−1

α′β′
∂Φβ′

∂t

=
∂A−1

α′β′

∂t
Aβ′γ′ zγ′ − A−1

α′β′
∂Φβ′

∂t
(2.103)
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Therefore

∂Hα′β′ ...ν′

∂t
=

(
δα′µ′Hβ′ ...ν′ + δβ′µ′Hα′ ...ν′ + · · · + δν′µ′Hα′β′ ...

) ∂A−1
µ′δ′

∂t
Aδ′ν′ zν′ − A−1

µ′δ′
∂Φδ′

∂t




(2.104)

and
∂detΣ
∂t

= (detΣ)Σ−1
µ′ν′

∂Σν′µ′

∂t
(2.105)

2.B.2 Transport equation for the pdf

The probability density function evolves via the following transport equation

∂P
∂t

+
∂

∂ϕ

[
uP

]
= 0, (2.106)

where the velocity field is defined in (2.2), reproduced here for convenience

u ≡
dϕ
dN

= −M2
P
∂lnV (ϕ)
∂ϕ

, (2.107)

where dN = Hdt. Expanding ui around the instantaneous centroid we get

uα′ = uα′0 + uα′β′ (ϕβ′ − Φβ′ ) +
1
2

uα′β′γ′ (ϕβ′ − Φβ′ )(ϕγ′ − Φγ′ ) + . . . (2.108)

= uα′0 + uα′β′Aβ′γ′ zγ′ +
1
2

uα′β′γ′Aβ′δ′Aγ′µ′ zδ′ zµ′

+
1
3!

uα′β′γ′δ′Aβ′κ′Aγ′λ′Aδ′ρ′ zκ′ zλ′ zρ′

+
1
4!

uα′β′γ′δ′µ′Aβ′κ′Aγ′λ′Aδ′ρ′Aµ′σ′ zκ′ zλ′ zρ′ zσ′ (2.109)

To solve this equation, we will first calculate ∂P
∂N and then calculate ∂

∂ϕ [uP], by using the tools

introduced in §2.B.1

2.B.3 Calculating ∂P
∂t

By differentiating the probability density function, (2.88), with respect to time t we get

∂P
∂t

=
∂Pg

∂t


1 +

αz
α′β′γ′

3!
Hα′β′γ′ +

βzα′β′γ′δ′

4!


 +

1
3
αz
α′β′γ′

∂Hα′β′γ′

∂t
+

1
3!

∂αz
α′β′γ′

∂t
Hα′β′γ′

+
1
4!

∂ βzα′β′γ′δ′

∂t
Hα′β′γ′δ′ +

1
4!
βzα′β′γ′δ′

∂Hα′β′γ′δ′

∂t
(2.110)

Using (2.105) and (2.103), the derivative of Pg can be written as

∂Pg

∂t
= Pg


−

1
2
Σ
−1
µ′ν′

∂Σµ′ν′

∂t
− zµ′



∂A−1

µ′ν′

∂t
Aν′ρ′ zρ′ − A−1

µ′ν′
∂Φν′

∂t





(2.111)
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Substituting this into (2.110) and using (2.104) to rewrite the Hermite derivative terms gives

∂P
∂t

= Pg

[
−

1
2
Σ
−1
µ′ν′

∂Σµ′ν′

∂t


1 +

αz
α′β′γ′

3!
Hα′β′γ′ +

βzα′β′γ′δ′

4!
Hα′β′γ′δ′




− zµ′



∂A−1

µ′ν′

∂t
Aν′ρ′ zρ′ − A−1

µ′ν′
∂Φν′

∂t




1 +

αz
α′β′γ′

3!
Hα′β′γ′ +

βzα′β′γ′δ′

4!
Hα′β′γ′δ′




+
1
3!
αz
α′β′γ′ (δα′µ′Hβ′γ′ + δβ′µ′Hα′γ′ + δγ′µ′Hα′β′ )



∂A−1

µ′λ′

∂t
Aλ′ρ′ zρ′ − A−1

µ′λ′
∂Φλ′

∂t




+
1
4!
βzα′β′γ′δ′ (δα′µ′Hβ′γ′δ′ + δβ′µ′Hα′γ′δ′ + δγ′µ′Hα′β′δ′ + δδ′µ′Hα′β′γ′ )



∂A−1

µ′λ′

∂t
Aλ′ρ′ zρ′ − A−1

µ′λ′
∂Φλ′

∂t




+
1
3

∂αz
α′β′γ′

∂t
Hα′β′γ′ +

1
4!

∂ βzα′β′γ′δ′

∂t
Hα′β′γ′δ′

]
(2.112)

We can use the property (2.100) to rewrite this solely in terms of Hermite polynomials. Doing this

and cancelling some terms, the final expression for the evolution of the pdf is

∂P
∂t

= Pg

[
−

1
2
Σ
−1
µ′ν′

∂Σµ′ν′

∂t


1 +

αz
α′β′γ′

3!
Hα′β′γ′ +

βzα′β′γ′δ′

4!
Hα′β′γ′δ′




− Hµ′ρ′
∂A−1

µ′ν′

∂t
Aν′ρ′ −

∂A−1
µ′ν′

∂t
Aν′µ′ + Hµ′A−1

µ′ν′
∂Φ

∂t
+

1
4!

Hα′β′γ′δ′
∂ βzα′β′γ′δ′

∂t

−
αz
α′β′γ′

3!

∂A−1
µ′ν′

∂t
Aν′ρ′

(
Hα′β′γ′µ′ρ′ + δα′ρ′Hβ′γ′µ′ + δβ′ρ′Hα′γ′µ′ + δγ′ρ′Hα′β′µ′

+δµ′ρ′Hα′β′γ′
)

−
βzα′β′γ′δ′

4!

∂A−1
µ′ν′

∂t
Aν′ρ′

(
Hα′β′γ′δ′µ′ρ′ + δα′ρ′Hβ′γ′δ′µ′ + δβ′ρ′Hα′γ′δ′µ′ + δγ′ρ′Hα′β′δ′µ′

+ δδ′ρ′Hα′β′γ′µ′ + δµ′ρ′Hα′β′γ′δ′
)

+
αz
α′β′γ′

3!
A−1
µ′ν′

∂Φν′

∂t
Hα′β′γ′µ′ +

βzα′β′γ′δ′

4!
A−1
µ′ν′

∂Φν′

∂t
Hα′β′γ′δ′µ′

+
1
3!

Hα′β′γ′
∂αz

α′β′γ′

∂t

]
(2.113)

2.B.4 Calculating ∂
∂ϕα′

(uα′P)

The next step is to calculate the second term in (2.106), namely

∂

∂ϕα′
(uα′P) =

∂uα′
∂ϕα′

P + uα′
∂P
∂ϕα′

(2.114)

Differentiating both uα′ and P with respect to ϕα′ we get

∂uα′
∂ϕα′

= uα′α′ + uα′α′β′Aβ′κ′ zκ′ +
1
2!

uα′α′β′γ′Aβ′κ′Aγ′λ′ zκ′ zλ′

+
1
3!

uα′α′β′γ′δ′Aβ′κ′Aγ′λ′Aδ′ρ′ zκ′ zλ′ zρ′ (2.115)
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∂P
∂ϕα′

= Pg

[
− zτ′A−1

τ′α′


1 +

αz
κ′λ′ρ′

3!
Hκ′λ′ρ′ +

βzκ′λ′ρ′σ′

4!
Hκ′λ′ρ′σ′




+
αz
κ′λ′ρ′

3!
A−1
τ′α′

(
δτ′κ′Hλ′ρ′ + δτ′λ′Hκ′ρ′ + δτ′ρ′Hκ′λ′

)
+

βzκ′λ′ρ′σ′

4!
A−1
τ′α′

(
δτ′κ′Hλ′ρ′σ′ + δτ′λ′Hκ′ρ′σ′ + δτ′ρ′Hκ′λ′σ′

+ δτ′σ′Hκ′λ′ρ′
)]

(2.116)

where we have used the fact that ∂zτ′/∂ϕα′ = A−1
τ′α′ . Using the identity (2.100) we can replace

the zα′ using Hermite polynomials to give

∂P
∂ϕα′

= Pg

[
A−1
τ′α′Hτ′ −

αz
κ′λ′ρ′

3!
A−1
τ′α′Hκ′λ′ρ′τ′ −

βzκ′λ′ρ′σ′

4!
A−1
τ′α′Hκ′λ′ρ′σ′τ′

]
(2.117)

We then need to multiplying this by uα′ , replace all the zα′ using the trick (2.100) and adding on

the P∂uα′/∂ϕα′ . Writing out the final contribution to ∂
∂ϕα′

(uα′P) in orders of uα′ we get

O(uα′0) : −uα′0Pg


A−1

τ′α′Hτ′ +
αz
κ′λ′ρ′

3!
A−1
τ′α′Hκ′λ′ρ′τ′


 (2.118)

O(uα′β′ ) : −uα′ψ′Pg
(
Aψ′ω′A−1

τ′α′Hτ′ω′ +
αz
ω′λ′ρ′

2!
Aψ′ω′A−1

τ′α′Hλ′ρ′τ′

+
βzω′λ′ρ′σ′

3!
Aψ′ω′A−1

τ′α′Hλ′ρ′σ′τ′
)

(2.119)

O(uα′β′γ′ ) : −
1
2

uα′ψ′φ′Pg
(
Aψ′ω′Aφ′χ′A−1

τ′α′Hτ′ω′χ′ + Aψ′ω′Aφ′ω′A−1
τ′α′Hτ′ (2.120)

+αz
ω′λ′ρ′Aψ′ω′Aφ′χ′A

−1
τ′α′Hλ′ρ′τ′χ′

+αz
ω′χ′ρ′Aψ′ω′Aφ′χ′A

−1
τ′α′Hρ′τ′ +

αz
κ′λ′ρ′

3!
Aψ′ω′Aφ′ω′A−1

τ′α′Hκ′λ′ρ′τ′

+
βzω′χ′ρ′σ′

2!
Aψ′ω′Aφ′χ′A−1

τ′α′Hρ′σ′τ′
)

(2.121)

O(uα′β′γ′δ′ ) : −
1
3!

uα′ψ′φ′θ′Pg
(
Aψ′ω′Aφ′χ′Aθ′ζ′A−1

τ′α′Hτ′ω′χ′ζ′ + 3Aψ′ω′Aφ′ω′Aθ′ζ′A−1
τ′α′Hτ′ζ′

+
3
2
αz
ω′λ′ρ′Aψ′ω′Aφ′χ′Aθ′χ′A

−1
τ′α′Hλ′ρ′τ′

+3αz
ω′χ′ρ′Aψ′ω′Aφ′χ′Aθ′ζ′A

−1
τ′α′Hρ′τ′ζ′ + αz

ω′χ′ζ′Aψ′ω′Aφ′χ′Aθ′ζ′A
−1
τ′α′Hτ′

+
βzω′λ′ρ′σ′

2!
Aψ′ω′Aφ′χ′Aθ′χ′A−1

τ′α′Hλ′ρ′σ′τ′ (2.122)

+3
βzω′χ′ρ′σ′

2!
Aaω′Aφ′χ′Aθ′ζ′A−1

τ′α′Hρ′σ′τ′ζ′

+βzω′χ′ζ′σ′Aψ′ω′Aφ′χ′Aθ′ζ′A
−1
τ′α′Hσ′τ′

)
(2.123)
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where we have reduced the equations to Hermites of rank 6 4. Using these equations and the

result for the evolution of the pdf (2.113) we can extract the moment hierarchy order by order. The

first order terms gives the evolution of the centroid

∂Φα′

∂t
= uα′0 +

1
2!

uα′ψ′φ′Σψ′φ′ +
1
3!

uα′ψ′φ′θ′αψ′φ′θ′ . (2.124)

The second order equation gives a transport equation for the two-point function

∂Σκ′ρ′

∂t
= uκ′ψ′Σψ′λ′ + uλ′ψ′Σψ′κ′ +

1
2

uκ′ψ′φ′αλ′ψ′φ′ +
1
2

uλ′ψ′φ′ακ′ψ′φ′

+
1
2

uκ′ψ′φ′θ′Σψ′φ′Σλ′θ′ +
1
2

uλ′ψ′φ′θ′Σψ′φ′Σκ′θ′

+
1
3!

uκ′ψ′φ′θ′ βλ′ψ′φ′θ′ +
1
3!

uλ′ψ′φ′θ′ βκ′ψ′φ′θ′ . (2.125)

The transport equation for the three-point function is

∂αξ′η′ε′

∂t
= uξ′ψ′αη′ε′ψ′ + cyclic

+uξ′ψ′φ′Σψ′η′Σφ′ε′ + cyclic

+
1
2

uξ′ψ′φ′θ′αη′ε′ψ′Σφ′θ′ + cyclic

+
1
2

udψ′φ′θ′αη′ψ′φ′Σε′θ′ + cyclic. (2.126)

Finally, the new result that we have derived here using the Gauss–Hermite expansion method is

the transport equation for the trispectrum

∂ βξ′η′ε′π′

∂t
= uξ′ψ′ βη′ε′π′ψ′ + cyclic

+uξ′ψ′φ′αψ′η′ε′Σφ′π′ + cyclic

+uξ′ψ′φ′θ′Σψ′η′Σφ′ε′Σθ′π′ + cyclic. (2.127)

We have checked that these equations match the results derived using the geometrical optics ap-

proach described in Seery, Mulryne et al. (2012).
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Conclusion

2.3 Summary of this work

There are many models of inflation in the literature, each involving their own set of interactions

and predictions. Our goal is to use the inflationary signatures observed in the CMB to distinguish

between them, with the ultimate goal of understanding the microphysics behind inflation. The

signatures correspond to a handful of statistical observables, most recently measured to a high

degree of precision by the Planck satellite.

In order to test these models in a systematic way and discriminate between them requires

substantial effort on the interface of theory and observation. This is where the work in this thesis

makes its contribution. With such a large number of existing inflationary models and more appear-

ing every day, it is imperative that we have efficient ways of computing their observable predictions

and find ways to utilize the data as effectively as possible. This task of constraining models is still

very a much a “work-in-progress”, making it a very exciting time for early universe cosmology.

The goal of the work presented in this thesis has been to develop efficient methods to constrain

models of inflation using non-Gaussian observables. Here we will list the key outcomes for each

of the papers.

Optimal bispectrum constraints on single-field models of inflation.— In the first part of this

thesis we obtained optimal constraints on the parameter space of single-field inflation using WMAP9

bispectrum data. We performed a partial-wave decomposition of the CMB bispectrum data, then

used this to construct a maximum likelihood estimate for the mass parameters that characterize the

amplitude of particular interactions in the most general single-field model, given by the effective

field theory for inflation. This is the first time this systematic approach has been used and it offers

many benefits over more traditional methods for constraining models. For example, it is common

for the amplitude of non-Gaussianity to be quoted only for a handful of templates, leaving vast

regions of the data effectively unexplored. The partial-wave method uses a large number of shape

configurations and therefore enables us to explore these regions. Moreover, by considering the
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most general single-field Lagrangian compatible with the underlying inflationary spacetime in our

analysis, we were able to probe a very large region of inflationary parameter space. Specifically,

not restricting ourselves to a particular model meant that we could remain entirely agnostic to

the physical mechanism that may have generated the perturbations. The only assumption is that

a single scalar degree of freedom was active during inflation. The key difference with this ap-

proach over more common methods is that we are working backwards from the data and asking

the question “what is the most likely combination of mass parameters given the data?”. Therefore

we are using the data to directly probe the dynamics of inflation. Our results can be summarized

as follows:

• We found that there was no significant non-Gaussianity in the regions probed by the ef-

fective field theory Lagrangian. Constraints still allow for these terms to generate some

non-Gaussian signal, however the consistency with zero suggests that higher-order deriv-

ative terms may not have played an important role in the generation of the perturbations

during inflation.

• Degeneracies amongst the bispectrum shapes generated from the EFT operators meant that

only 4 linear combinations of the original 11 shapes could be constrained. These are the

principal components, which are effectively the shapes that are ‘chosen’ by the data. This

implies that we are only able to use the data to constrain models of inflation with up to four

mass parameters.

• As examples, we have provided the most accurate constraints on DBI inflation and Ghost

inflation using the WMAP9 dataset.

• We also conducted a Bayesian model comparison, finding that models with a larger number

of mass parameters appear to be disfavoured by the data.

Though it won’t change our conclusions a great deal, we will be able to achieve marginally

better constraints using Planck data. The full release is expected in the Summer. We aim to use

our pipeline to constrain inflation in a similar fashion when the underlying theory is thought to be

described by a Galileon model. The EFT Lagrangian we used in this paper does not incorporate

models with sharp features. Therefore including these models in our analysis would be an obvious

extension to this work.

Transport equations for the inflationary trispectrum.— Many of the high-energy physics in-

spired models of inflation involve multiple scalar fields that can predict a large non-Gaussianity

in some cases. Therefore it is crucial that we have efficient ways of computing the non-Gaussian
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prediction for these models in order to confront them with the observed constraints. The transport

formalism provides a numerically efficient method to track the superhorizon evolution of the cor-

relation functions to the adiabatic limit, where they take on a constant value. In the second part

of this thesis we extended the transport formalism to compute the local trispectrum non-linearity

parameters. The main conclusions of the paper are:

• We derived a transport equation for the four-point function of the field perturbations using

a Gauss–Hermite expansion approach.

• This transport equation was separated into separate evolution equations for the “squeezed”

and “collapsed” trispectrum configurations.

• The transport method was compared with other approaches in the literature and we demon-

strated their equivalence.

• We then perform a gauge transformation from the field perturbations to the curvature per-

turbation in order to find expressions for τNL and gNL, the local non-linearity parameters for

the trispectrum.

Though the constraints on the trispectrum are currently weak, it is still an observable that may help

break the degeneracies between models, especially in the future with more data arriving from LSS

surveys. With very few observables, it is important that we consider all possible ways to place

constraints on the inflationary epoch.

The transport approach has been extended a great deal and now is able to compute many of

the inflationary observables for a wide variety of models. Work is ongoing at Sussex to provide a

complete “toolbox” to calculate the observables for a given model of inflation.

2.4 Outlook for the future

With the recent hint of a “smoking gun” detection of primordial B-modes in the CMB polarization,

inflation has prevailed as the leading candidate for the origin of structure in the Universe. No

other theory has come close to providing such a successful mechanism to generate the primordial

curvature perturbation ζ .

From a theoretical perspective, a successful inflationary model would be one that is embedded

within a UV complete theory, such as string theory. There is currently a huge theoretical effort
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underway to create new models of this sort that produce signatures that are consistent with ob-

servations. Finding such models presents one of the key outstanding challenges in inflationary

cosmology.

With upcoming LSS surveys providing us with even more observational data, it will be im-

portant to find even more systematic ways to constrain the plethora of inflationary models in order

to probe the physics of the very early Universe.
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