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Summary

The two main physical processes that underpin galaxy evolution are star formation and
accretion of mass in active galactic nuclei (AGN). Understanding how contributions from
these processes vary across cosmic time requires untangling their relative contributions.

The infrared part of the electromagnetic spectrum contains a number of AGN and star
formation diagnostics e.g. emission lines from ionised gas or polyaromatic hydrocarbons
(PAHs), and the shape of the continuum. Despite the higher resolution of data from
Spitzer’s IRS spectrograph, separating out emission from star formation and AGN is
carried out using limited spectral features or simplistic templates. In the first part of this
thesis, I show how sophisticated data analysis techniques can make full use of the wealth
of spectral data.

I demonstrate how the popular multivariate technique, Principal Component Analysis
(PCA), can classify di↵erent types of ultra luminous infrared galaxies (ULIRGs), whilst
providing a simple set of spectral components that provide better fits than state-of-the art
radiative transfer models. I show how an alternative multivariate technique, Non-Negative
Matrix Factorisation (NMF) is more appropriate by applying it to over 700 extragalactic
spectra from the CASSIS database and demonstrating its capability in producing spectral
components that are physically intuitive, allowing the processes of star formation and
AGN activity to be clearly untangled.

Finally, I show how rotational transition lines from carbon monoxide and water, ob-
served by the Herschel Space Observatory, provides constraints on the physical condi-
tions within galaxies. By coupling the radiative transfer code, RADEX, with the nested
sampling routine, Multinest, I carry out Bayesian inference on the CO spectral line energy
distribution ladder of the nearby starburst galaxy, IC342. I also show that water emission
lines provide important constraints the conditions of the ISM of on one of the most distant
starburst galaxies ever detected, HFLS3.
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Chapter 1

Introduction

1.1 Prelude

Throughout our history, humans have tried to understand the cosmos. However, the

greatest leap in our knowledge and understanding of the Universe, without doubt, occurred

during the 20th Century.

At the end of the 19th Century, the Universe was believed to extend only as far as our

own galaxy, was infinitely old, and would exist indefinitely. The Great Debate between

Harlow Shapley and Heber Curtis in 1920 led to a dispute on whether the Universe extends

to distances far greater than that occupied by the Milky Way, which was partially resolved

with Edwin Hubble’s discovery of Cepheid variable stars in the Andromeda Galaxy (M31).

A further step change in our understanding came in 1929, when Hubble demonstrated the

Universe was not static but expanding.

The notion of an expansion introduced the idea of an evolving Universe, which in turn

led to the fundamental questions which underpin modern scientific cosmology: what is the

origin of the Universe, and what is its eventual fate?

One hypothesis addressing the question of origin came in the form of Lemâıtre’s ‘Big

Bang’ theory (Lemâıtre, 1927). Lemâıtre proposed that the Universe began from a single

point, from which it exploded out in a ‘Big Bang’ and has carried on expanding ever since.

The hypothesis split the scientific community and it was not until the detection of the

Cosmic Microwave Background (CMB) by Penzias & Wilson (1965) that the ‘Big Bang’

theory became generally accepted.

The CMB radiation is a relic of the early Universe from a time where matter and radi-

ation were coupled together. At that time, baryonic matter consisted of ionised hydrogen

and free electrons, which through continuous Thomson scattering, prevented photons from
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propagating through space freely. As the Universe expanded, it cooled. Approximately

400,000 years after the Big Bang, it reached low enough temperatures for electrons to

combine with hydrogen nuclei in a process termed recombination. After recombination,

photons were able to travel unimpeded throughout the Universe. As a result of expansion,

the wavelength of these photons has been stretched, redshifting the photons to microwave

wavelengths, which we observe today as the CMB.

By the end of the 20th Century, the COsmic Background Explorer (COBE, Mather

(1982); Gulkis et al. (1990)) satellite had measured the CMB to a high degree of accuracy

and revealed that the CMB takes the form of a perfect blackbody spectrum and is almost

entirely homogenous.

The beginning of the 21st Century saw the launch of the Wilkinson Microwave Aniso-

tropy Probe (WMAP; Bennett et al. (2003)), and more recently the Planck observatory

(Planck Collaboration et al., 2011) which has provided increasingly more precise obser-

vations of the CMB, refining the Big Bang theory and the current standard model of

cosmology, referred to as ⇤CDM.

The ⇤CDM describes a Universe with an age of 13.7 Billion years and its total energy

divided amongst ‘dark energy’ with as yet unknown nature, making up 69%, invisible

or ‘dark matter’ constituting 26% and ordinary baryonic matter contributing only 5%

(Planck Collaboration et al., 2013).

1.2 Galaxy Evolution

The CMB is a snapshot of the early Universe, taken before the formation of the complex

structure of stars, galaxies and clusters of galaxies. The growth of structure began from

Gaussian quantum fluctuations present in the early Universe, which we observe in the

CMB as tiny temperature fluctuations. These fluctuations were traced out by dark matter,

giving rise to areas of varying density. The over-densities of dark matter eventually grew

through gravitational attraction to form large concentrations, called dark matter haloes.

As the Universe continued to expand and large scale structure continued to grow,

baryonic matter began to accrete onto the haloes, where it cooled and collapsed further

until it was dense enough to begin forming stars and galaxies.

The formation of galaxies created suitable conditions for complex physical and chemical

processes such as star formation, supernovae, active galactic nuclei, magnetic fields etc

complicating the gravitational growth of structure and giving us the rich, vibrant Universe

we live in today.
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Understanding how these physical processes impact the evolution of a galaxy is a large

part of modern day extragalatic astronomy. This thesis concentrates on identifying and

quantifying the processes of star formation and active galactic nuclei.

1.2.1 Star formation

Stars are the building blocks of galaxies and are both directly and indirectly involved in

producing the heavy elements essential for life on Earth.

Molecular clouds

The formation of stars begins with a cloud of molecular gas and dust, consisting of pre-

dominantly molecular hydrogen, with the next most abundant molecule being carbon

monoxide. The clouds either spontaneously collapse and form stars of its own accord, or

the collapse can be triggered by dynamical mechanisms such as shock waves or ionisation

fronts from supernovae, HII regions or planetary nebulae, a collision with another molecu-

lar cloud, outflows from the centre of galaxies or even the process of merging with another

galaxy.

The process of gravitational collapse is accompanied by an increase of density and

temperature of the gas in a pre-stellar cloud. Having reached higher densities, the cloud

becomes far more e�cient in molecular line emission cooling. Molecules present in the

interstellar medium remove the excess heat through the process of collisional excitation,

followed by radiative de-excitation. The energy levels of a molecule can have rotational,

vibrational or electronic states. The rotational energy states require the least energy

for excitation, making them the most relevant for colder clouds. Molecular hydrogen is

symmetric and has no electric dipole moment which makes it an ine�cient coolant at low

temperatures (e.g. Kreckel et al., 2010).

Carbon monoxide (CO) does have an electric dipole moment and is therefore an e�cient

coolant for dense, cold clouds. As the CO molecules collide, the kinetic energy from the

collisions excites the molecule into higher rotational energy states. The molecule than

relaxes back down to less energetic states by emitting photons with wavelengths ranging

from the submillimetre to millimetre. The strengths of the di↵erent CO rotational energy

transitions produce a CO spectral line energy distribution (SLED) ladder. As CO is the

best tracer for colder molecular clouds, the birth places of stars, the observations of the

CO SLED has become important in our understanding of the process of star formation.
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Birth of stars

With the clouds beginning to cool through the process of molecular line emission, gravit-

ational collapse will start to occur if the mass of the cloud exceeds the Jeans mass (MJ),

given by:

MJ = 4 · 105(T 3/N)1/2(M�) (1.1)

where T is kinetic temperature and N is number density.

The cloud will continue to contract and will fragment. The collapsing clouds are

referred to as protostars. Through a complex process of cooling and gravitational collapse,

the centre of the protostar eventually reaches a density and temperature high enough to

undergo nuclear fusion turning the protostar into a star.

Signatures of star formation

In order to understand how star formation has influenced galaxy evolution, we need to

be able to measure the rate at which galaxies form stars, the star formation rate (SFR).

Observing individual molecular clouds and individual stars is only possible in our own

Galaxy. Observations in extragalactic astronomy are limited to the integrated e↵ects of

star formation over entire star formation regions, if not entire galaxies.

Di↵erent regions of the electromagnetic spectrum provide direct tracers of recent star

formation. In the radio, thermal (free-free) radiation directly traces the ionising photon

rate arising from newly formed massive stars and is largely extinction free (Condon, 1992).

Another direct tracer is emission from the ultraviolet (UV), where emission is dominated

by young stars (e.g. Kennicutt, 1998; Calzetti et al., 2005; Salim et al., 2007). However,

the UV su↵ers from interstellar extinction, which varies considerably for di↵erent types

of galaxy. The extinction is caused by absorption and reprocessing of stellar emission

by material present in the interstellar medium. Most of the reprocessed stellar radiation

absorbed by gas is emitted as optical and near IR emission lines from ionised regions

surrounding the most massive stars. The H↵ recombination line is the main tracer of HII⇤

regions, however other lines such as the [OII] forbidden line doublet at 372.7 nm are also

used.

Beyond HII regions lie areas of the interstellar medium containing mostly neutral

atomic gas which reprocesses the (6 eV < h⌫ <13.6 eV) photons from massive stars that

are not energetic enough to ionise hydrogen. These are the photon dominated regions

(PDRs). As demonstrated in the schematic in Figure 1.1 the illuminated surface of a

⇤defined as areas where Hydrogen atoms are ionised
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Figure 1.1: A schematic of a PDR, with the UV emission illuminating a cloud of gas from

the left. The PDR transitions from atomic gas containing H, C+ and O to molecules such

as H2 and CO. Figure taken from Tielens (2005).

PDR is made up of atomic gas such as atomic hydrogen, oxygen and ionised carbon.

Further into the PDR, where most of the higher energy photons have been absorbed,

molecular hydrogen and CO can begin to exist.

Most of the non-stellar infrared (IR) and the millimetre and submillimetre CO emission

from galaxies originates from PDRs. The PDRs also produce fine structure lines such as

[CI] 609, [CII] 158, and [OI] 63 µm; and the ro-vibrational lines of H2 to name but a few.

Theoretical models of PDRs such as Meijerink et al. (2007), model the various physical

and chemical processes (e.g. heating through photo-electric emission by dust grains, fine

structure line cooling, molecular line cooling and ion-molecule reactions, see Meijerink &

Spaans (2005)) in order to predict the various line intensities associated with di↵erent

parameters such as intensity of the illuminating source and metallicity. By matching the

predicted models to observations of some of these lines, it can be ascertained as to whether

the incident radiation is a result of on going star formation or whether other radiation

fields such as X-rays from AGN are responsible for heating the interstellar medium (see

section 1.2.2).

As well as gas, the interstellar medium also contains dust made up of a mixture of

silicate grains and carbonaceous grains. These can range in size from very small grains,
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consisting of tens to hundreds of atoms, to large grains with diameters exceeding one

µm (Draine & Li, 2001; Li & Draine, 2001). The smaller grains with radii < 0.025µm

contribute significantly to the extinction in the ultraviolet and are thought to be made up of

mostly polycyclic aromatic hydrocarbon (PAH) like molecules. The PAHs are vibrationally

excited following absorption of a single UV/visible photon and emit at distinct wavelengths

in the mid-infrared, giving rise to what are generally referred to as the PAH features.

The mid to far infrared wavelengths are dominated by thermal blackbody like continuum

emission from the dominating silicate and carbonaceous grain populations.

Cosmic star formation history

We have seen that star formation is a fundamental process in galaxy evolution and that

various indicators can help quantify the star formation rate of individual galaxies. These

indicators can be used to trace the observational global star formation rate back with red-

shift, giving one of the fundamental relations relating star formation and galaxy evolution,

the cosmic star formation rate density (CSFRD), ⇢̇?(z). The quantity, which describes the

average amount of mass that turns into stars per unit time per unit comoving volume at

redshift z, has been estimated for redshifts ranging from 0 to 6.

Lilly et al. (1996) provided the first observational evidence of a varying CSFRD, fol-

lowed shortly by Madau et al. (1996, 1998). Further evidence from combined observational

evidence can also be found in Hopkins et al. (2006). The general consensus, still accepted

today is that the CSFRD peaks at a redshift of around 2-3, with a value an order of

magnitude greater than at present. At redshifts greater than 3, the CSFRD appears to

decline, but there remains a high level of uncertainty above a redshift of 4.

In practice, the CSFRD is calculated from luminosity functions. Recent work by Bur-

garella et al. (2013) has shown the importance of using the luminosity functions from both

the far ultraviolet and the infrared in order to get a complete view of the star formation

history of the Universe. One complication in converting the infrared luminosity function

into a corresponding star formation rate density is that it contains two components, the

required star formation contribution and a contribution from one of the other fundamental

galaxy processes, active galactic nuclei.

1.2.2 Active Galactic Nuclei

An important process that a↵ects galaxy evolution is the accretion of mass onto super

massive black holes (SMBH) at the centre of a galaxy. This is a highly energetic pro-
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cess producing non-thermal radiation over the full wavelength range from X-ray to radio

wavelengths and their feedback processes can have an important e↵ect on the interstellar

medium, thereby a↵ecting other processes such as star formation as well as the general

formation and evolution of a galaxy.

Galaxies which show signs of this type of activity are called active galaxies, while the

small region specifically associated with the accretion process is referred to as the active

galactic nucleus (AGN). Active galaxies form a small but important population of galaxies.

The lifetime of AGN is believed to be short and many, if not all galaxies are thought to

harbour a central SMBH, which may accrete mass at some point in their lifespan.

The population of AGN can be subdivided according into three main groups according

to the observational properties of the galaxy, though many of these classifications have an

historical background:

Seyfert galaxies, first investigated by Seyfert (1943), are spiral galaxies with bright

nuclei. The spectral properties show strong emission lines associated with high excitation.

The Seyfert class is divided into two distinct subclasses. Seyfert 1s have strong broad

emission lines with a corresponding velocity on the order of 1000-5000kms�1 for permitted

lines such as hydrogen (Mo et al., 2010). For forbidden lines such as [OIII] 5007Å, widths

are much narrower, with velocities on the order of a few hundred kms�1. Seyfert 2s have

permitted and forbidden lines which are both narrow, again on the order of a few hundred

kms�1 Khachikian & Weedman (1974). Other di↵erences between the two types include

stronger hard X-ray emission for type 1 Seyferts.

Radio galaxies are a class of active galaxies whose radio emission is relatively strong.

Their optical spectra show similarities to Seyfert galaxies and are divided into broad-line

radio galaxies and narrow-line radio galaxies. However the morphology of radio galaxies

di↵ers in that the host galaxies tends to be elliptical rather than spiral.

Quasars (Quasi-Stellar Radio source) are AGN objects with associated radio emission,

emanating from jets from the central nucleus of an AGN. Historically, quasars were first

discovered by Matthews & Sandage (1963), and were associated with faint, unresolved

optical sources which were believed to be stellar like objects. Their optical spectra show

similarities with Seyfert 1 like objects, however quasars are far more luminous, are blue

and often variable, indicating that they are small.
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Unification scheme

The present day consensus is that many of the di↵erent classifications of AGN are a

consequence of an orientation e↵ect (e.g. Rowan-Robinson, 1977). Figure 1.2 shows a

schematic from Urry & Padovani (1995) showing the main features of an AGN. The su-

permassive black hole is the driving force behind an AGN, as first suggested by Salpeter

(1964). The material falling into a SMBH forms an accretion disk due to the general

angular momentum of the accreting matter. The material is heated and emits thermal ra-

diation, but with a temperature profile dependent on radius within the disk. The resulting

spectrum takes the form of a stretched blackbody, peaking in the optical or ultraviolet.

Jets of material can be funnelled out of the accretion disc, possibly due to magnetohydro-

dynamic processes (Blandford & Payne, 1982; Camenzind, 1990), and emit radio and

X-ray photons due to synchrotron and inverse Compton scattering, respectively. Clouds

of gas lying above the accretion disk are subject to high velocities due to the gravitational

potential of the SMBH, broadening the emission lines and giving rise to the broad line

region. Further out, the velocity of the clouds of gas decreases and so the emission is

narrower.

Further out from the accretion disk lies the obscuring torus, made of gas and dust.

The material in the torus absorbs the continuum radiation from the accretion disk, and

much of the broad line region. The reprocessing of the radiation by dust in the torus,

gives rise to emission in the mid-infrared.

With the axisymmetric model of the AGN shown in Figure 1.2, Seyfert 1 like objects

can be described by viewing the AGN face on, which gives a full view of the accretion

disk, broad line regions and narrow line regions. Seyfert 2 like objects can be explained by

viewing the AGN side-on, so that the dusty torus obscures the accretion disk and most of

the broad line regions, while the narrow line regions, which are prevalent above the torus,

can still be observed.

Signatures of AGN

We have discussed how AGN can produce emission at wavelengths ranging from X-ray to

radio, but with observational features that vary depending on the type of AGN.

The X-ray emission produced in jets orthogonal to the accretion disk is associated with

strong AGN activity (Brandt & Hasinger, 2005), and radio emission from the outflowing

jets is another direct indicator of AGN activity. Spectral features such as the width

of permitted hydrogen and forbidden [OIII] emission lines indicate Seyfert 1 and 2 like
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Figure 1.2: Schematic diagram for AGN. The SMBH is located at the centre, surrounded

by an accretion disk. Slightly further out lie clouds of material, moving rapidly due to the

gravitational potential of the black hole. These clouds give rise to broad line emission.

Further out, lie clouds which move slower and give rise to narrow line emission. Jets of

energetic material emit radio emission via the synchrotron process along the poles of the

accretion disk, while further out and with the same orientation as the accretion disk lies

an obscuring torus made up of dust and gas. Figure taken from Urry & Padovani (1995).
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galaxies, while the presence of high-ionisation emission lines from the narrow-line regions

such as [Ne V] and [OIV] can also act as tracers of AGN activity.

The shape of the continuum in the infrared is another signature. Radiative transfer

models of the dusty torus (e.g. Efstathiou & Rowan-Robinson, 1995; Nenkova et al., 2002)

have been successfully fitted to the optical to far-infrared SED of active galaxies.

Observing the far-infrared and sub-millimetre emission lines can also act as a tracer for

AGN activity. Neutral gas in the interstellar medium can be exposed to X ray radiation

from the AGN. The higher energy photons have a di↵erent chemical e↵ect on the material

than the lower energy photons associated with PDRs. Hard X-rays (E > 1 keV) from

AGN can penetrate far deeper into gas clouds than UV photons, resulting in di↵erent

thermal and chemical structures through the cloud compared to PDRs. The di↵erent

structures result in di↵erent line intensities to PDRs and by comparing theoretical models

of ‘X-ray dominated regions’ such as those in Meijerink & Spaans (2005), to observations

of emission lines (including the CO SLED), it can be ascertained as to whether an AGN

is heating the interstellar medium rather than photons from star formation.

1.2.3 The AGN-star formation connection

The processes of star formation and AGN can have drastic e↵ects on the evolution of the

host galaxy. It has been established that the two processes are linked (e.g. Kau↵mann

et al., 2003; Fernandes et al., 2001) through processes such as AGN feedback (i.e. the

interaction between the interstellar medium and energy and radiation produced from the

SMBH, see Fabian (2012) for a review).

Furthermore, there exists a population of galaxies which appear to be a composite of

AGN activity and extreme star formation. These objects are often dusty and therefore

ultra luminous (i.e. L8�1000µm > 1012L�) in the infrared, hence known as ultra luminous

infrared galaxies (ULIRGs). These objects are rare in the local Universe, but the associated

luminosity function shows strong, positive evolution with redshift (e.g. Sanders, 1999),

resulting in several hundred ULIRGs per square degree at z > 1 (Rowan-Robinson et al.,

1997; Barger et al., 1998; Hughes et al., 1998; Eales et al., 2000; Fox et al., 2002; Floc’h

et al., 2005). The increase in number density with redshift and their associated high SFRs

means that ULIRGs make a significant contribution to the cosmic star formation rate

density.

Untangling the contribution from AGN and star formation in individual galaxies is

important if one is to understand the connections between the two. For dusty galaxies
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Figure 1.3: The cosmic optical and infrared background, showing the energy density as a

function of wavelength. Taken from Dole et al. (2006).

such as ULIRGs, the AGN is heavily obscured by the dusty torus which blocks any X-

ray or UV emission from the central region, while re-radiating the energy in the mid-

infrared. With dust emission from star forming regions also contributing to the mid to far

infrared wavelengths, untangling how much emission is related to each process becomes

a challenging problem. Attempts to separate out the contributions to the mid-infrared

luminosity function has already been carried out by Valiante et al. (2009) and Wu et al.

(2011), through the use of fairly crude spectral templates based on individual galaxies.

1.3 Infrared Astronomy

To fully understand galaxy evolution, observations of galaxies across the entire electro-

magnetic spectrum are required. If one looks at the energy density of the extragalactic

background light, it becomes apparent that the cosmic infrared background (CIB) con-

tributes roughy the same as the cosmic optical background, as shown in Figure 1.3.

The Earth’s atmosphere radiates and absorbs in mid and far infrared wavelengths,

therefore prohibiting ground based observations for most parts of the infrared spectrum.
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Studies at these wavelengths are therefore mostly restricted to the more expensive space

based facilities. The following section details the space based based observatories covering

the mid-far infrared wavelengths (e.g. 8� 1000µm).

The first infrared space telescope was the InfraRed Astronomical Satellite (IRAS;

Neugebauer et al. (1984)) launched in 1983. IRAS observed the whole sky in four bands

centred at 12, 25, 60 and 100 µm and revealed new populations of galaxies which were

optically faint but luminous in the infrared (Soifer et al., 1984).

The next major space based facility for infrared astronomy was the Infrared Space

Observatory (ISO; Kessler et al. (1996)). Unlike IRAS, ISO provided spectroscopy for

the mid-infrared part of the spectrum. The next major advancement came with the

launch of the Spitzer Space Telescope (Werner et al., 2004). Spitzer provided near and

mid-infrared photometry to greater depths than ever before, whereas its onboard Infrared

Spectrograph (IRS; Houck et al. (2004)) provided higher resolution and more sensitive

mid-infrared spectroscopy for thousands of galaxies.

Extragalactic spectra from ISO and IRS contain a wealth of spectral features, includ-

ing the PAH features, high ionisation fine structure lines such as [NeV] and [OIV], broad

absorption features associated with silicates, and underlying continua with a variety of

shapes. Combinations of these di↵erent features have been used as diagnostics for char-

acterising the power source behind the ULIRGs (Genzel et al., 1998; Rigopoulou et al.,

1999; Farrah et al., 2007; Spoon et al., 2007; Farrah et al., 2008, 2009; Petric et al., 2011).

Other smaller space based facilities have included AKARI (Murakami et al., 2007),

which surveyed the sky in six wavelength bands from mid to far-infrared and the Wide-

field Infrared Survey Explorer (WISE, Wright et al. (2010)) which surveyed the sky at near

to mid infrared wavelengths. However, the most recent advancement in infrared astronomy

has been made with the ESA Herschel Space Observatory (Pilbratt et al., 2010), launched

in 2009. Photometry from the PACS and SPIRE instruments has given an unprecedented

view of the far-infrared Universe. Spectroscopy has also been possible with the SPIRE

Fourier-Transform Spectrometer (FTS), covering 194 to 671 µm. This spectral region

contains a number of high-J CO line transitions, allowing the peak of the CO SLED to

be probed for the first time, which in turn enables modelling of the physical properties of

the molecular ISM.
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1.4 Statistical analysis and modelling

The ideology behind the work in this thesis is to use advanced statistical and modelling

techniques to help untangle the contributions made from star formation and AGN activity.

The statistical techniques can be thought of as multivariate analysis techniques. By

applying these techniques to astronomical data, one can make the most of the data at

hand. The following section provides a general overview of some of the techniques used

and their context within this thesis

In terms of modelling, the work in this thesis uses Bayesian inference. The Bayesian

approach is more logical in terms of dealing with belief and uncertainty in model fitting

and selection, and therefore provides a more robust indication on how well models are con-

strained by the data. From a physical perspective, knowing the uncertainty on parameters

can be just as important as the knowing the values that give the best fit.

As the Bayesian approach underpins the modelling work in this thesis, this section

also introduces the basics of Bayesian inference, and how it can be carried out on CO and

H2O SLEDs with nested sampling. Finally, I discuss the principles of radiative transfer

that underpin the models used for modelling the SLEDs.

1.4.1 Multivariate Statistics

As previously discussed, the IRS spectrograph on Spitzer has provided the astronomical

community with observations of thousands of galaxies. The resulting datasets are of high

dimensionality, with the number of dimensions being equal to the number of wavelength

points. Most analyses of extragalactic IRS spectra have focused on using specific spectral

features such as the PAH emission lines, while ignoring other dimensions.

Ideally, all dimensions should be taken into account in order to extract all the inform-

ation contained in the data. Simultaneous analysis of high dimensional, or multivariate

data is the guiding principle behind multivariate statistics. This area of statistics encom-

passes a wide range of techniques which take into account the relationships between the

variables of a multi-dimensional dataset. These multivariate techniques can be used to

uncover latent structure in datasets and reduce a large number of variables down to a

smaller number of factors.

One of the most popular multivariate analysis techniques is Principal Component Ana-

lysis.
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Principal Component Analysis

Although a dataset maybe highly dimensional, the data may lie on an almost planar

subspace of lower dimensionality. Principal component analysis (PCA) finds the basis

vectors which describe this linear subspace. Each datapoint can then be described in terms

of these new basis vectors, or principal components. One of the main assumptions made

by PCA is that the distribution of data points can be described by a multi-dimensional

Gaussian. The basis vectors are then orthogonal components which describe this multi-

dimensional Gaussian. The first component captures the direction of greatest variance, the

second component captures the next most varying direction, whilst remaining orthogonal

to the first. There are as many components as there are dimensions, however only a few

‘principal’ components may be needed to adequately describe the data, while the rest are

considered ‘noise’.

Algebraically, PCA of a dataset, {xn, n = 1, .., N} with N data points and D dimen-

sions, can be determined by calculating the eigenvectors and eigenvalues of the D ⇥ D

covariance matrix of the dataset. The principal components are simply the eigenvectors,

sorted in descending order by their corresponding eigenvalues. Choosing M principal com-

ponents results in an M dimensional approximation of the dataset such that for datapoint

xn:

xn ⇡m+
MX

j=1

yn
j b

j (1.2)

where m is the mean D dimensional vector of the the dataset, yn
j is the weight for the nth

object and jth component, and bj is the jth principal component.

Having applied PCA to {xn, n = 1, .., N}, every object in the dataset is approximated

by a linear combination of the M principal components and can now be described by

M weights. By examining the principal components, one can ascertain what variables or

dimensions are correlated, and are responsible for producing the greatest variation between

objects in the dataset.

PCA has been used in astronomy for spectral classification of optical galaxies (e.g.

Connolly et al., 1995; Bromley et al., 1998; Taghizadeh-Popp et al., 2012), while the first

application to mid-infrared spectroscopy was carried out by Wang et al. (2011).

The first paper in this thesis, extends the work of Wang et al. (2011) by examining in

more detail the number of components needed to adequately describe a sample of local

ultra luminous infrared galaxies. We also fit the spectra with a combination of AGN dusty

torus radiative transfer models described in Efstathiou & Rowan-Robinson (1995) and

the Siebenmorgen & Krügel (2007) starburst radiative transfer models. We compare the
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reconstructions from principal components to the best fits provided by radiative transfer

models, and use the models to try and give a physical interpretation to the principal

components. Finally, we utilise the reduction in dimensions to define a classification

scheme for the IRS spectra of ULIRGs by using other sophisticated classification tools

such as Gaussian Mixtures modelling (discussed in papers one and two) to learn the areas

of principal component (PC) space associated with di↵erent, optically classified galaxies.

Having examined the intricacies of PCA, and its application to the IRS spectra of

ULIRGs, it became clear that some of the assumptions required by PCA were not well

suited for mid-infrared spectra. In particular, the principal components were not physically

intuitive, which limits their use to data compression. Ideally, we would want to derive

a set of components that have a clear physical interpretation. This was the motivation

behind the second paper in this thesis, where we examined what other multivariate analysis

techniques would be more suited to the mid infrared spectra of galaxies.

Matrix Factorisation and Non-Negative Matrix Factorisation

Matrix factorisation techniques are a subset of multivariate analysis techniques. They seek

to approximate a data matrix such that X t WH, or:

Xiµ t (WH)iµ =
rX

a=1

WiaHaµ (1.3)

.

Where, i is object index, µ is wavelength index and a is component index. The matrix

H can be thought of as a set of r components that represent latent structure explicit in

the dataset, and W are a set of weighting coe�cients. Each object in the dataset can now

be approximated by a linear combination of the derived components, H.

PCA, although not strictly a matrix factorisation technique, can be viewed in this

setup by substituting the data matrix X with the mean subtracted data matrix.

Non-negative matrix factorisation (NMF) attempts to solve the matrix factorisation

equation 1.3, with the assumption that data, weights and components are all positive.

This simple constraint can have drastic a↵ects on the derived weights and components as

reconstruction of X is forced to be purely additive, unlike PCA which allows both addition

and subtraction.

This was demonstrated in Lee & Seung (1999) who showed that by applying NMF to

a database of facial images, the NMF derived components resembled parts of the face, e.g.

eye, nose mouth etc, unlike PCA whose components had holistic representations with no

obvious physical interpretation.
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Figure 1.4: 49 basis images for NMF, vector quantization (VQ, a cluster based matrix

factorisation where a face is forced to be made up of only one of the basis images) and

PCA and learnt from 2,429 facial images, each consisting of 19 x 19 pixels. The basis

images, seen on the left, are multiplied by a combinations of weights in order to reconstruct

a particular face. NMF learns parts based basis images which resemble parts of the face

unlike VQ or PCA. Positive values are illustrated with black pixels and negative values

with red pixels. Figure taken from Lee & Seung (1999)
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Mathematically, the goal of NMF is to minimise a cost function. The most widely used

is the squared approximation error described in Lee & Seung (2001):

�2 =
X

iµ

 
Xiµ �

X

a

WiaHaµ

!2

(1.4)

Minimising equation 1.4 requires a numerical technique to find local minima. Lee &

Seung (2001) presented ‘multiplicative update rules’ for H and W. Upon each iteration,

the rules are used to update H and W by a multiplicative factor to minimise equation 1.4.

The first application of NMF in astronomy was carried out by Blanton & Roweis (2007)

who updated the popular NMF multiplicative algorithm from Lee & Seung (2001) to in-

clude uncertainties and allow heterogeneous datasets (e.g. optical spectra and photometric

observations of galaxies at di↵erent redshifts) as an input. They also restricted the space

of possible spectra to those predicted from high resolution stellar population synthesis

models, thereby making the components of H an additive mixture of models.

In the second paper of this thesis, NMF is applied to the IRS spectra of 729 galaxies,

with redshifts ranging from 0.01 to 0.2. Unlike Blanton & Roweis (2007), we do not

restrict the subspace of possible components, and instead use NMF to blindly learn the

components from the galaxy spectra. By doing so, we are using NMF as a blind source

separation algorithm, where a galaxy spectrum is an additive mixture of components. The

positive constraints is a more realistic model for the emission processes in the mid-infrared

than the forced linear addition and subtraction required by PCA. As a result, the derived

components are physically intuitive.

1.4.2 Bayesian Inference

Papers two, three and four make use of Bayesian inference. The following subsection

outlines some of the important details. Bayesian inference can be split into two categories:

parameter estimation and model selection both of which are commonplace in astronomy

and cosmology and used throughout work in this thesis. The basis of Bayesian inference

comes from one of the fundamental relations in probability theory, Bayes rule:

Pr(⇥|D,H) =
Pr(D|⇥, H)Pr(⇥|H)

Pr(D|H)
(1.5)

Where:

• Pr(⇥|D,H) is the posterior probability distribution of parameters ⇥ in model H,

given data D
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• Pr(D|⇥, H) is the likelihood distribution of D, given ⇥

• Pr(⇥|H) is the prior belief of ⇥

• Pr(D|H) is a normalising factor, or Bayesian evidence (can be thought as ’how much

D increases our belief in H’)

In parameter estimation, the goal is to obtain Pr(⇥|D,H) by sampling the unnorm-

alised posterior with routines such as MCMC whilst ignoring the Bayesian evidence as it

has no dependence on ⇥. In model selection, the Bayesian evidence is the desired quantity

and is the integral of the likelihood L(⇥) over all parameter space defined by the prior. By

averaging the likelihood over the parameter space, the Bayesian evidence automatically

implements Occam’s razor, i.e. a simpler theory with compact parameter space will have

a larger evidence than a more complicated one, unless the latter is significantly better at

explaining the data.

Calculating the Bayesian evidence is computationally challenging since it is a multi-

dimensional integral, with the number of dimensions equal to the number of parameters.

Although modified MCMC methods have been used to calculate the evidence, the number

of samples required make the calculation at least an order of magnitude more costly than

parameter estimation, while the behaviour of the likelihood distribution can also cause

issues with the calculation (Skilling, 2004).

Nested sampling is an alternative to MCMC which gets round some of the issues with

standard MCMC techniques, making it useful for parameter estimation and the calculation

of the Bayesian evidence. For details on nested sampling, see Skilling (2004).

The development of nested sampling algorithms has taken place within astronomy.

Mukherjee et al. (2006) introduced ellipsoidal sampling to improve the sampling procedure

while further improvements were made by Feroz & Hobson (2007) and Feroz et al. (2009)

who introduced multimodal nested sampling with their routine Multinest.

The second paper in this thesis uses Multinest to calculate the Bayesian evidence for

model selection. Contributing work to the third and fourth paper also use Multinest for

parameter estimation and calculation of the Bayesian evidence.

1.4.3 Radiative transfer

The third and forth paper in this thesis, uses the 1D radiative transfer code, RADEX

(van der Tak et al., 2007) combined with the multimodal nested sampling routine Mul-

tinest, to model spectral line energy distributions (SLEDs) of CO and water. This section
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gives a brief overview on radiative transfer and the RADEX code.

The goal of analysing molecular line spectra with radiative transfer codes is to ob-

tain physical parameters of the emitting molecular gas. However, radiative transfer can

have numerous levels of complexity. The simplest approach to estimating parameters

from SLEDs is to use the ‘rotation diagram’. This method assumes the emission is from

molecular gas at a single temperature, is excited locally and with energy levels populated

according to the Boltzmann distribution, which holds as long as the gas is at a high enough

density and low enough optical depth such that collisions dominate over radiation in the

excitation process. If this is true, the gas is said to be in local thermodynamic equilib-

rium (LTE). By assuming LTE, the excitation temperature (Tex) and column density of

the molecule can be obtained by fitting a straight line to the relative line intensities as a

function of upper level energy.

The next level of complexity often referred to as ‘non-LTE’ radiative transfer, retains

the assumption of a local excitation but drops the assumption that the radiation field has

very little interaction with the molecular gas and that population levels are thermalised

(i.e. energy level populations have a Boltzmann distribution). Since the majority of gas in

the interstellar medium is at densities too low for the LTE approximations to be valid, non-

LTE models are more appropriate in most circumstances. The radiative transfer equation

is solved by assuming the energy levels are in statistical equilibrium, i.e. there is a balance

between excitation and de-excitation of molecular energy levels.

Because the molecular level populations and the local radiation field are dependent

on each other, the radiative transfer equations forms a recursive problem which has to

be solved iteratively. To simplify the calculations, most non-LTE programs use one of

two methods. The first is the large velocity gradient (LVG) approach which assumes the

cloud has a significant velocity gradient, thereby localising the radiative transfer problem

(e.g. Sobolev, 1960; Castor, 1970). The alternative approach is to define a geometrically

averaged ‘escape probability’ (�) of a photon leaving the gas cloud, based on the current

local estimate for the optical depth and an assumed geometry. The level populations

calculation now requires a � value, which is dependent on geometry and optical depth

(Mihalas, 1978).

As the gas is no longer assumed to be in thermodynamic equilibrium, molecular colli-

sion data is required. However, if accurate collision rates are known, then column density,

kinetic temperature and volume density can all be constrained with the non-LTE ap-

proach. The RADEX code (van der Tak et al., 2007) is an example of a non-LTE based
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radiative transfer program.

The most sophisticated approach to radiative transfer no longer assumes local excit-

ation and molecular excitation is solved as a function of position in the cloud. These

methods make use of numerical (e.g. accelerated Lambda iteration) and Monte Carlo

based approaches to iteratively solve radiative transfer calculations for 1D, 2D (e.g. Ho-

gerheijde & van der Tak, 2000) and more recently 3D (e.g. LIME,Brinch & Hogerheijde

(2010)) geometries.

The level of complexity required for analysis of molecular line observations is very

much dependent on the type of data being analysed. For multiline observations of resolved

regions within the Milky Way or nearby galaxies, the 3D, non-local radiative transfer codes

such as LIME are the most appropriate. However, extragalactic observations of molecular

lines are normally unresolved. This restricts the amount of data to only a handful of lines

which are assumed to probe the globally averaged properties of the emitting gas. For

these types of problems, the simpler non-LTE based radiative transfer codes are the more

appropriate.

Paper three in this thesis contains work using the non-LTE based RADEX code to

constrain the physical parameters of molecular gas from observations of the CO SLED

in the nearby spiral galaxy IC342. Unlike other approaches that use a grid based �2

approach to fit the CO SLEDs (e.g. Rangwala et al., 2011), I use the nested sampling

routine, Multinest, discussed in Section 1.4.2 to fully sample the posterior parameter space

and calculate the Bayesian evidence in order to compare one and two component model

fits.

I first fit a one component model to the CO SLED, but find the lowest CO line is

underestimated. A two component model provides a better fit, with one component placing

tight constraints on the warm gas, and the second component placing looser constraints

on a colder gas component.

Paper four includes modelling of H2O excitation ladder from a starburst galaxy detec-

ted at a redshift of 6.34, using a similar setup of RADEX and Multinest. Having carried

out various analyses of the H2O excitation ladder with my modelling setup, it became

clear that collisional excitation alone is unable to explain the data and that other mech-

anisms must play a significant role, for example the pumping of population levels through

absorption of photons from the infrared radiation field in star forming regions.
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1.5 Summary of this Thesis

I have given a brief introduction into the subject of galaxy evolution in the context of

the Universe as we know it today. In particular, I have focussed on the processes of star

formation and AGN, how they occur, some of the basic signatures of their activity and

how they impact on statistical measures such as the luminosity function and cosmic star

formation rate density.

I have discussed how observations in the infrared are essential in diagnosing contri-

butions from AGN and star formation. Spectroscopic observations are the most powerful

because they contain detailed spectral features such as emission and absorption lines.

The work in this thesis is geared towards applying novel statistical techniques and

sophisticated Bayesian inference tools for modelling. I have introduced the basics of these

statistical techniques and introduce the framework in which they can be applied to mid-

infrared spectroscopy to help untangle the contributions from AGN and star formation. I

have also discussed the basics of Bayesian inference and its application to modelling the

CO and H2O SLEDs with radiative transfer models.

The main contents of this thesis is presented in the form of four published papers.

Papers one and two show how multivariate techniques provide a more robust analysis of

IRS spectra. In particular, they show how the entire mid-infrared region can be used in

diagnosing the main power source rather than the present day approach of using only a

few spectral features. In paper two, I show that by applying an appropriate technique,

these techniques can also be used to blindly learn the spectral components of galaxies.

These components are physically intuitive and can be associated with physical processes

such as AGN activity and star formation, making them ideal spectral components for

decomposing mid-infrared luminosity functions.

In paper three, my Bayesian modelling setup of RADEX and Multinest is used to

model the CO SLED of IC342. The modelling shows how a one component model is

inadequate, whilst a two component model can provide useful constraints on the warm

gas component associated with the nuclear activity of the galaxy.

The fourth paper also makes use of the RADEX and Multinest setup, in order to

test whether the simple model of collisional excitation alone, can explain the H2O lines

observed in one of the most distant starburst galaxies ever detected, HFLS3.

In chapter 6, I summarise all my findings and discuss ongoing and possible future work.
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Chapter 2

Principal Component Analysis and

Radiative Transfer modelling of

Spitzer IRS Spectra of Ultra

Luminous Infrared Galaxies

Peter Hurley, Seb Oliver, Duncan Farrah, Lingyu Wang, Andreas Efstathiou

2.1 Abstract

The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a

variety of spectral features that can be used as diagnostics to characterise the spec-

tra. However, such diagnostics are biased by our prior prejudices on the origin of the

features. Moreover, by using only part of the spectrum they do not utilise the full

information content of the spectra. Blind statistical techniques such as principal

component analysis (PCA) consider the whole spectrum, find correlated features

and separate them out into distinct components.

We further investigate the principal components (PCs) of ULIRGs derived in

Wang et al. (2011). We quantitatively show that five PCs is optimal for describing

the IRS spectra. These five components (PC1-PC5) and the mean spectrum provide

a template basis set that reproduces spectra of all z < 0.35 ULIRGs within the

noise. For comparison, the spectra are also modelled with a combination of radiative

transfer models of both starbursts and the dusty torus surrounding active galactic
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nuclei. The five PCs typically provide better fits than the models. We argue that

the radiative transfer models require a colder dust component and have di�culty in

modelling strong PAH features.

Aided by the models we also interpret the physical processes that the principal

components represent. The third principal component is shown to indicate the

nature of the dominant power source, while PC1 is related to the inclination of the

AGN torus.

Finally, we use the 5 PCs to define a new classification scheme using 5D Gaussian

mixtures modelling and trained on widely used optical classifications. The five PCs,

average spectra for the four classifications and the code to classify objects are made

available at: http://www.phys.susx.ac.uk/
~

pdh21/PCA/.

2.2 Introduction

Ultraluminous Infrared Galaxies (ULIRGs) are galaxies whose rest-frame infrared

luminosities, L8�1000µm, exceed 1012L�. Although ULIRGs were first discovered

using ground based photometry in the 1970s (Rieke & Low, 1972), the IRAS survey

transformed our understanding by observing the objects in much larger numbers

(Soifer et al., 1984). Most have high star-formation rates (SFR > 100MJyr�1),

while around half also contain an embedded Active Galactic Nucleus (AGN).

ULIRGs are rare in the local Universe, with less than fifty at z . 0.1, but the

associated luminosity function shows strong, positive evolution with redshift (e.g.

Sanders, 1999), resulting in several hundred ULIRGs per square degree at z > 1

(Rowan-Robinson et al., 1997; Barger et al., 1998; Hughes et al., 1998; Eales et al.,

2000; Fox et al., 2002; Le Floc’h et al., 2005). The increase in number density with

redshift and their associated high SFR means ULIRGs make a significant contribu-

tion to the history of star formation at high z.

The mid to far infrared luminosity of ULIRGs is a result of dust and gas re-

processing the optical and UV radiation emitted by stars and/or AGN. Obtaining

spectroscopy for the mid-infrared part of the spectrum became possible with instru-

ments such as the Infrared Space Observatory (ISO ; Kessler et al. (1996)), and the

Infrared Spectrograph (IRS ; Houck et al. (2004)) on the Spitzer Space Telescope

(Werner et al., 2004). The ULIRG spectra from these instruments contain a wealth

of spectral features. These include the emission lines from broad polycyclic aromatic

http://www.phys.susx.ac.uk/~pdh21/PCA/
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hydrocarbons (PAHs), which are strong in starforming regions, but absent in AGN

dominated sources (Moorwood, 1986; Roche et al., 1991). A prominent [Ne V] 14.3

µm fine structure line indicates the presence of an AGN, while the silicate features

at 9.7 and 18 µm probe source geometry (Imanishi et al., 2007).

Combinations of the PAH emission lines, mid-infrared fine-structure lines and

silicate features have been used as diagnostics for characterising the power source

behind the ULIRGs (Genzel et al., 1998; Rigopoulou et al., 1999; Spoon et al., 2007;

Farrah et al., 2007, 2008, 2009). There are however problems associated with these

diagnostic tools, such as the separation of emission lines from both the continuum

and underlying PAH features, the mixture of neighbouring features and di↵erent

diagnostics giving conflicting estimates. They also only focus on small parts of the

spectrum, disregarding the information contained in the remainder.

Larger regions of the spectrum can be investigated with the multivariate statistic,

Principal Component Analysis (PCA). PCA has been used for spectral classification

for optical galaxies (e.g. Connolly et al., 1995; Bromley et al., 1998). Wang et al.

(2011) carried out PCA on the IRS spectra of 119 local ULIRGs. They argued,

qualitatively, that only 4 principal components (PCs) were needed to reproduce the

variance in the ULIRG spectra. They also proposed that the contribution from each

PC had some underlying physical interpretation. Examination of the first four PCs,

and comparisons to the diagnostics employed by Spoon et al. (2007) and Nardini

et al. (2009) suggested that PC1 constrains the dust temperature and geometry of

the distribution of source and dust, while PC2 and PC3 determine the amount of

star formation. The fourth PC is important for Seyfert Type 2 galaxies, and is hence

a possible indicator of an unobscured AGN.

In this paper we extend Wang et al. (2011) by quantitatively investigating how

many PCs are needed to explain the variation in the spectra and compare the

PC reconstructions to fits provided by a suite of radiative transfer models. We

investigate what information the radiative transfer models are missing. We also

re-examine what physical properties are behind the PCs, by investigating the re-

lationship between the physical parameters of models and the contributions from

di↵erent PCs. Finally, we introduce a new classification scheme using 5D Gaussian

mixtures modelling and trained with optical classifications. Section 2.3 gives an

overview of the data and Section 2.4 a brief description of PCA. Section 2.5 will
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review the radiative transfer models being applied, and Section 2.6 will present the

results. Conclusions will be presented in Section 2.7. We assume a spatially flat

cosmology with H0 = 70kms�1Mpc�1, ⌦ = 1, and ⌦m = 0.3.

2.3 The Data

This paper uses the same sample of mid-infrared spectra as Wang et al. (2011). We

summarise their selection criteria here. The ULIRGs were observed as part of the

IRS Guaranteed Time program (Armus et al., 2007; Farrah et al., 2007; Spoon et al.,

2007) and those observed by Imanishi et al. (2007). An upper redshift cut of z =

0.35 was applied to ensure we sample approximately the same wavelength range for

each object. A further eight objects were removed as they have poor-quality data

in the longer-wavelength IRS module. In total, there are 119 objects in the sample.

2.4 Principal Component Analysis (PCA)

PCA works by determining the eigenvectors from the covariance matrix of a given

dataset. For 119 spectra, each with 180 wavelength points, the 180 by 180 covariance

matrix quantifies the correlation between each spectral point. The eigenvectors of

the matrix can be thought of as spectral components that can be linearly combined

to reconstruct each object in the sample.

Any spectrum can be linearly decomposed by projecting it onto the principal

components defined by the 119 ULIRG sample. This allows each spectrum to be

described by the contribution from each PC. These contributions define co-ordinates

in a multidimensional space which we refer to as PCA space.

2.5 Radiative transfer models

To compare with the fits provided by the principal components, we have carried out

a minimum chi squared search for linear combinations of a grid of starburst models

described in Siebenmorgen & Krügel (2007) and grid of AGN dusty torus models of

Efstathiou & Rowan-Robinson (1995). The libraries contain 5948 and 2109 SEDS

respectively and we have considered linear combinations of each AGN and starbust

SED, giving us many models to search over.
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Parameter Range

R (kpc) 0.35, 1 and 3

fOB 0.4, 0.6 and 0.9

LSB (L�) 1010 to 1014 in steps of 0.1 dex

Av (Mag) 2.2, 4.5, 7, 9, 18, 35, 70 and 120

nHS (cm�3) 102, 103, 2.5 · 103, 5 · 103, 7.5 · 103, 104

Table 2.1: Parameter values and ranges for the starburst models.

2.5.1 Starburst Models

We use the Siebenmorgen & Krügel (2007) starburst models. The models presented

by Siebenmorgen & Krügel (2007) have been described as ‘hot spot’ starbursts. OB

stars are assumed to be surrounded by dense clouds (the hot spots) and other stars,

such as old bulge stars or massive stars are dispersed in the di↵use medium. It is

the hot spots that contribute to the mid infrared part of the spectrum. The outer

radius of these environments is determined by the condition of equal heating of the

dust by the OB stars in the centre and the interstellar radiation field.

Both stellar groups are treated as continuously distributed sources, and the num-

ber density of both types of stars, falls o↵ as r�1.

The parameters of these models include the starburst radius, R; ratio of the

luminosity of OB stars with hot spots to total luminosity, fOB; the total luminosity

of the starburst, LSB; total extinction from the outer radius of the galactic nucleus

to its centre, Av; and dust density of the hot spot environment, ⇢HS, corresponding

to hydrogen number densities (nHS) and assuming a gas to dust ratio of 150. The

parameter ranges can be found in Table 2.1. In total, the library contains 5948

SEDs.

2.5.2 AGN torus models

This paper uses the AGN tapered disc models of Efstathiou & Rowan-Robinson

(1995). The tapered disc models, in combination with the starburst models of

Efstathiou et al. (2000), have been successful in fitting the spectral energy dis-

tributions of ultraluminous infrared galaxies (Farrah et al., 2003), hyperluminous

infrared galaxies (Farrah et al., 2002; Verma et al., 2002; Efstathiou, 2006) submil-

limeter galaxies (Efstathiou & Siebenmorgen, 2009), and active galaxies (Alexander
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Parameter Range

⌧ 500, 750, 1000, 1250

⇥ (degrees) 30, 45, 60

(rin/rout)�1 20, 60, 100

✓ (degrees) 0 to 90 with either

40 or 75 divisions (depending on rin/rout)

Table 2.2: Parameter values and ranges for the AGN models.

et al., 1999; Efstathiou & Siebenmorgen, 2005; Farrah et al., 2012; Ruiz et al., 2001).

The torus is modelled as a disc, whose thickness increases with distance from the

central source but tapers o↵ in the outer regions of the torus. The dust density is

distributed smoothly within the disc and follows a r�1 relation, with r being radius.

The parameters for the AGN torus model are: ultraviolet equatorial optical depth

to the centre of the torus, ⌧ ; the opening angle of the torus, ⇥; the ratio of inner to

outer radius of the torus, (rin/rout)�1; and the viewing angle, ✓ (see Table 2.2). In

total, there are 2109 AGN SEDs.

2.5.3 The fitting procedure

We have considered all linear combinations of a starburst and AGN model when

fitting the observed spectra of the 119 ULIRG sample. We use the wavelength

grid of the starburst models, and the lower resolution AGN models are interpolated

onto the same grid. The smoothness of the AGN models, makes the interpolation

justifiable. The radiative transfer models lack molecular hydrogen emission so we

mask out regions of the spectrum where molecular hydrogen features occur ( i.e.

9.46� 9.86, 12.08� 12.48 and 16.83� 17.23µm).

The wavelength resolution of the PCs is higher than the starburst model resol-

ution. For proper comparison to the fits, and to allow decomposition of the models

into PCA space, we have re-derived the principal components for the ULIRG sample

at the resolution of the starburst models. There is no significant change in the shape

of components. We also note that the sign of the PC contributions for each object,

remains the same and the change in magnitude of the PC contributions is not sig-

nificant in comparison to the spread of contributions for the sample.

To remain consistent with the analysis of Wang et al. (2011), the models are
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Figure 2.1: The median variation of the �2
⌫ for the PC reconstruction as the number of

components used in the reconstruction are increased. The dashed line indicates the median

�2
⌫ for the radiative transfer model fits. For PC reconstructions using up to 10 PCs (and

20, 30, 40) we also plot the �2
⌫ for every object (o↵set for clarity)

normalised so that the mean flux over the whole wavelength range is unity.

We then carry out a linear least squares fit for each combination of starburst and

AGN model, with the condition that the fit parameters are positive (i.e. to eliminate

the possibility of a negative amount of starburst or AGN). Model comparison is then

carried out via minimum chi squared (�2).

We assumed a minimum of 5% flux error for each spectral bin of the IRS spectra,

which is consistent with the observed variations between individual nod positions

on the IRS as described in Chapter 7 of the IRS Instrument Handbook⇤.

2.6 Results

2.6.1 Optimum number of components

We first investigate how many PCs are needed to describe the ULIRG sample. Wang

et al. (2011) did not quantitatively show whether 4 PCs were su�cient. Using the

⇤http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/
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Figure 2.2: The eigenvalues (solid line) and di↵erence in eigenvalues (dotted line) for the

PCs. The eigenvalues quantify the variance associated with each PC, and are a measure of

importance. The di↵erence between eigenvalues drops dramatically for the first few PCs,

but levels o↵ beyond 5 (indicated by the dashed line). We therefore argue that 5 PCs is

a more suitable number than the 4 used in Wang et al. (2011).
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Figure 2.3: The mean spectrum and principal components for the sample of ULIRGs.

The dot-dashed vertical lines mark the central location of the 6.2,7.7,8.6,11.2 and 12.7

µm PAH emission lines. The dotted lines indicate the location of the molecular hydrogen

lines at 9.66, 12.28 and 17.03 µm. The solid vertical lines indicate the position of the neon

fine-structure lines, [Ne II] 12.8, [Ne v] 14.3 and [Ne III] 15.6 µm.

PCs re-derived at the lower resolution described in Section 2.5.3, we have invest-

igated how many PCs are needed to accurately reconstruct the IRS spectra of all

119 ULIRGs in the sample. For each spectrum, we quantify the goodness of recon-

struction with the reduced chi squared statistic �2
⌫ , where the number of degrees of

freedom is equal to the number of wavelength points minus the number of PCs used

in the reconstruction.

Figure 2.1 shows that as we increase the number of PCs used in the reconstruc-

tion, the median �2
⌫ value for the sample decreases. We have plotted the �2

⌫ for each

individual object for reconstructions using up to ten PCs and the median �2
⌫ value

obtained by fitting the ULIRGs with the radiative transfer models as described in

Section 2.5.3. Ten PCs would appear to be the optimal number i.e. where �2
⌫ = 1.

We find that four PCs (assumed by Wang et al. (2011)) give a median �2
⌫ of 3.3,

while adding a fifth component substantially decreases the median �2
⌫ to 2.1. The
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use of six and seven PCs only reduces the median �2
⌫ to 1.8 and 1.6 respectively.

The eigenvalues associated with each PC are a measure of the variance each PC

accounts for and provide an alternative method to determine the optimum number

of components. In Figure 2.2, we plot the eigenvalues and di↵erence in eigenvalues

for the PCs. The general trend indicates the di↵erence between eigenvalues signific-

antly decreases with each component. The exception to the rule occurs between the

3rd-4th component and the 5th-6th component where the di↵erence between eigen-

values is larger than the trend. We associate this larger than expected di↵erence as

in indication that the previous component captures significantly more information

than the next. This suggests that the third and fifth PC are substantially more

important than the fourth and sixth respectively. Beyond the sixth PC, the trend

flattens out, indicating most of the variation related to structure has been captured.

Overall, Figures 2.1 and 2.2 do not definitively indicate the optimum number of

PCs. However, we argue that the reduction in �2
⌫ to 2.1 and di↵erence in eigenvalue

between the fifth and sixth PC, indicates that five PCs rather than the four PCs

used by Wang et al. (2011), strike a better balance of providing a small basis set of

templates, whilst adequately describing the spectra.

The fifth component was not discussed in Wang et al. (2011) and so we now

show this component, compared to the original four. The mean spectra of the 119

ULIRGs and the 5 components can be seen in Figure 2.3. There are a number of

spectral features in this fifth component, most notably the 6.2, 11.2 and 12.7 µm

PAH emission lines as well as the molecular hydrogen emission line at 17.03 µm.

The 6.2 µm emission feature has negative flux, while the 11.2 and 12.7 PAH lines

are both positive. Overall, the fifth component does not contain any new features

that were not seen in the previous components. Its role appears to be in altering

the ratios of existing features.

2.6.2 Analysis of the radiative transfer models

We now investigate whether the radiative transfer models discussed in Section 2.5

are capable of modelling the spectra. An example of the fit produced by 5 PCs and

the radiative transfer models can be seen in Figure 2.4.

We now compare all the �2
⌫ for reconstructions using 5 PCs with the �2

⌫ for our

radiative transfer model fits. Figure 2.5 shows the distribution of the reduced chi
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Figure 2.4: An example of our fit with 14252-1550. The radiative transfer model is plotted

with a dashed line, and the principal component reconstruction with 5 PCs is shown with

a dotted line. The residual over error is also shown to indicate where either technique may

be failing
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Figure 2.5: The �2
⌫ values for each object in the sample for both radiative transfer model

fits and the 5 PC reconstruction. Most objects do better with the PCs.

squared values for both the 5 PC reconstructions and the radiative transfer model

fits, for all ULIRGs in the sample. A 5 component reconstruction fits the spectra

better, on average, than the radiative transfer models.

We have shown that 5 PCs can explain the sample of ULIRGs better than the ra-

diative transfer models, but the two are not competing methodologies. The PCs will

always do better than the models as they are derived from the data and the number

of PCs is increased until the reproduction of the spectra is good. They represent

an extraction of most of the important information from the spectra. Radiative

transfer models are used to give us physical information of objects. However, Figure

2.5 indicates that the ULIRGs are not modelled well on average by the radiative

transfer models.

By comparing the models to the PCs, we can investigate what information is in

the PCs that is not in the models. Figure 2.6 shows the contributions made by the

five PCs, as a function of �2
⌫ for the model fits. We only plot objects that have a

reasonable �2
⌫ for the 5 PC reconstruction i.e. a �2

⌫  3. We also bin the model �2
⌫

values into three bins. The mean and one sigma dispersion are overplotted as filled

circles and errorbars.
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Figure 2.6: The contributions made by each PC against the �2
⌫ from the model fits. Only

objects with a 5 PC fit of �2
⌫  3 have been plotted. The mean and one sigma dispersion

for three bins are overplotted as filled circles and errorbars
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The general increase of �2
⌫Models in Figure 2.6 shows that models tend to do

worse when the objects have a large, positive contribution from PC1. Wang et al.

(2011) suggested a large, positive contribution from PC1 indicated colder dust. Our

results suggest that objects with colder dust are not well modelled by the AGN and

starburst component models. The increase in dispersion with �2
⌫Models for PC2 and

PC3 indicates models do worse when there is a large, absolute contribution from PC2

and PC3. PC2 and PC3 relate to strong spectral lines, which would indicate that

the models have problems with constraining the strength of spectral lines. Lower

values of �2
⌫Models appear to occur when objects have negative values of PC4, but

as the �2
⌫Models values increase beyond 2, there appears to be little change in PC4.

A negative contribution in PC4 would suppress emission features, indicating that

models are again inadequate in modelling spectral features. There appears to be

little change of PC5 contribution with �2
⌫Models.

In Figure 2.7, we show the stacked di↵erence between spectra and radiative trans-

fer model fits (solid line) and the spectra and 5 PC reconstructions (dotted line).

The stacked di↵erence for spectra and models illustrates that model fits underestim-

ate the PAH spectral lines and do not include Neon fine structure lines, or molecular

Hydrogen lines. The PAH underestimate is consistent with our interpretation of Fig-

ure 2.6. It suggests the Kruegel (2003) PAH treatment used by the Siebenmorgen &

Krügel (2007) starburst models, is unsuitable for the extreme starforming ULIRGs.

As expected, the PC reconstructions perform considerably better than the models.

2.6.3 Interpreting the Principal Components

We have shown that 5 PCs provide a simple empirical basis set that capture most

of the important variations in ULIRGs. We have also shown some limitations of the

models. Nevertheless, the models still describe some of the physics of the objects

and can be cautiously used to investigate whether the components are associated

with physical parameters. We investigate the components by directly comparing

the PC contributions and the radiative transfer model best fits for the ULIRG

sample. Figure 2.8 shows the contribution from each PC as a function of the viewing

angle and starburst/AGN contribution. We have binned the PC contributions and

calculated the average and one sigma dispersion for each bin. These are over-plotted

with errorbars. PC1 shows a correlation with viewing angle of AGN, with positive
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Figure 2.7: The stacked di↵erence between ULIRG spectra and best fit radiative transfer

models (solid line) and the ULIRG spectra and 5 PC reconstructions (dotted line). The

dot-dashed vertical lines mark the central location of the 6.2,7.7,8.6,11.2 and 12.7 µm

PAH emission lines. The dotted lines indicate the location of the molecular hydrogen lines

at 9.66, 12.28 and 17.03 µm. The solid vertical lines indicate the position of the neon

fine-structure lines, [Ne II] 12.8, [Ne v] 14.3 and [Ne III] 15.6 µm.
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Figure 2.8: The contribution from each PC against the radiative transfer parameters of

viewing angle (in radians) and starburst/AGN contribution. The average contribution for

three bins and associated one sigma dispersion are overplotted.
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Figure 2.9: The position of ULIRGs in four of the PC planes (squares) and the position

in PCA space of the corresponding best fit radiative transfer models (filled circles). Each

ULIRG and best fit model are joined by a solid line. The arrows in the top right of each

plot show the mean di↵erence between ULIRGs and models.
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Figure 2.10: The contribution from each PC against viewing angle tracks and power ratio

for 50 of the ULIRGs. For each best fit radiative transfer model, the viewing angle and

power ratio have been varied to create tracks in PCA space.
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contributions corresponding to an obscured AGN and negative to face on AGN. The

contribution from the fourth PC appears to drop with viewing angle from around

⇡
4 radians. The other PCs show no discernible dependence. The starburst/AGN

contribution is plotted against PCs in the right hand side of Figure 2.8. Negative

values of PC3 seem to be associated with AGN dominated sources and positive

values with starbursts. The other PCs show a large amount of dispersion and little

correlation with starburst/AGN contribution.

We now decompose the radiative transfer model fits into the PCA space described

in Section 2.4. The position of each ULIRG (squares) in four of the PCA planes and

corresponding best fit model (filled circles) can be seen in Figure 2.9. The mean

di↵erence between the ULIRGs and models is depicted by the arrow in the top right

of each plane.

We find the location of radiative transfer model best fits in PCA space are o↵set

relative to the ULIRG positions. There are numerous explanations for the o↵set.

The sparseness of the model library could be a factor. The decomposition into PCA

space may also be a↵ected by the missing physics in the models. We therefore treat

the model tracks with caution and limit interpretation to relative changes in PC

contribution rather than absolute position.

We have taken the best fit radiative transfer model and vary each parameter in

turn to see how it a↵ects the position in PCA space. We focus on the viewing angle

of AGN and ratio of starburst to AGN power, which we define as:

Ltotal = pLSB + (1� p)LAGN (2.1)

A value p = 0 describes a pure AGN model, and p = 1 relates to a complete

starburst.

Figure 2.10 shows the 1D parameter tracks for 50 randomly selected ULIRGs.

The viewing angle tracks show a decrease in PC1 contribution when going from

an obscured to face on AGN. Tracks in PC4 are curved, indicating a non-linear

relationship with viewing angle. PC3 appears to be a good indicator for the power

ratio, with PC3 contribution decreasing as AGN power begins to dominate. Tracks

in PC5 also show a slight correlation with power ratio, while for the other PCs the

relationship is unclear.

The interpretation of tracks is consistent with the conclusions drawn from Figure



48

2.8. Certain PCs appear to be related to the physics of the ULIRGs. We have shown

that PC1 is linked to AGN viewing angle, while PC3 is linked to the star formation

and AGN contribution. This is consistent with the interpretation of Wang et al.

(2011).

2.6.4 Gaussian mixtures classification scheme

Since we have shown the PCs capture most of the information in IRS spectra, it is

natural to use the PCs as a classification tool. Wang et al. (2011) suggested that po-

sition in the PC1-PC4 plane was related to optical type. We now take take this one

step further by proposing a classification scheme based on optical classifications, us-

ing the multi-dimensional Gaussian mixtures modelling (GMM) applied in Davoodi

et al. (2006). This type of parametric modelling works by assuming the density func-

tion of galaxies in our 5D PCA space is composed of a mixture of multidimensional

Gaussian functions. We take the four optical classifications (Seyfert 1, Seyfert 2,

LINER and HII) that exist for 78 of our 119 ULIRG sample, and assume the density

of objects in each classification can be described as Gaussian. The resulting position

and width of each Gaussian are trained from the optical classifications. They can

be thought of as a probability density function (PDF) that describes the probability

of belonging to each optical classification, as a function of position in PCA space.

See Appendix A for more details on GMM.

Figure 2.11 shows the marginalised one sigma contours for the optical classific-

ations in four 2D projections. We note that the one sigma contours are for visual-

isation only, our classification scheme makes use of all 5 dimensions. The objects

with optical classifications are represented with di↵erent symbols: crosses for Seyfert

1, triangles for Seyfert 2, squares for LINER and open circles for objects classified

as HII. Objects without an optical classification are plotted with a diamond. The

success rate of our classification, can be found in Table 2.3.

The classification scheme is very successful in correctly identifying Seyfert 1 like

objects, while most of the Seyfert 2s are classified correctly as LINERs. The ma-

jority of LINER objects are correctly identified, while the majority of HII optically

classified ULIRGs are spread across HII and LINER groups. Both the LINER and

the HII classifications lie in similar areas of PCA space, and discrete classification for

objects in this region may not be completely appropriate as many ULIRGs will show
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Figure 2.11: Four out of the possible 10 2D projections for our PCA space with the

one sigma contours for the gaussian mixtures based classifications. Optically classified

Seyfert 1 objects are marked by crosses, Seyfert 2 by triangles, LINERs by squares and

HII classified objects with open circles. Those objects without optical classification are

marked by diamonds.
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Gaussian classification

HII LINER Sy 2 Sy 1

Optical

HII 40% 45% 15% 0%

LINER 11% 85% 4% 0%

Sy 2 5% 26% 51% 18%

Sy 1 0% 0% 6% 94%

Not classified 42% 46% 12% 0%

Table 2.3: The percentage of objects in the four classifications as a function of their original

classification. Not classified refers to those objects without an optical classification.

signs of both. Overall our 5D Gaussian classification scheme works well in associat-

ing regions in PCA space with type of object and is a powerful tool in objectively

classifying objects.

We have used our classification scheme to classify the 41 ULIRGs with no optical

classification. The percentages can be seen in Table 2.3. We find the majority are

HII and LINER objects while 12% are classified as Seyfert 2 like objects. None

of the objects appear to be Seyfert 1, suggesting optical classification of Seyfert 1

objects is complete. We now make use of our 5D Gaussian classification scheme by

creating average spectra for our four classifications using all 119 ULIRGs. Before

averaging the spectra, each spectrum is normalised so that the mean flux over the

whole wavelength range is unity. The resulting four average templates can be seen in

Figure 2.12. As expected, the HII and LINER templates are similar, whilst Seyfert

templates have very little PAH emission.

2.7 Conclusions

We have shown that five principal components are needed to describe most of the

variation in the 119 local ULIRG sample and are more successful than a full �2

fitting by radiative transfer models. We have examined what the radiative transfer

models are missing. The fits provided by radiative transfer models appear to need

a cold dust component and have di�culty in modelling the strength of strong PAH

emission lines.

We have used a combination of the Siebenmorgen & Krügel (2007) starburst

models and Efstathiou & Rowan-Robinson (1995) AGN torus templates to investig-
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Figure 2.12: The average spectra for the four classifications, HII (29 objects), LINER (54

objects), Seyfert 2 (20 objects) and Seyfert 1 (16 objects). The dotted lines represent the

one sigma dispersion in each classification.
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ate what physical parameters are behind the components. We have examined how

best fit model parameters are related to PC contribution. Overall, our conclusions

are consistent with those reached in Wang et al. (2011). Contributions from PC1

appear to indicate the viewing angle of AGN with negative contributions associated

with face on AGN and positive for obscured AGN. PC3 appears to be the best

indicator of whether it is the AGN or starburst that is the prevailing power source.

The PCs consider a large part of the mid-infrared spectrum and are therefore

less likely to be a↵ected by problems associated with diagnostics based on single

spectral features such as the PAH emission lines, where measuring line strength can

be di�cult. We suggest the five PCs would be useful as empirical templates for

ULIRG spectra in the IRS public database (Lebouteiller et al., 2011).

We also introduce a new Gaussian mixtures classification scheme based on loca-

tion in the five dimensional PCA space and trained via optical classifications. Ob-

jects can be classified as either Seyfert 1, Seyfert 2, LINER or HII-like. We note that

any ULIRG with IRS spectra (in the relevant wavelength range) can be decomposed

onto the PCs, and the position in PCA space can be used to classify the object.

We have used our classification scheme to provide a set of average spectra for

the four groups. We make these, the five PCs and code to classify objects available

at: http://www.phys.susx.ac.uk/
~

pdh21/PCA/
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Siebenmorgen R., Krügel E. (2007). Dust in starburst nuclei and ulirgs. sed models

for observers. A&A, 461:445–453. Cited on 32, 33, 42, 50

Soifer B. T., et al. (1984). Infrared galaxies in the iras minisurvey. Astrophysical

Journal, 278:L71. Cited on 30

Spoon H. W. W., Marshall J. A., Houck J. R., Elitzur M., Hao L., Armus L., Brandl

B. R., Charmandaris V. (2007). Mid-infrared galaxy classification based on silicate

obscuration and pah equivalent width. The Astrophysical Journal, 654:L49. Cited

on 31, 32

Verma A., Rowan-Robinson M., McMahon R., Efstathiou A. (2002). Observations

of hyperluminous infrared galaxies with the infrared space observatory: implic-

ations for the origin of their extreme luminosities. Monthly Notice of the Royal

Astronomical Society, 335:574. Cited on 33

Wang L., Farrah D., Connolly B., Connolly N., LeBouteiller V., Oliver S., Spoon H.

(2011). Principal component analysis of the spitzer irs spectra of ultraluminous

infrared galaxies. Monthly Notices of the Royal Astronomical Society, 411:1809.

Cited on 29, 31, 32, 34, 35, 36, 37, 38, 42, 48, 52

Werner M. W., et al. (2004). The spitzer space telescope mission. The Astrophysical

Journal Supplement Series, 154:1. Cited on 30



57

2.8 (Appendix A) Gaussian Mixtures Modelling

When using GMM as part of a classifier, the available data �opt. from each optical

classification is modelled with a combination of multivariate Gaussians. For our clas-

sifier, since the number of data points is small, we model each optical classification

with one multivariate Gaussian. The probability density function for a multivariate

Gaussian is:

p(x|m,S) =
1p

det(2⇡S)
exp{�1

2
(x�m)TS�1(x�m)} (2.2)

where x is a point in the D dimensional space, m is the mean and S is the covariance

matrix.

By restricting the number of Gaussians to one, for each optical classification c,

we calculate the mean and covariance of �c to get mc and Sc, which when combined

with equation 2.2 gives p(x|c, �c).

For any point in our N dimensional space, x⇤, the posterior probability of be-

longing to a particular class c, is given by:

p(c|x⇤, �) / p(x⇤|c, �c)p(c) (2.3)

Where p(c) is the is the prior class probability. For our classifier, we assign an

equal prior probability of belonging to each class. Using the highest probability

density provides the optimal (maximum likelihood) classification. However, since

the PDFs overlap, this will not provide the best classification for the population

statistics. We therefore take the same approach as Davoodi et al. (2006) and ran-

domly assign each galaxy to a class, with probability proportional to the PDF values

at the galaxies position in PCA space.
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Chapter 3

Learning the fundamental

mid-infrared spectral components

of galaxies with non-negative

matrix factorization

Peter Hurley, Seb Oliver, Duncan Farrah, Vianney Lebouteiller, Henrik Spoon

3.1 Abstract

The mid-infrared (MIR) spectra observed with the Spitzer Infrared Spectrograph

(IRS) provide a valuable dataset for untangling the physical processes and conditions

within galaxies.

This paper presents the first attempt to blindly learn fundamental spectral com-

ponents of MIR galaxy spectra, using non-negative matrix factorisation (NMF).

NMF is a recently developed multivariate technique shown to be successful in blind

source separation problems. Unlike the more popular multivariate analysis tech-

nique, principal component analysis, NMF imposes the condition that weights and

spectral components are non-negative. This more closely resembles the physical pro-

cess of emission in the mid-infrared, resulting in physically intuitive components. By

applying NMF to galaxy spectra in the Cornell Atlas of Spitzer/IRS sources (CAS-

SIS), we find similar components amongst di↵erent NMF sets. These similar com-
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ponents include two for AGN emission and one for star formation. The first AGN

component is dominated by fine structure emission lines and hot dust, the second by

broad silicate emission at 10 and 18 µm. The star formation component contains all

the PAH features and molecular hydrogen lines. Other components include rising

continuums at longer wavelengths, indicative of colder grey-body dust emission. We

show an NMF set with seven components can reconstruct the general spectral shape

of a wide variety of objects, though struggle to fit the varying strength of emission

lines. We also show that the seven components can be used to separate out di↵erent

types of objects. We model this separation with Gaussian Mixtures modelling and

use the result to provide a classification tool.

We also show the NMF components can be used to separate out the emission from

AGN and star formation regions and define a new star formation/AGN diagnostic

which is consistent with all mid-infrared diagnostics already in use but has the

advantage that it can be applied to mid-infrared spectra with low signal to noise

or with limited spectral range. The 7 NMF components and code for classification

are made public on arxiv and are available at: https://github.com/pdh21/NMF_

software/.

3.2 Introduction

Spectra of the integrated mid-infrared (MIR) emission from galaxies contain a wealth

of diagnostics that probe the origin of their MIR luminosity. For example, the main

polycyclic aromatic hydrocarbons (PAHs) emission features found at 6.2, 7.7, 8.6,

11.3 and 12.7 µm are strong in objects where star formation activity contributes

significantly to the mid-IR luminosity (Genzel et al., 1998; Laurent et al., 2000).

The PAH features are either weak or absent for objects dominated by an active

galactic nucleus (AGN) while emission lines with a high ionisation potential, for

example the Neon fine structure line [Ne V] 14.3 µm, tend to be strong in the

presence of an AGN (Genzel et al., 1998; Sturm et al., 2000). Ratios of other fine

structure lines such as [Ne III] µm 15.56 / [Ne II] 12.81 µm versus [S III] 33.48

µm/[Si II] 34.82 µm have been shown to diagnose power source (Dale et al., 2006)

as has the shape of the underlying mid-infrared dust continuum. (Brandl et al.,

2006).

Observations from the Infrared Space Observatory (ISO: (Kessler et al., 1996)),

https://github.com/pdh21/NMF_software/
https://github.com/pdh21/NMF_software/
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and the Infrared Spectrograph (IRS; (Houck et al., 2004)) on the Spitzer Space

Telescope (Werner et al., 2004) allowed the MIR spectral features to be used as

diagnostics of star formation and AGN activity. Combinations of the PAH emis-

sion lines, high to low excitation mid-infrared emission lines, silicate features and

continuum measurements have been used as diagnostics for characterising the power

source behind Ultraluminous Infrared Galaxies (ULIRGs) (Genzel et al., 1998; Rigo-

poulou et al., 1999; Spoon et al., 2007; Farrah et al., 2007, 2008, 2009; Petric et al.,

2010).

However, diagnostics based on specific emission and absorption lines only focus

on small parts of the spectrum, disregarding the information contained in the rest of

the mid-infrared region. They can also be ambiguous. Dust and gas require ionising

radiation to emit in the mid-IR, the source of the radiation is not important. For

example, hot OB stars or an accretion disk around a supermassive black hole can

both produce the [OIV] 25.9 µm emission line, as well as shocks (e.g. Lutz et al.,

1998). The line ratios of fine structure lines can also be a↵ected by the geometry

of the emitting region and the age of a starburst, while the metallicity can a↵ect

PAH emission strength (e.g. Thornley et al., 2000; Engelbracht et al., 2005; Madden

et al., 2006; Wu et al., 2006; Farrah et al., 2007). As a result, di↵erent diagnostics

can give conflicting estimates for the contribution from star formation and/or AGN

(e.g. Armus et al., 2007; Veilleux et al., 2009).

Separation of spectral features from continuum and the mixing of neighbouring

spectral features can also be problematic. For example, measurement of the 9.7 µm

silicate feature requires di↵erent methods depending on the strength of the 8.6 and

11.2 µm PAH emission lines (Spoon et al., 2007).

An alternative method for identifying the power source is to decompose the

spectra with AGN and starburst spectral templates. These templates tend to be

a spectrum from a specific object (e.g. M82) or a mean spectrum of a number of

similar object types. Pope et al. (2008) use a combination of the M82 spectrum,

average spectral template of starburst galaxies (Brandl et al., 2006) and a power law

to decompose the IRS spectra of 13 high redshift submillimeter galaxies. Valiante

et al. (2009) fit IRS spectra across the range 5.5-6.85 µm with a combination of the

M82 spectrum and a linear approximation for the AGN continuum. Alonso-Herrero

et al. (2011) use the (Brandl et al., 2006) starburst template and CLUMPY radiative
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transfer models for AGN to decompose the IRS spectra of 53 LIRGs into starburst

and AGN components. Using average starburst templates is both simplistic and

problematic. Prior theoretical prejudices drive the choice for what objects are used

for the average templates, and they may be contaminated by AGN emission. The

same is true for AGN average spectral templates.

With the public release of all low resolution Spitzer/IRS spectra by the Cornell

Atlas of Spitzer/IRS sources (CASSIS)(Lebouteiller et al., 2011)⇤, we are now in a

better position to investigate the role played by star formation and AGN with more

sophisticated techniques. In this paper we use a multivariate analysis technique

to blindly learn the fundamental MIR spectral components, which we interpret as

di↵erent physical environments within galaxies. Learning the MIR spectral shape

of physical environments, allows the whole MIR wavelength range to be used as a

diagnostic. The spectral components also provide an alternative to average spectral

templates.

A subclass of multivariate analysis techniques include matrix factorisation al-

gorithms. The techniques are often associated with pattern recognition and blind

source separation (Lee & Seung, 2001). Algebraically, the algorithms approximate

a data matrix by two simpler matrices: a weight matrix and component matrix.

Common factorisation techniques include Singular Value Decomposition, Principal

Component Analysis and Independent Component Analysis. The di↵erent tech-

niques use di↵erent assumptions to carry out the factorisation, resulting in di↵erent

weights and components. As multivariate datasets of spectra have become more pre-

valent, techniques such as Principal Component Analysis (PCA) have been applied

to astronomical problems. PCA has already been used for spectral classification of

optical galaxies (e.g. Connolly et al., 1995; Bromley et al., 1998; Taghizadeh-Popp

et al., 2012). PCA has also been successfully applied to the IRS spectra of local

ULIRGs (Wang et al., 2011; Hurley et al., 2012).

The weights and spectral templates derived with PCA can be both positive

and negative. Spectral reconstruction involves both addition and cancellation of

spectral features. As a result, the PCA templates are inherently di�cult to interpret

physically.

A relatively new matrix factorisation technique, Non-negative matrix factorisa-

⇤The Cornell Atlas of Spitzer/IRS Sources (CASSIS) is a product of the Infrared Science Center at

Cornell University, supported by NASA and JPL.
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tion (NMF; Lee & Seung (1999)) can be thought of as PCA but with non-negative

constraints on weights and templates. The constraints make reconstruction a purely

additive process which more closely resembles emission in the mid-infrared. The first

application of NMF to astronomy was carried out by Blanton & Roweis (2007) who

adopted the Lee & Seung (2001) NMF algorithms and applied it to optical spectra

and photometry. It has also been used as a blind source separation algorithm on

the IRS spectra of galactic photo-dissociation regions (Berné et al., 2007; Rosenberg

et al., 2011).

This paper presents the first NMF analysis on mid-infrared galaxy spectra. We

use spectra from the recently released Cornell Atlas of Spitzer/IRS sources (CASSIS)

(Lebouteiller et al., 2011). Our paper provides the first large scale statistical analysis

of the IRS spectra to date using the NMF algorithm. Section 3.3 describes the

CASSIS database and data reduction. In Section 3.4, we describe the suitability

of matrix factorisation to IRS spectra, and give details on the NMF algorithm. In

section 3.5 we present our results and in Section 3.6 our conclusions. We assume a

spatially flat cosmology with H0 = 70kms�1Mpc�1, ⌦ = 1, and ⌦m = 0.3.

3.3 The Data

3.3.1 CASSIS

We use spectra from the Cornell Atlas of Spitzer/IRS sources (CASSIS) (Lebouteiller

et al., 2011). The atlas contains sources observed in low resolution mode with

the Infrared Spectrograph (IRS;Houck et al. (2004)) on board the Spitzer Space

Telescope (Werner et al., 2004). IRS low resolution mode observations were made

using two low-resolution modules, ShortLow and LongLow (hereafter SL and LL),

covering 5.2-14.5 and 14.0-38.0 µm respectively. The modules also had a resolving

power of R ⇡ 60�120 (⇡ 75% of the observations) and an aperture size of 3.7⇥5700

for SL and 10.7 ⇥ 16800 for LL. The observations in the CASSIS database are first

processed with the Basic Calibrated Data (BCD) pipeline from the Spitzer Science

pipeline (release S18.7.0.) and produces BCD frames. This removes electronic and

optical artefacts. The BCD images are then processed using the CASSIS pipeline

which carries out image cleaning, background subtraction, and spectral extraction.

The pipeline algorithm is both automatic and flexible enough to handle di↵erent
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observations, from barely detected sources to bright sources and from point-like to

somewhat extended sources.

3.3.2 Sample

The current version of CASSIS (version 4) contains 11304 distinct sources. 2118 of

those distinct sources have known spectroscopic redshifts taken from NASA/IPAC

Extragalactic Database (NED⇤). We make the additional redshift cut (0.01 < z <

0.2). The lower limit prevents contamination from Galactic and local group sources

while the upper limit ensures we sample approximately the same wavelength range

for each object. The redshift cut gives us a sample size of 893. We note that the

redshifts within CASSIS, have been collected heterogeneously, biasing our sample

by the parent redshift surveys. Because objects in our sample are at low redshift

and span many programs, they likely span most or all IR luminous object types in

the local Universe. Therefore, while a small degree of bias is inevitable, we do not

consider that it is significant enough to significantly a↵ect our results. We also only

use objects with both SL and LL data. This reduces our sample size down to 729

objects. The redshift distribution for the 729 objects can be seen in Figure 3.1.

3.3.3 Stitching

Observations using data from both SL and LL spectral modules can su↵er from

mismatching due to telescope pointing inaccuracy or if a source is extended in SL and

not in LL. The mismatching causes the spectra from one of the modules (normally

the SL) to have lower flux calibration than the other. Correcting the mismatch is

inherently di�cult as the data from the overlap between the two modules can su↵er

from the ‘14 micron teardrop’ (see IRS instrument handbook, †), leaving a small

gap at around 13-14 µm.

We correct for the mismatch using a simplified version of our NMF technique.

For the first step, we generated two sets of templates, one using SL data and the

other using LL data. The distribution in redshift causes the mismatch region to

occur at di↵erent rest frame wavelengths for di↵erent objects. This ensures at least

one template set covered the mismatch region for each object. We then fitted the

template set to a region of width 7 µm, centred on the mismatch area. Wavelength

⇤
http://nedwww.ipac.caltech.edu/

†
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/

http://nedwww.ipac.caltech.edu/
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/
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Figure 3.1: The redshift distribution for the sample selection we apply the NMF algorithm

to.

points associated with PAH and Neon emission lines were removed to prevent strong

line strengths from distorting the fits. We carry out the fit for di↵erent scalings

applied to the SL data. The scaling factor value that gives the lowest �2 is chosen

as the scaling correction. Having stitched the spectra using both SL and LL template

sets, we then generated our initial NMF sets for the entire spectral range. We then

re-stitch the spectra with the new NMF set. Additional spectra used for analysis in

this paper are also stitched with our final NMF7 set, introduced in section 3.5.

3.3.4 Normalisation

The NMF analysis requires all spectra to be normalised to a standard value to

prevent sources with higher flux, biasing the algorithm. We normalise all the spectra

by the average flux across the restframe wavelength range of 7� 20µm. We choose

this range as it is common to all sources with both SL and LL data.
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3.4 Matrix Factorisation

Analysis of spectra from Spitzer’s IRS has tended to be done using diagnostics

based on only a few of the specific features (e.g. Sajina et al., 2007; Pope et al.,

2008; Alonso-Herrero et al., 2012). For example, Spoon et al. (2007) introduced

a classification scheme based on the 6.2µm PAH line and 10µm silicate feature.

Quantifying the contribution from star formation and AGN has also been carried

out using fine structure lines, for example the [OIV]/[NeII] and [NeV]/[NeII] line

ratios versus the 6.2µm PAH equivalent width. (e.g. Armus et al., 2007; Petric et al.,

2010)

In essence, line diagnostic analyses are carrying out a crude compression by using

only small parts of the spectrum to describe each object (e.g. the 6.2µm feature).

Matrix factorisation techniques provide an alternative approach to compression by

transforming data from wavelength space to one that better captures the variance

in the dataset. As a result, classification or quantification of properties such as star

formation is carried out considering a greater wavelength range.

Algebraically, matrix factorisations find a linear approximation to a data matrix

X such that X t WH, or:

Xiµ t (WH)iµ =
rX

a=1

WiaHaµ (3.1)

Where, i is object index, µ is wavelength and a is component index. The matrix

H can be thought of as a set of r components that represent latent structure explicit

in the dataset, and W are a set of weighting coe�cients. Each object in the dataset

can now be approximated by a linear combination of the derived components, H.

Di↵erent matrix factorisation techniques use di↵erent assumptions to carry out

the approximation. Independent component analysis (ICA) assumes the derived

components (H) are independent. Principal component analysis (PCA) models the

dataset as a multivariate Gaussian distribution in wavelength space and finds the

orthogonal components of the Gaussian. Non-Negative Matrix Factorisation (NMF)

assumes the data, weights and components are all non-negative, but makes no as-

sumption on the distribution of the data or correlation between derived components.



66

3.4.1 Matrix factorisation of spectra

By applying linear matrix factorisation techniques to the mid-infrared spectra of

galaxies, we are assuming mid-infrared spectra of galaxies, F (�), can be modelled

as a linear combination of components. Ideally the components would relate to

physical regions, for example a star forming region (TSF ), an active galactic nuclei

torus (TAGN), a molecular cloud (TMC) or di↵use dust component (TC). A spectrum

for a galaxy would then simply be:

F (�) = a · TSF (�) + b · TAGN(�) + c · TMC(�) + d · TC(�) (3.2)

Where, a, b, c and d are the relative weights for each component.

For the above model, ICA is not suitable as the components are unlikely to be

independent, for example AGN and star formation are believed to be triggered by

similar mechanisms such as mergers (e.g. Sanders et al., 1988), and are likely to be

connected through feedback processes (e.g. Farrah et al., 2012; Rovilos et al., 2012).

PCA has already been applied to the mid-infrared spectra of ULIRGs (e.g. Wang

et al., 2011; Hurley et al., 2012). Algebraically, PCA calculates the eigenvectors of

the covariance matrix. For spectra, the principal components represent the principal

variations from a mean spectral template. The components are therefore allowed

to have features which are positive and negative, and are also allowed to have a

negative weighting when fitting objects. The freedom to be both positive and neg-

ative does not mimic the process of emission in the MIR, resulting in components

that are inherently di�cult to interpret. By their nature, the principal components

have a statistical rather than physical interpretation. Therefore, although PCA can

successfully reduce dimensionality of spectra for classification from known objects,

it is not suitable for our model.

The non-negative constraint of NMF more closely reflects the physical process

of emission in the mid-infrared, which does not su↵er from the same problems of

absorption as other spectral ranges. As a result the NMF generated templates are

more physically intuitive.

NMF is therefore the most applicable matrix factorisation routine for our linear

interpretation of galaxy emission. However, the situation is complicated by dust

extinction. This introduces a non-linearity to the problem since extinction is multi-

plicative and exponential.
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F (�) = (a · TSF (�) + b · TAGN(�) + c · TMC(�)

+d · TC(�))e�f ·⌧(�)
(3.3)

Where f is the weight associated with extinction and ⌧(�) can either be known or

unknown.

We can take the model one step further by allowing extinction to vary across all

four components:

F (�) = a · TSF (�)e�f ·⌧(�) + b · TAGN(�)e�g·⌧(�)

+c · TMC(�)e�h·⌧(�) + d · TC(�)e�i·⌧(�)
(3.4)

The weights for the extinction are f, g, h and i.

We have explored the suitability of non-linear kernel based matrix factorisation

algorithms (e.g. Zafeiriou & Petrou, 2010; Pan et al., 2011) and found they are not

suited for the non-linear behaviour described in equations 3.3 and 3.4. We discuss

why in Appendix A. Current algorithms therefore restrict us to describe mid-infrared

galaxy spectra as a set of linear components (e.g. equation 3.2) and NMF is the

most appropriate matrix factorisation technique.

The first application of NMF in astronomy was carried out by Blanton & Roweis

(2007) who updated the popular NMF multiplicative algorithm from Lee & Seung

(2001) to include uncertainties and for heterogeneous datasets (e.g. optical spectra

and photometric observations of galaxies at di↵erent redshifts). They also restricted

the space of possible spectra to those predicted from high resolution stellar popula-

tion synthesis models. We use the NMF algorithm from Blanton & Roweis (2007)

to identify and learn the mid-infrared sources that are common to galaxies in the

CASSIS database. Unlike Blanton & Roweis (2007), we do not use any models as a

prior for shape of the components, we use the algorithm to blindly learn the shape

of our components.

3.4.2 NMF algorithm

As with PCA, the goal of NMF is to minimise a cost function. The most widely

used is the squared approximation error described in Lee & Seung (2001):

�2 =
X

iµ

 
Xiµ �

X

a

WiaHaµ

!2

(3.5)
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Minimising equation 3.5 requires some sort of numerical technique to find local

minima. Lee & Seung (2001) presented ’multiplicative update rules’ for H and W.

Upon each iteration, the rules are used to update H and W by a multiplicative factor

whilst minimising equation 3.5. The algorithm implemented in Blanton & Roweis

(2007) altered the original multiplicative update algorithm of Lee & Seung (2001)

for nonuniform uncertainties (�). The cost function then becomes the weighted

squared approximation error:

�2 =
X

iµ

✓
Xiµ �

P
a WiaHaµ

�iµ

◆2

(3.6)

Blanton & Roweis (2007) showed the multiplicative update rules for H and W

are as follows:

Wia  Wia

 
X

µ

XiµHaµ

�2
iµ

! 
X

mµ

WimHmµHaµ

�2
iµ

!�1

(3.7)

Haµ  Haµ

 
X

i

WiaXiµ

�2
iµ

! 
X

mi

WiaWimHmµ

�2
iµ

!�1

(3.8)

The update rules in equations 3.7 and 3.8 are guaranteed to reduce the error,

however the cost function in equation 3.6 is not necessarily convex therefore the

algorithm may get stuck in a local minimum. We run the algorithm five times with

di↵erent initial starting positions to check the solution is consistent.

Convergence can be evaluated by looking at the decrease in cost function across

iterations and checking the solution has reached a minimum. In practise, we find

3000 iterations are enough for H and W to converge.

The number of components generated by NMF is a user input. Unlike PCA

where the shape of the original components remain unchanged as more are added,

the NMF components will not remain the same. We investigate the number of

components required to constrain the data by generating 11 di↵erent NMF sets,

containing from 3 up to 14 components. We define the following notation, NMF x
y

to describe the xth component from an NMF set containing y components.

3.4.3 Bayesian Evidence

To determine the minimum number of components that are justified by the data,

one should calculate the Bayesian evidence (E).

E ⌘
Z

L(✓)⇡(✓)d✓ (3.9)
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The evidence can be thought of as the average likelihood, L(✓), over all of the

prior, ⇡(✓), parameter space, d✓, of a given model and automatically implements

Occam’s razor, i.e. simpler models are preferred unless simplicity can be traded for

greater explanatory power.

There are two ways in which one could calculate the Bayesian evidence for our

setup. The first would be to calculate the evidence for the NMF algorithm, where

the number of parameters is equal to the number of elements in both H and W.

This approach would be the most appropriate if comparing the suitability of NMF

to other matrix factorisation techniques, the integral however becomes highly multi-

dimensional making the calculation numerically challenging. Alternatively, if NMF

is the most appropriate algorithm to our problem, then we can assume that the

components are correct. The number of parameters is then equal to the number of

elements in W, i.e. the number of components.

We choose the later approach as we have already chosen NMF as the most

appropriate algorithm to our problem and are not comparing alternative procedures.

We calculate the evidence by using the nested sampling routine, MULTINEST

(Feroz et al., 2008) to re-fit the CASSIS sample with di↵erent NMF sets. MUL-

TINEST is a Bayesian inference tool which calculates the evidence and produces

posterior samples from distributions with (often an unknown number of) multiple

modes and/or degeneracies between parameters. Nested Sampling (Skilling, 2004)

is a Monte Carlo technique that randomly samples from the prior space, and zooms

in on areas of higher likelihood during successive iterations.

We fit every galaxy with component sets NMF3 to NMF14 and their respective

repeats. For every repeat, we calculate the median evidence of the sample. The

main uncertainty on our evidence values comes from the di↵erence in NMF sets

across repeats (i.e. the convergence on slightly di↵erent local minima by the NMF

algorithm). To quantify the uncertainty on our evidence values, we calculate the

mean and standard deviation evidence values from the 5 repeats, as a function of

number of components.
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Figure 3.2: The Bayesian evidence as a function of number of components. For each NMF

set, we run the algorithm 5 times and calculate the median evidence value of the entire

galaxy sample. We plot the mean and standard deviation of the 5 repeats.
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3.5 Results

3.5.1 Number of Components

As discussed in the previous section, we would like to quantify how many components

are required by the data. Figure 3.2 shows the mean and standard deviation for the

Bayesian evidence values from 5 repeats, as a function of number of components.

The Bayesian evidence should start decreasing as the number of components exceeds

the optimum number needed to constrain the data. We see no turnover, indicating

there is not an obvious, optimum NMF set below 14 components. We note however

a slight levelling of at 7 components before increasing again beyond 8.

We have also looked at the ratio of evidence values between consecutive NMF

sets. The ratio, referred to as the Bayes factor (K), is used as a measure for a

Bayesian version of classical hypothesis testing. We use the Je↵reys scale to interpret

K. A value of K < 1 indicates the more complicated model is preferred, K = 1� 3

as barely worth mentioning, K = 3�10 indicates substantial support for the simpler

model, while K = 10 � 30 is strong, K = 30 � 100 is very strong, and K > 100 is

considered decisive. Using the Je↵reys scale, we find more than 14 components are

needed to reconstruct spectra within the uncertainties. However, we note that K

begins to level o↵ after 6/7, indicating that although more complicated component

sets are preferred, the gain in increasing the number of components is beginning to

decrease.

Ideally, we would calculate the Bayesian evidence and Bayes factor beyond

NMF14. However, calculating evidence for highly multidimensional parameter spaces

becomes computationally challenging. We have qualitatively examined NMF sets

where number of components > 14. As an example, in Figure 3.15 we show the NMF

components for NMF30. Interpreting a many-component NMF set such as NMF30

becomes challenging as signatures begin to separate out into several components,

whose physical interpretation is not clear.

We also note that the Bayesian evidence calculation could be influenced by two

fundamental factors. The first is the use of uncertainties associated with IRS spec-

tra, which have often been underestimated below the observed variation between

individual nod positions on the IRS, as described in Chapter 7 of the IRS Instru-

ment Handbook ⇤. As a result, our model selection may be too conservative. The

⇤
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/

http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/
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Figure 3.3: The derived NMF spectral components for setsNMF5-NMF10. Each NMF set

is colour coded, with components ordered by similarity. For example, the five components

of NMF5 are the five brown spectra. Prominent spectral features in each component are

also labelled and regions a↵ected by broad silicate absorption and emission are highlighted

in light blue.



73

other problem comes from the suitability of the NMF algorithm to the non-linear

behaviour associated with extinction. We have carried out a simple simulation to

show how extinction could be a factor in driving our linear methods to more tem-

plates than might be required by underlying physical conditions. Details can be

found in Appendix B.

We have investigated how many components are needed in a quantitative manner.

For the rest of this paper we investigate the how many components are needed

qualitatively, by examining some of the simpler NMF component sets, limiting our

investigation to NMF5-NMF10.

3.5.2 Analysis of NMF5 to NMF10

Figure 3.3 shows each spectral component for sets NMF5 � NMF10. We have

ordered the components so that similar components appear in the same order. We

note the ordering of components given by NMF is unimportant.

The NMF sets in Figure 3.3 show that many of the components remain similar,

despite an increase in the allowed number of components.

The first component contains a dust continuum which peaks at around 24 µm

and contains emission from the Sulphur line [SIV] at 10.51 µm, the 12.8, 15.6 and

24.3 µm Neon lines and Oxygen line [OIV] at 25.89 µm, all of which are associated

with a hot ionised gas source. The continuum in the component from NMF9 and

NMF10 varies from the others in that continuum does not start until 13 µm. This

coincides with the appearance of the ninth and tenth components which show similar

features. The hot dust continuum peaks at a wavelength similar to that of AGN

tori, while the hot ionised gas emission lines have also typically been associated with

AGN. The appearance of both in one component is consistent with the idea they

are correlated.

The second component shows silicate emission features at 10 and 18 µm due to

stretching and bending of the Si-O and O-Si-O bonds respectively. Silicate emission

is typically associated with emission from very hot dust, found on the inner surface

of AGN tori or narrow line regions (Mason et al., 2009).

The third component captures the 6.2, 7.7, 8.6, 11.3, 12.7, 16.4 and 17.0 µm

PAH features, and a cold dust slope at longer wavelength. There is also emission

from Argon line [ArII] at 6.89 µm and Sulphur line [SIII] at 18.71 µm. Its shape is
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Figure 3.4: The derived NMF spectral components for NMF4-NMF7, using only objects

dominated by the third PAH component seen in Figure 3.3. Each NMF set is colour coded,

with components ordered by similarity.
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similar to the (Brandl et al., 2006) average starburst template, based on 13 starburst

galaxies. The ratio of the PAH features are very similar amongst component sets,

but dust slope decreases with number of components. The reduction in dust slope

for more complex NMF sets coincides with rising continuums seen in the fourth,

sixth and seventh components.

The fifth component shows continuum emission up to 7 µm before dropping o↵

at 10 µm. It also shows strong emission from the Sulphur line [SIV] at 10.51 µm.

The remainder of the spectrum is noisy and featureless.

The eighth, ninth and tenth components show similarities to the first component.

They show varying amounts of emission from the Neon lines, while the merged

Oxygen and Iron lines appear as emission in the ninth component and absorption in

the tenth. The variation of the first component in NMF9 and NMF10 compared to

the other NMF sets is a result of the introduction of the ninth and tenth components

and occurs because the NMF algorithm is using the freedom of extra components

to break down the first into sub components.

Physical interpretation of the components

The first two components both show features associated with hot dust and gas

emission and are likely to be related to AGN emission. The unified model of AGNs

predict silicate emission from type 1 AGN and silicate absorption in type 2 AGN.

More recently, the IRS spectra of type 2 quasi-stellar objects (QSOs) have shown

silicate emission (Sturm et al., 2006). (Schweitzer et al., 2008) have shown that

the IRS spectra of 23 QSOs can be modelled with dusty narrow line region models,

while Mason et al. (2009) and Mor et al. (2009) showed that clumpy torus models

could also provide silicate emission for both type 1 and type 2 AGN. The fact we see

a relatively stable silicate emission component amongst di↵erent NMF sets would

suggest that silicate emission is occurring in more than just type 1 AGN and is a

fundamental spectral component.

The third component is the main star formation component. It is dominated by

PAH emission, often used as an indicator of star formation (e.g. Roussel et al., 2001;

Peeters et al., 2004; Calzetti et al., 2005; Kennicutt et al., 2009), and predominantly

comes from photo-dissociation regions (PDRs) (Roussel et al., 2007; Peeters, 2011).

For simpler NMF sets, the component also contains a rising continuum at longer
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wavelengths due to colder dust emission (T ⇡ 50K), also associated with star form-

ation (e.g. Calzetti et al., 2007). For the more complex NMF sets, the rising dust

continuum is given its own component (e.g. the sixth and seventh). This indicates

that although the colder dust and PAH emission both trace star formation, they

come from di↵erent regions and the NMF algorithm uses the additional freedom of

extra components to separate the two. We note that the PAH emission is extremely

stable amongst all NMF sets and we do not see significant PAH emission in any

other component. Previous studies show the ratio of PAH features vary with metal-

lically and radiation hardness (e.g. Smith et al., 2007), yet we have one component

with PAH emission.

To investigate the stability and lack of variation in the PAH emission features,

we have re-run the NMF algorithm on objects from our original sample which are

dominated by the third component. Figure 3.4 shows the components from NMF4

to NMF7 for our reduced sample. The NMF algorithm now finds two components

with PAH emission. The first shows emission at 6.2, 7.7, 8.6, 11.3, 12.7, 16.4 and

17.0 µm, the second shows reduced emission for the 8.6, 11.3 and 12.7 µm PAH

features and no emission at 16.4 and 17.0 µm, while at longer wavelengths there is

a rising continuum. The two new PAH components show a resemblance to those

found in an NMF analysis of IRS spectro-imagery data for galactic PDRs (Berné

et al., 2007). Their first component, interpreted as emission from deep within the

PDR, showed broad emission at 6.2, 7.8, and 11.4 µm and a rising continuum. The

second component contained emission from the 6.2, 7.6, 8.6, 11.3, 12.7 and 17.4 µm

PAH features, and was shown to be more dominant in regions closer to the star.

By restricting the sample to objects dominated by star formation, the NMF al-

gorithm does not need to use components to separate out hotter dust from AGN, and

uses the additional freedom to separate out the PAH emission. The PAH emission

in our original third component is therefore capturing the average PAH emission

from galaxies.

Components four, six and seven from Figure 3.3, all contain rising continuums,

though with varying slopes and is capturing dust emission at di↵erent temperat-

ures. The fact we see numerous components with varying slopes suggests that the

colder greybody emission of dust varies considerably amongst galaxies. The seventh

component also contains a bump at around 8 and 12 µm. The bumps help build
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Figure 3.5: The median absolute residuals, normalised by �, for NMF sets NMF5-NMF9.

The residuals show all NMF sets fail to capture the variance in many of the emission lines.

However, for NMF sets NMF7 and above, the residuals for the underlying continuum are

down to 1 �.

up a silicate absorption feature at 10 µm, this component is therefore important for

dusty galaxies.

To further investigate the components, we can begin to look at how they con-

tribute to di↵erent types of spectra. In order to simplify the analysis and to provide

a simple set of components, we restrict our components to those from NMF7. Our

choice of seven is more qualitative than quantitative, as we have already shown that

a quantitative analysis requires more than 14 components. To validate our choice,

we have studied the median, absolute residuals of NMF fits to the CASSIS sample

with NMF5 to NMF9, shown in Figure 3.5. The residuals are high for some of

the emission lines, particularly the PAH features, because our components capture

the average line emission. However we note that by seven components, the resid-

uals for the underlying continuum are down to 1 � and there is little advantage in

using more complicated sets. By choosing seven, we believe we strike the balance

between having enough simplicity to have a useful and physically intuitive NMF

set of components, whilst being able to reconstruct the general spectral shape. The

seven components are re-plotted in Figure 3.6.
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Figure 3.6: The 7 components from NMF7, corresponding to the yellow components

in Figure 3.3. The new colour coding is used to identify the di↵erent components in

subsequent figures.
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NMF7 fits to example galaxy spectra

We now examine the NMF fits to spectra of di↵erent types of galaxies in order to

show how contributions from components vary and that our NMF7 set can capture

the general shape of di↵erent types of spectra. Our example fits, along with the

corresponding residuals (i.e. data-fit) can be found in Figures 3.17 and 3.18. The

first plot in Figure 3.17 shows the NMF fit to the Blue Compact Dwarf (BCD)

KUG 1013+381, observed as part of the IRS Guaranteed Time Observation (GTO)

program. BCDs tend to be small galaxies with low metallicity, that have undergone

a recent burst of star formation but have suppressed star formation compared to

typical starburst galaxies (Wu et al., 2006).

Our NMF fit shows component one makes a significant contribution, suggesting

there is some hot dust. Component four also makes a large contribution, indicating

emission from colder dust. Components six and seven, both containing dust slopes

at longer wavelengths, also contribute. There is very little emission from component

two, which we believe is associated with the inner surface of an AGN and there is

very little emission from the third ’PAH’ component. The residual plot shows the

NMF7 set can construct the underlying continuum, however the [SIV], [NeIII] and

[SIII] emission lines are underestimated.

Our second NMF fit is to the ULIRG and type 1 Seyfert galaxy, Markarian 231.

Unlike, KUG 1013+381, the second ’silicate emission’ component makes a contri-

bution, and the other, warmer dust components such as six and seven contribute

as much power to the longer wavelengths as the fourth component. There is very

little contribution from the third component. Residuals show the fit is reasonable

except beyond 25 µm, where there appears to be some instrumental artefact in the

spectrum.

The third fit is to PG 1211+143, also a type 1 Seyfert galaxy. The second com-

ponent dominates the emission of this object. The first, fifth and sixth component

make comparable contributions. The residual plot shows that our NMF7 set slightly

over estimates emission from the [NeIII] and [OIV] lines.

The fit to the ULIRG and type 2 Seyfert galaxy, Markarian 273, is dominated

by emission from the fourth ’cold dust’ component. Residuals show the NMF com-

ponents underestimate some of the emission lines, particularly the [NeIII] line. The

continuum appears to be well reconstructed by the NMF components.
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Our final two fits in Figure 3.17 are to the starburst galaxies, NGC 3301 and

NGC 3256. The third component contributes in the shorter wavelengths, while

the colder dust components, four and six, contribute at longer wavelengths. The

residuals show the components are capable of reconstructing the continuum, but fail

to capture the emission lines accurately.

Four additional example fits are shown in Figure 3.18. The first is to LINER,

3C270. The first, second and fifth components are the main contributors. while the

residuals show the fit can reconstruct the continuum, but underestimate the 12.8 µm

Neon line. The submillimeter galaxy GN26 is over a short wavelength region and the

spectrum is quite noisy. Our final two fits are to quasar PG0804+761 and ULIRG

IRAS 10378+1108. As with other type 1 AGN, the second component dominates

emission. Our NMF7 set fails to model the full width of the very broad silicate

emission feature at 9.7 µm, however the rest of the continuum is well reconstructed.

Our NMF fit to the ULIRG IRAS 10378+1108 dominates the emission, while the

residuals show the NMF set slightly overestimate the greybody emission longwards

of 27 µm.

In addition to galaxy spectra, we also fit our NMF7 set to the average spectral

templates from the IRS spectral ATLAS of galaxies (Hernán-Caballero & Hatzim-

inaoglou, 2011). Table 3.3 in Appendix C gives more details on the sources used

for the ATLAS average templates. As can be seen in Figure 3.19, the change in

contributions for di↵erent types of object is consistent with those in Figure 3.17.

The continuum is well constructed for all average templates, however the residuals

show the emission lines are not accurately reconstructed, especially for the average

LINER template.

Overall, our fits show for Seyfert galaxies, the first and second component, along

with the warmer dust components of five, six and seven are all important, though

their contributions vary. For the starburst galaxies, the third and fourth component

play a more important role. The residual plots show that our NMF set is capable

of reconstructing the continuum to a reasonable accuracy, however some of the

emission lines are not always fitted well. This is to be expected since, as we have

previously shown, the components capture the ’average emission’ of spectral lines.

To accurately fit continuum and emission lines, our Bayesian evidence calculation

has shown we would need an NMF set with more than 14 components. The goal of



81

this paper is to find a physically intuitive component set, which requires a balance

between number of components and ability to reconstruct spectra. We believe Figure

3.5 and 3.17 shows our NMF7 set fits this requirement.

To illustrate how the components contribute to a number objects, we can use

the weightings provided by the NMF fits as multidimensional co-ordinates. Each

galaxy is now a point in a seven dimensional space we call NMF space. We use

classifications from the IRS spectral ATLAS of galaxies (Hernán-Caballero & Hatzi-

minaoglou, 2011) to investigate what regions of NMF space are associated with

di↵erent types of galaxies. The ATLAS collection contains spectra from a number

of observing programs. They provide optical classifications from the literature and

three additional MIR classifications: MIR SB, MIR AGN1, MIR AGN2 based on the

fractional contribution from a PDR component used during spectral decomposition.

The AGN subgroups MIR AGN1 and MIR AGN2 are subsets of AGN, classified by

whether spectra show silicate emission or silicate absorption. Figure 3.7 shows how

objects from the ATLAS groups: MIR AGN1, MIR AGN2, MIR SB, Sbrst, Sy1 and

Sy2 are distributed in the seven dimensional NMF space.

As can be seen in Figure 3.7, the Seyfert 1 and MIR AGN1 objects all lie in a

region with low contribution from NMF 1
7 , high contribution from NMF 2

7 and very

little contribution from NMF 3
7 . The Seyfert 2 and MIR AGN2 objects are found

in a region with a higher contribution in NMF 1
7 , less or very little contribution

from NMF 2
7 and very little contribution from NMF 3

7 . Starburst like objects on

the other hand require little contribution from either NMF 1
7 or NMF 2

7 , and a high

contribution from NMF 3
7 .

We note that the components most influential in separating out the di↵erent ob-

jects are the components one, two and three. Less influential but still significant are

the colder dust components NMF 4
7 and NMF 6

7 . They contribute very little to ob-

jects classified as AGN, while the contribution for starbursts show a large variation.

This fits in with our earlier interpretation that these two components represent ob-

scured star formation components which vary more than the PAH features seen in

NMF 3
7 . The remaining two components are the least significant. There is a slight

di↵erence in contribution between AGN 1 objects and the other two classes, while

NMF 7
7 separates out type 1 and type 2 objects to a certain extent.
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Figure 3.7: The distribution of objects/spectra from the ATLAS groups: MIR AGN1,

MIR AGN2, MIR SB, Sbrst, Sy1 and Sy2 in our 7D space defined by the NMF7 set.

Symbols and colours for the di↵erent groups are described in the legend. The position of

the average template for each group is marked by a larger symbol.
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3.5.3 Gaussian Mixtures Modelling

We have shown NMF space is capable of separating out di↵erent types of objects.

We now model how objects separate out in this multidimensional space by ap-

plying the parametric technique Gaussian mixtures modelling (GMM). GMM has

already been successfully applied to the colour and redshift space of galaxies (Dav-

oodi et al., 2006). GMM assumes the distribution of objects can be modelled by a

series of clusters, each described by a multidimensional Gaussian. We use the GMM

software from the Auton Lab ⇤(Moore, 1999) to model the distribution of the CAS-

SIS sample in our 7 dimensional NMF space. The software uses the Expectation

Maximisation algorithm to learn the position and size of the clusters and uses the

Akaike Information Criterion (AIC;Akaike (1974)) to select how many are needed

to describe the distribution of objects.

We find that 8 clusters are required to adequately model the distribution. Each

cluster describes a probability density function (PDF) for any position in NMF

space. By using an objects position in NMF space, we can assign it to one of the 8

clusters.†Table 3.1 shows how some of the ATLAS classified sources are distributed

across the 8 clusters, with clusters ordered by their normalisation (i.e. how many

objects are in that cluster). As can be see in Table 3.1, the majority of objects

are contained within the first five clusters. The normalisations associated with the

remaining clusters (i.e. how many objects they capture) are also very small. We

therefore use the first five clusters to define a classification scheme.

The location in NMF space of the first five clusters can be seen in Figure 3.8.

Each cluster is represented by its 1 sigma contour. The CASSIS sample used for

training the Gaussian Mixtures modelling are also plotted.

As can be seen in Figure 3.8 and classifications in Table 3.1, cluster one captures

nearly all the Seyfert one galaxies, and some Seyfert two galaxies. Cluster two

contains a significant number of objects previously classified as starbursts, while

cluster three contains a large proportion of the remaining Seyfert two objects. The

⇤http://www.autonlab.org
†Every position in NMF space has eight PDF values associated with it (one for each cluster). Using the

highest probability density provides the optimal (maximum likelihood) classification. However, since the

PDFs overlap, this will not provide the best classification for the population statistics. We therefore take

the same approach as Davoodi et al. (2006) and randomly assign each galaxy to a cluster, with probability

proportional to the PDF values at the galaxies position in NMF space.
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position of cluster four indicates this could be an intermediary group between typical

Type one and Type two galaxies. The fifth cluster contains just over a fifth of those

objects classified as starbursts in the MIR and no optically classified starbursts.

Its position in NMF space also suggests it captures those objects which are dusty

starbursts.

We conclude that cluster one is related to Seyfert 1 galaxies, cluster two with star-

bursts, cluster three with Seyfert two galaxies and cluster four for galaxies showing

signs of both Seyfert one and Seyfert two (e.g. Type 1.5). The fifth cluster captures

those galaxies which are dusty and obscured. The clusters can be used as a classific-

ation scheme by taking any IRS galaxy spectrum, fitting with NMF7 set and using

the corresponding weights to identify what cluster the object is associated with.

We compare our classification scheme to the Spoon et al. (2007) diagram, which

classified ULIRGs via the strength of their 9.7µm silicate feature and 6.2 µm equi-

valent width. Figure 3.9 shows 89 ULIRGs in the Spoon et al. (2007) diagram,

colour coded by our our classification. Seyfert one classified galaxies lie on the far

left of the bottom horizontal branch, corresponding to a 1A and 1B Spoon classi-

fication, Seyfert two classified galaxies span the horizontal branch and 2B Spoon

classification. The starburst classified objects are located in the far bottom right of

the Spoon diagram, while dusty objects are spread out across the diagonal branch.

Only three objects are classified as Type 1.5 and they lie on the horizontal branch,

in-between the Seyfert one and Seyfert two classified galaxies.

Comparing the success rates of di↵erent classification schemes, without knowing

the ‘true’ classification is always problematic, however our classification scheme is

consistent with the Spoon et al. (2007) interpretation of Figure 3.9 in terms of

the location of starbursts, AGN dominated objects and dusty objects. Unlike the

Spoon diagram, our classification scheme can also distinguish between Seyfert one

and Seyfert two galaxies.

We have shown our classification scheme is just as successful as the Spoon classi-

fication. However, our classification has three distinct advantages over Spoon et al.

(2007). First, Spoon et al. (2007) only use the 9.7µm silicate feature and 6.2 µm

PAH equivalent width to separate out classes. By using the NMF components as

a basis for our GMM based classification scheme, we make use of the whole MIR

region to classify objects. This also enables us to classify objects where the 9.7µm
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Table 3.1: The percentage of ATLAS classified objects in each cluster for 7 NMF templates.

The first column indicates the cluster number. The second column shows the probability

that a CASSIS object is in that cluster (i.e. how many objects can be found in it). The

remaining columns contain the percentage of ATLAS classification in each cluster.

GMM and ATLAS classification for 7 templates

Cluster prob. Sy1 Sy2 MIR AGN1 MIR AGN2 MIR SB Sbrst

1 0.301 90.9 37.7 97.5 52.3 1.6 6.2

2 0.287 0.0 17.0 0.0 1.7 43.6 68.8

3 0.156 0.0 28.3 0.8 24.1 11.7 12.5

4 0.147 9.1 17.0 0.8 8.6 21.4 6.2

5 0.080 0.0 0.0 0.0 8.0 20.2 0.0

6 0.022 0.0 0.0 0.8 2.3 0.8 6.2

7 0.004 0.0 0.0 0.0 1.1 0.8 0.0

8 0.003 0.0 0.0 0.0 1.7 0.0 0.0

silicate feature and 6.2 µm PAH equivalent width are not available or di�cult to

measure. Secondly, our classification scheme is modelled on the number density of

our CASSIS sample in NMF space. Since our sample contains a large variety of ob-

jects, any sample biases will have a small a↵ect on the outcome of our classification

scheme. The Spoon classes on the other hand, are chosen based on arbitrary cuts in

the 9.7µm silicate feature and 6.2 µm PAH equivalent width. Thirdly, because our

clusters describe a probability density function, we can give an indication of how

likely a galaxy could be found in any one of the five clusters. For example, in Table

3.2 we show the probability of being in any of the five clusters for some famous

objects.

We make our classification tool publicly available on the arxiv and at https:

//github.com/pdh21/NMF_software/.

3.5.4 SF-AGN contribution

We have shown that the NMF components are capable of distinguishing between

the objects showing extreme star formation or AGN activity. We now use them to

introduce a diagnostic to quantify the contribution from star formation and AGN.

Unlike other diagnostics, ours employ the whole MIR spectrum to disentangle the

SF versus AGN contributions, and it is not based on specific features for which we

https://github.com/pdh21/NMF_software/
https://github.com/pdh21/NMF_software/
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Table 3.2: The approximate probability of being in one of the five clusters in our GMM

based classification scheme.

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Object Sy1 Sbrst Sy2 Sy1.5 Dusty SB

Arp220 0.00 0.23 0.41 0.02 0.34

Mrk231 0.32 0.00 0.34 0.32 0.02

PG1211+143 0.92 0.00 0.00 0.08 0.00

IRAS10565+2448 0.00 0.71 0.25 0.00 0.04

IRAS10378+1109 0.00 0.01 0.06 0.00 0.93

Figure 3.8: NMF space for 7 templates. CASSIS objects used for NMF and GMM are

also plotted. The ellipses represent the di↵erent clusters found through Gaussian Mixtures

Modelling
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Figure 3.9: The Spoon et al. (2007) diagram showing Silicate strength versus the 6.2 µm

PAH equivalent width. The plot is separated into the di↵erent Spoon classes and objects

are colour coded by our GMM classification.
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need to know information on their origin.

For AGN, NMF 1
7 and NMF 2

7 are the most important and bear the physical

features we know to originate from AGN tori. We therefore adopt NMF 1
7 and

NMF 2
7 as contribution from AGN. For star formation, the third component is the

most important, however we argue that the fourth and fifth components are also

required as they contain the colder dust associated with obscured star formation.

This is especially important for objects like Arp 220 which are known to be pre-

dominantly powered by star formation but have less than average PAH emission

compared to other submillimeter galaxies (Pope et al., 2008). We do not include

NMF 6
7 and NMF 7

7 in our diagnostic. These components contribute to both AGN

and starbursts and we have interpreted them as arbitrary dust components that are

not specifically associated with star formation or AGN activity. Our diagnostic is

taken as the ratio of MIR luminosity from the following components:

starformation

AGN
=

LNMF3 + LNMF4 + LNMF6

LNMF1 + LNMF2
(3.10)

Comparison to other MIR diagnostics

We now show this diagnostic compared to other MIR diagnostic plots quantifying

star formation and AGN contribution.

Farrah et al. (2009) applied Bayesian inferencing and graph theory to a data

set of 102 mid-infrared spectra. By examining how position in the network was

related to other parameters (e.g.infrared luminosity, optical spectral type and black

hole mass) they concluded that the network depicted the evolutionary scheme of

ULIRGs, with di↵erent branches relating to Starburst+AGN and luminous AGN.

We now investigate how our NMF7 set relates to the same network by decom-

posing the Farrah et al. (2009) sample with our NMF components and colour-coding

the network by our NMF diagnostic. The connections are taken from Farrah et al.

(2009) and we use the same Cytoscape software ⇤ to produce the network. We note

that our network is not identical to that in Farrah et al. (2009) due to the random

seed starting position used by the spring-embedded algorithm in Cytoscape. The

two main branches seen in Farrah et al. (2009) are still seen in Figure 3.10, with

the lower and right hand branches corresponding to the Starburst+ AGN and Lu-

minous AGN branches respectively. Each galaxy is colour coded by our new NMF

⇤Available from http://cytoscape.org/.
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Figure 3.10: The network diagram along with interpretation from Farrah et al. (2009).

Starbursts dominate the left hand side of the network. As the AGN becomes more dom-

inant, galaxies move to the right and finally on to one of the two branches. The Nodes are

colour coded by our NMF diagnostic. Nodes in black are where spectra are not available.

diagnostic.

As can be seen in Figure 3.10, our NMF diagnostic is consistent with the inter-

pretation that star formation occurs on the left hand side of the network, with AGN

activity increasing as we move to the right. The right hand branch appears to be

AGN dominated, as was concluded in Farrah et al. (2009).

Our second comparison is with the diagnostic diagram introduced by Laurent

et al. (2000) and modified for Spitzer by Armus et al. (2007). The diagrams use

the integrated continuum flux from 14� 15µm, the integrated continuum flux from

5.3�5.5 and the 6.2µm PAH flux to indicate fractional contributions from AGN and

starbursts. Figure 3.11 shows the same diagnostic plot, plotted with objects from

the CASSIS database with measurements of the continuum and 6.2µm flux taken

from the CASSIS database. The points are colour coded by our NMF diagnostic.

Objects with a high NMF SF-AGN ratio are located in the top right while objects

with a low NMF SF-AGN ratio lie in the bottom left. This is consistent with the

simple linear mixing lines indicating AGN and star formation fraction seen in Armus

et al. (2007) and Petric et al. (2010).

Our third and fourth comparison is with diagnostic diagrams using emission
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Figure 3.11: The ratio of 15 to 5 µm continuum flux, against the 6.2µm PAH flux to 5 µm

continuum flux, as seen in Armus et al. (2007) The three vertices, labeled as AGN, H II,

and PDR, represent the positions of 3C 273, M17, and NGC 7023. The dot-dashed lines

indicate a 90%, 75%, and 50% fractional AGN contribution, while 100% AGN is defined

by the position of 3C 273. Points are colour coded by our NMF diagnostic.
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Figure 3.12: The [NeV]/[NeII] ratio vs the PAH 6.2 µm equivalent width. The points are

those objects in the CASSIS database that have a redshift and an estimate for the three

lines. The points are colour coded by our NMF diagnostic. We also show the 100%, 50%,

25%, and 10% AGN and starburst linear mixing contributions taken from Armus et al.

(2007)

.
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Figure 3.13: The [OIV]/[NeII] ratio vs the PAH 6.2 µm equivalent width. The points are

those objects in the CASSIS database that have a redshift and an estimate for the three

lines. The points are colour coded by our NMF diagnostic. We also show the 100%, 50%,

25%, and 10% AGN and starburst linear mixing contributions taken from Armus et al.

(2007)

lines. We plot all spectra in the CASSIS database that have a known redshift and

measurable emission line. Line measurements are made with the PAHfit software

(Smith et al., 2007). Figure 3.12 shows the ratio of Neon forbidden lines [NeV]

and [NeII] against the PAH 6.2 µm equivalent width, colour coded by the NMF

diagnostic. We indicate the fractional AGN and starburst contribution to the MIR

luminosity from the [NeV]/[NeII] (vertical) and 6.2 µm PAH EQW (horizontal)

assuming a simple linear mixing model. In each case, the 100%, 50%, 25%, and

10% levels are marked. The 100% level is set by the average detected values for

the [NeV]/[NeII] and PAH 6.2 µm equivalent width among AGN and starbursts

respectively, as discussed in Armus et al. (2007).

We see that our diagnostic is consistent with star formation dominated objects

being located in the bottom right of the plot, while objects with higher AGN con-

tribution are located in the top left.
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Figure 3.14: The Spoon et al. (2007) diagram showing Silicate strength versus the 6.2 µm

PAH equivalent width. The plot is separated into the di↵erent Spoon classes and objects

are colour coded by the NMF diagnostic.

The third diagnostic diagram uses the [OIV] and [NeII] ratio vs PAH 6.2 µm

equivalent width. As in Figure 3.12, we colour code the points by NMF diagnostic

and indicate the fractional AGN and starburst contributions as discussed in Armus

et al. (2007). Our plot can be seen in Figure 3.13. AGN dominated objects lie the

top left, star formation dominated objects in the bottom right, which is consistent

with the interpretation of Armus et al. (2007). Our final comparison is with Spoon

et al. (2007) diagram, classifying ULIRGs via the strength of their 9.7µm silicate

feature and 6.2 µm equivalent width. Figure 3.14 shows 89 ULIRGs in the Spoon

et al. (2007) diagram, colour coded by our NMF diagnostic. Our NMF diagnostic

suggests AGN dominated objects are on the horizontal branch, while objects on the

diagonal branch appear to have significant activity from star formation and AGN.

Objects dominated by star formation lie at the extreme right of the two branches.

Our diagnostic is consistent with the interpretation of Spoon et al. (2007).

We have shown that our diagnostic for determining the AGN/star formation

ratio is consistent with MIR diagnostic diagrams already in use. Our diagnostic
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however has the advantage that it uses a far greater wavelength range than current

diagnostics and does not rely on specific line measurements. By using 5 of the

7 components in NMF7, our diagnostic is also flexible enough to account for the

di↵erence in spectra amongst star formation or AGN dominated objects.

3.6 Conclusions

We have carried out the first empirical attempt at learning the fundamental MIR

spectral components of galaxies via the multivariate analysis technique, NMF. We

have chosen NMF as the most appropriate matrix factorisation technique for our

problem as the non negative constraints required by the algorithm, more closely

resembles the physical process of emission in the MIR than techniques used in pre-

vious studies (Wang et al., 2011; Hurley et al., 2012). The NMF algorithm has been

applied to 729 galaxy spectra, taken from the CASSIS database (Lebouteiller et al.,

2011) with spectral redshifts ranging from (0.01 < z < 0.2).

We have investigated the number of components needed to accurately recon-

struct spectra by evaluating the Bayesian evidence with the nested sampling routine,

MULITNEST. The Bayes factor suggests that the number of components exceeds

14 but the gain in increasing the number of components decreases dramatically

from seven components onwards. An NMF set with a large number of components

may accurately reconstruct all spectra, but assigning physical interpretation to each

component becomes di�cult, limiting its practical utility.

We have therefore examined the simpler component sets NMF5-NMF10. We find

that despite an increase in the allowed number of components, many of the com-

ponents remain similar. For example, similar counterparts to components in NMF5

can be found in NMF6 and above, the sixth component in NMF6 can be found in

NMF7 and above and so on. Finding similar components, despite an increase in

flexibility, suggests these components are fundamental spectral components.

We find the components also have clear, physical interpretation. The first com-

ponent contains the forbidden fine structure lines associated with narrow line regions

and AGN as well as a hot dust continuum also typical of AGN tori. The second

common component shows silicate emission at 10 and 18 µm and is indicative of

the warm dust associated with both the inner wall of the AGN torus or narrow

line region clouds. The third component is a star formation component, containing
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all of the PAH and molecular hydrogen emission lines, found near PDRs. As the

number of components is increased, the colder dust slope is removed to the sixth

and seventh components. We interpret this as the separation of unobscured star-

forming component (or PDR) from an obscured star-forming component showing

colder dust.

Re-running the NMF algorithm on objects dominated by star formation, we

show that the PAH emission begins to separate out into two components, which

show similar features to the two di↵erent PDR components found in Berné et al.

(2007).

We have shown that a simpler NMF set with seven components is capable of

reproducing the general continuum shape for variety of extragalactic spectra seen

in the MIR, though the components struggle with the variation in emission lines.

By examining the contributions each component makes to well known objects and

previously classified samples, we find di↵erent types of objects lie in di↵erent regions

of ’NMF space’.

Using Gaussian Mixtures modelling, we provide a classification scheme that uses

all seven components to separate objects into five di↵erent clusters: A Seyfert one

cluster, Seyfert two cluster, starburst cluster, dusty and obscured cluster and a type

1.5 Seyfert cluster. Our classification outperforms the Spoon diagram in separating

out Seyfert one and two like objects. Unlike the SPoon classification, ours use the

whole MIR region, allowing objects without the 9.7µm silicate feature and 6.2 µm

equivalent width to be classified. Our GMM based classification can also provide an

estimate of the probability of finding a particular galaxy in one of the five clusters.

We also use five of the components to create a star formation/AGN diagnostic

which performs well against current MIR diagnostic diagrams. Our NMF based

diagnostic has the advantage of considering a greater wavelength range, and can

therefore be used for objects where specific emission features have not been observed,

or for where spectra are too noisy.

Our NMF components provide fundamental, physical components which are ideal

for separating out di↵erent types of objects and investigating the power associated

with AGN and star formation. They are linked to the actual physical environments

such as AGN and star formation unlike templates based on specific objects (e.g.

M82) or average templates based on a sample of galaxies. We believe our NMF
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set could be used to predict useful measures such as star formation rate and AGN

luminosity and will investigate this in a future paper. We also believe our NMF

set is ideal for more galaxy evolution based investigations such as decomposing

the MIR luminosity function into contribution from AGN and and star formation.

Our NMF components and code for classification are made available at https:

//github.com/pdh21/NMF_software/ and on the arxiv.
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3.7 (Appendix A) Non-linear matrix factorisation techniques

ICA, PCA and NMF are linear models and cannot e�ciently model non-linearities

such as dust extinction. Over the last decade, non-linear matrix factorisation tech-

niques have been developed to overcome certain non-linear situations. All of these

nonlinear based techniques use kernels to map data with nonlinear structure into a

kernel feature space, where the structure becomes linear. Techniques such as PCA

or NMF can then be performed in the kernel feature space to recover the structure.

These types of techniques are suited to problems where the non-linearity is of para-

metric form, e.g. points distributed along a circle. Dust extinction is exponential

relationship unsuited to this type of technique (Binbin Pan, private communication).

3.8 (Appendix B) NMF30 and Extinction simulation

To explore whether the extinction can cause problems with our NMF analysis, we

simulate extinction via equation 3.3 described in section 3.4.

Our simulation is divided into two parts. The first part assumes galaxy spectra

are a linear combination as described in equation 3.2, while the second assumes

equation 3.3 is valid. To simulate the spectra, we use NMF set NMF5 and linearly

combine them with weights randomly sampled from a distribution based on those

found in the real sample. We do this 500 times to create 500 unique galaxy spectra.

The second part of our simulation involves adding extinction to the simulated

spectra as described in equation 3.3 in section 3.4. ⌧(�) is defined by the Galactic

Centre extinction law of Chiar & Tielens (2006).

We then carry out the NMF algorithm on both the unextincted and extincted

spectra. We run the algorithm for NMF5-NMF20 and use the simplified model

selection measures: the Akaike Information Criterion (AIC;Akaike (1974)) and the

Bayesian Information Criterion (BIC; Schwarz (1978)), defined as follows:

AIC ⌘ �2 ln Lmax + 2k +
2k(k + 1)

N � k � 1
(3.11)
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Figure 3.15: The 30 components of NMF set NMF30.
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Figure 3.16: The AIC and BIC for the non linear simulations. Both the BIC and AIC for

spectra without extinction indicate 5 components as expected. The set with extinction

requires around 15-20.

BIC ⌘ �2 ln Lmax + k ln N (3.12)

Lmax is the maximum likelihood solution, N is the number of datapoints and k

is the number of parameters. A minimum value for the AIC and BIC correspond

to the optimum model. Figure 3.16 shows both the BIC and AIC for both sets

of simulated spectra. As expected, the BIC and AIC indicate the spectra without

extinction can be adequately described by the NMF set with 5 components. For

spectra with extinction, the BIC and AIC do not level of until NMF15-NMF20.

This suggests that extinction could be a factor in driving our linear methods to

more templates than might be required by underlying physical conditions.

3.9 (Appendix C) NMF7 fits to galaxy spectra
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Figure 3.17: NMF7 fits to the Blue Compact Dwarf: KUG 1013+381, Seyfert type 1

galaxies: Markarian 231 and PG1211+143, Seyfert Type 2 galaxy: Markarian 273, and

starburst galaxies: NGC3310 and NGC3256. Each spectrum is plotted as a black solid

line and the NMF fit as black dashed line. The contribution from each component is also

shown, with the same colour coding as in Figure 3.6. The residuals (data-fit) are plotted

below each fit.
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Figure 3.18: Four additional example NMF7 fits. LINER: 3C270, submillimeter galaxy:

SMG GN26, quasar: PG0804+761, and ULIRG:IRAS 10378+1108 . Each spectrum is

plotted as a black solid line and the NMF fit as black dashed line. The contribution from

each component is also shown, with the same colour coding as in Figure 3.6
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Figure 3.19: NMF7 fits to the Average templates from Hernán-Caballero & Hatziminao-

glou (2011) (Information on sample can be found in Table 3.3). Each spectrum is plotted

as a black solid line and the NMF fit as black dashed line. The contribution from each

component is also shown, with the same colour coding as in Figure 3.6.
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Chapter 4

Herschel-SPIRE-Fourier

Transform Spectroscopy of the

nearby spiral galaxy IC342

D. Rigopoulou, P.D. Hurley, B.M.Swinyard, J. Virdee, K.V.Croxall, R.H.B.Hopwood,

T.Lim, G.E.Magdis, C.P.Pearson, E. Pellegrini, E.Polehampton, J-D. Smith

My primary contribution to this paper was the radiative transfer modelling of the

CO SLED, described in Sections 4.4 and 4.5. I carried out all modelling of the CO

SLED with my combined setup of Multinest (Feroz & Hobson, 2008) and RADEX

(van der Tak et al., 2007). The associated figures in the two sections were also

created by me. I also made significant contributions to both the interpretation and

text in these sections. My other contributions include suggestions and corrections

to the remaining text throughout the paper.

4.1 Abstract

We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral

and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The

spectral range a↵orded by SPIRE, 196-671 µm, allows us to access a number of

12CO lines from J=4–3 to J=13–12 with the highest J transitions observed for the

first time. In addition we present measurements of 13CO, [CI] and [NII]. We use

a radiative transfer code coupled with Bayesian likelihood analysis to model and

constrain the temperature, density and column density of the gas. We find two
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12CO components, one at 35 K and one at 400 K with CO column densities of

6.3⇥1017 cm�2 and 0.4⇥1017 cm�2 and CO gas masses of 1.26⇥107 M� and 0.15⇥107

M�, for the cold and warm components, respectively. The inclusion of the high-J

12CO line observations, indicate the existence of a much warmer gas component

(⇠400 K) confirming earlier findings from H2 rotational line analysis from ISO and

Spitzer. The mass of the warm gas is 10% of the cold gas, but it likely dominates

the CO luminosity. In addition, we detect strong emission from [NII] 205 µm and

the 3P1 !3 P0 and 3P2 !3 P1 [CI] lines at 370 and 608 µm, respectively. The

measured 12CO line ratios can be explained by Photon-dominated region (PDR)

models although additional heating by e.g. cosmic rays cannot be excluded. The

measured [CI] line ratio together with the derived [C] column density of 2.1⇥1017

cm�2 and the fact that [CI] is weaker than CO emission in IC342 suggests that

[CI] likely arises in a thin layer on the outside of the CO emitting molecular clouds

consistent with PDRs playing an important role.

4.2 Introduction

Far-infrared fine-structure lines of abundant elements such as carbon, oxygen, ni-

trogen and sulphur either in their neutral or ionised state contribute significantly to

the gas cooling of the interstellar medium (ISM, (e.g. Hollenbach & Tielens, 1999)).

Far-infrared lines of ionised atoms are useful probes of HII regions while the main

cooling of the neutral ISM is carried out by [CII] and [OI] (e.g. Malhotra et al.,

2001). In molecular gas, cooling is due to [CI] and the carbon monoxide molecule

CO. As potential tracers of the gas cooling, submillimeter [CI] and CO lines are

expected to provide information on the gas heating rate, which is dominated by the

incident FUV radiation, mainly due to massive and young stars.

Neutral atomic carbon can be found in all types of neutral clouds from di↵use

to molecular. The ratio of the two ground state fine-structure lines is a sensitive

tracer of the total gas pressure (e.g. Gerin & Phillips, 2000)). Emission from the

two ground state fine-structure lines of atomic carbon is seen by COBE throughout

the Milky Way and makes a significant contribution to the gas cooling. Despite the

high abundance of atomic carbon [CI] in cool interstellar media and the importance

in controlling the overall thermal budget only a handful of measurements of the

ground state fine structure lines at 370 and 608 µm have been achieved from the
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ground. The first detection was reported by Buettgenbach et al. (1992) in IC342.

A handful of galaxies have been detected since, including NGC 253 (Harrison et al.,

1995), M82 (Stutzki et al., 1997), M83 (Petitpas & Wilson, 1998), and M33 (Wilson,

1997).

The molecular CO transitions have been extensively studied from the ground.

However, the diagnostic power of the CO rotational transitions has not been fully

exploited since only the lowest transitions are easily accessible with ground-based

telescopes. In recent years higher rotational transitions have been observed in a

handful of nearby (mostly) starburst galaxies (e.g. Papadopoulos et al., 2010). The

so called “CO Spectral Line Energy Distribution (SLED)” is used to probe the

physical properties of the molecular gas such as temperature and column density.

IC342 is a nearby (D=1.8 Mpc, 1”=8.7pc, McCall 1989) spiral galaxy. Because

of its proximity, face-on grand spiral appearance, enhanced star-forming

activity in the central region (e.g. Becklin et al., 1980) and strong mil-

limetre and submillimetre emission IC342 has been a popular target for

infrared and submillimetre observations. With a far-infrared luminosity

1.25⇥1010L� (Dale et al., 2012), IC342 has been an early target of many

investigations of molecular gas and/or atomic far-infrared fine structure

lines. [CI] emission has already been detected from the ground (Buettgenbach et al.,

1992) while a number of CO transitions have also been observed (e.g. Bayet et al.,

2004, 2006) allowing some constraints to be placed on the properties of the neutral

and molecular ISM.

In this paper we present new spectroscopic observations of IC342 obtained using

the SPIRE instrument on the Herschel Space Observatory (Pilbratt et al., 2010)

covering the 194 to 671 µm regime. This spectral region is particularly important

as it allow us to access a number of high-J CO line transitions and consequently in-

vestigate the properties of the molecular gas. In particular, the current observations

allow us to probe the peak of the CO SLED and enable modeling of the physical

properties of the molecular ISM. In addition the detection of the two ground state

[CI] and [NII] lines allow us to investigate the conditions in the PDRs. The current

observations demonstrate the power of far-infrared and submillimetre spectroscopy

to probe the di↵use and ionised media in external galaxies. The imminent avail-

ability of the Atacama Large Millimetre Array (ALMA) will enable this kind of
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science in distant galaxies. With a moderate FIR luminosity IC342 is representative

of a typical high-redshift galaxy and can serve as a template when designing ALMA

observations.

4.3 Observations, Data Reduction and Results

The present observations were taken as part of Herschel’s Performance Verification

(PV) phase using SPIRE (Gri�n et al., 2010) as an imaging Fourier-Transform

Spectrometer (FTS). The SPIRE astronomical calibration methods and accuracy

have been presented in Swinyard et al. (2010). SPIRE-FTS was used in the high

spectral resolution mode, sampling across a field of view of 2.6’ in diameter. The

pointing of the observation was centered at R.A.=56.70322 deg. and Dec=68.09614

deg and the total on-source integration time was 9240 seconds. The SPIRE-FTS

measures the Fourier transform of the spectrum of a source using two detector

arrays: SSW covering the 194-313 µm and SLW covering 303–671 µm wavelength

bands simultaneously. The FWHM beamwidths of the SSW and SLW arrays vary

from 17” at 194 µm to 42” at 671 µm, respectively. The size of the beams varies

within this range in a complex fashion due to the nature of the SPIRE detectors

(Swinyard et al., 2010; Wu et al., 2013).

The FTS observations consisted of 132 seconds repetitions using single pointing

mode, sparse spatial sampling and high spectral resolution (FWHM⇠0.048cm?1).

The data were processed using the standard pipeline described in the Observers

Manual (SPIRE Observers Manual 2012) and Fulton et al. (2008).

The interferograms were cosmic ray, temperature and time-domain phase correc-

ted. The repetitions were then averaged and Fourier transformed into the spectral

domain. By taking the inverse transform of the observed interferogram we can re-

store the original source spectrum. Although IC342 is a grand-design spiral, it has

been found that a significant fraction of the CO J=1 ! 0 and J=2 !1 emission

arises from a⇡20”⇥13” central region (e.g. Eckart et al., 1990) which is well matched

to the size of the FTS SSW and SLW beams.

The (uncorrected) FTS spectrum of IC342 is shown in Figure 4.1 in red. Blue as-

terisks indicate the peak fluxes taken from the SPIRE photometric images (these are

quoted in fluxes/beam, (Dale et al., 2012)). The prominent mismatch between SLW

and SSW is the result of two e↵ects: the variations of the FTS spectral response with
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Figure 4.1: The uncorrected spectrum (in red) showing a mismatch between SSW and

SLW due to the di↵erence in beam sizes and source extent. The corrected spectrum

(assuming a 19 arcsec FWHM Gaussian distribution for the source size is shown in black.

Blue asterisks denote peak fluxes (flux/beam) taken from the SPIRE images (priv. comm.

R. Kennicutt)

frequency and, of the way the beam couples to sources of varying extent. The first

e↵ect has been modeled with a combination of Hermite-Gauss (HG) polynomials,

which follow the form of the expected native feedhorn modes (Ferlet et al., in prep.).

The e�ciency with which the beam couples to a given source has been estimated us-

ing observations of Neptune and Uranus to establish the point source response, and

a model of the flux from the Herschel telescope itself to establish the fully extended

response. IC342 fills the SSW beam (low frequency) but can be considered a point

source in the SLW beam (high frequency). Following the method described above

and detailed in Fletcher et al. (2012) and Wu et al. (2013) we infer the FWHM size

of the source to be ⇠19 arcsec. The corrected FTS spectrum (corresponding to a

19” FWHM core) is shown in Figure 4.1 (black).

We measured line fluxes from the calibrated unapodized spectrum using our

own IDL-based routines. In brief, from each of the SSW (SLW) spectrum we first

fit the underlying continuum which must be removed before fitting the lines. After

subtracting the continuum fit each line is fitted separately using a sinc function with

central frequency, line width, amplitude and residual value (in most cases this equals

zero since we have removed the continuum) as free parameters. We also measured

fluxes using another IDL based line fitting program called SLIDE developed by A.

Rykala (priv. comm.). The integrated line fluxes derived from the two independent
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Figure 4.2: The FTS spectrum of IC342 with the atomic, ionic and molecular lines iden-

tified.

methods agree very well. We note that the errors reported in Table 4.1 are 1�

uncertainties estimated from the fitting method. Figure 4.2 shows the atomic, ionic

and molecular lines identified in the IC342 FTS spectrum.

4.4 Modeling the CO lines

The properties of the molecular gas in IC342 have been studied through low-J (J<6)

CO emission lines by, amongst others, Eckart et al. (1990), Harris et al. (1991) and

(Bayet et al., 2006). Extensive modeling of the low-J CO lines by Bayet et al. (2006)

revealed gas densities of the order of a few ⇥103 cm�3 and gas (kinetic) temperatures

around 40 K, for the low density, low temperature component. Through spatially

resolved kinematics of the CO(6–5) line, Harris et al. (1991) suggest that the warm

gas is not originating from the same location as the CO low-J lines. With the

SPIRE-FTS we can now sample a large part of the 12CO-ladder from J=4–3 to

J=13-12. These high-J CO lines, inaccessible from the ground, supplemented with

detections of lower-J CO transitions allow us to carry out a full investigation of the

physical conditions of the molecular gas in IC342.
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Table 4.1: Measured fluxes of detected emission lines

Species Transition Wavelength F� F⌫d�

(rest, µm) (10 �17 W m�2) (103 Jy km s�1)

12CO J=4–3 650.245 40.15±0.811 26.38

12CO J=5–4 576.268 35.62±0.75 18.73

12CO J=6–5 433.556 31.23±0.69 13.68

12CO J=7–6 371.650 24.23±0.87 9.10

12CO J=8–7 325.225 19.27±0.82 6.33

12CO J=9–8 289.118 17.12±1.14 5.00

12CO J=10–9 260.238 12.52±0.73 3.30

12CO J=11–10 236.611 8.912±0.95 2.13

12CO J=12–11 216.925 6.342±0.82 1.39

12CO J=13–12 200.271 3.59±1.24 0.72

12CO J=1–0 2606.869 2.25±0.212 5.93

12CO J=2–1 1303.434 8.85±0.762 11.66

12CO J=3–2 868.956 22.51±1.192 19.77

13CO J=5-4 544.156 3.31±0.85 1.82

13CO J=6-5 453.494 1.18±0.40 0.54

[NII] 3P1 !3P0 205.226 117.65±8.2 54.64

[CI] 3P1 !3P0 370.466 21.70±0.8 8.124

[CI] 3P2 !3P1 608.812 9.04±0.9 5.57
1Quoted errors represent 1� errors from the line fitting procedure and do not include

(e.g.) instrumental uncertainties.

2Values from Bayet et al (2006) and references therein, data taken with beamsize 21.9”.
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For the present investigation of the physical conditions of the molecular gas we

used the non-LTE radiative transfer code RADEX (van der Tak et al., 2007) to com-

pute CO intensities (from J=1–0 to J=13–12) for a large grid of temperatures Tkin,

density n(H2), column density (NCO) and source size. We use the uniform expanding

sphere approximation and a 2.73 K blackbody to represent the cosmic microwave

background (CMB). As discussed by Kamenetzky et al. (2012) the choice of back-

ground does not a↵ect the resulting kinetic temperature of the model component(s).

The code starts o↵ with the optically thin case and generates level populations. The

process continues until a stable self-consistent solution is found where the optical

depth of the lines remain stable from one iteration to the next. Using the code we

have searched a large grid of parameters in Tkin: 10 – 3000 K, n(H2) : 102 – 108

cm�3, NCO : 1015–1024 cm�2 and, source size : 0–1000 arcsec2. During the search

procedure we reject those models where: (a) the optical depth of the low-J lines

modeled is outside the range -0.1 < ⌧ <100 (e.g. van der Tak et al., 2007; Kamen-

etzky et al., 2012) and (b) Mgas becomes larger than Mdyn, the dynamical mass of

the galaxy. We note that Mgas is defined as:

Mgas = ⌦D2
ANCO ⇥

µmH2

xCO
(4.1)

where, xCO=3⇥10�4 is the relative CO/H2 abundance, DA is the angular distance

diameter in cm2, ⌦ is the angular source size and ⌦⇥ D2
A is the source size. The

mean molecular weight, µ =1.4, is in units of mH2 . The source size remains the

same for all transitions. We finally assume a line width of 54 km s�1 (Bayet et al.,

2006).

The parameter space is searched using the nested sampling routine Multinest

(Feroz & Hobson, 2008). In brief, Multinest is a Bayesian inference tool for model

selection and parameter estimation. It is based on the Monte Carlo technique of

nested sampling (Skilling, 2004), which can evaluate the Bayesian evidence (useful

for model selection) and sample from posterior distributions with (often an unknown

number of) multiple modes and/or degeneracies between parameters. The posterior

distribution Pr(M |x) gives the probability of the model parameters (M) given a set

of measurements x. Using Bayes theorem, the posterior can be expressed as:

Pr(M |x) =
Pr(M)Pr(x|M)

Pr(x)
(4.2)
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Table 4.2: Parameters of the single component model

Log10Tkin Log10n(H2) Log10NCO Log10Mgas ⌦

K cm�3 cm�2 M� arcsec

mean 2.70 2.5 18.5 7.1 227

std dev 0.02 0.2 0.2 0.2 31

ML 2.69 2.7 18.2 6.8 224

where Pr(M) is the prior probability that a set of parameters is either physical or

unphysical and is set to the grid ranges described above. Pr(M |x) is the likelihood of

reproducing the observational measurements with a RADEX SLED, given a specific

set of model parameters. We use the standard Gaussian likelihood measure to

calculate the likelihood. Pr(x) is the normalisation parameter or Bayesian Evidence

which is used for model selection. In order to find the posterior distribution for one

parameter, e.g. Tkin, we need to marginalise over all other parameters to find the

probability P(Tkin).

4.5 Results and Discussion

We use RADEX and the nested sampling routine Multinest, described above, to

model the CO line intensities. All the CO lines reported in Table 4.1 are used

in the analysis supplemented with low-J CO lines reported in the literature. For

the total uncertainty, we take the 1� statistical uncertainty in the total integrated

intensity from the line fitting procedure and add 10% calibration error in quadrature.

We first consider a one-component model (assuming a uniform temperature for all

transitions). The highest likelihood model is shown in Figure 4.3. The resulting

‘posterior’ distributions for each parameter marginalised over the other parameters

used in the model are shown in Figure 4.4. In Table 4.2 we report the mean, standard

deviation and maximum likelihood (ML) values for the Tkin, n(H2), N(CO) and ⌦.

The deviation of the low J (J3) transitions from our highest likelihood model

indicates the presence of a second (possibly colder) gas component primarily re-

sponsible for the low-J lines. We thus consider a two-component model to fit the

CO-SLED following the same procedure as before. In our two component model

we allow the three RADEX parameters Tkin, n(H2) and NCO to vary independ-

ently for both components, giving us 6 free parameters to search over. We restrict
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Figure 4.3: The highest likelihood model (red line) is compared to our data (blue points)

and associated errors.
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Figure 4.4: Maximum Likelihood distributions of kinetic temperature, H2 density, CO

column density, Mgas and ⌦ source extent. The dotted lines represents the mean distri-

butions of the values.
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the temperatures of the two components to be in the range 10< Tk <200K and

200< Tk <3000, thus, defining a warm and cold component. We fix the source size

to the size of the FTS beam (2140arcsec2) as the cold gas is likely to fill the entire

beam and, place an upper limit to the dynamical mass of the combined gas mass

from both components.

Unlike previous studies that model the CO-SLED of galaxies (e.g. Kamenetzky

et al., 2012) we do not restrict the components to any particular subset of CO lines.

That is, both components are combined to give the overall line luminosity. Since

there are few constraints on the actual source size of the emitting region from the

di↵erent CO lines, we also fix the source size of both components to the size of the

FTS beam (2140arcsec2). In order to ensure that our results are not significantly

biased by fixing the source size we have repeated our models allowing the source

size to vary. Such runs have indicated that there exist a degeneracy between source

size and column density which is rather di�cult to break. As a result we decided to

fix the source size so that we can have an independent estimate for the CO column

density of the two components without concerns about possible degenerate values.

In Figure 4.5 we show the highest likelihood two-component model that provides

the best fit to the available 12CO data. The low-J lines originate in the cold gas

component (40 K) while the warmer gas component (437 K) is responsible for the

higher-J lines. The marginalised plots for each parameter with the mean likelihood

shown as dotted line are presented in Figure 4.6. In Table 4.3 we report the detailed

values of the physical characteristics of the warm and cold gas.

In Figure 4.5 we show the 2-d marginalised contour plots for the three main

parameters, Tkin, ⌘H2 and NCO. The plots (1 and 2� contours) show the range of

parameters for the two temperature components (blue contours for the cold and

red contours for the warm component). The range of temperatures for the cold

component is much wider than for the warm component. Two reasons are likely

contributing to this e↵ect. First, Multinest is very sensitive to errors (of the CO line

fluxes) and the error reported for the CO(1–0) transition is driving the fit. Second,

for the two component model, we have fixed the apparent source size to the size of

the FTS beam. It is very likely that the cold gas may originate in a more spatially

extended area than gas at warmer temperatures. The equivalent parameters (Tkin,

versus ⌘H2 and NCO) for the warm component show a much narrower variation.
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Figure 4.5: Maximum Likelihood Analysis of the 12CO Spectral Energy Distribution.

The CO measurements and associated error bars are shown as blue filled circles. The blue

line represents the cold component while the red line represents the warm component.

The total of the two components is the green line.
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Figure 4.6: Posterior distributions of kinetic temperature, H2 density, CO column density

and Mgas for the cold (left panel) and the warm (right panel) components. The dotted

line represents the mean distributions of the values.
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Figure 4.7: One and two sigma contour levels for the three parameters ⌘H2 , NCO and Tkin

for the cold (blue) and the warm (red) component.

Following equation 4.1, in Table 4.3 we report the mean, standard deviation and

MLM values for the gas mass for the each of the two components considered. For the

the warm component the MLM warm gas mass value is 1.9⇥106 M� with a similar

mean value of 1.9⇥106 M�. Rigopoulou et al. (2002) reported the detection of mid-

infrared rotational H2 transitions using ISO. Assuming an ortho-to-para ratio of 3 the

S(1)–S(2) ratio can be used to estimate the temperature of the warm gas. For IC342

they report a warm gas temperature of 365 K which is consistent with our value of

437 K (taking into account di↵erences in the beam sizes and calibration). Based on

their sample, Rigopoulou et al. (2002) find that the warm gas mass (measured from

H2) accounts for 1 to 10% of the total gas mass (measured from CO) in starburst

galaxies which is consistent with our findings.

The ISM in IC342 has been studied in the past using ground based measurements

of (primarily low-J) CO transitions. Using LVG calculations Eckart et al. (1990)

suggested Tkin > 20 K, Israel & Baas (2003) reported Tkin = 100 –150 K while

Bayet et al. (2006) fit their data with a model of 40 K. All three models predict

densities n(H2) of the order of 2–3 ⇥103 cm�3. The Tkin value we derive for the cold

component is in good agreement with the values reported by Bayet et al. (2006) and
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Table 4.3: Parameters of two-component model

Cold Component

Log10Tkin Log10n(H2) Log10NCO Log10Mgas

K cm�3 ⇥1017 cm�2 M�

mean 1.6 2.8 16.6 6.2

std dev 0.4 0.7 0.7 0.7

ML 1.2 2.1 17.7 7.3

Warm Component

mean 2.64 3.32 16.68 6.28

std dev 0.03 0.14 0.13 0.13

ML 2.63 3.32 16.69 6.23

Eckart et al. (1990) but lower than the value reported by Israel & Baas (2003). Our

value also agrees with the T⇠53±1 K and the Twarm⇠443±130 K derived

by Mauersberger et al. (2003) for the cold and warm gas components

based on NH3 observations. The maximum likelihood value for the H2 density

of the cold temperature component predicted by our model is, however, lower than

those reported in the literature. This is perhaps not surprising given that the cold

gas component is in fact expected to have a lower density and a higher Mgas. The

warm gas component however, has a higher n(H2) density, and a lower column

density NCO. Based on the the lowest J 13CO lines, Meier et al. (2000); Meier &

Turner (2005) inferred gas temperatures of 10–20 K and densities of ⇡103.5cm�3.

It is thus likely that there are multiple components to the molecular gas. Denser

gas with n(H2) >106 is also present in IC342 as traced through CS and HC3N lines

(Aladro et al., 2011). This dense gas is unlikely to contribute dominantly to the

observed CO emission, instead it is found in the central core of the molecular clouds

in IC342 where evidently (e.g. Mart́ın et al., 2009) is it used to sustain high star

formation e�ciency.

4.6 The Origin of the Warm CO molecular Gas

A number of mechanisms can heat the CO molecular gas, including UV starlight in

photodissociation regions (PDRs), X-ray heated gas (possibly associated with the

presence of an AGN) in X-ray dominated regions (XDRs), mechanical heating (e.g.
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turbulence dissipation), powerful shocks and heating by cosmic rays. The absence of

a strong AGN in IC342 together with the shape of the CO SLED can probably rule

out XDRs as the origin of the warm CO emission. In the case of XDR dominance

the CO SLED becomes flat at higher-J CO transitions (e.g. Mrk 231,van der Werf

et al. (2010)) which is clearly not the case in IC342.

A cosmic-ray ionisation rate of ⇠5⇥10�17 s�1 (e.g. de Jong et al., 1980) is suf-

ficient to heat the gas to about ⇠10 K. For an n(H2) density of 6⇥102 cm�3, CO

column density of 3.16⇥1017 cm�3 and an excitation temperature of 35 K the cosmic-

ray ionisation rate is ⇡ 10�15 s�1 which is about 20 times higher compared to the

standard rate. As Eckart et al. (1990) argue this is unlikely to be the case, espe-

cially in the nuclear region of IC342 as it would require a very strong 5 GHz non

thermal radio component which is not observed. Therefore, although cosmic rays

may contribute towards heating low temperature ⇠10 K gas it is unlikely to be the

dominant mechanism of CO heating.

Recent/ongoing star-forming activity in IC342 (e.g. Boker et al., 1997; Meier

& Turner, 2005) has resulted in an increased number of OB stars and therefore,

in a more intense UV radiation field in this galaxy. The UV radiation heats up

the surfaces of the molecular clouds by means of photoelectric heating and heating

through far-UV pumping of H2 (e.g. Tielens & Hollenbach, 1985). PDRs form in

the outer layer of the clouds which are responsible for CO emission from warm/hot

gas. Using the grid of PDR models presented in Kaufman et al. (1999, 2006) we

investigate predictions for the various 12CO lines. The rest of this section deals

with models of the 12CO lines although for simplicity we refer to them as CO lines.

The PDR models cover a wide range in H2 density (10–107 cm�3) and G0, the

incident UV flux. The parameter G0, called the Habing interstellar radiation field,

is defined as FUV flux =1.3 ⇥10�4 ⇥ G0 erg cm�2 s�1 sr�1. The FUV flux is

related to the FIR flux via the relation FIR flux=2⇥ FUV. We note, however, that

in our investigations of the PDR models we do not seek to determine the parameters

that best fit the observed line ratios. Instead, in addition to the relative CO line

intensities, we use the physical conditions determined from our LVG modeling as

priors for PDR models. In our search we do not only consider the ML (or mean)

value, instead, we make use of our likelihood analysis and take into account a larger

parameter grid (see Figure 4.5). With the above caveats in mind, we have used the
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Figure 4.8: CO line ratios as a function of incident FUV flux (G0 and and density ⌘ for the PDR

models. The vertical red dotted lines indicate the range of values for ⌘ predicted by the RADEX

models while the horizontal lines indicate the range of G0 values required to match the observed

CO line ratios.
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online PDR Toolbox program ⇤ (Kaufman et al., 2006; Pound & Wolfire, 2008) to

investigate the range of PDR parameters that would best match our CO line ratios.

The PDR Toolbox program calculates the best values of G0 and cloud density ⌘ for

a given set of spectral line intensities. A description of the PDR models used for

these tools can be found in Kaufman et al. (1999). For a given set of gas phase

elemental abundances and grain properties, each model is described by a constant

H nucleus density, n, and incident far-ultraviolet intensity G0. The models solve for

the equilibrium chemistry, thermal balance, and radiation transfer through a PDR

layer. We used the line intensities quoted in Table 4.1 supplemented by those from

the literature. The FTS lines have been measured assuming a FWHM of 19
00

as

discussed in Section 4.3. Figure 4.8 shows line ratios for various CO transitions.

Assuming the range of n(H2) values determined from the likelihood analysis (103–

104 cm�3) G0 should be in the range103 <G0 <105 to match the observed CO

line ratios. In fact the best-fit PDR models predicts n(H2) = 5.62⇥103 cm�3 and

G0=3.16⇥105. Although at this stage a second mechanism (e.g. cosmic ray heating

of the coldest gas) contributing to the CO lines cannot be excluded it is very likely

that PDRs play an important, perhaps dominant, mechanism for the CO emission

we have detected. Our measured line ratios can be matched with PDR models with

n(H2) very close to the values found by the maximum likelihood analysis. Based on

the models presented we conclude that a significant fraction of the CO emission in

IC342 originates in PDRs.

4.7 Far Infrared Atomic Fine Structure Lines

As discussed in section 4.3 (and presented in Table 4.1) we detect three fine structure

lines, the two [CI] 370 and 608 µm and [NII] 205 µm lines. Prior to Herschel

only a handful of [CI] extragalactic measurements had been carried out from the

ground. The [NII] 205 µm line emission, in particular, is very di�cult to observe

from the ground because it lies near the long-wavelength cuto↵ for stressed Ga:Ge

photoconductors, strongly limiting the sensitivity of spectrometers in this regime.

Oberst et al. (2006) reported the detection of [NII] 205 µm towards the Carina

galactic star forming region. With SPIRE-FTS we now have additional [NII] 205

µm measurements in M82 (Kamenetzky et al., 2012; Panuzzo et al., 2010), Arp220

⇤http://dustem.astro.umd.edu/pdrt/
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(Rangwala et al., 2011).

The ratio of the [CI] lines can be used to estimate the physical properties of

the atomic [CI] gas that arises predominantly in the CO dissociating regions. For

IC342 we derive a I([CI]370µm)/I([CI]608µm) ratio of 1.45±0.3 which is close to

the value of 1.62 ±0.2 using the measurements reported for M82 in Kamenetzky

et al. (2012) but higher than the value of 1.15±0.3 derived for Arp220 by Rangwala

et al. (2011). We use the escape probability radiative transfer models presented

in Stutzki et al. (1997) and their Figure 2, to infer the [CI] column density N[CI],

Tkin and hydrogen column density n(H2). When expressed in line temperature units

(K km s�1) the [CI](J=2!1)/[CI](J=1!0) ratio for IC342 becomes 0.54. For this

observed line ratio, a brightness temperature of ⇡ 15 K and assuming a line width

of 54 km s�1 we estimate a column density N(C)=2.1⇥1017 cm�2 and H2 density of

5.4⇥103 cm�3. These values are indicative of an excitation temperature 40<Tkin<60

K. The range of the inferred [CI] excitation temperature is slightly higher than the

one derived from cold (low-J) CO (mean value of 36 K) although well within the

uncertainties involved. It is, thus likely that that [CI] may originate in the same

(cold) molecular gas. The column density ratio NC/NCO is 0.66 a value similar to

that derived for M82 (e.g. Stutzki et al., 1997) but lower than the value of 1 reported

for Arp 220 by Rangwala et al. (2011). It has been suggested (e.g.Wilson (1997)

but see also discussion in Rangwala et al. (2011)) that [CI] emission is stronger for

more luminous systems or those harboring intense starbursts or AGN.

Israel (2005) examined the [CI](2!1)/12CO(4� 3) and [CI](2!1)/13CO(2� 1)

line ratios for a sample of quiescent, starburst and active galaxies. He found that

in the majority of galaxies the [CI](2!1)/13CO(2� 1) ratio is �2. Lower ratios are

expected in high-UV environments with high column densities where the majority of

neutral C will be locked up in CO. For IC342 the [CI](2!1)/13CO(2�1) value of 1.2

(Israel, 2005) is smaller than the values found for the majority of strong starbursts

or luminous systems. The line ratio together with the derived C column density of

2.1⇥1017 cm�2 and the fact that [CI] is weaker than CO emission in IC342 could

be be indicative of [CI] arising in a thin layer on the outside of the CO emitting

molecular clouds consistent with PDRs playing an important role.

The [NII]205 µm and [CII]158 µm lines have nearly identical critical densities for

excitation in ionised gas regions. Their line ratio is thus insensitive to the hardness
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of the stellar radiation field (since the photon energies required to ionize each species

to the next ionisation states are similar) and is only a function of the [NII]205/[CII]

abundance ratio. The ratio [NII]/[CII] can, thus, give us an estimate of the fraction

of [CII] arising in ionised gas for a given value of the ionised gas density. The [NII]

122/205 µm line ratio can be used to probe the density of the ionized gas.

Using [CII] and [NII]122 µm measurements of IC342 from the ISO-LWS archive

(but also in Brauher et al. (2008) for [CII]) we infer a [NII] 122/205 µm line ratio of

3.2 and a [CII]/[NII]205 ratio of 17±2.5. We compare these ratios to the model line

intensity ratio as a function of ionized gas density in Figure 2 of Oberst et al. (2006).

Their [NII] 122/205 model line ratios range from 2.5 to 4.3, therefore, our estimated

[NII] 122/205 µm line ratio of 3.2 indicates a density of ⇠ 200 cm�3. For this density,

if both lines arise from the ionized gas the expected [CII]/[NII] 205 ratio would have

been ⇠3. Given our estimate of 17±2.5 we infer that the contributions from ionised

gas to [CII] is 17-20% with the remaining originating in warm gas PDRs. This result

lends further support to the suggestion that PDRs must play an important role in

IC342.

4.8 CO Ladder: an insight into the excitation of molecular

gas of galaxies

The most widely used method to investigate the properties of the molecular gas

of galaxies near and far, is through measurements of CO transitions. For nearby

galaxies, a suite of low-J CO transitions are readily accessible from the ground and

have been used to measure the excitation of the molecular gas (e.g. Boone et al.,

2011). For high-redshift galaxies however, we can only obtain a handful of CO

transitions, depending on redshift (e.g. Solomon & Vanden Bout, 2005; Wagg et al.,

2010), hence the resulting CO-SLEDs are very sparsely sampled. The situation is

likely to change with the availability of the full ALMA array.

With the SPIRE-FTS we can now measure a number of high-J CO transitions

(SPIRE-FTS can access up to J=13 although higher CO transitions up to J=20

can be observed with PACS) and when combined with ground based measurements

we can determine the CO-SLED to much greater accuracy. As Kamenetzky et al.

(2012) point out, the diagnostic tools to model the high-J CO lines are still under
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development, however, we have already began to exploit the new information avail-

able. Extremely high CO line excitation implies the presence of an AGN and strong

heating by XDRs or shocks. In star forming regions PDRs play a crucial role by

heating the dust e�ciently. The CO-SLED of Mrk 231 has been modelled as the

result of contributions from PDRs and XDRs, the latter to account for the emission

of the high-J lines (van der Werf et al., 2010). In lower luminosity AGN signatures of

XDR heating are present close to the nucleus on small scales while in the starburst

regions CO excitation originates in PDRs (e.g. Spinoglio et al., 2012). In Starbursts,

such as M82, detailed analysis of the CO-SLED revealed that although PDRs could

play a role they cannot provide high enough densities to match the observed CO

line emission. Kamenetzky et al. (2012) have therefore concluded that mechanical

energy (turbulent motions, shocks, cosmic ray heating) is likely to play a large role

in the heating of the galaxy. A similar conclusion has been reached by Rangwala

et al. (2011) for Arp220.

In the case of IC342, we have shown that the CO-SLED can be adequately

explained with a combination of a cold (T⇠40 K), low density component to explain

the low-J transitions (with most contribution from J=1-0) and a warmer component

(T⇠440 K) necessary to account for the high-J transitions. There is convincing

evidence that CO excitation in this quiescent star-forming galaxy can be

provided by PDRs without invoking a need for extra heating mechanisms.

Thus, IC342 may be used as a template for explaining the CO-SLED of

high-redshift main-sequence galaxies that do not appear to be merger-driven

(e.g. Elbaz et al., 2011).

4.9 Conclusions

We have presented spectroscopic observations of IC342 covering the wavelength

range 194-671 µm carried out with the SPIRE-FTS on board Herschel. We have

detected a number of 12CO, 13CO molecular, [CI] atomic and [NII] ionic lines. We

have used the radiative transfer code RADEX coupled with Multinest to model the

12CO SLED: the modeling procedure has revealed two gas components, a cold tem-

perature component T⇠35 K and, a much warmer component with T⇠400 K. Our

new SPIRE-FTS data and in particular the high-J 12CO lines have allowed us to

constrain the physical properties of the warm gas component. Based on the ob-
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served CO line ratios and published models of PDRs we argue that the CO emission

originates in PDRs although additional contributions from e.g. cosmic ray heating

cannot be excluded. Using the observed atomic [CI] line ratio we discuss the ori-

gin of the [CI] and suggest that it arises in a thin layer on the outside of the CO

emitting molecular clouds. This claim is further supported by the fact that the [CI]

emission in IC342 is much weaker than the CO(4–3). Using [CII] 158 µm measure-

ments from ISO (Brauher et al., 2008) and the [NII] 205 µmeasurement presented

here we infer that up to 70% of [CII] arises in warm PDRs on the surface of mo-

lecular gas clouds. Such detailed studies of the properties of the atomic, molecular

and ionised gas in nearby galaxies have only recently become available thanks to

the capabilities of Herschel. These studies are however, very important since they

provide templates for understanding the physics of the ISM of high redshift bright

submillimetre galaxies that are currently impossible to study at the same level of

detail. ALMA however, in its full potential will be able to access the CO-ladder of

high redshift galaxies and extend our understanding of the properties of the ISM in

extreme environments.
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Chapter 5

A Dust-Obscured Massive

Maximum-Starburst Galaxy at a

Redshift of 6.34

Dominik A. Riechers, C. M. Bradford, D. L. Clements, C. D. Dowell, I. Pérez-

Fournon, R. J. Ivison, C. Bridge, A. Conley, Hai Fu, J. D. Vieira, J. Wardlow, J.

Calanog, A. Cooray, P. Hurley, R. Neri, J. Kamenetzky, J. E. Aguirre, B. Altieri,

V. Arumugam, D. J. Benford, M. Béthermin, J. Bock, D. Burgarella, A. Cabrera-

Lavers, S. C. Chapman, P. Cox, J. S. Dunlop, L. Earle, D. Farrah, P. Ferrero,

A. Franceschini, R. Gavazzi, J. Glenn, E. A. Gonzalez Solares, M. A. Gurwell, M.

Halpern, E. Hatziminaoglou, A. Hyde, E. Ibar, A. Kovács, M. Krips, R. E. Lupu,

P. R. Maloney, P. Martinez-Navajas, H. Matsuhara, E. J. Murphy, B. J. Naylor,

H. T. Nguyen, S. J. Oliver, A. Omont, M. J. Page, G. Petitpas, N. Rangwala, I. G.

Roseboom, D. Scott, A. J. Smith, J. G. Staguhn, A. Streblyanska, A. P. Thomson,

I. Valtchanov, M. Viero, L. Wang, M. Zemcov & J. Zmuidzinas

5.1 Introduction (from main paper)

Massive present-day early-type (elliptical and lenticular) galaxies probably gained

the bulk of their stellar mass and heavy elements through intense, dust-enshrouded

starbursts - that is, increased rates of star formation - in the most massive dark

matter halos at early epochs. However, it remains unknown how soon after the Big

Bang such massive starburst progenitors exist. The measured redshift (z) distribu-
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tion of dusty, massive starbursts has long been suspected to be biased low in redshift

owing to selection e↵ects (Chapman et al., 2003), as confirmed by recent findings of

systems out to redshift z ⇠ 5 (Capak et al., 2011; Vieira et al., 2013; Walter et al.,

2012).

Here we report the identification of a massive starburst galaxy at redshift 6.34

through a submillimeter colour-selection technique. We unambiguously determined

the redshift from a suite of molecular and atomic fine structure cooling lines. These

measurements reveal a hundred billion solar masses of highly excited, chemically

evolved interstellar medium (ISM) in this galaxy, which constitutes at least 40% of

the baryonic mass. A "maximum starburst" converts the gas into stars at a rate

more than 2,000 times that of the Milky Way, a rate among the highest observed

at any epoch. Despite the overall downturn of cosmic star formation towards the

highest redshifts (Bouwens et al., 2011), it seems that environments mature enough

to form the most massive, intense starbursts existed at least as early as 880 million

years after the Big Bang.

We have searched 21 deg2 of the Herschel/SPIRE data of the HerMES blank

field survey (Oliver et al., 2012) at 250 - 500 µm for “ultra-red” sources with flux

densities S250µm < S350µm < S500µm and S500µm/S350µm > 1.3, i.e., galaxies that are

significantly redder (and thus, potentially at higher redshift) than massive starbursts

discovered thus far. This selection yields five candidate ultra-red sources down to a

flux limit of 30 mJy at 500 µm (> 5� above the confusion noise; see Supplementary

Information Section 1 for additional details), corresponding to a source density of

 0.24 deg�2. For comparison, models of number counts in the Herschel/SPIRE

bands suggest a space density of massive starburst galaxies at z > 6 with S500µm > 30

mJy of 0.014 deg�2 (Béthermin et al., 2012).

To understand the nature of galaxies selected by this technique, we have obtained

full frequency scans of the 3-mm and 1-mm bands toward HFLS3 (also known as

1HERMES S350 J170647.8+584623; S500µm/S350µm = 1.45), the brightest candidate

discovered in our study. These observations, augmented by selected follow-up over

a broader wavelength range, unambiguously determine the galaxy redshift to be

z = 6.3369±0.0009 based on a suite of 7 CO lines, 7 H2O lines, and OH, OH+, H2O+,

NH3, [CI], and [CII] lines detected in emission and absorption (Figure 5.3. At this

redshift, the Universe was just 880 million years old (or 1/16th of its present age),
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and 1” on the sky corresponds to a physical scale of 5.6 kpc. Further observations

from optical to radio wavelengths reveal strong continuum emission over virtually

the entire wavelength range between 2.2 µm and 20 cm, with no detected emission

short-ward of 1 µm (see Supplementary Information Section 2 and Figures S1-S11

for additional details).

My primary contribution to this paper was the radiative transfer modelling of

the H2O SLED, described in Sections 5.2. I carried out all modelling of the H2O

SLED with my combined setup of Multinest (Feroz & Hobson, 2008) and RADEX

(van der Tak et al., 2007). Figure 5.2 was created by me. I also made significant

contributions to both the interpretation and text in this section. My other contri-

butions include suggestions and corrections to the remaining text throughout the

paper. The following section is taken from the Supplementary information attached

to Riechers et al. (2013) and is that most relevant to my contribution. Additional

information on HFLS3 can be found in Section 5.3 and is taken from the main paper.

5.2 H2O Excitation (Section 4.2 in Supplementary inform-

ation)

Given the limited constraints on the H2O excitation ladder (Figure 5.2), and the fact

that the H2O line ratios in HFLS3 (within the errors) are consistent with those in Arp

220, we first explored a wider parameter space based on the H2O excitation ladder

of Arp 220, and used our findings as input to models of HFLS3. We used RADEX to

produce H2O radiative transfer models. The parameters and ranges explored by our

models are Tkin = 101.3�103.3 K, n(H2)=103.0�1011.0cm�3, NH2O = 1016�1025cm�2,

�A = 10�5�1, and [H2O/H2]=10�9�10�5. As priors, we assume that the predicted

molecular gas mass cannot exceed the dynamical mass, and that the H2O column

length is smaller than or equal to the observed diameter of the CO and H2O-emitting

region. We also fixed the H2O ortho-to-para ratio to 3, and reject RADEX runs

where the optical depth of all lines is outside the range ⌧ = 10�10 � 102. We

generated posterior likelihood distributions for all model parameters using the nested

sampling routine MULTINEST, which we used to call RADEX and create models

“on-the-fly” (Feroz & Hobson, 2008). MULTINEST is a Bayesian tool similar to

MCMC, but is more e�cient when dealing with multi-modal regions in parameter
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space. It also calculates values for the Bayesian evidence. For both Arp 220 and

HFLS3, [H2O/H2], and thus, Mgas, are poorly constrained by the H2O data alone.

Solutions with Tkin ⇠100-150 K are preferred, comparable to the best-fitting values

for CO in HFLS3. However, due to the high critical densities of the H2O lines,

gas densities of >108.5cm�3 are preferred (black contours in Figure 5.2). Such high

gas densities over extended regions are unphysical. Also, the maximum likelihood

solutions only poorly reproduce the observed line ratios in Arp 220 and HFLS3,

in particular between directly connected energy levels (as higher energy levels are

observed to have higher line fluxes in both Arp 220 and HFLS3; Figure 5.2). Our

models thus suggest that collisional excitation is unlikely to be the main mechanism

to produce the observed H2O excitation in Arp 220 and HFLS3.

To further explore whether or not collisional excitation is important for lower

energy levels, we carried out a separate modeling run, taking only fluxes and limits

for lines with Eupper/kB <⇠200 K into account. Solutions with less extreme gas

densities of 107 � 108cm�3 are preferred (red contours in Figure S16), but at signi-

ficantly higher Tkin of few hundreds to >1000 K. The best-fitting models still only

poorly reproduce the observed line ratios of directly connected energy levels. Thus,

it appears unlikely that collisional excitation dominates the lower-energy H2O levels

either.

We detect emission from H2O lines with upper level energies of E/kB > 300 -

450 K, which would require gas densities in excess of 108.5cm�3 to reproduce the

observed relative line strengths through collisions. However, the JKaKc = 321 and

422 energy levels of ortho- and para-H2O can be e�ciently populated by 75 and 58

µm infrared photons through absorption in the JKaKc = 212 � 321 and 313 � 422

ortho- and para-H2O transitions, respectively, which then can produce the observed

emission line strength in the cascading transitions. The 75 µm transition coincides

with the observed peak of the SED, allowing for a high pumping e�ciency. The

58 µm transition falls on the Wien tail of the SED. In combination with the higher

energy of the lower level of the pumping transition (and thus, lower population

through collisions) compared to the ortho-H2O channel, this explains the much lower

strength of high-level para-H2O lines. The relative strength of all detected H2O lines

is consistent with those observed in Arp 220 (Fig. 3) (Rangwala et al., 2011). The

75 µm and 58 µm pumping transitions were detected in absorption in Arp 220, with
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Figure 5.1: Energy level diagram (a) and observed line intensities textbf(b) for H2O in

HFLS3. a, The red arrows indicate detected H2O transitions (dashed lines indicate tent-

ative detections) and blue dotted lines indicate upper limits. The dashed gray arrows

indicate 75 and 58 µm infrared pumping transitions of ortho- and para-H2O that can e�-

ciently radiatively populate the energy levels from which bright emission lines are observed.

b, The black squares indicate observed H2O line fluxes and upper limits (shallow limits

not shown) for HFLS3 as a function of upper level energy. For comparison the red, blue

and orange symbols show normalised line fluxes observed in Mrk 231 (red line: model),

Arp 220, and APM08279+5255 (Rangwala et al., 2011; Bradford et al., 2011; González-

Alfonso et al., 2012; Thompson et al., 2005). Within the uncertainties, the H2O excitation

in HFLS3 is comparable to that in Arp 220, but inconsistent with the line ratios in the

quasars Mrk 231 and APM08279+5255 (where the H2O lines may be substantially excited

by a strong X-ray radiation field associated with their AGN). In particular, the relative

strength of the JKaKc=321 � 312 and 211 � 202 lines relative to transitions lower in the

cascade in HFLS3 suggest that their upper energy levels may be substantially populated

through radiative excitation by the infrared radiation field in the star-forming regions,

rather than collisions. Given the median gas density of ⇠ 104 cm�3 as determined from

the CO excitation and the critical densities of > 109 cm�3 for the detected H2O lines,

contributions from collisional excitation to the observed line fluxes are likely minor. This

suggests that the H2O emission lines detected in HFLS3 are less important for gas cooling

through the removal of kinetic energy than the CO lines.
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Figure 5.2: Physical parameters obtained from fitting the H2O excitation ladder of HFLS3.

Two-dimensional likelihood contours for the physical properties of the molecular gas in

HFLS3 as determined by RADEX models of the H2O excitation ladder for n(H2) and Tkin

(a), NH2O and �A (b), and n(H2) and NH2O (c). Black contours show the likelihoods

when fitting all observed H2O lines and limits. Red contours show the likelihoods when

only considering lines with Eupper/kB <⇠ 200K. Contour levels are shown at 1 and 2�.
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the 75 µm feature being more than twice as deep (González-Alfonso et al., 2012).

This is also consistent with the fact that we detect the OH 2⇧1/2(3/2-1/2) feature at

163 µm in emission, which has an upper level energy comparable to the JKaKc = 321

level of ortho-H2O, but can also be e�ciently pumped by 53.3 and 35 µm photons,

as observed in Arp 220 (González-Alfonso et al., 2012).

Our models thus suggest that collisional excitation is unlikely to be the main

mechanism to produce the observed H2O excitation in HFLS3, which instead may

be enhanced by the infrared radiation field in the star-forming regions. This is

consistent with observations and models of very high energy levels of H2O in Arp

220, which are observed in absorption (González-Alfonso et al., 2012).

5.3 Additional Information on HFLS3 (from the main pa-

per)

HFLS3 hosts an intense starburst. The 870 µm-flux of HFLS3 is > 3.5 times higher

than those of the brightest high-redshift starbursts in a 0.25-deg2 region containing

the Hubble Ultra Deep Field (HUDF) (Karim et al., 2013). From the continuum

spectral energy distribution (Figure 5.4), we find that the far-infrared (FIR) lumin-

osity LFIR and inferred star formation rate (SFR) of 2,900 M�yr�1 of HFLS3 are

15-20 times those of the prototypical local ultra-luminous starburst Arp 220, and >

2,000 times those of the Milky Way (Table 5.1 and Supplementary Information Sec-

tion 3). The SFR of HFLS3 alone corresponds to ⇠ 4.5 times the ultraviolet-based

SFR of all z = 5.5 � 6.5 star-forming galaxies in the HUDF combined (Bouwens

et al., 2006), but the rarity and dust obscuration of ultra-red sources like HFLS3

implies that they do not dominate the UV photon density needed to reionize the

Universe (Robertson et al., 2010).

HFLS3 is a massive, gas-rich galaxy. From the spectral energy distribution and

the intensity of the CO and [CII] emission, we find a dust mass of Md = 1.3⇥109M�

and total molecular and atomic gas masses of Mgas = 1.0 ⇥ 1011M� and MHI =

2.0⇥ 1010M�.

These masses are 15-20 times those of Arp 220, and correspond to a gas-to-dust

ratio of ⇠ 80 and a gas depletion timescale of Mgas/SFR ⇠ 36Myr. These values are

comparable to lower-redshift submillimeter-selected starbursts (Micha lowski et al.,
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Figure 5.3: Redshift identification through molecular and atomic spectroscopy of HFLS3.

a, Black trace, wide-band spectroscopy in the observed-frame 19 - 0.95-mm (histogram;

rest-frame 2,600 - 130 µm) wavelength range with CARMA (3 mm; blind frequency scan

of the full band), the PdBI (2 mm), the JVLA (19 - 6 mm), and CSO/Z-spec (1 mm;

instantaneous coverage). (CARMA, Combined Array for Research in Millimeter-wave As-

tronomy; PdBI, Plateau de Bure Interferometer; JVLA, Jansky Very Large Array; and

CSO, Caltech Submillimeter Observatory) This uniquely determines the redshift of HFLS3

to be z=6.3369 based on the detection of a series of H2O, CO, OH, OH+, NH3, [CI] and

[CII] emission and absorption lines. b to o, Detailed profiles of detected lines (histo-

grams; rest frequencies are indicated by corresponding letters in a). 1-mm lines (m-o)

are deeper, interferometric confirmation observations for NH3, OH (both PdBI), and [CII]

(CARMA) not shown in a. The line profiles are typically asymmetric relative to single

Gaussian fits, indicating the presence of two principal velocity components at redshifts of

6.3335 and 6.3427. The implied CO, [CI], and [CII] line luminosities are 5.08±0.45⇥ 106,

3.0± 1.9⇥ 108, and 1.55± 0.32⇥ 1010L�. Strong rest-frame submillimeter to far-infrared

continuum emission is detected over virtually the entire wavelength range. For compar-

ison, the Herschel/SPIRE spectrum of the nearby ultra-luminous infrared galaxy Arp 220

(Rangwala et al., 2011) is overplotted in grey (a). Lines labeled in italic are tentative

detections or upper limits (see Table S2). Most of the bright spectral features detec-

ted in Arp 220 (González-Alfonso et al., 2012; Rangwala et al., 2011) are also detected in

HFLS3 (in spectral regions not blocked by the terrestrial atmosphere). See Supplementary

Information Sections 2-4 for more details.
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Table 5.1: Observed and derived quantities for HFLS 3, Arp 220 and the Milky Way

HFLS3 Arp 220⇤ Milky Way⇤

z 6.3369 0.0181

Mgas(M�) † (1.04 ± 0.09)⇥ 1011 5.2⇥ 109 2.5⇥ 109

Mdust(M�)‡ 1.31+0.32
�0.30⇥ 109 ⇠ 1⇥ 108 ⇠ 6⇥ 107

M⇤(M�)§ ⇠ 3.7⇥ 1010 ⇠ (3� 5)⇥ 1010 ⇠ 6.4⇥ 1010

Mdyn(M�)|| 2.7⇥ 1011 3.45⇥ 1010 2⇥ 1011(< 20kpc)

fgas(%)¶ 40 15 1.2

LFIR(L�) # 2.86+0.32
�0.31⇥ 1013 1.8⇥ 1012 1.1⇥ 1010

SFR(M�yr�1)~ 2900 ⇠ 180 1.3

Tdust(K)⇤⇤ 55.9 +9.3
�12.0 66 ⇠ 19

⇤Literature values for Arp 220 and the Milky Way are adopted from Downes & Solomon

(1998); McMillan (2011); Murray & Rahman (2010); Sodroski et al. (1994). The total

molecular gas mass of the Milky Way is uncertain by at least a factor of 2. Quoted dust

masses and stellar masses are typically uncertain by factors of 2-3 due to systematics. The

dynamical mass for the Milky Way is quoted within the inner 20 kpc to be comparable

to the other systems, not probing the outer regions dominated by dark matter. The dust

temperature in the Milky Way varies by at least ±5 K around the quoted value, which is

used as a representative value. Both Arp 220 and the Milky Way are known to contain

small fractions of significantly warmer dust. All error bars are 1� r.m.s. uncertainties.

†Molecular gas mass, derived assuming ↵CO = Mgas/LCO = 1M�(K kms�1pc2)�1, see

Supplementary Information, Section 3.3.

‡Dust mass, derived from spectral energy distribution fitting (see Supplementary Inform-

ation section 3.1).

§Stellar mass, derived from population synthesis fitting (see Supplementary Information

section 3.4).

||Dynamical mass (see Supplementary Information section 3.5).

¶Gas mass fraction, derived assuming fgas = Mgas/Mdyn (see Supplementary Information

section 3.6)

# FIR luminosity as determined over the range of 42.5 - 122.5µm from spectral energy

distribution fitting (see Supplementary Information section 3.1).

~ SFR, derived assuming SFR (in M�yr�1) =1.0⇥10�10LFIR (in L�) (see Supplementary

Information section 3.2).

⇤⇤ Dust temperature, derived from spectral energy distribution fitting (see Supplementary

Information section 3.1).
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Figure 5.4: Spectral energy distribution (SED) and Herschel/SPIRE colours of HFLS3.

a, HFLS3 was identified as a very high redshift candidate, as it appears red between the

Herschel/SPIRE 250-, 350-, and 500-µm bands (inset). The SED of the source (data

points; �obs, observed-frame wavelength; ⌫rest, rest-frame frequency; AB mag, magnitudes

in the AB system; error bars are 1� r.m.s. uncertainties in both panels) is fitted with a

modified black body (MBB; solid line) and spectral templates for the starburst galaxies

Arp 220, M82, HR10, and the Eyelash (broken lines, see key). The implied FIR luminosity

is 2.86+0.32
�0.31 ⇥ 1013L�. The dust in HFLS3 is not optically thick at wavelengths long-

ward of rest-frame 162.7 µm (95.4% confidence; Figure S12). This is in contrast to Arp

220, in which the dust becomes optically thick (i.e., ⌧d = 1) shortward of 234 ± 3µm

(Rangwala et al., 2011). Other high-redshift massive starburst galaxies (including the

Eyelash) typically become optically thick around ⇠200 µm. This suggests that none

of the detected molecular/fine structure emission lines in HFLS3 require correction for

extinction. The radio continuum luminosity of HFLS3 is consistent with the radio-FIR

correlation for nearby star-forming galaxies. b, 350 µm/250 µm and 500 µm/350 µm flux

density ratios of HFLS3. The coloured lines are the same templates as in a, but redshifted

between 1 < z < 8 (number labels indicate redshifts). Dashed grey lines indicate the

dividing lines for red (S250µm < S350µm < S500µm) and ultra-red sources (S250µm < S350µm

and 1.3 ⇥ S350µm < S500µm). Gray symbols show the positions of five spectroscopically

confirmed red sources at 4 < z < 5.5 (including three new sources from our study), which

all fall outside the ultra-red cuto↵. This shows that ultra-red sources will lie at z > 6 for

typical SED shapes (except those with low dust temperatures), while red sources typically

are at z < 5.5. See Supplementary Information Sections 1 and 3 for more details.
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2010; Riechers et al., 2011). From the [CI] luminosity, we find an atomic carbon

mass of 4.5 ⇥ 107M�. At the current star formation rate of HFLS3, this level of

carbon enrichment could have been achieved through supernovae on a timescale of

⇠ 107yr (Walter et al., 2003). The profiles of the molecular and atomic emission

lines typically show two velocity components (Figs. 5.3, S5, and S7). The gas is

distributed over a 1.7 kpc radius region with a high velocity gradient and dispersion

(Figure 5.5). This suggests a dispersion-dominated galaxy with a dynamical mass of

Mdyn = 2.7⇥ 1011M�. The gas mass fraction in galaxies is a measure of the relative

depletion and replenishment of molecular gas, and is expected to be a function

of halo mass and redshift from simulations (Lagos et al., 2011). In HFLS3, we

find a high gas mass fraction of fgas = Mgas/Mdyn ⇠ 40%, comparable to what

is found in submillimeter-selected starbursts and massive star-forming galaxies at

z ⇠2,(Tacconi et al., 2008, 2010) but ⇠3 times higher than in nearby ultra-luminous

infrared galaxies (ULIRGs) like Arp 220, and >30 times higher than in the Milky

Way. From population synthesis modeling, we find a stellar mass of M⇤ = 3.7 ⇥

1010M� , comparable to that of Arp 220 and about half that of the Milky Way. This

suggests that at most ⇠40% of Mdyn within the radius of the gas reservoir are due

to dark matter. With up to ⇠1011M� of dark matter within 3.4 kpc, HFLS3 likely

resides in a dark matter halo massive enough to grow a present-day galaxy cluster

(Overzier et al., 2009).

The e�ciency for star formation is given by ✏ = tdyn ⇥ SFR/Mgas, where tdyn =

r3/(2GM))1/2 is the dynamical (or free-fall) time, r is the source radius, M is

the mass within radius r and G is the gravitational constant. For r=1.7kpc and

M = Mgas, this suggests ✏=0.06, which is a few times higher than found in nearby

starbursts and in Giant Molecular Cloud cores in the Galaxy (Krumholz et al.,

2012).

The properties of the atomic and molecular gas in HFLS3 are fully consistent

with a highly enriched, highly excited interstellar medium, as typically found in the

nuclei of warm, intense starbursts, but distributed over a large, ⇠3.5-kpc-diameter

region. The observed CO and [CII] luminosities suggest that dust is the primary

coolant of the gas if both are thermally coupled. The L[CII]/LFIR ratio of ⇠ 5⇥10�4

is typical for high radiation environments in extreme starbursts and active galactic

nucleus (AGN) host galaxies (Stacey et al., 2010). The L[CII]/LCO(1�0) ratio of
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Figure 5.5: Gas dynamics, dust obscuration, and distribution of gas and star formation in

HFLS3. a, b, High-resolution (FWHM 0.35”⇥0.2”) maps of the 158-µm continuum (a)

and [CII] line emission (b) obtained at 1.16 mm with the PdBI in A-configuration, overlaid

on a Keck/NIRC2 2.2-µm adaptive optics image (rest-frame UV/optical light). The r.m.s.

uncertainty in the continuum (a) and line (b) maps is 180 and 400 µJy beam�1, and

contours are shown in steps of 3 and 1�, starting at 5 and 3�, respectively. A z = 2.092

galaxy (labeled G1B) identified through Keck/LRIS spectroscopy is detected ⇠0.65” north

of HFLS3, but is not massive enough to cause significant gravitational lensing at the

position of HFLS3. Faint infrared emission is detected toward a region with lower dust

obscuration in the north-eastern part of HFLS3 (not detected at < 1µm). The Gaussian

diameters of the resolved [CII] and continuum emission are 3.4 kpc ⇥ 2.9 kpc and 2.6

kpc ⇥ 2.4 kpc, suggesting gas and SFR surface densities of ⌃gas = 1.4⇥ 104M�pc�2 and

⌃SFR = 600M� yr�1 kpc�2 (⇠ 0.6 ⇥ 1013L�kpc�2). The high ⌃SFR is consistent with

a maximum starburst at near-Eddington-limited intensity. Given the moderate optical

depth of ⌧d <⇠ 1 at 158 µm, this estimate is somewhat conservative. Peak velocity (c)

and F.W.H.M. velocity dispersion (d) maps of the [CII] emission are obtained by Gaussian

fitting to the line emission in each spatial point of the map. Velocity contours are shown

in steps of 100 kms�1. High-resolution CO J=7-6 and 10-9 and H2O 321�312 observations

show consistent velocity profiles and velocity structure (Figures S5-S7). The large velocity

dispersion suggests that the gas dynamics in this system are dispersion-dominated. See

Supplementary Information Sections 3 and 5 for more details.
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⇠3,000 suggests that the bulk of the line emission is associated with the photon

dominated regions of a massive starburst. At the LFIR of HFLS3, this suggests

an infrared radiation field strength and gas density comparable to nearby ULIRGs

without luminous AGN (Figs. 4 & 5 of Stacey et al. (2010)).

From the spectral energy distribution of HFLS3, we derive a dust temperature

of Tdust = 56+9
�12K, ⇠10 K less than in Arp 220, but ⇠3 times that of the Milky Way.

CO radiative transfer models assuming collisional excitation suggest a gas kinetic

temperature of Tkin = 144+59
�30K and a gas density of log10(n(H2))=3.80+0.28

�0.17 cm�3

(Supplementary Information Section 4 and Figures S13/S14). These models suggest

similar gas densities as in nearby ULIRGs, and prefer Tkin � Tdust, which may imply

that the gas and dust are not in thermal equilibrium, and that the excitation of the

molecular lines may be partially supported by the underlying infrared radiation field.

This is consistent with the finding that we detect H2O and OH lines with upper level

energies of E/kB > 300-450 K and critical densities of >108.5cm�3 at line intensities

exceeding those of the CO lines. The intensities and ratios of the detected H2O lines

cannot be reproduced by radiative transfer models assuming collisional excitation,

but are consistent with being radiatively pumped by far-infrared photons, at levels

comparable to those observed in Arp 220 (Figures S15/S16) (González-Alfonso et al.,

2012; Rangwala et al., 2011). The CO and H2O excitation is inconsistent with what

is observed in quasar host galaxies like Mrk 231 and APM08279+5255 at z=3.9,

which lends support to the conclusion that the gas is excited by a mix of collisions

and infrared photons associated with a massive, intense starburst, rather than hard

radiation associated with a luminous AGN (Thompson et al., 2005). The physical

conditions in the ISM of HFLS3 thus are comparable to those in the nuclei of the

most extreme nearby starbursts, consistent with the finding that it follows the radio-

FIR correlation for star-forming galaxies.

HFLS3 is rapidly assembling its stellar bulge through star formation at sur-

face densities close to the theoretically predicted limit for “maximum starbursts”

(Elmegreen, 1999). At a rest-frame wavelength of 158 µm, the FIR emission is dis-

tributed over a relatively compact area of 2.6 kpc⇥2.4 kpc physical diameter along

its major and minor axes respectively (Fig. 3; as determined by elliptical Gaussian

fitting).

This suggests an extreme star formation rate surface density of ⌃SFR ⇠ 600M�
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yr�1kpc�2 over a 1.3-kpc-radius region, and is consistent with near-Eddington-

limited star formation if the starburst disk is supported by radiation pressure (Thompson

et al., 2005). This suggests the presence of a kiloparsec-scale hyper-starburst similar

to that found in the z=6.42 quasar J1148+5251 (Walter et al., 2009). Such high

⌃SFR are also observed in the nuclei of local ULIRGs such as Arp 220, albeit on

two orders of magnitude smaller scales. A starburst at such high ⌃SFR may produce

strong winds. Indeed, the relative strength and broad, asymmetric profile of the

OH 2⇧1/2(3/2-1/2) doublet detected in HFLS3 may indicate a molecular outflow,

reminiscent of the OH outflow in Arp 220 (González-Alfonso et al., 2012).

The identification of HFLS3 alone is still consistent with the model-predicted

space density of massive starburst galaxies at z >6 with S500µm > 30 mJy of 0.014

deg�2 (Béthermin et al., 2012). This corresponds to only 10�3�10�4 times the space

density of Lyman-break galaxies at the same redshift, but is comparable to the space

density of the most luminous quasars hosting supermassive black holes (SMBHs, i.e.,

a di↵erent population of massive galaxies) at such early cosmic times (Jiang et al.,

2009). The host galaxies around these very distant SMBHs are commonly FIR-

luminous, but less intensely star-forming, with typically a few times lower LFIR

than ultra-red sources (Walter et al., 2009). This highlights the di↵erence between

selecting massive z>6 galaxies at the peak of their star formation activity through

LFIR, and at the peak of their black hole activity through luminous AGN. The

substantial population of ultra-red sources discovered with Herschel will be an ideal

probe of early galaxy evolution and heavy element enrichment within the first billion

years of cosmic time. These galaxies are unlikely to dominate the star formation

history of the Universe at z>6, (Béthermin et al., 2012) but they trace the highest

peaks in SFR at early epochs. A detailed study of this galaxy population will

reveal the mass and redshift distribution, number density and likely environments

of such objects, which if confirmed in larger numbers may present a stern challenge

to current models of early cosmic structure formation.
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Chapter 6

Discussion and Conclusions

The papers contained within this thesis have used two approaches to help untangle

the contributions made from star formation and AGN: multivariate analysis and

theoretical modelling. In this concluding chapter I will summarise what has been

learnt from both, the advantages and pitfalls and the potential for future work.

6.1 Multivariate analysis

In the first two papers of this thesis, I have shown how multivariate analysis tech-

niques can be successfully used to analyse the mid-infrared spectra of galaxies.

In the first paper, I showed that most of the information contained within the IRS

spectra of 119 local ULIRGs could be explained by five principal components. This

leads to a practical advantage in terms of reducing the dimensionality of ULIRG

spectra to five numbers, enabling other techniques such as Gaussian mixtures mod-

elling to be used for defining classification schemes. Although this can be seen as

a more robust approach as the entire MIR region is used rather than only a few

spectral features (e.g. Spoon et al., 2007), the advantages are mostly practical and

statistical in nature. What have we learnt in terms of astrophysics?

The first key point is that with an objective approach, rather than with a sub-

jective prejudice, I have shown the ULIRG spectra can be explained by five principal

components, implying the natural dimensionality of ULIRG spectra will be of a sim-

ilar order of magnitude. The next obvious question is what physical processes drive

this natural dimensionality? Examining what features are present in each principal

component can give some indication of what each PC does. For example the PAH

features in PC2 and PC3 would suggest that both PCs are related to star formation.
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I also showed how the physical parameters of radiative transfer models were related

to some of the components, for example the viewing angle of the dusty AGN torus to

PC1 and PC4, AGN/star formation power ratio to PC3. Despite some success, the

interpretation still remains unclear. The presence of the same features in multiple

components, and the non-linear behaviour of PC contribution with physical para-

meters (e.g. PC4 and viewing angle in Figure 2.10) suggests that the assumptions

required by PCA are not well suited for continuos mid-infrared spectral data.

Paper two showed other techniques were more suited for mid-infrared spectra

of galaxies. Section 3.4 discussed simple models for mid-infrared spectra, and how

NMF was more appropriate than PCA or the other popular technique, independent

component analysis. This paper was also more ambitious in that spectra of all

extragalactic sources within the redshift range (0.01 < z < 0.2) were used as the

input. By using a more appropriate technique, the derived components are more

physically intuitive.

Now we have the added advantage of reducing the dimensionality of galaxy spec-

tra down to around seven numbers, while having a clearer picture of what produces

the natural dimensionality. The first point to clarify is that in comparison to the

first paper, we see that seven rather than five components are required to describe

spectra, despite the more appropriate technique. This can easily be explained by

the addition of a wider variety of galaxies to the sample, rather than limiting the

analysis to ULIRGs.

Having used this more appropriate technique, what do we learn in terms of

astrophysics?

Out of the seven components in my final NMF set, two of the components show

distinct signatures of AGN activity, while three could be associated with star form-

ation. This confirms AGN activity and star formation activity are two of the main

processes producing variations in mid-infrared galaxy spectra. Out of the two AGN

components, one shows broad silicate emission associated with the inner region of

the torus, while the other contains emission features thought to occur in narrow line

regions. I have shown how di↵erent mixtures of the two components are required

for type 1 and type 2 AGN. This indicates that the viewing angle is another key

factor in producing variation of galaxy spectra. The fact that both are required for

the majority of the AGN, would also suggest the clumpy torus model rather than
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than the smooth torus model is more appropriate for the AGN dusty torus.

We can also learn a great deal about relationships between features by examining

how they separate as you vary either the input sample or the allowed number of com-

ponents. For example, in the simplest NMF sets, PAH emission appears alongside

colder dust emission at longer wavelengths. As the number of allowed components is

increased, the colder dust slope separates out into other components. This suggests

that although there is some correlation between the colder dust and PAH emission,

it is not as strong as the correlation between the PAH features. By limiting the

sample to PAH dominated objects and re-running the NMF analysis, the algorithm

no longer has to contend with AGN emission, the additional freedom can be used

to separate out PAH features to components that share similarities to a neutral and

ionised PAH component found in resolved spectro-imagery data of galactic PDRs.

6.1.1 Future work

The derived NMF components have the potential to be used for further studies into

galaxy evolution. One avenue already being explored is using the NMF compon-

ents to separate out the contribution from AGN and star formation to the infrared

luminosity function. Wu et al. (2011) carried out a similar analysis using the IRS

spectra from specific objects as templates for star formation and AGN, and then

separating out the emission in the 5MUSES sample, a mid-infrared spectroscopic

survey of 330 galaxies with 24 µm flux densities 5 mJy < f(24µm) < 100mJy. By

using the NMF components, we are using spectral components that are linked to

the actual physical environments such as AGN and star formation unlike templates

based on specific objects.

The components could also be used to study the connection between AGN and

star formation by looking at the correlation between NMF contributions and data

from other wavelengths such as X-ray or radio.

A far more ambitious route for this type of analysis would be to extend the

data to other wavelengths, such as optical spectra. By combining optical and in-

frared data, non-linear physical processes such as dust extinction and absorption

will play a far greater role. Any multivariate based analysis approach will have to

account for this and so simple linear type approaches such as PCA and NMF will no

longer be appropriate. However, non-linear based matrix factorisation techniques
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are already being developed and although some of these were explored in paper two

and deemed to be inappropriate, other more advanced techniques or a combination

of techniques could be used to analyse and extract the information contained within

multi-wavelength data.

6.2 Radiative transfer of SLEDs

The third paper in this thesis contained work using the non-LTE based RADEX

code to constrain the physical parameters of molecular gas from observations of the

CO SLED in the nearby spiral galaxy IC342. Unlike other approaches that use a

grid based �2 approach to fit the CO SLEDs (e.g. Rangwala et al., 2011), I used the

nested sampling routine, Multinest, discussed in Section 1.4.2 to fully sample the

posterior parameter space and calculate the Bayesian evidence in order to compare

one and two component model fits.

I first fit a one component model to the CO SLED, but find the lowest CO line is

underestimated. A two component model provides a better fit, with one component

placing tight constraints on the warm gas, and the second component placing looser

constraints on a colder gas component.

My model fit provides density, temperature, column density and gas mass con-

straints which can be used as a prior for more complicated analysis with PDR and

XDR models. The constraints on the warm gas provided by the non-LTE RADEX

modelling of IC342, are in agreement with the CO ratios provided by PDR fits, sug-

gesting PDRs are consistent with the observed CO SLED, and hence star formation

is the dominant heating source in IC342.

Paper four contained the modelling of H2O lines from HFLS3, a starburst galaxy

at redshift of 6.34, one of the most distant starburst galaxies ever detected. It was

shown the assumption of collisional excitation as the main mechanism for excitation

is unable to explain observations, even for the lower energy lines. Infrared pumping

is suggested as an alternative mechanism, with the infrared radiation coming from

star forming regions. This is a good example of how the interstellar medium is

home to numerous complex interactions between radiation and matter and that

simple models such as RADEX will not always be appropriate.

Indeed, there lies a far greater question of whether the average molecular gas

properties of galaxies can be modelled as one or two clumps of gas. By using
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RADEX to model the unresolved CO SLEDs from galaxies, we implicitly assume

that the summation of CO emission from the di↵erent regions within a galaxy, gives

rise to an integrated CO SLED whose parameters such as temperature are the av-

erage temperature of the di↵erent regions. If this is not the case, the constrained

parameters from models such as RADEX will have no meaningful physical interpret-

ation. With Herschel and ALMA providing resolved emission for nearby galaxies,

we are now in a position to begin examining this question.

6.2.1 Future work

My RADEX and Multinest modelling setup is currently being used to model the CO

SLEDs of ULIRGs observed with Herschel as part of the Herschel ULIRG Survey

(HERUS), which combines PACS and SPIRE observations of nearly all ULIRGs with

a 60 µm flux greater than ⇡ 1.7Jy. Figure 6.1 shows the one sigma filled contours

for temperature and density from the one component RADEX fit to 5 ULIRGs. The

5 CO SLEDs have at least one low CO transition and 3 mid J transitions observed

with the SPIRE FTS. There is already significant variation in parameters between

5 objects.

Unlike IC342, many of the objects in HERUS will have a significant contribu-

tion from both AGN and star formation. By modelling a large sample of ULIRGs,

we will be able to determine if the molecular gas is at similar conditions, whether

the conditions vary and if so by how much? We will also be able to investigate

whether physical conditions of the molecular gas are related to other global prop-

erties such as total infrared luminosity or diagnostics from the mid-infrared (e.g.

NMF components).

Examining whether such relations exist, will help us understand whether obser-

vations of the molecular gas for higher redshift objects, which will become more

accessible with ALMA, can be easily related to star formation or AGN activity, and

hence the wider picture of galaxy evolution, or whether the physical and chemical

interactions behind the integrated observations of molecular gas are just too complex

to interpret in this simple framework.
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Figure 6.1: The one sigma contours for five ULIRGs, with points indicating maximum

likelihood result for each ULIRG.



163

Bibliography

Rangwala N., et al. (2011). Observations of arp 220 using herschel-spire: An un-

precedented view of the molecular gas in an extreme star formation environment.

The Astrophysical Journal, 743:94. Cited on 160

Spoon H. W. W., Marshall J. A., Houck J. R., Elitzur M., Hao L., Armus L., Brandl

B. R., Charmandaris V. (2007). Mid-infrared galaxy classification based on silicate

obscuration and pah equivalent width. The Astrophysical Journal, 654:L49. Cited

on 157

Wu Y., et al. (2011). The mid-infrared luminosity function at z ¡ 0.3 from 5muses:

Understanding the star formation/active galactic nucleus balance from a spectro-

scopic view. The Astrophysical Journal, 734:40. Cited on 159


	DPhil Coversheet
	Hurley, Peter Donald
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Prelude
	1.2 Galaxy Evolution
	1.2.1 Star formation
	1.2.2 Active Galactic Nuclei
	1.2.3 The AGN-star formation connection

	1.3 Infrared Astronomy
	1.4 Statistical analysis and modelling
	1.4.1 Multivariate Statistics
	1.4.2 Bayesian Inference
	1.4.3 Radiative transfer

	1.5 Summary of this Thesis

	2 Principal Component Analysis and Radiative Transfer modelling of Spitzer IRS Spectra of Ultra Luminous Infrared Galaxies
	2.1 Abstract
	2.2 Introduction
	2.3 The Data
	2.4 Principal Component Analysis (PCA)
	2.5 Radiative transfer models
	2.5.1 Starburst Models
	2.5.2 AGN torus models
	2.5.3 The fitting procedure

	2.6 Results
	2.6.1 Optimum number of components
	2.6.2 Analysis of the radiative transfer models
	2.6.3 Interpreting the Principal Components
	2.6.4 Gaussian mixtures classification scheme

	2.7 Conclusions
	2.8 (Appendix A) Gaussian Mixtures Modelling

	3 Learning the fundamental mid-infrared spectral components of galaxies with non-negative matrix factorization
	3.1 Abstract
	3.2 Introduction
	3.3 The Data
	3.3.1 CASSIS
	3.3.2 Sample
	3.3.3 Stitching
	3.3.4 Normalisation

	3.4 Matrix Factorisation
	3.4.1 Matrix factorisation of spectra
	3.4.2 NMF algorithm
	3.4.3 Bayesian Evidence

	3.5 Results
	3.5.1 Number of Components
	3.5.2 Analysis of NMF5 to NMF10
	3.5.3 Gaussian Mixtures Modelling
	3.5.4 SF-AGN contribution

	3.6 Conclusions
	3.7 (Appendix A) Non-linear matrix factorisation techniques
	3.8 (Appendix B) NMF30 and Extinction simulation
	3.9 (Appendix C) NMF7 fits to galaxy spectra

	4 Herschel-SPIRE-Fourier Transform Spectroscopy of the nearby spiral galaxy IC342
	4.1 Abstract
	4.2 Introduction
	4.3 Observations, Data Reduction and Results
	4.4 Modeling the CO lines
	4.5 Results and Discussion
	4.6 The Origin of the Warm CO molecular Gas
	4.7 Far Infrared Atomic Fine Structure Lines
	4.8 CO Ladder: an insight into the excitation of molecular gas of galaxies
	4.9 Conclusions

	5 A Dust-Obscured Massive Maximum-Starburst Galaxy at a Redshift of 6.34
	5.1 Introduction (from main paper)
	5.2 H2O Excitation (Section 4.2 in Supplementary information)
	5.3 Additional Information on HFLS3 (from the main paper)

	6 Discussion and Conclusions
	6.1 Multivariate analysis
	6.1.1 Future work

	6.2 Radiative transfer of SLEDs
	6.2.1 Future work




