us
 University of Sussex

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

The development and chemistry of novel phosphacarbons and their derivatives

A thesis submitted to the University of Sussex for the degree of Doctor of Philosophy

April 2014
Amy Jane Saunders
Department of Chemistry

Declaration

I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree.

Signed \qquad

Amy Jane Saunders

Acknowledgements

First and foremost, I would like to express my thorough appreciation to my supervisor, Dr Ian R. Crossley, who has patiently guided me through my research - I'm sure it wasn't always an easy process! I will be forever grateful for his guidance and insight on all matters.

Individual thanks are required for Dr Iain Day, whose name he might note I can finally spell correctly! He has provided me with what must be, by now, many hours of assistance with NMR spectroscopy. The role of Dr Robin Fulton, my MChem supervisor, in helping me come this far, is also appreciated. I would like to thank Dr John Spencer for his support in the last year of my research; he always had a kind word for me, and a vast supply of coffee!

Other Lab 14 inhabitants, most notably Vicki Greenacre and Melvyn Ansell, have made the years more enjoyable than they otherwise might have been, for which I am most grateful.

Finally, I would like to acknowledge the role of my family, most particularly my mother, who have always been there for me, and have always supported me.

Summary

The exploration of low-coordinate phosphorus chemistry resulted in the synthesis of a range of novel phosphorus species which were duly characterised and subjected to extensive reactivity studies; potential applications and implications for the field are outlined.

The group 14 chloropropargyls $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(\mathrm{E}=\mathrm{Si}, \mathrm{Sn} ; \mathrm{R}={ }^{\mathrm{n}} \mathrm{Bu}, \mathrm{Ph}, \mathrm{Me}_{2} \mathrm{Ph},{ }^{\mathrm{n}} \mathrm{Pr},{ }^{\mathrm{i}} \mathrm{Pr}\right)$ were prepared from $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ and the respective $\mathrm{R}_{3} \mathrm{ECl}$. While attempts to convert
$\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{NEt}_{2}\right)$ via the Grignard reaction and addition of ClPX_{2} were unsuccessful, reactions with LiPR' ${ }_{2}$ effected conversion to group 14 propargylphosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PR}{ }_{2}\left(\mathrm{E}=\mathrm{Si}, \mathrm{Sn} ; \mathrm{R}_{3}={ }^{\mathrm{n}} \mathrm{Bu}_{3}, \mathrm{Ph}_{3}, \mathrm{Me}_{2} \mathrm{Ph},{ }^{\mathrm{n}} \mathrm{Pr}_{3},{ }^{\mathrm{i}} \mathrm{Pr}_{3} ; \mathrm{R}{ }^{\prime}=\mathrm{Ph}\right.$, SiMe_{3}). The addition of neat I_{2} to $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded impure samples of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}\left(\mathrm{R}_{3}=\mathrm{Me}_{2} \mathrm{Ph},{ }^{n} \mathrm{Pr}_{3},{ }^{\mathrm{n}} \mathrm{Bu}_{3}\right)$ that could not be isolated from pentane solutions; attempts to convert $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ to $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{P}$ with AgOTf and DABCO were unsuccessful. The synthesis of $\mathrm{PhC}=\mathrm{CCH}_{2} \mathrm{PR}^{\prime}{ }_{2}\left(\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ was achieved by reaction with LiPR' ${ }_{2}$, while the Grignard reaction followed by addition to $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$ afforded the novel allene $\mathrm{Ph}\left(\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$; reactions with HCl and MeI occurred exclusively at phosphorus.

The syntheses of phosphaalkenes $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PR}{ }^{\prime}\right)(\mathrm{R})(\mathrm{R}=2-\mathrm{Me}, 3-\mathrm{Me}, 3-\mathrm{CN}, 4-\mathrm{CN}$, $\left.4-\mathrm{CO}_{2} \mathrm{Me}, 4-\mathrm{COCl} ; \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{SiMe}_{3}\right)$ were attempted by Becker condensation of $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(\mathrm{R})$ and $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$. These reactions were studied in some detail in order to ascertain the principle reaction products, for which tentative identities were assigned. Phosphaalkenes E-/Z$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})$ and $E-/ \mathrm{Z}-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})$ were isolated and characterised spectroscopically.

A library of meta- and para-substituted phosphomides $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}(\mathrm{R}=3-\mathrm{Me}, 3-\mathrm{CN}, 3-$ $\mathrm{CH}_{2} \mathrm{Cl}, 4-\mathrm{CN}, 4-\mathrm{CO}_{2} \mathrm{Me}$) was synthesised by reaction of HPPh_{2} with the respective acyl chlorides $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{R}) \mathrm{COCl}$. Following standard literature methods for assessing electronic characteristics, IR data evidenced extensive delocalisation of the phosphorus lone pair into the carbonyl region in all cases, though coordination chemistry evidenced coordination exclusively via the phosphorus lone pair, indicative of little delocalisation. Novel di-phosphomides $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathrm{E}=\mathrm{CH}, \mathrm{N})$ were generated by addition of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(\mathrm{COCl})_{2}$ to HPPh_{2} and their behaviour as tridentate pincer ligands assessed by reaction with transition metals. The reaction of $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathrm{E}=\mathrm{CH}, \mathrm{N})$ generated unprecedented diphosphametacyclophanes $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ and $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2} ;\{3-\mathrm{CO}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ is the first example of a metacyclophane that incorporates multiple phosphorus centres within the ligand skeleton, and was characterised crystallographically.

Contents

Declaration II
Acknowledgements. III
Summary IV
Contents 5
Abbreviations 12

1. Introduction 15
1.1 Phosphorus: "The Devil's Element" 15
1.2 Phosphines 16
1.2.1 General considerations 16
1.2.2 Phosphine subcategories 16
1.2.3 Synthetic methodologies 17
1.2.4 Reactivity traits 20
1.2.5 Significant phosphines and their chemistry 24
1.3 Phosphaalkenes 29
1.3.1 General considerations 29
1.3.2 Synthetic methodologies 30
1.3.3 Reactivity traits 36
1.3.4 Significant phosphaalkenes 42
1.3.5 Phosphinines 45
1.4 Phosphaalkynes 46
1.4.1 General considerations 46
1.4.2 Synthetic methodologies 47
1.4.3 Significant phosphaalkynes 50
1.4.4 Reactivity traits 53
1.5 Summary 63
2. The development of chloropropargyls and propargylphosphines 64
2.1 Introduction 64
2.2 Syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ 65
2.3 Syntheses and reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ 67
2.3.1 Syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ 67
2.3.2 Coordination reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ 69
2.4 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with chlorophosphines 73
2.4.1 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with PCl_{3} 73
2.4.2 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with $\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{PCl}$ 75
2.5 Syntheses and reactions of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ 77
2.5.1 Syntheses of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ 77
2.5.2 Reactions of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ 78
2.6 Syntheses and reactions of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$ 82
2.6.1 Syntheses of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$. 82
2.6.2 Attempted synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ 83
2.6.3 Synthesis of $\operatorname{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ 84
2.6.4 Reactions of $\operatorname{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ 88
2.7 Summary 93
3. In pursuit of conjugated phosphaalkenes and phosphaalkynes 94
3.1 Introduction 94
3.2 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with silylphosphines 96
3.2.1 Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})$ 96
3.2.2 Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}$ 97
3.2.3 Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$ 100
3.2.4 Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)(2-\mathrm{Me})$ 100
3.2.5 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$. 101
3.3 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with silylphosphines 105
3.3.1 Reaction conditions 105
3.3.2 Reaction outcomes 106
3.4 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{R})$ with silylphosphines 113
3.4.1 Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})$ 114
3.4.2 Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(3-\mathrm{Me})$ 116
3.4.3 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ 117
3.5 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with silylphosphines 125
3.5.1 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ 126
3.5.2 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ 128
3.6 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}$ with silylphosphines 133
3.6.1 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ 133
3.6.2 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ 134
3.7 Summary 136
4. The development of novel phosphomide derivatives 138
4.1 Introduction 138
4.2. Syntheses and reactions of aryl phosphomides 141
4.2.1 Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ 141
4.2.2 Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{R})$ 143
4.2.3 Coordination chemistry of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ 144
4.2.4 Comparisons of the aryl phosphomides and their complexes 151
4.3 Syntheses and reactions of di-phosphomides 154
4.3.1 Syntheses of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ 154
4.3.2 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ 155
4.4 Syntheses and reactions of diphosphametacyclophanes 156
4.4.1 Synthesis of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ 156
4.4.2 Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$ 160
4.4.3 Mechanistic insights into the synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$ 161
4.4.4 Synthesis of $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ 163
4.4.5 Coordination reactions of diphosphametacyclophanes 164
4.5 Summary 168
5. Conclusions and outlook 169
6. Experimental 171
6.1 General experimental procedures 171
6.1.1 General methods 171
6.1.2 Spectroscopy 171
6.1.3 Solvents and reagents 171
6.1.4 Crystallographic details 172
6.2 Chapter 2: The development of chloropropargyls and propargylphosphines 173
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(1)$ 173
Synthesis of $\mathrm{Ph}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (2) 173
Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (3) 173
Synthesis of ${ }^{1} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (4) 174
Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (5) 174
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (6). 175
Synthesis of $\mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (7) 175
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}^{\mathrm{C}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (8) 175
Synthesis of $\mathrm{Ph}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (9) 176
Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (10) 176
Synthesis of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (11) 177
Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (12) 177
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (13) 178
Synthesis of cis-[$\left.\mathrm{PtCl}_{2}\left({ }^{(} \mathrm{Bu}_{3} \mathrm{SnC}^{2}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (14) 178
Synthesis of cis-[$\left.\mathrm{PtCl}_{2}\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (15) 179
Synthesis of cis- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (cis-16) 179
Synthesis of trans- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{H}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (trans-16) 180
Synthesis of trans- $\left[\mathrm{PdCl}_{2}\left({ }^{(} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (17) 180
Synthesis of trans-[$\left.\mathrm{PdCl}_{2}\left({ }^{[1} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (18) 181
Attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}_{\mathrm{Sn}} \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ 182
Attempted synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (19) 182
Attempted synthesis of ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (20) 183
Attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}^{\mathrm{S}}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(21)$ 183
Attempted synthesis of ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ (22) 184
Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(23)$ 184
Synthesis of ${ }^{1} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(24)$ 185
Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(25)$ 185
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(26)$ 185
Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (27) 185
Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PI}_{2}$ (28) 186
Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (29) 186
Attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{P}$. 186
Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PH}_{2}$ (30) 187
Synthesis of trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]$ (31) 187
Synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (32) 187
Synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (33) 188
Attempted synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (34) 188
Synthesis of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35) 189
Synthesis of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right) \mathrm{ClP}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (36) 189
Attempted synthesis of $\mathrm{Ph}(\mathrm{Cl})_{2} \mathrm{PC}=\mathrm{C}=\mathrm{CH}_{2}$ (37) 190
Synthesis of $\left[\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{MeP}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right]^{+}[\mathrm{I}]^{-}$(38) 190
6.3 Chapter 3: In pursuit of conjugated phosphaalkenes and phosphaalkynes 191
Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})(E / Z-39-2-\mathrm{Me})$ 191
Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(40-2-\mathrm{Me})$ 191
Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$ 192
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)(2-\mathrm{Me})(41-2-\mathrm{Me})$ 194
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(2-\mathrm{Me})(E / Z-42-2-\mathrm{Me})$ 195
Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})(E / Z-39-3-\mathrm{Me})$ 198
Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(3-\mathrm{Me})$ 201
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{Me})(E / Z-42-3-\mathrm{Me})$ 202
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{CN})(E / Z-39-3-\mathrm{CN})$ 207
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{CN})(E / Z-42-3-\mathrm{CN})$ 208
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(4-\mathrm{CN})(E / Z-39-4-\mathrm{CN})$ 210
Attempted synthesis of $\left.E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{COSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(E / Z-39-4-\mathrm{CO}_{2} \mathrm{Me}\right)$ 212
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(4-\mathrm{COCl})(E / Z-39-4-\mathrm{COCl}) \ldots$ 214
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(4-\mathrm{CN})(E / Z-42-4-\mathrm{CN})$ 215
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(E / Z-42-4-\mathrm{CO}_{2} \mathrm{Me}\right)$ 217
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(4-\mathrm{COCl})(E / Z-42-4-\mathrm{COCl})$ 222
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{COCl})(E / Z-57-\mathrm{CH})$ 224
Attempted synthesis of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(6-\mathrm{COCl})(E / Z-57-\mathrm{N})$ 225
Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{COCl})(E / Z-58-\mathrm{CH})$ 226
Attempted synthesis of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(6-\mathrm{COCl})(E / Z-58-\mathrm{N})$ 228
6.4 Chapter 4: The development of novel phosphomide derivatives 229
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})(62)$ 229
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)(63)$ 229
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{CN})(64)$ 230
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)(65)$ 230
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})$ (66) 231
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{Me})(67)$ 231
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)(68)$ 232
Synthesis of $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\} \mathrm{Cl}\right](69)$ 232
Synthesis of $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\} \mathrm{Cl}\right](70)$ 233
Synthesis of $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{Cl}\right](71)$ 233
Synthesis of $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\} \mathrm{Cl}\right](72)$ 234
Synthesis of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$ (73) 234
Synthesis of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\}_{2}\right](74)$ 235
Synthesis of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}_{2}\right]$ (75) 235
Synthesis of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right]$ (76) 236
Synthesis of cis- and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$ (cis-Itrans-77) 236
Synthesis of cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\}_{2}\right]$ (78) 237
Synthesis of cis-[PtCl $\left.\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right]$ (79) 238
Attempted synthesis of $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}_{2}\right]$ (80) 238
Attempted synthesis of $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}_{2}\right]$ (81) 239
Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,3-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(82)$ 240
Synthesis of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(83)$ 240
Synthesis of trans- $\left[\mathrm{PtCl}\left\{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right\}_{2}\right)\right]^{+}[\mathrm{Cl}]^{-}$(84) 241
Synthesis of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ (85) 241
Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$ (86) 242
Synthesis of $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ (87) 242
Synthesis of trans- $\left[\mathrm{PtCl}_{2}\left(\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right)_{2}\right]$ (88) 242
Synthesis of trans-[\{Pt($\left.\left.\left.\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right\}_{2}\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right]$ (89) 243
7. References 244
8. Appendix 263
DVD appendix including NMR data, cif files and crystal data. Inside back cover

Abbreviations

δ	Chemical shift
[18]crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane
acac	Acetylacetone
Ad	Adamantyl
Ar	Aryl
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bipy	2,2'-bipyridine
${ }^{\mathrm{n}} \mathrm{Bu}$	"butyl
${ }^{\text {t }} \mathrm{Bu}$	'butyl
br	Broad
calcd.	Calculated
cat.	Catalytic
cot	Cyclooctatetraene
Cp	Cyclopentadienyl
Cp*	(1,2,3,4,5-Me) $)_{5}$-cyclopentadienyl
Cy	Cyclohexyl
d	Doublet
dba	Dibenzylideneacetone
dd	Doublet of doublets
dt	Doublet of triplets
DABCO	1,4-diazabicyclo[2.2.2]octane
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCM	Dichloromethane
DCPB	Diphosphinidenecyclobutene
Deg	Degrees
DEAD	Diethyl azodicarboxylate

DFT	Density functional theory
DIAD	Diisopropyl azodicarboxylate
dme	Dimethoxyethane
dppe	1,2-bis(diphenylphosphino)ethane
EI	Electron ionisation
ESI-MS	Electrospray ionisation mass spectrometry
Elem. Anal.	Elemental analysis
Et	Ethyl
HMBC	Heteronuclear multiple bond correlation
HOMO	Highest occupied molecular orbital
HSQC	Heteronuclear single quantum correlation
Hz	Hertz
i	Ipso
IR	Infra-red
J	Scalar coupling
LDA	Lithium diisopropylamide
LUMO	Lowest unoccupied molecular orbital
m	Multiplet
m	Meta
M	Molar
mA	Milliamps
mbar	Millibar
Me	Methyl
Mes	Mesitylene
Mes*	Supermesitylene
MHz	Megahertz
mol	Moles
MS	Mass spectrometry

NBO	Natural bond order
NICS	Nucleus-independent chemical shift
NLO	Nonlinear optic
nm	Nanometres
NMR	Nuclear magnetic resonance
Np	Neopentyl
NR	Neutralisation-reionisation
o	Ortho
OAc	Acetate
OLED	Organic light emitting diode
OTf	Trifluoromethanesulfonate
OTs	Tosylate
p	Para
Ph	Phenyl
ppm	Parts per million
PPV	Poly(-phenylenevinylene)
UV/Vis	Triet/ visible
VGSR	Trimethy

1. Introduction

1.1 Phosphorus: "The Devil's Element"

Phosphorus ("phos" meaning "light" in Greek) was first isolated from urine by alchemist Hennig Brandt in 1669 ; as the $13^{\text {th }}$ element to be discovered, it has been referred to as "the Devil's element." ${ }^{11}$ Phosphorus is in period 2 of the pnictogen group, which also contains nitrogen (period 1), arsenic (period 3), antimony (period 4) and bismuth (period 5). The only stable isotope of phosphorus, of a total of twenty-three, is ${ }^{31} \mathrm{P}$. As such, it is 100% naturally abundant, and with a nuclear spin of $1 / 2$ is NMR active.

The phosphorus atom ' P ' and the ' CH ' fragment are isolobal and isoelectronic; they possess similar frontier molecular orbitals and electronic configurations, giving rise to the term "carboncopy," with reference to phosphorus. ${ }^{2}$ Phosphorus and carbon also have similar Pauling electronegativities (2.5 for carbon, 2.1 for phosphorus). Given these facts, phosphacarbons $\mathrm{R}_{3} \mathrm{P}$ and hydrocarbons $\mathrm{R}_{3} \mathrm{CH}$ often share similar reactivities, although disparities do arise due to the polar ${ }^{\delta-} \mathrm{C}-\mathrm{P}^{\delta+}$ bond of phosphacarbons compared with the apolar $\mathrm{C}-\mathrm{C}$ bond of hydrocarbons. Analogies between organophosphorus and organonitrogen compounds are less frequent since the increased electronegativity of nitrogen (3.0) reverses the bond polarity $\left({ }^{\delta+} \mathrm{C}-\mathrm{N}^{\delta-}\right.$ and ${ }^{\delta-} \mathrm{C}-$ $\mathrm{P}^{\delta+}$), thus altering the reactivity in many cases. ${ }^{3}$

Organophosphorus compounds might reasonably be divided into the following categories in accordance with their coordination number (σ) and valency (λ) (Figure 1); $\lambda^{5}-\sigma^{5}$) phosphoranes, $\lambda^{5}-\sigma^{4}$) phosphine oxides, $\lambda^{4}-\sigma^{4}$) phosphonium salts, $\lambda^{3}-\sigma^{3}$) phosphines, $\lambda^{3}-\sigma^{2}$) phosphaalkenes and $\lambda^{3}-\sigma^{1}$) phosphaalkynes.

Figure 1. Categories of organophosphorus compounds

Given that this project focuses primarily on tri-, di- and monovalent organophosphorus species, the key literature regarding phosphines, phosphaalkenes and phosphaalkynes will be reported, including defining characteristics, synthetic methodologies, reactivity and applications.

1.2 Phosphines

1.2.1 General considerations

Phosphines are neutral two electron-donor compounds of the general formula $\mathrm{R}_{3} \mathrm{P}$, analogous to amines, NR_{3}, which adopt trigonal pyramidal geometries with the phosphorus lone pair occupying the fourth vertex. The R-C-P angles vary dependent upon the substituents, although always remain less than 109.5°. Many phosphines oxidise readily upon exposure to air to form phosphine oxides $\mathrm{R}_{3} \mathrm{P}=\mathrm{O} ;{ }^{4}$ controlled synthetic routes towards phosphine oxides are also wellestablished and typically feature reaction of the phosphine with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ (Scheme 1). ${ }^{5}$

Scheme 1. Oxidation of $\mathrm{R}_{3} \mathrm{P}$ to $\mathrm{R}_{3} \mathrm{P}=\mathrm{O}^{5}$

1.2.2 Phosphine subcategories

Phosphines and phosphites are one of the most frequently reported phosphorus-containing species in the literature, and might reasonably be divided into the following sub-categories; \mathbf{i}) primary, secondary and tertiary, ii) bis-phosphines, iii) phosphomides, iv) pincer ligands, \mathbf{v}) phosphiranes, vi) phospholes, vii) phosphites (Figure 2).

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

$$
\mathrm{R}, \mathrm{R}^{\prime}=\text { alkyl, aryl, H, Cl, Br, I, } \mathrm{SiMe}_{3}
$$

Figure 2. Categories of phosphines

The applications of phosphines are extremely varied and well-documented; types $\mathbf{i},{ }^{6,7} \mathbf{i i},{ }^{8,9} \mathbf{i i i},{ }^{10,11}$ $\mathbf{i v},{ }^{12-17} \mathbf{v i},{ }^{18}$ and vii are all used primarily as ligands in catalysis due to the ease with which their
steric and electronic properties can be tuned, ${ }^{19}$ although type \mathbf{i} phosphines are also used as reducing agents for oxygen extraction. ${ }^{20,21}$ Type iv phosphine complexes find additional applications as gas sensors (Scheme $2 \mathbf{a}$), ${ }^{22-24}$ biomarkers, ${ }^{25}$ and molecular switches, ${ }^{26,27}$ while phosphines of the type vi find further applications in the synthesis of π-conjugated materials, ${ }^{28-}$ ${ }^{30}$ and the generation of β-functionalised phosphabenzene derivatives, achieved by lithiation of phospholes to phospholides and subsequent reaction with a strong base (Scheme $2 \mathbf{b}$). ${ }^{31}$ The instability of phosphiranes (type \mathbf{v}) has thus far limited most reports to novel chemical processes, ${ }^{32-34}$ although a handful of reports have described exploration of their use as ligands in transition metal catalysis. ${ }^{35}$

Scheme 2. a) Type iv phosphines as gas sensors, ${ }^{24}$ b) type vi phosphines for the generation of phosphabenzene derivatives ${ }^{31}$

1.2.3 Synthetic methodologies

The synthesis of organophosphorus compounds stems from the ready availability of the precursor phosphines, $\mathrm{PH}_{3}, \mathrm{PX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$. The primary phosphine PH_{3} is produced industrially from the reaction of P_{4} with $\mathrm{MOH}(\mathrm{M}=\mathrm{Na}, \mathrm{K})$, while the halophosphines PX_{3} are synthesised by reaction of P_{4} with $\mathrm{X}_{2} \cdot{ }^{36}$ Silylphosphines such as $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ are accessed via the reflux of P_{4} with Na / K followed by addition of $\mathrm{Me}_{3} \mathrm{SiCl}$; the resulting phosphine $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ can be converted to $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ upon stoichiometric addition of MeOH . ${ }^{37}$

A wide variety of routes are available for the preparation of organophosphorus compounds, although several feature in the literature more frequently than others, including the reaction of phosphides with halocarbons. For instance, the lithium phosphide $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ reacts with $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ at ambient temperature to produce the phosphine $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$, which was
identified by a ${ }^{31} \mathrm{P}$ NMR resonance at -175 ppm , with trace levels ($<10 \%$) of the phosphirane $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PSiMe}_{3}$ evidenced by a characteristic resonance at -318 ppm (Scheme 3 a). ${ }^{38}$ Another common route towards phosphines is the reaction of secondary or silylated phosphines with acyl chlorides (with or without a base). ${ }^{39,11,40}$ Clarke prepared a series of acyl phosphines by the addition of the acyl chloride $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{OMe})$ to the respective secondary phosphines $\mathrm{HPR}_{2}\left(\mathrm{R}=\mathrm{Ph},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, \mathrm{Cy}\right)$ in the presence of $\mathrm{NEt}_{3}($ Scheme $3 \mathbf{b}) ;{ }^{11}$ the acyl phosphines $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PR}_{2}\right)(2-\mathrm{OMe})$ were isolated in high yields ($>88 \%$) after filtration and removal of the solvent under reduced pressure.
a)

b)

Scheme 3. Phosphine syntheses; a) reaction of phosphides with halocarbons, ${ }^{38}$
b) reaction of secondary phosphines with acyl chlorides ${ }^{11}$

Phosphines have also frequently been accessed by the reaction of halophosphines with organolithium reagents. The reaction of $\mathrm{ArC} \equiv \mathrm{CLi}$ with $\mathrm{ClP}^{\prime} \mathrm{Bu}_{2}$ afforded the respective alkynylphosphines $\mathrm{ArC} \equiv \mathrm{CP}^{\mathrm{t}} \mathrm{Bu}_{2}$ in good yields ($>50 \%$) after purification by column chromatography (Scheme $4 \mathbf{a}$). ${ }^{41}$ The reliability of this route is demonstrated by the wide range of phosphines produced by it, including $\mathrm{PhC} \equiv \mathrm{CPPh}_{2},{ }^{42}$ and $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} .{ }^{43}$ The reaction of Grignard reagents, such as ArMgX , with chlorophosphines of the type $\mathrm{ClPR}_{2}{ }_{2}$ also provide access to the respective phosphines $\mathrm{ArPR}^{\prime}{ }_{2}$ with elimination of XMgCl (Scheme $4 \mathbf{~ b}$). ${ }^{44}$

b)

Scheme 4. Phosphine syntheses; a) reaction of chlorophosphines with organolithium reagents, ${ }^{41}$
b) reaction of chlorophosphines with Grignard reagents ${ }^{44}$

Less frequently reported routes to phosphines include the use of transition metal catalysis. Thus, the reaction of $\mathrm{RC} \equiv \mathrm{CH}$ with ClPPh_{2} in the presence of NEt_{3} was catalysed by $\left[\mathrm{Ni}(\mathrm{acac})_{2}\right](3 \mathrm{~mol}$ \%) to afford the corresponding phosphine, $\mathrm{RC} \equiv \mathrm{CPPh}_{2}$ (Scheme 5 a). ${ }^{45}$ Although the yields were variable, ranging from 30-70\%, the route held particular value for the synthesis of phosphines comprising labile substituents such as $\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Ac}), \mathrm{EtOC}(=\mathrm{O})\left(\mathrm{CH}_{2}\right)_{6}$ and $\mathrm{AcS}\left(\mathrm{CH}_{2}\right)_{9}$. A particularly rare route towards phosphines includes the radical reaction of elemental phosphorus. The reaction of P_{4} with RX in the presence of a radical initiator such as $\left[\mathrm{Ti}\left\{\mathrm{N}\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Ar}\right\}_{3}\right]$ has been documented to afford phosphines of the type PR_{3}. Yields were typically in excess of 70% (up to 97%), although the reaction failed with PhCl (Scheme 5 b). ${ }^{46}$

b)

Scheme 5. Phosphine syntheses; \mathbf{a}) transition metal catalysed, ${ }^{45} \mathbf{b}$) cleavage of $\mathrm{P}_{4}{ }^{46}$

1.2.4 Reactivity traits

Coordination chemistry

The influence of substituent steric profiles upon the coordination reactions of phosphines was first described by Tolman in 1970, ${ }^{47,48}$ and reviewed succinctly in 1976. ${ }^{49}$ Tolman reported that the coordination behaviour of phosphines to $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ could not be explained by electronic effects alone. Thus, despite the significantly increased basicity of $\mathrm{P}^{t} \mathrm{Bu}_{3}$ over PMe_{3} (assessed by comparison of the IR stretching frequencies of $\left[\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right] ; v_{(\mathrm{C}=0)} 2056 \mathrm{~cm}^{-1}$, $\left.\left[\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{PMe}_{3}\right] ; v_{(\mathrm{C}=\mathrm{O})} 2064 \mathrm{~cm}^{-1}\right), \mathrm{PMe}_{3}$ was found to coordinate to $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ preferentially ahead of $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$. This was rationalised in terms of steric crowding at the bonding face of the phosphorus centre of $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$, wherein the bulky ${ }^{\mathrm{t}} \mathrm{Bu}$ substituents clash with the CO ligands of the metal complex to a greater extent than the more compact Me groups. The Tolman cone angle was devised to compare the steric influences of phosphine substituents and is defined as "the apex angle of a cylindrical cone, centred $2.28 \AA$ from the centre of the phosphorus atom, which just touches the van der Waals radii of the outermost atoms of the model." ${ }^{49}$ It has since become a standard tool when discussing phosphine complexes.

Table 1. Tolman cone angles of phosphine complexes $\left[\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{PR}_{3}\right]^{49}$

Phosphine ($\mathbf{P R}_{3}$)	Cone angle ${ }^{\circ}$
$\mathbf{P H}_{3}$	93.8
PF_{3}	96.3
PMe_{3}	98.9
PCl_{3}	100
$\mathbf{P P h}_{3}$	103
$\mathbf{P}^{\mathbf{t}} \mathrm{Bu}_{3}$	106

The coordination chemistry of phosphines is dominated by lone pair donation, ${ }^{50,45,51}$ although bridging coordination has also been documented (see section 1.2.5), as has coordination of the phosphorus lone pair to bridge two, ${ }^{52}$ and three metal centres. ${ }^{53}$ Literature reports have noted that the prevalence of cis- or trans- isomers within bis-phosphine di-halide metal complexes is often directed by the radius of the metal nuclei. ${ }^{54}$ Despite the comparable atomic radii of palladium and platinum (137 pm for palladium; 139 ppm for platinum), square planar palladium complexes of the type $\left[\mathrm{PdX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ typically adopt the trans-configuration, while square planar platinum complexes $\left[\mathrm{PtX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ adopt either cis- or transgeometries when formed under the same conditions (Scheme $6 \mathbf{a}$). ${ }^{55}$

While the cis-ltrans-isomers of $\left[\mathrm{PtX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ may be distinguished by the characteristic magnitude of platinum satellites (typically ${ }^{l} J_{P-P_{t}} 3500-3900 \mathrm{~Hz}$ for cis-complexes, 2200-2800 Hz for trans-complexes), virtual coupling effects are an invaluable tool for distinguishing between cis-/trans-[$\left.\mathrm{PdX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, which do not exhibit characteristic satellites due to the lack of a suitable spin-active isotope. ${ }^{56}$ Virtual coupling can be explained by considering trans$\left[\mathrm{MX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, for which the phosphine ligands are chemically equivalent but magnetically inequivalent; thus, the carbon atoms bound to the α-phosphorus couples to both the α - and β phosphorus centres (Scheme $6 \mathbf{b}$), which are separated by one and three bonds respectively, and the couplings become apparently identical, resulting in a virtual triplet signal instead of two doublets. The same virtual triplet is exhibited by the PCH_{2} protons, with the coupling resulting from two-bond and four-bond proton-phosphorus separations. For instance, the PCH_{2} groups of trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ show an apparent six line pattern in the ${ }^{1} \mathrm{H}$ NMR spectrum, due to the quartet being further split as a virtual triplet, at $1.80 \mathrm{ppm}\left(J_{H-P} 7 \mathrm{~Hz}\right)$, while the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a virtual triplet resonance at $13.8 \mathrm{ppm}\left(J_{C-P} 26.9 \mathrm{~Hz}\right){ }^{55}$ Virtual coupling effects are not typically observed in cis-[$\left.\mathrm{MCl}_{2}\left(\mathrm{PR}_{2} \mathrm{CH}_{3}\right)_{2}\right]$ complexes.

Scheme 6. Phosphine coordination chemistry; a) syntheses of cis-/trans-[$\left.\mathrm{MX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right],{ }^{55}$
b) virtual coupling effects of trans- $\left[\mathrm{MX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{56}$

Nucleophilic reactions

Phosphines undergo several reactions in which they behave as nucleophiles, including quarternisation reactions to afford phosphonium ions of the general formula $\mathrm{PR}_{4}{ }^{+}$. One particularly important example is $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Me}$, which is the precursor to the Wittig reagent $\left(\mathrm{Ph}_{3} \mathrm{PCR}_{2}\right)$. The phosphonium ion $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Me}$ is synthesised by reaction of PPh_{3} with MeI; conversion to $\mathrm{Ph}_{3} \mathrm{PCR}_{2}$ is achieved by the addition of a strong base, often PhLi or ${ }^{\mathrm{n}} \mathrm{BuLi}$ (Scheme 7 a)..57 Tetraphenylphosphonium chloride $\left[\mathrm{Ph}_{4} \mathrm{P}\right]^{+}[\mathrm{Cl}]^{-}$, which is frequently used in
phase transfer catalysis, ${ }^{58}$ is afforded from the reaction of PPh_{3} with PhCl in the presence of a nickel catalyst (Scheme $7 \mathbf{~ b}$). ${ }^{59}$ Phosphonium salts like $\left[\mathrm{R}_{3} \mathrm{P}^{+} \mathrm{H}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$are synthesised by the addition of acids, such as $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, to $\mathrm{R}_{3} \mathrm{P}$ (Scheme $7 \mathbf{c}$). ${ }^{60}$

Scheme 7. Synthesis of phosphonium salts; a) $\left[\mathrm{Ph}_{3} \mathrm{P}\right]^{+}[\mathrm{Me}]^{-57}$, b) $\left[\mathrm{Ph}_{4} \mathrm{P}\right]^{+}[\mathrm{Cl}]^{-},{ }^{59}$ c) $\left[\mathrm{R}_{3} \mathrm{P}^{+} \mathrm{H}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-60}$

One common application of phosphines is the synthesis of phosphides $\left[\mathrm{R}_{2} \mathrm{P}\right]^{+}[\mathrm{M}]^{-}$, which play a key role in the formation of new carbon-phosphorus bonds; examples include the reaction of $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$, which affords $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2} .{ }^{38}$ Phosphide synthesis can be achieved by several routes, including a) addition of alkoxides to $\left.\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3},{ }^{61,62} \mathbf{b}\right)$ addition of alkali metals to chlorophosphines, ${ }^{63} \mathbf{c}$) addition of alkyllithium reagents to secondary phosphines $\mathrm{YP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{Y}=\mathrm{SiMe}_{3}, \mathrm{H}\right)($ Scheme 8$) .{ }^{64}$

| a) $\quad \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3} \xrightarrow{\mathrm{MOR}}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{-}[\mathrm{M}]^{+}$ | |
| :--- | :--- | :--- |
| b) $\quad \mathrm{ClPPh}_{2} \xrightarrow{2 \mathrm{Na}}\left[\mathrm{PPh}_{2}\right]^{-}[\mathrm{Na}]^{+}$ | $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
 $\mathrm{R}=$ alkyl, aryl |
| c) $\quad \mathrm{YP}\left(\mathrm{SiMe}_{3}\right)_{2} \xrightarrow{\mathrm{RLi}}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{-}[\mathrm{Li}]^{+}$ | $\mathrm{Y}=\mathrm{SiMe}_{3}, \mathrm{H}$ |

Scheme 8. Syntheses of phosphides; a) addition of MOR to $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3},{ }^{61} \mathbf{b}$) addition of alkali metals to chlorophosphines, ${ }^{63} \mathbf{c}$) addition of alkyllithium reagents to $\mathrm{YP}\left(\mathrm{SiMe}_{3}\right)_{2}{ }^{64}$

Reduction reactions

Due to the ease with which phosphines are oxidised, they are commonly employed as reducing agents. ${ }^{65}$ The Staudinger ligation, ${ }^{66}$ a variation of the Staudinger reaction, ${ }^{21}$ enables the reduction of azides using tertiary phosphines via an iminophosphorane intermediate that ultimately generates amides (Scheme 9a). ${ }^{67}$ The Mitsunobu reaction is another example of the application of phosphines as reducing agents, in which primary and secondary alcohols are converted to esters, ethers, thioethers, imides or azides with PPh_{3} and an azodicarboxylate, ${ }^{20}$ typically DEAD or DIAD (Scheme $9 \mathbf{b}$). ${ }^{68,69}$ The Appel reaction also incorporates a phosphine as a reducing agent; the PPh_{3} is initially oxidised to a chlorophosphonium salt $\left[\mathrm{ClPPh}_{3}\right]^{+}\left[\mathrm{CCl}_{3}\right]^{-}$ by the addition of CCl_{4} (Scheme $9 \mathbf{c}$). ${ }^{70}$ Then the salt reacts with an alcohol to afford an oxyphosphonium intermediate $\left[\mathrm{RCH}_{2} \mathrm{OPPh}_{3}\right]^{+}[\mathrm{Cl}]^{-}$, followed by spontaneous conversion to an alkylhalide.

Scheme 9. Phosphines as reducing agents; a) the Staudinger ligation, ${ }^{67}$ b) the Mitsunobu reaction, ${ }^{68}$ c) the Appel reaction ${ }^{70}$

1.2.5 Significant phosphines and their chemistry

Coordination complexes in catalysis

Among the vast collection of phosphine complexes, several stand out for their prevalent use in catalysis, in which the phosphines typically act as spectator ligands. Well-established examples include Wilkinson's catalyst $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right]$ (1.A) for the hydrogenation of alkenes, ${ }^{6}$ "Grubbs catalyst" (of which many variations are known, such as $\left.\left[\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHR}) \mathrm{Cl}_{2}\right]\right)(\mathbf{1 . B})$ for olefin metathesis, ${ }^{7}\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (1.C) for the Heck reaction, ${ }^{71}$ Stille coupling, ${ }^{72}$ Suzuki coupling, ${ }^{73}$ Sonogashira coupling, ${ }^{74}$ and chiral [RuHX(BINAP)] (1.D) for the Noyori hydrogenation in the enantioselective hydrogenation of ketones, aldehydes and imines (Figure 3). ${ }^{9}$

1.A

1.B

1.C

1.D

Figure 3. Transition metal phosphine complexes in catalysis; Wilkinsons catalyst (1.A), ${ }^{6}$

$$
\text { "Grubbs catalyst" }(\mathbf{1 . B}),{ }^{7}\left[\mathrm{Pd}^{\left.\left(\mathrm{PPh}_{3}\right)_{4}\right](\mathbf{1 . C}),{ }^{71-74}[\mathrm{RuHX}(\mathrm{BINAP})](\mathbf{1 . D})^{9} .}\right.
$$

Pincer ligand complexes, although less well-established than any featured in Figure 3, are becoming increasingly popular in catalysis due to their highly tunable electronic and steric properties, ${ }^{75}$ which are achieved via alterations to the pendant arms $\left(\mathrm{AR}_{2}\right)$, the heteroatom (E), the metal centre (M) and the metal substituent (X) (Figure 4).

$\mathrm{A}=\mathrm{N}, \mathrm{P}$
$\mathrm{E}=\mathrm{C}, \mathrm{N}, \mathrm{P}$
$\mathrm{R}=$ alkyl, aryl
$\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}, \mathrm{Ni}$,
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{OTf}$

Figure 4. Pincer ligands possess highly tunable electronic and steric properties

PCP pincer complexes such as $[\mathrm{PdCl}(\mathrm{PCP})]\left(\mathrm{PCP}=\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(2,6-\mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}\right\}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}\right.\right.$, $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{13}\right), \mathrm{H}\right)$ have been used to catalyse the Heck reaction of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{R}^{\prime}\right)(4-\mathrm{X})\left(\mathrm{R}^{\prime}=\right.$
$\mathrm{CH}_{3} \mathrm{CO}, \mathrm{H} ; \mathrm{X}=\mathrm{Br}$, I) with $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Me}$ at $120^{\circ} \mathrm{C}\left(\right.$ Scheme 10 a), ${ }^{13}$ generating the coupled product $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{R}{ }^{\prime}\right)\left(4-(\mathrm{HC})_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$ in yields of 57-98\%. The perfluoroalkylated PCP pincer complex (where $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{13}$) was recovered in 96% yield by solid-phase extraction and re-used up to four times with little diminishment of catalytic activity. The catalytic carboxylation of allylstannane ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ has also been achieved by the use of a PCP pincer complex $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)(\mathrm{PCP})\right](3.5 \mathrm{~mol} \%)\left(\mathrm{PCP}=\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(2,6-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right\}\right)($ Scheme 10 b). ${ }^{16}$ The carboxylate ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnOC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ was generated in 80% yield after 16 h , though the yield was increased to 94% after 40 h . The results are comparable with the traditional system, which uses $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](8 \mathrm{~mol} \%)$ with 33 bar of CO_{2} to generate ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnOC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ in 90% yield after 24 h , though the reduced levels of catalyst required in the former is an advantage.
a)

b)

Scheme 10. PCP pincer complexes for; \mathbf{a}) the Heck reaction, ${ }^{13}$ b) allylstannane carboxylation ${ }^{16}$

As for PCP pincer complexes, PNP complexes are also frequently used to effect catalytic conversions. The ruthenium complex $\left[\mathrm{Ru}(\mathrm{PNP})(\mathrm{H}) \mathrm{PMe}_{3}\right]\left(\mathrm{PNP}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{i} \mathrm{Pr}_{2}\right)_{2}\right)$ has been applied in the catalytic dehydrogenation of ammonia-borane with an unprecedented turnover number (TON) (8300 with $0.01 \mathrm{~mol} \%$ catalyst) (Scheme $11 \mathbf{a}$), ${ }^{76}$ while the platinum complex $[\mathrm{Pt}(\mathrm{PNP}) \mathrm{OTf}]\left(\mathrm{PNP}=\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{PPh}_{2}\right)_{2}\right)$ has effected stoichiometric C-H bond activation (Scheme 11 b). ${ }^{77}$

a)

Scheme 11. PNP pincer complexes for; \mathbf{a}) dehydrogenation of $\left.\mathrm{H}_{3} \mathrm{~B}-\mathrm{NH}_{3},{ }^{76} \mathbf{b}\right)$ C-H bond activation ${ }^{77}$

Alkynyl- and propargylphosphines

Alkynylphosphines are extremely well-documented throughout the literature, often exhibiting unusual reactions with transition metals due to the π-system. Carty synthesised a library of alkynylphosphines $\mathrm{RC} \equiv \mathrm{CPR}^{\prime}{ }_{2}$ by reaction of the respective lithiated alkynes $\mathrm{RC} \equiv \mathrm{CLi}$ with CIPR' ${ }_{2}$ (see above, Scheme $4 \mathbf{a}$), and noted that unlike phosphines of the type $\mathrm{R}_{3} \mathrm{P}$, alkynylphosphines $\mathrm{RC} \equiv \mathrm{CPR}$ '2 do not readily oxidise upon exposure to air due to the "stabilising effect of α-acetylenic substituents." ${ }^{, 78}$ Several of the alkynylphosphines exhibited IR absorbances at the lower end of the typical range for alkynes ($\mathrm{RC} \equiv \mathrm{CR}$; $v_{(\mathrm{C} \equiv \mathrm{C})} 2300-2175 \mathrm{~cm}^{-1}$) (Table 2), which Carty postulated may be attributed to π-conjugation between the phosphorus lone pair and the alkyne. Among the collection of Carty's alkynylphosphines, $\mathrm{Ph}_{2} \mathrm{AsC}^{\mathrm{C}}=\mathrm{CPPh}_{2}$ was the first example of a mixed phosphine-arsine to be reported, while $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ and $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CP}\left(\mathrm{NEt}_{2}\right)_{2}$ were the first examples of asymmetric alkynyldiphosphines. Reports of main group alkynylphosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CPR}_{2}(\mathrm{R}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$ are limited to a handful of examples, most of which were reported by Siebert, who used four different synthetic routes, depending on the identity of E (Scheme 12). ${ }^{79}$ As for Carty's examples, the IR absorbances for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CPPh}_{2}$ were at relatively low frequencies.

Table 2. Selected IR absorbances of alkynylphosphines

Compound	$\mathbf{v}_{(\mathrm{C} \equiv \mathrm{C})} / \mathbf{c m}^{-1}$	Source
$\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CPPh}_{2}$	2200	78
$\mathrm{MeC} \equiv \mathrm{CPPh}_{2}$	2195	78
$\mathrm{MeC} \equiv \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$	2200	78
$\mathrm{PhC} \equiv \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$	2170	78
$\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CPPh}_{2}$	2105	79
$\mathrm{Me}_{3} \mathrm{GeC} \equiv \mathrm{CPPh}_{2}$	2115	79
$\mathrm{Me}_{3} \mathrm{SnC} \equiv \mathrm{CPPh}_{2}$	2078	79
$\mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{CPPh}_{2}$	2101	79
$\mathrm{Ph}_{3} \mathrm{GeC} \equiv \mathrm{CPPh}_{2}$	2105	79
$\mathrm{Ph}_{3} \mathrm{SnC} \equiv \mathrm{CPPh}_{2}$	2084	79

a)

b)

c)

d)

Scheme 12. Synthesis of main group alkynylphosphines ${ }^{79}$

The postulated π-conjugation between the phosphorus centre and alkyne prompted an in-depth study into the reactivity of $\mathrm{PhC} \equiv \mathrm{CPPh}_{2}$ by several groups. Carty reported that cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PhC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ could be induced to cyclise upon heating (Scheme $13 \mathbf{a}$), ${ }^{80}$ and rationalised the process with the close proximity $(3.110(10) \AA)$ of the phosphorus centre to the alkynic π-system of the second ligand, ascertained by single crystal X-ray diffraction. Lalinde demonstrated that both the phosphine and alkyne moieties of $\mathrm{PhC} \equiv \mathrm{CPPh}_{2}$ could be promoted to coordinate to platinum (Scheme $13 \mathbf{b}$), ${ }^{81}$ while Forniés successfully generated a new carboncarbon bond between the alkyne and $\mathrm{C}_{6} \mathrm{~F}_{5}$ by reaction of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PhC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ with cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THF})_{2}\right]$ (Scheme $\left.13 \mathbf{c}\right) .{ }^{82}$
a)

b)

c)

Scheme 13. Novel coordination chemistry of $\mathrm{PhC} \equiv \mathrm{CPPh}_{2}$ and its complexes; a) cyclisation of cis-
$\left.\left[\mathrm{PtCl}_{2}\left(\mathrm{PhC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right],{ }^{80} \mathbf{b}\right)$ synthesis of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mu-\kappa \mathrm{P}: \eta^{2}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right\}_{2}\right],{ }^{81}$
c) addition of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PhC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ across a $\mathrm{Pt}-\mathrm{C}_{6} \mathrm{~F}_{5}$ bond ${ }^{82}$

In contrast to the prevalent reports of alkynylphosphines in the literature, propargylphosphines remain extremely rare, the only documented examples being $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$, ${ }^{83}$ $\mathrm{MeC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2},{ }^{84}$ Mes* $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)_{2},{ }^{85} \mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2},{ }^{84} \mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ and $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left\{\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{P}(2,5-\mathrm{Ph})_{2}\right\}_{2} .{ }^{86}$ Synthesis has been achieved via two routes, including the reaction of the respective lithium phosphide $\mathrm{LiPR}_{2}\left(\mathrm{R}=\mathrm{Ph},\left\{\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{P}(2,5-\mathrm{Ph})_{2}\right\}\right)$ with propargyl bromide $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$ (Scheme $14 \mathbf{a}$), which afforded the propargylphosphines $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}$ and $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left\{\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{P}(2,5-\mathrm{Ph})_{2}\right\}$ in 42% and 60% yields in turn. ${ }^{86}$ Furthermore, the Grignard reaction of propargyl bromide $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$ and subsequent addition of Mes* PCl_{2} generated Mes* $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CSiMe}_{3}\right)_{2}$ in 80% yield (Scheme 14 b$) .{ }^{85}$

b)

Scheme 14. Propargylphosphine syntheses; a) via lithium phosphides, ${ }^{86} \mathbf{b}$) by chlorophosphine ${ }^{85}$

1.3 Phosphaalkenes

1.3.1 General considerations

Phosphaalkenes possess the general formula $\mathrm{R}_{2} \mathrm{C}=\mathrm{PR}$ and are isoelectronic with alkenes, $\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}$, resulting in similar reactivity profiles; both undergo polymerisation, addition reactions and cyclisation reactions. Large disparities in bond angles between typical phosphaalkenes, alkenes and imines exist, whereby phosphaalkenes typically possess contracted angles around the double bond (Table 3). This can be rationalised by the low degree of 3 p character possessed by the lone pair of phosphaalkenes, in contrast to the lone pair of imines and the σ-bond of alkenes, both of which experience a much greater contribution from the $3 p$ orbitals. Phosphaalkenes are polarised as ${ }^{\delta-} \mathrm{C}=\mathrm{P}^{\delta+}$, in contrast to imines ${ }^{\delta+} \mathrm{C}=\mathrm{N}^{\delta-}$, due to the relative electronegativity differences between C / P and C / N; quantification by NBO calculations resulted in heteroatom charges of +0.42 and -0.59 for $\mathrm{H}_{2}{ }^{\delta-} \mathrm{C}=\mathrm{P}^{\delta+} \mathrm{H}$ and $\mathrm{H}_{2}{ }^{\delta+} \mathrm{C}=\mathrm{N}^{\delta-} \mathrm{H}$ in turn, rationalising their frequently different reactivities. ${ }^{87}$ The bond polarity of phosphaalkenes may, however, be inverted by installing electron-withdrawing substituents, such as amines, at the carbon centre, typically resulting in elongation of the double bond $\left(\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}=\mathrm{PH} ; 1.740(1) \AA\right.$), a slight change to the $\mathrm{C}=\mathrm{P}-\mathrm{A}$ angle $\left(\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}=\mathrm{PH} ; 103(1)^{\circ}\right)$, and modified reactivities. ${ }^{3}$

Table 3. Bond lengths, $C=P-A$ angles $(A=H, C)$, heteroatom charges and lone pair characteristics of phosphaalkenes, imines and alkenes

$\mathbf{C o m p o u n d}$	$\boldsymbol{d} \mathbf{C = P} / \mathbf{A}$	$\mathbf{C = P - A} /{ }^{\circ}$	Source	Heteroatom charge /e	3s / \%	3p/\%	Source
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{P H}$	1.67	100	88	+0.42	66	34	87
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{N H}$	1.26	120	89	-0.59	39	61	87
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C H}_{\mathbf{2}}$	1.337	117.3	90	0	33	67	-

As for classical alkenes, the HOMO and HOMO-1 of phosphaalkenes are associated with the π system and lone pair (σ-bond for alkenes) respectively. However, the situation is reversed for imines, in which the HOMO relates to the nitrogen lone pair and the HOMO-1 refers to the π system (Figure 5). ${ }^{91}$ The HOMO and $\mathrm{HOMO}-1$ ionisation energies of $\mathrm{H}_{2} \mathrm{C}=\mathrm{PH}$ are -10.3 and -10.7 eV respectively, ${ }^{92}$ as determined by photoelectron spectroscopy, are close to previously calculated values (-9.63 and -10.43 eV). ${ }^{92}$ The phosphaalkene $\mathrm{H}_{2} \mathrm{C}=\mathrm{PH}$ possesses a significantly smaller HOMO - HOMO-1 energy gap $(0.4 \mathrm{eV})$ than the imine $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}(1.87$ eV), which allows phosphaalkenes to react at both the π-system and the lone pair, while imines typically react via the nitrogen lone pair.

HOMO-1

Figure 5. The HOMO and HOMO-1 ionisation energies of $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH},{ }^{91} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}{ }^{93}$

1.3.2 Synthetic methodologies

Becker condensation

One of the most frequently reported methodologies for the synthesis of phosphaalkenes is now referred to as the Becker synthesis. The reaction requires the addition of a silylated phosphine $\mathrm{RP}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ to an acyl chloride (${ }^{\mathrm{t}} \mathrm{BuCOCl}$) (Scheme $\left.15 \mathbf{a}\right) .{ }^{94}$ The resulting acyl phosphine intermediate is only detected on rare occasions, ${ }^{95}$ as it usually undergoes a spontaneous [1,3]-silatropic rearrangement to form the phosphaalkene, reportedly driven by the oxophilicity of silicon. Appel demonstrated the influence of temperature on the [1,3]-silatropic rearrangement step in 1984. The reaction of $\mathrm{RP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ with CO_{2} afforded the acyl phosphine ${ }^{\dagger} \mathrm{BuC}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ as the only product at "low temperature" (unspecified) (Scheme $15 \mathbf{b}$), with a ${ }^{31} \mathrm{P}$ NMR resonance at $-86.9 \mathrm{ppm} .{ }^{95}$ Upon warming to ambient temperature, a new ${ }^{31} \mathrm{P}$ NMR resonance was observed at -17.9 ppm , attributed to ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)$, prompting Appel to postulate the existence of an equilibrium between ${ }^{t} \mathrm{BuC}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ and ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)$.
a)

b)

Scheme 15. Becker condensation of phosphaalkenes; a) synthesis of ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PR},{ }^{94}$
b) the equilibrium between ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ and ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)^{95}$

Dehydrohalogenation

The first example of a thermally stable phosphaalkene was reported by Bickelhaupt in 1978. Synthesis of the dichlorophosphine precursor MesPCl_{2} was achieved by reaction of MesMgBr with PCl_{3}. The addition of $\mathrm{Ph}_{2} \mathrm{CHLi}$ afforded $\operatorname{MesP}(\mathrm{Cl}) \mathrm{C}(\mathrm{H}) \mathrm{Ph}_{2}$, which was then dehydrohalogenated via reaction with DBU to generate the phosphaalkene $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{PMes}$ in 50% yield (Scheme $16 \mathbf{a}$). ${ }^{96}$ The methodology was subsequently applied to the syntheses of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{PR}$ $\left(\mathrm{R}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{3}(2,6-\mathrm{Me})_{2}\right)$ in 1984, the precursor chlorophosphines being obtained by an alternative route (Scheme $16 \mathbf{b}$), ${ }^{44}$ for which improved overall yields were reported (63$83 \%$).
a)
a) $\mathrm{R}-\mathrm{MgBr}$
b) $\mathrm{R}-\mathrm{MgBr}$

Scheme 16. Syntheses of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{PR}$ by the dehydrohalogenation methodology via route \mathbf{a}), ${ }^{96}$ route $\left.\mathbf{b}\right){ }^{44}$

Alternate synthetic routes

One of the less commonly documented routes towards phosphaalkenes is the Phospha-Peterson reaction. The successive addition of ${ }^{n} \mathrm{BuLi}$ and $\mathrm{ClSiMe}_{2}{ }^{\mathrm{B}} \mathrm{Bu}$ converted ArPH_{2} to the lithium salt $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{P}(\mathrm{Ar})^{\mathrm{t}} \mathrm{Bu}\right]^{-}[\mathrm{Li}]^{+}$; the subsequent addition of $\mathrm{R}(\mathrm{H}) \mathrm{C}=\mathrm{O}$ produced the phosphaalkenes $E / Z-\mathrm{R}(\mathrm{H}) \mathrm{C}=\mathrm{PAr}$ as a mixture of isomers (Scheme $17 \mathbf{a}) .{ }^{97}$ The phosphaalkenes were purified by
column chromatography, although separation of the isomers was not reported. Alternate variations of the Phospha-Peterson reaction have also been documented. Yam reported the synthesis of a collection of phosphaalkenes $E / Z-\mathrm{R}\left(\mathrm{R}^{\prime}\right) \mathrm{C}=$ PMes using catalytic quantities of KOH or NaOH to initiate the reactions (Scheme $17 \mathbf{b}$). ${ }^{98}$ The products were isolated by either vacuum distillation or recrystallisation in yields that ranged from 43-72\%. The scope of the reaction might be considered to be limited, given that attempts to synthesise the P-adamantylphosphaalkenes $E / Z-\mathrm{R}\left(\mathrm{R}^{\prime}\right) \mathrm{C}=\mathrm{PAd}$ were unsuccessful
a)

b)

Scheme 17. Phospha-Peterson reaction variations; a) traditional, ${ }^{97}$ b) base-initiated ${ }^{98}$

The Phospha-Wittig-Horner reaction was adapted from the Wittig reaction, whereby the reaction of a phosphaylide with aldehydes or ketones affords alkenes; ${ }^{99}$ however, in the Phospha-Wittig-Horner variation a Phospha-Wittig reagent like $\left[(\mathrm{EtO})_{2} \mathrm{P}(=\mathrm{O}) \mathrm{P}(\mathrm{Ph}) \mathrm{W}(\mathrm{CO})_{5}\right]^{-}$is reacted with aldehydes or ketones to produce phosphaalkene complexes (Scheme 18). ${ }^{100}$ The resulting complexes were themselves unstable and as such were trapped via reaction with methanol or dienes and characterised as the products of those reactions.

Scheme 18. The Phospha-Wittig-Horner reaction ${ }^{100}$

Another route to phosphaalkenes involves the thermal rearrangement of secondary vinyl phosphines. Heating $\mathrm{H}_{2}(\mathrm{Me}) \mathrm{C}=\mathrm{CP}(\mathrm{H}) \mathrm{Mes}$ to $100^{\circ} \mathrm{C}$ for 7 h converted $>80 \%$ to the corresponding phosphaalkene, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{PMes}$ (Scheme 19), ${ }^{101}$ though this could not be separated
from unreacted $\mathrm{H}_{2}(\mathrm{Me}) \mathrm{C}=\mathrm{CP}(\mathrm{H})$ Mes, its presence being confirmed solely by NMR spectroscopy.

Scheme 19. Thermally-induced rearrangement of vinyl phosphines ${ }^{101}$

Phosphaalkenes can also be accessed via the insertion of an in situ generated dihalocarbene into the $\mathrm{P}-\mathrm{H}$ bond of primary phosphines RPH_{2} and subsequent base-induced dehydrohalogenation. Thus, the stepwise reaction of Mes* PH_{2} with $\mathrm{HCX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ in the presence of KOH afforded the phosphine Mes* $\mathrm{P}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{X}$, which was dehydrohalogenated to the phosphaalkenes E/Z-Mes $* \mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{X}$ upon addition of DBU (Scheme 20). ${ }^{102} \mathrm{~A}$ single isomer was isolated by chromatography followed by recrystallisation, though its stereochemistry was not determined.

Scheme 20. Phosphaalkene synthesis via carbene insertion into a primary phosphine ${ }^{102}$

Phosphaalkene isomerism

Phosphaalkenes exist as both E - and Z-isomers due to lack of free rotation about the double bond (Figure 6). The atom bound directly to the $\mathrm{C}=\mathrm{P}$ carbon centre determines the E / Z assignment on the basis of molecular mass; for example, OSiMe_{3} is prioritised above $\mathrm{C}_{6} \mathrm{H}_{5}$, given that the molecular mass of oxygen is 16 , while for carbon the value is 12 . Given the almost negligible mass of the phosphorus lone pair (2/1837 of a proton's mass), it is always the lower priority substituent on the phosphorus centre.

E
$\mathrm{R}^{\prime}=$ highest priority group

Figure 6. E-/Z-phosphaalkenes

While the absolute stereochemistry of an isomerically pure sample of a phosphaalkene cannot be determined purely on the basis of spectroscopic data, where both isomers are present, it has been determined that the Z-isomer exhibits a higher-field chemical shift in both the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, and the phosphaalkenic carbon centre shows a larger carbon-phosphorus coupling constant. ${ }^{103}$ This trend was demonstrated by phosphaalkenes $E / Z-\left\{\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\right.$ $\mathrm{Br})\} \mathrm{P}=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right\}$, the isomer configurations being determined by X-ray diffraction; the $\mathrm{C}=\mathrm{P}$ bond length of $E-\left\{\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\mathrm{Br})\right\} \mathrm{P}=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right\}$ was marginally elongated compared to $\mathrm{Z}-\left\{\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\mathrm{Br})\right\} \mathrm{P}=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right\}$, providing a rationale for the smaller one-bond carbon-phosphorus coupling constant of the E-isomer, which also possessed a significantly smaller $\mathrm{C}=\mathrm{P}-\mathrm{C}$ angle (Table 4). ${ }^{104}$ This report is the only known single crystal Xray diffraction study of both the E - and Z-isomers of the same phosphaalkene. UV/Vis spectroscopy showed that the $\mathrm{C}=\mathrm{P} \pi-\pi^{*}$ transition was blue-shifted in $Z-\left\{\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\right.$ $\mathrm{Br})\} \mathrm{P}=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right\}$ to 330 nm , compared with 345 nm for $E-\left\{\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\right.$ $\mathrm{Br})\} \mathrm{P}=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right\}$.

The isomeric preference of phosphaalkenes is a topic to which much research has been dedicated. Regitz reported that formation of $E-\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ is favoured when R is a primary or secondary substituent, while $Z-\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ is favoured for tertiary substituents. ${ }^{105}$ However, Kostitsyn highlighted the existence of exceptions, as for E / Z -$\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}(\mathrm{R}=2,2$-dichloro-l-methylcyclopropyl), for which the E-isomer dominated (62:38). ${ }^{106}$ The propensity of phosphaalkenes to undergo isomerisation has also been reported. The isomerically pure phosphaalkene E-Mes* $\mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ was photoisomerised to a mixture of $E / Z-\mathrm{Mes} * \mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ by irradiation with a 100 W medium pressure mercury lamp for 6 h at $0{ }^{\circ} \mathrm{C} ;{ }^{107}$ this could not be effected thermally. Separation of the isomers was achieved by column chromatography and the spectroscopic characteristics of each isomer was in line with known trends (Table 4), ${ }^{103}$ including a significantly larger carbon-phosphorus one-bond coupling constant for Z-Mes* $\mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$.

Table 4. Selected data of $E / Z-\operatorname{ArP}=\mathrm{C}(\mathrm{H}) \mathrm{Ar}^{\prime}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Mes})_{2}(4-\mathrm{Br}), \mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Br})\right),{ }^{104}$ $E-/ Z-\mathrm{Mes} * \mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}{ }^{107}$

Compound	$\begin{aligned} & { }^{31} \mathbf{P} \text { NMR } \\ & \text { / ppm } \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR } \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{1} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & d \mathbf{C}=\mathbf{P} \\ & / \AA \end{aligned}$	$\begin{aligned} & \mathrm{C}=\mathrm{P}-\mathrm{C} \\ & \rho^{\circ} \end{aligned}$	$\begin{aligned} & \lambda_{\text {max }}\left(\pi \rightarrow \pi^{*}\right) \\ & / \mathrm{nm} \end{aligned}$
$E-\mathrm{ArP}=\mathrm{C}(\mathrm{H}) \mathrm{Ar}{ }^{\prime}$	241	179	39.7	1.682(3)	101.57(14)	345
$Z-\mathrm{ArP}=\mathrm{C}(\mathrm{H}) \mathrm{Ar}{ }^{\prime}$	235	-	-	1.666 (3)	107.30(14)	330
$E-\mathrm{Mes} * \mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$	259	176	34.8	-	-	-
Z-Mes*P=C(H)Ph	242	163	48.8	-	-	-

Cowley demonstrated that the reaction conditions have a significant effect on isomeric preference in the reaction of $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with ${ }^{\mathrm{t}} \mathrm{BuCOCl}$, which at $20^{\circ} \mathrm{C}$ afforded isomerically pure $Z-{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$, while at $-78^{\circ} \mathrm{C}$ only $E-{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ was produced. Once formed, both isomers were stable to interconversion (Scheme 21). ${ }^{108}$ The isomers were markedly different in their reactivity profiles; a "novel catalytic oxygenation" converted E ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ to ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ (though no mechanism was proposed), while the same conversion of $Z-{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ required the addition of NaOH , or heating to $140^{\circ} \mathrm{C}$ in the absence of solvent. Both isomers were converted to ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ upon addition of stoichiometric $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$. The authors proposed an intermediate η^{2}-phosphaalkene $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ complex that decomposed to a phosphaalkyne, although no evidence was provided.

Scheme 21. Syntheses and reactivity profiles of $E / Z-{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}{ }^{108}$

1.3.3 Reactivity traits

Coordination chemistry

There are five known coordination modes for phosphaalkenes. The η^{1}-coordination mode (type $\mathbf{i})$ is the most well-documented, although η^{2}-complexes (type ii) are also relatively common (Figure 7). This is attributed to the small energy gap between the HOMO and HOMO-1 typical of phosphaalkenes. The η^{1}, η^{2}-coordination mode (type iii) was slow to emerge, although many examples have since been reported. In contrast, examples of $\eta^{1}\left(\mu_{2}\right)$-complexes (type $\mathbf{i v}$) and $\eta^{2}\left(\mu_{3}\right)$-complexes (type $\left.\mathbf{v}\right)$ remain rare.

i

ii

iii

iv

v

Figure 7. Coordination modes of phosphaalkenes

The first examples of coordinated phosphaalkenes were described by Nixon in 1981, who reported several η^{1}-complexes, including $\left[\mathrm{Pt}\left\{\mathrm{P}(\mathrm{Mes})=\mathrm{CPh}_{2}\right\}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]$ (Figure 8 1.E). ${ }^{109}$ The η^{2}-complexes were reported shortly after, and typically possessed elongated $\mathrm{C}=\mathrm{P}$ bonds $\left[\mathrm{Ni}\left\{\eta^{2}-\right.\right.$ $\left.\mathrm{P}(\mathrm{R})=\mathrm{CPh}_{2}\right\}$ (bipy)];1.832(6) Å, Figure 8 1.F), indicative of a large degree of π-back-bonding from the metal centre. ${ }^{110}$ Holand reported the first η^{1}, η^{2}-complex in 1984 (Figure 8 1.G), identified unambiguously by X-ray crystallography, which demonstrated a lesser degree of carbon-phosphorus double bond elongation (1.78(1) \AA) than the η^{2}-complexes. ${ }^{111}$ The same publication also documented the first example of an $\eta^{1}\left(\mu_{2}\right)$-coordinated phosphaalkene $\left[\left\{\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{PC}_{4} \mathrm{H}_{3}(3,4-\mathrm{Me})_{2}\right)\right\}_{2}\right]$ (Figure $\left.8 \mathbf{1 . H}\right),{ }^{111}$ which was isolated in 55% yield from the reaction of the metallate ion $\left[\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{PC}_{4} \mathrm{H}_{2}(3,4-\mathrm{Me})_{2}\right)\right]^{-}[\mathrm{Li}]^{+}$with $\mathrm{H}_{2} \mathrm{O}$. As one of the earliest examples of an $\eta^{2}\left(\mu_{3}\right)$-complex, $\left[\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{PR}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{2}-\mathrm{CO}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Me})\right)$ was studied crystallographically and found to possess a carbon-phosphorus double bond length of 1.76(1) \AA (Figure 8 1.I), ${ }^{112}$ comparable to the η^{1}, η^{2}-complex 1.G (1.78(1) Å).

Figure 8. Phosphaalkene complexes; $\left[\mathrm{Pt}\left(\mathrm{MesP}=\mathrm{CPh}_{2}\right)\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right](\mathbf{1 . E}),{ }^{109}\left[\mathrm{Ni}(\mathrm{bipy})\left(\mathrm{RP}=\mathrm{CPh}_{2}\right)\right](\mathbf{1} . \mathrm{F}),{ }^{110}$

$$
\left[\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{P}(3,4-\mathrm{Me})_{2}\right)\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}\right](\mathbf{1} . \mathbf{G}),{ }^{111}\left[\left\{\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{PC}_{4} \mathrm{H}_{3}(3,4-\mathrm{Me})_{2}\right)\right\}_{2}\right](\mathbf{1} . \mathrm{H}),{ }^{111}
$$

$$
\left[\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{PR}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{2}-\mathrm{CO}\right)\right](\mathbf{1 . I})^{112}
$$

Cycloaddition reactions

Cycloadditions are a widely-reported reactivity for phosphaalkenes, with many variations documented. One example of the $[2+1]$ cycloaddition reaction provides a rare route to $1-$ chlorophosphirenes by reaction of $\mathrm{Me}_{3} \mathrm{Si}(\mathrm{R}) \mathrm{C}=\mathrm{PCl}$ with the in-situ generated chlorocarbenes $\mathrm{C}\left(\mathrm{R}^{\prime}\right) \mathrm{Cl}$ (Scheme $22 \mathbf{a}$). ${ }^{113}$ Meanwhile, [2+3] cycloadditions of phosphaalkenes with [1,3]dipoles provide access to heterophospholes, as for the reaction of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{PMes}$ with PhN_{3}, which was found to be solvent sensitive; when the reagents were refluxed in $\mathrm{C}_{6} \mathrm{H}_{6}$ or CHCl_{3} the only product was the phosphorane $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{P}(\mathrm{Mes})=\mathrm{NPh}$, but when the same reaction was performed in CS_{2} at $80^{\circ} \mathrm{C}$ the heterophosphole was afforded in 90% yield, with $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{P}(\mathrm{Mes})=\mathrm{NPh}$ present only as a minor by-product (Scheme 22 b). ${ }^{114}$

Scheme 22. Cycloaddition reaction of phosphaalkenes; a) [2+1] cycloaddition with a carbene, ${ }^{113}$

$$
\text { b) [2+3] cycloaddition with } \mathrm{PhN}_{3}{ }^{114}
$$

Both intermolecular and intramolecular [2+2] cycloaddition reactions of phosphaalkenes are also well-documented, generating a variety of species that contain the $\left[\mathrm{C}_{2} \mathrm{P}_{2}\right]$ unit. Significant examples include the intramolecular head-to-head dimerisation of a diphosphaalkene that affords [1,2]-diphosphacyclobutene (Scheme $23 \mathbf{a}$), ${ }^{115}$ and the intermolecular head-to-tail dimerisation of two phosphaalkenes affording [1,3]-diphosphacyclobutene (Scheme 23 b).

a)

Scheme 23. [2+2] cycloadditions of phosphaalkenes afford; a) [1,2]-diphosphacyclobutene, b) [1,3]-diphosphacyclobutene ${ }^{115}$

The [4+2] cycloaddition reactions (Diels-Alder reactions) of phosphaalkenes are a viable synthetic route to phosphabenezenes. For instance, the reaction of $\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}=\mathrm{PCl}$ with either electron-rich or electron-poor dienes provides quantitative conversion to functionalised phosphabenzenes under mild conditions (Scheme $24 \mathbf{a}$). ${ }^{116}$ Other aromatic systems have been obtained from the $[2+8]$ cycloaddition of $\mathrm{SiMe}_{3} \mathrm{C}(\mathrm{Ph})=\mathrm{PCl}$ with a conjugated alkene, which afforded a 2-phosphaazulene (Scheme $24 \mathbf{b}$), ${ }^{117}$ and which represents the only $[2+8]$ phosphaalkene cycloaddition reaction reported to date.

Scheme 24. Cycloaddition reaction of phosphaalkenes; a) [4+2] cycloaddition with dienes, ${ }^{116}$ b) $[2+8]$ cycloaddition with a conjugated alkene ${ }^{117}$

Other reactions

As for classical alkenes, ${ }^{118}$ phosphaalkenes have been documented to participate in 'ene' reactions. The first example of type II ene reactions of phosphaalkenes, incorporating C aminophosphaalkenes, was reported in 1997, wherein the phosphaalkene adopts the role of the H-donor. ${ }^{119}$ The reaction occurred at ambient temperature, but took several days to afford the diphosphine, which was isolated in 64% yield as a diastereomeric mixture following distillation (Scheme 25).

Scheme 25. Phosphaalkenes in 'ene' reactions ${ }^{119}$

While the reactivity of classical alkenes is often mimicked by phosphaalkenes, in some instances the phosphorus lone pair can hinder reactions. As such, protection of the lone pair allows further classical alkene reactions, such as hydrogenations, to be performed for phosphaalkenes. Although hydrogenation of the protected phosphaalkene $\left[\mathrm{W}\left\{\mathrm{P}(\mathrm{Ph})=\mathrm{CMe}_{2}\right\}(\mathrm{CO})_{5}\right]$ to the hydrogenated phosphine $\left[\mathrm{W}\left\{\mathrm{P}(\mathrm{H})(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Me}_{2}\right\}(\mathrm{CO})_{5}\right]$ was only achieved in 5% yield with the ionic $[\mathrm{Rh}(\mathrm{dppe})]^{+}\left[\mathrm{PF}_{6}\right]^{-}$catalyst (Scheme 26 a), the use of $[\mathrm{Rh}(\mathrm{dppe}) \mathrm{Cl}]$ as the active catalyst, which was derived from the reaction of $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]$ with dppe, afforded the hydrogenated phosphine in 90% yield (Scheme 26 b). ${ }^{120}$ The authors
postulated that the Lewis acidity of both the solvent and catalyst caused the disparate results, supported by 99% conversion of the phosphaalkene to the hydrogenated phosphine when the reaction was performed in acetone over 4 days. The catalytic hydrogenation was not attempted without prior protection of the phosphorus lone pair, as the authors reasoned that the lone pair would likely coordinate to the catalyst.

a)

Scheme 26. Catalytic hydrogenation of phosphaalkenes ${ }^{120}$

Phosphaalkenes can also be epoxidised following the protection of the phosphorus lone pair; the authors noted the propensity of phosphaalkenes to oxidise preferentially at the phosphorus centre over the π-system, rendering protection of the phosphorus lone pair necessary. ${ }^{121}$ Following the protection of the phosphaalkenes $\mathrm{RC}(\mathrm{H})=\mathrm{PMes}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{Me}, \mathrm{Me}\right)$ by coordination to $\left[\mathrm{W}(\mathrm{CO})_{6}\right]$, the resulting complexes $\left[\mathrm{W}\{\mathrm{P}(\mathrm{Mes})=\mathrm{C}(\mathrm{H}) \mathrm{R}\}(\mathrm{CO})_{5}\right]$ underwent epoxidation upon addition of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}_{3} \mathrm{H}\right)(3-\mathrm{Cl})$ (Scheme 27). ${ }^{122}$ The oxaphosphirane products were isolated in 86% and 40% yields for the $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{R}=\mathrm{Me}$ variants respectively following recrystallisation.

Scheme 27. The epoxidation of phosphaalkenes ${ }^{122}$

As for classical alkenes, phosphaalkenes react with protic reagents such as MeOH to afford saturated species, the regiospecificity being governed by the phosphaalkene polarisation. Thus,
selection of appropriate substituents allows the proton to be added to either the carbon centre (Scheme $28 \mathbf{a}$), ${ }^{96}$ or the phosphorus centre (Scheme $28 \mathbf{b}$). ${ }^{123}$

a)

$$
\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{2}(2,4,6-\mathrm{Me})_{3}
$$

b)

Scheme 28. Phosphaalkenes react with MeOH to install the proton at; a) the carbon centre, ${ }^{96}$
b) the phosphorus centre ${ }^{123}$

Reports of phosphaalkene quarternisation are infrequent. Where such reactions are documented, they are slow, ${ }^{124}$ though when the phosphaalkene is inversely polarised the process is significantly more facile (Scheme 29). ${ }^{125}$ The reaction of the phosphaalkene $\left\{\mathrm{C}_{3}(3,4-\mathrm{H})_{2}(2,5-\right.$ $\left.\mathrm{NR})_{2}\right\}=\mathrm{PPh}$ with two equivalents of BH_{3}. THF rapidly generated the quarternised adduct $\left\{\mathrm{C}_{3}(3,4-\mathrm{H})_{2}(2,5-\mathrm{NR})_{2}\right\}^{+} \mathrm{P}^{-}\left(\mathrm{BH}_{3}\right)_{2} \mathrm{Ph}$, confirmed by single crystal X-ray diffraction, which showed a P-C bond length of $1.856(2) \AA$, in the expected range for carbon-phosphorus single bonds.

Scheme 29. Phosphaalkene quarternisation ${ }^{125}$

Another uncommon reaction of phosphaalkenes, in this instance the diphosphaalkenes diphosphinidenecyclobutenes (DCPB), is as ligands in catalysis, aided by their poor σ-donor properties but excellent π-acceptor characteristics. Catalytic processes that have been documented to use DCPB include the polymerisation of ethylene, ${ }^{126}$ the amination of aryl bromides, ${ }^{127}$ and the condensation of allylic alcohols and amines (Scheme 30). ${ }^{128}$ While the traditionally used catalyst system for the latter condensation, which comprises
$\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right] / 4 \mathrm{PPh}_{3}(1 \mathrm{~mol} \%)$ and $\left[\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}\right](25 \mathrm{~mol} \%)$, requires the reaction mixture to be heated to between 50 and $80^{\circ} \mathrm{C}$, the reaction catalysed by the DCPB palladium complex occurs at ambient temperature, with as little as $0.1 \mathrm{~mol} \%$ catalyst loading, and affords the allylaniline products in high yields (>82 \%).

Scheme 30. Catalytic conversion of allylic alcohols with aniline to allylaniline ${ }^{128}$

1.3.4 Significant phosphaalkenes

Conjugated phosphaalkenes

Studies regarding the incorporation of phosphorus moieties into extended conjugated systems have been well-documented in recent years as their electronic characteristics make them ideal for use in molecular scale electronics. ${ }^{129}$ Gates reported the synthesis of E / Z -
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{P}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{Me}_{4}\right) \mathrm{C}=\mathrm{P}\right]_{\mathrm{n}}$ (Figure 9 1.J) by reaction of $\mathrm{C}_{6} \mathrm{Me}_{4}(1,4-\mathrm{COCl})_{2}$ with $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,4-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, as the first example of a π-conjugated polymer that contained between 5 and 21 phosphaalkenic units in the polymer backbone. ${ }^{130}$ UV/Vis spectroscopy showed a redshifted $\pi-\pi^{*}$ absorbance ($\lambda_{\max } 328-338 \mathrm{~nm}$) for the $\mathrm{C}=\mathrm{P}$ bond when compared to the model phosphaalkenes $\operatorname{MesC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\left(\lambda_{\text {max }} 310 \mathrm{~nm}\right)$ and $\mathrm{C}_{6} \mathrm{Me}_{4}\left(1,4-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)_{2}$ ($\lambda_{\max } 314 \mathrm{~nm}$); this was deemed to signify an increase in conjugation. The polyphosphaalkene Z $\left[\left(\mathrm{C}_{6} \mathrm{Me}_{4}\right) \mathrm{P}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{P}\right]_{\mathrm{n}}$ (Figure 9 1.K) also possessed increased π-conjugation compared to $\mathrm{C}_{6} \mathrm{H}_{4}\left\{1,4-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PMes}_{2}\left(\lambda_{\max } 388 \mathrm{~nm}\right)\right.$ and $\mathrm{C}_{6} \mathrm{Me}_{4}\left(1,4-\mathrm{P}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ $\left(\lambda_{\max } 394 \mathrm{~nm}\right) .{ }^{103}$

Recently, Ott's group demonstrated that the incorporation of phosphaalkenes into conjugated systems, such as the octatetrayne-linked bis-phosphaalkene 1.L (Figure 9), ${ }^{131}$ provides compounds which possess lower HOMO - LUMO band gaps than the all-carbon-containing analogues. The UV/Vis spectra of phosphorus-containing poly(-phenylenevinylene) (PPV) oligomers 1.M - $\mathbf{1 . O}$ showed that increasing the chain length afforded increasingly red-shifted $\pi-\pi^{*}$ absorbances, ${ }^{132}$ signifying increased through-chain conjugation. Additionally, these
oligomers possessed more red-shifted absorbances than their all-carbon-containing analogues ($\lambda_{\text {max }} 317 \mathrm{~nm}$ for $\mathbf{1 . \mathbf { M } ^ { \mathrm { C } }}, \lambda_{\text {max }} 354 \mathrm{~nm}$ for $\mathbf{1 . N} \mathbf{N}^{\mathrm{C}}, \lambda_{\text {max }} 385 \mathrm{~nm}$ for $\mathbf{1 . \mathbf { O } ^ { \mathrm { C } }}$), confirming that incorporation of phosphorus moieties into the oligomers also resulted in increased conjugation. The authors postulated that such compounds might find application within the development of materials with "interesting (opto)electronic properties," such as NLO devices. ${ }^{133}$

1.J - $\lambda_{\max } 328-338 \mathrm{~nm}$

1.K - $\lambda_{\text {max }} 394 \mathrm{~nm}$

1.M - $\lambda_{\text {max }} 334 \mathrm{~nm}$

1.N - $\lambda_{\text {max }} 398 \mathrm{~nm}$ $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}\left(4^{-\mathrm{t}} \mathrm{Bu}\right)$

$$
\begin{aligned}
& \text { 1.O }-\lambda_{\max } 422 \mathrm{~nm} \\
& \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Bu})
\end{aligned}
$$

Figure 9. Conjugated phosphaalkenes; E/Z-phospha-PPV (1.J), ${ }^{130}$ Z-phospha-PPV (1.K),,${ }^{103}$ acetylenic phosphaalkene (APA) (1.L), ${ }^{131}$ phospha-PPV oligomers (1.M - 1.O) ${ }^{132}$

Metallophosphaalkenes

Metallophosphaalkenes are phosphaalkenes in which one of the substituents on either the carbon or phosphorus centre is replaced with a metal fragment. Four types have been documented throughout the literature (Figure 10); ${ }^{134} \mathbf{i}$) P-metallophosphaalkenes, ii) C metallophosphaalkenes, iii) C, C-dimetallophosphaalkenes, iv) C, P-dimetallophosphaalkenes, with types \mathbf{i} and $\mathbf{i i}$ the most frequently reported. Type \mathbf{v}, the C, C, P-trimetallophosphaalkene, has been proposed but remains to be demonstrated. Both C - and P-metallophosphaalkenes possess $\mathrm{C}=\mathrm{P}$ bond lengths that are comparable to traditional phosphaalkenes, but possess significantly larger $\mathrm{C}=\mathrm{P}-\mathrm{A}(\mathrm{A}=\mathrm{C}, \mathrm{M})$ angles (Table 5). The disparity in bond angles is attributed primarily to the increased 3p character of the phosphorus lone pair of metallophosphaalkenes compared to
traditional phosphaalkenes. The increased 3p character also results in a large decrease in the phosphorus lone pair ionisation energy, which sees the phosphorus lone pair promoted to the HOMO orbital, while the π-system becomes the HOMO- 1 . ${ }^{135}$

Figure 10. Categories of metallophosphaalkenes

Table 5. Bond lengths and $\mathrm{C}=\mathrm{P}-\mathrm{A}$ angles of traditional phosphaalkenes and C - and P metallophosphaalkenes ($\mathrm{A}=\mathrm{C}, \mathrm{Fe}$)

Type	Compound	$\boldsymbol{d} \mathbf{C = P} / \boldsymbol{\AA}$	$\mathbf{C = P}-\mathbf{A} /{ }^{\circ}$	Source
Phosphaalkene	$\mathrm{Ph}_{2} \mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PMes}$	$1.692(3)$	107.5	44
C-metallophosphaalkene	$\left[\mathrm{ReCp}^{*}(\mathrm{CO})(\mathrm{NO})\left\{\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}\right\}\right]$	$1.704(4)$	$112.3(2)$	136
P-metallophosphaalkene	$\left[\mathrm{FeCp}^{*}(\mathrm{CO})_{2}\left\{\mathrm{P}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)_{2}\right\}\right]$	$1.680(9)$	$126.2(3)$	137

The synthesis of metal-functionalised phosphaalkenes has been well-documented, with multiple pathways available for each type, ${ }^{137,138}$ including the reaction of phosphaalkynes with transition metals, ${ }^{139}$ and the oxidative addition of halogenated phosphaalkenes $\left(\mathrm{Me}_{3} \mathrm{Si}^{2}\right)_{2} \mathrm{C}=\mathrm{PX}(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$ to transition metals. ${ }^{140}$ As for traditional phosphaalkenes, their reactivity profiles are dominated by coordination chemistry, with $\eta^{1}-,{ }^{141} \eta^{2}-,{ }^{142}$ and η^{1}, η^{2}-coordination complexes reported, ${ }^{143}$ and cycloaddition reactions; 2-imino- P-metallophosphiranes were afforded from the [2+1] cycloaddition of type $\mathbf{i} P$-metallophosphaalkenes with aryl isocyanides (Scheme $31 \mathbf{a}$), ${ }^{144}$ while metallaheterocycles result from the $[3+2]$ cycloadditions of type $\mathbf{i} P$-metallophosphaalkenes with electron-deficient alkynes (Scheme 31 b). ${ }^{145}$
a)

$\mathrm{Ar}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{3}(2,6-\mathrm{Me})_{2}$

Scheme 31. Cycloaddition reactions of P-metallophosphaalkenes; a) $\left.[2+1],{ }^{144} \mathbf{b}\right)[3+2]{ }^{145}$

1.3.5 Phosphinines

Phosphinines are planar six-membered rings that contain one or more phosphorus centres and are tangentially related to phosphaalkenes. As for benzene, phosphinines are aromatic, though the calculated nucleus-independent chemical shift (NICS) values are somewhat lower for phosphinines $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{P} ;-8.1 \mathrm{ppm}, \mathrm{C}_{3} \mathrm{H}_{3}(1,3,5-\mathrm{P})_{3} ;-5.9 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{H}_{6} ;-9.7 \mathrm{ppm}\right)$, indicative of reduced aromaticity. ${ }^{146,147}$ The parent phosphabenzene, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{P}$, was first isolated from the reaction of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Sn}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)_{2}$ with $\mathrm{PBr}_{3}($ Scheme $32 \mathbf{a}){ }^{148}$ although modern synthetic methods include the reaction of phospholides with acyl chlorides (Scheme $32 \mathbf{b}$). ${ }^{31}$ Triphosphabenzenes have also been generated by cyclotrimerisations of the corresponding phosphaalkyne $\mathrm{RC} \equiv \mathrm{P}(\mathrm{R}$ $={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Ad}, \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Me}$) in the presence of ${ }^{\mathrm{t}} \mathrm{BuN}=\mathrm{VCl}_{3}$ (Scheme $32 \mathbf{c}$). The ${ }^{31} \mathrm{P}$ NMR spectra of phosphabenzenes are typical of phosphaalkenes; $\mathrm{C}_{5} \mathrm{H}_{2}(3,4-\mathrm{Me})_{2}(2-\mathrm{C}(\mathrm{O}) \mathrm{R}) \mathrm{P}$ exhibits resonances at $187(\mathrm{R}=\mathrm{Ph})$ and $189 \mathrm{ppm}(\mathrm{R}=\mathrm{Me})$.
a)

b)

c)

Scheme 32. Synthetic methodologies for phosphinines; a) phosphabenzene, ${ }^{148}$ b) phosphabenzene derivatives, ${ }^{31}$ c) triphosphabenzenes ${ }^{149}$

1.4 Phosphaalkynes

1.4.1 General considerations

Phosphaalkynes are the phosphorus-containing analogues of alkynes $\mathrm{RC} \equiv \mathrm{CR}$ and nitriles $\mathrm{RC} \equiv \mathrm{N}$, with the general formula $\mathrm{RC} \equiv \mathrm{P}$. Phosphaalkynes possess near linear $\mathrm{C}-\mathrm{C} \equiv \mathrm{P}$ bond angles (Table 6), and triple bond lengths in the region of $1.533-1.548 \AA .{ }^{150}$

Table 6. Bond lengths and $\mathrm{C}-\mathrm{C} \equiv \mathrm{P}$ angles of selected phosphaalkynes

$\mathbf{C o m p o u n d}$	$\boldsymbol{d} \mathbf{C} \equiv \mathbf{P} / \AA$	$\mathbf{C}-\mathbf{C} \equiv \mathbf{P}$ angle $/^{\circ}$	Source
$\left\{\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{3}}(\mathbf{2 , 6 - M e s})_{\mathbf{2}}\right\} \mathbf{C} \equiv \mathbf{P}$	$1.539(6)$	$176.6(4)$	151
$\left\{\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{2}}(\mathbf{2 , 6}-\mathbf{B u})_{\mathbf{2}}\left(\mathbf{4}-\mathbf{N M e}_{\mathbf{2}}\right)\right\} \mathbf{C} \equiv \mathbf{P}$	$1.533(3)$	$178.7(3)$	152
$\mathbf{P h}_{\mathbf{3}} \mathbf{C C} \equiv \mathbf{P}$	$1.538(2)$	$178.5(2)$	153
$\mathbf{t B u C} \equiv \mathbf{P}$	$1.548(1)$	$179.5(1)$	154

In contrast to phosphaalkenes, phosphaalkynes possess energetically low-lying lone pairs and large energy gaps between the HOMO (π-system) and HOMO-1 (phosphorus lone pair) ($\mathrm{HC} \equiv \mathrm{P}$, $\left.2.07 \mathrm{eV} ;{ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}, 1.83 \mathrm{eV} ;{ }^{155} \mathrm{PhC} \equiv \mathrm{P}, 1.89 \mathrm{eV} ;{ }^{155} \mathrm{H}_{2} \mathrm{C}=\mathrm{PH}, 2.07 \mathrm{eV}\right),{ }^{156}$ which rationalises their propensity to react primarily via the π-system. The HOMO - HOMO-1 energy gap is much smaller for nitriles than phosphaalkynes ($\mathrm{HC} \equiv \mathrm{P}, 2.07 \mathrm{eV} ;{ }^{156} \mathrm{HC} \equiv \mathrm{N}, 0.40 \mathrm{eV}$), ${ }^{157}$ though the HOMOs relate to the π-system in both alkynes and nitriles (Figure 11). The triple bonds of
phosphaalkynes and nitriles are heavily polarised; in phosphaalkynes, the electron density is localised at the carbon centre $\left(\mathrm{R}^{\delta-} \mathrm{C} \equiv \mathrm{P}^{\delta+}\right)$, while the reverse is true for nitriles $\left(\mathrm{R}^{\delta+} \mathrm{C} \equiv \mathrm{N}^{\delta-}\right)$, rationalising their different reactivities.

Figure 11. The HOMO and $\mathrm{HOMO}-1$ ionisation energies of $\mathrm{HC} \equiv \mathrm{N}^{157}$ and $\mathrm{HC} \equiv \mathrm{P}^{156}$

1.4.2 Synthetic methodologies

The first confirmed example of a phosphaalkyne, $\mathrm{HC} \equiv \mathrm{P}$, was reported by Gier in 1961 and was synthesised as a colourless gas by passing PH_{3} through a rotating arc between graphite electrodes. ${ }^{158}$ The gaseous products, a $4: 1$ mixture of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{HC} \equiv \mathrm{P}$, were quenched in traps at $-196{ }^{\circ} \mathrm{C}$. The phosphaalkyne polymerised above $-130^{\circ} \mathrm{C}$, and microanalysis of the polymeric species $(\mathrm{HC} \equiv \mathrm{P})_{\mathrm{n}}$ was performed after prolonged standing; elemental proportions were close to the calculated values $\left(\right.$ Calcd for $(\mathrm{HCP})_{\mathrm{z}}: \mathrm{H}, 2.27 \%$; C, 27.28%; P, 70.45%. Found: H, 2.95%; C: 26.77%; $\mathrm{P}, 71.07 \%)$. IR spectroscopy performed at $-196^{\circ} \mathrm{C}$ revealed absorbances consistent with $\mathrm{HC} \equiv \mathrm{P}$ at $v_{(\mathrm{CH} \text { bend) }} 671, v_{(\mathrm{C}=\mathrm{P})} 1265$ and $v_{\text {(CH bend) }} 3180 \mathrm{~cm}^{-1}$, comparable with $\mathrm{HC} \equiv \mathrm{N} v_{\text {(CH bend) }} 830, v_{(\mathrm{C}=\mathrm{N})} 2120$ and $v_{\text {(CH bend) }} 3120 \mathrm{~cm}^{-1}$ (Table 7), in addition to a notable lack of absorbance between 2350-2440 cm^{-1} (the P-H stretch region), supporting the identity of $\mathrm{HC} \equiv \mathrm{P}$ above the theoretical isomer $\mathrm{C} \equiv \mathrm{PH}$. Further evidence was obtained by reaction of the proposed $\mathrm{HC} \equiv \mathrm{P}$ with excess HCl at $-110^{\circ} \mathrm{C}$, which afforded a pure sample of $\mathrm{CH}_{3} \mathrm{PCl}_{2}$. Since 1961 the development of new synthetic routes for phosphaalkynes has been reported; two primary routes, the Becker condensation and the double dehydrohalogenation method, being most prevalent.

Table 7. Selected IR absorbances of $\mathrm{HC} \equiv \mathrm{P}$ and $\mathrm{HC} \equiv \mathrm{N}^{158}$

Compound	$\mathbf{v}_{\mathbf{(C = E)}} / \mathbf{c m}^{-\mathbf{1}}$	$\mathbf{v}_{(\mathrm{C}-\mathrm{H})}($ stretch $) / \mathbf{c m}^{-\mathbf{1}}$	$\mathbf{v}_{(\mathrm{C}-\mathrm{H})}($ bend $) / \mathbf{c m}^{-\mathbf{1}}$
$\mathrm{HC} \equiv \mathrm{P}$	1265	3180	671
$\mathrm{HC} \equiv \mathrm{N}$	2120	3120	830

Becker condensation

In 1981 Becker first reported what is now known as the Becker synthesis of phosphaalkynes; ${ }^{159}$ the precursor phosphaalkene $\mathrm{RC}(\mathrm{OSiMe})_{3}=\mathrm{PSiMe}_{3}$ was synthesised via the Becker condensation, followed by conversion to the phosphaalkyne $\mathrm{R}-\mathrm{C} \equiv \mathrm{P}$ by the addition of a base, or heating in the absence of solvent, inducing the loss of $\mathrm{O}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Scheme 33). ${ }^{105}$

Scheme 33. Becker synthesis of phosphaalkynes $\mathrm{RC} \equiv \mathrm{P}^{159}$

Double dehydrohalogenation

The double dehydrohalogenation route was first achieved using flash pyrolysis in 1976 (Scheme 34). ${ }^{160}$ A vapour of the chlorophosphine $\mathrm{MeCH}_{2} \mathrm{PCl}_{2}$ was passed through a quartz tube at $900{ }^{\circ} \mathrm{C}$ and the outflow gas was analysed in a microwave spectrometer; a mixture of products was thus identified, including $\mathrm{MeC} \equiv \mathrm{P}$.

Scheme 34. The synthesis of $\mathrm{MeC} \equiv \mathrm{P}$ via flash pyrolysis double dehydrohalogenation ${ }^{160}$

The first example of an ambient temperature, based-induced double dehydrohalogenation was reported in 1978 (Scheme $35 \mathbf{a}$); ${ }^{161} \mathrm{CF}_{3} \mathrm{PH}_{2}$ vapour was passed over KOH pellets at 40×10^{-6} bar through a 40 cm spiral glass tube (1 cm bore). The resulting phosphaalkyne, $\mathrm{FC} \equiv \mathrm{P}$, was identified by gas-phase IR absorbances at $v_{(C=P \text { stretch })} 1725$ and $v_{(\mathrm{F}-\mathrm{C} \text { stretch })} 760 \mathrm{~cm}^{-1}$. The use of a shorter glass tube or higher flow rate both resulted in the generation of $\mathrm{F}_{2} \mathrm{C}=\mathrm{PH}$, as determined by IR spectroscopy of the product. Double dehydrohalogenation reactions are now usually performed in solution and with DBU (Scheme $35 \mathbf{b}$), ${ }^{162}$ or $\mathrm{AgOTf} / \mathrm{DABCO}$ (Scheme $35 \mathbf{c}$). ${ }^{163,164}$
a)

b)

$\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{Me}, \mathrm{Et},{ }^{\mathrm{n}} \mathrm{Bu}, \mathrm{SiMe}_{3}$, $\mathrm{Ph}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{6} \mathrm{H}_{11}$
c)

Scheme 35. Double dehydrohalogenation syntheses of; $\left.\left.\mathbf{a}) \mathrm{FC} \equiv \mathrm{P},{ }^{161} \mathbf{b}\right) \mathrm{RC} \equiv \mathrm{P},{ }^{162} \mathbf{c}\right) \mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{P}^{163}$

Alternate synthetic routes

Rearrangement reactions have been employed sporadically en route to phosphaalkynes. One example includes the base-induced rearrangement of primary alkynylphosphines (Scheme 36 a); ${ }^{165}$ though initially achieved with NEt_{3}, this rearrangement could also be achieved by addition of DBU at $-90^{\circ} \mathrm{C}$, or the ambient temperature Vacuum Gas Solid Reaction (VGSR) with $\mathrm{K}_{2} \mathrm{CO}_{3}$. Phosphaalkynes like $\mathrm{C}_{6} \mathrm{H}_{2}\left(2,6{ }^{-}-\mathrm{Bu}\right)_{2}(4-\mathrm{R}) \mathrm{C} \equiv \mathrm{P}$ have also been afforded from the metalcatalysed rearrangement of dibromomethylenephosphines $\mathrm{C}_{6} \mathrm{H}_{2}\left(2,6{ }^{-}{ }^{-} \mathrm{Bu}\right)_{2}(4-\mathrm{R}) \mathrm{P}=\mathrm{CBr}_{2}$ (Scheme $36 \mathbf{b}),{ }^{152}$ in addition to the thermally-induced elimination-rearrangements of 1-phosphiranes, wherein heating the 1 -vinylphosphirane to $700^{\circ} \mathrm{C}$ afforded $\mathrm{MeC} \equiv \mathrm{P}$ (Scheme 36 c). ${ }^{166}$ Finally, Cummins showed that phosphaalkynes $R C \equiv P\left(R={ }^{t} B u, A d\right)$ could also be accessed by reaction of the terminal niobium phosphide anion $\left[\mathrm{PNb}\{\mathrm{N}(\mathrm{Np}\} \mathrm{Ar})_{3}\right]^{-}\left(\mathrm{Np}=\right.$ neopentyl, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{3}(3,5-$ $\mathrm{Me})_{2}$) with acyl chloride reagents RCOCl. ${ }^{167}$
a)

b)
 $\mathrm{R}=\mathrm{H}, \mathrm{OMe}, \mathrm{NMe}_{2},{ }^{\mathrm{t}} \mathrm{Bu}$

Scheme 36. Rearrangement reactions for the syntheses of phosphaalkynes have been induced by;
a) bases, ${ }^{165}$ b) transition metal catalysis, ${ }^{152}$ c) heat ${ }^{166}$

Phosphaalkynes have also been generated by the thermally-induced elimination of ClSiMe_{3} from phosphaalkenes, partially driven by the affinity of chlorine for silicon. The dichlorophosphine $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{HCPCl}_{2}\right.$ was converted to the corresponding phosphaalkene $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{C}=\mathrm{PCl}$ upon addition of DBU, which when heated to $750^{\circ} \mathrm{C}$ generated the phosphaalkyne $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}$ (Scheme 37). ${ }^{168}$

Scheme 37. Phosphaalkyne synthesis by thermally-induced elimination of $\mathrm{ClSiMe}_{3}{ }^{168}$

1.4.3 Significant phosphaalkynes

Conjugated phosphaalkynes

In contrast to phosphaalkenes, phosphaalkynes that bear extended conjugation are limited to eight examples in the literature (Figure 12 1.P - 1.S, Figure 13 1.T). Compounds 1.P - 1.R were accessed via the Becker condensation, while $1 . S$ were produced by transition metal catalysis (Scheme 36 b). Both 1.P and 1.Q are relatively stable over time at ambient temperature by virtue of their bulky substituents. In contrast, $\mathbf{1 . R}$ was reported to have a halflife of 7 min at $0^{\circ} \mathrm{C}$, and was characterised exclusively by a singlet resonance at -31.8 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. The phosphaalkyne $\mathrm{C}_{6} \mathrm{H}_{3}\left(2,6{ }^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{C}=\mathrm{P}(\mathbf{1} . \mathbf{Q})$ was reportedly stable for
more than one week when exposed to air, while $\mathrm{C}_{6} \mathrm{H}_{2}\left(2,6-{ }^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(4-\mathrm{NMe}_{2}\right) \mathrm{C} \equiv \mathrm{P}(\mathbf{1 . S})$ was highly air sensitive.

Figure 12. Conjugated phosphaalkynes Mes* $\mathrm{C} \equiv \mathrm{P}(\mathbf{1 . P}),{ }^{169} \mathrm{C}_{6} \mathrm{H}_{3}(2,6-\mathrm{Mes})_{2} \mathrm{C} \equiv \mathrm{P}(\mathbf{1 . Q}),{ }^{151} \mathrm{PhC} \equiv \mathrm{P}(\mathbf{1 . R}),{ }^{170}$

$$
\left.\mathrm{C}_{6} \mathrm{H}_{2}(2,6-\mathrm{Bu})_{2} 4-\mathrm{R}\right) \mathrm{C} \equiv \mathrm{P}(\mathbf{1 . S})^{152}
$$

Diphosphaalkynes and phosphadiynyls

To date only six examples of diphosphaalkynes exist (Figure 13); the radical cationic species $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P}^{+}$was generated by EI ionisation of either $\mathrm{Cl}_{2} \mathrm{PC} \equiv \mathrm{CPCl}_{2}$ or $\mathrm{Cl}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Cl}) \mathrm{CH}_{3}$ in the mass spectrometer and inferred from a signal at $m / z=86$. The cation $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P}^{+}$was subsequently converted to the diphosphaalkyne $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P}$ (Figure 13 1.T) by a neutralisationreionisation (NR) experiment with Xe as the neutralisation gas and O_{2} as the reionisation gas. The NR spectra of the gaseous product showed a signal at $m / z=86$ for $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P} .{ }^{171}$
Diphosphaalkynes 1.U were synthesised by reaction of $\mathrm{M}\left\{\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}$ with $(\mathrm{MeO})_{2} \mathrm{C}=\mathrm{O},{ }^{172}$ while 1.V was synthesised via the Becker condensation of $\operatorname{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with $\mathrm{Cl}(\mathrm{O}) \mathrm{CC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{CC}(\mathrm{O}) \mathrm{Cl}$ and subsequent reaction with catalytic $\mathrm{KOH} .{ }^{173}$ While compounds 1.U were found to be unstable to solvent removal, 1.V was isolated as an air and moisture stable solid, which was characterised crystallographically.

1.T

1.V

Figure 13. Diphosphaalkynes $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P}(\mathbf{1 . T}),{ }^{171}\left[\mathrm{M}(\mathrm{dme})_{3}(\mathrm{OC} \equiv \mathrm{P})_{2}\right]$ (1.U), ${ }^{172}$ bis(phosphaethynyl)triptycene (1.V) ${ }^{173}$

Including the diphosphaalkyne $\mathrm{P} \equiv \mathrm{CC} \equiv \mathrm{P}$, only three phosphadiynyls are known, including $\mathrm{N} \equiv \mathrm{CC} \equiv \mathrm{P}$, which was generated by the flash pyrolysis of $\mathrm{HC} \equiv \mathrm{P}$ and NCN_{3} at $700{ }^{\circ} \mathrm{C}$ (Scheme $38 \mathbf{a}){ }^{174}$ while diphosphaalkyne $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{P}$ was generated by flow-pyrolysis at $1100{ }^{\circ} \mathrm{C}$ of the products of the reaction of $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{MgCl}$ with PCl_{3} (Scheme $38 \mathbf{b}$). ${ }^{175}$ Both phosphadiynyls were characterised by microwave spectroscopy.
a)

b)

Scheme 38. Synthesis of phosphadiynyls; $\mathrm{N} \equiv \mathrm{CC} \equiv \mathrm{P},{ }^{174} \mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{P},{ }^{175}$

Cyaphides

Cyaphides are the long sought-after analogues of cyanides $(-\mathrm{C} \equiv \mathrm{N})$) ${ }^{176}$ which are σ-bound to metal centres via the phosphaalkynic carbon. The first evidence of a cyaphide complex $\left(\left[\operatorname{Pt}\left(\eta^{1}, \eta^{2}-\mathrm{P} \equiv \mathrm{C}\right)\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{X}\right]\right)$ was reported in 1994 by Angelici as part of an inseparable mixture of products that rapidly decomposed upon attempted isolation; ${ }^{177}$ the cyaphide was trapped by reaction with $\left[\mathrm{Pt}_{(}\left(\mathrm{PEt}_{3}\right)_{4}\right]$ to form the η^{2}-complex $\left[\mathrm{PtX}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{P}) \mathrm{Pt}^{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ (Scheme 39 a), the identity of which was confirmed by single crystal X-ray diffraction. The first irrefutable example of an isolated terminal cyaphide complex was reported by Grützmacher in 2006 and its identity confirmed by X-ray crystallography; ${ }^{163}$ the precursor $\mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{P}$ was coordinated to the ruthenium centre to afford $\left[\mathrm{Ru}(\mathrm{H})(\mathrm{dppe})_{2}\left\{\mathrm{P} \equiv \mathrm{CSiPh}_{3}\right\}\right]$ and subsequently converted to the cyaphide complex $\left[\mathrm{Ru}\{\mathrm{C} \equiv \mathrm{P}\}(\mathrm{H})(\text { dppe })_{2}\right]$ upon addition of NaOPh (Scheme 39 b). The ${ }^{31} \mathrm{P}$ NMR resonance at 111 ppm for $\mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{P}$ was shifted significantly downfield to 144 ppm upon coordination, and shifted further downfield to 165 ppm upon rearrangement to the cyaphide.

More recently, Russell presented inconclusive evidence for the synthesis of a mixed phosphaalkyne-cyaphide complex $\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}\right)(\mathrm{C} \equiv \mathrm{P})(\mathrm{dppe})_{2}\right]^{-}$(Scheme 39 c), generated by addition of NaOPh to $\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC}=\mathrm{P}\right)_{2}(\mathrm{dppe})_{2}\right] ;{ }^{178}$ the ${ }^{31} \mathrm{P}$ NMR quintet resonance at 172 ppm , attributed to the phosphaalkyne units of $\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}\right)_{2}(\mathrm{dppe})_{2}\right]$, disappeared and were replaced by two mutually coupled complex multiplets at 183 and 198 ppm . Additionally, the resonance assigned to the dppe ligands was transformed from a triplet at 62.8 ppm in $\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}\right)_{2}(\mathrm{dppe})_{2}\right]$ to a doublet of doublets at 65.5 ppm , consistent with, but not definitive of $\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}\right)(\mathrm{C} \equiv \mathrm{P})(\mathrm{dppe})_{2}\right]^{-}$. The only other examples of cyaphide complexes
in the literature are those published during this report, which include trans-
$\left[\mathrm{Ru}\{\mathrm{C} \equiv \mathrm{P}\}(\text { dppe })_{2}(\mathrm{C} \equiv \mathrm{CR})\right]\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{OMe})\right)$, and those prepared by co-workers that are currently unpublished. ${ }^{179-181}$

a)

b)

c)

Scheme 39. Synthesis of cyaphides and complexes; a) $\left(\left[\mathrm{PtX}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{P})\right]\right.$ and $\left.\left.\left[\mathrm{PtX}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{P}) \operatorname{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right],{ }^{177} \mathbf{b}\right)\left[\mathrm{RuH}(\mathrm{dppe})_{2} \mathrm{C} \equiv \mathrm{P}\right],{ }^{163} \mathbf{c}\right)\left[\mathrm{Mo}\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}\right)(\mathrm{C} \equiv \mathrm{P})(\mathrm{dppe})_{2}\right]^{-178}$

1.4.4 Reactivity traits

Coordination chemistry

As for phosphaalkenes, several coordination modes are known for phosphaalkynes; however, in contrast to the prevalence of η^{1}-phosphaalkene complexes, η^{2}-phosphaalkyne complexes are the most commonly observed (Figure 14, type i). This is attributed to the significantly higher energy of the π-system compared with the energetically low-lying phosphorus lone pair in phosphaalkynes. Additional coordination modes of phosphaalkynes include the less common η^{1} complexes (type ii), the rare η^{1}, η^{2} - complexes (type iii), and μ-bridging phosphaalkyne complexes (types iv - v) (Figure 14).

i

ii

iv

v

Figure 14. Coordination modes of phosphaalkynes

The first example of an η^{2}-phosphaalkyne complex was reported by Nixon in 1981 (Figure 15 1.W); ${ }^{182}$ a single crystal X-ray diffraction study of the product highlighted a significant increase in $\mathrm{C} \equiv \mathrm{P}$ bond length (1.672(17) \AA) from typical free phosphaalkynes ($\mathrm{CuC} \equiv \mathrm{P} ; 1.548(1) \AA$) ${ }^{154}$ due to back-bonding from the platinum centre. Numerous further examples of η^{2}-phosphaalkyne complexes have been described since. ${ }^{183,184}$ The η^{1}-coordination mode is less common, and requires the employment of bulky ligands around the metal centre to create a channel into which the phosphaalkyne can only enter end-on. The first examples were reported by Nixon in 1987 (Figure 15 1.X), ${ }^{185}$ while further examples include trans- $\left[\mathrm{FeH}\left(\mathrm{P} \equiv \mathrm{CC}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{dppe})_{2}\right]{ }^{186}$ and $\left[\mathrm{MH}(\mathrm{dppe})_{2} \mathrm{P} \equiv \mathrm{CCPh}_{3}\right] \mathrm{OTf}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}) .{ }^{153}$ The η^{1}, η^{2}-coordination mode is quite rare, although Carmichael's report includes three examples that were synthesised by addition of excess $\left[\mathrm{M}(\mathrm{CO})_{6}\right]$ to $\left[\mathrm{Pt}\left(\mathrm{P} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{dppe})_{2}\right]$ (Figure 15 1.Y). ${ }^{187}$ The first example of μ, η^{1}-bridging phosphaalkyne complexes were reported in 1994 (Figure 15 1.Z), ${ }^{188}$ although several have since followed. ${ }^{189,190}$

Figure 15. Phosphaalkyne complexes; $\left[\mathrm{Pt}\left(\mathrm{P} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1.W), ${ }^{182}$ trans$\left[\mathrm{M}(\mathrm{P} \equiv \mathrm{CR})_{2}\left(\mathrm{R}^{\prime}{ }_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}^{\prime}{ }_{2}\right)_{2}\right](\mathbf{1 . X}){ }^{185}\left[\mathrm{Pt}(\mathrm{dppe})_{2}\left({ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}\right) \mathrm{M}(\mathrm{CO})_{5}\right](\mathbf{1 . Y}),{ }^{187}$ $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}(\mathrm{RC} \equiv \mathrm{P})\right](\mathbf{1 . Z})^{188}$

Cycloaddition reactions

The cycloaddition reactions of phosphaalkynes are extremely common. Phosphaalkynes undergo $[2+1]$ cycloadditions with 1 -chlorocarbenes, providing an excellent synthetic route towards 1-chlorophosphirenes (Scheme 40 a) ${ }^{191}$ the final step of the reaction is a spontaneous [1,3]-chlorine shift. The resulting 1-chlorophosphirene readily undergoes nucleophilic substitution to install $\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}, \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{C} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}$ or N_{3} substituents at the phosphorus atom. The [2+3] cycloaddition reactions of phosphaalkynes with unsaturated species, such as nitrile oxides, azides and nitrile sulphides, provide facile access to heterophospholes (Scheme 40 b). ${ }^{192}$
a)

$$
\mathrm{R}=\mathrm{Ph},{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{OPh}, \mathrm{OMe},
$$

$$
\mathrm{R}^{\prime}={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Ad}, \mathrm{C}(\mathrm{Me})_{2} \mathrm{Et}
$$

Scheme 40. Cycloadditions of phosphaalkynes; $\left.\mathbf{a})[2+1],{ }^{191} \mathbf{b}\right)[2+3]{ }^{192}$

The [2+2] cycloaddition reactions of phosphaalkynes have been reported only sporadically throughout the literature. Cloke and Nixon demonstrated the [2+2] cycloaddition of ${ }^{\mathrm{t}} \mathrm{BuC}=\mathrm{P}$ with $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{NC}_{6} \mathrm{H}_{3}(2,6-\mathrm{Me})_{2}\right]$ affording $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{P}=\mathrm{C}\left({ }^{t} \mathrm{Bu}\right) \mathrm{NC}_{6} \mathrm{H}_{3}(2,6-\mathrm{Me})_{2}\right]\right.$ (Scheme 41 a), which was characterised crystallographically. ${ }^{193}$ Such $[2+2]$ cycloaddition reactions have also been documented to involve diphosphenes such as $\left[\mathrm{Cp} *\left(\mathrm{CO}_{2}\right) \mathrm{FeP}=\mathrm{PMes} *\right]$ with ${ }^{1} \mathrm{Pr}_{2} \mathrm{NC} \equiv \mathrm{P}$, which initially generated the 1,2-dihydro-1,2,3-triphosphetene that isomerised over 72 h (Scheme 41 b). ${ }^{194}$ The geometry of the final product was confirmed by single crystal X-ray diffraction.
a)

b)

Scheme 41. The [2+2] cycloadditions of phosphaalkynes; a) with $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{Nar}\right],{ }^{193}$ b) with $\left[\mathrm{Cp} *(\mathrm{CO})_{2} \mathrm{Fep}=\text { PMes* }\right]^{194}$

Similar to the reactivity displayed by classical alkynes, ${ }^{195}$ phosphaalkynes readily undergo cyclodimerisation reactions within the coordination sphere of transition metals to afford coordinated diphosphacyclobutadienes. The first example was reported in 1986 (Scheme 42 a), ${ }^{196}$ and was soon followed by examples that feature iron or cobalt mediated $[2+2]$ cycloadditions. ${ }^{197,198}$ Diphosphacyclobutadiene complexes have also been further coordinated via the phosphorus lone pair to additional metal centres, ${ }^{199}$ providing access to mixed-metal bonded complexes (Scheme 42 b). ${ }^{200}$

Scheme 42. a) $[2+2]$ cycloaddition reaction of ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ within the coordination sphere of a metal, ${ }^{196}$ b) synthesis of mixed-metal complexes ${ }^{200}$

The $[2+4]$ cycloaddition reactions of phosphaalkynes with pryones afford phosphinines under mild conditions (Scheme 43 a); ${ }^{201}$ similarly, a [4+2] cycloaddition reaction of phosphaalkynes with cyclobutadienes generated the first documented examples of 1-and 2-Dewar phosphinines (Scheme $43 \mathbf{b}$), ${ }^{202}$ which exhibit extremely low-field ${ }^{31} \mathrm{P}$ NMR resonances in the region of 312
to 317 ppm and small one-bond carbon-phosphorus coupling constants that range from ${ }^{1} J_{C-P}$ 17.0 to 19.6 Hz .
a)

b)

$$
\mathrm{R}=\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}
$$

$$
\mathrm{R}^{\prime}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{CH}_{2}{ }^{\mathrm{t}} \mathrm{Bu},{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Ad}, \mathrm{C}_{6} \mathrm{H}_{10}(1-\mathrm{Me})
$$

Scheme 43. Cycloadditions of phosphaalkynes; $\left.\mathbf{a})[2+4],{ }^{201} \mathbf{b}\right)[4+2]^{202}$

Phosphaalkynes also undergo cyclooligomerisation reactions to produce cage compounds; the first thermally induced example resulted from heating neat ${ }^{t} \mathrm{BuC}=\mathrm{P}$ at $130^{\circ} \mathrm{C}$ for 65 h , followed by distillation to afford tetraphosphacubane (Scheme 44 a). ${ }^{203} \mathrm{~A}$ resonance consistent with an $\mathrm{AX}_{3} \mathrm{Y}$ spin system was observed at -29.1 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, while the ${ }^{31} \mathrm{P}$ NMR spectrum showed a multiplet signal at 257 ppm . In the presence of a Lewis acid 'cyclotrimerisation reagent' ${ }^{\text {' }} \mathrm{BuC} \equiv \mathrm{P}$ cyclooligomerised to form triphosphabenzene (Scheme 44 b) ${ }^{149}$ while the reaction of ${ }^{t} \mathrm{BuC} \equiv \mathrm{P}$ with $\left[\mathrm{Fe}(\cot)_{2}\right]$ produced the phosphaferrocene (Scheme 44 c). ${ }^{204}$ Nixon and Cloke demonstrated that numerous metallocenes could be accessed via metal vapour synthesis with ${ }^{\dagger} \mathrm{BuC} \equiv \mathrm{P}$ (Scheme 44 d) ${ }^{205-213}$

a

b) $4{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{P}$

$$
\mathrm{M}=\mathrm{Fe}, \mathrm{~V}, \mathrm{Cr}, \mathrm{Ru} \quad \mathrm{M}=\mathrm{Yb}, \mathrm{Sc}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt} \quad \mathrm{M}=\mathrm{Fe}, \mathrm{Cr}, \mathrm{Ru}, \mathrm{Mn}, \mathrm{Ti}
$$

Scheme 44. Cyclooligomerisation of ${ }^{t} \mathrm{BuC} \equiv \mathrm{P}$ produces; \mathbf{a}) tetraphosphacubane, ${ }^{203}$
b) triphosphabenzene, ${ }^{149}$ c) phosphaferrocene, ${ }^{204}$ d) metallocenes ${ }^{205-213}$

Other reactions

As for classical alkynes, ${ }^{214}$ phosphaalkynes are prone to polymerisation, with $\mathrm{PhC} \equiv \mathrm{P}$ polymerising spontaneously upon warming to ambient temperature, with 20% of unreacted $\mathrm{PhC} \equiv \mathrm{P}$ remaining after $9 \mathrm{~h} .{ }^{215}$ The ${ }^{31} \mathrm{P}$ NMR spectrum showed two minor sharp resonances at 190 and 196 ppm, attributed to low molecular weight polymeric phosphaalkenes, while a very broad major signal at 60 ppm was assigned to a high molecular weight phosphaalkane polymer.

Coordinated phosphindoles, which are commonly used for transition metal catalysis, can be accessed via the coordination of phosphaalkynes to transition metal centres followed by reaction with strong acids such as TfOH or TsOH (Scheme 45). ${ }^{153}$ The free phosphaindole is generated from photolysis of the precursor complex following removal of the volatile products, which was necessary to prevent degradation. Similar photo-induced cyclisation reactions have been observed for 4,4-diphenylcyclohexanones. ${ }^{216}$

Scheme 45. Synthesis of phosphindoles from phosphaalkynes ${ }^{153}$

Homo-Diels-Alder reactions of phosphaalkynes with 1,3-dienes have been sparsely documented; in Fuchs' example the reagents were heated to $90^{\circ} \mathrm{C}$ and the products were distilled as isomeric mixtures, attributed to a lack of regioselectivity of the Diels-Alder reaction. ${ }^{217}$ The author postulated that the reaction occurred via an initial Diels-Alder step, followed by an 'ene' reaction with a second equivalent of ${ }^{\mathrm{t}} \mathrm{BuC}=\mathrm{P}$, and finally a $[4+2]$ cycloaddition reaction to yield the bicyclic products (Scheme 46).

The reaction of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}$ with LiOMe afforded the diphospholide and triphospholide anions in a 1:2 ratio respectively (Scheme 47 a), identified by ${ }^{31} \mathrm{P}$ NMR resonances at 270 ppm for the diphospholide anion and mutually coupling signals at 316 and $327 \mathrm{ppm}\left({ }^{2} J_{P-P} 30.2 \mathrm{~Hz}\right)$ for the triphospholide anion. ${ }^{164}$ Notably, the reaction of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}$ with alkyllithium afforded the diphospholide anion exclusively (Scheme 47 b); the same conversion was achieved by the reaction of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{P}$ with K, Na or Li , reminiscent of the reaction of ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ with $\mathrm{Na} / \mathrm{Hg}$ that was originally documented by Bartsch and Nixon in 1989. ${ }^{218}$

Scheme 47. Synthesis of phospholide anions ${ }^{164}$

The protonation of classical alkynes by superacids is well-documented, and proceeds via a vinyl cation intermediate; ${ }^{219}$ similarly, the reaction of superacids, namely $\mathrm{FSO}_{3} \mathrm{H}$ or $\mathrm{SO}_{2} \mathrm{ClF}$, with $\mathrm{AdC} \equiv \mathrm{P}$ induces protonation exclusively at the carbon centre to generate an isomerically pure sample of phosphaalkene $Z-\mathrm{Ad}(\mathrm{H}) \mathrm{C}=\mathrm{P}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)$ (Scheme 48). ${ }^{220}$ The intermediate cation was proposed solely by comparison with the analogous reactions with alkynes.

Scheme 48. Superacid protonation of phosphaalkynes ${ }^{220}$

The dihydroamination of alkynes has historically been achieved by transition metal or lanthanide catalysts, as the reactions are otherwise kinetically unfavourable due to high activation barriers. ${ }^{221,222}$ This methodology was similarly effective for the first catalytic dihydroamination of a phosphaalkyne, achieved by addition of excess RNH_{2} to ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ in the presence of $\left[\mathrm{TiCl}_{4}\right]$ (Scheme 49). ${ }^{223}$ The resulting diaminophosphine ${ }^{t} \mathrm{BuCH}_{2} \mathrm{P}(\mathrm{N}(\mathrm{H}) \mathrm{R})_{2}$ was afforded in $>90 \%$ yield after 24 h following purification by sublimation.

Scheme 49. Catalytic dihydroamination of phosphaalkynes ${ }^{223}$

The reaction of phosphaalkynes with nucleophilic reagents was first probed by Arif in 1988, and was found to be quite different from the analogous reactions of nitriles; whereas nucleophiles react with the electrophilic carbon centre of nitriles $\left(\mathrm{R}^{\delta+} \mathrm{C} \equiv \mathrm{N}^{\delta-}\right),{ }^{224}$ phosphaalkynes react with nucleophiles at the electrophilic phosphorus centre $\left(\mathrm{R}^{\delta-} \mathrm{C} \equiv \mathrm{P}^{\delta+}\right)$.The reaction of Mes* $\mathrm{C} \equiv \mathrm{P}$ with MeLi provided facile access to phosphaalkene Mes*(H)C=PMe via an intermediate phosphaalkenic anion (Scheme $50 \mathbf{a}$). ${ }^{225}$ In contrast, reaction of Mes* $\mathrm{C} \equiv \mathrm{P}$ with half an equivalent of MeLi afforded a novel [1,3]-diphosphabutadienyl anion, which could be converted to the corresponding [1,3]-diphosphabutadiene by treatment with RCl (Scheme $50 \mathbf{b}$).

Scheme 50. Reactions of Mes* ${ }^{*} \equiv \mathrm{P}$ with a) MeLi, b) $0.5 \mathrm{MeLi}^{225}$

The reaction of ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ with $\left[(\mathrm{ArO})_{3} \mathrm{~W} \equiv \mathrm{~W}(\mathrm{OAr})_{3}\right]$ affords a mixture of cyclic complexes that included the first example of "naked phosphorus as a bent bridging ligand," which was characterised by single crystal X-ray diffraction (Scheme $51 \mathbf{a}$). ${ }^{226}$ The authors postulated that the "naked phosphorus" complex was formed by the reaction of two phosphide units $\left[(\mathrm{ArO})_{3} \mathrm{~W} \equiv \mathrm{P}\right]$ with one free phosphaalkyne ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P} . \mathrm{A}^{31} \mathrm{P}$ NMR resonance at 832 ppm was attributed to the naked phosphorus centre. The naked phosphorus lone pair provided further reactivity by coordination to an additional metal centre (Scheme $51 \mathbf{b}$), resulting in an up-field shift of the ${ }^{31} \mathrm{P}$ NMR resonance $(\mathrm{M}=\mathrm{W}, 651 \mathrm{ppm} ; \mathrm{M}=\mathrm{Cr}, 715 \mathrm{ppm})$.

"naked phosphorus"
b)

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{3}(2,6-\mathrm{Me})_{2}$ $\mathrm{M}=\mathrm{W}, \mathrm{Cr}$
"naked phosphorus"
Scheme 51. The cyclisation reaction of ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{P}$ with $\left[(\mathrm{ArO})_{3} \mathrm{~W} \equiv \mathrm{~W}(\mathrm{OAr})_{3}\right]$ afforded the first example of phosphorus as a "naked bridging ligand" ${ }^{226}$

1.5 Summary

Although phosphines, phosphaalkenes and phosphaalkynes are well-documented species, much scope for further investigation remains. Reports of alkynylphosphine chemistry are limited to reactions with transition metals and examples of propargylphosphines are extremely limited, while the electronic characteristics of conjugated phosphaalkynes, diynes, and diphosphaalkynes are undocumented.

Phosphorus has long been used as an n-type dopant to enhance the electronic properties of conducting polymers, ${ }^{227,228}$ and recent years have seen a surge in the application of conjugated species in molecular electronics viz. molecular wires, ${ }^{129,29}$ and organic light emitting diodes (OLEDs). ${ }^{230}$ Gates and Ott have independently demonstrated that conjugated phosphaalkenes possess enhanced electronic communicative abilities viz. reduced HOMO - LUMO band gaps and increased through-chain conjugation compared with the all-carbon containing analogues. ${ }^{130,131}$ However, such studies have yet to be extended to systems containing phosphaalkynes.

Herein are described attempts to develop low coordinate phosphorus species bearing extended conjugation, which may prove particularly valuable in the field of molecular wire research. The synthesis of linear conjugated phosphaalkynes such as $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CC} \equiv \mathrm{P}$ may ultimately provide access to coordinated complexes $\left[\mathrm{M}\left\{\mathrm{P} \equiv \mathrm{CC}_{\mathrm{C}}=\mathrm{CER}_{3}\right\}(\mathrm{H})(\mathrm{dppe})_{2}\right]$ and 1-phosphadiynyls $\left[\mathrm{M}\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{P}\}(\mathrm{H})(\mathrm{dppe})_{2}\right]$ via use of the main group fragment as a transfer reagent. The synthesis of phosphaalkynes in conjugation with aromatic systems that incorporate additional functional groups, as for $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(\mathrm{R})$, was also approached, with the knowledge that developing a synthetic route that is tolerant of additional ring substituents may ultimately allow access to conjugated polyphosphaalkynes $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{C} \equiv \mathrm{P})_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1,3,5-\mathrm{C} \equiv \mathrm{P})_{3}$. Such species are envisaged to possess novel electronic properties and provide value in the on-going development of NLO devices.

2. The development of chloropropargyls and propargylphosphines

2.1 Introduction

Unlike the relatively common bromopropargyl compounds, ${ }^{231-243}$ main group chloropropargyls of the type $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ have been reported only sporadically in literature, ${ }^{244-247}$ with germanium and tin variants particularly poorly documented (Table 8); ${ }^{248,249,246}$ main group iodopropargyls are similarly rare. ${ }^{250-253,240}$ Two new examples of chloropropargyls, ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ and $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$, have been reported since work on this project commenced. ${ }^{243,254}$

Table 8. Main group halopropargyls previously reported in literature

Compound	\mathbf{R}_{3}	Source
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	Me_{3}	247
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	$\mathrm{Me}_{2}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Et}_{3}$	245
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	$\mathrm{Me}_{2} \mathrm{Ph}, \mathrm{Me}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} 2-\mathrm{Me}\right)$	254
$\mathrm{R}_{3} \mathrm{GeC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	Ph_{3}	246
$\mathrm{R}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$	$\mathrm{Me}_{3}, \mathrm{Et}_{3}, \mathrm{Ph}_{3},{ }^{\mathrm{n}} \mathrm{Bu}_{3}$	$248,249,246,243$
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	$\mathrm{Et}_{3},{ }^{\mathrm{i}} \mathrm{Pr}_{3}, \mathrm{Me}_{2}\left(\mathrm{PhCH}_{2}\right)$	$233,232,236$
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	$\mathrm{Me}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}\right), \mathrm{Me}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$	238
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	$\mathrm{Ph}_{2} \mathrm{Me},^{\mathrm{t}} \mathrm{BuPh}_{2}, \mathrm{Ph}_{3}, \mathrm{Ph}_{2}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), \mathrm{PhMe}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$	237
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	$\mathrm{Me}_{2}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}^{2}\right), \mathrm{Me}_{2} \mathrm{Ph}^{2}, \mathrm{Me}_{3}$	231
$\mathrm{R}_{3} \mathrm{GeC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	Me_{3}	240
$\mathrm{R}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$	$\mathrm{Me}_{3}, \mathrm{Et}_{3},{ }^{\mathrm{n}} \mathrm{Bu}_{3}$	$241-243$
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{I}$	$\mathrm{Me}_{2}{\mathrm{Ph}, \mathrm{Et}_{3}, \mathrm{Me}}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$	$253,251,255$
$\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{I}$	$\mathrm{Me}_{3}, \mathrm{Me}_{2}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right)$	252
$\mathrm{R}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{I}$	Me_{3}	240

The syntheses of main group halopropargyls can be achieved via a number of routes;
Ruitenberg's approach featured the reaction of $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (generated by addition of ${ }^{\mathrm{n}} \mathrm{BuLi}$ to $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$) with $\mathrm{R}_{3} \mathrm{ECl}$ (Scheme 52). ${ }^{246}$

Scheme 52. Literature synthesis of $\mathrm{R}_{3} \mathrm{EC}=\mathrm{CCH}_{2} \mathrm{Cl}^{246}$

The conversion of main group halopropargyls to main group propargylphosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PR}{ }_{2}$ has not previously been described in literature, although the synthesis of main group phosphinoacetylenes $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CPPh}_{2}(\mathrm{R}=\mathrm{Ph}, \mathrm{Me}, \mathrm{E}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$ has, ${ }^{79}$ as has the synthesis of propargylphosphines of the type $\mathrm{RC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\left(\mathrm{R}=\mathrm{H},{ }^{84} \mathrm{Me},{ }^{256} \mathrm{Ph},{ }^{86}\right)$. The synthesis of alkynylphosphines has historically been achieved by a variety of routes, including a) addition of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CNa}$ to $\mathrm{R}_{2}{ }_{2} \mathrm{PCl}^{79,41} \mathbf{b}$) addition of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CLi}$ to $\mathrm{R}^{\prime}{ }_{2} \mathrm{PCl}^{79}{ }^{79} \mathbf{c}$) addition of $\mathrm{R}^{\prime}{ }_{2} \mathrm{PCl}$ to $\mathrm{RC} \equiv \mathrm{CMgBr},{ }^{257} \mathbf{d}$) addition of $\mathrm{R}^{\prime}{ }_{2} \mathrm{PLi}$ to $\mathrm{RC} \equiv \mathrm{CX}$ (Scheme 53). ${ }^{84,256,86}$
a)

b)

c)

d)

R, $\mathrm{R}^{\prime}=$ alkyl, aryl $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$

Scheme 53. Literature syntheses of alkynylphosphines

Herein the synthesis of a comprehensive library of main group chloropropargyls is reported, and further transformation to main group propargylphosphines thoroughly explored. An investigation of reactivity profiles and coordination chemistry will be described, and the synthesis and reactivity of selected carbocentric counterparts also reported.

2.2 Syntheses of $\mathbf{R}_{3} \mathbf{E C} \equiv \mathbf{C C H}_{2} \mathbf{C l}$

Following from Ruitenberg's synthetic methodology for the production of tin chloropropargyls, ${ }^{246} \mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{1}-\mathbf{7}$, Scheme 54$)$ were synthesised by addition of ${ }^{\mathrm{n}} \mathrm{BuLi}$ to $\mathrm{HC}=\mathrm{CCH}_{2} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$, followed by the subsequent addition of $\mathrm{R}_{3} \mathrm{ECl}$. Compounds $\mathbf{1 - 7}$ were isolated in good yields (>60\%) as yellow oils after purification by washing with pentane (1-2), fractional distillation (3-6) or sublimation (7), although complete solvent removal (THF) for $\mathbf{2}$ was not achieved.

Scheme 54. Syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(1-7)$

The ${ }^{1}$ H NMR spectra for $\mathbf{1 - 2}$ show singlet resonances at ca. $3.70 \mathrm{ppm}\left({ }^{4} J_{H-S n} \mathrm{ca} .9 .9 \mathrm{~Hz}\right)$ that are assigned to the $\mathrm{CH}_{2} \mathrm{Cl}$ protons and display satellites (${ }^{119} \mathrm{Sn}, \mathrm{I}=1 / 2,8.59 \%$) that are characteristic in magnitude of a four-bond proton-tin separation. ${ }^{258,259}$ The analogous $\mathrm{CH}_{2} \mathrm{Cl}$ protons of compounds 3-7 are located at 3.49 to 3.56 ppm ; although no silicon satellites are resolved, long-range correlations between the $\mathrm{CH}_{2} \mathrm{Cl}$ proton resonances and silicon centres in the range of -28.8 to -1.7 ppm are evident from the ${ }^{1} \mathrm{H}-{ }^{-29} \mathrm{Si} \mathrm{HMBC}$ NMR spectra (Table 9). The signals assigned to the $\mathrm{CH}_{2} \mathrm{Cl}$ protons for compounds 1-7 each integrate to two protons when compared to the remaining resonances of the R substituents in their respective ${ }^{1} H$ NMR spectra, consistent with the product assignments. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 - 7}$ show singlet resonances at ca. 30.6 ppm for the $\mathrm{CH}_{2} \mathrm{Cl}$ carbons and two further singlet signals at ca. 89.4 and ca. 104 ppm , attributed to the ${ }^{\alpha} \mathrm{C}\left(\mathrm{R}_{3} \mathrm{E} \mathbf{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$ and ${ }^{\beta} \mathrm{C}\left(\mathrm{R}_{3} \mathrm{EC} \equiv \mathbf{C C H}_{2} \mathbf{C l}\right)$ alkynic carbon centres respectively. The alkynic assignments are made by comparison with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnC}=\mathrm{CCH}_{2} \mathrm{Cl},\left(\delta_{\mathrm{C}} 97.2\right.$ for ${ }^{a} \mathrm{C}, 104$ for $\left.{ }^{\beta} \mathrm{C}\right) .^{243}$ The difference in chemical shifts between the ${ }^{a} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ centres is consistent with polarisation of the triple bond when relative electrondonor/acceptor strengths of the respective termini are considered; compounds 3-7 exhibit smaller chemical shift differences between the ${ }^{a} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ centres $\left(\Delta \delta_{\mathrm{C}}+\right.$ ca. 13.3) than 1-2 $\left(\Delta \delta_{\mathrm{C}}\right.$ +13.9 for $\mathbf{1}, \Delta \delta_{\mathrm{C}}+18.3$ for $\mathbf{2}$) as there is less electron-donor/acceptor strength disparity between the terminal groups. The ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show singlet signals at -65.1 and -169 ppm for $\mathbf{1}$ and $\mathbf{2}$ respectively; the chemical shifts of similar tin species $\left(\mathrm{R}_{4} \mathrm{Sn}\right)$ typically span -150 to $+50 \mathrm{ppm},{ }^{260}$ and while the shift of $\mathbf{2}$ falls marginally outside of this window, literature reveals similar data for compounds of the type $\mathrm{R}_{4} \mathrm{E}$ when $\mathrm{R}=\mathrm{Ph} .{ }^{261,262}$

Table 9. Selected NMR data for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{1 - 7})$

	$\mathbf{R}_{3} \mathrm{E}$	$\begin{aligned} & { }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} \left.{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right\} \\ / \mathbf{p p m} \end{gathered}$	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{CH}_{2} \mathrm{Cl} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{{ }^{4} \mathbf{J}_{\mathrm{H}-\mathrm{Sn}}} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{CH}_{2} \mathrm{Cl} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{0} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{\beta} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$
1	${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{Sn}$	-65.1	-	3.70	9.2	31.2	91.1	105
2	$\mathrm{Ph}_{3} \mathrm{Sn}$	-169	-	3.67	10.5	30.3	88.1	106
3	$\mathrm{Me}_{2} \mathrm{Ph}$	-	-21.6	3.51	-	30.1	89.7	102
4	${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{Si}$	-	-1.7	3.53	-	30.2	88.0	102
5	${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{Si}$	-	-13.0	3.55	-	30.7	90.2	102
6	${ }^{\text {n }} \mathrm{Bu}_{3} \mathrm{Si}$	-	-11.3	3.56	-	30.7	90.3	102
7	$\mathrm{Ph}_{3} \mathrm{Si}$	-	-28.8	3.49	-	30.4	87.6	105

2.3 Syntheses and reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{\mathbf{2}} \mathrm{PPh}_{2}$

2.3.1 Syntheses of $\mathbf{R}_{3} \mathbf{E C} \equiv \mathrm{CCH}_{2} \mathbf{P P h}_{2}$

The addition of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{1 - 6})$ to LiPPh_{2} afforded $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8}-\mathbf{1 3})$ as red or brown oils in good yields ($78-99 \%$) (Scheme 55). While compounds $\mathbf{1 0 - 1 3}$ were isolated in analytical purity, compound $\mathbf{8}$ was generated alongside significant quantities of ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{Sn}$ (identified by comparison to literature data, $\delta_{\mathrm{Sn}_{\mathrm{n}}}-12.0$), ${ }^{263}$ from which isolation could not be achieved by washing or crystallisation; distillation resulted in the degradation of $\mathbf{8}$ to an intractable mixture. Similarly, 9 was obtained with trace contaminants, including ${ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Snn}^{264}$ thus compounds $\mathbf{8}$ and $\mathbf{9}$ were characterised only spectroscopically.

In all cases the solvent identity proved to be of the utmost importance to the success of the reaction; when performed in THF, the regeneration of HPPh_{2} was observed, and none of the desired product was detected by multinuclear NMR spectroscopy. Interestingly, the analogous reaction of LiPCy_{2} with $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ was unsuccessful irrespective of the solvent and reaction conditions, with only free HPCy_{2} detected by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Scheme 55. Syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8}-13)$

With the exception of the ${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, the multinuclear NMR characteristics of $\mathbf{8}$ and 9 are similar (Table 10), with each resonance (${ }^{1} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ exhibiting significantly highfield chemical shifts compared to $\mathbf{1}$ and $\mathbf{2}$. The ${ }^{31} \mathrm{P}$ NMR spectra show broad resonances at ca. $-13.3 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .21 .7 \mathrm{~Hz}\right)$ that are consistent in chemical shift with comparable tin-containing phosphines $\left(\mathrm{Me}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}, \delta_{\mathrm{P}}-17.2\right){ }^{265}$ The ${ }^{1} \mathrm{H}$ NMR studies show doublet signals at 2.87 $\operatorname{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .2 .4 \mathrm{~Hz}\right)$ that are assigned to the $\mathrm{CH}_{2} \mathrm{P}$ protons, with two-bond proton-phosphorus coupling constants similar to previously reported values $\left(\mathrm{Me}_{3} \mathrm{P},{ }^{2} J_{H-P} 2.7 \mathrm{~Hz} ;{ }^{266} \mathrm{Ph}_{2} \mathrm{MePh},{ }^{2} J_{H-P}\right.$ $\left.4.0 \mathrm{~Hz},{ }^{267} \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2},{ }^{2} J_{H-P} 1.9 \mathrm{~Hz}\right) .{ }^{267}$ The $\mathrm{CH}_{2} \mathrm{P}$ resonance of compound 9 also exhibits both ${ }^{117} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}$ satellites $\left({ }^{4} J_{H-S n} 15.0 \mathrm{~Hz}\right.$ and 9.1 Hz$)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{8}$ and $\mathbf{9}$ show doublet signals at ca. $20.3 \mathrm{ppm}\left({ }^{1} J_{C-P} \mathrm{ca} .19 \mathrm{~Hz}\right.$) for the $\mathrm{CH}_{2} \mathrm{P}$ carbon centres, with carbonphosphorus coupling constants consistent with one-bond carbon-phosphorus separations $\left(\mathrm{Me}_{2}(\mathrm{Cl}) \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}^{\mathrm{n}} \mathrm{Bu}_{2},{ }^{4} J_{S n-P} 19.5 \mathrm{~Hz}\right){ }^{265}$ in addition to doublet resonances at ca. $83.9\left({ }^{3} J_{C-P} \mathrm{ca}\right.$. $6.3 \mathrm{~Hz})$ and $108 \mathrm{ppm}\left({ }^{2} J_{C-P} \mathrm{ca} .4 .2 \mathrm{~Hz}\right)$, attributed to the alkynic carbon atoms ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$. Compounds 8 and 9 exhibit doublet signals at $-68.4\left({ }^{4} J_{S n-P} 14.5 \mathrm{~Hz}\right)$ and $-168 \mathrm{ppm}\left({ }^{4} J_{S n-P} 13.9\right.$ Hz) respectively in the ${ }^{119} \mathrm{Sn}$ NMR spectra; the tin-phosphorus coupling constants are consistent with four-bond tin-phosphorus separations in the literature $\left(\mathrm{Me}_{2}(\mathrm{Cl}) \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PCy}_{2},{ }^{4} J_{S n-P} 14.5\right.$ $\mathrm{Hz}) .{ }^{265}$

The ${ }^{31} \mathrm{P}$ NMR spectra of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{1 0}-\mathbf{1 3})$ show broad resonances at ca. -13.5 ppm ($\mathrm{w}_{1 / 2}$ ca. 22.5 Hz), which correlate with doublets (confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR studies) in the ${ }^{1} \mathrm{H}$ NMR spectra at ca. $2.76 \mathrm{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .2 .5 \mathrm{~Hz}\right)$ that are assigned to the $\mathrm{CH}_{2} \mathrm{P}$ protons (Table 10). For each compound the doublet signal integrates as two protons when compared to the resonances assigned to the respective R groups. Doublet signals that are assigned to the $\mathrm{CH}_{2} \mathrm{P},{ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ centres are located at ca. $19.9\left({ }^{1} J_{C-P} \mathrm{ca} .20 \mathrm{~Hz}\right)$, ca. $84.7\left({ }^{3} J_{C-P} \mathrm{ca} .5 .1 \mathrm{~Hz}\right)$, and ca. $104 \mathrm{ppm}\left({ }^{2} J_{C-P}\right.$ ca. 3.9 Hz$)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, with coupling constants and chemical shifts comparable to those exhibited by $\mathbf{8}$ and 9 .

Table 10. Selected NMR data for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8}$ - 13)

	$\mathbf{R}_{3} \mathrm{E}$	$\begin{aligned} & { }^{31} \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{CH}_{2} \mathrm{P} \\ & \text { / ppm } \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{CH}_{2} \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{1} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{a} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{3} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{\beta} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$
8	${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{Sn}$	-13.4	2.87	20.4	18.5	85.0	6.7	107	4.9
9	$\mathrm{Ph}_{3} \mathrm{Sn}$	-13.2	2.87	20.2	20.5	82.8	5.9	109	3.4
10	$\mathrm{Me}_{2} \mathrm{PhSi}$	-13.5	2.76	19.8	20.7	84.7	4.9	105	3.6
11	${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{Si}$	-13.5	2.75	19.9	19.3	83.3	5.2	105	4.2
12	${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{Si}$	-13.6	2.76	19.9	19.9	85.4	5.2	103	4.0
13	${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{Si}$	-13.5	2.76	19.9	19.8	85.5	4.8	104	4.1

2.3.2 Coordination reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$

Syntheses of cis/trans- $\left[\mathrm{PtCl}_{2}\left(\mathbf{R}_{3} \mathbf{E C} \equiv \mathbf{C C H}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$

Complexes of the type cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 4}-16)$ were synthesised in high yields ($>75 \%$) via addition of PtCl_{2} to the respective phosphine $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\left(\mathrm{R}_{3} \mathrm{E}={ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{Sn}\right.$, $\left.{ }^{i} \mathrm{Pr}_{3} \mathrm{Si},{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{Si}\right)$ (Scheme 56). Complexes $\mathbf{1 5} \mathbf{- 1 6}$ could also be accessed by addition of $[\mathrm{Pt}(1,5-$ $\mathrm{COD}) \mathrm{Cl}_{2}$] to $\mathrm{R}_{3} \mathrm{SiC}_{\mathrm{Si}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$, with comparable yields ($76-86 \%$) of analytically pure solids. In contrast, $\mathbf{1 4}$ could not be generated by addition of $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ to ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}_{\mathrm{C}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$, nor could it be isolated from significant levels of contaminants, the identities of which remain elusive. Washing and recrystallisation both proved ineffective, although $\mathbf{1 4}$ was the predominant product ($>50 \%$ determined by integration of the resonances in the ${ }^{31} \mathrm{P}$ NMR spectrum), which enabled spectroscopic characterisation.

Scheme 56. Syntheses of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 4}$ - 16)

The ${ }^{31}$ P NMR spectrum of $\mathbf{1 4}$ shows a broad resonance at $6.0 \mathrm{ppm}\left({ }^{1} J_{P-P t} 3611 \mathrm{~Hz}, \mathrm{w}_{1 / 2}\right.$ ca. 45.1 Hz), while complexes 15-16 show broad signals at ca. $5.9 \mathrm{ppm}\left({ }^{1} J_{P-P_{t}} \mathrm{ca} .3610 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca} .45 .1\right.$ Hz) (Table 11). The magnitude of the platinum satellites for 14-16 are consistent with ciscoordinated bisphosphine di-halide complexes. ${ }^{268}$ For complex 14, twelve additional signals that range from -5.2 to 52.8 ppm are located in the ${ }^{31} \mathrm{P}$ NMR spectrum, although none can be identified due to the relatively small quantities of each present (ca. 47.3% by integration of the ${ }^{31} \mathrm{P}$ NMR spectrum). The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 4} \mathbf{- 1 6}$ show triplet resonances at ca. -4404 $\operatorname{ppm}\left({ }^{l} J_{P_{t}-P} \mathrm{ca} .3610 \mathrm{~Hz}\right.$), consistent with coordination of two equivalent phosphorus atoms to each platinum centre. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ shows a multiplet resonance at 3.78 ppm $\left(^{2} J_{H-P} 10.9 \mathrm{~Hz}\right.$) that is assigned to the $\mathrm{CH}_{2} \mathrm{P}$ protons and integrates as four protons when compared to the remaining signals in the spectrum. The analogous $\mathrm{CH}_{2} \mathrm{P}$ protons for complexes 15-16 are located as doublet signals in the ${ }^{1} \mathrm{H}$ NMR spectra at ca. $3.85 \mathrm{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .9 .8 \mathrm{~Hz}\right)$, and correspond to their respective phosphorus resonances via ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR studies. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 4}$ shows unresolved multiplet signals for the alkynic carbon centres ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ at $88.7\left({ }^{3} J_{C-P} 7.8 \mathrm{~Hz}\right)$ and $104 \mathrm{ppm}\left({ }^{2} J_{C-P} 12.2 \mathrm{~Hz}\right)$, similar to those exhibited by $15-$ 16 at ca. $86.9\left({ }^{3} J_{C-P} 3.2 \mathrm{~Hz}\right)$ and ca. $102 \mathrm{ppm}\left({ }^{2} J_{C-P} \mathrm{ca} .6 .2 \mathrm{~Hz}\right)$. The resonance assigned to the
$\mathrm{CH}_{2} \mathrm{P}$ carbon of $\mathbf{1 4}$ is observed as a multiplet at $23.8 \mathrm{ppm}\left({ }^{1} J_{C-P} 42.1 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, shifted significantly down-field ($\Delta \delta_{\mathrm{C}}+3.40 \mathrm{ppm}$) from free ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8})$, with a greatly increased carbon-phosphorus coupling constant ($\Delta^{l} J_{C-P}+23.6 \mathrm{~Hz}$). Complexes 15 - $\mathbf{1 6}$ also exhibit multiplet resonances attributed to the $\mathrm{CH}_{2} \mathrm{P}$ carbon centres in a similar region ($\delta_{\mathrm{P}} 23.9\left({ }^{1} J_{C-P} \mathrm{Ca} .44 .2 \mathrm{~Hz}\right)$) that possess increased carbon-phosphorus coupling constants compared with the free propargylphosphines 11-12. These trends are characteristic of phosphine coordination complexes in the literature; cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ exhibits a multiplet at 1.9 $\operatorname{ppm}\left({ }^{1} J_{C-P} 42.0 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, ${ }^{269}$ while free PEt_{3} shows a doublet at 18.0 $\operatorname{ppm}\left({ }^{1} J_{C-P} 11.5 \mathrm{~Hz}\right) .{ }^{270}$

In order to gain access to trans-[$\left[\mathrm{PtCl}_{2}\left({ }^{[} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (trans-16), thermal and photoisomerisations of $\boldsymbol{c i s}$ - $\mathbf{1 6}$ were attempted by reflux and irradiation with a 500 MW full spectrum mercury lamp, in line with literature precedent. ${ }^{271}$ The reflux of $\boldsymbol{c i s}$ - $\mathbf{1 6}$ proved ineffective at inducing isomerisation, with only cis-16 observed spectroscopically. However, UV irradiation afforded a mixture of cis-/trans-[$\left.\mathrm{PtCl}_{2}\left({ }^{(} \mathrm{Pr}_{3} \mathrm{SiC}_{2}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](57.5 \%$ cis-16, 42.5% trans-16) after 30 min (Scheme 57). Further irradiation over 3 h failed to convert the remaining cis-16, rendering it necessary to characterise trans-16 in equilibrium with cis-16.

Scheme 57. Synthesis of trans- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$

The ${ }^{31}$ P NMR spectrum of trans- $\mathbf{1 6}$ shows a broad resonance at $11.5 \mathrm{ppm}\left({ }^{1} J_{P-P t} 2217 \mathrm{~Hz}\right)$ (Table 11), with platinum satellites characteristic in magnitude of a trans-geometry at the metal centre. This signal couples (as determined by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy) to a triplet resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum at $3.77 \mathrm{ppm}\left({ }^{2} J_{H-P} 4.6 \mathrm{~Hz}\right),{ }^{56}$ which is assigned to the $\mathrm{CH}_{2} \mathrm{P}$ group and integrates as four protons when compared to the remaining alkyl and aryl resonances (Figure 16). The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a triplet signal at $-3993 \mathrm{ppm}\left({ }^{1} J_{P_{t-P}} 2217 \mathrm{~Hz}\right.$), shifted significantly from that of $\boldsymbol{c i s}-\mathbf{1 6}\left(\delta_{\mathrm{Pt}}-4403\left({ }^{1} J_{P_{t}-P} 3608 \mathrm{~Hz}\right)\right.$). The signals in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum are assigned by comparison with those recorded for cis-16, from which only minor deviations are noted. A triplet resonance at $23.8 \mathrm{ppm}\left({ }^{l} J_{C-P} 23.8 \mathrm{~Hz}\right)$ is assigned to the $\mathrm{CH}_{2} \mathrm{P}$ centre, while the alkynic carbons ${ }^{a} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ are found respectively as an unresolved multiplet and triplet signal at 88.1 and $101 \mathrm{ppm}\left({ }^{2} J_{C-P} 4.9 \mathrm{~Hz}\right)$.

Table 11. Selected NMR data for $\left[\mathrm{PtCl}_{2}\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 4}$ - 16)

	Complex	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{1} \mathbf{J}_{\mathrm{P}-\mathrm{Pt}} \\ & / \mathrm{Hz} \end{aligned}$	${ }^{195} \mathbf{P t}\left\{{ }^{1} \mathbf{H}\right\}$ / ppm	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{CH}_{2} \mathrm{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{H}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{CH}_{2} \mathrm{P}} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{1} \mathbf{J}_{\mathrm{P}-\mathrm{C}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{a} \mathrm{C} \\ & / \mathrm{Hz} \end{aligned}$	$\begin{gathered} { }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{C}} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\{\mathrm{H}\}{ }^{\beta} \mathrm{C} \\ & / \mathrm{Hz} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{P}-\mathrm{C}} \\ / \mathrm{Hz} \end{gathered}$
14	cis-[$\left.\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$	6.0	3611	-4407	3.78	10.9	23.8	42.1	88.7	7.8	104	12.2
15	cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$	5.8	3618	-4399	3.87	10.0	23.9	42.3	85.8	3.1	102	6.3
cis-16	cis-[$\left.\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$	5.9	3608	-4403	3.82	9.6	23.9	46.1	88.0	3.3	101	6.0
trans-16	trans-[$\left[\mathrm{PtCl}_{2}\left({ }^{(} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$	11.5	2217	-3993	3.77	4.6	23.8	23.8	88.1	-	101	4.9

Figure 16. Selected section (3.71-3.85 ppm) of the ${ }^{1} \mathrm{H}$ NMR spectrum of cis-/trans- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{H}} \mathrm{Pr}_{3} \mathrm{SiC}_{\mathrm{C}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (16); the triplet resonance is for the trans-isomer

Syntheses of trans-[$\left.\mathrm{PdCl}_{2}\left(\mathbf{R}_{3} \mathbf{S i C} \equiv \mathbf{C C H}_{2} \mathbf{P P h}_{2}\right)_{2}\right]$

The syntheses of trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 7 - 1 8})$ were achieved by addition of PdCl_{2} or $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ to $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ (Scheme 58), with both routes producing high yields of solid products (>85 \%).

Scheme 58. Syntheses of trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 7}$ - 18)

The ${ }^{31} \mathrm{P}$ NMR spectra show resonances at ca. $15.9 \mathrm{ppm}\left(\mathrm{W}_{1 / 2} \mathrm{ca} .24 .2 \mathrm{~Hz}\right.$) that correspond (as determined by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectra) to triplet signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at ca. $3.75 \mathrm{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .3 .9 \mathrm{~Hz}\right.$), assigned to the four $\mathrm{CH}_{2} \mathrm{P}$ protons (Table 12). The phosphorus centres of $\mathbf{1 7}$ and $\mathbf{1 8}$ resonate at significantly lower frequencies than the free phosphines $\mathbf{1 1}$ and 12, consistent with known bisphosphine di-halide palladium complexes. ${ }^{272}$ Triplet resonances for the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ alkynic carbon centres at ca. $86.6\left({ }^{3} J_{C-P} \mathrm{ca} .2 .9 \mathrm{~Hz}\right)$ and $101 \mathrm{ppm}\left({ }^{2} J_{C-P} 5.6 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are similar to trans-16. The $\mathrm{CH}_{2} \mathrm{P}$ and CH_{3} centres of $\mathbf{1 7}$ overlap, precluding resolution of the carbon-phosphorus couplings, however, the $\mathrm{CH}_{2} \mathrm{P}$ carbon atom is located as a triplet signal for $\mathbf{1 8}$ at $18.8 \mathrm{ppm}\left({ }^{l} J_{C-P} 13.1 \mathrm{~Hz}\right)$.

Table 12. Selected NMR data for trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 7 - 1 8})$

	R	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	${ }^{1} \mathrm{H} \mathrm{CH}_{2} \mathrm{P}$ / ppm	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{H}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{C H}_{2} \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{1} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{a} \mathrm{C} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{3} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}{ }^{\beta} \mathbf{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / / \mathbf{H z} \end{gathered}$
17	${ }^{\text {i }} \mathrm{Pr}$	15.9	3.74	3.9	18.4	-	85.3	3.0	101	5.6
18	${ }^{\mathrm{n}} \mathrm{Pr}$	15.9	3.75	3.8	18.8	13.1	87.9	2.9	101	4.7

2.4 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with chlorophosphines

The syntheses of propargyl dihalophosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}(\mathrm{X}=\mathrm{Cl}$, I) were pursued as a potential intermediate en route to conjugated phosphaalkynes, $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CC} \equiv \mathrm{P}$. The double dehydrohalogenation of dichlorophosphines to afford phosphaalkynes is well-
established, ${ }^{163,164,162}$ and may provide a viable route for the synthesis of phosphaalkynes incorporating extended conjugation. Dichlorophosphines of the type $\mathrm{RC}(\mathrm{H})_{2} \mathrm{PCl}_{2}$ are typically produced from the reaction of " $\mathrm{RC}(\mathrm{H})_{2} \mathrm{MgCl}$ " (generated from the Grignard reaction of chlorocarbons $\left.\mathrm{RC}(\mathrm{H})_{2} \mathrm{Cl}\right)$ with chlorophosphines, usually $\mathrm{PCl}_{3}{ }^{44}$

2.4.1 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with PCl_{3}

The syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}(\mathbf{1 9} \mathbf{- 2 0})$ were attempted by addition of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ to activated magnesium with an initiator, however, no evidence for initiation was apparent and the products obtained from the addition to PCl_{3} did not exhibit any resonances in the ${ }^{31} \mathrm{P}$ NMR spectra save for that assigned to unreacted PCl_{3}. Initiation was therefore achieved by reflux and after 4 h the resulting mixtures were filtered into cold PCl_{3} (Scheme 59). The products isolated upon workup were determined to be complex mixtures that could not be improved upon by alterations of i) solvent ($\mathrm{Et}_{2} \mathrm{O}$, pentane, THF, toluene), ii) initiator $\left(\mathrm{HgCl}_{2}\right.$ or $\left.\mathrm{I}_{2}\right)$, iii) time at reflux ($2-8 \mathrm{~h}$), or iv) temperature of addition to $\mathrm{PCl}_{3}\left(-78^{\circ} \mathrm{C},-20^{\circ} \mathrm{C}\right.$, ambient temperature). Isolation by washing (with pentane or hexane) or distillation proved equally unsuccessful.

Scheme 59. Attempted syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}(\mathbf{1 9 - 2 0})$

${ }^{n} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$

The attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ afforded a brown oil that was identified as a mixture of compounds, including ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{1})$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCl}$, identified by singlet resonances at -65.1 and 146 ppm in the ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum; ${ }^{273}$ comparison with the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (chemical shift of the ${ }^{\mathrm{n}} \mathrm{Bu}$ groups for ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCl}$ and $\mathrm{CH}_{2} \mathrm{Cl}$ protons in 1) corroborate these assignments and no further tin-containing products are observed. The ${ }^{31} \mathrm{P}$

NMR spectrum shows just one broad signal of low intensity at $48.8 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .38 .5 \mathrm{~Hz}\right)$ that remains unassigned, being inconsistent with either chlorophosphines $\left(\mathrm{Ph}_{2} \mathrm{PCl}, \delta_{\mathrm{P}} 82.3\right.$, $\left.{ }^{t} \mathrm{BuP}(\mathrm{C} \equiv \mathrm{CPh}) \mathrm{Cl} \delta_{\mathrm{P}} 71.9\right),{ }^{274,275}$ or dichlorophosphines $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PCl}_{2} \delta_{\mathrm{P}} 166\right) .{ }^{276} \mathrm{~A}$ corresponding multiplet (located by ${ }^{1} \mathrm{H}^{31} \mathrm{P}$ HMBC NMR spectroscopy) is observed in the ${ }^{1} \mathrm{H}$ NMR spectrum at 3.45 ppm . Additional multidimensional spectroscopy experiments $\left({ }^{1} \mathrm{H}^{-119} \mathrm{Sn} \mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right.$ HMBC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR) do not provide evidence of further correlation of this signal, and distillation of the brown oil affords the same product mixture but as a colourless oil.

$\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathbf{C C H}_{2} \mathbf{C l}$

The attempted synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}(\mathbf{1 9)}$ afforded an orange solid that exhibits three resonances in the ${ }^{31} \mathrm{P}$ NMR spectrum, viz.: a broad signal at $-27.4 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .32 .1 \mathrm{~Hz}\right)$ that remains unassigned, a multiplet at 81.8 ppm that is tentatively attributed to $\left(\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2}\right)_{2} \mathrm{PCl}$, and a triplet at $170 \mathrm{ppm}\left({ }^{2} J_{P-H} 14.6 \mathrm{~Hz}\right)$ that is assigned to compound 19 (Table 13). The ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectrum shows that the triplet resonance correlate to a doublet signal in the ${ }^{1} \mathrm{H}$ NMR spectrum at $2.57 \mathrm{ppm}\left({ }^{2} J_{H-P} 14.6 \mathrm{~Hz}\right)$, while the multiplet resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum at 81.8 ppm corresponds to a complex multiplet resonance centred at 2.7 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data of $\mathbf{1 9}$ are similar to $\mathrm{PhCH}_{2} \mathrm{PCl}_{2}\left(\delta_{\mathrm{P}} 179\left(\mathrm{t},{ }^{2} J_{P-H} 15.7 \mathrm{~Hz}\right), \delta_{\mathrm{H}} 3.51\right),{ }^{277}$ which while not directly comparable does contain the $\mathrm{CH}_{2} \mathrm{PCl}_{2}$ unit.

${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$

The attempted synthesis of ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}(\mathbf{2 0})$ produced a yellow oil that was a similar mixture of products to $\mathbf{1 9}$. The ${ }^{31} \mathrm{P}$ NMR spectrum exhibits five resonances, including a triplet signal at $171 \mathrm{ppm}\left({ }^{2} J_{P-H} 14.8 \mathrm{~Hz}\right)$ with a corresponding doublet signal at $2.5 \mathrm{ppm}\left({ }^{2} J_{H-P} 14.8 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 13), and is tentatively attributed to $\mathbf{2 0}$. A broad ${ }^{31} \mathrm{P}$ NMR resonance at $81.4 \mathrm{ppm}\left(\mathrm{w}^{1 / 2} \mathrm{ca} .24 .2 \mathrm{~Hz}\right.$) is tentatively assigned to the bis-substituted compound $\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2}\right)_{2} \mathrm{PCl}$, although the associated protons are not observed in the ${ }^{1} \mathrm{H}$ NMR spectrum due to the high number of overlapping signals Attempts to isolate any of the species by fractional distillation were unsuccessful; the liquid distils as a single fraction that exhibits an altered product mixture, including a singlet resonance at 3.53 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, consistent with ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{5})$. The ${ }^{31} \mathrm{P}$ NMR spectrum exhibits new signals at -2.9 and 33.9 ppm , in addition to each of the species encountered prior to distillation.

Table 13. Selected spectroscopic data for $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (19-20)

	$\mathbf{R}_{\mathbf{3}}$	${ }^{31} \mathbf{P} / \mathbf{p p m}$	${ }^{\mathbf{1}} \mathbf{H} \mathbf{C H}_{\mathbf{2}} \mathbf{P} / \mathbf{p p m}$	${ }^{2} \boldsymbol{J}_{\boldsymbol{H}-\boldsymbol{P}} / \mathbf{H z}$
$\mathbf{1 9}$	$\mathrm{Me}_{2} \mathrm{Ph}$	170	2.57	14.6
$\mathbf{2 0}$	${ }^{\mathrm{i}} \mathrm{Pr}_{3}$	171	2.55	14.8

2.4.2 Reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ with $\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{PCl}$

The installation and subsequent chlorination cleavage of the terminal $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ group is a wellestablished route to terminal phosphorus dihalides. ${ }^{103,278-280,44,281}$ As such, the syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(\mathbf{2 1}-\mathbf{2 2})$ were attempted by generation of the respective Grignard reagents followed by filtration into cold $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$ (Scheme 60).

Scheme 60. Attempted syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(\mathbf{2 1}$ - 22)

${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$

The attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(\mathbf{2 1})$ afforded a yellow oil that was determined by NMR spectroscopy to consist of a mixture of three phosphorus-containing products, none of which are consistent with $\mathbf{2 1}$. The ${ }^{31} \mathrm{P}$ NMR spectrum shows two multiplets at 51.2 (ca. 5%) and 51.3 ppm (ca. 10%), and a broad signal at 60.9 ppm (ca. 85%, $\mathrm{w}_{1 / 2} \mathrm{ca} .45 .9$ Hz). The latter resonance correlates ($v i{ }^{1}{ }^{1} \mathrm{H}^{31} \mathrm{P}$ HMBC NMR study) to protons at $3.63\left({ }^{2} J_{H-P} 3.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(4 \mathrm{H}), 3.18(4 \mathrm{H}), 1.01\left({ }^{3} J_{H-H} 7.2 \mathrm{~Hz}, 9 \mathrm{H}\right)$ and $0.88 \mathrm{ppm}\left({ }^{3} J_{H-H} 7.2 \mathrm{~Hz}, 12 \mathrm{H}\right)$, in the ${ }^{1} \mathrm{H}$ NMR spectrum, the relative integrations of which are consistent with one CH proton, two diethylamine groups, and three ${ }^{\mathrm{n}} \mathrm{Bu}$ groups. Of particular note is the existence of two separate resonances for the CH_{2} diethylamine protons, which suggests inequivalence of the diethylamine groups, possibly via a chiral phosphorus centre. In the absence of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and HMBC NMR spectra (due to the rapid sample degradation) confirmation of the presence of alkenyl or alkynyl units is not possible and the identity of $\mathbf{2 1}$ remains unknown.

The initial yellow oil rapidly degrades into a viscous red oil that exhibits seven resonances in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, including three doublet signals at $57.0\left({ }^{2} J_{P-P} 79.8 \mathrm{~Hz}\right), 70.5\left({ }^{2} J_{P-P}\right.$ $79.8 \mathrm{~Hz})$ and $70.8 \mathrm{ppm}\left({ }^{2} J_{P-P} 79.8 \mathrm{~Hz}\right)$, which integrate in a $2: 2: 1$ ratio respectively; resolution of the ${ }^{31} \mathrm{P}$ NMR spectrum is not possible due to signal broadening. Four additional multiplets are
present in the ${ }^{31} \mathrm{P}$ NMR spectrum, all of which defy assignment. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits a significantly broadened collection of signals, and most notably, the loss of the resonance attributed to the $\mathrm{CH}_{2} \mathrm{P}$ proton formerly found at 3.63 ppm (Figure 17).

Figure 17. Selected section ($0.1-3.7 \mathrm{ppm}$) of the ${ }^{1} \mathrm{H}$ NMR spectra of 21; a) immediately, b) after 30 min

${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathbf{S i C} \equiv \mathrm{CCH}_{2} \mathbf{C l}$

The attempted synthesis of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(\mathbf{2 2})$ afforded a yellow oil that was identified as a complex mixture of products. The ${ }^{31} \mathrm{P}$ NMR spectrum shows six resonances, including a broad signal at $154 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .70 .4 \mathrm{~Hz}\right.$) that is attributed to $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}{ }^{282} \mathrm{An}$ additional broad resonance at $83.6 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .43 .5 \mathrm{~Hz}\right.$) corresponds (via ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectrum) to a doublet signal in the ${ }^{1} \mathrm{H}$ NMR spectrum at $2.55 \mathrm{ppm}\left({ }^{3} J_{H-P} 4.6 \mathrm{~Hz}\right)$, and is assigned to ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$. The chemical shift is consistent with a phosphorus centre bearing two diethylamine groups, ${ }^{283}$ while the magnitude of coupling is comparable to the two-bond protonphosphorus couplings of compounds $\mathbf{1 0} \mathbf{- 1 3}$. The initial yellow oil rapidly ($<10 \mathrm{~min}$) degraded to form a pink oil, which was distilled to afford a colourless liquid. The ${ }^{31} \mathrm{P}$ NMR spectrum shows loss of the initial product mixture, and many new phosphorus-containing species in its place; significant quantities of $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$ also remain. While there are fewer overlapping signals in the ${ }^{1} \mathrm{H}$ NMR spectrum than for the initial sample, no correlations to phosphorus
signals are exhibited in the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectrum, and none of the species present can be identified.

2.5 Syntheses and reactions of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

The syntheses of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3} \mathbf{- 2 6})$ were attempted in order to gain access to propargylphosphines bearing phosphorus-silicon linkages that are prone to halodesilylation, as an alternative route to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}$. Typical synthetic methodologies towards installing $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ moieties include the addition of $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}{ }^{284,62}$ or $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ to $\mathrm{R}_{3} \mathrm{CCl}^{285,286}$

2.5.1 Syntheses of $\mathbf{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

The compounds $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3} \mathbf{- 2 6})$ were prepared from the reaction of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{1 - 7})$ with $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ and obtained as red / brown oils that could not be further purified from a trace contaminant (Scheme 61). Attempts to isolate compounds 23-26 by washing (with pentane, hexane, $\mathrm{DCM}, \mathrm{Et}_{2} \mathrm{O}$) and crystallisation proved ineffective, while distillation at reduced pressure afforded only $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ (determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy), with no evidence of 23-26.

Scheme 61. Syntheses of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (23-26)

Compounds 23-26 exhibit ${ }^{31}$ P NMR multiplet resonances at ca. -160 ppm ; the chemical shifts are comparable with other bis(trimethylsilane)phosphine derivatives $\left(\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}, \delta_{\mathrm{P}}\right.$ $\left.-175 ;{ }^{284} \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}, \delta_{\mathrm{P}}-163\right){ }^{287}$ Each resonance is located at a significantly higherfield chemical shift than for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8}-\mathbf{1 3})$, consistent with general trends of silyl versus alkyl phosphines $\left(\mathrm{PPh}_{3} \delta_{\mathrm{P}}-6.0,{ }^{288} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3} \delta_{\mathrm{P}}-252\right) .{ }^{289}$ The ${ }^{1} \mathrm{H}$ HMR spectra show corresponding doublets at ca. $2.45 \mathrm{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .1 .1 \mathrm{~Hz}\right.$) for the $\mathrm{CH}_{2} \mathrm{P}$ protons (Table 14). Compound $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3})$ was the cleanest of the samples, which enabled a more thorough spectroscopic investigation to be performed. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a doublet resonance at $5.5 \mathrm{ppm}\left({ }^{l} J_{C-P} 23.2 \mathrm{~Hz}\right)$ that is assigned to the $\mathrm{CH}_{2} \mathrm{P}$ carbon centre; this is shifted to significantly higher-field when compared to $\mathrm{R}_{3} \mathrm{EC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8} \mathbf{- 1 3})$
($\delta_{\mathrm{P}} \mathrm{ca} .19 .9\left({ }^{l} J_{C-P} \mathrm{ca} .20 \mathrm{~Hz}\right.$)) but retains a comparable carbon-phosphorus coupling constant. The alkynic ${ }^{a} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ atoms are observed as a doublet resonance at $83.3\left({ }^{3} J_{C-P} 3.7 \mathrm{~Hz}\right)$ and a singlet signal at 109 ppm respectively, which are similar to compounds 8-13 ($\delta^{\alpha}{ }_{\mathrm{C}} \mathrm{ca} .84 .3\left({ }^{3} J_{C-P}\right.$ ca. 5.7 Hz$), \delta^{\beta}{ }_{\mathrm{C}}$ ca. $106\left({ }^{2} J_{C-P} \mathrm{ca} .4 .1 \mathrm{~Hz}\right)$).

While isolation from the trace contaminant proved unsuccessful, alterations made to the reagent stoichiometries reduced its levels to ca. 8% (by integration of the ${ }^{31} \mathrm{P}$ NMR spectra). This contaminant exhibits a ${ }^{31} \mathrm{P}$ NMR multiplet resonance at ca. -84.4 ppm ; the chemical shift is consistent with a phosphorus centre bearing one SiMe_{3} group $\left(\mathrm{R}_{2} \mathrm{PSiMe}_{3}, \delta_{\mathrm{P}}-98.2\right.$ to -53.7$),{ }^{290}$ prompting its tentative identification as the bis-substituted product $\left(\mathrm{R}_{3} \mathrm{SiC}=\mathrm{CH}_{2}\right)_{2} \mathrm{PSiMe}_{3}$, although correlating protons are not observed in either the ${ }^{1} \mathrm{H}$ NMR or ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectra.

Table 14. Selected spectroscopic data for $\mathrm{R}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3}$ - 26)

	$\mathbf{R}_{\mathbf{3}}$	${ }^{\mathbf{3 1}} \mathbf{P} / \mathbf{p p m}$	${ }^{\mathbf{1}} \mathbf{H} \mathbf{C H}_{2} \mathbf{P} / \mathbf{p p m}$	${ }^{2} \boldsymbol{J}_{\boldsymbol{H}-\boldsymbol{P}} / \mathbf{H z}$
$\mathbf{2 3}$	$\mathrm{Me}_{2} \mathrm{Ph}$	-159	2.43	1.4
$\mathbf{2 4}$	${ }^{\mathrm{i}} \mathrm{Pr}_{3}$	-161	2.45	-
$\mathbf{2 5}$	${ }^{\mathrm{n}} \mathrm{Pr}_{3}$	-160	2.44	0.9
$\mathbf{2 6}$	${ }^{\mathrm{n}} \mathrm{Bu}_{3}$	-160	2.46	0.9

Despite the initial success in the synthesis of compounds 23-26, the reproducibility was variable; for reasons that have not been elucidated, 23-26 could subsequently only be produced as a minor species among vastly increased proportions (by integration) and numbers of byproducts (including the tentatively identified $\left.\left(\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CH}_{2}\right)_{2} \mathrm{PSiMe}_{3}\right)$.

2.5.2 Reactions of $\mathbf{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

Syntheses and reactions of $\mathbf{R}_{3} \mathbf{E C} \equiv \mathbf{C C H}_{2} \mathbf{P I}_{2}$

The pursuit of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}$ was undertaken by the attempted double halodesilylation of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3} \mathbf{- 2 6})$ to form $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$. Iodine crystals were added directly to $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ under a flow of argon to yield compounds that were identified as $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}(\mathbf{2 7} \mathbf{- 2 9})$ (Scheme 62).

Scheme 62. Syntheses of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (27-29)

Compounds 27-29 proved to be highly volatile and attempts to separate them from a variety of reaction solvents $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ or pentane) by drying under reduced pressure result in product loss. Performing the reaction in tetraglyme was also successful, but attempts to isolate 27-29 by vacuum transfer afforded an unidentifiable mixture of products. Distillation at ambient pressure resulted in product degradation, as evidenced by the isolation of only iodine. Consequently, it was necessary to characterise $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}(\mathbf{2 7}-\mathbf{2 9})$ in solution. Triplet signals are observed in the ${ }^{31}$ P NMR spectra at ca. $114 \mathrm{ppm}\left({ }^{2} J_{P-H}\right.$ ca. 18.0 Hz) (Table 15), consistent with known compounds bearing terminal $-\mathrm{PI}_{2}$ groups $\left(\mathrm{MePI}_{2}, \delta_{\mathrm{P}} 131 ;{ }^{291} \mathrm{C}_{6} \mathrm{H}_{8}\left(\mathrm{PI}_{2}\right)_{2}, \delta_{\mathrm{P}} 138.3 ;{ }^{291} \mathrm{Ph}_{2} \mathrm{C}\left(\mathrm{PI}_{2}\right)_{2}\right.$, δ_{P} 133.9) ${ }^{291}$ The triplet signals correlate (by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy) with doublet resonances in the ${ }^{1} \mathrm{H}$ NMR spectra at ca. $3.15 \mathrm{ppm}\left({ }^{2} J_{H-P} \mathrm{ca} .18 .0 \mathrm{~Hz}\right)$; the coupling constants are typical of a two-bond proton-phosphorus separation.

Table 15. Selected data for $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (27-29)

	$\mathbf{R}_{\mathbf{3}}$	${ }^{\mathbf{3 1}} \mathbf{P} / \mathbf{p p m}$	${ }^{2} \boldsymbol{J}_{\boldsymbol{P} \text { - }} / \mathbf{H z}$	${ }^{\mathbf{1}} \mathbf{H ~ C H} \mathbf{2} \mathbf{P} / \mathbf{p p m}$
$\mathbf{2 7}$	$\mathrm{Me}_{2} \mathrm{Ph}$	113.4	18.1	3.15
$\mathbf{2 8}$	${ }^{\mathrm{n}} \mathrm{Pr}_{3}$	113.8	17.7	3.12
$\mathbf{2 9}$	${ }^{\mathrm{n}} \mathrm{Bu}_{3}$	114.3	17.9	3.18

The double dehydrohalogenation of $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ to form $\mathrm{R}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{P}$ was attempted by addition of an excess (2.2 equivalents) of AgOTf to a pentane solution of ${ }^{n} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (28). The suspension was stirred for 10 min prior to the addition of excess (2.2 equivalents) DABCO, and the resulting suspension was stirred for 1 h (Scheme 63), after which time a pale yellow solution was isolated by filtration.

Scheme 63. Attempted double dehydrohalogenation of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (28)

No resonances are observed in the ${ }^{31} \mathrm{P}$ NMR or ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ spectra, while the ${ }^{1} \mathrm{H}$ NMR spectrum exhibits a singlet signal at 3.56 ppm , which is consistent with ${ }^{~} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$. Further pursuit of the chemistry was hindered by the lack of reagents available $\left(\mathrm{R}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PI}_{2}\right.$ (27-29)$)$.

Synthesis of $\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathbf{C C H}_{\mathbf{2}} \mathbf{P H}_{\mathbf{2}}$

In seeking more direct access to $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CC} \equiv \mathrm{P}$, the base-induced double dehydrohalogenation of $\mathrm{Me}_{2} \mathrm{PhSiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3})$ was attempted by the addition of NaOH . A yellow oil was afforded, in which the predominant product was identified as $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PH}_{2}$, presumably formed by the presence of trace amounts of $\mathrm{H}_{2} \mathrm{O}$ in the NaOH . This was supported by performing additional reactions, wherein the stoichiometric addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Scheme 64) generated a dark yellow oil in 89% yield that was identified as $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PH}_{2}(\mathbf{3 0})$.

Scheme 64. Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PH}_{2}$ (30)

The ${ }^{31}$ P NMR spectrum of $\mathbf{3 0}$ shows a triplet of triplets at $-129 \mathrm{ppm}\left({ }^{1} J_{P-H} 192 \mathrm{~Hz},{ }^{2} J_{P-H} 4.5 \mathrm{~Hz}\right)$ which is consistent with a PH_{2} unit adjacent to a CH_{2} group (Figure 18). Accordingly, the ${ }^{1} \mathrm{H}$ NMR spectrum exhibits two doublet of triplet signals at $1.92\left({ }^{3} J_{H-H} 7.2 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{H-P} 4.5 \mathrm{~Hz}\right)$ and $2.86 \mathrm{ppm}\left({ }^{1} J_{H-P} 192 \mathrm{~Hz},{ }^{3} J_{H-H} 7.2 \mathrm{~Hz}\right)$ for the CH_{2} and PH_{2} protons in turn, correlation is confirmed by the ${ }^{1} \mathrm{H}-{ }_{-}^{31} \mathrm{P}$ HMBC NMR study. Each signal integrates as two protons when compared to the singlet resonance at 0.39 ppm assigned to the six methyl protons. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a doublet resonance at $4.26 \mathrm{ppm}\left({ }^{1} J_{C-P} 11.7 \mathrm{~Hz}\right)$ that is attributed to the CH_{2} group, which is shifted significantly higher-field than $\mathrm{Me}_{2} \mathrm{PhSiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 3})$ and exhibits a much smaller coupling constant ($\delta_{C} 5.5\left({ }^{l} J_{C-P} 23.2 \mathrm{~Hz}\right)$). The alkynic carbon atoms are located at similar positions to $\mathbf{2 3}$, as doublet and singlet resonances at $84.0\left({ }^{3} J_{C-P} 3.4 \mathrm{~Hz}\right)$ and 108 ppm , attributed to the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ alkynic carbon centres respectively.

Figure 18. Selected section (-128 to -130 ppm) of the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PH}_{2}$ (30)

Synthesis of trans-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathbf{C C H}_{2} \mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]$

While investigation of the coordination chemistry of $\mathrm{R}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (23-26) was hindered by the lack of analytically pure reagents, it was possible to synthesise trans$\left[\mathrm{PtCl}_{2}\left\{\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]$ (31) by addition of PtCl_{2} to $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Scheme 65). Complex 31 was isolated as a viscous brown oil (76% yield), presumably indicative of the presence of impurity, although none was observed in the ${ }^{31}$ P NMR spectrum. In contrast, attempts to coordinate impure samples of 24-26 were unsuccessful and ultimately resulted in complete degradation of compounds 24-26; the ${ }^{31}$ P NMR spectra exhibited in excess of 10 resonances, none of which could be assigned.

Scheme 65. Synthesis of trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]$ (31)

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3 1}$ exhibits a broad resonance at $-97.9 \mathrm{ppm}\left({ }^{l} J_{P-P t} 1919 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca}\right.$. 24.2 Hz) with satellites of a magnitude that is consistent with trans-coordination, and comparable to trans- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ (trans-16). The ${ }^{1} \mathrm{H}$ NMR study shows a triplet signal at $3.00 \mathrm{ppm}\left(J_{H-P}=5.9 \mathrm{~Hz}\right)$ for the $\mathrm{CH}_{2} \mathrm{P}$ protons, which integrates as four protons when compared to the singlet resonance at 0.38 ppm attributed to the twelve methyl protons. The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a triplet signal at $-3696 \mathrm{ppm}\left({ }^{1} J_{P_{t-}-P} 1919 \mathrm{~Hz}\right)$ which is consistent with a four-coordinate platinum centre bound to two chemically equivalent phosphorus atoms. A triplet resonance at $4.71 \mathrm{ppm}\left({ }^{1} J_{C-P} 14.1 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum is assigned to the $\mathrm{CH}_{2} \mathrm{P}$ centre, while triplet signals due to the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ alkynic carbon atoms are found at $84.7\left(J_{C-P} 2.9 \mathrm{~Hz}\right)$ and $106 \mathrm{ppm}\left(J_{C-P} 6.2 \mathrm{~Hz}\right)$.

2.6 Syntheses and reactions of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$

Given the mixed results achieved for the attempted syntheses of main group propargylphosphines ($\mathbf{8 - 1 3}$ and 19-29), the analogous reactions were performed with the all-carbon-containing chloropropargyl $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ in order to probe the influence of the main group fragment on the reactions. The synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ has been previously achieved by addition of LiPPh_{2} to $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Br}$, although characterising data were limited to a ${ }^{31}$ P NMR shift at $-13.1 \mathrm{ppm} .{ }^{86}$

2.6.1 Syntheses of $\mathbf{P h C} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$

The compounds $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}(\mathbf{3 2 - 3 3})$ were afforded from addition of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ in $\mathrm{Et}_{2} \mathrm{O}$ to an $\mathrm{Et}_{2} \mathrm{O}$ solution of LiPR_{2} and isolated as impure oils (Scheme 66). Small quantities of unidentified by-products remained that could not be removed by washing with pentane, crystallisation or distillation, precluding microanalysis. The products proved unstable to ESI mass spectrometry; there was no signal at the expected mass and no identifiable fragments were ascertained.

Scheme 66. Syntheses of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$ (32-33)
$\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{3 2})$ exhibits a broad multiplet at $-13.5 \mathrm{ppm}\left({ }^{2} J_{P-H} 6.8 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca} .21 .9 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectrum that is consistent with previous reports of $\mathbf{3 2} ;{ }^{86}$ the multiplet splitting is attributed to coupling to the ortho-CH protons of the phosphine phenyl rings as determined by ${ }^{1} \mathrm{H}_{-}{ }^{31} \mathrm{P}$ HMBC NMR studies. $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{3 3})$ shows a singlet signal at -159 ppm in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum that is comparable to disilylphosphine $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2},{ }^{284}$ in addition to compounds 23-26. The ${ }^{31} \mathrm{P}$ NMR resonances of $\mathbf{3 2}$ and $\mathbf{3 3}$ correlate (by ${ }^{1} \mathrm{H}_{-}{ }^{31} \mathrm{P}$ HMBC NMR spectra) to doublet resonances at $2.92\left({ }^{2} J_{H-P} 2.4 \mathrm{~Hz}\right)$ and $2.60 \mathrm{ppm}\left({ }^{2} J_{H-P} 1.6 \mathrm{~Hz}\right)$ respectively in the ${ }^{1} \mathrm{H}$ NMR spectrum, assigned to the $\mathrm{CH}_{2} \mathrm{P}$ protons (Table 16). These signals integrate as two protons when compared to the 15 aromatic protons present in 32 (at $\delta_{\mathrm{H}} 6.92$ to 7.73) and the $18 \mathrm{SiMe}_{3}$ protons in $\mathbf{3 3}$ (at $\delta_{\mathrm{H}} 0.30\left({ }^{3} J_{H-P} 4.6 \mathrm{~Hz}\right)$). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 32 exhibits a doublet resonance at $19.4 \mathrm{ppm}\left({ }^{1} J_{C-P} 19.2 \mathrm{~Hz}\right)$ for the $\mathrm{CH}_{2} \mathrm{P}$ carbon, and two further doublet signals at $83.6\left({ }^{3} J_{C-P} 5.8 \mathrm{~Hz},{ }^{a} \mathrm{C}\right)$ and $86.7 \mathrm{ppm}\left({ }^{2} J_{C-P} 4.3 \mathrm{~Hz},{ }^{\beta} \mathrm{C}\right)$ for the alkynic centres. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 3}$ shows a doublet resonance at $5.08 \mathrm{ppm}\left({ }^{1} J_{C-P} 22.5\right.$ Hz), assigned to the $\mathrm{CH}_{2} \mathrm{P}$ carbon centre, a doublet resonance for the ${ }^{a} \mathrm{C}$ atom at $81.6\left({ }^{3} J_{C-P} 4.1\right.$ Hz) and a singlet signal at 90.7 ppm for the ${ }^{\beta} \mathrm{C}$ centre. The significant difference in chemical shifts between the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ alkynic carbons atoms ($\Delta \delta_{\mathrm{C}} 3.1$ for 32 and $\Delta \delta_{\mathrm{C}} 9.1$ for 33) is consistent with $\mathbf{3 3}$ possessing a highly polarised triple bond due to the disparity in electrondonor/acceptor strengths of the terminal groups, which is small for $\mathbf{3 2}$ and large for 33 . The comparatively high-field chemical shift of the $\mathrm{CH}_{2} \mathrm{P}$ group in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 3}$ may also be attributed to the strongly electron-releasing $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ group. Attempts to coordinate phosphines $\mathbf{3 2}$ and $\mathbf{3 3}$ to transition metal complexes were hindered by the reagent impurities; reactions with $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ and PtCl_{2} both afforded a complex mixture of products, from which isolation of any species was unsuccessful.

Table 16. Selected spectroscopic data for $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}$ (32-33)

	$\begin{aligned} & { }^{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}} \\ & / \text { ppm } \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{CH}_{2} \mathrm{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{H}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{CH}_{2} \mathrm{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{1} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}{ }^{0} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{3} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{\beta} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$
32	-13.5	2.92	2.4	19.4	19.2	83.6	5.8	86.7	4.3
33	-159	2.60	1.6	5.08	22.5	81.6	4.1	90.7	-

2.6.2 Attempted synthesis of $\mathbf{P h C} \equiv \mathbf{C C H}_{2} \mathbf{P C l}_{2}$

$\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ was added to activated magnesium with mercuric chloride as the initiator, brought to reflux for 4 h , and filtered into PCl_{3} at $-78{ }^{\circ} \mathrm{C}$ (Scheme 67). An orange oil was isolated and identified as a mixture of products that included $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (34), although purification by washing or recrystallisation proved unsuccessful.

Scheme 67. Attempted synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ (34)

The ${ }^{31}$ P NMR spectrum shows in excess of ten phosphorus-containing species, including a triplet signal at $171 \mathrm{ppm}\left({ }^{2} J_{P-H} 14.5 \mathrm{~Hz}\right)$ which is attributed to $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}(\mathbf{3 4})$ and is consistent with comparable species $\left(\mathrm{PhCH}_{2} \mathrm{PCl}_{2}, \delta_{\mathrm{P}} 179\right) .{ }^{277}$ The ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectrum shows correlation to a doublet resonance at $2.74 \mathrm{ppm}\left({ }^{2} J_{H-P} 14.5 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum for the $\mathrm{CH}_{2} \mathrm{P}$ protons. The proton-phosphorus coupling constant is consistent with $\mathrm{PhCH}_{2} \mathrm{PCl}_{2}$ ($\delta_{\mathrm{H}} 3.51\left({ }^{2} J_{P-H} 15.7 \mathrm{~Hz}\right)$), while the ${ }^{1} \mathrm{H}$ NMR chemical shift is comparable to chloropropargyls 1-7 (δ_{H} са. 3.57).

2.6.3 Synthesis of $\mathbf{P h}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathbf{P}\right\} \mathrm{C}=\mathbf{C}=\mathbf{C H}_{2}$

The synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ was attempted via reaction of the Grignard reagent $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{MgCl}$ with $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$. The product was isolated as a dark red oil in 76% yield; although analytical purity was not obtained, the predominant species was present in $>70 \%$ by integration of the ${ }^{31} \mathrm{P}$ NMR spectrum, identified as $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35, Scheme 68).

Scheme 68. Synthesis of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35)

Compound 35 exhibits a broad resonance at $90.9 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .42 .7 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectrum which is consistent with a phosphorus atom bound to two diethylamine groups $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \delta_{\mathrm{P}} 89.9, \mathrm{PhP}\left(\mathrm{NEt}_{2}\right)_{2} \delta_{\mathrm{P}} 97.2\right) .{ }^{283,292}$ Further minor resonances are observed at $18.8,83.2,118.2,153.4 \mathrm{ppm}$, the latter of which is attributed to $\operatorname{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$. The ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum shows resonances at $0.91\left({ }^{3} J_{H-H} 7.1 \mathrm{~Hz}\right)$ and 3.07 ppm for the diethylamine groups, and $4.72 \mathrm{ppm}\left({ }^{4} J_{H-P} 7.1 \mathrm{~Hz}\right.$) for the CH_{2} protons (the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum confirms the presence of a CH_{2} group). Integration of these signals confirms the presence of two CH_{2} protons
and two diethylamine groups when compared to the aromatic resonances, which integrate to one phenyl ring. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows doublet signals at $106\left({ }^{1} J_{C-P} 14.1 \mathrm{~Hz}\right)$ and 210 $\operatorname{ppm}\left({ }^{2} J_{C-P} 11.3 \mathrm{~Hz}\right)$ that are attributed to the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ centres in turn, and a singlet signal at 75.0 ppm for the CH_{2} centre. The ${ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMBC NMR spectrum confirms each of these resonances is contained within one compound. The spectroscopic characteristics of $\mathbf{3 5}$ are not consistent with the projected propargylic product $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$; the resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum attributed to the CH_{2} protons is shifted significantly down-field and exhibits a larger proton-phosphorus coupling constant than known propargylphosphines, while the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals are also located at more down-field shifts. Compound $\mathbf{3 5}$ was identified as $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ by comparison with allenes in the literature (Table 17). ${ }^{293,256,294} \mathrm{The}$ ${ }^{1} \mathrm{H}$ NMR resonance for the CH_{2} protons is comparable with phosphorus-containing allenes $\mathrm{R}\left(\mathrm{H}_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\left(\delta_{\mathrm{H}} 4.51\left({ }^{4} J_{H-P} 4.1 \mathrm{~Hz}\right)\right)$, ${ }^{295}$ while the extreme down-field shift of the ${ }^{\beta} \mathrm{C}$ and ${ }^{a} \mathrm{C}$ centres are consistent with allenic carbon atoms. ${ }^{293,256,294}$ Allenes bearing phosphorus substituents are extremely rare; ${ }^{256,296,297}$ to date, only one publication has reported full spectroscopic data for a series of phosphorus-containing allenes $\mathrm{R}\left(\mathrm{H}_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CR}{ }_{2}{ }^{295}$

Table 17. Selected spectroscopic data for propargylphosphines (10, 32-33) and allenes (35)

	Compound	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{CH}_{\mathbf{2}} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} \mathbf{J}_{\mathbf{H}-\mathbf{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & \left.{ }^{13} \mathbf{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{CH}_{2} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{a} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{\beta} \mathrm{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	Source
10	$\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$	2.76	2.9	19.8	20.7	84.7	4.9	105	3.6	This work
32	$\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$	2.92	2.4	19.4	19.2	83.6	5.8	86.7	4.3	This work
33	$\mathrm{PhC} \equiv \mathrm{CCCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$	2.60	1.6	5.08	22.5	81.6	4.1	90.7	-	This work
35	$\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	4.72	7.1	75.0	-	106	14.1	210	11.3	This work
	$\mathrm{C}_{6} \mathrm{H}_{10}=\mathrm{C}=\mathrm{CH}_{2}$	4.58	-	72.5	-	101	-	204	-	293
	$\mathrm{C}_{6} \mathrm{H}_{11}(\mathrm{Me}) \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	4.59	-	74.4	-	104	-	206	-	293
	$\mathrm{H}\left(\mathrm{H}_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	4.60	-	71.7	6.9	72.3	11.9	213	14.6	295
	$\mathrm{Me}\left(\mathrm{H}_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$	4.51	4.1	70.7	8.1	83.9	9.2	210	20.4	295
	$\mathrm{H}\left(\mathrm{H}_{2} \mathrm{P}\right) \mathrm{C}=\mathrm{C}=\mathrm{CMe}_{2}$	-	-	92.9	9.0	71.1	7.7	210	16.0	295

The formation of $\mathbf{3 5}$ can be rationalised by considering the reactivity of the $\left[\mathrm{PhCCCH}_{2}\right]^{-}$anion in terms of hard/soft acid/base character (Scheme 69). While softer electrophiles preferentially react with softer nucleophiles like the $s p^{3}$ " $\mathrm{PhC} \equiv \mathrm{CCH}_{2}$ " centre produced in pathway \mathbf{b}), harder electrophiles, which include $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$, are predisposed to react preferentially with harder nucleophiles, as exemplified by the $s p$ " $\mathrm{PhC}^{-}=\mathrm{C}=\mathrm{CH}_{2}$ " centre generated via pathway \mathbf{a}). Allenes in literature have been synthesised by the reactions of propargylhalides with Grignard reagents, ${ }^{298-300}$ sometimes in admixture with propargylic products (Scheme 70), ${ }^{299}$ providing precedent for the proposed route for the production of $\mathbf{3 5}$ from the Grignard reaction of $\mathrm{PhC}=\mathrm{CCH}_{2} \mathrm{Cl}$ and subsequent quenching with $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$.

Scheme 69. Proposed mechanism for the synthesis of $\operatorname{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35)

Scheme 70. Literature syntheses of allenes in admixture with propargylic species ${ }^{299}$

As previously described, the CH_{2} protons exhibit an apparent doublet resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum at ambient temperature, which is unexpected given the asymmetry of $\mathbf{3 5}$; the lack of free rotation about the double bond would render the protons inequivalent. It is possible that the doublet resonance is in fact two overlapping doublets which cannot be appropriately resolved, although the doublet resonance possesses a relatively narrow half-height width $\left(\mathrm{w}_{1 / 2}\right)$ of 1.85 Hz . Nevertheless, a variable temperature (-80 to $30{ }^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR study successfully demonstrates the inequivalence of the CH_{2} protons between -10 and $0{ }^{\circ} \mathrm{C}$ (Figure 19), which further supports the identity of $\mathbf{3 5}$. At temperatures lower than $-10^{\circ} \mathrm{C}$ the signals broaden, most likely due to
chemical shift anisotropy effects (due to reduced molecular tumbling at low temperature), although the existence of a further unrelated dynamic process cannot be ruled out.

Figure 19. A selection (4.63-4.76 ppm) of the variable temperature ${ }^{1} \mathrm{H}$ NMR study of $\mathbf{3 5}$

2.6.4 Reactions of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathbf{P}\right\} \mathrm{C}=\mathbf{C}=\mathrm{CH}_{2}$

Given the scarcity of phosphorus-containing allenes in the literature, reactivity studies have been rare. As such, the reactivity of $\mathbf{3 5}$ was probed by reaction with HCl and MeI in an attempt to install halogen centres in place of the diethylamine groups. Aminophosphines $\left(\mathrm{R}_{2} \mathrm{PNR}^{\prime}\right)$ in literature react characteristically with exactly two equivalents of HCl to generate the chlorinated species $\left(\mathrm{R}_{2} \mathrm{PCl}\right) .{ }^{301,44}$ In contrast, the addition of MeI to traditional phosphines $\left(\mathrm{R}_{3} \mathrm{P}\right)$ reportedly generates phosphonium salts $\left[\mathrm{R}_{3} \mathrm{MeP}\right]^{+}[I]^{-, 302-304}$ or five-coordinate phosphoranes $\mathrm{R}_{3} \mathrm{MePI}$. ${ }^{305,306}$ Reactions of MeI with aminophosphines are undocumented, although the propensity of diethylamine to behave as a leaving group may well achieve replacement of a diethylamine group with an iodine centre.

Reactions with $\mathbf{H C l}$

The addition of exactly two equivalents of HCl to $\mathbf{3 5}$ afforded an orange oil that was identified as the anticipated product, $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)(\mathrm{Cl}) \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}(\mathbf{3 6})$ (Scheme 71).

Scheme 71. Synthesis of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)(\mathrm{Cl}) \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (36)

Compound 36 exhibits a broad signal at $122 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .40 .6 \mathrm{~Hz}\right.$) in the ${ }^{31} \mathrm{P}$ NMR spectrum that is consistent with a phosphorus centre bound to one diethylamine group and one chlorine atom $\left(\mathrm{MeP}(\mathrm{Cl}) \mathrm{NEt}_{2} \delta_{\mathrm{P}} 143\right) .{ }^{282}$ This resonances correlates to two overlapping doublet of doublet signals at $4.90 \mathrm{ppm}\left({ }^{4} J_{H-P} 5.6 \mathrm{~Hz}\right)$ and $4.91 \mathrm{ppm}\left({ }^{4} J_{H-P} 6.3 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 20), each of which integrates as one proton when compared to a triplet resonance at 0.81 ppm $\left({ }^{3} J_{H-H} 7.1 \mathrm{~Hz}\right)$ and a multiplet signal at 2.94 ppm , assigned to one diethylamine group. The aromatic signals at $7.00,7.11$ and 7.50 ppm also integrate to one phenyl ring compared to the rest of the compound. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a singlet resonance at 77.6 ppm that is attributed to the CH_{2} carbon, and doublet signals at $105\left({ }^{1} J_{C-P} 39.3 \mathrm{~Hz}\right)$ and $211 \mathrm{ppm}\left({ }^{2} J_{C-P} 8.3\right.$ Hz) that are assigned to the ${ }^{a} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ atoms; all of the spectroscopic data of $\mathbf{3 6}$ are comparable with those of $\mathbf{3 5}$, evidencing retention of the allene unit.

Figure 20. Selected section (4.86-4.97 ppm) of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}$

The reaction of $\mathbf{3 5}$ with an excess (2.2 equivalents) of HCl was performed in an attempt to install chlorine atoms in place of both diethylamine groups. However, the yellow oil (37) isolated from the reaction has thus far eluded identification (Scheme 72).

Scheme 72. The reaction of $\mathbf{3 5}$ with 2.2 HCl affords $\mathbf{3 7}$

The ${ }^{31} \mathrm{P}$ NMR spectrum shows a multiplet resonance at 58.7 ppm that is most comparable in chemical shift with a phosphorus centre bound to one chlorine atom $\left(\mathrm{Ph}_{2} \mathrm{PCl}, \delta_{\mathrm{P}} 82.3\right.$, $\left.{ }^{\mathrm{t}} \mathrm{BuP}(\mathrm{C} \equiv \mathrm{CPh}) \mathrm{Cl} \delta_{\mathrm{P}} 71.9\right) .{ }^{274,275} \mathrm{~A}$ doublet signal at $4.64 \mathrm{ppm}\left({ }^{2} J_{H-P} 2.2 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum is assigned to a CH group, confirmed by ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR spectroscopy, which integrates to one proton when compared to the aromatic resonances at $7.05,7.47$ and 7.63 that integrate to five phenyl protons. No further significant resonances are observed in the ${ }^{1} \mathrm{H}$ NMR
spectrum, which is consistent with the loss of both diethylamine groups. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a doublet signal at $79.3 \mathrm{ppm}\left(J_{C-P} 9.2 \mathrm{~Hz}\right)$ that is assigned to the CH carbon centre, while singlet and doublet resonances at 110 and $210 \mathrm{ppm}\left({ }^{1} J_{C-P} 30.0 \mathrm{~Hz}\right)$ are attributed to the ${ }^{\alpha} \mathrm{C}$ and ${ }^{\beta} \mathrm{C}$ allenic carbon atoms in turn. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data is consistent with retention of the allene, and comparable to 35-36.

Synthesis of $\left[\mathbf{P h}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathbf{M e P}\right\} \mathbf{C}=\mathbf{C}=\mathrm{CH}_{2}\right]^{+}[I]^{-}$

The reaction of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35) with MeI afforded a viscous orange oil that was tentatively identified as $\left[\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{MeP}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right]^{+}[\mathrm{I}]^{-}$(38) (Scheme 73).

Scheme 73. Synthesis of $\left[\operatorname{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{MeP}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right]^{+}[\mathrm{I}]^{-}$(38)

The ${ }^{31}$ P NMR spectrum of $\mathbf{3 8}$ exhibits a multiplet signal at 57.4 ppm that correlates to a doublet resonance at $5.48 \mathrm{ppm}\left({ }^{2} J_{H-P} 12.1 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, and is assigned to the CH_{2} protons. This signal integrates to two protons when compared to a doublet resonance at 2.85 $\operatorname{ppm}\left({ }^{2} J_{H-P} 13.2 \mathrm{~Hz}\right)$ that is attributed to the methyl group; both coupling constants are consistent with a two-bond proton-phosphorus separation $\left(\mathrm{PhCH}_{2} \mathrm{PCl}_{2} \delta_{\mathrm{P}} 179\left(\mathrm{t},{ }^{2} J_{P-H} 15.7 \mathrm{~Hz}\right)\right.$), ${ }^{277}$ supporting the presence of a $\mathrm{CH}_{2} \mathrm{PMe}$ unit. Triplet and multiplet resonances at $0.85\left({ }^{3} J_{H-H} 7.1\right.$ Hz) and 2.99 ppm are assigned to two diethylamine groups by integration, and signals at 7.05, 7.23 and 7.44 ppm integrate consistently for one phenyl ring. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a multiplet signal at 96.2 ppm that is assigned to the CH_{2} centre, and singlet and multiplet signals (that could not be fully resolved) at 131 and 216 ppm that are attributed to the allenic carbon atoms.

Vinylphosphonium salts in the literature exhibit comparable ${ }^{31} \mathrm{P}$ NMR resonances to 38 (Table 18), ${ }^{307-309}$ and typically feature extremely large one-bond-separation carbon-phosphorus coupling constants in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. ${ }^{308}$

Table 18. Selected spectroscopic data for $\mathbf{3 8}$ and phosphonium salts in literature ${ }^{\text {307-309 }}$

Compound	$\begin{aligned} & \begin{array}{l} { }^{31} \mathbf{P} \\ / \mathbf{p p m} \end{array} \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}{ }^{a} \mathbf{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{1} \mathbf{J}_{\mathbf{C}-\mathrm{P}} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}{ }^{\beta} \mathbf{C} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{2} \mathbf{J}_{\mathrm{C}-\mathrm{P}} \\ / \mathrm{Hz} \end{gathered}$	Source
$\left[\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{MeP}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right]^{+}[\mathrm{I}]^{-}$(38)	57.4	131	-	216	-	This work
$\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PC}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Me})\right]^{+}[\mathrm{Cl}]^{-}$	48.3	106	161	152	6.0	307
$\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PMe}\right]^{+}[\mathrm{Cl}]^{-}$	59.2	7.2	113	-	-	307
$\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PC}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{Cl})\right]^{+}\left[\mathrm{BPh}_{4}\right]^{-}$	51.6	109	162	150	6.6	307
$\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PC}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{NO}_{2}\right)\right]^{+}\left[\mathrm{BPh}_{4}\right]^{-}$	50.7	113	161	149	6.6	307
$\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me}) \mathrm{C}=\mathrm{CMe}_{2}\right]^{+}\left[\mathrm{C}_{6} \mathrm{H}_{9}-\mathrm{OTf}\right]^{-}$	23.8	119	78.0	156	7.8	308
$\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Me}) \mathrm{C}=\mathrm{CMe}_{2}\right]^{+}\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{OTf}\right]^{-}$	11.7	103	90.0	172	1.4	308
$\left[\mathrm{C}_{10} \mathrm{H}_{7}(1,2-\mathrm{OH})_{2}\left(4-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}\right)\right]^{+}[\mathrm{Cl}]^{-}$	50.5	105	155	129	14.3	309
$\left[\mathrm{C}_{10} \mathrm{H}_{7}(1,2-\mathrm{OH})_{2}(3-\mathrm{Br})\left(4-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}\right)\right]^{+}[\mathrm{Br}]^{-}$	48.2	109	157	126	5.5	309

2.7 Summary

A series of main group chloropropargyls $\left(\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}, \mathrm{E}=\mathrm{Si}, \mathrm{Sn}\right)$ has been successfully synthesised and characterised fully by spectroscopic and microanalytical methods. The Grignard reactions of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ followed by addition of chlorophosphines proved ineffective for the syntheses of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{NEt}_{2}\right)$; while several examples did provide some evidence of successful synthesis of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{I}, \mathrm{NEt}_{2}\right)$, full conversion to the desired product, or indeed isolation of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PX}_{2}$, ultimately proved unsuccessful. Attempts to convert crude samples of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CC} \equiv \mathrm{P}$ by the double dehydrohalogenation method (addition of AgOTf and DABCO) were futile; no evidence for successful conversion was found, as the ${ }^{31} \mathrm{P}$ NMR spectra of the products did not exhibit any resonances whatsoever.

In contrast, the conversion of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ to main group propargylphosphines by addition of lithiated phosphines was successful; $\mathrm{R}_{3} \mathrm{EC}=\mathrm{CCH}_{2} \mathrm{PR}_{2}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ were afforded in high yields, and with analytical purity for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$. Coordination studies showed that $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ essentially behaved as typical phosphines upon reaction with late transition metal species, allowing the isolation and full characterisation of novel coordination complexes. Initial reactivity studies of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ towards I_{2} were explored, with strong evidence for the successful conversion to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ found; however, a thorough investigation was hindered by the lack of analytically pure $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$. Further exploration may yet show that $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ and $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ are viable intermediates en route to phosphadiynes.

A brief foray into the analogous reactions of the all-carbon-containing chloropropargyl $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ provided intriguing results; similar to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$, the isolation of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PR}_{2}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ was successful, albeit that analytical purity was not obtained. Further, the Grignard reaction of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ and subsequent addition to PCl_{3} afforded a mixture of products, including $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$, which could not be isolated or further improved upon. In contrast, the Grignard reaction followed by addition to $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$ yielded a rare example of a phosphorus-containing allene, $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}(\mathbf{3 5})$. Reactivity studies of 35 with HCl and MeI demonstrated reaction solely at the phosphorus centre, with retention of the allene moiety evidenced by NMR spectroscopy. These reactions suggested that incorporation of the main group fragment in chloropropargyls $\left(\mathrm{R}_{3} \mathrm{EC}=\mathrm{CCH}_{2} \mathrm{Cl}\right)$ had a more profound effect on the reactivity pathway than anticipated, particularly with regard to the Grignard/ClP $\left(\mathrm{NEt}_{2}\right)_{2}$ reaction.

3. In pursuit of conjugated phosphaalkenes and phosphaalkynes

3.1 Introduction

Since the first reported synthesis of stable phosphaalkenes, ${ }^{94}$ many compounds of the general formula $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ have been documented ${ }^{95,310,311}$ The Becker synthesis of phosphaalkenes is one of the most well-established synthetic routes, ${ }^{310,311}$ and requires the addition of a silylated phosphine or phosphide $\left(\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\right.$ or $\left.\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ to an acyl chloride to form an intermediate acyl phosphine $\mathrm{RC}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ with elimination of $\mathrm{SiMe}_{3} \mathrm{Cl}$ or LiCl . The acyl phosphine undergoes a spontaneous [1,3]-silatropic rearrangement to produce the phosphaalkene $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ (Scheme 74), reportedly driven by the oxophilicity of the silicon centre.

Scheme 74. Becker synthesis of phosphaalkenes ${ }^{94}$

Due to hindered rotation about the double bond, phosphaalkenes can exist as either E - or Z isomers, which are easily distinguishable from one another by NMR spectroscopy when present as a mixture; the Z-isomer exhibits a higher-field chemical shift in both the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, and the $\mathrm{C}=\mathrm{P}$ carbon centre shows a greater magnitude of carbon-phosphorus coupling. ${ }^{103}$ However, when only a single isomer is present, spectroscopic identification can be extremely challenging. While interconversion between the isomers has rarely been reported, ${ }^{107}$ preferential synthesis of a single isomer can be achieved by careful selection of the reaction conditions, ${ }^{108}$ although such conditions do not apply to all systems.

In contrast to the silyl phosphaalkenes $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$, those of the general formula $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}$ are extremely rare, with only two examples in the literature. ${ }^{225,312}$ Arif generated the carbanionic phosphaalkene Mes* $\mathrm{C}^{-}=\mathrm{PH}$ and reported very limited spectroscopic data, its identity being inferred from the addition of $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$, which afforded the phosphaalkene $\operatorname{Mes}^{*}\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2}\right) \mathrm{C}=\mathrm{PH}$, thus providing support for the existence of

Mes* ${ }^{-}=\mathrm{PH}$ (Scheme 75). Phosphaalkene Mes* $\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2}\right) \mathrm{C}=\mathrm{PH}$ was isolated as a single isomer, the stereochemistry of which was unassigned.

Scheme 75. Synthesis of Mes* $\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2}\right) \mathrm{C}=\mathrm{PH}^{225}$

The second example, $E / Z-{ }^{-} \mathrm{Bu}\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{C}=\mathrm{PH}$, was obtained by the thermally-induced rearrangement of the acyl phosphine ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{H}$ (Scheme 76); ${ }^{312}$ the [1,3]-silatropic rearrangement was not spontaneous at low temperature, which allowed the acyl phosphine to be detected spectroscopically. The aforementioned trend whereby the E-isomer of phosphaalkenes exhibit a lower-field chemical shift in the ${ }^{31} \mathrm{P}$ NMR spectrum and smaller phosphorus-carbon coupling constant is not adhered to in this case. Given the lack of comparable reports, it is not clear whether ${ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}$ is a one-off occurrence, or whether the chemical shift trend does not extend to $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}$ type phosphaalkenes; moreover, no reasoning was provided for the respective assignments of ${ }^{31} \mathrm{P}$ NMR doublet signals at $38.0\left({ }^{1} J_{P-H} 161.0 \mathrm{~Hz}, E-\right.$ $\left.{ }^{t} \mathrm{Bu}\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{C}=\mathrm{PH}\right)$ and $53.5 \mathrm{ppm}\left({ }^{1} J_{P-H} 144.0 \mathrm{~Hz}, Z-{ }^{\mathrm{t}} \mathrm{Bu}\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{C}=\mathrm{PH}\right)$.

Scheme 76. Synthesis of $E / Z-{ }^{\mathrm{t}} \mathrm{Bu}\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{C}=\mathrm{P} \sim \mathrm{H}^{312}$

The importance of conjugated phosphaalkenes with aromatic substituents has been highlighted by a recent flurry of research, most notably by Gates and Ott. The increased π-conjugation these compounds exhibit in comparison to the all-carbon containing analogues demonstrates promising potential for applications in molecular electronic devices. ${ }^{130,131}$ Literature studies to date have largely focused upon polymeric systems stabilised by bulky Mes and Mes* groups, with a notable absence in the development of new 'building block' phosphaalkenes. The pursuit of monomeric phosphaalkenes that are conjugated with aromatic systems, particularly those that may be tolerant of further R-group functionalisation, such as $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$, would provide valuable tools for the continued development of π-conjugated materials.

3.2 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with silylphosphines

3.2.1 Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})$

The reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ afforded a yellow oil that was identified as a mixture of products, with the two predominant species (95% of the product mixture by integration of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $)$ identified as $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-$ $\mathbf{M e})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me})$ in a $57: 43$ ratio (Scheme 77). Analytical purity was obtained by extraction in pentane, affording $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}$ in 64% yield, and leaving behind a yellow solid that was identified as $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(\mathbf{4 0 - 2}-\mathrm{Me})$ (see section 3.2.2). Despite attempts by washing, crystallisation and fractional distillation, the separation of \boldsymbol{E}-39-2-Me and \boldsymbol{Z}-39-2-Me was not achieved.

Scheme 77. Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)(2-\mathrm{Me})(\right.$ E/Z-39-2-Me $)$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows singlet resonances at 128 and 131 ppm that are assigned to Z-39-2-Me and \boldsymbol{E}-39-2-Me respectively, while the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows two resonances for each isomer as expected (Table 19). The protons assigned to the 2-Me and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)$ groups of \boldsymbol{Z}-39-2-Me both possess lower-field chemical shifts than \boldsymbol{E}-39-2-Me, while those of the $\mathrm{O}\left(\mathrm{SiMe}_{3}\right)$ group exhibit a higher-field chemical shift than for \boldsymbol{E}-39-2-Me. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits doublet resonances at $213\left({ }^{1} J_{C-P} 63.5 \mathrm{~Hz}\right)$ and $145 \mathrm{ppm}\left({ }^{2} J_{C-P}\right.$ 25.2 Hz) for $\boldsymbol{Z} \mathbf{- 3 9 - 2 - M e}$, and $220\left({ }^{1} J_{C-P} 55.5 \mathrm{~Hz}\right)$ and $146 \mathrm{ppm}\left({ }^{2} J_{C-P} 9.3 \mathrm{~Hz}\right)$ for $\boldsymbol{E} \mathbf{- 3 9 - 2 - M e}$; the signals are attributed to the phosphaalkenic and ipso-aromatic carbon centres in turn, and are consistent with similar phosphaalkenes in literature (Mes* $\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}, \delta_{\mathrm{C}} 215\left({ }^{1} J_{C-P}\right.$ $\left.49.9 \mathrm{~Hz}), 146\left({ }^{2} J_{C-P} 5.9 \mathrm{~Hz}\right)\right) .{ }^{313}$ The isomeric assignments of \boldsymbol{Z}-39-2-Me and \boldsymbol{E}-39-2-Me are made by comparison with previously reported examples, in which the Z-isomers of phosphaalkenes exhibit higher-field chemical shifts in both the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and possess a larger carbon-phosphorus coupling constant. ${ }^{103}$

Table 19. Selected spectroscopic data for $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)(2-\mathrm{Me})(\boldsymbol{E} / \boldsymbol{Z}-\mathbf{3 9 - 2}-\mathbf{M e})\right.$

	$\begin{aligned} & { }^{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{gathered} \left.{ }^{29}{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right\} \\ / \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \hline{ }^{1} \mathrm{H} \text { Me } \\ & \text { / ppm } \end{aligned}$	$\begin{aligned} & { }^{{ }^{1} \mathrm{H} \mathrm{P}\left(\mathrm{SiCH}_{3}\right)_{3}} \\ & / / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{3} J_{H-P} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{gathered} { }^{1} J_{C-P} \\ / \mathbf{H z} \end{gathered}$
E-39-2-Me	132	-1.6, 19.5	2.32	0.00	4.5	0.41	220	55.5
Z-39-2-Me	128	-2.4, 21.7	2.35	0.46	3.4	-0.08	213	63.5

Isomeric distribution is commonly, although not universally, governed by the reaction temperature; $E-\mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ was produced with isomeric purity upon addition of ${ }^{\mathrm{t}} \mathrm{BuCOCl}$ to $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $-78^{\circ} \mathrm{C}$, while repeating the same reaction at $20^{\circ} \mathrm{C}$ generated only $Z-{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}{ }^{108}$ With this in mind, the synthesis of $\boldsymbol{E} / \mathbf{Z}-39-2-\mathrm{Me}$ was attempted at both ambient temperature and at $66^{\circ} \mathrm{C}$. However, phosphaalkenes E/Z-39-2-Me (57:43) were isolated with no change in isomeric distribution from the low temperature reaction performed previously. Similarly, reducing the reaction duration to 4 h or increasing it to seven days failed to prompt any alteration to the isomeric distribution of the product.

3.2.2 Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}$

The trace impurity isolated from $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)(2-\mathrm{Me})(\boldsymbol{E} / \boldsymbol{Z}\right.$-39-2-Me $)$ was identified spectroscopically and crystallographically as $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(\mathbf{4 0 - 2}-\mathrm{Me})$, and a targeted synthesis using $3: 1$ stoichiometries $\left(\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me}): \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\right)$ was performed (Scheme 78). Acyl phosphine oxide 40-2-Me was isolated by washing the crude product mixture with pentane; the precipitate was dried in vacuo as a yellow solid in 69% yield.

Scheme 78. Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(\mathbf{4 0 - 2}-\mathrm{Me})$

The ${ }^{31}$ P NMR spectrum of 40-2-Me shows a multiplet resonance at $67.2 \mathrm{ppm}\left({ }^{4} J_{P-H} 3.4 \mathrm{~Hz}\right)$ with long-range coupling to the ortho- CH protons of the aromatic ring (confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P} \mathrm{HMBC}$

NMR spectroscopy). The chemical shift is down-field compared to known phosphine oxides $\left(\mathrm{Me}_{3} \mathrm{P}=\mathrm{O}, \delta_{\mathrm{P}} 32.7 ;{ }^{\mathrm{t}} \mathrm{Bu} u_{3} \mathrm{P}=\mathrm{O}, \delta_{\mathrm{P}} 43.7 ;{ }^{314}\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right)(4-\mathrm{Cl}), \delta_{\mathrm{P}} 33.0\right),{ }^{315}\right.$ although this is to be anticipated given the three adjacent carbonyl groups present in 40-2-Me. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits doublet signals at $209\left({ }^{1} J_{C-P} 34.5 \mathrm{~Hz}\right)$ and $141 \mathrm{ppm}\left({ }^{2} J_{C-P} 33.3 \mathrm{~Hz}\right)$, assigned to the acyl phosphine and ipso-carbon centres respectively. The carbon-phosphorus coupling constant is typical of a one-bond separation, while the chemical shift is consistent with known acyl phosphines $\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Cl}), \delta_{\mathrm{C}} 213\left({ }^{1} J_{C-P} 38.6 \mathrm{~Hz}\right) .{ }^{315}\right.$ The isolation of 40-2-Me has been previously described, ${ }^{316}$ characterised on the basis of a singlet resonance at 26.9 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum and no further supporting data. While the authors used a different NMR solvent $\left(\mathrm{CDCl}_{3}\right)$, it is unlikely to induce such a significant difference in chemical shift ($\Delta \delta_{\mathrm{P}} 40.3$); literature studies regarding the effect of the NMR solvent (between $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3}) on the chemical shift of phosphine oxides showed a much smaller difference is typical ($\Delta \delta_{\mathrm{P}} 4.23$). ${ }^{5}$ One might tentatively suggest that the compound previously isolated by the authors was, in fact, the acyl phosphine rather than the acyl phosphine oxide.

Yellow crystals suitable for X-ray diffraction were grown from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ in 72 h (Figure 21); this represents the first crystallographic study of a tri-acyl phosphine oxide. The $\mathrm{P}=\mathrm{O}$ bond length of $1.474(2) \AA$ is significantly shorter than those of typical phosphine oxides ($\mathrm{Bu}_{3} \mathrm{P}=\mathrm{O}$; $\left.1.489(2) \AA, \mathrm{Cy}_{3} \mathrm{P}=\mathrm{O} ; 1.504(10) \AA\right),{ }^{5}$ but is similar to that of di-acyl phosphine oxide $\{\operatorname{MesC}(\mathrm{O})\}_{2} \mathrm{PhP}=\mathrm{O} ;\left(1.475(2) \AA\right.$), reported by Grützmacher. ${ }^{317}$ Further similarities can be drawn between 40-2-Me and $\{\operatorname{MesC}(\mathrm{O})\}_{2} \mathrm{PhP}=\mathrm{O}$, including $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{P}$ bond lengths, and the adoption of pyramidal geometries (Table 20). Acyl phosphine oxide 40-2-Me possesses C-P-C angles of less than 109.5° and a significantly larger O-P-C angle, attributed to the greater electronic repulsion of the phosphine oxide oxygen as compared to the carbonyl groups. The effect is less pronounced for asymmetric $\{\operatorname{MesC}(\mathrm{O})\}_{2} \mathrm{PhP}=\mathrm{O}$.

Table 20. Selected bond lengths and angles for 40-2-Me and $\{\operatorname{MesC}(\mathrm{O})\}_{2} \mathrm{PhP}=\mathrm{O}^{317}$

Bond lengths (A) and angles (deg)	$\begin{aligned} & d \mathrm{P}=\mathbf{O} \\ & / \AA \end{aligned}$	$\begin{aligned} & d \mathrm{C}=\mathbf{O} \\ & / \AA \end{aligned}$	$\begin{aligned} & \hline d \mathbf{C - P} \\ & / \AA \end{aligned}$	$\begin{aligned} & \hline \mathrm{O}=\mathrm{P}-\mathrm{C} \\ & / \mathrm{deg} \end{aligned}$	$\begin{aligned} & \hline \text { C-P-C } \\ & \text { / deg } \end{aligned}$
$\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(\mathbf{4 0 - 2 - M e})$	1.474(2)	1.213(3)	1.897(2)	117.25(9)	100.09(9)
				120.08(10)	97.92(10)
				118.11(9)	99.41(10)
$\{\mathrm{MesC}(\mathrm{O})\}_{2} \mathrm{PhP}=\mathrm{O}$	1.475(2)	1.210(3)	1.891(3)	114.67(12)	110.10(12)
				111.88(11)	105.92(12)
				116.33(12)	96.35(13)

Figure 21. Molecular structure of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(\mathbf{4 0 - 2}-\mathrm{Me})$, with thermal ellipsoids at the 50 \% probability level. Selected bond distances (\AA) and angles (deg): C1-O1 1.213(3), C1-P1 1.897(2), C9O2 1.213(3), C9-P1 1.892(2), C17-O3 1.216(3), C17-P1 1.896(2), O4-P1 1.4742(15). O1-C1-P1 114.05(16), O2-C9-P1 113.68(16), O3-C17-P1 112.90(18), O4-P1-C9 117.25(9), O4-P1-C17 120.08(10), C9-P1-C17 97.92(10), O4-P1-C1 118.11(9), C9-P1-C1 100.09(9), C17-P1-C1 99.41(10).

3.2.3 Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$

The base-initiated conversion of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{P}\left(\mathrm{SiMe}_{3}\right)(2-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2 - M e})\right.$ to $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$ was attempted by drop-wise addition of a series of suspended bases, including $\mathrm{NaOH}, \mathrm{DABCO}$ and DBU , to a solution of $\boldsymbol{E} / \mathbf{Z - 3 9 - 2 - M e}$ (Scheme 79).

a) 1) DABCO, $-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, pentane, 2) r.t., 30 min , 3) 18 h
b) 1) $0.1 \mathrm{NaOH},-78^{\circ} \mathrm{C}$, dme, 2) r.t., 4 h
c) 1) $0.1 \mathrm{NaOH}, 0^{\circ} \mathrm{C}$, dme, 2) r.t., 4 h
d) 1) $0.5 \mathrm{NaOH}, 0^{\circ} \mathrm{C}$, dme, 2) r.t., 4 h
e) 1) $\mathrm{NaOH}, 0^{\circ} \mathrm{C}$, dme, 2) r.t., 4 h
f) 1) $\mathrm{DBU},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, THF, 2) r.t. 4 h

Scheme 79. Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$

The addition of DABCO afforded a complex product mixture that included $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 2 - M e}$. Attempts to separate the species by washing or recrystallisation were unsuccessful, while extending the reaction time, or heating the reaction mixture, afforded a more complex mixture of products. The addition of catalytic or stoichiometric NaOH to $\boldsymbol{E} / \boldsymbol{Z}$-39-2-Me afforded $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)(2-\mathrm{Me})(41-2-\mathrm{Me})$, identified by a triplet in the ${ }^{31} \mathrm{P}$ NMR spectrum at $-99.7 \mathrm{ppm}\left({ }^{1} J_{H-P}\right.$ $218 \mathrm{~Hz})$ that is similar to those reported for ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{PH}_{2}\left(\delta_{\mathrm{P}}-122\left({ }^{l} J_{P-H} 214 \mathrm{~Hz}\right)\right)$ and $\mathrm{MeC}(\mathrm{O}) \mathrm{PH}_{2}\left(\delta_{\mathrm{P}}-106\left({ }^{1} J_{P-H} 217 \mathrm{~Hz}\right)\right) .{ }^{318}$ Trace contaminants were also apparent, and the corresponding resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum cannot be fully resolved due to high levels of impurities that overlap in the region ($\delta_{\mathrm{H}} 3.60-3.90 \mathrm{ppm}$). The addition of DBU to $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 2 - M e}$ affords a colourless oil which exhibits no resonances in the ${ }^{31} \mathrm{P}$ NMR spectrum.

3.2.4 Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C (O)} \mathrm{PH}_{2}\right)(2-\mathrm{Me})$

Given the apparent formation of the primary acyl phosphine 41-2-Me (vide supra), deliberate synthesis was pursued by the reaction of $\boldsymbol{E} / \mathbf{Z - 3 9 - 2}-\mathrm{Me}$ with excess deionised water; compound 41-2-Me was isolated as an impure yellow oil that degraded over 24 h to an unidentifiable mixture of products (Scheme 80).

Scheme 80. Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)(2-\mathrm{Me})(41-2-\mathrm{Me})$

The ${ }^{31} \mathrm{P}$ NMR spectrum of primary acyl phosphine 41-2-Me shows a triplet resonance at -99.7 $\mathrm{ppm}\left({ }^{1} J_{H-P} 218 \mathrm{~Hz}\right.$) with a phosphorus-proton coupling constant consistent with a PH_{2} group $\left.{ }^{(} \mathrm{BuC}(\mathrm{O}) \mathrm{PH}_{2} ; \delta_{\mathrm{P}}-122\left({ }^{1} J_{P-H} 214 \mathrm{~Hz}\right), \mathrm{MeC}(\mathrm{O}) \mathrm{PH}_{2} ; \delta_{\mathrm{P}}-106\left({ }^{1} J_{P-H} 217 \mathrm{~Hz}\right)\right) .{ }^{318}$ This signal corresponds (by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectrum) to a ${ }^{1} \mathrm{H}$ NMR doublet resonance at 3.87 ppm (${ }^{1} J_{H-P} 218 \mathrm{~Hz}$). Further singlet and multiplet resonances at 2.40 and 6.84-6.95 ppm are assigned to the 2-Me and aromatic groups respectively. Given the potential for decomposition of 41-2Me to $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C}(\mathrm{O})(2-\mathrm{Me})\}_{2} \mathrm{PH}\right.$ and $\mathrm{PH}_{3},{ }^{319}$ microanalysis and mass spectrometry were not performed.

3.2.5 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

The synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(2-\mathrm{Me})(\boldsymbol{E} / \mathrm{Z}-\mathbf{4 2 - 2}-\mathrm{Me})$ was attempted by the addition of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ to $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ under a variety of conditions (Scheme 81). In all cases, the reaction mixtures after 18 h were complex mixtures of products, the identities of which are tentatively assigned in Table 21, and include the previously identified compounds E/Z-39-2-Me, 40-2-Me and 41-2-Me.

a) 1) $\left.-78^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t. 18 h
b) 1) $\left.0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t., 18 h
c) reflux, 4 h

Scheme 81. Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(2-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2}-\mathrm{Me})$

Table 21. Selected spectroscopic data for $\operatorname{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ reactions

	${ }^{3 I} \mathbf{P}$ NMR / ppm	Multiplicity	${ }^{\boldsymbol{I}} \boldsymbol{J}_{\boldsymbol{P}-\boldsymbol{H}} / \mathbf{H z}$	Assignment
41-2-Me	-99.7	t	218	$\operatorname{Ar}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)$
43-2-Me	-13.6	d	691	H-phosphonate
40-2-Me	67.2	s	-	$\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
Z-42-2-Me	73.3	d	143	$\mathrm{Z}-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
$\boldsymbol{E - 4 2 - 2 - M e}$	90.6	d	163	$E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-39-2-Me	127	s	-	$Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$
$\boldsymbol{E - 3 9 - 2 - M e}$	131	s	-	$E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$

Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2 - M e}$ (ca. 67:33) are identified as the predominant species in the reaction mixtures regardless of temperature. The ${ }^{31} \mathrm{P}$ NMR spectra show doublet resonances at 90.6 ($\left.{ }^{1} J_{P-H} 163 \mathrm{~Hz}, \boldsymbol{E}-\mathbf{4 2 - 2}-\mathrm{Me}\right)$ and $73.3 \mathrm{ppm}\left({ }^{1} J_{P-H} 143 \mathrm{~Hz}, \boldsymbol{Z}-\mathbf{4 2 - 2 - M e}\right)$, with corresponding ${ }^{1} \mathrm{H}$ NMR doublets at $4.69\left({ }^{1} J_{H-P} 163 \mathrm{~Hz}\right)$ and $5.00 \mathrm{ppm}\left({ }^{1} J_{H-P} 143 \mathrm{~Hz}\right)$ (confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy). The isomeric assignments are made in accordance with the general trend of increased coupling constants for E-phosphaalkenes compared to the Z-isomers. While the phosphorus-proton coupling constants are consistent with $E / Z-{ }^{\mathrm{t}} \mathrm{Bu}\left(\mathrm{OSiMe}_{3}\right) \mathrm{C}=\mathrm{PH},{ }^{312}$ the ${ }^{31} \mathrm{P}$ NMR resonance of $\boldsymbol{E}-\mathbf{4 2 - 2}-\mathrm{Me}$ is lower-field than expected when compared to E ${ }^{\mathrm{t}} \mathrm{Bu}\left(\mathrm{OSiMe}_{3}\right) \mathrm{C}=\mathrm{PH}$. This might be attributed to the interaction between the ortho-methyl group and PH proton of $\boldsymbol{E} \mathbf{- 4 2 - 2 - M e}$ (Figure 22), or else the disparity in R groups; Becker's example incorporates the electron-donating ${ }^{\text {t }} \mathrm{Bu}$ group, while $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2}-\mathrm{Me}$ possesses a slightly electronwithdrawing aromatic system. Compounds $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2}-\mathrm{Me}$ demonstrate that the stereochemistry of phosphaalkenes of the type $\mathrm{R}\left(\mathrm{OSiMe}_{3}\right) \mathrm{C}=\mathrm{PH}$ cannot be assigned solely on the basis of chemical shift. The isomeric distribution of $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2 - M e}$ (69:31) remains invariant over time for the low temperature reaction; in contrast, the ambient and elevated temperature reactions both exhibit increased proportions of $\boldsymbol{E} \mathbf{- 4 2 - 2 - M e}$ after 18 h (Table 22).

Significant levels of phosphaalkenes $\boldsymbol{E} / \mathbf{Z - 3 9 - 2 - M e}$ are also apparent during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, irrespective of temperature; for the low temperature reactions the relative proportion of $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 2}-\mathrm{Me}$ decreases after 18 h (47.0% at $1 \mathrm{~h}, 22.9 \%$ after 18 h), while at ambient temperature, the reverse is true (13.9% at $5 \mathrm{~min}, 33.0 \%$ after 18 h). While the isomeric distribution varies according to reaction temperature (Table 22), it remains unchanged over time in either case; however, during the high temperature reaction increased quantities of $\boldsymbol{E} \mathbf{- 3 9 - 2 - M e}$ (to $71: 29$) are detected after 18 h . Low levels of acyl phosphine 41-2-Me (ca. 1.21%) and significant quantities of acyl phosphine oxide 40-2-Me (ca. 10.7%) are also present during all of the reaction variations performed, while a doublet
resonance at $-13.6 \mathrm{ppm}\left({ }^{1} J_{P-H} 691 \mathrm{~Hz}\right.$), assigned to H-phosphonate 43-2-Me (for more detail see section 3.3.2), constitutes ca. 2.71% of the reaction mixtures.

E-42-2-Me

Z-42-2-Me

Figure 22. $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(2-\mathrm{Me})($ E/Z-42-2-Me $)$

Table 22. Isomeric distribution of $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2 - M e}$ and $\boldsymbol{E} / \mathbf{Z}-39-2-\mathrm{Me}$ in the initial and final aliquots

Temperature	Initial $\boldsymbol{E} / Z-42-2-M e$	Final $\boldsymbol{E} / \mathbf{Z - 4 2 - 2 - M e}$	Initial $\boldsymbol{E} / \mathbf{Z - 3 9 - 2}-\mathrm{Me}$	Final $\boldsymbol{E} / \mathbf{Z - 3 9 - 2} \mathbf{M e}$
	ratio	ratio	ratio	ratio
$\mathbf{- 7 8}{ }^{\circ} \mathbf{C}$	$69: 31$	$69: 31$	$72: 28$	$72: 28$
Ambient	$66: 34$	$75: 25$	$65: 35$	$65: 35$
Reflux	$67: 33$	$71: 29$	$66: 33$	$71: 29$

Quantitative studies

For the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $66^{\circ} \mathrm{C}, \mathrm{PPh}_{3}$ was used as an internal standard to enable the quantification of the products present in each aliquot (Figure 23, Table 23). Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2 - M e}$ are the major products, increasing in quantity over the first 300 min , while phosphaalkenes $\boldsymbol{E} / \mathbf{Z - 3 9 - 2 - M e}$ are a relatively minor species in each sample, diminishing as time increases. Although acyl phosphine 41-2-Me is not present in the initial aliquot, significant levels are observed after 300 min , in contrast to acyl phosphine oxide 40-2Me, which is present in low levels after 60 min and increases in proportion after 300 min .

Table 23. Species present in aliquots from the reaction of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $66^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Time } \\ & \text { / min } \end{aligned}$	$\begin{aligned} & \hline \text { 41-2-Me } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \text { 40-2-Me } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { Z-42-2-Me } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \text { E-42-2-Me } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { Z-39-2-Me } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \text { E-39-2-Me } \\ & / \mathrm{mol} \end{aligned}$
60	0.00	9.91×10^{-3}	1.09×10^{-2}	2.18×10^{-2}	3.17×10^{-3}	6.54×10^{-3}
300	5.47×10^{-3}	1.74×10^{-2}	1.81×10^{-2}	4.19×10^{-2}	9.38×10^{-4}	2.66×10^{-3}
1440	3.60×10^{-3}	2.06×10^{-3}	4.81×10^{-3}	1.18×10^{-2}	0.00	0.00

Figure 23. The reaction of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $66{ }^{\circ} \mathrm{C}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me})\right)$

3.3 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with silylphosphines

3.3.1 Reaction conditions

Following from the studies of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})$, the $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{R})$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(4-\mathrm{R})$ systems were investigated under a similar series of conditions (Scheme 82). In all cases, a THF solution of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ was added to $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}^{\prime}=\mathrm{SiMe}_{3}, \mathrm{H}\right)$ in THF, but different contact times and temperatures were applied.

Method a

For conditions a, the reagents were combined at $-78^{\circ} \mathrm{C}$ and the resulting solutions were stirred for 15 min prior to being allowed to warm to ambient temperature over 45 min , whereupon an aliquot was isolated and dried in vacuo.

Method b

In the case of conditions \mathbf{b}, the reagents were combined at ambient temperature and the solutions were stirred for 5 min prior to the isolation of an aliquot.

Method c

For conditions \mathbf{c}, the reagents were combined at $60^{\circ} \mathrm{C}$ and the solutions were immediately brought to reflux; aliquots were isolated at 80 min intervals.

a) 1) $\left.-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t. 18 h
b) r.t., 18 h
c) reflux, 18 h

Scheme 82. Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

3.3.2 Reaction outcomes

With a small number of exceptions, which will be discussed individually later, the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ afford complex product mixtures. Notwithstanding, these predominantly comprise a series of characteristic components, the identities of which can be inferred from spectroscopic data viz. phosphaalkenes (Figure 24, types i and ii), diphosphacyclobutanes (Figure 25, types iii - viii), acyl phosphines (Figure 27, types ix - xii) and an acyl phosphine oxide (Figure 27, type xiii). Additionally, species that incorporate $(\mathrm{RO})_{2}(\mathrm{R})_{2} \mathrm{PH}$ and $(\mathrm{RO})_{2}(\mathrm{O}) \mathrm{PH}$ units are observed (Figure 28), though precise identities cannot be established.

Phosphaalkenes (types i-ii)

The ${ }^{31} \mathrm{P}$ NMR spectra obtained for the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, and on rare occasions from those of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, show singlet resonances in the region of 127-143 (Z-) and 131-147 ppm (E-), attributable to type i phosphaalkenes E/Z$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(\mathrm{R})($ Figure 24, Table 24) on the basis of comparison with related species in the literature. Although the chemical shifts vary considerably with the substituents at the phosphorus and carbon centres, type i phosphaalkenes in literature typically exhibit ${ }^{31} \mathrm{P}$ NMR singlet resonances in the range of 100 to 140 ppm ; examples include $\left.{ }^{\mathrm{t}} \mathrm{BuC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)\left(\delta_{\mathrm{P}} 120, Z\right.$-isomer; $\delta_{\mathrm{P}} 124, E$-isomer $\left.),{ }^{108} \operatorname{PrC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)\left(\delta_{\mathrm{P}}\right.$ $102, E$-isomer) and $\left.{ }^{\mathrm{t}} \mathrm{BuCH}_{2} \mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)\left(\delta_{\mathrm{P}} 123, E\right.$-isomer). ${ }^{105}$

Phosphaalkenes of the general formula $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(\mathrm{R})$ (type ii) are frequently identified as products from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, and occasionally from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$. Type ii phosphaalkenes exhibit resonances between 65.8-90.6 (${ }^{1} J_{P-H} 159-163 \mathrm{~Hz}, E$-isomer $)$ and $67.4-85.6 \mathrm{ppm}\left({ }^{1} J_{P-}\right.$ ${ }_{H} 143-156 \mathrm{~Hz}$, Z-isomer) in the ${ }^{31} \mathrm{P}$ NMR spectra, and in the region of 4.88 to $5.24\left({ }^{1} J_{P-H} 143-\right.$ $156 \mathrm{~Hz}, Z$-isomer) and 4.69 to $4.75 \mathrm{ppm}\left({ }^{1} J_{P-H} 159-163 \mathrm{~Hz}, E\right.$-isomer) in the ${ }^{1} \mathrm{H}$ NMR spectra. The spectroscopic data are similar to $E / Z-{ }^{\mathrm{t}} \mathrm{Bu}\left(\mathrm{OSiMe}_{3}\right) \mathrm{C}=\mathrm{PH},{ }^{312}$ for which ${ }^{31} \mathrm{P}$ NMR doublet resonances at $38.0\left({ }^{1} J_{P-H} 161 \mathrm{~Hz}, E\right.$-isomer) and $53.5 \mathrm{ppm}\left({ }^{1} J_{P-H} 144 \mathrm{~Hz}, Z\right.$-isomer) are reported, with corresponding doublet signals at $4.09\left({ }^{l} J_{P-H} 144 \mathrm{~Hz}, Z\right.$-isomer $)$ and $4.51 \mathrm{ppm}\left({ }^{l} J_{P-H} 161 \mathrm{~Hz}\right.$, E-isomer) in the ${ }^{1} \mathrm{H}$ NMR spectrum. The disparity in chemical shifts is attributed to the electrondonating ability of the ${ }^{\text {t }} \mathrm{Bu}$ group compared to the electron-withdrawing characteristics of the aromatic substituents; the one-bond phosphorus-proton coupling constants are comparable.

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{CN})$, $\mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{COCl})$

Figure 24. Phosphaalkene products from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

Table 24. Spectroscopic data ranges for phosphaalkenes types i-ii

Type	${ }^{31} \mathbf{P}$ NMR / ppm	${ }^{1} \mathbf{H}$ NMR / ppm	${ }^{\boldsymbol{I}} \boldsymbol{J}_{P-H} / \mathbf{H z}$
$\boldsymbol{Z}-\mathbf{i}$	$127-143$	-	-
$\boldsymbol{E}-\mathbf{i}$	$131-147$	-	-
\boldsymbol{E}-ii	$65.8-90.6$	$4.88-5.24$	$159-163$
\boldsymbol{Z}-ii	$67.4-85.6$	$4.69-4.75$	$143-156$

Diphosphacyclobutanes (types iii - viii)

The ${ }^{31}$ P NMR spectra also show resonances that are tentatively assigned to six distinct diphosphacyclobutane motifs; comparable compounds are sparsely reported in literature and typically result from phosphaalkene dimerisations. Examples include compounds 3.A and 3.B, which both result from intramolecular head-to-head dimerisations, ${ }^{320,115}$ as well as 3.C and 3.D, which are generated by intermolecular head-to-tail dimerisations (Scheme 83). ${ }^{312,115}$ The variable spectroscopic characteristics are rationalised by the identity of the substituents (Table 25); viz. for diphosphacyclobutanes with both [1,2]- and [1,3]-orientation of the phosphorus atoms, those that contain electron-withdrawing OSiMe_{3} groups exhibit high-field signals in the ${ }^{31} \mathrm{P}$ NMR spectra, while those that incorporate electron-donating ${ }^{\mathrm{t}} \mathrm{Bu}$ groups exhibit low-field resonances.

3.A
3.C
3.D

Scheme 83. Syntheses of $E Z$-[1,2]-diphosphacyclopentane (3.A), ${ }^{320}$ [1,2]-diphosphacyclobutene (3.B), ${ }^{115}$ [1,3]-diphosphacyclobutane (3.C), ${ }^{312}$ [1,3]-diphosphacyclobutene (3.D) ${ }^{115}$

Table 25. Selected spectroscopic data for $E Z$-[1,2]-diphosphacyclopentane (3.A), ${ }^{320}$ [1,2]diphosphacyclobutene (3.B), ${ }^{115}[1,3]$-diphosphacyclobutane (3.C), ${ }^{312}[1,3]$-diphosphacyclobutene (3.D) ${ }^{115}$

Compound	${ }^{31} \mathbf{P ~ N M R ~ / ~ p p m ~}$	$\boldsymbol{J}_{P-P} / \mathbf{H z}$	${ }^{I} \boldsymbol{J}_{P-H} / \mathbf{H z}$
3.A	$-104,-84.7$	48.2	-
3.B	-31.5	-	-
3.C	34.5	-	195
3.D	104,279	221	-

Two of the species generated herein, attributed to types iii and iv diphosphacyclobutanes, each exhibit a singlet resonance in the region of -108 to $-103(Z Z-)$ and -98.0 to $-96.2 \mathrm{ppm}(E E-)$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Figure 25, Table 26), which suggests internal symmetry similar to [1,2]-diphosphacyclobutene (Scheme 83 3.B). However, in the absence of proton decoupling, the signals exhibit complexity ascribed to magnetic inequivalence of the phosphorus centres with respect to the protons (Figure 26), which is further complicated by the presence of multiple coupling pathways between each phosphorus centre and the proton on the adjacent phosphorus centre. The chemical shifts are comparable to EZ-[1,2]-diphosphacyclopentane (3.A: Scheme 83, Table 25) due to the presence of strongly electron-withdrawing substituents. During the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})(\mathrm{R}=3-\mathrm{CN}, 4-\mathrm{CN}, 4-\mathrm{COCl})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{SiMe}_{3}\right)$,
corresponding ${ }^{1} \mathrm{H}$ NMR multiplets can be located between 2.75 to 3.03 ($E E$-isomer) and 4.54 to 4.69 ppm (ZZ-isomer), confirmed by ${ }^{1} \mathrm{H}_{-}^{31} \mathrm{P}$ HMBC NMR experiments. The isomeric assignments are speculatively based on the trend of larger phosphorus-proton coupling constants for the E-isomers of phosphaalkenes; although it is realised that constraint of the $\mathrm{C}_{2} \mathrm{P}_{2}$ ring may cause a reversal in the relative chemical shifts of the isomers, a logical method by which to refer to each species is necessary for discussion that will be applied throughout.

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{COCl})$

Figure 25. Tentative product assignments of reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ and $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

Table 26. Spectroscopic data ranges for diphosphacyclobutanes types iii-viii

Type	${ }^{31} \mathbf{P}$ NMR / ppm	Multiplicity	${ }^{I} J_{P-H} / \mathbf{H z}$	${ }^{3} \boldsymbol{J}_{P-H} / \mathbf{H z}$	$\boldsymbol{J}_{P-P} / \mathbf{H z}$
iii	$-98.0--96.2$	$2^{\text {nd }}$ order	-	-	-
iv	$-108--103$	$2^{\text {nd }}$ order	-	-	-
v	$-116--114$	ddd	$172-175$	$9.9-11.4$	$70.5-72.1$
	$-86.1--83.9$	ddd	$181-186$	$11.2-13.7$	
vi	$-120--119$	dd	$162-165$	-	$89.0-90.5$
	$-83.0--81.9$	ddd	$168-171$	$7.5-10.2$	
vii	$-81.2--74.2$	s	-	-	-
viii	$-124--123$	d	-	-	$190-193$
	$-82.4--81.5$	d	-	-	

Figure 26. Selected section ($\delta_{\mathrm{P}}-106$ to -95.0) of the ${ }^{31} \mathrm{P}$ NMR spectrum of reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})$
$\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}($ method $\mathbf{a})$ after 18 h

Type \mathbf{v} diphosphacyclobutanes are inferred from multiplet resonances in the region of -116 to $-114\left({ }^{1} J_{P-H} 172-175 \mathrm{~Hz},{ }^{1} J_{P-P} 70.5-72.1 \mathrm{~Hz},{ }^{3} J_{P-H} 9.9-11.4 \mathrm{~Hz}\right)$ and -86.1 to $-83.9 \mathrm{ppm}\left({ }^{1} J_{P-}\right.$ $\left.{ }_{H} 181-186 \mathrm{~Hz},{ }^{1} J_{P-P} 70.5-72.1 \mathrm{~Hz},{ }^{3} J_{P-H} 11.2-13.7 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectra, while diphosphacyclobutanes of the type vi exhibit similar signals between -120 to -119 (${ }^{1} J_{P-H} 162-$ $\left.165 \mathrm{~Hz},{ }^{1} J_{P-P} 89.0-90.5 \mathrm{~Hz}\right)$ and -83.0 to $-81.9 \mathrm{ppm}\left({ }^{1}{ }_{P-H} 168-171 \mathrm{~Hz},{ }^{l} J_{P-P} 89.0-90.5 \mathrm{~Hz}\right.$, ${ }^{3} J_{P-H} 7.5-10.2 \mathrm{~Hz}$). Both sets of resonances are frequently observed during all of the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$. The spectroscopic data are comparable to $E Z-[1,2]-$ diphosphacyclopentane (Scheme 83, Table 25 3.A), which also exhibits unusually small 'onebond' phosphorus-phosphorus coupling constants, resulting from the presence of multiple coupling pathways. While diphosphacyclobutanes of the type \mathbf{v} and $\mathbf{v i}$ differ from each other in the orientation of one of the protons bound to phosphorus, isomeric assignment is entirely arbitrary and used only as a practical means of differentiation in lieu of definite data indicative of stereochemistry, as for diphosphacyclobutanes of the types iii and iv.

Additional ${ }^{31} \mathrm{P}$ NMR signals observed during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, but not with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, include doublet resonances in the range of -124 to $-123\left({ }^{2} J_{P-P} 190-\right.$ $193 \mathrm{~Hz})$ and -81.5 to $-82.4 \mathrm{ppm}\left({ }^{2} J_{P-P} 190-193 \mathrm{~Hz}\right)$, assigned to diphosphacyclobutanes of the
type viii. The chemical shifts are similar to those of compound 3.A (Scheme 83, Table 25) due to the presence of the strongly electron-withdrawing OSiMe_{3} substituents, while the magnitude of phosphorus-phosphorus coupling is consistent with [1,3]-diphosphacyclobutane 3.C $\left(^{2} J_{P-P}\right.$ 195 Hz) and [1,3]-diphosphacyclobutene 3.D (${ }^{2} J_{P-P} 221 \mathrm{~Hz}$) (Scheme 83, Table 25). Further resonances between -74.2 and -81.2 ppm are tentatively assigned to diphosphacyclobutanes of the type vii. The definitive isomeric assignment of the type vii diphosphacyclobutane is not possible as $E E$ - or ZZ-conformations are equally plausible.

The formation of diphosphacyclobutanes (types $\mathbf{i i i} \mathbf{- v i}$) is proposed to result from the intramolecular dimerisation of type ii phosphaalkenes, while types vii and viii diphosphacyclobutanes are proposed from intramolecular dimerisation of phosphaalkenes of the type \mathbf{i}.

Acyl phosphines and phosphine oxides (types ix - xiii)

The reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{SiMe}_{3}\right)$ produce complex product mixtures that are determined to contain acyl phosphines of the types ix - xii and acyl phosphine oxides of the type xiii (Figure 27, Table 27). Doublet resonances in the region of -98.6 to -97.9 $\operatorname{ppm}\left({ }^{1} J_{P-H} 178-180 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectra of many of the product mixtures are assigned to type ix acyl phosphines, $\mathrm{ArC}(\mathrm{O}) \mathrm{P}(\mathrm{H}) \mathrm{SiMe}_{3}$, by comparison with the ${ }^{31} \mathrm{P}$ NMR doublet signals of ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{P}(\mathrm{H}) \mathrm{SiMe}_{3}\left(\delta_{\mathrm{P}}-119{ }^{l} J_{P-H} 205 \mathrm{~Hz}\right)$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}(\mathrm{H}) \mathrm{SiMe}_{3}\left(\delta_{\mathrm{P}}-121{ }^{l} J_{P-H} 199 \mathrm{~Hz}\right)$. ${ }^{318}$ The corresponding protons are not observed via ${ }^{1} \mathrm{H}$ or ${ }^{1} \mathrm{H}_{-}^{31} \mathrm{P}$ HMBC NMR spectroscopy.

Acyl phosphines of the general formula $\operatorname{ArC}(\mathrm{O}) \mathrm{PH}_{2}$ (type \mathbf{x}) typically exhibit high-field triplet resonances in the ${ }^{31} \mathrm{P}$ NMR spectra at ca. $-107 \mathrm{ppm}\left({ }^{1} J_{P-H}\right.$ ca. 218 Hz), with larger phosphorusproton coupling constants than those of type ix. Literature examples include ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{PH}_{2}\left(\delta_{\mathrm{P}}\right.$ $\left.-107\left({ }^{1} J_{P-H} 218 \mathrm{~Hz}\right)\right)$ and $\mathrm{MeC}(\mathrm{O}) \mathrm{PH}_{2}\left(\delta_{\mathrm{P}}-106\left({ }^{1} J_{P-H} 217 \mathrm{~Hz}\right)\right) .{ }^{318}$ Type \mathbf{x} acyl phosphines were duly identified by triplet resonances in the region of -110 to $-99.7 \mathrm{ppm}\left({ }^{1} J_{P-H} 217-220 \mathrm{~Hz}\right)$. In all reactions, excluding that of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{SiMe}_{3}\right)$, the corresponding protons can also be observed at ca. $3.79 \mathrm{ppm}\left({ }^{1} J_{H-P} \mathrm{ca} .219 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectra, confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectra.

Acyl phosphines of the type $\mathbf{x}, \operatorname{ArC}(\mathrm{O}) \mathrm{PH}_{2}$, are documented to undergo spontaneous cocondensations to form type xi acyl phosphines, $\{\operatorname{ArC}(\mathrm{O})\}_{2} \mathrm{PH}$, which typically exhibit doublet signals at ca. $-20.0 \mathrm{ppm}\left({ }^{1} J_{P-H}\right.$ ca. 234 Hz$)$ in the ${ }^{31} \mathrm{P}$ NMR spectra ($\left\{{ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O})\right\}_{2} \mathrm{PH} ; \delta_{\mathrm{P}}-37.0$ $\left.\left({ }^{1} J_{P-H} 223 \mathrm{~Hz}\right),\{\mathrm{MeC}(\mathrm{O})\}_{2} \mathrm{PH} ; \delta_{\mathrm{P}}-2.0\left({ }^{1} J_{P-H} 245 \mathrm{~Hz}\right)\right) ;{ }^{318} \mathrm{PH}_{3}$ is generated as a by-product of formation. ${ }^{319}$ Of particular note is the significantly larger one-bond phosphorus-proton coupling constants exhibited by $\{\operatorname{ArC}(\mathrm{O})\}_{2} \mathrm{PH}$ compared to the parent phosphines, $\operatorname{ArC}(\mathrm{O}) \mathrm{PH}_{2}$. The reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ on occasion result in doublet resonances in the
region of -12.9 to $-10.5 \mathrm{ppm}\left({ }^{1} J_{P-H} 214-219 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectra, which are duly assigned to the type $\mathbf{x i}$ acyl phosphines.

Phosphines of the general formula $\{\mathrm{ArC}(\mathrm{O})\}_{3} \mathrm{P}(\mathbf{x i i})$ are extremely well-documented, typically exhibiting ${ }^{31} \mathrm{P}$ NMR singlet resonances at ca. $\left.53.6 \mathrm{ppm}\{\mathrm{PhC}(\mathrm{O})\}_{3} \mathrm{P} ; \delta_{\mathrm{P}} 53.9\right),\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C}(\mathrm{O}))(3-\right.$ $\left.\mathrm{Me})\}_{3} \mathrm{P} ; \delta_{\mathrm{P}} 53.7,\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C}(\mathrm{O}))(4-\mathrm{Me})\right\}_{3} \mathrm{P} ; \delta_{\mathrm{P}} 53.2\right) .{ }^{321}$ Singlet resonances in the region of 53.4 - 57.8 ppm are observed in the ${ }^{31} \mathrm{P}$ NMR spectra in almost every reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$, and are duly assigned to the type xii acyl phosphines. In contrast with the prevalence of type xii acyl phosphines in the literature, reports of phosphine oxides of the general formula $\{\operatorname{ArC}(\mathrm{O})\}_{3} \mathrm{P}=\mathrm{O}$ (xiii) are sparse; $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}$ was reported to possess a singlet resonance at 26.9 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum, ${ }^{316}$ while traditional phosphine oxides $\left(\mathrm{R}_{3} \mathrm{P}=\mathrm{O}\right)$ such as $\mathrm{Me}_{3} \mathrm{P}=\mathrm{O}$ and ${ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{P}=\mathrm{O}$ exhibit singlets at ca. $38.2 \mathrm{ppm},{ }^{314}$ and di-acyl phosphine oxide $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right)(4-\mathrm{Cl})$ exhibits a singlet at $33.0 \mathrm{ppm} .{ }^{315}$ Other literature examples of di- and tri-acyl phosphine oxides do not provide accompanying NMR spectra. ${ }^{316}$ As for acyl phosphines of the type xii, singlet resonances in the region of 59.7 to 73.0 ppm in the ${ }^{31}$ P NMR spectra, attributed to acyl phosphine oxides, are extremely prevalent during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$.

ix

\mathbf{x}

xi

xii

xiii
$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{C}_{6} \mathrm{H}_{4}(4-\mathrm{COCl})$

Figure 27. Tentative product assignments of reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ and $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

Table 27. Spectroscopic data ranges for acyl phosphines and acyl phosphine oxide types ix - xiii

Type	${ }^{31} \mathbf{P}$ NMR / ppm	Multiplicity	${ }^{I} \boldsymbol{J}_{\boldsymbol{P}-\mathrm{H}} / \mathbf{H z}$
$\mathbf{i x}$	$-98.6--97.9$	d	$178-180$
\mathbf{x}	$-110--99.7$	t	$217-220$
$\mathbf{x i}$	$-12.9--10.5$	d	$214-219$
$\mathbf{x i i}$	$53.4-57.8$	s	-
xiii	$59.7-73.0$	s	-

H-phosphonates

Among the many reaction products of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ are species that exhibit spectroscopic data comparable with that reported for H -phosphonates $(\mathrm{RO})_{2}(\mathrm{R})_{2} \mathrm{PH}$ and $(\mathrm{RO})_{2}(\mathrm{O}) \mathrm{PH}$; the H -phosphonates typically exhibit doublet resonances in the region of -48.2 to 10.7 ppm in the ${ }^{31} \mathrm{P}$ NMR spectra, with characteristically large magnitudes of phosphorusproton coupling (${ }^{1} J_{P-H} \mathrm{ca} .718 \mathrm{~Hz}$). Examples include phosphonic acids such as 3.E) 10.7 ppm $\left({ }^{1} J_{P-H} 696 \mathrm{~Hz}\right),{ }^{322}$ 3.F) $\left.8.4 \mathrm{ppm}\left({ }^{1} J_{P-H} 692 \mathrm{~Hz},{ }^{3} J_{P-H} 8.3 \mathrm{~Hz},\right),{ }^{323} \mathbf{3 . G}\right) 2.1 \mathrm{ppm}\left({ }^{1} J_{P-H} 741 \mathrm{~Hz}\right),{ }^{323}$ and H-phosphonates such as 3.H) $-48.2 \mathrm{ppm}\left({ }^{l} J_{P-H} 733 \mathrm{~Hz}\right),{ }^{324}$ and 3.I) $-47.6 \mathrm{ppm}\left({ }^{1} J_{P-H} 730\right.$ Hz), ${ }^{324}$ (Figure 28). As such, characteristic doublet resonances in the region of -30.3 to -2.7 $\operatorname{ppm}\left({ }^{1} J_{P-H} 691-745 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectra, which are lost upon proton decoupling, are tentatively identified as H -phosphonate species. The corresponding proton resonances are lost in the ${ }^{1} \mathrm{H}$ NMR baseline, while their low intensity also precludes observation by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR experiments. Identification of any of the H -phosphonates remains elusive.

3.E

3.F

3.G

$3 . \mathrm{H}$

3.I

Figure 28. Literature examples of H-phosphonates ${ }^{322-324}$

3.4 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 - C O C l})(3-\mathrm{R})$ with silylphosphines

The reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded a complex mixture of products in most cases, including phosphaalkenes of the types i-ii, diphosphacyclobutanes of the types iii - viii, acyl phosphines and phosphine oxides of the types \mathbf{x} - xiii and H-phosphonates, that were tentatively assigned as shown in Figure 29, and as described in section 3.3.2.

Phosphaalkenes

Diphosphacyclobutanes

Acyl phosphines and acyl phosphine oxide

Figure 29. Tentative product assignments of reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{R})$ and R ' $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

3.4.1 Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})$

As for phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2 - M e}$, compounds $\boldsymbol{E} / \mathbf{Z}$-39-3-Me were identified as the predominant products irrespective of reaction conditions (Scheme 84). Complete removal of minor impurities via washing with a variety of solvents (pentane, hexane, toluene, THF) and distillation proved ineffective, although variations in reaction temperature and duration reduced the level of trace contaminants notably; the ambient temperature reaction (conditions \mathbf{c}) afforded the cleanest sample of $\boldsymbol{E} / Z-39-3-M e$.

a) 1) $\left.-78^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t. 18 h
b) 1) $\left.0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t., 18 h
c) r.t., 1 h
d) reflux, 4 h

Scheme 84. Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-39-3-\mathrm{Me})$

Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3 - M e}$ (37:63) exhibit singlet resonances at 134 (E-39-3-Me) and 131 ppm (Z-39-3-Me) in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, slightly down-field from $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}\left(\delta_{\mathrm{P}} 131\right.$, 127). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show doublet resonances at $213\left({ }^{1} J_{C-P} 65.9 \mathrm{~Hz}, \mathbf{Z - 3 9 - 3 - M e}\right)$ and $219 \mathrm{ppm}\left({ }^{1} J_{C-P} 57.1 \mathrm{~Hz}, \boldsymbol{E} \mathbf{- 3 9}-3-\mathrm{Me}\right)$, attributed to the phosphaalkenic carbon centres (Table 28). The singlet signals attributed to the methyl groups ($\delta_{\mathrm{H}} 2.03$ for $\boldsymbol{Z} \mathbf{- 3 9 - 3 - M e}, 2.06$ for \boldsymbol{E}-39-3-Me) are shifted significantly higher-field than for $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{3 9 - 2}-\mathrm{Me}\left(\delta_{\mathrm{H}} 2.32,2.35\right)$, while the order in which they appear is reversed. As for $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 2 - M e}$, the difference in chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum between \boldsymbol{E}-39-3-Me and \boldsymbol{Z}-39-3-Me is $\Delta \delta_{\mathrm{H}} 0.03 \mathrm{ppm}$. The isomeric distribution of $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 3 - M e}$ (37:63) is invariant regardless of temperature, although in contrast to $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}$ (ca. 69:31), $\mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ is the preferred isomer.

Table 28. Selected spectroscopic data for $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathbf{M e})$

	$\begin{aligned} & { }^{{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{aligned} & \left.{ }^{29} \mathrm{Sif}^{1} \mathrm{H}\right\} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H} \mathrm{Me} \\ & / \text { ppm } \end{aligned}$	$\begin{aligned} & { }^{1} \mathbf{H ~ P}\left(\mathrm{SiCH}_{3}\right)_{3} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{3} J_{H-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{\mathrm{T}} \mathrm{H} \mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{1} J_{C-P} \\ & / \mathrm{Hz} \end{aligned}$
E-39-3-Me	134	-2.1, 20.9	2.06	0.08	4.3	0.45	219	57.1
Z-39-3-Me	131	-3.7, 18.9	2.03	0.47	3.7	0.05	213	65.9

Influence of temperature

The addition of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ to $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at low temperatures affords $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ as the initial major product with significant levels of contaminants that increase with time $(9.41 \%$ at $1 \mathrm{~h}, 46.2 \%$ after 18 h at $-78^{\circ} \mathrm{C} ; 10.6 \%$ at $1 \mathrm{~h}, 78.8 \%$ at 18 h at $0^{\circ} \mathrm{C}$). In contrast, the ambient temperature reaction affords $\boldsymbol{E} / \mathbf{Z}$-39-3-Me with the lowest levels of contaminants, although analytical purity is not obtained. Spectroscopic analysis of the reaction prior to 1 h demonstrates an incomplete reaction, as determined by the observation of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ in the ${ }^{31} \mathrm{P}$

NMR spectrum, while reaction for longer than 1 h affords a marginal increase in trace contaminants (ca. 5% at $1 \mathrm{~h}, \mathrm{ca} 8 \$.$% at 4 \mathrm{~h}$). The combination of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at ambient temperature followed by heating at reflux for 4 h also generates a relatively pure sample of $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 3}-\mathbf{M e}$, the phosphaalkenes representing approximately 90% of the product mixture (by integration of the ${ }^{31} \mathrm{P}$ NMR spectrum, in the absence of an internal standard); fewer impurities are produced than for the low temperature reactions, and the trace contaminants consist primarily of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$.

3.4.2 Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 - C} \equiv \mathbf{P})(\mathbf{3}-\mathrm{Me})$

The conversion of $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 3}-\mathrm{Me}$ to $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(3-\mathrm{Me})$ was attempted via reaction with either $\mathrm{DABCO},\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$, or $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in accordance with literature precedent (Scheme 85). ${ }^{163,108}$ Aliquots were isolated and dried in vacuo after 1 h , and the remaining solutions were stirred for 18 h prior to solvent removal.

Scheme 85. Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(3-\mathrm{Me})$

The addition of DABCO to $\boldsymbol{E} / \boldsymbol{Z}$-39-3-Me affords a yellow suspension after being stirred for 1 h ; solvent removal yields a yellow oil which is identified to consist primarily of unreacted $\boldsymbol{E} / \mathbf{Z}-39-$ 3-Me on the basis of resonances at 134 and 131 ppm in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The number of unidentified trace contaminants double from six in the initial sample to twelve after 18 h , while the isomeric ratio of $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ is unchanged. The reaction of $\boldsymbol{E} / \mathrm{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ affords a mixture of compounds that defies separation by washing, crystallisation or distillation. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows seven singlet resonances after 1 h that range from -212 to 218 ppm , and a more complex product mixture after 18 h . The addition of $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ to $\boldsymbol{E} / \mathbf{Z}$-39-3-Me produces an orange oil upon solvent removal, which consists primarily of unreacted $\boldsymbol{E} / \mathbf{Z}$-39-3-Me. Trace amounts of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ are also detected at -252 ppm
in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, in addition to minor levels (ca. 3.0% by integration of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum signals) of two mutually coupled doublet resonances at -83.8 ($J_{P-P} 51.8$ $\mathrm{Hz})$ and $-55.4 \mathrm{ppm}\left(J_{P-P} 51.8 \mathrm{~Hz}\right)$ that remain unassigned. The suspension shows no change by ${ }^{31}$ P NMR spectroscopy after 18 h of stirring.

3.4.3 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

Similar to $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{4 2 - 2 - M e}$, phosphaalkenes $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{4 2 - 3}-\mathrm{Me}$ were identified as the predominant species present in the complex product mixtures (Scheme 86); tentative assignments of the products are shown in Table 29.

a) 1) $\left.-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t., 18 h
b) r.t., 18 h
c) 1) $60^{\circ} \mathrm{C}, 2$) reflux, 18 h

Scheme 86. Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{Me})(\boldsymbol{E} / \boldsymbol{Z}-\mathbf{4 2 - 3}-\mathrm{Me})$

Table 29. Selected spectroscopic data for reactions of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

	${ }^{31} \mathbf{P}$ NMR / ppm	Multiplicity	$\begin{aligned} & \hline J_{P-P} / \\ & \mathbf{H z} \end{aligned}$	$\begin{aligned} & J_{P-H} / \\ & \mathbf{H z} \end{aligned}$	Assignment
EZ-46-3-Me	-116	d	71.3	-	v) $E Z-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
41-3-Me	-109	t	-	218	x) $\mathrm{Ar}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)$
ZZ-46-3-Me	-104	$2^{\text {nd }}$ order	-	-	iv) $\mathrm{ZZ}-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EE-46-3-Me	-97.1	$2^{\text {nd }}$ order	-	-	iii) $E E-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-3-Me	-86.1	d	71.3	-	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
45-3-Me	-15.9	d	-	697	H-phosphonate
44-3-Me	53.4	s	-		xii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}$
40-3-Me	59.7	s	-	-	xiii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
E-42-3-Me	65.9	d	-	161	ii) $E-\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-42-3-Me	67.4	d	-	152	ii) $Z-\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-39-3-Me	131	s	-	-	i) $Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$
E-39-3-Me	133	s	-	-	i) $E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$

Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 3}-\mathrm{Me}$ are the most prominent species in the reaction mixtures irrespective of temperature or reaction duration. The ${ }^{31} \mathrm{P}$ NMR spectra exhibit doublet resonances at $65.8\left({ }^{l} J_{P-H} 161 \mathrm{~Hz}, \boldsymbol{E}-\mathbf{4 2 - 3}-\mathrm{Me}\right)$ and $67.4 \mathrm{ppm}\left({ }^{l} J_{P-H} 152 \mathrm{~Hz}, \boldsymbol{Z}-\mathbf{4 2 - 3}-\mathrm{Me}\right)$, while corresponding (by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectra) doublet signals are observed at $4.75\left({ }^{1} J_{H-P} 152\right.$ $\mathrm{Hz})$ and $5.24 \mathrm{ppm}\left({ }^{1} J_{H-P} 161 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectra, attributed to the PH protons. Unlike $\boldsymbol{E} / Z-42-2-M e$, phosphaalkene \boldsymbol{E}-42-3-Me exhibits a higher-field chemical shift than \mathbf{Z}-42-3-Me. Trace amounts (0.72%) of phosphaalkenes $\boldsymbol{E} / \mathbf{Z}$-39-3-Me (55:45) are also apparent during the low temperature reaction, although not the ambient or high temperature variations.

Acyl phosphine 44-3-Me is also produced from the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, regardless of temperature, and is initially present as a prominent species that diminishes significantly after 18 h (ca. 33.4% initially, ca. 9.46% after 18 h). In contrast, acyl phosphine $\mathbf{4 0 - 3}-\mathrm{Me}$ is initially apparent in trace levels that increase after 18 h (ca. 3.05% initially, ca. 8.07% after 18 h). Low levels of acyl phosphine 41-3-Me are apparent in the high temperature reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, but not the $-78{ }^{\circ} \mathrm{C}$ variation. The H-phosphonate 45-3-Me constitutes a significant proportion (8.91%) of the ambient temperature reaction mixture after 18 h , but is not detected in the initial aliquot or during any of the alternative reaction variations. Trace levels of diphosphacyclobutanes 46-3-Me result from the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $-78^{\circ} \mathrm{C}$ and $66^{\circ} \mathrm{C}$, but not from the ambient temperature reaction.

Isolation attempts

A crude sample from the ambient temperature reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ was washed with pentane; removal of solvent under reduced pressure affords a spectroscopically pure sample of acyl phosphine 44-3-Me, identified by a singlet resonance at 53.4 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits resonances for the methyl group at 1.90 ppm and the aromatic protons at $6.92-7.90 \mathrm{ppm}$; signal integration confirms the existence of four aromatic protons and three methyl protons. Doublet resonances at $206\left({ }^{1} J_{C-P}\right.$ $32.6 \mathrm{~Hz})$ and $141 \mathrm{ppm}\left({ }^{2} J_{C-P} 34.4 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum are assigned to the $\mathrm{C}(\mathrm{O}) \mathrm{P}$ and ipso-carbon centres respectively, and a singlet resonance at 20.9 ppm for the methyl carbon atom. In vacuo drying of the pentane filtrate affords a yellow oil that is identified as a complex mixture of products, including phosphaalkenes $\boldsymbol{E} / \mathbf{Z}$-42-3-Me (55:45), acyl phosphine oxide 40-3-Me and diphosphacyclobutanes 46-3-Me ($E E-$-, ZZ- and $E Z$-isomers).

Quantitative studies

In order to further examine the wide array of products generated from the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, the reaction was performed at reflux with PPh_{3} added to the NMR samples as an internal standard (Table 30, Figure 30). Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 3}-\mathrm{Me}$ are the major species in each aliquot, with quantities rising steadily for the first 400 min , but falling after 1440 min , as previously noted for the quantitative study of the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(2-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ (section 3.2.5). The quantities of diphosphacyclobutanes $\boldsymbol{Z Z}$-46-3-Me and $\boldsymbol{E} \boldsymbol{E}$-46-3-Me remain extremely low throughout, while $\boldsymbol{E Z}-46-3-\mathrm{Me}$ is not detected until 320 min , after which it remains present at a static level. Although acyl phosphine 41-3-Me is initially present as a very minor product, the quantity increases after 1440 min ; similarly, the quantities of acyl phosphine 44-3-Me and acyl phosphine oxide 40-3-Me increase steadily for 400 min , after which time the amount of 44-3-Me falls significantly, while that of 40-3-Me continues to rise.

Figure 30. The reaction of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $66{ }^{\circ} \mathrm{C}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}(3-\mathrm{Me})\right)$

Table 30. Quantity of species present in aliquots isolated from reflux reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

$\begin{aligned} & \text { Time } \\ & / \mathrm{min} \end{aligned}$	$\begin{aligned} & \text { EZ-46-3-Me } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \hline \text { ZZ-46-3-Me } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \text { EE-46-3-Me } \\ & \text { / mol } \end{aligned}$	41-3-Me /mol	44-3-Me / mol	$\begin{aligned} & \hline \text { 40-3-Me } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { E-42-3-Me } \\ & / \text { mol } \end{aligned}$	$\begin{aligned} & Z-42-3-\mathrm{Me} \\ & / \mathrm{mol} \end{aligned}$
80	0.00	1.49×10^{-4}	2.97×10^{-4}	7.43×10^{-4}	4.46×10^{-3}	2.08×10^{-3}	1.47×10^{-2}	1.69×10^{-2}
160	0.00	4.23×10^{-4}	5.64×10^{-4}	8.46×10^{-4}	2.82×10^{-3}	2.68×10^{-3}	1.85×10^{-2}	2.12×10^{-2}
240	0.00	5.03×10^{-4}	1.01×10^{-3}	1.51×10^{-3}	4.36×10^{-3}	3.69×10^{-3}	2.05×10^{-2}	2.42×10^{-2}
320	1.04×10^{-3}	6.48×10^{-4}	1.82×10^{-3}	2.20×10^{-3}	3.37×10^{-3}	4.93×10^{-3}	2.81×10^{-2}	3.29×10^{-2}
400	1.34×10^{-3}	1.17×10^{-3}	2.18×10^{-3}	2.68×10^{-3}	4.19×10^{-3}	4.19×10^{-3}	2.92×10^{-2}	3.42×10^{-2}
1440	1.16×10^{-3}	2.75×10^{-3}	8.69×10^{-4}	7.24×10^{-3}	2.03×10^{-3}	5.51×10^{-3}	1.09×10^{-2}	1.21×10^{-2}

3.4.4 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$

In contrast to $\boldsymbol{E} / \boldsymbol{Z} \mathbf{Z 3 9 - 3 - M e}$ and $\boldsymbol{E} / \mathbf{Z - 3 9 - 2 - M e}$, complex product mixtures were isolated regardless of reaction conditions; the most predominant species were H-phosphonates, while phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3 - C N}$ were present in low levels (Scheme 87, Table 31).

a) 1) $\left.-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t., 18 h
b) r.t., 18 h

Scheme 87. Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{CN})(\mathbf{3 9 - 3 - C N})$

Table 31. Selected spectroscopic data for reactions of $\operatorname{Ar}(1-\mathrm{COCl})$ and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$

	${ }^{31} \mathbf{P}$ NMR / ppm	Multiplicity	$\begin{aligned} & J_{P-P} \\ & / \mathbf{H z} \end{aligned}$	$\begin{aligned} & J_{P-H} \\ & / \mathbf{H z} \end{aligned}$	Assignment
EZ-52-3-CN	-123	d	193	-	viii) $E Z-[1,3]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
EZ-46-3-CN	-116	d	71.9	-	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
ZZ-46-3-CN	-104	$2^{\text {nd }}$ order	-	-	iv) $Z Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EE-46-3-CN	-97.3	$2^{\text {nd }}$ order	-	-	iii) $E E-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-3-CN	-84.9	ddd	71.9	186, 13.7	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
52-3-CN	-81.5	d	193	-	viii) $E Z-[1,3]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
51-3-CN	-75.7	s	-	-	vii) $[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
48-3-CN	-30.4	d	15.3	-	H-phosphonate
48-3-CN	-14.7	dd	15.3	737	H-phosphonate
47-3-CN	-13.9	d	-	218	xi) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{2} \mathrm{PH}$
43-3-CN	-13.5	d	-	692	H-phosphonate
49-3-CN	-13.2	d	-	705	H-phosphonate
50-3-CN	-2.7	dt	-	701, 8.6	H-phosphonate
44-3-CN	54.6	s	-	-	xii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}$
40-3-CN	65.6	s	-	-	xiii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
E-42-3-CN	73.4	d	-	160	ii) $E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-42-3-CN	74.0	d	-	153	ii) $Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-39-3-CN	136	s	-	-	i) $Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$
E-39-3-CN	138	S	-	-	i) $E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$

The predominant species present in the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, irrespective of temperature, are H -phosphonates 43-3-CN and 49-3-CN. Additional $\mathrm{H}-$ phosphonate species 48-3-CN and 50-3-CN are also present, although in less significant quantities. In contrast, phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathbf{C N}(44: 56)$ are detected as a relatively minor proportion of the low temperature reaction mixtures (11.4% after 18 h), and are not apparent in the ambient temperature variation. The resonances are shifted somewhat down-field compared to $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 3 - M e}\left(\delta_{\mathrm{P}} 131,127\right)$ and $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}\left(\delta_{\mathrm{P}} 133,131\right)$ due to the increased electronwithdrawing ability of the CN group compared with electron-donating Me substituent. Trace levels of phosphaalkenes $\boldsymbol{E} / Z-\mathbf{4 2 - 3}-\mathbf{C N}$ (55:45) are also observed, and exhibit resonances in the ${ }^{31} \mathrm{P}$ NMR spectra that are shifted significantly down-field from $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{4 2}-\mathbf{3 - C N}\left(\delta_{\mathrm{P}} 65.8{ }_{\left({ }^{l} J_{P-H} 161\right.}\right.$ Hz), $67.4\left({ }^{1} J_{P-H} 152 \mathrm{~Hz}\right)$).

The reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at $-78{ }^{\circ} \mathrm{C}$ affords a significant quantity of acyl phosphine $\mathbf{4 7 - 3 - C N}(8.79 \%)$ in the initial aliquot, although the compound diminishes to undetectable levels after 18 h , and is not apparent in the ambient temperature reaction. In contrast, acyl phosphine 44-3-CN (8.98%) and acyl phosphine oxide 40-3-CN (9.32%) constitute a significant quantity of the ambient temperature reaction mixture, but are not present in the $-78^{\circ} \mathrm{C}$ variation. Significant proportions of diphosphacyclobutanes $\boldsymbol{E Z}$-52-3-CN $(6.46$ $\%)$ and 51-3-CN (14.5%) result from the $-78{ }^{\circ} \mathrm{C}$ reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$; levels of both compounds diminish to undetectable amounts after 18 h . In contrast, low levels of diphosphacyclobutanes 46-3-CN (3.59 \% combined) are observed during the comparable ambient temperature reaction, and as for $\boldsymbol{E Z - 5 2 - 3 - C N}$ and $\mathbf{5 1 - 3 - C N}$, are not detected after 18 h . Four H -phosphonates are also produced during the reactions.

3.4.5 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

Complex product mixtures that defied separation were afforded irrespective of temperature, in which phosphaalkenes $\boldsymbol{E} / Z-\mathbf{4 2 - 3 - C N}$ were identified in relatively minor proportions (Scheme 88, Table 32).

a) 1) $-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$, 2) r.t., 18 h
b) r.t., 18 h

Scheme 88. Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{CN})(\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 3}-\mathrm{CN})$

Table 32. Selected spectroscopic data for reactions of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

	$\begin{aligned} & { }^{31} \mathrm{P} \text { NMR } \\ & \text { / ppm } \end{aligned}$		$\begin{aligned} & \hline J_{P \cdot P} \\ & / \mathrm{Hz} \end{aligned}$	$\begin{aligned} & \hline J_{P-H} \\ & / \mathbf{H z} \end{aligned}$	Assignment
EZ-46-3-CN	-116	ddd	70.7	175, 10.7	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
41-3-CN	-110	t	-	217	x) $\operatorname{Ar}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)$
ZZ-46-3-CN	-103	$2^{\text {nd }}$ order	-	-	iv) $\mathrm{ZZ}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EE-46-3-CN	-97.3	$2{ }^{\text {nd }}$ order	-	-	iii) $E E-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-3-CN	-84.9	ddd	70.7	186, 13.7	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
49-3-CN	-13.3	d	-	701	H-phosphonate
53-3-CN	-10.9	d	-	745	H-phosphonate
44-3-CN	54.7	s	-	-	xii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}$
40-3-CN	65.7	s	-	-	xiii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
E-42-3-CN	73.4	d	-	160	ii) $E-\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-42-3-CN	74.1	d	-	154	ii) $\mathrm{Z}-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$

The predominant product, regardless of temperature, is primary acyl phosphine 41-3-CN, which comprises ca. 39.9% of the product mixture in the initial samples and ca. 25.6% after 18 h . Identified by a ${ }^{31} \mathrm{P}$ NMR triplet resonance at $-110 \mathrm{ppm}\left({ }^{1} J_{P-H} 220 \mathrm{~Hz}\right)$, the corresponding PH_{2} protons are observed as a doublet signal at $3.67 \mathrm{ppm}\left({ }^{1} J_{H-P} 220 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectra (confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy). High levels of acyl phosphine 44-3-CN and acyl phosphine oxide $\mathbf{4 0 - 3 - C N}$ are also detected irrespective of temperature, while significant proportions of phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 3}-\mathbf{C N}$ (ca. 54:46), that remain constant over time (ca. 11.6%), are observed during the low temperature reaction, but are not present in the ambient temperature variation. The product mixtures comprise a significant proportion of H phosphonates 49-3-CN and 53-3-CN, while diphosphacyclobutanes ZZ-46-3-CN, EE-46-3-CN and $\boldsymbol{E Z}$-46-3-CN are present in relatively minor quantities.

Isolation attempts

Washing the crude mixture (method \mathbf{b}) affords an orange solid that is insoluble in pentane and is identified as a mixture of acyl phosphines $\mathbf{4 1 - 3 - C N}$ and $\mathbf{4 4 - 3 - C N}$ and the acyl phosphine oxide 40-3-CN by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Reduced pressure solvent removal from the pentane filtrate affords a yellow solid that is identified as a mixture of acyl phosphine 41-3-CN and the reagent, $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$; the latter is identified by ${ }^{1} \mathrm{H}$ NMR signals at $6.39,6.81,7.47$ and 7.69.

3.5 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with silylphosphines

The reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded a complex mixture of products that included phosphaalkenes of the types i-ii, diphosphacyclobutanes of the types iii - viii, acyl phosphines and phosphine oxides of the types ix - xiii, and H-phosphonates, that were tentatively assigned as shown in Figure 31, and as described in section 3.3.2.

Phosphaalkenes

Diphosphacyclobutanes

Acyl phosphines and acyl phosphine oxide

Figure 31. Tentative product assignments of reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{R}^{\prime} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$

3.5.1 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{3}$

In contrast to the attempted syntheses of phosphaalkenes $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{3 9 - 2 - M e}$ and $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{3 9 - 3}-\mathrm{R}$, complex product mixtures were afforded from this reaction, regardless of conditions, wherein no predominant species could be identified (Scheme 89, Table 33).

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{COCl} & \begin{array}{l}
\text { a) } \left.1)-78^{\circ} \mathrm{C}, 30 \mathrm{~min}, 2\right) \text { r.t., } 18 \mathrm{~h} \\
\text { b) r.t., } 18 \mathrm{~h}
\end{array}
\end{array}
$$

Scheme 89. Attempted syntheses of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(4-\mathrm{R})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9}-\mathbf{4}-\mathbf{R})$

Table 33. Selected spectroscopic data for reactions of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$

	$\begin{aligned} & { }^{31} \text { P NMR } \\ & \text { / ppm } \end{aligned}$	Multiplicity	$\begin{aligned} & \hline J_{P \cdot P} \\ & / \mathbf{H z} \end{aligned}$	$\begin{gathered} \hline J_{P-H} \\ / \mathbf{H z} \end{gathered}$	Assignment
EZ-52-4-R	-124	d	190	-	viii) $E Z-[1,3]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
EZ'-46-4-R	-120	d	90.5	-	vi) $E Z \mathrm{Z}^{\prime}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-4-R	-115	ddd	71.0	172, 10.6	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
ZZ-46-4-R	-106	$2^{\text {nd }}$ order	-	-	iv) $\mathrm{ZZ}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
54-4-R	-98.6	d	-	180	ix) $\operatorname{Ar}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}(\mathrm{H}) \mathrm{SiMe}_{3}\right)$
EE-46-4-R	-97.6	$2^{\text {nd }}$ order	-	-	iii) $E E-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-4-R	-84.2	ddd	71.0	184, 11.2	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ'-46-4-R	-83.1	d	90.5	-	vi) $E Z{ }^{\prime}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-52-4-R	-82.4	d	190	-	viii) $E Z-[1,3]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
51-4-R	-77.7	s	-	-	vii) $[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PSiMe}_{3}\right)\right\}_{2}$
48-4-R	-30.2	d	14.9	-	H-phosphonate
48-4-R	-14.9	dd	14.9	731	H-phosphonate
53-4-R	-11.2	d	-	734	H-phosphonate
47-4-R	-10.5	d	-	214	xi) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{2} \mathrm{PH}$
44-4-R	56.4	s	-	-	xii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}$
40-4-R	68.3	s	-	-	xiii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
E-42-4-R	78.4	d	-	161	ii) $E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-42-4-R	81.1	d	-	156	ii) $Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-39-4-R	143	s	-	-	i) $Z-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$
E-39-4-R	147	s	-	-	i) $E-\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)$

Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 4}-\mathrm{R}(72: 28)$ are generated from the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, but not for the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})(\mathrm{R}=\mathrm{CN}, \mathrm{COCl})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, irrespective of temperature. The predominance of $\boldsymbol{E} \mathbf{- 3 9 - 4}-\mathbf{C O}_{2} \mathbf{M e}$ is consistent with the case of $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}$, for which the E-isomer is also favoured; in contrast, the Z-isomer is always the preferred form of $\boldsymbol{E} / \boldsymbol{Z}$-39-3-R. The relative proportion of phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 4}-$
$\mathrm{CO}_{2} \mathbf{M e}$ is high in the initial samples but diminishes with time. Low levels (4.65%) of phosphaalkenes $\boldsymbol{E} / \boldsymbol{Z}-42-4-\mathrm{R}$ (41:59) are detected during the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at $-78{ }^{\circ} \mathrm{C}$ after 18 h , but not for any other reaction variation. The prevalence of Z-42-4-CN is noted again, as for phosphaalkenes $\boldsymbol{E} / \mathrm{Z}-\mathbf{4 2 - 3}-\mathrm{R}$ (44:56 for $\mathrm{R}=\mathrm{Me}, 46: 54$ for $\mathrm{R}=$ CN).

Significant levels (ca. 14.3% combined) of all of the [1,2]-diphosphacyclobutanes (46-4-R) are apparent during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})(\mathrm{R}=\mathrm{CN}, \mathrm{COCl})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ after 18 h , but not in the initial aliquots, and not when $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$. High levels of diphosphacyclobutane 51-4-R that diminish with time (from ca. 12.4% to ca. 6.97% after 18 h) are detected universally except for when $\mathrm{R}=\mathrm{CN}$. Compound $\boldsymbol{E Z}$-52-4-R constitutes ca. $\mathbf{2 . 7 1} \%$ of the product mixture that results from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, but for no other substrates; levels diminish only marginally after 18 h .

Only trace levels of acyl phosphine 44-4-R (0.32%) and acyl phosphine oxide 40-4-R (0.40%) are detected during the reactions. Significant levels of acyl phosphine 47-4-R are apparent from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ at both $-78{ }^{\circ} \mathrm{C}$ and ambient temperature, constituting ca. 7.45% of the mixture in the initial aliquots and ca. 5.64% after 18 h. Low levels of acyl phosphine $\mathbf{5 4 - 4}-\mathrm{R}$ are produced from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\mathrm{CN})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ irrespective of temperature, but 54-4-R is not detected during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})\left(\mathrm{R}=\mathrm{COCl}, \mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$. Two H -phosphonates are also generated in significant quantities during all reaction variations.

3.5.2 Reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

As noted in pursuit of phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 4}-\mathbf{R}$, complex product mixtures were observed during all of the reactions irrespective of temperature, in which no predominant species was detected (Scheme 90, Table 34).

$$
\mathrm{R}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{COCl}
$$

a) 1$\left.)-78^{\circ} \mathrm{C}, 30 \mathrm{~min}, 2\right)$ r.t., 18 h
b) r.t., 18 h
c) 1) $60^{\circ} \mathrm{C}$, 2) reflux, 18 h

Scheme 90. Attempted syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(4-\mathrm{R})$

Table 34. Selected spectroscopic data for reactions of $\operatorname{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

	$\begin{aligned} & { }^{31} \mathbf{P} \text { NMR } \\ & \text { / ppm } \end{aligned}$	Multiplicity	$\begin{aligned} & J_{P-P} \\ & / \mathbf{H z} \end{aligned}$	$\begin{aligned} & J_{P-H} \\ & / \mathrm{Hz} \end{aligned}$	Assignment
$E Z '-46-4-\mathrm{R}$	-119	dd	89.9	165	vi) $E Z^{\prime}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-4-R	-115	ddd	71.1	173, 10.7	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
41-4-R	-108	t	-	219	x) $\mathrm{Ar}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)$
ZZ-46-4-R	-104	$2^{\text {nd }}$ order	-	-	iv) $Z Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)(4-\mathrm{R})\right\}_{2}$
54-4-R	-98.2	d	-	179	ix) $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}(\mathrm{H}) \mathrm{SiMe}_{3}\right)$
EE-46-4-R	-96.7	$2^{\text {nd }}$ order	-	-	iii) $E E-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ-46-4-R	-84.4	ddd	71.1	184, 12.1	v) $E Z-[1,2]-\left\{\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
EZ'-46-4-R	-82.3	ddd	89.9	170, 8.9	vi) $E Z^{\prime}-[1,2]-\left\{\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{PH}\right)\right\}_{2}$
48-4-R	-30.4	d	14.7	-	H-phosphonate
48-4-R	-14.9	dd	14.7	735	H-phosphonate
49-4-R	-13.3	d	-	701	H-phosphonate
47-4-R	-12.9	d	-	219	xi) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{2} \mathrm{PH}$
53-4-R	-10.9	d	-	742	H-phosphonate
55-4-R	-10.8	d	-	737	H-phosphonate
56-4-R	-10.6	d	-	739	H-phosphonate
44-4-R	56.8	S	-	-	xii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}$
40-4-R	70.5	s	-	-	xiii) $\{\operatorname{Ar}(1-\mathrm{CO})\}_{3} \mathrm{P}=\mathrm{O}$
E-42-4-R	78.8	d	-	159	ii) $E-\mathrm{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$
Z-42-4-R	81.6	d	-	154	ii) $Z-\operatorname{Ar}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)$

The ${ }^{31} \mathrm{P}$ NMR spectra of the samples isolated from the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ exhibit doublets at ca. $78.8\left({ }^{l} J_{P-H} \mathrm{ca} 159 \mathrm{~Hz}.\right)$ and ca. $81.6 \mathrm{ppm}\left({ }^{l} J_{P-H} \mathrm{ca} .154 \mathrm{~Hz}\right)$, assigned to phosphaalkenes $\boldsymbol{E} / Z-42-4-R$. Corresponding ${ }^{1}$ H NMR doublet signals at ca. 5.08 (${ }^{1} J_{P-H} \mathrm{ca} .159 \mathrm{~Hz}$) and ca. $4.77 \mathrm{ppm}\left({ }^{1} J_{P-H} \mathrm{ca} .154 \mathrm{~Hz}\right)$ are assigned to the PH protons, confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy. The isomeric distribution remains almost uniform at ca. 45:55 (E:Z) regardless of temperature or R group. While $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2}-\mathbf{4}$-R are detected as major species in each reaction (ca. 10.0% in the initial aliquots), in all cases the relative proportions of $\boldsymbol{E} / \boldsymbol{Z}-42-4-\mathrm{R}$ diminish with time; in several examples, including when $\mathrm{R}=\mathrm{CN}, \mathrm{COCl}$, phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 4}-\mathbf{R}$ are not apparent after 18 h . In contrast with the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})(\mathrm{R}=2-\mathrm{Me}, 3-\mathrm{Me})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, phosphaalkenes $\boldsymbol{E} / Z-39-4-\mathrm{R}$ are not detected in any of the reactions.

As for the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$, all of the [1,2]diphosphacyclobutanes (46-4-R) are apparent during the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$. In most of the reactions diphosphacyclobutanes $\boldsymbol{E E}$-46-4-R and $\boldsymbol{Z Z}$-46-4-R are the
predominant species in the product mixtures, levels of which increase after 18 h . The preference for the $E E$ - isomer is consistent with general trends for 46-3-R. Diphosphacyclobutanes $\boldsymbol{E Z}$-46-4-R and $\boldsymbol{E Z} \boldsymbol{Z}$ - 46-4-R are apparent in relatively low levels in most of the samples isolated; general trends throughout the reactions show that the relative proportion of $\boldsymbol{E Z} \mathbf{- 4 6 - 4} \mathbf{- R}$ increases after 18 h , while that of $\boldsymbol{E} \boldsymbol{Z}^{\prime}$ - $\mathbf{- 4}$-4-R diminishes.

With the exception of acyl phosphine 47-4-R, which is only generated in low levels from the ambient temperature reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$, each acyl phosphine and the acyl phosphine oxide is apparent in every reaction, irrespective of temperature, reaction duration or R group. High levels of five distinct H -phosphonates are also detected during the reactivity studies of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$.

Quantitative study

As in previous examples, the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ was probed at reflux with the addition of PPh_{3} as an internal standard (Figure 32, Table 35). Phosphaalkenes $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 4}-\mathrm{CO}_{2} \mathrm{Me}$ are present in relatively low levels which diminish over time. Diphosphacyclobutanes $\mathbf{4 6}-\mathbf{4}-\mathrm{CO}_{2} \mathrm{Me}$ are the most prominent species, present in increasing quantities within each subsequent aliquot until 1440 min , at which time the amount of $\boldsymbol{E E}$-46-4$\mathrm{CO}_{2} \mathrm{Me}$ falls significantly, the quantity of $\mathbf{Z Z}-\mathbf{4 6}-\mathbf{4}-\mathrm{CO}_{2} \mathrm{Me}$ increases, and levels of $\boldsymbol{E Z - 4 6 - 4}$ $\mathrm{CO}_{2} \mathrm{Me}$ remain relatively unchanged. In contrast, diphosphacyclobutane $\boldsymbol{E Z} \boldsymbol{\prime}-\mathbf{4 6}-\mathbf{4 -} \mathrm{CO}_{\mathbf{2}} \mathrm{Me}$ is detected in trace levels that diminish with time. Similar to trends observed in the nonquantitative reactions, the amount of H -phosphonate 49-4- $\mathrm{CO}_{2} \mathrm{Me}$ increases steadily with time. The quantities of acyl phosphine oxide 40-4- $\mathrm{CO}_{2} \mathrm{Me}$ and acyl phosphine 44-4- $\mathrm{CO}_{2} \mathrm{Me}$ remain extremely low for the entire reaction duration, while levels of acyl phosphine 41-4- $\mathrm{CO}_{2} \mathbf{M e}$ increase steadily. In contrast, the initial quantity of acyl phosphine $\mathbf{5 4 - 4}-\mathrm{CO}_{\mathbf{2}} \mathrm{Me}$ is substantial, but diminishes to undetectable levels after 160 min .

Figure 32. The reaction of $\mathrm{Ar}(1-\mathrm{COCl})$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at $66{ }^{\circ} \mathrm{C}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right)$

Table 35. Quantity of species present in aliquots isolated from reflux reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

$\begin{aligned} & \text { Time } \\ & / \mathrm{min} \end{aligned}$	$\begin{aligned} & \hline E Z^{\prime}-46-\mathrm{R} \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \hline E Z-46-\mathrm{R} \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { 41-R } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \hline Z Z-46-\mathrm{R} \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { 54-R } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & E E-46-\mathrm{R} \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { 44-R } \\ & \text { / mol } \end{aligned}$	$\begin{aligned} & \text { 40-R } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { 49-R } \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & E-42-\mathrm{R} \\ & / \mathrm{mol} \end{aligned}$	$\begin{aligned} & \text { Z-42-R } \\ & \text { / mol } \end{aligned}$
80	9.87×10^{-4}	5.43×10^{-3}	2.54×10^{-3}	4.44×10^{-3}	1.13×10^{-3}	7.23×10^{-3}	4.09×10^{-3}	2.82×10^{-4}	1.41×10^{-3}	1.69×10^{-4}	1.98×10^{-3}
160	4.54×10^{-4}	4.41×10^{-3}	1.94×10^{-3}	3.82×10^{-3}	3.89×10^{-4}	5.57×10^{-3}	2.59×10^{-3}	1.30×10^{-4}	1.56×10^{-3}	9.07×10^{-4}	1.17×10^{-3}
240	3.28×10^{-4}	5.00×10^{-3}	2.13×10^{-3}	5.41×10^{-3}	0.00	7.62×10^{-3}	3.61×10^{-3}	3.28×10^{-4}	1.64×10^{-3}	8.20×10^{-4}	9.84×10^{-4}
320	2.89×10^{-4}	5.23×10^{-3}	2.61×10^{-3}	5.94×10^{-3}	0.00	7.89×10^{-3}	3.04×10^{-3}	2.90×10^{-4}	1.59×10^{-3}	7.24×10^{-4}	1.01×10^{-3}
400	3.28×10^{-4}	5.66×10^{-3}	2.62×10^{-3}	6.56×10^{-3}	0.00	8.03×10^{-3}	3.12×10^{-3}	3.28×10^{-4}	1.97×10^{-3}	8.20×10^{-4}	9.84×10^{-4}
1440	0.00	5.68×10^{-3}	3.36×10^{-3}	1.31×10^{-2}	0.00	5.04×10^{-3}	1.92×10^{-3}	3.20×10^{-4}	2.72×10^{-3}	3.20×10^{-4}	3.20×10^{-3}

3.6 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(\mathbf{2 , 6 - C O C l})_{2}$ with silylphosphines

The syntheses of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(6-\mathrm{COCl})(\boldsymbol{E} / Z-57-E)$ and $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2-$ $\left.\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PH}\right)(6-\mathrm{COCl})(\boldsymbol{E} / \mathbf{Z - 5 8}-\mathbf{E})$ were attempted via addition of the respective $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-$ $\mathrm{COCl})_{2}(\mathrm{E}=\mathrm{CH}, \mathrm{N})$ to $\mathrm{RP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{H}\right)($ Scheme 91$)$. The reactions were performed under two sets of conditions; for method a, additions took place at $-78^{\circ} \mathrm{C}$ and the resulting solutions were stirred for 15 min before being allowed to warm to ambient temperature over 45 min, whereupon an aliquot was isolated, while for method \mathbf{b} the additions were performed at ambient temperature. In both cases the solutions were dried in vacuo after 18 h .

a) 1) $\left.-78^{\circ} \mathrm{C}, 15 \mathrm{~min}, 2\right)$ r.t., 18 h
b) r.t., 18 h

Scheme 91. Attempted syntheses of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PR}\right)(6-\mathrm{COCl})(\boldsymbol{E} / \boldsymbol{Z}-\mathbf{5 7}-\mathbf{E}, \boldsymbol{E} / \boldsymbol{Z}-\mathbf{5 8}-\mathbf{E})$

3.6.1 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$

The reaction of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}($ method a) affords after 1 h a largely intractable mixture with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances at $-136,-55.6,-24.7,107$ and 136 ppm . After 18 h the mixture is markedly simpler, with three major species present in the ${ }^{31} \mathrm{P}$ NMR spectrum, including a singlet at -24.7 ppm which remains unidentified, and two doublet resonances at $-13.2\left({ }^{1} J_{P-H} \mathrm{ca} .694 \mathrm{~Hz}\right)$ and $-10.7 \mathrm{ppm}\left({ }^{1} J_{P-H} 735 \mathrm{~Hz}\right)$, attributed to $\mathrm{H}-$ phosphonates by comparison with $\mathbf{4 3 - 3}-\mathrm{R}$ and $\mathbf{5 3 - 3}-\mathrm{R}$. In contrast, the reaction of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-$ $\mathrm{COCl})_{2}$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}($ method $\mathbf{a})$ produces a single phosphorus-containing product after 1 h with a singlet signal at -24.8 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum shows triplet and doublet resonances for the aromatic protons at $6.97\left({ }^{3} J_{H-H} 7.9 \mathrm{~Hz}\right)$ and $7.95 \mathrm{ppm}\left({ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.9 \mathrm{~Hz}\right)$ which are shifted significantly down-field compared to $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}\left(\delta_{\mathrm{H}} 6.49\right.$ $\left.\left({ }^{3} J_{H-H} 7.6 \mathrm{~Hz}\right), 7.24\left({ }^{3} J_{H-H} 8.0 \mathrm{~Hz}\right)\right)$. After 18 h a more complex mixture of products is apparent; the ${ }^{31} \mathrm{P}$ NMR spectrum shows a singlet at -24.8 ppm , in addition to a doublet resonance at -13.5 (${ }^{1} J_{P-H} 688 \mathrm{~Hz}$), attributed to a H-phosphonate compound.

The method b reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}(\mathrm{E}=\mathrm{CH}, \mathrm{N})$ both produce a single phosphoruscontaining product with a singlet resonance at ca. -24.8 ppm in the ${ }^{31} \mathrm{P}$ NMR spectra, identical to that produced during method \mathbf{a}. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR spectra enable the full assignment of the aromatic protons for each variation in E , and show that in both examples the product features aromatic resonances that are shifted down-field compared to the reagents $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show signals for all of the aromatic resonances and for one COCl centre at ca. 166 ppm . However, none of the signals exhibit carbonphosphorus coupling and no additional signals that might be attributed to a second carbonyl group are observed in either the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ or ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR spectra. As such, the products remain unidentified.

3.6.2 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(\mathbf{2 , 6 - C O C l})_{2}$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

The reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ afford complex product mixtures that are almost identical irrespective of temperature or reaction duration. The ${ }^{31} \mathrm{P}$ NMR spectra show in excess of twenty resonances, including five triplet signals between -134 and $-109 \mathrm{ppm}\left({ }^{1} J_{P-H}\right.$ ca. 214 Hz), two of which correlate with ${ }^{1} \mathrm{H}$ NMR doublet signals at $3.79\left({ }^{1} J_{H-P} 219 \mathrm{~Hz}\right)$ and $3.89 \mathrm{ppm}\left({ }^{1} J_{H-P} 219 \mathrm{~Hz}\right.$); while the signals are consistent with known primary acyl phosphines like ${ }^{\mathrm{t}} \mathrm{BuC}(\mathrm{O}) \mathrm{PH}_{2}\left(\delta_{\mathrm{P}}-122\left({ }^{1} J_{P-H} 214 \mathrm{~Hz}\right), \delta_{\mathrm{H}} 3.77 \mathrm{ppm}\left({ }^{1} J_{P-H} 214 \mathrm{~Hz}\right)\right),{ }^{318}$ identification of the compounds is not possible in lieu of additional data.

A yellow solid is extracted from the crude mixture with pentane and identified as a far simpler mixture that contains just three phosphorus-containing compounds; singlet resonances at 54.3 and 64.9 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum for acyl phosphine $\mathbf{5 9}$ and acyl phosphine oxide $\mathbf{6 0}$ (Figure 33) are assigned by comparison to acyl phosphine 44-3-Me ($\delta_{\mathrm{P}} 53.4$) and acyl phosphine oxide 40-3-Me ($\delta_{\mathrm{P}} 59.7$). A ${ }^{31} \mathrm{P}$ NMR triplet signal at $-110 \mathrm{ppm}\left({ }^{1} J_{P-H} 219 \mathrm{~Hz}\right)$ with a corresponding doublet resonance at $3.75 \mathrm{ppm}\left({ }^{1} J_{H-P} 219 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, confirmed by ${ }^{1} \mathrm{H}^{-31} \mathrm{P}$ HMBC NMR experiments, is assigned to primary acyl phosphine $\mathbf{6 1}$ (Figure 33) by comparison to 41-3-Me ($\delta_{\mathrm{P}}-109\left({ }^{1} J_{P-H} 218 \mathrm{~Hz}\right)$). Significant quantities of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(2,6-\mathrm{COCl})_{2}$ are also present, identified by ${ }^{1} \mathrm{H}$ NMR resonances at $6.56\left({ }^{3} J_{H-H} 7.7 \mathrm{~Hz}\right)$, $7.63\left({ }^{3} J_{H-H} 7.9 \mathrm{~Hz}\right)$ and 8.45 ppm .

59

60

61 $\mathrm{Ar}=\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(6-\mathrm{COCl})$

Figure 33. Tentative product assignments from reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(2,6-\mathrm{COCl})_{2}$ and $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$

As for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{CH}(2,6-\mathrm{COCl})_{2}$, the reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ afford the same mixture of products regardless of temperature or reaction duration. A mixture of white and red solids that do not exhibit any resonances in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are produced, in which unreacted $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}$, is identified as the predominant species by signals at 6.58 $\left({ }^{3} J_{H-H} 8.2 \mathrm{~Hz}\right)$ and $7.30 \mathrm{ppm}\left({ }^{3} J_{H-H} 7.8 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectra.

3.7 Summary

The successful syntheses of phosphaalkenes $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9}-$ 2-Me) and $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})(\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me})$ have been reported, both of which were isolated as isomeric mixtures (57:43 and 37:63 respectively) that defied separation. Interestingly, the reaction that produced $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2 - M e}$ reached completion within 48 h , while $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ required only 1 h for total conversion; the ortho-methyl group of $\boldsymbol{E} / \mathbf{Z} \mathbf{- 3 9 - 2 - M e}$ may have induced a slower reaction due to steric hindrance at the reaction site. For $\boldsymbol{E} / \mathbf{Z}$-39-3-R the E-isomer is the favoured form, while for $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2}-\mathrm{Me}$ the reverse is true. While Regitz asserted that $E-\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ is favoured when R is a primary or secondary substituent, and Z - $\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}$ is preferred when R is a tertiary group, ${ }^{105}$ Kostitsyn noted exceptions to this rule $\left(\mathrm{RC}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\left(\mathrm{R}=2,2\right.\right.$-dichloro-l-methylcyclopropyl)). ${ }^{106}$ Given that a comprehensive collection of phosphaalkenes bound to substituted aromatic rings has not been previously synthesised, and that relative isomeric preferences are disputed within established systems, it has not been possible to speculate upon the reasons for the isomeric preferences of $\boldsymbol{E} / \mathbf{Z}$-39-R. Multiple attempts to convert $\boldsymbol{E} / \mathbf{Z}$-39-2-Me and $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3}-\mathrm{Me}$ to $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(\mathrm{Me})$ were unsuccessful; this was attributed to the mixture of isomers present in each sample, an effect that has been previously noted. ${ }^{108}$

In contrast with $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 2 - M e}$ and $\boldsymbol{E} / \mathbf{Z}$-39-3-Me, the attempted syntheses of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(\mathrm{R})\left(\mathrm{R}=3-\mathrm{CN}, 4-\mathrm{CO}_{2} \mathrm{Me}\right)$ met with limited success; the target phosphaalkenes were detected as part of complex product mixtures that could not be isolated. Additionally, the reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})(\mathrm{R}=4-\mathrm{CN}, 4-\mathrm{COCl})$ and $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}(2,6-\mathrm{COCl})_{2}(\mathrm{E}$ $=\mathrm{CH}, \mathrm{N})$ with $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ provided no evidence of even trace levels of the target phosphaalkenes, demonstrating the sensitivity of the Becker synthesis toward arene substitution.

The reactions of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded highly complex product mixtures in all cases. While the identities of many of the products were tentatively assigned, alterations to the reaction conditions to favour one product and attempts to isolate of any of the species proved unsuccessful. Phosphaalkenes $\boldsymbol{E} / Z-\mathbf{4 2}-\mathbf{R}$ were identified as the predominant species in most of the product mixtures by comparison with known species, ${ }^{312}$ and the unambiguous isomeric assignments of $\boldsymbol{E}-\mathbf{4 2 - R}$ and $\boldsymbol{Z}-\mathbf{4 2}$-R were achieved. With the exception of $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2 - 2}-$ Me, the Z-isomers were predominant in all examples. Literature precedent for the head-to-head and head-to-tail dimerisation of phosphaalkenes enabled the tentative assignments of [1,2]- and [1,3]-diphosphacyclobutanes 46-R, 51-R and 52-R, ${ }^{325-327}$ and the spectroscopic data are comparable with known species. ${ }^{320,115}$ Although the isomeric assignments of diphosphacyclobutanes $\boldsymbol{E E}$-46-R and $\boldsymbol{Z Z}$-46-R remain highly speculative, the presence of such
a large isomeric variety of diphosphacyclobutane products is not unexpected given the lack of isomeric purity in the phosphaalkene precursors $\boldsymbol{E} / \boldsymbol{Z}-\mathbf{3 9}-\mathbf{R}$ and $\boldsymbol{E} / \mathbf{Z}-\mathbf{4 2}$-R.

The use of PPh_{3} as an internal standard for several reactions enabled a more accurate assessment of the quantities of each species present in the reaction mixtures, although complete accuracy cannot be assured as the technique relies upon perfect homogeneity of the reaction mixture. Further, several reactions generated compounds (such as acyl phosphine oxide 40-R and acyl phosphine 44-R) that were present in the initial aliquot but diminished to undetectable levels after 18 h ; it is likely that such compounds became indistinguishable from baseline noise in the ${ }^{31}$ P NMR spectra.

4. The development of novel phosphomide derivatives

4.1 Introduction

Acyl phosphines are a well-documented class of compounds, ${ }^{315,40,10,328}$ whose use has been limited to sporadic examples of fundamental inorganic chemistry, ${ }^{329,328}$ and catalysis. ${ }^{11,10}$ Clarke postulated that this may be due to "concerns regarding the stability of the P-C bond, which has been shown to undergo degradation reactions in the presence of water or oxygen". ${ }^{11}$ Many acyl phosphines have been shown to oxidise to mixtures of phosphine oxides and phosphines upon exposure to air, ${ }^{330}$ however, recent studies have shown that this does not necessarily extend to all acyl phosphines. ${ }^{11}$

Those acyl phosphines that contain aromatic groups (benzene, pyridine, naphthalene) may alternatively be described as "phosphomides" on the basis of the resonance structure postulated by Kostyanovsky (Figure 34). ${ }^{39}$ The delocalisation of the phosphorus lone pair is comparable to that of the nitrogen lone pair in amides, resulting in reduction of the double bond character of the carbonyl, which can be measured by the IR stretching frequency. ${ }^{11}$ It can be reasonably postulated that phosphomides may be defined as species that exhibit carbonyl stretches of similar frequencies to amides i.e. $v_{(\mathrm{C}=0)} 1630-1650 \mathrm{~cm}^{-1} .{ }^{1311}$ Given the stretching frequencies of aliphatic acyl phosphines ($v_{(\mathrm{C}=0)} \mathrm{ca} .1670 \mathrm{~cm}^{-1}$), ${ }^{322,333}$ such species are not considered to possess phosphomide character.

Figure 34. Resonance forms of acyl phosphines ${ }^{39}$

Many acyl phosphines/phosphomides have been reported in literature that might reasonably be divided into the following categories i) ary1, ${ }^{10,334,335} \mathbf{i i}$) aliphatic, ${ }^{329,330,315,11} \mathbf{i i i}$) ortho-substituted aryl, ${ }^{315,40,10,336,11,337}$ iv) meta-substituted aryl, ${ }^{338}$ v) para- substituted aryl, ${ }^{315,40,11,334}$ vi) polysubstituted aryl, ${ }^{315,40}$ vii) pyridine, ${ }^{10,315}$ viii) naphthalene, ${ }^{10} \mathbf{i x}$) di-phosphomides, ${ }^{40,328,337}$ (Figure 35). A representative selection (although by no means exhaustive) of acyl phosphines and phosphomides is displayed in Table 36, which serves to highlight the abundance of ortho- and para-substituted aryl phosphomides in literature, and the significant lack of meta-substituted aryl phosphomides and di-phosphomides.

i

vi

iii

iv

v

ix
$\mathrm{R}, \mathrm{R}^{\prime}=$ alkyl, aryl

Figure 35. Categories of acyl phosphines and phosphomides

Herein the development of novel phosphomides (meta-, para- and di-substituted) is reported, allowing for the first thorough comparison of the structure and reactivities of all aryl phosphomides of the type $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PR}^{\prime}{ }_{2}\right)(\mathrm{R})$.

Table 36. Acyl phosphines and phosphomides in literature

Class	Category	Formula	Source	Class	Category	Formula	Source
i	aryl	$\mathrm{PhC}(\mathrm{O}) \mathrm{PAd}_{2}$	10	v	para-substituted aryl	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Br})$	40
		$\mathrm{PhC}(\mathrm{O}) \mathrm{PPh}_{2}$	334			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{NO}_{2}\right)$	40
		$\mathrm{F}_{5} \mathrm{C}_{6} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}$	335			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})$	334
ii	aliphatic	$\mathrm{MeC}(\mathrm{O}) \mathrm{PPh}_{2}$	329			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$	40
		$\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{PPh}_{2}$	330			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{COCl})$	11
		${ }^{\mathrm{n}} \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}$	315			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(4-\mathrm{OMe})$	40
		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}(\mathrm{O}) \mathrm{PPh}_{2}$	315	vi	poly-substituted aryl	$\mathrm{C}_{6} \mathrm{H}_{3}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3,4-\mathrm{Cl})_{2}$	315
		$\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{6} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}$	315			$\mathrm{C}_{6} \mathrm{H}_{3}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3,5-\mathrm{Cl})_{2}$	315
		$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}$	11			$\mathrm{C}_{6} \mathrm{H}_{3}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(2,4-\mathrm{NO}_{2}\right)_{2}$	40
iii	ortho-substituted aryl	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(2-\mathrm{CH}_{2} \mathrm{Cl}\right)$	315			$\mathrm{C}_{6} \mathrm{H}_{3}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3,5-\mathrm{NO}_{2}\right)_{2}$	40
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(2-\mathrm{NO}_{2}\right)$	40	vii	pyridine	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\left(2-\mathrm{C}(\mathrm{O}) \mathrm{PAd}_{2}\right)$	10
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(2-\mathrm{Br})$	336			$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\left(3-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)$	315
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PAd}_{2}\right)(2-\mathrm{OMe})$	10	viii	naphthalene	$\mathrm{C}_{10} \mathrm{H}_{7}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)$	10
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PAd}_{2}\right)\left(2-\mathrm{CF}_{3}\right)$	10			$\mathrm{C}_{10} \mathrm{H}_{7}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PAd}_{2}\right)$	10
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(2-\mathrm{OMe})$	11			$\mathrm{C}_{10} \mathrm{H}_{7}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)$	10
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(2-\mathrm{SMe})$	339			$\mathrm{C}_{10} \mathrm{H}_{7}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$	10
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(2-\mathrm{OPh})$	337			$\mathrm{C}_{10} \mathrm{H}_{7}\left(2-\mathrm{C}(\mathrm{O}) \mathrm{PAd}_{2}\right)$	10
iv	meta-substituted aryl	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})$	338	ix	di-phosphomides	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1,4-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$	40
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PEt}_{2}\right)(3-\mathrm{Me})$	338			$\mathrm{C}_{6} \mathrm{H}_{4}\left(1,2-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$	328
v	para-substituted aryl	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Cl})$	315			$\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}$	328
		$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Me})$	40			$\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(2-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\right\}_{2}$	337

4.2. Syntheses and reactions of aryl phosphomides

4.2.1 Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(\mathbf{R})$

The reactions of the respective $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ with HPPh_{2} afforded $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ $(62-66)$ as bright yellow solids (yellow oil for $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$) in $>60 \%$ yield (Scheme 92). Significantly, the reactions proceed without the requirement of additional base or pregeneration of NaPPh_{2}, in contrast with previous reports. ${ }^{11,329}$ Compounds 62 - $\mathbf{6 4}$ were characterised by NMR spectroscopy and their purity confirmed by microanalysis, while $\mathbf{6 5}$ and 66, which have been previously reported (via alternate synthetic routes), ${ }^{40,334}$ were identified by comparison with literature data and by mass spectrometry.

Scheme 92. Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})(62$ - 66)

Compounds 62-66 exhibit similar spectroscopic data despite significant variation in the electronegativities and ring positions of the substituents (Table 37). Notwithstanding, the parasubstituted aryl phosphomides 65 and 66 exhibit more downfield shifts than 62 - 64 for all nuclei. The ${ }^{31} \mathrm{P}$ NMR spectra exhibit multiplet resonances at ca. $12.9 \mathrm{ppm}\left({ }^{3} J_{P-H} \mathrm{ca} .8 .1 \mathrm{~Hz}\right)$ for 62-64 and ca. $14.5 \mathrm{ppm}\left({ }^{3} J_{P-H} \mathrm{ca} .7 .9 \mathrm{~Hz}\right)$ for $\mathbf{6 5}$ and 66, with coupling to the ortho-CH protons of the phenyl rings confirmed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR spectra; these chemical shifts are consistent with comparable phosphomides in the literature $\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{OMe}) \delta_{\mathrm{P}}\right.$ 11.8). ${ }^{334}$ The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show doublet resonances at ca. $211 \mathrm{ppm}\left({ }^{1} J_{C-P} \mathrm{ca} .38 .1 \mathrm{~Hz}\right)$ that are assigned to the carbonyl centres, and exhibit characteristic one-bond coupling to phosphorus, comparable to the case of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Cl})\left(\delta_{\mathrm{P}} 213\left({ }^{1} J_{C-P} 38.6 \mathrm{~Hz}\right)\right) .{ }^{315}$ Substituent effects are evident in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of phosphomides $\mathbf{6 2 - 6 6}$, most notably for the strongly electron-withdrawing CN groups that results in a lower-field shift than the electron-donating substituent Me , reflective of previously reported trends. ${ }^{334,340}$ Meanwhile, the ipso-carbons of the phosphomide rings are located as doublet signals at ca. $140 \mathrm{ppm}\left({ }^{2} J_{C-P}\right.$ ca. 36.0 Hz); as before, the meta-substituted aryl phosphomides 62-64 exhibit significantly higher-field chemical shifts than the para-substituted analogues 65-66.

Table 37. Selected spectroscopic data for $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})(62-66)$

	R	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{gathered} { }^{1} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} i-\mathrm{C} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} J_{C-P} \\ / \mathbf{H z} \end{gathered}$
62	3-Me	12.4	212	36.9	140	35.7
63	$3-\mathrm{CH}_{2} \mathrm{Cl}$	12.9	211	37.9	140	35.4
64	3-CN	13.5	211	39.6	140	35.9
65	$4-\mathrm{CO}_{2} \mathrm{Me}$	14.4	212	38.3	143	34.6
66	4-CN	14.5	212	38.7	142	38.4

Phosphomides 62-66 were additionally characterised by IR spectroscopy and compared with the literature (Table 38). Literature shows that aliphatic acyl phosphines typically display carbonyl stretches at $v_{(\mathrm{C}=\mathrm{O})} \mathrm{ca} .1672 \mathrm{~cm}^{-1}$, which suggests that they do not possess any measureable phosphomide character (i.e. phosphorus pair delocalisation). This is in contrast to previously reported aryl phosphomides, which exhibit absorbances at significantly lower frequencies $v_{(C=O)} 1630$ to $1650 \mathrm{~cm}^{-1}$, consistent with both aromatic and aliphatic amides. The IR spectra of compounds 62 - $\mathbf{6 6}$ display absorbances at $v_{(\mathrm{C}=\mathrm{O})} \mathrm{ca} .1645 \mathrm{~cm}^{-1}$, showing a significant decrease in frequency from their precursors $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(\mathrm{R})$ at $v_{(\mathrm{C}=0)}$ ca. 1685, $1744 \mathrm{~cm}^{-1}$. Baber established that the carbonyl stretching frequency could be used to determine the relative delocalisation of the phosphorus lone pair; ${ }^{11}$ as such it is possible to conclude that while compounds $62-66$ all possess significant phosphomide behaviour, the extent is greatest for 62 due to its very low frequency absorbance at $v_{(C=O)} 1634 \mathrm{~cm}^{-1}$.

Table 38. Selected IR data for phosphomides, acyl phosphines, amides and acyl chlorides

Compound	$\mathrm{v}_{(\mathrm{C}=0)} / \mathrm{cm}^{-1}$	Source
$\mathrm{C}_{6} \mathrm{H}_{3}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3,5-\mathrm{Cl})_{2}$	1631	315
$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{Cl})$	1652	315
$\mathrm{C}_{10} \mathrm{H}_{7}\left(\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)$	1632	10
$\mathrm{MeC}(\mathrm{O}) \mathrm{PPh}_{2}$	1670	332
${ }^{\text {t }} \mathrm{BuC}(\mathrm{O}) \mathrm{PPh}_{2}$	1673	333
$\mathrm{MeC}(\mathrm{O}) \mathrm{NMe}_{2}$	1661	341
$\mathrm{PhC}(\mathrm{O}) \mathrm{NPh}_{2}$	1651	331
$\mathrm{PhC}(\mathrm{O}) \mathrm{NEt}_{2}$	1627	331
$\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})$	1687, 1771	This work
$\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$	1699, 1721	This work
$\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN})$	1699, 1739	This work
(62) $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})$	1634	This work
(63) $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)$	1645	This work
(65) $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$	1649	This work
(66) $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})$	1650	This work

4.2.2 Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{R})$

Notably few examples of $\mathrm{RC}(\mathrm{O}) \mathrm{PCy}_{2}\left(\mathrm{R}=\right.$ alkyl, aryl) have been reported previously. ${ }^{329,11}$ However, one very recent publication detailed the use of $\left[\mathrm{Ru}\left\{\mathrm{C}_{3} \mathrm{H}_{2}(2-\mathrm{Me})\right\}_{2}(1,5-\mathrm{COD})\right]$ / $\mathrm{C}_{6} \mathrm{H}_{10}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)$ for catalysing the hydrogenation of sodium bicarbonate to sodium formate, with unprecedented TON when compared to traditional systems. ${ }^{10}$ With applications in catalysis a possibility, the synthetic methodology derived for the production of $\mathbf{6 2 - 6 6}$ was probed for the synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{R})$. The reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$ with HPCy_{2} generated a yellow oil identified as a mixture of two major products in an 80:20 ratio; the predominant product exhibited a broad ${ }^{31} \mathrm{P}$ NMR resonance at 16.8 ppm with half-height-width $\left(\mathrm{w}_{1 / 2}\right)$ of ca. 21.6 Hz and was attributed to $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{Me})(67)$ (this was later confirmed by comparison with a pure sample of compound 67). The minor product exhibited a broad resonance at $127 \mathrm{ppm}\left(\mathrm{W}_{1 / 2} \mathrm{ca} .23 .3 \mathrm{~Hz}\right.$), although identification was not possible from the data collected. Isolation of $\mathbf{6 7}$ proved impractical (by crystallisation, washing, or distillation), thus HPCy_{2} was lithiated prior to reaction with $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{R})$, affording compounds 67 and 68 as analytically pure yellow oils in high yields (>91\%) (Scheme 93).

Scheme 93. Syntheses of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{R})(67-68)$

The ${ }^{31} \mathrm{P}$ NMR spectra of compounds 67 and 68 show broad resonances at ca. $17.3 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca}\right.$. 24.3 Hz) (Table 39) which are shifted significantly downfield from the triplets observed for compounds 62-64 ($\delta_{\mathrm{P}} \mathrm{ca} .12 .9\left({ }^{3} J_{P-H} \mathrm{ca} .8 .1 \mathrm{~Hz}\right)$); this is attributed to decreased shielding of the phosphorus centre via the reduced electron-donating properties of the cyclohexyl substituent, consistent with previously reported trends $\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PR}_{2}\right)(2-\mathrm{OMe}) ; \mathrm{R}=\mathrm{Ph}, \delta_{\mathrm{P}} 25.0 ; \mathrm{R}=\mathrm{Cy}\right.$, $\left.\delta_{\mathrm{P}} 32.1\right) .{ }^{11,10}$ The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show doublet resonances at ca. $216 \mathrm{ppm}\left({ }^{1} J_{C-P} 44.4 \mathrm{~Hz}\right)$ for the carbonyl carbons, that are shifted significantly downfield and exhibit increased carbonphosphorus coupling constants when compared to compounds 62-64. The ipso-carbon atoms are assigned to doublet resonances at $143 \mathrm{ppm}\left({ }^{2} J_{C-P} \mathrm{ca} .32 .9 \mathrm{~Hz}\right.$), again featuring a small downfield shift compared to $\mathbf{6 2 - 6 4}$, but with a reduction in the magnitude of coupling to phosphorus. The ${ }^{1} \mathrm{H}$ NMR spectra were largely unremarkable save to confirm a 2:1 ratio of cyclohexyl to aromatic protons by integration.

Table 39. Selected spectroscopic data for $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{R})(67-68)$

\mathbf{R}	${ }^{31} \mathbf{P}$	${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P}$	${ }^{1} \boldsymbol{J}_{C-P}$	${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1} \mathbf{H}\}} \boldsymbol{i}\right.$ - \mathbf{C}	${ }^{2} \boldsymbol{J}_{C-P}$	
		$/ \mathbf{p p m}$	$/ \mathbf{p p m}$	$/ \mathbf{H z}$	$/ \mathbf{p p m}$	$/ \mathbf{H z}$
$\mathbf{6 7}$	3-Me	16.7	216	44.1	143	32.6
$\mathbf{6 8}$	$3-\mathrm{CH}_{2} \mathrm{Cl}$	17.8	216	44.7	143	33.2

4.2.3 Coordination chemistry of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C (O)} \mathbf{P P h}_{2}\right)(\mathrm{R})$

The coordination chemistry of phosphomides has been sparse throughout the literature, with reports limited to early- or mid- transition metals, including Fe, ${ }^{342} \mathrm{Mo},{ }^{343} \mathrm{Mn},{ }^{315}$ and $\mathrm{Ir},{ }^{34,345}$ and just one example each for $\mathrm{Ru},{ }^{10}$ and $\mathrm{Rh} .{ }^{11}$ In view of this a thorough study of the reactivity profiles of compounds 62-66 towards late transition metal complexes featuring rhodium, palladium and platinum centres was pursued.

Coordination reactions with rhodium complexes

To date, a single report describes phosphomide complexes of rhodium, specifically $\left[\mathrm{Rh}\left(\mathrm{Cp}^{*}\right)\left(\mathrm{RC}(\mathrm{O}) \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}\right]$ and trans- $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{RC}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2} \mathrm{Cl}\right]\left(\mathrm{R}=\mathrm{Me},\left(\mathrm{CF}_{2}\right)_{6} \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{4}(2-\right.$ $\mathrm{OMe})) .{ }^{11}$ Baber probed the use of $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}\right] / \mathrm{RC}(\mathrm{O}) \mathrm{PPh}_{2}$ for catalysing the hydroformylation of 1-hexene, and although isolation of the active catalyst was not reported, reasonable activity was detected ($60-85 \%$ conversion in 3 h , linear: branched product ratios of 2.0-2.6:1). However, these did not compete with commercially used systems such as $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}\right] / \mathrm{PPh}_{3}$, which exhibited 95% conversion under the same conditions with a higher turnover frequency and an improved linear to branched ratio of 2.9:1.

Given the lack of isolated phosphomide complexes of rhodium, the syntheses of $[\mathrm{Rh}(1,5-$ $\left.\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\} \mathrm{Cl}\right](69-72)$ were sought by addition of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ to $[\mathrm{Rh}(1,5-\mathrm{COD}) \mathrm{Cl}]_{2}$; yellow or orange solids were afforded in high yields (>75\%) (Scheme 94).

$\mathrm{R}=3-\mathrm{Me}(69), 3-\mathrm{CH}_{2} \mathrm{Cl}(70), 4-\mathrm{CO}_{2} \mathrm{Me}(71), 4-\mathrm{CN}(72)$

Scheme 94. Syntheses of $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\} \mathrm{Cl}\right](69-72)$

The ${ }^{31} \mathrm{P}$ NMR spectra of compounds $\mathbf{6 9 - 7 2}$ show broad doublet resonances at ca. 36.8 ppm (${ }^{1} J_{P-R h} \mathrm{ca} .146 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca} .29 .2 \mathrm{~Hz}$) (Table 40), with coupling constants consistent with one-bond phosphorus-rhodium separations. ${ }^{346}$ The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data exhibit doublet (or unresolved multiplet) signals at ca. $202 \mathrm{ppm}\left({ }^{l} J_{C-P} \mathrm{ca} .17 .2 \mathrm{~Hz}\right)$, attributed to the carbonyl centres; the significant upfield coordination shifts from the free phosphomides 62-66 ($\delta_{\mathrm{C}} \mathrm{ca}$. $212\left({ }^{1} J_{C-p} \mathrm{ca}\right.$. $38.1 \mathrm{~Hz})$) are consistent with those observed for related manganese complexes. ${ }^{315}$ There is little change in the resonances attributed to the ipso-carbon atoms of the phosphomide rings, which are located at ca. $140 \mathrm{ppm}\left({ }^{2} J_{C-P} \mathrm{ca} .42 .7 \mathrm{~Hz}\right)$, and the ${ }^{1} \mathrm{H}$ NMR data confirm by integration the presence of two phenyl rings, one phosphomide ring, and one 1,5-COD ligand. The IR spectra display increases in carbonyl stretching frequencies of ca. $+15 \mathrm{~cm}^{-1}$ across all complexes, consistent with loss of delocalisation of the phosphorus lone pair.

Table 40. Selected spectroscopic data for $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\} \mathrm{Cl}\right](\mathbf{6 9 - 7 2})$

	R	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{1} J_{P-R h} \\ & / \mathbf{H z} \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{T} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} i-\mathrm{C} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & \mathbf{v}_{(\mathrm{C}=0)} \\ & / \mathrm{cm}^{-1} \end{aligned}$
69	3-Me	36.1	146	202	16.5	139	42.7	1657
70	$3-\mathrm{CH}_{2} \mathrm{Cl}$	36.4	146	202	-	139	42.9	1657
71	$4-\mathrm{CO}_{2} \mathrm{Me}$	36.9	147	203	17.9	142	42.5	1663
72	4-CN	37.8	147	203	-	142	42.5	1660

Coordination reactions with palladium complexes

The syntheses of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](73-76)$ were achieved by addition of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ to $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ (Scheme 95) and the products isolated as yellow solids in high yields (>90\%).

Scheme 95. Syntheses of trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](73$ - 76)

The trans-geometry of complexes 73-76 was assigned on the basis of triplet resonances in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the carbonyl and ipso-carbon signals. The carbonyl and ipso-carbon resonances all exhibit upfield coordination shifts from the free phosphomides 62-66 ($\delta_{\mathrm{C}} \mathrm{ca}$. $199\left({ }^{1} J_{C-P}\right.$ ca. 11.9 Hz$), \delta_{\mathrm{C}}$ ca. $137\left({ }^{2} J_{C-P} \mathrm{Ca} .22 .5 \mathrm{~Hz}\right)$). The ${ }^{31} \mathrm{P}$ NMR spectra show broad signals at ca. $25.9 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .24 .0 \mathrm{~Hz}\right.$), the chemical shifts of which are consistent with similar complexes trans- $\left[\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}\right],{ }^{347,348}$ and which are observed by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR studies to correlate to each of the phenyl protons. The carbonyl stretching frequencies ($v_{(\mathrm{C}=\mathrm{O})} \mathrm{ca} .1656$ cm^{-1}) are increased by ca. $+12 \mathrm{~cm}^{-1}$ compared to the free phosphomides $\mathbf{6 2 - 6 6}$ (Table 41).

Table 41. Selected spectroscopic data for trans- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right]$ (73-76)

	R	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{1} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} i-\mathrm{C} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} J_{C-P} \\ / \mathrm{Hz} \end{gathered}$	$\begin{aligned} & v_{(\mathrm{C}=0)} \\ & / \mathrm{cm}^{-1} \end{aligned}$
73	3-Me	25.8	199	-	131	22.8	1634
74	$3-\mathrm{CH}_{2} \mathrm{Cl}$	25.9	199	11.4	137	22.7	1657
75	$4-\mathrm{CO}_{2} \mathrm{Me}$	26.1	199	11.9	140	21.9	1669
76	4-CN	25.9	199	12.4	140	22.8	1666

Coordination reactions with platinum complexes

In contrast to the palladium complexes, syntheses of the analogous platinum species were not straight-forward. The reaction of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})(62)$ with $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]$ afforded $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$ as a mixture of cis- and trans- isomers (55:45 ratio), cis-77 and trans-77, in 89 \% yield (Scheme 96).

Scheme 96. Syntheses of cis- and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$ (cis/trans-77)

Virtual coupling in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis- and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\right.\right.$ $\left.\mathrm{Me})\}_{2}\right]$ (cis/trans-77) enables the unambiguous assignment of most key resonances, although signal overlap precluded full assignment. Doublet and triplet signals at $195\left({ }^{l} J_{C-P} 40.6 \mathrm{~Hz}\right)$ and $199 \mathrm{ppm}\left({ }^{1} J_{C-P} 15.0\right)$ are attributed to the carbonyl carbons of cis-77 and trans-77 respectively; the magnitude of the carbon-phosphorus coupling in trans-77 is reduced due to virtual coupling effects (Table 42). ${ }^{56}$ A triplet resonance at $137 \mathrm{ppm}\left({ }^{1} J_{C-P} 22.6 \mathrm{~Hz}\right)$ is assigned to the ipsocarbon of trans-77; however, the ipso-carbon of cis-77 could not be located through ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ or ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR studies. The ${ }^{31} \mathrm{P}$ NMR spectrum shows two broad resonances at $14.8\left({ }^{1} J_{P-P t}\right.$ $3497 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca} .33 .3 \mathrm{~Hz}$) and $22.8 \mathrm{ppm}\left({ }^{1} J_{P-P t} 2544 \mathrm{~Hz}, \mathrm{w}_{1 / 2} \mathrm{ca} .23 .6 \mathrm{~Hz}\right)$ for cis/trans-77 in a
ratio of 55:45, with chemical shifts and phosphorus-platinum coupling constants consistent with general trends for cis- and trans- platinum bisphosphine dihalide complexes. ${ }^{268}$ The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows triplet resonances at -4351 and -3962 ppm for the cis- and transisomers respectively, while the IR spectrum exhibits a broad absorbance at $v_{(C=0)} 1661 \mathrm{~cm}^{-1}$, attributed to overlapping absorbances arising from each isomer.

In contrast to cis/trans-77, cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](\mathbf{7 8}-\mathbf{7 9})$ were isolated as analytically and isomerically pure yellow solid in good yields (>73 \%) (Scheme 97).

Scheme 97. Syntheses of cis-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](78$ - 79)

Complexes cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](78-79)$ display comparable NMR characteristics to cis-77; however, due to the poor solubility of $\mathbf{7 8}$ in common solvents (CDCl_{3}, DCM, THF) only limited ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data can be directly observed. The ${ }^{31} \mathrm{P}$ NMR spectra show broad signals at $15.3\left({ }^{1} J_{P-P t} 3503 \mathrm{~Hz}, \mathrm{~W}_{1 / 2} \mathrm{ca} .23 .5 \mathrm{~Hz}\right)$ and $16.5 \mathrm{ppm}\left({ }^{1} J_{P-P t} 3493 \mathrm{~Hz}, \mathrm{~W}_{1 / 2} \mathrm{ca}\right.$. 23.8 Hz) for 78 and 79 respectively (Table 42), with platinum satellites typical of ciscoordinated complexes. A doublet resonance at $195 \mathrm{ppm}\left({ }^{1} J_{C-P} 44.8 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 79 is assigned to the carbonyl carbon, at a significantly higher-field shift ($\Delta \delta_{\mathrm{C}}-$ 16.7) than free phosphomide 66, while the ipso-carbon resonance at $140 \mathrm{ppm}\left({ }^{1} J_{C-P} 49.9 \mathrm{~Hz}\right)$ demonstrates negligible change from 66. The IR spectra of 78-79 display absorbances at $v_{(C=O)}$ ca. $1665 \mathrm{~cm}^{-1}$, a significant increase from free 63 and 66 , consistent with a reduction in electron density at the carbonyl group attributed to the loss of delocalisation of the phosphorus lone pair.

Table 42. Selected spectroscopic data for $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](77$-79)

	R	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{gathered} { }^{T} \boldsymbol{J}_{P-P t} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{T} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} i-\mathrm{C} \\ & \text { / ppm } \end{aligned}$	$\begin{gathered} { }^{2} J_{C-P} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{195} \mathbf{P t}\left\{{ }^{1} \mathrm{H}\right\} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{aligned} & \mathbf{v}_{(\mathrm{C}=0)} \\ & / \mathrm{cm}^{-1} \end{aligned}$
cis-77	3-Me	14.8	3497	195 (d)	40.6	-	-	-4351 (t)	1661
trans-77	3-Me	22.8	2544	199 (t)	15.0	137 (t)	22.6	-3962 (t)	1661
78	$3-\mathrm{CH}_{2} \mathrm{Cl}$	15.3	3503	-	-	-	-	-4354 (t)	1668
79	$4-\mathrm{CN}$	16.5	3493	195 (d)	44.8	140 (d)	49.9	-4374 (t)	1666

Interestingly, no reaction was observed upon the addition of PtCl_{2} or $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]$ to $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)(65)$, with only the unchanged $\mathbf{6 5}$ detected by NMR spectroscopy. However, reactions of $\mathbf{6 5}$ with $\left[\operatorname{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ afforded yellow solids $\mathbf{8 0}$ or $\mathbf{8 1}$ dependent upon the reagent stoichiometry (Scheme 98).

Scheme 98. Syntheses of complexes $\mathbf{8 0}$ and $\mathbf{8 1}$

Complex 80 shows a single broad ${ }^{31} \mathrm{P}$ NMR resonance at $26.1 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .24 .3 \mathrm{~Hz}\right.$) with no visible platinum satellites, while the ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a singlet signal at -3340 ppm, consistent with $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right] \cdot{ }^{349} \mathrm{H}$ NMR resonances attributed to the phosphomide ring and 1,5-COD ligand integrate as four and twelve protons respectively, consistent with one 1,5-COD ligand and one phosphomide ring; however, the 1,5-COD resonances at 2.26, 2.71 and $5.61 \mathrm{ppm}\left(J_{H-P t} 66.9 \mathrm{~Hz}\right)$ are consistent with $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$, and no other signals attributable to $1,5-\mathrm{COD}$ are observed. In contrast, for $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\} \mathrm{Cl}\right](69-72)$, the $1,5-\mathrm{COD}$ resonances are significantly altered in both chemical shift and number of signals from $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$. Each resonance in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is consistent with those noted for trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right]$ (trans-77), including virtual coupling for the carbonyl and ipso-carbon centres. The carbonyl centre is located at $199 \mathrm{ppm}\left({ }^{1} J_{C-P} 11.7\right)$, while the IR spectrum shows a carbonyl stretch at $v_{(\mathrm{C}=0)} 1671 \mathrm{~cm}^{-1}$, both of which indicate that the carbonyl group is not coordinated to a metal centre. Further, a second carbonyl absorbance at $v_{(\mathrm{C}=\mathrm{O})} 1720 \mathrm{~cm}^{-1}$ that is attributed to the $\mathrm{CO}_{2} \mathrm{Me}$ group is of comparable frequency with the precursor $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(\mathrm{v}_{(\mathrm{C}=\mathrm{O})} 1721 \mathrm{~cm}^{-1}\right)$ and the free phosphomide $\mathbf{6 5}\left(\mathrm{v}_{(\mathrm{C}=\mathrm{O})} 1721\right.$
cm^{-1}). FAB mass spectrometry afforded a molecular ion peak of $\mathrm{m} / \mathrm{z}=686$, consistent with $\left[\mathrm{PtCl}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\right]^{+}$, while microanalysis found $\mathrm{C}(48.07 \%), \mathrm{H}$ (3.96%), which is consistent with $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{Cl}_{2} \mathrm{Pt}$, or $\left[\mathrm{PtCl}_{2}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\right.\right.$ $\left.\left.\mathrm{CO}_{2} \mathrm{Me}\right)\right\}$]. Ultimately, the product identity could not be firmly elucidated.

In contrast to $\mathbf{8 0}$, complex 81 exhibits a broad ${ }^{31} \mathrm{P}$ NMR resonance at $16.1 \mathrm{ppm}\left({ }^{1} J_{P-P t} 3504 \mathrm{~Hz}\right.$, $\mathrm{W}_{1 / 2}$ ca. 30.9 Hz), consistent in both chemical shift and coupling constant with the ciscoordinated phosphomide complexes (cis-77, 78-79). However, the ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows only a singlet signal at -3340 ppm that is attributed to $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$; the possibility of the signal falling outside of this window is small, as such chemical shifts are usually limited to unusual five-coordinate platinum complexes. ${ }^{350}$ The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits similar resonances to 80, where the only 1,5-COD resonances can be assigned to $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$, and small quantities of free $\mathbf{6 5}$ are also evident. Intriguingly, the singlet signal attributed to the $\mathrm{CO}_{2} \mathrm{Me}$ group of $\mathbf{8 1}$ at 3.94 ppm exhibits platinum satellites ($J_{H-P t} 31.1 \mathrm{~Hz}$) that are not evident when an identical sample is dissolved in deuterated toluene. This suggests coordination to platinum through the $\mathrm{CO}_{2} \mathrm{Me}$ group when in a neutral solvent, but no coordination when dissolved in CDCl_{3}. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows doublet resonances attributed to the carbonyl and ipso-carbon centres at $195\left({ }^{1} J_{C-P} 42.9 \mathrm{~Hz}\right)$ and $140 \mathrm{ppm}\left({ }^{1} J_{C-P} 49.1 \mathrm{~Hz}\right)$ respectively (Table 43); the chemical shifts and coupling constants are consistent with ciscomplexes cis-77-79. Variable temperature (-60 to $80^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR spectroscopy shows no informative change. The IR spectrum is similar to $\mathbf{8 0}$, including the phosphomide carbonyl stretch at $v_{(\mathrm{C}=\mathrm{O})} 1671 \mathrm{~cm}^{-1}$ and the $\mathrm{CO}_{2} \mathrm{Me}$ stretch at $v_{(\mathrm{C}=\mathrm{O})} 1721 \mathrm{~cm}^{-1}$. Despite multiple attempts in a variety of solvent and temperature systems, crystals suitable for X-ray diffraction remain elusive, without which the identity of 81 cannot be ascertained.

Table 43. Selected spectroscopic data for free phosphomide $\mathbf{6 5}$ and complexes $\mathbf{8 0}$ and $\mathbf{8 1}$

	$\begin{aligned} & { }^{31} \mathbf{P} \\ & / \mathbf{p p m} \end{aligned}$	$\begin{gathered} { }^{1} J_{P-P t} \\ / \mathbf{H z} \end{gathered}$	$\begin{aligned} & { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} \\ & / \mathrm{ppm} \end{aligned}$	${ }^{1} J_{C-P}$ $/ \mathrm{Hz}$	$\begin{aligned} & { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} i-\mathrm{C} \\ & \text { / ppm } \end{aligned}$	${ }^{2} J_{C-P}$ $/ ~ H z$	$\begin{aligned} & { }^{195} \mathbf{P t}\left\{{ }^{1} \mathbf{H}\right\} \\ & \text { / ppm } \end{aligned}$	$\begin{aligned} & \left.v_{(\mathrm{C}=0}\right) \\ & / \mathrm{cm}^{-1} \end{aligned}$
65	14.4	-	212 (d)	38.3	143 (d)	34.6	-	1649
80	26.1	-	199 (t)	11.7	140 (t)	22.8	-3340 (s)	1671
81	16.1	3504	195 (d)	42.9	140 (d)	49.1	-3340 (s)	1671

4.2.4 Comparisons of the aryl phosphomides and their complexes

The coordination chemistry of phosphomides 62-66 proceeded, for the most part, as anticipated; the rhodium and palladium complexes were successfully synthesised from the relevant precursors. However, coordination to platinum yielded unexpected results that could not be fully explained. Bis-phosphine cis-platinum complexes are common indeed, ${ }^{351}$ as are mixtures of cis- and trans-isomers such as that encountered for cis/trans-77. ${ }^{352,353}$ The isolation of $\mathbf{8 0}$ and $\mathbf{8 1}$ was not anticipated, and their identity remains unknown.

The ${ }^{31}$ P NMR spectra of the phosphomide ligands and complexes display the expected characteristics, although coupling to the aromatic protons in complexes 69-79 was not observed due to line broadening, as evidenced by the half-height-widths reported. The free phosphomides have higher-field resonances at ca. 14.3 ppm than the complexes (Table 44), which are shifted lower-field in descending order $\mathrm{Rh}>\mathrm{Pd}>\mathrm{Pt}$. This trend is also reflected in the resonances assigned to the carbonyl centres in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. In contrast, the chemical shifts of the ipso-carbons are reduced only slightly in the metal complexes, although the magnitude of the carbon-phosphorus coupling is increased for the cis-coordinated complexes 69-72 and 79. The IR spectra of 62-66 and 69-79 are particularly intriguing; the carbonyl stretches of 62-66 are located at $v_{(\mathrm{C}=\mathrm{O})} \mathrm{ca} .1645 \mathrm{~cm}^{-1}$, typical of phosphomide compounds, while upon coordination to metals, the stretching frequency increases in descending order $\mathrm{Rh}\left(v_{(\mathrm{C}=0)} \mathrm{ca} .1659 \mathrm{~cm}^{-1}\right)>\mathrm{Pd}\left(v_{(\mathrm{C}=\mathrm{O})} \mathrm{ca} .1664 \mathrm{~cm}^{-1}\right.$, outlying data for 73 not included $)>\mathrm{Pt}$ ($v_{(\mathrm{C}=0)}$ ca. $1667 \mathrm{~cm}^{-1}$), consistent with the chemical shift trends in the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data described earlier.

Clearly, compounds 62-66 exhibit significant phosphorus lone pair delocalisation in view of their typical ($v_{(\mathrm{C}=\mathrm{O})} 1630-1650 \mathrm{~cm}^{-1}$) carbonyl stretching frequencies, and can be placed in order of increasing phosphomide character $\mathbf{6 6}<\mathbf{6 5}<\mathbf{6 4}<\mathbf{6 3}<\mathbf{6 2}$. Notably, meta-substituted phosphomide 62, which has the most electron-donating R group (Me) exhibits the most highly delocalised phosphorus lone pair, while para-substituted phosphomide 66, which possesses the most electron-withdrawing R group (CN), exhibits the least delocalised lone pair. As such, it is possible to suggest that both the ring position and electronic characteristics of the R substituent play key parts in the relative phosphomide behaviour of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$.

While amides and phosphomides exhibit carbonyl stretches of comparable frequencies, their reactivities towards metal centres are markedly different. Complexes 69-79 all feature coordination modes typical of standard phosphines i.e. via the phosphorus lone pair, with no evidence for disruption at the carbonyl group detected by IR spectroscopy. In contrast, examples of metal amides featuring nitrogen lone pair donation are extremely rare, ${ }^{354}$ with coordination from oxygen the usual mode. ${ }^{355,356}$ This behaviour has been attributed to the non-basic lone pair
of nitrogen, ${ }^{354}$ which is a direct result of its delocalisation into the π-system. Given that phosphomides 62-66 do not display metal coordination from oxygen, it may be suggested that the phosphorus lone pair is significantly more basic as a result of reduced overlap with the π system.

Table 44. Selected spectroscopic data for phosphomides (62-66) and complexes (69-81)

		${ }^{31} \mathrm{P} / \mathrm{ppm}$	${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P} / \mathrm{ppm}$	${ }^{1} J_{C-P} / \mathbf{H z}$	${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ i-C / ppm	${ }^{2} J_{C-P} / \mathbf{H z}$	$\mathbf{v}_{(\mathrm{C}=0)} / \mathrm{cm}^{-1}$
62	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})$	12.4	212 (d)	36.9	140 (d)	35.7	1634
63	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)$	12.9	211 (d)	37.9	140 (d)	35.4	1645
64	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{CN})$	13.5	211 (d)	39.6	140 (d)	35.9	-
65	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)$	14.4	212 (d)	38.3	143 (d)	34.6	1649
66	$\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})$	14.5	212 (d)	38.7	142 (d)	38.4	1650
69	[$\left.\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\} \mathrm{Cl}\right]$	36.1	202 (d)	16.5	139 (d)	42.7	1657
70	[$\left.\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\} \mathrm{Cl}\right]$	36.4	202 (m)	-	139 (d)	42.9	1657
71	[$\left.\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\} \mathrm{Cl}\right]$	36.9	203 (d)	17.9	142 (d)	42.5	1663
72	[$\left.\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\} \mathrm{Cl}\right]$	37.8	203 (m)	-	142 (d)	42.5	1660
73	$\text { trans- }\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$	25.8	199 (m)	-	131 (t)	22.8	1634
74	trans - $\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\}_{2}\right]$	25.9	199 (t)	11.4	137 (t)	22.7	1657
75	trans $-\left[\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}_{2}\right]$	26.1	199 (t)	11.9	140 (t)	21.9	1670
76	trans-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right]$	25.9	199 (t)	12.4	140 (t)	22.8	1666
cis-77	cis-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$	14.8	195 (d)	40.6	-	-	1661
trans-77	trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$	22.3	199 (t)	15.0	137 (t)	22.6	1661
78	$c i s-\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\}_{2}\right]$	15.3	-	-	-	-	1668
79	cis-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right]$	16.5	195 (d)	44.8	140 (d)	49.9	1666
80	Unknown	26.1	199 (t)	11.7	140 (t)	22.8	1671
81	Unknown	16.1	195 (d)	42.9	140 (d)	49.1	1671

4.3 Syntheses and reactions of di-phosphomides

Having developed a more efficient synthetic methodology for the production of phosphomides 62-66, the syntheses of di-phosphomides was considered. Previous examples of diphosphomides in the literature are sparse, with $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,4-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,2-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ being the most comparable; ${ }^{40,328}$ both were synthesised via addition of the relevant di-acyl chloride reagent to $\mathrm{Me}_{3} \mathrm{SiPPh}_{2}$. During the preparation of this thesis the synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ was reported in the literature, achieved by the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ with HPPh_{2} in the presence of $\mathrm{NEt}_{3} .{ }^{357}$

4.3.1 Syntheses of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(\mathbf{2 , 6 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)_{2}$

The addition of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left\{2,6-(\mathrm{COCl})_{2}\right\}$ to two equivalents of HPPh_{2} afforded the anticipated diphosphomides $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathbf{8 2} \mathbf{- 8 3})$ as yellow solids in ca. 80% yields (Scheme 99).

Scheme 99. Syntheses of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathbf{8 2} \mathbf{- 8 3})$

Despite the isolobal natures of CH and N in $\mathbf{8 2}$ and $\mathbf{8 3}$, significantly different spectroscopic characteristics were recorded for each that could be ascribed to the increased electronegativity of the nitrogen atom compared to carbon $(\mathrm{N}=3.04, \mathrm{C}=2.55) .{ }^{358,359}$ Like phosphomides 62-64, the di-phosphomides exhibit multiplet signals in the ${ }^{31}$ P NMR spectra at $12.9\left({ }^{3} J_{P-H} 7.9 \mathrm{~Hz}\right)$ for $\mathbf{8 2}$ and $16.6 \mathrm{ppm}\left({ }^{3} J_{P-H} 7.4 \mathrm{~Hz}\right)$ for $\mathbf{8 3}$ (Table 45). The splitting arises due to coupling to the ortho-CH protons of the phenyl rings, as determined by ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectra. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show the carbonyl carbons as doublet signals at ca. $212 \mathrm{ppm}\left({ }^{1} J_{C-P} \mathrm{ca}\right.$. $39.3 \mathrm{~Hz})$, reminiscent of phosphomides 62 - 66. The ipso-carbon atoms are located at $140\left({ }^{2} J_{C-P}\right.$ $35.7 \mathrm{~Hz})$ for $\mathbf{8 2}$ and $153 \mathrm{ppm}\left({ }^{2} J_{C-P} 31.4 \mathrm{~Hz}\right)$ for $\mathbf{8 3}$; while the former is consistent with $\mathbf{6 2}$ - 66, the latter exhibits a significant down-field shift due to close proximity to the more electronwithdrawing nitrogen centre, similar to comparable compounds $\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{Me}) \mathrm{PPh}_{2}\right)_{2}\right)$. ${ }^{360}$ The IR spectra show carbonyl stretching frequencies at $v_{(C=0)} 1642$ and $1650 \mathrm{~cm}^{-1}$ for $\mathbf{8 2}$ and $\mathbf{8 3}$
respectively, similar to 62-66 and $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,2-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}\left(v_{(\mathrm{C}=\mathrm{O})}\right.$ ca. 1640 and $1656 \mathrm{~cm}^{-1}$, respectively), consistent with significant delocalisation of the phosphorus lone pair.

Table 45. Selected spectroscopic data for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathbf{8 2} \mathbf{- 8 3})$

| | | ${ }^{31} \mathbf{P}$ | ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{C}(\mathbf{O}) \mathbf{P}$ | ${ }^{1} \boldsymbol{J}_{C-P}$ | $\left.{ }^{13} \mathbf{C} \mathbf{C}^{\mathbf{1}} \mathbf{H}\right\} \boldsymbol{i} \mathbf{- C}$ | ${ }^{2} \boldsymbol{J}_{C \cdot P}$ | $\mathbf{v}_{(\mathrm{C}=\mathbf{O})}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | / ppm | $/ \mathbf{p p m}$ | $/ \mathbf{H z}$ | $/ \mathbf{p p m}$ | $/ \mathbf{H z}$ | $/ \mathbf{c m}^{-1}$ |
| $\mathbf{8 2}$ | $\mathrm{C}_{6} \mathrm{H}_{4}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ | 12.9 | 211 | 38.1 | 140 | 35.7 | 1642 |
| $\mathbf{8 3}$ | $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ | 16.6 | 214 | 40.4 | 153 | 31.4 | 1650 |

4.3.2 Reactions of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(\mathbf{2 , 6 - C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$

The [2,6]-substitution pattern on the central aromatic ring of $\mathbf{8 2}$ and $\mathbf{8 3}$ allows for comparison with typical pincer ligands from literature. ${ }^{361,362}$ Such compounds have been reported to have many applications in catalysis, ${ }^{12}$ molecular switches, ${ }^{27}$ and as gas sensors, ${ }^{22}$ prompting a brief exploration into the coordination chemistry of $\mathbf{8 2}$ and $\mathbf{8 3}$. Initial attempts to react $\mathbf{8 2}$ with palladium or platinum complexes $\left(\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right],\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]\right)$ generated a mixture of products that could not be separated (by washing or recrystallisation) and as such was not further pursued. Similar results were obtained from the analogous reactions of $\mathbf{8 3}$ with palladium reagents $\left(\mathrm{PdCl}_{2},\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right],\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]\right)$.

The addition of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathbf{8 3})$ to $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]$ afforded $\left[\mathrm{PtCl}\left\{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\right.\right.$ $\left.\left.\left.\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}\right\}\right]^{+}[\mathrm{Cl}]^{-}(\mathbf{8 4})$ as a yellow solid in high yield (70\%) (Scheme 100).

Scheme 100. Synthesis of $\left[\operatorname{PtCl}\left\{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}\right\}\right]^{+}[\mathrm{Cl}]^{-}(\mathbf{8 4})$

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{8 4}$ shows a broad resonance at $33.1 \mathrm{ppm}\left({ }^{1} J_{P-P_{t}} 2814 \mathrm{~Hz}\right.$, $\mathrm{w}_{1 / 2}$ ca. 30.4 Hz) with platinum satellites of a magnitude consistent with a trans-geometry, ${ }^{77}$ while the ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a triplet resonance at -3795 ppm , consistent with two equivalent phosphorus centres bound to platinum. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows triplet resonances in accordance with a trans-coordinated complex at $202\left({ }^{1} J_{C-P} 16.9 \mathrm{~Hz}\right)$ and 148 ppm
(${ }^{2} J_{C-P} 28.4 \mathrm{~Hz}$), assigned to the carbonyl and ipso-carbon centres respectively. The high-field chemical shifts when compared to 83 ($\delta_{\mathrm{C}} 214,153$) are consistent with trends that emerged from characterisation of the phosphomide complexes 69 -79. A significant increase ($\left.v_{(\mathrm{C}=0}\right)+39.7$ cm^{-1}) in carbonyl stretching frequency was recorded for $\mathbf{8 4}$ compared to $\mathbf{8 3}$, consistent with the previous assertions that $\mathbf{8 3}$ exhibits extensive phosphorus lone pair delocalisation, which is then vastly reduced upon coordination to platinum.

4.4 Syntheses and reactions of diphosphametacyclophanes

4.4.1 Synthesis of $\left\{\mathbf{3}-\mathbf{C O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathbf{P M e}\right\}_{2}$

The development of phosphomides $\mathbf{6 2 - 6 8}$ was in part precipitated by the studies outlined in Chapter 3, in which acyl chlorides react with phosphines to afford unanticipated results. In order to further explore this reactivity, the addition of equimolar amounts of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ to $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ was performed, and was envisaged to provide access to the phosphaalkene $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PMe}\right)(3-\mathrm{COCl})(\mathrm{Scheme} 101)$, via $[1,3]$-silatropic rearrangement of the resulting acyl phosphine $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$ i.e. the Becker condensation. ${ }^{94}$

Scheme 101. Proposed synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PMe}\right)(3-\mathrm{COCl})$

The Becker synthesis is extremely well established in literature, and is in fact one of the primary routes towards phosphaalkenes. ${ }^{363,103,105}$ However, the reaction of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ and $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded an analytically pure yellow solid in 79% yield that was identified as the novel diphosphametacyclophane $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 5})$ (Scheme 102). As a result of the high symmetry within $\mathbf{8 5}$, initial identification of the product proved non-facile; the use of mass spectrometry $(m / z=356)$ in conjunction with the NMR data enabled the postulation of $\mathbf{8 5}$, which was later confirmed by an X-ray diffraction study.

Scheme 102. Synthesis of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ (85)

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a singlet resonance at 32.7 ppm that correlates (via ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR study) to a doublet signal in the ${ }^{1} \mathrm{H}$ NMR spectrum at $1.58 \mathrm{ppm}\left({ }^{2} J_{H-P} 3.1 \mathrm{~Hz}\right)$, assigned to the methyl group. This resonance integrates to six protons when compared to the remaining signals at $6.42,7.13$ and 7.14 ppm , attributed to the aromatic rings, which integrate to a total of eight protons. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a doublet signal at $206 \mathrm{ppm}\left({ }^{1} J_{C-P}\right.$ 46.0 Hz), consistent with retention of the carbonyl group, which is further supported by infrared absorbances at ${ }_{v(\mathrm{C}=0)} 1656,1639 \mathrm{~cm}^{-1}$, corresponding to both symmetric and asymmetric modes, comparable with phosphomides 62-66.

X-ray quality crystals were grown at $-20^{\circ} \mathrm{C}$ from THF (Figure 36); the molecular structure shows that, similar to known metacyclophanes, ${ }^{364} \mathbf{8 5}$ exists as a "butterfly" conformation with the methyl moieties adopting a mutually exo arrangement. The C1-O1 bond length is within the standard range for a typical ketone ($1.21 \AA$ for acetone) at $1.211(3) \AA{ }^{365}$ and is comparable with the cyclic diketophosphanyl anion $\left[\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{CO})_{2} \mathrm{P}\right]^{-}\left[\mathrm{K}-18\right.$-crown-6] ${ }^{+}(1.22(1) \AA) .{ }^{366} \mathrm{In}$ contrast, the C1-P1 bond length $(1.892(3) \AA)$ is significantly longer than in typical phosphines (1.847(3) \AA for $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}\right),{ }^{367}$ and phosphides $\left[\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{CO})_{2} \mathrm{P}\right]^{-}[\mathrm{K}-18 \text {-crown- } 6]^{+}(1.80(1) \AA)$. The O1-C1-C2 and O1-C1-P1 angles (121.8(3) and $\left.120.6(2)^{\circ}\right)$ demonstrate that $\mathbf{8 5}$ is planar about the carbonyl, with no perturbations arising from ring strain, which is consistent with cyclic diketophosphanyls $\left(\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{CO})_{2} \mathrm{PPh}\right){ }^{368}$ and $\left[\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{CO})_{2} \mathrm{P}\right]^{-}[\mathrm{K}-18 \text {-crown-6] }]^{+}$. The geometry about the phosphorus centre is distorted trigonal pyramidal with a C1-P1-C16 angle of $95.73(13)^{\circ}$, which is in contrast with the significantly smaller angle for $\left[\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{CO})_{2} \mathrm{P}\right]^{-}[\mathrm{K}$ 18 -crown-6] ${ }^{+}\left(90.3(5)^{\circ}\right)$, and much larger angle of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{P}\left(102.70(10)^{\circ}\right)$.

Figure 36. Molecular structure of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 5})$, with thermal ellipsoids at the 50% probability level, hydrogen atoms omitted for clarity. Selected bond distances (\AA) and angles (deg): C1O1 1.211(3), C8-O2 1.202(3), C9-O3 1.220(3), C16-O4 1.210(3), C1-P1 1.892(3), C16-P1 1.890(3), C17P1 1.815(3), C8-P2 1.894(3), C9-P2 1.886(3), C18-P2 1.816(3). C1-P1-C16 95.73(13), C1-P1-C17 98.76(14), C16-P1-C17 100.06(14), C8-P2-C9 95.14(12), C8-P2-C18 99.60(14), C9-P2-C18 100.73(15), C1-C1-C2 121.8(3), O1-C1-P1 120.6(2).

Although metacyclophanes have been well documented, $\mathbf{8 5}$ is the first to incorporate multiple phosphorus atoms into the skeletal backbone, which is surprising given the prevalent inclusion of main group atoms into cyclophane backbones (carbon, ${ }^{369-371}$ nitrogen, ${ }^{372-375}$ oxygen, ${ }^{376,377}$ sulphur, ${ }^{378-380}$). Unlike the facile one-pot synthesis of $\mathbf{8 5}$, synthetic methodologies for known metacyclophanes entail multiple steps and afford poor yields; the "efficient" synthesis of \{3-CO-C $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}\right\}_{2}$ requires six steps, with an overall yield of $47 \%{ }^{369}$ Interestingly, $\mathbf{8 5}$ may also be considered a cyclic diketophosphanyl, and was recently cited amongst a very limited number of such species, "Crossley and co-workers reported another interesting example that deals with the self-assembly of diphosphametacyclophane" (Figure 37). ${ }^{381}$ Cyclic
diketophosphanyls 4.B-4.E possess similar traits to 85 , including trigonal pyramidal geometry at the phosphorus centre, and comparable ${ }^{31} \mathrm{P}$ NMR spectra ($\delta_{P}-28.0$ to 73.4), whereby the chemical shift is largely dependent upon ring size. ${ }^{382,368}$ In contrast with 4.B-4.E and 85, phosphide 4.A is planar, although the ${ }^{31} \mathrm{P}$ NMR chemical shift does fall in the expected range $\left(\delta_{P} 43.3\right) .{ }^{366}$

4.A

4.D

4.B

4.C

4.E

85

$$
\mathrm{R}=\mathrm{Ph},{ }^{\mathrm{t}} \mathrm{Bu}
$$

$$
\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{CCH}
$$

Figure 37. Cyclic diketophosphanyls in literature; 4.A, ${ }^{366}$ 4.B, ${ }^{382}$ 4.C, ${ }^{368}$ 4.D,${ }^{381}$ compound $\mathbf{8 5}$

The reactivity of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ with $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ is not entirely unprecedented; while in most reported cases the [1,3]-silatropic rearrangement occurs spontaneously to form the phosphaalkene, contrary examples do exist. ${ }^{285}$ Appel reported the synthesis of $\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{OCP}\left(\mathrm{SiMe}_{3}\right) \mathrm{R}$ by addition of $\mathrm{RP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}=\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Ph}\right)$ to $\mathrm{CO}_{2},{ }^{95}$ and showed that the acyl phosphine (keto-form) was preferred at low temperature, while at ambient temperature an equilibrium formed between $\left(\mathrm{Me}_{3} \mathrm{SiO}\right) \mathrm{OCP}\left(\mathrm{SiMe}_{3}\right) \mathrm{R}$ and phosphaalkene $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2} \mathrm{C}=\mathrm{PR}$ (enol-form) that could be assessed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Furthermore, Markovskii reported the similar attempted synthesis of phosphaalkene $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{COCl})$ in the presence of a second acyl chloride moiety (Scheme 103). ${ }^{383}$ The addition of $\mathrm{C}_{6} \mathrm{H}_{4}(1,2-\mathrm{COCl})_{2}$ to $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}$ was reported to afford $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})\left(2-\mathrm{COSiMe}_{3}\right) \mathrm{P}$, a compound that was stable over five days in THF at $-5^{\circ} \mathrm{C}$, but readily dimerised at $0^{\circ} \mathrm{C}$.

Scheme 103. Markovskii's attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{COCl})^{383}$

4.4.2 Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$

In order to gain insight into the formation of $\mathbf{8 5}$, further investigation via manipulation of the reagent stoichiometries was undertaken. The addition of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,3-\mathrm{COCl}_{2}\right.$) to half an equivalent of $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ was envisaged to either produce $\mathbf{8 5}$ in < 50% yield, or a non-cyclic acyl phosphine if one acyl chloride moiety reacts preferentially. A crude orange oil (71% yield) was afforded from the reaction that was identified as $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}(\mathbf{8 6})$ (Scheme 104); complete removal of small quantities of $\mathbf{8 5}$ was not achieved by washing, distillation or recrystallisation attempts.

Scheme 104. Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}(86)$

The ${ }^{1} \mathrm{H}$ NMR spectrum shows a doublet resonance at $1.39 \mathrm{ppm}\left({ }^{2} J_{H-P} 3.4 \mathrm{~Hz}\right)$ that is shifted significantly up-field relative to $\mathbf{8 5}$, and integrates as three protons when compared to the aromatic resonances which integrate to a total of eight protons. This is consistent with the presence of two equivalent aromatic rings and one PMe unit. The ${ }^{31} \mathrm{P}$ NMR spectrum shows a broad resonance at 20.2 ppm ($\mathrm{w}_{1 / 2}$ ca. 12.5 Hz), which is again shifted up-field with respect to 85. Comparison of key spectroscopic data with the related compound $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{PMe}$ lends further credence to the proposed structure of $\mathbf{8 6} ;{ }^{319}$ the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance was reported at 17 ppm , while the signal corresponding to the methyl protons was located as a doublet at 1.55 $\operatorname{ppm}\left({ }^{2} J_{H-P} 6.6 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

4.4.3 Mechanistic insights into the synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$

Several possible mechanisms can be postulated for the formation of $\mathbf{8 5}$ and $\mathbf{8 6}$; however, there is no supporting evidence due to the extremely rapid rate of reaction; $\mathbf{8 5}$ was observed to precipitate from $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ in $<5 \mathrm{~min}$.

The facile and exclusive synthesis of $\mathbf{8 6}$ is consistent with preferential reaction at one acyl chloride moiety to form the desired acyl phosphine $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$ being the initial reaction step, as non-selective reactions would result in the formation of a mixture of products, which was not found. Reaction of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$ with the remaining equivalent of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ to form $\mathbf{8 6}$ via loss of ClSiMe_{3} is the logical proposal (Scheme 105). The lack of evidence for the head-to-tail combination of two units of $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$, which would produce $\mathbf{8 5}$, lends further support to the proposed synthetic mechanism of $\mathbf{8 6}$.

Scheme 105. Proposed mechanism for formation of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\mathrm{CO}\right\}_{2} \mathrm{PMe}$ (86)

In contrast, there are several possibilities for the formation of $\mathbf{8 5}$, including a) the condensation of two units of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$, b) the initial formation of $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-$ $\mathrm{C}(\mathrm{O}) \mathrm{PMe})_{2}$ followed by reaction with a second unit of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1,3-\mathrm{COCl}_{2}\right.$, or \mathbf{c}) reaction of a second $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with $\mathbf{8 6}$ (Scheme 106). In each case, further reactivity is presumably driven by the favourable elimination of ClSiMe . Route \mathbf{c} is the most likely pathway given that $\mathbf{8 6}$ can be synthesised and isolated exclusively; however, in the absence of further data, a definitive conclusion cannot be drawn.

Scheme 106. Potential mechanisms for the formation of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 5})$

4.4.4 Synthesis of $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$

The synthesis of $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(87)$ was considered in order to incorporate further functionality into the diphosphametacyclophane ligand. The addition of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left\{2,6-(\mathrm{COCl})_{2}\right\}$ to $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}$ afforded a crude orange solid (57% yield) for which analytical purity could not be obtained (by washing or recrystallisation) (Scheme 107). It was thus characterised as an impure product whose identity was supported by a combination of EI mass spectrometry ($\mathrm{m} / \mathrm{z} 358$ $\left.[\mathrm{M}]^{+}\right)$, NMR data, and comparison with compound $\mathbf{8 5}$.

Scheme 107. Synthesis of $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 7})$

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{8 7}$ shows a broad resonance at $30.2 \mathrm{ppm}\left(\mathrm{w}_{1 / 2} \mathrm{ca} .17 .0 \mathrm{~Hz}\right)$, which is at a similar chemical shift to $\mathbf{8 5}\left(\delta_{\mathrm{P}} 32.7\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits a higher order multiplet at 1.63 ppm that is assigned to the CH_{3} groups (Figure 38), in contrast with the doublet reported for $\mathbf{8 5}$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a doublet resonance at $3.33 \mathrm{ppm}\left({ }^{1} J_{C-P} 7.8\right.$ Hz) for the CH_{3} carbons, while the signal attributed to the ipso-carbon was located as a doublet at $153 \mathrm{ppm}\left({ }^{2} J_{C-P} 33.2 \mathrm{~Hz}\right)$; the significant down-field shift from $\mathbf{8 5}\left(\delta_{\mathrm{C}} 138\left({ }^{2} J_{C-P} 37.9 \mathrm{~Hz}\right)\right)$ is rationalised by the increased electronegativity of nitrogen, as previously observed for diphosphomide 83. A doublet resonance at $209 \mathrm{ppm}\left({ }^{l} J_{C-P} 50.7 \mathrm{~Hz}\right)$ is assigned to the carbonyl resonance with a coupling constant consistent with a one-bond carbon-phosphorus separation.

While 87 is the second known diphosphametacyclophane, it is also a novel example of a pyridinophane. ${ }^{384,385}$ Such pyridinophanes have been well studied, with applications in catalysis, ${ }^{386-388}$ and metal ion sensors. ${ }^{389-391}$

Figure 38. Selected section ($1.59-1.66 \mathrm{ppm}$) of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 7}$

4.4.5 Coordination reactions of diphosphametacyclophanes

Multiple attempts to coordinate $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}_{2}(\mathbf{8 7})\right.$ to transition metals (by reaction with $\mathrm{PtCl}_{2},\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$, and $\left[\mathrm{Rh}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right)$ were unsuccessful. However, attempts to coordinate 85 afforded two novel complexes.

The addition of equimolar amounts of $\mathbf{8 5}$ to cis $-\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right]$ was performed in order to probe whether 85 could chelate a single metal between both phosphorus centres. However, trans-$\left[\mathrm{PtCl}_{2}\left(\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right)_{2}\right](\mathbf{8 8})$ was afforded as the sole product; repetition of the reaction with a $2: 1$ reagent stoichiometry yielded complex $\mathbf{8 8}$ as a yellow solid in 74 \% (Scheme 108).

Scheme 108. Synthesis of trans-[$\left.\mathrm{PtCl}_{2}\left(\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right)_{2}\right]$ (88)

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows two distinct phosphorus environments; a singlet signal at $33.2 \mathrm{ppm}\left({ }^{l} J_{P-P t} 2296 \mathrm{~Hz}\right)$ is consistent with trans-coordination to platinum due to the characteristic coupling constant of the satellites (which typically range from $2200-2800 \mathrm{~Hz}$ for trans-isomers of bisphosphine di-halide platinum complexes), ${ }^{55}$ and a second singlet resonance at 28.4 ppm , that displays negligible change in chemical shift from free $\mathbf{8 5}$. As expected from the presence of two distinct phosphorus signals, the ${ }^{1} \mathrm{H}$ NMR spectrum displays two inequivalent methyl resonances at $1.50\left(\mathrm{~d},{ }^{2} J_{H-P} 3.2 \mathrm{~Hz}\right)$ and $2.39 \mathrm{ppm}\left(\mathrm{t},{ }^{2} J_{H-P} 3.1 \mathrm{~Hz}\right)$; the latter signal is attributed to the platinum-coordinated phosphorus on the basis of ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC NMR spectroscopy, and evidences virtual coupling phenomena. Due to the low solubility of the product (in THF, $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CDCl}_{3}$, etc.) the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum recorded did not allow for resolution of phosphorus couplings; it was, however, possible to identify the chemical shift of each carbon environment, including two distinct signals at 196 and 205 ppm , assigned to the acyl phosphine carbons of the free and coordinated ends of $\mathbf{8 5}$ respectively.

Yellow crystals of $\mathbf{8 8}$ suitable for X-ray diffraction were grown from THF over three days at $-20^{\circ} \mathrm{C}$ (Figure 40). The internal ligand geometry was retained upon coordination to platinum, demonstrated by the mutually exo methyl groups and butterfly conformation, although the P1C1 bond length (1.793(3) Å) was notably shortened compared to both free $\mathbf{8 5}(1.815(3) \AA)$ and the uncoordinated PMe group of $\mathbf{8 8}$ (P2-C10 1.823(4) A). The C1-P1-C2 and C1-P1-C18 angles (101.81(16) and $102.03(16)^{\circ}$) of the coordinated PMe group show a significant distortion from the uncoordinated PMe group (99.22(19) and $98.74(18)^{\circ}$). Notably, the P2...Pt separation of $4.56 \AA$ is too large to achieve chelation (the sum of the Van der Waals radii is $3.52 \AA$). ${ }^{392}$ All of the bond lengths and angles are comparable within the bounds of statistical significance (Table 46) to Stuart's trans-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]$ (Figure 39), ${ }^{54}$ including the Pt-Cl and Pt-P bond lengths, and $\mathrm{P} 1-\mathrm{Pt}-\mathrm{Cl}$ angles. Indeed, both complexes exhibit almost square planar geometries about the platinum centres, with inter-ligand angles of 91.05(3) and 92.93(8) ${ }^{\circ}$ for $\mathbf{8 8}$ and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]$ respectively. The $\mathrm{P} 1-\mathrm{C} 2$ bond length of $\mathbf{8 8}(1.896(3) \AA)$ is slightly longer than that reported by $\operatorname{Stuart}(1.835(4) \AA$), which is attributed to the different natures of the carbon atoms in question; the carbonyl centre of $\mathbf{8 8}$ is very electron-withdrawing, while Stuart's is the ipso-carbon of a benzene ring.

trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]$

Figure 39. Complex $\mathbf{8 8}$ and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]{ }^{54}$

Figure 40. Molecular structure of trans- $\left[\mathrm{PtCl}_{2}\left(\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right)_{2}\right]$ (88), with thermal ellipsoids at the 50% probability level, hydrogen atoms omitted for clarity The molecule lies on an inversion centre and equivalent atoms are generated by symmetry transformation $(-x,-y+1,-z+1)$. Selected bond distances
(\AA) and angles (deg): Pt-P1 2.2940(7), Pt-Cl 2.3106(7), P1-C1 1.793(3), P1-C2 1.896(3), O1-C2 1.208(4), P2-C10 1.823(4), O2-C9 1.215(4), O3-C11 1.214(4), O4-C18 1.201(4). P1-Pt-Cl 91.05(3), C1-P1-C2 101.81(16), C1-P1-C18 102.03(16), C2-P1-C18 104.56(16), C9-P1-C10 99.22(19), C10-P2-C9 99.22(19), C10-P2-C11 98.74(18), C9-P2-C11 97.65(15).

Table 46. Selected bond lengths and angles for $\mathbf{8 8}$ and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]^{54}$

Bond lengths (\mathbf{A}) and angles (deg)	$\boldsymbol{d} \mathbf{P t}-\mathbf{C l} / \boldsymbol{\AA}$	$\boldsymbol{d} \mathbf{P t}-\mathbf{P} / \AA$	$\boldsymbol{d} \mathbf{P 1 - C 2 / \AA}$	$\mathbf{P 1 - P t - C l} / \mathbf{d e g}$
Complex $\mathbf{8 8}$	$2.310(8)$	$2.294(7)$	$1.896(3)$	$91.05(3)$
trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)\right\}_{2}\right]$	$2.307(2)$	$2.312(2)$	$1.835(4)$	$92.93(8)$

The reaction of 85 with $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}$ was also investigated, resulting in trans$\left[\left\{\mathrm{Pt}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right\}_{2}\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right](\mathbf{8 9})$ as a yellow solid in 88% yield (Scheme 109).

$\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]_{2}, \mathrm{THF}$

89

Scheme 109. Synthesis of trans- $\left[\left\{\mathrm{Pt}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right\}_{2}\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right]$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 9}$ shows a doublet signal at $2.02 \mathrm{ppm}\left({ }^{2} J_{H-P} 3.4 \mathrm{~Hz}\right)$ that integrates as six protons when compared to the aromatic proton resonances at $6.59,7.89$ and 9.36 ppm , which integrate to eight protons combined. The chemical shift of the methyl protons is very similar to the coordinated PMe groups of 88, consistent with coordination of both phosphorus centres to platinum. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows doublet resonances at $15.9\left({ }^{2} J_{P-P} 441\right.$ $\left.\mathrm{Hz},{ }^{1} J_{P-P t} 2813 \mathrm{~Hz}\right)$ and $51.3 \mathrm{ppm}\left({ }^{2} J_{P-P} 441 \mathrm{~Hz},{ }^{1} J_{P-P t} 1951 \mathrm{~Hz}\right)$, indicative of two inequivalent phosphorus atoms that couple to each other across a platinum centre in a trans-configuration. The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a doublet of doublets at $-3934 \mathrm{ppm}\left({ }^{1} J_{P t-P} 1951 \mathrm{~Hz},{ }^{1} J_{P t-P}\right.$ 2813 Hz) that supports the proposed identity of $\mathbf{8 9}$. The poor product solubility in common deuterated solvents (in THF, $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CDCl}_{3}$) meant that signal splitting due to phosphorus could not be resolved in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, although each carbon environment was successfully assigned. The methyl group carbon atoms of PMe resonate at 4.68 ppm , reminiscent of $\mathbf{8 5}$, while the carbonyl carbon environment is located at 203 ppm , consistent with the comparable resonance displayed by 88. Multiple attempts to grow crystals using a variety of solvent systems and temperatures remain unsuccessful to date.

4.5 Summary

A series of meta- and para- substituted phosphomides $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})(62-66)$ has been synthesised without the requirement for additional base or prior lithiation of HPPh_{2}. Compounds 62-66 exhibit carbonyl stretches typical of phosphomides $\left(v_{(\mathrm{C}=0)} 1630\right.$ to $\left.1650 \mathrm{~cm}^{-1}\right), 62$ possesses the most low frequency absorbance ($v_{(\mathrm{C}=0)} 1634 \mathrm{~cm}^{-1}$), indicative of extensive phosphorus lone pair delocalisation. Complexes of these ligands were synthesised, most of which adhered to typical phosphine coordination chemistry behaviour. Synthesis of the analogous phosphomides $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(\mathrm{R})(67-68)$ was successful, although investigations proved that prior lithiation of HPCy_{2} was necessary to obtain them in purity. The improved methodology for the syntheses of phosphomides 62-66 was applied to the production of di-phosphomides, affording $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(1,3-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathbf{8 2} \mathbf{- 8 3})$, which possess the [1,3]-substitution pattern typical of pincer ligands. Incorporation of carbonyl groups into the backbone induced significantly different NMR characteristics and reactivity profiles compared to known pincer ligands, hindering attempts to synthesise novel pincer complexes.

The syntheses of unprecedented diphosphametacyclophanes $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 5})$ and $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}_{2}(87)\right.$ have been described, and three possible mechanisms of formation considered, assisted by development of the related compound $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl}) 3-\right.$ $\mathrm{CO}\}_{2} \mathrm{PMe}(86)$. Although definitive identification of the mechanism was not possible, it was concluded that the initial step must involve formation of acyl phosphine $\mathrm{C}_{6} \mathrm{H}_{4}(1-$
$\left.\mathrm{C}(\mathrm{O}) \mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}\right)(3-\mathrm{COCl})$.

5. Conclusions and outlook

The primary aim of this research was to develop synthetic routes to compounds that might act as precursors to phosphaalkynes bearing extended conjugation, such as $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CC} \equiv \mathrm{P}$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $C \equiv P)(2 / 3 / 4-R)$, which are expected to possess novel electronic properties. Though still to be achieved, significant progress has been made and valuable insights into the complexities of phosphaalkene and phosphaalkyne syntheses have resulted. Furthermore, many of the species developed en route provide opportunities for future investigations in low coordinate phosphorus chemistry and the development of new catalysts.

A collection of new chloropropargyls $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ and their unprecedented conversion to main group propargylphosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ and $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ was reported. While compounds $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ were isolated in good yields and coordinated to platinum and palladium complexes, the silylated propargylphosphines $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ could not be produced reliably. Despite this, initial investigations showed that $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ could be converted to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ via the addition of neat I_{2}, although isolation of the products was not achieved. However, given the successful synthesis of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$, the development of a reliable synthetic methodology for $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ might ultimately provide a new synthetic route to phosphaalkynes of the type $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CC} \equiv \mathrm{P}$ via the double dehydrohalogenation of $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$.

The attempted synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ via the Grignard reaction of ' $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{MgCl}$ ' with $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}$ afforded a rare example of a phosphorus-containing allene:
$\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$. This synthetic methodology could prove useful in the synthesis of new phosphorus-containing allenes. Furthermore, its production provided insight into the alternative mechanistic pathways that may have hindered attempts to convert $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ to $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ and $\mathrm{R}_{3} \mathrm{EC} \equiv \mathrm{CCH}_{2} \mathrm{PCl}_{2}$ using the same synthetic route. This information may prove useful in the design of new routes towards propargylphosphines.

The production of two new phosphaalkenes $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})$ was achieved, although isomeric purity was not obtained through either purification attempts or alterations to the reaction conditions. Attempts to convert the phosphaalkenes to the corresponding phosphaalkynes were unsuccessful. The synthesis of a collection of analogous phosphaalkenes $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(\mathrm{R})$ bearing a variety of substituents at the 3- and 4-position was also unsuccessful, highlighting the sensitivity of the

Becker synthesis toward arene substitution. Future investigations into the synthesis of phosphaalkenes bearing substituted arene rings could prove more successful via an alternative route.

The production of a series of meta- and para-substituted phosphomides $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})$ was achieved via a facile one-pot synthetic route and their platinum, palladium and rhodium complexes $\left[\mathrm{MCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\}_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ and $\left[\mathrm{Rh}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\right.\right.$ $\left.\left.\left.\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(\mathrm{R})\right\} \mathrm{Cl}\right]$ were reported. Sporadic literature studies on the use of phosphomide complexes for catalytic applications have shown promise, particularly for the hydroformylation of 4 -vinylanisole. As such, testing the catalytic activity of the new phosphomide complexes reported in this thesis may provide valuable insight in the continued development of new catalysts.

Two new di-phosphomides $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(1,3-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(\mathrm{E}=\mathrm{N}, \mathrm{CH})$ were synthesised, providing access to novel pincer ligands; at the time of writing, pincer ligands with carbonyl moieties incorporated into the skeleton are unreported in the literature. Such compounds would be expected to possess significantly different electronic characteristics to currently-established pincer ligands, which typically feature electron-donating groups in the backbone. Although initial attempts at coordination reactions resulted in the production of just one new pincer complex $\left[\mathrm{PtCl}_{\{ }\left\{\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}\right\}\right]^{+}[\mathrm{Cl}]^{-}$, the facile generation of the di-phosphomides suggests that the synthesis of similar compounds would be straight-forward. Pincer complexes are currently used to catalyse a wide variety of reactions, including the Heck reaction and the dehydrogenation of ammonia-borane, often providing improved results over traditional catalytic systems. As such, further research in the potential applications of pincer ligands of the type $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{E}\left(1,3-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}$ and their complexes might provide industrially-valuable results.

Two novel diphosphametacyclophanes $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ and $\left\{2-\mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\right.$ $\mathrm{C}(\mathrm{O}) \mathrm{PMe}\}_{2}$ and a brief exploration of their coordination chemistry was also reported in this thesis. While metacyclophanes have been well-documented in the literature, the incorporation of two phosphorus units into the skeleton is unprecedented, and the facile one-pot synthesis used here is vastly improved upon typical methodologies, which usually feature a minimum of six steps. The use of such compounds is relatively unexplored, although Baumgartner cited \{3-CO$\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}$ as a rare example of a diketophosphanyl in his recent publication on the development of π-conjugated materials, ${ }^{381}$ highlighting potential future avenues of research. The use of diphosphametacyclophanes as chelating materials also remains to be explored.

6. Experimental

6.1 General experimental procedures

6.1.1 General methods

All manipulations were performed under a dry nitrogen atmosphere in a glove box, or using standard Schlenk line techniques with an atmosphere of argon.

6.1.2 Spectroscopy

NMR spectra were obtained at 303 K unless otherwise stated using a Varian VNMRS 400 MHz spectrometer. The spectra were referenced to external SiMe_{4} for ${ }^{1} \mathrm{H}(I=1 / 2,99.9 \%, 399.50$ $\mathrm{MHz}),{ }^{13} \mathrm{C}(\mathrm{I}=1 / 2,1.11 \%, 100.46 \mathrm{MHz})$ and ${ }^{29} \mathrm{Si}(\mathrm{I}=1 / 2,4.67 \%, 79.37 \mathrm{MHz})$, to $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ $(I=1 / 2,100 \%, 161.71 \mathrm{MHz}), \mathrm{SnMe}_{4}$ for ${ }^{119} \mathrm{Sn}(I=1 / 2,8.59 \%, 148.97 \mathrm{MHz})$, and $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ for ${ }^{195} \mathrm{Pt}(I=1 / 2,33.83 \%, 85.53 \mathrm{MHz}) .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC and HSQC NMR spectra were obtained at 303 K using a Varian VNMRS 500 MHz spectrometer with external reference to SiMe_{4} for ${ }^{1} \mathrm{H}$ (499.91 MHz) and ${ }^{13} \mathrm{C}$ (125.71 MHz). Several ${ }^{195} \mathrm{Pt}$ NMR spectra were obtained at 303 K using a Varian VNMRS 600 MHz with reference to external $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ for ${ }^{195} \mathrm{Pt}(128.3 \mathrm{MHz})$. All chemical shifts are quoted in ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were assigned by recourse to the ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ HMBC and HSQC NMR spectra, while ${ }^{1} \mathrm{H}_{-}^{31} \mathrm{P},{ }^{1} \mathrm{H}_{-}{ }^{29} \mathrm{Si}$ and ${ }^{1} \mathrm{H}_{-}{ }^{119} \mathrm{Sn}$ HMBC NMR spectra were also used to aid assignment and confirm connectivity. When performing quantitative NMR studies with PPh_{3} as an internal standard the relaxation delay was increased to 5 s .

Elemental analyses were performed by Mr Stephen Boyer of the London Metropolitan University elemental analysis service. Mass spectra were recorded by Dr. A. Abdul-Sada (University of Sussex departmental service) on a VG Autospec Fisons instrument (70 eV electron ionisation) or KratosMS25 spectrometer. IR spectra were recorded neat on a PerkinElmer Spectrum One instrument.

6.1.3 Solvents and reagents

Deuterated NMR grade solvents were obtained from Goss Scientific and purified by repeated freeze-thaws followed by reflux over calcium hydride (for $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) or potassium (for $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$) for 72 h and then vacuum transferred into an ampule and stored under a nitrogen atmosphere. Other solvents were distilled for a minimum of 72 h over sodium (toluene), calcium hydride (DCM), potassium (THF, DME) or sodium potassium alloy (pentane,
hexane, $\mathrm{Et}_{2} \mathrm{O}$), or in the case of DME, brought to reflux over $4 \AA$ molecular sieves for 72 h Hydrocarbons were stored over potassium mirrors, while THF and DCM were stored over $4 \AA$ molecular sieves.

The following reagents were procured from Sigma-Aldrich and used as supplied unless otherwise stated; ${ }^{n} \mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexanes), $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me}), \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})$, $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right), \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN}), \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}, \mathrm{Ph}_{3} \mathrm{SnCl}^{2}, \mathrm{Ph}_{3} \mathrm{SiCl}, \mathrm{MeLi}, \mathrm{MeI}, \mathrm{PCl}_{3},{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCl}^{2}, \mathrm{HgCl}_{2}$, $\mathrm{I}_{2}, \mathrm{Mg}$. The following reagents were procured from Sigma-Aldrich and freeze-thawed prior to use; $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{Cl},{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiCl},{ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiCl},{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiCl}, \mathrm{Me}_{2} \mathrm{PhSiCl}, \mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}, \mathrm{HPPh}_{2}, \mathrm{HPCy}_{2}$. The following reagents were obtained from Sigma-Aldrich and recrystallized from hot toluene prior to use; $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}, \mathrm{C}_{6} \mathrm{H}_{3}\left(1,3,5-\mathrm{COCl}_{3}\right)_{3}$. The following reagents were procured from Sigma-Alrich and Strem Chemicals; $\mathrm{PtCl}_{2}, \mathrm{PdCl}_{2}$ and used as supplied.
$\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right],{ }^{393} \mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2},{ }^{394}\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2},{ }^{395}$ were prepared in accordance with standard literature procedures. With thanks to John Spencer for generous donation of $\left[\mathrm{PdCl}_{2}\right]$, and Ben Day for $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]$.
$\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2},\left[\mathrm{Rh}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right.$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ were available within the laboratory from previous workers.

Magnesium was pre-dried at $100^{\circ} \mathrm{C}$ for 72 h and activated by stirring for 72 h under argon.

6.1.4 Crystallographic details

Single crystal X-ray diffraction data were obtained by Dr S. M. Roe and Dr. M. P. Coles using an Enraf-Nonius CAD4 system with к CCD area detector. Data were solved using ShelX, while visualisations were performed using ORTEP, ${ }^{396}$ or Mercury. ${ }^{397}$ Copies of all tables and cif files are available on the supplementary data CD.

6.2 Chapter 2: The development of chloropropargyls and propargylphosphines

Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathbf{S n C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (1)

To a THF solution of propargyl chloride ($2.24 \mathrm{~g}, 3.0 \times 10^{-2} \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2.5$ $\left.\mathrm{M}, 6.01 \mathrm{~cm}^{3}, 1.5 \times 10^{-2} \mathrm{~mol}\right)$ and the mixture was stirred for $30 \mathrm{~min} .{ }^{n} \mathrm{Bu}_{3} \mathrm{SnCl}\left(4.40 \mathrm{~cm}^{3}, 1.5 \mathrm{x}\right.$ $10^{-2} \mathrm{~mol}$) in THF was added, producing a yellow solution that was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and was then allowed to warm to ambient temperature. After stirring for 18 h the solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a yellow oil. Yield: $5.09 \mathrm{~g}, 93.7 \%$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 0.91\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.24 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.97 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Sn}\right), 1.34$ (q, $6 \mathrm{H},{ }^{3} J_{H-H} 7.45 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), 1.61 (quin, $6 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $3.70\left(\mathrm{~s}, 2 \mathrm{H},{ }^{4} J_{H-S n}\right.$ $\left.9.21 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.3\left(\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{Sn},{ }^{1} J_{C-S n(117)} 364.9 \mathrm{~Hz},{ }^{1} J_{C-S n}(119) 382.1 \mathrm{~Hz}\right), 13.9(\mathrm{~s}$, $\left.\underline{\mathbf{C H}}_{3}\right), 27.3\left(\mathrm{~s}, \mathrm{CH}_{3} \underline{\mathbf{C H}}_{2},{ }^{3} J_{C-S n(117)} 57.7 \mathrm{~Hz},{ }^{3} J_{C-S n}(119) 60.2 \mathrm{~Hz}\right), 29.3\left(\mathrm{~s}, \underline{\mathbf{C H}}_{2} \mathrm{CH}_{2} \mathrm{Sn},{ }^{2} J_{C-S n(119)}\right.$ 23.6 Hz), $31.2\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 91.1\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 105.0\left(\mathrm{~s}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{Cl}\right)$.
${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}}-65.1$.
Elem. Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{SnCl}: \mathrm{C}, 49.56 \% ; \mathrm{H}, 7.98 \%$. Found; C, $49.44 \% ; \mathrm{H}, 7.86 \%$.

Synthesis of $\mathrm{Ph}_{3} \mathbf{S n C} \equiv \mathrm{CCH}_{2} \mathbf{C l}$ (2)

Prepared as for $\mathbf{1}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 5.4 \mathrm{~cm}^{3}, 1.3 \times 10^{-2} \mathrm{~mol}\right)$, propargyl chloride ($2.03 \mathrm{~g}, 2.7 \mathrm{x}$ $\left.10^{-2} \mathrm{~mol}\right)$ and $\mathrm{Ph}_{3} \mathrm{SnCl}\left(5.25 \mathrm{~g}, 1.3 \times 10^{-2} \mathrm{~mol}\right)$. Isolated as a yellow oil. Yield: $3.96 \mathrm{~g}, 72.0 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 3.67\left(\mathrm{~s}, 2 \mathrm{H},{ }^{4} J_{H-S n} 10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.1-7.7\left(15 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}_{5}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 30.3\left(\mathrm{~s}, \underline{\mathbf{C H}} \mathbf{H}_{2} \mathrm{Cl}\right), 88.1\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2}\right), 106.4\left(\mathrm{~s}, \mathrm{C} \equiv \mathbf{C C H}_{2}\right), 128.8(\mathrm{~s}, p-$ C), 129.5 ($\mathrm{s}, m-\underline{\mathbf{C}}$), 130.1 ($\mathrm{s}, i-\underline{\mathbf{C}}), 136.7$ ($\mathrm{s}, o-\underline{\mathbf{C}})$.
${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}}-169.4$.
Elem. Anal.: Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{SnCl}$: C, $59.50 \% ; \mathrm{H}, 4.01 \%$. Found; C, $59.63 \% ; \mathrm{H}, 4.12 \%$.

Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (3)

Prepared as for $\mathbf{1}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 10.01 \mathrm{~cm}^{3}, 2.5 \times 10^{-2} \mathrm{~mol}\right)$, propargyl chloride ($3.73 \mathrm{~g}, 5.0$ $\left.\times 10^{-2} \mathrm{~mol}\right)$ and $\mathrm{Me}_{2} \mathrm{PhSiCl}\left(4.26 \mathrm{~g}, 2.5 \times 10^{-2} \mathrm{~mol}\right)$. The crude product was isolated as a pale
yellow oil, which was distilled at $66^{\circ} \mathrm{C}, 8.1 \times 10^{-1}$ mbar, affording a colourless oil. Yield: 4.98 g, 95.9%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.32\left(\mathrm{~s}, 6 \mathrm{H}, \underline{\mathrm{H}}_{3}\right), 3.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.19-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 7.59-7.61$ (m, 2H, CH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-1.55\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 30.1\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 89.7\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 101.8(\mathrm{~s}$,

${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-21.6$.
Elem. Anal.: Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{SiCl}: \mathrm{C}, 63.31$ \%; H, 6.23%. Found; C, 63.18%; H, 6.14%.

Synthesis of ${ }^{\mathbf{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ (4)

Prepared as for $\mathbf{1}$ using ${ }^{n} \operatorname{BuLi}\left(2.5 \mathrm{M}, 16.8 \mathrm{~cm}^{3}, 4.2 \times 10^{-2} \mathrm{~mol}\right)$, propargyl chloride ($6.24 \mathrm{~g}, 8.4$ $\left.\times 10^{-2} \mathrm{~mol}\right)$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiCl}\left(8.06 \mathrm{~g}, 4.2 \times 10^{-2} \mathrm{~mol}\right)$. The crude product was isolated as pale yellow oil, which was distilled at $52^{\circ} \mathrm{C}, 3.0 \times 10^{-1} \mathrm{mbar}$, affording a colourless oil. Yield: 5.76 g , 60.3 \%.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 1.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 1.10\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-H} 6.51 \mathrm{~Hz}, \underline{\mathrm{C}}_{3}\right), 3.53\left(\mathrm{~s}, 2 \mathrm{H}, \underline{\mathrm{CH}}_{2} \mathrm{Cl}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{C}} 11.1(\mathrm{~s}, \underline{\mathbf{C}} \mathbf{H}), 18.3\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 30.2\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 88.0\left(\mathrm{~s}, \underline{\mathbf{C}}=\mathrm{CCH}_{2} \mathrm{Cl}\right)$, 102.2 ($\mathrm{s}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{Cl}$).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-1.68$.
Elem. Anal.: Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{SiCl}: \mathrm{C}, 62.47$ \%; H, 9.98%. Found; C, 62.38%; H, 9.85%.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(\mathbf{5})$

Prepared as for $\mathbf{1}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 4.35 \mathrm{~cm}^{3}, 1.09 \times 10^{-2} \mathrm{~mol}\right)$, propargyl chloride (1.62 g , $\left.2.17 \times 10^{-2} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiCl}\left(2.09 \mathrm{~g}, 1.09 \times 10^{-2} \mathrm{~mol}\right)$. Isolated as an orange oil. Yield: 2.33 g , 92.7 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.60\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{SiC} \underline{\mathrm{H}}_{2}\right), 0.99\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.16 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~m}, 6 \mathrm{H}, \underline{\mathrm{C}}_{2}\right)$, 3.55 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 16.2\left(\mathrm{~s}, \mathrm{Si} \underline{\mathbf{C}} \mathrm{H}_{2}\right), 17.9\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 18.4\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2}\right), 30.7\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 90.2(\mathrm{~s}$, $\left.\underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 101.8\left(\mathrm{~s}, \mathrm{C} \equiv \underline{\mathbf{C C H}} \mathbf{H}_{2} \mathrm{Cl}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-13.0$.
Elem. Anal.: Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{SiCl}: \mathrm{C}, 63.01 \%$; H, 9.98%. Found; C, 62.87%; H, 9.79%.

Synthesis of ${ }^{\mathrm{BH}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(6)$

Prepared as for $\mathbf{1}$ using ${ }^{n} \operatorname{BuLi}\left(2.5 \mathrm{M}, 5.15 \mathrm{~cm}^{3}, 1.29 \times 10^{-2} \mathrm{~mol}\right)$, propargyl chloride ($1.92 \mathrm{~g}, 2.5$ $\left.\times 10^{-2} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiCl}\left(3.02 \mathrm{~g}, 1.29 \times 10^{-2} \mathrm{~mol}\right)$. Isolated as an orange oil. Yield: 3.08 g , 87.8%.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 0.67\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{SiC} \underline{\mathbf{H}}_{2}\right), 0.92\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.28 \mathrm{~Hz}, \mathrm{C} \underline{\mathbf{H}}_{3}\right), 1.38\left(\mathrm{~m}, 6 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.82 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.46 (quin, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 3.56 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 13.3\left(\mathrm{~s}, \mathrm{Si} \underline{\mathrm{CH}_{2}}\right), 14.0\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 26.6\left(\mathrm{~s}, \mathrm{CH}_{3} \underline{\mathbf{C H}}_{2}\right), 26.8\left(\mathrm{~s}, \underline{\mathbf{C}}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$, 30.7 ($\mathrm{s}, \underline{\mathbf{C}}_{2} \mathrm{Cl}$), 90.3 ($\mathrm{s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$), 101.8 ($\mathrm{s}, \mathrm{C} \equiv \underline{\mathbf{C} C H} \mathrm{Cl}_{2}$).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-11.3$.
Elem. Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{SiCl}$: C, 66.54%; H, 9.98%. Found; C, 66.39%; H, 10.02%.

Synthesis of $\mathrm{Ph}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathbf{C l}$ (7)

Prepared as for $\mathbf{1}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 2.68 \mathrm{~cm}^{3}, 6.70 \times 10^{-3} \mathrm{~mol}\right)$, propargyl chloride (1.00 g , $\left.1.03 \times 10^{-2} \mathrm{~mol}\right)$ and $\mathrm{Ph}_{3} \mathrm{SiCl}\left(3.83 \mathrm{~g}, 1.30 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown solid. Yield: 3.04 g , 88.5%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 3.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.16(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}), 7.76(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 30.4\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 87.6\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 104.9\left(\mathrm{~s}, \mathrm{C} \equiv \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{Cl}\right), 128.4$ (s, $m-\underline{\mathbf{C}}$), 130.4 ($\mathrm{s}, p-\underline{\mathbf{C}}$), 133.4 ($\mathrm{s}, o-\underline{\mathbf{C}}$), 136.0 ($\mathrm{s}, i-\mathbf{C}$).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-28.8$.
Elem. Anal.: Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{SiCl}: \mathrm{C}, 75.79 \%$; H, 5.11%. Found; C, $75.68 \% ; \mathrm{H}, 5.14 \%$.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}_{\mathrm{S}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}(\mathbf{8})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{Ph}_{2} \mathrm{PH}\left(0.375 \mathrm{~g}, 2.02 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2.5 \mathrm{M}$, $\left.0.808 \mathrm{~cm}^{3}, 2.02 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was stirred for $30 \mathrm{~min} .{ }^{n} \mathrm{Bu}_{3} \mathrm{SnC}^{\mathrm{S}}=\mathrm{CCH}_{2} \mathrm{Cl}(0.733 \mathrm{~g}$, $2.02 \times 10^{-3} \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}$ was added, resulting in a brown solution that was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and was then allowed to warm to ambient temperature. After stirring for 18 h the solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a yellow oil. Yield: $0.800 \mathrm{~g}, 77.2 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.88\left(\mathrm{~m},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right), 0.93\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Sn}\right), 1.32\left(\mathrm{~m},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right)$, $1.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.55\left(\mathrm{~m},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right.$), 1.59 (quin, $6 \mathrm{H},{ }^{3} J_{H-H} 7.83 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), 2.87 (d, $\left.2 \mathrm{H},{ }^{2} J_{H-P} 1.71 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.09(\mathrm{~m}, 6 \mathrm{H}, m-$ and $p-\mathrm{C} \underline{\mathbf{H}}), 7.47\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.07 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.3\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Sn}\right), 13.9\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 20.4\left(\mathrm{~d},{ }^{1} J_{C-P} 18.5 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{P}\right), 27.4(\mathrm{~s}$, $\mathrm{CH}_{3} \underline{\mathbf{C}}_{2}$), 29.3 ($\mathrm{s}, \underline{\mathbf{C H}}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), $85.0\left(\mathrm{~d},{ }^{3} J_{C-P} 6.68 \mathrm{~Hz}, \underline{\mathbf{C}}=\mathrm{CCH}_{2} \mathrm{P}\right.$), $106.8\left(\mathrm{~d},{ }^{2} J_{C-P} 4.89 \mathrm{~Hz}\right.$, $\left.\mathrm{C} \equiv \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{P}\right), 128.6\left(\mathrm{~d},{ }^{3} J_{C-P} 6.37 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right), 128.9(\mathrm{~s}, p-\underline{\mathbf{C}} \mathrm{H}), 133.2\left(\mathrm{~d},{ }^{2} J_{C-P} 18.7 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right)$, 138.8 (d, $\left.{ }^{l} J_{C-P} 16.9 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.4\left(\mathrm{br},{ }^{4} J_{P-S n} 14.5 \mathrm{~Hz}\right)$.
${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}}-68.4\left(\mathrm{~d},{ }^{4} \mathrm{~S}_{\mathrm{Sn}-P} 14.5 \mathrm{~Hz}\right),\right),-12.0\left({ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{Sn}\right)$.

Synthesis of $\mathrm{Ph}_{3} \mathrm{SnC}^{\mathbf{E}} \mathbf{C C H}_{2} \mathbf{P P h}_{\mathbf{2}} \mathbf{(9)}$

Prepared as for $\mathbf{8}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.1 \mathrm{M}, 0.792 \mathrm{~cm}^{3}, 1.66 \times 10^{-3} \mathrm{~mol}\right), \mathrm{Ph}_{2} \mathrm{PH}\left(0.309 \mathrm{~g}, 1.66 \times 10^{-3}\right.$ $\mathrm{mol})$ and $\mathrm{Ph}_{3} \mathrm{SnC}=\mathrm{CCH}_{2} \mathrm{Cl}\left(0.876 \mathrm{~g}, 1.66 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a pale yellow oil. Yield: 0.734 g, 65.4%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.91\left(\mathrm{~m}, 3 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right), 1.60\left(\mathrm{~m}, 2 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right)$, $1.70\left(\mathrm{~m}, 2 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right), 2.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 3.01 \mathrm{~Hz},{ }^{4} J_{H-S n} 9.10 \mathrm{~Hz},{ }^{4} J_{H-S n} 15.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.02$ $(\mathrm{m}, 2 \mathrm{H}, p-\mathrm{CH}), 7.04(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}), 7.14(\mathrm{~m}, 10 \mathrm{H}, m-\mathrm{CH}), 7.28\left(\mathrm{~m}, 9 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right), 7.46(\mathrm{~m}$, $6 \mathrm{H},{ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}$), 7.58 ($\mathrm{m}, 6 \mathrm{H}, o-\mathbf{C H}$), $7.61(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 20.2\left(\mathrm{~m},{ }^{1} J_{C-P} 20.5 \mathrm{~Hz}, \underline{\mathbf{C H}_{2} \mathrm{P}}\right), 82.8\left(\mathrm{~d},{ }^{3} J_{C-P} 5.98 \mathrm{~Hz}, \underline{\mathbf{C}}=\mathrm{CCH}_{2} \mathrm{P}\right)$, 109.3 (d, ${ }^{2} J_{C-P} 3.40 \mathrm{~Hz}, \mathrm{C} \equiv \underline{\mathbf{C C H}}{ }_{2} \mathrm{P}$), 128.6 - 137.5 ($\mathbf{C H}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{P}}-13.2\left(\mathrm{br},{ }^{4} J_{P-S n} 13.9 \mathrm{~Hz}\right)$.
${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}_{\mathrm{n}}}-168.4\left(\mathrm{~d},{ }^{4} J_{\text {Sn }-P} 13.9 \mathrm{~Hz}\right),-99.3\left({ }^{\mathrm{n}} \mathrm{BuPh}_{3} \mathrm{Sn}\right)$.

Synthesis of $\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathbf{C C H}_{2} \mathbf{P P h}_{2}$ (10)

Prepared as for $\mathbf{8}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(12.5 \mathrm{M}, 1.69 \mathrm{~cm}^{3}, 4.24 \times 10^{-3} \mathrm{~mol}\right), \mathrm{Ph}_{2} \mathrm{PH}\left(0.780 \mathrm{~g}, 4.24 \times 10^{-3}\right.$ $\mathrm{mol})$ and $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.884 \mathrm{~g}, 4.24 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown oil. Yield: 1.19 g , 78.4 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 2.91 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.06(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{CH}), 7.20(\mathrm{~m}, 4 \mathrm{H}, o-\mathbf{C} \underline{\mathbf{H}}), 7.43(\mathrm{~m}, 3 \mathrm{H}, m$ - and $p-\mathbf{C H}), 7.55(\mathrm{~m}, 2 \mathrm{H}, o-\mathbf{C} \underline{\mathbf{H}})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.59\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 19.8\left(\mathrm{~d},{ }^{1} J_{C-P} 20.7 \mathrm{~Hz}, \underline{\mathbf{C}}_{2} \mathrm{P}\right), 85.7\left(\mathrm{~d},{ }^{3} J_{C-P} 4.99 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 104.9\left(\mathrm{~d},{ }^{2} J_{C-P} 3.59 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.1(\mathrm{~m}, m-\underline{\mathbf{C H}}), 128.7\left(\mathrm{~d},{ }^{3} J_{C-P} 6.50 \mathrm{~Hz}, m-\right.$ $\underline{\mathbf{C H}}), 129.0(\mathrm{~s}, p-\underline{\mathbf{C H}}), 129.5(\mathrm{~s}, p-\underline{\mathbf{C H}}), 133.2$ (d, $\left.{ }^{2} J_{C-P} 19.5 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 134.2(\mathrm{~s}, o-\underline{\mathbf{C H}}), 137.7$ ($\mathrm{s}, i-\mathbf{C}$), $138.1\left(\mathrm{~d},{ }^{l} J_{C-P} 15.8 \mathrm{~Hz}, i-\mathbf{C}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.5(\mathrm{br})$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.9$.
Elem. Anal.: Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{SiP}: \mathrm{C}, 77.09$ \%; H, 6.42 \%. Found; C, 76.89%; H, 6.34%.

Synthesis of ${ }^{\mathbf{i}} \mathbf{P r}_{3} \mathbf{S i C} \equiv \mathbf{C C H}_{2} \mathbf{P P h}_{2}(\mathbf{1 1)}$

Prepared as for $\mathbf{8}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 1.68 \mathrm{~cm}^{3}, 4.19 \times 10^{-3} \mathrm{~mol}\right), \mathrm{Ph}_{2} \mathrm{PH}\left(0.779 \mathrm{~g}, 4.19 \times 10^{-3}\right.$ $\mathrm{mol})$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.965 \mathrm{~g}, 4.19 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as an orange oil. Yield: 1.58 g , 99.2%.
${ }^{1}{ }^{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.01(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.09\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-H} 6.78 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.75\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 2.06\right.$ $\mathrm{Hz} \mathrm{CH}_{2} \mathrm{P}$), 7.07 ($\mathrm{m}, 6 \mathrm{H}, m$ - and $p-\mathrm{CH}$), 7.43 (t, $4 \mathrm{H}, o-\mathrm{CH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.7(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}), 18.9\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{3}\right), 19.9\left(\mathrm{~d},{ }^{1} J_{C-P} 19.3 \mathrm{~Hz}, \underline{\mathbf{C}}{ }_{2} \mathrm{P}\right), 83.3\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ $\left.{ }_{P} 5.19 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 104.7\left(\mathrm{~d},{ }^{2} J_{C-P} 4.24 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.7\left(\mathrm{~d},{ }^{3} J_{C-P} 6.54 \mathrm{~Hz}, m-\mathbf{C H}\right)$, 129.0 ($\mathrm{s}, p-\underline{\mathbf{C H}}$), 133.1 ($\mathrm{d},{ }^{2} J_{C-P} 19.1 \mathrm{~Hz}, o-\underline{\mathbf{C H}}$), 138.3 (d, $\left.{ }^{1} J_{C-P} 15.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.5(\mathrm{br})$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-3.03$.
Elem. Anal.: Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{SiP}$ C, 75.79 \%; H, 8.68 \%. Found; C, 75.77%; H, 8.64%.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathbf{S i C} \equiv \mathbf{C C H}_{2} \mathbf{P P h}_{2}$ (12)

Prepared as for 8 using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 1.39 \mathrm{~cm}^{3}, 3.49 \times 10^{-3} \mathrm{~mol}\right), \mathrm{Ph}_{2} \mathrm{PH}\left(0.650 \mathrm{~g}, 3.49 \times 10^{-3}\right.$ mol) and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.805 \mathrm{~g}, 3.49 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown oil. Yield: 1.25 g , 94.3 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.58\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{SiC}_{2}\right), 0.99\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}, \underline{\mathrm{H}}_{3}\right), 1.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}_{2}\right)$, $2.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 2.52 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.09(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{CH}), 7.44(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 16.7\left(\mathrm{~s}, \mathrm{Si} \underline{\mathbf{C}}_{2}\right), 17.9\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 18.5\left(\mathrm{~s}, \underline{\mathrm{CH}}_{2}\right), 19.9\left(\mathrm{~d},{ }^{1} J_{C-P} 19.9 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C}}_{2} \mathrm{P}\right), 85.4\left(\mathrm{~d},{ }^{3} J_{C-P} 5.18 \mathrm{~Hz}, \underline{\mathbf{C}}=\mathrm{CCH}_{2} \mathrm{P}\right), 103.0\left(\mathrm{~d},{ }^{2} J_{C-P} 4.00 \mathrm{~Hz}, \mathbf{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.5\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $6.56 \mathrm{~Hz}, m-\underline{\mathbf{C H}}), 129.0(\mathrm{~s}, p-\underline{\mathbf{C H}}), 133.2\left(\mathrm{~d},{ }^{2} J_{C-P} 19.0 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 138.3$ (d, $\left.{ }^{1} J_{C-P} 16.5 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}}-13.6$ (br).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-14.5$.
Elem. Anal.: Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{SiP}: \mathrm{C}, 75.79 \%$; $\mathrm{H}, 8.68 \%$. Found; C, 75.77%; H, 8.59%.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathbf{S i C} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{\mathbf{2}}$ (13)

Prepared as for $\mathbf{8}$ using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 1.15 \mathrm{~cm}^{3}, 2.87 \times 10^{-3} \mathrm{~mol}\right), \mathrm{Ph}_{2} \mathrm{PH}\left(0.535 \mathrm{~g}, 2.87 \times 10^{-3}\right.$ $\mathrm{mol})$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.784 \mathrm{~g}, 2.87 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown oil. Yield: 1.12 g , 92.5%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.63\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{SiC} \underline{H}_{2}\right), 0.93\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.19 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.37$ (quin, 6 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 1.40\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 2.36 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.10(\mathrm{br}, 6 \mathrm{H}, m$ - and p CH), $7.44\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 13.7\left(\mathrm{~s}, \mathrm{Si}_{\mathbf{C}}^{2} 2\right), 14.1\left(\mathrm{~s}, \underline{\mathrm{C}}_{3}\right), 19.9\left(\mathrm{~d},{ }^{1} J_{C-P} 19.8 \mathrm{~Hz}, \underline{\mathrm{C}}_{2} \mathrm{P}\right), 26.7(\mathrm{~s}$, $\mathrm{CH}_{3} \underline{\mathbf{C H}}_{2}$), $26.9\left(\mathrm{~s}, \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 85.5\left(\mathrm{~d},{ }^{3} J_{C-P} 4.83 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 104.0\left(\mathrm{~d},{ }^{2} J_{C-P} 4.09 \mathrm{~Hz}\right.$, $\left.\mathrm{C} \equiv \underline{\mathbf{C C H}_{2} \mathrm{P}}\right), 128.6\left(\mathrm{~d},{ }^{3} J_{C-P} 6.39 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right), 129.0(\mathrm{~s}, p-\underline{\mathbf{C}}), 133.2\left(\mathrm{~d},{ }^{2} J_{C-P} 19.0 \mathrm{~Hz}, o-\underline{\mathbf{C}}\right)$, 138.3 (d, $\left.{ }^{l} J_{C-P} 15.5 \mathrm{~Hz}, i-\mathbf{C}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.5$ (br).
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-12.9$.
Elem. Anal.: Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{SiP}: \mathrm{C}, 76.78$ \%; H, 9.24 \%. Found; C, $76.85 \% ; \mathrm{H}, 9.32 \%$.

Synthesis of cis $-\left[\mathrm{PtCl}_{2}\left({ }^{\mathbf{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](14)$

To a DCM solution of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\left(0.515 \mathrm{~g}, 1.00 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{PtCl}_{2}\left(0.134 \mathrm{~g}, 5.02 \times 10^{-4} \mathrm{~mol}\right)$ in DCM resulting in a suspended orange solid that was stirred for 30 min . The suspension was allowed to warm to ambient temperature and was stirred for 18 h then the solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo to afford a dark orange solid. Yield: $0.507 \mathrm{~g}, 78.2 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.88\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Sn}\right), 1.27\left(\mathrm{~m}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.38 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.44 (quin, $12 \mathrm{H},{ }^{3} J_{H-H} 7.61 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), $3.78\left(\mathrm{~m}, 4 \mathrm{H},{ }^{2} J_{H-P} 10.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.95(\mathrm{~m}, 12 \mathrm{H}$, m - and $p-\mathbf{C H}), 7.70(\mathrm{~m}, 8 \mathrm{H}, o-\mathbf{C H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.2\left(\mathrm{~s},{ }^{1} J_{C-S n} 366.3 \mathrm{~Hz},{ }^{1} J_{C-S n} 381.9 \mathrm{~Hz}, \underline{\mathbf{C}}_{2} \mathrm{Sn}\right), 13.9\left(\mathrm{~s}, \underline{\mathbf{C H}}_{3}\right), 23.8$ $\left(\mathrm{m},{ }^{1} J_{C-P} 42.1 \mathrm{~Hz}, \underline{C H}_{2} \mathrm{P}\right), 27.4\left(\mathrm{~s},{ }^{3} J_{C-S n} 58.3 \mathrm{~Hz},{ }^{3} J_{C-S n} 60.9 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathbf{C H}}_{2}\right), 29.2\left(\mathrm{~s}, J_{C-S n} 23.3 \mathrm{~Hz}\right.$, $\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), $88.7\left(\mathrm{~m},{ }^{3} J_{C-P} 7.77 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 104.0\left(\mathrm{~m},{ }^{2} J_{C-P} 12.2 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 127.9(\mathrm{br}$, $m-\underline{\mathbf{C H}}), 129.1(\mathrm{br}, i-\underline{\mathbf{C}}), 131.1(\mathrm{~s}, p-\underline{\mathbf{C}} \mathrm{H}), 134.4\left(\mathrm{~m},{ }^{2} J_{C-P} 10.4 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 6.02\left(\mathrm{br},{ }^{1} J_{P-P t} 3611 \mathrm{~Hz}\right)$.
${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}}-68.16\left(\mathrm{~m},{ }^{4} J_{S n-P} 9.51 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Pt}}-4407\left(\mathrm{t},{ }^{l} J_{P t-P} 3611 \mathrm{~Hz}\right)$.

Elem. Anal.: Calcd for $\mathrm{C}_{54} \mathrm{H}_{78} \mathrm{Sn}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$: C, 50.15%; H, 6.04%. Found; C, $50.23 \% ; \mathrm{H}$, 5.95%.

Synthesis of cis-[$\left.\mathrm{PtCl}_{2}\left({ }^{\mathbf{i}} \mathrm{Pr}_{3} \mathbf{S i C}_{\mathrm{S}} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](15)$

Method A

Prepared as for $\mathbf{1 4}$ using $\mathrm{PtCl}_{2}\left(0.136 \mathrm{~g}, 5.11 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}(0.388 \mathrm{~g}, 1.02$ $\left.\mathrm{x} 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.529 \mathrm{~g}, 86.4 \%$.

Method B

Prepared as for $\mathbf{1 4}$ using $\left[\operatorname{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.182 \mathrm{~g}, 4.88 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$ $\left(0.371 \mathrm{~g}, 9.76 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.422 \mathrm{~g}, 84.2 \%$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 0.84(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 0.95\left(\mathrm{~d}, 36 \mathrm{H},{ }^{3} J_{H-H} 6.81 \mathrm{~Hz}, \underline{\mathrm{H}}_{3}\right), 3.87\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{H-P} 10.0\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.85\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}, m-\mathrm{CH}\right), 6.92\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.54(\mathrm{t}, 8 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.90 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.6(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}), 18.8\left(\mathrm{~s}, \underline{\mathrm{C}}_{3}\right), 23.9\left(\mathrm{~m},{ }^{1} J_{C-P} 42.3 \mathrm{~Hz}, \underline{\mathbf{C H}} \mathbf{H}_{2} \mathrm{P}\right), 85.8(\mathrm{~m}$, $\left.{ }^{3} J_{C-P} 3.07 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 101.9\left(\mathrm{~m},{ }^{2} J_{C-P} 6.34 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 127.9(\mathrm{~m}, m-\underline{\mathbf{C H}}), 131.1(\mathrm{~s}, p-$ $\underline{\mathbf{C H}}), 134.2\left(\mathrm{~m},{ }^{2} J_{C-P} 4.97 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 134.6\left(\mathrm{~m},{ }^{1} J_{C-P} 5.77 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 5.83\left(\mathrm{br}, J_{P-P_{t}} 3618 \mathrm{~Hz}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-2.98$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Pt}}-4399\left(\mathrm{t}, J_{P_{t-}} 3618 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Si}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$: C, 56.14 \%; H, 6.43 \%. Found; C, $56.03 \% ; \mathrm{H}, 6.39 \%$.

Synthesis of cis $-\left[\mathrm{PtCl}_{2}\left({ }_{\left({ }^{\mathrm{P}}\right.} \mathrm{Pr}_{3} \mathbf{S i C} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]($ cis -16$)$

Method A

Prepared as for $\mathbf{1 4}$ using $\mathrm{PtCl}_{2}\left(0.135 \mathrm{~g}, 5.07 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}(0.386 \mathrm{~g}, 1.02$ $\times 10^{-3} \mathrm{~mol}$). Isolated as a white solid. Yield: $0.407 \mathrm{~g}, 78.2 \%$.

Method B

Prepared as for $\mathbf{1 4}$ using $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.228 \mathrm{~g}, 6.11 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}_{\mathrm{C}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$ $\left(0.464 \mathrm{~g}, 1.22 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a white solid. Yield: $0.475 \mathrm{~g}, 75.8 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.41\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{SiCH}_{2}\right), 0.93\left(\mathrm{t}, 18 \mathrm{H},{ }^{3} J_{H-H} 7.31 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.82\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{H-P} 9.55 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.90\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.00 \mathrm{~Hz}, m-\mathrm{CH}\right), 6.97(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{C} \underline{\mathrm{H}})$, $7.58\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 8.92 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 16.3\left(\mathrm{~s}, \mathrm{Si} \underline{\mathbf{C H}}_{2}\right), 17.8\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 18.5\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2}\right), 23.9\left(\mathrm{~m},{ }^{1} J_{C-P} 46.1 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C H}}_{2} \mathrm{P}\right), 88.0\left(\mathrm{~m},{ }^{3} J_{C-P} 3.26 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 101.4\left(\mathrm{~m},{ }^{2} J_{C-P} 6.04 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.2\left(\mathrm{~m},{ }^{3} J_{C-P}\right.$ $5.25 \mathrm{~Hz}, m-\underline{\mathbf{C H}}), 129.0(\mathrm{~s}, p-\underline{\mathbf{C H}}), 131.1(\mathrm{~s}, o-\underline{\mathbf{C}} \mathrm{H}), 134.3\left(\mathrm{~m},{ }^{l} J_{C-P} 5.28 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 5.95\left(\mathrm{br}, J_{P-P t} 3608 \mathrm{~Hz}\right)$.
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-13.8$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Pt}}-4403\left(\mathrm{t}, J_{P t-P} 3608 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Si}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}: \mathrm{C}, 56.14 \% ; \mathrm{H}, 6.43 \%$. Found; C, $56.13 \% ; \mathrm{H}, 6.45 \%$.

Synthesis of trans $-\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]($ trans -16$)$

An NMR sample (borosilicate glass) of cis- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was placed before a 500 MW full spectrum mercury lamp for 30 min ; a dark orange precipitate separated from the solution, which could be re-dissolved upon agitation. Yield: 57.5% by ${ }^{1} \mathrm{H}$ NMR resonance integration.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.46\left(\mathrm{~m}, 12 \mathrm{H}, \operatorname{SiCH} \underline{H}_{2}\right), 0.92\left(\mathrm{t}, 18 \mathrm{H},{ }^{3} J_{H-H} 7.29 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.77\left(\mathrm{t}, 4 \mathrm{H},{ }^{2} J_{H-P} 4.55 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.09(\mathrm{~m}, 12 \mathrm{H}, m-$ and $p-\mathrm{CH}), 7.99(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 16.4\left(\mathrm{~s}, \mathrm{Si} \underline{C H}_{2}\right), 17.8\left(\mathrm{~s}, \underline{\mathrm{CH}}_{3}\right), 18.5\left(\mathrm{~s}, \underline{\mathrm{CH}}_{2}\right), 23.8\left(\mathrm{t},{ }^{1} J_{C-P} 23.8 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C H}_{2} \mathrm{P}}\right), 88.1\left(\mathrm{~m}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 100.7\left(\mathrm{t},{ }^{2} J_{C-P} 4.86 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.2\left(\mathrm{~d},{ }^{3} J_{C-P} 2.31 \mathrm{~Hz}, m-\underline{\mathbf{C}}\right)$, 128.8 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$), 130.9 ($\mathrm{s}, o-\underline{\mathbf{C H}}), 134.7\left(\mathrm{t},{ }^{1} J_{C-P} 5.96 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 11.49\left(\mathrm{br}, J_{P-P t} 2217 \mathrm{~Hz}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-13.3$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Pt}}-3993\left(\mathrm{t},{ }^{l} J_{P t-P} 2217 \mathrm{~Hz}\right)$.
cis- $\left[\mathrm{PtCl}_{2}\left({ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ was present in 42.5% abundance.

Synthesis of trans $\left.-\left[\mathrm{PdCl}_{2}{ }^{(}{ }^{\mathbf{i}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](17)$

Method A

Prepared as for 14 using $\mathrm{PdCl}_{2}\left(0.113 \mathrm{~g}, 6.41^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\left(0.487 \mathrm{~g}, 1.28 \times 10^{-}\right.$ $\left.{ }^{3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.526 \mathrm{~g}, 87.6 \%$.

Method B

Prepared as for $\mathbf{1 4}$ using $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.202 \mathrm{~g}, 7.09 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}$ $\left(0.539 \mathrm{~g}, 1.42 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.670 \mathrm{~g}, 85.1 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 0.97\left(\mathrm{~d}, 36 \mathrm{H},{ }^{3} J_{H-H} 6.48 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.74\left(\mathrm{t}, 4 \mathrm{H},{ }^{2} J_{H-P} 3.95\right.$ $\mathrm{Hz}, \underline{C H}_{2}$), 7.07 (br, $12 \mathrm{H}, m$ - and $p-\mathrm{C} \underline{\mathbf{H}}$), 7.96 (br, $8 \mathrm{H}, o-\mathrm{C} \underline{\mathbf{H}}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.2(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}), 18.4\left(\mathrm{~m}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{P}\right.$ and $\left.\underline{\mathbf{C}}_{3}\right), 85.3\left(\mathrm{t},{ }^{3} J_{C-P} 3.00 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 100.9\left(\mathrm{t},{ }^{2} J_{C-P} 5.56 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.0\left(\mathrm{~d},{ }^{3} J_{C-P} 4.99 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right), 128.9\left(\mathrm{t},{ }^{1} J_{C-P}\right.$ $23.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}$), 130.4 ($\mathrm{s}, p-\underline{\mathbf{C H}}$), 134.2 (t, ${ }^{2} J_{C-P} 6.10 \mathrm{~Hz}, o-\underline{\mathbf{C H}}$).
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 15.9$ (br).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-2.75$.
Elem. Anal.: Calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Si}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd}: \mathrm{C}, 61.14 \% ; \mathrm{H}, 7.04 \%$. Found; C, $61.07 \% ; \mathrm{H}$, 6.94 \%.

Synthesis of trans-[$\left.\mathrm{PdCl}_{2}\left({ }_{\left({ }^{(} \mathrm{Pr}_{3} \mathrm{SiC}^{2}\right.} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right](\mathbf{1 8)}$

Method A

Prepared as for $\mathbf{1 4}$ using $\mathrm{PdCl}_{2}\left(0.137 \mathrm{~g}, 7.71 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}_{\mathrm{C}}=\mathrm{CCH}_{2} \mathrm{PPh}_{2}(0.586 \mathrm{~g}, 1.54$ $\left.\times 10^{-3} \mathrm{~mol}\right)$. Isolated as an orange solid. Yield: $0.701 \mathrm{~g}, 88.6 \%$.

Method B

Prepared as for $\mathbf{1 4}$ using $\left[\mathrm{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.195 \mathrm{~g}, 6.84 \times 10^{-4} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PPh}_{2}$ $\left(0.520 \mathrm{~g}, 1.37 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as an orange solid. Yield: $0.850 \mathrm{~g}, 91.3 \%$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}} 0.45\left(\mathrm{~m}, 12 \mathrm{H}, \operatorname{SiC}_{2}\right), 0.91\left(\mathrm{t}, 18 \mathrm{H}, J_{H-H} 7.22 \mathrm{~Hz}, \underline{\mathrm{H}}_{3}\right), 1.24(\mathrm{~m}, 12 \mathrm{H}$, CH_{2}), $3.75\left(\mathrm{t}, 4 \mathrm{H},{ }^{2} J_{H-P} 3.87 \mathrm{~Hz}, \underline{\mathrm{H}}_{2} \mathrm{P}\right.$), 7.08 (br, $12 \mathrm{H}, m$ - and $p-\mathrm{CH}$), 7.94 (br, $8 \mathrm{H}, o-\mathrm{CH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 16.4\left(\mathrm{~s}, \mathrm{Si}_{\mathbf{C}}^{2}\right), 17.8\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 18.5\left(\mathrm{~s}, \underline{\mathbf{C H}}_{2}\right), 18.8\left(\mathrm{t},{ }^{1} J_{C \cdot P} 13.1 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C}}_{2} \mathrm{P}\right), 87.9\left(\mathrm{t},{ }^{3} J_{C-P} 2.99 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 100.8\left(\mathrm{t},{ }^{2} J_{C-P} 4.71 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.2(\mathrm{~m}, m-\underline{\mathbf{C}} \mathrm{H})$, $129.2\left(\mathrm{t},{ }^{1} J_{C-P} 24.3 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 130.9(\mathrm{~s}, p-\underline{\mathbf{C H}}), 134.7\left(\mathrm{t},{ }^{2} J_{C-P} 6.00 \mathrm{~Hz}, o-\mathbf{C H}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{P}} 15.9$ (br).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-13.8$.
Elem. Anal.: Calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Si}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd}: \mathrm{C}, 61.14 \% ; \mathrm{H}, 7.04 \%$. Found; C, $61.08 \% ; \mathrm{H}$, 7.00 \%.

Attempted synthesis of ${ }^{\mathbf{n}} \mathbf{B u}_{3} \mathbf{S n C} \equiv \mathbf{C C H}_{2} \mathbf{P C l}_{2}$

To a THF suspension of activated magnesium and $\mathrm{HgCl}_{2}\left(0.100 \mathrm{~g}, 3.68 \times 10^{-4} \mathrm{~mol}\right)$ was added drop-wise ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC}_{\mathrm{Sn}} \mathrm{CCH}_{2} \mathrm{Cl}\left(1.48 \mathrm{~g}, 4.07 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was brought to reflux for 4 h . After allowing to cool to ambient temperature the mixture was filtered into a THF solution of $\mathrm{PCl}_{3}\left(0.36 \mathrm{~cm}^{3}, 4.07 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$, resulting in a yellow solution that was stirred for 30 min . The solution was then allowed to warm to ambient temperature and stirred for 18 h , resulting in a suspended brown solid from which the solvent was removed under reduced pressure; the product was extracted with pentane and the filtrate was dried in vacuo to afford a crude brown oil, which was distilled at $98^{\circ} \mathrm{C}, 3.8 \times 10^{-1} \mathrm{mbar}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.86\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.44 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.64 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Sn}\right), 1.27(\mathrm{q}$, $6 \mathrm{H},{ }^{3} J_{H-H} 7.33 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.58 (quin, $6 \mathrm{H},{ }^{3} J_{H-H} 8.15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}$), $3.45(\mathrm{~m}, 0.18 \mathrm{H}$), 3.70 ($\left.\mathrm{s}, 0.5 \mathrm{H},{ }^{4} J_{H-S n} 9.21 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 11.3\left(\mathbf{C H}_{2} \mathrm{Sn}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 13.8\left(\mathbf{C H}_{2} \mathrm{Sn}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCl}\right), 13.9$ $\left(\mathbf{C H}_{3}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 17.3\left(\mathbf{C H}_{3}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu} 3 \mathrm{SnCl}\right), 27.1\left(\mathrm{CH}_{3} \mathbf{C H}_{2}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnCl}\right), 27.3$ $\left(\mathrm{CH}_{3} \mathbf{C H}_{2}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 28.2\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu} \mathbf{u}_{3} \mathrm{SnCl}\right), 29.3\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$, $31.2\left(\mathbf{C H}_{2} \mathrm{Cl}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 91.1\left(\mathbf{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$, $105.0\left(\mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{Cl}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$.
${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 48.9(\mathrm{~m})$.
${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}}-65.1\left({ }^{\mathrm{n}} \mathrm{Bu}_{3} \underline{\mathbf{S n}} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right), 146.3\left({ }^{\mathrm{n}} \mathrm{Bu}_{3} \underline{\mathbf{S n C l}}\right)$.

Attempted synthesis of $\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathbf{C C H}_{2} \mathbf{P C l}_{2}$ (19)

To an $\mathrm{Et}_{2} \mathrm{O}$ suspension of activated magnesium and $\mathrm{HgCl}_{2}\left(0.100 \mathrm{~g}, 3.68 \times 10^{-4} \mathrm{~mol}\right)$ was added drop-wise $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.81 \mathrm{~g}, 3.88 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was brought to reflux for 4 h . After allowing to cool to ambient temperature the mixture was filtered into a THF solution of $\mathrm{PCl}_{3}\left(0.33 \mathrm{~cm}^{3}, 3.88 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$, resulting in a yellow solution that was stirred for 30 min . The solution was then allowed to warm to ambient temperature and stirred for 18 h , resulting in a suspended yellow solid from which the solvent was removed under reduced pressure; the product was extracted with pentane and the filtrate was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{H}} 0.27(\mathrm{~s}, 9 \mathrm{H}), 0.35(\mathrm{~s}, 8 \mathrm{H}), 0.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.40(\mathrm{~s}, 8 \mathrm{H}), 1.50(\mathrm{~s}, 1.3 \mathrm{H})$, $1.66(\mathrm{~s}, 3.6 \mathrm{H}), 2.50\left(\mathrm{~d},{ }^{2} J_{H-P} 4.52 \mathrm{~Hz}\right), 2.57\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 14.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 2.65(\mathrm{~m}, 5 \mathrm{H}), 7.21-$ 7.25 (m, 9H, Cㅐㅐ), 7.66-7.22 (m, 6.5H, CH).
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 170.4\left(\mathrm{t},{ }^{2} J_{P-H} 14.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathbf{P} \mathrm{Pl}_{2}\right), 81.8(\mathrm{~m}),-27.4(\mathrm{br})$.

Attempted synthesis of ${ }^{i} \mathrm{Pr}_{3} \mathbf{S i C} \equiv \mathrm{CCH}_{2} \mathbf{P C l}_{2}(\mathbf{2 0})$

Synthesis attempted as for 19 using ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(1.29 \mathrm{~g}, 5.59 \times 10^{-3} \mathrm{~mol}\right), \mathrm{PCl}_{3}\left(0.48 \mathrm{~cm}^{3}\right.$, $5.59 \times 10^{-3} \mathrm{~mol}$) and THF. The crude product was isolated as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.11\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-P} 6.05 \mathrm{~Hz}, \mathrm{SiCH}_{3}\right), 2.54\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{2} J_{H-P}\right.$ $\left.14.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.53\left(\mathrm{~s}, 0.20 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.39\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 8.75 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 78.8$ (br), 81.4 (br), 170.2 (br), $170.8\left(\mathrm{t},{ }^{2} J_{P-H} 14.8 \mathrm{~Hz}, \mathbf{P C l}_{2}\right), 179.1$ (br). The crude product was distilled at $90^{\circ} \mathrm{C}, 6.4 \times 10^{-1}$ mbar.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.03(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 1.11\left(\mathrm{~d}, 28 \mathrm{H},{ }^{3} J_{H-P} 6.05 \mathrm{~Hz}, \mathrm{SiCH}_{3}\right), 1.18(\mathrm{t}, 5 \mathrm{H}, J 6.86$ $\mathrm{Hz}), 2.54\left(\mathrm{~d}, 0.2 \mathrm{H},{ }^{2} J_{H-P} 14.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.53\left(\mathrm{~s}, 0.8 \mathrm{H}, \underline{\mathrm{H}}_{2} \mathrm{Cl}\right), 4.39\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 8.75 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-2.89(\mathrm{br}), 33.9(\mathrm{br}), 170.2(\mathrm{br}), 170.8\left(\mathrm{t},{ }^{2} \boldsymbol{J}_{P-H} 14.8 \mathrm{~Hz}\right), 179.1$ (br, $\left.\underline{\mathbf{P}}_{2}\right)$.

Attempted synthesis of ${ }^{\mathbf{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ (21)

To an $\mathrm{Et}_{2} \mathrm{O}$ suspension of activated magnesium and $\mathrm{I}_{2}\left(0.100 \mathrm{~g}, 3.68 \times 10^{-4} \mathrm{~mol}\right)$ was added drop-wise ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(1.84 \mathrm{~g}, 5.09 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was brought to reflux for 4 h . After allowing to cool to ambient temperature the mixture was filtered into an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{PCl}\left(1.07 \mathrm{~g}, 5.09 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$, resulting in a yellow solution with a suspended white solid that was stirred for 30 min . The suspension was then allowed to warm to ambient temperature and stirred for 18 h . The suspension was filtered and the filtrate was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.88\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.15 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.01\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-H} 7.23 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.19\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Sn}\right.$), $1.31\left(\mathrm{q}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.67 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$), 1.65 (quin, $6 \mathrm{H},{ }^{3} J_{H-H}$ $\left.8.11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right), 2.91\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.35 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NC} \underline{\mathrm{H}}_{2}\right), 3.18(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 3.63\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{H-P} 3.27 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 51.2(\mathrm{~m}), 51.3(\mathrm{~m}), 60.9\left(\mathrm{br}, \mathrm{CH}_{2} \underline{\mathbf{P}}\left(\mathrm{NEt}_{2}\right)_{2}\right)$.
${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Sn}} 128.8$.
Standing for 30 min at ambient temperature afforded a viscous red oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.93\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.14 \mathrm{~Hz}\right), 1.32(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}), 2.89$ (m, 5H).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 26.2(\mathrm{~m}), 51.3(\mathrm{~m}), 51.4(\mathrm{~m}) 57.0\left(\mathrm{dm},{ }^{2} J_{P-P} 79.8 \mathrm{~Hz}\right), 64.9(\mathrm{~m}), 70.5(\mathrm{dm}$, $\left.{ }^{2} J_{P-P} 79.8 \mathrm{~Hz}\right), 70.8\left(\mathrm{dm},{ }^{2} J_{P-P} 79.8 \mathrm{~Hz}\right)$.

Attempted synthesis of ${ }^{i} \mathrm{Pr}_{3} \mathbf{S i C} \equiv \mathrm{CCH}_{2} \mathbf{P}\left(\mathrm{NEt}_{2}\right)_{2}(22)$

Synthesis was attempted as for 21 using ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(1.28 \mathrm{~g}, 5.55 \times 10^{-3} \mathrm{~mol}\right)$ and $\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{PCl}\left(1.17 \mathrm{~g}, 5.55 \times 10^{-3} \mathrm{~mol}\right)$. The crude product was isolated as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.94(\mathrm{~m}, 26 \mathrm{H}), 1.05(\mathrm{~m}, 18 \mathrm{H}), 1.18(\mathrm{~m}, 18 \mathrm{H}), 1.25(\mathrm{~m}, 25 \mathrm{H}), 2.55(\mathrm{~d}, 1.2 \mathrm{H}$,
$\left.{ }^{3} J_{H-P} 4.61 \mathrm{~Hz}\right), 2.92(\mathrm{~m}, 17 \mathrm{H}), 3.18(\mathrm{~m}, 17 \mathrm{H}), 4.16(\mathrm{br}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 83.6$ (br), 85.3 (br), 118.2 (br), 126.3 (br), 130.0 (br), 153.5 (br, $\left.\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}\right)$.

The yellow oil rapidly turned pink, and was distilled at $41^{\circ} \mathrm{C}, 1.3 \times 10^{-1} \mathrm{mbar}$ to afford a colourless oil which turned pink again over 2 days.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.94\left(\mathrm{t}, 38 \mathrm{H},{ }^{3} J_{H-H} 7.05 \mathrm{~Hz}\right), 1.05\left(\mathrm{t}, 14 \mathrm{H},{ }^{3} J_{H-H} 7.05 \mathrm{~Hz}\right), 1.16(\mathrm{~m}, 9 \mathrm{H}), 1.66$ (s, 1H), 2.35 (q, 2H, J7.12 Hz), $3.00(\mathrm{~m}, 42 \mathrm{H})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 3.24(\mathrm{br}), 18.6(\mathrm{br}), 26.3(\mathrm{br}), 118.2(\mathrm{br}), 153.4\left(\mathrm{br}, \mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}\right)$.

Synthesis of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(23)$

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(1.04 \mathrm{~g}, 5.84 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2.5 \mathrm{M}$, $\left.2.34 \mathrm{~cm}^{3}, 5.84 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was stirred for $30 \mathrm{~min} . \mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(1.25 \mathrm{~g}$, $6.00 \times 10^{-3} \mathrm{~mol}$) in THF was added at $-78^{\circ} \mathrm{C}$ and stirred for 30 min then allowed to warm to ambient temperature. After stirring for 18 h the solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a brown oil. Yield: 1.84 g , 90.0 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.25\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-P} 4.61 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.43(\mathrm{~d}\right.$, $\left.2 \mathrm{H},{ }^{2} J_{H-P} 1.36 \mathrm{~Hz}, \underline{C H}_{2} \mathrm{P}\right), 2.52(\mathrm{~m}, 0.44 \mathrm{H}), 7.24(\mathrm{br}, 3 \mathrm{H}, o-, p-\mathrm{C} \underline{\mathbf{H}}), 7.72(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{C} \underline{\mathbf{H}})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.56\left(\mathrm{~s}, \mathrm{Si}\left(\underline{\mathbf{C H}_{3}}\right)_{2}\right), 1.07\left(\mathrm{~d},{ }^{2} J_{C-P} 11.9 \mathrm{~Hz},\left(\mathrm{P}\left(\mathrm{Si}\left(\underline{\mathbf{C}} \mathrm{H}_{3}\right)_{3}\right)_{2}\right), 5.51\left(\mathrm{~d},{ }^{1} J_{C-}\right.\right.$ $\left.{ }_{P} 23.2 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{P}\right), 83.3\left(\mathrm{~d},{ }^{3} J_{C-P} 3.74 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 109.3\left(\mathrm{~s}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 128.2(\mathrm{~s}, m-\mathbf{C H})$, 129.6 ($\mathrm{s}, p-\underline{\mathrm{CH}}$), 134.2 ($\mathrm{s}, o-\underline{\mathrm{CH}}$), 137.7 ($\mathrm{s}, i-\underline{\mathrm{C}}$).
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-158.9\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-84.1\left(\mathrm{~m}, \underline{\mathbf{P}} \mathrm{SiCH}_{3}\right)\right.$.
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.8\left(\mathrm{P}\left(\underline{\mathbf{S i}}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 3.47\left(\underline{\mathbf{S i}}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{Si}_{3} \mathrm{P}: \mathrm{C}, 58.29$ \%; H, 8.86 \%. Found; C, 58.18 \%; H, 8.71 \%.

Synthesis of ${ }^{\mathbf{i}} \mathbf{P r}_{3} \mathbf{S i C} \equiv \mathbf{C C H}_{2} \mathbf{P}\left(\text { SiMe }_{3}\right)_{2}(24)$

Prepared as for 23 using ${ }^{n} \operatorname{BuLi}\left(2.5 \mathrm{M}, 1.64 \mathrm{~cm}^{3}, 4.10 \times 10^{-3} \mathrm{~mol}\right), \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}(0.73 \mathrm{~g}, 4.10 \mathrm{x}$ $\left.10^{-3} \mathrm{~mol}\right)$ and ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(1.00 \mathrm{~g}, 4.35 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a red oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.24\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{P}} 4.56 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13(\mathrm{br}, 3 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 1.20(\mathrm{br}, 21 \mathrm{H}\right.$, CH_{3}), 2.45 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-161.4\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-84.5\left(\mathrm{~m}, \underline{\mathbf{P}} \mathrm{SiCH}_{3}\right)\right.$.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathbf{2 5})$

Prepared as for 23 using ${ }^{n} \operatorname{BuLi}\left(2.5 \mathrm{M}, 1.26 \mathrm{~cm}^{3}, 3.15 \times 10^{-3} \mathrm{~mol}\right), \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}(0.56 \mathrm{~g}, 3.15 \mathrm{x}$ $\left.10^{-3} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.76 \mathrm{~g}, 3.31 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.27\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-P} 4.48 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.31\left(\mathrm{~d}, 1.3 \mathrm{H},{ }^{3} J_{H-P} 4.46 \mathrm{~Hz}\right.\right.$, $\mathrm{P}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.69\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{SiC} \underline{\mathbf{H}}_{2}\right), 0.82\left(\mathrm{t}, 4 \mathrm{H}, J_{H-P} 7.09 \mathrm{~Hz}\right), 0.99\left(\mathrm{t}, 5 \mathrm{H}, J_{H-P} 7.20 \mathrm{~Hz}\right), 1.06(\mathrm{t}$, $9 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.56 (br m, $25 \mathrm{H}, \mathrm{CH}_{2}$), 2.07 (t, $2.3 \mathrm{H}, J_{H-P} 7.08 \mathrm{~Hz}$), $2.17(\mathrm{~s}, 1.5 \mathrm{H}), 2.44$ (d, $2 \mathrm{H},{ }^{2} J_{H-P} 0.89 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $2.55(\mathrm{~m}, 1.2 \mathrm{H}), 3.56\left(\mathrm{~s}, 0.6 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-159.9\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-84.3(\mathrm{~m}, \underline{\mathbf{P S i C H}})_{3}\right)$.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{2}(26)$

Prepared as for 23 using ${ }^{n} \mathrm{BuLi}\left(2.5 \mathrm{M}, 1.32 \mathrm{~cm}^{3}, 3.31 \times 10^{-3} \mathrm{~mol}\right), \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}(0.59 \mathrm{~g}, 3.31 \mathrm{x}$ $\left.10^{-3} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC}=\mathrm{CCH}_{2} \mathrm{Cl}\left(0.95 \mathrm{~g}, 3.48 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a brown oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.28\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-P} 4.46 \mathrm{~Hz}, \mathrm{P}\left(\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.76\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiC} \underline{\mathbf{H}}_{2}\right), 0.97(\mathrm{t}, 9 \mathrm{H}\right.$, ${ }^{3} J_{H-H} 7.17 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.44\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 0.95 \mathrm{~Hz}, \underline{\mathrm{H}}_{2} \mathrm{P}\right)$, 2.57 (m, 1.2H).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-159.9\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-84.8\left(\mathrm{~m}, \underline{\mathbf{P}} \mathrm{SiCH}_{3}\right)\right.$.

Synthesis of $\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (27)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{Me}_{2} \mathrm{PhSiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.29 \mathrm{~g}, 8.49 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added neat $\mathrm{I}_{2}\left(0.47 \mathrm{~g}, 1.86 \times 10^{-3} \mathrm{~mol}\right)$ under a flow of argon and the mixture was stirred for 20 min, resulting in an orange solution that was allowed to warm to ambient temperature then stirred for 18 h . The resulting red mixture was filtered and stored as a red solution at ambient temperature under argon.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t}, \mathrm{Et}_{2} \mathrm{O}\right), 3.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 18.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.27(\mathrm{q}$, $\mathrm{Et}_{2} \mathrm{O}$), 7.22 (br, 2H, CH$), 7.67$ (br, $3 \mathrm{H}, \mathrm{CH}$).
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 113.4\left(\mathrm{t},{ }^{2} J_{P-H} 18.1 \mathrm{~Hz}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-21.2$.

Synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}$ (28)

Prepared as for 27 using $\mathrm{I}_{2}\left(1.76 \mathrm{~g}, 6.93 \times 10^{-3} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(1.17 \mathrm{~g}, 3.15 \mathrm{x}$ $10^{-3} \mathrm{~mol}$). Isolated as a red solution and stored at ambient temperature under argon.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.88\left(\mathrm{t}\right.$, pentane), $1.06\left(\mathrm{br}, \mathrm{SiCH}_{2}\right), 1.26(\mathrm{~m}$, pentane $), 1.41\left(\mathrm{~m}, \underline{\mathrm{C}}_{3}\right), 1.54$ (br, C \underline{H}_{2}), $3.12\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 17.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 113.8\left(\mathrm{t},{ }^{2} J_{P-H} 17.7 \mathrm{~Hz}\right)$.

Synthesis of ${ }^{\mathbf{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathbf{P I}_{2}$ (29)

Prepared as for 27 using $\mathrm{I}_{2}\left(0.31 \mathrm{~g}, 1.24 \times 10^{-3} \mathrm{~mol}\right)$ and ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}(0.23 \mathrm{~g}, 5.65$ $\left.\times 10^{-4} \mathrm{~mol}\right)$. Isolated as a red solution and stored at ambient temperature under argon.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.67\left(\mathrm{br}, \mathrm{CH}_{2}\right), 1.10\left(\mathrm{t}, \mathrm{Et}_{2} \mathrm{O}\right), 1.42\left(\mathrm{br}, \mathrm{CH}_{2}\right), 3.27\left(\mathrm{q}, \mathrm{Et}_{2} \mathrm{O}\right), 3.18(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{2} J_{H-P} 17.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 114.3\left(\mathrm{t},{ }^{2} J_{P-H} 17.9 \mathrm{~Hz}\right)$.

Attempted synthesis of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathbf{C C} \equiv \mathbf{P}$

To a pentane solution of ${ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{PI}_{2}\left(1.17 \mathrm{~g}, 3.15 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\operatorname{AgOTf}\left(1.78 \mathrm{~g}, 6.93 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was stirred for 10 min , resulting in a pale yellow solution with a suspended off-white solid. A pentane suspension of DABCO (0.78 $\mathrm{g}, 6.93 \times 10^{-3} \mathrm{~mol}$) was added drop-wise, resulting in a pale yellow solution with a suspended off-white solid that was stirred for 1 h ; the mixture was filtered to afford a pale yellow solution.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.12(\mathrm{~s}, 12 \mathrm{H}), 0.15(\mathrm{~s}, 8 \mathrm{H}), 0.88(\mathrm{t}$, pentane), $1.26(\mathrm{~m}$, pentane), $2.08(\mathrm{t}$, $10 \mathrm{H}, J 6.88 \mathrm{~Hz}$), $2.18(\mathrm{~s}, 5 \mathrm{H}), 2.24(\mathrm{br}, 30 \mathrm{H}), 3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right.$ of $\left.{ }^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{SiC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.

Synthesis of $\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathrm{CCH}_{2} \mathbf{P H}_{2}(\mathbf{3 0})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{Me}_{2} \mathrm{PhSiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.29 \mathrm{~g}, 8.17 \times 10^{-4} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{O}$ (excess), resulting in an orange solution that was stirred for 20 min . The solution was allowed to warm to ambient temperature then stirred for 4 h ; the solvent was removed under reduced pressure to afford a dark yellow oil. Yield: $0.150 \mathrm{~g}, 89.2 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.15 \mathrm{~Hz},{ }^{2} J_{H-P} 4.49 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 2.86$ $\left(\mathrm{dt}, 2 \mathrm{H},{ }^{1} J_{H-P} 191.6 \mathrm{~Hz},{ }^{3} J_{H-H} 7.15 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 7.70(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.50\left(\mathrm{~s}, \underline{\mathrm{C}}_{3}\right), 4.31\left(\mathrm{~d},{ }^{1} J_{C-P} 11.7 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{P}\right), 84.0\left(\mathrm{~d},{ }^{3} J_{C-P} 3.44 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 108.3\left(\mathrm{~s}, \mathrm{C} \equiv \underline{\mathbf{C C H}}_{2} \mathrm{P}\right), 128.2(\mathrm{~s}, p-\underline{\mathbf{C H}}), 129.7(\mathrm{~s}, o-\underline{\mathbf{C H}}), 134.1$ (s, m- $\left.\underline{\mathbf{C H}}\right), 137.7$ (s, $i-\underline{C}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-129.4\left(\mathrm{tt},{ }^{1} J_{P-H} 191.6 \mathrm{~Hz},{ }^{2} J_{P-H} 4.49 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.8$.

Synthesis of trans $-\left[\mathrm{PtCl}_{2}\left\{\mathrm{Me}_{2} \mathbf{P h S i C} \equiv \mathrm{CCH}_{2} \mathbf{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right](\mathbf{3 1})$

To a THF solution of $\mathrm{Me}_{2} \mathrm{PhSiC}=\mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.54 \mathrm{~g}, 1.55 \times 10^{-3} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{PtCl}_{2}\left(0.20 \mathrm{~g}, 7.75 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 20 min . The resulting brown mixture was allowed to warm to ambient temperature then stirred for 18 h . The solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo as a brown oil. Yield: $0.560 \mathrm{~g}, 75.6 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.38\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.49\left(\mathrm{t}, 36 \mathrm{H},{ }^{3} J_{H-P} 5.67 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.00\left(\mathrm{t}, 4 \mathrm{H}, J_{H-}\right.$ $\left.{ }_{P} 5.88 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}), 7.61(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 1.19\left(\mathrm{~s}, \underline{\mathrm{CH}}_{3}\right), 1.71\left(\mathrm{t},{ }^{2} J_{C-P} 9.15 \mathrm{~Hz}, \operatorname{Si}\left(\mathbf{C H}_{3}\right)_{3}\right), 4.71\left(\mathrm{t},{ }^{1} J_{C-P} 14.1 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{C H}}_{2} \mathrm{P}\right), 84.7\left(\mathrm{t},{ }^{3} J_{C-P} 2.94 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 105.8\left(\mathrm{t},{ }^{2} J_{C-P} 6.16 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 127.9(\mathrm{~s}, m-\mathbf{C H})$, 129.4 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$), 133.2 ($\mathrm{s}, o-\underline{\mathbf{C}} \mathrm{H}$), 134.0 ($\mathrm{s}, i-\underline{\mathbf{C}}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}}-97.9\left(\mathrm{~s},{ }^{l} J_{P-P t} 1919 \mathrm{~Hz}, \underline{\mathbf{P}}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Si}}-23.1\left(\mathrm{~s}, \mathrm{Me}_{2} \mathrm{Ph} \underline{\mathbf{S i}}\right), 7.80\left(\mathrm{~s}, \mathrm{P}\left(\underline{\mathbf{S i M e}_{3}}\right)_{2}\right)$
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-3696\left(\mathrm{t},{ }^{1} J_{P t-P} 1919 \mathrm{~Hz}\right)$.

Synthesis of $\mathbf{P h C} \equiv \mathbf{C C H}_{2} \mathbf{P P h}_{2}$ (32)

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{Ph}_{2} \mathrm{PH}\left(0.400 \mathrm{~g}, 2.15 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2.5 \mathrm{M}$, $1.02 \mathrm{~cm}^{3}, 2.15 \times 10^{-3} \mathrm{~mol}$) then the mixture was allowed to warm to ambient temperature. An
$\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.324 \mathrm{~g}, 2.15 \times 10^{-3} \mathrm{~mol}\right)$ was added at $-78^{\circ} \mathrm{C}$, resulting in a red-brown solution that was stirred for 30 min then allowed to warm to ambient temperature. After stirring for 18 h the solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a dark red oil. Yield: $0.290 \mathrm{~g}, 44.9 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 2.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 2.44 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.92-7.73$ (m, aromatic CH$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 19.4\left(\mathrm{~d},{ }^{1} J_{C-P} 19.2 \mathrm{~Hz}, \underline{\mathbf{C}}_{2} \mathrm{P}\right), 83.6\left(\mathrm{~d},{ }^{2} J_{C-P} 5.82 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right), 86.7$ $\left(\mathrm{d},{ }^{3} J_{C-P} 4.34 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right.$), 124.4-138.4 (m, aromatic $\underline{\mathbf{C}}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.5\left(\mathrm{br} \mathrm{m},{ }^{2} J_{P-H} 6.77 \mathrm{~Hz}\right)$.

Synthesis of $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ (33)

Prepared as for 32 using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 2.27 \mathrm{~cm}^{3}, 5.67 \times 10^{-3} \mathrm{~mol}\right), \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}(1.01 \mathrm{~g}, 5.67 \mathrm{x}$ $\left.10^{-3} \mathrm{~mol}\right)$ and $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.850 \mathrm{~g}, 5.67 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a dark brown oil. Yield: 1.45 g, 87.6%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.30\left(\mathrm{~d}, 18 \mathrm{H},{ }^{3} J_{H-P} 4.55 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 1.56 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $7.00(\mathrm{~m}, 3 \mathrm{H}, m$ - and $p-\mathbf{C H}), 7.48(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 1.09\left(\mathrm{~d},{ }^{2} J_{C-P} 11.7 \mathrm{~Hz}, \mathrm{Si}\left(\underline{\mathbf{C H}}_{3}\right)_{2}\right), 5.08\left(\mathrm{~d},{ }^{1} J_{C-P} 22.5 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{P}\right), 81.6$ $\left(\mathrm{d},{ }^{2} J_{C-P} 4.14 \mathrm{~Hz}, \mathrm{C} \equiv \underline{\mathbf{C C H}}{ }_{2} \mathrm{P}\right), 90.7\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 127.9(\mathrm{~m}, m-\underline{\mathbf{C H}}), 128.6(\mathrm{~s}, p-\underline{\mathbf{C H}}), 131.72$ (s, $o-\underline{\mathbf{C H}}), 131.9\left(\mathrm{~d},{ }^{4} J_{C-P} 10.43 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-158.8(\mathrm{br})$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 3.65$.

Attempted synthesis of $\mathbf{P h C} \equiv \mathbf{C C H}_{\mathbf{2}} \mathbf{P C l}_{\mathbf{2}} \mathbf{(3 4)}$

To a THF suspension of activated magnesium and $\mathrm{HgCl}_{2}\left(0.100 \mathrm{~g}, 3.68 \times 10^{-4} \mathrm{~mol}\right)$ was added drop-wise $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(0.552 \mathrm{~g}, 3.67 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was brought to reflux for 4 h . After allowing to cool to ambient temperature the mixture was filtered into a THF solution of $\mathrm{PCl}_{3}\left(0.320 \mathrm{~cm}^{3}, 3.67 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$, resulting in an orange solution that was stirred for 30 min . The solution was allowed to warm to ambient temperature then stirred for 18 h, resulting in a dark red solution from which the solvent was removed under reduced pressure; the product was extracted with pentane and the filtrate was dried in vacuo to afford a dark orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.66(\mathrm{~s}, 4 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 2 \mathrm{H}), 2.74\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 14.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $3.07\left(\mathrm{~d}, 3 \mathrm{H}, J_{H-P} 12.6 \mathrm{~Hz}\right), 3.22(\mathrm{~s}, 2 \mathrm{H}), 4.60\left(\mathrm{~d}, 4 \mathrm{H}, J_{H-P} 8.31 \mathrm{~Hz}\right), 6.98-7.77(\mathrm{~m}, 113 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-37.19(\mathrm{br}),-19.1(\mathrm{br}),-13.4(\mathrm{br}), 58.7\left(\mathrm{t}, J_{P-H} 4.88 \mathrm{~Hz}\right), 72.9(\mathrm{~m}), 83.6(\mathrm{t}$, $\left.J_{P-H} 8.60 \mathrm{~Hz}\right), 170.8\left(\mathrm{t},{ }^{2} J_{P-H} 14.5 \mathrm{~Hz}, \mathrm{CH}_{2} \underline{\mathbf{P}}\right), 178.2\left(\mathrm{q}, J_{P-H} 12.6 \mathrm{~Hz}\right), 178.6(\mathrm{br}), 179.0(\mathrm{~m})$, $199.5\left(\mathrm{t}, J_{P-H} 17.2 \mathrm{~Hz}\right)$.

Synthesis of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ (35)

To a THF suspension of activated magnesium and $\mathrm{HgCl}_{2}\left(0.100 \mathrm{~g}, 3.68 \times 10^{-4} \mathrm{~mol}\right)$ was added drop-wise $\mathrm{PhC} \equiv \mathrm{CCH}_{2} \mathrm{Cl}\left(1.00 \mathrm{~g}, 6.65 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was brought to reflux for 4 h . After allowing to cool to ambient temperature the mixture was filtered into a THF solution of $\operatorname{ClP}\left(\mathrm{NEt}_{2}\right)_{2}\left(1.39 \mathrm{~cm}^{3}, 6.65 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$, resulting in a red solution that was stirred for 30 min . The solution was allowed to warm to ambient temperature then stirred for 18 h, resulting in an orange solution from which the solvent was removed under reduced pressure; the product was extracted with pentane and the filtrate was dried in vacuo to afford a dark red oil. Yield: $1.46 \mathrm{~g}, 75.7 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.91\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.08 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.07\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 4.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{H-P} 7.13\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.03\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.59 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.17(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH}), 7.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.51 \mathrm{~Hz}\right.$, $o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 14.7\left(\mathrm{~d},{ }^{3} J_{C-P} 3.42 \mathrm{~Hz}, \underline{\mathbf{C H}_{3}}\right), 43.4\left(\mathrm{~d},{ }^{2} J_{C-P} 17.6 \mathrm{~Hz}, \underline{\mathbf{C H}_{2}}\right), 75.0(\mathrm{~s}$, $\underline{\mathbf{C H}_{2} \mathrm{P}}$), $105.9\left(\mathrm{~d},{ }^{3} J_{C-P} 14.1 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 126.7\left(\mathrm{~d}, J_{C-P} 1.35 \mathrm{~Hz}, p-\underline{\mathbf{C H}}\right), 128.2$ (s, $m-\underline{\mathbf{C}} \mathrm{H}$ and $o-\underline{\mathbf{C H}}), 137.4\left(\mathrm{~d},{ }^{4} J_{C-P} 16.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 209.9\left(\mathrm{~d},{ }^{2} J_{C-P} 11.3 \mathrm{~Hz}, \mathrm{C} \equiv \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{P}\right)$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 153.4\left(\mathrm{~m}, \mathrm{Cl} \underline{\mathbf{P}}\left(\mathrm{NEt}_{2}\right)_{2}\right), 118.2(\mathrm{~m}), 90.9\left(\mathrm{br}, \underline{\mathbf{P}}\left(\mathrm{NEt}_{2}\right)_{2}\right), 83.2(\mathrm{br}), 18.8$ (br).

Synthesis of $\mathbf{P h}\left\{\left(\mathbf{N E t}_{2}\right) \mathrm{ClP}\right\} \mathrm{C}=\mathbf{C}=\mathbf{C H}_{2} \mathbf{(3 6)}$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}(\mathbf{3 5})\left(0.545 \mathrm{~g}, 1.87 \times 10^{-3} \mathrm{~mol}\right.$ at $-78{ }^{\circ} \mathrm{C}$ was added drop-wise $\mathrm{HCl}\left(1.0 \mathrm{M}, 3.75 \mathrm{~cm}^{3}, 3.75 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was stirred for 20 min . The solution was allowed to warm to ambient temperature, resulting in a yellow solution with a suspended solid that was stirred for 18 h then filtered; the solvent was removed under reduced pressure to afford an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.81\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.08 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.90\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} J_{H-P}\right.$
$5.61 \mathrm{~Hz}), 4.91\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} J_{H-P} 6.26 \mathrm{~Hz}\right), 4.91\left(\mathrm{~m}, 2 \mathrm{H},{ }^{4} J_{H-P} 5.61 \mathrm{~Hz},{ }^{4} J_{H-P} 6.26 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.00(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 7.38 \mathrm{~Hz}, p-\mathbf{C H}\right), 7.11\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.38 \mathrm{~Hz}, m-\underline{\mathrm{CH}}\right), 7.50\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.21 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 13.9\left(\mathrm{~d},{ }^{3} J_{C-P} 6.27 \mathrm{~Hz}, \underline{\mathbf{C H}_{3}}\right), 43.9\left(\mathrm{~d},{ }^{2} J_{C-P} 14.0 \mathrm{~Hz}, \underline{\mathbf{C H}_{2}}\right), 77.6(\mathrm{~s}$, $\left.\underline{C H}_{2} \mathrm{P}\right), 105.3\left(\mathrm{~d}, J_{C-P} 39.3 \mathrm{~Hz}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 127.5\left(\mathrm{~d}, J_{C-P} 1.52 \mathrm{~Hz}, p-\underline{\mathbf{C}} \mathrm{H}\right), 127.9(\mathrm{~s}, o-\underline{\mathbf{C}} \mathrm{H})$, 128.9 (s, m- $\underline{\mathbf{C}} \mathrm{H}$), 135.4 ($\mathrm{d}, J_{C-P} 25.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}$), 210.5 (d, $J_{C-P} 8.25 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 121.9$ (br).

Attempted synthesis of $\mathrm{Ph}(\mathrm{Cl})_{2} \mathrm{PC}=\mathrm{C}=\mathrm{CH}_{2}(37)$

Synthesis attempted as for $\mathbf{3 6}$ using $\mathrm{HCl}\left(1.0 \mathrm{M}, 2.27 \mathrm{~cm}^{3}, 2.27 \times 10^{-3} \mathrm{~mol}\right)$ and $\operatorname{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}(\mathbf{3 5})\left(0.300 \mathrm{~g}, 1.03 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 4.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{H-P} 2.17 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.05(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH}), 7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.44 \mathrm{~Hz}, p-\mathrm{CH}), 7.63\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.31 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 39.0\left(\mathrm{~d}, J_{C-P} 13.1 \mathrm{~Hz}\right), 79.3\left(\mathrm{~d}, J_{C-P} 9.22 \mathrm{~Hz}, \underline{\mathbf{C H}}_{2} \mathrm{P}\right), 110.4(\mathrm{~s}$, $\left.\underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 127.2\left(\mathrm{~d}, J_{C-P} 5.32 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right), 128.5\left(\mathrm{~d}, J_{C-P} 4.83 \mathrm{~Hz}\right), 129.0(\mathrm{~s}, p-\underline{\mathrm{CH}}), 129.7$ (s), $131.1\left(\mathrm{~d}, J_{C-P} 11.2 \mathrm{~Hz}, m-\mathbf{C H}\right), 147.8\left(\mathrm{~d}, J_{C-P} 31.2 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 210.1\left(\mathrm{~d}, J_{C-P} 30.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathbf{C C H}_{2} \mathrm{P}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 58.7(\mathrm{~m})$.

Synthesis of $\left[\mathbf{P h}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathbf{M e P}\right\} \mathrm{C}=\mathbf{C}=\mathrm{CH}_{2}\right]^{+}[\mathrm{I}]^{-}$(38)

To a solution of $\mathrm{Ph}\left\{\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{P}\right\} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}(\mathbf{3 5})\left(0.372 \mathrm{~g}, 1.28 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added drop-wise $\operatorname{MeI}\left(0.079 \mathrm{~cm}^{3}, 1.28 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was stirred for 20 min . The solution was allowed to warm to ambient temperature, resulting in an orange solution with a suspended solid that was stirred for 18 h then filtered; the solvent was removed under reduced pressure to afford a viscous dark orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.85\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.07 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of NEt), $1.12\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.07 \mathrm{~Hz}, \mathrm{C}_{3}\right.$ of $\left.\mathrm{Et}_{2} \mathrm{O}\right), 2.85\left(\mathrm{~d}, 3 \mathrm{H}, J_{H-P} 13.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.99\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ of NEt), $3.27\left(\mathrm{q}, 8 \mathrm{H},{ }^{3} J_{H-H} 6.96 \mathrm{~Hz}\right.$, CH_{2} of $\mathrm{Et}_{2} \mathrm{O}$), 5.48 ($\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{2} J_{H-P} 12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $7.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 6.97 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.23(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 7.52 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.44\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.56 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 14.1\left(\mathrm{~d},{ }^{3} J_{C-P} 3.37 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{NEt}_{2}\right), 15.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Et}_{2} \mathrm{O}\right), 41.4(\mathrm{~d}$, ${ }^{2} J_{C-P} 3.65 \mathrm{~Hz}, \mathbf{C H}_{2}$ of NEt_{2}), $41.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 65.9\left(\mathrm{~s}, \mathbf{C H}_{3}\right.$ of $\left.\mathrm{Et}_{2} \mathrm{O}\right), 96.2\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{P}\right), 128.2(\mathrm{~s}, p-$ $\underline{\mathbf{C H}}), 128.8\left(\mathrm{~d}, J_{C-P} 4.69 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 129.6(\mathrm{~s}, m-\underline{\mathbf{C}}), 130.6\left(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{CCH}_{2} \mathrm{P}\right), 216.1$ (m, $\left.\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 57.4(\mathrm{~m})$.

6.3 Chapter 3: In pursuit of conjugated phosphaalkenes and phosphaalkynes

Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})($ E/Z-39-2-Me)

To a toluene solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(1.91 \mathrm{~g}, 7.64 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(2-\mathrm{Me})\left(1.18 \mathrm{~g}, 7.64 \times 10^{-3} \mathrm{~mol}\right)$ in toluene and the mixture was stirred for 30 min . The resulting colourless solution was allowed to warm to ambient temperature, producing a bright yellow solution after 48 h . The solvent was concentrated under reduced pressure and cooled to $-78^{\circ} \mathrm{C}$; a yellow solid precipitated and was removed by filtration (later identified as 41-2-Me). The yellow filtrate was dried in vacuo as a yellow oil. Yield: $2.33 \mathrm{~g}, 64.1 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Z}-\mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.00\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 4.45 \mathrm{~Hz}, E-\mathrm{P}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.41$ $\left(\mathrm{s}, 9 \mathrm{H}, E-\mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.46\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 3.44 \mathrm{~Hz}, Z-\mathrm{P}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, E-\mathrm{CH} \underline{H}_{3}\right), 2.35(\mathrm{~s}$, $\left.3 \mathrm{H}, Z-\underline{C H}_{3}\right), 6.89(\mathrm{~m}, 4 \mathrm{H}, E-$ and $\mathrm{Z}, m-\mathrm{CH}), 6.96(\mathrm{~m}, 2 \mathrm{H}, E-$ and $Z-p-\underline{\mathrm{CH}}), 7.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.48 \mathrm{~Hz}, E-o-\mathbf{C H}), 7.37\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}, Z-o-\mathbf{C H}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 0.32\left(\mathrm{~d},{ }^{5} J_{H-P} 5.96 \mathrm{~Hz}, E-\operatorname{OSi}\left(\underline{\mathbf{C}} \mathrm{H}_{3}\right)_{3}\right), 0.51\left(\mathrm{~s}, \mathrm{Z}-\mathrm{OSi}\left(\mathbf{C H}_{3}\right)_{3}\right), 1.00(\mathrm{~d}$, $\left.{ }^{3} J_{H-P} 8.12 \mathrm{~Hz}, Z-\mathrm{PSi}\left(\underline{\mathbf{C}}_{3}\right)_{3}\right), 1.16\left(\mathrm{~d},{ }^{3} J_{H-P} 11.1 \mathrm{~Hz}, E-\mathrm{PSi}\left(\mathbf{C H}_{3}\right)_{3}\right), 19.5\left(\mathrm{~s}, E-\mathbf{C H}_{3}\right), 19.8(\mathrm{~s}, Z-$ $\underline{\mathbf{C H}}_{3}$), 125.4 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 125.6 ($\mathrm{s}, m-\underline{\mathbf{C H}}$), 128.7 ($\mathrm{s}, Z-o-\underline{\mathbf{C}} \mathrm{H}$), 128.9 ($\mathrm{s}, p-\underline{\mathbf{C} H}$), 128.9 ($\mathrm{s}, p-\underline{\mathbf{C H}}$), $129.5(E-o-\mathbf{C H}), 133.9\left(\mathrm{~d},{ }^{3} J_{C-P} 4.22 \mathrm{~Hz}, E-o-\mathbf{C C H}_{3}\right), 135.4\left(\mathrm{~d},{ }^{3} J_{C-P} 6.23 \mathrm{~Hz}, \mathrm{Z}-o-\mathbf{C C H}_{3}\right)$, $144.7\left(\mathrm{~d},{ }^{2} J_{C-P} 25.2 \mathrm{~Hz}, Z-i-\mathbf{C}\right), 146.1\left(\mathrm{~d},{ }^{2} J_{C-P} 9.30 \mathrm{~Hz}, E-i-\mathbf{C}\right), 213.3\left(\mathrm{~d},{ }^{1} J_{C-P} 63.5 \mathrm{~Hz}, Z-\right.$ $\underline{\mathbf{C}}=\mathrm{P}), 220.3\left(\mathrm{~d},{ }^{1} J_{C-P} 55.5 \mathrm{~Hz}, E-\underline{\mathbf{C}}=\mathrm{P}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 127.5(\mathrm{~s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}), 131.1(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}})$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-2.37(\mathrm{Z}-\mathrm{PSiMe} 3),-1.64(E-\mathrm{PSiMe} 3), 19.5\left(\mathrm{Z}-\mathrm{OSiMe}_{3}\right), 21.7(E-$ OSiMe_{3}).

Elem. Anal.: Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{Si}_{2} \mathrm{OP}: \mathrm{C}, 56.76 \%$; H, 8.45%. Found; C, 56.56%; H, 8.39%.

Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{CO})(2-\mathrm{Me})\right\}_{3} \mathrm{P}=\mathrm{O}(40-2-\mathrm{Me})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(1.21 \mathrm{~g}, 4.84 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(2-\mathrm{Me})\left(2.24 \mathrm{~g}, 1.45 \times 10^{-2} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was stirred for 30 min . The resulting colourless solution was allowed to warm to ambient temperature, resulting in a suspended yellow solid after 48 h from which the solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo as a yellow solid. Yield: 1.33 g , 68.5%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 2.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 6.84(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}), 6.93(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{CH}), 8.04(\mathrm{~m}, 3 \mathrm{H}$, $o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 21.1\left(\mathrm{~s}, \underline{\mathbf{C H}_{3}}\right), 125.7$ (s, $\left.p-\underline{\mathbf{C H}}\right), 131.5\left(\mathrm{~d},{ }^{4} J_{C-P} 15.8 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 132.1$ $\left(\mathrm{d},{ }^{5} J_{C-P} 1.26 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right), 132.4\left(\mathrm{~d},{ }^{5} J_{C-P} 2.70 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right), 138.8\left(\mathrm{~d},{ }^{4} J_{C-P} 3.62 \mathrm{~Hz}, o-\mathbf{C}\right), 140.8(\mathrm{~d}$, $\left.{ }^{2} J_{C-P} 33.3 \mathrm{~Hz}, i-\mathbf{C}\right), 208.9\left(\mathrm{~d},{ }^{1} J_{C-P} 34.5 \mathrm{~Hz}, \mathbf{C}=\mathrm{O}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 67.2\left(\mathrm{~m},{ }^{4} J_{P-H} 3.44 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 71.29$ \%; H, 5.19 \%. Found; C, $71.42 \% ; \mathrm{H}, 5.19 \%$.
Colourless crystals were grown over 3 days from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$. Crystal data: $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4.5} \mathrm{P}, \mathrm{M}_{\mathrm{w}}$ $=441.46$, Triclinic, $P-1$ (no. 2), $a=8.6463(4), b=12.0839(5), c=12.5443(4) \AA, \alpha=$ 106.344(2), $\beta=100.317(2), \gamma=110.101(2)^{\circ}, V=1166.29(8) \AA^{3}, \mathrm{Z}=2, \mathrm{D}_{c}=1.257 \mathrm{Mg} / \mathrm{m}^{3}, \mu$ $(\mathrm{Mo}-\mathrm{Ka})=0.149 \mathrm{~mm}^{-1}, \mathrm{~T}=173(2) \mathrm{K}, 14520$ independent reflections, full-matrix F^{2} refinement $R_{1}=0.0599, w R_{2}=0.1765$ on 5249 independent absorption corrected reflections [$I>2 \sigma(I)$; $\left.2 \theta_{\max }=55^{\circ}\right]$, 289 parameters.

Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(2-\mathrm{Me})$

Method A

To a pentane solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.112 \mathrm{~g}, 2.35 \times 10^{-4} \mathrm{~mol}\right)$ at -78 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{DABCO}\left(0.057 \mathrm{~g}, 5.17 \times 10^{-4} \mathrm{~mol}\right)$ in pentane, resulting in a suspended yellow solid that was stirred for 20 min . The suspension was allowed to warm to ambient temperature and an aliquot was extracted after 30 min and dried in vacuo as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.08(\mathrm{~s}, 9 \mathrm{H}), 0.00\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-P} 4.45 \mathrm{~Hz}\right), 0.28(\mathrm{~s}, 7.5 \mathrm{H}), 0.31(\mathrm{~s}, 5.5 \mathrm{H})$, $0.41(\mathrm{~s}, 13 \mathrm{H}), 0.46\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-P} 3.44 \mathrm{~Hz}\right), 2.32(\mathrm{~s}, 6.5 \mathrm{H}), 2.35(\mathrm{~s}, 4.5 \mathrm{H}), 6.89(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~m}$, $11 \mathrm{H}), 7.24\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.48 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 73.6$ (s$), 90.5(\mathrm{~s}), 127.7$ ($\left.\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}\right), 131.1$ ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$).
The suspension was stirred for 18 h and an aliquot was dried in vacuo as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.08(\mathrm{~s}, 9 \mathrm{H}), 0.00\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-P} 4.45 \mathrm{~Hz}\right), 0.28(\mathrm{~s}, 22 \mathrm{H}), 0.31(\mathrm{~s}, 8 \mathrm{H}), 0.41$ $(\mathrm{s}, 13 \mathrm{H}), 0.46\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-P} 3.44 \mathrm{~Hz}\right), 2.32(\mathrm{~s}, 6.5 \mathrm{H}), 2.35(\mathrm{~s}, 4.5 \mathrm{H}), 6.89(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~m}$, $11 \mathrm{H}), 7.24\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.48 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 73.6$ (s$), 90.5(\mathrm{~s}), 127.7$ ($\left.\mathrm{s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}\right), 131.1$ ($\left.\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}\right)$.
The suspension was brought to reflux for 4 h and the solvent was removed under reduced pressure to afford a yellow oil.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-13.5(\mathrm{~s}), 73.5(\mathrm{~s}), 90.5(\mathrm{~s}), 127.7(\mathrm{~s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}), 131.1$ (s, $\left.E-\mathrm{C}=\underline{\mathbf{P}}\right)$.

Method B-0.1 equivalents $\mathbf{N a O H}$

To a DME solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.052 \mathrm{~g}, 1.76 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaOH}\left(0.0007 \mathrm{~g}, 1.76 \times 10^{-5} \mathrm{~mol}\right)$ in DME, resulting in a suspended yellow solid that turned orange upon being allowed to warm to ambient temperature. The suspension was stirred for 4 h then the solvent was removed under reduced pressure; the product was washed with pentane to afford a yellow solid that was dried in vacuo, while solvent removal from the filtrate afforded a yellow oil.

Yellow solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.
Yellow oil:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.07(\mathrm{~s}, 0.5 \mathrm{H}), 0.09(\mathrm{~s}, 0.5 \mathrm{H}), 0.17(\mathrm{~s}, 1 \mathrm{H}), 0.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-P} 1.51 \mathrm{~Hz}\right), 0.25$ $(\mathrm{s}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 0.5 \mathrm{H}), 2.40(\mathrm{~s}, 3.5 \mathrm{H}), 2.47(\mathrm{~s}, 1.5 \mathrm{H}), 3.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 218.0 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.83(\mathrm{~m}$, $3 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.37\left(\mathrm{~d}, 0.25 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.94\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 8.05 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.0 \mathrm{~Hz}, \mathbf{P H}_{2}\right), 73.7$ (br).

Method C-0.1 equivalents $\mathbf{N a O H}$

To a DME solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.052 \mathrm{~g}, 1.76 \times 10^{-4} \mathrm{~mol}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaOH}\left(0.0007 \mathrm{~g}, 1.76 \times 10^{-5} \mathrm{~mol}\right)$ in DME, resulting in a suspended yellow solid that turned orange when allowed to warm to ambient temperature. The suspension was stirred for 4 h then the solvent was removed under reduced pressure; the product was washed with pentane to afford a yellow solid that was dried in vacuo, while solvent removal from the filtrate afforded a yellow oil.

```
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.07(\mathrm{~s}, 0.5 \mathrm{H}), 0.09(\mathrm{~s}, 0.5 \mathrm{H}), 0.17(\mathrm{~s}, 1 \mathrm{H}), 0.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-P} 1.51 \mathrm{~Hz}\right), 0.25\)
\((\mathrm{s}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 0.5 \mathrm{H}), 2.40(\mathrm{~s}, 3.5 \mathrm{H}), 2.47(\mathrm{~s}, 2 \mathrm{H}), 3.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{l} J_{H-P} 218.0 \mathrm{~Hz}, \mathrm{P} \underline{H}_{2}\right), 6.83(\mathrm{~m}\),
\(3 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.37\left(\mathrm{~d}, 0.25 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.94\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{3} J_{H-}\right.\)
\({ }_{H} 8.05 \mathrm{~Hz}\) ).
\({ }^{31} \mathrm{P}\) NMR \(\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.0 \mathrm{~Hz}, \underline{\mathrm{P}}_{2}\right),-32.8\left(\mathrm{dt},{ }^{1} J_{P-H} 220.3 \mathrm{~Hz}, J_{P-H} 7.20 \mathrm{~Hz}\right), 73.7\)
(br), 168.9 (s).
```


Method $\mathbf{D}-0.5$ equivalents $\mathbf{N a O H}$

Synthesis attempted as for method \mathbf{C} using $\mathrm{NaOH}\left(0.23 \mathrm{~g}, 7.72 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.154 \mathrm{~g}, 3.86 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.12(\mathrm{~s}, 7 \mathrm{H}), 2.56(\mathrm{~s}, 22 \mathrm{H}), 7.00(\mathrm{~m}, 33 \mathrm{H}), 7.37(\mathrm{br}, 1.5 \mathrm{H}), 7.58(\mathrm{br}, 4 \mathrm{H})$, 7.84 (br, 8H).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-31.9(\mathrm{~s}), 76.9(\mathrm{br})$.

Method $\mathrm{E}-1$ equivalent $\mathbf{N a O H}$

Synthesis attempted as for method C using $\mathrm{NaOH}\left(0.044 \mathrm{~g}, 1.48 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\left.\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.0059 \mathrm{~g}, 1.48 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 2.08(\mathrm{~s}, 0.4 \mathrm{H}), 2.10(\mathrm{~s}, 0.6 \mathrm{H}), 2.38(\mathrm{~s}, 0.6 \mathrm{H}), 2.40(\mathrm{~s}, 3.5 \mathrm{H}), 2.44(\mathrm{~s}, 0.8 \mathrm{H})$, $2.47(\mathrm{~s}, 0.8 \mathrm{H}), 3.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 218.0 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.83(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{br}, 0.2 \mathrm{H})$, $7.46\left(\mathrm{~d}, 0.8 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.94\left(\mathrm{~d}, 0.3 \mathrm{H},{ }^{3} J_{H-H} 8.05 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.0 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-32.8\left(\mathrm{dt},{ }^{1} J_{P-H} 220.3 \mathrm{~Hz}, J_{P-H} 7.20 \mathrm{~Hz}\right)$.

Method F

To a THF solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.0583 \mathrm{~g}, 1.96 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added DBU $\left(0.036 \mathrm{~g}, 2.36 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in a suspended dark yellow solid that was stirred for 20 min . An unidentified gas was also produced. The suspension was allowed to warm to ambient temperature and was stirred for 4 h then cooled to $-78^{\circ} \mathrm{C}$ and filtered; the solvent was removed from the filtrate under reduced pressure to afford a colourless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.74$ $\left(\mathrm{t}, 1 \mathrm{H}, J_{H-H} 5.30 \mathrm{~Hz}\right), 3.44\left(\mathrm{t}, 1 \mathrm{H}, J_{H-H} 5.30 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PH}_{2}\right)(2-\mathrm{Me})(41-2-\mathrm{Me})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(2-\mathrm{Me})\left(0.43 \mathrm{~g}, 2.84 \times 10^{-3} \mathrm{~mol}\right)\right.$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{H}_{2} \mathrm{O}\left(1.00 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 20 min . The solution was allowed to warm to ambient temperature then stirred for 4 h ; the solvent was removed under reduced pressure to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 218.4 \mathrm{~Hz}, \mathrm{P}_{2}\right), 6.84-6.95(\mathrm{br}, 4 \mathrm{H}$, CH).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.4 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right)$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(2-\mathrm{Me})(E / Z-42-2-\mathrm{Me})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.440 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(2-\mathrm{Me})\left(0.382 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min . The resulting colourless solution was allowed to warm to ambient temperature over 45 min , resulting in a yellow solution; an aliquot was dried in vacuo as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.21(\mathrm{~s}, 5 \mathrm{H}),-0.08(\mathrm{~s}, 11 \mathrm{H}),-0.01\left(\mathrm{~d}, 27 \mathrm{H},{ }^{3} J_{H-P} 4.05 \mathrm{~Hz}\right), 0.14(\mathrm{~s}, 7 \mathrm{H})$, $0.18(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 8 \mathrm{H}), 0.27(\mathrm{~s}, 13 \mathrm{H}), 0.31(\mathrm{~s}, 5 \mathrm{H}), 0.41(\mathrm{~s}, 25 \mathrm{H}), 0.46(\mathrm{~d}, 11 \mathrm{H}$, $\left.{ }^{3} J_{H-P} 3.60 \mathrm{~Hz}\right), 2.08(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 89 \mathrm{H}), 2.31(\mathrm{~s}, 15 \mathrm{H}), 2.34(\mathrm{~s}, 5 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 5 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 2.5 \mathrm{H}), 3.87(\mathrm{~d}, 0.1 \mathrm{H}$, $\left.{ }^{1} J_{H-P} 218.4 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 4.69\left(\mathrm{~d}, 3 \mathrm{H},{ }^{1} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 5.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 143.3 \mathrm{~Hz}, \mathrm{Z}-\right.$ $\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}), 6.69\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 6.80\left(\mathrm{t}, 25 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 36 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right)$, $7.23\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.13 \mathrm{~Hz}\right), 7.36(\mathrm{~m}, 4.5 \mathrm{H}), 7.97\left(\mathrm{~d}, 21 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-181.6\left(\mathrm{t},{ }^{1} J_{P-H} 184.6 \mathrm{~Hz}\right),-180.5\left(\mathrm{t},{ }^{1} J_{P-H} 186.6 \mathrm{~Hz}\right),-177.6(\mathrm{~s}),-176.6$ (s), $-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.4 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right.$), $-53.2(\mathrm{~s}),-51.9(\mathrm{~s}),-24.6(\mathrm{~s}),-17.3(\mathrm{~s}),-15.1(\mathrm{~s}),-13.6(\mathrm{br}$ $\left.\mathrm{d},{ }^{1} J_{P-H} 690.9 \mathrm{~Hz}\right),-9.19(\mathrm{~s}),-0.58(\mathrm{~s}), 11.4\left(\mathrm{~d},{ }^{1} J_{P-H} 246.0 \mathrm{~Hz}\right), 67.2\left(\mathrm{~m},{ }^{4} J_{P-H} 3.44 \mathrm{~Hz}\right), 73.3(\mathrm{~d}$, ${ }^{1} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}$), 73.7 (s), $90.6\left(\mathrm{~d},{ }^{1} J_{P-H} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}}\right.$), 116.3, 117.9 (s), 118.9 (s), 127.4 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 131.1 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 151.1 (s), 159.1 (s), 164.3 (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.20(\mathrm{~s}, 1 \mathrm{H}),-0.08(\mathrm{~s}, 5 \mathrm{H}), 0.00\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-P} 4.05 \mathrm{~Hz}\right), 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.18$ $(\mathrm{s}, 8 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 7 \mathrm{H}), 0.27(\mathrm{~s}, 21 \mathrm{H}), 0.31(\mathrm{~s}, 8 \mathrm{H}), 0.42(\mathrm{~s}, 11 \mathrm{H}), 0.46\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-P}\right.$ $3.60 \mathrm{~Hz}), 0.49(\mathrm{~s}, 4 \mathrm{H}), 2.16(\mathrm{~s}, 1.5 \mathrm{H}), 2.23(\mathrm{~s}, 48 \mathrm{H}), 2.32(\mathrm{~s}, 10 \mathrm{H}), 2.35(\mathrm{~s}, 2.5 \mathrm{H}), 2.37(\mathrm{~s}, 4 \mathrm{H})$, $2.40(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 5.5 \mathrm{H}), 2.51(\mathrm{~s}, 11.5 \mathrm{H}), 2.56(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 4.69\left(\mathrm{~d}, 3 \mathrm{H},{ }^{1} J_{H-P} 162.6\right.$ $\mathrm{Hz}, E-\mathrm{C}=\mathrm{PH}), 5.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right), 6.66\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 6.77(\mathrm{t}$, $\left.14 \mathrm{H},{ }^{3} J_{H-H} 7.74 \mathrm{~Hz}\right), 6.91(\mathrm{~m}, 46 \mathrm{H}), 7.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.40\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.30 \mathrm{~Hz}\right), 7.67\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.30 \mathrm{~Hz}\right), 7.89\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.97\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 8.07\right.$ $\mathrm{Hz}), 8.05(\mathrm{br}, 4 \mathrm{H}), 8.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.42 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-181.7\left(\mathrm{t},{ }^{1} J_{P-H} 184.6 \mathrm{~Hz}\right),-180.6\left(\mathrm{t},{ }^{1} J_{P-H} 186.6 \mathrm{~Hz}\right),-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 218.4\right.$ $\left.\mathrm{Hz}, \underline{\mathbf{P}}_{2}\right),-24.6(\mathrm{~s}),-17.2(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 690.9 \mathrm{~Hz}\right),-0.48(\mathrm{~s}), 11.7\left(\mathrm{~d},{ }^{1} J_{P-H} 246.0 \mathrm{~Hz}\right), 43.5$
(s$), 67.2(\mathrm{~s}), 73.3\left(\mathrm{~d},{ }^{1} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right), 73.7(\mathrm{~s}), 90.5\left(\mathrm{~d},{ }^{l} J_{P-H} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\boldsymbol{P H}\right)$, 116.3, 127.4 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 131.1 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 151.6 (s).

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.300 \mathrm{~g}, 1.69 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(2-\mathrm{Me})\left(0.260 \mathrm{~g}, 1.69 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 5 min , resulting in a yellow solution; an aliquot was dried in vacuo as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.20(\mathrm{~s}, 2 \mathrm{H}),-0.08(\mathrm{~s}, 2 \mathrm{H}), 0.00\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 4.46 \mathrm{~Hz}\right), 0.13(\mathrm{~s}, 5.5 \mathrm{H})$, $0.18(\mathrm{~s}, 5 \mathrm{H}), 0.23(\mathrm{~s}, 4.5 \mathrm{H}), 0.26(\mathrm{~s}, 13 \mathrm{H}), 0.29(\mathrm{~s}, 5 \mathrm{H}), 0.41(\mathrm{~s}, 4 \mathrm{H}), 0.46\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-P} 3.20 \mathrm{~Hz}\right)$, $2.16(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 32 \mathrm{H}), 2.32(\mathrm{~s}, 5.5 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 13 \mathrm{H}), 2.56(\mathrm{~s}, 2.5 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 4.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 5.02(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{1} J_{H-P} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.67\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.47 \mathrm{~Hz}\right), 6.77\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.78 \mathrm{~Hz}\right), 6.85(\mathrm{t}, 9 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 6.86 \mathrm{~Hz}\right), 6.89\left(\mathrm{t}, 15 \mathrm{H},{ }^{3} J_{H-H} 7.78 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 14 \mathrm{H},{ }^{3} J_{H-H} 7.17 \mathrm{~Hz}\right), 7.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.06\right.$ $\mathrm{Hz}), 7.39\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.10 \mathrm{~Hz}\right), 7.67\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.10 \mathrm{~Hz}\right), 7.89\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right), 7.97$ $\left(\mathrm{d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right), 8.04(\mathrm{br}, 4 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-24.6(\mathrm{~s}),-17.2(\mathrm{~s}), 67.2(\mathrm{~s}), 73.2\left(\mathrm{~d},{ }^{1} J_{P-H} 143.3 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 90.5(\mathrm{~d}$, ${ }^{1} J_{P-H} 162.6 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 127.4 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 131.1 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 151.6 (s$), 159.1$ (s$), 164.4$ (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.20(\mathrm{~s}, 1 \mathrm{H}),-0.08(\mathrm{~s}, 8.5 \mathrm{H}), 0.00\left(\mathrm{~d}, 15 \mathrm{H},{ }^{3} J_{H-P} 4.46 \mathrm{~Hz}\right), 0.14(\mathrm{~s}, 8 \mathrm{H})$, $0.18(\mathrm{~s}, 11 \mathrm{H}), 0.23(\mathrm{~s}, 7 \mathrm{H}), 0.27(\mathrm{~s}, 16 \mathrm{H}), 0.29(\mathrm{~s}, 6 \mathrm{H}), 0.31(\mathrm{~s}, 5 \mathrm{H}), 0.34(\mathrm{~s}, 1.5 \mathrm{H}), 0.42(\mathrm{~s}$, $15 \mathrm{H}), 0.46\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 3.20 \mathrm{~Hz}\right), 0.49(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 1.5 \mathrm{H}), 2.24(\mathrm{~s}, 61 \mathrm{H}), 2.32(\mathrm{~s}, 10 \mathrm{H}), 2.35$ $(\mathrm{s}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 4.5 \mathrm{H}), 2.51(\mathrm{~s}, 10 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 2 \mathrm{H}), 4.72$ $\left(\mathrm{d}, 3 \mathrm{H},{ }^{1} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 5.02\left(\mathrm{~d}, 3 \mathrm{H},{ }^{1} J_{H-P} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.66\left(\mathrm{~d}, 17 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.32 \mathrm{~Hz}), 6.77\left(\mathrm{t}, 17 \mathrm{H},{ }^{3} J_{H-H} 7.32 \mathrm{~Hz}\right), 6.85\left(\mathrm{t}, 6.5 \mathrm{H},{ }^{3} J_{H-H} 6.71 \mathrm{~Hz}\right), 6.87\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 690.9 \mathrm{~Hz}\right)$, $6.89\left(\mathrm{t}, 21 \mathrm{H},{ }^{3} J_{H-H} 7.23 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 16 \mathrm{H},{ }^{3} J_{H-H} 7.94 \mathrm{~Hz}\right), 7.24\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.34 \mathrm{~Hz}\right), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.40\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.03 \mathrm{~Hz}\right), 7.97\left(\mathrm{~d}, 15 \mathrm{H},{ }^{3} J_{H-H} 8.54 \mathrm{~Hz}\right), 8.04(\mathrm{br}, 3.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7(\mathrm{~s}),-24.6(\mathrm{~s}),-17.2(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 690.9 \mathrm{~Hz}\right),-0.48(\mathrm{~s}), 11.7(\mathrm{~s})$, 67.2 (s), $73.3\left(\mathrm{~d},{ }^{l} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right), 73.7(\mathrm{~s}), 90.6\left(\mathrm{~d},{ }^{1} J_{P-H} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathbf{P H}\right), 116.3$, 127.4 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 131.1 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 151.6 (s).

Method C

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.780 \mathrm{~g}, 4.38 \times 10^{-3} \mathrm{~mol}\right)$ at $60^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(2-\mathrm{Me})\left(0.677 \mathrm{~g}, 4.38 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was brought to reflux for 1 h ; an aliquot was dried in vacuo as a yellow oil and 5.2 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.20(\mathrm{~s}, 0.5 \mathrm{H}),-0.08(\mathrm{~s}, 1.5 \mathrm{H}), 0.00\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-P} 4.41 \mathrm{~Hz}\right), 0.14(\mathrm{~s}, 5.5 \mathrm{H}$, Z- SiMe_{3}), 0.18 (s, 2H), $0.23(\mathrm{~s}, 1 \mathrm{H}), 0.27\left(\mathrm{~s}, 11.5 \mathrm{H}, E-\mathrm{SiMe}_{3}\right), 0.29(\mathrm{~s}, 14 \mathrm{H}), 0.41$ (s, 4H), 0.46 $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J_{H-P} 3.48 \mathrm{~Hz}\right), 2.24(\mathrm{~s}, 16.5 \mathrm{H}), 2.32\left(\mathrm{~s}, 5 \mathrm{H}, E-\mathrm{CH}_{3}\right), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.37\left(\mathrm{~s}, 2 \mathrm{H}, Z-\mathrm{CH}_{3}\right)$, $2.51(\mathrm{~s}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 0.5 \mathrm{H}), 4.72\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{1} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 5.02\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 143.3\right.$ $\mathrm{Hz}, Z-\mathrm{C}=\mathrm{PH}), 6.67\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.77\left(\mathrm{t}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.58 \mathrm{~Hz}), 6.90\left(\mathrm{t}, 6.5 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 7.05\left(\mathrm{br}, 9 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.24(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 7.38\left(\mathrm{br}, 9 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.67\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 7.89\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{3} J_{H-H} 7.80\right.$ $\mathrm{Hz}), 7.97\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 8.04(\mathrm{br}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-5.29\left(\mathrm{br}, \underline{\mathbf{P P h}}_{3}\right), 67.2(\mathrm{~s}), 73.2\left(\mathrm{~d},{ }^{1} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right), 90.5\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $162.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 116.3 (s), 127.3 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 131.0 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 151.5 (s), 164.3 (s).

After 5 h at reflux an aliquot was extracted and dried in vacuo as a yellow oil; 4.1 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.08(\mathrm{~s}, 1 \mathrm{H}), 0.00\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-P} 4.47 \mathrm{~Hz}\right), 0.14\left(\mathrm{~s}, 9.5 \mathrm{H}, \mathrm{Z}-\mathrm{SiMe}_{3}\right), 0.18(\mathrm{~s}$, $2 \mathrm{H}), 0.23(\mathrm{~s}, 1.5 \mathrm{H}), 0.27\left(\mathrm{~s}, 19 \mathrm{H}, E-\mathrm{SiMe}_{3}\right), 0.29(\mathrm{~s}, 44 \mathrm{H}), 0.41(\mathrm{~s}, 2.5 \mathrm{H}), 0.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-P}\right.$ $3.89 \mathrm{~Hz}), 0.48(\mathrm{~s}, 0.5 \mathrm{H}), 2.15(\mathrm{~s}, 0.5 \mathrm{H}), 2.24(\mathrm{~s}, 16.5 \mathrm{H}), 2.31\left(\mathrm{~s}, 7 \mathrm{H}, E-\mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 3.5 \mathrm{H}, ~ Z-$ $\left.\mathrm{CH}_{3}\right), 2.40(\mathrm{~s}, 1.5 \mathrm{H}), 2.46(\mathrm{~s}, 1.5 \mathrm{H}), 2.50(\mathrm{~s}, 9 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 3.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 217.9 \mathrm{~Hz}\right.$, P \underline{H}_{2}), $4.72\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{l} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 5.01\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{l} J_{H-P} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right), 6.67$ $\left(\mathrm{d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.78\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.58 \mathrm{~Hz}\right), 6.90(\mathrm{t}, 9 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.97(\mathrm{~m}, 3 \mathrm{H}), 7.05\left(\mathrm{br}, 7.5 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.41 \mathrm{~Hz}), 7.39\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}\right), 7.67\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 7.89(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.97\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 8.04(\mathrm{br}, 3 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 217.8 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-5.27\left(\mathrm{br}, \underline{\mathbf{P}}_{3}\right), 11.6(\mathrm{~s}), 67.2(\mathrm{~s}), 73.2(\mathrm{~d}$, $\left.{ }^{l} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right), 73.7(\mathrm{~s}), 90.5\left(\mathrm{~d},{ }^{l} J_{P-H} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 116.3$ (s), 127.6 (s, E $\mathrm{C}=\underline{\mathbf{P}}$), 131.0 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 151.5 (s), 164.3 (s).

After 18 h at reflux the solution was cooled to ambient temperature and the solvent was removed under reduced pressure to afford a yellow oil; 4.5 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Z}-\mathrm{SiMe}_{3}\right), 0.18(\mathrm{~s}, 1.5 \mathrm{H}), 0.23$ (s, 1H), 0.27 (s, 13.5H, $E-$ $\left.\mathrm{SiMe}_{3}\right), 0.31(\mathrm{~s}, 2 \mathrm{H}), 0.49(\mathrm{~s}, 0.5 \mathrm{H}), 2.16(\mathrm{~s}, 0.5 \mathrm{H}), 2.24(\mathrm{~s}, 19 \mathrm{H}), 2.32\left(\mathrm{~s}, 5 \mathrm{H}, E-\mathrm{CH}_{3}\right), 2.35$ (s, $0.5), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Z}-\mathrm{CH}_{3}\right), 2.40(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3.5 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 0.5 \mathrm{H}), 2.61(\mathrm{~s}$, $0.5 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 3.88\left(\mathrm{~d}, 1.2 \mathrm{H},{ }^{l} J_{H-P} 217.9 \mathrm{~Hz}, \underline{\mathrm{H}}_{2}\right), 4.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{l} J_{H-P} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right)$,
$5.01\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right), 6.66\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.77\left(\mathrm{t}, 5.5 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right)$, $6.84\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.58 \mathrm{~Hz}\right), 6.89\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.99(\mathrm{~m}$, $3.5 \mathrm{H}), 7.05\left(\mathrm{br}, 19 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.39\left(\mathrm{br}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.41 \mathrm{~Hz}), 7.89\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.97\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 8.04(\mathrm{br}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-99.7\left(\mathrm{t},{ }^{1} J_{P-H} 217.8 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-17.2(\mathrm{~s}),-5.27\left(\mathrm{br}, \underline{\mathbf{P P h}}_{3}\right), 11.7$ (s), 67.2 (s), 73.3 ($\mathrm{d},{ }^{l} J_{P-H} 143.3 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}$), 73.7 (s$), 90.5\left(\mathrm{~d},{ }^{1} J_{P-H} 162.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right.$), 116.3 (s).

Synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\right.$ PSiMe $\left._{3}\right)(3-\mathrm{Me})(\boldsymbol{E} / Z-39-3-\mathrm{Me})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.046 \mathrm{~g}, 1.84 \times 10^{-4} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{Me})\left(0.0284 \mathrm{~g}, 1.84 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that was warmed to ambient temperature and turned yellow; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.01(\mathrm{~s}, 5 \mathrm{H}), 0.05(\mathrm{~s}, 44 \mathrm{H}), 0.09\left(\mathrm{~d}, 25 \mathrm{H},{ }^{3} J_{H-P} 4.32 \mathrm{~Hz}\right), 0.25(\mathrm{~s}, 6 \mathrm{H}), 0.28$ $(\mathrm{s}, 10 \mathrm{H}), 0.31\left(\mathrm{~d}, 12.5 \mathrm{H},{ }^{3} J_{H-P} 4.32 \mathrm{~Hz}\right), 0.32(\mathrm{~s}, 10 \mathrm{H}), 0.44(\mathrm{~s}, 22 \mathrm{H}), 0.46\left(\mathrm{~d}, 47 \mathrm{H},{ }^{3} J_{H-P} 3.84\right.$ $\mathrm{Hz}), 0.57\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-P} 4.81 \mathrm{~Hz}\right), 0.65(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 18 \mathrm{H}), 2.06(\mathrm{~s}, 9 \mathrm{H}), 4.73\left(\mathrm{~d}, 0.1 \mathrm{H},{ }^{1} J_{H-P}\right.$ $153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}), 5.22\left(\mathrm{~d}, 0.1 \mathrm{H},{ }^{1} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 6.87\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right), 6.94$ $\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.31 \mathrm{~Hz}\right), 7.00(\mathrm{~m}, 5 \mathrm{H}), 7.04\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.55 \mathrm{~Hz}\right), 7.23\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.54 \mathrm{~Hz}\right)$, $7.26(\mathrm{~s}, 3 \mathrm{H}), 7.44(\mathrm{~s}, 7 \mathrm{H}), 7.46(\mathrm{~s}, 3 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-252.1,\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\right),-236.8\left(\mathrm{~s}, \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\right),-86.6(\mathrm{~s}),-83.8\left(\mathrm{~d}, J_{P}\right.$ $\left.{ }_{P} 52.3 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P} 52.3 \mathrm{~Hz}\right),-24.6(\mathrm{~s}),-17.5(\mathrm{~s}),-13.5(\mathrm{~s}),-9.17(\mathrm{~s}),-1.23(\mathrm{~s}), 65.9(\mathrm{~s}, E-$ $\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), $67.4(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 131.2(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}}), 133.4(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}}), 227.2(\mathrm{~s})$.

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.05(\mathrm{~s}, 13 \mathrm{H}), 0.08\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 4.80 \mathrm{~Hz}\right), 0.18(\mathrm{~s}, 13 \mathrm{H}), 0.25(\mathrm{~s}, 14 \mathrm{H}), 0.28$ $(\mathrm{s}, 26 \mathrm{H}), 0.32(\mathrm{~s}, 38 \mathrm{H}), 0.44(\mathrm{~s}, 7 \mathrm{H}), 0.46\left(\mathrm{~d}, 14 \mathrm{H},{ }^{3} J_{H-P} 3.62 \mathrm{~Hz}\right), 1.99(\mathrm{~s}, 1.5 \mathrm{H}), 2.02(\mathrm{~s}, 12 \mathrm{H})$, $2.03(\mathrm{~s}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 6.85\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 689.5 \mathrm{~Hz}\right), 6.87\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.68 \mathrm{~Hz}\right)$, $6.94\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.31 \mathrm{~Hz}\right), 7.01\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.03 \mathrm{~Hz}\right), 7.04\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.31 \mathrm{~Hz}\right), 7.22(\mathrm{~s}$, $1.5 \mathrm{H}), 7.25\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 6.16 \mathrm{~Hz}\right), 7.43(\mathrm{~s}, 2.5 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 8.05$ ($\mathrm{s}, 5 \mathrm{H}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-30.5\left(\mathrm{~d}, J_{P-P} 17.5 \mathrm{~Hz}\right),-30.2(\mathrm{~s}),-29.9\left(\mathrm{~d}, J_{P-P} 17.5 \mathrm{~Hz}\right),-24.6(\mathrm{~s}),-17.5$ (s), -15.1 (dd, $\left.J_{P-P} 14.8 \mathrm{~Hz},{ }^{1} J_{P-H} 729.7 \mathrm{~Hz}\right),-13.5\left(\mathrm{~d},{ }^{l} J_{P-H} 689.5 \mathrm{~Hz}\right),-9.17(\mathrm{~s}),-1.23(\mathrm{~s}),-0.89$ (d, $J_{P-P} 14.8 \mathrm{~Hz}$), 65.9 ($\left.{ }^{l} J_{P-H} 159.3 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 67.4\left(\mathrm{~d},{ }^{l} J_{P-H} 150.9 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}\right), 131.1$ (s, $Z-\mathrm{C}=\underline{\mathbf{P}}), 133.5(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}}), 161.5(\mathrm{~s}), 227.2(\mathrm{~s})$.

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0420 \mathrm{~g}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-$ Me) $\left(0.0259 \mathrm{~g}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that was warmed to ambient temperature and turned yellow; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.01(\mathrm{~s}, 5 \mathrm{H}), 0.05(\mathrm{~s}, 47 \mathrm{H}), 0.09\left(\mathrm{~d}, 25 \mathrm{H},{ }^{3} J_{H-P} 4.32 \mathrm{~Hz}\right), 0.25(\mathrm{~s}, 6 \mathrm{H}), 0.28$ $(\mathrm{s}, 6 \mathrm{H}), 0.32(\mathrm{~s}, 11 \mathrm{H}), 0.44(\mathrm{~s}, 23 \mathrm{H}), 0.46\left(\mathrm{~d}, 47 \mathrm{H},{ }^{3} J_{H-P} 4.01 \mathrm{~Hz}\right), 0.56\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-P} 5.09 \mathrm{~Hz}\right)$, $0.65(\mathrm{~s}, 2.5 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 20 \mathrm{H}), 2.06(\mathrm{~s}, 10 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 6.87\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.04\right.$ $\mathrm{Hz}), 6.94\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 6.98\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.68 \mathrm{~Hz}\right), 7.04\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.23(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 8.00 \mathrm{~Hz}\right), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.44(\mathrm{~s}, 8 \mathrm{H}), 7.46(\mathrm{~s}, 3 \mathrm{H}), 8.03(\mathrm{br}, 1 \mathrm{H}), 8.05(\mathrm{br}, 1.5 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-86.6(\mathrm{~s}),-83.8\left(\mathrm{~d}, J_{P-P} 52.3 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P} 52.3 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-$ 17.5 (s), $-13.5\left(\mathrm{~d},{ }^{l} J_{P-H} 689.5 \mathrm{~Hz}\right),-9.17(\mathrm{~s}), 65.9(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 67.4(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 131.2(\mathrm{~s}, Z-$ $\mathrm{C}=\underline{\mathbf{P}}), 133.4(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}})$.

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.17(\mathrm{~s}, 16 \mathrm{H}), 0.25(\mathrm{~s}, 13 \mathrm{H}), 0.27(\mathrm{~s}, 51 \mathrm{H}), 0.32(\mathrm{~s}, 72 \mathrm{H}), 2.02(\mathrm{~s}, 24 \mathrm{H})$, $6.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{l} J_{H-P} 689.5 \mathrm{~Hz}\right), 7.01\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 7.04\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 8.02(\mathrm{~s}$, $3.5 \mathrm{H}), 8.04(\mathrm{~s}, 8.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-30.3(\mathrm{~s}),-29.9\left(\mathrm{~d}, J_{P-P} 14.7 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-15.1\left(\mathrm{dd}, J_{P-P} 14.7 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $730.7 \mathrm{~Hz}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 689.5 \mathrm{~Hz}\right),-11.2\left(\mathrm{~d},{ }^{1} J_{P-H} 725.3 \mathrm{~Hz}\right),-9.18(\mathrm{~s}),-1.23(\mathrm{~s}), 121.3(\mathrm{~s})$, $131.2(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}}), 133.4(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}})$.

Method C

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0950 \mathrm{~g}, 3.80 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})\left(0.587 \mathrm{~g}, 3.80 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 1 h , resulting in a yellow solution that was dried in vacuo to afford a yellow oil. Yield: 0.093 g , 82.7 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Z}-\mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 4.33 \mathrm{~Hz}, E-\mathrm{P}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.45$ $\left(\mathrm{s}, 9 \mathrm{H}, E-\mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 0.47\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 3.69 \mathrm{~Hz}, Z-\mathrm{P}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, Z-\mathrm{CH} \underline{H}_{3}\right), 2.06(\mathrm{~s}$, $\left.3 \mathrm{H}, E-\mathrm{CH}_{3}\right), 6.87\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.44 \mathrm{~Hz}, E-\mathrm{and} Z-m-\mathrm{CH}\right), 6.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.39 \mathrm{~Hz}, Z-p-\mathrm{C} \underline{\mathrm{H}}\right)$, $6.98\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.55 \mathrm{~Hz}, E-p-\mathrm{CH}\right), 7.22\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.63 \mathrm{~Hz}, E-\right.$ middle-CH$), 7.25(\mathrm{br}, 1 \mathrm{H}, E-$ $o-\mathrm{CH}), 7.43(\mathrm{br}, 1 \mathrm{H}, Z-o-\mathrm{C} \underline{\mathbf{H}}), 7.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.56 \mathrm{~Hz}, Z\right.$ - middle-CH$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 0.48\left(\mathrm{~d},{ }^{4} J_{C-P} 6.13 \mathrm{~Hz}, E-\mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right), 1.15\left(\mathrm{~d},{ }^{2} J_{C-P} 8.67 \mathrm{~Hz}, Z-\right.$ $\left.\mathrm{P}\left(\mathrm{Si}_{\mathbf{C}}^{3}\right)_{3}\right), 1.28\left(\mathrm{~s}, \mathrm{Z}-\mathrm{O}\left(\mathrm{Si} \underline{\mathbf{C}}_{3}\right)_{3}\right), 1.85\left(\mathrm{~d},{ }^{2} J_{C-P} 11.6 \mathrm{~Hz}, E-\mathrm{P}\left(\mathrm{Si}_{\mathbf{C}}^{3}\right)_{3}\right), 21.1\left(\mathrm{~s}, E-\underline{\mathbf{C}}_{3}\right), 21.2$ ($\mathrm{s}, \mathrm{Z}-\underline{\mathbf{C}} \mathrm{H}_{3}$), $124.8\left(\mathrm{~d},{ }^{3} J_{C-P} 11.9 \mathrm{~Hz}, \mathrm{Z}\right.$ - middle- $\left.\underline{\mathbf{C}} \mathrm{H}\right), 124.8\left(\mathrm{~d},{ }^{3} J_{C-P} 4.33 \mathrm{~Hz}, E\right.$ - middle- $\left.\underline{\mathbf{C H}}\right)$, 127.9 (m, Z-p-CH$), 128.2(\mathrm{~m}, Z-o-\mathbf{C H}), 128.8\left(\mathrm{~d},{ }^{4} J_{C-P} 4.20 \mathrm{~Hz}, E-o-\underline{\mathbf{C H}}\right), 129.9$ (s, $\left.E-p-\underline{\mathbf{C H}}\right)$, $130.2\left(\mathrm{~d},{ }^{5} J_{C-P} 2.75 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right), 137.4\left(\mathrm{~s}, E-\mathbf{C C H}_{3}\right), 137.5\left(\mathrm{~s}, Z-\mathbf{C C H}_{3}\right), 145.5\left(\mathrm{~d},{ }^{2} J_{C-P} 26.4 \mathrm{~Hz}\right.$, $Z-i-\mathbf{C}), 146.8\left(\mathrm{~d},{ }^{2} J_{C-P} 9.99 \mathrm{~Hz}, E-i-\mathbf{C}\right), 213.1\left(\mathrm{~d},{ }^{l} J_{C-P} 65.9 \mathrm{~Hz}, Z-\underline{\mathbf{C}}=\mathrm{P}\right), 219.2\left(\mathrm{~d},{ }^{l} J_{C-P} 57.1 \mathrm{~Hz}\right.$, $E-\underline{\mathbf{C}}=\mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{P}} 131.1$ ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 133.5 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-3.67\left(Z-\mathrm{PSiMe}_{3}\right),-2.13\left(E-\mathrm{PSiMe}_{3}\right), 18.9\left(Z-\mathrm{OSiMe}_{3}\right), 20.9(E-$ OSiMe ${ }_{3}$.

Method D

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0 .058 \mathrm{~g}, 2.32 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})\left(0.0358 \mathrm{~g}, 2.32 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was brought to reflux for 4 h , resulting in a bright yellow solution that was cooled to ambient temperature and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.03(\mathrm{~s}, 1 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 21 \mathrm{H}), 0.08\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-P} 4.80 \mathrm{~Hz}\right)$, $0.25(\mathrm{~s}, 4.5 \mathrm{H}), 0.27(\mathrm{~s}, 88 \mathrm{H}), 0.31\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-P} 4.31 \mathrm{~Hz}\right), 0.32(\mathrm{~s}, 4 \mathrm{H}), 0.44(\mathrm{~s}, 9.5 \mathrm{H}), 0.46(\mathrm{~d}$, $\left.21 \mathrm{H},{ }^{3} J_{H-P} 3.62 \mathrm{~Hz}\right), 0.56\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-P} 4.75 \mathrm{~Hz}\right), 0.64(\mathrm{~s}, 1.5 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 8 \mathrm{H}), 2.06$ $(\mathrm{s}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}), 5.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 159.3 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.68\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.79(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.87\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.98\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.43\right.$ $\mathrm{Hz}), 7.22\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 3.5 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 8.02$ $(\mathrm{s}, 0.5 \mathrm{H}), 8.04(\mathrm{~s}, 0.5 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-252.1\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\right),-86.7(\mathrm{~s}),-83.8\left(\mathrm{~d}, J_{P-P} 52.4 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P}\right.$ 52.4 Hz), -24.7 (s), -17.5 (s), 65.9 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 67.4 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 131.1 ($\mathrm{s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}$), 133.5 (s, $E-\mathrm{C}=\underline{\mathbf{P}}$), $227.2(\mathrm{~s})$.

Attempted synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{C} \equiv \mathrm{P})(3-\mathrm{Me})$

Method A

To a THF solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})\left(0.093 \mathrm{~g}, 3.12 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added DABCO $\left(0.045 \mathrm{~g}, 4.02 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in a suspended offwhite solid that was stirred for 60 min ; an aliquot was dried in vacuo as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.05(\mathrm{~s}, 21 \mathrm{H}), 0.08\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-P} 4.80 \mathrm{~Hz}\right), 0.31\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 4.31 \mathrm{~Hz}\right), 0.32$ $(\mathrm{s}, 9 \mathrm{H}), 0.44(\mathrm{~s}, 10 \mathrm{H}), 0.46\left(\mathrm{~d}, 21 \mathrm{H},{ }^{3} J_{H-P} 3.62 \mathrm{~Hz}\right), 2.03(\mathrm{~s}, 9 \mathrm{H}), 2.06(\mathrm{~s}, 4 \mathrm{H}), 4.33(\mathrm{br}, 16 \mathrm{H})$, $6.87\left(\mathrm{t}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.98\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.22(\mathrm{~d}$, $\left.1.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 3.5 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 0.5 \mathrm{H}), 8.04(\mathrm{~s}, 0.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-83.8\left(\mathrm{~d}, J_{P-P} 52.4 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P} 52.4 \mathrm{~Hz}\right),-24.7(\mathrm{~s}), 65.9(\mathrm{~s}, E-$ $\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 67.4$ ($\mathrm{s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 131.1 ($\mathrm{s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}$), 133.5 ($\mathrm{s}, \mathrm{E}-\mathrm{C}=\underline{\mathbf{P}}$).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.05(\mathrm{~s}, 21 \mathrm{H}), 0.08\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-P} 4.80 \mathrm{~Hz}\right), 0.31\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 4.31 \mathrm{~Hz}\right), 0.32$ $(\mathrm{s}, 9 \mathrm{H}), 0.44(\mathrm{~s}, 10 \mathrm{H}), 0.46\left(\mathrm{~d}, 21 \mathrm{H},{ }^{3} J_{H-P} 3.62 \mathrm{~Hz}\right), 2.03(\mathrm{~s}, 9 \mathrm{H}), 2.06(\mathrm{~s}, 4 \mathrm{H}), 4.33(\mathrm{br}, 16 \mathrm{H})$, $6.87\left(\mathrm{t}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.98\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.22(\mathrm{~d}$, $\left.1.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 3.5 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 0.5 \mathrm{H}), 8.04(\mathrm{~s}, 0.5 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-86.7(\mathrm{~s}),-83.8\left(\mathrm{~d}, J_{P-P} 52.4 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P} 52.4 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-$ 17.5 (s), 65.9 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), $67.4(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 131.1(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}}), 133.5(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}}), 227.2$ (s$).$

Method B

To a THF solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})\left(0.0426 \mathrm{~g}, 1.44 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]\left(0.052 \mathrm{~g}, 1.44 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in an orange solution that turned red after being stirred for 10 min ; an aliquot was taken after 1 h and dried in vacuo to afford a red solid.
${ }^{31} \mathrm{P} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-212.4(\mathrm{~s}),-155.5(\mathrm{~s}),-102.7(\mathrm{~s}),-14.1(\mathrm{~s}), 124.2(\mathrm{~s}), 149.2(\mathrm{~s}), 218.4$ (s).

The solution was stirred for 18 h and dried in vacuo to afford a dark red solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.16(\mathrm{~s}, 4.5 \mathrm{H}), 0.07(\mathrm{~s}, 189 \mathrm{H}), 0.31(\mathrm{~s}, 7 \mathrm{H}), 0.35(\mathrm{~s}, 5 \mathrm{H}), 0.40(\mathrm{~s}, 13 \mathrm{H})$, $0.93(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{br}, 5 \mathrm{H}), 2.21(\mathrm{~s}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 4.5 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.45(\mathrm{br}$, $3 \mathrm{H}), 3.60(\mathrm{br}, 4 \mathrm{H}), 4.22(\mathrm{t}, 3 \mathrm{H}, J 5.66 \mathrm{~Hz}), 6.91\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}\right), 6.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.56\right.$ $\mathrm{Hz}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{br}, 1 \mathrm{H}), 7.77(\mathrm{br}, 1 \mathrm{H}), 7.83(\mathrm{br}, 1.5 \mathrm{H}), 7.85(\mathrm{~s}, 2.5 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-14.1\left(\mathrm{~d},{ }^{1} J_{P-P} 334.7 \mathrm{~Hz}\right), 14.5(\mathrm{~s}), 22.2(\mathrm{~m}), 124.2$ (s), 157.7 (s), 213.6 (s), 218.4 (s).

Method C

To a pentane solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{Me})\left(0.392 \mathrm{~g}, 8.24 \times 10^{-4} \mathrm{~mol}\right)$ at -78 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.300 \mathrm{~g}, 1.81 \times 10^{-3} \mathrm{~mol}\right)$ in pentane, resulting in a suspended yellow solid that was stirred for 30 min and was allowed to warm to ambient temperature then stirred for 1 h ; an aliquot was dried in vacuo to afford an orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.05(\mathrm{~s}, 21 \mathrm{H}), 0.08\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-P} 4.80 \mathrm{~Hz}\right), 0.09(\mathrm{~s}, 8 \mathrm{H}), 0.31\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-P}\right.$ $4.31 \mathrm{~Hz}), 0.32(\mathrm{~s}, 15 \mathrm{H}), 0.35(\mathrm{~s}, 63 \mathrm{H}), 0.44(\mathrm{~s}, 11 \mathrm{H}), 0.46\left(\mathrm{~d}, 21 \mathrm{H},{ }^{3} J_{H-P} 3.62 \mathrm{~Hz}\right), 2.03(\mathrm{~s}, 12 \mathrm{H})$, $2.06(\mathrm{~s}, 4 \mathrm{H}), 4.33(\mathrm{br}, 18 \mathrm{H}), 6.87\left(\mathrm{t}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.21 \mathrm{~Hz}\right), 6.98(\mathrm{t}$, $\left.3.5 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.22\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 3.5 \mathrm{H}), 7.45(\mathrm{~s}, 1.5 \mathrm{H})$, $8.02(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 2.5 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-252.1\left(\mathrm{~s}, \underline{\mathbf{P}}\left(\mathrm{SiMe}_{3}\right)_{3}\right),-86.7(\mathrm{~s}),-83.8\left(\mathrm{~d}, J_{P-P} 51.8 \mathrm{~Hz}\right),-55.4\left(\mathrm{~d}, J_{P-P}\right.$ $51.8 \mathrm{~Hz}), 131.1(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}}), 133.5(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}})$.

The suspension was stirred for 18 h then solvent was removed under reduced pressure to afford an orange oil. No change was noted from the previous NMR spectra.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{Me})(E / Z-42-3-\mathrm{Me})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.610 \mathrm{~g}, 3.43 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{Me})\left(0.529 \mathrm{~g}, 3.43 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that was warmed to ambient temperature over 45 min and turned yellow; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 4.5 \mathrm{H}), 0.05(\mathrm{~s}, 6.5 \mathrm{H}), 0.20\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-P} 12.9 \mathrm{~Hz}\right), 0.34(\mathrm{~s}, 4.5 \mathrm{H})$, $1.84(\mathrm{~s}, 13 \mathrm{H}), 1.90(\mathrm{~s}, 11 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2.5 \mathrm{H}), 2.02(\mathrm{~s}, 5.5 \mathrm{H}), 2.05(\mathrm{~s}, 2.5 \mathrm{H}), 2.07(\mathrm{~s}$, $2 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 151.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 5.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right)$, $6.80\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.64 \mathrm{~Hz}\right), 6.84\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.64 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.53 \mathrm{~Hz}\right), 6.96(\mathrm{t}, 7 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.64 \mathrm{~Hz}\right), 7.69(\mathrm{~s}, 3 \mathrm{H}), 7.71\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.90(\mathrm{~s}, 3.5 \mathrm{H}), 7.93\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.82\right.$ Hz).

$$
\begin{aligned}
& { }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR }\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.12\left(\mathrm{~d}, J_{C-P} 6.29 \mathrm{~Hz}\right), 0.04(\mathrm{~s}), 0.46(\mathrm{~s}), 0.93(\mathrm{~s}), 1.88(\mathrm{~s}), 2.25(\mathrm{~s}), \\
& 2.37(\mathrm{~s}), 2.77(\mathrm{~s}), 3.04(\mathrm{~s}), 12.7(\mathrm{~m}), 20.8(\mathrm{~s}), 20.8(\mathrm{~s}), 20.9(\mathrm{~s}), 21.2(\mathrm{~s}), 21.3(\mathrm{~s}), 21.4(\mathrm{~s}), 23.8 \\
& \left(\mathrm{~d}, J_{C-P} 84.2 \mathrm{~Hz}\right), 30.1\left(\mathrm{~d}, J_{C-P} 153.5 \mathrm{~Hz}\right), 39.3(\mathrm{~s}), 121.9\left(\mathrm{~d}, J_{C-P} 18.9 \mathrm{~Hz}\right), 123.6\left(\mathrm{~d}, J_{C-P} 3.70 \mathrm{~Hz}\right),
\end{aligned}
$$

$125.6\left(\mathrm{~d}, J_{C-P} 20.2 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{C-P} 9.02 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{C-P} 3.91 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P} 10.9 \mathrm{~Hz}\right)$, 128.9 (s), 129.2 (d, $J_{C-P} 7.11 \mathrm{~Hz}$), 130.8 (s$), 131.5\left(\mathrm{~d}, J_{C-P} 5.40 \mathrm{~Hz}\right.$), 131.9 (s$), 133.4$ (s$), 133.6$ (s), $134.4(\mathrm{~s}), 134.8\left(\mathrm{~d}, J_{C-P} 1.14 \mathrm{~Hz}\right), 135.9(\mathrm{~s}), 138.9(\mathrm{~s}), 141.2\left(\mathrm{~d}, J_{C-P} 35.6 \mathrm{~Hz}\right), 168.9\left(\mathrm{~d}, J_{C-P}\right.$ $62.8 \mathrm{~Hz}), 205.9\left(\mathrm{~d}, J_{C-P} 32.9 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}}-52.7\left(\mathrm{~d},{ }^{1} J_{P-H} 171.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{1} J_{P-H} 174.2 \mathrm{~Hz}\right), 53.4(\mathrm{~s}), 65.8\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 67.4 (${ }^{1}{ }^{l} J_{P-H} 151.5 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}$), 145.6 (s).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 12.3,21.2,22.5,22.7$.
The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 7 \mathrm{H}), 0.24(\mathrm{~s}, 1.5 \mathrm{H}), 0.28(\mathrm{~s}, 1 \mathrm{H}), 0.32(\mathrm{~s}, 2.5 \mathrm{H}), 0.34$ (s, 6H), $1.84(\mathrm{~s}, 7 \mathrm{H}), 1.90(\mathrm{~s}, 7 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2.5 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.07$ $(\mathrm{s}, 2.5 \mathrm{H}), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 5.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.81(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 7.61 \mathrm{~Hz}\right), 6.84\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.01 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.61 \mathrm{~Hz}\right), 6.97\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.54 \mathrm{~Hz}), 7.02\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}\right), 7.55(\mathrm{~s}, 0.6 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 0.6 \mathrm{H}), 7.69(\mathrm{~s}, 2 \mathrm{H})$, $7.71\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 7.89(\mathrm{~s}, 2.5 \mathrm{H}), 7.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 8.04(\mathrm{~m}, 1.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.6\left(\mathrm{~d},{ }^{l} J_{P-P} 71.5 \mathrm{~Hz}\right),-109.4\left(\mathrm{t},{ }^{l} J_{P-H} 217.9 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2\left(2^{\mathrm{nd}}\right.$ order), $-97.1\left(2^{\text {nd }}\right.$ order), $-86.1\left(\mathrm{~d},{ }^{1} J_{P-P} 71.5 \mathrm{~Hz}\right),-52.7\left(\mathrm{~d},{ }^{1} J_{P-H} 171.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{1} J_{P-H} 174.2\right.$ $\mathrm{Hz}),-49.4(\mathrm{~s}),-47.9(\mathrm{~s}),-24.7(\mathrm{~s}),-17.5(\mathrm{~s}),-0.24(\mathrm{~s}), 29.0(\mathrm{~s}), 53.4(\mathrm{~s}), 59.7(\mathrm{~s}), 65.8\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 67.4 ($\mathrm{d},{ }^{l}{ }_{P-H} 151.5 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P} H}$), 112.5 (s , 130.3 (s$), 131.8$ ($\mathrm{s}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}}$), 133.3 ($\mathrm{s}, E-\mathrm{C}=\boldsymbol{\mathbf { P }}$).
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 19.8,21.3$.
The crude product was washed with pentane and filtered; a yellow solid was dried in vacuo, and reduced pressure solvent removal from the filtrate afforded a yellow oil.

Yellow solid:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.92\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.58 \mathrm{~Hz}\right), 6.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.58 \mathrm{~Hz}\right)$, $7.90(\mathrm{~s}, 1 \mathrm{H}$, middle-CH$), 7.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.79 \mathrm{~Hz}, p-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 20.9\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 126.9\left(\mathrm{~d},{ }^{3} J_{C-P} 8.79 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 128.9(\mathrm{~s}, m-\underline{\mathbf{C H}}), 129.2$ (d, ${ }^{3} J_{C-P} 7.24 \mathrm{~Hz}$, middle- $\mathbf{C H}$), $134.8(\mathrm{~s}, p-\mathbf{C H}), 138.9\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{CH}_{3}\right), 141.2\left(\mathrm{~d},{ }^{2} J_{C-P} 34.4 \mathrm{~Hz}, i-\mathbf{C}\right)$, $206.0\left(\mathrm{~d},{ }^{l} J_{C-P} 32.6 \mathrm{~Hz}, \underline{\mathrm{CP}}\right)$.
${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 53.4$ (s).
Yellow oil:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 1.5 \mathrm{H}), 0.21(\mathrm{~s}, 5 \mathrm{H}), 0.24(\mathrm{~s}, 2.5 \mathrm{H}), 0.28(\mathrm{~s}, 1 \mathrm{H}), 0.32(\mathrm{~s}, 2.5 \mathrm{H})$, $0.34(\mathrm{~s}, 4 \mathrm{H}), 1.84(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 2 \mathrm{H})$,
$2.26(\mathrm{~s}, 1 \mathrm{H}), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 151.5 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 5.22\left(\left(\mathrm{~d},{ }^{l} J_{H-P} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.80-\right.$ $8.03(\mathrm{~m}, 28 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.6\left(\mathrm{~d},{ }^{1} J_{P-P} 71.3 \mathrm{~Hz}\right),-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 218.0 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), -97.1 ($2^{\text {nd }}$ order), -86.1 (d, ${ }^{l} J_{P-P} 71.3 \mathrm{~Hz}$), -52.7 (d, ${ }^{l} J_{P-H} 171.3 \mathrm{~Hz}$), $-52.3\left(\mathrm{~d},{ }^{l} J_{P-H} 174.2\right.$ $\mathrm{Hz}),-17.5(\mathrm{~s}), 29.0(\mathrm{~s}), 59.7(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{l} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 67.4\left(\mathrm{~d},{ }^{l} J_{P-H} 151.5 \mathrm{~Hz}, Z-\right.$ $\mathrm{C}=\underline{\mathbf{P H}}), 112.5(\mathrm{~s})$.
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 13.5,20.9,23.1$.

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.320 \mathrm{~g}, 1.79 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{Me})\left(0.278 \mathrm{~g}, 1.79 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 5 min , resulting in a yellow solution; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 2.5 \mathrm{H}), 0.20(\mathrm{~s}, 8 \mathrm{H}), 0.22(\mathrm{~s}, 4.6 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H}), 0.34(\mathrm{~s}, 4 \mathrm{H}), 1.87$ ($\mathrm{s}, 30 \mathrm{H}, \mathrm{CH}_{3}$), $1.92\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 4.73\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right), 5.22\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathrm{H}}\right)$, $6.83\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.51 \mathrm{~Hz}\right), 6.87\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.37 \mathrm{~Hz}\right), 6.98(\mathrm{t}, 5 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}\right), 7.69(\mathrm{~s}, 5 \mathrm{H}), 7.71\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.88(\mathrm{~s}, 4.6 \mathrm{H}), 7.92\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.41\right.$ Hz).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.11\left(\mathrm{~d}, J_{C-P} 6.09 \mathrm{~Hz}\right), 0.05(\mathrm{~s}), 0.74(\mathrm{~s}), 0.94(\mathrm{~s}), 1.42(\mathrm{~s}), 3.06(\mathrm{~s})$,
 (s), 39.3 (s , 126.8 (d, $J_{C-P} 9.14 \mathrm{~Hz}$), 128.9 (s$), 128.9$ (s$), 129.2\left(\mathrm{~d}, J_{C-P} 7.20 \mathrm{~Hz}\right), 131.9(\mathrm{~s}), 133.6$ (s$), 134.8$ (s$), 136.0(\mathrm{~s}), 138.9(\mathrm{~s}), 139.0(\mathrm{~s}), 141.1$ (d, $\left.J_{C-P} 35.1 \mathrm{~Hz}\right), 167.6$ (s), 168.2 (s$), 205.9$ $\left(\mathrm{d}, J_{C-P} 32.7 \mathrm{~Hz}\right), 211.3\left(\mathrm{~d},{ }^{l} J_{C-P} 59.6 \mathrm{~Hz}, Z-\underline{\mathbf{C}}=\mathrm{PH}\right), 215.9\left(\mathrm{~d},{ }^{l} J_{C-P} 42.7 \mathrm{~Hz}, E-\underline{\mathbf{C}}=\mathrm{PH}\right), 228.6(\mathrm{~d}$, $\left.J_{C-P} 85.8 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-24.7(\mathrm{~s}),-17.5(\mathrm{~s}), 53.4(\mathrm{~s}), 59.7(\mathrm{~s}), 65.7\left(\mathrm{~d},{ }^{1} J_{P-H} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right)$, 67.3 ($\mathrm{d},{ }^{1} J_{P-H} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}$), 145.2 (s .
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 22.3,22.6,30.8$.
The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 4 \mathrm{H}), 0.21(\mathrm{~s}, 5 \mathrm{H}), 0.25\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 3.79 \mathrm{~Hz}\right), 0.32(\mathrm{~s}, 8 \mathrm{H}), 0.34(\mathrm{~d}$, $\left.4.5 \mathrm{H},{ }^{3} J_{H-P} 1.02 \mathrm{~Hz}\right), 1.84(\mathrm{~s}, 21 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}$, $2 \mathrm{H}), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right), 5.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathrm{H}}\right), 6.80(\mathrm{t}$, $\left.6.5 \mathrm{H},{ }^{3} J_{H-H} 7.63 \mathrm{~Hz}\right), 6.84(\mathrm{~m}, 3.8 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.91-7.06(\mathrm{~m}, 10 \mathrm{H}), 7.69(\mathrm{~m}, 5 \mathrm{H}), 7.71(\mathrm{dm}$, $\left.5.5 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}\right), 8.03(\mathrm{br}, 1 \mathrm{H}), 8.05(\mathrm{br}, 1.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-111.9(\mathrm{~s}),-27.3(\mathrm{~s}),-20.0(\mathrm{~s}),-15.9\left(\mathrm{~d},{ }^{1} J_{P-H} 696.9 \mathrm{~Hz}\right), 50.9(\mathrm{~m}), 59.7$ (s), $65.7\left(\mathrm{~d},{ }^{1} J_{P-H} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 67.3\left(\mathrm{~d},{ }^{1} J_{P-H} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}\right), 110.0(\mathrm{~s})$.

Method C

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.800 \mathrm{~g}, 4.49 \times 10^{-3} \mathrm{~mol}\right)$ at $60^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{Me})\left(0.694 \mathrm{~g}, 4.49 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in a bright yellow solution that was brought to reflux for 80 min ; an aliquot was dried in vacuo to afford a yellow oil and 3.9 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.17(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 1.5 \mathrm{H}),-0.02(\mathrm{~s}, 1.5 \mathrm{H}), 0.05(\mathrm{~s}, 5 \mathrm{H}), 0.18(\mathrm{~s}, 3.5 \mathrm{H})$, $0.21(\mathrm{~s}, 10 \mathrm{H}), 0.29(\mathrm{~s}, 18 \mathrm{H}), 0.34(\mathrm{~s}, 38 \mathrm{H}), 1.83(\mathrm{~s}, 18.5 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~s}$, $2.5 \mathrm{H}), 2.02(\mathrm{~s}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 0.5 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 0.5 \mathrm{H}), 3.90$ $\left(\mathrm{d},{ }^{l} J_{H-P} 217.6 \mathrm{~Hz}, \mathrm{PH}_{2}, 0.4 \mathrm{H}\right), 4.77\left(\mathrm{~d},{ }^{l} J_{H-P} 153.1 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 1.5 \mathrm{H}\right), 5.24\left(\mathrm{~d},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}\right.$, $E-\mathrm{C}=\mathrm{P} \underline{H}, 1.4 \mathrm{H}), 6.79\left(\mathrm{t},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, 5 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, 6 \mathrm{H}\right), 6.94(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~m}$, $3.5 \mathrm{H}), 7.04(\mathrm{br}, 8 \mathrm{H}), 7.38(\mathrm{br}, 6 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 4 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70\right.$ $\mathrm{Hz}, 4.5 \mathrm{H}), 7.83(\mathrm{br}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.93\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.04(\mathrm{br}, 1 \mathrm{H}), 8.05(\mathrm{br}, 0.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 217.6 \mathrm{~Hz}, \underline{\mathrm{P}}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order $),-97.1\left(2^{\text {nd }}\right.$ order $),-90.7$ $\left(\mathrm{d},{ }^{l} J_{P-H} 172.9 \mathrm{~Hz}\right),-89.8\left(\mathrm{~d},{ }^{l} J_{P-H} 170.7 \mathrm{~Hz}\right),-52.7\left(\mathrm{~d},{ }^{l} J_{P-H} 172.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{l} J_{P-H} 171.6\right.$ $\mathrm{Hz}),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{1} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 67.5\left(\mathrm{~d},{ }^{l} J_{P-H}\right.$ $151.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathbf{P H}$), 145.6 (s).

After 160 min at reflux an aliquot was dried in vacuo to afford a yellow oil; 3.7 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.17(\mathrm{~s}, 1.5 \mathrm{H}),-0.10(\mathrm{~s}, 1 \mathrm{H}),-0.02(\mathrm{~s}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 3.5 \mathrm{H}), 0.18(\mathrm{~s}, 2.5 \mathrm{H})$, $0.22(\mathrm{~s}, 12 \mathrm{H}), 0.29(\mathrm{~s}, 15.5 \mathrm{H}), 0.34(\mathrm{~s}, 9.5 \mathrm{H}), 1.83(\mathrm{~s}, 15 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}$, $2.5 \mathrm{H}), 2.04(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3.5 \mathrm{H}), 3.90\left(\mathrm{~d},{ }^{l} J_{H-P} 217.6 \mathrm{~Hz}, \mathrm{PH}_{2}, 0.5 \mathrm{H}\right), 4.77\left(\mathrm{~d},{ }^{l} J_{H-P} 153.1 \mathrm{~Hz}\right.$, $Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 2 \mathrm{H}), 5.24\left(\mathrm{~d},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 1.6 \mathrm{H}\right), 6.79\left(\mathrm{t},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.60 \mathrm{~Hz}, 5 \mathrm{H}\right), 6.94(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{br}, 8 \mathrm{H}), 7.38(\mathrm{br}, 6 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $2 \mathrm{H}), 7.69(\mathrm{~s}, 3.5 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 3.5 \mathrm{H}\right), 7.84(\mathrm{br}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.93\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{br}, 1 \mathrm{H}), 8.05(\mathrm{br}, 0.5 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 217.6 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order $),-97.1\left(2^{\text {nd }}\right.$ order $),-90.7$ $\left(\mathrm{d},{ }^{l} J_{P-H} 172.9 \mathrm{~Hz}\right),-89.9\left(\mathrm{~d},{ }^{l} J_{P-H} 170.7 \mathrm{~Hz}\right),-52.7\left(\mathrm{~d},{ }^{l} J_{P-H} 172.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{l} J_{P-H} 171.6\right.$ $\mathrm{Hz}),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{1} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 67.5\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $151.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathbf{P} H$), 145.6 (s).

After 240 min at reflux an aliquot was dried in vacuo to afford a yellow oil; 4.4 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 1 \mathrm{H}),-0.10(\mathrm{~s}, 1 \mathrm{H}),-0.06(\mathrm{~s}, 0.5 \mathrm{H}),-0.02(\mathrm{~s}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 2 \mathrm{H})$, $0.18(\mathrm{~s}, 2 \mathrm{H}), 0.22(\mathrm{~s}, 11 \mathrm{H}), 0.29(\mathrm{~s}, 15 \mathrm{H}), 0.34(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{~s}, 14 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $0.5 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 3.90\left(\mathrm{~d},{ }^{l} J_{H-P} 217.6 \mathrm{~Hz}, \mathrm{P} \underline{H}_{2}, 0.6 \mathrm{H}\right)$, $4.77\left(\mathrm{~d},{ }^{1} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}, 2 \mathrm{H}\right), 5.24\left(\mathrm{~d},{ }^{1} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 1.6 \mathrm{H}\right), 6.79\left(\mathrm{t},{ }^{3} J_{H-H}\right.$ $7.30 \mathrm{~Hz}, 3.5 \mathrm{H}), 6.83\left(\mathrm{t},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, 5 \mathrm{H}\right), 6.94(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~m}, 2.5 \mathrm{H}), 7.04(\mathrm{br}, 8 \mathrm{H}), 7.38$ (br, 6H), $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 3 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 3.5 \mathrm{H}\right), 7.84(\mathrm{br}, 1.5 \mathrm{H})$, $7.90(\mathrm{~s}, 2 \mathrm{H}), 7.93\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.04(\mathrm{br}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 217.6 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order $),-97.1\left(2^{\text {nd }}\right.$ order $),-52.7$ $\left(\mathrm{d},{ }^{l} J_{P-H} 172.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{1} J_{P-H} 171.6 \mathrm{~Hz}\right),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{l} J_{P-}\right.$ ${ }_{H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}$), $67.5\left(\mathrm{~d},{ }^{I} J_{P-H} 151.5 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}\right), 145.6$ (s).

After 320 min at reflux an aliquot was dried in vacuo to afford a yellow oil; 3.4 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 1 \mathrm{H}),-0.10(\mathrm{~s}, 1 \mathrm{H}),-0.06(\mathrm{~s}, 1 \mathrm{H}),-0.02(\mathrm{~s}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 2 \mathrm{H}), 0.22$ (s, 16H), $0.29(\mathrm{~s}, 18 \mathrm{H}), 0.34(\mathrm{~s}, 13 \mathrm{H}), 1.83(\mathrm{~s}, 19 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 5.5 \mathrm{H}), 2.07(\mathrm{~s}, 4.5 \mathrm{H}), 3.90\left(\mathrm{~d},{ }^{1} J_{H-P} 217.6 \mathrm{~Hz}, \mathrm{PH}_{2}, 0.8 \mathrm{H}\right), 4.77\left(\mathrm{~d},{ }^{1} J_{H-P} 153.1 \mathrm{~Hz}, Z-\right.$ $\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 2.6 \mathrm{H}), 5.24\left(\mathrm{~d},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 2.4 \mathrm{H}\right), 6.79\left(\mathrm{t},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, 5 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} J_{H-H}\right.$ $7.60 \mathrm{~Hz}, 6 \mathrm{H}), 6.94(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~m}, 3.5 \mathrm{H}), 7.04(\mathrm{br}, 8 \mathrm{H}), 7.38(\mathrm{br}, 6 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $2 \mathrm{H}), 7.69(\mathrm{~s}, 4 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 5 \mathrm{H}\right), 7.84(\mathrm{br}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.93\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.04$ (br, 1.5H).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.5\left(\mathrm{~d},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz}\right),-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 217.6 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), -97.1 ($2^{\text {nd }}$ order), $-86.1\left(\mathrm{~d},{ }^{l} J_{P-P} 72.1 \mathrm{~Hz}\right),-52.7\left(\mathrm{~d},{ }^{1} J_{P-H} 172.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{l} J_{P-H} 171.6\right.$ $\mathrm{Hz}),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{1} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 67.5\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $151.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P H}}$), 145.6 (s).

After 400 min at reflux an aliquot was dried in vacuo to afford a yellow oil; 4.4 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 1 \mathrm{H}),-0.10(\mathrm{~s}, 0.5 \mathrm{H}),-0.06(\mathrm{~s}, 1 \mathrm{H}),-0.02(\mathrm{~s}, 0.5 \mathrm{H}), 0.06(\mathrm{~s}, 1 \mathrm{H})$, $0.18(\mathrm{~s}, 2 \mathrm{H}), 0.22(\mathrm{~s}, 15.5 \mathrm{H}), 0.24(\mathrm{~s}, 2 \mathrm{H}), 0.29(\mathrm{~s}, 18 \mathrm{H}), 0.34(\mathrm{~s}, 12 \mathrm{H}), 1.83(\mathrm{~s}, 17.5 \mathrm{H}), 1.89(\mathrm{~s}$, $2 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 5.5 \mathrm{H}), 2.07(\mathrm{~s}, 4.5 \mathrm{H}), 3.90\left(\mathrm{~d},{ }^{l} J_{H-P} 217.6 \mathrm{~Hz}, \mathrm{P} \underline{H}_{2}\right.$, $0.7 \mathrm{H}), 4.77\left(\mathrm{~d},{ }^{l} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 2.4 \mathrm{H}\right), 5.24\left(\mathrm{~d},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 2 \mathrm{H}\right), 6.79(\mathrm{t}$, $\left.{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, 6 \mathrm{H}\right), 6.94(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{br}, 8 \mathrm{H}), 7.38$ (br, 6H), $7.56(\mathrm{~s}, 0.5 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 4 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.84(\mathrm{br}, 1.5 \mathrm{H})$, $7.90(\mathrm{~s}, 2 \mathrm{H}), 7.93\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.04(\mathrm{br}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.5\left(\mathrm{~d},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz}\right),-109.4\left(\mathrm{t},{ }^{l} J_{P-H} 217.6 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order $),-97.1\left(2^{\text {nd }}\right.$ order $),-86.1\left(\mathrm{~d},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz}\right),-52.7\left(\mathrm{~d},{ }^{1} J_{P-H} 172.3 \mathrm{~Hz}\right),-52.3\left(\mathrm{~d},{ }^{l} J_{P-H} 171.6\right.$
$\mathrm{Hz}),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9\left(\mathrm{~d},{ }^{l} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 67.5\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $151.5 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathbf{P} \mathrm{H})$.

After 1440 min at reflux the solvent was removed under reduced pressure to afford a yellow oil; 3.8 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.18(\mathrm{~s}, 1 \mathrm{H}),-0.06(\mathrm{~s}, 2.5 \mathrm{H}), 0.06(\mathrm{~s}, 2.5 \mathrm{H}), 0.18(\mathrm{~s}, 2 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H})$, $0.24(\mathrm{~s}, 2 \mathrm{H}), 0.29(\mathrm{~s}, 7 \mathrm{H}), 0.34(\mathrm{~s}, 5.5 \mathrm{H}), 1.83(\mathrm{~s}, 14 \mathrm{H}), 1.89(\mathrm{~s}, 1.5 \mathrm{H}), 1.94(\mathrm{~s}, 2.5 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 2.5 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 3.90\left(\mathrm{~d},{ }^{l} J_{H-P} 217.6 \mathrm{~Hz}\right.$, P $\underline{\mathbf{H}}_{2}, 1.2 \mathrm{H}$), $4.77\left(\mathrm{~d},{ }^{l} J_{H-P} 153.1 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 1.4 \mathrm{H}\right), 5.24\left(\mathrm{~d},{ }^{l} J_{H-P} 159.1 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}, 1.2 \mathrm{H}\right)$, $6.79\left(\mathrm{t},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, 5.5 \mathrm{H}\right), 6.94(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{br}$, 8 H), 7.38 ($\mathrm{br}, 6 \mathrm{H}$), $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1.5 \mathrm{H}), 7.69(\mathrm{~s}, 3.5 \mathrm{H}), 7.71\left(\mathrm{~d},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 3.5 \mathrm{H}\right)$, 7.84 (br, 2H), 7.90 (s, 1.5H), 7.93 (d, ${ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (br, 2.5 H).
${ }^{31}{ }^{3} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.5\left(\mathrm{~d},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz}\right),-109.4\left(\mathrm{t},{ }^{1} J_{P-H} 217.6 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2\left(2^{\mathrm{nd}}\right.$ order), -97.1 ($2^{\text {nd }}$ order), $-86.1\left(\mathrm{~d},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz}\right),-17.5(\mathrm{~s}),-5.26(\mathrm{~s}), 53.4(\mathrm{~s}), 59.8(\mathrm{~s}), 65.9$ (d, $\left.{ }^{l} J_{P-H} 160.7 \mathrm{~Hz}, E-\mathrm{C}=\mathbf{P} \mathrm{H}\right), 67.5\left(\mathrm{~d},{ }^{l} J_{P-H} 151.5 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P} \mathrm{H}\right)$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C O}\left(\mathrm{SiMe}_{3}\right)=\right.$ PSiMe $\left._{3}\right)(\mathbf{3 - C N})($ $\boldsymbol{E} / \mathbf{Z}-\mathbf{3 9 - 3 - C N})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0740 \mathrm{~g}, 2.96 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{CN})\left(0.0489 \mathrm{~g}, 2.96 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that was allowed to warm to ambient temperature and turned yellow; an aliquot was dried in vacuo to afford an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.32(\mathrm{~s}, 3 \mathrm{H}),-0.22(\mathrm{~s}, 2 \mathrm{H}),-0.21(\mathrm{~s}, 2 \mathrm{H}),-0.14(\mathrm{~s}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 2 \mathrm{H}), 0.11$ (s, 3.5 H), $0.14(\mathrm{~s}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 10.5 \mathrm{H}), 0.28(\mathrm{~s}, 4 \mathrm{H}), 0.42(\mathrm{br}, 2.5 \mathrm{H}), 0.49(\mathrm{~s}, 1.5 \mathrm{H})$, $6.76(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{br}, 1 \mathrm{H}), 6.90(\mathrm{br}, 1.5 \mathrm{H}), 6.92\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.08\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.59\right.$ $\mathrm{Hz}), 7.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.04 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.64(\mathrm{br}, 1 \mathrm{H}), 7.54\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H}\right.$ 8.04 Hz).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-236.8(\mathrm{br}),-236.2(\mathrm{br}),-123.1\left(\mathrm{~d},{ }^{2} J_{P-P} 192.8 \mathrm{~Hz}\right),-82.6\left(\mathrm{~d}, J_{P-P} 53.1 \mathrm{~Hz}\right)$, $-81.5\left(\mathrm{~d},{ }^{2} J_{P-P} 192.8 \mathrm{~Hz}\right),-75.7(\mathrm{~s}),-52.1\left(\mathrm{~d}, J_{P-P} 53.1 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-15.4(\mathrm{~s}),-13.9\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ 218.1 Hz), -9.19 (s), $-3.90(\mathrm{~s}),-2.54(\mathrm{~s}), 64.3\left(\mathrm{~d},{ }^{1} J_{P-H} 200.4 \mathrm{~Hz}\right), 142.9(\mathrm{~s}), 153.1(\mathrm{~s}), 154.0$ (s), 158.6 (s), 160.3 (s), 172.2 (s), 178.2 (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.29(\mathrm{~s}, 6.5 \mathrm{H}), 0.01(\mathrm{~s}, 5 \mathrm{H}), 0.18(\mathrm{~s}, 12 \mathrm{H}), 0.25(\mathrm{~s}, 90 \mathrm{H}), 0.28(\mathrm{~s}, 50 \mathrm{H})$, $6.47\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.92 \mathrm{~Hz}\right), 6.61\left(\mathrm{t}, 9.5 \mathrm{H},{ }^{3} J_{H-H} 7.44 \mathrm{~Hz}\right), 6.80\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.92 \mathrm{~Hz}\right), 6.98(\mathrm{~d}, 9 \mathrm{H}$,
$\left.{ }^{3} J_{H-H} 7.92 \mathrm{~Hz}\right), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.72\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 6.36 \mathrm{~Hz}\right), 7.87\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.52 \mathrm{~Hz}\right), 7.92(\mathrm{~d}$, $\left.7 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 8.09(\mathrm{~s}, 5 \mathrm{H}), 8.16\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.52 \mathrm{~Hz}\right), 8.69(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-236.8(\mathrm{br}),-236.2(\mathrm{br}),-24.7(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 692.2 \mathrm{~Hz}\right),-9.14(\mathrm{~s})$, -2.45 (s), 2.50 (s$), 88.5$ (s$), 89.6$ (s), 114.7 (s), 136.3 ($\mathrm{s}, ~ Z-\mathrm{C}=\underline{\mathbf{P}}$), 137.8 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 176.3 (s).

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.064 \mathrm{~g}, 2.56 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\left(0.0423 \mathrm{~g}, 2.56 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in the rapid formation of a yellow solution within 5 min ; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.45(\mathrm{~s}, 3.5 \mathrm{H}),-0.39(\mathrm{~s}, 3.5 \mathrm{H}), 0.11(\mathrm{~s}, 7 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 18 \mathrm{H})$, $0.25(\mathrm{~s}, 18 \mathrm{H}), 0.28(\mathrm{~s}, 10 \mathrm{H}), 0.30(\mathrm{~s}, 10 \mathrm{H}), 6.62(\mathrm{~m}, 9 \mathrm{H}), 6.95(\mathrm{~m}, 13 \mathrm{H}), 7.65\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.19\right.$ $\mathrm{Hz}), 7.84(\mathrm{~m}, 5 \mathrm{H}), 7.91(\mathrm{~s}, 1.5 \mathrm{H}), 7.93(\mathrm{~s}, 3 \mathrm{H}), 8.04(\mathrm{~s}, 2.5 \mathrm{H}), 8.09(\mathrm{~s}, 2 \mathrm{H}), 8.52(\mathrm{~s}, 2 \mathrm{H}), 8.68(\mathrm{~s}$, $1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-134.3(\mathrm{~m}),-129.8(\mathrm{~s}),-128.9(\mathrm{~s}),-130.9(\mathrm{~m}),-116.1\left(\mathrm{~d},{ }^{1} J_{P-P} 71.9 \mathrm{~Hz}\right),-$ $109.9(\mathrm{~m}),-103.5$ ($2^{\text {nd }}$ order), -97.3 ($2^{\text {nd }}$ order), $-89.9(\mathrm{~m}),-84.9$ (ddd, ${ }^{1} J_{P-P} 71.9 \mathrm{~Hz},{ }^{1} J_{P-H} 186.0$ $\left.\mathrm{Hz}, J_{P-H} 13.7 \mathrm{~Hz}\right),-83.7(\mathrm{~m}),-68.2\left(\mathrm{dd}, J_{P-P} 106.6,{ }^{1} J_{P-H} 188.7 \mathrm{~Hz}\right),-47.3\left(\mathrm{~d},{ }^{1} J_{P-H} 177.7 \mathrm{~Hz}\right),-$ $46.8\left(\mathrm{~d},{ }^{l} J_{P-H} 180.5 \mathrm{~Hz}\right),-24.8(\mathrm{br}),-24.5(\mathrm{~s}),-21.7\left(\mathrm{~d},{ }^{l} J_{P-H} 219.9 \mathrm{~Hz}\right),-18.1\left(\mathrm{dd}, J_{P-P} 106.6 \mathrm{~Hz}\right.$, $\left.J_{P-H} 16.6 \mathrm{~Hz}\right),-13.2(\mathrm{~s}),-12.8(\mathrm{~s}),-2.47(\mathrm{~s}), 54.6(\mathrm{~s}), 63.2\left(\mathrm{~d},{ }^{1} J_{P-H} 195.9 \mathrm{~Hz}\right), 65.6(\mathrm{~s}), 73.4(\mathrm{~d}$, $\left.{ }^{1} J_{P-H} 160.4 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 74.0\left(\mathrm{~d},{ }^{l} J_{P-H} 153.4 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right)$.

The yellow solution turned colourless after stirring for 18 h and was dried in vacuo to afford a colourless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.17(\mathrm{~s}, 15 \mathrm{H}), 0.25(\mathrm{~s}, 25 \mathrm{H}), 0.28(\mathrm{~s}, 27 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.41\left(\mathrm{t}, 1.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.36 \mathrm{~Hz}), 6.62\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 6.81\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 6.95(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.92(\mathrm{~m}, 2.5 \mathrm{H}), 8.03\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.47 \mathrm{~Hz}\right), 8.10(\mathrm{~s}, 1.5 \mathrm{H}), 8.23(\mathrm{br}, 2.5 \mathrm{H}), 12.5(\mathrm{br}, 4 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-30.8(\mathrm{~s}),-30.4\left(\mathrm{~d}, J_{P-P} 15.3 \mathrm{~Hz}\right),-26.9(\mathrm{~s}),-26.2(\mathrm{~s}),-19.1(\mathrm{~s}),-14.7(\mathrm{dd}$, $\left.J_{P-P} 15.3 \mathrm{~Hz},{ }^{l} J_{P-H} 737.4 \mathrm{~Hz}\right),-13.2\left(\mathrm{~d},{ }^{l} J_{P-H} 704.6 \mathrm{~Hz}\right),-10.7(\mathrm{~s}),-10.0(\mathrm{~s}),-2.73\left(\mathrm{dt},{ }^{l} J_{P-H} 700.9\right.$ $\left.\mathrm{Hz}, J_{P-H} 8.61 \mathrm{~Hz}\right), 54.6(\mathrm{~s})$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{CN})(\boldsymbol{E} / Z-42-3-\mathrm{CN})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.350 \mathrm{~g}, 1.97 \times 10^{-3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-$ $\mathrm{CN})\left(0.325 \mathrm{~g}, 1.97 \times 10^{-3}\right)$ in THF and the mixture was stirred for 15 min , resulting in a
colourless solution that was warmed to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.39(\mathrm{~s}, 3 \mathrm{H}),-0.29(\mathrm{~s}, 1 \mathrm{H}),-0.09(\mathrm{~s}, 1.5 \mathrm{H}), 0.01(\mathrm{~s}, 1 \mathrm{H}), 0.08\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-P}\right.$ $3.99 \mathrm{~Hz}), 0.12(\mathrm{~s}, 1 \mathrm{H}), 0.19\left(\mathrm{~d}, 5.5 \mathrm{H},{ }^{3} J_{H-P} 5.11 \mathrm{~Hz}\right), 0.21(\mathrm{~s}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 15.5 \mathrm{H}), 0.31(\mathrm{~s}, 2 \mathrm{H})$, $3.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 219.5 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.44\left(\mathrm{t}, 11 \mathrm{H},{ }^{3} J_{H-H} 7.33 \mathrm{~Hz}\right), 6.57\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.33 \mathrm{~Hz}\right), 6.65$ $\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.33 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 7.00 \mathrm{~Hz}\right), 6.95(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, 1.5 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.33 \mathrm{~Hz}\right), 7.49\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 8.03 \mathrm{~Hz}\right), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.66\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 8.17 \mathrm{~Hz}\right), 7.84(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 8.03 \mathrm{~Hz}\right), 7.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.03 \mathrm{~Hz}\right), 7.97(\mathrm{~s}, 1.5 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-186.2\left(\mathrm{~d}, J_{P-P} 209.7 \mathrm{~Hz}\right),-133.5\left(\mathrm{dt}, J_{P-P} 209.7 \mathrm{~Hz}, J_{P-H} 15.8 \mathrm{~Hz}\right),-116.1$ (ddd, $\left.{ }^{l} J_{P-P} 70.7 \mathrm{~Hz},{ }^{l} J_{P-H} 175.4 \mathrm{~Hz}, J_{P-H} 10.7 \mathrm{~Hz}\right),-109.8\left(\mathrm{t},{ }^{l} J_{P-H} 219.5 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-103.4\left(2^{\text {nd }}\right.$ order), -97.3 ($2^{\text {nd }}$ order), -84.9 (ddd, ${ }^{l} J_{P-P} 70.7 \mathrm{~Hz},{ }^{l} J_{P-H} 186.0 \mathrm{~Hz}, J_{P-H} 13.7 \mathrm{~Hz}$), $-65.3(\mathrm{~m}),-$ $62.8(\mathrm{~m}),-21.7$ (s), 14.3 (m), 47.6 (s$), 54.3(\mathrm{~s}), 54.8$ (s), 65.7 (s), 73.4 (d, ${ }^{1} J_{P-H} 160.3 \mathrm{~Hz}, E-$ $\mathrm{C}=\mathbf{P} \mathrm{H}), 74.1\left(\mathrm{~d},{ }^{l} J_{P-H} 153.8 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right)$.

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.39(\mathrm{~s}, 4 \mathrm{H}),-0.09(\mathrm{~s}, 3.5 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 2.5 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.18(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 4 \mathrm{H}), 0.26(\mathrm{~s}, 27 \mathrm{H}), 0.28(\mathrm{~s}, 39 \mathrm{H}), 2.75\left(2^{\mathrm{nd}}\right.$ order, 1 H$), 3.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P}\right.$ $\left.219.5 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 4.55\left(2^{\text {nd }}\right.$ order, 1 H$), 4.68\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 153.8 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 4.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P}\right.$ $160.3 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}), 6.45\left(\mathrm{t}, 15 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 6.57\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}\right), 6.66\left(\mathrm{t}, 10 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.76 \mathrm{~Hz}), 6.86\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 6.98(\mathrm{~m}, 10 \mathrm{H}), 7.13\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.34(\mathrm{~s}, 1 \mathrm{H})$, $7.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 7.49\left(\mathrm{~d}, 13 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.66\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.85\right.$ $\mathrm{Hz}), 7.70(\mathrm{~s}, 9 \mathrm{H}), 7.84\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.87 \mathrm{~Hz}\right), 7.92\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.87 \mathrm{~Hz}\right), 7.97(\mathrm{~s}, 3 \mathrm{H}), 8.05(\mathrm{~s}$, $1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-197.0(\mathrm{~m}),-186.2\left(\mathrm{~d}, J_{P-P} 209.7 \mathrm{~Hz}\right),-133.5\left(\mathrm{dt}, J_{P-P} 209.7 \mathrm{~Hz}, J_{P-H} 15.8\right.$ $\mathrm{Hz}),-118.9\left(\mathrm{~d}, J_{P-P} 93.4 \mathrm{~Hz}\right),-116.1\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{1} J_{P-H} 175.4 \mathrm{~Hz}, J_{P-H} 10.7 \mathrm{~Hz}\right),-109.8$ $\left(\mathrm{t},{ }^{1} J_{P-H} 219.5 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-103.4$ ($2^{\text {nd }}$ order), -97.3 ($2^{\text {nd }}$ order), $-88.2(\mathrm{~m}),-84.9\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.7\right.$ $\mathrm{Hz},{ }^{1} J_{P-H} 186.0 \mathrm{~Hz}, J_{P-H} 13.7 \mathrm{~Hz}$), $-83.6\left(\mathrm{~d}, J_{P-P} 93.4 \mathrm{~Hz}\right),-65.3(\mathrm{~m}),-26.3(\mathrm{~s}),-21.7(\mathrm{~s}),-19.2$ (s), -13.3 (d, $\left.{ }^{1} J_{P-H} 702.9 \mathrm{~Hz}\right), 47.6$ (s), 54.3 (s), 54.8 (s), 65.7 (s), 73.4 (d, ${ }^{1} J_{P-H} 160.3 \mathrm{~Hz}, E-$ $\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}), 74.1\left(\mathrm{~d},{ }^{l} J_{P-H} 153.8 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right)$.

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.400 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\left(0.372 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in the rapid formation of a yellow solution within 5 min ; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.11(\mathrm{~s}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 10 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 15 \mathrm{H}), 3.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P}\right.$ $\left.219.5 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.47\left(\mathrm{t}, 11 \mathrm{H},{ }^{3} J_{H-H} 8.02 \mathrm{~Hz}\right), 6.67(\mathrm{~m}, 4 \mathrm{H}), 6.87\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-H} 8.12 \mathrm{~Hz}\right), 7.00$ $(\mathrm{m}, 4 \mathrm{H}), 7.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 7.51\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 7.66\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right)$, $7.72(\mathrm{~s}, 7 \mathrm{H}), 7.85\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.51 \mathrm{~Hz}\right), 7.92\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 7.97(\mathrm{~s}, 0.5 \mathrm{H}), 8.03(\mathrm{~d}$, $\left.1.2 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 8.05(\mathrm{~s}, 0.5 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.8\left(\mathrm{t},{ }^{1} J_{P-H} 216.6 \mathrm{~Hz}, \underline{\mathrm{P}}_{2}\right),-26.0(\mathrm{~s}),-19.0(\mathrm{~s}),-13.3\left(\mathrm{~d},{ }^{1} J_{P-H} 700.8\right.$ $\mathrm{Hz}),-10.9\left(\mathrm{~d},{ }^{1} J_{P-H} 744.5 \mathrm{~Hz}\right),-9.91(\mathrm{~s}), 54.8(\mathrm{~s}), 65.7(\mathrm{~s})$.

The solution was stirred for 18 h and was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 18 \mathrm{H}), 3.67\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 219.5 \mathrm{~Hz}, \mathrm{PH}_{2}\right)$, $6.46\left(\mathrm{t}, 18 \mathrm{H},{ }^{3} J_{H-H} 8.05 \mathrm{~Hz}\right), 6.59\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.15 \mathrm{~Hz}\right), 6.67\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.05 \mathrm{~Hz}\right), 6.87(\mathrm{~d}$, $\left.16 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}\right), 7.00(\mathrm{~m}, 7 \mathrm{H}), 7.42\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.89 \mathrm{~Hz}\right), 7.51\left(\mathrm{~d}, 16 \mathrm{H},{ }^{3} J_{H-H} 7.89 \mathrm{~Hz}\right)$, $7.66\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 7.72(\mathrm{~s}, 12 \mathrm{H}), 7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 7.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.08\right.$ $\mathrm{Hz}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.02\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.89 \mathrm{~Hz}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1.2 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.8\left(\mathrm{t},{ }^{l} J_{P-H} 216.6 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-13.3\left(\mathrm{~d},{ }^{l} J_{P-H} 700.8 \mathrm{~Hz}\right),-10.9\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ 744.5 Hz), 54.8 (s , 65.7 (s).

The crude product was washed with pentane and filtered; an orange solid was dried in vacuo, and a yellow solid was afforded from reduced pressure solvent removal of the filtrate.

Orange solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.39\left(\mathrm{t}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.19 \mathrm{~Hz}\right), 6.61\left(\mathrm{t}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.94 \mathrm{~Hz}\right), 6.80\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.81 \mathrm{~Hz}), 6.93(\mathrm{~m}, 3.5 \mathrm{H}), 7.46\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.17 \mathrm{~Hz}\right), 7.62(\mathrm{~m}, 3 \mathrm{H}), 7.68(2 \mathrm{H}), 7.81(\mathrm{br}), 7.91(\mathrm{~s}$, $1 \mathrm{H}), 7.99\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.63 \mathrm{~Hz}\right), 8.05(\mathrm{br}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.9\left(\mathrm{t},{ }^{l} J_{P-H} 219.8 \mathrm{~Hz}, \mathbf{P H}_{2}\right), 54.5(\mathrm{~s}), 65.6(\mathrm{~s})$.
Yellow solid:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.39\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\right), 6.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.03\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.24 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\right), 7.69(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.9\left(\mathrm{t},{ }^{1} J_{P-H} 219.8 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right)$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(4-\mathrm{CN})(\mathrm{E} / \mathrm{Z}-39-4-\mathrm{CN})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0660 \mathrm{~g}, 2.64 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(4-\mathrm{CN})\left(0.0437 \mathrm{~g}, 2.64 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min ,
resulting in a colourless solution that turned yellow when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.29(\mathrm{~s}, 5.5 \mathrm{H}),-0.03(\mathrm{~s}, 5.5 \mathrm{H}), 0.12(\mathrm{br}, 8 \mathrm{H}), 0.20(\mathrm{~s}, 6.5 \mathrm{H}), 0.23(\mathrm{~s}$, $6.5 \mathrm{H}), 0.25(\mathrm{~s}, 36 \mathrm{H}), 0.28(\mathrm{~s}, 9.5 \mathrm{H}), 0.30(\mathrm{br}, 20 \mathrm{H}), 0.31(\mathrm{~s}, 13.5 \mathrm{H}), 6.48\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right)$, $6.81\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.23 \mathrm{~Hz}\right), 6.98\left(\mathrm{~d}, 6.5 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}\right), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 3 \mathrm{H}), 7.87(\mathrm{~d}$, $\left.2.5 \mathrm{H},{ }^{3} J_{H-H} 8.28 \mathrm{~Hz}\right), 7.92\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.36 \mathrm{~Hz}\right), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.36 \mathrm{~Hz}), 8.68(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-252.1\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{SiMe}_{3}\right)_{3}\right),-236.8\left(\mathrm{dm},{ }^{l} J_{P-H} 190.7 \mathrm{~Hz}, \mathrm{H} \underline{\mathbf{P}}\left(\mathrm{SiMe}_{3}\right)_{2}\right),-24.7(\mathrm{~s})$, -9.19 (s), -2.47 (s$), 63.2$ (d, ${ }^{l} J_{P-H} 190.9 \mathrm{~Hz}$), 73.7 (m), 143.9 (s$), 145.6$ (s$), 151.5$ (s$), 153.2$ (s$)$, 167.9 (s), 170.8 (s), 176.4 (s), 203.6 (s), 233.2 (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.41(\mathrm{~s}, 1 \mathrm{H}),-0.31(\mathrm{~s}, 2 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.11\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-P} 5.12 \mathrm{~Hz}\right)$, $0.17(\mathrm{~s}, 10 \mathrm{H}), 0.25(\mathrm{~s}, 52 \mathrm{H}), 0.28(\mathrm{~s}, 15 \mathrm{H}), 0.32(\mathrm{~s}, 2 \mathrm{H}), 6.77\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 6.55 \mathrm{~Hz}\right), 6.82(\mathrm{br}$, $1 \mathrm{H}), 6.90\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.35 \mathrm{~Hz}\right), 6.94\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 8.01 \mathrm{~Hz}\right), 7.07\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}\right), 7.47$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.31 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.69 \mathrm{~Hz}\right), 7.73\left(\mathrm{~d}, 10 \mathrm{H},{ }^{3} J_{H-H} 8.2 \mathrm{~Hz}\right), 7.87(\mathrm{~d}, 1.5 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.02 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.8\left(\mathrm{~d},{ }^{l} J_{P-P} 90.5 \mathrm{~Hz}\right),-115.9\left(\mathrm{~d},{ }^{l} J_{P-P} 71.2 \mathrm{~Hz}\right),-108.9(\mathrm{~m}),-108.2(\mathrm{~s})$,
 $\left.{ }^{l} J_{P-P} 90.5 \mathrm{~Hz}\right),-25.4(\mathrm{~s}),-13.4\left(\mathrm{~d},{ }^{1} J_{P-H} 695.6 \mathrm{~Hz}\right),-11.1\left(\mathrm{~d},{ }^{l} J_{P-H} 734.5 \mathrm{~Hz}\right),-9.45(\mathrm{~s}),-2.66$ (s), $2.40(\mathrm{~s}), 6.93(\mathrm{~s}), 56.1(\mathrm{~s}), 70.0(\mathrm{~s}), 78.4\left(\mathrm{~d},{ }^{l} J_{P-H} 160.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 81.1\left(\mathrm{~d},{ }^{l} J_{P-H} 155.5\right.$ $\mathrm{Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 114.2 (s), 177.3 (s$), 239.5$ (s$).$

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0420 \mathrm{~g}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN})\left(0.0278 \mathrm{~g}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ in THF , resulting in a bright yellow solution within 5 min ; an aliquot was dried in vacuo to afford an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 7 \mathrm{H}),-0.19(\mathrm{~s}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 4.5 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 2.5 \mathrm{H})$, $0.14(\mathrm{~s}, 7 \mathrm{H}), 0.18(\mathrm{~s}, 5 \mathrm{H}), 0.25(\mathrm{~s}, 30 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}), 0.32\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 3.57 \mathrm{~Hz}\right), 0.33(\mathrm{~s}, 5 \mathrm{H})$, $0.35(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1.5 \mathrm{H}), 6.87\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.95 \mathrm{~Hz}\right), 6.92\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.65 \mathrm{~Hz}\right), 6.97(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 8.96 \mathrm{~Hz}\right), 7.03\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.25 \mathrm{~Hz}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.81 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.37 \mathrm{~Hz}), 7.54\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.60\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.73\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.80\right.$ $\mathrm{Hz}), 8.02\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.81 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-252.1\left(\mathrm{~m}, \underline{\mathbf{P}}\left(\mathrm{SiMe}_{3}\right)_{3}\right),-236.8\left(\mathrm{dm},{ }^{1} J_{P-H} 190.7 \mathrm{~Hz}, \mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\right),-30.2(\mathrm{~s})$, $-24.6(\mathrm{~s}),-16.7\left(\mathrm{~d}, J_{P-P} 34.9 \mathrm{~Hz}\right),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 694.3 \mathrm{~Hz}\right),-9.11(\mathrm{~s}),-2.52(\mathrm{~s}),-0.89\left(\mathrm{~d}, J_{P-P}\right.$ $34.9 \mathrm{~Hz}), 64.2\left(\mathrm{~d},{ }^{l} J_{P-H} 190.9 \mathrm{~Hz}\right), 109.8(\mathrm{~s}), 114.7$ (s), 172.2 (s), 178.1 (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}-0.31(\mathrm{~s}, 1.5 \mathrm{H}), 0.02(\mathrm{~s}, 2.5 \mathrm{H}), 0.17(\mathrm{~s}, 17 \mathrm{H}), 0.24(\mathrm{~s}, 51 \mathrm{H}), 0.33(\mathrm{~s}, 7 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 6.88\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 6.92\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.54\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.97\right.$ $\mathrm{Hz}), 7.73\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right.$), $7.88\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.9\left(\mathrm{~d},{ }^{1} J_{P-P} 70.9 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H} 218.2 \mathrm{~Hz}, \mathbf{P H}_{2}\right)-104.5$ ($2^{\text {nd }}$ order), $-98.6(\mathrm{~m}),-97.1(\mathrm{~s}),-95.5(\mathrm{~s}),-84.4\left(\mathrm{~d},{ }^{l} J_{P-P} 70.9 \mathrm{~Hz}\right),-30.7(\mathrm{~s}),-25.9(\mathrm{~s}),-13.2\left(\mathrm{~d},{ }^{1} J_{P-H} 694.3\right.$ Hz), -10.9 (s), -9.75 (s), -2.83 (s), 2.36 (s), 6.88 (s).

Attempted synthesis of $\left.E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{COSiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(\boldsymbol{E} / \mathrm{Z}-39-4-\mathrm{CO}_{2} \mathrm{Me}\right)$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.058 \mathrm{~g}, 2.32 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.0461 \mathrm{~g}, 0.0660 \mathrm{~g}, 2.32 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that turned yellow when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.19(\mathrm{~s}, 4 \mathrm{H}),-0.12(\mathrm{~s}, 8 \mathrm{H}),-0.10(\mathrm{~s}, 19 \mathrm{H}),-0.07(\mathrm{~s}, 14 \mathrm{H}),-0.02(\mathrm{~s}, 4 \mathrm{H})$, $0.12\left(\mathrm{~d}, 6.5 \mathrm{H},{ }^{3} J_{H-P} 5.24 \mathrm{~Hz}\right), 0.18(\mathrm{~s}, 5.5 \mathrm{H}), 0.21(\mathrm{br}, 15 \mathrm{H}), 0.23(\mathrm{~s}, 4 \mathrm{H}), 0.25(\mathrm{~s}, 5 \mathrm{H}), 0.28$ (s, $25 \mathrm{H}), 0.41\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-P} 3.90 \mathrm{~Hz}\right), 0.49\left(\mathrm{~d}, 14.5 \mathrm{H},{ }^{3} J_{H-P} 4.84 \mathrm{~Hz}\right), 0.57(\mathrm{~s}, 14 \mathrm{H}), 3.30(\mathrm{~s}, 5 \mathrm{H})$, 3.33 ($\mathrm{s}, 4.5 \mathrm{H}$), $3.38(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3.5 \mathrm{H}), 3.45(\mathrm{~s}, 5 \mathrm{H}), 3.46(\mathrm{~s}, 2.5 \mathrm{H}), 3.47(\mathrm{~s}, 2.5 \mathrm{H}), 3.50(\mathrm{~s}$, $5.5 \mathrm{H}), 4.71(\mathrm{t}, 2 \mathrm{H}, J 6.73 \mathrm{~Hz}), 6.70\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 6.86 \mathrm{~Hz}\right), 6.96(\mathrm{br}, 1.5 \mathrm{H}), 7.29\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.98 \mathrm{~Hz}), 7.35\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.80 \mathrm{~Hz}\right), 7.43\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right)$, 7.63 (br, 2H), $7.70\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}\right.$), 7.78 (d, $2 \mathrm{H},{ }^{3} J_{H-H} 8.58 \mathrm{~Hz}$), $7.80\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.14\right.$ $\mathrm{Hz}), 7.85\left(\mathrm{~d}, 5.5 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.91(\mathrm{br}, 6 \mathrm{H}), 7.95\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 8.03\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.82 \mathrm{~Hz}), 8.10\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 8.15(\mathrm{~s}, 2 \mathrm{H}), 8.20\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}\right), 8.51(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.05 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-124.4\left(\mathrm{~d},{ }^{2} J_{P-P} 189.9 \mathrm{~Hz}\right),-95.9\left(\mathrm{~d}, J_{P-P} 59.1 \mathrm{~Hz}\right),-82.9\left(\mathrm{~d}, J_{P-P} 52.8 \mathrm{~Hz}\right)$, $-82.4\left(\mathrm{~d},{ }^{2} J_{P-P} 189.9 \mathrm{~Hz}\right),-81.2(\mathrm{~s}),-58.1\left(\mathrm{~d}, J_{P-P} 89.6 \mathrm{~Hz}\right),-52.9\left(\mathrm{~d}, J_{P-P} 52.8 \mathrm{~Hz}\right),-44.1(\mathrm{dd}$, $\left.J_{P-P} 59.1 \mathrm{~Hz},{ }^{1} J_{P-H} 174.8 \mathrm{~Hz}\right),-28.7\left(\mathrm{~d}, J_{P-P} 91.7 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-18.3(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 692.8\right.$ $\mathrm{Hz}),-10.5\left(\mathrm{~d},{ }^{l} J_{P-H} 213.7 \mathrm{~Hz}\right),-9.17(\mathrm{~s}),-5.46\left(\mathrm{~d},{ }^{l} J_{P-P} 91.7 \mathrm{~Hz}\right), 19.3\left(\mathrm{~d}, J_{P-P} 89.6 \mathrm{~Hz}\right), 56.4(\mathrm{~s})$, 68.3 (s), 142.5 ($\mathrm{s}, Z-\mathrm{C}=\underline{\mathbf{P}}$), 146.5 ($\mathrm{s}, E-\mathrm{C}=\underline{\mathbf{P}}$), 175.2 (s).

The solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.10(\mathrm{~s}, 11 \mathrm{H}),-0.06(\mathrm{~s}, 12.5 \mathrm{H}), 0.18(\mathrm{~s}, 21 \mathrm{H}), 0.25(\mathrm{~s}, 28 \mathrm{H}), 0.28(\mathrm{~s}$, $204 \mathrm{H}), 0.33(\mathrm{~s}, 21 \mathrm{H}), 3.25(\mathrm{~s}, 2.5 \mathrm{H}), 3.29(\mathrm{~s}, 3.5 \mathrm{H}), 3.33(\mathrm{~s}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 3.5 \mathrm{H}), 6.87\left(\mathrm{~d},{ }^{l} J_{H-P}\right.$ $692.8 \mathrm{~Hz}), 8.03\left(\mathrm{~d}, 41 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 41 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-124.4\left(\mathrm{~d},{ }^{2} J_{P-P} 189.9 \mathrm{~Hz}\right),-82.9\left(\mathrm{~d}, J_{P-P} 52.8 \mathrm{~Hz}\right),-82.4\left(\mathrm{~d},{ }^{2} J_{P-P} 189.9\right.$ $\mathrm{Hz}),-81.2(\mathrm{~s}),-57.7(\mathrm{~s}),-56.4(\mathrm{~s}),-52.9\left(\mathrm{~d}, J_{P-P} 52.8 \mathrm{~Hz}\right), 24.6(\mathrm{~s}),-18.3(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $692.8 \mathrm{~Hz}),-11.3(\mathrm{~m}),-10.5\left(\mathrm{~d},{ }^{l} J_{P-H} 213.7 \mathrm{~Hz}\right),-9.11(\mathrm{~s}),-2.04(\mathrm{~s}), 56.4(\mathrm{~s}), 64.2(\mathrm{~s}), 75.8(\mathrm{~s})$, 78.2 (s), 121.6 (s$), 146.5$ (s$), 175.2$ (s$), 236.9$ (s$).$

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.0450 \mathrm{~g}, 1.80 \times 10^{-4}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.0357 \mathrm{~g}, 1.80 \times 10^{-4}\right)$ in THF, resulting in the formation of a yellow solution within 5 min ; an aliquot was dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.19(\mathrm{~s}, 2.5 \mathrm{H}),-0.12(\mathrm{~s}, 6 \mathrm{H}),-0.10(\mathrm{~s}, 12 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 2 \mathrm{H})$, $0.13(\mathrm{~s}, 2 \mathrm{H}), 0.18(\mathrm{br}, 3.5 \mathrm{H}), 0.21(\mathrm{br}, 10.5 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 6 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}), 0.49(\mathrm{~d}$, $\left.9 \mathrm{H},{ }^{3} J_{H-P} 4.79 \mathrm{~Hz}\right), 0.57(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}$, $1.5 \mathrm{H}), 3.47(\mathrm{br}, 2.5 \mathrm{H}), 3.50(\mathrm{~s}, 3.5 \mathrm{H}), 6.70\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 6.90 \mathrm{~Hz}\right), 6.95(\mathrm{br}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.79 \mathrm{~Hz}\right), 7.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.89 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.31 \mathrm{~Hz}\right), 7.63(\mathrm{br}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $\left.2.5 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 7.91(\mathrm{br}, 4 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.11$ $(\mathrm{s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 8.20\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}\right), 8.51\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.97 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-124.4\left(\mathrm{~d},{ }^{2} J_{P-P} 190.5 \mathrm{~Hz}\right),-98.3(\mathrm{~m}),-96.4\left(\mathrm{~d}, J_{P-P} 58.7 \mathrm{~Hz}\right),-82.9\left(\mathrm{~d}, J_{P-P}\right.$ $53.4 \mathrm{~Hz}),-82.4\left(\mathrm{~d},{ }^{2} J_{P-P} 190.5 \mathrm{~Hz}\right),-81.3(\mathrm{~s}),-52.9\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-44.1\left(\mathrm{dd}, J_{P-P} 58.7 \mathrm{~Hz}, J_{P-}\right.$ $\left.{ }_{H} 174.9 \mathrm{~Hz}\right),-24.6(\mathrm{~s}),-18.3(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{l} J_{P-H} 689.6 \mathrm{~Hz}\right),-10.5\left(\mathrm{~d},{ }^{l} J_{P-H} 212.7 \mathrm{~Hz}\right),-2.06(\mathrm{~s})$, $142.5(\mathrm{~s}, Z-\mathrm{C}=\underline{\mathbf{P}}), 146.5(\mathrm{~s}, E-\mathrm{C}=\underline{\mathbf{P}})$.

The yellow solution was stirred for 18 h and dried in vacuo to afford a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.19(\mathrm{~s}, 2.5 \mathrm{H}),-0.11(\mathrm{~s}, 5 \mathrm{H}),-0.07(\mathrm{~s}, 4.5 \mathrm{H}), 0.11(\mathrm{br}, 8 \mathrm{H}), 0.18(\mathrm{br}, 7 \mathrm{H})$, $0.21(\mathrm{br}, 10.5 \mathrm{H}), 0.25(\mathrm{~s}, 8 \mathrm{H}), 0.32(\mathrm{~s}, 6 \mathrm{H}), 0.49\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-P} 4.79 \mathrm{~Hz}\right), 0.56(\mathrm{~s}, 3 \mathrm{H}), 0.58(\mathrm{~s}$, $1.5 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 15 \mathrm{H}), 3.47(\mathrm{br}, 2.5 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.50$ $(\mathrm{s}, 2.5 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 7.29\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.79 \mathrm{~Hz}\right), 7.63(\mathrm{br}, 1.5 \mathrm{H}), 7.81\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right)$, $7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 8.01\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 8.45 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 8.45 \mathrm{~Hz}\right), 8.15(\mathrm{~s}, 1 \mathrm{H})$, 8.19 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-124.4\left(\mathrm{~d},{ }^{2} J_{P-P} 190.5 \mathrm{~Hz}\right),-98.3(\mathrm{~m}),-82.9\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-82.4\left(\mathrm{~d},{ }^{2} J_{P-P}\right.$ $190.5 \mathrm{~Hz}),-81.3(\mathrm{~s}),-52.9\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{l} J_{P-H} 689.6 \mathrm{~Hz}\right),-10.5(\mathrm{~s}),-$ 9.18 (s), -2.06 (s$), 98.2$ (s$), 121.5$ (s$), 146.5$ (s$), 175.2$ (s$), 236.9(\mathrm{~s})$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(4-\mathrm{COCl})(\boldsymbol{E} / \mathbf{Z}-39-4-\mathrm{COCl})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.129 \mathrm{~g}, 5.16 \times 10^{-4} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,4-$ $\mathrm{COCl})_{2}\left(0.105 \mathrm{~g}, 5.16 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a bright yellow solution that turned brown when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a brown oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.27(\mathrm{~s}, 2.5 \mathrm{H}),-0.19(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 7 \mathrm{H}), 0.07(\mathrm{~d}, 6 \mathrm{H}$, $\left.{ }^{3} J_{H-P} 4.92 \mathrm{~Hz}\right), 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 13 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 21 \mathrm{H}), 0.46\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-P} 4.75\right.$ $\mathrm{Hz}), 0.54(\mathrm{~s}, 6 \mathrm{H}), 6.96(\mathrm{br}, 2.5 \mathrm{H}), 7.46(\mathrm{~s}, 1.5 \mathrm{H}), 7.59\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}\right), 7.63(\mathrm{~m}, 3 \mathrm{H}), 7.73$ $\left(\mathrm{d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.04 \mathrm{~Hz}\right), 7.87\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.04 \mathrm{~Hz}\right), 8.06\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.04 \mathrm{~Hz}), 8.13(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-82.1\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-74.2(\mathrm{~s}),-50.6\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-24.7(\mathrm{~s})$, -3.90 (s).

The solution was stirred for 18 h and dried in vacuo to afford a brown solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.27(\mathrm{~s}, 5 \mathrm{H}),-0.19\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 3.96 \mathrm{~Hz}\right), 0.06(\mathrm{~s}, 4 \mathrm{H}), 0.11(\mathrm{~s}, 5.5 \mathrm{H})$, 0.17 (br, 4.5 H$), 0.21(\mathrm{~s}, 4.5 \mathrm{H}), 0.24(\mathrm{~s}, 8.5 \mathrm{H}), 0.27(\mathrm{~s}, 26 \mathrm{H}), 7.03\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.94 \mathrm{~Hz}\right), 7.08(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 8.82 \mathrm{~Hz}\right), 7.57(\mathrm{br}, 2.5 \mathrm{H}), 7.67\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 8.36 \mathrm{~Hz}\right), 7.73\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.39 \mathrm{~Hz}\right)$, $7.87\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.24 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.24 \mathrm{~Hz}\right), 8.12(\mathrm{~s}, 2 \mathrm{H}), 8.28\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}\right)$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-114.5\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.9 \mathrm{~Hz},{ }^{1} J_{P-H} 172.1 \mathrm{~Hz}, J_{P-H} 10.6 \mathrm{~Hz}\right),-111.4\left(\mathrm{~d}, J_{P-P}\right.$ $154.0 \mathrm{~Hz}),-107.6\left(2^{\text {nd }}\right.$ order $),-98.0\left(2^{\text {nd }}\right.$ order $),-95.4\left(\mathrm{~d}, J_{P-P} 59.5 \mathrm{~Hz}\right),-83.9\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.9\right.$ $\left.\mathrm{Hz},{ }^{1} J_{P-H} 183.8 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}\right),-82.1\left(\mathrm{~d}, J_{P-P} 53.4 \mathrm{~Hz}\right),-69.3\left(\mathrm{~d}, J_{P-P} 154.0 \mathrm{~Hz}\right),-50.6\left(\mathrm{~d}, J_{P-P}\right.$ $53.4 \mathrm{~Hz}),-43.0\left(\mathrm{dd}, J_{P-P} 59.5 \mathrm{~Hz},{ }^{1} J_{P-H} 176.4 \mathrm{~Hz}\right),-30.3(\mathrm{~s}),-26.5(\mathrm{~s}),-24.8(\mathrm{~s}),-18.8(\mathrm{~s})$, $-18.3(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 690.7 \mathrm{~Hz}\right),-11.2\left(\mathrm{~d},{ }^{1} J_{P-H} 733.0 \mathrm{~Hz}\right),-9.20(\mathrm{~s})$.

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.050 \mathrm{~g}, 2.00 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,4-\mathrm{COCl})_{2}\left(0.041 \mathrm{~g}, 2.00 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in a brown solution within 5 min ; an aliquot was dried in vacuo to afford a brown oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.27(\mathrm{~s}, 1.5 \mathrm{H}),-0.18(\mathrm{~s}, 4.5 \mathrm{H}),-0.08(\mathrm{~s}, 3.5 \mathrm{H}), 0.07\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-P} 4.44\right.$ $\mathrm{Hz}), 0.12(\mathrm{~s}, 8 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 4 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}), 0.46\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-P} 4.73 \mathrm{~Hz}\right), 0.54(\mathrm{~s}$, $4 \mathrm{H}), ~ 6.96-8.13(\mathrm{~m}, 28 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-95.4\left(\mathrm{~d}, J_{P-P} 59.5 \mathrm{~Hz}\right),-82.2\left(\mathrm{~d}, J_{P-P} 53.9 \mathrm{~Hz}\right),-74.2(\mathrm{~s}),-50.7\left(\mathrm{~d}, J_{P-P} 53.9\right.$ $\mathrm{Hz}),-42.6\left(\mathrm{~d}, J_{P-P} 59.5 \mathrm{~Hz}\right),-24.7(\mathrm{~s}),-12.9(\mathrm{~s})$.

The solution turned orange after it was stirred for 18 h and was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.27(\mathrm{~s}, 5.5 \mathrm{H}), 0.06(\mathrm{~s}, 5.5 \mathrm{H}), 0.11(\mathrm{~s}, 4 \mathrm{H}), 0.17(\mathrm{~s}, 9.5 \mathrm{H}), 0.18(\mathrm{~s}, 3.5 \mathrm{H})$, $0.21(\mathrm{~s}, 4 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 40 \mathrm{H}), 7.03\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.48(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~d}, 8 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.77 \mathrm{~Hz}\right), 7.87\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.77 \mathrm{~Hz}\right), 8.01\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.04\right.$ $\mathrm{Hz}), 8.12(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-114.5\left(\mathrm{~d},{ }^{l} J_{P-P} 70.8 \mathrm{~Hz}\right),-96.3(\mathrm{~s}),-83.9\left(\mathrm{~d},{ }^{l} J_{P-P} 70.8 \mathrm{~Hz}\right),-30.6(\mathrm{~s}),-$ $30.2\left(J_{P-P} 14.9 \mathrm{~Hz}\right)-26.7(\mathrm{~s}),-25.7(\mathrm{~s}),-18.9(\mathrm{~s}),-18.5(\mathrm{~s}),-14.9\left(\mathrm{dd},{ }^{1} J_{P-H} 731.3 \mathrm{~Hz}, J_{P-P} 14.9\right.$ $\mathrm{Hz}),-13.3\left(\mathrm{~d},{ }^{1} J_{P-H} 694.7 \mathrm{~Hz}\right),-10.9(\mathrm{~s}),-11.0(\mathrm{~s}),-9.63(\mathrm{~s}),-8.29(\mathrm{~s}),-4.66(\mathrm{~s})$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathbf{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(4-\mathrm{CN})(\boldsymbol{E} / \mathrm{Z}-42-4-\mathrm{CN})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.400 \mathrm{~g}, 2.25 \times 10^{-3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\mathrm{CN})\left(0.372 \mathrm{~g}, 2.25 \times 10^{-3}\right)$ in THF and the mixture was stirred for 15 min , resulting in a pale yellow solution that turned bright yellow when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.40(\mathrm{~s}, 7 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 4 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.13$ $(\mathrm{s}, 4 \mathrm{H}), 0.17(\mathrm{~s}, 5.5 \mathrm{H}), 0.19(\mathrm{~s}, 8 \mathrm{H}), 0.26(\mathrm{~s}, 36 \mathrm{H}), 0.28(\mathrm{~s}, 4 \mathrm{H}), 2.87$ ($2^{\text {nd }}$ order, 1 H), $3.69(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{l} J_{H-P} 218.6 \mathrm{~Hz}, \underline{\mathrm{H}}_{2}\right), 4.59\left(2^{\text {nd }}\right.$ order, 1 H$), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 153.6 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 4.99(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{l} J_{H-P} 159.4 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{P} \underline{\mathbf{H}}\right), 6.73\left(\mathrm{~d}, 41 \mathrm{H},{ }^{3} J_{H-H} 8.15 \mathrm{~Hz}\right), 6.79\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}\right), 6.79(\mathrm{t}$, $\left.8 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}\right), 6.97\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}\right), 7.09\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 8.15 \mathrm{~Hz}\right), 7.22\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.32 \mathrm{~Hz}), 7.34\left(\mathrm{~d}, 41 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right), 7.49\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}\right), 7.66\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right)$, $7.75\left(\mathrm{t}, 10 \mathrm{H},{ }^{3} J_{H-H} 8.15 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}}-131.4(\mathrm{~s}),-131.3(\mathrm{~s}),-130.1(\mathrm{~s}),-129.9(\mathrm{~s}),-129.8(\mathrm{~s}),-129.5(\mathrm{~s}),-128.7$ (s), $-128.4(\mathrm{~s}),-128.2(\mathrm{~s}),-119.8\left(\mathrm{dd},{ }^{1} J_{P-P} 90.3 \mathrm{~Hz},{ }^{1} J_{P-H} 167.2 \mathrm{~Hz}\right),-115.8$ (ddd, ${ }^{1} J_{P-P} 72.1 \mathrm{~Hz}$, $\left.{ }^{1} J_{P-H} 173.3 \mathrm{~Hz}, J_{P-H} 9.88 \mathrm{~Hz}\right),-108.9(\mathrm{~s}),-108.2\left(\mathrm{t},{ }^{l} J_{P-H} 218.6 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.4\left(2^{\text {nd }}\right.$ order $),-$ $98.5(\mathrm{~m}),-97.1\left(2^{\mathrm{nd}}\right.$ order), $-91.1\left(\mathrm{~d},{ }^{l} J_{P-H} 170.5 \mathrm{~Hz}\right),-90.3\left(\mathrm{~d},{ }^{1} J_{P-H} 169.5 \mathrm{~Hz}\right),-84.4\left(\mathrm{ddd},{ }^{1} J_{P-}\right.$ $\left.{ }_{P} 72.1 \mathrm{~Hz},{ }^{l} J_{P-H} 184.8 \mathrm{~Hz}, J_{P-H} 11.9 \mathrm{~Hz}\right),-83.0\left(\mathrm{~d},{ }^{l} J_{P-P} 90.3 \mathrm{~Hz}\right),-81.2\left(\mathrm{~d}, J_{P-P} 85.3 \mathrm{~Hz}\right),-33.5$ (s), -30.4 (s), -26.4 (s$),-25.8$ (s), -23.9 (d, $J_{P-P} 85.3 \mathrm{~Hz}$), -22.1 (s), -16.5 (s$),-16.3$ (s), -13.6 (s), -12.6 (s), -9.35 (s), -9.20 (s), -8.67 (s), 21.3 (s), 25.0 (s), 26.6 (s), 48.2 (s), 48.8 (s), 49.5 (s$), 51.2$ (s$), 51.9(\mathrm{~s}), 55.7(\mathrm{~s}), 56.1(\mathrm{~s}), 70.1(\mathrm{~s}), 78.5\left(\mathrm{~d},{ }^{l} J_{P-H} 159.4 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 81.2\left(\mathrm{~d},{ }^{l} J_{P-H}\right.$ 153.6 Hz, Z- C=파), 113.7 (s), 153.6 (s).

The solution was stirred for 18 h and dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.44(\mathrm{~s}, 12 \mathrm{H}),-0.32(\mathrm{~s}, 1 \mathrm{H}),-0.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 4.39 \mathrm{~Hz}\right),-0.14(\mathrm{~s}, 9 \mathrm{H}),-$ $0.09(\mathrm{~s}, 2 \mathrm{H}),-0.01(\mathrm{~s}, 5.5 \mathrm{H}), 0.04(\mathrm{~s}, 4 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 4 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 15 \mathrm{H})$, $0.23(\mathrm{~s}, 7 \mathrm{H}), 0.46(\mathrm{~s}, 1 \mathrm{H}), 2.83\left(2^{\text {nd }}\right.$ order, 1.5 H$), 3.65\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 218.6 \mathrm{~Hz}, \mathrm{P} \underline{\mathbf{H}}_{2}\right), 4.54\left(2^{\text {nd }}\right.$ order, 1.2 H), $6.69\left(\mathrm{~d}, 22 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right), 6.76\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right), 6.86\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 78.42\right.$ $\mathrm{Hz}), 6.92\left(\mathrm{t}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.64 \mathrm{~Hz}\right), 7.05\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right), 7.17\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right), 7.30$ (d, $\left.22 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right), 7.45\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.64 \mathrm{~Hz}\right), 7.71(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}}-197.4(\mathrm{~m}),-193.0(\mathrm{~s}),-191.7(\mathrm{~s}),-119.8\left(\mathrm{dd},{ }^{1} J_{P-P} 90.3 \mathrm{~Hz},{ }^{1} J_{P-H} 167.2\right.$ $\mathrm{Hz}),-115.8\left(\mathrm{ddd},{ }^{l} J_{P-P} 72.1 \mathrm{~Hz},{ }^{1} J_{P-H} 173.3 \mathrm{~Hz}, J_{P-H} 9.88 \mathrm{~Hz}\right),-108.9(\mathrm{~s}),-108.2\left(\mathrm{t},{ }^{l} J_{P-H} 218.6\right.$ $\left.\mathrm{Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-104.4\left(2^{\text {nd }}\right.$ order $),-98.5(\mathrm{~m}),-97.1\left(2^{\text {nd }}\right.$ order) $,-91.1\left(\mathrm{~d},{ }^{1} J_{P-H} 170.5 \mathrm{~Hz}\right),-90.3(\mathrm{~d}$, $\left.{ }^{l} J_{P-H} 169.5 \mathrm{~Hz}\right),-87.1(\mathrm{~s}),-86.1(\mathrm{~s}),-84.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 72.1 \mathrm{~Hz},{ }^{1} J_{P-H} 184.8 \mathrm{~Hz}, J_{P-H} 11.9 \mathrm{~Hz}\right),-$ 83.0 (ddd, ${ }^{l} J_{P-P} 90.3 \mathrm{~Hz},{ }^{l} J_{P-H} 171.4 \mathrm{~Hz}, J_{P-H} 7.53 \mathrm{~Hz}$), $-81.2\left(\mathrm{dd}, J_{P-P} 85.3 \mathrm{~Hz},{ }^{l} J_{P-H} 179.3 \mathrm{~Hz}\right.$), $-60.7\left(\mathrm{~d},{ }^{l} J_{P-H} 194.1 \mathrm{~Hz}\right),-60.2\left(\mathrm{~d},{ }^{l} J_{P-H} 194.1 \mathrm{~Hz}\right),-59.4\left(\mathrm{~d},{ }^{l} J_{P-H} 179.8 \mathrm{~Hz}\right),-58.8\left(\mathrm{~d},{ }^{l} J_{P-H}\right.$ $178.8 \mathrm{~Hz}),-42.2(\mathrm{~s}),-41.7(\mathrm{~s}),-26.5(\mathrm{~s}),-13.1\left(\mathrm{~d},{ }^{l} J_{P-H} 704.5 \mathrm{~Hz}\right),-8.92\left(\mathrm{dd}, J_{P-P} 85.3 \mathrm{~Hz}, J_{P-H}\right.$ 19.2 Hz), $56.1(\mathrm{~s}), 70.1(\mathrm{~s}), 78.5\left(\mathrm{~d},{ }^{l} J_{P-H} 159.4 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 81.2\left(\mathrm{~d},{ }^{l} J_{P-H} 153.6 \mathrm{~Hz}, Z-\right.$ $\mathrm{C}=\mathbf{P} \mathrm{H}$), 113.7 (s).

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.530 \mathrm{~g}, 2.98 \times 10^{-3}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN})\left(0.493 \mathrm{~g}, 2.98 \times 10^{-3}\right)$ in THF, resulting in the formation of a bright yellow solution within 5 min ; an aliquot was dried in vacuo to afford a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}-0.39(\mathrm{~s}, 2 \mathrm{H}),-0.09(\mathrm{~s}, 1.5 \mathrm{H}), 0.04(\mathrm{~s}, 1 \mathrm{H}), 0.09\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-P} 8.45 \mathrm{~Hz}\right), 0.18$ $(\mathrm{s}, 2 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}), 2.89\left(2^{\mathrm{nd}}\right.$ order, 1 H$), 3.73\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{1} J_{H-P} 219.5 \mathrm{~Hz}, \mathrm{P}_{2}\right), 4.61$ ($2^{\text {nd }}$ order, 1 H), $6.83\left(\mathrm{~d}, 10.5 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right.$), $6.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.03\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.45 \mathrm{~Hz}), 7.26\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 7.40\left(\mathrm{~d}, 10.5 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.52\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.41 \mathrm{~Hz}\right)$, $7.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.41 \mathrm{~Hz}\right), 7.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}}-119.7\left(\mathrm{dd},{ }^{l}{ }_{P-P} 91.6 \mathrm{~Hz},{ }^{l} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.8\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.6 \mathrm{~Hz},{ }^{l} J_{P-H}\right.$ $173.1 \mathrm{~Hz}, J_{P-H} 10.2 \mathrm{~Hz}$), -108.1 (t, ${ }^{1} J_{P-H} 219.5 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}$), -104.4 ($2^{\text {nd }}$ order), -97.0 ($2^{\text {nd }}$ order), 84.4 (ddd, ${ }^{l} J_{P-P} 70.6 \mathrm{~Hz},{ }^{l} J_{P-H} 184.6 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}$), -82.9 (ddd, ${ }^{1} J_{P-P} 91.6 \mathrm{~Hz},{ }^{l} J_{P-H} 163.1 \mathrm{~Hz}$, $\left.J_{P-H} 8.11 \mathrm{~Hz}\right),-26.6(\mathrm{~s}),-19.4(\mathrm{~s}),-13.2\left(\mathrm{~d},{ }^{1} J_{P-H} 706.0 \mathrm{~Hz}\right),-12.6\left(\mathrm{~d}, J_{P-P} 84.3 \mathrm{~Hz}\right),-10.5(\mathrm{~d}$, $\left.{ }^{l} J_{P-H} 742.9 \mathrm{~Hz}\right),-8.60\left(\mathrm{dd}, J_{P-P} 84.3 \mathrm{~Hz}, J_{P-H} 19.5 \mathrm{~Hz}\right), 49.6\left(\mathrm{~d}, J_{P-P} 25.3 \mathrm{~Hz}\right), 51.3(\mathrm{~s}), 51.9(\mathrm{~s})$, 56.3 (s), 70.3 (s), 78.4 (d, ${ }^{l} J_{P-H} 159.7 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), $81.2\left(\mathrm{~d},{ }^{l} J_{P-H} 154.1 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 113.7$ (s).
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}} 15.6,16.2,19.3,22.6,25.8$.

The solution turned orange after it was stirred for 18 h and was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{H}}-0.39(\mathrm{~s}, 5 \mathrm{H}),-0.09(\mathrm{~s}, 4 \mathrm{H}), 0.04(\mathrm{~s}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 4 \mathrm{H}), 0.20(\mathrm{~s}$, $2 \mathrm{H}), 0.27(\mathrm{~s}, 7 \mathrm{H}), 2.89\left(2^{\text {nd }}\right.$ order, 1 H$), 3.73\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{l} J_{H-P} 219.5 \mathrm{~Hz}, \mathrm{P} \underline{H}_{2}\right), 4.61\left(2^{\text {nd }}\right.$ order, 1 H$)$, $6.83\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 6.97\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.01\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.37 \mathrm{~Hz}\right), 7.26(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right), 7.41\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.52\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.41 \mathrm{~Hz}\right), 7.56\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.41 \mathrm{~Hz}), 7.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.98 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.09 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.7\left(\mathrm{dd},{ }^{l} J_{P-P} 91.6 \mathrm{~Hz},{ }^{l} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.8\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.6 \mathrm{~Hz},{ }^{l} J_{P-H}\right.$ $173.1 \mathrm{~Hz}, J_{P-H} 10.2 \mathrm{~Hz}$), $-108.1\left(\mathrm{t},{ }^{1} J_{P-H} 219.5 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-104.4$ ($2^{\text {nd }}$ order), -97.0 ($2^{\text {nd }}$ order), 84.4 (ddd, ${ }^{1} J_{P-P} 70.6 \mathrm{~Hz},{ }^{1} J_{P-H} 184.6 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}$), $-82.9\left(\mathrm{ddd},{ }^{1} J_{P-P} 91.6 \mathrm{~Hz},{ }^{1} J_{P-H} 163.1 \mathrm{~Hz}\right.$, $\left.J_{P-H} 8.11 \mathrm{~Hz}\right),-26.6(\mathrm{~s}),-19.4(\mathrm{~s}),-13.2\left(\mathrm{~d},{ }^{l} J_{P-H} 706.0 \mathrm{~Hz}\right),-12.6\left(\mathrm{~d}, J_{P-P} 84.3 \mathrm{~Hz}\right),-10.5(\mathrm{~d}$, $\left.{ }^{1} J_{P-H} 742.9 \mathrm{~Hz}\right),-8.60\left(\mathrm{dd}, J_{P-P} 84.3 \mathrm{~Hz}, J_{P-H} 19.5 \mathrm{~Hz}\right), 56.3(\mathrm{~s}), 70.3(\mathrm{~s}), 78.4\left(\mathrm{~d},{ }^{1} J_{P-H} 159.7 \mathrm{~Hz}\right.$, $E-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), $81.2\left(\mathrm{~d},{ }^{1} J_{P-H} 154.1 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 113.8$ (s).

The crude product was washed with pentane; a peach solid was dried in vacuo, while removal of solvent at reduced pressure afforded an off-white solid.

Peach solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 3.5 \mathrm{H}),-0.11(\mathrm{~s}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 2 \mathrm{H}), 6.68\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.85 \mathrm{~Hz}), 6.89\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}\right), 7.07\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.65 \mathrm{~Hz}\right), 7.32\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}\right)$, $7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.97 \mathrm{~Hz}\right), 7.65\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.33 \mathrm{~Hz}\right), 7.81\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-108.2\left(\mathrm{t},{ }^{1} J_{P-H} 218.9 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-109.5\left(2^{\text {nd }}\right.$ order), $-97.1\left(2^{\text {nd }}\right.$ order $),-13.2$ (d, $\left.{ }^{l} J_{P-H} 707.6 \mathrm{~Hz}\right), 56.0(\mathrm{~s}), 69.9(\mathrm{~s})$.

Off-white solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3.5 \mathrm{H}), 6.67\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-H} 8.18 \mathrm{~Hz}\right), 6.90\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.50 \mathrm{~Hz}\right), 6.96(\mathrm{br}, 1 \mathrm{H}), 7.08\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.34 \mathrm{~Hz}\right), 7.32\left(\mathrm{~d}, 12 \mathrm{H},{ }^{3} J_{H-H} 8.18 \mathrm{~Hz}\right), 7.55(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}\right), 7.63(\mathrm{br}, 1 \mathrm{H}), 7.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(E / Z-42-4-\mathrm{CO}_{2} \mathrm{Me}\right)$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.430 \mathrm{~g}, 2.42 \times 10^{-3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.479 \mathrm{~g}, 2.42 \times 10^{-3}\right)$ in THF and the mixture was stirred for 15 min , resulting in a pale
yellow solution that turned orange when it was allowed to warm to ambient temperature over 45 min; an aliquot was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 1 \mathrm{H}),-0.16(\mathrm{~s}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 7.5 \mathrm{H}), 0.22(\mathrm{~s}, 5 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.27$ ($\mathrm{s}, 2.5 \mathrm{H}$), $0.29(\mathrm{~s}, 14 \mathrm{H}), 0.33(\mathrm{~s}, 2 \mathrm{H}), 0.51(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1.5 \mathrm{H}), 3.45(\mathrm{~s}, 66 \mathrm{H})$, 3.48 (s, 6H), 3.49 (s, 1.5H), 3.51 (s, 2H), 3.54 (s, 1.5H), 3.56 (s, 1H), 3.64 (s, 1H), 7.70 (d, 35 H , $\left.{ }^{3} J_{H-H} 8.20 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 35 \mathrm{H},{ }^{3} J_{H-H} 8.20 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.93\right.$ $\mathrm{Hz}), 8.00\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}\right), 8.08\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}\right), 8.15\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}\right)$, $8.49\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.93 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-186.5\left(\mathrm{t},{ }^{1} J_{P-H} 191.9 \mathrm{~Hz}\right),-185.2\left(\mathrm{t},{ }^{1}{ }_{P-H} 191.9 \mathrm{~Hz}\right),-129.8(\mathrm{~s}),-128.5(\mathrm{~s})$, -115.3 (d, $\left.{ }^{l} J_{P-P} 70.5 \mathrm{~Hz}\right),-108.6(\mathrm{~s}),-108.4\left(\mathrm{t},{ }^{1} J_{P-H} 218.2 \mathrm{~Hz}, \mathbf{P H}_{2}\right.$), -104.2 ($2^{\text {nd }}$ order), -96.9 ($2^{\text {nd }}$ order), -84.9 (d, ${ }^{1} J_{P-P} 70.5 \mathrm{~Hz}$), $-58.9(\mathrm{~s}),-57.7(\mathrm{~s}),-30.5(\mathrm{~s}),-30.1(\mathrm{~s}),-25.5(\mathrm{~s}),-18.5(\mathrm{~s})$, $-17.2(\mathrm{~s}),-13.3\left(\mathrm{~d},{ }^{l} J_{P-H} 695.3 \mathrm{~Hz}\right),-10.9\left(\mathrm{~d},{ }^{l} J_{P-H} 742.7 \mathrm{~Hz}\right),-9.56(\mathrm{~s}),-1.65(\mathrm{~s}), 26.9(\mathrm{~s}), 32.3$ (s), 42.4 (s), 46.5 (s), 50.9 (s), $56.5(\mathrm{~s}), 68.3(\mathrm{~s}), 75.6\left(\mathrm{~d},{ }^{l} J_{P-H} 159.9 \mathrm{~Hz}, E-\mathrm{C}=\mathbf{P H}\right), 78.1\left(\mathrm{~d},{ }^{l} J_{P-H}\right.$ $152.8 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}$), 114.2 (s).

The solution was stirred for 18 h and dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}-0.32(\mathrm{~s}, 5 \mathrm{H}),-0.04(\mathrm{~s}, 3.5 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 2.5 \mathrm{H}), 0.18(\mathrm{~s}, 12 \mathrm{H})$, $0.20(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}), 0.25(\mathrm{~s}, 5 \mathrm{H}), 0.26(\mathrm{~s}, 13.5 \mathrm{H}), 0.30(\mathrm{~s}, 25 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H})$, 3.37 ($\mathrm{s}, 1 \mathrm{H}$), $3.41(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 94 \mathrm{H}), 3.50(\mathrm{~s}, 12.5 \mathrm{H}), 3.53(\mathrm{~s}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H})$, $7.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}\right), 7.12\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.24 \mathrm{~Hz}\right), 7.22\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right), 7.44(\mathrm{~d}$, $\left.1.5 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.51\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}\right), 7.57\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 7.72\left(\mathrm{~d}, 51 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.45 \mathrm{~Hz}), 7.78\left(\mathrm{~d}, 51 \mathrm{H},{ }^{3} J_{H-H} 8.45 \mathrm{~Hz}\right), 7.99\left(\mathrm{~d}, 9 \mathrm{H},{ }^{3} J_{H-H} 8.58 \mathrm{~Hz}\right), 8.04\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.58 \mathrm{~Hz}\right)$, $8.15\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.58 \mathrm{~Hz}\right), 8.18\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.58 \mathrm{~Hz}\right), 8.46\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.05 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-197.5\left(\mathrm{~d}, J_{P-P} 152.4 \mathrm{~Hz}\right),-186.5\left(\mathrm{t},{ }^{l} J_{P-H} 191.9 \mathrm{~Hz}\right),-185.2\left(\mathrm{t},{ }^{l} J_{P-H} 191.9\right.$ $\mathrm{Hz}),-161.6(\mathrm{~s}),-160.4(\mathrm{~s}),-128.8(\mathrm{~s}),-127.4(\mathrm{~s}),-115.3$ (ddd, ${ }^{1} J_{P-P} 70.5 \mathrm{~Hz},{ }^{1} J_{P-H} 172.0 \mathrm{~Hz}, J_{P-}$ ${ }_{H} 13.5 \mathrm{~Hz}$), $-108.4\left(\mathrm{t},{ }^{1} J_{P-H} 218.2 \mathrm{~Hz}, \underline{\mathbf{P}}{ }_{2}\right),-104.1$ ($2^{\text {nd }}$ order), $-96.9\left(2^{\text {nd }}\right.$ order $),-87.2\left(\mathrm{~d}, J_{P-P}\right.$ 152.4 Hz), -84.9 (ddd, ${ }^{1} J_{P-P} 70.5 \mathrm{~Hz},{ }^{l} J_{P-H} 180.4 \mathrm{~Hz}, J_{P-H} 11.7 \mathrm{~Hz}$), $-82.1(\mathrm{~s}),-81.6(\mathrm{~s}),-30.7$ (s), -26.8 (s), -25.7 (s), -18.6 (s$),-13.3\left(\mathrm{~d},{ }^{l} J_{P-H} 695.3 \mathrm{~Hz}\right),-10.8\left(\mathrm{~d},{ }^{l} J_{P-H} 742.7 \mathrm{~Hz}\right),-9.70(\mathrm{~s})$,
 $E-\mathrm{C}=\mathbf{P H}$), $78.1\left(\mathrm{~d},{ }^{1}{ }^{\prime}{ }_{P-H} 152.8 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P H}\right.$), 114.2 (s$), 172.8$ (s).

Method B

To a THF solution of $\operatorname{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.430 \mathrm{~g}, 2.42 \times 10^{-3}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.479 \mathrm{~g}, 2.42 \times 10^{-3}\right)$ in THF, resulting in the formation of a bright yellow solution within 5 min ; an aliquot was dried in vacuo to afford a yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.30(\mathrm{~s}, 2 \mathrm{H}),-0.15(\mathrm{~s}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 5.5 \mathrm{H}), 0.22(\mathrm{~s}, 5 \mathrm{H}), 0.29(\mathrm{~s}, 11.5 \mathrm{H})$, $0.51(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 67 \mathrm{H}), 3.46(\mathrm{~s}, 5 \mathrm{H}), 4.79\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{l} J_{P-H} 152.8 \mathrm{~Hz}, Z-\mathrm{C}=\mathrm{PH}\right.$), $5.16(\mathrm{~d}, 0.5 \mathrm{H}$, $\left.{ }^{1} J_{P-H} 159.9 \mathrm{~Hz}, E-\mathrm{C}=\mathrm{PH}\right), 7.49\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.82 \mathrm{~Hz}\right), 7.56\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.47 \mathrm{~Hz}\right), 7.69(\mathrm{~d}$, $\left.34 \mathrm{H},{ }^{3} J_{H-H} 8.20 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 34 \mathrm{H},{ }^{3} J_{H-H} 8.20 \mathrm{~Hz}\right), 7.89\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.75 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.90 \mathrm{~Hz}), 8.02\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.41 \mathrm{~Hz}\right), 8.09\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 8.50\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-129.8(\mathrm{~s}),-128.5(\mathrm{~s}),-115.3\left(\mathrm{~d},{ }^{1} J_{P-P} 70.5 \mathrm{~Hz}\right),-108.6(\mathrm{~s}),-108.4\left(\mathrm{t},{ }^{1} J_{P-H}\right.$ $218.2 \mathrm{~Hz}, \mathbf{P H}_{2}$), $-104.2\left(2^{\text {nd }}\right.$ order $),-98.3(\mathrm{~m}),-96.9\left(2^{\text {nd }}\right.$ order $),-84.9\left(\mathrm{~d},{ }^{l} J_{P-P} 70.5 \mathrm{~Hz}\right),-58.9$ (s), -57.7 (s), -54.3 (s), -52.7 (s), -25.2 (s), -18.8 (s), -18.4 (s), -17.2 (d, $J_{P-H} 23.4 \mathrm{~Hz}$), -13.3 (s), 26.9 (s , 29.7 (s$), 32.3$ (s$), 46.5$ (s$), 50.9$ (s$), 56.4$ (s), 68.4 (s$), 75.7$ (d, ${ }^{I} J_{P-H} 159.9 \mathrm{~Hz}, E-$ $\mathrm{C}=\mathbf{P H}$), $78.1\left(\mathrm{~d},{ }^{1} J_{P-H} 152.8 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 114.3$ (s).

The solution turned orange after it has been stirred for 18 h and was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 4 \mathrm{H}),-0.04(\mathrm{~s}, 4 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 4 \mathrm{H}), 0.18(\mathrm{~s}, 4.5 \mathrm{H}), 0.22$ $(\mathrm{s}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 5.5 \mathrm{H}), 0.31(\mathrm{~s}, 6.5 \mathrm{H}), 0.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 4.45 \mathrm{~Hz}\right), 0.47(\mathrm{~s}, 1 \mathrm{H})$, $0.61(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1.5 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 7.5 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}\right), 7.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}\right), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.36 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.54\right.$ $\mathrm{Hz}), 7.70\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} J_{H-H} 8.54 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} J_{H-H} 8.54 \mathrm{~Hz}\right), 7.83\left(\mathrm{t}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.54 \mathrm{~Hz}\right)$, $7.90\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.99 \mathrm{~Hz}\right), 8.01\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.499 \mathrm{~Hz}\right), 8.07(\mathrm{~m}$, $3 \mathrm{H}), 8.13\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.99 \mathrm{~Hz}\right), 8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 8.49\left(\mathrm{~d}, 0.5 \mathrm{H},{ }^{3} J_{H-H} 8.54 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-197.9(\mathrm{~s}),-196.9(\mathrm{~s}),-186.5(\mathrm{~s}),-185.2(\mathrm{~s}),-128.7(\mathrm{~m}),-119.6\left(\mathrm{dd},{ }^{1} J_{P-P}\right.$ $89.0 \mathrm{~Hz},{ }^{1} J_{P-H} 162.2 \mathrm{~Hz}$), -115.3 (ddd, ${ }^{l} J_{P-P} 70.5 \mathrm{~Hz},{ }^{l} J_{P-H} 172.6 \mathrm{~Hz}, J_{P-H} 11.4 \mathrm{~Hz}$), $-108.6(\mathrm{~s}),-$ $108.4\left(\mathrm{t},{ }^{1} J_{P-H} 218.2 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), $-98.3(\mathrm{~m}),-96.9\left(2^{\text {nd }}\right.$ order $),-90.6\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $171.1 \mathrm{~Hz}),-89.8\left(\mathrm{~d},{ }^{1} J_{P-H} 172.4 \mathrm{~Hz}\right),-87.6(\mathrm{~s}),-86.7(\mathrm{~s}),-84.9\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.5 \mathrm{~Hz},{ }^{1} J_{P-H} 180.9\right.$ $\mathrm{Hz}, J_{P-H} 11.9 \mathrm{~Hz}$), $-81.9\left(\mathrm{ddd},{ }^{1} J_{P-P} 89.0 \mathrm{~Hz},{ }^{l} J_{P-H} 168.3 \mathrm{~Hz}, J_{P-H} 9.03 \mathrm{~Hz}\right.$), $-59.9\left(\mathrm{~d},{ }^{l} J_{P-H} 191.7\right.$ $\mathrm{Hz}),-59.5\left(\mathrm{~d},{ }^{1} J_{P-H} 189.2 \mathrm{~Hz}\right),-56.3(\mathrm{~s}),-55.9(\mathrm{~s}),-55.7(\mathrm{~s}),-54.6(\mathrm{~s}),-45.6(\mathrm{~s}),-43.8(\mathrm{~s}),-$ 40.3 (dd, $J_{P-P} 79.2 \mathrm{~Hz},{ }^{1} J_{P-H} 175.8 \mathrm{~Hz}$), -33.7 (d, ${ }^{l} J_{P-H} 217.9 \mathrm{~Hz}$), -25.6 (s$),-18.5(\mathrm{~s}),-18.5(\mathrm{~s})$, $-13.3\left(\mathrm{~d},{ }^{l} J_{P-H} 698.9 \mathrm{~Hz}\right),-11.9\left(\mathrm{~d}, J_{P-P} 79.2 \mathrm{~Hz}\right),-9.62(\mathrm{~s}),-4.69\left(\mathrm{dd}, J_{P-P} 77.9 \mathrm{~Hz}, J_{P-H} 20.2\right.$ $\mathrm{Hz}),-1.49(\mathrm{~s}),-0.70(\mathrm{~s}), 1.11\left(\mathrm{~d}, J_{P-P} 77.9 \mathrm{~Hz}\right), 2.47$ (s$), 2.57$ (s$), 46.9$ (s$), 49.9$ (s$), 56.5(\mathrm{~s}), 56.9$ (s , 68.4 (s$), 75.6\left(\mathrm{~d},{ }^{l} J_{P-H} 159.9 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 78.1\left(\mathrm{~d},{ }^{l} J_{P-H} 152.8 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}\right), 114.3$ (s).

Method C

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.960 \mathrm{~g}, 5.39 \times 10^{-3}\right)$ at $60{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)\left(1.071 \mathrm{~g}, 5.39 \times 10^{-3}\right)$ in THF, resulting in an orange solution that was brought to
reflux for 80 min ; an aliquot was dried in vacuo to afford an orange solid and 3.7 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 8 \mathrm{H}),-0.04(\mathrm{~s}, 5 \mathrm{H}), 0.10(\mathrm{~s}, 4.5 \mathrm{H}), 0.15(\mathrm{~s}, 4.5 \mathrm{H}), 0.18(\mathrm{~s}, 4 \mathrm{H})$, $0.22(\mathrm{~s}, 1.5 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 34 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1.5 \mathrm{H}), 3.42(\mathrm{~s}, 13 \mathrm{H}), 3.44(\mathrm{~s}$, $3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (s, 1H), $3.50(\mathrm{~s}, 2.5 \mathrm{H}), 3.52(\mathrm{~s}, 3.5 \mathrm{H}), 7.06(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}$, $1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 5 \mathrm{H}), 7.44\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.69\left(\mathrm{~d}, 7.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.27 \mathrm{~Hz}), 7.78\left(\mathrm{~d}, 7.5 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.83\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.91\right.$ $\mathrm{Hz}), 7.91\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 2.5 \mathrm{H}), 8.07(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.11\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.14 \mathrm{~Hz}\right), 8.21\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.6\left(\mathrm{dd},{ }^{1} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), $-98.3(\mathrm{~s}),-96.9\left(2^{\text {nd }}\right.$ order), -84.9 (ddd, ${ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{l} J_{P-H} 183.5 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}$), -81.9 (ddd, ${ }^{l} J_{P-P} 89.2 \mathrm{~Hz},{ }^{l} J_{P-H}$ $\left.169.8 \mathrm{~Hz}, J_{P-H} 9.02 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{l} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{1}{ }_{J_{P-H}} 176.4 \mathrm{~Hz}\right),-25.5(\mathrm{~s}),-18.5(\mathrm{~s})$, $-13.2\left(\mathrm{~d},{ }^{1} J_{P-H} 701.1 \mathrm{~Hz}\right),-5.27\left(\mathrm{br}, \underline{P P h}_{3}\right), 56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{l} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P} H}\right)$, 78.2 (d, ${ }^{l} J_{P-H} 154.0 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P} \mathrm{H}$), 114.3 (s).

After 160 min at reflux an aliquot was dried in vacuo to afford an orange solid; 3.4 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}-0.31(\mathrm{~s}, 5 \mathrm{H}),-0.04(\mathrm{~s}, 3.5 \mathrm{H}), 0.10(\mathrm{~s}, 2.5 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 2.5 \mathrm{H})$, $0.22(\mathrm{~s}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 23 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 8 \mathrm{H}), 3.44(\mathrm{~s}, 1.5 \mathrm{H})$, 3.45 ($\mathrm{s}, 2 \mathrm{H}$), $3.50(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 4.5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.27\right.$ $\mathrm{Hz}), 7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right), 7.96$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 1 \mathrm{H}), 8.08\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.14 \mathrm{~Hz}\right)$, $8.21\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.6\left(\mathrm{dd},{ }^{1} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{l} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2$ ($2^{\text {nd }}$ order), $-98.3(\mathrm{~s}),-96.9\left(2^{\mathrm{nd}}\right.$ order), -84.9 (ddd, ${ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H} 183.5 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}$), -81.9 (ddd, ${ }^{l} J_{P-P} 89.2 \mathrm{~Hz},{ }^{l} J_{P-H}$ $\left.169.8 \mathrm{~Hz}, J_{P-H} 9.02 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{l} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{l}{ }_{J_{P-H}} 176.4 \mathrm{~Hz}\right),-25.5(\mathrm{~s}),-18.5(\mathrm{~s})$, $-13.2\left(\mathrm{~d},{ }^{1} J_{P-H} 701.1 \mathrm{~Hz}\right),-5.27\left(\mathrm{br}, \underline{P P h}_{3}\right), 56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{1} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P} H}\right)$, 78.2 (d, ${ }^{l} J_{P-H} 154.0 \mathrm{~Hz}, Z-\mathrm{C}=\mathbf{P} \mathrm{H}$), 114.3 (s).

After 240 min at reflux an aliquot was dried in vacuo to afford an orange solid; 4.3 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 5.5 \mathrm{H}),-0.04(\mathrm{~s}, 5 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 2.5 \mathrm{H})$, $0.22(\mathrm{~s}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 22 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 8.5 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H})$,
$3.45(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2.5 \mathrm{H}), 7.06(\mathrm{~m}, 4.5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~m}, 4.5 \mathrm{H}), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.27\right.$ $\mathrm{Hz}), 7.85\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right), 7.96$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 1 \mathrm{H}), 8.08\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.14 \mathrm{~Hz}\right)$, $8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.6\left(\mathrm{dd},{ }^{1} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \mathbf{P}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), $-96.9\left(2^{\text {nd }}\right.$ order $),-$ 84.9 (ddd, ${ }^{l} J_{P-P} 70.1 \mathrm{~Hz},{ }^{l} J_{P-H} 183.5 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}$), -81.9 (ddd, ${ }^{l} J_{P-P} 89.2 \mathrm{~Hz},{ }^{l} J_{P-H} 169.8 \mathrm{~Hz}$, $\left.J_{P-H} 9.02 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{1} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{1} J_{P-H} 176.4 \mathrm{~Hz}\right),-18.5(\mathrm{~s}),-13.2\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $701.1 \mathrm{~Hz}),-5.27\left(\mathrm{br}, \underline{\mathbf{P P h}}_{3}\right), 56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{l} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}}\right.$), $78.2\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $154.0 \mathrm{~Hz}, \mathrm{Z}$ - C=PH), 114.3 (s).

After 320 min at reflux an aliquot was dried in vacuo to afford an orange solid; 3.8 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 7 \mathrm{H}),-0.04(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3.5 \mathrm{H}), 0.15(\mathrm{~s}, 4 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.22$ ($\mathrm{s}, 1.5 \mathrm{H}$), $0.25(\mathrm{~s}, 1.5 \mathrm{H}), 0.28(\mathrm{~s}, 31 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 10 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $3.45(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3.5 \mathrm{H}), 7.06(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~m}, 4 \mathrm{H}), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 8.27\right.$ $\mathrm{Hz}), 7.85\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$, $7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 1.5 \mathrm{H}), 8.08\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.14\right.$ Hz), 8.21 (d, $2 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}$).
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.6\left(\mathrm{dd},{ }^{1} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.4\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-104.2\left(2^{\text {nd }}\right.$ order), $-96.9\left(2^{\text {nd }}\right.$ order $),-$ 84.9 (ddd, ${ }^{l} J_{P-P} 70.1 \mathrm{~Hz},{ }^{l} J_{P-H} 183.5 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}$), -81.9 (ddd, ${ }^{l} J_{P-P} 89.2 \mathrm{~Hz},{ }^{l} J_{P-H} 169.8 \mathrm{~Hz}$, $\left.J_{P-H} 9.02 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{l} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{1} J_{P-H} 176.4 \mathrm{~Hz}\right),-25.5(\mathrm{~s}),-18.5(\mathrm{~s}),-13.2(\mathrm{~d}$, $\left.{ }^{1} J_{P-H} 701.1 \mathrm{~Hz}\right),-5.27\left(\mathrm{br}, \underline{\mathbf{P P h}}_{3}\right), 56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{1} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P}}\right), 78.2(\mathrm{~d}$, ${ }^{1} J_{P-H} 154.0 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}$), 114.3 (s).

After 400 min at reflux an aliquot was dried in vacuo to afford an orange solid; 4.3 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 8 \mathrm{H}),-0.04(\mathrm{~s}, 7 \mathrm{H}), 0.10(\mathrm{~s}, 3.5 \mathrm{H}), 0.15(\mathrm{~s}, 4 \mathrm{H}), 0.18(\mathrm{~s}, 3.5 \mathrm{H})$, $0.22(\mathrm{~s}, 1.5 \mathrm{H}), 0.25(\mathrm{~s}, 1.5 \mathrm{H}), 0.28(\mathrm{~s}, 37 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 12 \mathrm{H}), 3.44(\mathrm{~s}$, $2.5 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 7.06(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}$, $1 \mathrm{H}), 7.37(\mathrm{~m}, 5.5 \mathrm{H}), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.78\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.27 \mathrm{~Hz}), 7.85\left(\mathrm{~d}, 3.5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$, $7.96\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 1.5 \mathrm{H}), 8.08\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.14 \mathrm{~Hz}), 8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-119.6\left(\mathrm{dd},{ }^{1} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 164.9 \mathrm{~Hz}\right),-115.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-104.2$ ($2^{\text {nd }}$ order), -96.9 ($2^{\text {nd }}$ order $),-$ 84.9 (ddd, ${ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H} 183.5 \mathrm{~Hz}, J_{P-H} 11.2 \mathrm{~Hz}$), $-81.9\left(\mathrm{ddd},{ }^{l} J_{P-P} 89.2 \mathrm{~Hz},{ }^{1} J_{P-H} 169.8 \mathrm{~Hz}\right.$, $\left.J_{P-H} 9.02 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{1} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{l} J_{P-H} 176.4 \mathrm{~Hz}\right),-25.5(\mathrm{~s}),-18.5(\mathrm{~s}),-13.2(\mathrm{~d}$, $\left.{ }^{1} J_{P-H} 701.1 \mathrm{~Hz}\right),-5.27\left(\mathrm{br}, \underline{\mathbf{P P}}_{3}\right), 56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{l} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 78.2(\mathrm{~d}$, $\left.{ }^{1} J_{P-H} 154.0 \mathrm{~Hz}, Z-\mathrm{C}=\underline{\mathbf{P H}}\right), 114.3$ (s).

After 1440 min at reflux the solvent was removed under reduced pressure to afford an orange solid; 4.2 mg of PPh_{3} was added to the NMR sample.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.31(\mathrm{~s}, 3 \mathrm{H}),-0.20(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 8 \mathrm{H}), 0.10(\mathrm{~s}, 4.5 \mathrm{H}), 0.15(\mathrm{~s}, 4.5 \mathrm{H})$, $0.18(\mathrm{~s}, 1 \mathrm{H}), 0.22(\mathrm{~s}, 1.5 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 17 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 12 \mathrm{H})$, $3.44(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3.5 \mathrm{H}), 3.50(\mathrm{~s}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 2.5 \mathrm{H}), 7.06(\mathrm{~m}, 3.5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}$, $1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 3.5 \mathrm{H}), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.50 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.78$ $\left(\mathrm{d}, 7 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}\right), 7.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 8.26 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.60 \mathrm{~Hz}\right), 8.01(\mathrm{~m}, 1.5 \mathrm{H}), 8.08\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.12(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.14 \mathrm{~Hz}\right), 8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-115.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{1} J_{P-H} 173.8 \mathrm{~Hz}, J_{P-H} 11.3 \mathrm{~Hz}\right),-108.3\left(\mathrm{t},{ }^{1} J_{P-H}\right.$ $\left.219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-104.2$ ($2^{\text {nd }}$ order), -96.9 ($2^{\text {nd }}$ order), $-84.9\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.1 \mathrm{~Hz},{ }^{l} J_{P-H} 183.5 \mathrm{~Hz}\right.$, $\left.J_{P-H} 11.2 \mathrm{~Hz}\right),-56.6\left(\mathrm{~d},{ }^{1} J_{P-H} 177.1 \mathrm{~Hz}\right),-56.1\left(\mathrm{~d},{ }^{l} J_{P-H} 176.4 \mathrm{~Hz}\right),-25.8(\mathrm{~s}),-18.5(\mathrm{~s}),-13.2(\mathrm{~d}$, $\left.{ }^{l} J_{P-H} 701.1 \mathrm{~Hz}\right),-5.27\left(\mathrm{br}, \underline{\mathbf{P}}_{\mathrm{Ph}}^{3}\right.$), $56.4(\mathrm{~s}), 68.4(\mathrm{~s}), 75.7\left(\mathrm{~d},{ }^{l} J_{P-H} 159.6 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 78.2(\mathrm{~d}$, ${ }^{1} J_{P-H} 154.0 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P H}}$), 114.3 (s), 172.8 (s).

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(4-\mathrm{COCl})(\boldsymbol{E} / Z-42-4-\mathrm{COCl})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.440 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,4-$ $\mathrm{COCl})_{2}\left(0.502 \mathrm{~g}, 2.47 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in a yellow solution that was stirred for 15 min then turned brown when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a brown solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.34(\mathrm{~s}, 3.5 \mathrm{H}),-0.24(\mathrm{~s}, 1.5 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 2.5 \mathrm{H})$, $0.18(\mathrm{~s}, 19 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 5 \mathrm{H}), 0.27(\mathrm{~s}, 5 \mathrm{H}), 0.30(\mathrm{~s}, 22 \mathrm{H}), 3.78\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 220.3 \mathrm{~Hz}\right.$, $\left.\mathrm{PH}_{2}\right), 6.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.65 \mathrm{~Hz}\right), 6.97\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.06 \mathrm{~Hz}\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.36 \mathrm{~Hz}\right), 7.36$ $\left(\mathrm{d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}\right), 7.73\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.82\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 8.45 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 8.18 \mathrm{~Hz}\right), 7.99\left(\mathrm{t}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.18 \mathrm{~Hz}\right), 8.09(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-118.7\left(\mathrm{dd},{ }^{1} J_{P-P} 90.4 \mathrm{~Hz},{ }^{l} J_{P-H} 164.9 \mathrm{~Hz}\right),-114.4\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{1} J_{P-H}\right.$ $\left.172.7 \mathrm{~Hz}, J_{P-H} 10.8 \mathrm{~Hz}\right),-107.4\left(\mathrm{t},{ }^{1} J_{P-H} 220.3 \mathrm{~Hz}, \mathbf{P}_{2}\right),-103.5\left(2^{\text {nd }}\right.$ order $),-97.9\left(\mathrm{~d},{ }^{l} J_{P-H} 181.2\right.$ $\mathrm{Hz}),-96.2\left(2^{\text {nd }}\right.$ order d$),-83.9\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{1} J_{P-H} 185.4 \mathrm{~Hz}, J_{P-H} 12.6 \mathrm{~Hz}\right),-81.9\left(\mathrm{ddd},{ }^{l} J_{P-}\right.$ $\left.{ }_{P} 90.4 \mathrm{~Hz},{ }^{1} J_{P-H} 171.4 \mathrm{~Hz}, J_{P-H} 10.2 \mathrm{~Hz}\right),-30.8(\mathrm{~s}),-30.4\left(\mathrm{~d}, J_{P-P} 14.7 \mathrm{~Hz}\right),-26.0(\mathrm{~s}),-19.0(\mathrm{~s}),-$ 14.9 (dd, $\left.J_{P-P} 14.7 \mathrm{~Hz},{ }^{1} J_{P-H} 734.8 \mathrm{~Hz}\right),-13.4\left(\mathrm{~d},{ }^{1} J_{P-H} 704.1 \mathrm{~Hz}\right),-10.9\left(\mathrm{~d},{ }^{l} J_{P-H} 741.5 \mathrm{~Hz}\right),-$ $10.8\left(\mathrm{~d},{ }^{l} J_{P-H} 736.8 \mathrm{~Hz}\right),-9.90(\mathrm{~s}), 57.8(\mathrm{~s}), 73.0(\mathrm{~s}), 82.3\left(\mathrm{~d},{ }^{l} J_{P-H} 158.5 \mathrm{~Hz}, E-\mathrm{C}=\underline{\mathbf{P H}}\right), 85.6(\mathrm{~d}$, ${ }^{1} J_{P-H} 154.6 \mathrm{~Hz}, \mathrm{Z}-\mathrm{C}=\underline{\mathbf{P}} \mathrm{H}$), 115.0 (s$), 182.6$ (s).

The orange solution was stirred for 18 h and was dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.27(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{~s}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}), 0.28(\mathrm{~s}, 10 \mathrm{H}), 0.29$ $(\mathrm{s}, 12 \mathrm{H}), 7.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.42 \mathrm{~Hz}\right), 7.66\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.42 \mathrm{~Hz}\right), 7.72(\mathrm{~m}, 6 \mathrm{H}), 7.87\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 8.42 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.42 \mathrm{~Hz}\right), 8.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.42 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-26.9(\mathrm{~s}),-26.4(\mathrm{~s}),-19.1(\mathrm{~s}),-13.1\left(\mathrm{~d},{ }^{1} J_{P-H} 704.1 \mathrm{~Hz}\right),-10.9\left(\mathrm{~d},{ }^{1} J_{P-H}\right.$ $741.5 \mathrm{~Hz}),-10.6\left(\mathrm{~d},{ }^{1} J_{P-H} 739.3 \mathrm{~Hz}\right),-6.33(\mathrm{~s}), 118.8(\mathrm{~s})$.

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.36 \mathrm{~g}, 2.02 \times 10^{-3}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{COCl})\left(0.416 \mathrm{~g}, 2.02 \times 10^{-3}\right)$ in THF, resulting in a pale yellow solution that turned brown within 5 min ; an aliquot was dried in vacuo to afford a brown solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.36(\mathrm{~s}, 2 \mathrm{H}),-0.21(\mathrm{~s}, 1.5 \mathrm{H}),-0.19(\mathrm{br}, 4.5 \mathrm{H}), 0.08(\mathrm{~s}, 5.5 \mathrm{H}), 0.12(\mathrm{br}$, $7 \mathrm{H}), 0.17(\mathrm{~s}, 4 \mathrm{H}), 0.19(\mathrm{~s}, 7 \mathrm{H}), 0.21(\mathrm{~s}, 4 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 2 \mathrm{H}), 3.03\left(2^{\text {nd }}\right.$ order, 1 H$), 4.69$ $\left(2^{\text {nd }}\right.$ order, 1 H$), 7.22(\mathrm{br}, 7.5 \mathrm{H}), 7.86(\mathrm{br}, 6 \mathrm{H}), 7.98(\mathrm{~m}, 3 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.32\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.96\right.$ Hz).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-126.9(\mathrm{~m}),-121.8\left(\mathrm{br} \mathrm{d},{ }^{2} J_{P-P} 196.8 \mathrm{~Hz}\right),-118.8(\mathrm{~m}),-114.5\left(\mathrm{ddd},{ }^{1} J_{P-P}\right.$ $\left.70.7 \mathrm{~Hz},{ }^{l} J_{P-H} 172.7 \mathrm{~Hz}, J_{P-H} 10.8 \mathrm{~Hz}\right),-107.6\left(\mathrm{~d},{ }^{1} J_{P-H} 167.5 \mathrm{~Hz}\right),-107.4\left(\mathrm{t},{ }^{1} J_{P-H} 219.8 \mathrm{~Hz}\right.$, $\left.\underline{\mathbf{P}}_{2}\right),-103.6\left(2^{\text {nd }}\right.$ order $),-97.9\left(\mathrm{~d},{ }^{l} J_{P-H} 181.2 \mathrm{~Hz}\right),-96.3\left(2^{\text {nd }}\right.$ order), -83.9 (ddd, ${ }^{l} J_{P-P} 70.7 \mathrm{~Hz}$, ${ }^{1} J_{P-H} 185.4 \mathrm{~Hz}, J_{P-H} 12.6 \mathrm{~Hz}$), -81.9 (ddd, $J_{P-P} 89.9 \mathrm{~Hz}, J_{P-H} 171.4 \mathrm{~Hz}, J_{P-H} 10.2 \mathrm{~Hz}$), $-79.8\left(\mathrm{~d},{ }^{2} J_{P-}\right.$ $\left.{ }_{P} 196.8 \mathrm{~Hz}\right),-56.1(\mathrm{~s}),-54.7\left(\mathrm{~d}, J_{P-H} 98.5 \mathrm{~Hz}\right),-56.9\left(\mathrm{~d}, J_{P-P} 89.9 \mathrm{~Hz}\right),-54.7\left(\mathrm{dd}, J_{P-P} 77.3 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{P-H} 176.5 \mathrm{~Hz}\right),-43.0(\mathrm{~m}),-13.8\left(\mathrm{~d},{ }^{1} J_{P-H} 213.8 \mathrm{~Hz}\right),-12.9\left(\mathrm{~d},{ }^{l} J_{P-H} 218.5 \mathrm{~Hz}\right),-5.80\left(\mathrm{~d}, J_{P-P}\right.$ $77.3 \mathrm{~Hz}), 57.6(\mathrm{~s}), 72.8(\mathrm{~s}), 82.3\left(\mathrm{~d},{ }^{l} J_{P-H} 158.5 \mathrm{~Hz}, E-\mathrm{C}=\mathbf{P H}\right), 85.5\left(\mathrm{~d},{ }^{1} J_{P-H} 153.1 \mathrm{~Hz}, Z-\right.$ $\mathrm{C}=\mathbf{P} \mathrm{H})$.

The solution turned orange after it was stirred for 18 h and was dried in vacuo to afford a red solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.36(\mathrm{~s}, 4 \mathrm{H}),-0.26(\mathrm{~s}, 1 \mathrm{H}),-0.07(\mathrm{~s}, 5 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.15$ $(\mathrm{s}, 3.5 \mathrm{H}), 0.19(\mathrm{~s}, 2.5 \mathrm{H}), 0.27(\mathrm{~s}, 5 \mathrm{H}), 3.03\left(2^{\text {nd }}\right.$ order, 1 H$), 4.69\left(2^{\text {nd }}\right.$ order, 1 H$), 6.91\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.96 \mathrm{~Hz}\right), 6.95\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 8.35 \mathrm{~Hz}\right), 7.25\left(\mathrm{~d}, 1.5 \mathrm{H},{ }^{3} J_{H-H} 9.01 \mathrm{~Hz}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.32\right.$ $\mathrm{Hz}), 7.53\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.27 \mathrm{~Hz}\right), 7.61\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.68 \mathrm{~Hz}\right), 7.65\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 9.30 \mathrm{~Hz}\right), 7.71$ (br, 5H), $7.81(\mathrm{br}, 2 \mathrm{H}), 7.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.19 \mathrm{~Hz}\right), 7.98(\mathrm{br}, 3 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-114.5\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{1} J_{P-H} 172.7 \mathrm{~Hz}, J_{P-H} 10.8 \mathrm{~Hz}\right),-107.4\left(\mathrm{t},{ }^{1} J_{P-H}\right.$ $\left.219.8 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-103.6\left(2^{\text {nd }}\right.$ order $),-96.3\left(2^{\text {nd }}\right.$ order $),-83.9\left(\mathrm{ddd},{ }^{l} J_{P-P} 70.7 \mathrm{~Hz},{ }^{l} J_{P-H} 185.4 \mathrm{~Hz}\right.$, $\left.J_{P-H} 12.6 \mathrm{~Hz}\right),-54.7\left(\mathrm{dd}, J_{P-P} 77.3 \mathrm{~Hz},{ }^{1} J_{P-H} 176.5 \mathrm{~Hz}\right),-25.9(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 700.9 \mathrm{~Hz}\right),-5.80$ (d, $\left.J_{P-P} 77.3 \mathrm{~Hz}\right), 57.6(\mathrm{~s}), 72.8(\mathrm{~s})$.

The crude solid was washed with pentane; a brown solid was dried in vacuo, while reduced pressure solvent removal from the filtrate afforded an orange solid.

Brown solid:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.37(\mathrm{~s}, 1 \mathrm{H}),-0.30(\mathrm{~s}, 1 \mathrm{H}),-0.27(\mathrm{~s}, 1.5 \mathrm{H}),-0.20(\mathrm{~s}, 2 \mathrm{H}),-0.09(\mathrm{~s}, 2 \mathrm{H}),-$ $0.08(\mathrm{~s}, 2 \mathrm{H}), 0.06(\mathrm{br}, 4.5 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{br}, 2.5 \mathrm{H}), 0.23(\mathrm{br}$, $2 \mathrm{H}), 0.28(\mathrm{~s}, 4 \mathrm{H}), 6.94(\mathrm{br}, 4 \mathrm{H}), 7.69(\mathrm{br}, 19 \mathrm{H}), 7.97\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 8.17 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-107.4\left(\mathrm{t},{ }^{1} J_{P-H} 221.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-103.6\left(2^{\text {nd }}\right.$ order $),-96.3\left(2{ }^{\text {nd }}\right.$ order $),-$ 54.7 (dd, $J_{P-P} 77.3 \mathrm{~Hz},{ }^{1} J_{P-H} 175.7 \mathrm{~Hz}$), $-5.72\left(\mathrm{dd}, J_{P-P} 77.3 \mathrm{~Hz}, J_{P-H} 20.7 \mathrm{~Hz}\right.$), $-3.90(\mathrm{~s}), 57.6(\mathrm{~s})$, 72.8 (s).

Orange solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}-0.37(\mathrm{~s}, 2 \mathrm{H}),-0.27(\mathrm{~s}, 5 \mathrm{H}),-0.20(\mathrm{~s}, 1.5 \mathrm{H}),-0.09(\mathrm{~s}, 1 \mathrm{H}),-0.08(\mathrm{~s}, 2 \mathrm{H})$, $0.06(\mathrm{~s}, 1.5 \mathrm{H}), 0.08(\mathrm{~s}, 1.5 \mathrm{H}), 0.12(\mathrm{~s}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 2 \mathrm{H}), 0.28(\mathrm{~s}, 7 \mathrm{H}), 6.96(\mathrm{br}, 2 \mathrm{H}), 7.64(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.53 \mathrm{~Hz}\right), 7.70(\mathrm{~m}, 3 \mathrm{H}), 7.74\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.57 \mathrm{~Hz}\right), 7.97\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-114.5\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{1} J_{P-H} 172.7 \mathrm{~Hz}, J_{P-H} 10.8 \mathrm{~Hz}\right),-107.5\left(\mathrm{t},{ }^{1} J_{P-H}\right.$ $219.8 \mathrm{~Hz}, \underline{\mathbf{P H}}_{2}$), -103.6 ($2^{\text {nd }}$ order), -96.3 ($2^{\text {nd }}$ order), $-83.9\left(\mathrm{ddd},{ }^{1} J_{P-P} 70.7 \mathrm{~Hz},{ }^{l} J_{P-H} 185.4 \mathrm{~Hz}\right.$, $\left.J_{P-H} 12.6 \mathrm{~Hz}\right),-54.7\left(\mathrm{dd}, J_{P-P} 77.3 \mathrm{~Hz},{ }^{1} J_{P-H} 175.7 \mathrm{~Hz}\right),-13.5\left(\mathrm{~d},{ }^{l} J_{P-H} 700.9 \mathrm{~Hz}\right),-5.80\left(\mathrm{~d}, J_{P-P}\right.$ 77.3 Hz), 57.6 (s$), 72.8(\mathrm{~s})$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathbf{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(3-\mathrm{COCl})(\boldsymbol{E} / Z-57-\mathrm{CH})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.049 \mathrm{~g}, 1.96 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-$ $\mathrm{COCl})_{2}\left(0.039 \mathrm{~g}, 1.96 \times 10^{-4} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a colourless solution that turned red when allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a red oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 11 \mathrm{H}), 0.25(\mathrm{~s}, 8 \mathrm{H}), 0.28(\mathrm{~s}, 25 \mathrm{H}), 7.00\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.33 \mathrm{~Hz}, p-\mathrm{CH}), 8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}, o-\mathrm{CH}\right), 9.07(\mathrm{br}, 1 \mathrm{H}$, middle-CH$)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-136.1(\mathrm{~s}),-55.6(\mathrm{~m}),-24.7(\mathrm{~s}), 107.3$ (br), 135.7 (br).
The solution was stirred for 18 h and dried in vacuo to afford an orange solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.11(\mathrm{~s}, 21 \mathrm{H}), 0.17(\mathrm{~s}, 17 \mathrm{H}), 0.25(\mathrm{~s}, 12.5 \mathrm{H}), 0.28(\mathrm{~s}, 70 \mathrm{H}), 6.78\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{H-}\right.$ $\left.{ }_{H} 7.90 \mathrm{~Hz}\right), 7.01\left(\mathrm{t}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 8.19\left(\mathrm{~d}, 5 \mathrm{H},{ }^{3} J_{H-H} 7.81 \mathrm{~Hz}\right), 9.06(\mathrm{~s}, 1.5 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-26.0(\mathrm{~s}),-25.5(\mathrm{~s}),-13.2\left(\mathrm{~d},{ }^{1} J_{P-H} 693.8 \mathrm{~Hz}\right),-10.7\left(\mathrm{~d},{ }^{1} J_{P-H} 735.1 \mathrm{~Hz}\right)$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.9,5.00,23.9$.

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.263 \mathrm{~g}, 1.05 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}\left(0.214 \mathrm{~g}, 1.05 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in the rapid formation of a red solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a red oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.25(\mathrm{~s}, 4 \mathrm{H}), 7.00\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}, p-\mathrm{CH}\right), 8.19\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right.$, $o-\mathrm{CH}), 9.07(\mathrm{br}, 1 \mathrm{H}$, middle-CH$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.31(\mathrm{~s}), 128.7(\mathrm{~s}, p-\underline{\mathrm{C}} \mathrm{H}), 132.3$ (s, middle- $\left.\underline{\mathrm{C}} \mathrm{H}\right), 132.4$ ($\mathrm{s}, i-\underline{\mathrm{C}}$), 134.5 ($\mathrm{s}, o-\underline{\mathbf{C}} \mathrm{H}), 165.8(\mathrm{~s}, \underline{\mathbf{C O C l}})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-24.9(\mathrm{~s})$.
${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}$ 23.1.

Attempted synthesis of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PSiMe}_{3}\right)(6-\mathrm{COCl})(\boldsymbol{E} / Z-57-\mathrm{N})$

Method A

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.069 \mathrm{~g}, 2.76 \times 10^{-4} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-$ $\mathrm{COCl})_{2}\left(0.056 \mathrm{~g}, 2.76 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in the rapid formation of a yellow solution that was stirred for 15 min . The solution turned dark red when allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a dark red oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 4 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 8 \mathrm{H}), 6.97\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.89\right.$ $\mathrm{Hz}, p-\mathrm{CH}), 7.95\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}, m-\mathrm{CH}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-24.7(\mathrm{~s})$.

The solution was stirred for 18 h and dried in vacuo to afford a brown solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 5 \mathrm{H}), 0.25(\mathrm{~s}, 5.5 \mathrm{H}), 0.28(\mathrm{~s}, 17 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H}), 6.98$ $\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.00 \mathrm{~Hz}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-30.2(\mathrm{~s}),-26.1(\mathrm{~s}),-24.8(\mathrm{~s}),-13.5\left(\mathrm{~d},{ }^{1} J_{P-H} 688.4 \mathrm{~Hz}\right),-9.22(\mathrm{~s})$.
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.1,5.27,20.1,25.2$.

Method B

To a THF solution of $\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{3}\left(0.210 \mathrm{~g}, 8.40 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}\left(0.172 \mathrm{~g}, 8.40 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in a dark red solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford an off-white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.31(\mathrm{~s}, 20 \mathrm{H}), 6.98\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.84 \mathrm{~Hz}\right.$, $m-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}}-0.24(\mathrm{~s}), 127.9(\mathrm{~s}, m-\underline{\mathrm{CH}}), 137.4(\mathrm{~s}, p-\underline{\mathrm{CH}}), 149.8(\mathrm{~s}, i-\underline{\mathrm{C}}), 165.1$ (s, $\mathbf{C}=0$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-24.7(\mathrm{~s})$.

Attempted synthesis of $E / Z-\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{CO}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(3-\mathrm{COCl})(\boldsymbol{E} / Z-58-\mathrm{CH})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.580 \mathrm{~g}, 2.98 \times 10^{-3}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}$ $\left(0.604 \mathrm{~g}, 2.98 \times 10^{-3}\right)$ in THF and the mixture was stirred for 15 min , resulting in a pale yellow solution that turned bright red when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a mixture of red and white solids (the white solid was identified as $\left.\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.07(\mathrm{br}, 7.5 \mathrm{H}), 0.18(\mathrm{~s}, 2.5 \mathrm{H}), 0.20(\mathrm{~s}, 3.5 \mathrm{H}), 0.24(\mathrm{~s}, 1.5 \mathrm{H}), 0.27(\mathrm{~s}, 1.5 \mathrm{H})$, $0.30(\mathrm{~s}, 5 \mathrm{H}), 3.79\left(\mathrm{~d}, 1 \mathrm{H},{ }^{l} J_{H-P} 219.1 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 3.89\left(\mathrm{~d}, 0.8 \mathrm{H},{ }^{l} J_{H-P} 219.1 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.66(\mathrm{t}, 7 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 6.85\left(\mathrm{t}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.82 \mathrm{~Hz}\right), 7.69\left(\mathrm{~d}, 11 \mathrm{H},{ }^{3} J_{H-H} 7.29 \mathrm{~Hz}\right), 7.80\left(\mathrm{t}, 2.5 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.62 \mathrm{~Hz}), 8.00\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 8.45(\mathrm{~s}, 4 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-133.8\left(\mathrm{t},{ }^{1} J_{P-H} 206.6 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-133.7\left(\mathrm{t},{ }^{1} J_{P-H} 205.1 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-109.7(\mathrm{t}$, $\left.{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-109.6\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-109.4\left(\mathrm{t},{ }^{l} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-32.5(\mathrm{~m})$, $-31.7(\mathrm{~s}),-31.3(\mathrm{~m}),-30.2(\mathrm{~m}),-16.4(\mathrm{~s}),-15.3(\mathrm{~s}),-14.9(\mathrm{~s}),-14.4(\mathrm{~s}),-13.3(\mathrm{~s}),-12.9(\mathrm{~s}),-$
$12.0(\mathrm{~s}), 54.5$ (s$), 64.6(\mathrm{~s}), 64.8(\mathrm{~s}), 65.2(\mathrm{~s}), 70.1(\mathrm{~s}), 70.7(\mathrm{~s}), 72.1(\mathrm{~s}), 72.4(\mathrm{~s}), 73.2(\mathrm{~s}), 74.2$ (d, $\left.J_{P-H} 154.6 \mathrm{~Hz}\right), 101.7(\mathrm{~s}), 103.7(\mathrm{~s}), 105.1(\mathrm{~s}), 107.1(\mathrm{~s}), 109.4(\mathrm{~s}), 111.5(\mathrm{~s}), 111.9(\mathrm{~s}), 113.4$ (s).
${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Si}}-22.2,16.3,17.9,22.2,25.1,31.3$.
The solution turned orange after being stirred for 18 h and was dried in vacuo to afford a red solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.11(\mathrm{~s}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 5.5 \mathrm{H}), 0.20(\mathrm{~s}, 8 \mathrm{H}), 0.24(\mathrm{~s}, 2.5 \mathrm{H}), 0.27(\mathrm{~s}, 7 \mathrm{H}), 3.78$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{1} J_{H-P} 219.1 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 3.89\left(\mathrm{~d}, 0.8 \mathrm{H},{ }^{1} J_{H-P} 219.1 \mathrm{~Hz}, \mathrm{PH}_{2}\right), 6.63\left(\mathrm{t}, 14 \mathrm{H},{ }^{3} J_{H-H} 7.85 \mathrm{~Hz}\right)$, $6.82\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.19 \mathrm{~Hz}\right), 7.67\left(\mathrm{~d}, 22 \mathrm{H},{ }^{3} J_{H-H} 8.21 \mathrm{~Hz}\right), 7.76\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.92 \mathrm{~Hz}\right), 7.80(\mathrm{~d}$, $\left.4.5 \mathrm{H},{ }^{3} J_{H-H} 7.92 \mathrm{~Hz}\right), 7.85\left(\mathrm{~d}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 8.21 \mathrm{~Hz}\right), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 7 \mathrm{H}), 8.65(\mathrm{~s}, 2.5 \mathrm{H})$, 8.75 ($\mathrm{s}, 2.5 \mathrm{H}$).
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.7\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \mathbf{P H}_{2}\right),-109.6\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-109.4(\mathrm{t}$, ${ }^{1} J_{P-H} 219.1 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}$), $-109.3\left(\mathrm{t},{ }^{1} J_{P-H} 219.1 \mathrm{~Hz},{\underset{\mathbf{P}}{2}}^{2}\right.$), 54.4 (s$), 64.5$ (s), 64.8 (s), 65.1 (s$), 113.4$ (s).

The crude solid was washed with pentane; an orange solid was dried in vacuo, while reduced pressure solvent removal from the filtrate afforded a yellow solid.

Orange solid:
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.12(\mathrm{~s}, 4 \mathrm{H}), 0.17(\mathrm{~s}, 5 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 2.5 \mathrm{H}), 0.25(\mathrm{~s}, 1.5 \mathrm{H}), 0.28$ $(\mathrm{s}, 9 \mathrm{H}), 0.31(\mathrm{~s}, 2.5 \mathrm{H}), 6.55\left(\mathrm{t}, 4.5 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 6.76(\mathrm{~m}, 15.5 \mathrm{H}), 6.95(\mathrm{br}, 7 \mathrm{H}), 7.63(\mathrm{~d}, 6 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.84 \mathrm{~Hz}\right), 7.73\left(\mathrm{~d}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.84 \mathrm{~Hz}\right), 7.76\left(\mathrm{~d}, 7.5 \mathrm{H},{ }^{3} J_{H-H} 7.84 \mathrm{~Hz}\right), 7.82\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.97\right.$ $\mathrm{Hz}), 7.97(\mathrm{br}, 5 \mathrm{H}), 8.15\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}\right), 8.44(\mathrm{~s}, 1.5 \mathrm{H}), 8.67(\mathrm{~s}, 3 \mathrm{H}), 8.72(\mathrm{~s}, 2.5 \mathrm{H}), 8.77$ $(\mathrm{s}, 2.5 \mathrm{H}), 8.79(\mathrm{~s}, 2 \mathrm{H}), 8.89(\mathrm{~s}, 1.5 \mathrm{H})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.8\left(\mathrm{t},{ }^{1} J_{P-H} 219.2 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-109.5\left(\mathrm{t},{ }^{1} J_{P-H} 220.8 \mathrm{~Hz}, \underline{\mathbf{P}} \mathrm{H}_{2}\right),-109.4(\mathrm{t}$, ${ }^{1} J_{P-H} 220.8 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}$), $-13.3\left(\mathrm{~d},{ }^{1} J_{P-H} 700.9 \mathrm{~Hz}\right.$), 54.2 (s), 54.3 (s), 54.3 (s$), 64.4$ (s), 64.6 (s), 64.9 (s), 65.0 (s).

Yellow solid:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.12(\mathrm{~s}, 4 \mathrm{H}), 0.28(\mathrm{~s}, 16 \mathrm{H}), 3.75\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 219.2 \mathrm{~Hz}, \mathrm{P} \underline{H}_{2}\right), 6.56(\mathrm{t}, 21 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.68 \mathrm{~Hz}\right), 6.77\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}\right), 6.96(\mathrm{br}, 3 \mathrm{H}), 7.63\left(\mathrm{~d}, 35 \mathrm{H},{ }^{3} J_{H-H} 7.90 \mathrm{~Hz}\right), 7.76(\mathrm{~d}$, $\left.3 \mathrm{H},{ }^{3} J_{H-H} 7.57 \mathrm{~Hz}\right), 8.15\left(\mathrm{~d}, 2.5 \mathrm{H},{ }^{3} J_{H-H} 7.65 \mathrm{~Hz}\right), 8.45(\mathrm{~s}, 9.5 \mathrm{H}), 8.88(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.8\left(\mathrm{t},{ }^{1} J_{P-H} 219.2 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right), 54.3$ (s), 64.9 (s).

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.520 \mathrm{~g}, 2.92 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}\left(0.593 \mathrm{~g}, 2.92 \times 10^{-3} \mathrm{~mol}\right)$ in THF , resulting in a red solution that was stirred for 5 min ; an aliquot was dried in vacuo to afford an orange oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 8 \mathrm{H}), 0.28(\mathrm{br}, 15 \mathrm{H}), 3.76\left(\mathrm{~d}, 2 \mathrm{H},{ }^{1} J_{H-P} 220.0 \mathrm{~Hz}, \mathrm{PH}_{2}\right)$, $3.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{H-P} 219.2 \mathrm{~Hz}, \mathrm{P}_{2}\right), 3.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{l} J_{H-P} 220.0 \mathrm{~Hz}, \mathrm{P} \underline{\mathbf{H}}_{2}\right), 6.58\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}\right)$, $6.79\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.54 \mathrm{~Hz}\right), 7.65\left(\mathrm{~d}, 20 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right), 7.98\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{H-H} 7.52 \mathrm{~Hz}\right), 8.19$ (d, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 8.29 \mathrm{~Hz}\right), 8.45(\mathrm{~s}, 6 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}}-109.8\left(\mathrm{t},{ }^{l} J_{P-H} 220.0 \mathrm{~Hz}, \underline{\mathbf{P}}_{2}\right),-109.7\left(\mathrm{t}{ }^{1} J_{P-H} 219.2 \mathrm{~Hz}, \underline{\mathbf{P H}}{ }_{2}\right),-109.5(\mathrm{t}$ ${ }^{l} J_{P-H} 220.0 \mathrm{~Hz}, \underline{\mathrm{PH}}$), - 109.4 (s), 54.3 (s), 54.4 (s), 64.4 (s), 64.7 (s$), 65.0$ (s).

The solution was stirred for 18 h and the solvent was removed under reduced pressure to afford an orange oil; no change was noted from the previous NMR spectra.

Attempted synthesis of $E / Z-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathbf{2 - C O}\left(\mathrm{SiMe}_{3}\right)=\mathrm{PH}\right)(6-\mathrm{COCl})(E / Z-58-\mathrm{N})$

Method A

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.470 \mathrm{~g}, 2.64 \times 10^{-3} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-$ $\mathrm{COCl}_{2}\left(0.539 \mathrm{~g}, 2.64 \times 10^{-3} \mathrm{~mol}\right)$ in THF and the mixture was stirred for 15 min , resulting in a bright yellow solution that turned dark red when it was allowed to warm to ambient temperature over 45 min ; an aliquot was dried in vacuo to afford a dark red oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.19(\mathrm{~s}, 4 \mathrm{H}), 6.59\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.59 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}\right.$, m-CH).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.
The solution was stirred for 18 h and dried under reduced pressure as a dark red solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.16(\mathrm{~s}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 2.5 \mathrm{H}), 0.28(\mathrm{~s}, 1 \mathrm{H}), 6.59\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.59 \mathrm{~Hz}, p-\mathrm{CH}\right)$, 7.30 (d, $\left.8 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}, m-\mathbf{C H}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.

Method B

To a THF solution of $\mathrm{HP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.380 \mathrm{~g}, 2.13 \times 10^{-3} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}\left(0.436 \mathrm{~g}, 2.13 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in a dark red solution within 5 min ; an aliquot was dried in vacuo to afford a dark purple solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.19(\mathrm{~s}, 1 \mathrm{H}), 6.58\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.20 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.30\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.84 \mathrm{~Hz}\right.$, $m-\mathrm{CH})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: None observed.
The solution was stirred for 18 h then the solvent was removed under reduced pressure to afford a dark purple solid; no change was noted from the previous NMR spectra.

6.4 Chapter 4: The development of novel phosphomide derivatives

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})(62)$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{HPPh}_{2}\left(1.29 \mathrm{~g}, 6.95 \times 10^{-3} \mathrm{~mol}\right)$ at $-7{ }^{\circ} \mathrm{C}$ was added drop-wise $\mathrm{C}_{6} \mathrm{H}_{4}(1-$ $\mathrm{COCl})(3-\mathrm{Me})\left(1.07 \mathrm{~g}, 6.95 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$, resulting in a colourless solution that was stirred for 30 min . Upon warming to ambient temperature the solution turned yellow then stirred for 18 h. The solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo to afford a yellow solid. Yield: $1.41 \mathrm{~g}, 66.7 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.43 \mathrm{~Hz}, p-\mathrm{C} \underline{\mathbf{H}}\right), 6.87\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.68\right.$ $\mathrm{Hz}, m-\mathrm{CH}), 7.01(\mathrm{~m}, 6 \mathrm{H}, m-\underline{\mathrm{H}}$ and $p-\mathrm{CH}$ of Ph$), 7.50(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{C} \underline{\mathbf{H}}$ of Ph$), 7.96(\mathrm{~s}, 1 \mathrm{H}$, middle-CH), $7.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.87 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 21.0\left(\mathrm{~s}, \underline{\mathbf{C H}_{3}}\right), 126.3\left(\mathrm{~d},{ }^{3} J_{C-P} 10.9 \mathrm{~Hz}, o-\underline{\mathbf{C}}\right), 128.6(\mathrm{~s}, m-\mathbf{C H}), 128.8$ (s , middle- $\underline{\mathbf{C}} \mathrm{H}$), 128.9 ($\mathrm{d},{ }^{3} J_{C-P} 7.85 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 129.5 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 133.9 ($\mathrm{s}, p-\underline{\mathrm{C}} \mathrm{H}$), $135.3\left(\mathrm{~d},{ }^{2} J_{C-P} 18.9 \mathrm{~Hz}, o-\underline{\mathbf{C}} H\right.$ of Ph$), 138.6(\mathrm{~s}, \underline{\mathbf{C M e}}), 140.2\left(\mathrm{~d},{ }^{2} J_{C-P} 35.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 211.8\left(\mathrm{~d},{ }^{1} J_{C-}\right.$ $\left.{ }_{P} 36.9 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 12.4\left(\mathrm{~m},{ }^{3} J_{P-H} 7.94 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{OP}: \mathrm{C}, 78.95 \%$; H, 5.59 \%. Found; C, 78.84 \%; H, 5.47%. IR: $v_{(\mathrm{C}=0)} 1634 \mathrm{~cm}^{-1}$.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)\left(\mathbf{3}-\mathrm{CH}_{2} \mathrm{Cl}\right)(63)$

Prepared as for 62 using $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\left(0.712 \mathrm{~g}, 3.76 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{HPPh}_{2}(0.701$ $\left.\mathrm{g}, 3.76 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $1.13 \mathrm{~g}, 88.8 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.77\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.61 \mathrm{~Hz}, m-\mathrm{CH}\right), 6.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.55 \mathrm{~Hz}, p-\mathrm{CH}), 7.01(\mathrm{~m}, 6 \mathrm{H}, m-\underline{\mathrm{CH}}$ and $p-\mathrm{CH}$ of Ph$), 7.47(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 7.96(\mathrm{dq}, 1 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.74 \mathrm{~Hz},{ }^{4} J_{H-H} 1.38 \mathrm{~Hz}, o-\mathrm{CH}\right), 8.03\left(\mathrm{q}, 1 \mathrm{H},{ }^{4} J_{H-H} 1.73 \mathrm{~Hz}\right.$, middle-CH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 45.2$ (s, $\left.\underline{\mathrm{CH}}_{2} \mathrm{Cl}\right), 128.4$ (s, middle- $\left.\underline{\mathbf{C H}}\right), 128.5$ (s,o- $\left.\underline{\mathrm{CH}}\right), 129.0(\mathrm{~s}, m-$ $\underline{\mathbf{C}} \mathbf{H}$), 129.0 ($\mathrm{d},{ }^{3} J_{C-P} 7.76 \mathrm{~Hz}, m-\underline{\mathbf{C H}}$ of Ph), 129.6 ($\mathrm{s}, p-\underline{\mathbf{C H}}$ of Ph), 132.9 ($\mathrm{s}, p-\underline{\mathrm{CH}}$), 133.4 (d, ${ }^{1} J_{C-P} 6.09 \mathrm{~Hz}, i-\underline{\mathbf{C}}$ of Ph$), 135.3\left(\mathrm{~d},{ }^{2} J_{C-P} 18.5 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph$), 138.4\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{Cl}\right), 140.2\left(\mathrm{~d},{ }^{2} J_{C-}\right.$ $\left.{ }_{P} 35.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 211.4\left(\mathrm{~d},{ }^{l} J_{C-P} 37.9 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 12.9\left(\mathrm{~m},{ }^{3} J_{P-H} 8.25 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{OPCl}: \mathrm{C}, 70.90 \%$; $\mathrm{H}, 4.73 \%$. Found; $\mathrm{C}, 70.98 \% ; \mathrm{H}, 4.68 \%$. IR: $v_{(\mathrm{C}=0)} 1645 \mathrm{~cm}^{-1}$.

Synthesis of $\left.\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{(1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)(\mathbf{3 - C N})(64)$

Prepared as for 62 using $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(3-\mathrm{CN})\left(0.334 \mathrm{~g}, 2.02 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{HPPh}_{2}(0.375 \mathrm{~g}$, $2.02 \times 10^{-3} \mathrm{~mol}$) in THF. Isolated as a viscous yellow oil. Yield: $0.663 \mathrm{~g}, 93.6 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.43\left(\mathrm{t},{ }^{3} J_{H-H} 7.79 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{CH}\right), 6.72\left(\mathrm{~d},{ }^{3} J_{H-H} 8.10 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 6.99$ $(\mathrm{m}, 6 \mathrm{H}, m-\mathrm{CH}$ and $p-\mathrm{CH}$ of Ph$), 7.36\left(\mathrm{t},{ }^{3} J_{H-H} 7.02 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{CH}\right.$ of Ph$), 7.81\left(\mathrm{~d},{ }^{3} J_{H-H} 7.77 \mathrm{~Hz}\right.$, $1 \mathrm{H}, o-\mathrm{CH}), 8.06(\mathrm{~s}, 1 \mathrm{H}$, middle-C$\underline{\mathbf{H}})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 113.5(\mathrm{~s}, i-\underline{\mathbf{C}} \equiv \mathrm{N}), 117.8(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{~N}), 129.1\left(\mathrm{~d},{ }^{3} J_{C-P} 7.71 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph and $m-\underline{C} H$), 129.9 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 131.4 ($\mathrm{d},{ }^{3} J_{C-P} 9.12 \mathrm{~Hz}$, middle- $\mathbf{C H}$), 131.5 (d, ${ }^{3} J_{C-P} 9.12$ $\mathrm{Hz}, o-\underline{\mathbf{C}} \mathrm{H}$), 132.4 (d, ${ }^{l} J_{C-P} 5.90 \mathrm{~Hz}, i-\underline{C}$ of Ph), 135.3 (d, ${ }^{2} J_{C-P} 18.2 \mathrm{~Hz}, o-\underline{\mathbf{C}} H$ of Ph), 135.5 ($\mathrm{s}, p-$ $\underline{\mathbf{C H}}) 140.1\left(\mathrm{~d},{ }^{2} J_{C-P} 35.9 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 210.7\left(\mathrm{~d},{ }^{l} J_{C-P} 39.6 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 13.5$ (br).

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 - C (O) P P h})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)(65)$

Prepared as for 62 using $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.610 \mathrm{~g}, 3.07 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{HPPh}_{2}(0.572$ $\left.\mathrm{g}, 3.07 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.853 \mathrm{~g}, 79.8 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.00(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{C} \underline{\mathbf{H}}$ and $p-\mathrm{C} \underline{\mathrm{H}}$ of Ph$), 7.42\left(\mathrm{~m}, 4 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.00 \mathrm{~Hz}, o-\mathrm{CH}$ of Ph$), 7.84\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.35 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.97\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{H-H} 6.80 \mathrm{~Hz},{ }^{4} J_{H-P} 1.76\right.$ $\mathrm{Hz}, o-\mathrm{CH})$.

[^0]FAB-MS $m / z 349[\mathrm{MH}]^{+}$. No other fragments were identified.

Synthesis of $\mathbf{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)(\mathbf{4}-\mathrm{CN})(\mathbf{6 6})$

Prepared as for 62 using $\mathrm{C}_{6} \mathrm{H}_{4}(1-\mathrm{COCl})(4-\mathrm{CN})\left(0.659 \mathrm{~g}, 3.98 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{HPPh}_{2}(0.741 \mathrm{~g}$, $\left.3.98 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $1.00 \mathrm{~g}, 79.9 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.71\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}^{3} J_{H-H} 8.20 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.01(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{CH}$ of Ph), $7.02(\mathrm{~m}$, $2 \mathrm{H}, p-\mathrm{CH}$ of Ph), $7.35(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 7.63\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.46 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 116.5\left(\mathrm{~d}, J_{C-P} 1.96 \mathrm{~Hz}, i-\underline{\mathbf{C}} \equiv \mathrm{N}\right), 117.9(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{~N}), 128.2(\mathrm{~s}, o-\underline{\mathbf{C}})$, 129.1 (d, ${ }^{3} J_{C-P} 7.78 \mathrm{~Hz}, m-\underline{\mathbf{C H}}$ of Ph), 129.9 (s, $p-\underline{\mathbf{C H}}$ of Ph), 132.3 (s, $m-\underline{\mathbf{C H}}$), 135.3 (d, ${ }^{2} J_{C-P}$ $18.9 \mathrm{~Hz}, o-\underline{\mathbf{C H}}$ of Ph$), 141.9\left(\mathrm{~d},{ }^{2} J_{C-P} 38.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 211.5\left(\mathrm{~d},{ }^{1} J_{C-P} 38.7 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 14.5\left(\mathrm{~m},{ }^{3} J_{P-H} 8.12 \mathrm{~Hz}\right)$.
IR: $v_{(\mathrm{C}=\mathrm{N})} 2229 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1650 \mathrm{~cm}^{-1}$.
FAB-MS $m / z 316[\mathrm{MH}]^{+}$. No other fragments were identified.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PCy}_{2}\right)(3-\mathrm{Me})(67)$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{HPCy}_{2}\left(0.269 \mathrm{~g}, 1.36 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2.5 \mathrm{M}$, $\left.0.54 \mathrm{~cm}^{3}, 1.36 \times 10^{-3} \mathrm{~mol}\right)$ and the mixture was allowed to warm to ambient temperature over 30 min . $\mathrm{An} \mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\left(0.209 \mathrm{~g}, 1.36 \times 10^{-3} \mathrm{~mol}\right)$ was added at -78 ${ }^{\circ} \mathrm{C}$, resulting in a pale yellow solution that was stirred for 30 min and was then allowed to warm to ambient temperature. After stirring for 18 h the solvent was removed under reduced pressure; the product was extracted with pentane and dried in vacuo to afford a yellow oil. Yield: 0.395 g , 91.2%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, p-\mathrm{CH}\right.$ of Cy$), 1.22\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}_{2}\right.$ of Cy$), 1.50(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}, p-\mathrm{CH}$ of Cy$), 1.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2}\right.$ of Cy$), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}_{2}\right.$ of Cy), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}\right.$ of Cy), $6.96\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.51 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.05\left(\mathrm{t},{ }^{3} J_{H-H}\right.$ $7.51 \mathrm{~Hz}, m-\mathrm{CH}), 8.08(\mathrm{~s}, 1 \mathrm{H}$, middle-CH$), 8.13\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 8.35 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 21.1\left(\mathrm{~s}, \underline{\mathbf{C H}}_{3}\right), 26.7\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2}, p-\underline{\mathbf{C}}\right.$ of Cy$), 27.5\left(\mathrm{~d}, J_{C-P} 9.80 \mathrm{~Hz}, \underline{\mathbf{C H}}{ }_{2}\right.$ of Cy), 27.7 (d, $J_{C-P} 9.94 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}_{2}$ of Cy), 30.3 (d, $J_{C-P} 10.9 \mathrm{~Hz}, \underline{\mathbf{C H}}_{2}$ of Cy), 31.3 (d, $J_{C-P} 10.5$ $\mathrm{Hz}, \underline{\mathbf{C H}}{ }_{2}$ of Cy), $33.0\left(\mathrm{~d},{ }^{l} J_{C-P} 13.3 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}\right.$ of Cy), $126.2\left(\mathrm{~d},{ }^{3} J_{C-P} 11.7 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right), 128.7(\mathrm{~s}, m-$ $\mathbf{C H}$), 128.8 ($\mathrm{d},{ }^{3} J_{C-P} 10.0 \mathrm{~Hz}$, middle- $\mathbf{C H}$), 134.0 ($\mathrm{s}, p-\underline{\mathbf{C H}}$), 138.6 ($\mathrm{s}, \underline{\mathbf{C}} \mathrm{CH}_{3}$), 143.1 (d, ${ }^{2} J_{C-P} 32.6$ $\mathrm{Hz}, i-\mathbf{C}), 216.4\left(\mathrm{~d},{ }^{1} J_{C-P} 44.1 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 16.7$ (br).

EI-MS $m / z 316[\mathrm{MH}]^{+}$. No other fragments were identified.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PCy}_{2}\right)\left(\mathbf{3}-\mathrm{CH}_{2} \mathrm{Cl}\right)(68)$

Prepared as for 67 using ${ }^{\mathrm{n}} \mathrm{BuLi}\left(2.5 \mathrm{M}, 0.657 \mathrm{~cm}^{3}, 1.64 \times 10^{-3} \mathrm{~mol}\right), \mathrm{HPCy}_{2}\left(0.325 \mathrm{~g}, 1.64 \times 10^{-3}\right.$ $\mathrm{mol})$ and $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\left(0.310 \mathrm{~g}, 1.64 \times 10^{-3} \mathrm{~mol}\right)$. Isolated as a yellow oil. Yield: $0.562 \mathrm{~g}, 97.8 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{H}} 1.02\left(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{CH}_{2}\right.$ of Cy$), 1.23\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, p-\underline{\mathrm{CH}}_{2}\right.$ of Cy), $1.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 1.82\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{C}}_{2}\right.$ of Cy$), 1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy$), 2.17(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}$ of Cy), $3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.70 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.04\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.80\right.$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 26.6$ ($\mathrm{s}, \underline{\mathbf{C H}} \mathrm{H}_{2}, p-\underline{\mathbf{C}} \mathrm{H}$ of Cy), 27.5 ($\mathrm{d}, J_{C-P} 9.53 \mathrm{~Hz}, \underline{\mathbf{C H}}_{2}$ of Cy), 27.7 (d, $J_{C-P} 10.0 \mathrm{~Hz}, \underline{\mathbf{C}}_{2}$ of Cy), $30.2\left(\mathrm{~d}, J_{C-P} 10.8 \mathrm{~Hz}, \mathbf{C H}_{2}\right.$ of Cy), $31.3\left(\mathrm{~d}, J_{C-P} 10.0 \mathrm{~Hz}, \underline{\mathbf{C}}_{2}\right.$ of Cy), 32.9 (d, ${ }^{l} J_{C-P} 13.7 \mathrm{~Hz}, \underline{\mathbf{C}}$ of Cy$), 45.4\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 128.4$ ($\left.\mathrm{s}, o-\underline{\mathbf{C}}\right), 128.5$ (s , middle- $\underline{\mathbf{C}} \mathrm{H}$), 129.1 ($\mathrm{s}, m-\underline{\mathbf{C H}}$), 133.1 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}), 138.6$ ($\left.\mathrm{s}, \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{Cl}\right), 143.1\left(\mathrm{~d},{ }^{2} J_{C-p} 33.2 \mathrm{~Hz}, i-\mathbf{C}\right), 216.3$ (d, $\left.{ }^{1} J_{C-P} 44.7 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 17.8$ (br).
EI-MS $m / z 349[\mathrm{M}-\mathrm{H}]^{+}$. No other fragments were identified.

Synthesis of $\left[\mathbf{R h}(\mathbf{1 , 5 - C O D})\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\} \mathrm{Cl}\right](69)$

To a DCM solution of $[\mathrm{Rh}(1,5-\mathrm{COD}) \mathrm{Cl}]_{2}\left(0.184 \mathrm{~g}, 3.73 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\left(0.227 \mathrm{~g}, 7.47 \times 10^{-4} \mathrm{~mol}\right)$, resulting in an orange solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo to afford a dark yellow solid. Yield: $0.155 \mathrm{~g}, 75.5 \%$.
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta_{\mathrm{H}} 2.04-2.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2}\right.$ of COD), $2.47\left(\mathrm{br}, 7 \mathrm{H}, \mathrm{C}_{2}\right.$ of COD and $\underline{\mathrm{H}}_{3}$), 3.42 (br, 2H, C $\underline{\mathbf{H}}$ of COD), 5.61 (br, 2H, C \underline{H} of COD), $7.35\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.54 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$)$, $7.43(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{C} \underline{\mathrm{H}}$ of $\mathrm{Ph}, m-\mathrm{CH}$ and $p-\mathrm{CH}), 7.66\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 9.13 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of Ph$), 8.51(\mathrm{~s}$, 1 H , middle-CH), 8.71 (br, $1 \mathrm{H}, o-\mathrm{CH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 21.7\left(\mathrm{~s}, \underline{\mathbf{C H}}_{3}\right), 29.2\left(\mathrm{~s}, \underline{\mathbf{C}}_{2}\right.$ of COD$), 33.2\left(\mathrm{~d},{ }^{3} J_{C-R h} 2.51 \mathrm{~Hz}, \underline{\mathbf{C}}_{2}\right.$ of COD), 71.0 ($\mathrm{d},{ }^{l} J_{C-R h} 13.2 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}$ of COD), 105.4 (dd, ${ }^{1} J_{C-R h} 11.5 \mathrm{~Hz},{ }^{2} J_{C-P} 7.41 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}$ of COD), 128.4 ($\mathrm{d},{ }^{3} J_{C-P} 9.70 \mathrm{~Hz}, m-\underline{\mathbf{C H}}$ of Ph), 128.4 ($\mathrm{s}, m-\mathbf{C H}$), 128.5 ($\mathrm{d},{ }^{3} J_{C-P} 3.51 \mathrm{~Hz}, o-\underline{\mathbf{C H}}$), $129.8\left(\mathrm{~d},{ }^{l} J_{C-P} 39.9 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 130.7\left(\mathrm{~d},{ }^{4} J_{C-P} 2.26 \mathrm{~Hz}, p-\underline{\mathbf{C}}\right.$ of Ph$), 131.2\left(\mathrm{~d},{ }^{3} J_{C-P} 3.67 \mathrm{~Hz}\right.$,
middle- $\underline{\mathbf{C H}}$), 134.9 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$), $135.6\left(\mathrm{~d},{ }^{2} J_{C-P} 11.1 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph$), 138.6\left(\mathrm{~d},{ }^{2} J_{C-P} 42.7 \mathrm{~Hz}, i-\mathbf{C}\right)$, $138.5\left(\mathrm{~s}, \mathbf{C C H}_{3}\right), 202.2\left(\mathrm{~d},{ }^{l} J_{C-P} 16.5 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $\delta_{\mathrm{P}} 36.1\left(\mathrm{~d},{ }^{1} J_{P-R h} 145.8 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{28} \mathrm{H}_{29}$ OPRhCl: C, 61.04%; H, 5.27%. Found; C, 60.93%; H, 5.18%. IR: $v_{(\mathrm{C}=0)} 1657 \mathrm{~cm}^{-1}$.

Synthesis of [Rh(1,5-COD) $\left.\left\{\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}\left(\mathbf{1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)\left(\mathbf{3}-\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}\right)\right\} \mathrm{Cl}\right](\mathbf{7 0})$

Prepared as for 69 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\left(0.189 \mathrm{~g}, 5.58 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{Rh}(1,5-$ $\mathrm{COD}) \mathrm{Cl}_{2}\left(0.138 \mathrm{~g}, 2.79 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a dark yellow solid. Yield: $0.124 \mathrm{~g}, 75.9 \%$.
${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta_{\mathrm{H}} 2.05-2.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD), 2.49 (br 4H, $\underline{\mathrm{H}}_{2}$ of COD), $3.42(\mathrm{br}, 2 \mathrm{H}$,
 of Ph), $7.44\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.32 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.53\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.68 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.66(\mathrm{t}, 5 \mathrm{H}$, ${ }^{3} J_{H-H} 8.91 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}$ of Ph and $\left.p-\mathrm{C} \underline{\mathbf{H}}\right), 8.73\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.83 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right), 8.81(\mathrm{~s}, 1 \mathrm{H}$, middleCH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 29.2\left(\mathrm{~s}, \underline{\mathbf{C}}_{2}\right.$ of COD), $33.2\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2}\right.$ of COD$), 45.9\left(\mathrm{~s}, \underline{\mathbf{C}}_{2} \mathrm{Cl}\right), 71.4$ (d, ${ }^{1} J_{C-R h} 13.8 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}$ of COD), $105.8\left(\mathrm{dd},{ }^{1} J_{C-R h} 11.6 \mathrm{~Hz},{ }^{2} J_{C-P} 7.18 \mathrm{~Hz}, \underline{\mathbf{C H}}\right.$ of COD), 128.6 (d, ${ }^{3} J_{C-P} 9.52 \mathrm{~Hz}, m-\underline{\mathbf{C H}}$ of Ph$), 128.9(\mathrm{~s}, m-\underline{\mathbf{C H}}), 129.4\left(\mathrm{~d},{ }^{1} J_{C-P} 39.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph), $130.8\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $4.19 \mathrm{~Hz}, o-\mathbf{C H}), 130.9\left(\mathrm{~d},{ }^{4} J_{C-P} 2.67 \mathrm{~Hz}, p-\underline{\mathbf{C H}}\right.$ of Ph$), 131.2\left(\mathrm{~d},{ }^{3} J_{C-P} 3.43 \mathrm{~Hz}\right.$, middle- $\left.\mathbf{C H}\right)$, 133.9 (s, $p-\underline{\mathbf{C}} \mathbf{H}), 135.5\left(\mathrm{~d},{ }^{2} J_{C-P} 9.93 \mathrm{~Hz}, o-\underline{\mathbf{C}} H\right.$ of Ph$), 138.0\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 139.0\left(\mathrm{~d},{ }^{2} J_{C-P} 42.9\right.$ $\mathrm{Hz}, i-\underline{\mathbf{C}}$), $202.1(\mathrm{~m}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 36.4\left(\mathrm{~d},{ }^{1} J_{P-R h} 145.7 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{OPRhCl}_{2}$: C, 57.44%; H, 4.79 \%. Found; C, 57.43%; H, 4.75%. IR: $v_{(\mathrm{C}=0)} 1657 \mathrm{~cm}^{-1}$.

Synthesis of $\left[\mathbf{R h}(1,5-\mathrm{COD})\left\{\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathbf{M e}\right)\right\} \mathrm{Cl}\right](71)$

Prepared as for 69 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.278 \mathrm{~g}, 7.99 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{Rh}(1,5-$ $\mathrm{COD}) \mathrm{Cl}_{2}\left(0.197 \mathrm{~g}, 3.99 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.205 \mathrm{~g}, 86.4 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.08-2.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD), $2.49\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD), $3.43(\mathrm{br}$, $2 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}}$ of COD$), 3.97$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 5.62 (br, 2H, C $\underline{\mathrm{H}}$ of COD), $7.35(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{CH}$ of Ph$)$, $7.43\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.27 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.62\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.85 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of Ph$), 8.18(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}, m-\mathrm{C} \underline{\mathbf{H}}\right), 8.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.26 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 29.3$ (s, $\underline{\mathbf{C H}}_{2}$ of COD), $33.2\left(\mathrm{~s}, \underline{\mathbf{C H}}_{2}\right.$ of $\mathbf{C O D}$), $52.7\left(\mathrm{~s}, \mathbf{C H}_{3}\right), 71.4$ (d, ${ }^{l} J_{C-R h} 13.9 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}$ of COD), $106.0\left(\mathrm{dd},{ }^{1} J_{C-R h} 11.6 \mathrm{~Hz},{ }^{2} J_{C-P} 7.26 \mathrm{~Hz}, \underline{\mathbf{C H}}\right.$ of COD), $128.6\left(\mathrm{~d},{ }^{3} J_{C}\right.$. ${ }_{p} 9.73 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}$ of Ph$), 129.8$ (s, $m-\underline{\mathbf{C H}}$), 130.7 (m, $o-\underline{\mathbf{C H}}$), 131.0 (m, $p-\underline{\mathbf{C H}}$ of Ph), 135.5 (d, ${ }^{2} J_{C-P} 10.7 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}$ of Ph), $141.8\left(\mathrm{~d},{ }^{2} J_{C-P} 42.5 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 166.3\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{O}_{2} \mathrm{Me}\right), 202.5\left(\mathrm{~d},{ }^{1} J_{C-P} 17.9\right.$ $\mathrm{Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 36.9\left(\mathrm{~d},{ }^{1} J_{P-R h} 146.9 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{PCIRh}: \mathrm{C}, 58.55 \%$; $\mathrm{H}, 4.88 \%$. Found; C, $58.42 \% ; \mathrm{H}, 4.96 \%$. IR: $v_{(\mathrm{C}=0)} 1718 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=0)} 1663 \mathrm{~cm}^{-1}$.

Synthesis of $\left[\mathbf{R h}(\mathbf{1 , 5 - C O D})\left\{\mathbf{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)(\mathbf{4}-\mathrm{CN})\right\} \mathrm{Cl}\right](72)$

Prepared as for 69 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\left(0.091 \mathrm{~g}, 2.89 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{Rh}(1,5-$ $\mathrm{COD}) \mathrm{Cl}_{2}\left(0.072 \mathrm{~g}, 1.45 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as an orange solid. Yield: $0.070 \mathrm{~g}, 85.9 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}} 2.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD), $2.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of COD$), 3.46(\mathrm{br}, 2 \mathrm{H}$, Cㅡㅐ of COD), 5.57 (br, 2H, C $\underline{\mathbf{H}}$ of COD), 7.39 (m, 4H, $m-\mathrm{CH}$ of Ph), $7.48(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{C} \underline{\mathbf{H}}$ of Ph$)$, $7.59(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{C} \underline{\mathbf{H}}$ of Ph$), 7.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.17 \mathrm{~Hz}, m-\mathrm{CH}\right), 8.86\left(\mathrm{~d},{ }^{3} J_{H-H} 8.14 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta_{\mathrm{C}} 29.6\left(\mathrm{~s}, \underline{\mathbf{C}}_{2}\right.$ of COD), 33.5 ($\mathrm{s}, \underline{\mathbf{C}} \mathrm{H}_{2}$ of COD), $72.2\left(\mathrm{~d},{ }^{2} J_{C-P} 13.5 \mathrm{~Hz}\right.$, $\underline{\mathbf{C H}}$ of COD), $106.9\left(\mathrm{dd},{ }^{1} J_{C-R h} 12.1 \mathrm{~Hz},{ }^{2} J_{C-P} 6.34 \mathrm{~Hz}, \mathbf{C H}\right.$ of COD), $117.3(\mathrm{~s}, i-\underline{\mathbf{C}}=\mathrm{N}), 118.5(\mathrm{~s}$, $\underline{\mathbf{C}} \equiv \mathrm{N}$), $129.1\left(\mathrm{~d},{ }^{3} J_{C-P} 9.68 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph$), 131.3\left(\mathrm{~d},{ }^{3} J_{C-P} 3.21 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 131.6\left(\mathrm{~d},{ }^{4} J_{C-P} 2.38\right.$ $\mathrm{Hz}, p-\underline{\mathbf{C H}}$ of Ph), 132.9 ($\mathrm{s}, m-\underline{\mathbf{C H}}$), $135.8\left(\mathrm{~d},{ }^{3} J_{C-P} 10.7 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right.$ of Ph$), 142.0\left(\mathrm{~d},{ }^{2} J_{C-P} 42.5 \mathrm{~Hz}\right.$, $i-\underline{C}$), 202.9 ($\mathrm{m}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{P}} 37.8\left(\mathrm{~d},{ }^{1} J_{P-R h} 147.1 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{OPClNRh}: \mathrm{C}, 59.84 \%$; $\mathrm{H}, 5.03 \%$; N, 2.49 \%. Found; C, 59.85 \%; H, 4.96%, N, 2.57%.

IR: $v_{(\mathrm{C}=\mathrm{N})} 2229 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=0)} 1660 \mathrm{~cm}^{-1}$.

Synthesis of trans-[$\left.\left.\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{4} \mathbf{(1 - C (O)} \mathbf{P P h}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right](\mathbf{7 3})$

To a DCM solution of $\left[\operatorname{Pd}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.085 \mathrm{~g}, 2.97 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\left(0.181 \mathrm{~g}, 5.95 \times 10^{-4} \mathrm{~mol}\right)$ in DCM , resulting in a yellow solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo to afford a yellow solid. Yield: $0.217 \mathrm{~g}, 93.0 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.35(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{CH}$ of Ph and $m-\mathrm{CH}$ and $p-\mathrm{CH}), 7.45$ $\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.69 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.75(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 8.09(\mathrm{~s}, 2 \mathrm{H}$, middle-CH$), 8.25(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 8.31 \mathrm{~Hz}, o-\mathbf{C H}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 21.5\left(\mathrm{~s}, \underline{\mathrm{C}}_{3}\right), 126.9\left(\mathrm{t},{ }^{1} J_{C-P} 22.7 \mathrm{~Hz}, i-\underline{\mathrm{C}}\right.$ of Ph$), 127.9(\mathrm{~s}, o-\underline{\mathrm{CH}})$, 128.5 (s, m- $\underline{\mathbf{C H}}$), 128.6 ($\mathrm{t},{ }^{3} J_{C-P} 4.93 \mathrm{~Hz}, m-\underline{\mathbf{C H}}$ of Ph), 130.2 (s , middle- $\underline{\mathbf{H}}$), 131.3 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of $\mathrm{Ph}), 134.9(\mathrm{~s}, p-\underline{\mathbf{C H}}), 135.9\left(\mathrm{t},{ }^{2} J_{C-P} 6.02 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}^{2}\right.$ of Ph$), 131.2\left(\mathrm{t},{ }^{2} J_{C-P} 22.8 \mathrm{~Hz}, i-\mathbf{C}\right), 138.6(\mathrm{~s}$, $\left.\mathbf{C C H}_{3}\right), 198.8(\mathrm{~m}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 25.8$ (br).
Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PdCl}_{2}$: C, 61.12%; $\mathrm{H}, 4.33 \%$. Found; C, 61.02%; H , 4.45%.

IR: $v_{(\mathrm{C}=0)} 1634 \mathrm{~cm}^{-1}$.

Synthesis of trans-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)\left(\mathbf{3}-\mathrm{CH}_{2} \mathrm{Cl}\right)\right\}_{2}\right](74)$

Prepared as for 73 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\left(0.100 \mathrm{~g}, 2.95 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{Pd}(1,5-$ $\left.\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.042 \mathrm{~g}, 1.47 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.117 \mathrm{~g}, 93.2 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 4.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.66 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.38\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.51 \mathrm{~Hz}, m-\mathrm{CH}$ of Ph$), 7.48\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.15 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}, p-\right.$ CH), $7.78(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{C} \underline{\mathbf{H}}$ of Ph$), 8.24(\mathrm{~s}, 2 \mathrm{H}$, middle-CH$), 8.29\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.99 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 45.5\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{H}_{2} \mathrm{Cl}\right), 126.2\left(\mathrm{t},{ }^{1} J_{C-P} 22.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 128.8\left(\mathrm{t},{ }^{3} J_{C-P}\right.$ $5.57 \mathrm{~Hz}, m-\underline{\mathrm{C}} H$ of Ph), 129.0 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 129.6 (s , middle- $\underline{\mathrm{CH}}$), 130.1 ($\mathrm{s}, o-\underline{\mathrm{C}} \mathrm{H}$), 131.5 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph$), 133.8(\mathrm{~s}, p-\underline{\mathbf{C H}}), 135.8\left(\mathrm{t},{ }^{2} J_{C-P} 5.70 \mathrm{~Hz}, o-\underline{\mathbf{C}}\right.$ of Ph$), 137.3\left(\mathrm{t},{ }^{2} J_{C-P} 22.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 138.1$ $\left(\mathrm{s}, \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{Cl}\right), 198.8\left(\mathrm{t},{ }^{1} J_{C-P} 11.41 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 25.9$ (br).
Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PdCl}_{4}$: C, $56.18 \% ; \mathrm{H}, 3.75 \%$. Found; C, $56.24 \% ; \mathrm{H}$, 3.74%.

IR: $v_{(\mathrm{C}=0)} 1657 \mathrm{~cm}^{-1}$.

Synthesis of trans-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)\left(\mathbf{4}-\mathrm{CO}_{2} \mathbf{M e}\right)\right\}_{2}\right](\mathbf{7 5})$

Prepared as for 73 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.395 \mathrm{~g}, 1.13 \times 10^{-3} \mathrm{~mol}\right)$ and $[\mathrm{Pd}(1,5-$ $\mathrm{COD}) \mathrm{Cl}_{2}$] ($0.162 \mathrm{~g}, 5.67 \times 10^{-4} \mathrm{~mol}$). Isolated as a yellow solid. Yield: $0.452 \mathrm{~g}, 91.3 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 3.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.39\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.47 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$), 7.48(\mathrm{~d}, 4 \mathrm{H}$, ${ }^{3} J_{H-H} 7.47 \mathrm{~Hz}, p-\mathrm{CH}$ of Ph$), 7.76(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 8.01\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.31 \mathrm{~Hz}, m-\mathrm{CH}\right), 8.31$ (d, $\left.4 \mathrm{H},{ }^{3} J_{H-H} 8.31 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 52.67\left(\mathrm{~s}, \underline{\mathrm{CH}}_{3}\right), 125.9\left(\mathrm{t},{ }^{1} J_{C-P} 23.2 \mathrm{~Hz}, i-\underline{\mathrm{C}}\right.$ of Ph$), 128.9\left(\mathrm{t},{ }^{3} J_{C-P} 5.34\right.$ $\mathrm{Hz}, m-\underline{\mathbf{C}} H$ of Ph), 129.7 ($\mathrm{s}, m-\underline{\mathbf{C}}$), 129.8 ($\mathrm{s}, o-\underline{\mathrm{C}}$), 131.7 ($\mathrm{s}, p-\underline{\mathrm{C}} \mathrm{H}$ of Ph), 134.5 ($\mathrm{s}, i-$
$\left.\mathbf{C C O}_{2} \mathrm{Me}\right), 135.7\left(\mathrm{t},{ }^{2} J_{C-P} 5.84 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right.$ of Ph$), 140.1\left(\mathrm{t},{ }^{2} J_{C-P} 21.9 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 166.1\left(\mathrm{~s}, \underline{\mathbf{C}}_{2} \mathrm{Me}\right)$, 199.2 ($\mathrm{m}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 26.1$ (br).
Elem. Anal.: Calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd}$: C, 57.71%; H, 3.89%. Found; C, 57.63%; H , 4.03%.

IR: $v_{(\mathrm{C}=\mathrm{O})} 1720 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1670 \mathrm{~cm}^{-1}$.

Synthesis of trans-[$\left.\mathrm{PdCl}_{2}\left\{\mathbf{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C (O)} \mathbf{P P h}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right](76)$

Prepared as for 73 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\left(0.118 \mathrm{~g}, 3.75 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{Pd}(1,5-$ $\left.\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.053 \mathrm{~g}, 1.87 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a dark yellow solid. Yield: $0.139 \mathrm{~g}, 92.1 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.43$ (br t, $8 \mathrm{H},{ }^{3} J_{H-H} 7.71 \mathrm{~Hz}, m-\mathrm{CH}$ of Ph$), 7.55\left(\mathrm{brt}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.39 \mathrm{~Hz}\right.$, $p-\mathrm{CH}$ of Ph$), 7.59\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.34 \mathrm{~Hz}, m-\mathbf{C H}\right), 7.73(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 8.26\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H}\right.$ $8.34 \mathrm{~Hz}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 116.9(\mathrm{~s}, i-\underline{\mathbf{C}} \equiv \mathrm{N}), 117.8(\mathrm{~s}, \underline{\mathbf{C}} \equiv \mathrm{~N}), 125.3\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{P}} 23.1 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of $\mathrm{Ph}), 129.1\left(\mathrm{t},{ }^{3} J_{C-P} 5.10 \mathrm{~Hz}, m-\underline{\mathrm{CH}}\right.$ of Ph$), 129.9(\mathrm{~s}, o-\underline{\mathrm{CH}}), 132.1$ ($\mathrm{s}, p-\underline{\mathrm{CH}}$ of Ph$), 132.3$ ($\mathrm{s}, m-$ $\underline{\mathbf{C H}}), 135.5\left(\mathrm{t},{ }^{2} J_{C-P} 5.90 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right.$ of Ph$), 139.8\left(\mathrm{t},{ }^{2} J_{C-P} 22.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 198.8\left(\mathrm{t},{ }^{1} J_{C-P} 12.4 \mathrm{~Hz}\right.$, $\underline{(O) P) .}$
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 25.9$ (br).
Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}$: C, 59.48%; H, 3.47%; N, 3.47%. Found; C, 59.58 \%; H, 3.52%, N, 3.48 \%.

IR: $v_{(\mathrm{C}=\mathrm{N})} 2229 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1666 \mathrm{~cm}^{-1}$.

Synthesis of cis- and trans-[$\left.\mathrm{PtCl}_{2}\left\{\mathbf{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(\mathbf{3}-\mathrm{Me})\right\}_{2}\right]$ (cis-/trans-77)

To a DCM solution of $\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right]\left(0.143 \mathrm{~g}, 3.03 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\left(0.184 \mathrm{~g}, 6.05 \times 10^{-4} \mathrm{~mol}\right)$ in DCM , resulting in a light yellow solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product
was washed with $\mathrm{Et}_{2} \mathrm{O}$ and pentane and dried in vacuo to afford a yellow solid. Yield: 0.235 g , 88.7 \%.
cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(\mathbf{3 - M e})\right\}_{2}\right]($ cis-77)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.33\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 7.19\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.80 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph and $\left.m-\mathbf{C H}\right)$, $7.27(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{CH}$ of Ph$), 7.51\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{H-H} 7.56 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of Ph and $\left.p-\underline{\mathrm{CH}}\right), 8.06(\mathrm{~s}, 2 \mathrm{H}$, middle-CH), $8.18(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 21.5\left(\mathrm{~s}, \underline{\mathrm{CH}}_{3}\right), 125.4\left(\mathrm{~d},{ }^{1} J_{C-P} 58.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 128.5(\mathrm{~m}, m-\underline{\mathrm{CH}}$ of Ph), 128.5 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 130.4 ($\mathrm{s}, o-\underline{\mathbf{C H}}$), 131.3 (s , middle- $\underline{\mathbf{C H}}$), 134.6 ($\mathrm{s}, p-\underline{\mathbf{C H}}$ of Ph), 135.8 (d, ${ }^{2} J_{C-P} 4.86 \mathrm{~Hz}, o-\underline{\mathbf{C}} H$ of Ph$), 138.4\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{CH}_{3}\right), 195.1\left(\mathrm{~d},{ }^{1} J_{C-P} 40.6 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 14.8\left(\mathrm{br},{ }^{1} J_{P-P t} 3497 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-4351.2\left(\mathrm{t},{ }^{1} J_{P_{t}-P} 3497 \mathrm{~Hz}\right)$.

trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(3-\mathrm{Me})\right\}_{2}\right]$ (trans-77)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.33\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36\left(\mathrm{t}, 12 \mathrm{H},{ }^{3} J_{H-H} 7.45 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of $\mathrm{Ph}, m-\mathrm{CH}$ and $p-\mathrm{CH}), 7.45\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.77(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 8.15$ ($\mathrm{s}, 2 \mathrm{H}$, middleCH), $8.33\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.42 \mathrm{~Hz}, o-\mathbf{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 21.5\left(\mathrm{~s}, \underline{\mathbf{C H}}_{3}\right), 126.6\left(\mathrm{t},{ }^{1} J_{C-P} 26.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 128.0(\mathrm{~s}, o-\mathbf{C H})$, 128.5 (m, m - $\underline{\mathbf{C H}}$ of Ph), 128.7 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 131.2 (s , middle- $\underline{\mathbf{C H}}$), 131.8 ($\mathrm{s}, p-\underline{\mathbf{C H}}$ of Ph), 134.8 ($\mathrm{s}, p-\underline{\mathbf{C H}}), 135.9\left(\mathrm{t},{ }^{2} J_{C-P} 5.54 \mathrm{~Hz}, o-\underline{\mathbf{C}} \boldsymbol{H}\right.$ of Ph$), 137.4\left(\mathrm{t},{ }^{2} J_{C-P} 22.6 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 138.3\left(\mathrm{~s}, \underline{\mathbf{C}} \mathrm{CH}_{3}\right)$, 198.6 (t, $\left.{ }^{l} J_{C-P} 15.0 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 22.3\left(\mathrm{~s},{ }^{1} J_{P-P t} 2544 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-3962\left(\mathrm{t},{ }^{l} J_{P t-P} 2544 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PtCl}_{2}$: C, 54.92%; $\mathrm{H}, 3.89 \%$. Found; C, 54.86%; $\mathrm{H}, 3.78 \%$. IR: $v_{(\mathrm{C}=\mathrm{O})} 1661(\mathrm{br}) \mathrm{cm}^{-1}$.

Synthesis of cis-[PtCl $\left.\left.\mathbf{2 P}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}\left(\mathbf{1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)\left(\mathbf{3}-\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}\right)\right\}_{2}\right](\mathbf{7 8})$

Prepared as for 77 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(3-\mathrm{CH}_{2} \mathrm{Cl}\right)\left(0.0303 \mathrm{~g}, 8.94 \times 10^{-5} \mathrm{~mol}\right)$ and $\left[\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right]\left(0.211 \mathrm{~g}, 4.47 \times 10^{-5} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.031 \mathrm{~g}, 73.5 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 4.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.22\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.35 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$), 7.32(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 7.35 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.41\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.45 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.50(\mathrm{~m}, 10 \mathrm{H}, o-\mathrm{CH}$ of Ph and $p-$ CH $), 8.22\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.53 \mathrm{~Hz}, o-\mathbf{C H}\right), 8.32(\mathrm{~s}, 2 \mathrm{H}$, middle-CH$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 45.7\left(\mathrm{~s}, \underline{\mathbf{C H}_{2} \mathrm{Cl}}\right), 124.8\left(\mathrm{~d},{ }^{1} J_{C-P} 58.3 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 128.6\left(\mathrm{~m},{ }^{3} J_{C-P}\right.$ $5.44 \mathrm{~Hz}, m-\underline{\mathbf{C}} H$ of Ph), 128.9 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 130.8 (s , middle- $\underline{\mathbf{C}} \mathrm{H}$), 130.9 ($\mathrm{s}, o-\underline{\mathbf{C}} \mathbf{H}$), 132.0 ($\mathrm{s}, p-\underline{\mathbf{C}} \boldsymbol{H}$ of Ph), 133.6 ($\mathrm{s}, p-\mathbf{C H}$), 135.8 ($\mathrm{m},{ }^{2} J_{C-P} 4.93 \mathrm{~Hz}, o-\underline{\mathbf{C}} H$ of Ph), 137.8 ($\left.\mathrm{s}, \underline{\mathbf{C}} \mathrm{CH}_{2} \mathrm{Cl}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 15.3\left(\mathrm{br},{ }^{1} J_{P-P t} 3503 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-4354\left(\mathrm{t},{ }^{1} J_{P t-P} 3503 \mathrm{~Hz}\right)$.

Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PtCl}_{4}$: C, 50.90%; H, 3.39%. Found; C, $50.88 \% ; \mathrm{H}, 3.33 \%$. IR: $v_{(\mathrm{C}=\mathrm{O})} 1668 \mathrm{~cm}^{-1}$.

Synthesis of cis-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{4}\left(\mathbf{1 - C}(\mathbf{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\right\}_{2}\right]$ (79)

Prepared as for 77 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-\mathrm{CN})\left(0.267 \mathrm{~g}, 8.48 \times 10^{-4} \mathrm{~mol}\right)$ and $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]\left(0.200 \mathrm{~g}, 4.24 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.320 \mathrm{~g}, 84.2 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.24(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{CH}$ of Ph$), 7.40\left(\mathrm{~d}, 8 \mathrm{H},{ }^{3} J_{H-H} 13.7 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$), 7.42$ $(\mathrm{m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 7.60\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.84 \mathrm{~Hz}, m-\underline{\mathrm{CH}}\right), 8.22\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}, o-\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 116.6(\mathrm{~s}, i-\mathbf{C C} \equiv \mathrm{N}), 117.8(\mathrm{~s}, \mathbf{C} \equiv \mathrm{~N}), 124.1\left(\mathrm{~d},{ }^{1} J_{C-P} 59.5 \mathrm{~Hz}, i-\underline{\mathrm{C}}\right.$ of $\mathrm{Ph}), 128.8\left(\mathrm{~m},{ }^{5} J_{C-P} 5.58 \mathrm{~Hz}, p-\underline{\mathbf{C H}}\right.$ of Ph$), 130.8(\mathrm{~s}, o-\underline{\mathrm{CH}}), 132.1$ ($\mathrm{s}, m-\underline{\mathbf{C H}}$), 132.5 (br, $o-\underline{\mathbf{C}} \mathrm{H}$ of $\mathrm{Ph}), 135.6\left(\mathrm{~m},{ }^{4} J_{C-P} 5.03 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph$), 139.5\left(\mathrm{~d},{ }^{2} J_{C-P} 49.9 \mathrm{~Hz}, i-\mathbf{C}\right), 194.8\left(\mathrm{~d},{ }^{1} J_{C-P} 44.8 \mathrm{~Hz}\right.$, $\underline{C}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 16.5\left(\mathrm{br},{ }^{l} J_{P-P t} 3493 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-4374\left(\mathrm{t},{ }^{l} J_{P t-P} 3493 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pt}$: C, 53.57%; H, 3.13%; N, 3.13%. Found; C, 53.65 \%; H, 3.15%, N, 3.10%.

IR: $v_{(\mathrm{C}=\mathrm{N})} 2230 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1666 \mathrm{~cm}^{-1}$.

Attempted synthesis of $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right\}_{2}\right](80)$

Synthesis attempted as for 77 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.298 \mathrm{~g}, 8.56 \times 10^{-4} \mathrm{~mol}\right)$ and $\left[\operatorname{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.160 \mathrm{~g}, 4.28 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: 0.269 g .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.26$ (br, 4H, $\underline{\mathrm{H}}_{2}$ of COD), 2.71 (br, 4H, $\underline{\mathrm{H}}_{2}$ of COD), 3.95 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 5.61 (br s, $4 \mathrm{H},{ }^{2} J_{H-P t} 66.9 \mathrm{~Hz}, \mathrm{CH}$ of COD), $7.39\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, m-\mathrm{C} \underline{\mathrm{H}}\right.$ of Ph), 7.49 $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 7.76(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 8.01\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}, m-\right.$ CH), $8.31\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.32 \mathrm{~Hz}, o-\mathbf{C H}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 31.1\left(\mathrm{~s}, \underline{\mathbf{C}}_{2}\right.$ of COD$), 52.7\left(\mathrm{~s}, \underline{\mathbf{C}}_{3}\right), 100.2\left(\mathrm{~s}, J_{C-P t} 151.9 \mathrm{~Hz}, \underline{\mathbf{C}} \mathrm{H}\right.$ of COD), 125.9 ($\mathrm{t},{ }^{1} J_{C-P} 21.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}$ of Ph), $128.9\left(\mathrm{t},{ }^{3} J_{C-P} 5.15 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right.$ of Ph), 129.8 ($\mathrm{s}, o-\underline{\mathbf{C}} \mathbf{H}$ and $m-\underline{\mathbf{C}} \mathrm{H}), 131.7(\mathrm{~s}, p-\underline{\mathbf{H}}$ of Ph$), 134.5\left(\mathrm{~s}, \underline{\mathbf{C C O}}{ }_{2} \mathrm{Me}\right), 135.7\left(\mathrm{t},{ }^{2} J_{C-P} 5.96 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right.$ of Ph$)$, 140.1 ($\mathrm{t},{ }^{2} J_{C-P} 22.8 \mathrm{~Hz}, i-\underline{\mathbf{C}}$), 166.1 ($\left.\mathrm{s}, \underline{\mathbf{C}}_{2} \mathrm{Me}\right), 199.2\left(\mathrm{t},{ }^{1} J_{C-P} 11.7 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 26.1$ (br).
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-3340(\mathrm{~s})$.
Elem. Anal.: Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{Cl}_{2} \mathrm{Pt}: \mathrm{C}, 48.19$ \%; H, 4.02 \%. Found; C, 48.07 \%; H, 3.96 \%. IR: $v_{(\mathrm{C}=0)} 1720 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=0)} 1671 \mathrm{~cm}^{-1}$.

FAB-MS m/z $686[\mathrm{M}-\mathrm{Cl}]^{+}$. No other fragments were identified.

Attempted synthesis of $\left.\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{(1 - C}(\mathbf{O}) \mathbf{P P h}_{2}\right)\left(\mathbf{4}-\mathrm{CO}_{2} \mathbf{M e}\right)\right\}_{2}\right](\mathbf{8 1})$

Synthesis attempted as for 77 using $\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\left(0.109 \mathrm{~g}, 3.16 \times 10^{-4} \mathrm{~mol}\right)$ and $\left[\mathrm{Pt}(1,5-\mathrm{COD}) \mathrm{Cl}_{2}\right]\left(0.118 \mathrm{~g}, 3.16 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: 0.216 g . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.26$ (br, 4H, C \underline{H}_{2} of COD), 2.70 (br, 4H, C $\underline{\mathbf{H}}_{2}$ of COD), 3.94 ($\mathrm{s}, 3 \mathrm{H}, J_{H-P t}$ $31.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $5.60\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H},{ }^{2} J_{H-P t} 66.7 \mathrm{~Hz}, \mathrm{CH}\right.$ of COD), $7.22\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.58 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of $\mathrm{Ph}), 7.42\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.52 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right), 7.47\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{H-H} 7.60 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of $\mathrm{Ph}, o-\mathrm{CH}$ of Ph$), 7.98\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.22 \mathrm{~Hz}, m-\mathbf{C H}\right), 8.26\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.56 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 31.1\left(\mathrm{~s}, \underline{\mathbf{C H}}_{2}\right.$ of COD$), 52.7\left(\mathrm{~s}, \underline{\mathbf{C H}}_{3}\right), 100.1\left(\mathrm{~s}, J_{C-P t} 152.1 \mathrm{~Hz}, \underline{\mathbf{C}}\right.$ of COD), 124.7 (d, ${ }^{1} J_{C-P} 58.5 \mathrm{~Hz}, i-\underline{\mathbf{C}}$ of Ph), $128.6\left(\mathrm{~d},{ }^{3} J_{C-P} 5.41 \mathrm{~Hz}, m-\underline{\mathbf{C}} H\right.$ of Ph$), 128.7(\mathrm{~m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right), 128.8\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)\left(4-\mathrm{CO}_{2} \mathrm{Me}\right)\right), 129.5$ (s, m- CH$)$, 130.6 ($\mathrm{s}, o-\underline{\mathbf{C H}}$), 132.2 ($\mathrm{s}, p-\underline{\mathbf{C}} \boldsymbol{H}$ of Ph), 134.1 ($\mathrm{s}, \underline{\left.\mathbf{C C O}_{2} \mathrm{Me}\right), 135.7\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}\left(1-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)(4-10\right.}$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$), 135.7 ($\mathrm{d},{ }^{2} J_{C-P} 4.99 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 139.7 (d, $\left.{ }^{2} J_{C-P} 49.1 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 166.1$ ($\mathrm{s}, \underline{\mathbf{C}} \mathrm{CO}_{2} \mathrm{Me}$), 195.1 ($\left.\mathrm{d},{ }^{1} J_{C-P} 42.9, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 16.1\left(\mathrm{br},{ }^{1} J_{P-P t} 3504 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-3340(\mathrm{~s})$.
Elem. Anal.: Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}_{1} \mathrm{Cl}_{2} \mathrm{Pt}$: C, 48.19%; $\mathrm{H}, 4.02 \%$. Found; C, 43.61%; $\mathrm{H}, 3.89 \%$. IR: $v_{(\mathrm{C}=\mathrm{O})} 1721 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=0)} 1671 \mathrm{~cm}^{-1}$.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathbf{1 , 3 - C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}(82)$

To a THF solution of $\mathrm{HPPh}_{2}\left(0.504 \mathrm{~g}, 2.71 \times 10^{-3} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added drop-wise
$\mathrm{C}_{6} \mathrm{H}_{4}(1,3-\mathrm{COCl})_{2}\left(0.275 \mathrm{~g}, 1.35 \times 10^{-3} \mathrm{~mol}\right)$ in THF, resulting in a yellow solution after stirring for 30 min that was allowed to warm to ambient temperature then stirred for 18 h . The solvent was removed under reduced pressure; the product was washed with pentane and dried in vacuo to afford a yellow solid. Yield: $0.574 \mathrm{~g}, 84.7 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.67\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.86 \mathrm{~Hz}, m-\mathrm{CH}\right), 6.99\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 1.63 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$)$, $7.01(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{CH}$ of Ph$), 7.40(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of Ph$), 7.90\left(\mathrm{dt}, 2 \mathrm{H},{ }^{4} J_{P-H} 7.85 \mathrm{~Hz},{ }^{3} J_{H-H} 1.52 \mathrm{~Hz}\right.$, $o-\mathrm{CH}), 9.02(\mathrm{~m}, 1 \mathrm{H}$, middle $\mathrm{C} \underline{\mathbf{H}})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 128.4$ (m, middle $\left.\underline{\mathbf{C H}}\right), 128.6(\mathrm{~m}, m-\underline{\mathrm{CH}}), 129.0\left(\mathrm{~d},{ }^{3} J_{C-P} 7.66 \mathrm{~Hz}, m-\right.$ $\underline{\mathbf{C}} H$ of Ph), 129.7 ($\mathrm{s}, p-\underline{\mathbf{C H}}$ of Ph), $132.1\left(\mathrm{~d},{ }^{3} J_{C-P} 8.61 \mathrm{~Hz}, o-\underline{\mathbf{C H}}\right), 133.1\left(\mathrm{~d},{ }^{1} J_{C-P} 6.14 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph), $135.3\left(\mathrm{~d},{ }^{2} J_{C-P} 18.3 \mathrm{~Hz}, o-\underline{\mathbf{C}} H\right.$ of Ph$), 139.9\left(\mathrm{~d},{ }^{2} J_{C-P} 35.7 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 211.2\left(\mathrm{~d},{ }^{1} J_{C-P} 38.1 \mathrm{~Hz}\right.$, $\underline{\mathrm{C}}(\mathrm{O}) \mathrm{P})$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 12.9\left(\mathrm{~m},{ }^{3} J_{P-H} 7.85 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}$: C, 76.49 \%; H, 4.78 \%. Found; C, $76.42 \% ; \mathrm{H}, 4.80 \%$. IR: $v_{(\mathrm{C}=0)} 1642 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1588 \mathrm{~cm}^{-1}$.

Synthesis of $\mathrm{C}_{5} \mathrm{H}_{3} \mathbf{N}\left(\mathbf{2 , 6 - C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{\mathbf{2}}(\mathbf{8 3})$

Prepared as for 82 using $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}\left(0.338 \mathrm{~g}, 1.67 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{HPPh}_{2}(0.617 \mathrm{~g}, 3.32$ $\times 10^{-3} \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}$. Isolated as a yellow solid. Yield: $0.623 \mathrm{~g}, 74.2 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 6.71\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{H-H} 7.91 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.03\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.47 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$)$, $7.09\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.47 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$), 7.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.62 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.63\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.54 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}$ of Ph$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 123.2\left(\mathrm{t},{ }^{4} J_{C-P} 2.06 \mathrm{~Hz}, m-\underline{\mathrm{C}} \mathrm{H}\right), 128.7\left(\mathrm{~d},{ }^{3} J_{C-P} 7.90 \mathrm{~Hz}, m-\underline{\mathrm{CH}}\right.$ of Ph$)$, 129.3 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 134.3 ($\mathrm{d},{ }^{1} J_{C-P} 8.47 \mathrm{~Hz}, i-\underline{\mathbf{C}}$ of Ph), 135.4 ($\mathrm{d},{ }^{2} J_{C-P} 20.1 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 138.1 ($\mathrm{s}, p-\underline{\mathbf{C H}}), 153.4\left(\mathrm{~d},{ }^{2} J_{C-P} 31.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 213.5\left(\mathrm{~d},{ }^{l} J_{C-P} 40.4 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 16.6\left(\mathrm{~m},{ }^{3} J_{P-H} 7.37 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~N}: \mathrm{C}, 73.96 \% ; \mathrm{H}, 4.57 \%$, N, 2.78%. Found; C, 73.82%; H, 4.55%; N, 2.88\%.

IR: $v_{(\mathrm{C}=\mathrm{O})} 1650 \mathrm{~cm}^{-1}$.

Synthesis of trans-[$\left.\mathbf{P t C l}\left\{\mathrm{C}_{5} \mathbf{H}_{3} \mathbf{N}\left(\mathbf{2 , 6}-\mathbf{C}(\mathbf{O}) \mathbf{P P h}_{2}\right\}_{2}\right)\right]^{+}[\mathrm{Cl}]^{-}(\mathbf{8 4})$

To a DCM solution of $\left[\mathrm{Pt}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}\right]\left(0.087 \mathrm{~g}, 1.85 \times 10^{-4} \mathrm{~mol}\right)$ at ambient temperature was added drop-wise $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(2,6-\mathrm{C}(\mathrm{O}) \mathrm{PPh}_{2}\right)_{2}\left(0.093 \mathrm{~g}, 1.85 \times 10^{-4} \mathrm{~mol}\right)$ in DCM , resulting in a bright orange solution that was stirred for 18 h . The solvent was removed under reduced pressure; the product was washed with $\mathrm{Et}_{2} \mathrm{O}$ and pentane and dried in vacuo to afford a dark yellow solid. Yield: $0.101 \mathrm{~g}, 70.1$ \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.53\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} J_{H-H} 7.30 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Ph$), 7.58\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.04 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Ph$), 8.15\left(\mathrm{q}, 8 \mathrm{H},{ }^{3} J_{H-H} 6.55 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of Ph$), 8.32\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.47 \mathrm{~Hz}, m-\mathrm{CH}\right), 8.55(\mathrm{t}, 1 \mathrm{H}$, $\left.{ }^{3} J_{H-H} 8.28 \mathrm{~Hz}, p-\mathbf{C H}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 123.0\left(\mathrm{t},{ }^{1} J_{C-P} 28.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right.$ of Ph$), 129.6\left(\mathrm{t},{ }^{3} J_{C-P} 6.00 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph), 131.9 ($\mathrm{br}, m-\underline{\mathbf{C}} \mathrm{H}$), 133.1 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 134.9 ($\mathrm{t},{ }^{2} J_{C-P} 6.82 \mathrm{~Hz}, o-\underline{\mathrm{CH}}$ of Ph), 143.3 ($\mathrm{s}, p-$ $\underline{\mathbf{C H}}), 148.1\left(\mathrm{t},{ }^{2} J_{C-P} 28.4 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 202.1\left(\mathrm{t},{ }^{1} J_{C-P} 16.9 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{P}} 33.1\left(\mathrm{br},{ }^{1} J_{P-P t} 2814 \mathrm{~Hz}\right)$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{Pt}}-3795\left(\mathrm{t},{ }^{1} J_{P t-P} 2814 \mathrm{~Hz}\right)$.

Elem. Anal.: Calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{NPtCl}_{2}$: C, $47.8 \% ; \mathrm{H}, 2.95 \%$; N, 1.79%. Found; C, 51.61 \%; H, 3.06 \%; N, 2.05 \%.

IR: $v_{(\mathrm{C}=0)} 1690(\mathrm{br}) \mathrm{cm}^{-1}$.

Synthesis of $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 5})$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.66 \mathrm{~g}, 2.27 \times 10^{-3} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-$ $\mathrm{COCl})_{2}\left(0.46 \mathrm{~g}, 2.27 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$, resulting in a suspended yellow solid that was stirred for 30 min and was then allowed to warm to ambient temperature then stirred for 18 h . The precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$; the product was dried in vacuo to afford a yellow solid. Yield: $0.320 \mathrm{~g}, 79.2$ \%
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.55\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{H-P} 3.10 \mathrm{~Hz}, \mathrm{PCH}_{3}\right), 6.42\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.75 \mathrm{~Hz}, m-\mathrm{CH}\right), 7.13$ $\left(\mathrm{d}, 2 \mathrm{H},{ }^{3} J_{H-H} 1.67 \mathrm{~Hz}, o-\mathrm{C} \underline{\mathbf{H}}\right), 7.14\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 1.76 \mathrm{~Hz}, o-\mathrm{CH}\right), 9.25(\mathrm{br}, 2 \mathrm{H}$, middle-C$\underline{\mathbf{H}})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 1.73\left(\mathrm{~d},{ }^{1} J_{C-P} 4.45 \mathrm{~Hz}, \underline{\mathbf{C H}_{3}}\right), \delta 130.3\left(\mathrm{~m},{ }^{2} J_{C-P} 1.89 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right), 130.6$ $\left(\mathrm{m},{ }^{3} J_{C-P} 2.32 \mathrm{~Hz}, o-\underline{\mathbf{C}} \mathrm{H}\right), 134.0\left(\mathrm{t},{ }^{3} J_{C-P} 13.9 \mathrm{~Hz}\right.$, middle $\left.\underline{\mathbf{C H}}\right), 137.6\left(\mathrm{~d},{ }^{2} J_{C-P} 37.9 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right)$, $205.9\left(\mathrm{~d},{ }^{1} J_{C-P} 46.0 \mathrm{~Hz}, \underline{\mathbf{C}}=\mathrm{O}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 32.7$.
IR: $v_{(\mathrm{C}=\mathrm{O})} 1656,1639 \mathrm{~cm}^{-1}$.

Elem. Anal.: Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{P}_{2}$: C, 60.67 \%; H, 3.93%. Found; C, $60.59 \% ; \mathrm{H}, 3.82 \%$.
X-ray quality crystals were grown at $-20^{\circ} \mathrm{C}$ from THF in 3 days. Crystal data: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$, $\mathrm{M}_{\mathrm{w}}=356.23$, Monoclinic, $\mathrm{P} 2{ }_{1} / n$ (no. 14), $a=12.0985(9), b=7.6709(3), c=18.3347$ (13) $\AA, \beta=$ $100.317(2)^{\circ}, \mathrm{V}=1674.047(18) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{c}=1.413 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{MoK} \alpha)=0.279 \mathrm{~mm}^{-1}, \mathrm{~T}=$ $173(2) \mathrm{K}, 3776$ independent reflections, full-matrix F^{2} refinement $R_{1}=0.0530, w R_{2}=0.1699$ on 2648 independent absorption corrected reflections $\left[I>2 \sigma(I) ; 2 \theta_{\max }=55^{\circ}\right]$, 217 parameters.

Synthesis of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 - C O C l}) \mathbf{3 - C O}\right\}_{2} \mathbf{P M e}(86)$

To an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(0.71 \mathrm{~g}, 2.44 \times 10^{-3} \mathrm{~mol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{H}_{4}(1,3-$ $\mathrm{COCl}_{2}\left(0.99 \mathrm{~g}, 4.88 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$, resulting in a suspended yellow solid that was stirred for 30 min and then allowed to warm to ambient temperature then stirred for 18 h . The suspension was filtered and the solvent removed from the filtrate under reduced pressure to afford an orange oil. Yield: $0.660 \mathrm{~g}, 70.9 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.39\left(\mathrm{~d}, 3 \mathrm{H},{ }^{2} J_{H-P} 3.41 \mathrm{~Hz}, \operatorname{PC} \underline{\mathbf{H}}_{3}\right), 6.22\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 8.04 \mathrm{~Hz}, m-\mathrm{C} \underline{\mathbf{H}}\right), 7.60$ (d, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 1.83 \mathrm{~Hz}, o-\mathrm{CH}\right), 7.62\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 1.83 \mathrm{~Hz}, o-\mathrm{CH}\right), 8.44$ (br, 2H, middle-CH$)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta_{\mathrm{P}} 20.2\left(\mathrm{br}, \underline{\mathbf{P C H}} \mathrm{H}_{3}\right)$.

Synthesis of $\left\{\mathbf{2 - C O}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}(\mathbf{8 7})$

Prepared as for $\mathbf{8 5}$ using $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}(2,6-\mathrm{COCl})_{2}\left(0.216 \mathrm{~g}, 1.06 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}(0.203$ $\mathrm{g}, 1.06 \times 10^{-3} \mathrm{~mol}$) in pentane. Isolated as an orange solid. Yield: $0.215 \mathrm{~g}, 56.7 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 1.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.57\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.74 \mathrm{~Hz}, p-\mathrm{CH}\right), 7.20\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H}\right.$ $7.74 \mathrm{~Hz}, m-\mathrm{CH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 3.33\left(\mathrm{~d},{ }^{1} J_{C-P} 7.80 \mathrm{~Hz}, \underline{\mathbf{C}}_{3}\right), 124.3\left(\mathrm{t},{ }^{3} J_{C-P} 1.90 \mathrm{~Hz}, m-\underline{\mathbf{C H}}\right), 138.0(\mathrm{~s}$, $p-\underline{\mathbf{C H}}$), $152.5\left(\mathrm{~d},{ }^{2} J_{C-P} 33.2 \mathrm{~Hz}, i-\mathbf{C}\right), 208.8\left(\mathrm{~d},{ }^{1} J_{C-P} 50.7 \mathrm{~Hz}, \underline{\mathbf{C}}=\mathrm{O}\right)$.
${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{P}} 30.2$ (br).
EI-MS $m / z 358[\mathrm{M}]^{+}$. No other fragments were identified.

Synthesis of trans-[$\left.\mathrm{PtCl}_{2}\left(\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right)_{2}\right](88$

To a THF solution of cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}\right]\left(0.079 \mathrm{~g}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ was added $\{3-\mathrm{CO}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\left(0.120 \mathrm{~g}, 3.36 \times 10^{-4} \mathrm{~mol}\right)$ in THF, resulting in a yellow solution that was
stirred for 30 min and then allowed to warm to ambient temperature then stirred for 18 h . The solvent was removed under reduced pressure to afford a yellow solid. Yield: $0.121 \mathrm{~g}, 73.6 \%$.
${ }^{1} \mathrm{H}$ NMR (THF): $\delta_{\mathrm{H}} 1.70\left(\mathrm{~d}, 3 \mathrm{H},{ }^{2} J_{H-P} 3.19 \mathrm{~Hz}, \mathrm{PCH}_{3}\right), 2.33\left(\mathrm{t}, 3 \mathrm{H},{ }^{2} J_{H-P} 3.14 \mathrm{~Hz}, \mathrm{PC} \underline{H}_{3}\right), 7.41(\mathrm{t}$, $\left.2 \mathrm{H},{ }^{3} J_{H-H} 7.33 \mathrm{~Hz}, m-\mathbf{C H}\right), 7.66\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.53 \mathrm{~Hz}, o-\mathrm{CH}\right), 7.68\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.65 \mathrm{~Hz}, o-\mathrm{CH}\right)$, 10.64 ($\mathrm{br}, 2 \mathrm{H}$, middle-CH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF): $\delta_{\mathrm{C}} 0.27\left(\underline{\mathbf{C H}}_{3}\right), 25.6\left(\underline{\mathbf{C H}}_{3}\right), 130.3(\underline{\mathbf{C H}}), 132.3(\underline{\mathbf{C}}), 133.7(\underline{\mathbf{C H}}), 133.7$ $(\underline{\mathbf{C H}}), 134.9(\underline{\mathbf{C H}}), 136.9(\underline{\mathbf{C H}}), 196.0(\underline{\mathbf{C}}=\mathrm{O}), 204.8(\underline{\mathbf{C}}=\mathrm{O})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 28.4$ (s, $\left.\underline{\mathrm{P} M e}\right), 33.2\left(\mathrm{~s}, \underline{\mathbf{P} M e},{ }^{l} J_{P-P t} 2296 \mathrm{~Hz}\right)$.
Elem. Anal.: Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Cl}_{2} \mathrm{Pt}: \mathrm{C}, 44.17 \% ; \mathrm{H}, 2.86 \%$. Found; C, $44.28 \% ; \mathrm{H}, 2.80 \%$. Yellow crystals grew over 3 days from THF at $-20^{\circ} \mathrm{C}$. Crystal data: $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}, \mathrm{M}_{\mathrm{w}}=$ 1122.65, Triclinic, $P-1$ (no. 2), $a=10.4564$ (4), $b=11.3437$ (6), $c=11.5627$ (7) $\AA, \alpha=$ $87.512(3), \beta=69.834(3), \gamma=64.064(3)^{\circ}, \mathrm{V}=1148.36(10) \AA^{3}, \mathrm{Z}=1, \mathrm{D}_{c}=1.62 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-$ $\mathrm{Ka})=3.366 \mathrm{~mm}^{-1}, \mathrm{~T}=173(2) \mathrm{K}, 4843$ independent reflections, full-matrix F^{2} refinement $R_{1}=$ $0.026, w R_{2}=0.066$ on 4812 independent absorption corrected reflections $\left[I>2 \sigma(I) ; 2 \theta_{\max }=53\right.$ ${ }^{\circ}$], 324 parameters.

Synthesis of trans-[\{Pt($\left.\left.\left.\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right\}_{2}\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\right]$ (89)

Prepared as for $\mathbf{8 8}$ using $\left\{3-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{PMe}\right\}_{2}\left(0.043 \mathrm{~g}, 1.23 \times 10^{-4} \mathrm{~mol}\right)$ and trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}\left(0.097 \mathrm{~g}, 1.23 \times 10^{-4} \mathrm{~mol}\right)$. Isolated as a yellow solid. Yield: $0.130 \mathrm{~g}, 88.2 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}} 0.99\left(\mathrm{dt}, 18 \mathrm{H},{ }^{3} J_{H-H} 8.98 \mathrm{~Hz},{ }^{3} J_{H-P} 17.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{~m}, 12 \mathrm{H}, \underline{\mathrm{H}}_{3}\right), 2.02$ $\left(\mathrm{d}, 6 \mathrm{H},{ }^{2} J_{H-P} 7.19 \mathrm{~Hz}, \mathrm{PCH}_{3}\right), 6.59\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{H-H} 7.96 \mathrm{~Hz}, m-\mathrm{C} \underline{\mathbf{H}}\right), 7.89\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{H-H} 7.45 \mathrm{~Hz}, o-\right.$ CH), 9.36 ($\mathrm{s}, 2 \mathrm{H}$, middle C $\underline{\mathbf{H}}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 4.68\left(\mathrm{PCH}_{3}\right), 7.97\left(\underline{\mathbf{C H}}_{3}\right), 13.5\left(\underline{\mathbf{C H}_{2}}\right), 128.9(m-\underline{\mathbf{C H}}), 130.4$ (middle $\underline{\mathbf{C H}}), 131.0(o-\underline{\mathbf{C H}}), 140.0(i-\underline{\mathbf{C}}), 202.6(\underline{\mathbf{C}}=\mathrm{O})$.
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $600 \mathrm{~Hz}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{Pt}}-3934\left(\mathrm{dd},{ }^{l} J_{P t-P} 1951 \mathrm{~Hz},{ }^{l} J_{P t-P} 2813 \mathrm{~Hz}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 15.9\left(\mathrm{~d},{ }^{2} J_{P-P} 441.0 \mathrm{~Hz},{ }^{1} J_{P-P t} 2813 \mathrm{~Hz}, \mathbf{P E t}_{3}\right), 51.3\left(\mathrm{~d},{ }^{2} J_{P-P} 441.0 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{P-P t} 1951 \mathrm{~Hz}, \mathbf{P C H}_{3}\right)$.

Elem. Anal.: Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Cl}_{4} \mathrm{Pt}_{2}$: C, $32.03 \% ; \mathrm{H}, 3.91 \%$. Found; C, $32.13 \% ; \mathrm{H}$, 3.82%.

7. References

1. J. Emsley, The 13th Element: The Sordid Tale of Murder, Fire, and Phosphorus, Wiley, 2002.
2. F. Mathey, Angew. Chem. Int. Ed., 2003, 42, 1578.
3. L. Weber, Eur. J. Inorg. Chem., 2000, 2425.
4. J. Shi, Y.-L. Zhao, H.-J. Wang, L. Rui, and Q.-X. Guo, J. Mol. Struc.-Theochem, 2009, 902, 66.
5. C. R. Hilliard, N. Bhuvanesh, J. A. Gladysz, and J. Blümel, Dalton Trans., 2012, 41, 1742.
6. S. B. Duckett, C. L. Newell, and R. Eisenberg, J. Am. Chem. Soc., 1994, 116, 10548.
7. S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 1992, 114, 3974.
8. E. L. Lanni and A. J. McNeil, J. Am. Chem. Soc., 2009, 131, 16573.
9. R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, and S. Akutagawa, J. Am. Chem. Soc., 1987, 1, 5856.
10. S. Gowrisankar, C. Federsel, H. Neumann, C. Ziebart, R. Jackstell, A. Spannenberg, and M. Beller, ChemSusChem, 2013, 6, 85.
11. R. A. Baber, M. L. Clarke, A. G. Orpen, and D. A. Ratcliffe, J. Organomet. Chem., 2003, 667, 112.
12. J. M. Longmire and X. Zhang, Organometallics, 1998, 17, 4374.
13. D. Duncan, E. G. Hope, K. Singh, and A. M. Stuart, Dalton Trans., 2011, 40, 1998.
14. G. R. Fulmer, A. N. Herndon, W. Kaminsky, R. A. Kemp, and K. I. Goldberg, J. Am. Chem. Soc., 2011, 133, 17713.
15. D. Vuzman, E. Poverenov, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, and D. Milstein, Dalton Trans., 2007, 5692.
16. R. Johansson and O. F. Wendt, Dalton Trans., 2007, 488.
17. R. A. Baber, R. B. Bedford, M. Betham, M. E. Blake, S. J. Coles, M. F. Haddow, M. B. Hursthouse, A. G. Orpen, L. T. Pilarski, P. G. Pringle, and R. L. Wingad, Chem. Comтип., 2006, 2, 3880.
18. M. Sauthier, F. Leca, L. Toupet, and R. Réau, Organometallics, 2002, 21, 1591.
19. A. Martorell, R. Naasz, L. Feringa, and P. G. Pringle, Tetrahedron Asymm., 2001, 12, 2497.
20. O. Mitsunobu and M. Yamada, B. Chem. Soc. Japan, 1967, 40, 2380.
21. Y. G. Gololobov, I. N. Zhmurova, and L. F. Kasukhin, Tetrahedron, 1981, 37, 437.
22. M. Albrecht, M. Schlupp, J. Bargon, and G. van Koten, Chem. Commun., 2001, 1874.
23. M. Albrecht, R. Gossage, M. Lutz, A. Spek, and G. van Koten, Chem. Eur. J., 2000, 6, 1431.
24. M. Mazzeo, M. Strianese, O. Kühl, and J. C. Peters, Dalton Trans., 2011, 40, 9026.
25. M. Albrecht, G. Rodríguez, J. Schoenmaker, and G. van Koten, Org. Lett., 2000, 2, 3461.
26. P. Steenwinkel, D. M. Grove, N. Veldman, A. L. Spek, and G. van Koten, Organometallics, 1998, 17, 5647.
27. M. Albrecht, M. Lutz, A. M. M. Schreurs, E. T. H. Lutz, A. L. Spek, and G. van Koten, J. Chem. Soc. Dalton. Trans., 2000, 3797.
28. J. Crassous and R. Réau, Dalton Trans., 2008, 6865.
29. Y. Dienes, M. Eggenstein, T. Kárpáti, T. C. Sutherland, L. Nyulászi, and T. Baumgartner, Chem. Eur. J., 2008, 14, 9878.
30. C. Hay, D. Le Vilain, V. Deborde, L. Toupet, and R. Réau, Chem. Commun., 1999, 345.
31. J. Grundy and F. Mathey, Angew. Chem. Int. Ed., 2005, 44, 1082.
32. J.-T. Hung and K. Lammertsma, J. Organomet. Chem., 1995, 489, 1.
33. S. Maurer, C. Burkhart, and G. Maas, Eur. J. Org. Chem., 2010, 2504.
34. H. Jansen, F. B. Läng, J. C. Slootweg, A. W. Ehlers, M. Lutz, K. Lammertsma, and H. Grützmacher, Angew. Chem., 2010, 122, 5617.
35. N. Mézailles, P. E. Fanwick, and C. P. Kubiak, Organometallics, 1997, 16, 1526.
36. W. H. Woodstock and H. Adler, J. Am. Chem. Soc., 1932, 54, 464.
37. D. C. Gary and B. M. Cossairt, Chem. Mater., 2013, 25, 2463.
38. H. A. Tallis, P. D. Newman, P. G. Edwards, L. Ooi, and A. Stasch, Dalton Trans., 2008, 47.
39. R. G. Kostyanovsky, V. V. Yakshin, and S. L. Zimont, Tetrahedron, 1967, 24, 2995.
40. H. Kunzek, M. Braun, E. Nesener, and K. Rühlmann, J. Organomet. Chem., 1973, 49, 149.
41. B. Shiu, P. Huang, Y. Huang, and F. Hong, Tetrahedron, 2008, 64, 6221.
42. B. Liu, K. K. Wang, and J. L. Petersen, J. Org. Chem., 1996, 3263, 8503.
43. A. S. Ionkin, Y. Wang, W. J. Marshall, and V. A. Petrov, J. Organomet. Chem., 2007, 692, 4809.
44. T. A. van der Knaap, T. C. Klebach, F. Visser, F. Bickelhaupt, P. Ros, E. J. Baerends, C. H. Stam, and M. Konun, Tetrahedron, 1984, 40, 765.
45. A. Kondoh, H. Yorimitsu, and K. Oshima, J. Am. Chem. Soc., 2007, 129, 4099.
46. B. M. Cossairt and C. C. Cummins, New. J. Chem., 2010, 34, 1533.
47. C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2953.
48. C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2956.
49. C. A. Tolman, Chem. Rev., 1976, 77, 313.
50. I. P. Beletskaya, V. V. Afanasiev, M. A. Kazankova, and I. V. Efimova, Org. Lett., 2003, 5, 4309.
51. E. Bernoud, C. Alayrac, O. Delacroix, and A.-C. Gaumont, Chem. Commun., 2011, 47, 3239.
52. T. Pechmann, C. D. Brandt, and H. Werner, Dalton Trans., 2004, 959.
53. A. L. Balch, B. J. Davis, and M. M. Olmstead, J. Am. Chem. Soc., 1990, 112, 8592.
54. B. Croxtall, J. Fawcett, E. G. Hope, and A. M. Stuart, J. Chem. Soc. Dalton. Trans., 2002, 491.
55. J. E. Fergusson and P. F. Heveldt, Inorg. Chim. Acta., 1978, 31, 145.
56. R. V. Parish, $N M R, N Q R, E P R$, and Mössbauer spectroscopy in inorganic chemistry, Ellis Horwood Limited, Chichester, 1st edn., 1990.
57. G. Wittig and U. Schollkopf, Chem. Ber., 1954, 87, 1318.
58. C. M. Starks, J. Am. Chem. Soc., 1970, 93, 195.
59. Y. von Hirusawa, M. Oku, and K. Yamamoto, Bull. Chem. Soc. Jpn., 1957, 30, 667.
60. R. C. Bush and R. J. Angelici, Inorg. Chem., 1988, 27, 681.
61. F. Uhlig and R. Hummeltenberg, J. Organomet. Chem., 1993, 452, C9.
62. F. R. Askham, G. G. Stanley, and E. C. Marques, J. Am. Chem. Soc., 1985, 107, 7423.
63. N. Inguimbert, L. Jäger, M. Taillefer, M. Biedermann, and H.-J. Cristau, Eur. J. Org. Chem., 2004, 4870.
64. V. Cappello, J. Baumgartner, A. Dransfeld, and K. Hassler, Eur. J. Inorg. Chem., 2006, 4589.
65. S. A. Buckler, L. Doll, F. K. Lind, and M. Epstein, Tetrahedron, 1959, 27, 794.
66. E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007.
67. B. L. Nilsson, L. L. Kiessling, and R. T. Raines, Org. Lett., 2000, 2, 1939.
68. E. Grochowski, B. D. Hilton, R. J. Kupper, and C. J. Michejda, J. Am. Chem. Soc., 1982, 104, 6876.
69. D. Camp and I. D. Jenkins, J. Org. Chem., 1989, 54, 3045.
70. R. Appel, Angew. Chem. Int. Ed. Engl., 1975, 14, 801.
71. R. F. Heck and J. P. Nolley, J. Org. Chem., 1972, 37, 2320.
72. B. J. K. Stille, Angew. Chem. Int. Ed. Engl., 1986, 25, 508.
73. N. Miyaura and K. Yamada, Tetrahedron Lett., 1979, 2, 3437.
74. K. Sonogashira, J. Organomet. Chem., 2002, 653, 46.
75. J. Aydin, N. Selander, and K. J. Szabó, Tetrahedron Lett., 2006, 47, 8999.
76. M. Käß, A. Friedrich, M. Drees, and S. Schneider, Angew. Chem. Int. Ed., 2009, 48, 905.
77. L.-C. Liang, J.-M. Lin, and W.-Y. Lee, Chem. Commun., 2005, 2462.
78. A. J. Carty, N. K. N. Hota, H. A. Patel, and T. J. O’Connor, Can. J. Chem., 1971, 2706.
79. W. Siebert, W. E. Davidsohn, and M. C. Henry, J. Organomet. Chem., 1968, 15, 69.
80. A. J. Carty, N. J. Taylor, and D. K. Johnson, J. Am. Chem. Soc., 1979, 101, 5422.
81. J. R. Berenguer, E. Lalinde, M. T. Moreno, and P. Montaño, Eur. J. Inorg. Chem., 2012.
82. J. P. H. Charmant, J. Forniés, J. Gómez, E. Lalinde, M. Moreno, A. Orpen, and S. Solano, Angew. Chem. Int. Ed., 1999, 38, 3058.
83. R. A. Khachatryan, S. V. Sayadyan, N. Y. Grigoryan, and M. G. Indzhikyan, J. Gen. Chem. USSR., 1988, 58, 2472.
84. R. A. Khachatryan, S. V. Sayadyan, and M. G. Indzhikyan, J. Gen. Chem. USSR., 1990, 60, 308.
85. M. Mirza-Aghayan, R. Boukherroub, G. Oba, G. Manuel, and M. Koenig, J. Organomet. Chem., 1998, 564, 61.
86. N. Maigrot, M. Melaimi, L. Ricard, and P. Le Floch, Heteroat. Chem., 2003, 14, 326.
87. P. Le Floch, Coord. Chem. Rev., 2006, 250, 627.
88. M. J. Hopkinson, H. W. Kroto, J. F. Nixon, and N. P. C. Simmons, J. Chem. Soc., Chem. Commun., 1976, 513.
89. M. Raban, Chem. Commun., 1970, 1415.
90. L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society, London.
91. H. Bock and R. Dammel, Angew. Chem. Int. Ed. Engl., 1987, 26, 504.
92. S. Lacombe, D. Gonbeau, J. Cabioch, B. Pellerin, J. Denis, and G. Pfister-Guillouzo, J. Am. Chem. Soc., 1988, 110, 6964.
93. E. Lindholm and J. Li, J. Phys. Chem., 2008, 92, 1731.
94. G. Becker, Z. Anorg. Allg. Chem., 1976, 423, 242.
95. R. Appel, B. Laubach, and M. Siray, Tetrahedron Lett., 1984, 25, 4447.
96. T. C. Klebach, R. Lourens, and F. Bickelhaupt, J. Am. Chem. Soc., 1978, 100, 4886.
97. A. Jouaiti, M. Geoffroy, and G. Bernardinelli, Tetrahedron Lett., 1992, 33, 5071.
98. M. Yam, J. H. Chong, C.-W. Tsang, B. O. Patrick, A. E. Lam, and D. P. Gates, Inorg. Chem., 2006, 45, 5225.
99. B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863.
100. A. Marinetti and F. Mathey, Angew. Chem. Int. Ed. Engl., 1988, 27, 1382.
101. F. Mercier, C. Hugel-Le Goff, and F. Mathey, Tetrahedron Lett., 1989, 30, 2397.
102. R. Appel, C. Casser, M. Immenkeppel, and F. Knoch, Angew. Chem. Int. Ed. Engl., 1984, 23, 895.
103. V. A. Wright, B. O. Patrick, C. Schneider, and D. P. Gates, J. Am. Chem. Soc., 2006, 128, 8836.
104. V. B. Gudimetla, A. L. Rheingold, J. L. Payton, H.-L. Peng, M. C. Simpson, and J. D. Protasiewicz, Inorg. Chem., 2006, 45, 4895.
105. W. Rösch, U. Vogelbacher, T. Allspach, and M. Regitz, J. Organomet. Chem., 1986, 306, 39.
106. A. B. Kostitsyn, H. Ruzek, H. Heydt, M. Regitz, and O. M. Nefedov, Russ. Chem. B+, 1994, 43, 635.
107. M. Yoshifuji, K. Toyota, and N. Inamoto, Tetrahedron Lett., 1985, 26, 1727.
108. A. R. Barron, A. H. Cowley, and S. W. Hall, J. Chem. Soc., Chem. Commun., 1987, 980.
109. H. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, M. J. Maah, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1981, 199.
110. T. A. van der Knaap, L. W. Jenneskens, H. J. Meeuwissen, F. Bickelhaupt, D. Walther, E. Dinjus, E. Uhlig, and A. L. Spek, J. Organomet. Chem., 1983, 254, 33.
111. S. Holand, C. Charrier, F. Mathey, J. Fischer, and A. Mitschler, J. Am. Chem. Soc., 1984, 106, 826.
112. K. Knoll, G. Huttner, M. Wasiucionek, and L. Zsolnai, Angew. Chem. Int. Ed. Engl., 1984, 23, 739.
113. W. Schnurr and M. Regitz, Tetrahedron Lett., 1989, 30, 3951.
114. T. A. van der Knaap, T. C. Klebach, F. Visser, R. Lourents, and F. Bickelhaupt, Tetrahedron, 1984, 40, 991.
115. R. Appel, V. Barth, and F. Knoch, Chem. Ber., 1983, 116, 938.
116. M. Abbari, P. Cosquer, F. Tonnard, Y. Y. C. Y. L. Ko, and R. Carrie, Tetrahedron, 1991, 47, 71.
117. G. Märkl, E. Seidl, and I. Trötsch, Angew. Chem. Int. Ed. Engl., 1983, 96, 879.
118. H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl., 1969, 8, 556.
119. T. W. Mackewitz, C. Peters, U. Bergsträsser, S. Leininger, and M. Regitz, J. Org. Chem., 1997, 62, 7605.
120. R. De Vaumas, A. Marinetti, and F. Mathey, J. Organomet. Chem., 1991, 413, 411.
121. T. A. van der Knaap, T. C. Klebach, R. Lourens, M. Vos, and F. Bickelhaupt, J. Am. Chem. Soc., 1983, 105, 4026.
122. S. Bauer, A. Marinetti, L. Ricard, and F. Mathey, Angew. Chem. Int. Ed. Engl., 1990, 29, 10.
123. A. Meriem, J.-P. Majoral, M. Revel, and J. Navech, Tetrahedron Lett., 1975, 24, 1975.
124. T. A. van der Knaap and F. Bickelhaupt, Tetrahedron Lett., 1982, 23, 2037.
125. A. J. Arduengo, C. J. Carmalt, J. A. C. Clyburne, H. Cowley, and R. Pyati, Chem. Commun., 1997, 981.
126. S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F. Ozawa, and M. Yoshifuji, Angew. Chem. Int. Ed., 2000, 4, 4512.
127. A. S. Gajare, K. Toyota, M. Yoshifuji, and F. Ozawa, J. Org. Chem., 2004, 69, 6504.
128. F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, and M. Yoshifuji, J. Am. Chem. Soc., 2002, 124, 10968.
129. B. Di Credico, F. Fabrizi de Biani, L. Gonsalvi, A. Guerri, A. Ienco, F. Laschi, M. Peruzzini, G. Reginato, A. Rossin, and P. Zanello, Chem. Eur. J., 2009, 15, 11985.
130. V. A. Wright and D. P. Gates, Angew. Chem. Int. Ed., 2002, 41, 2389.
131. B. Schäfer, E. Oberg, M. Kritikos, and S. Ott, Angew. Chem. Int. Ed., 2008, 47, 8228.
132. R. C. Smith and J. D. Protasiewicz, Eur. J. Inorg. Chem., 2004, 998.
133. X.-L. Geng, Q. Hu, B. Schäfer, and S. Ott, Org. Lett., 2010, 12, 692.
134. L. Weber, Coord. Chem. Rev., 2005, 249, 741.
135. W. W. Schoeller, J. Strutwolf, U. Tubbesing, and C. Begemann, J. Phys. Chem., 1995, 99, 2329.
136. L. Weber, K. Reizig, R. Boese, and M. Polk, Organometallics, 1986, 5, 1098.
137. L. Weber, M. Frebel, R. Boese, and M. Polk, J. Organomet. Chem., 1986, 306, 105.
138. L. Weber and D. Bungardt, J. Organomet. Chem., 1986, 311, 269.
139. P. B. Hitchcock, C. Jones, and J. F. Nixon, Angew. Chem. Int. Ed. Engl., 1994, 33, 463.
140. D. Gudat, M. F. Meidine, J. F. Nixon, and E. Niecke, J. Chem. Soc., Chem. Commun., 1989, 1206.
141. A. M. Arif, A. H. Cowley, C. M. Nunn, S. Quashie, N. C. Norman, and A. G. Orpen, Organometallics, 1989, 8, 1878.
142. G. Becker, W. A. Herrmann, W. Kalcher, G. W. Kriechbaum, C. Pahl, C. T. Wagner, and M. L. Ziegler, Angew. Chem. Int. Ed. Engl., 1983, 22, 413.
143. L. Weber, I. Schumann, H. Stammler, and B. Neumann, Organometallics, 1995, 14, 1626.
144. L. Weber, A. Rühlicke, H. Stammler, and B. Neumann, Organometallics, 1993, 12, 4653.
145. L. Weber and A. Rühlicke, J. Organomet. Chem., 1994, 470, C1.
146. L. Nyulászi, Chem. Rev., 2001, 101, 1229.
147. P. von Ragué, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317.
148. A. J. Ashe, J. Am. Chem. Soc., 1971, 567, 3293.
149. F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, F. Preuss, and M. Regitz, Angew. Chem. Int. Ed., 1998, 37, 1233.
150. M. F. Lucas, M. C. Michelini, N. Russo, and E. Sicilia, J. Chem. Theory Comput., 2008, 4, 397.
151. C. Jones and M. Waugh, J. Organomet. Chem., 2007, 692, 5086.
152. K. Toyota, S. Kawasaki, and M. Yoshifuji, J. Org. Chem., 2004, 69, 5065.
153. J. G. Cordaro, D. Stein, and H. Grützmacher, J. Am. Chem. Soc., 2006, 128, 14962.
154. M. Y. Antipin, A. N. Chernega, K. A. Lysenko, Y. T. Struchkova, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1995, 505.
155. R. J. C. T. Burckett- St. Laurent, M. A. King, H. W. Kroto, J. F. Nixon, and R. J. Suffolk, J. Chem. Soc. Dalton. Trans., 1983, 755.
156. D. C. Frost, S. T. Lee, and C. A. McDowell, Chem. Phys. Lett., 1973, 23, 472.
157. J. Kreile, A. Schweig, and W. Thiel, Chem. Phys. Lett., 1982, 87, 473.
158. T. E. Gier, J. Am. Chem. Soc., 1961, 83, 1769.
159. G. Becker, G. Gresser, and W. Uhl, Z. Naturforsch. B, 1981, 36, 16.
160. M. J. Hopkinson, H. W. Kroto, J. F. Nixon, and N. P. C. Simmons, Chem. Phys. Lett., 1976, 42, 460.
161. H. W. Kroto, N. P. C. Simmons, and N. P. C. Westwood, J. Am. Chem. Soc., 1978, 100, 446.
162. J. Guillemin, T. Janati, and J. Denis, J. Org. Chem., 2001, 66, 7864.
163. J. G. Cordaro, D. Stein, H. Rüegger, and H. Grützmacher, Angew. Chem. Int. Ed., 2006, 45, 6159.
164. S. M. Mansell, M. Green, R. J. Kilby, M. Murray, and C. A. Russell, C. R. Chimie, 2010, 13, 1073.
165. J. Guillemin, T. Janati, and J. Denis, J. Chem. Soc., Chem. Commun., 1992, 415.
166. S. Haber, P. Le Floch, and F. Mathey, J. Chem. Soc., Chem. Commun., 1992, 1799.
167. J. S. Figueroa and C. C. Cummins, J. Am. Chem. Soc., 2004, 126, 13916.
168. R. Appel and A. Westerhaus, Tetrahedron Lett., 1981, 22, 2159.
169. G. Märkl and H. Sejpka, Tetrahedron Lett., 1986, 27, 1771.
170. B. Eisenmann, H. Jordan, and H. Schäfer, Angew. Chem. Int. Ed. Engl., 1981, 20, 6940.
171. M. Brönstrup, J. Gottfriedsen, I. Kretzschmar, S. J. Blanksby, H. Schwartz, and H. Schumann, Phys. Chem. Chem. Phys., 2000, 2, 2245.
172. M. Westerhausen, S. Schneiderbauer, H. Piotrowski, M. Suter, and H. Nöth, J. Organomet. Chem., 2002, 644, 189.
173. M. Brym and C. Jones, J. Chem. Soc. Dalton. Trans., 2003, 3665.
174. T. A. Cooper, H. W. Kroto, J. F. Nixon, and O. Ohashi, J. Chem. Soc., Chem. Commun., 1980, 333.
175. H. W. Kroto, J. F. Nixon, and K. Ohno, J. Mol. Spectrosc., 1981, 90, 512.
176. L. Weber, Eur. J. Inorg. Chem., 2003, 1843.
177. H. Jun and R. J. Angelici, Organometallics, 1994, 13, 2454.
178. S. M. Mansell, M. Green, and C. A. Russell, Dalton Trans., 2012, 41, 14360.
179. N. Trathen, M. C. Leech, I. R. Crossley, V. K. Greenacre, and S. M. Roe, Dalton Trans., 2014, 43, 9004.
180. N. Trathen, Ph.D. Thesis, Universitiy of Sussex, 2014.
181. M. C. Leech, MChem Dissertation, University of Sussex, 2014.
182. R. J. C. T. Burckett- St. Laurent, P. B. Hitchcock, H. Kroto, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1981, 1141.
183. A. D. Burrows, N. Carr, M. Green, J. M. Lynam, M. F. Mahon, M. Murray, B. Kiran, M. T. Nguyen, and C. Jones, Organometallics, 2002, 2, 3076.
184. A. D. Burrows, A. Dransfeld, M. Green, J. C. Jeffery, C. Jones, J. M. Lynam, and M. T. Nguyen, Angew. Chem. Int. Ed., 2001, 2, 3221.
185. B. P. B. Hitchcock, M. J. Maah, J. F. Nixon, J. A. Zora, G. J. Leigh, and M. A. Bakar, Angew. Chem. Int. Ed. Engl., 1987, 26, 474.
186. P. B. Hitchcock, M. A. N. D. A. Lemos, M. F. Meidine, J. F. Nixon, and A. J. L. Pombeiro, J. Organomet. Chem., 1991, 402, 23.
187. D. Carmichael, S. I. Al-Resayes, and J. F. Nixon, J. Organomet. Chem., 1993, 53, 207.
188. S. I. Al-Resayes, C. Jones, M. J. Maah, and J. F. Nixon, J. Organomet. Chem., 1994, 468, 107.
189. S. I. Al-Resayes and J. F. Nixon, Inorg. Chim. Acta., 1993, 212, 265.
190. P. B. Hitchcock, T. J. Madden, and J. F. Nixon, J. Organomet. Chem., 1993, 463, 155.
191. O. Wagner, M. Ehle, and M. Regitz, Angew. Chem. Int. Ed. Engl., 1989, 28, 225.
192. W. Rösch and M. Regitz, Synthesis, 1987, 689.
193. F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, D. James, and P. Mountford, Chem. Commun., 1999, 661.
194. J. Grobe, D. Le Van, T. Pohlmeyer, B. Krebs, O. Conrad, E. Dobbert, and L. Weber, Organometallics, 1998, 17, 3383.
195. H.-W. Frühauf, Chem. Rev., 1997, 97, 523.
196. P. B. Hitchcock, M. J. Maah, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 737.
197. D. Bohm, F. Knoch, S. Kummer, U. Schmidt, and U. Zenneck, Angew. Chem. Int. Ed. Engl., 1995, 34, 198.
198. R. Gleiter, I. Hyla-Kryspin, P. Binger, and M. Regitz, Organometallics, 1992, 11, 177.
199. H. F. Dare, J. A. K. Howard, M. U. Pilotti, F. G. A. Stone, and J. Szameitat, J. Chem. Soc. Dalton. Trans., 1990, 2263.
200. H. F. Dare, J. A. K. Howard, M. U. Pilotti, and F. G. A. Stone, J. Chem. Soc., Chem. Comтип., 1989, 1409.
201. G. Märkl and A. Kallmünzer, Tetrahedron Lett., 1989, 30, 5245.
202. J. Fink, W. Rösch, U.-J. Vogelbacher, and M. Regitz, Angew. Chem., 1986, 25, 280.
203. B. T. Wettling, J. Schneider, O. Wagner, C. G. Kreiter, and M. Regitz, Angew. Chem. Int. Ed. Engl., 1989, 28, 1988.
204. P. Binger and G. Glaser, J. Organomet. Chem., 1994, 479, 28.
205. R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
206. F. G. N. Cloke, K. R. Flower, C. Jones, R. M. Matos, and J. F. Nixon, J. Organomet. Chem., 1995, 487, 21.
207. R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 356, 1.
208. F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Comтип., 1995, 1659.
209. F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1994, 489.
210. F. G. N. Cloke, J. R. Hanks, P. B. Hitchcock, and J. F. Nixon, Chem. Commun., 1999, 1731.
211. P. L. Arnold, F. G. N. Cloke, and J. F. Nixon, Chem. Commun., 1998, 797.
212. R. Bar, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1989, 373, 17.
213. P. B. Hitchcock, J. F. Nixon, and R. M. Matos, J. Organomet. Chem., 1995, 490, 155.
214. Y. Sugiyama, R. Kato, T. Sakurada, and S. Okamoto, J. Am. Chem. Soc., 2011, 133, 9712.
215. D. A. Loy, G. M. Jamison, M. D. McClain, and T. M. Alam, J. Polym. Sci. Part A.: Polym. Chem., 1999, 37, 129.
216. E. Zimmerman and J. W. Wilson, J. Am. Chem. Soc., 1964, 86, 4036.
217. E. P. O. Fuchs, W. Rösch, and R. Manfred, Angew. Chem. Int. Ed. Engl., 1987, 26, 1011.
218. R. Bartsch and J. F. Nixon, Polyhedron, 1989, 8, 5387.
219. G. Capozzi, V. Lucchini, F. Marcuzzi, and G. Melloni, Tetrahedron Lett., 1976, 17, 717.
220. K. K. Laali, B. Geissler, M. Regitz, and J. J. Houser, J. Org. Chem., 1995, 60, 6362.
221. P. L. McGrane, M. Jensen, and T. Livinghouse, J. Am. Chem. Soc., 1992, 114, 5459.
222. Y. Li, P.-F. Fu, and T. J. Marks, Organometallics, 1994, 13, 439.
223. F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, and D. J. Wilson, Chem. Commun., 2000, 2387.
224. D. Barr, W. Clegg, R. E. Mulvey, R. Snaith, and K. Wade, J. Chem. Soc., Chem. Commun., 1986, 295.
225. A. M. Arif, A. R. Barron, A. H. Cowley, and S. W. Hall, Chem. Commun., 1988, 171.
226. P. Kramkowski and M. Scheer, Angew. Chem. Int. Ed., 2000, 39, 928.
227. C.-W. Tsang, B. Baharloo, D. Riendl, M. Yam, and D. P. Gates, Angew. Chem. Int. Ed., 2004, 43, 5682.
228. E. Deschamps, L. Ricard, and F. Mathey, Angew. Chem. Int. Ed. Engl., 1994, 33, 1158.
229. A. B. Antonova, M. I. Bruce, P. A. Humphrey, M. Gaudio, B. K. Nicholson, N. Scoleri, B. W. Skelton, A. H. White, and N. N. Zaitseva, J. Organomet. Chem., 2006, 691, 39.
230. N. J. Long, Angew. Chem. Int. Ed. Engl., 1995, 34, 21.
231. D. Parmar, H. Matsubara, K. Price, M. Spain, and D. J. Procter, J. Am. Chem. Soc., 2012, 134, 12751.
232. J. Hoogboom and T. M. Swager, J. Am. Chem. Soc., 2006, 128, 15058.
233. T. Watanabe, T. Imaizumi, T. Chinen, Y. Nagumo, M. Shibuya, T. Usui, N. Kanoh, and Y. Iwabuchi, Org. Lett., 2010, 12, 1040.
234. A. G. Myers, R. Glatthar, M. Hammond, P. M. Harrington, E. Y. Kuo, J. Liang, S. E. Schaus, Y. Wu, and J.-N. Xiang, J. Am. Chem. Soc., 2002, 124, 5380.
235. M.-J. Lin and T.-P. Loh, J. Am. Chem. Soc., 2003, 125, 13042.
236. S. F. Karaev, R. M. Kuliev, S. O. Guseinov, M. E. Askerov, and M. M. Movsumzade, J. Gen. Chem. USSR., 1982, 52, 1160.
237. T. Shibata, K. Yamashita, K. Takagi, T. Ohta, and K. Soai, Tetrahedron, 2000, 56, 9259.
238. D. Bom, D. P. Curran, S. Kruszewski, S. G. Zimmer, J. Thompson Strode, G. Kohlhagen, W. Du, A. J. Chavan, K. A. Fraley, A. L. Bingcang, L. J. Latus, Y. Pommier, and T. G. Burke, J. Med. Chem., 2000, 43, 3970.
239. M. Schelper and A. de Meijere, Eur. J. Org. Chem., 2005, 582.
240. E. T. Bogoradovskii, V. S. Zavgorodnii, E. E. Liepin'sh, I. S. Birgele, and A. A. Petrov, J. Gen. Chem. USSR., 1991, 61, 1295.
241. E. T. Bogoradovskii, J. Gen. Chem. USSR., 1977, 47, 1317.
242. V. S. Zavgorodnii, B. I. Rogozev, E. S. Sivenkov, A. A. Petrov, and L. M. Krizhanskii, J. Gen. Chem. USSR., 1971, 41, 2263.
243. K. Kiyokawa, N. Tachikake, M. Yasuda, and A. Baba, Angew. Chem. Int. Ed., 2011, 50, 10393.
244. N. I. Shergina, L. V. Sherstyannikova, R. G. Mirskov, A. L. Kuznetsov, N. P. Ivanova, and M. G. Voronkov, J. Gen. Chem. USSR., 1980, 50, 487.
245. M. G. Voronkov, N. I. Ushakova, I. I. Tsykhanskaya, and V. B. Pukhnarevich, J. Organomet. Chem., 1984, 264, 39.
246. K. Ruitenberg, H. Westmijze, H. Kleijn, and P. Vermeer, J. Organomet. Chem., 1984, 277, 227.
247. J. R. Baker, O. Thominet, H. Britton, and S. Caddick, Org. Lett., 2007, 9, 45.
248. E. T. Bogorsdovskii, V. N. Cherkasov, V. S. Zavgorodnii, B. I. Rogozev, and A. A. Petrov, J. Gen. Chem. USSR., 1980, 50, 1641.
249. V. S. Zavgorodnii, E. S. Sivenkov, and A. A. Petrov, J. Gen. Chem. USSR., 1971, 41, 862.
250. M. R. Binns and R. K. Haynes, J. Org. Chem., 2006, 46, 3790.
251. S. L. Castle and G. S. C. Srikanth, Org. Lett., 2003, 5, 3611.
252. N. F. Langille and T. F. Jamison, Org. Lett., 2006, 8, 3761.
253. D. R. Fandrick, J. T. Reeves, Z. Tan, H. Lee, J. J. Song, N. K. Yee, and C. H. Senanayake, Org. Lett., 2009, 11, 5458.
254. S. K. Woo, L. M. Geary, and M. J. Krische, Angew. Chem. Int. Ed., 2012, 51, 7830.
255. T. V. Ovaska, J. L. Roark, C. M. Shoemaker, and J. Bordner, Tetrahedron Lett., 1998, 39, 5705.
256. W. Hewertson, I. C. Taylor, and S. Tripett, J. Chem. Soc. (C), 1970, 1835.
257. A. Balueva, A. Caminade, V. Huc, J. Majoral, R. Sebastian, and A. Balueva, Synthesis, 2000, 726.
258. J. Quintard, M. Degueil-Castaing, and G. Dumartin, J. Organomet. Chem., 1982, 234, 27.
259. M. G. Moloney, J. T. Pinhey, and M. J. Stoermer, J. Chem. Soc. Perkin. Trans. 1, 1990, 2645.
260. J. W. Akitt, K. R. Dixon, R. J. Goodfellow, O. W. Howarth, C. J. Jameson, J. D. Kennedy, B. E. Mann, J. Mason, H. C. E. McFarlane, W. McFarlane, H. W. E. Rattle, and D. Rehder, Multinuclear NMR, Plenum Press, 1987.
261. R. D. Adams and M. Chen, Organometallics, 2011, 30, 5867.
262. M. Charissé, V. Gauthey, and M. Dräger, J. Organomet. Chem., 1993, 448, 47.
263. J. Quintard, G. Dumartin, C. Guerin, J. Dubac, and A. Laporterie, J. Organomet. Chem., 1984, 266, 123.
264. P. R. Deacon, N. Devylder, M. S. Hill, M. F. Mahon, K. C. Molloy, and G. J. Price, J. Organomet. Chem., 2003, 687, 46.
265. H. Weichmann, J. Organomet. Chem., 1984, 262, 279.
266. L. Manatt and L. Juvinall, J. Am. Chem. Soc., 1963, 85, 2665.
267. D. H. Brown, R. J. Cross, and R. Keat, Dalton Trans., 1980, 871.
268. A. Ishii, M. Murata, H. Oshida, K. Matsumoto, and J. Nakayama, Eur. J. Inorg. Chem., 2003, 3716.
269. J. A. Rahan, L. Baltusis, and J. H. Nelson, Inorg. Chem., 1990, 29, 750.
270. G. M. Bodner and L. Bauer, J. Organomet. Chem., 1982, 226, 85.
271. G. K. Anderson and R. J. Cross, Chem. Soc. Rev., 1980, 9, 185.
272. J. Li, H. Fu, P. Hu, Z. Zhang, X. Li, and Y. Cheng, Chem. Eur. J., 2012, 18, 13941.
273. A. D. Sutton, B. L. Davis, K. X. Bhattacharyya, B. D. Ellis, J. C. Gordon, and P. P. Power, Chem. Commun., 2010, 46, 148.
274. M. S. S. Adam, A. D. Mohamad, P. G. Jones, M. K. Kindermann, and J. W. Heinicke, Polyhedron, 2013, 50, 101.
275. H. Lang, M. Leise, and L. Zsolnai, J. Organomet. Chem., 1991, 410, 379.
276. J. R. Wazer, F. Callis, J. N. Shoolery, and R. C. Jones, J. Am. Chem. Soc., 1956, 78, 5715.
277. A. N. Tavtorkin, S. A. Toloraya, E. E. Nifant'ev, and I. E. Nifant'ev, Tetrahedron Lett., 2011, 52, 824.
278. R. den Heeten, E. Zuidema, M. Lutz, A. L. Spek, P. W. N. M. van Leeuwen, and P. C. J. Kamer, J. Organomet. Chem., 2011, 696, 3113.
279. H. C. P. F. Roelen, H. van den Elst, C. E. Dreef, G. A. van ger Marel, and J. H. van Boom, Tetrahedron Lett., 1992, 33, 2357.
280. A. Zanotti-Gerosa, C. Malan, and D. Herzberg, Org. Lett., 2001, 3, 3687.
281. S. A. Reiter, S. D. Nogai, K. Karaghiosoff, and H. Schmidbaur, J. Am. Chem. Soc., 2004, 126, 15833.
282. J. R. Wazer and L. Maier, J. Am. Chem. Soc., 1964, 86, 811.
283. R. B. King and P. M. Sundaram, J. Org. Chem., 1984, 49, 1784.
284. H. A. Tallis, P. D. Newman, P. G. Edwards, L. Ooi, and A. Stasch, Dalton Trans., 2008, 47.
285. A. A. Prishchenko, M. V Livantsov, O. P. Novikova, L. I. Livantsova, and V. S. Petrosyan, Heteroat. Chem., 2010, 21, 441.
286. J. Geier, G. Frison, and H. Grützmacher, Angew. Chem. Int. Ed., 2003, 42, 3955.
287. C. E. Averre, M. P. Coles, I. R. Crossley, and I. J. Day, Dalton Trans., 2012, 41, 278.
288. A. González, J. Granell, C. López, R. Bosque, L. Rodríguez, M. Font-Bardia, T. Calvet, and X. Solans, J. Organomet. Chem., 2013, 726, 21.
289. W. Domańska-Babul, J. Chojnacki, E. Matern, and J. Pikies, J. Organomet. Chem., 2007, 692, 3640.
290. R. Appel and K. Geisler, J. Organomet. Chem., 1976, 112, 61.
291. B. M. Cossairt and C. C. Cummins, Angew. Chem. Int. Ed., 2008, 47, 8863.
292. K. S. Dunne, S. E. Lee, and V. Gouverneur, J. Organomet. Chem., 2006, 691, 5246.
293. R. L. Danheiser, Y. M. Choi, M. Menichincheri, and E. J. Stoner, J. Org. Chem., 1993, 58, 322.
294. R. M. Fantazier and M. L. Poutsma, J. Am. Chem. Soc., 1968, 90, 5490.
295. J.-C. Guillemin, P. Savignac, and J.-M. Denis, Inorg. Chem., 1991, 668, 2170.
296. H. Møllendal, J. Demaison, D. Petitprez, G. Wlodarczak, and J.-C. Guillemin, J. Phys. Chem. A., 2005, 109, 115.
297. H. Schmidbaur, C. M. Frazão, G. Reber, and G. Müller, Chem. Ber., 1989, 122, 259.
298. D. J. Pasto, G. F. Hennion, R. H. Shults, A. Waterhouse, and S.-K. Chou, J. Org. Chem., 1976, 41, 3496.
299. D. J. Pasto, R. H. Shults, J. A. Mcgrath, and A. Waterhouse, J. Org. Chem., 1978, 43, 1382.
300. P. M. Greaves, S. R. Landor, and M. M. Lwanga, Tetrahedron, 1975, 31, 3073.
301. S. G. A. van Assema, P. B. Kraikivskii, S. N. Zelinskii, V. V. Saraev, G. B. de Jong, F. J. J. de Kanter, M. Schakel, J. Chris Slootweg, and K. Lammertsma, J. Organomet. Chem., 2007, 692, 2314.
302. H. Schmidbaur, A. Schier, C. M. F. Frazpo, and G. Muller, J. Am. Chem. Soc., 1986, 108, 976.
303. R. J. Pariza and P. L. Fuchs, J. Org. Chem., 1985, 50, 4252.
304. M. Hassanein, A. Akelah, and F. Abdel-Galil, Eur. Polym. J., 1985, 21, 475.
305. L.-F. Tietze and S. Henke, Angew. Chem. Int. Ed. Engl., 1981, 20, 970.
306. C. D. Poulter, M. Muehlbacher, and D. R. Davis, J. Am. Chem. Soc., 1989, 111, 3740.
307. K. A. Reynolds, P. G. Dopico, M. S. Brody, and M. G. Finn, J. Org. Chem., 1997, 62, 2564.
308. R. J. Hinkle, P. J. Stang, and M. H. Kowalski, J. Org. Chem., 1990, 55, 5033.
309. A. V. Bogdanov, V. F. Mironov, N. R. Khasiyatullina, D. B. Krivolapov, I. A. Litvinov, and A. I. Konovalov, Mendeleev Commun., 2007, 17, 183.
310. K. Issleib, H. Schmidt, and H. Meyer, J. Organomet. Chem., 1978, 160, 47.
311. K. Issleib, H. Schmidt, and H. Meyer, J. Organomet. Chem., 1980, 192, 33.
312. V. G. Becker, M. Rössler, and W. Uhl, Z. Anorg. Allg. Chem., 1981, 473, 7.
313. G. Märkl and H. Sejpka, Tetrahedron Lett., 1986, 27, 171.
314. M. Kuroboshi, T. Yano, S. Kamenoue, H. Kawakubo, and H. Tanaka, Tetrahedron, 2011, 67, 5825.
315. E. Lindner and D. Hübner, Chem. Ber., 1983, 116, 2574.
316. D. G. Leppard, M. Kohler, and G. Hug, US 5721292, 1998.
317. H. Grützmacher, J. Geier, D. Stein, T. Ott, H. Schonberg, R. H. Sommerlade, S. Boulmaaz, J. P. Wolf, P. Murer, and T. Ulrich, Chimia, 2008, 62, 18.
318. V. G. Becker, M. Rössler, and G. Uhl, Z. Anorg. Allg. Chem., 1982, 495, 1982.
319. C. L. Liotta, M. L. Mclaughlin, and B. A. O'Brien, Tetrahedron Lett., 1984, 25, 1249.
320. M. Regitz and T. Allspach, Chem. Ber., 1987, 120, 1269.
321. G. D. Macdonell, A. Radhakrishna, K. D. Berlin, J. Barycki, R. Tyka, and P. Mastalerz, Tetrahedron Lett., 1978, 19, 857.
322. H. Cristau, A. Coulombeau, A. Genevois-Borella, F. Sanchez, and J. Pirat, J. Organomet. Chem., 2002, 643-644, 381.
323. A. Kers, J. Stawiński, L. Dembkowski, and A. Kraszewski, Tetrahedron, 1997, 53, 12691.
324. M. R. Ross and J. C. Martin, J. Am. Chem. Soc., 1981, 103, 1234.
325. C. Jones, P. C. Junk, A. F. Richards, and M. Waugh, New. J. Chem., 2002, 26, 1209.
326. C. Jones and A. F. Richards, Organometallics, 2002, 5, 438.
327. B. Geissler, S. Barth, U. Bergsträsser, M. Slany, J. Durkin, P. B. Hitchcock, M. Hofmann, P. Binger, J. F. Nixon, P. V. R. Schleyer, and M. Regitz, Angew. Chem. Int. Ed. Engl., 1995, 34, 484.
328. H. J. Becher, D. Fenske, and E. Langer, Chem. Ber., 1973, 106, 177.
329. K. Issleib and E. Priebe, Chem. Ber., 1959, 92, 3183.
330. H. Lesiecki, E. Lindner, and G. Vordermaier, Chem. Ber., 1979, 112, 793.
331. L. Zhang, S. Su, H. Wu, and S. Wang, Tetrahedron, 2009, 65, 10022.
332. R. S. Davidson, R. A. Sheldon, and S. Trippett, J. Chem. Soc. (C), 1968, 1700.
333. J. Brunet, A. Capperucci, R. Chauvin, and B. Donnadieu, J. Organomet. Chem., 1997, 533, 79.
334. H. Dahn, P. Péchy, and V. Van Toan, Magn. Reson. Chem., 1990, 28, 883.
335. E. Lindner and H. Lesiecki, Z. Naturforsch. B, 1978, 33, 849.
336. K. Dankowski, Manfred Praefcke, Phosphorus Sulfur, 1979, 7, 275.
337. K. Dankowski, Manfred Praefcke, Phosphorus Sulfur, 1981, 12, 131.
338. K. Issleib and O. Löw, Z. Anorg. Allg. Chem., 1966, 346, 241.
339. M. Dankowski and K. Praefcke, Phosphorus Sulfur, 1980, 8, 105.
340. H. Dahn, P. Péchy, and V. Van Toan, Angew. Chem. Int. Ed. Engl., 1990, 29, 647.
341. E. Kwiatkowski and J. Trojanowski, J. Inorg. Nucl. Chem., 1975, 37, 979.
342. M. Rahman, H. Liu, K. Eriks, A. Prock, and W. P. Giering, Organometallics, 1989, 8, 1.
343. A. Varshney and G. M. Gray, Inorg. Chim. Acta., 1988, 148, 215.
344. S. M. Whittemore, J. Gallucci, and J. P. Stambuli, Organometallics, 2011, 30, 5273.
345. S. M. Whittemore, R. J. Yoder, and J. P. Stambuli, Organometalics, 2012, 31, 6124.
346. R. A. Jones, F. M. Real, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. A. Malik, J. Chem. Soc. Dalton. Trans., 1980, 511.
347. Z. T. Cygan, J. E. Bender, K. E. Litz, J. W. Kampf, and M. M. B. Holl, Organometallics, 2002, 21, 5373.
348. F. McLachlan, C. J. Mathews, P. J. Smith, and T. Welton, Organometallics, 2003, 22, 5350.
349. T. E. Müller, F. Ingold, S. Menzer, D. M. P. Mingos, and D. J. Williams, J. Organomet. Chem., 1997, 528, 163.
350. N. Oberbeckmann, K. Merz, and R. A. Fischer, Organometalics, 2001, 20, 3265.
351. P. B. Hitchcock, B. Jacobson, and A. Pidcock, J. Chem. Soc. Dalton. Trans., 1977, 2043.
352. R. Favez, R. Roulet, A. P. Pinkerton, and D. Schwarzenbach, Inorg. Chem., 1980, 19, 1356.
353. R. J. Goodfellow, J. G. Evans, P. L. Goggin, and D. A. Duddell, J. Chem. Soc. (A), 1968, 1604.
354. J. C. Lee, B. Müller, P. Pregosin, G. P. A. Yap, L. Arnold, and R. H. Crabtree, Inorg. Chem., 1995, 34, 6295.
355. T. Schmidt and R. Goddard, J. Chem. Soc. Dalton. Trans., 1995, 1563.
356. J. S. Jessup, E. N. Duesler, and R. T. Paine, Inorg. Chim. Acta., 1983, 73, 261.
357. P. Kumar, M. M. Siddiqui, Y. Reddi, J. T. Mague, R. B. Sunoj, and M. S. Balakrishna, Dalton Trans., 2013, 42, 11385.
358. L. Pauling, J. Am. Chem. Soc., 1932, 54, 3570.
359. A. L. Allred, J. Inorg. Nucl. Chem., 1961, 17, 215.
360. Q. Jiang, D. van Plew, S. Murtuza, and X. Zhang, Tetrahedron Lett., 1996, 37, 797.
361. L. Schwartsburd, R. Cohen, L. Konstantinovski, and D. Milstein, Angew. Chem. Int. Ed., 2008, 47, 3603.
362. M. Albrecht and G. van Koten, Angew. Chem. Int. Ed., 2001, 40, 3751.
363. O. I. Kolodyazhnyi and V. P. Kukhar, J. Gen. Chem. USSR., 1981, 51, 2189.
364. N. Kon, H. Takemura, K. Otsuka, K. Tanoue, S. Nakashima, M. Yasutake, K. Tani, J. Kimoto, T. Shinmyozu, and T. Inazu, J. Org. Chem., 2000, 65, 3708.
365. G. Glockler, J. Phys. Chem., 1958, 62, 1049.
366. L. Liotta, M. L. Mclaughlln, D. G. C. Derveer, and B. A. O'Brien, Tetrahedron Lett., 1984, 25, 1665.
367. J. Bruckmann and C. Krüger, Acta. Crystallogr., Sect. C; Crystal Structure Communications, 1995, 51, 1155.
368. A. Decken, E. D. Gill, and F. Bottomley, Acta. Crystallogr., Sect. E; Structure Reports Online, 2004, 60, 1456.
369. M. F. Semmeihack, J. J. Harrison, D. C. Young, A. Gutiérrez, S. Rafii, and J. Clardy, J. Am. Chem. Soc., 1985, 107, 7508.
370. I. Mitchell, R. J. Carruthers, and J. C. M. Zwinkels, Tetrahedron Lett., 1976, 30, 2585.
371. Y. Fukazawa, Y. Yang, T. Hayashibara, and S. Usui, Tetrahedron, 1996, 52, 2847.
372. F. Benetollo, G. Bombieri, L. De Cola, A. Polo, D. L. Smailes, and L. M. Vallarino, Inorg. Chem., 1989, 28, 3447.
373. S. Breidenbach, S. Ohren, and F. Vögtle, Chem. Eur. J., 1996, 2, 832.
374. H. Takemura, H. Hirakawa, T. Shinmyozu, and T. Inazu, Tetrahedron Lett., 1984, 25, 5053.
375. S. Breidenbach, S. Ohren, M. Niegerb, and F. Vögtle, Chem. Commun., 1995, 1237.
376. K. Mislow and M. A. W. Glass, J. Am. Chem. Soc., 1961, 83, 2780.
377. K. E. Pryor, G. W. Shipps, D. A. Skyler, and J. Rebek, Tetrahedron, 1998, 54, 4107.
378. M. Maxfield, A. N. Bloch, and D. O. Cowan, J. Org. Chem., 1985, 50, 1789.
379. K. Mislow, M. A. W. Glass, B. Hopps, E. Simon, and G. H. Wahl, J. Am. Chem. Soc., 1964, 86, 1710.
380. R. H. Mitchell and J. Zhang, Tetrahedron Lett., 1995, 36, 1177.
381. X. He, J. Borau-Garcia, A. Y. Y. Woo, S. Trudel, and T. Baumgartner, J. Am. Chem. Soc., 2013, 135, 1137.
382. A. R. Barron, S. W. Hall, and A. H. Cowley, J. Chem. Soc., Chem. Commun., 1987, 1753.
383. L. N. Markovskii, V. D. Romanenko, A. V. Ruban, and S. V. Iksanova, J. Gen. Chem. USSR., 1982, 52, 2796.
384. T. Shinmyozu, Y. Hirai, and T. Inazu, J. Org. Chem., 1986, 51, 1551.
385. K. Sako, H. Tatemitsua, S. Onakaa, H. Takemurab, S. Osadac, W. G, J. M. Rudzińkski, and T. Shinmyozu, Liebigs Ann., 1996, 1645.
386. A. N. Vedernikov and K. G. Caulton, Org. Lett., 2003, 5, 2591.
387. J. R. Khusnutdinova, N. P. Rath, and L. M. Mirica, J. Am. Chem. Soc., 2010, 132, 7303.
388. A. N. Vedernikov and K. G. Caulton, Chem. Commun., 2004, 162.
389. M. C. Aragoni, M. Arca, A. Bencini, A. J. Blake, C. Caltagirone, G. De Filippo, F. A. Devillanova, A. Garau, T. Gelbrich, M. B. Hursthouse, F. Isaia, V. Lippolis, M. Mameli, P. Mariani, B. Valtancoli, and C. Wilson, Inorg. Chem., 2007, 46, 4548.
390. M. Shamsipur, M. Sadeghi, K. Alizadeh, A. Bencini, B. Valtancoli, A. Garau, and V. Lippolis, Talanta, 2010, 80, 2023.
391. A. J. Blake, A. Bencini, C. Caltagirone, G. De Filippo, L. S. Dolci, A. Garau, F. Isaia, V. Lippolis, P. Mariani, L. Prodi, M. Montalti, N. Zaccheroni, and C. Wilson, Dalton Trans., 2004, 2771.
392. R. S. Rowland and R. Taylor, J. Phys. Chem., 1996, 100, 7384.
393. M. Boutain, S. B. Duckett, J. P. Dunne, C. Godard, J. M. Hernández, A. J. Holmes, I. G. Khazal, and J. López-Serrano, Dalton Trans., 2010, 3495.
394. G. Fritz and W. Hölderich, Z. Anorg. Allg. Chem., 1977, 431, 61.
395. F. Fochi, P. Jacopozzi, E. Wegelius, K. Rissanen, P. Cozzini, E. Marastoni, E. Fisicaro, P. Manini, R. Fokkens, and E. Dalcanale, J. Am. Chem. Soc., 2001, 123, 7539.
396. L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849.
397. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Van de Streek, and P. A. Wood, J. Appl. Cryst., 2008, 41, 466.

8. Appendix

Facile self-assembly of the first diphosphametacyclophane \dagger

Amy J. Saunders, Ian R. Crossley,* Martyn P. Coles \ddagger and S. Mark Roe

Received 28th March 2012, Accepted 17th April 2012
DOI: 10.1039/c2cc32247a

Abstract

The reaction of isophthaloyl chloride and methyl-bis(trimethylsilyl)phosphane under mild conditions affords high yields of m - $\left\{-\mathrm{C}(\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C}(\mathrm{O}) \mathrm{PMe})\right\}_{2} \quad$ (1,10-dimethyl-1,10-diphospha-[3.3]-metacyclophane-2,9,11,18-tetraone): the first example of a diphosphametacyclophane.

Cyclophanes have long held significant importance in the fields of supramolecular chemistry and molecular recognition, ${ }^{1}$ and have also found widespread utility in selective asymmetric synthesis and catalysis, ${ }^{2}$ and in biomimetic applications. ${ }^{3}$ In many of these roles it has proven desirable to include donor atoms, either as appended functionalities (e.g. exocyclic phosphanes, phosphates, amines) ${ }^{4}$ or commonly as bridging units within the cyclophane motif; viz. poly(thia) or poly(aza) cyclophanes. ${ }^{5}$ However, notably absent from this selection are phosphacyclophanes, despite the considerable impetus to explore the phosphorus/nitrogen and phosphorus/carbon analogies, and a prevalence of other phosphorus heterocycles that often incorporate an aromatic unit as part of the cyclic skeleton. ${ }^{6}$ Herein, we report the facile synthesis of the first such compound, and preliminary investigation of its coordination chemistry.

The reaction (Scheme 1) ${ }^{7}$ between equimolar amounts of isophthaloyl chloride (1,3-benzenedicarbonyl dichloride) and methyl-bis(trimethylsilyl)phosphane in diethyl ether proceeds over 12 h to afford a single product, $\mathbf{1}$, which deposits from solution and is conveniently isolated by filtration. Spectroscopically ${ }^{8} \mathbf{1}$ is

Scheme 1 Reagents and conditions: (i) $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}, \quad \mathrm{Et}_{2} \mathrm{O}$, $-78^{\circ} \mathrm{C} \rightarrow$ r.t., 12 h .

[^1]deceptively simple; ${ }^{31} \mathrm{P}$-NMR data reveal a single phosphorus environment ($\delta_{\mathrm{P}} 32.7$) with retention of the methyl substituent, the ${ }^{1} \mathrm{H}$-NMR signal for which $\left(\delta_{\mathrm{H}} 1.58\right)$ integrates consistently for a $1: 1$ addition product with respect to the charactistic isophthaloyl aromatic resonances. Retention of the carbonyl functions is confirmed by ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR and infrared spectroscopic data.§

The formulation of $\mathbf{1}$ as the cyclophane $m-\{-\mathrm{C}(\mathrm{O})$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{C}(\mathrm{O}) \mathrm{PMe})\right\}_{2}$, followed from: (i) observation of the parent ion by EI-MS ($m / z 356[\mathrm{M}]^{+}$); (ii) the absence of SiMe_{3} functions; (iii) precedent for condensation of $\mathrm{RP}\left(\mathrm{SiMe}_{3}\right)_{2}$ with acid chlorides, ${ }^{9}$ and was ultimately confirmed by an X-ray diffraction study (Fig. 1). ${ }^{10}$

In common with documented diaza[3.3]metacyclophanes ${ }^{11}$ 1 adopts a 'butterfly' conformation enforced by the pseudopyramidal phosphorus centres, with the methyl substituents assuming a mutually exo arrangement. This displaces the skeletal benzene rings from coplanarity by 41.6°, with a centroid-centroid separation of $3.93 \AA$, which would seemingly dispose the aromatic scaffold to metal inclusion. However, DFT studies (B3LYP/6-311++G(3d,3p)) ${ }^{12,13}$ reveal the molecular HOMO to be predominantly associated with the phosphorus lone-pairs, though some π-antibonding character is noted for the LUMO, albeit $383.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy. The aromatic bonding orbitals are associated with HOMO-4,

Fig. 1 Molecular structure of 1, with thermal ellipsoids at the 50\% probability level. Selected bond distances (\AA) and angles (deg.):C1O1 1.211(3), C8-O2 1.202(3), C9-O3 1.220(3), C16-O4 1.210(3), C1-P1 1.892(3), C16-P1 1.890(3), C17-P1 1.815(3), C8-P2 1.894(3), C9-P2 1.886(3), C18-P2 1.816(3). C1-P1-C16 95.73(13), C1-P1-C17 98.76(14), C16-P1-C17 100.06(14), C8-P2-C9 95.14(12), C8-P2-C18 99.60(14), C9-P2-C18 100.73(15).

Fig. 2 Molecular structure of 2, with thermal ellipsoids at the 50% probability level, hydrogen atoms omitted for clarity. The molecule lies on an inversion centre and equivalent atoms are generated by symmetry transformation $(-x,-y+1,-z+1)$. Selected bond distances (\AA) and angles (deg): Pt-P1 2.2940(7), Pt-Cl 2.3106(7), P1-C1 1.793(3), P2-C10 1.823(4), O1-C2 1.208(4), O2-C9 1.215(4), O3-C11 1.214(4), O4-C18 1.201(4), P1-Pt-Cl 91.05(3), C1-P1-C2 101.81(16), C1-P1-C18 102.03(16), C2-P1-C18 104.56(16), C9-P2-C10 99.22(19), C10-P2-C11 98.74(18), C9-P2-C11 97.65(15).
$c a .88 .5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ below the HOMO. These data would suggest that $\mathbf{1}$ should preferentially engage in metal-binding through phosphorus, rather than the aromatic skeleton. Given the rigid geometry of $\mathbf{1}$ and the significant $\mathrm{P} \ldots \mathrm{P}$ separation ($5.11 \AA$) the likelihood of cis-chelation would seem low; however, this situation is not significantly removed from that of the rigid diphosphane SPANphos (P~P $4.99 \AA$), ${ }^{14}$ which engages in trans-chelation, an area of considerable current interest. ${ }^{15}$

The propensity of $\mathbf{1}$ toward chelation was tested through its $1: 1$ reaction with $\mathrm{PtCl}_{2}(\mathrm{NCPh})_{2}$, which afforded, in admixture with $\mathrm{PtCl}_{2}(\mathrm{NCPh})_{2}$, a single product formulated as trans$\mathrm{PtCl}_{2}(\mathbf{1})_{2}$ (2) on the basis of (i) broken symmetry of the cyclophane fragment (indicated by two ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR resonances; $\delta_{\mathrm{P}} 28.4,33.2$); (ii) observation of ${ }^{195} \mathrm{Pt}$ satellites on a single ${ }^{31} \mathrm{P}$-NMR resonance; (iii) the magnitude of the ${ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}$ coupling constant $(|J|=2296 \mathrm{~Hz})$ being consistent with a trans-platinum bis-phosphane complex; (iv) a single-crystal X-ray diffraction study (Fig. 2). ${ }^{16}$ Complete consumption of $\mathrm{PtCl}_{2}(\mathrm{NCPh})_{2}$ is achieved through use of 2 equivalents of $\mathbf{1} .{ }^{17}$

Scheme 2 Reagents and conditions: THF, $-78{ }^{\circ} \mathrm{C} \rightarrow$ r.t.
The internal geometry of the cyclophane ligands in $\mathbf{2}$ remains largely unchanged from uncoordinated $\mathbf{1}$, though the $\mathrm{P}-$ Me linkage of the ligating centre is somewhat truncated ($d(\mathrm{P} 1-\mathrm{C} 1) 1.793(3) \AA$) relative to both the free ligand and uncoordinated centre (1.816(3) and 1.823(4) \AA respectively); the geometry about platinum is unremarkable other than in illustrating the influence of sterics in directing trans over ciscoordination, despite the cis-geometry of the platinum precursor. We have thus far been unable to identify any intermediate species or kinetic products.

The uncoordinated phosphorus centres (P 2) are geometrically disposed to assume antipodal positions along the platinum z-axis and thus effectively shield the vacant coordination sites. However, there is no evidence for long-range $\mathrm{Pt}-\mathrm{P}$ interactions, the separation of $4.56 \AA$ far exceeding the sum of the Van der Waals radii $\left(3.52 \AA^{18}\right)$. This underlines the significant rigidity within $\mathbf{1}$, which it seems also precludes trans-chelation by inhibiting even marginal contraction of the $\mathrm{P} \cdots \mathrm{P}$ separation.
This inherent rigidity does, however, predispose $\mathbf{1}$ to bridging metal centres, as illustrated by its stoichiometric reaction with the dimeric $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}$, to afford $\left[\mu-P, P^{\prime}-(\mathbf{1})\left\{\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$ (3, Scheme 2) in excess of 80% yield. While 3 has thus far defied crystallisation, its formulation follows convincingly from spectroscopic data, viz.: (i) two distinct ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR signals ($\delta_{\mathrm{P}} 15.9, J_{\mathrm{PtP}}=1936 \mathrm{~Hz} ; 51.3, J_{\mathrm{PtP}}=2810 \mathrm{~Hz}$; $\left.{ }^{2} J_{\mathrm{PP}-\text { trans }}=441 \mathrm{~Hz}\right)$ associated with PEt_{3} and 1 respectively; (ii) characteristically symmetric ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals for the isophthaloyl fragment; (iii) consistent microanalytical data, confirming sample purity. ${ }^{20}$

In conclusion, we have reported the facile synthesis of the first member of the phosphametacyclophane family and demonstrated its potential as a sterically encumbered ligand. This offers potential access to a wide range of similarly bulky phosphorus heterocycles, including asymmetric variants, with significant promise as both bridging polyphosphane ligands and supramolecular scaffolds, targets we continue to pursue.

We thank the Leverhulme Trust (studentship to A.J.S.) and the Royal Society for support. I.R.C. gratefully acknowledges the award of a Royal Society University Research Fellowship. We thank Dr I. J. Day (Sussex) for collection of selected NMR data and useful discussion.

Notes and references

[^2]1 See for example: (a) F. Diederich, Cyclophanes, The Royal Society of Chemistry, Cambridge, 1991; (b) C. Jones, Chem. Soc. Rev., 1998, 27, 289.
2 (a) U. Worsdofer, F. Votgle, M. Nieger, M. Waletzke, S. Grimme, F. Gloriusk and A. Pfalts, Synthesis, 1999, 597; (b) I. Tabushi and K. Yamanmura, Top. Curr. Chem., 1983, 113, 145.

3 J. Lahan, H. Hocker and R. Langer, Angew. Chem., Int. Ed., 2001, 40, 726.
4 See for example: M. C. Aversa, A. Barattucci, P. Bonaccorsi, C. Faggi and T. Papalia, J. Org. Chem., 2007, 72, 4486 and references therein.
5 See for example: R. Quevedo, M. Gonzalez and C. Diaz-Oviedo, Tetrahedron Lett., 2012, 53, 1595 and references therein.
6 See for example: (a) J. I. Bates and D. P. Gates, Chem.-Eur. J., 2012, 18, 1674; (b) K. Nakano, J. Oyama, Y. Nishimura, S. Nakasako and K. Nozaki, Angew. Chem., Int. Ed., 2012, 51, 695; (c) G. Baccolini, C. Boga and M. Galeotti, Angew. Chem., Int. Ed., 2004, 43, 3058; (d) M. D. McReynolds, J. M. Dougherty and P. R. Hanson, Chem. Rev., 2004, 104, 2239; (e) L. Nyulaszi, Chem. Rev., 2001, 101, 1229 and references therein.
7 Typical synthesis for 1: Ethereal solutions of isophthaloyl chloride $(0.46 \mathrm{~g}, 2.27 \mathrm{mmol})$ and $\mathrm{MeP}\left(\mathrm{SiMe}_{3}\right)_{2}(0.66 \mathrm{~g}, 2.27 \mathrm{mmol})$ were combined at $-78^{\circ} \mathrm{C}$, resulting in a yellow solution and precipitate. After 30 min the mixture was allowed to attain ambient temperature and stirred for a further 12 h . The precipitate was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo.
8 Selected characterising data for $\mathbf{1 : ~}^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}\right.$, $399.5 \mathrm{MHz}): \delta_{\mathrm{H}} 1.58\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=3.1 \mathrm{~Hz}\right) 6.45(\mathrm{t}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{HH}}=1.75 \mathrm{~Hz}$), $7.17\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=1.67 \mathrm{~Hz}\right.$), $9.28(\mathrm{br} ., 2 \mathrm{H})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}, 161.73 \mathrm{MHz}\right): \delta_{\mathrm{P}} 32.7(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}, 150.81 \mathrm{MHz}$): $\delta_{\mathrm{C}} 1.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}} 4.5 \mathrm{~Hz}\right.$, Me), $130.3\left(J_{\mathrm{CP}}=1.6 \mathrm{~Hz}, C^{\mathrm{m}}\right), 130.6\left(\mathrm{dd}, J_{\mathrm{CP}} \sim 2 \mathrm{~Hz}, C^{\mathrm{o,p}}\right), 134.0$ $\left(\mathrm{t},{ }^{3} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, C^{\circ}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=37.9 \mathrm{~Hz}, C^{i}\right), 205.9$ (d, $J_{\mathrm{CP}}=46.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$). Anal. Found: C, 60.59%; H, 3.82%. Cacld for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{P}_{2}$: C, $60.67 \% ; \mathrm{H}, 3.93 \%$.
9 See for example: (a) V. A. Write, B. O. Patrick, C. Schneider and D. P. Gates, J. Am. Chem. Soc., 2006, 128, 8836; (b) V. A. Write and D. P. Gates, Angew. Chem., Int. Ed., 2002, 41, 2389; (c) A. R. Barron, S. W. Hall and A. H. Cowley, J. Chem. Soc., Chem. Commun., 1987, 1753; (d) R. Appel, F. Knoch and H. Kunze, Chem. Ber., 1984, 117, 3151 and references therein.

10 Crystal data for $\mathbf{1}: \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{P}_{2}, M_{w}=356.23$, Monoclinic, $P 2_{1} / n$ (no. 14), $a=12.0985(9), b=7.6709(3), c=18.3347$ (13) $\mathrm{A}, \beta=$ $100.317(2)^{\circ}, V=1674.047(18) \AA^{3}, Z=4, D_{\mathrm{c}}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.279 \mathrm{~mm}^{-1}, T \xlongequal{=} 173(2) \mathrm{K}, 3776$ independent reflections, full-matrix F^{2} refinement $R_{1}=0.0530, \mathrm{w} R_{2}=0.1699$ on 2648 independent absorption corrected reflections $[I>2 \sigma(I)$; $\left.2 \theta_{\text {max }}=55^{\circ}\right], 217$ parameters, CCDC 873362.
11 (a) H. Takemura, H. Kariyazono, M. Yasutake, N. Kon, K. Tani, K. Sako, T. Shinmyozu and T. Inazu, Eur. J. Org. Chem., 2000, 141; (b) N. Kon, H. Takemura, K. Otsuka, K. Tanoue, S. Nakashima, M. Yasutake, K. Tani, J. Kimoto, T. Shinmyozu and T. Inazu, J. Org. Chem., 2000, 65, 3708; (c) W. Boomgaarden, F. Vogtle, M. Nieger and H. Hupfer, Chem.-Eur. J., 1999, 5, 345; (d) H. Plenio and J. Hermann, Z. Anorg. Allg. Chem., 1998, 624, 792; (e) J. Harren, A. Sobanski, M. Nieger, C. Yamamoto, Y. Okamoto and F. Vogtle, Tetrahedron: Asymmetry, 1998, 9, 1369; (f) S. Breidenbach, s. Ohren, M. Nieger and F. Vogtle, Chem. Commun., 1995, 1237.
12 Computational details: Geometry optimization and frequency calculations were performed using an unrestricted B3LYP functional with the $6-311++G(3 d, 3 p)$ basis set, with full NBO analysis. The calculations were performed on an Intel Core i5 with 4 GB RAM using Gaussian 03W (multi-processor).
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc, Wallingford CT, 2004.
14 Z. Freixa, M. S. Beentjes, G. G. Batema, C. B. Dieleman, G. P. F. van Strijdonck, J. N. H. reek, P. C. J. Kamer, J. Fraanje, K. Goubitz and P. W. N. M. van Leeuwen, Angew. Chem., Int. Ed., 2003, 42, 1284.
15 Y. Canac, N. Debono, C. Lepetit, C. Duhayon and R. Chauvin, Inorg. Chem., 2011, 50, 10810.
16 Crystal data for 2: $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, M_{w}=1122.65$, Triclinic, $P \overline{1}$ (no. 2), $a=10.4564(4), b=11.3437(6), c=$ $11.5627(7) \AA, \alpha=87.512(3), \beta=69.834(3), \gamma=64.064(3)^{\circ}$, $V=1148.36(10) \AA^{3}, Z=1, D_{\mathrm{c}}=1.62 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=$ $3.366 \mathrm{~mm}^{-1}, T=173(2) \mathrm{K}, 4843$ independent reflections, full-matrix F^{2} refinement $R_{1}=0.026, \mathrm{w} R_{2}=0.066$ on 4812 independent absorption corrected reflections $\left[I>2 \sigma(I) ; 2 \theta_{\max }=53^{\circ}\right]$, 324 parameters, CCDC 873363.
17 Synthetic details for 2: THF solutions of $\mathbf{1}\left(120 \mathrm{mg}, 3.36 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{PtCl}_{2}(\mathrm{NCPh})_{2}\left(79 \mathrm{mg}, 1.68 \times 10^{-4} \mathrm{~mol}\right)$ were combined at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ and then allowed to warm slowly to ambitent temperature while stirring over 12 h . Volatiles were removed under reduced pressure to afford crude 2 as a yellow solid, dried in vacuo. Recrystallisation from concentrated THF solution at $-20^{\circ} \mathrm{C}$ afforded analytically pure samples of 2 as X-ray quality crystals. Yield: $121 \mathrm{mg}, 73.8 \%$. Selected data: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d_{8}-THF, $30{ }^{\circ} \mathrm{C}, 399.5 \mathrm{MHz}$): $\delta_{\mathrm{H}} 1.50\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=3.2 \mathrm{~Hz}\right.$, $\left.2 \times \mathrm{PCH})_{3}\right), 2.39\left(\mathrm{t}, 6 \mathrm{H}, J_{\mathrm{PH}}=3.1 \mathrm{~Hz}, 2 \times \mathrm{Pt}-\mathrm{PCH}_{3}\right) 7.41(\mathrm{~d}, 4 \mathrm{H}$, $\left.J_{3 H}=7.5 \mathrm{~Hz}\right), 7.67\left(\mathrm{dm}, 8 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 10.64($ br., 4 H$)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(d_{8}\right.$-THF, $30{ }^{\circ} \mathrm{C}, 161.73 \mathrm{MHz}$): $\delta_{\mathrm{P}} 28.4$ (s), 33.2 (s, ${ }^{1}{ }^{1}$ PtP $=2296 \mathrm{~Hz}$) Anal. Found: C, $44.28 \% ; \mathrm{H}, 2.80 \%$. Cacld for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{P}_{2}$: C, $44.17 \% ; \mathrm{H}, 2.86 \%$.
18 R. S. Rowlands and R. Taylor, J. Phys. Chem., 1996, 100, 7384.
19 For representative examples see: (a) F. H. Allen and S. N. Sze, J. Chem. Soc. A, 1971, 2054; (b) J. Fawcett, E. G. Hope, R. D. W. Kemmitt, D. R. Paige, D. R. Russell and A. M. Stuart, J. Chem. Soc., Dalton Trans., 1998, 3751; (c) P. B. Hitchcock, B. Jacobson and A. Pidcock, J. Chem. Soc., Dalton Trans., 1977, 2038; (d) K. B. Dillon and H. P. Goodwin, J. Organomet. Chem., 1994, 469, 125.
20 Synthetic details for 3: THF solutions of $\mathbf{1}\left(43 \mathrm{mg}, 1.23 \times 10^{-4} \mathrm{~mol}\right)$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}\left(97 \mathrm{mg}, 1.23 \times 10^{-4} \mathrm{~mol}\right)$ were combined at $-78{ }^{\circ} \mathrm{C}$, then allowed to warm slowly to ambient temperature while stirring overnight. Removal of volatiles under reduced pressure afforded 3 as a yellow solid. Yield: $61 \mathrm{mg}, 88.2 \%$. Selected data: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}, 399.5 \mathrm{MHz}\right): \delta_{\mathrm{H}} 0.99$ (dt, $18 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{HP}}=17.2 \mathrm{~Hz}\right), 1.67(\mathrm{~m}, 12 \mathrm{H}), 2.02\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 7.2 \mathrm{~Hz}\right), 6.59(\mathrm{t}, 2 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 7.89(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 9.36(\mathrm{~s} ., 2 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{\{ } \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}, 161.73 \mathrm{MHz}\right): \delta_{\mathrm{P}} 15.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=441 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=\right.$ $\left.{ }_{195}^{1936 ~ H z}, 2 \mathrm{P}\right), 51.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=441 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtP}}=2810 \mathrm{~Hz},{ }^{2 \mathrm{P}}\right)$. ${ }^{195} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}, 85.53 \mathrm{MHz}\right): \delta_{\mathrm{Pt}}-3933\left(\mathrm{dd},{ }^{1} J_{\mathrm{PtP}}\right.$ $1936,2810 \mathrm{~Hz}$). Anal. Found: C, 32.13%; H, 3.82%. Cacld for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{P}_{2}$: C, $32.03 \% ; \mathrm{H}, 3.91 \%$.

[^0]: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{C}} 51.7\left(\mathrm{~s}, \underline{\mathrm{C}}_{3}\right), 128.2(\mathrm{~m}, o-\underline{\mathrm{C}}), 129.0\left(\mathrm{~d},{ }^{3} J_{C-P} 7.69 \mathrm{~Hz}, m-\underline{\mathbf{C}} \mathrm{H}\right.$ of Ph$)$, 129.7 ($\mathrm{s}, m-\underline{\mathbf{C}} \mathrm{H}$), 130.0 ($\mathrm{s}, p-\underline{\mathbf{C}} \mathrm{H}$ of Ph), 134.2 ($\left.\mathrm{s}, \underline{\mathbf{C} C O}{ }_{2} \mathrm{Me}\right), 135.3\left(\mathrm{~d},{ }^{2} J_{C-P} 19.1 \mathrm{~Hz}, o-\underline{\mathbf{C}} H\right.$ of $\mathrm{Ph}), 142.9\left(\mathrm{~d},{ }^{2} J_{C-P} 34.6 \mathrm{~Hz}, i-\underline{\mathbf{C}}\right), 165.6\left(\mathrm{~s}, \underline{\mathbf{C O}}_{2} \mathrm{Me}\right), 212.1\left(\mathrm{~d},{ }^{1} J_{C-P} 38.3 \mathrm{~Hz}, \underline{\mathbf{C}}(\mathrm{O}) \mathrm{P}\right)$.
 ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{P}} 14.4\left(\mathrm{~m},{ }^{3} J_{P-H} 7.61 \mathrm{~Hz}\right)$.
 IR: $v_{(\mathrm{C}=\mathrm{O})} 1721 \mathrm{~cm}^{-1}, v_{(\mathrm{C}=\mathrm{O})} 1649 \mathrm{~cm}^{-1}$.

[^1]: Department of Chemistry, University of Sussex, Brighton, UK.
 E-mail: i.crossley@sussex.ac.uk; Fax: + 441273 876687;
 Tel: + 441273877302
 \dagger Electronic supplementary information (ESI) available: Expanded experimental details for all syntheses and computational study. CCDC 873362-873363. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc32247a
 \ddagger Present address: School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand.

[^2]: § While we have not yet explicitly studied the hydrolytic sensitivity of $\mathbf{1}$, we find this molecule to be relatively robust, being amenable to the acquisition of infrared spectroscopic data in air without any notable decomposition. The reactivity of the carbonyl functions is the subject of on-going investigation.

 - A trans P-P coupling constant of 441 Hz is consitent with other saturated trans phosphanes, which typically lie in the $400-500 \mathrm{~Hz}$ region, ${ }^{19 a, b} c f$. more common examples with one phosphite or phosphaalkene ligand $(500-700 \mathrm{~Hz}) .{ }^{19 c, d}$

