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Summary 

Genomic DNA is compacted into a protein-DNA complex known as chromatin, which 

regulates diverse cellular processes including transcription, DNA replication, 

recombination, DNA repair and the maintenance of genome integrity. The structure and 

activity of chromatin is regulated by DNA sequences, histone variants, post-

translational histone modifications and chromatin remodelling complexes. Chromatin 

remodelling complexes are multi-subunit entities that contain a single core catalytic 

ATPase subunit able to generate an array of nucleosome-related outputs. Importantly, 

recent studies have revealed that genes of the SWI/SNF family of chromatin 

remodeling complexes are frequently mutated in diverse cancers; however, their 

functional contributions in tumourigenesis are largely unclear.  

This work is comprised of four major results chapters, examining the roles of 

targeting subunits of the RSC SWI/SNF complex in budding yeast and the homologous 

BAF180 tumour suppressor protein in mammalian cells. We identify novel functions for 

these proteins that are directly relevant to tumourigenesis. In the first section we 

explored the contributions of the two isoforms of the RSC SWI/SNF complex in DNA 

repair. We found that the two isoforms provide both overlapping and distinct functions 

in this process. In the second section we identify a novel function for BAF180 in 

promoting centromeric sister chromatid cohesion. Importantly, this defect was 

transcription-independent and represents a paradigm shift in the field of chromatin 

remodeling and cancer. In the third section we show that PBRM1 missense mutations 

identified in cancer samples specifically impair a cohesion-related subset of functions 

when expressed in budding yeast. Moreover, these mutations completely ablated 

centromeric cohesion in human cells. In the final section we report the findings that 

novel HDAC inhibitors, which constitute a promising class of anticancer drugs, 

selectively sensitize cells lacking BAF180. These significant results suggest that HDAC 

inhibitors could be important tools for the treatment of BAF180-deficient tumours.  
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CHAPTER 1: INTRODUCTION 

1.1. Chromatin structure and organization 

Genomic DNA is compacted into a protein-DNA complex known as chromatin. 147bp 

of DNA tightly wrapped in ~1.7 superhelical turns around an octomeric core of two 

histone H2A-H2B dimers and a H3-H4 tetramer constitutes the canonical nucleosome, 

the basic unit of chromatin (Richmond & Davey 2003). In yeast, nucleosomes are 

separated by ~20bp of linker DNA, and the primary chromatin structure of a 

polynucleosomal tract resembles ‘beads on a string’ when observed using electron 

microscopy. The linker histone H1 stabilizes further condensation of nucleosomes into 

30nm chromatin fibres, at least in vitro (Horn & Peterson 2002). The regulation of 

higher order chromatin structure beyond the level of the 30nm fibre through to the level 

of the mitotic chromosome is largely unknown. Compaction of genomic DNA into 

chromatin regulates access of DNA-binding proteins to nucleosomal DNA (Clapier & 

Cairns 2009). DNA transactions including transcription, replication, recombination, 

repair and the maintenance of genome integrity are consequently regulated by 

nucleosomes and chromatin. In this section we consider the major factors that specify 

and organize chromatin structure, including DNA sequence, histone variants, post-

translational histone modifications and chromatin remodelling complexes.  

1.1.1. DNA sequences 

DNA sequences strongly determine the in vivo positioning of nucleosomes and provide 

binding sites for specific DNA-binding proteins (Rando & Chang 2009). The DNA 

sequence-dependent positioning of nucleosomes is particularly important for sculpting 

the chromatin structure of a gene to facilitate its regulation. A typical yeast promoter 

contains a nucleosome-free region (NFR) upstream of the transcription start site (TSS), 

which contains poly-A and poly-T tracts that intrinsically repel nucleosomes (Rando & 

Chang 2009). The promoter NFR is the site at which the majority of transcription 

factors bind and is flanked by two well-positioned nucleosomes, termed +1 and -1. 

NFRs also frequently occur at the 3' termination site. The coding regions of genes 

typically contain DNA sequences that favour the positioning of nucleosomes, such as 

AT-rich dinucleotides, particularly around the +1, +2 and +3 nucleosomes (Rando & 

Chang 2009). In mammalian cells NFRs also occur upstream of TSSs, but in contrast 

to yeast genes, additional nucleosome-depleted, DNAase hypersensitive sites (DHS) 
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occur that provide further transcriptional control. Enhancer DHSs are often found up to 

hundreds of kilobases distal to TSSs, and insulator DHSs function to disrupt 

communications between promoters and enhancers (Rando & Chang 2009). 

Another specialised region of chromatin in which DNA sequence plays an 

important regulatory role is at the centromere. The centromere is a unique region of the 

chromosome that mediates the attachment of chromosomes via the kinetochore to the 

mitotic spindle and is essential for chromosome segregation. In budding yeast the 

centromere consists of three conserved sequences that together span 116-120bp 

(Verdaasdonk & Bloom 2011). CDEI is a non-essential 8bp palindromic sequence that 

is required for high-fidelity chromosome segregation and serves as a binding site for 

the centromere protein and transcription factor Cbf1 (Hemmerich et al. 2000). CDEII is 

an essential AT-rich sequence 78-86bp in length that is required for chromosome 

segregation. CDEIII is an imperfect 26bp palindromic sequence to which the four-

protein CBF3 complex binds, a step that is essential for the subsequent assembly of 

the ~60 unique proteins that constitute the kinetochore (Lechner & Carbon 1991, 

Doheny et al. 1993, Strunnikov et al. 1995, McAinsh et al. 2003, Cohen et al. 2008). In 

contrast, human centromeres are substantially larger (up to 5Mb in length) and more 

complex owing to the presence of large tracts of repetitive 171-bp α-satellite sequences 

(Verdaasdonk & Bloom 2011). In addition to their repetitive occurrence, the similarity 

between α-satellite sequences has made the assignment of centromere competency to 

individual sequences difficult. 

1.1.2. Histone variants 

The core histones H2A, H2B, H3 and H4 all share a common structural architecture of 

a core domain, which is composed of three α-helices connected by short loops, and an 

unstructured N-terminal tail domain (Luger et al. 1997). The tetramer of two H3-H4 

dimers is formed through a strong 4-helix bundle (4-HB) between the two H3 molecules 

along the H3-H4 tetramer. Additionally, the C-terminal docking domain of H2A interacts 

with H3 and H4, and L1 loops from each H2A molecule interact to stabilize the 

association of the two H2A-H2B dimers within the nucleosome (Luger et al. 1997, 

Bӧnisch & Hake 2012). Histone variants differ from canonical histones in their primary 

structure and expression timing. They are incorporated to create specialized 

nucleosomes that provide further levels of chromatin regulation. Three major histone 

variants will be considered here: H2A.Z, which is implicated in transcription, DNA 

repair, heterochromatin formation and chromosome segregation, H2A.X, which has a 
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fundamental role in the DNA damage response, and Cse4 (CENPA in vertebrates), 

which is required for the formation of a fully functional kinetochore at the centromere.  

H2A.Z 

H2A.Z is ~60% identical to canonical H2A in any one species and is essential in many 

organisms but not in S. cerevisiae or S. pombe, in which H2A.Z deletion leads to a 

severe growth phenotype (Zlatanova & Thakar 2008, Jackson & Gorovsky 2000, Carr 

et al. 1994, Bӧnisch & Hake 2012). The C-terminus of canonical H2A is an important 

regulatory domain for the protein because it occurs at the DNA entry/exit site of the 

nucleosome (Bӧnisch & Hake 2012). The C-terminus harbours an acidic patch that 

interacts with DNA, the linker histone H1, and the H4 N-terminal tail; the latter two of 

which are involved in establishing higher order chromatin structure. H2A.Z contains an 

extended acidic patch that alters the behaviour of the protein and confers unique 

properties (Bӧnisch & Hake 2012). The M6 region of the H2A.Z C-terminus is an 

important binding site for the chromatin remodelling complex SWR1, which exchanges 

H2A-H2B dimers for free H2A.Z-H2B dimers (Luk et al. 2010). The extended acidic 

patch of H2A.Z also fosters the formation of a more compact secondary chromatin 

structure due to stronger H4-H2A.Z inter-nucleosomal electrostatic interactions. 

Interestingly, the heterochromatin-associated protein HP1α preferentially binds highly 

condensed H2A.Z-containing chromatin and further enhances intrafibre folding (Fan et 

al. 2004). H2A.Z is present at centromeres and is likely to have important roles in 

organizing centromere structure and function (Greaves et al. 2007). H2A.Z also occurs 

in +1 and -1 nucleosomes at promoters in plants, mammals and in S. cerevisiae, as 

well as at enhancers and insulators in mammalian cells (Bӧnisch & Hake 2012). H2A.Z 

incorporation at promoters is known to have both repressive and activating roles in 

transcription due to its ability to alter nucleosome mobility and positioning. The 

incorporation of H2A.Z into euchromatin forms a boundary to adjacent heterochromatin 

by antagonizing the spread of Sir-dependent silencing (Bӧnisch & Hake 2012) 

H2A.X has a specific role in the DNA damage response (DDR) 

The minor histone variant H2A.X is rapidly phosphorylated at S129 across ~50kb either 

side of a DNA DSB in S. cerevisiae and S139 for several Mb in H. sapiens (Tsaber & 

Haber 2013). This phosphorylation is an early event in the DDR and is	  necessary for 

DNA damage checkpoint activation, HR and NHEJ. The role of H2A.X phosphorylation 

in these processes will be discussed in more detail in the DNA repair pathways section. 
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Cse4 (human CENPA) is a centromere-specific H3 variant 

The H3 variant Cse4, known as CENPA in human cells, is unique to the centromere 

and is essential for recruiting kinetochore components (Van Hooser et al. 2001). Both 

canonical H3 and CENPA histones contain a histone fold domain in the N-terminus that 

consists of four α-helices termed N1, α1, α2 and α3. The loop between α1 and α2 in 

CENPA harbours the CENPA-targeting domain (CATD) that is required for centromere 

targeting and function (Black et al. 2004, Black et al. 2007). An interaction between the 

CATD and the CENPA chaperone HJURP is required for the deposition of CENPA 

during early G1 (Jansen et al. 2007, Foltz et al. 2009, Dunleavy et al. 2009). HJURP 

recruitment requires the Mis18 complex, which is recruited to centromeres during 

telophase (Barnhart et al. 2011, Moree et al. 2011). The CATD also serves as a 

docking site in conjunction with acidic patches on H2A and H2B for CENPN (Guse et 

al. 2011, Kato et al. 2013). The C-terminus of CENPA serves as a binding site for 

CENPC, which functions with CENPN to recruit other kinetochore components (Carroll 

et al. 2009, Carroll et al. 2010). CENPB also contributes to kinetochore integrity and 

binds directly to mammalian centromere repeats. This binding is stabilized via 

interaction with the N-terminus of CENPA (Fachinetti et al. 2013). The N1 α-helical 

domain of CENPA is shorter than that of H3, and CENPA-containing nucleosomes are 

wrapped by only 121bp of DNA and therefore protect less DNA (Hasson et al. 2013).  

 In budding yeast a single Cse4 nucleosome forms the core of a point 

centromere, whilst regional centromeres found in mammalian cells contain multiple 

CENPA nucleosomes interspersed with canonical nucleosomes (Furuyama and 

Biggins 2007, Blower et al. 2002). CENPA-H4 tetrasomes are structurally distinct from 

H3-H4 tetrasomes in that they are more rigid, and CENPA nucleosomes are more 

prone to unwrapping and releasing H2A-H2B dimers than canonical nucleosomes 

(Black et al. 2004, Sekulic et al. 2010, Conde e Silva et al. 2007). Drosophila and 

human CENPA nucleosomes also have reduced height relative to H3 nucleosomes, 

and the height varies with the cell cycle (Dalal et al. 2007, Dimitriadis et al. 2010, Bui et 

al. 2012). This height difference forms the basis for the proposed existence of 

alternative CENPA nucleosome structures, including hemisomes (half-nucleosomes). 

However, recent reports strongly support the idea that CENPA-containing nucleosomes 

are indeed homotypic octamers (with two CENPA proteins) (Miell et al. 2013, Zhang et 

al. 2012, Padeganeh et al. 2013, Catania & Allshire 2014).  
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CENPA specifies regional centromeres in higher organisms 

Fascinating recent studies have shed some light on how complex regional centromeres 

found in higher organisms are specified and assembled. Unlike budding yeast point 

centromeres, in which specific DNA sequences are sufficient to initiate kinetochore 

assembly, the repetitive DNA sequences found at the centromeres of higher organisms 

display a lack of common features. Thus, it has been suggested that regional 

centromeres are largely specified epigenetically (Catania & Allshire 2014). Deletion of a 

127kb DNA sequence containing the centromere of chromosome Z in DT40 cells 

initiated the formation of neocentromeres that retained the Z-chromosome (Shang et al. 

2013). Peaks of CENPA at neocentromeres did not preferentially occur in association 

with repetitive DNA sequences, and predominantly arose flanking the original Z 

centromere. This suggests that residual CENPA at these sites dictates the seeding of 

neocentromeres. Artificial tethering of CID (Drosophila CENPA) to DNA recruited 

kinetochore components and mediated microtubule association (Mendiburo et al. 

2011), suggesting that CENPA alone is sufficient to direct kinetochore assembly. In 

addition, tethering of HJURP in human cells led to CENPA deposition and kinetochore 

assembly (Barnhart et al.  2011). 

In Drospohila and S. pombe centromere formation requires the presence of 

heterochromatin (Folco et al. 2008, Kagansky et al. 2009, Olszack et al. 2011). In 

contrast, neocentromere formation does not appear to rely on the presence of 

methylated H3K9 in DT40 (Shang et al. 2013), or HP1 in C. elegans (Gassman et al. 

2012, Yuen et al. 2011), suggesting that centromere formation in these organisms is 

heterochromatin-independent. Instead, CENPA deposition might rely on the activity of 

factors involved in histone deacetylation, chromatin remodelling, replication initiation 

and DNA repair, which reside in heterochromatin at high density (Grewal 2010, Catania 

& Allshire 2014). Interestingly, forced induction of dicentric chromosomes in S. pombe 

leads to inactivation of one of the centromeres (Sato et al. 2012). This was 

accompanied by loss of CENPA and the engulfment of the intact centromeric chromatin 

by flanking heterochromatin, which prevented subsequent centromere activation. 

These data indicate that a context-dependent interplay exists between regions of 

CENPA chromatin and flanking heterochromatin. This appears to determine the 

influence of heterochromatin on CENPA and kinetochore assembly (Catania & Allshire 

2014). 
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1.1.3. Histone post-translational modifications (PTMs) 

Recent intense research has focused on identifying and mapping an ever-growing, 

bewildering array of histone post-translational modifications. Functional 

characterization of PTMs has led to their implication in various all chromatin-templated 

processes, particularly transcription, DNA repair, and genome stability. Importantly, 

factors responsible for performing or recognising PTMs are often misregulated in 

cancer. PTMs predominantly occur on histone N-terminal tails and affect chromatin 

structure and regulation in two major ways. First, they can alter nucleosomal net 

charges that lead to changes in histone-DNA and internucleosomal contacts. Second, 

they serve as recognition sites for various chromatin-binding factors that influence 

downstream processes (Musselman et al. 2012). PTMs are thought to constitute a 

‘histone code’ that is read in a combinatorial manner by such effector proteins, leading 

to a tailored array of outputs (Jenuwein & Allis 2001, Strahl & Allis 2000). In this section 

an overview of the diversity of currently known PTMs will be given, with a focus on 

methylation, acetylation and phosphorylation modifications and their roles in 

transcription and mitosis. A more detailed overview of PTMs involved in the DNA 

damage response is provided in the DNA repair pathways section. 

Histone methylation 

Histone methylation occurs on lysine and arginine residues, which can be mono- di- or 

trimethylated. Methylation does not alter the net charge of the residue but alters its size 

and hydrophobic properties. Canonical methylated lysine residues include K4, K9, K26, 

K27, K36 and K79 of H3, K20 of H4, and K26 of H1 (Musselman et al. 2012). Proteins 

that bind methyllysine residues typically do so via an aromatic cage that contains two to 

four aromatic residues. The composition of residues that constitute the cage and the 

size of the pocket determine the specificity of the protein for the mono- di- or 

trimethylated state of the lysine. Protein modules that are known to recognise 

methyllysine include ATRX-DNMT3-DNMT3L (ADD), ankyrin, bromo-adjacent 

homology (BAH), chromobarrel, chromodomain, double chromodomain, malignant 

brain tumour (MBT), plant homeodomain (PHD), Pro-Trp-Trp-Pro (PWWP), tandem 

tudour domain (TTD), Tudour, WD40 and the zinc finger CW (zf-CW) (Musselman et al. 

2012). Some ‘readers’ of methyllysine are highly specific to a certain lysine residue, 

whilst others are selective for a particular methylation state (mono- di- or tri-), and are 

therefore promiscuous binders. 
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Lysine tri-methylation at the 5’ end of actively transcribed genes is conserved 

from yeast to higher eukaryotes and highlights the role of lysine methylation in 

transcription. H3K4 is methylated by the SET1 family of methyltransferases and 

functions largely as a gene activation mark; however the transcriptional output is highly 

context dependent (Schneider et al. 2004, Bernstein et al. 2002, Liang et al. 2004). For 

example, binding of the PHD finger of TAF3, which is part of the TFIID basal 

transcription complex, to H3K4me3 is associated with gene activation (Vermeulen et al. 

2007). In contrast, binding of the PHD finger of ING2, a subunit of the mSin3a histone 

deacetylase complex to the same mark is associated with gene repression (Shi et al. 

2006). H3K4me1 is a marker of active enhancer elements, and recognition of this mark 

by the chromo-barrel domain of the acetyltransferase TIP60 facilitates estrogen-

induced transcription (Jeong et al. 2011). H3K4me2 is associated with an active or 

potentially active ‘permissive’ chromatin state, whilst H3K4me3 occurs with active 

transcription (Bernstein et al. 2002, Schneider et al. 2004). H3K36 is another 

methylated lysine involved in transcription, displaying a progressive shift from mono- to 

trimethylation between the 5’ and 3’ ends of genes (Bannister et al. 2005). Set2, which 

methylates H3K36 recognises H3K36me and binds elongating RNA polymerase II, 

which recruits the Rpd3S histone deacetylase complex (Carrozza et al. 2005, Joshi et 

al. 2005, Keogh et al. 2005). The histone deacetylase activity of Rpd3S is necessary to 

prevent spurious intragenic transcription in the wake of RNA polymerase II (Venkatesh 

et al. 2012). H3K36me is also implicated in the DNA damage response, replication, as 

well as mRNA alternative splicing and dosage compensation gene upregulation in D. 

melanogaster (Musselman et al. 2012). 

H4K20 is di-methylated by Suv4-20H1/Suv4-20H2 and binds to the BAH 

domain of Orc1 to regulate replication licensing (Kuo et al. 2012). In yeast the Orc1 

BAH domain also interacts with the silent information regulator 1 (Sir1) protein (Hsu et 

al. 2005), a component of the Sir complex with structural roles in silencing at HM loci 

and telomeres (Norris & Boeke 2010).	   H4K20me2 is also involved in the DDR via 

interaction with the TTD of 53BP1, which competes with the DDR-external binding by 

the demethylases JMJD2A and JMJD2B to this residue (Botuyan et al. 2006, Mallette 

et al. 2012) (discussed in more detail later). H3K9 and H3K27 methylation marks are 

largely associated with the formation of constitutive and facultative heterochromatin 

and silencing (Musselman et al. 2012). H3K27me1 and H3K9me3 are located in 

pericentric heterochromatin (Peters et al. 2003, Rice et al. 2003), whilst H3K27me3 

and H3K9me2 are found together in transcriptionally repressed euchromatin. K27me 

recruits Polycomb proteins to repressed chromatin (Fischle et al. 2003, Min et al. 

2003), and K9me recruits heterochromatin protein 1 (HP1) for heterochromatin 
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formation and spreading (Jacobs et al. 2002, Lachner et al. 2001, Canzio et al. 2011), 

via their chromobarrel domains. Competition between the silent information regulator 3 

(Sir3) BAH domain and the methytransferase Dot1 for binding to methylated H3K79 

constitutes an important regulatory mechanism for silencing at HM loci and telomeres 

in yeast (Norris & Boeke 2010).  

Arginine residues can also be mono- or dimethylated, the latter of which occurs in 

symmetrical (Rme2s) or asymmetrical (Rme2a) conformations. Currently identified 

arginine methylation sites include H3R2, H3R8, H3R17, H3R26, H4R3, H2AR11, and 

H2AR29. Methylarginine residues are recognised by aromatic cages present in ADD, 

Tudour and WD40 domains (Musselman et al. 2012). The Tudour domain of the 

TDRD3 transcription co-activator recognises H3R17me2a and H4R3me2a to facilitate 

gene activation (Yang et al. 2010). H4R3me2s is bound by the ADD domain of the 

DNA methyltransferase DNMT3a and has a role in silencing of the β-globin gene (Zhao 

et al. 2009). Symmetric dimethylation of H3R2 by PRMT5 and PRMT7 is recognised by 

the WD40 domain of the co-activator complex component WDR5, which is required for 

euchromatin maintenance (Migliori et al. 2012).  

Histone acetylation 

Acetylation of lysine results in charge neutralization of the residue and changes the 

electrostatic properties of histones. Lysine acetylation induces a more relaxed 

chromatin structure by weakening the interaction with negatively charged DNA, and is 

largely associated with active transcription. Lysine is acetylated on H3 (K4, 9, 14, 18, 

23, 27, 36 and 56), H4 (K5, 8, 12, 16, 20, 91), H2A (K5 and 9) and H2B (K5, 12, 15, 16, 

20 and 120) (Musselman et al. 2012). Three protein binding modules recognise 

acetylated lysine: the bromodomain, PHD domain and PH domain. Bromodomains are 

~110 amino acid residue structures that bind acetylated lysine and several flanking 

residues (Hudson et al. 2000, Mujtaba et al. 2002). Bromodomains fold into a highly 

conserved four-helix bundle that consists of αA, αB, αC and αZ α-helices. Acetyllysine 

residues insert into a deep hydrophobic cavity created by inter-helical ZA and BC loops 

and contact several hydrophobic residues; often two conserved tyrosines, with 

stabilization achieved through hydrogen bonding to a highly conserved asparagine 

(Musselman et al. 2012).  

The binding affinity of individual bromodomains to single acetyllysine residues is 

often very weak, but binding can be substantially strengthened when multiply 

acetylated residues are recognised by covalently linked tandem bromodomains. For 
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example, the tandem bromodomains of TAF1, the largest subunit and core scaffold of 

the TFIID basal transcription factor complex, together form a V-shaped structure, with 

each bromodomain separated by 25Å and angled in the same direction (Jacobson et 

al. 2000). The protein has a much higher affinity for H4K5ac H4K12ac and H4K8ac 

H4K16ac doubly acetylated H4 tails than mono-acetylated peptides, with each 

bromodomain separately binding to one acetyllysine in the same H4 peptide. The first 

bromodomain of the bromodomain testes-specific protein (Brdt), which is involved in 

spermatogenesis, has a wider hydrophobic cavity that accommodates two 

acetyllysines, namely H4K5ac and H4K8ac. The second bromodomain of Brdt binds to 

H3K18ac (Mornière et al. 2009).  

The double PHD finger of Ppf3b, which functions with the SWI/SNF chromatin 

remodelling complex BAF in transcriptional programs associated with heart and muscle 

development, is also known to associate with acetylated histone peptides (Lange et al. 

2008, Zeng et al. 2010). The first PHD finger of Ppf3b binds to H3K14ac, whilst the 

second PHD finger binds to several N-terminal residues in the H3 tail. The double PH 

domain of the histone chaperone Rtt106 binds to H3K56ac and is involved in gene 

silencing and the DDR (Su et al. 2012). Histone acetylation is also important in the 

DDR through recruitment of SWI/SNF chromatin remodelling complexes (discussed in 

more detail later). Recognition of H4Kac by the double bromodomain-containing 

proteins Bdf1 and Bdf2 in yeast is important for the regulation of transcription, 

chromatin dynamics, replication-coupled DNA repair and mRNA splicing (Albulescu et 

al. 2012, Koerber et al. 2009, Garabedian et al. 2012, Matangkasombut & Buratowski 

2003). The bromodomain-containing protein ACF7 is enriched in replicating 

pericentromeric heterochromatin and is required for normal cell cycle progression 

(Collins et al. 2002).  

Histone phosphorylation 

Histone phosphorylation adds a large, negatively charged group to residues and 

similarly changes the electrostatic and topographic properties of the histone 

(Musselman et al. 2012). Serine and threonine residues are phosphorylated at T3, T6, 

S10, T11, S28 and T45 of H3, S1 of H4, S1 and T120 of H2A, S139 (human) and S129 

(yeast) of H2A.X and S14 of H2B (Musselman et al. 2012). S129 and S139 are 

phosphorylated by the phosphoinositide 3-kinase-like kinases (PIKKs) Mec1-Ddc2 in S. 

cerevisiae and ATR, ATM and DNA-PK in H. sapiens as an important signal 

transduction step following DNA DSB formation. Phosphorylated H2A.X (γ-H2A.X) 

plays a critical role in recruiting numerous DNA damage response proteins to the DSB. 

9



Mitosis and transcription are also regulated by serine and threonine phosphorylation. 

Phosphorylation of H3S10 by Aurora B kinase during mitosis regulates chromosome 

condensation and segregation by disrupting the interaction between the HP1 

chromodomain and H3K9me3, resulting in the release of HP1 from chromatin (Hirota et 

al. 2005, Fischle et al. 2005). Aurora B kinase activity at the centromere requires 

binding of Survivin to H3T3ph (Jeyaprakash et al. 2011, Wang et al. 2010). Finally, 

recognition of H3S10ph and H3S28ph by 14-3-3 protein family isoforms (Bmh1 and 

Bmh2 in yeast) is important for GAL1 and HDAC1 gene transcription (Walter et al. 

2008, Winter et al. 2008). 

Patterns of histone modifications at mammalian centromeres 

Mammalian centromeres are comprised of distinct chromatin regions characterized by 

the presence of CENP-A, H3K9me2/3 and H3K4me2. These regions regulate the 

unique properties of the centromere and the flanking pericentromeric regions. A 

discrete chromatin domain adjacent to the outer kinetochore contains CENP-A 

nucleosomes that regulate kinetochore function. Adjacent to this is a section of 

chromatin containing H3K4me2, which is thought to contribute to the physical 

organization of the centromere (Dunleavy et al. 2005). Surrounding these domains is a 

large pericentromeric region characterized by H3K9me2- and H3K9me3-enriched 

chromatin in addition to H4K20me3 (Sullivan & Karpen et al. 2004). These 

modifications function to recruit proteins such as cohesin and HP1, which are required 

for the structural maintenance and function of the pericentromeric heterochromatin 

(Nonaka et al. 2002, Verdaasdonk & Bloom 2011).  

A number of modifications have been identified that occur specifically on the N-

terminal tail of Cse4/CENPA. In budding yeast, Cse4 is methylated on R37, acetylated 

on K49, and phosphorylated on S22, S33, S40 and S105. (Boeckmann et al. 2013). 

These serine residues are phosphorylated by the Aurora B kinase Ipl1 and appear to 

regulate sister kinetochore bio-orientation (Boeckmann et al. 2013). Mutation of R37 to 

alanine impaired the association of kinetochore components with centromeres (Samel 

et al. 2012). In human cells, CENPA is phosphorylated on S7 by Aurora kinase and 

regulates kinetochore function and cytokinesis (Zeitlin et al. 2001). CENPA 

phosphorylation appears to be important during mitosis by facilitating the binding of 14-

3-3 proteins, which stabilize the association of CENPC (Goutte-Gattat et al. 2013). 

Phosphorylated S16 and S18 also occur on CENPA and affect kinetochore integrity, 

although a relationship with 14-3-3 or other proteins has not been identified (Catania & 

Allshire 2014).  
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1.1.4. Chromatin remodelling complexes 

In addition to DNA sequence, histone variants and posttranslational histone 

modifications, chromatin is regulated by chromatin remodelling complexes. These 

complexes	  have widespread roles in establishing chromatin architecture, regulation of 

transcription, silencing, chromosome segregation, DNA replication and DNA repair 

(Clapier & Cairns 2009). Chromatin remodelling complexes are multi-subunit 

complexes that contain a single core catalytic ATPase subunit able to generate an 

array of nucleosome-related outputs. These include nucleosome sliding or 

repositioning, ejection, DNA unwrapping, transfer of H2A/H2B dimers and histone 

octamers between nucleosomes and to histone chaperones or other DNA molecules 

(Clapier & Cairns 2009). Central to these processes is the generation of force provided 

by ATP hydrolysis that breaks histone-DNA contacts and translocates DNA. How the 

ATPase translocates DNA and generates force and how translocation and force 

generation are coupled on nucleosomes is fundamental to understanding the 

remodelling process (Sirinakis et al. 2011).  

Chromatin remodelling complexes function during DNA replication to eject and 

chaperone histone octamers in the path of DNA polymerases, as well as deposit and 

reposition them after replication (Clapier & Cairns 2009). Similarly, chromatin 

remodelling complexes replace and reposition nucleosomes ejected during 

transcription. They control the exposure of regulatory DNA sequences and DNA break 

sites to allow access for DNA binding proteins and the DNA repair machinery. There 

are four families of chromatin remodelling complexes, namely SWI/SNF, ISWI, CHD 

and INO80, which are specialized for particular biological functions and contexts 

(Clapier & Cairns 2009). This section focuses on SWI/SNF chromatin remodelling 

complexes, reviewing their subunit composition and summarising their known roles in 

various chromatin-related activities from yeast to humans.  

Subunit composition of SWI/SNF chromatin remodelling complexes 

SWI/SNF (switching defective/sucrose non-fermentable) chromatin remodelling 

complexes are composed of between 8 and 14 subunits (Clapier & Cairns 2009). In 

most eukaryotes two related complexes that contain related ATPase catalytic subunits 

are found. The catalytic ATPase subunits contain an N-terminal HSA (helicase-SANT) 

domain, an ATPase domain that is split into two parts termed DExx and HELICc, and a 

single C-terminal bromodomain. Various other conserved subunits that harbour 
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conserved domains are found in both complexes, in addition to subunits that are 

unique to each complex and provide functional specificity.  

In yeast, the two SWI/SNF complexes are known as SWI/SNF and RSC (remodels the 

structure of chromatin). RSC is an abundant (~1000-2000 molecules per cell), essential 

chromatin remodelling complex (Cairns et al. 1996) from which 17 subunits have been 

identified, namely Sth1, Rsc1, Rsc2, Rsc3, Rsc4, Rsc6, Rsc7/Npl6, Rsc8, Rsc9, Sfh1, 

Arp7, Arp9, Rsc30, Htl1, Rtt102, Rsc58 and Ldb7. Sth1, which is essential for viability, 

provides the ATPase catalytic activity and is closely related to the Swi2/Snf2 catalytic 

subunit of the SWI/SNF complex. Rtt102, Arp7 and Arp9 are found in both RSC and 

SWI/SNF complexes, and Sfh1, Rsc8 and Rsc6 are homologous to subunits found in 

SWI/SNF (Table 1.1)  

 

Table&1.1&Subunit&compostion&of&RSC&and&SWI/SNF&complexes
S.#cerevisiae Human
RSC SWI/SNF PBAF (hSWI/SNF-B) BAF (hSWI/SNF-A)
Sth1 Snf2 BRG1 BRM or BRG1
Arp7 Arp7 β-actin β-actin
Arp9 Arp9 BAF53 BAF53
Rtt102 Rtt102
Rsc6 Swp73 BAF60 BAF60
Sfh1 Snf5 SNF5 SNF5
Rsc8 Swi3 BAF170 and BAF155 BAF170 and BAF155
Rsc3
Rsc30
Rsc1, Rsc2 and Rsc4 BAF180

BRD7
BAF200

Swi1 BAF250
Rsc7
Rsc9
Ldb7
Htl1
Rsc58

BAF45 BAF45
BAF57 BAF57

Snf6
Snf1
Swp29
Swp82

Table adapted from Chambers et al. 2012. Catalytic subunits are shown in bold. 
Rows show homologous subunits. RSC and SWI/SNF share Arp7, Arp9 and 
Rtt102, and four other homologous subunits. RSC is homologous to the human 
PBAF complex, and SWI/SNF is homologous to the human BAF complex. 
BAF180, BRD7 and BAF200 are specific to PBAF, and BAF250 is specific to BAF 
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Domain architecture of the RSC complex subunits Rsc1, Rsc2 and Rsc4 

At least two isoforms of the complex occur, containing either Rsc1 or Rsc2 (Cairns et 

al. 1999). Deletion of both RSC1 and RSC2 is lethal, whilst single deletion retains 

viability, suggesting that there is some degree of functional redundancy. Rsc2 is 

approximately 10-fold more abundant than Rsc1 but both proteins have highly similar 

domain organization with 46% amino acid sequence identity and 62% similarity (Cairns 

et al. 1999) (Figure 1.1). Both proteins contain two bromodomains, the first of which is 

largely dispensable whilst the second is important for protein function (Cairns et al. 

1999). They also contain an AT hook, a bromo-adjacent homology (BAH) domain and a 

C-terminal region (Figure 1.1). AT hooks are short DNA-binding motifs that 

preferentially bind to the minor groove of AT-rich DNA (Cairns et al. 1999). Although 

the AT hook is only necessary for Rsc1-specific functions, an AT hook must be present 

in either Rsc1 or Rsc2 for viability (Cairns et al. 1999). The C-terminal regions of Rsc1 

and Rsc2 are necessary and sufficient for incorporation into the rest of the RSC 

complex (Cairns et al. 1999).  

Rsc4 contains two bromodomains in tandem (Figure 1.1); the first (BD1) binds 

acetylated lysine 25 (K25ac) of Rsc4 itself and the second (BD2) binds acetylated 

lysine 14 of histone H3 (H3K14ac) (VanDemark et al. 2007). Gcn5 acetylates both 

Rsc4 K25 and H3K14, and binding of Rsc4 K25ac to BD1 prevents binding of BD2 to 

H3K14ac, indicating an autoregulation mechanism for histone modification recognition 

(VanDemark et al. 2007). A specific role for H3K25ac in promoting resistance to 

replication stress was discovered more recently (Charles et al. 2011). Less is known 

about the binding targets of the Rsc1 and Rsc2 bromodomains. Whilst the first 

bromodomain (BD1) of each protein is largely dispensable, the second bromodomain is 

important for function (Cairns et al. 1999). One study has examined the in vitro binding 

ability of the individual bromodomains of Rsc1 and Rsc2. Interestingly, all four 

bromodomains displayed extremely weak binding to the selection of acetyl-lysine-

containing histone peptides tested and were classed as ‘non-binders’ (Zhang et al. 

2010). It is therefore possible that these bromodomains in fact bind other non-histone 

acetylproteins.  
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Bromo-adjacent homology (BAH) domains are ~200 amino acid residue structures 

found in several chromatin-associated proteins (Goodwin & Nicolas 2001, Callebaut et 

al. 1999). BAH domains fall into two classes based on amino acid sequence (Callebaut 

et al. 1999, Oliver et al. 2005). The ‘RSC-like’ class includes the BAH domains of Rsc1, 

Rsc2 and the two BAH domains found in the homologous BAF180 protein, as well as 

those of the transcription factor Ash1 and the CpG-DNA methyltransferase DNMT1 

(DNA (cytosine-5) methyltransferase 1). The ‘Sir3-like’ class includes the BAH domains 

of Orc1 (origin recognition complex 1) and Sir3 (silent information regulator 3), which 

arose through a duplication of Orc1 in S. cerevisiae (Hickman & Rusche 2010, 

Chambers et al. 2013).  

Transcriptional silencing by Orc1 and Sir3 at telomeres and the HML/R loci in 

budding yeast is critically dependent on their BAH domains (Norris & Boeke 2010). The 

BAH domain of Orc1 interacts with Sir1 (silent information regulator 1) (Hsu et al. 

2005), and in higher eukaryotes an interaction exists between Orc1 and HP1 

(heterochromatin protein 1) (Duncker et al. 2009). The BAH domain of Orc1 also 

mediates an interaction with nucleosomes (Noguchi et al. 2006, Muller et al. 2010). In 

higher eukaryotes this interaction is via H4K20me2 and is important for replication 

licensing (Kuo et al. 2012). In yeast the Sir3 BAH domain also binds to nucleosomes 

(Norris et al. 2008, Onishi et al. 2007) via the LRS (loss of ribosomal silencing) region, 

which includes sequences from H3 and H4, and also makes extensive contacts with all 

four core histones (Armache et al. 2011).  

Recently, work in our lab identified a role for the Rsc2 BAH domain in rDNA 

silencing and nucleosome binding, which in contrast to the Sir3 BAH domain interacts 

specifically with H3 (Chambers et al. 2013). Furthermore, resolution of the Rsc2 BAH 

crystal structure at 2.4A revealed major differences between the structure of Rsc2 BAH 
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1" 889"

1" 625"
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AT"hook"

AT"hook"

CT1" CT2"

CT1" CT1"

Figure 1.1. Domain organization of the RSC subunits Rsc1, Rsc2 and Rsc4. BD; 
bromodomain, BAH; bromo-adjacent homology, CT1; C-terminal region 1, CT2; C-terminal 
region 2 
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compared to those of Orc1 and Sir3. The canonical BAH domain is comprised of a 

distorted B-barrel core with additional N- and C-terminal B-strand and 310 elements 

(Callebaut et al. 1999, Oliver et al. 2005). The core fold of all three BAH domains is 

highly conserved, and the Orc1 and Sir3 BAH domains contain an inserted H-domain 

(involved in protein-partner interactions) as well as a C-terminal helix-turn-helix motif 

(involved in specific nucleosome interactions). Notably, both of these additional 

structural motifs are absent in the Rsc2 BAH domain, presenting a unique and distinct 

interface for H3 binding. The study also showed that the Rsc1 and homologous 

proximal BAF180 BAH domain similarly display H3-specific binding. In addition, a novel 

Rsc2 BAH domain motif was identified that when mutated abrogates H3 binding in vitro 

and causes defective Rsc2 function in vivo (Chambers et al. 2013).  

1.1.5. Properties of the RSC complex 

Structural conformations of the RSC complex 

Studies utilizing cryo-electron microscopy to visualize the structure of the RSC complex 

revealed a central cavity that appears able to accommodate a nucleosome. Addition of 

nucleosomes resulted in an increased density within the central cavity, suggesting that 

it indeed constitutes a nucleosome-binding cavity (Leschziner et al. 2007, Chaban et al. 

2008, Asturias et al. 2002). Two different conformations of the complex were observed 

when Rsc2-RSC (Leschziner et al. 2007) and mixtures of the Rsc1-RSC and Rsc2-

RSC (Chaban et al. 2008, Skiniotis et al. 2007) complexes were analysed, termed 

‘open’ and ‘closed’. The predominant difference between the conformations was the 

positioning of the lower arm part of the complex. The ‘closed’ conformation was 

stabilized when acetylated H3 N-terminal peptides were incubated with the complexes 

(Skiniotis et al. 2007). A third conformation was also observed in ~16% of complexes in 

which part of the lower arm was absent or had reduced density. This might represent a 

conformation specific to Rsc1-RSC since this complex is known to account for ~10% of 

all RSC (Skiniotis et al. 2007, Chambers & Downs 2012). Addition of nucleosomes did 

not result in any major changes to RSC structure, however changes to the nucleosome 

were observed, including loss of H2A-H2B dimers (Chaban et al. 2008). In support of 

RSC-induced changes to nucleosomes the sensitivity of nucleosomal DNA to 

degradation by exonuclease III and DNase I was found to increase upon RSC binding 

(Lorch et al. 2010, Lorch et al. 1998).  
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Biochemical activity of the RSC complex 

The RSC complex has been shown in vitro to perform nucleosome remodelling, 

repositioning, disassembly and octamer transfer. Its ATPase activity can be stimulated 

by at least 25bp of DNA but was not stimulated further upon addition of nucleosomes. 

A maximal turnover rate of ~7.5 ATP molecules per second was also observed (Cairns 

et al. 1996, Boyer et al. 2000, Saha et al. 2002). By itself, Sth1 was found to have ~2.5 

times lower ATPase activity compared to the intact Rsc2-RSC complex (Saha et al. 

2002). ATP hydrolysis by Sth1/RSC was also coupled to 3’-5’ translocase activity as 

shown by DNA length-dependent stimulation, as well as stimulation by DNA minicircles 

and triplex displacement activity (Saha et al. 2002, Saha et al. 2005).  

RSC has been shown to bind DNA and nucleosomes with comparable affinity, 

and incubation with nucleosomes and ATP induces a slower migrating ‘activated’ form 

of the complex. This form of RSC renders nucleosomal DNA more sensitive to DNase I 

and suggests RSC is able to alter the structure of the nucleosome (Lorch et al. 1998). 

In a different assay an inaccessible restriction site on the surface of the nucleosome 

was rendered accessible to digestion after ATP-dependent remodelling by RSC (Cairns 

et al. 1996, Lorch et al. 1998, Saha et al. 2002). Additional RSC functions include 

nucleosome repositioning, histone octamer transfer onto naked DNA and nucleosome 

disassembly in the presence of histone chaperones (Lorch et al. 2006, Lorch et al. 

1999, Ferreira et al. 2007).  

Other RSC subunits are important for maximal RSC activity because Sth1 alone was 

found to be five to six-fold less active than RSC in nucleosome mobilization (Saha et al. 

2002). These auxiliary subunits might function to increase the affinity of RSC for 

nucleosomes. Tetra-acetylated H3-containing nucleosomes were remodelled by RSC 

~16 times faster than unmodified nucleosomes due to preferential binding to the 

acetylated nucleosomes (Ferreira et al. 2007). In addition, RSC binds to nucleosomes 

acetylated by NuA4 with greater affinity (Ferreira et al. 2007), suggesting a possible 

role for the bromodomain-containing subunits (Rsc1, Rsc2, Rsc4 and Sth1) in RSC 

recruitment to chromatin and maximal remodelling activity (Chambers & Downs 2012). 

It is unclear as to whether the Rsc1- and Rsc2-containing isoforms of RSC possess 

different biochemical properties. This is because the in vitro assays described above 

have largely used either Rsc2-RSC alone or a mixture of Rsc1-RSC and Rsc2-RSC.  

Studies have examined the molecular mechanism of nucleosome remodelling 

by RSC using single molecule approaches. RSC formed relaxed supercoiled DNA 

loops between 400 and 700bp in length in an ATP-dependent manner on DNA tethered 
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and stretched at low force with a magnetic trap (Lia et al. 2006). Loop formation of 

sizes between 20 and 1200bp (averaging ~100bp) was also observed on nucleosomal 

DNA templates, but these loops could not form at higher tensions (Zhang et al. 2006). 

Loop slippage was observed on both DNA templates, however the highest rate of 

translocation occurred on naked DNA (>500bp per second) compared to nucleosomal 

DNA (12bp per second). Together these data suggest a mechanism for remodelling 

that first sees the formation of a DNA bulge on the surface of the nucleosome. This 

bulge is then extended to generate a larger bulge, which upon dissipation can lead to 

reversal of the translocation, a jump in the position of the nucleosome, or nucleosome 

sliding (Chambers & Downs 2012).  

In vivo functions of the RSC complex  

RSC is known to regulate the transcription of many genes and co-immunoprecipitates 

with all three RNA polymerases (Angus-Hill et al. 2001, Soutourina et al. 2006, Ng et 

al. 2002). RSC activates and represses transcription of a group of genes that are 

distinct from those regulated by SWI/SNF (Du et al. 1998, Angus-Hill et al. 2001, Floer 

et al. 2010). Binding of RSC was observed at ~700 promoters (~11% of genes) when 

assayed by ChIP-on-ChIP, and there was no difference in the binding profiles between 

Rsc1 and Rsc2 (Ng et al. 2002). Furthermore, in a rsc4 mutant strain ~12% of RNA 

polymerase II-transcribed genes were up- or down-regulated by at least 2-fold 

(Soutourina et al. 2006). RSC was also present at a number of tRNA promoters 

transcribed by RNA polymerase III and enriched at numerous genes involved in 

mitochondrial function, nitrogen and carbon metabolism as well histone gene 

promoters. Several rsc mutants display misregulated gene transcripts affecting cell wall 

integrity, cell cycle control and spindle pole body formation, yet RSC was not enriched 

at their corresponding promoters. Conversely, some transcripts from promoters at 

which RSC is enriched were not misregulated in rsc mutants (Angus-Hill et al. 2001), 

indicating that there is not a straightforward correlation between RSC occupancy at 

promoters and transcriptional activity.  

RSC is also involved in kinetochore function. Mutations in Sth1 and Sfh1 were 

found to interact genetically and biochemically with mutants of various kinetochore 

components, the centromere-specific histone H3 variant Cse4 and mutated 

centromeric DNA elements (Hsu et al. 2003). In addition, RSC localized to centromeric 

and centromere-proximal chromatin. Sth1 and Sfh1 mutants displayed an altered 

centromeric chromatin structure, yet kinetochore components, including Cse4, 

remained associated with the centromere. This suggests that RSC functions in a post-
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recruitment step to assemble or maintain centromeric chromatin structure, which in turn 

leads to the correct configuration of the kinetochore. Consistent with kinetochore 

dysfunction the Sth1 and Sfh1 mutants missegregated authentic chromosomes at a 

higher frequency than wild-type strains (Hsu et al. 2003).  

Other functions of RSC include adaptation to the spindle assembly checkpoint 

(Rossio et al. 2010), nuclear pore complex localization (Titus et al. 2010) and sister 

chromatid cohesion (Baetz et al. 2004, Huang et al. 2004) (discussed later). Several 

rsc mutants also affect cell cycle progression and strains harbouring deletions, 

temperature sensitive alleles or degron alleles of genes encoding various RSC 

subunits (namely Sth1, Sfh1, Rsc3, Rsc4, Rsc6, Rsc8, Rsc9 and Rsc58) activate the 

G2/M DNA damage checkpoint (Chambers & Downs 2012). 

1.1.6. Mammalian SWI/SNF complexes 

Mammalian cells contain two closely related SWI/SNF complexes known as BAF 

(BRG1- or hBRM-associated factor) and PBAF (polybromo-BAF) (Wilson & Roberts 

2011) (Table 1.1). PBAF (also called SWI/SNF-B) is the mammalian orthologue of the 

yeast RSC complex and contains twelve subunits, four of which constitute a highly 

conserved core including BRG1, the catalytic ATPase, BAF155, BAF170 and SNF5 

(Table 1.1). Five subunits are classed as variant subunits, including β-actin, BAF53A/B, 

BAF60A/B/C, BAF57 and BAF45A/B/C/D. These core and variant subunits are also 

found in the BAF complex, which is orthologous to the yeast SWI/SNF complex 

(Table1.1). BAF contains either the ATPase subunit BRG1 or hBRM, which are 

mutually exclusive, as well as the BAF-specific subunit BAF250A/B, whilst BAF180, 

BAF200 and BRD7 are unique to PBAF (Wilson & Roberts 2011). Table 1.2 shows the 

gene and protein names for the complete list of SWI/SNF subunits.  

Mammalian SWI/SNF complexes are highly diverse owing to the differential 

lineage-restricted expression timing of the variant subunits. Along with the differential 

inclusion of subcomplex-specific subunits it is thought that several hundred variant 

SWI/SNF complexes might exist (Wu et al. 2009). A major role of mammalian SWI/SNF 

complexes is the regulation of lineage-specific differentiation during neurogenesis, 

myogenesis, apipogenesis, osteogenesis and haematopoiesis (Kaeser et al. 2008, 

Lickert et al. 2004, Wu et al. 2009, Lessard et al. 2007, Yan et al. 2008). This appears 

to be achieved through interaction with tissue-specific transcription factors to regulate 

tissue-specific gene activation and repression. The differentially expressed variant 

subunits might modulate this activity by interacting with the tissue-specific factors to 

direct the complex’s remodelling activity to specific loci (Wilson & Roberts 2011).  
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SWI/SNF subunits are frequently mutated in diverse cancers 

Recent whole-exome sequencing studies have identified frequent mutations in subunits 

of SWI/SNF chromatin remodelling complexes in a diverse range of cancers. Most of 

these studies have analysed one tumour type, often reporting a strikingly high 

frequency of mutation in one specific SWI/SNF subunit. However, these studies have 

largely focused on the ‘top hits’ as the most frequently mutated genes. In an effort to 

systematically define the frequency and spectrum of SWI/SNF mutations across a 

broad range of human cancers, Shain and Pollack analysed mutational datasets from 

24 studies, covering 18 cancer types. The authors revealed that the cancer types most 

frequently harbouring SWI/SNF mutations were ovarian clear-cell carcinoma (75%), 

clear cell renal cell carcinoma (57%), hepatocellular carcinoma (40%), gastric cancer 

(36%), melanoma (34%), and pancreatic cancer (26%). Strikingly, across all cancer 

types analysed, the average frequency of SWI/SNF mutation was 19%, approaching 

that of p53 at 26% (Shain & Pollack 2013).  

The size of SWI/SNF’s collective genomic ‘footprint’ might account for a high 

frequency of passenger mutations that could explain such mutation frequencies in 

cancer. In argument against this, it was found that the vast majority of mutations (72%) 

were predicted to be deleterious (38.8% frameshift, nonsense, rearrangement and 

splice-site, and 33.2% missense damaging). This suggests that most SWI/SNF 

mutations are likely to be driver mutations in cancer. Reports suggest that alternative 

mechanisms, including genomic DNA deletions, rearrangements and epigenetic 

silencing might contribute to SWI/SNF subunit inactivation (Shain et al. 2012, Delbove 

Table&1.2.&Gene&and&protein&names&of
human&SWI/SNF&subunits&
Gene Protein
SMARCA4 BRG1
SMARCA2 BRM
ACTB β-actin
ACTL6A BAF53
SMARCB1 SNF5
SMARCC1 BAF155
SMARCC2 BAF170
SMARCD1 BAF60
PBRM1 BAF180
BRD7 BRD7
ARID2 BAF200
ARID1A BAF250
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et al. 2011). Therefore, these sequencing results might actually underestimate the true 

frequency of SWI/SNF inactivation (Shain & Pollack 2013).  

The enzymatic and targeting subunits of SWI/SNF are preferentially mutated in cancer 

SWI/SNF subunits can be roughly grouped as enzymatic subunits (Brg1 and hBRM), 

targeting subunits that confer functional specificity to each complex (BAF250A/B for 

BAF, BAF180, BAF200 and BRD7 for PBAF), and the remaining core and variant 

subunits, termed scaffolding subunits (Shain & Pollack 2013). Intriguingly, the majority 

of SWI/SNF mutations were found to occur in the genes of the enzymatic or targeting 

subunits. Specifically, the five most frequently mutated genes were ARID1A (9% of 

SWI/SNF nonsynonymous mutations), PBRM1 (4%), SMARCA4 (3%), ARID1B (2%) 

and ARID2 (2%). However, mutations were found in the scaffolding subunits albeit at a 

noticeably lower frequency (none exceeded a frequency of 0.6%). The fact that 

mutations are found in a range of subunits suggests that they impact in part or whole 

the functional activity of the complex. That the enzymatic and targeting subunits are 

mutated more frequently might suggest that they are particularly critical for SWI/SNF 

function.  

Certain cancer types often exhibit mutations predominantly in a single SWI/SNF 

subunit 

Analysis of individual cancer types often reveals that a single SWI/SNF subunit is 

mutated. The most striking cases include SMARCB1, which is mutated in all malignant 

rhabdoid tumours (Roberts et al. 2000), and PBRM1, which is mutated in 41% of all 

renal cell clear cell carcinomas (Varela et al. 2011). However, most other cancer types, 

including melanoma, pancreatic cancer and diffuse large B-cell lymphoma (DLBCL) 

display a more balanced spectrum of mutations across the most commonly mutated 

subunits. An interesting question is therefore why do certain cancer types harbour 

mutations of single SWI/SNF subunits? It is possible that the affected subunit (and 

complex containing it) has cell- or tissue-type specific functions. Another possibility is 

that cell- and tissue-type specific mutational processes that preferentially affect a 

certain SWI/SNF gene or genomic locus might be operational (Shain & Pollack 2013).  

Another interesting question is whether SWI/SNF mutations preferentially occur 

within certain subunit domains or structural motifs. Shain & Pollack report that no 

obvious mutation ‘hotspots’ were apparent from the exome data analysed as a whole. 

However, they note that the data appears too sparse to draw any firm conclusions in 
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this regard. Nevertheless, a few validation studies that analysed specific subunits 

(including ARID1B) in much larger cohorts similarly reported a lack of mutation 

‘hotspots’ (Wang et al. 2011, Wiegand et al. 2010). The authors also investigated 

whether mutations in different SWI/SNF subunits were mutually exclusive of each 

other. They revealed that two mutations in different subunits occurred in the same 

tumour at roughly the same frequency as that expected by chance. This suggests that 

mutational ‘hits’ in two different subunits are not functionally redundant, and that 

individual mutations might incrementally impair the function of the complex (Shain & 

Pollack 2013).  

Mutations in SWI/SNF are not mutually exclusive of other cancer gene mutations 

The tumour suppressive role of SWI/SNF complexes is widely thought to operate by 

transcriptionally regulating the activity and expression of key tumour suppressor genes 

and pathways. These include Rb, p53, Polycomb, sonic hedgehog, Myc, stem cell 

programs and nuclear hormone receptor signalling (discussed later) (Wilson & Roberts 

2011). Shain & Pollack performed a mutual exclusivity analysis on the exome 

sequencing data in an effort to identify key SWI/SNF tumour suppressor pathways. The 

rationale follows that one particular linear pathway in a tumour is unlikely to harbour 

multiple components with a mutation because these mutations would be functionally 

redundant. Thus, identifying components of a pathway that are only mutated when 

SWI/SNF mutations are not present could indicate a shared pathway. Similarly, 

identifying components that are always found mutated with SWI/SNF mutations in the 

same tumour might indicate a necessary cooperating pathway (Shain & Pollack 2013).  

Mutual exclusivity has been previously reported with ARID1A and p53 

mutations in both ovarian clear cell carcinoma and gastric cancer (Wang et al. 2011, 

Guan et al. 2011). Shain & Pollack similarly concluded from the datasets available that 

a trend towards mutual exclusivity occurs with SWI/SNF and p53 mutations in these 

cancers, although only gastric cancer reached statistical significance (P=0.018; 

Fisher’s exact test). The authors highlight a need for caution when interpreting these 

trends, however, because of histological and genetic diversity amongst these two 

cancer types. Thus, mutual exclusivity might actually correlate with a cancer subtype 

rather than a mechanistic relationship. In contrast, mutual exclusivity was not observed 

between SWI/SNF and p53 in pancreatic cancer, melanoma, hepatocellular carcinoma 

and DLBCL. In fact, in pancreatic cancer all cases harbouring SWI/SNF mutations 

actually had a p53 mutation, indicating a trend towards mutual inclusivity (P=0.085; 

Fisher’s exact test) (Shain & Pollack 2013).  

21



SWI/SNF complexes are also thought to contribute to tumour suppression by 

antagonizing the oncogenic activity of polycomb repressive complex 2 (PRC2) (Shain 

et al. 2012, Wilson et al. 2010). EZH2 is the enzymatic component of PRC2 and 

harbours activating mutations in ~15% of DLBCL. The study by Shain & Pollack 

revealed several cases of DLBCL containing a mutation in both SWI/SNF and EZH2, 

suggesting that mutual exclusivity does not occur with these mutations (Shain & 

Pollack 2013). In an effort to more systematically identify cancer gene mutations that 

display mutual exclusivity with SWI/SNF mutations, the authors analysed the top 189 

mutated genes (those with ≥13 mutations) from the entire exome sequencing dataset 

from all 24 studies. These genes included many well-established tumour suppressor 

genes (e.g. KRAS, BRAF, CDKN2A, PTEN, NF1, APC, SMAD4) that function in 

canonical cancer signalling pathways, including Ras, PI3K, Wnt and Notch. However, 

no significant mutual exclusivity (or inclusivity) was observed with SWI/SNF mutations. 

As a favoured explanation for this the authors suggest that SWI/SNF impacts many of 

the aforementioned pathways simultaneously, which might obscure any mutually 

exclusive relationships (Shain & Pollack 2013). In support of this, the fact that SWI/SNF 

mutations are found in such a broad range of cancers in diverse tissue types implies 

that SWI/SNF impacts upon processes that are largely conserved. In addition, recent 

studies have identified between 5,000 and 10,000 SWI/SNF binding sites within the 

genome (Ho et al. 2009, Euskirchen et al. 2011), suggesting that SWI/SNF 

transcriptionally regulates many genes. Finally, and as mentioned previously, the 

orthologous SWI/SNF-related complexes in yeast are known to transcriptionally 

regulate diverse biological processes, including mitochondrial function, nitrogen and 

carbon metabolism, and cell cycle regulation. Deregulation of the equivalent processes 

in human cells (perhaps relating to growth, survival and metabolism) might also 

contribute to tumourigenesis (Shain & Pollack 2013).  

1.1.7. Transcriptional regulation as a potential SWI/SNF tumour suppressor 

mechanism   

Regulation of p21 

Cellular senescence is an irreversible cell cycle arrest that serves to restrain the 

proliferation and transformation that results from oncogene activation. A unifying 

feature of oncogene-induced senescence is the activation of a robust DNA damage 

response (DDR) (Di Micco et al. 2006, Bartkova et al. 2006, Mallette et al. 2007), 

indicating that DNA damage is an important senescence stimulus. p53 is a transcription 
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factor with diverse roles in cell cycle control, DNA repair, apoptosis and stress 

responses, and is a major component of the senescence pathway. p53 is activated in 

response to several oncogenes, including RasV12, STAT5, E2F1, Mos and Cdc6, and 

is dependent on the DDR kinases ATM, ATR, Chk1 and Chk2 (Di Micco et al. 2006, 

Bartkova et al. 2006, Mallette et al. 2007). Activated p53 induces the expression of the 

CDK inhibitor p21, which effects cell cycle arrest (Rufini et al. 2013).  

As mentioned previously, the gene encoding the PBAF-specific subunit BAF180 

(PBRM1) is mutated in many cancers. PBRM1 was first identified as harbouring 

multiple truncating mutations in breast cancer in a screen for novel breast cancer 

tumour suppressor genes (Xia et al. 2008). Specifically, 3 out of 26 breast cancer cell 

lines harboured truncating mutations that abolished protein expression and showed 

strong evidence of loss of heterozygosity (LOH). In addition, mutational screening of 52 

primary breast tumours identified one other truncating mutation, and 25 of these 

samples (48.1%) showed BAF180 LOH without a mutation. Interestingly, all four of the 

identified mutations occurred in the bromodomains of BAF180 (Xia et al. 2008).  

To investigate a potential tumour suppressor role the authors showed that re-

expressing exogenous BAF180 in a mutant BAF180 breast cancer cell line reduced 

colony number and size. In addition, the BAF180-expressing cells were significantly 

enriched in G1, suggesting a role in regulating the transition from G1- to S-phase (Xia 

et al. 2008). This was found to correlate with increased expression of p21 in these 

cells, and siRNA depletion of BAF180 in a normal breast epithelial cell line led to 

reduced p21 protein levels. Furthermore, BAF180 depletion led to a reduction in p21 

mRNA and BAF180 was found to reside at the p21 promoter when analysed by ChIP in 

a BAF180-expressing breast cancer cell line (Xia et al. 2008). In addition to p53, other 

signal-regulated transcription factors are known to activate the p21 promoter, including 

SMAD2/3/4, signal transducer and activator of transcription 3 (STAT3), vitamin D3 

receptor, retinoid X receptor α, and peroxisome proliferator-activated receptor γ (Xia et 

al. 2008). The effects of γ-radiation-induced p53-dependent and TGF-β-induced 

SMAD-dependent p21 activation in the absence of BAF180 were also tested. The 

authors found that in response to these extracellular stimuli the induction of p21 and 

G1 cell cycle arrest were attenuated in the BAF180 siRNA-depleted breast cancer 

cells. Together, these data indicate that BAF180 functions as a regulator of cell cycle 

exit at G1, at least in part via p21 regulation, in response to various environmental 

stimuli (Xia et al. 2008).  

A subsequent study by Burrows et al. similarly identified BAF180, as well as another 

PBAF-specific subunit, BRD7, as being unique regulators of replicative senescence in 
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human cells (Burrows et al. 2010). The authors performed a whole-genome shRNA 

screen in primary BJ fibroblasts and found that BRD7-depleted cells were largely 

unable to senesce compared to the control cells. BRD7-depleted BJ fibroblasts 

significantly delayed senescence and showed increased proliferation under normal 

conditions as well as in cells expressing the HPV E7 oncoprotein, which binds and 

inhibits Rb. This suggests that BRD7 regulates senescence independently of Rb. In 

addition, RasV12D-induced p53-dependent senescence was reduced in BRD7-

depleted cells, suggesting a role for BRD7 in both replicative and oncogenic 

senescence (Burrows et al. 2010).  

The authors next examined p53-dependent p21 induction in cells lacking BRD7, 

and found that basal p21 mRNA levels were reduced in BRD7 shRNA-treated cells. In 

addition, treatment with nutlin-3a, an inhibitor of MDM2 that results in p53 stabilization, 

similarly led to reduced p21 mRNA levels in the absence of BRD7. Stabilization of p53 

after nutlin-3a treatment was found to be normal in the BRD7 shRNA-treated cells, 

consistent with a role of BRD7 downstream of p53. Interestingly, MDM2 mRNA levels 

were also reduced, indicating that p21 is not the only p53 target gene regulated by 

BRD7. Both p21 and Mdm2 basal mRNA levels were also reduced in BRD7-depleted 

cells transduced with RasV12D compared to control cells, implicating BRD7 in the 

expression of several p53 target genes following replicative and oncogenic stress 

senescence induction (Burrows et al. 2010).  

To further analyse the involvement of BRD7 in p53-mediated gene expression 

the authors performed gene expression profiling on control and BRD7 shRNA-depleted 

cells after nutlin-3a treatment. The genes found to be most differentially expressed 

between the control and BRD7 shRNA-treated cells were then compared with a list of 

previously identified p53 target genes (Riley et al. 2008). A number of additional p53 

target genes were found to be down-regulated in BRD7-depleted cells, including DcR1, 

TRIM22, NDRG1 and PLYCARD. However, expression of other p53 target genes, such 

as Bax, did not require BRD7, suggesting that BRD7 is required for expression of only 

a subset of p53 target genes (Burrows et al. 2010). BRD7 was found to co-

immunoprecipitate with p53, suggesting that the two proteins physically interact. BRD7 

contains a single bromodomain that is known to bind H3K14ac (Peng et al. 2006). To 

determine whether the BRD7 bromodomain is also required for the interaction between 

BRD7 and p53, a strain harbouring a deletion of the bromodomain was created. The 

BRD7-p53 interaction was found to remain in this strain, indicating that the 

bromodomain is dispensable for this interaction (Burrows et al. 2010).  

BAF180 was similarly found to be required for replicative senescence, 

consistent with the findings by Xia et al. BAF180 depletion led to delayed senescence 
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and proliferation, decreased basal and nutlin-3a-induced p21 expression, and 

decreased nutlin-3a-induced Mdm2 and DcR1 expression. This suggests that BAF180 

is also required for expression of a subset of p53 target genes (Burrows et al. 2010).  

Wild-type BRD7 overexpression in BJ fibroblasts led to premature senescence 

and elevated p21 expression, whilst overexpression of the BRD7 bromodomain mutant 

did not slow proliferation or increase p21 to the same level. In response to nutlin-3a 

reduced p21 was also observed in the mutant-expressing cells compared to wild-type 

BRD7-expressing cells. This suggests that the BRD7 bromodomain has a functional 

role in mediating p21 expression, and might function to bridge p53 to chromatin for its 

transcriptional activity (Burrows et al. 2010). In a database consisting of 3,131 samples 

and cell lines from 54 cancer subtypes (Beroukhim et al. 2010) BRD7 was deleted at a 

statistically significant frequency, supporting a tumour suppressor function. Again, the 

scale of involvement of this subunit in tumour suppression might be underestimated by 

mutation frequency alone, because BRD7 expression was silenced by promoter 

methylation in samples of nasopharyngeal carcinoma (Liu et al. 2008).  

Finally, the authors showed that BRD7 also affects p53-independent p21 

transcription. BRD7 was found to be required for TGF-β-induced SMAD-dependent p21 

activation in HCT116 cells, similar to findings by Xia et al. with BAF180, as well as for 

p21 induction by 1α,25(OH)2D3 (vitamin D) in human mammary epithelial cells 

(Burrows et al. 2010).  

Regulation of pluripotency and differentiation 

In embryonic stem (ES) cells a unique subset of variant SWI/SNF complexes 

cooperate with various ES cell-associated factors to regulate pluripotency and self-

renewal (Yan et al. 2008, Ho et al. 2009, Kidder et al. 2009, Gao et al. 2009). Mouse 

embryos lacking BRG1, SNF5, BAF155 or BAF250A die around the peri-implantation 

stage of development, soon after the formation of ES cells (Roberts et al. 2000, 

Klochendler-Yeivin et al. 2000, Guidi et al. 2001), and BRG1 or BAF250A deficiency 

results in self-renewal defects and increased differentiation (Bultman et al. 2000, Gao 

et al. 2009). A variant complex in which BAF170 is replaced by a second BAF155 

subunit interacts with ES cell-specific transcription factors such as OCT4, SOX2 and 

NANOG at ES-specific target promoters (Ho et al. 2009). Overexpression of BRG1 

and/or BAF155 results in the reprogramming of fibroblasts into induced pluripotent 

stem (iPS) cells (Singhal et al. 2010). In addition, upregulation of stem cell-associated 

signatures occurs following SNF5 inactivation in primary embryonic fibroblasts as well 

as in SNF5-mutated malignant rhabdoid tumours, which are characteristically poorly 
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differentiated (Wilson et al. 2010). Thus, the regulation of pluripotency and 

differentiation might represent one possible mechanism for SWI/SNF’s tumour 

suppressor activity (Wilson & Roberts 2011).  

Antagonism of PRC2 oncogenic activity 

Studies in D. melanogaster revealed that SWI/SNF mutations suppressed defects 

associated with mutated PcG (Polycomb Group) proteins (Kennison & Tamkun 1988, 

Tamkun et al. 1992). EZH2 is the enzymatic subunit of PRC2 (polycomb repressive 

complex 2) and has a key role in lineage-specific developmental silencing by facilitating 

the trimethylation of H3K27 (Cao & Zang 2004). Whilst PcG proteins were shown to 

repress Hox gene expression, SWI/SNF complexes were required for Hox gene 

activation (Kennison 1995), suggesting an antagonistic relationship. As mentioned 

previously, EZH2 expression is often elevated in various cancers, including breast 

cancers, prostate cancers and lymphomas, and correlates with advanced disease 

progression and poor prognosis (Simon & Lange 2008). A mechanistic relationship 

between PcG and SWI/SNF in cancer was suggested after finding that SNF5 re-

expression in an SNF5-deficient rhabdoid tumour cell line resulted in PcG eviction at 

the CDKN2A locus (encoding the CDK inhibitor p16INK4A) (Kia et al. 2008). Supportively, 

primary SNF5-deficient tumours and primary cells with inactivated SNF5 display 

elevated EZH2 expression (Wilson et al. 2010), the latter indicating that it is a primary 

effect and not a secondary consequence of oncogenic transformation. PRC2 target 

genes are repressed in SNF5-deficient tumours and SNF5-inactivated mouse 

embryonic fibroblasts (MEFs) (Wilson et al. 2010, Kia et al. 2008), consistent with 

increased PRC2 activity. In addition, levels of H3K27me3 are increased in the absence 

of SNF5, and tumour formation is prevented in an SNF5-deficient mouse model after 

conditionally inactivating EZH2 (Wilson et al. 2010). Finally, EZH2 overexpression has 

been associated with the pathogenesis of other cancer types, in which SWI/SNF 

mutations frequently occur, including ovarian and renal cell carcinomas (Lu et al. 2010, 

Wagener et al. 2008). Together, these findings suggest that the antagonistic 

relationship between SWI/SNF and PcG complexes is an important tumour suppressor 

mechanism.  

Regulation of cell cycle progression and aneuploidy via the Rb pathway 

Rb is a multifunctional protein with diverse roles that might variously contribute to 

tumour suppression. These include G1 checkpoint regulation, cell cycle exit control 
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(relating to differentiation, senescence and quiescence), and regulation of autophagy, 

apoptosis, angiogenesis and metastasis (Burkhart & Sage 2008). The impact of Rb on 

these processes is thought to be due to transcriptional regulation of key target gene 

pathways. More recently, however, loss of Rb has been shown to increase genomic 

instability, likely stemming from defects in mitosis, and probably represents an 

important tumour suppressive function (Manning & Dyson 2012) (discussed later).  

The most intensely researched role of Rb is its ability to transcriptionally repress 

E2F-regulated genes (Manning & Dyson 2012). These include genes involved in 

regulating cell cycle progression at G1/S and proliferation, as well as DNA synthesis, 

DNA repair, mitosis, the spindle assembly checkpoint (SAC), G2/M control, apoptosis 

and differentiation. Hence, the Rb-E2F pathway constitutes an important coupling 

between cell cycle progression and the SAC (Stevaux & Dyson 2002, Hernando et al. 

2004). Rb is negatively regulated by the cyclin-dependent kinase (CDK) inhibitor 

p16INK4A, which inhibits cyclin D1-CDK4-mediated phosphorylation of Rb (Lowe & Sherr 

2003). Hyperphosphorylated Rb leads to its dissociation from E2F genes, thereby 

relieving its antiproliferative effect. SWI/SNF is implicated in controlling this pathway 

because SNF5 inactivation leads to reduced p16INK4A  expression (Isakoff et al. 2005, 

Oruetxebarria et al. 2004). SWI/SNF and Rb also cooperate directly to transcriptionally 

repress E2F-regulated genes during differentiation (Trouche et al. 1997). Interestingly, 

E2F target genes are upregulated in SNF5-mutated rhabdoid tumour cells as well as 

SNF5-deficient MEFs (Isakoff et al. 2005, Versteege et al. 2002). Co-inactivation of Rb 

or p16INK4A and SNF5 does not result in accelerated tumour formation (Isakoff et al. 

2005), and loss of SNF5 can replace the loss of Rb in pituitary tumour generation 

(Guidi et al. 2006). These observations suggest that SWI/SNF and Rb have redundant 

functions in tumourigenesis. However, tumours arising after SNF5 inactivation occur 

more rapidly and in different tissue types than those caused by Rb or p16INK4A

inactivation, suggesting the involvement of other tumour suppressor pathways.  

A fascinating study by Vries et al. showed that four cancer-associated point mutations 

in SNF5 from MRTs were fully able to initiate p16INK4A-depedent G1 arrest, senescence 

and apoptosis. This suggests that other processes other than proliferation might 

underlie the cancer association of these mutations (Vries et al. 2005). Expression of 

the S284L SNF5 mutation in a predominantly diploid SNF5-deficient MRT cell line 

(harbouring multiple structural chromosome aberrations) led to multilobed nuclei, 

aneuploidy, polyploidy and spindle and centrosome amplifications. Expression of wild-

type SNF5 in these cells did not result in this phenotype, and after 96 hours of 

expression the ~10% of cells in this cell line that were near tetraploid became almost 
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perfectly diploid (Vries et al. 2005). This suggests a role for SNF5 in the mitotic (SAC) 

checkpoint. Furthermore, aborted anaphases in S284L expressing cells appeared to be 

caused by failed kinetochore-microtubule attachment. Strikingly, whilst wild-type SNF5 

re-expression rapidly purged aneuploid cells to become diploid, two cancer-associated 

SNF5 mutations (P48S and R127G) were unable to generate a diploid population. The 

other two mutations (S284L and S289A) strongly promoted further aneuploidy (Vries et 

al. 2005).  

Previously it was shown that SNF5-induced senescence was achieved by 

activating p16INK4A, which inhibits CDK4-mediated phosphorylation of Rb (Oruetxebarria 

et al. 2004). Therefore, the authors tested whether SNF5-dependent ploidy control is 

exerted via p16INK4A. Expression of a p16INK4A-insenstivie CDK4R24C mutant in parallel 

with SNF5 expression could not revert the aneuploidy, suggesting that disruption of the 

Rb pathway prevents SNF5-dependent ploidy control (Vries et al. 2005). Re-expression 

of SNF5 led to altered expression of multiple E2F target genes, including those 

involved in mitotic control, including strong downregulation of MAD2 and E2F1. 

Overexpression of MAD2 and E2F1 is observed in many MRTs and can lead to 

aneuploidy (Hernando et al. 2004). Furthermore, expression of CDK4R24C abolished the 

SNF5-mediated downregulation of these genes. The authors conclude that regulation 

of the p16INK4A-cyclinD/CDK4-Rb-E2F pathway by SNF5 is important for ploidy control 

in MRTs. However, it is noted that additional structural roles of SNF5 (and SWI/SNF), 

such as regulation of centromere structure and/or cohesion, could also contribute to 

aneuploidy with high importance in tumourigenesis (Vries et al. 2005).  

SWI/SNF appears to regulate cyclin D1 expression levels, which might also contribute 

to tumourigenesis. Firstly, cyclin D1 levels are increased in SNF5-deficent rhabdoid 

tumour cells, and SNF5 re-expression resulted in binding if SNF5 to the cyclin D1 

promoter, reduced cyclin D1 expression and cell cycle arrest (Zhang et al. 2002, 

McKenna et al. 2008). Secondly, in cyclin D1-deficient mice SNF5 loss does not result 

in tumour formation (Tsikitis et al. 2005). Contrary to a role of elevated cyclin D1 

expression in tumourigenesis is the observation that in kidney rhabdoid tumours cyclin 

D1 levels are reduced (Gadd et al. 2010). However, cyclin D1 inhibitors attenuate the 

growth of rhabdoid tumour cells (in which all are currently known to contain an SNF5 

mutation) in vitro and in vivo. These inhibitors might therefore offer a therapeutic 

approach to the treatment of SNF5-deficient tumours (Lunenberger et al. 2010, 

Alarcon-Vargas et al. 2006, Smith et al. 2011).  

Interaction with MYC 

28



The MYC oncogene is often overexpressed in cancer and functions to regulate the 

transcription of genes involved in cell cycle control, apoptosis and differentiation. MYC 

interacts directly with SNF5 to effect MYC target gene activation in vitro (Cheng et al. 

1999), yet SWI/SNF complexes are also known to repress MYC expression during 

differentiation-associated cell cycle arrest (Nagl et al. 2006). Interestingly, BAF 

complexes containing BAF250A repress Myc transcription, whilst BAF complexes 

containing BAF250B promote Myc transcription (Nagl et al. 2007). MYC is consistently 

overexpressed in malignant rhabdoid tumours, all of which harbour SNF5 mutations 

(McKenna et al. 2008, Gadd et al. 2010). Thus, MYC deregulation may have important 

implications in the suppression of SWI/SNF-mutant cancers  

Interaction with nuclear hormone receptors (NHRs) 

SWI/SNF complexes interact with a range of nuclear hormone receptors (NHRs), 

including glucocorticoid, oestrogen, vitamin D3 and retinoic acid receptors (Trotter et al. 

2008). These receptors transduce hormonal stimuli to regulate the expression of genes 

associated with proliferation and differentiation, and many are implicated in oncogenic 

transformation. In acute lymphoblastic leukaemia (ALL) reduced expression of several 

SWI/SNF subunits was found to be associated with increased glucocorticoid resistance 

(Pottier et al. 2008). Specific SWI/SNF complexes appear to regulate specific NHR 

gene targets, as PBAF, but not BAF, interacted with the retinoic acid receptor-α 

(RXRA), vitamin D3 receptor (VDR) and peroxisome proliferator-activated receptor-γ 

(PPARG) to facilitate transcription, at least in vitro (Lemon et al. 2001). In contrast, BAF 

is necessary and sufficient for in vivo glucocorticoid receptor-mediated transcription 

(Chen et al. 2005, Trotter et al. 2004).  

Regulation of Hedgehog (HH) pathway signalling 

Misregulation of the Hedgehog (HH) pathway, particularly through mutation of 

upstream pathway components, occurs in several types of cancer. Several SWI/SNF 

subunits interact with GLI1, an important effector of the HH pathway involved in 

differentiation and patterning, and reside at GLI1-regulated promoters (Jagani et al. 

2010). SNF5 inactivation resulted in enhanced HH signalling and was found to be 

essential for growth of rhabdoid tumour cells in vivo, raising the possibility that GLI1 

targeting may be beneficial as a therapeutic strategy in treating this cancer (Jagani et 
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al. 2010). In addition, repression of HH signalling in neural stem cells requires the 

function of BRG1 in a neural stem-cell specific variant complex (Lessard et al. 2007).  

Transcriptional regulation of genes involved in cellular motility 

SWI/SNF complexes regulate the transcription of actin cytoskeleton genes, and 

misregulation of these pathways is observed in SNF5-deficent rhabdoid tumours. 

Specifically, SNF5 controls cytoskeletal structure and cell migration by regulating the 

RHOA pathway, which is upregulated following SNF5 loss (Caramel et al. 2008). 

RHOA functions to stimulate contractility and the formation of stress fibres, and 

overexpression in cancer correlates with poor prognosis (Karlsson et al. 2009). Cancer 

cells lacking BRG1 also display altered cytoskeleton structures, and reduction of BRG1 

levels in a BRG1-expressing pancreatic carcinoma cell line increased the number of 

actin stress bundles (Rosson et al. 2005). In contrast, re-expression of BRG1 in a 

BRG1-deficent cervix carcinoma cell line induced the formation of stress fibre-like actin 

filament bundles. This was found to be due to increased expression of the RHOA 

component RHO-associated protein kinase 1 (ROCK1) (Asp et al. 2002). SWI/SNF 

dysfunction correlated with aberrant expression of the CD44 transmembrane 

glycoprotein, which is also associated with metastasis. Loss of BRG1 or hBRM resulted 

in CD44 downregulation, and CD44 re-expression was achieved when BRG1 or hBRM 

were re-expressed in doubly deficient cells lines (Strobeck et al. 2001, Reisman et al. 

2002). 
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1.2. DNA double-strand break repair 

1.2.1. DNA double-strand breaks 

DNA lesions are continuously generated in eukaryotic cells from endogenous and 

exogenous sources. The most dangerous lesion is a DNA double-strand break (DSB) 

(Kanna & Jackson 2001), generated through replication fork stalling, oxidative 

metabolism-generated reactive oxygen species (ROS), ionizing radiation (IR) and 

chemotherapeutic agents. An unrepaired or misrepaired DNA DSB can initiate cellular 

senescence and apoptosis, in addition the generation of chromosome fragments and 

rearrangements.  Importantly, these can result in loss of heterozygosity and genome 

instability, which in higher eukaryotes is associated with tumourigenesis. It is therefore 

imperative that the cell is able to correctly repair a DNA DSB in a timely manner in 

order to retain viability and fitness. Two conserved, major pathways are utilised to 

perform DNA DSB repair: non-homologous end-joining (NHEJ) and homologous 

recombination (HR). In this section a review of these pathways in budding yeast and 

mammalian cells will be provided.  

1.2.2 Non-homologous end-joining 

Non-homologous end-joining (NHEJ) is the process by which the two broken DNA 

molecules of a DNA DSB are directly religated. NHEJ is an error-prone DSB repair 

mechanism that operates throughout the cell cycle. In mammalian cells, NHEJ 

represents the major DNA repair pathway (Rothkamm et al. 2003), and ~80% of IR-

induced DNA DSBs are repaired with fast kinetics by NHEJ in G2 (Beucher et al. 

2009). There are several sequential steps involved in NHEJ that are currently thought 

to occur in a stepwise manner (Williams et al. 2014). Firstly, the two DNA ends are 

recognized and the NHEJ protein components are assembled and stabilized. Next, the 

ends are tethered together, positionally stabilized, and processed. Finally, the ends are 

ligated and the protein components are dissipated (Davis & Chen 2013).  

DSB end recognition by Ku 

Recognition of the DNA DSB is performed by the Ku heterodimer, which is composed 

of the Ku70 and Ku80 subunits. Both subunits contain an N-terminal von Willebrand A 

(vWA) domain, a core domain and a C-terminal region (Downs & Jackson 2004). The 
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vWA and core domain are involved in heterodimerization of the Ku complex. The C-

terminal region of Ku70 contains SAF-A/B, Acinus and PIAS (SAP) domains, the latter 

of which is likely to bind DNA (Aravind & Koonin 2000, Zhang et al. 2001). The Ku80 C-

terminal region folds into a flexible arm structure that resembles a common scaffold 

involved in protein-protein interactions (Zhang et al. 2004). Ku localizes to laser-

induced DNA DSBs within seconds of creation (Mari et al. 2006). Such rapid 

localization is thought to be due to its high abundance (~400,000 molecules per cell), 

its ability to bind DNA in a sequence independent manner (via sugar-backbone 

binding), and its extremely high binding affinity for DNA ends (equilibrium dissociation 

constant of 2X109 M-1) (Downs & Jackson 2004, Mimori et al. 1986, Walker et al. 2001, 

Blier et al. 1993). Binding of the Ku heterodimer to DNA is achieved by sliding of the 

DSB end through its central β-barrel ring structure (Walker et al. 2001). In mammalian 

cells, Ku is thought to bind to all double-ended DNA DSBs and initiates a first attempt 

at repair by NHEJ, regardless of cell cycle phase (Beucher et al. 2009, Shibata et al. 

2011). 

Assembly and stabilization of NHEJ factors 

Ku is unquestionably the first NHEJ factor to localize to a DSB. The order of 

recruitment of factors following Ku is likely to be flexible and dependent on the 

complexity of the break (Davis & Chen 2013). Break complexity is also likely to define 

which factors are necessary for the completion of the NHEJ process. For example, a 

break that shares a microhomology consisting of two perfectly complementary 4bp 

overhangs can be repaired by XRCC4 and DNA ligase IV alone, without Ku, at least in 

vitro (Gu et al. 2007). However, such perfect microhomologies are very rare in nature, 

and efficient NHEJ typically requires an orchestrated use of many factors that are able 

to function alone as well as synergistically (Davis & Chen 2013). Many of these factors 

play important roles in several of the steps involved in NHEJ, as will be discussed 

below. 

The Ku-DNA complex is thought to function as a scaffold to which multiple 

NHEJ proteins can bind (Davis & Chen 2013). In vertebrates Ku is able to directly 

recruit the phosphatidylinositol 3’ kinase-like kinase (PIKK) DNA-PKcs in the presence 

of DNA (Gottlieb & Jackson 1993). DNA-PKcs forms a complex with Artemis, and 

together have important functions in the processing of DSB termini (Lieber 2010). 

Recruitment of the XRCC4-DNA Ligase IV-XLF complex (corresponding to Lif1-Dnl4-

Nej1 in budding yeast) is also dependent on Ku. Ku70 physically interacts with XRCC4 

(Mari et al. 2006) and the Ku heterodimer physically interacts with the tandem BRCA1 
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C-terminal (BRCT) domains in the C-terminus of DNA Ligase IV (Costantini et al. 2007, 

Hsu et al. 2002). An interaction between the Ku heterodimer and the C-terminus of XLF 

recruits XLF to the DNA end in a DNA-dependent manner (Yano et al. 2008, Yano et 

al. 2011). Aprataxin-and-PNK-like factor (APLF) is known to bind the Ku80 vWA 

domain via a conserved peptide in the protein’s MID domain (Grundy et al. 2013).  

XRCC4 is thought to function as a second NHEJ scaffold with complex roles in 

NHEJ such as securing the ability of processing enzymes and accessory proteins to 

interact with the DSB (Davis & Chen 2013). XRCC4 has no known enzymatic activity 

and contains a globular head, alpha-helical stalk and a C-terminal tail domain (Junop et 

al. 2000). DNA ligase IV interacts with the XRCC4 alpha-helical stalk via the linker 

region between its tandem C-terminal BRCT domains (Sibanda et al. 2001, Wu et al. 

2009). Polynucleotide kinase-phosphatase (PNKP), Aprataxin (APTX) and APLF also 

interact with XRCC4 via their FHA domains in a manner dependent on casein kinase 2 

(CK2) phosphorylation of XRCC4 (Koch et al. 2004, Kanno et al. 2007, Macrae et al. 

2008, Iles et al 2007, Clements et al. 2004). Several proteins involved in processing 

require both Ku and XRCC4 for recruitment to the DNA DSB, including the DNA 

polymerase u and the RecQ helicase family member Werner (WRN) (Mahajan et al. 

2002, Cooper et al. 2000, Karmakar et al. 2002, Kusumoto et al. 2008). The NHEJ 

complex assembled thus far is stabilized by Ku, DNA-PKcs and XRCC4 (Yano et al. 

2009). APLF has also been implicated in assembling NHEJ components and appears 

to have a major role in retaining XRCC4, DNA ligase IV and XLF at the DSB (Grundy et 

al. 2013).  

Positional stabilization and tethering of DSB termini 

Ku has an important role in protecting the DSB ends from spurious processing that 

could result in the generation of chromosomal aberrations (Davis & Chen 2013). This is 

likely due to its ability to draw and hold the DSB ends together in a synaptic complex 

(Pang et al. 1997). Another protective role of Ku arises from the ability of Ku80 to 

prevent DSB ends from ‘roaming’ the nucleus. A positionally stabilized DSB is unable 

to locate other breaks in the nucleus, which might lead to a damaging translocation. 

This positional stabilization was found to be independent of DNA repair factors, H2A.X, 

MRN and the cohesin complex (Soutoglou et al. 2007). DNA-PKcs forms a distinct 

structure at the DSB after its recruitment by Ku and is thought to form a synaptic 

complex that tethers DSB termini (Cary et al. 1997, Weterings & van Gent 2004). 

Recent structural insights indicate that the DNA-PKcs HEAT repeats function as 

compressible macromolecular springs (Williams et al. 2014). These are thought to 
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regulate the transfer of energy within the NHEJ flexing scaffold to control its overall 

conformation (Williams et al. 2014). The globular head domain residues Arg54, Leu65 

and Leu115 of XRCC4 interact with the globular head of XLF, which through alternating 

head domain interfaces form super helical filaments that bridge DSB termini (Hammel 

et al. 2010, Andres et al. 2012). These filaments might function as an additional or 

alternative bridging and tethering mechanism. However, the co-ordination between 

bridging and tethering by Ku-DNA-PKcs and XRCC4-XLF is unknown (Davis & Chen 

2013). 

Processing of the DSB termini 

Processing is necessary to transform a break that cannot be ligated into a ligatable 

substrate. Numerous proteins are implicated in processing, including Artemis, PNKP, 

APLF, the DNA polymerases u and y, WRN, APTX and Ku (Davis & Chen 2013). 

These proteins can variously perform the removal of blocking end groups, resection, 

and gap filling. Again, the precise nature of the DSB determines which factors are 

required to produce a ligatable substrate. 

The proteins PNKP and APTX have been shown to remove blocking end groups from 

DSB termini (Bernstein et al. 2005, Ahel et al. 2006). PNKP has dual kinase and 

phosphatase activity; its kinase domain can add phosphate groups to 5’ hydroxyls and 

the phosphatase removes 3’ phosphate groups (Bernstein et al. 2005). APTX belongs 

to the histidine triad family of nucleotide hydrolases and transferases and removes 

adenylate groups covalently linked to the termini of 5’ phosphates (Ahel et al. 2006).  

DNA-PKcs exists in complex with Artemis, which together perform the majority of 

the short-range resection in NHEJ by utilizing a diverse array of nuclease activities 

(Lieber 2010). Upon DNA binding DNA-PKcs acquires serine/threonine phosphatase 

activity (Hartley et al. 1995). Phosphorylation of Artemis by DNA-PKcs stimulates 5’ 

endonuclease, 3’ endonuclease and hairpin opening nuclease activities (Ma et al. 

2002), allowing the resection of a wide range of damaged DNA overhang types (Ma et 

al. 2005, Yannone et al. 2008). WRN has 3’ to 5’ exonuclease activity that is dependent 

on its interaction with Ku and XRCC4, whilst its 3’ helicase activity is not (Cooper et al. 

2000, Kusomoto et al. 2008, Perry et al. 2006). APLF has endonuclease and 3’ to 5’ 

exonuclease activity that is not dependent on any other NHEJ factors. However, 

resection of 3’ overhangs by APLF is required in vitro for the subsequent ligation step 

by DNA ligase IV-XRCC4 (Kanno et al. 2007, Li et al. 2011).  
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Nucleotide gap filling is performed by the Pol X family polymerases mu and lambda. 

Polymerase mu is an error-prone polymerase that reduces the incidence of deletion 

events and is capable of template-dependent synthesis with dNTPs and rNTPs, as well 

as template-independent synthesis (Moon et al. 2007). The incorporation of uracil at 

the break site is thought to be important in G1 NHEJ when levels of rNTPs are high 

and dNTPs low. The uracil can possibly then be altered at a later time after base 

removal by uracil glycosylases (Nick McElhinny & Ramsden 2003). Polymerase mu 

can polymerize across a discontinuous template strand in the presence of Ku and DNA 

ligase IV-XRCC4 to effectively cross the two ends of DSB (Nick McElhinny et al. 2005, 

Davis et al. 2008). In addition, by adding nucleotides to the 3’ ends of the break 

polymerase-generated microhomology can be achieved to increase the efficiency of 

ligation (Gu et al. 2007). Polymerase lambda also has known roles in NHEJ gap filling, 

including template-dependent functions in magnesium buffers and template-

independent activity in manganese buffers (Bertocci et al. 2006, Lee et al. 2004, 

Ramadan et al. 2004, Moon et al. 2007).  

The MRX (Mre11-Rad50-Xrs2) complex performs the comparable resection and 

tethering roles of DNA-PKcs in budding yeast 

In yeast, MRX (Mre11-Rad50-Xrs2) localizes to the DNA DSB in a temporally similar 

manner to that of Ku and has roles in the detection, signaling, protecting NHEJ, HR 

and DNA damage checkpoint activation (Daley et al. 2005). MRX is critical for some of 

the resection in NHEJ and is also likely to facilitate the tethering and synapsis of DSB 

ends (Daley et al. 2005). It appears that in vertebrates the DNA-PKcs-Artemis nuclease 

system evolved to replace that of MRX during the inception of V(D)J recombination (a 

B or T cell-specific physiological system that makes intentional DSBs for generating 

antigen receptor genes) at the vertebrate/invertebrate transition (Falck et al. 2005, 

Lieber 2010).  

Mre11 has critical roles in the detection, signalling, protection and repair of DNA 

DSBs (Stracker & Petrini 2011, Williams et al. 2007, Wyman & Kanaar 2006). Mre11 is 

an SbcCD family nuclease capable of DNA binding, 3’ to 5’ dsDNA exonuclease, 

ssDNA structure-specific endonuclease, hairpin nuclease and strand-annealing 

activities (Paull & Gellert 1998, Trujillo et al. 1998, Hopfner et al. 2000, Lim et al. 2011). 

Two Rad50 proteins each contribute a split ABC ATPase domain that associate to form 

a functional Rad50 ABC ATPase. The resulting Rad50 dimer is stabilised by Mre11, 

which additionally locks residues around the ATP-binding site and facilitates efficient 

Rad50 ATP hydrolysis (Lim et al. 2011). This drives a substantial conformational 
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change in both Rad50 and Mre11 that dislocates Rad50 from the Mre11 nuclease 

domain and subsequently exposes its active site (Lim et al. 2011). This is thought to be 

necessary for critical MRX functions, including tethering of DSB ends, Mre11 

endonuclease activity and DNA-unwinding activity (Trujillo & Sung 2001, Lim et al. 

2011). One hypothesis for a tethering mechanism follows that two Rad50 proteins 

bound to each DSB end interact through association of Zn hook structures present at 

the tips of a long looped coiled coil region. This reduces the volume and entropy for the 

ensuing NHEJ reaction (Hopfner et al. 2002, Daley et al. 2005). 

Xrs2 has intrinsic DNA binding affinity and is required for binding MRX to DNA 

and bridging DSB ends (Trujillo et al. 2003). The protein contains N-terminal forkhead-

associated (FHA) domains that interact with phosphorylated threonine residues in Lif1, 

highlighting an NHEJ-specific function of Xrs2 (Chen et al. 2001, Matsuzaki et al. 2008, 

Palmbos et al. 2008). The C-terminus of Xrs2 contains BRCT domains that interact 

with the	  phosphatidylinositol 3’ kinase-like kinase (PIKK) Tel1, highlighting a critical role 

of MRX in DNA damage checkpoint activation, discussed later (Daley et al. 2005, Falck 

et al. 2005, Becker et al. 2006, Palmbos et al. 2008). 

1.2.3. Homologous recombination 

In contrast to NHEJ homologous recombination (HR) is an error-free DSB repair 

mechanism that relies on the availability of an intact sister chromatid, and therefore is 

restricted to late S and G2 phases of the cell cycle. In mammalian cells, HR overlaps 

with NHEJ in the repair of two-ended DSBs, and also promotes replication fork 

stabilization and one-ended DSB repair (Jeggo et al. 2011, Schlacher et al. 2011). HR 

can proceed via several distinct pathways: double-strand break-repair (DSBR), 

synthesis-dependent strand annealing (SDSA), single-strand annealing (SSA) and 

break-induced replication (BIR) (San Filippo et al. 2008). Correctly regulating the 

choice of pathway and their activities is important for maintaining genome integrity, 

since some forms of HR can lead to detrimental rearrangements. In this section an 

overview of these various HR mechanisms, the steps involved in each and their 

regulation will be provided.  

The DSBR model involves the following steps: nucleolytic 5’ to 3’ resection of 

DSB ends to yield single-stranded DNA (ssDNA) termini, formation of a recombinase 

filament on the ssDNA, strand invasion into a homologous DNA sequence to form a D-

loop, extension of the invading strand from the 3’ end by DNA polymerase, capture of 

the second DSB end by annealing to the extended D-loop, formation of two Holliday 

junctions (HJs), and finally HJ resolution to yield crossover or noncrossover products 
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(San Filippo et al. 2008). SDSA differs from the DSBR model in that it envisages a 

migrating D-loop that does not result in capture of the second DSB end. After resection, 

strand invasion and DNA synthesis the invading strand is displaced and anneals to the 

second resected DSB end; no HJ is formed and thus only crossover products result 

(San Filippo et al. 2008). SSA is a deletion process that involves annealing of resected 

ssDNA strands to each other instead of engaging a homologous template, and occurs 

when a DSB is flanked by direct repeats (San Filippo et al. 2008). Single-ended DSBs 

that occur at telomeres and replication forks are repaired by BIR, which involves 

invasion of a single ssDNA strand into a donor DNA sequence (Lydeard et al. 2007).  

DNA resection 

The first stage in HR is 5’ to 3’ resection of the DSB ends. This is a complex and tightly 

regulated process involving redundant pathways containing nucleases, DNA helicases 

and other associated proteins (Niu et al. 2010). The MRX complex (human MRN; 

MRE11-RAD50-NBS1) and Sae2/CtIP) can directly initiate resection by generating 

short 3’ ssDNA tails, or indirectly by recruiting the 5’-3’ exonuclease Exo1/EXO1, the 

helicase Sgs1/BLM, and the endonuclease Dna2/DNA2 (Mimitou & Symington 2008, 

Mimitou & Symington 2010, Shim et al. 2010, Zhu et al. 2008). The generation of long 

3’ tails through long-range resection requires Exo1 or Sgs1-Top3-Rmi1 (STR complex) 

in association with Dna2 (Gravel et al. 2008, Mimitou & Symington 2008, Zhu et al. 

2008). As described previously, Mre11 possesses endonuclease and exonuclease 

activity. A fascinating recent study showed that specific inhibition of MRE11 

endonuclease activity promoted NHEJ in lieu of HR in IR-treated G2 cells, whilst 

inhibiting the exonuclease activity led to a DNA repair defect (Shibata et al. 2014). 

These findings indicate that the endonuclease activity is required to initiate resection, 

thus licensing repair via HR. The subsequent exonuclease activity in concert with 

EXO1/BLM promotes long-range resection that results in commitment to HR (Shibata 

et al. 2014).  

The Fun30 (human SMARCAD1) Snf2-family ATPase chromatin remodeller 

was recently found to promote Exo1/EXO1- and Sgs1/BLM-dependent resection in S. 

cerevisiae and human cells (Costelloe et al. 2012, Chen et al. 2012). As discussed 

later, the differential regulation of resection during the cell cycle is a critical determinant 

of DNA pathway choice in mammalian cells (Symington & Gautier 2011). 
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RPA and Rad51 binding to ssDNA 

The heterotrimeric replication protein A (RPA) is the first protein to bind ssDNA and has 

various regulatory roles in HR (Krejci et al. 2012). Firstly, RPA has several roles in 

resection itself: it stimulates Sgs1 helicase activity, enhances 5’ strand incision by 

Dna2 and protects the 3’ strand from its degradation (Cejka et al. 2010, Niu et al. 

2010). RPA also removes secondary structure in ssDNA to facilitate the assembly of 

multiple Rad51 recombinase proteins (Sung et al. 2003), which in the presence of ATP 

forms a right-handed helical polymer, known as a presynaptic filament (San Filippo et 

al. 2008). Once a Rad51-mediated D-loop has formed RPA prevents its reversal by 

sequestering and scavenging ssDNA. This serves to prevent DNA from entering 

Rad51’s second DNA-binding site (Eggler et al. 2002, Van Komen et al. 2002). RPA 

can also inhibit Rad51 association and thus has stimulatory and inhibitory roles in HR. 

RPA has a higher binding affinity for ssDNA than Rad51 and is recruited earlier, yet for 

HR to proceed correctly RPA must be displaced by Rad51, aided by various mediator 

proteins (Krejci et al. 2012).  

RPA is SUMOylated in both yeast and humans upon DNA damage, and RPA70 

SUMOylation in human cells facilitates RAD51 foci formation, promotes HR and DNA 

damage resistance (Burgess et al. 2007, Dou et al. 2010). RPA SUMOylation is also 

required for the recruitment of RPA to DNA damage sites (Galanty et al. 2009, Morris 

et al. 2009). Disruption of the SUMO pathway also leads to defective RAD51 trafficking 

and impaired RAD51 foci formation in human cells (Saitoh et al. 2002). RPA is 

phosphorylated by the DNA damage checkpoint kinase Mec1 (ATM in humans) and 

cell cycle cyclin-dependent kinases (CDKs). RPA phosphorylation is critical for 

recruitment of Rad51 to DSBs and increases the affinity of Rad52 for ssDNA (Zou & 

Elledge 2003, Shi et al. 2010). Rad51 is also phosphorylated by various kinases with 

several regulatory effects on the protein. These include enhanced DSB repair and drug 

resistance in the case of Try315 phosphorylation by BCR/ABL, inhibition of Rad51 

binding and ATPase-dependent strand-exchange in the case of Tyr54 phosphorylation 

by c-ABL (Slupianek et al. 2011, Yuan et al. 1998), and enhanced ATPase and DNA 

binding activity in the case of Ser192 phosphorylation by Mec1 (Flott et al. 2011). 

Phosphorylation of human RAD51 at Ser14 by PLK1 triggers adjacent Ser13 

phosphorylation by casein kinase 2 (CK2), to which NBS1 (MRN complex) then binds 

to facilitate Rad51 recruitment (Yata et al. 2012).   

Human cells contain the two additional ssDNA binding proteins SSB1 and 

SSB2 that are part of the DSB sensing complex. These proteins are required for ATM 

signalling, and loss of either results in defective DNA damage checkpoint activation 
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and impaired HR (Richard et al. 2008, Huang et al. 2009, Li et al. 2009). SSB1 also 

has a role in DSB processing by stimulating MRN activity via interaction with NBS1 

(Richard et al. 2011). 

Mediators of Rad51 

Proteins referred to as Rad51 mediators are able to overcome RPA’s inhibitory effect 

on Rad51 and include Rad52, paralogues of Rad51, Rad55 and Rad57. They function 

to facilitate Rad51 loading onto ssDNA, stabilize the presynaptic filament and protect 

Rad51 from removal by various factors (Krejci et al. 2012). Rad52 interacts with Rad51 

as well as ssDNA-bound RPA (Seong et al. 2008, Shinohara et al. 1992). Rad52 

binding to Rad51 is required for efficient recruitment and nucleation of Rad51 onto 

ssDNA (Krejci et al. 2002, Shinohara & Ogawa 1998). However, the concomitant 

displacement of RPA during Rad51 filament assembly is not conducted directly by 

Rad52, but rather by the action of Rad51 polymerization along the ssDNA (Song & 

Sung 2000, Sugiyama et al. 1998). The C-terminus of Rad52 is responsible for Rad51 

and DNA binding, whilst its central region interacts with RPA and is important for repair 

foci localization (Seong et al. 2008, Plate et al. 2008). The N-terminus is involved in 

oligomerization, DNA binding and annealing, and interacts with the homologous Rad59 

protein (Shinohara & Ogawa 1998, Davis & Symington 2001, Mortensen et al. 1996). 

Both Rad52 and Rad59 promote second end capture during DSBR as well as strand 

annealing during SSA (McIlwraith & West 2008, Nimonkar et al. 2009. Human RAD52 

does not possess mediator activity lacks the C-terminal regions of yeast Rad52 

involved in Rad51 and RPA interactions; in this regard it is more similar to yeast Rad59 

(Seong et al. 2008, Krejci et al. 2012). Human RAD52 can perform strand annealing 

and acts in parallel with BRCA2 (discussed below) (Feng et al. 2011, Singleton et al. 

2002, Van Dyck et al. 2001). RAD52 also has a late role in HR at stalled forks not 

shared by BRCA2.  

In budding yeast Rad52 is SUMOylated on lysines 10, 11 and 220 after DNA 

damage in S-phase, with diverse outcomes that are dependent on the DNA substrate 

(Ohuchi et al. 2008, Ohuchi et al. 2009, Krejci et al. 2012). In human cells, 

SUMOylation of RAD52 is not induced upon DNA damage but instead alters RAD52 

subcellular localization (Saito et al. 2010). Rad52 is constitutively phosphorylated in 

yeast and occurs at Try104 following DNA damage in humans (Antunez de Mayolo et 

al. 2006, Kitao & Yuan 2002). This modification might direct RAD52 to DNA repair 

intermediates that undergo strand annealing (Honda et al. 2011).  
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Rad55 and Rad57 both have ATPase activity like Rad51, and assemble as a 

heterodimeric ssDNA-binding complex, however they cannot stimulate strand 

exchange (Hays et al 1995, Johnson & Symington 1995, Sung 1997). Rad55-Rad57 

interacts with Rad51 to facilitate its loading onto RPA-coated ssDNA. The heterodimer 

also forms co-filaments with Rad51 that resists the anti-recombinase action of Srs2 

(discussed later) (Liu et al. 2011). Rad55 is phosphorylated at Ser2, 8 and 14 by DNA 

damage checkpoint kinases to promote Rad51 function (Herzberg et al. 2006). The 

Shu complex, consisting of Shu1, Psy3, Shu2 and Csm2 is a poorly understood 

positive regulator of Rad51 that appears to have specialized roles in HR during 

replication stress (Mankouri et al. 2007).  

In human cells several paralogues of RAD51 function as RAD51 mediators and 

share 20-30% sequence identity to RAD51. Two RAD51 paralogue complexes exist: 

the first consists of RAD51B, RAD51C, RAD51D and XRCC2 and has a high affinity for 

branched DNA damage substrates such as stalled replication forks (Masson et al. 

2001, Badie et al. 2009, Henry-Mowatt et al. 2003, Petermann et al. 2010, Yokoyama 

et al. 2004); the second consists of RAD51C and XRCC3 and associates with HJ 

resolution activity (Kuznetsov et al. 2007, Liu et al. 2007). 

BRCA2 fulfils Rad52 mediator roles in mammalian HR and is regulated by several 

proteins 

BRAC2 functions as the central RAD51 mediator in human cells despite the presence 

of RAD52 and has no homology to RAD52. As the central mediator BRCA2 controls 

RAD51 nucleofilament assembly (San Filippo et al. 2008, Thorslund & West 2007) and 

contains two types of BRC repeat domains that interact with RAD51. The first type 

targets RAD51 to ssDNA and stabilizes the RAD51 nucleofilament in its active form by 

down-regulating its ATPase activity. The second type prevents RAD51 necleation onto 

dsDNA (Carreira et al. 2009, Carreira & Kowalczykowski 2011, Pellegrini et al. 2002, 

Shivji et al. 2009). An additional interaction with RAD51 in its filament form exists with 

the C-terminus of BRCA2. This interaction is under cell cycle control and appears to be 

important for nucleofilament and replication fork stability (Davies & Pellegrini 2007, 

Esashi et al. 2007, Ayoub et al. 2009, Shlacher et al. 2011).  

The proteins DSS1, PALB2 and MCPH1 function as regulators of BRCA2. 

DSS1 interacts with the C-terminal DNA-binding domain (DBD) of BRCA2 and 

facilitates BRCA2-mediated RAD51 filament formation (Yang et al. 2002, Sonoda et al. 

1998). PALB2 interacts with the N-terminus of BRCA2 and has several roles in HR, 

including stabilizing BRCA2 by promoting its chromatin association and by possibly 
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affecting RAD51 function directly. PALB2 oligomerization is also known to promote the 

delivery and stabilization of RAD51 at DSBs (Xia et al. 2006, Sy et al. 2009). MCPH1 

(microcephalin) is another BRCA2-interacting protein that negatively regulates BRCA2 

by reducing levels of BRCA2 and RAD51 at DSBs (Wu et al. 2009).  

Rad54 and Rdh54 have multiple roles in regulating Rad51 

The Snf2/Swi2 family DNA-dependent ATPase helicases Rad54 and Rdh54 are able to 

translocate along duplex DNA and have multiple roles in HR (Krejci et al. 2012). They 

can positively regulate Rad51 by stabilizing pre-synaptic filaments, stimulating Rad51-

mediated strand invasion, and at least in the case of Rad54 enhance D-loop branch 

migration. Rad54 and Rdh54 also function as negative Rad51 regulators by limiting the 

non-specific binding of Rad51 to dsDNA, as well as by removing Rad51 to allow 

access to 3’-OH primer termini for DNA replication (Krejci et al. 2012). Rad54 activity is 

regulated by ubiquitination and phosphorylation. Ubiquitin-mediated proteolysis 

controls Rad54 activity in G1-phase S. pombe cells (Trickey et al. 2008), and Rad54 is 

phosphorylated by Rad53, suggesting its activity is regulated by the DNA damage 

checkpoint (Chen et al. 2010).  

Negative regulators of Rad51 

Srs2 is a 3’-5’ SF1 helicase able to dismantle Rad51 presynaptic filaments in budding 

yeast (Aboussekhra et al. 1989, Krejci et al. 2003, Veaute et al. 2003), an activity that 

requires its translocase function and interaction with Rad51. This activity is further 

enhanced in the presence of RPA, which prevents Rad51 re-nucleation (Krejci et al. 

2003, Veaute et al. 2003, Colavito et al. 2009, Krejci et al. 2004, Seong et al. 2009). 

Null mutants of srs2 are characterized by increased rates of spontaneous 

recombination (Aguilera & Klein 1988), synthetic lethality with deletion of the RecQ 

helicase sgs1 (Lee et al. 1999, Wang et al. 2001), and hypersensitivity to various 

sources of DNA damage (Bennett et al. 2001, Aboussekhra et al. 1992, Birrell et al. 

2002). Srs2 is phosphorylated in a Cdk1-dependent manner and this modification 

promotes the use of the SDSA pathway (Saponaro et al. 2010). Srs2 is also 

SUMOylated but the function of this is less clear (Krejci et al. 2012).  

A functional analogue of Srs2 was first identified in C. elegans, known as 

SPAR-1, and subsequently in vertebrates, known as RTEL1 (regulator of telomere 

length 1) (Barber et al. 2008). Deletion of spar-1 in C. elegans resulted in synthetic 

lethality with deletion of the RecQ helicases him-6 (human BLM) and rcq-5 (human 

41



RECQ5). The synthetic lethality was accompanied by a massive accumulation of 

recombination intermediates, and spar-1 single mutants displayed elevated meiotic 

recombination and hypersensitivity to DNA damage that specifically affects replication 

fork progression (Barber et al. 2008). Moreover, depletion of human RTEL1 led to 

increased recombination and hypersensitivity to mitomycin C (MMC), but not IR 

(Barber et al. 2008). RTEL1 was also found to prevent D-loop formation in vitro, but 

rather than disassembling presynaptic filaments this activity was due to disrupting pre-

formed D-loops (Barber et al. 2008). Collectively, these findings indicate that RTEL1 is 

critical for supressing HR, which is likely to have importance for preventing genome 

instability and cancer.  

More recent studies have further revealed that RTEL1 functions as a prominent 

genome stability factor, with key roles in DNA replication, recombination, DNA repair 

and maintenance of telomere integrity (Vannier et al. 2012, Uringa et al. 2012, Vannier 

et al. 2013, Vannier et al. 2014). RTEL1 removes telomeric DNA secondary structures, 

such as T-loops and G-quadruplex (G4) DNA, to prevent telomere fragility and loss 

(Vannier et al. 2012). In mouse cells, loss of Rtel1 leads to misregulated 

recombination, defective telomere replication, and facilitates telomere elongation by 

telomerase (Uringa et al. 2012). RTEL1 has also been linked to global replication 

through an interaction with PCNA (proliferating cell nuclear antigen) (Vannier et al. 

2013). Disruption of the RTEL1-PCNA interaction led to accelerated senescence, 

replication fork instability and reduced fork extension (Vannier et al. 2013). 

Furthermore, tumourigenesis onset was accelerated in p53-deficient mice 

compromised for the RTEL1-PCNA interaction (Vannier et al. 2013). Intriguingly, 

significance-associated SNPs within RTEL1 introns 15 and 17 have been identified in 

cases of glioma and astrocytoma (Wrensch et al. 2009, Shete et al. 2009), suggesting 

that that the various roles of RTEL1 in maintaining genome stability represent important 

tumour suppressor activities.  

The Mph1 translocase (FANCM in humans) is also able to disrupt Rad51-coated D-

loops, stimulate branch migration and displace the extended primer in D-loop-

associated DNA synthesis (Gari et al. 2008, Prakash et al. 2009, Sun et al. 2008, 

Zheng et al. 2011, Sebesta et al. 2011). Consequently, a prominent role of Mph1 is in 

channelling HR into the SDSA pathway over DSBR to supress potentially deleterious 

crossovers in mitotic cells (Prakash et al. 2009).  The RecQ family helicase Sgs1 forms 

a complex with Top3 and Rmi1 in yeast (Ahmad & Stewart 2005, Chang et al. 2005) 

and is homologous to BLM in mammalian cells. Like BLM, Sgs1 might directly 
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dismantle presynaptic filaments (Bugreev et al. 2007, Ira et al. 2003, Mankouri et al. 

2002). Addition roles include the elimination of aberrant invasion events, resolution of 

recombination intermediates (Oh et al. 2007, Oh et al. 2008), dissolution of dHJs to 

yield non-crossovers (Cejka et al. 2010, Wu & Hickson 2003), and possibly direction of 

D-loop intermediates away from DSBR and into SDSA (Krejci et al. 2012). 

SUMOylation of Sgs1 is known to promote recombination at telomeres at least in yeast 

(Lu et al. 2010), whilst SUMOylation of BLM in human cells leads to increased Rad51 

binding and promotes HR at stalled replication forks (Ouyang et al. 2009).  

1.2.4. The DNA damage response in budding yeast 

The DNA damage checkpoints trigger cell cycle arrest in response to a DSB or 

defective replication fork to provide time for the cell to deal with the problem. Without 

this mechanism damaged or mutated DNA will be segregated and can lead to genome 

instability or cell death. In budding yeast Mec1 and Tel1 represent the two major 

upstream ‘sensor’ phosphatidylinositol 3’ kinase-like kinases (PIKKs) (Tsaber & Haber 

2013). These are recruited to the site of damage by interaction with other DNA damage 

response (DDR) proteins, and promote checkpoint activation through two interrelated 

processes. Firstly, they phosphorylate S129 on H2A.X that triggers a signalling 

cascade and recruits many additional DDR factors. Secondly, they activate the 

downstream ‘effector’ kinases Rad53 and Chk1, which have multiple targets involved in 

enforcing an appropriate cellular response to the problem.  

Recruitment of the sensor kinases Mec1 and Tel1 

Tel1 is directly recruited to MRX-bound DSBs through interaction with the C-terminus 

of Xrs2 (Nakada et al. 2003). Tel1 phosphorylates H2A.X S129 but cannot spread this 

modification far beyond the DSB due to its restrictive association with MRX (Tsaber & 

Haber 2013). Because DSBs in G1 cells remain relatively unresected Tel1 alone 

phosphorylates H2A.X at S129 to become γ-H2A.X. Recruitment of Mec1 to a DSB is 

indirectly dependent on MRX, which initiates resection upon binding to the DSB to yield 

ssDNA that is coated by RPA (Tsaber & Haber 2013). Mec1-Ddc2 is recruited to the 

DSB via an interaction between RPA and Ddc2. Mec1 also phosphorylates H2AX at 

S129, which initially spreads over a range of ~50kb on either side of the DSB within 15-

30 minutes (Shroff et al. 2004). Continued resection along the length of the 

chromosome at a slower rate facilitates further spreading of γ-H2A.X as Mec1-Ddc2 

binds to the newly recruited RPA (Kim et al. 2007).  
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γ-H2A.X is required in conjunction with H3K79 methylation for the adapter 

protein Rad9’s recruitment to the DSB (Shroff et al. 2004, Javaheri et al. 2006). Mec1 

also phosphorylates Rad9 at multiple S/TQ motifs, which subsequently interact with 

Rad53 FHA domains. This activates Rad53 and induces extensive Rad53 

autophosphorylation (Sun et al. 1998). Phosphorylated Rad9 and Rad53 then 

dissociate in a complex that subsequently multimerizes, resulting in further trans-

autophosphorylation of Rad53 (Harrison & Haber 2006). Fully activated Rad53 then 

dissociates from the complex before interacting with and/or phosphorylating a myriad of 

effector proteins involved in cell cycle arrest and/or DSB repair (Harrison & Haber 

2006) 

1.2.5. The DNA damage response in human cells 

Activation of ATM and H2AX phosphorylation 

In mammalian cells H2A.X phosphorylation at S139 occurs within one minute following 

DSB induction (Bewersdorf et al. 2006, Celeste et al. 2002, Rogakou et al. 1998, 

Rogakou et al. 1999) and is largely dependent on the Mec1 homologue Ataxia-

Telangiectasia Mutated (ATM). In NHEJ DNA-PKcs mediates H2A.X phosphorylation 

downstream of ATM, whilst the Tel1 homologue ATM- and Rad3-related (ATR) in 

association with ATRIP (Ddc2 homologue) appear to promote H2A.X phosphorylation 

once recruited to ssDNA after DNA processing at replication forks (Pinto & Flaus 

2010). ATM and ATR phosphorylate CHK2, and CHK1, respectively, which leads to 

their activation (Jazayeri et al. 2006). The maintenance of IR-induced checkpoint arrest 

in G2 requires sustained ATM-CHK2 activation as well as resection-dependent ATR-

CHK1 activation (Shibata et al 2010). Phosphorylated CHK1 and CHK2 target CDC25, 

which inactivates cyclin-dependent kinases (CDKs), leading to cell cycle arrest 

(Jazayeri et al. 2006) 

Activation and recruitment of ATM as a consequence of ATM-mediated 

autophosphorylation is proposed to be dependent on local DNA conformational 

changes, the presence of MRE11-RAD50-NBS1 (MRN) (Lee & Paull 2007), and the 

activity of the histone acetyltransferases (HATs) MOF1 and TIP60 (Gupta et al. 2005, 

Sun et al. 2005). Depletion of MOF1, which acetylates H4K16 leading to abrogated 

30nm fibre formation and global chromatin compaction, results in impaired ATM activity 

(Shogren-Knaak et al. 2006). Indeed, γ-H2AX formation occurs preferentially in 

euchromatin (Kim et al. 2007), suggesting that a more condensed chromatin structure 

attenuates ATM activity. Binding of TIP60 to H3K9me3 via its chromodomain promotes 
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acetylation of ATM by TIP60, leading to ATM activation (Sun et al. 2009). Recently, 

DNA damage-dependent phosphorylation of TIP60 on T44 was shown to increase the 

binding of TIP60 to H3K9me3, leading to ATM activation (Kaidi & Jackson 2013).  

Recruitment of factors required for amplification of the DDR 

Mediator of DNA damage checkpoint protein 1 (MDC1) binds to γ-H2A.X via its BRCT 

domain, and MDC1 recruitment is essential for ionizing radiation-induced foci (IRIF) 

and G2 checkpoint maintenance (Jungmichel & Stucki 2010, Stucki et al. 2005, Shibata 

et al. 2010). MDC1 recruitment initiates a positive-feedback loop that perpetuates the 

expansion of γ-H2A.X by recruiting more ATM (Lou et al. 2006, Stucki et al. 2005). 

MDC1 is phosphorylated by casein kinase 2 (CK2) at several repeated motifs and is 

required for an interaction between MDC1 and NBS1 that retains MRN at IRIFs 

(Chapman & Jackson 2008, Melander et al. 2008, Spycher et al. 2008, Wu et al. 2008). 

Subsequent DNA end processing by MRN stimulates the recruitment of additional ATM 

(Lee & Paull 2007). Binding of MDC1 to γ-H2A.X directly or indirectly requires MOF1-

dependent acetylation of H4K16 (Li et al. 2010) and is also negatively regulated by 

phosphorylated H2A Y142 (Cook et al. 2009, Xiao et al. 2009).  

γ-H2A.X appears to stimulate the binding of the HATs GCN5, p300, CBP and 

TIP60 that acetylate various lysine residues on H3 and H4 of DSB-flanking 

nucleosomes (Deem et al. 2012). These acetylation marks are required for the 

recruitment of SWI/SNF chromatin remodeling complexes (discussed later) and various 

other DDR proteins. TIP60 mediates H4 acetylation that can extend for several 

kilobases flanking the DSB and promotes the recruitment of MDC1, 53BP1, BRCA1 

and RAD51 (Murr et al. 2006).  

Recruitment and activity of the DDR mediator and effector 53BP1 

53BP1 (Rad9 homologue) is a core component of the DNA DSB response, functioning 

as a scaffold for other DSB factors, a DNA damage checkpoint mediator, and a critical 

determinant of DNA repair pathway choice (Panier & Boulton 2014). The DSB proteins 

53BP1 exerts its critical checkpoint function by stimulating ATM activity via an 

interaction between its C-terminal BRCT domains and the RAD50 component of MRN, 

which recruits ATM (Lee & Paull 2007).   

Recent studies have shed light on how several histone PTMs direct 53BP1 

recruitment specifically to chromatin adjacent to DNA DSBs. The E3 ubiquitin ligase 

ring finger 8 (RNF8), in association with the E2 conjugating enzyme UBC13 (and other 
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E2 enzymes), is recruited to the DSB via direct interaction with phosphorylated MDC1 

(Huen et al. 2007, Kolas et al. 2007, Mailand et al. 2007). RNF8 then ubiquitinates an 

unknown substrate, which serves as a binding site for a second E3 ubiquitin ligase 

RNF168, which ubiquitinates H2AK13 and/or K15 in association with UBC13 (Gatti et 

al. 2012, Mattiroli et al. 2012). Recruitment of 53BP1 to sites of DNA damage requires 

the simultaneous recognition of H4K20me2 and RNF168-dependent H2AK13/15ub 

(Fradett-Turcotte et al. 2013). 53BP1 binds H4K20me2 via its tandem TUDOR domains 

(Botuyan et al. 2006, Huyen et al. 2004), and binds H2AK13/15ub via a small 

ubiquitination-dependent recruitment (UDR) motif (Fradett-Turcotte et al. 2013).  

Generation of H4K20me2 occurs in a stepwise manner beginning with SETD8 

(SET domain-containing protein 8)-dependent monomethylation of H4K20, which is 

required for MMSET (multiple myeloma SET domain-containing protein)-dependent 

generation of H4K20me2 (Hajdu et al. 2011, Oda et al. 2010, Pei et al. 2011). Proteins 

including the histone demethylase JMJD2A and the Polycomb protein L3MBTL1 also 

bind to H4K20me2 independently of DNA damage (Acs et al. 2011, Mallette et al. 

2012). A current model for 53BP1 binding to DNA damage sites follows that JMJD2A 

and L3MBTL1 are released from chromatin adjacent to the DSB in an RNF8- and 

RNF168-dependent manner (Acs et al. 2011, Mallette et al. 2012). As a result, 

H3K20me2 is exposed, triggering 53BP1 recruitment.  

53BP1 recruitment to DNA DSBs is also regulated by DNA damage-induced 

acetylation. Acetylation of H4K16 by TIP60 reduces the affinity of the 53BP1 Tudour 

domain for binding to H4K20me2 (Hsiao & Mizzen 2013, Tang et al. 2013). In addition, 

the histone deacetylases HDAC1 and HDAC2 are implicated in positively regulating 

53BP1 recruitment by deacetylating H4K16 (Hsiao & Mizzen 2013, Tang et al. 2013, 

Miller et al. 2010). 

53BP1 regulates DNA repair pathway choice and antagonizes BRCA1 

The regulation of 53BP1 binding at DNA DSBs dictates whether NHEJ or HR is utilized 

for repair (Panier & Boulton 2014). The recently identified association of 53BP1 with 

the RIF1 (RAP1-interacting factor 1) effector protein appears to be crucial for blocking 

resection in G1, thus inhibiting HR and channeling DNA repair into the NHEJ pathway 

(Panier & Boulton 2014). RIF1 interacts (directly or indirectly) with multiple ATM-

phosphorylated Ser/Thr-Gln sites in the N-terminus of 53BP1 (Chapman et al. 2013, 

Escribano-Diaz et al. 2013, Zimmerman et al. 2013, Di Virgilio et al. 2013). Another 

effector protein, PTIP, contains BRCT repeats that interact with phosphorylated Ser25 

on 53BP1 in an ATM-dependent manner (Munoz et al. 2007). 53BP1 and RIF1 appear 
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to impact physiological DSB repair, such as class-switch recombination (CSR), and 

pathological DSB repair, such as joining dysfunctional telomeres (Panier & Boulton 

2014). In contrast, PTIP only seems to influence the repair of pathological DSBs. 

Precisely how 53BP1, RIF1 and PTIP cooperate to inhibit resection during G1 remains 

largely speculative.  

A currently held model follows that during G1, 53BP1-RIF1 bound to the DSB 

blocks the association of BRCA1 (Escribano-Diaz et al. 2013, Feng et al. 2013). 

Through an unclear mechanism, CDK-dependent phosphorylation of MRN-bound CtIP 

and BRCA1 is prevented, which ultimately blocks resection (Panier & Boulton 2014). 

During S and G2 phases, TIP60-dependent acetylation of H4K16 reduces the affinity of 

53BP1-RIF1 for DSB-flanking chromatin, and CtIP and BRCA1 are phosphorylated by 

CDK. The subsequent assembly of a CtIP-BRCA1 complex promotes resection, which 

is enhanced by the SIRT6-dependent removal of a CtIP acetylation mark, thus 

committing the cell to repair via HR (Panier & Boulton 2014).  

1.2.6. The RSC complex in the DNA damage response 

RSC was first implicated in the DNA damage response (DDR) after the findings that 

deletion of several RSC subunits (Rsc1, Rsc2, Rsc7, Rsc30 and Htl1), and a 

temperature sensitive mutant of Sth1 conferred sensitivity to various DNA damaging 

agents, including methyl methane sulphonate (MMS), phleomycin, bleomycin, 

hydroxyurea (HU), UV and IR (Wilson et al. 2006, Cairns et al. 1999, Bennett et al. 

2001, Koyama et al. 2002, Chai et al. 2005). Major advances in understanding how 

RSC functions in the DDR have been made using the mating-type switching HO 

system. Mating-type switching in S. cerevisiae involves induction of a DNA DSB at the 

MAT locus by HO endonuclease. Repair of this break and switching is achieved by 

intrachromosomal recombination between one of two silent donor cassettes termed 

MATα and MATa. The HO system relies on the ability to induce HO expression in a 

strain background in which the donor cassettes have been deleted. Thus, upon HO 

induction a persistent DSB is generated at a specific locus that can only be finally 

repaired by an error-prone NHEJ mechanism. Nevertheless, central HR and DNA 

damage checkpoint proteins are still recruited, along with the associated histone 

modifications. This allows the temporal and spatial accumulation of DNA repair factors 

and nucleosome remodelling activity to be monitored at the break by techniques such 

as ChIP and nucleosome accessibility experiments.  
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Recruitment of RSC to DNA DSBs 

Recruitment of RSC to an HO-induced DSB was first monitored by ChIP using TAP-

tagged Sth1. Enrichment of Sth1 relative to an uninduced sample was detected on both 

sides of the break after 10 minutes, placing RSC recruitment very early in the DNA 

damage response (Chai et al. 2005, Shim et al. 2005). Sth1 had returned to basal 

levels 2hrs after HO induction was terminated (Shim et al. 2005). Rsc8 and Rsc1 were 

also enriched in a temporally similar manner, suggesting that the entire RSC complex 

was recruited (Shim et al. 2005, Shim et al. 2007). In contrast, enrichment of the Snf5 

subunit of SWI/SNF was only detected after 40 minutes following induction, indicating 

temporally distinct recruitment profiles between the two complexes (Chai et al. 2005). 

In a strain in which H2A S129 cannot be phosphorylated Sth1 and Rsc1 recruitment 

was found to be normal. Also, recruitment was not affected by cell cycle phase (Shim 

et al. 2007, Liang et al. 2007).  

Sth1 enrichment was not detected in the absence of Mre11 and was slightly 

delayed in the absence of Ku70 (Shim et al. 2005). Furthermore, Rsc1 and Rsc2 were 

found to physically interact with Mre11 and Ku80 in a yeast two-hybrid assay (Shim et 

al. 2005). However, chromatin remodelling by RSC was still observed at the break in 

the absence of Mre11 (discussed later), indicating that some RSC must be present. 

Importantly, these ChIP assays calculated the enrichment of RSC relative to an 

uninduced sample. Therefore the absolute level of RSC present before induction is not 

revealed and a lack of enrichment does not equate to an absence of RSC (Chambers 

& Downs 2012). Consistent with prior association before DSB formation, work in our 

lab showed that Rsc2 and Rsc7 function to establish a normal chromatin structure at 

MAT in the absence of a DSB (Kent et al. 2007).  

Nucleosome remodelling by RSC at DSBs 

DNA DSBs induce a rapid change in the surrounding chromatin structure. Changes in 

the positions of nucleosomes in chromatin extracted from MNase-treated 

permeabilized yeast can be visualized using indirect end labelling. Using this 

technique, the repositioning of 6 proximal nucleosomes away from the break	   and a 

slight increase in MNase cleavage efficiency immediately distal to a break at MAT was 

observed (Shim et al. 2007, Kent et al. 2007). Also, chromatin derived from cross-

linked nuclei and subject to MNase digestion was more efficiently cleaved after DSB 

induction as measured by qPCR (Shim et al. 2007). This is consistent with enhanced 

accessibility of nucleosomal DNA after break induction (Shim et al. 2007). These 
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changes were observed within 30 minutes of DSB formation, are independent of Mre11 

(as mentioned previously), and occur in G1, indicating that the event is distinct from 

subsequent histone eviction by MRX. Furthermore, this nucleosome repositioning is not 

restricted to the MAT locus; its also occurs at HO DSBs present in URA3 and LEU2 loci 

(Kent et al. 2007).  

The chromatin remodelling event described above was found to be dependent 

on RSC but not on the other chromatin remodelling complexes SWI/SNF, INO80 or 

Rad54 (Kent et al. 2007). A strain in which Sth1 was conditionally repressed and an 

rsc2 null strain did not display significantly increased MNase sensitivity after break 

induction, suggesting that Sth1 and Rsc2 are important for the remodelling (Shim et al. 

2007). Conversely, indirect end labelling showed that nucleosome repositioning 

occurred normally in an rsc2 null strain (as well as rsc7 and rsc30 null strains), but as 

mentioned previously these cells display altered chromatin structure prior to break 

induction (Kent et al. 2007). However, a defect in remodelling after break induction is 

observed in an rsc1 null strain in this assay. It is unclear where the discrepancy in Rsc2 

remodelling in these two assays used arises. The MNase sensitivity assay might be 

more sensitive to occupancy changes within a population, whilst the end labeling might 

be more sensitive to positional changes. Thus, both Rsc1 and Rsc2 might be involved 

in break-induced remodelling. It should also be noted that rsc1 and rsc2 null strains 

both retain some RSC function. The relative contributions of each RSC isoform might 

depend on cell cycle, chromatin context or genomic location (Chambers & Downs 

2012). 

The effects of RSC on H2A S129 phosphorylation and resection 

The very early recruitment of RSC to a DSB parallels that seen for phosphorylation of 

H2A S129, perhaps indicating that the two events are connected. Rsc1 recruitment 

was normal in a strain in which H2A S129 cannot be phosphorylated, but defective 

phosphorylation after a HO-induced DSB or MMS treatment is observed in rsc mutants. 

This places RSC upstream of H2A S129 phosphorylation in the DNA damage response 

(Shim et al. 2007, Liang et al. 2007, Kent et al. 2007). Consistent with reduced H2A 

S129 is the observations that Mec1 and Tel1 recruitment are reduced by ~2-fold in an 

rsc2 null strain (Liang et al. 2007). RSC is also required for efficient DSB-dependent 

methylation of H3K4 by Set1 (Faucher & Wellinger 2010), indicating that remodelling 

by RSC is important for downstream chromatin modifications.  

Repression of Sth1 leads to reduced Mre11 and Ku70 accumulation at a DSB, 

suggesting that RSC-dependent remodelling facilitates their binding (Shim et al. 2007). 
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Reduced Mre11 at the break might lead to impaired MRX-stimulated resection. 

Consistently, a slight reduction in resection is observed in rsc mutants as measured by 

quantitative amplification of ssDNA (QAOS) and restriction site cleavage in dsDNA 

(Tsuchiya et al. 1992, Kent et al. 2007). In addition, enrichment of RPA adjacent to a 

DSB is reduced in Sth1-repressed or rsc2 null strains, whilst Rad51 recruitment was 

slightly delayed (Shim et al. 2007, Liang et al. 2007).  

Together these data suggest a model for RSC action at a DSB. Upon break 

induction a small amount of Ku and Mre11 bind to the DSB ends, which facilitates RSC 

recruitment. RSC then remodels the chromatin adjacent to the break, which allows 

further enrichment of Ku and Mre11 and generates a positive feedback loop to achieve 

maximal accumulation of these repair factors.  

The involvement of RSC in NHEJ 

Rsc8 and Rsc30 were first identified in a genetic screen as factors required for wild-

type levels of NHEJ activity in the error-prone repair of HO-induced DNA DSBs (Shim 

et al. 2005). rsc30 null cells also displayed DSB repair joint sequence alterations 

characteristic of other NHEJ mutants (Shim et al. 2005). In addition, rsc30 and htl1 null 

strains were also defective in NHEJ of a transformed linearised plasmid (Florio et al. 

2007, Shim et al. 2005, Moscariello et al. 2010). In contrast, another study reported 

substantially elevated plasmid repair by NHEJ in rsc1 and rsc2 null and sth1 mutant 

strains (Chai et al. 2005). Nevertheless, these findings, along with the impaired 

recruitment of RSC in the absence of Mre11 and Ku70 (Shim et al. 2005), indicate that 

RSC is necessary for efficient NHEJ.  

The involvement of RSC in HR 

Defective DSB repair by HR in a plasmid gap repair assay has been reported in rsc1, 

rsc2, and htl1 null strains as well as sth1 mutant strains (Chai et al. 2005, Moscariello 

et al. 2010). Whilst an snf5 null mutant (Swi/Snf complex) was severely defective in 

synapsis during DSB repair via mating type switch gene conversion, rsc2 null cells 

were proficient in this step. Instead, the rsc2 null strain was found to be slightly 

defective in the post-synaptic ligation of DNA DSBs, suggesting a late role of RSC in 

the HR reaction (Chai et al. 2005). More recently, the RSC subunits Rsc2 and Rsc7 

were found to be involved specifically in Rad59-dependent, Rad51-independent HR. In 

addition, Rsc1 and Rsc2 physically interacted with Rad59 in a yeast two-hybrid assay, 

whilst recruitment of Rad59 to a DSB was normal in the absence of RSC2 as shown by 
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ChIP (Oum et al. 2011). Deletion of RSC2 or RSC7 did not impair mating type switch 

gene conversion, in contrast to that reported by Chai et al. Furthermore, RSC was 

dispensable for non-allelic or heteroallelic recombination, SSA and BIR, however 

formation of SSA and BIR recombination intermediates was delayed in the rsc2 

mutants. This might reflect the substantial growth defect reported in this strain and 

could explain the reduced post-synaptic ligation reported by Chai et al. (Oum et al. 

2011). 

In a spontaneous direct-repeat recombination assay using tandem repeats of 

the FLO1 gene deletion of RSC7 resulted in a highly elevated rate of recombination but	  

rsc2 was not tested. Recombination in this assay can occur via replication slippage, 

unequal sister chromatid exchange or SSA. RSC was also shown to be required for 

recombination between sister chromatids. Firstly, rsc2 and rsc7 mutants were more 

severely defective in repair of MMS-induced DNA damage during G2 than G1. Second, 

rsc7 cells displayed a reduced rate of spontaneous unequal sister chromatid exchange, 

whilst again the rate in a rsc2 mutant was not shown. Finally, in the absence of RSC2 

or RSC7 recruitment of the cohesin subunits Smc1 and Scc1 to a DSB was severely 

compromised (Oum et al. 2011).	  

1.2.7. Mammalian SWI/SNF complexes in the DNA damage response	  

H2A.X phosphorylation 

Mammalian SWI/SNF complexes are recruited to sites of DNA DSBs (Park et al. 2006, 

Peng et al. 2009, Ogiwara et al. 2011), suggesting that mammalian SWI/SNF 

complexes play a role in DNA DSB repair like their yeast counterparts. Park et al. 

showed that tetracycline-induced expression of an ATPase-defective dominant-

negative version of BRG1 (which compromises PBAF function and a subset of BAF 

complexes) resulted in reduced cell survival after IR, as well as reduced DNA repair as 

shown by comet assay (Park et al. 2006). The authors also reported that H2A.X 

phosphorylation was defective in these cells following IR, despite normal ATM 

activation. However, as discussed below, the finding that BRG1 is required for γ-H2A.X 

induction is contentious, and the subsequent follow-up studies by the Kwon lab made 

on this basis should be treated skeptically.  

ATPase-defective BRG1-expressing cells and cells depleted of BRG1 and 

hBRM by siRNA did not show a gross defect in G2/M checkpoint activation after IR or 

treatment with adriamycin. Furthermore, defective activation of the S-phase checkpoint 

was also not observed in ATPase-defective BRG1-expressing cells after IR and 
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Adriamycin treatment. Interestingly, S-phase checkpoint activation was defective in 

these cells after treatment with the DNA interstrand crosslinking agent cisplatin, 

suggesting distinct roles for SWI/SNF S-phase checkpoint activation in response to 

different drugs (Park et al. 2006).  

In support of a role of SWI/SNF in γ-H2A.X induction, Ray et al. found that siRNA 

depletion of SNF5 (a subunit found in all SWI/SNF complexes) led to reduced levels of 

γ-H2A.X after UV (Ray et al. 2009). Somewhat in contrast, however, were the findings 

that SNF5 depletion led to reduced phosphorylation of ATM (but not ATR) and reduced 

ATM recruitment (as measured by foci number) after UV, providing an explanation for 

the reduced γ-H2A.X levels. The authors similarly found that DNA damage checkpoint 

activation was intact after UV in SNF5-deficient cells, despite reduced γ-H2A.X, by 

showing that ATM/ATR-mediated phosphorylation of CHK1/CHK2 was normal (Ray et 

al. 2009).  

In contrast to the report by Park et al., McKenna and co-workers reported that SNF5 

did not co-localize with γ-H2A.X foci or relocalize within the nucleus following IR in 

MEFs (McKenna et al. 2008). In addition, they found that the affinity of SNF5 for 

chromatin remained unchanged after DNA damage by UV, IR and doxorubicin when 

comparing protein levels in soluble and chromatin-bound fractions. SNF5 depletion did 

not result in reduced γ-H2A.X foci formation (measuring % γ-H2AX positive cells rather 

than number of foci per cell) or total levels of γ-H2A.X after 5Gy IR. SNF5 depletion 

also did not lead to sensitivity to cisplatin, etoposide or UV, however the methodology 

used in these assays seems questionable. Firstly, proliferation (WST-1 absorption) was 

only measured 24 hours after addition of cisplatin, which seems early to measure an 

effect of this drug. Second, and more importantly, the positive control Rad18-/- MEFs 

did not show increased sensitivity to this drug compared to wild-type cells as has been 

previously reported (e.g. Wagner & Karnitz 2009) (McKenna et al. 2008).  

Consistent with the report by Park et al. are the findings that following IR SNF5 

deficiency led to normal ATM activation, and consequently p53 and CHK1 were also 

normally activated (McKenna et al. 2008). Activation of the G2/M DNA damage 

checkpoint (measured using phosphorylated H3 as a marker of mitotic cells) in 

response to IR was not defective in the SNF5-depleted cells. In addition, p53-

dependent p21 expression (as measured by Western blot) was normal in the absence 

of SNF5, which is somewhat in contrast to the findings by Xia et al. and Burrows et al., 

in which BAF180 and BRD7 depletion leads to reduced p21 activation (McKenna et al. 

2008, Xia et al. 2008, Burrows et al. 2010).  
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Notably, no independent data has been published that recapitulates the findings by 

Park et al. made eight years ago, in which BRG1 was reported to be necessary for γ-

H2A.X induction. In addition, we do not see loss of γ-H2A.X following depletion of 

BRG1 or BAF180 (Q. Riballo, P. A. Jeggo, J. A. Downs and P. M. Brownlee, 

unpublished data). Together with the findings that another SWI/SNF subunit, SNF5, 

does not impair γ-H2A.X induction (McKenna et al. 2008), we conclude that 

mammalian SWI/SNF complexes are dispensable for γ-H2A.X induction.  

Regulation of SWI/SNF recruitment to DSBs by histone acetylation 

In the first of a series of contentious follow-up studies, the Kwon lab reported that 

BRG1 associates with γ-H2A.X nucleosomes via interaction between its bromodomain 

and acetylated H3 (Lee et al. 2010). In support for a role of histone acetylation in the 

recruitment of SWI/SNF complexes for efficient DNA repair Ogiwara et al. 

independently identified the HATs CBP and p300 as being important for NHEJ 

(Ogiwara et al. 2011). Depletion of these HATs using siRNA led to impaired repair of 

IR-induced DSBs as well as etoposide sensitivity in lung cancer cells. The authors 

showed that CBP and p300 were recruited to DSBs and were required for DSB-

dependent acetylation of H3K18, as well as H4K5, 8, 12 and 16. Furthermore, Ku70 

and Ku80 recruitment to the DSB site were reduced in the absence of these HATs, 

providing an explanation for the reduced NHEJ activity. As well as reduced Ku70 and 

Ku80 recruitment, CBP and p300 depletion led to reduced recruitment of the SWI/SNF 

ATPase hBRM (restricted to a subset of BAF complexes) (Ogiwara et al. 2011).   

ATM-mediated phosphorylation of BRG1 

More recently, a third study by the Kwon lab reported that phosphorylation of BRG1 by 

ATM serves as a critical modification to promote BRG1-dependent DNA repair (Kwon 

et al. 2014). Rapid and transient phosphorylation of BRG1 at S721 occurred in 

response to IR-induced DNA DSB induction. BRG1 bound to acetylated H3 peptides 

with a much greater affinity when S721 was phosphorylated after DNA damage, whilst 

the transcriptional and ATPase activity of BRG1 were not significantly altered by this 

modification (Kwon et al. 2014).  

Regulation of SWI/SNF recruitment to DSBs by BRIT1 (MCPH1) 
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BRIT1 (also known as microcephalin, MCPH1) is a transcriptional repressor of human 

telomerase reverse transcriptase (hTERT), with additional roles in the early DDR and 

recruitment of DNA repair proteins to DNA lesions (Rai et al. 2006). Multiple core 

subunits of SWI/SNF, including BRG1, hBRM, BAF170, BAF155 and SNF5 were 

identified by mass spectrometry as BRIT1 binding partners. This BRIT1-SWI/SNF 

interaction was entirely abolished when BAF170 was depleted and was significantly 

reduced after BAF155 depletion (Peng et al. 2009). Upon DNA damage the interaction 

between BRIT1 and SWI/SNF was enhanced. Interestingly, this enhanced binding 

upon DNA damage, but not the basal level of binding, was reduced upon ATM and 

ATR depletion. BAF170 was found to contain S/TQ motifs common to ATM/ATR 

substrates, and could be pulled down with a phospho-S/TQ (p-S/TQ) antibody in a 

manner dependent on ATM/ATR. Mutation of BAF170 S969 specifically blocked the 

DNA-damage enhanced binding of BAF170 to BRIT1, suggesting that this enhanced 

binding is mediated by ATM/ATR-dependent phosphorylation of BAF170 (Peng et al. 

2009). 

The authors next examined the importance of the BRIT1-SWI/SNF interaction in 

DNA repair. BRIT1 depletion led to a significant repair defect in a comet assay, as well 

as a defect in DNA repair of an I-SceI-induced DSB by both HR and NHEJ 

mechanisms. In addition, BRIT1 depletion significantly reduced the levels of chromatin-

bound BRG1, hBRM, BAF170, Rad51 and Ku70 in both undamaged cells and cells 

irradiated with 10Gy IR. Basal BRG1 localization to an I-SceI restriction site before 

break induction was reduced in the absence of BRIT1 as shown by ChIP. Furthermore, 

DNA damage-induced BRG1 and hBRM localization to an I-SceI-induced DSB were 

also reduced in BRIT1-depleted cells. In contrast, depletion of SWI/SNF subunits did 

not impair the recruitment of BRIT1 to chromatin or to the site of a DSB, placing 

SWI/SNF function downstream of BRIT1 (Peng et al. 2009).  

BRIT1 and SWI/SNF depleted cells exhibited increased resistance to MNase 

digestion in the presence and absence of DNA damage, consistent with a role of 

SWI/SNF in chromatin relaxation to facilitate DNA repair factor recruitment. The role of 

BRIT1 in recruiting SWI/SNF for this purpose was confirmed using a version of BRIT1 

in which a small (aa1-48) N-terminal deletion was made. This abolished the interaction 

with SWI/SNF but retains the ability of BRIT1 to form foci. The cells expressing this 

BRIT1 deletion were unable to restore the chromatin relaxation defect, indicating that 

SWI/SNF recruitment by BRIT1 is important for chromatin remodeling. Furthermore, 

RAD51 and phosphorylated-RPA (p-RPA) foci formation were impaired in BRIT1-

depleted cells, and treatment of BRIT1-depleted cells with the chromatin relaxation 
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agent TSA reversed the defect in RPA foci formation and increased DSB repair 

efficiency by HR (Peng et al. 2009). 

Finally, lymphoblastoid cell lines (LCLs) harbouring loss-of-function mutations in 

BRIT1 were found to be defective in DNA repair by comet assay, more sensitive to 

camptothecin and etoposide (which generate DSBs in S-phase and are repaired 

predominantly by HR), and more sensitive to IR in G1 phase (readout of NHEJ repair). 

In addition, RAD51 and RPA foci formation and recruitment after UV were reduced in 

the BRIT1-defective cells compared to the corresponding controls. Furthermore, 

SWI/SNF binding to chromatin was substantially reduced in these cells, which also did 

not undergo chromatin relaxation after DNA damage (Peng et al. 2009).  
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1.3. Cohesin 

1.3.1. The cohesin complex, cohesin loading, and cohesion establishment 

Cohesin is a four-subunit, highly conserved complex that is able to entrap two DNA 

segments (Remeseiro & Losada 2013). Sister chromatid cohesion is when the two 

DNA segments are sister chromatids, and is essential for correct chromosome 

segregation during mitosis and DNA repair by homologous recombination. Two 

segments of DNA within the same sister chromatid can be held together by cohesin to 

form a loop. This looping is emerging as an important mechanism controlling 

interactions between promoters and enhancers to regulate transcription, in addition to 

organizing replication factories, recombination and chromosome condensation. 

Moreover, mutations in cohesin and regulatory factors are associated with cancer and 

developmental disorders, known as cohesinopathies (Remeseiro & Losada 2013). 

Structure of the cohesin complex 

Cohesin is a ring-shaped complex that consists of Smc1, Smc3, Scc1/Mcd1 and Scc3 

in budding yeast (Remeseiro & Losada 2013) (Table 1.3). Smc1 and Smc3 are 

members of the structural maintenance of chromosomes (SMC) family, which also 

incudes the condensin subunits Smc2 and Smc4, and the Smc5/6 subunits Smc5 and 

Smc6. Smc1 and Smc3 are long polypeptides that fold back upon themselves by 

intramolecular 50nm antiparallel coiled-coil interactions to yield a protein with a 

globular ATPase ‘head’ domain at one end and a dimerization ‘hinge’ domain at the 

other (Haering et al. 2002, Carretero et al. 2010). Heterotypic dimerization between 

the Smc1 and Smc3 hinge domains results in the formation of a large V-shaped 

structure. A bipartite cohesin ring is formed, at least transiently, when the two halves 

of the ABC-type ATPase ‘heads’ from Smc1 and Smc3 are bound in the presence of 

ATP. The Smc1 head domain binds ATP via its Walker A and Walker B motifs, which 

binds motifs in the Smc3 head domain. A second ATP molecule binds in a vice-versa 

manner between the two proteins. Interaction between the Smc1 and Smc3 head 

domains is stabilised through interaction with the Scc1/Mcd1 C- and N-terminal 

domains, respectively (Losada et al. 2000). An interaction between Scc3 and 

Scc1/Mcd1 reinforces the cohesin ring (Gruber et al. 2003).  

A number of models have been proposed to explain the topological linkage of 

DNA molecules achieved by cohesin. A widely depicted, but perhaps speculative 
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presumption is that the SMC arms of a single cohesin complex embrace two DNA 

molecules. Support for this is lacking from DNA-protein mapping studies, and the 

observation that Smc1 and Smc3 heads remain closely apposed during anaphase 

(McIntyre et al. 2007, Rudra & Skibbens 2013). In addition, SMC heads are observed 

to reside near SMC hinges (Sakai et al. 2003, McIntyre et al. 2007), and cohesins 

have been shown to bind each sister chromatid oddly, at least at the HMR locus in 

budding yeast (Chang et al. 2005). Thus, an alternative scenario sees individual 

cohesins bound to individual DNA molecules being modified to stabilize inter-cohesin 

assemblies (Rudra & Skibbens 2013). 

Cohesin loading dynamics 

Cohesin loading occurs on unreplicated chromatin in G1, whilst a substantial increase 

in the residence time of a proportion of the cohesin pool is observed during replication 

(Gerlich et al. 2006). During G1, a roughly equal proportion of soluble and 

dynamically bound cohesin (with a high dissociation constant) is found in the cell. The 

dynamically cycling pool of cohesin is present throughout interphase but not after late 

prophase, and might have important implications in replication and transcription 

(Terret et al. 2009, Fay et al. 2011). This cycling process is dependent on the cohesin 

regulatory proteins Wapl (also known as Rad61) and Pds5, which have a cohesin 

unloading (anti-establishment) function (discussed later) (Gandhi et al. 2006, Kueng 

et al. 2006, Tedeschi et al. 2013). A steady increase in stably bound cohesin (with a 

Table 1.3. Functional domains and properties of cohesin proteins
S. cerevisiae H. sapiens Domains and properties

Cohesin core Smc1 SMC1α Forms heterodimer with Smc3 via interaction between hinge domains, 
complex head domain constitues one half of a split ATPase domain 

Smc3 SMC3 Forms heterodimer with Smc1 via interaction between hinge domains,
head domain constitues one half of a split ATPase domain

Scc1/Mcd1 RAD21 Stabilizes Smc1-Smc3 heterodimer; C-terminus binds Smc1 head domain, N-terminus
binds Smc3 head domain

Cohesin loader Scc2 NIPBL Forms heterodimer with Scc4, required for efficient topological loading of core
components complex onto DNA, stimulates Smc1-Smc3 ATPase activity

Scc4 MAU2 Forms heterodimer with Scc2, required for efficient topological loading of core
complex onto DNA, stimulates Smc1-Smc3 ATPase activity

Establishment Eco1/Ctf7 ESCO1 and Acetylates Smc3 on K112 and K113 (K105 and K106 in mammlian cells) during S-phase
factors ESCO2 to establish cohesion; Esco2 specifically acetylates SMC3 in pericentric regions 

 - Sororin No yeast homolgue, FGF motifs compete with Wapl FGF motifs for binding to Pds5 
to counter anti-establishment

Sgo1 SGO1 Protects centromeric cohesion from the prophase pathway until anaphase in
mammalian cells

Anti-establishment Scc3 SA1 and Component of anti-establishment complex; recruited to cohesin ring via interaction
factors SA2 with Scc1, SA1 regulates cohesion at telomeres and is involved in transcriptional 

regulation, SA2 regulates centromere cohesion and DNA repair; both proteins are
phosphorylated by Polo during execution of the prophase pathway in mammalian
cells

Wapl/Rad61 WAPL Component of anti-establishment complex; binds Pds5 via N-terminal FGF motifs,  
which are absent in yeast Wapl

Pds5 PDS5A and Component of anti-establishment complex; contains HEAT-repeats, recruited to  
PDS5B/APRIN cohesin ring via interaction with Scc1, Pds5B specifically regulates centromeric cohesion

and promotes DNA repair via interaction with BRCA2
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low dissociation constant) occurs concomitantly with replication, peaking at S/G2 and 

remaining until anaphase (Gerlich et al. 2006). This stably bound cohesin is thought 

to function in the process of sister chromatid cohesion and is achieved through a 

process known as establishment (discussed later). 

The mechanism of cohesin loading 

The heterodimeric cohesin loader components Scc2 and Scc4 are required for 

cohesin to associate with DNA (Table 1.3) (Kogut et al. 2009, Bernard et al. 2006, 

Ciosk et al. 2000, Furuya et al. 1998, Rollins et al. 2004, Seitan et al. 2006). Cohesin 

loading also depends on ATP hydrolysis by the Smc head domains (Arumugam et al. 

2003, Weitzer et al. 2003) and a transient separation of the Smc hinge domains 

(Gruber et al. 2006). This latter observation is proposed to function as the DNA ‘entry’ 

gate and provides strong evidence that DNA becomes trapped within a single cohesin 

ring (Chan et al. 2012). Nevertheless, the molecular mechanism of action for how 

these events are coordinated to promote cohesin loading remains poorly understood. 

In addition, it is largely unclear where the sites of cohesin loading are. Once loaded 

cohesin is found at discrete sites along chromosome arms known as cohesin-

associated regions (CARs) and is particularly enriched at pericentric regions (Onn et 

al. 2008). Cohesin loading is dependent on the formation of pre-replication factories in 

Xenopus, to which Scc2-Scc4 is recruited (Takahashi et al. 2008). However, in 

somatic cells Scc2-Scc4 is not recruited to pre-RCs and loading of cohesin occurs 

independently of pre-RC formation, suggesting alternative loading mechanisms 

(Guillou et al. 2010, MacAlpine et al. 2010). Interestingly, in budding yeast the 

cohesin complex does not colocalize with Scc2-Scc4, perhaps due to the ability of 

cohesin to translocate along the chromain fibre following loading (Hu et al. 2011, 

Ocampo-Hafalla & Uhlmann 2011). In Drosophila and mouse embryonic stem cells 

cohesin and Scc2 are found together at transcriptionally active sites (Misulovin et al. 

2008, Kagey et al. 2010). Thus, the open state of active euchromatin might facilitate 

cohesin loading, or cohesin might be more dynamically bound at these sites and 

requires more frequent reloading (Remeseiro & Losada 2013).  

Recently, cohesin loading onto DNA in S. pombe was reconstituted using 

purified cohesin and Scc2-Scc4 (Murayama & Uhlmann 2014). Incubation of cohesin 

with DNA alone resulted in inefficient spontaneous topological loading. Incubation of 

the Scc2-Scc4 loader stimulated the ATPase activity of cohesin to improve the 

efficiency of topological loading. In addition, Scc2-Scc4 was found to contact the 
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cohesin ring at multiple sites, including via interaction with the enigmatic Scc3 

component (Murayama & Uhlmann 2014).  

Cohesion establishment and anti-establishment 

Cohesion establishment is the process that converts chromatin bound cohesin into a 

state that is tethering-competent, or cohesive. Mechanistically this process is poorly 

understood and appears to be highly complex (Sherwood et al. 2010, Skibbens et al. 

2011). Establishment of cohesion occurs during DNA replication and is critically 

dependent on the cohesin acetyltransferase Eco1 (also known as Ctf7) (Table 1.3). 

Eco1 interacts with a multitude of DNA replication factors in S-phase, including the 

clamp-like proliferating cell nuclear antigen (PCNA), replication factor C (RFC), the 

Chl1 helicase and the Okazaki fragment maturation flap endonuclease I Rad27 (also 

known as Fen1). Indeed, a widely held model is that cohesion is established 

immediately once nascent sister chromatids emerge behind the replication fork 

(Skibbens 2000, Rudra & Skibbens 2013). Establishment is also regulated by at least 

three other proteins known as Scc3, Pds5 and Wapl (Table 1.3). These three proteins 

have an important function in the prophase pathway (in mammalian cells), which 

serves to release cohesin from chromosome arms during mitosis (discussed later). 

Wapl binds to Pds5, which is a large HEAT-repeat-containing protein, and Pds5 and 

Scc3 are recruited to the cohesin ring via interaction with Scc1 (Hartman et al. 2000, 

Panizza et al. 2000, Shintomi & Hirano 2009). Wapl, Pds5 and Scc3 form a stable 

complex thought to promote ‘anti-establishment’ (Rowland et al. 2009).  

During S-phase in budding yeast Eco1 acetylates Smc3 on two lysine 

residues, K112 and K113, located within the ATPase head domain. Individually 

mutating lysine 112 to a similar but non-acetylatable arginine does not impair viability 

or cohesion, in contrast to mutating lysine 113 to the same residue, which causes a 

cohesion establishment defect and inviability (Zhang et al. 2008, Unal et al. 2008, 

Rolef Ben-Shahar et al. 2008, Rowland et al. 2009). This suggests that acetylation of 

K113 is most crucial in this regard, however K112 acetylation does appear to regulate 

the cohesin-dependent process of chromosome condensation (discussed later). 

Strikingly, deletion of WAPL supresses the inviability conferred by the K113R 

mutation. K113R inviability is also suppressed by several pds5 and scc3 mutations, 

which cluster within specific domains within the N- and C-terminal regions of these 

two proteins (Rolef Ben-Shahar et al. 2008, Rowland et al. 2009, Unal et al. 2008, 

Zhang et al. 2008). Thus, a proposed model for the function of Smc3 acetylation is to 

counter the ‘anti-establishment’ activity of the Wapl-Pds5-Scc3 complex.  
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A critical issue is whether anti-establishment prevents the actual formation of 

cohesive cohesin during S-phase or destroys it after its establishment following S-

phase. Chan et al. revealed that in cells lacking Eco1 destruction of cohesin upon 

Wapl expression occurred long after replication, providing support for the latter 

hypothesis (Chan et al. 2012). Importantly, Wapl was not able to destroy this post-

replicative cohesion when Smc3 was acetylated. Using GFP-tagged proteins, Wapl 

was found to be ~4-fold less abundant than Pds5 and showed ~4-fold lower 

association with pericentric chromatin. Expression of Wapl-GFP in a wapl null haploid 

strain led to conditional lethality in an eco1-1 strain. This lethality was even observed 

when Wapl-GFP was heterozygous over wapl deletion in a diploid strain. Together, 

these results indicate that Wapl is able to destroy all cohesion in an Smc3 acetylation-

compromised scenario despite its low abundance and substoichiometric chromatin 

association (Chan et al. 2012).   

Wapl was found to very rapidly exchange between cohesin complexes located 

at different pericentric regions as measured by iFRAP in a manner largely 

independent of Eco1. In contrast, Pds5, which interacts with Wapl via its N-terminal 

domain, as well as Scc1 cycled much more slowly, and their cycling was increased in 

the absence of Eco1. Furthermore, in a wapl null strain Scc1 turnover was largely 

abolished, as was Smc3 turnover in a wapl eco1-1 strain incubated at the permissive 

temperature, indicating that cohesin turnover depends on Wapl. Strikingly, mutations 

in smc3, pds5 and scc3, which had been previously identified as suppressors of eco1 

inviability, led to reduced cohesin turnover. Interestingly, only a subset of pds5 

mutations, which were previously shown to disrupt the interaction between Pds5 and 

Wapl, reduced Wapl recruitment (Chan et al. 2012).  

Collectively, these results indicate that unacetylated cohesin has an intrinsic 

‘releasing activity’ that promotes its turnover on chromatin and promotes its anti-

establishment by Wapl, Pds5 and Scc3. The ring model, in which two DNA molecules 

are entrapped within one cohesin ring, provides the simplest mechanistic explanation 

for this. If the ‘entry’ gate for cohesin loading occurs at the Smc1/Smc3 hinge domain, 

as described by Gruber et al., an ‘exit’ gate might be present at the Smc1/Smc3/Scc1 

interface. The releasing activity of unacetylated cohesin, facilitated by Wapl, Pds5 

and Scc3, might involve a transient dissociation of Scc1 from the Smc1/Smc3 

interface to allow DNA exit. In support of this, Chan et al. showed that fusion of Scc1 

to Smc3, but not to Smc1, suppressed eco1 null and eco1-1 conditional lethality. This 

was accompanied by reduced cohesin turnover and occurred despite normal Wapl 

recruitment. The authors propose that the function of Smc3 acetylation is to lock 
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cohesin onto DNA by stabilizing the interaction between Smc3 and Scc1 (Chan et al. 

2012). 

The model described above does not account for the observation that in Xenopus 

Smc3 can be readily acetylated after DNA replication and when replication is inhibited 

(Song et al. 2012). In addition, acetylation occurring outside of S-phase is unable to 

generate cohesion, suggesting that although Smc3 acetylation is critical for cohesion 

it must occur in context amongst other replication-associated factors (Song et al. 

2012, Rudra & Skibbens 2013). In yeast, four alternative RFC complexes exist in 

yeast in which the large Rfc1 subunit can be replaced with Elg1, Ctf18 or Rad24. 

Interestingly, whilst most DNA replication components promote establishment, the 

Elg1-containing RFC complex antagonises Eco1 function (Maradeo & Skibbens 2009, 

Maradeo & Skibbens 2010, Parnas et al. 2009). This supports the notion that there 

exits a complex network of cohesion establishment regulation during S-phase. There 

are likely to be additional yet to be identified replication factors with roles in cohesion 

establishment. Notably, this might include proteins harbouring bromodomains (Rudra 

& Skibbens 2013), which bind acetylated lysine residues, such as BAF180 in 

mammalian cells.   

Smc3 acetylation as a precursor to the ‘cohesin code’ 

Several studies have shown that the inviability of an eco1 null strain is rescued by 

deletion of Wapl (Feytout et al. 2011, Rowland et al. 2009, Skibbens et al. 1999, 

Sutani et al. 2009, Tanaka et al. 2001, Tóth et al. 1999). This would be predicted to 

be due to restoration of sister chromatid cohesion, but in fact eco1 wapl cells display 

a severe cohesion defect that is comparable to an eco1 single null strain (Guacci & 

Koshland 2012, Rowland et al. 2009, Sutani et al. 2009, Feytout et al. 2011). 

Expression of an Smc3 acetyl-mimic mutant, in which lysine 113 is mutated to 

glutamine (K113Q) in an smc3-42 ts strain, results in a severe cohesion 

establishment defect and inviability at the restrictive temperature. The same 

phenotype is observed when K112 and K113 together are mutated to glutamine 

(K112Q K113Q). Intriguingly, in an smc3-42 strain expressing K112R (rendering the 

residue non-acetylatable) together with K113, viability is restored, but the severe 

cohesion establishment defect remains.  

The severe cohesion establishment defect in these strains did not severely 

impair accurate chromosome segregation, as would be predicted in cohesion-

defective cells due to failed bipolar microtubule attachment. This is likely due to a 
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feature unique to yeast whereby a bipolar spindle forms in early S-phase and sister 

kinetochores achieve stable attachment during replication (McCarrol & Fangman 

1988, Kitamura et al. 2007). Specifically, 75% of smc3-42 cells, ~74% of K113Q and 

~82% of K112R K113Q cells exhibited disjunction of most chromatids. For 

comparison, ~98% of wild-type cells exhibited disjunction. This suggests that an 

alternative cohesin-mediated process exists to promote viability in these cells (Guachi 

& Koshland 2012). The authors found that whilst smc3-42 and K113Q cells were 

unable to perform condensation at the rDNA locus into discrete loops, the K112R 

K113Q and eco1 wapl double null cells were able to condense these structures, and 

that the degree of condensation correlated with viability. Therefore, the levels of 

Smc3 acetylation at K112 and K113 appear to represent a critical bifurcation step that 

dictates whether cohesin is utilized for cohesive or condensive purposes (Guachi & 

Koshland 2012). On this basis Rudra & Skibbens propose that Smc3 acetylation 

represents the beginning of a ‘cohesin code’ that is analogous to the familiar histone 

code (Rudra & Skibbens 2013). In addition to Smc3 acetylation, many other cohesin 

subunits are subject to numerous acetylation, phosphorylation and SUMOylation 

modifications. Deciphering such a code might provide essential insight into the 

increasingly diverse roles of cohesin in various cellular processes including ribosome 

biogenesis, transcription, cohesion, condensation and DNA repair (Rudra & Skibbens 

2013). 

1.3.2. Vertebrate cohesin 

In vertebrates several cohesin proteins have undergone duplication and divergence 

and appear to regulate cohesion at specific chromosomal regions. These include the 

two versions of Scc3 known as SA1 and SA2, two versions of Eco1 known as ESCO1 

and ESCO2, and two versions of Pds5 known as PDS5A and PDS5B (Table 1.3). In 

addition, SMC3 acetylation in mammalian cells is accompanied by binding of another 

protein known as Sororin, which might interact with cohesin through binding to PDS5 

via its FGF motifs (Shintomi & Hirano et al. 2009, Nishiyama et al. 2010) (Table 1.3). 

Binding of Sororin is proposed to displace the binding of WAPL, which might also bind 

to PDS5 via its 3 N-terminal FGF motifs, to counter its anti-establishment activity 

(Dreier et al. 2011, Liu et al. 2013).  

In vertebrate cells the bulk of cohesin along chromosome arms is removed 

during execution of the prophase pathway (Gandhi et al. 2006, Kueng et al. 2006). 

This requires polo-like kinase 1 (PLK1)-dependent phosphorylation of the SA subunit 

and the anti-establishment activity of WAPL and PDS5 (Shintomi & Hirano 2010). 
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This activity is enhanced once Sororin is removed upon phosphorylation of CDK1 

(Nishiyama et al. 2010, Dreier et al. 2011). Disruption of the prophase pathway 

prevents chromosome resolution, most likely because the persistence of cohesin 

inhibits topoisomerase II-dependent processing of replication-generated DNA 

catenations (Farcas et al. 2011). A small population of cohesin is protected from the 

prophase pathway at pericentromeric regions until anaphase. This is dependent on 

Shugosin (SGO1) and the protein phosphatase 2A (PP2A), which removes the 

phosphorylation on SA to counter the activity of PLK1 (Gutierrez-Caballero et al. 

2012) (Table 1.3). This pericentromeric cohesion has an essential role in 

chromosome biorientation and segregation.  

The spindle assembly checkpoint (SAC) in metaphase prevents cell cycle 

entry into anaphase until all chromosomes have aligned with their kinetochores 

attached to the mitotic spindle (Nezi & Musacchio 2009, Musacchio & Salmon 2007, 

Kops 2008, Lara-Gonzalez et al. 2012). Aurora B plays an important role in sensing 

incorrect microtubule-kinetochore interactions and selectively destabilizing them, 

which results in SAC activation. This gives the cell an opportunity to correct the 

attachment (Lampson & Cheeseman 2011). Aurora B achieves this activity by 

phosphorylating a range of kinetochore substrates, and its localization to kinetochores 

depends on BUB1-mediated H2A threonine 120 phosphorylation and Haspin-

mediated H3 threonine 3 phosphorylation at the inner centromere (Kelly et al. 2010, 

Wang et al. 2010, Wang et al. 2012, De Antoni et al. 2012). The mitotic checkpoint 

complex (MCC), consisting of BUB1, BUB3, MAD2 and CDC20, blocks the activation 

of APC/C until the SAC is satisfied. Once the SAC is satisfied the MCC is no longer 

generated and activated APC/C uniquitilates Securin, which is bound to Separase. 

Ubiquitilated Securin is targeted for proteolytic cleavage, releasing active Separase 

that cleaves RAD21 present in the remaining pericentromeric population of cohesin 

(Lara-Gonzalez et al. 2012). This allows full separation of sister chromatids in concert 

with topoisomerase II activity (Shamu et al. 1992, Oliveira et al. 2010, Toyoda et al. 

2006). 

SA1 and SA2 differentially mediate telomeric and centromeric cohesion 

The two versions of the Scc3 homologue in vertebrates, known as SA1 and SA2, 

share 75% sequence identity along the central region of the proteins and differ only in 

short regions of the C- and N-termini (Table 1.3). Despite displaying similar cell cycle 

loading and dissociation regulation (Losada et al. 2000), and both being expressed in 

all mouse tissues (Remeseiro et al. 2012), SA1 and SA2 do not function equivalently.  
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In human cells SA2 is several times more abundant than SA1, whilst in 

Xenopus eggs SA1 is the major form (Losada et al. 2000, Sumara et al. 2000). SA1, 

but not SA2, is known to bind to the telomeric Shelterin complex components TRF1 

and TIN2 (Canudas et al. 2007). Shelterin negatively regulates telomere length by 

restricting the access of telomerase (van Steensel & de Lange 1997, Kim et al. 1999, 

Ancelin et al. 2002). Association of TRF1 and TIN2 with telomeres is negatively 

regulated by the activity of poly (ADP-ribose) polymerase tankyrase 1 (Smith et al. 

1998), which when overexpressed dissociates TRF1 and TIN2 and allows telomere 

elongation by telomerase (Smith & de Lange 2000, Houghtaling et al. 2004). 

Tankyrase 1 is involved in the correct separation of sister chromatids after replication, 

and in tankyrase 1-depleted cells remain tethered at telomeres and suffer prolonged 

mitosis (Dynek et al. 2004). This prolonged telomeric association can be rescued by 

depletion of TIN2 or SA1 and is due to protein-protein interactions (Canudas et al. 

2007, Hsiao & Smith 2009). This indicates that sister telomere association and 

separation is regulated by a unique mechanism.  

Canudas and Smith addressed whether SA1 might play a role in regulating 

telomere cohesion. First, TIN2, SA1 or SA2 were singly depleted using siRNA in 

HeLa cells and mitotic cells were isolated using mitotic shake-off. These cells were 

subject to fluorescent in situ hybridization (FISH) with a probe specific to the 

subtelomeric region of chromosome 16p (Canudas & Smith 2009). The distances 

between the two signals from each sister chromatid were then measured. Control 

cells transfected using GFP and SA2 siRNA showed comparable distributions of 

distances between the signals. In contrast, TIN2 and SA1-depleted cells showed 

substantial increases in the distances compared to the control cells. Therefore, 

depletion of TIN2 and SA1, but not SA2, leads to a substantial increase in the 

separation of sister chromatids at telomeres, consistent with a telomeric cohesion 

defect. Next, cells were subject to FISH using a probe specific to the centromere of 

chromosome 6. Whilst GFP, TIN2 and SA1-depelted cells showed comparable 

distributions of distances between the signals, the SA2-depleted cells showed 

substantial increases in the distances compared to the control cells. This suggests 

that SA2 specifically regulates cohesion at centromeres. Using a probe specific to the 

arm of chromosome 20 (20p12) revealed similar results to that shown with the 

telomere probe, in that TIN2 and SA1 depletion led to a cohesion defect, whilst SA2-

depletion did not. This suggests that compromised telomere cohesion can influence 

arm cohesion (Canudas & Smith 2009).  

FISH labeling of telomeres in BrdU-positive S-phase cells revealed that the 

telomere cohesion defect in TIN2 and SA1-depleted cells was evident in this phase of 
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the cell cycle. In addition, FISH analysis on cells synchronized in late S-phase using a 

double thymidine block revealed a similar defect. This suggests that there is a defect 

in either the establishment or maintenance of telomere cohesion after replication in 

TIN2 and SA1-depleted cells. Further analysis of metaphase chromosome spreads 

showed that TIN2 and SA1 depletion led to an increased frequency of cells showing 

an arm/telomere cohesion defect consistent with the FISH data. SA2-depleted cells 

did not show this defect in arm cohesion and instead showed a clear increase in the 

frequency of cells showing a centromere cohesion defect (Canudas & Smith 2009). 

SA1, but not SA2, plays a role in gene regulation and development 

Cohesin has an important function in transcriptional regulation by facilitating 

chromatin looping in concert with other factors including CTCF (Toyoda et al. 2006, 

Hou et al. 2010), estrogen receptor (ER) (Shmidt et al. 2010), Mediator (Miyanari et 

al. 2012) and Polycomb (Strubbe et al. 2011). SA1 null mouse embryos were found to 

exhibit several features characteristic of the cohesinopathy Cornelia de Lange 

syndrome (CdLS). These included reduced body size and various developmental 

abnormalities but no obvious cohesion defect (Kawauchi et al. 2009, Remeseiro et al. 

2012). Analysis of SA1 and SA2 genome-wide binding revealed 25,737 SA1 binding 

sites and 7,741 SA2 binding sites. More importantly, SA1 was highly enriched ~1kb 

upstream from TSSs and within gene bodies, whilst SA2 enrichment largely occurred 

at intergenic regions (Remeseiro et al. 2012). In addition, SA1 was predominantly 

responsible for cohesin enrichment at promoters and at CTCF-bound sites. SA1 was 

required for regulating the expression of various development-associated genes that 

could not be compensated for by SA2. Thus, SA1 function in gene expression 

appears to underlie the molecular aetiology of CdLS (Remeseiro et al. 2012). 

A specific role of SA1 in transcriptional regulation is supported by findings that 

in three isogenic sets of STAG2-corrected and STAG2 knockout tumour-derived cell 

lines the gene expression profiles between STAG2-proficient and –deficient cells 

were strikingly similar (Solomon et al. 2011). Specifically, only 16 of 28,869 genes 

(0.06%) were found to be modulated >1.5-fold in the STAG2-corrected glioblastoma 

cells compared to the STAG2-deficient control. In addition, the few genes that were 

misregulated by STAG2 were not misregulated in more than one cell line. Therefore 

STAG2 does not appear to be an important regulator of global gene expression 

(Solomon et al. 2011).  
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ESCO2 specifically regulates pericentromeric cohesion 

Mammalian cells encode two forms of Eco1, known as ESCO1 and ESCO2, which 

both contain a divergent N-terminus, a C2H2 zinc finger and a highly conserved 

acetyltransferase domain (Hou & Zou 2005) (Table 1.3). Acetylation of human SMC3 

on K105 and K106 (Zhang et al. 2008) and Sororin binding requires both ESCO1 and 

ESCO2 (Nishiyama et al. 2010), suggesting that they might function redundantly. 

Recently, homozygous Esco2 -/- mouse embryos were found to have terminated 

development at pre- and post-implantation stages, indicating a non-redundant role for 

Esco2 (Whelan et al. 2012). Cells from these embryos showed a marked centromeric 

cohesion and chromosome segregation defect (discussed later) that likely underlies 

the loss of viability phenotype. Esco2 was expressed transiently during mid to late S-

phase and specifically localized to pericentromeric heterochromatin (PCH) as shown 

by immunofluorescence and ChIP. The localization and distribution of cohesin, Aurora 

B, Incenp and Sgo1, which are normally enriched in metaphase PCH, was disrupted 

in the absence of Esco2. Finally, levels of acetylated Smc3 were reduced from S-

phase through to prometaphase, and Sororin levels at PCH were significantly 

reduced in Esco2 depleted cells. Taken together, it appears that Esco2 has a unique 

role in acetylating Smc3 and establishing and maintaining cohesion specifically at 

pericentromeric regions (Whelan et al. 2012).  

PDS5B specifically regulates cohesion at centromeres 

Two versions of Pds5 exist in mammalian cells, PDS5A and PDS5B (Sumara et al. 

2000, Losada et al. 2005), which are both ~1400 amino acids in length and share 

~72% sequence homology, including two HEAT repeat clusters (Table 1.3) The 

proteins differ in their C-terminal 300 amino acids. Both PDS5A and PDS5B associate 

with either SA1 or SA2 (Losada et al. 2005), and knockout Pds5A -/- and Pds5B -/- 

mice die perinatally with various developmental defects reminiscent of Cornelia de 

Lange Syndrome (CdLS) (Zhang et al. 2007, Zhang et al. 2009).  

In a more recent study, efforts to generate Pds5A -/- and Pds5B -/- knockout 

mice similarly resulted in embryonic lethality at late post-implantation stages. Whilst 

Pds5A -/- embryos that survived to E16.5 and 18.5 were considerably smaller than 

wild-type mice the Pds5B -/- showed less severe defects. Primary MEFs from both 

Pds5A -/- and Pds5B -/- also showed a proliferation defect (Carretero et al. 2013). 

Pds5A -/- and Pds5B -/- MEFs did not individually show altered levels of chromatin 

bound Rad21, Stag1 or Stag2. However, depletion of Pds5A and Pds5B using siRNA 
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in Pds5B -/- and Pds5A -/- MEFs resulted in a moderate but significant increase in the 

levels of chromatin bound cohesin as measured by IF, consistent with a role of Pds5 

proteins in anti-establishment/unloading. The absence of both Pds5 proteins in 

metaphase cells similarly resulted in increased cohesin binding to chromatin. This 

indicates that Pds5A and Pds5B contribute to cohesin anti-establishment/unloading in 

interphase and mitosis (Carretero et al. 2013).  

Levels of chromatin bound Wapl and acetylated Smc3, but not Sororin, were 

moderately reduced in Pds5A -/- MEFs. Pds5B -/- MEFs displayed similarly reduced 

levels of Wapl, unaffected levels of Sororin, and more severely reduced levels of 

acetylated Smc3. Double depletion of Pds5 proteins severely compromised the 

association of Wapl, acetylated Smc3 (consistent with recent yeast reports) (Vaur et 

al. 2012, Chan et al. 2013) and Sororin to chromatin. Next, the authors examined 

telomeric cohesion by measuring the frequency of telomere fragility using a telomeric 

FISH probe. Telomere fragility is visualized as an irregularly shaped or multimeric 

signal and results from defective telomere replication, which is dependent on 

telomere cohesion. Individually, Pds5A -/- and Pds5B -/- MEFs did not show 

increased telomere fragility, but depletion of both proteins slightly increased telomere 

fragility, suggesting that they are both required for telomere cohesion. In contrast, 

analysis of metaphase spreads showed a clear centromeric cohesion defect that was 

only apparent in the Pds5B -/- MEFs. Because of this centromere-specific cohesion 

defect, the recruitment of Esco2 (which is recruited to pericentromeric 

heterochromatin (PCH) in mid to late S-phase), and Sororin to PCH was monitored by 

IF. Reduced Esco2 accumulation at sites of PCH (labelled using PCNA IF) was 

observed in Pds5B -/- cells, and to a lesser extent in Pds5A -/- cells. In addition, 

Sororin levels at PCH foci in G2 cells and at the inner centromere were also strikingly 

reduced in Pds5B -/- cells. Thus, Pds5B appears to function in centromeric cohesion 

establishment or maintenance by promoting Esco2 and Sororin association at PCH. 

As a consequence, these cells were found have a chromosome segregation defect 

(discussed later) (Carretero et al. 2013).  

Aurora B recruitment requires Bub1-mediated phosphorylation of H2A 

threonine 120 and Haspin-mediated phosphorylation of H3 threonine 3 (Kelly et al. 

2010, Wang et al. 2010, 2012, De Antoni et al. 2012). Whilst Bub1 association was 

unaffected in the absence of Pds5B, H3 T3 phosphorylation and Aurora B enrichment 

was defective, suggesting impaired Haspin recruitment. As a consequence, correction 

of monastrol-induced syntelic attachments (Kapoor et al. 2010) was impaired in the 

Pds5B -/- cells. Furthermore, Pds5B -/- cells exited mitosis quicker than wild-type 

cells upon taxol treatment (microtubule destabilizing drug), suggesting a defect in 
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spindle assembly checkpoint (SAC) activation. Levels of activated Aurora B, which is 

phosphorylated at serine 232 (Yasui et al. 2004), were also reduced in the Pds5B-

deficient cells. Therefore, Pds5B is required for centromere cohesion as well as the 

centromeric accumulation and activity of Aurora B (Carretero et al. 2013).  

1.3.3. Cohesin in DNA repair 

Cohesin in yeast DNA repair 

A conserved role of cohesin in DNA repair is supported by studies from yeast to 

humans. Studies in yeast have indicated that deletion of cohesin genes results in 

reduced homologous recombination, leading to the hypothesis that cohesin promotes 

recombination through its ability to hold sister chromatids in proximity (Parisi et al. 

1999, Klein et al. 1999, Nasmyth et al. 2001, Doll et al. 2008). The earliest study 

pointing to a role for a cohesin gene in DNA repair revealed that S. pombe cells 

containing an I67T mutation in Scc1/Mdc1 were rendered highly sensitive to IR 

(Birkenbihl & Subramani 1992). The first evidence that cohesin between sister 

chromatids is essential for DSB repair in mitotic cells was provided by Sjögren & 

Nasmyth in 2001. They showed that the presence of cohesin at the time of DSB 

induction in S-phase is essential for repair of DSBs in G2, and requires Scc2 as well 

as Eco1 (Sjögren & Nasmyth 2001). Subsequently, a 100kb domain of cohesin 

enrichment was found to occur surrounding a single DSB in conjunction with H2A 

S129 phosphorylation in budding yeast. Cohesin enrichment at this domain was 

dependent on Mre11 and Scc2 and also functioned in postreplicative DNA repair 

(Unal et al. 2004).  

Indeed, sister chromatid cohesion is established de novo following DNA 

damage at the break site as well as genome-wide, and can occur in a replication-

independent manner. Furthermore, phosphorylation of Mdc1 at S83 by 

phosphorylated Chk1 in response to Mec1 activation was important for the 

establishment of DSB-induced cohesion (Unal et al. 2008). Interestingly, separase-

mediated cleavage of cohesin is required for efficient cohesin-mediated DNA repair, 

possibly by removing break site-proximal cohesin or by promoting its relocation 

(Nagao et al. 2004).   
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Cohesin in vertebrate DNA repair 

Evidence for a conserved role of cohesin in vertebrate DNA repair first came from the 

finding that deletion of RAD21 in DT40 cells compromised the repair of spontaneous 

and IR-induced chromatid breaks (Sonoda et al. 2001). Recruitment of cohesin to 

laser-induced DNA DSBs was observed immediately after damage induction. This 

was dependent on MRE11 and RAD50 but not ATM and NBS1, and MRE11/RAD50 

interacted with cohesin predominantly in S and G2 when cohesin was recruited to 

DNA damage sites (Kim et al. 2002). In human cells SMC1α is phosphorylated at 

S957 and S966 following IR in an ATM-dependent manner (Kim et al. 2002, Yazdi et 

al. 2002). Mutation of these serine residues to a non-phosphorylatable form of 

SMC1α causes a defect in the S-phase DNA damage checkpoint, reduced cell 

survival, and an increased prevalence of chromosomal aberrations after IR (Kitagawa 

et al. 2004). Depletion of SMC1α and SMC3 also causes a defect in the G2 DNA 

damage checkpoints (Watrin & Peters 2009). Control siRNA-treated metaphase HeLa 

cells irradiated in early S-phase contained few broken chromosomes and RPA foci, in 

contrast to SMC1α and SMC3 depleted cells, which nearly all contained frequent 

breaks and RPA foci. This was due to failures in activating CHK2 and recruiting 

53BP1 to the sites of DNA damage (Watrin & Peters 2009).  

Enhanced genome-wide binding of Smc1 and Smc3 at pre-existing cohesin 

binding sites also occurs in human cells after IR (Kim et al. 2010). ATM was shown to 

phosphorylate SMC3 at S1083, and this modification is important for the DNA 

damage-induced reinforcement of cohesin. The same study showed that acetylation 

of SMC3 at K105 and K106 after IR required ATM and ATR as well as ESCO1 

ESCO1. Furthermore, SMC3 acetylation was necessary for for the IR-induced intra-S 

phase DNA damage checkpoint and viability. Despite both requiring ATM, SMC3 

acetylation and phosphorylation can occur independently, and both are required for 

DNA damage-induced cohesin establishment (Kim et al. 2010). HeLa cells depleted 

of cohesin showed reduced survival after X-rays and slower DSB repair kinetics as 

measured by persistence of γ-H2AX and 53BP1 foci in G2. Cohesin recruitment to 

DNA damage sites occurred in G2 but not in G1, supportive of a specific role in 

homologous recombination (Bauerschmidt et al. 2010).  

Cancer and cohesin-mediated DNA repair by HR 

Defective or inappropriate homologous HR appears to underlie the generation of 

oncogenic chromosomal aberrations, loss of heterozygosity and various other 
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structural chromosome alterations including deletions, inversions and translocations. 

In addition to aneuploidy, discussed later, such alterations are hallmark features of 

the vast majority of cancers (Bishop et al. 2003, Reliene et al. 2007). Moreover, 

mutations in genes encoding proteins involved in HR are frequently mutated in 

various cancer types, exemplified by breast cancer associated BRCA1 and BRCA2 

mutations (Hall et al. 1990, Wooster et al. 1994, Moynahan & Yasin 2010).  

Rad21 +/- heterozygous mice show reduced frequencies of sister chromatid 

exchanges (Xu et al. 2010), and in human cells siRNA-mediated depletion of RAD21 

increases intra-chromosomal recombination (Potts et al. 2006). In budding yeast a 

fourfold reduction in the dosage of Smc3 or Scc1/Mcd1 suppressed sister chromatid 

recombination but led to increased recombination between homologous 

chromosomes (Covo et al. 2010). Taken together, disruption of cohesin can lead to 

misregulation of physiological recombination pathways that might promote deleterious 

genomic instability (Xu et al. 2011).  

1.3.4. Distinct roles for vertebrate centromere-specific cohesin variants in DNA 

repair 

SA2 in DNA repair 

Although not in response to induced DSBs STAG2 KO colorectal HCC116 cells 

recurrently harboured a unique structural chromosome karyotype that was not 

apparent in SA2 expressing control cells (Solomon et al. 2011). This suggests a role 

for SA2 in regulating structural chromosome stability. More recently, Kong et al. 

reported the intriguing finding that clustering of SMC1α to the sites of DNA damage is 

completely abolished in the absence of SA2 (Kong et al. 2014). Also, SA2 recruitment 

to these sites was abolished upon SMC1α or RAD21 depletion. Furthermore, a 

significant enrichment of SA2, but not SA1, was observed at both laser- and 

endonuclease-induced DSBs. Accumulation of NIPBL was abolished in the absence 

of SA2 but not in the absence of SA1. Together, these observations suggest that 

SA2-containing cohesin complexes, but not SA1-containing complexes are recruited 

to DNA DSBs (Kong et al. 2014). However, both SA1- and SA2-containing complexes 

co-immunoprecipitated with MRE11 in both undamaged and damaged cells, 

indicating that preferential SA2 association with DSBs is not due to a differential 

MRE11 interaction (Kong et al. 2014). 

Both SA1 and SA2 contain an N-terminal Irr1 domain with >90% homology, 

within which the STAG domain is located. The central regions of the proteins share 
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70-90% homology, whilst the C-terminal regions share only 30-50% homology. Both 

full-length proteins, as well as the N-terminal and middle domains from each, 

interacted with RAD21. The N-terminal segments of the proteins that lacked the Irr1 

domain weakly interacted with RAD21, whilst no interaction was observed with the 

SA1 and SA2 C-terminal regions. Therefore, the N-terminal Irr1/STAG domain is 

important for incorporation of both proteins into the cohesin complex (Kong et al. 

2014). Interestingly, the nuclear localization signals (NLSs) of SA1 and SA2 are 

located in different domains of the proteins: the SA1 NLS is found in the N-terminus 

and contains the Irr1 region, and the SA2 NLS is found in the C-terminus. The critical 

differences in the SA1 and SA2 C-termini was highlighted by the finding that replacing 

the C-terminus of SA1 with the C-terminus of SA2 conferred damage site targeting 

ability to SA1 (Kong et al. 2014).  

The SA2-specifc role in DNA DSB repair was further confirmed by showing 

that SA2 depletion, but not SA1 depletion, led to a decrease in the frequency of DNA 

damage induced SCEs. Also, SA2 depletion enhanced DSB repair by NHEJ as seen 

in RAD21-depleted cells, likely due to a shift in repair pathway choice (Potts et al. 

2006, Kong et al. 2014). Finally, the authors investigated the roles of SA1 and SA2 in 

the G2 DNA damage checkpoint. In contrast to previous reports, no defect in 

checkpoint enforcement was observed in SA1 or SA2 depleted cells, as measured by 

mitotic index after DNA damage with and without caffeine. In contrast, SMC1α 

phosphorylation, which is required for the intra-S DNA damage checkpoint, was 

comparable in SA1- and SA2-containing complexes after DNA damage. Consistently, 

SA1- and SA2-depleted cells both displayed increased radioresistant DNA synthesis 

(RDS), which is indicative of an intra-S DNA damage checkpoint defect (Kim et al. 

2002, Luo et al. 2008, Yazdi et al. 2002). Both SA1- and SA2-depleted cells show 

reduced survival after IR, indicating an important role of both proteins in the DNA 

damage response. Also, double depletion of SA1 and SA2 reduced survival to a level 

comparable with RAD21-depleted cells. In conclusion, this study identifies a separate 

role of SA2 in DNA repair that is distinct from a role of both SA1 and SA2 in the intra-

S DNA damage checkpoint (Kong et al. 2014).  

Pds5B interacts with BRCA2 and is required for genome stability 

Drosophila BRCA2 was found to interact with human PDS5B far more strongly than 

with human PDS5A (Brough et al. 2012). A strong interaction between human BRCA2 

and PDS5B was observed following IR exposure, suggesting a role for this interaction 

in DNA repair. This interaction was dependent on a fragment of BRCA2 

71



encompassing amino acids 786-1909, and several BRCA2 missense variants 

identified from the Breast Cancer Information Core (BIC) impaired the BRCA2-PDS5B 

interaction and HR (Brough et al. 2012). Depletion of PDS5B using siRNA in 293T 

cells led to decreased survival in response to aphidicolin, hydroxyurea, mitomycin C, 

IR and PARP inhibitor. Furthermore, treatment with mitomycin C, which results in 

DSB formation after replication fork collapse in S-phase led to an increased 

prevalence of structural chromosome aberrations in PDS5B-depleted cells. Similarly, 

an increase in chromatid breaks after treatment with aphidicolin was observed in 

Pds5B -/- MEFs (Carretero et al. 2013). PDS5B silencing also reduced the number of 

IR-induced Rad51 and BRCA2 foci. In a GFP reporter assay PDS5B depletion led to 

reduced repair of an I-SceI-induced DSB by HR comparable to BRCA2 depletion, 

suggesting a direct role for PDS5B in HR. Enrichment of PDS5B was also observed 

at the DSB as shown by ChIP. Collectively these data highlight a critical role of 

PDS5B in DSB repair by HR (Brough et al. 2012).  

Further examination of the BRCA2-PDS5B interaction revealed that the two 

proteins preferentially interacted when the majority of cells were in the first half of S-

phase. PDS5B also interacted with the BRCA2-interacting proteins RAD51 and 

PALB2 and in a temporally similar manner to the BRCA2-PDS5B interaction. These 

results are consistent with the hypothesis that PDS5B interaction with these proteins 

is associated with DSB formation generated by replication fork collapse. Treatment 

with an ATM inhibitor abolished the BRCA2-PDS5B interaction, supporting a function 

for ATM in the interaction. This is consistent with the identification of PDS5B as a 

potential ATM/ATR target (Matsuoka et al. 2007, Brough et al. 2012).  

Like BRCA2, PDS5B was found to interact with the replication-associated 

proteins CDC45 (pre-replication complex component) and PCNA predominantly in S-

phase. Both PDS5B and BRCA2 interacted with RAD21 and SMC3, and the 

association of BRCA2 with these replication and cohesin proteins in early S-phase 

required Pds5B. Depletion of PDS5B also reduced the binding of RAD51 and PALB2 

to BRCA2. Collectively this suggests that PDS5B functions as a node for the 

interaction between replication and cohesin factors (Brough et al. 2012). Finally, 

PDS5B expression in a cohort of breast tumours revealed that 75/160 (46.9%) had 

reduced PDS5B expression, and six of these showed apparently no detectable 

expression. Furthermore, the frequency of low PDS5B expression correlated with 

histological grade as well as ER-negative and basal-like phenotypes. A statistically 

significant longer disease-free survival (DFS) was observed in low PDS5B expression 

ER-negative tumours treated with the DNA damage-inducing chemotherapeutic agent 

anthracycline. Altogether, these findings suggest that low PDS5B expression 
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correlates with chemotherapeutic outcome, at least in ER-negative breast tumours 

(Brough et al. 2012).  

1.3.5. Disruption of centromeric cohesion as a cause of aneuploidy 

Virtually all cancers are aneuploid, and in recent years the potential importance of 

aneuploidy as a driving mechanism in cancer has been exposed (discussed later). 

The mechanism whereby reduced centromere cohesion could lead to aneuploidy 

likely involves disruption of back-to-back sister kinetochore geometric constraint 

during metaphase alignment. This would in turn increase the frequency of erroneous 

kinetochore-microtubule attachment from opposing spindle poles, known as merotely 

(Compton 2011). Importantly, the SAC does not sense merotelic attachments 

because they do not compromise the total number of kinetochore-microtubule 

attachments (Cimini et al. 2001). Consequently, anaphase onset is not delayed and 

sister chromatids entering anaphase with uncorrected merotelic attachments become 

lagging chromosomes, which promote chromosome missegregation. Indeed, the most 

common cause of chromosome missegregation in CIN-positive cancer cells is lagging 

chromosomes (Thompson & Compton 2008). Lagging chromosomes and other 

chromosome segregation defects in mitosis could also cause cell-to-cell fusions and 

tetraploidy, which is thought to be a transitional state preceding the development of 

many near-tetraploid and triploid karyotypes (Ganem et al. 2007, Duelli & Lazebnik 

2007). 

An increasing number of studies point to a crucial role of centromeric cohesion 

in preventing aneuploidy in vertebrates. The frequency of aneuploidy in oocytes 

increases dramatically during maternal aging, suggesting an age-related reduction in 

oocyte quality (Hassold & Hunt 2001). More recently, ooyctes from older, but not 

young mice displayed compromised centromeric cohesion during meiosis I and 

aneuploidy, which correlated with reduced chromosome-associated Rec8 (meiotic 

Rad21) (Chiang et al. 2011). In mitotic cells, Rad21 +/- mice displayed an increased 

frequency of aneuploidy but were not prone to tumourigenesis, suggesting a 

requirement for additional mechanisms to promote aneuploid-related tumour 

progression (discussed later) (Xu et al. 2010).  

SA2 and aneuploidy in human cancer 

Depletion of SMC1α, SMC3 and SA2 using siRNA resulted in the development of 

tetraploid and octaploid populations in colon carcinoma cells (Barber et al. 2008). 
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Analysis of metaphase chromosome spreads revealed that knockdown of all three 

genes resulted in the premature release of sister chromatid cohesion, when primary 

constriction cohesion at the centromere was assayed (Barber et al. 2008).  

Solomon et al. provided further evidence for SA2-mediated centromeric 

cohesion preventing aneuploidy in human cancer (Solomon et al. 2011). Scoring of 

primary constriction cohesion revealed that STAG2-deficient glioblastoma cells 

prematurely release sister chromatids compared to cells in which the STAG2 

mutation has been endogenously corrected. In addition, STAG2-deficient cells had an 

increased frequency of anaphase bridges, chromosomal translocations and displayed 

altered chromosome counts compared to the STAG2-proficient controls. Specifically, 

correction of the endogenous STAG2 mutation in a glioblastoma cell line changed the 

modal chromosome number from 90 to 85. Cre-mediated knockout of STAG2 in a 

colorectal cell line led to a modal chromosome increase of 1, from 45 to 46. 

Importantly, there are no details on how long after correction/depletion the karyotypes 

were analysed (Solomon et al. 2011).  

More recently, 9 out of 12 urothelial carcinomas harbouring STAG2 mutations 

had overt aneuploidy as measured using Affymetrix CytoScan HD Arrays (Solomon et 

al. 2013). In a single tumour up to 35 clonal chromosomal aberrations were observed, 

whilst 3 STAG2-mutated samples showed no detectable aberrations. Thus, the 

majority of STAG2-mutated urothelial cancers do display aneuploidy, further 

supporting a role of STAG2 in preventing aneuploidy in various cancers. Furthermore, 

depletion of STAG2 using shRNA in urothelial carcinoma cells clearly altered the 

modal chromosome number from 89 to 88. Again, the time after STAG2 depletion 

before measuring the chromosome number is not stated (Solomon et al. 2013). 

Supportively, Guo et al. reported that tumours with STAG2 genetic alterations had 

significantly more aneuploidy (P = 0.01) from analysis of copy number changes on 

chromosome arms (Guo et al. 2013).  

Contrary to these findings, Balbáz-Martinéz et al. found that loss of SA2 expression 

occurred predominantly in genomically stable, non-aggressive urothelial bladder 

cancers (UBCs). Amongst 11 tumours lacking SA2 expression 9 were karyotypically 

normal and 2 had lost one copy of chromosome 9. In addition, these authors found 

that shRNA-mediated depletion of SA2 in bladder cancer cells did not lead to 

aneuploidy (Balbáz-Martinéz et al. 2013). This is consistent with findings that frequent 

mutations in STAG2, SMC3, SMC1A and RAD21 were not associated with 

aneuploidy in acute myeloid leukemia (Welch et al. 2012, Walter et al. 2009). 

Specifically, normal karyotypes were observed in 12 AML cases harbouring cohesin 
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gene mutations, and 6 cases contained 3 or fewer abnormalities. Only one case 

displayed complex cytogenetics (Welch et al. 2012). Somewhat contrary to a role of 

cohesin in preventing aneuploidy in cancer are findings that amongst 43 cases of 

myeloid neoplasm harbouring cohesin mutations only 10 were aneuploid, and a 

further ten showed chromosome aberrations without aneuploidy. Amongst the 29 

cases with a STAG2 mutation, 16 were karyotypically normal, 7 were aneuploidy, and 

6 had chromosome aberrations without aneuploidy. Therefore, aneuploidy is not 

ubiquitous amongst cancers with mutations in STAG2. This is perhaps surprising, and 

might be due to different levels of tolerance to aneuploidy in different cell types 

(Balbáz-Martinéz et al. 2013).  

Chromosome missegregation and aneuploidy in cells lacking components that 

regulate the centromere-specific cohesion pathway 

Esco2 -/- MEFs show a centromeric cohesion defect and severe chromosome 

segregation defects (Whelan et al. 2012). These included lagging chromosomes, 

anaphase bridges and chromosomes located near spindle poles, all of which are 

consistent with a centromere cohesion defect. Interphase nuclei were frequently 

multilobed and contained micronuclei, which are typical of cells that have experienced 

chromosome missegregation in the previous mitosis (Whelan et al. 2012). Carretero 

et al. reported a centromeric cohesion defect in Pds5B -/- MEFs, as well as increased 

cytokinesis failure, cell death and statistically significant increases in aneuploidy 

(Carretero et al. 2013). Specifically, the aneuploidy manifest as an increased range of 

chromosome counts per cell, indicating relatively equal chromosome gains and 

losses (Carretero et al. 2013). Overexpression of Separase, which is frequently 

observed in numerous human tumour types, was found to result in a centromeric 

cohesion defect in mouse mammary epithelial cells (Zhang et al. 2008). Moreover, 

Separase overexpression led to an increased frequency of lagging chromosomes and 

anaphase bridges, and the formation of aneuploid tumours in an in vivo mouse 

mammary transplant model (Zhang et al. 2008).  

The SWI/SNF-related Alpha thalassemia/mental retardation X linked (ATRX) 

ATPase is highly enriched at PCH and is required for centromeric cohesion and 

congression (Ritchie et al. 2010). Mutations in ATRX give rise to various mental 

retardation syndromes characterized by developmental delay, cognitive defects and 

microcephaly (Ritchie et al. 2010). Depletion of ATRX in human cells caused a delay 

in the prometaphase to metaphase transition, increased interkinetochore distance, 
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defective SAC, increased frequencies of anaphase bridges and micronuclei (Ritchie 

et al. 2010).  

Cells in which the potent tumour suppressor Rb is lacking or inactivated are prone to 

aneuploidy (Hernando et al. 2004, Iovino et al. 2006, Isaac et al. 2006, Mayhew et al. 

2007, Srinivasen et al. 2007, Amato et al. 2009), but until recently the exact 

involvement of the protein in preventing aneuploidy was unclear (Manning et al. 

2010). Loss of Rb might cause aneuploidy via a number of distinct mechanisms. First, 

Rb transcriptionally regulates several genes involved in mitosis and the SAC, 

including Aurora A, Astrin, CDC20, MAD2, NEK2 and NDC80 (Iovino et al. 2006, 

Chakraborty et al. 2007). Indeed, overexpression of MAD2 can compromise the SAC 

and cause aneuploidy (Sotillo et al. 2007). However, MAD2 levels are found to 

decrease rather than increase in cells depleted of Rb (Amato et al. 2009).  

Manning et al. made the important finding that loss of Rb results in 

substantially elevated rates of chromosome missegregation that is not associated 

with a defective SAC (Manning et al. 2010). Moreover, Rb-depleted cells showed a 

statistically significant increase in the distance between sister centromeres, reduced 

centromeric sister chromatid cohesion, impaired chromosome congression, and an 

increase in the number of chromosomes displaying a centromeric distortion pattern 

characteristic of merotely (Cimini et al. 2003, Draviam et al. 2006, Manning et al. 

2010). Loss of Rb compromised mitotic progression, leading to increased multipolar 

spindles and increased anaphase bridges. A minor reduction in chromatin-bound 

RAD21 and SMC3 was observed in Rb-depleted cells. However, centromere-

localized cohesin only represents ~10% of all chromatin bound cohesin (Peters et al. 

2008). Thus, loss of all cohesin from the centromere might not be obvious in a 

chromatin fractionation experiment. Consistent with a specific reduction in chromatin 

bound cohesin at the centromere were findings that in mitotic Rb-depleted cells the 

punctate pattern of RAD21 localization was conspicuously reduced (Manning et al. 

2010). This study identifies a novel, potent role for Rb in promoting centromeric 

cohesion and preventing aneuploidy that is independent of transcriptional regulation 

(Manning et al. 2010).   

1.3.6. Aneuploidy as a driver of tumourigenesis 

Chromosomal abnormalities, including translocations, deletions, amplifications and 

aneuploidy, were known to be associated with cancer over a century ago. Aneuploidy 

is common in cancer and correlates with poor prognosis in many situations (Carter et 
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al. 2006). Some cancers are karyotypically stable but all cancers at least harbor 

multiple mutations and/or structural chromosome aberrations. A long-standing debate 

has focused on whether such genetic alterations and aneuploidy are a cause or a 

consequence of tumourigenesis (Gordon et al. 2012, Kolodner et al. 2011). Cancer 

cells accumulate mutations, rearrangements and aneuploidy during their development 

and progression, but the order and mechanisms by which these occur are largely 

unclear (Kolodner et al. 2011). 

The ‘mutator’ hypothesis envisions that cancer cells must somehow acquire a 

phenotype that results in elevated rates of mutation and genetic alterations that drives 

the development of further alterations required for progression (Loeb 2001). This 

hypothesis has gained substantial support in recent years from findings that frequent 

mutations in diverse cancers occur in pathways that (might) regulate genome stability, 

including cohesin and chromatin remodeling complexes. In addition, numerous 

familial cancer predisposition syndromes are caused by defects in DNA damage 

repair and response pathways (Kolodner et al. 2011).  

The effects of aneuploidy in cancer are less clear. Although aneuploidy is 

considered a hallmark of most cancers, the gain of single chromosomes can result in 

reduced cell growth in human and mouse cells (Torres et al. 2010, Williams et al. 

2008), and is usually lethal in many organisms from Drosophila to human (Torres et 

al. 2008). Indeed, aneuploidy confers severe disadvantages to cells due to increased 

stress burdens from altered protein homeostasis and metabolism (Torres et al. 2007, 

Torres et al. 2010, Williams et al. 2008). In addition, the progression of some cancers 

is attenuated by aneuploidy but enhanced in others in mice (Weaver et al. 2007). 

Studies in yeast suggest that the effects of aneuploidy are likely to be highly complex 

and dependent on the altered expression of many genes and pathways (Rancati et al. 

2008). Cancer cell lines with gross chromosomal instability (CIN) missegregate 

chromosomes at a substantially higher frequency than nontransformed cells 

(Thompson et al. 2008, Lengauer et al. 1997). Thus, aneuploidy in this context might 

simply represent a by-product of pre-existing genome instability.  

More recently, a fascinating study by Sheltzer et al. showed that the engineered gain 

of single chromosomes in yeast resulted in modest but statistically significant 

increases in the rate of point mutation, spontaneous mitotic recombination and further 

aneuploidy (chromosome loss), as well as sensitivity to DNA damaging agents and 

increased spontaneous Rad52 foci (Sheltzer et al. 2011). Furthermore, the increased 

genomic instability was found to be due to stoichiometric protein imbalances rather 

than increased DNA content. This study indicates that aneuploidy can drive genomic 
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instability at least in yeast, and has important implications for aneuploidy in cancer. 

Aneuploidy occurring as an early event in a nontransformed precursor cell could be 

sufficient to drive the genomic instability required for the cell’s development and 

progression towards cancer. This has profound implications given the recent findings 

that a high frequency of mutations occur in genes known to prevent aneuploidy, 

including STAG2 as a shining example.  

1.3.7. Cohesin and cancer 

Transcriptional misregulation as a functional consequence of cohesin dysfunction in 

cancer  

Cohesin is important for transcriptional regulation by forming loops within DNA to 

regulate promoter-enhancer interactions. A number of transcriptional programs 

associated with tumourigenesis appear to be regulated by cohesin. The Drosophila 

homologue of RAD21, known as vtd, is a member of the trithorax group (TrxG) 

protein family (Hallson et al. 2008), which includes dominant suppressors of PcG and 

HH proteins. However, Drosophila vtd is not a known functional homologue of 

RAD21, and mutations in SMC1 or PDS5 did not mirror the TrxG phenotype (Xu et al. 

2011). 

Cohesin also closely interacts with the transcriptional repressor CCCTC-

binding factor (CTCF), which regulates interactions between trans-acting factors with 

promoters and is a putative tumour suppressor (Wendt & Peters 2009, Nikolaev et al. 

2009). Potential tumour suppressor activities of cohesin/CTCF include protection of 

tumour suppressor gene promoters from methylation-dependent silencing, 

maintenance of genomic imprinting, regulation of MYC, IGF2 (imprinting gene), 

interleukin-3 (IL-3), granulocyte-macrophage colony stimulating factor 2 (CSF2) and 

IFNG transcription (Xu et al. 2011). Loss of imprinting is common in many tumours 

and is often one of the first abnormalities to be observed (Filippova et al. 2008). 

Cohesin-CTCF also appears to have a broad function in the global regulation of 

transcription, which if misregulated could lead to oncogene activation and tumour 

suppressor inactivation (Kagey et al. 2010, Miele & Dekker 2008, Xu et al. 2011).  

Cancer-associated mutations in cohesin genes 

Barber et al. performed a screen for mutations in human homologues of 102 known 

yeast chromosomal instability (CIN) genes in a panel of colorectal cancers and 
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identified four genes that regulate sister chromatid cohesion (Barber et al. 2008). 

Within the 132 cases analysed 10 mutations were identified, occurring in SMC1A 

(four mutations), NIPBL (four mutations), SMC3 (1 mutation), STAG3 (meiotic 

paralogue of yeast SCC3, 1 mutation). Collectively, cohesin mutations were identified 

in ~7.5% of all colorectal tumours analysed (Barber et al. 2008).  

More recently, Soloman et al. performed single-nucleotide polymorphism 

(SNP) arrays on human glioblastoma cell lines to locate regions of DNA deletion and 

amplification (Solomon et al. 2011). One cell line (U138MG) contained a deletion at 

Xq25 that has been observed in other studies, and is a region that harbours the 

STAG2 gene. Accordingly, STAG2 protein expression was absent in U138MG, as 

well as in 42MGBA and H4 cell lines, which were found to contain nonsense and 

frameshift mutations, respectively. Further sequencing of 68 glioblastoma cases 

identified four additional STAG2 mutations, and ten cell lines from a panel of 168 

various cancer types showed complete loss of STAG2 expression (Solomon et al. 

2011). This suggests that STAG2 represents an important tumour suppressor gene is 

various cancers types. 

A very recent spate of exome sequencing studies revealed further frequent mutations 

in various cohesin genes in diverse cancer types (Welch et al. 2012, Solomon et al. 

2013, Guo et al. 2013, Balbáz-Martinez et al. 2013, Kon et al. 2013, Kim et al. 2013). 

Four independent studies published together in Nature Genetics identified frequent 

truncating mutations in various cohesin genes, but particularly STAG2, in bladder 

cancer (Solomon et al. 2013, Guo et al. 2013, Balbáz-Martinéz et al. 2013) and 

myeloid neoplasms (Kon et al. 2013). Solomon et al. reported that 52 out of 295 

urothelial carcinomas of the bladder (18%) showed complete loss of SA2 expression. 

Loss of SA2 expression was also occasionally observed in several other cancer 

types. In an independent cohort of 111 primary urothelial carcinomas 25 mutations 

were found in 23 cases. Amongst these, 21 mutations resulted in a truncated protein 

product, 5 of which were nonsense, 6 were splice-site and 10 were frameshift 

mutations. Three missense mutations were found to retain SA2 expression as shown 

by immunohistochemistry. 5 out of 32 urothelial carcinoma cells lines also harboured 

truncating mutations, and concurrent p53 overexpression or mutation was frequently 

found in tumours and cell lines with SA2 mutations (Solomon et al. 2013).  

Balbáz-Martinéz et al. sequenced the exomes of 17 urothelial bladder cancer 

samples with matched normal leukocyte DNA. A total of 2,927 mutations were 

identified, of which 798 were predicted to be damaging (i.e. to have a functional 

effect). Importantly, the study identified recurrent, previously unreported mutations in 
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DNA repair genes, including ATM, ERCC2 and FANCA, and the cohesin subunit 

genes STAG2, STAG1, SMC1A and SMC1B (Balbáz-Martinéz et al. 2013) 

The authors next focused on SA2 because of its high mutation rate in a 

collection of bladder cancer studies (damaging somatic mutations in 12 out of 77 

tumours (15.6%)). Amongst these, 5 were nonsense, 4 were exon junction, 2 were 

missense and 1 was an insertion and deletion (indel) mutation. Expression of SA2 

was reduced or not detected in 6 out of 7 (85%) urothelial bladder cancers with 

damaging mutations and 3 out of 34 (9%) tumours with wild-type SA2. Tissue 

microarray analysis of incident tumours found loss of SA2 expression (histoscore ≤50 

with detectable stromal expression) in 197 of 671 tumours (29.3%). In these samples 

loss of SA2 expression correlated significantly with multicentricity, tumour size, low 

stage and low grade. 

The third study to report frequent alterations in cohesin genes performed 

whole exome sequencing of 99 samples of transitional cell carcinoma (TCC, the 

predominant form of bladder cancer) (Guo et al. 2013). Amongst 13 newly identified 

TCC genes STAG2 ranked most significantly mutated. Specifically, 11 cases (11%) 

had STAG2 mutations, 9 of which were truncating (3 small frameshift indels, 4 

nonsense, 2 splice-site). STAG2 genomic deletions were observed in 5 of the 99 

cases. Sequencing of a further 50 matched tumour samples revealed 5 somatic 

mutations in 4 tumours. Also, examination of the STAG2 promoter in 30 TCCs 

showed hypermethylation in 7 cases (23%). Kaplan-Meier survival analysis showed 

that individuals with STAG2 mutations had a much worse prognosis compared to 

wild-type STAG2 individuals. Frequent genetic alterations were also observed in other 

cohesin genes, including NIPBL (4% of tumours), SMC1A (3%) and SMC3 (2%). 

Interestingly, frequent mutations were also found in ESPL1 (6%), which encodes 

separase (Guo et al. 2013).  

Whole exome sequencing of 24 acute myeloid leukemia (AML) cancers 

identified a total of 19 mutations in STAG2, SMC3, SMC1A and RAD21. 11 of these 

were loss of function mutations (nonsense, splice site or gene deletion) (Welch et al. 

2012). A more recent exome sequencing study of myeloid neoplasms found 54 

recurrent, usually mutually exclusive mutations and deletions in STAG2, SMC3, 

SMC1A and RAD21. Again, the majority of the mutations (33; 61.1%) were found in 

STAG2, whilst 12 (22.2%), 5 (9.3%) and 4 (7.4%) occurred in RAD21, SMC3 and 

SMC1A, respectively (Kon et al. 2013). The authors showed that leukemic cells 

harbouring cohesin mutations had reduced levels of chromatin-bound cohesin 

proteins. In addition, forced expression of RAD21 and SA2 in leukemic cell lines with 
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reduced RAD21 and SA2 expression suppressed cell growth, suggesting an 

important role for reduced cohesin in myeloid leukemogenesis (Kon et al. 2013).   

A study by Kim et al. sought to determine if the centromere cohesion-specific putative 

tumour suppressor genes SGO1 and PDS5B were mutated or misexpressed in 

gastric and colorectal cancer (Kim et al. 2013). The genes encoding both proteins 

contain mononucleotide repeats in coding sequences that were considered possible 

mutation sites in microsatellite unstable cases of these cancers. Analysis of 91 gastric 

and 100 colorectal cancers identified a total of 21 SGO1 frameshift mutations in 21 

cases and 18 PDS5B frameshift mutations in 16 cases (Kim et al. 2013). Amongst 

112 microsatellite unstable cancers 26.6% and 20.3% contained SGO1 and PDS5B 

mutations, respectively. In addition, out of all cancers (microsatellite stable and 

unstable) 19% and 47% had lost expression of PDS5B and SGO1, respectively, as 

measured by immunohistochemistry. Thus, this study suggests that frameshift 

mutation and loss of expression of PDS5B and SGO1 is a feature of gastric and 

colorectal cancer and might function in cancer pathogenesis (Kim et al. 2013).  

Deregulated expression of cohesin genes in cancer 

The studies described above provide fascinating new evidence that various cohesin 

genes are mutated at a previously unknown high frequency in diverse cancers. 

STAG2 mutations appear to be particularly frequent. This might reflect a particularly 

critical role of SA2 in preventing tumourigenesis, or alternatively might be due to the 

fact that the STAG2 gene resides on the X chromosome. Therefore, inactivation of 

STAG2 would only require one mutational hit (Balbáz-Martinéz et al. 2013).  

In addition to the high frequency of mutation, numerous cohesin subunits are 

misregulated in cancer. At present, the mechanisms underlying the cases of 

misregulation described below are largely unclear (Xu et al. 2011). In particular, 

RAD21 was consistently overexpressed preferentially in undifferentiated, usually 

aneuploid cancer types including ovarian, breast, brain, bladder, and lung cancers 

(Rhodes et al. 2004). More recently, in a large cohort of sporadic breast cancers 

RAD21 expression was elevated in high-grade tumours from various subtypes and 

was associated with poor prognosis (Xu et al. 2011, van ‘t Veer et al. 2002). Also, 

RAD21 is overexpressed in 30-40% of hormone-refractory prostate cancers (Porkka 

et al. 2004) and in mesothelioma (Roe et al. 2009). SMC3 overexpression has been 

observed in colon carcinoma tissue and adenomatous polyps and adenocarcinomas 

with β-catenin overexpression (Ghiselli & Iozzo 2000, Ghiselli et al. 2003).  
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Cohesin-associated proteins are also overexpressed in many cancers. PTTG1, which 

encodes Securin, is overexpressed in breast, thyroid, brain, oesophagus, and colon 

and hepatocellular cancers. This overexpression is correlated with tumour stage and 

survival in many of these cancers (Salehi et al. 2008). Other cohesin-associated 

proteins that are overexpressed include PDS5A in high-grade gliomas (Hagemann et 

al. 2011), Separase in prostate, 70% of breast cancers and osteosarcoma specimens 

(Zhang et al. 2008, Meyer et al. 2009), WAPL in cervical dysplasia and carcinoma 

(Oikawa et al. 2004), and ESCO2 in aggressive melanomas (Ryu et al. 2007).  

Interestingly, depletion of many cohesin proteins in various cancers has an 

antiproliferative effect, including Securin (Salehi et al. 2008), and WAPL in cervical 

cancer (Oikawa et al. 2004), suggesting that cohesin might regulate proliferation. In 

grade III invasive breast ductal carcinomas genome-wide integrated analysis of array-

based genomic hybridization and microarray expression profiling showed that RAD21 

expression levels are correlated with DNA copy number (Xu et al. 2011). Therefore, 

copy number variation (CNV) might at least partially contribute to the altered cohesin 

protein expression levels in cancer (Xu et al. 2011). In summary, the mechanisms 

underlying the cases of misregulation described above are largely unclear (Xu et al. 

2011). Many cohesin genes are upregulated in diverse cancers, however the 

importance of these changes in tumour progression remains to be determined.  

1.3.8. Rsc1 and Rsc2 are required for establishing sister chromatin cohesion 

In 2004 two studies published a month apart implicated RSC in sister chromatid 

cohesion. Baetz et al. employed a genomic haploinsufficiency modifier screen to 

identify genes that affect chromosome transmission (Baetz et al. 2004). A haploid 

MATα deletion mutant array (DMA) was mated with wild-type CTF13 and mutant 

ctf13-30 MATa haploids. CTF13 encodes a subunit of the essential inner kinetochore 

protein CBF3, and the ctf13-30 mutant is both temperature and microtubule 

destabilizing drug-sensitive (Doheny et al. 1993, Spencer et al. 1990). The resulting 

heterozygous deletion diploids that displayed altered temperature and/or drug 

sensitivity to the CTF13/ctf13-30 heterozygous diploid were identified. Further 

screening isolated both RSC1 and RSC2 as mediators of chromosome segregation, 

however only the rsc2 mutant had a detectable change in the rate of chromosome 

loss (Baetz et al. 2004). Deletion of RSC2 was synthetically lethal with mutants of the 

inner kinetochore gene NCD10, as well as being conditionally synthetic lethal (CSL) 

(by increased temperature) with cse4-1, okp1-5 and ctf13-30 kinetochore mutants. In 

contrast, deletion of RSC1 only resulted in CSL with the NCD10 mutants (Baetz et al. 
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2004). Next, ChIP was used with tagged Ndc10, Cse4 (inner kinetochore) and Ctf3 

(central kinetochore) to show that localization of these proteins to the centromere was 

normal in the rsc2 mutant. 
The possibility that the chromosome missegregation defect in rsc2 might be 

due to a defect in sister chromatid cohesion was also tested. Deletion of RSC2 

caused CSL with scc1-73, smc3-4 mutants and reduced the permissive growth 

temperature with ctf8, ctf18 and scc2-4 mutants. The rsc2 mutant was then shown to 

have a defect in sister chromatid cohesion using a strain that expresses a Tet 

repressor-green fluorescent protein (GFP) fusion protein. Tet operator repeats were 

integrated 35kb from the centromere of chromomsome V (Michaelis et al. 1997), and 

by scoring the number of nocodazole-arrested cells that show two GFP signals 

readout of cohesion is given (Baetz et al. 2004). 7% of wild-type cells had two GFP 

signals whilst rsc2 and rsc1 had 22% and 14% respectively. Furthermore, the 

association of the cohesin subunits Smc3 and Scc1 with chromatin were not affected 

by deletion of RSC2, indicating that Rsc2 is involved in either the establishment or 

maintenance of sister chromatid cohesion. Finally, wild-type, rsc2 and scc1-73 cells 

were arrested in α-factor, released into nocodazole until >90% of cells had undergone 

DNA replication, before shifting to 37°C and scoring GFP signals over a time-course. 

Whilst the scc1-73 mutant showed a steady increase in two GFP signals over time, 

both the wild-type and rsc2 did not show an increase, indicating that establishment 

and not maintenance of cohesion is defective in rsc2.  

Huang et al. also reported an involvement of RSC in sister chromatid cohesion. 

Initially, the authors reported that a temperature-sensitive bromodomain mutant of 

Sth1, sth1L1346A, was defective in 2µ plasmid maintenance but not CEN plasmid 

maintenance (Huang et al. 2004). Previously it had been shown that Rsc2 mutants 

are also defective in maintaining 2µ plasmids (Wong et al. 2002). The yeast 2µ 

plasmid is maintained at about 60 copies in a haploid cell and undergoes a process 

known as partitioning, important for high fidelity segregation the plasmid. Partitioning 

involves the localization of the proteins Rep1 and Rep2, which are encoded by the 

plasmid, to the STB (Malik 2006). It has since been shown that 2µ plasmid 

segregation depends on the recruitment Cse4 to the STB locus (Hajra et al. 2006). In 

the absence of Cse4 it was shown that Rep2 fails to localize to the STB, Rsc2-

dependent remodelling of Cse4-containing nucleosomes does not occur, and 

consequently cohesin is not recruited (Hajra et al. 2006).  

Next, it was shown that rsc2 and sth1L1346A displayed an increased rate of 

minichromosome loss, whilst only the sth1-3ts mutant showed an increased rate of 
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minichromosome non-disjunction. The sth1-3ts mutant was previously shown to be 

defective in kinetochore function and CEN plasmid segregation (Hsu et al. 2003), 

highlighting separate chromosome transmission functions of sth1L1346A and rsc2 

compared to sth1-3ts (Huang et al. 2004). Consistently, both Sth1 and Rsc8 subunits 

localized only to the STB locus on 2µ plasmids and in a cell-cycle dependent manner 

similar to that of Mcd1 as shown by ChIP. Like Mcd1, recruitment of Sth1 occurred in 

late G1, before dissociating in late G2, however association and dissociation occurred 

15 minutes preceding Mcd1 (Huang et al. 2004). An identical pattern of Sth1 

recruitment was also observed at four chromosome arm loci, whilst its association 

with the centromere was constitutive.  

Intriguingly, the temperature sensitivity of an scc1-73 mutant was rescued by 

additionally mutating sth1L1346A or rsc2, whilst the scc1-73 sth1-3ts double mutant 

conferred no growth advantage, again separating the sth1L1346A and rsc2 mutations 

from sth1-3ts. In addition, Sth1 co-immunoprecipated with Mcd1 and Scc3. 

Importantly, in the sth1L1346A and rsc2 mutants Mcd1 failed to associate with 

chromosome arm loci and the STB locus but remained associated with centromeres. 

Furthermore, rsc2 cells arrested in hydroxyurea also displayed this Mcd1 localization 

pattern, suggesting that the cohesion defect occurs before replication (Huang et al. 

2004). Finally, the authors demonstrated that the rsc2 and sth1L1346A mutants 

separate sister chromatids prematurely. Using the same Tet repressor-GFP reporter 

assay described previously, rsc2 cells showed between 3 and 7-fold increases in the 

number of mother cells with separated sister chromatids (35kb from centromere) 

compared to wild-type cells. The sth1L1346A mutant showed premature release of 

sister chromatid cohesion at two arm loci (35 and 284kb from the centromere) but not 

at the centromere itself. Curiously, cohesion at the centromere in rsc2 was not tested 

(Huang et al. 2004).  
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1.4. The BAF180 tumour suppressor 

1.4.1. Binding and activity of the BAF180 tumour suppressor 

BAF180 is one of three proteins that are unique to the PBAF (SWI/SNF-B) complex, 

along with BRD7 and ARID2, which distinguish the complex from the BAF (SWI/SNF-

A) complex (Wilson & Roberts 2011) (Table 1.1). At present very little is known about 

the specific functions BAF180. Considerably more research has been done on subunits 

common to both BAF and PBAF. As described previously, these include SNF5, which 

is implicated in the transcriptional regulation of Rb and E2F target gene pathways, and 

BRG1, which has a role in DNA repair.  

BAF180 is mutated at a strikingly high frequency in certain cancer types, but is 

also mutated at a lower frequency in an increasingly diverse range of other cancers. 

Thus, BAF180 is considered an important tumour suppressor, but only a few potential 

tumour suppressor functions have been identified. As described previously, the 

currently held belief is that BAF180 enforces its tumour suppressor activity by 

regulating the transcriptional activity of specific tumour suppressor genes, such as p21. 

However, the actual importance of this activity in tumour suppression has not been 

demonstrated. Valuable insight into other potential tumour suppressor functions of 

BAF180 can be gained from studies on the highly conserved yeast homologues of 

BAF180. These include Rsc1, Rsc2 and Rsc4, which have many well-characterized 

roles that might directly equate to tumour suppressor activities in mammalian cells. In 

this section we provide an overview of the binding targets, known functions, and 

current mutation spectrum of BAF180 in cancer.  

Binding targets of the BAF180 bromodomains and BAH domains 

BAF180 appears to be an evolutionarily conserved fusion of the RSC subunits Rsc1, 

Rsc2 and Rsc4, containing six bromodomains, two BAH domains and an HMG domain 

(involved in DNA binding) (Xue et al. 2000) (Figure 1.2). At present very little is known 

about the binding targets of the BAF180 bromodomains and BAH domains. Two 

studies have tested the ability of BAF180’s six individually expressed and purified 

bromodomains to bind specific acetyl-lysine histone peptides, however each study 

came to very different conclusions. Chandrasekaran and Thompson generated 

dissociation constants using fluorescence anisotropy with H3 peptides acetylated at 

K4, K9, K14, K18 and K23. They found that the first five individual bromodomains 
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showed a distinct pattern of affinity for each different acetylated peptide. Specifically, 

BD1 preferentially bound to K4Ac, BD2 and BD3 bound to K9Ac, BD4 bound to K23Ac, 

and BD5 bound to K14Ac. Interestingly, BD6 showed no obvious preference for any of 

the acetylated H3 peptides tested (Chandrasekaran & Thompson 2007).  

The second study by Charlop-Powers and co-workers used a dot-blot assay to 

assess binding of the six BAF180 bromodomains to monoacetylated peptides from all 

four core histones (Charlop-Powers et al. 2011). Again, each bromodomain showed a 

distinct pattern of binding preference to specific acetylated peptides, however none of 

the top ‘hits’ matched those found in the study by Chandrasekaran and Thompson. The 

acetylated peptides that scored as ‘high’ binding affinity were H3K36Ac for BD1, 

H3K14Ac and H2BK116Ac for BD2, H3K115Ac, H4K12Ac, H2BK15Ac and 

H2BK120Ac for BD3, H3K14Ac and H3K11Ac for BD4, H3K36Ac for BD5 and 

H2BK24Ac and H2BK116Ac for BD6. Notably, the entire top ‘hits’ from the previous 

study scored as ‘negative’ in terms of binding affinity (Charlop-Powers et al. 2011). 

Thus, the true binding targets of the BAF180 bromodomains are yet to be conclusively 

identified (Brownlee et al. 2012). Recent work in our lab showed that the BAH domain 

of Rsc2 and the homologous proximal BAF180 BAH domain (BAH2) bind to unmodified 

H3 (Chambers et al. 2013). Therefore it seems reasonable to assume that the BAF180 

bromodomains recognise acetylated lysine residues on the same or neighbouring 

histones. It is also entirely possible that the bromodomains bind to other non-histone 

acetyl-lysine residues.  

1689%
BD1% BD2% BD4% BD5% BD6%

1%
BD3%

BAF180%
HMG%BAH1% BAH2%

1% 928%

1% 889%

1% 625%

Rsc1%

Rsc2%

Rsc4%

BD1% BD2% BAH%

BD1% BD2% BAH%

BD1% BD2%

Figure 1.2. BAF180 is homologous to a fusion of the RSC subunits Rsc1, Rsc2 and Rsc4, 
containing 6 homologous bromodomains (BDs) and 2 bromo-adjacent homology (BAH) 
domains.  
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BAF180 is required for the replication of damaged DNA 

A recent study by Niimi et al. identified a role for BAF180 and the yeast homologue 

Rsc2 in repriming stalled replication forks at site of DNA damage (Niimi et al. 2012). 

Replicative polymerases encountering a damaged base, such as cyclic pyrimidine 

dimers (CPDs) induced by UV, are unable to progress past the lesion. In this situation, 

the replicative polymerase is substituted by translesion synthesis (TLS) polymerases, 

which can bypass the lesion (Yang & Woodgate 2007, Lehmann et al. 2007). 

Proliferating cell nuclear antigen (PCNA) regulates the switch from replicative to TLS 

polymerase. PCNA is ubiquitinated by the E2 ubiquitin-conjugating enzyme Rad6 and 

the E3 ubiquitin ligase Rad18 in the presence of single-stranded DNA at the blocked 

replication fork (Hoege et al. 2002, Kannouche et al. 2004, Davies et al. 2008). TLS 

polymerases have a high affinity for uniquitinated PCNA, and therefore PCNA 

ubiquitination provides a mechanism for the polymerase switching (Bienko et al. 2005, 

Plosky et al. 2006, Kannouche et al. 2004).  

Deletion of RSC2, but not RSC1, resulted in reduced PCNA ubiquitination after 

treatment with UV, MMS and HU. Similarly, depletion of BAF180 using siRNA resulted 

in a similar reduction of ubiquitinated PCNA after UV. Moreover, BAF180-depleted cells 

showed reduced levels of chromatin-bound unmodified PCNA and Rad18. Because 

PCNA ubiquitination is required for post-replicative DNA repair the authors next 

analysed fork progression after UV. Consistently, a modest reduction in fork 

progression was observed in the BAF180-depelted cells, however these cells did not 

show reduced survival after UV. In addition, untreated BAF180-depleted cells did not 

display any obvious alteration in cell cycle progression (Niimi et al. 2012). Rsc2 was 

recruited to replication forks during S-phase as shown by ChIP, and by extrapolation 

this was considered to be the case with BAF180.  

A proposed model based on these observations follows that BAF180 promotes 

the repriming of replication downstream from blocked replication forks preceding TLS. 

Each repriming event at subsequent stalled forks involves recruitment of a new PCNA 

molecule, which requires BAF180. In the absence of BAF180 there is less PCNA 

loading and replication through damaged DNA is delayed (Niimi et al. 2012).  

A role for BAF180 and PBAF at centromeres 

Both the human BAF and PBAF complexes displayed ATP-dependent nucleosome 

disruption activity in a remodelling assay (Xue et al. 2000). In the same study the 

intracellular localization of human PBAF was analysed by immunofluorescence using a 

87



BAF180 antibody. Interphase nuclei showed uniform BAF180 staining, whilst in 

prometaphase BAF180 co-stained with cytoplasmic dynein (kinetochore marker) at 

some kinetochores. This localization was only observed in prometaphase and not in 

metaphase, anaphase or telophase. Interestingly, BAF180 also localized to spindle 

poles, which persisted into metaphase. The localization of BAF180 to the kinetochores 

of mitotic chromosomes implies that BAF180 plays a role there during mitosis (Xue et 

al. 2000).  

More recently, Bourgo et al. showed that Cre-mediated depletion of Brg1 in primary 

mouse adult fibroblasts (MAFs) led to a dramatic disruption of DAPI-dense 

heterochromatic domain structure (Bourgo et al. 2009). Importantly, depletion of Snf5 

did not cause the same defect, indicating a phenomenon that is specific to the Brg1 

ATPase subunit. Brg1-depleted cells also showed a disrupted nuclear pattern of 

H3K9me3 and H4K20me3, which are characteristic modifications in pericentromeric 

heterochromatin (Bourgo et al. 2009). Interestingly, these modifications are not 

required for the formation of these heterochromatin domains (Peters et al. 2001, 

Gonzalo et al. 2005). Therefore, the finding that Brg1 is required for correct 

heterochromatin structure and distribution of these modifications reveals that Brg1 

underlies a hierarchical maintenance of heterochromatin function.  

Brg1 depletion also resulted in a striking increase in micronuclei formation, 

dramatically reduced proliferation, and an increased number of cells with 4N and >4N 

DNA content, indicative of polyploidy (Bourgo et al. 2009). There was also a strong 

selection against Brg1 loss. Furthermore, >70% of Brg1-depleted mitotic cells 

displayed some form of abnormal mitotic division, and the few cells that entered 

anaphase frequently showed anaphase bridges, lagging chromosomes or mitotic 

catastrophe. In summary, this study identifies Brg1 as being important for the 

maintenance of pericentromeric heterochromatin and genome stability. However, the 

underlying mechanism was not identified, and it remains to be determined if other 

subunits of PBAF are similarly required for this unique function.  

BAF180 mutation spectrum in human cancer 

PBRM1 was first identified as harbouring multiple truncating mutations in breast cancer 

in a screen for novel breast cancer tumour suppressor genes (Xia et al. 2008). 3 out of 

26 breast cancer cell lines harboured truncating mutations that abolished protein 

expression, and showed strong evidence of loss of heterozygosity (LOH). In addition, 

mutational screening of 52 primary breast tumours identified one other truncating 
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mutation, and 25 of these samples (48.1%) showed BAF180 LOH without a mutation 

(Xia et al. 2008).  

An important study by Varela et al. initially sequenced the protein coding 

exomes of 7 clear cell renal cell carcinomas (ccRCCs) and found truncating PBRM1 

mutations in 4 cases (Varela et al. 2011). Sequencing of an additional 257 RCCs 

identified truncating mutations in a striking 34% of cases, as well as two in-frame 

deletions and nine missense mutations. These mutations are discussed in more detail 

in Chapter 5. In cases where SNP array data was available PBRM1 mutations all 

occurred in the context of 3p21 loss of heterozygosity (LOH) (38/38 cases). Further 

sequencing of 727 cancer cell lines from various histologies identified 5 homozygous 

PBRM1 truncating mutations. These included 3 frame-shifting deletions in a RCC, a 

small-cell lung cancer, and a gall bladder cell line, and 2 nonsense mutations in a 

squamous-cell lung cancer and a pancreatic adenocarcinoma cell line. In addition, 6 

nonsense, 3 frameshift, 1 in frame deletion and 22 missense heterozygous PBRM1 

mutations were found in various other cell lines. Potentially more interesting is the 

identification of 6 homozygous missense mutations. These included an E1287Q 

mutation (BAH2) in a breast cancer cell line, Y893C mutation (BD6) in a lung cancer 

cell line, G340A in (occurs in region between BD2 and BD3) in a skin cancer cell line, 

I233T (BD2) in a kidney cancer cell line, R66G (BD1) in a colon cancer cell line, and 

T56A (BD1) in a central nervous system cancer cell line. Intriguingly, the Y893C 

mutation also occurred as a heterozygous mutation in a lymphoblastic leukemia cell 

line and a liver cancer cell line (Varela et al. 2011). These missense mutations are 

potentially of great interest because they might not disrupt protein stability, and 

predominantly occur in the bromodomains and BAH domains of BAF180. The finding 

that the Y893C homozygous mutation also occurs as a heterozygous mutation in two 

other cancer samples suggests that heterozygous PBRM1 mutations are also 

important in tumourigenesis.  

A significant enrichment of insertion events in mouse Pbrm1 was observed from 

several transposon insertional mutatgenesis screens, providing further support that 

PBRM1 can act as a tumour suppressor gene. Insertions were found in pancreatic 

dysplasia, intraductal, and high-grade invasive tumours, suggesting that inactivation of 

Pbrm1 in this model is an early event (Varela et al. 2011). BAF180 depletion using 

siRNA in 4/5 RCC cell lines resulted in significantly increased proliferation, colony 

formation and cell migration, indicating an increase in transformed phenotype. 

Inspection of gene expression microarrays showed that BAF180 knockdown resulted in 

statistically significant changes (P < 0.05) in the expression of 62 genes in all three 

RCC cell lines analysed. Amongst these, only three genes associated with genome 
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stability and replication were significantly misregulated. These included ATM, which 

was upregulated following BAF180 loss (P = 0.011), GINS4 (GINS complex subunit 4, 

which is required for DNA replication initiation in budding yeast), was upregulated (P = 

0.024), and SKA1 (spindle and kinetochore associated complex subunit 1, P = 0.038), 

which was also upregulated (Varela et al. 2011). Therefore, BAF180 depletion does not 

appear to result substantial downregulation of genes involved in genome stability. This 

is consistent with the findings that amongst the 371 genes found to be significantly 

misregulated following BRG1 depletion, only 2 of these were involved in DNA repair 

(NER and BER) (Park et al. 2006).  

More recently, in a cohort of 68 diffuse large B-cell lymphomas 2 PBRM1 mutations 

were identified (Lohr et al. 2012, Pasqualucci et al. 2011, Morin et al. 2011). A small 

number of PBRM1 mutations have also been also found in head and neck cancers 

(Stransky et al. 2011, Agrawal et al. 2011), multiple myelomas (Chapman et al. 2011), 

chronic lymphocytic leukemia (Quesada et al. 2011, Wang et al. 2011), and pancreatic 

cancer (Jones et al. 2008). Even more recently, 5 truncating PBRM1 mutations were 

identified in 5 out of 32 intrahepatic cholangiocarcinomas (17%), which consisted of 1 

nonsense and 4 frameshift mutations (Jiao et al. 2013).   

In summary, PBRM1 mutations occur a frequency that is likely to represent an 

important tumour suppressor activity in diverse cancers. Certain cancer types harbour 

PBRM1 mutations at a strikingly high frequency. Whilst the vast majority of mutations 

result in a truncated protein, many missense and a few in-frame deletion mutations 

have been identified. Intriguingly, most of these occur in the bromodomains or BAH 

domains of BAF180, and therefore might provide crucial insight into the mechanistic 

activity of these domains in BAF180 function.  
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1.5. Synthetic lethality and HDAC inhibitors in cancer therapy 

1.5.1. Identifying and utilizing synthetic lethal interactions for anticancer therapy 

Standard chemotherapies frequently result in side effects, including hair loss, nausea 

and immunosuppression. This is due to their relatively nonspecific inhibition of rapidly 

dividing normal cells in addition to cancer cells (Druker 2002, Hellman & Vokes 1996). 

Recent cancer research has led to the identification and targeting of traits characteristic 

of cancer cells, such as DNA repair deficiency and aberrant cell signaling. Much effort 

has subsequently been made to develop therapies that specifically target these 

pathways with fewer side effects, leading to some very promising treatments. Some of 

these treatments have received regulatory approval, and have led to increased survival 

in patients with previously intractable cancers (Chan & Giaccia 2011).  

Exploitation of synthetic lethality in cancer cells 

Exploiting synthetic lethal interactions in cancer cells is a particular promising strategy 

for developing tailored cancer therapies. The concept of synthetic lethality, originally 

described in yeast models, follows that mutating two cooperating genes in an essential 

process causes cell death, whilst the single mutations retain viability (Guarente 1993, 

Hartman et al. 2001, Chan & Giaccia 2011). Therefore, administering an inhibitor of a 

gene product in cancer cells that contain a mutation in an interacting gene would 

induce synthetic lethality specifically in those cells.  

This forms the basis of one aspect of tailored cancer therapy, which requires 

prior identification and validation of the synthetic lethal interaction before developing a 

suitable targetting drug (Chan & Giaccia 2011). Predictions on synthetic lethal 

interactions can be made where sufficient data exists on the function of genes in an 

essential process, for example in DNA repair. However, unexpected and complex 

interactions exist that might hold great promise for cancer therapy. Such interactions 

can be identified using synthetic lethal screens, either using RNA interference libraries 

or small-molecule compound libraries (Chan & Giaccia 2011). Identifying synthetic 

lethal interaction with genes that are frequently mutated in cancer would prove most 

useful for developing tailored therapies.  
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Examples of clinically relevant synthetic lethal interactions 

Inhibitors of (Poly (ADP-ribose) (PARP) are amongst the first class of small molecule 

inhibitors that have been developed to interact in a synthetic lethal manner with DNA 

repair factors (Rouleau et al. 2010). As described previously, BRCA1 and BRCA2 

promote DNA DSB repair by HR, and mutations in BRCA1 and BRCA2 are associated 

with various hereditary breast and ovarian cancers (Hall et al. 1992, Casey et al. 1993, 

Wooster et al. 1994, Parikh & Advani 1996). PARP functions as a single-stranded DNA 

(ssDNA) break sensor and facilitates the recruitment of ssDNA break repair factors 

(Petermann et al. 2005). Synthetic lethality has been reported with BRCA1 and BRCA2 

mutations and PARP inhibition in normal cells and breast cancer xenografts (Bryant et 

al. 2005, Farmer et al. 2005). Mechanistically, ssDNA lesions that cannot be repaired 

because of PARP inhibition lead to replication fork collapse and the generation of DNA 

DSBs. In the absence of BRCA1 or BRCA2 HR is defective, leading to unrepaired 

DSBs that trigger apoptosis. As a consequence of these studies PARP inhibitors are 

being evaluated in clinical trials with BRCA-deficient breast and ovarian cancer patients 

(Tutt et al. 2010, Fong et al. 2009, Hutchinson et al. 2010). This example demonstrates 

proof of principle regarding synthetic lethality in cancer therapy.  

Another example of potential synthetic lethal interactions involving DNA repair 

factors includes colorectal carcinoma-associated mutations in MSH1 and MSH2, which 

are involved in DNA mismatch repair, and silencing of Polymerase β and γ, involved in 

base excision repair (Martin et al. 2010, Martin et al. 2011). Thus, simultaneous 

inhibition of these mismatch repair and base excision repair proteins leads to DNA 

damage accumulation that ultimately leads to cell death (Chan & Giaccia 2011).  

Several synthetic lethal interactions have also been identified in factors involved in cell 

signaling. Mutations in VHL occur frequently in a specific subset of cancers, particularly 

renal carcinomas. Strikingly, >80% of renal carcinoma cases show loss of VHL 

expression, either through mutation or epigenetic silencing (Gnarra et al. 1994, Herman 

et al. 1994, Young et al. 2009). In addition, renal cancers are particularly intractable 

because of a lack of symptoms preceding metastasis (Ritchie & Chisholm 1983). Thus, 

treatments that target VHL deficiency are likely to be of great importance for improving 

renal carcinoma therapy. VHL functions by targeting HIF (hypoxia-inducible factor) for 

degradation, and loss of VHL results in HIF accumulation and activation of hypoxia-

inducible genes under normoxic conditions. Three kinases were identified as synthetic 

lethal VHL interaction partners in an shRNA library screen and included cyclin-

dependent kinase 6 (CDK6), hepatocyte growth factor receptor (also known as MET), 
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and dual specificity mitogen-activated protein kinase (MAP2K1) (Bommi-Reddy et al. 

2008). A small molecule screen found that STF-62247, involved in Golgi trafficking, 

induced synthetic lethality with VHL mutation (Turcotte et al. 2008). A synthetic lethal 

interaction between PTEN mutations and mTOR inhibition has also been demonstrated 

(Neshat et al. 2001, Podsypanina et al. 2001, Thomas et al. 2006). Several compounds 

have also been identified that selectively inhibit cells with activated KRAS (Torrance et 

al. 2001), in addition to a number of synthetic lethal interaction genes (Sarthy et al. 

2007, Puyol et al. 2010). Synthetic lethal interactions with MYC overexpression have 

also been identified. In summary, these studies show that clinically relevant synthetic 

lethal interactions involving commonly mutated signaling factors can be discovered 

using small compound and RNA interference screens.  

1.5.2. Histone deacetylase (HDAC) inhibitors in cancer therapy 

HDACs represent a promising class of small molecules that display potent anti-tumour 

activity in vitro. Many of these of these inhibitors are in clinical trials with 

haematological and solid cancers, although results are mixed depending on the cancer 

type (Chan & Giaccia 2011). Nevertheless, two inhibitors, Vorinostat  (suberoylanilide 

hydroxamic acid (SAHA)) and Depsipeptide (romidepsin), have been granted approval 

from the US FDA for the treatment of cutaneous T-cell lymphoma, and more recently 

Depsipeptide has been approved for treating peripheral T-cell lymphoma (Chan & 

Giaccia 2011). Despite these advances, there are major issues confounding our 

understanding of how HDAC inhibitors exert their anti-cancer effects. In particular, most 

HDAC inhibitors simultaneously inhibit multiple HDACs, which constitute a diverse 

group of proteins that regulate a myriad of cell processes. Therefore, the impacts of 

HDAC inhibition on cancer cells are likely to be highly complex and far-reaching. In 

addition, the in vivo targets of individual HDAC enzymes are largely unidentified. More 

systematic approaches aiming to identify the genetic and epigenetic interactions 

involved in HDAC-mediated tumour cytotoxicity are necessary. These might include 

synthetic lethal screens as described previously. Indeed, unidentified synthetic lethal 

interactions might actually underlie the efficacy observed for HDAC inhibitors in certain 

cancers.  

Classification of mammalian HDACs 

Human cells contain 18 HDACs that are grouped into four classes. Class I, II and IV 

HDACs represent the classic Zn2+-dependent HDACs, whilst class III HDACs are 
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metal-independent. Class I HDACs are closely related to budding yeast Rpd3 (Yang & 

Seto 2008) and include HDAC1, HDAC2 HDAC3 and HDAC8. Class I HDACs are 

expressed ubiquitously and localize in the nucleus, where they regulate diverse 

processes including transcription and DNA repair. Class II HDACs are related to 

budding yeast Hda1 and are subdivided into two groups. Class IIa HDACs include 

HDAC4-7 and HDAC9, whilst class IIb HDACs includes HDAC6 and HDAC10. The 

class II HDACs display tissue-specific expression and localize predominantly to the 

cytoplasm, although class IIa HDACs can shuttle between the cytoplasm and the 

nucleus (Martin et al. 2007). Class III HDACs are NAD-dependent proteins known as 

Sirtuins and are closely related to budding yeast Sir2 (Haigis and Sinclair 2010). These 

include SIRT1-7, which can localize to the nucleus and cytoplasm and are involved in 

various processes including metabolism, transcription, DNA repair and cell cycle 

control (Haigis and Sinclair 2010). HDAC11 is the only member of class IV and has 

poorly understood functions.  

Biological consequences of HDAC inhibition 

HDACs remove acetylation marks on histone N-terminal tails made by histone 

acetyltransferases (HATs) (Smith and Denu 2009, Bernstein et al. 2007). Histone 

acetylation induces chromatin relaxation by weakening interactions with DNA, and is 

broadly associated with active transcription. Histone acetylation promotes the 

recruitment of transcription factors via interaction with domains such as bromodomains. 

Human cancers frequently display reduced histone acetylation, which is associated 

with cancer progression. In particular, loss of H4K16ac (and H4K20me3) is considered 

a hallmark of cancer (Fraga et al. 2005). Thus, the hyper-acetylation resulting from 

HDAC inhibition could restore the transcription of inappropriately silenced tumour 

suppressor genes, representing a potential mechanism for HDAC-mediated cancer cell 

cytotoxicity. However, a global increase in transcription does not necessarily result 

from HDAC inhibition, and amongst the small fraction of genes (20%) actually affected 

by HDAC inhibition around half are activated and half are repressed (Minucci & Pelicci 

2006). Nevertheless, HDAC inhibitors are known to upregulate p21 transcription 

(Richon et al. 2001, Sandor et al. 2000) and reduce cyclin transcription in cancer cells, 

the latter of which results in Rb dephosphorylation to indirectly affect E2F transcription 

(Zhao et al. 2005). Therefore, HDAC inhibitor-mediated transcriptional modulation 

might explain some of the antiproliferative effects of these drugs on cancer cells. 
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In addition to regulating histone acetylation HATs and HDACs also affect more than 50 

non-histone protein substrates, which extends their involvement beyond far 

transcriptional regulation (Ocker 2010). These include factors involved in transcription, 

signal transduction, DNA repair and chaperoning. The effects of acetylating these non-

histone proteins range from altering DNA binding affinity, transcriptional activity, protein 

stability and protein-protein interactions (Ververis et al. 2013).  

Relatively recent reports indicate that HDAC inhibitors enhance DNA damage 

caused by DNA damaging agents. One explanation is that the induction of a more 

relaxed chromatin structure increases the exposure and sensitivity of DNA to damage 

(Karagiannis et al. 2007). A study by Miller et al. demonstrated a specific function of 

HDAC1 and 2 in deacetylating H3K56, which is required for efficient DNA DSB repair 

principally via NHEJ (Miller et al. 2010). Therefore, HDAC inhibitors that target HDAC1 

and 2 could exert anticancer activity by impairing DSB repair. Transcriptional down-

regulation of various DNA repair proteins, including Ku80, BRCA1 and RAD51 has also 

been reported following HDAC inhibition (Adimoolam et al. 2007, Zhang et al. 2007). 

HDAC inhibitors are also known to induce apoptosis via transcription-dependent and –

independent mechanisms (Minucci & Pelicci 2006, Bolden et al. 2006), as well as 

reducing angiogenesis by reducing HIF and VEGF expression (Kim et al. 2001). In 

summary, HDAC inhibitors target traits associated with cancer cells via multiple 

transcription-dependent and –independent mechanisms, which may have relevance to 

their anticancer activity.  

HDAC3 is required for centromeric cohesion 

A growing body of evidence indicates that HDAC inhibitors might exert a transcription-

independent antiproliferative effect by disrupting centromeric cohesion. An intriguing 

study by Eot-Houllier et al. demonstrated a specific role for HDAC3 in promoting 

centromeric sister chromatid cohesion by deacetylating H3K4. Depletion of HDAC3 led 

to an increased mitotic index, chromosome congression defects and a pronounced 

centromeric cohesion defect, whilst SAC activity was unaffected (Eot-Houllier et al. 

2008). Furthermore, HDAC3 depletion led to impaired centromeric Sgo1 localization 

and Haspin-mediated H3T3 phosphorylation. Mitotic centromeres show a distinct 

H3K4me2-enriched inner centromere domain adjacent to a CENP-A domain. 

Surrounding these domains is a large pericentromeric region characterized by 

H3K9me2-enriched chromatin (Sullivan & Karpen et al. 2004). HDAC3 was required for 

deacetylating H3K4 prior to mitosis in order to allow H3K4 methylation (Eot-Houllier et 

al. 2008). The authors propose that centromeric H3K4ac impairs Sgo1 recruitment, 
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which might be dependent on H3K4me2. This study reveals a novel transcription-

independent function for a HDAC in promoting centromeric cohesion.  

Another relationship between HDACs and cohesin exists between HDAC8 and 

SMC3. HDAC8 was found to be the HDAC responsible for deacetylating SMC3 once 

cohesion dissolution occurs after execution of the prophase pathway (Deardorff et al. 

2012). Consequently, in the absence of HDAC8 cohesin renewal was impaired, which 

ultimately led to decreased cohesin loading. These findings might have potential 

implications for HDAC3- and HDAC8-specific inhibitors in targeting cancers with 

mutated cohesin genes.  

Classification of HDAC inhibitors 

HDAC inhibitors can be broadly classified into groups based on their chemical 

structure, and include hydroxamic acids, cyclic peptides, bibenzimides and short-chain 

fatty acids (Ververis et al. 2013). Most hydroxamic acids predominantly inhibit class I 

and II HDACs, and include Vorinostat (SAHA) and TSA. Cyclic peptides and 

benzimides such as Depsipeptide and Etinostat selectively inhibit class I HDACs, and 

fatty acids such as butyrate inhibit class I and II HDACs (Ververis et al. 2013). 

Inhibitors that target single HDAC enzymes are becoming increasingly available, and 

these would prove most useful for elucidating the functions of the individual proteins. 

There is substantial debate regarding whether enzyme- or class-specific inhibitors are 

more useful than broad-spectrum inhibitors from a clinical perspective. It is likely that 

inhibiting specific combinations of HDACs in different cancer types or genetic and 

epigenetic backgrounds leads to favoured outcomes. A major goal for the 

advancement of HDAC inhibitor-based cancer therapy is to integrate biological and 

genetic data with chemistry techniques to develop purpose-designed inhibitors.  
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1.6. Thesis experimental research goals 

The work presented in the following sections comprises three broad research goals. 

First, we perform an investigation into the roles of the two isoforms of the RSC complex 

in the DNA damage response in budding yeast. Substantial literature has shown that 

RSC is involved in a range of DNA damage response processes, including DSB-

induced chromatin remodelling, NHEJ, and HR. However, the differential involvement 

of the two isoforms of RSC in these processes has not been comprehensively tested.  

A second major goal is to explore whether the BAF180 subunit of PBAF in 

mammalian cells functions to promote cohesion. There are several important reasons 

for addressing this question. Firstly, the homologous Rsc2 subunit of RSC is known to 

be important for cohesion establishment, thus in one respect we aim to determine if 

BAF180 shares a conserved function. Secondly, recent exome sequencing studies 

have revealed that the gene encoding BAF180 and various genes that regulate 

cohesion are frequently mutated in diverse cancers. Recent literature has also shown 

that defects in centromere cohesion causes aneuploidy in cancer, and that aneuploidy 

can drive genome instability. Taken together, a conserved role for BAF180 in cohesion 

might represent a novel and important tumour suppressive function. We then extend 

this investigation to assess the importance of the role of BAF180 in promoting cohesion 

with respect to tumourigenesis. We also set out to explore the possibility that this 

function is distinct from its well-characterized role in transcriptional regulation.  

Finally, we test whether there is a conserved synthetic lethal interaction 

between BAF180 and HDACs, as has been demonstrated between Rsc2 and HDACs 

in budding yeast. Because BAF180 is frequently mutated in cancer, a conserved 

synthetic lethal interaction with HDAC loss could be exploited as a potential therapeutic 

strategy using HDAC inhibitors. 



CHAPTER 2: MATERIALS AND METHODS 

2.1. DNA manipulations 

Yeast expression plasmids 

All plasmids used in this study are shown in Table 2.1. pRSC2-myc was altered by site-

directed mutagenesis to generate pRSC2-T67P-myc, pRSC2-M280I-myc, and pRSC2-

H458P-myc. 

Mammalian expression plasmids 

BAF180 complete cDNA (clone MGC:156155, IMAGE:40082629) was purchased from 

Source BioScience and cloned into the HindIII/KpnI sites of pEGFP-C3 (Clontech) to 

generate pEGFP-BAF180 (performed by Queti Riballo). This clone contains a N122S 

substitution relative to the published sequence. To create the siRNA resistant construct 

pEGFP-BAF180R site-directed mutagenesis was performed using the primer BAF180-

RNAiR (performed by Anna Chambers) Site-directed mutagenesis was performed on 

pEGFP-BAF180R to generate siRNA resistant plasmids expressing EGFP-tagged 

BAF180 containing substitutions identified in tumour samples: pEGFP-BAF180R-T232P 

and pEGFP-BAF180R-M538I (performed by Anna Chambers). 

Table 2.1. Plasmids used in this study
Plasmid Name Description Source
pRS415 pRS415 Yeast expression vector, AMPR, CEN/ARS, LEU2, F1 origin Stratagene
pRSC1 Rsc1 coding sequence plus 700 bp upstream sequence and Chambers et al. 2012

200 bp downstream sequence in Not I site of pRS415
pRSC2 pJD587 Rsc2 coding sequence plus 700 bp upstream sequence and Chambers et al. 2012

200 bp downstream sequence in Not I site of pRS415
pRSC2BD1 pJD588 BD1 from Rsc1 swapped into Rsc2 in pRSC2 Chambers et al. 2012
pRSC2BD2 pJD589 BD2 from Rsc1 swapped into Rsc2 in pRSC2 Chambers et al. 2012
pRSC2BAH pJD590 BAH from Rsc1 swapped into Rsc2 in pRSC2 Chambers et al. 2012
pRS416 pRS416 Yeast expression vector, AMPR, CEN/ARS, URA3, F1 origin John Diffley
pRSC2-myc pJD629 RSC2 with 13-myc C-terminal tag under the control of its Chambers et al. 2013

own promoter with TRP1 marker in pRS416 backbone
pRSC2-T67P-myc pJD750 As pJD629 with T67P substitution Brownlee et al. 2014
pRSC2-M280I-myc pJD751 As pJD629 with M280I substitution Brownlee et al. 2014
pRSC2-H458P-myc pJD752 As pJD629 with H458P substitution Brownlee et al. 2014
pEGFP-C3 pJD775 Mammalian expression vector, EGFP under the control of the

CMV promoter, KANR

pEGFP-BAF180R pJD776 siRNA resistant BAF180 isoform 8 with EGFP N-terminal tag Brownlee et al. 2014
in pJD775 backbone

pEGFP-BAF180R-T232P pJD777 As pJD776 with T232P substitution Brownlee et al. 2014
pEGFP-BAF180R-M538I pJD778 As pJD776 with M538I substitution Brownlee et al. 2014
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Primers 

Primers used in this study for cloning, site-directed mutagenesis and yeast strain 

construction are shown in Table 2.2.   

2.2. Antibodies and immunoblotting 

Custom made and commercially available antibodies used in this study are as follows: 

Myc (9E10 clone, CRUK), BAF180 (A301-590A, Universal Biologicals Cambridge), 

SMC1 (A300-055A, Universal Biologicals Cambridge), SMC3 (ab155587, Abcam), SA1 

(ab4457, Abcam), SA2 (ab4463, Abcam), β-actin (ab8226, Abcam), H3 (Abcam), α-

tubulin (ab7750, Abcam), CENPF (ab108483, Abcam), GFP (A6455, Life 

Technologies), H2A (Downs et al. 2000). Samples for Western blot analysis were 

prepared from yeast by glass-bead disruption and TCA precipitation. For mammalian 

cell samples, cells were lysed by resuspension in Laemmli buffer and sonicated using a 

Diagenode Bioruptor sonicating waterbath for 10 min using 30s on/30s off pulses. 

Samples were electrophoresed and immobilized on nitrocellulose membrane. Alice 

Shia provided breast cancer cell line pellets.  

Table 2.2. Primers used in this study
Primer name Sequence
Rsc2T67P-F CCTGTATCTTTCAATCCATTAAAAAAGCGTATTC
Rsc2T67P-R GAATACGCTTTTTTAATGGATTGAAAGATACAGG
Rsc2M280I-F GTATATTCAAAGAATTAAAAATGTTATGAAAG
Rsc2M280I-R CTTTCATAACATTTTTAATTCTTCTTTGAATATAC
Rsc2H458P-F CGAACAAACTGTGCCAAGAGTGGATAGATTG
Rsc2H458P-R CAATATCCACTCTTGGCACAGTTTGTTCG
Rsc2+1080 ACCTCTGTGCGAAATTCTAAAGTTG
Rsc2-588 CAACCACAGTATCAAAGCCGGCAGA
Rsc2-03 GAACCATAATATTTCACCC
Rsc2N76A-F GAATGCCAAGACTTACGCAACAAGAGATTCAGGA
T232P-F CCTATAGATCTCAAGCCAATTGCCCAGAGGATAC
T232P-R GTATCCTCTGGGCAATTGGCTTGAGATCTATAGG
M538I-F CATAAGAAAGCAGCGAATCAAAATCTTATTCAATG
M538I-R CATTGAATAAGATTTTGATTCGCTGCTTTCTTATG
BAF180-R CTTCTCCAGGATATGTGC
EGFP-C CATGGTCCTGCTGGAGTTCGTG
BAF180-RNAiR GAGAAATCTTGAGACAGCCAAGAAA
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2.3. Yeast experiments 

Yeast strains 

Yeast strains used in this study are shown in table 2.3. RSC2 was deleted in the 

DMY3010, W1479-11C and W1490-16A strains via standard gene-disruption methods 

using a cassette amplified by PCR. 

Analysis of Rsc1 and Rsc2 complex composition (Anna Chambers) 

Rsc1-TAP and Rsc2-TAP were purified by two-step affinity purification. 1 litre of yeast 

was grown to mid-late log phase, pelleted and popcorn made in liquid nitrogen. Yeast 

were lysed by grinding and the powder was resuspended in 4 pellet volumes of IgG 

binding buffer (10 mM Tris-HCl pH8, 300 mM NaCl, 0.1% NP40, 100 µg/ml PMSF, 1 

µM leupeptin, 1 µg/ml pepstatin A, 0.5 µg/ml aprotinin). Lysate was centrifuged at 

15,000 rpm for 10 min at 4°C before the supernatant was incubated with 200 ul of IgG 

Sepharose beads for 2 hours at 4°C. Beads were washed with 3 X with 1 ml IgG 

binding buffer, followed by 2 X 1 ml TEV cleavage buffer (10 mM Tris-HCl pH8, 150 

mM NaCl, 0.1% NP40, 0.5 mM EDTA, 1 mM DTT100 µg/ml PMSF, 1 µM leupeptin, 1 

µg/ml pepstatin A, 0.5 µg/ml aprotinin). Beads were resuspended in 1 ml TEV cleavage 

buffer, 10 ul TEV protease were added to the samples, which were incubated overnight 

Table 2.3. Yeast strains used in this study
Strain name Genotype Source
JKM179 Δho Δhml::ADE1 Δhmr::ADE1 ade1-100 leu2-3,112 Lee et al. 1998

trp1::hisG lys5 ura3-52 ade3::GAL::HO MATα
YNK179-177 ∆rsc1::KanMX in JKM179 Kent et al. 2007
YNK179-191 ∆rsc2::KanMX in JKM179 Kent et al. 2007
YPF17 ∆mata::hisG ade1 lys5 trp1::hisG ura3-52 leu2::HOcs ∆ho Paques et al. 1998

∆hml::ADE1 ∆hmr::ADE1 ade3::GAL::HO
YNK17-20 ∆rsc1::KanMX in YPF17 Chambers et al. 2012
YNK17-24 ∆rsc2::KanMX in YPF17 Chambers et al. 2012
DMY2804 RDN1-NTS1::mURA3 in W303a Huang et al. 2006
JDY789 ∆rsc1::KanMX in DMY2804 Chambers et al. 2012
JDY790 ∆rsc2::KanMX in DMY2804 Chambers et al. 2012
DMY3010 RAD5 RDN1::ADE2 in W303a Huang et al. 2006
JDY964 ∆rsc2::KanMX in DMY3010 Brownlee et al. 2014
W1479-11C MAT::HIS3 leu2Δ::EcoRI::URA3-HOcs::leu2ΔBstEII Smith & Rothstein 1999

∆rsc2::KanMX in W1479-11C This study
W1490-16A MAT::HIS3 RAD5 leu2Δ::BstEII::URA3-HOcs::leu2ΔEcoRI Smith & Rothstein 1999

∆rsc2::KanMX in W1490-16A This study
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at 4°C. 3 ml CaM binding buffer (10 mM Tris-HCl pH8, 150 mM NaCl, 10 mM beta-

mercaptoethanol, 1 mM magnesium acetate, 1 mM imidazole, 2 mM CaCl2, 0.1% 

NP40, 100 µg/ml PMSF, 1 µM leupeptin, 1 µg/ml pepstatin A, 0.5 µg/ml aprotinin) and 

3 µl 1 M CaCl2 were added, and beads collected by centrifugation. The supernatant 

was bound to 50 µl calmodulin beads for 1 hour at 4°C, washed with 4 X 1 ml CaM 

wash buffer (CaM binding buffer with 300 mM rather than 150 mM NaCl), and eluted in 

1 ml elution buffer (10 mM Tris-HCl pH8, 150 mM NaCl, 10 mM beta-mercaptoethanol, 

1 mM magnesium acetate, 1 mM imidazole, 2 mM CaCl2, 0.1% NP40, 30 mM EGTA, 

100 µg/ml PMSF, 1 µM leupeptin, 1 µg/ml pepstatin A, 0.5 µg/ml aprotinin). 20% ice-

cold acetone was used to precipitate proteins and the pellet was resuspended in 20 µl 

10 mM Tris-HCl pH 7.5. A mock purification was performed from lysate created from an 

isogenic untagged strain. Gel slices were analyzed in the University of Sussex 

Proteomics Centre. 

qPCR analysis of transcriptional induction (Anna Chambers) 

For analysis of RNR induction, cultures of JKM179, rsc1, rsc2 and mec1 mutant strains 

were grown to mid-log in YPAD. Cultures were then incubated for a further 3 hours at 

30°C in the absence or presence of 0.05% MMS. RNA was reverse transcribed using 

Qiagen QuantiTech RT kit. For each sample, qPCR reactions were performed using 

primers within RNR2, RNR3 and results were normalized to the ACT1 locus. The 

transcript level of the normalized wild type undamaged sample is set to 1 and all other 

values are shown relative to this. For analysis of HXT7 transcription, cultures of rsc2 

DMY3010 containing cancer mutation plasmids were grown to mid-log phase in SC 

lacking tryptophan and RNA extracted using an RNeasy kit (Qiagen). 1µg of RNA was 

reverse transcribed into cDNA for analysis by qPCR using primers specific to the HXT7 

locus. 

G2/M checkpoint analysis by fluorescence-activated cell sorting (FACS) (Anna 

Chambers) 

Cultures of wild-type, rsc1 and rsc2 JKM179 cells were grown to mid-log in YPAD and 

an asynchronous sample taken at the outset of the assay. Cells were arrested in G2/M 

by incubation with 15mg/ml nocodazole for 1hr 45 minutes. Cultures were incubated for 

a further 45 minutes (with nocodazole still present) in the presence or absence of 0.1% 

MMS. Yeast were washed and resuspended in fresh YPAD and fixed in ethanol at 0, 

30, 60, 90, 120, 150, 180 and 210 minutes after release. Cells were harvested and 
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incubated in 1mg/ml RNase A for 4 hours at 37°C, followed by incubation for 1 hour at 

50°C in 2mg/ml proteinase K solution. Yeast cells were collected by centrifugation and 

resuspended in FACS buffer (200mM Tris-HCl pH7.5, 200mM NaCl, 78mM MgCl2). 

Cells were added to 50µg/ml propidium iodide in 50mM Tris-HCl pH7.5, sonicated and 

analysed using a FACS Calibur. 

G1 checkpoint analysis by fluorescence-activated cell sorting (FACS) 

Cultures of wild-type, rsc1 and rsc2 DMY2804 cells were grown to mid-log in YPAD 

and an asynchronous sample taken at the outset of the assay. Cells were arrested in 

G1 by incubation with 4µg/ml α-factor for 1hr followed by an additional 2µg/ml for 

another hour. Cultures were incubated for a further 1hr with a final 2µg/ml dose of α-

factor in the presence or absence of 0.1% MMS. Samples were taken at 0 and 30 

minutes following addition of MMS and fixed in ethanol before washing and 

resuspending the remaining culture in fresh YPAD. Subsequent samples were taken at 

60, 90, 120, 150, 180, 210, 240 and 270 minutes. Cells were harvested and incubated 

in 1mg/ml RNase A for 4 hours at 37°C, followed by incubation for 1 hour at 50°C in 

2mg/ml proteinase K solution. Yeast cells were collected by centrifugation and 

resuspended in FACS buffer (200mM Tris-HCl pH7.5, 200mM NaCl, 78mM MgCl2). 

Cells were added to 50µg/ml propidium iodide in 50mM Tris-HCl pH7.5, sonicated and 

analysed using a FACS Calibur. 

Genomic NHEJ assays 

Mid-log phase cultures of JKM179 or YPF17 were grown in YPAD or, when plasmids 

were used, SC lacking leucine, serially diluted and plated onto YPAD or SC lacking 

leucine containing both 2% glucose and 2% galactose. Colonies were counted after 4 

days incubation at 30°C and repair efficiency was calculated as survival on galactose 

relative to survival on glucose. Experiments were performed at least in triplicate. Repair 

junctions of colonies surviving on galactose were analysed by sequencing.  

Spot tests 

Mid-log phase cultures of wild-type, rsc1 and rsc2 JKM179 containing plasmids were 

grown in SC lacking leucine, and cultures of rsc2 DMY3010 containing plasmids were 

grown in SC lacking tryptophan. Cultures were diluted to OD600=0.2 and 5-fold serial 

dilutions were spotted onto YPAD or YPAD containing the stated dose of drug. Cells 
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were grown for 2 days at 30°C and spot tests were performed multiple independent 

times.  

Cell cycle survival assays 

Exponentially growing cultures of wild-type, rsc1, rsc2 and rad52 JKM179 in YPAD 

were arrested in nocodazole, treated with MMS, centrifuged and resuspended in fresh 

YPAD as for G2 checkpoint analysis by FACS. Serial dilutions were plated onto YPAD 

and colonies were counted 3 days after incubation at 30°C. Experiments were 

performed in duplicate by Anna Chambers. For G1 survival assay, exponentially 

growing cultures of wild-type, rsc1 and rsc2 DMY2804 in YPAD were arrested in α-

factor, treated with MMS, centrifuged and resuspended in fresh YPAD as for G1 

checkpoint analysis by FACS. Serial dilutions were plated onto YPAD and colonies 

were counted 3 days after incubation at 30°C. Experiments were performed in 

triplicate.  

Indirect end-label analysis (Sam Durley and Tracey Beacham) 

Chromatin digestion using micrococcal nuclease (MNase) was performed exactly as 

described by Kent et al. 2007. Yeast cultures were grown in 1% peptone, 1% yeast 

extract plus 2% D(+)-raffinose. Cells were grown at 30 °C to densities of ∼2.0 × 107 

nucleated cells/ml (determined by hemocytometry). Cells were sampled just before 

(“HO 0 min” samples) and at time points after HO induction by the addition of D(+)-

galactose to 2%. Spheroplasts were created by digestion in 1 ml of 10 mg/ml 

Arthrobacter luteus yeast lytic enzyme in 1M sorbitol, 5 mM β-mercaptoethanol for 4 

min at 22 °C. Samples containing 2.0 × 108 nucleated cells were digested with between 

75 and 300 units/ml MNase at 37 °C for 3 min or processed for purification of 

deproteinized DNA. Deproteinized DNA samples were digested with 5 units/ml MNase 

at 22 °C for 10 s to create “DNA” control digests. Purified DNA samples were digested 

to completion with BglII or BspEI (for analysis of the LEU2 and MAT loci, respectively) 

and separated on 1.5% agarose gels. Southern blots of the gels were hybridized to 

400-bp indirect end label probes, which abut the relevant restriction sites.  

Yeast survival and rDNA recombination assays 

Wild-type and rsc2 DMY3010 strains were grown to mid-log in YPAD before diluting to 

OD600=0.2 and serial dilutions plated onto SC plates containing 10µg/ml adenine. rsc2 
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DMY3010 cells containing plasmids were grown in SC lacking tryptophan and plated 

onto SC plates lacking tryptophan containing 10µg/ml adenine. Plates were incubated 

at 30°C for 3-4 days before being placed at 4°C to intensify the red colouration. The 

percentage rate of ADE marker loss was calculated by dividing the number of half 

red/white sectored colonies with the total number of colonies per plate, excluding red 

colonies. Counts for each experiment were from six individual colonies per strain. 

Standard deviations are given ± the mean from three separate experiments. Between 

10,000 and 20,000 colonies were counted for each strain in total.  

LEU2 direct-repeat recombination assay 

Wild-type and rsc2 colonies from W1479-11A and W1490-16A strains grown on YPAD 

were resuspended in water and plated onto SC plates and SC plates lacking leucine. 

Colonies were counted after incubation at 30°C for 3-4 days. The rate of LEU+ 

prototroph formation in each experiment was calculated using the method of the 

median (Lea & Coulston 1949) from eight individual colonies. Standard deviations are 

given ± the mean from three separate experiments.  

Yeast growth curves (Anna Chambers) 

Cultures of rsc2 DMY3010 containing cancer mutation plasmids were grown to mid-log 

phase in SC lacking tryptophan and diluted to OD600=0.05 into fresh media. The OD600 

was measured every hour for 9 hrs.  

2.4. Mammalian cell experiments 

Cell culture 

Mouse ES cells (mESCs) were cultured at 37°C in a 5% CO2 incubator in KnockoutTM 

DMEM (Gibco), supplemented with 15% ES-Cult FBS (Stemcell Technologies), 1% 

penicillin/streptomycin, 1% NEAA, 1% L-glutamine, 0.1 µM β-mercaptoethanol and 

1000 U/ml LIF (Millipore). Cells were seeded into gelatin-coated dishes. 1BR-hTERT 

and U2OS cells were cultured at 37°C in a 5% CO2 incubator in DMEM (Gibco) 

supplemented with 15% FBS, 1% penicillin/streptomycin and 1% L-glutamine. MRC5 

CV1 cells were cultured at 37°C in a 5% CO2 incubator in MEM (Gibco), supplemented 

with 10% FBS, 1% penicillin/streptomycin and 1% L-glutamine.  
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siRNA knock-downs 

1BR-hTERT and MRC5 CV1 cells were plated at 1x105 cells per 6cm dish and knock-

downs performed according to Niimi et al., 2012. Cells were transfected with 20 nM 

BAF180, SA2 or non-targeting control siRNA (ON-TARGET plus SMART pool, 

Dharmacon) using HiPerFect transfection reagent (Qiagen), and then again with the 

same siRNAs 24h later. Cells were treated or sampled 72h after the first transfection.  

Metaphase spreads 

To arrest in metaphase, mES, 1BR-hTERT, MRC5 CV1 and U2OS cells were arrested 

in 0.1 µg/ml colcemid for 3hrs, trypsinized, swollen in 75 mM KCl for 30 min at room 

temperature and fixed in Carnoy’s fixative (methanol:acetic acid 3:1). Cells were 

spotted onto a slide floating in a 37°C waterbath and dried overnight at room 

temperature. DNA staining was performed using ProLong® Gold Antifade Reagent with 

DAPI. For the mESC cohesion assays, 200 spreads were analyzed for each genotype. 

Centromeric cohesion was scored as ‘normal’ when fewer than three chromosomes 

showed gaps between sister chromatid centromeres, or ‘defective’ when more than two 

chromosomes showed gaps. Arm cohesion was scored as ‘normal’ when fewer than 

three chromosomes showed fully separated chromosome arms, or ‘defective’ when 

more than two chromosomes showed fully separated chromosome arms. For 

chromosome counts, 100 cells were analyzed for each cell type, with and without 

treatment with 0.04 µg/ml MMC for 40 hr prior to metaphase arrest. The same 

conditions were used for analysis of structural chromosome aberrations, with 2,033 and 

2,133 chromosomes analyzed for +/+ and -/- mESCs, respectively. Stable U2OS cells 

were incubated with 0.04 µg/ml MMC for 48 hr prior to metaphase arrest, and a total of 

2862 and 2741 chromosomes were analysed for shControl and shBAF180 cells, 

respectively.   

Fluorescent in situ hybridization (FISH) 

1BR-hTERT cells transfected with siControl or siBAF180 siRNA were treated with 0.1 

µg/ml colcemid for 3h to arrest in metaphase before firmly tapping dishes against a 

bench 14 times to dislodge mitotic cells. Cells were washed with PBS and fixed in 

Carnoy’s fixative. Cells were spotted onto a slide and dried overnight at room 

temperature. Ross Cloney performed FISH essentially as in Canudas & Smith 2009. 
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Cells were hybridized overnight with either DNA probes against arm and centromere 

regions of chromosome 10 (DiGeorge II probe, Cytocell LPU015) or subtelomeric 

region of chromosome 16 (Chromsome 16ptel05 probe, Cytocell LPT16R) as per the 

manufacturer’s protocol. Nuclei were stained with ProLong® Gold Antifade Reagent 

with DAPI.  

Transcript analysis 

RNA was extracted from 1BR-hTERT and U2OS cells using an RNeasy kit (Qiagen). 

1µg of RNA was reverse transcribed into cDNA for analysis by qPCR using primers 

specific to the indicated locus using QuantiTect Primer Mix (Qiagen) (performed by 

Anna Chambers). In experiments examining p21 induction nutlin-3a (Sigma) was 

added to 8µM for 6 hours prior to cell sampling.  

Chromatin fractionation 

U2OS cells were arrested in G1/S by incubation with 0.05 µg/ml aphidicolin for 16h, 

and released into fresh media following extensive washes with PBS. Cells were 

collected for chromatin fractionation 0, 3 and 6 hr after release into fresh media. An 

asynchronous sample was also taken for FACS. Cells were harvested and 

resusupended in 75 µl low salt lysis buffer (50 mM Tris-HCl pH 8, 2 mM EDTA, 2 mM 

EGTA, 150 mM NaCl, 0.2% Triton, 0.3% NP40, containing protease inhibitors) before 

incubation on ice for 5 min. Samples were spun at 3000 rpm at 4°C for 4 min and 

supernatant kept as the soluble fraction. The pellet was washed with ice-cold PBS 

before resuspension in 50 µl nuclease buffer (50 mM Tris-HCl pH 8, 20 mM NaCl, 2 

mM MgCl2). 2.5 µl of benzonase (Novagen) was added and samples incubated on ice 

for 30 min. NaCl and Triton were adjusted to final concentrations of 1M NaCl and 0.2% 

Triton. Samples were sonicated in Diagenode Bioruptor sonicating waterbath for 15 

min using 30s on/30s off pulses. Samples were spun at 13,000rpm at 4°C for 5 min 

and supernatant was taken as the chromatin fraction. Protein content of the fractions 

was measured by Bradford assay. Laemmli buffer was added to permit analysis of 50 

µg of each fraction by Western blotting (fractionation and blotting performed by Anna 

Chambers).  

Mammalian cell FACS 

FACS was performed essentially as described by the Salk Institute for Biological 

106



Sciences (http://www.salk.edu/fccf/protocols/cellcycle.php). Cells were harvested, 

washed twice in in PBS containing 0.1% BSA. 3ml ice-cold ethanol was added 

dropwise whilst vortexing gently to 1ml of suspension containing 1-2X106 cells and 

fixed overnight at 4°C. Cells were washed twice with PBS and resuspended in 1ml 

propidium iodide (PI) staining solution (3.8mM sodium citrate, 40µg/ml (PI) in PBS) 

containing 0.5µg/ml RNase A, and incubated at 37°C for 20 min. Cells were passaged 

through a fine-gauge needle immediately prior to FACS sampling on a FACS Canto. 

Immunofluorescence (IF)-FISH 

For IF-FISH, 4 X 105 U20S cells were plated onto glass coverslips and transfected with 

40 nM BAF180 single siRNA (Invitrogen) or non-targeting control siRNA using 

HiPerFect transfection reagent (Qiagen). After 19 hr, cells were treated with 2.5 mM 

thymidine for 17 hr before being released. At 9 hr after release, cells were transfected 

with the siRNA-resistant plasmids using NanoJuice Core transfection reagent (Merck 

Chemicals). After 5 hr, the cells were washed with PBS and subjected to a second 

thymidine block using 2.5 mM thymidine for a further 17 hr. At 8 hr after release, the 

cells were fixed with 3% paraformaldehyde (PFA). 

For IF, cells were blocked in blocking solution (3% BSA, 0.1% Triton X-100, 1 

mM EDTA pH 8.0 in PBS) for 30 min at room temperature, and subjected to antibody 

incubation in blocking solution. Immunostained cells were fixed in 3% PFA for 10 min at 

room temperature. Ross Cloney performed the subsequent DNA FISH according to 

Chaumeil et al. 2008. Cells were washed twice in 2X SSC for 5 min, permeablized in 

0.1M HCl/0.7% Triton for 10 min on ice, and washed twice in 2X SSC for 5 min. Cells 

were denatured in 50% formamide/2X SSC pH7.2 for 30 min at 80°C. Cells were 

washed several times in ice-cold 2X SSC before hybridization with the FISH probe 

overnight at 42°C in a dark, humid chamber with paper tissues soaked in 50% 

formamide/2X SSC. Cells were washed 3 times in 50% formamide/2X SSC pH7.2 for 5 

min each at 42°C, washed three times in 2X SSC for 5 minnutes each at 42°C and 

mounted with ProLong Gold Antifade Reagent with DAPI.  

Analysis of micronuclei and abnormal mitoses 

For mESCs, spontaneous micronuclei were counted in interphase cells from two 

independent experiments (total counts=983 for WT, 1043 for BAF180-/-). For 1BR-

hTERT cells, three separate knockdown experiments were analyzed (total 

counts=2629 for siControl, 2716 for siBAF180). 1324 and 1291 cells were counted for 
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shControl and shBAF180 lines, respectively. In experiments to analyze the effect of 

mitomycin C on micronuclei formation, 563 WT cells and 676 BAF180 -/- cells were 

counted 40 hr after treatment with 0.04 µg/ml MMC. 1596 and 1781 cells were counted 

for shControl and shBAF180 lines, respectively, 48 hr after treatment with 0.04 µg/ml 

MMC. DNA staining was performed using ProLong® Gold Antifade Reagent with DAPI. 

Analysis of aberrant mitoses in was performed on 183 WT and 207 BAF180-/- 

anaphase cells from two independent experiments.  

Viability assays 

Viability assays following drug treatments were performed in 96-well format in triplicate 

at the stated doses. 1x104 mouse ES and 5x103 1BR-hTERT cells were plated per well. 

For mitomycin C viability was measured 4 days following treatment, and for HDAC 

inhibitors viability was measured 2 days following treatment using cell-titre glow 

reagent (Promega). 
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CHAPTER 3: RSC1 AND RSC2 DIFFERENTIALLY MEDIATE DNA 
DAMAGE RESPONSES  

3.1. Results 

Introduction 

Cairns et al. reported that there are two separate isoforms of the RSC complex defined 

by the presence of either Rsc1 or Rsc2 (Cairns et al. 1999). A degree of functional 

redundancy is likely to exist between the two complexes because deletion of either 

RSC1 or RSC2 does not cause lethality, whilst deletion of both genes is lethal (Cairns 

et al. 1999). However, rsc1 and rsc2 mutant strains have overlapping but not identical 

cellular phenotypes, indicating that they do not act entirely redundantly (Cairns et al. 

1999, Rossio et al. 2010, Baetz et al. 2004, Bungard et al. 2004). These differences 

might relate to differences in dosage of each protein, with Rsc2 being approximately 

ten-fold more abundant than Rsc1 (Cairns et al. 1999). Alternatively, Rsc1 and Rsc2 

might display differences in transient and dynamic binding to chromatin.  

Both Rsc1 and Rsc2 have been implicated in DNA repair. Strains lacking either 

RSC1 or RSC2 are hypersensitive to a range of DNA damaging agents (Kent et al. 

2007, Chai et al. 2005, Shim et al. 2005) and have reported defects in HR (Chai et al. 

2005). Strains lacking subunits common to both complexes also displayed impaired 

NHEJ (Shim et al. 2005), suggesting that at least one of the two RSC isoforms is 

important for this activity. In addition, the catalytic RSC subunit is enriched at DSB sites 

following induction as shown by ChIP (Chai et al. 2005, Shim et al. 2005), indicating 

that at least one of the isoforms is recruited to breaks.  

Following DSB induction RSC activity is required for a chromatin remodeling 

event adjacent to the break (Kent et al. 2007, Shim et al. 2007). Previous work in our 

lab showed that this remodeling event is dependent on Rsc1, whilst Rsc2 is important 

for establishing the correct chromatin structure prior to break induction (Kent et al. 

2007). In contrast, Shim et al. showed that the DSB-induced remodeling event is 

dependent on Rsc2, however the dependence of this on Rsc1 was not tested (Shim et 

al. 2007). Therefore, it is possible that both isoforms function in remodeling after DSB 

formation. No studies to date have comprehensively compared the contributions of the 

Rsc1- and Rsc2-containing isoforms of the RSC complex in DNA damage responses. 

Therefore, we sought to address whether Rsc1 and Rsc2 play distinct roles in 

mediating DNA damage responses.  
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Rsc1 and Rsc2 define two separate isoforms of RSC 

Previously Cairns et al. reported the existence of two RSC isoforms that contain either 

Rsc1 or Rsc2, however the subunit composition of these two complexes was not 

determined (Cairns et al. 1999). To examine whether the subunit composition of the 

two complexes is otherwise identical, affinity purifications from cell extracts containing 

C-terminally TAP-tagged Rsc1, Rsc2 or an untagged wild-type control were performed 

(Figure 3.1A, Anna L. Chambers). The purified complexes were then analysed by mass 

spectroscopy (Figure 3.1B, Anna L. Chambers). Rsc2 was not identified in the Rsc1-

TAP complex, and Rsc1 was not identified in the Rsc2-TAP complex, consistent with 

previous findings (Cairns et al. 1999). Furthermore, all of the other RSC subunits 

(except Htl1 and Ldb2, which are amongst the smallest RSC subunits at 9.1 and 

19.7kDa, respectively) were identified in both complexes, indicating that the two 

complexes are otherwise identical in subunit composition (Chambers et al. 2012). 

However, it has been reported that the heterodimer-forming Rsc3 and Rsc30 subunits 

preferentially associate with Rsc1 (Campsteijn et al. 2007). This is consistent with our 

findings that fewer Rsc3 and Rsc30 peptides were recovered from the Rsc2-TAP 

purification compared to the Rsc1-TAP purification (Figure 3.1B), although Rsc3 and 

Rsc30 clearly associate with both complexes (Chambers et al. 2012).   

Rsc1 and Rsc2 are dispensable for DNA damage checkpoint activation 

DNA damage checkpoint activity had not yet been directly tested in any RSC mutants 

despite reported defects in resection, Mec1 recruitment and phosphorylation of H2A 

and Rad53 (Kent et al. 2007, Liang et al. 2007, Shim et al. 2007). We first tested the 

ability of rsc1 and rsc2 null mutant strains to induce the transcription of RNR2 and 

RNR3 genes, which is Mec1- and Rad53-dependent (Harrison & Haber 2006), in 

response to DNA damage. The levels of RNR2 and RNR3 mRNA relative to ACT1 

control mRNA were quantitated using qPCR after treatment with MMS. Whilst the mec1 

mutant strain was severely defective in RNR2 and RNR3 induction as expected, both 

the rsc1 and rsc2 strains were able to induce transcription of these genes to levels 

comparable to wild-type cells (Figure 3.2A, Anna L. Chambers). This suggests that 

Mec1-dependent DNA damage checkpoint activation is intact in these strains 

(Chambers et al. 2012).  

To examine this further, we monitored cell cycle re-entry in wild-type, rsc1 and 

rsc2 strains arrested in G2/M or G1 after MMS treatment. Cells were arrested in G2/M 
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Figure 3.1. Rsc1 and Rsc2 define two separate isoforms of the RSC complex. 
(A) Tandem-affinity purification from a strain containing TAP-tagged Rsc1, TAP-
tagged Rsc2, or from an untagged strain were analysed by mass spectrometry. (B) 
Results from the mass spectroscopy analysis of the purified RSC complexes from 
(A). 
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using nocodazole, one set was treated with MMS, and the cultures were released into 

fresh media (performed by Anna L. Chambers). Cell cycle re-entry was monitored by 

FACS. In the wild-type strain treated with MMS cell cycle re-entry was delayed by 30-

60 minutes compared to untreated cells (Figure 3.2B). The FACS profile of the rsc1 

strain closely resembled that of wild-type, indicating normal checkpoint activation in this 

strain (Figure 3.2B). The rsc2 strain re-entered the cell cycle normally in the absence of 

DNA damage and also did not show premature cell-cycle re-entry after MMS treatment 

compared to wild-type, indicating a robust checkpoint response in these cells (Figure 

3.2B). In fact, the rsc2 cells were unable to subsequently re-enter the cell cycle 

following DNA damage in G2/M, indicating a prolonged G2/M arrest.  

To determine whether rsc1 and rsc2 mutants are required for activation of the 

G1 DNA damage checkpoint cells were arrested in α-factor, one set was treated with 

MMS, and cultures were released into fresh media. In the wild-type strain treated with 

MMS cell cycle re-entry was delayed by approximately 180 minutes compared to 

unteated cells (Figure 3.2C). Similar to cells arrested in G2/M, premature cell cycle re-

entry from G1 was not observed in either the rsc1 or rsc2 mutants after DNA damage, 

suggesting that neither strain is defective in G1 DNA damage checkpoint activation 

(Figure 3.2C). Altogether, these data demonstrate that despite defects in resection and 

H2A phosphorylation, sufficient Mec1 is recuited to allow robust activation of the G2/M 

and G1 DNA damage checkpoints in rsc1 and rsc2 mutants in response to MMS.  

Both Rsc1 and Rsc2 facilitate NHEJ activity 

We next sought to determine whether Rsc1 and Rsc2 make distinct contributions in 

DNA repair. Because RSC is known to function in the repair of DNA DSBs by non-

homologous end-joining (NHEJ) (Shim et al. 2005), we first decided to examine the 

contributions of Rsc1 and Rsc2 in this pathway. We measured survival following an 

HO-induced DNA DSB at the MAT locus in a strain where the HML and HMR silent 

mating cassettes have been deleted. Survival is therefore a measure of NHEJ because 

the cells cannot repair the DSB by HR. rsc2 cells had substantially decreased NHEJ 

activity relative to wild-type, whilst rsc1 cells might be only slightly defective (Figure 

3.3A). This suggests that Rsc2 has a greater role than Rsc1 in NHEJ at this locus.  

NHEJ-defective mutants including ku70, lig4, mre11, rad50 and rsc30 exhibit large 

deletion repair events at DSB repair junctions that are a feature of NHEJ deficiency 

(Boulton et al. 1996, Moore et al. 1996, Wilson et al. 1997, Shim et al. 2005). 

Sequence analysis of the repair junctions from wild-type, rsc1 and rsc2 strains showed 

that both the rsc1 and rsc2 mutant strains had a very different pattern of repair events 
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analysis. The cultures were arrested in G2/M using nocodazole,
one set was treated with MMS, and the cultures were released into
fresh media. Under these conditions, the wild-type strain delays
cell cycle re-entry by approximately 30–60 min after treatment
with damage (Figure 2B). The FACS profile of the rsc1 mutant
strain closely resembled that of the wild-type strain, with a cell
cycle re-entry delay in the MMS-treated sample (Figure 2B),
indicating that the checkpoint activation is normal in this strain.

For reasons that are not entirely clear, the rsc2 mutant
population was unable to fully arrest following nocodazole
treatment. Nevertheless, the majority of cells arrested in G2/M
and, in the absence of damage, these reentered the cell cycle after
the nocodazole was removed (Figure 2B). Importantly, we found

that the rsc2 mutant strain did not show premature reentry into the
cell cycle following DNA damage, as one would expect for a
checkpoint deficient strain. Instead, the MMS-treated cells showed
a very prolonged G2/M arrest, with cells only beginning to reenter
the cell cycle at the final time point of the assay (Figure 2B). This
prolonged arrest may be due in part to the recently identified role
of Rsc2 in promoting mitotic exit under certain conditions [5].
Nonetheless, these data indicate that the rsc2 mutant cells are able
to activate the G2/M checkpoint in response to DNA damage.

H2A phosphorylation contributes to G1 checkpoint responses
and we and others found H2A phosphorylation is reduced in both
rsc1 and rsc2 mutant cells under certain conditions [8,11,13]. We
therefore examined the G1 checkpoint by arresting cells with

Figure 2. Neither Rsc1 nor Rsc2 is required for DNA damage checkpoint responses. (A) Quantitative PCR analysis of the RNR2 (left panel) or
RNR3 (right panel) transcripts before and after 30 min treatment with MMS in the indicated strain backgrounds. (B) FACS analysis of strains arrested in
G2/M and treated with no damage (left panels) or 0.1% MMS for 1 hour (right panels). Samples were collected every 30 minutes post release. (C)
FACS analysis of strains arrested in G1 and treated with no damage (left hand panels) or 0.1% MMS for 1 hour. Samples were collected every
30 minutes post release.
doi:10.1371/journal.pone.0032016.g002
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A 

B C 

Figure 3.2. Neither Rsc1 nor Rsc2 are required for DNA damage checkpoint 
responses. (A) Transcriptional induction of RNR2 and RNR3 mRNA in response to 
MMS in the Wt, rsc1 and rsc2 strains as quantitated by qPCR. (B) FACS profiles of 
strains arrested in G2/M using nocodazole and treated with either no drug (left 
panel) or 0.1% MMS (right panel) for 1hr. Cells were collected every 30 minutes 
after release. (C) FACS profiles of strains arrested in G1 using α-factor and treated 
with either no drug (left panel) or 0.1% MMS (right panel) for 1hr. Cells were 
collected every 30 minutes after release.  
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compared to wild-type. Specifically, the majority of repair events in the wild-type strain 

had insertions (65.4%), whilst both rsc1 and rsc2 had fewer insertions (31.5% and 

16.1%, respectively). In addition, there was an increased frequency of deletions in the 

rsc1 and rsc2 cells (61.4% and 68% respectively, compared to 32.7% for wild-type) 

(Figure 3.3B). Whilst the majority of wild-type deletion events were 1bp (56% of total 

deletions), the majority of rsc1 and rsc2 deletion events were 3bp (54% and 52% of 

total deletions, respectively) (Figure 3.3B). Interestingly, there were only very subtle 

differences in the pattern of repair events between rsc1 and rsc2 cells, suggesting that 

the two proteins contribute equally to NHEJ. 

Defects due to loss of RSC1 or RSC2 cannot be rescued by additional copies of the 

other gene 

The Rsc2 isoform of RSC is 10-fold more abundant than Rsc1, and it might be 

predicted that the relative hypersensitivity of the two mutants to DNA damaging agents 

is reflected by their relative abundance. Interestingly, whilst rsc2 cells are more 

severely hypersensitive to MMS than rsc1 cells, both mutants are similarly 

hypersensitive to phleomycin, CPT and 4NQO (Anna, L. Chambers, unpublished 

observations). To test whether Rsc1 and Rsc2 might function redundantly in DNA 

damage responses additional centromeric copies of RSC1 and RSC2 were 

transformed into the rsc2 and rsc1 mutants, respectively. These additional gene copies 

do not rescue the hypersensitivity of the strains to phleomycin, suggesting that the two 

proteins are unable to compensate for each other in the repair of phelomycin-induced 

DNA damage (Figure 3.4A, Anna L. Chambers). Importantly, plasmids expressing 

RSC1 and RSC2 do rescue the respective rsc1 and rsc2 hypersensitivities to this drug 

(Figure 3.4B, Anna L. Chambers). 

Rsc1 and Rsc2 make distinct contributions to DNA repair 

We noted that rsc2 cells exhibit a prolonged G2/M arrest when treated with MMS in G2, 

whilst rsc1 cells are able to re-enter the cell cycle after a short delay (Figure 3.2B). This 

raises the possibility that Rsc1 and Rsc2 might have cell cycle-specific roles in DNA 

damage repair. To test this, we assayed survival of wild-type, rsc1 and rsc2 strains in 

G1 and G2 phases of the cell cycle after treatment with MMS. When arrested in G2, 

the rsc2 strain shows substantially reduced survival, whilst the rsc1 strain shows 

survival levels comparable to wild-type (Figure 3.4C). In contrast, when arrested in G1, 

both the rsc1 and rsc2 strains show reduced survival compared to wild-type (Figure 
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A 

Change from Wt sequence Wt rsc1 rsc2 
Total insertions 36 (65.4%) 18 (31.5%) 5 (16.1%) 
 + 1 bp 0 (0%) 3 (5.2%) 0 (0%) 
 + 2 bp 28 (51.5%) 12 (21%) 4 (13%) 
 + 3 bp 8 (14.5%) 2 (3.5%) 1 (3.2%) 
Total deletions 18 (32.7%) 35 (61.4%) 21 (68%) 
 - 1 bp 10 (18%) 10 (17.5%) 7 (22.5%) 
 - 2 bp 1 (1.8%) 2 (3.5%) 3 (9.7%) 
 - 3 bp 6 (10.9%) 19 (33.3%) 11 (35.4%) 
 - >3 bp 1 (1.8%) 4 (11.4%) 0 (0%) 
Total base changes 0 (0%) 2 (3.5%) 0 (0%) 
Total compound 
mutations 1 (1.8%) 2 (3.5%) 5 (16%) 

B 

Figure 3.3. Both Rsc1 and Rsc2 contribute to wild-type levels of NHEJ and 
show a similar spectrum of repair junctions. (A) Survival of wild-type wild-type, 
rsc1 and rsc2 following chronic HO endonuclease cleavage at the MAT locus. 
Survival is a measure of NHEJ activity as the HML and HMR donor cassettes 
have been deleted and	   is calculated as the number of colonies surviving in 
continued HO expression relative to conditions where HO is not expressed. Wild-
type (wt) repair rates are set to 100% and mutant strains are shown relative to wt. 
Data are means ± s.d., n > 3. (B) Sequenced repair events of survivors from a 
HO-induced DSB break from Wt, rsc1 and rsc2 strains. Percent of total repair 
events shown in parenthesis. 
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3.4D). Together, these data suggest that Rsc1 has a greater role in promoting survival 

after MMS-induced DNA damage in G1 compared to in G2, and that Rsc2 is important 

for survival in both cell cycle phases.  

Because the MAT locus is a highly specialized chromatin environment that 

functions to facilitate efficient gene conversion (Kent et al. 2007, Haber et al. 1998) we 

next tested NHEJ activity in a strain in which the HO cleavage site has been moved to 

the LEU2 open reading frame. We find that the rsc1 strain shows similar survival levels 

at this locus to the levels seen at MAT (Figure 3.4E). In contrast, rsc2 cells display 

greater survival levels at LEU2 compared to MAT, suggesting that the dependence on 

Rsc2 for promoting survival is context specific.  

DSB-dependent nucleosome sliding requires Rsc1 but not Rsc2 

Previous work showed that immediately following a HO-induced DNA DSB at the MAT 

locus six distal nucleosomes are repositioned away from the break in a manner 

dependent on Rsc1 (Kent et al. 2007). In contrast, rsc2 cells exhibit a nucleosome-

positioning defect at MAT before HO induction. This suggests that Rsc1 and Rsc2 

provide distinct functions in DSB repair. To determine whether this isoform specificity 

also exists at DSBs at other loci we tested the ability of wild-type, rsc1 and rsc2 cells to 

remodel chromatin in a strain where the HO cleavage site exists in the LEU2 gene. We 

found that 40 minutes after DSB induction there is a movement of nucleosomes away 

from the break in wild-type cells (Figure 3.5A; inferred nucleosome positions before 

and after break induction are shown as white circles in Figure 3.5B; assays performed 

by S. Durley & T. Beacham). This is similar to the remodelling event seen at the MAT 

locus in wild-type cells (Kent et al. 2007). Moreover, this remodelling is entirely 

dependent on Rsc1 as has been previously observed in this assay at the MAT locus 

(Kent et al. 2007). Thus, despite a requirement for both Rsc1 and Rsc2 for maximal 

NHEJ activity at MAT and LEU2, these data indicate that only Rsc1 is required for the 

nucleosome sliding observed at these loci. This supports the notion that Rsc1 and 

Rsc2 do not function redundantly in DNA DSB responses.  

The BAH domain of Rsc1 is a critical determinant for the ability of Rsc1 to remodel 

nucleosomes  

We next sought to investigate whether specific domains of Rsc1 and Rsc2 might be 

particularly important in dictating the specificity of these proteins in DNA damage 

responses. Plasmids where the two bromodomains (BDs) and bromo-adjacent 
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Figure 3.4. Rsc1 and Rsc2 have distinct roles in mediating DNA damage 
hypersensitivity. (A) and (B) Serial dilutions of strains transformed with the 
indicated plasmids were plated onto YPAD or YPAD plates containing the 
indicated dose of phleomycin. (C) Wt, rsc1, rsc2 or rad52 strains arrested in G2/M 
using nocodazole and treated with 0.1% MMS for 1hr were plated onto YPAD. 
Survival is measured relative to untreated cells in G2/M. (D) Strains arrested in 
G1 using α-factor   and treated with 0.1% MMS for 1hr were plated onto YPAD. 
Survival is measured relative to untreated cells in G1. (E) Survival of JKM179 (in 
which the HO cleavage site is in the MAT locus) and YPF17 strains (in which the 
HO cleavage site is in the LEU2 locus) following chronic HO endonuclease 
cleavage. Wild-type (Wt) repair rates are set to 100% and mutant strains are 
shown relative to wt. Data are means ± s.d., n > 3 
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Figure 3.5. Loss of Rsc1 function, but not that of Rsc2, abolishes DSB-

dependent nucleosome sliding at an HO site within the LEU2 gene. (A) 

Indirect-end-label-analysis of MNase digested DNA from yeast strains of the 

YPF17 background using a probe abutting BglII site as shown. Deproteinized 

DNA and chromatin samples were analysed before (HO, 0 min) and 40 min after 

HO induction by addition of galactose to growth media. Wedges above chromatin 

samples indicate increasing amounts of MNase. Deproteinized DNA control 

samples show that that the banding patterns in the chromatin samples are 

representative of nucleosome positioning as opposed to DNA sequence-specific 

MNase cleavage. The lack of signal in the deproteinzed DNA samples in the rsc1 

gel of figure 3.5 is likely to reflect MNase over-incubation. The HO-induced DSB 

appears as the strong band in HO 40 min samples at 1830bp. (B) Inferred 

nucleosome positions superimposed over the wild-type MNase cleavage data 

from (A) to illustrate DSB-dependent nucleosome sliding associated with the HO 

cleavage site.  
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homology (BAH) domain from RSC2 that have been individually replaced with the 

analogous domains from RSC1 (Figure 3.6A) were transformed into rsc2 and rsc1/rsc2 

strains. None of the three domain swap constructs confer DNA damage 

hypersensitivity to MMS compared to the wild-type RSC2 construct in the rsc2 

background (Figure 3.6B, Anna L. Chambers). Similarly, none of the constructs confer 

DNA damage hypersensitivity to MMS compared to the wild-type RSC2 construct in the 

rsc1/rsc2 background (Figure 3.6C, Anna L. Chambers).  

Furthermore, the same constructs were examined in our NHEJ assay at the 

MAT locus, and similarly no additional defects were observed in either the rsc2 or 

rsc1/rsc2 backgrounds compared to the wild-type RSC2 construct (Figure 3.6D and E). 

Together, these data suggest that the analogous domains of Rsc1 and Rsc2 are 

interchangeable in DNA damage responses.  

Rsc1 and Rsc2 have clearly distinct roles in DSB-dependent nucleosome sliding and 

establishing a nuclease-resistant chromatin structure at MAT, respectively. We 

therefore tested the ability of the domain swap constructs to perform these functions. 

Analysis of MAT before HO induction in wild-type cells revealed a normal nuclease-

resistant chromatin structure upstream of the DSB site, consistent with previous results 

(Kent et al. 2007; Figure 3.7A, grey oval indicates nuclease-resistant region, assays 

performed by S. Durley & T. Beacham). In contrast, the rsc1/rsc2 strain transformed 

with a pRSC1 plasmid displays increased nuclease sensitivity at this site but is able to 

remodel nucleosomes distal to the break upon HO induction (Figure 3.7B). The 

rsc1/rsc2 strain transformed with the pRSC2BD1, pRSC2BD2 or pRSC2BAH  domain swap 

constructs display normal MAT structure but defective remodelling, suggesting that all 

three of these Rsc2 domains are either dispensable for Rsc2 function or can be 

substituted with the analogous domains of Rsc1 (Figure 3.7C and data not shown). 

Strikingly, however, the pRSC2BAH construct was able to perform some of the Rsc1-

dependent remodelling after DSB-induction (Figure 3.7D). This suggests that the BAH 

domain of Rsc1 provides some of the specificity of Rsc1 in DSB-induced chromatin 

remodelling.  

Cells lacking RSC2 display elevated rates of unequal sister chromatid exchange and 

direct-repeat recombination  

The histone deacetylase Sir2 is required for silencing at all three heterochromatic loci, 

including at telomeres, HML/R loci, and at the rDNA repeats. At telomeres and HML/R 

loci Sir2 associates with the BAH-domain containing Sir3 protein, whilst at the rDNA it 
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Consistent with our previous results [8], the wt strain had normal
chromatin structure upstream of the HO cleavage site prior to
double-strand break induction (indicated by a grey oval at the side
of the MNase panel; Figure 7A), and the nucleosomes on the
downstream side of the HO cleavage site are remodeled after DSB
induction (indicated by the open circles with arrows; Figure 7A).
Also as expected, the rsc1/rsc2+pRSC1 strain had altered
chromatin structure upstream of the HOcs prior to induction of

the DSB, but remodeling after DSB induction was normal
(Figure 7B).

Strains carrying either pRSC2BD1 or pRSC2BD2 showed normal
chromatin structure at the MAT locus immediately upstream of
the HOcs prior to DSB induction but were unable to support
substantial remodeling activity after DSB induction (Figure 7C
and data not shown), similar to the pattern seen with wt Rsc2.
Replacing the BAH domain of Rsc2 with that of Rsc1 also had no

Figure 6. Rsc1 domains can functionally compensate for Rsc2 domains in DNA damage survival assays. (A) Cartoon of domain swapped
constructs used in the assays. Bromodomain 1 (BD1), bromodomain 2 (BD2) or the bromoadjacent homology (BAH) domain of Rsc2 was replaced
with the analogous domain from Rsc1. (B) Serial dilutions of mid-log cultures of wt with vector alone or rsc2 mutant strain containing vector alone
(pRS415), pRSC2, or domain swap expression plasmids were plated onto media containing the indicated dose of MMS. (C) Serial dilutions of mid-log
cultures of wt with vector alone, rsc1 with vector alone, or rsc1/rsc2 mutant strain with pRSC2 or domain swap expression plasmids were plated onto
media containing the indicated dose of MMS. (D) Survival of strains as in (B) in the presence of continued transcriptional induction of the HO
endonuclease. Survival is calculated as the number of colonies surviving in continued HO expression relative to conditions where HO is not
expressed. (E) Survival of strains as in (C) in the presence of continued transcriptional induction of the HO endonuclease. Survival is calculated as the
number of colonies surviving in continued HO expression relative to conditions where HO is not expressed.
doi:10.1371/journal.pone.0032016.g006
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Fig. 3.6. Rsc1 domains can functionally compensate for Rsc2 domains in 
DNA damage survival assays. (A) Schematic of domain swap constructs used in 
the assays. Bromodomain 1 (BD1), bromodomain 2 (BD2) or the bromoadjacent 
homology (BAH) domain of Rsc2 was replaced with the analogous domain from 
Rsc1. (B) Serial dilutions of mid-log cultures of wild-type containing vector alone 
(pRS415) or rsc2 mutant strain containing pRSC2 or domain swap expression 
plasmids were plated onto YPAD or YPAD plates containing the indicated dose of 
MMS. (C) Serial dilutions of mid-log cultures of wild-type containing vector alone 
(pRS415), rsc1 with vector alone, or rsc1/rsc2 mutant strain with pRSC2 or 
domain swap expression plasmids were plated onto YPAD or YPAD plates 
containing the indicated dose of MMS. (D) Survival of strains as in (B) following 
chronic HO endonuclease cleavage at the MAT locus. Survival is calculated as 
the number of colonies surviving in continued HO expression relative to conditions 
where HO is not expressed. Wild-type repair rates are set to 100% and mutant 
strains are shown relative to wild-type. Data are means ± s.d., n=3 (E) Survival of 
strains as in (C) following chronic HO endonuclease cleavage at the MAT locus. 
Survival is calculated as the number of colonies surviving in continued HO 
expression relative to conditions where HO is not expressed. Wild-type repair 
rates are set to 100% and mutant strains are shown relative to wild-type. Data are 
means ± s.d., n=3  
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effect on the MATa chromatin structure, suggesting that all three

domains of Rsc2 are either not required for or can support the

function of Rsc2 in establishing normal chromatin structure at

MATa. Strikingly, however, the strain carrying pRSC2BAH was

now able to carry out some remodeling of the chromatin flanking

the DNA DSB (Figure 7D). Thissuggests that the BAH domain of

Rsc1 provides some of the specificity in its role in DNA damage

depending chromatin remodeling.

Discussion

Here we show that Rsc1 and Rsc2 exist in two separate RSC

complexes that appear to be otherwise identical in subunit

composition. Furthermore, we find that these two isoforms of

theRSC chromatin remodeling complex provide both overlapping

and distinct functions in DNA damage responses, consistent with

what has been found when their contributions to other cellular

functions have been examined [3,6,7]

When rsc1 and rsc2 mutant strains are directly compared, the

strains show very similar phenotypes - both are able to activate

DNA damage signalling leading to increased RNR transcription

and checkpoint activation, both show hypersensitivity to DNA

damaging agents and reduced NHEJ activity, and survivors of a

sustained HO-induced DSB have a very similar spectrum of repair

junctions in the two strains, which are distinct from those in a wt

strain. Replacing either bromodomain or the BAH domain of

Rsc2 with the analogous domain from Rsc1 has no effect on the

ability of Rsc2 to function in supporting survival after DNA

damage, suggesting that the domains are interchangeable for at
least some functions.

However, our data suggest that the two isoforms are not
functionally redundant. Increasing the gene dosage of one of the

two genes does not compensate for loss of the other in MMS
survival or NHEJ assays. Moreover, the dependence of NHEJ

activity on the presence of either RSC1 or RSC2 appears to be
context dependent, arguing for distinct contributions. We also find

that nucleosome remodeling flanking DNA DSBs at two different
genomic locations is entirely dependent on Rsc1 in our assays.

Interestingly, Rsc2 has also been implicated in nucleosome
reorganization at chromatin flanking a DNA DSB in a study

using different approaches [11]. Taken together with our finding
that both Rsc1 and Rsc2 contribute to NHEJ activity, combined

with the similar spectrum of repair junctions in the two mutant
strains, these data suggest that Rsc1 and Rsc2 both function at a

DNA DSB to mediate NHEJ via two distinct chromatin
remodeling events.

Surprisingly, replacing the BAH domain of Rsc2 with that of

Rsc1 results in a strain that is capable of both establishing
chromatin structure at the MATa locus, which is normally Rsc2-
dependent, and remodeling chromatin flanking a DNA break,

which is normally Rsc1-dependent. However, while this fusion

protein is capable of carrying out both Rsc1 and Rsc2-specific
remodeling activities, it is still not able to compensate for loss of

both proteins in survival and NHEJ assays, indicating that some
functions are still absent. These functions presumably require the

other domains of Rsc1 and Rsc2.

Figure 7. Replacing the BAH domain of Rsc2 with the Rsc1 BAH domain allows Rsc2 to remodel chromat in at DNA DSBs. (A) Indirect-
end-label analysis of MNase-digested de-proteinized ‘DNA’ and ‘chromatin’ samples before (‘HO 0 min’) and 40 minutes after HO induction in RSC1/
RSC2 yeast strain JKM179 with a probe specific to the MATa locus. The position of the HO-induced DSB is marked on the gene map and across the
figure with a dotted line. The nuclease-resistant structure characteristic of the normal MATa locus on the MAT-proximal side of the HO site is marked
with a grey oval to the right of the blot. The region of DSB-dependent nucleosome sliding in the region distal to the HO site is marked with circles
(representing nucleosomes) and arrows (representing the apparent direction of sliding). (B) Indirect-end-label analysis of the rsc1/rsc2 yeast
strain+pRSC1 showing normal DSB-dependent nucleosome sliding but loss of the nuclease-resistant structure on the MAT-proximal side of HO
(characterized by MNase cleavage sites within this region). This is consistent with the results in [3] showing that Rsc1 is required for DSB-dependent
nucleosome sliding, whereas Rsc2 is required for normal MATa chromatin configuration. (C) Indirect-end-label analysis of the rsc1/rsc2 yeast
strain+pRSC2BD1 showing that the Rsc2-dependent nuclease-resistant structure is present as in normal cells but that DSB-dependent nucleosome
sliding is defective. (D) Indirect-end-label analysis of the rsc1/rsc2 yeast strain+pRSC2BAHshowing both a normal nuclease-resistant structure together
with DSB-dependent nucleosome sliding despite the absence of Rsc1.
doi:10.1371/journal.pone.0032016.g007
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A 

Figure 3.7. Replacing the BAH domain of Rsc2 with the Rsc1 BAH domain 

allows Rsc2 to remodel chromatin at DNA DSB. (A) Indirect-end-label-analysis 

of MNase digested DNA from wild-type JKM179 yeast using a probe abutting 

BspEI site as shown. Deproteinized DNA and chromatin samples were analysed 

before (HO, 0 min) and 40 min after HO induction by addition of galactose to 

growth media. Wedges above chromatin samples indicate increasing amounts of 

MNase. Deproteinized DNA control samples show that the banding pattern in the 

chromatin samples is representative of nucleosome positioning as opposed to 

DNA sequence-specific MNase cleavage. The lack of signal in the deproteinzed 

DNA HO 0min sample is likely to reflect MNase over-incubation. The position of 

the HO-induced DSB is marked on the gene map and across the figure with a 

dotted line. The nuclease-resistant structure characteristic of the normal MATα 

locus on the MAT-proximal side of the HO site is marked with a grey oval to the 

right of the blot. The region of DSB-dependent nucleosome sliding in the region 

distal to the HO site is marked with circles (representing nucleosomes) and 

arrows (representing the apparent direction of sliding). (B) Indirect-end-label-

analysis of the rsc1/rsc2 strain containing pRSC1 showing normal DSB-

dependent nucleosome sliding but loss of the nuclease-resistant structure on the 

MAT-proximal side of HO (characterized by MNase cleavage sites within this 

region). (C) Indirect-end-label-analysis of the rsc1/rsc2 strain containing 

pRSC2BD1 showing that the Rsc2-dependent nucleosome-resistant structure is 

present as in normal cells normal DSB-dependent nucleosome sliding is 

defective. (D) Indirect-end-label-analysis of the rsc1/rsc2 strain containing 

pRSC2BAH showing normal nuclease-resistant structure and normal DSB-

dependent nucleosome sliding despite the absence of Rsc1.  
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is part of the RENT complex that comprises Sir2, Net1 and Cdc14 (Gartenberg 2000). 

Other work in our lab recently showed that an rsc2 mutant is defective in rDNA 

silencing and appears to function in the same pathway as Sir2 (Chambers et al. 2013). 

The structure of transcriptionally silenced chromatin at the rDNA array is thought to 

suppress recombination because many rDNA silencing protein mutants, including sir2, 

have a hyper-recombination phenotype (Gottlieb & Esposito 1989, Huang et al. 2006). 

A proposed model links rDNA repeats to cohesin via a cohesin-associated clamp 

complex. Mutation of clamp complex components results in increased rates of marker 

loss by unequal sister chromatid exchange at the rDNA because of the consequent 

loss of sister chromatid cohesion (Huang et al. 2006).  

Because rsc2 is defective in rDNA silencing and cohesion (Huang et al. 2004, 

Baetz et al. 2004), we sought to test whether rsc2 also has a hyper-recombination 

phenotype. RSC2 was deleted in a strain that contains an ADE2 marker in the rDNA 

array. Cells that have lost the ADE2 marker by unequal sister chromatid exchange are 

red when grown on media with a low adenine concentration (Figure 3.8A). The rate of 

unequal sister chromatid exchange can be measured by counting the number of half 

red/white sectored colonies, which represent marker loss in the first division upon 

plating, compared to the total number of colonies (Kaerberlein et al. 1999). As 

predicted, the rsc2 mutant shows a considerably higher rate of unequal sister 

chromatid exchange compared to wild-type (Figure 3.8B).  

We also determined the rate of spontaneous direct-repeat recombination in the 

absence of Rsc2. The strain used in this assay contains a duplication of a mutated 

LEU2 locus, and the two configurations of the strain, proximal and distal, differ only in 

the distance between the mutated sites (Smith & Rothstein 1999). Generation of LEU+ 

prototrophs can result from replacement, deletion and triplication events via various 

intra- and interchromatid recombination mechanisms. Interestingly, the rsc2 mutant 

shows a substantially elevated rate of LEU+ prototroph formation in both configurations 

compared to wild-type (Figure 3.8C). Together, these data demonstrate that loss of 

Rsc2 results in increased rates of spontaneous recombination by unequal sister 

chromatid exchange and direct-repeat recombination. Altered rates of recombination 

might reflect the role of Rsc2 in sister chromatid cohesion and is likely to contribute to 

genome instability.  
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A	  
Wt rsc2	  

Figure. 3.8. Cells	  lacking	  RSC2	  display	  elevated	  rates	  of	  marker	  loss	  by	  unequal	  sister	  
chroma<d	   exchange	   and	   direct-‐repeat	   recombina<on.	   (A)	   Representa>ve	   images	   of	  
wild-‐type	  and	  rsc2	  colonies	  grown	  on	  SC	  media	  with	  low	  adenine.	  Cells	  that	  have	  lost	  the	  
ADE2	  marker	  through	  unequal	  sister	  chroma>d	  exchange	  give	  rise	  to	  red	  colonies,	  whilst	  
ADE2-‐pos>vie	   cells	   are	   white.	   Half	   red/white	   sectored	   colonies	   represent	   marker	   loss	  
during	  the	  first	  cell	  division	  upon	  pla>ng.	  (B)	  Percent	  ADE2	  marker	  loss	  in	  wild-‐type	  and	  
rsc2	   cells.	   Data	   are	   means	   ±	   s.d.,	   n	   =	   3	   experiments.	   (D)	   Rates	   of	   spontaneous	   LEU+	  

prototroph	   forma>on	   in	   wild-‐type	   and	   rsc2	   strains	   in	   the	   proximal	   and	   distal	  
configura>ons.	  Data	  are	  means	  ±	  s.d.,	  n	  =	  3	  experiments. 
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3.2. Discussion 

In this section we showed that Rsc1 and Rsc2 exist in two separate isoforms of the 

RSC complex that are otherwise identical in subunit composition. We found that the 

two isoforms of the complex provide both overlapping and distinct functions in DNA 

repair, which is consistent with what has been found for other RSC-dependent cellular 

processes (Cairns et al. 1999, Baetz et al. 2004, Bungard et al. 2004). A summary of 

the phenotypes associated with loss of RSC1 and RSC2 is shown in Table 3.1.  

Overlapping and distinct roles for Rsc1 and Rsc2 in DNA damage responses 

Directly comparing the phenotypes of rsc1 and rsc2 mutant strains reveals that they 

are very similar. Both are able to activate the G1 and G2/M DNA damage checkpoints, 

are hypersensitive to DNA damaging agents and have reduced NHEJ activity, and 

show a very similar spectrum of repair junctions in survivors of a sustained HO-induced 

DSB that is distinct from the wild-type repair spectrum. In addition, replacing either 

bromodomain or the BAH domain of Rsc2 with the analogous domains of Rsc1 does 

not impair the ability of Rsc2 to promote survival following DNA damage. This suggests 

that the domains are interchangeable for at least some functions.  

However, the data presented here indicate that the two isoforms are not 

functionally redundant in DNA damage responses. Increasing the dosage of one of the 

two genes cannot compensate for loss of the other gene in DNA damage 

hypersensitivity assays with MMS. Moreover, we find that the dependence of NHEJ on 

the presence of either Rsc1 or Rsc2 appears to be context dependent, arguing for 

Table&3.1.&Phenotypes&associated&with&the&loss&of&RSC1%and&RSC2
Ceullular&process/activity Assay&description Δrsc1 Δrsc2 Reference
Growth &@ Normal This&work,&unpublished&observations
Temperature&sensitivity&(37°C) &@ Oum&et%al.%2011
DNA&damage&hypersensitivity& MMS This&work,&unpublished&observations

Phleomycin This&work,&unpublished&observations
CPT This&work,&unpublished&observations
4NQO This&work,&unpublished&observations
UV Normal Niimi&et%al.%2012

Checkpoint&activity MMS@induced&G1&DNA&damage&checkpoint&activation Normal Normal Chambers&et%al.%2012
MMS@induced&G2/M&DNA&damage&checkpoint&activation Normal Normal Chambers&et%al.%2012
MMS@induced&RNR2&and&RNR3&expression Normal Normal Chambers&et%al.%2012

Survival&after&DNA&damage MMS@induced&DNA&damage&in&G1 Normal Chambers&et%al.%2012
MMS@induced&DNA&damage&in&G2 Chambers&et%al.%2012

NHEJ&activity NHEJ&activity&at&MAT%locus Chambers&et%al.%2012
NHEJ&activity&at&LEU2%locus Chambers&et%al.%2012

HR&activity Plasmid&gap&repair&assay Chai&et%al.%2005
DSB@induced&nucleosome& HO@induced&nucleosome&sliding&at&MAT%and%LEU2 Normal Chambers&et%al.%2012
remodeling Basal&nuclesome&positioning&at&MAT Normal Chambers&et%al.%2012
Sister&chromatid&cohesion &@ Baetz&et%al.%2004
Replication&of&damaged&DNA PCNA&ubiquitination&(UV,&MMS&and&HU) Normal Niimi&et%al.%2012

&&'Normal'&indicates&no&defect,&yellow&indicates&slight&defect,&orange&indicates&moderate&defect,&and&red&indicates&severe&defect
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distinct contributions. We also found that Rsc1 has a unique role in sliding DSB-distal 

nucleosomes away from HO-induced DSBs at two genomic loci. In contrast, Rsc2 has 

a specific role in establishing a nuclease-resistant DSB-proximal nucleosome 

arrangement at the MAT locus prior to DSB induction. Interestingly, Rsc2 has been 

implicated in organising chromatin adjacent to DSBs using other approaches (Shim et 

al. 2007). Taken together with the findings that both Rsc1 and Rsc2 contribute to DNA 

repair by NHEJ, and show a similar pattern of NHEJ repair junctions, these data 

suggest that Rsc1 and Rsc2 function at a DSB via two distinct remodelling events. 

These events might occur sequentially in the same linear pathway, and might be 

reflected by different recruitment timing to the DSB. The differential requirements for 

Rsc1 and Rsc2 in the repair of DNA lesions induced by different DNA damaging agents 

suggests that certain lesions are more dependent on one of these remodelling events 

than others for repair. The same might be true for lesions occurring at different 

genomic locations with different chromatin environments. Alternatively, Rsc1 and Rsc2 

might be differentially enriched following DNA damage at different lesions or genomic 

locations.  

Combinatorial binding of Rsc1 and Rsc2 bromodomains and BAH domains as a 

mechanism for regulating the DNA repair activity of the two proteins 

Surprisingly, we found that replacing the BAH domain of Rsc2 with the BAH domain of 

Rsc1 allows Rsc2 to both establish chromatin structure at MAT and perform Rsc1-

dependent chromatin remodelling. This suggests that the BAH domain dictates the 

specificity of Rsc1 in this chromatin remodelling events. Recently, other work in our lab 

established that the BAH domains of Rsc1 and Rsc2 both bind to unmodified H3 

(Chambers et al. 2013). Therefore, it is unlikely that the differences in remodelling 

activity between Rsc1 and Rsc2 are due to different binding targets of their BAH 

domains. Instead, this specificity is likely to be dictated by combinatorial binding of the 

BAH domains and the bromodomains from both proteins. The idea that the domains of 

Rsc1 and Rsc2 bind in a combinatorial manner to mediate their activity seems likely, 

because in higher eukaryotes there are not two separate isoforms of the homologous 

complex, termed PBAF. Instead, the Rsc1, Rsc2 and Rsc4 subunits of RSC appear to 

have fused during evolution to produce the BAF180 subunit of PBAF, which contains 6 

bromodomains and 2 BAH domains (Mohrmann & Verrijzer 2005). These numerous 

domains could contribute to the functional specificity of the protein in a modular 

fashion, and this might be particularly important because there are numerous 
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alternative splice transcripts of BAF180 that contain different combinations of domains 

(Horikawa & Barrett 2002).  

Predictions made on the binding partners of the Rsc1 and Rsc2 bromodomains 

are currently speculative given data showing their extremely weak binding to a 

selection of acetyl-lysine-containing histone peptides (Zhang et al. 2010). It is therefore 

possible that these bromodomains in fact bind other non-histone acetylproteins. 

Alternatively, simultaneous binding of both bromodomains to their targets might be 

required to strengthen the interaction. Indeed, this is known to occur for the tandem 

bromodomains of TAF1, which has a much higher affinity for doubly acetylated H4 tails 

than mono-acetylated peptides (Jacobson et al. 2000). Identifying the true interaction 

partners of the Rsc1 and Rsc2 bromodomains is of high importance in order to fully 

understand the similarities and differences between the two proteins. Moreover, given 

the high conservation of these proteins with the mammalian BAF180 homologue, 

identifying the Rsc1 and Rsc2 bromodomain binding partners could shed light on how 

BAF180 functions as a tumour suppressor.  

Rsc2 is important for maintaining repeat stability that likely reflects its role in cohesion 

We showed that deletion of RSC2 results in a ~4-fold increase in the rate of 

spontaneous unequal sister chromatid exchange at the rDNA repeats. This increase in 

unequal sister chromatid exchange is most likely to result from compromised cohesion 

in the rsc2 null cells. This is somewhat in contrast to a study that reported substantially 

decreased unequal sister chromatid exchange in a rsc7 null mutant, although a 

different assay was used (Oum et al. 2011). Rsc7 is a component of both isoforms of 

the RSC complex and therefore represents 100% of all RSC complexes. Because the 

Rsc2-containing complex represents ~90% of this total, it is perhaps difficult to 

reconcile how deleting subunits common to the vast majority of the RSC present can 

have such opposite effects on the same process. Perhaps Rsc2 and Rsc7 do indeed 

antagonise each other in RSC-mediated unequal sister chromatid exchange. Another 

alternative is that the increased rate of USCE that we observe in the rsc2 null strain is a 

phenomenon unique to the association of RSC at the rDNA repeats. An ability of RSC 

to both repress and enhance recombination at different genomic loci might be 

analogous to its ability to both repress and activate the transcription of different genes. 

It would be useful to measure the effects of deleting RSC2 and RSC7 in the same 

unequal sister chromatid exchange assay to clarify this.  

In contrast, our findings that a rsc2 null mutant displays ~5-fold increase in the 

rate of direct-repeat recombination are in agreement with findings by Oum et al., in 
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which an rsc7 null strain showed a massively elevated rate of direct-repeat 

recombination (189-fold change in the rate of recombination compared to wild-type 

cells). Recombination in this assay can occur via replication slippage, unequal sister 

chromatid exchange or SSA. In our direct-repeat recombination assays recombination 

can occur via multiple intra- and interchromatid recombination mechanisms, including 

gene conversion, replication slippage, SSA, sister strand slippage, unequal sister 

chromatid exchange and intrachromatid crossovers. Therefore it is not appropriate to 

directly compare the differences between the two strains in the two assays. 

Nevertheless, these data collectively indicate that subunits of RSC play an important 

role in regulating appropriate levels of recombination in repetitive DNA sequences. 

Misregulated recombination is a known cause of genomic instability and loss of 

heterozygosity (LOH), which are important drivers of tumourigenesis. This has 

potentially important implications given that the mammalian homologue of Rsc2, 

BAF180, is a tumour suppressor gene.  
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CHAPTER 4: BAF180 PROMOTES COHESION AND PREVENTS 
GENOME INSTABILITY AND ANEUPLOIDY 

4.1. Results 

Introduction 

A convergence of observations made in our lab with findings from a range of studies, 

both old and recent, prompted us to examine the possibility that BAF180 functions in 

sister chromatid cohesion. Firstly, the yeast homologues of BAF180, Rsc1 and in 

particular Rsc2, are required for sister chromatid cohesion (Huang et al. 2004, Baetz et 

al. 2004). Therefore BAF180 might play a conserved role in cohesion. Second, we 

observe an increased rate of unequal sister chromatid exchanges and direct-repeat 

recombination in rsc2 null cells, suggesting that loss of Rsc2 results in misregulation of 

physiological recombination pathways (see chapter 3). Increased rates of unequal 

sister chromatid exchange is thought to be a consequence of impaired cohesion 

(Huang et al. 2006), and might also underlie an increased rate of direct-repeat 

recombination. Moreover, misregulation of homologous recombination pathways 

because of defective cohesion might be responsible for deleterious genomic instability, 

which is associated with tumourigenesis (Xu et al. 2011). Thirdly, a spate of exome 

sequencing studies revealed that numerous cohesin genes are frequently mutated in 

cancer (Barber et al. 2008, Solomon et al. 2011, 2013, Guo et al. 2013, Balbáz-

Martinéz et al. 2013, Kon et al. 2013, Kim et al. 2013). In parallel, a substantial number 

of similar studies identified strikingly frequent mutations in members of mammalian 

SWI/SNF complexes, including BAF180 (Shain & Pollack 2013). In an effort to to unify 

these observations we set out to test the following:  does BAF180 play a conserved 

role in sister chromatid cohesion, and if so, does any role of BAF180 in cohesion 

represent a tumour suppressor function?  

Analysis of cohesion in BAF180 -/- mouse embryonic stem cells 

To test whether BAF180 functions in sister chromatid cohesion we first utilized mouse 

embryonic stem cells (mESCs) that were wild-type (+/+) or contained a homozygous 

BAF180 mutation (-/-) that abolishes all BAF180 expression (Wang et al. 2004). We 

next prepared metaphase chromosome spreads from each genotype and scored 

chromosomes for sister chromatid cohesion. We based our scoring assay on those 
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from previously published studies (e.g. Barber et al. 2008, Carretero et al. 2013), in 

which a clearly resolved gap between DAPI stained sister chromatids at the 

centromere represents a centromeric cohesion defect (Fig. 4.1A). Cells were 

categorized as having defective centromere cohesion when 3 or more chromosomes 

showed a defect, or as having normal centromere cohesion when less than 3 

chromosomes showed a defect. Quantification of 200 spreads from each genotype 

revealed that there was a statistically significant increase in the number of BAF180 -/- 

cells with defective centromere cohesion compared to wild-type (Fig. 4.1B; P<0.001, 

Fisher’s exact test).  

In vertebrate cells the two versions of yeast Scc3, known as SA1 and SA2, 

differentially regulate arm and centromere cohesion, respectively (Canudas & Smith 

2009). To determine if BAF180 also mediates arm cohesion we analysed arm cohesion 

in the same metaphase mESCs. Chromosomes were described as having a defect in 

arm cohesion when sister chromatids were clearly separated along the whole length of 

the arms (Fig. 4.1A). Similarly, cells were categorized as having defective arm 

cohesion when 3 or more chromosomes showed a defect, or as having normal arm 

cohesion when less than 3 chromosomes showed a defect. In contrast to cohesion at 

the centromere, we did not observe a significant difference in the number of BAF180 -/- 

cells displaying defective arm cohesion (Fig. 4.1C; P=0.59, Fisher’s exact test). 

Collectively, these results suggest that BAF180 is important for promoting sister 

chromatid cohesion specifically at centromeres in mESCs (Brownlee et al. 2014)    

Fluorescent in situ hybridization (FISH) analysis on mitotic BAF180-depleted 1BR-

hTERT and U2OS cells 

To examine the cohesion defect in BAF180-deficient cells in more detail, and to 

determine if it is also apparent in human cells, we first depleted BAF180 in 1BR-hTERT 

cells using siRNA. Western blotting confirmed efficient BAF180 depletion in these cells 

(Fig. 4.2A). Next, we performed (FISH) on mitotic cells isolated by shake-off from 

asynchronously growing cultures (performed by Ross Cloney). Using a probe directed 

against the centromeric region of chromosome 10 (Fig. 4.2B (green)), we found that 

the siBAF180-treated cells displayed a statistically significant increase in the 

distribution of distances between the two signals from the sister chromatids compared 

to siControl cells (Fig. 4.2C and D; P<0.001, Kolmogorov-Smirnov test). In contrast, 

when the distances between the arm signals of chromosome 10 (Fig. 4.3A (red)) were 

measured, we found no significant shift in the distribution of measurements between 

siControl- and siBAF180-treated cells (Fig. 4.3B and C; P=0.586, Kolomogorov-
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Figure 4.1. BAF180 promotes centromeric sister chromatid cohesion in 
mESCs (A) Representative WT (+/+) and BAF180 knockout (-/-) mESC 
metaphase spreads. Cells were analysed according to whether cohesion was 
defective at centromeres (open arrows) or arms (open and closed arrows). (B) 
Cells were scored as ‘normal’ when two or fewer chromosomes showed 
centromeric cohesion defects, or ‘defective’ when three or more chromosomes 
showed a defect (P<0.0001 between +/+ and -/- cells; Fisher’s exact test) (C) 
Cells were scored as ‘normal’ when two or fewer chromosomes showed arm 
cohesion defects, or ‘defective’ when three or more chromosomes showed a 
defect (P=0.59 between +/+ and -/- cells; Fisher’s exact test). 200 cells were 
scored per genotype from two independent experiments. 
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Figure 4.2. siRNA-mediated depletion of BAF180 in 1BR-hTERT cells results 
in defective centromeric cohesion (A) Analysis of BAF180 depletion efficiency 
in 1BR-hTERT cells by Western blotting. α-tubulin was used as a loading control. 
(B) Representative images of siControl- (left panel) and siBAF180-treated (right 
panel) mitotic cells probed with a mixture of FISH probes directed against the 
centromere (green) and arm (red) of chromosome 10. (C) FISH analysis on cells 
from (B). The distances between signals from the sister chromatid centromeres 
(green) were measured from two independent experiments (>400 measurements 
in total) and the distributions plotted as a histogram (P<0.001, Kolmogorov-
Smirnov test). (D) Data from (C) presented as a cumulative plot.  
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Figure 4.3. siRNA-mediated depletion of BAF180 in 1BR-hTERT cells does 
not cause defective cohesion at chromosome arms (A) Representative 
images of siControl- (left panel) and siBAF180-treated (right panel) mitotic cells 
probed with a mixture of FISH probes directed against the centromere (green) and 
arm (red) regions of chromosome 10. (B) FISH analysis on cells from (A). The 
distances between signals from the sister chromatid arms (red) were measured 
from two independent experiments (>400 measurements in total) and the 
distributions plotted as a histogram (P=0.586, Kolmogorov-Smirnov test).(C) Data 
from (B) presented as a cumulative plot.  
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Smirnov test). Similarly, using a probe directed against the subtelomeric region of 

chromosome 16 (Fig. 4.4A) there was no significant change in the distribution of 

distances between sister chromatid telomeres following BAF180 depletion (Fig. 4.4B 

and C; P=0.877, Kolmogorov-Smirnov test). Together, these data indicate that 

depletion of BAF180 in human cells also leads to a cohesion defect that is specific to 

the centromere, similar to that seen for SA2-depleted cells (Canudas & Smith 2009).   

We also created a BAF180 small hairpin RNA (shRNA) stable cell line in U2OS 

cells and a corresponding control cell line (created by Suzanna Hopkins). Western 

blotting confirmed efficient BAF180 depletion in these cells (Fig. 4.5A). Mitotic cells 

isolated by shake-off from asynchronous cells were probed using the centromere 10-

specifc FISH probe and the distances between signals from the sister chromatids were 

measured. Consistent with the data from the 1BR-hTERT cells, BAF180 depletion in 

the U2OS cells led to a statistically significant increase in the distribution of 

measurements (Fig. 4.5B and C; P<0.001, Kolmogorov-Smirnov test). Therefore, the 

centromeric cohesion defect in BAF180-depleted cells appears to be a conserved 

function in mammalian cells (Brownlee et al. 2014).  

Depletion of BAF180 and SA2 results in a comparable defect in centromeric cohesion 

The centromeric cohesion defect that we observe upon BAF180 depletion appears 

relatively modest compared to the defect observed in SA2-depleted HeLa cells 

reported by Canudas & Smith (Canudas & Smith 2009). This might be due to 

differences in cell type, or that SA2 depletion indeed leads to a more severe cohesion 

defect. In order to compare the SA2 cohesion defect with that of BAF180 more directly 

we individually depleted SA2 and BAF180 using siRNA in 1BR-hTERTs and analysed 

centromere separation by FISH as described. We confirmed efficient knockdown of 

SA2 by Western blot (Fig. 4.6A, Anna L. Chambers). The shift in the distribution of 

distances between the centromeres was slightly greater in SA2-depleted cells 

compared to that of BAF180 (Fig. 4.6B and C; P=0.001 for BAF180, P<0.001 for SA2 

compared to siControl cells, Kolmogorov-Smirnov test). Therefore, the cohesion defect 

following BAF180 depletion is comparable to that in cells lacking SA2 (Brownlee et al. 

2014). 
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Figure 4.4. siRNA-mediated depletion of BAF180 in 1BR-hTERT cells does 
not cause defective cohesion at telomeres (A) Representative images of 
siControl- (left panel) and siBAF180-treated (right panel) mitotic cells probed with 
a FISH probe directed against the subtelomeric region of chromosome 16 (red). 
(B) FISH analysis on cells from (A). The distances between signals from the sister 
chromatid telomeres were measured from two independent experiments (>400 
measurements in total) and the distributions plotted as a histogram (P=0.877, 
Kolmogorov-Smirnov test). (C) Data from (B) presented as a cumulative plot.  
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Figure 4.5. Stable shBAF180-depleted U2OS cells show defective 
centromeric cohesion (A) Western blot analysis of BAF180 depletion in U2OS 
cells stably expressing BAF180 shRNA and control shRNA. α-tubulin was used as 
a loading control. (B) FISH analysis on mitotic cells probed with a FISH probe 
directed against the centromere of chromosome 10. The distances between 
signals from the sister chromatids were measured from two independent 
experiments (>400 measurements in total) and the distributions plotted as a 
histogram (P<0.001, Kolmogorov-Smirnov test). (D) Data from (C) presented as a 
cumulative plot.  
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Figure 4.6. Depletion of BAF180 and SA2 results in a comparable defect in 
centromeric cohesion (A) Western blot analysis of siRNA-treated 1BR-hTERT 
cells using antibodies directed against SA2 or α-tubulin. (B) FISH analysis on 
mitotic cells probed with a FISH probe directed against the centromere of 
chromosome 10. The distances between signals from the sister chromatids were 
measured from two independent experiments (>200 measurements in total) and 
the distributions plotted as a histogram (P=0.001 between siControl and siBAF180 
cells, P<0.001 between siControl and siSA2 cells; Kolmogorov-Smirnov test). (D) 
Data from (C) presented as a cumulative plot.  
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BAF180 is not required for transcription of cohesin genes and has tissue-specific roles 

in regulating p53-dependent p21 transcription 

Defects in cohesion could be caused by a number of different mechanisms, such as 

lower levels of cohesins, inappropriate loading onto chromatin, or an inability to 

establish cohesion once loaded. One possible mechanism by which BAF180 mediates 

cohesion is transcriptional regulation of cohesin genes. In argument against this 

possibility, microarray data from the report by Varela et al. did not identify any 

significantly misregulated cohesin genes following BAF180 depletion in 3 renal cell 

carcinoma cell lines (Varela et al. 2011). Nevertheless, we first examined the levels of 

Smc1α, Smc3, Stag1 and Stag2 proteins from asynchronous BAF180 +/+ and -/- 

mESC whole-cell extracts by Western blot (Anna L. Chambers). There were no gross 

changes in the levels of these proteins in BAF180 -/- cells compared to BAF180 +/+ 

cells, suggesting that these proteins are not grossly downregulated in the absence of 

BAF180 in these cells (Fig. 4.7A).  

We also examined the mRNA levels of the core cohesin genes SMC1A, SMC3, 

STAG1, STAG2 and RAD21 in siBAF180-treated 1BR-hTERT cells and the stable 

shBAF180 U2OS cells, and compared the controls using quantitative RT-PCR (qRT-

PCR, Anna L. Chambers). BAF180 depletion did not lead to significantly reduced levels 

of these transcripts in either cells line (Fig. 4.7B and C). In fact, in the shBAF180 U2OS 

cells the RAD21 transcript, and to a lesser extent the STAG1 and SMC3 transcripts, 

were upregulated (Fig. 4.7C). Collectively, these data suggest that the cohesion defect 

in BAF180-depleted mouse and human cells is unlikely to be due to indirect 

transcriptional effects. 

One mechanism by which BAF180 might function as a tumour suppressor is in 

positively regulating p53-dependent p21 transcription in response to oncogenic and 

replicative stresses (Burrows et al. 2010, Xia et al. 2008). Recently, p21 was implicated 

in mitotic control by regulating Cyclin B1, and reduction of p21 levels led to an 

extended mitosis and impaired Aurora B activity in human cells (Kreis et al. 2013). 

Thus, the cohesion defect we observe in BAF180-depleted cells might be a 

consequence of reduced p21-dependent mitotic activity. We examined p21 

transcription levels in BAF180-depleted 1BR-hTERT cells and found that, consistent 

with previous studies, basal levels of p21 were reduced in siBAF180 cells (Fig. 4.7D). 

Treatment with the MDM2 inhibitor nutlin-3a, which alleviates p53 inhibition, led to 

lower p21 levels in siBAF180 cells compared to siControl cells (Fig. 4.7E). In contrast, 

and of great importance to this study, we found that basal p21 levels in shBAF180 

U2OS cells were actually ~3-fold higher than the shControl cells (Fig. 4.7D), suggesting 
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Figure 4.7. BAF180 is not required for transcription of cohesin genes and 
has tissue-specific roles in regulating p53-dependent p21 transcription (A) 
Western blot analysis of cohesin subunits in whole-cell extracts (WCE) prepared 
from WT (+/+) and BAF180 knockout (-/-) mESCs. (B) Transcription of cohesin 
subunits in BAF180-depleted 1BR-hTERT cells. Transcript levels from three 
independent experiments were analysed by qPCR and normalized to α-tubulin 
transcript. Data for BAF180-depleted cells are shown relative to siControl cells. 
(C) Transcription of cohesin subunits in shBAF180 U2OS cells. Transcript levels 
levels from three independent experiments were analysed by qPCR and 
normalized to α-tubulin. Data for shBAF180 cells are shown relative to shControl 
cells. (D) Transcription of basal p21 in BAF180-depleted 1BR-hTERT and U2OS 
cells. Transcript levels from three independent experiments were analysed by 
qPCR and normalized to β-actin. Data for BAF180-depleted cells are shown 
relative to control cells. (E) Transcription of nutlin-3a-induced p21 in BAF180-
depleted 1BR-hTERT and U2OS cells. Transcript levels from three independent 
experiments were analysed by qPCR and normalized to β-actin. 
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that p53-dependent transcriptional activation of p21 is BAF180-independent in these 

cells. A similar increase in p21 transcription in the shBAF180 cells compared to the 

shControl cells was observed after treatment with nutlin-3a (Fig. 4.7E). Thus, the 

centromeric cohesion defect in the shBAF180 U2OS cells cannot be attributed to p21-

dependent mitotic regulation.  

Analysis of cohesin loading dynamics during S-phase in BAF180 depleted U2OS cells 

Whilst cohesin is loaded onto chromatin during G1, levels of stably bound cohesin 

increase concomitantly with replication in S-phase (Gerlich et al. 2006). To investigate 

whether BAF180 depletion leads to a defect in cohesin loading stable shBAF180 U2OS 

cells were arrested at G1/S using aphidicolin. Cells were harvested for chromatin 

fractionation 0, 3, and 6hrs after release into fresh media to allow passage into S-

phase. We confirmed efficient G1/S arrest and timely progression through S-phase in 

both shControl and shBAF180 cells by FACS (Fig. 4.8A). At 0hrs, when cells were in 

G1/S, the levels of chromatin-bound SMC1 were low as expected in the shControl cells 

(Fig. 4.8B). 6hrs after release a substantial increase in chromatin-bound SMC3 was 

observed as the bulk of cells were progressing through S-phase. Interestingly, there 

were increased levels of chromatin-bound SMC1 at 0 and 3hrs in the shBAF180 cells 

compared to the shControl cells (Figure 4.8B). Nevertheless, after 6hrs the levels of 

chromatin-bound SMC1 was comparable in the shControl and shBAF180 cells, 

suggesting that cohesin loading during S-phase is not grossly impaired in the absence 

of BAF180. However, because centromere-localized cohesin only represents ~10% of 

all chromatin bound cohesin (Peters et al. 2008) reduced loading only at the 

centromere might not be obvious in this assay. Further investigation is required to 

determine the molecular basis of the centromeric cohesion defect in cells lacking 

BAF180.  

Abnormal chromosome morphology in BAF180-depleted MRC5CV1 cells 

Performing siRNA depletion of BAF180 in MRC5CV1 cells (Fig. 4.5A) reproducibly led 

to the appearance of short, squat chromosomes with wider chromosome arms 

compared to control cells (Fig. 4.5B). To quantify this, we measured the length of the 

longest chromosome in each metaphase spread from siControl and siBAF180 cells. 

We found a significant reduction in the mean length of the longest chromosome 

measured in the siBAF180-treated cells compared to the siControl cells (Fig. 4.5C; 

P=0.002, two-tailed unpaired t-test).  This might reflect a role for BAF180 in mediating 
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Figure 4.8. The cohesion defect in BAF180-depleted U2OS cells is not due to 
reduced levels of total chromatin-bound cohesin (A) FACS analysis of 
shControl and shBAF180 U2OS cells arrested in G1/S using aphidicolin. Samples 
were collected for FACS 0, 3 and 6hrs after release into fresh media. (B) Samples 
of the same cells treated as in (A) were collected for chromatin fractionation. The 
soluble and chromatin fractions were analysed by Western blot using antibodies 
against SMC1, histone H3 and α-tubulin.  
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the largely unclear chromosome condensation function of cohesin. Indeed, it has been 

reported that siRNA depletion of ATRX and HDAC3, which, like BAF180, are required 

for centromeric cohesion, similarly results in chromosomes of this morphology (Ritchie 

et al. 2008, Eot-Hollier et al. 2008). 

Cells lacking BAF180 are aneuploid and show evidence of chromosome instability 

(CIN) 

Strikingly frequent inactivating mutations and deletions in the gene encoding SA2, as 

well as other centromere-specific cohesin genes, were recently found in a diverse 

range of tumour types, suggesting that loss of centromeric cohesion contributes to 

tumourigenesis (Solomon et al. 2011, 2013, Guo et al. 2013, Balbáz-Martinéz et al. 

2013, Kon et al. 2013, Kim et al. 2013). Furthermore, disruption of centromeric 

cohesion causes aneuploidy in both normal and cancer cells (Barber et al. 2008, Zhang 

et al. 2008, Ritchie et al. 2010, Manning et al. 2010, Solomon et al. 2011, 2013, Guo et 

al. 2013, Carretero et al. 2013). We next sought to determine if loss of BAF180 

similarly leads to aneuploidy. We found that in metaphase spreads of mESCs lacking 

BAF180 there is a modal gain of two chromosomes in the cell population compared to 

wild-type cells (Figure 4.10A), suggesting that loss of BAF180 does indeed cause 

aneuploidy. Micronuclei can arise in cells as a consequence of chromosome 

missegregation, which is a prerequisite for the generation of aneuploidy, and are often 

observed in cells with defective cohesion (e.g. Ritchie et al. 2008). We observed a 

significant increase in the frequency of micronuclei present in asynchronous BAF180 -/- 

mESCs compared to wild-type cells (Fig. 4.10B, upper panel; P=0.03, Fisher’s exact 

test). A similar increase was also observed in 1BR-hTERT cells depleted of BAF180 

using siRNA (Fig. 4.10B, middle panel; P=0.015, Fisher’s exact test) and U2OS cells 

stably depleted of BAF180 using shRNA (Fig. 4.10B, bottom panel; P=0.034, Fisher’s 

exact test). In addition, analysing anaphase cells from BAF180 -/- and wild-type mESCs 

revealed a significantly higher frequency of abnormal anaphase events in the BAF180 -

/- cells (Fig. 4.10C and D; P=0.006, Fisher’s exact test). These were most commonly 

lagging chromosomes, which are thought to arise through merotelic kinetochore-

microtubule attachments, whilst anaphase bridges were less common. Collectively 

these data suggest that loss of BAF180 leads to an increased rate of chromosome 

missegregation and aneuploidy.  
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Figure 4.10. Loss of BAF180 results in aneuploidy, increased frequencies of 
micronuclei and abnormal anaphase events. (A) Chromosome counts from WT 
(+/+) and BAF180 knockout (-/-)  MES cell metaphase spreads plotted as 
distribution curves. Chromosomes from 100 cells were counted for each 
genotype. (B) Representative image of a MES cell with a micronucleus (arrowed). 
(C) Quantification of micronuclei present in wt (+/+) and BAF180 knockout (-/-) 
MES cells. A minimum of 900 cells from two independent experiments were 
counted. (D) Quantification of micronuclei present in siControl- and siBAF180-
treated 1BR hTERT cells. A minimum of 2600 cells from three independent 
experiments were counted.  
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Loss of BAF180 leads to hypersensitivity to DNA damage, increased frequency of 

chromosome aberrations and dynamic CIN 

In addition to a role in preventing chromosome missegregation, cohesion is important 

for facilitating repair of DNA damage by homologous recombination. Intriguingly, a 

recent study showed that the enrichment of cohesin surrounding DSBs is specifically 

regulated by SA2-containing cohesin complexes (Kong et al. 2014). Other studies also 

suggest that components of the centromeric cohesion pathway, including PDS5B, 

specifically facilitate DNA repair by HR (Brough et al. 2012, Carretero et al. 2013). To 

determine if BAF180 is required for DNA repair we performed viability assays with 

BAF180 -/- and wild-type mESCs using the DNA interstrand crosslinking agent 

mitomycin C. This drug causes replication fork collapse and generates DSBs in S-

phase that are repaired by HR in a cohesin-dependent manner, and cells with defective 

cohesion are rendered hypersensitive to this drug. The BAF180 -/- cells were 

substantially more sensitive to MMC than the wild-type cells (Fig. 4.11A), suggesting 

that BAF180 is required for DNA repair by HR.  

It has been reported that aneuploidy can sensitise cells to genotoxic agents, at 

least in yeast (Sheltzer et al. 2011). Because the BAF180 -/- cell line is aneuploid one 

possibility is that the MMC hypersensitivity we observe is a consequence of 

aneuploidy. To test this, we depleted BAF180 using siRNA in 1BR-hTERT cells and 

performed viability assays with MMC. Importantly, we do not see obvious changes in 

ploidy in this cell line within the timescale of this experiment following BAF180 

depletion (data not shown). We find that BAF180-depleted 1BR-hTERT cells were also 

more sensitive to MMC than the corresponding control cells (Fig. 4.11B), indicating that 

BAF180 loss, and not aneuploidy, is indeed the cause of MMC sensitivity. We also 

performed the same viability assay with MMC in the stable shBAF180 U2OS cells. As 

mentioned previously, p21 levels in these cells are elevated rather than reduced in the 

absence of BAF180. Because p21 has diverse roles in many cell processes, including 

DNA repair (Kreis et al. 2013), this cell line provides us with an opportunity to measure 

the effects of BAF180-dependent DNA repair when p21 is not downregulated. We 

found that the shControl U2OS cells were considerably more resistant to MMC than 

wild-type mESCs and siControl 1BR-hTERT cells (Fig. 4.11C). Nevertheless, we 

detected reduced viability at lower doses of MMC in the shBAF180 cells compared to 

the shControl cells (Fig. 4.11C). Altogether, we find that mESCs, 1BR-hTERT and 

U2OS cells are more sensitive to MMC in the absence of BAF180, suggesting a 

conserved role for BAF180 in HR-dependent DNA repair in mammalian cells.  
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Failure to repair DNA double-strand breaks induced by MMC can result in 

chromosomal instability (CIN) in the form of structural chromosome aberrations, which 

are a hallmark of cancer cells and thought to contribute to tumourigenesis. Analysis of 

BAF180 -/- and wild-type mESC metaphase spreads treated with MMC revealed 

significantly increased frequencies of chromatid and chromosomal unrepaired breaks, 

as well as chromosomal fusions, in the BAF180 -/- cells (Fig. 4.12A and B and Table 

4.1). Interestingly, the most significant difference in aberration frequency between wild-

type and BAF180 -/- cells was observed for chromosomal breaks, which predominantly 

appeared to occur adjacent to or at the centromeres. We did not observe a significant 

increase in the frequency of radial chromosome structures in the BAF180 -/- cells; 

however the frequency of these was very low in both genotypes (Fig. 4.12B). We also 

analysed the prevalence of structural chromosome aberrations in the stable shBAF180 

and shControl U2OS cells treated with MMC. Although we did not find significantly 

increased frequencies of fusion and radial chromosomes in the BAF180-depleted cells 

we did observe a significant increase in breaks (chromatid and chromosome) (Fig. 

4.12C and D). These data suggest that BAF180 is important for the repair of MMC-

induced DSBs to prevent the formation of structural chromosome aberrations in both 

mouse and human cells.  

Micronuclei can arise from the missegregation of whole chromosomes or from 

chromosome fragments. Also, chromosomes harbouring structural aberrations such as 

fusions and radials in metaphase might be more likely to missegregate than normal 

chromosomes during anaphase. Consistently, we found a highly significant increase in 

the frequency of micronuclei in BAF180 -/- cells compared to wild-type after MMC 

exposure (Fig. 4.13A; P<0.001, Fisher’s exact test). A significant increase in 

micronuclei frequency was also observed in shBAF180 U2OS cells compared to 

shControl cells (Fig. 4.13B; P=0.005, Fisher’s exact test).  

Whilst there was a negligible effect on chromosome number in the wild-type 

cells (Fig. 4.13B), MMC exposure in the BAF180-/- cells caused in striking effect on 

aneuploidy manifest as chromosome loss (Fig. 4.13C), providing evidence of dynamic 

CIN in these cells. The loss of chromosomes in BAF180-/- cells after DNA damage 

mirrors the increased frequency of micronuclei and might be due to failed segregation 

of damaged or structurally abnormal chromosomes during anaphase. In conclusion, 

loss of BAF180 leads to rapid and dynamic chromosomal instability (CIN) after 

treatment with MMC and this might be related to its role in promoting sister chromatid 

cohesion.  
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Figure 4.12. BAF180-deficient mESC and U2OS cells show increased 
frequencies of structural chromosomal aberrations after treatment with 
MMC (A) Representative images of each category of aberration. B) The presence 
of structural chromosome aberrations in metaphase spreads prepared from WT 
(+/+) or BAF180 knockout (-/-) mESCs following exposure to MMC was analysed 
and presented as frequency of aberrations per 100 chromosomes. (C) 
Representative images of chromatid and chromosome breaks (acentric 
fragments) from U2OS cells treated with MMC. (D) Analysis of the total number of 
breaks (chromatid and chromosome) in control or BAF180-depleted U2OS cells 
treated with MMC 
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Figure 4.13. BAF180-deficient mESCs show increased frequencies of 
micronuclei and dynamic chromosomal instability following treatment with 
MMC. (A) Quantification of micronuclei present in WT (+/+) and BAF180 knockout 
(-/-) mESCs after treatment with MMC. (B) Quantification of micronuclei present in 
shControl and shBAF180 U2OS cells after exposure to MMC. (C) Distribution 
curves showing chromosome numbers from WT (+/+) (left panel) and BAF180 
knockout (-/-) (right panel) mESCs following exposure to MMC.   
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4.2. Discussion 

In this section we identified a novel role of BAF180 in promoting centromeric sister 

chromatid cohesion. This defect was apparent in BAF180 knockout mouse embryonic 

stem cells (mESCs), immortilized human fibroblasts depleted of BAF180 using siRNA, 

and an osteosarcoma cell line stably depleted of BAF180 using shRNA or shRNA. 

Thus, this function of BAF180 appears to be highly conserved in mammals. 

Importantly, we showed that the centromeric cohesion defect is not due to 

transcriptional misregulation of cohesin genes in these cells, and is independent of p21 

status.  

Disrupted centromeric cohesion is known to compromise mitotic fidelity, and 

consistent with this we found that BAF180-depleted cells showed significant increases 

in micronuclei and abnormal mitotic events. Moreover, we found that BAF180 knockout 

mESCs were aneuploid, which has important implications for its role as a tumour 

suppressor gene. We also explored the consequences of impaired cohesion in DNA 

repair. Cells lacking BAF180 were hypersensitive to DNA damage, displayed increased 

frequencies of structural chromosome aberrations in metaphase, and showed evidence 

of dynamic chromosomal instability when treated with DNA damaging agents. These 

phenotypes are all readily explained by a defect in cohesion, which is likely to 

represent an important tumour suppressor function of BAF180.   

Impaired centromeric cohesion in mammalian cells depleted of BAF180 

We first analysed cohesion in chromosome spreads from BAF180 knockout mESCs. 

Although statistically significant differences in the number of cells showing defective 

centromeric cohesion in the BAF180 -/- cell line were observed, the defect did not 

appear perhaps as striking as that reported in cells lacking other centromere-specific 

Table 4.1. Average number and range per cell of chromosomal 
aberrations in mESCs following MMC exposure
Category  +/+  -/-
Chromatid breaks 0.5 (0-3) 2.2 (0-14)
Chromosome breaks 0.3 (0-4) 0.8 (0-10)
Triradial 0.1 (0-2) 0.1 (0-1)
Quadriradial 0 (0-0) 0.02 (0-1)
Fusion 0.3 (0-2) 0.5 (0-8)
Total 2.2 (0-6) 4.6 (0-32)
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cohesion components. In ~65% of Pds5B -/- MEF metaphase cells >5 chromosomes 

displayed a sister chromatid cohesion defect (Carretero et al. 2013). Although not 

directly comparable because of different scoring criteria, in ~40% of BAF180 -/- mESCs 

3 or more chromosomes displayed a sister chromatid cohesion defect in our assay. 

Thus, the defect appears less severe in the BAF180 -/- cells. Similarly, in 20% of Esco2 

-/- two-cell embryo metaphase cells all of the chromosomes exhibited a marked 

centromeric cohesion defect (Whelan et al. 2012). This describes a more severe defect 

than that observed in BAF180 -/- mESCs. In addition, the Esco2 -/- anaphase cells 

apparently all showed >5 lagging chromosomes, which is a far greater frequency than 

we saw in the BAF180 -/- mESCs.  

A relatively mild centromeric cohesion defect might actually be fundamental to 

explaining why BAF180 is such a potent tumour suppressor gene in human cancer. 

Complete loss of centromeric cohesion defect would have catastrophic consequences 

for the cells because of overwhelming problems with chromosome segregation. This 

would in turn severely inhibit the ability of these cells to proliferate. In contrast, a more 

modest defect is likely to maintain the proliferative capacity of the cells but undermine 

mitotic fidelity, leading to low levels of aneuploidy that might ultimately lead to a growth 

advantage (Figure 4.14). Indeed, this has been proposed to be the case with Rb, which 

has a relatively mild centromeric cohesion defect that is accompanied with lower levels 

of chromosome missegregation (Manning et al. 2010).  

The idea that the severity of the cohesion defect might correlate with 

proliferation appears to be true when comparing proliferation in BAF180-depleted cells 

with cells lacking Pds5B and Esco2. shRNA-mediated depletion of BAF180 in primary 

BJ fibroblasts leads to increased proliferation (Burrows et al. 2010), and re-expression 

of BAF180 in a breast cancer cell line harbouring a truncating BAF180 mutation 

significantly suppressed colony formation (Xia et al. 2008). In addition, siRNA-mediated 

depletion of BAF180 in 4/5 RCC cell lines resulted in significantly increased 

proliferation, colony formation and cell migration. Therefore, BAF180 depletion appears 

to actually increase proliferation, at least in human cancer cells. In contrast, Pds5B -/- 

MEFs showed reduced proliferation compared to wild-type MEFs (Carretero et al. 

2013), and only 5% of Esco2 -/- homozygous embryos reached the 8-cell stage of 

development (Whelan et al. 2012). This most likely results from the massive 

chromosome missegregation problems observed in these cells.  

There are no reports describing a cohesion defect in Stag2-depleted mouse 

cells, so we were not able to compare this with our BAF180 -/- mESC cohesion defect. 

However, we were able to compare the SA2-dependent cohesion defect with that of 

BAF180 in human cells. We found that the SA2-depleted cells showed a comparable, 
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Figure 4.14. Model describing the consequences of BAF180 inactivation 
and the drive towards tumourigenesis. An early event following mutational 
inactivation of BAF180 might be chromosome 3p LOH, resulting from 
misregulation of cohesin-dependent recombination. During DNA replication, 
the absence of BAF180 leads to a defect in establishing centromeric cohesion. 
The inability to efficiently repair DNA DSBs arising during replication might 
contribute to further structural chromosome rearrangements. Chromosome 
segregation errors occurring during anaphase due to impaired centromeric 
cohesion generates low levels of aneuploidy and micronuclei. Micronuclei 
could contribute to further genome instability by re-integrating damaged DNA 
into the genome. The simultaneous inactivation of tumour suppressor 
pathways regulating senescence and proliferation, such as p21, might 
increase the tolerance of aneuploidy in these cells. Ultimately, such cells 
acquire a selective advantage and undergo transformation.   
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but slightly more severe defect than the BAF180-depleted cells. Therefore, loss of SA2 

might not result in a severe cohesion defect as might be predicted from its physical 

interaction with the core cohesin ring. However, the molecular function of SA2 is 

unclear in human cells, and its yeast homologue (Scc3) actually appears to promote 

anti-establishment. A mild cohesion defect in SA2-depleted cells is also consistent with 

the findings that SA2 is very frequently mutated in cancer. As described, a mild defect 

would maintain the proliferative capacity of the cells but compromise mitotic fidelity, 

leading to low levels of aneuploidy. In contrast, a severe defect is unlikely to be 

advantageous because it would compromise proliferation from excessive chromosome 

missegregation. This might also explain why mutational inactivation of the core cohesin 

subunits, which would probably result in a severe cohesion defect, is observed at a 

much lower frequency in human cancers (e.g. Kon et al. 2013). 

Possible mechanisms for BAF180-dependent centromere cohesion 

We found that BAF180 -/- mESCs and 1BR-hTERT fibroblasts depleted of BAF180 

showed a cohesion defect that was only apparent at the centromere. This is consistent 

with findings that in mammalian cells centromeric and arm/telomere cohesion are 

regulated by different versions of proteins in different pathways. Thus, BAF180 might 

cooperate with components of the centromere-specific cohesion pathway, including 

SA2, PDS5B and ESCO2. A centromere-specific role for BAF180 is also consistent 

with previous finding that BAF180 localizes to kinetochores of mitotic chromosomes 

(Xue et al. 2000), and that Brg1 is required for maintaining the structure of 

pericentromeic heterochromatin (Bourgo et al. 2009).  

How might BAF180 function mechanistically in promoting centromeric sister 

chromatid cohesion? One possibility is that BAF180 regulates the recruitment of PBAF 

to pericentromeric heterochromatin. This seems likely because of the multiple 

bromodomains present in BAF180, which might bind to acetylated lysines on histones. 

In addition, the second BAH domain of BAF180 is known to bind to unmodified H3 

(Chambers et al. 2013). In this scenario, BAF180 would recognise a specific set of 

histone modifications that would dictate its preferential binding to pericentromeric 

heterochromatin. The heterochromatin-associated H3K9me3 and H4K20me3 

modifications are unlikely to contribute to this binding because in their absence Brg1-

dependent heterochromatin structure is normal (Bourgo et al. 2009). Once recruited, 

chromatin remodelling facilitated by BRG1 would create a chromatin environment that 

favours cohesin loading or establishment.  
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Alternatively, the bromodomains of BAF180 might bind to other non-histone 

acetyl-lysine residues. Possible candidates include lysines K105 and K106 in SMC3, 

perhaps acetylated specifically by ESCO2. In this scenario, a certain BAF180 

bromodomain or pair of bromodomains would bind to these acetylated residues. The 

remaining bromodomains might simultaneously bind to acetylated lysines present on 

histones. Thus, BAF180 would serve to bridge chromatin and cohesin together. 

Rigorous testing to identify the true binding targets of the BAF180 bromodomains is 

crucial for understanding how the protein might function mechanistically.  

BAF180 does not exert its effect on cohesion through transcriptional regulation 

It is currently thought that SWI/SNF subunits exert their tumour suppressor activity by 

regulating the transcription of tumour suppressor genes. In this study we made the 

novel and important finding that BAF180 has a direct structural role in promoting 

cohesion independently of transcriptional regulation. Whole-cell levels of the core 

cohesin subunits and the regulatory SA proteins were not grossly reduced in the 

mESCs lacking BAF180. Similarly, there were no significant reductions in the mRNA 

levels of these subunits in BAF180-depleted 1BR-hTERT cells and U2OS cells. In fact, 

we observed increased SMC3, SA1 and RAD21 mRNA levels in the U2OS cells stably 

depleted of BAF180. This was particularly striking for RAD21, which displayed a 3-fold 

increase in transcript levels compared to control cells. Interestingly, a recent report 

showed that RAD21 is particularly sensitive to depletion of other cohesin subunits in 

human cells (Kong et al. 2014). This adds support to our findings that BAF180 is an 

important protein involved in cohesion, and suggests that BAF180 functions closely 

with other cohesin subunits. The transcriptional upregulation of cohesin subunits in 

BAF180-depleted cells might represent a compensatory mechanism in response to 

impaired cohesion.  

Evidence for tissue-specific roles of BAF180 in controlling p21 transcription 

We found that the U2OS cells stably depleted of BAF180 displayed a clear defect in 

centromeric cohesion that was independent of p21 mitotic activity. Depletion of BAF180 

in these cells led to increased rather than decreased basal and induced p21 

expression. This is in contrast to our data from BAF180-depelted 1BR-hTERT cells, 

and previous studies using primary BJ fibroblasts and breast cancer cells, in which 

BAF180 depletion results in reduced p21 expression (Xia et al. 2008, Burrows et al. 

2010). Interestingly, microarray data from the report by Varela et al. did not identify p21 
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as being significantly misregulated following BAF180 depletion in 3 BAF180-positive 

renal cell carcinomas (Varela et al. 2011). In fact, the gene encoding p21, CDKN1A, 

did not even appear in the top 250 misregulated genes. This further supports the idea 

of tissue-dependent regulation of p21 transcription by BAF180. Whilst this might be a 

phenomenon specific to transformed cells, it would be interesting to more 

comprehensively analyse p21 transcription in other cell types. It would be especially 

interesting to determine the effect of BAF180 depletion on p21 transcription in non-

transformed renal cells. Exome sequencing has shown that this cell type appears to be 

particularly prone to transformation following BAF180 mutational inactivation. This 

might shed light on the actual importance of BAF180-dependent p21 transcription in 

tumourigenesis. Intriguingly, p21 -/- null mice do not show increased aneuploidy or 

chromatid breaks compared to wild-type cells, but p21 -/- ATM -/- mice exhibit more 

aneuploidy and chromatid breakage than ATM -/- cells (Shen et al. 2005). This 

suggests that p21 is able to enhance aneuploidy in a genome instability background, 

and that the aneuploidy we observe in BAF180 -/- cells cannot be due to defective p21 

activity alone. We propose that the defect in cohesion provides the genome instability 

necessary to drive aneuploidy, perhaps in cooperation with impaired p21 activity in the 

BAF180 -/- cells (Figure 4.14).  

Loss of BAF180 impairs mitotic fidelity and leads to aneuploidy and micronuclei 

Compromised centromeric cohesion impairs mitotic fidelity, most likely by increasing 

the chance of merotelic microtubule-kinetochore attachment (Compton et al. 2011). 

The most frequent consequence of merotelic attachment in anaphase is a lagging 

chromosome. Other abnormal anaphase events such as anaphase bridges have also 

been reported in cells lacking centromeric cohesin components (e.g. Solomon et al. 

2011). We observed a modest but statistically significant increase in the frequency of 

abnormal mitotic events in BAF180 -/- mESCs compared to wild-type cells. This is 

consistent with a centromeric cohesion defect and the associated increase in 

chromosome missegregation. In addition, a modest but significant increase in the 

frequency of spontaneously arising micronuclei was observed in BAF180 -/- mESCs, 

1BR-hTERTs depleted of BAF180 using siRNA, and U2OS cells stably depleted of 

BAF180 using shRNA. Micronuclei are thought to arise from missegregation of whole 

chromosomes or chromosomal fragments. Recently, chromosomal DNA contained in 

micronuclei from lagging chromosomes was found to replicative defectively, generating 

DNA damage, extensive chromosome fragmentation and rearrangements (Crasta et al. 

2012). Importantly, the damaged chromosomal material inside the micronucleus was 
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able to re-integrate into the genome. Therefore, the increased micronuclei observed in 

BAF180-deficient cells could contribute to further genome instability (Figure 4.14).  

Strikingly, we found that the BAF180 -/- mESCs were aneuploid, with a modal 

gain of two chromosomes compared to wild-type cells. Because we did not generate 

the BAF180 -/- mESCs, we do not know exactly how and over what timescale this 

aneuploidy developed. However, because the population of cells as a whole had this 

aneuploidy it suggests that it occurred early and conferred a selective advantage. We 

also do not know whether all of the BAF180 -/- aneuploid cells have gained the same 

two chromosomes. Nevertheless, the gain of a small number of chromosomes is very 

similar to the pattern of aneuploidy observed following SA2 depletion in several cell 

types. Knockout of SA2 in a colorectal cell line resulted in a modal gain of 1 

chromosome (Solomon et al. 2011), and shRNA-mediated depletion of SA2 in an 

urothelial carcinoma cell line similarly led to a modal gain of 1 chromosome (Solomon 

et al. 2013).  

The pattern of aneuploidy in BAF180 -/- mESCs is reminiscent of the hyperdiploid 

karyotype found in a subset of ccRCCs 

Concurrent loss of PBRM1, VHL and SETD2 appears to be the major driving 

mechanism for clear cell renal cell carcinoma (ccRCC) development (Varela et al. 

2011). Loss of VHL leads to HIF accumulation and activation of hypoxia-inducible 

target genes under normal conditions. SETD2 is a methyltransferase that specifically 

methylates H3K36, which is associated with active transcription. All three of these 

genes reside on chromosome 3p21, and multiple ccRCCs harbour mutations in all 

three genes, indicating that they provide non-redundant functions. The physical linkage 

and likely interaction of these genes is thought to be the key driver for the very frequent 

3p LOH observed in ccRCCs (Varela et al. 2011). Indeed, loss of chromosome 3 or 3p 

is observed in 80-98% of sporadic ccRCCs (Kovacs 1993, Gunawan et al. 2001, H 
öglund et al. 2004).  

Subsequent ccRCC progression occurs via at least two distinct genetic 

pathways that are characterized by a specific pattern of aneuploidy (Höglund et al. 

2004). The first pathway (80% of ccRCCs) involves losses of whole chromosomes and 

partial chromosomes through unbalanced translocations to result in a hypodiploid 

karyotype. Chromosome 3p is often lost in an unbalanced translocation between 

chromosomes 3 and 5 in this pathway. Interestingly, we found that BAF180 -/- cells 

treated with MMC rapidly lose chromosomes in a manner reminiscent of this 

aneuploidy route. The second pathway (18% of ccRCCs) involves gains of whole 
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chromosomes (commonly chromosomes 7 (18-30%), 16 (11%), 20 (10%), 12 (10-

15%), and 2 (9-14%)) to produce a hyperdiploid karyotype. This is very similar to the 

hyperdiploid karyotype of BAF180 -/- mESCs, which have a modal gain of two 

chromosomes. It would be very interesting to identify the actual chromosomes gained 

in these cells, and compare them with those frequently gained in this pathway of 

ccRCC development. It would also be of interest to see if these cells have 3p LOH. 

Altogether, our findings strongly suggest that loss of BAF180 alone is sufficient for the 

development of aneuploidy in mESCs. Furthermore, the patterns of aneuploidy 

observed in the BAF180 -/- mESCs is very similar to the two common patterns of 

aneuploidy in ccRCC, suggesting that BAF180 loss alone might be sufficient for 

causing aneuploidy in ccRCC.  

Evidence for a role of BAF180 in cohesin-dependent DNA repair via HR 

We found that the BAF180 -/- mESCs, 1BR-hTERT cells depleted of BAF180 using 

siRNA, and U2OS cells stably depleted of BAF180 using shRNA were hypersensitive 

to the DNA interstrand crosslinking agent MMC. The repair of an interstrand crosslink 

(ICL) is initiated when two replication forks converge on the lesion (Raschle et al. 

2008). The leading strands extend to the crosslink before it is cleaved from one sister 

strand by dual incisions made by the structure specific endonucleases factors XPF and 

Mus81. This uncouples the sister strands and generates a DSB. TLS across the 

adducted lesion initiates extension of the nascent strand beyond the lesion. Ultimately, 

the adducted lesion is removed by NER and RAD51-depedent HR repair of the DSB 

(Raschle et al. 2008, Long et al. 2011).  

Therefore, sensitivity to MMC could potentially reflect a role for BAF180 in any 

of these steps. There have been no reports describing a role for BAF180 or its budding 

yeast homologues in promoting endonuclease activity or TLS. In contrast, several 

studies have reported defects in HR-dependent DNA repair in the budding yeast 

BAF180 homologues Rsc1 and Rsc2 (Chai et al. 2005, Oum et al. 2012). In addition, 

the defective sister chromatid HR in rsc2 cells at DSBs was due to impaired 

accumulation of DSB-induced cohesin at the DSB site (Oum et al. 2012). Although we 

did not directly explore the role of BAF180 in HR using a specific HR assay, we found 

that BAF180 is important for promoting cohesion. Therefore it seems most likely that 

the role of BAF180 in maintaining viability after MMC stems from a function in cohesin-

dependent HR. In addition, very recent reports also suggest that members of the 

centromere-specific cohesion pathway, including PDS5B and SA2, are involved in 

promoting the enrichment of cohesin at DNA DSBs (Brough et al. 2012, Carretero et al. 
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2013, Kong et al. 2014). Thus, BAF180 might cooperate with these centromere-specific 

cohesion factors to facilitate cohesin-dependent HR.  

Sensitivity to DNA damage can also result from impaired DNA damage 

checkpoint activity. We rigorously tested the ability of rsc1 and rsc2 null strains to enact 

G1 and G2/M DNA damage checkpoint activation in response to MMS in the previous 

chapter, and found that both strains were able to activate these checkpoints. Depletion 

of BRG1 did not lead to G2/M or intra-S checkpoint defects in response to IR or 

adriamycin (Park et al. 2006). Similarly, depletion of SNF5 did not cause checkpoint 

defects in response to UV (Ray et al. 2009) or IR (McKenna et al. 2008). Collectively, 

data from the BAF180 homologues in yeast and other subunits of the PBAF complex 

suggest that BAF180 is unlikely to function in checkpoint activation in response to 

various DNA lesions. However, BRG1 depletion did lead to a defect in the intra-S 

checkpoint specifically after treatment with cisplatin (Park et al. 2006). Therefore we 

cannot entirely rule out the possibility that BAF180 also has a role in intra-S checkpoint 

activity in response to certain types of lesion, and that this might underlie the MMC 

sensitivity seen in BAF180-depleted cells. Intriguingly, a currently held idea is that a 

major function of the intra-S checkpoint is to protect replication forks from inappropriate 

recombination (Labib & De Piccoli 2011). Because cohesin is important for preventing 

inappropriate recombination, a role for BAF180 in the intra-S checkpoint might actually 

stem from its role in cohesion.  

We also found that mESCs lacking BAF180 showed statistically increased 

frequencies of structural chromosome chromosome aberrations after treatment with 

MMC. Treatment with MMC also led to significantly increased chromatid and 

chromosome breaks in BAF180-depleted U2OS cells, and a striking increase in 

micronuclei after MMC treatment in both cells types. Furthermore, BAF180 -/- mESCs 

rapidly exhibited further dynamic aneuploidy after MMC treatment. These phenotypes 

are consistent with the increased MMC sensitivity of these cells, and likely reflect a 

defect in cohesin-dependent DNA repair by HR. Moreover, a role for BAF180 in HR-

dependent DNA repair is likely to represent a novel tumour suppressor function. Such a 

role could underlie the initiating LOH at 3p observed in PBRM1-mutated ccRCCs 

(Figure 4.14).  
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CHAPTER 5: MUTATIONS IDENTIFIED IN BAF180 FROM 
CANCER SAMPLES IMPAIR COHESIN-DEPENDENT 
FUNCTIONS IN YEAST AND MAMMALS 

5.1. Results 

Introduction 

Whilst the vast majority of mutations found in BAF180 from various cancer types result 

in a truncated protein product, a number of in-frame deletions and missense mutations 

that might not result in complete loss of protein have been identified. Intriguingly, 9 out 

of 11 missense mutations in a cohort of renal cell carcinomas occurred in the 

bromodomains or BAH domains. Out of an additional 6 homozygous missense 

mutations subsequently identified from a range of different cancer types, 4 of these 

occurred in the bromodomains, and one occurred in the second BAH domain (Varela et 

al. 2011). Thus, these mutations might not only provide crucial insight into the roles of 

BAF180 in tumourigenesis but also the specific roles of these domains. In the previous 

chapter we identified and characterized a novel role of BAF180 in promoting 

centromeric sister chromatid cohesion, which likely represents an important tumour 

suppressor function. BAF180 has also been ascribed with several other tumour 

suppressor functions that relate to transcriptional regulation. However, the importance 

of this activity in tumourigenesis has not been demonstrated. In this section we 

analysed the effects of a set of conserved missense mutations identified in renal cell 

carcinomas, expressed in both yeast and human cells. By measuring the impact of 

these mutations on distinct transcription- and cohesion-related processes we might 

gain insight into the importance of each in tumour suppression.  

Predicted consequences of cancer associated BAF180 missense mutations on 

BAF180 folding and stability  

Of the 9 missense mutations identified in the cohort of renal cell carcinomas 3 were 

previously assessed for having a functional impact using a scoring system calibrated 

with protein domain alignments from Pfam (Varela et al. 2011). All three of these 

mutations (T232P in BD2, A597D in BD4 and H1204P in BAH2) were predicted to be 

deleterious, with a significantly lower mean score than a randomly generated set of in 

silico missense mutations occurring in scorable parts of the gene (Varela et al. 2011). 
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We extended this analysis to predict the effects of all the bromodomain and BAH 

domain missense mutations on the stability of full-length BAF180 using a combination 

of techniques. These included manual inspection of structures, amino acid sequence 

threading (Kelley & Sternberg 2009), and use of the publicly available webserver ‘Site 

Directed Mutator’ (Worth et al. 2011). Of the 10 missense mutations occurring in the 

bromodomains, 7 were predicted to be slightly destabilizing or highly destabilizing, 

consistent with a functionally inactivating impact on BAF180 (Brownlee et al. 2012). 

Potentially more interesting are the 3 bromodomain mutations that were predicted to be 

neutral in terms of BAF180 folding and stability. These included M523I and R540S in 

BD4, and F840L in BD6. Intriguingly, the R540S mutation is located in the acetyl-

lysine-binding ZA loop of the bromodomain. Thus, mutation of this residue might affect 

the acetyl-lysine binding affinity or substrate specificity of this bromodomain (Brownlee 

et al. 2012).  

Cancer associated mutations of BAF180 are conserved in the yeast homologues 

For further analysis we focused on 3 of these BAF180 missense cancer mutations that 

had different predicted effects on the stability of full length BAF180, and were 

conserved in the homologous S. cerevisiae RSC proteins (Table 5.1). The first 

mutation, T232P, occurs in the αA helix of BAF180 BD2 and is equivalent to T67P in 

BD1 of Rsc2 (Fig. 5.1A and B). This mutation was predicted to be slightly destabilizing 

in the context of full-length BAF180 (Table 5.1). The second mutation, M523I (M538I in 

BAF180 isoform 8; used herein), occurs in the αZ helix of BAF180 BD4 and 

corresponds to M280I in BD2 of Rsc2 (Fig. 5.1A and B). This mutation was predicted to 

be neutral in terms of BAF180 stability (Table 5.1). The third mutation, H1204P, resides 

in BAH2 of BAF180 and corresponds to H458P in the BAH domain of Rsc2 (Fig 5.1A 

and C). This mutation was predicted to have a destabilizing effect when expressed in 

BAF180 (Table 5.1).  
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Two of these mutations (T232P and H1204P) were also conserved in Rsc1 (Figure 

5.1B and C). However, Rsc2 has a greater effect on DNA damage responses and 

cohesion (Chambers et al. 2013, Baetz et al. 2004, see also Chapter 3), so we created 

the equivalent mutations solely in the conserved residues of Rsc2 using site-directed 

mutagenesis. We first analysed the effect of these mutations on Rsc2 protein stability. 

Wild-type and mutant Rsc2 myc-tagged expression constructs were transformed into 

rsc2 null yeast and Western blotting was performed on whole-cell extracts. The Rsc2-

T67P mutation slightly reduces protein levels, consistent with a slightly destabilizing 

effect as predicted by the SDM analysis (Figure. 5.1D). Interestingly, expression of the 

Rsc2-M280I mutation appears to result in slightly higher levels of Rsc2 compared to 

wild-type, suggesting that it might be a stabilizing mutation (Figure. 5.1D). Levels of 

Rsc2 expression were severely reduced when the Rsc2-H458P mutation was 

expressed, consistent with a highly destabilizing effect (Figure. 5.1D).  

BAF180 missense cancer mutations expressed in yeast do not compromise a 

transcription-related subset of Rsc2 functions 

Cells lacking RSC2 are hypersensitive to a number of agents that cause DNA damage, 

replication stress, and microtubule destabilization, reflecting the widespread roles of 

the protein in DNA repair, replication and mitotic spindle function. rsc2 null cells are 

also temperature sensitive and hypersensitive to DMSO, which likely reflects 

transcriptional misregulation of cell wall biosynthesis genes (Angus-Hill et al. 2001). To 

determine whether BAF180 cancer mutations impair the ability of Rsc2 to regulate 

transcriptional activity we performed spot tests with DMSO. The Rsc2-H458P mutation 

severely sensitizes cells to both agents to levels comparable to the rsc2 null, consistent 

Table 5.1. Analysis of cancer-associated in-frame missense mutations found in PBRM1
COSMIC Mutation Secondary BAF180 Predicted Rsc2 Rsc2 Comments

structure domain effect of residue domain
element mutation*

52807 T232P αA BD2 Slightly T67P BD1 Mutation is likely to disrupt
destabilizing1 αA helix and protein fold

52844 M538I αZ BD4 Neutral2 M280I BD2 Mutation places a hydrophobic
residue into solvent, likely to be
tolerated in terms of protein stability

52780 H1204P BAH2 Highly H458P BAH Mutation occurs in hydrophobic core 
destabilizing2 of BAH domain, likely to affect/disrupt

protein fold
*SDM analysis
1PDB code 3LJW (Charlop-Powers et al. 2011) 
2Phyre model
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Figure 5.1. Conservation and expression of BAF180 renal cell carcinoma 
missense mutations in yeast Rsc2. (A) Illustration of domain organization and 
relative position of cancer-associated mutations in Rsc2 and BAF180. BDs and 
BAH domains are numbers sequentially. (B) Pileup of all six bromodomains of 
BAF180 with the bromodomains of Rsc1 and Rsc2. The cancer associated 
mutations of BAF180 are indicated (M523 corresponds to M538 of BAF180 
isoform 8, used in our assays). (C) Pileup of the two BAH domains of BAF180 
with the BAH domains from Rsc1 and Rsc2. The cancer associated H1204P 
mutation is indicated. (D) Analysis of WT and mutant Rsc2 expression levels in 
total protein preparations by Western blotting. Loading control: H2A 
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with greatly reduced protein levels (Figure. 5.2A). Neither the Rsc2-T67P nor the Rsc2-

M280I mutations had any obvious sensitizing effect on DMSO, suggesting that these 

mutations are at least partly functional in vivo (Figure. 5.2A). To quantify these 

observations, we next performed survival assays with DMSO. We found that 

expression of the Rsc2-T67P and Rsc2-M280I mutations did not cause a significant 

decrease in survival on DMSO, whilst the Rsc2-H458P significantly reduced survival 

(Figure. 5.2B).  

We also quantified the levels of survival of the mutant Rsc2 plasmids at the 

non-permissive temperature of 37°C, which may reflect Rsc2-dependent transcriptional 

activity, and found that neither the Rsc2-T67P or Rsc2-M280I mutations led to reduced 

survival (Figure 5.2C). In contrast, the Rsc2-H458P mutation actually led to a more 

severe growth defect at 37°C compared to the rsc2 strain carrying an empty vector. 

This suggests that this mutation might have a dominant-negative effect in this context. 

Rsc2 facilitates the transcriptional activation and repression of many genes, including 

genes involved in nitrogen and carbon metabolism (Du et al. 1998, Angus-Hill et al. 

2001). Next, we assessed the ability of the cancer-associated mutations to repress the 

Rsc2-dependent transcription of the high-affinity glucose transporter gene HXT7. Using 

RT-qPCR we found that the rsc2 strain carrying the wild-type Rsc2 plasmid significantly 

reduced HXT7 transcript levels as expected (Figure 5.2D). Both the Rsc2-T67P and 

Rsc2-M280I mutant plasmids were also able to repress HXT7 transcription to the same 

level as wild-type, whilst the H458P mutation showed levels comparable to the empty-

vector cells (Figure 5.2D). Collectively, these results suggest that two of the cancer-

associated mutations do not compromise a transcription-related subset of Rsc2 

functions in vivo.   

BAF180 missense cancer mutations expressed in yeast result in impaired cohesin-

dependent Rsc2 functions 

In contrast to the results obtained with DMSO, the Rsc2-T67P mutation reproducibly 

appeared to slightly sensitize cells to MMS, whilst the M280I reproducibly seemed to 

exhibit slight MMS resistance compared to wild-type (Figure. 5.3A). We found that 

these changes in survival in response to MMS were statistically significant when 

quantified using survival assays (Figure 5.3B). Although the MMS resistance in the 

Rsc2-M280I construct was unexpected, these results suggest that both the T67P and 

M280I cancer mutations affect the function of Rsc2 in the response to MMS-induced 

DNA damage. In the previous section we showed that cells lacking RSC2 display 

elevated rates of marker loss by unequal sister chromatid exchange and direct-repeat 
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Figure 5.2. BAF180 missense cancer mutations expressed in yeast do not 
compromise a transcription-related subset of Rsc2 functions (A) Serial 
dilutions of mid-log cultures of rsc2 cells containing the indicated Rsc2 expression 
constructs were plated onto YPAD media with and without DMSO. (B) 
Hypersensitivity to DMSO as a readout of Rsc2-dependent transcriptional activity 
was quantified by plating serial dilutions of the indicated mid-log cultures from (A) 
onto YPAD media with or without 2% DMSO. (C) Hypersensitivity to 37°C (ts 
phenotype) was analysed by plating serial dilutions of the indicated mid-log 
cultures onto YPAD media and incubating at 30°C or 37°C. Wild-type survival 
levels are set to 100% and mutant strains are shown relative to wild-type. Data 
are means ± s.d., n=3; statistical significance was indicated as *P < 0.05, **P < 
0.01, ***P < 0.001, unpaired two-tailed t test. (D) Quantitative RT-PCR analysis of 
HXT7 transcription in rsc2 cells transformed with the indicated plasmids.   
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recombination (see Chapter 3). This reflects decreased DNA repeat stability and is 

characteristic of cells with compromised cohesion (Huang et al. 2006, Smith & 

Rothstein 1999). Importantly, misregulation of homologous recombination pathways 

because of defective cohesion might be responsible for genomic instability, which is 

associated with tumourigenesis (Xu et al. 2011). We therefore tested the cancer-

associated mutations using the unequal sister chromatid exchange assay. Strikingly, 

ADE2 marker loss at the rDNA was significantly higher than wild-type when all three of 

the mutations were expressed (Figure 5.3C). This suggests that these mutations impair 

the ability of Rsc2 to repress spontaneous recombination at the rDNA repeats. In 

addition, none of the cancer-associated mutations were able to fully complement the 

growth defect associated with rsc2 null cells (Figure 5.3D). This growth defect might 

reflect the known defects in cohesion and chromosome segregation in cells lacking 

RSC2. Collectively, these data are consistent with the idea that some cancer-

associated mutations do not compromise all functions of Rsc2, but do compromise the 

cohesion-related functions of Rsc2 and result in genome instability (Brownlee et al. 

2014). 

BAF180 missense cancer mutations expressed in human cells result in defective 

centromeric cohesion 

We next sought to determine whether these cancer mutations have an effect on 

centromeric sister chromatid cohesion in mammalian cells, as shown in cells lacking 

BAF180 in the previous chapter. Because expression of the H458P mutation (H1204P 

in BAF180) in Rsc2 severely reduced protein levels, we chose not to include it and 

concentrated on the two mutations that were expressed at reasonable levels. We first 

created siRNA resistant wild-type EGFP-tagged BAF180 construct and constructs 

containing either the T232P or M538I mutations. We next depleted BAF180 using 

siRNA in U2OS cells, synchronised the cells in G2 using double thymidine block, and 

transiently transfected with -EGFP, wild-type BAF180-EGFP, T232P BAF180-EGFP or 

M538I BAF180-EGFP constructs (Figure. 5.4A). BAF180 depletion by siRNA was 

confirmed by Western blotting (Figure. 5.4B). We found that expression of the mutants 

was comparable to that of the wild-type construct, as measured by quantifying GFP 

immunofluorescence (Figures 5.4C and 5.5C). Successful synchronization in G2 was 

confirmed by immunostaining for CENPF, a marker for G2 (Figure. 5.4D).  

Cells were immunostained for GFP and probed using the same FISH probe as 

in Chapter 4 (Figure. 4.2B), directed against the centromeric region of chromosome 10. 

As expected, the siBAF180 cells transfected with the -EGFP construct displayed a 
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Figure 5.3. BAF180 missense cancer mutations expressed in yeast result in 
impaired cohesin-dependent Rsc2 functions (A) Serial dilutions of mid-log 
cultures of rsc2 cells containing the indicated Rsc2 expression constructs were 
plated onto YPAD media with and without 0.015% MMS. (B) Hypersensitivity to 
MMS was quantified by plating serial dilutions of the indicated mid-log cultures from 
(A) onto YPAD media with or without 0.02% MMS. (C) Frequency of unequal rDNA 
crossover events in rsc2 yeast strains containing the indicated Rsc2 expression 
construct. Data are means ± s.d., n=3; statistical significance was indicated as *P < 
0.05, **P < 0.01, ***P < 0.001, unpaired two-tailed t test. (D) Growth curves of rsc2 
yeast strains containing the indicated Rsc2 expression construct.   

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 1 2 3 4 5 6 7 8 9 

O
D

 6
00

nm
 

Time (h) 

WT 
EV 
T67P 
M280I 
H458P 

rsc2 + 

rsc2 + rsc2 + 

170



siRNA treatment 

Thymidine 

17hr 19hr 
Release 

9hr 

Thymidine 

17hr 

Transfection 

5hr 
Release 

8hr 
Fixation 

A 

B 

siControl 
+pEGFP 

siBAF180 
+pEGFP 

siBAF180 
+pEGFP-BAF180R 

siBAF180 
+pEGFP-BAF180R 

-T232P 

siBAF180 
+pEGFP-BAF180R 

-M538I 

CENPF 

DAPI 

83.8 % CENPF 83.4 77.9 82.0 83.3 

D 

Figure 5.4. Complementation of BAF180-depleted U2OS cells with BAF180 
missense cancer mutations. (A) Schematic of protocol used to deplete BAF180 
using siRNA, transfect with –pEGFP or –pEGFP-BAF180R expression plasmids 
and synchronize cells in G2. (B) Analysis of BAF180 depletion efficiency in U2OS 
cells by Western blotting. α-tubulin was used as a loading control. (C) Expression 
of –pEGFP and pEGFP-BAF180R constructs in siBAF180 U2OS cells. Cells were 
treated as in (A) and processed for IF-FISH using a probe directed against the 
centromere of chromosome 10. IF using anti-GFP antibody shows GFP or GFP-
BAF180 in the red channel. (D) Cells treated as in (A) were immunostained with 
CENPF as a marker of G2 and % CENPF-positive cells is shown underneath 
images.  

C 

A B

C D

Rsc2

BAF180
T232P M523I (M538I) H1204P

H458PT67P M280I

anti-H2A

anti-myc

E
V

 (u
nt

ag
ge

d)

pR
sc

2-
m

yc
∆

rs
c2

 s
tra

in
 +

pR
sc

2-
H

45
8P

-m
yc

pR
sc

2-
T6

7P
-m

yc

pR
sc

2-
M

28
0I

-m
yc

BD1 BD2 BAH

BD2 BD3BD1 BD4 BD5 BD6 BAH1 BAH2

∆rsc2 strain + WT EV

%
 m

ar
ke

r l
os

s

0.30

0.25

0.20

0.15

0.05

0

0.10

E

BAF180

α tubulin

si
C

on
tro

l

si
B

A
F1

80

G

Frequency of unequal crossover in rDNA

<0
.1 

0.1
-0.

2 

0.2
-0.

3 

0.3
-0.

4 

0.4
-0.

5 

0.5
-0.

6 

0.6
-0.

7 

0.7
-0.

8 

0.8
-0.

9 

0.9
-1.

0 

1.0
-1.

1 

1.1
-1.

2 

1.2
-1.

3 
>1

.5 

Distance between centromeres (μm)

%
 c

el
ls

 

25

20

10

15

5

0

siBAF180 + GFP-BAF180

siControl + GFP

siBAF180 + GFP

siBAF180 + GFP-BAF180-M538I
siBAF180 + GFP-BAF180-T232P

1.3
-1.

4 

1.4
-1.

5 

* *

*

***

F

C
um

ul
at

iv
e 

fra
ct

io
n 

of
 c

el
ls

 

H 1.2

1.0

0.8

0.6

0.4

0.2

0

siBAF180 + GFP-BAF180
siControl + GFP

siBAF180 + GFP

siBAF180 + GFP-BAF180-M538I
siBAF180 + GFP-BAF180-T232P

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Distance between centromeres ( m)μ

0 

20 

40 

60 

80 

100 

120 

∆rsc2 strain +

%
 s

ur
vi

va
l i

n 
2%

 D
M

S
O

WT EV T67P M280I H458P

*** ***

NS NS

H458PM280IT67P

siControl
+ GFP

siBAF180
+ GFP

siBAF180
+ GFP-BAF180

siBAF180
+ GFP-T232P

siBAF180
+ GFP-M538I

GFP

DAPI

GFP 

DAPI 

siControl 
+pEGFP 

siBAF180 
+pEGFP 

siBAF180 
+pEGFP 

-BAF180R 

siBAF180 
+pEGFP 

-BAF180R-T232P 
 

siBAF180 
+pEGFP- 

BAF180R-M538I 
 

BAF180 

α-tubulin 



significant increase in the distribution of distances between the two signals from the 

sister chromatids compared to siControl cells (Figure 5.5A; compare green and black 

bars, and B). Importantly, siBAF180-treated cells transfected with the wild-type 

BAF180-EGFP construct showed clear rescue of the cohesion defect to levels very 

similar to the siControl cells transfected with the -EGFP construct (Figure 5.5A; 

compare grey and black bars, and B). Strikingly, both the T232P BAF180-EGFP and 

M538I BAF180-EGFP constructs are unable to even partially rescue the cohesion 

defect, showing distributions of distances between signals comparable to the siBAF180 

cells transfected with -GFP (Figure 5.5A; compare green, red and blue bars, and B). 

Interestingly, the T232P BAF180-GFP construct actually appeared to show a greater 

defect than the –GFP construct in siBAF180-depleted cells (Figure 5.5A; compare red 

and green bars, and B). These data indicate that both the T232P and M538I cancer 

mutations completely impair the ability of BAF180 to promote centromeric sister 

chromatid cohesion. Furthermore, this strongly suggests that this function of BAF180 is 

important in tumour suppression.  

5.2. Discussion 

In this section we analysed the effects of three conserved BAF180 missense mutations 

identified in ccRCCs, expressed in the budding yeast Rsc2 homologue and in human 

cells. This study is the first to our knowledge that has explored the cellular 

consequences of BAF180 cancer mutations. We found that Rsc2 protein levels 

correlated well with the predicted effects of these mutations on BAF180 stability. 

Interestingly, we showed that the two mutations that maintained relatively high Rsc2 

protein levels did not compromise a subset of Rsc2-dependent phenotypes, including 

regulation of transcriptional activity. In contrast, these mutations consistently impaired 

or altered the activity of Rsc2 in processes relating to cohesion. This provides strong 

evidence that these cancer-associated mutations impair a subset of Rsc2-depedent 

activities that relates specifically to cohesion. Furthermore, we showed that expression 

of these two cancer mutations in human cells completely impairs the ability of BAF180 

to promote centromeric sister chromatid cohesion, identifying a novel, cancer-relevant 

tumour suppressor function.   

BAF180 missense cancer mutations expressed in yeast do not impair Rsc2-dependent 

transcriptional activity  
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Figure 5.5. BAF180 missense mutations expressed in human cells result in a 
defect in centromeric cohesion. (A) FISH analysis of G2 phase U2OS cells 
transfected with the indicated BAF180 expression construct using a probe 
directed against the centromere of chromosome 10. The distances between the 
signals between sister chromatids was measured and the distribution of 
measurements was plotted as a histogram. (B) The data in (A) are presented as a 
cumulative plot to further illustrate the defect in cohesion in cells transfected with 
cancer-associated mutants. Statistical analysis of the data presented in (A) and 
(B) showed that rescue of the cohesion defect by reintroduction of WT BAF180 
(siBAF180 + GFP-BAF180) was significant (P < 0.001, Kolmogorov-Smirnov test). 
In contrast, centromeric cohesion in cells expressing the cancer mutants was not 
significantly different from that in BAF180-depleted cells containing empty vector 
(siBAF180 + GFP; P = 0.06 for T232P and P = 0.37 for M538I), but was 
significantly different from that in cells with WT BAF180 reintroduced (P < 0.001 
for both mutants compared with WT)  
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We showed that the T67P and M280I mutations expressed in Rsc2 did not sensitise 

cells to DMSO or non-permissive temperature, and did not impair the ability of Rsc2 to 

repress transcription of the HXT7 gene. These results strongly suggest that these 

mutations do not impair a transcriptional subset of Rsc2-related functions. This has 

very important implications for the role of BAF180 as a tumour suppressor, because 

BAF180 (and other SWI/SNF subunits) are widely believed to exert their tumour 

suppressor activity through transcriptional regulation. Taken with our other 

observations that p21 transcription does not appear to be strictly controlled by BAF180 

in all cell types, these data argue for additional, more important roles of BAF180 in 

tumour suppression. Evidence from another study examining the effect of SWI/SNF 

cancer-associated mutations supports the idea that additional functions of SWI/SNF 

exist in tumour suppression. The study by Vries et al. showed that a selection of 

cancer-derived SNF5 mutations were able to initiate p16INK4A-depedent G1 arrest, 

senescence and apoptosis (Vries et al. 2005). Therefore, other processes other than 

transcriptional regulation of proliferation might underlie the cancer association of these 

mutations.  

BAF180 missense cancer mutations have different effects on protein stability but 

completely impair cohesion in mammalian cells 

The T67P mutation expressed in budding yeast Rsc2 destabilized the protein, 

suggesting that limiting amounts of BAF180 in human cells might underlie its 

tumourigenic effect. In support of this idea, the majority of BAF180 mutations in various 

cancers result in a truncated protein product. However, we found that when this 

mutation was overexpressed in human cells, in which protein levels were comparable 

to wild-type BAF180-expressing cells, the T232P mutation completely impaired the 

ability of BAF180 to restore centromere cohesion. In addition, the rate of unequal sister 

chromatid exchange when this mutation was expressed in Rsc2 was very similar to 

rsc2 null cells. These findings suggest that the T232 residue and BD2 of BAF180 are 

critically important for cohesion, and that changes in protein levels are perhaps a 

secondary consequence of its mutation to proline. The T232 residue occurs in the αA 

helix of BD2, and therefore might be directly involved in acetyl-lysine binding or 

regulating the architecture of this bromodomain.  

Expression of the M538I mutation in BAF180 was also completely unable to 

rescue the cohesion defect, and expression of the equivalent M280I mutation in Rsc2 

led to a very similar increase in unequal sister chromatid exchange. This mutation 

resides in the αZ helix of BAF180 BD4 and did not compromise the stability of Rsc2. 
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Therefore this residue and BAF180 BD4 also appear to be critical for BAF180-

dependent cohesion. Although we did not examine the effect of the H1204P mutation 

on cohesion in human cells, we found that it increased levels of unequal sister 

chromatid exchange to rates comparable to rsc2 null cells and cells expressing T67P 

and M280I. Moreover, this mutation appeared to impair all functions of Rsc2 to levels 

comparable to an rsc2 null, which is consistent with its highly destabilizing effect. 

Therefore, we predict that expression of this mutation in human cells is also very likely 

to severely disrupt centromeric cohesion.  

Distinct effects of BAF180 missense cancer mutations suggest different functions for 

individual bromodomains  

Although the three BAF180 cancer mutations had very similar effects in some assays, 

they were also seen to behave very differently in others. Firstly, expression of the 

M280I mutation in Rsc2 reproducibly led to increased resistance to the alkylating agent 

MMS. Because this mutation appeared to slightly stabilize the Rsc2 protein, this 

resistance might simply represent limiting amounts of Rsc2 in wild-type cells. An 

alternative explanation comes from a report showing that whilst rad53 null cells rapidly 

lose viability after MMS, due to the inability to activate the DNA damage checkpoint, 

reduced levels of Rad53 results in resistance to MMS (Cordón-Preciado et al. 2006). 

An explanation follows that cells with reduced amounts of Rad53 are able to maintain 

fork stability, but cannot initiate an intra-S phase checkpoint (Cordón-Preciado et al. 

2006). The finding that the M280I mutation in Rsc2 has a similar effect suggests a 

previously undiscovered role for Rsc2 in the intra-S checkpoint. However, this 

possibility is difficult to reconcile with findings by us and from other labs showing that 

Rsc2 is not required for G1 or G2/M DNA damage checkpoint activation (See chapter 3, 

Chambers et al. 2012, Oum et al. 2011). Nevertheless, this does not necessarily rule 

out a specific function of Rsc2 in the intra-S checkpoint, which has not been specifically 
tested. The H548P mutation also behaved in a manner that was not entirely expected. 

Expression of this mutation, which led to a severe reduction in levels of Rsc2 protein, 

actually led to worse survival than the rsc2 null strain when grown at the non-

permissive temperature. This suggests that this mutation somehow functions in a 

dominant negative manner under certain conditions. Because haploid yeast was used 

in these assays (in which the only Rsc2 present is the mutant form), one possibility is 

that the small amount of Rsc2 expressing this mutation inhibits the activity of Rsc1. 

This is conceivable because rsc1 null cells are also temperature sensitive, but to a 

lesser extent than rsc2 cells (Oum et al. 2011). In addition, the BAH domains of Rsc1 
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and Rsc2 both bind to H3 (Chambers et al. 2013). Therefore, alteration of the structure 

of the Rsc2 BAH domain could conceivably interfere with the binding of the Rsc1 BAH 

domain to chromatin. Such an effect on the conserved BAF180 BAH domains is likely 

to further compromise the normal function of the protein and might have relevance in 

tumourigenesis.  
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CHAPTER 6: NOVEL HDAC INHIBITORS SENSITIZE CELLS 
LACKING BAF180 

6.1. Results 

Introduction 

The high-throughout screening technology known as heterozygote diploid-based 

synthetic lethality analysis with microarrays (dSLAM) is often used to identify 

synthetic lethal interactions in budding yeast. dSLAM essentially examines genome-

wide synthetic lethality using a query mutation, which is introduced into a large scale 

population of ~6000 haploid-convertible heterozygote diploid yeast knockout mutants 

via integrative transformation (Pan et al. 2007). The resulting heterozygous diploid 

double mutants are sporulated to generate single and double mutant haploid strains, 

which are examined for synthetic growth defects. Using this technique, Lin et al. 

examined 38 query genes involved in histone (de)acetylation, and identified synthetic 

lethal interactions between Rsc2 and components of the Hda1 and Rpd3 HDAC 

complexes (Lin et al. 2008). This finding promoted us to address whether loss of 

BAF180, which is the mammalian homologue of Rsc2, also results in synthetic 

lethality with loss of HDACs. Moreover, because BAF180 is frequently mutated in 

cancer, a conserved synthetic lethal interaction with HDAC loss could be exploited as 

a potential therapeutic strategy using HDAC inhibitors.  

BAF180 protein expression is lost or reduced in 50% of a panel of breast cancer cell 

lines 

It is now well established that BAF180 is an important tumour suppressor gene, given 

its frequency of mutation in cancer as described in previous sections. However, the 

full scale of BAF180 involvement in cancer is likely to be underappreciated because 

relatively few whole-exome sequencing studies have been performed. In order to 

further examine the involvement of BAF180 in cancer we screened a panel of 16 

breast cancer cells lines for BAF180 protein levels using Western blotting. Strikingly, 

we found that 8 out of 16 cell lines showed severely reduced or completely absent 

BAF180 expression (Figure 6.1). Intriguingly, two of the cell lines that have had their 

genomes fully sequenced and lacked BAF180 expression (red asterisks) did not 

contain mutations in PBRM1. These findings suggest that BAF180 expression might 
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Figure 6.1. BAF180 protein expression is lost or reduced at high frequency 
in breast cancer cells. Analysis of BAF180 expression in a panel of 16 breast 
cancer cell lines by Western blotting. α-tubulin was used as a loading control. Red 
asterisks indicate genome-sequenced cell lines that do not contain a mutation in 
the gene encoding BAF180 
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be lost at an unappreciated frequency via mechanisms other than mutation of the 

PBRM1 gene.  

Screening a panel of novel and commercially available HDAC inhibitors for synthetic 

lethality in BAF180 -/- mESCs 

Our observation that BAF180 expression can be lost via mutation-independent 

mechanisms suggests that BAF180 mutation spectrums underrepresent the true 

frequency of BAF180 loss in cancer. We realized that exploiting BAF180 loss could 

provide an important means to develop treatments for BAF180-deficient cancers. 

Because Rsc2 is synthetic lethal with HDACs in budding yeast, and HDAC inhibitors 

are a very promising class of small molecules for cancer therapy, we set out to test 

whether HDAC inhibitors would specifically sensitize mammalian cells lacking 

BAF180.  

We first procured a panel of 7 commercially available and 10 novel HDAC inhibitors, 

the latter of which were synthesized by the John Spencer lab. The novel HDAC 

inhibitors are structurally similar to SAHA, which consists of an aryl cap, a flexible 

linker and a zinc-binding motif (Figure 6.2A). Originally these compounds were 

synthesized using ‘click’ chemistry, which alters the zinc-binding motif and the 

conformational restriction of the linker region (Spencer et al. 2012). The resulting set 

of structurally distinct HDAC inhibitors display varied entropy upon enzyme binding, 

altered enzyme selectivity, and pharmacokinetics (Spencer et al. 2012). An example 

of the chemical structure of two ferrocene-based HDAC inhibitors, JAHA and JA125, 

which were produced using SAHA ‘click’ chemistry, are shown in Figure 6.2A.  

Next, we performed viability assays on wild type (+/+) and BAF180 knockout 

(-/-) mESCs using these 17 HDAC inhibitors. The full list of HDAC inhibitors is shown 

in Table 6.3. The BAF180 -/- cells were no more sensitive to SAHA than the wild-type 

cells (Figure 6.2B). The ferrocene-based SAHA analogue JAHA also did not lead to 

increased sensitivity in the BAF180 -/- cells. In contrast, JA125 reproducibly led to 

substantially reduced viability in the BAF180 -/- cells compared to WT (Figure 6.2B). 

The complete viability assay dataset for all of the HDAC inhibitors is shown in 

Appendix I. The inhibitors JA234 and Scriptaid, and to a lesser extent JA224 and 

KD5170 also reproducibly sensitized the BAF180 -/- cells (Appendix I and Table 6.1).  

We calculated the IC50 viability ratio for BAF180 +/+ and BAF180 -/- cells for 

each drug as a measure of the BAF180 -/- fold-sensitivity (Table 6.1). JA125, JA234 

and Scriptaid sensitized the BAF180 -/- mESCs 3.1-, 2.3-, and 1.8-fold, respectively. 
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The remaining drugs all showed fold-sensitivities of less than 1.4 (Table 6.1 and 

Appendix I). Where available, the activity of each HDAC inhibitor (IC50, µM) against 

the 11 human HDAC enzymes is shown in Table 6.1 and colour coded by efficacy. 

Intriguingly, JA125, JA234 and Scriptaid, which sensitize the BAF180 -/- cells to the 

greatest extent, differ from the other drugs in that that they strongly inhibit HDACs 1, 

2, 6, and also show the strongest inhibition of HDAC8 (Table 6.1). Furthermore, 

JA125 and JA234 are the only two drugs that show strong inhibition of HDAC3. 

Collectively, these results suggest that properties unique to the novel HDAC inhibitors 

JA125 JA234 confer an ability to induce synthetic lethality in mESCs lacking BAF180.  

6.2. Discussion 

In this section we extended our findings from previous chapters to consider a possible 

therapeutic option for the treatment of BAF180-deficient cancers. We first screened a 

set of breast cancer cell lines for BAF180 protein expression and found that an 

unexpected number showed loss of or reduced BAF180. This suggests that BAF180 

loss might be much more widespread in cancer than is currently realised. 

Furthermore, it suggests that successfully exploiting BAF180 deficiency in cancer 

could be particularly fruitful as a therapeutic strategy. To this end, we evaluated 

whether HDAC inhibitors could be of potential use to specifically sensitize BAF180-

deficient cells. Tantalizingly, two novel HDAC inhibitors with unique pharmacophore 

properties substantially sensitized mESCs lacking BAF180 compared to wild-type 

mESCs. Further research using these inhibitors is necessary to assess their full 

potential for the treatment of BAF180-deficient cancers.  

Mutation-independent mechanisms contribute to loss of BAF180 expression in breast 

cancer 

We found that in 8 out of 16 breast cancer cell lines BAF180 protein expression was 

reduced or lost, and 2 of these 8 cell lines that have had their genomes fully 

sequenced did not contain mutations in PBRM1. Thus, alternative mechanisms might 

contribute to reduced BAF180 protein expression in breast cancer. Xia et al. reported 

PBRM1 LOH in 25 out of 52 (48.1%) primary breast tumours, and only one of these 

tumours contained a PBRM1 mutation (Xia et al. 2008). Although BAF180 protein 

levels were not assessed in these cases, PBRM1 LOH could conceivably reduce 
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BAF180 protein levels by at least 50%. Therefore, PBRM1 LOH could underlie the 

reduced BAF180 expression we observe in the non-mutated breast cancer cell lines.  

Alternatively, the PBRM1 gene could be epigenetically silenced. In support of 

this possibility, Brough et al. reported that reduced PDS5B expression in 75 out of 

160 (46.9%) breast tumours was correlated with promoter methylation status rather 

than genomic loss (Brough et al. 2013). Again, the PDS5B protein loss frequency of 

46.9% is remarkably similar to that which we observe for BAF180. In addition, the 

loss of STAG2 expression in 27% of gastric cancers, 23% of colorectal carcinomas, 

and 30% of prostate carcinomas was not associated with mutations in the STAG2 

gene (Kim et al. 2012). Therefore, the expression of proteins that regulate 

centromeric cohesion, including BAF180, appears to be reduced or lost in cancer at a 

far higher frequency than that represented by their mutation frequency. Moreover, 

these findings add further weight to the notion that disruption of centromere cohesion 

contributes to tumourigenesis.   

mESCs lacking BAF180 are hypersensitive to novel HDAC inhibitors 

We utilized a panel of commercially available and novel HDAC inhibitors to broadly 

test the hypothesis that loss of BAF180 is synthetic lethal with loss of HDACs, as is 

the case with its yeast homologue, Rsc2. This approach has advantages and 

limitations over using alternative synthetic screening techniques such as siRNA 

library screens. Because the panel HDAC inhibitors used generally displayed broad 

HDAC specificity, we were unable to firmly identify whether BAF180 is synthetic lethal 

with a single HDAC or a combination of HDACs. However, because some HDAC 

inhibitors already represent a very promising class of small molecule for cancer 

therapy, this approach potentially allows us to bypass the drug development process.  

We found that two novel HDAC inhibitors, JA125 and JA234, were particularly 

effective at reducing viability in mESCs lacking BAF180, suggesting that loss of 

BAF180 is indeed synthetic lethal with HDAC inhibition. These two inhibitors display 

pharmacological activity that is distinct from all of the other HDAC inhibitors tested. 

Essentially, they target HDACs 1, 2, 3, 6 and 8 with the same relative activity as 

SAHA, but with ~10-fold higher efficacy. Because SAHA did not sensitize the BAF180 

-/- mESCs, it seems that the improved inhibition of these particular HDACs is a critical 

property of these HDAC inhibitors.  
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A limited group of HDACs might be responsible for the synthetic lethality with BAF180 

loss 

The subtle differences in activity of some of the other inhibitors might shed light on 

which HDACs are particularly relevant for the synthetic lethality with loss of BAF180. 

For example, JAHA displays the same inhibition as SAHA for HDACs 1, 2, 3 and 8, 

but inhibits HDAC6 with ~24-fold greater efficiency. However, JAHA does not 

sensitize the BAF180 -/- mESCs any better than SAHA. Therefore, HDAC6 inhibition 

alone can perhaps be ruled out as being responsible for the synthetic lethality with 

loss of BAF180. HDAC6 is a cytoplasmic deacetylase that regulates cellular motility, 

adhesion and chaperone function through its targeting of tubulin, cortactin and HSP90 

(Valenzuela-Fernandez et al. 2008). To date, BAF180 has not been directly 

implicated in these processes, suggesting that a synthetic lethal interaction with 

HDAC6 is unlikely. A second example is with Scriptaid, which sensitized the BAF180 -

/- mESCs, but to a lesser extent than JA125 and JA234. The main difference between 

Scriptaid and these two inhibitors is that it displays ~150-fold weaker inhibition of 

HDAC3. Therefore, inhibiting HDAC3 might be important for inducing synthetic 

lethality with loss of BAF180. Intriguingly, both of these proteins are required for 

centromeric cohesion (Brownlee et al. 2014, Eot-Hollier et al. 2008), thus it is 

conceivable that simultaneous loss of BAF180 and HDAC3 reduces viability by 

severely disrupting chromosome segregation.  

Synthetic lethality with loss of BAF180 and inhibition of HDACs 1, 2 and 8 can 

also be interpreted in the context of our results from previous chapters. HDACs 1 and 

2 are involved in DNA repair via NHEJ, and to a lesser extend via HR, by 

deacetylating H3K56 (Miller et al. 2010). We showed that BAF180 is important for 

maintaining viability and promoting DNA repair after treatment with MMC, which likely 

reflects a function in cohesion-dependent DNA repair by HR. Although we did not 

directly test the involvement of BAF180 in NHEJ, a role for BAF180 in this pathway 

seems likely because both of its budding yeast homologues, Rsc1 and Rsc2, are 

required for NHEJ (Chambers et al. 2012). Therefore, simultaneous inhibition of 

HDACs 1 and 2 with loss of BAF180 might lead to synthetic lethality because the 

repair of endogenous DNA damage is severely compromised.  

Finally, JA125, JA234 and Scriptaid were further distinguished from the other 

HDAC inhibitors in that they most strongly inhibited HDAC8. In the absence of 

HDAC8, SMC3 is not deacetylated, ultimately leading to reduced cohesin loading 

(Deardorff et al. 2012). Thus, in a manner that might be similar to inhibiting HDAC3, 

184



inhibition of HDAC8 in cells lacking BAF180 might lead to synthetic lethality because 

of a severe cohesion defect and overwhelming chromosome segregation errors. In 

summary, these findings suggest that strongly inhibiting a discrete combination of 

HDACs preferentially leads to synthetic lethality in cells lacking BAF180. It is 

compelling that the two drugs, namely JA125 and JA234, which bring about the 

greatest synthetic lethal effect, most strongly inhibit a combination of four HDACs that 

function in the same pathway as BAF180 relating to cohesion. In order to explore the 

full potential of these HDAC inhibitors testing will need to extend to relevant human 

cancer cell lines.  
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