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Summary  

First, PMMA (poly(methyl methacrylate)) colloidal spheres were synthesised 

using surfactant free emulsion polymerisation (SFEP) process. The effects of 

temperature, monomer concentration and seeding in the SFEP process were 

investigated. PMMA colloidal crystals were fabricated using two different self-

assembly techniques; the vertical deposition via evaporation and a modified 

floating (air-water interface) technique. The floating technique made it possible 

to fabricate 2D and 3D colloidal crystals with controlled thickness through 

multiple depositions. 

Once self-assembled, the PMMA colloidal crystals were used as 

templates to synthesise different 2D and 3D metal oxide inverse opal structures. 

Different colloidal crystal templating techniques including vacuum assisted and 

horizontal templating via sol-gel infiltration  were used to produce highly ordered 

inverse opal structures. A comprehensive temperature dependent study on the 

formation of 3D TiO2 inverse opals was carried out. Successful synthesis of 

different metal oxide hollow spheres was made possible using a simple sol-gel 

templating approach. By using seeded polymerisation combined with template-

directed synthesis, sphere-in-sphere hollow spheres were successfully 
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synthesised, with independent compositions for both the inner and outer 

spheres.  

By using a modified templating technique, it was possible to synthesise 

bilayered inverse opals with different metal oxide layers. A successful 

production of such a bilayered/heterojunction system was realised. By using 

secondary templating combined with a chemical bath deposition (CBD) process, 

it was also possible to grow ZnO nanorods onto this bilayered inverse opal 

structure producing a hierarchical hybrid nanostructure. This novel structure 

was further sensitised by narrow band gap CdSe/ZnS core-shell quantum dots 

and used in PEC water splitting experiments. The results were very promising 

and showed stepwise increase in photoefficiency for every step in the synthesis 

of the novel hierarchical structure of quantum dot sensitised ZnO nanorods on 

bilayered TiO2/ZnO inverse opal. Increasing surface area, enhancing charge 

separation, faster charge transport, better light scattering and visible light 

absorption all played their parts in such a sequential photoenhancing system. 

Bilayered TiO2/ZnO inverse opal was also used as a photoanode material in 

dye sensitised solar cell (DSSC) devices and showed improved 

photoenhancement. The photonic crystal properties of ZnO inverse opal was 

investigated by coupling it to potassium titanate (K2Ti4O9) nanobelts. Such 

configuration showed higher photoefficiency in DSSC devices compare to a 

single system of titanate.  

In summary, these strategies offer a novel approach for the synthesis of  

hierarchical structures with each part playing a role in enhancing light 

harvesting for better energy conversion.   
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Chapter 1: Introduction 

 

Nanoscience is the study of materials with dimensions ranging from several 

nanometres to several hundred nanometres1. A predominant feature of 

nanostructures is their possession of large surface to volume ratio which is 

significantly larger than that of bulk materials2. Optical and electronic 

enhancements can also be achieved using nanostructures including the 

formation of photonic band gaps3 and increasing charge transfer2, 4 properties.     

Fabrication of porous nanostructures with different shapes and sizes has 

stimulated much interest in the last decade. Metal oxide inverse opals and 

hollow spheres have received particular attention due to their facile preparation 

and morphological advantages including high surface area, high degree of 

porosity and enhanced optical properties. They have broad applications in many 

areas including photonics, drug delivery, sensing, photocatalysis and 

photovoltaics2, 5. Colloidal spheres with nanometre diameters are often used as 

building blocks for the formation of inverse opals6 and hollow spheres7 with 

variable chemical composition. The self-assembled structure of such colloidal 

spheres are usually referred to as colloidal crystals8. The utilisation of inverse 

opals and hollow spheres as working electrodes in photovoltaic devices 

including PEC water splitting and dye sensitised solar cells are promising due to 

their high specific surface area, reduced transport length for both mass and 

charge transport7, high interconnected porosity and unique photonic light 

scattering properties9. In the last decade, photonic crystals using porous 

ordered nanostructures has attracted much attraction with a focus on the 

transport and manipulation of light. The interaction of light with such materials 
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which possess periodic modulation in their structures has led to a range of 

interesting and unique effects with many promising applications such as the 

production of waveguides and optical sensors10, 11. The slow photon, mirror 

effect and the creation of resonant modes are some of the useful properties12 of 

photonic crystals. These photonic properties and their potential applications will 

be discussed later in Section 1.3 in more detail. Apart from the photonic 

properties of these porous nanostructures, such materials have also gained 

interest in medicine, in particular in tissue engineering for the regeneration of 

tissues and organs damaged by injuries or diseases13. These structures, for 

example, can serve as scaffolds to serve as physical supports for cells to attach 

and migrate, as well as to create the necessary environments for the cells to 

respond. Inverse opals are of particular interest in this field, due to the 

interconnectivity of their pores which makes them suitable to support the 

migration of cells and transport of oxygen, nutrients, and wastes. In recent 

years, inverse opal scaffolds such as poly(D, L-lactide-co-glycolide)13 and  -

tricalcium phosphate14 with micron sized pores have also been developed for 

the growth of blood vessels.   

 The concepts, properties and synthetic approaches behind colloidal 

spheres, colloidal crystals, photonic crystals, inverse opals and hollow spheres 

will be explained here in detail. 

 

1.1 Colloidal Spheres 

Colloids are small solid particles in a medium that’s usually fluid. The typical 

size of colloidal particles ranges from nanometers to micrometers. Spherical 
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colloids may represent the simplest form that a colloidal particle can adopt 

during nucleation or growth process, as driven by minimisation of interfacial 

energy15. Spherical colloids can be synthesised from organic16 or inorganic17 

materials. The most studied and best established examples of colloidal spheres 

as the building blocks for fabricating porous materials are inorganic silica (SiO2) 

and polymer latexes18, 19 such as poly(methyl methacrylate) (PMMA)20 and 

polystyrene (PS)15. This is because they can be readily synthesised in the form 

of micro or nanosized spheres with well-established synthetic techniques. They 

can also be easily removed from the system once they have served their 

purpose as templates15. 

In 1968 Stober, Fink and Bohn21 developed a method to synthesise 

monodisperse colloidal silica spheres. This method, also known as the SFB 

method (honouring all three authors), is still considered as the simplest and 

most effective route to create silica spheres22, 23. This method utilises a sol-gel 

route in a base catalysed reaction, using ammonia, ethanol, water and 

tetraethyl orthosilicate (TEOS). By controlling the amount of reactants, spherical 

SiO2 particles with low polydispersity in various sizes24 ranging from 50 nm to 1 

μm can be obtained25. The reaction mechanism for the formation of SiO2 

colloidal spheres can be explained as following25: 

(1) Si(OC2H5)4 + 4H2O → Si(OH)4 + 4C2H5OH  

(2) nSi(OH)4 →  (SiO2)n + 2nH2O 

The first step is hydrolysis, in which the ethoxy group (Si(OC2H5)4) is 

replaced by OH group to form silicon hydroxide (Si(OH)4). In the second step, 

silicon hydroxide undergoes polycondensation to form a SiO2 network.   
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Traditional techniques to prepare organic colloidal spheres include 

emulsion15 and surfactant-free emulsion polymerisation (SFEP) 26, 27. These 

have been the methods of choice because of the monodisperse spheres that 

they yield. The monomers used in the synthesis of PMMA and PS are methyl 

methacrylate (MMA) and styrene. Figure 1.1 illustrates the polymerisation of 

MMA to form PMMA. 

 

Figure. 1.1 A scheme showing the polymerisation of methyl methacrylate to 

form poly(methyl methacrylate). 

The main components of a classical emulsion polymerisation include a 

monomer, a dispersion medium (usually water), an emulsifier (surfactant), and 

an initiator (usually water-soluble)15.The monomer is dispersed as an aqueous 

emulsion (droplets of monomer in water with average diameter of 1-100 μm)  

with the help of the surfactant. In this process, the surfactant is added to 

stabilise the droplets of monomer in water. The excess surfactant creates 

micelles (~10 nm in diameter) in the water. A small amount of monomer diffuses 

through the water to the micelles. The polymerisation begins with the 

decomposition of the water-soluble radical initiator during which a burst of 

primary free radicals are generated. The individual radicals enter the micelles to 

polymerise the monomer. Propagation and termination take place within the 

micelles. First, the monomer in each individual micelle quickly polymerises and 
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then the growing chain (oligomer) terminates. At this point the majority of the 

micelles which are swollen by the monomer turn into small polymer particles. 

More monomer encapsulated in emulsion droplets diffuses to the growing 

particles, where more initiators will eventually react. The growth of polymer 

particles will stop when all the monomer in the emulsion droplets has been 

depleted and all remaining monomer is located in the particles. The final 

product is a dispersion of polymer particles (colloids or latexes) in water15. The 

surfactant can have an effect on the final colloidal particles diameter, increasing 

the amount of surfactant allows smaller particles to be stabilised and decreases 

coagulation of smaller particles28. 

The surfactant free emulsion polymerisation (SFEP) is a unique variation 

of emulsion polymerisation. This method involves the polymerization of 

monomers without the presence of a surfactant and hence differs from the 

“classical emulsion polymerisation”29. In the SFEP process only three 

components are required; monomer, initiator and solvent26 (water in the case of 

PMMA and PS). Several mechanisms have been proposed for particle 

nucleation and growth during polymerisation using SFEP. It is generally 

understood that the polymerisation process in SFEP depends on the water 

solubility of the monomer30. In a typical SFEP process, first free radicals are 

formed by thermal decomposition of a water-soluble initiator such as potassium 

persulphate (KSP) in the aqueous phase. For poorly water-soluble monomers 

such as styrene, the free radicals begin to polymerise some of the monomers 

dissolved in equilibrium in water forming charged oligomers (growing chains). 

The resulting charged oligomers are only charged at one end, which are surface 

active and act as surfactants and form micelles30. For more water-soluble 



6 
 

monomers such as MMA however, particles are formed by the precipitation of 

growing chains upon achievement of a critical chain length (60-80 for MMA 

monomer) as a consequence of becoming increasingly insoluble in water30. In 

both cases, the subsequent polymerisation is analogous to the “classical 

emulsion polymerisation” with further polymerisation of free monomers taking 

place exclusively in monomer swollen particles26.                                                                             

An alternative growth mechanism was proposed by a study carried out 

by Telford et al.31 for the formation of polystyrene colloidal spheres using SFEP 

in the presence of large amounts of initiator. They have suggested that after the 

formation of water-insoluble polymer chains, they collapse and form precursor 

particles. These precursor particles are too unstable to remain isolated due to 

too few charged initiator radicals to stabilise them. They will tend to form small 

aggregates by rapid coagulation, until they achieve enough surface charge to 

be individually stable and form mature particles (nucleation step). The mature 

particles can then swell with monomer and the continuously forming precursor 

particles and their aggregates. The growth of the particles terminates when all 

the monomer and initiator species are used up.  

Although, the growth mechanism of polymer colloidal spheres using 

SFEP process is possibly less well understood than that of surfactant mediated 

emulsion polymerisation, it is still considered a powerful technique for the 

formation of monodisperse colloidal spheres. This is because the time for the 

formation of monomer swollen particles (in the case of the first two proposed 

mechanisms) or mature particles (in the case of the third proposed mechanism) 

is short, but the time during which the particles grow is very long26, 31. 
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With respect to initiators, the best ionic initiators for the variation of 

emulsion polymerization processes are the azobisamidines, because they are 

water-soluble compounds with higher decomposition constant and efficiency 

factors than other common radical initiators such as azobisisobutyronitrile 

(AIBN)32. The other commonly used water-soluble initiator is potassium 

persulphate (KPS)30, 33 which was mentioned previously. Due to the lack of 

surfactants in SFEP processes, these ionic initiators serve a dual purpose of 

both initiating the polymerisation and also providing stability to the colloidal 

particles through their charged end groups34. For instance, the initiator 

potassium persulphate introduces a small negative surface charge and the 

initiator 2’2-azobis(2-methylpropionamidine) dihydrochloride (AIBA) introduces a 

small positive charge surface to the colloidal particles5. In this work, AIBA was 

chosen. Figure 1.2 shows the structure (a) and the decomposition process (b) 

of AIBA initiator in water forming two free radicals respectively32.  

 

Figure. 1.2 (a) The structure of 2’2-azobis(2-methylpropionamidine) 

dihydrochloride (AIBA) and (b) decomposition of AIBA in water to form two 

radicals and a molecule of nitrogen. 
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Upon thermal decomposition of the AIBA initiator, two radicals are 

formed per initiator due to the thermal homolytic cleavage (chemical bond 

dissociation) of a C-N bond (~290 kJmol-1)35, which subsequently add to the 

double bond of the MMA monomer (initiation stage). In the propagation stage, 

the MMA monomers are added successively to the free radical end of the 

polymer chain which causes the chain (oligomer) to grow. In each step, the 

consumption of a free radical is accompanied by the formation of a new, larger 

free radical (charged oligomer). Finally, the polymerisation stops by 

consumption rather than formation of new free radicals, such as the 

combination of free radicals. As mentioned previously, in the SFEP process, the 

charged oligomers of MMA precipitate to form particles after reaching their 

critical chain length as a consequence of becoming increasingly insoluble in 

water30. The aggregation of the oligomers into particles is in such a way that, 

the charged initiator part of each oligomer faces outward interacting with water 

and the increasingly insoluble hydrophobic polymerised part of the oligomer 

faces inward. Polymerisation continues in the monomer swollen particles or by 

aggregation of mature particles until all the monomer and initiator species are 

used up as discussed previously36. In such systems, the spheres produced will 

be slightly charged with their polar initiator end facing outward which will 

therefore prevent them to form aggregates in water after polymerisation ends 

due to the repulsive electrostatic forces. The factors which explain the colloidal 

stability of PMMA spheres in suspension will be discussed in the next section 

(Section 1.2).        

In the field of inverse opal and hollow sphere nanostructures, the 

polymerised organic and inorganic colloidal spheres which serve as templates 
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can be removed chemically or thermally once the appropriate material has been 

templated against them16. In the case of inorganic silica spheres, a dilute HF or 

NaOH solution is sufficient to completely remove the spheres without altering 

the morphology of the inverted structure 5, 37. Calcination is the method used for 

the removal of latex polymers including PS and PMMA due to their low melting 

points and low temperature thermal decompositions15, 38, 39. Chemical etching 

via toluene37 or tetrahydrofuran (THF)27 is another approach for the removal of 

latex polymer spheres in templating methods. In templating processes, PMMA 

colloidal spheres are preferred to PS, as they tend to have better wettability with 

polar solvents (such as water and alcohol), shorter polymerisation time (1-2 

hours compare to 48 h for PS), milder removal conditions and do not need the 

addition of citrate ions40.    

1.2 Colloidal Crystals 

Colloidal crystals can be referred to as opals. Opal comes from the Greek word 

opalus meaning “to see a change of colour”28. It describes a gemstone in nature 

due to its iridescent colour10. Opals show rainbow colours despite being 

composed of colourless silica (SiO2) spheres41. The origin of iridescence in 

opals comes from the ordered array structure of closely packed monodisperse 

colloidal silica spheres, which causes light to diffract from the planes of the 

spheres. In other words the colour phenomenon arises from the dispersion of 

incident light due to random orientation of the domains (this is also a property of 

photonic crystals which will be discussed later). Butterflies, other insects, 

marine creatures and even flora exhibit such phenomenon. Artificial opals can 

also be prepared that act on or operate using the same principle 10, 27, 41, 42.  
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There are two main strategies to create artificial opals or colloidal 

crystals; microfabrication (the so-called top-down approach) and colloidal 

crystal self-assembly (the so-called “bottom-up” approach)11, 43. 

The main methods used in microfabrication of colloidal crystals are 

nanolithography43 and nanoimprinting5. Nanolithography is a process for 

fabricating functional nanostructures from bulk materials by introducing patterns 

with at least one lateral dimension between the size of an individual atom and 

approximately 100 nm44. In conventional nanolithography, periodic structures 

are produced by first exposing a monomer or a polymer-coated surface to 

localised photoirradiation (usually through a mask) to polymerise or induce 

cross-linking or decomposition reactions in the selected areas. Then by 

removing the selected areas of the film (covered with monomer) through 

dissolution in an appropriate solvent, the ordered nanopatterned colloidal 

crystals are obtained. Nanoimprinting is a variation of nanolithography 

approach, in which patterns are created by pressing a mould against a softened 

thermoplastic or a liquid polymer precursor. This creates patterns by 

mechanical deformation of imprint resist. By subsequent cooling or photocuring 

the polymer (using UV light) of the moulded material, the surface relief pattern is 

trapped giving rise to the patterned structures11. Such top-down approaches 

can be expensive, slow and may not be able to cover large structural areas and 

depth

The self-assembly of colloidal spheres into colloidal crystals on the other 

hand is one of the most convenient routes to create artificial opals. This 

approach is simpler and less expensive than the top-down approach and can 

yield 3D colloidal crystals with controlled thickness15, 43, 45. It is the natural 
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tendency of monodisperse spherical particles to self-assemble into a close-

packed ordered arrangement45. Another advantage of using this approach is the 

fact that such colloidal crystals can serve as templates for further processing 

including patterning, introducing controlled defects and infiltration to produce 

porous materials including inverse opals46-53.  

The interaction of two monodisperse colloidal particles suspended in a 

solvent which are electrostatically stabilised are generally explained as the 

combination of van der Waals attraction and electrostatic repulsion as described 

by Derjaguin-Landau-Vervey-Overbeak (DLVO) theory15, 54, 55. Figure 1.3 shows 

the schematic of DLVO potential; the attractive van der Waals potential and the 

repulsive electrostatic potential, and the combination of the two opposite 

potentials as a function of distance from the surface of a spherical particle. 

 

Figure. 1.3 Schematic of DLVO potential: VA = attractive van der Waals 

potential, VR = repulsive electrostatic potential54. 
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 When the distance is far from the colloidal particle surface, both 

attractive van der Waals and repulsive electrostatic potential reduce to zero. 

Near the surface of the particle, there is a deep minimum (primary minimum) in 

the potential energy produced by the van der Waals attraction. At this region, 

when the separation between the particles is so small and dominated by van 

der Waals forces, an irreversible aggregation of distinct particles into large 

particles can occur which is called coagulation. At a distance just a little farther 

away from the surface, there exists a maximum, as the repulsive electrostatic 

potential dominates the attractive van der Waals potential. This maximum in 

potential energy is also known as repulsive barrier. If the repulsive barrier is 

greater than ~ 10 kT, where k is Boltzmann constant, there will be stability 

between the two spherical particles and agglomeration will not occur. This is 

because the collisions of two particles produced by Brownian motion will not 

overcome the repulsive barrier54.  

The existence of an electric charge on the surfaces of colloidal particles 

is a major source of kinetic nonlability where ions of opposite charge tend to 

cluster nearby, and an ionic atmosphere is formed giving rise to two regions of 

charge55. The first region is a radius of a fairly immobile spherical layer of 

charges that adhere tightly to the surface of the colloidal particle which may 

include water molecules (if that is the solvent) and is the major factor in 

determining the mobility of the particles. The electrokinetic potential difference 

at the radius of sphere relative to its value in the distant, bulk medium is called 

the Zeta potential55. In the second region of charge, the charge unit attracts an 

oppositely charged ionic atmosphere (counter ions). The inner shell of charge 

and the outer ionic atmosphere is called the electrical double layer. The 
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secondary minimum in the DLVO potential curve as seen in Figure 1.3 

originates at large particle surface separations when the concentration of 

counter ions is high enough (i.e. high ionic strength of colloidal suspension). If 

secondary minimum is established, particles are likely to aggregate with each 

other. This aggregation at the secondary minimum is called flocculation54. The 

flocculated particles can usually be redispersed again through agitation. In 

colloidal science, the ionic strength of the suspension is increased by addition of 

highly charged ions, acting as flocculating agents for particle aggregation. The 

coalesce of the colliding particles by breaking through the electric double layer 

only occurs if the collision is sufficiently energetic to disrupt the layers of ions 

and solvating molecules. This breaking through the electric double layer may 

therefore occur at high temperatures and may explain why sols precipitate when 

they are heated. The protective role of the electric double layer is therefore very 

important and explains why colloidal suspensions may coagulate at their 

isoelectric point (i.e. at the pH at which the particles carry no net electrical 

charge)55.      

Apart from the electrostatic stabilisation mechanism explained by DLVO 

theory above, Steric stabilisation, also called polymeric stabilisation, is another 

method widely used for the stabilisation of colloidal particle suspensions in 

order to produce narrow size distributions and to prevent  agglomeration54. In 

contrast to electrostatic stabilisation which is a kinetic stabilisation method, 

steric stabilisation is a thermodynamic stabilisation method (therefore has an 

advantage in that, the particles are always redispersible). This method is usually 

used in nanoparticle growth by adsorbing a polymeric layer on the surface of 

nanoparticles serving as a diffusion barrier to the growth species, resulting in a 
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diffusion-limited growth in the subsequent growth of nuclei. Such behaviour will 

result in the reduction of the size distribution of the initial particle, leading to 

monosized nanoparticles54.                        

Monodisperesed colloidal spheres can be self-assembled into ordered 

2D and 3D arrays on solid substrates or on the surface of liquids using a 

number of strategies. Many self-assembly techniques with different ordering 

mechanisms have been introduced over the years for the production of colloidal 

crystals including; 

Gravity sedimentation43, 56, 57, centrifugation43, 58, vacuum infiltration59, 

horizontal deposition20, 60-62, vertical deposition via dip drawing50, 63-69, vertical 

deposition via evaporation47-49, 70-73, spin coating74, 75, physical confinement15, 76, 

77,air/water interface (floating)78, 79 and exterior fields including electric and 

magnetic-field directed71 self-assemblies.  

The gravity sedimentation technique is one of the earliest colloidal crystal 

self-assembly techniques which involves the natural sedimentation of colloidal 

spheres in a solution due to the natural gravitational field. This technique was 

first used for silica spheres21. This technique can be very time consuming and 

may take weeks to months to perform. Other variations of this technique were 

later developed to  increase the rate of self-assembly including vacuum 

infiltration59 and centrifugation80. However it was still challenging to prepare high 

quality colloidal crystals by these techniques. Numerous defects such as cracks 

and grain boundaries could be detected and the thickness of the resulting 

colloidal crystals could not be well controlled81.  
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Park and Xia82 were the pioneers of physical confinement self-assembly 

technique. In this technique, colloidal crystals are formed in a physically 

confined cell in which a colloidal suspension is squeezed between two planar 

substrates spaced by a porous sidewall with small patterned channels. By 

continuous sonification, the spheres settle in their thermodynamically favoured 

positions. This method can reduce colloidal crystal preparation time. However, it 

requires special equipment and may not work for colloidal spheres with large 

diameters, as the holes in the channels are usually very small. 

Assembling latex colloidal spheres under the effect of external fields 

(exterior fields)81, such as electric and magnetic fields has become a popular 

technique for the construction of colloidal crystals. In electric field directed self-

assembly, highly charged monodisperse latex spheres are assembled into 

ordered colloidal aggregates by applying an electric field between two 

electrodes83. The self-assembly can be controlled by varying the electric field 

strength and the viscosity of the solution. Magnetic fields have also been used 

widely for the fabrication of colloidal crystals. For example ordered colloidal 

crystals of 𝛾-Fe2O3
84 and Fe3O4

85 nanoparticles dispersed in water have been 

prepared in the presence of a external magnetic field, forcing the nanoparticles 

to align and order in the direction of the field.          

Spin coating is another technique to fabricate ordered colloidal crystals.  

By the use of shear-induced ordering mechanism, large areas of well-ordered 

colloidal crystals with uniform thickness can be obtained75. The thickness of the 

prepared colloidal crystals can be controlled simply by changing the spinning 

time and speed. The drawback of this technique however, is the need to use 
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highly viscous colloidal sphere suspensions which makes the required 

dispersion process tedious81.  

The most common self-assembly techniques are horizontal deposition 

and variations on vertical deposition37, 81. Both approaches are straightforward 

experimentally and control can be exerted over the colloidal crystals produced. 

The technique of horizontal deposition20, 60-62 sees drops of the colloidal sphere 

solution placed horizontally onto a substrate. The solvent is then allowed to 

evaporate, leaving behind a film of colloidal crystal. Two variations for vertical 

deposition process exist. The first variety, “vertical deposition via dip drawing”, 

has a substrate suspended vertically in a colloidal sphere solution, which is then 

slowly pulled out of the solution. The rate of substrate removal can be varied to 

change the thickness of the colloidal crystal53-59. The other method of vertical 

deposition is “vertical deposition via evaporation”; this involves suspending the 

substrate in a colloidal sphere solution and allowing the solvent to evaporate. 

This can be carried out in vacuo or under atmospheric conditions in an 

oven36-38.  

It was discovered that the main driving forces in both horizontal and vertical 

deposition techniques are capillary interactions and convective transport at the 

meniscus drying front. This was originally investigated by Denkov et al86.  A two 

stage mechanism for the formation of a 2D array of colloidal crystal on a flat 

substrate was proposed. This is illustrated in Figure 1.4.  
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Figure. 1.4 Schematic of the formation of a 2D array of colloidal crystals on a 

horizontal substrate. 

In the first phase, through evaporation of the solvent, there exists an 

instance when the thickness of the solvent layer containing the spheres 

becomes less than the colloidal sphere diameter. Deformation of the meniscus 

(the liquid-air interface) gives rise to capillary interactions between particles. 

The closely orientated spheres form a 2D cluster (nucleus) of ordered spheres 

because of these interactions. Once the nucleus is formed, the second stage of 

crystal growth occurs by convective transport of spheres toward the ordered 

nucleus. This convective transport is induced by solvent evaporation from 

concave-shaped menisci. The increase in the local curvature increases the local 

capillary pressure, which draws in the liquid to the nucleus from the thicker parts 

of the meniscus where the pressure is higher. The spheres inside this 

convective influx are pressed to the nucleus by the hydrodynamic pressure of 

the liquid and attached to the other spheres in this region by the capillary 

attraction. Eventually a close-packed array of 2D colloidal crystals is formed on 

the substrate. A similar mechanism that explains 2D colloidal crystals can be 

applied for 3D systems. This is because controlling the capillary forces and the 

convective particle flux during solvent evaporation can determine the 2D or 3D 

nature of the colloidal crystals87. In the case of 3D colloidal crystal formation, 
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the convective particle flux dominates, causing additional spheres to be drawn 

towards the crystal front driven by the evaporation of the solvent from within the 

drying colloidal crystal layer5. In this process, the crystal thickness could be 

controlled by the concentration of the latex suspension or particle diameter71, 88. 

Figure 1.5 shows a schematic representation for the formation of a 3D colloidal 

crystal using the vertical deposition technique. 

 

Figure. 1.5 Schematic of the formation of a 3D colloidal crystal using the 

vertical deposition technique. 

Another technique for producing colloidal crystals is self-assembly at an 

air-water interface, the “floating technique”. The self-assembly processes take 

place on the surface of the liquid. A benefit of this method of interfacial 

assembly is that it is fast and can produce monolayer colloidal crystals 

exclusively89, 90. The ordering mechanism in the floating technique relies on 

surface forces in the liquid as well as forces between the colloidal spheres. It is 

energetically favourable for spherically-shaped particles to come together on 
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the surface of a liquid. This is due to interface deformations, as particles 

adsorbed at the surface of a liquid they can deform it91. The fluid interface may 

be distorted by the particle in several ways such as: particle buoyant weight, 

particle confinement in a liquid film, electric field and roughness effects. These 

interface deformations can attract and repel each other leading to interface 

mediated interactions. The so-called “capillary interactions” originate from the 

overlap of interfacial deformations created around the particles91. Once they are 

in contact, the spheres adhere to each other via Van der Waals attractions. In 

addition, as most latex colloidal spheres including PMMA and PS spheres are 

weakly charged, the electrostatic interaction can result in interparticle repulsion 

as well increasing the mobility of spheres in close proximity to one another. 

Such forces can therefore increase the orderliness in the formation of colloidal 

crystals 89, 90. The quality of monolayer colloidal crystals created by using this 

self-assembly technique can be affected by a variety of factors including 

colloidal particle concentration, zeta potential of the colloidal particles in the 

suspension, surface tension of the water phase, hardness of the colloidal 

particles, the addition of spreading solvents and salts in the suspension92.  

3D colloidal crystals fabricated by self-assembly techniques tend to form 

a close-packed face centred cubic (FCC) crystal structure with (ABCABC…) 

stacking or a hexagonal close-packed (HCP) with (ABABAB…) stacking, in 

which their (111) planes are parallel to the underlying substrate. It is usually 

difficult to distinguish between these two crystal configurations in colloidal 

crystal fabrication. The FCC structure is energetically favoured over HCP33, 43, 65, 

78, 93, although the energy difference is small. The FCC ordering has also been 

confirmed by ultrasmall-angle synchrotron X-ray diffraction (USAXS) and the 
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tilting of TEM images in a previous study43. In this periodic structure, each 

sphere is in contact with 12 other spheres (i.e. 6 in the same layer, 3 in the layer 

above, and 3 in the layer below) with 24% of the volume being air and 76% 

colloidal spheres15, 20, 43, 52, 68, 94. 

  

1.3 Photonic Crystals 

Since Yablonovich95 and John96 in 1987 independently proposed the concept of 

the photonic band gap and the realisation of its vast potential applications, 

scientists have been focused on the development of colloidal crystals (opals) 

and their inverted structures (inverse opals)  as photonic crystals.  

Photonic band gap (PBG) materials or photonic crystals (PCs) are highly 

ordered spatially periodic structures constructed from alternating regions of 

dielectric materials with different refractive indices, with periods on the scale of 

visible light wavelengths (380-750 nm)43, 46, 97, 98. In principle, the band structure 

of a PBG crystal can be obtained by solving the Maxwell equations that contain 

a spatially periodic function for the dielectric constant15. Such materials diffract 

photons from a lattice of dielectric planes in a manner analogous to the 

behaviour of electrons with respect to an atomic crystal lattice. In other words, it 

appears that allowed bands and forbidden gaps for photons exist. Periodicity 

affects the propagation of electromagnetic waves in the material due to Bragg 

diffractions on lattice planes. The result is a photonic band gap (PBG or stop 

band), a band of frequencies where light propagation in the photonic crystal is 

forbidden. This is the optical analogue of electronic band gaps seen in 

semiconductors10, 27, 37, 99, 100. Photonic crystals are also called the 
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“semiconductors for photons” with the advantage that photons have no mass or 

electrical charge unlike electrons in semiconductors 56, 101. At the photonic band 

edges, the group velocity of light is reduced and the photon density of states is 

enhanced. For photons, the degree of attenuation in group velocity in real 

crystals depends on the dielectric contrast between the high and low refractive 

index materials, the thickness and the structural quality of the photonic crystal. 

The photons propagating with reduced velocity at the band edges are also 

called slow photons. Ozin and his group12 were the pioneers to demonstrate the 

effect of slow photon phenomenon in photochemical reactions. They used TiO2 

inverse opal as a photonic crystal material and investigated the photocatalytic 

degradation of adsorbed methylene blue dyes. They found that when such 

photochemical reaction was activated by light at a wavelength corresponding to 

the photonic stop band edges of the inverse opal, light absorption and 

photodegradation efficiency of the dyes were enhanced by 22%. Aside from the 

slow photon effect in photonic crystals, these structures can also be used as 

photonic crystal mirrors to create localised states when coupled to a non-

structured surface. Molouk and his colleagues102, 103 were the pioneers in using 

this phenomenon in dye sensitised solar cells. They cast a TiO2 inverse opal on 

a TiO2 thin film photoanode based DSSC and illuminated from the photonic 

side. The bilayer structure showed 26% increase in overall efficiency. 

Interestingly they found out that, a single TiO2 inverse opal layer structure did 

not contribute to photoefficiency enhancement, as the stop band reflectivity 

outweighed the slow photon phenomenon leading to decreased light harvesting. 

Therefore, in applications where enhancement over a broad spectral range is 

desired, bilayered architecture may be more advantages by using the photonic 
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crystal mirror effect. In another study, O’Brien et al104 coupled TiO2 inverse opal 

to a Si solar cell and achieved 138% photoperformance by improving the light 

absorption of Si. They attributed this behaviour to the creation of partially 

localised resonant modes within the Si by the inverse opal. The highly amplified 

absorption over a range of frequencies in this opal-Si configuration, compared 

to a film backed by a perfect mirror can have far reaching implications in other 

scientific and technological areas, such as organic and inorganic light emitting 

diodes and lasers12.                 

The colour in photonic crystals arises form diffraction of light which can 

be altered by changing the angle of incident light, the refractive index contrasts, 

lattice constants and filling factors in colloidal crystals and inverse opals 

(Chapter 4). Because the photonic band gap wavelength is directly proportional 

to these variables, the colour of such materials can be shifted to higher or lower 

wavelength colours simply by increasing or decreasing the size of the colloidal 

spheres used as the building blocks or by filling the voids with solvents with 

different refractive indices27, 41, 42. These striking colours and colour changes in 

photonic crystal materials and the compositional flexibility of using colloidal 

crystals (Section 1.2) and inverse opals (Section 1.4) as photonic crystals, 

make them suitable candidates in chemical sensors, optical filters, or photonic 

pigments15, 27.   

The range of applications for these materials is vast. Wavelengths of light 

can be blocked irrespective of their direction and polarisation, photons can be 

localised at specific frequencies and stimulated emission can also be modulated 

or controlled15, 67. They can also act as waveguides to propagate specific 

wavelengths in certain directions. When defects that locally break the spatial 
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periodicity of a photonic crystal are introduced in a controlled manner, the wave 

guiding phenomenon occurs. Defects introduce states that lie in the photonic 

band gap, which allows light to propagate but only in those regions defined by 

the defect structure. When light propagates in this fashion, optical losses can be 

very low, because beam propagation is not based on total internal reflection100.    

These properties can be utilised in telecommunication systems, LEDs, 

semiconductor diode lasers and enhancing the performance of 

optoelectronics15, 27. 

 

1.4 Inverse Opals 

Once the colloidal spheres are self-assembled into colloidal crystals, they can 

be used as templates to produce Inverse opal materials. Inverse opals can also 

be called photonic crystals42 due to their unique optoelectronic properties 

caused by their distinctive and highly ordered periodic structures27. Template-

directed synthesis (or colloidal crystal templating) 25, 30-33, 38, 65, 77 is known as 

one of the most convenient, versatile and cost effective methods for generating 

2D and 3D inverse opal structures. This method has been successfully applied 

to prepare inverse opal materials with diverse compositions including metals, 

metal oxides, semiconductors, organic polymers and carbons 15, 27, 38, 39.  

In this method the colloidal crystal (opal) template serves as a scaffold 

with voids (pores) infiltrated with the materials of interest. Two different 

infiltration techniques have been employed to grow materials within the pores of 

the colloidal crystal templates105. When the material is grown (synthesised) 

inside the structure, it is identified as chemical infiltration and when it is only 
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infiltrated having been prepared previously is called physical infiltration45. By 

then removing the template via wet chemical etching or calcination, a 

macroporous “inverse opal” material with a close-packed arrangement of 

inverted air spheres is created which is the replica of the original template15, 27, 

38, 39 .   

In physical infiltration, the materials of interest are first synthesised with 

particles smaller than the pores of the colloidal crystal (usually in the form of 

nanoparticles in solutions). They can then infiltrate the pores of the colloidal 

crystals. The usual method involves dipping the colloidal crystal into a solution 

containing the material. Organic dyes infiltrating the pores of a colloidal crystals 

is an example of physical infiltration105. The other method of infiltration, is 

electrophoretic deposition5. Here, the colloidal crystal acts as a working 

electrode in an electrochemical cell, and is placed with a counter electrode in a 

suspension of preformed nanoparticles. By introducing an electric field between 

the two electrodes, the nanoparticles fill the interstitial pores of the colloidal 

crystal, if their surface charge is opposite to the charge of the colloidal crystal 

working electrode (this can be done using zeta-potential measurements). The 

drawback of this method is that, the nanoparticles can block entry to lower-lying 

colloidal crystal layers, which leads to poor filling throughout the structure. The 

other drawback is that, the choice of substrate is only limited to conductive 

substrates.   

 Chemical infiltration include sol-gel53, 61, 106 and electrodepostion45, 49, 62 

methods. In the sol-gel approach, the precursor of the interested material is 

capable of solidification via a sol-gel approach (hydrolysation and subsequent 

condensation) within the pores of the colloidal crystal without swelling or 
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dissolving the template15, 27. Electrodeposition has been widely used to infiltrate 

a large variety of metals including gold, silver, nickel into colloidal crystals 

creating 2D and 3D inverse opals105. This technique is also useful for the 

synthesis of conductive polymers such as polyaniline (PANI)5. In this approach, 

the colloidal crystal is first grown on a working electrode surface of an 

electrochemical cell in a two electrode system, similar to the electrophoretic 

deposition stated previously. A suitable electroplating solution is then used as 

the precursor solution. The desired material is formed between the interstitial 

pores of the colloidal crystal by electrodepostion, using either cyclic 

voltammetry or galvanostic deposition. The deposition builds up starting from 

the conductive substrate of the colloidal crystal working electrode, growing 

outward through the colloidal crystal. This method, therefore, avoids pore 

blockage during infiltration and fills the interstitial pores completely due to this 

outward infiltration. The deposition electrical current can be used to control both 

the deposition rate and the thickness of the deposited layer. The template can 

be removed by solvent extraction5. The drawback for electrodeposition is that, it 

can only be performed if the colloidal crystal template is grown onto a 

conductive substrate (similar to the electrophoretic process)107.    

Recently, gas based infiltration approaches such as chemical vapour 

deposition (CVD)38, 45 or atomic layer deposition (ALD)45 have shown promise in 

the synthesis of inverse opal structures. In a typical CVD process54, a volatile 

compound of the interested material reacts with other gases chemically to 

produce a non-volatile solid that deposits atomistically within the pores of the 

colloidal crystal. In CVD methods, two types of reactions can take place; gas 

phase (homogeneous) and surface (heterogeneous) reactions, in which gas 
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phase reactions dominate with controlled temperature and partial pressure of 

the reactants, leading to a homogeneous nucleation. There are a variety of 

chemical reactions which can take place in CVD including pyrolysis, reduction, 

oxidation, compound formation, disproportionation and reversible transfer, 

depending on the precursors used and the deposition conditions applied. 

Electrochemical vapour deposition (EVD)54 is a modified form of CVD which has 

been developed to deposit solid phase from gaseous precursors on highly 

porous substrates or inside porous media. In a typical EVD process, a porous 

substrate separates metal precursor(s) and oxygen source which will 

subsequently inter-diffuse and react with each other when they concur to 

deposit the corresponding solid metal oxides. Oxygen precursors diffuse much 

faster than metal precursors and as result, the deposition occurs at the entrance 

of pores on the side facing the metal precursors, and plug the pores. In this 

process, the oxygen source (which can be a water vapour, oxygen, or air or a 

mixture of them) is reduced at the oxygen/film interface to produce oxygen ions 

which are transferred in the film. As the oxygen vacancies diffuse in the 

opposite direction, they react with the metal precursors at the film/metal 

precursor interface. This process will then continuously form metal oxide in or 

between the pores. EVD has been explored for fabricating gas-tight dense solid 

electrolyte films on porous substrates. The most studied EVD synthesised 

system has been the yttria-stabilised zirconia films on porous alumina 

substrates with applications mainly in solid oxide fuel cells and dense 

membranes.  

Atomic layer deposition (ALD) which is also known as atomic layer 

epitaxy (ALE), atomic layer growth (ALG), atomic layer CVD (ALCVD), and a 
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molecular layer epitaxy (MLE)54, can be considered as a special modification of 

the CVD method, or a combination of vapour-phase self-assembly and surface 

reaction. In this technique, metallic and nonmetallic precursors are deposited 

between the pores of the colloidal crystal in alternating reaction steps, to build 

up the desired structure, one layer at a time. Therefore, in a typical ALD 

approach, monolayer colloidal crystals are filled and stack up to produce the 3D 

structure. In this technique, first the surface of a monolayer is activated on the 

colloidal crystal surface by a chemical reaction. Then, the precursors are 

introduced into the deposition chamber which will react with the active surface 

species and form chemical bonds with them. Since the precursors deposited 

between the pores of the colloidal crystal cannot chemically react with 

themselves, therefore the surface has to be activated again for the next 

deposition. In each deposition step, either the same or different precursors can 

be subsequently introduced to the deposition chamber and react with the 

activated monolayer on the colloidal crystal deposited previously. By repeating 

the steps, more layers stack up leading to the 3D structure. In both CVD and 

ALD techniques, the desired inverse opal is obtained after removing the 

colloidal crystal template5. The drawback in those approaches comes from the 

relatively high temperatures needed for infiltration which can limit the usable 

organic colloidal crystal templates, such as PS and PMMA 105.   

In general, the sol-gel infiltration approach can be considered as the 

method of choice37 for the synthesis of metal oxide inverse opals. This method 

is advantageous in several respects including excellent homogeneity, easy 

control of film thickness, ability to coat large and complex shapes, and low-

temperature and low-cost processing53. Figure 1.6 illustrates the schematic 
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diagram of colloidal crystal templating  by sol-gel infiltration for the synthesis of 

metal oxide inverse opals.  

 

Figure. 1.6 A schematic showing the synthesis of an inverse opal using 

colloidal crystal templating via sol-gel infiltration37. 

As it can be seen from Figure 1.6, the colloidal spheres are first self-

assembled to fabricate a close-packed colloidal crystal (via vertical deposition 

technique in this scheme). Then, the interstitial gaps in the colloidal crystal 

structure is infiltrated with an appropriate metal oxide precursor. The precursor 

usually consists of a metal salt27, 43, 61, 107 (alkoxide, acetate or nitrate) solution. 

Such a precursor then goes through a sol-gel process forming a network of 

hydrolysed gel. The gel is further solidified and condensed27 via ageing in air. In 

the next stage, the polymer colloidal crystal is removed by either chemical 

etching or careful calcination16, 43. This results in three dimensional ordered 

macroporous (3DOM)5 or inverse opal structures with interconnected 

tetrahedral and octahedral sites, which were previously air gaps.  Calcination 

has an advantage over chemical etching in the template removal stage. This is 
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because the inverted metal oxide structure can be reinforced and transformed 

from its amorphous phase to the more desired crystalline phase at elevated 

temperatures5. The inverse opal pore size is determined by the diameters of the 

original colloidal spheres15 as can be seen in Figure 1.6. 

Three kinds of inverse opal structures have been reported with different 

morphologies108; 

1) Shell structures (ShS), which can be produced by incomplete filling of the 

opal by the metal oxide precursor and the final product consists of spherical 

shells around the air spheres. 

 2) Skeleton structures, which can be produced again by incomplete filling of the 

opal with the metal oxide precursor (similar to ShS). But this time, the final 

product  consists of cylinders connecting the tetrahedral and octahedral voids 

among the close-packed air spheres.     

3) Residual volume structures (RVS), which can be produced if the whole space 

between the spheres is filled with the metal oxide precursor (complete filling). 

The conventional sequential steps of self-assembly, infiltration and 

template removal shown in Figure 1.6 can produce defects and cracks in the 

final inverse opal product109. The cracking may occur upon solvent evaporation 

both at the colloidal self-assembly110 and at the precursor infiltration111 stages 

due to a combination of dehydration, contraction19 and associated local capillary 

forces. Hatton et al.109 demonstrated a unique process of colloidal co-assembly 

by combining the self-assembly and infiltration processes into one step. In his 

paper, Hatton reported that the colloidal spheres were allowed to assemble 

directly from a precursor containing a sol-gel solution for the fabrication of SiO2 
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inverse opals. Robust and crack-free inverse opal films were fabricated after 

template removal due to the “gluing” action of the sol-gel matrix. 

 

1.5 Hollow Spheres 

Metal oxide hollow spheres can be prepared by different approaches including 

template-based or template-free approaches7. Template free approaches using 

hydrothermal or solvothermal reactions112 have been proved to be simple and 

efficient. Hydrothermal and solvothermal reactions are very similar, where the 

synthesis is conducted in a stainless steel autoclave in a hot environment under 

high pressure (T>100°C, P>1 atm)113. The only difference is that in 

hydrothermal method, water is used as the main solvent, but solvothermal route 

is usually not aqueous114. In one study, Yang et al115 synthesised tin oxide 

(SnO2) hollow spheres by directly adding tin chloride (SnCl4) to the aqueous 

solution of sucrose and then hydrothermally treating it at 190°C for 24 h. A 

composite of SnO2 and carbon was yielded through condensation 

polymerisation and carbonisation of sucrose. The SnCl4 was hydrolysed and the 

resulting SnO2 hollow spheres were obtained by removing the carbon core via 

calcination. In another study, Hoa et al114 synthesised Tungsten oxide (WO3) 

hollow spheres using solvothermal method. Tungsten hexachloride (WCl6)  and 

urea were dissolved in ethanol in a Teflon-lined autoclave and treated at 180°C 

for 8 h followed by calcination at 400°C in air for 2 h to produce the hollow 

spheres. In both of these studies, the surface of the hollow spheres produced 

were not smooth as a result of formation of too many aggregates of 

nanocrystals. It is also difficult to control the size and morphology of hollow 
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spheres with these approaches. Therefore, template-based methods are still 

promising for the synthesis of high quality hollow spheres with uniform 

morphologies7. In template-directed synthesis, colloidal spheres are used 

directly as templates to produce hollow spheres of different materials including 

metal oxides116. Fabrication of these materials does not require the prior self-

assembly of the colloidal spheres into colloidal crystals as is the case for the 

fabrication of inverse opal structures27. In this method, the desired metal oxide 

precursor gradually covers and stabilises onto the colloidal sphere core 

template by sol-gel processes (via hydrolysation and condensation reactions)7. 

Then by removing the template by wet chemical etching or calcination, the 

hollow sphere material is produced. The pore size of the hollow sphere is 

determined by the diameter of the original colloidal spheres. Figure 1.7 

illustrates the schematic diagram of template-directed synthesis for the 

production of metal oxide hollow spheres using PMMA colloidal spheres as the 

serving template. 

 

Figure. 1.7 Schematic diagram of template-directed synthesis for the 

production of metal oxide hollow spheres. 

As it can be seen in Figure 1.7, first the polymer colloidal sphere is 

exposed to a precursor containing one of various metal salts such as alkoxides, 

acetate or nitrate in the presence of water. The precursor gradually covers the 
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sphere via controlled surface precipitation of inorganic metal oxide precursors  

or by direct surface reactions utilising specific functional groups on the polymer 

sphere cores to create core-shell composites112, 117. The precursor’s tendency 

to cover the sphere can be due to the slightly charged nature of the PMMA 

sphere forming a weak electrostatic interaction with the metal salt. Then by the 

sol-gel process, the precursor is geleated  and stabilised onto the PMMA 

sphere.  After further ageing and condensation of the sol-gel system, the sphere 

template is removed forming the metal oxide hollow sphere118, 119.  

In template-directed approaches via sol-gel reactions for both metal 

oxide hollow spheres and inverse opals, the core templates (here PMMA 

spheres) are removed with appropriate solvents in the final step in order to yield 

the porous nanostructures. The core organic spheres are dissolved into 

macromolecule chains with the solvent and diffuse through defects in the metal 

oxide (mesopores)120 of the  metal oxide shells and frameworks117. The organic 

polymer spheres can also be thermally removed through a calcination process, 

in which the polymer spheres are decomposed and oxidised into CO2 and 

water. It is important to increase the calcination temperature gradually during 

the template removal stage. This can prevent the precipitation of unwanted 

carbon deposits in the mesopores of metal oxide shells which may block these 

very small pores and result in an unsuccessful template removal (with some 

traces of template residues being left behind)120. The gradual calcination 

process can also help to keep the integrity of the porosity of the final 

structures121 (i.e. the macropores of hollow spheres and inverse opals) and 

prevent their collapse (Chapter 5).       
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Titanium dioxide coatings have been explored frequently due to the 

excellent photocatalytic properties of TiO2
119, 122-125

. In template-directed 

synthesis via sol-gel coating, the polymer spheres are coated usually by 

titanium tetra-isopropoxide (TTiP) as the main sol-gel precursor, however 

alternatives such as Ti(SO4)2 have also been used124. Similar methods have 

been applied to the coating of polymer spheres with SiO2
118 and SnO2

119. The 

production of solid TiO2 spheres (core spheres) have also been reported in the 

literature. Wang et al126 synthesised the TiO2 spheres by a rapid microwave 

treatment (at 150°C for 10 minutes) of spherical titanium glycolate precursors, 

obtained by mixing tetraethyl titanate with ethylene glycol followed by adding 

the precursor into a solution containing acetone and water. Due to the nature of 

TiO2, their hollow sphere nanostructures can be promising in photovoltaic and 

photocatalytic applications, the oxide layer is porous and therefore has a high 

surface area due to the presence of inner and outer surface areas of the hollow 

sphere7.  

1.6 Thesis Objectives 

The principles of PEC water splitting and dye sensitised solar cells 

(DSSC), the two applications used to test the photocatalytic properties of the 

novel nanomaterials in this work, will be explained. Additionally, characterisation 

techniques including electron microscopy (SEM and TEM), energy dispersive X-

rays (EDX), dynamic light scattering (DLS), powder XRD and UV/Vis 

spectroscopy will be explained. The characterisation techniques used to study 

the optical and crystal properties of colloidal crystals and inverse opals will also 

be discussed.    
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The production of high quality monodisperse PMMA colloidal spheres 

using the surfactant free emulsion polymerisation (SFEP) process, and using 

them to fabricate highly ordered PMMA colloidal crystals, are the first two 

experimental objectives in this thesis.  

Once self-assembled, the PMMA colloidal crystals have been used as 

templates for the production of different 2D and 3D metal oxide inverse opal 

nanostructures including TiO2, ZnO and Fe2O3 inverse opal systems. 

PMMA colloidal spheres were also be used prior to self-assembly to 

produce various metal oxide hollow sphere nanostructures including TiO2, SiO2, 

ZnO and CuO hollow spheres. A new method of combining seeded 

polymerisation with the templating approach has been developed in this work 

for the production of novel sphere-in-sphere hollow spheres of a SiO2/TiO2 

system with increased surface area.  

The final objective of this thesis is to produce novel inverse opal 

nanostructures and utilise them as photoelectrodes in both PEC water splitting 

and dye sensitised solar cell (DSSC) devices. Bilayered TiO2/ZnO inverse opal 

nanostructures have been synthesised for the first time using a modified 

templating approach. The successful synthesis of hybrid hierarchical 

nanostructures of bilayered TiO2/ZnO with further growth of ZnO nanorods 

coupled with quantum dots has been the ultimate goal of this thesis. Such a 

hierarchical system can increase the photoefficiency of photovoltaic devices 

significantly due to opto-electronic enhancement abilities, contributed from each 

individual layer and component of this novel nanostructure.      
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Chapter 2: Applications and Characterisation Methods 

 

2.1 Abstract 

In this chapter, the principles of PEC water splitting and dye sensitised solar 

cells (DSSCs) are explored. The PEC testing of the synthesised nanostructures 

gives direct insight into the properties and performance of these materials. 

Additionally, the general principles of electron microscopy (SEM and TEM), 

energy dispersive X-rays (EDX), dynamic light scattering (DLS) and powder 

XRD, and their use as characterisation techniques, are explained. The 

principles of band gap determination of semiconductors using UV/Vis 

spectroscopy will also be discussed. Some characterisation techniques which 

can be used to study the optical and crystal properties of colloidal crystals and 

inverse opals due to their periodic natures are also explored.     

 

2.2 Photoelectrochemical (PEC) Water Splitting 

Using the sun’s energy to split water in order to create hydrogen is a promising 

development to replace fossil fuels127. Unlike steam-reforming of hydrocarbons, 

photocatalytic water splitting is an inexpensive, renewable and an  

environmentally safe process with minimum greenhouse gas emission128 . Metal 

oxide semiconductors have been widely used in PEC water splitting devices 

due to their relative low cost, their inertness and scalability for production 

purposes129. Their performances in harvesting solar energy as a renewable 

energy source are critical in determining the efficiency of hydrogen generation. 

The process of splitting water generally consists of three steps: 



36 
 

1) When the energy of incident photons from sunlight  matches  or exceeds the 

band gap of a photocatalyst, the photogenerated electrons are transferred from 

the valence band (VB) to the conduction band (CB). An equivalent number of 

holes is then left in  the valence band producing electron – hole pairs.  

2) The excited electron – hole pairs migrate to the surface of the photocatalyst. 

3) The electron-hole pairs cause redox reactions with the chemical species 

(electron donors or acceptors) adsorbed on the photocatalyst surface. 

In the case of an n-type semiconductor photocatalyst, the holes at the 

surface of the electrode react with the water molecules of an aqueous 

electrolyte, oxidising them to dioxygen (O2). Subsequently, electrons travel 

through the underlying substrate and are transported to the counter electrode 

(cathode) where they reduce water molecules to dihydrogen (H2). At a high 

current density, hydrogen and oxygen generation can be visualised through the 

evolution of gas on the cathode (usually platinum) and the photoanode (the  

photocatalyst) respectively. For a p-type semiconductor electrode, the opposite 

occurs resulting in O2 and H2 formation at the counter electrode and 

semiconductor electrode respectively (i.e. cathodic photocurrent behaviour as 

opposed to anodic photocurrent from n-type semiconductors). 

Figure 2.1 shows the schematic diagram of a PEC cell configured for an 

n-type photoanode water splitting system. It is common practice for PEC water 

splitting experiments to use a reference electrode (usually Ag/AgCl). This is 

used to measure half-reactions in the PEC cell and by doing this Fermi energy 

levels can be measured with respect to the reference electrode energy level.  
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Figure. 2.1 A schematic showing the principle of a photo-electrochemical cell 

for n-type photocatalytic water splitting. 

When the photoanode is immersed in a redox electrolyte, the charge 

carriers are transferred at the semiconductor/electrolyte interface until an 

equilibrium is reached (i.e the same Fermi energy level at both sides of the 

interface is reached). This charge transfer process results in bending of the 

energy bands either upwards (n-type semiconductor) or downwards (p-type 

semiconductor) due to the generation of an electric field close to the surface of 

the semiconductor. This phenomenon is called Schotky contact130, where the 

recombination of the electrons and holes are prevented and the electrons are 

trapped at the interface surface states. 

Upon light illumination, a photovoltage is generated in the photoelectrode 

due to the separation of the photogenerated electron(e-) – hole (h+) pairs in the 

Schotky contact region. The charge separation persists until the bands are 

flattened. Then the charge separation and photovoltage can no longer be 

increased upon light illumination anymore. The presence of light leads to 

lowering of the H+/H2 potential. By applying an external bias the Fermi level of 
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the cathode (Pt counter electrode) increases to above the H+/H2 energy level, 

leading to electron transfer to H+ ions of the electrolyte for hydrogen 

generation131.   

For a spontaneous water splitting to occur, the semiconductor should 

have a valance band edge lower and a conduction band edge higher than that 

of oxidation and reduction potential of water respectively. Another requirement 

to satisfy this spontaneous process is that the semiconductor photoelectrode 

should have a minimum band gap of 1.9 eV. Based on the Gibbs free energy 

change for splitting water which is 237 KJ mol-1, the minimum band gap 

requirement should be 1.23 eV (at room temperature), but due to 

thermodynamic losses and overpotentials (about 0.7 eV)130, a higher voltage is 

needed to ensure fast kinetics at different stages. Figure 2.2 illustrates the 

relationship between the band edge energies of a selection of semiconductors 

with respect to water splitting redox potentials.   

 

Figure. 2.2 Schematic representation of relationship between the band position 

of some semiconductors with respect to water redox potential (figure was 

reproduced from Li et al132).  
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 Reading from Figure 2.2, cadmium sulphide (CdS), for example, is a 

suitable candidate for spontaneous water splitting (without applying a bias 

potential), as the valence band and the conduction band edge position straddles 

the water redox potential. Moreover, the band gap of 2.3 eV allows for light 

harvesting in the visible light region utilising a significant portion of the solar 

spectrum. On the other hand, iron oxide (Fe2O3) cannot split water unassisted 

due to its conduction band edge being less than that of reduction potential of 

water. For metal oxides, the valence band edge mainly consists of p-band 

formed by the p orbital of oxygen anion and the conduction band edge consists 

by the d and/or s-bands formed by the d and/or s orbitals of the transition metal 

cation in the oxide. However, the valence band can also be formed by the d 

orbital, when the transition metal cation has filled or partly filled d orbitals133. 

The positon of band gaps for metal oxides can be determined mainly by the 

Madelung energy (i.e. the electrostatic energy of each ion in the crystal lattice), 

the electron affinity of oxygen, the ionisation potential of the transition metal in 

the case of the metal containing no other metal cations, the polarisation effect 

between the atomic orbitals and the mutual interactions between the valence 

band and the conduction band133. The fluctuation of the valance band edge is 

due to the symmetry of the crystal, and the electronic structure of the 

neighbouring cations. In the case of ZnO, for example, the filled 2p levels of O2- 

and empty 4s levels of Zn2+ are separated when the ions are brought together 

to form a solid134.  

Water splitting experiments are usually set up in a three electrode 

system at ambient conditions with Ag/AgCl acting as the reference electrode. 

The performance of any PEC cell can be best described by measuring its 
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efficiency. Assuming that all the current that follows through the outer circuit 

corresponds to water splitting reaction without any competing side reactions, 

the photon-to-hydrogen efficiency can be calculated from the following 

equation135, 136 :  

 = J(E°
rev - |Eapp|) / Ilight                                            (Equation 2.1) 

where  is the photoconversion efficiency, J is the photocurrent density 

(mA / cm2), Ilight is the incident light intensity (mW / cm2), E°
rev is the standard 

reversible potential (1.23 eV) and Eapp is the applied (bias) voltage that is added 

to the system to assist the water splitting reaction. Eapp = Emeas - Eaoc , where 

Emeas is the electrode potential (vs Ag/AgCl) of the working potential and Eaoc is 

the electrode potential of the same working electrode under open circuit 

condition under illumination. The measured potential versus the Ag/AgCl of the 

photoelectrode can be converted to the potential with respect to the reversible 

hydrogen electrode (RHE) according to Nernst equation137: 

ERHE = EAg/AgCl + 0.059 pH + E°Ag/AgCl                  (Equation 2.2) 

(where E°Ag/AgCl = 0.1976 V at 25°C and pH = 13.6 for a PEC cell  in a 

conventional 1 M KOH electrolyte solution135).  

Since Fujishima’s experiment (the pioneer of first PEC water splitting 

experiment in 1972)138, one of the major challenges for scientists has been to 

optimise the photocatalytic properties of the semiconductor photoelectrode to 

enhance light harvesting. In this context, various attempts have been made to 

enhance the design, synthesis routes and modifications of semiconductor 

materials. Utilising nanostructured semiconductors such as metal oxide inverse 
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opals and hollow spheres with high surface areas and enhanced opto-electronic 

properties can be considered beneficial as photoanode materials in PEC water 

splitting devices.  

It has been reported that the efficiency of water splitting reaction is 

greatly influenced by the electron transfer process, band gap energy and band 

structure of the semiconductor photoelectrodes. Thus, enhancement of visible 

light harvesting can significantly improve the efficiency of the PEC water 

splitting devices. In this regard, the semiconductor nanostructures can be 

modified by various strategies such as: doping, metal ion loading, composites of 

metal oxides, dye-sensitisation and bilayered systems131. 

 In this work, bilayered metal oxide inverse opal (TiO2/ZnO) 

nanostructures are the photoanodes of choice to increase light harvesting 

properties through the formation of heterojunctions at the interface which may 

enhance charge separation and suppress the rate of recombination of the 

photogenerated electron-hole pairs. Moreover, the photonic properties of each 

individual inverse opal may assist to  enhance the efficiency of the system102, 

103, 139, 140. Such bilayered inverse opals have been successfully combined with 

another nanostructure, namely ZnO nanorods in order to further improve the 

light harvesting of the system. One of the fundamental properties of nanorods is 

their high electron diffusion length due to the direct electron pathway they offer, 

as they are one-dimensional with minimal cracks or grain boundaries2, 4. 

Therefore the growth of nanorods on the bilayered inverse opals may reduce 

charge traps and recombination centres. Additionally, their high surface area 

may be beneficial in PEC light harvesting. Furthermore, the hybrid photoanode 

nanostructures, have been sensitised with narrow band gap CdSe/ZnS core 
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shell quantum dots to increase light harvesting in the visible region of the 

spectrum in this work. The synergistic effect originating from the contribution of 

each individual layer and component of these hierarchical nanostructure 

photoanodes for the enhancement of the overall PEC water splitting efficiency, 

will be discussed in Chapter 6 comprehensively.         

 

2.3 Dye Sensitised Solar Cell (DSSC) 

The amount of energy coming from the sun to earth is gigantic; it is estimated to 

be 3 × 1024 J/year. This number is about 104 times more than that of current 

consumption by mankind. In other words covering only 0.1% of the earth 

surface with conversion efficiency of 10% would suffice to satisfy the energy 

needs for all the earth’s human population2.  

The conversion of solar energy to electricity by photovoltaic solar cell 

devices has undergone three generations of evolution from the initial single 

silicon solar cells to the second semiconductor thin film based solar cells and 

now, the third generation solar cells represented by dye sensitised solar cells 

(DSSCs)2, 141. Although DSSCs efficiency performances are not yet compatible 

to the first and second generation solar cells (10-11% compare to 20-30% 

reported for the first and second generation)2, in terms of cost and substrate 

flexibility they are superior, which keep researchers enthusiastic to investigate 

them. The first DSSC was developed by O’Regan and Gratzel in 1991142. Their 

cell was based on a film of TiO2 nanostructure which was sensitised with a 

ruthenium complex in an organic electrolyte. They achieved conversion 

efficiencies between 7.1-7.9% under simulated solar light illumination. Their 
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success was mainly due to two important factors; first the use of a TiO2 

nanostructure was responsible for achieving high surface area and thus 

allowing better absorption of dye molecules onto it. Secondly, due to the strong 

chemisorption between the dye molecules and the TiO2 film through the 

carboxylic groups of the ruthenium complex. Since then researchers have been 

working on DSSCs to increase both the conversion efficiency and the stability of 

the cells. Recently, more sophisticated tandem cells143 which are the 

combination of two types of DSSCs have been developed and show great 

promise. 

Figure 2.3 shows the schematic principle of a DSSC. In this system, two 

electrodes exist; an anode and cathode which are made up of usually 

transparent FTO glasses. On the anode, the semiconducting nanomaterial, 

such as TiO2, is first deposited followed by coating by a sensitising dye (usually 

Ru complexes). This electrode is the working electrode (or photoanode) of the 

cell. On the cathode a thin film of platinum (Pt) is coated and is called the 

counter electrode. The two electrodes are placed parallel to each other with 

face to face configuration with a space of about 30-40 microns. This space is 

then filled with an electrolyte solution (usually iodide (I -) / triiodide (I-3) couple) 

acting as a conducting media. Under illumination of light, the dye molecules 

interact with photons and electrons are excited to the LUMO (D*) that is 

energetically above the conduction band edge of the semiconductor. This 

photo-excitation leads to the generation of electron – hole pairs. The photo-

generated electrons are injected into the conduction band of the semiconductor, 

while holes are left behind in the oxidised ground state (D+) of the dye and are 

rapidly regenerated (reduced to D0) by electron donation from iodide in the 
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electrolyte. This dye regeneration prevents the back transfer of electrons from 

the semiconductor to the dye (or so called “suppressing recombination”). The 

electrons in the semiconductor conduction band travel through an external 

circuit to the Pt counter electrode where they regenerate the electrolyte by 

reducing the triiodide to iodide and thus completing the circuit.  

 

Figure. 2.3 Schematic principle of operation in DSSC (red arrows represent the 

movement of electrons).  

The voltage generated under illumination corresponds to the difference 

between the Fermi level of electron in the semiconductor (Ef) and the redox 

potential of the electrolyte (Ered)
144 which is also called the open-circuit voltage 

(𝑉𝑜𝑐). Figure 2.4 shows a diagram illustrating the origin of 𝑉𝑜𝑐 in a DSSC.  The 

variation of 𝑉𝑜𝑐 can be explained by a shift of the conduction band edge 

potential of the semiconductor (Ecb) and/or a change of electron lifetime (𝜏). In 

terms of electron lifetime, as electron lifetime decreases, back recombination 

increases, resulting in a decrease in 𝑉𝑜𝑐. A shift in conduction band edge 



45 
 

potential of the semiconductor to a lower level can also decrease the value of 

𝑉𝑜𝑐 by reducing the difference between Ered and Ef. For example, heating145 the 

semiconductor based photoelectrode during a DSSC experiment can shift the 

conduction band edge to a lower level and result in a decrease in 𝑉𝑜𝑐.    

 

Figure. 2.4 A schematic showing the origin of 𝑽𝒐𝒄. Ef : Fermi level, Ered : 

electrolyte redox level, Ecb : conduction band edge level of semiconductor and 

  𝝉 : electron lifetime145.    

The role of the dye in DSSCs is important. It acts as an “antenna” for 

photon capturing in the visible region of solar spectrum and also in assisting 

electron injection into the photoanode semiconductor surface146. Organic dyes 

have been intensively studied in recent years for both increasing the optical 

properties and better adsorption onto the semiconductor surface. The N-719 

(ditetrabutylammonium-cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-

dicarboxylato) ruthenium(II)) is one of the various organic dyes that is also 

commercially available. It possesses a narrow band gap of 2.29 eV with 

absorption band in the visible region at about 535 nm147. It also has a high 
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LUMO relative to the semiconductor conduction band which makes the electron 

injection energetically favourable.  

Optimising the electrolyte is another important factor in enhancing the 

conversion efficiency in DSSCs, as it has a direct role in improving the open 

circuit voltage (𝑉𝑜𝑐). It is therefore important to find electrolytes with redox 

couples which are closely matched to the oxidised dye energy level (HOMO) to 

increase the 𝑉𝑜𝑐. Ionic electrolytes are promising in this regard. The third 

important factor for enhancing the efficiency is to optimise the photoanode 

material used in DSSCs. A good photoanode material can significantly reduce 

the energy loss caused by for example charge recombination, electron trapping 

(from defects), optical reflections etc. Nanostructure materials are promising 

candidates in this regard, as their properties such as porosity, high internal 

surface area, enhanced charge transfer and electron transport can contribute to 

increased electron diffusion length, decrease back recombination and also 

enhance physical effects such as photon localisation. All these enhancement 

factors can contribute to reduce energy loss in DSSCs2. 

The performance of DSSC can be determined by measuring the power 

conversion efficiency (). It is defined as the percentage of the solar power that 

is converted from absorbed light to electrical energy and can be estimated from 

the following equation141: 

𝜂 =  
𝑃𝑚

𝑃𝑖𝑛
= 

𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑖𝑛
                             (Equation 2.3) 

where 𝑃𝑖𝑛 is the input power, 𝑃𝑚 is maximum power output, 𝐽𝑠𝑐 is the short 

circuit photocurrent density (i.e. when voltage is equal zero), 𝑉𝑜𝑐 is the open 
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circuit voltage (when current is equal zero) and 𝐹𝐹 is the fill factor. The fill factor 

can be calculated using the following equation: 

𝐹𝐹 =
𝐼𝑚𝑉𝑚

𝐽𝑠𝑐𝑉𝑜𝑐
 = 

𝑃𝑚

𝐽𝑠𝑐𝑉𝑜𝑐
                             (Equation 2.4) 

where 𝐼𝑚 and 𝑉𝑚 are the photocurrent and voltage at maximum power 

respectively. The maximum photocurrent and voltage from a DSSC are defined 

by 𝐽𝑠𝑐 and 𝑉𝑜𝑐. However, under both these conditions, the power of the solar cell 

is zero. The fill factor (𝐹𝐹), represents the electrochemical efficiency of the 

DSSC (Equation 2.4). It is defined as the ratio of the maximum power from the 

DSSC to the product of 𝑉𝑜𝑐 and 𝐽𝑠𝑐 and can be obtained from the current-voltage 

(I-V) curve as shown in Figure 2.5. The fill factor is measured form the area of 

the largest rectangle which can fit into the I-V curve and corresponds to the 

maximum power output.  

 

Figure. 2.5 A typical I-V curve representing fill factor (𝑭𝑭). Short circuit current 

( 𝑱𝒔𝒄), open circuit voltage (𝑽𝒐𝒄), maximum power output (𝑷𝒎), photocurrent at 

maximum power (𝑰𝒎) and voltage at maximum power (𝑽𝒎). 
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A large fill factor is desirable, as it corresponds to an I-V sweep that is more 

square-like141. Its value is always less than one. The closer the 𝐹𝐹 to 1, the 

greater the electrochemical efficiency. From Equation (2.3), it is clear that in 

order to enhance the photoefficiency of the cell, efforts should be made to 

increase 𝐽𝑠𝑐, 𝑉𝑜𝑐 and 𝐹𝐹. 

It is known that the short circuit current (𝐽𝑠𝑐) can be calculated by the 

following expression148:  

𝐽𝑠𝑐= q lh inj cc I0                                       (Equation 2.5) 

where q is the elementary charge, lh is the light harvesting efficiency of the cell, 

inj is the charge-injection efficiency, cc is the charge-collection efficiency and I0 

is the light flux. lh is commonly obtained by the amount of adsorbed dye and 

light scattering of the photoanode material and cc is determined by the 

competition between the charge collection and recombination in the cell. 

Therefore by optimising these two parameters, 𝐽𝑠𝑐 can be increased which 

subsequently leads to higher efficiencies.  

As it was previously stated, 𝑉𝑜𝑐 can be considered as the voltage 

generated corresponding to the difference between the Fermi level of the 

electron in the semiconductor and the reduction energy level of redox 

electrolyte under illumination. 𝑉𝑜𝑐 is also related to the relative electron injection 

and recombination current densities and is proportional to the following 

expression149, ln (Jinj / ncb ket [I3
-]), where Jinj is the charge flux resulting from the 

dye-sensitised electron injection, ncb is the concentration of electrons at the 

surface of the photoanode material, [I3
-] is the concentration of the triiodide ions 
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in the electrolyte and ket is the rate constant for triiodide reduction to iodide (or 

electron recombination). Therefore, by moving the conduction band edge level 

of the photoanode semiconductor to a more negative (i.e. higher) 

electrochemical potential or by suppressing the rate of electron recombination 

under the same amount of charge flux (Jinj), VOC is increased and subsequently 

leads to higher efficiencies. 

Metal oxide inverse opals140 and hollow spheres7, 150 can be considered 

as promising photoanode nanomaterials in DSSC devices. Their high internal 

surface areas and porosity can result in effective dye sensitisation, electrolyte 

infiltration and charge collection151 leading to efficiency enhancements. Their 

photonic and light scattering properties140 can also give positive contributions in 

this regard. 

 

2.3.1 Light Source for Photoexcitation in Photovoltaics 

The standard light intensity setting is important for reliable testing of 

photovoltaic (PEC water splitting and DSSC) devices, which is related to an 

average power generated by the sun. The power density at the sun’s surface is 

62 MW m-2 and it reduces to 1353 W m-2 at the point just outside the earth’s 

atmosphere. As solar light passes through the atmosphere, the spectrum is 

attenuated by scattering and absorption due to atmospheric conditions152. If 

parameter 𝑙0 is the thickness of the atmosphere normal to the earth’s surface, 

then the optical path length of solar radiation across the atmosphere (𝑙) at an 

incident angle (𝛼) is given by153:   
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    𝑙 =
𝑙0

𝑐𝑜𝑠𝛼
                                             (Equation 2.6) 

The ratio 𝑙/𝑙0 is called the air mass factor (AM), since the absorption 

increases with the mass of air through which the radiation passes. Outside the 

earth atmosphere, the spectrum is denoted as AM 0 and on the surface of the 

earth for perpendicular incidence is denoted as AM 1. For moderate weather, 

the standard spectrum used is AM 1.5153, which corresponds to an incident 

angle of 48.2° relative to the surface normal and gives a mean irradiance of                 

100 mW cm-2, defined as 1 sun.  

In this work, the light source used was a focused 300 W xenon arc lamp 

to simulate solar radiation with a focused illumination spot area of 1 cm2. For 

the DSSC experiments (Chapter 7), the light source was calibrated to comply 

with the standard 1 sun power radiation set by the International Electrochemical 

Commission (IEC) (standard #60904-1, 2006). This gives  power of 100 

mW  cm-2 with an Air Mass 1.5 Global  (AM 1.5G) filter at a constant 

temperature of 25°C. For the PEC water splitting experiments (Chapter 6), the 

light source was calibrated and set at 300 mW cm-2. The final photoefficiency 

results were then numerically recalibrated to the 1 sun radiation. As the 

experiments were designed to compare the light harvesting properties of 

different nanomaterials, it was important to use the same light power settings 

throughout the work, so there were no discrepancies between results. 

The AM 1.5G filter used in this work was to ensure that the solar 

spectrum was correct for standard testing conditions. In order to exemplify how 

the filter affects the wavelength of incident light in photovoltaic experiments, two 
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radiation spectra were obtained, one representing the xenon light source 

spectrum with AM 1.5G filter and one without the filter (Figure 2.6). 

 

Figure. 2.6 Output spectrum of xenon light source with (blue) and without 

(black) the AM 1.5G filter. 

 From Figure 2.6, it can be seen that the intensity of the light with the filter 

present (blue) is decreased and the spectrum looks flatter. This may suggest 

that the spectrum has been corrected for atmospheric conditions where solar 

light intensity is reduced by absorption or scattering. A large portion of both 

spectra lie in the visible region (390 to 700 nm) with some extending into the 

infrared and UV regions. This suggests that the xenon light source used in this 

work for photoexcitation purposes was very close to that of sunlight.    

 

2.4 Scanning Electron Microscopy (SEM) 

The scanning electron microscope (SEM)154 is a commonly used tool in 

materials science to observe the nano and microstructure of samples155. The 
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fundamental mechanism behind the electron microscope is the observation of 

electron interaction with a material rather than photon (optical) interaction, as 

seen in optical microscopy. SEM uses a high-energy beam of electrons to 

interact with the atoms that make up the sample, producing signals, which 

contain information about the sample’s surface composition and topography. 

The electron beam displays wave-like properties. For an electron microscope, 

the typical electron energy ranges from 5 to 30 keV, which corresponds to a 

sub-nanometre de Broglie wavelength range of 0.017 to 0.007 nm respectively.  

Different signals can be generated when an electron beam comes into contact 

with the sample. First, an electron source accelerates a stream of high energy 

electrons toward a sample. The high energy electrons are then decelerated 

upon contacting the surface of the sample where a number of scattering events 

takes place. High energy backscattered electrons and lower energy secondary 

electrons can both be released, after bombardment, from the atoms close to 

surface of the sample to construct an SEM micrograph. X-rays can also be 

emitted by relaxation of electrons to lower orbitals in atoms close to the surface 

of the sample which can give compositional information. 

The backscattered electrons and secondary electrons can be 

distinguished, due to differences in their energies, by the detector. 

Backscattered electrons have energy near to that of the incident electron beam, 

whereas secondary electrons typically have energies of <50 keV. Backscattered 

electrons are ones which undergo elastic interactions with the sample surface, 

whereas secondary electrons originate due to inelastic scattering of the incident 

beam of electrons. Such secondary electrons are ejected from the K-shells of 

atoms at the surface or within a few nanometres of the surface of the sample. In 



53 
 

SEM, in contrast to TEM, it is inelastic scattering which provides information on 

the sample. Inelastic scattering is dominant when the energy of the electron 

beam is in the range of 5-30 keV. 

 In the SEM, a beam of electrons is focused and raster scanned across 

the sample. The electrons produced from the sample are detected as a function 

of the position of the incident beam. Figure 2.7 shows a schematic view of a 

scanning electron microscope (SEM) instrument. The electron gun produces a 

high intensity beam of electrons which can be focused by the lenses. In this 

work, the electron source is a tungsten hair-pin filament. Electrons are ejected 

from a metal filament through thermionic emission156. A current is applied 

across the filament at the top of the column of the microspore. In this thermionic 

electron source, the current heats the filament via resistive heating, where the 

work function of the material is overcome via heating at a high positive voltage 

bias of +5-20 KV which releases electrons with high kinetic energy; accelerating 

electrons through the column.  

 

Figure. 2.7 A schematic showing scanning electron microscope (SEM) 



54 
 

  The role of the condenser lenses is to focus the electron beam into a 

small electron probe (reducing the beam size) and adjust the shape. The 

aperture removes any unwanted stray electrons. The two pairs of scanning coils 

deflect the electron beam to achieve raster scanning and are controlled to 

image the sample surface in a scanning mode. The beam is deflected along a 

straight line, at the end of this line it is deflected to the beginning of the next line 

and so forth. At the same time the signal at each point being scanned is 

displayed on the monitor to be observed by the operator. The final sets of 

lenses are the objective lenses, converging the electron beam into a fine and 

focused beam. A stigmator can be found inside the objective lenses. The 

stigmator is a set of coils that have two dimensional control (x-y) of the beam 

and corrects any astigmatism of the beam. They can form a round sharp 

electron beam which focuses on the sample surface.  

 A vacuum environment is also needed by the SEM. It prevents the 

electron source from oxidising due to the presence of oxygen in the chamber 

which can reduce the lifetime of the tungsten filament source and thus lead to a 

change in the energy of the emitted electrons. The vacuum also increases the 

mean free path of the electrons in the sample chamber. Furthermore, it 

prevents electron beam scattering inside the column. The vacuum is maintained 

by a diffusion pump backed by a roughing rotary pump. All the SEM images in 

this work have been taken using a JEOL JSM-820 SEM with a EDX detector. 

2.5 Energy Dispersive X-ray Spectroscopy (EDX) 

In addition to backscattered and secondary electron detection, an SEM 

equipped with an X-ray detector can be used to analyse the composition of the 
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sample based on X-ray fluorescence. The energy dispersive X-ray (EDX) 

detector measures the energy of the X-ray created via the bombardment of 

electrons striking the surface of the sample. If an inner-shell electron in an atom 

is excited above the Fermi level by the incident electron beam in the SEM and 

ejected, then another electron in a higher energy level can lose energy in the 

form of an X-ray to fill the empty state155. The transition is allowed as long as 

the dipole selection rule is obeyed (i.e. electrons from p-orbitals may fill empty 

states in s-orbitals, but s-orbitals in higher shells cannot). The energy of the X-

ray corresponds to the binding energy difference between the core level and 

upper level. Moreover, each element has its own distinctive X-ray emission. 

There are also primary signals present due to electron relaxation via the 𝐾𝛼 

transitions, where an electron in the 𝐿 shell replaces a missing electron in the 𝐾 

shell. The distinctive elemental X-ray emissions are independent of the kinetic 

energy of the primary electron. X-ray fluorescence can also be generated by 

other transitions but at a lower energy. Together with the 𝐾𝛼 emission, it is 

possible to identify both the elements and their relative concentrations in the 

sample.   

The X-ray detector is cryogenically cooled by liquid nitrogen. The 

detector is a semiconductor diode, a few millimetre thick. The electron-hole 

pairs are generated by the X-rays which are separated by the electric field in the 

diode. The current produced across the device can then be analysed. 

2.6 Transmission Electron Microscopy (TEM) 

In TEM, electrons are emitted from a sharp tip of an electron gun which are 

accelerated through a vacuumed column with the presence of electrostatic and 
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magnetic fields using various lenses to form a sharp electron beam in the 

direction of the sample. The electron beam is transmitted through the sample, 

interacting with the sample as it passes through. TEM gives a high spatial 

resolution due to the small de Broglie wavelength of electrons when they are 

accelerated to high speeds155.  The resolution can be limited by imperfections in 

the optics and also by vibrations of atoms in the sample. An image is formed 

from the interaction of the electrons transmitted through the sample; the image 

is magnified and focused and can be displayed on a fluorescent screen or 

detected by a camera. The sample has to be very thin (around 100 nm) so that 

most of the electrons can pass through it without significant inelastic scattering. 

The ultra-thin sample is usually mounted on a copper mesh supporting a 

transparent thin film to hold such sample. All the TEM images in this work have 

been taken using a Hitachi-7100 TEM with an axially mounted Gatan Ultra-Scan 

1000 CCD camera. 

 

2.7 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS)55, 157, 158, also known as photon correlation 

spectroscopy159, is a technique for determining the size distribution profile of 

macromolecules, proteins, nanoparticles or spherical colloidal polymers, by 

measuring the random changes in the intensity of light scattered from a 

suspension or a solution.  

Light can be scattered by a molecule or a particle with a diameter much 

smaller than the wavelength of the light if the molecule has a polarizability 

different from its surroundings. This is called Rayleigh Scattering. The intensity 
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of the scattered light is related to the direction of polarisation of the incident 

light, scattering angle, and the properties of the solution itself. Assuming the 

incident light is linearly polarised with defining angles, then the scattered light 

will also be linearly polarised. The direction of polarisation lies in the plane 

determined by the direction of the incident light beam and the scattering 

direction157. If the scattered light is projected as an image onto a screen it will 

generate a “speckle” pattern of dark and bright spots160, in which the dark spots 

correspond to the regions where the diffracted light from the particles arrives out 

of phase interfering destructively and the bright spots correspond to the regions 

where the diffracted light arrives in phase interfering constructively. When this 

behaviour is extended to a very large number of particles in solution, it results in 

fluctuations in light intensity55, as a result of their Brownian motion (the random 

motion of the suspended particles, colliding with the solvent molecules). In such 

a system, the distance between the particles is constantly changing which 

results in a Doppler Shift between the frequency of incoming light and the 

frequency of the scattered light, which results in the broadening of the scattered 

wavelength. The fluctuation of light intensity depends on the diffusion 

coefficient, 𝐷, which is a measure of the rate of particle motion (diffusion 

velocity) and is given by Stokes-Einstein relation55, 157: 

𝐷 =
𝑘𝑇

6𝜋𝜂ɳa
                                   (Equation 2.7)                          

in this equation, 𝑘 is the Boltzmann constant, 𝑇 is the temperature,  is the 

viscosity of the solution and 𝑎 is the hydrodynamic radius of the particle. An 

important feature in Equation 2.7 is that, it is independent from the charge of the 

diffusing species. Therefore, this equation can be applied to neutral molecules 



58 
 

and particles in the solution. As it can be seen form the equation, the diffusion 

coefficient, 𝐷 is inversely proportional to the radius of the particle, a, and 

therefore, the small particles diffuse faster than larger ones in a system 

undergoing Brownian motion. The rate of the fluctuations in the intensity 

of light depends on how fast the particles are moving158. This is the key 

concept in DLS measurement on the size of the particles in a suspension.  

In a typical DLS experiment, a monochromatic light source, usually 

a laser, is sent through the molecule or particle solution, and the 

scattered light intensity is detected as a function of scattering angle and 

time. The detector is typically a photomultiplier which is positioned at 90° 

to the light source and collect the scattered light from the sample. 

collimating lenses are also used to focus the light source to the centre of 

the sample holder. The lenses also prevent saturation of the 

photomultiplier tube157. The detected spectrum of scattered light which 

are Doppler shifted frequencies as a result of particle movement are 

processed by a device called a digital correlator. This device can convert 

the frequency data into intensity autocorrelation function mathematically 

and plot it as a function of delay time (the function of the correlator is 

essentially to compare the intensity of two scattering signals over a short 

period of time and calculate the extent of similarity between the two using 

the correlation function). The decay of the autocorrelation function is then 

used to extract particle size. Faster decays correspond to smaller 

particles and slower decays to larger particles. For monodisperesed 
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population of particles in a solution, the correlation function 𝐺(𝜏) is treated 

as a single exponential decay157, 159: 

𝐺(𝜏) = 𝑒(−2Г𝜏)                              (Equation 2.8) 

where 𝜏 is the decay time and  Г is the decay constant is proportional to the 

diffusion coefficient (𝐷) and is obtained from the relation: 

           Г = −𝐷𝑞2                                     (Equation 2.9)  

where 𝑞 is the scattering wave vector and is given by: 

          𝑞 =
4𝜋𝑛

𝜆
sin (

𝜃

2
)                               (Equation 2.10)  

where 𝑛 is the refractive index of the sample (particle solution), 𝜆 is the 

wavelength of the laser light source and 𝜃 is the scattering angle (the angle at 

which the detector is located with respect to the sample). After calculating 𝐷 

form Equation 2.9, and inserting it into Stokes-Einstein equation (Equation 2.7), 

the size of the particle, 𝑎, can be determined. DLS can then be extended to real 

samples that contain a distribution of particle sizes by calculating the intensity 

weighted mean size, known as the z-average size by writing the exponential 

decay of autocorrelation function (Equation 2.8) as a power series. The linear 

decay constant will be then proportional to the average diffusion coefficient and 

will be used to extract average particle size. From the DLS data, it is also 

possible to extract size distribution data by converting the measured 

autocorrelation function into what is known as an electric field autocorrelation 

function159. Of course, all these complicated mathematical relations will be 
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solved by using an appropriate DLS  software package161. At the time of 

carrying out the experiments in this work, DLS was unavailable.                           

 

2.8 X-ray Diffraction (XRD) 

Crystal structures of nanomaterials can be identified by use of an X-ray 

diffractometer. Diffraction techniques depend on the interface between waves 

reflected from the periodic arrangement of atoms within the crystal162. In X-ray 

diffraction (XRD), the X-rays strike the surface of a crystal structure and are 

partially diffracted by the atoms in the lattice. The part of the X-ray that is not 

diffracted passes through to the next plane of atoms, where again part of the X-

ray is diffracted and the rest passes through to the next plane. This causes an 

overall diffraction pattern. If the X-rays diffracted by consecutive planes are in 

phase, constructive interference occurs and the diffraction pattern shows a 

peak, however if they are out of phase, destructive interference occurs and 

there is no peak. The angle at which constructive interference occurs defined by 

the spacing between the planes of the lattice and the wavelength of the X-ray; 

following Bragg’s Law163 (Equation 2.11). Diffraction peaks only occur if: 

𝑠𝑖𝑛𝜃 =
𝑛𝜆

2𝑑
                                     (Equation 2.11) 

where 𝜃 is the angle of incidence of the X-ray, 𝑛 is an integer, 𝜆 is the 

wavelength of the incident X-ray, 𝑑 is the spacing between the planes in the 

atomic lattice. Figure 2.8 shows the schematic of Bragg’s law. 
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Figure. 2.8 A schematic of Bragg’s law 

 Figure 2.8 shows that the X-ray traverses an extra length of 2𝑑𝑠𝑖𝑛𝜃 between 

consecutive planes of the lattice. Constructive interference occurs when this 

length is equal to an integer multiple of the wavelength of the X-ray. This is only 

possible because X-ray wavelengths are comparable to lattice spacing. The 

sample under study will have many of these consecutive planes. The 

cumulative effect of constructive interference from successive planes produces 

narrow fringes or Bragg peaks at the angles corresponding to the separation of 

particular sets of planes.  

 An XRD instrument consists of an X-ray source (usually an X-ray tube), a 

sample stage, a detector and a way to vary angle 𝜃. The sample is first placed 

onto the sample stage. The X-ray is then focused on the sample at some angle 

𝜃. The detector arm rotates by 2𝜃 as the sample rotates by 𝜃. By doing this, the 

X-ray source is kept stationary, and the detector is always in the line of sight of 

the diffracted X-ray beam. The detector reads the intensity of the X-ray it 

receives at angle 2𝜃 away from the X-ray source path.  
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The spectrum produced by XRD, consists of a series of diffraction peaks. 

The positions of the peaks are determined by the lattice spacing of the sample 

under study. The phase of the crystal structure can be identified by these 

characteristic peaks. The peak height is an approximation of the peak intensity, 

and the peak area is the real measure of the peak intensity. The peak height 

corresponds to the number of crystallites diffracting X-rays, and can be used to 

determine the composition of the sample. If the sample has a preferred 

orientation, the peak height will be intense at the Bragg angle corresponding to 

the preferred orientation. The crystal grain (crystallite) size can be calculated 

from the Debye-Scherrer equation43, which can be written as: 

𝐷𝑎𝑣𝑔 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                  (Equation 2.12) 

where 𝐷𝑎𝑣𝑔 is the mean crystallite dimension of a particular plane, 𝐾 is the 

shape factor (0.89 in this work), 𝜆 is the wavelength of the x-ray source which 

has a value of 1.540598 Å in this work, 𝜃 is the Bragg angle of the diffraction 

peak (degrees) and 𝛽 is the line-width of the diffraction peak (i.e. FWHM; full 

width half maximum) corrected for instrument broadening (radians 2𝜃). The 

increased periodicity in larger crystallites increases the strength of the 

diffraction of the x-ray for different planes making them narrower and more 

intense. With smaller crystallites which have lower periodicity the peak 

broadens. The shape factor, K, in Equation (2.12) also known as the Scherrer 

constant may vary from 0.62 to 2.08, depending on the shape of the crystal 

domain, but can be taken at 0.89-0.9 for spherical crystals with cubic symmetry 

with mean crystallite size less than 30 nm164. In this work, it was assumed that 
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the crystallites of the diffracting samples obeyed these criteria which would 

correspond to the 0.89 value for the shape factor.  

There are also other factors that determine the width 𝛽 of a diffraction 

peak. These include: the presence of defects to the perfect lattice, differences in 

strain in different crystal grains and the size of the crystallites. Strains are due to 

imperfections within the crystalline lattice, including vacancies, dislocations, 

stacking faults and others. The lattice strain (𝜀𝑠𝑡𝑟) of a particular plane can be 

calculated from the Stokes and Wilson formula165, which can be written as:  

𝜀𝑠𝑡𝑟 = 𝛽/(4 tan 𝜃)                                    (Equation 2.13) 

All XRD patterns were recorded and analysed using a Siemens D500 X-

ray diffractometer with a copper anode emitting at 1.5418 Å and analysed by 

the X’Pert HighScore Plus software.  

 

2.9 UV / Vis Characterisation 

Measurement of diffusive reflectance with a UV/Vis spectrophotometer, is a 

standard method in the study of absorption properties of materials166. In the 

case of semiconducting nanomaterials in photovoltaic applications, band gap 

determination and reflectance/absorption studies are of major interest. In PEC 

water splitting experiments, for example, the charge carriers (photogenerated 

electron-hole pairs) produced by the absorption of photons at wavelengths 

below the semiconductor band gap wavelength are diffused to the electrolyte 

medium (i.e the photogenerated holes for oxygen evolution) and the conducting 

substrate (i.e the photogenerated electrons for hydrogen evolution) which drive 
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the water splitting reactions. These charge carriers have small diffusion lengths 

(~200 nm or less in TiO2), therefore it is important that the semiconductor has a 

large absorption coefficient for sub-band-gap wavelengths. Such absorption 

coefficients can be determined by diffusive reflectance measurements. 

Furthermore, band gap determination of nanomaterials using this spectroscopic 

technique may allow one to test and optimise their band gaps with the aim of 

harvesting as large a portion as possible of the solar spectrum when used as 

photoelectrodes in photovoltaic devices.   

When a semiconductor absorbs photons with energy higher than that of 

its band gap, an electron is transferred from the valence band to the conduction 

band resulting in an abrupt increase in the absorbency of the semiconductor  to 

the wavelength corresponding to the band gap energy. In order to determine the 

precise values for the optical band gaps when using reflectance spectroscopy, 

the measured reflectance values are first converted to absorbance by using the 

Kubelka–Munk transformation function167. This function is generally used for the 

analysis of diffuse reflectance spectra obtained from the weakly absorbing 

samples168. It can be expressed as following: 

𝑘 =
(1−𝑅)2

2𝑅
=

∝

𝑆
                                      (Equation 2.14) 

where 𝑘 is the Kubelka-Munk function which corresponds to the absorbance, 𝑅 

is the reflectance, ∝  is the absorption coefficient and 𝑆 is the scattering 

coefficient. ∝ is related to the incidental photon energy and can be expressed 

using Tauc’s relation169: 

∝ ℎ𝜐 = 𝐴 (ℎ𝜐 − 𝐸𝑔)
𝑚

                                  (Equation 2.15) 
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where 𝐴 is a constant and depends on the properties of the material, ℎ𝜐 is the 

photon energy in eV (ℎ𝜐 =
ℎ𝐶

𝜆(𝑛𝑚)
=

1236

𝜆(𝑛𝑚)
), 𝐸𝑔is the band gap and 𝑚 is a 

constant and takes different values depending on the type of electronic 

transition. For a direct allowed band gap material such as ZnO, =
1

2
 .  

Therefore: 

𝑘ℎ𝜐 = ℎ𝜐
∝

𝑆
=

    𝐴(ℎ𝜐−𝐸𝑔)
1/2

𝑆
                             (Equation 2.16) 

which can be  re-written as: 

(𝑘ℎ𝜐)2 = (
𝐴

𝑆
)

2

(ℎ𝜐 − 𝐸𝑔)                                    (Equation 2.17) 

By plotting  (𝑘ℎ𝜐)2 vs ℎ𝜐, the value of band gap (𝐸𝑔) can be determined 

by extrapolating the linear part of the graph to the horizontal (x) axis.  

An ISP-REF integrating sphere coupled with a fibre optic cable to an ASEQ LR1 

broad-range spectrometer was used to obtain reflectance spectra of the 

nanostructure samples in this work.   

 

2.10 Characterisation of Colloidal Crystals and Inverse Opals   

Studying the internal structure of colloidal crystals and their inverted structures 

inverse opals (Chapter 1) is inherently difficult. Using electron microscopy (SEM 

and TEM) or light scattering (DLS) techniques cannot give a detailed 

characterisation of these 3D structures. The information obtained by these 

methods can only give insight about the surface structure of such crystals5, 170. 
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Due to the periodic structure of these materials, with their periodicity on a 

similar length scale as the wavelength of the UV and visible lights, diffraction 

may use such light sources as a probe of the symmetry and unit cell 

parameters. The diffraction of light by these periodic structures along specific 

directions that cause the opalescent colour (Chapter 4), will give rise to photonic 

stop-bands. The positions of these stop-bands are characteristic for some of the 

lattice planes of the crystal structure. The intensity and spots profile of the light 

diffraction is related to  ordering, defects and grain boundaries over large area 

of the sample. In this technique, the laser wavelength should be smaller than 

the lattice spacing of the colloidal crystal or inverse opal. The diffraction follows 

the Bragg’s formula5: 

𝑠𝑖𝑛𝜃 =
𝜆

𝑑√3/2
                                     (Equation 2.18) 

where 𝜆 is the laser wavelength  and 𝑑 is the centre-to-centre distance between 

the pores of the colloidal crystal or inverse opal. The diameter of the spheres 

can also be evaluated from the value of d, if the spheres are close-packed. A 

modified version of the Bragg’s formula6 was used in Chapter 4 for this purpose.  

X-ray techniques such as ultrasmall-angle synchrotron X-ray scattering 

(USAXS, also called microradian X-ray diffraction)5, 170, also have the required 

penetration depth to study the interior of these crystals. In this characterisation 

technique, a monochromatic  X-ray parallel beam with a wavelength of the order 

of one Angstrom (Å) is focused at a detector using a set of Beryllium compound 

refractive lenses positioned next to the sample. The diffraction patterns are then 

recorded at various sample rotation angles allowing to obtain information about 

ordering in different crystallographic directions. The analysis can distinguish 
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between stacking sequences inside the structure. Calculations of peak intensity 

ratios can then provide information about the relative ratios of the different 

stacking sequences in the periodic sample. For example, using USAXS, it was 

revealed that TiO2 and SiO2 inverse opals were composed of twinned FCC 

structures (i.e. ABC…-ABC… stacking), with a small fraction of HCP fragments 

(i.e. ABABAB… stacking) and random hexagonally close-packed structures. 

This study also revealed that single domains (i.e. patches with no grain 

boundaries) of the same crystallographic structure could be detected in the 

inverse opals170.    
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Chapter 3: Preparation and Study of PMMA Colloidal Spheres 

via Surfactant Free Emulsion Polymerisation (SFEP)  

 

3.1 Abstract 

PMMA (poly(methyl methacrylate)) colloidal spheres were synthesised using a 

surfactant free emulsion polymerisation (SFEP) process. The diameter of the 

spheres was determined using Stokes’ law via the centrifugal sedimentation 

method. The effects of temperature, monomer concentration, seeding and metal 

oxide inclusion in SFEP process were investigated. The spheres became larger 

with increasing concentration of MMA monomer and smaller with increasing 

reaction temperature. The seeding technique made it possible to synthesise 

bimodal sphere populations and also produce monodisperse single sized 

population of large spheres with diameters above 500nm. The effect of metal 

oxide inclusion during the SFEP process was also investigated.  

 

3.2 Introduction 

The surfactant free emulsion polymerisation process is the most popular 

method for preparing monodisperse organic colloidal spheres for the self-

assembly of colloid crystals26. This method has some advantages compared to 

the classical surfactant mediated approach. It has the advantage of being 

simpler, by not having the surfactant component during polymerisation. It is also 

assumed that due to the lack of surfactant species, disposing of the waste 
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solvent is more environmentally friendly30, 34. Because of the chain growth 

mechanism, all charged end groups are covalently linked to the polymer chain 

which terminates by radical combination to form a chain with two charged end 

groups so all monomer should be linked to two end groups. As a result the 

colloidal spheres produced by SFEP are ionically stabilised, but have a rather 

low charge density, which is advantageous for the self-assembly of the spheres 

into colloid crystals. In the surfactant mediated emulsion polymerisation, the 

colloidal spheres can aggregate (glue) together due to the migration of free 

surfactants between them, preventing the formation of high quality colloidal 

crystals26. Particle size distributions can also be rather broad as a result of 

secondary nucleation in systems containing surfactants34 making them less 

useful in colloidal crystal applications. Because of these reasons, the 

polymerisation of choice in this work has been SFEP. 

Seeded polymerisation is another polymerisation method which can be 

used for generating colloidal spheres. This seeding strategy is popular for use in 

dispersion polymerisation systems. In one study, polystyrene (PS) particles 

were used in a seeded dispersion polymerisation of methyl methacrylate171 

producing large particles of PMMA. Some PMMA particles showed PS seeds 

encapsulated inside them, while others did not. The use of PMMA as seeds in 

surfactant free emulsion polymerisation of methyl methacrylate may give rise to 

similar incorporation behaviour and produce larger spheres or even bimodal 

populations of spheres. Such behaviours can be important in the world of 

templating, as the changes in the diameter of the spheres can directly influence 

the pore sizes produced in the inverted structures of inverse opals and hollow 

spheres, leading to different opto-electronic properties.     
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The seeding polymerisation via SFEP may also be expanded and not be 

limited to organic polymers. In particular the inclusion of metal oxide materials 

directly into the polymerisation process can be of interest and may produce 

core-shell like structures of polymer-metal oxide and then convert to spherical 

metal oxide nanostructures by removing the organic polymers. If such 

structures are produced, they can be utilised directly as photoanodes in 

photovoltaic applications due to their enhanced surface area. Previous studies 

have shown co-polymerization of organic and inorganic metal oxide systems172-

174 at the same time with the use of an anionic surfactant such as sodium 

dodecyl sulphate (SDS) in the polymerisation process. The role of SDS161, 172, 

173 as a suitable anionic surfactant is to act as the counter to the cationic nature 

of metal oxides for more effective encapsulation or incorporation to occur. The 

advantages of using these kind of surfactants can be due to; firstly, the metal 

oxide particles are better re-dispersed in the aqueous phase due to the 

stabilising effect of SDS molecules which are adsorbed on the particle surface. 

Secondly, the adsorbed surface of the particles become more hydrophobic, thus 

creating a micelle like structure with the inorganic particle in the centre. The 

concentration of SDS used will be just above its critical micelle concentration 

(CMC) level where micelles can be formed. Additionally the isoelectric point is 

shifted to lower pH values. The isoelectric point, is the pH at which a particular 

particle carries no net electrical charge. The net charge on the particles is 

affected by the pH of the surrounding environment. For instance, in acidic 

environments protons (H+) attach to basic groups and the net charge is positive. 

In basic media the net charge is negative as a result of proton loss. Therefore 

due to the presence of anionic SDS surfactants in the aqueous phase, the 
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surface charge density of the metal oxide particles will become more positively 

charged leading to perhaps better electrostatic interaction with the negatively 

charged SDS surfactants attached to the organic polymers. For the more 

negative metal oxide particles on the other hand, such as silica, the electrostatic 

interaction between the monomer chains and silica, supress the repulsive force 

between the negatively charged SDS and silica particles172. The organic 

polymer chains are then physically bound by entanglement or chemically bound 

by covalent bonding to the inorganic metal oxide particles.  

In this work, first the SFEP process for the synthesis of monodisperse                      

PMMA colloidal spheres was performed and the effects of different synthetic 

parameters including monomer concentration and temperature on the size of 

the spheres has been discussed. The two-step seeded SFEP was performed to 

produce ideally larger monodisperse PMMA colloidal spheres. The inclusion of 

metal oxides including P25 and iron oxide in SFEP processes without the use of 

surfactants have also been investigated.    

 

3.3 Experimental Procedures 

3.3.1 Synthesis of PMMA Colloidal Spheres via SFEP  

The SFEP procedure was adapted from earlier work of Schroden et al27. 

Synthesis was carried out in a 3-necked round-bottomed flask. A 20×10 mm 

oval shaped magnetic stir bar was added to the flask. Poor stirring during 

synthesis would result in undesired polydispersed spheres and  agglomerates. 
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The oval shaped magnetic bar was important for the round bottom flask in this 

experiment for maximum homogeneous stirring.   

 The flask was placed in a large beaker water-bath, which was then 

placed on a magnetic stirrer-hotplate. The hotplate had a thermocouple probe 

attached to it. The probe was inserted inside the water bath for temperature 

control. The 3-necked flask was fitted with a water-cooled condenser and 

nitrogen pipe and sealed with glass stoppers. Teflon tape was used to wrap 

around the end of the condenser before inserting it to the flask. This was done 

for better sealing and also for preventing the resulting polymerised PMMA 

solution from sticking the two glasswares together.  

Using a graduated cylinder, 32 ml of deionized water was added to the 

flask. The nitrogen gas was turned on and set with a slow flow rate of 

approximately 2 ml per second. The flow of nitrogen was kept throughout the 

reaction to eliminate the inhibition effect of oxygen. The water was turned on 

with a slow flow for the condenser. The stirrer was turned on and set to a speed 

of 350 rpm and the temperature of 70˚C. After the temperature reached 70˚C 

(around 15 minutes), 1.48M (6.0 ml) of methyl methacrylate was measured and 

added to the flask while maintaining the 70˚C.  

When conditions were stable (the mixture was allowed to mix for 

approximately 1 hour), 0.035 g of 2’2-azobis(2-methylpropionamidine) 

dihydrochloride (AIBA) initiator was weighed and added to the reaction flask. 

This compound decomposed with heat and produced free radicals for the 

polymerization reaction. Within a few minutes a milky white suspension was 

observed. The reaction was allowed to run for another 90 minutes at these 
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conditions. During this time the temperature of the reaction mixture rose by 

about 5-10˚C before returning to 70˚C (which was normal for an exothermic 

reaction). After 90 minutes, the heating was discontinued and the reaction 

mixture was allowed to cool to room temperature. In a successful 

polymerization there should be no noticeable smell of MMA at the end of the 

experiment. After cooling, the solution was transferred to a centrifugal vial. 

The solution was purified from any unreacted monomers or 

agglomerates, firstly by submitting it to ultra-sonication for 2 hours. Then the 

sphere solution was centrifuged 3 times for 30 minutes in each instance at 6000 

rpm. In each centrifugation cycle, the water that collected at the top of the 

mixture was decanted from the bottom sedimented PMMA spheres. The vial 

containing the white spheres was then redispersed with deionised (DI) water for 

the next cycle of centrifugation.  

  Two series of experiments were carried out to see the effects of different 

parameters on sphere diameter. The first series of experiments examined the 

effect of MMA monomer concentration. The polymerisation temperature was 

kept constant at 70⁰C and the monomer volume was varied (3, 4, 5, 6, 7 and  

10 ml corresponding to concentrations of 0.8, 1.04, 1.27, 1.48, 1.68 and 2.24 M 

respectively) while maintaining the water volume to 32 ml. The second series of 

experiments examined the effect of polymerisation temperature. The MMA 

concentration was held constant at 6 ml (1.48 M) while the polymerisation 

temperature was varied (60, 70, 75, 80 and 85⁰C). 
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3.3.2 Centrifugal Sedimentation Method for Sphere Diameter 

Measurement Using Stokes’ Law 

PMMA colloidal spheres using 1.27 M (5 ml) MMA monomer in otherwise 

similar SFEP process as before (Section 3.3.1) were synthesised and 

transferred to a 50 ml centrifuging vial and  placed vertically inside a centrifuge. 

The centrifuge speed was set to 4000 rpm. By centrifuging, the heavy colloidal 

spheres would sediment. The height of the sedimented solid PMMA spheres 

(settling height) in the vial was measured as a function of centrifuging time 

duration. The sphere diameters were then determined from settling velocities 

according to Stokes’ law. 

 

3.3.3 Seeded SFEP Process 

PMMA colloidal spheres with sphere diameter ~414 nm were used as seeds in 

the seeded polymerisation experiment (seed sphere size). PMMA sphere seeds 

of varying amounts of 0.3, 0.5, 0.75, 1, 1.5 and 2 g were added to water to 

create seed suspensions with corresponding concentrations of 7.9, 13.2, 19.7, 

26.3, 39.5 and 52.6 mg/ml respectively. The experimental set up and procedure 

was carried out similar to the original SFEP process described earlier (Section 

3.3.1). 15 ml of PMMA colloidal sphere seed solution was added to the flask 

first and then 17 ml of deionised water was added to make up the 32 ml solvent 

(as it was the case in the original SFEP experiment). Once the starting solution 

reached 70⁰C, the desired amount of MMA monomer was added. The reaction 

was left for 90 minutes before transferring to a vial for purification as previously.   



75 
 

3.3.4 Synthesis of Metal Oxide/PMMA Sphere Composite via SFEP 

Process 

The procedure was carried out in a typical surfactant free emulsion 

polymerization with the exception that the metal oxide powders were added to 

the system prior to polymerization. For the synthesis of PMMA spheres 

containing TiO2, 1.6 g of P25 was mixed with 32 ml of water and heated to 

reach 70˚C under a flow of nitrogen. Once the temperature stabilized, 6 ml of 

MMA monomer was added to the mixture. After about 30 minutes, 0.035 g of 

initiator was added to the mixture and the polymerization was carried out for 90 

minutes. The final product was ultra-sonicated for 2 hours and then washed two 

times by centrifuging for 20 minutes at 6000 rpm. To remove the PMMA, a 

portion of the sample was calcined for 2 hours at 450°C with a ramping rate of 

5˚C/min and then cooled down naturally inside the oven to reach ambient 

temperature. For the synthesis of PMMA spheres containing iron oxide, 1 g of 

nano-sized iron oxide powder was used in the otherwise similar synthesis 

procedure described before.  

 

3.4 Results and Discussion 

3.4.1 PMMA Sphere Size Measurement Using Stokes’ Law 

Stokes’ law describes the force required to move small spherical particles in a 

viscous fluid medium at specific velocity. 

Stokes’s law can be written as: 
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𝐹𝑑 = 6𝜋𝜇𝑉𝑑                                                      (3.1)  

where 𝐹𝑑is the drag force of the fluid on the sphere, 𝜇 is the fluid viscosity, 𝑑 is 

the sphere diameter and 𝑉 is the sphere’s settling (or terminal) velocity. 

By assuming a vertical direction, there are three forces acting on a 

sphere in a quiescent fluid. Buoyancy force (𝐹𝑏- tendency to float the sphere), 

drag force (𝐹𝑑- viscous drag of the fluid on the sphere) and gravitational force. 

The first two forces act upwards on the sphere and the latter acts downwards: 

𝐹𝑏+ 𝐹𝑑= 𝑚𝑔                                                       (3.2) 

The buoyancy force is simply the weight of displaced fluid. As the volume of 

sphere is: 

Vsphere = 
4

3
𝜋𝑟3                                                      (3.3) 

where (𝑟 = sphere radius) and mass of displaced fluid:   

(𝑚𝑓𝑙𝑢𝑖𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑) = Vsphere× 𝜌𝑓𝑙𝑢𝑖𝑑                                       (3.4) 

where 𝜌𝑓𝑙𝑢𝑖𝑑 is the density of the fluid. Then by combining Equations (3.3) and 

(3.4), the buoyancy can be written as: 

𝐹𝑏 = 𝑚𝑓𝑙𝑢𝑖𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 × 𝑔 =  
4

3
𝜋𝑟3𝜌𝑓𝑙𝑢𝑖𝑑𝑔                                (3.5) 

where 𝑔 is gravitational acceleration. 

By substituting Equations (3.1) and (3.5) into equation (3.2), the following 

expression can be obtained: 

4

3
𝜋𝑟3𝜌𝑓𝑙𝑢𝑖𝑑𝑔 + 6𝜋𝜇𝑉𝑑 = 𝑚𝑔                                          (3.6)  
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(𝑚 = sphere mass). By re-arranging and substituting the mass of sphere, 

Equation (3.6) can be re-written as 175:  

 𝑉 =
2𝑟2(𝜌𝑠𝑝ℎ𝑒𝑟𝑒−𝜌𝑓𝑙𝑢𝑖𝑑)𝑔

9𝜇
                                              (3.7) 

By further rearranging Equation (3.7) and replacing 𝑟 with 
𝐷

2
 where 𝐷 is 

the diameter of the sphere, the following equation for sphere size measurement 

is obtained:  

𝐷 = √
18𝜇𝑉

𝑔(𝜌𝑠𝑝ℎ𝑒𝑟𝑒−𝜌𝑓𝑙𝑢𝑖𝑑)
                                        (3.8) 

To determine the PMMA sphere diameter using Equation (3.8), the two 

unknown variables, sphere settling velocity (𝑉) and the gravitational 

acceleration (𝑔) (which is the centrifugal acceleration in this work) should be 

first calculated. Centrifugal acceleration can be calculated using the following 

equation: 

               𝑔 = 𝑟𝜔2                                                          (3.9) 

where 𝑟 is the radius of rotation (i.e. the measured distance from the centre of 

the centrifuge to the vial containing the sphere solution) and 𝜔 is the angular 

velocity of the centrifuge. The angular frequency of the centrifuge has a unit of 

rad/s and can be written as: 

               𝜔 = 2𝜋𝑓                                                       (3.10) 

where 𝑓 is the frequency of rotations per second. By combining Equation (3.9) 

and (3.10), 𝑔 can be re-written as: 
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            𝑔 = 4𝜋2𝑓2𝑟                                                    (3.11) 

To measure the settling velocity (𝑉), the height of the sedimented PMMA 

spheres in the vial (settling height) are plotted as a function of centrifugal time. 

The gradient of the best fit straight line corresponds to the sphere settling 

velocity. Figure 3.1 shows an example of the plot.  

 

Figure. 3.1 The plot of settling height as a function of centrifugal time for PMMA 

spheres polymerised by SFEP process using 1.27 M MMA monomer.  

           The settling velocity of PMMA spheres polymerised by SFEP process 

using 1.27 M MMA monomer can be determined from the gradient of the 

straight line which is 1.0257 mm/min.  

           The centrifugation was fixed at 4000 rpm in this experiment and the 

radius of rotation was measured to be 9.5 cm (0.095 m). By inserting those 

values in Equation (3.11), the centrifugal acceleration can be calculated: 

𝑔 = 4 × 𝜋2 × (
4000

60
 𝑠−1)2 × 0.095𝑚 = 16651.77𝑚𝑠−2 
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          As all the parameters in Equation (3.8) are known, the diameter of PMMA 

spheres can be calculated as following:      

𝜇 (water viscosity) = 1.002 g/msec (cp)                                                                                  

𝜌𝑃𝑀𝑀𝐴 = 1.18 g/cm3 = 1.18×106 g/m3                                                                                                                  

𝜌𝑤𝑎𝑡𝑒𝑟 = 1 g/cm3 = 1×106 g/m3                                                                                                         

𝑔 = 16651.77 m/s2                                                                                                                                  

𝑉 =  1.0257 mm/min = 1.7095×10-5 m/s                

𝐷 = √
18×1.002𝑔/𝑚𝑠𝑒𝑐×1.7095×10−5𝑚/𝑠

16651.77𝑚/𝑠2×(1.18×106 𝑔/𝑚3−1×106 𝑔/𝑚3)
 

    = 3.21×10-7m = 321 nm 

          The average diameter of the spheres using SEM is about 383 nm. 

Therefore there is a 16% discrepancy between the measured sphere diameter 

and the diameter calculated by Stokes’ law. This difference between the two 

values can be attributed to the existence of impurities including external 

particles or unreacted monomers60 left inside the PMMA sphere solution. 

Furthermore the theoretical values of the parameters used in Equation (3.8) 

including viscosity of the solution and the density of PMMA spheres may be 

different from the experimental values, giving rise to deviations from the actual 

diameter of the PMMA spheres. The true value of the suspension viscosity will 

be higher than that of pure water, affected by small PMMA particles, fragmented 

initiators and unreacted monomers. The real density of the synthesised PMMA 

sphere is expected to be smaller than the value measured from bulk dry PMMA 

material, since it may contain trapped monomer and solvent (water). Both give 

smaller measured value of the sphere diameter through the Stokes’ law. The 
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experimental error may be reduced by further purification of PMMA sphere 

suspension and good calibration of the PMMA sphere density. To the best of 

the author’s knowledge, PMMA sphere size measurement using Stokes’ law 

has not been carried out previously. This method can become valuable when 

used in parallel with SEM measurements to evaluate the monodispersity and 

purity of the entire batch of sphere solution produced after polymerisation.  

Waterhouse et al43 used dynamic light scattering (DLS) to measure the 

diameter of PMMA spheres and then compared them with their SEM results. 

Although DLS gave them the possibility to measure the polydispersity index 

(PDI) of the PMMA spheres (very monodisperese PMMA spheres were 

produced using the similar adapted SFEP approach from Schroden et al27 

which was used here as well), but their size measurements showed SEM 

results were 20% smaller than those determined by DLS. They attributed this 

discrepancy to shrinkage of the PMMA spheres upon drying for SEM 

measurements. Similar findings were reported by Armini et al176. They showed 

that, the diameters of the PMMA spheres measured by DLS were larger by 57% 

than those determined by SEM as a consequence of DLS measuring the 

diameter of solvent-swollen spheres, whereas the SEM measured the spheres 

in the dry state. During polymerisation, they took out PMMA sphere samples at 

different time intervals and found that, the average standard deviation for the 

size measured by DLS was 12%, while for the size measured by SEM, was 3% 

for the first 50 minutes of polymerisation. After approximately 75 minutes, the 

reaction had ended and the growth of PMMA spheres stopped which led to the 

samples become more monodisperse, however the variation in size distribution 



81 
 

(polydispersity) was still more preannounced in DLS measurements, which was 

attributed to the swelling effect.           

            Zheng et al177 used Stokes’ law to study the sedimentation and 

precipitation of Cu and Al2O3 nanoparticles suspended in carboxymethyl 

cellulose (CMC) aqueous solution. They demonstrated that by increasing the 

viscosity of the CMC fluid, the deposition rate of the nanoparticles was reduced 

(Equation 3.7) and the concentration distribution in the container was more 

uniform which led to less agglomeration of particles.       

 

3.4.2 Effect of SEM Electron Beam on PMMA Spheres 

When analysing PMMA spheres via SEM, it is important to know that the heat 

produced by the SEM electron beam can alter the size and behaviour of the 

spheres Figure 3.2 shows the SEM images of a cluster of 4 spheres sputtered 

with a layer of gold scanned at different time intervals under constant exposure 

of electron beam at (a) 0, (b) 4, (c) 8 and (d) 12 minutes. As can be seen from 

the SEM images, a gap between the layer of gold coating and the PMMA 

sphere becomes more visible on the spheres with increasing SEM electron 

beam exposure time (~ 90 nm in thickness of gold coating in image 3.2(d)). This 

is due to the release of water content inside the PMMA spheres by electron 

beam heating, and thus results in shrinkage of spheres. This phenomenon can 

be important in colloidal crystal templating techniques where inverse opals are 

made (Chapter 5). It indicates that one of the reasons for structural shrinkage 

 C 
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during calcination in inverse opal synthesis can be due to the water loss 

experienced by PMMA spheres acting as templates.  

 

Figure. 3.2 Effect of SEM electron beam on PMMA spheres as a function of 

time; (a) 0, (b) 4, (c) 8 and (d) 12 minutes. Scale bars: 1μm. 

 

3.4.3 Concentration Dependent SFEP 

Figure 3.3 shows the SEM images for PMMA spheres synthesised at different 

MMA monomer concentrations. The overall standard deviation (polydispersity) 

in size distribution is about 8 nm which further confirms the good quality of the 

spheres.   

The interesting phenomenon that can be observed in all the images in 

Figure 3.3 (apart from image 3.3(f) corresponding to 2.24 M sample) is that the 

spheres are self-assembled into colloidal crystals. The colloidal crystal 

formation phenomenon is comprehensively discussed in the next chapter, but it 

can be mentioned here that a deposition of a few drops of sphere solution onto 

a piece of aluminium foil can give rise to ordered colloidal crystals without any 
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complicated procedures. Although aluminium foil as a substrate for colloidal 

crystal fabrication has limitations when used in photovoltaic applications (mainly 

due to lack of chemical & mechanical stability and transparency), it can be a 

simple and fast method for colloidal crystal fabrication. 

 

Figure. 3.3 SEM images showing sphere formation using (a) 0.8, (b) 1.04, (c) 

1.27, (d) 1.48, (e) 1.68 and (f) 2.24 M monomer concentrations with 

corresponding mean sphere diameters of (a) 286, (b) 307, (c) 383, (d) 414, (e) 

424 and (f) 501 nm respectively. Scale bars: 2μm. 

For the 2.24 M monomer sample, self-assembly does not occur. This 

could be due to the nature of the spheres that are deviating from spherical into 

more ellipsoidal morphologies with irregular shapes. Therefore self-assembly 

becomes more difficult to achieve a minimum surface energy. The deviation 

from the spherical shape in the SFEP process using 2.24 M of monomer can be 

due to low stability of MMA micelles in water at such high volumes of MMA. 
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 Figure 3.4 illustrates how the diameters of the PMMA spheres are 

affected with increasing monomer concentration in SFEP process. From the 

plot, it can be seen that there is a linear increase in PMMA sphere diameter as 

the concentration of MMA increases. When the concentration of MMA is 0.8 M, 

the synthesised spheres are approximately 286 nm and this increase with 

concentration to a value of 501 nm, indicating that SFEP is a versatile process 

which can produce spheres over a range of hundreds of nanometres. 

 

Figure. 3.4 The plot of PMMA sphere diameter as a function of MMA monomer 

concentration. 

These results are consistent with previous studies26, 30, 176, 178 and show 

increase in PMMA sphere diameter is attributed to increase in the amount of 

MMA monomer. Increasing the monomer : initiator ratio may increase the 

diameter of the polymer spheres produced. By increasing the amount of 

monomer relative to the amount of initiator, more monomer is shared around 

the same number of initiator molecules which leads to the formation of larger 

particles. Moreover, increasing the concentration of MMA means there are more 
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monomer in the monomer droplets to be diffused to the growing monomer 

swollen particles.  

However, an alternative growth mechanism for the relationship between 

sphere diameter and monomer concentration during SFEP has been suggested 

by Egen et al26 by using various methacrylate monomers. They reported that 

very early during polymerisation, small polymer particles are formed (which is 

consistent with the models outlined in Chapter 1 for SFEP processes) and their 

concentration depends on such properties as solubility of the monomer in the 

water phase, solubility of the growing charged oligomers and their critical 

coagulation concentration. After the nucleation step, the particles grow till all 

monomer is consumed. Therefore the volume of the colloids increase linearly 

with the ratio monomer to water, while the selection of the monomer determines 

the number of colloids per volume of water (more hydrophobic monomers give 

rise to larger colloids).  

 

3.4.4 Temperature Dependent SFEP 

Figure 3.5 shows the SEM images for PMMA spheres prepared at different 

synthetic temperatures. The samples in all the images apart from the sample in 

Figure 3.5(a) (corresponding to 60°C synthetic temperature) show 

monodispersity, spherical and self-assembled colloidal crystal qualities. The 

sample produced at 60°C shows deviation from spherical toward ellipsoidal 

morphology, indicating that at low temperatures the spherical micelles cannot 

be stabilised. 



86 
 

 

Figure. 3.5 SEM images showing sphere formation using synthesis 

temperatures of (a) 60, (b) 70, (c) 75, (d) 80 and (e) 85°C with corresponding 

mean sphere diameters of (a) 544, (b) 414, (c) 363, (d) 308 and (e) 234 nm. 

Scale bars: (a),(c),(d),(e) 2μm and (b) 5μm. 

The SEM image in Figure 3.5(e) corresponding to the 85°C sample 

shows a degree of adhesion and fusing of the spheres with more defects in the 

colloidal crystal. This may be attributed to the high synthetic temperature, 

forcing the water used as the solvent during polymerisation to evaporate faster, 

in addition to being closer to the PMMA sphere melting point (160°C). To 

investigate this point further, a SFEP process was carried out at 95°C. The 

result showed that the spheres were completely fused together with no defined 

morphology. Moreover, carrying out the experiment at that high temperature 

resulted in the water used in the polymerisation process rapidly evaporating, 

producing a very small yield of polymerised PMMA spheres.  
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Figure. 3.6 The plot of PMMA sphere diameter as a function of temperature. 

The plot in Figure 3.6 shows a linear decrease in PMMA sphere diameter 

as the temperature increases. The lower limit of spheres produced in this series 

of experiments is 308 nm at 80°C and the diameter of the particles produced at 

60⁰C is 544 nm. These results are consistent with previous studies30, 43, 178. This 

inverse dependence between the sphere size and the polymerisation 

temperature is due to the fact that raising the temperature of polymerisation 

increases the rate of thermal decomposition of the initiator. The increase in 

temperature also has the effect of increasing the solubility of the MMA monomer 

in water. Therefore, the concentration of growing chains at any one time 

increases making the monomer more available for termination by the free 

radicals resulting in stabilisation of smaller spheres30.  

Good quality spheres with diameters above 500 nm are difficult to 

achieve in a single step SFEP process by controlling in both concentration and 

temperature. They tend to form non-spherical particles with fused morphology.  

Previous study has shown that larger colloids have a lower surface charge than 

the smaller colloids due to the distribution of initiator charges around the 
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micelles.26 Charges may also exist inside the polymer spheres rather than just 

on the surface with larger colloids, due to significant diameter increase during 

polymerisation, which makes it more difficult to expose the hydrophilic charged 

chain ends to the surface. The stability of the dispersion of larger colloids is 

further reduced as the monomer concentration in the polymerisation process 

becomes too high which may lead to very highly concentrated colloidal 

dispersions resulting to very high monomer : initiator ratio. This may result to for 

the unreacted monomers to destabilise the polymerisation process. These 

factors limit the stability of dispersions of larger colloidal spheres and result in a 

size limit to PMMA spheres produced by the single step SFEP process26. The 

lack of spherical morphology also limits the formation of ordered, defects free 

colloidal crystals. For the synthesis of larger spheres, the effective seeded 

SFEP process was developed in this work, which is demonstrated in the next 

section. 

 

3.4.5 Seeded SFEP 

Representative SEM images of the six samples produced by varying the 

concentration of PMMA seed added to the fixed amount of monomer 

concentration (1.48 M) in an otherwise typical SFEP process, are presented in 

Figure 3.7. The diameter of the seed sphere is ~ 414 nm.  

From the SEM images in Figure 3.7, it can be seen that at low seed 

concentrations of 7.9, 13.2 and 19.7 mg/ml, corresponding to images  a, b and 

c, bimodal distributions of spheres are observed. However at higher seed 
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concentrations of 26.3, 39.5 and 52.6 mg/ml corresponding to images d, e and 

f, single distributions of large spheres are observed with the presence of some 

loose extra-large spheres.  

          

Figure. 3.7 SEM images of spheres produced by the seeded SFEP process. (a) 

7.9 mg/ml seed, (b) 13.2 mg/ml seed, (c) 19.7 mg/ml seed, (d) 26.3 mg/ml seed, 

(e) 39.5 mg/ml seed, (f) 52.6 mg/ml seed. Scale bars: (a) 5μm (b) 10μm (c) 5μm 

(d) 20μm (e) 5μm (f) 10μm. 

Figure 3.8 shows the sphere size distribution produced using different 

seed concentrations. The graphs are normalised by using the same number of 

measurements (500 measurements of sphere diameter were taken for each 

sample from SEM images). 
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Figure. 3.8 Sphere size distributions of spheres produced using different seed 

concentrations. 500 measurements of sphere diameter were taken for each 

sample using SEM and then normalised to produce each graph. The average 

diameter of the seed sphere is about 414 nm. 

From the graph in Figure 3.8, it can be seen that at low seeding 

concentrations (from 7.9 to 19.7 mg/ml), the amount of small spheres is 

decreased and the amount of large sphere population is increased by 

increasing the seed concentration. Another trend that can be detected from the 

graph is that at high seeding concentration (from 19.7 to 52.6 mg/ml), the 

diameter of the large sphere population decreases by increasing the seed 

concentration. The presence of bimodal sphere diameter distribution suggests 

that both seeded and unseeded growth may occur during the seeded SFEP 

process. The sphere populations become more singular above the 19.7 mg/ml 

seed concentration with the presence of some loose large spheres. These 

random large spheres are possibly formed because of aggregating of the 

seeds. The decrease in the diameter of the large spheres may be explained by 
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the fact that as the number of seed spheres increase there is less amount of  

monomer present to coat them (the monomer concentration remains the same 

in all the experiments).                    

 The effect of monomer concentration on the size and behaviour of the 

spheres produced in seeded SFEP process at a constant seed concentration of 

26.3 mg/ml was also studied in this work. Figure 3.9 shows the normalised 

sphere size distribution at different concentrations of MMA.  

 

Figure. 3.9 Sphere size distributions of spheres produced using different MMA 

monomer concentrations. 

From Figure 3.9, it is clear that as the monomer concentration is 

increased from 1.27 M to 1.48 M, the average diameter of the spheres also 

increases from approximately 750 nm to 950 nm. This may be due to the fact 

that more monomer is available around the same number of seeds as the 

monomer concentration is increased. When the concentration of monomer 

reaches 1.68 M, a low population of small spheres (~ 350 nm) is detected. This 

may be due to formation of new unseeded growth at this high monomer 

concentration. In other words, this can be the saturation point where no more 
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polymerisation around the seeds can take place and a new population of 

spheres start to grow.   

By combining the results of the two sets of experiments based on varying 

the seed or monomer concentration while keeping the other constant, an 

optimised single population of large spheres can be realised. The optimised 

parameters for seed polymerisation are 1.27 M MMA monomer and 26.3 mg/ml 

PMMA sphere seed.  

 

Figure. 3.10 SEM images showing (a) 111, (b) 100 domains of PMMA colloidal 

crystal of spheres produced by seeded SFEP using 1.27 M MMA and           

26.3 mg/ml sphere seed. Scale bars: 2μm. 

Figure 3.10 shows the SEM images of the optimised PMMA spheres 

synthesised via seed polymerisation. The spheres are self-assembled into 

ordered and close packed colloidal crystal exposing different domains at 

different areas. The exposed (111) domain in Figure 3.10(a) may belong to one 

of the thermodynamically favoured FCC or HCP crystal configurations, as it is 

difficult to identify the true 3D crystal packing from the top view of the SEM 

image. However, the exposed (100) domain in Figure 3.10(b) most likely 

belongs to the HCP crystal configuration due to systematic absence of this 

domain in FCC structure. The singularity in size and monodispersity of the 
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spheres makes it possible for the fabrication of such high quality colloidal 

crystals. The average diameter of the PMMA spheres produced is 780±7 nm. 

Therefore, this strategy allows the formation of monodisperse PMMA spheres 

with diameters above 500 nm when unseeded single step SFEP process is 

unsuccessful.    

 

3.4.6 TiO2 (P25) Powder / PMMA Sphere Composite  

 

Figure. 3.11 SEM images of P25/PMMA sphere (a) before calcination, (b) after 

calcination and (c) the EDX spectrum of the product after calcination at 450°C. 

Scale bars: (a),(b): 2μm 

Figure 3.11 shows the SEM images of P25/PMMA sphere composite produced 

by the SFEP process before calcination (a), after calcination (b) at 450°C for the 

removal of PMMA and the EDX spectrum of the product after calcination (c). 

The SEM images show some spherical morphology when the P25/PMMA 

sphere is produced via SFEP process (Figure 3.11(a)) and the loss of spherical 

morphology after calcination (Figure 3.11(b)). The EDX spectrum (Figure 
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3.11(c)) shows the presence of Ti in the sample after calcination. The large 

peak at the start of the EDX spectrum corresponds to aluminium which comes 

from the underlying aluminium foil substrate. The size of the spheres before 

calcination are 175±10 nm. A SFEP process under the same experimental 

condition without the inclusion of TiO2 (P25) nanoparticles produces spheres 

with average diameter of 414 nm. There is a 58% reduction in size of the 

spheres when P25 is included in the polymerisation process. This suggests that 

in the propagation stage of SFEP when the metal oxide is included, the 

monomer chains may be shortened and also when the PMMA micelles are 

formed less monomers may be allowed inside for particle growth and hence 

much smaller spheres are formed. These two effects may arise due to the 

disturbance caused by inorganic TiO2 nanoparticles acting as blocking agents in 

the polymerisation solution. After calcination, the spherical morphology of the 

sample is significantly reduced leaving randomly sized distribution of TiO2 

nanoparticle aggregates with sizes ranging from 110 to    175 nm. Such wide 

size distribution may be the result of low loading and uneven distribution of 

encapsulated TiO2 nanoparticles during SFEP process.   

For further investigation and the possibility of improving the quality of the 

TiO2 spheres, a layer of titanium isopropoxide (TTiP) precursor was coated on 

the sample. After the sol-gel process and solidification, the sample was calcined 

as before. The TTiP coating is converted to TiO2 during the calcination step, 

with the objective of stabilising the sphere morphology. Figure 3.12 shows the 

SEM image and the corresponding EDX pattern for the final product. The Au 

and Al peaks represent a layer of gold coating (for SEM analysis) and the 
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aluminium foil substrate respectively. A strong peak for the Ti element is clearly 

detectable. 

 

Figure. 3.12 SEM image (a) and EDX spectrum (b) of TTiP coated P25 after 

PMMA removal at 450°C. Scale bar: 2μm. 

The coated particles are of crystalline phase of anatase TiO2, as the XRD 

pattern in Figure 3.13 suggests. A strong peak corresponding to the (101) plane  

which is the characteristic peak of anatase phase according to the Joint 

Committee on Powder Diffraction Standards (JCPDS) database with reference 

number 841286. This confirms the successful completion of sol-gel and 

crystallisation process during coating. 

 

Figure. 3.13 XRD pattern for crystalline TiO2 produced form TTiP/P25 after 

PMMA removal at 450°C. Anatase peaks are present at 25.266°(101), 

37.703°(004), 47.867°(200), 53.912°(105), 55.001°(211) and 62.745°(118).  
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As can be seen form the SEM image in Figure 3.12(a), some of the 

particles are spherical while majority of them are in aggregates with rough 

surfaces surrounding the TiO2 shell interconnected during the sol-gel process. A 

conclusion that can be drown here is that, morphological quality of the 

P25/PMMA composite system via SFEP/calcination process is not yet 

optimised. Perhaps as literature has suggested161, 172, 173 for other core/shell 

polymerisation systems, the inclusion of an anionic surfactant is needed for 

better partnership between the two phases (i.e. the organic polymer and the 

inorganic metal oxide) by increasing the surface charges between them.   

 

3.4.7 Iron Oxide Powder / PMMA Composite 

Figure 3.14 shows the SEM images of PMMA with iron oxide powder included 

in the SFEP process before calcination at different magnifications. The SEM 

images show that each colloidal particle has a hexagonal shape with average 

diameter of 330±10 nm. The diameter is shrunk by about 20% compared to the 

original PMMA sphere (~414 nm) polymerised without the presence of the iron 

oxide particles in the SFEP process. Similar to the P25/PMMA experiment 

discussed earlier, the addition of the metal oxide disturbs the polymerisation 

which makes the final colloids smaller. The morphology in this case is also 

deviated from the energetically favoured spherical shape. This may be due to 

the nature of the iron oxide particles that disturb the PMMA chains  in micelle 

formation to form such hexagonal colloidal particles. The surface of the iron 

oxide can be charged and disturb the charged free radicals produced during 

initiation stage of polymerisation. This may lead to hydrophobic and hydrophilic 
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parts of the forming oligomers (long chain free radicals) to deviate from their 

natural energetically favoured formation of spherical micelles into more 

elongated shapes.  

 

Figure. 3.14 SEM images of iron oxide/PMMA sphere composite via the SFEP 

process before calcination. Scale bars: (a) 2μm and (b) 1μm. 

After calcination, the spherical morphology of the sample is reduced 

significantly leaving randomly sized distribution of iron oxide nanoparticle 

aggregates with sizes ranging from 195 to 545 nm. Figure 3.15(a) shows the 

SEM image of iron oxide/PMMA in the SFEP process after calcination at 450°C 

for PMMA removal. The corresponding EDX spectrum is shown in Figure 

3.15(b). Such wide size distribution may be due to the low loading of iron oxide 

powder during SFEP process (smaller particles) and the formation of 

nanoparticle aggregates after calcination (larger particles). The EDX spectrum 

(Figure 3.15(b)) shows the presence of Fe in the sample after calcination. The 

large peak at the start of the EDX spectrum corresponds to aluminium which 

comes from the underlying aluminium foil substrate. As it was mentioned earlier, 

by adding a correct anionic surfactant such as sodium dodecyl sulphate (SDS) 

and treating the surface of the metal oxide particles prior to use, the stability of 

the system may be enhanced. 
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Figure. 3.15 (a) SEM image of iron oxide/PMMA in the SFEP process after 

calcination at 450°C and (b) the EDX spectrum of the product. Scale bar: 2μm. 

Although, both sets of experiments outlined here are considered 

unsuccessful in regards to the true formation of core/shell systems of 

PMMA/metal oxide, it has been demonstrated that by addition of metal oxide 

into the SFEP process without any pre-treatment, the PMMA colloidal spheres 

get smaller and in the case of iron oxide, morphological alteration can also 

occur producing hexagonal PMMA colloidal particles. These phenomena can be 

considered useful when PMMA spheres with smaller sizes or non-spherical 

shapes are of importance.  

 

3.5 Conclusion 

SFEP is a facile polymerisation technique with the use of only three 

components (water, monomer and initiator). It is at the same time a powerful 

technique for PMMA sphere synthesis with controllable synthetic conditions 

including monomer concentration and temperature to produce desirable 

spheres with different sizes and morphologies. The use of seeding in the SFEP 

process makes it possible to produce spheres larger than 500 nm where it is not 

possible to create them via an unseeded single step SFEP process. Adding 
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metal oxide powder into the SFEP process may cause reduction in the size of 

the PMMA spheres. Due to the low loading of metal oxides and the aggregates 

of the nanoparticles, the calcination process will destroy the spherical 

morphology of the residual of metal oxides. By adding a suitable surfactant, it 

may be possible to synthesise optimised PMMA/metal oxide core/shell systems 

using this facile seeded SFEP process.  

The production of monodisperse PMMA spheres with controllable sizes 

makes it possible to use them directly as building blocks for the synthesis of 

homogeneous metal oxide hollow sphere nanostructures. They can also be first 

self-assembled into highly ordered PMMA colloidal crystals and then be used as 

templates for the synthesis of different metal oxide inverse opal nanostructures 

with high degree of porosity and interconnectivity. Such systems with their large 

surface areas can be used in photovoltaic devices with enhanced light 

harvesting properties.          
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Chapter 4: Production and Study of PMMA Colloidal Crystals 

via Colloidal Crystal Self-Assembly 

 

4.1 Abstract 

PMMA colloidal crystals were successfully fabricated using two different self-

assembly techniques; vertical deposition by evaporation and a modified floating 

(air-water interface) approach. A temperature dependent study using the 

vertical deposition approach was carried out. Monolayer PMMA colloidal 

crystals were produced using the floating technique. By multiple depositions, 3D 

double-layer and triple-layer colloidal crystals were successfully fabricated. The 

photonic crystal properties of PMMA colloidal crystal were also investigated. 

The crystal was opalescent under illumination and had a typical photonic stop 

band in the visible region of the spectrum.  

 

4.2 Introduction 

Once PMMA colloidal spheres are formed via the SFEP process, they can be 

self-assembled into colloidal crystals. Such highly ordered close-packed 

structures can serve as templates for the synthesis of inverse opals and 

photonic crystals with the potential for use in a variety of applications including 

photovoltaics. 

Although controlling the thickness of colloidal crystals using different 

techniques is achievable, with so many variables in the experimental conditions, 

such as concentration of the colloidal spheres, rate of solvent evaporation and 
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type of the substrate used3, it is often a challenging task to achieve good control 

of the colloidal crystal thickness. Considering that the floating technique can 

produce monolayer colloidal crystals, it is theorised that multilayers may be 

created using this technique by repeating the technique on the same deposited 

substrate until the desired layers are achieved. If such an approach is 

successful, it will be a powerful, facile technique to produce 3D colloidal crystals 

with controlled thickness. This hypothesis forms the investigations described in 

this chapter. 

          Colloidal crystals can be considered as photonic crystals due to their 

periodic structures constructed from alternating regions of refractive indices 

(PMMA sphere and air in the case of PMMA colloidal crystal), thus the 

successful fabrication of colloidal crystals can result in a photonic stop band in 

the visible region as discussed previously in Chapter 1. Through precise 

material design, the colours in colloidal crystals acting as photonic crystals can 

be tuned reversibly by applying external physical or chemical stimuli6. The 

alteration of the photonic stop band characteristics can be achieved by varying 

the refractive index contrast, the lattice constant and/or the filling factor of the 

colloidal crystal. From the photonic stop band it is also possible to calculate the 

diameter of the original PMMA colloidal sphere using a modified form of the 

Bragg equation of diffraction43. In this work, the photonic properties of PMMA 

colloidal crystals fabricated by the floating technique have been investigated. 
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4.3 Experimental Procedures 

4.3.1 PMMA Colloidal Crystal Fabrication via Vertical Deposition 

A PMMA sphere solution was previously synthesised using the SFEP process 

using 6 ml of MMA monomer (average sphere diameter of 414 nm). This was 

used for colloidal crystal fabrication experiments. The synthesis and purification 

processes were discussed in the last chapter. After the last centrifugation, the 

top water was discarded and the white spheres were left to dry in an oven at 

40°C for 6 hours. 

 

Figure. 4.1 An image illustrating the vertical deposition setup for PMMA 

colloidal crystal fabrication. 

 Once dried, a PMMA sphere suspension in water (1.5 wt%) was 

prepared. The PMMA suspension (25 ml) was added to a 50 ml glass beaker. A 

microscope glass slide was then etched for 1 hour in sodium hydroxide solution 

(30 wt%) to increase its hydrophilicity179 in order for better PMMA sphere 

attachment. The glass slide was then washed thoroughly with DI water several 

times. It was then suspended in the beaker. This was achieved by gently 

attaching a cotton bud to the top of the glass slide using aluminium tape and 

then resting the cotton bud on the lip of the beaker. The beaker with the slide 
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suspended in it was placed in an oven at fixed temperature for 48 hours. After 

this time the water in the beaker had evaporated leaving a white film of the 

closed-packed PMMA colloidal crystal on the glass slide. Five different oven 

temperatures of 52°C, 63°C, 73°C, 85°C and 94°C were used to evaluate the 

temperature effect on the colloidal crystal quality. Figure 4.1 shows a typical 

vertical deposition set-up prior to placing it in the oven. 

 

4.3.2 PMMA Colloidal Crystal Fabrication via Floating Approach 

PMMA spheres solution (3 ml) previously produced via SFEP process with an 

average sphere diameter of 383 nm was mixed with ethanol (3 ml) in a small 

vial (producing a 1:1 ratio by volume). A microscope glass slide was cut with a 

diamond pen to produce a 2 cm2 piece. It was then cleaned twice by ultra-

sonication, for 10 minutes in acetone and DI water respectively. The glass was 

then placed in the center of a Petri dish. DI water was poured into the Petri dish, 

covering the sides of the glass specimen without covering its surface. A drop of 

the PMMA/ethanol solution was pipetted onto the centre of the glass. More DI 

water was then carefully added to the petri dish (from one side only). The water 

level raised until it covered the surface of the glass and just touched the PMMA 

solution contact line. This step was performed delicately as excess water would 

leave the PMMA solution submerged and the experiment would not be 

successful. Once the PMMA solution and water made contact, the PMMA 

solution rose on top of the water surface. This was driven by the differences in 

surface energy between the ethanol suspension and the water in the Petri 

dish92, 180. After a few seconds, all of the suspension had risen from the glass, 

forming an iridescent monolayer island of PMMA colloidal crystal on the water 
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surface. During this step the glass was completely immersed under the water. 

More water was then carefully added to the Petri dish to raise the water level to 

facilitate the next step, in which the colloidal crystal was picked up onto a 

substrate89, 90.  

A microscope glass substrate was cleaned with the same procedure 

described earlier (Section 4.3.1). The cleaning process for an FTO glass 

sample was as follows;- it was soaked ultra-sonically for 10 minutes in 

isopropanol followed by 5 minutes in DI water. The titanium plates were cleaned 

by first immersing in dilute HCl solution (3M) for 15 minutes followed by washing 

with DI water. The plate was then polished with sand paper. 

 

Figure. 4.2 Schematic of PMMA colloidal crystal fabrication by the floating 

approach. 

The substrate was immersed carefully into the water and was slowly 

lifted up from below the colloidal crystal at a shallow angle (10-20°). The 

substrate was then left to dry in air for 15 minutes. For fabricating a double layer 

colloidal crystal, once the deposited monolayer colloidal crystal was fully dry, 

the above procedure was repeated on the same substrate. To produce a 
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multilayered PMMA colloidal crystal, the procedure was repeated until the 

desired number of layers was obtained. Figure 4.2 shows a schematic diagram 

of the different steps taken in making a fabrication a monolayer PMMA colloidal 

crystal using the floating approach. 

 

4.4 Results and Discussion  

4.4.1 Temperature Dependent Vertical Deposition Approach  

All five samples produced at the different temperatures (52°C, 63°C, 73°C, 

85°C and 94°C) by the vertical deposition approach for 3D multilayered  

colloidal crystal fabrication show self-assembled PMMA spheres with good 

colloidal crystal quality. There is also no obvious systematic difference in 

thickness within the experimental temperature range. Figure 4.3 shows the 

SEM images for the PMMA colloidal crystal produced at (a) 52°C, (b) 73°C and 

(c) 85°C.  

As it can be observed in Figure 4.3, all of the SEM images show high 

levels of ordering with close-packed structures. The PMMA structures tend to 

be FCC with their (111) planes parallel to the underlying substrate. This 

configuration is most favoured thermodynamically 43, however Norris et al181 

suggested that the common assumption that the preferred FCC crystal structure 

in self-assembly processes is solely driven by thermodynamic equilibrium (static 

assembly) is not correct. Rather, they suggest it is an example of dynamic self-

assembly in which viscous drag caused by the fluid flow between the sphere 

pores form such a structure. The effective confinement space between the air 
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cavities (pores) of touching spheres in 3D PMMA colloidal crystals created by 

the ABCABC stacking of the FCC structure can be calculated mathematically182. 

If r is assumed to be the radius of PMMA spheres, then the confinement space 

inside the tetrahedral and octahedral cavities can be estimated by spheres of 

radius 0.225r and 0.414r respectively. The largest particle (assuming spherical 

shape) that can pass through freely from cavity to cavity has a radius of 0.156r.     

 

 

Figure. 4.3 SEM images showing the top views of 3D multilayered PMMA 

colloidal crystals fabricated via vertical deposition method at (a) 52°C, (b) 73°C 

and (c) 85°C. Scale bars: 2μm. 

The samples show a 2-3% reduction in diameter during colloidal crystal 

formation. This decrease may be due to condensation and loss of water (locked 

in after polymerisation) in each sphere during drying or the deposition process 

at raised temperature. The sphere diameter shrinkage however, is 

approximately the same for all of the samples. This suggests that at these 

medium-range temperatures, sphere size does not depend on temperature. 
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An important phenomenon that can be observed with increasing 

temperature is the formation of necking (connection between the spheres), 

which becomes more pronounced as temperature increases. The SEM image in 

Figure 4.4 shows the necking between the PMMA spheres for the sample self-

assembled at 94°C. 

 

Figure. 4.4 SEM image showing the necking between PMMA spheres in a 

colloidal crystal assembled at 94°C. Scale bar: 1μm. 

Necking occurs when capillary forces bring the spheres together in the 

self-assembly process; it can increase the distance between the spheres.43 

Necking can be important to increase the mechanical strength of colloidal 

crystals especially when they are going to be employed as templates for 

processes such as inverse opal fabrication.  

Another phenomenon observed in the samples is the change in quality of 

the colloidal crystals in different areas of the film. Figure 4.5 shows an SEM 

image taken from just below the original meniscus contact line (i.e. 

air/water/substrate contact line) of the sample self-assembled vertically at 94°C. 

The schematic diagram showing this region is also presented in Figure 4.5.  
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Figure. 4.5 SEM image and schematic representation showing PMMA self-

assembly just below the original meniscus contact line. Scale bar: 5μm. 

 As can be seen from the SEM image and its schematic diagram in 

Figure 4.5, the spheres are not completely self-assembled into an ordered 

colloidal crystal at this region. There is a portion of spheres loosely floating 

around. This can be attributed to the low concentration of the spheres at the 

region just below the meniscus contact line. The self-assembly quality is 

enhanced further down the film as shown in Figure 4.3. This suggests that a 

concentration gradient in the vertical deposition self-assembly technique exists. 

The concentration gradient is due to the gradual evaporation of water inside the 

beaker which increases the concentration of the spheres in the solution. 

Therefore more spheres are available at the bottom of the beaker leading to 

better self-assembly on the bottom region of the glass substrate which is 

positioned vertically in the beaker. However due to this concentration gradient, 

the film at the bottom of the glass substrate can be thicker than the top. If the 

film is too thick, it will eventually shear, crack and peel off the glass substrate. 

This leaves some bear areas at the bottom of the substrate. The shearing 

occurs in a vertical direction, which can first be seen as macroscopic cracks on 

the film prior to detachment.  
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Figure. 4.6 (a) No Colloidal crystal coverage and (b) the detached strips of 

colloidal crystals due to peeling off at the bottom of the substrate for the 85°C 

sample. 

Figure 4.6(a) shows an image of a substrate with its colloidal crystal film 

peeled off at the bottom (85°C sample). Figure 4.6(b) shows the image of the 

PMMA colloidal crystal strips that have fallen off the glass substrate off the 

same sample. The strips were gathered from the bottom of the beaker and 

placed on a microscope glass slide for better clarity. 

 

Figure. 4.7 SEM images showing (a) low magnification and (b) high 

magnification of vertical macroscopic cracks formed due to PMMA sphere 

concentration gradient on the vertically deposited substrate for the 85°C 

sample. Scale bars: (a) 2mm and (b) 100μm. 
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Figure 4.7 shows the SEM images of the vertical macroscopic cracks 

produced by the effect of the concentration gradient, which are eventually 

peeled off from the substrate.  

As it can be seen from the low magnification of SEM image (Figure 

4.7(a)), only vertically formed cracks can be observed. Such cracks are also 

observable by eye, however, when looking at the SEM image at a higher 

magnification (Figure 4.7(b)) horizontally formed small cracks can also be 

observed. Both forms of cracks are present for all samples produced at different 

temperatures. Apart from the concentration gradient effect, other phenomena 

may also be responsible for the formation of these well-aligned macroscopic 

cracks. For instance, the gravitational forces can lead to the water inside the 

sphere solution traveling downwards, forcing it to form alley-like pathways 

among the spheres as cracks. Densification caused by volume shrinkage of the 

colloidal crystals during self-assembly stage upon drying may also cause 

fissures, apparent as vertical lines183. As mentioned previously in this section, 

the PMMA sphere size shrinkage of about 2-3% are observed for all the 

samples after self-assembly compared to the original PMMA spheres, 

confirming the overall volume shrinkage for the colloidal crystal samples. The 

water evaporation during the self-assembly process may also cause strong 

capillary forces contributing to such crack formation in the final colloidal crystal 

films5.            

In evaporation induced colloidal crystal formation techniques driven by 

capillary forces at the meniscus, such as the vertical deposition approach, there 

are many parameters that should be optimised in order to yield high quality 

colloidal crystals101. The parameters include the type of the substrate used, 
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solvent, air pressure, humidity, moving speed of the meniscus contact line, the 

use of surfactants, temperature and concentration of the colloidal spheres. The 

vertical deposition technique for colloidal crystal fabrication appears to be a 

convenient route, but it does not guarantee the formation of large areas of high 

quality colloidal crystals on the substrate.  

4.4.2 Floating Deposition Approach 

The SEM images of the monolayer colloidal crystal film removed from the water 

surface by a glass substrate are shown in Figure 4.8.  

 

Figure. 4.8 SEM images of monolayer PMMA colloidal crystal fabricated using 

the floating approach. Scale bars: (a) 10μm, (b),(c) 5μm and (d) 1μm. 

The images clearly show the monolayer 2D PMMA colloidal crystal 

structure created using this modified floating technique. The size of the PMMA 

spheres after self-assembly remains constant as the spheres prior self-

assembly (c. 383 nm). As seen from the SEM images in Figure 4.8, large areas 

of monolayer 2D colloidal crystals are formed without any cracks. A low level of 

defects and imperfections in the form of separate spheres on top of the 



112 
 

monolayer can be detected. Such imperfections may originate from the spheres 

that are mixed with the water in the Petri dish instead of staying afloat.  

An important step in the floating approach is the deposition of the 

colloidal spheres onto the surface of the liquid, as they can easily sink and 

disperse into the bulk liquid. When the liquid used is water, ethanol is added to 

the colloidal sphere solution in equal volumes before depositing onto the water 

surface. The role of ethanol is to act as a spreading agent180. The mixture of 

water:ethanol has lower density than pure water (0.911 compare to 1 g/cm3 at 

ambient temperature184), which enhances the floating of the PMMA spheres. 

Also, the addition of ethanol improves the hydrophobic nature of the solvent, 

which improves the dispersion of the PMMA spheres. The water-ethanol 

mixture has also a higher vapour pressure and evaporation rate than pure 

water. When the ethanol containing sphere solution is correctly placed onto the 

water surface, it immediately spreads over it and when the ethanol evaporates, 

the colloidal spheres stay floating on the water surface leading to effective self-

assembly of monolayer colloidal crystal through attractive interactions among 

the spheres. 

The SEM images in Figure 4.9 show the formation of 3D PMMA colloidal 

crystal structures when the floating deposition is repeated twice to produce 

double-layers (in Figure 4.9(a) and (b)) and thrice to produce triple-layers 

(Figure 4.10(c)). As is observed in these images, uniform 3D multilayer PMMA 

colloidal crystal films with large coverage areas can be fabricated using this 

approach. An important advantage this method has over other mainstream 

methods, such as vertical deposition, is its versatility. Colloidal crystals can 

stack on top of each other with different sizes, morphologies and composition 
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due to the layer-by-layer nature of the floating depositions on the substrate. 

Therefore, synthesising layer-by-layer heterostructured inverse opals of 

different metal oxides may become possible using this stepwise self-assembly 

approach when combined with templating via sol-gel infiltration (Chapter 6). 

 

Figure. 4.9 SEM images showing 3D PMMA colloidal crystals formation when 

the floating deposition is repeated twice to produce double-layers (a) and (b) 

thrice to produce triple-layers (c). Scale bars: 2μm. 

Again, as per the monolayer films produced by this method, some 

imperfections and defects can appear on the surface of multilayer films. They 

are possibly caused by the spheres mixed in the water during substrate being 

removed. Furthermore there are also some small cracks detectable on the 

surface when more layers are added to the colloidal crystal film. The small 

cracks can be observed clearly in the SEM image of Figure 4.9(d). These could 

be attributed to the electrostatic attractions185 between the substrate and the 

colloidal spheres once the spheres are lifted up from the water surface. These 

forces can prevent the spheres from free moving on the glass substrate. By 

changing the glass substrate to a charge neutral titanium plate this problem 
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may be limited. The electrostatic phenomenon between the spheres and the 

glass substrate is present when using any self-assembly techniques and is not 

exclusive to the floating approach.  

            The monolayer colloidal crystals produced here were used in templating 

procedures in Chapters (6 and 7) for their applications in PEC water splitting 

and solar cell experiments. Therefore, conductive substrates such as titanium 

metal and FTO glass are of interest for PMMA colloidal crystal deposition. 

Figure 4.10 shows an image of a monolayer PMMA colloidal crystal film 

deposited on a titanium plate using the floating technique. The experimental 

procedure and the conditions are identical as before when using a microscope 

glass slide, as the substrate as described in Section 4.3.2.  

 

Figure. 4.10 Monolayer PMMA colloidal crystal deposited on a titanium plate 

using the floating technique. 

              The opalescent properties of the film can be clearly observed in the 

photo in Figure 4.10. The colours are produced when the camera light flash is 

used when taking the image. The opal like behaviour of the film confirms the 

photonic properties of the PMMA colloidal crystals which will be discussed in 

the next section. The colloidal crystal film covers almost the entire surface of the 

titanium plate, which makes it a good candidate for templating and photovoltaic 

processes.    
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The modified floating self-assembly approach is considered as a 

convenient technique, as the whole process occurs in a few minutes at room 

temperature without optimising any conditions or needing any special facilities. 

Large areas of high quality, monolayer PMMA colloidal crystals are produced 

using this method, which can later be converted to 3D multilayers with a well-

controlled thickness. 

 

4.4.3 Photonic Crystal Properties of PMMA Colloidal Crystals 

Figure 4.11 illustrates the photos of a monolayer PMMA colloidal crystal film 

deposited on a microscope glass slide substrate using the modified floating 

technique (a) without illumination and (b) under the illumination of visible light. 

                                             

Figure. 4.11 Images showing a monolayer PMMA colloidal crystal film (a) 

without and (b) under visible light illumination. 

            The range of colours detected in Figure 4.10(b) during visible light 

irradiation are caused6, 27, 41, 42 by the diffraction of visible light from the colloidal 

crystal, which possesses a periodic array of low and high refractive index areas 

of air and PMMA spheres. The difference in colour at different regions is caused 

by the changes in the angle of incident light. This colour phenomenon is 
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independent of electronic processes seen in most other colourful materials 

which derive their colour by the absorption of visible light, which causes 

electronic transitions that absorb or emit specific bands of light. A peculiar 

property of the PMMA colloidal crystal acting as a photonic crystal is its ability to 

“filter” light. As previously described in Chapter 1, when white light, which 

contains all visible colours of light, is shined on such structure, some 

wavelengths are forbidden from passing through the colloidal crystal and are 

reflected instead (photonic band gap phenomenon). The remaining wavelengths 

are unaffected by the colloidal crystal, and they simply pass through.   

           The optical properties of the colloidal crystal (opal) can be described by a 

modified Bragg’s Law of diffraction due to its ordered periodic structure. A 

combination of Bragg’s law of diffraction (𝑚𝜆 = 2𝑑𝑠𝑖𝑛𝜃) and Snell’s law of 

refraction (𝑛0𝑠𝑖𝑛𝜃0 = 𝑛1𝑠𝑖𝑛𝜃1) can be written as6: 

𝑚𝜆 = 2𝑑√𝑛2 − 𝑛0
2𝑠𝑖𝑛2𝜃                               (Equation 4.1) 

          In which 𝑚 is the order of diffraction, 𝑛0 and 𝑛 are the incident refractive 

index and lattice refractive index respectively, 𝑑 is the spacing between the 

planes in the lattice, 𝜆 is the light wavelength and 𝜃 is the angle between the 

incident light and the surface normal of the lattice. 

           For close-packed colloidal crystals with FCC structures, the refractive 

index 𝑛 can be taken as an average of refractive indices of the spheres and the 

interstitial spaces. Equation (4.2) shows this relation: 

𝑛𝑎𝑣𝑔 = ∅𝑛𝑠𝑝ℎ𝑒𝑟𝑒 + (1 − ∅)𝑛𝑣𝑜𝑖𝑑𝑠                        (Equation 4.2) 
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where ∅ is the solid volume fraction of the structure. Parameter 𝑑 as the 

interplanar spacing between ℎ𝑘𝑙 indices of Miller planes can be written as: 

𝑑ℎ𝑘𝑙 =
𝐷√2

√ℎ2+𝑘2+𝑙2
                                    (Equation 4.3) 

         As the (111) plane is the predominant plane for the PMMA colloidal 

crystal,  

𝑑ℎ𝑘𝑙 = 𝐷√
2

3
                                           (Equation4.4) 

where 𝐷 is the average centre-to-centre distance between spheres in a close 

packed lattice that is geometrically identical to the sphere diameter. 

For the first order diffraction (𝑚 = 1) from FCC (111) planes of the 

PMMA colloidal crystals, Equation (4.1) can be written as follows, assuming that 

 𝑛0 ≈ 1: 

𝜆 = 1.633𝐷√𝑛𝑎𝑣𝑔
2 − 𝑠𝑖𝑛2𝜃                             (Equation 4.5) 

where 𝜆 is the reflectance peak maximum of UV/Vis spectrum measured in nm. 

For such a structure, this maximum peak corresponds to the position of the 

photonic band gap (PBG), or stop band where the propagation of light is 

forbidden. Using the normal incidence of light (𝜃 = 0̊) and combining     

Equation (4.2) with (4.5), 𝜆𝑚𝑎𝑥 can be written as: 

𝜆𝑚𝑎𝑥 = 1.633𝐷[∅𝑛𝑠𝑝ℎ𝑒𝑟𝑒 + (1 − ∅)𝑛𝑣𝑜𝑖𝑑𝑠]                (Equation 4.6) 

            For PMMA colloidal crystals at room temperature, the refractive indices 

for PMMA and air are 𝑛𝑃𝑀𝑀𝐴 = 1.492 and 𝑛𝑎𝑖𝑟 = 1.000 respectively. The volume 

fraction of PMMA spheres in the FCC structure is ∅ = 0.74 (and thus 0.26 for 



118 
 

air). By inserting these values in Equation (4.6), the following equation is 

obtained: 

𝜆𝑚𝑎𝑥 = 1.633 × 1.364 × 𝐷                            (Equation 4.7) 

            The normal incidence reflectance spectrum of the monolayer PMMA 

colloidal is obtained using a UV-Vis reflectance spectrometer and 𝜆𝑚𝑎𝑥 

extracted (Figure 4.12).  

 

Figure. 4.12 UV-Vis reflectance spectrum collected from monolayer PMMA 

colloidal crystal.  

              From the spectrum in Figure 4.12, the reflectance maxima (𝜆𝑚𝑎𝑥) is 

positioned at 627 nm. The PMMA Sphere diameter (𝐷) can now be calculated 

using equation (4.7): 𝐷 = 281 𝑛𝑚. 

          This value is 27% less than the original average sphere diameter 

determined by the SEM, which is 383 nm. The discrepancy in value may be due 

to the over simplification of assumptions when using the modified Bragg 

formula. For instance, the true volume fractions of air and the PMMA sphere 
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can differ from the ideal values of 0.74 and 0.26, due to crystal defects and size 

distribution of the PMMA spheres. Such defects and dislocations of the spheres 

may also interfere the diffraction of light and change the lattice constant 

parameter in the equation. As literature suggests, the modified Bragg equation 

is not exact because it does not include attenuation of the incident beam and 

assumes identical contributions from each lattice plane19. The position of the 

reflection peak maxima (𝜆𝑚𝑎𝑥) does not consider all the scattering effects and 

should be altered by a more rigorous treatment of dynamical diffraction theory 

(DDT)42 by using X-ray scattering techniques19, 186, 187. Although the sphere 

diameter is not in good accordance with the SEM measurements, the existence 

of the reflectance maxima (𝜆𝑚𝑎𝑥) confirms the photonic crystal properties of the 

PMMA colloidal crystal. This technique has been used widely in the literatures20, 

43. The Bragg reflection seen in the spectrum is attributed to the periodic 

arrangements of the PMMA colloidal spheres and confirms the high quality of 

the colloidal crystal produced using the floating technique.  

 

4.5 Conclusion 

The PMMA colloidal crystals produced in this work with both the vertical and the 

modified floating techniques showed high quality ordered arrays of self-

assembled PMMA spheres. The PMMA spheres used to fabricate such 

structures were monodisperese which further confirms their successful 

polymerisation prior to self-assembly.  

             The modified floating approach can be considered as a powerful 

technique for colloidal crystal fabrication. Its simplicity combined with its 
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production of large areas of opalescent monolayer or multilayer photonic 

colloidal crystals in a short timeframe makes it an attractive proposition. 

Furthermore, its multiple deposition abilities can ease the difficulties in 

controlling the thickness of the colloidal crystals; a major challenge associated 

with many other colloidal crystal self-assembly techniques.   

               Photonic crystal properties of the PMMA colloidal crystals make them 

good candidates to be utilised not only in templating techniques for production 

of inverse opals and also as opalescent materials for multiple applications, such 

as displays, sensors, information storage, decoration, camouflage, art and 

mimicking biological systems27, 41, 42. 
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Chapter 5: Preparation and Study of Multiple Metal Oxide 

Inverse Opals & Hollow Spheres Using Template-Directed 

Synthesis  

 

5.1 Abstract 

Various 2D and 3D metal oxide inverse opal nanostructures including TiO2, 

Fe2O3 and ZnO were successfully synthesised using colloidal crystal templating 

via sol-gel infiltration. A comprehensive temperature-dependent study on the 

formation of 3D TiO2 inverse opal was carried out, which revealed a reduction in 

the size of the air spheres after template removal. By using the template-

directed synthesis via sol-gel coating, several metal oxide hollow sphere 

nanostructures, including TiO2, SiO2, ZnO, and CuO were synthesised. The 

synthesis of SiO2/TiO2 sphere-in-sphere hollow spheres was achieved for the 

first time using a combination of seeded polymerisation and templating 

processes.  

 

5.2 Introduction 

 Inverse opal and hollow sphere nanostructures of several materials including 

metal oxides, can be synthesised by templating against PMMA colloidal crystals 

and colloidal spheres via sol-gel infiltration or coating. As discussed previously 

in Chapter 1, metal oxide inverse opals can be readily synthesised from 

colloidal crystal (opal) templates, by first filling the voids of the opal with a metal 

oxide precursor, followed by hydrolysis and condensation reactions (sol-gel 
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chemistry) of the infiltrated precursor, and finally by removing the original opal 

template by calcination or wet chemical etching. The synthesis of metal oxide 

hollow spheres follows a similar mechanism, with the exception of using each 

individual PMMA colloidal sphere as a template for sol-gel coating, instead of 

infiltrating the PMMA colloidal crystals (opals).   

The synergistic effects arising from the semiconducting properties of the 

metal oxide in combination with morphological enhancements of the inverse 

opals and hollow spheres, make them ideal candidates for use as 

photoelectrodes in photovoltaic devices106, 150. In particular, inverse opal and 

hollow sphere structures have been demonstrated to enhance electron 

transport and light trapping properties of such devices106, 126, 188-190. This is due 

both to an increase in the optical path length and also an enhancement in the 

multiscattering properties. These in turn are induced by highly accessible 

surfaces and relatively large pore sizes of these nanostructures7, 191. In addition, 

inverse opals provide an additional photonic band gap effect, which enhances 

the light-matter interactions by controlling the propagation of light140, 191. The 

ordered arrangement of the porous structure with a uniform repetition of low and 

high refractive index areas leads to diffraction of light in a manner similar to the 

diffraction observed with colloidal crystals43 (Chapter 4).  

For the synthesis of inverse opals via  colloidal crystal templating using 

sol-gel infiltration, the choice of infiltration technique can play a critical role in 

the quality of the final structure. A common method of infiltration is dip coating40, 

192, where the colloidal crystal substrate is vertically immersed in the precursor 

solution and then withdrawn slowly. Using this method may cause overlayer at 

the surface as a result of excess precursor. The presence of an overlayer can 
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significantly reduce the opto-electronic properties of the inverse opal by 

diminishing the porosity of the structure. Sandwich capillary infiltration9 is 

another technique which may reduce the amount of the overlayer on the inverse 

opal sample. In this infiltration technique, first the colloidal crystal substrate is 

covered by placing a glass cover slide on top of it and then clamping the two 

together. subsequently, the interstitial gaps of the colloidal crystal are filled with 

the sol-gel precursor as a result of the pressure difference and capillary forces. 

This infiltration technique can reduce overlayer on the surface of the inverse 

opal, however very clean substrates are needed and the choice of substrate 

may be limited. Vacuum assisted5, 27 and horizontal61, 193 sol-gel infiltration are 

two other methods to produce high quality inverse opals with minimum 

overlayers. These two methods will be used in this chapter to synthesise 

various 2D and 3D metal oxide inverse opals. They are facile and can yield high 

quality inverse opals. For the synthesis of 3D inverse opals, colloidal crystal 

templating using vacuum assisted sol-gel infiltration is a method of choice, as 

the application of suction through the 3D colloidal crystal template will assist the 

process by enhancing uniform infiltration throughout the 3D multilayered 

template. For the synthesis of 2D monolayer inverse opals, horizontal infiltration 

may be beneficial. In this method, the precursor is placed dropwise carefully on 

the edges of a thin colloidal crystal film. In this work, by modifying  the precursor 

solution, synthesis of 2D monolayer inverse opals have been made possible via 

horizontal infiltration approach. The successful synthesis of the 2D metal oxide 

inverse opals are particularly important here, as they will be used as the 

building blocks for the preparation of hierarchical photoanode samples for water 

splitting and dye sensitised solar cell experiments in Chapters 6 and 7.    
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   The chemical composition of the sol-gel precursor is another important 

factor in determining the quality of the final inverse opal product. For example, 

titanium tetra-isopropoxide (TTiP) which is commonly used as the main 

precursor in the production of TiO2 inverse opals should be handled with care. 

As this precursor is air/moisture sensitive (hydrolysing very fast), and hence 

makes it difficult to control the degree of infiltration. This is because premature 

condensation and cross-linking of the precursor clogs the voids of the colloidal 

crystal template at the surface193. Diluting the titanium alkoxide with ethanol can 

decrease its reactivity and also increase its penetration through the colloidal 

crystal template by improving the wetting properties of the sol-gel precursor. 

Ethanol can also be used to lower the viscosity of the sol-gel precursor193, as 

extensive polymerisation of TTiP precursor prior to infiltration can increase 

viscosity and result in incomplete filling of the template5. Furthermore, addition 

of HCl27 and/or trifluoroacetic acid9 to this alkoxide precursor can decrease the 

rate of condensation in the sol-gel process, preventing premature TiO2 

precipitation upon exposure to air. The use of trifluoroacetic acid can also 

increase the precursor hydrophobicity, which can facilitate the infiltration 

process9 by allowing more uniform wetting of the PMMA colloidal crystal 

template and giving greater control over the degree of infiltration throughout the 

entire structure193. In this work, for the synthesis of 3D TiO2 inverse opals, the 

more conventional route of adding ethanol and HCl solvents to the TTiP 

precursor (with or without addition of water) has been used for improving 

infiltration and the quality of the final inverse opal structure. However, for the 

synthesis of 2D monolayer TiO2 inverse opals, a modified precursor with the 

addition of trifluoroacetic acid to the TTiP/ethanol/HCl has been employed. The 
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very thin layer of 2D monolayer PMMA colloidal crystal (~410 nm) is very 

delicate to perform the infiltration procedure on, without forming any unwanted 

overlayers. By adding this inorganic acid, the amount of precursor which is 

necessary to wet and infiltrate the interstitial gaps of the colloidal crystal could 

be reduced considerably. In this work, by only adding 4 drops of the modified 

precursor to the edges of the template using horizontal infiltration, with 

subsequent drying and calcination, homogenous, robust monolayer TiO2 

inverse opals have been produced.  

For the synthesis of other metal oxide inverse opal systems including 

ZnO and iron oxide, similar sol gel infiltration routes has been carried out by 

using zinc acetate and iron nitrate as the main metal salt precursors in the sol-

gel infiltration process. Additionally, hollow spheres of various metal oxides 

including TiO2, SiO2, ZnO and CuO has been successfully synthesised in this 

work using sol-gel coating. For TiO2 and SiO2 sphere coating, their metal 

alkoxides namely TTiP and TEOS have been used in the sol-gel process 

respectively. For the other two metal oxide systems, ZnO and CuO, their metal 

acetates namely zinc acetate and copper acetate have been used as the main 

sol-gel precursors for coating respectively. For the latter two systems, by using 

only water and their metal acetate salts in the coating procedure, it has been 

possible to produce high quality hollow spheres after template removal through 

calcination. This novel sol-gel route is promising, as it is easy and fast and thus, 

may be applied for the synthesis of other metal oxide hollow sphere 

nanostructures.                 

The formation of sphere-in-sphere hollow spheres as another specifically 

designed nanoarchitecture gives superior properties compared with those of 
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simple hollow spheres, with respect to surface area enhancement and light 

scattering properties194. Previously the formation of such structures via a 

solution-based chemical technique, which uses carbonaceous microspheres as 

sacrificial templates has been reported195, 196. These techniques are limited by 

the resulting sphere-in-sphere structures consisting of only one species of metal 

oxide. Although this sphere-in-sphere synthesis technique was a breakthrough 

in the production of nanostructures with very high internal and external surface 

areas, it lacks versatility in the formation of heterostructured architectures. In 

this work, a novel synthesis technique combining seeded polymerisation 

processes with a templating approach has been used to synthesise hybrid 

sphere-in-sphere hollow spheres of different metal oxides. Figure 5.1 shows the 

schematic stages of sphere-in-sphere hollow sphere formation using the 

templating approach proposed in this work.  

 

Figure. 5.1 Schematic showing the stages in the formation of sphere-in-sphere 

hollow sphere using template-directed synthesis.  

As shown in Figure 5.1, the sphere-in-sphere procedure consists of three 

steps. PMMA spheres are initially coated by a metal oxide precursor through a 

sol-gel process. The coated spheres are then used as a seed in a SFEP 

process. The seeded polymerisation step is similar to that presented in Chapter 

3 for the formation of large PMMA spheres, with the difference being that the 

seed is a coated PMMA sphere. After polymerisation, a PMMA shell covers the 
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outside of the coated sphere. This core-shell structure is further coated with 

another metal oxide precursor via a sol-gel process. After hydrolysation and 

condensation of the second sol-gel coating, the two PMMA layers are removed 

by chemical etching or calcination to form a sphere-in-sphere hollow sphere 

with two different metal oxide layers. This technique may be further extended to 

form multiple layers of metal oxide hetero-nanostructures leading to further 

opto-electronic enhancements.   

 

5.3 Experimental Procedures 

5.3.1 Synthesis of 3D Multilayer Titania (TiO2) Inverse Opal via 

Colloidal Crystal Templating Using Vacuum Assisted Sol-Gel 

Infiltration  

The procedure was adopted from an earlier work by Schroden et al27. In a 20 ml 

glass bottle, a mixture with the following composition was made by sequential 

addition of the following: ethanol (5.0 mL), HCl (1.0 ml), TTiP (5.0 ml) and water 

(2.0 ml). The mixture was stirred at ambient temperature for 2 hours. Following 

this, dried PMMA colloidal crystal (0.61 g, 414 nm spheres) previously prepared 

using a vertical deposition technique on a glass substrate  were gently removed 

from the substrate using a metal spatula. In order to get the correct weight, 

some of the PMMA colloidal crystal strips that had fallen off the glass substrate 

into the bottom of the beaker during self-assembly were also collected (Chapter 

4, Figure 4.6). The collected strips of colloidal crystal were placed onto a towel 

paper, and by using the back of a metal spatula were gently crushed into a 
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powder. Whilst applying vacuum through a Büchner funnel, a piece of filter 

paper was placed in the Büchner funnel. A few drops of absolute ethanol were 

added to the filter paper, in order to allow for better adhesion to the pores of the 

funnel. The powdered colloidal crystal was deposited as a 1 millimetre thick 

layer on the filter paper in the Büchner funnel using a metal spatula. This was 

done by spreading and lightly packing the powder, so it evenly covers the entire 

filter paper. Then an equal amount by mass of the TiO2 precursor solution (0.61 

g) was applied dropwise until the entire PMMA colloidal crystal template had 

been covered by capillary forces. The matching amount of precursor solution to 

that of the PMMA colloidal crystal template was to minimise the formation of 

overlayers on the pores once the inverse opal has been formed5. The suction 

was ceased after 30 minutes. The composite sample was allowed to dry (aged) 

at ambient conditions for 24 hours for complete hydrolysation and condensation 

of the sol-gel. Finally, the sample was transferred from the filter paper (by gently 

scraping the powder using a spatula) into a porcelain dish and calcined at 

450˚C for 2 hours at ramping rate of 3˚C/min to remove the PMMA template. 

The sample was allowed to cool further to ambient temperature at a rate of 

10˚C/min. The gradual and slow ramping rate was important to minimise the 

collapsing of the inverse opal pores during calcination and prevent incomplete 

removal of the template121. As sudden burning off of the PMMA template at 

lower temperatures (~160°C) and sudden crystal phase transition in the walls of 

the inverse opal at higher temperatures (~400°C) could result in structural 

collapse and also leave carboneous residues in the mesopores120 of the inverse 

opal walls. For the temperature-dependent experiment, the inverse opal 

produced was divided equally into six samples. Five of the six samples 
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underwent further calcination (550, 650, 750, 850 and 950°C). Figure 5.2 shows 

the schematic of the preparation of inverse opal via vacuum assisted colloidal 

crystal templating.  

 

Figure. 5.2 A schematic showing the inverse opal synthesis via vacuum 

assisted colloidal crystal templating.  

 

5.3.2 Synthesis of 3D Multilayer (Titania and Iron Oxide) & 2D 

Monolayer (Titania and Zinc Oxide) Inverse Opals via Colloidal 

Crystal Templating Using Horizontal Sol-Gel Infiltration  

For the synthesis of 3D multilayer titania inverse opal, previously produced 3D 

PMMA colloidal crystal films (deposited on a glass substrate via the vertical 

deposition technique using 414 nm spheres) were used as the initial template. A 

TiO2 precursor was prepared by mixing TTiP (5.0 ml) and ethanol (5.0 ml) while 

stirring for 2 hours. The mixture was then diluted 10-fold with absolute ethanol 

to achieve a final concentration of 5 vol%. The PMMA colloidal crystal template 

was sintered at 85°C for 1 hour, in order to increase the film mechanical 
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strength and enhance capillary interactions. This occurs due to the temperature 

difference between the colloidal crystal and the precursor solution, which 

enhances capillary uptake of the precursor solution. The substrate was then 

placed horizontally. Using a pipette, a few drops of the diluted precursor were 

added dropwise at the edges of the colloidal crystal template. The precursor 

covered the template’s interstitial gaps by capillary forces. After precursor 

infiltration, the sample was left to dry and age for 24 hour at ambient conditions. 

The substrate was calcined at 450˚C for 2 hour, at a ramping rate of 3˚C/min, in 

order to remove the template. Following calcination the sample was allowed to 

cool to ambient temperature at a rate of  10˚C/min. For the synthesis of 3D 

multilayer iron oxide inverse opals, the same procedure was carried out with a 

modified precursor. The precursor was changed to a mixture of iron nitrate       

(1 g), water (3 ml) and  ethanol (3 ml). 

 

For the synthesis of 2D monolayer zinc oxide inverse opal, previously 

produced 2D monolayer PMMA colloidal crystal deposited on a titanium (Ti) 

substrate via the floating technique (using 414 nm spheres) was used as the 

template. The ZnO precursor was prepared by adding zinc acetate (0.066 g) to 

a mixture of water (3 ml) and ethanol (3 ml) while being stirred for 2 hours to 

form a 0.05 M zinc acetate solution. Using a pipette, four drops of the precursor 

were added to the edges of the colloidal crystal template. The precursor was 

allowed to infiltrate the template interstitial gaps by capillary forces. The sample 

was then left to dry and age for 24 hours under ambient conditions before 

calcining at 450°C, with a ramping rate of 2°C/min, for 2 hours. The sample was 

then cooled to ambient temperature at a rate of 10°C/min. 
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In order to prepare the 2D monolayer titania inverse opal, the same 

procedure was carried out on a glass substrate with a modified precursor. The 

TiO2 precursor was prepared according to an optimised version of a literature 

method9 to suit this experiment. TTiP (0.1ml) was added to a mixture of 

trifluoroacetic acid (0.08 ml) and HCl (0.02 ml) during vigorous stirring. After 30 

minutes, ethanol (6.8 ml) was added to the mixture, forming a 0.05M TTiP 

solution. The solution was then stirred for another 2 hours before deposition.  

 

5.3.3 Production of Various Metal Oxide Hollow Spheres via 

Template-Directed Synthesis Using Sol-Gel Coating 

5.3.3.1 Synthesis of Titania (TiO2) Hollow Spheres 

The procedure to make the TiO2 sol-gel precursor was adapted from that of 

Kalele et al.197, who used a sol-gel coating procedure to create silica-titania 

core-shell structures. Dried PMMA spheres (0.1 g) made previously using the 

SFEP process (sphere diameter 414 nm) were dispersed in ethanol (15 ml) 

using ultrasonic treatment for 6 hours. TTiP and water at a volume ratio              

0.04 : 0.1 ml TTiP : water were added to the PMMA sphere suspension. The 

mixture was then stirred by a magnetic stirrer bar for 4 hours. After this period it 

was assumed that all TTiP had been hydrolysed and condensed on the surface 

of the PMMA spheres. The solution was then centrifuged at 5000 rpm for 30 

minutes. The top solvent layer was decanted off. The remaining white solid was 

dried in an oven at 40°C for 1 hour. The sample was then thoroughly washed 

with ethanol by centrifugation three times. This washing procedure was to 

ensure that all of the excess precursor material and other impurities were 
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removed. The sample was then calcined at 450°C for 2 hours with a ramping 

rate of 3°C/min in order to remove the PMMA sphere templates before being 

allowed to cool at a rate of 10°C/min.  

In order to carry out TEM imaging, a small portion of the sample was 

removed from the substrate following calcination. The  powder sample obtained 

was then suspended in ethanol (20 ml). A 5 μl drop of this suspension was 

deposited on a carbon film supported by a 3 mm copper grid and dried before 

use. 

 

5.3.3.2 Synthesis of Silica (SiO2) Hollow Spheres 

The procedure to make the SiO2 sol-gel precursor was a modified version of the 

Stober technique21. Dried PMMA spheres (0.1 g) made previously by the SFEP 

process (sphere diameter 286 nm) were dispersed in ethanol (15ml) using 

ultrasonic agitation for 6 hours. Following this, ammonia (0.75 ml)  and water   

(3 ml)  were added to the mixture and stirred using a magnetic stirrer bar for 30 

minutes. TEOS (1.2 ml) was then added. The solution was mixed for another 4 

hours before drying and ageing in an oven at 40°C for 12 hours. This allowed 

the TEOS to hydrolyse and condense. The sample was then washed thoroughly 

with ethanol through centrifugation three times in order to remove impurities. 

Following this, the solid was calcined at 450°C for 2 hours with a ramping rate 

of 3°C/min to remove the PMMA sphere templates. It was then allowed to cool 

at a rate of 10°C/min.  
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5.3.3.3 Synthesis of Zinc Oxide and Copper Oxide Hollow Spheres  

In order to produce the zinc oxide sol-gel precursor, zinc acetate (0.01 g)  was 

dissolved in deionised (DI) water (14 ml) to yield a zinc acetate (3 mM) solution. 

Similarly, for the copper oxide precursor, 3 mM solution of its metal salt in the 

form of copper acetate, was produced by dissolving in DI water (14 ml).   

 1 ml of PMMA sphere solution (corresponding to 0.095 g/ml of PMMA 

spheres) produced by the SFEP process (sphere diameter 414 nm) was added 

to each of the metal oxide precursor solutions. Each solution was then 

dispersed ultrasonically for 1 hour. The solutions were gravitationally filtered 

and washed thoroughly with ethanol and water. The purified solid samples were 

then dispersed in DI water. Five drops of each sample solution were placed on 

two separate clean glass slide substrates. The deposited substrates were left to 

dry  in an oven at 40˚C for 1 hour. The samples were then calcined at 450˚C for 

2 hour at ramping rate of 3˚C/min to remove the PMMA sphere templates. 

Following calcination, the samples were cooled to ambient temperature at a rate 

of 10˚C/min.  

 

5.3.4 Synthesis of SiO2/TiO2 Sphere-in-Sphere Hollow Spheres via 

Seeded Polymerisation and Template-Directed Synthesis 

For the synthesis of SiO2/TiO2 sphere-in-sphere hollow spheres, previously 

made SiO2 coated spheres (0.05 g) prior calcination were used as the seed in a 

typical SFEP process using MMA monomer solution (6ml, 1.48 M) and initiator 

(0.035 g) as described in Chapter 3. The seeded polymer solution was 

centrifuged at 5000 rpm for 30 minutes. After centrifugation, the top layer of 
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solvent was decanted to yield a white solid. The semi-dried product (0.1 g) was 

dispersed in ethanol (15 ml) and mixed ultrasonically for 3 hours. TTiP (0.04 ml)  

and water (0.1 ml) were added to the mixture. The solution was then stirred 

using a magnetic stirrer bar for 4 hours before five drops of the solution were 

placed horizontally onto a clean glass slide. The deposited substrate was then 

dried in an oven at 40˚C for 1 hour. To remove the layers of PMMA formed 

between the two metal oxide coatings, the sample was calcined at 450°C for 2 

hours at a ramping rate of 3˚C/min. Following calcination the sample was 

allowed to cool to ambient temperature at a rate of 10°C/min.  

 

5.4 Results and Discussion 

5.4.1 Temperature Dependent Study of 3D TiO2 Inverse Opals 

Synthesised by Colloidal Crystal Templating Using Vacuum Assisted 

Sol-Gel Infiltration  

The SEM image of a 3D TiO2 inverse opal synthesised by colloidal crystal 

templating using vacuum assisted sol-gel infiltration using a PMMA template 

removal temperature of 650°C is shown in Figure 5.3. An ordered 3D inverse 

opal structure comprising of possibly FCC arrays of air sphere in TiO2 can be 

observed in this image. The air spheres with an average diameter of 204 nm 

are the outline of the original PMMA colloidal spheres and the walls with an 

average thickness of 51 nm are the replica of the interstitial gaps in the original 

PMMA colloidal crystal, which are now infiltrated by TiO2. The small holes 

(windows5) indicate the position of the air spheres in the underlying layer of the 

inverse opal connecting each air sphere to its nearest neighbours.  
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Figure. 5.3 SEM image of 3D TiO2 inverse opal synthesised by vacuum 

assisted sol-gel infiltration templating at calcination temperature of 650°C. 

Average air sphere diameter and wall thickness are 204 nm and 51 nm 

respectively. The underlying substrate is a glass slide. Scale bar: 500nm. 

The formation of a TiO2 solid structure between the interstitial gaps of the 

PMMA colloidal crystal involves the process of sol-gel chemistry. The main 

precursor in the synthesis of TiO2 inverse opals in this work is TTiP 

(Ti(OC3H7)4), which is an alkoxide of titanium (IV).  

In a sol-gel process, network solids of TiO2 are formed by the reactions 

of hydrolysis and condensation. In the hydrolysis step, TTiP reacts with water 

(including air moisture), resulting in the replacement of an alkoxy group by a 

hydroxyl group and then the condensation of the hydrolysed Ti(OH)4 occurs 

which leads to the growth of the polymeric TiO2 network. As the growth process 

continues, a sol of small chains or branched structures forms. These chains 

continue to grow until they eventually gel to form a continuous solid network, at 

which point the network changes from liquid to solid. The reactions leading to 

the formation of the TiO2 polymeric network solid are as follows16: 
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Ti(OC3H7)4 + 4H2O  Ti(OH)4 + 4C3H7OH (hydrolysis)  

Ti(OH)4 + Ti(OH)4  2TiO2 + 4H2O (condensation of water) 

Ti(OH)4 + Ti(OC3H7)4  2TiO2 + 4C3H7OH (condensation of i-propanol) 

 

Figure. 5.4 SEM images of 3D TiO2 inverse opals produced by vacuum 

assisted sol-gel infiltration templating at different calcination temperatures;      

(a) 450, (b) 550 (c) 650, (d) 750, (e) 850 and (f) 950°C. The interconnected 

tetrahedral and octahedral sites are shown in image (c) corresponding to the 

650°C sample. Glass slide is used as substrate for all the samples. Scale bars: 

(a),(b),(d),(e): 2μm, (c) 500nm and (f) 5μm. 

The sol-gel process is complete upon removal of the water molecules, 

the hydroxyl and alkoxy groups still attached to the TiO2 by calcination, leaving 

pure TiO2 metal oxide material. Therefore, the calcination process in the 

synthesis of TiO2 inverse opals is not only performed to remove the PMMA 
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colloidal crystal temples, but it is also necessary to complete the reaction of the 

alkoxides to solid TiO2. As one study reported, the Raman spectra of the 

infiltrated but not yet calcined colloidal crystals revealed complicated spectra 

that were very different from any known polymorph of TiO2. It was considered 

that in this stage, the solid was a complex conglomerate that contained many 

hydroxyl and alkoxy groups183.     

 Figure 5.4 shows the SEM images of 3D TiO2 inverse opals produced by 

colloidal crystal templating using vacuum assisted sol-gel infiltration approach at 

different calcination temperatures between 450°C and 950°C.  

 

Figure. 5.5 3D TiO2 inverse opal air sphere diameter as a function of 

calcination temperature. 

The plot of the average diameter of the air spheres (macropores) inside 

each 3D TiO2 inverse opal sample as a function of increasing calcination 

temperature is shown in Figure 5.5. The average diameter of the original PMMA 

spheres is 383 nm. The average diameter of the air sphere in the 3D TiO2 

inverse opal produced at 450°C is  225 nm. Therefore a large reduction in the 

diameter can be detected, which reduces linearly by increasing the calcination 
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temperature to an average value of 145 nm at 850°C. When the calcination 

temperature reaches 950°C, a complete loss of porosity in the inverse opal 

morphology occurs, as can be seen in the SEM image of Figure 5.4(f). On the 

other hand, the TiO2 wall thickness increases linearly by increasing the 

calcination temperature as shown in Figure 5.6. 

 

Figure. 5.6 3D TiO2 wall thickness as a function of calcination temperature 

   From the plot, it can be seen that at the calcination temperature of 

450°C, the inverse opal wall has an average thickness of 36 nm which 

increases linearly to an average value of 77 nm at 850°C. This behaviour 

indicates that the interconnected TiO2 wall network in the inverse opal swells 

with increasing calcination temperature and may be the reason for the reduction  

of porosity (air sphere diameter) as a function of calcination temperature. The 

swelling phenomenon can be explained in terms of TiO2 crystal growth in the 

walls of the inverse opal. Prior to calcination, the walls of the TiO2 inverse opal 

are amorphous and convert to a crystalline phase at 450°C. The XRD patterns 

for the TiO2 inverse opal at different calcination temperatures from 450 to 950°C 

are presented in Figure 5.7. At lower temperatures, no XRD patterns are 

obtained confirming that the inverse opal is in its amorphous phase. 
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Figure. 5.7 XRD spectra of 3D TiO2 inverse opals calcined at different 

temperatures ranging from 450 to 950°C (A=anatase and R=rutile). The 

indicated anatase (A) peaks are positioned at 24.98°(101), 36.61°(103), 

37.39°(004), 38.25°(112), 47.67°(200), 53.53°(105), 54.78°(211) and 

62.42°(118). The indicated rutile (R) peaks are positioned at 26.94°(110), 

35.61°(101), 40.74°(111), 43.60°(210), 53.84°(211), 56.16°(220) and 

63.56°(310).  

In Figure 5.7, the XRD diffraction peaks indicated by the ‘A’ can be 

indexed to anatase TiO2 (JCPDS card no. 841286) with peaks of (101), (103), 

(004), (112), (200), (105), (211) and (118) planes at the corresponding 2𝜃 

values of 24.98°, 36.61°, 37.39°, 38.25°, 47.67°, 53.53°, 54.78° and 62.42°.  

Those marked by ‘R’ are assigned to the rutile phase of TiO2 (JCPDS card no. 

881175) with peaks of (110), (101), (111), (210), (211), (220) and (310) planes at 

the corresponding 2𝜃 values of 26.94°, 35.61°, 40.74°, 43.60°, 53.84°, 56.16° 

and 63.56°. From XRD measurements, a gradual conversion in crystallinity 

phase of the TiO2 network from anatase to rutile can be observed as the 

calcination temperature increases from 450 to 950°C. Up to 650°C all the 
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diffraction peaks correspond to anatase (marked ‘A’ in Figure 5.7). Above this 

temperature diffraction peaks from the rutile phase gradually appear (marked ‘R’ 

in Figure 5.7), indicating phase transformation. The characteristic peak of 

anatase with the highest intensity is the 101 plane. For rutile, this is the 110 

plane. As the calcination temperature increases from 450 to 850°C, those peaks 

associated with anatase phase TiO2 become sharper, indicating that the higher 

calcination temperature promotes high crystallinity of anatase. Similarly, sharper 

and more intense rutile peaks can be detected as the calcination temperature 

increases from 650 to 950°C, indicating high rutile crystallinity. At the calcination 

temperature of 950°C, most of the anatase peaks transform to rutile, showing 

that at high temperatures, rutile is the stable crystal phase of TiO2. Usually, 

phase transformation is accompanied with crystal growth198. The XRD patterns 

in Figure 5.7 show that by increasing the calcination temperature, the diffraction 

peaks corresponding to both the anatase and rutile phase become narrower, 

which indicates the increase of TiO2 crystallite size in the walls of the TiO2 

inverse opal. The average crystallite sizes can be calculated using the Debye-

Scherrer formula (Chapter 2). Figure 5.8 is a plot of TiO2 crystallite size as a 

function of calcination temperature for the 004 (anatase) and 110 (rutile) 

diffraction planes. The size of the TiO2 crystallites perpendicular to both the 

(004) and (110) diffraction planes in the TiO2 inverse opal increase with 

increasing the calcination temperature. An increase from 16.4 to 26.6 nm for the 

(004) anatase and 20.7 to 52 nm for the (110) rutile diffraction planes is 

observed when the temperature is increased from 450 to 950°C. 
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Figure. 5.8 TiO2 Debye-Scherrer crystallite size as a function of calcination 

temperature for the anatase (004) and rutile (110) diffraction planes. 

 From this XRD study, it is possible to conclude that the increase in TiO2 

wall thickness as a function of calcination temperature is due to the growth of 

TiO2 crystallites in the inverse opal walls, which leads to the reduction of size of 

the air spheres in the inverse opal. The XRD results obtained here with regards 

to the effect of calcination temperature on the crystallinity and phase 

transformation of TiO2 inverse opals are consistent with previous studies carried 

out elsewhere namely on TiO2 hollow spheres7 and TiO2 powders (P25)198. By 

looking at the SEM images in Figure 5.4, the skeletal structure of the inverse 

opal is well preserved at calcination temperatures of 450 to 650°C (Figure 

5.4(a) to (c)). At temperatures above 650°C (Figure 5.4(d) to (f)), the porosity is 

gradually lost due to the rapid growth of the fused crystalline grains. When the 

temperature reaches 950°C, a complete loss of inverse opal morphology 

occurs. The growth of crystalline grains is possibly due to the increase in size of 

the TiO2 crystallites nucleating to form the TiO2 grains in walls of the inverse 

opal. 
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In terms of the morphological quality of the TiO2 inverse opals produced 

at different calcination temperatures, the skeletal structure of the inverse opal is 

well preserved at calcination temperatures of 450 to 650°C as shown in the 

SEM images in Figure 5.4. This results in three dimensional ordered 

macroporous structures with interconnected tetrahedral and octahedral sites, 

which were previously air gaps in the original PMMA colloidal crystal template 

(Figure 5.4(c)). As the calcination temperature increases, a more significant 

volume loss may occur due to the loss of solvent content in the precursor as 

reported in other studies151, 152. As a result, the skeleton of the inverse opal may 

become less curved and may be considered as a skeleton of nodes connected 

by rod-like TiO2 walls in the octahedral and tetrahedral holes199, 200 of the 

original PMMA colloidal crystal template. From the SEM images in Figure 5.4, it 

is clear that the best optimisation of the skeleton occurs at 650°C.  

 

5.4.2 3D Inverse Opals Syntheised via Colloidal Crystal Templating 

Using Horizontal Sol-Gel Infiltration    

Figure 5.9 shows SEM images and EDX spectra of (a) 3D iron oxide and (b) 3D 

TiO2 inverse opals produced by colloidal crystal templating using  horizontal sol-

gel infiltration approach on glass substrates at a calcination temperature of 

450°C. The original 3D PMMA colloidal crystal templates were produced by a 

vertical deposition technique on the glass substrate. The quality of these 3D 

inverse opals is similar to the inverse opals synthesised by the vacuum assisted 

templating approach, described before in Section 5.4.1. Some reduction in the 

size of the air spheres (macropores) can also be observed. In both types of 
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inverse opals, an average air sphere diameter of 280 nm and an average wall 

thickness of 70 nm are observed. The average air sphere is less than the 

average diameter of the original PMMA sphere template (383 nm). The result of 

successful 3D inverse opal manufacturing is observed in both samples. The 

skeletal structures of the inverse opals are well preserved, which results in 3D 

porous structures with interconnected tetrahedral and octahedral sites 

(previously air gaps in the PMMA colloidal crystals).   

 

Figure. 5.9 (a) 3D iron oxide and (b) 3D TiO2 inverse opals synthesised by 

colloidal crystal templating using horizontal sol-gel infiltration on glass 

substrates at calcination temperature of 450°C: SEM images (scale bars: 1μm) 

and  EDX spectra. 

The EDX spectra in Figure 5.9 shows that the 3D TiO2 and iron oxide 

inverse opal networks consist of the Fe and Ti elements respectively. The 

inverse opal structure in both samples covers a relatively large area of the 

substrate, with few cracks and grain boundaries. The horizontal templating 

approach is easier and less time consuming than the more established vacuum 
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assisted approach in the synthesis of 3D metal oxide inverse opals and may be 

considered the method of choice for such systems. Although, more studies 

should be carried out to systematically analyse the quality of the samples made 

by this approach, in particular to see whether the precursor is penetrated evenly 

through the original 3D colloidal crystal template in the infiltration stage.     

 

5.4.3 2D Metal Oxide Inverse Opals Syntheised via Colloidal Crystal 

Templating Using Horizontal Sol-Gel Infiltration 

 

Figure. 5.10 SEM images of 2D monolayer ZnO (a, b) and TiO2 (c, d) inverse 

opals produced via colloidal crystal templating using horizontal sol-gel infiltration  

at a calcination temperature of 450°C. The substrate for ZnO inverse opal is Ti  

and for TiO2 inverse opal is a glass slide. Scale bars: (a),(c): 2μm and (b),(d): 

20μm. 

Figure 5.10 shows the SEM images for 2D monolayer inverse opals of ZnO 

(Figure 5.10(a and b)) and TiO2 (Figure 5.10(c and d)). Firstly, a modified 

floating technique was used to produce monolayer PMMA colloidal crystals on 



145 
 

two different substrates; Ti (for ZnO sample) and glass (for TiO2 sample). 

Horizontal sol-gel infiltration was subsequently employed to produce the 2D 

monolayer inverse opals. The monolayer PMMA colloidal crystals were 

removed by calcination at 450°C. The choice of substrate has no effect on the 

quality of the monolayer inverse opal samples produced.  

The SEM images in Figure 5.10 portray the 2D nature of the structures. 

There is no underlying layer, connected by small holes, which was present in 

the 3D inverse opals. These holes indicate the position of the air spheres in the 

underlying layer and therefore are only present in the 3D inverse opals. In the 

2D inverse opals, the average diameter of air spheres (macropores) is 

410±6 nm and does not show a large variation in size from the original PMMA 

sphere (about 414 nm). The wall thickness is 85±10 nm and 70±10 nm for ZnO 

and TiO2 respectively. The template removal and metal oxide wall crystallite 

growth stages (during calcination at 450°C) do not contribute to air sphere size 

reduction as observed in the 3D systems (Sections 5.4.1 and 5.4.2). This 

occurrence can be assigned to the more flexible structure of 3D inverse opals, 

which is in turn due to their 3D interconnectivity. In contrast, the 2D inverse opal 

is more rigid due its 2D monolayer framework, which is in contact to the 

substrate. The  contractions caused by template removal and increase in wall 

thickness due to crystallite growth can lead to a contraction in the flexible 

inverted framework of the 3D inverse opal (a sponge-like behaviour). The more 

rigid 2D inverse opal remains structurally intact. The SEM images show that 

these macroporous structures are periodically ordered. Each macropore is 

surrounded by six equal macropores. The ordered macropores are connected 

to each other by ZnO (Figure 5.10(a, b)) and TiO2 (Figure 5.10(c, d)) walls. 
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The low magnification SEM images in Figure 5.10(b and d) show that 

both inverse opals cover large areas with some defects and grain boundaries. 

2D inverse opals seem to show better coverage than the 3D inverse opals. This 

may be due to their more rigid framework, which may reduce cracks and grain 

boundaries. The presence of large areas of ordered porous film is promising. 

The production of hierarchical heterostructures using different metal oxide 

inverse opal layers using this technique may lead to structures with enhanced 

photovoltaic properties. The synthesis of bilayered inverse opals and their 

applications in photovoltaics will be discussed in the next two chapters 

(Chapters 6 and 7). 

 

Figure. 5.11 XRD spectra for 2D monolayer inverse opals of (a) ZnO on Ti and 

(b) TiO2 on glass. The peaks labelled with (*) correspond to the underlying Ti 

substrate (5.11(a)).   
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The XRD spectra of both 2D monolayer ZnO and TiO2 inverse opals are 

shown in Figure 5.11. The peaks in the XRD pattern corresponding to the 

monolayer ZnO inverse opal deposited on Ti substrate (5.11(a)) can be readily 

indexed to the hexagonal wurtzite phase of ZnO according to the JCPDS card 

number 01-075-1526. The XRD peaks corresponding to the monolayer TiO2 

inverse opal deposited on a glass substrate (5.11(b)) are assigned to anatase 

TiO2 according to the JCPDS card number 841286 with a tetragonal crystal 

system. The XRD spectra confirm that the interconnected walls of the 

monolayer inverse opals consist of either pure crystalline ZnO (Figure 5.11(a)) 

or TiO2 (Figure 5.11 (b)), produced at a calcination temperature of 450°C. The 

peaks that are labelled with stars (*) correspond to the underlying Ti substrate 

(Figure 5.11(a)). 

As mentioned previously, the wall thickness of the 2D ZnO and TiO2 

inverse opals measured from the SEM images in Figure 5.10 are 85±10 nm and 

70±10 nm respectively. As the synthetic conditions used in the preparation of 

both samples were similar (using 0.05 M of precursor solutions and 414 nm 

PMMA spheres for the colloidal crystal templates), therefore the reason behind 

this difference in the wall thickness of these two monolayer inverse opal 

structures may lie in their crystal structures and defects densities. Figure 5.12 

shows the stick-and-ball representation of the unit cell crystal structures of (a) 

anatase, (b) rutile phases of crystalline TiO2 and (c) hexagonal wurtzite phase 

of ZnO. 
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Figure. 5.12 Crystal structures of (a) rutile201, (b) anatase201 and (c) wurtzite202. 

The red balls correspond to oxygen atoms in all three structures. The grey balls 

in (a) and (b) correspond to Ti atoms and the white balls in (c) to Zn (Avogadro 

software was used to draw the crystal structures). 

 The XRD spectra in Figure 5.11 confirmed that the crystal structures of 

2D TiO2 and ZnO belonged to pure anatase (no rutile peak detected) and 

wurtzite phases respectively. From Figure 5.12, it is clear that the lattice 

parameter dimensions  in anatase TiO2 is larger than that of wurtzite ZnO; the 

lattice parameters of a = b = 3.782 Å and c = 9.502 Å for anatase201 compare to 

a = b = 3.250 Å and c = 5.207 Å for wurtzite202 can confirm this mismatch. 

Anatase has a tetragonal structure with the two lattice parameters in the ratio of 

c/a = 2.51 and coordinates 6 atoms per unit cell as can be seen in Figure 

5.12(b). The TiO6 octahedron is slightly distorted (rutile has also a tetragonal 

structure with the lattice parameters in the ratio of c/a = 0.644, but with a slightly 

smaller distortion of the TiO6 octahedron than anatase) with a space group of 

𝐷4ℎ
19 in the Schoenflies notation and I41/amd in the Hermann-Mauguin notation 

(the space group of rutile in Schoenflies and Herman-Mauguin notations are 𝐷4ℎ
14 
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and P42/mnm respectively)203. The weight density of the anatase crystal 

structure is 3.79 gcm-3 (the density of rutile is higher at 4.13 gcm-3)201.  

The wurtzite crystal structure on the other hand, has a hexagonal unit cell 

with the two lattice parameters in the ratio of c/a = (8/3)1/2 = 1.633 (in an ideal 

wurtzite structure). The wurtzite structure is composed of two interpenetrating 

hexagonal close packed (HCP) sublattices, each of which consists of one type 

of atom, either Zn or O displaced with respect to each other along the threefold 

c-axis by the amount of u = 3/8 = 0.375 (in an ideal wurtzite structure). The 

atoms in wurtzite ZnO structure are tetrahedrally coordinated in the unit cell, 

with every atom of Zn tetrahedrally coordinated with four atoms of O and vice 

versa (Figure 5.12(c)). Because of this tetrahedral coordination of wurtzite ZnO 

structure, the 4 nearest neighbours and 12-next nearest neighbours have the 

same bond distance in the crystal structure. Wurtzite structure belongs to the 

space group 𝐶6𝑣
4  in the Schoenflies notation and P63mc in the Hermann-

Mauguin notation and has a weight density of 5.606 gcm-3.202  

The larger unit cell and smaller density of anatase would suggest that, 

the walls of 2D anatase TiO2 inverse opal should be thicker than that of 2D 

wurtzite ZnO inverse opal, if the same molar of metal ions were used for the 

inverse opal. However this is contradictory to our experimental observations (70 

and 85 nm wall thicknesses for anatase and ZnO respectively).  

Alternatively, the wall thickness could also be determined by the 

crystallinity and defect. With increase in the annealing temperature, the 

crystallites in both anatase and wurtzite grow in size as a consequence of 

reduction in the volume fractions of their grain boundaries204. Our XRD 
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diffraction in Figure 5.11 shows that the anatase diffraction peaks are in general 

broader than the peaks from ZnO. Using the Debye-Scherrer equation, the 

average crystallite sizes were calculated for anatase (23.0 nm) and ZnO 

wurtzite (32.4 nm). The smaller crystal size in anatase suggests the wall of the 

inverse opal would have smaller voids between crystal domains which will result 

in a thinner wall. On the other hand, the ZnO inverse opal has large crystal size 

and could leave large gaps between the crystal domain boundaries, which will 

lead to a thicker wall. 

For preparing both inverse opals, the calcination conditions are identical 

(at 450°C for 2 hours). Thus the difference in the crystal size is related to the 

crystallisation kinetic behaviour, determined by the rate of hydrolysation and 

condensation of the sol-gel precursor solutions. TTiP is more water sensitive 

(hydrolyses faster) than zinc acetate. Therefore titanium hydroxide 

nanoparticles were formed in the sol-gel solution before applying to the colloidal 

crystal template. Such nanoparticles will limit the mass transportation during the 

calcination process in order to form large crystal domains. As a result, a more 

compact wall is formed in the inverse opal after calcination.  

                 

5.4.4 2D Monolayer Shell-Like Inverse Opals Produced by Colloidal 

Crystal Templating Using Horizontal Sol-Gel Infiltration 

An interesting morphology is observed when the original 2D monolayer PMMA 

colloidal crystal template is not self-assembled entirely successfully. The PMMA 

spheres are not close-packed and form aggregates on the substrate. This 

behaviour occurs when the substrate is not hydrophilic enough (e.g. in the case 
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of glass substrates, when they are not cleaned thoroughly (Chapter 4) or at the 

regions of the substrate where PMMA sphere concentration is too low 

(concentration gradient behaviour). By infiltrating such a template with a metal 

oxide precursor and subsequently removing the template by calcination, a 

unique shell-like inverted metal oxide structure is produced, which is very 

similar in shape and morphology to its parent PMMA template (Figure 5.13).  

 

Figure. 5.13 SEM images of monolayer (a) non close-packed PMMA colloidal 

crystal template and (b, c, d) inverted shell-like ZnO nanostructure (shell-like 

inverse opal) on a glass substrate at calcination temperature of 450°C. Scale 

bars: (a),(b) and (c) 5μm and (d) 2μm. 

The SEM image in Figure 5.13(a) illustrates a non close-packed PMMA 

colloidal crystal template. The SEM images in Figure 5.13(b, c and d) show a 

ZnO inverted structure with shell-like morphology, which resembles the original 

template, on a glass substrate (SEM images taken at different areas of the 

same sample). The monolayer shell-like ZnO inverse opal is produced after the 

template is infiltrated by the ZnO sol-gel precursor using horizontal infiltration. 

The procedure and the precursor composition used is identical to that used to 



152 
 

make monolayer ZnO inverse opals. After complete hydrolysation and 

condensation of the sol-gel, and subsequent calcination at 450°C to remove the 

PMMA template, the shell-like structure is formed on the glass substrate. 

 The formation of the shell-like structure is due to the large gap between 

the original PMMA spheres and the infiltrated ZnO precursor solution which is 

not sufficient to fill the gaps, meanwhile, the capillary forces between the PMMA 

spheres and the substrate attract the solution towards the spheres and form a 

shell on the outside of the PMMA spheres. After calcination, the PMMA core is 

removed and a hollow shell of ZnO is left on the substrate. The hollowed 

morphology can be identified in Fig. 5.13(d). This is due to the presence of 

empty cores observed from the broken spheres. 

This experiment can be extended further to produce double shell 

structures with different metal oxide layers.  

 

Figure. 5.14 SEM images of (a) low magnification and (b) high magnification of 

monolayer ZnO/TiO2 double shell structure (shell-like inverse opal) on a glass 

substrate at calcination temperature of 450°C. Scale bars: (a) 5μm and (b) 2μm. 

Figure 5.14 shows the formation of such a structure with a ZnO inner 

layer and a TiO2 outer layer. This can be achieved by making the first mould by 

horizontal sol-gel infiltration of the ZnO precursor into the PMMA template. Then 
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after ageing it in air, the second mould can be made by infiltrating the TiO2 

precursor in the same fashion as before. The subsequent removal of the inner 

PMMA template gives rise to the ZnO/TiO2 double shell nanostructure, a 

homogenous monolayer self-assembled on the glass substrate. The original 

PMMA sphere has an average diameter of 414 nm. The diameter of the 

inverted ZnO shell structure is 448 nm. The double shell  ZnO/TiO2 inverse opal 

structure has a further increased diameter of 482 nm. These incremental 

increases in diameter support the notion of successful coating, when forming 

the structure. The EDX spectrum in Figure 5.15 confirms the presence of Zn 

and Ti species, corresponding to the ZnO and TiO2 layers. As prior, Au peaks 

are present as a result of the gold coating. Si and Ca peaks correspond to the 

underlying glass substrate with impurities. The elemental content of the Zn and 

Ti species is 84.8% and 15.2%, respectively, determined by EDX.  

 

Figure. 5.15 The EDX spectrum of monolayer ZnO/TiO2 double shell structure. 

Elemental contents: Zn (84.8%) and Ti (15.2%).    

Using non close-packed PMMA sphere aggregates as a template is a 

powerful technique to produce 2D self-assembled metal oxide hollow shells. 

This facile technique can also be compared with those methods used to 

produce hollow spheres of metal oxides, including the templating approaches 
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discussed later in this chapter. This method can be used to form layers of 

monodisperse, homogenous and self-assembled hollow nanostructures and 

thus, can be directly deposited onto the desired substrate for further 

applications.   

 

 

5.4.5 TiO2 Hollow Spheres Created via Template-Directed Synthesis 

In the case of the creation of TiO2 hollow spheres from PMMA spheres using 

sol-gel coating, TTiP is the main precursor and the hydrolysing agent is 

deionised water. Ethanol is the solvent in which reaction happens.  The sol-gel 

process is similar to that of TiO2 inverse opals described earlier in Section 5.4.1. 

The only difference here is that, the hydrolysis and condensation reactions to 

form the TiO2 solid network occurs on the individual PMMA spheres by coating, 

instead of the sol-gel taking place in the interstitial gaps of the PMMA colloidal 

crystals as was the case in the synthesis of TiO2 inverse opals. For the 

synthesis of TiO2 hollow sphere, the TTiP precursor gradually coats the outside 

of the suspended PMMA spheres in the solution by rapid stirring. The 

precursor’s tendency to cover the sphere can be due to the slightly charged 

nature of the PMMA sphere forming a weak electrostatic interaction with TTiP. 

After the completion of sol-gel reactions, by removing the PMMA sphere 

templates via calcination, the TiO2 hollow spheres are created. Figure 5.16 

shows the SEM image (5.16(a)) and an EDX spectrum (5.16(b)) of the TiO2 

hollow spheres, which were produced by the template-directed synthesis 

approach (using 414 nm PMMA colloidal spheres as template). A shrinkage of 

10% can be seen in the air sphere during template removal (370 nm) from the 
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original PMMA sphere. The average wall thickness of the TiO2 coating is 

approximately 40 nm.  

 

Figure. 5.16 (a) SEM image and (b) EDX spectrum for TiO2 hollow spheres 

produced by template-directed synthesis. Scale bar: 2μm. 

The dark feature in the centre of the sphere together with the white 

feature on the edge of the sphere from the SEM image in Figure 5.16(a) 

suggests that the spheres are hollowed. From the EDX spectrum in Figure 

5.16(b), it is noticeable that the most intense titanium peak is due to 𝐾𝛼 

emission at 4.5 eV. Such emission involves titanium 2p electrons  relaxing in 

energy to occupy the 1s orbital, following removal of a 1s orbital by the SEM 

electron beam.  The peak at 4.9eV is due to 𝐾𝛽 emission, which a 3p-1s orbital 

transition205. An extra peak corresponding to aluminium can also be detected in 

the EDX spectrum. This peak is due to the underlying aluminium foil substrate. 

The hollow structure of the TiO2 spheres is confirmed by the SEM image 

(Figure 5.17). This image shows some broken spheres after they have been 

damaged mechanically, by applying pressure to the sample using a spatula . 

B 
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Figure. 5.17 SEM image showing the cut through version of TiO2 hollow 

spheres damaged by mechanical force. Scale bar: 2μm.  

The transmission electron microscopy (TEM) images also confirm the 

hollow nature of the TiO2 coated spheres. The TEM image in Figure 5.18 shows 

the density contrast between the edge and the centre of the hollow spheres. 

This image also shows several spheres aggregated together by the coating 

process. The contrast in the TEM image can be used to judge the density of the 

material. A non-uniform density can be observed in spheres aggregated 

together, which indicates an anisotropic TiO2 coating.  

 

Figure. 5.18 TEM image showing aggregated TiO2 hollow spheres. Scale bar: 

100nm. 

  The XRD diffraction pattern of the TiO2 hollow spheres formed after 

template removal at a calcination temperature of 450⁰C can be seen in Figure 

5.19. 
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Figure. 5.19 XRD spectrum of TiO2 hollow spheres calcined at 450°C 

(A=anatase). 

  The spectrum confirms that the TiO2 layer coating formed at this 

temperature is in the anatase phase. The XRD pattern is indexed to anatase 

TiO2 according to the JCPDS card number 841286 with a tetragonal crystal 

system (Figure 5.18). By employing the Debye-Scherrer formula, the average 

TiO2 crystallite size perpendicular to the dominant anatase (101) plane has 

been calculated to be 18 nm. 

 

5.4.6 SiO2 Hollow Spheres Created via Template-Directed Synthesis 

In the case of the creation of SiO2 hollow spheres from PMMA spheres in the 

sol-gel coating process, TEOS is the main precursor and the hydrolysing agent 

is deionised water. Ammonia (NH3) is used to catalyse the reaction and to 

obtain a basic medium and ethanol is the solvent in which the reaction happens.  

In this sol-gel process, network solids of SiO2 are formed around the PMMA 

colloidal spheres by hydrolysis and condensation reactions. In the hydrolysis 

step, the silicon alkoxide salt (TEOS) reacts with water, resulting in the 
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replacement of an alkoxy group by hydroxyl group to form Si(OH)4 and the 

liberation of ethanol. Condensation reactions occur between an hydroxyl group 

and an alkoxy group (alcoxolation), or two hydroxyl groups (oxolation), liberating 

ethanol and water in the process and forming siloxane groups                                 

( )22. The three bars connected to the Si atoms represent 

bonds to three hydroxyl or alkoxy groups. After sometime, this growth process 

continues to form small chains or branched structures, until eventually they gel 

to form a continuous network solid of siloxane groups surrounding each 

individual PMMA colloidal sphere. As it was mentioned previously, the 

precursors tendency to cover each individual sphere can be due to the slightly 

charged nature of the PMMA sphere forming a weak electrostatic interaction 

with the sol-gel precursor. The sol-gel process is complete through calcination 

by removing the solvent and the organic products generated from the so-gel 

reaction. During calcination, the PMMA sphere cores acting as templates are 

also removed, leaving SiO2 hollow sphere structures.  

 

Figure. 5.20 SEM images of (a) low, (b) high magnification and (c) EDX 

spectrum of SiO2 hollow spheres SEM. Scale bars: (a) 10μm and (b) 2μm.  
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Figure 5.20 shows the SEM image (a and b) and the EDX spectrum (c) 

of SiO2 hollow spheres synthesised by the template-directed synthesis 

approach (using 286 nm PMMA spheres as template). The average diameter of 

the coated SiO2 hollow spheres after calcination is 316 nm. This increase in 

size confirms the successful coating procedure. The SEM images show that the 

coated spheres of SiO2 do not possess a similar transparent nature to that of 

the TiO2 hollow spheres. This may be due to the dense coating of silica, which 

prevents optical penetration. A high concentration of TEOS (1.2 ml added to 15 

ml sphere suspension) was used for SiO2 formation. This is compared to a 

much lower concentration of TTiP (0.04 ml added to 15 ml sphere suspension) 

when making the TiO2. This is likely to result in the difference in appearance 

between the two structures, as SiO2 hollow spheres are coated more thickly.  

In a study carried out by Song et al206, hollow SiO2 spheres were 

synthesised using PMMA hollow particles as template with a hydrothermal 

method. The hollow nature of the spheres were confirmed by TEM and SEM, 

after template removal by calcination. Yuan et al207, synthesised the hollow SiO2 

spheres on PS (polystyrene) sphere template. The hollow structures were 

confirmed by TEM imaging after template removal by chemical etching. The 

concentration of TEOS, as well as the order of precursor addition, played a big 

role on the coating thickness. The method in this work, can also be used for 

controlled morphology and thickness of the coating in a similar fashion by 

varying the concentrations of precursors. By lowering the TEOS concentration, 

the hollow nature of the SiO2 coated spheres will probably be formed.      

The EDX spectrum in Figure 5.20(c) shows an Si peak that arises from 

the SiO2 hollow sphere. The Al peak is a result of the underlying aluminium foil 
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substrate. The nanoparticles that form the SiO2 hollow sphere are amorphous 

and thus do not produce a useful XRD spectrum. This is because SiO2 is 

crystallised at high calcination temperatures (~1200°C)208; at a calcination 

temperature of 450°C, SiO2 remains in its more stable amorphous phase. 

  

5.4.7 ZnO and CuO Hollow Spheres Created via Template-Directed 

Synthesis 

The synthesis of TiO2 and SiO2 hollow spheres using the templating 

approach are usually performed by coating the sphere with an alkoxide-based 

precursor of TTiP or TEOS. For the preparation of other metal oxide systems, 

their acetate or nitrate salt may be used as the main precursor in the sol-gel 

reaction209. This idea is used in this work to prepare precursors for the synthesis 

of zinc oxide (ZnO) and copper oxide (CuO) hollow spheres. The SEM images 

in Figure 5.21 illustrates the hollow sphere structures of these two metal oxides 

with corresponding XRD spectra. 

 The average diameter of the PMMA sphere template is 414 nm for both 

samples in Figure 5.21. Some shrinkage in the air spheres can be detected 

(about 15%). The average coating thickness of the hollow spheres in Figure 

5.21(a) corresponding to the ZnO hollow spheres is 84±8 nm and that of the 

CuO hollow spheres (Figure 5.21(b)) is 57±9 nm. 
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Figure. 5.21 SEM images and XRD spectra of (a) zinc oxide, (b) copper oxide 

hollow spheres produced via template-directed synthesis. Scale bars: 2μm. 

The XRD peaks in Figure 5.21(a) are readily indexed to the hexagonal 

wurtzite phase of ZnO (JCPDS reference no. 01-075-1526). The two diffraction 

peaks in Figure 5.21(b) at around 2𝜃 of 35.8 and 38.9 correspond to (002) and 

(111) planes of crystalline phase of CuO according to the JCPDS reference no. 

01-080-1916. The broad peak at the beginning of the XRD spectrum 

corresponding to CuO (Figure 5.21(b)) is from the underlying amorphous glass 

(silica) substrate. Such peak is not detected in the first XRD spectrum (Figure 

5.21(a)). This is because the deposited CuO hollow spheres on the glass 

substrate were less concentrated than those of ZnO sample during XRD 
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scanning. The XRD analysis confirms the successful synthesis of ZnO and CuO 

hollow spheres using the template directed synthesis via sol-gel coating.  

The SEM images of ZnO and CuO hollow spheres look more 

interconnected than the TiO2 (Figure 5.16) and SiO2 (Figure 5.20) hollow 

spheres produced. The reason for the interconnectivity between the hollow 

spheres for these two samples may lie in a slight modification in their synthetic 

routes. The PMMA spheres used as templates for the synthesis of ZnO and 

CuO hollow spheres were in the suspended form in water when added to the 

metal oxide precursors for coating, as opposed to the dried PMMA spheres 

used in the other two samples (i.e. TiO2 and SiO2). As the PMMA spheres were 

suspended in an aqueous media, some precursors will be free as solute until 

the solution is dried. This residual precursor will be eventually forming the 

connections between the hollow spheres, which forms inverse-opal like 

structures.                

This facile approach of creating hollow spheres can be used for making 

other metal oxide systems. In general, by dissolving a small amount of the 

desired metal acetate or nitrate (c. 0.01 g) in water with appropriate pH, the sol-

gel precursor can be used to coat the spheres. Subsequent calcination after a 

period of ageing results in the formation of high quality hollow spheres. The 

metal oxide hollow spheres created by the template-directed synthesis 

approach can be used in applications including photovoltaics, due to their high 

surface area and their ability to enhance light scattering properties because of 

their hollow nature.  
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 5.4.8 Sphere-in-Sphere Hollow Spheres Produced via Seeded 

Polymerisation and Template-Directed Synthesis 

 Following the coating of the metal oxide precursor, the spheres can be further 

used as seeds for secondary polymerisation as it was presented in Chapter 3. 

Then a new layer of metal oxide precursor can be deposited subsequently. After 

calcination, a unique sphere-in-sphere structure can be formed. The chemical 

components of the double spheres can be independently adjusted, which offers 

the freedom of adjusting the electronic, optical and chemical properties of the 

nanostructure. In this work, SiO2/TiO2 sphere-in-sphere hollow spheres were 

synthesised using this novel approach. Figure 5.22 shows the SEM image of 

this nanostructure. The outer white spheres correspond to TiO2 and the inner 

dark spheres to SiO2 as a consequence of sol-gel coating being performed in 

that order. The sol-gel precursor concentrations are identical to the single step 

coating procedure used before to produce SiO2 and TiO2 hollow spheres. 

Therefore, by looking at the SEM images of SiO2 hollow spheres and TiO2 

hollow spheres shown previously in Figures 5.20 and 5.16 respectively, the 

colour contrasts are consistent with the SEM image here. The inner SiO2 hollow 

sphere is not transparent due to the high concentration of TEOS solution (1.2 ml 

added to 15 ml sphere suspension) in the sol-gel process. The TiO2 outer layer 

on the other hand, shows a white feature surrounding the inner SiO2 hollow 

spheres due to its low TTiP precursor solution concentration (0.04 ml added to 

15 ml coated sphere seed suspension).     
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Figure. 5.22 SEM image of SiO2/TiO2 sphere-in-sphere hollow spheres 

produced by seeded polymerisation and template directed synthesis deposited 

on a glass substrate. Scale bar: 2μm.  

For the synthesis of sphere-in-sphere hollow spheres, the average 

diameter of the unseeded original PMMA spheres is about 286 nm. The final 

SiO2/TiO2 hollow structures have an average diameter of 348 nm. The dark 

inner SiO2 hollow spheres have an average diameter of 270 nm and the white 

outer TiO2 hollow spheres have an average coating thickness of 78 nm. The 

average diameter of the SiO2 hollow spheres and the coating thickness of the 

transparent TiO2 hollow spheres are different from the single step coating 

procedures explained previously; 316 nm and 40 nm respectively. This could be 

due to the fact that, in the seeded polymerisation for second coating with 

PMMA, some of the hydrolysed TEOS precursor coated onto the PMMA sphere 

seeds might be removed by rapid stirring in water, resulting in smaller SiO2 

hollow spheres in the final product. In the case of TiO2 coating, in the single 

step procedure, the diameter of the original PMMA spheres were 414 nm 

compared to possibly still smaller seeded plus coated 286 nm spheres used 

here for second coating, resulting in the availability of more TTiP to coat the 

smaller spheres and therefore giving rise to thicker TiO2 hollow spheres. In 
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addition, it should also be mentioned that, due the nature of the final double 

coated product, it is difficult to precisely measure the white and dark regions 

from the SEM image in Figure 5.22. 

From the schematic diagram in Section 5.2, different stages in the 

formation of sphere-in-sphere hollow sphere were shown clearly. One of the 

main purposes of introducing the second synthesis of PMMA using SFEP 

process was to introduce a layer between the two metal oxide shells which 

would then be removed to create sphere-in-spheres. The other purpose of using 

this PMMA template layer between the two metal oxide coating layers was to 

serve as an organic media for better organic/inorganic interaction leading to a 

better coating process. However, the use of both SEM and TEM (the latter not 

shown here) could not clearly show the gap between outer and inner metal 

oxide shells. Therefore, the assumption of such hollow nature between the two 

coatings has to be investigated further using high resolution scanning electron 

microscopy, HRSEM210.  

The inorganic/organic nature of PMMA/metal oxide precursor may give 

rise to a better electrostatic interactions between them than those of metal 

oxide/metal oxide precursor interactions. There is also possible for a direct 

surface reaction between PMMA/metal oxide due to the presence of functional 

groups on the PMMA organic surface, which may result in the creation of a 

core-shell composite (Chapter 1, Section 1.5). A similar experiment was carried 

out in this work to coat the TiO2 shell on the SiO2 hollow sphere without the use 

of the second PMMA synthesis, but with no success due to the aggregation and 

phase separation of the suspension. 
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From the SEM image in figure 5.22, the presence of another population 

of spheres with smaller sizes can be detected. This may be due to the following 

two reasons. 1) Production of polydispersed PMMA sphere populations during 

the first single-step and also the second seeded SFEP polymerisation 

processes may give rise to different populations in the final metal oxide hollow 

structures. 2) The fast hydrolysation of TEOS in the SiO2 sphere coating step 

may give rise to small independent populations of SiO2 particles (spheres).  The 

subsequent TTiP coating in the second coating procedure may then coat the 

small SiO2 particles as well as the large SiO2 coated spheres, giving rise to 

different populations.   

Another interesting phenomenon that can be observed in the SEM image 

of Figure 5.22 is that, the SiO2/TiO2 sphere-in-sphere hollow spheres are self-

assembled after the dropwise horizontal deposition onto the glass substrate. 

The self-assembly of these spheres may be assisted by different surface 

charges originating from both the SiO2 and TiO2 species. Another reason may 

be due to the gluing action, which is induced by the dense metal oxide spheres 

with binary size population, in which the smaller populations fill the gaps 

between the larger spheres for better contact and adhesion. Of course, the 

capillary forces and the convective flux at the meniscus region should not be 

denied, as these are usually the main driving forces in horizontal self-assembly 

approaches (Chapters 1 and 4).    
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5.5 Conclusion 

The various templating routes introduced in this work for the creation of inverse 

opals, hollow spheres and sphere-in-sphere hollow spheres are powerful 

techniques to manufacture porous nanostructures. They offer a facile, cost 

effective and reliable route to manufacture porous nanostructures for many 

different metal oxides. Such structures are potential candidates for use in 

various applications such as photovoltaics140, 188, 211 (including PEC water 

splitting and dye sensitised solar cells), lithium ion batteries212, gas sensing213 

and chromatography214. 

The temperature study of 3D TiO2 inverse opal shows that, the 

calcination  temperature has an effect on the size of the air spheres due to the 

swelling of the TiO2 walls. This behaviour may be used to prepare inverse opals 

with controllable air sphere diameters without changing the PMMA colloidal 

crystal template prior to each experiment.   

The 2D monolayer inverse opal structures produced cover a large area 

of a substrate with some defects or grain boundaries and a good degree of 

uniformity. In addition, the synthesis process of these structures can be 

extended to form layer-by-layer 3D structures with controlled chemical 

composition by repeating the procedure onto the initial monolayer. The 

synthesis of such hierarchical porous heterostructures may be realised with the 

possibility of optimising the opto-electrical properties. 

A universal approach for the synthesis of various metal oxide hollow 

spheres via templating was also presented in this work. The use of a simple 

precursor, an alkoxide, acetate or nitrate form of a metal salt in water and 

ethanol (the latter only when using alkoxides), produces high quality hollow 
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spheres in a facile manner. This approach may be extended for other metal 

oxide systems, making it a powerful technique for creating various metal oxide 

hollow spheres. This technique offers a simpler route compared to those 

previously reported in the literatures172, 215-217.  

The successful synthesis of sphere-in-sphere hollow spheres may 

increase the surface area, as well as the light scattering effects due to the 

formation of two layers. The net result may be enhanced opto-electrical 

properties compared to single layer hollow spheres. The technique of using 

seeded polymerisation with template-directed synthesis via sol-gel coating used 

in this work may be performed on other metal oxide systems.  
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Chapter 6: Synthesis of Novel Hierarchical Inverse Opal Based 

Nanostructures and their Applications in PEC Water Splitting 

  

6.1 Abstract 

By using a modified colloidal crystal templating technique, monolayer and 

bilayered inverse opal structures of ZnO and TiO2/ZnO were successfully 

synthesised. ZnO nanorods were then grown on top of the inverse opals via 

chemical bath deposition (CBD) method. The nanorods-inverse opal 

hierarchical structures were further sensitised by narrow band gap CdSe/ZnS 

core-shell quantum dots. In a three electrode PEC water splitting set-up under 

illumination of a 300 W xenon arc lamp (AM 1.5G filter) with light intensity 

adjusted to 300 mW/cm2 in a 1 M KOH electrolyte solution, the highest water 

splitting photoefficiency was recorded for the hierarchical QD sensitised ZnO 

nanorods on bilayered TiO2/ZnO inverse opal structure at 2.35%, increased 

from 0.99% (QD sensitised  ZnO nanorods on monolayer ZnO inverse opal), 

0.78% (ZnO nanorods on bilayered TiO2/ZnO inverse opal), 0.69% (bilayered 

TiO2/ZnO inverse opal), 0.49% (bilayered ZnO/ZnO inverse opal), 0.32% 

(monolayer ZnO inverse opal) and 0.18% (ZnO nanorod aggregates).    

 

6.2 Introduction 

Titania (TiO2) and Zinc oxide (ZnO) are two preferred n-type semiconductor 

metal oxides for PEC water splitting because of their band-edge positions, 

strong optical absorption, excellent chemical stability, photocorrosion resistance 
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and low cost. However, because of their wide band gaps (3.2-3.3 eV), only UV 

light is absorbed. Additionally they have fast electron-hole pair recombination 

due to a high density of trap states218, these combined effects cause their 

efficiencies to be substantially limited when solar energy is directly used. In 

order to improve visible light absorption many approaches have been reported, 

including sensitisation, coupling with small band gap semiconductors, and 

elemental doping with other metal/non-metal ions189, 219. It is equally important 

to improve the morphology and electronic structure of TiO2 and ZnO 

photoelectrodes to effectively suppress the rate of electron-hole recombination 

and allow better transportation of the photo-excited charge carriers218, 220. For 

instance, 1D nanostructures, such as metal oxide nanorods221, 222, nanowires223 

and nanotubes224, 225, have shown several advantages with respect to improved 

morphology and electronic properties, such as direct electron transport 

pathways, reduced carrier diffusion length and diminished charge recombination 

compared to conventional nanoparticle electrodes4. However, due to the 

insufficient surface area of 1D nanostructures, the overall energy conversion 

efficiency is low in comparison to the nanoparticle electrodes, therefore, a 

purpose-designed nanoarchitecture of the photoelectrode is central to 

compensate for the shortcomings of the 1D nanostructures to the further 

development of efficient energy conversion2.   

Periodically ordered inverse opal nanostructures have attracted 

increasing attention as effective photoelectrode materials by offering high 

specific surface area and porosity9, 149. Additionally, the inverse opals possess 

photonic crystal properties which enhance the light-matter interactions by 

controlling the propagation of light via back reflections, slow photons and 
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surface resonant modes4, 140, 188. As such, the inverse opal structure is expected 

to be an ideal photoelectrode candidate for energy conversion applications188.   

For these reasons, it is highly desirable to implement a hierarchical 

organisation226 of 1D nanostructures coupled with inverse opals to benefit the 

combined opto-electronic enhancement effects arising from each individual 

component. Recently, Karuturi et al. presented a method to fabricate ZnO 

nanowire arrays coupled with 3D TiO2 inverse opals and used as PEC 

photoanodes4. The realisation of a semiconductor nanowire/photonic crystal 

architecture was achieved by direct growth of nanowires on top of the inverse 

opal which showed intimate physical contact and thereby realised the dual 

benefits of light trapping and surface area enhancement. The efficiency 

improvement for their unique hierarchical structure could still be improved by 

introducing another layer of inverse opal of different metal oxide to create a 

heterojunction with an interface acting as a charge barrier to further reduce 

back recombination and increase charge transport in the PEC device. 

    In this chapter, a novel templating approach combining sol-gel 

infiltration with chemical bath deposition (CBD)  will be described. It has been 

introduced initially for the first time to create, ZnO nanorods grown directly on a 

monolayer ZnO inverse opal, which was further sensitised using CdSe/ZnS 

core-shell quantum dots to enhance the visible-light absorption. Furthermore, 

for the first time, a hierarchical QD sensitised bilayered TiO2/ZnO inverse opal 

nanostructure coupled with ZnO nanorods has been created to be used as a 

photoanode in PEC water splitting experiments. These results may lead to the 

construction of various nanorod- bilayered heterojunctioned inverse opal hybrid 

structures for diverse applications. Various sol-gel metal oxide precursor 
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chemicals such as Fe2O3, Cu2O and SnO2 
39, 192, 199 are available to produce 

desirable inverse opals.       

 

6.3 Experimental Procedures 

The substrates used in all the experiments in this chapter were titanium plates. 

These were cleaned thoroughly by soaking in a dilute HCl solution (1 M) for 15 

minutes, followed by washing with DI water after carefully polishing with clean 

sandpaper. For better adhesion of the materials onto the substrates, two 

droplets of  TTiP  solution (0.01 M) in ethanol was dropped onto the Ti plates 

and allowed to dry for 30 minutes. For PEC measurements, the thickness of the 

samples above the Ti plate surface was kept constant for each set of 

experiments by using the same number of colloidal crystal layers (each 

monolayer was 414 nm thick, corresponding to the average diameter of the 

PMMA spheres forming the colloidal crystal) in order to obtain accurate results. 

The Ti substrates used had the same area (2.4×2.4 cm2) and the samples were 

deposited uniformly on them.  

 

6.3.1 Synthesis of Bilayered ZnO/ZnO and TiO2/ZnO Inverse Opals 

Monolayer ZnO and TiO2 inverse opals were synthesised as described 

previously in Chapter 5 (Section 5.3.2). The templating procedures to prepare 

the samples were performed on Ti substrates. For the synthesis of bilayered 

ZnO/ZnO inverse opal, the first layer was prepared according to the monolayer 

ZnO inverse opal procedure. Before calcination and removal of the PMMA 
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colloidal crystal, a second layer of PMMA colloidal crystal was then cast onto 

the first layer using the floating self-assembly approach. This was followed by 

adding the ZnO precursor solution by the same procedure performed on the first 

layer. The double infiltrated layers were then calcined as before. In such a way, 

the film thickness could be precisely controlled and the quality of the surface 

morphology was guaranteed. For the synthesis of bilayered TiO2/ZnO inverse 

opal, the procedure was identical to that of bilayered ZnO/ZnO inverse opal 

described above, with a precursor variation on alternate layers. The first layer 

was prepared using the TiO2 precursor and the top layer was prepared using 

the ZnO precursor, as described for the preparation of monolayer inverse opals.  

 

6.3.2 Synthesis of ZnO Nanorods on Monolayer ZnO and Bilayered 

TiO2/ZnO Inverse Opals 

For the synthesis of ZnO nanorods on monolayer ZnO inverse opal, the as-

prepared monolayer ZnO inverse opal was used as a layer of ZnO seeds to 

grow the ZnO nanorods on, using chemical bath deposition (CBD). The seeded 

Ti plate substrate was placed horizontally in a growth solution containing 10 mM 

zinc nitrate and 10 ml of hexamethylenetetramine (HMT) at the bottom of a 

beaker. The beaker was left in an oven at 85°C for 6 hours. The Ti plate was 

then removed and rinsed thoroughly with DI water and dried in air. For time 

dependent studies, different nanorod growth times in the above procedure were 

applied. For the synthesis of ZnO nanorods on bilayered TiO2/ZnO inverse opal, 

the as-prepared TiO2/ZnO sample on Ti plate was used as the seed substrate 

(the ZnO inverse opal was the top layer acting as the seeding layer), and the 
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identical CBD procedure described above was used for nanorod growth. 

Disordered aggregated ZnO nanorods were also prepared for comparison on a 

clean Ti plate without using the ZnO inverse opal. In this case the seed was 

prepared by dropping 4 drops of zinc acetate solution (0.05 M) in ethanol on the 

edges of the Ti plate substrate and allowing to cover the whole substrate. The 

nanorods were then grown on the substrate as before using CBD. 

 

6.3.3 Synthesis of QD Sensitised ZnO Nanorods on Monolayer ZnO 

and Bilayered TiO2/ZnO Inverse Opals 

A 0.47 mM CdSe/ZnS quantum dot solution was prepared by diluting the 

commercial CdSe/ZnS core-shell quantum dots (Evident Technologies, core-

shell Evidots, Cadskll Green, absorption (AB):531 nm and emission (EM):548 

nm) in toluene. The as-synthesised ZnO nanorods on monolayer ZnO inverse 

opal and ZnO nanorods on bilayered TiO2/ZnO inverse opal samples on Ti 

substrates were placed face up at the bottom of 2 separate vials and the 

quantum dot solution was carefully added until it covered the whole of the 

substrates. The vials were covered with aluminium foil and placed in a dry dark 

place. After 12 hours, the samples were removed from the quantum dot 

dispersion and thoroughly rinsed with DI water. 
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Figure. 6.1 Schematic illustration of different stages in the formation QD 

sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal. Blue spheres = 

PMMA spheres, orange coating = TiO2 coating, purple coating and rods = ZnO 

coating and rods, green parts = Zn2TiO4 interface and red dots = CdSe/ZnS 

QDs.  
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Figure 6.1 is a schematic showing the work flow in the formation of QD 

sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal. In the first stage, 

a monolayer PMMA colloidal crystal was formed via the modified floating 

technique onto the substrate as described previously in Chapter 4 (a). Then by 

the horizontal sol-gel infiltration, the interstitial gaps of the colloidal crystal were 

infiltrated with a TiO2 precursor solution (a TTiP based solution) (b). The 

infiltrated precursor solution was allowed to solidify by hydrolysation and 

condensation reactions in air for 24 hours, before a second monolayer of PMMA 

colloidal crystal was deposited using the modified floating technique (c). The 

interstitial gaps of the top layer PMMA colloidal crystal was infiltrated in a similar 

fashion as the first layer, only this time using a ZnO precursor solution (a zinc 

acetate based solution) (d). After further ageing and drying in air for 24 hours, 

the bilayered coated film was calcined, first at a lower temperature of 450°C to 

remove the PMMA template and to form a crystalline bilayered TiO2/ZnO 

inverse opal structure (e). The film was then annealed at a higher calcination 

temperature of 700°C, to form a Zn2TiO4 interface between the two inverse opal 

layers (Section 6.4.3) (f). In the next stage, the top ZnO inverse opal layer in the 

bilayered TiO2/ZnO inverse opal was used as a seeding layer to grow ZnO 

nanorods on it via chemical bath deposition (CBD) (Section 6.4.1) (g). In the 

final stage, the sample was sensitised by narrow band gap CdSe/ZnS core-shell 

quantum dots (QDs) by soaking it in a toluene based solution containing such 

QDs for 12 hours (h). The final state of the art hierarchical nanostructure was 

formed and  can be used as a photoanode in PEC water splitting experiments.        
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6.4 Results and Discussion  

6.4.1 Growth Mechanism of ZnO Nanorods on Inverse Opals via 

Chemical Bath Deposition (CBD) 

ZnO nanorods have been successfully grown on monolayer ZnO and bilayered 

TiO2/ZnO inverse opals in this work. This consisted of first creating the seed 

templates by colloidal crystal templating, yielding inverse opals. The inverse 

opal seeds were then used as templates (secondary templating), on which to 

grow the nanorods via chemical bath deposition (CBD). 

 The growth of aligned nanorods and nanowires of ZnO from aqueous 

solutions without the seeding template was first developed by Vayssieres222. It 

involves the growth of zinc oxide nanorods from a growth solution of zinc nitrate 

and hexamethylenetetramine (HMT). Vayssieres’ study used an equimolar 

solution of zinc nitrate and HMT ((CH2)6N4); 10 mM for the growth of ZnO 

nanorods and 1 mM to grow ZnO nanowires. Their growth solution was heated 

to 85⁰C and by varying the heating time, nanorods with different dimensions 

were produced. 

This method was modified in this work with the use of a seeding template 

as well as the growth solution for managing the deposition of nanorods onto the 

Ti substrate for photovoltaic applications. Here, seeding is a sol-gel process in 

which zinc acetate solution is used as precursor. By using colloidal crystal 

templating, the sol-gel process takes place between the interstitial gaps of the 

PMMA colloidal crystal structure deposited previously onto the substrate which 

is subsequently removed in the calcination process. The result is a porous 
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crystalline ZnO inverse opal seed layer (achieved at a calcination temperature 

of 450°C). The crystallites in the inverse opal creates favourable sites for the 

growth of zinc oxide nanorods when the substrate is deposited in the growth 

solution. The mechanism for the growth process of ZnO nanorods is generally 

accepted to be as follows227, 228: 

(1)   (CH2)6N4 + 6H2O  6H2CO + 4NH3 

                                (2)   NH3 + H2O  NH4
+ + OH- 

                                (3)   Zn2+ + 4NH3  Zn(NH3)4
2+ 

       (4)   Zn(NH3)4
2+ + 4OH-  Zn(OH)4

2- + 4NH3 

                                (5)   Zn2+ + 4OH-   Zn(OH)4
2- 

                                (6)   Zn(OH)4
2-  ZnO + H2O + 2OH- 

The role of the HMT is to release OH- in a controlled manner and the 

formation of the ZnO nuclei largely follows these 6 reaction steps. The formation 

of the nuclei is slow and is the rate determining steps in the preparation of ZnO 

nanorods. Subsequently, crystalline ZnO hexagonal nanorods begin to grow on 

the seed surface (here ZnO inverse opal). The novel bilayered inverse opal  

process carried out in this work shows that ZnO nanorods are not limited to 

grow on single ZnO films and are able to grow on more complex 

heterostructures with different morphologies as long as the top layer of the 

structure consists of ZnO crystal seed. In this work, it was possible to grow ZnO 

nanorods on bilayered TiO2/ZnO inverse opal with ZnO being the top inverse 

opal layer.  
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6.4.2 Morphology Characterization 

 

Figure. 6.2 SEM images showing the top surface of (a) monolayer ZnO and (b) 

monolayer TiO2 inverse opals, (c, d) bilayered ZnO/ZnO and (e, f) bilayered 

TiO2/ZnO inverse opals. Top layer (white) as ZnO inverse opal layer in (c-f). All 

the samples are deposited on Ti substrates. Scale bars: (a),(b),(d),(e) 2μm, (c) 

5μm and  (f) 1μm. 

The SEM images in Figure 6.2(a) and (b) presents the monolayer ZnO 

and TiO2 inverse opals respectively which are derived from PMMA colloidal 

crystals (with average sphere diameter 414 nm). The average air sphere 

(macropore) diameter is 410±6 nm. The wall thickness is 85±10 nm and 70±10 

nm for ZnO and TiO2 respectively (the SEM analysis of these monolayer 

inverse opals was previously explained in Section 5.4.3 in the previous 

chapter). The SEM images in Figure 6.2(c, d) and 6.2(e, f) show the bilayered 
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structures of ZnO/ZnO and TiO2/ZnO inverse opals respectively. The apparent 

colour contrast in the images (top layer (white) as ZnO inverse opal layer in 

Figure 6.2(c-f))  indicates that the bilayer films are formed. The size and the 

orderliness of the top layer is the same as the first layer, although more cracks 

can be observed on the top layer. This may be due to the reduction in stability in 

the top layer during template removal in the lower layer.          

Figure 6.3 shows the SEM images when ZnO nanorods are grown on the 

inverse opals of either the monolayer ZnO (6.3(a)) or bilayered TiO2/ZnO 

(6.3(b)) inverse opals. Figure 6.3(c) is a high magnification SEM image of the 

same sample used in 6.3(b). Figure 6.3(d) shows the growth formation of ZnO 

nanorods on the monolayer ZnO inverse opal ring, 6.3(e) QD sensitised ZnO 

nanorods on bilayered TiO2/ZnO inverse opal and 6.3(f) aggregated ZnO 

nanorods. The ZnO nanorod growth conditions are the same for all the samples 

using 10 mM growth solution for 6 h via CBD method. Samples are prepared on 

Ti substrates. The dimensions of the underlying inverse opals used to grow the 

nanorods on, are the same as described before for Figure 6.2. The length and 

diameter of the ZnO nanorods are 160±12 nm and 56±4 nm respectively 

identified from image 6.3(c). The dimensions of the ZnO nanorods for the rest of 

the images are similar. The SEM image in Figure 6.3(d) clearly demonstrates 

the importance of ZnO inverse opal as a seeding scaffold. The ZnO 

nanoparticles forming the inverse opal ring act as nucleation sites in the growth 

of the nanorod crystal structures. ZnO nanorod structures, as previously 

reported in literature are hexagonally shaped and have a preferred orientation in 

the c-axis normal to the substrate (i.e. in  the direction of 002 plane)221, 222 due 

to competition and optimisation rules by reaching the minimal surface energy229.  
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The crystalline ZnO nanorods in this work are tilted more randomly. As the 

topology of the underlying inverse opal is periodically rippled, the ZnO nanorods 

which are perpendicular to the substrate, are tilted following the inverse opal 

surface structure. Due to the ring-like nature of the inverse opal seed, the 

nanorods may grow more freely with less obstruction from the neighbouring 

nanorods (Figure 6.3(a), (b), (c), (d) and (e)).  

   

Figure. 6.3 SEM images showing the top surface of (a) ZnO nanorods on 

monolayer ZnO and (b, c) ZnO nanorods on bilayered TiO2/ZnO inverse opals, 

(d) growth formation of nanorods on the ZnO inverse opal ring, (e) QD 

sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal and (f) 

aggregated ZnO nanorods. The nanorods in all the samples are grown using  

10 mM growth solution for 6 h. All the samples are deposited on Ti substrates. 

Scale bars: (a),(b),(d),(e) 1μm, (c) 500nm and (f) 5μm. 
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The SEM image in Figure 6.3(e) shows the quantum dot sensitised 

structure of the ZnO nanorods on bilayered TiO2/ZnO inverse opal. The image 

clearly shows that the integrity of the structure remains intact even after leaving 

the sample in the QD solution for 12 h. The SEM image in Figure 6.3(f) shows 

the formation of nanorods without the presence of the inverse opal. It shows 

lack of interconnectivity and the nanorods are aggregated together forming 

agglomerates which may reduce the efficiency of the sample as an photoanode 

in water splitting experiments.      

The SEM images in Figure 6.4 show the growth of ZnO nanorods on a  

monolayer ZnO inverse opal as a function of growth solution deposition time. In 

all images, the concentration of the growth solution is constant at 10 mM. The 

substrate used is a Ti plate for all the samples.  

 

Figure. 6.4 SEM images of monolayer ZnO inverse opal left in a 10 mM ZnO 

nanorod growth solution for (a) 4 h, (b) 6 h, (c) 8 h and (d) 12 h. Scale bars: 

(a),(b) 1μm, (c) 500nm and (d) 2μm. 

The SEM image in Figure 6.4(a) is the monolayer ZnO inverse opal 

sample that has been left in the ZnO nanorod growth solution for 4 h, increased 
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to 6 h in Figure 6.4(b), 8 h in 6.4(c) and 12 h in 6.4(d). As it can be seen from 

the images, the integrity of the underlying porous ZnO inverse opal structure is 

intact until the growth time is increased to 12 h. At this time, the air spheres 

(macropores) of the underlying inverse opal disappear and the structure 

becomes more disordered. This can be due to a sudden increase in the ZnO 

nanorods lengths from ~165 nm corresponding to the samples with growth 

deposition times of 4 h, 6 h and 8 h (Figure 6.4((a), (b) and (c))) respectively to 

~220 nm corresponding to the sample with nanorod growth deposition time of 

12 h (Figure 6.4(d)). The differences in nanorod lengths for the 4, 6 and 8 h 

samples are minimal and cannot be distinguished by SEM measurements. 

       Although the porosity of the structures are intact when the nanorod 

growth durations are 4 , 6 and 8 h, but due to the orientation and the position of 

the nanorods on the underlying monolayer ZnO inverse opal seeds, the porosity 

has shrunk compared to the original macropores of the inverse opals. For 

example, the air spheres (macropores) has an average diameter of 255 nm for 

the ZnO nanorods on monolayer ZnO inverse opal structure using a 6 h 

nanorod growth time (Figure 6.4(b)) compared to an average air sphere 

diameter of 410 nm for the pristine monolayer ZnO inverse opal sample. Such 

shrinkage in  porosity may affect the optical (photonic) properties of the 

samples. 

 

6.4.3 Crystal Property Characterisation  

The orientation of the crystal planes and the size of the crystallites can be 

determined from XRD analysis. Figure 6.5 illustrates the XRD pattern of the as-
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synthesised ZnO nanorods on monolayer ZnO inverse opal for different growth 

deposition times. All the diffraction peaks can be readily indexed to the 

hexagonal wurtzite phase of ZnO (JCPDS reference no. 01-075-1526). The 

peaks that are marked with stars (*) correspond to the underlying Ti substrate 

and are assigned to JCPDS reference number 44-1294. 

 

Figure. 6.5 XRD patterns of ZnO nanorods on ZnO inverse opals prepared 

using different growth solution deposition times (4 h, 6 h, 8 h and 12 h).  (*) 

represents Ti substrate peaks. 

The average ZnO crystallite size perpendicular to the main crystal planes 

can be calculated using the Debye-Scherrer equation135. The results show no 

alteration in size of the crystallites by changing the growth solution deposition 

time. However the intensity of the peaks in the 12 h nanorod growth solution 

sample increases compared to the other samples. This is expected as the 

nanorods length has increased for this sample compared to the other three 

samples (4 h, 6 h and 8 h), indicating more ZnO crystallites diffracting X-rays 

from the preferred planes. Table 6.1 shows the crystallite size calculated for 
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each diffraction peak from the XRD patterns in Figure 6.5 which remains 

constant  for all the samples. 

Diffraction Plane(s) (hkl) (100) (002) (101) (102) (110) (103) 

𝟐𝜽  31.74 34.39 36.24 47.47 56.61 62.95 

ZnO Cristallite Size / nm 26.2 35.2 21.2 22 22.9 29.6 

 

Table. 6.1 ZnO crystallite sizes for different diffraction planes.    

 

Figure. 6.6 XRD patterns for different stages of QD sensitised ZnO nanorods 

on monolayer ZnO inverse opal. The peaks indicated with (*) correspond to the  

underlying Ti substrates. 

Figure 6.6 shows the XRD pattern in different stages of the creation of 

QD sensitised ZnO nanorods on monolayer ZnO inverse opal. All the ZnO 

peaks are indexed to the JCPDES reference number 01-075-1526. In this 

Figure, the green spectrum corresponds to the monolayer ZnO inverse opal 
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seed prior to ZnO nanorod growth deposition. As the film is monolayer and too 

thin (about 410 nm), the intensity of the ZnO peaks are weak, however the 

presence of (100), (002), (101) and (103) peaks corresponding to 2𝜃 values of 

31.92°, 34.74°, 36.58° and 63.12° is an indication of the growth of inverse opal 

seed dominating in these directions. After the growth of the ZnO nanorods (red 

pattern), the intensity of peaks corresponding to all the diffraction planes 

significantly increases. This suggests that the nanorods grow in these directions 

on inverse opal seeds following the inverse opal surface structure. In particular, 

there is a significant increase in the (002) plane from the original inverse opal, 

indicating the growth of ZnO nanorods have a preferred orientation in this 

direction. Other peaks with increased intensities after introducing the nanorods 

are present at 47.85° (102), 56.81° (110), 66.64° (200) and 68.29° (112). The 

blue spectrum corresponds to the QD sensitised structure. It appears similar to 

the spectrum prior to sensitisation (red pattern) except for the intensity reduction 

of the ZnO diffraction peaks. This is perhaps due to some ZnO nanorods being 

etched away during QD sensitisation in toluene solvent.   

The XRD patterns in Figure 6.7 is a study for the formation of QD 

sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal at different 

stages. The XRD spectra shows the diffraction patterns for the bilayered inverse 

opals starting from a bilayer of ZnO/ZnO inverse opal (light brown XRD pattern) 

formed at calcination temperature of 450°C, followed by bilayered TiO2/ZnO 

inverse opal at calcination temperatures of 450°C (dark brown XRD pattern), 

550°C (purple XRD pattern), 700°C (green XRD pattern), ZnO nanorods on 

bilayered TiO2/ZnO inverse opal at 700°C (red XRD pattern) and QD sensitised 

ZnO nanorods on bilayered TiO2/ZnO (blue XRD pattern). In all the XRD 
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patterns, the diffraction peaks are readily indexed to the hexagonal wurtzite 

phase of ZnO, anatse and rutile phases of TiO2 crystal structures, from JCPDS 

references 01-075-1526, 00-001-0562 and 01-076-1941 respectively. The 

peaks which are marked as black dots correspond to the underlying titanium 

substrate. 

 

Figure. 6.7 XRD patterns for the study of the formation of QD sensitised ZnO 

nanorods on bilayered TiO2/ZnO inverse opal at different stages. 

As it can be seen from Figure 6.7, the formation of a bilayer of crystalline 

ZnO/ZnO (light brown pattern) shows typical inverse opal thin film XRD 

characteristics with strong (100), (200) and (101) peaks at corresponding 2𝜃 of 

32.02°, 34.07° and 36.52° respectively. By changing one of the layers to TiO2 

(forming a bilayer of TiO2/ZnO inverse opal) anatase peaks begin to appear in 
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the XRD spectrum at 450°C with the dominant peak present at 25.66°(101) 

(dark brown pattern). At 550°C (purple pattern), the peaks corresponding to 

TiO2 anatase become sharper and more intense due to crystal growth. When 

the temperature is increased to 700°C (green pattern), rutile peaks start to 

appear with the dominant peak at 27.74°(110), and the intensities of the 

anatase peaks decrease due to the phase transition in TiO2 crystal structure. 

Furthermore, at this calcination temperature (700°C), new peaks belong to 

neither TiO2 nor ZnO begin to appear. These peaks belong to zinc titanate 

(Zn2TiO4) according to JCPDS reference number 25-1164. The characteristic 

peaks for this crystal structure are present at 30.12°(220), 35.23°(311) and 

43.01°(400). After the growth of nanorods (red pattern), the intensity of the ZnO 

peaks are intensified. The nanorods diffraction peaks follow the direction of the 

underlying ZnO inverse opal seeds. When this hierarchical structure is further 

sensitised by quantum dots (blue pattern) the position of the peaks remains 

unchanged. The characteristic peak of CdSe/ZnS core/shell quantum dots is the 

(111) diffraction peak230 corresponding at 2𝜃 value of 25.35°, which may be 

overlapped by the TiO2 anatase 25.66°(101). The XRD spectrum in figure 6.8 

gives a clearer presentation of the crystal properties for the QD sensitised 

bilayered TiO2/ZnO inverse opal with the formation of zinc titanate (Zn2TiO4) 

interface. The XRD data of this nanostructure is summarised in Table 6.2.   
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Figure 6.8 Clear presentation of XRD pattern for QD sensitised ZnO nanorods 

on bilayered TiO2/ZnO inverse opal with zinc titanate interface 
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Material Diffraction Plane(s) 

(hkl) 

𝟐𝜽(°) 

ZnO (100) 32.02 

 (002) 34.07 

 (101) 36.52 

 (102) 47.73 

 (110) 56.98 

 (103) 63.12 

 (200) 64.24 

 (112) 66.58 

 (201) 68.18 

TiO2 (101) anatase 25.66 

 (110) rutile 27.74 

 (111) rutile 41.47 

 (210) rutile 44.30 

 (221) rutile 54.58 

 (321) rutile 80.83 

 (224) anatase 82.46 

Zn2TiO4 (220) 30.12 

 (311) 35.23 

 (400) 43.01 

Table 6.2 The XRD data of QD sensitised ZnO nanorods on bilayered 

TiO2/ZnO inverse opal with zinc titanate interface. The JCPDS reference 

numbers are: ZnO (01-075-1526), anatase TiO2 (00-001-0562) and rutile TiO2 

(01-076-1941). 
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6.4.4 Comparing Optical Band Gaps of ZnO Inverse Opal and ZnO 

Nanorods on ZnO Inverse Opal 

ZnO is a direct band gap semiconductor with bulk band gap of  3.37 eV169. In 

ZnO nanostructures, the band gap can be altered by many factors including 

change in morphology (shape and thickness)167, 231 and crystal structure (size 

and orientation)169, 232 by tailoring the synthetic conditions168. The engineering of 

the band gap is an important matter in solar light driven PEC water splitting 

experiments for enhancing visible light harvesting and forming suitable band 

edge positions for O2/H2 evolution. Figure 6.9 illustrates plots for measuring the 

optical band gaps of monolayer ZnO inverse opal and ZnO nanorods on 

monolayer ZnO inverse opal.  

 

Figure. 6.9 Kubelka–Munk transformed reflectance spectra for band gap 

measurement of ZnO inverse opal (blue) and ZnO nanorods on monolayer ZnO 

inverse opal (red). 
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In order to determine the values for the optical band gaps using 

reflectance spectroscopy, the measured reflectance values were first converted 

to absorbance by using the Kubelka–Munk transformation function167 and 

expressed using Tauc’s relation169 in terms of incidental photon energy 

(Chapter 2, Section 2.9) for these direct allowed band gap materials (as ZnO 

based). The band gap (𝐸𝑔) values were determined by extrapolating the linear 

part of the graph in Figure 6.9 to the horizontal (x) axis. From the graph, it can 

be seen that the band gap for monolayer ZnO inverse opal is 3.5 eV (blue 

curve), which is larger than that of ZnO nanorods on ZnO inverse opal structure, 

having a band gap of 3.3 eV (blue curve).   

The reduction in the value of the band gap from ZnO nanorods on 

monolayer ZnO inverse opal may be due to an increase in structural defects. 

Such defects may be formed at the interface between the ZnO nanorods and 

the monolayer ZnO inverse opal. The increase in defects can result in reduction 

of grain size and hence a reduction in band gap169. Sharma et al233 reported 

that the presence of tensile stress in vertical ZnO nanorods can also reduce the 

band gap. In this work, the introduction of vertically orientated nanorods on top 

of the ZnO inverse opal seed may also induce some stress leading to the 

reduction in the band gap.    

The lower energy band gap of ZnO rods on ZnO inverse opals compared 

to the pristine monolayer inverse opal may be advantageous in PEC water 

splitting as the absorption of light is red-shifted towards the visible spectrum for 

improved light harvesting. By further sensitising the nanorod-inverse opal 

structure with narrow band gap CdSe-ZnS quantum dots, a greater reduction in 

the band gap is expected234.   
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6.4.5 Visible Spectrum of QD Sensitised ZnO Nanorods on Inverse 

Opals 

Figure 6.10 shows the visible light absorption of ZnO nanorods on monolayer 

ZnO inverse opal before and after QD sensitisation. The spectra clearly show a 

significant increased visible light absorption with the QD sensitised sample. This 

indicates that the quantum dots were successfully loaded on the surface of ZnO 

nanorods on monolayer ZnO inverse opal, giving an absorbance maxima at 

approximately 530nm in the visible region of the spectrum. No absorption can 

be detected for the nanostructure in the visible region prior to quantum dot 

loading. Similar spectra are also obtained when the quantum dots are loaded 

onto the ZnO nanorods coupled to the bilayered TiO2/ZnO inverse opal. Both 

ZnO and TiO2 absorb light in the UV region between 375-385 nm, with no 

absorbance in the visible region. 

 

Figure 6.10 Visible spectra of ZnO rods on ZnO inverse opal with and without 

quantum dot coating. 
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6.4.6 Photoelectrochemical (PEC) Characterisation 

I–V measurements were made in a three-electrode configuration; the as-

prepared samples as working electrodes (photoanodes), a platinum plate as 

counter electrode (cathode) and Ag/AgCl as the reference electrode. All PEC 

studies were operated in a 1 M KOH solution (pH 13.6) as a supporting 

electrolyte medium. The working electrodes were illuminated with a 300 W 

xenon arc lamp equipped with a AM 1.5G filter. The power density of the lamp 

was adjusted to 300 mW/cm2. The active illumination area  on all the electrodes 

was kept constant at 0.5×0.5 cm2. The I–V curves were obtained by using an 

eDAQ potentiostat. A set of linear sweep I-V scans were recorded under dark 

and illuminated conditions. The potential was swept linearly at a scan rate of 10 

mV/s between 0.0 and 1.3 VRHE (-1.0 and 0.3 VAg/AgCl). In dark conditions, all the 

photoanodes showed insignificant photocurrent of less than 0.2 mA/cm2. This 

indicates there is insufficient electro-catalytic O2/H2 evolution when not 

illuminated. Under illumination, the photocurrents were measured at the bias 

potential of 1.23 VRHE (corresponding to the potential required to split water). 

The current density–voltage (I–V) and photoefficiency characteristics of the 

photoanode samples under these conditions are presented in the next two 

sections (6.4.6.1 & 6.4.62). 

6.4.6.1 PEC Performances at Different Stages in the Formation of 

QD Sensitised ZnO Nanorods on Monolayer ZnO Inverse Opal   

The efficiency of the PEC may be enhanced if a monolayer ZnO inverse opal 

photoanode is coupled with ZnO nanorods and further sensitised with QDs, 
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which helps to harvest more visible light from the xenon lamp light source. 

Figure 6.11 shows the I-V characteristics (a) and photoconversion efficiency (b) 

curves at different stages in the creation of QD sensitised ZnO nanorods on 

monolayer ZnO inverse opal. The black curve in Figure 6.11(a) corresponds to 

PEC measurement under dark conditions. The brown curves in figure 6.11(a 

and b) correspond to the aggregated ZnO nanorods without templating. The 

green curves correspond to the monolayer ZnO inverse opal, the red curves to 

the ZnO nanorods on monolayer ZnO inverse opal and the blue curves to the 

QD sensitised ZnO nanorods on monolayer ZnO inverse opal photoanodes 

under illumination. The corresponding photovoltaic parameters of the four 

samples are summarised in Table 6.3.  

Photoanodes 
(Jmax)/mAcm

-2
 at 

1.23VRHE 

Onset 

potential/VRHE 

% 

Aggregated nanorods 0.50 0.462 0.18 

Monolayer ZnO inverse opal 0.88 0.449 0.32 

ZnO nanorods on monolayer ZnO inverse 

opal 

1.48 0.402 0.56 

QD sensitized ZnO nanorods on monolayer 

ZnO inverse opal 

2.91 0.381 0.99 

 

Table. 6.3 PEC performance parameters at different stages in the formation of 

QD sensitised ZnO nanorods on monolayer ZnO inverse opal. 
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Figure. 6.11 (a) I-V characteristics and (b) Photoconversion efficiency curves at 

different stages in the formation of QD sensitised ZnO nanorods on monolayer 

ZnO inverse opal. 

The increasing photocurrent, starting from ZnO nanorods aggregate to 

the final structure of hierarchical QD sensitised nanorods on inverse opal can 
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be clearly seen in Figure 6.11. In the first stage, the aggregated rods shows 

some photocurrent density which is attributed to the nature of the ZnO wide 

band gap harvesting light in the UV region. Additionally, the aggregates are 

made up of ZnO nanoparticulates containing porous ZnO crystallites (~26 nm), 

which can result in an increase of the internal surface area and facilitate the 

migration of electron–hole pairs to the surface while reducing the surface 

disorder due to crystallinity, leading to some useful photoconversion in the 

system (brown curves). 

 Comparing the inverse opal structure with the aggregated nanorods, the 

photocurrent density and photoefficiency are almost doubled from the 

aggregate form (green curves). This can be attributed to the considerable 

increase in the internal surface area caused by the porosity and 

interconnectivity of the inverse opal structure4 as well as the enhanced internal 

light scattering through the photonic structure. The 410 nm pores can provide a 

channelled “highway”2 for electrolyte diffusion. Such a quick diffusion of 

electrolyte can facilitate efficient ion mobility within the electrolyte. The 

crystallised interconnection within the inverse opal also helps for the charge 

carrier moving towards the counter electrode. In the aggregated nanorods, the 

charge transport is possibly limited to hopping between particles, but as the 

morphology improved in the inverse opal structure, higher charge collection 

may be achieved. Therefore, a thin monolayer inverse opal film can be sufficient 

to harvest light, resulting in a shortening of the distance for electron transport to 

the underlying titanium substrate in the PEC set up2.   

The main photonic property of the inverse opal without the presence of 

an interface (i.e. formation of a bilayer with another surface) is slow photon 
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phenomenon near the photonic stop band edges (Chapter 1)102, 103, 139, 140. This 

property can increase the effective optical path length of light, thereby resulting 

in an increased rate of photon/matter interaction12. The localisation of light at 

the photonic stop band edges of the ZnO inverse opal may contribute to a 

higher probability of white light absorption and a larger population of electron-

hole pairs103, 140.The periodic variation of the refractive index in the inverse opal 

(i.e ZnO and the electrolyte filled pores) produces photonic stop band, where 

photons cannot be propagated through and are consequently reflected back. 

The photonic stop band can be determined by the modified Bragg equation of 

diffraction for inverse opals27. For a first order Bragg diffraction, on the FCC 

(111) planes of the ZnO inverse opal at the normal incidence of light, the 

equation can be written as follows6: 

𝜆𝑚𝑎𝑥 = 1.633𝐷[∅𝑛𝑍𝑛𝑂 𝑤𝑎𝑙𝑙𝑠 + (1 − ∅)𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒]               (Equation 5.1) 

           Where 𝜆𝑚𝑎𝑥 is the reflectance peak maximum in the UV/Vis spectrum 

corresponding to the photonic stop band, 𝐷 is the interlayer spacing, which is  

0.87102 times the diameter of the cavity (pore spheres). Here, the pore diameter 

is 255 nm (due to the presence of ZnO nanorods grown on the macropores of 

monolayer ZnO inverse opal (Section 6.4.2), ∅ is the volume fraction occupied 

by ZnO solid wall (which is taken as 0.26 for the FCC structure) and 𝑛 is the 

refractive index with 𝑛𝑍𝑛𝑂 𝑤𝑎𝑙𝑙𝑠 = 2.004 and 𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 = 1.409. By inserting 

these values to the above equation, the position of the photonic stop-band 

(𝜆𝑚𝑎𝑥) is determined to be about 651 nm, which lies in the visible region of the 

solar spectrum.  In general, slow photons at the red-edge of the photonic stop-

band have an associated electromagnetic field predominantly localised on the 
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high refractive index material (in this case ZnO walls) while that at the blue-

edge is mainly localised on the low refractive index material (in this case 

electrolyte filled macropores)12. The degree of localisation of light, depends on 

the refractive index contrast with a higher contrast giving a higher degree of 

light confinement. In this inverse opal structure, the attenuation in group velocity 

of light in combination with enhanced light confinement at the photonic stop-

band edges may be responsible in optical enhancement. However, it has been 

suggested that the photonic crystal properties of an inverse opal structure 

alone, cannot bring an overall increase in photoefficiency12. This may be due to 

the fact that, the strong reflectivity of the photonic stop-band outweighs the 

narrow wavelength window of slow photon enhancement (in this case at about 

651 nm), so that the overall effect can be a decrease in the light harvesting 

properties instead. Therefore, the photoefficiency enhancement factor for the 

monolayer ZnO inverse opal can predominantly be due to the high surface area 

and crystallinity of the structure and not related to photonic effects.            

By adding the ZnO nanorods onto the monolayer inverse opal, further 

enhancement is achieved (red curves). A fundamental property of nanorods is 

the high electron diffusion length2, 4. This phenomenon arises from the direct 

electron pathway nanorods offer, due to their structures being one dimensional, 

with minimum defects or grain boundaries. This can result in the reduction of 

charge traps and recombination centres4. ZnO nanorods have excellent charge 

collection properties. This was previously illustrated for ZnO nanowires2 by 

explaining that in such a structure, the size of the individual nanowire was much 

larger than the Debye-Huckel length of ZnO (~4nm). The Debye-Huckel length 

is the scale over which mobile charge carriers screen out electric fields in a 
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conducting material. This length is proportional to the reciprocal of the ionic 

strength; the smaller the concentration of ions, the less shielding of the charge 

surface and the larger the Debye length will become, leading to the 

enhancement of charged surface properties235, 236. This would establish an 

internal electric field within the nanowires, which would be able to assist the 

carrier collection by separating injected electrons form the surrounding 

electrolyte and sweeping them toward the collecting electrode. From Table 6.3, 

it can be seen that the nanorod formation stage has the most negative onset 

potential shifting than any other stage (a negative shift of 0.047 VRHE from the 

inverse opal to the nanorod formation stage can be detected). The smallest bias 

needed to completely separate the photogenerated electron-hole pairs at this 

particular stage, indicate that the ZnO nanorods have a low series resistance. 

This can be attributed to their properties stated above, making them more 

effective charge separators and thus, better light harvesters. The combination of 

ZnO nanorods onto the ZnO inverse opals may also promote a synergistic 

effect with respect to increasing internal surface area possessed by both the 

ZnO inverse opal and ZnO nanorods.  

A further enhancement factor may be explained in terms of the reduction 

in the optical band gap. From Figure 6.9, it can be seen that the optical band 

gap is decreased by approximately 0.3 eV from the monolayer ZnO inverse opal 

to the ZnO nanorod-inverse opal stage. The decrease in band gap means light 

absorption properties of the nanorod-inverse opal structure is red-shifted toward 

the visible region of the solar-spectrum, resulting in enhanced light harvesting. 

The photonic properties of the inverse opal when coupled to the 

nanorods may also contribute, further improving light harvesting properties. This 
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is due to back-reflections4 and formation of resonant modes102 at the nanorod-

inverse opal interface, caused by the inverse opal photonic crystal. It was 

previously predicted that coupling photonic crystals, such as inverse opals, to 

another nanocrystalline layer would create localised states in the surface of the 

non-opal layer (in this case the ZnO nanorods). The monolayer ZnO inverse 

opal layer may therefore act as a reflective mirror in this bilayer architecture 

enhancing photoefficiency, with the enhancement in the photocurrent over a 

broad range of wavelength12, with its photonic stop band centred at 651 nm, as 

stated earlier. Another photoefficiency enhancement factor related to the 

photonic crystal properties of the monolayer ZnO inverse opal when coupled to 

the ZnO nanorods, may arise from the creation of standing waves (resonant 

modes) at the interface, giving rise to photon localisation within the ZnO 

nanorods and result in a greatly increased probability of photon absorption over 

a range of frequencies140. These light-matter interaction phenomena in 

opal/non-opal bilayer structures were later confirmed by using Incident Photon 

to Current Efficiency (IPCE ) measurements139, 140.    

The improved PEC properties from the inverse opal to the nanorod-

inverse opal stage (~2.6× increase in the photocurrent and ~75% increase in 

the photoefficiency values) in this work is probably due to the presence of an 

intimate physical contact between the two crystalline phases of the nanorods- 

inverse opal structure, which leads to the strong opto-electrical coupling effects 

stated above. 

In the final stage, the photoanode was sensitised by CdSe/ZnS quantum 

dots, leading to highest photocurrent density and efficiency values of            

2.91 mA/cm2 and 0.99% respectively. The main factor for this is the narrow 
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band gap nature of the CdSe/ZnS core-shell quantum dots (1.74 eV224 for the 

CdSe active phase) allowing light harvesting in the visible region. Therefore, by 

coupling the quantum dots with the nanorods-inverse opal structure, light can 

be harvested in both UV and visible regions of sunlight spectrum. 

By looking at Table 6.3, it can be seen that the onset potential is reduced 

further in this final stage, owing to better charge separation and faster kinetics 

(photon injection properties188) attributed to the quantum dots. Quantum dots 

have large intrinsic dipole-moments which may lead to rapid charge separation 

in the band alignment configuration. When photons excite the electrons from the 

valence band to the conduction band of the quantum dot, the injection of the 

photogenerated electrons are made energetically possible into the conduction 

band of the ZnO nanorods-inverse opal structure. This is attributed to the more 

negative (higher) conduction band of the quantum dots than that of the ZnO 

producing an electric field with electrons and holes moving in opposite 

directions producing a junction. An n-n type(𝐼𝐼) energy band alignment between 

the two semiconductors is formed, which favours interfacial charge transfer and 

separation, due the high dipole moments of the quantum dots. A further 

potential factor contributing to the PEC enhancement from the addition of 

quantum dots can be attributed to their unique property of generating multiple 

excitons (multiple  electron-hole pairs per photon)223, 237 under illumination. This 

phenomenon can significantly increase the light harvesting properties of the 

photoanode. Quantum dots act as “light antennas”188 in this hierarchical system.  

A synergistic effect from quantum dots-inverse opal coupling may also 

arise due to the slow photon phenomena at the band edges of the inverse opal 

photonic crystal, resulting in enhanced efficiency. The monolayer ZnO inverse 
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opal has a photonic band gap of 651 nm as mentioned earlier. CdSe-ZnS 

quantum dots show an optical absorption peak at ~530 nm in the visible region 

arising from its narrow electronic band gap. Therefore the photonic band edge 

of the inverse opal and the quantum dot absorption edge may have a 

synergistic effect on visible light absorption. At photonic stop-band edges, the 

group velocity of light is decreased due to the bending of the photon dispersion 

curve103. This leads to light trapping (heavy photon phenomenon) at the 

absorption edges of the quantum dot. This light trapping phenomenon is useful 

to enhance light absorption properties of CdSe based quantum dot sensitisers 

due to its low extinction coefficient4. The slow photon phenomenon can 

manifest itself by an increase in the absorbed light intensity when using IPCE 

measurements at the quantum dot absorption edges as reported in other 

works4, 188.  

The use of  CdSe-ZnS quantum dots in the form of core-shells instead of 

using the neat CdSe quantum dots alone is advantageous. A drawback of using 

quantum dots in photovoltaic experiments is the significant carrier loss caused 

by non-radiative recombination processes at the interface of quantum dots with 

the photoanode and electrolyte, and the adjacent quantum dots. Photo-

degradation and reduction in fluorescence quantum yields238 are other limiting 

factors. These shortcomings are significantly reduced by using  ZnS inorganic  

semiconductor as a shelling material onto the optically active CdSe phase. The 

role of a ZnS shell is to passivate the surface of the CdSe core from its 

surrounding media148. The ZnS shell has a higher valance and conduction band 

edge, forming a type-𝐼 band alignment heterostructure239. The heterostructure 

band alignment may also increase the rate of charge transport to the nanorod-
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inverse opal system due to the formation of an internal electric field at the core-

shell interface of the quantum dot and also reduce back-recombination due to 

the ZnS barrier shell131. Figure 6.12 shows a representation of charge transport 

processes in a type-𝐼𝐼 quantum dot sensitised ZnO nanorod-inverse opal 

heterostructure as a photoanode in a PEC water splitting device. The 

conduction band edges of ZnO nanorod and inverse opal are assumed to be 

equal with the latter having a larger band gap as discussed earlier in Section 

6.4.5. In this diagram the visible light harvesting mechanism due to the 

presence of QDs are shown. The ZnO nanorod- inverse opal system can also 

harvest the UV part of solar spectrum. The synergistic effect facilitates 

enhanced photocurrent and improved photoconversion efficiencies. 

 

Figure. 6.12 Schematic representation of charge transfer processes in QD 

sensitised ZnO nanorod-ZnO monolayer inverse opal photoanode in PEC water 

splitting (visible light harvesting) under bias potential. 
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6.4.6.2 PEC Performances at Different Stages in the Formation of 

QD Sensitised ZnO Nanorods on Bilayerd TiO2/ZnO Inverse Opal 

The efficiency of the PEC can be further improved if a layer of TiO2 inverse opal 

is introduced to the QD sensitised ZnO nanorods on monolayer ZnO inverse 

opal system explained before in Section 6.4.6.1. This is due to the formation of 

Zn2TiO4 interface between the monolayer TiO2 (bottom layer) and monolayer 

ZnO (top layer) inverse opals, which may enhance charge separation and 

transport properties of this hierarchical system. Figure 6.13 show the I-V 

characteristics (a) and photoconversion efficiency (b) curves at different stages 

in the formation of QD sensitised ZnO nanorods on bilayered TiO2/ZnO inverse 

opal. The black curve in Figure 6.13(a) corresponds to PEC measurement 

under dark conditions. The brown curves in Figure 6.13(a and b) correspond to 

the bilayered ZnO inverse opal, the green curves to the bilayered TiO2/ZnO 

inverse opal with zinc titanate interface (formed at 700°C), the red curves to the 

ZnO nanorods on bilayered TiO2/ZnO inverse opal with zinc titanate interface,   

the purple curves to the QD sensitised ZnO nanorods on bilayered TiO2/ZnO 

inverse opal with zinc titanate interface photoanodes under illumination. The QD 

sensitised photoanode was also exposed to the electrolyte media of the water 

splitting setup for one hour before PEC measurements (the blue curves). The 

spikes (photocurrent noises) observed at the beginning of the I-V and 

photoefficiency curves  corresponding to the QD sensitised samples (blue and 

purple), likely come from the underlying titanium substrates holding these 

nanostructures; some areas of the substrates may not be fully covered by the 

samples and currents are produced by conducting titanium substrates 

interacting with the electrolyte medium. The other possible source of the small 
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photocurrent peaks may be due to the contamination of electrolyte media by 

some of the ZnS shells of CdSe/ZnS core-shell quantum dots getting detached 

from the sample in the electrolyte solution. These species may be oxidised by 

the photogenerated holes form the photoanode sample, leading to higher 

photocurrent peak. The spikes diminish as the soon as the contamination is 

settled and fully oxidised. The corresponding photovoltaic parameters of the five 

samples are summarised in Table 6.4.  

Photoanodes 
(Jmax)/mAcm

-2
 

at 1.23VRHE 

Onset 

potential/VRHE 
ɳ% 

Bilayered ZnO/ZnO inverse opal 2.41 0.576 0.49 

Bilayered TiO2/ZnO inverse opal (with zinc titanate 

interface) 

3.84 0.465 0.69 

ZnO nanorods on bilayered TiO2/ZnO inverse opal (with 

zinc titanate interface) 

4.50 0.411 0.78 

Quantum dot sensitized ZnO nanorods on bilayered 

TiO2/ZnO inverse opal (with zinc titanate interface) 

10.02 0.200 2.35 

Quantum dot sensitized ZnO nanorods on bilayered 

TiO2/ZnO inverse opal (with zinc titanate interface) after 

1 h electrolyte exposure 

6.32 

 

0.292 

 

1.13 

 

 

Table. 6.4 PEC performance parameters at different stages in the formation of 

QD sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal. 
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Figure. 6.13 (a) I-V characteristics and (b) Photoconversion efficiency curves at 

different stages in the formation of QD sensitised ZnO nanorods on bilayered 

TiO2/ZnO inverse opal.  

The ascending pattern of PEC enhancement from the starting bilayered 

ZnO/ZnO inverse opal to the final product of QD sensitised ZnO nanorods on 

bilayered TiO2/ZnO inverse opal is clearly demonstrated in Figure 6.13. It 
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confirms the contribution of each step in enhancing photoefficiency. The 

bilayered ZnO/ZnO inverse opal (brown curves (Figure 6.13)) produce some 

photocurrent density owing it to the ZnO semiconductor properties as a wide 

band-gap light harvester and also to the inverse opal morphology it possesses. 

The bilayered inverse opal with its high surface area and three-dimensional 

interconnected macroporous skeleton can enhance charge transport kinetics. 

The photonic properties of the inverse opal include the ability to trap, reflect and 

slow the light, and thus act as an infrastructure to enhance the light-matter 

interaction through optical coupling, which contributes to photoefficiency 

enhancement.  

By changing one of the ZnO layers into TiO2 inverse opal layer (the 

bottom layer), further efficiency enhancement occurs (green curves (Figure 

6.13)). This is due to the junction that is formed between the two metal oxides 

forming a type-𝐼𝐼 band alignment240 and formation of a zinc titanate charge 

barrier interface (formed at 700°C calcination temperature). At lower 

temperature of 550°C, the TiO2/ZnO heterojunction produces an internal electric 

field that is caused by electron movement  from the higher positioned 

conduction band edge133 of ZnO (-0.35 VRHE) to the lower TiO2 (-0.17 VRHE) 

layer and simultaneous movement of holes in the opposite direction. This may 

result in faster charge transport and less recombination. Moreover, it has been 

reported that ZnO in ZnO treated TiO2 semiconducting nanomaterials can act 

as a charge barrier241 and/or provide a surface dipole across the TiO2 layer due 

to its higher isoelectric point (IEP)242. The latter phenomenon can shift the 

conduction band edge of TiO2 in a negative direction reducing charge 

recombination and resulting in accumulation of a larger number of electrons in 
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the TiO2/ZnO heterojunction. This elevates the Fermi level of the system, 

leading to an increase in the internal energy240, and thus better water splitting  

properties. The charge barrier phenomenon can suppress back-charge 

recombination. Both factors can decrease the onset potential and increase the 

photocurrent density, leading to higher photoefficiency. The TiO2/ZnO 

heterojunction can be further optimised to increase PEC enhancement by 

calcining the bilayered inverse opal to 700°C, forming a thin zinc titanate layer 

at the interface, acting as a charge barrier. The formation of the barrier is 

confirmed by the introduction of three peaks in the XRD spectrum of the 

hierarchical structure which are assigned to the (220), (311) and (400) planes at 

the corresponding 2𝜃 values of 30.12°, 35.23° and 43.01°; a zinc titanate cubic 

phase243 (Figure 6.8). 

Compared with the bilayered homostructure of ZnO/ZnO inverse opal 

(brown curves (Figure 6.13)), the onset potential for the heterostructured bilayer 

of TiO2/ZnO inverse opal (green curve (Figure 6.13)) is shifted more negatively 

from 0.576 to 0.465 VRHE (Table 6.4). This behaviour may be attributed to the 

formation of zinc titanate at the interface of the TiO2/ZnO system, acting as a 

charge barrier contributing to significant reduction in charge recombination 

losses at the interface of the bilayered inverse opal. Although the conduction 

band edge of ZnO (-0.35 VRHE) 133  is lower than that of the Zn2TiO4 (-0.95 VRHE) 

133 and charge injection is energetically not favoured in that direction (i.e. 

movement of electron from ZnO to zinc titanate), the photogenerated electrons 

may overcome this by quantum tunnelling through this thin barrier. The 

photogenerated electrons are then transported to the lower positioned 

conduction band edge of TiO2 (-0.17 VRHE)133 and thus, charge injection is 
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energetically favoured. The relatively high energy barrier between the zinc 

titanante and TiO2 layers (0.78 VRHE) forbids the classical back-flow of electrons, 

suppressing recombination. Simultaneously, the holes are moved in the 

opposite direction, leading to a strong internal electric filed produced at two 

separate junctions. Therefore the TiO2/ZnO heterojunction coupled with the zinc 

titanate interface barrier can simultaneously reduce back-recombination and 

increase charge transport kinetics leading to higher photocurrent density and 

photoefficiency, as represented by the results obtained in this work. Figure 6.14 

shows the band gap energy diagram for the bilayered TiO2/ZnO inverse opal 

with a zinc titanate interface. 

 

Figure. 6.14 Band gap energy diagram for the heterostructure of bilayered 

TiO2/ZnO inverse opal with a Zn2TiO4 interface used as a photoanode in PEC 

water splitting. 

 The higher valence and conduction band edges of Zn2TiO4 than those of 

TiO2 and ZnO have been confirmed by computational methods using dynamic 

functional theory (DFT) approaches in two separate studies carried out by 

Conesa244 and Ali et al245. Both studies argued that these higher band edges 
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could be due to the Ti and Zn orbitals which could mutually dilute one another at 

specific sites of the titanante crystal structure. In terms of the electronic band 

structure, they argued that the split of the 3d orbitals of the Ti (due to t2g and eg-

type components) in the bottom of the conduction band which was narrower 

than in the TiO2. This is possibly due to the lower overall overlap between these 

3d orbitals resulting from the smaller overall density of Ti atoms in the titanante 

structure. The Zn-4s contributions in the conduction band seems to lie at higher 

energies than that of ZnO, as such orbitals mix to some extent with the eg 

branch of the Ti conduction band, but less with the t2g branch, possibly due to 

the nonbonding character of t2g, giving rise to higher conduction band edge in 

Zn2TiO4.  The higher valence band edge of  Zn2TiO4 could again be due to the 

overlap of the orbitals, namely Zn-3d and O-2p, leading to hybridisation at 

energies closer to the Fermi level of the titanante structure. A wide band gap of 

3.1 eV exists between the maximum of valence band and the minimum of 

conduction band of Zn2TiO4
246.              

By adding the ZnO nanorods to the heterojunction system further 

enhancement is achieved (red curves (Figure 6.13)). This is attributed to 

several properties of nanorods, including, direct electron-transport pathway, 

reduced carrier diffusion length and diminished charge recombination, due to 

the result of their one-dimensional morphology which prevents defects or grain 

boundaries2, 4. This can lead to fast charge transport at the photoanode 

/electrolyte interface by reducing the number of interparticle hops220, 247. The 

nanorod-inverse opal synergistic effects raised from increase in the internal 

surface area, coupled with photonic induced properties from the inverse opal 

(as discussed previously in Section 6.4.6.1), may further improve efficiency. The 
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realisation of such electrical and optical coupling results in significant efficiency 

enhancement, which may be attributed to the intimate physical contact that is 

formed between the bilayered TiO2/ZnO inverse opal and the ZnO nanorods. 

This indicates the successful synthetic methods used in this work.    

 By sensitising the hierarchical structure with narrow band gap  

CdSe/ZnS core-shell quantum dots, the photocurrent density and the 

photoefficiency are significantly improved (purple curves in Figure 6.13 ). The 

reasons and the mechanism for such enhancements were discussed  before in 

Section 6.4.6.1. The drastic photocurrent increase from the onset potential in 

the I-V curve for this sample (purple curve in Figure 6.13 (a)) may demonstrate 

the much improved charge separation and transport properties of this 

hierarchical structure compared to other samples which show less onset 

photocurrent increase (other I-V curves in Figure 6.13(a)). The structure shows 

photodegradation after being exposed to the electrolyte medium for 1 hour (blue 

curves in Figure 6.13) possibly owing to photocorrosion of the quantum dots 

and the reduction of photostability in the hierarchical ZnO nanorods on 

bilayered ZnO/TiO2 inverse opal nanostructure by losing some structural 

integrity in the electrolyte medium.  

The on/off I-V curve in Figure 6.15 clearly shows the behaviour of charge 

separation & transport under illumination and charge relaxation & recombination 

under dark conditions. The curve also shows spikes of photocurrent initially. 

These photocurrent spikes are possibly due to the accumulated photoexcited 

holes at the photoanode/electrolyte interface. They are a result of carrier 

oxidised trap states of the semiconducting photoanode sample, or slow oxygen 

evolution reaction kinetics248. This actually tell us that the charge mobility is 
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restricted, which is understandable as the structural complexity of the sample 

increases and the presence of Zn2TiO4 charge transport barrier between the 

ZnO and TiO2 layers is expected. Initially there is high current, since there is no 

charge accumulated in the oxide layers. However, once the charge begins to 

accumulate, the current will drop, then recover as the potential increases. Such 

spikes can be suppressed when photoexited holes experience less or no barrier 

to oxidising the electrolyte under better interface charge transfer kinetics. 

 

Figure. 6.15 I-V curve for QD sensitised ZnO nanorods on bilayered TiO2/ZnO 

inverse opal with 15 s light on/off cycles. 

Figure 6.16 provides a schematic representation of possible electron-

hole transport processes among junctions in the QD sensitised ZnO nanorods 

on bilayered TiO2/ZnO inverse opal photoanode in a PEC water splitting device. 

The hierarchical structure is synthesised at 700°C, where a zinc titanate 

interface at the TiO2/ZnO junction is formed acting as a charge barrier. For 

better illustration of the heterojunctions, the ZnO nanorod and the ZnO inverse 
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opal top layer are assumed as one species. In this diagram the visible light 

harvesting mechanism due to the presence of QDs are shown. The TiO2/ZnO 

system can also harvest the UV part of solar spectrum. The synergistic effect 

facilitates enhanced photocurrent and improved photoconversion efficiencies.  

 

Figure. 6.16 Schematic representation of the electron-hole transport processes 

in QD sensitised ZnO nanorods on bilayered TiO2/ZnO inverse opal with a 

Zn2TiO4 interface used as a photoanode in PEC water splitting (visible light 

harvesting) under bias potential.  

By comparing the results of the QD sensitised ZnO nanorods on 

monolayer ZnO inverse opal (Figure 6.11) with the QD sensitised ZnO 

nanorods on bilayered TiO2/ZnO inverse opal (Figure 6.13) with respect to their 

PEC results, it is obvious that the improvements are much more pronounced in 

the latter photoanode. A photocurrent density increase to 10.02 mA/cm-2 

compare to 2.91 mA/cm-2 and conversion photoefficiency increased to 2.35% 
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compare to 0.99% from QD sensitised ZnO nanorods on bilayered TiO2/ZnO 

inverse opal system to the QD sensitised ZnO nanorods on monolayer ZnO 

inverse opal can be detected. These improved results are potentially due to the 

formation of the titanate barrier, coupled with the TiO2/ZnO heterojunction  

possessed in the latter photoanode as opposed to the monolayer ZnO system. 

Such junctions can increase charge transport and significantly suppress 

recombination. The fundamental property of quantum dots as “light antennas”188 

can be significantly realised in this heterojunction system. A significant amount 

of the photogenerated electrons produced by such quantum dots can contribute 

to water splitting with the presence of the junctions.  

 

6.5 Conclusion 

A novel and facile synthetic approach was used to synthesise ZnO nanorod- 

monolayer ZnO inverse opals and ZnO nanorod–bilayered TiO2-ZnO inverse 

opal hierarchical structures for applications in PEC water splitting devices. SEM, 

XRD and I-V characterisations confirm that the hierarchical systems possess 

intimate physical contact, high crystallinity and well-defined morphologies with 

large coverage areas and minimal cracks and boundaries. 

 The PEC performance of photoanodes with different hierarchical 

structures show ascending enhancement contributions from each stage. The 

enhancement factors are attributed to the positive effects arising from the high 

internal surface area and the photonic properties of the macroporous inverse 

opals, the good charge separating properties of the nanorods. Such synergistic 

effects of ZnO nanorods-inverse opal system can realise the dual benefits of 
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light trapping and surface area enhancement. In the bilayered heterostructure 

system of TiO2/ZnO system further improvement is achieved through the 

formation of titanante interface acting as a charge barrier to reduce charge 

recombination.  

The photoefficiency of the hierarchical structures are improved further by 

sensitising them with narrow band gap CdSe/ZnS core-shell quantum dots 

acting as “light antennas”, and thus, light harvesting in the visible region of the 

spectrum. The QD sensitised hierarchical structure of TiO2/ZnO shows a very 

pronounced enhancement in the PEC parameters compared to the single 

system. Such a large improvement can give rise to the realisation of 

heterojunction nanostructures coupled with highly photon absorbing quantum 

dots as promising light harvesters in PEC devices.  

Throughout the work, it was clear that the predominant factors in 

determining the performance of the photoanodes in PEC water splitting 

experiments are based on the balance between the photogenerated electron 

transport and charge recombination. The present synthetic method in this work 

can be readily extended to the creation of many other bilayered or layer-by-

layer heterojunction inverse opals coupled with nanorods, that can be tailored to 

achieve specific qualities, and be utilised for various PEC applications.   
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Chapter 7: Bilayered Inverse Opal Photoanodes in Dye 

Sensitised Solar Cells (DSSCs) 

 

7.1 Abstract 

Bilayered TiO2-ZnO (as ZnO on top), ZnO-TiO2 (as TiO2 on top) , and TiO2-TiO2 

inverse opal heterostructures were used as photoanodes in DSSCs. Potassium 

titanate (K2Ti4O9) nanobelts were also synthesised via the solid state reaction 

between K2CO3 and TiO2 and then subsequently coupled with a ZnO inverse 

opal. Photocurrent-voltage (I-V) characteristics were measured in a two 

electrode DSSC set-up with a I3
-/I- electrolyte placed between the two 

electrodes, under illumination by a 300 W xenon arc lamp with an AM 1.5G 

filter. The intensity of the lamp was adjusted to 100 mW/cm2. The effects of 

cation identity and concentration in the electrolyte media of a DSSC were 

investigated. The highest photoefficiency in the first set of experiments was 

recorded for bilayered TiO2-ZnO inverse opal with ZnO as the top layer (0.43%), 

followed by the bilayered TiO2-TiO2 inverse opal (0.30%) and finally the 

bilayered ZnO-TiO2 inverse opal with TiO2 as the top layer (0.19%). In the 

second set of experiments the highest efficiency was recorded for ZnO inverse 

opal coupled with K2Ti4O9 (1.19%) with respect to the single system of K2Ti4O9 

(1.04%) indicating that the ZnO inverse opal acted as a photonic crystal under-

layer material.  
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7.2 Introduction 

In the quest to enhancing DSSC efficiency, the use of bilayered 

heterostructures consisting of two different nanostructures2, 131, 220 as 

photoanodes shows promise. The high surface area possessed by the 

macroporous inverse opal nanostructures can enhance dye absorption and 

electrolyte infiltration106, 249. The formation of hierarchical porosity introduced by  

two inverse opal layers may combine the benefit of increased surface area with 

enhanced mass transport with better charge separation and therefore act as 

another photoenhancement factor. ZnO and TiO2, as two wide band gap 

semiconductors with similar band gaps, are appropriate candidates to produce 

such heterostructures240. ZnO treated TiO2 nanostructures may also lead to a 

reduction in back charge recombination and therefore increase the 

photoefficiency of the DSSC devices149, 220. The movement of the conduction 

band edge of TiO2 in a more negative direction149 and the introduction of an 

energy barrier241 after ZnO treatment are proposed as the two main causes for 

the reduction of recombination centres. The photonic crystal properties of ZnO 

and TiO2 inverse opals may also contribute to enhanced light harvesting as 

suggested previously for single inverse opal systems when combined with a 

conventional TiO2 (P25) thin film based DSSCs140. By coupling the inverse opal 

to another nanostructured material, the unique photonic properties of the 

inverse opal used as a light localising and scattering material may enhance the 

efficiency of the DSSC. 

In this chapter, the novel creation of bilayered TiO2-ZnO inverse opal as 

an effective photoanode for dye sensitised solar cells (DSSCs) will be 
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discussed. The coupling effects and the order of deposition of TiO2 and ZnO 

inverse opals together as well as coupling between a monolayer ZnO inverse 

opal with another nanostructure, namely potassium titanate (K2Ti4O9)  nanobelts 

have also been investigated. The reasons for choosing potassium titanate 

nanobelts as another nanostructured material to couple with ZnO inverse opal 

are as following: 1) as a wide band gap (3.53 eV250) semiconductor, potassium 

titanate may contribute to enhance charge separation and transfer properties of 

the photoanode, 2) composites of titanates with other metal oxide 

nanostructures have shown better light harvesting properties due to the 

formation of interfaces251, 3) the average length of titanate nanobelts used in 

this work is in the scale of several tens of micrometres, therefore they could 

cover the top of the underlying ZnO inverse opal film and may introduce more 

surface area for better electrolyte infiltration, effective dye sensitisation and 

charge collection. More importantly, this semiconductor nanostructured material 

has been used in this work to investigate the effects of the underlying 

macroporous monolayer ZnO inverse opal in enhancing light harvesting for 

better energy conversion.               

 

7.3 Experimental Procedures 

The substrate of the electrodes used in the experiments were made of 

transparent conductive FTO glasses. They were cleaned prior to deposition by 

first being immersed in isopropanol (IPA) (15 minutes) followed by immersion in 

ethanol (15 minutes) and finally washing thoroughly with DI water before being 

dried in air. 
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The electrodes were coated with a thin film of 0.01 M TTiP solution        

(4 drops at the edges of each electrode) and allowed to dry for 1h prior to 

deposition metal oxide thin films. This was performed to achieve better 

adhesion to the samples on the FTO electrodes and also to construct a blocking 

layer149 to prevent back recombination between the FTO electrode and the 

electrolyte. This was especially important in the case of monolayer thin inverse 

opal samples with high porosity. 

The monolayer ZnO, bilayered TiO2-TiO2 and TiO2-ZnO (with alternating 

the order of deposition) inverse opals were prepared via the same procedure as 

described previously in Chapters 6 (Section 6.3.1) and 5 (Section 5.3.2), with 

the exception of using an FTO glass substrate instead of a Ti plate for 

deposition. For the set-up of DSSCs, the thickness of the electrodes was 

defined by the layers of colloidal crystal templating. Each layer was 

approximately 410 nm (double layers 820 nm) and, with inclusion of the TiO2 

blocking layer, each photoanode electrode was about 900 nm thick. The 

calcination temperature for template removal was kept constant for all the 

samples (550°C) with a ramping rate of 2°C/min for 2 h.  

K2Ti4O9 nanobelts were synthesised according to the solid-state method 

described by Allen et al252. K2CO3 and TiO2 (P25) were mixed and ground 

together in a 1:3 molar ratio using a mortar and a pestle followed by annealing 

at 960°C for 10 h with a ramping rate of 15°C/min. In order to prepare the 

photoanode sample of monolayer ZnO inverse opal-K2Ti4O9 nanobelts 

composite onto the FTO glass substrate, first a paste of K2Ti4O9 nanobelts was 

made as following:  Polyvinyl alcohol (PVA) water solution (30%, 3g) was 

dissolved in a mixed solvent of water (9.0ml) and ethanol (12.5 ml). A sample of  



221 
 

K2Ti4O9 nanobelts (2.2 g) was then added to create the nanobelts suspension. 

Then, after the suspension was dispersed, two samples were made; first, a 

layer of K2Ti4O9 nanobelts paste was deposited onto the previously made 

monolayer ZnO inverse opal on the FTO substrate via the doctor blade 

technique. As a reference, a second photoanode sample was made, this time, a 

layer of K2Ti4O9 nanobelts paste was directly deposited onto the FTO glass 

substrate again using the doctor blade technique. The thickness was controlled 

by use of a layer of double sided cellophane. The thickness of both films above 

the FTO surface was approximately 25 microns. The samples were dried for 2 h 

before calcining them at 550°C with a ramping rate of 3°C/min for 2 h to remove 

the organic residues from the pastes.  

For the purpose of investigating the effects of cation identity and 

concentration in the electrolyte media of a DSSC, TiO2 (P25) was used as the 

photoanode nanomaterial. To prepare the P25 sample on the FTO glass, a P25 

paste was made in a similar fashion used to make the K2Ti4O9 nanobelts paste, 

replacing K2Ti4O9 with P25 (1.62g). Doctor blade was again applied to deposit    

the P25 paste onto the FTO substrate (Film thickness above the FTO surface 

was about 25 microns) before drying and calcining as before. The calcination 

process (2 h at 550°C) was used not only to remove the organic residues from 

the P25 paste but also to improve the crystallinity of the P25 sample. Figure 7.1 

illustrates a successful deposited layer of P25 paste on a FTO substrate using 

the doctor blade technique prior to dye sensitisation. 
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Figure 7.1 P25 film prepared by paste and deposited by doctor blade technique 

on FTO. 

All the as-sensitised films deposited on the FTO glass substrates were 

heated at 85°C for 30 minutes immediately prior to dye sensitisation to enhance 

dye adhesion. These photoanode samples were then immersed in a dye 

solution, N719 dye (0.3 mM) in ethanol for 24 hours. The counter electrodes 

(photocathodes) were then prepared. For creating a counter electrode, a clean 

FTO glass substrate was coated with a drop of 0.5 mM chloroplatinic acid 

(H2PtCl6) in ethanol before calcining it at 400°C for 20 minutes. The result was a 

very thin layer of Pt (about 100 nm thick) deposited on the FTO substrate. Each 

photoanode was then paired with a counter electrode and assembled into a 

sandwich type cell. When the two electrodes were put together, the active sides 

of the photoanode and counter electrode faced each other. The gap between 

the two electrodes was controlled using a spacer (2 layers of double sided tape 

(50 microns)). The assembled electrodes were then sealed using UV-sensitive 

glue (Loctite 358) leaving the top side of the cells unsealed for electrolyte 

infiltration. The cells were placed under a UV light source for 45 min to dry the 

seals. An active area of 1 cm2 was kept constant for all the cells. A few drops of 
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I-3 / I- electrolyte solution consisting of 0.6M 1-methyl-3-n-propylimidazolium 

iodide (PMII), 0.5 M 4-tert-butylpyridine (TBP), 0.05 M iodine (I2) and 0.1M 

lithium iodide (LiI) in dry acetonitrile was introduced from the unsealed sides of 

the cells into the gap between the working and counter electrodes. Infiltration 

took place via capillary forces, wetting the entire active areas of the cells. This 

yielded the finished DSSCs.  

 

7.4 Results and Discussion 

7.4.1 Morphology Characterisation 

 The effects of bilayered inverse opal systems consisting of monolayer TiO2 and 

ZnO inverse opals together with investigating the order of deposition in such 

systems in DSSCs will be one of the objectives in this chapter.  

 

Figure. 7.2 SEM images of bilayered (a) TiO2-ZnO (as ZnO on top), (b) ZnO-

TiO2 (as TiO2 on top) and (c) TiO2-TiO2 inverse opals deposited on FTO glass 

substrates. Scale bars: (a) 2μm and (b),(c) 1μm.   
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  Moreover, the photoefficiencies of such bilayered photoanode materials 

will be compared with a single species bilayer of TiO2-TiO2 inverse opal. For this 

purpose, three samples were made with their corresponding SEM images 

shown in Figure 7.2. Image 7.2(a) shows the ZnO inverse opal layer is on top of 

the TiO2 layer, 7.2(b) when the TiO2 layer is on top of the ZnO layer and 7.2(c) is 

with both inverse opal layers as TiO2.  

The diameter of the air spheres (macropores) and the thickness of the 

walls in the bilayered inverse opal structures in the SEM images of Figure 7.2 

were measured and discussed previously in Chapters 5 and 6 (air sphere 

diameter is 410nm and wall thicknesses are 70nm and 85nm for TiO2 and ZnO 

inverse opals respectively). By examining the SEM images above, when the 

ZnO layer is deposited on top of the TiO2 layer (Figure 7.2(a)) and when both 

layers consist of TiO2 (Figure 7.2(c)), the signature characteristics of the inverse 

opal structures are preserved (orderliness, periodicity and porosity). However 

when the TiO2 is deposited on top of the ZnO inverse opal (Figure 7.2(b)), the 

top layer loses its inverse opal integrity with the filling of the macropores. The 

clear morphological differences among the three images indicate that the type 

of precursor used and the order of deposition is important to maintain the 

integrity of the bilayered structure.   

The reason for these morphological differences can be assigned to the 

differences in viscosity, the rate of hydrolysation and the physisorption between 

the precursors fabricating the two layers. When both layers are TiO2 (Figure 

7.2(c)), they naturally can stack on each other without problem. When using 

different precursors however, there is a mismatch between them. In this work, 

after the first layer is made by colloidal crystal templating, the second templating 
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is carried out before template removal. In the case of ZnO as the top layer 

(Figure 7.2(a)), the integrity of the bilayered inverse opal is better preserved 

than when the TiO2 layer is above (Figure 7.2(b)). The main precursors used to 

synthesise the ZnO and TiO2 inverse opals are zinc acetate and TTiP 

respectively. Zinc acetate is much more stable than TTiP in air. Therefore, it will 

be kept mobile in the liquid phase and will possibly to follow the morphology of 

the PMMA spheres in colloidal crystal in the templating stage and form shells. 

The PMMA scaffold with its interstitial gaps already filled with the first set of 

precursors seems impenetrable and therefore, the slower rate of hydrolysation 

and condensation possessed by the zinc acetate sol-gel precursor for the 

formation of solid network of ZnO in the top layer may be beneficial. On the 

other hand, the faster hydrolysation and condensation reactions possessed by 

the sol-gel TTiP precursor to form the solid network of TiO2 may cause 

premature precipitation, and thus lead to the formation of overlayer as seen in 

the SEM image in Figure 7.2(b).  

Moreover, In the template removal stage by calcination, the mismatch 

between the two precursors for the formation of solid ZnO and TiO2 (Figure 

7.2(a) and (b)) may also lead to some structural damage as there are fewer Van 

der Waals interactions compared to when both layers consist of same species 

of TiO2 (Figure 7.2(c)). The reduction in porosity can have consequences in 

DSSC devices due to the loss of internal surface area and decrease in dye 

adsorption, with light harvesting limited to the top surface. 

P25 has been used as a photoanode material to investigate the effects of 

cation identity and concentration in the electrolyte media of a DSSC. The SEM 

image in Figure 7.3 (a) shows a layer of P25 deposited onto a FTO glass using 
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the doctor blade technique (film thickness above the substrate ~25 microns). 

K2Ti4O9 nanobelts have been used to couple with a monolayer ZnO inverse 

opal and used as photoanode in a DSSC to see the effects of the underlying 

inverse opal in terms of enhancing the photoefficiency of the cell. Figure 7.3(b) 

shows a layer of K2Ti4O9 nanobelts deposited on a FTO glass using the doctor 

blade technique (film thickness above the substrate ~25 microns). Figure 7.3(c) 

shows a monolayer ZnO inverse opal synthesised by colloidal crystal templating 

on a FTO glass substrate (film thickness ~410 nm) and 7.3(d) shows a 

monolayer ZnO inverse opal-K2Ti4O9 nanobelt composite deposited on a FTO 

glass. The K2Ti4O9 nanobelts have been deposited directly onto the underlying 

inverse opal thin film via doctor blade technique.  

 

Figure. 7.3 Thin film SEM images of (a) P25, (b) K2Ti4O9 nanobelts, (c) 

monolayer ZnO inverse opal and (d) monolayer ZnO inverse opal-K2Ti4O9 

nanobelts composite.  FTO glass substrates are used for all the samples. Scale 

bars: (a) 50μm, (b) 20μm, (c) 10μm, (c inset) 1μm and (d) 100μm. 

The P25 sample (Figure 7.3(a))  is composed of aggregated crystalline 

TiO2 nanoparticles. The average crystallite size is 20 nm, which was determined 
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via the Scherrer equation. The K2Ti4O9 nanobelt structure in Figure 7.3(b) is 

highly crystalline; this is confirmed via  XRD in the next section. The nanobelts 

have various thicknesses (60 nm to 170 nm) and lengths (1.5 to 6 microns) 

respectively. The SEM image in Figure 7.3(c) shows clearly the highly ordered 

and crack-free monolayer ZnO inverse opal, which is used  as a photonic 

crystal under-layer when combined with K2Ti4O9 nanobelts (Figure 7.3(d)).  

 

7.4.2 Crystal Property Characterisation  

 

Figure. 7.4 XRD patterns for K2Ti4O9 nanobelts (green spectrum), ZnO inverse 

opal (red spectrum) and monolayer ZnO inverse opal-K2Ti4O9 nanobelts 

composite (blue spectrum) all produced at 550°C. 

The crystal structures of the bilayered nanostructures have been discussed 

previously in Chapter 6. The sequence in the formation of the crystal structure 
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of the other nanomaterial used as photoanode in DSSC experiments in this 

chapter, namely monolayer ZnO inverse opal-K2Ti4O9 nanobelt composite can 

be seen in Figure 7.4; first, the XRD pattern for K2Ti4O9 nanobelts (green 

spectrum), followed by the monolayer ZnO inverse opal (red spectrum) and 

finally the monolayer ZnO inverse opal-K2Ti4O9 nanobelts composite (blue 

spectrum). 

The diffraction peaks of the ZnO inverse opal sample (red) can be readily 

indexed to a hexagonal wurtzite phase of ZnO (JCPDS reference no. 01-075-

1526). The peaks that are labelled with stars correspond to the underlying FTO 

glass substrate. The diffraction peaks of the titanate sample (green) are in good 

accordance with that reported in the literature252, indicating the crystalline phase 

of K2Ti4O9. The peaks can be readily indexed to the JCPDS reference card 

number (00-032-0861). The peaks are sharp and intense, which indicates the 

high crystallinity of the sample. The K2Ti4O9 crystallite size perpendicular to the 

(200) plane was calculated by using the Debye-Scherrer equation (25 nm).   

Xiong et al250 exposed the crystal phase of K2Ti4O9 as a member of 

M2O.nTiO2 (M= Na, K, Rb, Cs) with n = 0.5, 1.0, 2.0, K2Ti4O9 (when n=4) 

possesses a layered structure consisting of ribbons of edge and corner shared 

TiO6 octahedral units separated by K ions. 

After introducing the monolayer ZnO under-layer (blue), the composite 

only shows the resolved diffraction peaks for the K2Ti4O9 nanobelts with no 

characteristic changes from its original spectrum (green). The very thin nature 

of the underlying monolayer ZnO inverse (about 410 nm thick) may result in the 

intensities of its diffraction peaks to be very low in comparison to the thick layer 
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of K2Ti4O9 nanobelts on top (about 25 microns thick) which produces high 

intensity diffraction peaks. This may explain why the XRD patterns for the 

underlying inverse opal thin film cannot be detected. 

 

7.4.3 Photovoltaic Characterisation 

In a two electrode system, the photocurrent-voltage (I–V) characteristics of the 

DSSCs were measured by an eDAQ potentiostat, scanning from a negative 

bias of -1200 mV to a positive bias of 200 mV. The measurements were made 

under artificial solar light, produced by a 300 W xenon lamp and AM 1.5G filter 

(simulated solar spectrum 350-750 nm). The intensity of the lamp was adjusted 

to a power density of 100 mW/cm2, corresponding to 1 sun.    

 

7.4.3.1 Sodium Iodide (NaI) and Lithium Iodide (LiI) Based 

Electrolytes  

The effects of cation identity in the electrolyte media of a TiO2 (P25) based 

DSSC was investigated in this work. Figure 7.5 shows the plot of output power 

density as a function of voltage for a cell with two different cation based 

electrolyte solutions (NaI and LiI). As described in Chapter 2, the open circuit 

voltage (Voc) can be affected when photogenerated electrons in the conduction 

band of the semiconductor (here TiO2) recombine with the oxidised species in 

the electrolyte (I3
-) or  dye (D+). The short circuit current can also suffer from 

recombination according to Equation (7.1) 253 as well as poor charge transport 

properties.  
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𝐼3
− + 2𝑒𝑐𝑏

− → 3𝐼−                             (Equation 7.1) 

 

Figure. 7.5 Plot of output power against voltage for LiI based (black) and NaI 

based (red) electrolyte solutions in a P25 DSSC. 

In a TiO2 based DSSC, there is a strong electrostatic coupling of the 

motions of ions in the electrolyte and of electrons in the TiO2 network254. A 

balanced ambipolar diffusion is essential for reducing and accumulation of ions 

on either electrodes (cathode and anode). This ensures that the electron 

transport is effective through the electrolyte, whereby the amount of negative 

charge is roughly equal to the amount of positive charge over the cell area255. 

Li+ has a smaller ionic radius (76 pm)256 than Na+ (102 pm) 256. Therefore it can 

penetrate the mesoporous TiO2 network more effectively. This leads to a faster 

transport rate (higher effective electron diffusion coefficient) due to an ambipolar 

diffusion mechanism254 leading to an increase in the short circuit current (JSC) 

and hence higher efficiency257. However, Li+ can also react more readily with 

the triiodide in the electrolyte than Na+ (due to its greater ionic strength), which 

leads to a higher recombination rate, which reduces the open circuit voltage 

(VOC). The reduction in VOC, although minimal, can be observed in Figure 7.5, in 
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which it decreases from 0.756 V to 0.745 V. By using LiI as the cation species 

instead of NaI, the overall efficiency is significantly improved as can be seen in 

Figure 7.5. This is because cation charge transport speed is the dominant 

factor, which leads to a higher Jsc, which significantly outweighs the 

recombination with triiodide. The overall effect is a small reduction in Voc. 

Another factor contributing to the rise in efficiency when using LiI instead 

of NaI in the electrolyte media can be attributed to cation adsorption on the 

band-edges and surface charges of TiO2. The Li+ cation is a stronger Lewis acid 

than Na+ and may coordinate more effectively to oxygen rows in the TiO2 crystal 

structure (anatase) and therefore increase the electron density acceptor ability 

of the neighbouring Ti atoms258. This may explain the resulting higher rate of 

electron injection from dye species into the TiO2
259 and subsequently lead to 

enhanced efficiency. 

 

7.4.3.2 Optimising Lithium Iodide (LiI) Concentration in Electrolyte 

Solution 

The effects of concentration in the electrolyte media of a TiO2 (P25) based 

DSSC was investigated. Figure 7.6 shows the plot of photoconversion efficiency 

as a function of LiI concentration for the cell. The optimum concentration of LiI 

in the electrolyte solution is 0.1M. The factors determining the optimum LiI 

concentration may be explained by the following two factors: ambipolar diffusion 

mechanism (the role of cation in terms of dictating the speed of electron 

transport in TiO2) and secondly, the effects of adsorbed cations on the TiO2 

surface, by changing the band edges of TiO2 relative to the dye and hence 
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influencing the rate of electron injection from dye to TiO2. Too high a 

concentration of LiI can also result in back recombination between the 

photogenerated electrons in the conduction band of TiO2 and the oxidised 

triiodie in the electrolyte media and lead to a reduction in efficiency according to 

Equation (7.1) mentioned previously.  

 

Figure. 7.6 Plot of efficiency against concentration of LiI for a P25 DSSC. 

 

7.4.3.3 DSSC Performances of Different Bilayered Inverse Opals  

The effects of bilayered inverse opal systems consisting of monolayer TiO2 and 

ZnO inverse opals as photoanodes together with the effects of the order of 

deposition in such systems with respect to enhancing the performance of 

DSSCs were investigated. Moreover, the photoefficiencies of such bilayered 

photoanode materials were compared with a single species bilayer of TiO2-TiO2 

inverse opal.  
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Figure. 7.7 (a) I-V characteristics and (b) photoefficiencies of the DSSCs 

assembled with bilayered TiO2-ZnO (as ZnO on top (blue)), TiO2-TiO2 (red) and 

ZnO-TiO2 (as TiO2 on top (brown)) inverse opals as photoanodes. 

Figure 7.7 shows the I-V characteristics (Figure 7.7(a)) and 

photoconversion efficiency (Figure 7.7(b)) curves for the as-assembled cells 

with different bilayered inverse opals acting as photoanodes under 100 

mW cm-2 irradiation. The blue curves correspond to the bilayered TiO2-ZnO (as 
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ZnO on top), the red curves to TiO2-TiO2 and the brown curves to the ZnO-TiO2 

(as TiO2 on top) inverse opals. The corresponding photovoltaic parameters of 

these three cells are summarised in Table 7.1.    

𝐏𝐡𝐨𝐭𝐨𝐚𝐧𝐨𝐝𝐞𝐬 

(Bilayered 

inverse opals) 

𝐉𝐒𝐂/𝐦𝐀𝐜𝐦−𝟐 𝐕𝐎𝐂/𝐕 % 𝐅𝐅 

TiO2–ZnO  

(as ZnO on top) 

0.911 0.836 0.43 0.560 

TiO2–TiO2  0.667 0.765 0.30 0.583 

ZnO–TiO2  

(as TiO2 on top) 

0.466 0.835 0.19 0.486 

 

Table. 7.1 Photovoltaic Parameters of the DSSCs assembled with bilayered 

TiO2-ZnO (as ZnO on top), TiO2-TiO2 and ZnO-TiO2 (as TiO2 on top) inverse 

opal photoanodes. 

From Table 7.1, the highest efficiency (ɳ%), short circuit current (𝐽𝑆𝐶) and 

open circuit voltage (𝑉𝑂𝐶) is that of bilayered TiO2-ZnO inverse opal based 

DSSC with a ZnO layer on the top of TiO2 layer. Its efficiency is almost 2.5 

times as high than that of the hybrid structure with the TiO2 layer on top and 

43% higher than the single system bilayered TiO2-TiO2 inverse opal. The higher 

efficiency in this cell arises directly from the larger values of 𝐽𝑆𝐶 and 𝑉𝑂𝐶 as can 

be seen from the above table. This means the cell possesses better light 

harvesting ability and more effectively suppresses charge recombination. 

Coupling of ZnO with TiO2 metal oxide semiconductors tends to form a 
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heterojunction with a staggered type-𝐼𝐼 band alignment240. Kim et al.149 and 

Kanmani et al.241 both suggested that by introducing ZnO nanostructures to a 

TiO2 (P25) based DSSC, the efficiency would be enhanced due to the increase 

in the VOC. Kim’s argument suggested the increase in VOC could be assigned to 

the introduction of the ZnO layer, which acted as charge barrier between the 

TiO2/electrolyte interface. This in turn was suggested to lead to a reduction in 

recombination losses. They argued that although TiO2 and ZnO both have 

similar band gaps, due to a slightly higher conduction band in ZnO (-0.35V vs 

VRHE) compared to TiO2 (-0.17 vs VRHE) 133, it energetically favours the injection 

of photogenerated electrons to TiO2. The TiO2 structure is shielded from back 

electron transport and interfacial recombination, which results in larger VOC. On 

the other hand, Kanmani argued that the increase in VOC was due to the 

movement of the conduction band edge of TiO2 to a more negative direction 

after the ZnO treatment, due to the formation of a dipole layer across the TiO2 

surface. This is as opposed to the formation of barrier layer. ZnO has a higher 

isoelectric point (~8.5) than of TiO2 (~5)2 that may induce a surface dipole 

directed towards the TiO2, leading to a negative shift of the conduction band of 

the TiO2 by increasing the work function of its Fermi level higher and hence 

increasing the VOC of the cell.  

From the above, it is clear that the arguments are valid only when the 

system acts in a core-shell manner, with ZnO as the shell and TiO2 as the core. 

By examining the findings of this work, one factor for the superior performance 

of bilayered TiO2-ZnO inverse opal (with ZnO as the top layer) compared to 

when TiO2 is the top layer can be explained by either or both of these 

mechanisms.  
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The greater 𝐽𝑆𝐶 of the heterojunction system (with ZnO as the top layer) 

can also be explained in terms of the ZnO behaving as a charge barrier. The 

shifting of the TiO2 conduction band edge may also energetically improve 

electron injection from the dye (by improved band alignment) and also enhance 

transport leading to a higher 𝐽𝑆𝐶 value. Suppression of back electron transport 

by the ZnO layer shielding effect may in addition improve 𝐽𝑆𝐶. Compared to the 

single system bilayer of TiO2-TiO2 inverse opal, the low photovoltaic efficiency 

for the ZnO-TiO2 inverse opal with TiO2 on top can be assigned to poor electron 

injection from the less negative (lower positioned) conduction band edge of TiO2 

to the more negative (higher positioned) ZnO conduction band; TiO2 can act as 

the blocking layer for forward electron transport and hence hinder light 

harvesting. The other possible reason for this particular photoanode’s poor 

performance may be attributed to its morphology. By referring back to Figure 

7.3, the SEM images for the other two electrodes, the bilayered TiO2-ZnO (as 

ZnO on top) (Figure 7.3(a)) and TiO2-TiO2 (Figure 7.3(c)) inverse opals show 

high degrees of porosity and orderliness. In stark contrast, in this sample, the 

bilayered ZnO-TiO2 (as TiO2 on top), the porosity is not well preserved. This can 

lead to loss of internal surface area and therefore a significant reduction in dye 

absorption, leading to lower photoefficiency. The reduction of porosity and 

orderliness in such bilayered inverse opal can hinder light localisation and 

scattering140, which are two important characteristics of inverse opals acting as 

photonic crystals. This may further contribute to reduce the light harvesting 

properties.  

From Table 7.1, it can be seen that the single system cell of bilayered 

TiO2-TiO2 inverse opal has a slightly higher fill factor than that of the two 
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heterjunction systems. It is suggested that this is due to less internal transport 

resistance126 in the single system compared to higher charge resistivity in TiO2-

ZnO systems, due to the formation of the heterojunction. However this slight 

improvement in the fill factor is not enough to make the single system superior 

in terms of overall efficiency and is indeed significantly outweighed by the 

increase in  JSC and VOC in the heterojunction system of bilayered TiO2-ZnO 

with the ZnO layer on top of the TiO2 layer.  

Some researchers have suggested2, 149 that leaving ZnO nanostructures 

in the dye environment for too long might reduce the efficiency of the cell. They 

reported that the protons released from the dye molecules could dissolve the 

ZnO and destroy the ZnO nanostructure. The formation of dye-Zn2+ 

agglomerates would also deactivate the dye molecules and result in poor light 

harvesting. However, this problem could not be detected in this work as the 

highest photovoltaic results were obtained for the bilayered TiO2-ZnO inverse 

opals with the ZnO layer being on top. This may be due to the use of relatively 

low concentration of dye (0.3 mM) compared to the literature experiment (0.5 

mM)241 and additionally not leaving the electrode in the dye solution for more 

than 24 hours. 

 

7.4.3.4 DSSC Performance of K2Ti4O9 Nanobelts Coupled with 

Monolayer ZnO Inverse Opal 

K2Ti4O9 nanobelts were coupled with a monolayer ZnO inverse opal and used 

as a photoanode in a DSSC to see the effects of the underlying inverse opal on 

the performance of the cell. A pristine sample of K2Ti4O9 nanobelts was also 
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used as a reference without the presence of the underlying monolayer inverse 

opal.  

 

 

Figure. 7.8 (a) I-V characteristics and (b) photoefficiencies of the DSSCs 

assembled with monolayer ZnO inverse opal-K2Ti4O9 nanobelts composite 

(blue) and K2Ti4O9 nanobelts only (red) as photoanodes. 

Figure 7.8 shows the I-V characteristics (Figure 7.8(a)) and 

photoconversion efficiency (Figure 7.8(b)) curves for the as-assembled cells  
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with monolayer ZnO inverse opal-K2Ti4O9 nanobelt composite (blue curves) and 

K2Ti4O9 nanobelts only (red curves) acting as photoanodes under 100 mW cm-2 

irradiation. The corresponding photovoltaic parameters of the two cells are 

summarised in Table 7.2.  

𝐏𝐡𝐨𝐭𝐨𝐚𝐧𝐨𝐝𝐞𝐬 𝐉𝐒𝐂/𝐦𝐀𝐜𝐦−𝟐 𝐕𝐎𝐂/𝐕 % 𝐅𝐅 

Monolayer ZnO inverse opal-K2Ti4O9 nanobelt 2.31 0.845 1.19 0.611 

K2Ti4O9 nanobelts only 2.02 0.777 1.04 0.660 

 

Table. 7.2 Photovoltaic Parameters of the DSSCs assembled with monolayer 

ZnO inverse opal-K2Ti4O9 nanobelts composite and K2Ti4O9 nanobelts only as 

photoanodes. 

From Table 7.2, it is clear the main parameters, JSC, VOC and photo- 

conversion efficiency (ɳ%), are improved when the K2Ti4O9 nanobelt structure is 

coupled with a thin underlying monolayer ZnO inverse opal in comparison to, 

when there is no underlying monolayer inverse opal. These results may suggest 

the role of the underlying inverse opal layer in enhancing light harvesting. From 

the XRD patterns in Figure 7.4, no new peaks nor any change in the 

characteristics of the K2Ti4O9 nanobelts can be detected. This may lead to the 

conclusion that there are no any new structures formed at the interface between 

the two layers. Mallouk and his colleagues102, 103 demonstrated the importance 

of coupling an inverse opal layer of TiO2 as a photonic crystal layer to a non-

structured layer of TiO2 thin film in a DSSC. Their efficiency was enhanced by 

using the inverse opal as a top layer on a TiO2 based DSSC and irradiating 

from the anode side (the back side). They proposed that the TiO2 inverse opal 
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layer acted as photonic crystal mirror in this bilayer architecture created 

localised states in the non-structured surface layer of TiO2 thin film and led to 

enhanced efficiency. ZnO inverse opal may act as a reflective mirror. The 

creation of partially localised resonant modes in the K2Ti4O9 top layer via the 

underlying inverse opal may also be another photonic enhancement effect 

arising in this bilayer architecture as suggested previously12. The underlying 

ordered structure of monolayer ZnO inverse opal may therefore act as a 

photonic crystal material in the inverse opal-K2Ti4O9 nanobelts composite for 

better light harvesting over a broad wavelength.   

In addition to the photonic properties, the ZnO inverse opal, also has a 

high surface area with interconnected macroporous skeleton, which may be 

beneficial with respect to higher dye sensitizer loading and faster electron 

transport. The highly porous structure may also behave as a “highway” for 

better electrolyte diffusion in this inverse opal-K2Ti4O9 nanobelt composite  

system. The shorter diffusion distance between the photoanode/electrolyte may 

reduce charge recombination at this interface. 

The higher fill factor in the single system of K2Ti4O9 nanobelts can be 

assigned to its lesser internal transport resistance in comparison to the 

monolayer ZnO inverse opal-K2Ti4O9 nanobelts composite. However, as can be 

seen from Table 7.2, JSC and VOC are the dominant factors in determining  

efficiency enhancement.   
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7.5 Conclusion 

In this work, the importance of the cation in the electrolyte media was 

investigated. It was demonstrated that LiI with a concentration of 0.1M is the 

best candidate in P25 based DSSC devices. Coupling of TiO2 and ZnO inverse 

opals (with ZnO the top layer) shows the highest photoefficiency. This is largely 

due to the formation of a heterojunction with the ZnO layer acting as an energy 

barrier and also providing a dipole layer across the TiO2 surface. The photonic 

properties of both layers can also contribute to efficiency enhancement. The 

ZnO inverse opal acting as a photonic crystal material increases the efficiency 

of a K2Ti4O9 nanobelt based cell possibly by enhancing light localisation and 

scattering due to the photonic crystal mirror effect and by the creation of 

resonant modes in this bilayer architecture12. The enhanced internal surface 

area arising from the highly interconnected porous inverse opal can also 

contribute to enhancing light harvesting due to a shorter diffusion length and 

better dye adsorption.  

By engineering a suitable multilayer heterojunction of layer-by-layer 

inverse opal nanostructure with alternative p-n layers, the efficiencies of DSSCs 

may be improved much further. A challenge in the future will be establishing 

suitable semiconductors, which can align their band edges together forming 

junctions. The order of deposition in the layer-by-layer formation of such 

systems should not be ignored, as its importance was demonstrated in this work 

for bilayered structures consisting of TiO2 and ZnO inverse opals.    
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7.6 Thesis Key Findings, Challenges and Future Work 

The work conducted herein has demonstrated the synthesis of monodisperesed 

colloidal PMMA spheres by using both single step and seeded SFEP methods. 

The Stokes’ law measurements was used to quantify the diameter of the 

colloidal spheres which was compared with SEM measurements. At the time of 

carrying out the SFEP experiments, dynamic light scattering (DLS) was 

unavailable to determine the size distribution profile. As size distribution and 

monodispersity of colloidal spheres in templating processes are of utmost 

importance, the use of DLS is highly recommended in future similar 

experiments.  

 By using bottom-up colloidal crystal self-assembly techniques including 

vertical deposition and a modified floating approach, ordered close packed 

PMMA colloidal crystals have been successfully fabricated in this work. The 

modified floating approach can be considered as a powerful and facile 

technique to produce monolayer and multilayer colloidal crystals with the 

possibility of controlling the thickness (the number of colloidal crystal layers). 

This technique with its multiple deposition abilities can be used in colloidal 

crystal templating to produce various inverse opal systems with controlled 

chemical composition. At the time of carrying out these experiments, X-ray 

scattering techniques, in particular, ultrasmall-angel synchrotron X-ray 

scattering (USAXS) was unavailable for the analysis of PMMA colloidal crystals 

formed. This characterisation technique can be beneficial to be used alongside 

SEM and TEM in future colloidal crystal self-assembly experiments, in order to 
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evaluate the quality of the colloidal crystals in terms of ordering, pore size 

determination and identifying defects.  

The use of template directed synthesis via sol-gel coating and infiltration 

to produce various metal oxide hollow spheres and inverse opals has been 

successfully demonstrated in this work. Simple sol-gel chemistry of different 

metal salts in the presence of water can be easily used in templating 

approaches to produce such porous nanostructures with enhanced opto-

electronic properties. The successful synthesis of sphere-in-sphere hollow 

spheres in this work may be beneficial in the future photovoltaic experiments. 

For the first time, bilayered 3D metal oxide inverse opal structure with different 

chemical composition in each layer namely TiO2 and ZnO has been produced 

using the combination of floating technique with horizontal colloidal crystal 

templating approach in this work. So far, the production of hollow spheres and 

inverse opal systems contained one of TiO2, ZnO, SiO2, Fe2O3 and CuO metal 

oxides. The facile templating routes explained in this thesis may be extended to 

other metal oxide systems or even titanates such as BaTiO3 and SrTiO3 with 

their desirable band gap energies, with applications in PEC water splitting 

experiments260. For example, titanium butoxide may be combined with barium 

acetate or strontium acetate in a presence of water to produce the sol-gel 

precursors necessary for coating or infiltrating the PMMA templates. The metal 

oxide or titanante precursors obtained, can then be used in one of the two new 

templating techniques developed in this work to produce sphere-in-sphere 

hollow spheres or bilayered and multilayered inverse opals with controlled 

chemical composition.  
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For the first time, a novel nanoarchitectured electrode design through the 

formation of CdSe/ZnS quantum dot sensitised ZnO nanorods on monolayer 

ZnO and bilayered TiO2/ZnO inverse opals for PEC hydrogen production have 

been demonstrated in this thesis. A promising photoconversion efficiency of 

2.35% for the ultimate QD sensitised ZnO nanorods on a bilayered system of 

TiO2/ZnO inverse opal with a zinc titanante interface at 0.23 V versus Ag/AgCl 

(1.23 V vs RHE) bias under simulated solar-light illumination has been 

achieved. In this hierarchical heterostructured system, the synergistic effects 

originating from each individual layer have contributed to the opto-electronic 

enhancement for better energy conversion. The photoefficiency obtained in this 

work is compatible with other TiO2 or ZnO based photoanodes sensitised with 

various quantum dots under similar conditions (~1.83 and 2.62% 

photoefficiencies as reported in the literature)188, 223. To the best of the author’s 

knowledge, the highest solar-to-hydrogen efficiency (under unbiased) conditions 

has been reported at 4.9% in a bismuth vanadate-silicon tandem 

photoelectrode143. In this system, cobalt phosphate on tungsten-doped bismuth 

vanadate with improved carrier-separation combined with a Si solar cell in a 

tandem configuration. The photoefficiency of the state of the art photoanode 

used in this work may also be improved by combining the photoanode to a Si , 

dye (DSSC) or even QD sensitised solar cell (QDSSC) forming a tandem 

configuration. By proper band gap engineering in this system, it may be 

possible to absorb more of the sun light energy and also produce a solar water-

splitting device to determine the overall solar to hydrogen conversion efficiency 

(STH)131 without the need of external applied bias. This approach may offer new 

pathways towards low cost and efficient devices for solar hydrogen generation. 
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By examining other quantum dots as narrow band gap sensitisers such as 

CdTe or CdS, the efficiency of the system may further be improved. For 

example, CdTe quantum dots have shown better photocatalytic enhancements 

when combined with ZnO nanocrystals due to a better contact between the two 

nanocrystals forming a more effective nanojunction for charge movement261. 

CdTe has also a more favourable conduction band energy (ECB = -1.0 V vs. 

NHE) for faster injection of electrons into ZnO than CdSe (ECB = -0.6 V vs. 

NHE)223.  

In this work, the importance of an under-layer metal oxide inverse opal 

namely monolayer ZnO inverse opal when combined with another 

semiconducting nanomaterial (here K2Ti4O9 nanobelts) for increasing the 

efficiency of a DSCC has been demonstrated. The macroporous interconnected 

structure with its high surface area and photonic crystal properties may have 

contributed to efficiency enhancement. A photoconversion efficiency of 1.19% 

under the simulated AM 1.5G, one sun illumination was achieved which was 

higher than the single system of titanante photoanode (1.04%). The optimised 

bilayered TiO2-ZnO inverse opal (with ZnO as the top layer) had a 

photoefficiency of 0.43%. The aim of this part of the project was to design the 

construction of such multilayer structures, to compare different bilayered inverse 

opals, to investigate the photonic properties and to see the effect of order of 

deposition in efficiency enhancement. The photoefficiencies reported in 

literature for a monolayer and multilayered TiO2 inverse opal based DSSCs 

were 1.1 and 1.27% respectively106, which is comparable to our data. For ZnO 

treated TiO2 inverse opal242 much higher photoconversion efficiency was 

achieved at 5.3%. Our results may be enhanced further by optimising the DSSC 
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device mainly by minimising the overpotentials associated with the two 

electrode set up and possibly by optimising the electrolyte with more systematic 

examination. The thickness of the films should also not be ignored, as in this 

work the bilayered systems might have been too thin which could have induced 

more recombination centres between the FTO glass and the electrolyte, and 

also reduced the light absorption.  

By using the novel colloidal crystal templating approach developed here, 

other bilayered or even multilayered inverse opal based photoanodes with 

different chemical compositions may be synthesised for better light harvesting in 

DSSC devices. The state of the art QD sensitised bilayered photoanodes used 

in PEC water splitting in this work may also be used directly as photoanodes in 

QDSSCs. These hierarchical structures can then be tested and compared with 

the dye sensitised versions in terms of photoefficiency enhancement. In the 

literature, the use of QDs as sensitisers in QDSSCs are few compared to the 

use of dyes in DSSCs. The use of QDs as sensitisers may open new 

possibilities owing to their large absorption coefficient, quantum size 

confinement effect (tunability of their absorption spectrum) and possibility of 

multiexciton generation237, 262. The challenge in producing high performance 

QDSSCs lie in the materials and interfaces in the cell set up, including; the 

choice of QDs (for better visible light absorption), the inherent triple junction of 

nanostructure semiconductor/QDs/electrolyte at the photoanode (for better 

energy band alignment and reducing charge recombination), the choice of 

redox electrolyte (increasing the VOC of the system) and counter electrode (to 

be able to catalyse the regeneration of the oxidised charge carrier ions, and 

hence increase the photocurrent and reduces recombination losses)262.  
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By using the novel synthetic approach in this work, the development of 

layer-by-layer p-n junction inverse opals of different metal oxides may also be 

realised to be used in PEC water splitting and DSSC (or QDSSC) devices. 

Further doping of the inverse opals with electron donors (n-doping) or acceptors 

(p-doping) may further enhance the efficiency of such systems by improving the 

charge transfer processes by altering the band gap energies of the 

semiconductors understudy. As it has been demonstrated here, the order of 

deposition in the construction of layer-by-layer metal oxide inverse opals should 

also be taken care with great deal. An optimised morphology (including high 

integrity of porosity and interconnectivity of each individual inverse opal layer) 

and intrinsic chemistry of the metal oxides at interfaces (including the 

favourable positioning of band gap edges and the formation of effective 

junctions) depend on the order in which the inverse opal layers stack up on 

each other, starting from the underlying substrate. An optimised layer-by-layer 

inverse opal photoanode will improve the charge transport and separation 

properties of a PEC or DSSC device and lead to better energy conversion.  

    At the end, it is also important to mention that the resistance of the 

photoanode materials to corrosion in the aqueous environment of the electrolyte 

in both the PEC water splitting and DSSC experiments has to be taken into 

account seriously which will affect the overall lifetime of the system, if any of the 

state of the art photoanodes developed here (or any other novel nanomaterials 

developed) are going to be commercialised in the future.       
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