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SUMMARY	

Small	ubiquitin	 like	modifier	 (SUMO)	 is	post‐translationally	 attached	 to	 target	

proteins,	 forming	 a	 covalent	 bond	 between	 its	 C‐terminal	 glycine	 and	 one	 or	

more	 lysine	 residues	 on	 the	 target	 protein.	 SUMO	 modification	 of	 target	

proteins	can	affect	protein‐protein	interactions,	protein	activity,	localisation	and	

stability.	This	study	set	out	to	develop	an	efficient	in	vitro	SUMOylation	system	

to	 enable	 the	 identification	 of	 target	 lysine	 residues	 in	 S.	pombe	 proteins	 by	

mass	spectrometry.	This	involved	incorporating	a	trypsin	cleavage	site	adjacent	

to	 the	 SUMO	 di‐glycine	 motif	 to	 improve	 peptide	 coverage	 during	 mass	

spectrometry.	 Several	 SUMOylated	 target	 proteins	 were	 identified	 here,	

including	the	E2	SUMO	conjugating	enzyme	Hus5,	the	E3	SUMO	ligase	Nse2	and	

PCNA.	

The	 second	 part	 of	 this	 study	 focused	 on	 the	 characterisation	 of	

unSUMOylatable	E3	SUMO	ligase	nse2	mutants.	Integration	of	lysine	to	arginine	

mutations	 into	 the	 genome	 did	 not	 result	 in	 any	 mutant	 phenotypes	 and	 a	

function	 for	 auto‐SUMOylation	 of	 Nse2	 was	 not	 identified.	 During	 this	 study,	

human	 patients	 with	 mutations	 in	 the	 nse2	 gene	 were	 reported	 and	 the	

equivalent	mutations	were	integrated	into	the	S.	pombe	nse2	gene	to	investigate	

the	effect	of	the	mutations.	

The	final	part	of	this	work	involved	the	analysis	of	the	SUMOylation	of	S.	pombe	

PCNA.	 Using	 the	 in	 vitro	 system,	 four	 target	 lysine	 residues	 for	 SUMO	 were	

identified.	SUMOylation	of	PCNA	was	also	observed	in	vivo	following	pull‐down	

studies	and	2D	gel	analysis	of	wild	type	and	unSUMOylatable	mutants.	Extensive	

epistasis	analysis	was	undertaken	using	these	mutants	to	investigate	the	role	of	

SUMOylation	of	S.	pombe	PCNA.		 	



	 	

Aims	

The	aim	of	the	work	in	this	thesis	was	primarily	to	develop	an	efficient	in	vitro	

system	to	identify	modified	lysine	residues	on	SUMO	target	proteins	using	mass	

spectrometry.	The	subsequent	aims	were	firstly,	to	identify	the	modified	lysine	

residues	 in	 the	 Smc5/6‐associated	 SUMO	 ligase	Nse2	 and	 the	 trimeric	 sliding	

clamp	PCNA	and	secondly,	to	analyse	the	role	of	SUMOylation	in	each	case.	

	 	



	 	

ABBREVIATIONS	

A Alanine 
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E. coli Escherichia coli 

ECL Enhanced chemi-luminescence 
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PMSF Phenylmethylsulphonyl fluoride 

Pol Polymerase 

PRR Post Replicative Repair 

R Arginine 

RPM Revolutions per minute 

S. cerevisiae Saccharomyces cerevisiae 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
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TBE Tris borate 

TCA Trichloroacetic acid 

TE Tris aminomethane 
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YE Yeast extract 

YEA Yeast extract plus agar 
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1 Introduction	

The	 maintenance	 of	 genome	 stability	 by	 successful	 replication	 of	 DNA	 and	

repair	 of	 damage	 is	 necessary	 for	 the	 life	 of	 all	 organisms.	 DNA	 damage	 can	

accumulate	 from	 both	 endogenous	 and	 exogenous	 sources,	 and	 can	 result	 in	

DNA	modifications,	replication	fork	stalling	and	DNA	strand	breaks.	Successful	

repair	 of	 this	 damage	 by	 highly	 regulated	DNA	damage	 response	 pathways	 is	

critical	 to	maintain	 cell	 viability.	Errors	 in	 replication	and	 repair	 can	 result	 in	

insertions,	 deletions	 and	 mis‐paired	 nucleotide	 bases.	 If	 these	 errors	 are	 not	

repaired	 efficiently,	 the	 permanent	 integration	 of	 mutations	 into	 the	 genome	

can	result	in	genomic	instability,	unregulated	cell	growth	or	cell	death.	

1.1 S.	pombe	as	a	model	organism	

The	fission	yeast	S.	pombe	is	widely	used	as	a	model	organism	for	studying	the	

cell	 cycle,	 DNA	 replication	 and	 repair.	 It	 is	 a	 unicellular	 eukaryote	 and	

proliferates	 with	 a	 doubling	 time	 of	 approximately	 2.5	 hours.	 Cells	 are	

uniformly	rod	shaped,	growth	extends	from	the	tips	and	cells	divide	by	medial	

fission.	S.	pombe	has	three	chromosomes	and	exists	as	a	haploid.	The	sequence	

of	 the	 S.	pombe	 genome	was	 published	 in	 2002	 (Wood	 et	 al.	 2002),	 and	 this	

facilitates	 genetic	 manipulation	 to	 allow	 processes	 such	 as	 the	 creation	 of	

strains	with	 gene	 deletions,	 or	 integration	 of	mutant	 alleles.	 Biochemical	 and	

genetic	 techniques	 can	 be	 readily	 undertaken	 to	 investigate	 the	 effects	 of	

mutations	or	gene	deletions	at	the	molecular	level,	as	well	on	the	organism	as	a	

whole.	 The	 conservation	 of	 cell	 cycle	 control	 as	 well	 as	 DNA	 replication	 and	

repair	 pathways	 between	 yeast	 and	 mammals	 make	 S.	 pombe	 a	 favourable	

model	 organism	 for	 biochemical	 and	 genetic	 analysis.	 The	 organism	has	 been	

used	 in	 landmark	 studies	 that	 have	 important	 implications	 for	 understanding	

processes	 in	higher	eukaryotes.	For	example,	 the	 identification	of	cdc	genes	 in	

the	 Nurse	 lab	 and	 the	 observation	 of	 their	 functional	 conservation	 between	

yeast	 and	 humans	 (Nurse	 et	 al,	 1976).	 The	Nobel	 prize	winning	work	 of	 Paul	

Nurse,	Lee	Hartwell	and	Tim	Hunt	using	S.	pombe,	S.	cerevisiae	and	sea	urchins	

respectively,	 demonstrates	 the	 importance	 of	model	 organisms	 in	 discovering	

the	basis	of	fundamental	systems	such	as	cell	cycle	control.	More	recently,	DNA	
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damage	 response	 genes	 have	 also	 been	 described	 to	 be	 modified	 by	 SUMO.	

(Albuquerque	et	al,	2013;	Cremona	et	al,	2012;	Dou	et	al,	2010)	S.	pombe	is	used	

in	this	study	to	investigate	the	role	of	SUMOylation	in	DNA	damage	repair.		

1.2 Ubiquitin	

Ubiquitin	is	a	post‐translational	modifier	protein	which	is	very	highly	conserved	

from	yeast	 to	 humans.	 It	 is	 a	 small,	 stable	 protein	 of	 approximately	 10kDa	 in	

size.	 Structurally,	 ubiquitin	 forms	 a	 ββαββαβ	 fold,	 and	 has	 a	 flexible,	

unstructured	C‐terminal	 tail	 (Vijay‐Kumar	 et	 al,	 1987).	 It	 is	 attached	 to	 target	

proteins	via	an	isopeptide	bond	which	is	formed	between	its	C‐terminal	glycine	

residue	 and	 a	 lysine	 residue	 on	 the	 target	 protein.	 Ubiquitination	 occurs	

following	 a	 three	 step	 ATP‐dependent	 conjugation	 pathway	 which	 requires	

specific	E1	ubiquitin	activating	enzymes,	E2	ubiquitin	conjugating	enzymes	and	

E3	ligases.	Whilst	only	two	E1	ubiquitin	activating	enzymes	have	been	identified	

in	 mammals,	 over	 50	 E2	 ubiquitin	 conjugating	 enzymes	 and	 hundreds	 of	 E3	

ubiquitin	 ligases	 have	 been	 identified,	 and	 these	 provide	 substrate	 specificity	

(Komander	&	Rape,	2012).	

1.2.1 The	ubiquitin	conjugation	pathway		

Before	 entering	 the	 conjugation	 pathway,	 precursor	 ubiquitin	 needs	 to	 be	

cleaved	at	 the	C‐terminus	by	specific	de‐ubiquitinating	enzymes	(DUBs)	called	

ubiquitin	C‐terminal	hydrolases	(UCHs)	(Larsen	et	al,	1998).	This	exposes	two	

glycine	 residues,	 of	 which	 the	 C‐terminal	 glycine	 is	 covalently	 attached	 to	

substrate	 proteins.	 In	 an	 ATP‐dependent	 reaction,	 the	 E1	 activating	 enzyme	

adenylates	 the	 C‐terminus	 of	 ubiquitin,	 before	 a	 thioester	 bond	 is	 formed	

between	 the	C‐terminal	 carboxyl	 group	of	 ubiquitin	 and	 the	 catalytic	 cysteine	

residue	 of	 the	 E1	 activating	 enzyme.	 Ubiquitin	 is	 then	 passed	 to	 the	 E2	

conjugating	enzyme,	where	again	 it	 forms	a	 thioester	bond	between	ubiquitin	

and	 the	 catalytic	 cysteine	 residue	 (Haas	&	Rose,	 1982).	Ubiquitin	 can	 then	be	

transferred	directly	 to	 a	 target	protein	where	an	 isopeptide	 linkage	 is	 formed	

between	 the	 C‐terminal	 glycine	 residue	 and	 the	 ε‐amine	 group	 of	 a	 lysine	

residue	on	the	target	protein.	E3	ubiquitin	ligases	are	recruited	to	facilitate	the	

transfer	 of	 ubiquitin	 to	 the	 target	 protein.	 Ubiquitination	 is	 a	 reversible	
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modification	and	ubiquitin	can	be	removed	by	one	of	a	number	of	DUBs,	some	of	

which	are	linkage	specific	(Komander	&	Rape,	2012).	

1.2.2 Ubiquitin	chains	

Ubiquitin	can	be	attached	to	target	proteins	in	the	form	of	monomers	or	poly‐

ubiquitin	chains.	Different	 types	of	chains	can	be	 formed,	depending	on	which	

lysine	 residue	within	ubiquitin	 is	used.	The	most	 commonly	 studied	ubiquitin	

chains	 contain	 K48‐linked	 chains.	 These	 target	 the	 modified	 protein	 for	

degradation	mediated	by	the	26S	proteasome	(Chau	et	al,	1989;	Thrower	et	al,	

2000),	 as	 do	 K11‐linked	 ubiquitin	 chains,	 which	 have	 a	 specific	 confirmation	

and	are	particularly	prevalent	during	mitosis	(Jin	et	al,	2008;	Matsumoto	et	al,	

2010a;	Matsumoto	et	al,	2010b).	K6‐	K27‐	K29‐	and	K33‐linked	ubiquitin	chains	

have	been	detected	 in	vivo	(Meierhofer	et	al,	2008;	Peng	et	al,	2003),	however	

due	to	a	lack	of	identification	of	specific	E2	or	target	proteins	for	these	linkages,	

their	roles	have	yet	 to	be	determined	(Komander	&	Rape,	2012).	The	primary	

role	 of	 ubiquitin	 chains	 formed	 using	 K63	 is	 not	 to	 target	 proteins	 for	

degradation,	 but	 to	 alter	 protein‐protein	 interactions	 (Deshaies	 &	 Joazeiro,	

2009;	 Komander	 &	 Rape,	 2012).	 Mixed	 ubiquitin	 chains	 have	 also	 been	

observed,	 which	 result	 in	 proteasomal	 degradation	 of	 the	 target	 protein	

(Kirkpatrick	et	al,	2006).	Branched	ubiquitin	chain	structures	are	formed	when	

two	different	lysine	residues	are	used	to	extend	a	chain	from	the	same	molecule,	

however	 the	 function	 of	 these	 structures	 has	 yet	 to	 be	 described.	 Ubiquitin	

chains	are	recognised	by	proteins	containing	ubiquitin‐binding	domains	(UBD),	

which	 can	 include	 multiple	 ubiquitin	 interacting	 motifs	 (UIMs)	 (Komander,	

2009).	 UIM‐containing	 proteins	 are	 able	 to	 distinguish	 between	 K48‐linked	

chains,	which	have	a	closed	conformation	(Eddins	et	al,	2007;	Tenno	et	al,	2004;	

Varadan	et	al,	2002)	and	K63‐linked	ubiquitin	chains,	which	have	an	open	and	

flexible	 conformation	 (Datta	 et	 al,	 2009;	 Komander	 et	 al,	 2009;	 Weeks	 et	 al,	

2009).	

1.2.3 Ubiquitin	targets		

As	 well	 as	 targeting	 proteins	 for	 degradation,	 ubiquitination	 can	 serve	 as	 a	

regulator	of	protein	activity	and	is	involved	in	co‐ordinating	several	important	
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DNA	repair	processes.	One	of	the	ways	by	which	ubiquitin	can	regulate	protein	

activity	 is	 by	 targeting	 inhibitor	 proteins	 for	 degradation.	 A	well‐documented	

example	of	this	 is	the	regulation	of	the	mammalian	transcription	factor	NF‐κB,	

which	is	required	for	the	inflammatory	response	(Hayden	&	Ghosh,	2008).	NF‐

κB	is	bound	by	its	inhibitor	IκBα	(inhibitor	of	NF‐κB)	under	normal	conditions.	

Poly‐ubiquitination	 of	 IκBα	 with	 K48‐linked	 ubiquitin	 chains	 targets	 it	 for	

proteasomal	 degradation.	 This	 releases	 NF‐κB,	 allowing	 transcription	 of	 its	

target	genes	(Iwai,	2014).	

Ubiquitination	 can	 affect	 the	 cellular	 localisation	 of	 its	 target	 proteins.	 For	

example	mono‐ubiquitination	of	 the	 transcription	 factor	p53	signals	 its	export	

from	the	nucleus,	and	this	can	be	reversed	by	de‐ubiquitinating	enzyme	USP10	

in	human	cells	(Yuan	et	al,	2010).	p53	is	also	poly‐ubiquitinated,	which	targets	it	

for	degradation.	p53	modification	ensures	that	it	is	maintained	at	low	levels	in	

unchallenged	 cells.	 Detection	 of	 DNA	 damage	 results	 in	 the	 inhibition	 of	 the	

ubiquitin	 E3	 ligase	 responsible	 for	 p53	 ubiquitination.	 This	 prevents	

degradation	 of	 p53,	which	 can	 then	 promote	 the	 transcription	 of	 DNA	 repair	

genes,	 as	well	 as	genes	 required	 for	 checkpoint	arrest	or	apoptosis	 (Brooks	&	

Gu,	 2011;	 Hock	 et	 al,	 2011).	 Ubiquitination	 can	 also	 regulate	 protein‐protein	

interactions.	This	 is	demonstrated	by	 its	 important	role	 in	PCNA	modification,	

which	defines	which	pathway	is	taken	during	Post	Replicative	Repair	(PRR)	(see	

section	1.8.2).	

1.3 SUMO	

The	Small	ubiquitin	like	modifier	SUMO	is	covalently	attached	to	target	proteins	

following	a	 conjugation	pathway	similar	 to	 that	of	 the	ubiquitination	pathway	

(described	 in	 section	 1.3.1).	 The	 structure	 of	 SUMO	 closely	 resembles	 that	 of	

ubiquitin,	 despite	 the	 low	 sequence	 homology	 between	 the	 proteins	 (~18%),		

except	for	an	extended	and	unstructured	N‐terminus	which	is	unique	to	SUMO	

(Bayer,	 1998).	 SUMO	 is	 highly	 conserved	 and	 is	 expressed	 in	 all	 eukaryotes	

studied.	 It	 was	 initially	 identified	 in	 S.	 cerevisiae	 (Meluh	 &	 Koshland,	 1995)	

where	 it	 is	 encoded	 by	 the	 SMT3	 gene.	 In	 S.	 pombe,	 as	 in	 budding	 yeast,	

Drosophila	and	C.	elegans,	SUMO	is	encoded	by	a	single	gene.	In	S.	pombe,	SUMO	

is	encoded	by	the	pmt3	gene	(Tanaka	et	al,	1999).	Higher	eukaryotes	including	
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humans	and	plants	contain	several	SUMO	genes.	(Kurepa	et	al,	2003;	Lois	et	al,	

2003).	Four	SUMO	proteins,	SUMO‐1	to	4	have	been	described	in	humans	(Guo,	

2004;	 Melchior,	 2000).	 SUMO‐2	 and	 SUMO‐3	 share	 significant	 sequence	

homology	(~95%)	and	are	referred	to	as	SUMO‐2/3	as	it	is	difficult	to	separate	

their	 function	(Saitoh	&	Hinchey,	2000;	Su	&	Li,	2002;	Vertegaal	et	al,	2006a).	

SUMO‐4	 is	 not	 ubiquitously	 expressed	 and	 mutant	 isoforms	 have	 been	

implicated	 in	 type	 1	 diabetes	 (Guo,	 2004),	 however	 its	 role	 remains	 largely	

elusive.	

Disruption	or	deletion	of	SUMO	 in	organisms	which	carry	a	single	SUMO	gene	

results	in	lethality.	The	exception	to	this	is	the	pmt3‐d	null	mutant	in	S.	pombe,	

which	 is	 extremely	 sick	 and	 displays	 significant	 sensitivity	 to	 several	 stresses	

and	 toxins	 (Tanaka	 et	 al,	 1999).	 SUMO	 pathway	 mutants	 cause	 defects	 in	

chromosome	structure	and	segregation	in	several	organisms,	including	S.	pombe	

(al‐Khodairy	et	al,	1995;	Tanaka	et	al,	1999;	Xhemalce	et	al,	2004a),	S.	cerevisiae	

(Strunnikov	et	al,	2001)	and	Drosophila	(Hari	et	al,	2001).	Disruption	or	deletion	

of	 SUMO	 in	higher	eukaryotes	 results	 in	developmental	defects	 including	 cleft	

lip	and	pallet	formation.	This	has	been	observed	for	a	haplo‐insufficient	patient,	

as	well	as	heterozygous	mice	(Alkuraya	et	al,	2006).	Embryonic	lethality	of	mice	

is	 observed	 in	 response	 to	 disruption	 of	 the	 SUMOylation	 pathway,	with	 cells	

displaying	 aberrant	 nuclear	 envelope	 structures	 and	 defects	 in	 chromosome	

condensation	(Nacerddine,	2005).		

1.3.1 The	SUMO	conjugation	pathway	

As	 is	 the	case	with	ubiquitin,	SUMO	 is	produced	as	a	precursor	protein	which	

requires	proteolytic	processing	 into	 a	mature	 form.	Unlike	ubiquitin	however,	

there	is	only	one	E1	SUMO	activating	enzyme,	one	E2	SUMO	conjugating	enzyme	

and	 two	 E3	 SUMO	 ligases	 currently	 identified	 in	 S.	pombe	 (See	 Figure	 1.1	 B).	

SUMO	is	activated	by	the	formation	of	a	thioester	bond	between	its	C‐terminal	

glycine	 residue	 and	 a	 subunit	 of	 the	 E1	 SUMO	 activating	 enzyme	 which	 is	 a	

heterodimer	comprising	Rad31	and	Fub2.	It	is	then	transferred	to	the	E2	SUMO	

conjugating	 enzyme	 Ubc9/Hus5,	 which	 can	 facilitate	 attachment	 to	 target	

proteins	in	the	presence	or	absence	of	a	SUMO	E3	ligase.	Several	SUMO	moieties	

can	be	conjugated	to	a	target	protein	to	form	SUMO	chains,	the	role	of	which	is	
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discussed	 in	 section	 1.3.2.	 A	 cartoon	 representation	 of	 the	 SUMO	 conjugation	

pathway	can	be	seen	in	Figure	1.1	(A).	

1.3.1.1 SUMO	proteases	

S.	pombe	and	S.	cerevisiae	contain	two	SUMO	proteases,	Ulp1	and	Ulp2,	both	of	

which	 are	 able	 to	 remove	 SUMO	 from	 target	 proteins.	Ulp1	 is	 localised	 at	 the	

nuclear	pore	complex	(NPC)	and	is	primarily	responsible	 for	the	processing	of	

mature	SUMO,	as	demonstrated	by	an	accumulation	of	unconjugated	SUMO	 in	

ulp1	null	S.	pombe	cells	(Li,	1999;	Taylor	et	al,	2002).	Ulp2	is	localised	within	the	

nucleus	and	is	thought	to	have	a	major	role	in	the	de‐conjugation	of	SUMO	and	

SUMO	 chains	 from	 nuclear	 proteins.	 This	 is	 supported	 by	 an	 accumulation	 of	

SUMO	 chains	 in	 the	 S.	 cerevisiae	 ulp2‐d	 mutant	 (Bylebyl	 et	 al,	 2003).	 SUMO	

processing	 and	 de‐conjugation	 is	 carried	 out	 by	 sentrin‐specific	 proteases	

(SENPs)	 in	 humans.	 Six	 SENPs	 have	 so	 far	 been	 characterised	 in	 humans,	 of	

which	 SENP1,	 2,	 3	 and	 5	 have	 C‐terminal	 domains	which	 are	 related	 to	Ulp1.	

SENP6	and	7	have	C‐terminal	domains	related	to	Ulp2.	The	N‐terminal	domains	

of	SENPs	determine	their	cellular	localisation	(Hay,	2007).		
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Figure 1.1 The SUMO conjugation pathway. 
(A) i) SUMO is cleaved by proteases to reveal the C-terminal di-glycine motif. ii) 
A thioester bond is formed between the SUMO C-terminus and the E1 activating 
enzyme. iii) SUMO is transferred to the E2 conjugating enzyme which can 
facilitate its attachment to a specific lysine residue on the target protein. iv) In 
some cases an E3 ligase is required. v) SUMO can be attached to target proteins 
as a monomer or in the form polySUMO chains, which are detected by STUbls 
and subsequently targeted for degradation by the proteasome. vi) SUMO 
specific proteases remove SUMO from the target protein. (B) Genes encoding 
SUMO pathway components in S.pombe (S.p) S.cerevisiae (S.c) and humans 
(H.s). 

Species SUMO E1 E2 E3 

S.p pmt3 rad31-fub2 hus5 nse2, pli1 

S.c SMT3 AOS1-UBA2 UBC9 SIZ1, SIZ2, MMS21 
(S.p. nse2), ZIP3 

H.s 

SUMO-1 
SUMO-2 
SUMO-3 
SUMO-4 

AOS1-UBA2 UBC9 

MMS21, PIAS-1-4,  
PC2, RANBP2, 

HDAC4, TOPORS, 
KAP1 

E1 

E2 E3 
Pli1/Nse2 

A 

B 

i 

ii 

iii iv 

v 

vi 
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1.3.1.2 E1	SUMO	activating	enzyme	

The	SUMO	E1	activating	enzyme	exists	as	a	heterodimer	and	was	first	identified	

in	 S.	 cerevisiae	 as	 Aos1/Uba2	 (Johnson	 et	 al,	 1997)	 The	 S.	 pombe	 SUMO	 E1	

heterodimer	 is	 formed	of	Rad31,	which	was	 identified	 in	a	screen	of	radiation	

sensitive	mutants,	and	Fub2	(Ho	et	al,	2001;	Shayeghi	et	al,	1997;	Tanaka	et	al,	

1999).	 The	 N‐terminal	 domain	 of	 Rad31	 and	 the	 C‐terminal	 domain	 of	 Fub2	

together	 resemble	 the	 ubiquitin	 E1	 monomer	 (Johnson	 et	 al,	 1997).	 The	 E1	

activating	enzyme	facilitates	 the	 formation	of	a	 thioester	bond	between	 the	C‐

terminal	SUMO	glycine	residue	and	a	cysteine	 in	 the	Fub2	subunit,	 in	an	ATP‐

dependent	 reaction.	 The	 C‐terminal	 glycine	 residue	 is	 first	 adenylated.	 This	

results	in	a	conformational	change	bringing	the	conserved	catalytic	cysteine	of	

the	 E1	 closer	 to	 SUMO,	 which	 then	 attacks	 the	 adenylated	 intermediate	 and	

releases	 AMP	 forming	 a	 thioester	 bond	 (Schulman	 &	 Wade	 Harper,	 2009).	

Thioester	bond	formation	causes	a	conformational	change	which	results	in	the	

rotation	 of	 the	E1	 catalytic	 cysteine	domain	 away	 from	 the	 thioester	 catalytic	

site,	 reforming	 the	 adenylation	 active	 site	 (Olsen	 et	 al,	 2010).	 The	 E1‐bound	

SUMO	is	next	transferred	to	the	E2	SUMO	conjugator.	

1.3.1.3 E2	SUMO	conjugating	enzyme	

The	 S.	 pombe	 E2	 SUMO	 conjugating	 enzyme	 Ubc9/Hus5	 was	 identified	 in	 a	

screen	aimed	at	identifying	checkpoint	proteins	(al‐Khodairy	et	al,	1995;	Ho	et	

al,	 2001).	 Studies	 into	 the	 S.	 cerevisiae	 and	 human	 homologue	 Ubc9	

demonstrated	that	SUMO	is	transferred	from	the	E1	activating	enzyme	to	form	a	

thioester	 bond	 with	 the	 catalytic	 cysteine	 residue	 of	 the	 E2	 (Desterro,	 1997;	

Johnson	 &	 Blobel,	 1997;	 Schwarz	 et	 al,	 1998).	 This	 transfer	 requires	 an	

interaction	between	the	catalytic	domains	of	the	E1	and	E2	proteins	(Wang	et	al,	

2007).	Ubc9/Hus5	 is	 able	 to	 facilitate	 the	attachment	of	 SUMO	 to	 the	 ε‐amine	

group	 of	 a	 lysine	 residue	 on	 target	 proteins	 without	 the	 aid	 of	 an	 E3	 SUMO	

ligase.	 SUMO	modification	 of	 target	 proteins	 can	 occur	 at	 lysine	 residues	 that	

are	 part	 of	 a	 SUMO	 consensus	 motif.	 This	 consensus	 sequence	 is	 defined	 as	

ΨKxE,	where	Ψ	is	a	large	hydrophobic	amino	acid	e.g.	I,	V	or	L,	and	x	can	be	any	

amino	acid.	This	 sequence	 is	present	 in	 some	but	not	all	 target	proteins	 (Hay,	

2005;	Rodriguez	et	al,	2001).		
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The	 non‐covalent	 interactions	 of	Ubc9/Hus5	 have	 been	 the	 subject	 of	 several	

studies	 in	 recent	 years	 and	 are	 suggested	 to	 be	 involved	 in	 the	 regulation	 of	

SUMOylation.	Non‐covalent	interactions	between	Ubc9	and	a	SUMO‐like	domain	

(SLD)	in	Rad60	have	been	proposed	to	play	a	role	in	promoting	the	modification	

of	proteins	involved	in	DNA	repair,	facilitated	by	the	E3	ligase	Nse2.	Conversely,	

non‐covalent	 interactions	 between	Hus5	 and	 SUMO	are	 suggested	 to	 promote	

global	 SUMOylation,	 facilitated	 by	 the	 E3	 SUMO	 ligase	 Pli1	 (Prudden	 et	 al,	

2011).		

1.3.1.4 	E3	SUMO	ligases	

E3	SUMO	ligases	facilitate	the	transfer	of	SUMO	from	the	E2	conjugating	enzyme	

to	a	specific	 lysine	residue	on	target	protein	which	may	or	may	not	be	part	of	

the	SUMO	consensus	sequence	described	above.	Several	E3	SUMO	ligases	have	

been	identified	and	these	are	classified	into	three	groups,	the	largest	of	which	is	

the	SP‐RING	class	of	SUMO	ligases.	The	SP‐RING	motif	is	similar	to	a	motif	found	

in	some	ubiquitin	E3	 ligases	and	 is	essential	 for	 ligase	 function	(Hochstrasser,	

2001).	SP‐RING	ligases	are	able	to	interact	with	the	E2	conjugating	enzyme,	as	

well	 as	 SUMO,	 via	 SUMO	 interacting	 motifs	 (SIMs).	 SIMs	 consist	 of	 a	

hydrophobic	core	flanked	by	acidic	residues.	The	binding	of	the	acidic	residues	

to	a	basic	area	on	the	surface	of	SUMO	positions	the	ligase	for	efficient	transfer	

of	SUMO	to	target	proteins	(Hannich	et	al,	2005;	Minty	et	al,	2000;	Reverter	&	

Lima,	2005;	Song	et	al,	2004).	

SP‐RING	 proteins	 include	 the	 PIAS	 (protein	 inhibitor	 of	 activated	 STAT)	

subgroup.	 Included	 in	 the	 PIAS	 family	 are	 S.	 cerevisiae	 Siz1	 and	 Siz2	

(Hochstrasser,	 2001)	 as	 well	 as	 five	 mammalian	 proteins,	 PIAS1,	 PIAS3	 and	

three	PIAS	variant	proteins.	PIAS	proteins	are	able	 to	 interact	with	DNA	via	a	

SAR,	Acinus	and	PIAS	(SAP)	motif,	as	well	as	with	SUMO	via	SIMs	(Rytinki	et	al,	

2009).	SP‐RING	proteins	Nse2	and	Pli1	are	the	only	two	SUMO	ligases	identified	

to	 date	 in	 S.	pombe.	 Cells	 deficient	 in	 the	 Pli1	 ligase	 do	 not	 display	 a	 severe	

mutant	 phenotype.	 However,	 deletion	 of	 pli1	 results	 in	 sensitivity	 to	 the	

microtubule	inhibitor	TBZ,	as	well	as	elevated	levels	of	mini‐chromosome	loss,	

suggesting	 a	 role	 in	 kinetochore	 function	 (Xhemalce	 et	 al,	 2004a).	 Synthetic	

lethality	 is	 observed	 in	 pli‐d	 cells	 in	 combination	 with	 homologous	
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recombination	 mutants,	 and	 a	 loss	 of	 Pli1	 also	 affects	 telomere	 length,	

demonstrating	 roles	 for	 Pli1‐dependent	 SUMOylation	 in	 recombination	 and	

genome	 stability	 (Xhemalce	 et	 al,	 2004a).	Nse2	 is	 associated	with	 the	Smc5/6	

complex	and	is	important	for	genome	stability.	This	will	be	discussed	further	in	

section	1.7.1.1		

The	second	class	of	SUMO	ligase	includes	RanBP2,	which	is	part	of	the	nuclear	

pore	complex.	RanBP2	does	not	contain	a	RING	finger‐like	domain	and	interacts	

with	 the	 SUMO	 E2	 conjugating	 enzyme	 Ubc9	 at	 a	 surface	 distinct	 from	 the	

catalytic	 site	 (Tatham	 et	 al,	 2005).	 It	 associates	 with	 the	 SUMO	 E2	 via	 an	

unfolded	catalytic	site,	positioning	SUMO	to	facilitate	its	attachment	to	its	target	

protein,	RanGAP1	(Pichler	et	al,	2002).	

The	third	E3	ligase	classified	is	human	Pc2	(Kagey	et	al,	2003),	which	promotes	

SUMOylation	and	transport	of	CtBP	(C	terminal	binding	protein)	to	the	nucleus	

(Lin	et	al,	2003),	 as	well	 as	 co‐localisation	of	CtBP	 to	PcG	bodies	 (Kagey	et	al,	

2003).	

1.3.1.5 SUMO	chains	

Human	 SUMO‐2	 and	 SUMO‐3	 contain	 the	 ΨKxE	 consensus	 sequence	 in	 the	

extended	 N‐terminus,	 as	 does	 the	 S.	 cerevisiae	 homologue	 SMT3.	 Poly‐SUMO	

chains	 are	 formed	 by	 covalent	 attachment	 of	 SUMO	 to	 lysine	 residues	within	

this	motif.	 SUMO‐1	 shares	 only	 50%	 sequence	 homology	with	 SUMO‐2/3	 and	

lacks	 the	 N‐terminal	 consensus	 sequence	 which	 is	 required	 for	 SUMO	 chain	

formation	(Tatham	et	al,	2001).	Thus,	SUMO‐1	likely	acts	as	a	chain	terminator	

(Matic	 et	 al,	 2008).	Proteomic	 screens	have	 revealed	 that	SUMO‐1	and	SUMO‐

2/3	 conjugate	 to	 both	 separate	 and	 overlapping	 subsets	 of	 target	 proteins,	

indicating	 that	 the	 different	 isoforms	 have	 distinct	 as	 well	 as	 overlapping	

functions	(Vertegaal	et	al,	2006b).	K11‐	and	K15‐	linked	SUMO	chains	have	been	

observed	 in	 humans	 and	 S.	 cerevisiae,	 respectively	 (Bencsath	 et	 al,	 2002;	

Tatham	et	al,	2001).	

	S.	 pombe	 SUMO	 does	 not	 contain	 an	 N‐terminal	 SUMO	 consensus	 motif.	

However	 poly‐SUMO	 chains	 are	 formed	 via	 two	N‐terminal	 lysine	 residues	 at	

positions	14	and	30	(Skilton	et	al,	2009).	SUMO	chain	formation	is	implicated	in	
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several	 processes	 involving	 DNA	 damage	 repair,	 chromatin	 regulation	 and	

replication	stress	(Srikumar	et	al,	2013;	Ulrich,	2008).		

SUMO	targeted	ubiquitin	ligases	(STUbLs)	contain	single	or	multiple	SIMs	which	

recognise	 SUMO	 chains	 and	 target	 poly‐SUMOylated	 proteins	 for	 proteasome‐

mediated	degradation.	Mutation	 of	 STUbLs	 results	 in	 an	 accumulation	 of	 high	

molecular	 weight	 SUMO	 species,	 and	 sensitivity	 to	 DNA	 damage	

(Sriramachandran	&	Dohmen,	 2014).	 Rnf4	 is	 the	 best	 characterised	 STUbL	 in	

human	cells.	It	is	a	RING	finger	protein	and	recognises	SUMO	chains	via	several	

SIMs	(Tatham	et	al,	2008).	In	particular,	Rnf4	recognises	poly‐SUMOylated	PML	

and	ubiquitinates	the	PML	protein	as	well	as	the	poly‐SUMO	chains	attached	to	

it,	 targeting	 PML	 for	 proteasomal	 degradation	 (Tatham	 et	 al,	 2008).	 S.	pombe	

Rfp1	and	Rfp2	share	sequence	homology	with	Rnf4	and	also	contain	RING	finger	

domains.	Both	of	these	proteins	form	a	complex	with	Slx8	and	act	to	label	poly‐

SUMOylated	targets	for	ubiquitin‐mediated	proteasomal	degradation.	Rfp1	was	

shown	 to	 interact	 with	 E3	 SUMO	 ligase	 Pli1	 and	 Rad60	 in	 yeast	 two	 hybrid	

screens	 (Sun	et	al,	 2007).	Recent	 research	has	 suggested	 that	Slx8	 is	 required	

for	the	removal	of	potentially	harmful	Top1	cleavage	complexes	in	the	absence	

of	 Tdp1	 (Heideker	 et	 al,	 2011;	 Steinacher	 et	 al,	 2013).	 STUbL	 complexes	 are	

important	in	maintaining	genome	stability,	as	demonstrated	by	the	presence	of	

Rad52	 foci	 in	 cells	 containing	 Slx8	 temperature	 sensitive	 mutant	 alleles	

(Prudden	et	al,	2007).	

1.3.2 The	role	of	SUMO	modification	

Post‐translational	 modification	 of	 proteins	 by	 SUMO	 (SUMOylation)	 has	 been	

observed	 to	affect	 several	 important	 cellular	processes	 including	regulation	of	

the	 cell	 cycle,	 chromosome	 segregation,	 transcription	 and	 the	 DNA	 damage	

response.	 At	 the	 molecular	 level	 SUMO	 modification	 affects	 protein‐protein	

interactions,	cellular	localisation	and	protein‐DNA	interactions	(Johnson,	2004).	

RanGAP1	was	 the	 first	protein	reported	 to	be	covalently	modified	by	SUMO‐1.	

Rather	 than	 targeting	 proteins	 for	 degradation,	 the	 consequence	 of	 this	

reversible	 SUMO	 modification	 is	 cellular	 re‐localisation.	 SUMOylation	 of	

RanGAP1	 results	 in	 its	 transport	 from	 the	 cytoplasm	 to	 the	 nuclear	 pore	
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complex,	as	well	as	enhancing	its	interaction	with	RanBP2	(M	J	Matunis,	1996;	

Mahajan	et	al,	1997).	

Many	 DNA	 repair	 proteins	 are	 SUMOylated,	 and	 this	 can	 affect	 the	 activity,	

substrate	specificity	and	recruitment	of	the	target	protein.	An	example	of	this	is	

the	E3	ubiquitin	ligase	BRCA1	(breast	cancer	1,	early	onset),	which	is	a	SRUbL.	

In	 human	 cells,	 BRCA1	 and	53BP1	 (tumor	protein	 p53	binding	protein	 1)	 are	

SUMOylated	 at	 sites	 of	DNA	damage,	mediated	by	 the	E3	 SUMO	 ligases	PIAS1	

and	 PIAS4	 (Galanty	 et	 al,	 2009;	 Morris	 et	 al,	 2009).	 SUMOylation	 enhances	

BRCA1’s	E3	ubiquitin	ligase	activity	towards	histones	H2A	and	H2AX	(Morris	et	

al,	2009),	and	the	recruitment	of	BRCA1	to	DNA	damage	sites	is	decreased	in	the	

absence	of	PIAS1	or	PIAS4	(Galanty	et	al,	2009).	

SUMOylation	 can	 also	 regulate	 target	 proteins	 by	 inducing	 conformational	

changes	which	affect	their	activity.	For	example	the	activity	of	the	base	excision	

repair	 (BER)	 factor	 thymidine	 DNA	 glycosylase	 (TDG)	 is	 regulated	 by	

SUMOylation.	TDG	binds	 to	 the	abasic	 site	 (AP)	which	 is	 formed	 following	 the	

excision	of	an	 incorrectly	 inserted	nucleotide	with	high	affinity,	protecting	 the	

DNA	 ends	 from	 being	 converted	 into	 double	 strand	 breaks	 (DSBs)	 before	 the	

recruitment	 of	 endonucleases	 (Hardeland	 et	 al,	 2002).	 SUMOylation	 of	 AP‐

bound	TDG	causes	a	conformational	change	which	decreases	the	affinity	of	TDG	

for	 the	 AP	 site	 and	 results	 in	 its	 dissociation	 from	 the	 DNA.	 SUMO	 proteases	

subsequently	remove	the	SUMO	modification,	recycling	TDG	for	further	rounds	

of	BER	(Hardeland	et	al,	2002).	

SUMO	 and	 ubiquitin	 modification	 of	 the	 same	 protein	 is	 being	 increasingly	

observed	 and	 can	 have	 opposing	 effects,	 acting	 as	 a	 switch	 between	 different	

pathways.	For	example,	whilst	ubiquitination	of	IκBα	promotes	its	degradation	

and	 the	 subsequent	 activation	 of	 NF‐κB	 as	mentioned	 above,	 SUMOylation	 of	

IκBα	stabilises	the	protein,	acting	in	contrast	to	ubiquitin	and	inhibiting	NF‐κB	

(Desterro	 et	 al,	 1998).	 Another	 example	 of	 cross‐talk	 between	 ubiquitin	 and	

SUMO	 is	 the	modification	 of	 PCNA	 by	 both	 PTM’s,	 which	 occurs	 on	 the	 same	

lysine	residue	(See	section	1.8.2‐1.8.3).	
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1.4 S.	pombe	cell	cycle	

The	 cell	 cycle	 is	 a	highly	 regulated	process	 involving	DNA	 replication	and	 cell	

division	and	is	essential	for	proliferation.	Four	phases	make	up	the	cell	cycle,	G1,	

S,	 G2	 and	M.	 Entrance	 into	 and	 progression	 through	 the	 cell	 cycle	 is	 a	 highly	

ordered	and	regulated	process	governed	by	the	accumulation	and	inhibition	of	

sequential	 cyclin‐Cdk	 (cyclin‐	 dependent	 kinase)	 complexes.	 Cdk	 proteins	 are	

expressed	constitutively	and	are	present	at	constant	concentrations	throughout	

the	 cell	 cycle.	 The	 cdc2	 gene	 encodes	 the	 Cdk	 protein,	 Cdc2	 (equivalent	 to	

human	 Cdk1)	 which	 controls	 the	 cell	 cycle	 in	 S.	pombe	(Brizuela	 et	 al,	 1987;	

Nurse	&	 Bissett,	 1981).	Cdc2	 is	 activated	 by	 four	 cyclins	 in	 S.	pombe	 that	 are	

expressed	and	degraded	in	a	controlled	manner	throughout	the	cell	cycle	(Evans	

et	al,	1983).	Irreversible	and	robust	feedback	loops	commit	the	cell	to	cell	cycle	

events,	 meaning	 that	 regulation	 must	 be	 tightly	 controlled.	 Cell	 cycle	

checkpoints	exist	which	can	halt	the	cell	cycle	and	co‐ordinate	repair	pathways	

before	cells	can	progress	to	the	next	phase.	Cell	cycle	checkpoints	are	discussed	

in	section	1.5.	Below	is	a	brief	description	of	cell	cycle	control	in	S.	pombe.	

1.4.1 G1/S	phase	

Extracellular	 signals	 and	 environmental	 factors	 induce	 a	 cell	 to	 enter	 the	 cell	

cycle	and	begin	proliferation.	For	proliferating	cells	to	enter	the	cell	cycle	at	G1,	

all	S	and	G2	cyclin‐Cdk	complexes	must	be	repressed.	The	Anaphase	Promoting	

Complex	 (APC)	 suppresses	 G2	 cyclin	 complex	 formation	 by	 targeting	 the	 G2	

cyclin	Cdc13	for	proteasomal	degradation	(Tyson	et	al,	2002).	Rum1	inhibits	the	

S	and	G2	cyclin–Cdk	complexes	during	mitosis	and	at	the	beginning	of	G1.	The	

G1	 cyclins	 Puc1	 and	 Cig1	 are	 not	 affected	 by	 Rum1	 and	 their	 accumulation	

results	 in	 the	 phosphorylation	 and	 subsequent	 proteasomal	 degradation	 of	

Rum1	(Benito	et	al,	1998;	Correa‐Bordes	et	al,	1997).	The	Skp1	Cullin	and	F	box	

(SCF)	complex	acts	as	a	ubiquitin	E3	ligase	and	targets	G1/S	Cdk1	inhibitors	for	

degradation	 by	 the	 proteasome	 (Harper,	 2001).	 G1/S	 cyclin	 production	 is	

increased	 and	 cyclin‐Cdk	 complexes	 inactivate	 the	 APC	 and	 phosphorylate	

target	proteins	involved	in	replication	to	promote	entry	into	S	phase.	

                             13



	 	

Replication	is	initiated	in	G1	by	the	assembly	of	the	origin	recognition	complex	

(ORC)	 at	 replication	 origins,	which	 are	 located	 throughout	 the	DNA.	 The	ORC	

comprises	 six	 subunits,	 ORC	 1‐6	 and	 serves	 to	 mark	 replication	 origins	 and	

recruit	components	of	the	replisome.	It	remains	associated	with	chromatin	at	all	

stages	of	the	cell	cycle	(Lygerou	&	Nurse,	1999;	Moon	et	al,	1999;	Ogawa	et	al,	

1999)		

Both	 budding	 and	 fission	 yeast	 chromosomes	 contain	 ~400	 origins	 of	

replication	 (ORIs)	 (Segurado	 et	 al,	 2003).	 These	 are	 best	 characterised	 in	 S.	

cerevisiae,	 where	 ORIs	 are	 approximately	 150bp	 in	 length	 and	 include	

autonomous	 replicating	 sequence	 (ARS)	 repeats	 which	 are	 required	 for	 ORC	

binding	 (Broach	 et	 al,	 1983;	 Newlon	 &	 Theis,	 1993).	 In	 S.	pombe,	 origins	 of	

replication	are	defined	as	AT‐rich	sequences	which	range	from	0.5‐1.5	Kb,	and	

they	can	be	utilised	in	research	for	use	as	replication	origins	in	plasmids.		

1.4.1.1 Initiation	of	DNA	replication	

The	ORC	recruits	Cdc18,	Cdt1	and	the	MCM	complex,	which	comprises	Mcm2‐7.	

The	 MCM	 complex	 is	 loaded	 onto	 the	 DNA	 by	 Cdc18	 and	 Cdt1	 in	 an	 ATP‐

dependent	manner	during	G1	 (Kearsey	 et	 al,	 2000;	Neuwald	 et	 al,	 1999).	The	

MCM	 complex	 is	 highly	 conserved	 between	 species	 and	 is	 essential	 for	

replication	 (Li	 et	 al,	 2011).	 It	 acts	 as	 the	 core	 of	 a	 replicative	 helicase	 and	 is	

required	to	unwind	the	DNA	double	helix	so	that	single	stranded	template	DNA	

is	accessible	 to	 replicative	polymerases.	Two	MCM	complexes	are	 loaded	onto	

each	origin	of	replication	to	allow	bi‐directional	replication	to	take	place	(Labib	

et	al,	2000;	Lei	&	Tye,	2001).	An	MCM‐bound	origin	 forms	the	 ‘pre‐replication	

complex’	 (Pre‐RC),	 and	 these	 are	 referred	 to	 as	 ‘licenced’	 replication	 origins	

(Kearsey	 et	 al,	 2000;	 Nishitani	 et	 al,	 2000).	 S.	 cerevisiae	 and	 human	 protein	

homologues	involved	in	replication	are	shown	in	Table	1.1.	
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S.p S.c H.s Role 

Orc1-6 Orc1-6 ORC1-6 Marks replication origins 

Cdc18 Cdc6 Cdc6 
Loads MCM complex to 

replication origins Cdt1 Cdt1 Cdt1 

MCM complex 
Mcm2 Mcm2 Mcm2  

Core of replicative helicase 

Mcm3 Mcm3 Mcm3  
Cdc21 Mcm4 Mcm4 
Mcm5 Mcm5 Mcm5 
Mcm6 Mcm6 Mcm6  
Mcm7 Mcm7  Mcm7 

Cdc23 Mcm10 Mcm10 
Pol-α recruitment. S.p 

Cdc23 reported to have 
primase activity 

Cdc45 Cdc45  Cdc45  Required for MCM helicase 
activity  

Rad4 Dpb11 TOPBP1 Checkpoint mediator 

Drc1 Sld1 - Aids Rad 4 loading 

Sld3 Sld3 - Required for Cdc45 loading 

Mrc1 Mrc1 CLASPIN Checkpoint mediator 

Mcl1 Ctf4 AND1 Couples MCM complex to 
pol-α 

GINS complex 

Sld5 Sld5 Sld5 

 
Scaffold for MCM and Cdc45 

Psf1 Psf1 Psf1 

Psf2 Psf2 Psf2 

Psf3 Psf3 Psf3 

Swi3 Csm3 TIPIN Regulatory role, Fork 
stabilisation, checkpoint 

activation Swi1 Tof1 TIM1 

Pr
e-

RC
 

Pr
e-

IC
 

FP
C 

Table 1.1. S.pombe (S.p), S.cerevisiae (S.c) and human (H.s) 
homologues involved in replication initiation and continuation.   
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1.4.2 S	phase	

The	onset	of	S	phase	promotes	the	assembly	of	the	pre‐initiation	complex	(Pre‐

IC),	 which	 precedes	 origin	 firing.	 Inactivation	 of	 the	 APC	 allows	 for	 the	

accumulation	of	the	DDK	(Dbf4‐dependent	kinase)	complex	(Hsk1‐Dfp1),	which	

acts	 together	 with	 Cdc2	 to	 recruit	 several	 other	 proteins	 to	 form	 the	 Pre‐IC	

(Diffley,	2004)	(See	Table	1.1).	The	Pre‐IC	includes	Cdc45	and	the	GINS	complex,	

which	together	with	MCM1‐7	are	known	as	the	CMG	complex	and	form	an	active	

helicase	 (Moyer	 et	 al,	 2006).	The	DDK	 complex	 is	 inactivated	 following	origin	

firing,	and	components	of	the	pre‐replication	complex	dissociate	from	the	DNA,	

adding	to	the	robust	prevention	of	further	replication	origin	firing	(Baum	et	al,	

1998;	Takeda	et	al,	1999).	

Several	 additional	 proteins	 form	 the	 replication	 progression	 complex	 (RPC),	

which	 remains	 associated	 with	 the	 replication	 fork.	 These	 include	 the	

replication	 factor	C	 (RFC)	 complex,	which	 is	 a	 clamp	 loader,	 and	proliferating	

cell	 nuclear	 antigen	PCNA.	PCNA	acts	 as	 a	 homo‐trimeric	 sliding	 clamp	which	

docks	 the	 DNA	 polymerases	 at	 the	 DNA	 and	 interacts	 with	 a	 host	 of	 other	

proteins	 involved	 in	 replication.	 PCNA	enhances	 the	 activity	 of	 the	 replicative	

polymerases	(Pol	δ	and	Pol	ε)	and	is	loaded	onto	the	DNA	by	the	RFC	complex	at	

3’	template‐primer	junctions	(Moldovan	et	al,	2007).	The	structure	and	roles	of	

PCNA	are	discussed	in	more	detail	in	section	1.8.	Other	factors	associated	with	

the	RPC	 include	 the	 ‘connector	protein’	Mcl1	(H.s.	AND1)	which	 interacts	with	

several	replication	 fork	components,	 topoisomerases,	polymerases,	DNA	 ligase	

and	 the	 endonucleases	 Rad2	 (H.s.	 FEN‐1)	 and	 Dna2.	 Swi1	 and	 Swi3	 (H.s.	

TIM1/TIPIN)	form	the	fork	protection	complex	(FPC),	that	interacts	with	many	

replisome	 proteins	 and	 acts	 to	 promote	 replication	 fork	 stability.	 The	 FPC	

interacts	with	 checkpoint	mediator	 protein	Mrc1,	 linking	 the	 polymerase	 and	

helicase	 (Bando	 et	 al,	 2009;	Katou	 et	 al,	 2003)	 as	well	 as	 cohesin,	 to	 stabilise	

sister	 chromatid	 cohesion	 (Errico	 et	 al,	 2009;	 Leman	&	Noguchi,	 2013).	 Swi3	

also	interacts	with	Rad11.	RPA	is	made	up	of	three	subunits,	the	largest	of	which	

(S.	pombe	Rad11)	binds	to	single	stranded	DNA.	It	recruits	checkpoint	proteins	

required	 for	 activation	 of	 the	 intra‐S	 checkpoint	 (Leman	 &	 Noguchi,	 2013;	

Noguchi	et	al,	2004)	(See	section	1.5.2).	
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Activation	of	the	MCM	helicase	results	in	the	unwinding	of	the	DNA	ahead	of	the	

replication	 fork	 in	 an	 ATP‐dependent	 manner,	 allowing	 bi‐directional	

replication	 to	begin.	DNA	unwinding	 is	 preceded	by	 the	dissociation	of	 Cdc18	

and	Cdt1	(Yanow	et	al,	2001).	

1.4.2.1 Replication	

Replication	can	only	occur	5’	to	3’,	resulting	in	the	two	new	DNA	strands	being	

synthesised	 in	 opposite	 directions.	 A	 short	 RNA	 primer	 is	 synthesised	 by	

polymerase	α.	This	 is	 extended	by	polymerase	ε	 for	 continuous	 replication	on	

the	 leading	 strand.	 Discontinuous	 replication	 occurs	 on	 the	 opposite	 strand	

which	 is	 known	 as	 the	 ‘lagging	 strand’	 (Figure	 1.2).	 Here,	 polymerase	 δ	

synthesises	100‐200	base	DNA	fragments	called	Okazaki	fragments	(Okazaki	R	

et	 al,	 1967).	 Okazaki	 fragments	 displace	 the	 previous	 RNA	 primer	 as	 well	 as	

several	 nucleotides	 upstream	 of	 the	 primer.	 This	 results	 in	 a	 ‘flap’	 which	 is	

cleaved	by	the	endonuclease	Rad2	(H.s	FEN1),	or	processed	by	Dna2,	and	ligated	

by	 DNA	 ligase	 I	 (Goulian	 et	 al,	 1990).	 Single	 stranded	 DNA	which	 is	 exposed	

during	 lagging	 strand	 synthesis	 is	 protected	 by	 RPA	 binding.	 Replication	

continues	 in	 both	 directions	 until	 two	 replication	 forks	 moving	 in	 opposite	

directions	converge,	or	until	a	fork‐blocking	lesion	is	encountered.		

1.4.3 G2/M	phase	entry	and	progression	

S.	pombe	cells	spend	approximately	70%	of	their	cell	cycle	 in	G2.	The	M	phase	

cyclin‐Cdk	 complex	 is	 formed	 following	 an	 increase	 in	 Cdc13	 cyclin	 levels	

during	 S	 phase.	 Cdc2	 associated	 with	 Cdc13	 is	 phosphorylated	 on	 Tyr	 15	 by	

Mik1	during	S	phase	and	by	Wee1	in	G2	(Christensen	et	al,	2000).	An	increase	in	

the	levels	of	Cdc13	and	its	association	with	Cdc2	promotes	the	phosphorylation	

and	activation	of	Cdc25.	Cdc25	de‐phosphorylates	Cdc2,	resulting	in	high	levels	

of	 Cdc2	 activity	 and	 promoting	 entry	 into	 mitosis	 (Morgan,	 1997).	 During	

metaphase,	the	APC	is	activated	by	Cdc2‐Cdc13.	
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1.5 Cell	cycle	checkpoints	

Completion	 of	 DNA	 replication	 and	 the	 repair	 of	 any	 endogenously	 or	

exogenously	acquired	DNA	damage	is	essential	for	the	maintenance	of	genome	

stability.	Cell	cycle	checkpoints	halt	the	cell	cycle	following	detection	of	damage,	

stabilise	 the	 replication	 fork	 and	 activate	 DNA	 damage	 response	 pathways	 to	

repair	 any	 damage	 before	 the	 cell	 cycle	 can	 continue.	 There	 are	 three	 major	

checkpoints	throughout	the	cell	cycle.	These	are	at	G1/S,	intra‐S	and	G2/M.	The	

checkpoint	 response	 is	 co‐ordinated	 by	 a	 range	 of	 well	 conserved	 proteins,	

which	can	be	divided	into	sensors,	mediators,	and	effectors.	Table	1.2	shows	the	

S.	pombe,	S.	cerevisiae	and	human	checkpoint	protein	homologues.		

Checkpoint	activation	is	co‐ordinated	by	two	proteins	in	eukaryotes.	These	are	

phosphatidyl	inositotide‐3’	kinase	(PI3K)	–	related	kinases	Ataxia	telangiectasia	

mutated	 (ATM)	 (S.	pombe	 Tel1)	 and	 ATM‐and	 Rad3‐related	 (ATR)	 (S.	pombe	

Rad3)	(Carr,	1997).	In	higher	eukaryotes,	ATR	is	an	essential	gene	(de	Klein	et	

al,	 2000).	 Mutations	 in	 the	 ATM	 gene	 in	 humans	 or	 mice	 cause	 ataxia	

telangiectasia	 (AT).	 AT	 is	 a	 progressive	 disorder,	 characteristics	 of	 which	

include	ataxia,	radiation	sensitivity	and	pre‐disposition	to	cancers	(Barlow	et	al,	

1996;	Lavin	&	Shiloh,	1997).	ATM	and	ATR	are	required	in	response	to	specific	

types	of	damage.	ATM	 is	 recruited	 to	 the	 sites	of	double	 strand	breaks	by	 the	

Mre11,	 Rad50,	 Nbs1	 (MRN)	 complex,	 which	 also	 recruits	 further	 DNA	 repair	

proteins.	 ATR	 is	 recruited	 with	 ATR	 interacting	 protein	 (ATRIP)	 to	 stalled	

replication	 forks,	 where	 RPA	 covered	 single	 stranded	 DNA	 is	 present,	 and	 in	

response	to	UV	induced	DNA	damage	(Cliby	et	al,	1998;	Wright	et	al,	1998;	Zou	

&	Elledge,	2003).	The	S.	pombe	ATR	homologue	Rad3	(N	J	Bentley	et	al,	1996)	is	

required	 for	checkpoint	activation	 in	response	to	both	replication	 fork	stalling	

and	 DNA	 damage,	 along	 with	 Rad26	 (homologue	 of	 H.s.	 ATRIP),	 which	 is	

phosphorylated	by	Rad3	and	required	for	Rad3	function	(Edwards	et	al,	1999).		
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S.p S.c H.s 
Sensor proteins 
Rad3 Mec1 ATR 
Tel1 Tel1 ATM 
Rad26 Ddc2 ATRIP 
9-1-1 Complex 
Rad9 Ddc1 Rad9 
Hus1 Mec3 Hus1 
Rad1 Rad17 Rad1 
Rad17-RFC complex 
Rad17 Rad24 Rad17 
Rfc2-5 Rfc2-5 Rfc2-5 
MRN complex 
Mre11 Mre11 Mre11 
Rad50 Rad50 Rad50 
Nbs1 Xrs2 Nbs1 
Mediator proteins 
Crb2 Rad9 53BP1 
Mrc1 Mrc1 Claspin 
Rad4 Dpb11 TOPBP1 
Effector kinases 
Chk1 Chk1 Chk1 
Cds1 Rad53 Chk2 

Table 1.2. S.pombe (S.p), S.cerevisiae (S.c) and human (H.s) 
homologues involved in checkpoint activation and signalling. 
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1.5.1 G1/S	phase	checkpoint	

Double	 strand	 breaks	 are	 detected	 by	 ATM	 in	 higher	 eukaryotes.	 ATM	

phosphorylates	 the	 effector	 kinase	 Chk2	 (S.	 pombe	 Cds1),	 which	 in	 turn	

phosphorylates	and	inactivates	Cdc25.	This	results	in	inhibition	of	Cdk2,	which	

is	subsequently	unable	to	activate	Cdc45	and	initiate	the	assembly	of	replication	

machinery	(Bartek	&	Lukas,	2001).		

Rad17‐RFC	and	the	PCNA‐related	clamp,	the	9‐1‐1	(Rad9‐Rad1‐Hus1)	complex,	

are	recruited	to	ssDNA	(Caspari	et	al,	2000;	Thelen	et	al,	1999).	Rad17‐RFC	is	an	

alternative	 clamp	 loader	 which	 is	 required	 to	 load	 the	 damage‐specific	 9‐1‐1	

clamp	 onto	 the	 DNA	 (Bermudez	 et	 al,	 2003).	 TopBp1	 (S.	pombe	 Rad4)	 binds	

Rad9	 and	 ATR	 (S.	pombe	Rad3),	 which	 phosphorylates	 and	 inactivates	 Chk1	

(Furuya	 et	 al,	 2004).	 Subsequent	 Cdc25	 inactivation	 results	 in	 G1	 arrest.	 S.	

pombe	spend	very	little	time	in	G1,	making	G1/S	checkpoint	studies	challenging.		

1.5.2 Intra‐S	phase	checkpoint	

DNA	 damage	 encountered	 during	 S	 phase	 in	 S.	pombe	 results	 in	 checkpoint	

mediator	protein	Mrc1‐facilitated	activation	of	the	effector	kinase	Cds1,	by	Rad3	

(Boddy	 et	 al,	 1998;	 Brondello	 et	 al,	 1999;	 Lindsay	 et	 al,	 1998).	 Cds1	

phosphorylates	and	 inactivates	Cdc25	 (Alao	&	Sunnerhagen,	2008),	 leading	 to	

cell	 cycle	 arrest.	 Cds1	 activation	 also	 results	 in	 an	 accumulation	 of	 tyrosine	

kinase	Mik1,	which	promotes	ubiquitin‐mediated	degradation	of	Cdc25	and	also	

phosphorylates	 and	 inhibits	 Cdc2	 (Boddy	 et	 al,	 1998).	 DNA	 damage	

encountered	 during	 S	 phase	 can	 cause	 replication	 forks	 to	 stall	 (described	 in	

section	 1.6.5.3).	 Cds1	 inhibits	 late	 origin	 firing	 and	 acts	 to	 stabilise	 stalled	

replication	forks	by	phosphorylating	the	Mus81‐Eme1	endonuclease	(Furuya	&	

Carr,	2003).	

1.5.3 G2/M	checkpoint	

The	G2/M	checkpoint	 is	 the	most	 important	checkpoint	 for	S.	pombe	 and	cells	

must	have	reached	a	critical	size,	have	fully	replicated	their	DNA	and	repaired	

any	DNA	damage	before	progressing	 to	mitosis.	Cdc25	removes	 the	 inhibitory	

phosphate	 from	Cdc2	when	 cells	have	 reached	 a	 critical	 size,	 allowing	mitotic	

                             21



	 	

entry	 (Dunphy	 &	 Kumagai,	 1991;	 Kumagai	 &	 Dunphy,	 1991;	 Rupeš,	 2002;	

Russell	&	Nurse,	1986).	DNA	damage	is	detected	by	the	MRN	complex	and	Rad3	

is	 recruited	 with	 Chk1	 mediator	 protein	 Crb2	 and	 Rad4,	 resulting	 in	 the	

activation	of	the	effector	kinase	Chk1	(Saka	et	al,	1997).	Rad4	is	required	to	act	

as	a	scaffold	protein	which	interacts	with	Rad17,	Crb2	and	the	phosphorylated	

Rad9	 subunit	 of	 the	 9‐1‐1	 complex	 and	 is	 required	 for	 Rad3‐dependent	

phosphorylation	 of	 Chk1	 (Qu	 et	 al,	 2013).	 Chk1	 causes	 cell	 cycle	 arrest	 by	

activating	 Wee1,	 which	 phosphorylates	 and	 inhibits	 Cdc25,	 preventing	 the	

activation	of	Cdc2,	and	therefore	entry	into	mitosis	(Raleigh	&	O'Connell,	2000).	

Cdc25	is	also	bound	and	inactivated	by	14‐3‐3	proteins	Rad24	and	Rad35,	and	is	

subsequently	exported	from	the	nucleus	(Lopez‐Girona	et	al,	1999).	

1.6 DNA	damage	response	pathways	

Endogenous	 sources	 of	 DNA	 damage	 include	 stalled	 or	 collapsed	 replication	

forks	(section	1.6.5.3‐1.6.5.4)	and	oxidative	damage	resulting	from	metabolism.	

Oxidative	 damage	 also	 occurs	 as	 a	 result	 of	 exposure	 to	 ionising	 radiation.	

Exposure	 to	 DNA	 damaging	 agents	 such	 as	 UV	 irradiation	 or	 methyl	

methanesulfonate	(MMS)	can	cause	a	range	of	lesions	which	must	be	repaired	to	

maintain	genomic	stability.	The	main	DNA	repair	pathways	are	outlined	briefly	

below.	 This	 work	 focuses	 on	 recombination‐mediated	 repair	 and	 post‐

replicative	repair,	which	are	discussed	in	section	1.6.5.3	and	1.8.2	respectively.		

1.6.1 Nucleotide	excision	repair	(NER)	

NER	is	required	for	the	removal	of	DNA	helix‐distorting	bulky	lesions	caused	by	

UV	 irradiation.	 These	 include	 cyclobutane	 pyrimidine	 dimers	 (CPDs)	 and	 6‐4	

photoproducts.	 It	 is	 also	 utilised	 for	 the	 repair	 of	 endogenously	 formed	

oxidative	 legions	 and	 bulky	 adducts	 which	 can	 be	 caused	 by	 drugs	 used	 for	

chemotherapy	 (Schärer,	 2013).	 The	 NER	 pathway	 is	 conserved	 between	

prokaryotes,	 eukaryotes	 and	 mammals	 and	 consists	 of	 global	 genome	 repair	

(GGR)	 and	 transcription	 coupled	 repair	 (TCR).	 In	 GGR,	 DNA	 damage	 is	

recognised	 by	 XPC‐HR23b	 (S.	pombe	 Rhp41/42	 and	 Rhp23)	 and	 DDB1/2	 (S.	

pombe	 Ddb1).	 In	 TCR	 damage	 recognition	 requires	 CSB	 and	 CSA	 (S.	 pombe	

Rhp26	and	Rhp28)	(Batty	&	Wood,	2000).	
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	XPA	(S.	pombe	Rhp14),	RPA	and	TFIIH	are	recruited	to	the	site	of	damage.	The	

TFIIH	complex,	which	includes	the	3’‐5’	helicase	XPB	(S.	pombe	Rhp25)	and	the	

5’‐3’	helicase	XPD	(S.	pombe	Rhp3),	is	recruited	to	unwind	the	DNA	surrounding	

the	lesion	(de	Laat	et	al,	1999).	XPG	(S.	pombe	Rad13)	and	XPF‐ERCC1	(S.	pombe	

Rad16‐Swi10)	are	recruited	and	cleave	3’	and	5’	of	the	damage	respectively,	in	

an	ATP‐dependent	reaction	(Mu	et	al,	1996;	O'Donovan	et	al,	1994).	This	results	

in	 the	excision	of	a	24‐32	nucleotide	 fragment	containing	the	 lesion	(Huang	et	

al,	1992).	The	resulting	gap	is	filled	in	by	replicative	polymerases	Pol	δ	or	Pol	ε	

and	sealed	by	DNA	ligase	I	(Wood	&	Shivji,	1997).	

Mutations	 in	 NER	 genes	 result	 in	 genetic	 disorders	 including	 Xeroderma	

pigmentosum	 (XP),	 Cockayne	 syndrome	 (CS)	 and	 trichothiodystrophy	 (TTD)	

(Lehmann,	2003).	

1.6.2 Base	excision	repair	(BER)		

The	 BER	 pathway	 recognises	 non‐bulky	 DNA	 lesions	 including	 alkylation	 and	

oxidised	 nucleotides.	 DNA	 glycolsylases	 recognise	 and	 excise	 damaged	 bases.	

This	results	in	an	apurinic	or	apyrimidinic	(AP)	abasic	site,	which	can	also	occur	

spontaneously	 as	 a	 result	 of	 hydrolysis	 (Robertson	 et	 al,	 2009).	 AP	 sites	 are	

cleaved	 either	 by	 AP	 endonucleases	 or	 DNA	 glycosylases	 which	 possess	 AP‐

lyase	activity	(Aspinwall	et	al,	1997;	Nash	et	al,	1997;	Sun	et	al,	1995;	Wallace,	

2013).	 Cleavage	 3’	 of	 the	 AP	 site	 results	 in	 short	 patch	 BER.	 Here,	 the	 single	

damaged	base	 is	 removed	and	 the	gap	 filled	by	Polβ	and	 then	 ligated	by	DNA	

ligase	 (Podlutsky	 et	 al,	 2001).	 Cleavage	 5’	 of	 the	AP	 site	 results	 in	 long	 patch	

BER,	where	 several	 bases	 are	 removed.	 These	 are	 replaced	 by	 the	 replicative	

polymerases	polδ	or	polε,	which	produce	a	flapped	structure.	This	is	processed	

by	 Rad2	 and	 sealed	 by	 DNA	 ligase	 (Fortini	 &	 Dogliotti,	 2007;	 Memisoglu	 &	

Samson,	2000).	
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1.6.3 UV	damage	excision	repair	(UVER)	

S.	 pombe	 cells	 possess	 an	 alternative	 pathway	 for	 the	 removal	 of	 UV	

photoproducts.	 This	 became	 apparent	 when	 UV	 lesions	 could	 be	 repaired	 in	

cells	 which	 were	 defective	 in	 the	 NER	 pathway	 (McCready	 et	 al,	 1993).	 The	

UVER	pathway	requires	Uve1,	which	is	not	conserved	in	S.	cerevisiae	or	higher	

eukaryotes	 (Bowman	 et	 al,	 1994;	 Yonemasu	 et	 al,	 1997).	 This	 alternative	

pathway	was	 confirmed	when	S.	pombe	 cells	 deleted	 for	Rad13	 (H.s	 XPG)	 and	

Uve1	lost	the	ability	to	repair	UV‐induced	damage	(Yonemasu	et	al,	1997).	Uve1	

recognises	several	UV‐induced	lesions	including	6‐4	photoproducts	and	CPDs	as	

well	as	nucleotide	mismatches,	and	acts	as	an	endonuclease	to	cleave	DNA	5’	of	

the	 damage,	 in	 an	 ATP‐independent	 reaction	 (Bowman	 et	 al,	 1994).	 Rad2	

processes	the	resulting	DNA	flap	by	cleaving	3’	of	the	damage,	which	releases	it.	

DNA	 polδ	 fills	 the	 gap	 aided	 by	 PCNA	 and	 the	 RFC	 complex,	 and	 the	 nick	 is	

sealed	 by	 DNA	 ligase	 (Alleva	 et	 al,	 2000;	 Yonemasu	 et	 al,	 1997).	 A	 Rad2‐

independent	 pathway	 for	 the	 repair	 of	 UV	 damage	 has	 also	 been	 suggested,	

likely	 involving	 recombination	 (Kunz	 &	 Fleck,	 2001;	 McCready	 et	 al,	 2000;	

Yonemasu	et	al,	1997).	

1.6.4 Mismatch	repair	(MMR)	

The	 mismatch	 repair	 pathway	 recognises	 incorrectly	 incorporated	 bases	 and	

small	loops	which	can	form	as	a	result	of	replication	slippage.	In	bacteria,	MutH	

recognises	newly	synthesised	DNA,	which	is	not	methylated.	A	MutH	homologue	

has	not	yet	been	described	in	eukaryotes.	In	human	cells,	MutSα	(MSH2‐MSH6)	

and	MutSβ	(MSH2‐MSH3)	are	associated	with	PCNA	and	the	replisome	(Iyama	&	

Wilson	 Iii,	 2013).	 MutSα	 (S.	pombe	 homologue	Msh2‐Msh6)	 recognises	 single	

mismatched	 bases	 as	 well	 as	 DNA	 loops	 (Rudolph	 et	 al,	 1999;	 Tornier	 et	 al,	

2001).	MutLα	(MLH1‐PMS2)	is	one	of	three	Mut	homologues	in	humans	and	has	

endonuclease	activity.	MutLα	is	conserved	in	S.	pombe	(Mlh1‐Pms1)	(Schär	et	al,	

1997)	and	is	the	major	MutL	heterodimer.	It	interacts	with	MutS	and	PCNA	and	

makes	a	nick	 in	the	DNA	(Pluciennik	et	al,	2010),	which	is	used	by	the	5’	 to	3’	

exonuclease	Exo1	to	excise	the	damaged	base.	This	is	subsequently	repaired	by	

DNA	polδ	and	DNA	ligase	I	(Iyama	&	Wilson	Iii,	2013).	
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1.6.5 Double	strand	break	repair	

Double	strand	breaks	can	arise	endogenously,	as	a	result	of	single	strand	break	

processing	or	replication	fork	stalling	and	collapse.	Programmed	DSB’s	are	also	

formed	as	a	controlled	intermediate	in	meiosis	and	V	(D)	J	recombination,	and	

during	mating	type	switching	in	S.	cerevisiae	to	initiate	gene	conversion	(Li	et	al,	

2012).	Exogenous	causes	of	DSBs	include	exposure	to	ionising	radiation	(IR)	or	

MMS.	 Two	well‐defined	 pathways	 exist	 for	 the	 repair	 of	 DSBs,	 NHEJ	 and	 HR,	

described	briefly	below.		

1.6.5.1 Non‐homologous	end	joining	(NHEJ)	

In	mammals,	 the	majority	 of	DSB	 repair	 is	 carried	out	 via	NHEJ	 in	G1	 and	G2	

phase	 (Beucher	 et	 al,	 2009).	NHEJ	 repairs	DSBs	by	 ligating	 together	 two	DNA	

ends,	 regardless	 of	 their	 sequence	 homology.	 In	mammals,	 The	 DSB	 ends	 are	

first	 bound	 by	 a	 heterodimer	 formed	 of	 Ku70	 and	 Ku80,	 which	 encircles	 the	

DNA	(Walker	et	al,	2001).	This	provides	competition	with	the	MRN	complex	and	

Exo1	 for	 the	 binding	 of	 DNA	 ends	 (Tomita	 et	 al,	 2003).	 	 DNA‐PK	 catalytic	

subunits	(DNA‐PKcs)	are	then	recruited	to	the	break	through	interactions	with	

the	 C‐terminus	 of	 Ku80,	 and	 become	 auto‐phosphorylated.	 This	 results	 in	 an	

active	ring	complex	and	translocation	of	the	Ku	complex	away	from	the	break	to	

allow	access	to	the	DNA	PKcs	(Yoo	&	Dynan,	1999).	Processing	of	the	DNA	ends	

is	 often	 required	before	 re‐ligation	 can	 take	place.	 This	 can	 be	 carried	 out	 by	

Artemis,	which	has	 both	3’	 and	5’	 endonuclease	 activity	 (Kurosawa	&	Adachi,	

2010).	 Polynucleotide	 kinase	 phosphatase	 (PNKP)	 is	 also	 involved	 in	 end	

processing.	It	generates	5’‐phosphate	ends	and	removes	3’	phosphates	to	allow	

for	 ligation	 or	 nucleotide	 insertion	 (Claire	 Chappell,	 2002).	 DNA	 ligase	 IV	 is	

required	 for	 end‐joining	 and	 its	 activity	 is	 dependent	 on	 an	 interaction	 with	

XRCC4	(Bryans	et	al,	1999;	Riballo	et	al,	2009).	XRCC4	also	 interacts	with	XLF	

which	may	be	required	for	the	alignment	of	DNA	ends	(Andres	et	al,	2012).	As	

well	 as	 the	 Ku	 proteins,	 DNA	 ligase	 IV	 is	 conserved	 in	 S.	pombe	 and	 an	 Xlf	

homologue	 has	 also	 been	 identified	 (Cavero	 et	 al,	 2007).	 However	 DNA‐PKcs	

and	 XRCC4	 homologues	 have	 not	 yet	 been	 identified	 in	 this	 organism.	 If	 DSB	

repair	 is	 not	 efficiently	 completed	 by	 NHEJ	 in	 G2,	 DNA	 resection	 promotes	

repair	by	homologous	recombination	(Goodarzi	&	Jeggo,	2013).	
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1.6.5.2 Homologous	recombination	(HR)		

Homologous	 recombination	 uses	 the	 sister	 chromatid	 as	 a	 template	 for	 the	

repair	of	DSBs.	This	means	that	HR	is	active	during	S	and	G2	phase	(Beucher	et	

al,	2009).	HR	initially	involves	resection	of	the	DNA,	followed	by	invasion	of	the	

homologous	 sequence	 and	 resolution	 of	 intermediate	 structures.	 The	 path	

chosen	 to	 resolve	 intermediate	 HR	 structures	 including	 Holliday	 junctions,	

determines	 whether	 or	 not	 there	 is	 crossover	 between	 homologous	 DNA	

sequences	(Krejci	et	al,	2012).	

The	 first	 step	 in	 HR	 is	 5’	 to	 3’	 end	 resection	 of	 the	 broken	DNA	 to	 expose	 3’	

single	stranded	overhangs	(Figure	1.3A‐B).	This	requires	the	MRN	complex	and	

CtIP	(S.	pombe	Ctp1)	(Sartori	et	al,	2007),	as	well	as	Exo1	(Garcia	et	al,	2011).	

The	exposed	ssDNA	is	bound	by	the	large	subunit	of	RPA	(Brill	&	Stillman,	1989;	

Erdile	et	al,	1991)	(S.	pombe	Rad11)	(Parker	et	al,	1997).	RPA	 is	subsequently	

displaced	by	Rad51,	which	forms	pre‐synaptic	filaments	(Kurokawa	et	al,	2008).	

Rad51	 recruitment	 is	 facilitated	 by	 several	 mediator	 proteins,	 predominantly	

BRCA2	 in	 humans,	 as	well	 as	 Rad52	 and	 Rad54.	 Rad52	 is	 the	main	mediator	

protein	in	S.	pombe,	which	contains	two	Rad52	homologues,	Rad52	(previously	

Rad22)	 and	 Rti1.	 Rad54	 (previously	 Rhp54)	 is	 also	 conserved	 (Raji	 &	

Hartsuiker,	 2006).	 Rad51	 binding	 is	 also	 mediated	 by	 additional	 proteins	

Rad55‐Rad57	S.	pombe	(Li	&	Heyer,	2008).		

Rad51	 filament	 formation	 is	 stabilised	 by	 the	 Rad55/Rad57	 heterodimer	

(Akamatsu	et	al,	2007)	as	well	as	by	Sfr1/Swi5	in	S.	pombe	(Haruta	et	al,	2006).	

Rad51	 filament	 formation	 and	 stabilisation	 catalyses	 the	 invasion	 and	

displacement	 of	 the	 homologous	 strand.	 This	 results	 in	 the	 formation	 of	 a	 D‐

loop	in	an	ATP‐dependent	reaction,	which	is	promoted	by	Rad54.	The	3’	strand	

is	 extended	by	DNA	pol	 δ	 or	 ɛ,	 extending	 the	D‐loop	 (Holmes	&	Haber,	 1999;	

Krejci	et	al,	2012;	Sung,	1994)	(Figure	1.3C).	

Synthesis	 dependent	 strand	 annealing	 (SDSA)	 occurs	 when	 the	 D‐loop	 is	

unwound	and	the	newly	synthesised	DNA	strand	is	displaced	and	anneals	back	

to	the	3’	resected	ssDNA	(Figure	1.3D).	DNA	polymerases	undertake	gap	filling	

and	 the	 DNA	 ends	 are	 ligated.	 SDSA	 therefore	 does	 not	 result	 in	 cross‐over	

events	(Ferguson	&	Holloman,	1996;	Nassif	et	al,	1994)	
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Double	Holliday	junctions	are	formed	following	‘capture’	of	the	3’	overhang	on	

the	 other	 side	 of	 the	 DSB	 (Figure	 1.3E).	 These	 must	 be	 either	 dissolved	 or	

resolved	 by	 endonucleases.	 Dissolution	 of	 double	 HJ’s	 is	 non‐recombinogenic	

and	 requires	 the	 BLM	 helicase	 and	 Top3‐Rmi1‐Rmi2	 (S.	 pombe	 homologues	

Rqh1,	 Top3	 and	 Rmi1)	 to	 de‐catenate	 and	 unlink	 the	 crossed‐over	 strands	

(Svendsen	&	Harper,	2010;	Wu	&	Hickson,	2003)	(Figure	1.3F).	

Resolution	of	double	Holliday	 junctions	can	result	 in	either	cross‐over	or	non‐	

crossover	events.	When	 the	displaced	 stands	at	both	of	 the	Holliday	 junctions	

are	 cleaved,	 (facilitated	 by	 GEN‐1/Yen1	 in	 human/S.	 cerevisiae	 cells	

respectively),	 the	 result	 is	 a	 non‐crossover	 product	 (Figure	 1.3G)	 (Ip	 et	 al,	

2008).	 An	 S.	 pombe	 GEN‐1/Yen1	 homologue	 has	 not	 been	 identified.	

Alternatively,	 one	Holliday	 junction	 is	 resolved	 as	described	 above,	whilst	 the	

non‐displaced	 strands	 at	 the	 other	 HJ	 are	 cleaved.	 This	 results	 in	 cross‐

over/recombination.	The	exact	mechanism	by	which	this	takes	place	is	not	well	

defined.	 Mus81‐Eme1	 is	 the	 main	 resolvase	 in	 S.	 pombe,	 which	 efficiently	

cleaves	 nicked	 HJ’s	 and	 can	 also	 cleave	 a	 range	 of	 recombination	 structures	

(Hope	 et	 al,	 2007;	 Wallace,	 2013).	 Other	 resolvases	 include	 XPF/ERCC1	 (S.	

pombe	Swi9/Swi10)	(Carr	et	al,	1994;	Rodel	et	al,	1997)	and	Slx1‐Slx4	(Coulon	

et	al,	2004).	
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Figure	1.3	Homologous	recombination	

(A‐B)	 Double	 strand	 DNA	 breaks	 are	 detected	 and	 the	 3’	 ends	 resected	 by	 the	MRN	
complex	 and	 Exo1.	 Rad11	 (H.s.	 RPA)	 binds	 to	 the	 ssDNA	 before	 being	 replaced	 by	
Rad51,	which	 is	 recruited	via	mediator	proteins	 including	Rad52.	 (C)	Rad51	 filament	
formation	 is	 stabilised	by	Rad55‐Rad57	or	 Sfr1‐Swi5.	This	 stimulates	 invasion	of	 the	
homologous	 DNA	 duplex	 and	 displacement	 of	 the	 DNA	 to	 form	 a	 D‐loop	 and	 is	
promoted	by	Rad54.	(D)	SDSA	occurs	when	the	invading	strand	is	displaced	and	ligates	
back	to	the	3’	resected	DNA	end,	avoiding	cross‐over.	(E)	‘capture’	of	the	ssDNA	on	the	
other	 side	 of	 the	 DSB	 results	 in	 the	 displaced	 strand	 being	 used	 as	 a	 template.	 Re‐
joining	of	the	invading	strand	results	in	the	formation	of	a	double	Holliday	Junction.	(F)	
DHJ’s	 can	 be	 resolved	 by	 dissolution,	 where	 Rqh1,	 Top3	 and	 Rmi1	 facilitate	 de‐
catenation,	 resulting	 in	 non‐crossover	 products.	 (G‐H)	 DHJ	 Resolution	 can	 result	 in	
either	cross‐over	or	non‐crossover	products.	In	humans	and	S.	cerevisiae,	GEN‐1/Yen1	
facilitate	 non‐crossover	 products.	 Cleavage	 by	 the	 structure‐specific	 endonuclease	
Mus81‐Eme1	results	in	crossover	formation.	DHJ	=	double	Holliday	junction.	

	

1.6.5.3 Replication	fork	stalling	

A	 stalled	 replication	 fork	 is	 described	 as	 a	 stable	 fork	 structure	which	 is	 still	

associated	 with	 the	 replisome,	 and	 which	 can	 resume	 replication	 following	

removal	 of	 the	 fork‐blocking	 lesion.	 Alternatively	 stalled	 forks	 remain	 stable	

until	they	are	encountered	by	a	converging	replication	fork	with	which	they	can	

merge	(Lambert	&	Carr,	2013).	

Replication	forks	can	stall	as	a	result	of	replicative	stress.	This	could	arise	from	

the	 replication	 fork	 encountering	 proteins	 associated	 with	 DNA,	 secondary	

structures	in	DNA	or	sites	of	DNA	damage.	Treatment	of	cells	with	hydroxyurea	

(HU)	or	(MMS),	cause	fork	stalling	either	due	to	the	depletion	of	dNTP’s	through	

inhibition	of	the	ribonuclease	reductase	(RNR),	or	the	formation	of	bulky	DNA	

adducts,	 respectively.	MMS	 also	 induces	DSBs	which	 can	 lead	 to	 fork	 collapse	

(Groth	et	al,	2010;	Zegerman	&	Diffley,	2009).	Controlled	stall	sites	are	present	

in	 the	 genome,	 for	 example	 at	 the	 mating	 type	 locus	 in	 S.	 pombe,	 where	

replication	 fork	 progression	 on	 one	 side	 of	 the	Mat	 locus	 is	 inhibited	 by	Rtf1	

(Mirkin	&	Mirkin,	2007).	Additionally	some	regions	of	the	DNA,	for	example	the	

ribosomal	DNA,	are	more	prone	to	fork	stalling.	Stalling	is	particularly	prevalent	

where	 there	 are	 repeated	 sequences	 and	 AT‐rich	 regions.	 These	 are	 called	

fragile	sites	(Leman	&	Noguchi,	2013).	

	Stalled	 replication	 forks	must	 be	 stabilised	whilst	 the	 checkpoint	 response	 is	

activated	 and	 DNA	 repair	 pathways	 are	 co‐ordinated.	 This	 is	 necessary	 to	
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prevent	 fork	 collapse,	which	 can	 result	 in	one‐ended	DSBs	and	 recombination	

events.	When	 replication	 forks	 stall,	 the	 helicase	 can	 continue	 to	 unravel	 the	

DNA	double	helix,	exposing	long	stretches	of	ssDNA	(Byun	et	al,	2005;	Sogo	et	al,	

2002).	 RPA‐bound	 ssDNA	 activates	 the	 intra‐S	 ATR‐dependent	 checkpoint.	

Subsequent	 inhibition	of	 cell	 cycle	progression	and	 late	origin	 firing	 stabilises	

the	 replication	 fork	 and	 allows	 time	 for	 repair	 or	 to	 resolve	 the	 cause	 of	

replicative	 stress	 by	 other	mechanisms	 (Zeman	 &	 Cimprich,	 2014).	 Swi1	 and	

Swi3	(part	of	the	FPC)	are	required	at	stalled	forks	and	programmed	stall	sites	

to	prevent	an	accumulation	of	aberrant	DNA	structures	in	S.	pombe	(Noguchi	et	

al,	2004).	

Lesions	 encountered	 on	 the	 leading	 strand	 can	 be	 overcome	 by	 trans‐lesion	

synthesis	 (TLS)	 or	 template	 switching	 (TS).	 These	 mechanisms	 of	 damage	

avoidance	are	discussed	further	in	section	1.8.2.	If	the	fork‐stalling	lesion	cannot	

be	 removed	 or	 bypassed,	 replication	 fork	 re‐start	 can	 occur	 downstream	of	 a	

lesion	which	affects	only	one	strand	of	DNA,	following	re‐priming.	However	it	is	

unclear	whether	this	is	a	frequent	event	(Atkinson	&	McGlynn,	2009;	Zeman	&	

Cimprich,	2014).		

Stalled	replication	forks	can	also	be	rescued	by	the	firing	of	dormant	replication	

origins,	 or	by	 fork	 reversal.	 Fork	 reversal	 is	 thought	 to	 involve	 ’unwinding’	 of	

the	blocked	fork	and	the	formation	of	a	four	stranded	DNA	structure	similar	to	a	

Holliday	junction.	The	physiological	role	of	this	structure	is	unclear	and	seems	

to	 occur	more	 frequently	 when	 the	 ATR	 pathway	 is	 impaired	 (Ragland	 et	 al,	

2013).	 Reversed	 replication	 forks	 cause	 topological	 constraints	 and	 are	

converted	 into	DSBs.	Repair	of	 the	damage	may	subsequently	be	 facilitated	by	

excision	repair	or	damage	by‐pass	mechanisms	following	the	formation	of	a	DSB	

and	 recombination	 mediated	 repair	 (Atkinson	 &	 McGlynn,	 2009;	 Branzei	 &	

Foiani,	 2010).	 ‘One	 ended’	 DSBs	 are	 formed	 as	 a	 result	 of	 a	 replication	 fork	

encountering	 a	 single	 strand	 DNA	 break.	 Resection	 and	 Rad51	 recruitment	

results	in	strand	invasion	and	D	loop	formation,	as	described	in	section	1.6.5.2.	

The	 DNA	 synthesis	 that	 is	 continued	 by	 the	 invading	 strand	 is	 much	 more	

extensive	than	in	HR	repair,	and	is	error	prone.	This	is	known	as	break	induced	

replication	(BIR)	(Carr	&	Lambert,	2013;	Yang	et	al).	The	use	of	recombination	
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for	replication	re‐start	can	also	occur	in	the	absence	of	a	DSB	and	can	result	in	

the	newly	 synthesised	DNA	 strand	using	 an	 inappropriate	 template	 sequence.	

This	has	been	observed	in	S.	pombe	in	response	to	fork	stalling	at	protein‐DNA	

complexes	and	can	result	in	major	chromosomal	re‐arrangements	(Iraqui	et	al,	

2012;	Lambert	et	al,	2010;	Lambert	et	al,	2005)	

1.6.5.4 Replication	fork	collapse	

Prolonged	 stalling	 of	 replication	 forks,	 a	 failure	 to	 re‐start	 forks	 or	 failure	 to	

overcome	 fork	 stalling	 lesions	 can	 result	 in	 replication	 fork	 collapse.	 This	 is	

thought	 to	 involve	dissociation	of	 the	replisome,	particularly	 in	 the	absence	of	

the	 ATR	 pathway	 (Carr	 et	 al,	 2011).	 However	 the	 structures	 which	 occur	 at	

stalled	 and	 collapsed	 replication	 forks	 have	 not	 been	 identified.	 Replisome	

disengagement	has	been	proposed	to	occur	in	mouse	cells	(Ragland	et	al,	2013),	

but	 this	has	not	yet	been	observed	 in	human	cells	 (Zeman	&	Cimprich,	2014).	

Disassembly	of	the	replisome	has	been	observed	in	S.	pombe	cells	lacking	Cds1	

(Meister	 et	 al,	 2007),	 and	 in	 this	 case	 the	 replisome	 would	 need	 to	 be	 re‐

recruited	 and	 re‐activated	 to	 continue	 replication.	 DSBs	 are	 often	 formed	 at	

collapsed	 forks,	 and	 these	 require	 NHEJ	 or	 recombinational	 repair	which	 can	

lead	to	genome	re‐arrangements.	The	Smc5/6	complex	is	thought	to	be	involved	

in	the	stabilisation	of	stalled	or	collapsed	replication	forks	and	the	resolution	of	

structures	resulting	from	recombination.	

1.7 SMC	complexes	

The	SMC	family	of	proteins	are	typically	100	–	170	kDa	in	size	and	contain	N	‐	

and	 C‐terminal	 globular	 regions,	 separated	 by	 two	 coiled	 coil	 domains	which	

fold	 back	 on	 each	 other	 via	 a	 central	 hinge	 region.	 This	 brings	 together	 the	

globular	 head	 regions	 to	 form	 an	 active	 ATPase	 domain.	 SMC	 proteins	 form	

heterodimers	 through	 interactions	 between	 their	 hinge	 regions	 and	 are	

associated	with	a	number	of	non‐SMC	proteins	(Harvey	et	al,	2002).	

The	SMC	family	comprises	Smc1	and	3,	part	of	the	cohesin	complex,	Smc2	and	4,	

part	 of	 the	 condensin	 complex	 and	 Smc5	 and	 6,	 which	 are	 required	 in	

recombination	 and	 repair	 processes.	 Related	 to	 the	 Smc	 proteins	 is	 Rad50,	

which	is	part	of	the	MRN	complex	(Murray	&	Carr,	2008).		
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Cohesin	 is	 associated	 with	 sister	 chromatids,	 and	 prevents	 them	 from	

separating	before	anaphase.	It	contains	two	non‐SMC	proteins,	Scc1	and	Scc3	in	

budding	 yeast	 (S.	pombe	Rad21	 and	 Psc3)	 which	 form	 a	 bridge	 between	 the	

globular	 heads	 of	 Smc1	 and	 Smc3	 (S.	 pombe	 Psm1	 and	 Psm3).	 Rad21	 is	 a	

member	 of	 the	 kleisin	 family,	which	 is	 a	 family	 of	 proteins	 that	 interact	with	

Smc	proteins.	It	is	cleaved	by	separase	to	release	sister	chromatids	at	anaphase	

so	that	they	can	be	separated	(Nasmyth	&	Haering,	2005).	

Condensin	 consists	 of	 Smc2	 and	 Smc4	 (S.	pombe	 Cut14	 and	 Cut3),	 and	 three	

non‐SMC	 proteins.	 Of	 these,	 CAP‐D	 and	 CAP‐G	 contain	 HEAT	 repeats,	 which	

encode	 two	 α‐	 helices	 separated	 by	 a	 turn.	 CAP‐H	 is	 a	member	 of	 the	 kleisin	

family	(Hirano	et	al,	1997;	Kranz	et	al,	2013)	and	bridges	the	ATPase	domains	of	

Smc2	 and	 Smc4,	 as	well	 as	mediating	 the	 interaction	 between	 the	 CAP‐D	 and	

CAP‐G	subunits.	Condensin	forms	a	flexible	structure	which	acts	as	a	scaffold	for	

interacting	 proteins	 (Neuwald	 &	 Hirano,	 2000).	 It	 is	 associated	 with	

chromosomes	 and	 acts	 to	 form	 supercoiled	 structures	 to	 condense	 the	

chromatin	for	mitosis	(Murray	&	Carr,	2008).	

The	MRN	complex	 is	 structurally	 similar	 to	 the	SMC	protein	 complexes	and	 is	

formed	from	a	homodimer	of	Rad50.	Two	molecules	of	Mre11	and	Nbs1	bridge	

the	ATPase	domains	(Williams	et	al,	2010)		.		

1.7.1 The	Smc5/6	complex	

The	Smc5/6	 complex	 is	 essential	 for	 cell	 viability	 and	 is	 implicated	 in	 several	

DNA	 damage	 dependent	 processes	 including	 homologous	 recombination,	

recovery	of	stalled	replication	forks	and	telomere	elongation.	

Smc6	 (previously	 called	 Rad18)	 was	 the	 first	 eukaryotic	 SMC	 protein	 to	 be	

described.	 It	 was	 identified	 in	 a	 study	 of	 the	 S.	pombe	 DNA	 damage	 sensitive	

mutant	 rad18‐x	 (Lehmann	 et	 al,	 1995).	 Along	 with	Smc5,	 it	 forms	 a	 complex	

with	 six	 non‐SMC	 proteins	 Nse1‐6,	 each	 of	 which	 is	 described	 briefly	 below.	

Deletion	of	 the	genes	encoding	all	components	of	 the	Smc5/6	complex,	except	

for	nse5	and	nse6,	 is	 lethal	 in	S.	pombe,	 indicating	that	the	complex	 is	essential	

for	viability.	This	is	likely	due	to	a	requirement	for	Smc5/6	complex	function	in	

DNA	 replication	 (Ampatzidou	 et	 al,	 2006).	 As	 is	 the	 case	 with	 other	 SMC	

                             32



	 	

proteins,	Smc5	and	Smc6	interact	non‐covalently	via	their	central	hinge	regions.	

The	globular	heads	at	the	C‐	and	N‐	termini	of	both	Smc5	and	Smc6	form	ATPase	

domains	 that	 are	 bridged	by	Nse4	 (a	member	 of	 the	 kleisin	 family)	 and	Nse3	

(Palecek	et	al,	2006a).	

Nse1	 is	 thought	 to	 associate	with	Nse3	 and	Nse4	 to	 stabilise	 their	 interaction	

(Palecek	et	al,	2006a;	Sergeant,	2005).	It	contains	a	RING	finger	domain	typical	

of	E3	ubiquitin	ligases.	Human	Nse1	was	observed	to	facilitate	ubiquitination	in	

vitro	in	the	presence	of	Nse3	(Doyle	et	al,	2010;	Pebernard	et	al,	2008).	Nse1	is	

also	 proposed	 to	 bridge	 and	 stabilise	 the	 interaction	 between	Nse3	 and	Nse4	

(Hudson	 et	 al,	 2011)	 and	 is	 required	 for	 Smc5/6	 function	 in	 DNA	 repair	

(Pebernard	et	al,	2008).	Nse2	is	a	SUMO	ligase	and	is	described	in	more	detail	in	

section	1.7.1.1.	

Nse3	(MAGE‐G1)	contains	a	MAGE	domain.	Several	MAGE	family	proteins	have	

been	 found	 to	 bind	 to	 and	 stimulate	 E3	 ubiquitin	 ligases	 (Doyle	 et	 al,	 2010).	

Nse3	 binds	 to	 the	 Smc5/6	 head	 domains	 (Palecek	 et	 al,	 2006b).	 Nse4	 has	 a	

kleisin	domain	at	its	C	terminus	which	is	required	for	binding	to	the	Smc5	head	

domain	 in	 yeast	 and	 humans	 (Palecek	 et	 al,	 2006b;	 Pebernard	 et	 al,	 2008;	

Sergeant,	2005).	Additionally,	the	N‐terminus	of	Nse4	contains	an	Nse3‐binding	

domain	(Guerineau	et	al,	2012).		

In	 S.	 pombe,	 Nse5	 has	 been	 reported	 to	 bind	 close	 to	 the	 head	 domains	 of	

Smc5/6,	 and	 to	 form	 a	 heterodimer	 with	 Nse6	 (Duan	 et	 al,	 2009b),	 which	

contains	HEAT	repeats.	The	roles	of	Nse5	and	Nse6	are	not	well	defined.	There	

are	 no	 currently	 identified	 human	 homologues	 of	Nse5	 and	Nse6	 and	 neither	

protein	is	essential	for	viability	in	S.	pombe	(Palecek	et	al,	2006b;	Pebernard	et	

al,	2006).	Nse5	interacts	non‐covalently	with	SUMO	as	well	as	Hus5/Ubc9,	and	

is	reported	to	influence	the	cellular	localisation	of	the	Smc5/6	complex	(Bustard	

et	al,	2012).		

1.7.1.1 Nse2	

Nse2	contains	an	SP‐RING	domain	at	its	C‐terminus	and	is	known	to	function	as	

a	SUMO‐ligase.	The	fact	that	a	ligase	dead	mutant	is	viable	while	the	Nse2	null	

strain	is	not	indicates	that	the	SUMO	ligase	function	of	Nse2	is	not	essential	for	
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viability	 (Andrews	 et	 al,	 2005;	 Potts	 &	 Yu,	 2005;	 Sergeant,	 2005).	 The	 N‐

terminus	of	Nse2	is	associated	with	the	coiled	coil	region	of	Smc5.	Disruption	of	

this	 interaction	 leads	 to	 defects	 in	 cell	 growth	 and	 DNA	 damage	 repair,	 the	

severity	of	which	depends	on	the	level	of	disruption	(Duan	et	al,	2009b)	.		

Nse2	does	not	contain	the	SAR,	Acinus	and	PIAS	(SAP)	motif	which	is	required	

for	 DNA	 binding	 in	 other	 PIAS	 proteins.	 However	 as	 the	 Smc5/6	 complex	 is	

associated	 with	 chromatin,	 Nse2	 could	 be	 targeted	 to	 the	 DNA	 through	 its	

interaction	with	Smc5	(Lindroos	et	al,	2006;	Stephan	et	al).	

Several	 substrates	 of	 Nse2	 have	 been	 identified	 in	 S.	pombe,	 including	 Nse2	

itself.	Nse2	has	also	been	shown	to	 facilitate	SUMOylation	of	Nse3	 in	vitro	and	

Smc6	 both	 in	 vitro	 and	 in	 vivo	 (Andrews	 et	 al,	 2005).	 Nse2	 target	 proteins	

identified	 in	 other	 organisms	 include	 Smc5	 and	Ku70	 in	 S.	cerevisiae	 (Zhao	&	

Blobel,	2005)	and	Trf1	and	Trf2,	which	are	 involved	 in	telomere	maintenance,	

as	well	as	the	cohesin	subunits	in	humans	(Potts	et	al,	2006;	Potts	&	Yu,	2007)	

nse2‐SA	 mutants	 which	 are	 ligase	 dead	 and	 thus	 unable	 to	 facilitate	

SUMOylation	are	highly	sensitive	to	a	range	of	DNA	damaging	agents,	including	

HU,	 UV	 and	 MMS	 (Andrews	 et	 al,	 2005).	 mms21	mutants	 defective	 in	 the	

S.cerevisiae	homologue	are	similarly	sensitive	to	DNA	damage	and	also	display	

defects	 in	mitosis	 (Prakash	&	Prakash,	 1977)	 indicating	 an	 important	 role	 for	

Nse2‐mediated	SUMOylation	in	the	DNA	damage	response	and	repair	of	double	

strand	 breaks.	 Functional	 Nse2	 is	 also	 required	 for	 the	 resolution	 of	 Rad51‐

dependent	X‐shaped	DNA	structures	which	can	arise	at	stalled	replication	forks	

(Branzei	et	al,	2006;	Chavez	et	al,	2010).		

The	 viability	 of	 nse2‐SA	 mutants	 suggests	 that	 the	 stability	 of	 the	 Smc5/6	

complex	as	a	whole	is	not	adversely	affected	by	mutation	in	the	SP‐RING	domain	

(Andrews	et	al,	2005).	The	nse2‐SA	mutant	is	synthetically	lethal	with	two	Smc6	

mutants,	rad18‐x	and	rad18‐74,	which	have	mutations	close	to	the	hinge	region	

and	the	ATP	binding	site,	respectively	(Andrews	et	al,	2005;	Irmisch	et	al,	2009).	

This	suggests	that	the	stability	of	Smc6	may	be	affected	in	the	absence	of	Nse2‐

mediated	SUMOylation	(Andrews	et	al,	2005).	
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The	 nse2‐SA	 mutant	 is	 hyper‐sensitive	 to	 DNA	 damage	 and	 nse2	 deletion	 is	

lethal	(Andrews	et	al,	2005).	This	is	in	contrast	to	the	other	SUMO	ligase	Pli1	 ,	

which	is	not	essential	and	not	sensitive	to	genotoxins	when	deleted	(Xhemalce	

et	 al,	 2004a).	nse2‐SA	mutants	have	wild	 type	 levels	of	high	molecular	weight	

SUMO	 chains,	 whereas	 pli1.d	 cells	 show	 drastically	 reduced	 SUMO	 chain	

formation	 (Watts	 et	 al,	 2007).	Taken	 together,	 and	 considering	 the	 range	 of	

Nse2	 target	 proteins	 identified	 so	 far,	 it	 appears	 that	 Nse2‐mediated	

SUMOylation	in	association	with	the	Smc5/6	complex	and	Rad60	is	required	for	

a	discrete	range	of	DNA	repair	processes	and	cellular	 functions,	 including	DSB	

repair,	 telomere	maintenance	 and	 cohesin	 functions,	 whereas	 Pli1‐dependent	

SUMOylation	 functions	 in	 global	 SUMOylation	 and	 SUMO	 chain	 formation	

(Albuquerque	et	al,	2013;	Prudden	et	al,	2011).	

1.7.2 Smc5/6	functions	

The	 Smc5/6	 complex	 is	 associated	 with	 chromatin	 predominantly	 during	 S	

phase	 in	S.	pombe.	 It	 is	also	observed	at	centromeres	and	 telomeres	 in	both	S.	

pombe	 and	 S.	 cerevisiae,	 indicating	 its	 requirement	 for	 accurate	 centromere	

separation	 (Lindroos	 et	 al,	 2006;	 Pebernard	 et	 al,	 2008).	 The	 complex	 is	 also	

recruited	to	ribosomal	DNA	(rDNA)	which	 is	prone	to	replication	 fork	stalling,	

and	this	is	increased	following	HU	treatment	(Pebernard	et	al,	2008).	In	both	S.	

cerevisiae	 and	 human	 cells,	 the	 Smc5/6	 complex	 is	 recruited	 to	 artificially	

induced	DNA	DSBs,	and	this	is	facilitated	by	the	MRN	complex	(De	Piccoli	et	al,	

2006;	Lindroos	et	al,	2006;	Potts	et	al,	2006).	These	observations	suggest	a	role	

for	the	complex	in	the	response	to	replication	stress	and	repair	of	DSBs.	

Genetic	analysis	of	mutants	defective	in	the	Smc5/6	complex	proteins	indicates	

epistasis	with	mutants	defective	 in	proteins	 involved	in	HR.	Smc6	mutants	are	

sensitive	 to	 genotoxins	 including	 UV	 and	 IR,	 and	 deletion	 of	 S.	 pombe	

Rad51/Rad55	 homologues	 (previously	 called	 Rhp51/Rhp55)	 alleviates	 this	

sensitivity	(Ampatzidou	et	al,	2006;	Lehmann	et	al,	1995).	Analysis	of	two	well‐	

characterised	 Smc6	mutants,	 smc6‐x	 and	 smc6‐74	 showed	 an	 accumulation	 of	

recombination	 intermediates.	 This	 is	 similar	 to	 the	S.	cerevisiae	mms2	mutant	

mentioned	above,	suggesting	a	role	for	the	complex	in	HR	repair.	In	addition	to	

this,	 both	 smc6	 mutants	 were	 reported	 to	 show	 ‘cut’	 phenotypes,	 consistent	
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with	unresolved	structures	 impeding	mitosis	(Ampatzidou	et	al,	2006;	Irmisch	

et	 al,	 2009).	 The	 severity	 of	 smc5/6	 mutant	 phenotypes	 is	 enhanced	 in	

combination	 with	 sgs1‐d	 or	mus81‐d,	 which	 have	 helicase	 and	 endonuclease	

activity	respectively,	and	are	involved	in	crossover	resolution	(Kegel	&	Sjögren,	

2010).	

When	 replication	 forks	 are	 stalled	 (following	 HU	 treatment),	 Rad52	 and	 RPA	

recruitment	 requires	Smc6.	Rad51	 recruitment	however,	 does	not	 require	 the	

Smc5/6	complex	(Irmisch	et	al,	2009).	Rad52	has	been	shown	to	 form	Rad51‐

independent	foci	 in	response	to	replication	stress,	and	its	recruitment	may	act	

to	 protect	 nascent	 DNA	 ends	 and	 stabilise	 the	 stalled	 fork	 using	 its	 strand	

annealing	 ability	 (Bass	 et	 al,	 2012).	 Rad52	 recruitment	 to	 stalled	 replication	

forks	 is	abolished	in	the	smc6‐74	mutant,	but	not	 in	the	smc6‐x	mutant.	Rad52	

recruitment	 to	collapsed	replication	 forks	however,	 is	unaffected	 in	both	smc6	

mutants.	This	lead	to	the	suggestion	of	an	‘early’	role	for	the	Smc5/6	complex	in	

HR,	 which	 involves	 facilitating	 Rad52	 and	 RPA	 recruitment,	 perhaps	 by	

stabilising	 the	stalled	 fork	structure.	This	role	 is	only	defective	 in	 the	smc6‐74	

mutant,	which	is	impaired	in	ATP	binding	(Irmisch	et	al,	2009).		

The	complex	is	also	required	at	a	‘late’	stage	of	HR,	following	fork	collapse.	This	

is	 apparent	 by	 the	 accumulation	 of	 recombination	 structures	 in	 both	 smc6‐74	

and	smc6‐x	mutants,	as	well	as	in	smc5	and	nse2	mutants.	This	points	to	a	role	in	

the	 resolution	 of	 HR‐dependent	 structures,	 which	 is	 required	 for	 DNA	 repair	

and	replication	re‐start.	Loss	of	this	function	results	in	aberrant	and	potentially	

fatal	mitosis	(Irmisch	et	al,	2009).	

The	smc6‐74	mutant	phenotype	 is	suppressed	by	the	BRCT	domain‐containing	

protein	Brc1.	This	suppression	is	dependent	on	several	other	proteins,	including	

structure	 specific	 nucleases	 (Sheedy	 et	 al,	 2005;	 Verkade	 et	 al,	 1999).	 Brc1	 is	

homologous	to	S.	cerevisiae	Esc4,	which	is	required	in	response	to	MMS	and	HU	

treatment	(Sheedy	et	al,	2005).	Brc1	is	required	at	stalled	replication	forks	and	

has	 been	 suggested	 to	 act	 as	 a	 scaffold	 for	 repair	 proteins	 during	 replication.	

Brc1	could	act	to	promote	non‐homologous	repair	pathways	that	do	not	require	

Smc5/6	 function,	such	as	 lesion	bypass	by	TLS,	or	 to	process	 intermediates	 in	
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the	absence	of	the	complex	(Bass	et	al,	2012;	Irmisch	et	al,	2009;	Murray	&	Carr,	

2008).	

Whilst	 loss	 of	 Smc5/6	 complex	 function	 is	 lethal	 in	 S.	pombe,	 loss	 of	 the	 HR	

pathway	 is	 not,	 suggesting	 additional	 roles	 for	 the	 complex,	 outside	 of	 DNA	

repair	 (Ampatzidou	 et	 al,	 2006).	 These	might	 involve	 regulation	 of	 chromatin	

structure,	through	Nse2‐mediated	SUMOylation	of	the	Cohesin	subunits,	and	an	

involvement	 in	 the	 relief	 of	 topological	 stress,	 indicated	 by	 synthetic	 lethality	

between	the	smc6‐74	mutant	and	a	Top2	mutant	(Verkade	et	al,	1999).		

In	 higher	 eukaryotes	 the	 Smc5/6	 complex	 is	 also	 implicated	 in	 telomere	

elongation	 via	 the	 ALT	 pathway	 by	 Nse2‐induced	 SUMOylation	 of	 telomeric	

regulatory	proteins.	As	mentioned	above,	Nse2‐dependent	SUMOylation	of	Trf1	

and	Trf2	promotes	HR	dependent	elongation	of	telomeres	(Potts	&	Yu,	2007).	

The	 exact	 mechanisms	 by	 which	 the	 Smc5/6	 complex	 and	 the	 Nse	 proteins	

facilitate	the	stabilisation	of	stalled	replication	forks	and	recovery	of	replication	

intermediates	 are	 still	 unclear.	 The	 non‐Smc	 proteins	 have	 been	 suggested	 to	

act	to	recruit	the	complex	to	specific	sites.	Two	nse5	mutants	characterised	in	S.	

cerevisiae	suggested	a	potential	role	for	Nse5	in	the	localisation	of	the	Smc5/6	

complex.	 One	 mutant	 was	 also	 implicated	 in	 the	 resolution	 of	 X‐shaped	

structures	 that	are	 formed	as	a	 result	of	 replication	 fork	 stalling	and	collapse,	

however	 the	mechanisms	behind	 this	 have	 yet	 to	be	described	 (Bustard	et	 al,	

2012).	

1.7.3 Rad	60		

Rad60	 is	 a	member	 of	 the	 RENi	 family	 of	 proteins,	which	 are	 SLD‐containing	

proteins	 conserved	 from	 yeast	 to	 humans	 (Novatchkova	 et	 al,	 2005).	 It	 was	

initially	identified	in	a	screen	for	HR	mutants,	which	display	phenotypes	similar	

to	Smc5/6	mutants	(Morishita	et	al,	2002).	Rad60	 is	associated	physically	and	

functionally	with	 the	 Smc5/6	 complex	 and	 is	 delocalised	 from	 the	 nucleus	 in	

response	to	HU	treatment	and	S	phase	checkpoint	activation.	It	is	also	required	

for	 recovery	 from	 replication	 arrest	 (Boyd	 et	 al,	 2010;	Morishita	 et	 al,	 2002;	

Prudden	et	al,	2009).	

                             37



	 	

Rad60	was	immunoprecipitated	with	Smc5	in	non‐stoichiometric	amounts	and	

may	be	involved	in	regulation	of	Smc5/6	at	stalled	replication	forks.	It	has	been	

proposed	 to	 act	 as	 a	 scaffold	 to	 bring	 pathway	 components	 to	 SUMO	 targets	

(Irmisch	et	al,	2009).	

Rad60	 has	 an	 acidic	 and	 disordered	N‐terminus	which	 contains	 a	 SIM	 that	 is	

required	 in	 response	 to	 replicative	 stress	 (Raffa	 et	 al,	 2006).	 The	 C‐terminus	

contains	 two	 C	 terminal	 SLDs	 (Boddy	 et	 al,	 2003;	 Novatchkova	 et	 al,	 2005).	

SLD1	has	a	SIM	binding	site	and	is	essential	for	viability	(Boyd	et	al,	2010).	SLD1	

interacts	with	 the	Fub2	subunit	of	 the	SUMO	E1	activator	heterodimer,	 SUMO	

E3	ligase	Pli1,	and	the	STUbL	(SUMO	targeted	ubiquitin	ligase)	Slx8	in	S.	pombe	

(Prudden	 et	 al,	 2009).	SLD2	 is	 not	 essential	 for	 viability,	 however	 deletion	 of	

this	 domain	 results	 in	 destabilisation	 of	 the	 Rad60	 protein	 and	 increased	

sensitivity	to	DNA	damage	(Boyd	et	al,	2010).	SLD2	is	known	to	non‐covalently	

interact	 with	 the	 SUMO	 E2	 conjugator	 Ubc9/Hus5	 as	 mentioned	 in	 section	

1.3.1.3.	 It	 is	 suggested	 that	 Rad60	 acts	with	 the	 Smc5/6	 complex	 to	 facilitate	

Nse2	 dependant	 SUMOylation	 in	 response	 to	 DNA	 damage,	 whereas	 SUMO	

bound	 Ubc9	 facilitates	 Pli1‐dependent	 global	 SUMOylation	 (Prudden	 et	 al,	

2011).		

It	 is	 likely	 that	 Rad60	 also	 has	 a	 role	 independent	 of	 SUMOylation.	 Rad60	 is	

required	 for	 recovery	 from	 replication	 arrest,	 and	 may	 be	 involved	 in	 the	

regulation	 of	 Smc5/6	 at	 stalled	 replication	 forks,	 implicated	 by	 its	

phosphorylation	 by	 checkpoint	 kinase	 Cds1	 (Boddy	 et	 al,	 2003;	Miyabe	 et	 al,	

2009;	Raffa	et	al,	2006).	

1.8 PCNA		

PCNA	 (Proliferating	 cell	 nuclear	 antigen)	 was	 named	 after	 its	 discovery	 in	

humans	as	an	antigen	during	a	study	of	autoantibodies	(Miyachi	et	al,	1978).	It	

forms	 a	 homo‐trimeric	 ring	 which	 encircles	 DNA	 during	 replication	 and	 can	

move	 in	both	directions,	 acting	 as	 a	docking	 station	 for	 the	DNA	polymerases	

and	a	wide	range	of	proteins	involved	in	replication	and	repair	(Moldovan	et	al,	

2007).	Hundreds	of	PCNA‐interacting	proteins	have	been	identified	to	date	and	

PCNA	 and	 its	 interacting	 proteins	 are	 involved	 in	 a	 variety	 of	 processes,	
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including	 cell	 cycle	 regulation,	 chromosome	 cohesion,	 MMR,	 BER	 and	 NER	

(Strzalka	 &	 Ziemienowicz,	 2011).	 Several	 interacting	 proteins	 possess	 a	 PIP	

(PCNA	interacting	protein)	motif	(Gulbis	et	al,	1996;	Jonsson	et	al,	1998),	which	

is	a	conserved	peptide	sequence	of	QxxΨ	(Ψ	being	a	hydrophobic	residue).	Non‐

conancial	PIP	boxes	are	described	as	having	an	N	terminal	KAx	sequence	(Xu	et	

al,	2001).	For	example	XPG	(S.	pombe	Rad13)	the	NER	endonuclease,	contains	a	

C‐terminal	PIP	box.	This	is	necessary	for	NER	activity	as	well	as	PCNA	binding,	

although	the	mechanisms	underlying	these	interactions	are	unclear	(Gary	et	al,	

1997).	 PCNA	 is	 post‐translationally	modified	 by	 SUMO	 and	 ubiquitin	 and	 this	

determines	the	choice	of	post	replicative	repair	pathways.	

1.8.1 PCNA	structure	

PCNA	 consists	 of	 three	 identical	 monomers.	 Each	 monomer	 contains	 two	

globular	 domains	 which	 are	 separated	 by	 an	 inter‐domain	 connecting	 loop	

(IDCL).	 The	 crystal	 structure	 of	 the	 S.	cerevisiae	 homologue	 of	 PCNA	 (POL30)	

indicates	 that	 it	 is	 extremely	 similar	 to	 that	 of	 the	β	 subunit	 of	 bacterial	DNA	

polymerase	 III,	 despite	 a	 lack	 of	 sequence	 homology,	 suggesting	 a	 similar	

function	 (Krishna	et	 al,	 1994).	 It	 is	 possible	 to	distinguish	between	a	 front	 ‘C’	

side	 and	 back	 side	 of	 the	 PCNA	 trimer,	 due	 to	 the	 subunits	 interacting	 in	 a	

directional	‘head	to	toe’	manner.	It	is	the	‘C’	surface	with	which	polymerases	and	

other	replication	proteins	interact,	and	this	ensures	directionality	of	replication.	

The	inner	surface	of	the	ring,	which	interacts	with	DNA,	contains	α‐helices	and	

is	 positively	 charged,	whilst	 the	 outer	 surface	 is	 formed	 from	β‐sheets	 and	 is	

negatively	 charged	 (Gulbis	 et	 al,	 1996;	 Krishna	 et	 al,	 1994).	 A	 hydrophobic	

pocket	is	located	underneath	the	IDCL	of	each	monomer,	which	accommodates	

the	structure	formed	by	the	PIP	motif	on	some	PCNA‐interacting	proteins.	Any	

changes	 in	 the	PIP	motif	sequence	or	 flanking	sequence	can	dramatically	alter	

the	binding	affinity	(Bruning	&	Shamoo,	2004;	Gulbis	et	al,	1996).	Homotrimeric	

PCNA	has	the	ability	to	bind	three	proteins	at	the	same	time	via	PIP	motifs,	with	

one	binding	to	each	monomer.	This	is	observed	with	the	RFC	complex	where	the	

different	 PCNA	 subunits	 bind	 different	 RFC	 monomers,	 and	 FEN1	 (S.	pombe	

Rad2),	a	copy	of	which	can	occupy	each	of	the	three	PCNA	monomers	(Bowman	

et	al,	2004;	Sakurai	et	al,	2005).	The	crystal	structure	of	both	ubiquitinated	and	
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SUMOylated	PCNA	confirms	that	these	modifications	occur	on	the	‘back’	face	of	

PCNA,	opposite	 to	where	 the	DNA	polymerases	 interact.	These	structures	also	

demonstrated	 that	 SUMO	 and	 ubiquitin	 modifications	 do	 not	 alter	 the	

conformation	of	PCNA	(Freudenthal	et	al,	2011).	

1.8.2 PCNA	ubiquitination	and	PRR	

Post	 replicative	 repair	 (PRR)	 pathways	 or	 ‘damage	 tolerance’	 pathways	 are	

employed	to	allow	replication	to	continue	past	a	site	of	DNA	damage.	There	are	

two	 types	 of	 PRR,	 error‐prone	 translesion	 synthesis	 (TLS),	 and	 error‐free	

template	 switch	 (TS).	 The	path	 taken	 to	 overcome	 the	 lesion	 is	 dependent	 on	

PCNA	 ubiquitination	 by	 members	 of	 the	 Rad6	 epistasis	 group	 (Jentsch	 et	 al,	

1987;	Ulrich,	2005;	Xiao	et	al,	1999).	Rad6	is	a	ubiquitin	E2	conjugating	enzyme	

and	part	of	a	group	of	proteins	which	result	in	the	mono‐	or	poly‐ubiquitination	

of	PCNA	at	a	stalled	replication	fork	(Hoege	et	al,	2002)		(Figure	1.4).	

TLS	is	activated	in	response	to	replication	fork	blocking	lesions,	following	PCNA	

mono‐ubiquitination	 at	 K164.	 Stalling	 of	 the	 replication	 fork	 results	 in	 the	

exposure	of	 ssDNA	which	 is	 subsequently	bound	by	RPA.	This	 recruits	 the	E3	

ubiquitin	 ligase	 Rhp18	 which	 acts	 with	 the	 ubiquitin	 E2	 conjugating	 enzyme	

Rad6	to	mono‐ubiquitinate	PCNA	on	K164	(Hoege	et	al,	2002).	This	is	a	highly	

conserved	modification	which	has	 been	observed	 in	 all	 eukaryotes	 studied	 so	

far.	 Y	 family	 polymerases	 (except	 for	 Rev1),	 including	 Polη	 and	 Polζ	

(Rev3/Rev7)	contain	PIP	motifs.	In	addition,	all	of	the	TLS	polymerases	have	an	

increased	affinity	for	mono‐ubiquitinated	PCNA	due	to	the	presence	of	ubiquitin	

binding	 domains	 called	 UBM	 or	 UBZ	 domains.	 (Sale	 et	 al,	 2012)	 TLS	

polymerases	 are	 able	 to	 accommodate	 damaged	 bases	 in	 their	 active	 site	 and	

insert	 a	 nucleotide	 opposite	 to	 the	 lesion.	 Replication	 is	 continued	 past	 the	

lesion	by	a	TLS	polymerase	before	the	replicative	DNA	polymerase	is	switched	

back.	 This	 allows	 the	 damage	 to	 remain	 undetected	 by	 the	 replicative	

polymerase,	 which	 has	 3’	 to	 5’	 proof‐	 reading	 activity	 (Sale	 et	 al,	 2012)	

(Friedberg,	 2005).	 Translesion	 synthesis	 is	 error‐prone	 and	 can	 lead	 to	

permanent	mutations.		
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PCNA	 mono‐ubiquitination	 on	 K164	 can	 be	 extended	 to	 form	 K63‐linked	

ubiquitin	 chains.	 This	 is	 facilitated	 by	 the	 ubiquitin	 E2	 heterodimer	 Ubc13‐

Mms2	and	E3	ubiquitin	ligase	Rad5.	Poly‐ubiquitination	promotes	the	bypass	of	

damage	by	 template	switching	(TS),	an	apparently	error‐free	process	which	 is	

not	well	defined,	but	possibly	involves	recombination	(Hoege	et	al,	2002;	Parker	

&	 Ulrich,	 2009).	 Recently,	 human	 ZRANB3	 was	 shown	 to	 interact	 with	 poly‐

ubiquitinated	 PCNA.	 This	 protein	 has	 nuclease	 and	 helicase	 domains	 which	

could	aid	stalled	replication	fork	resolution	(Zeman	&	Cimprich,	2012).	
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Whilst	 the	 general	 PRR	 pathway	 is	 conserved	 between	 organisms,	 some	

differences	 exist	 in	 S.	 pombe.	 PCNA	 is	 ubiquitinated	 in	 response	 to	 DNA	

damaging	agents	or	replication	stress	in	budding	yeast	and	humans	(Hoege	et	al,	

2002).	 However,	 PCNA	 ubiquitination	 is	 also	 detected	 in	 S	 phase	 in	

unchallenged	cells	in	S.	pombe,	and	this	is	increased	in	response	to	DNA	damage	

(Frampton	et	al,	2006).	In	contrast	to	S.	cerevisiae,	S.	pombe	PCNA	ubiquitination	

is	also	observed	in	G2	in	response	to	DNA	damage	including	ionising	radiation	

(Frampton	et	al,	2006)	

1.8.3 SUMOylation	of	PCNA		

As	 well	 as	 being	 ubiquitinated,	 S.	 cerevisiae	 PCNA	 is	 also	 SUMOylated,	

predominantly	on	K164.	This	requires	the	SUMO	E2	conjugating	enzyme	Ubc9	

and	 the	 E3	 SUMO	 ligase	 Siz1.	 SUMO	 modification	 is	 also	 observed	 on	 K127,	

albeit	to	a	lesser	extent	(Hoege	et	al,	2002).	K127	is	part	of	a	SUMO	consensus	

site	which	likely	allows	interaction	with	Ubc9.	SUMOylation	at	this	site	has	been	

suggested	to	block	the	interaction	with	PCNA‐interacting	proteins	(Moldovan	et	

al,	2006).	PCNA	SUMOylation	in	S.	cerevisiae	occurs	constitutively	during	normal	

S	 phase,	 and	 is	 increased	 in	 response	 to	 replication	 stress.	 This	 results	 in	 the	

recruitment	 of	 a	 helicase	 called	 Srs2,	 via	 its	 C‐terminal	 SIM	 and	 PIP	 motifs	

(Shaheen	 et	 al,	 2010).	 Srs2	 is	 an	 anti‐recombinogenic	 helicase	which	 inhibits	

Rad51	 filament	 formation	 in	 the	 early	 stages	 of	HR.	 It	 does	 so	 by	 stimulating	

ATP	hydrolysis	of	Rad51	which	reduces	its	affinity	for	DNA	(Papouli	et	al,	2005;	

Pfander	 et	 al,	 2005b).	 The	 predominant	 role	 of	 PCNA	 SUMOylation	 in	 S.	

cerevisiae	appears	 to	 be	 the	 inhibition	 of	 inappropriate	 recombination.	 It	 has	

been	 suggested	 that	 this	 prevents	 unwanted	 sister	 chromatid	 recombination	

that	 could	 result	 in	 deletions	 and	 gross	 chromosomal	 rearrangements	

(Moldovan	 et	 al,	 2007).	 The	 inhibition	 of	 recombination	 allows	 time	 for	

ubiquitin‐dependent	repair	by	the	Rad6	error‐prone	or	error‐free	pathways.		

PCNA	 SUMOylation	 has	 more	 recently	 been	 reported	 in	 chicken	 DT40	 cells,		

Xenopus	laevis	and	human	cells		(Arakawa	et	al,	2006;	Gali	et	al,	2012a;	Leach	&	

Michael,	2005a).	Two	PCNA	SUMOylation	sites	were	identified	on	human	PCNA	

in	vitro,	 K164	 and	 K254.	 A	 C‐terminal	 fusion	 of	 SUMO	 to	 PCNA	 resulted	 in	 a	

decrease	 in	 recombination	 resulting	 from	 induced	 DSBs	 and	 an	 increased	
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resistance	 to	 replication	 fork‐blocking	 lesions.	 Over‐expression	 of	 a	 PCNA‐

K254R	mutant	resulted	in	elevated	γH2AX	foci	and	suggested	that	SUMOylation	

of	K254	reduces	DSB	formation.	The	authors	concluded	that	in	the	presence	of	

SUMO‐modified	PCNA,	replication	forks	encountering	DNA	lesions	are	less	likely	

to	be	converted	to	DSBs	(Gali	et	al,	2012a).	An	Srs2	ortholog	recently	identified	

in	human	cells	called	PARI	may	act	to	inhibit	recombination	in	a	similar	manner	

to	 Srs2.	 PARI	 also	 contains	 C‐terminal	 SIM	 and	 PIP	motifs	 and	 preferentially	

interacts	 with	 SUMOylated	 PCNA.	 It	 also	 interacts	 with	 Rad51	 and	 disrupts	

Rad51	 filament	 formation,	 removing	Rad51	 from	DNA.	PARI	does	not	possess	

ATPase	 or	 helicase	 activity	 and	 acts	 in	 stoichiometric	 amounts	 however,	

suggesting	different	modes	of	action	to	Srs2	(Moldovan	et	al,	2012).	

Several	 proteins	 interact	with	 SUMOylated	 PCNA	 via	 PIP	 and	 SIM	motifs.	 For	

example	S.	cerevisiae	Rad18	recruitment	is	greatly	enhanced	by	the	presence	of	

a	 SIM,	 however	 this	 SIM	 is	 not	 conserved	 in	 other	 organisms	 {Parker,	 2012	

#573.	 Elg1	 forms	 an	 alternative	 clamp	 loader	 with	 RFC	 2‐5.	 The	 S.	cerevisiae	

Elg1	sequence	also	contains	SUMO	interacting	motifs	(SIMs)	as	well	as	a	PIP	box	

(Kubota	 et	 al,	 2013).	 S.	 cerevisiae	 Elg1	 interacts	 with	 both	 unmodified	 and	

modified	 PCNA	 (Parnas	 et	 al,	 2010).	 Yeast	 two	 hybrid	 assays	 and	 IPs	 have	

suggested	that	Elg1	interacts	preferentially	with	SUMOylated	PCNA.	It	was	also	

found	that	 in	the	absence	of	Elg1,	SUMOylated	PCNA	and	Srs2	accumulated	on	

the	chromatin.	These	results	led	researchers	to	propose	that	Elg1‐RFC	may	have	

a	 role	 in	 the	 unloading	 of	 SUMOylated	 PCNA	 from	 chromatin	 (Parnas	 et	 al,	

2010).	It	was	noted	that	whilst	Elg1	appears	to	play	a	role	in	PCNA	unloading,	it	

is	possible	that	the	accumulation	of	SUMOylated	PCNA	observed	in	elg1	mutants	

in	 S.	cerevisiae	 is	 the	 result	 of	 PCNA	 being	 SUMOylated	 in	 S	 phase	when	 it	 is	

associated	with	 the	 chromatin	 (Ulrich,	 2013).	 The	 human	 homologue	 of	 Elg1,	

ATAD5	also	contains	SIMs,	and	these	enable	recruitment	of	a	de‐ubiquitinating	

complex	which	targets	ubiquitinated	PCNA	(Ahmad	&	Stewart,	2005).	
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1.9 Aims	

The	aim	of	the	work	in	this	thesis	was	to	primarily	develop	and	efficient	in	vitro	

system	 to	 identify	 SUMO	 modified	 lysine	 residues	 on	 SUMO	 target	 proteins.	

Further,	 to	 utilise	 this	 system	 to	 identify	 novel	 SUMO	 target	 proteins	 in	vitro,	

before	 investigating	 the	 effect	 of	 lysine	 to	 arginine	mutants	 of	 target	 proteins	

integrated	 into	 the	S.	pombe	genome.	 Following	 the	 identification	of	 SUMO	E3	

ligase	 Nse2	 mutants	 in	 human	 patients,	 this	 work	 set	 out	 to	 investigate	 the	

effect	 of	 the	 equivalent	 Nse2	mutations	 in	 S.	pombe.	 A	 third	 aim	 of	 the	work	

described	 here	was	 to	 confirm	 the	 SUMOylation	 of	 PCNA	 in	 S.	pombe,	 and	 to	

investigate	the	biological	function	of	this	modification	compared	to	that	in	other	

organisms.	 	
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2 Materials	and	methods	

2.1 DNA	methods	

2.1.1 Agarose	gel	electrophoresis	

300ml	 agarose	 gels	 at	 0.8%	 were	 generally	 used	 to	 analyse	 DNA	 samples,	

however	1‐1.5%	gels	were	used	to	analyse	DNA	fragments	smaller	than	500bp.	

To	make	300ml	0.8%	gels,	2.4g	agarose	(Melford)	was	dissolved	in	300ml	of	1	X	

TBE	buffer	by	heating	 in	a	microwave.	Once	cooled	slightly,	ethidium	bromide	

was	added	to	a	 final	concentration	of	0.25μg/ml	and	the	agarose	solution	was	

poured	into	a	gel	cast	to	set.	Gels	were	placed	in	a	gel	tank	filled	with	1	X	TBE	

buffer.	6	X	loading	buffer	was	added	to	DNA	samples	to	a	final	concentration	of	

1	X,	and	water	added	to	give	a	20μl	sample	volume.	 In	some	cases,	20‐30μl	of	

DNA	was	loaded	into	a	gel	for	gel	purification.	5μl	of	a	1Kb	ladder	(Invitrogen)	

was	run	alongside	samples	for	size	comparison.	Gel	electrophoresis	was	carried	

out	at	150V	for	approximately	30	minutes	and	DNA	bands	visualised	using	a	UV	

transilluminator.	

2.1.2 Gel	purification	

DNA	was	visualised	on	and	excised	 from	an	electrophoresis	gel	using	a	sterile	

scalpel.	DNA	was	purified	 from	agarose	gels	using	QIAquick	Gel	Extraction	Kit	

(QIAGEN),	as	per	the	manufacturer’s	instructions.	

2.1.3 Restriction	digest	

Restriction	 digests	were	 carried	 out	 using	NEB	 restriction	 enzymes.	 A	 typical	

50μl	reaction	would	be	set	up	as	described	below:	

	

	

	

	

10	x	NEB	buffer	 5μl	
0.5	‐	1μg	DNA		 2μl	
Restriction	enzyme	 1μl	
Sterile	H2O	 43μl	
Total	volume	 50μl	
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Digests	 were	 incubated	 at	 37°C	 for	 1	 hour	 and	 1μl	 analysed	 by	 gel	

electrophoresis	(see	section	2.1.3).	Plasmids	being	digested	were	subsequently	

PCR	 purified.	 DNA	 fragments	 being	 digested	 for	 ligation	 into	 a	 plasmid	were	

either	PCR	purified	or	gel	purified	prior	to	ligation.	

2.1.4 Ligation	

Ligation	reactions	were	carried	out	using	either	Quick	ligase	(NEB),	or	T4	DNA	

ligase	(Roche)	as	per	manufacturer’s	instructions.	A	3	fold	molar	excess	of	insert	

was	used	in	most	cases.	Quick	ligase	reactions	were	incubated	for	5	minutes	at	

room	 temperature.	 T4	 ligase	 reactions	 were	 incubated	 overnight	 at	 16°C.	

Ligated	 products	 were	 subsequently	 transformed	 into	 NM522	 E.	 coli	 cells.	 A	

typical	reaction	is	described	below:	

	

	

2.1.5 Plasmid	DNA	isolation	and	purification	

Individual	bacterial	colonies	were	inoculated	in	5ml	LB	broth	(See	section	2.2.2)	

with	appropriate	selective	antibiotics	(eg.	100μg/ml	ampicillin).	Cultures	were	

incubated	 at	 37°C	 with	 shaking	 (180rpm)	 for	 a	 minimum	 of	 4	 hours	 to	

overnight.	 For	 screening	 colonies	 for	 positive	 ligations,	 the	 DISH	 miniprep	

method	 was	 used.	 When	 the	 DNA	 was	 required	 for	 subsequent	 sequencing,	

digest	or	transformation	the	QIAprep	Spin	Miniprep	Kit	was	used	(QIAGEN).	

2.1.5.1 DISH	minipreps	

1ml	of	bacterial	culture	grown	as	mentioned	above	was	transferred	to	a	1.5ml	

eppendorf	tube	and	harvested	using	a	table	top	centrifuge	at	13,000	rpm	for	one	

minute.	Supernatant	was	discarded	and	the	pellet	resuspended	in	100μl	DISH	I	

solution.	200μl	DISH	II	solution	was	added	and	mixed	by	inverting.	150μl	of	ice	

2	x	Quick	Ligation	buffer	 10μl	
50ng	plasmid	DNA		 		1μl	
3	x	molar	excess	insert	DNA 		3μl	
Quick	ligase	 		1μl	
Sterile	H2O	 		5μl	
Total	volume	 20μl	

10	x	T4	ligase	buffer	 2μl	
50ng	plasmid	DNA		 2	μl	
3	x	molar	excess	insert	DNA	 3μl	
T4	DNA	ligase	 1μl	
Sterile	H2O	 	12μl	
Total	volume	 20μl	

Quick	ligase	reaction T4	DNA	ligase	reaction

                             47



	 	

cold	 DISH	 III	 was	 then	 added	 and	 mixed	 by	 inverting,	 before	 centrifuging	 at	

13,000	rpm	for	five	minutes.	The	supernatant	was	collected	and	put	into	a	fresh	

tube.	 200μl	 of	 phenol	 chloroform	 was	 then	 carefully	 added	 and	 mixed	 by	

inverting	before	centrifuging	at	13,000	for	5	minutes.	The	top	layer	of	solution	

was	transferred	to	a	fresh	eppendorf	tube	containing	1ml	of	100%	ethanol	and	

mixed	well.	Samples	were	then	centrifuged	at	13,000	rpm	for	five	minutes	and	

the	supernatant	discarded.	The	pellet	was	dried	using	a	desiccator	and	then	re‐

suspended	in	30μl	of	1XTE	containing	20μg/ml	RNAse.	2	‐5μl	was	analysed	by	

electrophoresis	gel.	

	

																														

	

2.1.5.2 QIAprep	Spin	Miniprep	

5ml	 of	 bacterial	 culture	was	used	 for	QIAprep	 Spin	Miniprep	 kit	 (QIAGEN)	 as	

per	manufacturer’s	instructions.	

2.1.6 PCR	amplification	of	DNA	

PCR	 amplification	 was	 carried	 out	 using	 either	 KOD	 hot	 start	 polymerase	

(Merck	Millipore)	as	per	manufacturer’s	instructions,	or	pfu	polymerase	which	

was	purified	 from	BL21	E.	coli	 cells	 (See	section	2.3.7).	Where	pfu	was	used,	a	

typical	reaction	set	up	was	as	follows:	

10	x	pfu	buffer	containing	MgSO4	 5μl	
2.5mM	dNTP	mix	 2μl	
10μM	Primers	(Forward	+	Reverse)	 1μl	+1μl	
DNA	(50ng)	 1μl	
Pfu	 1μl	
Distilled	H2O	 39μl	
Total	volume	 50μl	
	

A	typical	PCR	cycling	programme	was	as	follows:	

DISH	I	
9g/l	Glucose	
3g/l	Tris‐base	
3.72g/l	EDTA	

DISH	III	
3M	KOAc	
11.5%	Galacial	acetic	acid	

DISH	II	
0.2M	NaOH	
1%	SDS	
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Step	 Temperature	 Time	
Lid	heating	 94C																																																					 1	min	
Initial	denature	 94C						 30s	
Denature	 94C						 30s	
Annealing	 45‐55C	 (5C	 below	 primer	

Tm)	
30s	

Extension	 68C	 1min/Kb	
																																																			20‐30		cycles	
Final	extension	 68C	 2	min	
Hold	 6C	 infinite	
 

1‐5	μl	of	PCR	products	were	analysed	on	agarose	gel.	(See	section	2.1.1)	

2.1.7 Site	directed	mutagenesis	

Two	methods	of	site	directed	mutagenesis	were	used.	Complementary	primers	

were	designed,	which	contained	the	mutagenic	sequence	flanked	on	either	side	

by	15	nucleotides	which	complement	the	template	sequence.	In	one	method,	pfu	

polymerase	was	used	in	a	50μl	reaction	as	described	above,	to	amplify	around	

the	entire	plasmid.	PCR	products	were	analysed	on	a	0.8%	agarose	gel	as	above.	

In	 order	 to	 digest	 the	methylated	 DNA	 template	 and	 leave	 only	mutagenized	

plasmid,	1μl	of	DpnI	enzyme	was	added	to	the	reaction.	This	was	 incubated	at	

37°C	 for	 1	 hour	 and	 then	 subject	 to	 PCR	 purification	 (QIAGEN)	 as	 per	

manufacturer’s	instructions.	Plasmids	were	sequenced	by	GATC.	

In	 the	 second	 method,	 based	 on	 Horton	 et	 al.,	 1989,	 two	 PCR	 fragments	 are	

generated	with	 overlapping	 ends,	 both	 of	which	 contain	 the	 desired	mutation	

(See	diagram	1A).	These	 fragments	were	gel	purified	 (QIAGEN,	see	part	2.1.5)	

and	 used	 in	 a	 subsequent	 PCR	 in	 equimolar	 amounts.	 In	 this	 reaction,	 the	

external	 primers	were	 used	 to	 fuse	 and	 amplify	 the	mutagenic	 fragment	 (See	

diagram	1B).	This	was	then	be	PCR	purified,	digested	and	ligated	into	the	vector	

of	choice.	(See	section	2.1.7,	2.1.3	and	2.1.4	respectively).	
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2.1.8 PCR	purification	

PCR	 products	 and	 restriction	 digests	 were	 purified	 using	 QIAquick	 PCR	

Purification	Kit	(QIAGEN),	as	per	the	manufacturer’s	instructions.	

2.1.9 Sequencing	

Sequencing	was	carried	out	by	GATC‐biotech,	and	results	uploaded	to	a	server.	

Sample	 requirements	 were	 5μl	 of	 30‐100ng/μl	 DNA	 and	 5µl	 of	 30pmol/µl	

primer	per	sample.	

2.1.10 Ethanol	precipitation	

2	sample	volumes	of	100%	ethanol	and	1/10	volume	of		3M	 NaOH	 were	 added	

to	PCR	products.	Samples	were	incubated	at	‐20°C	for	a	minimum	of	1	hour	to	

overnight.	 Samples	 were	 centrifuged	 at	 13,000	 rpm	 for	 5	 minutes	 and	 the	

supernatant	 discarded.	 The	 pellet	 was	 resuspended	 in	 500μl	 of	 70%	 ethanol	

and	 centrifuged	 at	 13,000	 rpm	 for	 5	minutes.	 The	 supernatant	was	discarded	

and	the	pellet	was	dried	using	a	desiccator.	The	pellet	was	resuspended	in	30μl	

of	sterile	H2O.	1μl	was	run	on	an	electrophoresis	gel.	

	

A

B
CD	

B

D

Figure	2.1	PCR	mutagenesis	

Primer	 pairs	 A	 and	 B,	 and	 C	 and	 D	 were	 used	 in	 two	 separate	 reactions.	 This	
generated	two	fragments	containing	the	desired	mutation,	with	overlapping	ends	A.	
These	two	fragments	were	subsequently	used	as	the	template	for	a	third	PCR	using	
primers	D	and	B,	which	fused	and	amplified	the	mutagenic	fragment	B.	
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2.1.11 Linker	annealing	

Two	 complementary	 oligonucleotides	 were	 designed,	 with	 NdeI	 compatible	

overhangs	and	diluted	to	100nmol.	5μl	of	each	was	added	to	40μl	of	sterile	H2O	

in	an	eppendorf	 tube	and	heated	 to	95°C	 in	a	water	bath	 to	anneal	 the	 linker.	

The	water	bath	was	then	switched	off	and	cooled	to	room	temperature.	2μl	of	

the	 heated	 and	 cooled	 solution	 was	 used	 in	 a	 ligation	 reaction	 with	 50ng	 of	

digested	vector	in	a	20μl	ligation	reaction	(see	section	2.1.4).	Following	ligation,	

90μl	of	sterile	H2O	was	added	and	the	sample	was	heated	to	80°C	for	5	minutes	

before	cooling	quickly.	20μl	of	the	ligation	mixture	was	then	used	for	an	E.	coli	

transformation	(see	section	2.2.4)	 	
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2.1.12 Primers used in this study 

2.1.12.1 Primers used in chapter 3 
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2.1.12.2 Primers used in chapter 4 
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2.1.12.3 Primers used in chapter 5 

 

                             56



	 	

2.2 BACTERIAL	METHODS	

2.2.1 E.	coli	strains	

NM522	

NM522	 competent	 cells	were	 used	 for	 expression	 and	 purification	 of	 plasmid	

DNA.	 NM522	 contains	 a	 lacZ	 mutation	 which	 can	 be	 complemented	 with	

plasmids	encoding	lac‐α	to	allow	for	blue‐white	screening.	

BL21	

BL21	competent	cells	were	used	for	expression	and	purification	of	recombinant	

tagged	proteins.	BL21	strains	contain	the	λ‐DE3	lysogen	which	encodes	for	the	

lacI	 repressor	 gene	 and	 the	 T7	 RNA	 polymerase	 under	 the	 control	 of	 an	

inducible	 lac‐UV5	 promoter.	 The	 lac	 repressor	 binds	 the	 lac	 operator,	

preventing	 transcription	 and	 thus	 repressing	 expression	 of	 the	 T7	 RNA	

polymerase.	 IPTG	 is	 a	 compound	 which	 can	 bind	 the	 lac	 repressor.	 This	

prevents	the	repressor	from	binding	to	the	lac	operator,	inducing	expression	of	

the	T7	RNA	polymerase.	This	strain	can	therefore	provide	inducible	expression	

of	gene	products	cloned	into	expression	vectors	which	contain	the	T7	promoter,	

following	 addition	 of	 IPTG	 (life	 technologies).	 The	 BL21	 cells	 used	 here	 are	

chloramphenicol	resistant.	
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2.2.2 Bacterial	media	

LB	broth	was	used	to	grow	bacterial	cultures.	Components	are	as	follows:	

	

	

8g/l	agar	was	added	to	make	solid	media.	

Antibiotics	 were	 added	 to	 solid	 or	 liquid	 media	 to	 select	 for	 cells	 containing	

plasmids	 with	 antibiotic	 resistant	 markers.	 Antibiotics	 were	 used	 at	 the	

following	concentrations:		

	

	

	

2.2.3 Preparation	of	competent	E.	coli	cells	

A	single	colony	was	inoculated	in	5ml	LB	media	and	incubated	overnight	at	37°C	

with	 shaking	 (180rpm)	 (BL21	 cultures	 were	 supplemented	 with	 24μg/ml	

chloramphenicol).	This	pre‐culture	was	diluted	with	1	 litre	of	pre‐warmed	LB	

media	and	incubated	at	37°C	with	shaking	(180rpm)	for	2	–	4	hours	until	OD600	

0.5‐0.6.	 The	 culture	 was	 then	 chilled	 on	 ice	 for	 30	minutes	 to	 1	 hour	 before	

being	 centrifuged	 at	 5000rpm	 for	 5	 minutes	 at	 4°C	 .	 The	 supernatant	 was	

discarded	and	the	pellet	resuspended	in	25ml	ice	cold	TRNS	1	solution.	This	was	

incubated	in	ice	for	30	to	60	minutes.	Cells	were	harvested	by	centrifugation	at	

5000	rpm	for	5	minutes	at	4°C.	The	pellet	was	resuspended	in	12ml	of	TRNS	2	

solution	and	incubated	on	ice	for	one	hour.	The	cells	were	snap	frozen	using	in	

eppendorf	tubes	in	300μl	aliquots	using	liquid	nitrogen.	

	 	

Tryptone	 10g/l	
Yeast	extract	 		5g/l	
NaCl	 		5g/l	

Ampicillin	 100µg/ml	
Kanamycin	 			50µg/ml	
Chloramphenicol 			34µg/ml	
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TRNS	1																																																									

	

	

	

	

	

	

TRNS	2	

	

	

	

	

	

2.2.4 E.	coli	transformation	

Competent	cells	were	thawed	on	ice	for	10	to	15	minutes.	100‐200ng	of	plasmid	

DNA	 was	 added	 to	 100μl	 of	 thawed	 cells	 and	 incubated	 on	 ice	 for	 20	 to	 30	

minutes.	The	cells	were	heat	shocked	at	37°C	for	90	seconds.	1	ml	of	LB	media	

was	added	and	the	cells	incubated	at	37°C	to	allow	expression	of	the	antibiotic	

resistance	 gene.	 Cells	 were	 centrifuged	 at	 3000rpm	 for	 5	 minutes.	 The	

supernatant	 was	 discarded	 and	 the	 cells	 resuspended	 in	 the	 remaining	

supernatant	 (approximately	 100μl).	 Cells	 were	 spread	 onto	 solid	 LB	 media	

containing	the	appropriate	antibiotics	and	incubated	at	36°C	overnight.	

	 	

RbCl	 12g/l	

MnCl2.4H2O	 9.9g/l	

CaCl.2H2O	 1.5g/l	

CH3COONa	 2.88g/l	

Glycerol	 66ml/l	

pH	adjusted	to	5.8	using	

0.2M	acetic	acid	

RbCl	 6g/l	

CaCl.2H2O	 11g/l	

MOPS	 2.1g/l	

Glycerol	 66ml/l	

pH	adjusted	to	6.8	using	

KOH	
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2.2.5 Blue‐white	selection	

Blue‐white	 selection	 was	 used	 to	 select	 for	 recombinant	 E.	 coli	 containing	

plasmids	 with	 insertional	 inactivation	 of	 the	 lacZ	 gene.	 Where	 blue‐white	

selection	 as	 used,	 X‐GAL	 and	 IPTG	 were	 added	 to	 solid	 media	 to	 a	 final	

concentration	of:	

	

	

2.2.6 Bacterial	vectors	

pGEM‐T	Easy	(Promega)	

The	pGEM‐T	easy	vector	was	used	as	a	cloning	vector	prior	to	sub‐cloning	into	

subsequent	 vectors.	 pGEM‐T	 easy	 is	 a	 linearised	 vector	 with	 3’	 thymidine	

overhangs.	 This	 allows	 for	 efficient	 ligation	 with	 PCR	 products	 where	

deoxyadenosine	 overhangs	 which	 are	 added	 by	 some	 taq	 polymerases.	 The	

multiple	 cloning	 site	 is	 located	 within	 the	 α‐peptide	 coding	 region	 of	 β‐

galactosidase.	 Successful	 ligations	 result	 in	 insertional	 inactivation	 of	 this	

coding	region,	allowing	for	blue‐white	screening	of	recombinant	vectors.	T7	and	

SP6	RNA	polymerase	promoters	flanking	the	multiple	cloning	site	were	used	for	

sequencing	 with	 complementary	 universal	 primers	 SP6	 and	 Y7	 which	 are	

provided	by	GATC.	

pET15b	

The	 pET15b	 expression	 vector	 was	 used	 to	 fuse	 N‐terminal	 6xHIS	 tags	 to	

proteins	of	interest.	This	allows	for	purification	of	affinity	tagged	proteins	using	

Ni2+	agarose	beads	(QIAGEN,	see	section	2.3.5).	A	thrombin	cleavage	site	allows	

for	 cleavage	 of	 the	 HIS	 tag	 following	 expression	 and	 purification	 if	 required.	

Expression	 is	 under	 control	 of	 the	 T7	 RNA	 polymerase	 promoter	 and	 thus	

inducible	 by	 addition	 of	 IPTG.	 pET15b	 also	 encodes	 an	 ampicillin	 resistance	

gene.	

	 	

X‐GAL	 100µg/ml	
IPTG	 0.5mM	
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pGEX	KGH	

pGEX	 KGH	 expression	 vector	 was	 used	 to	 express	 N‐terminally	 GST	 tagged	

proteins.	 Following	 expression	 proteins	 were	 purified	 using	 glutathione	

sepharose	 beads	 (Pierce).	 A	 thrombin	 cleavage	 site	 allows	 for	 cleavage	 of	 the	

GST	 tag	 following	expression	and	purification	 if	 required.	Expression	 is	under	

control	 of	 the	 tac	promoter,	which	 is	 a	hybrid	of	 two	bacterial	promoters,	 trp	

and	 lac	 (SIGMA	 Aldrich).	 This	 allows	 for	 IPTG	 induced	 expression	 of	 the	

recombinant	protein.	pGEX	contains	an	ampicillin	resistance	gene.	

	

2.3 PROTEIN	METHODS	

2.3.1 SDS‐PAGE	

Biorad	Mini	Protean	II	kits	 were	 used	 for	 SDS‐PAGE	 gel	 preparation.	 Proteins	

were	 resolved	 on	 10	 or	 12.5%	 separating	 gels.	 100µl	 of	 10%	 ammonium	

persulphate	(APS)	and	10	µl	of	TEMED	was	added	to	10ml	of	separating	buffer	

solution.	The	separating	solution	was	poured	between	1mm	Biorad	glass	plates	

which	had	been	previously	cleaned	using	IMS.	500µl	of	isobutanol	was	added	on	

top	of	 the	 solution	which	was	 left	 to	 set	at	 room	 temperature	 for	20	minutes.	

Once	 set,	 the	 isobutanol	 layer	was	poured	off	 and	distilled	water	was	used	 to	

remove	any	traces	of	isobutanol.	Whatman	3mm	filter	paper	was	used	to	extract	

residual	water.	50µl	of	10%	APS	and	10µl	of	TEMED	was	added	to	5ml	of	6%	

stacking	gel	solution.	The	stacking	gel	was	poured	on	top	of	the	separating	gel	

and	a	1mm	10	or	15	well	gel	comb	placed	in	between	the	plates.	The	stacking	

gel	was	 left	 to	set	at	room	temperature	for	approximately	20	minutes.	The	gel	

comb	 was	 removed	 and	 gels	 assembled	 using	 a	 Bio‐rad	 kit.	 5X	 SDS	 sample	

buffer	 was	 added	 to	 protein	 samples.	 Samples	 were	 denatured	 at	 90°C	 for	 5	

minutes.	10‐20	l	of	samples	were	loaded	into	each	well.	8	l	of	Colourplus	17‐

175	 kDa	 protein	 ladder	 (Invitrogen)	 was	 loaded	 into	 the	 first	 lane	 for	 size	

comparison.	Gels	were	covered	with	1	x	SDS	running	buffer	and	run	at	150	V	for	

approximately	45	minutes	or	until	the	dye	front	reached	the	bottom	of	the	gel.
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4X	Separating	gel	buffer																					4X	stacking	gel	buffer	

 

 

Separating	gel	solution	(to	make	2	gels)	

	

	

	

	

Stacking	gel	solution	(to	make	2	gels)	

	

	

	

	

2.3.2 Gel	staining	

SDS‐PAGE	 gels	 were	 stained	 using	 either	 Coomassie	 stain	 or	 Instantblue	

(Expedion).	For	Coomassie	staining,	SDS‐PAGE	gels	were	placed	in	a	clean	dish	

and	approximately	10ml	of	Coomassie	gel	stain	added.	Gels	were	 incubated	at	

room	temperature	for	1	hour	or	at	4°C	overnight	with	gentle	shaking.	Gels	were	

then	 rinsed	with	water	 before	 being	 placed	 in	 approximately	 10ml	 of	 destain	

solution	overnight	with	gentle	shaking.	For	Instantblue	staining,	SDS‐PAGE	gels	

were	 placed	 in	 a	 clean	 square	 petri	 dish	 and	 10ml	 of	 Instantblue	 (Expedeon)	

stain	added.	Gels	were	incubated	with	gentle	shaking	at	room	temperature	for	

30	minutes	 to	 allow	protein	bands	 to	become	visible.	 Sterile	H2O	was	used	 to	

rinse	gels	before	protein	gel	extraction	for	analysis	by	mass	spectrometry		

	 	

Tris	HCl,	pH	8.8	 1.5	M	
SDS	 0.4%	

Tris	HCl,	pH	6.8	 0.5	M	
SDS	 0.4%	

	 10%	 12.5%	
Protogel	 3.3ml	 4.2ml	
4	 x	 separating	 gel	
buffer	

2.5ml	 2.5ml	

Distilled	H2O	 5.0ml	 3.3ml	
10%	APS	 100	µl	 100	µl	
TEMED	 			10	µl	 			10	µl	

	 6%	
Protogel	 1.0	ml	
4	 x	 separating	 gel	
buffer	

1.3	ml	

Distilled	H2O	 2.8	ml	
10%	APS	 	50	µl	
TEMED	 	10	µl	
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Coomassie	gel	stain	

	

	

	

Destain	solution	

	

	

	

SDS‐PAGE	gels	were	placed	in	a	clean	square	petri	dish	and	10ml	of	Instantblue	

(Expedeon)	stain	added.	Gels	were	incubated	with	rocking	at	room	temperature	

for	30	minutes	to	allow	protein	bands	to	become	visible.	Sterile	H2O	was	used	to	

rinse	gels	before	protein	gel	extraction	for	analysis	by	mass	spectrometry		

2.3.3 Western	blotting	

Whatman	3mm	filter	paper	was	cut	to	slightly	larger	than	an	SDS‐PAGE	gel,	and	

twelve	pieces	per	gel	were	soaked	in	1	X	semi‐dry	transfer	buffer.	One	piece	of	

PVDF	membrane	(Millipore)	per	gel	was	also	cut	to	the	size	of	an	SDS‐PAGE	gel	

and	soaked	in	methanol.	6	pieces	of	Whatman	paper	were	stacked	and	placed	on	

an	 Electroblotter	 (Biorad).	 A	 50ml	 tube	 was	 used	 to	 roll	 over	 the	 paper	 and	

remove	any	air	bubbles.	A	piece	of	PVDF	membrane	was	then	placed	on	top	of	

the	stack.	The	SDS‐PAGE	gel	was	 laid	on	 top	of	 the	membrane	and	6	pieces	of	

Whatman	paper	 soaked	 in	 semi‐dry	 transfer	buffer	were	placed	on	 top	of	 the	

gel.	Bubbles	were	removed	by	again	using	a	50ml	tube	to	roll	over	the	stack.	The	

Electroblotter	was	run	at	150mA	for	35	minutes	per	gel.	The	top	stack	of	filter	

paper	 and	 the	 SDS‐PAGE	 gel	 were	 discarded,	 and	 the	 PVDF	 membrane	 was	

transferred	 to	a	clean	container	and	covered	with	4%	milk	 (in	PBS	containing	

0.1%	 tween‐20).	The	membrane	was	blocked	by	 incubating	 for	a	minimum	of	

30	minutes	at	room	temperature	or	overnight	at	4oC	with	gentle	shaking.	

Appropriate	primary	antibodies	were	added	to	blocked	PVDF	membranes	at	a	

concentration	 of	 1:2000,	 unless	 stated	 otherwise.	Membranes	were	 incubated	

with	 primary	 antibody	 for	 1	 hour	 or	 overnight	 at	 4°C	 with	 gentle	 shaking.	

Coomassie	Brilliant	Blue	(Sigma)	 1g/l	

Methanol	 45%	

Glacial	acetic	acid	 10%	

Methanol	 10%	

Glacial	acetic	acid	 10%	
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Membranes	were	washed	with	 3	 x	 5	minute	 changes	 of	 PBS	 containing	 0.1%	

Tween‐20.	10	ml	of	4%	milk	(in	PBS	containing	0.1%	tween‐20)	was	added	to	

membranes	 and	 an	 HRP‐conjugated	 secondary	 antibody	was	 added	 to	 a	 final	

concentration	of	1:2,000.	Membranes	were	incubated	at	room	temperature	for	1	

hour	with	gentle	shaking.	Membranes	were	washed	using	2	x	5minute	changes	

of	PBS	containing	0.1%	tween	and	a	1	x	5	minute	incubation	with	PBS.		

2.3.4 Enhanced	Chemi‐luminescence	(ECL)	

Proteins	 were	 visualised	 by	 incubating	 membranes	 with	 Pierce	 ECL	Western	

Blotting	 Substrate	as	 per	 manufacturer’s	 instructions	 for	 approximately	 two	

minutes.	 Membranes	 were	 placed	 between	 two	 sheets	 of	 projector	 film	 and	

exposed	 to	 X‐ray	 film	 (Kodak)	 in	 a	 dark	 room	 for	 30	 seconds	 to	 1	 hour,	

depending	on	strength	of	 the	antibodies.	X‐ray	 film	was	developed	using	an	x‐

ray	developer	machine.	

2.3.5 Ni2+affinity	purification		

A	single	colony	of	BL21	E.	coli	containing	the	appropriate	expression	vector	was	

inoculated	 in	 10ml	 of	 LB	 media	 containing	 the	 appropriate	 antibiotics.	 The	

culture	 was	 incubated	 overnight	 at	 37oC	 with	 shaking	 (180rpm).	 The	 pre‐

culture	 was	 added	 to	 1‐litre	 of	 pre‐warmed	 LB	 media	 containing	 the	

appropriate	 selective	 antibiotic.	 The	 culture	 was	 incubated	 at	 37°C	 for	

approximately	4	hours	to	OD600	0.6.	Protein	expression	was	induced	by	addition	

of	1mM	IPTG.	The	culture	was	incubated	either	for	4	hours	at	37°C	or	overnight	

at	16°C	with	 shaking	 (180rpm).	The	 cells	were	harvested	by	 centrifugation	at	

5,000	 rpm	 for	 5	 minutes	 and	 the	 supernatant	 discarded.	 The	 cell	 pellet	 was	

stored	at	–20oC	 for	1	–	24	hours,	before	being	 re‐suspended	 in	20	ml	 ice‐cold	

binding	 buffer	 freshly	 supplemented	 with	 0.1mM	 PMSF	 or	 one	 protease	

inhibitor	tablet	(Roche)	per	50ml	buffer.	The	cells	were	sonicated	on	ice	at	27%	

amplitude	 for	 5	 x	 15	 seconds,	 with	 30	 second	 intervals.	 The	 cells	 were	

centrifuged	at	15,000	rpm	for	15	minutes	at	4oC.	The	supernatant	was	decanted	

into	 a	 clean	 15ml	 polypropylene	 tube	 and	 kept	 on	 ice.	 500µl	 of	 Ni2+‐agarose	

beads	 were	 added	 to	 a	 5ml	 chromatography	 column	 (NEB)	 at	 4°C.	 6ml	 of	

binding	 buffer	 were	 added	 to	 the	 column	 and	 allowed	 to	 flow	 through	 to	
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equilibrate	the	beads.	The	cell	lysate	was	applied	to	the	column	and	allowed	to	

pass	 through	 the	 column	 by	 gravity.	 The	 beads	were	 then	washed	 by	 adding	

10ml	 of	 binding	 buffer,	 followed	 by	 10ml	 of	 wash	 buffer.	 Elution	 buffer	 was	

added	to	the	column	and	6	x	0.5	ml	fractions	were	collected	and	placed	on	ice.	

The	 protein	 concentration	 of	 each	 elution	was	 determined	 by	 Bradford	 assay	

and	10µl	samples	were	analysed	by	SDS‐PAGE	as	described	above.	The	elution	

fractions	 containing	 the	 highest	 concentrations	 of	 protein	 were	 snap	 frozen	

using	liquid	nitrogen	and	stored	at	‐80°C.	

Binding	buffer	

Tris‐HCl	pH	7.5	 20mM

NaCl	 200mM

Imidazole	 30mM

	

Wash	buffer	

Tris‐HCl	pH	7.5	 20mM

NaCl	 200mM

Imidazole	 60mM

	

Elution	buffer	

Tris‐HCl	pH	7.5	 20mM

NaCl	 200mM

Imidazole	 500mM

	

2.3.6 GST	purification	

A	single	colony	of	BL21	E.	coli	containing	the	appropriate	expression	vector	was	

inoculated	 in	 10ml	 of	 LB	 media	 containing	 the	 appropriate	 antibiotics.	 The	

culture	 was	 incubated	 overnight	 at	 37oC	 with	 shaking	 (180rpm).	 The	 pre‐

culture	 was	 added	 to	 1‐litre	 of	 pre‐warmed	 LB	 media	 containing	 the	

appropriate	 selective	 antibiotic.	 The	 culture	 was	 incubated	 at	 37°C	 for	

approximately	4	hours	to	OD600	0.6.	Protein	expression	was	induced	by	addition	
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of	1mM	IPTG.	The	culture	was	incubated	either	for	4	hours	at	37°C	or	overnight	

at	16°C	with	 shaking	 (180rpm).	The	 cells	were	harvested	by	 centrifugation	at	

5,000	 rpm	 for	 5	 minutes	 and	 the	 supernatant	 discarded.	 The	 cell	 pellet	 was	

stored	 at	 –20oC	 for	 1	 –	 24	hours,	 before	 being	 re‐suspended	 in	15ml	NETN	+	

freshly	 supplemented	 with	 0.1mM	 PMSF	 or	 one	 protease	 inhibitor	 tablet	

(Roche)	per	50ml	buffer.	The	cells	were	sonicated	on	ice	at	27%	amplitude	for	5	

x	 15	 seconds,	 with	 30	 second	 intervals.	 The	 cells	were	 centrifuged	 at	 15,000	

rpm	 for	15	minutes	 at	4oC	 to	 clear	 cell	 debris.	The	 supernatant	was	decanted	

into	 a	 clean	 15ml	 polypropylene	 tube	 and	 kept	 on	 ice.	 500µl	 of	 glutathione	

sepharose	 (GST)	 beads	 were	 added	 to	 a	 5ml	 chromatography	 column.	 3	 bed	

volumes	 of	 NETN	 buffer	 freshly	 supplemented	 with	 protease	 inhibitors	 was	

added	to	the	column	and	allowed	to	flow	through	by	gravity	to	equilibrate	the	

beads.	The	cell	lysate	was	added	to	the	beads.	A	cap	was	placed	on	the	bottom	of	

the	 column	 and	 the	 beads	 and	 lysate	were	 incubated	 at	 4°C	 for	 an	hour	 on	 a	

roller.	 The	beads	were	washed	 four	 times	by	 adding	5	 bed	 volumes	 of	NETN,	

followed	 by	 5	 bed	 volumes	 of	 wash	 buffer.	 To	 elute	 bound	 proteins,	 1	 bed	

volume	 of	 elution	 buffer	 was	 added	 to	 the	 beads.	 A	 cap	was	 placed	 onto	 the	

column	and	the	sample	was	incubated	on	a	roller	at	4°C	for	30	minutes	to	one	

hour.	 6	 x	 0.5	 ml	 fractions	 were	 collected	 and	 placed	 on	 ice.	 The	 protein	

concentration	 of	 each	 elution	 was	 determined	 by	 Bradford	 assay	 and	 10µl	

samples	were	analysed	by	SDS‐PAGE	as	described	above.	The	elution	fractions	

containing	the	highest	concentrations	of	protein	were	snap	frozen	using	liquid	

nitrogen	and	stored	at	‐80°C.	

NETN	buffer	

Tris‐HCl	pH	8.0	 20mM

NaCl	 100mM

EDTA	 1mM

NP‐40		 0.5%

	 	

                             66



	 	

Wash	buffer	

Tris‐HCl	pH	8.0	 100mM

NaCl	 120mM

	

Elution	buffer	

Tris‐HCl	pH	8.0	 100mM

NaCl	 120mM

Glutathione	 20mM

	

2.3.7 pfu	purification	

Following	transformation	with	pGEX‐pfu,	BL21	cells	were	inoculated	in	10ml	LB	

with	 kanamycin	 at	 37°C	 overnight.	 This	 pre‐culture	 was	 used	 to	 inoculate	

500ml	of	LB	supplemented	with	kanamycin	and	incubated	at	37°C	with	shaking	

(180rpm)	 until	 they	 reached	 OD600	 0.6.	 Protein	 expression	 was	 induced	 by	

adding	1mM	IPTG	and	 incubating	 for	a	 further	4	hours.	Cells	were	pelleted	by	

centrifugation	 at	 3000	 rpm	 for	 5	minutes.	 The	 cell	 pellet	was	 resuspended	 in	

PBS300.	Cells	were	 lysed	by	 sonicating	at	27%	amplitude	 for	5	 seconds	 three	

times.	 The	 lysed	 cells	 were	 centrifuged	 at	 15,000	 rpm	 for	 30	 minutes.	 The	

supernatant	was	decanted	into	a	fresh	15ml	tube	and	incubated	at	75°C	for	30	

minutes.	 The	 sample	 was	 centrifuged	 at	 15,000	 rpm	 for	 15	 minutes	 and	 the	

supernatant	 transferred	 to	 a	 fresh	 tube.	 0.5ml	 of	Ni2+	agarose	was	 added	 to	 a	

15ml	 chromatography	 column	 (New	 England	 Biolabs).	 The	 beads	 were	

equilibrated	 with	 10ml	 PBS300	 (PBS	 +	 150mM	 NaCl).	 The	 heat	 treated	

supernatant	was	then	applied	to	the	column.	The	beads	were	washed	with	20ml	

of	PBS300	+	15mM	imidazole,	and	then	with	3ml	PBS300	+	25mM	imidazole.	5	x	

1ml	 elution	 fractions	 were	 collected	 after	 addition	 of	 5ml	 PBS300	 +	 500mM	

imidazole.	5µl	of	each	elution	 fraction	was	visualised	on	a	7.5%	SDS	PAGE	gel	

(see	 section	 2.3.1).	 Peak	 fractions	 were	 combined	 and	 an	 equal	 volume	 of	

storage	buffer	added.	Samples	were	dialysed	against	2	changes	of	1l	of	storage	

buffer	at	4°C	 for	12	hours.	Samples	were	aliquoted	and	stored	at	 ‐80°C.	Serial	
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dilutions	of	the	enzyme	were	prepared	in	storage	buffer	and	used	to	compare	to	

commercially	available	pfu	in	order	to	determine	an	appropriate	dilution	factor.	

Pfu	storage	buffer	

	

	

	

	

2.3.8 Bradford	assay	

To	 determine	 the	 protein	 concentration	 of	 a	 sample,	 1ml	 of	 Bradford	 assay	

reagent	(Biorad)	was	diluted	with	4ml	of	H2O.	1l	protein	sample	was	added	to	

1	ml	of	diluted	Bradford	reagent.	1ml	of	diluted	Bradford	reagent	was	used	as	a	

blank	 control	 and	 the	 OD595	 of	 the	 sample	 was	 measured	 using	 a	

spectrophotometer.	 Protein	 concentration	 of	 the	 sample	 was	 determined	 by	

comparing	the	sample	reading	against	a	BSA	standard	curve.	

2.3.9 In	vitro	sumoylation	assays	

DNA	 encoding	 components	 of	 the	 SUMOylation	 pathway	 had	 previously	 been	

cloned	into	the	expression	vectors	described	below.		

Component	 Plasmid Tag Antibiotic	
resistance	

SUMO.GG		 pET15b His Ampicillin
Rad31	(E1	subunit)	 pET28a His Kanamycin
Fub2	(E1	subunit)	 pGEX GST Ampicillin
Hus	5	(E2)	 pGEX GST Ampicillin
Pli1	(E3)	 pET15b His Ampicillin
	

Recombinant	proteins	were	expressed	and	purified	as	described	above.	Plasmid	

DNA	containing	the	Rad31	and	Fub2	was	co‐transformed	into	BL21	competent	

cells,	 expressed	 and	 co‐purified	 using	 Ni2+	 agarose	 as	 described	 above.	 The	

eluate	was	applied	to	100µl	GST	beads	and	purified	as	described.	

Tris	pH8.0	 50mM	
EDTA	 0.1mM	
DTT	 1mM	
NP‐40	 0.1%	
Tween‐20	 0.1%	
Glycerol	 50%	

                             68



	 	

Typically,	 a	 20µl	 reaction	 contained	 2µl	 10x	 SUMO	 reaction	 buffer,	

approximately	 1.5µg	 GST‐Ubc9,	 10µg	 HIS‐SUMOGG.tr	 ,	 2µg	 HIS‐Rad31	 –	 GST‐

Fub2,	 3.5U	 Creatine	 phosphokinase,	 0.12U	 pyrophosphatase	 and	 1µg	 of	 the	

protein	of	 interest,	with	or	without	1µg	GST_Pli1.	Reactions	were	 incubated	at	

30°C	for	two	hours,	and	analysed	by	SDS‐PAGE	and	Instantblue	staining.	Where	

mass	 spectrometry	was	 used	 for	 analysis,	 40µl	 reactions	were	 set	 up.	 In	 this	

case	30µl	was	used	for	staining	and	10µl	for	analysis	by	western	blot.	

10	x	SUMO	reaction	buffer	

Tris‐HCl	 500mM
MgCl2	 50mM
ATP	 50mM
Creatine	phosphate	 100mM
	

2.3.10 TCA	extraction	of	proteins	from	S.	pombe	

Overnight	cultures	of	S.	pombe	were	diluted	to	OD	0.2	and	incubated	at	30°C	for	

3	 –	 4	 hours.	 4x107	 cells	 of	 exponentially	 growing	 S.	 pombe	 cultures	 were	

pelleted	by	centrifugation	at	3000	rpm	for	5	minutes.	Pellets	were	resuspended	

in	500µl	H20	and	placed	on	ice.	75µl	NaOH/BME	was	added	and	samples	were	

vortexed	and	 incubated	on	 ice	 for	15	minutes.	75µl	of	50%	TCA	was	added	to	

and	samples	were	vortexed	before	incubating	on	nice	for	a	further	10	minutes.	

Samples	were	centrifuged	at	13,000	rpm	for	10	minutes	at	4°C.	Supernatant	was	

aspirated	 and	 the	 pellets	 were	 resuspended	 in	 30µl	 HU	 buffer.	 If	 the	 sample	

turned	yellow,	1µl	of	1.5M	Tris‐HCl	pH8.8	was	added.	Samples	were	denatured	

at	90°C	 for	10	minutes	before	being	 centrifuged	at	13,000	 rpm	 for	5	minutes.	

Samples	were	analysed	by	SDS‐PAGE.	

2.3.11 Denaturing	in	vivo	pull	down	using	Ni2+	beads	

109	 cells	 of	 exponentially	 growing	 S.	pombe	were	 pelleted	 by	 centrifuging	 at	

3,000	 rpm	 for	 5	 minutes.	 Pellets	 were	 resuspended	 in	 5ml	 ice	 cold	 H2O	 and	

placed	on	ice.	0.8ml	of	 freshly	made	NaOH/BME	was	added	and	samples	were	

vortexed	 and	 then	 incubated	 on	 ice	 for	 20	 minutes.	 0.8ml	 of	 50%	 TCA	 was	

added	 to	 samples	 which	 were	 then	 centrifuged	 and	 incubated	 on	 ice	 for	 20	

minutes.	 Samples	 were	 centrifuged	 at	 10,000	 rpm	 for	 20	 minutes	 at	 4°C.	
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Supernatant	 was	 discarded	 and	 the	 pellets	 resuspended	 in	 1ml	 of	 buffer	 A.	

Samples	 were	 transferred	 to	 a	 clean	 eppendorf	 tube	 and	 incubated	 at	 room	

temperature	for	1	hour	on	a	rotating	wheel.	Samples	were	centrifuged	at	13,000	

rpm	 for	 10	 minutes	 at	 4°C.	 The	 supernatant	 was	 transferred	 to	 a	 fresh	

eppendorf	 tube.	 30µl	 aliquots	 of	Ni2+	 agarose	 beads	 per	 sample	were	washed	

three	 times	 using	 500µl	 of	 buffer	 A	 +	 0.05%	 tween‐20.	 The	 cell	 extract	

(supernatant)	was	applied	 to	 the	equilibrated	Ni2+	agarose	beads.	15µl	of	10%	

tween‐20	 and	 15mM	 imidazole	 was	 added	 to	 each	 sample.	 Samples	 were	

incubated	 overnight	 at	 room	 temperature	 on	 a	 rotating	wheel.	 Samples	were	

centrifuged	for	2,000	rpm	for	30	seconds	and	the	pellet	washed	twice	with	1ml	

buffer	A	+	0.05%	tween‐20.	Samples	were	then	washed	four	times	with	1ml	of	

buffer	C	containing	0.05%	tween.	Samples	were	centrifuged	at	200	rpm	for	30	

seconds	 and	 supernatant	 discarded.	 The	 beads	were	 resuspended	 in	 30µl	 HU	

buffer.	Samples	were	denatured	at	90°C	for	5	minutes	before	being	centrifuged	

at	13,000	rpm	for	5	minutes.	Samples	were	analysed	by	SDS‐PAGE.	

NaOH/BME	

NaOH	 1.85M
2‐mercaptoethanol	 7.5%	w/v
	

Buffer	A	

	 	

	

Buffer	C	

	

	

Tween‐20	

	

	

Guanidinium	HCl	 6M	
NaH2PO4	pH8.0	 0.4M
Tris‐HCl	pH8.0 1M	

Urea	 8M	
NaH2PO4	pH6.3	 0.4M
Tris‐HCl	pH6.3 1M	

Tween	 10%	w/v
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HU	buffer	

	

	

	

	

2.3.12 In‐gel	digestion	of	Instantblue	stained	proteins	

Protein	 bands	 were	 excised	 from	 SDS‐PAGE	 gels	 using	 a	 sterile	 scalpel	 and	

placed	 in	 low	protein	binding	eppendorf	 tubes.	A	sterile	micro‐pipette	 tip	was	

used	to	break	the	gel	into	small	pieces.	50µl	of	acetonitrile	was	added	to	the	gel	

pieces	 and	 the	 sample	 was	 vortexed	 briefly.	 The	 sample	 was	 centrifuged	 at	

3,000	 rpm	 for	 30	 seconds	 and	 the	 supernatant	 discarded.	 50µl	 of	 acetonitrile	

was	added	and	the	sample	incubated	at	room	temperature	for	15	minutes.	The	

sample	 was	 centrifuged	 at	 3,000	 rpm	 for	 30	 seconds	 and	 the	 supernatant	

discarded.	50µl	of	10mM	DTT/25mM	NH4HCO3	 (ammonium	bicarbonate)	was	

added	to	the	sample	which	was	then	vortexed	briefly.	The	sample	was	heated	at	

90°C	 for	 15	minutes	 to	 reduce	 the	 proteins.	 The	 sample	was	 cooled	 to	 room	

temperature	and	then	centrifuged	at	3,000	rpm	for	30	seconds.	The	supernatant	

was	discarded.	 50µl	 of	 55mM	 iodoacetamide/25mM	NH4HCO3	was	 added	 and	

the	 sample	 was	 vortexed	 briefly.	 The	 sample	 was	 centrifuged	 as	 above	 and	

supernatant	removed.	The	gel	pieces	were	washed	with	50µl	of	25mM	NH4HCO3	

for	 10	 minutes.	 50µl	 of	 acetonitrile	 was	 added	 and	 the	 sample	 was	 briefly	

vortexed	 before	 being	 centrifuged	 as	 above.	 The	 supernatant	 was	 discarded.	

The	sample	was	washed	by	again	adding	50µl	25mM	NH4HCO3	and	incubating	at	

room	temperature	for	5	minutes.	The	sample	was	centrifuged	and	supernatant	

discarded	as	above.	The	gel	pieces	were	dried	in	a	speedvac	for	approximately	

30	minutes.	5µl	of	25ng/µl	trypsin	and	45	µl	of	25mM	NH4HCO3	was	added	and	

the	sample	was	incubated	on	ice	for	45	minutes.	The	sample	was	then	incubated	

overnight	at	37°C.	

The	supernatant	was	removed	from	the	sample	and	placed	in	a	fresh	eppendorf	

tube.	 50mM	of	 20mM	NH4HCO3	was	 added	 to	 the	 remaining	 gel	 pieces.	 These	

Urea	 8M	
EDTA	 1mM
Tris‐HCl	pH6.8 200mM
SDS	 5%	w/v
DTT	 1.5%	w/v
Bromophenol	blue	 0.1%
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were	vortexed	briefly	and	incubated	at	room	temperature	for	20	minutes	before	

being	centrifuged	at	3	000	rpm	for	one	minute.	The	supernatant	was	added	to	

the	fresh	eppendorf	tube.	This	step	was	repeated	twice	using	50µl	of	5%	formic	

acid/50%	 acetonitrile.	 The	 pooled	 supernatant	 was	 concentrated	 to	

approximately	 20µl	 using	 a	 speedvac.	 Samples	 were	 stored	 at	 ‐20°C	 until	

required	 for	 analysis	 by	 mass	 spectrometry,	 which	 was	 carried	 out	 by	 other	

members	of	the	lab.	

2.3.13 2D	gel	analysis	

2.3.13.1 Protein	extraction	

Approximately	 2x108	 cells	 from	 exponentially	 growing	 S.	pombe	 culture	were	

harvested	 by	 centrifugation	 at	 3,000	 rpm	 for	 5	 minutes.	 Pellets	 were	

resuspended	 in	 1ml	 of	 20%	 TCA	 and	 transferred	 to	 a	 clean	 eppendorf	 tube.	

Samples	 were	 centrifuged	 at	 13,000	 rpm	 for	 1	 minute	 and	 supernatant	

discarded.	 Pellets	were	 resuspended	 in	 200µl	 of	 20%	TCA	 and	 transferred	 to	

screw	cap	tubes.	An	equal	volume	of	glass	beads	was	added	and	samples	were	

ribolysed	3	times	for	20	seconds.	A	sterile	needle	was	used	to	pierce	the	bottom	

of	the	tubes	and	these	were	placed	on	top	of	a	clean	eppendorf	tube,	inside	of	a	

15ml	 polypropylene	 tube.	 400µl	 of	 5%	 TCA	 was	 added	 and	 samples	 were	

centrifuged	at	1,000	 rpm	 for	1	minute.	The	 sample	 collected	 in	 the	eppendorf	

tubes	was	centrifuged	at	13,000	rpm	for	5	minutes	at	4°C	and	the	supernatant	

was	discarded.	Samples	were	again	centrifuged	at	13,000	rpm	for	1	minute	at	

4°C	 and	 any	 remaining	 supernatant	 removed	 by	 pipetting.	 Pellets	 were	

resuspended	 in	1ml	of	 ice	cold	acetone.	Samples	were	 incubated	on	 ice	 for	30	

minutes	with	agitation.	Samples	were	centrifuged	at	13	000	rpm	for	30	minutes	

at	4°C.	Supernatant	was	discarded	and	pellets	were	dried	using	a	dessicter	for	

10	minutes.	 Pellets	were	 resuspended	 in	200µl	 of	 resuspension	buffer	 freshly	

supplemented	 with	 IPG	 buffer	 and	 DTT	 and	 were	 incubated	 at	 room	

temperature	 for	60	minutes	on	a	 rotating	wheel.	 Samples	were	 centrifuged	at	

13,000	rpm	 for	15	minutes.	The	supernatant	was	 transferred	 to	a	 clean	1.5ml	

eppendorf	 tube.	 A	 Bradford	 assay	 was	 performed	 to	 determine	 the	 protein	

concentration	 of	 the	 samples.	 50µg	 of	 proteins	 were	 diluted	 with	 125µl	 of	

rehydration	buffer	freshly	supplemented	with	IPG	buffer	and	DTT.	
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2.3.13.2 Rehydration	

	The	samples	were	pipetted	in	a	line	along	the	edge	of	a	channel	of	an	IPG	strip	

holding	 tray.	The	cover	sheet	of	an	 IPG	strip	(Bio‐Rad	pH3‐10)	was	peeled	off	

and	the	strip	placed	 face	down	on	top	of	 the	protein	sample,	ensuring	 that	no	

bubbles	were	present.	1	–	2ml	of	mineral	oil	was	pipetted	on	top	of	the	strips	to	

prevent	 drying	 out.	 A	 plastic	 lid	 was	 placed	 over	 the	 tray	 and	 samples	 were	

incubated	overnight	at	room	temperature.		

2.3.13.3 First	Dimension	

The	next	day,	strips	were	removed	and	held	over	tissue	paper	to	remove	excess	

mineral	 oil.	 Strips	 were	 placed	 face	 up	 into	 a	 lane	 on	 an	 Ettan	 IPGphor	

isoelectric	 focusing	 machine	 as	 per	 manufacturer’s	 instructions.	 The	 first	

dimension	was	run	using	the	settings	outlined	below:	

Step Voltage	 kV/h	

Step and hold 300	 0.2	

Gradient 1000	 0.3	

Gradient	 5000	 4.0	

Step	and	hold	 5000	 2.0	

	

2.3.13.4 Second	dimension	

Strips	were	placed	face	up	in	an	IPG	strip	holding	tray	and	2.5ml	of	equilibration	

buffer	 freshly	 supplemented	 with	 10mg/ml	 DTT	 was	 added.	 Samples	 were	

incubated	 for	 15	minutes	 at	 room	 temperature	 with	 gentle	 shaking.	 Samples	

were	rinsed	using	sterile	H2O	and	then	incubated	for	a	further	15	minutes	with	

2.5ml	 of	 equilibration	 buffer	 freshly	 supplemented	 with	 25mg/ml	

iodoacetamide.	10%	1mm	SDS‐PAGE	gels	were	prepared	with	a	6%	stacking	gel	

and	an	 IPG	 strip	 comb.	 IPG	 strips	were	dipped	 in	1	X	 SDS	 running	buffer	 and	

loaded	onto	the	SDS	gel,	ensuring	that	 the	strip	 is	 in	contact	with	the	stacking	

gel.	Strips	were	overlayed	with	1	x	laemmli	SDS	buffer	+	0.5%	low	melting	point	

agarose.	Samples	were	 run	next	 to	10µl	of	Colourplus	broad	range	pre‐stained	

protein	 ladder	 (New	 England	 Biolabs).	 SDS‐PAGE	 gels	 were	 run	 at	 150V	 for	

approximately	 an	 hour	 or	 until	 the	 dye	 front	 reached	 the	 bottom	 of	 the	 gel.	

Proteins	were	visualised	by	western	blotting	as	described	above.	
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Resuspension	buffer	

Urea	 7M	

Thiourea	 2M	

CHAPS	 4%	

DTT	 6OmM	

IPG	buffer	pH	3‐10	 2%	

	

Rehydration	buffer	

Urea	 6M	

Thiourea	 2M	

CHAPS	 2%	

DTT	 5OmM	

IPG	buffer	pH	3‐10	 0.5%	

Bromophenol	blue	 0.002%	

	

Equilibration	buffer	

Tris-HCl pH8.8 50mM	

Glycerol 30%	

Urea	 6M	

SDS	 10%	

Bromophenol	blue	 0.002%	

	

1	X	Laemmli	SDS	buffer	

Tris-HCl pH6.8 63mM	

Glycerol 10%	

SDS	 2%	

Bromophenol	blue	 0.002%	

Low	melting	point	agarose	 0.5%	
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2.3.14 Phos‐tag	gel	analysis	

2.3.14.1 Sample	preparation	

Whole	 cell	 extracts	 from	 S.	 Pombe	 cultures	 were	 prepared	 as	 described	 in	

section	 2.3.10,	 using	 HU	 buffer	 without	 EDTA,	 following	 exposure	 to	

either12mM	HU	or	0.05%	MMS.	

HU	buffer	‐	EDTA	

	

	

	

2.3.14.2 SDS‐PAGE	gel	preparation	

7.5%	 SDS‐PAGE	 gels	 were	 made	 as	 desscribed	 in	 section	 2.3.1,	 with	 20uM	

MnCl2	and	10uM	phos‐tag	added	to	the	resolving	gel	mix	immediately	before	the	

temed.	6%	stacking	gel	was	prepared	as	described	in	section	2.3.1.	10µl	of	each	

sample	was	 loaded	 into	 the	gel.	No	molecular	weight	marker	was	used	due	 to	

the	 presence	 of	 EDTA	 in	 the	 buffers	 of	 commercially	 available	 markers.	 Gels	

were	ran	at	45V	for	two	to	three	hours	or	until	 the	dye	reaches	the	bottom	of	

the	gel.	

2.3.14.3 Western	blotting	

PVDF	membrane	(Millipore)	per	gel	was	cut	to	the	size	of	an	SDS‐PAGE	gel	and	

soaked	 in	methanol	 for	one	minute,	before	being	soaked	 in	 ‘	 transfer	buffer	B’	

for	30	minutes.	The	SDS	PAGE	gel	was	soaked	in	transfer	buffer	B	+	1mM	EDTA	

for	10	minutes,	and	then	in	transfer	buffer	B	‐	EDTA	for	10	minutes	with	gentle	

shaking.	6	pieces	of	Whatman	3mm	filter	paper	were	cut	to	slightly	larger	than	

an	SDS‐PAGE	gel.	Two	Pieces	were	soaked	in	 ‘transfer	buffer	A,	One	piece	was	

soaked	in	‘transfer	buffer	B’	and	three	pieces	were	soaked	in	‘transfer	buffer	C’.	

The	filter	papers	and	membrane	were	placed	in	an	Electroblotter	(Biorad)	in	the	

following	order	:	Two	layers	of	filter	paper	soaked	in	transfer	buffer	A	(bottom),	

one	layer	of	filer	paper	soaked	in	transfer	buffer	B,	PVDF	membrane,	SDS‐PAGE	

gel,	and	finally	three	layers	of	filter	paper	soaked	in	transfer	buffer	C	on	top.	Air	

Urea	 8M	
Tris‐HCl	pH6.8 200mM
SDS	 5%	w/v
DTT	 1.5%	w/v
Bromophenol	blue	 0.1%
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bubbles	were	removed	by	rolling	a	50ml	tube	on	top	of	the	filter	paper	and	gel	

stack.	The	gel	was	transferred	at	40mA	for	1	hour	and	15	minutes.	

	The	 top	 stack	 of	 filter	 paper	 and	 the	 SDS‐PAGE	 gel	 were	 discarded,	 and	 the	

PVDF	membrane	was	transferred	to	a	clean	container	and	covered	with	5%	milk	

(in	PBS	containing	0.1%	tween‐20).	The	membrane	was	blocked	by	incubating	

for	 a	minimum	 of	 40	minutes	 at	 room	 temperature	 or	 overnight	 at	 4oC	 with	

gentle	shaking.	Membranes	were	incubated	with	primary	antibody	for	1	hour	or	

overnight	 at	 4°C	 with	 gentle	 shaking.	 Membranes	 were	 washed	 with	 3	 x	 5	

minute	 changes	 of	 PBS	 containing	 0.1%	 Tween‐20.	 The	 membrane	 was	

incubated	with	10ml	of	a	1:2000	dilution	of	α‐Cds1	antibody	in	0.5%	milk‐PBST	

for	 a	 minimum	 of	 three	 hours	 or	 overnight	 at	 4°C.	 Secondary	 antibodies	 (α‐

rabbit)	were	added	as	described	in	section	2.3.3	and	Proteins	were	visualised	as	

described	in	section	2.3.4.	

Transfer	buffer	A	

	

Transfer	buffer	B	

	

	

Transfer	buffer	C	

	

	 	

Tris‐HCl	pH10.4	 300mM
Methanol	 15%

Tris‐HCl	pH10.4	 30mM
Methanol	 15%

Tris‐HCl	pH9.4 25mM
Methanol	 15%
e‐aminocaproic	acid	 40mM	

                             76



	 	

2.4 S.	pombe	methods	

2.4.1 S.	pombe	media	

S.	pombe	media	was	used	as	follows:	

Rich	media	(YE)	

Yeast	extract	 5g/l	

Glucose	 20g/l	

Adenine	 200mg/ml	

Leucine,	uracil,	histidine	and	arginine	 100mg/ml	

For	solid	media	(YEA),	25	g/l	DIFCO	Bactoagarwas	added.	

	

Minimal	media	(YNB)	

Yeast	Nitrogen	Base	 1.9g/l	

Glucose	 20g/l	

Ammonium	sulphate	 4g/l	

For	solid	media	(YNB),	30g/l	DIFCO	Bactoagar	and	0.2	ml/l	of	

10M	NaOH	was	added	to	liquid	YNB.	

	

Solid	sporulation	media	(ELN	–	Extra	low	nitrogen)	

Formedium	Edinburgh	Minimal	Media	(EMM)	 27.3g/l	

Ammonium	chloride	 50	mg/l	

Adenine	 200mg/l	

Leucine	 100mg/l	

Uracil	 100mg/l	

Histidine	 100mg/l	

Arginine	 100mg/l	

DIFCO	(Bacto)	Agar	 25g/l	
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2.4.2 S.	pombe	strains	

The	 strains	 501	 and	 503	 used	 in	 this	 study	 as	 ‘wild	 type’	 have	 the	 genotype	

ade6‐704,	 leu1‐32,	ura4‐D18.	They	 require	 adenine,	 L‐leucine	 and	 uracil	 to	 be	

added	 to	minimal	media	 for	growth.	This	means	 that	one	or	a	 combination	of	

these	 amino	 acids	 can	 be	 used	 as	 a	 marker	 when	 present	 on	 a	 transformed	

plasmid,	or	when	integrated	into	the	genome	of	the	wild	type	strain.	Strain	used	

in	this	study	are	listed	in	Table	2.1.	

2.4.3 	Selective	media	

A	 final	 concentration	 of	 100μg/ml	 of	 adenine,	 uracil	 or	 leucine	was	 added	 to	

liquid	or	solid	YNB	media	to	make	selective	media	or	plates.	Fluoroorotic	Acid	

(5’FOA)	 is	 converted	 to	 a	 toxic	 product	 5‐flurouracil	 by	 strains	 expressing	 a	

functional	ura4+	 gene.	 Therefore	5‐Fluoroorotic	Acid	 (5’FOA)	 can	be	 added	 to	

YEA	or	YNBA	supplemented	with	appropriate	amino	acids	to	select	 for	strains	

which	 do	 not	 contain	 the	 ura4+	 gene.	 Antibiotic	 markers	 which	 are	 either	

integrated	 into	 the	 genome	 or	 located	 on	 a	 plasmid	 can	 be	 selected	 for	 by	

adding	 the	 appropriate	 antibiotic	 to	 solid	 or	 liquid	media.	 Antibiotic	markers	

used	in	this	study	include	nourseothricin	(NAT)	and	geneticin.	Phloxine	B	was	

added	 to	 YEA	 to	 stain	 dead	 cells.	 Thiamine	 was	 added	 to	 YNBA	 media	

supplemented	 with	 appropriate	 amino	 acids	 to	 repress	 the	 nmt1	 promoter	

encoded	 in	 some	 expression	 vectors.	 The	 table	 below	 shows	 final	

concentrations	of	supplements	added	to	media	for	selection.	Note	that	G418	is	

not	appropriate	for	use	in	minimal	media.	

Adenine	 100μg/ml	

L‐Leucine	 100μg/ml	

Uracil	 100μg/ml	

5’FOA	 1mg/ml	

NAT	 100μg/ml	

G418	 20mg/ml	

Phloxine	B	 0.5mg/ml	

Thiamine	 5μg/ml	
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2.4.4 List	of	strains	used	in	this	study	

	

Strain Genotype

Wild	type	(wt)	 ade6‐704,	leu‐32,	ura4‐D18,	h+	

Wild	type	(wt)	 ade6‐704,	leu‐32,	ura4‐D18,	h‐	

SUMO	base	strain	 	(LoxP‐SUMO‐ura4+‐LoxM)	ade6‐704,	leu‐32,	h+	

SUMO	 (LoxP‐SUMO‐LoxM)	ade6‐704,	leu‐32,	h+		

SUMO.tr		 (LoxP‐SUMO.tr‐LoxM)	ade6‐704,	leu‐32,	h+			

HIS‐SUMO	 (LoxP‐HIS6‐SUMO‐LoxM)	ade6‐704,	leu‐32,	h+			

HIS‐SUMO‐tr	 (LoxP‐HIS6‐SUMO.tr‐LoxM)		ade6‐704,	leu‐32,	h+			

nse2	base	strain	 (LoxP‐nse2‐ura4+‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2	 (LoxP‐nse2‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐K134R	 (LoxP‐nse2‐K134R‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐K229R	 (LoxP‐nse2‐K229R‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐K248R	 (LoxP‐nse2‐K248R‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐K229R	K248R	 (LoxP‐nse2‐K229R	K248R‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐K134R	K229R	K248R	 (LoxP‐nse2‐K134R	K229R	K248R‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐T172A	 (LoxP‐nse2‐T172A‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐S226X	 (LoxP‐nse2‐S226X‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐T172A	S226X	 (LoxP‐nse2‐T172A	S226X‐LoxM)	ade6‐704,	leu‐32,	h+		

nse2‐A234X		 (LoxP‐nse2‐A234X‐LoxM)	ade6‐704,	leu‐32,	h+		

pcn1		base	strain	 (LoxP‐pcn1‐ura4+‐LoxM)	ade6‐704,	leu‐32,	h+		

pcn1	 (LoxP‐pcn1‐LoxM)	ade6‐704,	leu‐32,	h+		

pcn1‐K164R	 (LoxP‐pcn1‐K164R‐LoxM)	ade6‐704,	leu‐32,	h+		

pcn1‐K172R		 (LoxP‐Pcn1‐K172R‐LoxM)	ade6‐704,	leu‐32,	h+		

pcn1‐K253R		 pcn1‐K253R,	ade6‐704,	leu‐32,	h+		

pcn1‐K13R		 pcn1‐K13R,	ade6‐704,	leu‐32,	h+		

pcn1‐K164R	K172R		 pcn1‐K164R	K172R,	ade6‐704,	leu‐32,	h+		

pcn1‐K164R	K253R		 pcn1‐K164R	K253R,	ade6‐704,	leu‐32,	h+		

pcn1‐K172R	K253R		 pcn1‐K172R	K253R,	ade6‐704,	leu‐32,	h+		
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Strain Genotype

pcn1‐3R	 pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	h+	 

pli1‐d pli1	:	:	ura4+	,	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

pli1‐d,	K164R pli1	:	:	ura4+	,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

pli1‐d,	K3R pli1	 :	 :	 ura4+	 ,	 pcn1‐K164R	K172R	K253R	 ade6‐704,	 leu‐32,	 ura4‐
D18,	h+ 

nse2‐SA nse2‐SA	:	:	ura4+,	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

nse2‐SA,	K164R nse2‐SA	:	:	ura4+,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

nse2‐SA,	3R nse2‐SA	:	 :	ura4+,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐
D18,	h+ 

rhp18‐d rhp18	:	:	kanMX6,		ade6‐704,	leu‐32,	ura4‐D18,	h+ 

rhp18‐d,	K164R rhp18	:	:	kanMX6,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

rhp18‐d,	K164R	K172R rhp18	 :	 :	 kanMX6,	pcn1‐K164R	K172R	 ,ade6‐704,	 leu‐32,	ura4‐D18,	
h+ 

rhp18‐d,	K164R	K253R rhp18	 :	 :	 kanMX6,	pcn1‐K164R	K253R,	ade6‐704,	 leu‐32,	ura4‐D18,	
h+ 

rhp18‐d,	K172R	K253R rhp18	 :	 :	 kanMX6,	pcn1‐K172R	K253R,	ade6‐704,	 leu‐32,	ura4‐D18,	
h+ 

rhp18‐d,	3R rhp18	 :	 :	 kanMX6,	 pcn1‐K164R	 K172R	 K253R,	 ade6‐704,	 leu‐32,	
ura4‐D18,	h+ 

mms2‐d mms2	:	:	natMX6,		ade6‐704,	leu‐32,	ura4‐D18,	h+ 

mms2‐d,	K164R mms2	:	:	natMX6,		pcn1–K164R	ade6‐704,	leu‐32,	ura4‐D18,	h+ 

mms2‐d,	K164R	K172R mms2	:	 :	natMX6,		pcn1–K164R	K172R,	ade6‐704,	leu‐32,	ura4‐D18,	
h+ 

mms2‐d,	K164R	K253R mms2	:	 :	natMX6,		pcn1–K164R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	
h+ 

mms2‐d,	3R	 mms2	 :	 :	 natMX6,	 	 pcn1‐K164R	 K172R	 K253R,	 ade6‐704,	 leu‐32,	
ura4‐D18,	h+	

rev1‐d	 rev1	:	: kanMX6,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

rev1‐d,	K164R	 rev1	:	:	kanMX6,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

rev1‐d,	K172R	 rev1	:	:	kanMX6,	pcn1‐K172R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
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Strain Genotype

rev1‐d,	K164R	K253R	 rev1	:	:	kanMX6,	pcn1‐K164R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

rev1‐d,	K172R	K253R	 rev1	:	:	kanMX6,	pcn1‐K172R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

rev1‐d,	3R	 rev1	:	:	kanMX6,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐
D18,	h+	

rev3‐d	 rev3	:	:	kanMX6,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
rev3‐d,	K164R	 rev3	:	:	kanMX6,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
rev3‐d,	K172R	 rev3	:	:	kanMX6,	pcn1‐K172R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
rev3‐d,	K164R	K253R	 rev3	:	:	kanMX6,	pcn1‐K164R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
rev3‐d,	K172R	K253R	 rev3	:	:	kanMX6,	pcn1‐K172R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

rev3‐d,	3R	 rev3	:	:	kanMX6,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐
D18,	h+	

dinB‐d	 dinB	:	:	kanMX6,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

dinB‐d,	K164R	 dinB	:	:	kanMX6,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
dinB‐d,	K172R	 dinB	:	:	kanMX6,	pcn1‐K172R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
dinB‐d,	K164R	K253R	 dinB	:	:	kanMX6,	pcn1‐K164R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

dinB‐d,	K172R	K253R	 dinB	:	:	kanMX6,	pcn1‐K172R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+

dinB‐d,	3R	 dinB	:	:	kanMX6,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐
D18,	h+	

rad13‐d	 rad13	:	:	ura4+,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

rad13‐d,	K164R	 rad13	:	:	ura4+,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
rad13‐d,	K3R	 rad13	 :	 :	ura4+,	pcn1‐K164R	K172R	K253R,	ade6‐704,	 leu‐32,	ura4‐

D18,	h+	
rad2‐d		 rad2	:	:	ura4,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

rad2‐d,	pcn1‐K164R	 rad2	:	:	ura4,		pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

rad2‐d,	pcn1‐3R rad2	:	:	ura4,		pcn1‐K164R	K72R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	
h+	

uve1‐d	 uve1	:	:	LEU2,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

uve1‐d,	pcn1‐K164R	 uve1	:	:	LEU2,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
uve1‐d,	pcn1‐3R uve1	 :	 :	 LEU2,	 pcn1‐K164R	K172R	K253R,	 ade6‐704,	 leu‐32,	 ura4‐

D18,	h+	
sfr1‐d	 sfr1	:	:		KanMX6,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
sfr1‐d,	pcn1‐K164R	 sfr1	:	:		KanMX6,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
sfr1‐d,	pcn1‐3R	 sfr1	:	:		KanMX6,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐

D18,	h+	
mre11‐d	 mre11	:	:	ura4,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
mre11‐d,	rhp18‐d mre11	:	:	ura4,	rhp18	:	:	kanMX6,	ade6‐704,	leu‐32,	ura4‐D18,	h+
mre11‐d,	pcn1‐K164R	 mre11	 :	 :	 ura4,	 rhp18	 :	 :	 kanMX6,	 pcn1‐K164R,	 ade6‐704,	 leu‐32,	

ura4‐D18,	h+	
mre11‐d,	pcn1‐3R mre11	 :	 :	ura4,	rhp18	 :	 :	kanMX6,	pcn1‐K164R	K172R	K253R,	ade6‐

704,	leu‐32,	ura4‐D18,	h+	
cds1‐d	 cds1	:	:	ura4,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
cds1‐d,	pcn1‐K164R	 cds1	:	:	ura4,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
cds1‐d,	pcn1‐3R	 cds1	:	:	ura4,	pcn1‐K164R	K172R	K253R	ade6‐704,	leu‐32,	ura4‐D18,	

h+	
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2.4.5 S.	pombe	vectors	

pREP	vectors	

pREP	 vectors	 are	 used	 for	 overexpression	 of	 tagged	 proteins	 in	 S.	 pombe.	

pREP41	 and	 42	 are	 derived	 from	 the	 S.	 pombe	 vectors	 pREP	 1	 and	 pREP2,	

respectively.	Truncations	of	the	TATA	box	of	the	nmt1	promoter	give	rise	to	an	

intermediate	strength	promoter,	which	is	weaker	than	that	of	pREP	1/2.	pREP	

41	contains	the	LEU2	marker,	whilst	pREP42	encodes	a	ura4+	marker,	allowing	

for	selection	of	positive	colonies	with	selective	media.	These	vectors	can	be	used	

for	 expression	 of	 proteins	 tagged	 at	 the	 N‐terminus	 with	 either	 the	 2	 x	 myc	

epitope	and	6	x	HIS	tag	(myc2	HIS6),	or	a	3	x	HA	tag.	During	this	study	the	myc2	

HIS6	tag	was	excised	from	pREP41	by	digesting	with	NdeI	and	NcoI	and	replaced	

with	a	HIS6	linker	to	avoid	false	positive	results	resulting	from	SUMOylation	of	

the	myc	tag.	

pAW	vectors	

pAW	 vectors	 were	 generated	 for	 use	 in	 the	 recombination‐mediated	 cassette	

exchange	 system	 (Watson	 et	 al,	 2008).	 pAW12	 and	 pAW41	 are	 used	 as	

templates	 for	 PCR	 reactions	 which	 result	 in	 a	 LoxP	 site	 being	 incorporated	

upstream	 of	 the	 gene	 of	 interest	 and	 a	 ura4+	 marker	 and	 LoxM	 site	 being	

incorporated	directly	after	the	stop	codon.	The	exact	sequence	flanked	by	loxP	

and	loxM	is	cloned	into	the	pAW8	vector,	where	site	directed	mutagenesis	can	

be	carried	out.	Transformation	of	a	base	strain	with	pAW8	results	in	integration	

of	a	wild	type	or	mutant	gene	into	the	genome	between	the	lox	sites.	This	allows	

for	analysis	of	mutant	genes	without	the	need	for	overexpression	and	under	the	

control	of	the	endogenous	promoter.	

Strain Genotype

chk1‐d	 chk1	:	:	ura4,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

chk1‐d,	pcn1‐K164R	 chk1	:	:	ura4,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+	

HA‐chk1	 chk1	:	ep,	ade6‐704,	leu‐32,	ura4‐D18,	h+
HA‐chk1,	pcn1‐K164R	 chk1	:	ep,	pcn1‐K164R,	ade6‐704,	leu‐32,	ura4‐D18,	h+	
HA‐chk1,	pcn1‐3R chk1	:	ep,	pcn1‐K164R	K172R	K253R,	ade6‐704,	leu‐32,	ura4‐D18,	h+
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	pAW41	

pAW41	 contains	 a	ura4+	 marker	 flanked	 by	 two	 half	 loxP	 sequences.	 pAW41	

was	 used	 as	 a	 template	 for	 a	 PCR	 reaction	 using	 primers	 which	 include	 20	

nucleotides	of	plasmid	specific	sequence	at	the	3’	end	(described	in	Watson	et	

al)	 and	 100	 nucleotides	 which	 are	 complementary	 to	 the	 S.	pombe	 wild	 type	

genome.	The	 forward	primer	 contains	homology	 to	 the	 sequence	upstream	of	

the	target	gene	start	codon	at	the	5’	end.	The	reverse	primer	abuts	the	forward	

primer.	Transformation	with	the	resulting	PCR	product	results	in	integration	of	

the	 ura4+	 marker	 and	 the	 two	 half	 loxP	 sites	 upstream	 of	 the	 target	 gene.	

Transformants	were	plated	onto	YNB	supplemented	with	adenine	and	 leucine	

to	select	for	ura4+	positive	colonies.	

pAW	5	

	pAW5	 is	 a	 cre‐recombinase‐expressing	 vector	 with	 a	 LEU2	 marker.	

Transformation	 with	 pAW5	 allows	 for	 expression	 of	 Cre	 recombinase	 and	

recombination	between	the	two	half	loxP	sites	to	form	a	full	loxP	site	upstream	

of	the	target	gene.	This	results	in	loss	of	the	ura4+	marker	which	can	be	selected	

for	 using	 5’FOA.	 Transformants	 were	 plated	 onto	 YNB	 supplemented	 with	

adenine,	 uracil	 and	 thiamine	 to	 repress	 Cre	 recombinase	 expression.	 Positive	

colonies	are	then	grown	overnight	in	YE	media	to	allow	for	expression	of	the	cre	

recombinase.	500	cells	were	plated	onto	5’FOA	to	select	 for	cells	 that	had	 lost	

the	ura4+	marker.	

pAW12	

pAW12	contains	a	ura4+	marker	and	a	LoxM	site.	pAW12	was	used	as	a	template	

for	 a	 PCR	 reaction	 using	 primers	 which	 include	 20	 nucleotides	 of	 plasmid	

specific	 sequence	 at	 the	 3’	 end	 (described	 in	 Watson	 et	 al.	 2008)	 and	 100	

nucleotides	 which	 are	 complementary	 to	 the	 S.	 pombe	 wild	 type	 genome	

adjacent	 to	 the	 stop	 codon	 of	 the	 target	 gene.	 The	 forward	 primer	 contains	

homology	 to	 the	gene	sequence	 from	100	bases	upstream	of	 the	 target	codon,	

whilst	 the	 reverse	 primer	 contains	 homology	 to	 the	 gene	 sequence	 directly	

downstream	of	the	stop	codon.	Transformation	with	the	resulting	PCR	product	

results	 in	 integration	 of	 a	 ura4+	 marker	 and	 a	 LoxM3	 site	 immediately	
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downstream	 of	 the	 target	 gene.	 Transformants	 were	 plated	 onto	 YNB	

supplemented	 with	 adenine	 and	 leucine	 to	 select	 for	 ura4+	positive	 colonies.	

This	results	in	a	loxP	–	gene	–	ura4+	‐	loxM	strain	referred	to	as	the	‘base	strain’.	

pAW8	

pAW8	 contains	 a	 multiple	 cloning	 site	 flanked	 by	 LoxP	 and	 LoxM	 sites.	 The	

multiple	 cloning	 site	 encodes	 lac	 Z	 and	 can	 therefore	 be	 used	 for	 blue‐white	

screening,	as	described	 in	 section	2.2.1.	pAW8	also	encodes	a	 selectable	LEU2	

marker	and	Cre	recombinase	which	is	under	control	of	an	nmt1	promoter.	The	

exact	sequence	flanked	by	the	loxP	and	loxM	sites	integrated	into	the	genome	to	

form	the	 ‘base	strain’	was	cloned	 into	 the	pAW8	vector.	This	construct	can	be	

used	for	site	directed	mutagenesis	to	allow	for	incorporation	of	mutations	into	

the	 genome.	 pAW8	 containing	 either	 the	 wild	 type	 sequence	 or	 mutated	

sequence	of	 the	 target	 gene	 is	 transformed	 into	 the	base	 strain	 and	 the	LEU2	

marker	selected	 for	by	plating	on	YNB	supplemented	with	adenine,	uracil	and	

thiamine.	Positive	colonies	were	grown	overnight	in	YEA	to	allow	for	expression	

of	 the	 Cre	 recombinase	 and	 recombination	 between	 the	 loxP	 and	 loxM	 sites.	

Successful	 incorporation	 of	wild	 type	 or	mutant	 gene	 from	pAW8	 results	 in	 a	

loss	of	the	ura4+	marker.	500	cells	are	plated	onto	5’FOA	plates	to	select	for	cells	

which	have	lost	ura4+.	Colonies	are	then	replica	plated	onto	YNB	supplemented	

with	uracil	and	adenine.	Colonies	that	do	not	grow	on	this	media	have	lost	the	

pAW8	 plasmid	 and	 therefore	 the	 LEU2	 marker	 and	 were	 re‐streaked	 onto	

5’FOA.	Incorporation	of	mutant	genes	was	confirmed	by	PCR	following	genomic	

DNA	extraction	or	colony	PCR	(	see	section	2.4.6	and	2.4.7)	and	sequencing.	

2.4.6 S.	pombe	transformation	(Bahler	method	1998)	

S.	pombe	 cells	were	 inoculated	 in	YE	and	grown	overnight	 at	30°C.	Cells	were	

diluted	and	grown	for	a	further	4	hours	to	OD600	0.5	(approximately	4x106	cells).	

20ml	culture	was	centrifuged	at	3,000rpm	for	5	minutes.	Pellets	were	washed	

with	sterile	water	and	centrifuged	again	at	3,000	rpm	for	5	minutes.	Cells	were	

resuspended	 in	 1ml	 LiOAc/TE	 and	 transferred	 to	 a	 1.5ml	 eppendorf	 before	

being	centrifuged	at	3000	rpm	for	5	minutes.	Cells	were	resuspended	in	100μl	

LiOAc/TE.	500ng	‐	1μg	plasmid	DNA	or	10	–	20	μg	of	purified	PCR	product	was	
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added	 and	 cells	 were	 incubated	 at	 room	 temperature	 for	 10	 minutes.	 260μl	

PEG/liOAc	was	 added	and	 cells	 incubated	 at	30°C	 for	30	minutes.	 43μl	DMSO	

was	added	before	incubating	at	37°C	for	5	minutes.	Samples	were	centrifuged	at	

3000	 rpm	 for	 5	minutes	 and	 the	 cell	 pellet	washed	using	500μl	 sterile	water.	

Samples	 were	 centrifuged	 at	 3,000	 rpm	 for	 5	 minutes	 and	 supernatant	

discarded.	 Cells	 were	 resuspended	 in	 remaining	 supernatant	 (approximately	

100μl)	and	plated	into	appropriate	selective	solid	media.	Plates	were	incubated	

at	30°C	for	3	–	5	days	until	transformants	formed	colonies.	

10	X	TE	buffer	

	

	

LiOAc/TE	

	

	

PEG/liOAc	

	

	

	

2.4.7 Genomic	DNA	extraction	from	S.	pombe	

S.	pombe	 cells	were	 inoculated	 in	10ml	YE	and	grown	overnight	at	30°C.	Cells	

were	 harvested	 by	 centrifugation	 at	 3,000rpm	 for	 5	minutes.	 The	 cell	 pellets	

were	 resuspended	 in	 2ml	 SP1	 buffer	 and	 2mg/ml	 zymolyase	 added.	 Samples	

were	 incubated	 at	 37°C	 for	 30	 to	 45	 minutes.	 Cells	 were	 checked	 for	

spheroplasting	my	mixing	10μl	 cells	with	 1μl	 10%	SDS	 on	 a	microscope	 slide	

and	 visualising	 under	 a	 light	 microscope.	 Cells	 were	 then	 harvested	 by	

centrifuging	at	3,000rpm	for	5	minutes.	Cell	pellets	were	resuspended	in	900μl	

of	 5	 X	 TE	 and	 100μl	 of	 10%	 SDS	 was	 added	 to	 lyse	 the	 cells.	 Samples	 were	

Tris‐HCl	 pH	
7.5	

100mM	

EDTA		pH	8.0	 	10mM	

LiOAc	pH	7.5	 100mM	
TE	buffer	 1	X	

LiOAc	pH7.5	 100	mM	
TE	buffer	 1	X	
PEG‐4000	 40%	
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incubated	at	room	temperature	for	5	minutes.	300μl	of	KAc	was	then	added	and	

samples	incubated	on	ice	for	10	minutes	before	centrifuging	at	13,000	rpm	for	5	

minutes.	 The	 supernatant	 was	 transferred	 to	 a	 fresh	 eppendorf	 tube	 and	 an	

equal	volume	of	isopropanol	added	before	being	centrifuged	at	13,000	rpm	for	5	

minutes.	The	supernatant	was	discarded	and	the	pellet	was	washed	with	500μl	

of	 70%	 ethanol.	 Samples	 were	 centrifuged	 at	 13,000	 rpm	 for	 5	 minutes.	

Supernatant	was	discarded	and	the	pellet	was	dried	using	a	desiccator.	Pellets	

were	resuspended	in	500μl	of	5	x	TE	and	4μl	of	10mg/ml	RNase	added.	Samples	

were	 incubated	at	37°C	for	one	hour.	4μl	of	20mg/ml	proteinase	K	was	added	

and	samples	 incubated	at	30°C	overnight.	An	equal	volume	(approx.	500μl)	of	

25:24:1	 phenol:chloroform:isopropanol	 was	 added	 and	 samples	 were	

centrifuged	at	13	000	rpm	for	5	minutes.	The	aqueous	phase	was	transferred	to	

a	fresh	eppendorf.	2	x	the	volume	of	100%	ethanol	and	1/10	volume	of	3M	NaAc	

was	added	and	samples	were	stored	at	‐20°C	for	1	hour	to	overnight.	Samples	

were	centrifuged	at	13,000	rpm	for	5	minutes	and	the	pellet	was	washed	using	

500μl	of	70%	ethanol.	 Samples	were	 centrifuges	 at	13,000	 rpm	 for	5	minutes	

and	 the	 supernatant	 discarded.	 Pellets	 were	 dried	 using	 a	 desiccator	 and	

resuspended	in	30μl	of	sterile	water.	

SP1 Buffer: 

 

Sorbitol	 1.2M	

Sodium	citrate	 50mM	 	

Sodium	phosphate	 50mM	 	

EDTA	 40mM	 	

Buffer	was	adjusted	 to	pH	5.6	

with	NaOH	

	

5 X TE 

 

	 	

Tris‐HCl	pH	7.5	 50mM	
EDTA		pH	8.0	 			5mM	
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2.4.8 Colony	PCR	

One	 colony	 was	 suspended	 in	 50μl	 sterile	 H2O	 and	 incubated	 at	 95°C	 for	 5	

minutes.	 Samples	 were	 centrifuged	 at	 13,000	 rpm	 for	 30s	 and	 6μl	 of	

supernatant	 was	 pipetted	 quickly	 into	 PCR	 tubes	 containing	 PCR	 mix	 as	

described	in	section	2.1.6.	

2.4.9 S.	pombe	genetic	crosses	

S.	pombe	 cells	 of	 opposite	mating	 types	 (h+	 and	h‐)	were	mixed	 together	 on	 a	

small	section	of	solid	extra	low	nitrogen	(ELN)	media.	These	were	incubated	at	

25°C	for	2	–	3	days.	A	sample	was	examined	under	a	light	microscope	to	check	

for	the	presence	of	asci.	

2.4.10 Random	spore	analysis	

A	sterile	 loop	was	used	to	 inoculate	a	 loop	of	sporulated	cells	 in	1ml	of	sterile	

water	with	1μl	of	Helix	pomatia	 juice	added.	 Samples	were	 incubated	at	 room	

temperature	on	a	rotating	wheel	overnight.	Dilutions	of	10‐2	and	10‐3	cells	were	

plated	onto	YEA	and	incubated	at	30°C	for	3	–	5	days	until	colonies	were	visible.	

Where	 selectable	 markers	 were	 different,	 cells	 were	 replica	 plated	 onto	

appropriately	supplemented	media	and	double	mutants	analysed.	

2.4.11 Tetrad	analysis	

A	sterile	loop	was	used	to	streak	a	small	amount	of	sporulated	cells	at	the	side	

on	a	YEA	plate	with	10μl	sterile	water.	This	was	stored	in	the	fridge	for	one	hour	

to	overnight	to	allow	the	cell	walls	of	tetrads	to	start	to	break	down.	The	plate	

was	then	mounted	onto	a	tetrad	dissector.	A	needle	was	used	to	dissect	tetrads	

into	 four	 individual	 spores	 and	 place	 them	 in	 a	 line	 on	 the	 YEA	 plate.	 A	

minimum	of	14	 tetrads	were	dissected	using	 tetrad	analysis.	The	spores	were	

incubated	 at	 30°C	 for	 3‐5	 days	 or	 until	 colonies	 were	 formed.	 Spores	 were	

replica	plated	onto	appropriate	selective	plates	and	phloxin	B	containing	plates	

which	 were	 subsequently	 UV	 irradiated.	 Replica	 plates	 were	 incubated	

overnight	at	30°C	and	double	mutants	were	identified	and	analysed.	
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2.4.12 Survival	analysis	

UV	irradiation	

Cells	were	grown	overnight	 in	YE	 to	 saturation.	Cultures	were	 then	diluted	 to	

OD600	0.2	and	 incubated	at	30°C	 for	a	 further	3	 to	4	hours.	Cells	were	counted	

and	 diluted	 to	 a	 concentration	 of	 5	 x	 103	 cells/ml.	 500	 cells	 (10	 x	 more	 for	

sensitive	strains)	were	plated	onto	YEA	and	irradiated	at	a	range	of	doses	from	

30	to	200	Jm‐2.	Plates	were	incubated	at	30°C	for	3	days	and	percentage	survival	

calculated	in	comparison	to	non‐treated	controls.	

IR	irradiation		

Cells	were	grown	overnight	 in	YE	 to	 saturation.	Cultures	were	 then	diluted	 to	

OD600	0.2	and	 incubated	at	30°C	 for	a	 further	3	 to	4	hours.	Cells	were	counted	

and	diluted	to	a	concentration	of	5	x	103	cells/ml	and	transferred	to	eppendorf	

tubes.	Cells	were	irradiated	with		rays	from	a	137Cs	source	at	a	dose	of	7Gy/min	

for	doses	ranging	 from	0‐1,000	Gy.	100	l	 cells	 (~500	cells)	were	plated	onto	

(YEA)	plates.	Colonies	were	counted	following	incubation	for	3	days	at	30oC	and	

percentage	survival	calculated	in	comparison	to	non‐irradiated	controls.	

Spot	tests	

Spot	 tests	were	used	to	 test	 the	sensitivity	of	strains	 to	a	range	of	genotoxins.	

MMS	 is	 an	 alkylating	 agent	 which	 causes	 a	 range	 of	 damage.	 MMS	 (methyl	

methanesulfonate)	was	used	at	a	range	of	concentrations	from	0.0005	–	0.005%.	

HU	(hydroxyurea)	depletes	dNTP’s	and	causes	replication	fork	stalling.	HU	was	

used	at	concentrations	ranging	from	1‐5mM.		

Cells	were	grown	overnight	 in	YE	 to	 saturation.	Cultures	were	 then	diluted	 to	

OD600	0.2	and	 incubated	at	30°C	 for	a	 further	3	 to	4	hours.	Cells	were	counted	

and	diluted	 to	a	concentration	of	4x106	cells/ml.	 (10	x	more	cells	were	plated	

for	 very	 sensitive	 strains	where	 indicated).	 Four	 10	 fold	 serial	 dilutions	were	

made	for	each	strain,	and	7μl	of	each	dilution	was	plated	onto	YEA	plates	with	

varying	concentrations	of	the	genotoxins	mentioned	above.	YEA	plates	with	no	

drug	were	used	as	 controls.	Plates	were	 incubated	at	30°C	 for	 three	days	and	

sensitivity	of	 strains	 compared	 to	each	other.	Where	new	point	mutants	were	
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generated	 in	 essential	 genes,	 an	 additional	 spot	 test	 on	YEA	was	 incubated	 at	

37°C	to	ensure	stability	of	the	proteins	was	not	affected.	
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2.4.13 Microscopy	

2.4.13.1 Visualisation	of	GFP	tagged	proteins	

Strains	 containing	 GFP‐conjugated	 proteins	were	 inoculated	 in	 10	ml	 YE	 and	

were	grown	overnight	at	30°C.	Samples	were	diluted	to	a	concentration	of	4	x	

106	cells/ml	and	 incubated	at	30°C	 for	a	 further	3	 to	4	hours.	1ml	of	cells	was	

centrifuged	 at	 3,000	 rpm	 for	 5	 minutes	 and	 the	 cell	 pellet	 washed	 in	 500μl	

sterile	 water.	 10	 ‐	 15μl	 of	 the	 cells	 were	 placed	 on	 a	 microscope	 slide.	 A	

coverslip	was	placed	on	top	and	the	cells	were	visualised	immediately.	

2.4.13.2 DAPI	and	Calcofluor	staining	of	S.	pombe	cells	

A	single	colony	or	small	loop	of	S.	pombe	cells	was	inoculated	in	10ml	of	YE	and	

incubated	overnight	at	30°C.	Cells	were	diluted	to	an	OD600	of	0.2	and	incubated	

at	 30°C	 for	 3	 to	 4	 hours	 to	 allow	 for	 exponential	 growth.	 1ml	 of	 cells	 were	

transferred	to	an	eppendorf	tubes	and	pelleted	by	centrifuging	at	3,000	rpm	for	

5	 minutes.	 Cell	 pellets	 were	 washed	 with	 500µl	 sterile	 H2O	 and	 pelleted	 by	

centrifuging	at	3,000	rpm	for	5	minutes.	The	supernatant	was	discarded	and	the	

cell	pellet	resuspended	in	the	remaining	supernatant	(approximately	100µl).	5	‐	

7µl	of	the	cell	suspension	was	pipette	onto	a	microscope	slide.	Cells	were	heat	

fixed	at	70°C	by	placing	the	slide	onto	a	hot	plate	for	30	seconds	to	one	minute.	

Once	cooled,	3‐4µl	DAPI	staining	solution	was	pipetted	on	top	of	the	cells	and	a	

coverslip	 placed	on	 top.	 Clear	 nail	 polish	was	used	 to	 seal	 the	 coverslip.	 Cells	

were	visualised	using	a	Nikon	E400	microscope.	

DAPI	staining	solution	
1μg/ml	DAPI
50g/ml	Calcofluor	

50%	glycerol

2.4.14 FACS	analysis	

1ml	 samples	 containing	 a	 minimum	 of	 5x106	 cells	 were	 centrifuged	 at	 3,000	

rpm	 for	 5	 minutes.	 Cell	 pellets	 were	 washed	 with	 500μl	 sterile	 H2O	 and	 re‐

suspended	in	500μl	of	70%	ethanol.	Samples	were	stored	at	4°C	until	required.	

300μl	of	sample	was	centrifuged	at	3,000	rpm	for	5	minutes.	The	cell	pellet	was	

resuspended	 in	1ml	 of	 50mM	sodium	citrate	 (pH	7.0).	 5μl	 of	 10mg/ml	RNase	

was	added	and	samples	were	 incubated	at	37°C	 for	2	hours.	2μl	of	propidium	
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iodide	was	added	and	samples	were	 transferred	 to	FACS	 tubes.	Samples	were	

analysed	using	a	FACScalibur	flow	cytometer.	
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3 Establishment	of	a	system	to	identify	SUMO	modified	

proteins	

3.1 Introduction	

SUMO	modifies	target	proteins	following	an	enzymatic	cascade	similar	to	that	of	

ubiquitination,	 as	 described	 previously.	 Many	 proteins	 involved	 in	 the	 DNA	

damage	 response	 have	 been	 shown	 to	 be	 SUMOylated	 in	 vivo,	 including	 the	

ubiquitin	E3	ligase	BRCA1	(Morris	et	al,	2009),	the	BER	factor	TDG	(Hardeland	

et	 al,	 2002)	 and	 the	 Smc5/6	 subunit	 Smc6	 (Andrews	 et	 al,	 2005).	 SUMO	

modification	of	target	proteins	is	frequently	a	transient	event	however,	and	only	

a	small	pool	of	protein	might	be	modified	at	any	one	time.	This	raises	difficulties	

in	 isolating	 and	 observing	 SUMO	 targets	 in	 vivo	 without	 the	 need	 for	 over‐

expression.	 Quantitative	 proteomic	 screens	 have	 identified	 SUMOylated	

proteins	which	are	involved	in	a	range	of	processes	including	the	DNA	damage	

response.	 In	 most	 cases,	 the	 role	 of	 SUMOylation	 has	 still	 to	 be	 determined	

(Cremona	et	al,	2012).	

In	vitro	SUMOylation	assays	can	be	used	as	an	initial	step	to	determine	whether	

a	 protein	 of	 interest	 might	 be	 modified.	 For	 subsequent	 assays,	 mutation	 of	

lysine	 residues	 on	 the	 target	 protein	 can	 help	 to	 identify	 the	 specific	 sites	 of	

modification.	 Additionally,	mass	 spectrometry	 can	 be	 used	 to	 identify	 specific	

residues.	 An	 in	 vitro	 SUMOylation	 system	 was	 previously	 established	 in	 the	

Watts	 lab	 to	 identify	 SUMO	 target	 proteins	 and	 to	 identify	 SUMOylation	 sites	

(Ho	et	al,	2001).	A	mature	form	of	recombinant,	N‐terminally	HIS‐tagged	SUMO	

(HIS‐SUMOGG)	 was	 previously	 purified	 in	 the	 Watts	 lab	 for	 use	 in	 in	 vitro	

assays.	 Recombinant	 SUMO	 pathway	 components	 were	 also	 expressed	 and	

affinity	 purified	 from	 bacteria	 and	 used	 in	 reactions	 with	 the	 putative	 target	

proteins.	 In	 this	 system,	modified	 target	proteins	 are	visualised	by	Coomassie	

staining	or	by	the	presence	of	higher	molecular	weight	bands	following	western	

blotting	 of	 an	 in	vitro	 reaction	 sample.	 Specifically,	 the	 aim	 here	 was	 to	 take	

SUMO	 modified	 proteins	 produced	 in	 an	 in	vitro	assay	 and	 analyse	 them	 by	

tandem	 mass	 spectrometry	 (LC‐MS/MS)	 to	 identify	 specific	 target	 lysine	

residues.	 Modified	 lysine	 residues	 could	 then	 be	 mapped	 to	 the	 known	 or	
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predicted	 structure	 of	 the	 target	 protein.	 This	 would	 give	 an	 insight	 into	 the	

relevance	 of	 the	modification,	 for	 example	whether	 it	 competes	with	 another	

known	 modification	 site	 such	 as	 ubiquitination.	 Molecular	 modelling	 of	

potentially	SUMOylated	residues	would	also	help	to	dismiss	residues	which	are	

on	internal	or	inaccessible	lysines.		

Analysis	by	mass	spectrometry	requires	the	digestion	of	peptides	by	trypsin	or	

other	endoproteases	e.g.	elastase.	Trypsin	cleaves	at	the	C‐terminal	side	of	both	

arginine	and	lysine	residues.	Cleavage	of	HIS‐SUMOGG	by	trypsin	results	in	a	23	

amino	acid	fragment	remaining	attached	to	the	target	lysine	residue.	This	often	

makes	modified	fragments	too	large	for	analysis	by	MS.	This	chapter	describes	

the	generation	of	a	 trypsin	cleavable	recombinant	SUMO,	HIS‐SUMOGG‐tr.	The	

leucine	 residue	 N‐terminal	 to	 the	 diglycine	 motif	 was	 mutated	 to	 arginine	

(L108R),	creating	a	trypsin	cleavage	site	immediately	before	the	diglycine	motif.	

This	 results	 in	 just	 two	 amino	 acids	 remaining	 bound	 to	 the	 target	 peptide	

following	 trypsin	 digestion,	 which	 is	 thus	 more	 readily	 analysed	 by	 mass	

spectrometry.	HIS‐SUMOGG‐tr	was	 subsequently	 used	 to	 identify	 target	 lysine	

residues	on	in	vitro	SUMO‐modified	proteins	by	mass	spectrometry.		

A	trypsin	cleavable	SUMO	was	also	integrated	into	the	S.	pombe	genome	under	

the	 control	 of	 the	 endogenous	 promoter,	 following	 the	 generation	 of	 a	 SUMO	

base	strain.	An	N‐terminal	HIS‐tag	was	added	with	a	view	to	using	this	strain	to	

identify	and	analyse	SUMOylated	species	at	wild	type	levels	in	vivo.	

3.2 Aims	

At	 the	 start	of	 this	project,	 individual	 SUMOylation	 sites	were	 identified	using	

systematic	mutagenesis	of	 individual	 lysine	residues	 in	the	target	protein.	One	

of	 the	 aims	 of	 this	 project	 was	 to	 establish	 a	 more	 efficient	 method	 for	 the	

identification	of	SUMOylation	sites	in	vitro	and	to	facilitate	the	identification	of	

specific	modified	lysine	residues.	The	second	aim	of	the	project	was	to	set	up	a	

system	 to	 identify	 SUMO	 target	 proteins	 in	 vivo,	 with	 SUMO	 expressed	 at	

endogenous	levels.		
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3.3 In	 vitro	 purification	 of	 components	 of	 the	 SUMOylation	

pathway	from	bacteria	for	use	in	in	vitro	assays	

In	order	to	carry	out	an	in	vitro	SUMOylation	assay,	all	components	of	the	SUMO	

pathway	 first	 need	 to	 be	 purified	 from	 bacteria.	 The	 ORF's	 of	 pathway	

components	 had	 been	 previously	 cloned	 into	 expression	 vectors	 containing	

either	HIS	or	GST	tags.	E1	activating	enzyme	heterodimer	subunits	HIS‐Rad31	

and	 GST‐Fub2	were	 co‐transformed	 into	E.	coli	 and	 purified	 using	 gluathione	

sepharose	 beads	 (Figure	 3.1A).	 E2	 conjugating	 enzyme	 GST‐Hus5	 was	 also	

purified	using	gluathione	sepharose	beads	(Figure	3.1B).	E3	ligases	HIS‐Pli1	and	

GST‐Nse2	were	purified	using	Ni2+	agarose.	GST‐Nse2	 is	shown	in	Figure	3.1C.	

All	 purifications	 were	 carried	 out	 under	 native	 conditions.	 Newly	 purified	

components	 were	 tested	 in	 an	 in	 vitro	 SUMOylation	 reaction	 to	 assess	 the	

appropriate	 concentration	 of	 recombinant	 protein	 required	 to	 form	 SUMO	

chains	(Figure	3.1D).	Elution	fraction	4	(lane	2)	was	deemed	to	be	at	a	suitable	

concentration	 in	 this	 case,	 as	 SUMO	 chains	 are	 formed	 efficiently,	 avoiding	

excessive	SUMOylation	which	could	 lead	 to	 false	positive	results.	SUMOylation	

of	 target	 proteins	 can	 occur	 in	 the	 absence	 of	 an	 E3	 SUMO	 ligase	 in	 in	vitro	

assays,	 where	 there	 is	 an	 excess	 of	 SUMOylation	 machinery.	 Whilst	 target	

proteins	are	able	to	interact	directly	with	the	E2	conjugating	enzyme	in	vivo,	it	is	

not	clear	how	often	SUMOylation	occurs	in	the	absence	of	E3	ligases	in	vivo.	The	

viability	 of	 a	 pli1‐d	nse2‐SA	double	mutant	 however	 (Steinacher	 et	 al.	 2013),	

suggests	that	either	proteins	can	be	SUMOylated	in	the	absence	of	E3	ligases	in	

S.pombe,	or	that	there	exists	an	as	yet	unidentified	third	SUMO	ligase	in	S.pombe.		
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Figure 3.1 Purification of components of the SUMOylation pathway. 
(A) E1 activating enzyme subunits HIS-Rad31 GST-Fub2 E1 were co-expressed 
and purified using GST beads. L = cell lysate, FT = flow-through, Elution 
fractions numbered. (B) E2 conjugating enzyme GST-Hus5 purification using 
GST beads. (C) E3 ligase GST-Nse2 purification using Ni2+agarose beads. (D) The 
purified pathway components were used in an in vitro assay to confirm their 
enzymatic activity. The example shown here tests equal volumes of the E3 ligase 
Nse2 eluates shown in (C) in the absence of a specific target protein. In vitro 
assays were analysed by western blot and probed with α–SUMO antibody to 
visualise SUMOylated species and SUMO chains. 
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3.4 Creation	of	a	trypsin	cleavable	SUMO	

Mass	spectrometry	can	be	used	to	identify	specific	target	lysine	residues	which	

are	SUMOylated	in	an	 in	vitro	reaction.	Incorporation	of	a	trypsin	cleavage	site	

into	 recombinant	 HIS‐SUMOGG	 adjacent	 to	 the	 diglycine	 motif	 increases	 the	

probability	 of	 identifying	 modified	 residues.	 Site	 directed	 mutagenesis	 was	

performed	on	 the	pET15b‐HIS‐SUMOGG	 construct.	 This	 resulted	 in	 the	L108R	

mutation	directly	adjacent	 to	 the	diglycine	motif	which	 is	conjugated	 to	 lysine	

residues	 on	 target	 proteins	 (Figure	 3.2A).	 The	 presence	 of	 the	mutation	 was	

confirmed	 by	 sequencing.	 The	 mutant	 will	 be	 referred	 to	 as	 HIS‐SUMOGG‐tr	

from	now	 on.	 Expression	 of	HIS‐SUMOGG‐tr	 in	E.	coli	 BL21	 cells	was	 induced	

using	 0.1mM	 IPTG	 overnight	 at	 either	 26°C	 or	 37°C	 in	 order	 to	 identify	 the	

optimal	 conditions	 for	 expression	 (Figure	 3.2B).	 HIS‐SUMOGG‐tr	was	 purified	

under	native	conditions	using	Ni2+	agarose	beads	following	IPTG	induction	and	

expression	 at	 26°C	 overnight,	 as	 these	 conditions	 produced	 a	 higher	 yield	 of	

protein	(Figure	3.2B	and	C).	Three	eluates	were	tested	for	activity	in	an	in	vitro	

assay	and	compared	to	HIS‐SUMO‐GG	in	the	presence	and	absence	of	E3	ligase	

Pli1	 (Figure	 3.2D).	 HIS‐SUMO‐GG‐tr	was	 able	 to	 form	 SUMO	 chains	 in	vitro	 at	

least	 as	 efficiently	 as	 HIS‐SUMO‐GG	 in	 both	 the	 presence	 (Comparing	 lanes	 6	

and	7)	and	absence	(comparing	lanes	1	and	2)	of	the	SUMO	ligase	Pli1.	

This	 trypsin‐cleavable	 SUMO	 has	 since	 been	 used	 in	 several	 in	 vitro	

SUMOylation	 assays,	 and	 modified	 target	 proteins	 have	 been	 successfully	

identified	and	analysed	by	mass	spectrometry	 following	trypsin	digestion.	The	

specific	 modified	 lysine	 residues	 of	 several	 target	 proteins	 have	 also	 been	

identified	(Mercer,	B	DPhil	 thesis,	University	of	Sussex).	Further	examples	will	

be	discussed	in	subsequent	chapters.	Included	in	the	modified	targets	identified	

were	 SUMOylated	 forms	 of	 some	 of	 the	 components	 of	 the	 SUMO	 pathway,	

namely	 the	E1	activating	enzyme	subunit	Fub2	and	 the	E2	conjugator	subunit	

Hus5.	
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Figure	3.2	Trypsin	cleavable	SUMO	can	form	SUMO	chains	in	vitro.	

(A)	PCR	site	directed	mutagenesis	was	used	to	create	a	trypsin	cleavage	site	adjacent	to	
the	 GG	 motif	 (L108R).	 (B)	 Whole	 cell	 extract	 following	 pET15b‐HIS‐SUMOGG‐tr	
expression	in	E.coli.	induced	overnight	at	either	37°C	(lane	1)	or	26°C	(lane	2).	(C)	HIS‐
SUMOGG.tr	 was	 purified	 using	 Ni2+	 	beads.	 Lane	 1,	 cell	 lysate;	 lane	 2,	 flow	 through;	
Lanes	 3‐9,	 50µl	 elution	 fractions.	 Both	 gels	 are	 12.5%	 SDS‐PAGE	 stained	 with	
Coomassie	 blue	 staining.	NS	 refers	 to	 a	 non‐specific	 band.	 (D)	 In	vitro	SUMOylation	
assay	comparing	the	activity	of	HIS‐SUMOGG	with	HIS‐SUMOGG‐tr	in	the	presence	and	
absence	of	E3	SUMO	ligase	Pli1.	Asterisk	refers	to	high	molecular	weight	SUMO	chains.	
	

3.5 Identification	 of	 SUMO	 modified	 Hus5	 using	 trypsin	

cleavable	SUMO	

An	in	vitro	SUMOylation	assay	using	HIS‐SUMOGG‐tr	was	analysed	by	SDS‐PAGE	

and	 stained	 with	 Coomassie	 Brilliant	 Blue	 to	 visualise	 protein	 bands	 (Figure	

3.3A).	The	assay	was	 set	 up	 in	 the	 absence	or	presence	of	 the	E2	 conjugating	

enzyme	GST‐Hus5.	The	appearance	of	higher	molecular	weight	bands	suggested	

that	components	of	the	SUMO	pathway	were	themselves	being	modified.	Several	

bands	were	sliced	from	the	gel,	trypsinized	and	analysed	by	mass	spectrometry.	

During	mass	spectrometry,	samples	are	ionised,	fragmented	and	then	fragments	

are	 separated	 by	 their	 mass	 to	 charge	 ratio.	 Fragmentation	 results	 in	 N‐

terminally	 or	 C‐terminally	 charged	 species,	 referred	 to	 as	 b	 ions	 or	 y	 ions,	

respectively.	 The	 difference	 in	mass	 between	 adjacent	 b	 or	 y	 ions	 allows	 the	

identification	of	specific	residues.	Therefore	the	addition	of	two	glycine	residues	

resulting	 from	SUMOylation	of	 a	 target	protein	 results	 in	 a	 specific	mass	 shift	

which	can	be	 identified	by	 the	mass	spectrometer.	A	mass	shift	confirmed	 the	

conjugation	of	the	diglycine	motif	at	Hus5	K50	(Figure	3.3B).	

An	 alignment	 of	 the	Hus5/Ubc9	 sequences	 from	humans,	 budding	 and	 fission	

yeast	and	mice	can	be	seen	in	Figure	3.4A.	The	lysine	residue	at	position	50	is	

not	 conserved	 between	 these	 species.	 However	 there	 is	 a	 highly	 conserved	

lysine	residue	two	amino	acids	upstream	in	all	species	analysed	(K48)	(Figure	

3.4A).	 This	 suggests	 that	 this	 residue	 might	 be	 of	 biological	 relevance.	 The	

human	 and	 mouse	 Ubc9	 K48	 residue	 is	 identified	 by	 SUMO	 consensus	 site	

predicting	software	 ‘SUMOplot’	as	a	potential	SUMO	motif,	suggesting	that	this	

residue	is	a	candidate	for	SUMOylation	in	higher	eukaryotes.	
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K50	can	be	mapped	onto	the	structure	of	S.	pombe	Hus5	(Prudden	et	al,	2011),	

and	 is	 compared	 to	 the	 relative	 position	 on	 the	 structure	 of	 the	 S.	cerevisiae	

ortholog	 Ubc9	 (Duda	 et	 al,	 2007)	 (Figure	 3.4B).	 The	 position	 of	 Ubc9	

SUMOylation	sites	in	S.	cerevisiae	and	humans	are	also	highlighted	(Figure	3.4B).	
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Figure 3.3 Hus5 is SUMOylated in vitro at K50 
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diglycine motif. The red arrow highlights the y10 ion which corresponds to 
diglycine linked to K50. 

                             100



mm    1 MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 
hs    1 MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKKGTPWEGGLFKL 
sp    1 MSSLCKTRLQEERKQWRRDHPFGFYAKPCKSSDGGLDLMNWKVGIPGKPKTSWEGGLYKL 
sc    1 MSSLCLQRLQEERKKWRKDHPFGFYAKPVKKADGSMDLQKWEAGIPGKEGTNWAGGVYPI 
 
 
mm   61 RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 
hs   61 RMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILEEDKDWRPAITIKQILLGIQELL 
sp   61 TMAFPEEYPTRPPKCRFTPPLFHPNVYPSGTVCLSILNEEEGWKPAITIKQILLGIQDLL 
sc   61 TVEYPNEYPSKPPKVKFPAGFYHPNVYPSGTICLSILNEDQDWRPAITLKQIVLGVQDLL 
 
 
mm  121 NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 
hs  121 NEPNIQDPAQAEAYTIYCQNRVEYEKRVRAQAKKFAPS 
sp  121 DDPNIASPAQTEAYTMFKKDKVEYEKRVRAQARENAP- 
sc  121 DSPNPNSPAQEPAWRSFSRNKAEYDKKVLLQAKQYSK- 

 

K50 

Figure 3.4 Multiple sequence alignment and structure highlighting the 
position of Hus5 K50 

(A) Sequence alignment of Hus5/Ubc9 orthologous from mice (mm), humans (hs), 
fission (sp) and budding (sc) yeast. SUMOylated lysines are highlighted in red. (B) S. 
pombe Hus5 structure (Prudden et al. 2011), compared to the S.cerevisiae Ubc9 
structure (Duda, van Waardenburg et al. 2007). The catalytic cysteine residue C93 
is highlighted in yellow. The S. pombe Hus5 SUMOylation site K50 and the 
equivalent residue in S. cerevisiae (K48) is highlighted in red. Ubc9 is SUMOylated 
at K153 (R153 in S. pombe) and K157 in S.cerevisiae, highlighted in pink. K14 is 
reported to be SUMOylated in humans (highlighted orange). 
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3.6 Hus5	SUMOylation	in	vivo	

In	order	to	investigate	whether	Hus5	is	SUMOylated	 in	vivo,	 the	hus5	gene	was	

cloned	 into	 the	 yeast	 vector	 pREP42‐HA.	 Site	 directed	 PCR	 mutagenesis	 was	

performed	resulting	in	a	K50R	mutant	(pREP42‐HA‐Hus5‐K50R).	The	full	length	

SUMO	sequence	 (SUMO‐FL)	had	previously	been	cloned	 into	pREP41‐myc‐HIS	

vector	for	use	in	in	vivo	studies	(Ho	et	al,	2011).	It	has	been	suggested	however,	

that	the	myc	tag	can	itself	be	SUMOylated	(Nestoras,	K.,	DPhil	thesis,	University	

of	Sussex).	To	prevent	the	possibility	of	false	positive	results,	the	HIS6‐myc2	tag	

was	 excised	 from	 pREP41	 by	 restriction	 digestion.	 This	 was	 replaced	 with	 a	

linker	 of	 two	 ligated	 oligonucleotides	 encoding	 a	 HIS6	 tag,	 resulting	 in	 HIS‐

SUMO‐FL	 (Figure	 3.5A).	 To	 determine	whether	K50	 is	 the	 only	 lysine	 residue	

that	 is	 SUMOylated,	 pREP41‐HIS‐SUMO‐FL	 was	 co‐transformed	 into	 S.	pombe	

cells	with	pREP42‐HA‐HUS5	or	pREP42‐HA‐HUS5‐K50R.	HIS‐SUMO	was	pulled	

down	 using	 Ni2+	 agarose	 and	 the	 eluates	 subjected	 to	 western	 blot	 analysis	

(Figure	3.5B).	A	band	at	approximately	50	kDa	can	be	seen	when	probed	with	α‐

HA	antibody	that	is	not	observed	with	the	K50	mutant.	This	suggests	that	Hus5	

is	SUMOylated	in	vivo	on	K50	in	S.	pombe	and	that	this	is	the	main,	if	not	the	only	

SUMOylation	 site.	 Further	 investigation	 is	 required	 to	 determine	 the	 role	 of	

Hus5	auto‐SUMOylation	in	S.	pombe	and	whether	K50	modification	may	have	a	

regulatory	role	as	in	other	organisms.	This	line	of	study	was	continued	by	other	

members	of	the	Watts	lab.	
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Figure	3.5	Hus5	is	SUMOylated	in	vivo	at	K50	

(A)	 The	myc	tag	 was	 excised	 from	 plasmid	pREP41‐myc‐HIS	and	 replaced	 with	
a	6xHIS	linker	 to	 avoid	 false	 positive	 results	 resulting	 from	 SUMOylation	 of	
the	myc	tag.	pREP41‐HIS‐SUMO‐FL	was	 co‐transformed	 into	 ‘wild	 type’		S.	
pombe		 strain	 with	pREP42‐HA‐Hus5	or	pREP42‐HA‐Hus5‐K50R.	HIS‐SUMO‐FL	was	
purified	 from	whole	cell	extract	 and	anti‐HA	 antibodies	 used	 to	 detect	 SUMOylated	
Hus5.	 (B)	 Immunoblot	 using	anti‐HA	 antibodies	revealed	 a	 band	 corresponding	 to	
SUMOylated	 Hus5	 indicated	 by	 an	 arrow.	 This	 band	 is	 not	 present	 when	 cells	 are	
transformed	with	the	Hus5‐K50R	mutant.	Asterisk	indicates	non‐specific	band.	
	

3.7 Integration	of	SUMO‐tr	into	the	genome	

In	order	to	analyse	SUMO	targets	in	vivo,	without	the	need	for	over‐expression,	a	

trypsin‐cleavable	 SUMO	was	 inserted	 into	 the	 genome.	 In	 order	 to	 do	 this,	 a	

SUMO	base	strain	was	created.	LoxP	and	LoxM	sites	were	incorporated	into	the	

genome	 flanking	 the	 SUMO	 coding	 sequence	 (Figure	 3.6),	 as	 described	 by	

(Watson	 et	 al,	 2008).	 This	 is	 a	 two‐step	 process	 for	 essential	 genes.	 The	

plasmids	pAW41	and	pAW12	(Figure	3.6A)	were	used	to	incorporate	loxP	and	

loxM	sites	 flanking	 the	SUMO	sequence	 in	 the	genome.	The	 first	 loxP	 site	was	

incorporated	approximately	200	bases	upstream	of	the	SUMO	start	codon	so	as	

not	 to	 interfere	 with	 any	 overlapping	 ORFs	 (Figure	 3.6B	 i).	 Incorporation	 of	

LoxP	half	sites	and	the	ura4+	marker	was	confirmed	by	PCR	(Figure	3.6Bi	and	C	

i).	 Transformation	 with	 a	 Cre‐expressing	 plasmid	 excised	 the	 ura4+	 marker,	

resulting	in	formation	of	a	full	loxP	site.	This	was	confirmed	by	PCR	across	the	

loxP	site,	using	 the	 same	primers	as	 in	Figure	3.6Bi.	Loss	of	 the	ura4+	marker	

results	in	an	~	2	Kb	reduction	in	size	of	the	PCR	product	(Figure	3.6B	ii	and	C	ii).	

A	ura4+	marker	and	LoxM	sequence	was	then	integrated	directly	downstream	of	

the	SUMO	stop	codon.	This	insertion	was	verified	by	PCR	(Figure	3.6Biii	and	C	

iii)	 and	 the	 surrounding	 genome	 was	 sequenced	 to	 ensure	 correct	

recombination.	 The	 resultant	 strain	 LoxP‐SUMO‐ura4+‐LoxM	 is	 referred	 to	 as	

the	‘base	strain’.	
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Figure	3.6	Integration	of	SUMO‐tr	into	the	genome.	

(A)	 Plasmids	pAW41,	pAW12	and	pAW8	 (adapted	 from	Watson	et	al.	 2008).	 pAW41	
and	pAW12	are	used	 as	 templates	 for	PCR.	Transformation	of	S.pombe	 cells	with	 the	
PCR	products	induces	recombination	and	integration	of	LoxP	and	loxM	sites	flaking	the	
SUMO	gene.	nmt	=	no	message	in	thiamine	promoter.	Cre	=	Cre	recombinase	encoding	
gene.	 Leu	 =	 Leucine	 marker.	 (B)	 Diagram	 of	 recombination	 between	 loxP	 and	 loxM	
sites.	i)	Integration	of	half	LoxP	sites	and	ura4.	ii)	Excision	of	ura4	and	formation	of	full	
LoxP	site.	iii)	Integration	of	ura4	and	Lox	M	site.	iv)	Integration	of	wild	type	or	mutant	
gene	sequence	following	transformation	with	pAW8,	replacing	the	wild	type	DNA	and	
resulting	in	loss	of	the	ura4	marker.	(C)	PCR	from	genomic	DNA	confirming	integration	
of	Lox	sites	and	recombination	between	pAW8	and	the	base	strain.	The	PCR	products	in	
C	 (i‐iv)	are	 equivalent	 to	 the	 steps	outlined	 in	B	 (i‐iv).	Primers	used	 in	each	 step	are	
represented	by	blue	or	orange	arrows	

	

The	exact	sequence	between	the	new	LoxP	and	LoxM	sites	 in	 the	genome	was	

simultaneously	 cloned	 into	 the	 pAW8	 vector,	 resulting	 in	 pAW8‐SUMO.	 Site	

directed	mutagenesis	was	used	as	before,	to	incorporate	a	trypsin	cleavage	site	

directly	upstream	of	the	diglycine	motif,	resulting	 in	pAW8‐SUMO‐tr.	The	base	

strain	was	transformed	with	either	pAW8‐SUMO	or	pAW8‐SUMO‐tr,	resulting	in	

recombination	between	the	loxP	and	loxM	sites.	The	wild	type	SUMO	sequence	

or	 the	 mutant	 sequence	 SUMO‐tr	 was	 consequently	 incorporated	 into	 the	

genome	in	place	of	the	wild	type	SUMO	sequence	and	ura4+	marker	(Figure	3.6B	

iii‐iv).	This	resulted	in	loss	of	the	ura4+	marker	which	was	verified	by	PCR	and	

sequencing	(Figure	3.6	B	iv	and	C	iv).	These	strains	will	be	referred	to	as	SUMO‐

wt	and	SUMO‐tr,	respectively.	

3.8 Integration	of	a	HIS‐SUMO‐tr	into	the	genome	

In	 order	 to	 pull	 down	 and	 analyse	 SUMOylated	 species	 in	 vivo,	 under	

endogenous	 conditions,	 an	 N‐terminal	 HIS	 tag	 was	 incorporated	 into	 the	

genome	 using	 the	 SUMO	 base	 strain.	 To	 do	 this,	 two	 NdeI	 restriction	 sites	

present	in	the	pAW8	vector	were	mutated	(Figure	3.7A).	The	first	was	mutated	

using	 site	 directed	 mutagenesis,	 and	 the	 second	 by	 digesting	 and	 incubating	

with	Klenow	and	 then	re‐ligating	 the	blunt	ends.	The	SUMO	and	SUMO.tr	ORF	

sequences	 were	 then	 sub‐cloned	 from	 pAW8	 into	 the	 NdeI‐mutated	 pAW8	

vector.	Site	directed	mutagenesis	was	used	to	mutate	three	bases	5'	of	the	SUMO	

start	 codon	 to	 form	 an	 NdeI	 restriction	 site	 for	 both	 the	 pAW8‐SUMO	 and	

pAW8‐SUMO.tr	 constructs.	 Two	 oligonucleotides	 were	 synthesised	 and	
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annealed	to	form	a	linker	encoding	a	HIS6	tag	with	NdeI‐compatible	overhangs	

(Figure	3.7B).	The	pAW8‐SUMO	and	pAW8‐SUMO‐tr	 constructs	were	digested	

with	NdeI	and	ligated	with	the	annealed	linker	to	incorporate	a	HIS6	tag	directly	

5'	of	 the	SUMO	start	 codon.	This	 resulted	 in	pAW8‐HIS‐SUMO	and	pAW8‐HIS‐

SUMO‐tr	 (Figure	 3.7C).	 Transformation	 of	 the	 SUMO	 base	 strain	 with	 these	

constructs	 resulted	 in	 recombination	between	 the	Lox	 sites,	 incorporating	 the	

HIS	tagged	SUMO	or	HIS	tagged	SUMO‐tr	 into	the	genome,	 in	place	of	the	wild	

type	SUMO	ORF.	

3.9 Incorporation	of	a	HIS	tagged	trypsin	cleavable	SUMO	into	

the	genome	does	not	result	in	a	mutant	phenotype	

The	SUMO	base	strain,	SUMO‐wt,	SUMO‐tr,	HIS‐SUMO	and	HIS‐SUMO‐tr	strains	

were	 tested	 for	 sensitivity	 to	DNA	damaging	 agents.	None	of	 the	 strains	were	

sensitive	 to	 the	 DNA	 replication	 inhibitor	 hydroxyurea,	 or	 MMS	 as	 shown	 in	

spot	 tests	 (Figure	 3.8A).	 Additionally	 none	 of	 the	 strains	 showed	 a	 mutant	

phenotype	in	response	to	UV	irradiation	or	ionising	radiation	(Figure	3.8B).	This	

means	 that	 incorporation	 of	 the	 Lox	 sites,	 a	 trypsin	 cleavage	 site	 and	HIS	 tag	

into	 the	 S.	pombe	 genome	 at	 the	 SUMO	 locus	 does	 not	 affect	 cell	 viability	 or	

response	 to	 DNA	 damaging	 agents.	 Therefore	 these	 strains	 can	 be	 used	 for	

further	studies.	
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Linker F       TATGGGTAGCAGCCACCATCATCACCATCATCA  
Linker R           ACCCATCGTCGGTGGTAGTAGTGGTAGTAGTAT               

Figure 3.7 Integration of a 6xHIS tag into the SUMO base strain. 
(A) Plasmid map of the pAW8 plasmid. Two NdeI sites in pAW8 were mutated 
using PCR mutagenesis and SUMO and SUMO-tr were sub-cloned into the MCS. 
An NdeI site was then created at the SUMO start codon for both pAW8-SUMO 
and pAW8-SUMO-tr. (B) Two oligonucleotides were generated and annealed to 
form a linker encoding a 6xHIS tag with NdeI compatible overhangs. This was 
ligated into the NdeI site resulting in  HIS-SUMO or HIS-SUMO-tr.   
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3.10 	Using	HIS‐SUMO	to	pull	down	SUMOylated	species	in	vivo	

Ni2+	agarose	was	used	to	pull	down	HIS‐SUMO	under	normal	growth	conditions	

and	following	a	200Gy	dose	of	ionising	radiation.	The	incorporation	of	a	HIS	tag	

results	 in	a	small	band	shift	which	can	be	seen	when	probing	total	cell	extract	

with	 α‐SUMO	 antibody	 (Figure	 3.9A).	 High	 molecular	 weight	 SUMOylated	

species	 can	 be	 seen	 following	 a	 pull‐down	 using	 HIS‐SUMO.	 Samples	 probed	

with	 α‐Nse2	 antibody	 and	 α‐Pcn1	 (PCNA)	 antibody	 and	 also	 revealed	 the	

presence	of	higher	molecular	weight	species,	indicating	that	these	proteins	are	

likely	 to	 be	 SUMOylated	 at	 endogenous	 levels	 in	 response	 to	 DNA	 damage	

caused	by	ionising	radiation.	(Figure	3.9B).	Unmodified	PCNA	and	Nse2	are	also	

detected	following	treatment	with	ionising	radiation	(Figure	3.9B,	asterisks).	It	

is	unclear	why	the	unmodified	forms	are	pulled	down	in	this	assay.	One	possible	

explanation	 is	 that	 the	 SUMO	has	 somehow	become	detached	 from	 the	 target	

proteins	 during	 purification.	 This	 is	 unexpected	 as	 the	 pull‐down	 was	 done	

under	 denaturing	 conditions	 that	 should	 have	 inactivated	 SUMO	 specific	

proteases.	However	 the	absence	of	unmodified	protein	 in	 lane	4	 (HIS‐SUMO	–

IR)	suggests	that	unmodified	protein	is	not	binding	to	the	Ni2+	agarose	beads	in	

untreated	samples.	
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3.11 	Discussion	

Components	 of	 the	 SUMOylation	 pathway	 were	 successfully	 expressed	 and	

purified	from	bacteria	for	use	in	in	vitro	assays.	In	order	to	identify	the	specific	

lysine	 residues	 which	 are	 SUMOylated	 following	 an	 in	vitro	 assay,	 a	 trypsin‐

cleavable	mutant	 version	 of	 SUMO	was	 created	 called	 SUMOGG‐tr.	 Previously,	

trypsin	cleavage	of	modified	proteins	resulted	in	23	amino	acids	of	the	SUMOGG	

protein	remaining	bound	to	the	target.	In	many	cases,	these	fragments	would	be	

expected	 to	 be	 too	 large	 for	mass	 spectrometry	 analysis	 and	would	 result	 in	

poor	coverage	of	peptides.	The	integration	of	an	arginine	residue	adjacent	to	the	

diglycine	motif	means	that	trypsin	cleavage	leaves	only	two	amino	acids	bound	

to	the	target	residue.	The	HIS‐tagged	trypsin‐cleavable	SUMO	was	purified	from	

E.	coli	cells	and	shown	to	be	proficient	in	the	formation	of	SUMO	chains	in	vitro.	

This	resulted	in	successful	analysis	by	mass	spectrometry	and	the	identification	

of	 specific	 SUMO	 target	 sites	 on	 a	 range	 of	 proteins.	 Several	 SUMO	 pathway	

components	were	identified	as	being	SUMOylated	from	in	vitro	assays,	including	

Hus5.	In	an	in	vivo	study	where	Hus5	and	SUMO	were	overexpressed,	a	band	of	

the	expected	size	of	a	SUMOylated	Hus5	was	identified	in	the	strain	transformed	

with	 wild	 type	 Hus5	 that	 was	 not	 present	 when	 K50	 was	 mutated.	 This	 is	

consistent	with	K50	 being	 the	 sole	 SUMOylation	 site	 on	Hus5.	Ubc9	 has	 been	

reported	 to	 be	 SUMOylated	 in	 both	 S.	cerevisiae	 and	 humans,	 where	 in	 both	

cases	 it	 is	 suggested	 that	 it	 has	 regulatory	 roles.	 SUMOylation	 of	mammalian	

Ubc9	 on	 K14	 has	 been	 reported	 to	 affect	 target	 specificity	 by	 providing	 an	

additional	SIM	binding	surface	(Knipscheer	et	al,	2008).	Ubc9	SUMOylation	in	S.	

cerevisiae	has	been	observed	at	two	sites,	K153	and	K157,	and	has	been	shown	

to	negatively	regulate	SUMOylation	of	septins	as	well	as	global	SUMOylation	(Ho	

et	al,	2011).	Another	report	demonstrated	a	requirement	for	SUMOylation	of	S.	

cerevisiae	Ubc9	in	meiosis,	and	suggested	that	auto‐sumoylation	switches	Ubc9	

from	an	active	enzyme	to	a	scaffold	involved	in	SUMO	chain	formation	(Klug	et	

al,	 2013).	 The	 role	 of	 Hus5	 SUMOylation	 in	 S.	pombe	 is	 as	 yet	 unknown	 and	

these	studies	were	continued	by	other	members	of	the	lab.		

A	trypsin‐cleavable,	HIS‐tagged	SUMO	was	integrated	into	the	genome	following	

the	 construction	 of	 a	 SUMO	 base	 strain.	 The	 replacement	 of	 wild	 type	 SUMO	
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with	either	HIS‐SUMO	or	HIS‐SUMO‐tr	did	not	result	in	any	mutant	phenotype,	

and	 so	 this	 strain	was	 used	 to	 pull‐down	 SUMOylated	 species	 in	vivo.	 A	 small	

scale	 pull‐down	 using	 HIS‐SUMO	 resulted	 in	 higher	 molecular	 weight	 bands	

being	detected	following	ionising	radiation,	when	probed	with	antibodies	raised	

against	 both	 PCNA	 and	 Nse2.	 These	 results	 will	 be	 investigated	 further	 in	

subsequent	 chapters.	 This	 implies	 that	 the	HIS‐SUMO‐tr	 strain	 can	be	 used	 in	

further	studies	to	identify	and	analyse	SUMOylated	proteins.	

In	ongoing	and	future	work,	the	HIS‐SUMO‐tr	strain	could	be	used	to	pull	down	

and	identify	known	and	novel	SUMO	targets.	The	advantage	of	using	this	strain	

is	 that	all	proteins	are	expressed	at	endogenous	 levels,	reducing	possible	 false	

positive	 results	 arising	 from	 the	 over‐expression	 of	 tagged	 constructs.	 Large	

scale	pull‐downs	may	be	required	to	identify	proteins	which	are	modified	at	low	

levels.	The	HIS‐SUMO	strain	could	be	crossed	with	mutant	strains	to	investigate	

the	effect	of	global	SUMOylation	or	the	SUMOylation	of	a	specific	target	protein	

under	a	range	of	conditions.	It	could	also	be	used	in	combination	with	SILAC	to	

identify	and	analyse	levels	of	SUMOylated	proteins	 in	vivo.	This	research	could	

lead	 to	 further	understanding	 the	 role	of	 SUMOylation	of	proteins	 involved	 in	

several	pathways	including	the	DNA	damage	response.	
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4 Investigation	into	Nse2	auto‐SUMOylation	in	

S.pombe	and	analysis	of	Nse2	mutations	found	in	

humans	

4.1 Introduction	

Unlike	the	ubiquitin	pathway,	which	 features	hundreds	of	E3	 ligases,	only	two	

SUMO	 ligases	have	been	 identified	 to	date	 in	S.	pombe.	Nse2	 is	 a	 SUMO	 ligase	

which	 is	 classified	 as	 a	 member	 of	 the	 PIAS	 family	 (Andrews	 et	 al,	 2005;	

McDonald	et	al,	2003;	Sergeant,	2005).	Members	of	this	class	of	ligases	have	a	C‐

terminal	 SP‐RING	 finger	 motif	 similar	 to	 but	 distinct	 from	 those	 in	 ubiquitin	

ligases.	 RING	 finger	 domains	 form	 a	 globular	 structure	 capable	 of	 binding	 E2	

conjugating	enzymes,	by	co‐ordinating	Cystine	and	Histidine	residues	(Borden,	

et	al.	2000).	Siz/PIAS	(SP‐RING)	domains	have	conserved	sequences	similar	to	

the	RING	domain	observed	in	ubiquitin	E3	ligase	proteins,	with	the	exception	of	

two	conserved	cysteine	residues	(Hochstrasser,	2001).	

Nse2	is	thought	to	play	a	regulatory	role	within	the	Smc5/6	complex,	although	

how	this	occurs	remains	to	be	determined.	This	chapter	investigates	three	Nse2	

auto‐SUMOylation	 sites	 identified	 in	 vitro,	 two	 of	 which	 two	 have	 been	

previously	identified	in	the	lab	(Andrews,	E,	DPhil	thesis,	Univ.	of	Sussex).	The	

role	 of	 Nse2	 auto‐SUMOylation	 is	 also	 currently	 unknown.	 nse2	 lysine	 to	

arginine	 (K	 to	R)	mutants	were	 integrated	 into	 the	 genome	 to	 investigate	 the	

effect	of	an	inability	of	Nse2	to	auto‐SUMOylate	in	vivo.		

It	has	been	suggested	that	whilst	the	other	SUMO	ligase	Pli1	is	involved	in	global	

SUMOylation,	 Nse2	 targets	 a	 specific	 subset	 of	 proteins	 for	 SUMOylation,	

mediated	 by	 an	 interaction	 between	 Ubc9	 and	 Rad60	 (Prudden	 et	 al,	 2011).	

Nse2	is	associated	with	the	Smc	5/6	complex,	and	physically	interacts	with	the	

coiled	 coil	 of	 Smc5	 (Duan	 et	 al,	 2009b).	 Nse2	 is	 auto‐SUMOylated	 and	

SUMOylates	other	members	of	the	Smc5/6	complex	in	vitro,	including	Nse3	and	

Nse2	as	well	as	Smc6,	which	is	also	SUMOylated	in	vivo	(Andrews	et	al,	2005).		
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Recently,	two	patients	have	been	identified	who	each	carry	two	mutations	in	the	

mms21	 (nse2)	 gene.	 The	 patients	 are	 not	 cancer‐prone	 but	 present	 with	

primordial	 dwarfism	 and	 resistance	 to	 insulin.	 The	 first	 pair	 of	 mutations	

results	 in	 a	 premature	 stop	 codon	 and	 a	 base	 change	 within	 the	 SP‐RING	

catalytic	 domain,	 these	 are	 S223X	 and	 T172A.	 These	 mutations	 result	 in	

reduced	 SUMO	 ligase	 activity	 of	 Nse2	 in	 human	 cells.	 The	 second	 pair	 of	

mutations	are	 frame‐shift	mutations,	both	resulting	 in	premature	stop	codons.	

These	are	S116fsX132	and	A234fsX236.	For	simplicity,	these	mutations	will	be	

referred	to	as	S116X	and	A234X	from	now	on.	Cells	containing	these	mutations	

were	 noted	 to	 have	 a	 defect	 in	 recovery	 following	 HU	 treatment.	 Bi‐nucleate	

cells	were	 also	 observed,	 indicating	 that	 these	mutations	 result	 in	 a	 defect	 in	

chromosome	segregation.	

4.2 Aims	

The	 aims	 of	 this	 work	 were	 firstly	 to	 investigate	 the	 role	 of	 Nse2	 auto‐

SUMOylation	 in	S.	pombe,	 and	 secondly	 to	 create	 and	 analyse	S.	pombe	strains	

containing	the	equivalent	mms21	mutations	that	were	found	in	patients.		

4.3 Nse2	 is	 SUMOylated	 in	 vitro	 at	 residues	 K134,	 K229	 and	

K248	

An	in	vitro	SUMOylation	assay	was	carried	out	using	the	trypsin	cleavable	SUMO	

protein	 (SUMO‐tr)	 generated	 as	 described	 previously	 (see	 chapter	 3.4)	 using	

GST‐tagged	 Nse2	 as	 a	 substrate	 (Figure	 4.1)	 (Mercer,	 B	 DPhil	 thesis,	 Univ.	 of	

Sussex).	Gel	slices	were	analysed	by	LC‐MS/MS	and	three	lysine	residues	were	

identified	as	being	SUMOylated.	These	were	K134,	K229	and	K248	(Figure	4.2	A,	

B	and	C,	 respectively).	Two	of	 these	 residues,	K229	and	K248,	had	previously	

been	 identified	 as	 SUMOylated	 in	 vitro	 (Andrews,	 E,	 DPhil	 thesis,	 Univ.	 of	

Sussex).	 A	 sequence	 alignment	 between	 S.	pombe	 Nse2	 and	 the	 human	 and	 S.	

cerevisiae	 homologues	 (Mms21)	 shows	 a	 low	 level	 of	 overall	 sequence	

homology	 between	 the	 species	 at	 the	 N	 terminus.	 However	 the	 catalytic	 C	

terminal	 domain	 is	 more	 highly	 conserved.	 The	 SUMO	 modified	 residues	

identified	 from	 this	and	previous	 studies	are	 conserved	between	 the	S.	pombe	

and	human	sequences	(Figure	4.3).	The	structure	of	the	SP‐RING	domain	of	the	
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human	 homologue	 Mms21	 is	 available	 (He	 F,	 2007)	 and	 the	 structure	 of	 S.	

cerevisiae	Mms21	with	part	of	the	Smc5	protein	has	also	been	published	(Duan	

et	al,	2009a).	There	are	currently	no	structural	data	available	for	S.	pombe	Nse2.	

Protein	structure	modelling	software	‘phyre2’	was	therefore	used	to	generate	a	

predicted	 structure	of	S.	pombe	Nse2.	The	phyre2	 server	uses	 'template‐based	

homology	modeling	and	fold‐recognition’	(Kelley	&	Sternberg,	2009)	to	predict	

the	 structure	 of	 a	 protein	 based	 on	 sequence	 homology	 and	 the	 published	

structures	of	homologous	proteins	or	motifs.	A	results	page	is	generated	which	

includes	information	about	secondary	structure	prediction,	and	protein	models	

with	a	score	of	confidence	(Kelley	&	Sternberg,	2009).	Structures	can	be	opened	

as	 a	 .pdb	 file	 using	 the	 'PYMOL	 Molecular	 Graphics	 System'.	 Using	 this	

programme,	 3D	 structures	 can	 be	 highlighted,	 coloured	 and	 manipulated.	

Further	 information	 about	 the	 download	 and	 use	 of	 PYMOL	 can	 be	 found	 at	

www.pymol.org.	The	lysine	residues	identified	as	SUMOylated	from	the	in	vitro	

SUMOylation	assay	were	mapped	to	each	of	these	structures	(Figure	4.4).	K248	

is	located	at	the	extreme	C‐terminus	of	Nse2,	which	has	been	shown	to	interact	

with	 Smc5	 (Duan	 et	 al,	 2009b).	 SUMO	 modification	 of	 this	 residue	 could	

therefore	 potentially	 disrupt	 this	 interaction,	 de‐stabilising	 the	 Smc5/6	

complex.	 K229	 is	 in	 the	 SP‐RING	 domain	 (Figure	 4.4,	 highlighted	with	 a	 blue	

box)	which	 is	required	 for	SUMO	ligase	activity,	and	K134	 is	positioned	 in	 the	

middle	of	an	α‐helix	C‐terminal	to	the	SP‐RING	domain.	
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Figure 4.1  Nse2 is auto-SUMOylated in vitro.  
Colloidal blue staining of SDS-PAGE gel of an in vitro SUMOylation assay 
containing HIS-SUMOGG.tr, E1 activating enzyme, E2 conjugating enzyme 
and E3 ligase Nse2. Lane 1, GST-Nse2; lane 2, HIS-SUMOGG-tr, E1 activating 
enzyme HIS-Rad31 GST-Fub2, E2 conjugating enzyme GST-Hus5 and E3 
ligase GST-Nse2; lane 3, HIS-SUMOGG-tr, HIS-Rad31 GST-Fub2 and GST-
Hus5.; Lane 4, HIS-SUMOGG.tr and HIS-Rad31 GST-Fub2. Red boxes highlight 
gel slices which were excised and analysed by MS/MS. Bands corresponding 
to SUMO machinery and SUMOylated proteins are highlighted with arrows 
(Mercer, B DPhil thesis, Univ. of Sussex).  Mr = molecular weight. 
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Figure 4.2  Nse2 is SUMOylated in vitro at K134, K229 and K248 
Nse2 is can be auto-SUMOylated in vitro. (A) MS/MS data identifying Nse2 
lysine residue K134 conjugated to the SUMO diglycine motif. The red arrow 
highlights the y2 ion which corresponds to diglycine linked to K134. (B) 
MS/MS data identifying Nse2 lysine residue K229 conjugated to the SUMO 
diglycine motif. (C) MS/MS data identifying Nse2 lysine residue K248 
conjugated to the SUMO diglycine motif.  
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Figure 4.4. Pym
ol structures of N

se2/M
m

s21. 
(A) Phyre2 predicted structure of S.pom

be N
se2 w

ith position of SUM
Oylated residues identified in vitro highlighted. (B) H

um
an M

m
s21 SP-

RIN
G dom

ain structure (aa 168-247) (H
e F 2007). The position of the conserved lysine residues are highlighted in red. (C) Structure of 

S.cerevisiae N
se2 hom

ologue M
m

s21 (Duan, Sarangi et al. 2009).  The Sm
c5 arm

 is highlighted in blue. M
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s21 is show
n in bronze. The lysine 

residues closest to those conserved in S.pom
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ans are highlighted in red.(D
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se2 highlighting the N
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c5 binding in the S.cerevisiae M
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Oylation sites are highlighted w
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is residues highlighted w
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4.4 Generation	of	an	nse2	base	strain	

Previous	analysis	of	nse2	lysine	to	arginine	mutants	in	the	Watts	lab	have	given	

conflicting	results	and	 it	was	unclear	whether	the	 lysine	residues	 identified	as	

auto‐SUMOylated	 are	 required	 for	 Nse2	 SUMO	 ligase	 activity.	 In	 order	 to	

analyse	 nse2	 K	 to	 R	mutants	 in	vivo,	 a	 base	 strain	 for	 nse2	 was	 generated	 to	

allow	 incorporation	 of	 K	 to	R	mutations	 into	 the	 genome	 in	 place	 of	 the	wild	

type	nse2	ORF.	LoxP	and	LoxM	sites	were	incorporated	into	the	genome	flanking	

the	nse2	coding	sequence,	where	LoxP	was	integrated	immediately	upstream	of	

the	 nse2	 promoter,	 and	 LoxM	 directly	 adjacent	 to	 the	 stop	 codon,	 using	 the	

method	described	 in	chapter	3	 (Watson	et	al,	2008)	 (Figure	4.5A).	This	was	a	

two‐step	process	as	nse2	 is	an	essential	gene	 in	S.	pombe.	The	resultant	LoxP‐

nse2‐ura4+‐LoxM	strain	 is	 referred	 to	as	 the	nse2	 base	 strain.	The	nse2	 coding	

sequence	 flanked	by	LoxP	and	LoxM	sites	was	 simultaneously	 cloned	 into	 the	

pAW8	 vector	 to	 generate	 pAW8‐nse2.	 Transformation	 of	 the	nse2	 base	 strain	

with	pAW8‐nse2	resulted	in	the	wild	type	nse2	sequence	replacing	the	original	

sequence	 and	 the	 ura4+	 marker.	 This	 strain	 is	 referred	 to	 as	 nse2.	 Survival	

assays	 using	 the	 nse2	 base	 strain	 and	 nse2	 strain	 were	 carried	 out	 following	

treatment	 with	 ionising	 radiation	 and	 UV	 irradiation	 (Figure	 4.5B).	 Neither	

strain	showed	increased	sensitivity	to	these	damaging	agents	compared	to	wild	

type	 S.	pombe	 cells.	 The	 absence	 of	 a	mutant	 phenotype	means	 that	 the	nse2	

base	strain	can	be	used	for	the	integration	of	novel	nse2	mutations.	
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Figure 4.5. The nse2 base strain has no mutant phenotype.  
(A) A base strain for nse2 was created and the exact sequence flanked by the 
LoxP and LoxM sites cloned into the pAW8 plasmid as described previously. 
Site directed mutagenesis was used to create lysine to arginine mutations at 
K134, K229 and K248. (B) Survival curves were plotted following exposure to 
increasing doses of UV or IR irradiation. nse2 bs = nse2 base strain (LoxP-
nse2-ura4-LoxM). Integration of wild type nse2 into the nse2 base strain 
shows no mutant phenotype following UV or IR treatment. 
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4.5 nse2	K	to	R	mutants	do	not	have	a	mutant	phenotype	

In	order	to	investigate	the	role	of	SUMOylation	of	Nse2	in	vivo,	a	series	of	lysine	

to	 arginine	 mutants	 were	 generated.	 Site	 directed	 mutagenesis	 was	 used	 on	

pAW8‐nse2	 to	 generate	 K134R,	 K229R	 and	 K248R	 single	mutants,	 as	 well	 as	

double	 and	 triple	 lysine	mutant	 constructs.	 These	 were	 transformed	 into	 the	

nse2	 base	 strain	 and	 integrated	 into	 the	 genome	 following	 recombination	

between	the	LoxP	and	LoxM	sites.	If	Nse2	is	not	modified	at	any	additional	sites	

other	than	those	identified	in	the	in	vitro	SUMOylation	assay,	the	triple	mutant,	

nse2‐K134R	K229R	K248R,	 should	 be	 unable	 to	 be	 SUMOylated.	 None	 of	 the	

lysine	 mutants	 showed	 a	 notable	 increase	 in	 sensitivity	 to	 ionising	 radiation	

(Figure	 4.6	 A).	 Only	 the	 triple	 lysine	mutant	 showed	 a	 very	 slight	 increase	 in	

sensitivity	to	high	doses	of	UV	irradiation	(Figure	4.6	B).	None	of	the	 lysine	to	

arginine	 mutants	 showed	 an	 increased	 sensitivity	 to	 hydroxyurea	 or	 MMS	

compared	 to	wild	 type	(Figure	4.7).	A	 ligase	dead	nse2	mutant	has	previously	

been	 shown	 to	be	 sensitive	 to	MMS	and	HU	 (Andrews	et	 al,	 2005),	 as	well	 as	

mildly	 sensitive	 to	 ionising	 radiation	 and	 UV	 irradiation.	 It	 has	 been	

demonstrated	that	SUMOylation	of	target	proteins	including	Smc6	is	important	

for	the	DNA	damage	response	(Andrews	et	al,	2005).	The	lysine	mutants	created	

here	 show	 no	 sensitivity	 to	 these	 DNA	 damaging	 agents,	 suggesting	 that	 the	

mutations	 do	 not	 affect	 the	 ability	 of	 Nse2	 to	 SUMOylate	 target	 proteins	 or	

interaction	of	Nse2	with	the	Smc5/6	complex.	 	
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Figure 4.6. nse2 lysine to arginine (K to R) mutants are not 
sensitive to UV or IR. 

Survival curves were plotted following exposure to increasing doses of UV 
irradiation or ionising radiation. Single, double and triple nse2 lysine mutants 
were not sensitive to ionising radiation The triple lysine mutant shows a very 
slight increase in sensitivity to UV irradiation. 
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4.6 Nse2	expression	 levels	and	global	SUMOylation	 levels	are	

unaffected	in	nse2	K	to	R	mutants	

In	 order	 to	 investigate	 whether	 an	 inability	 to	 auto‐SUMOylate	 Nse2	 has	 an	

effect	 on	 global	 SUMOylation	 levels,	 total	 cell	 extracts	 were	 prepared	 from	

asynchronously	 growing	 S.	 pombe	 cells	 containing	 single,	 double	 and	 triple	

lysine	to	arginine	mutants.	Samples	were	analysed	by	western	blot	and	probed	

with	 antibodies	 against	 SUMO	 to	 observe	 global	 SUMOylation	 levels	 in	 these	

cells	 (Figure	 4.8).	 No	 significant	 change	 in	 SUMOylation	 levels	 could	 be	

observed	compared	to	cells	containing	wild	type	Nse2	(Figure	4.8	A,	 lanes	2‐5	

compared	 with	 lane1).	 Samples	 were	 also	 probed	 with	 an	 Nse2	 antibody	 in	

order	 to	 observe	 any	 changes	 in	 Nse2	 protein	 expression	 levels	 in	 strains	

containing	the	lysine	mutants.	Again,	no	significant	changes	could	be	observed	

when	compared	to	the	wild	type	(Figure	4.8	B	lanes	2‐5	compared	with	lane1)	

or	when	comparing	single	and	double	 lysine	mutants	(Figure	4.8	B	 lanes	2‐5).	

Whilst	the	nse2	base	strain	carrying	wild	type	nse2	appears	to	show	an	increase	

in	SUMOylation	levels	(Figure	4.8	A	lane	2)	and	Nse2	expression	levels	(Figure	

4.8	B	lane2),	this	can	be	attributed	to	loading	error	(Figure	4.8	C,	lane	2)	These	

results	do	not	indicate	an	obvious	role	for	auto‐SUMOylation	of	Nse2	in	vivo.	It	is	

possible	that	the	role	of	Nse2	SUMOylation	will	only	be	revealed	in	combination	

with	 another	 genetic	 defect,	 for	 example	when	 another	 pathway	or	 protein	 is	

otherwise	unavailable.	Further	genetic	analysis	would	be	required	to	investigate	

this.	 Additionally,	 SUMOylation	 of	 Nse2	 needs	 to	 be	 confirmed	 in	 vivo.	 It	 is	

possible	 that	 the	 Nse2	 SUMOylation	 observed	 in	 vitro	 is	 not	 biologically	

significant	 and	 may	 be	 an	 artefact	 of	 the	 reaction.	 These	 studies	 were	 not	

continued	in	favour	of	other	projects.	 	

                             127



α-Nse2 

       1       2       3        4        5        

Figure 4.8 Nse2 K to R mutants are expressed at normal levels 
Whole cell extracts from S.pombe cells containing nse2 K to R mutants were 
probed with antibodies raised against SUMO and Nse2. (A) All of the K to R 
mutants tested have normal global SUMOylation levels. (B) All of the K to R 
mutants tested have normal expression levels of Nse2. Lane 1, wild type, 
lane2, nse2, lane3, nse2.K134R, Lane 4 nse2.K229R, lane 5 nse2.K229R 
K248R. (C) Tubulin loading control. Lane 2 (nse2) contains more protein 
than lanes 1, 3,4 and 5.  SDS-PAGE gels 10%.  
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4.7 Modelling	and	 integration	of	Nse2	patient	mutations	 in	S.	

pombe	

The	position	of	the	mutations	in	nse2	found	in	patients	with	Nse2	defects	can	be	

mapped	 to	 the	 predicted	 structure	 for	 S.	pombe	 Nse2	 (Figure	 4.9	 A).	 Pymol	

software	was	used	to	manipulate	the	protein	sequence,	 in	order	to	predict	the	

effect	that	the	mutants	might	have	on	Nse2	protein	structure	(Figure	4.9	B‐C).	

The	Nse2.T172A	S223X	mutation	 results	 in	 the	 loss	of	25	amino	acids	at	 the	C	

terminus	 (Figure	 4.9	 B),	 which	 would	 likely	 de‐stabilise	 the	 SP‐RING	 finger	

domain	 and	 subsequently	 affect	 SUMO	 ligase	 activity.	 The	 effects	 of	 the	

S116fsX132	mutation	are	much	more	 severe	and	would	 result	 in	a	 loss	of	 the	

whole	catalytic	domain	of	the	protein	(Figure	4.9	C).	

The	 pAW8‐nse2	 construct	 was	 used	 for	 site	 directed	 mutagenesis	 to	 create	

mutations	mimicking	those	found	in	the	DNA	of	two	patients	(See	Figure	4.11	C,	

columns	 1	 and	 2	 for	 the	 equivalent	 mutations	 in	 S.	 pombe).	 A	 sequence	

alignment	 of	 the	 S.	pombe,	 human	 and	 S.	cerevisiae	 Nse2	 (Mms21)	 sequences	

was	used	to	map	these	mutations	(Figure	4.10).	Three	of	the	mutations	T172A,	

S223X	 and	 A234fsX236	 are	 located	 within	 the	 SP‐RING	 domain	 which	 is	

required	 for	 SUMO	 ligase	 activity.	 Of	 these,	 the	 threonine	 residue	 T172	 is	

conserved	 in	 S.	pombe.	 Site	 directed	 mutagenesis	 was	 used	 to	 create	 a	 point	

mutation	in	the	pAW8‐nse2	construct,	resulting	in	pAW8‐nse2.T172A.	The	serine	

residue	 at	 position	 223	 in	 the	 human	 sequence	 is	 not	 conserved.	 In	 order	 to	

create	a	similar	mutation,	S226	was	replaced	with	a	stop	codon.	This	is	referred	

to	 as	 pAW8‐nse2.S226X.	 pAW8‐nse2.T172A	 S226X	 was	 also	 generated.	

Transformation	of	each	of	these	constructs	into	the	Nse2	base	strain	resulted	in	

recombination	between	the	LoxP	and	LoxM	sites.	As	a	result	the	wild	type	Nse2	

ORF	 was	 replaced	 with	 the	 singly	 or	 doubly	 mutated	 sequences.	 The	 A234	

residue	 is	 conserved	 in	 S.	pombe.	 Mutagenesis	 was	 carried	 out	 in	 which	 the	

deletion	of	 one	nucleotide	 caused	 a	 frame	 shift.	 This	 resulted	 in	 a	 stop	 codon	

two	 nucleotides	 down‐stream	 (A234fsX236).	 For	 simplicity,	 the	 construct	 is	

referred	 to	 as	 pAW8‐nse2.A234X.	 The	 S116fsX132	 frame‐shift	 mutation	 was	

mimicked	 by	mutating	 the	 equivalent	 residue	 at	 position	 135	 in	 the	 S.	pombe	

sequence	 to	 a	 stop	 codon.	 This	 is	 referred	 to	 as	 pAW8‐nse2‐K135X.	 These	
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constructs	were	transformed	into	the	nse2	base	strain	to	incorporate	the	mutant	

sequences	 into	 the	genome	 in	place	of	 the	wild	 type	nse2	 sequence,	under	 the	

control	of	the	endogenous	promoter.	No	colonies	were	formed	following	several	

attempts	at	transformation	of	the	nse2	base	strain	with	pAW8‐nse2‐K135X.	This	

suggests	that	this	mutation	is	lethal	in	yeast.	 	
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Figure 4.9. Phyre2 predicted structures of S.pombe Nse2. 
(A) The predicted structure of S.pombe Nse2 with the locations of human 
patient mutations highlighted in green. (B) The potential effects of the 
nse2.T127A S223X mutations on the structure of the S.pombe Nse2 protein. 
(C) The predicted effect of the nse2.A234fsX236, S116fsX132 mutations on 
the S.pombe Nse2 protein structure. Here the entire C terminus including 
the RING domain required for SUMO ligase activity is abolished. 
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Figure 4.11 The nse2 S226X mutant is sensitive to HU and DNA 
damaging agents. 

(A) 10 fold serial dilutions of nse2 mutant strains plated onto YEA plates 
containing 2.5mM HU, 5mM HU or a range of concentrations of MMS. Cell 
growth at 37°C indicates structural stability. (B) Survival curves following 
exposure to increasing concentrations of ionising radiation. (C) Survival 
curves following exposure of increasing concentrations of UV and IR 
irradiation. Only strains containing the nse2.S226X mutant show 
sensitivity to all DNA damaging agents tested. (D) Table of the S.pombe 
equivalents of human mms21 mutations (column 1-2) summarising their 
sensitivity to HU, MMS, IR and UV.  
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4.8 Analysis	of	nse2	mutants	

Following	 integration	 of	 the	mutant	 sequences	 into	 the	 genome,	 the	 resulting	

strains,	 nse2.T172A,	nse2.S226X,	nse2.T172A	 S226X	 and	 nse2.A234fsX236	were	

tested	 for	 temperature	 sensitivity	 and	 sensitivity	 to	 hydroxyurea	 and	 MMS	

(Figure	4.10	A).	All	of	the	mutant	strains	grew	at	37°C,	suggesting	that	the	Nse2	

mutant	proteins	do	not	have	a	serious	structural	defect.	Human	cells	containing	

the	nse2.S116fsX132	and	nse2.A234fsX236	mutations	were	noted	to	have	a	defect	

in	recovery	following	exposure	to	hydroxyurea.	The	S.	pombe	single	nse2.A234X	

mutant	was	not	sensitive	to	up	to	5mM	concentrations	of	HU	(Figure	4.10	A	row	

6).	However	due	to	the	lethality	of	the	nse2‐K135X	mutant,	an	nse2.A234X	K135X	

mutant	 could	 not	 be	 characterised.	 Whilst	 the	 nse2.T172A	mutant	 was	 not	

sensitive	 to	 hydroxyurea	 or	MMS,	 the	nse2.S226X	 mutant	 and	 the	nse2.T172A	

S226X	mutant	had	an	 increased	sensitivity	 to	both	of	 these	genotoxins	(Figure	

4.10	 A	 row	 5).	 Similarly,	 the	 nse2.A234X	 and	 nse2.T172A	 mutants	 were	 not	

dramatically	 sensitive	 to	 ionising	 radiation	 (Figure	4.10	B	 i)	 or	UV	 irradiation	

(Figure	4.10	B	ii).	The	nse2.S226X	mutant	and	nse2.T172A	S226X	mutant	showed	

a	 similar	 increase	 in	 sensitivity	 to	 UV	 radiation.	 Cells	 containing	 nse2.T172A	

S226X	appear	 to	 be	 slightly	more	 sensitive	 to	 ionising	 radiation	 compared	 to	

either	single	mutant.		

Human	 cells	 containing	 S116fsX132	 A234fsX236	 frame	 shift	 mutations	 in	 the	

mms21	 (nse2)	 coding	 sequence	 have	 a	 severe	 defect	 in	 recovery	 following	

prolonged	exposure	to	HU.	In	order	to	investigate	whether	the	nse2	mutations	

resulted	 in	 a	 defect	 in	 chromosome	 segregation	 in	 S.	pombe,	 mutant	 strains	

were	blocked	with	12mM	HU	for	3	hours.	Samples	were	taken	immediately	and	

then	again	at	one	and	two	hours	after	release.	Cells	were	stained	with	DAPI	and	

calcofluor	 to	 visualise	 the	 DNA	 and	 septum	 (Ellen	 Petrovics,	 BSc	 final	 year	

project,	university	of	Sussex	2013).	The	nse2.A234X	and	nse2.T172A	mutants	did	

not	 show	 a	 defect	 in	 chromosome	 segregation	 following	 HU	 treatment.	 The	

defects	 observed	 in	 human	 cells	 containing	 the	 S116fsX132	 A234fsX236	

mutations	are	likely	to	be	a	result	of	the	S116fsX132	mutation,	which	appears	to	

be	 inviable	 in	 S.	 pombe.	 The	 nse2.S226X	 mutant	 showed	 some	 aberrant	 cell	
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structures,	 and	 bi‐nuclear	 cells	 could	 be	 observed	 following	 HU	 treatment,	

however	these	were	not	abundant.	

4.9 Nse2	expression	 levels	and	global	SUMOylation	 levels	are	

unaffected	in	nse2	mutants	

Reduced	SUMO	ligase	activity	of	the	Nse2	protein	was	observed	in	human	cells	

containing	 the	 S223X	 and	 T172A	 mutations.	 In	 order	 to	 investigate	 whether	

Nse2	expression	levels	or	global	SUMOylation	levels	were	affected	in	mutant	S.	

pombe	strains,	wholecell	extracts	were	prepared	and	analysed	by	western	blot	

(Figure	4.12).	 Samples	were	probed	with	α‐SUMO	and	α‐Nse2	antibodies.	The	

nse2.T172A	 mutant	 appears	 to	 have	 a	 reduced	 level	 of	 global	 SUMOylation	

(Figure	 4.12	 A	 lane	 3),	 however	 this	 is	 not	 observed	 for	 nse2.T172A	 S226X	

(Figure	 4.12	 A	 lane	 4),	 suggesting	 a	 possible	 loading	 error.	 Levels	 of	 Nse2	

protein	were	unaffected	 in	all	of	 the	mutants	analysed,	compared	to	wild	type	

(Figure	 4.12	 B).	 The	 truncated	 proteins	 resulting	 from	 the	 S226X	 and	 A234X	

mutations	can	be	visualised	in	Figure	4.12	B	lanes	4	and	5.	
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4.10 	Discussion	

Three	 SUMO	modified	 lysine	 residues	 in	 Nse2	 (K134,	 K229	 and	 K248)	 were	

identified	by	MS	following	in	vitro	SUMOylation	assays	(Figure	4.1‐	4.2),	two	of	

which	 (K229	 and	 K248.)	 have	 been	 identified	 from	 previous	 in	 vitro	

SUMOylation	 assays	 in	 this	 lab	 (Andrews,	 E,	 DPhil	 thesis,	 Univ.	 of	 Sussex).	

Previously,	 these	 lysine	 residues	were	mutated	 in	 the	 genome	 by	 integration.	

Subsequent	analysis	of	these	strains	gave	conflicting	results.	This	work	aimed	to	

characterise	 non‐SUMOylatable	 Nse2	 mutants	 by	 integrating	 nse2	 K	 to	 R	

mutations	 into	 the	 genome	 in	 place	 of	 the	 wild	 type	 nse2	 ORF,	 using	 the	

recombinase	mediated	 cassette	 exchange	 system	 (Watson	et	 al,	 2008).	A	base	

strain	was	constructed	in	order	to	integrate	Nse2	SUMOylation	mutants	into	the	

genome	 in	 place	 of	 the	 wild	 type	 coding	 sequence	 (Figure	 4.5).	 The	 single,	

double	 and	 triple	 lysine	 to	 arginine	mutants	were	 not	 sensitive	 to	 a	 range	 of	

DNA	 damaging	 agents	 (Figure	 4.6‐4.7).	 Nse2	 expression	 levels	 and	 global	

SUMOylation	levels	were	also	unaffected	in	all	of	the	nse2	K	to	R	mutants	used	in	

this	study	(Figure	4.8).	As	there	was	a	slight	increase	in	sensitivity	of	the	triple	

mutant	 at	 high	 doses	 of	 ionising	 radiation,	 it	 is	 possible	 that	 Nse2	 auto‐

SUMOylation	plays	a	role	in	the	repair	of	double	strand	breaks.	If	SUMOylation	

of	Nse2	occurs	in	vivo,	and	only	occurs	on	the	lysine	residues	identified	from	the	

in	 vitro	 assay,	 the	 triple	 mutant	 should	 abolish	 Nse2	 auto‐SUMOylation	

completely.	The	lack	of	any	obvious	mutant	phenotype	suggests	that	Nse2	auto‐

SUMOylation	on	K134,	K229	and	K248	is	dispensable	for	its	roles	in	the	repair	

of	DNA	damage	in	S.	pombe.	Auto‐SUMOylation	of	Nse2	needs	to	be	confirmed	in	

vivo	before	further	genetic	analyses	can	be	undertaken	to	reveal	a	biological	role	

for	SUMO	modification	at	specific	sites.	This	may	only	become	apparent	when	a	

non‐SUMOylatable	Nse2	mutant	is	combined	with	other	mutants.	

Recently,	 two	 patients	 were	 identified	 with	 point	 mutations	 or	 frame	 shift	

mutations	 in	 Mms21/Nse2	 (Professor	 Mark	 O'Driscoll,	 personal	

communication).	 Each	 patient	 was	 found	 to	 have	 two	 mutations,	 these	 were	

T172A	with	S223X	and	A234fsX236	with	S116fsX132	respectively.	A	sequence	

alignment	between	S.	pombe,	S.	cerevisiae	and	human	Nse2	homologues	showed	

that	 the	 threonine	 and	 alanine	 residues	were	 highly	 conserved	 (Figure	 4.10).	
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Whilst	 the	 serine	 residues	were	not	 conserved	 in	S.	pombe,	 stop	 codons	were	

generated	at	 the	equivalent	positions	 to	mimic	 these	mutations.	Mutants	were	

created	and	integrated	into	the	genome	to	investigate	their	effects	in	S.	pombe.	

Whilst	 the	 nse2.T172A	 and	 nse2.A234fsX236	 single	 mutants	 did	 not	 show	 a	

mutant	 phenotype,	 the	 nse2.S226X	 mutation	 resulted	 in	 sensitivity	 to	 several	

DNA	damaging	agents	(Figure	4.11).	The	DNA	damage	sensitivity	of	this	mutant	

is	not	surprising,	as	the	mutation	results	 in	a	 loss	of	a	 large	C	terminal	part	of	

the	 Nse2	 protein,	 and	 probable	 disruption	 of	 the	 catalytic	 RING	 domain	

required	 for	 SUMO	 ligase	 activity.	 A	 catalytic	 Nse2	 mutant	 Nse2‐SA,	 was	

previously	shown	to	be	deficient	in	the	repair	of	double	strand	breaks	(Andrews	

et	 al,	 2005).	 Spot	 tests	 at	 37°C	 and	 western	 blot	 analysis	 suggest	 that	 the	

nse2.S226X	encoding	protein	is	still	structurally	viable	and	expressed	at	normal	

levels	 (Figure	 4.11	 ‐	 4.12).	 Some	 aberrant	 cell	 morphologies	 such	 as	 bi‐

nucleated	 cells	 could	 be	 observed	 following	 staining	 of	 the	 DNA	 and	 septum	

with	 DAPI	 and	 calcofluor	 after	 prolonged	 exposure	 to	 hydroxyurea,	 however	

these	 were	 not	 abundant.	 Loss	 of	 the	 C	 terminus	 could	 de‐stabilise	 the	

interaction	of	Nse2	with	Smc5.	This	could	have	an	effect	on	the	stability	of	the	

Smc5/6	 complex,	 which	 is	 involved	 in	 chromosome	 segregation	 and	

homologous	recombination	(Murray	&	Carr,	2008).	The	nse2.S116fsX132	mutant	

was	 lethal	 in	 S.	 pombe	 and	 results	 in	 a	 substantial	 truncation	 of	 the	 Nse2	

protein,	 with	 a	 complete	 loss	 of	 the	 RING	 domain	 and	 the	 entire	 C	 terminus	

(Figure	 4.9).	 Towards	 the	 end	 of	 the	 analysis	 of	 these	 mutants,	 the	 Sanger	

Centre	withdrew	two	of	the	reported	mutations,	nse2.S223X	and	nse2.T172A	due	

to	sequencing	errors.	Additional	analysis	was	thus	discontinued.	 	
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5 S.	pombe	PCNA	SUMOylation	in	vitro	and	in	vivo	

5.1 Introduction	

PCNA	 is	 ubiquitinated	 in	 response	 to	DNA	 damage	 in	 S	 phase	 in	 S.	cerevisiae.	

Mono‐ubiquitination	mediated	 by	 ubiquitin	 E2	 Rad6	 and	 E3	 Rad18	 promotes	

error‐prone	TLS	 (Hoege	et	 al,	 2002),	whilst	polyubiquitination	 is	mediated	by	

Ubc13/Mms2	and	Rad5	(Hoege	et	al,	2002;	Ulrich	&	Jentsch,	2000).	In	S.	pombe,	

mono‐ubiquitination	of	PCNA	is	mediated	by	Rad6	and	Rad18	homologues	Rhp6	

and	 Rhp18	 and	 ubiquitin	 chains	 are	 extended	 by	 the	 ubiquitin	 E3	 Rad5	

homologue	Rad8	with	E2	heterodimer	Mms2	and	Ubc13	(Frampton	et	al,	2006).	

Ubiquitination	of	human	PCNA	has	also	been	reported	(Kannouche	&	Lehmann,	

2004;	Watanabe	et	al,	2004).	Polyubiquitination	 is	required	 for	error	 free	TLS	

which	 involves	 template	 switching	 (Hoege	 et	 al,	 2002).	 PCNA	 is	 constitutively	

ubiquitinated	 during	 S	 phase	 in	 S.	 pombe.	 This	 modification	 is	 increased	 in	

response	 to	 DNA	 damage	 (Frampton	 et	 al,	 2006).	 Modification	 of	 PCNA	 by	

SUMO	 has	 been	 observed	 in	 S.	 cerevisiae,	 Arabidopsis	 and	 humans.	 In	 S.	

cerevisiae,	this	modification	occurs	primarily	on	K164	and	to	a	lesser	extent	on	

K127	 (Armstrong	et	al,	2012;	Hoege	et	al,	2002;	Kolesar	et	al,	2012;	Stelter	&	

Ulrich,	 2003).	 SUMOylation	 of	 human	 PCNA	has	 been	 shown	 to	 occur	 on	 two	

lysine	 residues,	K164	and	K254,	 in	vitro	(Gali	 et	 al,	 2012b).	 SUMOylation	of	S.	

pombe	PCNA	has	not	previously	been	observed.	

This	 chapter	 identifies	PCNA	SUMOylation	 sites	K13,	K164,	K172	and	K253	 in	

vitro,	and	uses	2D‐gel	analysis	and	pull‐down	experiments	to	demonstrate	that	

S.	pombe	PCNA	is	SUMOylated	at	K164,	K172	and	K253	in	vivo.	 	
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5.2 Aims	

The	aims	of	the	work	described	in	this	chapter	are	firstly	to	utilise	the	 in	vitro	

SUMOylation	system	and	mass	spectrometry	 to	 identify	SUMO	modified	 lysine	

residues	on	S.	pombe	PCNA,	and	secondly	to	confirm	that	PCNA	is	SUMOylated	in	

vivo.	

5.3 S.	pombe	PCNA	is	SUMOylated	in	vitro	

S.	 pombe	 PCNA	 had	 previously	 been	 cloned	 into	 the	 pET15b	 bacterial	

expression	 vector,	 resulting	 in	 the	 in‐frame	 fusion	 of	 an	 N‐terminal	 HIS	 tag.	

Expression	of	pET15b‐HIS‐PCNA	was	induced	in	E.	coli	BL21	cells	and	HIS‐PCNA	

was	purified	using	Ni2+	agarose	beads	 (Figure	5.1	A).	HIS‐PCNA	was	used	as	a	

target	 protein	 in	 an	 in	vitro	 assay	 using	 a	HIS‐tagged	 trypsin‐cleavable	 SUMO	

(HIS‐SUMO‐tr)	which	was	generated	as	described	 in	chapter	3.	The	assay	was	

carried	 out	 in	 either	 the	 presence	 or	 absence	 of	 the	 E3	 SUMO	 ligase	 Pli1.	

Samples	 were	 analysed	 by	 western	 blot	 and	 probed	 with	 α‐Pcn1	 and	 α‐HIS	

antibodies	 (Figure	 5.1	 B	 and	 C).	 Probing	 with	 α‐HIS	 antibodies	 shows	 an	

increase	in	higher	molecular	weight	bands	in	lanes	containing	HIS‐SUMO,	SUMO	

E1	and	SUMO	E2	proteins	(Figure	5.1	C	lane	3).	The	abundance	of	these	species	

is	 increased	 by	 increasing	 the	 concentration	 of	 the	 E2	 conjugating	 enzyme	

(Figure	5.1	C,	 lane	7)	and	further	increased	on	addition	of	the	E3	SUMO	ligase	

(Figure	 5.1	 C,	 lane	 8)	 ,	 indicating	 that	 the	 in	 vitro	 SUMOylation	 reaction	 is	

efficient.	Probing	with	α‐Pcn1	antibody	identifies	unmodified	PCNA	at	~	30kDa.	

Higher	molecular	weight	species	are	observed	 in	 lanes	6	and	7	(Figure	5.1	B),	

which	contain	SUMO,	E1,	E2	and	PCNA.	Addition	of	the	E3	ligase	Pli1	(Figure	5.1	

B,	 lane	8)	resulted	in	an	increase	in	high	molecular	weight	species.	In	order	to	

identify	SUMOylation	sites,	several	gel	slices	were	cut	from	the	stained	gel	and	

sent	for	LC‐MS/MS	(indicated	by	asterisks	Figure	5.1	B).	Asterisks	indicate	the	

bands	 that	were	analysed	by	mass	spectrometry.	Red	asterisks	 indicate	bands	

which	contained	SUMOylated	PCNA	as	determined	by	MS.	
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Figure 5.1. PCNA is SUMOylated in vitro.  
(A) Recombinant HIS-PCNA purification from BL21 E.coli cells using Ni2+ agarose 
beads. L = cell lysate, FT = flow-through, 1-6 = elution fractions. (B) In vitro 
SUMOylation assay probed with α-Pcn1 (B) and α-HIS (C) antibodies. Higher 
molecular weight species can be detected in the presence of HIS-SUMO, SUMO 
E1, SUMO E2 and HIS-PCNA ((B) lanes 6 and 7) Where the SUMO E3 ligase Pli1 is 
added, some higher molecular weight species increase in intensity and additional 
bands can be seen (lane 8). Asterisks indicate bands cut from a coomassie 
stained gel and analysed by mass spectrometry. Red asterisks indicate bands 
which contained SUMOylated PCNA. Pcn1 = PCNA 
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Four	lysine	residues	were	identified	by	mass	spectrometry	as	being	modified	by	

the	 SUMO	 diglycine	 motif	 following	 trypsin	 digest.	 These	 were	 K172,	 K164	

(Figure	 5.2	 A),	 K253	 and	 K13	 (Figure	 5.2	 B).	 An	 alignment	 of	 S.	 pombe,	 S.	

cerevisiae	 and	 human	 PCNA	 coding	 sequences	 shows	 the	 high	 level	 of	

conservation	 between	 the	 species	 (Figure	 5.3).	 The	 SUMO‐modified	 lysine	

residues	 identified	 by	 mass	 spectrometry	 are	 highlighted	 in	 red	 boxes.	 K13,	

K164	and	K253	are	all	 conserved,	whilst	K172	 is	present	only	 in	 the	S.	pombe	

protein.	Protein	structure	modelling	software	 ‘Phyre2’	was	used	 to	generate	a	

predicted	 structure	 of	 S.	 pombe	 PCNA,	 based	 on	 previously	 published	 S.	

cerevisiae	(Krishna	et	al,	1994)	and	human	(Gulbis	et	al,	1996)	crystal	structures	

(Figure	5.4).	K164,	K172	and	K253	are	 all	 located	on	 the	outer	 surface	of	 the	

structure.	 K13	 extends	 into	 the	 centre	 of	 the	 ring	 of	 the	 PCNA	 trimer	 which	

encircles	DNA	during	replication.		
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Figure 5.2. PCNA is SUMOylated on K172, K164, K253 and K13 in 
vitro.  

(A) Mass spectrometry data identifying lysine residues at position 172 and 
164 as modified by the SUMO diglycine moiety following trypsin cleavage of 
HIS-SUMO-tr. Peptide sequences are annotated with b and y ions shown in the 
graphs. (B) Mass spectrometry data identifying lysine residues 253 and 13. 
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Figure 5.3. PCNA sequence alignm
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Figure 5.4. Predicted structure of S.pombe PCNA. 
‘Phyre2’  generated predicted structure of S.pombe PCNA as a monomer (A) 
or homo-trimer (B). SUMO modified lysine residues identified in vitro are 
highlighted in aqua (A) and red (B). 
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5.4 	PCNA	modification	in	vivo	

SUMOylation	 of	S.	pombe	 PCNA	has	not	 yet	 been	observed	 in	vivo.	 In	 order	 to	

confirm	that	SUMOylation	of	PCNA	occurs	 in	vivo,	 two	approaches	were	taken.	

These	were	firstly,	Ni2+	pull‐downs	of	HIS‐tagged	SUMO	from	whole	cell	extracts	

and	probing	for	PCNA,	and	secondly	2D	gel	analysis.	

5.4.1 HA‐tagged	PCNA	is	modified	by	SUMO	in	vivo		

Pull‐down	 experiments	 were	 performed	 in	 order	 to	 determine	 if	 PCNA	 is	

SUMOylated	 in	 vivo	 and	 whether	 levels	 of	 SUMOylation	 are	 altered	 by	 DNA	

damaging	agents.	S.	pombe	cells	were	transformed	with	pREP	medium	strength	

nmt	expression	vectors	containing	HIS‐SUMO	(pREP42‐HIS‐SUMO	(LEU2+))	and	

HA‐PCNA	(pREP41‐HA‐PCNA	(ura4+)).	Transformed	S.	pombe	cells	were	grown	

to	mid‐log	phase	in	the	absence	of	thiamine	to	allow	expression	of	HA‐PCNA	and	

HIS‐SUMO.	Expression	of	the	tagged	constructs	was	confirmed	by	probing	total	

cell	exacts	with	α‐SUMO,	α‐Pcn1	and	α‐HA	antibodies	(Figure	5.5	A).	

	Denaturing	pull‐downs	using	Ni2+	agarose	beads	were	performed	and	samples	

were	 analysed	 by	 SDS‐PAGE	 and	 western	 blotting	 (Figure	 5.5	 B).	 A	 band	 of	

approximately	 50kDa	 is	 detected	 in	 lane	 4	 (Figure	 5.5	 B,	 left	 panel)	 when	

probed	with	α‐HA	and	α‐Pcn1.	This	 is	 the	expected	size	for	SUMOylated	PCNA	

and	confirms	that	S.	pombe	PCNA	is	SUMOylated	in	vivo.		 	
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5.4.2 Effect	 of	 DNA	 damaging	 agents	 and	 HU	 on	 the	

SUMOylation	of	PCNA	

In	 order	 to	 investigate	 the	 effect	 of	 DNA	 damage	 or	 replication	 stress	 on	 the	

SUMOylation	of	PCNA,	Ni2+	pull‐downs	were	performed	as	described	in	section	

5.4.1	using	S.	pombe	cells	containing	HIS‐SUMO	and	HA‐PCNA.	Pull‐downs	were	

carried	out	under	denaturing	conditions	 following	exposure	of	cells	 to	UV	and	

IR	irradiation,	MMS	and	hydroxyurea.		

A	 band	 of	 approximately	 50kDa	 is	 detected	 in	 both	 the	 untreated	 and	 HU	

treated	samples	when	probed	with	α‐HA	and	α‐Pcn1	(Figure	5.5	B,	lane	4	right	

panel).	Pull‐down	experiments	were	repeated	comparing	untreated	cells	to	cells	

exposed	to	200	J/m2	UV	irradiation,	200	Gy	ionising	radiation	(Figure	5.6	B)	or	

0.1%	MMS	(Figure	5.8	B).	A	higher	molecular	weight	band	was	detected	in	cells	

containing	 both	 HIS‐SUMO	 and	 HA‐PCNA	 in	 the	 untreated	 samples	 and	

following	 exposure	 to	 IR	 and	 MMS,	 when	 probed	 with	 α‐HA	 or	 α‐Pcn1	

antibodies	 (Figure	5.6	B	 lanes	3	and	 ‘3+IR’	and	Figure	5.8	B	 lane	4	+/‐	MMS).	

This	was	 not	 observed	 following	UV	 treatment	 (200	 J/m2	)	 (Figure	 5.6	B	 lane	

‘3+UV’).	A	band	at	 the	 size	of	unmodified	PCNA	 (~30	kDa)	 can	be	detected	 in	

each	 of	 the	 pull‐down	 experiments	 in	 all	 lanes	where	 only	 HA‐PCNA	 is	 being	

expressed	 in	 cells,	 as	 well	 as	 where	 HIS‐SUMO	 and	 HA‐PCNA	 are	 expressed	

together	(Figure	5.5	B	lanes	3	and	4,	Figure	5.6	B	lanes	1	and	3).	This	suggests	

that	 PCNA	 is	 ‘sticky’	 and	 therefore	 is	 likely	 to	 be	 interacting	 with	 the	 Ni2+	

agarose	beads,	which	has	been	observed	previously	(Dr.	Cath	Green,	University	

of	Oxford,	personal	communication).	In	summary,	these	experiments	show	that	

S.	pombe	 PCNA	 is	 SUMOylated	 in	unchallenged	 cells,	 as	well	 as	 in	 response	 to	

HU,	 MMS	 and	 IR.	 However	 SUMOylation	 of	 PCNA	 is	 not	 detected	 following	

exposure	 to	 UV	 irradiation.	 To	 avoid	 any	 potential	 false	 positive	 results	

resulting	from	PCNA	binding	to	the	Ni2+	agarose	beads,	a	different	approach	was	

taken	using	2D	gel	analysis.	
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Figure	5.8 SUMOylation	of	PCNA	in	vivo	in	response	to	MMS	

(A)	Whole	 cell	 extracts	 (WCE)	 from	S.	pombe	cells.	 1,	 wild	 type;	 2,	 HIS‐SUMO	 +	 HA‐
pREP41;	 3,	 HA‐PCNA	 +	 HIS‐pREP41;	 4,	 HA‐PCNA	 +	 HIS‐SUMO.	 Probed	with	 α‐SUMO	
and	α‐HA	to	confirm	expression	of	tagged	constructs.	(B)	Eluates	following	Ni2+	agarose	
bead	 purification.	 1‐4	 as	 in	 (A).	 Cells	 were	 either	 untreated	 (‐MMS)	 or	 treated	 with	
0.1%	 MMS.	 Arrow	 indicates	 band	 shift	 corresponding	 to	 SUMOylated	 PCNA	 in	
untreated	cells	which	is	increased	in	response	to	MMS	treatment.	(C)	The	MMS	treated	
sample	was	 analysed	 by	 2D	 gel	 to	 compare	 to	 position	 of	 the	modified	 species	with	
previous	2D	gels.	The	 left	panel	shows	total	cell	extract	 from	wild	type	S.	pombe	cells.	
The	right	panel	shows	MMS	treated	cells	containing	HIS‐SUMO	and	HA‐PCNA	following	
Ni2+	 pull	 down.	 Green	 asterisk	 indicates	 a	 double	 band	 corresponding	 to	 tagged	 and	
untagged	PCNA.	Red	asterisk	indicates	a	double	band	corresponding	to	modified	PCNA.	

	

5.4.3 2D	gel	analysis	of	PCNA	modification	in	vivo	

As	 PCNA	 is	 also	 ubiquitinated,	 it	 was	 necessary	 to	 ensure	 that	 the	 species	

observed	in	the	pull‐down	assays	are	in	fact	SUMOylated	PCNA.	In	S.	cerevisiae,	

ubiquitin	and	SUMO	can	modify	the	same	lysine	residue,	and	SUMOylated	PCNA	

runs	at	 approximately	 the	 same	 size	 as	di‐ubiquitinated	PCNA.	This	 can	make	

differentiation	 between	 the	 two	 modifications	 problematic	 when	 using	 one‐

dimensional	SDS‐PAGE	gels.	2D	gel	analysis	was	employed	to	address	this	issue.	

2D	gel	analysis	involves	separating	proteins	firstly	by	their	charge,	and	then	by	

size.	For	the	first	dimension,	proteins	are	applied	to	an	IPG	strip	which	has	a	pH	

gradient	 and	 separated	 by	 isoelectric	 focusing.	 When	 a	 current	 is	 applied,	

proteins	 migrate	 to	 a	 point	 where	 they	 have	 no	 net	 charge	 (their	 isoelectric	

point).	The	 second	dimension	 separates	proteins	 according	 to	 their	molecular	

weight	using	SDS‐PAGE.	This	is	a	useful	tool	for	differentiating	between	SUMO‐	

and	 ubiquitin‐modified	 PCNA.	 PCNA	 lysine	 to	 arginine	 (K	 to	 R)	 mutants	

analysed	 using	 this	 technique	 could	 also	 be	 used	 to	 indicate	 which	 lysine	

residues	are	modified	in	vivo.	

5.4.3.1 Integration	of	PCNA	lysine	mutants	into	the	genome	

A	base	strain	for	PCNA	(LoxP‐PCNA‐ura4+‐LoxM)	and	the	pAW8‐PCNA	construct	

was	 created	 previously	 in	 the	 Carr	 lab,	 using	methods	 described	 by	 (Watson	

et.al.,	2008).	Primers	were	designed	 for	 the	construction	of	 single,	double	and	

triple	K	 to	R	mutants	 using	 site	 directed	mutagenesis	 on	pAW8‐PCNA.	K	 to	R	

mutations	 were	 confirmed	 by	 sequencing	 before	 being	 transformed	 into	 the	

PCNA	base	strain,	in	parallel	with	pAW8‐PCNA.	This	resulted	in	the	integration	
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of	wild	type,	single,	double	and	triple	K	to	R	mutants	into	the	S.	pombe	genome	

in	place	of	the	wild	type	PCNA	coding	sequence	and	ura4+	marker.	The	identities	

of	 the	 resulting	 nine	 strains	 were	 confirmed	 by	 sequencing	 of	 genomic	 DNA.	

These	strains	are	referred	to	by	the	appropriate	lysine	mutation	as	follows:	pcn1	

(no	 mutation),	 pcn1‐K13R,	 pcn1‐K164R,	 pcn1‐K172R,	 pcn1‐K253R,	 pcn1‐K164R	

K172R,	 pcn1‐K164R	 K253R,	 pcn1‐K172R	 K253R	 and	 pcn1‐3R	 (K164R	 K172R	

K253R).	The	PCNA	strain	has	no	mutant	phenotype,	indicating	that	this	method	

of	integrating	mutants	is	suitable	for	further	analysis.	Phenotypic	analysis	of	the	

mutant	strains	is	discussed	in	chapter	6.	

5.4.3.2 2D	gel	analysis	of	PCNA	lysine	to	arginine	mutants	

Whole	 cell	 extracts	 were	 prepared	 from	 asynchronous	 cultures	 of	 S.	 pombe	

strains	containing	wild	type	and	mutant	PCNA	to	analyse	PCNA	modification	in	

vivo	 at	 endogenous	 levels	 (Figure	 5.7).	 Three	 spots	 can	 be	 observed	 which	

correspond	 to	mono,	 di‐	 and	 tri‐ubiquitinated	 forms	 of	 K164	 (Figure	 5.7	 first	

panel).	 Rhp18	 is	 the	 E3	 ubiquitin	 ligase	 required	 for	 mono‐ubiquitination	 of	

PCNA	 on	 K164.	 The	 ubiquitin	 spots	 are	 abolished	 in	 strains	 containing	 the	

K164R	mutation,	 as	well	 as	 in	 rhp18‐d	cells.	Mms2	 is	 part	 of	 the	 ubiquitin	E2	

heterodimer	 which	 is	 required	 for	 poly‐ubiquitination	 of	 PCNA	 on	 K164.	 As	

expected,	only	mono‐ubiquitination	can	be	observed	in	mms‐d	cells,	confirming	

that	 the	 spots	 identified	 as	 ubiquitinated	 PCNA	 are	 indeed	 ubiquitinated	

species.	 A	 spot	 at	 the	 expected	 size	 and	 pI	 for	 SUMOylated	 PCNA	 can	 be	

observed	in	all	of	the	single	and	double	K	to	R	mutants	(indicated	by	an	arrow	in	

the	first	panel).	However	there	is	no	spot	in	the	triple	lysine	mutant	(pcn1‐3R).	

This	suggests	that	S.	pombe	PCNA	is	SUMOylated	on	K164,	K172	and	K253	and	

not	at	any	additional	sites,	e.g.	K13.	

5.4.3.3 2D	gel	analysis	of	pull‐down	samples	

To	further	confirm	that	PCNA	is	SUMOylated,	an	additional	pull‐down	assay	was	

analysed	 by	 2D	 PAGE	 and	western	 blotting.	 Extracts	 of	 cells	 exposed	 to	MMS	

were	used	to	increase	the	chance	of	detection	of	the	SUMOylated	species,	being	

as	previous	pull‐down	experiments	using	MMS	treatment	showed	an	increase	in	

SUMOylated	 PCNA	 in	 response	 to	 MMS	 (Figure	 5.8	 B	 and	 unincluded	 data).		

Exposure	of	 transformed	S.	pombe	cells	containing	HIS‐SUMO	and	HA‐PCNA	to	
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0.1%	 MMS	 results	 in	 the	 presence	 of	 a	 higher	 molecular	 weight	 species	

suggestive	of	SUMOylated	PCNA,	which	is	also	observed	in	the	untreated	sample	

(Figure	5.8	B,	lane	4	+/‐	MMS).	The	MMS	treated	sample	was	analysed	by	2D	gel	

in	order	to	compare	the	position	of	the	modified	species	in	relation	to	those	in	

the	untreated	2D	gel	samples.	When	compared	to	a	wild	type	total	cell	extract	

sample	(Figure	5.8	C	 left	panel),	 the	putative	SUMOylated	spot	 from	the	MMS‐

treated	 pull‐down	 sample	was	 in	 a	 similar	 position	 on	 a	 2D	 gel	 (Figure	 5.8	 C	

right	panel).	These	experiments	confirm	that	S.	pombe	PCNA	 is	SUMOylated	 in	

vivo.	

5.5 Discussion	

At	the	start	of	this	project	SUMOylation	of	PCNA	had	been	described	in	both	S.	

cerevisiae	 and	 humans,	 and	 S.	 pombe	 PCNA	 had	 been	 demonstrated	 to	 be	

ubiquitinated.	2D	gel	analysis	of	wild	type,	K164R	and	pli1‐d	strains	performed	

previously	 in	 the	Watts	 lab	 indicated	 that	S.	pombe	PCNA	may	be	SUMOylated	

on	 K164	 in	vivo,	and	 that	 this	modification	 required	 the	 E3	 SUMO	 ligase	 Pli1	

(unpublished	data).	The	work	in	this	chapter	demonstrates	that	S.	pombe	PCNA	

is	 SUMOylated.	 Specifically,	 four	 SUMOylated	 lysine	 residues	 were	 identified	

using	 an	 in	 vitro	 SUMOylation	 assay.	 These	 included	 K164,	 which	 is	 also	

ubiquitinated	and	SUMOylated	in	humans	and	S.	cerevisiae,	as	well	as	K253,	the	

equivalent	 of	 human	 PCNA	 K254,	 which	 has	 been	 identified	 as	 being	

SUMOylated	in	vitro	(Gali	et	al,	2012b).		

	S.	pombe	 cells	 over‐expressing	 HIS‐tagged	 SUMO	 and	 HA‐tagged	 PCNA	 were	

used	 in	pull‐down	experiments	 to	confirm	 that	PCNA	 is	SUMOylated	 in	vivo.	A	

band	at	the	expected	size	of	SUMOylated	PCNA	was	observed	in	untreated	cells	

(Figure	 5.5B,	 left	 panel).	 In	 order	 to	 observe	 any	 changes	 in	 SUMOylation	 of	

PCNA	 in	 response	 to	 DNA	 damage	 or	 replication	 fork	 stalling,	 pull‐down	

experiments	were	carried	out	following	exposure	of	cells	to	hydroxyurea	(HU),	

UV,	IR	and	MMS.	A	band	corresponding	to	SUMOylated	PCNA	is	visible	following	

pull‐downs	using	HIS‐SUMO	in	untreated	cells,	as	well	as	cells	treated	with	HU,	

IR	 and	MMS.	These	 bands	 appear	 to	 be	 of	 similar	 intensities	 to	 the	 untreated	

sample	following	treatment	with	HU	and	IR,	but	are	slightly	increased	following	

MMS	 treatment.	 	 Double	 bands	 at	 the	 size	 of	 unmodified	 PCNA	 (~30	 kDa,	

                             156



	 	

highlighted	with	a	green	asterisk)	can	be	observed	when	probing	with	α‐Pcn1	in	

both	treated	and	untreated	samples	(Figure	5.5	B,	Figure	5.6	B	and	Figure	5.8B).	

This	indicates	the	presence	of	endogenous	and	HA‐tagged	PCNA.	Double	bands	

can	 also	 be	 observed	 at	 the	 size	 of	 SUMOylated	 PCNA	 (~50	 kDa,	 highlighted	

with	a	red	asterisk)	 in	 IR	 treated	(Figure	5.6B)	and	MMS‐treated	samples	(Fig	

5.8B).	These	double	bands	could	indicate	two	modifications	at	different	residues	

on	 the	 same	 molecule,	 or	 di‐SUMOylated	 species.	 Higher	 molecular	 weight	

bands	are	not	visible	following	UV	treatment.	This	could	be	due	to	the	need	for	

ubiquitination	on	K164	in	order	to	carry	out	translesion	synthesis,	and	possible	

suppression	 of	 PCNA	 SUMOylation	 on	 the	 other	 residues	 by	 unknown	

mechanisms.	Whilst	UV	damage	is	bypassed	by	TLS	and	subsequently	repaired	

by	NER	or	UVER	pathways,	MMS	induced	alkylation	damage	is	recognised	and	

repaired	 by	 BER.	 PCNA	 is	 intimately	 linked	with	 NER	 as	well	 as	 BER	 as	 it	 is	

required	 to	co‐ordinate	Ploζ	or	Pol	 ε	 ‐	mediated	gap	 filling.	Several	other	BER	

factors	 interact	 with	 PCNA,	 including	 AP	 endonucleases	 (Tsuchimoto	 et	 al,	

2001)	FEN1	(S.p	Rad2),	(Dianova	et	al,	2001)	and	Polβ	(Kedar	et	al,	2002)	via	

PIP	 motifs.	 The	 increase	 in	 SUMOylation	 following	 MMS	 treatment	 could	

indicate	that	SUMOylated	PCNA	promotes	BER‐mediated	repair	of	MMS‐induced	

DNA	 damage,	 whilst	 the	 suppression	 of	 SUMOylation	 following	 UV	 treatment	

could	direct	repair	via	the	NER	pathway.		

Bands	 corresponding	 to	 un‐modified	 PCNA	were	 also	 detected	 in	 each	 of	 the	

pull‐down	 experiments.	 This	 can	 be	 explained	 by	 PCNA	 ‘sticking’	 to	 the	 Ni2+	

agarose	 beads	 and	 therefore	 being	 eluted	 even	 in	 the	 absence	 of	 HIS‐SUMO.		

High	doses	of	MMS	cause	thousands	of	DNA	lesions,	and	processing	by	BER	can	

result	 in	 the	 formation	 of	 closely	 spaced	 single	 strand	DNA	 breaks	 (Ma	 et	 al,	

2009).	 Subsequent	 processing	 can	 result	 in	 the	 formation	 of	 double	 strand	

breaks,	which	require	recombinational	repair	(Ma	et	al,	2011;	Ma	et	al,	2013).	

The	relatively	high	doses	of	MMS	and	other	DNA	damaging	agents	 in	 the	pull‐

down	 assays	 could	 cause	 fragmentation	 of	 the	 DNA,	 to	 which	 PCNA	 remains	

bound.	 These	 chromatin	 fragments	 may	 remain	 following	 sample	 processing	

and	 could	 result	 in	 unmodified	 PCNA	 being	 present	 in	 the	 pull‐down	 elution	

fractions.	 However,	 higher	 molecular	 weight	 bands	 are	 observed	 only	 in	

samples	 containing	 both	 HIS‐SUMO	 and	 HA‐PCNA,	 suggesting	 that	 they	
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correspond	to	modified	PCNA	and	are	not	an	artefact.	To	address	this	problem	

and	avoid	false‐positive	results,	2D	gel	analysis	was	undertaken.	This	is	a	useful	

tool	for	visualising	PCNA	species	in	S.	pombe	without	using	tagged	constructs.	

To	 confirm	 the	 presence	 of	 SUMOylated	 PCNA	 in	 vivo,	 2D	 gel	 analysis	 was	

carried	out	using	wild	type	S.	pombe	cells,	and	strains	containing	PCNA	lysine	to	

arginine	mutants	integrated	into	the	genome.	SUMO	carries	an	opposite	charge	

to	ubiquitin	and	would	 therefore	be	expected	 to	run	closer	 towards	 the	acidic	

(+)	end	of	the	gel.	2D	gel	analysis	clearly	shows	mono,	di	and	tri‐ubiquitination	

of	S.	pombe	PCNA.	In	addition	to	these	species,	a	modified	isoform	of	PCNA	can	

be	seen	at	the	expected	size	and	pH	for	a	SUMOylated	species.	The	spot	remains	

in	the	rhp18.d	strain	which	is	unable	to	ubiquitinate	PCNA.	The	absence	of	this	

species	 in	 the	 triple	 lysine	 mutant	 suggests	 that	 no	 additional	 residues	 are	

modified.	It	is	not	clear	from	2D	gel	analysis	which	lysine	residue,	if	any,	is	the	

predominant	SUMOylation	site,	however	the	appearance	of	 the	spot	 in	each	of	

the	double	mutant	combinations	suggests	that	all	three	sites	can	be	modified.	

In	conclusion,	this	chapter	has	provided	evidence	for	PCNA	SUMOylation	in	vitro	

and	 in	 vivo	 in	 S.	 pombe.	 The	 detection	 of	 a	 SUMOylated	 species	 of	 PCNA	 in	

asynchronous	 cells	 seen	 in	 both	 the	 2D	 gels	 and	 in	 pull‐down	 experiments	

suggests	 that	 PCNA	 SUMOylation	 occurs	 in	 G2,	 however	 synchronised	 cells	

would	need	to	be	analysed	to	confirm	this.	Further	genetic	analysis	is	required	

to	uncover	a	role	for	PCNA	SUMOylation	in	S.	pombe,	and	this	will	be	discussed	

in	the	following	chapter.	 	
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6 Investigation	into	the	role	of	PCNA	SUMOylation	in			

S.	pombe	

6.1 Introduction	

Post‐translational	 modification	 of	 PCNA	 by	 ubiquitin	 determines	 the	 route	

taken	 to	 overcome	 DNA	 damage	 or	 fork	 blocking	 lesions	 during	 replication,	

where	mono‐ubiquitination	promotes	error	prone	TLS,	and	poly‐ubiquitination	

promotes	error‐free	template	switching.	As	is	the	case	in	S.	cerevisiae,	S.	pombe	

PCNA	 is	ubiquitinated	 in	 response	 to	a	 range	of	 cellular	 stresses	 including	UV	

irradiation,	HU	and	MMS	treatment	(Frampton	et	al,	2006;	Hoege	et	al,	2002).	

However	whilst	in	S.	cerevisiae	PCNA	is	SUMOylated	during	S	phase	(Hoege	et	al,	

2002),	 in	 S.	 pombe	 PCNA	 is	 constituitively	 ubiquitinated	 during	 S	 phase.	

Ubiquitination	 occurs	 in	 unchallenged	 cells	 as	well	 as	 in	 response	 to	 ionising	

radiation	 and	 DNA	 damage	 during	 G2.	 In	 line	 with	 these	 observations,	 the	 S.	

pombe	 pcn1‐K164R	 mutant	 is	 sensitive	 to	 IR,	 and	 is	 epistatic	 with	 the	

ubiquitination	 mutants	 rhp18‐d,	 rad8‐d,	 mms2‐d	 and	 ubc13‐d	 following	

exposure	 to	UV	 (Frampton	et	 al,	 2006).	Ubiquitination	of	PCNA	 in	S.	pombe	 is	

not	 dependent	 on	 repair	 intermediates,	 as	 in	 the	 absence	 of	 Rad13	 or	 Uve1	

which	 are	 required	 for	 NER	 and	 UVER	 UV	 repair	 pathways	 respectively,	

ubiquitination	of	PCNA	remains	at	a	level	similar	to	that	in	wild	type	cells.	In	the	

absence	of	PCNA	ubiquitination	in	S.	pombe,	Rad51‐mediated	repair	is	required	

for	UV‐induced	DNA	damage	(Frampton	et	al,	2006).	

SUMOylation	 of	 PCNA	 in	 budding	 yeast	 and	 humans	 is	 required	 to	 suppress	

unscheduled	 recombination	 during	 S	 phase	 and	 to	 prevent	 the	 formation	 of	

DSBs	following	replication	fork	stalling.	In	S.	cerevisiae,	SUMOylation	of	PCNA	on	

K164	 and	 K127	 recruits	 an	 anti‐recombinogenic	 helicase	 Srs2	 via	 its	 SIM	

(Armstrong	et	al,	2012;	Hoege	et	al,	2002;	Kolesar	et	al,	2012;	Stelter	&	Ulrich,	

2003).	 Srs2	 acts	during	 S	phase	 (Pfander	 et	 al,	 2005a)	 to	 inhibit	 unscheduled	

homologous	 recombination	 by	 disrupting	Rad51	 filament	 formation	 (Krejci	 et	

al,	 2003;	 Veaute	 et	 al,	 2003).	 In	 the	 absence	 of	 Rad6	 and	 Rad18,	S.	cerevisiae	

cells	are	sensitive	to	DNA	damage	which	requires	the	PRR	pathway.	Deletion	of	

either	the	SUMO	ligase	Siz1	or	the	anti‐recombinase	Srs2	suppresses	these	DNA	
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repair	defects,	and	this	is	dependent	on	the	presence	of	genes	required	for	HR,	

presumably	allowing	recombinational	repair	(Papouli	et	al,	2005;	Pfander	et	al,	

2005b;	Schiestl	et	al,	1990;	Stelter	&	Ulrich,	2003).	SUMOylation	of	S.	cerevisiae	

PCNA	 also	 recruits	 Rad18	 via	 a	 SIM	 and	 this	 enhances	 its	 activity	 (Win	 et	 al,	

2004).	

SUMOylation	 of	 human	 PCNA	 has	 been	 shown	 to	 occur	 on	 several	 lysine	

residues,	including	K164	and	K254,	in	vitro,	and	was	demonstrated	to	decrease	

spontaneous	recombination	and	double	strand	breaks	in	vivo	(Gali	et	al,	2012b).	

SUMOylation	of	PCNA	recruits	PARI	which	was	identified	following	a	search	for	

proteins	 containing	 a	 UvrD	 helicase	 domain,	 to	 identify	 potential	 Srs2	

orthologues	 (Moldovan	 et	 al,	 2012).	 UvrD	 domains	 are	 conserved	 domains	

found	 in	 helicase	 proteins,	 first	 characterised	 in	 the	 bacterial	 UvrD	 helicase	

protien	 (Chiolo	 et	 al,	 2007).	 PARI	was	 found	 to	 contain	 aUvrD	 like	 domain,	 a	

Rad51‐binding	 domain	 similar	 to	 that	 identified	 in	 the	 C‐terminus	 of	 Srs2	

(Colavito	et	al,	2009)	and	PIP	and	SIM	sequences,	which	are	arranged	similarly	

in	 Srs2.	 PARI	 recruitment	 is	 suggested	 to	 suppress	 HR	 by	 disrupting	 D‐loop	

structures	formed	following	strand	invasion	(Moldovan	et	al,	2012).	

The	role	of	PCNA	SUMOylation	in	S.	pombe	has	not	yet	been	determined.	Whilst	

an	Srs2	homologue	exists,	it	lacks	a	section	of	the	C‐terminus	which	includes	the	

SIM	 that	 is	 required	 for	 recruitment	 to	 SUMOylated	 PCNA	 in	 S.	 cerevisiae	

(Frampton	et	al,	2006).	This	suggests	that	the	SUMOylation	of	PCNA	may	play	a	

less	important	role	in	suppressing	homologous	recombination	in	S.	pombe.	This	

chapter	 investigates	 the	 role	 for	PCNA	SUMOylation	 in	S.	pombe,	 using	genetic	

analysis	of	un‐SUMOylatable	PCNA	mutants	in	combination	with	mutants	from	a	

range	of	different	repair	pathways.	

6.2 PCNA	lysine	to	arginine	mutants	are	sensitive	to	MMS.	

Analysis	 of	 the	 role	 of	 SUMOylation	 is	 complicated	by	 the	 fact	 that	one	of	 the	

SUMOylation	 sites	 (K164)	 is	 also	 used	 for	 ubiquitination.	 Thus,	 in	 order	 to	

demonstrate	a	role	for	SUMOylation,	analysis	of	the	pcn1‐K164R	mutant	alone	is	

insufficient.	The	phenotypes	of	the	single,	double	and	triple	K	to	R	mutants	were	

therefore	 analysed.	 If	 K172	 and	 K253	 are	 SUMOylation	 sites,	 then	 cells	
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containing	mutations	in	these	residues	might	have	phenotypes	different	to	that	

of	 pcn1‐K164R.	The	 response	 of	 S.	pombe	PCNA	 (pcn1)	 K	 to	 R	mutant	 strains	

(created	as	described	in	chapter	5)	to	a	range	of	DNA	damaging	agents,	starting	

with	MMS	and	HU,	was	analysed	(Figure	6.1).	None	of	the	single,	double	or	triple	

K	to	R	mutants	showed	an	 increase	 in	sensitivity	 to	hydroxyurea	compared	to	

wild	type	cells.	This	is	consistent	with	previous	reports	that	the	ubiquitination	

of	PCNA	that	promotes	TLS	is	not	required	for	the	recovery	of	stalled	replication	

forks	caused	by	nucleotide	depletion	(Branzei	et	al,	2004;	Frampton	et	al,	2006).	

Ubiquitination	of	K164	is	known	to	be	required	for	post‐replicative	repair	and	

translesion	synthesis.	The	pcn1‐K164R	mutant	shows	an	increase	in	sensitivity	

to	MMS	(Figure	6.1	row	3)	compared	to	wild	type	cells.	The	pcn1‐K172R,	pcn1‐	

K253R	and	pcn1‐K13R	single	mutants	are	not	sensitive	to	MMS.	However,	when	

in	 combination	 with	 the	 K164R	 mutation,	 the	 K253	 mutation	 results	 in	

increased	sensitivity	to	MMS	(Figure	6.1	rows	3,	8	and	10).	This	is	not	the	case	

with	the	K172R	mutation.		This	suggests	that	modification	of	K253	has	a	role	in	

the	 repair	 of	 MMS‐induced	 DNA	 damage.	 The	 single	 K13R	 mutation	 did	 not	

result	 in	 any	mutant	 phenotypes.	 The	 location	 of	 K13	 on	 the	 inner	 surface	 of	

PCNA	which	encircles	DNA	suggests	that	this	is	not	a	likely	site	for	SUMOylation.	

Further,	 2D	 gel	 analysis	 undertaken	 in	 chapter	 5	 (Figure	 5.7)	 shows	 that	

SUMOylation	of	PCNA	is	abolished	in	the	pcn1‐3R	mutant,	where	SUMOylation	of	

K13	 would	 be	 intact.	 Taken	 together,	 this	 suggests	 that	 the	 SUMOylation	 of	

PCNA	on	K13	is	likely	to	be	an	artefact	of	the	in	vitro	SUMOylation	reaction.	

UV	 and	 IR	 survival	 analysis	 shows	 that	 cells	 containing	 the	 pcn1‐K164R	

mutation	are	highly	 sensitive	 to	 ionising	 radiation	as	well	 as	UV‐induced	DNA	

damage	(Figure	6.2	A	and	B).	This	sensitivity	is	not	significantly	increased	in	the	

pcn1‐3R	cells.	In	summary,	SUMOylation	of	PCNA	appears	to	be	required	for	the	

response	to	DNA	damage	during	S	phase.	
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Figure 6.2 survival curves for pcn1 lysine to arginine mutants in 

response to UV and IR irradiation. 
Exponential cultures of pcn1 K to R mutants were exposed to increasing doses 
of IR (A) or UV (B) irradiation. Cells from each sample were plated onto YEA 
plates and incubated at 30°C for 3 days. Cell viability was calculated by 
comparing the number of colonies formed with untreated controls. The 
viability of pcn1-3R is not increased compared to the pcn1-K164R . 
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6.3 Analysis	of	PCNA	lysine	to	arginine	mutants	in	combination	

with	pli1‐d	

pcn1‐K164R	 and	 pcn1‐3R	 were	 integrated	 into	 strains	 lacking	 the	 E3	 SUMO	

ligase	Pli1	(pli1‐d),	resulting	in	pli1‐d,	pcn1‐K164R	and	pli1‐d,	pcn1‐3R.	If	Pli1	is	

the	 SUMO	 ligase	 responsible	 for	 SUMOylation	 of	 PCNA,	 the	 K	 to	 R	mutations	

might	be	expected	to	be	epistatic	with	the	pli1‐d	mutation.	None	of	the	single	or	

double	mutants	are	sensitive	to	HU	(Figure	6.3,	right	panel).	The	pli1‐d,	pcn1‐3R	

double	mutant	 is	more	 sensitive	 to	MMS	 than	 the	pcn1‐3R	mutant	 (Figure	6.3	

row	3	and	row	6).	The	reason	 for	 this	 is	unknown	but	may	be	due	 to	 the	 fact	

that	 Pli1	 is	 required	 for	 SUMOylation	 of	 multiple	 proteins,	 including	 some	

required	 for	HR,	 for	example	Rad22	(S.	pombe	homologue	of	Rad52)	(Ho	et	al,	

2001)	which	may	be	required	in	the	absence	of	SUMOylation	of	PCNA	.	
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6.4 Analysis	 of	 PCNA	 K	 to	 R	 mutants	 in	 combination	 with				

nse2‐SA	

The	nse2‐SA	mutation	results	 in	a	 ligase‐dead	 form	of	 the	only	other	E3	SUMO	

ligase	identified	in	S.pombe,	Nse2	(Andrews	et	al,	2005).	PCNA	K	to	R	mutations	

were	 integrated	 into	 strains	 containing	 the	 nse2‐SA	 mutation	 in	 order	 to	

investigate	whether	any	epistasis	could	be	observed,	that	would	implicate	Nse2	

as	 the	 SUMO	 ligase	 required	 for	 PCNA	 SUMOylation	 in	vivo.	 Double	 mutants	

containing	 nse2‐SA	and	 either	 pcn‐K164R,	 or	 pcn1‐3R	 do	 not	 show	 a	 notable	

increase	 in	 sensitivity	 to	 HU	 compared	 to	 the	 single	nse2‐SA	mutant.	 nse2‐SA,	

pcn1‐K164R	 and	 nse2‐SA,	 pcn1‐K3R	 double	 mutants	 are	 significantly	 more	

sensitive	 to	MMS	 compared	 to	 the	 single	mutants	 (Figure	 6.4	 lanes	 6	 and	 7).	

This	 is	 consistent	 with	 a	 loss	 of	 both	 the	 PRR	 pathway	 resulting	 from	 the	

inability	to	ubiquitinate	K164	and	loss	of	HR‐mediated	repair	due	to	the	nse2‐SA	

mutation.	
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6.5 Analysis	of	PCNA	lysine	to	arginine	mutants	in	combination	

with	rhp18‐d	and	mms2‐d	

PCNA	K	to	R	mutants	were	 integrated	into	cells	 lacking	the	genes	required	for	

the	mono‐	and	poly‐ubiquitination	of	PCNA,	rhp18‐d	and	mms2‐d,	respectively,	

to	investigate	whether	the	phenotypes	observed	for	cells	containing	the	K164R	

mutation	 are	due	 to	 a	 loss	 of	 ubiquitination	or	 SUMOylation.	Both	mono‐	 and	

poly‐ubiquitination	of	PCNA	are	abolished	in	rhp18‐d	cells.	The	addition	of	the	

pcn1‐K164R	mutation	does	not	 increase	sensitivity	to	MMS	(Figure	6.5	rows	3,	

10	 and	 11)	 and	 similarly	 double	 mutants	 rhp18‐d,	 pcn1‐K164R	 K253R	 and	

rhp18‐d	pcn1‐3R	do	not	show	a	notable	increase	in	MMS	sensitivity	(Figure	6.5	

rows	3,	10,	13	and	15).	

	mms2‐d	 strains	 are	 defective	 in	 poly‐ubiquitination	 of	 PCNA,	 but	 are	 still	

proficient	 in	PCNA	mono‐ubiquitination	and	 therefore	error‐prone	TLS.	 In	 the	

presence	of	0.003%	MMS,	mms2‐d,	K164R	is	slightly	more	sensitive	compared	to	

the	single	mutants	(Figure	6.6	rows	3,	10	and	11),	presumably	due	to	the	K164R	

mutation	 abolishing	 PCNA	 mono‐ubiquitination	 and	 therefore	 both	 PRR	

pathways.	 The	 addition	 of	 the	 K253R	 mutation	 results	 in	 an	 increase	 in	

sensitivity	at	this	concentration	of	MMS,	which	is	further	increased	in	the	mms2‐

d,	pcn1‐K3R	mutant	(Figure	6.6	rows	11,	13	and	15).	This	again	suggests	a	role	

for	modification	of	PCNA	on	K253	 in	the	repair	of	MMS‐induced	DNA	damage,	

which	does	not	 involve	Mms2.	This	would	be	consistent	with	SUMOylation	on	

K253.	 The	 increase	 in	 sensitivity	 of	mms2‐d,	pcn1‐K3R	compared	 to	mms2‐d,	

pcn1‐K164R	K253	suggests	that	SUMOylation	of	PCNA	on	K172	could	be	utilised	

in	the	absence	of	other	SUMOylation	sites.	Given	that	the	pcn1‐3R	mutant	shows	

an	increased	sensitivity	to	MMS	in	combination	with	the	mms2‐d	mutant	but	not	

rhp18‐d,	it	is	possible	that	SUMOylation	of	PCNA	plays	a	role	in	error	prone	TLS,	

or	 that	 Rhp18	 has	 other	 roles	 that	 are	 as	 yet	 undefined.	Mono‐ubiquitination	

and	 thus	 TLS	 should	 be	 intact	 in	 the	 mms2‐d	 strain.	 The	 loss	 of	

polyubiquitination	 means	 that	 damage	 must	 be	 repaired	 via	 a	 mechanism	

distinct	from	recombinational	template	switching.	This	could	suggest	that	poly‐

ubiquitination	 may	 be	 important	 together	 with	 SUMOylation	 of	 K253	 and	

possibly	K172	in	the	response	to	MMS.	
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Figure 6.6 Analysis of pcn1-K164R and pcn1-3R in combination with 
mms2-d.  

10 fold serial dilutions of exponentially growing S. pombe cultures containing 
single and double pcn1 and mms2-d mutants were plated onto YEA containing 
0.003% MMS. Double mutants containing mms2-d and pcn1-3R show a slight 
increase in sensitivity to MMS compared to single mutants. 
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6.6 SUMO	modification	of	PCNA	is	not	required	for	error‐prone	

TLS	

To	 address	 whether	 SUMOylation	 of	 S.	pombe	PCNA	 could	 be	 involved	 in	 the	

error‐prone	 TLS	 pathway,	 PCNA	 K	 to	 R	 mutants	 were	 crossed	 with	 TLS	

polymerase	mutants.	 Four	 polymerases	 are	 involved	 in	 TLS	 in	 S.	pombe,	Polκ	

(DinB),	Polη,	Polζ	(Rev3‐Rev7,	of	which	Rev3	is	the	catalytic	subunit)	and	Rev1	

(Coulon	et	al,	2010).	Evidence	has	suggested	that	Polη	and	Polκ	are	required	for	

the	bypass	of	CPD	(cyclobutane	pyrimidine	dimers),	whilst	Polη	Polζ	and	Rev1	

are	required	for	bypass	of	6‐4	photoproducts	(Coulon	et	al,	2010).	PCNA	K	to	R	

mutants	 were	 integrated	 into	 strains	 lacking	 the	 Rev1,	 Rev3	 or	 DinB	

polymerases	 (rev1‐d,	 rev3‐d	 and	 dinB‐d	 respectively).	 For	 each	 of	 the	 three	

polymerase	 mutants,	 addition	 of	 the	 pcn1‐k164R	 mutation	 results	 in	 a	 very	

slight	increase	in	sensitivity	to	MMS	(Figure	6.7	A,	rows	3,	9	and	10,	15	and	16	

and	B	rows	3,	9	and	10).	This	sensitivity	is	slightly	further	increased	on	addition	

of	the	K253R	mutation	for	all	three	polymerase	mutants	(Figure	6.7	A,	rows	6,	8,	

9	12,	14,	15,	18	and	20	and	B,	rows	6,	8,	9,	12	and	14).	This	suggests	a	role	for	

SUMOylation	of	PCNA	that	is	not	required	for	error‐prone	TLS	in	S.	pombe.		
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Figure 6.7 Analysis of pcn1-K164R and pcn1-3R in combination 
with TLS polymerase mutants rev1-d , rev3-d and dinB-d.  

10 fold serial dilutions of exponentially growing S. pombe cultures 
containing single or double pcn1 mutants and either rev1-d, rev3-d (A) or 
dinb-d (B) were plated onto YEA containing 0.003% MMS.  
rev1-d, rev3-d (A) and dinB-d (B) in combination with pcn1-K164R, pcn1-
K164R K253R and pcn1-3R  show a slight increase in sensitivity in response 
to MMS compared to single mutants. 

                 B 

9 

7 

8 

5 

6 

3 

4 

1 wt 

2 Pcn1  

pcn1-K164R  

pcn1-K172R  

pcn1-K253R  

pcn1-K164R K253R  

pcn1-K172R K253R  

pcn1-3R  

dinB-d 

0.003%MMS YEA 

10 

11 

dinB-d, K164R 

dinB-d, K172R 

12 

13 

dinB-d, K164R K253R 

14 

dinB-d, K172R K253R 

dinB-d, 3R 

                             173



	 	

6.7 SUMO	modification	of	PCNA	is	not	required	for	NER,	BER	or	

UVER	repair	pathways	

PCNA	 K	 to	 R	 mutations	 were	 incorporated	 into	 rad13‐d,	 rad2‐d	 and	 uve1‐d	

strains	 which	 are	 defective	 in	 the	 NER,	 BER	 and	 UVER	 repair	 pathways	

resepctively,	 in	 order	 to	 investigate	whether	 any	 epistasis	 could	 be	 observed.	

Rad2	 is	a	structure	specific	nuclease	 that	 is	required	 for	replication	as	well	as	

several	DNA	repair	pathways,	including	the	processing	of	DNA	overhangs	which	

occur	 as	 a	 result	 of	 BER	 and	 NER	 (Alleva	 &	 Doetsch,	 1998;	 Liu	 et	 al,	 2004;	

Murray	et	al,	1994).	Rad13	is	the	S.	pombe	homologue	of	mammalian	XPG	and	is	

required	 for	 cleavage	 of	 damaged	 DNA	 in	 the	 NER	 pathway	 (Mu	 et	 al,	 1996;	

O'Donovan	et	al,	1994).	Uve1	is	required	for	the	alternative	UV‐damage	excision	

pathway	in	S.	pombe	(Yonemasu	et	al,	1997).		

Double	 mutants	 containing	 rad13‐d	 and	 pcn1‐K164R	 showed	 a	 significant	

increase	in	sensitivity	to	0.003%	MMS	compared	to	either	single	mutant	(Figure	

6.8).	This	sensitivity	is	further	increased	in	the	rad13‐d	pcn1‐3R	double	mutant.	

This	 additive	 effect	 suggests	 that	 modification	 of	 PCNA	 is	 important	 in	 the	

absence	 of	 a	 functional	 NER	 pathway	 for	 the	 repair	 of	 MMS‐induced	 DNA	

damage,	but	is	not	directly	involved	in	NER	repair.		

A	 similar	 increase	 in	 sensitivity	 can	 be	 observed	 for	 rad2‐d	 pcn1‐K164R	

compared	to	the	single	mutants	(Figure	6.9	rows	2,	4	and	5).	The	rad2‐d	pcn1‐

3R	double	mutant	strain	is	extremely	sensitive	to	MMS	(Figure	6.9	rows	3,4	and	

6),	suggesting	an	important	role	for	K235	or	K172	in	the	absence	of	Rad2	and	in	

response	to	MMS	treatment.		

Double	 mutants	 containing	 uve1‐d	 and	 pcn1‐K164R	 also	 showed	 an	 additive	

effect	for	sensitivity	to	MMS	(Figure	6.9	rows	2,	7	and	8),	which	is	again	strongly	

increased	 in	 the	 double	mutant	uve1‐d,	pcn1‐3R	(Figure	 6.9	 rows	 3,	 7	 and	 9).	

Single	and	double	mutant	cultures	containing	rad2‐d	and	pcn1‐K164R	or	pcn1‐

3R	were	treated	with	0.1%	MMS	and	cell	survival	assayed	at	30	minute	intervals	

for	two	hours	following	exposure	(Figure	6.10).	Cell	viability	is	greatly	reduced	

in	cells	containing	the	rad2‐d,	pcn1‐3R	double	mutant	compared	to	the	single	or	

rad2‐d,	pcn1	K164R	double	mutants.	These	experiments	demonstrate	that	PCNA	
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modification	 of	 residues	 other	 than	 K164	 is	 important	 for	 survival	 following	

MMS‐induced	DNA	damage;	however	they	are	not	required	for	the	NER,	BER	or	

UVER	 repair	 pathways	 in	 S.	pombe.	 Another	 possibility	 is	 that	 an	 inability	 to	

SUMOylate	 PCNA	 results	 in	 a	 specific	 type	 of	 damage	 that	 requires	 the	 HR	

pathway	for	viability.		
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rad2-d, 3R 

Figure 6.10 Survival curves  of rad2-d, pcn1-3R in response to 
MMS. 

Exponential cultures of single and double mutants were treated with 0.1% 
MMS. Samples were taken before MMS exposure (time 0) and at 0.5, 1 ,1.5 
and 2 hours after addition of MMS. Cells from each sample were plated onto 
YEA plates and incubated at 30°C for 3 days. Cell viability was calculated by 
comparing the number of colonies formed with untreated controls. The 
viability of the rad2-d, pcn1-3R mutant is decreased compared to either single 
mutant and rad2-d,pcn1-K164R. (work completed in collaboration with Dr. 
Felicity Watts) 

                             178



	 	

6.8 PCNA	modification	 is	 required	 in	 the	 absence	 of	 Rad51,	

Rad55	and	Sfr1	

The	 results	 so	 far	 suggest	 that	 SUMOylation	 of	 PCNA	 is	 required	 for	 recovery	

from	 damage	 sustained	 during	 S	 phase.	 A	 major	 process	 required	 for	 this	

recovery	is	HR.	In	order	to	investigate	epistasis	between	SUMOylation	of	PCNA	

and	the	HR	pathway,	PCNA	K	to	R	mutants	were	crossed	with	rad51‐d,	rad55‐d	

and	sfr1‐d	mutants.	Rad51	is	required	to	displace	RPA	on	single‐stranded	DNA	

and	 form	 nucleofilaments	 which	 catalyse	 strand	 invasion	 in	 early	 HR	

(Kurokawa	 et	 al,	 2008).	 Rad55	 and	 Sfr1	 form	 heterodimers	 with	 Rad57	 and	

Swi5	respectively,	both	of	which	act	in	parallel	to	stabilise	Rad51	filaments	and	

promote	D‐loop	 formation	 (Akamatsu	et	 al,	 2007;	Haruta	et	 al,	 2006).	 Several	

attempts	at	creating	rad51‐d,	pcn1‐3R,	and	rad55‐d,	pcn1‐3R	were	unsuccessful,	

suggesting	 that	 the	 double	 mutants	 may	 not	 be	 viable.	 rad51‐d	 and	 rad55‐d	

mutants	 in	 S.	 pombe	 are	 very	 sick,	 and	 tetrad	 analysis	 was	 not	 performed,	

therefore	 lethality	 of	 the	 double	mutants	 was	 not	 confirmed	 this	 way.	 sfr1‐d,	

pcn1‐K164R	and	sfr1‐d,	pcn1‐3R	double	mutants	were	viable,	however	both	are	

exquisitely	sensitive	to	low	doses	of	MMS	(Figure	6.11.).	A	lower	dose	of	MMS	is	

required	 to	 establish	 whether	 the	 sfr1‐d,	 pcn1‐K3R	 double	 mutant	 is	 more	

sensitive	 than	 the	 sfr1‐d,	pcn1‐K164R	 double	mutant.	These	 results	 suggest	 an	

important	requirement	for	PCNA	modification	in	the	absence	of	an	active	Sfr1‐

Swi5	 complex.	 Lethality	 of	 rad55‐d,	pcn1‐K3R	double	 mutants	 would	 suggest	

that	the	Rad55‐dependant	sub	pathway	is	required	for	viability	in	the	absence	

of	PCNA	SUMOylation.	
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6.9 PCNA	lysine	to	arginine	mutants	rescue	the	MMS	sensitivity	

of	mre11‐d	mutants	

Mre11	(formerly	Rad32)	 is	 the	S.	pombe	homologue	of	mammalian	Mre11	and	

part	of	 the	MRN	complex	(Tavassoll	et	al,	1995;	Wilson	et	al,	1998).	The	MRN	

complex	 is	 involved	 in	 several	 aspects	 of	 DNA	 damage	 repair,	 including	 the	

detection	of	DSBs,	DNA	end	processing	and	checkpoint	signalling	(Williams	et	al,	

2010).	 It	 has	 also	 been	 implicated	 in	 the	 removal	 of	 topoisomerase	 proteins	

from	 the	DNA	 (Hartsuiker	 et	 al,	 2009).	 The	mre11‐d	 strain	 is	 sensitive	 to	 low	

doses	of	MMS	and	HU	(Figure	6.12	row	5).	This	sensitivity	is	reversed	in	mre11‐

d	pcn1‐K164R	and	mre11‐d	rhp18‐d	and	mre11‐d	pcn1‐3R	double	mutants	to	the	

same	extent	in	all	three	double	mutants	in	response	to	HU	(Figure	6.12	rows	6	

and	7).	This	suggests	that	ubiquitination	of	PCNA	on	K164	is	detrimental	in	the	

absence	of	Mre11	in	S.	pombe.	The	mre11‐d	pcn1‐3R	double	mutant	rescues	the	

MMS	 sensitivity	 of	mre11‐d,	 to	 a	 lesser	 extent	 than	mre11‐d	pcn1‐K164R	 and	

mre11‐d	rhp18‐d	(Figure	6.12	row	8	compared	to	rows	6	and	7).	The	reason	for	

this	 is	 unknown,	 however	 it	 is	 possible	 that	 SUMOylation	 of	 PCNA	 may	 aid	

survival	following	MMS	exposure	in	the	absence	of	Mre11,	and	that	this	is	only	

possible	 once	 ubiquitination	 is	 abolished.	 It	 is	 possible	 that	 SUMOylation	 of	

PCNA	 recruits	 another	 unknown	 exonuclease	 which	 promotes	 HR‐mediated	

repair.		
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6.10 	SUMOylation	of	PCNA	does	not	act	in	the	same	pathway	as	

Cds1	or	Chk1	

Cds1	is	the	effector	kinase	which	is	phosphorylated	by	Rad3	following	detection	

of	 DNA	 damage	 during	 S‐phase.	 Cds1	 activation	 results	 in	 phosphorylation	 of	

Cdc25	 and	 the	 inhibition	 and	 subsequent	 slowing	 of	 S	 phase	 to	 allow	 for	 the	

repair	 of	 DNA	 damage	 and	 re‐start	 of	 stalled	 replication	 forks.	 cds1‐d	 strains	

were	crossed	with	pcn1‐K164R	and	pcn1‐3R	and	single	and	double	mutants	used	

for	 spot	 tests	 on	 plates	 containing	MMS	 and	 HU.	 cds1‐d,	pcn1‐K164R	 mutants	

showed	an	increase	in	sensitivity	to	both	MMS	and	HU	when	compared	to	single	

mutants	(Figure	6.13	row	5).	This	sensitivity	was	further	increased	in	the	cds1‐

d,	 pcn1‐K3R	 double	 mutants	 (Figure	 6.13	 row	 6	 compared	 to	 row	 5).	 The	

additive	effect	of	these	double	mutants	does	not	implicate	SUMOylation	of	PCNA	

in	 the	 Cds1	 checkpoint	 signalling	 pathway,	 however	 it	 may	 be	 involved	 in	 a	

parallel	pathway.	

	 	

                             183



YEA  
0.001%

 M
M

S 
0.002%

 M
M

S 
0.0035%

 M
M

S 

1 2 3 4 5 6 

w
t 

pcn1-K164R
 

pcn1-3R
 

cds1-d 

cds1-d, K164R
 

cds1-d, 3R
 

Figure 6.13 PCNA K
 to R m

utants do not function in the sam
e pathw

ay as Cds1. 
10 fold serial dilutions of exponentially grow

ing S. pom
be cultures containing single or double pcn1 and cds1-d 

m
utants w

ere plated onto YEA plates containing either M
M

S or H
U at the concentrations indicated. 

cds1-d pcn1-K164R  and cds1-d, 3R double m
utants are m

ore sensitive to M
M

S than either single m
utant. 

  

2.5m
M

 H
U

 

                             184



	 	

Activation	 of	 the	 effector	 kinase	 Chk1	 by	 Rad3	 induces	 the	 G2/M	 phase	

checkpoint	which	prevents	progression	into	mitosis	in	the	presence	of	any	DNA	

damage.	 In	 order	 to	 investigate	 whether	 the	 SUMOylation	 of	 PCNA	 acts	 in	 a	

Chk1‐dependent	pathway,	double	mutants	were	created	containing	chk1‐d	and	

either	 pcn1‐K164R	 or	 pcn1‐3R	 and	 spot	 tests	 carried	 out	 in	 plates	 containing	

either	 MMS	 or	 HU.	 The	 chk1‐d,	 pcn1‐K164R	 double	 mutant	 resulted	 in	 an	

increase	in	sensitivity	to	MMS	and	HU	compared	to	either	single	mutant	(Figure	

6.14).	 chk1‐d,	 pcn1‐K3R	 double	mutants	 showed	 a	more	 dramatic	 increase	 in	

sensitivity	 specifically	 to	MMS.	 Double	mutants	with	 rad3‐d	 would	 have	 been	

analysed	if	time	had	permitted,	although	it	is	possible	that	such	double	mutants	

would	be	lethal.	
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6.11 	PCNA	K	to	R	mutants	activate	the	G2/M	checkpoint	

PCNA	K	to	R	mutants	were	integrated	into	a	strain	containing	HA‐tagged	Chk1,	

in	 order	 to	 determine	 whether	 mutants	 could	 efficiently	 activate	 the	 G2/M	

checkpoint.	 Whole	 cell	 extracts	 were	 prepared	 from	 untreated	 samples,	 and	

samples	were	exposed	 to	200Gy	of	 ionising	 radiation.	No	aberrant	 checkpoint	

activation	was	observed	in	untreated	cells	(Figure	6.15,	lanes	4‐6).	A	band	shift	

correlating	 to	activated	Chk1	can	be	visualised	 following	 IR	 treatment	 in	both	

the	 pcn1‐K164R	 and	 pcn1‐K3R	 mutants	 (Figure	 6.15,	 lanes	 7‐9).	 It	 would	 be	

interesting	 to	 investigate	 whether	 Chk1	 is	 activated	 in	 pcn1	 K	 to	 R	 mutants	

following	MMS	treatment.	

6.12 	pcn1‐K164R	 and	 pcn1‐K3R	 mutants	 have	 reduced	 Cds1	

phosphorylation	in	response	to	MMS.	

A	 Phos‐tag	 acrylamide	 gel	 was	 used	 in	 order	 to	 investigate	 whether	 Cds1	

phosphorylation	was	affected	 in	pcn1‐K164R	or	pcn1‐3R	mutants.	No	aberrant	

Cds1	phosphorylation	could	be	observed	in	untreated	cells	(Figure	6.16	lanes	3	

–	5).	HU	treatment	induced	Cds1	phosphorylation	in	wild	type,	pcn1‐K164R	and	

pcn1‐3R	 samples	 (Figure	 6.16	 lanes	 2,	 9	 and	 10).	 In	 contrast,	 following	MMS	

treatment,	 pcn1‐K164R	 and	 pcn1‐3R	 showed	 decreased	 Cds1	 phosphorylation	

compared	to	the	wild	type	control	(Figure	6.16	lanes	6‐8)	and	phosphorylation	

could	 only	 be	 detected	 in	 longer	 exposures.	 This	 suggests	 that	 an	 inability	 to	

ubiquitinate	and/or	SUMOylate	PCNA	results	in	an	inability	to	signal	for	S‐phase	

arrest.	

	 	

                             187



46 

30 

58 

46 
58 

6 
8 

9 
7 

4 
2 

3 
5 

1 

α-H
A

 

Untreated 
+ IR

 

Figure 6.15 pcn1-K164R and pcn1-3R m
utants are not defective in Chk1 

phosphorylation follow
ing IR treatm

ent. 
W

hole cell extracts from
 exponentially grow

ing S. pom
be strains as indicated w

ere 
prepared and sam

ples analysed by SDS-PAGE and probed w
ith antibodies against the 

H
A tag. H

A-Chk1 phosphorylation can be observed in cells containing an integrated 
H

A-tag follow
ing exposure to 100Gy IR (lane 7). Strains containing H

A-Chk1 and 
either 

pcn1-K164R 
or 

pcn1-3R 
m

utants 
do 

not 
appear 

have 
reduced 

Chk1 
phosphorylation follow

ing IR treatm
ent (lanes 8 and 9).  (N

ote that lane 8 contains 
less sam

ple com
pared to lanes 7 and 9). Bottom

 panel is a longer exposure of the sam
e 

m
em

brane. 

 

                             188



Untreated 

cds1 

+M
M

S 
+H

U
 

+H
U

 

-  
+

 

* 

6 
8 

10 
9 

7 
4 

2 
3 

5 

Figure 6.16 pcn1-K164R and pcn1-3R m
utants do not activate the intra-S phase checkpoint as 

efficiently as w
ild type cells in the follow

ing M
M

S treatm
ent. 

W
hole cell extracts w

ere prepared from
 the strains indicated, w

hich w
ere either untreated (lanes 3-5), or treated 

w
ith 0.05%

 M
M

S for 3 hours (lanes 6-8) or 12m
M

 H
U for 3 hours (lanes 2, 9 and 10). Sam

ples w
ere run on 

phosphate-affinity acrylam
ide gel and w

estern blots probed w
ith antibodies against Cds1. Red + and - indicate 

positive and negative controls (Lanes 1 and 2). Cds1 phosphorylation can be observed in w
ild type cells follow

ing 
exposure to either H

U (lane 2) or  M
M

S (lane 6) pcn1-K164R and pcn1-3R m
utants have reduced Cds1 

phosphorylation follow
ing M

M
S treatm

ent (lanes 7 and 8).  Arrow
 indicates band corresponding to unm

odified 
Cds1, Asterisk indicates phosphorylated Cds1. Bottom

 panel is a longer exposure of the sam
e m

em
brane.  7.5%

 
gels containing 20uM

 M
nCl2 and 10uM

 phos-tag. 

 

α-Cds1 

1 

                             189



	 	

6.13 	Discussion	

Following	the	integration	of	pcn1	K	to	R	mutants	into	the	S.	pombe	genome,	spot	

tests	 showed	 a	 slight	 increase	 in	 sensitivity	 of	 the	pcn1‐K164R	K253R	mutant	

and	 pcn1‐3R	 triple	 lysine	 mutant	 compared	 pcn1‐K164R	 in	 response	 to	 MMS	

(Figure	6.1).	Sensitivity	 to	MMS	is	usually	a	sign	of	an	 inability	to	deal	with	to	

DNA	damage	during	S	phase.	This	could	suggest	a	requirement	of	SUMOylated	

PCNA	to	either	prevent	or	repair	damage	or	specific	structures	such	as	stalled	or	

collapsed	 replication	 forks	during	 S	phase,	 or	 a	 role	 for	K253	 SUMOylation	 in	

the	repair	of	MMS‐induced	DNA	damage.	None	of	the	single	mutants	except	for	

pcn1‐K164R	conferred	sensitivity	to	any	other	DNA	damaging	agents.	As	K13	is	

located	 on	 the	 inner	 surface	 of	 the	 PCNA	 trimer	 which	 encircles	 DNA,	

SUMOylation	of	the	monomeric	protein	in	vitro	 is	likely	to	be	an	artefact	of	the	

reaction	 and	 not	 biologically	 relevant.	 The	 positively	 charged	 inner	 ring	 is	

approximately	35Å	in	diameter	and	a	structure	of	mammalian	PCNA	encircling	

double	stranded	DNA	has	been	published	(Ivanov	et	al,	2006).	It	is	unlikely	that	

SUMO	could	occupy	this	space	at	the	same	time	as	DNA.	SUMO	modification	at	

this	position	could	potentially	affect	 ring	 formation,	however	 the	absence	of	a	

mutant	 phenotype	 when	 K13	 is	 mutated	 to	 arginine	 indicates	 that	 ring	

formation	 is	 unlikely	 to	 be	 adversely	 affected.	 Further	 evidence	 for	 K13	

modification	being	an	artefact	of	the	in	vitro	reaction	comes	from	2D	gel	analysis	

of	 the	 pcn1‐K3R	 mutant	 (Figure	 5.7,	 bottom	 right	 panel).	 The	 spot	

corresponding	 to	 SUMOylated	PCNA	 is	 abolished	 in	 this	mutant,	which	would	

not	be	expected	if	K13	was	also	SUMOylated.		For	this	reason	the	K13R	mutant	

was	not	analysed	further.		

PCNA	is	mono‐ubiquitinated	by	Rhp6	and	Rhp18	to	promote	TLS,	and	 is	poly‐

ubiquitinated	by	Mms2‐Ubc13	and	Rad8	to	promote	template	switching.	PCNA	

is	 constituitively	 ubiquitinated	 in	 S.pombe	 in	 S‐phase	 and	 ubiquitin	 levels	 are	

increased	 in	 response	 to	 DNA	 damage	 induced	 by	 HU,	 UV,	 IR	 and	MMS	 in	 S‐

phase	as	well	as	 in	G2	(Frampton	et	al,	2006;	Hoege	et	al,	2002).	Whilst	pcn1‐

K164	 mutants	 have	 previously	 been	 reported	 to	 be	 sensitive	 to	 UV‐	 and	 IR‐

induced	damage	(Frampton	et	al,	2006),	neither	pcn1‐K164R	K253R	nor	pcn1‐3R	

was	 observed	 to	 have	 a	 notable	 increase	 in	 sensitivity	 to	 either	 of	 these	
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damaging	 agents	 compared	 to	 pcn1‐K164R	 (Figure	 6.2),	 suggesting	 that	

SUMOylation	of	S.	pombe	PCNA	on	K253	or	K172	is	not	required	for	the	repair	of	

UV‐	or	IR‐induced	DNA	damage.	Extensive	epistasis	analysis	was	carried	out,	the	

results	of	which	are	summarised	in	Figure	6.17,	and	discussed	in	detail	below.	

It	was	reported	previously	(Frampton	et	al,	2006)	that	pcn1‐K164R	is	epistatic	

with	 ubiquitin	 pathway	mutants	 rhp18‐d,	mms2‐d	 and	ubc13‐d	 in	 response	 to	

UV	 irradiation.	 Spot	 tests	 of	 double	 mutants	 on	 plates	 containing	 MMS	

demonstrate	that	pcn1‐K164R	K253R	and	pcn1‐3R	are	epistatic	with	rhp18‐d,	but	

have	 an	 additive	 effect	 in	 combination	 with	 mms2‐d	 (Figure	 6.5‐6.6).	 This	

implicates	SUMOylation	of	PCNA	in	the	error‐prone	TLS	pathway.	However,	the	

pcn1	K	to	R	mutations	displayed	an	additive	effect	on	the	MMS	sensitivity	of	TLS	

polymerase	 mutants	 (Figure	 6.7).	 As	 TLS	 is	 abolished	 in	 pcn1‐K164R,	 the	

increase	 in	 sensitivity	 of	 double	 mutants	 supports	 another	 role	 for	 K164,	

presumably	SUMOylation.	It	is	possible	that	SUMOylation	of	PCNA	is	involved	in	

an	error‐prone	repair	pathway	that	 is	 independent	of	 the	TLS	polymerases,	or	

perhaps	acts	in	a	parallel	pathway	involving	Rhp18	which	is	specific	in	response	

to	MMS‐induced	DNA	damage.		

Epistasis	 analysis	was	 carried	out	with	 cells	 deleted	 for	 the	 SUMO	 ligase	Pli1,	

which	 enhanced	 the	 SUMOylation	 of	 PCNA	 in	 vitro.	 Cells	 lacking	 Pli1	 are	

insensitive	to	a	range	of	damaging	agents,	despite	Pli1	having	a	range	of	target	

proteins	 involved	 in	repair	pathways	(Xhemalce	et	al,	2004a).	Double	mutants	

pli1‐d	pcn1‐K164R	 and	pli1‐d	pcn1‐3R	display	a	 slight	 increase	 in	 sensitivity	 to	

MMS	compared	to	the	single	pcn1‐K164R	and	pcn1‐3R	mutants,	suggesting	that	

Pli1	 and	 SUMOylation	 of	 PCNA	 have	 some	 non‐overlapping	 functions.	 For	

example,	 pli1‐d	 rad22‐d	 (S.pombe	 homologue	 of	 rad52)	 double	 mutants	 are	

lethal	 (Xhemalce	 et	 al,	 2004a).	 GFP‐rad22	 pcn1‐3R	 double	 mutants	 were	

generated,	however	there	was	no	notable	difference	in	foci	formation	compared	

to	the	single	mutant	in	untreated	or	MMS	treated	samples	(Dr.	F.	Z.	Watts,	data	

not	included).	
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pcn1	K	to	R	mutants	were	also	combined	with	cells	defective	in	the	other	SUMO	

ligase	 in	S.pombe,	Nse2.	The	significant	 increase	 in	sensitivity	of	nse2‐SA	pcn1‐

K164R	and	nse2‐SA	pcn1‐3R	compared	to	single	mutants	can	be	explained	by	the	

elimination	 of	 both	 the	 TLS	 pathway	 (K164R)	 and	 Nse2‐mediated	

recombinational	 repair.	 Whether	 SUMOylation	 of	 PCNA	 could	 be	 directing	

damage	to	Nse2‐mediated	repair	is	unknown.	

Analysis	of	pcn1	K	 to	R	mutants	 in	combination	with	mutants	 from	a	range	of	

repair	 pathways	 including	 BER	 (Figure	 6.8),	 NER	 and	 UVDE	 (Figure	 6.9)	 all	

resulted	 in	 additive	 phenotypes	 in	 response	 to	MMS,	 which	 are	 increased	 on	

addition	of	the	K253R	mutation.	This	lends	further	evidence	for	a	role	of	at	least	

K253	modification	in	the	repair	of	MMS‐induced	damage,	or	an	accumulation	of	

damage	 in	unSUMOylatable	mutants	which	requires	another	pathway,	 such	as	

HR,	for	repair	

Sfr1‐Swi5	and	Rad55‐Rad57	are	two	mediator	complexes	which	promote	Rad51	

filament	stability	and	strand	exchange	during	the	early	stages	of	recombination.	

Several	 attempts	 at	 creating	 double	 mutants	 containing	 pcn1‐3R	 and	 either	

rad51‐d	 or	 rad55‐d	 were	 unsuccessful.	 Tetrad	 analysis	 would	 be	 required	 to	

confirm	 lethality	 of	 these	 double	mutants,	 however	 previously	 rad51‐d,	pcn1‐

K164R	and	 rad55‐d,	pcn1‐K164R	 have	 been	 generated	 and	 shown	 to	 be	 very	

sick,	having	slow	growth	phenotypes	and	extreme	sensitivity	to	DNA	damaging	

agents	(Frampton	et	al,	2006).	More	recently,	double	mutants	containing	rad8‐d	

(which	 is	 defective	 in	 poly‐ubiquitination	 of	 PCNA)	 with	 either	 rad51‐d	 or	

rad55‐d	have	been	reported	to	show	an	increase	in	sensitivity	to	MMS,	which	is	

more	extreme	in	the	rad51‐d,	rad8‐d	mutant	(Ding	&	Forsburg,	2014).	It	is	clear	

that	 in	 the	 absence	 of	Rad51	or	when	HR	 is	 impaired,	 PCNA	ubiquitination	 is	

important	for	the	response	to	DNA	damage,	particularly	MMS‐induced	damage.	

If	 rad51‐d,	pcn1‐3R	 and	 rad55‐d,	pcn1‐3R	 double	mutants	 are	 indeed	 inviable,	

then	the	apparent	lethality	of	the	pcn1‐3R	mutant	in	combination	with	rhp51‐d	

and	rad55‐d	is	presumably	due	to	a	loss	of	HR	repair	(rad51‐d)	and	both	error‐

prone	 and	 error	 free	 damage	 avoidance	 (pcn1‐K164R)	 and	 possibly	 another	

repair	pathway	involving	SUMOylation	of	PCNA.		sfr1‐d,	pcn1‐K164R	and	sfr1‐d,	

pcn1‐3R	double	mutants	are	extremely	sensitive	to	MMS,	however	it	is	not	clear	
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from	 the	 MMS	 concentrations	 used	 whether	 the	 sfr1‐d,	 pcn1‐K164R	 is	 less	

sensitive	than	sfr1‐d,	pcn1‐3R	(Figure	6.11	lanes	5	and	6).	The	loss	of	both	error‐

prone	 and	 error‐free	 damage	 avoidance	 resulting	 from	 the	 pcn1‐K164R	

mutation	 in	 combination	with	 inefficient	HR	 could	 be	 leading	 to	 the	 exquisite	

sensitivity	 of	 the	 double	 mutants	 to	 MMS.	 It	 is	 also	 likely	 that	 the	 Rad55‐

dependent	 HR	 pathway	 is	 essential	 in	 the	 absence	 of	 SUMOylation	 of	 PCNA.	

Interestingly,	 pli1‐d,	 rad51‐d	 double	 mutants	 are	 also	 lethal	 (Xhemalce	 et	 al,	

2004a).	 It	 is	possible	 that	 this	 lethality	 results	 from	an	 inability	 to	SUMOylate	

PCNA.	 It	 is	 interesting	 to	 note	 that	 GFP‐rad11,	 pcn1‐3R	 double	 mutants	 are	

lethal	 (confirmed	 by	 tetrad	 analysis).	 This	 implies	 that	 the	 Rad11	 subunit	 of		

RPA	plays	an	important	role	when	SUMOylation	of	PCNA	is	 impaired.	It	would	

be	interesting	to	see	whether	pli1‐d	mutants	are	also	lethal	with	rad11.	Further	

analysis	 is	 required	 to	 understand	 the	 relationship	 between	 SUMOylation	 of	

PCNA,	 Pli1	 and	 recombination	 mutants.	 pli1‐d,	 rhp18‐d	 double	 mutants	 are	

currently	being	generated,	which	will	indicate	whether	the	phenotype	of	pli1‐d,	

pcn1‐3R	 is	 mostly	 a	 result	 of	 an	 inability	 to	 ubiquitinate,	 or	 an	 inability	 to	

SUMOylate	PCNA.	

Mre11	binds	to	DNA	ends	and	is	involved	in	end	processing	and	resection	of	the	

DNA	at	double	strand	breaks.	The	MRN	complex	is	also	involved	in	activation	of	

the	 S	 phase	 checkpoint	 (Willis	 &	 Rhind,	 2010).	mre11‐d	 cells	 are	 unable	 to	

efficiently	repair	DSBs	and	are	sensitive	to	IR	(Tavassoll	et	al,	1995).	Spot	tests	

using	mre11‐d	 strains	 in	 combination	with	 pcn1	 K	 to	 R	mutants	 and	 rhp18‐d	

revealed	that	whilst	the	mre11‐d	single	mutant	is	highly	sensitive	to	MMS,	this	

sensitivity	is	rescued	when	in	combination	with	rhp18‐d	or	pcn1‐K164R	(Figure	

6.12	lanes	5,	6	and	7).	This	suggests	that	PCNA	ubiquitination	is	detrimental	to	

cell	survival	following	DNA	damage	in	the	absence	of	Mre11.	Interestingly	(Ding	

&	Forsburg,	2014)	recently	reported	that	mre11‐d	 is	epistatic	with	rad8‐d,	as	a	

double	mutant	containing	rad8‐d	and	mre11‐d	was	no	more	or	less	sensitive	to	

either	single	mutant	at	low	doses	of	MMS.	Since	rad8	mutants	are	defective	only	

in	poly‐ubiquitination,	 the	results	reported	here	suggest	 that	 the	rescue	of	 the	

mre11‐d	by	pcn1‐K164	is	due	specifically	to	the	absence	of	mono‐ubiquitination	

and	 error‐prone	 TLS.	 mre11‐d,	pcn1‐3R	double	 mutants	 also	 rescue	 the	 MMS	

sensitivity	 of	 mre11‐d	 cells,	 to	 a	 lesser	 extent.	 This	 again	 implicates	
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SUMOylation	of	PCNA	as	being	important	in	the	repair	of	alkylation	damage,	in	

the	 absence	 of	 Mre11.	 One	 explanation	 for	 these	 results	 could	 be	 that	 in	 the	

absence	 of	 Mre11,	 recombinational	 repair	 is	 impaired	 and	 PCNA	 is	 heavily	

ubiquitinated,	 resulting	 in	 inhibition	 of	 SUMOylation	 and	 directing	 repair	

though	 the	 error‐prone	 TLS	 pathways,	 resulting	 in	 genomic	 instability.	

Abolishing	 PCNA	ubiquitination	 could	 allow	 for	 SUMOylation	 of	 PCNA	 to	 take	

place	which	could	recruit	an	unknown	endonuclease	to	resect	the	ends	of	DNA	

breaks	 in	 the	 absence	 of	 Mre11,	 in	 concert	 with	 Exo1.	 It	 has	 been	 shown	

recently	 using	 human	 proteins	 and	 in	 Xenopus	 extracts	 that	 PCNA	 enhances	

Exo1	 activity	 (Chen	 et	 al,	 2013).	 It	 is	 possible	 that	 this	 is	 also	 the	 case	 in	 S.	

pombe,	or	that	SUMOylation	of	PCNA	either	recruits	or	enhances	the	activity	of	

an	alternative	 exonuclease.	This	would	explain	 the	 less	 effective	 rescue	of	 the	

mre11‐d,	pcn1‐3R	mutant	compared	to	mre11‐d,	pcn1‐K164R.	

The	additive	effect	observed	 for	pcn1‐K164R	and	pcn1‐3R	 in	combination	with	

checkpoint	 kinase	mutants	 cds1‐d	 and	 chk1‐d	 (Figure	 6.13	 and	 6.14)	 suggests	

that	 SUMOylation	 of	 PCNA	 is	 not	 involved	 in	 the	 intra‐S	 or	 G2/M	 checkpoint	

pathways,	 but	 is	 required	 in	 the	 response	 to	 specifically	 MMS‐induced	 DNA	

damage	 in	 the	 absence	 of	 checkpoint	 activation.	 However,	 whilst	 Chk1	

activation	is	unaffected	in	PCNA	K	to	R	mutants	(Figure	6.15),	phosphorylation		

of	the	intra	S‐phase	checkpoint	kinase	Cds1	is	reduced	in	both	pcn1‐K164R	and	

pcn1‐3R	mutants	(Figure	6.14).	These	results	indicate	that	either	ubiquitinated	

or	 SUMOylated	 of	 PCNA	 (or	 both)	 contribute	 to	 intra‐S	 phase	 checkpoint	

activation	 in	 response	 to	MMS.	Analysis	of	 a	rad3‐d,	pcn1‐3R	double	mutant	 is	

required	 to	 further	 investigate	 a	 role	 for	 the	 SUMOylation	 of	 PCNA	 in	 the	

checkpoint	response,	though	it	is	likely	that	this	double	mutant	is	lethal.		

Taken	together,	the	results	presented	in	this	chapter	strongly	support	a	role	for	

PCNA	 SUMOylation	 in	 S.	 pombe,	 particularly	 on	 K253,	 in	 response	 to	 MMS‐

induced	damage.	PCNA	K	to	R	mutants	are	exclusively	sensitive	to	MMS	and	do	

not	show	an	increase	in	sensitivity	compared	to	pcn1‐K164R	to	any	of	the	other	

types	of	DNA	damage	tested,	including	CPT	(data	not	included).	The	first	of	two	

possibilities	 is	 that	 SUMOylation	 of	 PCNA	 acts	 in	 a	 damage	 specific	 pathway	

required	in	response	to	MMS,	which	is	important	in	the	absence	of	other	repair	
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pathways	 including	NER,	 BER,	UVER	 and	HR.	However	 data	 presented	 in	 this	

chapter	does	not	provide	evidence	as	to	which	pathway	this	modification	might	

be	implicated	in.	Perhaps	SUMOylation	of	PCNA	is	only	required	in	the	absence	

of	 one	 or	more	 repair	 pathways,	 and	we	 have	 yet	 to	 identify	 any	 interacting	

proteins.	Previous	reports	have	implicated	Swi1,	Swi3	and	Hsk1	to	be	involved	

in	an	alkylation	specific	repair	pathway	(Sommariva	et	al,	2005).	 It	 is	possible	

that	SUMOylation	of	PCNA	plays	a	role	in	this	or	another	parallel	pathway.	pcn1‐

3R	mutants	do	not	activate	either	the	intra‐S	or	G2/M	phase	checkpoint	 in	the	

absence	 of	 DNA	 damage,	 which	 implies	 that	 there	 is	 not	 an	 accumulation	 of	

damage	in	untreated	cells,	as	reported	in	swi1,	swi3	and	hsk1	mutants.	

A	second	explanation	 for	 these	results	could	be	that	an	 inability	 to	SUMOylate	

PCNA	causes	a	specific	kind	of	damage	or	structure,	for	example	replication	fork	

collapse,	 which	 subsequently	 requires	 HR‐mediated	 repair	 pathways	 for	

viability.	 Replication	 fork	 collapse	 could	 result	 from	 impaired	 Cds1	

phosphorylation	 in	 pcn1	 K	 to	 R	 mutants,	 (Figure	 6.16)	 affecting	 the	 intra‐S	

phase	checkpoint.	Subsequent	Chk1	phosphorylation	and	checkpoint	signalling	

involving	RPA	could	facilitate	repair	of	collapsed	forks	by	HR.	This	could	explain	

the	extreme	sensitivity	of	pcn1‐3R	mutants	with	HR	mutant	sfr1‐d	and	possible	

lethality	with	rad51‐d,	rad55‐d	and	GFP‐rad11.	The	stability	of	the	PCNA	protein	

and	chromatin	association	of	the	pcn1‐3R	mutants	is	unaffected	as	tested	in	the	

presence	and	absence	of	MMS	(data	not	included).	Current	work	is	being	carried	

out	 to	 assess	 the	 stability	 of	 replication	 fork	 components	 in	 the	 pcn1‐3R	

mutants.	

Further	 analysis	 is	 required	 to	 find	 a	 role	 for	 the	 SUMOylation	 of	 PCNA	 in	 S.	

pombe,	including	investigation	into	recombination	rates	in	pcn1‐K3R	mutants,	as	

well	as	further	genetic	analysis,	for	example	with	Rad3,	fork	protection	complex	

components	 Swi1	 and	 Swi3,	 exonuclease	 Exo1	 and	 helicase	 Rqh1,	 which	 is	

involved	 in	 the	 dissolution	 of	 recombination	 structures.	 It	 would	 also	 be	

interesting	 to	 analyse	 the	 phenotypes	 of	 pcn1	K	 to	R	mutants	 in	 combination	

with	 checkpoint	 signalling	 mutants	 including	 rad9‐d,	 rad17‐d	 and	 cdc18‐d	 in	

order	to	identify	a	more	specific	role	for	SUMOylation	of	PCNA	in	S.pombe.	
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7 Discussion		

SUMOylation	is	now	known	to	be	an	important	factor	in	the	regulation	of	many	

cellular	 processes	 including	 transcription,	 translation,	 telomere	 maintenance	

and	the	DNA	damage	response.	In	recent	years	many	proteins	involved	in	DNA	

damage	response	pathways	have	been	demonstrated	to	be	SUMOylated,	several	

as	 a	 result	 of	high	 throughput	 screens.	The	work	presented	 in	 this	 thesis	was	

directed	towards	developing	in	vitro	and	in	vivo	assays	for	the	efficient	detection	

and	 identification	 of	 SUMO	 target	 proteins,	 and	 to	 specifically	 investigate	 the	

roles	 of	 SUMOylation	 of	 Smc5/6	 complex‐associated	 protein	 and	 SUMO	 ligase	

Nse2	and	the	replication‐associated	sliding	clamp	PCNA,	in	S.	pombe.	During	this	

study,	a	 trypsin	cleavable	SUMO	was	generated	and	purified	 for	use	 in	 in	vitro	

SUMOylation	 assays.	 has	 led	 to	 the	 isolation	and	 identification	of	novel	 SUMO	

target	 proteins	 in	 S.pombe,	 including	 SUMO	E2	 conjugating	 enzyme	Hus5	 and	

PCNA.	This	system	was	successfully	used	for	the	identification	of	specific	target	

lysine	residues	which	can	be	utilised	for	in	vivo	study	and	molecular	modelling.	

A	 HIS	 tagged,	 trypsin	 cleavable	 SUMO	 was	 successfully	 integrated	 into	 the	

genome	in	place	of	the	wild	type	coding	sequence.	This	strain	was	used	in	pull‐

down	 assays	 to	 visualise	 SUMO	 modified	 proteins	 in	 vivo.	 The	 HIS‐SUMO‐tr	

recombinant	protein	and	strain	are	useful	tools	which	can	be	utilised	in	future	

studies	 to	 identify	and	characterise	known	and	novel	SUMO	target	proteins	at	

endogenous	levels	and	in	response	to	a	wide	range	of	cellular	conditions,	

In	vitro	SUMOylation	studies	identified	four	SUMOylation	sites	of	S.pombe	PCNA,	

K13,	 K164,	 K172	 and	 K254.	 Pull‐down	 and	 2D	 gel	 analysis	 confirmed	 that	

S.pombe	PCNA	is	SUMOylated	 in	vivo	at	three	of	the	four	residues	identified	in	

vitro,	 K164,	 K172	 and	 K253.	 SUMOylation	 was	 shown	 to	 increase	 following	

MMS	 treatment,	 and	 subsequent	 in	 vivo	 analysis	 of	 PCNA	 un‐SUMOylatable	

mutants	suggested	a	role	 for	the	SUMOylation	of	S.pombe	PCNA	in	response	to	

MMS‐induced	 damage.	 Genetic	 analysis	 indicated	 that	 SUMOylation	 of	 PCNA	

functions	upstream	of	Cds1	activation	in	the	intra‐S	checkpoint,	and	upstream	of	

Mre11	in	response	to	MMS	treatment	(Figure	7.1).	The	successful	integration	of	

PCNA	 lysine	 to	 arginine	 mutants	 into	 the	 genome	 and	 this	 initial	 genetic	

analysis	 has	 confirmed	 for	 the	 first	 time	 that	S.pombe	 PCNA	 is	 SUMOylated	 in	
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vivo	and	has	hinted	at	roles	in	checkpoint	signalling	and	the	repair	of	alkylation	

damage,	 perhaps	 by	 promoting	 	 BER.	 Further	 analysis	 will	 contribute	 to	 the	

understanding	 of	 the	 differences	 in	 PCNA	 modification	 between	 S.pombe,	

S.cerevisiae	 and	 mammals.	 A	 complete	 understanding	 of	 the	 functions	 and	

regulation	of	PCNA	 in	different	organisms	will	ultimately	 contribute	 to	 cancer	

therapies,	being	as	PCNA	has	a	central	role	in	the	response	to	DNA	damage,		
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7.1 Development	 of	 an	 efficient	 in	 vitro	 and	 in	 vivo	

SUMOylation	system	

An	in	vitro	SUMOylation	system	was	previously	established	in	the	Watts	lab	(Ho	

et	 al,	 2001),	whereby	 tagged	SUMO	pathway	components	were	 recombinantly	

expressed	 and	 purified	 from	 E.	 coli.	 At	 the	 beginning	 of	 this	 work,	 the	

baculovirus	expression	system	was	set	up	 in	an	attempt	to	co‐express	and	co‐

purify	 components	 of	 the	 SUMOylation	 pathway,	 including	 the	 E1	 SUMO	

activating	 enzyme	 heterodimer	 Rad31‐Fub2.	 The	 baculovirus	 system	 utilises	

insect	 cells	 which	 perform	 post‐translational	 modifications	 that	 can	 improve	

protein	 folding	and	activity.	 In	parallel	 to	 this,	another	member	of	the	 lab	was	

optimising	 protein	 expression	 in	 E.	 coli	 and	 the	 baculovirus	 project	 was	

abandoned	in	favour	of	cheaper	and	more	efficient	bacterial	protein	expression.		

Previously,	the	identification	of	specific	lysine	residues	on	SUMO	target	proteins	

involved	 mutating	 surface	 lysine	 residues	 one	 by	 one	 and	 assay	 the	 mutant	

proteins	 for	 SUMOylation	 in	vivo.	 This	method	 is	 frequently	 unproductive	 for	

two	 reasons.	 Firstly	 because	 of	 the	 time	 taken	 to	 mutate	 all	 of	 the	 lysine	

residues	 and	 secondly	 because	 SUMO	 has	 been	 observed	 to	 modify	 different	

lysine	residues	if	the	main	SUMOylation	site	becomes	unavailable.	This	could	be	

particularly	 prevalent	 in	 in	 vitro	 conditions	 where	 there	 is	 an	 abundance	 of	

substrate	and	SUMO	machinery.	A	limiting	factor	in	mutating	lysine	residues	in	

vivo	 is	 that	 other	 modifications	 which	 affect	 the	 same	 residue	 could	 also	 be	

abolished,	resulting	in	a	phenotype	which	is	not	necessarily	due	to	an	inability	

to	SUMOylated.		

In	 order	 to	 develop	 a	 reliable	 system	 for	 the	 identification	 of	 SUMO	 target	

residues,	 this	 study	 made	 use	 of	 mass	 spectrometry	 analysis	 which	 was	

available	at	the	University	of	Sussex.	Trypsin	is	regularly	used	as	a	protease	to	

digest	 proteins	 into	 peptide	 fragments	 which	 can	 be	 analysed	 by	 mass	

spectrometry	(MS).	Trypsin	cleaves	at	lysine	and	arginine	residues.	In	S.pombe	

SUMO,	the	closest	cleavage	site	 is	23aa	away	from	the	diglycine	motif	which	is	

covalently	attached	to	target	proteins.	This	means	that	MS	analysis	of	modified	

proteins	 formed	 in	 an	 in	vitro	 SUMOylation	 assay	 produces	 poor	 coverage	 of	
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peptides,	as	many	modified	fragments	are	too	large	for	MS	analysis.	In	order	to	

overcome	 this	problem,	a	 leucine	 to	arginine	mutation	was	generated	directly	

upstream	 of	 the	 diglycine	 residues	 in	 recombinant	 mature	 SUMO	 (HIS‐

SUMOGG).	 This	 was	 called	 HIS‐SUMOGG.tr	 and	 was	 shown	 to	 efficiently	

SUMOylate	proteins	in	vitro	(Figure	3.2).	Trypsin	cleavage	of	modified	proteins	

subsequently	resulted	in	just	two	amino	acids	remaining	attached	to	the	target	

residue,	 which	 are	 recognised	 by	 a	mass	 shift	 of	 the	 fragment	 containing	 the	

modification.	 This	 trypsin‐cleavable	 SUMO	 was	 successfully	 used	 in	 vitro	 to	

identify	SUMOylated	target	proteins	including	the	E2	SUMO	conjugating	enzyme	

Hus5	 (Figure	 3.3)	 and	 E3	 SUMO	 ligase	 Nse2	 (Figure	 4.1).	 This	 confirmed	

previous	results	from	the	lab	which	identified	putative	target	residues	for	these	

two	proteins.		

Whilst	 in	 vitro	 assays	 are	 a	 useful	 tool	 in	 identifying	 potential	 SUMO	 target	

proteins	 and	 locating	 specific	 residues	 for	molecular	modelling,	 false	 positive	

results	 are	 inevitable	 and	 the	 SUMOylation	 of	 proteins	 identified	 in	 this	 way	

must	be	confirmed	in	vivo.	The	Hus5	SUMOylation	site	(K50)	was	confirmed	as	

the	sole	SUMOylation	site	of	S.	pombe	Hus5	 in	vivo,	following	pull‐down	assays	

using	HIS‐tagged	SUMO	and	an	HA‐tagged	Hus5	K50R	mutant	(Figure	3.5).	

The	 trypsin	 cleavable	 SUMO	 coding	 sequence	 was	 incorporated	 in	 to	 the	

genome	 in	 place	 of	 the	 wild	 type	 gene	 sequence	 under	 the	 control	 of	 the	

endogenous	SUMO	promoter,	with	a	view	to	identifying	target	proteins	 in	vivo,	

at	endogenous	 levels.	This	mutation,	as	well	as	 the	 integration	of	a	N‐terminal	

HIS‐tag	did	not	result	in	any	mutant	phenotypes	(Figure	3.8),	making	the	strain	

suitable	 for	 use	 in	 in	 vivo	 pull‐down	 experiments.	 To	 this	 end,	 Ni2+	agarose	

beads	 were	 used	 to	 pull‐down	 HIS‐SUMO.tr	 from	 asynchronously	 growing	

cultures,	and	the	eluate	was	probed	with	antibodies	raised	against	either	Nse2	

or	 PCNA	 (Figure	 3.9).	 Modified	 species	 were	 detected	 for	 both	 proteins,	

although	 unmodified	 species	 were	 also	 detected,	 the	 reason	 for	 which	 is	

unknown.	 Their	 absence	 in	 wild	 type	 controls	 however,	 suggests	 that	 the	

modified	bands	are	not	non‐specific	artefacts.		

In	summary,	a	trypsin	cleavage	site	was	successfully	 integrated	into	the	SUMO	

coding	sequence	and	the	recombinant	protein	was	successfully	used	to	identify	
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SUMOylated	target	proteins	in	vitro.	Both	the	trypsin	cleavage	site	and	a	HIS	tag	

were	 successfully	 integrated	 into	 the	 genome	 with	 no	 resultant	 adverse	

phenotypes.	 SUMOylated	 species	 were	 successfully	 pulled	 down	 using	 this	

strain.	 The	 generation	 of	 this	 strain	 will	 enable	 large	 scale	 pull‐down	 assays	

under	 a	 range	 of	 different	 conditions.	 Subsequent	 analysis	 by	 mass	

spectrometry	could	 lead	to	the	identification	of	known	and	novel	SUMO	target	

proteins	in	vivo,	at	endogenous	levels	under	a	range	of	different	conditions.	

7.2 Nse2	 SUMOylation	 on	 K134,	 K228	 and	 K248	 is	 not	

important	for	cell	survival	in	S.pombe	

Nse2	 is	 a	 SUMO	 ligase	 associated	 with	 the	 Smc5/6	 complex	 (Andrews	 et	 al,	

2005).	 Nse2	 target	 proteins	 include	 telomere	maintenance	 proteins	 Trf1	 and	

Trf2,	 cohesin	 and	 Ku70	 (Potts	 et	 al,	 2006;	 Potts	 &	 Yu,	 2007;	 Zhao	 &	 Blobel,	

2005).	Nse2	also	SUMOylates	members	of	the	Smc5/6	complex	including	Smc6	

and	Nse2	its‐self	(Andrews	et	al,	2005).	Previous	in	vitro	studies	identified	Nse2	

lysine	residues	K229	and	K248	as	being	auto‐SUMOylated,	however	subsequent	

analysis	as	to	the	role	of	Nse2	auto‐SUMOylation	in	vivo	was	inconclusive.	An	in	

vitro	SUMOylation	assay	using	HIS‐SUMOGG.tr	and	subsequent	analysis	by	mass	

spectrometry	 identified	 three	SUMO	modified	 lysine	 residues,	K134	and	K229	

and	 K248	 (Figure	 41‐	 and	 4.2).	 Molecular	 modelling	 revealed	 that	 K229	 is	

located	 in	 the	 catalytic	 SP‐RING	 domain	 which	 is	 required	 for	 SUMO	 ligase	

activity	(Andrews	et	al,	2005),	whilst	K134	is	located	N‐terminal	to	the	SP‐RING	

domain,	 and	 K248	 at	 the	 extreme	 C‐terminus	 of	 the	 protein	 (Figure	 4.4).	 In	

order	 to	 investigate	 the	 function	 of	 Nse2	 auto‐SUMOylation	 in	vivo,	 lysine	 to	

arginine	mutants	were	integrated	into	the	genome	in	place	of	the	wild	type	nse2	

coding	 sequence.	 None	 of	 the	 single,	 double	 or	 triple	 nse2	 lysine	 to	 arginine	

mutants	 resulted	 in	 sensitivity	 to	 DNA	 damaging	 agents	 including	 UV	 or	 IR	

irradiation	 (Figure	 4.6)	 and	 MMS,	 nor	 did	 they	 confer	 sensitivity	 to	 the	

replication	inhibitor	HU	(Figure	4.7).	Whole	cell	extracts	 from	strains	carrying	

lysine	to	arginine	mutations	did	not	show	a	decrease	in	Nse2	protein	expression	

or	Nse2	SUMO	ligase	activity	(Figure	4.8).	These	results	suggest	that	Nse2	auto‐

SUMOylation	is	not	required	for	the	response	to	DNA	damage,	replication	stress	

or	in	undamaged,	normally	cycling	cells.	Whilst	the	pull‐down	experiment	using	
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HIS‐SUMO	 which	 was	 integrated	 into	 the	 genome	 suggests	 that	 Nse2	 is	

SUMOylated	 in	vivo,	 the	 SUMOylation	 sites	 identified	 in	vitro	 by	 MS	 have	 not	

been	 confirmed	 in	 vivo,	 and	 therefore	 it	 is	 possible	 that	 auto‐SUMOylation	

occurs	at	additional	sites	on	Nse2.		

During	the	course	of	these	studies,	mutations	in	the	nse2	gene	were	reported	in	

two	patients	who	presented	with	polymorphic	dwarfism,	 resistance	 to	 insulin	

and	a	reduced	activity	of	Nse2.	In	one	patient	these	were	S223X	and	T172A	and	

in	 another	 S116fsX132	 and	 A234fsX236.	 The	 equivalent	 mutations	 were	

integrated	 into	 the	 S.	pombe	 genome	 using	 the	 Nse2	 base	 strain	 which	 was	

constructed	 for	 use	 in	 Nse2	 auto‐SUMOylation	 studies.	 The	 nse2.T172A	 and	

nse2.A234fsX236	mutants	were	not	sensitive	to	a	range	of	DNA	damaging	agents	

(Figure	4.11),	and	the	presence	of	 these	mutations	did	not	affect	Nse2	protein	

stability,	 expression	 or	 activity	 (Figure	 4.12).	 The	 nse2.S116fsX132	 mutation	

abolishes	 the	 SP‐RING	domains	 and	 a	 significant	 portion	 of	 the	C‐terminus	 of	

Nse2	 (Figure	 4.9).	 No	 cells	 containing	 this	 mutation	 could	 be	 isolated,	

suggesting	 that	 this	 mutation	 is	 lethal	 in	 S.	 pombe.	 Strains	 containing	 the	

nse2.S226X	mutation	(equivalent	to	the	S223X	mutation)	were	sensitive	to	HU,	

MMS	 and	 IR	 (Figure	 4.11),	 and	 some	 aberrant	 cell	 structures	were	 observed.	

However,	 this	mutation	was	 later	withdrawn	from	the	database	by	the	Sanger	

centre	 following	sequencing	errors.	As	and	the	other	S.pombe	mutants	did	not	

display	 phenotypes	 similar	 to	 the	 human	 mutations,	 these	 studies	 were	 not	

taken	further.		

In	summary	of	these	findings,	further	studies	are	required	to	investigate	a	role	

for	 Nse2	 auto‐SUMOylation	 in	 vivo	 in	 S.	pombe.	 SUMOylation	 of	 the	 residues	

observed	 in	vitro	needs	to	be	confirmed	 in	vivo.	For	example	a	large	scale	pull‐

down	using	HIS‐SUMO	or	the	integration	of	a	HIS‐tag	into	the	Nse2	base	strain	

could	 be	 used	 to	 isolate	 SUMOylated	 species	 of	 Nse2	 in	 vivo.	 Subsequent	

analysis	by	mass	 spectrometry	 could	 identify	additional	 target	 lysine	 residues	

which	could	be	mutated	to	observe	any	resultant	phenotypes	in	vivo.	The	Nse2	

base	strain	could	be	utilised	for	future	studies	as	it	allows	for	the	integration	of	

any	mutation	of	nse2	into	the	genome.	
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7.3 S.pombe	PCNA	is	SUMOylated	in	vitro	and	in	vivo	

PCNA	 is	 a	 hetero‐trimeric	 sliding	 clamp	 protein	 which	 is	 essential	 for	

replication	and	 interacts	with	a	wide	range	of	proteins	 involved	 in	replication	

and	 the	 DNA	 damage	 response.	 It	 tethers	 replicative	 polymerases	 to	 the	

replication	machinery	and	plays	a	central	role	in	DNA	damage	avoidance,	where	

replicative	 polymerases	 are	 switched	 for	 TLS	 polymerases	 which	 can	

accommodate	 damaged	 bases	 in	 their	 active	 site	 and	 insert	 bases	 opposite	 a	

lesion.	This	allows	replication	to	continue	past	a	potentially	fork	blocking	lesion.	

Post	 translational	 modifications	 of	 PCNA	 determine	 the	 route	 taken	 to	

overcome	 DNA	 damage	 (Jentsch	 et	 al,	 1987;	 Ulrich,	 2005;	 Xiao	 et	 al,	 1999).	

Ubiquitination	 of	 PCNA	 is	 highly	 conserved	 from	 yeast	 to	 mammals.	 Mono‐

ubiquitination	 of	 PCNA	 on	K164	 is	 facilitated	 by	 the	 E2	 ubiquitin	 conjugating	

enzyme	Rad6	and	the	E3	ubiquitin	ligase	Rad18	(Rhp6	and	Rhp18	homologues	

in	 S.	pombe)	 (Hoege	 et	 al,	 2002).	 Mono‐ubiquitination	 promotes	 error‐prone	

TLS	which	is	facilitated	by	polymerase	switching	(Haracska	et	al,	2004;	Parker	

et	al,	2007).	Poly‐ubiquitination	extending	 from	the	same	residue	 is	 facilitated	

by	 the	 E2	 ubiquitin	 conjugating	 enzyme	 heterodimer	 Mms2‐Ubc13	 and	 E3	

ubiquitin	 ligase	 Rad5.	 Poly‐ubiquitination	 promotes	 an	 error‐free	 pathway	

which	 involves	 template	switching	(Hoege	et	al,	2002;	Parker	&	Ulrich,	2009).	

SUMOylation	 of	 PCNA	 has	 been	 observed	 in	 several	 organisms	 including	 S.	

cerevisiae	(Hoege	et	al,	2002)	Xenopus	(Leach	&	Michael,	2005b),	chicken	DT40	

cells	(Arakawa	et	al,	2006)	and	humans	(Gali	et	al,	2012a;	Moldovan	et	al,	2012).	

SUMOylation	 of	 PCNA	 occurs	 during	 S	 phase	 in	 budding	 yeast	 on	 K164	 and	

K172	(Hoege	et	al,	2002).	It	is	facilitated	by	the	E3	SUMO	ligase	Siz1	and	inhibits	

homologous	 recombination	 through	 the	 recruitment	 of	 the	 anti‐recombinase	

Srs2	 (Papouli	 et	 al,	 2005;	 Pfander	 et	 al,	 2005b).	 Srs2	 dismantles	 Rad51	

filaments	in	the	early	stages	of	HR	and	this	mechanism	is	thought	to	protect	the	

genome	from	unscheduled	recombination	during	replication	which	can	lead	to	

genome	 re‐arrangements	 (Krejci	 et	 al,	 2003;	 Veaute	 et	 al,	 2003).	 A	 similar	

mechanism	in	mammalian	cells	has	been	observed	where	SUMOylation	of	PCNA	

on	 K164	 and	 K254	 recruits	 PARI,	 which	 acts	 to	 suppress	 recombination	

(Moldovan	et	al,	2012).		
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The	 modification	 of	 PCNA	 by	 two	 PTMs	 on	 the	 same	 residue	 presents	 a	

mechanism	 for	 switching	 between	 TLS	 and	 recombination‐mediated	 repair.	

Whilst	 in	 S.	 cerevisiae	 and	 mammalian	 cells	 PCNA	 ubiquitination	 occurs	 in	

response	 to	 DNA	 damage	 during	 S	 phase	 (Hoege	 et	 al,	 2002;	 Kannouche	 &	

Lehmann,	 2004;	 Stelter	 &	 Ulrich,	 2003),	 S.	 pombe	 PCNA	 is	 constitutively	

ubiquitinated	 during	 S	 phase	 and	 this	 is	 increased	 in	 response	 to	 damage.	

Ubiquitination	 of	 PCNA	 also	 occurs	 in	 G2	 following	 DNA	 damage	 in	 S.	pombe	

(Frampton	 et	 al,	 2006).	 SUMOylation	 of	 S.	 pombe	 PCNA	 has	 not	 yet	 been	

reported	 and	 the	 Srs2	 homologue	 lacks	 the	 section	 of	 the	 C‐terminus	 which	

contains	 SUMO	 and	 PCNA	 interacting	 domains	 S.	 cerevisiae	 (Frampton	 et	 al,	

2006).	 However,	 previous	 unpublished	 results	 from	 the	 Watts	 lab	 have	

suggested	that	S.	pombe	PCNA	is	SUMOylated	in	vivo.		

In	 order	 to	 identify	 SUMOylated	 PCNA	 in	vitro,	 an	 in	vitro	 SUMOylation	 assay	

was	carried	out	using	recombinantly	expressed	HIS‐tagged	S.	pombe	PCNA	as	a	

target	 protein	 (Figure	 5.1).	 Mass	 spectrometry	 analysis	 of	 higher	 molecular	

weight	 bands	 which	 appeared	 following	 the	 addition	 of	 E3	 SUMO	 ligase	 Pli1	

revealed	 four	modified	 residues,	K13,	K164,	K172	and	K253	 (Figure	5.2).	The	

structure	 of	 PCNA	 is	 highly	 conserved	 between	 organisms	 and	 a	 model	 of	 S.	

pombe	PCNA	was	generated	using	Phyre2,	based	on	published	structures	of	the	

S.	cerevisiae	 and	human	homologues.	K164,	K172	and	K253	all	 protrude	 from	

the	outer	surface	of	the	protein,	making	them	accessible	for	SUMO	modification.	

K164	has	been	 identified	as	 a	 SUMOylation	 site	 in	other	organisms	as	well	 as	

K254	 (same	 position	 as	 K253)	 on	 the	 human	 protein	 (Gali	 et	 al,	 2012a).	 The	

location	of	K13	is	such	that	it	protrudes	into	the	centre	of	the	ring	structure	of	a	

PCNA	 trimer.	 The	 passage	 of	 DNA	 through	 the	 PCNA	 ring	 during	 replication	

means	that	there	would	be	insufficient	space	for	SUMO	modification	in	S	phase	

(Figure	5.4).		

2D	gel	analysis	was	undertaken	in	order	to	confirm	PCNA	SUMOylation	in	vivo.	

This	 method	 of	 analysis	 was	 chosen	 in	 order	 to	 distinguish	 between	

ubiquitination	and	SUMOylation,	which	can	be	masked	when	whole	cell	extracts	

are	analysed	by	western	blotting.		Cells	containing	wild	type	pcn1,	pcn1	lysine	to	

arginine	mutants,	rhp18‐d	 and	mms2‐d	were	analysed.	Spots	 corresponding	 to	
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ubiquitinated	PCNA	are	clearly	observed	in	wild	type	cells	(Figure	5.7,	 top	 left	

panel).	As	expected,	poly‐ubiquitinated	species	were	abolished	 in	mms‐d	 cells,	

and	 all	 ubiquitination	 was	 abolished	 in	 the	 rhp18‐d	 mutant	 and	 any	 cells	

containing	 the	 pcn1‐K164R	 mutation.	 A	 spot	 corresponding	 to	 SUMOylated	

PCNA	can	be	observed	in	all	samples	except	 for	pcn1‐3R	and	rhp18‐d,	3R.	This	

suggests	that	SUMOylation	occurs	only	on	the	three	lysine	residues	K164,	K172	

and	K253	and	supports	the	notion	that	K13	is	not	a	true	SUMOylation	site	on	S.	

pombe	PCNA.	

Pull‐down	 experiments	 using	 HIS‐tagged	 SUMO	 and	 HA‐tagged	 PCNA	 were	

carried	out	 in	order	 to	observe	PCNA	SUMOylation	 in	vivo	in	response	 to	DNA	

damage.	 Bands	 corresponding	 to	 SUMOylated	 species	 were	 detected	 in	

untreated	cells,	as	well	as	cells	exposed	to	HU,	IR	and	MMS	(Figures	5.5‐5.7).	No	

higher	molecular	weight	species	were	observed	following	UV	treatment,	which	

induces	 an	 increase	 in	 ubiquitination	 of	 PCNA	 in	 S.	 pombe	 (Frampton	 et	 al,	

2006).	 In	 order	 to	 confirm	 that	 the	 species	 observed	 in	 2D	 gels	 and	 the	 pull‐

down	experiments	was	the	same,	the	MMS‐treated	sample	was	analysed	by	2D‐

PAGE.	 The	 higher	 molecular	 weight	 species	 observed	 from	 the	 pull‐down	

experiments	corresponded	to	the	modified	species	observed	by	2D	gel.		

Taken	together,	these	results	indicate	that	PCNA	is	SUMOylated	on	K164,	K172	

and	 K253	 both	 in	vitro	 and	 in	vivo	 in	 S.	pombe.	 In	vivo	 analysis	 suggests	 that	

PCNA	is	SUMOylated	in	unchallenged	cycling	cells	and	in	response	to	HU,	IR	and	

MMS	treatment	but	is	reduced	following	UV	irradiation.		
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7.4 Un‐SUMOylatable	PCNA	mutants	are	sensitive	to	MMS	

Following	 the	 observation	 of	 PCNA	 SUMOylation	 both	 in	 vitro	 and	 in	 vivo,	

subsequent	work	set	out	 to	establish	a	role	 for	 the	SUMOylation	of	PCNA	 in	S.	

pombe.	

PCNA	K	to	R	mutants	were	analysed	for	sensitivity	to	a	range	of	DNA	damaging	

agents.	 Whilst	 none	 of	 the	 single	 mutants	 except	 for	 pcn1‐K164R	 conferred	

sensitivity	to	any	of	the	damaging	agents	tested	(HU,	MMS,	IR	and	UV),	double	

mutants	 containing	 pcn1‐K164R	K253R	 were	more	 sensitive	 to	MMS	 than	 the	

single	mutants,	and	pcn1‐3R	mutants,	where	SUMOylation	is	abolished,	showed	

a	further	increased	sensitivity	to	MMS	(Figure	6.1).	As	MMS	sensitivity	can	be	an	

indicator	of	sensitivity	to	DNA	damage	during	S	phase,	these	results	suggest	that	

the	 SUMOylation	 of	 PCNA	 either	 helps	 to	 prevent	 DNA	 damage	 in	 S‐phase,	

possibly	by	preventing	replication	fork	collapse,	or	is	involved	specifically	in	the	

repair	of	MMS‐induced	DNA	damage.	

7.5 pcn1	 lysine	 to	 arginine	mutants	 rescue	 the	 sensitivity	 of	

mre11‐d	cells	

Cells	 containing	 an	 mre11‐d	 mutation	 are	 impaired	 in	 DNA	 end	 processing	

which	is	required	for	HR,	and	are	not	able	to	efficiently	repair	DSBs	(Tavassoll	

et	 al,	 1995)	 (Willis	&	Rhind,	 2010).	mre11‐d	 is	 epistatic	with	 rad8‐d,	which	 is	

required	 for	 poly‐ubiquitination	 of	 PCNA	 and	 error	 free	 repair	 (Ding	 &	

Forsburg,	2014),	perhaps	due	to	a	requirement	for	Mre11	to	process	DNA	ends	

for	template	switching.	Interestingly,	this	study	shows	that	both	mre11‐d,	pcn1‐

K164R;	mre11‐d,	rhp18‐d	and	mre11‐d,	pcn1‐3R	double	mutants	rescue	the	MMS	

sensitivity	of	the	mre11‐d	mutant,	and	that	this	rescue	is	less	efficient	in	mre11‐

d,	pcn1‐3R.	Taken	together,	this	suggests	the	rescue	of	mre11‐d	 in	combination	

with	pcn1‐K164R	 is	specifically	due	to	 inhibition	of	PCNA	mono‐ubiquitination	

and	TLS.	In	S.	cerevisiae,	the	MRX	(MRN)	complex	has	been	suggested	to	a	play	a	

role	 in	 BER,	 during	 the	 gap	 filling	 process	 (Steininger	 et	 al,	 2010),	 and	 very	

recently	has	also	been	implicated	in	PRR	(Ball	et	al,	2014).	If	the	same	is	true	in	

S.	pombe,	 PCNA	modification	 could	be	 involved	 in	 co‐ordinating	PRR	and	BER	

pathways.	The	fact	that	the	mre11‐d,	pcn1‐3R	double	mutant	rescues	the	mre11‐
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d	phenotype	 less	efficiently	suggests	 that	 this	rescue	 is	partially	dependent	on	

the	 SUMOylation	 of	 PCNA.	 If	 HR	 and	 Rad8‐mediated	 repair	 is	 inhibited	 in	

mre11‐d	 mutants,	 then	 ubiquitination	 of	 PCNA	 could	 be	 channelling	 repair	

through	 the	 error‐prone	 TLS	 pathway,	which	 could	 cause	 genomic	 instability.	

Activation	of	the	TLS	pathway	could	inhibit	the	SUMOylation	of	PCNA.	When	the	

TLS	pathway	is	inactivated,	as	in	the	pcn1‐K164R	mutant,	SUMOylation	of	PCNA	

could	 then	 either	 channel	 repair	 through	 a	 different	 pathway,	 or	 recruit	 or	

enhance	another	exonuclease	to	compensate	for	the	loss	of	Mre11.	Thus	when	

SUMOylation	 of	 PCNA	 is	 inhibited	 in	 the	 pcn1‐3R	 mutant,	 the	 rescue	 is	 less	

efficient.	 PCNA	 has	 recently	 been	 shown	 to	 enhance	 the	 activity	 of	 the	

exonuclease	 Exo1,	 which	 works	 in	 concert	 with	 Mre11	 to	 resect	 DNA	 ends	

(Chen	et	al,	2013).	It	is	possible	that	SUMOylation	of	PCNA	in	S.pombe	promotes	

the	 activity	 of	 an	 exonuclease.	 Interestingly,	 there	 are	 several	 examples	 of	

Mre11	mutants	 being	 rescued	 by	 either	 over‐expression	 of	 the	 endonuclease	

required	 for	 bulk	 resection,	 Exo1	 in	S.	cerevisiae	 (Lee	 et	 al,	 2002;	 Lewis	 et	 al,	

2002)	or	by	deletion	of	the	Ku	proteins,	the	rescue	of	which	is	dependent	on	a	

functional	Exo1	in	S.	pombe	(Williams	et	al,	2011).	The	rescue	of	MMS	sensitivity	

of	 the	mre11‐d	 mutant	 in	 combination	 with	 pcn1‐K164	 and	 rhp18‐d	 suggests	

that	 PCNA	 modification	 on	 K164	 is	 functionally	 upstream	 of	 Mre11	 in	 the	

response	to	alkylation	damage.	The	fact	that	the	sensitivity	of	the	mre11‐d	pcn1‐

3R	 double	 mutant	 is	 increased	 compared	 to	 the	mre11‐d	 pcn1K164R	double	

mutant	(Figure	6.12)	suggests	that	SUMOylation	of	PCNA	on	either	K172,	K253	

or	both,	could	be	contributing	to	an	as	yet	unknown	pathway	that	is	required	in	

the	absence	of	Mre11	(Figure	7.2).		
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7.6 HR‐mediated	 repair	 is	 required	 in	 the	 absence	 of	

SUMOylation	of	PCNA	in	S.	pombe	

Extensive	epistasis	analysis	was	undertaken	using	the	pcn1‐K164R	and	pcn1‐3R	

mutants	 in	 combination	with	mutants	which	 are	 defective	 in	 a	 range	 of	 DNA	

damage	 repair	 pathways,	 including	 BER,	 NER	 and	 HR.	 The	 outcome	 of	 these	

experiments	indicates	that	HR	is	required	for	the	recovery	of	S‐phase	damage	in	

the	absence	of	SUMOylation	of	PCNA.		

In	 S.	 cerevisiae	 and	 human	 cells,	 SUMOylation	 of	 PCNA	 acts	 to	 inhibit	

unscheduled	 recombination	 events	 via	 the	 recruitment	 of	 Srs2	 or	 PARI,	

respectively	(Moldovan	et	al,	2012;	Pfander	et	al,	2005b).	The	lack	of	C‐terminal	

homology	in	the	S.	pombe	Srs2	homologue	suggests	that	HR	is	not	inhibited	by	

the	same	mechanism	in	S.	pombe.	rad51‐d,	pcn1‐3R	and	rad55‐d,	pcn1‐3R	double	

mutants	could	not	be	generated,	suggesting	lethality,	although	this	has	not	been	

confirmed	 by	 tetrad	 analysis.	 sfr1‐d,	 pcn1‐K164R	 and	 sfr1‐d,	 pcn1‐3R	 double	

mutants	were	viable,	but	were	extremely	 sensitive	 to	MMS	at	 very	 low	doses.	

Analysis	 of	 these	 two	 double	 mutants	 at	 lower	 doses	 of	 MMS	 is	 required	 to	

determine	whether	the	sfr1‐d,	pcn1‐3R	mutant	is	more	sensitive	than	the	sfr1‐d,	

pcn1‐K164R	mutant.	The	increased	sensitivity	of	sfr1‐d,	pcn1‐K164R	mutants,	as	

well	 as	 previously	 reported	 rad51‐d,	 pcn1‐K164R	 and	 rad55‐d,	 pcn1‐K164R	

double	mutants	 (Frampton	 et	 al,	 2006)	 can	be	 explained	 by	 a	 loss	 of	 damage	

avoidance	pathways	 in	 combination	with	 impaired	HR.	However	 the	potential	

lethality	of	rad51‐d,	pcn1‐3R	and	rad55‐d,	pcn1‐3R	 taken	together	with	the	fact	

that	 pli1‐d,	rad51‐d	mutants	 have	 been	 reported	 to	 be	 lethal	 (Xhemalce	 et	 al,	

2004b),	 could	highlight	an	absolute	requirement	 for	HR	when	SUMOylation	of	

PCNA	is	impaired,	specifically	the	Rad55‐dependent	HR	pathway.	It	is	unknown	

whether	 this	 requirement	 for	 HR‐mediated	 repair	 is	 due	 to	 the	 presence	 of	

specific	structures	such	as	collapsed	replication	forks	in	the	pcn1‐3R	mutant,	or	

if	abolishing	SUMOylation	of	PCNA	abolishes	a	damage‐specific	repair	pathway	

which	 required	 following	 MMS‐induced	 alkylation.	 The	 combination	 of	 pcn1‐

K164R	and	pcn1‐3R	with	the	nse2‐SA	mutant	results	in	a	significant	increase	in	

sensitivity	 to	 MMS	 and	 HU	 (Figure	 6.4).	 This	 can	 be	 explained	 by	 the	

abolishment	of	the	TLS	and	TS	pathways,	in	combination	with	an	impairment	of	
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HR	caused	by	nse2.SA.	pli1‐d	mutants	which	are	known	to	be	insensitive	to	most	

damaging	agents	(Xhemalce	et	al,	2004a)	show	an	increase	in	sensitivity	to	MMS	

in	combination	with	pcn1‐K164R	which	is	further	increased	in	combination	with	

pcn1‐3R	 (Figure	 6.3).	Whilst	 Pli1	 enhanced	 the	 SUMOylation	 of	 PCNA	 in	vitro,	

these	results	suggests	some	non‐overlapping	functions,	which	is	not	surprising	

given	the	wide	range	of	Pli1	target	proteins.	Integration	of	the	pcn1‐3R	mutant	

with	GFP‐tagged	rad22	strain	did	not	result	in	a	change	in	Rad22	foci	formation	

in	MMS	treated	cells,	however	pli1‐d,	rad22‐d	double	mutants	have	proven	to	be	

inviable	(Xhemalce	et	al,	2004a).		

7.7 pcn1	 lysine	 to	 arginine	 mutants	 are	 defective	 in	 Cds1	

phosphorylation.	 	

Interestingly,	Cds1	phosphorylation	is	reduced	in	both	pcn1‐K164R	and	pcn1‐3R	

mutants,	 specifically	 in	 response	 to	 MMS	 (Figure	 6.16),	 whereas	 Chk1	

phosphorylation	in	response	to	IR	is	not	(Figure	6.15).	This	indicates	that	PCNA	

modification	by	ubiquitin	and/or	SUMO	contributes	to	phosphorylation	of	Cds1	

and	 activation	 of	 the	 intra‐S	 phase	 checkpoint.	 Analysis	 of	 an	 rhp18‐d	mutant	

which	 is	 defective	 in	 ubiquitination	 of	 PCNA	but	 not	 SUMOylation	would	 give	

insight	 into	 which	 modification	 is	 required	 for	 wild	 type	 levels	 of	 Cds1	

phosphorylation.	 The	 generation	 of	 a	 rad3‐d	 double	 mutant	 with	 both	 pcn1	

mutants	would	also	be	interesting	to	analyse.	This	has	not	been	attempted	due	

to	 time	 constraints	 but	 may	 result	 in	 lethality.	 S‐phase	 checkpoint	 signalling	

results	from	an	increase	in	ssDNA	and	involves	RPA.	The	pcn1‐3R	mutants	was	

crossed	with	GFP‐tagged	rad11	 in	order	 to	 investigate	whether	an	 inability	 to	

SUMOylate	 PCNA	 affects	 RPA	 foci.	 Interestingly,	 tetrad	 analysis	 demonstrated	

that	 these	 double	 mutants	 were	 not	 viable,	 suggesting	 that	 RPA	 function	 is	

essential	 in	 pcn1‐3R	 cells.	 This	 data	 suggests	 that	 modification	 of	 PCNA	

contributes	 to	 Cds1	 phosphorylation	 in	 a	 pathway	 that	 is	 specific	 to	 MMS‐

induced	 DNA	 damage,	 however	 further	 investigation	 is	 required	 in	 order	

uncover	other	components	which	may	be	involved	or	recruited	following	PCNA	

modification	(Figure	7.3).	
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Figure 7.3. Modification of PCNA contributes to Cds1 phosphorylation in response 
to MMS 

Processing of MMS-induced DNA damage involves resection of the DNA, possibly involving  the 
MRN complex if closely apposed single strand breaks are converted to double strand breaks. 
Resected DNA is bound by RPA, which recruits Rad26 and Rad3. Rad3 recruits Mrc1, which in 
turn recruits Cds1, bringing it in close proximity to Rad3. Rad3 phosphorylates Cds1, which 
subsequently phosphorylates and inhibits Cdc25, leading to cell cycle arrest to allow time for the 
damage to be repaired. Cds1 phosphorylation was severely impaired in the pcn1-K164R and 
pcn1-3R mutants. This suggests that modification of PCNA contributes to Cds1 phosphorylation 
in an unknown pathway, which is specific in response to MMS induced DNA damage.  
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