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Summary

As the largest gravitationally bound objects in the Universe, galaxy clusters can be used
to probe a variety of topics in astrophysics and cosmology. This thesis describes the
development of an algorithm to find galaxy clusters using non-parameteric methods applied
to catalogs of galaxies generated from multi-colour CCD observations. It is motivated by
the emergence of increasingly large, photometric galaxy surveys and the measurement of
key cosmological parameters through the evolution of the cluster mass function.

The algorithm presented herein is a reconstruction of the successful, spectroscopic
cluster finding algorithm, C4 (Miller et al., 2005), and adapting it to large photometric
surveys with the goal of applying it to data from the Dark Energy Survey (DES). AperC4
uses statistical techniques to identify collections of galaxies that are unusually clustered in
a multi-dimensional space. To characterize the new algorithm, it is tested with simulations
produced by the DES Collaboration and I evaluate its application to photometric datasets.
In doing so, I show how AperC4 functions as a cosmology independent cluster finder and
formulate metrics for a “successful” cluster finder.

Finally, I produce a galaxy catalog appropriate for statistical analysis. C4 is applied
to the SDSS galaxy catalog and the resulting cluster catalog is presented with some initial
analyses.
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“There is a single light of science, and to brighten it anywhere is
to brighten it everywhere.”

— Isaac Asimov
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Chapter 1

Introduction

1.1 Introduction to Cosmology

1.1.1 The Cosmic Expansion

In the earlier half of the 20th century, Edwin Hubble noted that several spiral nebulae

appeared to be in recession; moving away from the Milky Way. Using observations of

Cepheid variables (a kind of star) as standard candles, he was able to calculate the distance

to these nebulae and, by relating them to their recessional velocities, discovered one of

the most fundamental observations of cosmology: that of the expanding universe. The

expansion as observed by Hubble is commonly expressed as,

v = Hd , (1.1)

where v is the recessional velocity of the galaxy, d is the distance, and H is the Hubble

parameter. The relation states that the more distant an observable object is in the universe,

the faster it is receding from us.

A photon emitted by galaxy traversing the expanding universe will itself expand with

the universe, and its wavelength, λ, will increase. When this photon is observed some time

later, its wavelength will have increased by a factor

z =
λobs − λem

λem
, (1.2)

where λem and λobs describe the photon’s emitted and observed wavelengths, respectively,

and z is called the redshift. Relating the wavelength shift to a difference in velocity between

the source and the observer via the Doppler law,
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z =
λobs − λem

λem
=
v

c
, (1.3)

where c is the speed of light. Thus, the redshift, z, is a measure of the observed recessional

velocity, which is in fact a measure of the expansion of the universe in the time taken

between the emission and observation of a photon. The wavelength of a photon at the

time of emission, λem, is proportional to the scale factor of the universe at that time, aem.

It follows that

1 + z =
λobs
λem

=
aobs
aem

, (1.4)

where aobs is the scale factor today and is conventionally defined as aobs = 1.

The formal description of the Standard Model of Cosmology rests on two postulates:

The Cosmological Principle , which states that the universe appears homogeneous

and isotropic on sufficiently large scales. From an observer’s point of view, the

Cosmological Principle implies that that observations of the state of the universe

will appear to be consistent from any viewpoint and that we (or any observer in the

universe) do not occupy a privileged position in space.

Einstein’s theory of General Relativity , which folds together space and time into a

single entity called space-time, where the presence of matter induces curvature in the

fabric of space-time. This curvature of space-time is General Relativity’s description

of gravity.

On this basis, the expanding universe can be described with the Friedmann equation,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.5)

where G is the gravitational constant, ρ is the energy density, and k describes the geometry

of the universe. A useful quantity to define is the critical density, ρc, the density required

that the universe’s geometry is flat, i.e., k = 0, and the related ratio, Ω, also known as the

density parameter.

ρc =
3H2

8πG
, (1.6)

Ω =
ρ

ρc
. (1.7)

As measured (to excellent precision) by WMAP (Spergel et al., 2003), the universe

evolves in a matter-dominated expansion such that ρ ∝ a−3 in a universe that has flat or

very close to flat curvature k = 0 and the energy density of the universe is very close to

Ω = 1.



3

In 1998, observations of high redshift supernovae Riess et al. (1998) provided the first

strong evidence that the expansion of the universe was accelerating, i.e., ä > 0, and is

often quantified by the deceleration parameter, q (current value q0):

q = −aä
ȧ2
, (1.8)

which is negative for acceleration. In the Friedmann equation, this acceleration is para-

meterized by the cosmological constant, Λ, and appears as,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
. (1.9)

Defining the density parameters of the curvature and cosmological constant by Ωk and

ΩΛ, respectively, as

Ωk = − k

a2H2
and ΩΛ =

Λ

3H2
, (1.10)

the equation becomes

Ωm + Ωk + ΩΛ = 1 (1.11)

or (1.12)

Ωm + ΩΛ = 1 (1.13)

since curvature has been found to be consistent with k = 0 (Hinshaw et al., 2013), and in

which Ωm describes the energy density of all matter.

A second key equation is the fluid equation, which can be used to describe Λ as a fluid,

with energy density ρΛ and presssure pΛ

ρ̇Λ + 3
ȧ

a

(
ρΛ +

pΛ

c2

)
= 0 , where ρΛ =

Λ

8πG
. (1.14)

If Λ is constant, then ρΛ is also, so its derivative goes to zero, and the equation holds

only if the pressure pΛ = −ρΛc
2. This gives an indication of the exotic nature of the Λ

fluid, where increasing the pressure reduces the density. If one imagines holding a ball

of such a fluid, the more one squeezed the ball, the less resistance it would produce in

response to being squeezed, i.e. the easier it is to squeeze.

It is a possibility that the observed accelerated expansion of the universe may be a tran-

sient state of the expansion, which can be described by reparameterizing the relationship

between pΛ and ρΛ as

pΛ = wρΛc
2 , (1.15)

which is described as the equation of state for dark energy. If Λ is constant then w = −1,

but an accelerating expansion can be brought about where w < −1/3. Recent observational
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campaigns have been focussing on measuring the accelerating expansion, and the value of

w.

1.1.2 Dark Energy

Whilst the nature of dark energy remains elusive, its existence as either the cosmological

constant or time-varying quintessence presents us with some consequences for cosmology.

Dark energy contributes about 70 percent of the energy density of the universe, and matter

(dark and baryonic) about 30 percent. That the two are comparable is a remarkable

coincidence. In terms of Ω, these are parameterized as Ωm ' 0.3 and ΩΛ ' 0.7. The

CMB angular power spectrum shows a near-Euclidean space-time (k = 0, thus Ωk = 0 in

Equation (1.11)), implying that Ωm + ΩΛ = 1. A dark energy component explains how a

Ωm ' 0.3 universe is possible in such a geometry.

A cosmological constant, Λ, could be interpreted as a vacuum energy of free space;

however, quantum theory predicts an energy roughly 10120 greater than observed. Obser-

vations at increasing redshift would help determine whether ẇ 6= 0, and decide whether the

dark energy exists in the form of the cosmological constant or a time-varying quintessence.

1.2 Introduction to Galaxy Clusters

1.2.1 History

Building on earlier work on remote galaxies, Shapley (1933) assembled the first extragalactic

catalog of 25 groups of galaxies from studies of the general distribution of galaxies across

the sky. The galaxies identified in this survey were not uniformly distributed and were

observed to cluster independently of the distribution of stars, confirming that this cluster-

ing was extragalactic in origin. Groups of galaxies in this catalog were populated by up

to 472 galaxies to a plate magnitude of ∼18.0, although this membership count, or Ngals,

was made fairly arbitrarily, as the paper notes:

“Some of these systems are spheroidal in form, centrally concentrated and of

rather definite boundary. The majority of the groups, however, are of irregular

form, with indefinite boundaries, and small in membership.”

During the following decades, several compilations of groups and clusters of galaxies

were made, most notably by large surveys performed by Abell (1958) and Zwicky et al.

(1961). It was the preparation of the Abell (1958) cluster catalog, with its exacting selec-

tion criteria for what galaxy membership qualifies as cluster content, that allowed stat-
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istical comparison to be made between, and of, clusters. The Abell catalog characterized

clusters as objects with intrinsic properties, rather than otherwise unrelated galaxies that

appear as concentrations as viewed from Earth. From a starting sample of 2,712 clusters

from the Palomar Observatory Survey, 1,682 were selected that met specific criteria for

inclusion. These “Abell clusters” were defined as objects with the following properties:

1. They contained more than 50 galaxies within some fixed radial aperture. This radius

was deemed to be arbitrary, so long as the same physical distance was used for each

cluster. In Abell (1958), the radius used was approximately 1.5 Mpc, although the

quoted measurement was half this size, due to the use of a Hubble constant twice

that found in more recent extragalactic studies.

2. The magnitude of the faintest galaxy was no more than 2 magnitudes fainter than

the 3rd brightest galaxy in that aperture.

3. They were distant enough that they did not extend over several photographic plates.

The photographic plate was the standard astronomical observation medium before

the CCD used in the modern era was developed and deployed on telescopes. Each

plate covered a 6.◦6 square area, so this discounted the Virgo cluster, but did include

the Coma Cluster (Bower et al., 1992).

4. They appeared at high galactic latitudes. As galaxies at the time were identified

by visual inspection of the photographic plates, this criterion was placed to escape

the dense stellar fields in the galactic disk that would otherwise obscure areas of

cosmological interest.

With these first characterizations of clusters by their observed content (i.e., their galax-

ies), statistical measurements and physical insight could be made concerning the contents

and distribution of these clusters of galaxies. Indeed, Abell was able to indicate that the

clusters were distributed in a way such that they themselves were clustered. Measurements

of the number and brightness of the constituent galaxies, their velocity dispersions and

their morphologies were built up into a picture of a typical cluster of galaxies, or galaxy

cluster.

The launch of the Einstein X-ray Observatory (HEAO-2) in 1978, the first imaging X-

ray telescope, introduced a new dimension to the contemporary observations of clusters.

Previous X-ray observations of the galaxies in clusters had been performed by mounting

X-ray detectors on rockets and balloons (Bahcall, 1977), but most of the detections were
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limited in their energy and angular resolution. The X-ray satellite UHURU gave the first

indication of clusters being powerful X-ray sources but similarly suffered limited angular

resolution, such that the chance of there being a coincidental, galactic X-ray source could

not be ruled out. Forman et al. (1979) undertook observations of galaxies in the nearby

Virgo cluster in X-ray bands using the Einstein X-ray Observatory, probing energies up to

. 4keV. Their observations pointed out that, in addition to the previously seen low energy

X-rays associated with clusters (assumed to be from the galaxies themselves), there was

a very luminous, very energetic component aligned with the centre of the cluster. This

energetic component was quickly allied to the cluster itself in the form of hot intergalactic

gas occupying the deep gravitational potential formed by the cluster (as proposed by Felten

et al., 1966), trapped by the well’s gravitational forces and heated through shocks and

adiabatic compression as it falls into the well to temperatures of millions of degrees. The

X-ray observation of clusters has since become a mature component of cluster astronomy,

and this hot gas component is now understood as the Intracluster Medium, or ICM, which

helps inform a complete picture of the baryonic matter component in clusters of galaxies.

1.2.2 Galaxy Clusters as Astrophysical Probes

After the epoch of reionization, when the universe became transparent, matter fell into the

gravitational potentials formed by the underlying dark matter distribution (see below),

simultaneously increasing the matter content of those potentials and the depth of those po-

tentials. Over time, the potentials themselves fall into each other and merge, creating ever

larger potentials with increasing amounts of matter; this scenario is commonly known as

hierarchical structure formation. These potentials assemble into giant 3-dimensional struc-

tures, forming a network of galaxies distributed in the form of filaments, walls, and clusters,

interspersed by voids from which matter has largely been displaced. This interconnected

series of structures are collectively referred to as Large Scale Structure (LSS).

Clusters of galaxies typically contain many tens or hundreds of galaxies that are grav-

itationally bound together. Their constituent galaxy populations are typically dominated

by passively evolving, E/S0 ridgeline (early type Elliptical/Lenticular) galaxies, with the

centre of the cluster commonly occupied by a very massive, bright elliptical type galaxy.

Clusters are interesting because they collapse independently of large scale structure; the

accumulation of matter in these overdensities affects particles such that their movement

is dominated by the cluster’s gravitational potential rather than the Hubble Flow.

In 1933, Fritz Zwicky measured the relative velocities of individual galaxies in the
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Coma Cluster by examining their redshifts. By looking at the distribution of redshifts,

or velocity dispersion, in the Coma Cluster, he measured the potential of the cluster by

applying the Virial Theorem,

〈Φ〉 = −2〈T 〉 , (1.16)

which states that the average potential energy, Φ, of an isolated gravitational bound system

is equal to minus twice the averaged kinetic energy, T . He found that the gravitational

potential described by the movement of the galaxies in the cluster required ∼ 100 times

more mass than observed in the stars and galaxies. This missing matter problem led to the

initial proposal for the existence of dark matter, a non-baryonic, gravitationally attractive

mass component of the energy density of the universe.

The physics of dark matter is one of the most significant observational and theoretical

challenges in modern day astrophysics. However, our inability to probe its composition

with telescopes that focus on the detection of objects across the electromagnetic spectrum

hasn’t hindered our ability to infer its existence. In addition to the velocity dispersion

measurements in clusters, velocity dispersions of stars in elliptical galaxies, spiral galaxy

rotation curves, and the power spectrum of the Cosmic Microwave Background (CMB)

provide evidence for the existence of dark matter.

Figure 1.1 shows the iconic galaxy cluster 1E 0657-56, the “bullet cluster”, which

provides more evidence of the existence of dark matter (Markevitch et al., 2004; Clowe

et al., 2004). The optical component of the image shows two concentrations of galaxies that

have recently passed through each other, whilst the X-ray component appears to trail each

concentration of galaxies, with the smaller gas component showing a very prominent shock

front, identifying it as the “bullet”. This is interpreted as the galaxy components of the

clusters (treating the bullet cluster as two “bullet” and “target” clusters) passing through

each other, whilst the gas components interact, slowing them down. Measurements of this

interaction gives insight to extreme plasma physics. Using lensing, the total mass in the

cluster can be measured by identifying correlated radial deformation of background galaxy

images, which is caused by the bending of light by the cluster’s gravitational potential.

The bulk of the mass is traced by this lensing and identified by the blue component of

the image. The optical mass component can be evaluated from the galaxy luminosities,

whilst the X-ray gas mass can also be measured by its temperature. Studies of this cluster

show that the gas mass exceeds that of the galaxies, whilst the detected lensing signal is

correlated with the galaxy distributions, directly pointing to a further mass component
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Figure 1.1: This is a composite image of galaxy cluster 1E 0657-56, the “Bullet Cluster,” which is a system

of two galaxy clusters during a merging event that are observed in the plane of the sky. As well as the

optical distribution of galaxies taken by the Hubble Space Telscope, the X-ray emission from the hot ICM

gas is highlighted in red, and a lensing map of the background galaxy populations indicates the bulk of

the mass in blue. Having recently passed through each other, the lensing distortion shows the bulk of

the mass has remained with the galaxies, whilst the gas has been impeded. [Figure credit: NASA APOD

(Markevitch et al., 2004; Clowe et al., 2004)]

allied to the galaxies, i.e., the dark matter.

Being able to determine the strength of the potential in which a galaxy cluster sits

allows us to investigate the astrophysics within the cluster. The evolution of galaxies

within these massive potentials is an active area of ongoing research as a cluster potential

provides a near consistent environment for a large sample of galaxies. The identification of

galaxies by morphology and comparing them to less dense (field) environments (Hutchings

et al., 2002; Boselli and Gavazzi, 2006), or to similar environments in the past (Harrison

et al., 2012; Stott et al., 2012), builds up a picture of the assembly of different types of

galaxies and their evolution against the evolving mass distribution in the universe.

Observations in the X-ray give observers the opportunity to probe the gas content

of galaxy clusters, giving insight into the composition of the galaxies in the cluster and

of the feedback processes governing the reinjection of energy and material into the ICM.

The ICM acts as a fossil record of galaxy interactions, from measurements of the global

distribution of metals (Maughan et al., 2008) to observations of massive bubbles formed in

the gas (Brüggen and Kaiser, 2002). At high redshift, the picture of a passively evolving

core group of galaxies begins to break down, as spectroscopic followup of clusters (found by

their X-ray emission) reveal some of the cluster galaxies in z & 1.5 clusters are undergoing
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a period of star formation, or starburst (Fassbender et al., 2011; Hilton et al., 2010).

The diverse opportunities for probing galaxy clusters make them interesting astrophys-

ical laboratories. Observing how different environmental conditions affect the assembly

of stellar and galactic mass affords insights into the formation of structure against the

background of the evolving universe. Similarly, acknowledging the relationship between

astrophysical observations and properties of the clusters themselves, we can use clusters

to infer some of the fundamental properties of the universe.

1.3 Cosmological Constraints from Galaxy Clusters

Galaxy clusters are the largest, gravitationally bound structures in the observed universe,

signposting the peaks of the large-scale matter distribution and allowing us to use them

as a measure of matter and density distribution. Considering the universe as a one-

dimensional density field, galaxy clusters represent the peaks of this density field. They

represent an interesting demographic in the universe, with their assembly being sensitive

to the size and distribution of the most massive matter density perturbations left from

the epoch of recombination. Galaxy cluster cosmology is concerned with understanding

the matter distribution of the universe on large scales.

Galaxy clusters are massive enough that their composition should be representative

of the whole universe, displaying ratios of stars to gas to dark matter that are consistent

with any large volume of the universe and being broadly insensitive to their location in

the sky or their redshift. Through a combination of X-ray and optical measurements (as

demonstrated by the bullet cluster; Figure 1.1, §1.2.2), the composition of galaxy clusters

is found to be of order 3% stars, 12% gas, and 85% dark matter (Voit, 2005), which is

consistent with proportions in the universe measured by WMAP (Komatsu et al., 2011).

Knowledge of the distribution of clusters allows us to extrapolate to the universe as a

whole, informing us about Ωm. Indeed, cluster measurements predicted a non-unity Ωm

(White et al., 1993) before WMAP ushered in the age of precision cosmology (Spergel

et al., 2003).

Knowing the baryon fraction of a galaxy cluster (more commonly referred to as the

gas fraction, since it is the chief baryon component), and holding the hypothesis that the

relative composition of galaxy clusters is constant throughout the universe, Allen et al.

(2008) and Vikhlinin et al. (2009) measured the compositions and distances to clusters

with X-ray observations alone and were able to apply constraints on the nature of the

dark energy.
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Larger samples of galaxy clusters enable cosmology by simply counting the numbers

of clusters of a given mass throughout the universe. Given the early universe consisted

of Gaussian-distributed density perturbations, the first structures to form in the universe

would inhabit the deepest gravitational potentials formed by these perturbations, and

so the evolved size of these potentials is sensitive to their initial amplitude and number

density. Relating this to observations of clusters in the present day, number densities of

clusters are used to determine the density contrast of the universe on scales of 8h−1 Mpc,

giving the cosmological variable σ8. By measuring σ8 at differing redshifts, one can build

a picture of the evolution of the density contrast of matter, which is itself sensitive to

values of Ωm. σ8 is typically found to be in the region 0.8 . σ8 . 0.9 (Eke et al., 1996).

How galaxies are distributed in galaxy clusters, or with respect to the matter-density

distribution of the universe at large, has implications for cosmology (Lima and Hu, 2004;

Rozo et al., 2007) and is an area of active research (Fassbender et al., 2011; Budzynski

et al., 2012; Harrison et al., 2012; Stott et al., 2012).

1.3.1 Cosmological Measurements with Cluster Counts

Observations of clusters in different wavebands (§1.4), have led to a number of independent

methods to constrain cosmology. Methods such as sampling the gas fraction of clusters rely

on gas measurements (through X-ray and SZ observations) of the most massive clusters

to determine Ωm. As intracluster gas is not sampled in optical data, alternative measures

of cosmology are drawn from examining the distribution of clusters in large-scale surveys.

Cosmology derived from cluster counts (the distribution of clusters in the universe) is

itself motivated by a model of galaxy formation formulated by Press and Schechter (1974).

A spherical region of radius R will contain a mass M = 4π/3ρ0R
3, where ρ0 is the

background density. The premise of the Press-Schecter approach uses the assumption

that the initial density field is Gaussian, so the probability of being in a region of the

universe of density, δM , is

P (δM )dδM =
1√

2πσM
exp

(
−
δ2
M

2σ2
M

)
dδM , (1.17)

where δM is the density of a volume that has been smoothed on a scale R that encloses a

mass M , and σM indicates the RMS of the smoothed density field.

Press-Schecter then state a spherical volume within this Gaussian density field (smoothed

on some scale, R) that contains a mass M will undergo gravitational collapse if its density
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exceeds some critical threshold, δc, such that,

Pcollapse(M) =

∫ ∞
δc

P (δM )dδM . (1.18)

This has the notable drawback that half of the universe is underdense and does not

undergo gravitational collapse. By observation of structure in the universe, this cannot be

true. Press and Schechter remedied this by including the multiplicative factor of 2, seen in

the equation below, to account for matter in underdense regions accreting to “neighbouring

lumps in overdense regions”. This was consequently explained by various groups (Peacock

and Heavens, 1990; Bower, 1991; Bond et al., 1991) as a consequence of points that are

located in underdense regions being in regions above δc when scales larger than R are

considered, and should therefore be included in the fraction of collapsed objects that are

more massive than M(R).

To calculate the number of collapsed objects of massM , Pcollapse(M+dM) is subtracted

from the Pcollapse(M), where dM is a small mass interval, and we multiply through by the

average number density, ρ/M , per unit volume.

n(M)dM =2
ρ0

M
[Pcoll.(M)− Pcoll.(M + dM)] (1.19)

=− 2
ρ0

M

dPcoll.
dM

dM (1.20)

=− 2
ρ0

M

dPcoll.
dσM

dσM
dM

dM . (1.21)

Evaluating the derivative dPcoll./dσM , one finds,

n(M)dM = −
√

2

π

ρ0

M

dσM
dM

δc
σ2
M

exp

(
− δ2

c

2σ2
M

)
dM . (1.22)

Cosmology is derived through the number counts, the estimations of M , and σM , which

are redshift dependent.

1.4 Observations of Galaxy Clusters

Cluster cosmology is effectively the study of the massive gravitational potentials in the

universe that contain matter. The baryons that occupy the galaxy cluster, chiefly in the

form of stars in galaxies and intracluster gas, form only a fraction of the total mass of a

cluster. It is these baryons that provide the primary observations of galaxy clusters. From

the early days of cluster measurement, the number of galaxies, or richness, of a rich cluster

was seen to scale with velocity dispersion, and was taken as a quantity that scaled with

mass. The mass of a cluster can be ‘measured’ by a number of features besides velocity
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Figure 1.2: The above figure is an example of a Luminous Red Galaxy (LRG) spectrum, constructed

by co-adding 784 rest-frame LRG spectra obtained from the SDSS DR4 spectroscopic galaxy catalog

(Adelman-McCarthy et al., 2006) using CasJobs∗. The vertical axis describes flux whilst the horizontal

axis describes wavelength. The red box identifies the 4000Å break.

dispersion and richness. These features are interpreted as measures of mass through the

use of scaling relations, which quantify the observable in terms of the total mass of the

cluster, inclusive of baryonic and dark matter.

1.4.1 Optical

From their initial discovery as extragalactic structures (§1.2.1), clusters of galaxies have

long been known to consist of high densities of galaxies that have distinct characteristics

that distinguish them from the field. The central cluster populations are usually dominated

by early type galaxies, primarily S0 and elliptical types, which show no evidence of ongoing

or recent star formation and are thus said to be passively evolving. By contrast, field

populations of galaxies contain actively star-forming galaxies, mostly spiral and irregular

types (late types), in addition to early type galaxies.

Bright, passively evolving, elliptical galaxies are commonly known as Luminous Red

Galaxies, or LRGs, and are common amongst the early type galaxies that occupy a cluster.

LRGs have a strong, specific spectral feature that enables them to be identified using

photometric data: the 4000Å break, as shown in Figure 1.2.

The 4000Å break provides a strong indication of the shape of a galaxy’s spectral en-

ergy distribution (SED) when it is decomposed into broad band magnitudes as observed

by a multiband photometric survey (e.g., SDSS, §2.1.1). This is achieved through the

∗http://skyserver.sdss3.org/casjobs/
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Figure 1.3: Cluster at z ' 0.1 from SDSS DR2 spectroscopic data (Miller et al., 2005). The plots are

the projected sky distribution (left), the (g− r) versus r-band colour-magnitude diagram (centre) and the

(r − i) versus r-band colour-magnitude diagram. The Blue cross is the Brightest Cluster Galaxy. Black

filled circles are every spectroscopic galaxy projected onto the sky whilst yellow filled circles are C4 galaxies

within 1 Mpc of the cluster centre. The galaxies identified as part of the cluster form a distribution known

as the red sequence which is indicated by the 1σ errors around a straight line fit to the galaxies, represented

by the dotted lines. [Figure credit: Chris Miller priv. comm.]

measurement of the LRGs broad band colour, which measures the difference between the

magnitude of one photometric band and the band immediately red-ward of it. When the

magnitudes that comprise the colour straddle the 4000Å break, then as the break moves to

longer wavelength due to cosmological redshift, colour very accurately tracks the redshift

of the LRG.

The Brightest Cluster Galaxy, or BCG, by definition, is the brightest galaxy in a cluster

environment. BCGs have characteristic properties; Figure 1.3 shows an example cluster

(found by C4, §1.5.6) with the BCG identified in blue. Sitting at the bright end of the red

sequence, they represent the brightest passively evolving galaxies and are typically located

at or near the centre of a cluster. They are the most massive stellar structures assembled in

the universe and are of astrophysical and cosmological interest in and of themselves (Bower

et al., 1992; Bernardi et al., 2007; Budzynski et al., 2012) since their formation histories

have implications for galaxy mass assembly in general. Using the Millennium Simulations

(Springel et al., 2005), De Lucia et al. (2007) find that BCGs assembled most of their

mass late in the universe’s lifetime, around z ' 0.5, through the dry merger (a merging of

galaxies without gas such that no star formation is triggered) of smaller, passively evolving

ellipticals falling towards the cores of galaxy clusters. By contrast, Collins et al. (2009)

observe populations of BCGs in galaxy clusters at z > 1 which, compared to their z ' 0

counterparts, appear to have already assembled most of their stellar mass.

Cluster mass has traditionally been calculated by velocity dispersion of the galaxies, as

per Zwicky et al. (§1.2.2). In more recent times, other probes using the galaxy component
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of the clusters, such as caustics (Geller et al., 1999), the red sequence richness (Rykoff

et al., 2012), or scaling to the BCG alone (Stott et al., 2012) have been used to estimate

cluster mass directly, or by proxy to other observables.

Also within the optical regime, lensing has been used to estimate line-of-sight measures

of cluster mass. Weak Lensing works by statistically measuring the distortion of the

detected shapes of background populations of galaxies by the mass of the cluster potential.

This probe is unique in that none of the astrophysics of the cluster are probed, and thus

it delivers a measurement of the total cluster potential; the sum of the baryonic and dark

components (Kneib and Natarajan, 2012).

1.4.2 X-ray

As introduced in sections 1.2.2 and 1.3, X-ray observatories are used to measure properties

of the overdensity of hot gas that occupies the centre of the cluster potential. The hot

gas is optically thin and, as evidenced by its observation in X-ray wavelengths, emits X-

ray radiation at temperatures of ∼30 to 100 million degrees. The X-ray emission itself

is produced by thermal Brehmsstrahlung of the electrons in the cluster gas. Assuming

the gas is in hydrostatic equilibrium, the X-ray emission can then be used to quantify

gas, the most direct measurement being the X-ray temperature. Spectroscopic studies of

the gas component reveal the presence of iron and other metals distributed in the ICM

(Peterson et al., 2003). Numerous scaling relations exist to relate X-ray properties such

as temperature (as mentioned above), luminosity, or gas mass, to the total mass of the

cluster.

X-ray surveys have been highly successful at finding clusters of galaxies (Maughan

et al., 2008; Vikhlinin et al., 2009; Mehrtens et al., 2011) and measuring their various gas

properties and relating them directly to mass or to observations made at other wavelengths.

1.4.3 Microwave

Observations of clusters at microwave wavelengths depend upon the Sunyaev-Zel’dovich

Effect. Photons from the CMB that were emitted at the time of recombination can be

used as probes of the cluster gas. Through a process of inverse Compton scattering, a

fraction of the passing CMB photons scatter off electrons in the hot intracluster gas and

gain energy. This fractional energy gain is seen as a distortion in the CMB black body

spectrum as a function of frequency, where lower frequency CMB photons are displaced

to higher frequencies. The result is a net “shift” in frequency of the black body spectrum,
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and it is the magnitude of this shift that can be used to measure the temperature of the

gas, again assuming hydrostatic equilibrium of the gas.

An often cited advantage of the Sunyaev-Zel’dovich effect (SZ effect), is its insensitivity

to redshift compared with other probes. However, to produce a significant distortion in the

CMB, detection of clusters in this way is limited to the most massive clusters. Nevertheless,

SZ-based searches for clusters of galaxies have recently begun delivering samples of clusters

(Menanteau et al., 2010; Reichardt et al., 2012; Planck Collaboration et al., 2013a) which

will provide another independent probe of cluster mass.

1.5 Optical Cluster Finding

With the advent of large format CCDs and digitised data, new cluster finding techniques

were developed. In the following subsections, I give some background to cluster finding,

before outlining some cluster finders developed for use with digitised data.

1.5.1 History of optical cluster finding

The key goal of cluster finding, in optical wavebands or otherwise, is to describe the

gravitational potentials in which they reside. The search for these potentials with optical

data has a long history (§1.2.1). Quasi 3-dimensional methods (Huchra and Geller, 1982)

relied on redshift to describe local clusters and groups of galaxies, recovering typically

of order ∼100s to ∼1000s of clusters over the whole sky. Limitations of photographic

plates (Couch et al., 1991) permitted 2-dimensional cluster finding at higher redshifts by

taking positions of faint galaxy populations at the expense of photometry. This led to a

great increase in the risk of spurious association via projection effects, where groups of

galaxies that appear close in 2 dimensions are not physically associated in 3 dimensions.

To minimize these projection effects, a range of new cluster finding methods have been

developed.

Matched Filter (Postman et al., 1996) represents one of the first generations of cluster

finders to use measurements of the data itself to avoid spurious associations. It enhances

the contrast between cluster galaxy distributions with respect to foreground and back-

ground galaxy distributions by extracting the maximum likelihood cluster galaxies, de-

termined by a modelled Gaussian background distribution, and convolving it with a func-

tion of luminosity-weighted magnitude, and angular-weighted radial separation, within a

moving 1.25h−1 Mpc box. Adaptive Matched Filter (Kepner et al., 1999) follows on from

Postman et al., fitting a model of cluster and field populations to galaxies, but adapting
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to errors in the observed redshift, and upon finding clusters, filtering further to produce

more precise estimates of cluster richness and redshift.

1.5.2 Red Sequence

The red sequence cluster finding technique was developed by Gladders and Yee (2000) to

detect clusters in two-band optical/near-IR imaging data. The eponymous “red sequence”

describes the observation that the cores of previously observed rich clusters chiefly consist

of a population of passively evolving, elliptical galaxies.

By employing colour cuts to eliminate foreground contamination and hone in on con-

centrations of LRGs (within 1.33h−1 Mpc), Gladders and Yee (2000) delivered a method

that is both simple and effective at locating the cores of typical rich clusters. As well as

locating the cluster in the sky, by right ascension and declination (R.A. and dec, respect-

ively), the Cluster Red Sequence finder also locates clusters in redshift without the use

of spectroscopic information, ushering an increase in the immediate availability of cluster

distribution measurements throughout the surveyed universe. As such, locating the red

sequence became the de facto measurement of cluster redshifts, and led to the creation

of several other red sequence based cluster finders. The exploitation of the cluster red

sequence as a finding tool was a cornerstone in modern day cluster finding techniques.

1.5.3 MaxBCG

MaxBCG (Koester et al., 2007) represents another cornerstone in cluster finding. It uses

the Brightest Cluster Galaxies, or BCGs, to locate potential cluster locations, then searches

some radial area around it for galaxies that form a red sequence, or E/S0 ridgeline, and

then uses that red sequence to derive a redshift for that cluster. It has produced one

of the largest galaxy cluster catalogs to date, containing 13,823 galaxy clusters from the

photometric Sloan Digital Sky Survey (SDSS, §2.1.1), covering 7,500 square degrees of sky

between redshifts 0.1 and 0.3.

To identify the BCGs, it first takes a full galaxy catalog and removes the least likely

BCG candidates by evaluating galaxy colours g − r, r − i and an i-band magnitude.

The algorithm then checks galaxies up to 1h−1 Mpc around each BCG and evaluates

the likelihood that it is indeed the most likely BCG, and if it is the most likely cluster

centre. For positive identifications, MaxBCG then returns the BCG and its associated

(red sequence) cluster membership, which form the MaxBCG cluster catalog.
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1.5.4 Voronoi Tesselation

Voronoi tesselation, as applied to cluster finding, is a 2-dimensional process that identifies

overdensities of galaxies by characterizing their clustering strength with the aid of a Voro-

noi diagram. A Voronoi diagram takes a Euclidian, 2-dimensional distribution of points

and draws a line half-way between each pair of points. These bisecting lines, or boundar-

ies, all join such that any point along a boundary is equidistant between the nearest two

points. As such, the area enclosed by a set of boundaries will contain a single point, and

is called a Voronoi cell. Voronoi cluster finders plot galaxies in a 2-dimensional Voronoi

grid (nominally, in R.A. and dec.) then by locating groups of some minimum number

of Voronoi cells, which individually have areas smaller than some threshold, they define

clusters.

As mentioned above, projecting galaxies onto a 2-dimensional plane this way often

leads to projection issues, or line-of-sight blending, where galaxies that appear close in

2-dimensions are not physically connected (i.e., they are separated in redshift by distances

far greater than they appear in projection). To combat this issue, Voronoi techniques

employ some additional condition to divide the data in some dimension analogous to

redshift prior to the location of Voronoi clusters.

Kim et al. (2002) used a colour-magnitude filter to divide the galaxy catalog into

regions of (g − r) colour versus r-band magnitude, which is precisely the division of the

galaxy samples into redshifts using the aforementioned red sequence (§1.5.2). However,

this may not have avoided line-of-sight issues, as galaxy colours and magnitudes may have

scattered into the red sequence at non-cluster sites.

Soares-Santos et al. (2010) used the photometric redshift as the dimension in which

the input galaxy catalog is first divided. The Voronoi algorithm was run in redshift shells,

and the neighbouring redshift slices are then recombined. Where Voronoi groups shared a

minimal common area (in R.A./dec space), they are identified as the same cluster. This

approach employed an earlier version of a Dark Energy Survey (DES, chapter 4.1) galaxy

catalog simulation, or CatSim (§4.3), to determine its efficacy. Applied to real data,

this robust approach delegates line-of-sight projection issues to the photometric redshift

algorithm, which may introduce projection issues of its own.

More recently, a cluster finding algorithm called ORCA (Overdense Red-sequence

Cluster Algorithm, Murphy et al., 2011) has been used to find clusters in optical data.

ORCA used the red sequence to target galaxies in griz colour space at all redshifts, using

a linear colour-magnitude fit to 126 members of Abell cluster 2631 (Abell et al., 1989) as
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a model. ORCA further subdivided the galaxies into redshift bins by using spectroscopy

or redshifts fitted with photometry to doubly avoid projection problems. Its application

to SDSS Stripe 82 has been published by Geach et al. (2011), finding 4,098 clusters.

1.5.5 Cut and Enhance

The Cut and Enhance method (CE, Goto et al., 2002) focussed on detecting clusters

of galaxies in multi-colour photometric surveys, such as the Early Data Release (EDR,

Stoughton et al., 2002) of the Sloan Digital Sky survey (SDSS). CE attempted to min-

imize bias by minimizing the number of assumptions on cluster properties. The Cut and

Enhance method works by employing colour cuts and a density enhancement algorithm to

upweight pairs of galaxies that are close in both angular separation and colour within a

∼ 1.5h−1 Mpc radius. The colour cuts employed were numerous (30 single colour cuts and

4 colour-colour cuts). The justification for this approach was that if a method assumes a

luminosity function or radial profile then the resulting sample will be biased towards that

detection model. CE took advantage of the tight colour-magnitude relation of galaxies in

clusters, e.g., the E/S0 ridgeline. The CE catalog contains cluster samples out to z∼0.4.

Goto et al. (2002) investigated clusters unique to the detection algorithm (compared

to maxBCG and Voronoi methods) and record an example of a blue spiral cluster and

a cluster of faint ellipticals without a BCG. The Cut and Enhance (CE) cluster catalog

was compared to Matched Filter (MF), Voronoi Tesselation (Kim et al., 2002, VTT) and

maxBCG catalogues using a simple 6′ cone search. They find that CE and maxBCG return

more clusters, but this is primarily down to differences in thresholds, where maxBCG and

CE contain lower richness systems. CE and MF compare well, but MF misses several

low redshift systems which are visually found to be compact. The majority of clusters

in the cross sample have spherical morphologies. maxBCG and CE match well, with

their differences being highlighted by the fact that CE can probe bluer, star-forming

galaxies where they may dominate a cluster, whilst maxBCG finds fainter higher redshift

objects whose members fall below the CE magnitude cut. CE contains a high fraction of

VTT clusters, but both fail at higher redshifts due to cluster galaxies falling below their

respective magnitude cuts (i.e. are fainter than the algorithms allow them to detect).

1.5.6 C4

The premise of the C4 algorithm (Miller et al., 2005) is that optical clusters and groups

of galaxies are dominated at their core by a single, co-evolving population of galaxies that
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possess similar spectral energy distributions. It operated in optical wavebands, identifying

clusters as overdensities in seven dimensional space, minimizing projection effects of prior

optical cluster finding algorithms.

In C4, each galaxy’s clustering measurement was evaluated within a 1h−1 Mpc R.A./Dec

aperture at the galaxy’s redshift. Within a single aperture and redshift bin, galaxy colour-

clustering, or C4-clustering, was evaluated within 4-dimensional colour space. Once C4-

clustering was measured for all galaxies, each galaxy was tested against the null hypothesis

that the galaxy can be drawn from the field, where the null hypothesis is built by meas-

uring the 4-dimensional colour space at random locations across the survey. C4 rejected

the most field-like galaxies, leaving a sample of highly C4-clustered galaxies, which were

then assembled into clusters.

C4 obtained a new sample of 748 clusters of galaxies identified in the spectroscopic

sample of the Second Data Release (DR2, Abazajian et al., 2004) of the SDSS. The C4

cluster finding algorithm, its application to SDSS DR2, and a summary of some followup

work with the C4 cluster catalog are described in detail in chapter 2.

1.6 Evaluating Cluster Finders

Verification of cluster catalog quality has a fairly straightforward history. Early cluster

catalogs, e.g., Abell (1958), included a superset of cluster identifications, upon which

various selection criteria were laid down and examined for known nearby clusters such as

Coma, Leo, or Virgo. This is an early example of estimating the completeness of a cluster

finder, where completeness is taken to mean the fraction of clusters (that exist) that have

been captured by a given cluster finder/selection process.

Huchra and Geller (1982), with an alternate selection criteria including velocity dis-

persion in conjunction with celestial proximity to identify clusters, characterised groups

that appeared irregular (based on their choice of parameters in their selection criteria).

This is an early example of estimating the purity of a cluster finder, where purity is taken

to mean the fraction of clusters (captured by a cluster finder) that can be considered real

physical associations of galaxies. Note that Huchra and Geller clarify that some of these

irregular associations may be down to a fraction of the galaxies in a given group being

incorrectly included as part of that group.

In recent years there has been a trend to attempt to redefine these earlier definitions

of completeness and purity in terms favourable to any given cluster finder. Koester et al.

(2007); Murphy et al. (2011) refer to purity as the fraction of galaxies included in their
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clusters that are interlopers (using simulations to characterise this fraction), and use cata-

log completeness as the quality measure for their cluster finders. Szabo et al. (2010)

mention a purity measurement but never give one, describing instead measures of catalog

completeness. Koester et al. (2007); Hao et al. (2010) use the clusters they have found

to produce synthetic clusters, and place them randomly across the sky and redetect them

with their respective algorithms to estimate completeness. This approach may be prone

to overestimating completeness, as the completeness estimate is being trained on clusters

the algorithm has already found. Rykoff et al. (2013) take a similar tack to Koester et al.

and Hao et al., but use a richness estimator (Rykoff et al., 2012) to generate synthetic

clusters at different redshifts, which probes completeness further but may still be limited

by the characteristics of the clusters that are initially identified.

Completeness and purity form the key qualitative measures for establishing cluster

finder quality. With the advent of computer simulations, the matched filter (Postman

et al., 1996, §1.5.1) technique was trained with synthetic data to establish the accuracy of

this cluster finding technique, with respect to cluster detections made at various depths,

choosing parameters that provide a compromise between minimizing spurious detections

and maximizing completeness at depths close to the survey magnitude limit. This, high

purity and high completeness regime is desirable for all cluster finders.

In chapter 5, I expand upon these definitions of completeness and purity, and develop

and present a framework for evaluating cluster finding that optimises both using the F-

measure, or F1 score (§5.1.3). I note that in this thesis, false associations of galaxies to

a cluster are not classed as cluster impurity, but classed as poor membership assignment;

i.e., purity refers to the quality of the cluster catalog, rather than the quality of cluster

membership in that catalog. Similarly, completeness is estimated through use of simula-

tions, where the number of underlying halos is known and thus the recovered fraction of

these halos represents the cluster catalog completeness.

1.7 Outline of Thesis

In this introductory chapter, I have reviewed a sample of galaxy cluster finders, the prac-

ticalities involved in their use, and concepts used in the measurement of success of a cluster

finder. New optical and near-infrared galaxy surveys are in the process of being switched

on, increasing the availability of galaxy data. The galaxy catalogs produced from these

surveys will form more representative samples of further reaches of the universe such that

statistical measurement of these populations can constrain how the universe evolved to
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its current state. Clusters of galaxies found in these surveys can be verified by a num-

ber of complementary probes (§1.4), and will provide greater constraints on cosmological

parameters.

This thesis introduces the AperC4 cluster finder in chapter 3, which is developed

from the C4 cluster finder (§1.5.6). I review C4 in detail in chapter 2 to lend context to

AperC4’s adaptation to photometric data. In chapter 4, I introduce an upcoming galaxy

survey called the Dark Energy Survey (DES), and the synthetic data they produced to test

astronomical tools prior to the publication of real data. In chapter 5, I look at evaluating

cluster catalogs and develop a tool for this purpose. In chapter 6, the AperC4 algorithm

is applied to a simulation of the SDSS galaxy catalog to help tune the algorithm and assess

its effectiveness. In chapter 7, I assess the characteristics of the real SDSS DR8 galaxy

catalog and use it to find clusters with AperC4, presenting a preliminary cluster catalog.

In chapter 8, I review the thesis and suggest directions for the development of further

work.



22

Chapter 2

The Original C4 Algorithm

In this chapter, I will be reviewing the C4 algorithm presented by Miller et al. (2005,

henceforth referred to as M05) and introducing the concepts therein that will become

relevant to the work I present in further chapters. In section 2.1, I will outline the Sloan

Digital Sky Survey (SDSS) and go on to describe the second data release (DR2) of the

SDSS spectroscopic galaxy catalog. In section 2.2, I will describe the application of the C4

algorithm by M05 (from hereon, C4 products associated with Miller et al. will be denoted

C4M05, whilst general C4 concepts will remain unsubscripted), performed on the SDSS

DR2 spectroscopic galaxy sample. I will also introduce the key C4 concepts of the false

discovery rate and the k-NN distance. In section 2.3, I discuss the findings from M05 and

some of the science that followed. In section 2.4, I describe some of the shortcomings of

M05.

I note that this chapter is primarily a review of the M05 paper, however I have included

my own figures to explain certain concepts.

2.1 SDSS DR2

2.1.1 The Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS York et al., 2000) is a large area photometric and

spectroscopic survey covering the Northern Galactic Cap, employing a dedicated 2.5m

f/5 modified Richey-Chrétien telescope with a 3◦ field-of-view situated at Apache Point

Observatory, New Mexico (the SDSS telescope). The SDSS collaboration publicly releases

raw and reduced data at regular intervals in the form of Data Releases (DR) and has com-

pleted three main campaigns, SDSS-I, SDSS-II, and SDSS-III, which consist of an Early

Data Release (EDR) and Data Releases 1-10 (DR1 to DR10). SDSS is currently under-
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taking its fourth campaign; SDSS-IV, which continues the survey from DR11 onward. Up

until DR8, each Data Release contained the multi-colour imaging data, and photometric

and spectroscopic catalogs of the increasing area of sky covered by SDSS (DR8 presented

the last SDSS photometric data release). Prior to DR9∗, the photometric portion of the

survey was performed on moonless (dark), photometric nights with good seeing, whilst

spectroscopy was performed when these conditions could not be fulfilled.

The survey is taken under a survey coordinates system which is a direct rotation of

equatorial coordinates such that η, the survey latitude, and λ, the survey longitude, cor-

respond to R.A./dec as in Table 2.1. Contrary to conventional latitude and longitude, η

is constant along great circles, and runs between −90 < η < 90; whilst λ, which runs from

−180 < λ < 180 around the sphere.

R.A. dec η (eta) λ (lambda)

0.0 90.0 57.0 5.0

275.0 0.0 0.0 90.0

185.0 32.5 0.0 0.0

Table 2.1: Survey coordinates η and λ (survey latitude and longitude, respectively) are a pure rotation of

R.A. and dec coordinates.

The SDSS Photometric Survey

The imaging and photometric data is gathered by a 120-megapixel CCD camera that

images a wide field (1.5�◦; �◦ will be used to signify a square degree from hereon) by

scanning the sky at the sidereal rate (drift scanning). The CCDs are arranged in rows,

leading with a row of astrometric CCDs followed by 6 columns of CCDs in each of the

five wavebands in the photometric array (one row per waveband) and a trailing row of

astrometric CCDs. The 6 columns of photometric CCDs are themselves separated, so any

area of sky covered by SDSS is scanned twice, offset by the width between CCD columns,

to cover the full area. The SDSS survey area is subdivided into stripes, which are the

sum of two strips of the SDSS camera. Each strip consists of 6 separate scans, covered by

all the wavebands in the photometric array, which are individually referred to as camera

columns or camcols.

The SDSS photometry (Fukugita et al., 1996; Gunn et al., 1998) covers optical wavelengths

∗From DR9 onward, SDSS became devoted to spectroscopic campaigns.



24

through five filters: u-band, centred on an effective wavelength of 3549Å and a full width

half-maximum (FWHM) of 560Å; g-band, a wider blue-green band centred on 4774Å with

a FWHM of 1377Å; r-band, a red band centred at 6231Å, with a FWHM 1371Å (com-

parable to the g-band FWHM); i-band, a far-red band centred on 7615Å with a FWHM

of 1510Å; and z-band, a near-infrared band centered on 9132Å with a FWHM of 940Å.

These filters are coated on the red (long wavelength) and blue (short wavelength) ends of

their spectral range, resulting in a fairly sharp cut in observing efficiency at the FWHM.

In the case of the z-band, which has no red-end filter, the response is defined by the CCD:

Near-IR sensitivity cuts out in the z-band due to water vapour and other atmospheric

absorption effects at 9300-9700Å. The full filter transmission curves against wavelength

are shown in Figure 2.1 (taken from Bartelmann and White, 2002).

Figure 2.1: The SDSS photometric filter response curves. The horizontal axis shows wavelength and the

vertical axis describes the filter transmission efficiency. (Figure credit: Bartelmann and White, 2002).

The image analysis software extracts sources, point-like and extended, from the ima-

ging data and produces a catalog with various observable and metadata measurements

(Lupton et al., 1999; Stoughton et al., 2002). The 95% detection limits for repeatability

of source detection (of stars) in each band are given as u < 22.0, g < 22.2, r < 22.2,

i < 21.3 and z < 20.5 for an air mass of 1.4, which is the median of the survey. Each

pixel corresponds to a scale of 0.′′4, which allows oversampling of the median 0.′′8 seeing at

Apache Point, delivering images with a FWHM of around 1”.

Problems that have been reported from the SDSS data include a natural red-leak at

7100Å in the u-band due to the vacuum in the camera causing the interference film on the

filter to shift redward (Smith et al., 2002). The leak varies from column to column, displays
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time-variability and is unfocussed due to the redder wavelengths refracting differently to

wavelengths of the bluer range of u-band, making correction difficult. Abazajian et al.

(2004) also reports a slight downward bias in the determination of the sky level in the

photometry, which, combined with the u-band leak, lead to of order 10% errors in the

u-band Petrosian fluxes of large galaxies.

Measuring flux for galaxy photometry is notably harder than for stars, due to dif-

fering radial surface brightness profiles and no defined edges, so SDSS employs several

photometric systems:

SDSS asinh magnitudes (luptitudes): The main SDSS survey employs a photomet-

ric scale, where magnitudes are output as inverse hyperbolic sine (or “asinh”) mag-

nitudes, also known as luptitudes, as detailed by Lupton et al. (1999). They are

designed to behave as standard log-scale magnitudes at high signal-to-noise, but

gracefully reduce to zero at low signal-to-noise, where the recorded flux is close to

the detection limit of the survey.

Petrosian magnitudes (petroMag): To minimize biases in galaxy flux measurement,

SDSS adopts a modified form of the Petrosian system (Petrosian, 1976). Galaxy

flux is integrated within a circular aperture whose radius is defined by the galaxy’s

azimuthally averaged surface brightness profile. The aperture radius is defined in

the r-band to ensure consistent flux measurement across the SDSS bands.

PSF magnitudes (psfMag): The PSF (Point Spread Function) magnitude measures the

total flux of an object by fitting a PSF model to it, which should perfectly model the

magnitude of point-like sources of stars or distant (unresolved) quasars but works

less effectively for extended sources like galaxies. The PSF magnitude becomes

useful in star-galaxy separation as one expects significant deviations between a PSF

magnitude and a magnitude that more accurately measures galaxy flux.

Model magnitudes (modelMag): Model magnitudes for objects are output by the SDSS

pipeline, which attempts to model the PSF magnitude for point sources and the

Petrosian magnitude for extended sources. These model magnitudes are 2-D profiles

fitted to the object images in each band; one an exponential profile and the other a

deVaucouleurs profile which both deliver magnitude estimates (and associated vari-

ables) of the object. A further cmodelMag magnitude delivers a linear combination

of the best fit exponential and deVaucouleurs fits (in each waveband) that best fits

the image.
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The SDSS Spectroscopic Survey

The SDSS spectroscopy is used to validate photometric measurements and highlights the

differences found between photometric, spectroscopic, and synthetic, magnitude and colour

data. SDSS spectroscopy is performed on objects detected in the imaging portion of the

survey that are classified, as point source or extended, and measured by the SDSS image

analysis software. Different classes of objects (e.g. stars, galaxies, QSOs) are selected

from the imaging for spectroscopic followup by two spectrographs, each of which has a

blue and red channel, with wavelength ranges of 3800-6150Å and 5800-9200Å respectively,

separated by a dichroic filter. Each spectrograph is equipped with 320 fibers, totaling a

maximum of 640 spectra per telescope pointing, and each fiber has a 3′′ diameter∗. Spectra

are obtained through plates (tiles) that cover the entire 3◦ field of view, where holes are

drilled for each fiber. Because of the thickness of the cladding that house the optical fibers,

fiber holes on any given plate are separated by at least 55”, and target galaxies that are

separated by less than this distance are said to “collide”. However, these fiber collisions

are minimized by tiling plates (overlapping adjacent plates) such that the sampling of

targets is greater than 92% for all targets and greater than 99% for targets that do not

collide (Blanton et al., 2003a). The reduced spectra are given in vacuum wavelengths in

the heliocentric frame, and several techniques are used to measure redshift, characterize

lines and better describe sources (initially identified and characterized in the photometric

SDSS). In the following section, I describe the spectroscopic catalogs produced by the

SDSS.

2.1.2 Selection of Spectroscopic DR2 Galaxy Catalog

Abazajian et al. (2004) details the DR2 portion of the spectroscopic survey as cover-

ing 2627�◦ (Figure 2.2) with 367,360 spectra, of which, 260,490 are classified as galaxies.

SDSS spectroscopic galaxy observations are limited to r ≤ 19.5 by the fixed exposure time.

The galaxy target selection consists of two components. The first is described in Strauss

et al. (2002) and consists of galaxies with r-band Petrosian magnitudes r < 17.77 and

Petrosian half-light surface brightness µ50 . 24.5 mag arcsec−2 (the MAIN galaxy sample).

This first selection acts as a further star-galaxy separator (on top of the star-galaxy separ-

ation performed by the SDSS photometric pipeline), and is effective at removing nearly all

stellar contamination whilst maintaining a high completeness for the spectroscopic galaxy

∗note that these specifications are historical; as of DR8, the spectrographs are equipped with 1,000

fibers, each with a diameter of 2′′.
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Figure 2.2: Aitoff projection of the sky, where the 2627�◦ coverage of the SDSS DR2 spectroscopic

campaign is described by the shaded region. The horizontal axis shows R.A. and the vertical axis shows

declination [Figure credit: SDSS DR2 website∗].

sample. Strauss et al. (2002) find the main cause of incompleteness to be blending with

saturated stars.

The second sample is a volume limited luminous red galaxy (LRG) sample (Eisenstein

et al., 2001), that selects red galaxies in the SDSS DR2 region. Modifications to the

Eisenstein et al. (2001) selection cuts, originally used on EDR, are made by Abazajian

et al. (2004) on DR2. These changes were motivated primarily to select a uniform sample

of LRGs over the redshift range 0.2 . z . 0.7 and to compensate for errors/problems

discovered in the photometry. The LRG sample is further subdivided into two selections,

Cut 1 and Cut 2, since the 4000Å break used to trace LRGs transitions from the g-band

to the r-band at a redshifts greater than z & 0.38. Some further, high-redshift quasar

specific cuts (Richards et al., 2002) are made to the sample, chiefly in the i-band. Details

on Cut 1 and Cut 2 are as follows.

Cut I

I note here that Cut 1 isn’t sufficient for LRG selection below redshift of z < 0.15 as

it is too permissive, allowing lower luminosity sources to enter the main LRG sample at

these low redshifts. However, this caveat simply concerns selection of LRGs from the MAIN

sample, and does not supplant their use in target selection. To trace LRGs, c||, defined in

Equation 2.1, is used as an effective redshift indicator:

c|| = 0.7(g − r) + 1.2[(r − i)− 0.177] . (2.1)

Then to select galaxies as a function of redshift, c|| is evaluated against rpetro, the

∗http://www.sdss.org/DR2/coverage/
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r-band Petrosian magnitude:

rpetro < 13.116 + c||/0.3, (2.2)

which sets the luminosity threshold as a function of redshift. To obtain a reasonable

signal-to-noise, a further apparent magnitude constraint is applied:

rpetro < 19.2. (2.3)

The cut given by c⊥, in Equation 2.4, restricts the selection of galaxies along the locus

in the g − r versus r − i colour-colour diagram (Equation 2.1, above):

|c⊥| < 0.2 (2.4)

Targets with very low surface brightness are cut by

µr,petro < 24.2 mag arcsec−2, (2.5)

where

µr,petro = rpetro + 2.5 log10(2πR2
50), (2.6)

as low surface brightness objects are often the product of errors in the SDSS reduction

pipeline (Strauss et al., 2002).

To separate stars from galaxies, the PSF and model magnitudes are separated by

rPSF − rmodel > 0.24, (2.7)

since for point-like sources (i.e., stars), the model magnitude approaches a delta function,

and thus becomes equivalent to the PSF magnitude.

The only other imposed cuts set the general colour space containing the LRG colour

locus:

g − r < 2.5, (2.8)

r − i < 1.5. (2.9)

Cut 2

To select galaxies above z & 0.38, another set of colour and magnitude cuts are made,

collectively called ‘Cut 2’. So that a reasonable signal-to-noise is obtained, the Petrosian

r-band magnitude is limited to

rpetro < 19.5, (2.10)
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which corresponds to a slightly fainter limit than in Cut 1 (Equation 2.3).

To restrict the selection of galaxies along the locus in the g−r versus r−i colour-colour

diagram, nominally to separate regions of low and high redshift, Equation 2.11, and isolate

LRGs from the bulk of the late-type stellar locus, Equation 2.12, the following colour cuts

are applied:

|c⊥| < 0.449− (g − r)/6 , (2.11)

g − r > 1.296 + 0.25(r − i) . (2.12)

Targets with very low surface brightness are cut by

µr,petro < 24.2 mag arcsec−2, (2.13)

as with Cut 1 in Equation 2.5.

For star-galaxy separation, a tougher constraint is required than Cut 1 (Equation 2.7),

so the tolerance between the PSF and model magnitudes is increased to

rPSF − rmodel > 0.4. (2.14)

And again, the general colour space containing the LRG locus is set by:

g − r < 2.5, (2.15)

r − i < 1.5. (2.16)

I note here that deeper LRG observations that are selected by Cut 2 data may affect

clustering measurements, and hence, cluster finding at higher redshifts where the galaxy

population is biased towards these populations. But due to the ease of identification of

LRGs in colour space, creating a catalog of LRGs for spectroscopic followup based on

colour selection is easier than doing so for the general galaxy population.

2.2 The Original C4 Cluster Finding Algorithm

In this section, I describe in detail the original C4M05 algorithm from M05, introduced in

section 1.5.6. Section 2.2.2 reviews the C4M05 method. In section 2.2.3, I describe the

subsequent statistical extraction of cluster-like galaxies with the False Discovery Rate.

Section 2.2.4 introduces k -NN clustering and its usage in the C4M05 algorithm to assign

C4M05 galaxies to clusters (§2.2.5).
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2.2.1 Introductory Notes

The main product of M05 is a highly complete and highly pure cluster sample at low

redshifts using the C4M05 algorithm. It was one of the first catalogs of clusters and groups

constructed directly from spectroscopic data of the Sloan Digital Sky Survey (SDSS; York

et al., 2000), specifically, spectroscopic galaxies from the Second SDSS Data Release (DR2;

Abazajian et al., 2004). C4M05 is limited to low redshift systems (z < 0.17) due to its

dependence on spectroscopic redshift to locate cluster members. The underlying premise

of C4M05 is that optical clusters and groups of galaxies are dominated by a single, co-

evolving population of galaxies, e.g. the “E/S0 ridgeline” or “red sequence”, that have

similar spectral energy distributions. A variety of other modern optical cluster finders

(§1.5), also use this premise to identify clusters.

C4M05 can be distinguished from other optical cluster finders by its utilisation of all

galaxy colour information without explicitly modelling assumptions on the occupation of

galaxies along a red sequence (or E/S0 ridgeline; as per Gladders and Yee, 2000; Koester

et al., 2007; Hao et al., 2010; Gilbank et al., 2011; Murphy et al., 2011; Rykoff et al., 2013).

Since the red sequence is already known to be a compact formation in redshift-colour

space, clusters where the red sequence dominates are captured by the C4M05 algorithm.

The one (or more) co-evolving group(s) of galaxies which cluster in colour space do not

necessarily have to be red sequence galaxies. Cluster finders that do not rely on red-

sequence modelling tend search for enhancements in 3-dimensions (nominally R.A., dec,

and z; as per Soares-Santos et al., 2008; Wen et al., 2009; Farrens et al., 2011), where their

reliance on spectroscopic/photometric redshifts can be sensitive to spectroscopic failures

(Cunha et al., 2012), photometric bias (Banerji et al., 2008) or catastrophic photometric

errors (Padmanabhan et al., 2005).

C4M05 captures cluster red sequences, given the tight colour dispersion of the red

sequence against magnitude, without the need for modelling (as per Hao et al., 2010) or

tuning to a cluster observation (as per Murphy et al., 2011). In common with matched filter

and adaptive matched filter methods (§1.5.1), C4M05 identifies galaxies that are more likely

to belong to cluster distributions. But in place of identifying cluster galaxies assuming a

modelled distribution of cluster/field galaxies in position, redshift, and luminosity function

space (as per Szabo et al., 2010, an other matched filter methods), M05 use the data itself

to calibrate the C4-clustering signal for a given galaxy in C4M05.

C4M05 incorporates 4-dimensional colour space overdensities with 3-dimensional po-

sition overdensities (including redshift). By employing the 4-dimensions of colour space
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(u − g, g − r, r − i and i − z) from the SDSS photometry combined with the redshift

measurements from the SDSS spectroscopic campaign, C4M05 mitigates the problem of

misidentifying groups of galaxies that appear close in projection that are not physically

associated in real clusters (§1.5.1). By minimizing projection effects, C4M05 produced

a highly pure catalog of clusters, allowing further research into cluster astrophysics and

studies into the galaxy populations that occupy them. C4M05 was amongst the first cluster

finders to use mock galaxy catalogs (Wechsler, 2004), representative of the real universe,

to evaluate its selection function. The implementation of mock catalogs in the evaluation

of cluster finders has since become common practice (Li and Yee, 2008; Hao et al., 2010;

Soares-Santos et al., 2010; Murphy et al., 2011). The new C4 algorithm presented in this

thesis will also be evaluated with simulated data in chapter 6, using a mock SDSS catalog

simulation (§4.3).

The C4M05 cluster finding algorithm obtained a new sample of 748 clusters of galaxies

(recovering 92% of Abell clusters from a qualitative selection, see §2.3.4) identified using

the spectroscopic SDSS DR2 galaxy sample. The catalog covers ∼2600 deg2 of sky and

ranges in redshift from 0.02 ≤ z ≤ 0.17. The catalog provides the following information

for each cluster:

• sky location;

• mean redshift;

• galaxy membership;

• summed r-band optical luminosity (Lr);

• and velocity dispersion.

Correlations between these parameters and the dark matter halo properties (§2.3) were

explored by M05, using mock SDSS catalogs constructed from the ΛCDM Hubble Volume

Sky survey output.

2.2.2 C4-clustering

Processing the DR2 spectroscopic galaxy catalog is a computationally heavy task and so

this sample is divided into a multidimensional grid and then evaluated for C4-clustering

where each galaxy’s volume-colour density probability is evaluated to deliver a p-value.
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Specific SDSS DR2 Galaxy Selections used in Miller et al., 2005

Further to the target selection of SDSS spectroscopic galaxies (§2.1.2), additional con-

straints are applied to the galaxy sample before C4M05 is run. Objects with SDSS warn-

ing flags (output by the SDSS spectroscopic pipeline) set for: low-confidence redshift; no

currently available spectrum; and no red or blue end are omitted. The zConf variable (an

SDSS pipeline output that estimates a ‘confidence’ value, from 0 to 1, that the redshift is

reliable) is also constrained such that zConf> 0.7. This results in 249725 unique galaxies

that are processed by the C4M05 algorithm.

Clustering in 3D Space

For efficient processing, a three dimensional grid is created to contain the input galaxy

sample in equatorial (R.A., dec) and redshift bins. The extent of the grid in radial and

redshift dimensions is given to the algorithm as an input, and the grid is built to accom-

modate the number of galaxies that are contained by the most populated grid point. The

equatorial grid containing DR2 is divided into segments ∼1�◦ in size (units of 1◦ × 1◦ in

R.A. and dec, respectively), and the redshift dimension is divided into comoving coordin-

ate bins of 50h−1 Mpc. Each of these redshift bins represents a redshift element within

which the colour clustering is measured. An equatorial 1.0h−1 Mpc kernel aperture is

defined for C4M05 around a galaxy providing R.A./dec constraints within each 1�◦ box.

This aperture is calculated with

C4M05 kernel radius

in arcminutes
= 1.0h−1 Mpc× H0

c
× (1 + z)1.5

(1 + z)0.5 − 1
× 180

π
× 60, (2.17)

where the 1.0h−1 Mpc term is defined as the C4M05 kernel radius, H0 is 100h km s−1 Mpc−1

and the final two terms convert the result from radians to arcminutes.

Should this aperture extend past the edge of the equatorial grid element, the algorithm

simply selects galaxies in the next element within the radial aperture. The galaxies within

the radial aperture in the target galaxy’s redshift bin then represent the volume-limited

sample around each galaxy in the shape of a narrow cylinder.

I note here that the C4M05 kernel radius in arcminutes is equivalent to twice the

transverse comoving separation in an Ωm = 1 cosmology. The M05 cluster sample is

limited to redshifts between 0.02 < z < 0.17, where differences in cosmology affect the

ratio of kernel radius to comoving separation little, e.g., an assumption of Planck cosmology

(H0 = 67.4, ΩM = 0.314. ΩΛ = 0.686, Planck Collaboration et al. (2013b)) produces a
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discrepancy of 8% at the upper redshift limit of z = 0.17 from this 2:1 ratio. If examining

this ratio with Planck cosmology at higher redshifts, the ratio increases such that at

z & 2, the kernel radius is approximately three times larger than the transverse comoving

distance. This is a notable concern for cluster finding at advanced redshifts with C4M05

that I address in Chapter 3.

Clustering in Colour Space

A 4-dimensional colour box is defined for each galaxy from the systematic and statistical

error components of that galaxy as seen in Equation 2.18. The statistical error, σxy(stat),

refers to the observed error for the two magnitudes (x, y) summed in quadrature. The

systematic error, σxy(sys), refers to the intrinsic scatter in the colour-magnitude relation

(CMR) of cluster galaxies (Visvanathan and Sandage, 1977; Bower et al., 1992). A mul-

tiplier, γ, is associated with σxy(sys), which allows tuning of the size of the colour box.

It is important to note that the colour box is so tuned in order to capture galaxies but is

not an attempt to model the CMR.

σxy =
√
γσ2

xy(sys) + σ2
xy(stat) (2.18)

where

σ2
xy(stat) =

√
σ2
x + σ2

y (2.19)

Motivated by Goto et al. (2002, §1.5.5), the systematic components for the u−g, g−r,

r − i, and i− z SDSS colours were set as σug(sys) = 0.15, σgr(sys) = 0.12, σri(sys) = 0.1,

and σiz(sys) = 0.1, respectively. The values are representative of the widths of the CMR,

decreasing with increasing wavelength. Each colour error is evaluated on condition that

the magnitudes, x and y, fall within the specified survey limits and on condition the errors

on the magnitudes, σx and σy, are not greater than 10 magnitudes, such that C4M05

excludes catastrophic failures. The limit on the magnitude uncertainties exists to exclude

these failures, but in practice these do not occur in the DR2 spectroscopic sample. If a

galaxy does not contain any magnitudes above the survey limits, or all the magnitude

uncertainties are greater than 10 magnitudes, then it is excluded from C4M05 processing.

Then, looping through each galaxy, in each spatial grid coordinate, a box in colour

space (see Figure 2.3) is created in each colour out to σxy. For neighbours of the galaxy,
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i.e., the galaxies contained within the spatial aperture, their error and calculated colour

is used to define a gaussian probability in colour space, where the probability of the

neighbour lying within the colour box is evaluated. Every galaxy within the volume

aperture is counted as a candidate neighbour. Where neighbour candidates are not inside

the colour box, but there still exists some finite probability within 6σxy,neighbour of the

neighbour being in the colour aperture, that probability is also evaluated. Where there

is incomplete colour information, it is not evaluated, thus if a neighbouring galaxy is too

faint to be detected in bluer bands, but is spatially local and clusters in redder bands,

then its C4-clustering is not biased through modelling of the bluer bands. The sum of

the probabilities of these neighbours being in the target galaxy’s colour aperture is then

treated as the target galaxy’s colour density within the volume aperture, or N target
neighbour in

volume V , where

N target
neighbour =

∑
n∈V

∫ σxy

−σxy
P (σxy,neighbour) dσxy , (2.20)

where (n ∈ V ) are all the neighbours (galaxies), n, in the target galaxy’s volume aperture,

V .

Figure 2.3: a) Using the uncertainty from Equation 2.18, a box around the galaxy’s colour space is defined

out to Xσxy, where X is equal to unity in Miller et al. (2005). b) The probability of the neighbour lying

in the galaxy’s colour box (pink area) is given by integrating the neighbour’s colour probability within the

box limits. c) Where a neighbour is not inside the colour box, it may still contribute towards the galaxy’s

colour clustering (yellow area).

The same colour box and volume aperture is then moved randomly across the survey

footprint, centring on other galaxies in the input galaxy catalog (but in the same redshift
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bin). The colour density around these random points is evaluated 30 times to build up

a distribution of colour densities for each target galaxy’s colour-volume aperture, which

acts as a model of the field. Figure 2.4 shows an example of a cluster galaxy and a field

galaxy, plotted in colour-colour space.

This colour-volume aperture density model forms a Poisson distribution, which is then

approximated to a Gaussian as per Anscombe (1948), against which the likelihood of

the target galaxy occurring in this distribution is calculated out to ±6σ. Explicitly, this

calculation is

p-value = 1 − 2×

(√
N target

neighbour +
3

8
−
√
N aperture

neighbour +
3

8

)
, (2.21)

where the square root components represent the approximations to Gaussian for the Pois-

son neighbour counts of the target galaxy and aperture model median, respectively. The

p-value in Equation 2.21 is the probability of the target galaxy occurring in the field given

this aperture. Once p-values are evaluated for each galaxy in the catalog, the algorithm

then eliminates galaxies that are most likely to exist in the field by employing a cut in

probability enforced by a False Discovery Rate, or FDR. Section 2.2.3 introduces the FDR

concept and its application to C4M05.

2.2.3 False Discovery Rate (FDR)

The False Discovery Rate, as formulated by Benjamini and Hochberg (1995), is a stat-

istical method that can be used to evaluate the complicated uncertainties under multiple

hypothesis testing.

To explain, let me formulate a null hypothesis, H0, to be tested against an alternative

hypothesis, H1, based on some test statistic, S. Under hypothesis testing, a rejection

region is set, and H0 is accepted where S falls outside that region, and H0 is rejected

where it occurs inside, and hence the alternative hypothesis, H1, is accepted in this region.

When treating data in this manner, there are two sources of error. A false discovery,

or “type I error”, occurs for data where the null hypothesis is true but has been rejected,

whilst a false non-rejection, or “type II error”, occurs where the alternative hypothesis is

true, but has been (falsely) characterized by the null hypothesis H0. Figure 2.5 demon-

strates these different kinds of error that may occur when classifying data in this manner.

Often, type II errors are referenced to as “power”, which is 1 minus the probability of a

type II error, i.e., the probability of rejecting the null hypothesis given that it is false, and

it is desirable to maximize power. However, increasing power also comes at the expense
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Figure 2.4: The upper three plots describe a cluster galaxy in 4 dimensions of colour-colour space, whilst

the lower three describe a field galaxy. The target galaxy in each case is indicated by a red cross, and

the surrounding grey box. The blue crosses represent all the galaxies within the volume aperture whilst

the green crosses denote galaxies within the volume aperture that also fall inside all four colour apertures.

The cluster galaxy 4-colour aperture shows a significantly higher number of volume-colour neighbours than

those of the field galaxy. The galaxies and apertures in this figure are generated from C4M05 applied to a

mock galaxy catalog, which uses g − r, r − i, i− z, and z − Y colours.

of increasing the fraction of type I errors, as seen in Figure 2.6.

The decision to reject a test statistic is driven by whether it is above some critical

threshold. The probabilistic analogue to this is to use the p-value, which is the probability

of observing a test statistic that is at least as extreme as the observation made, assuming

that the null-hypothesis is true. For example, an observation with a p-value of 0.05 is

equivalent to saying that the likelihood of this observation agreeing with the null hypothesis
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Figure 2.5: In this diagram, the circles correspond to values of some given test statistic. Filled and open

circles represent data where the null hypothesis is true or false, respectively, for that test. The test rejects

the null hypothesis where the test statistic places data to the right of the threshold. The filled circles to

the right of the threshold are false discoveries or false rejections (type I errors). The open circles to the

left of the threshold are false non-rejections (type II errors).

is 5%.

The relevance of multiple hypothesis testing to C4M05 can be summed up in the sense

that we can observe a colour-magnitude relation between galaxies in a cluster where none

exists in the field. However, one cannot be certain that a colour-magnitude relation (CMR)

exists solely due to the physical properties of galaxies within an individual cluster (having

been identified by the p-values generated in section 2.2.2) or whether a more global effect

dominates the CMR for clusters, as exemplified by red sequence cluster finding techniques

(Gladders and Yee, 2000; Koester et al., 2007; Hao et al., 2010). Hence, the observed

colour-magnitude relation of clusters is treated as a property of a galaxy within their

associated C4M05 colour-volume aperture. The null hypothesis tested, for each galaxy, is

that no C4-clustering (and hence no colour-magnitude relation) is observed for that given

galaxy at its redshift (§2.2.2).

With the False Discovery Rate (FDR) an acceptable proportion of false rejections, or

error rate, is defined which determines a threshold p-value that defines such a rejection

region. The FDR works algorithmically as follows:

1. An ascending array of length n with values i/n is created, where n is the number of

galaxies and i is an integer from 1 ≤ i ≤ n.

2. The p-values, p, for all n galaxies are sorted from low to high, p1, p2, p3, · · · , pn, such

that pi < pi+1.

3. The i/n array is multiplied by the FDR threshold value to give a new array, f .

4. The element t is determined by the minimum value of i where pi > fi.
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Figure 2.6: This schematic illustrates how changing the threshold affects both the probability of a type

I error and the power. The first curve (above) describes the distribution of the null hypothesis, H0,

according to the test statistic. The second curve (below) describes the distribution of the test statistic

for an alternative hypothesis, H1. The dashed vertical line describes the threshold for accepting (left

of threshold) or rejecting (right of threshold) the null hypothesis. The shaded areas to the right of the

threshold, under both curves, describe the probability of rejecting the null hypothesis The shaded area

under H0 represents the probability of rejecting the null hypothesis when it is true, resulting in a type I

error, α. Under H1, the shaded region represents the probability of rejecting the null hypothesis when it

is false, i.e., the power of H1.

5. The p-value of the FDR threshold is given by this value pt.

6. The galaxies described by the p-values p1, p2, · · · , pt−1 are kept as cluster galaxies,

and galaxies with p ≥ pt are rejected.

This algorithm delivers a sample of rejected null hypotheses with a known error rate,

i.e., the FDR. Since the discriminator is the colour-clustering of a galaxy in a 3 dimensional

volume, we are left with a sample of galaxies that are the most clustered (in a C4M05 defined

colour-volume aperture), and contain a known maximum proportion of galaxies that may

belong to the field population (i.e., are drawn from the null hypothesis).



39

2.2.4 k-NN Distance

A k -NN algorithm, or k -nearest neighbours algorithm, classifies objects based on the

kth nearest object within some n-dimensional space, where those n-dimensions relate to

properties of that object. This is the simplest of all instance-based, machine learning

algorithms, where an object is simply classified by the majority of its neighbours 1,2,...k.

For example, if k = 1, then the object is assigned the class of its neighbour.

At this stage in the algorithm, C4M05 (cluster) galaxies have been identified but not

placed into clusters. To place the galaxies into clusters, k − NN distances are calculated

for each cluster galaxy. The redshift and equatorial coordinates (converted to radians as

per equations 2.22 and 2.23) are employed to place the cluster galaxies (as determined by

FDR) into a 3-dimensional comoving coordinate system. When placing these galaxies into

a (comoving) cartesian coordinate system, the distance metric (Equation 2.24) assumes

H0 = 100h km s−1 Mpc−1 and a flat geometry for the universe and interprets the redshift

as being cosmological in origin (i.e., peculiar motions are unaccounted for). In spherical

coordinates, the galaxy positions become:

θgal = R.A.× π

180
, (2.22)

φgal = (90− dec.)× π

180
, and (2.23)

Rgal =
c

H0
×
(

2.0− 2.0√
1.0 + z

)
(2.24)

where z in Equation 2.24 is the redshift of the galaxy. Equation 2.24 approximates the

comoving distance in a flat cosmology of Ωm = 1 and ΩΛ = 0. These polar coordinates

then recombine to give the cartesian coordinates (xgal, ygal and zgal) for the galaxies in

the survey as:

xgal = Rgal × sin(θgal) cos(φgal), (2.25)

ygal = Rgal × sin(θgal) sin(φgal), and (2.26)

zgal = Rgal × cos(θgal). (2.27)

These coordinates are then given to a k -NN code, that determines the metric distances

to the 6th nearest neighbour∗ of each galaxy. Distances in this k -NN code are calculated

through the use of KD trees, which partition points in a multidimensional space (for C4M05

these are the three comoving dimensions described above).

∗the 6th nearest neighbour is an arbitrary choice in M05
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A KD tree that contains N points allows an algorithm to find a point’s nearest neigh-

bour to be found in a time proportional to O(logN) or all points’ nearest neighbours in

O(N logN) time. A KD tree works by placing all points within a box in the dimensions

defined. Then this box is partitioned into two new boxes along the axis of one dimension,

leaving an equal number of points in each partition. Each box is then partitioned in the

remaining dimension(s) and the process repeats, cycling through the dimensions, until the

final box (or node) contains either one or two points, (i.e., the nearest neighbours are

together or in individual boxes divided in the last dimension) and the distance between

them is calculated. Calculating the distances of each point to their respective kth nearest

neighbours is further optimised by taking advantage of the KD tree structure to examine

neighbouring nodes/branches of nodes, reducing the time of a O(k logN) operation to

one that scales as O(log k logN) for each point. These distances are then employed in

assigning the galaxies to individual clusters.

2.2.5 Assigning Galaxies to Clusters

The 6th nearest neighbour to each C4M05 galaxy is used to establish a pseudo-density

measure, importing the hypothesis that a galaxy in an overdense region will be closer to

its 6th nearest neighbour than a galaxy in a less dense region. The list of C4M05 galaxies is

ordered by the 6th nearest neighbour distance (smallest to largest i.e., most to least dense)

and the galaxy with the smallest nearest neighbour distance (most dense) is set as the

cluster centre. Then, neighbouring galaxies are assigned to the cluster centre, defining a

spherically over-dense region. Selecting galaxies radially from the cluster centre, a number

density is evaluated for the cluster at each galaxy’s radius until the number density is below

1.2h−3 galaxies/Mpc3, at which point the cluster radius is set at the outermost galaxy

above that density threshold. If the threshold density is not reached before the cluster has

grown to 5h−1 Mpc in radius, then assignment of galaxies to the cluster centre is halted

at this radius. If any of these cluster centres finds fewer than three galaxies as being

the entire membership of a cluster above the density threshold, then they, and hence the

“cluster” they form, are excluded. The remaining galaxies are then re-ordered by their

6th nearest neighbour and the process iterates until there are less than two remaining

galaxies.

The penultimate step of applying an Ngals cut to the cluster catalog is taken and all

candidate clusters with fewer than 8 members within 1h−1 Mpc are rejected to allow a

reliable velocity dispersion measurement. Finally, a “significance” cut demands that, in a
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fixed volume around the cluster defined by its members, at least 10% of all galaxies in any

given cluster’s volume have been identified as C4M05 cluster members. These remaining

clusters form the C4M05 cluster catalog.

2.3 Results of the Miller et al. Application of C4 to SDSS

DR2

As mentioned previously, the C4M05 cluster catalog contains 748 clusters of galaxies from

∼2600�◦ of SDSS DR2 spectroscopic data. These clusters range from a minimum of 10

members to over 200, and cover a redshift interval of 0.03 ≤ z ≤ 0.17. Using simulated,

or mock, galaxy catalogs developed by Wechsler (2004), the C4M05 catalog is estimated

to be 95% pure (where purity∗ is the fraction of C4M05 clusters discovered that match to

a simulation halo), and ∼90% complete (where completeness∗ is the fraction of simulated

halos recovered by matching to the C4M05 clusters found in the simulation) above M200 &

2 × 1014M�, where M200 is the mass within a radius that is greater than 200 times the

critical density, and within 0.03 ≤ z ≤ 0.12.

2.3.1 Purity and Completeness

Purity and completeness were evaluated using the mock catalogs, relating halo mass to

cluster observables. These mock catalogs were designed such that the simulated galaxies

match the distribution of galaxy colours, luminosities and their environmental dependence

in the real SDSS data. By testing C4M05 with these mock catalogs, simulated clusters

found by C4M05 could be directly related to the properties of the clusters’ halos in the

simulation, avoiding ambiguity in the definition of mass between the theoretical (simulated

halo catalog) and observable (mock C4M05 cluster catalog) measurements of each mock

cluster. M05 found that the mock C4M05 catalog was more than 99% pure for luminosities

greater than 3 × 1011L� (in r-band) and more than 90% complete for systems with a

halo mass of M200 & 2 × 1014M�. Whilst completeness fell to around ∼50% at M200 '

1× 1014M�, purity remained high, dropping to 90% for lower luminosity clusters.

By examining radial variations of the velocity dispersion for each cluster, M05 found

that significant contamination of velocity dispersions arose when measuring clusters em-

bedded in large scale structure. A structure contamination flag (SCF) with indices

SCF= [0, 2] was created to identify clusters with least (0) to most (2) contamination.

∗§1.6
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Employing a scaling relation to velocity dispersions of clusters, with SCF= 0 (minimum

structure), delivered the smallest scatter against the halo masses. However, r-band lu-

minosity was also found to be a good proxy for estimating halo-mass, with a scatter of

20% in the simulations, which was marginally larger than the best case (SCF= 0) scenario

for velocity dispersions, but was not significantly affected by intervening large scale struc-

ture. The apparent magnitudes of the cluster members were first K-corrected (Blanton

et al., 2003b) and extinction corrected (Schlegel et al., 1998) before being converted to

luminosities, as per Fukugita et al. (1996).

2.3.2 Calibrating C4 Parameters

The simulated galaxy catalogs were also used to help calibrate parameters utilized by the

C4M05 algorithm. M05 did not test all parameters, limiting investigations to the impact

of C4M05 kernel radius (§2.2.2), the size of the redshift bins, the size of the colour box

(§2.2.2), the FDR threshold, and the amount of colour information utilized on the purity

and completeness of the mock C4M05 catalog.

C4M05 was run with kernel radii set at 0.5, 1.0, 2.0, and 6.0 h−1 Mpc. The kernel

radius of 0.5h−1 Mpc appeared too small, causing completeness to fall 20% below that

of the other parameters at halo masses Mhalo . 5 × 1014M�, but did show an extremely

high purity. This suggests that whilst C4M05 was not finding as many clusters with

the smallest kernel radius, the clusters it was finding were systems that existed in the

simulation. Larger kernel radii made little difference to the purity and completeness of

the mock C4M05 catalog, maximising at 1h−1 Mpc and varying very little (. 4%) at larger

radii at the probed halo masses, Mhalo & 5× 1013M�.

The size of the redshift bins was varied as comoving lengths of 25, 50, 100 and 200

h−1 Mpc. The C4M05 mock cluster catalog was found to be independent of the line of sight

aperture. This was attributed to the dearth of multiple clusters lying along the line of

sight containing galaxies with similar global colours and that by not using k-corrections

on the SDSS colours, the redshift dimension has already been accounted for.

To test the colour box, γ was allowed to vary as 1, 2, 4, and 6. Much like the smallest

radial aperture, the smallest colour box, i.e., where γ = 1, produced a highly incomplete

but highly pure catalog. As the colour box size is increased, the completeness becomes

greater at the cost of lower purity. Between increasing γ = 4 to γ = 6, the completeness

fraction changes very little but there is a significant drop in purity. This implies that at

values of γ above γ = 4, few galaxies that are added to the C4M05 mock galaxy catalog
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that actually belong to the mock halos. The purity of the γ = 4 sample is seen to be fairly

high (> 90%), and so γ = 4 was used for the C4M05 run on DR2.

The FDR threshold was varied as 5%, 10%, 15%, 20% and 50%. The least conservative

threshold of 50% produces the highest completeness, at the expense of the purity. As the

FDR threshold becomes more stringent, completeness falls whilst purity rises. However,

this variation in completeness and purity is of order ∼ 10%, and so M05 chose an FDR

threshold of 10%, which maximises purity, with the view that users of the C4M05 catalog

can have greater confidence that the cluster systems contained within the C4M05-SDSS

cluster catalog are real clusters.

To examine the effect of the amount of colour information available, the purity and

completeness of the C4M05 algorithm was calculated separately for each colour component

and pairs of colours, then compared with the C4M05 catalog that utilises all four colours.

They found that using all four colours results in a catalog with much higher purity than

using two colours, which in turn delivered catalogs with a higher purity than the single

colour catalogs. However, completeness was found to show an inverse trend, with the

single colour catalogs being more complete than the two colour catalogs, which in turn

were more complete than the four colour catalog. This was found to be because the

catalogs created with less colour information contained approximately twice the number

of clusters as the four colour catalog, and so matched to the halo catalog because there

were more opportunities to match. By scattering the cluster coordinates and matching

to the halo catalog again (with the same 10′ search radius), the single and double colour

catalogs were seen to match more readily than the four colour catalog, which contains the

fewest clusters.

2.3.3 Fiber Collisions

Fiber collisions may result in the loss of the Brightest Cluster Galaxies (BCGs) which

account for a large proportion of the cluster luminosity (Bernardi et al., 2007). To test

this, C4M05 was tested with the mock data before and after applying fiber collisions, and

C4M05 was run on the real data (after fiber collisions) and SDSS photometric cluster

galaxies missed by the tiling algorithm (that are close to the cluster red sequence, and

otherwise fulfil the galaxy selection; section 2.1.2) were added in projection (since well-

constrained redshift data was not available for the photometric sample). In the mock data,

fiber collisions were replicated by identifying galaxy pairs with separations of less than 55”

and retaining the brighter partner, and randomly selecting the remaining partners such
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that 70% of all colliding galaxies were retained in the sample. Applied to the mock data,

it was found that the fiber collisions result in a small (∼5%) drop in completeness (fewer

systems found) and a small increase in purity (higher fraction of systems found match to

simulated halos), and so fiber collisions are ruled to play a minimal role in cluster finding.

However, the r-band luminosities are systematically underestimated, with bright massive

clusters being more affected than smaller, dim clusters. They find that when BCGs were

missed in the mock catalogs, clusters are dimmer by ∼24%, whilst clusters that were

affected by fiber collision, but retain their BCGs, are dimmer by only ∼6%.

2.3.4 Comparison to Other Cluster Catalogs

Further comparisons were made to the existing Abell (§1.2.1) and RASS-SDSS (Popesso

et al., 2004) cluster catalogs which have different selection techniques. The Abell cluster

catalog was amassed by eyeballing the optical photographic plates from the Palomar All

Sky Survey. The RASS-SDSS catalog identifies the optical counterparts to clusters dis-

covered in the X-ray ROSAT All-Sky Survey. M05 find ∼90% completeness compared

with these other cluster catalogs, taking into account different factors affecting each of the

catalogs.

The survey area contains 346 Abell clusters within 10′ of a C4M05 cluster, with 123

Abell clusters uniquely matched to C4M05 clusters, and five Abell clusters matching to

two different C4M05 clusters. To allow fair comparison between the Abell and C4M05

clusters, constraints were placed on the survey volume covered, limiting the depth to

0.03 ≤ z ≤ 0.12, where M05 assume the Abell cluster catalog to be highly complete, and

find C4M05 to be 90% complete above 2 × 1014M�. C4M05 finds 71% of the 104 Abell

clusters selected this way. Examination of the 30 missing Abell clusters revealed six were

too deep for the C4M05 algorithm, eight have too few spectra, and, by visual inspection,

six are found not to be genuine clusters. Discounting these 20, and including another

three Abell clusters which were blended into other nearby clusters, the recovery rate for

the C4M05 algorithm was found to be 92%.

Using the same 0.03 ≤ z ≤ 0.12 volume constraints on the Popesso et al. (2004)

cluster sample, C4M05 found 39 of 43 RASS-SDSS clusters in the DR2 area. Allowing

for a slightly larger matching radius at lower redshifts (since comoving distance decreases

with decreasing redshift at fixed angular size), cluster deblending and edge effects, the

C4M05-RASS recovery rate was improved to 98%.
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2.3.5 Follow-on Work

A number of publications have used the C4M05 catalog to investigate various aspects of

cluster astrophysics and cosmology. C4M05 has also been examined in comparison to other

cluster/group finders (e.g. group finders such as those in Berlind et al. (2006) and Yang

et al. (2007)). A body of work also exists looking at the various properties of C4M05

clusters and extending the mass-cluster observable work of M05.

Milosavljević et al. (2006) measures the luminosity gap (the difference in photometric

magnitude between the two most luminous galaxies from a given system of galaxies) in

the M05 catalog to quantify the dynamical age of the C4M05 clusters, identifying fossil

groups and then comparing them to theoretical predictions. Poggianti et al. (2006) uses

the M05 catalog as a second SDSS cluster sample to measure the OII−σ relation in clusters

and then infer its evolution with a high-z dataset from the ESO Distant Cluster Survey

(EDisCS, White et al., 2005). Similarly, De Lucia et al. (2007) examines the EDisCS

sample complemented with the M05 cluster catalog to examine the build-up of the red

sequence in galaxy clusters since z∼0.8.

Bernardi et al. (2006) uses the M05 catalog, to evaluate the environmental effect of

early-type galaxy evolution, using it as a further indicator of a group’s environment (as

well as using the density of the galaxy groups themselves; groups found near clusters are

classed as being in a dense environment). Aguerri et al. (2007) looks at the morpholo-

gical distribution, velocity dispersion profiles and fraction of blue galaxies in clusters in

SDSS-DR4, using cluster catalogs obtained prior to the SDSS, deriving and comparing

their results with C4M05 and RASS-SDSS. Using the Galaxy Zoo (Lintott et al., 2008) to

classify galaxy morphologies, Bamford et al. (2009) looks at the dependence of morphology

and colour on environment, using the M05 cluster sample to identify groups and group

environments.

von der Linden et al. (2007) improves upon the clusters found by C4M05 cluster finder,

which is limited to the galaxies selected by the spectroscopic targeting algorithm (§2.1.2)

and recoup the Brightest Cluster Galaxy (BCG) memberships that may have been missing

from the M05 clusters due to fiber collisions (§2.3.3) and/or colour/magnitude contraints.

With the BCGs identified in the M05 cluster catalog, Bernardi et al. (2007) looks at

their properties within their respective clusters and discuss the implications for cluster

formation histories. At other wavelengths, Best et al. (2007) discusses the connection and

physical mechanisms for coincidences between (radio-loud active galactic nuclei) AGN

and the C4M05 cluster BCGs. Schawinski et al. (2007) uses GALEX near-UV (NUV)
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photometry of a sample of early-type galaxies selected from C4M05 clusters, particularly

BCGs, to study the UV colour-magnitude relation.

2.4 Shortcomings of C4

In this section, I will briefly overview some of the shortcomings of the C4M05 algorithm

that may limit its success (§2.3) in the future.

2.4.1 Spectroscopic Redshift Limitations

C4M05’s reliance on spectroscopic redshifts to group galaxies into clusters reduces its ef-

ficacy in higher redshift regimes (M05 is limited to z < 0.17), where data is limited

due to galaxy magnitudes being too faint for spectroscopic confirmation by SDSS. C4M05

leverages statistical power by being able to utilise data over large volumes of sky, but

spectroscopic surveys are typically either wide and shallow, or narrow and deep.

In addition to SDSS spectroscopy, there are only a handful of current generation wide-

field spectroscopic surveys: BOSS (∼ 10, 000�◦, Eisenstein et al., 2011), WiggleZ (∼

1, 000�◦, Drinkwater et al., 2010), and GAMA (∼ 250�◦, Driver and team, 2008),

whilst most spectroscopic observation is focussed on following up astrophysical objects

of interest or narrow field-of-view surveys e.g., COSMOS (∼ 2�◦, Scoville et al., 2006).

Spectroscopic surveys also take a significant amount of time to cover the volume of universe

imaged by photometric surveys to a reasonable completeness, leaving C4 with limited

future prospects for cluster finding.

2.4.2 Association of Galaxies to Clusters

When the C4M05 algorithm forms C4 clusters from the C4 galaxy catalog (§2.2.5), it as-

sumes the galaxies are (approximately) spherically distributed around a cluster centre with

a densely populated centre. Whilst the premise of a concentrated population of galaxies

is the very definition of a galaxy cluster, there are issues with treating the spectroscopic

redshift as a cosmological distance. Galaxies are considered as being in a cluster when

their motion is dominated by the gravitational potential of the cluster; moreso than the

Hubble flow (the apparent motion of galaxies due to the expansion of the universe).

This dissociation from the Hubble flow may well introduce unaccounted line-of-sight

fragmentation and/or blending in subsequent C4 catalogs due to the assignment of cluster

centres being made in comoving space, where the redshift dimension is simply converted

to a comoving distance (Equation 2.24), and the assignment of galaxies to that cluster
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centre, which also uses the assumption that the source of the redshift is the Hubble flow.

Assuming hydrostatic equilibrium, galaxies in a rich galaxy cluster move with random pe-

culiar velocities (median line-of-sight velocities) of typically ∼ 750 km s−1 (Bahcall, 2000).

Using the assumed cosmology of H0 = 100h km s−1 Mpc−1, means galaxies whose peculiar

velocities are aligned with their recessional velocities appear a median 7.5h−1 Mpc from

the cluster centre, i.e., outside the maximum radius that galaxies are assigned to a cluster

centre.

2.4.3 Cosmology

C4M05 uses an Ωm = 1 cosmology to convert between redshift and comoving space (§2.2.2),

which is a reasonable approximation at the limited redshifts of the C4M05 catalog. To

convert a redshift into a comoving distance, one must account for the underlying cosmology,

and expansion history, of the universe between the observed galaxy and the observer, and

improper assumptions on a chosen cosmology may impact the efficacy of C4 at higher

redshifts.

2.4.4 Ease of Use

The C4M05 algorithm is specifically tailored to the SDSS DR2 dataset. For example,

C4M05 needs information telling it how many galaxies are in the input catalog and the

limits of a spatial grid in which to compute the C4-clustering (§2.2.2). To adapt C4M05

to different data sources, changes can be made to C4M05 by going into the source code

and changing the hard coded values. Repeated runs of C4M05 also require hard coding

of the filenames throughout the algorithm if unique C4M05 parameter combinations are

to be recorded for later comparison. This may need to be done several times since C4

parameters will need to be repeatedly run on a dataset and evaluated before an optimal

parameter set is determined for the production of the final C4M05 cluster catalog from

that input.

When C4M05 ingests the DR2 data, it takes in all of the DR2 galaxy information it is

given. In the future, when datasets become far larger than the spectroscopic DR2, running

C4 will require increased computing resources such that full data ingestion may not be

possible with only a single CPU.

The C4M05 algorithm also has a noticeable shortcoming in that with the production of

a cluster catalog, the galaxy membership only exists as a number count, meaning reana-

lysis is necessary to determine the actual members of the “found” C4 cluster for further
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population/substructure studies (§2.3.5). Whilst this my not be challenging with shallow

datasets, increasing the depth of the data given to C4 may result in an increased number

of systems found along a single line-of-sight, leading to confusion when re-associating those

C4 galaxies to their C4 defined cluster.

An esoteric programming criticism can be made of C4M05 in that variables are defined

multiple times throughout the algorithm, such that if a parameter value is changed, it

must be changed in multiple places. If the parameter is not changed in some of those

places, then the C4 catalog produced will be inconsistent with the user’s expectations.

2.5 Summary

This chapter reviews the methodology and subsequent science produced as a result of the

M05 C4M05 catalog. This is a highly complete and pure cluster sample, as determined

by comparison to existing cluster catalogs and tests with simulated galaxy/halo catalogs

(§2.3).

In section 2.1, I have described the photometric and spectroscopic SDSS campaigns

and discussed the selection of spectroscopic galaxies from the photometric survey that

form the spectroscopic DR2 galaxy catalog.

In section 2.2, I described the original C4M05 cluster finding algorithm, detailing its

main components, and in section 2.3 I explored the science results from C4M05 and some

of the work that followed. In section 2.4, I spell out some of the shortcomings of C4M05

with regards to its application to future data.

As well as the main C4M05 measurement of colour-clustering (§2.2.2), the use of key

concepts such as the FDR to identify the cluster galaxies and the use of k -NN to approx-

imate cluster centres (§2.2.3 and §2.2.4, respectively) give the output C4M05 catalogs a

competitive level of statistical certainty. It is these concepts that define the C4M05 al-

gorithm and are common to the AperC4 algorithm, introduced in this thesis, that will

be explored in subsequent chapters.
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Chapter 3

AperC4: a New Cluster Finding

Algorithm

In this chapter, I introduce the new AperC4 algorithm presented in this thesis and com-

pare it to the original C4 algorithm (see chapter 2). I refer to the M05 C4 algorithm and

products as C4M05 and refer to the new C4 algorithm as AperC4 to differentiate them,

whilst general C4 concepts are not assigned a subscript. AperC4 is named for its use

of C4 concepts but sampling over multiple angular apertures rather than depending on

redshift information. In section 3.1, I discuss the motivations for building AperC4 and

consider how the changes from C4M05 to AperC4 will affect cluster finding. I present the

outline of this new algorithm, the AperC4 workflow, and the free parameters associated

with the algorithm, in section 3.2. In section 3.3, I discuss how AperC4 aperture choices

are made, then run through some thought experiments on the purpose of using multiple

apertures, outlining their efficacy in different test cases. I then describe the advantages of

using p(z) over photo-z in breaking membership degeneracies between AperC4 catalogs.

3.1 Motivations for Modifications

3.1.1 Why Modify C4?

As discussed in §1.5, and at length in chapter 2, C4M05 is an advanced cluster finding

algorithm that lent itself to a range of scientific applications. Where C4M05’s strength lies

is in the purity of the M05 cluster catalog, and its high completeness measured against

cluster catalogs from other wavelengths, which made it ideal for studies of the astrophysical

nature of galaxy clusters (see §2.3.5). However, C4M05’s shortcomings (§2.4) mean that it

has limited future prospects.
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The premise for creating a new C4 algorithm is to extend C4M05 into the photometric

regime, which is only limited to the magnitude limit of the imaging data supplied by any

given survey telescope, rather than the shallower magnitude limit of followup spectroscopic

observations. Additional motivation for this transition comes from the present generation

of photometric surveys, e.g., DES (§4.1), Pan-STARRS (Kaiser et al., 2002), KiDS (de

Jong et al., 2013), and VIKING (Sutherland, 2012), which are/will be delivering large

volumes of extragalactic data for a variety of astronomical and cosmological applications

(Seo and Eisenstein, 2003; Munshi et al., 2008; Venemans et al., 2012; Kirk et al., 2013).

Proposed future surveys, such as LSST (LSST Collaboration, 2012), and Euclid (Laureijs

et al., 2011), will provide even greater volumes of data to deliver better constraints and

characterisation on the matter-energy content of the late-time universe. Detection of

clusters in such data demand that any new cluster finding algorithm can computationally

handle large volumes of data in a consistent way.

3.1.2 Redshift Considerations

C4M05 is engineered towards spectroscopic data sets (specifically SDSS DR2), incurring

limitations based on the depth of spectroscopic data (§2.4.1), and depends on assumptions

on the deviation of redshifts of those cluster galaxies (§2.4.2).

AperC4 makes a large departure from C4M05 by considering neither spectroscopic

nor photometric redshifts when establishing the most cluster-like galaxies. Redshifts are

employed only after candidate clusters have been defined by AperC4(§3.2.3).

Redshift information is used in the form of galaxy p(z)s (probabilistic redshift inform-

ation derived from photometry; see §6.1) rather than spectroscopy. AperC4 uses p(z)s

to optimize galaxy membership of the clusters identified, deprojecting clusters that may

lie along the line-of-sight. Using the recorded AperC4 membership information and in-

voking external redshift information, galaxies that have been assigned to more than one

cluster are reassigned to their (single) optimal cluster. This reassignment should allow

discrimination of cluster substructure from smaller groups/clusters (§3.3.3).

A number of methods exist to give observed galaxies redshifts via photometric inform-

ation (Csabai et al., 2003; Collister and Lahav, 2004; Wang et al., 2007; Cunha et al.,

2009; Gerdes et al., 2009; Arnouts and Ilbert, 2011). AperC4 is set up to use any redshift

mechanism available. To do so, it treats redshifts as a probability distribution, p(z) across

the entire observed redshift range of the photo-z/p(z)/spectro-z method. This is in tune

with the more recent photometric redshift algorithms of Cunha et al. (2009) and Gerdes
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et al. (2009), where the galaxies themselves are assigned a p(z). The p(z) given by these

methods is typically based on the respective algorithms calibrating to a subset of galaxies

with known spectroscopic redshifts, from some defined set of sources, and comparing them

to their observed properties in the photometric survey, nominally from the SDSS (I discuss

details of the Cunha et al., 2009, algorithm further in section 6.1).

3.1.3 On Apertures and Cosmology

The utilisation of predetermined angular apertures is a defining feature of AperC4. The

use of apertures is motivated by the use of p(z) redshift information and its translation to

physical distances. Cluster finders (§1.5) will typically look for concentrations of galaxies

within a 1h−1 Mpc to 1.5h−1 Mpc radius kernel at the proposed redshift of the cluster,

using this as a physical cut off for cluster membership. When employing p(z) information,

there is no plausible single angular search radius that can be constructed from a comoving

separation. Simultaneously, to translate a physical/comoving separation to an angular

separation, one must also assume some form of cosmology (and as mentioned in §2.4.3,

C4M05 already requires an update to its cosmological assumptions).

So to address the difficulty of associating a physical radius to a galaxy with a probabil-

istic redshift distribution, and the assumption of a known background cosmology, AperC4

functions by utilising multiple, explicit angular radii. Given a cosmology, an angular sep-

aration on the sky will relate to a physical transverse separation at a given redshift. Given

a different cosmology, the same redshift and the same angular separation, all that changes

is the size of that physical separation. By sampling enough differing angular radii, fea-

tures on different physical scales at all redshifts may be probed. In this sense, AperC4

is cosmologically independent, avoiding complications in choice of input cosmology by

not invoking one! AperC4 then relies on the 4-dimensional colour-clustering of cluster

galaxies within these angular radii to identify clusters.

I save discussion of the finer points of choosing a set of angular apertures, and their

effect on cluster finding, for section 3.3.

3.1.4 Computational Modifications

To address the limitations of C4M05’s ease of use (§2.4.4), the running of the C4 algorithm

is modified in AperC4 such that:

• the algorithm is able to recognise parameter value combinations already evaluated,

avoiding recalculation where unnecessary;
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• if recalculation of a specific set of parameters is necessary, then it is possible to rerun

the algorithm and save the new catalog results without necessarily losing/overwriting

the old set of results;

• parameters have “legal” ranges, i.e., parameter values are limited to a finite range

or set of options, where appropriate;

• AperC4 does not need to know the dimensions of the input galaxy catalog ahead

of runtime (§3.2.3), i.e.,

– the redshift range of the input galaxy catalog can be unknown;

– the area of the survey (R.A./dec limits) covered by the input catalog can also

be unknown.

– the number of input galaxies does not need to be calculated beforehand.

• AperC4 outputs a member catalog that specifies which cluster a C4 galaxy has

been assigned to (§2.4.2).

• output AperC4 catalogs are given identifiable names with user defined prefixes;

• output AperC4 catalogs and intermediary files can be placed in a specified directory.

From a programming perspective, the AperC4 algorithm is programmed such that:

• user-defined AperC4 parameter values are initialised at one location within the

algorithm (when the algorithm is first called), except for mathematical/physical

constants (e.g., π, e, c, etc.) which remain hardcoded;

• parameters have consistent names across the AperC4 software modules for ease of

use by other programmers (§3.2.10);

• rather than being fixed to 1�◦ (as in C4M05, §2.2.2), the scale of the AperC4 galaxy

grid is allowed to vary, which permits optimisation of the algorithm to computing

resources (§3.2.3);

• to deal with catalogs that cannot be handled by a computing system’s memory, the

AperC4 algorithm breaks the survey area into overlapping tiles.

These computing resource modifications include additional features that anticipate

the usage of other, larger datasets by the AperC4 algorithm. This new dynamism of

the AperC4 algorithm precipitated its translation from the C programming language to

C++. These modifications shorten AperC4’s effective running time when running the
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algorithm multiple times, allowing a faster turnaround time for parameter exploration or

sanity checks.

The original C4M05 algorithm employs some external code that no longer compiles

under current operating systems. In section 3.2.5, I replace the kth nearest neighbour

code used by M05 with the newer code, MLPACK (Curtin et al., 2011). To facilitate this

change, the AperC4 algorithm is written in a modular format, which allows components

such as this k−NN module to be replaced without impacting the rest of the algorithm. This

modularisation gives AperC4 a level of future-proofing over the original C4M05 algorithm.

3.2 Introduction to the New Algorithm

In this section, I shall describe the new cluster finding algorithm, AperC4. In subsection

3.2.1, I give a brief overview of the AperC4 process. In the subsections that follow,

§3.2.2 to §3.2.9 , I describe the various processes of the AperC4 pipeline in finer detail,

describing deviations from the C4M05 processes. In subsection 3.2.10, I summarise the

AperC4 input parameters, giving their default values. I will discuss the rationale for

these processes in section 3.3.

3.2.1 AperC4 Algorithm Outline

For clarity, I describe the survey area as processed for a single aperture as an “aperture-

slice”. In step 1 (below), the survey area is split into overlapping tiles, hence, each

aperture-slice is also divided into these galaxy tiles. I refer to a single galaxy tile that has

been processed by a single aperture as an “aperture-tile”. The AperC4 algorithm flow

can be summarised in the following eight steps.

Step 1: Split galaxy survey into tiles (§3.2.2). AperC4 ingests the galaxy catalog

and splits it into overlapping tiles.

Step 2: Calculate p-values (§3.2.3). p-values are calculated for each galaxy, as per

§2.2.2 using every aperture in every tile.

Step 3: Identify C4 galaxies (§3.2.4). Calculate and apply the FDR (§2.2.3) on each

aperture slice to produce “AperC4 galaxies”, i.e., cluster-like galaxies as identified

at some aperture scale.

Step 4: Find k −NN distance (§3.2.5). Find k − NN distance in 2-D to identify the

galaxies in the densest areas for each aperture slice.
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Step 5: Form clusters (§3.2.6). AperC4 associates galaxies to the densest galaxy re-

gions identified in Step 4 above, down to a lower threshold surface density of galaxies

(i.e. some number of galaxies per �◦in the survey area). These clusters form the

initial cluster catalogs and member catalogs.

Step 6: Redshift assignment (§3.2.7). The clusters in each aperture slice are assigned

a weighted redshift distribution based on the redshifts of their constituent members.

Step 7: Aperture consolidation and membership optimization (§3.2.8). Clusters

in aperture slices are combined where their redshift and memberships agree, else

shared members between clusters with contrasting redshifts are assigned to their

optimal cluster. This step produces a single cluster catalog with uniquely defined

memberships.

Step 8: Apply Ngals threshold (§3.2.9). AperC4 removes clusters with fewer than

some arbitrary number of galaxies. The remaining clusters and their members form

the final AperC4 cluster and member catalog.

3.2.2 Step 1. Survey treatment: Tiling

AperC4 ingests the galaxy catalog and splits it into overlapping tiles. The only condition

on these tiles is that they are large enough to be representative of the galaxy content of the

universe. The size of these tiles is determined by the SPLITSIZE∗ and OVERLAP parameters

which describe the minimum tile side length in degrees in both R.A./dec and the minimum

overlap length in degrees. A typical tile will cover (SPLITSIZE × OVERLAP × cos(dec)) �◦,

where dec is the mean declination of the tile, excepting survey edges which can be as small

as (SPLITSIZE2 × cos(dec)) �◦. The size of the minimum overlap should be guided by

the twice the angular extent of the largest association of galaxies (i.e., galaxy cluster) one

may expect to find.

During this step, apparent magnitude limits can be placed on the galaxy catalog

for each band of the survey with the SURVEY LIMITS parameter. In this thesis, I ap-

ply AperC4 to SDSS style multi-band data, so the number of bands is limited to the

five bands of the SDSS (§2.1.1). An optional MAGLIM parameter can be employed to in-

crease/decrease all the band limits supplied by SURVEY LIMITS.
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Figure 3.1: The AperC4 p-value calculation for a single aperture-tile is summarised in this flowchart.

The blocks in green represent the galaxy catalog ingested (top green block) and the galaxy catalog output

with the p-values (bottom green block). The blue blocks represent the processes used in every p-value

calculation and are discussed in greater detail in section 3.2.3.

3.2.3 Step 2. AperC4-clustering: p-value Measurement

Adaptive Grid Creation

Starting with the creation of the grid, AperC4 is adaptive to the spatial dimensions of

the input galaxy catalog, calculating the size of the grid needed to hold the data, creating

that grid (with the C++ MultiArray (Garcia and Lumsdaine, 2005) library from the

∗In this thesis, PARAMETERS are written in this typeface.
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Boost project∗), and will itself calculate the amount of data (number of galaxies) it needs

to place in the grid.

As well as assigning the dimensional limits of the R.A. and dec. grid, I incorporate a

new parameter, RADECSCALE, that allows the grid to be subdivided further into fractions

of a degree. This affects the computational balance between CPU time and memory

usage. RADECSCALE can be understood as the number of grid elements contained in a

degree or as the square root of the number of grid elements per square degree (e.g. setting

RADECSCALE = 6 results in a grid that holds 36 elements per square degree, each element

being 10′ × 10′). In the case of low memory systems, the RADECSCALE parameter can be

set to allow one grid element per degree, which requires fewer grid elements to hold the

galaxy data in memory, but when evaluating AperC4-clustering all galaxies sharing the

same grid element are examined for their AperC4-clustering properties, and thus requires

more CPU time. Where a system has access to more memory, RADECSCALE can be set to

allow more grid elements per square degree, reducing the number of neighbouring galaxies

evaluated for AperC4-clustering for each galaxy, thus reducing CPU time employed.

This trade-off, to be made between processing time and memory usage, does not affect

the AperC4 clustering itself.

Evaluating AperC4-clustering

Once the galaxy survey is split into tiles (§3.2.2), each tile is processed multiple times using

the different aperture scales, or radii, which are used to construct angular apertures around

each galaxy in a tile. This gives multiple AperC4-clustering p-values per galaxy (Step

2 in §3.2.1). The calculated p-values using the different apertures are kept as separate

tiles themselves, such that a single input galaxy tile will produce multiple aperture tiles.

For clarity, I will describe the process for a single aperture size in a single galaxy tile

(aperture-tile). Each aperture radius is input into the algorithm from an array called

APERTURESIZE. No redshift limit is involved in this calculation.

For each galaxy (target galaxy), AperC4 creates a colour-area aperture. When

AperC4 creates a radial aperture for the galaxy, it searches all grid elements covered

by the angular aperture, where the angular aperture is given explicitly to the algorithm.

Colour clustering is as described in section 2.2.2. However, a new multiplier is applied

to the colour error, σxy, which in turn affects γ. M05 noted that the median of σxy(stat) =

0.02 for the DR2 data changes very little over the magnitude range, partly due to the fact

∗http://www.boost.org/
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that these are the brightest galaxies in the DR2 data, and were thus satisfied with σxy(sys)

being the dominant term of Equation 2.18. By introducing the free parameter, Xσxy , as a

multiplier to σxy, the relationship between the colour box size and Equation 2.18 becomes:

Colour

box size
= Xσxyσxy = Xσxy

√
γσ2

xy(sys) + σ2
xy(stat) (3.1)

.

This scaling factor translates to the X seen in Figure 2.3. This formulation for the

colour box keeps the γ parameter dependent on the overall scaling for the colour box. The

systematic colour component was primarily instantiated from measurements of magnitude

variations in 158 standard stars across the SDSS survey area (Smith et al., 2002), as

measured with a 20-inch telescope with a non-SDSS filter set observed at Apache Point and

interpolating them to the SDSS telescope system (the SDSS telescope could not directly

observe the stars as they would quickly saturate the SDSS telescope CCDs). An improved

photometric system was developed by Padmanabhan et al. (2008), entitled übercalibration,

that significantly reduces this systematic colour component across the whole survey area.

Additionally, as the survey area is treated in overlapping tiles by AperC4 (§3.2.2), this

systematic colour component is further reduced with respect to each individual galaxy.

Thus, the Xσxy term is kept outside the quadratic combination of systematic and statistical

terms so that its meaning is clear for catalogs created where γ = 0. In the code itself, the

Xσxy term is indicated by the SIGMACOLOUR parameter, whilst γ is named GAMMAFACTOR.

The evaluation of Nneighbour changes from that in Equation 2.20 to:

N target
neighbour =

∑
n∈A

∫ Xσxy

−Xσxy
P (σxy,neighbour) dσxy , (3.2)

where the limits of the colour space integral are now increased/decreased by the scaling

factor, X, and (n ∈ A) specifies all the neighbouring galaxies, n, within an aperture, A,

defined by some angular radius around the target galaxy.

AperC4 evaluates the magnitudes of the target galaxy and each potential neighbour

galaxy against the given magnitude limit of the survey, before evaluating the colour clus-

tering. This is done for both magnitude components, of each colour, for both target galaxy

and potential neighbour galaxies. This acts to maximize the amount of colour informa-

tion available to each galaxy, by not throwing out galaxies that drop out of one or more

SDSS bands (but not more than three out of the five) whilst respecting the limitation of

detection accuracy of the survey instrument(s) in each respective waveband. Identification

and selection of galaxies (on which AperC4 is run) must be done prior to submitting the
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galaxy data to AperC4. No weighting is applied to the colours in the absence of full

colour information, and the colour-aperture probabilities (p-values; equations 2.21 and

§2.2.3) are simply drawn from the combined probabilities of the employed colours.

For a single aperture-tile, this step is presented in Figure 3.1 as a flow chart. This

process is repeated for all aperture-tiles in an aperture-slice, and for all aperture-slices

(i.e., the full survey for all apertures).

3.2.4 Step 3. Identify C4 galaxies

Once the p-values for the galaxies are output, a FDR (§2.2.3) is employed to extract

samples of galaxies (one set of p-values per aperture slice) that are the most colour-

clustered in their respective apertures (more accurately, the least likely to have been drawn

from the colour-clustering distribution generated by using a respective galaxy’s colour box

to sample the sky). The p-value distribution (Figure 3.2) can also be used to assess the

effectiveness of the colour-aperture test. A strong test would result in a fraction of galaxies

at a p-value of p = 0.0 and the remainder at p = 1.0, i.e., the test clearly discriminates

between two types of galaxy, those that sparsely or densely populate a colour-aperture,

resulting in a binary distribution. A weak test would result in a significant fraction of

galaxies in the catalog having a p-value of p ∼ 0.5, i.e., the test cannot discriminate

field/cluster galaxies by how densely the colour-volume apertures are populated.

Figure 3.2: In this diagram, the p-values of the SDSS DR2 galaxies are plotted as a fraction of the catalog.

The cuts representing a false discovery rate of 5%, 10% and 15% are highlighted in green, red and blue

respectively
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The aperture-tiles are combined into a single aperture-slice, eliminating duplicate

galaxies in the overlap regions, and an appropriate FDR threshold is calculated for and

applied to each aperture-slice, independently. The FDR is simply named FDR in the al-

gorithm.

3.2.5 Step 4. Determining Cluster Centres with kth Nearest Neighbour

Once the FDR is applied to the aperture-slice galaxy catalogs, the galaxies’ kth nearest

neighbour distances are evaluated. The value of k is given to the algorithm as the K IN KNN

parameter. The algorithm used is from part of the MLPACK∗ distribution (developed

by Curtin et al. 2011). As the redshift dimension is unconstrained, the catalog is treated

as a 2-dimensional map (utilising equations 2.22 & 2.23) and the kth nearest neighbour

distance is calculated for each galaxy in the celestial plane.

At this stage the aperture-tiles are resized to allow parallelisation of the cluster forming

processes (see Figure 3.3). This can be done because the survey tiles no longer need to be

considered as a statistically representative portion of the survey area; the important thing

is that the largest clusters can be adequately characterised by a set of galaxies captured in

a single tile. These aperture-tiles still overlap by an amount set by the OVERLAP parameter

set earlier (§3.2.2), but now use 3× OVERLAP to define the length of a tile axis. This ensures

the time taken to process the aperture-tiles scales approximately linearly with increased

survey area, helping reduce the effective run time of the algorithm (one of the stated aims

of AperC4; see §3.1.4).

Note that the aperture slices are all still separate.

3.2.6 Step 5. Forming Clusters

As described in section 2.2.5, the kth nearest neighbour distances are used to sort the

AperC4 galaxies (from smallest k − NN distance to the largest). Treating the distance

as an inverse proxy for density, the first of these AperC4 galaxies (with the smallest

nearest neighbour distance, and thus in the densest environment) is assigned as the cluster

centre. Then, galaxies are added to the AperC4 cluster radially, in the plane of the sky

from the centre, until the galaxies within a threshold radius defined by APERTURESIZE

are exhausted. The galaxies assigned to the AperC4 cluster(s) are removed from the

candidate list and the smallest kth nearest neighbour distance of the remaining unassigned

galaxies is nominated as the next cluster centre, and the process repeats until all galaxies

∗http://mloss.org/software/view/152/
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are assigned or any remaining galaxies are isolated within an aperture radius. Isolated

pairs of galaxies are also rejected at this stage.

The galaxies that pass the FDR threshold are significantly C4-clustered (p ' 0.0,

§3.2.4) with neighbouring galaxies within an aperture radius (APERTURESIZE) in their

respective aperture-slice. Real clusters can have multiple component colour behaviour (De

Lucia et al., 2007), so no attempt is made to discriminate galaxies by colour within the

aperture radius. Nearby galaxies (that cluster in colours dissimilar to the defined cluster

centre) may be included, nominally due to their own AperC4-clustering significance.

The redshift dimension is unbound in AperC4 meaning the uncertainty on the red-

shifts of these clusters will be larger than those on the spectroscopic redshifts utilized

in C4M05. Indeed, by not bounding the redshift dimension, AperC4 permits increased

blending of clusters along the line-of-sight. However, this method completely mitigates

the problem of co-added recessional and peculiar velocities of spectroscopic methods and

has no sensitivity to large errors in photometric redshift.

The AperC4 process up to this stage is given in a flowchart in Figure 3.3. To accelerate

the process, the survey area is redivided into smaller overlapping tiles (as explained in

§3.2.5). The R.A./dec dimensions of these subdivided tiles are defined by 3×OVERLAP,

and overlap by 1×OVERLAP.

A further modification to the original algorithm means AperC4 retains galaxy mem-

bership for the clusters. AperC4 assigns IDs to the aperture-slice clusters and corres-

pondingly linking these IDs to AperC4 galaxies in the aperture-slice galaxy catalogs. The

result of this step is Naperture aperture-slice cluster catalogs, where Naperture is the number

of apertures given to the algorithm, i.e., one cluster catalog per aperture-slice. Each of

these cluster catalogs has a galaxy membership but they may contain galaxies duplicated

between them, i.e., slices may contain galaxies whose AperC4-clustering strength persists

at multiple apertures. These duplicate galaxies may lie in an equivalent cluster in other

aperture-slices, or the aperture-slice clusters may be fragmented/blended with respect to

one another. This allows AperC4 to combine the aperture-slices into a single cluster

catalog, which I will discuss in the sections following.

3.2.7 Step 6. Assignment of Redshift to Clusters

The clusters in each aperture-slice are assigned a p(z) by combining the product-sum of the

p(z) distributions of their respective members. Hence the initial p(z) for an aperture-slice
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Figure 3.3: The AperC4 process for a single aperture is given in this flowchart. The dashed-line, pale

blue boxes describe a process whilst the solid-line green, blue-green, and blue boxes indicate the data is

the same as input, has been treated, or is new, respectively.

cluster with n members can be given by:

Cluster p(z) =
n∏
i=1

p(zi). (3.3)

where i = 1, 2, . . . , n simply indicates the galaxy is a member of the cluster; the order in

which the product-sum is evaluated plays no role.

It can be noted that gaussian z ± σz style galaxy redshift information can also be

interpolated onto an observed redshift range, by breaking such gaussians into discrete

bins.

Each cluster p(z) is then normalised to unity to give a representative redshift prob-

ability distribution function (PDF) for each cluster in each aperture-slice. Now that the
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aperture-slice clusters have been given p(z) information, the following section will show

how AperC4 combines the tiles to give a single cluster catalog.

3.2.8 Step 7. Accounting for Fragmented Clusters

Each aperture-tile covers the same portion of survey for each aperture-slice. Considering

a single tile area (i.e., the Naperture tiles that cover a common area), the aperture-slice

clusters within that area are combined in the following way.

The aperture-slice clusters are first given new, unique IDs such that the members

do not get erroneously assigned to clusters defined in alternate aperture-slices, and the

memberships of the galaxies in each aperture-slice are adjusted to retain this information.

The tiles (of common area) are searched for duplicate galaxies, i.e., where they are found

in more than one aperture-slice. Where a duplicate galaxy is found, AperC4 calculates

the product of the p(z) of the duplicate galaxy and the p(z)s of each aperture-slice cluster

(§3.2.7) that the galaxy appears. The galaxy is assigned to the cluster where

p(zclst|aptr)× p(zgalaxy) (3.4)

is maximised, where p(zclst|aptr) is the cluster p(z) calculated in Equation 3.3 for a given

aperture. The galaxy is excised from all other aperture-slice clusters. The product-sum

p(z) for the clusters where the galaxy was removed is then recalculated and the process

repeats for all duplicate galaxies found. This ensures that the memberships of the aperture-

slice clusters are now unique amongst each other, i.e., a galaxy will belong to only one

aperture-slice cluster in one aperture-slice.

Once the galaxies across all aperture-slices are no longer duplicated, the p(z)s of

the aperture-slice clusters that shared members prior to the membership optimisation

(above) are tested to see if they are at the same redshift (and therefore describe the same

cluster, but with possibly differing memberships). The cross-p(z) threshold parameter,

PZTHRESHOLD, defines the minimum cross-probability of a cluster found with aperture

A being the same as a cluster found with aperture B. If threshold is exceeded, i.e.,

p(z)A × p(z)B > p(z)THRESHOLD , then cluster A is merged with cluster B and their

memberships are combined.

Once the aperture-slices contain no duplicate galaxies between them, and their clusters

are unique in membership, the aperture-slices are combined into the AperC4 cluster cata-

log tile. This is repeated for every aperture-tile, such that there is now one cluster catalog

for each tile area. The overlapping tile areas are similarly consolidated, and duplicate
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members in the tiled clusters are treated the same way as above to form a single AperC4

cluster catalog.

This step serves the purpose of separating out clusters blended along the line-of-sight,

whilst similarly merging cluster substructures that may appear separate in one aperture-

slice but not another.

3.2.9 Step 8. Richness Cut

An Ngals cut-off is applied, acting as a richness cut removing AperC4 clusters with a

membership of fewer than NGALLIM members, where NGALLIM is a parameter to test over.

Clusters with low memberships may often be chance superpositions rather than true

3D overdensities, due to photometric redshift uncertainties, and so this parameter serves

to improve the purity of the final cluster sample. However, clusters with memberships of

Ngals ≤ NGALLIM may also include real systems, so completeness is negatively impacted by

this limit.

In AperC4 this acts to eliminate galaxies that have become isolated through the

(de)fragmentation step (§3.2.8). As galaxies get removed from their non-optimal clusters,

the cluster p(z) approaches the p(z) distributions of its remaining members. In the limit

of one member, one finds p(zcluster) 7→ p(zgalaxy). By definition, one cannot really define a

cluster of galaxies with a membership of one. Similarly, when the number of galaxies in a

cluster is small, the sum-product p(z) is more sensitive to uncertainties in the redshift of

any of its constituent members.

3.2.10 AperC4 Algorithm Input Parameters

Both AperC4 and C4M05 algorithms require a number of key parameters to run. As

seen in this section, AperC4 utilizes free parameters from the C4M05 algorithm, frees

or removes previously fixed parameters from the same, and implements new parameters.

The key algorithmic parameters are described in Table 3.1, where parameters marked

with a circle outline, #, represent parameters common between C4M05 and AperC4;

those marked with a filled circle,  , are introduced in the AperC4 algorithm, and those

with a half filled circle, G#, have changed between the C4M05 and AperC4 algorithms.
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In addition to these parameters are a set of variables and flags, used for AperC4

data handling, that do not affect the content of the output AperC4 catalogs. These help

AperC4 index the runs by the parameters in Table 3.1, allow the user to observe the status

of the AperC4 software as it runs, utilise the directory structure of the computing system

being operated to access different AperC4 components, and store the output AperC4

data for future analysis and/or repeated use. The parameters that help systematize and

augment the running of the AperC4 algorithm, but do not affect the output AperC4

catalog, are given in Table 3.2.

Table 3.2: Descriptions of the set of parameters introduced to the new AperC4 algorithm that affect the

running of the algorithm and organisation of the data output(s).

Parameter

name (and

origin)

Variable

type

Parameter

values

Description & example call

VERSION  String Unbound VERSION is a basic description of the data being

used, and is mainly used as a tag for AperC4 to

quickly find previous runs with a given parameter

combination on this data. Usage:

VERSION = ’DR2’

RADECSCALE  Float 0.0− 9.9

(1d.p.)

RADECSCALE represents the number of grid divisions

within a degree. Larger numbers result in faster

running at the expense of greater memory use and

vice versa for smaller numbers. This parameter is

useful for system optimization (§3.1.4 & §3.2.3).

Usage:

RADECSCALE = 6.0

PLOTOUT  Integer

(flag)

0

1

PLOTOUT is a flag that plots figures on-screen as

AperC4 is run: 0 suppresses plots; 1 shows plots.

Usage:

PLOTOUT = 0

READOUT  Integer

(flag)

0

1

READOUT is a flag that makes the code more or less

verbose, i.e., print more or less text during a

AperC4 run: 0 suppresses screen output; 1 shows

more output. Usage:

READOUT = 0

INPUTDIR  String Unbound INPUTDIR is the directory structure from which

AperC4 reads galaxy information. It also creates

subdirectories to store catalog tiles. Usage:

INPUTDIR = ’/path/to/galaxy_files/’

Continued on next page
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Table 3.2 – Continued from previous page

Name (and

origin)

Type Values Description & example call

METADATADIR  String Unbound METADATADIR is the directory to which AperC4

saves metadata. Usage:

METADATADIR = ’/path/to/metadata/’

OUTPUTDIR  String Unbound OUTPUTDIR is the directory to which all reduced data

is written. This is also the destination directory of

the final AperC4 catalogs. Usage:

OUTPUTDIR = ’/path/to/outputs/’

C4PPDIR  String Unbound C4PPDIR is the directory that holds the

AperC4-clustering (§3.2.3) C++ files of AperC4.

The C++ program itself should be stored as

<C4PPDIR>/Release/FillGrid. Usage:

C4PPDIR = ’/path/to/program/’

PREFIX  String Unbound PREFIX is simply a string that prefixes all output

filenames to make runs distinctive. Usage:

PREFIX = ’First_DR8_Run’

POSTFIX  String Unbound POSTFIX appends to filenames before the galaxies

are assigned to cluster centres (§3.2.6) to make runs

distinctive. Usage:

POSTFIX = ’June_2011’

WRITESAVEFILE

 

Integer

(flag)

0

1

WRITESAVEFILE states whether the information of a

given run is to be saved to the metadata file: 0

doesn’t save metadata; 1 saves metadata. This

switch is included to prevent parallel runs failing

due to different runs being unable to access and

write to a file simultaneously. Usage:

WRITESAVEFILE = 0

3.3 Discussion

3.3.1 p-value Calculation with Defined Apertures

C4M05 calculates the p-values of galaxies belonging to the field in colour space (as described

in §2.2.2) by setting volume apertures made by a 50h−1 Mpc cylinder length and kernel

radius corresponding to 1h−1 Mpc from Equation 2.17. Both these dimensions are sensitive

to assumed cosmologies, and Equation 2.17 is only consistent for low redshifts (such as

0.03 < z < 0.17 used in M05). The key to both C4M05 and AperC4 methods is that an
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enhancement of galaxies in colour-space are indicative of a common stellar population, and

hence, common evolutionary stage. AperC4 leverages the fact that redshift information

is already embedded in the observed-frame SED, and so uses the observed-frame colours

without constraining redshift.

Rather than invoke a cosmology, AperC4 is furnished with a set of apertures, whose

radius is described by an angular separation. Because AperC4 is not given any redshift

information, and hence never transforms galaxy positions into a 3-dimensional co-moving

space, it is cosmology independent. However, there does need to be some decision making

as to what apertures to give to AperC4. The aperture choices themselves can be informed

by cosmology and typical cluster scales. Table 3.3 shows a single aperture can be thought

of as probing different physical scales at different radii. The aperture selection in Table 3.3

can be seen to correlate to 1 Mpc scales at redshifts between 0.1 < z < 1 when assuming

a WMAP-9 cosmology (H0 = 70.0, Ωm = 0.279, and ΩΛ = 0.721, Hinshaw et al., 2013).

Using other cosmologies affects the aperture radii in Table 3.3 such that the extremes

of the redshift range may not get probed at specifically 1 Mpc, or simply transforms the

alignment of the 1 Mpc elements but still at scales suited to galaxy clusters. For example,

the aperture scales for z = 0.05 do not specifically probe 1 Mpc, but smaller radii that

are still consistent with cluster scales (i.e., 0.53 Mpc) are implicitly included. In this

way, despite using a cosmology to establish explicit apertures, the apertures themselves

can be related to cluster radii for various redshifts in any number of cosmologies. By

treating the algorithm as multiple trials of different apertures, multiple physical scales in

the universe are tested. Note that the transverse physical distance of the aperture radius

simply correlates to a different redshift if the underlying cosmology departs from that

measured by WMAP, i.e., once the p-values for an aperture are calculated they can be

reused for different cosmologies.

In the following subsection (§3.3.2), I will set out some thought experiments to reason

how the aperture range is meant to capture low and high redshift clusters.

3.3.2 Aperture Gedanken

The cartoons in this section broadly describe the range of situations in which the AperC4

algorithm described in section 3.2 will encounter. I will first discuss the effect of the

aperture size on a cluster, relative to its radial extent, then demonstrate the method’s

application to examples of clusters of different masses and redshifts.

The figures below show the effect of different aperture sizes placed on a galaxy cluster
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Aperture

Radius

(arcmin)

9.0 6.3 5.0 3.7 3.0 2.7 2.5 2.2 2.0

z Mpc scale (where H0 = 70.0, ΩM = 0.279, ΩΛ = 0.721 )

0.05 0.53 0.37 0.29 0.22 0.18 0.16 0.15 0.13 0.12

0.10 1.00 0.70 0.55 0.41 0.33 0.30 0.28 0.24 0.22

0.15 1.42 0.99 0.79 0.58 0.47 0.42 0.39 0.35 0.31

0.20 1.79 1.25 0.99 0.73 0.60 0.54 0.50 0.44 0.40

0.30 2.42 1.69 1.34 0.99 0.81 0.72 0.67 0.59 0.54

0.40 2.92 2.04 1.62 1.20 0.97 0.88 0.81 0.71 0.65

0.50 3.32 2.32 1.84 1.37 1.11 1.00 0.92 0.81 0.74

0.60 3.64 2.55 2.02 1.50 1.21 1.09 1.01 0.89 0.81

0.70 3.90 2.73 2.16 1.60 1.30 1.17 1.08 0.95 0.87

0.80 4.10 2.87 2.28 1.68 1.37 1.23 1.14 1.00 0.91

0.90 4.26 2.98 2.37 1.75 1.42 1.28 1.18 1.04 0.95

1.00 4.38 3.07 2.43 1.80 1.46 1.31 1.22 1.07 0.97

Table 3.3: Assuming a WMAP-9 cosmology, this Table gives a matrix of Mpc scales that correspond to

the aperture radii (in arcminutes; top row) at various redshifts (left column) assuming the cosmology given

in the second row of the table. Highlighted in red are scales within 5% of 1 Mpc.

Figure 3.4: Key for gedanken figures

using the symbols described in the key (Figure 3.4). A background galaxy is one that

is both in the projected plane, and in the AperC4 colour-aperture, but is not bound to
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the cluster. They are pictured here as discrete entities for illustrative purposes only. In

AperC4 proper, and assuming the colours are somewhat unique to cluster environments

and redshift, multiple background galaxies would contribute small fractional probabilities

towards entering the same 4-D colour space as the cluster galaxies. With significantly

more galaxies in the RA-dec aperture, without colour space enhancement clusters may be

difficult to properly identify, i.e., line-of-sight contamination.

When using an aperture that is too large for the cluster the significance of the cluster

is more likely to get washed out by background contribution to the neighbour count in

colour-aperture space, as shown in Figure 3.5

Figure 3.5: This cartoon shows an aperture too large for a cluster. The Figure shows an aperture centred on

a central cluster galaxy (left) and on a random field galaxy (right). We see that the aperture is dominated

by background noise, so the p-value will indicate the cluster galaxy is more field-like than it is in reality.

Figure 3.6 shows that when the aperture approaches the size of the cluster, then the

contribution of the cluster galaxies to the neighbour count becomes stronger compared to

the random/model aperture.

For yet smaller apertures, Figure 3.7 illustrates there should still be an enhancement

in the signal from cluster centres, but clearly this falls as the aperture shrinks to below

the scale of the cluster concentration.

For apertures well below the scale of the cluster, it can be seen that galaxies at the

centre of the cluster may still display an enhancement against the field (Figure 3.8).

However, outside the central regions of the cluster, the signal (detected cluster galaxies)

is confused with noise (detected background galaxies) and so the true ‘size’ of the cluster

will be underestimated.
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Figure 3.6: This cartoon describes an aperture approaching size of the cluster. The Figure shows an

aperture centred on a cluster galaxy (left) and on a random field galaxy (right). Here the enhancement of

cluster galaxies is greater than the field, hence the galaxy that the aperture is centred on is less likely to

be drawn from the field population.

Figure 3.7: This cartoon shows an aperture that is slightly smaller than the cluster extent. The Figure

shows an aperture centred on a cluster galaxy (red aperture) and on a random field galaxy (purple aperture).

The enhancement of the central cluster galaxies can now clearly be seen within an aperture centred on the

cluster.

Large Mass/Radius - Low Redshift Cluster

Large radius, low redshift clusters are dependent on the maximum aperture size applied.

The choice of largest aperture should consider the largest low redshift cluster we wish

to consider (e.g. Figure 3.7), however, since the aperture is larger so is the background

signal, meaning the colour-clustering signal may be diluted. AperC4 may still detect

cluster members close to the core as per Figure 3.8, but the ability to identify members

on the periphery will be reduced accordingly.

Furthermore, if an aperture centres on a high redshift supercluster, this may also cause

an enhancement to the signal, meaning identification of cluster members at low z encounter
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Figure 3.8: Aperture approaching size of the cluster. Figure show an aperture centred on a cluster (red

aperture) and on a random field purple aperture). Where the aperture is placed on the cluster centre (left)

the cluster galaxy enhancement is somewhat greater than the field whilst cluster galaxies on the cluster

periphery (right) are indistinguishable from the field.

more issues than small aperture high z cluster member detections (e.g. reconsidering the

random apertures in Figure 3.8 as centering on genuine clusters at higher redshift). This

may be a non-issue as superclusters at high-z are a rarity (Einasto et al., 2014).

Small Mass/Radius - Low Redshift Cluster

At low redshift, small clusters can be found easily since the apertures that are explored

should include smaller apertures to find high redshift clusters. When employing an aper-

ture that is too large, the detection is equivalent to washing out the signal, as per Figure

3.5. Since the high redshift apertures will explore smaller aperture sizes, then the full

range of scales are explored for these clusters, and so the detection is maximised between

Figures 3.6 and 3.7. For apertures significantly smaller than the low redshift cluster then,

as per Figure 3.8, the detection is not made.

Finding small clusters at low redshift in the AperC4 framework depends very much

on the aperture used being the right angular size, based on the clusters’ true extent

and redshift. AperC4 will tend towards washing out the signal (Figure 3.5) when large

apertures are applied as the cluster is of intrinsically small radius. AperC4 recovers

these clusters by testing over multiple aperture scales, and so signal-to-noise (colour-

clustered cluster galaxies to colour-clustered background galaxies) maximises at the scale

most appropriate to the cluster. If that signal-to-noise is deemed significant in an aperture

(by FDR), then it will persist into the AperC4 galaxy catalog.
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Large Mass/Radius - High Redshift Cluster

High mass/radius high-z clusters are detected in the same as a low redshift small radius

clusters described above.

Small Mass/Radius - High Redshift Cluster.

The small radius, high redshift clusters are dependent on the minimum aperture size

applied. The choice here is dependent on the smallest aperture we decide to apply. High

z clusters with small radial extents will encounter problems with the aperture being too

large (Figure 3.5) most of the time, and so will only be detected as the area of the aperture

approaches the size of the cluster (Figure 3.6). A concern regarding the all-z approach here

is that the low-z groups (which can also be colour clustered) also count as enhancements

against the background. So in these regimes we pick up both high-z galaxies in clusters

and low-z galaxies in groups (Note that since low-z group and high-z cluster galaxies will

have different colour space occupation due to different SEDs, different redshifts, etc, both

will be included as AperC4 galaxies).

3.3.3 p(z) Blending and Fragmentation

Figure 3.9: This figure shows an example of the AperC4 catalogs produced for three apertures, here

pictured as large, medium and small angular radii (far left, centre-left, and centre-right, respectively). The

final AperC4 cluster catalog (far right) should be a combination of these separate aperture-slice catalogs,

where their galaxy members are not duplicated between clusters.
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Using the cartoon pictured in Figure 3.9, one can see the large and medium aperture

sizes identify the large concentration of galaxies at the top of the tile, whilst the small

aperture identifies two apparent concentrations. By testing the p(zgalaxy) of the cluster

members in the small aperture catalog against those of the medium/large apertures, one

can see whether the concentrations are separated in redshift or are part of the same cluster.

Examining the cluster in the lower left of the tile, it is too small for the largest aperture

to find effectively, whilst the smallest aperture only recovers a fraction of the members.

The smallest aperture identifies small clusters that neither the medium or large apertures

can find, as can be seen by the identification of the cluster on the bottom right of the tile

in Figure 3.9.

By giving all the clusters in each aperture-slice a preliminary p(z) from the product-

sum of the member p(z) (Equation 3.3), one can test whether duplicate galaxies are best

suited to a cluster by evaluating the product of the galaxy p(z) and each aperture-slice

cluster p(z) to which the galaxy belongs (Equation 3.4).

Figure 3.10 assigns some imagined redshifts for the galaxies identified in Figure 3.9.

If one takes the large group at the top of the figure, which consists of both high and low

redshift members (red and green points, respectively), one can imagine its coalescence into

a single cluster using the large aperture would give a p(z) distribution strongly dominated

by the z = 0.1 component, with some small enhancement at z = 0.7. But the same group

is split into two pieces in the smallest aperture, with each component (z = 0.1 and z = 0.7)

given a separate p(z) that is more indicative of each cluster’s redshift. When comparing

the products of each high redshift galaxy p(z) with the aperture-slice cluster p(z)s, the

shared members in the high redshift component (red) will look more like the separate

group found with the small aperture, and so the two radially blended clusters are given

separate identifications.

As a counter-example, the gold galaxies in Figure 3.10 at z = 0.3 are all part of

the same cluster, and the medium-sized aperture has found all the members, whilst the

smallest aperture has only identified a single concentrated piece. As both cluster p(z)s

will indicate the same redshift, the galaxies will be assigned according to slight deviations

in their p(z) distribution. Having “exchanged” members, AperC4 tests the p(z)s of the

clusters in the different apertures against each other, and if they are found to agree above

some probabilistic threshold (PZTHRESHOLD), then they are merged.

By utilising the differently identified candidate clusters (from the various aperture-

slices) as initial models for the distribution of the galaxies they identify, and then applying
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Figure 3.10: Figure shows an example of the combined AperC4 catalog produced by uniquely assigning

the galaxies found in multiple apertures (seen in Figure 3.9) to their correct cluster. Galaxies can be

assigned to their cluster by employing p(z) information (§3.2.7 and §3.2.8).

p(z) information, line-of-sight blending and radial fragmentation issues can be curbed.

3.3.4 Comparison of AperC4 and C4M05 Algorithms

As discussed in section 3.2, AperC4 introduces a large number of new parameters for

cluster finding, seen in Table 3.1, as well as for data-handling and organisation, seen in

Table 3.2. Additionally, the functionality of C4M05 has changed in AperC4 as a result of

allowing some of these new parameters to be varied, and in the methodology of AperC4

itself.

Grid Treatment

AperC4’s adaptive grid creation contrasts with the C4M05 algorithm where the grid size

is hardcoded into the algorithm such that the program needs to be edited and recompiled

for different datasets to account for the maximum number of galaxies out of all the grid

bins, and the minimum and maximum R.A., dec., and redshift. This made it difficult to

process alternative/future data sets or subsamples without having to reprogram specific

lines of code and recompile the program each time.

In writing the AperC4 code, I incorporated the C++ Boost library, allowing flex-

ibility in assigning both the R.A. and dec. limits of the grid, which in turn then allow

the dynamic creation of a grid structure to process any incoming galaxy catalog efficiently

and without requiring any prior knowledge of the survey’s limits. By being adaptable,
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AperC4 uses memory resources more efficiently than C4M05 when creating the grid. In

removing the redshift dimension, AperC4 is no longer dependent on an input cosmology

to determine colour-clustering strength, and hence grid creation, and assignment of galax-

ies to the grid, are accelerated. Additionally, the RADECSCALE parameter is very useful

in accelerating the algorithm in computing environments where memory (RAM) is more

available. The grid is also no longer fixed into subdivisions of 1�◦, and allows the extent

of the aperture to cover more than two grid spaces, as opposed to the C4M05 which simply

sought out its neighbouring 1�◦ grid element.

Some more subtle effects can occur as a result of survey tiling in AperC4, such as

when SPLITSIZE and OVERLAP become too small. If both SPLITSIZE and OVERLAP are too

small, then the 2-dimensional (R.A. and dec.) area covered by a survey tile will not contain

a representative sample of galaxies to be able to fairly evaluate AperC4-clustering at a

given location, e.g., if a tile were the angular size of a cluster, then tiles without clusters

would give some fraction of galaxies a low likelihood of belonging to the field (i.e., a low p-

value) and tiles that do contain clusters would give a fraction of genuine cluster galaxies a

high likelihood of belonging to the field. If OVERLAP is too small, then the areas where tiles

overlap would suffer from edge effects, and the galaxies along these tile edges appear to

have a high likelihood of belonging to the field, as a part of their volume aperture becomes

empty. C4M05 avoids this by ingesting the whole survey at once. By tiling, AperC4 allows

the p-value calculation to be parallelised, also reducing the memory resources required by

any single CPU when processing the survey area.

p-value Calculation

The front end processes that lead to the determination of the galaxies’ p-values, i.e.,

AperC4-clustering, are no longer single estimations of the 4-dimensional colour space

enhancements of galaxies in a 3-dimensional space (C4-clustering) but multiple estimations

of the same enhancements in 2-dimensional spaces at multiple scales.

For each galaxy (target galaxy), AperC4 creates a colour-area aperture, as opposed to

the colour-volume aperture created in C4M05. One other difference between the C4M05 and

AperC4 algorithms’ treatments of neighbour search radii (radius of the C4M05-/AperC4-

clustering volume/area aperture; §3.3.1) is how they deal with apertures that extend

beyond the grid point containing the galaxy whose neighbours are being determined. In

C4M05, the algorithm is allowed to extend to one neighbouring grid location in R.A. or dec.

(but not both) during its search. In AperC4, the number of neighbouring grid locations
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available to search is limited only to the grid locations that at least partially lie inside the

aperture used to evaluate AperC4-clustering. I argue here, that in allowing grid points to

be accessed in this way allows AperC4 to treat each galaxy correctly, whilst galaxies near

the corner of a grid point in C4M05 may have a suppressed C4-clustering measurement due

to their inability to search a diagonally neighbouring grid location.

The effective redshift extent of the ‘volume’ aperture in AperC4 is the full redshift

extent of the survey, whilst it is bins of 50h km s−1 Mpc−1 in C4M05. M05 investigated

the effect of redshift bin size and found the measured C4-clustering to be independent of

this length. But by having an explicit angular aperture size, and no redshift limitation, no

calculation of comoving separation is involved in AperC4, i.e., the explicit aperture radius

replaces the C4M05 kernel radius calculated in Equation 2.17, and thus no cosmology is

invoked. However, now all the galaxies live on an RA-dec plane, signal-to-noise in AperC4

is far below that of C4M05. Also, since apertures corresponding to low redshift are large,

this results in a lot of computation for galaxies whose real location is at high redshift.

Indeed, all galaxies will have p-values calculated for each aperture size.

The introduction of SIGMACOLOUR, Xσxy , and its relationship to the GAMMAFACTOR para-

meter, γ, in section 3.2.3 has been changed such that the statistical component of the

colour uncertainty is not effectively ignored when rescaling the colour aperture, contrary

to the method of M05 who only scale the systematic component. The modification of

the colour box from Equation 2.18 to 3.1 removes the implicit assumption of M05 that

the statistical error will always be dominated by the systematic component, but still re-

tains the facility to tune the colour box size with γ. The GAMMAFACTOR component, γ, is

retained in the algorithm, to allow for adjustments to the colour box based on the dis-

persion of galaxy magnitudes/colours across the survey area. GAMMAFACTOR still influences

the size of the colour box jointly with SIGMACOLOUR, Xσxy . In C4M05, this permitted the

systematic component of Equation 3.1 to dominate the statistical component when the

magnitude uncertainties exceeded the typical size of the CMR. However, since AperC4

decomposes the survey area into local tilings, and the introduction of übercalibrated mag-

nitudes, which greatly reduce survey-wide photometric biases, one expects the systematic

term to be greatly diminished.

The new AperC4 parameters are explicitly stated so that multiple tests can be

made to evaluate their impact on cluster finding. Clearly parameters like MAGLIM and

SURVEY_LIMITS affect the number of galaxies seen and the strength of the AperC4-

clustering in euclidian space (assuming faint galaxies are distributed amongst bright galax-
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ies) and colour space (assuming the uncertainty of a galaxy magnitude increases as the

galaxy magnitude becomes fainter). Parameters like APERTURESIZE (§3.2.3) directly limit

the number of galaxies being evaluated in the colour-aperture, and so if they are too large,

the difference between AperC4-clustered and field objects may diminish due to the pres-

ence of AperC4 cluster galaxies somewhere in the aperture, and if they are too small,

the magnitude of the difference may become too small to distinguish between cluster and

field galaxy neighbour counts (§3.3.2).

kth Nearest Negihbour

A different k−NN program is used (to the C4M05 k−NN method, section 2.2.4), to assess

the k−NN clustering of the AperC4 galaxies (§3.2.5). The change in k−NN program is

due to the particular software having become inoperable under newer operating systems.

Forming Clusters

APERTURESIZE is also reused in the assignment of galaxies to clusters. The C4M05 number

density threshold (2.2.5) is no longer involved in the assignment of galaxies to clusters

to a) facilitate assignment of galaxies to clusters when employing photometric redshifts

at a later stage, since galaxies in the cluster may be scattered out of the cluster due

to the increased uncertainty in redshift if including photo-z prior to assignment, and

b) account for additional peculiar velocity components that affect cluster galaxy redshifts

along the line-of-sight. The reason for the exclusion of the density threshold is because the

extended redshift interval over which AperC4 performs (compared to C4M05) introduces

competing observational effects. At higher redshifts, fewer faint cluster members are likely

to be detected in a given survey, and so the 2-D membership count of a cluster at high

redshift will be lower than a contemporary cluster at low redshift. Conversely, the angular

separation between galaxies in in a cluster corresponds to their physical separation and

cosmology of the universe between the observer and the redshift of the cluster (as can be

seen in Table 3.3). If one compares a hypothetical high redshift (e.g., z ∼ 1) cluster to an

identical cluster at low redshift (e.g., z ∼ 0.1), and all galaxies in both cases are observed,

then the surface density of the high redshift cluster would appear larger due to the smaller

angle subtended. But (keeping with this hypothetical comparison), it is unlikely that as

many galaxies from the high redshift cluster would be seen as the low redshift case, due to

the decrease in observed flux from the cluster members falling below the detection limit

of an observational campaign, thus the surface density would decrease for higher redshift



79

clusters.

As no redshift information is included before determining cluster centres (§3.2.5), in

the interest of simplicity whilst acknowledging that there will indeed be some confusion in

cluster centering of low redshift objects, the k−NN distances are treated in 2-D (compared

to 3-D in C4M05). Using R.A. and dec, lower redshift clusters are less radially concentrated

than identical clusters at high redshift (Table 3.3) shows the relationship of radial distance

with physical separation at various redshifts for an assumed cosmology) and as such their

nearest neighbour distances are larger, which may bias assignment of these galaxies to

higher redshift clusters along or near the line of sight versus a lower redshift cluster source.

Limiting the k−NN to angular distances may also result in misplacement of cluster centres

at low redshifts, which are radially biased by high redshift clusters and large scale structure

near, or along, the line-of-sight. Similarly, AperC4 employs a 2-dimensional assignment

algorithm to place galaxies into clusters as opposed to the spherical assignment method

of C4M05.

Alternative formulations for cluster centre identification were tested. The redshift di-

mension may be estimated by photometric redshift, which has greater uncertainty than

spectroscopic redshifts. Increasing the dimensionality to include colours was also trialled,

but without some meaningful metric to convey power between angular scales and mag-

nitude scales it is difficult to assess the degree to which neighbour “distances” decomposed

radially or in colour space.

Richness Thresholds

Parameters like NGALLIM have more complicated, but very definite, effects on output

AperC4 catalogs, where raising these values generally reduces the total number of clusters

found by the algorithm, increases the fraction of real clusters, and incurs some blending or

fragmentation in the output cluster sample. This parameter has also changed slightly from

its C4M05 definition of being the total number of galaxies (both C4 galaxies and “back-

ground” galaxies) within a volume defined by C4M05 galaxies. The AperC4 Ngals defines

the number of AperC4 galaxies in a cluster. The AperC4 Ngals cut-off has changed in

character in anticipation of photometric data.

The choice of cutting out clusters at populations lower than 8 members is applied

in M05 to eliminate chance superpositions whilst maximising completeness/purity. The

AperC4 definition differs slightly from the original C4 implementation, where the number

of galaxies (not necessarily C4 galaxies) within 1h−1 Mpc is treated as the Ngals threshold,
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and > 10% of all the galaxies in the cluster volume must be C4 galaxies. This would not

work as effectively in a photometric context, since the aperture may contain a reduced

number of cluster galaxies compared to its spectroscopic counterpart, and an increased

number of non-cluster galaxies, both of which are more likely to have scattered in/out of

the colour-aperture due to the effectively unlimited redshift extent of the initial AperC4

cluster definition.

Moreover, uncertainties in source classification and optical detection limit become in-

creasingly problematic in photometric data, causing cluster volumes to become populated

with non-cluster objects. For the same reasons, calculating the ‘significance’ of AperC4

clusters, as defined by the fraction of C4 galaxies to all galaxies within the cluster volume

(as per C4M05; §2.2.5), is deemed unhelpful when photometric uncertainty is introduced.

Additionally, with the absence of fiber collisions limiting the source density of the survey

area in photometric data, the galaxy number count will be far greater than in the DR2

spectroscopic data. The validity of a significance cut at such low thresholds becomes highly

questionable, so AperC4 rejects this threshold. Instead, the Ngals cut-off is redefined as

the minimum total AperC4 galaxy population of a cluster and is employed as the quality

threshold for clusters in the AperC4 catalog.

In summary, the interaction between parameters and their effect on the output AperC4

catalogs can be used to reveal nuances in the data and the AperC4 algorithm, itself. Un-

derstanding the individual components of the AperC4 algorithm can help one interpret

the effect(s) on an output cluster catalog observed by changing parameter values.

3.4 Summary

In summary, AperC4 represents a reformulation and update of the original C4M05 code

and algorithm. As opposed to the majority of modern day cluster finders (including

C4M05) it does not invoke a cosmology. AperC4 introduces a large degree of flexibility

and adaptability to the cluster finding process and affords a greater insight into, and

control of, the selection function of the AperC4 algorithm.

In this chapter, I have introduced a new algorithm, AperC4, derived from the M05

algorithm. In section 3.1, I discussed the motivations for AperC4 and its key features.

In section 3.2, I described the new algorithm, summarising the associated parameters

in section 3.2.10. In section 3.3, I presented some examples to explain how AperC4 works.

I also discussed how the AperC4 apertures and other parameters affect cluster finding,
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and contrast their function in AperC4 to their use in C4M05.

Having introduced the AperC4 algorithm, I discuss how to verify an output cluster

catalog in chapter 5 and deliver an optimal cluster catalog. In chapter 6, I use DES galaxy

catalog simulations, which I will introduce in chapter 4, to test the cluster finding ability

of AperC4 with simulated photometric data and further investigate the sensitivity of

parameters to cluster finding. In chapter 7, I process the SDSS DR8 galaxy catalog and

produce an AperC4-SDSS DR8 cluster catalog.
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Chapter 4

Introduction to DES and CatSim

In this chapter, I introduce the Dark Energy Survey, highlighting the cosmological probes

that will use DES data to describe the universe in section 4.2. In preparation for the DES,

a suite of simulations was assembled to test cosmological tools to optimise them for survey

data. These simulations are introduced in section 4.3.

I note that this chapter is a summary of the DES and the DES collaboration aims and

simulated products as they stand at the time of writing.

4.1 The Dark Energy Survey (DES)

4.1.1 Overview

The Dark Energy Survey is an optical to near-infrared survey proposed to cover 5000�◦

of the South Galactic Cap to ∼24th magnitude in grizY bands (Tucker et al., 2007). This

area and depth covers a larger cosmological volume than the SDSS, reaching redshifts of

around z ∼ 1.3. This huge increase on the previous generation of optical surveys will

give photometric and position measurements of ∼300 million galaxies and is predicted to

detect &100,000 galaxy clusters. The large depth and area of the survey will allow weak

lensing measurements to probe the matter distribution of the universe. The huge data

output (∼2 petabytes) has demanded a concerted data management effort to collect and

redistribute data collected from the DES Telescope to the DES Collaboration (Mohr et al.,

2012). The DES Survey will employ the 4 metre Victor M. Blanco Telescope located in

Cerro Tololo, Chile, and has been given 525 nights over 5 years to complete its campaign

goals.

In exchange for this amount of Telescope time, the DES Collaboration built a new CCD

instrument, DECam (§4.1.2), to replace the existing wide-field MOSAIC CCD camera that
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was already in place. In addition to the construction of a new instrument and photometric

filter set, the DES Collaboration invested a significant amount of time and resources into

upgrading the telescope itself. A non-exhaustive list of these modifications includes:

• upgrading the Telescope Control System, nominally to improve aging systems, but

necessary to increase the speed of repositioning of the telescope so that it can be

pointed 2◦ from any starting position within ∼ 17 seconds;the readout time of the

camera. This ensures observations are not delayed by the slewing of the telescope.

• upgrading the readout electronics attached to the CCD cameras from the ∼ 100

second electronics previously in place to sub-20 seconds.

• implementing environmental control in the telescope dome, so the observing quality

through the night is less affected by temperature fluctuations in the dome inducing

relative offsets between the detector and the telescope components.

• cooling the CCD chips themselves, providing a stable temperature background so

that the CCDs perform efficiently.

• a new wide field corrector, to improve upon the previous corrector which was deemed

to be non-optimally configured (Doel et al., 2008).

DECam achieved first light in September 2012. There followed several months of

Science Verification (both of the camera and of DES operations), through to February 2013.

The DES proper started in September 2013 and completed its first season of operations in

February 2014. The second (of five) DES season started in August 2014 and runs through

to the end of January 2015. At the time of writing, only DES science verification (SV)

data is available to the collaboration. The SV data products were not finalised until well

into 2014 and so arrived too late for consideration in this thesis.

4.1.2 DECam

To achieve these aims, the DES collaboration commissioned, built and mounted a 519

megapixel optical/near-infrared CCD camera with wide field corrector, named DECam

(Flaugher et al., 2010), mounted onto the prime focus cage of the 4 metre Victor M.

Blanco Telescope (Blanco, hereafter). The individual CCD pixels have an angular scale

of 0.′′26 per pixel, equivalent to the previous MOSAIC CCDs, but covering a 2.2�◦ Field

of View (FoV), a huge increase over the previous 0.36�◦ FoV.
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DECam features guide and focus sensors on the focal plane (Diehl et al., 2008) allowing

greater sensitivity to the precise telescope orientation and direction necessary for accurate

astrometry. This is essential for weak lensing measurements, as varying image distortions

throughout an observation may affect the weak lensing signal in ways that would be

difficult to assess, weakening the output cosmological constraints.

Cryogenic cooling of the CCDs to 180K ensures low noise CCD readout, which, in

observational terms, will mean real objects detected in the DECam images can be meas-

ured to greater significance (high signal-to-noise), and fainter objects can be observed with

reduced uncertainty in their photometry.

Upon first light, the DECam achieved produced high quality images with a seeing of

1.2 arcseconds within hours of being turned on. A week on, calibration of the multiple

new pieces of equipment had produced images with a seeing of 0.8 arcseconds, significantly

improving upon previous typical seeing at Blanco (1.39 and 1.23 arcsec in the r and z-

bands, respectively, Mehrtens et al., 2011).

4.2 Cosmology with DES

The intended goal of the Dark Energy Survey is to constrain the late time acceleration of

the expansion of the universe. Four complementary optical probes that approach the ana-

lysis of optical distribution of matter are proposed for this purpose: weak lensing, galaxy

clustering, type Ia supernovae, and clusters of galaxies. In the following sub-sections, I

briefly overview the way they address the dark energy that drives the accelerating cosmic

expansion.

4.2.1 Weak Lensing

Weak lensing concerns the distortion of the appearance of distant galaxies by the gravita-

tional effect of matter, close to the line-of-sight, bending the path of the background light.

This gravitational lensing of matter on fields of distant galaxies is called cosmic shear,

and is the key measurement of weak lensing. As touched upon in section 1.4, one of the

defining features of weak lensing is that it probes both baryonic and non-baryonic matter

components, and is robust to both the physical and dynamic state of the matter.

The statistical properties of cosmic shear measured as a function of photometric red-

shift will be sensitive to expansion rate at that redshift, informing the growth rate and

distance-redshift relation. Cosmic shear is a relatively small signal, measured at the 1-2%

level (Bacon et al., 2000), and is sensitive to the intrinsic alignment of galaxies in cluster
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size potentials (Smargon et al., 2011), but the accompaniment of photometric redshifts

to the weak lensing signal vastly reduces the negative impact of the intrinsic alignments

(Heymans and Heavens, 2003). With the large area and observation of a huge number

(300 million) of galaxies with photometric redshifts, DES weak lensing will reduce un-

certainties in weak lensing cosmological parameter constraints from a factor 2 to around

∼ 30% (Huterer et al., 2006).

4.2.2 Galaxy Clustering

Galaxy clustering employs galaxies as a tracer for the distribution of matter in the large-

scale structure of the universe. Of particular interest is the feature in galaxy clustering

known as the Baryon Acoustic Oscillation (BAO) peak, in the distribution of the galaxies.

Briefly, before the universe became transparent, sound waves initiated by instabilities in

overdensities of the primordial universe traversed through the unified photon-baryon fluid

outward in spherical shells. After some time, the expansion of the universe cools to a point

where the photons and baryons decouple and the photons free stream away (forming the

observed CMB), whilst the baryons (no longer supported by the pressure of the photon-

baryon fluid) undergo gravitational collapse in a shell at a fixed radius from the central

overdensity that initiated the sound wave. Given the time for these sound waves to occur,

harmonics in the photon-baryon fluid would have persisted up until decoupling.

Galaxy clustering studies (Eisenstein et al., 2005; Percival et al., 2007) show that there

is a statistically preferred separation between galaxies at scales of ∼ 100h−1 Mpc, that

signify the frozen out sound waves, or acoustic oscillations, of the baryons at decoupling.

Since this harmonic scale is characteristic of the photon-baryon fluid, observed in the

CMB at decoupling, measurements of the acoustic peak in the local galaxy distribution

can act as a cosmological yardstick for measuring the acceleration and expansion of the

Universe. Combining the DES data with VISTA (Visible and Infrared Survey Telescope

for Astronomy; also located in Chile) observations in the JHK bands, will provide galaxy

power spectra out to z ' 2 with uncertainties of order 20% (Banerji et al., 2008).

4.2.3 Type Ia Supernovae

Measurements of type Ia supernovae (SNIa) hinge upon their reliability as standard

candles. SNIa are thought to be carbon-oxygen (CO) white dwarf stars that accrete

matter from a companion star until they reach the Chandrasekhar mass limit of ∼1.4 M�.

At this point, the electron degeneracy pressure supporting the white dwarf is exceeded and
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the white dwarf undergoes collapse, igniting carbon fusion in a runaway thermonuclear ex-

plosion that results in its annihilation. This model of an accreting white dwarf means that

the mass of the SNIa progenitor will nearly always be close to the Chandrasekhar limit,

and so the resulting supernova will appear the same for any such CO white dwarf and

companion star system. This physical picture motivates their use as “standard candles.”

Observations of SNIa have determined a relationship between the shape of the light

curve and its peak luminosity, enabling their brightness to be used as a relative distance

measurement, determining the deceleration parameter, q0, and hence show the evolution

of the Universe’s expansion. The DES Supernova Survey expects to measure ∼1900 SN

light curves (and followup spectroscopy of the host galaxies, though at another telescope

facility) in 40�◦. For comparison, the work of Riess et al. (1998), which made the first

observation of an accelerating universe with Type Ia supernovae that was awarded the

2011 Nobel Prize, employed a total of 50 supernovae. Simulations from Bernstein et al.

(2009) indicate DES will deliver dark energy constraints a factor of 4.6 times better than

contemporary surveys.

4.2.4 Clusters of Galaxies

As covered in section 1.3, DES galaxy clusters will measure cosmology through finding

their abundances at various redshifts. Changes in the abundance and rate of formation of

clusters depends on nature of dark energy (Frieman et al., 2008). 1000�◦ of the survey

area coincide with the South Pole Telescope (SPT) Sunyaev-Zel’dovich Survey (Reichardt

et al., 2012) region, which will improve upon independent cosmological measurements of

galaxy clusters by a factor of two by allowing cross-calibration of mass measurements of

clusters (§1.4) discovered in the DES (Cunha et al., 2009).

One of the great strengths of cluster cosmology is the multiple ways that cluster mass

can be probed. For example, weak lensing of clusters, cluster shear, produces a stronger,

more readily detectable, lensing signal (as demonstrated by the bullet cluster, Figure 1.1;

§1.2.2). The complementarity of cluster measurements with other probes should allow

observations of DES clusters help build concordance between X-ray, weak lensing, and SZ

measurements (Rozo et al., 2012).
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4.3 DES Catalog Simulations

4.3.1 Introduction to CatSim

The DES simulations working group have produced a series of image and catalog simu-

lations (Lin et al., 2010) to permit the development of data reduction pipelines (Mohr

et al., 2012) and science analysis codes (Soares-Santos et al., 2010; Cunha et al., 2012) in

advance of DES first light. These simulations have been useful in making analytical fore-

casts of cosmological parameter constraints (Tinker et al., 2012) and quantifying necessary

followup observation campaigns that will help improve upon these parameter constraints

(Wu et al., 2010) in a DES-like survey context.

In chapter 6, I use the SDSS catalog simulations, CatSim, to evaluate AperC4 cluster

finding. The SDSS catalog simulations were produced by constructing galaxy catalogs

that resembled real data to presently observable limits. The simulated observations were

extended to the DES specifications, but the SDSS version will be the sole focus in this

thesis.

4.3.2 Simulation Construction

Generically, a galaxy catalog is constructed around an existing N-body simulation, e.g.,

Hubble Volume Simulation (Evrard et al., 2002), Millennium Simulation (Springel et al.,

2005), MICE Simulation (Fosalba et al., 2008), etc. These N-body simulations work by

populating a Gpc-scale volume with ‘dark matter particles’ of some unit mass, or mass

resolution; the scale and mass resolution of these simulation “boxes” being limited to the

computing resources used to produce them (e.g., TeraGrid, Catlett, 2005). This volume

is assigned some cosmological parameters and the dark matter particles are distributed

with some initial positions and velocities according to input initial conditions at high

redshift. The volume is allowed to evolve under gravity. Snapshots of the simulation

are taken at various stages of the simulations evolution, which translate to snapshots at

decreasing redshifts. These snapshots are interpolated into a ‘light cone’, which replicates

the distribution of dark matter at all the simulated redshifts, from the initial redshift

down to z = 0 along a conical volume with the apex at z = 0, such that if viewed from

the apex to the base, the cone represents a dark matter distribution equivalent to that

“observed” from a fixed point in the universe, i.e., a telescope. By grouping together dark

matter particles that are gravitationally bound, the simulation becomes discretized into

dark matter ‘halos’.



88

CatSim has been developed with Carmen, one of the four types of box from the

Large Suite of Dark Matter Simulations∗ (or LasDamas, McBride et al., 2011).

LasDamas used a single cosmological model for all its simulation products, setting:

• Ωm = 0.25 ;

• ΩΛ = 0.75 ;

• Ωb = 0.04 ;

• H0/100 = (h =) 0.7 ;

• σ8 = 0.8 ;

where Ωb is the baryonic component of the matter density of the universe, Ωm. Car-

men consists of a 10003 h−1 Mpc box containing 11203 particles with a particle mass of

4.938 × 1010 M� h
−1. The initial conditions are set with CMBfast (Seljak and Zaldar-

riaga, 1996) computing the power spectrum of the density fluctuations, an initial density

field with positions and velocities determined by second-order Lagrangian perturbation

theory (2LPT, Crocce et al., 2006), and an initial redshift of z = 49. The dark matter

simulation is gravitationally evolved with the Gadget-II code (Springel et al., 2005) using

a collisionless model for the dark matter particles. Dark matter halos are identified with

a parallel friends-of-friends (FOF) code, Ntropy-fofsv, developed with the Ntropy

framework (Gardner et al., 2007).

With this simulated distribution of dark matter halos (and particles) in the Carmen

lightcone, Halo Occupation Distribution (HOD) parameters are applied to the FOF halos.

HOD parameters determine how galaxies populate dark matter halos by defining a con-

ditional probability P(N|M) that a virial mass M (i.e., a halo) contains N galaxies, and

prescribing relative spacial and velocity distributions of those galaxies, thus connecting the

observable galaxy with the underlying matter distribution (Berlind and Weinberg, 2002,

and references therein).

In the DES Catalog Simulations, CatSim, galaxies are assigned to the LasDamas dark

matter distribution with the ADDGALS (Adding Density Determined GAlaxies

to Lightcone Simulations) algorithm (Busha and Wechsler, 2008), which is outlined

as follows. A ‘central’ galaxy is always placed at the dark matter particle closest to

the centre-of-mass of each halo and given the mean velocity of the halo. Galaxies are

then assigned to the halo by randomly selecting dark matter particles from the halo and

using their position and velocity information. The dark matter particles considered for

∗http://lss.phy.vanderbilt.edu/lasdamas/
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galaxy assignment are limited to those with a mass greater than ∼ 1012 M� h
−1 (the

mass resolution of the output galaxy catalog) as the simulation halos are smoothed on a

lagrangian scale of 1.8×1013 M� h
−1. The galaxies themselves are distributed according to

an HOD model that resembles the SDSS DR7 galaxy distribution at z = 0.1, characterizing

this z = 0.1 distribution with the galaxy luminosity function and luminosity-dependent

correlation function taken from multiple volume-limited SDSS galaxy samples.

The SDSS samples also provide a list of r-band galaxy magnitudes, which are assigned

to the galaxy particles in the simulation with an input Brightest Cluster Galaxy (BCG) to

halo relation, and a probabilistic relation between absolute r-band galaxy magnitudes and

dark matter density, P(δM|rmag). The BCG r-band magnitude is applied separately, as the

algorithm does not otherwise identify the BCG as being at or near the centre of the halo.

Fainter galaxies are added to the simulation to randomly selected dark matter particles

and assigned r-band magnitudes (N.B. Busha and Wechsler do not explicitly mention how

faint these fainter galaxies are, and so this thesis does not describe how the luminosity-

dependent correlation function is extended to fainter magnitudes). Once the simulated

r-band galaxy catalog is constructed, a training set of spectral energy distributions (SEDs)

from the SDSS catalog was used to map colours onto the simulated galaxies so that they

match the SDSS colour-environment relation (Hogg et al., 2004). The z = 0.1 SEDs

assigned to the galaxies are then passively evolved (k-corrected, as per Blanton et al.,

2003b) to the redshift of the galaxies themselves and the simulated band filters are applied

to return the galaxies’ apparent magnitudes and colours. Noise is then applied to the

magnitudes to simulate the seeing effects and pixel noise that would be experienced in a

real survey.

4.3.3 CatSim Products

From the construction of a CatSim (§4.3.2), two main catalogs are produced which are

then used to give feedback on both the simulations and the tools trained on/with them.

The first is the halo catalog and the second is the mock galaxy catalog. The halo catalog

contains the list of identified dark matter halos that were assigned a galaxy by ADDGALS,

down to a mass of Mhalo,min ≥ 5 × 1012 M� h
−1. This ‘truth’ halo catalog describes the

mass of the halo by M200, which is the mass of the halo within R200, which describes the

radius from the halo centre at which the matter density drops below 200 times the critical

density. The halo catalog also contains the halo’s position in terms of R.A., dec and

redshift as well as the simulation’s spacial and velocity coordinates. Summed luminosity
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information from all of the galaxies, the brightest 20, and the BCG alone are also recorded.

Each of the halos are assigned an ID, which is then used to link galaxy information to the

simulated dark matter distribution.

Several generations, or versions, of the CatSim catalogs have been released since

November 2007, with > 20 major or minor revisions to the algorithm or output data

being documented by each subsequent version. This thesis employs version 1.0 of the

Aardvark release of the CatSim catalog, which was released to the DES collaboration

in April 2013. This release consists of a 10313�◦ simulated patch of sky, to full DES

depth, out to a redshift of out to z = 1.35, populated with ADDGALS galaxies. These

galaxies populate the catalog down to [grizy]mag = [26.0, 25.5, 24.8, 24.3, 22.5] based on

Jim Annis’ adjustment of the 5σ detection threshold of the “5000�◦ Baseline Survey”

(originally calculated for four bands in Tucker et al., 2007).

The mock galaxy catalog contains a lot of information on the simulated galaxies, the

key components for AperC4 being the ‘observed’ galaxies’ R.A. and declination, photo-

metric redshift (or p(z)), and the magnitudes in each band with associated uncertainties.

Different redshifts delivered by various photo-z algorithms are supplied, with associated

redshift uncertainties. In this thesis, I use zCarlos p(z) (§6.1) when running AperC4 on

CatSim as this was the only “observable” redshift information (beyond the simulated in-

put redshift itself) supplied at the time of the catalog’s April 2013 release. Each galaxy is

given its own unique ID number and the ID of the halo (from the halo catalog; HALOID)

to which it is associated. By connecting the halo catalog and the galaxy catalog in this

way, it is possible to see how well AperC4 identifies halos and halo galaxies when they

are placed into clusters (e.g., this permits “membership matching” between the observed

and simulated clusters and is used to evaluate blending/fragmentation of observed clusters

with respect to their simulated counterparts; §5.2.1 and §5.1.2). This thesis does not ex-

plore other aspects of the galaxies contained in the supplementary galaxy catalog, such as

simulation coordinate information, simulated lensing information, ellipticity, angular size,

simulated observable values without the addition of noise, etc.

Simulated SDSS DR8 catalogs were also derived from the Aardvark v1.0 simulations,

consisting of additional SDSS-like magnitudes derived from the simulated galaxy catalog.

In addition to the simulated redshifts, the CatSim-DR8 galaxies have been given zCarlos

redshifts (§6.1) which are trained on a subset of simulated galaxies (that are treated

as spectroscopic observations; §6.1.2). No other observable redshift is derived from the

CatSim-DR8 sample so this thesis limits itself to cluster finding with the zCarlos p(z)’s.
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Due to a bug that mislabels the identification numbers of galaxies between the p(z) files

and the source galaxy catalogs (that the authors were unaware of until I informed them),

this analysis is limited to ∼ 213�◦ of the full simulated survey area.

4.4 Summary

In this chapter, I have introduced the key elements of DES (§4.1) and given an outline of

the cosmological probes intended to be used on DES data that will constrain the nature

of the cosmic expansion (§4.2). I also describe the mock galaxy catalogs (CatSim) that

have been developed by the DES simulations working group (§4.3). These catalogs have

been made by the same team that developed simulations for the M05 paper, but covering

a wider redshift range and forming a complete representation of the galaxy population to

be observed, no longer limited by a finite number of spectral fibers per imaging area, or

fiber collisions (§2.3.3).

The DES CatSim mock galaxy catalog is a very useful resource for training and evalu-

ating observational tools against a known input cosmology. In chapter 6, I apply the new

AperC4 algorithm introduced in chapter 3 to the Aardvark v1.0 iteration of the Cat-

Sim mock catalog. I evaluate AperC4’s ability to recover the underlying halo population

through comparison to the CatSim halo catalog, using statistical tools I introduce in the

following chapter.
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Chapter 5

Evaluating Cluster Finding

In this chapter, I discuss how AperC4 will be evaluated through matching cluster catalogs

derived from simulated data to the simulation input.

In section 5.1, I introduce the measures used to evaluate cluster catalogs. In section

5.2, I introduce the membership matching evaluation method as previously used by the

DES Cluster Working Group and my alterations to that algorithm. In section 5.4, I test

my version of the matching algorithm and finally, I summarise my findings in section 5.5.

5.1 Evaluation Measures

As previewed in section 1.6, completeness and purity are employed as the de facto measures

for cluster catalog quality. Rozo et al. (2007) demonstrate how these quality measures are

degenerate with cluster cosmology (§1.3.1), so knowledge of these measures is extremely

useful in qualifying the reliability of cluster catalogs for measurement of cosmological

parameters.

5.1.1 Completeness and Purity

In this thesis, I employ completeness as one indicator of cluster catalog quality (as has been

used historically by cluster finders such as Abell (1958), where it describes the fraction

of known clusters recovered; §1.6). To demonstrate this quality, I consider a new cluster

catalog, X, as produced by some halo/cluster finding algorithm run on some simulated

galaxy catalog, and measure it against the underlying halo catalog, A, of that simulated

catalog, where the halos/clusters that populate the simulation are known. For clarity, I

will refer to the galaxies grouped together by the cluster finder X as clusters, whilst the

simulated (true) galaxy groupings in A will be referred to as halos.
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Equation (5.1) shows that completeness measures the fraction of halos in catalog A that

have been identified in cluster catalog X. If the number of A halos found in (or matched

to) the X catalog is equal to the total number of A halos, then the completeness fraction

is 100%. As the number of matched A halos falls, so does the completeness measurement.

If no clusters in catalog X are found in halo catalog A, then the completeness is 0%,

irrespective of the number of clusters in catalog X.

Xcompleteness =
N(A clusters matched to X clusters)

N(Aclusters)
(5.1)

However, completeness alone cannot evaluate the effectiveness of cluster finding by

algorithm X. If catalog X were made to arbitrarily contain a uniform distribution of

clusters such that at least one X cluster could be matched with one A halo (at the expense

of introducing a large number of X clusters that don’t match to any A, considered real,

halo) then, in terms of completeness, catalog X would appear to represent catalog A.

To better determine cluster catalog quality, I use purity as complement to the com-

pleteness measure (akin to minimising spurious detections by Postman et al. (1996); §1.6).

Equation (5.2) shows that the purity measures the fraction of clusters in catalog X that

exist in catalog A. As the number of matched X clusters falls, so does catalog purity.

Similar to completeness, if catalog X doesn’t find any halos from catalog A, then the

purity of X will be 0%, regardless of the number of clusters in catalog X.

Xpurity =
N(X clusters matched to A clusters)

N(Xclusters)
(5.2)

The only way to maintain high purity is for X to find clusters that have been defined

in A. This could lead to overtuning to A, if there exist halos in A that are produced

due to some non-physical feature of the simulation. Consider a situation where catalog A

describes a large proportion of realistic clusters (from the total cluster population of the

observed cosmological volume) and an additional large number of erroneous associations.

Based on this situation, cluster finder X would only achieve a high completeness if it also

identified the same idiosyncratic associations as clusters. Considering purity, if all of the

clusters in X match to some fraction of the halos in A, then the catalog will display 100%

purity against some fractional completeness. If the example of the uniform X cluster

catalog were taken again, the purity would be seen to suffer as the increased number of

clusters in catalog X that do not match A halos would cause purity to fall.

If a fraction of the clusters in X match halos in A, and the techniques employed by

X create some differences to the underlying catalog A, then the measured purity and
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completeness should characterize the ability of X to describe A. Given that clusters are

real objects, then the matching of objects in X to objects that do not exist in A (e.g., line-

of-sight associations, or fragmented A halos) should be a rarer occurrence than matching

to real objects in A, and so there will be some threshold description of clusters to which

X and A agree, before their characterizations of clusters diverge/devolve.

Note that A may also come in the form of some archival cluster catalog, but I do not

consider that here, as such archival catalogs (a) may not perfectly capture the cluster

population of the universe, and (b) would simply tune X to A, where the quality of A,

and thus X, will remain unknown.

5.1.2 Unique Matching

Supplementing purity and completeness information by setting a uniqueness constraint can

help describe the type of differences occurring between cluster and halo catalogs. Without

a uniqueness constraint, one can achieve high completeness and purity by producing a

catalog X that matches a subset of A multiple times. For example, if two catalogs, X and

A, contain 100 clusters/halos each, then to achieve 100% completeness and 100% purity,

X clusters can either match to each A halo one-to-one, or match to a single A halo 100

times. The uniqueness constraint serves to penalise the latter case, demanding that once

the A halo has been matched by one X cluster, it cannot be matched any further, thereby

reducing completeness and purity to more representative fractions.

Deviations between the non-unique and unique completeness and purity fractions can

also indicate a degree of blending/fragmentation of clusters between one catalog and the

other. For example, if catalog X’s completeness does not change with the addition of the

uniqueness threshold, but the purity does, then that indicates that multiple X clusters

are matching to some number of A halos, i.e. clusters in catalog X are fragmented with

respect to halos in catalog A. If in a situation where X purity remains constant and

completeness falls, that indicates clusters in catalog X match to multiple A halos, i.e., X

clusters are blended with respect to halos in catalog A.

5.1.3 F-measure

Given there are two qualitative measures of a cluster catalog, completeness and purity, I

introduce a composite measure called the F-measure, or F1 score (Murphy, 2012). The F-

measure has been used as a qualitative measure for various computational search processes

such as text retrieval. In the context of scoring, cluster catalog quality is the harmonic
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mean of the completeness and purity:

F1 score =
2 · Purity · Completeness

Purity + Completeness
(5.3)

An advantage of the harmonic mean over the arithmetic mean, (Purity + Completeness)/2,

is that it indicates success where both purity and completeness are non-marginal, but will

fall off if one of the measures tends towards zero. For example, if one produces a catalog

where purity is 50% and completeness is 50%, both arithmetic and harmonic means go

to 0.5. But if we consider a cluster survey that returns one true cluster in a cosmological

volume that contains many (Ncluster � 1) clusters, purity will tend towards one whilst

completeness tends towards zero. The arithmetic mean will still tend towards 0.5, whilst

the harmonic mean will fall toward zero.

The F-measure allows cluster catalogs to be evaluated by a single statistic. In this

analysis, completeness and purity are measured in bins of mass and redshift, and the F-

measure is calculated for each of these bins. To assess a cluster catalog, the F1 scores

for a range of mass/redshift bins are summed to give a single, global F1 score. As such,

an ‘optimal’ catalog is obtained by choosing the catalog where the global F1 score is

maximised.

5.2 Method of Evaluation

5.2.1 Membership Matching

The challenge for AperC4, or any other optical cluster finder, is to identify clusters down

to a determinable mass threshold so that they are useful for cosmology, as discussed in

section 1.3. The new AperC4 algorithm (chapter 3) now produces an accompanying

galaxy catalog, which relates survey galaxies to the AperC4 clusters identified, i.e., gives

the explicit galaxy membership of each galaxy cluster.

In the absence of C4M05 galaxy memberships, M05 defined matches as being where

a given C4M05 cluster centre is close to a simulation halo centre (proximity matching).

The matching between C4M05 clusters and extant simulations made the assumption that

differences between the centring of the clusters and the halos (as with catalogs X and

A in §5.1.1, respectively) did not influence the matching. Since I did not have access

to the galaxy memberships of the C4M05 clusters in the simulations it was trained on,

this assumption could not be tested. Furthermore, in the event of cluster blending or

fragmentation, the closest proximity centres between the C4M05 and simulated catalogs

may not necessarily represent the best match between them.
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As the CatSim (ADDGALS) galaxies are the observable tracer of the simulation halos,

and are tagged as belonging to these halos by the halo identification numbers, then using

these galaxies for cluster matching removes the element of ambiguity between AperC4

clusters and CatSim halos being matched by proximity of their centres. Membership

matching also prevents confusion in matching by cluster and halo centres, where cluster

finders have misinterpreted galaxy properties and placed clusters at dissimilar redshifts

from their associated halo. In this thesis, matching clusters-to-halos by their shared galaxy

populations, and vice versa, is called membership matching.

Membership matching (compared to proximity matching) allows a more fine-grained

definition of what is meant by unique and non-unique matching (§5.1.2), and quantifies

how ‘good’ a cluster-halo match is by proportion of shared membership. A ‘match’ in

membership matching is counted where at least one galaxy from a halo is found to be

in a cluster, or vice versa. When matching non-uniquely, the number of matches from

halo-to-cluster and from cluster-to-halo shouldn’t be different, as there are no limits to

the matching. When matching uniquely (§5.1.2), the cluster/halo that contains the most

members of the halo/cluster that it is being matched to is counted as the sole “best”

match.

5.2.2 Rank Matching

Membership matching allows one to qualitatively, and directly, assess the quality of a

match between any individual cluster-halo pair. However, this does not help decide the

suitability of a given cluster catalog for cosmology unless the matching for a whole cata-

log is assessed. Since we want to (eventually) be able to derive cosmology utilising these

clusters then it would be useful to examine how well the clusters are recovered as a func-

tion of both redshift and mass. Rather than trying to determine masses for the clusters

(in addition to locating them), the matching algorithm utilises rank matching, to allow

qualitative (as opposed to quantitative) assessment of a cluster catalog compared to some

underlying model (the halo catalog).

Accurate mass determination of clusters is a desirable goal for cosmology, but to ac-

curately estimate a cluster mass is difficult, even comparing between observational probes

(Noh and Cohn, 2012; Rozo et al., 2012), and is sensitive to the mass model employed in

the construction of CatSim halos (or indeed halos of any simulation being matched to).

Using ranking mechanisms for matching allows the determination of a non-parametric re-

lationship between the (ranked) mass in CatSim and the ranking mechanism of AperC4,
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i.e., showing that such a relationship truly exists. The matching by rank is evaluated with

the Spearman rank-order correlation coefficient, ρ or rs (Press et al., 2007), which is the

linear correlation coefficient of the ranks, i.e., if the AperC4 cluster ranks are denoted

by Xi and the matched CatSim halo mass ranks are denoted by Ai, such that the cluster

ranked Xi matches to the halo ranked Ai, then the rank-order correlation coefficient is

given by,

ρ =

∑
i

(Xi − X̄)(Ai − Ā)√∑
i(Xi − X̄)2

√∑
i(Ai − Ā)2

, (5.4)

where X̄ and Ā are the mean rank for clusters and halos, respectively. The Spearman

rank-order correlation coefficient ranges in value from −1 ≤ ρ ≤ 1, where 1 represents

a monotonic linear correlation, -1 represents a monotonic anti-correlation, and 0 means

no correlation. A monotonic correlation means that any increase in AperC4 rank means

an increase in CatSim rank, whilst the monotonic anti-correlation means any increase in

AperC4 rank results in a decrease in CatSim rank.

To do the ranked membership matching, I modified a code originally written by Brian

Gerke for the Cluster Working Group (CWG) of the DES collaboration, which matches

clusters-to-halos and vice verse using cluster/halo memberships and a fiducial ranking for

mass (§5.3 below). I will first review Gerke’s matching algorithm and then discuss my

modifications.

5.2.3 Gerke Matching Algorithm

Gerke’s algorithm works as follows:

1. AperC4 (or some other cluster finder) produces a list of clusters with R.A., dec,

redshift and rank properties, and a list of associated cluster members.

2. Each halo mass, M200 (or Mtrue in Gerke’s algorithm), is assigned to the clusters in

order of rank, i.e., the mass of the nth most massive halo is assigned as the mass,

Mobs, of the nth ranked cluster. This simplification means a cluster does not have

to physically be associated (by proximity or membership) to the halo it is ranked

equal to (nor, indeed, associated to any halo).

3. Divide the lists of clusters/halos into redshift bins.

4. For each redshift bin, perform membership matching between clusters and halos in

four different ways:
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(a) In order of descending mass/rank order, for each halo, find the cluster with the

largest proportion of halo members (galaxies identified as belonging to a single

halo), regardless of whether the cluster has already been matched. Where a

cluster has already been matched, it can be matched again by subsequent halos

up to a total of five times (five times is an arbitrary threshold set by Gerke).

This is non-unique, halo-to-cluster matching.

(b) In rank order, for each halo, find the cluster with the largest proportion of halo

members and, once the cluster has been matched, remove it from the list of

matching candidates. This is unique (§5.1.2), halo-to-cluster matching.

(c) In rank order, but now for each cluster, find the halo with the largest proportion

of cluster members, non-uniquely (as clusters are matched to halos in step 4a),

allowing up to five clusters to match to any given halo. This is non-unique,

cluster-to-halo matching.

(d) In rank order, for each cluster, find the halo with the largest proportion of

cluster members, uniquely (as clusters are matched to halos in step 4b). This

is unique, cluster-to-halo matching.

5. Having matched clusters to halos and vice versa, find the non-unique and unique

two-way matches between clusters and halos.

6. Dividing the matches into bins of mass according to the rank-mass relation of the

halos, compute matching statistics for unique and non-unique matches as a function

of halo/cluster mass and redshift.

Having assigned the clusters masses from the halo catalog, and matched halos to

clusters (and vice versa) by membership, it is useful to evaluate the scatter of cluster mass

against halo mass. Examining the matches by mass, from most massive to least, the mass

at which the cluster mass, Mobs, begins to deviate significantly from halo mass, Mtrue,

indicates the robustness of the cluster ranking by mass. By dividing the clusters/halos

into redshift bins in step 3, one can also gauge how well a cluster catalog matches the

halo catalog and the effectiveness of the ranking mechanism as a function of redshift (see

§5.2.5; for the rest of this subsection, and for purposes of illustration, I will momentarily

neglect redshift dependence and only consider a single redshift bin).

However, because it relies on the mass-rank relation of the halos, this algorithm makes

the assumption that both halo and cluster catalogs contain the same mass halos/clusters

in each redshift bin, e.g., the masses of the top 100 halos in a redshift bin are identical to
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the masses of the top 100 clusters in the same redshift bin. That is to say, the halos and

clusters are simply being binned by rank.

Figure 5.1: This figure is the symbol key for the ranking example cartoons in Figures 5.2 to 5.4. The dots

in the left column represent halos, coloured blue where they are matched to a cluster, and green where

they are not. The dots in the right column represent clusters, coloured orange where they are matched to

a halo, and pink where they are not.

Considering a catalog with low completeness but high purity in Figure 5.2, since the

mass-rank bins are divided by the number of halo objects within a mass range, the cluster

mass-rank bin will count clusters which match to halos in lower halo mass-rank bins. The

outcome is that catalogs with low completeness but high purity will appear to be highly

complete in the highest mass-rank bins, with the fall in completeness only affecting the

lower mass bins.

Figure 5.2: This cartoon is a representation of the Gerke algorithm’s treatment of matching a highly pure

but incomplete cluster catalog to the halo catalog (key is given in Figure 5.1). The numbers to the left

and right of the dots represent the rank of the halos and clusters, respectively. The arrows between the

dots are representative of their unique two-way matching. By relying on a 1:1 halo rank to cluster rank

relation, the cluster mass-rank bin will simply be populated by lower mass clusters that match to a lower

halo mass-rank bin. Thus the cluster mass-rank bin appears complete, despite there being fewer clusters

of the same mass range as the halo mass-rank bin.
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If considering a catalog that is highly complete but impure (i.e., contains spurious

detections) in a given mass range, as in Figure 5.3, the purity measured in that mass range

is limited to the number of halos that occupy that mass-rank bin. Therefore, impurity in

a mass-rank bin will cascade into lower mass-rank bins such that catalogs will appear to

be more pure in higher mass-rank bins than they actually are. The assumed equivalency

between the masses of clusters and halos (in a mass-rank bin) means that a cluster catalog

may look pure in higher high mass-rank bins, since all the halos in the same mass-rank

bin have been matched to.

Figure 5.3: This cartoon is a representation of the Gerke algorithm’s treatment of matching an impure

but highly complete cluster catalog to the halo catalog (key is given in Figure 5.1). The numbers to the

left and right of the dots represent the rank of the halos and clusters, respectively. The arrows between

the dots are representative of their unique two-way matching. In this case, the cluster mass-rank bin

will be populated by well described clusters and impurities (non-real clusters), and so the catalog appears

complete as all the halos in the bin have been matched to. The Gerke matching algorithm will claim that

the cluster catalog is the appropriate purity in the highest mass-rank bin, but due to the matched clusters

that rank below the bin limit (the rank bin above being occupied by impurities), the next mass-rank bin

will have increased purity. As such, purity can be enhanced by cluster matches from higher mass-rank bins

cascading into lower mass-rank bins.

Further to the cartoons above, one can see that the matched clusters within a mass-

rank bin may not even be physically related to the halos that occupy the equivalent halo

mass-rank bin. The dependence of measured completeness and purity on the rank of

occupation of mass-rank bins motivates the modified matching code in section 5.2.4.

In summary, the Gerke algorithm assumes that a cluster finder cannot find more halos

than are actually present in any mass/redshift bin. This is true, by definition, but if

a cluster finder “overfinds” it means it is identifying false clusters (i.e., it is associating
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galaxies along the line of sight, or describing a fragment of a halo), which should be

characterised by decreased purity of its redshift/mass bin. With the Gerke algorithm,

catalog completeness and purity is impacted through binning by rank and assuming cluster

catalog rankings scale 1:1 with halo catalog mass-ranks.

5.2.4 Modified Matching Algorithm

To address some of the shortcomings of the Gerke matching algorithm, I modified the

matching algorithm such that it operates as follows:

1. AperC4 (or some other cluster finder) produces a list of clusters with R.A., dec,

redshift and rank properties, and a list of associated cluster members.

2. Divide the lists of clusters/halos into redshift bins.

3. Before assigning halo masses to the clusters, for each redshift bin, perform cluster-

halo membership matching in the four ways used in the Gerke algorithm (steps 4a

through 4d in §5.2.3, above).

4. Having matched clusters to halos and vice versa, find the unique (§5.1.2), two-way

matches between clusters and halos.

5. For each unique two-way match, assign the mass of the halo to the cluster.

6. Looping through each redshift bin again, examine the clusters in rank order. Any

clusters which are not unique two-way matches are assigned a mass by interpolat-

ing between the masses of the unique two-way matched clusters that are ranked

immediately above and below these clusters.

7. Divide the halos and clusters in each redshift bin into bins of mass according to the

mass-bin limits and compute matching statistics as a function of mass and redshift

bins.

In contrast to Gerke’s method (where cluster’s are assigned a mass by the halo mass-

rank relation; §5.2.3), a cluster is assigned mass of the halo it is uniquely, two-way matched

to (i.e., the least ambiguous matches between the cluster and halo catalogs), and rank is

only used relative to those clusters in the cluster catalog that already have a mass assigned

to them (i.e., they are matched well). Figure 5.4 demonstrates this modification to the

matching algorithm.
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Remaining clusters have their masses interpolated from the masses of unique, two-way

matched clusters ranked above and below them. The cluster masses are now trained to

halo mass (M200). As a result, cluster catalog purity and completeness are now evaluated

in the appropriate mass/redshift bins, properly reporting impurities and incompleteness

across all mass bins.

Figure 5.4: This cartoon is a representation of my modified algorithm’s treatment of matching an impure

but highly complete cluster catalog to the halo catalog (key is given in Figure 5.1). The numbers to the

left and right of the dots represent the rank of the halos and clusters, respectively. The arrows between

the dots are representative of their unique two-way matching. By assigning the halo mass of a two way

match to its cluster counterpart (superseding the cluster rank), the cluster mass-rank bin will be populate

the same mass range as the halo mass-rank bin. Thus, the bin is representative of the cluster/halo mass.

To illustrate this, both clusters and halos in this figure are ordered by descending mass, hence the cluster

ranks appear out of order.

The number of clusters is now independent of the number of halos in any given

mass/redshift bin. The Spearman ranking coefficient (§5.2.2) characterises how well

clusters are ranked using the unique two-way matches, which is the same measure used

by Gerke. The ranking coefficient characterises the catalog only using two-way unique

matches. As such, an objectively highly complete and pure cluster catalog will be shown

to be poorly/well ranked from the ranking coefficient without affecting its measured com-

pleteness/purity.

5.2.5 Redshift Binning

The cluster-halo matching that occurs through the matching algorithms is performed in

bins of redshift. The matching algorithms described above take in a range of redshift bin
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limits (step 3 in §5.2.3 and step 2 in §5.2.4), into which the cluster and halo catalogs are

distributed. This is so the mass ranking of any given cluster/halo is evaluated against other

clusters/halos where the completeness of the galaxy sample is consistent. Thus, nearby

clusters with more visible members are not compared with clusters at high redshift, where

galaxy membership may appear poorer due to a greater proportion of high redshift galaxies

falling below the magnitude limit of a (simulated or real) survey.

Redshift binning also limits the effect of any underlying evolution in the cluster mass

function (Eke et al., 1996; Böhringer et al., 2014). It can also highlight any redshift

dependence of the mass proxy calculation (although this goes beyond the scope of this

thesis; alternative cluster finders would be necessary to distinguish such an effect from

cluster finding performance).

Redshift bins should be appropriately sized, such that the bin volumes contain enough

clusters in the redshift interval to characterise the mass function (at that redshift) well,

whilst ensuring that differences in galaxy completeness within a redshift bin are small. I

note that membership matching (§5.2.1) means that clusters may be matched to halos,

and vice versa, where they do not occupy the same redshift bin. As such, the measured

success of finding a given cluster is not dependent on a cluster finder assigning the correct

redshift to that cluster.

Hence, redshift binning helps to diagnose a cluster finder’s selection function, providing

a breakdown of cluster catalog completeness and purity such that the effects of survey

completeness, evolution of the cluster mass function, and/or redshift dependence of the

mass proxy, can be accounted for.

5.2.6 Matching Algorithm Output

The matching algorithm outputs fours sets of summary plots describing:

• the non-uniquely matched clusters and halos plotted by mass, in log(M/M�) units,

for each redshift bin (e.g., Figure 5.5);

• the uniquely matched clusters and halos plotted by mass for each redshift bin (e.g.,

Figure 5.6);

• the completeness, purity and F1 scores of the AperC4 clusters, by any possible

match or best match, as a function of logMobs for each redshift bin, and the associ-

ated scatter (e.g., Figure 5.7); and

• the deviation of the AperC4 cluster centres from the halo centres in radial (R.A./dec)

and redshift directions (e.g., Figure 5.8).
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In the following subsections, I describe the information contained in example Figures

5.5 through 5.8, and how this reflects on the quality of the example AperC4 cluster

catalog (for which, in this example, the input parameters will remain unspecified). To

render the information, I use redshift bins specified by the minimum/maximum limits

zlim = [0.0, 0.2, 0.3, 0.4, 0.6] (as guided by §5.2.5). For Figure 5.7 the clusters are further

subdivided into mass bins of size δ logMobs/M� (or δ logMtrue/M�) = 0.25.

Non-unique Mass Scatter Plots

Figure 5.5 gives an example of a mass scatter plot from the matching between an AperC4

catalog and the halo catalog. The four plots show the matching and mass scatter for the

four redshift ranges specified by the five redshift limits mentioned above. As explained in

the caption, the blue dots represent one-way matching of halos to clusters (halo-cluster

matches). Where halos do not match to any cluster (i.e., no halo members are found in any

cluster), they are placed next to the vertical axes (where logMobs < 13 is treated as not

matched). Similarly, the red dots represent one-way matching of clusters to halos (cluster-

halo matches), and where there is no match, the cluster is placed along the horizontal axes

in line with its assigned mass, Mobs. Smaller points represent matches other than the best

match for each halo/cluster; up to five non-unique matches are made for each cluster/halo

(the arbitrary five matches from 4a and 4c in §5.2.3).

The black points represent the two-way matching between clusters and halos and,

by definition, don’t include missed matches. The black points mostly occur along the

Mobs = Mtrue relation, as these clusters have their mass calibrated from the best uniquely

two-way matched halo. Those that do not lie on this relation indicate non-unique two-way

matches: clusters/halos that match to each other, and are mutually amongst their top five

matches, but do not represent the best unique match, i.e., their observed mass has been

interpolated by rank. The Mobs 6= Mtrue black points indicate where multiple halos have

been blended into a single cluster or multiple clusters are fragments of a single halo.

Unique Mass Scatter Plots

The coloured points and arrangement of plot items in the example unique mass scatter

plot in Figure 5.6 is the same as those in the non-unique mass scatter plots above (Figure

5.5). The black points all occur along the Mobs = Mtrue relation, as is the design of this

algorithm. Figure 5.6 also includes rank information about the unique two-way matches

in these plots. The purple lines represent log(M) ± 0.4 which is used to define the 1σ
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Figure 5.5: Example of a set of mass scatter plots produced by non-unique matching. The blue dots

represent halos that match to clusters but not the other way around; the red dots represent clusters that

match to halos but not the other way around; and the black dots identify halos/clusters that are two-

way matches. The smaller points represent non-unique matches where the cluster/halo has already been

matched. The dashed line shows where Mobs = Mtrue.
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Figure 5.6: Example of a set of mass scatter plots produced by unique matching. The blue dots represent

halos that best match to clusters but not the other way around; the red dots represent the inverse case;

and the black dots identify halos/clusters that best match to each other. The dashed line shows where

Mobs = Mtrue. The purple lines represent the 1σ scatter around the Mobs = Mtrue relation.
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scatter on the median Mobs in bins of Mtrue. The value for ρ is the Spearman rank-order

correlation coefficient (§5.2.2), which is limited to the range −1 ≤ ρ ≤ 1. That ρ is greater

than zero indicates that there is a positive correlation between the halo mass and AperC4

rank.

Comparing the distribution of the non-unique matches to the unique matches, there

is a noticeable change in the distribution of halo-cluster matches (red points). Some

halos match uniquely to nothing, and so end up along the vertical axes in the plots of

their respective redshift ranges. The decreased scatter in the unique mass-scatter plots

implies that, with the uniqueness constraint, the halos do describe clusters that are ranked

well, but their memberships tend to be dominated by those of higher ranked clusters. A

similar effect occurs with the cluster-halo matches, however, very few additional cluster-

halo matches end up matching to nothing, implying that, in this catalog, clusters blend

multiple halos more than fragmenting them.

Purity and Completeness Plots

Figure 5.7 is an example of the set of completeness and purity plots delivered by the

matching algorithm, with the redshift bins identified by the legend at the bottom. In

order to compute purity and completeness, a power law is fit to the σ-clipped standard

deviation of Mobs versus Mtrue in bins of Mtrue, and rejecting those matches outside a 3σ

band about Mobs = Mtrue, as seen by the purple lines around the grey dashed line in the

plots of Figure 5.6. Purity and completeness are given by the fraction of clusters within

3σ of the log scatter.

The “raw” completeness and purity of the AperC4-CatSim matching, as given by

the upper left and middle plots, is effectively representative of the non-unique matching

in Figure 5.5, showing the fraction of clusters or halos that match to any halo or cluster,

respectively, regardless of the quality of the match. The fall in completeness with increasing

redshift and/or decreasing mass shows that the cluster finder is less successful at finding

low mass and/or high redshift clusters. The general decline in purity from high mass to

low mass shows that the cluster finder falsely identifies clusters at lower masses more often

than at high mass. The upper-rightmost plot shows the F1 score (the harmonic mean of

completeness and purity) for each mass and redshift bin.

The middle row of plots in Figure 5.7 show the effect of applying the uniqueness

constraint on the matching. For this catalog, completeness has fallen from its high raw

completeness, indicating that a fraction of clusters in all mass-redshift bins describe more
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Figure 5.7: Example of a set of purity and completeness plots. The upper and middle plots show the log

mass of the matches (horizontal axes) against, from left to right, the fractional completeness, purity, and

F1 score (vertical axes) of each mass bin, where mass is binned by log(Mass) = 0.25 bins. The lowest

left plot shows the log scatter in the Mobs = Mtrue relation in bins of Mtrue. The lowest bottom right

table gives the total F1 score in bins of redshift and for all redshifts for non-uniquely (raw) and uniquely

matched catalogs. The colours of the lines represent the matching redshift ranges given in the bottom

centre table
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than one halo (blending). When looking at purity, there has been a fall from the raw

purity, indicating that a fraction of halos in all mass-redshift bins describe more than one

cluster.

The lower left hand plot shows the log scatter in bins of Mobs. The increase in scatter

for the higher redshift bins indicates that higher mass clusters are more poorly ranked

than lower mass clusters. However, it should be noted that higher mass halos/clusters are

rarer than lower mass objects, and so misestimated rankings result in a greater difference

in mass for highly ranked objects.

As an aside, where the halo catalog and cluster catalog are identical, the scatter goes

to zero, as expected. However, this will also be true where the catalogs are identical

but their rankings are not, since the clusters will get their masses from their halo match,

irrespective of rank. In this rare situation, one will be able to diagnose the disordered

ranking using the Spearman ranking coefficient (see §5.4.5).

In summary, the raw plots show the proportions of AperC4-CatSim clusters that

relate to real halo objects. The addition of the uniqueness constraint show how AperC4’s

identification of the CatSim halos (by membership) is additionally impacted by fragment-

ation or blending. The scatter indicates how well cluster masses have been assigned based

on the two-way halo matches. Finally, the F1 score gives an objective measure of cluster

catalog’s quality.

Centring Plots

Figure 5.8 presents the offsets between the cluster centre and the halo centre in redshift

and radial dimensions. The left hand plots show the distribution of these offsets, whilst the

right hand plots show the individual offsets as scatter against redshift. For this example

catalog, the deviation in redshift from matching clusters to halos is unbiased, with an

approximately gaussian error described by full-width half maximum (FWHM) of ∆z '

±0.02. The same redshift deviation is seen to apply to halo-cluster and two-way matching.

The radial centering offset indicates that clusters are most likely to deviate from a halo

centre in R.A./dec by a median 0.′3 offset. Only a handful of cluster centres deviate from

the halo centres by more than 4 arcminutes, where 4 arcminutes corresponds to . 2.1 Mpc

(using the simulation cosmology) at the upper limit of the simulation’s redshift range.
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Figure 5.8: Example of a set of centering plots. The upper plots show the deviation between matched

CatSim halo and cluster centres in the redshift dimension with (left) a histogram of the difference in z

and (right) each halo-cluster offset against halo redshift as a scatter plot. The lower plots show the radial

centring offset between matched CatSim halo and cluster centres in arcminutes with (left) a histogram

of the halo-cluster radial offsets and (right) a scatterplot of the radial separation against redshift of each

matched halo-cluster. The blue, red and black points/lines represent the halo to cluster, cluster to halo

and two-way matched offsets.
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5.3 Ranking the AperC4 Clusters by Mass Proxy

The AperC4 cluster catalog delivers clusters with unique memberships and p(z)ś. But

to evaluate the output catalogs, one must invoke a mass proxy to deliver a rank.

An additional step to the algorithm flow (as outlined in §3.2.1) is applied to estimate

the relative mass distribution of the clusters in the form of a rank. It does not affect the

final cluster or member catalogs, and is therefore not part of the cluster finding algorithm.

This is to allow estimation of the completeness and purity of the returned clusters in bins

of redshift and mass.

Rank clusters: Clusters are ranked from most massive to least massive with the following

mass proxy ranking mechanisms:

(a) by Ngals

(a) by Abell richness.

These establish a relative mass proxy between clusters in a given catalog such that

higher ranked clusters are estimated to be more massive than lower ranked clusters. The

performance of these proxies is given by the Spearman rank-order correlation coefficient

(§5.2.2) for the unique two-way matched clusters (§5.2.4), and will affect the completeness

and purity in the relevant mass-redshift bin (§5.2.6) where clusters are not uniquely two-

way matched to a simulation halo.

At this point, it is appropriate to explain why I have not used a red sequence richness

estimator (e.g. Rozo et al., 2008). Red sequence cluster finders would be better suited

to ranking/estimating the mass of these clusters. By including non-red sequence galaxies

in a cluster, red-sequence richness measurement increases the scatter in richness vs X-ray

luminosity comparisons (Rykoff et al., 2012). As AperC4 makes no distinction between

red-sequence and other galaxy colours when designating galaxies to clusters, a red-sequence

richness estimate from these clusters will include this extra mass-ranking scatter.

5.3.1 Ngals Ranking

The Ngals ranking simply ranks AperC4 cluster masses by the number of galaxy members,

Ngals, with the most populated (highest Ngals) cluster being ranked as the most massive,

and the least populated as the least massive.

Whilst this will be indicative of mass for survey volumes where the galaxy census is

close to complete, lower luminosity galaxies at high redshifts fall below the detection limit
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of the survey, thus the memberships of cluster systems will appear to decrease as a function

of redshift for a given mass.

Ngals also may suffer from projection effects. But since the galaxies which constitute the

field have mostly been eliminated through use of FDR (§3.2.4), these projection effects are

assumed to be minimal. That said, there may be some misattribution of galaxies to cluster

potentials as a result of poorer p(z) estimations, allowing galaxies to favour an incorrect

cluster redshift. This in turn would increase scatter in the mass-ranking relation.

Furthermore, the relationship between clusterNgals and mass has some intrinsic scatter.

Galaxies represent a small fraction of the total baryon content of a cluster (around 90%

of the baryon component being the hot X-ray gas at the centre of the cluster potential

Giodini et al., 2009), which in turn represents a small fraction of the total matter content

of the cluster (the cluster potential being dominated by dark matter Zwicky, 1933).

5.3.2 Abell Ranking

The Abell richness ranking in this thesis is derived from Abell’s specification of galaxy

clusters (§1.2.1) applied to the Ngals richness measurement (§5.3.1). Abell’s first character-

isation of clusters through their constituent galaxies attempts to cut foreground/background

galaxies by limiting the range of magnitudes between the third brightest cluster member

to two magnitudes fainter, when measuring the cluster properties. Originally, Abell also

specified further selection criteria such as a minimum Ngals > 50, that cluster selection is

limited to high galactic magnitudes, and that the > 50 galaxies above the faint magnitude

limit are within a 1.5 Mpc aperture.

The criterion applied here is that the magnitude of the faintest galaxy counted in

the richness measure is no more than 2 magnitudes fainter than the 3rd brightest galaxy

in the cluster. The motivation for this criterion is to compensate for the fact that fewer

galaxies will be seen at high redshifts, due to their increased distance causing their observed

magnitudes to fall below the detection limit of a given astronomical survey. The other

Abell criteria are not included, as SDSS nominally probes galaxies at latitudes above/below

the galactic disk, and quality of clusters by Ngals is probed as a separate parameter.

Note that Abell ranking is not tested in this chapter, as its impact on the results will

be consistent with the Ngals ranking test in section 5.4.6. It is tested on data in chapters

6 and 7.
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5.4 Testing the Matching Code

To test the matching code, a series of catalogs derived from the CatSim halo/galaxy

catalog (§4.3) were created to test how impurity and incompleteness are evaluated by the

matching algorithm. The derived catalogs each consist of two parts: the ‘cluster catalog’,

which consists of the cluster/halo rank, the R.A., dec, and z; and the ‘member catalog’,

which consists of the galaxy ID and the rank of the cluster to which it is associated.

Hence, the derived catalogs are consistent with AperC4 catalog content. Referring to

section 5.1.1, the derived catalogs are each treated as catalog X, whilst the full CatSim

catalog to which it is matched, is treated as catalog A.

5.4.1 Pure and Complete Cluster Catalog

A null test was performed where the halo/galaxy catalog is matched to itself. The matching

code returned 100% completeness and 100% purity across all mass-redshift bins. The

global F1 score was given as F1 = 27, which represents the maximum possible score of

any cluster catalog derived from this halo catalog, using these mass and redshift binning

schemas (the F1 score of 27 implies there are 27 mass-redshift bins).

5.4.2 Impure and Complete Cluster Catalog

An impure but complete halo catalog was produced by dividing each cluster with more

than one observable member into two parts with an approximately 3:1 redistribution of

the constituent members. Figure 5.9 shows that whilst the ‘Raw purity’ is 100%, as one

would expect since all clusters were derived from the true halos, the uniqueness constraint

pushes this down to 50%, as only one of each derived cluster pair is permitted to be the

best two-way match, indicative of the fragmentation in the derived cluster catalog. If raw

purity were also 50%, that would imply that half of the clusters in the catalog do not

relate to a halo (i.e., to a real cluster) at all. The global F1 score falls by roughly a third,

from 27.00 to 18.02, as one would expect through Equation (5.3) in 27 mass-redshift bins.

5.4.3 Incomplete and Pure Cluster Catalog

An incomplete cluster catalog was produced from the input CatSim catalog by ranking

the clusters (halos) by M200 and, iterating through rank, removing every other cluster and

its corresponding members from the catalog. This was then matched to the full catalog.

Figure 5.10 shows that unlike the matching results for the impure catalog (§5.4.2 above),

the incompleteness impacts the raw completeness measure and varies with both mass and
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Figure 5.9: Completeness and purity plots for a CatSim catalog generated at 50% purity. Subfigures are

described as in Figure 5.7, §5.2.6. Observe that the raw purity does not fall to 50% because all the clusters

can be matched to the true cluster population. Since the impure catalog is constructed by dividing each

cluster into two parts, the uniqueness constraint applied to the second row of plots only allows for one out

of two clusters to be matched to each halo, resulting in 50% purity.
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redshift. The drop in raw completeness shows that these systems are completely missed by

the constructed incomplete catalog. The variation of completeness by mass and redshift

is because different proportions of clusters fall into each mass-redshift bin, the greatest

variance occurring in the higher mass bins, where the fewest clusters can be recovered. If

raw completeness were much higher than 50%, that would indicate the cluster catalog has

blended the underlying halo (true cluster) population. The global F1 score is reduced by

a third, from 27.00 to 18.09, consistent with Equation (5.3), and the impure catalog F1

score (§5.4.2).

Figure 5.10: Completeness and purity plots for a CatSim catalog generated at 50% completeness. Sub-

figures are described as in Figure 5.7, §5.2.6. The completeness is around 50% in all mass-redshift bins,

but varies due to the redshift bins not containing equal proportions of clusters of a similar mass. The

incomplete catalog is constructed without reference to redshift bins and so this variance is expected.
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5.4.4 Incomplete and Impure Cluster Catalog

An incomplete and impure cluster catalog was created by combining the techniques to

produce the impure and incomplete catalogs described above (§5.4.2 and §5.4.3, respect-

ively). The global F1 score is F1 = 13.42, which approximates the score of 13.5 expected

through use of Equation (5.3) in 27 mass-redshift bins.

5.4.5 Ranking by Ngals

To ensure the effect (or lack of effect) of ranking on the matching, the null test cluster

catalog from section 5.4.1 was ranked using clusterNgals as the ranking mechanism (§5.3.1).

The completeness and purity were maintained at 100%, whilst the Spearman ranking

coefficient (§5.2.2) delivers positive values below unity, as seen in Figure 5.11. The positive

values for ρ imply that there is a general trend for Ngals rank to decrease with decreasing

mass, but there is scatter in the mass-rank relation such that the Ngals rank does not

monotonically decline with mass. The smaller values for ρlog(M)>14 imply that Ngals is no

better at ranking mass for higher mass cluster populations.

5.4.6 Ngals Limited Catalogs

The final step of the AperC4 algorithm is to cut on Ngals, nominally to cut out spurious

associations of galaxies. Excluding clusters with Ngals < 8 from the null test cluster

catalog (from §5.4.1) only affects completeness at masses below log(M) < 13.75 in the

highest redshift bin (0.4 < z < 0.6) where completeness falls to 70% by log(M) = 13.0. In

Figure 5.12, the Ngals threshold is raised to exclude clusters with Ngals < 32. The catalog

with Ngals ≥ 32 shows > 90% completeness above log(M) > 14.0 for redshifts below

z < 0.4, with the highest redshift bin declining to ∼ 40% at the same mass threshold.

The F1 score reflects this by dropping from 26.7 in the Ngals ≥ 8 catalog to 20.3 in the

Ngals ≥ 32 catalog.

This is the effect of an observer based condition on the output catalog. Whilst the

previous tests have been concerned with the accuracy of catalog quality reporting, this test

shows that by limiting clusters to those with more than Ngals ≥ 32, lower mass clusters

are missing in significant proportions, with fewer clusters found at high redshifts.
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Figure 5.11: Mass scatter plots for a CatSim catalog ranked by Ngals. Subfigures are described as in

Figure 5.6, §5.2.6. The matched clusters make up the black dots along the Mobs = Mtrue relation as they

are calibrated to their uniquely two-way matched halo catalog counterpart. The values of ρ and ρlog(M)>14

show that Ngals ranks mass in a consistent way across all redshift bins.
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Figure 5.12: Completeness and purity plots for a CatSim catalog limited to clusters where Ngals ≥ 32.

Subfigures are described as in Figure 5.7, §5.2.6. The completeness of all redshift bins drops as a function

of both mass and redshift, with completeness falling significantly in the highest redshift bin.
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5.5 Summary

In this chapter, I introduced the framework I will be using to evaluate the cluster catalog

produced with AperC4 run on simulation data. In section 5.1, I re-introduced the con-

cepts of completeness and purity as measurements of cluster catalog quality, introduced

the F-measure/F1 score as a single quality parameter for a given cluster catalog, and

suggested that a uniqueness constraint will supplement the measure of a catalog’s quality.

In section 5.2, I introduce the membership matching evaluation method as previously

used by the DES Cluster Working Group and my alterations to that algorithm. I describe

the link between halo membership and halo mass, membership matching between cluster

finder and simulation, and how that is used to then evaluate cluster finding at different

masses and redshifts. I briefly overview two ranking mechanisms in section 5.3, which

allow cluster catalogs to be assessed in a context relevant to cluster cosmology.

In section 5.4, I test my version of the matching algorithm with some catalogs generated

from the input halo catalog, with known imperfections and evaluate the the matching

algorithms ability to evaluate cluster catalogs of different flavours. Of note, the F-score is

shown to behave as predicted and is an extremely useful single point statistic that can be

used for optimisation of any cluster finder.

Since clusters are tracers of the matter distribution of the universe, the completeness

and purity measures of a cluster catalog have historically been made relative to some other

catalog rather than some absolute definition. More recently, n-body simulations have ma-

tured to the point where observational tools can be trained on them. Being in a paradigm

where every cluster finder works to 90% purity and completeness is down to people’s

wildly different definitions of purity and completeness (§1.6). The F-measure analysis in

this chapter has proved to be a robust tool in assessing cluster catalog quality when using

simulated information. With this in mind, and with the analysis tools presented in this

chapter, I will be employing DES CatSim (Chapter 4), which has been produced with

SDSS magnitude information, to obtain an optimal parameter set to use on SDSS DR8

(Chapter 6).
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Chapter 6

Characterisation of AperC4 with

SDSS Catalog Simulations

To develop AperC4, it is necessary to work with a well understood dataset that simultan-

eously tests cluster finding and verifies modifications to the algorithm. The Dark Energy

Survey (DES) Catalog Simulation, or CatSim (§4.3), provides a representation of the uni-

verse that will be captured by the DES observational campaign, linking the cosmological

distribution of dark matter halos to the observable galaxies that occupy them. Using the

same simulations, SDSS magnitudes have been applied to the simulated galaxies, making

it representative of SDSS DR8. In this chapter, using this simulated dataset, I apply

AperC4, introduced in chapter 3, with the evaluation framework of chapter 5 to deliver

an optimal parameter set for use with the SDSS DR8 proper (chapter 7).

In section 6.1, I review the zCarlos p(z) method and overview its incorporation into

the CatSim pipeline. In section 6.2, I apply AperC4 to CatSim, describing the input

parameters tested in AperC4 cluster finding. In section 6.4, I demonstrate how the F-

measure is used to identify an optimal parameter set and the impact of p(z) quality on

the output cluster catalog, before summarising in section 6.5.

6.1 CatSim Implementation of zCarlos p(z)

6.1.1 Introduction to zCarlos p(z) Method

This thesis employs probabilistic redshift, or p(z), information in the process of AperC4

cluster finding. Where a photometric source has been identified as a galaxy, p(z) presents

a series of redshift intervals (or bins) where the the likelihood of the galaxy belonging

to each interval is evaluated such that the sum of these probabilities is Σp(z) = 1, for
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all galaxies. Specifically, this thesis focusses on the p(z) method developed from a series

of papers: Oyaizu et al. (2008), Lima et al. (2008), and Cunha et al. (2009), which are

referred to as zCarlos∗ p(z)s. This is a training set based photo-z estimator (Csabai

et al., 2003; Collister and Lahav, 2004), i.e., it uses a subset of photometric galaxies with

spectroscopy to derive a relationship between spectroscopic redshift and their photometric

observables such as their magnitudes or colours. For information on alternative methods, a

recent comparison of several photometric redshift estimators (e.g., training-set, template,

model-based) is presented in a paper by Sánchez et al. (2014).

The motivation for the zCarlos p(z) construction method comes from Oyaizu et al.

(2008), who show that biases in photometric redshift (photo-z) error estimates can be re-

duced by employing spectroscopic training data. They also show that catastrophic photo-z

failures, i.e., where the photometric redshift is estimated to be significantly above or be-

low the true redshift (|zphoto − ztrue| � σz, Bernstein and Huterer, 2010; Padmanabhan

et al., 2005), can be characterised by their large estimated photo-z errors. Oyaizu et al.

(2008) split their spectroscopic sample into bins of magnitude in the five SDSS/DES bands,

each containing around 100 galaxies, and establish a nearest-neighbour error estimate (i.e.,

characterizing the photo-z error, |zspec−zphot|, for photometric galaxies by their proximity

in magnitude-space to the spectroscopic subsample) computed against a neural network

photo-z code. In doing so, they show that their training set based error estimator is super-

ior to template/model based analogs when trying to characterise the error distribution,

and is robust even when the spectroscopic subset is not fully representative of the full

photometric sample.

Building on this work, Lima et al. (2008) introduce a method to estimate the un-

derlying N(z) (galaxy count as a function of redshift) of photometric galaxy catalogs.

Each galaxy is assigned a weighting in a set of redshift bins based on a nearest neighbour

technique in multidimensional colour-magnitude space occupied by spectroscopic samples.

This weighting method is somewhat analogous to how p-values are employed to measure

the colour-clustering of galaxies in C4M05 and AperC4 (§2.2.2 and §3.2.3, respectively).

They stipulate a condition that the spectroscopic sample(s) must cover the same range

of photometric observations as the galaxies being assigned p(z)s, i.e. the spectroscopic

sample must occupy the same colour-magnitude space as the photometric sample. How-

ever, they demonstrate that the redshift distribution of the spectroscopic training sample

does not have to be the same as the redshift distribution of the photometric sample being

∗The zCarlos name is an informal reference employed by the DES simulations working group for

Carlos Cunha’s implementation of the method described in this section.
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trained, thus offering advantages against training-set photo-z estimation methods that are

sensitive to such biases. They comment that single-number photo-z estimates, where the

p(z) is narrowly peaked, offer precise (reduced scatter) and accurate (low bias) measure-

ments. However, broad, skewed or multiply peaked p(z)s lead to poorer, and possibly

catastrophic, single-number photo-z estimates. By constructing a p(z) for each galaxy,

they are able to avoid systematic errors in individual photo-z measurements that would

collectively bias the N(z) distribution.

Tests of the zCarlos p(z) construction are outlined in Lima et al.’s sister paper, Cunha

et al. (2009), where they deliver a catalog of p(z)s for ∼ 78 million SDSS DR7 galaxies.

The p(z) calculation algorithm was tested with SDSS DR6 galaxy data and on CatSim

simulation data, albeit a much earlier version than the one used in this thesis (§4.3.3).

With the observed data, they find that the quality of the p(z) estimates degenerates for

r > 21.5 recommending a cut in brightness of at least r < 21.8. They determine that this is

due to the faint photometric sources being trained to solely spectroscopic DEEP/DEEP2

data (brighter spectroscopic sources are taken from a variety of surveys, including the

spectroscopic SDSS campaign), leading to selection effects biasing the output p(z)s for

individual galaxies.

6.1.2 zCarlos Applied to CatSim

Cunha et al. (2009) mentions that their simulated photometric sample, excluded 43% of

the galaxies as they weren’t well represented in their training set (i.e., lie outside the

photometric space of the spectroscopic sample). For comparison, Cunha et al. say 98%

of the real SDSS DR6 photometric galaxies with r < 22 are well represented by the

spectroscopic sample. I note here that this discrepancy may affect results if AperC4

identifies galaxies from this excluded 43% as being cluster-like galaxies. At the time of

writing, it is unknown if this problem exists in CatSim Aardvark v1.0.

The DES CatSim simulation used in this thesis is Aardvark v1.0 (§4.3.3), for which

the zCarlos p(z)s have been constructed. The DES Simulations Working Group treated

149,370 simulation galaxies brighter than r < 21.8 as the spectroscopic training sample,

to calibrate the zCarlos p(z) code. ∼1.61 million galaxies were given p(z)s in ∼ 213�◦

of the Aardvark v1.0 CatSim catalog, using ugriz magnitudes to simulate SDSS DR8

information. It wasn’t possible to test on a larger area due to the zCarlos information

supplied by the DES Simulations Group having inconsistent IDs with the galaxies in

CatSim in the larger catalog simulation.
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Figure 6.1 shows that the total p(z) information recovers the underlying N(z) with

much smaller scatter than treating the maximum likelihood of each galaxy p(z) as the

measured, single-point redshift. Indeed, utilising the full p(z) reduces characteristic defi-

ciencies of single photometric redshifts such as the typical underestimation of redshift for

galaxies at high z, and the overestimation of redshift for galaxies at low z.

Figure 6.1: This plot shows N(z) using the input redshifts of the simulated CatSim DR8 galaxies (black

line), the N(z) produced by totalling the simulation galaxy zCarlos p(z)s (red line), and the N(z)

produced by counting the peak of the each zCarlos p(z) as the galaxy redshift (blue line). Using the full

p(z) information results in an N(z) that recovers the underlying galaxy redshift distribution to a greater

accuracy than assigning the maximum likelihood redshift to each galaxy.

6.1.3 zCarlos p(z) of CatSim Halos

In section 3.2.7, I introduced the product-sum of the galaxy memberships as the basis

for giving the apeture-slice clusters an initial p(z). As a demonstration of this procedure,

Figure 6.2 shows two halos at low and intermediate redshift (z = 0.099 and z = 0.421, re-

spectively) where the constituent galaxy p(z)s have been combined to indicate the redshift

of the cluster using the product-sum approach. By inspection, the individual p(z)s of each

galaxy in a cluster are not necessarily consistent with one another, but once consolidated,

the redshift of the underlying halo becomes apparent. For comparison, the median of the

individual p(z)s is also plotted. For the lower redshift halo, this peaks in the same location

as the product-sum p(z), whilst the example at higher redshift doesn’t peak as strongly

and displays multiple peaks.
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Figure 6.2: These plots show the p(z) distributions for two CatSim halos. The lines represent the member

galaxies (grey), the median of the member galaxy p(z)s (blue), and the product-sum of the member galaxy

p(z)s (red). The upper panel shows a halo at z = 0.099, whilst the lower panel shows a halo at z = 0.421,

of mass log(M/M�) ∼ 14. In both cases, the redshift of the halo is strongly indicated by the peak

sum-product redshift bin.

The product-sum is, however, limited to the redshift resolution of the p(z) binning

schema in the CatSim employed, zbin = 0.03, hence the uncertainty on the product-sum

p(z) has a lower limit of ±∆z = 0.015 around the median redshift of each bin.

I note here that the p(z)s produced for CatSim are adjusted before they are combined
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in the product-sum. As can be seen in Figure 6.2, some of the galaxy p(z) values go to

zero, indicating with certainty the galaxy does not exist in a given redshift bin. But as

6.1.1 explains, this is the result of assigning zero weight to a galaxy’s probability in a given

redshift bin, which should be interpreted as there being no evidence for the galaxy lying

at this redshift, rather than no possibility of the galaxy lying at this redshift. Indeed, such

a result would mean that the product-sum could be biased, eliminating the probability of

multiple galaxies being in a redshift bin if any individual p(z) goes to zero in that bin. For

the purpose of disallowing such events, the zero p(z) bins are assigned the minimum non-

zero p(z) value in the whole p(z) catalog, then each p(z) distribution is renormalised to

unity. This has the effect of retaining the weighting schema of Cunha et al. (2009) between

the previously non-zero p(z) bins, but at the expense of expressing that the minimum non-

zero p(z) value does not contain any useful redshift information relative to other non-zero

p(z) bins.

6.2 AperC4 Applied to CatSim

In chapter 3, I detailed the improvements made to the C4M05 algorithm, highlighting the

updated mechanisms. In this subsection, I will apply AperC4 to CatSim (§4.3.3) with

the parameters in Table 6.1. Then, using the analysis tools described in chapter 5, the

optimal AperC4 parameters are chosen in section 6.3.

These tests are performed on a ∼ 213�◦ segment of CatSim Aardvark v1.0. This

is partially to facilitate processing of the data multiple times over a range of parameters

within a short turnaround time, but also due to IDs between the p(z) files and the main

catalog files not correlating across the whole survey area.

With reference to the complete parameter list and descriptions in Table 3.1, the para-

meters test with AperC4 are given in Table 6.1. In this table, the aperture range refers to

the set of aperture-slices that are consolidated during membership optimisation (§3.2.8).

Three sets of apertures are chosen with a) the full set of apertures given in Table 3.3;

b) a subset of those apertures, chosen such that the corresponding physical scale does not

exceed 1.5 Mpc at higher redshifts (0.5 < z < 1, assuming WMAP-9 cosmology); and c) a

single aperture of 2.5′, to act as a null test of the aperture-slice consolidation.

The cluster cross-p(z) threshold values are chosen such that they represent scenarios

where identified clusters that shared members, and have similar p(z) distributions, are

merged often to rarely (a cross-p(z) threshold of 0.00 being the most often, and a cross-

p(z) threshold of 0.9 being least often) or not at all (p(z) threshold = 1.1). Note that a
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cross-p(z) threshold does not include the threshold value, since at a cross-p(z) threshold of

0.00, that would simply mean the rejection of all p(z) information and merge all structures

with shared members.

Parameter Values

Aperture range

9.0′, 6.3′,

5.0′, 3.7′,

3.0′, 2.7′,

2.5′, 2.2′,

2.0′

3.0′, 2.7′,

2.5′, 2.2′,

2.0′

2.5′

FDR
0.2 1.0

4.0 10.0

kth Nearest Neighbour 6 12 24

Cluster cross-p(z) threshold

0.00 0.01

0.30 0.60

0.90 1.10

Ngals cut-off

8 16 24

32 40 48

64

Table 6.1: Set of parameters (see Table 3.1 for details on their specific properties), and their values, tested

on ∼ 213�◦ of the Aardvark v1.0 CatSim galaxy catalog with the AperC4 algorithm. Each parameter

(left column) takes one value (right column), with the exception of the Aperture range parameter, where

multiple aperture sizes are processed in a single AperC4 run (§3.2).

The remaining variables from Table 3.1 are set as follows:

MAGLIM is kept at 0.0, such that the magnitude limits come from the SURVEY_LIMITS

parameter, alone.

SURVEY LIMITS are taken from analysis of the Sheldon et al. (2012) SDSS galaxy sample

(§7.1.3) and applied to CatSim (§4.3.3). The apparent magnitude limits are set to

[ugriz]mag = [22.21, 21.19, 20.65, 19.94, 19.44]

.

SPLITSIZE and OVERLAP are set to 10◦ and 2◦, respectively, ensuring tile sizes are at

minimum (100 × cos(dec))�◦ and at most (144 × cos(dec))�◦. The declination of
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the CatSim sample is around −30◦, so these tile sizes approximate to 70�◦ and

102�◦, respectively.

SIGMACOLOUR is set to Xxy = 2.0, informed by tests on C4M05 when given photometric

redshift information.

GAMMAFACTOR is set to γ = 0, using the reasoning that the dispersion in colour across the

survey is mitigated by dividing the survey into tiles (as discussed in §3.3.4).

6.3 Optimal Parameter Selection with p(z) Information

The optimal combination of parameters (parameter set) is determined by maximisation

of the F-measure, introduced in section 5.1.3. For the F1 score maximisation, I allow

the cluster catalog to match only to halos above log(M/M�) > 13.5, such that spurious

detections of halos below that mass threshold are not made, and so tests the cluster ranking

mechanism, i.e., if low mass halos are found, then the corresponding clusters should be

ranked low. The F1 score is calculated in bins of ∆ log(M/M�) = 0.25. Furthermore, I

limit the F1 score to bins above log(M/M�) ≥ 13.75 (or M & 6e13 M�) as these are the

halos of interest for calibrating cosmology (Wu et al., 2010).

To evaluate the matching, the clusters are divided into redshift bins by the location of

the peak of their respective p(z)s. This may introduce additional error, as this simplifies

the p(z) distribution in a manner that is opposed to the intention of avoiding redshift

bias in the galaxy p(z) distributions (§6.1). However, the nature of membership matching

(§5.2.1) still allows clusters and halos to match with each other even if their redshifts differ

by more than one bin. Differences in redshift will be characterised in the centering figure

(e.g., Figure 5.8).

In the following subsections, I will look at optimisation of AperC4 using zCarlos

p(z) information and verifying the optimal parameter sets by running the analysis with the

simulation redshift information (which I refer to as ideal, or idealised, redshift information).

6.3.1 Optimisation using zCarlos

Employing the zCarlos p(z) information, Figure 6.3 shows the maximum F1 scores for

any value combination of two parameters, keeping all other parameter values free.

The optimal parameter set used in chapter 7 is described by the left-most column of

Table 6.2. The next four near optimal parameter sets and accompanying F1 scores using

the zCarlos redshifts are given to add context to the discussion in section 6.3.3. Given
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Figure 6.3: This 6-D plot shows the maximum F1 score from 3024 cluster catalogs, found for any combin-

ation of two parameters from Table 6.1, when employing zCarlos p(z) redshift information. The colour

bar on the bottom indicates the range of maximum F1 scores when fixing two parameters ranges between

0.68 (dark blue) and 6.92 (deep red).

that the matching code will deliver F1 scores that deviate from the expected F1 score

by as much as 0.09 during testing (e.g. F1 scores of 18.02 and 18.09 for expected F1

scores of 18.00 for impure and incomplete catalogs respectively, §5.4), the optimal catalog

parameter set should be amongst the top three parameter sets. I will discuss the optimal

parameter set in section 6.3.3, after examining the optimal parameter sets found using

idealised p(z) information.
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Parameter Value

F1 score 6.920 6.913 6.846 6.819 6.806

Aperture range 9′ − 2′ 9′ − 2′ 9′ − 2′ 9′ − 2′ 9′ − 2′

FDR 1.0 1.0 10.0 1.0 10.0

kth Nearest

Neighbour

24 24 6 24 6

Cluster cross-p(z)

threshold

0.00 0.00 0.60 0.00 0.01

Ngals cut-off 32 24 32 40 32

Ranking method Abell Abell Abell Abell Ngals

Table 6.2: The top five optimal AperC4 parameter set trained on ∼ 213�◦ of the Aardvark v1.0 CatSim

galaxy catalog using zCarlos p(z) redshift information. The leftmost column constitutes the optimal

parameter set.

6.3.2 Idealised p(z) Information

To consider the impact of zCarlos p(z) on the output cluster catalog quality, the ana-

lyses of output catalogs was repeated using the input simulation redshifts of the galaxies

converted into an idealised p(z). Ideal p(z) information was generated with the same struc-

ture as the zCarlos p(z) files. This represents a ‘best case scenario’ model for aperture

defragmentation and AperC4 cluster redshift estimation with a zCarlos-like p(z).

All the bins in each ideal p(z) are set to p(zbin) = 0.01, except the bin of the galaxy’s

redshift, which is set to 1 and then the ideal p(z) is renormalised to 1. AperC4 was then

run on the full range of parameters.

The top eight optimal parameter sets (within 0.09 of the maximum F1 score) and

accompanying F1 scores using ideal redshift information are given in Table 6.3.

Using the results of the idealised p(z) information allows us to consider the impact of

redshift quality on the output AperC4 catalog (§6.3.3).

6.3.3 Optimal Parameter Set

Aperture range from 9′ to 2′ is most favoured by the F1 score (first row of Figures 6.3

and 6.4). This can be seen across all tested parameter combinations with this aper-

ture range. The next most favoured is the 3′ to 2′range, with the single 2.5′aperture

being least favoured. AperC4 clearly performs better when it has more information

on the colour clustering of galaxies, i.e., by including galaxies that appear colour
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Figure 6.4: This 6-D plot shows the maximum F1 score from 3024 cluster catalogs, found for parameter

combinations from Table 6.1 using a ideal p(z) derived from the simulation redshift. The colour bar on

the bottom indicates the range of maximum F1 scores when fixing two parameters ranges between 0.73

(dark blue) and 7.71 (deep red). [Note there is a difference in the range of these F1 scores to Figure 6.3]

clustered in larger aperture sizes. Note that the physical scale represented by these

larger apertures can be far larger than 1 Mpc at advanced redshifts, as can be seen

in Table 3.3 (§3.3.1).

FDR of 1% is most favoured by the F1 score (second row/first column of Figures 6.3

and 6.4). The FDR acts to reduce the number of field galaxies in the AperC4

aperture-slices, but at the expense of reducing the number of cluster galaxies (i.e.,
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Parameter Value

F1 score 7.715 7.672 7.664 7.648 7.645 7.638 7.630 7.628

Aperture range 9′− 2′ 9′− 2′ 9′− 2′ 9′− 2′ 9′− 2′ 9′− 2′ 9′− 2′ 9′− 2′

FDR 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

kth Nearest

Neighbour

12 6 12 6 12 24 6 24

Cluster cross-p(z)

threshold

0.90 0.30 0.60 0.01 0.90 0.00 0.00 0.00

Ngals cut-off 24 32 24 32 24 24 32 32

Ranking method Abell Ngals Abell Ngals Ngals Ngals Ngals Abell

Table 6.3: The top eight optimal AperC4 parameter sets trained on ∼ 213�◦ of the Aardvark v1.0

CatSim galaxy catalog using ideal p(z) information generated from simulation redshifts.

decrease the number of false rejections at the expense of decreased power; see Figure

2.6). In Figure 6.3, we see that the range of FDR thresholds only weakly affects

output catalog quality with no apparent trend between 1% < FDR < 10%, and

FDR = 0.2% being mildly disfavoured against the other FDR values.

If we compare the zCarlos runs to the ideal p(z) runs in section 6.3.2, we find that

there is a slight trend towards favouring a higher FDR, i.e. allowing a larger pro-

portion of non-cluster galaxies allows the capture of more true cluster galaxies. The

impact of having less redshift information means that even with a larger population

of true cluster galaxies, the increased presence of non-cluster galaxies causes the

cluster p(z)s to be less well defined, leading to spurious associations being defined

as clusters.

kth Nearest Neighbour of k = 24 is the optimal value favoured by the F1 score (third

row/second column of Figures 6.3 and 6.4). There is no clear trend favouring

one value of k over another, suggesting this parameter does not significantly affect

AperC4 cluster finding.

Cluster cross-p(z) threshold of cross-p(z) = 0.00 is the optimal value favoured by the

F1 score (fourth row/third column of Figures 6.3 and 6.4). Like FDR, this varies very

gently across the parameter combinations, displaying a slight preference towards low

thresholds when using the zCarlos p(z). Other than where merging is disallowed,

the optimal cross-p(z) threshold for the catalog produced with ideal p(z) shows very
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little preference for low or high cross-p(z)thresholds, indicating that the clusters

which do straddle bins, have some shared non-zero probability outside of the peak

p(z) bin, which allows them to merge. Where merging is disallowed (cross-p(z) =

1.1), the catalog is clearly non-optimal when using the ideal galaxy redshifts, which

is mostly due to clusters straddling the p(z) bin edges remaining fragmented. This

effect is less dramatic when using zCarlos p(z)s since (by design) they tend to be

less constrained towards a single redshift.

Ngals cut-off of 32 galaxies per cluster is the optimal value favoured by the F1 score

(fifth row/fourth column of Figures 6.3 and 6.4). The lower Ngals cut-off F1 scores

imply that completeness increases less than purity decreases when lowering the Ngals

threshold. Above an Ngals = 32 threshold, the F1 scores are driven by fewer real

and false clusters where purity increases less than completeness decreases.

Ranking method the Abell ranking is favoured by the F1 score across all parameters

(fifth column of Figures 6.3 and 6.4), and is therefore the optimal ranking. Interest-

ingly, the Abell ranking favours higher Ngals thresholds, which is part of its historical

definition for galaxy clusters (§1.2.1), but the degree to which this trend is observed

is minimal.

6.4 Discussion

6.4.1 AperC4 Catalog Statistics with zCarlos Redshifts

Having determined the optimal parameter set in section 6.3.3, the optimal catalog will be

examined using the matching framework (presented in chapter 5) in this section. In order

to bin by redshift, the p(z)s of the AperC4 clusters have been reduced to their peak value,

which may incur added scatter (§6.1.2) when looking at the redshift separations but does

not affect matching as this is done by membership.

Approximately two-thirds of the matched clusters are two-way in non-unique matching.

Figure 6.5 shows the non-uniquely matched clusters and halos are fragmented with respect

to one another. AperC4 cluster finding below z < 0.1 is poor, which is to be expected

where the aperture extents probe .1h−1 Mpc scales (assuming WMAP9 cosmology; see

Table 3.3) at the upper limit of the lowest redshift bin. The presence of blue points along

the vertical axis indicates AperC4 is not finding these halos. Below z < 0.4 very few halos

log(M/M�) & 14 are missed by AperC4 completely, whilst above z > 0.4, significant

numbers of halos are also missed up to log(M/M�) . 14.75. The red points along the
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Figure 6.5: This plot shows the non-unique scatter of matched AperC4-CatSim cluster-halos as per Figure

5.5 (§5.2.6) from the optimal AperC4 catalog. At redshifts 0.3 < z < 0.4 and z > 0.4, the number of

halo-to-cluster matches (blue points) outnumbers the number of cluster-to-halo matches, indicating the

cluster catalog tends to blend halos in these redshift bins. In the 0.1 < z < 0.2 and 0.2 < z < 0.3 bins,

the situation appears reversed and multiple clusters match to single halos, indicating fragmentation in this

bin.
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Figure 6.6: This plot shows the unique scatter of matched AperC4-CatSim cluster-halos as per Figure

5.6 (§5.2.6) from the optimal AperC4 catalog. AperC4 can be seen to produce clusters ranked below

log(M/M�) . 14 that do not uniquely match to any halo or redshifts below z < 0.4 indicating fragment-

ation occurs in these regimes. Above z > 0.4 the fragmentation occurs up to log(M/M�) . 14.5. The

misfit scatter lines (purple) above log(M/M�) & 14.5 are because the bins aren’t occupied well enough by

non-two-way matches in this mass range to get a proper handle on scatter limits (the two-way matches in

these bins are calibrated to the halo mass, hence there is no scatter by definition).
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horizontal axis indicate AperC4 clusters that do not match any halo in this sample, and

are thus false associations. Such false associations only appear to occur in significant

proportions in the 0.2 < z < 0.3 bin. The apparent abundance of cluster-halo matches

in lower redshift bins, and halo-cluster matches in the higher redshift bins, indicates line-

of-sight fragmentation, where the off-relation (i.e. Mobs 6= Mtrue) low z clusters describe

a blend of low-z and high-z halos. This distribution of matching type by redshift also

indicates that cluster redshifts tend towards redshift ranges that cover these bins. The

apparent paucity of the plots indicates either a general dearth of clusters found (such as

in the 0.0 < z < 0.1 bin), or indicates that the majority of clusters are well described by

(two-way matched to) their halo counterparts (such as in the 0.3 < z < 0.4 bin).

The addition of the uniqueness constraint reduces the fraction of two-way matches to

half the cluster sample. Figure 6.6 indicates that most of the poorly (non-unique) matched

clusters occur where the clusters are ranked below log(M/M�) . 14, with the exception

of the highest redshift bin. At increasing redshift, the redshift bins include an increasing

fraction of halos at the edge of detectability, i.e., they contain very few galaxies that are

simulated within the magnitude limit of the SDSS, decreasing AperC4’s ability to detect

them as clusters.

Looking at the Spearman ranking coefficients (indicated by ρ in the figures; §5.2.2),

the Abell ranking shows a positive correlation with mass at redshifts below z < 0.4,

indicating that the ranking very broadly differentiates (positive but non-unity) between

high mass and low mass clusters in these redshift bins. This correlation is close to zero

in the highest redshift bin, indicating that Abell ranking is ineffective in this regime. The

scatter fit (shown by the purple lines) is poor for high mass clusters/halos due to their

lack of numbers, indicating that a larger sample is required to assess the scatter properly.

In Figure 6.7, raw completeness is behaving as one would expect, referring to earlier

tests on matching with an Ngals limited catalog (§5.4.6), with low mass/high redshift

objects being less readily detected than high mass/low redshift objects. Halos in the

0.4 < z < 0.6 are found less effectively than the lower redshift bins. Raw purity is & 90%

in all redshift bins, which implies that nearly all of the clusters in the catalog match to

at least one halo (i.e., contain at least one halo member) above log(M/M�) & 13.5. The

F1-score on the right is the harmonic mean of these distributions.

The addition of the uniqueness constraint on matching shows a degree of fragmentation

and blending in the cluster catalog. Completeness drops by around 20% as a fraction of

clusters contain some blended halos. Relating to raw completeness, this blending appears
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Figure 6.7: This plot shows the purity, completeness, and F1 measures of matched AperC4-CatSim

cluster-halos as per Figure 5.7 (§5.2.6) from the optimal AperC4 catalog. The redshift ranges are given

in the key, and the mass bins are δ log(M) = 0.25 in size.
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to be independent of redshift, whilst at lower masses, unique completeness drops to around

20%, indicating that the lower ranked/mass clusters are more likely to be blended. Purity

drops to around 70% in most redshift bins with the inclusion of the uniqueness constraint,

indicating that halos are getting fragmented across the survey, irrespective of mass or

redshift. Considering all the purity information, the high raw purity indicates that whilst

nearly all of the clusters relate to some halo object, some clusters identify some halos

multiple times.

Scatter is small since clusters are designated the mass of the halo they are uniquely

two-way matched to. The log-mass scatter falling to zero may be indicative of sampling

problems, as the higher mass bins will contain fewer clusters/halos than lower mass bins,

meaning that individual clusters with larger than average deviation from their true mass

will have a more sizable effect on the measured scatter in the higher mass bins than at

lower masses.

Figure 6.9 shows that defining the galaxy with the minimum k-NN distance as the

cluster centre will tend to be offset from the true centre of the simulated halo. The

majority of these points come from low mass systems, as seen from the distribution of

points in the matching scatter plots above, and so may be indicative of fragmentation of

the halo populations at the halo edges. Similarly, the displacement of cluster-halo and

halo-cluster matches in redshift space indicates that high redshift halos are being matched

to low redshift clusters, and/or cluster redshifts are biased low. The banding exhibited in

the z versus ∆z plot indicates that the combined p(z)s tend to peak in these locations.

6.4.2 AperC4 Catalog Statistics with Ideal Redshifts

The distribution of maximum F1 score by parameter combination in Figure 6.4 appears

to be consistent with the optimal parameter set from the zCarlos p(z)s in Figure 6.3.

Idealized p(z) Purity and Completeness Behaviour

In Figure 6.8, the distribution of purity and completeness using the ideal/simulated p(z)

catalog generated with the optimal parameter set (Table 6.2 in §6.3) shows some differ-

ences to the optimal catalog matching (generated with zCarlos). The optimum catalog

with the ideal p(z) looks worse, whilst the catalog behaves more consistently across all red-

shift/mass bins. The raw completeness has increased slightly, reaching near 100% above

log(M) > 14.0. This is because the optimal ideal redshift catalog has a relaxed FDR of

10%, which includes a greater number of cluster-like galaxies at the expense of an increased
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Figure 6.8: This plot shows the purity, completeness, and F1 measures of matched AperC4-CatSim

cluster-halos as per Figure 5.7 (§5.2.6) from the optimal AperC4 catalog but with ideal p(z)s, generated

from the simulation redshift, substituted for the zCarlos p(z). Figure 6.7 is the equivalent plot using

zCarlos p(z).
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Figure 6.9: This plot shows the centering of matched AperC4-CatSim cluster-halos as per Figure 5.8

(§5.2.6) from the optimal AperC4 catalog. The upper left plot shows that the unique two-way matches and

the halo-cluster matched halos are typically at higher redshift than the clusters they match to. Conversely,

the cluster-halo matched clusters tend to be slightly below the correct halo redshift. The diagonal lines

forming the two way matches in the upper right is a consequence of the quantised binning of redshift by

the p(z). It is important to note that this deviation is against the peak of the AperC4 cluster p(z)s and

hence measuring a delta in this way is an over-simplification of the p(z) (for the purpose of visualising this

difference). The lower two plots show the centering offset of the cluster from its matched halo (and/or vice

versa) in arcminutes. The lower plots show the matches are not well centred. A significant high redshift

population of halos that are not two-way matched can be seen in the lower right plot, which also shows

that AperC4 is able to find real clusters (unique two-way matched to simulation halo) above redhshifts

z > 0.6.
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fraction of contaminating field-like galaxies (§2.2.3).

As the galaxies have generally been moved into the cluster with the correct redshift

binning, contaminating galaxies will either be isolated or put into small groups in various

redshift bins, and thus excluded by the Ngals cut-off. Groups of contaminating galaxies

that are not excluded by the Ngals cut-off join real clusters or form false associations, which

will negatively affect catalog purity. Raw purity falls to ∼ 80% below log(M) . 14.0, in

the ideal p(z) matching plots, indicating ∼ 20% of the clusters in this mass range are false

associations.

Comparing to the AperC4-zCarlos clusters, those clusters that were populated by

galaxies from multiple halos have been divided into clusters at the proper halo redshift in

the AperC4-ideal p(z) catalog, and false associations of contaminant galaxies that occur

randomly. As we allowed a 10% FDR, the maximum expected contamination is 10% in

terms of galaxies, and since the Abell ranking is derived from Ngals, the resultant decrease

in purity (with mass proxy) is expected for decreasing Ngals/mass as the false associations

should not be expected to occur with greater Ngals than the simulated halos. This expect-

ation draws from the fact that the contaminant galaxies in these false associations really

do belong in the same redshift bin. Thus, any false association that is constrained within

an aperture and redshift interval, and is shown to be colour clustered, is a questionable

result of either the AperC4 cluster finding or the CatSim halo definition.

Idealized p(z) Centering Behaviour

Figure 6.10 shows that fixing the redshift of the galaxies, and thus the derived redshift

of the clusters, has the expected result of decreasing the redshift scatter of the clusters.

The centering of clusters in the celestial plane also improves upon the zCarlos generated

centres, despite no centring adjustment to the clusters in either ideal or zCarlos AperC4

catalog. The matches in this distribution are mostly unique, and so many of the cluster-

halo matches in the optimal AperC4-zCarlos catalog no longer uniquely match to any

halo, and are thus excluded from the centering evaluation.

6.4.3 Comparison between zCarlos and Ideal Redshift Cluster Catalogs

The F1-scores favour the ideal case cluster catalogs, peaking at 7.72 compared to 6.92

for the zCarlos catalogs. This indicates that whilst AperC4 is able to identify cluster

galaxies well (based on the raw purities of the zCarlos and ideal catalogs; §6.4.1 and

§6.4.2, respectively), a decrease in the quality of redshift information has a measurable
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Figure 6.10: This plot shows the centering of matched AperC4-CatSim cluster-halos as per Figure 5.8

(§5.2.6) from the optimal AperC4 catalog but with a ideal p(z), generated from the simulation redshift,

substituted for the zCarlos p(z). Figure 6.9 is the equivalent plot using zCarlos p(z).

negative effect on the output AperC4 clusters. In terms of the F1 score itself, both

zCarlos and ideal AperC4 catalogs optimise to approximately the same parameter set

(§6.3 and §6.3.2). The exception in the trends is FDR, where having the true redshift

information (i.e., ideal information) allows one to include more cluster and contaminant

galaxy populations (§6.4.2), resulting in more clusters found at a rate consistent with the

purity of zCarlos.

Examination of the completeness/purity distributions with the uniqueness constraint

shows that the completeness of the ideal p(z) cluster catalog is close to that of the zCarlos

cluster catalog, implying that when AperC4 does find real clusters, it describes them fairly

well. Examining the unique purity curves shows that an increasing number of false clusters

are identified with decreasing mass, with approximately one false association for every

three real halos. Comparison of the ideal p(z) unique purity curves with the enhanced

zCarlos p(z) unique purity curves implies that the clusters produced with zCarlos

carry a larger proportion of contaminant galaxies.

The decreased scatter in the redshifts of cluster centres when using the ideal p(z)

(Figure 6.10) compared to zCarlos p(z) (Figure 6.9), is because the true redshift of the

member galaxies is known, so the AperC4 cluster produced from these galaxies lies at
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the same redshift. The apparent improvement in celestial centering is because the cluster

galaxies are moving into the “correct” cluster during the defragmentation step (§3.2.8).

Contaminant galaxies tend to move into smaller groups (as shown in Figure 6.8) that are

either excluded by the Ngals cut, or simply do not uniquely match to any halo. Finally,

because the redshifts are known, the halos above z > 0.6 are well identified, whereas the

AperC4-zCarlos catalog fails to identify these clusters uniquely (Figure 6.9), revealing

the limitations of the zCarlos p(z) in this regime.

The limited area (213�◦) in which this analysis is performed means that it is prone

to shot noise due to the limited number of halos in the higher mass bins across all red-

shifts. The area limitation being due to inconsistencies between galaxy identifications in

the CatSim and zCarlos catalogs (§6.1.2). However, the optimal parameter set of the

ideal p(z) AperC4 catalog broadly agrees with that of the zCarlos-AperC4catalog,

suggesting that the optimal parameter set constructed using zCarlos is close to, if not

exactly the same as, the optimal parameter set for AperC4 on an SDSS DR8-like galaxy

survey.

6.5 Summary

In section 6.1, I introduced the zCarlos p(z) and its application to the DES CatSim

(specifically, the SDSS DR8 realisation of CatSim) showing how p(z)s can be used to

reconstruct N(z) and discussing their treatment in AperC4 cluster finding. In section 6.2,

I applied AperC4 to the CatSim realisation of DR8 over 213�◦over multiple parameter

combinations, then utilised the F-measure to select an optimal parameter combination in

section 6.3.

Then, in section 6.4, I qualitatively examined the AperC4-CatSim cluster catalog

produced with the optimal parameter combination utilising the matching algorithm de-

scribed in chapter 5. I also explored AperC4 catalog realisations over the same parameter

combinations where AperC4 is given ideal p(z)s, generated from the simulation redshifts.

This allowed me to evaluate the impact of p(z) quality on the output cluster catalog, which

in turn allowed better characterisation of the AperC4 catalog’s successes and weaknesses.

The use of simulated information is arguably the best way to to assess cluster catalog

quality. Since there is no way to objectively know what’s in the sky, data-based com-

pleteness/purity measures are self-defeating as there is only one sky, and previous cluster

catalogs may well have undocumented features that make them less than reliable.

From this chapter, there now exists an optimal parameter set for AperC4 on simulated
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SDSS DR8 data. In the following chapter, I will apply AperC4 to the observed SDSS

DR8 with this well characterised, optimal parameter set to obtain a cluster catalog.
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Chapter 7

The SDSS DR8-AperC4 catalog

Having determined an optimal set of AperC4 parameters, by using F-measure for an area

that simulates the SDSS galaxy survey (described in chapter 6), AperC4 is applied to

real SDSS data to find galaxy clusters.

In section 7.1, I overview the SDSS DR8 galaxy catalog and the Sheldon et al. (2012)

galaxy selection used to construct an accompanying p(z) catalog. I investigate this galaxy

selection and introduce further cuts before applying AperC4 to the data in section 7.2.

In section 7.3, I present the final AperC4-SDSS DR8 cluster catalog, overviewing its

structure and employ GAMA data (Driver et al., 2010) to a subsample of clusters to

establish the success and failure modes of AperC4. In section 7.4, I discuss the findings

of section 7.3 and how they can be used to feed back to the AperC4 algorithm, before

summarising in section 7.5

7.1 SDSS DR8

7.1.1 Introduction to DR8

SDSS DR8 represents the 8th Data Release of the SDSS (SDSS-III collaboration et al.,

2011), and marks the first data release from the SDSS III campaign. DR8 totals 14,555�◦

of photometric coverage and 9,274�◦ of spectroscopic coverage (see §2.1.1). The DR8

catalog employs an alternative photometric calibration algorithm to the one employed

by SDSS DR2 (§2.1.1). It simultaneously solves for calibration parameters and relative

stellar fluxes by using overlapping SDSS observations: the übercalibration method (Pad-

manabhan et al., 2008). Übercalibration works by decoupling the problem of “absolute”

calibrations (the translation of a measurement to a physical flux) from “relative” calibra-

tions (internally consistent measurements) across the entire SDSS. The method employs
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priors, in addition to standard stars, to reduce variation between disconnected regions.

The advantage to AperC4 cluster finding that these übercalibrated magnitudes give, is

the reduction of systematic error (Equations 3.1 [§3.2.3] and 2.19 [§2.2.2]) between two

galaxies (of similar colours at the same redshift in different regions of the survey) down to a

1-2% level. This allows a greater degree of reliability in the p-value estimation, which eval-

uates a given galaxy’s relative colour density (as explained in section 2.2.3) and motivates

the exclusion of the systematic component of the colour-aperture (by setting γ = 0).

During the SDSS I & II campaigns, three stripes in the south galactic cap were ob-

served: one along the celestial equator and two others north and south of the equator. The

equatorial stripe (Stripe 82, Annis et al. 2011) was observed repeatedly with the intention

of finding variable objects and, when co-added, to reach a magnitude limit roughly 2 mag-

nitudes deeper than the main SDSS sample (York et al., 2000). The Stripe 82 imaging and

co-added catalog was released alongside the Seventh Data Release (DR7, Abazajian and

Survey 2008) of the SDSS, marking the completion of the SDSS II phase of the survey.

DR8 included 2,395�◦ of additional imaging around the Southern Galactic Cap to give

3,173�◦ contiguous coverage in this region.

The Southern Galactic Cap will also be covered by the DES (Flaugher, 2005), as well

as being an area of interest for other surveys covering a range of wavelengths (e.g. radio

(VLA, Hodge et al. 2011), SZ (ACT, Reese et al. 2011), infrared (UKIDSS, Warren et al.

2007; VHS, Banerji et al. 2008), optical (BOSS, Eisenstein et al. 2011; CFHTLS, Brimioulle

et al. 2008) and X-ray (Stripe 82 X, Urry 2010)). In covering this area, galaxy photometry

can be trained, employing spectroscopic data for training redshifts and calibrating absolute

photometry between surveys. The multi-wavelength coverage of this region also offers the

opportunity of deeper insight into the cosmological, astrophysical and statistical properties

of the extragalactic information contained inside the shared survey area.

A DR8 cluster catalog is highly desirable as a means to investigate cluster populations,

at greater depth, with the well characterized SDSS hardware/software calibrations and

pipelines. Cross-wavelength information on these clusters can then be used as a means

to evaluate mass proxies / astrophysical properties against one another. I note that

cluster catalogs for DR8 already exist in the form of redMaPPer (a red sequence method,

Rykoff et al., 2013), and a Friends-of-Friends algorithm (Wen and Han, 2013). AperC4 is

complementary to these catalogs by not being a red sequence detection method or relying

on photo-zs for cluster galaxy identification.
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7.1.2 Sheldon et al. Galaxy Selection

The p(z) information utilised in this analysis is sourced from Sheldon et al. (2012) (hence-

forth referred to as S12), which are the application of the zCarlos p(z)method (§6.1) to

SDSS DR8. Therein, users of the DR8 p(z) catalog are advised to “choose a subset of the

data that suits their needs” and that the catalog “should be a superset of objects that

can be further trimmed.” In this subsection, I will first describe the Sheldon et al. (2012)

superset galaxy selection, before introducing my own selection subset.

Star-galaxy separation is achieved by determining the difference between the r−band

modelMag and psfMag (described in §2.1.1) such that

rPSF − rmodel > 0.135, (7.1)

which is slightly relaxed from the DR2 spectroscopic galaxy target selection in Equation

2.7 (§2.1.2). S12 mention that at their magnitude limit of r = 21.8, that the stellar

contamination is relatively large. They determine stellar contamination of a few percent

at r = 21, increasing to 10% at r = 22.

All objects identified in SDSS are each assigned 59 different flags during source ex-

traction and identification, which can be used to reject objects identified as galaxies that

may be unreliable and/or poorly measured. The S12 identified “galaxy” sources are run

through a preliminary cleaning, using the standard “clean photometry” selection∗, which

removes sources that are: duplicated in overlapped fields (not flagged as PRIMARY); de-

tected below a 5σ significance in the original imaging frame, the ×2, or the ×4 binned

images (BINNED{1,2,4}); where a half-light radius could not be measured (NOPROFILE);

that are marked as a blend but not deblended, usually due to proximity to the frame edge

or because the object is too large (BLENDED && NODEBLEND); that are too close to the edge

of a frame to be satisfactorily centroided (PEAKCENTER); where the pixel was not examined

for an object (NOTCHECKED); where objects have been measured twice due to their high

flux and thus duplicated (the rejected duplicate is flagged as BRIGHT); where the object

is too bright for the detector (SATURATED); and where a source has been deblended into

more than 25 objects (DEBLEND_TOO_MANY_PEAKS).

Note that, by definition, PRIMARY selected sources include a combination of the flags

!BRIGHT && (!BLENDED || NODEBLEND || nchild == 0), such that the source is neither

duplicated nor can be deblended further.

S12 excise objects where the extinction corrected (Schlegel et al., 1998) model flux is

not well determined in at least one photometric band, and require objects to be detected

∗http://cas.sdss.org/dr4/en/help/docs/realquery.asp#flags
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in at least one band in [ugriz] < [21, 22, 22, 20.5, 20.1], demanding a 5σ detection in both

the r and i bands (through the BINNED{1,2,4} flag). The cModelMag rband is restricted

to a range within 15 ≤ rcModel ≤ 21.8, and limiting the extinction corrected modelMag to

the range [15.0, 29.0] to ensure reasonable galaxy colours.

The source catalog is celestially limited to the BOSS footprint (see Figure 7.7). Objects

near stars in the tycho2 catalog (Høg et al., 2000) were also excised using a magnitude

dependent masking radius. Finally, objects found in images where the SDSS u amplifier

was not working∗ were removed.

The S12 catalog contains 58,533,603 objects.

7.1.3 Galaxy Selection for AperC4

Stoughton et al. (2002) detail shortcomings of the SDSS source extraction/identification

pipeline (known as frames), mentioning difficulties such as: cosmic-ray rejection; elec-

tronics cross-talk producing faint ghosts in z -band; the lack of diffraction spike subtrac-

tion/interpolation; faint ghosts from the physical edges of the filters (and urges suspicion

of the reality of sources fainter than r > 24 mag arcsec2); deblending of low surface bright-

ness features from large galaxies; and ghosting in the u- filter introducing some systematic

error into the flat fielding of the images. They give a disclaimer that the problems they

identify are by no means exhaustive, and whilst the frames framework had been regularly

updated as the SDSS timeline progressed, some issues may still impact the DR8 catalog

data.

Further to the S12 galaxy selection (§7.1.2) above, further cuts were investigated. A

random sample of 5 million S12 DR8 galaxies were then used to follow-up and evaluate

prospective cuts.

Flags

The flags applied to S12 are very thorough, with the PRIMARY and NOTCHECKED flags being

the most effectual selections in reducing the input DR8 galaxy catalog.

The MAYBE_CR, and MAYBE_EGHOST flags were investigated. This MAYBE_CR flag signals

an object may be a cosmic ray, describing objects detected in a single-filter that have

not been interpolated over, i.e., the object’s measurements are detected in the data and

are uncorrected (as opposed to detections that are flagged as containing cosmic rays and

interpolated over). MAYBE_EGHOST indicates that the object may be an electronics ghost of

∗http://www.sdss.org/dr7.1/start/aboutdr7.1.html#imcaveat
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a bright star in the given band. Objects flagged with these keywords that did fall into the

S12 selection make up slightly less than 1% of the S12 catalog. Eyeball inspection of ∼ 100

flagged objects at various magnitudes was undertaken, revealing no source that could be

attributed to cosmic rays or to the electronics replication of a nearby bright star, and thus

the flag may be attributed to the quality of the detection in a non-optimal band. As the

S12 selection demands detection in both r and i bands, the likelihood of these two flags

suggesting either genuine electronics ghosts or cosmic rays is low. As such, no additional

flags are used to constrain the S12 galaxy catalog.

Surface Brightness

Based on the suspicions of Stoughton et al. (2002), sources with a r-band half-light surface

brightness, µr, fainter than

µr > 24.5mag arcsec2 for rpetro ≤ 19, and (7.2)

µr > 5.5 + rpetro for rpetro ≥ 19, (7.3)

were inspected for improper identifications (see purple points in Figure 7.1). However, the

removal of the images where the u amplifier was malfunctioning (already undertaken by

S12) appears to have reduced the presence of ghosting in the S12 catalog in this surface

brightness regime. Remaining galaxies appear to have either a very red SED, or a fairly

blue SED, implying that the low r-band surface brightness of these objects is a consequence

of the object having a spectrum that peaks in redder, or bluer, bands, respectively. As

such, no faint surface brightness limits are applied to the S12 sample.

The green points in Figure 7.1 describe a noticeable band of galaxies that extends

from an r-band half-light surface brightness of µr & 16 to µr . 20.5 mag arcsec−2 and an

r-band magnitude of rpetro < 20.5 mag, which originates from a small number of bright

stars satisfying the S12 star-galaxy separation criteria (Equation 7.1), resulting in their

misclassification (Strauss et al., 2002). The stellar track is cut until it reaches the main

bulk of the galaxy population in Figure 7.1, which may result in a fraction of real galaxies

being cut along with stars in the stellar track. With reference to Figure 7.2, examination

of these ‘galaxies’ reveals that the bright end is primarily populated with very close binary

stars, which are complicated to deblend successfully. The faint end shows objects where

the galaxy-star appearance of the source isn’t readily distinguishable by eye, and so the

fainter end of this cut describes some distribution of both stars and galaxies.

This stellar locus cut is implemented and excises 45,717 sources from the 58,533,603

(0.07%) objects in the S12 catalog.
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Figure 7.1: Petrosian magnitude vs half-light surface brightness of DR8 galaxies selected, highlighting

the 5 million investigated galaxies. The blue points describes galaxies selected by the MAYBE CR and

MAYBE EGHOST flags; the purple points describe galaxies investigated at low surface brightness; the green

area contains ‘galaxies’ excluded through surface brightness cuts; red points describe galaxies that are

below all magnitude limits (§7.1.4); and the remaining galaxies, represented by black points, form the

sample on which AperC4 is run. The galaxies identified by green and red points are excluded from the

Sheldon et al. galaxy sample, whilst the other selections remain.
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Figure 7.2: These cutouts demonstrate ‘galaxies’ identified by surface brightness cuts (green area in Figure

7.1). The top row shows three example galaxies identified at magnitudes brighter than r < 16.5, whilst the

bottom row shows three ‘galaxies’ in the same surface brightness cut at magnitudes fainter than r > 19.0.

Each image is 15′′ on each side. The bright examples show close binaries, where the SDSS deblender has

been unsuccessful in splitting the sources into their constituent parts. The faint examples are somewhat

less easy to distinguish as either star or galaxy by eye.
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7.1.4 Magnitude Limits

The S12 magnitude limits used for selection are [ugriz] < [21, 22, 22, 20.5, 20.1], which were

employed to ensure a reasonable detection in each band. These are within the Stoughton

et al. (2002) 95% completeness limits for point-like (PSF-like, e.g., stars) objects in the

SDSS ([ugriz] < [22, 22.2, 22.2, 21.3, 20.5]). However, for cluster finding, variability in

completeness across the survey area may lead to biases in the locations of where clusters

are found. The selection of PRIMARY objects ensures no duplicate objects exist in areas of

the sky that have been observed repeatedly. In areas where survey runs overlap, repeat

observations increase the opportunity for objects to be detected near the magnitude limit,

and thus these regions may appear to contain more galaxies than others.

Completeness limits suitable for cluster finding are determined empirically. The S12

galaxies are taken and counted in magnitude bins of 0.01 dex for each band, independently,

and examined for turnover from power law. The power law is fitted to these histograms

between the magnitude bins where there are at least 1,000 galaxies in a given bin, and the

bins where the maximum number of galaxies are found (see Figure 7.3). The peak mag-

nitude bins ([ugriz] = [22.65, 22.21, 21.71, 20.95, 20.35]; vertical red dashed lines in Figure

7.3) resemble the S12 magnitude limits, with the exception of u-band, where the peak

occurs 0.65 magnitudes deeper. The magnitude limit for a given band is then determined

by the highest magnitude bin that remains above the fitted power law.

As the peak bin occurs after the distribution departs from this power law, the fitted

power law includes bins below 100% completeness, thus magnitude limits may be slightly

fainter than a 100% completeness level. Iteration for the top magnitude bin for the power

law was considered, but r and i distributions deviate from power law very slightly as to

make the faint end limit very bright, so this method was rejected. A possible reason for this

may be that the accelerating expansion of the universe means that the volume considered

is not truly Euclidean, thus the number density of sources in bins of magnitude will also

deviate. A further caveat is that the completeness limits will be strongly surface-brightness

dependent for galaxies (Blanton et al., 2005).

From identifying where the fitted power law turns over, the magnitude limits are

determined as,

[ugriz]mag = [22.21, 21.19, 20.65, 19.94, 19.44]

Again, the u-band appears deeper than the S12 limit, whilst the remaining bands are

between 0.56 and 1.45 magnitudes shallower. These form the magnitude limits applied

the the galaxies input into the AperC4 algorithm. Galaxies are excluded if no single band
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Figure 7.3: Magnitude limits and limits determined from S12 galaxy catalog. Each plot corresponds to

the u, g, r, i and z SDSS bands from left-to-right, top-to-bottom, respectively. The red dashed line marks

the location of the peak magnitude bin, the blue dashed line denotes the best fit power law, and the green

dashed line marks the magnitude bin at which turnover from power law is indicated.
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passes these thresholds (these are represented by the red points in Figure 7.1).

7.2 AperC4-SDSS DR8 Cluster Catalog Assembly

In this section, I will describe some of the verification processes that are applied to the

AperC4 products that are created during the running of the algorithm (outlined in §3.2).

7.2.1 Survey Tiling

When AperC4 ingests the galaxy catalog (step 1; §3.2.2), it creates tiles of equal side

length in R.A. & declination. During the simulation runs (chapter 6), the data are presen-

ted in tiles bounded by constant R.A. and dec. The S12 catalog is bounded to the BOSS

(Eisenstein et al., 2011, Baryon Oscillation Spectroscopic Survey) footprint (see upper

plot of Figure 7.4∗), which requires the algorithm to perform the tiling on regions that

are not bound by constant R.A. or dec. Furthermore, the BOSS survey footprint covers

two contiguous regions that cover the Southern and Northern Galactic Cap, which are

connected by a limited number of runs where the intermediary galaxies have been excised.

The AperC4 algorithm divides the galaxies into tiles of equal side (SPLITSIZE +

OVERLAP) = (10 + 2) in R.A. and dec. (see lower plot of Figure 7.4), starting from the

lowest R.A. of the input galaxy catalog. In this case, the lowest R.A. is 0◦, and the

algorithm can be seen to overlap where the celestial coordinates wrap from 360◦ to 0◦.

Where there are no galaxies, AperC4 does not attempt to record a tile. With this tiling,

I can demonstrate that the area of the tiles is not equal for tiles at different declination,

i.e., the tiles at dec = 60◦ are approximately half the width (and hence, half the area)

of those at dec= 0◦. At the survey edges, AperC4 merges tiles that have fewer than

100,000 galaxies (typical tile number densities in the CatSim catalog for equivalent sized

tiles is around ∼ 200, 000 galaxies) with neighbouring AperC4 tiles, until all tiles contain

at least this number of galaxies. This minimum number of galaxies ensures that tiles that

are too slim at declinations towards the poles are also suitably populated.

7.2.2 p-value Determination and FDR

After calculating p-values (step 2, §3.2.3), the AperC4 galaxies are determined by ap-

plying the FDR threshold (step 3, §3.2.3) such that the remaining galaxies are the most

cluster-like. Figure 7.5 shows the effect of the FDR values tested on simulation galaxies in

section 6.2, on the DR8 dataset for the 3.7′ aperture size. The galaxies coloured purple and

∗Footprint survey file from http://data.sdss3.org/sas/dr9/boss/lss/boss survey.fits
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Figure 7.4: This figure shows the distribution of SDSS DR8 runs (top) and the AperC4 tiling (bottom) of

the S12 galaxies in the BOSS footprint. The S12 galaxies are sourced from 559 DR8 runs, and each run is

randomly coloured in the upper plot. The AperC4 tiles are outlined in random colours in the lower plot,

where tile dimensions have been determined by the SPLITSIZE and OVERLAP parameters.

deep blue (FDR of 0.4% and 1%, respectively) make it past the optimal FDR= 1% selec-

tion (§6.3.3), whilst those coloured light blue and green (FDR of 4% and 10%, respectively)

indicate galaxies that are close to, but do not pass, this criteria. In general, the light blue

and green galaxies are found around groups of deep blue/purple galaxies, demonstrating

that the p-values can be used to identify cluster galaxies fairly well. However, we can also

notice some groups of chiefly green galaxies, e.g., at (R.A.,dec) = (181.5◦, 32.3◦), which

are not included post-FDR cut since the inclusion of such groups would likely increase

the number of false projections included in the final catalog at a greater rate than the

inclusion of real clusters, thus negatively impacting purity (§6.3).
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The p-value distribution in Figure 7.5 shows that whilst there are galaxies that can be

differentiated between field and cluster-like, i.e., galaxies with p = 1 or p = 0, most of the

catalog lies between the two extremes. Contrasting with the spectroscopic DR2 p-value

distribution (constructed with a comoving aperture in C4M05) in Figure 3.2, it can be seen

that the ability to distinguish between cluster-like and field-like galaxies has decreased by

not constraining the redshift dimension and by having a single static aperture. In the

following subsection, I will demonstrate how AperC4 leverages this reduced statistical

power by employing multiple apertures.

7.2.3 k-NN Centre Determination and Forming Aperture-Slice Clusters

Using the optimal k − NN distance, k = 24, (i.e., distance to the 24th neighbour, §6.3.3),

to determine the cluster centres (step 4, §3.2.5) then associating galaxies to those centres

(step 5, §3.2.6), AperC4 produces nine aperture-slice cluster catalogs (there being nine

apertures in the optimal parameter set). Recall that no redshift information has been used

up to this point, and that the galaxies have been associated to the centres based on their

proximity and the initial k−NN density of the central galaxy. Groupings of 3 galaxies or

fewer are excised from the aperture-slice catalogs.

Figure 7.6 shows the distribution of cluster centres and their associated galaxies from

three aperture-slices (at 2.7′, 3.7′, and 6.3′). At 2.7′, the AperC4 galaxies identified are

easily grouped into distinct, low population groupings (aperture-slice cluster). As the

aperture size increases to 3.7 ′, more aperture-slice clusters are found, with slightly larger

radii stemming from the fact that they probe larger physical associations than 2.7′ at

some common distance, or conversely probe the same size physical associations at 2.7′,

but at closer distances. At 3.7′, structures can start to appear fragmented, such as the

concentration at (R.A.,dec) = (182.4◦, 32.0◦), which the algorithm determines as two

concentrations since the centres are more than 3.7′apart. As the aperture size is increased

further, so the number of galaxies that qualify as AperC4-clustered increases, as can be

seen with the 6.3′aperture.
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The aperture-slice clusters found with the larger apertures appear fragmented in the

celestial plane, with multiple centres applied to apparent 2-D groupings. If clusters from

other aperture-slices combine galaxies from neighbouring groups, then it’s possible for

these groupings to merge, provided their p(z)s indicate the galaxies exist at the same

redshift. Hence, the final cluster radii (the radii of merged aperture-slice clusters) will not

be limited to the maximum aperture radius employed.

In Figure 7.6, a concentration of galaxies can be seen at approximately (R.A.,dec) =

(181.6◦, 32.6◦) in the 2.7′ and 6.3′aperture-slices, but not the 3.7′aperture-slice. This

concentration did exist in the 3.7′catalog but was not significant enough to pass the FDR

threshold, and can be seen as a small concentration of green galaxies (FDR= 10%) in

Figure 7.5. Whether this grouping will form substructure from the the grouping(s) in the

6.3′aperture or describe a separate cluster along the line of sight will be determined by

the addition of p(z) information.

7.2.4 Combining the Aperture-Slice Clusters with p(z) Information and

Producing the Final Cluster Catalog

The aperture-slice clusters are given p(z)s (step 6, §3.2.7) by combining the S12 p(z)

information of their constituent galaxies. The clusters are then merged/fragmented such

that each galaxy only belongs to one cluster (step 7; §3.2.8). As found through training

on CatSim, clusters that share some finite probability of lying at the same redshift are

merged (i.e., cluster cross-p(z) > 0.0; §6.3.3). In section 7.3.2, I will use spectroscopic

GAMA data (Driver and team, 2008) to examine this merging/defragmentation process.

The aperture-slice tiles have been combined into tiles with clusters with unique galaxy

memberships. These tiles are then themselves merged to be sure that duplication of

clusters/galaxies does not occur between tile overlaps, and then clusters with fewer than

Ngals < 32 (determined to be the optimum threshold that identifies the best balance

between true clusters and false associations; §6.3.3) are excluded from the fully merged

catalog (step 8; §3.2.9). The remaining clusters and associated galaxies form the final

AperC4 cluster catalog.
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7.3 The AperC4-SDSS DR8 Cluster Catalog

7.3.1 AperC4-SDSS DR8 Catalog Summary

The AperC4-SDSS DR8 Cluster Catalog contains 83,880 clusters containing 1,898,189

galaxies between them. The cluster catalog itself comes in three parts: the cluster catalog

(Table 7.1), the member catalog (Table 7.2) and the cluster p(z) catalog (Table 7.3).

Table 7.1: Schema of the final AperC4 cluster catalog.

Name Format Description

ID Long64 AperC4 cluster identification number

RA Double Right Ascension in decimal degrees (J2000)

DEC Double Declination in decimal degrees (J2000)

RADIUS Double Angular separation of central & outermost galaxies (arcminutes)

NGALS Long Number of galaxies associated to this cluster, i.e., Ngals.

KNN_CENTRE_DISTANCE Double kth nearest neighbour distance (radians)

NGALRANK Long Ngals rank (§5.3.1)

ABELRICHNESS Long Number of galaxies brighter than (m3 − 2) in r-band (§5.3.2)

ABELRANK Long Rank based on ABELRICHNESS

Table 7.2: Schema of the final AperC4 member catalog.

Name Format Description

RA Double Right Ascension in decimal degrees (J2000)

DEC Double Declination in decimal degrees (J2000)

NEIGHBOUR_COUNT Double Colour clustering measurement of galaxy (Equation 3.2).

MEDIAN_NEIGHBOUR_COUNT Double Median model colour clustering measurement

N_RANDOM_NEIGHBOUR_COUNTS Integer Number of times the aperture was randomly placed.

P_VALUE Double p-value (Equation 2.21).

UG Double u− g colour, calculated with SDSS MODELMAG magnitudes.

UG_ERR Double Uncertainty on u− g (Equation 3.1).

GR Double g − r colour, calculated with SDSS MODELMAG magnitudes.

GR_ERR Double Uncertainty on g − r (Equation 3.1).

RI Double r − i colour, calculated with SDSS MODELMAG magnitudes.

RI_ERR Double Uncertainty on r − i (Equation 3.1).

IZ Double i− z colour, calculated with SDSS MODELMAG magnitudes.

IZ_ERR Double Uncertainty on i− z (Equation 3.1).

MAG_R Double SDSS r-band MODELMAG magnitude

MAG_I Double SDSS i-band MODELMAG magnitude

APERTURE Double Aperture where p(zcluster)× p(zgalaxy) is optimal (§3.2.8).

ID Long64 SDSS DR8 CAS object identifier

KNN_DISTANCE Double kth nearest neighbour distance in aperture-slice catalog (radians)

CLUSTERID Long64 AperC4 cluster identification number

RADIUS Double Angular distance to the cluster centre (arcminutes)

N_INSIDE Long Number of galaxies in the cluster that are within RADIUS.

Member catalog schema continued on next page
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Table 7.2 – Member catalog schema continued from previous page

Name Format Description

DENSITY Double Surface density of AperC4 galaxies, N INSIDE⁄π(RADIUS)2.

CLUSTERNGALS Long Cluster Ngals

PZFILE String Name of S12 file containing galaxy’s p(z) information.

NGALRANK Long Cluster Ngals rank (§5.3.1)

ABELRANK Long Cluster rank based on ABELRICHNESS (§5.3.2)

Table 7.3: Schema of the final AperC4 cluster p(z) catalog.

Name Format Description

ID Long64 AperC4 cluster identification number

WEIGHT Double Minimum p(z) probability of constituent members.

NGALS Long Cluster Ngals.

P_OF_Z Double[35] Cluster p(z), where bins are defined by S12, and calculated by

the product sum of the member galaxies (§3.3)

The full set of AperC4 catalogs can be downloaded from:

http://astronomy.sussex.ac.uk/~lb92/AperC4/catalog.html

Figure 7.7 shows the distribution of the 83,880 AperC4-DR8 clusters, evaluated with

S12 p(z), plotted on the BOSS footprint. There is an apparent structure to the distribu-

tion of clusters in the catalog, suggesting AperC4 is selecting clusters at some preferred

location.
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Figure 7.8: N(z) of AperC4-DR8 clusters (left vertical axis) through summation of the cluster p(z)s (blue

line), counting the locations of the p(z) peaks (green line). Also shown is the N(z) of the constituent

AperC4 galaxies (red line; right vertical axis).

Figure 7.9: Ngals of AperC4-DR8 clusters.As one would expect, the higher Ngals clusters are rarer than

those with lower Ngals. The richest cluster identified by AperC4 contains ∼450 galaxies.

Figure 7.8 shows the N(z) of the AperC4 clusters and of their constituent galaxies.

The clusters appear to be preferentially found in the 0.24 < z < 0.27, 0.27 < z < 0.30 and



163

0.33 < z < 0.36 bins, where those particular bins contain more than double the number of

clusters in any other bin. By comparison, the N(z) of the AperC4 galaxies (per redshift

bin) appears to increase until z = 0.2, then remains approximately constant until z = 0.36,

at which point the number of galaxies falls (nominally because fainter galaxies have been

excluded by the magnitude limits of the catalog). The clusters are populated as one would

expect (Figure 7.9), with richer clusters being rarer than clusters with lower Ngals. I will

discuss the nature of this N(z) distribution and projected structure in section 7.4.1.

7.3.2 GAMA Spectroscopy in AperC4-SDSS DR8 Clusters

To lend some context to the cluster redshifts, I employ spectroscopic redshift measurements

of SDSS galaxies taken from the GAMA (Galaxy And Mass Assembly) survey.

The GAMA Survey

The GAMA survey (Driver et al., 2010) is a multi-wavelength photometric and spectro-

scopic survey, designed to expand upon the Millennium Galaxy Catalog (Liske et al.,

2003), 2dFGRS (2 degree Field Galaxy Redshift Survey; Lewis et al., 2002), and SDSS

spectroscopic campaign to measure galaxy properties and environments on scales from

1 kpc to 1 Mpc. GAMA covers 3 regions covering a total of ∼ 180�◦ to a magnitude of

r < 19.8. This thesis employs the second data release from GAMA (DR2; Liske et al, in

prep.).

Matching AperC4 to GAMA

The galaxies for which GAMA provides spectroscopy are targeted from the SDSS DR6

photometric galaxy catalog, which allows unambiguous matching to the SDSS DR8 galax-

ies employed in this thesis. As the SDSS DR6 object identification numbers (objIDs) differ

from the objIDs of SDSS DR8, it isn’t possible to match galaxies by objID. However, since

the object identification system (excluding the numbering schema) between SDSS DR6

and DR8 is largely unchanged, GAMA galaxies are matched to AperC4-DR8 galaxies by

proximity, with an upper limit of 2′′.

Of 221,373 galaxies with spectroscopic redshifts in the GAMA catalog, 9,743 are found

in the AperC4 member catalog, distributed among 872 AperC4 clusters. Figure 7.10

summarises the redshift distribution of GAMA galaxies amongst AperC4 clusters, show-

ing lower redshift clusters (as indicated by the peak of the cluster p(z)) will tend to contain

galaxies with higher spectroscopic redshifts (zgama) whilst higher redshift clusters will tend
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to contain galaxies from lower redshifts. The mean GAMA redshifts appear to indicate

that the peak of the cluster p(z)s are fairly accurately positioned, whilst the large error

bars indicate low precision. This is indicatory of a problem with assignment of galaxies to

clusters (e.g., blending along the line of sight), the location of the peak p(z) of the cluster

(through its product-sum calculation [§3.2.7], or the S12 p(z)s used to calculate them),

and/or the overall AperC4 selection of galaxies. I note that the peak of the cluster p(z)

may not be the best description of the full p(z) (§6.1.1).

Figure 7.10: Mean GAMA galaxy redshifts against peak AperC4 cluster p(z). The GAMA galaxies

are grouped into bins where their corresponding AperC4 cluster is most likely located (using AperC4

p(z)). The black dashed line shows where the GAMA galaxy redshift, zgama, is equal to the location of

the AperC4 cluster p(z) peak. The blue crosses represent the mean zgama of the galaxies that belong to

clusters in that bin, and the red bars correspond to the 1σ error on the mean.

In Figure 7.11, the GAMA galaxies are distributed amongst the 872 AperC4 clusters

they are found in, and the mean GAMA cluster redshift (zgama) is calculated by taking the
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mean redshift of the GAMA members in a given AperC4 cluster. The distribution seems

to show the peak p(z) of the clusters are near to the mean z of their constituent GAMA

galaxies, allowing for a slight overestimation of peak p(z) redshift at low zgama (z . 0.1),

and an underestimation of peak p(z) at high zgama (z & 0.4). The median standard

deviation of the GAMA galaxy redshifts around the mean redshift of their respective

clusters is around δz ≈ 0.1, where 9% have δz ≤ 0.01 and 1% have δz ≥ 0.2.

Figure 7.11: Using GAMA redshifts, this plot shows the dispersion of AperC4 clusters (σ(zGAMA)) against

mean spectroscopic cluster redshift (zgama). The dotted line (dark blue) represents where zgama is the same

as the midpoint of the p(z) bin at which the cluster p(z) peaks. The error bars (light blue) each indicate

the redshift dispersion of a cluster as calculated by its spectroscopic members. Points (grey) indicate

clusters where only one member has a GAMA redshift. Where error bars/points are vertically offset from

the dashed line indicates the difference between the cluster zgama and peak p(z).

7.3.3 Example AperC4 Clusters with GAMA Redshifts

With spectroscopic redshift information, and the knowledge that the catalog generated is

approximately ∼ 70% pure (with respect to the underlying distribution of matter, §6.4.1),

it is possible to examine some of the success/failure modes of the AperC4 membership

assignment and p(z) construction. I now present some example clusters from the AperC4

cluster catalog in Figures 7.12 to 7.16. Figure 7.12 details the contents of the subfigures

in the figures that follow.

Successful AperC4 Identifications

Figures 7.12 and 7.13 demonstrate two clusters identified by AperC4 in the 0.30 < z <

0.33 and 0.15 < z < 0.18 redshift bins, respectively. The redshift distributions of the mem-

bers with spectroscopic redshifts in GAMA for these clusters mostly lie in the same bin.

However, there are occurrences in both cases of a fraction of members with spectroscopy

being line-of-sight contamination.
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Figure 7.12: This figure shows AperC4 cluster ID 256281 and its 95 members. Top: Projection of

the sky around the cluster centre (green star) and members with (red circles) and without (red plusses)

GAMA redshifts. Also shown are other nearby AperC4 cluster centres (black stars), their members (blue

plusses) and background galaxies (black points). Middle: The cluster’s p(z) (blue line) is compared to

the constituent S12 galaxy p(z)s (grey lines). Also shown are GAMA redshifts of the cluster members

(red dots), where vertical displacement around p(z) = 0.7 is proportional to displacement in dec. The

mean redshift of those GAMA members (green dotted line) and 1σ standard deviation (horizontal cyan

bar) are also shown. Bottom: SDSS DR8 SkyServer images of the cluster region [bottom left ] unmarked,

and [bottom right ] with the cluster centre (green star), and members with GAMA redshifts (red ring) and

without (cyan ring), indicated. The mean GAMA redshift of z = 0.318 coincides with the peak p(z) of the

cluster, indicating a good identification, although ∼1⁄3 GAMA galaxies are associated line-of-sight.
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Figure 7.13: This figure shows AperC4 cluster ID 291767 and its 39 members. A description of the

subplots is given in Figure 7.12. The mean GAMA redshift of z = 0.177 coincides with the peak p(z) of

the cluster, indicating a good identification where only 3 of 29 GAMA members are at a different redshift

from the peak p(z) of the cluster.
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Common Redshift Bin Blend

Figures 7.14 and 7.15 demonstrate two clusters identified by AperC4 in the 0.21 < z <

0.24 and 0.18 < z < 0.21 redshift bins, respectively. Inspection of the spectroscopic mem-

bers in these clusters reveals there are two redshift concentrations of galaxies occupying

the 0.21 < z < 0.24 bin in both clusters. Due to the binning of the p(z)s, AperC4 is

unable to successfully defragment these two clusters. Furthermore, the fact that the two

spectroscopic redshift concentrations are in the same p(z) bin, implies that AperC4 has

been unable to blend (or deblend) these two clusters with the p(z) information of the

galaxies themselves.

The projections also reveal several other AperC4 cluster centres and galaxies in close

proximity to the clusters plotted, implying further fragmentation has occurred with these

systems. Again, using the members with GAMA spectroscopic redshifts, there are occur-

rences in both cases of a members being line-of-sight contamination.

Line of Sight Blend

Figure 7.16 shows another unsuccessfully deblended cluster. This cluster demonstrates

that whilst many AperC4 galaxies appear to belong in clusters (albeit, the galaxies with

measured spectroscopic redshifts), AperC4 is not able to assemble them into groups well

with S12 p(z) information. Despite the presence of several other AperC4 cluster centres

local to this group (in projection), the deblending process has not been able to assign

these galaxies into groups of common redshift. The peak p(z) of the cluster itself doesn’t

appear to align with any of the apparent concentrations of members in redshift space (at

z ≈ 0.08, z ≈ 0.26, and z ≈ 0.42), instead falling into the 0.30 < z < 0.33 bin. This

is one consequence of the cross-p(z) threshold being set to 0.0 (§6.3.3), which permits

aperture-slice clusters to merge if they share any members.

7.4 Discussion

7.4.1 AperC4-SDSS DR8 Structure

In section 7.3.1, the AperC4 galaxy cluster distribution appears to show some structure

when projected across the survey area (Figure 7.7), and in redshift space (Figure 7.8).

Putting these results together, AperC4 is preferentially forming clusters in the 0.24 <

z < 0.30 range, which is causing the projection to be dominated by structure in this

redshift interval. The galaxies selected by AperC4 chiefly reside in the 0.16 < z < 0.42
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Figure 7.14: This figure shows AperC4 cluster ID 274725 and its 169 members. A description of the

subplots is given in Figure 7.12. This cluster centre is identified close to many other cluster centres,

including cluster 274974 (Figure 7.15). The spectroscopic redshifts from GAMA indicate that there are

two clusters within the same p(z) bin as the cluster p(z) peak. The galaxy p(z) information appears to be

too coarse to distinguish these clusters.
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Figure 7.15: This figure shows AperC4 cluster ID 274974 and its 50 members. A description of the

subplots is given in Figure 7.12. This cluster centre is identified close to many other cluster centres,

including cluster 274725 (Figure 7.14). The spectroscopic redshifts from GAMA indicate that the two

apparent clusters do not occur at the peak cluster p(z). This may be an artefact of shot noise in the S12

p(z) catalog or the general quality of the member p(z)s being less accurate than those constituting cluster

274725.



171

Figure 7.16: This figure shows AperC4 cluster ID 274726 and its 125 members. A description of the

subplots is given in Figure 7.12. The spectroscopic members of this cluster appear across a large redshift

range (δz ≈ 0.5), with three apparent concentrations at z ≈ 0.08, z ≈ 0.26, and z ≈ 0.42.
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redshift range (taking the galaxy N(z) in Figure 7.8, to be representative of the true

redshift distribution of galaxies), so this projected structure is likely sourced from the way

that AperC4 is combining galaxies into clusters.

Looking at the S12 galaxy p(z)s in the example clusters at the end of section 7.3.2, we

see that the individual galaxy p(z)s extend across several redshift bins, sometimes with

clear peaks (e.g. Figure 7.13) but mostly with no clear single redshift (Figures 7.14 to

7.16). In clusters where the majority of the galaxies do not have a singly preferred p(z)

bin, it is possible for galaxies to be drawn from multiple p(z) bins so long as they have

a finite probability of sharing a single bin. This is allowed by the optimal cluster cross-

p(z) threshold being set at zero (§6.3.3), allowing any aperture-slice clusters to merge so

long as they have a shared membership. This is favoured by the F1 score as increasing

the threshold adds more impurities (false associations) to the cluster catalog than real

clusters. Only a handful of their respective members indicating a probability greater than

p(z) > 0.4 of lying in any redshift bin. This noisy p(z) information may also be partly

responsible for unsuccessful deblends in the cluster finding algorithm.

The generous merging allowed by this cross-p(z) threshold is also responsible for the

large angular diameter (& 10′) of clusters at z > 0.1 (e.g., Figures 7.14 to 7.16). I note here

that the optimal catalog parameters when given ideal redshift information in a simulation

(§6.4.2) showed that there is call for a more stringent cross-p(z) threshold when redshifts

better approximate the truth. However, the degree to which this stringency is applied was

not well characterised, nominally due to the inherent bias of the distribution of clusters

with redshift.

The optimal cluster cross-p(z) threshold being set at zero also incurs a second penalty

for the richest clusters, which is the fidelity of numbers under the programming language

IDL. Once probabilities drop below ∼ 1 × 10−340, IDL suffers a floating underflow, such

that numbers below this limit are set to zero. As the minimum probability in any galaxy

p(z) is set to ∼ 10−3, and cluster Ngals can exceed 112 members (see Figure 7.9), it is

possible for such a cluster p(z) bin to go to zero whilst not accounting for the majority

of cluster members. This may cause the richest clusters to be placed in the non-optimal

redshift bin.

Line-of-sight structures appear to be where the galaxies at redshifts not in the 0.24 <

z < 0.30 and 0.33 < z < 0.36 ranges (henceforth known at the peak AperC4 p(z) bins)

are being assigned to clusters, resulting in the cluster N(z) seen in Figure 7.8. A thorough

investigation of the catalog reveals that there are very few clusters seen at redshifts other
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than the peak bins unless they are in celestial (RA/dec) proximity to clusters in the

peak bins (Figure 7.16). This implies that likely cluster candidate galaxies are only being

selected where they occur in celestial proximity to clusters in the peak AperC4 redshift

bins. This in turn implies that the galaxy p-values tend towards favouring galaxies in these

regions as being colour-clustered, whilst disfavouring galaxies clustered at other redshifts

at other celestial locations.

The effect of galaxies in clusters not in the peak AperC4 p(z) bins not appearing in

the catalog is attributed to the fact that AperC4 does not employ redshift information

when assigning p-values to the input galaxy catalog (§3.2.3). By not limiting the redshift

extent of the aperture, cluster galaxies located at the redshift peak of the SDSS survey

appear more clustered than the rest of the survey, as it will appear to have a higher density

of galaxies than the rest of the survey (Equation 3.2). Furthermore, since the colour box

created for a galaxy not in a peak AperC4 p(z) bin is less likely to land on a similar

coloured galaxy (§3.2.3), and since galaxies cluster (to some extent) in colour space, the

model measurements for these galaxies will be artificially low, meaning their p-values will

suggest they are non-fieldlike. This means that the galaxies not in the peak AperC4 p(z)

bins are not necessarily in clusters, but are drawn randomly, and thus groups/clusters

found outside of the denser regions of Figure 7.7 are likely line-of-sight associations rather

than true clusters.

7.4.2 Potential Improvements to AperC4

AperC4 functions, but it is not fit to identify clusters over a range of redshifts. By only

considering AperC4-clustering on angular scales, AperC4 is biased to selecting galaxies

in regions where the projected surface density of galaxies is maximised, which occur around

cluster regions where the redshift density of galaxies is the most complete with respect to

survey depth. At the same time, the current handling of p(z) information may be volatile

for rich clusters (Ngals & 100), which may lead to the construction of inadequate p(z)s for

those clusters. I suggest the following modifications be applied to AperC4 to alleviate

these behaviours.

Limit Colour-Space Relocation of Model during p-value Measurement

One of the motivating factors in building AperC4 was to decouple galaxy redshifts from

cluster galaxy selection (§3.1.2), only using redshift information after clusters had been

identified (Steps 6 through 8, §3.2.7 to 3.2.9, respectively). This modification is made in
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attempt to retain this feature.

During the p-value measurement process of the AperC4 algorithm (Step 2, §3.2.3), the

model count is constructed by moving the aperture to random galaxy locations across the

survey footprint (as with C4M05, §2.2.2). However, in C4M05, the model count is limited

to galaxies within the same 50h−1 Mpc bin, allowing C4-clustering to distinguish between

clustered and non-clustered regions at various redshift intervals. By only applying angular

limits to the colour box, AperC4 aimed to maximise colour-clustering within a circular

aperture (AperC4-clustering) for a range of radii, but only succeeded in doing so where

galaxies are aligned with clusters in the densest projected redshift slices.

Where the colour-aperture model fails, is the appreciation that when considering a

target galaxy’s colour, it is likely to be situated near galaxies of similar colour (as inferred

by hierarchical structure formation, §1.2.2). Thus moving the colour box established by

the target galaxy to the location of another galaxy, of a different colour, will up-weight the

target colour-aperture’s AperC4-clustering density against the model. The reason this

wasn’t considered a problem, is the target galaxy is not counted in the p-value calculation,

and the surrounding galaxies were assumed to occupy colour space randomly.

My proposed solution would be to ensure the model colour-aperture is centred on other

galaxies of similar colour. Then the model should provide a consistent measure against

which the target galaxy’s AperC4-clustering can be evaluated. This added constraint on

the construction of the model can be justified by the fact that the aperture-colour space

of the target galaxy already contains at least one galaxy of that colour: the target galaxy

itself.

Effectively, this rephrases the question posed by the AperC4 aperture-colour meas-

urement from “How does the aperture-colour richness local to the target galaxy compare

with any other non-local galaxy?” to “Given that AperC4 has measured an aperture-

colour richness around a galaxy of specified colour, how does that aperture-colour richness

compare to a non-local galaxy of the same colour?”, where non-locality is in the celestial

sphere. Tolerance on the sameness of the non-local galaxy colour will need investigation.

Whilst this may be sensitive to line-of-sight contamination as galaxy colours do not in-

dicate a redshift by themselves, it encompasses the fact that the colour-space occupied by

galaxies in galaxy clusters is not unique to galaxy clusters.
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Calculate p(z) in Log Space

Converting the product-sum given by Equation 3.3 to a log space calculation should be a

relatively straightforward conversion. In doing so the product-sum of the probabilities will

become the sum of the log-probabilities. This should allow calculation of values below the

lower IDL limit of ∼ 1× 10−340 (in log-space this is merely −340) to be made consistently

before exponentiating the log-probability to a normalised p(z).

7.5 Summary

In section 7.1, I introduced SDSS DR8, highlighting the übercalibration update made to

SDSS. This was followed by the S12 selection of galaxies in section 7.1.2. After investig-

ating the S12 galaxies, examining various SDSS flags and surface brightness properties, I

apply magnitude limits and surface brightness cuts in section 7.1.3 to produce the galaxy

catalog to be run through the AperC4 algorithm.

In section 7.2, I ran through the steps of AperC4, observing how it identifies cluster

galaxies until production of the final AperC4-DR8 cluster, p(z), and member catalogs. In

section 7.3, I described the output catalog formats and summarised the distribution of the

AperC4 clusters. In section 7.3.2, I employed spectroscopic GAMA data to qualitatively

assess the success and failure modes of AperC4, focussing on the assignment of galaxies

to clusters and the redshift dispersion of GAMA galaxies in those clusters.

In section 7.4, I discussed the unexpected structure in the AperC4-DR8 cluster catalog

(§7.4.1), using the investigation of AperC4 clusters with GAMA data in the previous

section to determine shortcomings/biases in the AperC4 algorithm. I concluded with

section 7.4.2 by discussing possible improvements to the AperC4 algorithm to redress

these shortcomings.
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Chapter 8

Thesis Summary and Further

Work

8.1 Summary of Thesis

In this thesis, I presented the AperC4 cluster finder as a spiritual successor to the C4M05

cluster finder (Miller et al., 2005). Also presented, is an optimisation framework using

F1-scores, which helped tune the parameters of the AperC4 algorithm with the SDSS

CatSim. Once an optimal parameter set was determined, AperC4 was applied to SDSS

DR8 and the accompanying galaxy p(z) catalog from Sheldon et al. (2012), finding 83,880

galaxy clusters.

In chapter 2, I reviewed at the C4M05 algorithm in detail, describing key features

such as the p-value colour-clustering measurement, the False Discovery Rate (FDR), and

the kth Nearest Neighbour centering approximation. After summarising the successes

of C4M05, I discussed its shortcomings, highlighting its limitations with regard to use of

spectroscopic galaxies, its inflexibility, and its use of non-concordance cosmology.

I presented the new AperC4 algorithm in chapter 3, providing motivations for its

inception using the lessons learned from C4M05. I explained the algorithm workflow and its

associated parameters and provided theoretical scenarios for AperC4’s desired behaviour

for finding clusters. Of note, AperC4 does not use any cosmological information to find

clusters, allowing output cluster catalogs to be used as cosmological measures without the

need to determine its sensitivity to a given cosmology if some other cosmology is input.

AperC4 is designed to use p(z) information, which means it is able to use photometric

or spectroscopic redshift information to determine clusters. AperC4 is also useful as an

astrophysical probe of galaxy clusters, since galaxies have not been rejected on the basis
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that they aren’t in a red sequence.

In chapter 4, I introduced the Dark Energy Survey (DES) and the DES Catalog Sim-

ulations, CatSim. I employed a version of CatSim configured to simulate SDSS to test

AperC4. To optimise the parameter set used by AperC4 on CatSim, I formulated the

evaluation framework presented in chapter 5 which builds upon work by Brian Gerke for

the DES Cluster Working Group. The key to the matching algorithm is its use of mem-

bership matching to relate galaxies that belong to halos (from the simulation) with the

galaxies that are identified as being in clusters (as identified by a cluster finder). My

major contribution was recognising that the selection functions of the cluster finders were

previously misreported due in situations where the number of clusters in a catalog differs

from the number of halos it is trying to locate. To remedy this, I calibrate the clusters

(found by the cluster finder) to the masses of the halos (in the simulation) where they

are least ambiguously matched (two-way unique matched), and interpolate the masses of

the more ambiguous clusters on the basis of rank, where rank is a proxy to cluster mass.

My other contribution was the inclusion of the F1-score, or F-measure, which combines a

single cluster catalog’s completeness and purity information, across the redshift and mass

ranges of the clusters recovered from the simulation, into a single number. This F1-score

is employed to objectively optimise the AperC4 parameter set such that it maximises

completeness and purity simultaneously.

Following the introduction of AperC4, CatSim, and the cluster catalog evaluation

framework, chapter 6 presents the applications of AperC4 to CatSim with zCarlos.

6,048 catalogs were produced and evaluated using unique combinations of AperC4 para-

meters, ranking methods, and galaxy redshift sources. The outcome of this chapter was an

optimal set of AperC4 parameters for use on the SDSS (and SDSS-like) galaxy catalog(s).

I examined the selection function of the optimum AperC4-CatSim-zCarlos catalog. To

characterise the impact of probabilistic redshift information, I also examined the selec-

tion function of an idealised AperC4-CatSim catalog, where the galaxy redshifts were

informed by the simulation input, and compared it with that of the AperC4-CatSim-

zCarlos catalog.

With the optimal AperC4-SDSS parameter set in hand, I applied AperC4 to the

SDSS DR8 galaxy catalog in chapter 7. After introducing SDSS DR8 and the S12 p(z)

catalog, I applied my own cuts to the S12 selection, in surface brightness and magnitude

limits, to produce a galaxy catalog suitable for cluster finding. The key product of this

chapter, and indeed of this thesis, is the AperC4-SDSS DR8 cluster catalog. After finding
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some structure in the AperC4-SDSS DR8 cluster distribution, I used GAMA data to

interrogate a subsample of the cluster catalog, and individual clusters in that subsample,

to establish the success and failure modes of AperC4. After determining likely causes of

the apparent structure and failure modes, I made suggestions for further work.

8.2 Further Work

In this section, I will discuss avenues for improvement of the AperC4 algorithm, before

discussing uses for the evaluation framework and AperC4-SDSS DR8 catalog.

8.2.1 Algorithm Development

AperC4 has undergone much development from its C4M05 origins. For example, Dietrich

et al. (2014) investigated orientation bias of cluster finding on CatSim halos, utilising a

photometric version of C4 that still employed the esoteric cosmological assumptions of

C4M05 (§2.4.3). Despite this shortcoming, the orientation bias measured from clusters

output by the photometric C4 were found to be highly competitive with the other cluster

finding techniques examined.

As discussed in section 7.4, AperC4 experiences various selection effects that may not

suit it to cluster finding over a broad range of redshifts. The key improvements cited in

section 7.4.2 were limiting the placement of the model colour-box to galaxies within the

same colour space, and calculating the cluster p(z) in log space to avoid computational

arithmetic issues. Beyond these, there are a number of avenues that could be pursued to

further enhance the AperC4 algorithm. I discuss three of these avenues below.

Cluster Centering

Beyond the initial seeding of the clusters with k−NN during the formation of the aperture-

slice clusters, no work is performed by AperC4 to properly centre the clusters once the

aperture-slices are merged. Centering could be avoided by including the memberships of

each cluster, which allowed unambiguous matching to halo galaxies when using simulated

data (chapter 6). However, centering information would be useful so that the optical

clusters produced by AperC4 can be matched more readily to observed cluster catalogs

that do not have membership information (e.g., X-ray clusters, Mehrtens et al. 2011; or

SZ detections Reese et al. 2011; Planck Collaboration et al. 2013a) and hence cannot be

unambiguously matched.
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Using Alternative Photometric Redshift Data

Since most of work in cluster identification done before looking at redshift information, it

is possible for AperC4 to be run with different redshift algorithms. Even if the catalog

quality is non-optimal, it can still be compared to other redshift algorithms in the same way

the AperC4-CatSim-zCarlos catalogs were compared to AperC4-CatSim catalogs

that employed the input simulation redshifts (§6.3).

Increasing the Number of Apertures used by AperC4

Since including larger apertures led to a better F1-score with the basic investigation carried

out in chapter 6, it may be worth investigating whether supplying AperC4 with more

aperture radii increases the quality of the output catalog.

In anticipation of running AperC4 on deeper photometric datasets, such as those from

DES (chapter 4, Tucker et al., 2007) and future data such as from LSST (LSST Collab-

oration, 2012), and Euclid (Laureijs et al., 2011), it would be worthwhile investigating the

inclusion of smaller aperture sizes (i.e., extending the redshift range of Table 3.3).

8.2.2 Evaluation Framework

In terms of evaluating AperC4, running the cluster finder on larger simulated areas

would give a better handle on high mass F1-scores. Additionally, it would be useful

to run AperC4 on different simulation datasets, such that the F1-score can be used to

characterise the cluster finder without being limited to sample variance, or indeed, cosmic

variance. As AperC4 has been shown to be adaptable to the data it is applied to (running

on CatSim with zCarlos p(z)s and SDSS DR8 with S12 p(z)s), this work is only impeded

by available compute time.

In a larger sense, whilst it is useful to use the evaluation framework to optimise

AperC4 or any other cluster finder on its own, it would also be useful to compare cluster

finders to each other. This would allow an end user to select an appropriate cluster finder

catalog (from a suite of such catalogs) through the knowledge of its strengths and weak-

nesses at various redshifts and mass ranges in comparison to other cluster finders. The

evaluation framework as presented in this thesis has been distributed to the DES Brazil

group∗, who have incorporated it into their science portal.

∗ http://des-brazil.linea.gov.br/
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8.2.3 Uses for the AperC4-SDSS DR8 catalog

Following a similar vein to C4M05(§2.3.5), the AperC4-SDSS DR8 catalog can be used for

a variety of cluster population studies such as cluster luminosity gaps (Milosavljević et al.,

2006) or the evolution of the red sequence (De Lucia et al., 2007). Given that AperC4

does not restrict itself to red sequence cluster finding, it is well suited to studying the

dependence of morphology and colour on environment (Bamford et al., 2009) and cluster

blue fractions (Aguerri et al., 2007).

In terms of cosmology, and pending algorithm corrections, it may be possible to look

at the abundance of AperC4-SDSS DR8 clusters to measure cosmology directly from the

cluster catalog (§1.3.1; Lima and Hu, 2004), performing a similar analysis to Rozo et al.

(2007) on MaxBCG clusters.
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P. Fosalba, E. Gaztañaga, F. J. Castander, and M. Manera (2008). The onion universe: all

sky lightcone simulations in spherical shells. Monthly Notices of the Royal Astronomical

Society, 391:435–446, arXiv:0711.1540. Cited on 87

Joshua Frieman, Michael Turner, and Dragan Huterer (2008). Dark Energy and the

Accelerating Universe. arXiv, astro-ph. Cited on 86

M Fukugita, T Ichikawa, J E Gunn et al. (1996). The Sloan Digital Sky Survey Photometric

System. Astronomical Journal v.111, 111:1748. Cited on 23, 42

Ronald Garcia and Andrew Lumsdaine (2005). MultiArray: a C++ library for generic

programming with arrays. Software: Practice and Experience, 35(2):159–188. Cited on

55

J. P. Gardner, A. Connolly, and C. McBride (2007). Enabling Rapid Development of

Parallel Tree Search Applications. ArXiv e-prints, arXiv:0709.1967. Cited on 88

http://arxiv.org/abs/1101.3313
http://arxiv.org/abs/0711.1540
http://arxiv.org/abs/0709.1967


188

James E Geach, David N A Murphy, and Richard G Bower (2011). 4098 galaxy clusters

to z 0.6 in the Sloan Digital Sky Survey equatorial Stripe 82. arXiv, astro-ph.CO. Cited

on 18

M. J. Geller, A. Diaferio, and M. J. Kurtz (1999). The Mass Profile of the Coma Galaxy

Cluster. The Astrophysical Journal, Letters, 517:L23–L26, arXiv:astro-ph/9903305.

Cited on 14

David W Gerdes, Adam J Sypniewski, Timothy A McKay et al. (2009). ArborZ: Photo-

metric Redshifts Using Boosted Decision Trees. arXiv, astro-ph.CO. Cited on 50

David G Gilbank, M D Gladders, H K C Yee, and B C Hsieh (2011). The Red-Sequence

Cluster Survey-2 (RCS-2): Survey Details and Photometric Catalog Construction. The

Astronomical Journal, 141(3):94. Cited on 30

S Giodini, D Pierini, A Finoguenov et al. (2009). Stellar and total baryon mass fractions

in groups and clusters since redshift 1. arXiv.org, 0904.0448v2. Cited on 112

Michael D Gladders and H K C Yee (2000). A New Method For Galaxy Cluster Detection.

I. The Algorithm. The Astronomical Journal, 120:2148. Cited on 16, 30, 37

Tomotsugu Goto, Maki Sekiguchi, Robert C Nichol et al. (2002). The Cut-and-Enhance

Method: Selecting Clusters of Galaxies from the Sloan Digital Sky Survey Commission-

ing Data. The Astronomical Journal, 123:1807. Cited on 18, 33

J Gunn, M Carr, C Rockosi et al. (1998). The Sloan Digital Sky Survey Photometric

Camera. The Astronomical Journal, 116:3040. Cited on 23

Jiangang Hao, Timothy A McKay, Benjamin P Koester et al. (2010). A GMBCG Galaxy

Cluster Catalog of 55,437 Rich Clusters from SDSS DR7. arXiv, astro-ph.CO. Cited

on 20, 30, 31, 37

Craig D Harrison, Christopher J Miller, Joseph W Richards et al. (2012). The XMM

Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies. arXiv.org, astro-ph.CO.

Cited on 8, 10

C. Heymans and A. Heavens (2003). Weak gravitational lensing: reducing the contam-

ination by intrinsic alignments. Monthly Notices of the Royal Astronomical Society,

339:711–720, arXiv:astro-ph/0208220. Cited on 85

http://arxiv.org/abs/arXiv:astro-ph/9903305
http://arxiv.org/abs/0904.0448v2
http://arxiv.org/abs/arXiv:astro-ph/0208220


189

M. Hilton, E. Lloyd-Davies, S. A. Stanford et al. (2010). The XMM Cluster Survey: Active

Galactic Nuclei and Starburst Galaxies in XMMXCS J2215.9-1738 at z = 1.46. The

Astrophysical Journal, 718:133–147, arXiv:1005.4692 [astro-ph.CO]. Cited on 9

G. Hinshaw, D. Larson, E. Komatsu et al. (2013). Nine-year Wilkinson Microwave Aniso-

tropy Probe (WMAP) Observations: Cosmological Parameter Results. ApJS, 208:19,

arXiv:1212.5226 [astro-ph.CO]. Cited on 3, 68

J A Hodge, R H Becker, R L White, G T Richards, and G R Zeimann (2011). High-

resolution VLA Imaging of SDSS Stripe 82 at 1.4 GHz. arXiv, astro-ph.CO. Cited on

145

E. Høg, C. Fabricius, V. V. Makarov et al. (2000). The Tycho-2 catalogue of the 2.5

million brightest stars. A&A, 355:L27–L30. Cited on 147

D. W. Hogg, M. R. Blanton, J. Brinchmann et al. (2004). The Dependence on Environment

of the Color-Magnitude Relation of Galaxies. The Astrophysical Journal Supplement

Series, 601:L29–L32, arXiv:astro-ph/0307336. Cited on 89

J P Huchra and M J Geller (1982). Groups of galaxies. I - Nearby groups. Astrophysical

Journal, 257:423. Cited on 15, 19

J. B. Hutchings, A. Saintonge, D. Schade, and D. Frenette (2002). Galaxy Mor-

phology in the Rich Cluster Abell 2390. Astronomical Journal, 123:1826–1837,

arXiv:astro-ph/0201042. Cited on 8

D. Huterer, M. Takada, G. Bernstein, and B. Jain (2006). Systematic errors in future

weak-lensing surveys: requirements and prospects for self-calibration. Monthly Notices

of the Royal Astronomical Society, 366:101–114, arXiv:astro-ph/0506030. Cited on

85

N. Kaiser, H. Aussel, B. E. Burke et al. (2002). Pan-STARRS: A Large Synoptic Survey

Telescope Array. In J. A. Tyson and S. Wolff, editors, Survey and Other Telescope

Technologies and Discoveries, volume 4836 of Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, pages 154–164. Cited on 50

Jeremy Kepner, Xiaohui Fan, Neta Bahcall et al. (1999). An Automated Cluster Finder:

The Adaptive Matched Filter. The Astrophysical Journal, 517:78. Cited on 15

http://arxiv.org/abs/1005.4692
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/arXiv:astro-ph/0307336
http://arxiv.org/abs/arXiv:astro-ph/0201042
http://arxiv.org/abs/arXiv:astro-ph/0506030


190

Rita Seung Jung Kim, Jeremy V Kepner, Marc Postman et al. (2002). Detecting Clusters

of Galaxies in the Sloan Digital Sky Survey. I. Monte Carlo Comparison of Cluster

Detection Algorithms. The Astronomical Journal, 123:20. Cited on 17, 18

Donnacha Kirk, Ofer Lahav, Sarah Bridle et al. (2013). Optimising Spectroscopic and

Photometric Galaxy Surveys: Same-sky Benefits for Dark Energy and Modified Gravity.

eprint arXiv:1307.8062. Cited on 50

Jean-Paul Kneib and Priyamvada Natarajan (2012). Cluster Lenses. arXiv.org, astro-

ph.CO. Cited on 14

B P Koester, T A McKay, J Annis et al. (2007). A MaxBCG Catalog of 13,823 Galaxy

Clusters from the Sloan Digital Sky Survey. The Astrophysical Journal, 660:239. Cited

on 16, 19, 20, 30, 37

E. Komatsu, K. M. Smith, J. Dunkley et al. (2011). Seven-year Wilkinson Microwave An-

isotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical

Journal, Supplement, 192:18, arXiv:1001.4538 [astro-ph.CO]. Cited on 9

R Laureijs, J Amiaux, S Arduini et al. (2011). Euclid Definition Study Report. eprint

arXiv:1110.3193. Cited on 50, 179

I J Lewis, R D Cannon, K Taylor et al. (2002). The Anglo-Australian Observatory 2dF

facility. Monthly Notices of the Royal Astronomical Society, 333(2):279–298. Cited on

163

I H Li and H K C Yee (2008). Finding Galaxy Groups in Photometric-Redshift Space: The

Probability Friends-of-Friends Algorithm. The Astronomical Journal, 135:809. Cited

on 31

Marcos Lima, Carlos E Cunha, Hiroaki Oyaizu et al. (2008). Estimating the redshift

distribution of photometric galaxy samples. Monthly Notices of the Royal Astronomical

Society, 390(1):118–130. Cited on 121, 122

Marcos Lima and Wayne Hu (2004). Self-calibration of cluster dark energy studies: Counts

in cells. Physical Review D, 70(4):043504. Cited on 10, 180

H. Lin, N. Kuropatkin, R. Wechsler et al. (2010). Dark Energy Survey Simulations. In

American Astronomical Society Meeting Abstracts #215, volume 42 of Bulletin of the

American Astronomical Society, page 470.07. Cited on 87

http://arxiv.org/abs/1001.4538


191

Chris J Lintott, Kevin Schawinski, Anze Slosar et al. (2008). Galaxy Zoo: morphologies

derived from visual inspection of galaxies from the Sloan Digital Sky Survey . Monthly

Notices of the Royal Astronomical Society, 389(3):1179–1189. Cited on 45

J Liske, D J Lemon, S P Driver, N J G Cross, and W J Couch (2003). The Millennium

Galaxy Catalogue: 16 . Monthly Notice of the Royal Astronomical Society, 344(1):307–

324. Cited on 163

The LSST Collaboration (2012). Large Synoptic Survey Telescope: Dark Energy Science

Collaboration. eprint arXiv:1211.0310. Cited on 50, 179

Robert H Lupton, James E Gunn, and Alexander S Szalay (1999). A Modified Magnitude

System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low

Signal-to-Noise Ratio Measurements. The Astronomical Journal, 118:1406. Cited on

24, 25

M. Markevitch, A. H. Gonzalez, D. Clowe et al. (2004). Direct Constraints on the Dark

Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56. The

Astrophysical Journal, 606:819–824, arXiv:astro-ph/0309303. Cited on 7, 8

B. J. Maughan, C. Jones, W. Forman, and L. Van Speybroeck (2008). Images,

Structural Properties, and Metal Abundances of Galaxy Clusters Observed with

Chandra ACIS-I at 0.1 ¡ z ¡1.3. The Astrophysical Journal, Supplement, 174:117–135,

arXiv:astro-ph/0703156. Cited on 8, 14

C. McBride, A. A. Berlind, R. Scoccimarro et al. (2011). LasDamas: Accurate Determin-

ation of the Abundance of Galaxy Clusters. In American Astronomical Society Meeting

Abstracts #217, volume 43 of Bulletin of the American Astronomical Society, page

249.07. Cited on 88

Nicola Mehrtens, A Kathy Romer, E J Lloyd-Davies et al. (2011). The XMM Cluster

Survey: Optical analysis methodology and the first data release. eprint arXiv:1106.3056,

astro-ph.CO:3056. Cited on 14, 84, 178
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