

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

	

An Inertial Motion Capture Framework
for Constructing Body Sensor Networks

by

Tudor Pascu

A thesis submitted in fulfilment of

the requirements for the degree of

Doctor of Philosophy

at the University of Sussex

School of Engineering and Informatics

Department of Informatics

University of Sussex

Brighton

BN1 9QT

February 2015

	

	

ii

Declaration

The work described in this thesis, carried out in the School of Engineering and

Informatics, is that of the author and has not been submitted in any form for any other

degree at this or any other university.

Signed _____________________

Tudor Pascu

Copyright © 2015

University of Sussex

School of Engineering and Informatics

Department of Informatics

University of Sussex

Brighton

BN1 9QT

	

	

iii

Acknowledgements

First and foremost, I would like to thank my supervisors Dr. Martin White and Dr.

Paul Newbury and everyone in the School of Engineering and Informatics who have

provided support and guidance in the completion of this degree.

Additionally, I would like to thank Cristi Ureche, Alexandru Cotut and my father,

Liviu Pascu, for providing me with their expertise and facilities for developing the

hardware behind the motion capture system presented in Chapter 4.

Many thanks go out to all family and friends for their words of encouragement and

moral support throughout this process.

	

	

iv

University of Sussex

Tudor Pascu

Submitted for the degree of Doctor of Philosophy

An Inertial Motion Capture Framework for

Constructing Body Sensor Networks

Abstract
Motion capture is the process of measuring and subsequently reconstructing the movement of
an animated object or being in virtual space. Virtual reconstructions of human motion play an
important role in numerous application areas such as animation, medical science, ergonomics,
etc. While optical motion capture systems are the industry standard, inertial body sensor
networks are becoming viable alternatives due to portability, practicality and cost. This thesis
presents an innovative inertial motion capture framework for constructing body sensor
networks through software environments, smartphones and web technologies.

The first component of the framework is a unique inertial motion capture software
environment aimed at providing an improved experimentation environment, accompanied by
programming scaffolding and a driver development kit, for users interested in studying or
engineering body sensor networks. The software environment provides a bespoke 3D engine
for kinematic motion visualisations and a set of tools for hardware integration. The software
environment is used to develop the hardware behind a prototype motion capture suit focused
on low-power consumption and hardware-centricity. Additional inertial measurement units,
which are available commercially, are also integrated to demonstrate the functionality the
software environment while providing the framework with additional sources for motion data.

The smartphone is the most ubiquitous computing technology and its worldwide uptake has
prompted many advances in wearable inertial sensing technologies. Smartphones contain
gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly
found in inertial measurement units. This thesis presents a mobile application that investigates
whether the smartphone is capable of inertial motion capture by constructing a novel
omnidirectional body sensor network.

This thesis proposes a novel use for web technologies through the development of the Motion
Cloud, a repository and gateway for inertial data. Web technologies have the potential to
replace motion capture file formats with online repositories and to set a new standard for how
motion data is stored. From a single inertial measurement unit to a more complex body sensor
network, the proposed architecture is extendable and facilitates the integration of any inertial
hardware configuration. The Motion Cloud’s data can be accessed through an application-
programming interface or through a web portal that provides users with the functionality for
visualising and exporting the motion data.

	

	

v

List of Publications

Journals

Tudor Pascu, Martin White, Natalia Beloff, Zeeshan Patoli, Leon Barker, “Ambient
Health Monitoring: The Smartphone as a Body Sensor Network Component”, The
Journal of Innovation Impact, 6 (1), pp. 62-65, 2013, ISSN: 2051-6002.

Claire Nee, Martin White, Kirk Woolford, Tudor Pascu, Leon Barker, Lucy
Wainwright, “New methods for examining expertise in burglars in natural and
simulated environments: preliminary findings”, Psychology, Crime & Law, December
2014, ISSN 1068-316X.

Conference Proceedings

Sasithorn Rattanarungrot, Martin White, Zeeshan Patoli, Tudor Pascu, “The
Application of Augmented Reality for Reanimating Cultural Heritage”, 6th
International Conference on Virtual, Augmented and Mixed Reality, Held as Part of
HCI International 2014, pp 85-95, Crete, Greece, June 2014, ISBN: 978-3-319-
07463-4.

Leon Barker, Martin White, Mairead Curran, Zeeshan Patoli, Benjamin Huggins,
Tudor Pascu, Natalia Beloff, “Taxonomy for Internet of Things: Tools for
Monitoring Personal Effects”, Proceedings of 4th International Conference on
Pervasive and Embedded Computing and Communication Systems, Lisbon, Portugal,
January 2014, ISBN: 978-989-758-0000-0.

Martin White, Zeeshan Patoli, Tudor Pascu, “Knowledge Networking through Social
Media for Digital Heritage Resources”, Proceedings of the International Congress on
Digital Heritage, Marseille, France, November 2013, ISBN: 978-1-4799-3169-9/13.

Tudor Pascu, Zeeshan Patoli, Martin White, “Motion Capture and Activity Tracking
Using Smartphone-Driven Online Body Sensor Networks”, Proceedings of 3rd
International Conference on Innovative Computing Technology (INTECH), London,
United Kingdom, August 2013, ISBN: 978-1-4799-0047-3 (best paper award).

Tudor Pascu, Zeeshan Patoli, Leon Barker, Natalia Beloff, Martin White, “Ambient
Health Monitoring: The Smartphone as a Body Sensor Network Component”,

	

	

vi

Proceedings of Innovation in Medicine and Healthcare (INMED), pp. 62-65, Piraeus,
Greece, July 2013, ISBN: 978-0-9561516-3-6.

Tudor Pascu, Zeeshan Patoli, Martin White, “Improving Anchor Selection for
Inertial Motion Capture Systems Through Weight Distribution Calculations”,
Proceedings of 13th International Conference on Computer Graphics and Imaging
(CGIM), Innsbruck, Austria, February 2013, ISBN: 978-0-88986-954-7.

Tudor Pascu, Zeeshan Patoli, Martin White, “Unifying Software and Hardware-
Centric Inertial Measurement Units in Body Sensor Networks”, Proceedings of 13th
International Conference on Computer Graphics and Imaging (CGIM), Innsbruck,
Austria, February 2013, ISBN: 978-0-88986-954-7.

Workshops, Invited Talks and Poster Presentations

Claire Nee, Martin White, Kirk Woolford, Tudor Pascu, Leon Barker, “Examining
Expertise In Residential Burglars: The Results Of A Pilot Study Using Innovative
Technology”, 68th Annual Meeting of the American Society of Criminology (ASC),
Chicago IL, November 2012.

Leon Barker, Zeeshan Patoli, Tudor Pascu, Martin White, “Using Web3D to
Integrate Motion Capture Data With 3D Visualization - Facilitating Historic Re-
enactments Through the Web Browser”, presented at workshop Computer
Applications in Archaeology Conference (CAAUK), Birmingham, United Kingdom,
April 2011.

Martin White, Claire Nee, Zeeshan Patoli, Tudor Pascu, “Virtual Burglary
Simulation”, presented at workshop Virtual Emergencies: Simulation Technology for
Emergency Planning and Response, Royal United Services Institute, London, United
Kingdom, April 2011.

	

	

vii

Table of Contents

1	
 Thesis Overview ... 1	

1.1	
 Introduction .. 1	

1.2	
 Problem Statement .. 3	

1.2.1	
 Software Environments ... 4	

1.2.2	
 Standards and File Formats ... 4	

1.2.3	
 Robustness ... 5	

1.2.4	
 Dead Reckoning .. 5	

1.3	
 Framework Overview ... 6	

1.4	
 Contributions to Knowledge ... 7	

1.4.1	
 Inertial Motion Capture Software Environments .. 8	

1.4.2	
 Constructing Inertial Body Sensor Networks .. 9	

1.4.3	
 Sensing Through Mobile Computing Technologies ... 10	

1.4.4	
 Motion Cloud: A Repository and Gateway for Inertial Motion Data 11	

1.5	
 Thesis Structure .. 12	

1.6	
 Related Work .. 13	

1.6.1	
 eMove .. 13	

1.6.2	
 Motion in Place Platform .. 14	

1.6.3	
 Motion Capture in Forensic Psychology ... 14	

1.6.4	
 Digital Hub .. 15	

2	
 Motion Capture ... 17	

2.1	
 Introduction .. 17	

2.2	
 What is Motion Capture? ... 18	

2.3	
 Application Areas ... 19	

2.3.1	
 Animation .. 19	

2.3.2	
 Real-Time Motion Capture and Digital Puppetry ... 20	

2.3.3	
 Medical Science .. 21	

2.3.4	
 Gait Analysis ... 22	

2.3.5	
 Sport Science ... 23	

2.3.6	
 Robotics ... 24	

2.3.7	
 Ergonomics .. 24	

2.4	
 Motion Capture Mediums ... 25	

2.4.1	
 Optical Systems ... 25	

2.4.2	
 Inertial Systems ... 29	

2.4.3	
 Exoskeleton Mechanical Systems ... 31	

2.4.4	
 Evaluation of Motion Capture Systems ... 32	

2.5	
 Inertial Measurement Units .. 33	

2.5.1	
 Gyroscope .. 34	

2.5.2	
 Sensor Attributes ... 34	

2.5.3	
 Sensor Fusion .. 36	

2.5.4	
 Kalman Filter ... 37	

2.6	
 Body Sensor Networks .. 38	

2.6.1	
 Networking .. 39	

2.6.2	
 Heterogeneous and Homogenous BSNs .. 39	

2.6.3	
 Directionality ... 39	

2.6.4	
 Computational Centricity .. 40	

2.7	
 Kinematic Motion Reconstruction .. 41	

2.7.1	
 Rotational Models ... 41	

	

	

viii

2.7.2	
 Kinematic Models ... 42	

2.7.3	
 Collision Detection .. 43	

2.7.4	
 Dead Reckoning .. 43	

2.8	
 Motion Capture File Formats .. 45	

2.8.1	
 BVH Format .. 46	

2.8.2	
 BVA Format .. 47	

2.8.3	
 AMC/ASF Format ... 47	

2.9	
 Supporting Software ... 47	

2.9.1	
 Autodesk 3ds Max ... 48	

2.9.2	
 MotionBuilder ... 48	

2.9.3	
 Maya .. 48	

2.9.4	
 Blender .. 49	

2.9.5	
 Other Software Applications ... 49	

2.9.6	
 Comparative Evaluation of Software Applications ... 49	

2.10	
 Conclusions .. 50	

2.10.1	
 Problem Areas ... 52	

3	
 Inertial Motion Capture Software Environments .. 55	

3.1	
 Introduction .. 55	

3.2	
 Framework Relevance .. 57	

3.3	
 Preliminary Requirements Specification .. 58	

3.3.1	
 System Requirements .. 58	

3.3.2	
 Functional Requirements ... 59	

3.3.3	
 Interface Requirements .. 61	

3.4	
 Architecture Overview .. 63	

3.5	
 Data Models ... 64	

3.5.1	
 Animation Model .. 64	

3.5.2	
 Kinematic Model ... 66	

3.5.3	
 System Model .. 66	

3.6	
 Interface Layer ... 67	

3.6.1	
 Core GUI ... 68	

3.6.2	
 KinematicsViewer ... 69	

3.6.3	
 SystemViewer ... 70	

3.6.4	
 AnimationViewer .. 71	

3.6.5	
 Rendering 3D Skeletal Topologies .. 72	

3.7	
 Concurrency and Software Timers ... 73	

3.8	
 Motion Capture Reanimation ... 73	

3.9	
 Biovision Hierarchy Extended .. 75	

3.9.1	
 Biovision Hierarchy Format .. 75	

3.9.2	
 Biovision Hierarchy Extensions .. 76	

3.9.3	
 Biovision Hierarchy Extended Syntax .. 77	

3.9.4	
 File Parsing .. 79	

3.10	
 Driver Development Kit ... 80	

3.11	
 Versioning ... 83	

3.12	
 Lowest-Anchor Centre of Mass Algorithm ... 84	

3.12.1	
 Understanding the Lowest-Point Algorithm ... 84	

3.12.2	
 Determining a Weight Model .. 86	

3.12.3	
 Computing the Anchor .. 87	

3.12.4	
 Simulations .. 89	

3.13	
 Conclusions .. 90	

3.13.1	
 Application Areas .. 91

	

	

ix

	

4	
 Constructing Inertial Body Sensor Networks ... 94	

4.1	
 Introduction .. 94	

4.2	
 Framework Relevance .. 96	

4.3	
 Integrating Hardware ... 97	

4.3.1	
 Case Study: Shimmer R2 .. 97	

4.3.2	
 Case Study: Razor AHRS .. 98	

4.4	
 Motion Tracking Development System ... 100	

4.4.1	
 Preliminary Requirements Specification ... 100	

4.4.2	
 Conceptualizing a Motion Capture Suit .. 102	

4.4.3	
 MTDS Inertial Measurement Unit .. 104	

4.4.4	
 MTDS Multiplexer .. 105	

4.4.5	
 Upper Body Character Motion Tracking ... 108	

4.5	
 Conclusions .. 109	

5	
 Sensing Through Mobile Computing Technologies 111	

5.1	
 Introduction .. 111	

5.2	
 Framework Relevance .. 113	

5.3	
 Preliminary Requirements Specification .. 115	

5.3.1	
 System Requirements .. 115	

5.3.2	
 Interface Requirements .. 116	

5.3.3	
 Network Requirements .. 117	

5.4	
 Conceptualizing a Smartphone-Driven BSN .. 118	

5.4.1	
 Initializing the BSN ... 119	

5.4.2	
 Operating Modes ... 120	

5.5	
 Architecture Overview .. 121	

5.5.1	
 Launch Package ... 122	

5.5.2	
 Core Package ... 122	

5.5.3	
 Mathematics Package .. 123	

5.5.4	
 Kinematics Package .. 123	

5.5.5	
 Sensing Package .. 123	

5.5.6	
 Performance Optimization .. 124	

5.6	
 Interface Overview ... 126	

5.6.1	
 Use Cases .. 126	

5.6.2	
 Main Interfaces .. 127	

5.7	
 Motion Processing .. 128	

5.7.1	
 Pre-Processing ... 128	

5.7.2	
 Data Fusion .. 129	

5.7.3	
 Post-Processing ... 129	

5.8	
 Event Triggers .. 130	

5.9	
 Data Communication Protocols ... 131	

5.10	
 Synchronization .. 132	

5.10.1	
 Pre-Synchronization .. 133	

5.10.2	
 Post-Synchronization ... 133	

5.10.3	
 Capping ... 134	

5.11	
 Versioning ... 135	

5.12	
 Capturing Motion ... 136	

5.12.1	
 Simulating a Hand Wave ... 136	

5.12.2	
 Recording a Hand Wave Gesture .. 137	

5.12.3	
 Recording Active and Sedentary Behaviour ... 139	

5.13	
 Conclusions .. 140	

	

	

x

5.13.1	
 Application Areas .. 141	

6	
 Motion Cloud: A Repository and Gateway for Inertial Motion Data 143	

6.1	
 Introduction .. 143	

6.2	
 Framework Relevance .. 144	

6.3	
 Requirements Specification .. 145	

6.3.1	
 Repository ... 145	

6.3.2	
 Gateway ... 146	

6.3.3	
 Web Portal ... 146	

6.4	
 Repository Design and Implementation ... 147	

6.4.1	
 Vector Objects ... 147	

6.4.2	
 Channel Objects .. 148	

6.4.3	
 Recording Objects ... 148	

6.4.4	
 Group Objects .. 148	

6.4.5	
 Profile Objects ... 149	

6.4.6	
 Data Model Specification .. 149	

6.5	
 Gateway Design and Implementation .. 150	

6.5.1	
 Profile API Calls ... 151	

6.5.2	
 Group API Calls .. 152	

6.5.3	
 Recording API Calls .. 153	

6.5.4	
 Channel API Calls ... 154	

6.5.5	
 Vector API Calls ... 154	

6.5.6	
 Stringing Together API Calls .. 155	

6.5.7	
 API Integration .. 157	

6.6	
 Web Portal Design and Implementation .. 158	

6.6.1	
 Use Cases .. 158	

6.6.2	
 Main Interface ... 159	

6.7	
 Motion Cloud Integration ... 160	

6.8	
 Conclusions .. 162	

6.8.1	
 Application Areas .. 163	

7	
 Conclusions .. 165	

7.1	
 Summary ... 165	

7.2	
 Inertial Motion Capture Software Environments ... 165	

7.3	
 Constructing Inertial Body Sensor Networks ... 167	

7.4	
 Sensing Through Mobile Computing Technologies 167	

7.5	
 Motion Cloud: A Repository and Gateway for Inertial Motion Data 168	

7.6	
 Towards a More Efficient Motion Capture Workflow 170	

7.7	
 Future Work .. 172	

7.7.1	
 Skeletrix Software Environment Extensions ... 172	

7.7.2	
 Skeletrix Mobile Application Extensions .. 173	

7.7.3	
 Motion Cloud Extensions .. 173	

7.7.4	
 MTDS Extensions ... 174	

References .. 176	

Appendix A – Computing Quaternion Algebra .. 190	

Appendix B – DDK Driver for Razor AHRS .. 193	

B.1 Razor Global Header .. 193	

	

	

xi

B.2 Razor Class .. 193	

B.3 Sensor Class ... 195	

Appendix C – MotionCloud API JSON Packets .. 198	

C.1 Profile ... 198	

C.2 Group ... 198	

C.3 Recording .. 199	

C.4 Channel .. 201	

C.5 Vector ... 202	

 	

	

	

xii

Table of Figures
Figure 1-1: Overview of the Skeletrix framework. .. 6	

Figure 1-2: Overview of research approach and contributions to knowledge. 7	

Figure 2-1: Vicon Bonita cameras. ... 26	

Figure 2-2: Optotrak Certus. .. 27	

Figure 2-3: Microsoft Kinect. ... 28	

Figure 2-4: XSens MVN full-body suit. ... 30	

Figure 2-5: Animazoo IGS190 full-body suit. ... 30	

Figure 2-6: Early eMove prototypes: Full Body (left) and Upper Body (right). 31	

Figure 2-7: Omnidirectional body sensor network. .. 40	

Figure 2-8: Position and rotation constraints in kinematic models. 42	

Figure 2-9: Kinematic models playing back motion. ... 42	

Figure 2-10: Lowest-point algorithm. .. 42	

Figure 3-1: A high-level representation of motion capture frameworks with emphasis
on the software environment aspect and its technologies. .. 56	

Figure 3-2: The Skeletrix software environment provides an invaluable set of tools
for extracting inertial data, constructing BSNs and is an important component of the
Skeletrix framework. ... 57	

Figure 3-3: The white box model applied to the Skeletrix software environment. 58	

Figure 3-4: Use case diagram highlighting the user performed actions in the Skeletrix
software environment. ... 59	

Figure 3-5: Skeletrix software environment architecture denoting the components
that form the back-end and interface layers. .. 63	

Figure 3-6: Animation model data structure enclosing one template tape and a list of
motion tapes. .. 65	

Figure 3-7: Core GUI illustrating the landing of a pre-recorded jump animation. 68	

Figure 3-8: KinematicsViewer illustrating the information of a hip bone. 69	

Figure 3-9: SystemViewer illustrating the information of a hip IMU. 70	

Figure 3-10: AnimationViewer showing animation data in a tabular format. 71	

Figure 3-11: Skeletrix software environment multithreading diagram. 73	

Figure 3-12: An overview of motion capture software environments highlighting the
concept of motion capture reanimation and usability simplification through BVHE. 74	

Figure 3-13: BVHE syntax denoting a three-bone hierarchy connected to two sensors.
 ... 78	

Figure 3-14: BVH/BVHE file parsing activity diagram. ... 79	

Figure 3-15: Driver handshake sequence diagram. .. 81	

	

	

xiii

Figure 3-16: Driver data acquisition sequence diagram. .. 82	

Figure 3-17: Anchor swapping during one ambulatory step. 85	

Figure 3-18: Confusion during the anchor selection when the motion performer is
dragging their feet. ... 85	

Figure 3-19: Weight model rendered using the software environment. 86	

Figure 3-20: Computing the lowest anchor of a skeleton using a weight model. 88	

Figure 4-1: A high-level representation of motion capture frameworks with emphasis
on the firmware and hardware aspects and their technologies. 94	

Figure 4-2: The Skeletrix software environment is evaluated using commercial IMUs
and MTDS, a prototype BSN. ... 96	

Figure 4-3: Shimmer R2 wireless IMU. ... 97	

Figure 4-4: Razor AHRS setup with a FTDI basic breakout board. 99	

Figure 4-5: Acquiring data from the Razor AHRS. ... 99	

Figure 4-6: How seven MTDS IMUs communicate motion data to the multiplexer.
 ... 102	

Figure 4-7: MTDS suit. .. 103	

Figure 4-8: MTDS inertial measurement unit. ... 104	

Figure 4-9: MTDS multiplexer. .. 106	

Figure 4-10: MTDS multiplexer opened showing top (left) and bottom (right) views.
 ... 106	

Figure 4-11: MTDS upper body motion tracking using the Skeletrix software
environment. .. 108	

Figure 5-1: Skeletrix mobile application introduces web and mobile computing
technologies to the framework. ... 114	

Figure 5-2: The black box model and Skeletrix mobile application. 116	

Figure 5-3: Three smartphones form an omnidirectional BSN using the Motion Cloud
repository and gateway. ... 118	

Figure 5-4: The stages of streaming motion data to and from the Motion Cloud
server. .. 119	

Figure 5-5: Skeletrix mobile application architecture diagram showing the main
objects organised as packages. .. 121	

Figure 5-6: Comparison between the Skeletrix software environment and the mobile
application’s 3D motion reconstruction. ... 124	

Figure 5-7: Skeletrix mobile application multithreading diagram. 125	

Figure 5-8: Skeletrix mobile application interface layer use case diagram. 126	

Figure 5-9: Dashboard (left) and recorder (right) diagram. 127	

Figure 5-10: Remote-controlling smartphones using event triggers. 130	

Figure 5-11: Smartphones starting and stopping the recording process through event
triggers at varying times depending on connection latencies. 132	

	

	

xiv

Figure 5-12: Smartphones interpreting unsynchronized data. 132	

Figure 5-13: Alignment of channel data using the pre-synchronization methodology.
 ... 133	

Figure 5-14: Post-synchronization alignment of channel data. 134	

Figure 5-15: Synchronized result. .. 134	

Figure 5-16: Simulating and capturing a hand wave gesture using two Samsung
Galaxy S3s. .. 136	

Figure 5-17: Capturing an arm's motion using three body-worn Samsung Galaxy S3
smartphones. .. 138	

Figure 5-18: Rotational data of three consecutive hand wave gestures. 139	

Figure 5-19: Graphical comparison between sedentary (green) behaviour and active
(grey) behaviour. ... 140	

Figure 6-1: The Motion Cloud adds web technologies to the Skeletrix framework. 144	

Figure 6-2: Repository data model object hierarchy. ... 147	

Figure 6-3: Database schema of the repository data model. 149	

Figure 6-4: Motion Cloud gateway layer integrating third party software applications
through API calls. .. 150	

Figure 6-5: Sequence diagram illustrating how API calls can form a BSN. 155	

Figure 6-6: Uploading a recording object using the Motion Cloud API. 156	

Figure 6-7: Motion Cloud web portal use case diagram. ... 158	

Figure 6-8: Motion Cloud web portal user interface. ... 159	

Figure 6-9: MotionCloudViewer adds Motion Cloud support to the Skeletrix software
environment. .. 161	

	

	

xv

Tables
Table 2-1: Advantages and disadvantages of motion capture mediums. 32	

Table 2-2: Comparison of software applications in the context of motion capture. .. 50	

Table 3-1: Skeletrix software environment versioning. ... 83	

Table 3-2: Weight model balance ratios and weight values. 87	

Table 3-3: LACOMA simulations computing the correct anchor. 89	

Table 5-1: Timestamps corresponding to the beginning of the recording session. .. 133	

Table 5-2: Skeletrix mobile application versioning. .. 135	

Table 6-1: Profile API calls. ... 151	

Table 6-2: Group API calls. .. 152	

Table 6-3: Recording API calls. ... 153	

Table 6-4: Channel API calls. ... 154	

Table 6-5: Vector API calls. ... 154	

Table 6-6: Framework API integration. ... 157	

	

	

xvi

List of Acronyms
2D Two-Dimensional

3D Three-Dimensional

4D Four-Dimensional

AHRC Arts and Humanities Research Council

AHRS Attitude Heading Reference System

AMC Acclaim Motion Capture

API Application-Programming Interface

ARW Angular Random Walk

ASF Acclaim Skeleton Format

BSN Body Sensor Network

BVA Biovision File Format

BVH Biovision Hierarchy

BVHE Biovision Hierarchy Extended

CRC Cyclic Redundancy Check

CSS Cascading Style Sheet

CSV Comma-Separated Values

DDK Driver Development Kit

DLL Dynamic-Link Library

DOF Degrees of Freedom

GFINS Gyro-Free Inertial Navigation System

GPU Graphics Processing Unit

HCI Human Computer Interaction

IDC Insulation-Displacement Connector

IMU Inertial Measurement Unit

JSON JavaScript Object Notation

LACOMA Lowest-Anchor Centre of Mass Algorithm

LED Light Emitting Diode

LSB Least Significant Bit

MEMS Micro-Electro-Mechanical Sensor

MCML Motion Capture Markup Language

MIPP Motion in Place Platform

MTDS Motion Tracking Development System

	

	

xvii

MVC Model View Controller

RAM Random Access Memory

SD Secure Digital

SDK Software Development Kit

TSB Technology Strategy Board

UML Unified Modelling Language

VCP Virtual Communication Port

WBAN Wireless Body Area Network

WebGL Web Graphics Library

XML eXtensible Markup Language

	

	

CHAPTER ONE

1 Thesis Overview

1.1 Introduction
Motion capture is the process of measuring and subsequently reconstructing the

movement of an object or being in virtual space. For the past decade, filmmakers and

game developers have adopted motion capture technologies to animate computer-

generated characters time-efficiently to achieve a superior level of realism. Although

animation is the primary use, motion capture has become ubiquitous throughout the

fields of biomechanics, ergonomics, medical science, sport science, aviation, etc.

Motion capture is generally targeted at replicating and understanding human

locomotion as the musculoskeletal properties of the body are highly complex.

At present, there are many technologies available commercially for tracking human

movement that vary in performance, affordability and practicality. The most popular

technologies are inertial, optical and mechanical. Each technology combines hardware

and software to interpret motion as accurately as possible. For example, optical

systems use computer vision algorithms to process video streams recorded by

cameras. Multiple cameras can be used, often in conjunction with visual markers such

as flashing light-emitting diodes or reflective points, to triangulate the position of

joints and subsequently determine the orientation of body parts. As an alternative,

inertial motion capture uses inertial measurement units (IMU) to capture individual

gyrations of body parts. A full-body sensor network (BSN) will contain as much as

twenty IMUs integrating gyroscope, accelerometer and magnetometer sensors.

Angular readings are collected from each sensor and the result is displayed using a

kinematic simulation model [1]. Kinematic models are skeletal rigs used to drive

character topologies in virtual environments.

Accuracy is a measure of the difference between the real movement and its virtual

reconstruction. In terms of accuracy, each motion capture medium presents specific

qualities and limitations. For instance, optical motion capture limits the recording

process to specific environments that present optimal lighting condition [2].

Additionally, any visual obstructions can cause occlusion problems. In contrast,

	

	

2

inertial motion capture is unaffected by its recording environments, but suffers from

hardware induced inaccuracies (e.g. sensor drift, calibration, dead reckoning, signal

noise, etc.). Magnetic interference can also be a problem in factories or industrial

environments [3] [4].

The earliest trace of inertial motion capture dates back to the beginning of the

eighteenth century when Johan von Bohenenberger, a German professor of

mathematics and astronomy, invented the first mechanical gyroscope. Leon Foucault,

a French physicist, later took this concept and used it to measure the Earth’s rotation.

The invention consists of a spinning disc attached to gimbals that can rotate freely in

all three axes. The centrifugal force of the spinning disc keeps its orientation fixed

while the device is moved, thus measuring angular rotations. Throughout the

nineteenth century, the aviation industry used this principle to mass-produce micro-

electro-mechanical sensor (MEMS) gyroscopes that measure the yaw, pitch and roll

of aircrafts during flight. Modern-day inertial motion capture has become ubiquitous

in mobile computing technologies because of the miniaturization of sensor chips and

the availability superior computational resources.

Inertial motion capture was chosen as the focal topic of this thesis because it proves

challenging in many aspects. The process of recording and subsequently

reconstructing motion is very rapid and complex. Data acquisition, angular

conversions, computer-hardware intercommunications, data cleaning and kinematic

deployment are processes that take place over thirty times per second without

noticeable latencies. This thesis argues that the act of using inertial motion capture

systems is a multifaceted sequence of procedures that lack standardisation and can

therefore be improved. The average user does not present the knowhow to operate

BSNs without studying a complicated instructions manual. There is no general-

purpose platform for integrating, customizing and developing BSNs for experimental

research. As a result, the main objective of this work is to develop a cross-platform

framework for acquiring and processing data from commercial animation suits,

mobile computing technologies and most hardware devices that output inertial data.

The design and development is focused on enhancing the adaptability, modularity and

overall usability of inertial BSNs by optimizing the motion capture workflow. The

term workflow can be used to summarise the series of procedures required to operate

an inertial motion capture suit at both software and hardware levels. Sensor hardware

	

	

3

is complex in nature and does not follow the plug-and-play standard of other

computer peripherals. The workflow for motion capture suits is often

overcomplicated, unstandardized and requires an additional person to be present to

operate the system. The ultimate goal of this thesis is to standardise the interaction

between users inertial motion capture system by proposing an improved and more

simplified workflow.

1.2 Problem Statement
This problem statement is the direct result of the literature survey of Chapter 2 and the

critical analysis of principal industry contributors. Additionally, this problem

statement also takes into consideration the former experience of the University of

Sussex Interactive Systems Group in the field of inertial and exoskeleton motion

capture (see Section 1.6). Let’s consider a usability scenario that highlights the

challenges faced in using a modern inertial motion capture.

Typical Inertial Motion Capture Scenario:

A motion performer and a system operator use a motion capture suit to record

full-body motion for the period of one hour. The purpose of the recording is to

analyse human-environment interaction throughout urban households. The

performer is dressed in the hardware with the help of the operator. This process

takes approximately half an hour as nineteen IMUs and their interconnecting

cables must be secured firmly on the body in a particular configuration (in

accordance to the instruction manual). The suit is switched on and the network

handshaking begins whereby the computer interrogates all sensor nodes

individually. The user is asked to stand next to a reference object, which is

used by the operator to adjust the onscreen kinematics to match the motion

performer’s bodily proportions. The motion performer faces north and the

magnetometers are zeroed. Performing the T-pose, which involves standing

straight with both arms extended laterally away from the body, compensates

the postural difference. The suit begins recording if all these steps are

performed successfully. While navigating the household environment, sensors

may switch off due to loose or damaged connectors. Additionally, the chance

of the suit losing wireless signal due to distance or environment obstructions is

high. A single sensor disconnecting implies a complete system restart, which

	

	

4

involves repeating the aforementioned procedures. Once the recording session

has completed successfully, the operator takes the data and applies a set of

filters and data cleaning algorithms. The result is clean motion that can be used

for scientific analysis and is stored using one of several file formats.

The above scenario exemplifies the lack of flexibility in using an inertial motion

capture system. The procedures for initiating an animation suit are multifaceted and

specific to every system. While most computer peripherals follow the plug-and-play

standard, inertial BSN require a sequence of procedures, performed both by the

motion actor and the recording session operator, to begin outputting motion.

Furthermore, inertial motion capture systems are designed to work in one predefined

way that is usually aimed at character animation. There is little room for researchers

to customize the hardware or software configuration. The following problem areas are

centred on: software environments, software standardisations, file formats, robustness

and dead reckoning.

1.2.1 Software Environments

The first problem area is focused on motion capture software standardisations and

support. Prior to developing any solutions that may be beneficial to the field of

motion capture, a standardised simulation and development environment is required.

Because every system is different, there is no standardisation between software

environments. The lack of standardisation makes the development of solutions

difficult. At present, there is no general-purpose software platform that can provide

the functionality required for researchers to explore, develop and objectively evaluate

motion capture technologies. Existing commercial and open-sourced software

applications are predominantly designed for animation purposes and provide little

room for experimental research. Inertial motion capture will benefit from a purpose-

built software environment that outputs data in a format that is suitable for

experimental research.

1.2.2 Standards and File Formats

At present, motion data can be manipulated using several unstandardized file formats

[5] [6] [7] [8] [9], none of which are comprehensive. Most formats are limited to basic

skeletal definitions and angular readings. Developers have created supplementary file

formats that contain profiling data whereby profiling data scales the kinematics so that

	

	

5

the skeletal rig matches the performer’s body in terms of proportions. Those file

formats could be combined to produce a more complete file format that could

ultimately become the industry standard. Although there are software solutions for

storing and organising inertial motion capture data in repositories, the act of

transferring data between computers implies passing files between users. There is a

need for web-based repositories for manipulating motion capture data through

application-programming interface (API) calls.

1.2.3 Robustness

As with all wearable hardware, inertial systems are fragile in nature. Sensors are

likely to disconnect if a cable is damaged, especially during recording sessions in

cluttered environments. A sensor disconnecting will likely cause the BSN to stall.

Restarting the system, which is both time-consuming and impractical, will generally

solve this problem. For behavioural studies that examine psychological and

physiological aspects of the human body, restarting the hardware in the midst of an

experiment can be detrimental to the overall results. This behaviour is caused by

BSNs being software-centric whereby all the data is extracted from the hardware is

sent to a computer for processing. Raw data is larger in size, requiring BSNs to

communicate larger messages between nodes and to the computer. Having a software-

centric system also requires extensive handshaking procedures between the hardware

and the computer. For that reason, the act of initiating an inertial motion capture

system is a complicated procedure.

1.2.4 Dead Reckoning

While optical tracking systems triangulate joint displacements to determine the spatial

positioning of the motion performer, inertial systems contain no inherent sensors for

dead reckoning. Software can be used to compute rough estimations of horizontal

displacement by applying planar collision detection and foot placement estimation

[10] [11] [12] to kinematic models. This methodology is limited to simple gait on flat

surfaces where the motion performer is taking clear steps. As an alternative,

peripheral sensors can be used to compute dead reckoning using ultrasound emitters

[13] or optical cameras [14]. However, this approach is costly and limits the recording

process to confined environments.

	

	

6

1.3 Framework Overview
When pieced together, the developments presented in this thesis form one framework

entitled Skeletrix. The title is derived from the words skeletal and matrix. Skeletrix

starts with sensing motion through electronics, continues with reconstructing

animations in virtual space and finishes with uploading motion into online storage. As

shown in Figure 1-1, the framework explores solutions for every stage of the motion

capture workflow. While the framework is aimed at research and development, its

goal is to improve the overall usability, modularity and versatility of inertial systems.

The five major framework components are divided between three mediums:

hardware, software and online. Each medium corresponds to a portion of the motion

capture workflow. At the hardware level, the framework integrates Motion Tracking

Development System (MTDS), a prototype motion capture suit, and evaluates other

sensor technologies that are available commercially to form a baseline for

benchmarking. At the software level, the framework proposes a software environment

and a mobile application providing the functionality for gathering, processing and

visualising motion data. At the online level, the framework presents the Motion

Cloud, an online repository for storing, organising and visualising inertial data.

Figure 1-1: Overview of the Skeletrix framework. Source: Pascu et al. [15] [16]

	

	

7

1.4 Contributions to Knowledge
The contributions to knowledge presented in this thesis are in direct response to the

problem areas previously identified and further research. In summary, this research

presents a framework aimed at furthering the field of inertial motion capture.

As shown in Figure 1-2, the research approach presented in this thesis aims to

examine and exploit existing technologies and principles as well as investigating new

technologies that may be relevant to the field of inertial motion capture. The existing

technologies researched are focused on understanding software applications and

standards in order to present a unique set of contributions to knowledge (shown in

blue) through the development of a bespoke and innovative software environment. To

test that architecture and to investigate problems faced when developing new BSNs,

this research examines and integrates existing sensor technologies as well as

developing a new and innovative motion capture suit. The new technologies

researched are mobile computing technologies (omnidirectional smartphone-driven

BSNs) and web technologies (online repositories and gateways for motion data).

Figure 1-2: Overview of research approach and contributions to knowledge.

Research	
 Existing	

Technologies	

Explore	
 New	

Technologies	

Mobile	
 Computing	

Technologies	

Inertial	
 Motion	

Capture	

Software	

Hardware	

New	

Existing	

MTDS	
 MUX	

MTDS	
 IMU	

Razor	
 AHRS	

Shimmer	
 R2	

Applications	

BVHE	

DDK	

LACOMA	

Repository	

Gateway	

Portal	

Standards	

Motion	
 Cloud	
 Web	
 Technologies	

Smartphone	
 App.	

3D	
 &	
 Kinematics	

Motion	
 Processing	

BSN	
 Functionality	

System	
 Engine	

Animation	
 Engine	

3D	
 &	
 Kinematics	

	

	

8

The framework developments can be divided into four research bodies, where each

body corresponds to a thesis chapter, entailing: inertial motion capture software

environments, constructing inertial BSN, sensing through mobile computing

technologies and Motion Cloud: an repository and gateway for inertial motion data.

1.4.1 Inertial Motion Capture Software Environments

As previously published in Pascu et al. [17] [18], this work’s first contribution to

knowledge is a software environment and architectural scaffolding for researchers

interested in studying, modifying or constructing inertial BSNs. The following

application areas are also discussed to illustrate its versatility: hardware development,

constructing heterogeneous BSNs and system benchmarking. The software

environment provides the functionality for hardware integration, calibration, motion

processing and three-dimensional (3D) visualisations. The development of this

software environment was focused on three contributions to knowledge that are

focused on standardising BSNs computer-hardware communications, motion capture

file formats and kinematic dead reckoning.

The driver development kit (DDK) is a solution for hardware integration, which

provides users with the means for developing driver modules that extract motion data

from single IMUs or BSNs. The software environment can communicate with driver

modules, which are self-contained dynamic-link libraries (DLL), to gather, process

and visualise inertial motion data. Using the DDK allows users to develop BSNs that

are more modular and customizable.

Biovision Hierarchy Extended (BVHE) is a proposed file format that contains skeletal

definitions, motion data and system configurations in the same file. This unique

format is presented as a solution for standardising the method of expressing the

configuration of a BSN within a software environment. The advantage of BVHE over

any existing format is practicality (simplifying the motion capture workflow) as users

only have to load one file into the software environment. Given that kinematic

hierarchy is driven by a system, which contains a system configuration, it is both

logical and necessary to form a relationship between the two by establishing one

singular and more complete file format.

	

	

9

This solution enhances the customizability of BSNs by tightening the relationship

between software and hardware. Additionally, this extended file format is backwards

compatible with existing software applications that support the traditional Biovision

Hierarchy (BVH) file format.

The lowest-anchor centre of mass algorithm (LACOMA) Pascu et al. [18] is a dead

reckoning algorithm for computing more accurately the correct point of support of the

body during gait. It combines the concept of weight models with planar collision

detection. This approach is aimed at improving anchor selection in kinematic models

by using the body’s musculoskeletal centre of weight to improve foot placement

estimation. This solution improves accuracy, reduces the probability of anchor

selection errors and is computationally inexpensive.

1.4.2 Constructing Inertial Body Sensor Networks

This work’s second contribution to knowledge is a study focused on understanding

how to improve inertial motion capture hardware through the development of the

Motion Tracking Development Suit (MTDS) Pascu et al. [18] prototype, which is also

used to demonstrate the functionality of the software environment. Two additional

IMUs that are available commercially are also integrated to form a comparison.

MTDS is a hardware-centric BSN developed by the author of this thesis and SC GPS

Communications SRL, a Romanian hardware manufacturer. Because of recent

advances in affordable micro-electro-mechanical sensor technologies, the suit was

developed cost-effectively while focusing on low-power consumption and efficient

resource allocation. The development of the hardware was completed in two stages:

the IMU and multiplexer.

The MTDS IMU is a thumb-sized device containing Atmel AVR RISC 8-bit

microcontrollers, InvenSense IMU3000 gyroscopes and Freescale MMA8451Q

accelerometers. This research work is focused on understanding whether consumer-

level electronics are sufficiently accurate to record human movements.

The MTDS multiplexer is a central node for acquiring motion data from the

aforementioned IMUs. The IMUs are daisy chained to the multiplexer using a

harness. As a whole, the system is wireless and connects to a computer over

Bluetooth. While the multiplexer is able to interconnect up to twenty homogenous

	

	

10

inertial measurement units, its testing was performed using the upper body

configuration whereby IMUs are place on the arms, forearms, hands and torso.

1.4.3 Sensing Through Mobile Computing Technologies

As previously published in Pascu et al. [15] [16] and [19], this work’s third

contribution to knowledge is centred on investigating the relevance of mobile

computing technologies, namely smartphones, to the fields of inertial motion capture

and BSNs. This innovative concept demonstrates how inertial motion capture can be

achieved using smartphone sensors and how BSN communications can be achieved

using web technologies and the Internet. The smartphone is the most ubiquitous

wearable computing technology. Most people have smartphones and, like IMUs, most

smartphones enclose a gyroscope, an accelerometer and a magnetometer. This thesis

discusses the design and development of a novel mobile application presenting a

unique approach for constructing smartphone-driven BSNs that telecommunicate, in

an omnidirectional manner, through web services. The BSN is designed to be used in

small experiments and has many other application areas such as: medical science,

activity tracking, emergency responses, road and traffic condition monitoring. To

summarise, each network node uploads data, synchronizes data and distributes the

result throughout the network. The mobile application extracts and processes motion

data produced by the smartphone’s sensors and communicates it across the network.

The development of the mobile application is the result of porting and heavily

modifying the software environment, previously introduced in section 1.4.1, to the

Android platform.

The mobile application also implements a BSN remote control mechanism, which

allows several smartphones to be controlled from one interface using event triggers

[19]. An event trigger allows one smartphone’s interface to remote control the actions

of several other smartphones. Because this functionality is achieved using a web

server and web services, an online control panel is also developed to control

smartphones from a web interface. The concept of event triggers unifies several body-

worn smartphones to emulate the functionality of a basic animation suit.

Synchronization refers to the process of gathering and merging multiple sets of

motion data. The proposed solution is focused on using a centralised timeserver that

updates each smartphone’s clock. Clock readings can be used as reference points to

	

	

11

identify precisely when each smartphone begins recording. Synchronization is

important in creating an online smartphone-driven BSN that can merge the motion

produced by separate devices.

1.4.4 Motion Cloud: A Repository and Gateway for Inertial Motion
Data

This work’s fourth contribution to knowledge is the Motion Cloud (Pascu et al. [19]),

a solution that investigates the relevance of web technologies to inertial motion

capture frameworks. Whether it’s a single sensor or a network of sensors, the

proposed architecture is highly extendable can be integrated with a wide spectrum of

motion capture devices: animation suits, smartphones, inertial measurement units,

pedometers, etc. To demonstrate its versatility, this thesis discusses several

application areas where the Motion Cloud could be used as a library for motion data, a

prototyping environment and data gateway for online BSNs and a database for storing

activity data. The development of the Motion Cloud solution consists of three

components: repository, gateway and web portal.

The repository is a large online database designed to store inertial data produced by

software environments, mobile applications and drivers. Unlike existing solutions that

allow users to upload motion capture files to online libraries, the Motion Cloud

repository deciphers the data and constructs bespoke data models for each BSN in the

form of object hierarchies.

While existing BSNs utilize multiplexers or software drivers to communicate data

between nodes, the Motion Cloud gateway demonstrate the novel concept of

constructing BSNs through web technologies. This concept is possible because of

recent advances in telecommunication technologies (i.e. 3G, 4G) that facilitate data

transfers between devices such as smartphones or IMUs. The gateway consists of

versatile web services for uploading, downloading and streaming motion capture data.

The summation of those services is an application-programming interface (API)

designed to form a bridge between inertial sensing hardware and the Motion Cloud

repository. The API can be used by downstream applications to access the

repository’s data.

The Motion Cloud can be interfaced with through a web portal. The web portal is an

interface layer for accessing, modifying, visualising and exporting motion data stored

	

	

12

by the repository. The web portal provides a quick overview of the data produced by a

BSN as required for experimental research and other application areas.

1.5 Thesis Structure
This chapter introduces motion capture as a significant research topic and discusses its

current problem areas. This work’s contributions to knowledge are summarised and

presented in response to the problem statement. The remaining portion of this chapter

introduces the chapters to follow along with previous work that was influential to the

research presented in this thesis.

Chapter 2 investigates fundamental motion capture concepts and application areas by

generating a survey of pertinent literature. It emphasises significant problem areas in

the field of motion capture and guides the research work presented throughout this

thesis. A critical evaluation of the field is conducted to identify on-going research

projects and the principal industry contributors. The chapter continues to discuss the

individual stages of motion processing, from sensing the articulated movement of

humans using inertial measurement units to reconstructing kinematic motion in virtual

space.

Chapter 3 present the design and development of the software environment with

emphasis on several core components: kinematics model and viewer, animation

model and viewer, system engine and viewer, 3D rendering, DDK, LACOMA and

BVHE. The chapter finishes by introducing the LACOMA, a computationally

inexpensive solution for creating a better estimation of the kinematic model’s anchor

point (during gait) through weight distribution calculations.

Chapter 4 demonstrates how IMUs, which are commercially available, can be

integrated with the framework. The chapter continues to present the design and

implementation of MTDS while using existing technologies to form a baseline. The

chapter discusses the conceptualisation, design, hardware development, firmware

development, driver development and sensor integration. The chapter finishes with a

comparative evaluation of the hardware.

Chapter 5 explores the relevance of mobile computing technologies to the field of

inertial motion capture. The chapter covers the design and development of a mobile

application for interconnecting smartphone devices to a server in order to establish

	

	

13

omnidirectional BSNs. Smartphones are shown to be reliable test beds and

prototyping environments for constructing BSNs aimed at experimental research and

other application areas.

Chapter 6 introduces the Motion Cloud by discussing the design and implementation

of the repository, gateway and web portal. The repository is presented as an

extendable database model for storing and organising inertial data. The gateway is

presented as an API for accessing the repository from: software environments,

drivers, mobile applications, etc. The web portal is discussed in terms of interface

design and overall usability.

Chapter 7 concludes this research by summarising the major issues raised throughout

this thesis and the positive impacts of the proposed framework. Future projects, areas

for future and development and extensions are also discussed.

1.6 Related Work
This section provides a chronological list of related work that the author has

contributed to. The following four projects have provided both motivation and context

for the developments presented in this thesis. Additionally, these projects were

influential in forming a first-hand understanding of what problems affect the fields of

inertial motion capture and BSNs.

1.6.1 eMove

eMove is a Technology Strategy Board (TSB) [20] funded research collaboration

between the University of Sussex Centre for Computer Graphics and Animazoo [21],

a motion capture hardware manufacturer and software developer. The focus of the

project was to develop an upper body exoskeleton suit using one IMU, six

potentiometers and two hand controllers featuring buttons, triggers and analogue

sticks. The eMove suit [22] is designed for real-time digital puppetry [23] [24],

interactive video games, theme parks, arcades, animation, etc.

The software suite developed for the eMove suit can be divided into three categories.

The first category is concerned with drivers for accessing and streaming data directly

from the hardware. The second category covers software applications for recording

upper body motion for the purpose of animation. The third category presents software

development kits for game engines such as Unreal Development Kit, Unity 3D and

	

	

14

Panda 3D. As a result, users have a strong foundation for utilising and further

developing eMove suits.

eMove’s ultimate goal is to deliver motion capture technologies to the masses. The

problems faced with making exoskeleton hardware affordable, user-friendly and

sufficiently robust to withstand everyday use are also applicable to the fields of

inertial motion capture BSNs.

1.6.2 Motion in Place Platform

Motion in Place Platform (MIPP) [25] [26] [27] is an Arts and Humanities Research

Council (AHRC) [28] funded research project with the aim of studying human-

environment interactions in cultural heritage contexts. It brings together a cross-

disciplinary group of researchers to create an understanding of how new technologies

are beneficial in understanding the relationship between humans and their

surroundings.

The project was centred on the findings of the Reading archaeologists [29] who

uncovered the layout of Iron Age and early Roman buildings at the Silchester Insula

XI. The author of this thesis used illustrated drawings and archaeological

interpretations of those buildings to reconstruct the location in 3D. Motion capture

data was recorded by equipping dancers, actors and archaeologists with inertial

hardware to re-enact the daily activities of the historical inhabitants. They performed

everyday tasks such as sweeping, cooking or getting water from a well. The data was

recorded using Animazoo IGS motion capture suits and a laptop.

This research uncovered a list of problems concerned with using motion capture

technologies outside the comfort of a recording studio. For example, using ultrasonic

equipment outdoors for dead reckoning proved highly problematic due to windy

weather conditions. The conclusions drawn from utilising motion capture

technologies in the context of outdoor experimental archaeology indicate a need for

less complicated, more robust, more portable and less encumbering BSNs.

1.6.3 Motion Capture in Forensic Psychology

This University of Sussex Centre for Computer Graphics undertook a forensic

psychology experiment [30] [31] [32] together with an interdisciplinary team from

University of Portsmouth Department of Forensic Psychology. The experiment’s goal

	

	

15

was to investigate the activity and behaviour of individuals burgling an urban

household by studying human-environment interactions through motion capture

technologies. The author of this thesis developed a realistic reconstruction of a

household using a large set of reference pictures and measurements. Forensic

psychologists used the reconstruction to create a virtual simulation of the motion

capture data, which was subsequently used to analyse physical behaviour.

The experiment took two days to complete. On the first day, six university students

were asked to burgle the household. On the second day, six previously convicted

house burglars were asked to repeat the experiment in the same manner. Both groups

were asked to navigate the environment and touch items they wish to steal. Their

behaviour was recorded using an Animazoo IGS motion capture suit and a head-

mounted camera.

The burglary experiment uncovered a list of technology limitations concerned with

the overall usability, wireless connectivity and robustness of BSNs. The first problem

occurred when test subjects were navigating the environment at a rapid pace and

accidentally damaged sensors, causing the BSN to stall. The act of resetting the

hardware in the midst of the experiment compromised the motion performers’

psychological immersion. The second problem was concerned with the BSN requiring

a constant wireless connection to a computer. On several occasions, the BSN

disconnected due to distance and environment obstructions. The third problem was

caused by the cumbersome nature of inertial systems as test subjects couldn’t climb or

enter the household through window openings without damaging the hardware.

1.6.4 Digital Hub

The Digital Hub [33] is a TSB [20] funded partnership between American Express

and the University of Sussex with the aim of stimulating economic and business

growth in the UK. The project is focused on developing technologies for

micropayments, virtual currencies, rewards and loyalty schemes. The Digital Hub is

exploiting mobile computing, social media, Internet of Things [34] and near field

communication technologies to influence how people interact with virtual economies.

One particular project, entitled Fit2Gether, is relevant to the developments presented

in this thesis. Fit2Gether is a cross-platform framework consisting of a mobile

	

	

16

application and website for amalgamating activity data from users in the work

environment. The framework’s goal is to stimulate healthier lifestyles by rewarding

users for physical activity. Data is captured using pedometers, thumb-sized devices

enclosing accelerometers that produce rough estimations of steps taken, calories burnt

and distance travelled. Rewards are used to stimulate users into changing their

lifestyle from sedentary to active.

Pedometers are very similar to IMUs as they integrate both inertial sensors and

microcontrollers in small packages. Modern pedometers are designed to upload data

to a centralised repository using a set of web services. Data gets converted into

activity readings while taking into account the user’s weight, height, age, gender, etc.

As demonstrated by this thesis, new-generation smartphones are abled to measure

those properties using the in-built sensors. Fit2Gether’s ability to store activity is

similar to the Motion Cloud, which is a larger and more generalised solution aimed at

amalgamating and organising inertial motion capture data in online repositories.

	

	

17

CHAPTER TWO

2 Motion Capture

2.1 Introduction
Motion capture is the notion of extracting data from motion sensors to reconstruct the

movement of an animated being in virtual space. This chapter explores fundamental

motion capture concepts and applications areas by generating a literature survey. To

summarise, this chapter asks five basic questions: What is motion capture? What is

motion capture used for? What technologies are available? How do those technologies

work? How do users operate those technologies? By asking and subsequently

answering these questions, this chapter reveals problem areas limiting the field of

inertial motion capture.

This chapter’s first aim is to classify motion capture as a new technology that is

important to many applications areas, thus justifying it as the main research topic for

this thesis. Novel applications areas for motion capture are discovered through an

overview of on-going research. This includes: animation for game development and

filmmaking, real-time motion capture and digital puppetry, biomechanics gait

analysis, sport science, medical science, robotics and ergonomics.

The second aim of this chapter is to provide an overview of the main types of motion

capture mediums (see Section 2.4) to identify strengths and weaknesses and to focus

this research on a specific technology. This overview is supported by an evaluation of

the motion capture industry contributors that identifies what systems are available

commercially and what application areas they are used for (see Section 2.3). Based on

this study, inertial sensing is chosen as the primary focus of research. The chapter

continues to discuss the fundamental problems limiting inertial sensing and what

attempts have been made towards solving those problems.

Aside from hardware, software applications play an important role in the usability of

inertial motion capture systems. This chapter continues to evaluate what software

applications exist, how they support motion capture technologies and how motion

data is stored and transferred between users. The goal is to identify any

standardisation-related problems affecting the industry and the field of research.

	

	

18

2.2 What is Motion Capture?
Motion capture is a general term that defines the process of constructing a virtual

representation of motion using data obtained from real-life movement. As discussed

in “Human Motion: Understanding, Modelling, Capture and Animation” [35], human

motion is the primary target for motion capture due to its complexity and organic

characteristics.

“Motion capture involves measuring an object's position and orientation in

physical space, then recording that information in a computer-usable form.

Objects of interest include human and non-human bodies, facial expressions,

camera or light positions, and other elements in a scene.” [36]

In the context of inertial motion capture, the act of recording real-life movement is a

multifaceted sequence of procedures: data gathering, sensor fusion, pre-processing,

post-processing, kinematic deployment, etc. One of the main goals of researching or

developing motion capture systems is accuracy. In broad terms, accuracy is a measure

of the difference between the originating real-life movement and the resulting virtual

reconstruction.

While inertial motion capture suits are relatively new, the underlining principles are

not. “The Mocap Book: A Practical Guide to the Art of Motion Capture” [37] covers

the history of motion capture dating back to the 19th century. In recent years, inertial

motion capture has become achievable and affordable because of technological

advances focused on the miniaturisation of micro-electro-mechanical sensors

(MEMS) and the availability of superior computational resources in small devices.

Modern sensors are very robust and ubiquitous in devices such as smartphones,

pedometers and animation suits.

In the context of this thesis, motion capture was chosen because it proves challenging

and there are many problems still to solve. The act of recording and reconstructing

motion happens very quickly. In less than a tenth of a second multiple sensors are

interrogated to acquire motion data, motion data is processed and packaged, packages

are sent to the computer through communication protocols, dead reckoning algorithms

are applied and the result is visualised using a kinematic skeleton and a 3D engine.

	

	

19

2.3 Application Areas
Before discussing the principles behind software and hardware technologies, it is

appropriate to understand what motion capture is used for. Motion capture has

numerous application areas affecting our everyday lives [38]. Broadly, those

application areas can be allocated to one of two categories: animation for digital

entertainment and biomechanics. Animation is a result-driven process where motion

is recorded to be modified at a later stage for filmmaking and game development

purposes. For example, the animation of a computer-generated sci-fi robot presenting

unrealistic proportions can be based on the motion recording of a human. The field of

biomechanics is centred on the accuracy of the result in order to develop a better

understanding of the original motion. For example, gait analysis requires data to

measure the properties of human locomotion. In this context, how impressive the

result looks is irrelevant. The following sections highlight the importance of motion

capture by looking at the principal application areas, which can also be referred to as

movement science, found throughout literature: animation, real-time motion capture

and digital puppetry, medical science, gait analysis, sport science, robotics and

ergonomics.

2.3.1 Animation

Animation is the dominant application area for motion capture through the affluent

filmmaking and videogame industries. With advances in computer-generated

graphics, more and more attention is given to the process of replicating motion in a

virtual environment. Traditionally, the realism of animation was achieved through key

frame animation and artistic talent but with an increasing demand for animations,

manual replication of motion is too time-consuming and expensive.

Performance animation is principally found in the film industry where actors

undertake the role of virtual characters to entertain an audience. “Understanding

Motion Capture for Computer Animation and Video Games” [39] introduces the

concept of performance animation whereby motion capture systems are used to

capture the movement of motion performers (real-life professional actors).

In the past decade, the video game industry has surpassed the film industry in terms of

budgets allowing for the development of more costly motion capture systems. In the

	

	

20

context of video game animation, synthesis-by-example [40] is a term that refers to

approaches for assembling pre-recorded sequences of animation. For example, a

controlled game character might walk and then fight, requiring the two animation

sequences to be blended seamlessly. Another application area for motion capture is

facial animations. The most advanced facial animation solution is Rockstar’s

MotionScan [41] [42] technology that uses optical motion capture to generate a

sequence of 3D face meshes. Those meshes are subsequently applied to character

models sequentially to simulate organic-appearing facial expressions. This approach

is a novel substitute to traditional kinematic motion reconstruction.

2.3.2 Real-Time Motion Capture and Digital Puppetry

In motion capture, animation data is recorded independently of its target use. After

motion is recorded, post-processing methods prepare the data to be mapped to a

digital avatar. Real-time motion capture is characterised by the motion performance

and its virtual representation happening simultaneously.

Digital puppetry is a concept that refers to the motion performer as a digital puppeteer

and the target avatar as a digital puppet. Digital puppeteers are real actors that

perform to entertain an audience. To enhance the experience, lip-syncing technologies

[23] may be used to animate the avatar’s lips to match those of the performer. An

example of digital puppetry is AnimaLive [43], a tool for creating virtual

performances.

Real-time motion capture may also be used as a medium for interacting with virtual

environments in the context of video games. As experienced first-hand throughout the

eMove and Motion in Place Platform (MIPP) projects, motion capture systems are too

expensive and fragile (due to the complicated nature of the hardware consisting of

wearable cables and sensors) to be used on a daily basis. Real-time motion capture

aimed at entertainment applications [24] is a novel concept that involves

programming a motion capture system to feed real-time data into a game engine.

Systems like Microsoft Kinect [44] have shown that motion capture systems can be

used as an input device, through skeletal mapping or gesture recognition techniques

[45] [46] [47].

	

	

21

2.3.3 Medical Science

Medical science is currently an underdeveloped yet important application area for

motion capture. Recent literature suggests that recording human movements will

create a better understanding of human anatomy, which benefits medicine and

healthcare. This application area is possible as a result of advances in motion capture

technologies allowing for more practical and affordable systems.

“Motion capture systems have not been widely used in Parkinson’s disease

research due to their high cost and lack of portability. However, recent

advancements in portability and affordability have made various clinical

applications possible.” [48]

Specific human movements can be examined to diagnose health-related problems and

measure treatment responses. In a comparison between motion capture and traditional

methods for medical examination, motion capture will produce a larger set of data

consisting of 3D reconstructions and temporal information [49]. Therefore, physical

examinations involving motion capture technologies provide medical professionals

with valuable information that was previously unattainable. Inefficiency is caused by

the complicated nature of using a motion capture system along with limitations in

terms of hardware robustness. Inertial motion capture suits are likely to break while

optical systems require a long setup procedure and a bespoke recording studio.

While optical systems are leading the field of medical motion capture, inertial

technologies are becoming viable alternatives due to cost and versatility. For example,

[50] presents the design and application of an inertial system to replace traditional

rehabilitation in homes. The body-worn system measures the quality of the patient’s

comportments and gives quantifiable scores that can be interpreted by a therapist.

Motion capture has potential in measuring musculoskeletal dysfunctions such as

idiopathic scoliosis [51] and Parkinson’s disease [48]. In this thesis, Parkinson’s

disease is considered as an application area for further research and development as

published in Pascu et al. [15] [16].

	

	

22

2.3.4 Gait Analysis

Gait is a term describing the particularities of locomotion and is usually applied to

human movement. Gait analysis concerns the activity of muscles and the symmetry of

walking. It is applied to treat individuals with medical conditions that influence their

ability to walk or their body’s balance. In sports science, gait analysis helps athletes

run more efficiently through better sports equipment (see Section 2.3.5) while

preventing potential injuries.

To put into context motion capture’s role in gait analysis we will consider three

examples, as found in literature, in which motion data is used to analyse locomotion.

In the first study [52] [53], an accelerometer-based system is used calculate

acceleration patterns of the pelvis and head. From those patterns it was possible to

determine whether a test subject is young and vigorous or old and frail, thus

presenting the risk of falling and obtaining injury. In the second study [54], an optical

motion capture system is used to determine whether a child’s walking pattern differs

from an adult’s when overcoming an obstacle. Each test subject wears fourteen

infrared markers as their motion is recorded. In the third study [55], the same optical

system is used to determine the symmetry of walking in able-bodied elderly people to

conclude asymmetries in the lower limbs over multiple gait cycles.

Motion capture technologies are inherently suitable for gait analysis as both fields

focus on measuring and understanding motion. This application area is predominantly

covered by optical systems [56] that are able to compute dead reckoning accurately.

Dead reckoning is the process of measuring the combined distance travelled after a

series of steps depending on stride length and foot placement estimation. Cloete and

Scheffer [57] discuss the problems faced, in terms of experiment repeatability, of

using inertial motion capture systems in the field of gait analysis. Clinical diagnoses

require accurate portable motion capture systems that may be used by physicians. In

this context, motion capture presents four problems:

1. Body-worn motion capture systems are cumbersome in nature and may

influence the walking patterns of test subjects.

2. For gait analysis to be used in diagnosing, physicians require robust user-

friendly systems.

	

	

23

3. Body joints are complex in nature and cannot be replicated accurately with

traditional kinematic models.

4. It is difficult for systems, particularly inertial suits, to measure dead reckoning

accurately for extended periods of time.

Current research projects aim to establish inertial systems and other motion capture

technologies as powerful tools for gait analysis. An example research project is

Outwalk [58] [59], a protocol designed to advance the kinematics of inertial and

magnetic systems to measure thorax, pelvis and lower limb movements more

accurately. Such research projects motivated the development of the lowest-anchor

centre of mass algorithm (LACOMA) solution (Pascu et al. [18]) proposed by this

thesis in Chapter 3.

2.3.5 Sport Science

Sports science is a developing application area for motion capture that covers the

study of human motion during intense physical activity. Let us consider three

usability scenarios that place motion capture in the context of sport science. First,

motion capture is a medium that can measure and perfect an athlete’s comportment

during sport routines. For example, detecting and correcting the locomotive

asymmetry of a runner may improve energy conservation allowing for a better sports

performance. Second, motion capture can be used to aid the development of more

comfortable sporting goods (e.g. running shoes, skis, snowboards, etc.), which reduce

the risk of injuries. Third, motion capture can measure what forces athletes are subject

to and create a better understanding of human behaviour under intense stress

conditions.

Optical systems are firmly established in the field of biomechanics but due to the

outdoors nature of sport, alternative motion capture solutions are being considered.

What motion capture mediums are best suited to measure sport-related motion? Let us

consider four studies focused on answering that question. The first two studies [60]

[61] recorded the biomechanical data of freestyle snowboarding with the aim of

reducing ankle joint injuries through development of better snowboarding equipment.

The next two studies [62] [63] compare the accuracy of a full body inertial motion

capture system with an optical video-based system in analysing the biomechanics of

	

	

24

alpine skiing. These studies demonstrated that inertial systems are sufficiently

accurate for this task.

2.3.6 Robotics

Motion capture has many robotics-related application areas [64] [65]. The design and

engineering of autonomous machines is a process that benefits from the principles of

natural motion (or biomechanics) on multiple levels. Motion capture can be

juxtaposed with a branch of robotics that deals with artificial recreation and

simulation of human motion. The robotic imitation of human movement [66] [67]

[68] [69] can be achieved through motion in two ways. Firstly, limb movements could

be mapped to robotic arms to effectively turn the robot into a puppet. Secondly,

intelligent robots could use motion capture data samples to understand and

perceptively replicate human behaviour.

Advances in modelling and calibration of inertial sensors and optical cameras can be

beneficial in developing robots that interact with environments more intelligently.

Optical motion capture algorithms can help robots understand their surroundings and

perceive moving objects. Inertial sensors can be used to balance a robot’s weight and

improve locomotion abilities.

2.3.7 Ergonomics

Ergonomics is an application area that focuses on improving the interactions between

humans and devices or environments. For example, the industry uses motion capture

systems to prototype vehicle and aircraft interiors. Traditionally, ergonomic studies

were completed through qualitative video observation, but motion capture

technologies are becoming a viable ergonomics analysis alternative.

The study of ergonomics is also aimed at improving the design of body-worn

equipment during movement to prevent muscle injuries and maximize comfort. For

example, Optotrak systems have been used for ergonomic applications to assess

personal carriage systems to improve backpack designs [70].

	

	

25

2.4 Motion Capture Mediums
There are different mediums through which motion can be recorded that vary in

performance and cost. This section discusses the underlying principles of several

motion capture mediums and looks at the main motion capture system manufacturers.

An evaluation is made to summarise the strengths and weaknesses of each medium.

Additionally, each medium is compared against the application areas previously

identified to determine its versatility. The mediums discussed are: optical systems,

inertial systems, exoskeleton mechanical systems and hybrid systems.

2.4.1 Optical Systems

A high-end optical motion capture system will involve a constellation of video

cameras positioned around the target. A low-end system may use as few as three

cameras positioned in a portable enclosure. The principle behind all optical systems

remains the same: data is gathered in video file formats, computer vision filters are

applied to the video stream and optical triangulation algorithms are used to deduce the

position of the points of interest.

Optical motion capture may use reflective markers, pulsing light-emitting diodes

(LED) markers or no markers to track points of interest in space.

• The reflective marker solution involves placing highly reflective indicators on

the motion performer’s body. During the video recording, cameras shine light

onto the markers to make them more visible.

• The pulsing LED solution uses infrared cameras to detect heat signatures.

• The marker-less solution estimates a person’s posture through computer vision

algorithms. Advances in marker-less optical motion capture algorithms allow

for the tracking of multiple interacting characters simultaneously [71].

Optical systems are highly accurate, noise-free and abled to compute dead reckoning.

High-end optical systems are abled to track motion at very high frame rates, which is

difficult with any other type of motion capture (especially inertial sensors which

generally operate at frame rates ranging between 60Hz and 100Hz). Due to occlusion

and light interference, optical motion capture requires a dedicated recording

environment.

	

	

26

Vicon

Vicon Motion Systems and Peak Performance Technologies Inc. are two companies

united under the Vicon [72] brand. This consortium produced a highly successful

motion capture hardware and software company concentrating on highly accurate

marker-based optical tracking systems. The Standard [73] is an annual magazine

presenting Vicon’s current projects and undertakings. A particular issue entitled “A

Hopping Success for Outdoor Motion Capture” [74], explores the concept of outdoor

motion capture, thus removing the need for bespoke recording environments. This

concept could significantly increase the application areas for optical tracking systems.

By combining highly accurate video cameras, like the Bonita shown in Figure 2-1,

with motion analysis software, Vicon systems have a wide range of application areas.

Figure 2-1: Vicon Bonita cameras. Source: [75]

	

	

27

Optotrak

Optotrak Certus [76], shown in Figure 2-2, is an optical motion tracking system

developed by Northern Digital Inc. [77]. The company specializes in designing and

manufacturing optical motion capture systems for research application areas. The

Certus combines a high definition position sensor and digital photogrammetry to

compute motion data in real-time. Its three optical sensors are used for optical

triangulation to determine the precise world-space positional coordinates of markers.

Its cameras are able to detect the position and orientation of multiple moving objects

in large open spaces by analysing data points at high frequencies. The accuracy of the

Optotrak Certus made it useful to many research projects such as:

• Medical Science: studies focused on posture, balance and coordination include

patient stabilization with trans-femoral amputation [78], idiopathic scoliosis

[51], Parkinson’s disease [79], etc.

• Robotics: comparison between human and machine operated industrial robots

[80].

• Ergonomics: analysis of products (e.g. backpack designs [70]), systems,

environments, tools, etc. [81].

• Gait Analysis: gait analysis of unimpaired elderly people [82] and obstacle

avoidance in cluttered environments [54] [83].

Figure 2-2: Optotrak Certus. Source: [84]

	

	

28

Microsoft Kinect

As shown in Figure 2-3, Kinect [44] is a consumer-level optical motion capture

system developed by Microsoft for the Xbox 360 games console. Kinect’s primary

purpose is to allow users to interact with video games through gestures and spoken

commands, thus removing the need for a game controller and creating a more

interactive user experience. As an optical motion capture system, Kinect is a simple

design using a video camera and a depth sensor. The video camera’s primary purpose

is to detect colour information for detailed gesture recognition. The depth sensor

consists of a monochrome sensor and an infrared camera that work in tandem to

detect the posture of the motion performer. Kinect’s hardware is accompanied by

image-processing software [85] [86] that estimates the world-space positions and

orientations of body parts. Kinect has been used in many research projects because of

its low-cost, software development kit (SDK) [87] and Robotics Developer Studio

[88]. The popularity and low cost of the Kinect led to its use in many research

projects.

• Digital Puppetry: controlling virtual characters in video games.

• Medical Science: the gamification of patient rehabilitation [89], the training of

nurses in performing patient transfers [90], studies of body joint movements

[91], systems for training of factory workers to lift safely [92], etc.

• Robotics: recreating human motion through electro-mechanical skeletons [93],

and robots [94].

• Gait Analysis: capturing and evaluating of ambulatory behaviours [95] [96]

[97] for experimental research.

Figure 2-3: Microsoft Kinect. Source: [44]

	

	

29

2.4.2 Inertial Systems

Inertial motion capture uses sensor technology, motion processing algorithms and

kinematic models to record movement. Inertial motion sensors such as gyroscopes,

accelerometers and magnetometers are used to identify three-dimensional world

rotations. A virtual representation of the performer is constructed by applying these

rotations to a kinematic skeleton. For a system to identify the performer’s full body

movement, a sensor unit must be placed on each major body part: limbs, torso, neck

and head. The inertial sensors may be worn using straps or sown into clothing

depending on size. Most motion capture systems interconnect approximately twenty

sensors through a central hub commonly referred to as a multiplexer. Inertial

technologies benefit from a wider range of application areas as they are portable and

may be used outside the comfort of recording studios. Unlike optical systems, inertial

motion capture suffers from sensor-related inaccuracies such as drift and noise.

XSens MVN

XSens [98] is a manufacturer and supplier of MEMS inertial sensor products and

technologies. MVN [99] is a department of XSens that focuses on creating motion

capture suits for animation and biomechanics. Their latest product is an inertial

motion capture suit featuring seventeen in-house built MTx sensors strapped to

clothing. The MVN suits, shown in Figure 2-4, have made their way into the

filmmaking and video games industries. XSens products target several application

areas:

• Animation: character tracking for blockbuster films and video games.

• Medical Science: analysing human movement in clinical trials [100] [101]

assessing the frailty of elderly people [102], measuring trunk and gait

parameter [103], etc.

• Sports Science: motion analysis of human behaviour during sport activities

such as snowboarding [60] [61] and alpine skiing [62].

• Gait Analysis: capturing and evaluating ambulatory behaviours [104] [105]

[106] for experimental research.

	

	

30

Figure 2-4: XSens MVN full-body suit. Source: [99]

Animazoo

Animazoo is an animation-driven motion capture software and hardware developer. It

has a wide range of motion capture solutions that vary in price and performance. As

shown in Figure 2-5, the most power Animazoo system is the IGS 180, an inertial

motion capture suit interconnecting eighteen MEMS inertial measurement units to a

wireless multiplexer. Application areas for Animazoo systems include:

• Animation: character motion tracking for films and video games.

• Digital Puppetry: animating in real-time virtual characters with the added

option of lip synchronization through AnimaLive [43] software.

• Ergonomics: measuring the interaction of humans with vehicle interiors.

Figure 2-5: Animazoo IGS190 full-body suit. Source: [107]

	

	

31

2.4.3 Exoskeleton Mechanical Systems

Exoskeleton motion capture systems are body-worn prosthetic structures that can be

worn on top of clothing. Typical hardware consists of extendable rods connected

through potentiometers. The rods mimic the user’s physical skeleton while the

potentiometers record the rotation of joints. Potentiometer readings are converted into

rotations and applied to kinematic models as skeletal motion. Animazoo holds patents

for exoskeleton systems, making it the only vendor for these technologies.

eMove

The eMove project [22] originated from a Technology Strategy Board funded

partnership between the University of Sussex and Animazoo. The project produced a

prototype exoskeleton personal motion sensing system entitled eMove and now sold

commercially as The Wing and Gypsy 7. The system was originally derived from the

Animazoo Gypsy 5 prototype. As shown in Figure 2-6, full-body and upper body suits

are designed to record torso and limb movements. Exoskeleton’s biggest downfall is

the fragility of the complicated hardware.

Figure 2-6: Early eMove prototypes: Full Body (left) and Upper Body (right). Source: [108]

	

	

32

2.4.4 Evaluation of Motion Capture Systems

Table 2-1 provides a brief summary of the advantages and disadvantages of motion

capture mediums.

Table 2-1: Advantages and disadvantages of motion capture mediums.

Software Advantages Disadvantages

Optical - accuracy
- recording frequency
- robust
- inherently able to compute
dead reckoning

- cost
- require dedicated recording spaces
- sensitive to lighting conditions
- occlusion-related limitations
- not usable outdoors
- not usable in confined spaces
- not portable

Inertial - accuracy
- cost
- usable outdoors
- usable in confined spaces
- portable

- slower recording frequency
(compared to optical)
- fragile
- dead reckoning
- magnetometers are affected by
magnetic interference

Exoskeleton - cost
- usable outdoors
- portable

- accuracy
- recording frequency
- cumbersome
- fragile
- dead reckoning
- not usable in confined spaces

Optical systems have many benefits in terms of accuracy, high recording frequency,

durability and dead reckoning. At the same time, optical systems present many

drawbacks in terms of cost and usability. While there are studies attempting to make

optical technologies usable outdoors, optical sensors are likely to be confined to

specific recording environments that present ideal optical lighting conditions. Optical

systems have presented a large number of application areas in research-related fields.

Exoskeleton systems currently play a very small role in the field of research. While

cost is an advantage, accuracy, fragility and the cumbersome nature of the hardware

remain major problems. The question then arises: why wear prosthetic hardware when

inertial suits achieve the same task more accurately? While cost is a factor, it is worth

mentioning that modern MEMS are decreasing in price while improving in

performance.

	

	

33

Inertial systems provide a balance between benefits and drawbacks. Suits are highly

portable and usable indoors, outdoors and in confined spaces. While accuracy can be

problematic, modern MEMS sensors are sufficiently accurate for a wide range of

application areas. Sensor-related problems such as drift and noise are being resolved

through better hardware, firmware and software.

2.5 Inertial Measurement Units
The smallest and most important element of an inertial motion capture system is the

inertial measurement unit (IMU). As the name would imply, IMUs are sensors

designed to measure rotational or gravitational motion. IMUs generally contain a

gyroscope, accelerometer and magnetometer.

An IMU is a device encapsulating one or several sensors along with a small

processing unit. For example, InvenSense sells a nine-axis sensor entitled MPU9150

[109] containing a gyroscope, an accelerometer and a magnetometer. IMUs

(particularly those designed to be used in research) will generally contain an

additional communication mechanism (e.g. a Bluetooth emitter, USB connector, etc.).

Modern IMUs contain on-board processing units that run digital filters and sensor

fusion algorithms to improve accuracy and provide developers with a usable output.

Aside from motion capture, IMUs have been used to in aeroplanes, space rockets and

military missiles for the past decades. More specifically, the technology found in

IMUs today was derived from those application areas. With hardware miniaturization,

IMUs have become ubiquitous in many devices such as smartphones or tablets.

But why do IMUs require specifically a gyroscope, accelerometer and magnetometer?

The gyroscope cannot measure rotations accurately by itself due to drift and other

inaccuracies because it does not have a reference point. A gyroscope produces

positive rotations even when motionless. Accelerometers and magnetometers are used

as reference points by the gyroscope. More specifically, the accelerometer measures

the gravitational force (vertical axis) while the magnetometer measures geographical

north (horizontal axis). The third axis can be computed from the two to give the

gyroscope an orthogonal reference point. This process is referred to as sensor fusion

and is further discussed in Section 2.5.3.

	

	

34

2.5.1 Gyroscope

The gyroscope is the core component of any inertial motion capture system.

Gyroscopes are used to measure the orientation of the device on which they are

mounted. Depending on whether the chip contains an inbuilt processor, orientation

data can be expressed as angular speeds, rotations or even quaternions. There are two

types of gyroscopes that are popular: micro-electro-mechanical sensors (MEMS) and

piezoelectric. Consumer devices such as smartphones contain MEMS gyroscopes that

are ubiquitous and very robust. These microchips are becoming increasingly more

accurate while their cost is decreasing. Consumer-level MEMS chips are now

sufficiently accurate for inertial motion capture applications (e.g. measuring the

biomechanical data of the human body). “MEMS Vibratory Gyroscopes: Structural

Approaches to Improve Robustness” [110] provides a good introduction to the history

of gyroscopes and how they function. “Practical MEMS: Analysis and Design of

Microsystems” [111] provides an overview of MEMS gyroscopes and other sensors

by looking at examples of existing hardware architectures.

2.5.2 Sensor Attributes

The following list summarises the key attributes of an IMU that can be used to

measure performance. There is no standardized way of expressing how good a motion

sensor is as manufacturers advertise their sensor products in dissimilar ways.

• Number of Sensing Axis: Gyros can be single, double or tri-axial measuring

angles in one, two or three axis. Fundamentally, tri-axial sensors use the

components of three single-axis sensors oriented orthogonal to one another.

Modern inertial motion capture generally uses tri-axial MEMS sensors.

• Full Scale Range: The range of a sensor, measured in degrees per second,

specifies the maximum angular change that can be sensed in a set time

interval.

• Sensitivity: Sensitivity, measured in least significant bit (LSB) per degree per

second, specifies how small a movement can be for the sensor to detect. It is

calculated by looking at how the LSB oscillates for a one-degree rotation in

one second. For example, if a gyroscope rotates one degree in one second, the

last bit of the angular reading that is modified is indicative of sensitivity.

	

	

35

• Bandwidth: Bandwidth, measured in hertz, is the maximum frequency of

readings that can be made per second. A sensor is generally more accurate if it

produces data more frequently.

• Shock Tolerance: All sensors contain moving parts that may be subject to

breaking. Consumer-level devices can be damaged if dropped and require

replacement. Shock tolerance is a measure of durability. In military and

aviation applications, sensory devices must function correctly while enduring

large gravitational forces. With advances in MEMS technologies, most

modern consumer-level digital sensors are robust and can withstand very large

shocks.

• Calibration: Calibration is the process of compensating a sensor’s output to

reflect an accurate reading of the motion. For example, a gyroscope’s output

may detect 91 degrees of motion when rotated only 90 degrees. The 1 degree

difference needs to be detected and accounted for at the firmware level. Even

though sensors may require recalibration after extensive use or if damaged,

calibration has become uncommon in modern consumer-level electronics as,

components are less expensive to replace than to calibrate.

• Drift: Drift, also known as Angular Random Walk (ARW), is a sum of

gyroscope inaccuracies over longer periods of time and is a measured in

degrees per hour. When a gyroscope is held motionless, its rotation gradually

changes without actual movement. For this reason, IMUs contain additional

accelerometers and magnetometers to correct noise.

• Noise: Noise is characterised by random fluctuations within a sensor’s data.

Sensors produce minute highpoints and depressions that oscillate above and

below the real values. Noise can be corrected through filters or damping

algorithms. Without filters, accelerometers and magnetometers produce a large

amount of noise.

• Bias Error: Similar to drifting, the bias error is the distortion of outputs over a

period of time. The bias error is semi-predictable as the sensor is tested against

different internal and external factors. For example, the sensor heating up to its

	

	

36

functioning temperature upon start-up is a factor. These factors must be

understood and accounted for by defining an offset value.

• Size: The size of the sensor is critical in practical applications. A smaller

sensor is likely to consume less power and produce less heat than a larger

sensor. While smaller sensors are generally more desirable, they are more

difficult to solder onto circuit boards manually, which makes the prototyping

of electronics difficult for the average user.

• Power Consumption: To maximize battery life, wireless devices require low-

power sensors. For example, low-power accelerometers can be found in

commercial pedometers.

• Output Formats: Because sensors contain inbuilt processing units, they can

produce data various formats. For example, a gyroscope may outputs data as

angular speeds, angular rotations or even quaternions.

• Sensor Fusion and Filters: Sensor fusion and filters are features that enhance

performance. A small processing unit must be placed within the sensor to

process sensor fusion algorithms and filters. Because of this, modern sensors

are more accurate, reliable and noise-free.

2.5.3 Sensor Fusion

Performance in motion capture is defined by accuracy: a measure of how close the

recorded motion reading is to the actual motion. Accuracy can be expressed in two

ways: reproducibility and reliability. Reproducibility is a measure of how close a

recorded motion is to its true value while reliability is a measure of consistency over

lengthier periods of time. Considering that IMUs are required to read motion correctly

and dependably for extended periods of time, sensor fusion becomes key in

maximizing performance in new motion capture systems.

Sensor fusion is the process of combining multiple data sets to conclude a more

accurate reading of motion. By fusing the data of an IMU containing three separate

sensors, it is possible to conclude readings that are superior to those produced by each

sensor individually. Generally, sensor fusion algorithms are mathematical solutions

	

	

37

that focus on improving two key properties: signal noise and drift. Sensor fusion can

be described as being either heterogeneous or homogenous.

In homogenous sensor fusion, an IMU will contain several identical sensors that are

implemented to work in parallel to produce enhanced motion readings. For example

Gyro-Free Inertial Navigation System (GFINS) [112] is a sensor unit that implements

six accelerometers to work congruently. The result is the averaged output of all the

devices. Another example is EcoIMU [113] an IMU that integrates two

accelerometers in a similar fashion.

In heterogeneous sensor fusion, an IMU will contain different sensors where each

sensor has a distinct purpose. It is a complementary solution whereby each sensor has

a unique strength that can be used to reduce another sensor’s limitation. As previously

mentioned, a typical IMU will contain a gyroscope, an accelerometer and a

magnetometer. The gyroscope’s strength is its ability to sense noise-free motion at

high frequencies. The accelerometer and magnetometer’s strength is to produce drift-

free data, which can be used as a reference. Consequently, the gyroscope’s noise-free

data can be compensated with the accelerometer and magnetometer data to reduce

drift.

2.5.4 Kalman Filter

The most popular algorithm for sensor fusion is the Kalman filter, a mathematical

solution for reducing random variations in motion. The Kalman filter gathers

inaccurate data from multiple sensors and produces a reading that is closer to the real

motion. “Introduction to Random Signals and Applied Kalman Filtering” [114]

provides an insight into the random process theory and introduces the Kalman filter

with a strong emphasis on its applications and implementation. To put the Kalman

filter into the context of inertial motion capture, [115] provides an example of a

design and implementation of a Kalman filter that uses quaternion mathematics.

	

	

38

2.6 Body Sensor Networks
Body sensor networks (BSN) are constellations of sensing devices that measure key

properties of the human body [107] [116]. In the context of motion capture, BSNs use

IMUs containing gyroscope, accelerometer and magnetometer sensors. “Body Sensor

Networks” [117] provides an overview of sensor networks with emphasis on advances

in wireless systems and discussions on application areas in the field of medical

science.

The human body can be represented as a hierarchy of skeletal segments where each

segment corresponds to a bone in the body. Depending on age, the human body has

between 200 and 300 bones that fuse with age. In computer graphics, the skeleton can

be represented, in a more simplistic manner, as a kinematic model. A typical BSN

will use as much as 20 IMUs placed strategically on each major body part. For

example, the Animazoo IGS 180 uses 18 IMUs placed on the limbs, hands feet, torso,

neck and head.

Smaller IMUs can be sown into clothing while heavier IMUs may be worn using

elastic straps. While moving, sensors will slide in relation to the skin and cause

inaccuracies. At the same time, wearing IMUs that are strapped tightly will constrict

movement. Weight is also an important factor as a heavy IMU will move more in

relation to the body than light IMU. The problem area concerned with the physical act

of wearing IMUs can be referred to as sensor distance noise [118] and represents a

major source of inaccuracies for inertial motion capture systems.

Although inertial motion capture suits are a relatively new development, the

fundamental concepts behind BSNs have been exploited in other application areas

outside the context of human motion. For example, hospitals use sensor networks to

monitor the physical properties of patients (e.g. pulse, heart rate, blood pressure,

blood oxygenation, etc.). The act of measuring subtle movements can provide

important information about a patient’s condition. Mercury [119] is an inertial BSN

used to supervise patients with severe cases of epilepsy or Parkinson’s disease. This

system consists of eight IMUs placed on the body whereby each sensor can be worn

on the arm, forearm, calve or shin. The sensors are connected wirelessly to a laptop

computer to avoid problems caused by cables interfering with the patient’s natural

motor functions.

	

	

39

To further understand the concept of BSNs, the following sections discuss four key

properties: networking, homogenous/heterogeneous BSNs, directionality, modularity

and computational centricity. These concepts are further discussed in Chapter 3 and

Chapter 4 by creating a dedicated motion capture software environment for extracting

data from sensors.

2.6.1 Networking

Networking is concerned with gathering data from the IMUs and merging the result to

produce a complete recording of the body. Networking involves establishing

connections, interrogating and synchronizing the data produced by each device. There

are two types of sensor networks: wired [107] and wireless BSNs (wireless BSNs are

commonly referred to as wireless body area networks (WBAN) [120]). Wired BSN

have fewer power usage constraints while WBANs are more practical. Data is

sampled from each network node at specific time intervals. Once all the IMUs are

interrogated, synchronization algorithms are applied to merge the data and produce a

complete recording of the body’s motion.

2.6.2 Heterogeneous and Homogenous BSNs

BSNs can be heterogeneous or homogenous depending on the variety of sensor used.

Most inertial motion capture systems are homogenous and use an array of identical

sensors. For example, the ETH Zurich Sensor Hardware system [118], which is based

on the Smart-its platform [121], extracts data from 48 accelerometers that can be

placed on the body using straps. Similarly, the Lancaster Multi-Accelerometer

Platform [118] [122] embeds 30 accelerometers in a pair of trousers and a lab coat.

2.6.3 Directionality

Directionality represents the flow of data throughout BSNs and it can be directional or

omnidirectional. Most inertial motion capture systems are directional whereby the

communication with the nodes is the process of extracting data. Aside from basic

commands, no motion data is sent to the IMUs. However, a sensor may benefit from

knowing what its surrounding nodes are measuring. This concept is further evaluated

in Chapter 5 by creating an omnidirectional smartphone-driven BSN. Figure 2-7

illustrates an omnidirectional upper body sensor network with 8 IMUs. The IMUs are

daisy chained to a multiplexer as the data is gathered from each node.

	

	

40

Figure 2-7: Omnidirectional body sensor network.

2.6.4 Computational Centricity

A BSN can be classified as being hardware or software-centric depending on whether

motion processing is achieved at the hardware or software level. Typically, an IMU is

software-centric if it outputs raw unfiltered data in the form of angular speeds.

Software is then used to compute rotations, apply sensor fusion algorithms and filters.

A hardware-centric IMU will contain in-built microcontrollers that are abled to

achieve these computations within the hardware.

Depending on application areas, there are advantages and disadvantages to each

approach. It is much more convenient for researchers willing to integrate sensors

within their software to have hardware that can compute motion. Hardware that

computes motion requires more powerful processing units, which in turn affect power

consumption, size and cost.

Hardware-centricity is becoming a key requirement for new inertial motion capture

systems with the aim of making hardware more autonomous. It is more efficient to

distribute the workload between a suit’s microcontrollers than to send it to a

computer. This concept is further discussed in Chapter 5 through the design and

implementation of an omnidirectional smartphone-driven BSN.

	

	

41

2.7 Kinematic Motion Reconstruction
This section introduces the theory behind rotational models, kinematic models,

collision detection and dead reckoning. These stages of computation take place at the

software level once all the data has been gathered from the BSN.

2.7.1 Rotational Models

There are multiple methods for computing and storing the rotations produced by

IMUs. A rotational model describes a mathematical representation of rotations that, in

the context of inertial motion capture, can be used to express a kinematic model.

There are multiple rotation models: Euler, quaternion, rotation matrices, Rodrigues

and invariant representations using rotation tensors. The two rotational models most

often found in computer graphics are Euler rotations and quaternions. Inertial motion

capture software applications use a combination of both models. These models, their

mathematical operations and conversion equations are further discussed by [123].

The Euler model represents transformations as an ordered sequence of three rotations

corresponding to the rotational yaw, pitch and roll. The Euler model is the only

intuitive solution for representing rotations. For example, plotting Euler rotations on a

graph provides an interpretable visualisation of the motion. However, this model

becomes problematic because of gimbal lock. Representing a rotation within a three-

dimensional gimbal can simulate this problem. Gimbal lock occurs when one degree

of freedom is lost as two of the three discs become parallel, thus restricting the system

to a two-dimensional configuration.

A simpler solution to the gimbal lock problem is quaternion algebra. A quaternion is a

set of four values within four-dimensional (4D) vector space consisting of a real

number and three imaginary values. Quaternions are generally used in computer

graphics to rotate 3D objects in space and produce animations. Two quaternion

rotations can be summed through quaternion multiplication, which is

noncommutative. Quaternion multiplication has many benefits in terms of

performance as it can be broken down into mathematical multiplications, additions

and subtractions. Those simple operations are significantly faster to process by

computers than trigonometry (which is required for the Euler model). The theory

behind quaternions is further discussed in Appendix A.

	

	

42

2.7.2 Kinematic Models

Once all rotational data is gathered from an inertial motion capture system, a

kinematic model is used to reconstruct a virtual representation of the performer. The

kinematic model can be used to create 3D visualisations of the motion. As shown in

Figure 2-8, kinematic models are skeletal hierarchies containing rotational and

positional constraints.

Figure 2-8: Position and rotation constraints in kinematic models.

Kinematic models are used to visualise the movement of a motion performer as an

articulated skeleton. That skeleton can be assigned to animate a virtual character.

Aside from visualisations, kinematic models are also important in the context of dead

reckoning (see Section 2.7.4). Figure 2-9 illustrates a rendered kinematic model

performing three gestures: walking, dragging feet and kneeling.

Figure 2-9: Kinematic models playing back motion. Source: Pascu et al. [18]

	

	

43

2.7.3 Collision Detection

Collision detection, sometimes referred to as collision avoidance, is the problem of

computing the intersection between two or more objects. Collision detection is used in

motion capture kinematics to compute an estimation of horizontal displacement. This

process is also referred to as dead reckoning and is further explained in the next

section. For inertial motion capture systems, collision detection is used to create a

realistic simulation of foot placements.

In reality, the human foot endures complex musculoskeletal deformations.

Considering that most motion capture suits only use one sensor per foot, those

deformations are too intricate to record. Basic implementations of collision detection

in video games and animation can increase the believability of the virtual character.

When walking, collision detection can cause foot-skating whereby the foot moves

when parallel to the ground. The concept of foot-planting [124], which describes feet

stationary when balancing a character’s weight, could solve this problem. When the

foot is planted it experiences a floor constraint. When the foot is lifted, its position

and rotation must be interpolated between its planted state and its unconstrained state.

Behavioural studies, particularly those concerned with posture, balance and

coordination require elaborate kinematics where collision detection is used to simulate

pivotal constraints between bones. Anatomy-accurate musculoskeletal systems

implementing advanced collision detection methods [125] may prove beneficial to the

field of biomechanics. A more accurate and realistic musculoskeletal system can be

achieved through by creating a kinematic model that utilizes advanced joint

interactions [126].

2.7.4 Dead Reckoning

Inertial motion capture systems contain no inherent sensors that measure horizontal

displacement. As a result, walking algorithms must be applied to the kinematic model

to compute an approximation of horizontal displacement. For example, taking a step

forward will propel the kinematic model in the direction of travel. Also referred to as

spatial positioning, dead reckoning is the process of computing horizontal

displacement for longer periods of time. For example, taking a set of steps will

translate the kinematic model in space by a certain amount. Dead reckoning

algorithms can be used to calculate that amount during processing or post-processing

	

	

44

stages of motion processing. Additionally, peripheral hardware can be used to create a

more accurate estimation of horizontal displacement.

Dead reckoning data can be added to the recording manually using animation

software. However, translating the kinematic model manually is a time-consuming

task that will produce inaccuracies. Physics engines, such as those found in game

engines, can be used to add physical properties to the kinematic model to synthesize

horizontal displacement. However, physics engines are computationally expensive

during real-time motion capture.

A popular approach for determining horizontal displacement is the lowest-point

algorithm [127]. This computationally inexpensive algorithm produces a rough

approximation of the distance travelled by selecting the lowest kinematic segment and

applying planar collision detection.

Figure 2-9 illustrates the functionality of the lowest-point algorithm as a sequence of

kinematic computations. The supporting limb of the kinematic model is often referred

to as an anchor point because the entire skeleton moves in relation to that point due to

positional and rotational constraints. With each step taken, the anchor swaps between

feet. As the anchor moves in space, the skeleton is propelled forward.

Figure 2-10: Lowest-point algorithm. Source: [127]

If the skeleton is calibrated accurately, this algorithm will produce reasonable

horizontal displacement. However, the human body is much more complicated than a

kinematic skeleton. Representing the human body as simple kinematic pivots will lead

to inaccuracies.

The lowest-point algorithm only works when the test subject is taking clear steps

where the detachment from the ground of each foot is detectable. More specifically,

	

	

45

the algorithm is likely to miscalculate which kinematic joint is the correct anchor if

the person is dragging their feet.

Dead reckoning may be achieved using peripheral sensors. The most common two

types of peripheral sensors are ultrasonic sensors and video cameras. The act of

integrating additional sensors, which are not motion sensors, in a BSN can be referred

to as hybrid motion capture. While hybrid motion capture is highly accurate, there are

many disadvantages, which limit the systems in terms of practicality and versatility. A

BSN that uses peripheral sensors is no longer portable and requires a designated

recording studio. In the case of ultrasonic sensors, outdoor recordings are problematic

due to noise interference (e.g. from the wind).

2.8 Motion Capture File Formats
As previously mentioned, animation is the most thriving sector of the motion capture

industry consisting predominantly of filmmakers and game developers. This

prosperous industry drives motion capture technologies forward by establishing new

recording studios. As the industry expands, more studios are focusing on creating new

methodologies for storing, transferring and trading motion capture data. Those

methodologies are not yet standardised causing cross-compatibility issues between

systems and software environments. “Working With Motion Capture File Formats”

[128], [129] and [130] provide overviews of what motion capture data is and what file

formats are used to contain it.

“…motion capture has a significant weakness due to the lack of an industry-

wide standard for archiving and exchanging motion capture data. It is difficult

for animators to reuse and exchange motion capture data with each other.”

[131]

Motion Capture Markup Language (MCML) [131] is a proposed framework that aims

to solve the data compatibility problem by homogenizing numerous file formats.

MCML is built using the eXtensible Markup Language (XML) and aims to simplify

file format conversions. Additionally, this framework introduces the concept of a

motion database to organize and manage numerous recordings. There is a general

need for an industry-wide standard for storing motion capture data. This thesis

	

	

46

proposes that web technologies could be used to removing the need for local file

storage altogether by storing motion capture data in online databases.

All motion capture systems output similar data consisting of either angular rotations

or positional coordinates. The following terms are frequently used when describing

motion capture file formats:

• Bones and Joints: The building block of a 3D skeleton representing a segment

corresponding to a limb section. For inertial systems, bones represent body-

mounted sensors having an origin, a length and an orientation.

• Skeleton and Skeletal Hierarchy: The bone topology defining the shape or

arrangement through which a motion-captured character is defined in virtual

space. A topology will depend on what system is used and how many sensors

are interrogated to gather data. A skeletal hierarchy relies on bone

dependencies to interlink its constituent segments.

• Motion Frame: A snapshot recording of the performer’s posture.

• Channel: Data structure storing the stream of angular readings for one sensor.

Most motion capture file formats store both angular readings and kinematic

definitions in the same file. The three most popular file formats are: Biovision

Hierarchy (BVH), Biovision (BVA), Acclaim Motion Capture (AMC) and Acclaim

Skeleton Format (ASF). These formats are further discussed in the context of software

compatibility. The biggest problem with these formats is that they contain no motion

capture system specific data (e.g. information how the system was configured to

produce the data). In essence, these formats represent different methods for

expressing character motion with disregard for the recording technology.

2.8.1 BVH Format

BVH is an easy-to-parse ASCII format that stores motion capture angular readings

and positional offsets. BVH appears to be the most popular motion capture file format

in animation packages. For that reason, it is implemented in the software environment

proposed by this thesis. Additionally, it is the only format that includes a skeletal

hierarchy template and motion data within the same file. The syntax is divided

between the file’s header and body.

	

	

47

2.8.2 BVA Format

The BVA file format stores angular readings and positional offsets within segment

definitions. Unlike BVH, BVA does not support hierarchy definitions making it

impractical for certain applications. BVA can only be used in scenarios where the

software environment has a preconfigured kinematic model. In an ideal scenario, the

user should be able to decide which kinematic model to use and to specify what

system is being used to record motion. As proposed by this thesis, these configuration

attributes could be specified in a more comprehensive file format.

2.8.3 AMC/ASF Format

The AMC/ASF file format is widely supported by applications and considered to be

the most comprehensive. It contains both skeleton hierarchy information and motion

capture data within two file types: Acclaim Skeleton Format (ASF) and Acclaim

Motion Capture (AMC). ASF stores the skeletal definition while AMC stores the

motion capture data. In summary, Acclaim has developed a very complete motion

capture file format that serves the task of storing both motion capture data and skeletal

information very well. Although the Acclaim format is widely used, it is not the most

concise or easy-to-parse solution of the three presented. Its functionality is very

similar to that of a BVH file yet the syntax is more complicated.

2.9 Supporting Software
This section examines the compatibility between motion capture systems and software

applications. Inertial motion capture systems are regarded as new technologies and

therefore have little support from popular computer software applications. Because

there are no bespoke software applications for extracting data from sensor devices,

software support can only be analysed in terms of what motion capture file formats

are supported by which software application. Because character animation is regarded

(by the industry) as the main application areas for inertial motion capture, the main

software applications that support the aforementioned file formats are tools for

animation. This raises the question: can animation software be used to evaluate

motion recordings for other application areas such as gait analysis or medical science?

In many scenarios, animation software provides tools for visualisation, kinematic

models and other features that are important to motion capture. However, it is difficult

	

	

48

to repurpose animation software for experimental research. The following list of

software is compatible with motion capture file formats. However, it highlights a need

for research-oriented inertial motion capture software environments.

2.9.1 Autodesk 3ds Max

3ds Max [132] is the industry standard for modelling, rendering and animation. It

provides users with a vast array of tools for mesh sculpting, texturing and animating

3D models. Its latest iterations feature Character Studio, a plugin facilitating more

advanced character animations. Character Studio can be used to animate mesh

geometries through custom bone rigs. However, the user is forced to implement a

prefabricated skeletal armature called biped when working with motion capture data.

The highly customisable biped is the quickest technique for visualising BVH motion

data.

2.9.2 MotionBuilder

MotionBuilder [133] the most advanced 3D animation software application available

commercially and provides full support for motion capture file formats such as BVH,

BVA and ASF/AMC. Interoperability with other software environments is achievable

through native FBX support. MotionBuilder’s SDK can be used to develop plugins

that extract data from inertial motion capture suits. In the context of inertial motion

capture, MotionBuilder’s physics engine can be used to simulate horizontal

displacement by applying gravitational forces and collision detection to skeletons.

Even though MotionBuilder does provide an SDK, it is difficult or impossible to

modify any fundamental aspects of this software application (e.g. the kinematics).

2.9.3 Maya

Maya [134] is a very popular software environment for modelling, rendering and

animation. Its application areas target the filmmaking and game development.

Natively, Maya does not support any motion capture formats. However, the

BVHImportExport [135] plugin can be installed to provide compatibility for BVH

files formats. Additionally, it is possible to load ASF/AMC files into Maya by first

altering the motion data using the AMC2MOV and ASF2MEL converters [136]. To

summarise, it is possible but difficult to use Maya for visualising motion capture data.

	

	

49

2.9.4 Blender

Blender [137] is an open source modelling, rendering and animation suite developed

by the Blender foundation. A large community of professionals and enthusiasts

support Blender by developing plugins. Blender’s character animation tools support

bone rigging and key frame animation. This software application does contain BVH

importer can be used to map motion capture data to skeletons. Blender’s gaming

engine shows potential for real-time motion capture applications.

2.9.5 Other Software Applications

There are several smaller and less known applications aimed at motion capture

animation. Life Forms Studio [138] and Poser [139] are two character animation

packages that support BVH and other motion capture file formats. Carrara [140] is a

cost-effective software environment developed by Daz3D. Its latest iterations provide

functionality for importing, editing and exporting BVH files.

2.9.6 Comparative Evaluation of Software Applications

This section summarises the benefits of using each of the aforementioned software

applications by creating a summary of the advantages and limitations of each solution.

This study identifies BVH as being the most popular file format and outlines two

fundamental problems. First, there are no software applications designed primarily for

motion capture. Second, there are no software applications that facilitate experimental

research in the field of inertial motion capture and BSNs. Table 2-2 illustrates a

comparison of the software applications and summarises three key aspects:

advantages that are relevant to motion capture, supported file formats and how

hardware integration is possible.

	

	

50

Table 2-2: Comparison of software applications in the context of motion capture.

Software Advantages File Formats Hardware Integration

3ds Max - kinematic character rigs
- animation tools
- biped primitive
- popularity

- BVH - through plugins

MotionBuilder - kinematic character rigs
- powerful animation tools
- physics engine
- good file format support
- popularity

- BVH
- BVA
- ASF
- AMC

- using the SDK
- through plugins

Maya - kinematic character rigs
- animation tools
- popularity

- BVH - through plugins

Blender - kinematic character rigs
- animation tools
- open source
- free
- community-driven

- BVH - through plugins
- source code

Carrara - kinematic character rigs
- animation tools

- BVH - N/A

Life Forms
Studio

- kinematic character rigs
- animation tools
- good file format support
- aimed at motion capture

- HTR
- BVA
- BVH
- LWS
- DXF
- ACC

- N/A

Poser - kinematic character rigs
- animation tools
- good file format support
- aimed at motion capture

- BVH
- PZ2

- N/A

2.10 Conclusions
This chapter has introduced and examined motion capture as the topic of research for

this thesis by looking at application areas, hardware technologies, inertial BSNs,

inertial sensors, the principles behind kinematics, motion capture file formats and

software. A set of problem areas is concluded as the result of this literature survey.

This chapter begins by defining the concept of motion capture as the process of using

sensors and software to reconstruct a virtual representation of real-life movement.

While the principles behind motion capture are not new, the ability to design and

implement motion capture systems is only recently possible due to the miniaturisation

of MEMS and the availability of superior computational resources. Motion capture is

chosen as the primary topic of research because it is relevant to a wide range of

	

	

51

application areas while it proves problematic and challenging in many aspects,

particularly in terms of usability. A better motion capture workflow could simplify the

interaction between users and their system to make inertial BSNs more ubiquitous.

This chapter continues to analyse what motion capture is used for by identifying

research projects, as found in literature, and grouping them into application areas. The

five main application areas are identified as being: animation, real-time motion

capture, medical science, gait analysis, ergonomics and robotics. However, the lines

between these application areas are blurred. For example, gait analysis may be

considered a medical science or sport science application. Some application areas are

result-driven while others are accuracy-driven. A medical science experiment will

demand accuracy while video games may require a visually interesting animation.

Once application areas are identified, this chapter discusses hardware technologies

and their impact on the field of research by looking at major industry contributors and

what systems are available commercially. While there are many approaches for

capturing motion, there are only three main technologies: optical (e.g. Vicon,

Optotrak, Microsoft Kinect), inertial (e.g. XSens, Animazoo), mechanical systems

(e.g. eMove, Gypsy 7). Optical, mechanical and inertial motion capture technologies

present strengths and weaknesses. Motion capture hardware development is a result-

driven process where systems are tailored to specific application areas. Optical

systems require expensive recording studios and limit the motion recording process to

specific environments due to occlusion and lighting problems. Despite technological

advances that have reduced the cost of sensors, inertial motion capture systems

remain expensive. Mechanical systems are cumbersome and lack the accuracy

required for specific tasks. This chapter concludes a comparative evaluation of all

motion capture systems and mediums in terms of advantages, disadvantages,

application areas and cost. Based on these factors, inertial motion capture is chosen as

the primary research topic for this thesis.

The first step in understanding inertial technologies is to understand how IMUs

function. Emphasis is put on the three constituent sensors contained in an IMU,

namely the gyroscope, accelerometer and magnetometer. The chapter continues to

discuss what attributes describe the performance of a sensor in terms of: number of

sensing axis, full scale range, sensitivity, bandwidth, shock tolerance, drift, noise,

	

	

52

size, power consumption and output formats. Sensor fusion is discussed to create an

understanding of how data originating from three different sensors can be merged to

produce a more accurate reading.

Having defined the fundamentals of IMUs, this chapter discusses how several devices

can be interconnected to form a BSN. In the context of inertial motion capture, BSNs

are synonymous with animation suits. BSNs can be defined as being directional or

omnidirectional, homogenous or heterogeneous, software or hardware-centric. Each

type of BSN has distinct advantages and disadvantages.

Once data is obtained from hardware, kinematic models are required to reconstruct

the motion in 3D. The concept of a kinematic model is introduced as a skeletal rig

used to mimic the original motion in virtual space. For inertial motion capture

systems, kinematic models are vital in computing dead reckoning. Because inertial

systems contain no sensors that are dedicated to measure horizontal displacement,

kinematic modes are required to synthesize an approximation of dead reckoning

through planar collision detection and foot placement estimation.

This chapter finishes with an overview of motion capture software applications and

file formats to create an understanding of how sensor hardware can be used in

conjunction with a computer. As demonstrated by the comparative evaluation, inertial

motion capture systems are regarded as new technologies and have little support from

computer software applications. The software applications that do support motion

capture are primarily designed for animation purposes and provide little to no

functionality for integrating and researching hardware. Therefore, it is up to hardware

developers to create software environments or plugins. For that reason, there is no

standardised workflow for utilising inertial motion capture systems. Consequently,

this thesis proposes a new workflow through a novel inertial motion capture

framework.

2.10.1 Problem Areas

Aside from introducing the principles behind motion capture, the main purpose of this

chapter has been to identify general research trends and problem areas that will

benefit from further research and development. This section discusses three specific

problems are that were influential in concluding this thesis’ problem statement (see

	

	

53

Section 1.2). This list of problems is extended with further research found throughout

this thesis.

Software Environments

The development of motion capture systems requires a software environment. Motion

capture data is unusable unless processed and applied to a kinematic model.

Researchers are producing prototype software applications that are tailored to their

experiments, which is a time-consuming process. Each system works in a slightly

different manner and there are no standards for developing BSNs. A research-grade

motion capture software environment, implementing kinematics and providing tools

for system integration, could be used as a baseline for establishing an effective and

more standardised workflow. As previously discussed, there are no existing software

environments aimed specifically at motion capture. The only solutions that exist are

animation software packages, which provide tools for visualisation, kinematic models

and other features that are important to motion capture. However, motion capture is

complex it is difficult to repurpose animation software for motion capture purposes

(such as experimental research).

Body Sensor Networks

Inertial motion capture systems are primarily software-centric whereby data is

gathered from the sensors at high frame rates and communicated to the computer

frequently. This is because data cleaning and sensor fusion algorithms compress

larger amounts of data to produce accurate animations. As a result, inertial motion

capture suits are overcomplicated, fragile and cumbersome. By making suits more

hardware-centric, it is possible to simplify hardware and produce more robust,

versatile and modular systems. This concept is further discussed and demonstrated in

Chapter 4 by the Motion Tracking Development System (MTDS) prototype.

File Formats and Standards

Motion data can be stored, transferred and accessed through several file formats. A

study presented in this chapter revealed that motion capture file formats are mainly

supported by animation software applications. Other application areas will render

these formats incomplete and inefficient. As demonstrated in the next chapters, an

extended version of BVH, or another format, could standardise motion capture file

formats if extended to meet the requirements of a modern motion capture system. This

	

	

54

thesis also proposes that web technologies could be used to store and process motion

data, thus making file formats redundant by replacing local data storage with online

data storage.

Dead Reckoning

Inertial motion capture’s main downfall is dead reckoning, a popular research topic

focused on foot placement estimation. Unlike optical motion tracking devices, inertial

suits do not have the ability to measure the performer’s exact position within the

environment. Several solutions, such as the lowest-point algorithm, produce a rough

estimation of the user’s world-space location. That location is not sufficiently accurate

because of calibration errors and anchor selection problems. The lowest-point

algorithm could benefit from the further computations involving the physical

properties of the motion performer. This problem led to the development of the

lowest-anchor centre of mass algorithm (LACOMA) presented in Chapter 3.

	

	

55

CHAPTER THREE

3 Inertial Motion Capture Software

Environments

3.1 Introduction
The preceding chapter has introduced motion capture, analysed several technologies

while focusing on inertial sensing and discussed many application areas. The

preceding chapter has highlighted the importance of this research topic while

revealing problem areas and limitations. The reason behind its recent advances is the

affluent computer graphics industry that relies on time-efficient and cost-effective

techniques for achieving realistic character animations. Inertial motion capture trails

behind its optical rival and presents few standardisations in terms of usability

workflows and file formats. While there are numerous tools for animation editing,

there are no bespoke software solutions that provide suitable experimentation

environments for motion capture research. For this reason, researchers are wasting

time repurposing animation frameworks for use in behavioural studies.

This chapter presents the Skeletrix software environment, which is designed to

encourage new projects in the field of inertial motion capture by providing users with

a platform for developing body sensor networks (BSN). Its first purpose is to provide

a suitable experimentation environment, accompanied by programming scaffolding

and a driver development kit, for users interested in studying or engineering inertial

measurement units (IMU) that enclose gyroscopes, accelerometers and

magnetometers. Its second purpose is to support the research showcased in the

following chapters. Notably, this software environment solution is not presented as a

motion-editing tool for character animation and does not replicate the core

functionality found in other software.

The term software environment is often considered ambiguous and coincides with the

term framework. This thesis refers to inertial motion capture, as a whole, as a

framework. To operate, motion capture frameworks require the development of

electronics, microcontroller firmware and software environments. The software

	

	

56

environment element denotes a multifaceted sequence of procedures for gathering,

refining, visualising and storing motion data. As shown in Figure 3-1, each procedure

envelops a wide range of computer science domains ranging from interactive

visualisation techniques to data intercommunication protocols.

Figure 3-1: A high-level representation of motion capture frameworks with emphasis on the

software environment aspect and its technologies.

This chapter presents the development lifecycle of the Skeletrix software environment

with emphasis on three unique aspects: DDK, LACOMA and BVHE.

The driver development kit (DDK) is developed to improve the communication

mechanism between software applications and hardware through a modular approach

that can be customized to suit the needs of any inertial motion capture system. The

DDK is then used in the following chapter, Chapter 4, to integrate and develop new

hardware within the framework.

In response to the file format standardisation problem, this chapter introduces

Biovision Hierarchy Extended (BVHE), a new file format combining hardware

configuration properties with inertial data, thus improving the relationship between

software and hardware.

Dead reckoning remains a major limitation for inertial motion capture systems. This

chapter proposes the lowest-anchor centre of mass algorithm (LACOMA) Pascu et al.

[18], which utilizes the musculoskeletal centre of the human body to compute the

FIRMWARE	

ENVIRONMENT	

HARDWARE	

ENVIRONMENT	

Calibration	

Data	
 I/O	

User	
 Profiling	

Dead	

Reckoning	

Kinematics	

Visualisations	

SOFTWARE	

ENVIRONMENT	

Driver	

Data	
 Acquisition	
 From	
 Hardware	

Intercommunication	

Protocols	

	

	

57

support foot during gait more accurately. The proposed solution is based on the

principles of the lowest-point algorithm [127].

3.2 Framework Relevance

The software environment presented in this chapter is a major component of the

Skeletrix framework, which provides a preliminary understanding of inertial motion

capture in terms of extracting data from hardware, processing motion, reconstructing

kinematic motion and rendering 3D visualisations. The Skeletrix software

environment facilitates the integration of existing BSNs that are available

commercially and the development of new BSNs. For example, the software

environment was used to develop the Motion Tracking Development System (MTDS)

prototype, an upper body motion capture suit presented in Chapter 4. Its source code

was also used as a starting point for the smartphone-driven BSN presented in Chapter

5. Figure 3-2 highlights the software environment’s position within the framework as

a software layer between inertial hardware and the Motion Cloud, which is presented

in Chapter 6.

Figure 3-2: The Skeletrix software environment provides an invaluable set of tools for

extracting inertial data, constructing BSNs and is an important component of the

Skeletrix framework. Source: Pascu et. [15] [16]

	

	

58

3.3 Preliminary Requirements Specification
The development of the Skeletrix software environment combines a wide range of

software development domains that require careful planning.

3.3.1 System Requirements

The first step, which precedes any design phase, involves identifying all the relevant

software development paradigms. The methodologies adopted in its conception must

adhere to industry-wide programming standards.

Transparency: Most proprietary motion capture software environments are exclusive

to pre-specified technologies. In most cases, functional particularities are hidden from

the user in order to protect intellectual property. For this reason, most developers in

this field have adopted the black box approach to software development that blinds

users from viewing, understanding and thus customizing the system’s functionality.

The Skeletrix software environment must be designed transparently to ease the user’s

task of integrating new motion sensing devices. In this context, transparency refers to

a superior level of access where the user can observe and learn the software

environment’s inner workings through its interface. As shown in Figure 3-3,

transparency follows the white box model whereby the software environment’s inner

workings are made visible to the user.

Figure 3-3: The white box model applied to the Skeletrix software environment.

Object-Orientation: It is good practice to logically distribute code into components,

each having a distinct purpose. According to code recycle theory, each component

must have a generalized purpose so that it may be reused beyond its initial

implementation. According to encapsulation theory, each component must limit

incoming communications to a set of publicly accessible functions or sockets.

Encapsulation is important in achieving efficient object intercommunications. The

Skeletrix software environment presented in this chapter must address these

programming principles to succeed.

User	
 Input	
 Usable	
 Motion	

White	
 Box	
 (Skeletrix	
 Software	
 Environment)	

SystemViewer	

KinematicsViewer	

AnimationViewer	

	

	

59

3.3.2 Functional Requirements

Figure 3-4 introduces the Unified Modelling Language (UML) in the design flow to

establish a list of functional requirements. UML’s use case diagrams are valuable in

creating a visual understanding of a framework’s features while defining user

interactions. The following diagram depicts a list of possible user-performed actions.

Subsequently, each action is elaborated to conclude an implementation approach.

Figure 3-4: Use case diagram highlighting the user performed actions in the Skeletrix

software environment.

Skeletrix	
 Software	
 Environment	

load	
 .BVH	
 file	

load	
 .BVHE	
 file	

instantiate	

AnimationViewer	

instantiate	

KinematicsViewer	

instantiate	

SystemViewer	

create	
 skeletal	
 links	

activate	
 hardware	

streaming	

specify	
 driver	

inspect	
 data	
 through	

inbuilt	
 interface	

export	
 specific	

motion	
 blocks	

inspect	
 vector	

transformations	

inspect	
 quaternion	

transformations	

export	
 all	
 data	

User	

generate	
 sensor	

entities	

export	
 .BVHE	
 file	
 export	
 .BVH	
 file	

upload	
 recording	
 to	

Motion	
 Cloud	

instantiate	

MotionCloudViewer	
 select	
 recording	

	

	

60

Data Import: As shown in Figure 3.4, the user must be able to import motion data

using either the Biovision Hierarchy (BVH) or BVHE file type. This requirement is

important to simulating a system’s behaviour in the absence of hardware. Once the

user has chosen the relevant file by using a file dialog, the Skeletrix software

environment must convert its syntax into usable data structures. Because BVHE code

contains BVH syntax, a shared lexical analyser can be developed to parse both file

types. Finally, if the user choses to import a BVH file, its BVHE supplements should

be generated automatically in accordance to a set of rules. Those rules are

subsequently discussed in the implementation sections of this chapter.

Data Export: Once a motion capture recording session has completed, the user may

wish to store data in BVH or BVHE files. BVH must be supported for cross-

compatibility with existing software environments. BVHE is required in situations

where the user choses to save the session’s system data for future use (e.g. recording

the motion of an individual multiple times without having to reconfigure the software

environment). In both scenarios, this requirement implies the development of a

compiler that can generate valid BVH/BVHE syntax. In some scenarios, the user may

choose to inspect the motion data by plotting graphs or generating mathematical

statistics. In those circumstances, data of interested should be exportable in tabular

formats that are suitable for scientific analysis.

Driver Interconnectivity: The user must be able to choose a specific dynamic-link

library (DLL) driver to communicate with motion capture hardware. DLLs are an

efficient and highly accessible approach for encapsulating code that has one distinct

purpose: extracting data from the hardware. The Skeletrix DDK will provide a set of

instructions and a template allowing third party users to develop such drivers.

Depending on the computer in use, a driver will always require the specification of a

communication port. The communication port value should be detected automatically

or inputted manually by the user.

Calibration: The user must be able to calibrate a singular inertial sensor or a more

complex BSN through the standard T-Pose technique. This technique works by asking

the motion performer to remain motionless with both arms extended laterally away

from the body while the software environment compensates the rotational difference

between the person’s posture and the kinematic model.

	

	

61

Viewer System: In this context, viewers are categories of tools for examining specific

software properties. The user must be able to inspect the software’s motion data in

real-time. In a motion capture simulation platform, motion data is denoted by

positional and rotational transformation sequences. A transformation can be examined

by reading its numeric values in a comprehensible format. The software environment

contains three components of interest to the user: the kinematic model, the system

model and the animation model. A viewer must accompany each model and every

viewer must be given an additional user interface allowing each data entry to be

analysed and rendered independently. This requirement is in accordance with the

principle of transparency introduced in the previous section.

3.3.3 Interface Requirements

The interface development process is crucial in achieving a rigid relationship between

the user and the software environment. The features previously mentioned need to be

easily accessible and more importantly, intuitive. The Skeletrix software environment

must feature an interface that contains both 3D rendering and other 2D elements.

HCI Principles: The Skeletrix software environment must adhere to all Human

Computer Interaction (HCI) conventions whereby each interface component is

recognisable, easily accessible and annotated appropriately. The overall interface

must be simplified to facilitate a time-efficient user experience that requires little

familiarization. The steps taken by a user in performing a task must be kept to a

minimum by optimizing the number of interface elements. The interface must provide

a level of consistency whereby all interface objects are designed and built in

accordance to a set of predetermined rules.

3D Motion Reconstruction: Due to the three-dimensional nature of character

animation, the software environment’s interface must implement a 3D engine and a

renderer to display kinematic models. The visualization of a kinematic model implies

drawing skeletal hierarchies of bones where each bone is depicted by a 3D topology.

Viewport Interaction: Defining this task’s requirements can be challenging as

computers are natively designed to work with two-dimensional input devices, such as

mice and keyboards. The use of 2D input devices in 3D space requires dimensional

simplification. Each element constituting a 3D interaction can be broken down into its

	

	

62

degrees of freedom (DOF). For example, the rotation of a camera can be simplified to

singular degrees of freedom corresponding to yaw, pitch and roll. Chapter 2

conducted an overview of existing software environments that are relevant to the field

of motion capture. An interaction technique, which requires little familiarization from

potential users, should be chosen by studying how interactive 3D is achieved

throughout industry-acclaimed products (e.g. those previously introduced in Section

2.9).

Multimodal Visualizations: Visualizing a skeletal rig from multiple angles is helpful

in creating a more thorough understanding of individual bone behaviours. A

predetermined set of camera configurations will allow users to toggle between view

angles (i.e. lateral, frontal, perspective, orthographic, etc.) without having to navigate

the viewport manually. Alternatively, several viewports could be rendered

concurrently to visualise the skeletal rig from multiple angles simultaneously.

Researchers focusing on person dead reckoning may be interested in observing the

rig’s interaction, in terms of horizontal displacement, with its surroundings. As a

result, the entire interface should be developed to increase the size of the window so

that it fits the screen dimensions.

	

	

63

3.4 Architecture Overview
The Skeletrix software environment architecture follows the principles of object-

oriented programming. The code is distributed throughout C++ classes while relying

on the QT [141] for visuals and interfaces. QT was chosen because of it provides a

great set of tools for developing user interfaces that integrate OpenGL. Figure 3-5

denotes the major software elements. The architecture can be divided between a back-

end layer and an interface layer. The back-end layer consists of data models (red),

mathematics libraries (green) and data I/O (blue). Concurrency and software timers

are also a key component in ensuring that the software environment functions

efficiently. The interface layer encompasses: the main GUI (red), the viewers (green)

and the 3D renderer (blue). All these elements are discussed throughout this chapter in

more detail.

Figure 3-5: Skeletrix software environment architecture denoting the components that form

the back-end and interface layers.

Back-­‐End	
 Layer	

Data	
 Models	

Mathematics	

Libraries	

Animation	
 Model	

Kinematic	
 Model	

System	
 Model	

Vector	

Data	
 I/O	

Driver	

Development	
 Kit	

File	
 Parsing	

BVH/BVHE	

Concurrency	
 and	
 Software	
 Timers	

3D	
 Renderer	

Main	
 GUI	

Viewers	

KinematicsViewer	

SystemViewer	

AnimationViewer	

Quaternion	

Interface	
 Layer	

Skeletrix	

Software	

Environment	

Architecture	

	

	

64

3.5 Data Models
As previously discussed, the software environment holds data at within three different

models: the animation model, the kinematic model and the system model. The

animation model stores rotational data, the kinematic model stores skeletal data and

the system model stores system-specific configuration data.

3.5.1 Animation Model

The animation model is an integral component of the software environment, situated

between the kinematic model and the system model. In accordance to the code

reuse/recycle theory, this component is designed as an interchangeable module with

potential uses outside the scope of the software environment (e.g. in the mobile

application presented in Chapter 5). Its first purpose is to store all incoming hardware-

related data during recording sessions. Its second purpose is to feed the kinematic

model (and subsequently the 3D engine) the rotational transformations necessary

during animation playback.

In the playback scenario where the user is viewing pre-recorded data, the animation

model closes all incoming communication channels. While constantly listening for

user action, it provides all the functionality for playing, pausing and stopping the

animation. Once the user triggers animation playback by pressing the play button, the

animation manager begins to iterate through its data structures, constructs a packet for

each frame of motion and sends that packet to the kinematic model and subsequently

to the renderer.

In the recording scenario, the animation manager opens all incoming communication

channels and listens for system model messages. To visualize the motion as it is

performed, the animation manager must bypass the outgoing playback signal and

perform two tasks concurrently by employing two threads. The first task is to gather

and store all incoming rotations while ensuring that no data is lost. The second task is

to echo all incoming rotations straight to the kinematics model. Without concurrency,

the functionality of real time motion visualization would be unachievable.

As previously mentioned, the majority of inertial motion data consists of positional

vectors and rotations. In the Skeletrix software environment, rotations are stored as

quaternion data structures, which are significantly faster to compute than the Euler

	

	

65

equivalent. There are numerous methodologies for storing this type of data (e.g.

simple floating-point precision numbers arrays). To optimize intercommunications,

the animation model’s design takes into consideration the external needs of both

system and kinematics models. Unique identifiers are used inform the software

environment of each reading’s timestamp (the animation frame value) and destination

(the skeletal object to which it is applied).

Motion data is organized as a collection of tape objects. Tape objects are linear arrays

enclosing the complete information required to reconstruct one frame of motion.

Specifically, the first tape delineates the animation’s template by declaring one spatial

positioning channel and multiple bone identifiers. In accordance to this template, each

frame of motion will begin with a positional vector (used to displace the skeletal rig’s

root) followed by a list of quaternion rotations (one for each bone). As a result, the

animation model’s outgoing package must contain both the template tape and a frame

tape. With that information, the kinematic model will proceed to assign

transformations to the skeleton. Figure 3-6 illustrates this data structure in more detail.

Figure 3-6: Animation model data structure enclosing one template tape and a list of motion

tapes.

Animation	

Model	

Quaternion	

Vector	

Channel	
 Instantiation	

Unique	
 Bone	
 Identifier	

Template	
 Tape	

Motion	
 Tape	

Vx	
 	
 	
 Vy	
 	
 	
 Vz	

S	
 	
 	
 Vx	
 	
 	
 Vy	
 	
 	
 Vz	

“root_bone”	

declareChannel(“rig_displacement”)	

T2
	
 	

T3	
 T4	
 T5	
 T6
	
 	

T7	
 T8	
 T9	
 T10	
 TL	

I1	

T1	

I2	

I3	

IN+1

R1	

R2	

R3	

RN+1	

-­‐	
 tape	

-­‐	
 identifier	

-­‐	
 animation	
 length	

-­‐	
 number	
 of	
 skeletal	
 elements	

T
I
L
N	

	

	

66

3.5.2 Kinematic Model

The kinematic component of the Skeletrix software environment is used to both

visualize and process the incoming motion data to construct a skeletal rig. It is formed

of a universal skeleton object that encloses a list of bones. To reconstruct a frame of

motion, the skeleton retrieves data from the animation component and applies it

recursively to that list of bones. The contained hierarchy cannot be traversed linearly

because of the nature of inverse kinematics where transformations must be applied in

a very specific order. In accordance to the specification of BVHE, the skeleton needs

to support several types of data depending on the system in use. The incoming stream

of angular readings, from the system object, may enclose local or world-space

rotations depending on the system in use. In either case, the kinematic model will

convert those rotations into local-space rotations. To support several types of

information, each bone object is defined by four quaternions: local, world, correction

and calibrated. The local quaternion represents a local-space rotation, as required for

the animation model, BVH or BVHE files. The world quaternion represents a world-

space rotation, as required by the 3D engine. The correction and calibration

quaternions store angular compensations.

3.5.3 System Model

The system model represents an intermediate stage of computations between the

hardware and the kinematic model. The system and kinematic models share the same

design with one fundamental difference: there is no object hierarchy. This is because

daisy chained sensors do not require an object hierarchy and all skeletal information,

which interconnects bone objects, is stored in the kinematic model.

The system model contains sensor objects (virtual IMU objects), which are stored in a

linear array. Those objects create a virtual representation of the BSN connected to the

software environment. Therefore, the system model stores incoming rotations only

temporarily before the data is applied to the kinematic model.

Each sensor contains four rotational channels: gyroscope, accelerometer,

magnetometer and fused. Provided that the system does not compute firmware-side

sensor fusion, the first three channels are utilized for storing incoming data

corresponding to gyroscopes, accelerometers and magnetometers readings. The fused

channel will hold the processed motion if sensor fusion algorithms or filters are used.

	

	

67

One additional channel could be included to store positions for optical systems. Even

though the software environment is not fundamentally designed to function with

optical data, optical system could be integrated in the future.

3.6 Interface Layer
This section illustrates visually how the Skeletrix software environment operates and

outlines the user experience. It discusses the four principal interface layer objects:

core GUI, KinematicsViewer, SystemViewer and AnimationViewer. As previously

mentioned, the design of the interface is crucial in achieving an intuitive user

experience. The Skeletrix interface layer, designed and developed using QT [141],

presents a combination of 2D and 3D elements for visualizing and interacting with

motion capture data. Much attention was given to streamlining the user experience by

simplifying the number of visual elements while maintaining the technical

functionality specified in the requirements analysis.

The communication between the software environment’s interface layer and back-end

architecture is omnidirectional and achieved through signals and slots [142]. Each

interface element transmits a signal in response to a user-performed action. QT

provides a list of events that can be used to trigger signals (i.e. mouse click, mouse

drag, mouse hover, keyboard input, etc.). In this context, a slot is a special type of

function that is accessible by the interface.

Although irrelevant to the field of research, the software environment’s aesthetics are

important in the computer graphics industry. Competing developers are designing

interfaces that deliver both functionality and pleasant visuals. QT relies on cascading

style sheets (CSS) to format the look and feel of each interface element. Therefore,

the development of the software interface is similar to that of a website, making the

interface highly customizable. To restyle the Skeletrix software environment, users

are given access to an external CSS file enclosing the default template code.

The interface also aims to provide users with a detailed understanding of the software

environment’s inner workings. All back-end transformation sequences, used to

convert raw motion into usable data, are on display. At the kinematic level, the

interface displays the stages of calibration (previously discussed in Section 2.5.2)

through which angular compensations, representing the rotational difference between

	

	

68

the kinematic rig and the motion performer, are calculated. At the system level, the

interface displays the data obtained from the hardware. Once all the data is processed,

the final result is displayed in the AnimationViewer interface.

3.6.1 Core GUI

The core GUI shown in Figure 3-7, is the largest interface layer component. It

comprises of four logical subdivisions: a multimodal canvas, a set of drop-down

menus, an information toolbar and a slider for animation playback. To begin with, the

software’s back-end will be launching a thread to instantiate and render the viewport.

The viewport camera can be repositioned and rotated manually or by selecting a pre-

set. The pre-sets allow users to view the animation from the top, left, front and

perspective. Situated in the header, the dropdown menus provide the customary

functionality (i.e. importing and exporting motion files). Situated vertically on the

right hand side, the information toolbar contains three panes that exhibit a simplified

overview of the animation data, kinematic skeleton and hardware configuration. Each

pane can launch a viewer object for a more elaborate visualization of the information.

Situated in the footer, the slider displays the animation timestamp along with the

conventional controls for playing, pausing, stopping and recording the animation.

Figure 3-7: Core GUI illustrating the landing of a pre-recorded jump animation.

	

	

69

3.6.2 KinematicsViewer

As shown in Figure 3-8, the first of the three viewers, the KinematicsViewer, allows

users to view all the vector positions, quaternion rotations (which are converted into

Euler rotations by the interface for readability reasons) and kinematic model

information. Once a motion file is imported, Skeletrix will instantiate this interface

and populate it with objects. Users can select individual skeletal objects for

inspection. As a bone is selected, data is retrieved from the back-end and displayed

within four panes: general, rotations, vectors and hierarchy. The general pane displays

the calculated lengths and weights of bones as floating-point numeric values. Weight

models are introduced in the next sections in the context of person dead reckoning and

the LACOMA algorithm. The rotations pane shows the local space, world space,

corrected and calibrated transformations converted from quaternions to Euler for

readability reasons. The vectors pane displays the origin, centre of mass and lists

several offsets as bones may have multiple end points. The hierarchy pane encloses

the title of the parent bone and lists the children. By inspecting these panes, the user

will gain a better understanding of how the kinematic model is computed and identify

any problem areas.

Figure 3-8: KinematicsViewer illustrating the information of a hip bone.

General	
 Pane	

Vectors	
 Pane	

Bone	
 Selector	

Hierarchy	
 Pane	

Rotations	
 Pane	

	

	

70

3.6.3 SystemViewer

As shown in Figure 3-9, the second of the three viewers, the SystemViewer, allows

users to analyse the incoming stream of data as obtained from the hardware. In many

respects, this interface resembles the KinematicsViewer. The SystemViewer has two

distinct sections for configuring hardware and for inspecting individual sensors. To

begin with, the hardware section displays the overall system data as found in BVHE

files. That data is used to specify the driver, communication ports and other general

properties. Several buttons allow the user to modify the driver configuration and

perform system actions such as T-Pose calibration. Four additional actions are

provided for systems that require specific handshaking instructions (e.g. the

Animazoo IGS suits require Northing). Afterwards, the user may choose to inspect

individual sensors. Sensor attributes are distributed throughout three panes that show

general driver information, driver actions and IMU information. Once an IMU is

selected, the rotations pane will display incoming sensor readings from gyroscopes,

accelerometers and magnetometers. If sensor fusion is implemented, the fourth

channel stores the fused result (i.e. the combined and filtered motion of the gyroscope,

accelerometer and magnetometer).

Figure 3-9: SystemViewer illustrating the information of a hip IMU.

Driver	
 Information	

Driver	
 Actions	

IMU	
 Selector	

IMU	
 Information	

	

	

71

3.6.4 AnimationViewer

As shown in Figure 3-10, the last of the three viewers, the AnimationViewer, gives

users access to the finalized motion. The resulting data is appropriate for behavioural

experimentations or animating virtual characters. Unlike the previous two viewers,

this interface is static and is generated after a recording session has terminated or

when a pre-recorded animation is loaded. Motion capture files usually display

readings as undecipherable blocks of numbers. This interface displays data in a

coherent table where each column corresponds to a kinematic bone’s rotation channel

and each row corresponds to a frame of motion. The first column will always contain

rig displacement values. The animation data can be exported by employing the widely

supported yet simple comma-separated values (CSV) file format. Users have the

option of exporting precise blocks of motion by specifying the axis of rotation, the

kinematic channels and the frame intervals. This feature allows researchers to focus

their attention only on the significant data while ignoring unneeded values.

Figure 3-10: AnimationViewer showing animation data in a tabular format.

	

	

72

3.6.5 Rendering 3D Skeletal Topologies

Data is visualised in 3D using a viewport system. As shown in Figure 3-8, the

viewport contains a drawing canvas that uses OpenGL to render the kinematic model.

The skeleton geometry is computed locally, before any information is sent through the

OpenGL pipeline.

The kinematic hierarchy is traversed and each skeleton bone object is rendered in

sequence. Each bone is rendered as a result of four computations, all of which are

achieved at the software level:

• Geometry Instantiation: The default bone topology is drawn facing upwards

with a length and rotation of zero. Six vertices and 8 polygons form the bone’s

geometry.

• Scaling: Each bone is adjusted vertically so that its length matches the

corresponding body part of the motion performer. The vertical axis coordinate

of the upper most vertex is set to equal the bone’s length.

• Rotation: The bone’s quaternion rotation is used to rotate the six vertices to

assume the desired orientation.

• Translation: The hierarchy of the kinematic model is traversed in order to

compute the global origin of each bone. Based on those origins, the topologies

are translated to interlink the bones and form a skeleton.

Performing the geometry instantiation, scaling, rotating and translating within the

software is computationally expensive. An alternative approach is to compute the

graphics within the OpenGL pipeline using matrices, a process which is further

discussed in Chapter 5 in the context of mobile computing where the computational

resources of the device are very limited.

The graphics are computed within software to allow the user to observe and

potentially modify each stage of computation. As previously discussed the aim of this

software environment is to provide a level of transparency to the researchers.

	

	

73

3.7 Concurrency and Software Timers
To achieve real-time motion capture streaming, concurrency and software timers

become very important. Concurrency and software timers have two very important

roles. First, due to the multicore architecture of modern CPUs, concurrency helps the

software environment perform computations more efficiently by distributing the

workload.

During recording sessions, the software environment fires two main concurrent

threads, namely an interface thread and a back-end thread. Both threads employ

timers to iterate through the code at different speeds. The interface thread focuses on

GUI updates such as rendering or listening for user inputs. The back-end thread is

aimed at computing motion as quickly as possible. Consequently, it is given priority

over the interface thread to ensure that no data is lost or misinterpreted. This approach

was chosen to prevent performance problems such as the interface slowing down the

back-end processes.

The interface thread cannot compute numerous computationally expensive interface

updates and render 3D visualisations at the same time. Consequently, another thread

is assigned to render the viewport. Figure 3-11, illustrates the three main threads.

Figure 3-11: Skeletrix software environment multithreading diagram.

3.8 Motion Capture Reanimation
Motion capture reanimation is a term used by this thesis to describe a more efficient

solution for inputting and outputting data within the Skeletrix software environment

and to configure the software environment for use within a recording session. Existing

software solutions require actor data, drivers, skeletal rigs and other files to be

inputted by the user and configured manually before the system is ready to be used,

Main	
 Thread	
 Interface	
 Thread	

Back-­‐End	
 Thread	

Viewport	
 Thread	

Application	
 Start	

	

	

74

which is a time consuming process. The fundamental concept behind motion capture

reanimation is to combine the configuration files within one singular file format,

which is referred throughout this thesis as BVHE. The advantage of BVHE over any

existing format is practicality (simplifying the motion capture workflow) as users only

have to load one file into the software environment. Given that kinematic hierarchy is

driven by a system, which contains a system configuration, it is both logical and

necessary to form a relationship between the two by establishing one singular and

more complete file format.

In practice, the motion capture reanimation concept will becomes apparent shortly

after being prompted by the user interface. Unlike other software environments that

display pre-defined skeletal rigs upon start-up, the Skeletrix software environment

stores no skeletal information natively. The user is asked to import a BVHE that

automatically generates kinematic models, weight models, system models and

software configurations. BVHE is the novel file type containing all these

configuration attributes. This approach has a major impact on the software’s usability

and simplifies the number of steps taken by a user when commencing a recording

session. Figure 3-12 depicts the contrast between the Skeletrix software environment

and other software environments.

Figure 3-12: An overview of motion capture software environments highlighting the concept

of motion capture reanimation and usability simplification through BVHE.

EXISTING	
 SOFTWARE	

ENVIRONMENTS	

SKELETRIX	
 SOFTWARE	

ENVIRONMENT	

Configuration	
 Files	

Actor	
 Data	

Skeletal	
 Rig	

Driver	

BVH	

BVH	

BVH/BVHE	
 BVH/BVHE	

BVH/BVHE	

MOTION	
 CAPTURE	
 REANIMATION	

	

	

75

BVHE replaces the need for multiple configuration files with one singular input. Once

a recording session is completed, the resulting BVHE file will store all the

configuration information of that session. Therefore, it can be used at a later date as

an input to configure the system for reuse.

3.9 Biovision Hierarchy Extended
The standardization of file formats is a frequent requirement in software development

as it promotes interoperability and information sharing. The lack of a standard implies

an industry that has too many incomplete solutions competing for software support.

For this reason, introducing an entirely new format, in an otherwise saturated pool of

solutions, can be counterintuitive as developers are not eager to learn or implement

new file systems. A possible approach is to take an existing format, that developers

are already familiar with, and extend it to suit the needs of the industry.

This section introduces Biovision Hierarchy Extended (BVHE), a novel file type

designed to simplify the user/system interaction during recording sessions. BVHE is

an extended version of the Biovision Hierarchy (BVH) format. The new syntax allows

the file type to store system specific data such as computer-hardware connection

parameters and the sensor configuration parameters. It removes the need for actor file

systems by repurposing BVH’s skeletal definitions to reflect the user’s bodily

proportions. BVHE is an integral requirement and component for the Skeletrix

software environment architecture.

3.9.1 Biovision Hierarchy Format

Given that BVHE encapsulates standard BVH code, it is appropriate to review the

original format. BVH first establishes a skeletal rig consisting of multiple bone

definitions and one kinematic hierarchy. A bone definition is characterized by three

properties: length, orientation and channels. The length and orientation can be

expressed as one positional offset where the vector distance is the length and the

vector direction is the orientation. Notably, this approach is not good at defining a

skeletal segment’s roll. The roll is often irrelevant if the rig is rendered as three-

dimensional lines or cylinders. Unlike other motion capture formats, BVH allows

bone definitions to contain multiple offsets whereby one skeletal segment can have

one origin and multiple endings. The channels specify three empty variables through

	

	

76

which a transformation sequence of angles can be assigned the skeletal segment in

question. Next, the hierarchy element comes into play by constructing the skeleton.

Indenting bone definition within brackets, whereby the indent value and bracket count

symbolize the hierarchical depth, is an effective method for representing the hierarchy

links. The visual reconstruction phase uses that information to reposition each bone so

that its origin assumes the position of its parent’s end point. Finally, the motion data is

placed at the end of the file as a list of floating-point values in accordance to the

channel template. Most motion capture file formats specify the number of animation

frames to simplify parsing.

3.9.2 Biovision Hierarchy Extensions

The new BVHE extensions are inserted in the middle of a standard BVH file, between

the kinematic hierarchy specification and the motion data. To begin with, the new

semantics help the software environment identify the appropriate driver for

interfacing with a particular device. Then, both software and hardware are readied for

intercommunication by defining the sensors, data channels and data properties.

Delineating all system properties within an editable file allows users to customize the

way in which they use motion capture devices. The BVHE extensions are denoted by

the following attributes.

• DLL: Once a software environment parses the motion file, the dynamic-link

library (DLL) attribute specifies which driver to be loaded by default. This

property should be editable through the interface. The user may be

experimenting with various motion capture devices simultaneously. Stating the

driver keeps track of what system should be used with this particular

configuration.

• Port: Operating systems use ports to communicate with peripherals through

serial, USB or Bluetooth. Once the connection is acknowledged, each device

is assigned a port value so that it may be accessed by software applications.

Ports can vary depending on the machine in use. This attribute specifies a

default port.

• Versioning: If the user is developing drivers, this attribute is important in

keeping track of development releases.

	

	

77

• Type: Although the Skeletrix software environment is primarily designed to

support inertial systems; other technologies could also be integrated. This

attribute informs the software environment if the system is inertial,

exoskeleton or optical. Skeletrix anticipates rotational data from

inertial/exoskeleton hardware and positions from optical devices. The default

type is inertial.

• Space: All rotations and positions can be expressed in world or local space.

Devices containing multiple sensors may calculate inverse kinematics at a

firmware or driver level. The software environment needs to know whether to

calculate the kinematics or directly apply motion data to the skeleton. The

default space is world.

• Sensor: A BVHE file may contain multiple sensor definitions. The user may

be experimenting with a single IMU or a more complex BSN. Sensor

definitions are similar to kinematic hierarchies but linear. Each sensor controls

the transformations of one or, through the kinematic constraints of the rig,

several bone entities. Each sensor contains an optional rotational offset and a

scale value. Although these two attributes are not implemented in the software

environment, they are desirable for user profiling to calibrate the rig more

accurately to match the motion performer’s body proportions.

3.9.3 Biovision Hierarchy Extended Syntax

The following syntax, shown in Figure 3-13, constitutes a basic BVHE file by first

defining a BVH skeletal hierarchy encompassing three bones: chest, neck and head.

Three channels are assigned for person dead reckoning while the following nine

define the roll/yaw/pitch (in that specific order) of each bone. Therefore, each

animation frame will require twelve numeric entries consisting of positional and

angular readings. The BVHE extensions prepare the software environment for

intercommunications with an inertial system encompassing a two-sensor

configuration. That device utilizes the standard dynamic-link library to receive

information from communication port three. The IMU naming scheme suggests

hardware containing IMU3000 gyroscopes and MMA8450 accelerometers, matching

the hardware presented in Chapter 4. This particular inertial device computes no

	

	

78

inverse kinematics and outputs world space rotations. The software environment will

receive three numeric values from each sensor corresponding to yaw, pitch and roll.

Figure 3-13: BVHE syntax denoting a three-bone hierarchy connected to two sensors.

HIERARCHY

ROOT Chest {
 OFFSET 0 0 0
 CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
 JOINT Neck {
 OFFSET 0 20.6881 -0.73152
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT Head {
 OFFSET 0 11.7043 -0.48768
 CHANNELS 3 Zrotation Xrotation Yrotation
 END SITE {
 OFFSET 1 0 0
 }
 }
 }
}

SYSTEM

DLL default.DLL
PORT 3
VERSIONING v1.0
TYPE inertial
SPACE world

SENSOR imu3000_mma8450_1 {
 BONE Chest
 OFFSET 11 10 0
 SCALE 110
}

SENSOR imu3000_mma8450_2 {
 BONE Head
 OFFSET 0 0 0
 SCALE 100
}

MOTION

FRAMES 3
FRAME TIME 0.00833333
52.122 85.152 1.6616 0.4511 -0.0026 0.0129 0.0 0.0 0.0 0.1245 -0.004 0.0215
51.529 84.612 2.2768 0.9193 -4.1156 -3.465 0.0 0.0 0.0 0.1900 0.1221 -0.171
51.528 84.551 2.1411 0.9276 -4.1653 -3.288 0.0 0.0 0.0 0.2635 0.2667 -0.376

	

	

79

3.9.4 File Parsing

Because BVH and the new file format BVHE (published in Pascu et al. [17]) are

somewhat similar, a shared parser was developed to support both file types. As

previously mentioned, supporting BVH was important for cross-compatibility

reasons. The Skeletrix software environment parser treats all files in the same fashion

until BVHE syntax is identified. Figure 3-14 is an activity diagram that illustrates the

entire parsing process whereby BVH/BVHE data is inputted to produce a kinematic

model and an animation model that stores motion data.

Figure 3-14: BVH/BVHE file parsing activity diagram.

Retrieve	
 file	

dialog	
 path	

Load	
 file	

contents	

Tokenizer	
 splits	

data	
 into	
 tags	

Iterate	
 tag	

	
 array	

Apply	
 bone	

template	

Apply	
 motion	

header	
 template	

Instantiate	
 bone	

object	

Apply	
 system	

header	
 template	

Apply	
 sensor	

template	

Generate	
 default	

system	
 configuration	

and	
 sensor	
 obj.	

Acquire	
 motion	
 data	

in	
 accordance	
 to	
 the	

bone	
 array	
 order	

Generate	

hierarchy	
 links	

YES	

YES	

YES	

YES	

YES	

YES	

NO	

NO

NO	

NO	

NO	

NO	

BVHE?	

Motion	
 tag?	

System	
 tag?	

Motion	
 tag?	

End	
 of	
 file?	

	

	

80

3.10 Driver Development Kit
Most motion editing packages provide methodologies for developing small plugins

that suit the specific needs of users. Generally, a plugin is a small software application

that embeds a new tool or feature within the software environment’s interface. Unlike

motion editing packages, this software environment’s primary focus is to acquire and

process motion data from hardware. Instead of plugins, it provides the capability to

develop and import device drives. In this context, a driver is a small software

application, enclosed within dynamic-link library (DLL), used to interface with

external hardware and retrieve motion readings safely. Example source code of a

driver can be seen in Appendix B.

The driver development kit (DDK) provides researches with a bridging architecture

for connecting to inertial motion devices. The underlining purpose is to motivate

potential users to develop sensor devices by providing the tools to connect them to a

computer. The multifaceted sequences of operations for gathering, refining and

outputting usable motion capture data are provided as part of Skeletrix. Within the

scope of this thesis, this DDK allows for experimentations that employ a wide range

of motion capture devices such as the Shimmer R2, Razor Attitude Heading

Reference System (AHRS) and the Motion Tracking Development System (MTDS)

suit presented in the next chapter, Chapter 4.

Enclosing drivers in DLLs can simplify the number of user-performed actions in

connecting to a system. A major benefit is that DLLs do not require operating system

installations. Notably, a significant limitation is that DLLs can only operate on

Windows-based machines. This approach provides a level of modularity where one

computer could be used to interface several dissimilar devices (or one device in

different ways) by slotting in and out driver modules.

Before enabling data intercommunications, the first step of the bridging procedure

involves driver validation through which a connection is established between the

software environment and driver. The system manager interrogates the driver and

validates its attributes to ensure a trouble-free recording session. The sequence

diagram depicted in Figure 3-15 illustrates the list of questions (or software

interrogations) addressed to the driver.

	

	

81

Figure 3-15: Driver handshake sequence diagram.

Function prototypes are used to access and trigger driver code. The driver template

contains a specific list of function prototypes: getStream, setPort, action1, action2,

action3 and action4. All must be present, even if redundant, for the driver connection

Boot	
 Boot	

Attempt	
 DLL	
 discovery	

Confirm	
 presence	

Send	
 getStream	
 prototype	

Acknowledge	
 getStream	
 connection	

Send	
 setPort	
 prototype	

Acknowledge	
 setPort	
 connection	

Instantiate	

driver	

objects	

Send	
 action1	
 prototype	

Acknowledge	
 action1	
 connection	

Send	
 action2	
 prototype	

Acknowledge	
 action2	
 connection	

Send	
 action3	
 prototype	

Acknowledge	
 action3	
 connection	

Send	
 action4	
 prototype	

Acknowledge	
 action4	
 connection	

Call	
 setPort(portValue)	

Establish	

hardware	

connection	

Retrieve	

portValue	

Enable	

streaming	

System	
 Driver	

Listening	
 Listening	

	

	

82

to be validated. The four actions may be used by the more complex full body suits

that require intermediate steps for hardware initialization. For example, the Animazoo

IGS suits require additional handshaking and Northing for the magnetometers to be

reset and tuned to face north. Northing could be assigned to one of the four actions

and the corresponding code could be included in the driver.

Having established a valid connection, the next step is data streaming whereby data is

extracted from hardware and visualised in real-time. Each driver must have a buffer

that fills up with angular readings. Motion capture recording sessions may require fast

frequencies that put a lot of pressure on the connection between the computer and

hardware. While a buffer will induce latency, a buffer is needed to relax that

connection and ensure that no data is lost. The following sequence diagram, shown in

Figure 3-16, illustrates the data acquisition process. The transmission rate, at which

data buffers are received from the driver, is generally 30f/s. This speed is pre-

configured and required by the 3D engine to render smooth visualisations in real-time.

For performance reasons, the 3D engine will only render the visualisation at this

speed even if the transmission rate is faster.

Figure 3-16: Driver data acquisition sequence diagram.

Call	
 getStream	

Return	
 package	

Build	

motion	

buffer	

	
 System	
 Driver	

Fire	

enquiry	

thread	

Decipher	

package	

Apply	
 data	
 to	

kinematics	

Listening	
 Listening	

	

	

83

3.11 Versioning
The development of the software environment was achieved in incremental stages, in

parallel with the development of the MTDS hardware presented in Chapter 4. As

shown in Table 3-1, this section discusses the five main release versions.

The first version was centred on creating a kinematic model and visualising raw

motion data in 3D. It featured the core libraries for vector and quaternion

mathematics, the interface layer (that can render OpenGL graphics) and a file parser

for BVH data. The next three versions expanded on: the concept of having viewers

(AnimationViewer, KinematicsViewer and SystemViewer), the DDK, BVHE support

and hardware integration. The development of the final version added Internet

connectivity to interact with the Motion Cloud.

Table 3-1: Skeletrix software environment versioning.

Functionality 1.0 – 1.5 2.0 – 2.8 3.0 – 3.10 4.0 – 4.10 5.0 – 5.17

Core Functionality
Vector Library YES YES YES YES YES
Quaternion Library YES YES YES YES YES
OpenGL Renderer YES YES YES YES YES
QT Interface Layer YES YES YES YES YES
Multimodal Viewports N/A YES YES YES YES
Data I/O (BVH) YES YES YES YES YES
Data I/O (BVHE) N/A N/A YES YES YES
Local Storage of Motion N/A YES YES YES YES
Models
Kinematic Model YES YES YES YES YES
Animation Model N/A YES YES YES YES
System Model N/A N/A YES YES YES
Weight Model N/A N/A YES YES YES
Viewers
KinematicsViewer N/A YES YES YES YES
AnimationViewer N/A N/A YES YES YES
SystemViewer N/A N/A N/A YES YES
MotionCloudViewer N/A N/A N/A N/A YES
Driver Development
MTDS YES YES YES YES YES
Shimmer R2 N/A N/A YES YES YES
Razor AHRS N/A N/A N/A YES YES
Other
DDK N/A N/A YES YES YES
Web Connectivity N/A N/A N/A N/A YES

	

	

84

3.12 Lowest-Anchor Centre of Mass Algorithm
Dead reckoning is the process of computing horizontal displacement over longer

periods of time for a kinematic model. When taking a step, the body is propelled

forward by a distance equal to the stride length. After a sequence of steps, several

stride lengths are summed to determine the person’s position in space. Inertial motion

capture systems have no inherent sensors to measure that displacement. While

additional ultrasound or optical sensors can be used to aid the inertial system in

computing dead reckoning, this solution overcomplicates the process. The simplest

and possibly most problematic methodology, in terms of accuracy, for achieving this

task is the lowest-point algorithm [127]. The lowest-point algorithm is an effective yet

simple method of applying planar collision detection and inverse kinematics

algorithms to a skeletal rig to compute dead reckoning.

As previously published in Pascu et al. [18], the lowest-anchor centre of mass

algorithm (LACOMA) is a more complex solution, using the body’s musculoskeletal

centre of mass, aimed at computing the anchor of a kinematic model more accurately.

The anchor of a skeletal rig is the support point on which the majority of the body’s

weight is balanced. Knowing which kinematic segment is impacting the floor is

important. For example, if a person is dragging their feet, the lowest-point algorithm

will prevent the skeleton from moving. This problem can be found in a variety of

gestures. In essence, the LACOMA study is aimed at finding whether the

musculoskeletal axis of balance is beneficial in computing better anchors during gait.

3.12.1 Understanding the Lowest-Point Algorithm

But what is the lowest-point algorithm? As the title would imply, the lowest point (or

kinematic segment) of the kinematic model is likely to be the supporting point of the

body. This solution would be ideal in a scenario where the motion is recorded on a

flat surface and the motion capture system is perfectly accurate. While gyroscopes

drift, accelerometers and magnetometers produce noise. These inaccuracies cause the

kinematic model to misrepresent the body. Additionally, it is likely that the kinematic

model is not matching the motion performer in terms of proportions. Representing the

otherwise complicated anatomy of the human body, as a simplistic list of

approximately 40 bones, will produce even more inaccuracies. The body’s

asymmetries are not often replicated in the kinematic model. Solutions for solving this

	

	

85

problem at the software level are often protected, or even patented, by the system

manufacturers. The most common solution is the lowest-point algorithm because it is

computationally inexpensive and straightforward to implement.

During one ambulatory step, the anchor swaps between feet as the body switches from

one foot to the other. Figure 3-17 illustrates how that swap occurs in three steps (this

process has previously been discussed in Section 2.7.4 of the literature survey). The

anchor swaps from the blue leg to the green leg.

Figure 3-17: Anchor swapping during one ambulatory step. Source: Pascu et al. [18]

Motion capture in a recording studio usually involves characters performing gestures

on a flat surface. Although the lowest-point algorithm usually serves the purpose of

computing kinematic displacement, it proves problematic in scenarios where the

motion performers are not taking clear steps. For example, if a person is dragging

their feet or shifting balance between feet while stationary, the algorithm will not

work because the system is likely to miscalculate the correct foot. These errors are

often corrected during data cleaning, a time consuming process where an animator

corrects the recorded motion manually. Figure 3-18 shows how the software-level

confusion occurs because the anchor selection becomes ambiguous.

Figure 3-18: Confusion during the anchor selection when the motion performer is dragging

their feet. Source: Pascu et al. [18]

	

	

86

3.12.2 Determining a Weight Model

The first stage of LACOMA is methodology for adding physical properties to the

kinematic model through a weight model. The weight model will later be used to

compute the body’s musculoskeletal axis of balance. A weight model consists of

positional offsets and weight values that are supplemented to a kinematic model, thus

forming a primitive physics engine. Figure 3-19 shows an example of a weight model

in the software environment, as used throughout the experiment. On the left (1), the

kinematic model is rendered with bone geometry. In the middle (2), the kinematic

joints are rendered alongside centres of weight. On the right (3), the weight model is

render by itself.

Figure 3-19: Weight model rendered using the software environment. Source: [18]

A weight model is constructed by adding a balance ratio and a weight value to each

bone in the kinematic skeleton. The balance ratio determines a skeletal segment’s the

centre of weight using the tip and base. For example, a skeletal segment having a

length of 10 units and balance ratio of 45% will have a centre of balance offset of 4.5

units resulting in a base-heavy bone such as the bicep (which is heavier at the

shoulder joint than it is at the elbow joint). A weight ratio greater than 50% will

describe a tip-heavy bone. Each skeletal segment must be given a scalar coefficient

that is less than 1 so that the combined weight of the model equals to 1.

	

	

87

The body generally becomes thinner and lighter towards its extremities. For example,

the torso is the heaviest section, followed by the arms and shins, forearms and calves,

hands and feet. In accordance to the kinematic model shown above, most of the

skeletal segments will be base-heavy. As shown in table 3-2, the weight distribution

throughout the body was determined by looking at studies focused on human anatomy

such as [143]. Complex joints (e.g. shoulders, hips) were given an even distribution.

Table 3-2: Weight model balance ratios and weight values. Source: [18]

3.12.3 Computing the Anchor

This section discusses the computation of the skeleton’s anchor point using the weight

model and an axis of balance. Figure 3-20 illustrates the pseudo code for the

algorithm, which works in three different stages. For the purpose of this algorithm,

let’s establish that the vertical axis is Y.

The first stage is to compute anchor candidates. Unlike the lowest-point algorithm

that considers only one anchor, LACOMA first defines a set of multiple anchor

candidates. A threshold plane is placed within the proximity of the ground,

approximately at the height of the tibia. Any bone intersecting that plane will be

Segment Weight Tip Distance Base Distance

Upper Body
Abdomen 0.09007 42.4% 57.6%
Chest 0.11778 46% 54%
Neck 0.03023 51% 49%
Head 0.06928 50% 50%
Left Shoulder 0.02887 50% 50%
Right Shoulder 0.02887 50% 50%
Left Arm 0.04850 50.7% 49.3%
Right Arm 0.04850 50.7% 49.3%
Left Forearm 0.03811 56.6% 43.4%
Right Forearm 0.03811 56.6% 43.4%
Left Hand 0.03579 54.2% 45.8%
Right Hand 0.03579 54.2% 45.8%
Lower Body
Left Hip 0.02887 50% 50%
Right Hip 0.02887 50% 50%
Left Thigh 0.07737 53.5% 46.5%
Right Thigh 0.07737 53.5% 46.5%
Left Shin 0.06120 67.4% 32.6%
Right Shin 0.06120 67.4% 32.6%
Left Foot 0.02811 47.6% 52.4%
Right Foot 0.02811 47.6% 52.4%

	

	

88

considered an anchor candidate. The intersection is calculated by simply verifying the

vertical position of the bone. If the base, the tip or both are below the threshold, the

bone is deemed an anchor candidate as its anchor flag is set to true.

The second stage is to compute an axis of balance, which is a vertical vector defined

by an x and z coefficient. The pseudo code traverses the skeleton and multiplies every

positional centre of weight (only the x and z coefficients) by the scalar weight value.

The result is concatenated to an array and the mean average of the array will produce

the axis of balance.

The third stage of the algorithm is to compute the correct anchor (or supporting bone)

of the body. The algorithm iterates through the skeleton, selects the anchors and

calculates the distance between each bone and the axis of balance. The weight model

stores distances as proximity values. The skeletal segment with the lowest proximity

value will be chosen as the final anchor.

Figure 3-20: Computing the lowest anchor of a skeleton using a weight model.

INITIALIZE temporary array ax AS empty
INITIALIZE temporary array az AS empty
INITIALIZE axis of balance AS vector {0,0}
INITIALIZE anchor AS blank bone pointer

// STAGE 1: DETECT ANCHORS CANDIDATES
FOR EACH bone IN skeleton

IF bone tip < threshold AND/OR bone base < threshold
SET bone anchor TO true

END IF
END FOR EACH

// STAGE 2: COMPUTE AXIS OF BALANCE
FOR EACH bone IN skeleton

CONCATENATE (bone centre of weight x * bone weight)
TO temporary array ax

CONCATENATE (bone centre of weight z * bone weight)
TO temporary array ay

END FOR EACH
SET axis of balance x TO MEAN AVERAGE OF temporary array ax
SET axis of balance z TO MEAN AVERAGE OF temporary array az

// STAGE 3: FIND LOWEST ANCHOR
FOR EACH bone IN skeleton WHERE anchor = true

SET bone proximity
 TO DISTANCE FROM axis of balance TO bone centre of weight
IF bone proximity < previous bone proximity
 SET anchor TO bone
END IF

END FOR EACH
RETURN anchor

	

	

89

3.12.4 Simulations

As published in Pascu et al. [18], the algorithm was tested through five simulations

with the aim of demonstrating that the anchor is computed correctly. Five pre-

recorded gestures were loaded where the individual is: dragging their feet, shifting

balance between legs, kneeling, crawling and going into prone position. Snapshots

were taken of sections where the lowest-point algorithm would otherwise miscalculate

the correct anchor.

Table 3-3 illustrates the results of the simulations where LACOMA is used to

compute a set of anchor candidates, an axis of balance and the proximity of each bone

to the axis. The algorithm computes the proximity values to determine the correct

anchor whereby the candidate with the lowest proximity value wins. These results

demonstrate the proposed algorithm functioning correctly.

 Table 3-3: LACOMA simulations computing the correct anchor. Source: Pascu et al. [18]

Desired Anchor Anchor Candidate Distance to Axis of Balance

Gesture 1: Dragging Feet

Left Foot Left Foot 3.447140376
Right Foot 7.360259044

Gesture 2: Balance Shifting

Left Foot Left Foot 2.634964232
Right Foot 4.951058102

Gesture 3: Kneeling

Left Foot

Left Foot 2.911940236
Right Foot 4.033130481
Left Shin 4.607794689

Right Shin 5.749732326
Gesture 4: Crawling

Left Shin

Left Foot 6.1504404348
Right Foot 6.3562048703
Left Shin 2.4627770625
Right Shin 3.5748058548
Left Hand 15.7069667215

Right Hand 13.5998812961
Gesture 5: Prone Position

Right Shin

Left Foot 19.0994519007
Right Foot 18.0061532627
Left Shin 12.8933432307

Right Shin 11.5659549656
Left Hand 23.8645977278

Right Hand 22.3093305126
Left Forearm 20.2661181134

Right Forearm 18.5971782273

	

	

90

3.13 Conclusions
This chapter has delineated the design and implementation of a software environment

with two distinct goals. The large-scale goal is to provide a suitable simulation

environment for motion capture experimentations to encourage users and researchers

to join the field of inertial motion capture and BSNs. The Skeletrix software

environment is an object-oriented tool for data gathering, processing and scientific

analysis that employs multiple software development domains: concurrent

programming, interactive visualizations, language processing, rendering, etc. It

envelops methodologies for interfacing with a wide range of inertial and exoskeleton

systems with potential (if developed further) for optical systems. Users can produce

drivers to integrate various motion capture devices by using the DDK in conjunction

with BVHE.

In an effort to expand its spectrum of application areas, this software environment

does not store any kinematic models, system models or motion data natively. By

placing all those elements in an external configuration file (i.e. BVHE), Skeletrix

provides a high level of customizability. All skeletal rig constructions and hardware

configurations tasks are achieved by simply editing BVHE code. The requirements

specification introduces the principle of transparency whereby users are given full

access to observe and visualize the software’s back-end through its interface. Data can

be accessed at three levels using the KinematicsViewer, SystemViewer and

AnimationViewer accordance to the open source paradigm, this software environment

also provides the programming scaffolding to support user-produced additions. The

fourth viewer, the MotionCloudViewer, is further discussed in Chapter 6 in the

context of the Motion Cloud.

As identified in Chapter 2, file format standardization is a problem that limits

software cross-compatibility and information sharing. The field of motion capture

presents a saturated pool solutions competing for software support. This chapter has

introduced a new approach to standardizing file systems. Instead of creating an

entirely new language, which would require extensive implementations throughout

the industry, BVHE repurposes existing BVH code. Applying existing file systems to

solve reoccurring problems is an efficient approach that promotes existing software

cross-compatibilities. The BVHE format includes hardware configuration data to

	

	

91

streamline the user’s interaction with hardware. As previously discussed, the main

advantage of BVHE over any existing format is practicality by simplifying the motion

capture workflow. Users only have to load one file into the software environment to

start using an inertial motion capture system. Given that kinematic hierarchy is driven

by a system, which contains a system configuration, it is both logical and necessary to

form a relationship between the two by establishing one singular and more complete

file format. The ultimate goal is to introduce plug-and-play simplicity of computer

peripherals in the context of more complex inertial suits.

This chapter has showcased the design and development of the DDK, a flexible

approach for integrating inertial hardware with software. The DDK is designed to be

modular whereby a module is a self-contained DLL. Each DLL must be built in

accordance to a predefined template, which defines the bridging procedure between

the two applications. The DDK will be further evaluated throughout the next chapters

through the development of a motion capture suit and the integration of several sensor

devices.

This chapter has demonstrated how the Skeletrix software environment can be used to

test and evaluate the lowest-anchor centre of mass algorithm (LACOMA), a solution

for computing the supporting anchor of a kinematic model during gait. The proposed

solution introduces the concept of a weight model to add basic physics to a kinematic

model. The weight model is used to compute the axis of balance of the body. Using

the axis of balance it the kinematic anchor of the skeleton can be estimated more

accurately. While the algorithm shows potential through a set of five simulations,

there is room for further development to integrate this solution throughout the

Skeletrix framework.

3.13.1 Application Areas

This section introduces a set of potential application areas for the developments

presented in this chapter. The proposed software environment represents a tool for

developing inertial motion capture systems and is used throughout the remainder of

this thesis. But first, let’s consider three additional scenarios: hardware development,

constructing heterogeneous BSNs and benchmarking.

	

	

92

Scenario 1: Hardware Development

The development of an inertial motion capture system requires computer-side

software, as rotational data cannot be used in the context of character animation

without kinematics. Throughout this chapter, emphasis was put on the DDK and

BVHE to demonstrate a better approach for creating computer-hardware

intercommunications. The Skeletrix software environment has the potential to be used

as a tool for developing hardware as it simplifies the procedure of extracting and

processing rotational data. The SystemViewer can be used to analyse the raw system

data, the KinematicsViewer can be used to visualise the character motion and the

AnimationViewer can be used to output the data for further analysis. This usability

scenario is demonstrated throughout the next chapter, Chapter 4, in the context of

MTDS.

Scenario 2: Constructing Heterogeneous BSNs

Inertial motion capture systems imply the use of an array of sensors. It is difficult to

construct a BSN without acquiring an otherwise expensive motion capture system.

The concept of a heterogeneous BSN, previously published in Pascu et al. [17] and

previously discussed in Section 2.6.2, has the potential to make inertial motion

capture system more attainable to the average user. While the DDK allows for the

easy integration of hardware, the BVHE file format is specifies the hardware

configuration of the system in use. Using these unique features, several dissimilar

sensors (that may differ in terms of hardware) could be interconnected to form a

prototype level motion capture system. Heterogeneous BSNs represent a step forward

towards making inertial motion capture systems more flexible.

Scenario 3: Benchmarking

A key aspect of the field of motion capture is benchmarking whereby several systems

are compared to measure performance. The concept of performance is introduced

throughout this thesis as a measure of the difference between recorded and real life

motion. There are many sensor attributes (see Section 2.5.2) that are significant

factors in achieving performance. A key aspect of benchmarking is to avoid being

bias towards a system. At present, inertial motion capture hardware can be

benchmarked using their bespoke software applications, which achieve their

functionality using varying methodologies. For example, benchmarking the hardware

	

	

93

inside two identical sensor devices, that use two software-side methods for

calibration, will produce a bias. If one of the calibration methods is more successful

than the other, the data will be compromised throughout the recording, thus making

two identical systems have different performance attributes. Using the software

environment presented in this chapter for both systems will remove that bias and

make the benchmarking process more objective. This is because both system will use

identical software.

	

	

94

CHAPTER FOUR

4 Constructing Inertial Body Sensor

Networks

4.1 Introduction
The Skeletrix software environment, previously introduced in Chapter 3, provides a

software layer for inertial motion capture systems while providing unique solutions to

the challenges faced when acquiring and processing motion data produced by body

sensor networks (BSN). The motion data obtained must be processed in a specific

manner to become useful in the context of skeletal motion reconstruction.

While the previous chapter has focused on the software aspect, this chapter is centred

on the integration of commercial hardware and the development of an entirely new

BSN. As shown in Figure 4-1, the development of the new BSN comprises of both

firmware and hardware development.

Figure 4-1: A high-level representation of motion capture frameworks with emphasis on the

firmware and hardware aspects and their technologies.

In broad terms, hardware development involves printing circuit boards, integrating

microcontrollers and integrating inertial motion sensors (e.g. gyroscopes,

accelerometers and magnetometers). A BSN will consist of several inertial

Data	
 Conversions	

IMU	

Development	

FIRMWARE	

ENVIRONMENT	

HARDWARE	

ENVIRONMENT	

Networking	

Data	
 Conversions	
 &	

Packaging	

SOFTWARE	

ENVIRONMENT	

Data	
 Acquisition	
 From	
 IMUs	

Motion	
 Processing	

Circuit	
 Board	

Development	

Sensor	

Integration	

Multiplexer	

Development	

Microcontroller	

Integration	

	

	

95

measurement units (IMU) connected to a multiplexer. Firmware development is

concerned with programming the microcontrollers to extract motion data from the

sensors, process it and communicate it across the network.

This chapter’s first aim is to demonstrate the integration of hardware within the

framework using the Skeletrix software environment. Two commercially available

IMUs are integrated to form two case studies. The two IMUs provide a source of

motion data that can be used throughout the framework (e.g. with the Motion Cloud

which is published in Pascu et al. [15] [16] [19]). This chapter’s second aim is to

form a critical discussion on the topic of BSN development. The discussion is centred

on the development of a prototype BSN entitled Motion Tracking Development

System (MTDS) Pascu et al. [18].

MTDS is discussed with emphasis on the requirements specification,

conceptualization and development. MTDS is an upper body motion capture suit

integrating a number of IMUs that are attached to the upper body using elastic straps.

The MTDS multiplexer is a small belt-worn device that powers the suit from four AA

batteries. The device functions primarily wirelessly as it uses a Bluetooth emitter to

send data to the computer. While a serial port connector can be used, the wired

version is primarily used to update the microcontroller firmware. The multiplexer is

the central node of the BSN and its purpose is to acquire, validate, package and send

data from each sensor.

The MTDS IMU is a thumb-sized device containing a gyroscope, an accelerometer

and a microcontroller. This configuration demonstrates the integration of multiple

motion sensors within the same IMU. While a magnetometer would be desirable to

for sensor fusion, the magnetometer was not integrated in this iteration of the system.

In addition to cost and development time constraints, a magnetometer was not

integrated because the scope of this research did not include the development of a new

sensor fusion algorithm. The extended Kalman filter is a well-known and highly-

accurate solution for gyroscope, accelerometer and magnetometer sensor fusion (see

Section 2.5.4). The performance of the MTDS IMU relies on the gyroscope. The

IMU’s microcontroller is used to extract sensor data and convert it into world-space

quaternions as required for the Skeletrix software environment.

	

	

96

4.2 Framework Relevance

The developments presented in this chapter are important in demonstrating the

functionality of the Skeletrix software environment. As previously mentioned, the

functionality is demonstrated by integrating the two IMUs that are available

commercially. The knowledge acquired from the two IMUs is then used to develop

the MTDS prototype. The integration and development of the sensors is achieved

using the Skeletrix software environment driver development kit (DDK) and BVHE

features to form a gateway for inputting inertial motion data into the framework.

As shown in Figure 4-2, the process of integrating hardware is an important layer of

the Skeletrix framework. It provides the framework with motion data that can later be

used to demonstrate its functionality.

Figure 4-2: The Skeletrix software environment is evaluated using commercial IMUs and

MTDS, a prototype BSN. Source: Pascu et al. [15] [16]

	

	

97

4.3 Integrating Hardware
This section is focused on the integration of inertial motion capture sensors that are

available commercially. Drivers are developed for two very different sensors to

demonstrate the integration of a wireless software-centric and a wired hardware-

centric IMU.

4.3.1 Case Study: Shimmer R2

The Shimmer R2 [144], shown in Figure 4-3, is a wireless IMU that can be bought

individually or as part of the Shimmer software development kit (SDK). The SDK

includes documentation, software and firmware examples. The device contains a

Texas Instruments MSP430 microcontroller [145] and an InvenSense IDG500

gyroscope [146], an ADXL345 [147] accelerometer and a Honeywell HMC5843

[148] magnetometer. The gyroscope is very similar to the one in the Nintendo Wii

Motion Plus controller [149].

Figure 4-3: Shimmer R2 wireless IMU. Source: [150]

Data can be extracted from the Shimmer R2 either through Bluetooth or 802.15.4

radio. Bluetooth was chosen because it is compatible with most laptop computers and

does not require an additional receiver. The integration of these devices, to form a

basic wireless body area network (WBAN), has previously been discussed in Pascu et

al. [19]. Each IMU is paired with the computer through a virtual communication port

(VCP) service using a predefined password that is written on the device itself. VCPs

are ideal for development because they emulate serial communication ports. In

essence, the computer can access the device by opening and querying a port. The

microcontroller can be programmed with testing firmware to determine if the device

	

	

98

is communicating with the computer correctly. An instruction can be sent to the

device to toggle its light-emitting diode (LED), giving the user a visual confirmation

that the connection to the computer is successful.

Once connected, the device will not start streaming data without a handshake

procedure. The handshake implies sending a set of instructions to activate data

streaming. That list of instruction is available within the device’s documentation. For

devices that do not come with an SDK, a serial port listener can be used to observe,

record and replicate how the hardware communicates with its factory software. The

handshake instructions were replicated in a driver module, which was developed

according to the DDK specifications discussed in Chapter 3.

Once the Skeletrix software environment is connected and data is being streamed,

focus is put on understanding the structure of the incoming messages. Data is received

as a list of bytes as the device outputs gyroscope, accelerometer and magnetometer

readings along with a timestamp and a byte delimiter. Because data is packaged as a

stream of bytes, the delimiter allows the driver to understand where a sensor reading

starts and finishes. A small parser can be developed to decode the data. The three

sensors output raw data that requires conversions. For example, the gyroscope outputs

angular speeds that must be converted into world-space rotations.

The Shimmer R2 is a wireless IMU that is suitable for experimental research and

development as it provides a first-hand understanding of how an IMU works through

tutorials and example source code. However, a BSN integrating a large number of

these devices cannot be constructed due to Bluetooth limitations. This problem

becomes apparent in a research laboratory where there are a many wireless devices.

4.3.2 Case Study: Razor AHRS

The Razor Attitude Heading Reference System (AHRS) [151] is a wired IMU

designed to be integrated like an Arduino development board. As shown in Figure 4-

4, this IMU was integrated using a Future Technology Devices International (FTDI)

basic breakout board [152] and six connecting cables. The breakout board is used to

convert and output the IMU’s data through USB. The IMU contains an ITG3200

gyroscope [153], an ADXL345 accelerometer [147] and a HMC5883L magnetometer

[154], making it a 9 degrees of freedom (DOF) IMU. Its microcontroller is

	

	

99

programmed with an STK500V1 boot loader. Therefore, a computer will recognise

this device as being an Arduino development board.

Figure 4-4: Razor AHRS setup with a FTDI basic breakout board.

The device will begin streaming rotational data without any additional instructions or

handshaking procedures. The microcontroller is programmed to automatically

combine the data produced by the three sensors to produce world-space Euler

rotations as required for most application areas. This IMU was integrated with the

Skeletrix software environment by converting those Euler rotations into quaternions.

The driver was developed in a similar fashion to the Shimmer R2 driver. The source

code for the driver can be found in Appendix B. As shown in Figure 4-5, the rotations

are applied to the skeleton’s root to rotate it in 3D space. The skeleton replicates the

rotation of the device as it is tilted.

Figure 4-5: Acquiring data from the Razor AHRS.

	

	

100

4.4 Motion Tracking Development System
The Motion Tracking Development System (MTDS) is a purpose-built inertial motion

capture suit designed to be worn on the upper body. It is developed in conjunction

with the Skeletrix software environment (Pascu et al. [17] [18]) presented Chapter 3.

While there are many IMUs available commercially, most devices are not designed to

be interconnected to form a BSN. The MTDS contains several low-power IMU

enclosing gyroscopes and accelerometers. Unlike other sensor products, the MTDS

IMUs are specifically designed to be interconnected and form a BSN. The connection

is achieved using a central multiplexer that is tasked with acquiring data from the

sensors, packaging it and sending the package to the computer. This section discusses

the requirements specification, conceptualization, design and implementation of the

suit.

4.4.1 Preliminary Requirements Specification

The MTDS system is a BSN aimed at upper body character motion tracking. As

previously discussed in Section 2.6, the development of any BSN should be achieved

in accordance to four properties: hardware/software-centricity of the data processing,

homogenous/heterogeneous nature of the sensors, directionality of the data

intercommunications and networking. This section discusses those properties in the

context of MTDS to produce a preliminary requirements specification.

Hardware/Software-Centricity: Inertial motion capture systems require motion

processing whereby the sensor outputs are converted in a suitable format that can be

used to animate a kinematic skeleton. Motion processing can take place either at the

hardware or software level. Software-centricity puts focus on computer drivers while

hardware-centricity puts focus on firmware. Like the Razor AHRS, MTDS will

compute motion within the hardware to reduce the size of the data packets

communicated between the hardware and the computer. A hardware-centric BSN will

be easier to integrate with software (thinner software layer as the computations are

achieved in the firmware) and perform better (firmware can process motion data faster

than software because it is closer to the its source). These benefits, justifying the need

for hardware-centricity, are also discussed in Pascu et al. [17].

	

	

101

Heterogeneous/Homogenous: Prototyping a system implies printing circuit boards,

manufacturing hardware and developing firmware. The complexity and cost of the

system can be reduced considerably by creating one sensor and replicating it

throughout the BSN. Therefore, MTDS should be homogenous system.

Directionality: MTDS must be a directional BSN whereby data is extracted from the

sensors by the multiplexer and sent, directionally, directly to the computer as quickly

as possible. Because the kinematic model is processed on the computer by the

Skeletrix software environment, there is no logical reason for omnidirectional node

communications in this BSN because it is hardware-centric and no data is sent from

the software to the IMUs. An omnidirectional BSN is introduced in Chapter 5 in the

context of mobile computing technologies and its benefits are also discussed.

Networking: Data communications between BSN nodes can be achieved wirelessly,

using wires or a combination of the two. As previously in the Shimmer R2 case study,

adding wireless connectivity to every node in the network can be problematic due to

the limited number of channels of supported by Bluetooth. Consequently, node

intercommunications must be achieved using a lightweight cable that is both elastic

and robust. However, it is desirable that all computer-hardware intercommunications

are achieved wirelessly through Bluetooth to ensure that cables do not restrict

movement. This approach can be found in the Animazoo [21] and XSens [98] [99]

suits.

Motion Processing: The integration of an MEMS gyroscope and accelerometer will

require motion processing. Consequently, it is important to understand what the

sensors output. The question arises: how usable is the motion data in the context of

skeletal motion reconstruction? Like the Shimmer R2, this gyroscope outputs angular

speeds that require conversions. Therefore, a small microcontroller must be

implemented to perform the conversions. As required for the Skeletrix software

environment, rotational data in the form of angular speeds must be converted into

world-space quaternions. The quaternions must be compensated to reduce drift and to

calibrate the sensors. The notion of calibration has previously been discussed in

Section 2.5.2.

Cost: Like with any hardware development, cost plays a very important role in the

design and implementation process of a system. Aside from development costs, cost

	

	

102

also concerns the target audience. For example, a complex system containing military

grade gyroscopes is expected to produce highly accurate motion data. However,

MTDS is a prototype system using MEMS sensor chips that are available

commercially. It investigates whether those sensor chips are sufficiently accurate to

detect the articulated movement of the upper body.

4.4.2 Conceptualizing a Motion Capture Suit

Figure 4-6 illustrates how the MTDS suit works by highlighting its principal

components and how they communicate. The computer, running the Skeletrix

software environment, communicates with the suit through the MTDS multiplexer.

The multiplexer encloses a microcontroller, a battery pack and a Bluetooth module.

The multiplexer communicates with the seven IMUs through a harness containing

only three cables. The first cable (red) must be used to send data (e.g. firmware

updates, polling commands, instructions, etc.) to the BSN nodes. The second cable

(green) is used to retrieve data such as angular readings. Lastly, the third cable (blue)

powers the whole system from the multiplexer’s battery pack.

Figure 4-6: How seven MTDS IMUs communicate motion data to the multiplexer.

MPU	

Gyro.	

Acc.	

chest	

MPU	

Gyro.	

Acc.	

IMU:	
 chest	

MPU	

Gyro.	

Acc.	

IMU:	
 right_arm	

MPU	

Gyro.	

Acc.	

IMU:	
 right_hand	

Motion	
 Tracking	
 Development	
 System	

Data	
 IN	

Data	
 OUT	

Power	

MPU	

Battery	

Pack	

MULTIPLEXER	

Bluetooth	

Emitter	

	

	

103

As shown in Figure 4-7, the MTDS suit uses seven IMUs placed on the hands,

forearms, arms and torso. The suit consists of seven straps, which can be worn on top

of clothing. More specifically, the hands use fingerless gloves, the forearms use

modified wristbands, the arms and torso use elastic straps. Two additional straps are

wrapped around the shoulders to prevent the harness from getting in the way of the

arm movements.

The IMUs are daisy chained using a harness, which begins at the multiplexer,

bifurcates at the chest and finished at the hands. The initial prototype used a ribbon

cable but, due to its length, the three signals were interfering with each other.

Additionally, the ribbon cable proved brittle and often broke at the connectors. The

solution was to take three slightly thicker cables and plat them. The platted harness

proved robust and elastic, making it less likely to break at the connectors.

Figure 4-7: MTDS suit.

	

	

104

4.4.3 MTDS Inertial Measurement Unit

The MTDS IMU is a small thumb-sized device designed to measure either rotations

or gravitational accelerations of a body part. The device was designed to be

lightweight so that it moves very little in relation to the body. The device was also

designed to be flat so that it can be attached to the body with elastic straps. As shown

in Figure 4-8, the device is a small circuit board with an insulation-displacement

connector (IDC). The internal components are protected by heat-shrink rubber tube.

Figure 4-8: MTDS inertial measurement unit.

The circuit board integrates IMU3000 [155] gyroscope and, depending on availability,

both MMA8451Q and MMA8452Q accelerometers [156]. At the time of

development, the IMU3000 was one of the most powerful consumer-level gyroscopes.

It is a newer and more powerful version of the IDG500, which can be found in

Shimmer R2 IMU. The microcontroller used to process the motion is a low-power

Atmel AVR RISC chip [157].

The desired output of the device is world-space quaternion rotations, as required by

the Skeletrix software environment. Like the Shimmer R2, the IMU3000 outputs

angular speeds instead of the more desirable world-space rotations. Consequently, the

MTDS IMU’s microcontroller firmware had to convert angular speeds into

quaternions. This conversion is a three-step process. To begin with, the

microcontroller stores a timestamp with every recorded angular speed. Rotational

increments can be calculated by multiplying the angular speed with the timestamp

difference. Then, rotational increments are summed to produce world-space Euler

	

	

105

rotations. Lastly, the rotations are converted into quaternions using the conversion

equations shown in Appendix A.

The MTDS IMU has two operational modes that can be selected through a boot

loader. On start-up, the boot loader decides which part of the firmware code to

execute. The default operational mode is the development mode, which allows for

firmware updates from the computer. Alternatively, the device will function as a BSN

node whereby it outputs quaternions if a specific instruction is sent to the

microcontroller.

The MTDS IMU was developed to demonstrate the construction of a BSN and data

acquisition from multiple motion sensors. A magnetometer was not necessary for this

task. However, without a magnetometer sensor fusion is not possible. Alternative

methods for drift compensation were used to reduce the amount of gyroscope drift.

When started, the device must remain motionless for 10 seconds. Even though the

device is motionless, the gyroscope outputs rotations that correspond to gyroscope

drift. The microcontroller starts to read and sum those rotations and, after 10 seconds,

concludes a compensation value. The compensation value is subtracted from every

gyroscope output to follow, thus calibrating the gyroscope for use. Using this

approach means that the sensor can only be used for short periods of time before drift

becomes noticeable. Drift could be further compensated by integrating a

magnetometer and performing sensor fusion. Notably, modern motion sensors (e.g.

the InvenSense MPU9150 [158]) contain the gyroscope, accelerometer and

magnetometer in the same chip capsule and perform sensor fusion automatically using

an internal microcontroller. Such devices could be integrated in future iterations of the

MTDS IMU to solve the drift problem.

4.4.4 MTDS Multiplexer

The MTDS multiplexer is the central node and power supply of the BSN. Because it

contains four AA batteries, it is also the heaviest component of the suit. As shown in

Figure 4-9, the small metal box is worn using a belt hook. Because the multiplexer is

the main component of the suit, it contains the power switch that turns on and off all

the IMUs.

	

	

106

Figure 4-9: MTDS multiplexer.

As illustrated in Figure 4-10, the multiplexer contains a Bluetooth module, an IDC

connector for the suit’s harness and two twin AA battery packs that power the suit.

The multiplexer also encloses a MTDS IMU, which is integrated as part of the main

circuit board. This means that there is a gyroscope and an accelerometer inside the

device. However, the multiplexer’s sensors were made redundant for three reasons.

First, the device’s microcontroller is not powerful enough to simultaneously process

motion and acquire data from the BSN. Second, the multiplexer proved too heavy to

be worn on the chest and wearing it on the belt gives inaccurate motion readings.

Third, it proved time consuming to develop two separate iterations of the IMU

firmware, one for the BSN nodes and one for the multiplexer’s sensors. The solution

to these problems was to add an additional IMU to the BSN, which is external and

connected to the multiplexer using the harness.

Figure 4-10: MTDS multiplexer opened showing top (left) and bottom (right) views.

	

	

107

The multiplexer has three methods for communicating with the computer. The suit

can be connected to the computer using a serial connector or through a USB

convertor. The wired approach is primarily aimed at developing or updating or

firmware for the multiplexer and the network’s IMUs. Alternatively, the suit can be

used wirelessly though Bluetooth. As shown in Figure 4-4, the multiplexer integrates

a Parani ESD100 Bluetooth module [159]. This module takes the input of a serial

cable and outputs a Bluetooth signal that can be interpreted by the computer as a

serial connection through a virtual port emulator. While the wireless approach is more

desirable, the wired approach is more stable. In both scenarios, the suit is powered by

the four AA batteries and not through the USB.

The multiplexer’s microcontroller is an Atmel AVR RISC chip that is similar to the

ones implemented in the IMUs. The microcontroller polls the sensors at specific time

intervals while taking into account code execution delays to ensure that data is

collected at the exactly the specified frame rate. The microcontroller does not have

sufficient Random Access Memory (RAM) and there is no internal storage to buffer

the result for longer periods of time, especially at high frame rates. Every time an

IMU is polled, the result is sent straight to the Bluetooth module that forwards it to

the computer. The IMU polling takes place in a sequential fashion. The multiplexer

iterates through the network to poll every IMU individually. Data is extracted and

packaged along with a unique identifier, which keeps track of which sensor has

produced the reading.

The multiplexer verifies the validity of the data using a cyclic redundancy check

(CRC) function to ensure that the incoming sensor readings are feasible. The CRC

function uses hash encoding and compares every sensor’s reading against previous

readings. An incomplete reading or error will be discarded and replaced by a previous

reading. If there is a problem (e.g. a sensor disconnects), this safety measure ensures

that the BSN does not crash. Instead, the BSN remains partially operational until a

sensor is reconnected.

	

	

108

4.4.5 Upper Body Character Motion Tracking

The MTDS suit was evaluated through a series of upper body motion tracking

experiments where the motion performer wears the suit and acts out upper body

gestures. As shown in Figure 4-11, the kinematic model replicates the posture and

motion of the performer real-time at the frame rate of 30f/s.

Figure 4-11: MTDS upper body motion tracking using the Skeletrix software environment.

Source: Pascu et al. [17]

	

	

109

4.5 Conclusions
This chapter has demonstrated the integration of existing sensor hardware within the

framework using the Skeletrix software environment. This chapter has two

fundamental goals. The first goal is to demonstrate the integration of hardware, which

is an important requirement for the framework. Hardware integration is required to

create a source for inertial motion capture data that can later be used to test and

evaluate the framework. For example, data recorded from these studies can be

uploaded to the Motion Cloud and visualised using the web portal or the smartphone

application presented in Chapter 5. The second goal is to discuss and demonstrate

BSN development, a task which is achieved through the Shimmer R2, Razor AHRS

and MTDS prototype.

MTDS demonstrates how a BSN prototype can be constructed cost-effectively to be

robust and suitable for experiments (due to the addition of a boot-loader that

facilitates firmware updates), as required for the research work presented in this

thesis. Its development is presented in three stages. The initial stage is focused on the

conceptualization and requirement specification of the system to establish how the

system will work in terms of hardware-centricity, connectivity, power consumption,

etc. The second stage showcases the development of a multiplexer device, which is a

central node for the network. The third stage is focused on the development and

implementation of an IMU that is designed specifically to function as a BSN

component.

The MTDS suit was not benchmarked against other systems because there are no

motion capture suits that provide SDKs or open source code. Benchmarking is a

process that requires the testing and evaluation of each stage of the motion capture

workflow (e.g. comparing methods for calibration, sensor fusion, etc.). Motion

capture suit manufacturers, such as Animazoo [21] or XSens [98] [99], tend to protect

their intellectual property and do not provide users with the source code. Instead of

benchmarking, the three IMUs were compared and evaluated in accordance to the

sensor attributes previously established in Chapter 2 in order to highlight the strengths

and weaknesses of each sensor within the context of constructing a BSN.

The Shimmer R2 IMU is the least powerful of the three presented and also the oldest.

It is the only device that provides wireless connectivity and contains a battery. Using

	

	

110

the SDK, it is also the device most suitable for experimental research. Unlike the

MTDS IMU, it includes a magnetometer and has potential to be flashed with sensor

fusion firmware. Unlike the Razor AHRS, it comes in a small package that can be

strapped to the body. Shimmer even supplies a strap with the device. Due to the

limitations of Bluetooth many devices cannot be networked to form large WBANs.

The Razor AHRS IMU is the most powerful of the three presented and also the

newest. It is the only device that runs a sensor fusion algorithm. Consequently, it

presents the least amount of gyroscope drift and can be used for long periods of time.

The device is capable of producing world-space rotations straight out of the box. This

device contains the most powerful gyroscope, accelerometer and magnetometer out of

the three presented as its technical specifications are closely matched to the MTDS

IMU. Like the MTDS IMU, this device can be used to construct a BSN by replacing

the FTDI breakout board with a multiplexer.

By today’s standards, the MTDS IMU contains a mid-range gyroscope and

accelerometer. Considering its preliminary requirements specification, this device is

the smallest of the three in terms of size and is ideal for constructing a BSN. Motion is

processed at the hardware level with the aid of the multiplexer.

These three sensors can be used to showcase the advances in MEMS technologies that

took place throughout the completion of this thesis. Modern sensors, like the Razor

AHRS, come programmed with sensor fusion algorithms from the factory. The

successor to the Shimmer R2, namely the Shimmer 3 [160], also provides that

functionality. Sensor fusion is one of the most problematic yet important properties of

MEMS technologies.

	

	

111

CHAPTER FIVE

5 Sensing Through Mobile Computing

Technologies

5.1 Introduction
Chapter 3 has introduced the Skeletrix software environment published in Pascu et al.

[17] [18], a tool for developing inertial motion capture technologies. Emphasis was

put on the individual challenges faced in extracting data from hardware and producing

3D visualisations. As a result, this thesis has established a more efficient motion

capture workflow aimed at tightening the relationship between hardware and

software. Using the driver development kit, users can construct and integrate body

sensor networks (BSN) using heterogeneous sensors. The hardware configuration and

its output are stored in a revised file format entitled Biovision Hierarchy Extended

(BVHE). To summarise, the software environment has presented a white-box

approach to creating a motion capture workflow through which all the individual

computations of motion are exposed to the developer.

The smartphone is the most ubiquitous [161] wearable computing technology and its

sensing capabilities have many application areas [162] [163]. Most people have

smartphones and most smartphones enclose gyroscopes, accelerometers and

magnetometers. This configuration is identical to that found in inertial measurement

units (IMU). The smartphone’s worldwide uptake has prompted many advances in

MEMS technologies whereby inertial motion sensors are now designed more robustly

and are more affordable. In addition to inertial sensors, modern smartphones also

enclose global positioning systems, optical cameras, pressure sensors, thermometers

and light sensors. The smartphone’s inherent capability to sense while connected to

the Internet has produced new application areas. When paired with web technologies,

modern smartphones can form large sensor networks [164] focused around

aggregating sensor data in online repositories. A popular application area for

smartphone sensor networks is activity tracking whereby the device is able to

determine the overall comportment of its operator [165] [166]. This chapter poses

three important questions: What is the fundamental difference between sensor

	

	

112

networks and BSNs? Is it possible to construct BSNs using smartphones? If yes, is

human motion capture possible through smartphone-driven BSNs?

To answer those questions, this chapter introduces an innovative mobile application,

which was published in Pascu et al. [15] [16] [19]. The mobile application makes use

of the smartphone’s ability to constantly sustain an Internet connection to establish

online BSNs. The goal is to create a motion capture system that can sense, compute

and visualise motion completely independently of a computer. Using the mobile

application, several smartphones running instances of the application can be

interconnected over Wi-Fi or 3G. While a typical motion capture suit uses a

multiplexer as a data hub between its constituent nodes, the proposed smartphone

equivalent substitutes the concept of a multiplexer for an online server, which is

entitled Motion Cloud and is further discussed in Chapter 6. Each device computes

motion and uploads it in real-time to a server through a set of web services. The

server merges the result and directs it back to every smartphone in the network, thus

forming an omnidirectional BSN. The unique property of omnidirectional networks is

that every sensor node communicates with every other node, thus eliminating the need

for ranked roles (there are no master-slave relationships between network

components). Every node is aware what every other node’s data, allowing it to

compute motion more accurately. Additionally, the workload is distributed between

several multicore processors making the BSN computations more efficient.

Aside from the novel approach to capturing motion, the Skeletrix mobile application

is unique in several aspects. While most inertial suits are developed to function in one

particular configuration, the online server dictates the configuration of the

smartphone-driven BSN, making the system highly customizable and modular. The

user has the option to tailor the system to every individual experiment by choosing the

number of smartphones to interconnect. This approach simplifies the task of adding or

subtracting smartphones from a BSN. The user also has the option of creating very

large BSNs because the server can support more connections than a physical

multiplexer.

In contrast to the software environment previously introduced, this chapter presents an

automated workflow in accordance to the black-box paradigm whereby the software

environment processes motion without user input. Like the software environment, the

	

	

113

smartphone application also contains kinematic models, an OpenGL ES renderer, file

parsers, etc. Condensing the otherwise large components of the software environment

into a mobile application required much optimization and simplification both at the

view and controller layers. The mobile application is developed as a Model View

Controller (MVC) architecture.

To put the development of the mobile application into context, three fundamental

questions arise. What could the mobile application be used for? What are its

application areas? Are people going to strap smartphones to their bodies? The mobile

application is not presented as a substitute for inertial motion capture systems, but as a

suitable test bed for prototyping BSNs and creating small systems for experimental

research. In situations where the experiment requires two or three sensors, it may be

simpler to use smartphones than the much more difficult to attain and expensive

motion capture alternatives.

Users sometimes do wear smartphones strapped to their bodies, particularly in the

context of activity tracking. For example, there are armbands available commercially

that allow users to attach the smartphone to the arm while jogging to measure their

physical activity in terms of number of steps, distance travelled, etc. Medical science

is another very important application area for smartphones. Some medical disorders,

such as idiopathic scoliosis [51] or Parkinson’s disease [48] [79], have a measurable

effect on the motor functions of the body. The smartphone application could be used

to track and evaluate the behaviour of patients. Because the smartphone application

streams data in real-time, it could also be used to find anomalies that are indicative of

emergency situations (e.g. an elderly person falling). These and other application

areas are further discussed in Section 5.13.1.

5.2 Framework Relevance
This thesis investigates new technologies that may be relevant to inertial motion

capture and BSNs. The mobile application explores the concept of sensing through

mobile computing technologies. Although the mobile application has a unique

purpose and functionality within the proposed framework, its development is

fundamentally based on the Skeletrix software environment architecture. More

specifically, the Skeletrix software environment is used as a starting point for the

development of the mobile application. The revisited workflow is designed to take

	

	

114

into account the computational constraints of smartphones while following the black-

box paradigm to create a user-friendly system.

While inertial motion capture is an important research topic that is relevant to many

application areas (see Section 2.3), inertial BSNs are a niche sector of the animation

and biomechanics industries. Because the smartphone is ubiquitous, the addition of

mobile computing technologies to the Skeletrix framework creates a new spectrum of

application areas centred on sensor networks. The mobile application is also a new

source for motion data within the framework. One of the biggest contributions of the

mobile application to the Skeletrix framework is the addition of web technologies to

the workflow. Although the Motion Cloud is introduced in Chapter 6, its

conceptualization originates from this chapter’s developments. Figure 5-1 illustrates

this research work’s place in the framework.

Figure 5-1: Skeletrix mobile application introduces web and mobile computing technologies

to the framework. Source: Pascu et al. [15] [16]

	

	

115

5.3 Preliminary Requirements Specification
As previously mentioned, the development of the online smartphone-driven BSN is

derived from the Skeletrix software environment presented in Chapter 3. The process

of porting the software environment to the Android platform involves a major

redesign of the architecture in terms of front-end and back-end functionality. This

section summarizes both functional and non-functional requirements to create a

preliminary requirement specification. The resulting specification can be divided into

system, interface and network requirements.

5.3.1 System Requirements

Object-Orientation: The Android platform uses Java, which is an object-oriented

programming language that runs in a virtual machine. Object orientation allows the

code to be efficient, modular, reusable and easy to maintain or extend. Consequently,

the Java-based mobile application must be object-oriented whereby the code is

divided into object and each object has a logical purpose by itself and as a component

in the architecture. While memory management and garbage collection is achieved

through the virtual machine, efficient object intercommunications are key in

optimizing performance.

Multithreading: Modern mobile computing technologies enclose multicore ARM or

Intel processors that support multithreading. The smartphone requires a powerful

processing unit to run multiple applications concurrently. Inertial motion capture

implies computing motion as quickly as possible and multithreading is an integral part

of that process. The tasks of processing motion data, computing kinematics, rendering

3D visualisations, running the interface layer need to be allocated separate threads.

Multithreading allows the code to execute concurrently on the processor, thus

increasing the overall performance.

Distributed Computing: The concept of smartphone-driven BSNs implies using

devices that sense and process motion concurrently where a copy of the application is

running on every network node. Rather than computing network’s motion on one

single device, each network node can process its own motion. Distributed computing

is key in ensuring an even allocation of tasks across the network. Using a

	

	

116

constellation of multicore processors amounts to one computationally powerful

system.

Motion Processing: By default, the smartphone does not produce usable motion.

Because the accelerometer and magnetometer sensors are used by the interface, the

Android Application-Programming Interface API provides functions for extracting

and merging the accelerometer/magnetometer orientation. The orientation is provided

as a world-space rotation that contains large amounts of noise. Post-processing filters

must be applied to make that data usable for motion capture. Alternatively, the

gyroscope data can be used as it contains little noise. However, the gyroscope data

contains drift that can be compensated using the other two sensors. The ideal result

should contain little noise or drift.

5.3.2 Interface Requirements

Black Box Paradigm: While the Skeletrix software environment was focused on

creating a level of transparency that helps developers understand motion capture

systems, the mobile application must be developed in accordance to the black box

model [167] [168]. This is because the act of interacting with several device screens

simultaneously is difficult and reducing the number of user-performed action will

improve usability. Consequently, the majority of the mobile application’s

functionality must be autonomous. The black box model defines a type of

programming focused on inputs and outputs rather than the intermediary

computations. As shown in Figure 5-2, the mobile application must achieve a lot of

functionality with little user input from the interface layer.

Figure 5-2: The black box model and Skeletrix mobile application.

Multitouch Gesture Interaction: A key design decision for mobile computing

technologies that minimise the complexity of user interfaces is multitouch gesture

interaction. The study [169], which is primarily focused on tablet interactions,

discusses the importance of multitouch gestures in the context of musculoskeletal

systems and kinematic models. While the Skeletrix software environment uses mouse

User	
 Input	
 Usable	
 Motion	

Black	
 Box	

(Skeletrix	
 Mobile	

Application)	

	

	

117

and keyboard to interact with the 3D visualisations, the mobile application must

replicate that functionality through multitouch gestures. The two most common

gestures familiar to smartphone users are pinch to zoom and swipe.

3D Data Visualisation: As previously discussed in the context of the software

environment, 3D skeletal representations of motion using kinematic models are

important in giving users an interpretable visualisation of motion. Rotational data

must be gathered from all BSN nodes and applied to a kinematic model. Because the

mobile application targets the Android platform, an OpenGL ES [170] renderer can be

used to visualise the motion in 3D as a virtual skeleton.

5.3.3 Network Requirements

Omnidirectional Communications: The task of creating smartphone-driven BSN

differs fundamentally from that of an inertial motion capture system. Smartphones

present the unique property of combining both the hardware and software aspect of

sensing into one device. Consequently, the smartphone-driven BSN does not require a

designated computer. This poses the question: which body-worn smartphone becomes

the computer? Omnidirectional BSNs are also beneficial because each node can take

into consideration the data produced by its neighbouring nodes when computing its

own motion, thus making the result more accurate.

BSN Controller: Inertial motion capture systems have multiplexers, which are chest or

belt worn devices tasked with gathering data from the sensors, synchronizing the data

and sending the combined result to a computer. The multiplexer serves the

fundamental purpose of turning several devices into one singular system. The

smartphone-driven BSN must replicate that functionality in the absence of a physical

multiplexer device. The only solution is to use a server and a set of web services to

remote control the functionality of the smartphones and retrieve motion data.

Data Streaming Protocols: While inertial motion capture systems use short-ranged

communication protocols (e.g. Bluetooth), the smartphone equivalent will rely on

Internet connectivity. Internet connectivity is particularly unstable depending on many

factors such as signal strength and connectivity mode (i.e. 3G, 4G, Wi-Fi). A flexible

data streaming protocol is required to ensure that no data is lost.

	

	

118

5.4 Conceptualizing a Smartphone-Driven BSN
This section discusses how the smartphone can be converted into a BSN node in one

tap. Figure 5-3 illustrates how three smartphones can be interconnected through the

Motion Cloud repository and gateway. Each smartphones streams its data into

repository channel objects. Simultaneously, each smartphone interrogates the

repository to retrieve a complete data set. The BSN controller is a component of the

Motion Cloud gateway that controls several BSN nodes remotely. Rather than starting

each smartphone manually, the network nodes are connected to a gateway trigger

object. Each network node constantly listens for trigger status changes. As a result,

users can use one smartphone to control the whole network.

Figure 5-3: Three smartphones form an omnidirectional BSN using the Motion Cloud

repository and gateway. Source: Pascu et al. [15] [16]

Repository	

Motion	
 Cloud	

Gateway	

BSN	
 Controller	
 Recording	
 Object	

Trigger	
 Object	
 Data	
 Data	
 Data	

Trigger	

Communications	

Data	

Upload/Download	

Smartphone	
 1	
 Smartphone	
 2	
 Smartphone	
 3	

	

	

119

5.4.1 Initializing the BSN

The first stage of initializing the smartphone-driven BSN involves creating a Motion

Cloud user account. Once logged in, users can create or select an existing recording

object through the Motion Cloud web portal or the mobile application interface. User

accounts and recording objects are required to allow multiple BSNs to function

simultaneously on the Motion Cloud. Once a recording object is selected, the

smartphones become a BSN by listening to a common gateway trigger. A successful

BSN initialization can be observed visually as each smartphone’s interface turns from

orange (inactive) to green (active).

Once the BSN is initiated, the smartphones start streaming data. Figure 5-4 illustrates

the internal workings of the mobile application as a flow diagram. The application’s

recorder extracts and processes the motion data. The application verifies that the

smartphone is online and communicates data to the server. The server receives the

data and waits for all other nodes to upload. Once a complete set of data is found, the

server applies a synchronization algorithm and sends the result back to the

smartphones. Each smartphone cleans the data and applies it to the kinematic model,

thus producing an animated skeletal rig.

Figure 5-4: The stages of streaming motion data to and from the Motion Cloud server.

Source: Pascu et al. [19]

	

	

120

5.4.2 Operating Modes

The mobile application has been evaluated through four operating modes: offline,

online, directional streaming and omnidirectional streaming. Through these operating

modes, the proposed smartphone application becomes more versatile in a wider

variety of contexts. Directional streaming was implemented in the final version of the

mobile application.

Mode 1: Offline

Motion data can be recorded locally without web connectivity. If the smartphone is

offline, the server communication stages will be bypassed and the data will be applied

directly to the kinematic model. However, the interface allows users to manually

upload data to a recording object. As a result, data can be recorded locally and

uploaded later.

Mode 2: Online

It is not mandatory that data gets streamed to the server in real-time. The application’s

second operating mode only uploads data to the server once a recording is complete.

Data is buffered locally and the very end of the recording session, each smartphone

sends larger packets for server-side synchronization and network distribution. This

operating mode is primarily useful for situations in which the wireless signal is weak.

Mode 3: Directional Streaming

The relationship between the server and the smartphone can be configured to be

directional whereby smartphones upload data without the server responding until the

recording is stopped. The resulting motion can be accessed through the Motion Cloud

web portal or at the end of the recording. This operating mode is primarily for

situations where the result is only needed at the end of a recording session.

Mode 4: Omnidirectional Streaming

The last and most resource intensive operating mode, showcased in Figure 5-3,

involves streaming data to and from the server in real-time. Every smartphone in the

network uploads and downloads data from the Motion Cloud as quickly as possible

through asynchronous tasks. This operating mode is primarily aimed at Wi-Fi

connections.

	

	

121

5.5 Architecture Overview
The Skeletrix mobile application architecture follows the principles of object-oriented

programming. The code is written in Java and distributed throughout a set of objects.

The objects are grouped into packages whereby a package represents a category of

functionalities. The interface is written in eXtensible Markup Language (XML) using

restyled Android interface objects. This approach is standard for an Android mobile

application. Figure 5-5 shows the architecture’s six main packages entitled: launch,

core, kinematics, mathematics, sensing and user interface. The diagram also describes

objects and object interactions. This section continues to discuss the functionality of

each package aside from the user interface.

Figure 5-5: Skeletrix mobile application architecture diagram showing the main objects

organised as packages.

Skeletrix	

Local	

Storage	

Core	

Reader	

Writer	

Vector	

Quaternion	

Mathematics	

Skeleton	

Bone	

Kinematics	

Recorder	

Motion	

Processor	

Sensing	

Splash	

Login	

Launch	

Register	

Selector	

Splash	

Login	

User	
 Interface	

Register	

Selector	

Main	

Open	

Save	

Recorder	

	

	

122

5.5.1 Launch Package

The launch package provides all the back-end functionality for initiating the mobile

application. Its primary focus is to establish a connection with the Motion Cloud that

will be used to transfer data between the BSN’s nodes.

Login/Register Objects: The login object is used to authenticate the user with the

Motion Cloud database. A unique user id is retrieved from the database and passed to

the core package. For new users, the register object can be used to create a new

Motion Cloud account.

Selector Objects: The selector object is used to select a recording. Recordings define

the web space used by the BSN to store motion data. Several smartphones sharing the

same recording object automatically become a BSN.

5.5.2 Core Package

As with the software environment, the mobile application contains a centralised core

package tasked with gathering and processing the data from every other package. All

data passes through the core package at some point.

Skeletrix: The Skeletrix object is the mobile application’s main object. It is used to

gather and combine data from all the other packages. Other functionalities include 3D

rendering kinematic models, multitouch gesture interaction with the viewport and

animation controls.

Storage: The storage object is a centralised object tasked with storing, managing and

making accessible all data that is shared throughout the application (e.g. user id,

recording id, kinematic model).

Reader/Writer Objects: The reader object is used to parse Biovision Hierarchy (BVH)

files from the smartphone’s Secure Digital (SD) card to create a kinematic model. The

writing object is used to output the kinematic model and its motion data as a BVH

file. BVHE is not supported because all Android smartphones have one standardised

sensor configuration (a single sensor).

	

	

123

5.5.3 Mathematics Package

The mathematics package contains libraries for vector and quaternion algebra and is

very similar to that of the Skeletrix software environment.

Vector Object: The vector object provides a library for vector operations, which is

used frequently in the context of rotational and positional data. The reader, writer,

sensor manager, renderer and interface layer primarily use vectors.

Quaternion Object: For performance reasons and to avoid gimbal lock, quaternions

are used to represent rotational transformations. The quaternion object uses some of

the functionality of the vector object.

5.5.4 Kinematics Package

The kinematics package generates virtual bone objects and skeletal hierarchies to

create kinematic models (or rigs). Those models are subsequently used to create 3D

visualisations.

Bone Object: The bone object consists fundamentally of a name, a positional offset

and a list of quaternion rotations corresponding to frames of motion.

Skeleton Object: The skeleton object takes a list of bones and forms a skeletal

hierarchy consisting of both rotational and positional offsets. The skeleton object

provides a list of functions for iterating through the hierarchy. The methodology for

iterating through the hierarchy (in a specific order) is important in computing the

rotational and positional constraints correctly.

5.5.5 Sensing Package

The sensing package is used to take data from the device’s gyroscope, accelerometer

and magnetometer, compute a result and send that result throughout the BSN.

Sensor Manager Object: The sensor manager performs handshakes with each of the

sensors, namely the accelerometer and magnetometer. Data is extracted, merged and

the result is sent to the recorder object.

Recorder Object: The recorder object is tasked with controlling the recording process

by listening for trigger events. The recorder streams data to and from the server and

provides the BSN networking functionality.

	

	

124

5.5.6 Performance Optimization

While smartphones benefit from multicore processors and large amounts of Random

Access Memory (RAM), a large portion of that computational power is used by the

operating system and application multitasking. For example, the smartphone may run

several social media application, email clients and games simultaneously.

Consequently, the Skeletrix mobile application had to be designed in accordance to

the computational constraints of the smartphone. Optimization was primarily focused

around kinematic motion reconstruction and multithreading.

Kinematic Motion Reconstruction

Kinematic motion reconstruction is the process of applying a set of angular readings

to a kinematic model and rendering the result. The kinematic motion reconstruction is

achieved in the graphics pipeline by passing 3D topologies and local rotations to

OpenGL ES. Figure 5-6 shows a comparison between the motion reconstruction of

the Skeletrix software environment and the mobile application.

Figure 5-6: Comparison between the Skeletrix software environment and the mobile

application’s 3D motion reconstruction.

OpenGL	

Pipeline	

	
 Create	
 3D	
 Topologies	

	

	
 Compute	
 World	
 Translations	

	
 Compute	
 Local	
 Rotations	

Rotate	
 3D	
 Topology	

	

	

	
 Render	

Compute	
 World	
 Rotations	

Translate	
 3D	
 Topology	

Skeletrix	
 Software	
 Environment	

OpenGL	
 ES	
 Pipeline	

	
 Create	
 3D	
 Topologies	

	

	
 Compute	
 World	
 Translations	

	
 Compute	
 Local	
 Rotations	

Rotate	
 3D	
 Topology	

	

	

	
 Render	

Compute	
 World	
 Rotations	

Translate	
 3D	
 Topology	

Skeletrix	
 Mobile	
 Application	

	

	

125

Multithreading

Regardless of the targeted platform, multithreading is a key aspect of any motion

capture software environment. Multithreading is needed because inertial motion

capture happens very quickly. Aside from extracting data from sensors, software

environments need to perform other tasks such as 3D rendering, motion processing,

kinematic deployment of data, etc. All those tasks tend to block the main thread, thus

preventing the software from sampling the sensors at the correct time intervals. This

problem is amplified in the context of software environments that use Internet

connections because it is impossible to know how quickly the server will respond and

the recording process cannot halt.

As shown in Figure 5-7 a thread is launched to drive the core package along with the

main interface. This thread is set to tick at a low frame rate because most of the

functionality is not important to the recording process. For example, multitouch

gesture interaction and updating the display or loading BVH files are not urgent tasks.

A second thread is launched to render motion to the OpenGL canvas at 30 f/s. The

animation controller was designed to render high frequency recordings at low frame

rates by skipping frames. A third thread, dedicated to extracting sensor data, is

launched to run the sensor manager at frequencies specified by the BVH file in use.

Generally, BVH files contain motion data at frame rates between 24 and 120 f/s.

Aside from the main three threads, asynchronous tasks are used to upload, download

or poll the server. Asynchronous tasks are short-lived threads that close automatically

when their task is complete.

Figure 5-7: Skeletrix mobile application multithreading diagram.

Main	
 Thread	

Sensor	
 Thread	

OpenGL	
 Thread	

Async.	
 Task	
 3	

Async.	
 Task	
 2	

Async.	
 Task	
 1	

Application	
 Start	

	

	

126

5.6 Interface Overview
Condensing the functionality of the software environment to work in the context of

mobile computing technologies, which have limited screen dimensions and

touchscreen interfaces, proved difficult. This section discusses the functionality of the

mobile application by looking at the design and development of the interface layer.

5.6.1 Use Cases

The following use case diagram, shown in Figure 5-8, was developed to meet the

interface requirements of the application. Users are required to authenticate with a

server by entering a unique username and password. Once authenticated, the user

chooses a recording object corresponding to a BSN. Recording objects are further

discussed in Chapter 6 in the context of the Motion Cloud. Once the smartphone is

connected to a BSN, the user gains access to the main interface, which provides

functionality for: loading kinematic models, saving kinematic models, controlling the

animation, interacting with the viewport uploading and downloading data. After a

kinematic model is chosen, the user can proceed to record motion.

Figure 5-8: Skeletrix mobile application interface layer use case diagram.

authenticate	

select	
 or	
 create	

recording	

load	
 kinematics	

save	
 kinematics	

play,	
 pause,	
 stop	

animation	

initiate	
 BSN	

recording	

stop	
 BSN	

recording	

launch	
 recorder	

multitouch	
 viewport	

interaction	

change	
 camera	

views	

upload	
 data	

download	
 data	

Skeletrix	
 Mobile	
 Application	

User	

register	

reset	
 recording	

	

	

127

5.6.2 Main Interfaces

The interface layer was designed efficiently by keeping the number of interface pages

to a minimum. Because the mobile application is designed for the Android OS, each

interface object is written in XML using the Android Interface API. As shown in

Figure 5-9, the application has two main interfaces: dashboard and recorder.

The dashboard interface can be divided into three sections: toolbox, canvas and

animation controls. To begin with, the toolbox is a horizontally scrollable menu

located at the top of the screen allowing users to load files, save file, change camera

viewports, upload or download data from the server. Each tool is represented by a

clickable icon and descriptive text. Then, the canvas occupies the centre of the screen

to render kinematic motion. The camera angle can be adjusted through two multitouch

gestures: pinch to zoom and swipe to rotate. Lastly, the conventional animation

controls can be found at the bottom of the screen.

Figure 5-9: Dashboard (left) and recorder (right) diagram.

Because the dashboard is crowded with functionality, the recording process is

achieved in a secondary interface. When launched, the recorder page overlays the

dashboard and blocks the real-time visualisation of motion. Notably, it is difficult to

see or interact with the screen when the smartphone is being worn on the body.

Consequently, the recorder page’s record button is large and changes colour from

orange to green to give users a visual cue that motion is being captured. Additionally,

the recorder page allows users to select the kinematic segment they wish to record.

animation	
 controls	

canvas	

toolbox	

record	
 button	

kinematic	
 channel	

sensor	
 rotation	

	

	

128

5.7 Motion Processing
The first step of the mobile application workflow is motion processing. Motion

processing is the act of extracting raw data from the sensors and converting it into

usable motion data. In this context, data is extracted from the smartphone’s

accelerometer and magnetometer. The desired outcome of the motion processing

stage is to produce world-space rotations as required to drive the kinematic model.

The main objective of motion processing is to compute motion that contains little drift

or noise. In the context of mobile computing technologies, the approach differs from

that of traditional inertial motion capture system in terms of design and

implementation.

As identified in Chapter 2, the main problem with motion processing is that

gyroscopes have no reference axis in space and therefore suffer from drift. When

computing world-space rotations, the gyroscope’s accuracy decreases drastically over

time.

Accelerometers and magnetometer can be combined to produce a rough

approximation of rotation to give the gyroscope reference axis. However, the

combined accelerometer and magnetometer data will contain a significant amount of

noise whereby the signal oscillates several degrees per frame of motion. Noise can be

improved with post-processing filters.

In the mobile application, motion processing is achieved in three stages: pre-

processing, data fusion and post-processing using only the accelerometer and

magnetometer.

5.7.1 Pre-Processing

The first step of the pre-processing stage is to extract data from the accelerometer and

magnetometer, a process that is facilitated by the Android API. Optionally the

gyroscope data can also be extracted. The gyroscope outputs angular speeds that

require converting into world-space rotations. This process can be achieved using a

similar solution to that implemented in the Motion Tracking Development System

(MTDS) IMU (see Section 4.4.3). It is also important to apply a set of transformations

so that the data matches the 3D engine's orthogonal configuration as specified by

OpenGL ES.

	

	

129

5.7.2 Data Fusion

Sensor fusion is the process of merging the output of two or more sensors to produce

a better result, which has little drift or noise. There are many methods to achieve this

task such as the Kalman filter [171] [172] or complementary filters. Complementary

filters merge the gyroscope, which has drift, with the accelerometer and

magnetometer, which have noise, to produce a result that has little drift or noise.

The final version of the mobile application takes the accelerometer and magnetometer

values and combines them. This process is achieved using the getOrientation function

call of the Android API. This approach is desirable for situations where older

smartphones, that do not enclose gyroscopes, are used to record motion. However,

using the accelerometer and magnetometer requires post-processing.

5.7.3 Post-Processing

Post-processing of inertial motion data is commonly referred to as data cleaning. The

mobile application cleans the motion data in two stages: smoothing and error

checking. A smoothing filter, which applies a Gaussian mask to the motion data, is

used to remove unwanted noise. Notably, the smoothing filter is optional because it

can reduce accuracy in favour of creating better-looking animation. Errors, which are

miscalculated angular readings, can occur due to sensor or software problems. It is

therefore important to check every angular reading against its neighbours and, if

required, replace the angular reading with an interpolated substitute.

After the motion data is cleaned, the mobile application applies smoothing to all the

angular readings. Smoothing is an optional process whereby 2D Gaussian masks are

applied to every frame of motion. Smoothing is optional because it compromises

accuracy to produce a result that looks good. However, smoothing is desirable

because the application fuses only the accelerometer and magnetometer data, thus

producing a result that contains large amounts of noise. Raw data may be preferred

for scientific studies (because it is more accurate) while fluent motion may be desired

for animation (because it looks better). Although it is not implemented in the

interface, the mobile application can be configured to enable or disable the amount of

smoothing depending on the task.

	

	

130

5.8 Event Triggers
Although an animation suit consists of several hardware devices networked together,

the hardware behaves as a singular device. Consequently, an important element of a

BSN is the control mechanism that allows multiple devices to be controlled by one

centralised node that is often referred to as a multiplexer. The smartphone-driven

BSN replaces the concept of a multiplexer for a server and the control mechanism

needs to be implemented at the server level. In terms of usability, interacting with

several body-worn smartphones simultaneously is difficult. The smartphones must be

remote controlled using event triggers. The term event trigger describes a specific

web service that sends events to multiple smartphones concurrently. Because the

design of the BSN is omnidirectional, an event trigger may be accessed from the any

networked smartphone’s interface.

This example implementation of event triggers uses a passive server that cannot

actively contact a smartphone. Each BSN’s online data is accompanied by a trigger

value, which is represented by an integer. The trigger value can be modified by any

networked smartphone through a web service. At the same time, every other

smartphone listens to that integer for changes. If a change is discovered, the mobile

application reacts accordingly. Figure 5-10 illustrates how multiple smartphones can

be controlled from one interface. The white smartphone is tapped to begin recording,

and after the black smartphones replicate that functionality. The status change is made

visible as the interface changes colour from orange (inactive) to green (active).

Figure 5-10: Remote-controlling smartphones using event triggers.

Source: Pascu et al. [15] [16]

	

	

131

5.9 Data Communication Protocols
An important aspect of the smartphone-driven BSN is data intercommunication

between smartphones. While inertial motion capture suits use short distance

connections such as Bluetooth, a smartphone connection can vary between three

states: fast connectivity (i.e. Wi-Fi or 4G), slow connectivity (i.e. 3G) and no

connectivity. Additionally, the signal strength may vary (e.g. in some circumstances

making a 4G connection slower than a 3G connection). In many situations the

connection will alternate between different modes.

A flexible data communication protocol is needed to ensure that the smartphone can

stream data to the Motion Cloud. The problem is not the quantity of data but the

frequency at which a connection to the Motion Cloud is established. The proposed

data streaming protocol allows the smartphone to send motion data to the server in

variable-sized buffers. The size of the buffers is governed by the connection speed.

The mobile application buffers data and starts asynchronous server calls. Data is

uploaded by each asynchronous call in the form of JavaScript Object Notation (JSON)

packets.

Fast Connection

In situations where the connection is fast, asynchronous calls are made as frequently

as possible for real-time data streaming. The highest frequencies will likely be

achieved over Wi-Fi.

Slow Connection

In situation where the connection is slow, the mobile application begins streaming

data in larger chunks less frequently. Over 3G, the smartphone will upload data to the

server approximately twice per second depending on signal strength.

No Connection

In situation where the connection drops, the mobile application begins recording

motion into local storage. When a connection is eventually regained, all the buffered

data is uploaded. This approach ensures that no motion data is lost.

	

	

132

5.10 Synchronization
Synchronization primarily occurs once all the smartphones have uploaded their data

to the Motion Cloud repository as channel objects. Synchronization is required as

each smartphone begins and finishes recording at slightly different times depending

on connection latencies. The beginning and end of each channel requires truncation to

correct data misalignments. Figure 5-11 illustrates the simulated recording process of

five smartphones for a short period of three seconds at the frequency of 10f/s. The

darker rectangles are used to illustrate alignment.

Figure 5-11: Smartphones starting and stopping the recording process through event triggers

at varying times depending on connection latencies.

Figure 5-12 illustrates how the motion data would be interpreted by smartphones

without synchronization. The channel contents are pushed to the left because the BSN

has no means of knowing when each smartphone has started or finished recording.

The result is a misaligned set of data that can be aligned through synchronization.

Figure 5-12: Smartphones interpreting unsynchronized data.

The proposed methodology for synchronization consists of three solutions for: pre-

synchronization, post-synchronization and capping.

motion	
 frames	

S1	

S2	

S3	

S4	

S5	

5	
 10	
 15	
 20	
 25	
 30	

sm
ar
tp
ho

ne
	
 c
ha

nn
el
s	

35	

desired	

alignment	

motion	
 frames	

S1	

S2	

S3	

S4	

S5	

5	
 10	
 15	
 20	
 25	
 30	

sm
ar
tp
ho

ne
	
 c
ha

nn
el
s	

35	

	

misalignment	

	

	

133

5.10.1 Pre-Synchronization

Pre-synchronization is a simple process that takes place at the beginning of a

recording session. Every channel in a recording is emptied when a smartphone is

tapped to begin recording. As shown in Figure 5-11, smartphone S2 begins recording

after S1. At the point where S2 has begun recording, S1’s channel already contains

several frames of motion that will cause a misalignment in the data. Consequently, S2

empties S1’s channel to synchronize the data. As shown in Figure 5-13, this approach

improves the alignment of the data although the result is not perfect.

Figure 5-13: Alignment of channel data using the pre-synchronization methodology.

5.10.2 Post-Synchronization

While the above methodology shows a significant improvement, the improvement is

only noticeable if the connection is slow. Post-synchronization takes place after a

recording session has finished. To synchronize the channels further, the smartphones

takes advantage of the smartphone’s clock based on the assumption that two Android

devices in the same time zone have the same or at least a very similar clock reading.

Depending on how accurate the clock is, post-synchronization could improve data

alignment. At the beginning of a recording session, each smartphone uploads a

timestamp corresponding to the exact time it began recording. Table 5-1 illustrates the

simulated timestamps of the five smartphones in the above examples.

Table 5-1: Timestamps corresponding to the beginning of the recording session.

Smartphone Channel Timestamp (ms) Difference
(ms)

Truncated
frames

S1 58752245 0 0
S2 58752571 326 3
S3 58752502 257 3
S4 58752612 367 4
S5 58752399 154 2

motion	
 frames	

S1	

S2	

S3	

S4	

S5	

5	
 10	
 15	
 20	
 25	
 30	

ch
an

ne
ls
	

35	

improved	

alignment	

	

	

134

The latest timestamp is used as a reference point to truncate any unwanted motion

frames. The smallest timestamp is subtracted from each channel’s timestamp. The

resulting difference is divided by number of milliseconds between two motion frames

depending on the recording’s frame rate, to determine the number of motion frames

that require truncation. As shown in Figure 5-14, the server iterates through the

channels and removes the concluded amount of motion frames to synchronize the

data. The desired result is a synchronized recording whereby the data is aligned

correctly. Truncating motion frames implies removing data that could useful. An

alternative and possibly better methodology would be to insert blank frames.

Figure 5-14: Post-synchronization alignment of channel data.

5.10.3 Capping

As illustrated in Figure 5-15, the final stage of synchronization is to truncate the end

of motion channels such that all channels are the same length. This step is required

primarily for the mobile application’s parser to avoid potential errors.

Figure 5-15: Synchronized result.

motion	
 frames	

S1	

S2	

S3	

S4	

S5	

5	
 10	
 15	
 20	
 25	
 30	

sm
ar
tp
ho

ne
	
 c
ha

nn
el
s	

35	

motion	
 frames	

S1	

S2	

S3	

S4	

S5	

5	
 10	
 15	
 20	
 25	
 30	

sm
ar
tp
ho

ne
	
 c
ha

nn
el
s	

35	

finished	

alignment	

	

	

135

5.11 Versioning
The development of the mobile application was achieved in incremental stages

whereby each stage is focused on demonstrating part of the functionality. As shown in

Table 5-2, this section discusses the five release versions, each having multiple

subversions.

The first version was focused on achieving core functionality that proved the concept

to be viable. Data was extracted from the gyroscope, applied to a kinematic model and

visualised in OpenGL ES and outputted as a BVH file. The second version was

focused on evaluating the accelerometer and magnetometer while improving the

overall interface with multitouch interaction and adding animation playback

functionality. The third version was focused on adding networking functionality

through web technologies whereby users can upload and download data from the

server. The fourth version introduces data streaming, a process that required a

redevelopment of the multithreading architecture. The final version brings all the

previous developments into one large package.

Table 5-2: Skeletrix mobile application versioning.

Functionality 1.0 2.0 3.0 4.0 5.0

Core Functionality
Record Data (Gyro) YES YES YES YES YES
Record Data (Acc/Mag) N/A YES YES YES YES
Motion Processing N/A N/A N/A YES YES
Kinematics YES YES YES YES YES
Motion Files Parsing YES YES YES YES YES
Local Storage of Motion N/A YES YES YES YES
Interface Functionality
OpenGL Rendering YES YES YES YES YES
Multitouch Interaction N/A YES YES YES YES
Camera Selection Tools N/A N/A YES YES YES
Animation Playback YES YES YES YES YES
Web Functionality
Web Storage of Motion N/A N/A YES YES YES
User Authentication N/A N/A YES YES YES
User Registration N/A N/A N/A YES YES
Create Recording Objects N/A N/A N/A N/A YES
Upload Motion N/A N/A YES YES YES
Download Motion N/A N/A YES YES YES
Stream Motion N/A N/A N/A YES YES
BSN Functionality
Event Triggers N/A N/A YES YES YES
Data Synchronization N/A N/A N/A YES YES

	

	

136

5.12 Capturing Motion
The mobile application was evaluated in three stages whereby each stage

demonstrates several aspects of the mobile application’s functionality. While the first

stage involves simulating a hand wave gesture on a flat surface, the second stage

focuses on capturing a body’s motion in the traditional way by strapping three

smartphones to the body. The third stage demonstrates the mobile application’s ability

to sense continuously through an example of activity tracking. These results have

previously been published in Pascu et al. [15] [16] [19].

5.12.1 Simulating a Hand Wave

As shown in Figure 5-16, the first and most simple test of the mobile application was

performed on a flat surface using two networked Samsung Galaxy S3 smartphones.

By sliding the two smartphones in an arch fashion, the kinematic model simulates a

simple hand wave gesture.

Figure 5-16: Simulating and capturing a hand wave gesture using two Samsung Galaxy S3s.

Source: Pascu et al. [15] [16]

	

	

137

This study demonstrates the mobile application’s user journey through six user-

performed steps:

1. Load Kinematic Models: The mobile application is launched on both

smartphones and identical BVH files are loaded to generate the same

kinematic model on both devices.

2. Select Kinematic Joints: The recorder is opened and a kinematic segment is

chosen. The black smartphone selects the rShldr joint (corresponding to the

arm) and the white smartphone selects the rArm joint (corresponding to the

forearm).

3. Perform Calibration Gesture: The smartphones are placed horizontally for

calibration whereby the difference between the kinematic model and the

device’s rotation is compensated. This step works in a similar way to T-Pose

calibration in motion capture suits.

4. Begin Recording: One of the smartphones is tapped to begin recording and

both interfaces turn green, thus demonstrating the concept of event triggers.

5. Perform Animation: The smartphones are slid on the flat surface in an arch

fashion to simulate a basic hand wave gesture consisting of two consecutive

waves. Once the animation is completed, the smartphones are returned to their

horizontal configuration.

6. Visualise Results: Immediately after the smartphones are tapped to stop

recording, the data is uploaded to the server and downloaded on each device.

By pressing the play button, the result (highlighted in green) can be visualised

on both smartphones.

5.12.2 Recording a Hand Wave Gesture

Having proved the concept that smartphones can be used to record articulated motion;

the next step involved using smartphones to record real human motion. Three

Samsung Galaxy S3 devices were strapped to the motion performer’s right arm to

form a motion capture sleeve. More specifically, a smartphone was strapped to the

arm, forearm and hand using elastic bands. This particular device is ill suited for this

type of application due to its large screen dimensions. However, because the device

	

	

138

has a large surface area and is relatively light, it slides very little in relation to the

body.

During the experiment, the same recording object and kinematic rig were loaded on

each of the three devices. The recorder was launched and the devices became

networked. The recording frequency was set to 30f/s and the right arm was extended

laterally away from the body to perform the T-pose. The record button was tapped

and all devices started recording.

As with the previous experiment, the performed gesture is a wave gesture of three

consecutive swings of the right arm. This gesture was chosen for the experiment

because it provides a clear image of the data. If a sensor is not synchronized or

drifting, the error is immediately visible in the 3D reconstruction. Figure 5-17 shows a

comparison between the real-life movement and its corresponding virtual

reconstruction.

Figure 5-17: Capturing an arm's motion using three body-worn Samsung Galaxy S3

smartphones. Source: Pascu et al [19]

Figure 5-18 shows the rotational data recorded during the gesture. The graph shows a

repeating pattern between each kinematic channel and between consecutive waves.

Throughout the gesture, the arm rotates approximately 20 degrees in each of the three

axes. The forearm and hand move in tandem, rotating in excess of 100 degrees. From

	

	

139

the graphs we can determine that the arm does the least movement while the forearm

and hand have produce nearly indistinguishable data sets.

Figure 5-18: Rotational data of three consecutive hand wave gestures.

Source: Pascu et al. [19]

5.12.3 Recording Active and Sedentary Behaviour

The previous examples have demonstrated BSNs worn by one person. In this activity-

tracking example, the BSN receives data from two separate individuals performing

everyday activities over a time period of two hours. This experiment was designed to

put stress on the mobile application’s data streaming protocol to see if continuous

sensing is possible, if the mobile application crashes and if data is lost.

To put the data into context, the smartphones are used to track the physical activity of

a sedentary individual in the work environment and a more active individual going

walking through a town’s centre. Both recordings take place simultaneously. While

the first individual records motion through Wi-Fi, the second individual alternates

between Wi-Fi, 3G and no connection. The BSN is used to aggregate and compare the

	

	

140

data. The combined rotation per frame of motion is summed to conclude a coefficient

of activity based on the assumption that if a person is more active, the smartphone

will rotate more. Figure 5-19 show a comparison between the two sets of data where

sedentary (green) behaviour is superimposed on top of active (grey) behaviour.

Figure 5-19: Graphical comparison between sedentary (green) behaviour and active (grey)

behaviour. Source: Pascu et al. [19]

While there are better methodologies for capturing activity data, these results

demonstrate that the mobile application is abled to track motion continuously during

everyday use. The task of incorporating a complex activity tracking system extends

beyond the scope of this thesis. While activity tracking is generally achieved using

accelerometer data, this example demonstrates that rotations can be used for this

purpose. The mobile application could be calibrated against a commercial pedometer

(e.g. FitBit [173], Jawbone UP [174], etc.) to compute the number of steps taken,

calories burnt and distance walked.

5.13 Conclusions
Smartphones have a significant impact the field of inertial motion capture and BSNs

because, like IMUs, smartphones contain gyroscopes, accelerometers and

magnetometers along with telecommunication technologies. This chapter draws a

parallel between the smartphones and IMUs to investigate the sensing capabilities of

mobile computing technologies. While the concept of smartphone sensor networks is

	

	

141

not new to smartphones, the act of creating an omnidirectional smartphone-driven

BSN for human motion tracking is.

Within the scope of this thesis, the proposed mobile application is developed from the

Skeletrix software environment presented in the Chapter 3. Unlike the Skeletrix

software environment, where motion processing is made transparent to the users, the

mobile application aims to automate the process to achieve a minimalistic user

journey. This chapter investigates the implications of simplifying, porting and heavily

modifying the Skeletrix software environment on the Android platform.

The task of constructing an omnidirectional smartphone-driven BSN that uses web

technologies was achieved through several key developments, all of which have been

discussed throughout this chapter: motion processing, real-time data communication

protocols, mechanisms for remote-controlling the functionality of network nodes, data

synchronization, etc. Learning what smartphones can do can be beneficial to

developing better inertial motion capture systems. Rather than defining the BSN

configuration at the hardware level through a physical multiplexer (as demonstrated

by MTDS), the BSN can now be conceptualised and created on a web server through

software. For example, the number of nodes belonging to the BSN is no longer

limited by the multiplexer. Smartphones can be added or removed with ease, thus

allowing users to customize the BSN for their individual experiments.

5.13.1 Application Areas

This section discussed four potential usability scenarios that illustrate the versatility of

the mobile application. The four proposed usability scenarios are: medical science,

activity tracking, emergency responses, road and traffic condition monitoring.

Scenario 1: Medical Science

As published in Pascu et al. [15] [16], a very important application area for inertial

motion capture is medical science. Some medical disorders have a measurable effect

on the motor functions of the body. Smartphones can be used to track the motion of

one or several points on the body. In the case of idiopathic scoliosis [51], a torso-

mounted device can determine the body’s axis of balance and identify

musculoskeletal asymmetries. In the case of Parkinson’s disease [48] [79], a limb-

mounted device can measure symptoms such as shaking, body rigidity and slowness

	

	

142

of movement. A body-worn smartphone has the potential to measure treatment

responses and while providing useful data to medical and healthcare professionals.

Scenario 2: Activity Tracking

In the context of health and fitness, the proposed mobile application can be used to

compute a rough estimation of physical activity. The smartphone presents the

necessary hardware to replicate the functionality of commercial pedometers. While

this chapter has demonstrated basic activity tracking from kinematic rotations, there

are more accurate solutions for tracking physical activity such as Samsung S-Health

[175]. The application has the potential to be extended with algorithms for converting

rotational data into activity parameters. For example, [176] shows a much more

thorough approach for turning the smartphone into a pedometer using motion data.

Scenario 3: Emergency Responses

The mobile application allows the smartphone to stream motion data continuously

into an online repository. That data can be processed to identify anomalies that are

indicative of emergency situations. For example, inertial sensors could be used to

detect if an elderly person has collapsed [177] or if someone has experienced an

accident and notify authorities.

Scenario 4: Road and Traffic Condition Monitoring

The mobile application could be used outside the context of character motion tracking

to record the motion of vehicles. In vehicles, the smartphone is commonly used either

as a storage device for music or for GPS turn-by-turn navigation. Sensing the motion

of the vehicle could be beneficial in monitoring road and traffic conditions [178]. For

the mobile application to be used in this context, additional functionality is required to

interpret the motion data and potentially merge it with geographical location data.

	

	

143

CHAPTER SIX

6 Motion Cloud: A Repository and

Gateway for Inertial Motion Data

6.1 Introduction
The focus of this chapter is the Motion Cloud as published in Pascu et al. [19], an

online repository and gateway for all motion capture mediums: animation suits,

smartphones, inertial measurement units and even activity tracking accelerometer-

based devices. The Motion Cloud elaborates the concepts of storing, organising and

accessing motion data through an innovative set of web services and database models.

The proposed architecture is highly extendable and optimized to handle large amounts

of data. The research work presented in this chapter can be divided into three main

categories: repository, gateway and web portal. While the repository and gateway are

integral to the Motion Cloud technology, the web portal is an auxiliary component

providing an interface layer. The interface layer is used to test the repository and the

gateway and allows users visualise and manipulate the motion data.

With the research work presented in this chapter, the Skeletrix software environment

and mobile application are given functionality for communicating (streaming or

uploading) inertial motion capture data into online storage. This concept was first

introduced in the previous chapter in the context of online BSNs where the

multiplexer is substituted for an online server.

Unlike other motion libraries, the Motion Cloud is unique because it provides a more

detailed methodology for interacting with the motion data. Each rotational value

produced by an inertial motion capture system is stored as a single entry in the

database. Therefore, the data can be accessed quickly through the web portal or

through web services by software applications. This gives the Motion Cloud

architecture a great potential to be extended to contain motion analysis and cleanup

tools, thus allowing users to inspect or edit the data online. This is not currently

possible with existing online motion databases that contain the motion data uploaded

as files, which must be downloaded to be processed.

	

	

144

6.2 Framework Relevance

The Motion Cloud can be seen as a bridging architecture between the two previously

introduced software components of the Skeletrix framework, namely the software

environment and the mobile application. The act of connecting the two framework

components has positive ramifications. For example, all inertial technologies (e.g.

smartphones, BSNs, inertial measurement units (IMU), development boards,

pedometers, etc.) are treated equally allowing for performance evaluations and

benchmarking. The Motion Cloud creates a methodology for transferring motion data

between the software environment and the mobile application presented in this thesis.

The motion capture workflow, which was previously limited to extracting data from

hardware using a computer, is expanded to include web technologies. As shown in

Figure 6-1, web technologies are the top layer of the proposed framework. To make

the Motion Cloud concept relevant beyond the scope of this framework, the gateway

is developed as an Application-Programming Interface (API) allowing for third-party

software integration (e.g. downstream applications that can download motion data

from the repository).

Figure 6-1: The Motion Cloud adds web technologies to the Skeletrix framework.

Source: Pascu et al. [15] [16]

	

	

145

6.3 Requirements Specification
At its core, the design process of the Motion Cloud is focused on three principal areas:

repository, gateway and web portal. This section summarizes both functional and non-

functional requirements to create a basic development specification.

6.3.1 Repository

Object-Oriented Data Model: Object-orientation provides an efficient approach to

organising data so that it is easily accessible. Therefore, the data model should be

object-oriented whereby a BSN’s output can be represented as a set of data model

objects. Each data model object must have a logical purpose and exist both

independently and as a component of a hierarchy. In the context of inertial motion

capture, the hierarchy will mimic the skeletal definition of the system in use. For

example, an upper body BSN, like the Motion Tracking Development System

(MTDS), will produce seven channels objects, each containing multiple vector

objects, of motion data in the Motion Cloud.

Data Storage: Motion capture data streamed from a BSN, even over short periods of

time, implies a large number of database entries. Every angular reading must be

placed as an object in the database so that it may be identified and retrieved later.

Additionally, the data model must be optimized to keep the database size to a

minimum. As previously discussed in Section 2.7.1, stored motion data must be in a

format that is both intuitive and easy to extract from hardware. While quaternions and

rotation matrices provide performance, only the Euler rotational model can be

interpreted (through 2D graphs) without using 3D visualisations.

Object Dependencies: All data stored in the repository hierarchy should conform to a

list of dependencies. If a user deletes a channel, all hierarchy dependent vector model

objects must also be removed. If a user uploads a recording, the repository must

automatically generate and organize new data model objects.

User Accounts: The repository should differentiate between its users to protect the

stored data. To use the Motion Cloud, users are required to first register an account by

providing personal information such as profile information and authentication details.

While security and privacy are important, this requirement is not mandatory for a

	

	

146

prototype-level development. However, each motion recording must be bound to one

user account that is protected by a password.

6.3.2 Gateway

Data Streaming: Because inertial motion capture systems do not store data internally,

the gateway should allow systems to stream data to the repository. In theory, data can

be streamed as it is obtained from the hardware, one angular reading at a time. In

reality, data is buffered and streamed as packages, which contain several angular

readings each. Data streaming involves asynchronous server calls made by client

applications (e.g. software environments, drivers, etc.) to upload the buffered data as

packets.

Application-Programming Interface: The Motion Cloud is designed and implemented

as an online platform for inertial motion capture data that can be integrated with third-

party software applications. An API consisting of generic web services and

documentation is required to allow software developers to interface with the gateway.

It is desirable for the web services to be versatile and to facilitate most usability

scenarios.

6.3.3 Web Portal

Data Visualization: Graphs provide an instant overview of the motion whereby users

can determine if an IMU is producing valid data and if the data contains drift and

noise. Graphical spikes can provide a preliminary understanding of the recorded

motion. For example, frequent highpoints and depressions would indicate active

behaviour while flatter curves would suggest sedentary behaviour. Therefore, a

requirement for the web portal is to generate graphs from motion data.

Data Retrieval: The web portal should provide the functionality for exporting data in

tabular or motion capture file formats. For example, an animation suit’s data that is

streamed into the repository could be downloaded directly by the user in a tabular

format.

Data Manipulation: Data manipulation implies accessing, editing or deleting objects

stored in the database. Through the web portal, all five layers of objects (i.e. profiles,

groups, recordings, channels and vectors) must be made accessible and editable

through the interface so that users have full control of their motion data.

	

	

147

6.4 Repository Design and Implementation
The repository is designed to accommodate any configuration of sensors, whether it’s

a single IMU streaming one channel of data or a full-body animation suit streaming

eighteen channels. Therefore, the data model is both object-oriented and extensible to

grow and shrink depending on the hardware output. The data model was designed and

implemented using a set of abstraction layers whereby the user is the most abstract

layer and vector objects are the least. As shown in Figure 6-2, the repository contains

primarily five objects that form a hierarchy: vector, channel, recording, groups and

profiles.

Figure 6-2: Repository data model object hierarchy.

6.4.1 Vector Objects

Vectors are small table objects that store three floating-point numeric values

corresponding to a sensor’s yaw, pitch and roll. Although the focal topic of this thesis

is inertial motion capture, vectors could be used to cover other types of data such as

positional vectors, gravitational forces, magnetic field readings, etc. For example,

there is potential for other motion capture technologies, such as Microsoft Kinect, to

store data in the same data model. This concept was evaluated by integrating the

FitBit pedometer and storing its activity data, as vector objects, in the repository.

Towards the end of this chapter, the concept of integration is discussed by developing

a MotionCloudViewer for the software environment and a standalone driver for the

Razor IMU presented in Chapter 4.

Profile	

Group	

Recording	

Channel	

Vector	

	

	

148

6.4.2 Channel Objects

Channel objects enclose multiple vectors that represent a stream of recorded data

where each vector is a single sensor reading from one BSN node. A single

smartphone will only use one channel. A full-body animation suit will contain

approximately twenty channels if the hardware’s data is uploaded directly. If the data

is first passed through a kinematic model, the number of channels will double. This is

because kinematic models contain dummy skeletal segments, which rotate and

translate purely though kinematic constraints. The Motion Cloud would interpret

those dummy skeletal segments as empty channels. For example, the motion

performer may wear only one IMU on their back while the kinematics skeleton has an

articulated spine consisting of several dummy skeletal segments.

6.4.3 Recording Objects

A recording, as the title would imply, contains all the data produced by a BSN from

when it was activated to when it was switched off. Recording objects contain one or

more channels whereby each channel corresponds to one BSN node. Additionally,

recording objects contain a useful text description and title that can be used to label

the performed motion. For example, during a behavioural experiment, the system

operator can write the motion performer’s name in the recording title and outline the

recording circumstances in the text description.

6.4.4 Group Objects

Groups are simple data structures enclosing one or more recording objects. Unlike the

other levels of the hierarchy, groups are not integral to the storage mechanism. Once

authenticated, the user can see all the recordings bound to his account or alternatively,

only the ones belonging to a group. The group object can also be given a text

description to summarise its contents. The concept of organising recordings in groups

is open to interpretation. A group may contain all the recordings completed using a

particular hardware configuration (e.g. all the motion data recorded using the MTDS

system). For researchers, a group may include all the recordings relating to a

particular experiment. This functionality was designed for research projects like the

ones presented in Section 1.6, namely the Motion in Place Platform project (motion

tracking of archaeologists) [25] [26] [27] and the forensic psychology experiment

(motion tracking of burglars) [30] [31] [32]. These research projects involved

	

	

149

capturing several actions performed by actors, some of which required multiple takes.

The group object simplifies the process storing, organising and categorising data in

these scenarios.

6.4.5 Profile Objects

The highest and most abstract level of the data model hierarchy is the profile object.

Anyone using the Motion Cloud must first register a user account and authenticate to

be granted access to the data. The repository’s user object stores authentication

details, first name, last name and contact details.

6.4.6 Data Model Specification

The following database schema, shown in Figure 6-3, was used as a development

specification for the data model. It summarises the objects previously discussed and

showcases their fields.

Figure 6-3: Database schema of the repository data model.

+	
 id:	
 int(255)	

+	
 username:	
 varchar(10)	

+	
 password:	
 varchar(10)	

+	
 firstname:	
 varchar(10)	

+	
 lastname:	
 varchar(10)	

+	
 email:	
 varchar(10)	

recording	

+	
 recording_id:	
 int(255)	
 <pk>	

+	
 owner:	
 int(255)	
 <fk>	

+	
 title:	
 varchar(10)	

+	
 description:	
 varchar(100)	

+	
 datetime:	
 datetime	

+	
 timestamp:	
 int(255)	

+	
 status:	
 tinyint(3)	

group	

+	
 group_id:	
 int(255)	
 <pk>	

+	
 title:	
 varchar(10)	

+	
 description:	
 varchar(10)	

+	
 datetime:	
 datetime	

+	
 channel_id:	
 int(255)	
 <pk>	

+	
 recording_id:	
 int(255)	
 <fk>	

+	
 name:	
 varchar(10)	

+	
 timestamp:	
 int(255)	

channel	

vector	

+	
 vector_id:	
 int(255)	
 <pk>	

+	
 channel_id:	
 int(255)	
 <fk>	

+	
 x	
 :float	

+	
 y:	
 float	

+	
 z:	
 float	

group_recording	

+	
 group_recording_id:	

int(255)	
 <pk>	

+	
 group_id:	
 int(255)	
 <fk>	

+	
 recording_id:	
 int(255)	

<fk>	

	

group_owner	

+	
 group_owner_id:	
 int(255)	
 <pk>	

+	
 group_id:	
 int(255)	
 <fk>	

+	
 owner_id:	
 int(255)	
 <fk>	

	

recording_owner	

+	
 recording_owner_id:	
 int(255)	
 <pk>	

+	
 recording_id:	
 int(255)	
 <fk>	

+	
 owner_id:	
 int(255)	
 <fk>	

user	

1	

1	

1	

1	
 1	

1	

1	

1	

*	

*	

*	

*	

*	

*	

*	

*	

	

	

150

6.5 Gateway Design and Implementation
Having defined a repository for storing BSN data, the next component of the Motion

Cloud is the gateway. As shown in Figure 6-4, the gateway is an access layer for

connecting the repository with software-environments, mobile applications, drivers,

etc. The purpose of the gateway is to allow software developers to integrate third-

party applications with the Motion Cloud. The gateway features a flexible API

consisting of a new set of web services allowing developers to create, retrieve, update

and delete repository objects. Using the API, users develop motion capture software

applications that communicate data to and from the Motion Cloud and benefit from its

features (e.g. the web portal).

Figure 6-4: Motion Cloud gateway layer integrating third party software applications through

API calls.

Each Motion Cloud API call is a PHP web service whose functionality can be

identified by its title. For example, channel_getlist will return a list of channels,

consisting of unique channel ids and names bound to an account and channel_get will

return the contents of a single channel. Sending or retrieving data involves JavaScript

Object Notation (JSON) packets and POST or GET HTTP requests.

The API has been implemented and tested using the software environment, mobile

application and web portal. This section continues to discuss the profile, group,

recording, channel and vector categories of API calls. In a similar way to the

repository, the API architecture also forms a hierarchy whereby a call may itself

	
 API	
 Calls	

Repository	

Other	
 Drivers
Mobile	

Applications	

Software	

Environments	

Motion	
 Cloud	
 Gateway	

	

	

151

access other calls. For example, making a request to obtain a recording’s data will

invoke nested channel and vector calls.

6.5.1 Profile API Calls

The first stage of interacting with the Motion Cloud API from a client-side application

is to create a profile and authenticate. Figure 6-1 summarises the profile API calls, the

necessary input parameters and the expected functionality. Example JSON packets for

these calls can be found in Appendix C.1.

Table 6-1: Profile API calls.

API Call Input Parameters Functionality

profile_authenticate Unique username and
password.

Returns the user id if the
password is correct and zero if
it is not.

profile_create Username, password, first
name, last name and email
address.

Creates a user profile with the
given information and returns
the profile’s user id.

profile_get Unique user id. Returns a JSON packet
containing the username,
password, first name, last name
and email address.

profile_update User id, username, password,
first name, last name and email
address.

Updates a user profile with the
given information.

profile_delete Unique user id. Deletes a profile object.

profile_check_username Unique username Checks whether the username
is taken.

	

	

152

6.5.2 Group API Calls

Table 6-2 summarises the group API calls, the necessary input parameters and the

expected functionality. As previously mentioned, groups are an optional part of the

API designed to organise repository data. Example JSON packets for these calls can

be found in Appendix C.2.

Table 6-2: Group API calls.

API Call Input Parameters Functionality

group_getlist Unique user id. Returns a JSON packet
containing all list of groups
bound to one account. The list
consists of group unique ids,
titles and descriptions.

group_create Unique user id, title and
description.

Creates a blank group object.

group_get Unique group id. Returns a JSON packet
containing a hierarchy of
recording objects containing
channel and vector objects.

group_add Unique group id and
recording id.

Adds a recording to a group.

group_remove Unique group id and
recording id.

Removes a recording from a
group.

group_delete Unique group id. Deletes a group.

	

	

153

6.5.3 Recording API Calls

The recording API is potentially the most used and important component of the

gateway as every system, whether it’s a single IMU or a whole BSN, uploads data as

recording objects. Table 6-3 summarises the API calls. Example JSON packets for

these calls can be found in Appendix C.3.

Table 6-3: Recording API calls.

API Call Input Parameters Functionality

recording_getlist_uid Unique user id. Returns a JSON packet
containing all the unique
recording ids, names and
descriptions bound to one profile
object.

recording_getlist_gid Unique group id. Returns a JSON packet
containing all the unique
recording ids, names and
descriptions bound to one group
object.

recording_create JSON packet containing a
title, description and
hierarchy of channels
objects.

Creates a blank recording object.

recording_get Unique recording id. Returns a JSON packet
containing a hierarchy of
channel and vector objects.

recording_update JSON packet containing a
title, description and
hierarchy of channels
objects.

Updates a recording with new
channel and vector objects.
Those objects are concatenated
to the end of the recording.

recording_share Unique user id of owner,
username of receiver and
unique recording id.

Bounds a recording object to the
second user account. The
recording will appear on both
user accounts.

recording_clear Unique recording Deletes all the channel objects
contained by the recording.

recording_delete Unique recording id. Deletes a recording object.

	

	

154

6.5.4 Channel API Calls

Table 6-4 summarises the channel category of API calls. Example JSON packets for

these calls can be found in Appendix C.4.

Table 6-4: Channel API calls.

6.5.5 Vector API Calls

As illustrated by Table 6-5, the API also allows software environments to access

individual vector objects. While this category of calls is primarily used by the API

itself, it provides developers with complete control of the repository data. Example

JSON packets for these calls can be found in Appendix C.5.

Table 6-5: Vector API calls.

API Call Input Parameters Functionality

channel_getlist Unique recording id. Returns a JSON packet
containing a list of channel titles
and names.

channel_create Unique recording id and channel
name.

Creates a channel and adds it to a
recording object.

channel_get Unique channel id. JSON packet containing channel
id, name and a list of vector
objects.

channel_update JSON packet containing recording
id and a list of vector objects.

Updates a channel with new
vector objects.

channel_delete Unique channel id. Deletes a channel object.

API Call Input Parameters Functionality

vector_gelist Unique channel id. Returns a JSON packet
containing a list of vector ids.

vector_create Unique channel id, yaw, pitch and
roll values.

Creates a new vector object and
adds it at the end of the specified
channel object.

vector_get Unique vector id. JSON packet containing a
unique vector id, yaw, pitch and
roll values.

vector_update Unique channel id, yaw, pitch and
roll values.

Creates a vector and adds it to a
recording object.

vector_delete Unique vector id. Deletes a vector object.

	

	

155

6.5.6 Stringing Together API Calls

The act of integrating the Motion Cloud API with a client-side application involves

stringing together API calls in a specific order.

Figure 6-5 illustrates how a client-side application can upload a recording. The first

step is to authenticate through the interface by entering a unique username and a

secret password. The server-side controller takes those values and posts them to

retrieve a unique profile id. The user id is then posted back to the server along with a

JSON packet containing a recording’s data. The Motion Cloud parses the packet and

creates a recording object in the repository. The recording object is populated with

channels and each channel is populated with a list of vectors. To finalize the process,

the application retrieves a recording id for safekeeping and to access the data at a later

stage.

Figure 6-5: Sequence diagram illustrating how API calls can form a BSN.

echo	
 user	
 id	

Listening	

(API	
 call)	

Profile	
 Vector	
 Channel	
 Recording	
 Client	
 Side	

profile_authenticate	

echo	
 channel	
 id	

echo	
 recording	
 id	

channel_create	

echo	
 vector	
 id	

vector_create	

create_recording	

creates	

channel	

object	

creates	

recording	

object	

Listening	

(API	
 call)	

Listening	

(API	
 call)	

Listening	

(API	
 call)	

Listening	

(user	
 input)	

	

	

156

Figure 6-6 shows the integration of the API with the Skeletrix mobile application by

demonstrating how two interconnected smartphones can form one BSN. More

specifically, this example demonstrates how one smartphone’s data is communicated

across the BSN to a second smartphone. This example assumes that the user has

authenticated and chosen a recording on both devices.

Smartphone S1 is tapped to initiate the BSN and subsequently modifies the recording

status from 0 to 1. S1 continues to update a channel’s data with new angular readings.

S2 is listening for status updates and detects a change. Because the recording status is

set to 1, S2 begins recording by updating another channel’s data with new angular

readings. After the two channels are updated, both smartphones download a fresh

copy of the recording and place it into local storage.

Figure 6-6: Uploading a recording object using the Motion Cloud API.

channel_update	

echo	
 channel	
 id	

Listening	

(Motion	
 Cloud)	

Smartphone	
 S2	
 Vector	
 Channel	
 Recording	

echo	
 vector	
 id	

vector_create	

Listening	

(API	
 call)	

Listening	

(API	
 call)	

Listening	

(API	
 call)	

Listening	

(user	
 input)	

Smartphone	
 S1	

echo	
 status=1	

recording_status	

recording_start	
 (status=1)	

channel_update	

echo	
 vector	
 id	

vector_create	

echo	
 channel	
 id	

recording_get	

echo	
 JSON	
 packet	

echo	
 JSON	
 packet	

recording_get	

	

	

157

6.5.7 API Integration

The Motion Cloud API was integrated with the software environment, mobile

application and web portal. Table 6-6 shows how the API was integrated within

Skeletrix framework with the web portal, mobile application and software

environment. Because the web portal and the repository are stored on the same server,

the API functionality was absorbed into the web portal code to prevent the

unnecessary JSON packet transfers and optimize the system.

Table 6-6: Framework API integration.

API Call Web Portal Mobile Application Software Environment
profile_authenticate YES YES YES
profile_create YES YES N/A
profile_get YES N/A N/A
profile_update YES N/A N/A
profile_delete YES N/A N/A
profile_check_username YES YES N/A
group_getlist YES N/A N/A
group_create YES N/A N/A
group_get YES N/A N/A
group_add YES N/A N/A
group_remove YES N/A N/A
group_delete YES N/A N/A
recording_getlist_uid YES YES YES
recording_getlist_gid YES N/A N/A
recording_create YES N/A N/A
recording_get YES YES YES
recording_update YES YES YES
recording_start YES YES N/A
recording_stop YES YES N/A
recording_status YES YES N/A
recording_share YES N/A N/A
recording_clear YES YES N/A
recording_delete YES N/A N/A
channel_getlist YES N/A N/A
channel_create YES N/A N/A
channel_get YES N/A N/A
channel_update YES YES N/A
channel_delete YES N/A N/A
vector_gelist YES N/A N/A
vector_create YES N/A N/A
vector_get YES N/A N/A
vector_update YES N/A N/A
vector_delete YES N/A N/A

	

	

158

6.6 Web Portal Design and Implementation

The Motion Cloud’s data is made accessible to users through a web portal, in a format

that is suitable for downstream applications (e.g. establishing a motion library to

showcase and analyse recorded data, creating a database for activity tracker data,

etc.). The web portal is an interface layer developed using the aforementioned API

together with, HTML, JavaScript and PHP. This section discusses the development of

the web portal in terms of user journey and functionality.

6.6.1 Use Cases

Figure 6-7 summarises all the functionality possible through the web portal. Users

must register and authenticate to gain access to the dashboard. The dashboard allows

user to open their profile, select recordings or groups of recordings. Once a recording

is selected, the user can visualise, modify, export or share its contents with other

users.

Figure 6-7: Motion Cloud web portal use case diagram.

select	
 group	

authenticate	

open	
 profile	

view	
 stats	

edit	
 recording	

title/description	

select	
 recording	

dashboard	

logout	

Motion	
 Cloud	
 Web	
 Portal	

User	

register	

edit	
 profile	

select	
 group	

export	
 CSV	

visualise	
 motion	

view	
 profile	

edit	
 group	

title/description	

share	

	

	

159

6.6.2 Main Interface

As shown in Figure 6-8, the most elaborate interface of the web portal is the recording

page as it provides most of the functionality. Aside from the header and footer, the

recording interface can be divided into three sections: recording panel, BSN controller

and channel visualizer.

Figure 6-8: Motion Cloud web portal user interface.

The recording panel is located at the top of the screen. Each recording has a

description and a title, which can be edited through the recording page. By editing the

description, users can write explanatory text summarising the meaning of the motion

data. The recording panel also allows users to delete, share or export the data in the

Header	

Recording	

Panel	

BSN	

controller	

Channel	

Visualiser	

Footer	

	

	

160

CSV formats. The share functionality allows several accounts to be linked to the same

recording object.

The BSN controller allows users to remote control the recording process of an online

BSN. In the context of smartphone-driven BSNs, clicking the record button will have

the same effect as tapping the smartphone interface. All the smartphones connected to

the recording will begin capturing motion. Like the mobile application interface, the

record button changes from orange to green to give users a visual cue of the BSN

status.

Using the Google Chart API [179], the channel visualizer creates a graph for every

channel object belonging to the recording. Graphs allow for a preliminary

interpretation the motion, before any 3D visualisations. Future iterations of the web

portal may support Web Graphics Library (WebGL) [180], allowing for skeletal

visualisations in the web browser.

6.7 Motion Cloud Integration
The integration of the Motion Cloud has been demonstrated in the previous chapter in

the context of smartphone-driven BSNs where the gateway API is used to transfer

data between smartphones. However, the API plays a larger role throughout the

framework as it facilitates the transfer of data between the Skeletrix software

environment and the mobile application. This section discusses the integration of the

Motion Cloud with the Skeletrix software environment through the development of

the MotionCloudViewer.

The software environment was given Motion Cloud support through an additional

viewer system, which resembles the structure of the AnimationViewer,

KinematicsViewer and SystemViewer. The MotionCloudViewer allows users to

extract data from sensors and upload it to the repository for safekeeping. This solution

could be considered an alternative to motion capture file formats. Users can record

motion data and upload it to the server. The motion data can be accessed or

downloaded from the server at a later stage. Therefore, the server removes the need

for any local storage and becomes a web-based substitute to motion capture file

formats. This solution is important because it removes the need for local file storage

by automating the process of soring and organising motion files. This solution saves

	

	

161

users time and effort while simplifying the act of using a motion capture system and

improving overall the motion capture workflow.

The MotionCloudViewer is closely interlinked with the animation model, which

stores all the motion data. To upload data, the viewer grabs a copy of the animation

model and iterates through the data to construct a JSON packet. That JSON packet is

then posted to the server using a QNetworkAccessManager. QNetworkReply objects

are used to receive messages from the server.

Figure 6-9 illustrates the MotionCloudViewer interfaces. A section is added on the

main GUI that allows users to authenticate with the Motion Cloud. A successful

authentication will open the MotionCloudViewer interface where users can chose to

upload the whole recording to a recording object in the repository.

Figure 6-9: MotionCloudViewer adds Motion Cloud support to the Skeletrix software

environment.

Future iterations of the MotionCloudViewer will be focused on streaming data from

systems. For example, motion could be visualised on a smartphone as it is being

recorded by a full-body motion capture suit. Mobile computing devices could be used

during recording sessions along with inertial motion capture systems to monitor and

visualise the motion data.

	

	

162

6.8 Conclusions
Fundamentally, the Motion Cloud is a large database designed to store inertial data

produced by software environments (e.g. the Skeletrix software environment), mobile

applications (e.g. the Skeletrix mobile application) and other third-party software

applications. The Motion Cloud is used to demonstrate an implementation of web

technologies that is designed specifically for the field of inertial motion capture and

BSNs. The proposed solution is extendable and versatile, to meet the requirements of

a wide range of sensors. Within the scope of the Skeletrix framework, the Motion

Cloud is used to form a bridge between the developments presented in the previous

chapters, namely the software environment and mobile application.

This chapter begins with a requirement specification that puts emphasis on the design

of the three main components that constitute Motion Cloud, namely the repository,

gateway and web portal.

The repository is a centralised database for inertial motion capture data originating

from a single sensor or a more complex BSN. Unlike other motion databases, the

Motion Cloud repository parses the data and divides it into database objects. The data

model consists of a hierarchy of profile, recording, group, channel and vector objects.

This unique approach allows for data streaming, online visualisations of motion,

online data manipulation and other functionalities that are not possible with traditional

motion libraries. Such functionality is possible because the data is parsed by the

gateway and stored by the repository as objects rather than motion files.

The gateway contains an API layer allowing the integration of third-party software

environments. The API consists of web services for manipulating the contents of the

repository. This chapter has presented the API documentation and provided an

example of stringing together API calls to upload a BSN’s data. Like the repository,

the API architecture also forms a hierarchy whereby a call may itself access other

calls.

The web portal is an interface layer for the Motion Cloud allowing users to visualise,

modify and retrieve inertial motion capture data. Its purpose is to make data

accessible to researches in a format that is suitable for experimental research.

Additionally, the web portal is used to demonstrate an implementation of the API.

	

	

163

6.8.1 Application Areas

This section showcases potential usability scenarios for the Motion Cloud that

illustrate its versatility and wide range of application areas. The mobile application

has already demonstrated how the Motion Cloud can be used as a multiplexer to

construct online BSNs. Let’s consider four additional usability scenarios: motion

library, prototyping environment, motion gateway and activity database.

Scenario 1: Motion Library

Most motion capture software and hardware developers provide libraries of motion,

containing pre-recorded samples of motion, to their clients to showcase the accuracy

of their systems. These libraries only allow users to upload or download files. There

are no solutions for modifying or visualising data in a web browser. The current

version of the Motion Cloud can be used as a motion library while providing a more

detailed methodology for interacting with the data. Because each rotational value is

stored as an entry in the database, it can be accessed with ease through a web portal or

through web services. The web portal could be developed to contain motion analysis

and cleanup tools, thus allowing users to inspect or edit the data quickly. This is not

possible with existing motion libraries that contain the motion data uploaded as files.

While the web portal provides an example interface layer for the repository, third-

party software developers can build better software or web-based interfaces that suit

their specific needs.

Scenario 2: Prototyping Environment

While most IMU manufacturers provide open-source drivers for their products,

researchers have to develop or integrate software for data visualisations and storage.

Inertial data can be uploaded directly to the Motion Cloud from the driver. The result

can be stored, visualised or accessed in a convenient format without any additional

software development. To demonstrate this concept, a standalone driver was

developed for the Razor IMU. A standalone driver is a small program that sits

between an application and a hardware device. In this context, the application is the

Motion Cloud and the device is a Razor IMU powered by an Arduino board and

connected to the computer through a USB cable. Its implementation is derived from

the driver presented in Appendix B. The standalone driver is a small executable that

	

	

164

runs in the background, without an interface, and streams data to the server as buffers

containing several frames of motion each.

Scenario 3: Motion Gateway

A unique property of the Motion Cloud is the gateway, which allows users to send

motion data between software environments, mobile applications, BSN nodes, etc.

Effectively, the Motion Cloud becomes an online substitute for a multiplexer. This

aspect has been demonstrated in the previous chapter in the context of online

smartphone-driven BSNs.

Scenario 4: Activity Database

Activity tracking is an important application area for inertial sensing devices such as

pedometers. The Motion Cloud can be used as a database for activity data (e.g. from a

FitBit [173], Jawbone [174], etc.). That activity data can be stored in several formats.

First, processed activity data can be stored in the form of calories burnt, steps taken

and distance travelled. Second, raw activity data can be stored as rotations or

gravitational accelerations to be used by processed at a later stage. In both scenarios,

the Motion Cloud has the potential to be used as an activity database.

	

	

165

CHAPTER SEVEN

7 Conclusions

7.1 Summary
This chapter concludes the work presented throughout this thesis by summarising and

discussing the four main research bodies: inertial motion capture software

environments, constructing inertial body sensor networks (BSN), sensing through

mobile computing technologies and the Motion Cloud, a repository and gateway for

inertial motion data. Potential extensions and plans for future development are also

discussed. To summarise, this thesis has contributed to the field of inertial motion

capture and BSNs through four developments, each presenting unique solutions to

common problems. When combined, these developments produce a framework for

constructing BSNs, which extracts motion data from inertial hardware and makes it

accessible to downstream applications through the Motion Cloud.

7.2 Inertial Motion Capture Software Environments
The Skeletrix software environment published in Pascu et al. [17] [18] is developed in

an attempt to define an improved motion capture workflow by analysing the list of

procedures involved in extracting and computing inertial motion capture data.

Notably, the software environment is not a motion-editing tool for character

animation and does not replicate the core functionality found in other software

applications. Instead, the software environment is presented as a tool for researchers

interested in studying or developing BSNs. To summarise, the Skeletrix software

environment’s first purpose is to provide a suitable experimentation environment,

accompanied by programming scaffolding and a driver development kit, for users

interested in integrating inertial BSNs or singular inertial measurement units (IMU)

that enclose gyroscopes, accelerometers and magnetometers. The software

environment architecture consists of three major core components: kinematic,

animation and system engine. The kinematic model is used to construct a kinematic

model that represents a virtual interpretation of the skeletal rig. The animation model

stores recorded data and applies it to the kinematic model to animate skeletal rigs. The

system model creates a virtual representation of the BSN at the software level, thus

	

	

166

allowing users to develop the inner workings of the hardware. In accordance with the

concept of transparency, each model is given a viewer, which is an interface layer for

viewing the model’s inner workings. The visualisation engine uses the OpenGL

graphics pipeline to render 3D visualisations of the recorded motion.

The standardization of file formats has become an important requirement for

developing new software environments [131]. The lack of a standard implies an

industry that has too many incomplete solutions competing for software support. For

this reason, introducing an entirely new format can be counterintuitive as developers

are not eager to learn or implement new file systems. The proposed solution is to

extend an existing format that developers are already familiar with. Biovision

Hierarchy Extended (BVHE) lies at the core of the Skeletrix software environment

and aims to tighten the relationship between software and inertial motion capture

hardware. Users can configure the BSN by simply loading a BVHE file.

The Skeletrix software environment introduces the concept of a driver development

kit (DDK) as a bridging architecture between hardware and software whereby driver

modules can be developed for single IMUs or BSNs. A driver is a self-contained

dynamic-link library (DLL) enclosing the code required to extract and parse the

stream of motion data from the sensors. A driver must be built in accordance to a

specification that allows the Skeletrix software environment to establish a valid

connection. The first step is to connect the functions of the system model with the

functions of the drivers, thus allowing the system model to control the actions of the

driver. The second step focuses on hardware handshaking and is specific to each

system. If the bridging is successful, data will begin to stream from the hardware and

will display in the SystemViewer. Several drivers could be bridged simultaneously to

stream data from several heterogeneous systems in real-time. As the implementation

of the heterogeneous BSN demonstrates, the DDK facilitates a more flexible

methodology for constructing BSNs and obtaining data from hardware.

The software environment presents a novel approach for computing the correct anchor

of kinematic models during gate, which is based on the lowest-point algorithm. The

lowest-anchor centre of mass algorithm (LACOMA) (published in Pascu et al. [18])

works using a weight model, which is constructed by adding physics, such as weight

and weight distribution, to the kinematic model. The algorithm calculates the body’s

	

	

167

musculoskeletal axis of balance to determine the supporting anchor of the body. This

solution prevents problems caused by motion performers dragging their feet, kneeling,

crouching, etc.

To conclude, the Skeletrix software environment represents a tool for developing

inertial motion capture systems. It provides a layer of software between the user and

the hardware. This concept is demonstrated in Chapter 4 through the integration and

development of IMUs. The fundamental architecture of the software environment is

further used to develop the mobile application presented in Chapter 5.

7.3 Constructing Inertial Body Sensor Networks
Connecting sensors to the Skeletrix software environment through two case studies

has been important to create a source of motion data and to demonstrate the

functionality of the DDK and BVHE. This research work led to the development of

the MTDS (published in Pascu et al. [18]), which is a new prototype-level inertial

motion capture system.

Current BSNs are developed to be software-centric whereby all the data is extracted

from the hardware, in its raw form, and sent to the computer for processing. Raw data

is larger in size and therefore the BSN needs to communicate larger messages

between its nodes and to the computer. For example, software-centric IMUs

containing gyroscopes, accelerometers and magnetometers output nine degrees of

freedom. On the other hand, hardware-centric IMUs output fused data corresponding

to three degrees of freedom. The Motion Tracking Development System (MTDS)

demonstrates that hardware-to-hardware and hardware-computer

intercommunications can be reduced if microcontrollers are programmed to process

data at the hardware-level. Hardware-centricity is exploited in MTDS system through

two hardware developments: a central multiplexer connecting a constellation of IMU

nodes. Only four batteries can power the suit because the hardware is designed

efficiently by using low-power microcontrollers.

7.4 Sensing Through Mobile Computing Technologies
Modern smartphones embed a variety of sensors such as gyroscopes, accelerometers

and magnetometers. This combination of sensors can also be found in most IMUs.

Modern smartphones meet the computational requirements to sense and compute

	

	

168

motion data. The proposed mobile application (Pascu et al. [15] [16] [19]) draws a

parallel between mobile computing technologies and inertial motion capture with the

goal of demonstrating the concept of smartphone-driven BSNs. The BSN is

constructed using a centralised web server that replicates the functionality of a

multiplexer. The conceptualisation of a smartphone-driven BSN is achieved through:

motion processing, event triggers, data streaming protocols and data synchronization.

The smartphone-driven BSN is evaluated in several contexts. To begin with, two

smartphones are moved on a flat surface to capture and simulate the articulated

kinematic motion of a hand wave. This experiment is taken further as three

smartphones are placed on the body to record the articulated motion of a hand wave

gesture. The results show that in the context of inertial character animation, the

smartphone sensors show potential in terms of performance. The smartphone’s

sensors are becoming sufficiently accurate to be deployed on bespoke circuit boards

to create IMUs for BSNs, which can be used to capture kinematic human motion.

This thesis continues to investigate a second application area, activity tracking. Two

smartphones are networked to evaluate the difference between sedentary and active

behaviour. There is a potential for the mobile application to be repurposed as an

activity tracker, which produces a rough estimation of steps taken, calories burnt and

distance travelled. Additional usability scenarios, which illustrate the versatility of the

mobile application, are also discussed: medical science, emergency responses, road

and traffic condition monitoring.

7.5 Motion Cloud: A Repository and Gateway for Inertial
Motion Data

The Motion Cloud is developed in an attempt to extend the motion capture workflow

with web technologies. Throughout this thesis, the Motion Cloud has elaborated the

concept of storing, organising and accessing that data through extendable database

models and multipurpose web services. The unique Motion Cloud architecture is

designed to accommodate any configuration of sensors, from single sensors to full-

body sensor networks streaming data online. The Motion Cloud is the combined result

of three main developments: the centralised motion repository, the gateway API and

the web portal interface layer.

	

	

169

The Motion Cloud’s centralised repository is a large database designed to store inertial

data produced by software environments, mobile applications and drivers. While most

motion capture hardware developers provide online databases for storing motion files,

this repository differentiates itself from existing solutions through an object-oriented

design. Motion data is parsed and divided into objects that are subsequently stored in

a database hierarchy. The hierarchy structure simulates the configuration of a

kinematic model.

The Motion Cloud’s gateway interconnects the Skeletrix software environment and

mobile application presented in this thesis to form one framework. As a result, the

gateway can also be used to transfer data between platforms. For example, motion

recorded using a desktop computer and running the Skeletrix software environment

can be uploaded, using the MotionCloudViewer, to the Motion Cloud and

downloaded using the mobile application.

The goal of this research work is to change the way users store and transfer motion

data between computers, thus eliminating the need for local storage of data and

motion capture file formats. The gateway is also presented as an intercommunications

mechanism for developing online wireless BSNs. As a result, data can be streamed by

each BSN node and downloaded by the whole network, a concept that is evaluated

using mobile computing technologies. To make the Motion Cloud relevant beyond the

scope of the Skeletrix framework, the gateway provides an API allowing third-party

software applications to upload, download and stream data to and from the repository.

The Motion Cloud’s web portal is an interface layer for the repository and the

gateway. It provides tools for visualising, creating, modifying, deleting and exporting

motion data in a format that is suitable for downstream applications. For example, the

web portal could be used by healthcare workers to evaluate a patient’s response to

treatments as discussed in Pascu et al. [15] [16]. Four additional usability scenarios,

which illustrate the versatility of the Motion Cloud, are also discussed: motion library,

prototyping environment, motion gateway and activity database.

The Motion Cloud also blurs the boundaries of BSNs by integrating other inertial

sensing devices, such as commercial pedometers (e.g. FitBit [173], Jawbone Up

[174]), in the Skeletrix framework. Therefore, the Motion Cloud has the potential to

	

	

170

become an Internet of Things [34] platform through which all sensors are unified to

produce data that is stored in one centralised repository.

7.6 Towards a More Efficient Motion Capture Workflow
Without the developments presented in this research, the traditional workflow for a

typical motion capture suit is limited. With the developments presented in this thesis,

the workflow is improved and extended with new technologies. This section presents

two contrasting usability scenarios.

Typical Inertial Motion Capture Scenario:

A motion performer and a system operator use a motion capture suit to record

full-body motion for the period of one hour. The purpose of the recording is to

analyse human-environment interaction throughout urban households. The

performer is dressed in the hardware with the help of the operator. This process

takes approximately half an hour as nineteen IMUs and their interconnecting

cables must be secured firmly on the body in a particular configuration (in

accordance to the instruction manual). The suit is switched on and the network

handshaking begins whereby the computer interrogates all sensor nodes

individually. The user is asked to stand next to a reference object, which is

used by the operator to adjust the onscreen kinematics to match the motion

performer’s bodily proportions. The motion performer faces north and the

magnetometers are zeroed. Performing the T-pose, which involves standing

straight with both arms extended laterally away from the body, compensates

the postural difference. The suit begins recording if all these steps are

performed successfully. While navigating the household environment, sensors

may switch off due to loose or damaged connectors. Additionally, the chance

of the suit losing wireless signal due to distance or environment obstructions is

high. A single sensor disconnecting implies a complete system restart, which

involves repeating the aforementioned procedures. Once the recording session

has completed successfully, the operator takes the data and applies a set of

filters and data cleaning algorithms. The result is clean motion that can be used

for scientific analysis and is stored using one of several file formats.

	

	

171

Through the Skeletrix framework, the motion capture workflow (the series of

procedures required to initiate a BSN that are showcased in the aforementioned

scenario) is simplified or automated. To begin a recording, users simply load a BVHE

file and perform the onscreen motion to calibrate. Hardware integration is made

flexible so that users can decide the configuration of their system such as specifying

the number and sensors and kinematic model. As demonstrated through the

development of the DDK, hardware can be connected to the computer using DLL-

enclosed drivers. The DDK is configured using the BVHE file format. As

demonstrated by LACOMA, anchor selection can be improved by supplementing the

kinematic model with weight models. Better anchor selection has the potential to

improve the accuracy of foot placement estimation and subsequently the accuracy of

dead reckoning. Using the Skeletrix framework, BSNs can be developed to be more

hardware-centric whereby software functionality is achieved at the hardware level

rather than software. As shown in the development of MTDS, embedding

microcontrollers to process motion at the multiplexer and IMU levels, with carefully

thought-out firmware, can solve this problem. The IMUs firmware can be designed so

that the sensors restart autonomously, thus making the BSN more modular.

Modularity was a design requirement as it improves versatility and makes the BSN

applicable to a wider range of application areas.

For situations where bespoke BSNs are not required (e.g. small experiments requiring

few sensors), smartphones can be used to sense inertial motion capture. This thesis

demonstrates how the smartphone, the most ubiquitous type of wearable computing,

can be integrated into an inertial motion capture framework. Smartphones also have

the potential to help BSN development by becoming test beds or prototyping

environments for inertial motion capture systems.

But is there a better methodology for storing, organising and transferring inertial data

other than motion capture files once the motion data is obtained from hardware? As

demonstrated by the Motion Cloud, web technologies can be used to extend the

motion capture workflow and provide users with a better solution for storing,

transferring and visualising motion capture data. That data is then made available for

downstream applications through a unique and innovative API.

	

	

172

The following scenario puts the research work presented in this thesis into context.

Proposed Scenario:

A motion performer uses an MTDS suit to record motion for the period of one

hour. The purpose of the recording is to analyse human-environment

interaction throughout urban households. The performer puts on the hardware,

a process that takes minutes to complete because the suit is lightweight. The

performer opens the Skeletrix software environments, loads a BVHE file that is

suited to their experiment and begins recording. The suit initiates itself, starts

recording and the user mimics the onscreen motion to calibrate. If a sensor

disconnects during the recording, that specific sensor reboots and joins the

BSN automatically. Once the recording session is complete, the software

environment uploads the motion data to the Motion Cloud for further analysis.

That motion data can later be visualised using web or mobile computing

technologies.

7.7 Future Work
The research presented in this thesis showcases several prototypes that have the

potential to be developed further. While those prototypes showcase a variety of

concepts, there is room for further improvements and new functionality. The research

work presented in this thesis is taken forward by two research project proposals for

funding that are focused on Parkinson’s disease research and digital tool chains for

inertial motion capture. This section discusses potential extension for the Skeletrix

software environment, mobile application, Motion Cloud and MTDS suit.

7.7.1 Skeletrix Software Environment Extensions

The Skeletrix software environment has demonstrated the benefits of using a motion

capture file format that integrates system configuration data along with kinematic

definitions and motion data. Although the semantics of BVHE contain all the

information required to run a motion capture system, the syntax can be difficult to

parse. In accordance to the premise of creating a file format that users are already

familiar with, the Biovision Hierarchy (BVH) syntax was used as a starting point to

provide users with a file type that they already understand. The development of new

software that uses this format implies writing complicated parsers. A simpler and

	

	

173

more efficient approach would be to utilise eXtensive Markup Language (XML) in a

similar way to Motion Capture Markup Language (MCML) [131] or JavaScript

Object Notation (JSON). JSON is currently the most efficient way of storing data

while XML is more intuitive.

LACOMA computes motion in the horizontal plane based on foot placement

estimation. However, there are many situations where the third axis is also required to

determine vertical displacement. For example, the act of running implies “walking”

where both feet detach from the ground plane during each consecutive gait cycle. It

would be beneficial to add more physics to LACOMA so that users can perform

gestures, such as jumping, where the kinematic model detaches entirely from the

ground plane. However, this approach implies developing a basic physics engine and

is beyond the scope of developing a solution for dead reckoning.

7.7.2 Skeletrix Mobile Application Extensions

The Skeletrix mobile application has demonstrated that inertial motion capture is

possible using smartphones connected to the Internet. The resulting BSN is

omnidirectional in the sense that every smartphone node communicates data to the

entire network. The implementation of this solution is achieved using server-polling

techniques. One smartphone uploads its data while the others constantly interrogate

the server for updates. The server does not have the ability to send a message directly

to a smartphone. A possible extension is to create a server controller that is abled to

actively send data to the BSN nodes. This approach would decrease latencies and

mobile data usage.

7.7.3 Motion Cloud Extensions

The Motion Cloud has demonstrated how web technologies can be used to enhance

inertial motion capture in two ways. First, web technologies can extend the motion

capture workflow to allow for a better methodology for storing and trading motion

capture data. Second, web technologies can become an intercommunication

mechanism for IMUs, allowing for more flexible wireless BSNs. There are other

unexplored methods in which web technologies can become useful. A possible

extension for the Motion Cloud is a social media module that brings together

communities of developers interested in sharing knowledge.

	

	

174

The current data model is designed to accommodate only three-valued vectors such as

angular readings or positional offsets. While the repository is designed specifically for

inertial motion capture technologies, the data model can be used to store data from

other mediums such as exoskeleton suits or optical sensors. All character motion

capture technologies eventually produce animated kinematic models. Although the

API requirement specification has taken into account those technologies, further

research is required to develop the Motion Cloud in those contexts.

The web portal makes motion capture data, obtained from hardware, more accessible

to users. The only method for data visualisation data is through graphs or in a tabular

format. Web Graphics Library (WebGL) [180] is a JavaScript library for 3D

visualisations based on OpenGL ES 2.0 that makes use of the computer’s Graphics

Processing Unit (GPU). A possible extension for the web portal is to visualise

kinematic motion as demonstrated by the software environment and mobile

application.

While the gateway API has been shown to work with the software environment and

the mobile application, it has not been evaluated with commercial software. Software

applications such as MotionBuilder [133] and Blender [137] allow users to develop

plugins or modify the source code. A potential extension is to integrate the Motion

Cloud with other software applications outside the Skeletrix framework.

7.7.4 MTDS Extensions

The MTDS upper body suit was developed as a prototype using consumer-level

sensors and microcontrollers. Sensor fusion is not possible because the suit does not

implement magnetometers. As a result, the sensors have a significant amount of drift

whereby the system can only be used for short periods of time. A possible extension is

to redevelop the printed circuit boards to accommodate magnetometers. Alternatively,

modern sensors include the gyroscope, accelerometer, magnetometer and small

microcontrollers in the same chip capsule. Integrating a modern sensor chip would

minimize drift and improve overall accuracy.

In an attempt to improve power consumption, both the MTDS multiplexer and IMU

use 8-bit microcontrollers to compute and transfer motion. However, the values

produced by the sensors are floating-point numbers, which are inefficient to compute

	

	

175

on 8-bit microcontrollers. As a result, a possible extension to the MTDS architecture

is to upgrade the hardware with 32 bit ARM microcontrollers (e.g. Cortex A50 Series

microcontrollers [181]). This added computational capabilities would allow for an

even more autonomous motion capture system.

	

	

176

References

[1] Calvert, T.W., Chapman, J., Patla, A., “Aspects of the Kinematic Simulation
of Human Movement”, Proceedings of IEEE Computer Graphics and
Applications, vol. 2(9), pp. 41-48, 1982.

[2] Raskar, R., Nii, H., DeDecker, B., Hashimoto, Y, Summet, J., Moore, D.,
Zhao, Y., Westhues, J., Dietz, P., Barnwell, J., Nayar, S., Inami, M., Bekaert,
P., Noland, M., Branzoi, V., Bruns, E., “Prakash: Lighting Aware Motion
Capture Using Photosensing Markers and Multiplexed Illuminators”, ACM
Transactions on Graphics, vol. 26(3), pp. 36, 2007.

[3] Roetenberg, D., Luinge, H.J., Baten, C.T.M., Veltink, P.H., “Compensation of
magnetic disturbances improves inertial and magnetic sensing of human body
segment orientation”, IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 13(3), pp. 395-405, 2005.

[4] Roetenberg, D., Luinge, H., and Veltink, P, “Inertial and magnetic sensing of
human movement near ferromagnetic materials”, Proceedings of 2nd IEEE and
ACM International Symposium on Mixed and Augmented Reality, pp. 268-269,
2003.

[5] Lander, J., “Working With Motion Capture File Formats”, Game Developer,
January 1998, Available from:
http://www.darwin3d.com/gamedev/articles/col0198.pdf (Cited: 17/09/2013)

[6] Meredith, M., Maddock, S., “Motion Capture File Formats Explained”, 2001,
Available from:
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0111.pdf (Cited:
17/09/2013)

[7] Jung, M., Fischer, R., Gleicher, M., Thingvold, J., “Motion Capture and
Editing: Bridging Principles and Practices”, September 2005, ISBN: 978-
1568810867.

[8] Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J., “The Process of Motion
Capture: Dealing with the Data”, Computer Animation and Simulation, 1997.

[9] Maestri, G., “Digital Character Animation”, New Riders Publishing, 1996.

[10] A.D. Young, “From Posture to Motion: The Challenge for Real Time Wireless
Inertial Motion Capture”, Proceedings of 5th International Conference on
Body Area Networks, 2010.

[11] Schepers, H.M., van Assledonk, E.H., Baten, C.T., Veltink, P.H.,
“Ambulatory Estimation of Foot Placement During Walking Using Inertial
Sensors”, Journal of Biomechanics, vol. 43(16), pp. 3138-3143, 2010.

[12] Rebula, J.R., Ojeda, L.V., Adamczyk, P.G., Kuo, A.D., “Measurement of Foot
Placement and its Variability With Inertial Sensors”, Gait Posture, Vol. 38(4),
pp. 974-980, 2013.

	

	

177

[13] Fischer, C., Muthukrishnan, K., Hazas, M., Gellersen, H., “Ultrasound-Aided
Pedestrian Dead Reckoning for Indoor Navigation”, Proceedings of the 1st
ACM International Workshop on Mobile Entity Localization and Tracking in
GPSless Environments (MELT08), pp. 31-36, 2008.

[14] Krüger, A., Edelmann-Nusser, J., “Application of a Full Body Inertial
Measurement System in Alpine Skiing: A Comparison with an Optical Video
Based System”, Journal of Applied Biomechanics, vol. 26(4), pp. 516-521,
2010.

[15] Pascu, T., Patoli, M.Z., Barker, L., Beloff, N., White, M., “Ambient Health
Monitoring: The Smartphone as a Body Sensor Network Component”,
Proceedings of Innovation in Medicine and Healthcare (INMED), pp. 62-65,
Piraeus, Greece, July 2013.

[16] Pascu, T., Patoli, M.Z., Barker, L., Beloff, N., White, M., “Ambient Health
Monitoring: The Smartphone as a Body Sensor Network Component”, The
Journal of Innovation Impact, vol. 6(1), pp. 62-65, 2013.

[17] Pascu, T., Patoli, M.Z., White, W., “Unifying Software and Hardware-Centric
Inertial Measurement Units in Body Sensor Networks”, Proceedings of 13th
International Conference on Computer Graphics and Imaging (CGIM),
Innsbruck, Austria, February 2013.

[18] Pascu, T., Patoli, M.Z., White, W., “Improving Anchor Selection for Inertial
Motion Capture Systems Through Weight Distribution Calculations”,
Proceedings of 13th International Conference on Computer Graphics and
Imaging (CGIM), Innsbruck, Austria, February 2013.

[19] Pascu, T., White, W., Patoli, M.Z., “Motion Capture and Activity Tracking
Using Smartphone-Driven Online Body Sensor Networks”, Proceedings of 3rd
International Conference on Innovative Computing Technology (INTECH),
London, United Kingdom, August 2013.

[20] Technology Strategy Board, Innovateuk, Available from:
http://www.innovateuk.org (Cited: 17/09/2013)

[21] Animazoo, Available from: http://www.animazoo.com (Cited: 17/09/2013)

[22] eMove, MocapSuit, Available from: http://www.mocapsuit.com/ (Cited:
17/09/2013)

[23] Patoli, M.Z., White, M., Gikon, M., “Real-time Online Digital Avatar with Lip
Syncing and Facial Expressions”, Proceedings of 3rd IEEE International Conf.
on Digital Game and Intelligent Toy Enhanced Learning, Kaohsiung, Taiwan,
2010.

[24] Patoli, M.Z., Gikon, M., Newbury, P., White, M., “Real Time Online Motion
Capture for Entertainment Applications”, Proceedings of 3rd IEEE
International Conference on Digital Game and Intelligent Toy Enhanced
Learning, Kaohsiung, Taiwan, 2010.

	

	

178

[25] Dunn, S., Woolford, K., Barker, L., Taylor, M., Norman, S.J., White, M.,
“Motion in Place: a Case Study of Archaeological Reconstruction Using
Motion Capture”, Proceedings of the 39th Conference on Computer
Applications and Quantitative Methods in Archaeology, Beijing, China, 2011.

[26] Woolford, K., Dunn, S., “Motion in place platform: virtual (re)presentations of
Iron Age movement”, Leonardo Electronic Almanac, 2010.

[27] Dunn, S., Hedges, M., Woolford, K., Barker, L., Norman, S.J., Taylar, M.,
White, M., Fulford, M., Clarke, A., Bailey, H., “Motion in place:
archaeological reconstruction and motion capture”, Computer Applications
and Quantitative Methods in Archaeology, Beijing, China, April 2011.

[28] Arts and Humanities Research Council, Available from:
http://www.ahrc.ac.uk/ (Cited: 17/09/2013)

[29] Archeology, University of Reading, Available from:
http://www.reading.ac.uk/archaeology/ (Cited: 17/09/2013)

[30] White, M., Nee, C., Patoli, Z., Pascu, T., “Virtual Burglary Simulation”,
Virtual Emergencies: Simulation Technology for Emergency Planning and
Response, Royal United Services Institute, London, United Kingdom, April
2011.

[31] Nee, C., White, M., Woolford, K., Pascu, T., Barker, L., “Examining Expertise
In Residential Burglars: The Results Of A Pilot Study Using Innovative
Technology”, 68th Annual Meeting of the American Society of Criminology
(ASC), Chicago IL, November 2012.

[32] Nee, C., White, M., Woolford, K., Pascu, T., Barker, L., Wainwright, L.
“Examining expertise in burglars in a natural and a simulated environment”,
Psychology Crime & Law, Submitted January 2014.

[33] DigitalHub, University of Sussex/American Express, Available from:
https://www.digitalhub.org.uk (Cited: 17/09/2013)

[34] Leon Barker, Martin White, Mairead Curran, Zeeshan Patoli, Benjamin
Huggins, Tudor Pascu, Natalia Beloff, “Taxonomy for Internet of Things:
Tools for Monitoring Personal Effects”, Proceedings of 4th International
Conference on Pervasive and Embedded Computing and Communication
Systems, Lisbon, Portugal, January 2014.

[35] Rosenhahn, B., Klette, R., Metaxas, D., “Human Motion: Understanding,
Modelling, Capture, and Animation”, November 2010, ISBN: 978-
9048177004.

[36] Dyer, S., Martin, J., Zulauf, J., “Motion Capture White Paper”, December
1995, Available from:
ftp://ftp.sgi.com/sgi/A%7CW/jam/mocap/MoCapWP_v2.0.html (Cited:
17/09/2013)

[37] Tobon, R., Restrepo, A., “The Mocap Book: A Practical Guide to the Art of
Motion Capture Paperback”, January 2010, ISBN: 978-0615293066.

	

	

179

[38] Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik,
W., Popović, J., “Practical motion capture in everyday surroundings”, ACM
Transactions on Graphics, 2007.

[39] Albert, M., “Understanding Motion Capture for Computer Animation and
Video Games”, October 1999, ISBN: 978-0124906303.

[40] Lamouret, A., Panne, M., “Motion Synthesis By Example”, Proceedings of 7th
International Workshop on Computer Animation and Simulation (EGGAS),
Eurographics, 1996.

[41] MotionScan, Depth Analysis, Available from:
http://depthanalysis.com/motionscan/ (Cited: 17/09/2013)

[42] “L.A. Noire Honored by Popular Mechanics with the Breakthrough Award”,
Rockstar Games, Available from:
http://www.rockstargames.com/newswire/article/19211/la-noire-honored-by-
popular-mechanics-with-the-breakthrough-awar.html (Cited: 18/09/2013)

[43] AnimaLive, Animazoo, Available from: http://www.animalive.com (Cited:
17/09/2013)

[44] Kinect, Microsoft, Available from: http://www.microsoft.com/en-
us/kinectforwindows/ (Cited: 17/09/2013)

[45] Li, Y., “Hand gesture recognition using Kinect”, Proceedings of IEEE
International Conference on Computer Science and Automation Engineering,
pp. 196-199, 2012.

[46] Patsadu, O., Nukoolkit, C., Watanapa, B., “Human gesture recognition using
Kinect camera”, Proceedings of 9th International Conference on Computer
Science and Software Engineering JCSSE (IEEE), pp. 28-32, 2012.

[47] Biswas, K.K., Basu, S.K., “Gesture recognition using Microsoft Kinect”,
Proceedings of 5th International Conference on Automation, Robotics and
Applications (ICARA), pp. 100-103, 2011.

[48] Das, S., Trutoiu, L., Murai, A., Alcindor, D., Oh, M., De la Torre, F., Hodgins,
J., “Quantitative measurement of motor symptoms in Parkinson’s disease: A
study with full-body motion capture data”, Proceedings of Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 6789-6792, 2011.

[49] Balint, G., Dezso, Z., Hunka, A., Lenti, J., Lovanyi, I., “Motion Capture vs.
Traditional Medical Examinations", Proceedings of 3rd International
Conference: Sciences of Electronic, Technologies of Information and
Telecommunications, Tunisia, 2005.

[50] Tseng, Y.C., Wu, C.H., Wu, F.J., Huang, C.F., King, C.T., Lin, C.Y., Sheu,
J.P., Chen, C.Y., Lo, C.Y., Yang, C.Q., Deng, C.W., “A Wireless Human
Motion Capturing System for Home Rehabilitation”, Proceedings of 10th
International Conference on Mobile Data Management Systems Services and
Middleware, 2009.

	

	

180

[51] Zabjek, K.F., Leroux, M.A., Coillard, C., Rivard, C.H., Prince, F., “Evaluation
of segmental postural characteristics during quiet standing in control and
Idiopathic Scoliosis patients”, Clinical Biomechanics, vol. 20(5), pp. 483-490,
2005.

[52] Menz, H.B., Lord, S.R., Fitzpatrick, R.C., “Acceleration patterns of the head
and pelvis when walking are associated with risk of falling in community-
dwelling older people”, The Journals of Gerontology Series A Biological
Sciences and Medical Sciences, vol. 58(1), pp. 446-452, 2003.

[53] Menz, H.B., Lord, S.R., Fitzpatrick, R.C., “Age-related differences in walking
stability”, Age Ageing, 32(2), pp. 137-142, March 2003.

[54] Vallis L.A., McFadyen B.J., “Children use different anticipatory control
strategies than adults to circumvent an obstacle in the travel path”,
Experimental Brain Research, vol. 167(1), pp. 119-127, 2005.

[55] Sadeghi, H., Prince, F., Zabjek, K.F., Labelle, H., “Simultaneous, bilateral,
and three-dimensional gait analysis of elderly people without impairments”,
American Journal of Physical Medicine Rehabilitation Association of
Academic Physiatrists, vol. 83(2), pp. 112-123, 2004.

[56] Saboune, J., Charpillet, F., “Markerless Human Motion Capture for Gait
Analysis”, Computer, 2005.

[57] Cloete, T., Scheffer, C., “Repeatability of an off-the-shelf, full body inertial
motion capture system during clinical gait analysis”, Proceedings of Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 5125-5128, 2010.

[58] Ferrari, A., Cutti, A.G., Garofalo, P., Raggi, M., Heijboer, M., Cappello, A.,
Davalli, A., “First in vivo assessment of “Outwalk”: a novel protocol for
clinical gait analysis based on inertial and magnetic sensors”, Medical &
Biological Engineering & Computing, vol. 48(1), pp. 1-15, 2010.

[59] Cutti, A. G., Ferrari, A., Garofalo, P., Raggi, M., Cappello, A., Ferrari, A.,
“Outwalk: a protocol for clinical gait analysis based on inertial and magnetic
sensors”, Medical & Biological Engineering & Computing, vol. 48(1), pp. 17-
25, 2010.

[60] Kruger, A., Edelmann-Nusser, J., “Biomechanical analysis in freestyle
snowboarding: application of a full-body inertial measurement system and a
bilateral insole measurement system”, Sports Technology, vol. 2(1–2), pp. 17-
23, 2009.

[61] Krüger, A., McAlpine, P., Borrani, P., Edelmann-Nusser, J., “Determination
of three-dimensional joint loading within the lower extremities in
snowboarding”, Proceedings of the Institution of Mechanical Engineers, Part
H: Journal of Engineering in Medicine, vol. 226(2), pp. 170-175, 2011.

[62] Krüger, A., Edelmann-Nusser, J., “Application of a full body inertial
measurement in alpine skiing: A comparison with an optical video based
system”, Journal of Applied Biomechanics, vol. 26(4), pp. 516-521, 2010.

	

	

181

[63] Supej, M., “3D Measurements of alpine skiing with an inertial sensor motion
capture suit and GNSS RTK system”, Journal of Sports Sciences, vol. 28(7),
pp. 759-769, 2010.

[64] Matthew, F., Zengxi, P., David, S., Fazel, N., “Human motion capture sensors
and analysis in robotics”, Industrial Robot: An International Journal, vol.
38(2), pp. 163-171, 2011.

[65] Field, M., Stirling, D., Naghdy, F., Zengxi, P., “Motion capture in robotics
review”, Proceedings of IEEE International Conference on Control and
Automation (ICCA), pp. 1697-1702, 2009.

[66] Shon, A.P., Grochow, K., Rao, R.P.N, “Robotic imitation from human motion
capture using Gaussian processes”, Proceedings of 5th IEEE-RAS International
Conference on Humanoid Robots, pp. 129-134, 2005.

[67] Schaal, S., “Is imitation learning the route to humanoid robots?”, Trends in
Cognitive Sciences, vol. 3(6), pp. 233-242, 1999.

[68] Demiris, J., Rougeaux, S., Hayes, G., Berthouze, L., Kuniyoshi, Y., “Deferred
imitation of human head movements by an active stereo vision head”,
Proceedings of the 6th IEEE International Workshop on Robot Human
Communication, 1997.

[69] Kuniyoshi, Y., Inaba, M., Inoue, H., “Learning by watching: Extracting
reusable task knowledge from visual observation of human performance”,
IEEE Transactions on Robotics and Automation, pp. 799-822, 1994.

[70] Stevenson, J.M., Bossi, L.L., Bryant, J.T., Reid, S.A., Pelot, R.P., Morin, E.L,
“A suite of objective biomechanical measurement tools for personal load
carriage system assessment”, Ergonomics, vol. 47(11), pp. 1160-1179, 2004.

[71] Yebin, L., Stoll, C., Gall, J., Seidel, H.P., Theobalt, C., “Markerless motion
capture of interacting characters using multi-view image segmentation”,
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1249-1256, 2011.

[72] Vicon, Vicon Motion Systems, Available from: http://www.vicon.com (Cited:
25/09/2013)

[73] The Standard, Vicon Motion Systems, Available from:
http://www.vicon.com/standard/ (Cited: 25/09/2013)

[74] A Hopping Success For Outdoor Capture, Vicon Motion Systems, Available
from: http://www.vicon.com/Standard/Archive (Cited: 25/09/2013)

[75] Vicon Bonita, Vicon Motion Systems, Image source:
http://www.vicon.com/System/Bonita (Cited: 25/09/2013)

[76] Optotrak Certus, Northern Digital Inc., Available from:
http://www.ndigital.com/lifesciences/certus-motioncapturesystem.php (Cited:
25/09/2013)

	

	

182

[77] Northern Digital Inc., Available from: http://www.ndigital.com/ (Cited:
25/09/2013)

[78] Burger H., Kuzelicki J., Marincek C., “Transition from sitting to standing after
trans-femoral amputation”, Prosthetics and Orthotics International, vol. 29(2),
pp. 139-151, 2005.

[79] Bertram C. P., Lemay M., Stelmach G. E., “The effect of Parkinson's disease
on the control of multi-segmental coordination”, Brain and Cognition, vol.
57(1), pp. 16-20, 2005.

[80] Zupancic J., Bajd T., “Comparison of position repeatability of a human
operator and an industrial manipulating robot”, Computers in Biology and
Medicine, vol. 28(4), pp. 415-421, 1998.

[81] Burgess-Limerick, R., Green, B., “Using multiple case studies in ergonomics:
An example of pointing device use”, International Journal of Industrial
Ergonomics, vol. 26(3), pp. 381-388, 2000.

[82] Sadeghi H., Prince F., Zabjek K.F., Labelle H., “Simultaneous, bilateral, and
three-dimensional gait analysis of elderly people without impairments”,
American Journal of Physical Medicine & Rehabilitation, vol. 83(2), pp. 112-
123, 2004.

[83] Patla A.E., Tomescu S. S., Ishac M.G., “What visual information is used for
navigation around obstacles in a cluttered environment?”, Canadian Journal
of Physiology and Pharmacology, vol. 82(8-9), pp. 682-692, 2004.

[84] Optotrak Certus, Northern Digital Inc., Image source:
http://www.ndigital.com/lifesciences/certus-stand.php (Cited: 26/09/2013)

[85] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A., and Blake, A., “Real-time human pose recognition in parts from
single depth images”, IEEE Computer Vision and Pattern Recognition
(CVPR), pp. 1297-1304, 2011.

[86] Pittman, N., Forin, A., Criminisi, A., Shotton, J., Mahram, A., “Image
Segmentation Using Hardware Forest Classifiers”, Proceedings of IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2013.

[87] Kinect SDK, Microsoft, Available from: http://www.microsoft.com/en-
us/kinectforwindows/develop/ (Cited: 25/09/2013)

[88] Robotics Developer Studio, Microsoft, Available from:
http://www.microsoft.com/robotics/ (Cited: 25/09/2013)

[89] Chang, C.Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N.,
Sawchuk, A.A., Rizzo, A., “Towards Pervasive Physical Rehabilitation Using
Microsoft Kinect”, Proceedings of 6th International Conference on Pervasive
Computing Technologies for Healthcare, 2012.

[90] Huang, Z., Nagata, A., Kanai-Pak, M., Maeda, J., Kitajima, Y., Nakamura, M.,
Aida, K., Kuwahara, N., Ogata, T., Ota, J., “Feedback-Based Self-training

	

	

183

System of Patient Transfer”, Digital Human Modelling and Applications in
Health, Safety, Ergonomics, and Risk Management. Healthcare and Safety of
the Environment and Transport, pp. 197-203, 2013.

[91] Fern'ndez-Baena, A., Susin, A., Lligadas, X., “Biomechanical Validation of
Upper-Body and Lower-Body Joint Movements of Kinect Motion Capture
Data for Rehabilitation Treatments”, Proceedings of 4th International
Conference on Intelligent Networking and Collaborative Systems (INCOS),
pp. 656-661, 2012.

[92] Delpresto, J., Duan, C., Layiktez, L.M., Moju-Igbene, E.G., Wood, M.B.,
Beling, P.A., “Safe lifting: An adaptive training system for factory workers
using the Microsoft Kinect”, Systems and Information Engineering Design
Symposium (SIEDS), pp. 64-69, 2013.

[93] Ekelmann J., Butka B., “Kinect Controlled Electro-Mechanical Skeleton”,
Proceedings of IEEE IEEE SoutheastCon, pp. 1-5, 2012.

[94] El-laithy, R.A., Huang, J., Yeh, M., “Study on the use of Microsoft Kinect for
robotics applications”, Position Location and Navigation Symposium
(PLANS), pp. 1280-1288, 2012.

[95] Clark, R.A., Pua, Y.H., Bryant, A.L., and Hunt, M.A., “Validity of the
Microsoft Kinect for providing lateral trunk lean feedback during gait
retraining”, Gait Posture, pp. 1-3, 2013.

[96] Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A., “Full body gait
analysis with Kinect”, Proceedings of International Conference of the IEEE
Engineering in Medicine and Biology Society IEEE Engineering in Medicine
and Biology Society, pp. 1964-1977, 2012.

[97] Stone, E.E., Skubic, M., “Passive in-home measurement of stride-to-stride gait
variability comparing vision and Kinect sensing”, Proceedings of
International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 6491-6494, 2011.

[98] XSens, Available from: http://www.xsens.com/ (Cited: 25/09/2013)

[99] MVN, XSens, Available from: http://www.xsens.com/en/general/mvn/ (Cited:
25/09/2013)

[100] Mancini, M., Horak, F.B., “The relevance of clinical balance assessment tools
to differentiate balance deficits”, European Journal of Physical and
Rehabilitation Medicine, vol. 46(2), pp. 239-248, 2010.

[101] Van Den Noort, J.C., Scholtes, V.A., Harlaar, J., “Evaluation of clinical
spasticity assessment in cerebral palsy using inertial sensors”, Gait Posture,
vol. 30, pp. 138-143, 2009.

[102] Martínez-Ramírez, A., Lecumberri, P., Gómez, M., Rodriguez-Mañas, L.,
García, F. J., Izquierdo, M., “Frailty assessment based on wavelet analysis
during quiet standing balance test”, Journal of Biomechanics, vol. 44, pp.
2213-2220, 2011.

	

	

184

[103] Faber, G.S., Kingma, I., Bruijn, S.M., Van Dieën, J.H., “Optimal inertial
sensor location for ambulatory measurement of trunk inclination”, Journal of
Biomechanics, vol. 42(14), pp. 2406-2409, 2009.

[104] Floor-Westerdijk, M.J., Schepers, H. M., Veltink, P.H., Van Asseldonk, E.
H.F., Buurke, J.H., “Use of Inertial Sensors for Ambulatory Assessment of
Center of Mass Displacements During Walking”, IEEE Transactions on
Biomedical Engineering, pp. 2080-2084, 2012.

[105] Parel, I., Cutti, A. G., Fiumana, G., Porcellini, G., Verni, G., and Accardo, A.
P., “Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-
operator agreement of a protocol based on inertial and magnetic sensors”, Gait
Posture, pp. 636-640, 2012.

[106] Spain, R.I., St George, R. J., Salarian, A., Mancini, M., Wagner, J.M., Horak,
F.B., Bourdette, D., “Body-worn motion sensors detect balance and gait
deficits in people with multiple sclerosis who have normal walking speed”
Gait Posture, vol. 35, pp. 573-578, 2012.

[107] IGS 180, Animazoo, Available from: http://www.animazoo.com/products/igs-
180-range (Cited: 25/09/2013)

[108] Gypsy 7 and eMove, picture courtesy of eMove project and Animazoo.

[109] MPU9150 Datasheet, InvenSense, Available from:
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/IMU/PS-MPU-
9150A.pdf (Cited: 25/09/2013)

[110] Aar, C., Shkel, A., “MEMS Vibratory Gyroscopes: Structural Approaches to
Improve Robustness”, October 2010, ISBN: 978-1441934895.

[111] Kaajakari, V., “Practical MEMS: Analysis and Design of Microsystems”,
October 2010, ISBN: 978-0982299104.

[112] Qin, F., Xu, J., Jiang, S., “A New Scheme of Gyroscope Free Inertial
navigation System Using 9 Accelerometers”, International Workshop on
Intelligent Systems and Applications (ISA), pp. 1-4, 2009.

[113] Tsai, Y.L., Tu, T.T., Chou, P.H., “EcoIMU: A compact, wireless, gyro-free
inertial measurement unit based on two triaxial accelerometers”, Proceedings
of the 10th ACMIEEE International Conference on Information Processing in
Sensor Networks, pp. 133-134, 2011.

[114] Brown, R.G., Hwang P.Y.C., “Introduction to Random Signals and Applied
Kalman Filtering”, ISBN: 978-0471128397.

[115] Yun, X.Y.X., Aparicio, C., Bachmann, E.R., McGhee, R.B., “Design,
Implementation, and Experimental Results of a Quaternion-Based Kalman
Filter for Human Body Motion Tracking”, IEEE Transactions on Robotics, pp.
1216-1227, 2006.

[116] Nguyen, K.D., Cheng, I.M., Luo, Z., Yeo, S.H., Duh, H.B., “A body sensor
network for tracking and monitoring of functional arm motion”, Proceedings

	

	

185

of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3862-3867, 2009.

[117] Yang, G.Z., Yacoub, M., “Body Sensor Networks”, ISBN: 978-1846282720.

[118] Van Laerhoven, K., Kern, N., Gellersen, H.W., Schiele, B., “Towards a
wearable inertial sensor network”, IEEE Eurowearable, pp. 125-130, 2003.

[119] Lorincz, K., Chen, B., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P.,
Welsh, M., “Mercury: a wearable sensor network platform for high-fidelity
motion analysis”, Energy, pp. 183-196, 2009.

[120] Otto, C., Milenković, A., Sanders, C., Jovanov, E., “System architecture of a
wireless body area sensor network for ubiquitous health monitoring”, Journal
of Mobile Multimedia, vol. 1(4), pp. 307-326, 2006.

[121] Smart-its, Available from: http://eis.comp.lancs.ac.uk/DiySmartits/ (Cited:
08/02/2014)

[122] Van Laerhoben, K., Schmidt, A., Gellersen, H., “Multi-Sensor Context-Aware
Clothing”, Proceedings of the 6th International Symposium on Wearable
Computers (ISWC), pp. 49-57, 2002.

[123] Maths Rotations, Euclidean Space, Available from:
http://www.euclideanspace.com/maths/geometry/rotations/ (Cited:
25/09/2013)

[124] Kovar, L., Schreiner, J., Gleicher, M., “Footskate cleanup for motion capture
editing”, Proceedings of the ACM SIGGRAPH Eurographics Symposium on
Computer Animation (SCA), 2002.

[125] Gilles, B., Moccozet, L., Magnenat-Thalmann, N., “Anatomical modelling of
the musculoskeletal system from MRI”, Medical Image Computing and
Computer-Assisted Intervention, pp. 289-296, 2006.

[126] Chao, E.Y., Armiger, R.S., Yoshida, H., Lim, J., Haraguchi, N., “Virtual
interactive musculoskeletal system (VIMS) in orthopaedic research, education
and clinical patient care”, Journal of Orthopaedic Surgery and Research,
2007.

[127] Young, A.D., “From posture to motion: the challenge for real time wireless
inertial motion capture”, Proceedings of 5th International Conference on Body
Area Networks, 2010.

[128] Lander, J., “Working With Motion Capture File Formats”, Game Developer,
Available online: http://www.darwin3d.com/gamedev/articles/col0198.pdf
(Cited: 25/09/2013)

[129] Meredith, M., Maddock, S., “Motion Capture File Formats Explained”,
Available online: http://www.dcs.shef.ac.uk/intranet/research/public/resmes/
CS0111.pdf (Cited: 25/09/2013)

	

	

186

[130] Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J., “The Process of Motion
Capture: Dealing with the Data”, Computer Animation and Simulation,
Eurographics, pp. 3-18, 1997.

[131] Chung, H.S., Lee, Y., “MCML: motion capture markup language for
integration of heterogeneous motion capture data”, Computer Standards &
Interfaces, vol. 26(2), pp. 113-130, 2004.

[132] 3ds Max, Autodesk, Available from:
http://www.autodesk.com/products/autodesk-3ds-max/overview (Cited:
25/09/2013)

[133] MotionBuilder, Autodesk, Available from:
http://www.autodesk.com/products/motionbuilder/overview (Cited:
25/09/2013)

[134] Maya, Autodesk, Available from:
http://www.autodesk.com/products/autodesk-maya/overview (Cited:
25/09/2013)

[135] BVHImportExport, Creative Crash, Available from:
http://www.creativecrash.com/maya/ plugin/bvh-file-import-export-for-maya
(Cited: 25/09/2013)

[136] AMC2MOV and ASF2MEL converters, Creative Crash, Available from:
http://www.creativecrash.com/maya/downloads/applications/3d-converters/
c/asf2mel-and-amc2mov-sgi (Cited: 25/09/2013)

[137] Blender, Available from: http://www.blender.org/ (Cited: 25/09/2013)

[138] Life Forms Studio, Credo Interactive, Available from: http://www.credo-
interactive.com/ products/lifeforms/ (Cited: 25/09/2013)

[139] Poser, Smith Micro Software, Available from: http://poser.smithmicro.com/
(Cited: 25/09/2013)

[140] Carrara, Daz3D, Available from:
http://www.daz3d.com/products/carrara/carrara-what-is-carrara/ (Cited:
25/09/2013)

[141] QT, QT Project, Available from: http://qt-project.org (Cited: 25/09/2013)

[142] Signals and Slots, QT Project, Available from: http://qt-project.org/doc/qt-
4.8/signalsandslots.html (Cited: 25/09/2013)

[143] Challis, J.H., “Precision of the estimation of human limb inertial parameters”,
Journal of Applied Biomechanics, vol. 15(4), 1999, 418-428.

[144] Shimmer, Available from: http://www.shimmersensing.com (Cited:
20/01/2014)

[145] MSP430 Microcontroller Documentation, Texas Instruments, Available from:
http://www.ti.com/lsds/ti/microcontroller/16-

	

	

187

bit_msp430/overview.page?DCMP=MCU_other&HQS=msp430 (Cited:
25/09/2013)

[146] IDG 500 Gyroscope Documentation, InvenSense, Available from:
http://www.invensense.com/mems/gyro/documents/PS-IDG-0500B-00-08.pdf
(Cited: 25/09/2013)

[147] ADXL345 Accelerometer Documentation, Analog Devices, Available from:
http://www.analog.com/en/mems-sensors/mems-inertial-
sensors/adxl345/products/product.html (Cited: 25/09/2013)

[148] HMC5843 Magnetometer Documentation, Honeywell, Available from:
http://www.honeywell.com/sites/servlet/com.merx.npoint.servlets.DocumentS
ervlet?docid=DA9ACFE3C-F7C0-9998-6085-D9D84941499D (Cited:
25/09/2013)

[149] Wii Remote Plus, Nintendo, Available from:
http://www.nintendo.co.uk/Wii/Accessories/Accessories-Wii-Nintendo-UK-
626430.html (Cited: 20/01/2014)

[150] Shimmer Motion Development Kit, Shimmer, Available from:
http://www.shimmersensing.com/shop/motion-development-kit (Cited:
20/01/2014)

[151] Razor AHRS IMU Documentation, SparkFun, Available from:
https://www.sparkfun.com/products/10736 (Cited: 25/09/2013)

[152] FTDI Basic Breakout Board Documentation, SparkFun, Available from:
https://www.sparkfun.com/products/9716 (Cited: 25/09/2013)

[153] ITG3200 Gyroscope Documentation, InvenSense, Available from:
http://invensense.com/mems/gyro/itg3200.html (Cited: 25/09/2013)

[154] HMC5883L Magnetometer Documentation, Honeywell, Available from:
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
documents/Defense_Brochures-documents/HMC5883L_3-
Axis_Digital_Compass_IC.pdf (Cited: 25/09/2013)

[155] IMU3000 Gyroscope Documentation, InvenSense, Available from:
http://www.invensense.com/mems/gyro/imu3000.html (Cited: 25/09/2013)

[156] MMA8452Q Accelerometer Documentation, Freescale, Available from:
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA845
2Q (Cited: 25/09/2013)

[157] 8-bit AVR, Atmel,
http://www.atmel.com/products/microcontrollers/avr/default.aspx (Cited:
25/09/2013)

[158] MPU9150, InvenSense,
http://www.invensense.com/mems/gyro/mpu9150.html (Cited: 25/09/2013)

	

	

188

[159] Perani ESD100, Sena,
http://www.sena.com/download/manual/manual_parani_esd-v1.1.4.pdf (Cited:
22/01/2014)

[160] Shimmer 3, Shimmer, http://www.shimmersensing.com/shop/shimmer3-
development-kit (Cited: 20/01/2014)

[161] Ballagas, R., Rohs, M., Sheridan, J., Borchers, J., “The Smart Phone: A
Ubiquitous Input Device”, IEEE Pervasive Computing, vol. 5(1), 2006.

[162] Ganti, R.K., Srinivasan, S., Gacic, A., “Multisensor Fusion in Smart- phones
for Lifestyle Monitoring”, Proceedings of International Conference on Body
Sensor Networks, pp. 36-43, 2010.

[163] Keally, M., Zhou, G., Xing, G., Wu, J., Pyles, A., “PBN: Towards Practical
Activity Recognition Using Smartphone-Based Body Sensor Networks”,
Computer Engineering, ACM, pp. 246-259, 2011.

[164] Turner, H., White, J., “Verification and Validation of Smartphone Sensor
Networks”, MobilWare, 2011.

[165] Yamada, M., Aoyama, T., Mori, S., Nishiguchi, S., Okamoto, K., Ito, T.,
Muto, S., Ishihara, T., Yoshitomi, H., Ito, H., “Objective Assessment of
Abnormal Gait in Patients With Rheumatoid Arthritis Using a Smartphones”,
Rheumatology International, pp. 1-6, 2011.

[166] Hebden, L., “Development of Smartphone Applications for Nutrition and
Physical Activity Behavior Change”, JMIR Research Protocols, vol. 1(2),
2012.

[167] Colwell, B., “Engineers, Programmers, and Black Boxes”, Computer, vol.
38(3), pp. 8-11, 2005

[168] Kotonya, G., “An Architecture-Centric Development Environment for Black-
Box Component-Based Systems”, Software Architecture (Springer Berlin
Heidelberg), pp. 98-113, 2008.

[169] Lozano, C., Jindrich, D., Kahol, K., Mall, E.T., “The Impact on
Musculoskeletal System during Multitouch Tablet Interactions”. Interfaces,
pp. 825-828, 2011.

[170] OpenGL ES, Khronos, Available from: http://www.khronos.org/opengles/
(Cited: 01/10/2013)

[171] Olfati-Saber, R., “Distributed Kalman Filtering and Sensor Fusion in Sensor
Networks”, Proceedings of the 46th IEEE Conference on Decision and
Control, 2007.

[172] Ayub, S., Bahraminasab, A. Honary, B., “A Sensor Fusion Method for Smart
phone Orientation Estimation”, Proceedings of 13th Annual Post Graduate
Symposium on the Convergence of Telecommunications, Networking and
Liverpool, United Kingdom, 2012.

[173] FitBit, Available from: http://www.fitbit.com (Cited: 01/10/2013)

	

	

189

[174] Up Wristband, Jawbone, Available from: https://jawbone.com/up (Cited:
01/10/2013)

[175] S-Health, Samsung, Available from: http://www.samsung.com/uk/news/
localnews/2012/samsung-introduces-s-health-application-for-galaxy-s-iii
(Cited: 01/10/2013)

[176] Tomlein, M., Bielik, P., Kratky, P., Mitrk, S., Barla, M., Bielikova, M.,
“Advanced Pedometer for Smartphone-Based Activity Tracking”, Proceeding
of the International Conference on Health Informatics, SciTe Press, pp. 401-
404, 2012.

[177] Tacconi, C., Mellone, S., Chiari, L., “Smartphone-based applications for
investigating falls and mobility”, Proceedings of 5th International Conference
on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp.
258-261, 2011.

[178] Ghose, A., “Road Condition Monitoring and Alert Application: Using In-
Vehicle Smartphone as Internet-Connected Sensor”, Proceedings of IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp. 489-491, 2012.

[179] Google Charts, Google, Available from: https://developers.google.com/chart/
(Cited: 27/01/2014)

[180] WebGL, Khronos, Available from: http://www.khronos.org/webgl/ (Cited:
01/10/2013)

[181] Cortex A50 Series, ARM, Available from: http://www.arm.com/products/
processors/cortex-a50/index.php (Cited: 01/10/2013)

	

	

190

Appendix A – Computing Quaternion Algebra
At the software environment level, inertial motion capture relies on geometric

calculations comprising of both rotational and positional data structures. This section

introduces the fundamental geometry driving the software environment and the

mobile application’s back-end. The software environment features two bespoke

libraries, entitled Vector and Quaternion, containing all relevant mathematical

functionality. The Vector library delineates the software environment’s most basic

data structure: a linear three-valued matrix accompanied by a specific set of

mathematical operations. A vector object may define a viewing direction, a translation

transformation, a point in space or an Euler rotation. The Quaternion library is used to

represent rotation and compute rotational operations. A quaternion is a four-

dimensional (4D) space vector defined by a three-dimensional axis of rotation and a

scalar transformation along that axis. The quaternion rotational model is deployed,

instead of the Euler equivalent, to avoid the gimbal lock problem. Because

trigonometry is computationally expensive, most software environments adopt this

approach for performance reasons. The following formula illustrates these two

elementary data structures where 𝑣 is a vector, 𝑞 is a quaternion, 𝑣! ∈ 𝑞 and 𝑠 is the

scalar value.

𝑣 = 𝑥 𝑦 𝑧 𝑞 = [𝑠 𝑣!]

Motion data is stored as Euler rotations. An initial conversion is required for Skeletrix

to decipher and store rotational transformations. The following formula utilizes many

trigonometric operations that compromise performance. In the following example,

vector 𝑥 𝑦 𝑧 is converted into quaternion 𝑠 𝑣! 𝑣! 𝑣! .

 𝑠 = cos
𝑥
2 ∗ cos

𝑦
2 ∗ cos

𝑧
2 − sin

𝑥
2 ∗ sin

𝑦
2 ∗ sin

𝑧
2

 𝑣! = cos
𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2 + sin

𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2

 𝑣! = sin
𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2 + cos

𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2

 𝑣! = cos
𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2 − sin

𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2

The opposite conversion, quaternion to Euler, has two purposes. First, Euler results

are required when outputting valid motion capture files (e.g. BVH or BVHE). Second,

	

	

191

all rotations must displayed comprehensibly throughout the interface layer (in

accordance to the principle of transparency introduced in the requirements

specification). The following formula, implemented in the Quaternion library,

transforms quaternion 𝑠 𝑣! 𝑣! 𝑣! into resulting vector 𝑟 . The result is in

radians.

𝑟! = tan!!
2 ∗ 𝑣! ∗ 𝑠 − (2 ∗ 𝑣! ∗ 𝑣!)
1− 2 ∗ 𝑣!! − 2 ∗ 𝑣!!

𝑟! = sin!! 2 ∗ 𝑣! ∗ 𝑣! + (2 ∗ 𝑣! ∗ 𝑠)

𝑟! = tan!!
2 ∗ 𝑣! ∗ 𝑠 − (2 ∗ 𝑣! ∗ 𝑣!)
1− 2 ∗ 𝑣!! − 2 ∗ 𝑣!!

When applying motion data to its skeleton, the kinematic model computes numerous

sequences of rotations. Those sequences employ quaternion multiplication, an

associative yet non-commutative operation. The quaternion product is used to

compute the blended result of two rotations. It uses computationally inexpensive

mathematical operations such as multiplication, addition and subtraction. Given that

Skeletrix performs thousands of multiplications every second, each computation must

be conducted efficiently. Division, as needed during calibration when estimating

compensational differences, is calculated by inverting one of the quaternions before

applying the product formula. In the following example, 𝑟 stores the blended result of

𝑞 and 𝑞!. Once completed, all quaternion products must be normalized.

 𝑟! = 𝑞! ∗ 𝑞!! − 𝑞!! ∗ 𝑞!!
! − 𝑞!! ∗ 𝑞!!

! − 𝑞!! ∗ 𝑞!!
!

 𝑟!! = 𝑞! ∗ 𝑞!!
! + 𝑞!! ∗ 𝑞!

! + 𝑞!! ∗ 𝑞!!
! − 𝑞!! ∗ 𝑞!!

!

 𝑟!! = 𝑞! ∗ 𝑞!!
! − 𝑞!! ∗ 𝑞!!

! + 𝑞!! ∗ 𝑞!
! + 𝑞!! ∗ 𝑞!!

!

 𝑟!! = 𝑞! ∗ 𝑞!!
! + 𝑞!! ∗ 𝑞!!

! − 𝑞!! ∗ 𝑞!!
! + 𝑞!! ∗ 𝑞!

!

Aside from rotation sequences, there are many situations that require a joint effort

between the Vector and Quaternion libraries. As previously mentioned, the rendering

engine calculates all topology at the software environment level and not through the

OpenGL pipeline. Each bone’s geometry is instantiated in its default form before

becoming subject to a series of transformations. Those transformations can be

rotations, size adjustments or translations. When the skeleton moves, its constituent

topologies rotate in accordance to a set of kinematic constraints. The following

	

	

192

equation is relevant in that scenario. It rotates point 𝑝, in local space, by quaternion 𝑞

to generate the resulting vector 𝑟.

𝑟! = (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑣! ∗ 𝑝!)+ (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)

− (𝑞!!
! ∗ 𝑝!)+ (𝑠𝑞!! ∗ 𝑝!) − (2 ∗ 𝑞!! ∗ 𝑞! ∗ 𝑝!) − (𝑞!!

! ∗ 𝑝!)

𝑟! = (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)− (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)

− (𝑞!!
! ∗ 𝑝!)+ (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)− (𝑞!!

! ∗ 𝑝!)+ (𝑞!! ∗ 𝑝!)

𝑟! = (𝑞!! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑞! ∗ 𝑝!)− (2 ∗ 𝑞!! ∗ 𝑞! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)+ (2

∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)− (𝑞!!
! ∗ 𝑝!)− (𝑞!!

! ∗ 𝑝!)

There are several circumstances where vectors can represent gyrations. For example,

a vector can be represented as a line segment starting at the origin and ending at a

specific point in space. A second line segment 𝑣!, of length | 𝑣 |, is drawn in the

default position: also starting at the origin but pointing upwards. In this circumstance,

a rotation can be used to describe the transformation required for line segment 𝑣! to

assume the orientation of 𝑣. This equation shows how to convert vector positions into

rotations. Vector 𝑣! is defined as follows.

𝑣! = [0 𝑣 0]

The subsequent equation is applied to conclude the desired rotation:

𝑟 =
𝑣!×𝑣 ∗ 𝑣!×𝑣

2 ∗ |𝑣!| ∗ |𝑣|
|𝑣!×𝑣|

	

	

193

Appendix B – DDK Driver for Razor AHRS

B.1 Razor Global Header
The Razor_global class Defines the header of the DLL.

Razor_global.h

/**/
/* Razor_global Header */
/**/

#ifndef RAZOR_GLOBAL_H
#define RAZOR_GLOBAL_H

#include <QtCore>

#if defined(RAZOR_LIBRARY)
define RAZORSHARED_EXPORT Q_DECL_EXPORT
#else
define RAZORSHARED_EXPORT Q_DECL_IMPORT
#endif

#endif

B.2 Razor Class
The Razor class contains all the code required to package data from the BSN.

Razor.h

/**/
/* Razor Class Header */
/**/

#ifndef RAZOR_H
#define RAZOR_H
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <windows.h>
#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <iomanip>
#include <sstream>
#include <string>
#include <QThread>
#include "Razor_global.h"
#include "Sensor.h"

using namespace std;

class RAZORSHARED_EXPORT Razor {
public:
 void dllAction1();
 void dllAction2();
 void dllAction3();
 void dllAction4();
 void setPort(vector<int>);

	

	

194

 vector<float> getStream();
private:

};

#endif /* RAZOR_H */

Razor.cpp

/**/
/* Driver Class */
/**/

#include "Razor.h"
#include <QThread>
#include "Razor_global.h"
#include "Sensor.h"
Sensor* sensor = new Sensor();

extern "C" __declspec(dllexport) void dllAction1()
{
 sensor->action1();
}

extern "C" __declspec(dllexport) void dllAction2()
{
 sensor->action2();
}

extern "C" __declspec(dllexport) void dllAction3()
{
 sensor->action3();
}

extern "C" __declspec(dllexport) void dllAction4()
{
 QThread* thread = new QThread;
 sensor->moveToThread(thread);
 thread->connect(thread, SIGNAL(started()), sensor, SLOT(update()));
 thread->start();
}

extern "C" __declspec(dllexport) void setPort(int p)
{
 sensor->setPort(p);
}

extern "C" __declspec(dllexport) vector<float> getStream()
{
 sensor->update();
 return sensor->stream;
}

	

	

195

B.3 Sensor Class
The Sensor class contains all the code required to package data from the BSN.

Sensor.h

/**/
/* Sensor Class Header */
/**/

#ifndef SENSOR_H
#define SENSOR_H

#include <QObject>
#include <vector>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <windows.h>
#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <iomanip>
#include <sstream>
#include <string>
#include <QThread>

using namespace std;

class Sensor : public QObject
{
 Q_OBJECT

public:
 int port, colon1, colon2, end;
 char r[97];
 vector<float> stream;
 HANDLE h;
 DWORD writemsg;
 DWORD readmsg;
 string message;
 Sensor(QObject* parent = 0);
 void action1();
 void action2();
 void action3();
 void action4();
 void setPort(int);
 std::vector<float> getStream();
 void unpack();
public Q_SLOTS:
 void update();
};

#endif /* SENSOR_H */

	

	

196

Sensor.cpp

/**/
/* Sensor Class */
/**/

#include "Sensor.h"

/* Constructor. */
Sensor::Sensor(QObject* parent) : QObject(parent) {
 stream.push_back(0);
 stream.push_back(0);
 stream.push_back(0);
 port = 0;
}

/* Driver action 1 that connects to the port. */
void Sensor::action1() {
 writemsg = 1;
 readmsg = 0;
 message = "";
 std::wstring port_prefix = L"\\\\.\\COM";
 std::wostringstream int_to_wstring;
 int_to_wstring << port;
 std::wstring port_value = port_prefix + int_to_wstring.str();
 h =
CreateFile(port_value.c_str(),GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTIN
G,0,NULL);
 if(h != INVALID_HANDLE_VALUE) {
 DCB dcb;
 memset(&dcb,0,sizeof(dcb));
 dcb.DCBlength = sizeof(dcb);
 dcb.BaudRate = 57600;
 dcb.fBinary = 1;
 dcb.fDtrControl = DTR_CONTROL_DISABLE;
 dcb.fRtsControl = RTS_CONTROL_DISABLE;
 dcb.Parity = NOPARITY;
 dcb.StopBits = ONESTOPBIT;
 dcb.ByteSize = 8;
 }
}

/* Driver action 2. */
void Sensor::action2() {
}

/* Driver action 3. */
void Sensor::action3() {
}

/* Driver action 4. */
void Sensor::action4() {
}

/* Set communication port. */
void Sensor::setPort(int p) {
 port = p;
}

/* Returns stream of data. */
vector<float> Sensor::getStream() {
 return stream;
}

/* Parses the incoming data from the sensor. */
void Sensor::update() {
 if(ReadFile(h,r,sizeof(r),&readmsg,NULL)){

	

	

197

 colon1 = 0;
 colon2 = 0;
 end = 0;
 string received(r);
 if(received.substr(0,5) == "#YPR="){
 for(unsigned int i = 5; i < received.length(); i++){
 if(received.at(i) == '\n') {
 end = i;
 break;
 }
 }
 message = received.substr(5,end-5);
 for(unsigned int j = 0; j < message.length(); j++){
 if(message.at(j) == ',') {
 if(colon1 == 0) {
 colon1 = j;
 }else{
 colon2 = j;
 break;
 }
 }
 }
 if(colon1 != 0 && colon2 != 0) {
 stream[0] =
::atof(message.substr(0,colon1).c_str())/57.2957795f;
 stream[1] = ::atof(message.substr(colon1+1,colon2-1 -
colon1+1).c_str())/57.2957795f;
 stream[2] =
::atof(message.substr(colon2+1,message.length() -
colon2+1).c_str())/57.2957795f;
 }
 }
 }
}

	

	

198

Appendix C – MotionCloud API JSON Packets

C.1 Profile
This is an example JSON packet of what profile_get API call returns.

Example Profile JSON Packet

{
 "username" : "tpascu1",
 "password" : "password1",
 "password_confirm" : "password1",
 "firstname" : "Tudor",
 "lastname" : "Pascu",
 "email" : "t.pascu@sussex.ac.uk"
}

C.2 Group
This is an example JSON packet of what group_get API call returns.

Example Group JSON Packet

{
 "group_id": "20",
 "title": "Smartphone Group 1",
 "description": "7 smartphone motion recording.",
 "recordings": [
 {
 "recording_id": "50",
 "name": "Smartphone Recording 1",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "51",
 "name": "Smartphone Recording 2",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "52",
 "name": "Smartphone Recording 3",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "53",
 "name": "Smartphone Recording 4",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "54",
 "name": "Smartphone Recording 5",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "55",
 "name": "Smartphone Recording 6",
 "channels": [// channel data omitted]
 },
 {
 "recording_id": "56",

	

	

199

 "name": "Smartphone Recording 7",
 "channels": [// channel data omitted]
 },

]
}

This is an example JSON packet of what group_getlist API call returns.

Example Recording JSON Packet

{
 "ids": [
 "20",
 "21",
 "22",
 "23",
 "24",
 "25",
 "26"
],
 "titles": [
 "Smartphone Group 1",
 "Smartphone Group 2",
 "Smartphone Group 3",
 "Smartphone Group 4",
 "Software Environment Recordings 1",
 "Software Environment Recordings 2",
 "Software Environment Recordings 3"

],
 "descriptions": [
 "7 smartphone motion recording.",
 "5 smartphone motion recording.",
 "5 smartphone motion recording.",
 "Activity data uploaded from smartphone.",
 "Recording Uploaded From Software Environment",
 "Test Description of Smartphone Recording 2.",
 "Test Description of Smartphone Recording 3."
]
}

C.3 Recording
This is an example JSON packet of what recording_get API call returns.

Example Recording JSON Packet

{
 "title": "Suit Recording",
 "description": "7 channels of data",
 "channels": [
 {
 "channel_id": "1820",
 "name": "Spine",
 "vectors": [// channel data omitted]
 },
 {
 "channel_id": "1821",
 "name": "Left_Arm",
 "vectors": [// channel data omitted]

	

	

200

 },
 {
 "channel_id": "1822",
 "name": "Right_Arm",
 "vectors": [// channel data omitted]
 },
 {
 "channel_id": "1823",
 "name": "Left_Forearm",
 "vectors": [// channel data omitted]
 },
 {
 "channel_id": "1824",
 "name": "Right_Forearm",
 "vectors": [// channel data omitted]
 },
 {
 "channel_id": "1825",
 "name": "Left_Hand",
 "vectors": [// channel data omitted]
 },
 {
 "channel_id": "1826",
 "name": "Right_Hand",
 "vectors": [// channel data omitted]
 }
]
}

This is an example JSON packet of what recording_getlist_uid API call returns.

Example Recording JSON Packet

{
 "ids": [
 "24",
 "25",
 "64",
 "66",
 "67"
],
 "titles": [
 "Suit Test Recording 1",
 "Suit Test Recording 1",
 "Android Recording 1",
 "Android Recording 2",
 "Android Recording 3"
],
 "descriptions": [
 "Test Description 1.",
 "Test Description 2.",
 "Test Description of Smartphone Recording 1.",
 "Test Description of Smartphone Recording 2.",
 "Test Description of Smartphone Recording 3."
]
}

	

	

201

C.4 Channel
This is an example JSON packet of what channel_get API call returns.

Example Channel JSON Packet

{
 "channel_id": "1820",
 "name": "Spine",
 "vectors": [
 {
 "vector_id": "565019",
 "channel_id": "1820",
 "x": "128.388",
 "y": "-10.456,
 "z": "8.844"
 },
 {
 "vector_id": "565020",
 "channel_id": "1820",
 "x": "129.618",
 "y": "-10.691",
 "z": "8.422"
 },
 {
 "vector_id": "565021",
 "channel_id": "1820",
 "x": "130.745",
 "y": "-10.569",
 "z": "8.474"
 },
 {
 "vector_id": "565022",
 "channel_id": "1820",
 "x": "132.898",
 "y": "-10.850",
 "z": "8.859"
 },
 // values omitted
]
}

This is an example JSON packet of what channel_getlist API call returns.

Example Recording JSON Packet

{
 "ids": [
 "1820",
 "1821",
 "1822",
 "1823",
 "1824",
 "1825",
 "1826"
],
 "names": [
 "Spine",
 "Left_Arm",
 "Right_Arm",
 "Left_Forearm",
 "Right_Forearm",
 "Left_Hand",

	

	

202

 "Right_Hand"
]
}

C.5 Vector
This is an example JSON packet of what vector_get API call returns.

Example Vector JSON Packet

{
 "vector_id": "565019",
 "channel_id": "1729",
 "x": "128.388",
 "y": "-10.456,
 "z": "8.844"
}

	DPhil Coversheet
	Pascu, Tudor

