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Abstract 
Motion capture is the process of measuring and subsequently reconstructing the movement of 
an animated object or being in virtual space. Virtual reconstructions of human motion play an 
important role in numerous application areas such as animation, medical science, ergonomics, 
etc.  While optical motion capture systems are the industry standard, inertial body sensor 
networks are becoming viable alternatives due to portability, practicality and cost. This thesis 
presents an innovative inertial motion capture framework for constructing body sensor 
networks through software environments, smartphones and web technologies. 

The first component of the framework is a unique inertial motion capture software 
environment aimed at providing an improved experimentation environment, accompanied by 
programming scaffolding and a driver development kit, for users interested in studying or 
engineering body sensor networks. The software environment provides a bespoke 3D engine 
for kinematic motion visualisations and a set of tools for hardware integration. The software 
environment is used to develop the hardware behind a prototype motion capture suit focused 
on low-power consumption and hardware-centricity. Additional inertial measurement units, 
which are available commercially, are also integrated to demonstrate the functionality the 
software environment while providing the framework with additional sources for motion data. 

The smartphone is the most ubiquitous computing technology and its worldwide uptake has 
prompted many advances in wearable inertial sensing technologies. Smartphones contain 
gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly 
found in inertial measurement units. This thesis presents a mobile application that investigates 
whether the smartphone is capable of inertial motion capture by constructing a novel 
omnidirectional body sensor network. 

This thesis proposes a novel use for web technologies through the development of the Motion 
Cloud, a repository and gateway for inertial data. Web technologies have the potential to 
replace motion capture file formats with online repositories and to set a new standard for how 
motion data is stored. From a single inertial measurement unit to a more complex body sensor 
network, the proposed architecture is extendable and facilitates the integration of any inertial 
hardware configuration. The Motion Cloud’s data can be accessed through an application-
programming interface or through a web portal that provides users with the functionality for 
visualising and exporting the motion data. 
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CHAPTER ONE 

1 Thesis Overview 

1.1 Introduction 
Motion capture is the process of measuring and subsequently reconstructing the 

movement of an object or being in virtual space. For the past decade, filmmakers and 

game developers have adopted motion capture technologies to animate computer-

generated characters time-efficiently to achieve a superior level of realism. Although 

animation is the primary use, motion capture has become ubiquitous throughout the 

fields of biomechanics, ergonomics, medical science, sport science, aviation, etc. 

Motion capture is generally targeted at replicating and understanding human 

locomotion as the musculoskeletal properties of the body are highly complex. 

At present, there are many technologies available commercially for tracking human 

movement that vary in performance, affordability and practicality. The most popular 

technologies are inertial, optical and mechanical. Each technology combines hardware 

and software to interpret motion as accurately as possible. For example, optical 

systems use computer vision algorithms to process video streams recorded by 

cameras. Multiple cameras can be used, often in conjunction with visual markers such 

as flashing light-emitting diodes or reflective points, to triangulate the position of 

joints and subsequently determine the orientation of body parts. As an alternative, 

inertial motion capture uses inertial measurement units (IMU) to capture individual 

gyrations of body parts. A full-body sensor network (BSN) will contain as much as 

twenty IMUs integrating gyroscope, accelerometer and magnetometer sensors. 

Angular readings are collected from each sensor and the result is displayed using a 

kinematic simulation model [1]. Kinematic models are skeletal rigs used to drive 

character topologies in virtual environments. 

Accuracy is a measure of the difference between the real movement and its virtual 

reconstruction. In terms of accuracy, each motion capture medium presents specific 

qualities and limitations. For instance, optical motion capture limits the recording 

process to specific environments that present optimal lighting condition [2]. 

Additionally, any visual obstructions can cause occlusion problems. In contrast, 
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inertial motion capture is unaffected by its recording environments, but suffers from 

hardware induced inaccuracies (e.g. sensor drift, calibration, dead reckoning, signal 

noise, etc.). Magnetic interference can also be a problem in factories or industrial 

environments [3] [4]. 

The earliest trace of inertial motion capture dates back to the beginning of the 

eighteenth century when Johan von Bohenenberger, a German professor of 

mathematics and astronomy, invented the first mechanical gyroscope. Leon Foucault, 

a French physicist, later took this concept and used it to measure the Earth’s rotation. 

The invention consists of a spinning disc attached to gimbals that can rotate freely in 

all three axes. The centrifugal force of the spinning disc keeps its orientation fixed 

while the device is moved, thus measuring angular rotations. Throughout the 

nineteenth century, the aviation industry used this principle to mass-produce micro-

electro-mechanical sensor (MEMS) gyroscopes that measure the yaw, pitch and roll 

of aircrafts during flight. Modern-day inertial motion capture has become ubiquitous 

in mobile computing technologies because of the miniaturization of sensor chips and 

the availability superior computational resources. 

Inertial motion capture was chosen as the focal topic of this thesis because it proves 

challenging in many aspects. The process of recording and subsequently 

reconstructing motion is very rapid and complex. Data acquisition, angular 

conversions, computer-hardware intercommunications, data cleaning and kinematic 

deployment are processes that take place over thirty times per second without 

noticeable latencies. This thesis argues that the act of using inertial motion capture 

systems is a multifaceted sequence of procedures that lack standardisation and can 

therefore be improved. The average user does not present the knowhow to operate 

BSNs without studying a complicated instructions manual. There is no general-

purpose platform for integrating, customizing and developing BSNs for experimental 

research. As a result, the main objective of this work is to develop a cross-platform 

framework for acquiring and processing data from commercial animation suits, 

mobile computing technologies and most hardware devices that output inertial data. 

The design and development is focused on enhancing the adaptability, modularity and 

overall usability of inertial BSNs by optimizing the motion capture workflow. The 

term workflow can be used to summarise the series of procedures required to operate 

an inertial motion capture suit at both software and hardware levels. Sensor hardware 
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is complex in nature and does not follow the plug-and-play standard of other 

computer peripherals. The workflow for motion capture suits is often 

overcomplicated, unstandardized and requires an additional person to be present to 

operate the system. The ultimate goal of this thesis is to standardise the interaction 

between users inertial motion capture system by proposing an improved and more 

simplified workflow. 

1.2 Problem Statement 
This problem statement is the direct result of the literature survey of Chapter 2 and the 

critical analysis of principal industry contributors. Additionally, this problem 

statement also takes into consideration the former experience of the University of 

Sussex Interactive Systems Group in the field of inertial and exoskeleton motion 

capture (see Section 1.6). Let’s consider a usability scenario that highlights the 

challenges faced in using a modern inertial motion capture. 

Typical Inertial Motion Capture Scenario: 

A motion performer and a system operator use a motion capture suit to record 

full-body motion for the period of one hour. The purpose of the recording is to 

analyse human-environment interaction throughout urban households. The 

performer is dressed in the hardware with the help of the operator. This process 

takes approximately half an hour as nineteen IMUs and their interconnecting 

cables must be secured firmly on the body in a particular configuration (in 

accordance to the instruction manual). The suit is switched on and the network 

handshaking begins whereby the computer interrogates all sensor nodes 

individually. The user is asked to stand next to a reference object, which is 

used by the operator to adjust the onscreen kinematics to match the motion 

performer’s bodily proportions. The motion performer faces north and the 

magnetometers are zeroed. Performing the T-pose, which involves standing 

straight with both arms extended laterally away from the body, compensates 

the postural difference. The suit begins recording if all these steps are 

performed successfully. While navigating the household environment, sensors 

may switch off due to loose or damaged connectors. Additionally, the chance 

of the suit losing wireless signal due to distance or environment obstructions is 

high. A single sensor disconnecting implies a complete system restart, which 
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involves repeating the aforementioned procedures. Once the recording session 

has completed successfully, the operator takes the data and applies a set of 

filters and data cleaning algorithms. The result is clean motion that can be used 

for scientific analysis and is stored using one of several file formats. 

The above scenario exemplifies the lack of flexibility in using an inertial motion 

capture system. The procedures for initiating an animation suit are multifaceted and 

specific to every system. While most computer peripherals follow the plug-and-play 

standard, inertial BSN require a sequence of procedures, performed both by the 

motion actor and the recording session operator, to begin outputting motion. 

Furthermore, inertial motion capture systems are designed to work in one predefined 

way that is usually aimed at character animation. There is little room for researchers 

to customize the hardware or software configuration. The following problem areas are 

centred on: software environments, software standardisations, file formats, robustness 

and dead reckoning. 

1.2.1 Software Environments 

The first problem area is focused on motion capture software standardisations and 

support. Prior to developing any solutions that may be beneficial to the field of 

motion capture, a standardised simulation and development environment is required. 

Because every system is different, there is no standardisation between software 

environments. The lack of standardisation makes the development of solutions 

difficult. At present, there is no general-purpose software platform that can provide 

the functionality required for researchers to explore, develop and objectively evaluate 

motion capture technologies. Existing commercial and open-sourced software 

applications are predominantly designed for animation purposes and provide little 

room for experimental research. Inertial motion capture will benefit from a purpose-

built software environment that outputs data in a format that is suitable for 

experimental research. 

1.2.2 Standards and File Formats 

At present, motion data can be manipulated using several unstandardized file formats 

[5] [6] [7] [8] [9], none of which are comprehensive. Most formats are limited to basic 

skeletal definitions and angular readings. Developers have created supplementary file 

formats that contain profiling data whereby profiling data scales the kinematics so that 
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the skeletal rig matches the performer’s body in terms of proportions. Those file 

formats could be combined to produce a more complete file format that could 

ultimately become the industry standard. Although there are software solutions for 

storing and organising inertial motion capture data in repositories, the act of 

transferring data between computers implies passing files between users. There is a 

need for web-based repositories for manipulating motion capture data through 

application-programming interface (API) calls. 

1.2.3 Robustness 

As with all wearable hardware, inertial systems are fragile in nature. Sensors are 

likely to disconnect if a cable is damaged, especially during recording sessions in 

cluttered environments. A sensor disconnecting will likely cause the BSN to stall. 

Restarting the system, which is both time-consuming and impractical, will generally 

solve this problem. For behavioural studies that examine psychological and 

physiological aspects of the human body, restarting the hardware in the midst of an 

experiment can be detrimental to the overall results. This behaviour is caused by 

BSNs being software-centric whereby all the data is extracted from the hardware is 

sent to a computer for processing. Raw data is larger in size, requiring BSNs to 

communicate larger messages between nodes and to the computer. Having a software-

centric system also requires extensive handshaking procedures between the hardware 

and the computer. For that reason, the act of initiating an inertial motion capture 

system is a complicated procedure. 

1.2.4 Dead Reckoning 

While optical tracking systems triangulate joint displacements to determine the spatial 

positioning of the motion performer, inertial systems contain no inherent sensors for 

dead reckoning. Software can be used to compute rough estimations of horizontal 

displacement by applying planar collision detection and foot placement estimation 

[10] [11] [12] to kinematic models. This methodology is limited to simple gait on flat 

surfaces where the motion performer is taking clear steps. As an alternative, 

peripheral sensors can be used to compute dead reckoning using ultrasound emitters 

[13] or optical cameras [14]. However, this approach is costly and limits the recording 

process to confined environments. 
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1.3 Framework Overview 
When pieced together, the developments presented in this thesis form one framework 

entitled Skeletrix. The title is derived from the words skeletal and matrix. Skeletrix 

starts with sensing motion through electronics, continues with reconstructing 

animations in virtual space and finishes with uploading motion into online storage. As 

shown in Figure 1-1, the framework explores solutions for every stage of the motion 

capture workflow. While the framework is aimed at research and development, its 

goal is to improve the overall usability, modularity and versatility of inertial systems. 

The five major framework components are divided between three mediums: 

hardware, software and online. Each medium corresponds to a portion of the motion 

capture workflow. At the hardware level, the framework integrates Motion Tracking 

Development System (MTDS), a prototype motion capture suit, and evaluates other 

sensor technologies that are available commercially to form a baseline for 

benchmarking. At the software level, the framework proposes a software environment 

and a mobile application providing the functionality for gathering, processing and 

visualising motion data. At the online level, the framework presents the Motion 

Cloud, an online repository for storing, organising and visualising inertial data. 

 

Figure 1-1: Overview of the Skeletrix framework. Source: Pascu et al. [15] [16] 
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1.4 Contributions to Knowledge 
The contributions to knowledge presented in this thesis are in direct response to the 

problem areas previously identified and further research. In summary, this research 

presents a framework aimed at furthering the field of inertial motion capture. 

As shown in Figure 1-2, the research approach presented in this thesis aims to 

examine and exploit existing technologies and principles as well as investigating new 

technologies that may be relevant to the field of inertial motion capture. The existing 

technologies researched are focused on understanding software applications and 

standards in order to present a unique set of contributions to knowledge (shown in 

blue) through the development of a bespoke and innovative software environment. To 

test that architecture and to investigate problems faced when developing new BSNs, 

this research examines and integrates existing sensor technologies as well as 

developing a new and innovative motion capture suit. The new technologies 

researched are mobile computing technologies (omnidirectional smartphone-driven 

BSNs) and web technologies (online repositories and gateways for motion data). 

 

Figure 1-2: Overview of research approach and contributions to knowledge. 
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The framework developments can be divided into four research bodies, where each 

body corresponds to a thesis chapter, entailing: inertial motion capture software 

environments, constructing inertial BSN, sensing through mobile computing 

technologies and Motion Cloud: an repository and gateway for inertial motion data. 

1.4.1 Inertial Motion Capture Software Environments 

As previously published in Pascu et al. [17] [18], this work’s first contribution to 

knowledge is a software environment and architectural scaffolding for researchers 

interested in studying, modifying or constructing inertial BSNs. The following 

application areas are also discussed to illustrate its versatility: hardware development, 

constructing heterogeneous BSNs and system benchmarking. The software 

environment provides the functionality for hardware integration, calibration, motion 

processing and three-dimensional (3D) visualisations. The development of this 

software environment was focused on three contributions to knowledge that are 

focused on standardising BSNs computer-hardware communications, motion capture 

file formats and kinematic dead reckoning. 

The driver development kit (DDK) is a solution for hardware integration, which 

provides users with the means for developing driver modules that extract motion data 

from single IMUs or BSNs. The software environment can communicate with driver 

modules, which are self-contained dynamic-link libraries (DLL), to gather, process 

and visualise inertial motion data. Using the DDK allows users to develop BSNs that 

are more modular and customizable. 

Biovision Hierarchy Extended (BVHE) is a proposed file format that contains skeletal 

definitions, motion data and system configurations in the same file. This unique 

format is presented as a solution for standardising the method of expressing the 

configuration of a BSN within a software environment. The advantage of BVHE over 

any existing format is practicality (simplifying the motion capture workflow) as users 

only have to load one file into the software environment. Given that kinematic 

hierarchy is driven by a system, which contains a system configuration, it is both 

logical and necessary to form a relationship between the two by establishing one 

singular and more complete file format. 
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This solution enhances the customizability of BSNs by tightening the relationship 

between software and hardware. Additionally, this extended file format is backwards 

compatible with existing software applications that support the traditional Biovision 

Hierarchy (BVH) file format. 

The lowest-anchor centre of mass algorithm (LACOMA) Pascu et al. [18] is a dead 

reckoning algorithm for computing more accurately the correct point of support of the 

body during gait. It combines the concept of weight models with planar collision 

detection. This approach is aimed at improving anchor selection in kinematic models 

by using the body’s musculoskeletal centre of weight to improve foot placement 

estimation. This solution improves accuracy, reduces the probability of anchor 

selection errors and is computationally inexpensive. 

1.4.2 Constructing Inertial Body Sensor Networks 

This work’s second contribution to knowledge is a study focused on understanding 

how to improve inertial motion capture hardware through the development of the 

Motion Tracking Development Suit (MTDS) Pascu et al. [18] prototype, which is also 

used to demonstrate the functionality of the software environment. Two additional 

IMUs that are available commercially are also integrated to form a comparison. 

MTDS is a hardware-centric BSN developed by the author of this thesis and SC GPS 

Communications SRL, a Romanian hardware manufacturer. Because of recent 

advances in affordable micro-electro-mechanical sensor technologies, the suit was 

developed cost-effectively while focusing on low-power consumption and efficient 

resource allocation. The development of the hardware was completed in two stages: 

the IMU and multiplexer. 

The MTDS IMU is a thumb-sized device containing Atmel AVR RISC 8-bit 

microcontrollers, InvenSense IMU3000 gyroscopes and Freescale MMA8451Q 

accelerometers. This research work is focused on understanding whether consumer-

level electronics are sufficiently accurate to record human movements. 

The MTDS multiplexer is a central node for acquiring motion data from the 

aforementioned IMUs. The IMUs are daisy chained to the multiplexer using a 

harness. As a whole, the system is wireless and connects to a computer over 

Bluetooth. While the multiplexer is able to interconnect up to twenty homogenous 
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inertial measurement units, its testing was performed using the upper body 

configuration whereby IMUs are place on the arms, forearms, hands and torso. 

1.4.3 Sensing Through Mobile Computing Technologies 

As previously published in Pascu et al. [15] [16] and [19], this work’s third 

contribution to knowledge is centred on investigating the relevance of mobile 

computing technologies, namely smartphones, to the fields of inertial motion capture 

and BSNs. This innovative concept demonstrates how inertial motion capture can be 

achieved using smartphone sensors and how BSN communications can be achieved 

using web technologies and the Internet. The smartphone is the most ubiquitous 

wearable computing technology. Most people have smartphones and, like IMUs, most 

smartphones enclose a gyroscope, an accelerometer and a magnetometer. This thesis 

discusses the design and development of a novel mobile application presenting a 

unique approach for constructing smartphone-driven BSNs that telecommunicate, in 

an omnidirectional manner, through web services. The BSN is designed to be used in 

small experiments and has many other application areas such as: medical science, 

activity tracking, emergency responses, road and traffic condition monitoring. To 

summarise, each network node uploads data, synchronizes data and distributes the 

result throughout the network. The mobile application extracts and processes motion 

data produced by the smartphone’s sensors and communicates it across the network. 

The development of the mobile application is the result of porting and heavily 

modifying the software environment, previously introduced in section 1.4.1, to the 

Android platform. 

The mobile application also implements a BSN remote control mechanism, which 

allows several smartphones to be controlled from one interface using event triggers 

[19]. An event trigger allows one smartphone’s interface to remote control the actions 

of several other smartphones. Because this functionality is achieved using a web 

server and web services, an online control panel is also developed to control 

smartphones from a web interface. The concept of event triggers unifies several body-

worn smartphones to emulate the functionality of a basic animation suit. 

Synchronization refers to the process of gathering and merging multiple sets of 

motion data. The proposed solution is focused on using a centralised timeserver that 

updates each smartphone’s clock. Clock readings can be used as reference points to 
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identify precisely when each smartphone begins recording. Synchronization is 

important in creating an online smartphone-driven BSN that can merge the motion 

produced by separate devices. 

1.4.4 Motion Cloud: A Repository and Gateway for Inertial Motion 
Data 

This work’s fourth contribution to knowledge is the Motion Cloud (Pascu et al. [19]), 

a solution that investigates the relevance of web technologies to inertial motion 

capture frameworks. Whether it’s a single sensor or a network of sensors, the 

proposed architecture is highly extendable can be integrated with a wide spectrum of 

motion capture devices: animation suits, smartphones, inertial measurement units, 

pedometers, etc. To demonstrate its versatility, this thesis discusses several 

application areas where the Motion Cloud could be used as a library for motion data, a 

prototyping environment and data gateway for online BSNs and a database for storing 

activity data. The development of the Motion Cloud solution consists of three 

components: repository, gateway and web portal. 

The repository is a large online database designed to store inertial data produced by 

software environments, mobile applications and drivers. Unlike existing solutions that 

allow users to upload motion capture files to online libraries, the Motion Cloud 

repository deciphers the data and constructs bespoke data models for each BSN in the 

form of object hierarchies. 

While existing BSNs utilize multiplexers or software drivers to communicate data 

between nodes, the Motion Cloud gateway demonstrate the novel concept of 

constructing BSNs through web technologies. This concept is possible because of 

recent advances in telecommunication technologies (i.e. 3G, 4G) that facilitate data 

transfers between devices such as smartphones or IMUs. The gateway consists of 

versatile web services for uploading, downloading and streaming motion capture data. 

The summation of those services is an application-programming interface (API) 

designed to form a bridge between inertial sensing hardware and the Motion Cloud 

repository. The API can be used by downstream applications to access the 

repository’s data. 

The Motion Cloud can be interfaced with through a web portal. The web portal is an 

interface layer for accessing, modifying, visualising and exporting motion data stored 
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by the repository. The web portal provides a quick overview of the data produced by a 

BSN as required for experimental research and other application areas. 

1.5 Thesis Structure 
This chapter introduces motion capture as a significant research topic and discusses its 

current problem areas. This work’s contributions to knowledge are summarised and 

presented in response to the problem statement. The remaining portion of this chapter 

introduces the chapters to follow along with previous work that was influential to the 

research presented in this thesis. 

Chapter 2 investigates fundamental motion capture concepts and application areas by 

generating a survey of pertinent literature. It emphasises significant problem areas in 

the field of motion capture and guides the research work presented throughout this 

thesis. A critical evaluation of the field is conducted to identify on-going research 

projects and the principal industry contributors. The chapter continues to discuss the 

individual stages of motion processing, from sensing the articulated movement of 

humans using inertial measurement units to reconstructing kinematic motion in virtual 

space. 

Chapter 3 present the design and development of the software environment with 

emphasis on several core components: kinematics model and viewer, animation 

model and viewer, system engine and viewer, 3D rendering, DDK, LACOMA and 

BVHE. The chapter finishes by introducing the LACOMA, a computationally 

inexpensive solution for creating a better estimation of the kinematic model’s anchor 

point (during gait) through weight distribution calculations. 

Chapter 4 demonstrates how IMUs, which are commercially available, can be 

integrated with the framework. The chapter continues to present the design and 

implementation of MTDS while using existing technologies to form a baseline. The 

chapter discusses the conceptualisation, design, hardware development, firmware 

development, driver development and sensor integration. The chapter finishes with a 

comparative evaluation of the hardware. 

Chapter 5 explores the relevance of mobile computing technologies to the field of 

inertial motion capture. The chapter covers the design and development of a mobile 

application for interconnecting smartphone devices to a server in order to establish 
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omnidirectional BSNs. Smartphones are shown to be reliable test beds and 

prototyping environments for constructing BSNs aimed at experimental research and 

other application areas. 

Chapter 6 introduces the Motion Cloud by discussing the design and implementation 

of the repository, gateway and web portal. The repository is presented as an 

extendable database model for storing and organising inertial data. The gateway is 

presented as an API for accessing the repository from: software environments, 

drivers, mobile applications, etc. The web portal is discussed in terms of interface 

design and overall usability. 

Chapter 7 concludes this research by summarising the major issues raised throughout 

this thesis and the positive impacts of the proposed framework. Future projects, areas 

for future and development and extensions are also discussed. 

1.6 Related Work 
This section provides a chronological list of related work that the author has 

contributed to. The following four projects have provided both motivation and context 

for the developments presented in this thesis. Additionally, these projects were 

influential in forming a first-hand understanding of what problems affect the fields of 

inertial motion capture and BSNs. 

1.6.1 eMove 

eMove is a Technology Strategy Board (TSB) [20] funded research collaboration 

between the University of Sussex Centre for Computer Graphics and Animazoo [21], 

a motion capture hardware manufacturer and software developer. The focus of the 

project was to develop an upper body exoskeleton suit using one IMU, six 

potentiometers and two hand controllers featuring buttons, triggers and analogue 

sticks. The eMove suit [22] is designed for real-time digital puppetry [23] [24], 

interactive video games, theme parks, arcades, animation, etc. 

The software suite developed for the eMove suit can be divided into three categories. 

The first category is concerned with drivers for accessing and streaming data directly 

from the hardware. The second category covers software applications for recording 

upper body motion for the purpose of animation. The third category presents software 

development kits for game engines such as Unreal Development Kit, Unity 3D and 
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Panda 3D. As a result, users have a strong foundation for utilising and further 

developing eMove suits. 

eMove’s ultimate goal is to deliver motion capture technologies to the masses. The 

problems faced with making exoskeleton hardware affordable, user-friendly and 

sufficiently robust to withstand everyday use are also applicable to the fields of 

inertial motion capture BSNs. 

1.6.2 Motion in Place Platform 

Motion in Place Platform (MIPP) [25] [26] [27] is an Arts and Humanities Research 

Council (AHRC) [28] funded research project with the aim of studying human-

environment interactions in cultural heritage contexts. It brings together a cross-

disciplinary group of researchers to create an understanding of how new technologies 

are beneficial in understanding the relationship between humans and their 

surroundings. 

The project was centred on the findings of the Reading archaeologists [29] who 

uncovered the layout of Iron Age and early Roman buildings at the Silchester Insula 

XI. The author of this thesis used illustrated drawings and archaeological 

interpretations of those buildings to reconstruct the location in 3D. Motion capture 

data was recorded by equipping dancers, actors and archaeologists with inertial 

hardware to re-enact the daily activities of the historical inhabitants. They performed 

everyday tasks such as sweeping, cooking or getting water from a well. The data was 

recorded using Animazoo IGS motion capture suits and a laptop. 

This research uncovered a list of problems concerned with using motion capture 

technologies outside the comfort of a recording studio. For example, using ultrasonic 

equipment outdoors for dead reckoning proved highly problematic due to windy 

weather conditions. The conclusions drawn from utilising motion capture 

technologies in the context of outdoor experimental archaeology indicate a need for 

less complicated, more robust, more portable and less encumbering BSNs. 

1.6.3 Motion Capture in Forensic Psychology 

This University of Sussex Centre for Computer Graphics undertook a forensic 

psychology experiment [30] [31] [32] together with an interdisciplinary team from 

University of Portsmouth Department of Forensic Psychology. The experiment’s goal 
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was to investigate the activity and behaviour of individuals burgling an urban 

household by studying human-environment interactions through motion capture 

technologies. The author of this thesis developed a realistic reconstruction of a 

household using a large set of reference pictures and measurements. Forensic 

psychologists used the reconstruction to create a virtual simulation of the motion 

capture data, which was subsequently used to analyse physical behaviour. 

The experiment took two days to complete. On the first day, six university students 

were asked to burgle the household. On the second day, six previously convicted 

house burglars were asked to repeat the experiment in the same manner. Both groups 

were asked to navigate the environment and touch items they wish to steal. Their 

behaviour was recorded using an Animazoo IGS motion capture suit and a head-

mounted camera. 

The burglary experiment uncovered a list of technology limitations concerned with 

the overall usability, wireless connectivity and robustness of BSNs.  The first problem 

occurred when test subjects were navigating the environment at a rapid pace and 

accidentally damaged sensors, causing the BSN to stall. The act of resetting the 

hardware in the midst of the experiment compromised the motion performers’ 

psychological immersion. The second problem was concerned with the BSN requiring 

a constant wireless connection to a computer. On several occasions, the BSN 

disconnected due to distance and environment obstructions. The third problem was 

caused by the cumbersome nature of inertial systems as test subjects couldn’t climb or 

enter the household through window openings without damaging the hardware. 

1.6.4 Digital Hub 

The Digital Hub [33] is a TSB [20] funded partnership between American Express 

and the University of Sussex with the aim of stimulating economic and business 

growth in the UK. The project is focused on developing technologies for 

micropayments, virtual currencies, rewards and loyalty schemes. The Digital Hub is 

exploiting mobile computing, social media, Internet of Things [34] and near field 

communication technologies to influence how people interact with virtual economies. 

One particular project, entitled Fit2Gether, is relevant to the developments presented 

in this thesis. Fit2Gether is a cross-platform framework consisting of a mobile 
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application and website for amalgamating activity data from users in the work 

environment. The framework’s goal is to stimulate healthier lifestyles by rewarding 

users for physical activity. Data is captured using pedometers, thumb-sized devices 

enclosing accelerometers that produce rough estimations of steps taken, calories burnt 

and distance travelled. Rewards are used to stimulate users into changing their 

lifestyle from sedentary to active. 

Pedometers are very similar to IMUs as they integrate both inertial sensors and 

microcontrollers in small packages. Modern pedometers are designed to upload data 

to a centralised repository using a set of web services. Data gets converted into 

activity readings while taking into account the user’s weight, height, age, gender, etc. 

As demonstrated by this thesis, new-generation smartphones are abled to measure 

those properties using the in-built sensors. Fit2Gether’s ability to store activity is 

similar to the Motion Cloud, which is a larger and more generalised solution aimed at 

amalgamating and organising inertial motion capture data in online repositories. 
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CHAPTER TWO 

2 Motion Capture 

2.1 Introduction 
Motion capture is the notion of extracting data from motion sensors to reconstruct the 

movement of an animated being in virtual space. This chapter explores fundamental 

motion capture concepts and applications areas by generating a literature survey. To 

summarise, this chapter asks five basic questions: What is motion capture? What is 

motion capture used for? What technologies are available? How do those technologies 

work? How do users operate those technologies? By asking and subsequently 

answering these questions, this chapter reveals problem areas limiting the field of 

inertial motion capture. 

This chapter’s first aim is to classify motion capture as a new technology that is 

important to many applications areas, thus justifying it as the main research topic for 

this thesis. Novel applications areas for motion capture are discovered through an 

overview of on-going research. This includes: animation for game development and 

filmmaking, real-time motion capture and digital puppetry, biomechanics gait 

analysis, sport science, medical science, robotics and ergonomics.  

The second aim of this chapter is to provide an overview of the main types of motion 

capture mediums (see Section 2.4) to identify strengths and weaknesses and to focus 

this research on a specific technology. This overview is supported by an evaluation of 

the motion capture industry contributors that identifies what systems are available 

commercially and what application areas they are used for (see Section 2.3). Based on 

this study, inertial sensing is chosen as the primary focus of research. The chapter 

continues to discuss the fundamental problems limiting inertial sensing and what 

attempts have been made towards solving those problems. 

Aside from hardware, software applications play an important role in the usability of 

inertial motion capture systems. This chapter continues to evaluate what software 

applications exist, how they support motion capture technologies and how motion 

data is stored and transferred between users. The goal is to identify any 

standardisation-related problems affecting the industry and the field of research.  
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2.2 What is Motion Capture? 
Motion capture is a general term that defines the process of constructing a virtual 

representation of motion using data obtained from real-life movement. As discussed 

in “Human Motion: Understanding, Modelling, Capture and Animation” [35], human 

motion is the primary target for motion capture due to its complexity and organic 

characteristics. 

“Motion capture involves measuring an object's position and orientation in 

physical space, then recording that information in a computer-usable form. 

Objects of interest include human and non-human bodies, facial expressions, 

camera or light positions, and other elements in a scene.” [36] 

In the context of inertial motion capture, the act of recording real-life movement is a 

multifaceted sequence of procedures: data gathering, sensor fusion, pre-processing, 

post-processing, kinematic deployment, etc. One of the main goals of researching or 

developing motion capture systems is accuracy. In broad terms, accuracy is a measure 

of the difference between the originating real-life movement and the resulting virtual 

reconstruction. 

While inertial motion capture suits are relatively new, the underlining principles are 

not. “The Mocap Book: A Practical Guide to the Art of Motion Capture” [37] covers 

the history of motion capture dating back to the 19th century. In recent years, inertial 

motion capture has become achievable and affordable because of technological 

advances focused on the miniaturisation of micro-electro-mechanical sensors 

(MEMS) and the availability of superior computational resources in small devices. 

Modern sensors are very robust and ubiquitous in devices such as smartphones, 

pedometers and animation suits. 

In the context of this thesis, motion capture was chosen because it proves challenging 

and there are many problems still to solve. The act of recording and reconstructing 

motion happens very quickly. In less than a tenth of a second multiple sensors are 

interrogated to acquire motion data, motion data is processed and packaged, packages 

are sent to the computer through communication protocols, dead reckoning algorithms 

are applied and the result is visualised using a kinematic skeleton and a 3D engine. 
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2.3 Application Areas 
Before discussing the principles behind software and hardware technologies, it is 

appropriate to understand what motion capture is used for. Motion capture has 

numerous application areas affecting our everyday lives [38]. Broadly, those 

application areas can be allocated to one of two categories: animation for digital 

entertainment and biomechanics. Animation is a result-driven process where motion 

is recorded to be modified at a later stage for filmmaking and game development 

purposes. For example, the animation of a computer-generated sci-fi robot presenting 

unrealistic proportions can be based on the motion recording of a human. The field of 

biomechanics is centred on the accuracy of the result in order to develop a better 

understanding of the original motion. For example, gait analysis requires data to 

measure the properties of human locomotion. In this context, how impressive the 

result looks is irrelevant. The following sections highlight the importance of motion 

capture by looking at the principal application areas, which can also be referred to as 

movement science, found throughout literature: animation, real-time motion capture 

and digital puppetry, medical science, gait analysis, sport science, robotics and 

ergonomics. 

2.3.1 Animation 

Animation is the dominant application area for motion capture through the affluent 

filmmaking and videogame industries. With advances in computer-generated 

graphics, more and more attention is given to the process of replicating motion in a 

virtual environment. Traditionally, the realism of animation was achieved through key 

frame animation and artistic talent but with an increasing demand for animations, 

manual replication of motion is too time-consuming and expensive. 

Performance animation is principally found in the film industry where actors 

undertake the role of virtual characters to entertain an audience. “Understanding 

Motion Capture for Computer Animation and Video Games” [39] introduces the 

concept of performance animation whereby motion capture systems are used to 

capture the movement of motion performers (real-life professional actors). 

In the past decade, the video game industry has surpassed the film industry in terms of 

budgets allowing for the development of more costly motion capture systems. In the 
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context of video game animation, synthesis-by-example [40] is a term that refers to 

approaches for assembling pre-recorded sequences of animation. For example, a 

controlled game character might walk and then fight, requiring the two animation 

sequences to be blended seamlessly. Another application area for motion capture is 

facial animations. The most advanced facial animation solution is Rockstar’s 

MotionScan [41] [42] technology that uses optical motion capture to generate a 

sequence of 3D face meshes. Those meshes are subsequently applied to character 

models sequentially to simulate organic-appearing facial expressions. This approach 

is a novel substitute to traditional kinematic motion reconstruction. 

2.3.2 Real-Time Motion Capture and Digital Puppetry 

In motion capture, animation data is recorded independently of its target use. After 

motion is recorded, post-processing methods prepare the data to be mapped to a 

digital avatar. Real-time motion capture is characterised by the motion performance 

and its virtual representation happening simultaneously. 

Digital puppetry is a concept that refers to the motion performer as a digital puppeteer 

and the target avatar as a digital puppet. Digital puppeteers are real actors that 

perform to entertain an audience. To enhance the experience, lip-syncing technologies 

[23] may be used to animate the avatar’s lips to match those of the performer. An 

example of digital puppetry is AnimaLive [43], a tool for creating virtual 

performances. 

Real-time motion capture may also be used as a medium for interacting with virtual 

environments in the context of video games. As experienced first-hand throughout the 

eMove and Motion in Place Platform (MIPP) projects, motion capture systems are too 

expensive and fragile (due to the complicated nature of the hardware consisting of 

wearable cables and sensors) to be used on a daily basis. Real-time motion capture 

aimed at entertainment applications [24] is a novel concept that involves 

programming a motion capture system to feed real-time data into a game engine. 

Systems like Microsoft Kinect [44] have shown that motion capture systems can be 

used as an input device, through skeletal mapping or gesture recognition techniques 

[45] [46] [47]. 
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2.3.3 Medical Science 

Medical science is currently an underdeveloped yet important application area for 

motion capture. Recent literature suggests that recording human movements will 

create a better understanding of human anatomy, which benefits medicine and 

healthcare. This application area is possible as a result of advances in motion capture 

technologies allowing for more practical and affordable systems. 

“Motion capture systems have not been widely used in Parkinson’s disease 

research due to their high cost and lack of portability. However, recent 

advancements in portability and affordability have made various clinical 

applications possible.” [48] 

Specific human movements can be examined to diagnose health-related problems and 

measure treatment responses. In a comparison between motion capture and traditional 

methods for medical examination, motion capture will produce a larger set of data 

consisting of 3D reconstructions and temporal information [49]. Therefore, physical 

examinations involving motion capture technologies provide medical professionals 

with valuable information that was previously unattainable. Inefficiency is caused by 

the complicated nature of using a motion capture system along with limitations in 

terms of hardware robustness. Inertial motion capture suits are likely to break while 

optical systems require a long setup procedure and a bespoke recording studio. 

While optical systems are leading the field of medical motion capture, inertial 

technologies are becoming viable alternatives due to cost and versatility. For example, 

[50] presents the design and application of an inertial system to replace traditional 

rehabilitation in homes. The body-worn system measures the quality of the patient’s 

comportments and gives quantifiable scores that can be interpreted by a therapist. 

Motion capture has potential in measuring musculoskeletal dysfunctions such as 

idiopathic scoliosis [51] and Parkinson’s disease [48]. In this thesis, Parkinson’s 

disease is considered as an application area for further research and development as 

published in Pascu et al. [15] [16]. 

  



	
  

	
  

22 

2.3.4 Gait Analysis 

Gait is a term describing the particularities of locomotion and is usually applied to 

human movement. Gait analysis concerns the activity of muscles and the symmetry of 

walking. It is applied to treat individuals with medical conditions that influence their 

ability to walk or their body’s balance. In sports science, gait analysis helps athletes 

run more efficiently through better sports equipment (see Section 2.3.5) while 

preventing potential injuries. 

To put into context motion capture’s role in gait analysis we will consider three 

examples, as found in literature, in which motion data is used to analyse locomotion. 

In the first study [52] [53], an accelerometer-based system is used calculate 

acceleration patterns of the pelvis and head. From those patterns it was possible to 

determine whether a test subject is young and vigorous or old and frail, thus 

presenting the risk of falling and obtaining injury. In the second study [54], an optical 

motion capture system is used to determine whether a child’s walking pattern differs 

from an adult’s when overcoming an obstacle. Each test subject wears fourteen 

infrared markers as their motion is recorded. In the third study [55], the same optical 

system is used to determine the symmetry of walking in able-bodied elderly people to 

conclude asymmetries in the lower limbs over multiple gait cycles.  

Motion capture technologies are inherently suitable for gait analysis as both fields 

focus on measuring and understanding motion. This application area is predominantly 

covered by optical systems [56] that are able to compute dead reckoning accurately. 

Dead reckoning is the process of measuring the combined distance travelled after a 

series of steps depending on stride length and foot placement estimation. Cloete and 

Scheffer [57] discuss the problems faced, in terms of experiment repeatability, of 

using inertial motion capture systems in the field of gait analysis. Clinical diagnoses 

require accurate portable motion capture systems that may be used by physicians. In 

this context, motion capture presents four problems: 

1. Body-worn motion capture systems are cumbersome in nature and may 

influence the walking patterns of test subjects. 

2. For gait analysis to be used in diagnosing, physicians require robust user-

friendly systems. 
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3. Body joints are complex in nature and cannot be replicated accurately with 

traditional kinematic models. 

4. It is difficult for systems, particularly inertial suits, to measure dead reckoning 

accurately for extended periods of time. 

Current research projects aim to establish inertial systems and other motion capture 

technologies as powerful tools for gait analysis. An example research project is 

Outwalk [58] [59], a protocol designed to advance the kinematics of inertial and 

magnetic systems to measure thorax, pelvis and lower limb movements more 

accurately. Such research projects motivated the development of the lowest-anchor 

centre of mass algorithm (LACOMA) solution (Pascu et al. [18]) proposed by this 

thesis in Chapter 3. 

2.3.5 Sport Science 

Sports science is a developing application area for motion capture that covers the 

study of human motion during intense physical activity. Let us consider three 

usability scenarios that place motion capture in the context of sport science. First, 

motion capture is a medium that can measure and perfect an athlete’s comportment 

during sport routines. For example, detecting and correcting the locomotive 

asymmetry of a runner may improve energy conservation allowing for a better sports 

performance. Second, motion capture can be used to aid the development of more 

comfortable sporting goods (e.g. running shoes, skis, snowboards, etc.), which reduce 

the risk of injuries. Third, motion capture can measure what forces athletes are subject 

to and create a better understanding of human behaviour under intense stress 

conditions. 

Optical systems are firmly established in the field of biomechanics but due to the 

outdoors nature of sport, alternative motion capture solutions are being considered. 

What motion capture mediums are best suited to measure sport-related motion? Let us 

consider four studies focused on answering that question. The first two studies [60] 

[61] recorded the biomechanical data of freestyle snowboarding with the aim of 

reducing ankle joint injuries through development of better snowboarding equipment. 

The next two studies [62] [63] compare the accuracy of a full body inertial motion 

capture system with an optical video-based system in analysing the biomechanics of 
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alpine skiing. These studies demonstrated that inertial systems are sufficiently 

accurate for this task. 

2.3.6 Robotics 

Motion capture has many robotics-related application areas  [64] [65]. The design and 

engineering of autonomous machines is a process that benefits from the principles of 

natural motion (or biomechanics) on multiple levels. Motion capture can be 

juxtaposed with a branch of robotics that deals with artificial recreation and 

simulation of human motion. The robotic imitation of human movement [66] [67] 

[68] [69] can be achieved through motion in two ways. Firstly, limb movements could 

be mapped to robotic arms to effectively turn the robot into a puppet. Secondly, 

intelligent robots could use motion capture data samples to understand and 

perceptively replicate human behaviour. 

Advances in modelling and calibration of inertial sensors and optical cameras can be 

beneficial in developing robots that interact with environments more intelligently. 

Optical motion capture algorithms can help robots understand their surroundings and 

perceive moving objects. Inertial sensors can be used to balance a robot’s weight and 

improve locomotion abilities. 

2.3.7 Ergonomics 

Ergonomics is an application area that focuses on improving the interactions between 

humans and devices or environments. For example, the industry uses motion capture 

systems to prototype vehicle and aircraft interiors. Traditionally, ergonomic studies 

were completed through qualitative video observation, but motion capture 

technologies are becoming a viable ergonomics analysis alternative. 

The study of ergonomics is also aimed at improving the design of body-worn 

equipment during movement to prevent muscle injuries and maximize comfort. For 

example, Optotrak systems have been used for ergonomic applications to assess 

personal carriage systems to improve backpack designs [70]. 
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2.4 Motion Capture Mediums 
There are different mediums through which motion can be recorded that vary in 

performance and cost. This section discusses the underlying principles of several 

motion capture mediums and looks at the main motion capture system manufacturers. 

An evaluation is made to summarise the strengths and weaknesses of each medium. 

Additionally, each medium is compared against the application areas previously 

identified to determine its versatility. The mediums discussed are: optical systems, 

inertial systems, exoskeleton mechanical systems and hybrid systems. 

2.4.1 Optical Systems 

A high-end optical motion capture system will involve a constellation of video 

cameras positioned around the target. A low-end system may use as few as three 

cameras positioned in a portable enclosure. The principle behind all optical systems 

remains the same: data is gathered in video file formats, computer vision filters are 

applied to the video stream and optical triangulation algorithms are used to deduce the 

position of the points of interest. 

Optical motion capture may use reflective markers, pulsing light-emitting diodes 

(LED) markers or no markers to track points of interest in space. 

• The reflective marker solution involves placing highly reflective indicators on 

the motion performer’s body. During the video recording, cameras shine light 

onto the markers to make them more visible. 

• The pulsing LED solution uses infrared cameras to detect heat signatures. 

• The marker-less solution estimates a person’s posture through computer vision 

algorithms. Advances in marker-less optical motion capture algorithms allow 

for the tracking of multiple interacting characters simultaneously [71]. 

Optical systems are highly accurate, noise-free and abled to compute dead reckoning. 

High-end optical systems are abled to track motion at very high frame rates, which is 

difficult with any other type of motion capture (especially inertial sensors which 

generally operate at frame rates ranging between 60Hz and 100Hz). Due to occlusion 

and light interference, optical motion capture requires a dedicated recording 

environment. 
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Vicon 

Vicon Motion Systems and Peak Performance Technologies Inc. are two companies 

united under the Vicon [72] brand. This consortium produced a highly successful 

motion capture hardware and software company concentrating on highly accurate 

marker-based optical tracking systems. The Standard [73] is an annual magazine 

presenting Vicon’s current projects and undertakings. A particular issue entitled “A 

Hopping Success for Outdoor Motion Capture” [74], explores the concept of outdoor 

motion capture, thus removing the need for bespoke recording environments. This 

concept could significantly increase the application areas for optical tracking systems. 

By combining highly accurate video cameras, like the Bonita shown in Figure 2-1, 

with motion analysis software, Vicon systems have a wide range of application areas. 

 

Figure 2-1: Vicon Bonita cameras. Source: [75] 
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Optotrak 

Optotrak Certus [76], shown in Figure 2-2, is an optical motion tracking system 

developed by Northern Digital Inc. [77]. The company specializes in designing and 

manufacturing optical motion capture systems for research application areas. The 

Certus combines a high definition position sensor and digital photogrammetry to 

compute motion data in real-time. Its three optical sensors are used for optical 

triangulation to determine the precise world-space positional coordinates of markers. 

Its cameras are able to detect the position and orientation of multiple moving objects 

in large open spaces by analysing data points at high frequencies. The accuracy of the 

Optotrak Certus made it useful to many research projects such as: 

• Medical Science: studies focused on posture, balance and coordination include 

patient stabilization with trans-femoral amputation [78], idiopathic scoliosis 

[51], Parkinson’s disease [79], etc. 

• Robotics: comparison between human and machine operated industrial robots 

[80]. 

• Ergonomics: analysis of products (e.g. backpack designs [70]), systems, 

environments, tools, etc. [81]. 

• Gait Analysis: gait analysis of unimpaired elderly people [82] and obstacle 

avoidance in cluttered environments [54] [83]. 

 

Figure 2-2: Optotrak Certus. Source: [84] 
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Microsoft Kinect 

As shown in Figure 2-3, Kinect [44] is a consumer-level optical motion capture 

system developed by Microsoft for the Xbox 360 games console. Kinect’s primary 

purpose is to allow users to interact with video games through gestures and spoken 

commands, thus removing the need for a game controller and creating a more 

interactive user experience. As an optical motion capture system, Kinect is a simple 

design using a video camera and a depth sensor. The video camera’s primary purpose 

is to detect colour information for detailed gesture recognition. The depth sensor 

consists of a monochrome sensor and an infrared camera that work in tandem to 

detect the posture of the motion performer. Kinect’s hardware is accompanied by 

image-processing software [85] [86] that estimates the world-space positions and 

orientations of body parts. Kinect has been used in many research projects because of 

its low-cost, software development kit (SDK) [87] and Robotics Developer Studio 

[88]. The popularity and low cost of the Kinect led to its use in many research 

projects. 

• Digital Puppetry: controlling virtual characters in video games. 

• Medical Science: the gamification of patient rehabilitation [89], the training of 

nurses in performing patient transfers [90], studies of body joint movements 

[91], systems for training of factory workers to lift safely [92], etc. 

• Robotics: recreating human motion through electro-mechanical skeletons [93], 

and robots [94]. 

• Gait Analysis: capturing and evaluating of ambulatory behaviours [95] [96] 

[97] for experimental research. 

 

Figure 2-3: Microsoft Kinect. Source: [44] 
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2.4.2 Inertial Systems 

Inertial motion capture uses sensor technology, motion processing algorithms and 

kinematic models to record movement. Inertial motion sensors such as gyroscopes, 

accelerometers and magnetometers are used to identify three-dimensional world 

rotations. A virtual representation of the performer is constructed by applying these 

rotations to a kinematic skeleton. For a system to identify the performer’s full body 

movement, a sensor unit must be placed on each major body part: limbs, torso, neck 

and head. The inertial sensors may be worn using straps or sown into clothing 

depending on size. Most motion capture systems interconnect approximately twenty 

sensors through a central hub commonly referred to as a multiplexer. Inertial 

technologies benefit from a wider range of application areas as they are portable and 

may be used outside the comfort of recording studios. Unlike optical systems, inertial 

motion capture suffers from sensor-related inaccuracies such as drift and noise. 

XSens MVN 

XSens [98] is a manufacturer and supplier of MEMS inertial sensor products and 

technologies. MVN [99] is a department of XSens that focuses on creating motion 

capture suits for animation and biomechanics. Their latest product is an inertial 

motion capture suit featuring seventeen in-house built MTx sensors strapped to 

clothing. The MVN suits, shown in Figure 2-4, have made their way into the 

filmmaking and video games industries. XSens products target several application 

areas: 

• Animation: character tracking for blockbuster films and video games. 

• Medical Science: analysing human movement in clinical trials [100] [101] 

assessing the frailty of elderly people [102], measuring trunk and gait 

parameter [103], etc. 

• Sports Science: motion analysis of human behaviour during sport activities 

such as snowboarding [60] [61] and alpine skiing [62]. 

• Gait Analysis: capturing and evaluating ambulatory behaviours [104] [105] 

[106] for experimental research. 
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Figure 2-4: XSens MVN full-body suit. Source: [99] 

Animazoo 

Animazoo is an animation-driven motion capture software and hardware developer. It 

has a wide range of motion capture solutions that vary in price and performance. As 

shown in Figure 2-5, the most power Animazoo system is the IGS 180, an inertial 

motion capture suit interconnecting eighteen MEMS inertial measurement units to a 

wireless multiplexer. Application areas for Animazoo systems include: 

• Animation: character motion tracking for films and video games. 

• Digital Puppetry: animating in real-time virtual characters with the added 

option of lip synchronization through AnimaLive [43] software. 

• Ergonomics: measuring the interaction of humans with vehicle interiors. 

 

Figure 2-5: Animazoo IGS190 full-body suit. Source: [107] 
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2.4.3 Exoskeleton Mechanical Systems 

Exoskeleton motion capture systems are body-worn prosthetic structures that can be 

worn on top of clothing. Typical hardware consists of extendable rods connected 

through potentiometers. The rods mimic the user’s physical skeleton while the 

potentiometers record the rotation of joints. Potentiometer readings are converted into 

rotations and applied to kinematic models as skeletal motion. Animazoo holds patents 

for exoskeleton systems, making it the only vendor for these technologies.  

eMove 

The eMove project [22] originated from a Technology Strategy Board funded 

partnership between the University of Sussex and Animazoo. The project produced a 

prototype exoskeleton personal motion sensing system entitled eMove and now sold 

commercially as The Wing and Gypsy 7. The system was originally derived from the 

Animazoo Gypsy 5 prototype. As shown in Figure 2-6, full-body and upper body suits 

are designed to record torso and limb movements. Exoskeleton’s biggest downfall is 

the fragility of the complicated hardware. 

 

Figure 2-6: Early eMove prototypes: Full Body (left) and Upper Body (right). Source: [108] 
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2.4.4 Evaluation of Motion Capture Systems 

Table 2-1 provides a brief summary of the advantages and disadvantages of motion 

capture mediums. 

Table 2-1: Advantages and disadvantages of motion capture mediums. 

Software Advantages Disadvantages 

Optical - accuracy 
- recording frequency 
- robust 
- inherently able to compute 
dead reckoning 
 

- cost 
- require dedicated recording spaces 
- sensitive to lighting conditions 
- occlusion-related limitations 
- not usable outdoors 
- not usable in confined spaces 
- not portable 

Inertial - accuracy 
- cost 
- usable outdoors 
- usable in confined spaces 
- portable 

- slower recording frequency 
(compared to optical) 
- fragile 
- dead reckoning 
- magnetometers are affected by 
magnetic interference 

Exoskeleton - cost 
- usable outdoors 
- portable 
 

- accuracy 
- recording frequency 
- cumbersome 
- fragile 
- dead reckoning 
- not usable in confined spaces 

Optical systems have many benefits in terms of accuracy, high recording frequency, 

durability and dead reckoning. At the same time, optical systems present many 

drawbacks in terms of cost and usability. While there are studies attempting to make 

optical technologies usable outdoors, optical sensors are likely to be confined to 

specific recording environments that present ideal optical lighting conditions. Optical 

systems have presented a large number of application areas in research-related fields. 

Exoskeleton systems currently play a very small role in the field of research. While 

cost is an advantage, accuracy, fragility and the cumbersome nature of the hardware 

remain major problems. The question then arises: why wear prosthetic hardware when 

inertial suits achieve the same task more accurately? While cost is a factor, it is worth 

mentioning that modern MEMS are decreasing in price while improving in 

performance. 
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Inertial systems provide a balance between benefits and drawbacks. Suits are highly 

portable and usable indoors, outdoors and in confined spaces. While accuracy can be 

problematic, modern MEMS sensors are sufficiently accurate for a wide range of 

application areas. Sensor-related problems such as drift and noise are being resolved 

through better hardware, firmware and software. 

2.5 Inertial Measurement Units 
The smallest and most important element of an inertial motion capture system is the 

inertial measurement unit (IMU). As the name would imply, IMUs are sensors 

designed to measure rotational or gravitational motion. IMUs generally contain a 

gyroscope, accelerometer and magnetometer. 

An IMU is a device encapsulating one or several sensors along with a small 

processing unit. For example, InvenSense sells a nine-axis sensor entitled MPU9150 

[109] containing a gyroscope, an accelerometer and a magnetometer. IMUs 

(particularly those designed to be used in research) will generally contain an 

additional communication mechanism (e.g. a Bluetooth emitter, USB connector, etc.). 

Modern IMUs contain on-board processing units that run digital filters and sensor 

fusion algorithms to improve accuracy and provide developers with a usable output. 

Aside from motion capture, IMUs have been used to in aeroplanes, space rockets and 

military missiles for the past decades. More specifically, the technology found in 

IMUs today was derived from those application areas. With hardware miniaturization, 

IMUs have become ubiquitous in many devices such as smartphones or tablets. 

But why do IMUs require specifically a gyroscope, accelerometer and magnetometer? 

The gyroscope cannot measure rotations accurately by itself due to drift and other 

inaccuracies because it does not have a reference point. A gyroscope produces 

positive rotations even when motionless. Accelerometers and magnetometers are used 

as reference points by the gyroscope. More specifically, the accelerometer measures 

the gravitational force (vertical axis) while the magnetometer measures geographical 

north (horizontal axis). The third axis can be computed from the two to give the 

gyroscope an orthogonal reference point. This process is referred to as sensor fusion 

and is further discussed in Section 2.5.3. 
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2.5.1 Gyroscope 

The gyroscope is the core component of any inertial motion capture system. 

Gyroscopes are used to measure the orientation of the device on which they are 

mounted. Depending on whether the chip contains an inbuilt processor, orientation 

data can be expressed as angular speeds, rotations or even quaternions. There are two 

types of gyroscopes that are popular: micro-electro-mechanical sensors (MEMS) and 

piezoelectric. Consumer devices such as smartphones contain MEMS gyroscopes that 

are ubiquitous and very robust. These microchips are becoming increasingly more 

accurate while their cost is decreasing. Consumer-level MEMS chips are now 

sufficiently accurate for inertial motion capture applications (e.g. measuring the 

biomechanical data of the human body). “MEMS Vibratory Gyroscopes: Structural 

Approaches to Improve Robustness” [110] provides a good introduction to the history 

of gyroscopes and how they function. “Practical MEMS: Analysis and Design of 

Microsystems” [111] provides an overview of MEMS gyroscopes and other sensors 

by looking at examples of existing hardware architectures. 

2.5.2 Sensor Attributes 

The following list summarises the key attributes of an IMU that can be used to 

measure performance. There is no standardized way of expressing how good a motion 

sensor is as manufacturers advertise their sensor products in dissimilar ways. 

• Number of Sensing Axis: Gyros can be single, double or tri-axial measuring 

angles in one, two or three axis. Fundamentally, tri-axial sensors use the 

components of three single-axis sensors oriented orthogonal to one another. 

Modern inertial motion capture generally uses tri-axial MEMS sensors. 

• Full Scale Range: The range of a sensor, measured in degrees per second, 

specifies the maximum angular change that can be sensed in a set time 

interval. 

• Sensitivity: Sensitivity, measured in least significant bit (LSB) per degree per 

second, specifies how small a movement can be for the sensor to detect. It is 

calculated by looking at how the LSB oscillates for a one-degree rotation in 

one second. For example, if a gyroscope rotates one degree in one second, the 

last bit of the angular reading that is modified is indicative of sensitivity. 
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• Bandwidth: Bandwidth, measured in hertz, is the maximum frequency of 

readings that can be made per second. A sensor is generally more accurate if it 

produces data more frequently. 

• Shock Tolerance: All sensors contain moving parts that may be subject to 

breaking. Consumer-level devices can be damaged if dropped and require 

replacement. Shock tolerance is a measure of durability. In military and 

aviation applications, sensory devices must function correctly while enduring 

large gravitational forces. With advances in MEMS technologies, most 

modern consumer-level digital sensors are robust and can withstand very large 

shocks. 

• Calibration: Calibration is the process of compensating a sensor’s output to 

reflect an accurate reading of the motion. For example, a gyroscope’s output 

may detect 91 degrees of motion when rotated only 90 degrees. The 1 degree 

difference needs to be detected and accounted for at the firmware level. Even 

though sensors may require recalibration after extensive use or if damaged, 

calibration has become uncommon in modern consumer-level electronics as, 

components are less expensive to replace than to calibrate. 

• Drift: Drift, also known as Angular Random Walk (ARW), is a sum of 

gyroscope inaccuracies over longer periods of time and is a measured in 

degrees per hour. When a gyroscope is held motionless, its rotation gradually 

changes without actual movement. For this reason, IMUs contain additional 

accelerometers and magnetometers to correct noise. 

• Noise: Noise is characterised by random fluctuations within a sensor’s data. 

Sensors produce minute highpoints and depressions that oscillate above and 

below the real values. Noise can be corrected through filters or damping 

algorithms. Without filters, accelerometers and magnetometers produce a large 

amount of noise. 

• Bias Error: Similar to drifting, the bias error is the distortion of outputs over a 

period of time. The bias error is semi-predictable as the sensor is tested against 

different internal and external factors. For example, the sensor heating up to its 
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functioning temperature upon start-up is a factor. These factors must be 

understood and accounted for by defining an offset value. 

• Size: The size of the sensor is critical in practical applications. A smaller 

sensor is likely to consume less power and produce less heat than a larger 

sensor. While smaller sensors are generally more desirable, they are more 

difficult to solder onto circuit boards manually, which makes the prototyping 

of electronics difficult for the average user. 

• Power Consumption: To maximize battery life, wireless devices require low-

power sensors. For example, low-power accelerometers can be found in 

commercial pedometers. 

• Output Formats: Because sensors contain inbuilt processing units, they can 

produce data various formats. For example, a gyroscope may outputs data as 

angular speeds, angular rotations or even quaternions. 

• Sensor Fusion and Filters: Sensor fusion and filters are features that enhance 

performance. A small processing unit must be placed within the sensor to 

process sensor fusion algorithms and filters. Because of this, modern sensors 

are more accurate, reliable and noise-free. 

2.5.3 Sensor Fusion 

Performance in motion capture is defined by accuracy: a measure of how close the 

recorded motion reading is to the actual motion. Accuracy can be expressed in two 

ways: reproducibility and reliability. Reproducibility is a measure of how close a 

recorded motion is to its true value while reliability is a measure of consistency over 

lengthier periods of time. Considering that IMUs are required to read motion correctly 

and dependably for extended periods of time, sensor fusion becomes key in 

maximizing performance in new motion capture systems. 

Sensor fusion is the process of combining multiple data sets to conclude a more 

accurate reading of motion. By fusing the data of an IMU containing three separate 

sensors, it is possible to conclude readings that are superior to those produced by each 

sensor individually. Generally, sensor fusion algorithms are mathematical solutions 
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that focus on improving two key properties: signal noise and drift. Sensor fusion can 

be described as being either heterogeneous or homogenous. 

In homogenous sensor fusion, an IMU will contain several identical sensors that are 

implemented to work in parallel to produce enhanced motion readings. For example 

Gyro-Free Inertial Navigation System (GFINS) [112] is a sensor unit that implements 

six accelerometers to work congruently. The result is the averaged output of all the 

devices. Another example is EcoIMU [113] an IMU that integrates two 

accelerometers in a similar fashion. 

In heterogeneous sensor fusion, an IMU will contain different sensors where each 

sensor has a distinct purpose. It is a complementary solution whereby each sensor has 

a unique strength that can be used to reduce another sensor’s limitation. As previously 

mentioned, a typical IMU will contain a gyroscope, an accelerometer and a 

magnetometer. The gyroscope’s strength is its ability to sense noise-free motion at 

high frequencies. The accelerometer and magnetometer’s strength is to produce drift-

free data, which can be used as a reference. Consequently, the gyroscope’s noise-free 

data can be compensated with the accelerometer and magnetometer data to reduce 

drift. 

2.5.4 Kalman Filter 

The most popular algorithm for sensor fusion is the Kalman filter, a mathematical 

solution for reducing random variations in motion. The Kalman filter gathers 

inaccurate data from multiple sensors and produces a reading that is closer to the real 

motion. “Introduction to Random Signals and Applied Kalman Filtering” [114] 

provides an insight into the random process theory and introduces the Kalman filter 

with a strong emphasis on its applications and implementation. To put the Kalman 

filter into the context of inertial motion capture, [115] provides an example of a 

design and implementation of a Kalman filter that uses quaternion mathematics. 

  



	
  

	
  

38 

2.6 Body Sensor Networks 
Body sensor networks (BSN) are constellations of sensing devices that measure key 

properties of the human body [107] [116]. In the context of motion capture, BSNs use 

IMUs containing gyroscope, accelerometer and magnetometer sensors. “Body Sensor 

Networks” [117] provides an overview of sensor networks with emphasis on advances 

in wireless systems and discussions on application areas in the field of medical 

science. 

The human body can be represented as a hierarchy of skeletal segments where each 

segment corresponds to a bone in the body. Depending on age, the human body has 

between 200 and 300 bones that fuse with age. In computer graphics, the skeleton can 

be represented, in a more simplistic manner, as a kinematic model. A typical BSN 

will use as much as 20 IMUs placed strategically on each major body part. For 

example, the Animazoo IGS 180 uses 18 IMUs placed on the limbs, hands feet, torso, 

neck and head. 

Smaller IMUs can be sown into clothing while heavier IMUs may be worn using 

elastic straps. While moving, sensors will slide in relation to the skin and cause 

inaccuracies. At the same time, wearing IMUs that are strapped tightly will constrict 

movement. Weight is also an important factor as a heavy IMU will move more in 

relation to the body than light IMU. The problem area concerned with the physical act 

of wearing IMUs can be referred to as sensor distance noise [118] and represents a 

major source of inaccuracies for inertial motion capture systems. 

Although inertial motion capture suits are a relatively new development, the 

fundamental concepts behind BSNs have been exploited in other application areas 

outside the context of human motion. For example, hospitals use sensor networks to 

monitor the physical properties of patients (e.g. pulse, heart rate, blood pressure, 

blood oxygenation, etc.). The act of measuring subtle movements can provide 

important information about a patient’s condition. Mercury [119] is an inertial BSN 

used to supervise patients with severe cases of epilepsy or Parkinson’s disease. This 

system consists of eight IMUs placed on the body whereby each sensor can be worn 

on the arm, forearm, calve or shin. The sensors are connected wirelessly to a laptop 

computer to avoid problems caused by cables interfering with the patient’s natural 

motor functions. 
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To further understand the concept of BSNs, the following sections discuss four key 

properties: networking, homogenous/heterogeneous BSNs, directionality, modularity 

and computational centricity. These concepts are further discussed in Chapter 3 and 

Chapter 4 by creating a dedicated motion capture software environment for extracting 

data from sensors. 

2.6.1 Networking 

Networking is concerned with gathering data from the IMUs and merging the result to 

produce a complete recording of the body. Networking involves establishing 

connections, interrogating and synchronizing the data produced by each device. There 

are two types of sensor networks: wired [107] and wireless BSNs (wireless BSNs are 

commonly referred to as wireless body area networks (WBAN) [120]). Wired BSN 

have fewer power usage constraints while WBANs are more practical. Data is 

sampled from each network node at specific time intervals. Once all the IMUs are 

interrogated, synchronization algorithms are applied to merge the data and produce a 

complete recording of the body’s motion. 

2.6.2 Heterogeneous and Homogenous BSNs 

BSNs can be heterogeneous or homogenous depending on the variety of sensor used. 

Most inertial motion capture systems are homogenous and use an array of identical 

sensors. For example, the ETH Zurich Sensor Hardware system [118], which is based 

on the Smart-its platform [121], extracts data from 48 accelerometers that can be 

placed on the body using straps. Similarly, the Lancaster Multi-Accelerometer 

Platform [118] [122] embeds 30 accelerometers in a pair of trousers and a lab coat. 

2.6.3 Directionality 

Directionality represents the flow of data throughout BSNs and it can be directional or 

omnidirectional. Most inertial motion capture systems are directional whereby the 

communication with the nodes is the process of extracting data. Aside from basic 

commands, no motion data is sent to the IMUs. However, a sensor may benefit from 

knowing what its surrounding nodes are measuring. This concept is further evaluated 

in Chapter 5 by creating an omnidirectional smartphone-driven BSN. Figure 2-7 

illustrates an omnidirectional upper body sensor network with 8 IMUs. The IMUs are 

daisy chained to a multiplexer as the data is gathered from each node. 
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Figure 2-7: Omnidirectional body sensor network. 

2.6.4 Computational Centricity 

A BSN can be classified as being hardware or software-centric depending on whether 

motion processing is achieved at the hardware or software level. Typically, an IMU is 

software-centric if it outputs raw unfiltered data in the form of angular speeds. 

Software is then used to compute rotations, apply sensor fusion algorithms and filters. 

A hardware-centric IMU will contain in-built microcontrollers that are abled to 

achieve these computations within the hardware. 

Depending on application areas, there are advantages and disadvantages to each 

approach. It is much more convenient for researchers willing to integrate sensors 

within their software to have hardware that can compute motion. Hardware that 

computes motion requires more powerful processing units, which in turn affect power 

consumption, size and cost. 

Hardware-centricity is becoming a key requirement for new inertial motion capture 

systems with the aim of making hardware more autonomous. It is more efficient to 

distribute the workload between a suit’s microcontrollers than to send it to a 

computer. This concept is further discussed in Chapter 5 through the design and 

implementation of an omnidirectional smartphone-driven BSN. 
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2.7 Kinematic Motion Reconstruction 
This section introduces the theory behind rotational models, kinematic models, 

collision detection and dead reckoning. These stages of computation take place at the 

software level once all the data has been gathered from the BSN. 

2.7.1 Rotational Models 

There are multiple methods for computing and storing the rotations produced by 

IMUs. A rotational model describes a mathematical representation of rotations that, in 

the context of inertial motion capture, can be used to express a kinematic model. 

There are multiple rotation models: Euler, quaternion, rotation matrices, Rodrigues 

and invariant representations using rotation tensors. The two rotational models most 

often found in computer graphics are Euler rotations and quaternions. Inertial motion 

capture software applications use a combination of both models. These models, their 

mathematical operations and conversion equations are further discussed by [123]. 

The Euler model represents transformations as an ordered sequence of three rotations 

corresponding to the rotational yaw, pitch and roll. The Euler model is the only 

intuitive solution for representing rotations. For example, plotting Euler rotations on a 

graph provides an interpretable visualisation of the motion. However, this model 

becomes problematic because of gimbal lock. Representing a rotation within a three-

dimensional gimbal can simulate this problem. Gimbal lock occurs when one degree 

of freedom is lost as two of the three discs become parallel, thus restricting the system 

to a two-dimensional configuration. 

A simpler solution to the gimbal lock problem is quaternion algebra. A quaternion is a 

set of four values within four-dimensional (4D) vector space consisting of a real 

number and three imaginary values. Quaternions are generally used in computer 

graphics to rotate 3D objects in space and produce animations. Two quaternion 

rotations can be summed through quaternion multiplication, which is 

noncommutative. Quaternion multiplication has many benefits in terms of 

performance as it can be broken down into mathematical multiplications, additions 

and subtractions. Those simple operations are significantly faster to process by 

computers than trigonometry (which is required for the Euler model). The theory 

behind quaternions is further discussed in Appendix A. 
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2.7.2 Kinematic Models 

Once all rotational data is gathered from an inertial motion capture system, a 

kinematic model is used to reconstruct a virtual representation of the performer. The 

kinematic model can be used to create 3D visualisations of the motion.  As shown in 

Figure 2-8, kinematic models are skeletal hierarchies containing rotational and 

positional constraints. 

 

Figure 2-8: Position and rotation constraints in kinematic models. 

Kinematic models are used to visualise the movement of a motion performer as an 

articulated skeleton. That skeleton can be assigned to animate a virtual character. 

Aside from visualisations, kinematic models are also important in the context of dead 

reckoning (see Section 2.7.4). Figure 2-9 illustrates a rendered kinematic model 

performing three gestures: walking, dragging feet and kneeling. 

 

Figure 2-9: Kinematic models playing back motion. Source: Pascu et al. [18]  
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2.7.3 Collision Detection 

Collision detection, sometimes referred to as collision avoidance, is the problem of 

computing the intersection between two or more objects. Collision detection is used in 

motion capture kinematics to compute an estimation of horizontal displacement. This 

process is also referred to as dead reckoning and is further explained in the next 

section. For inertial motion capture systems, collision detection is used to create a 

realistic simulation of foot placements. 

In reality, the human foot endures complex musculoskeletal deformations. 

Considering that most motion capture suits only use one sensor per foot, those 

deformations are too intricate to record. Basic implementations of collision detection 

in video games and animation can increase the believability of the virtual character. 

When walking, collision detection can cause foot-skating whereby the foot moves 

when parallel to the ground. The concept of foot-planting [124], which describes feet 

stationary when balancing a character’s weight, could solve this problem. When the 

foot is planted it experiences a floor constraint. When the foot is lifted, its position 

and rotation must be interpolated between its planted state and its unconstrained state. 

Behavioural studies, particularly those concerned with posture, balance and 

coordination require elaborate kinematics where collision detection is used to simulate 

pivotal constraints between bones. Anatomy-accurate musculoskeletal systems 

implementing advanced collision detection methods [125] may prove beneficial to the 

field of biomechanics. A more accurate and realistic musculoskeletal system can be 

achieved through by creating a kinematic model that utilizes advanced joint 

interactions [126]. 

2.7.4 Dead Reckoning 

Inertial motion capture systems contain no inherent sensors that measure horizontal 

displacement. As a result, walking algorithms must be applied to the kinematic model 

to compute an approximation of horizontal displacement. For example, taking a step 

forward will propel the kinematic model in the direction of travel. Also referred to as 

spatial positioning, dead reckoning is the process of computing horizontal 

displacement for longer periods of time. For example, taking a set of steps will 

translate the kinematic model in space by a certain amount. Dead reckoning 

algorithms can be used to calculate that amount during processing or post-processing 
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stages of motion processing. Additionally, peripheral hardware can be used to create a 

more accurate estimation of horizontal displacement. 

Dead reckoning data can be added to the recording manually using animation 

software. However, translating the kinematic model manually is a time-consuming 

task that will produce inaccuracies. Physics engines, such as those found in game 

engines, can be used to add physical properties to the kinematic model to synthesize 

horizontal displacement. However, physics engines are computationally expensive 

during real-time motion capture. 

A popular approach for determining horizontal displacement is the lowest-point 

algorithm [127]. This computationally inexpensive algorithm produces a rough 

approximation of the distance travelled by selecting the lowest kinematic segment and 

applying planar collision detection. 

Figure 2-9 illustrates the functionality of the lowest-point algorithm as a sequence of 

kinematic computations. The supporting limb of the kinematic model is often referred 

to as an anchor point because the entire skeleton moves in relation to that point due to 

positional and rotational constraints. With each step taken, the anchor swaps between 

feet. As the anchor moves in space, the skeleton is propelled forward. 

 

Figure 2-10: Lowest-point algorithm. Source: [127] 

If the skeleton is calibrated accurately, this algorithm will produce reasonable 

horizontal displacement. However, the human body is much more complicated than a 

kinematic skeleton. Representing the human body as simple kinematic pivots will lead 

to inaccuracies. 

The lowest-point algorithm only works when the test subject is taking clear steps 

where the detachment from the ground of each foot is detectable. More specifically, 
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the algorithm is likely to miscalculate which kinematic joint is the correct anchor if 

the person is dragging their feet. 

Dead reckoning may be achieved using peripheral sensors. The most common two 

types of peripheral sensors are ultrasonic sensors and video cameras. The act of 

integrating additional sensors, which are not motion sensors, in a BSN can be referred 

to as hybrid motion capture. While hybrid motion capture is highly accurate, there are 

many disadvantages, which limit the systems in terms of practicality and versatility. A 

BSN that uses peripheral sensors is no longer portable and requires a designated 

recording studio. In the case of ultrasonic sensors, outdoor recordings are problematic 

due to noise interference (e.g. from the wind). 

2.8 Motion Capture File Formats 
As previously mentioned, animation is the most thriving sector of the motion capture 

industry consisting predominantly of filmmakers and game developers. This 

prosperous industry drives motion capture technologies forward by establishing new 

recording studios. As the industry expands, more studios are focusing on creating new 

methodologies for storing, transferring and trading motion capture data. Those 

methodologies are not yet standardised causing cross-compatibility issues between 

systems and software environments. “Working With Motion Capture File Formats” 

[128], [129] and [130] provide overviews of what motion capture data is and what file 

formats are used to contain it. 

“…motion capture has a significant weakness due to the lack of an industry-

wide standard for archiving and exchanging motion capture data. It is difficult 

for animators to reuse and exchange motion capture data with each other.” 

[131] 

Motion Capture Markup Language (MCML) [131] is a proposed framework that aims 

to solve the data compatibility problem by homogenizing numerous file formats. 

MCML is built using the eXtensible Markup Language (XML) and aims to simplify 

file format conversions. Additionally, this framework introduces the concept of a 

motion database to organize and manage numerous recordings. There is a general 

need for an industry-wide standard for storing motion capture data. This thesis 
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proposes that web technologies could be used to removing the need for local file 

storage altogether by storing motion capture data in online databases. 

All motion capture systems output similar data consisting of either angular rotations 

or positional coordinates. The following terms are frequently used when describing 

motion capture file formats: 

• Bones and Joints: The building block of a 3D skeleton representing a segment 

corresponding to a limb section. For inertial systems, bones represent body-

mounted sensors having an origin, a length and an orientation. 

• Skeleton and Skeletal Hierarchy: The bone topology defining the shape or 

arrangement through which a motion-captured character is defined in virtual 

space. A topology will depend on what system is used and how many sensors 

are interrogated to gather data. A skeletal hierarchy relies on bone 

dependencies to interlink its constituent segments. 

• Motion Frame: A snapshot recording of the performer’s posture. 

• Channel: Data structure storing the stream of angular readings for one sensor. 

Most motion capture file formats store both angular readings and kinematic 

definitions in the same file. The three most popular file formats are: Biovision 

Hierarchy (BVH), Biovision (BVA), Acclaim Motion Capture (AMC) and Acclaim 

Skeleton Format (ASF). These formats are further discussed in the context of software 

compatibility. The biggest problem with these formats is that they contain no motion 

capture system specific data (e.g. information how the system was configured to 

produce the data). In essence, these formats represent different methods for 

expressing character motion with disregard for the recording technology. 

2.8.1 BVH Format 

BVH is an easy-to-parse ASCII format that stores motion capture angular readings 

and positional offsets. BVH appears to be the most popular motion capture file format 

in animation packages. For that reason, it is implemented in the software environment 

proposed by this thesis. Additionally, it is the only format that includes a skeletal 

hierarchy template and motion data within the same file. The syntax is divided 

between the file’s header and body. 
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2.8.2 BVA Format 

The BVA file format stores angular readings and positional offsets within segment 

definitions. Unlike BVH, BVA does not support hierarchy definitions making it 

impractical for certain applications. BVA can only be used in scenarios where the 

software environment has a preconfigured kinematic model. In an ideal scenario, the 

user should be able to decide which kinematic model to use and to specify what 

system is being used to record motion. As proposed by this thesis, these configuration 

attributes could be specified in a more comprehensive file format. 

2.8.3 AMC/ASF Format 

The AMC/ASF file format is widely supported by applications and considered to be 

the most comprehensive. It contains both skeleton hierarchy information and motion 

capture data within two file types: Acclaim Skeleton Format (ASF) and Acclaim 

Motion Capture (AMC). ASF stores the skeletal definition while AMC stores the 

motion capture data. In summary, Acclaim has developed a very complete motion 

capture file format that serves the task of storing both motion capture data and skeletal 

information very well. Although the Acclaim format is widely used, it is not the most 

concise or easy-to-parse solution of the three presented. Its functionality is very 

similar to that of a BVH file yet the syntax is more complicated. 

2.9 Supporting Software 
This section examines the compatibility between motion capture systems and software 

applications. Inertial motion capture systems are regarded as new technologies and 

therefore have little support from popular computer software applications. Because 

there are no bespoke software applications for extracting data from sensor devices, 

software support can only be analysed in terms of what motion capture file formats 

are supported by which software application. Because character animation is regarded 

(by the industry) as the main application areas for inertial motion capture, the main 

software applications that support the aforementioned file formats are tools for 

animation. This raises the question: can animation software be used to evaluate 

motion recordings for other application areas such as gait analysis or medical science? 

In many scenarios, animation software provides tools for visualisation, kinematic 

models and other features that are important to motion capture. However, it is difficult 
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to repurpose animation software for experimental research. The following list of 

software is compatible with motion capture file formats. However, it highlights a need 

for research-oriented inertial motion capture software environments. 

2.9.1 Autodesk 3ds Max 

3ds Max [132] is the industry standard for modelling, rendering and animation. It 

provides users with a vast array of tools for mesh sculpting, texturing and animating 

3D models. Its latest iterations feature Character Studio, a plugin facilitating more 

advanced character animations. Character Studio can be used to animate mesh 

geometries through custom bone rigs. However, the user is forced to implement a 

prefabricated skeletal armature called biped when working with motion capture data. 

The highly customisable biped is the quickest technique for visualising BVH motion 

data.  

2.9.2 MotionBuilder 

MotionBuilder [133] the most advanced 3D animation software application available 

commercially and provides full support for motion capture file formats such as BVH, 

BVA and ASF/AMC. Interoperability with other software environments is achievable 

through native FBX support. MotionBuilder’s SDK can be used to develop plugins 

that extract data from inertial motion capture suits. In the context of inertial motion 

capture, MotionBuilder’s physics engine can be used to simulate horizontal 

displacement by applying gravitational forces and collision detection to skeletons. 

Even though MotionBuilder does provide an SDK, it is difficult or impossible to 

modify any fundamental aspects of this software application (e.g. the kinematics). 

2.9.3 Maya 

Maya [134] is a very popular software environment for modelling, rendering and 

animation. Its application areas target the filmmaking and game development. 

Natively, Maya does not support any motion capture formats. However, the 

BVHImportExport [135] plugin can be installed to provide compatibility for BVH 

files formats. Additionally, it is possible to load ASF/AMC files into Maya by first 

altering the motion data using the AMC2MOV and ASF2MEL converters [136]. To 

summarise, it is possible but difficult to use Maya for visualising motion capture data. 
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2.9.4 Blender 

Blender [137] is an open source modelling, rendering and animation suite developed 

by the Blender foundation. A large community of professionals and enthusiasts 

support Blender by developing plugins. Blender’s character animation tools support 

bone rigging and key frame animation. This software application does contain BVH 

importer can be used to map motion capture data to skeletons. Blender’s gaming 

engine shows potential for real-time motion capture applications. 

2.9.5 Other Software Applications 

There are several smaller and less known applications aimed at motion capture 

animation.  Life Forms Studio [138] and Poser [139] are two character animation 

packages that support BVH and other motion capture file formats. Carrara [140] is a 

cost-effective software environment developed by Daz3D. Its latest iterations provide 

functionality for importing, editing and exporting BVH files. 

2.9.6 Comparative Evaluation of Software Applications 

This section summarises the benefits of using each of the aforementioned software 

applications by creating a summary of the advantages and limitations of each solution. 

This study identifies BVH as being the most popular file format and outlines two 

fundamental problems. First, there are no software applications designed primarily for 

motion capture. Second, there are no software applications that facilitate experimental 

research in the field of inertial motion capture and BSNs. Table 2-2 illustrates a 

comparison of the software applications and summarises three key aspects: 

advantages that are relevant to motion capture, supported file formats and how 

hardware integration is possible. 
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Table 2-2: Comparison of software applications in the context of motion capture. 

Software Advantages File Formats Hardware Integration 

3ds Max - kinematic character rigs 
- animation tools 
- biped primitive 
- popularity 

- BVH - through plugins 

MotionBuilder - kinematic character rigs 
- powerful animation tools 
- physics engine 
- good file format support 
- popularity 

- BVH 
- BVA 
- ASF 
- AMC 

- using the SDK 
- through plugins 

Maya - kinematic character rigs 
- animation tools 
- popularity 

- BVH - through plugins 

Blender - kinematic character rigs 
- animation tools 
- open source 
- free 
- community-driven 

- BVH - through plugins 
- source code 

Carrara - kinematic character rigs 
- animation tools 

- BVH - N/A 

Life Forms 
Studio 

- kinematic character rigs 
- animation tools 
- good file format support 
- aimed at motion capture 

- HTR 
- BVA 
- BVH 
- LWS 
- DXF 
- ACC 

- N/A 

Poser - kinematic character rigs 
- animation tools 
- good file format support 
- aimed at motion capture 

- BVH 
- PZ2 

- N/A 

2.10 Conclusions 
This chapter has introduced and examined motion capture as the topic of research for 

this thesis by looking at application areas, hardware technologies, inertial BSNs, 

inertial sensors, the principles behind kinematics, motion capture file formats and 

software. A set of problem areas is concluded as the result of this literature survey. 

This chapter begins by defining the concept of motion capture as the process of using 

sensors and software to reconstruct a virtual representation of real-life movement. 

While the principles behind motion capture are not new, the ability to design and 

implement motion capture systems is only recently possible due to the miniaturisation 

of MEMS and the availability of superior computational resources. Motion capture is 

chosen as the primary topic of research because it is relevant to a wide range of 
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application areas while it proves problematic and challenging in many aspects, 

particularly in terms of usability. A better motion capture workflow could simplify the 

interaction between users and their system to make inertial BSNs more ubiquitous. 

This chapter continues to analyse what motion capture is used for by identifying 

research projects, as found in literature, and grouping them into application areas. The 

five main application areas are identified as being: animation, real-time motion 

capture, medical science, gait analysis, ergonomics and robotics. However, the lines 

between these application areas are blurred. For example, gait analysis may be 

considered a medical science or sport science application. Some application areas are 

result-driven while others are accuracy-driven. A medical science experiment will 

demand accuracy while video games may require a visually interesting animation. 

Once application areas are identified, this chapter discusses hardware technologies 

and their impact on the field of research by looking at major industry contributors and 

what systems are available commercially. While there are many approaches for 

capturing motion, there are only three main technologies: optical (e.g. Vicon, 

Optotrak, Microsoft Kinect), inertial (e.g. XSens, Animazoo), mechanical systems 

(e.g. eMove, Gypsy 7). Optical, mechanical and inertial motion capture technologies 

present strengths and weaknesses. Motion capture hardware development is a result-

driven process where systems are tailored to specific application areas. Optical 

systems require expensive recording studios and limit the motion recording process to 

specific environments due to occlusion and lighting problems. Despite technological 

advances that have reduced the cost of sensors, inertial motion capture systems 

remain expensive. Mechanical systems are cumbersome and lack the accuracy 

required for specific tasks. This chapter concludes a comparative evaluation of all 

motion capture systems and mediums in terms of advantages, disadvantages, 

application areas and cost. Based on these factors, inertial motion capture is chosen as 

the primary research topic for this thesis. 

The first step in understanding inertial technologies is to understand how IMUs 

function. Emphasis is put on the three constituent sensors contained in an IMU, 

namely the gyroscope, accelerometer and magnetometer. The chapter continues to 

discuss what attributes describe the performance of a sensor in terms of: number of 

sensing axis, full scale range, sensitivity, bandwidth, shock tolerance, drift, noise, 
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size, power consumption and output formats. Sensor fusion is discussed to create an 

understanding of how data originating from three different sensors can be merged to 

produce a more accurate reading. 

Having defined the fundamentals of IMUs, this chapter discusses how several devices 

can be interconnected to form a BSN. In the context of inertial motion capture, BSNs 

are synonymous with animation suits. BSNs can be defined as being directional or 

omnidirectional, homogenous or heterogeneous, software or hardware-centric. Each 

type of BSN has distinct advantages and disadvantages. 

Once data is obtained from hardware, kinematic models are required to reconstruct 

the motion in 3D. The concept of a kinematic model is introduced as a skeletal rig 

used to mimic the original motion in virtual space. For inertial motion capture 

systems, kinematic models are vital in computing dead reckoning. Because inertial 

systems contain no sensors that are dedicated to measure horizontal displacement, 

kinematic modes are required to synthesize an approximation of dead reckoning 

through planar collision detection and foot placement estimation. 

This chapter finishes with an overview of motion capture software applications and 

file formats to create an understanding of how sensor hardware can be used in 

conjunction with a computer. As demonstrated by the comparative evaluation, inertial 

motion capture systems are regarded as new technologies and have little support from 

computer software applications. The software applications that do support motion 

capture are primarily designed for animation purposes and provide little to no 

functionality for integrating and researching hardware. Therefore, it is up to hardware 

developers to create software environments or plugins. For that reason, there is no 

standardised workflow for utilising inertial motion capture systems. Consequently, 

this thesis proposes a new workflow through a novel inertial motion capture 

framework. 

2.10.1  Problem Areas 

Aside from introducing the principles behind motion capture, the main purpose of this 

chapter has been to identify general research trends and problem areas that will 

benefit from further research and development. This section discusses three specific 

problems are that were influential in concluding this thesis’ problem statement (see 
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Section 1.2). This list of problems is extended with further research found throughout 

this thesis. 

Software Environments 

The development of motion capture systems requires a software environment. Motion 

capture data is unusable unless processed and applied to a kinematic model. 

Researchers are producing prototype software applications that are tailored to their 

experiments, which is a time-consuming process. Each system works in a slightly 

different manner and there are no standards for developing BSNs. A research-grade 

motion capture software environment, implementing kinematics and providing tools 

for system integration, could be used as a baseline for establishing an effective and 

more standardised workflow. As previously discussed, there are no existing software 

environments aimed specifically at motion capture. The only solutions that exist are 

animation software packages, which provide tools for visualisation, kinematic models 

and other features that are important to motion capture. However, motion capture is 

complex it is difficult to repurpose animation software for motion capture purposes 

(such as experimental research). 

Body Sensor Networks 

Inertial motion capture systems are primarily software-centric whereby data is 

gathered from the sensors at high frame rates and communicated to the computer 

frequently. This is because data cleaning and sensor fusion algorithms compress 

larger amounts of data to produce accurate animations. As a result, inertial motion 

capture suits are overcomplicated, fragile and cumbersome. By making suits more 

hardware-centric, it is possible to simplify hardware and produce more robust, 

versatile and modular systems. This concept is further discussed and demonstrated in 

Chapter 4 by the Motion Tracking Development System (MTDS) prototype. 

File Formats and Standards 

Motion data can be stored, transferred and accessed through several file formats. A 

study presented in this chapter revealed that motion capture file formats are mainly 

supported by animation software applications. Other application areas will render 

these formats incomplete and inefficient. As demonstrated in the next chapters, an 

extended version of BVH, or another format, could standardise motion capture file 

formats if extended to meet the requirements of a modern motion capture system. This 
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thesis also proposes that web technologies could be used to store and process motion 

data, thus making file formats redundant by replacing local data storage with online 

data storage. 

Dead Reckoning 

Inertial motion capture’s main downfall is dead reckoning, a popular research topic 

focused on foot placement estimation. Unlike optical motion tracking devices, inertial 

suits do not have the ability to measure the performer’s exact position within the 

environment. Several solutions, such as the lowest-point algorithm, produce a rough 

estimation of the user’s world-space location. That location is not sufficiently accurate 

because of calibration errors and anchor selection problems. The lowest-point 

algorithm could benefit from the further computations involving the physical 

properties of the motion performer. This problem led to the development of the 

lowest-anchor centre of mass algorithm (LACOMA) presented in Chapter 3. 
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CHAPTER THREE 

3 Inertial Motion Capture Software 

Environments 

3.1 Introduction 
The preceding chapter has introduced motion capture, analysed several technologies 

while focusing on inertial sensing and discussed many application areas. The 

preceding chapter has highlighted the importance of this research topic while 

revealing problem areas and limitations. The reason behind its recent advances is the 

affluent computer graphics industry that relies on time-efficient and cost-effective 

techniques for achieving realistic character animations. Inertial motion capture trails 

behind its optical rival and presents few standardisations in terms of usability 

workflows and file formats.  While there are numerous tools for animation editing, 

there are no bespoke software solutions that provide suitable experimentation 

environments for motion capture research. For this reason, researchers are wasting 

time repurposing animation frameworks for use in behavioural studies. 

This chapter presents the Skeletrix software environment, which is designed to 

encourage new projects in the field of inertial motion capture by providing users with 

a platform for developing body sensor networks (BSN). Its first purpose is to provide 

a suitable experimentation environment, accompanied by programming scaffolding 

and a driver development kit, for users interested in studying or engineering inertial 

measurement units (IMU) that enclose gyroscopes, accelerometers and 

magnetometers. Its second purpose is to support the research showcased in the 

following chapters. Notably, this software environment solution is not presented as a 

motion-editing tool for character animation and does not replicate the core 

functionality found in other software. 

The term software environment is often considered ambiguous and coincides with the 

term framework. This thesis refers to inertial motion capture, as a whole, as a 

framework. To operate, motion capture frameworks require the development of 

electronics, microcontroller firmware and software environments. The software 
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environment element denotes a multifaceted sequence of procedures for gathering, 

refining, visualising and storing motion data. As shown in Figure 3-1, each procedure 

envelops a wide range of computer science domains ranging from interactive 

visualisation techniques to data intercommunication protocols. 

 

 

 

 

 

 

 

Figure 3-1: A high-level representation of motion capture frameworks with emphasis on the 

software environment aspect and its technologies. 

This chapter presents the development lifecycle of the Skeletrix software environment 

with emphasis on three unique aspects: DDK, LACOMA and BVHE. 

The driver development kit (DDK) is developed to improve the communication 

mechanism between software applications and hardware through a modular approach 

that can be customized to suit the needs of any inertial motion capture system. The 

DDK is then used in the following chapter, Chapter 4, to integrate and develop new 

hardware within the framework. 

In response to the file format standardisation problem, this chapter introduces 

Biovision Hierarchy Extended (BVHE), a new file format combining hardware 

configuration properties with inertial data, thus improving the relationship between 

software and hardware. 

Dead reckoning remains a major limitation for inertial motion capture systems. This 

chapter proposes the lowest-anchor centre of mass algorithm (LACOMA) Pascu et al. 

[18], which utilizes the musculoskeletal centre of the human body to compute the 
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support foot during gait more accurately. The proposed solution is based on the 

principles of the lowest-point algorithm [127]. 

3.2 Framework Relevance 

The software environment presented in this chapter is a major component of the 

Skeletrix framework, which provides a preliminary understanding of inertial motion 

capture in terms of extracting data from hardware, processing motion, reconstructing 

kinematic motion and rendering 3D visualisations. The Skeletrix software 

environment facilitates the integration of existing BSNs that are available 

commercially and the development of new BSNs. For example, the software 

environment was used to develop the Motion Tracking Development System (MTDS) 

prototype, an upper body motion capture suit presented in Chapter 4. Its source code 

was also used as a starting point for the smartphone-driven BSN presented in Chapter 

5. Figure 3-2 highlights the software environment’s position within the framework as 

a software layer between inertial hardware and the Motion Cloud, which is presented 

in Chapter 6. 

 

Figure 3-2: The Skeletrix software environment provides an invaluable set of tools for 

extracting inertial data, constructing BSNs and is an important component of the 

Skeletrix framework. Source: Pascu et. [15] [16] 
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3.3 Preliminary Requirements Specification 
The development of the Skeletrix software environment combines a wide range of 

software development domains that require careful planning. 

3.3.1 System Requirements 

The first step, which precedes any design phase, involves identifying all the relevant 

software development paradigms. The methodologies adopted in its conception must 

adhere to industry-wide programming standards. 

Transparency: Most proprietary motion capture software environments are exclusive 

to pre-specified technologies. In most cases, functional particularities are hidden from 

the user in order to protect intellectual property. For this reason, most developers in 

this field have adopted the black box approach to software development that blinds 

users from viewing, understanding and thus customizing the system’s functionality. 

The Skeletrix software environment must be designed transparently to ease the user’s 

task of integrating new motion sensing devices. In this context, transparency refers to 

a superior level of access where the user can observe and learn the software 

environment’s inner workings through its interface. As shown in Figure 3-3, 

transparency follows the white box model whereby the software environment’s inner 

workings are made visible to the user. 

 

 

Figure 3-3: The white box model applied to the Skeletrix software environment. 

Object-Orientation: It is good practice to logically distribute code into components, 

each having a distinct purpose.  According to code recycle theory, each component 

must have a generalized purpose so that it may be reused beyond its initial 

implementation. According to encapsulation theory, each component must limit 

incoming communications to a set of publicly accessible functions or sockets. 

Encapsulation is important in achieving efficient object intercommunications. The 

Skeletrix software environment presented in this chapter must address these 

programming principles to succeed. 
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3.3.2 Functional Requirements 

Figure 3-4 introduces the Unified Modelling Language (UML) in the design flow to 

establish a list of functional requirements. UML’s use case diagrams are valuable in 

creating a visual understanding of a framework’s features while defining user 

interactions. The following diagram depicts a list of possible user-performed actions. 

Subsequently, each action is elaborated to conclude an implementation approach. 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-4: Use case diagram highlighting the user performed actions in the Skeletrix 

software environment.  
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Data Import: As shown in Figure 3.4, the user must be able to import motion data 

using either the Biovision Hierarchy (BVH) or BVHE file type. This requirement is 

important to simulating a system’s behaviour in the absence of hardware. Once the 

user has chosen the relevant file by using a file dialog, the Skeletrix software 

environment must convert its syntax into usable data structures. Because BVHE code 

contains BVH syntax, a shared lexical analyser can be developed to parse both file 

types. Finally, if the user choses to import a BVH file, its BVHE supplements should 

be generated automatically in accordance to a set of rules. Those rules are 

subsequently discussed in the implementation sections of this chapter. 

Data Export: Once a motion capture recording session has completed, the user may 

wish to store data in BVH or BVHE files. BVH must be supported for cross-

compatibility with existing software environments. BVHE is required in situations 

where the user choses to save the session’s system data for future use (e.g. recording 

the motion of an individual multiple times without having to reconfigure the software 

environment). In both scenarios, this requirement implies the development of a 

compiler that can generate valid BVH/BVHE syntax. In some scenarios, the user may 

choose to inspect the motion data by plotting graphs or generating mathematical 

statistics. In those circumstances, data of interested should be exportable in tabular 

formats that are suitable for scientific analysis. 

Driver Interconnectivity: The user must be able to choose a specific dynamic-link 

library (DLL) driver to communicate with motion capture hardware. DLLs are an 

efficient and highly accessible approach for encapsulating code that has one distinct 

purpose: extracting data from the hardware. The Skeletrix DDK will provide a set of 

instructions and a template allowing third party users to develop such drivers. 

Depending on the computer in use, a driver will always require the specification of a 

communication port. The communication port value should be detected automatically 

or inputted manually by the user. 

Calibration: The user must be able to calibrate a singular inertial sensor or a more 

complex BSN through the standard T-Pose technique. This technique works by asking 

the motion performer to remain motionless with both arms extended laterally away 

from the body while the software environment compensates the rotational difference 

between the person’s posture and the kinematic model. 
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Viewer System: In this context, viewers are categories of tools for examining specific 

software properties. The user must be able to inspect the software’s motion data in 

real-time. In a motion capture simulation platform, motion data is denoted by 

positional and rotational transformation sequences. A transformation can be examined 

by reading its numeric values in a comprehensible format. The software environment 

contains three components of interest to the user: the kinematic model, the system 

model and the animation model. A viewer must accompany each model and every 

viewer must be given an additional user interface allowing each data entry to be 

analysed and rendered independently. This requirement is in accordance with the 

principle of transparency introduced in the previous section. 

3.3.3 Interface Requirements 

The interface development process is crucial in achieving a rigid relationship between 

the user and the software environment. The features previously mentioned need to be 

easily accessible and more importantly, intuitive. The Skeletrix software environment 

must feature an interface that contains both 3D rendering and other 2D elements. 

HCI Principles: The Skeletrix software environment must adhere to all Human 

Computer Interaction (HCI) conventions whereby each interface component is 

recognisable, easily accessible and annotated appropriately. The overall interface 

must be simplified to facilitate a time-efficient user experience that requires little 

familiarization. The steps taken by a user in performing a task must be kept to a 

minimum by optimizing the number of interface elements. The interface must provide 

a level of consistency whereby all interface objects are designed and built in 

accordance to a set of predetermined rules. 

3D Motion Reconstruction: Due to the three-dimensional nature of character 

animation, the software environment’s interface must implement a 3D engine and a 

renderer to display kinematic models. The visualization of a kinematic model implies 

drawing skeletal hierarchies of bones where each bone is depicted by a 3D topology. 

Viewport Interaction: Defining this task’s requirements can be challenging as 

computers are natively designed to work with two-dimensional input devices, such as 

mice and keyboards. The use of 2D input devices in 3D space requires dimensional 

simplification. Each element constituting a 3D interaction can be broken down into its 
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degrees of freedom (DOF). For example, the rotation of a camera can be simplified to 

singular degrees of freedom corresponding to yaw, pitch and roll. Chapter 2 

conducted an overview of existing software environments that are relevant to the field 

of motion capture. An interaction technique, which requires little familiarization from 

potential users, should be chosen by studying how interactive 3D is achieved 

throughout industry-acclaimed products (e.g. those previously introduced in Section 

2.9). 

Multimodal Visualizations: Visualizing a skeletal rig from multiple angles is helpful 

in creating a more thorough understanding of individual bone behaviours. A 

predetermined set of camera configurations will allow users to toggle between view 

angles (i.e. lateral, frontal, perspective, orthographic, etc.) without having to navigate 

the viewport manually. Alternatively, several viewports could be rendered 

concurrently to visualise the skeletal rig from multiple angles simultaneously. 

Researchers focusing on person dead reckoning may be interested in observing the 

rig’s interaction, in terms of horizontal displacement, with its surroundings. As a 

result, the entire interface should be developed to increase the size of the window so 

that it fits the screen dimensions. 

  



	
  

	
  

63 

3.4 Architecture Overview 
The Skeletrix software environment architecture follows the principles of object-

oriented programming. The code is distributed throughout C++ classes while relying 

on the QT [141] for visuals and interfaces. QT was chosen because of it provides a 

great set of tools for developing user interfaces that integrate OpenGL. Figure 3-5 

denotes the major software elements. The architecture can be divided between a back-

end layer and an interface layer. The back-end layer consists of data models (red), 

mathematics libraries (green) and data I/O (blue). Concurrency and software timers 

are also a key component in ensuring that the software environment functions 

efficiently. The interface layer encompasses: the main GUI (red), the viewers (green) 

and the 3D renderer (blue). All these elements are discussed throughout this chapter in 

more detail. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Skeletrix software environment architecture denoting the components that form 

the back-end and interface layers. 
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3.5 Data Models 
As previously discussed, the software environment holds data at within three different 

models: the animation model, the kinematic model and the system model. The 

animation model stores rotational data, the kinematic model stores skeletal data and 

the system model stores system-specific configuration data. 

3.5.1 Animation Model 

The animation model is an integral component of the software environment, situated 

between the kinematic model and the system model. In accordance to the code 

reuse/recycle theory, this component is designed as an interchangeable module with 

potential uses outside the scope of the software environment (e.g. in the mobile 

application presented in Chapter 5). Its first purpose is to store all incoming hardware-

related data during recording sessions.  Its second purpose is to feed the kinematic 

model (and subsequently the 3D engine) the rotational transformations necessary 

during animation playback. 

In the playback scenario where the user is viewing pre-recorded data, the animation 

model closes all incoming communication channels. While constantly listening for 

user action, it provides all the functionality for playing, pausing and stopping the 

animation. Once the user triggers animation playback by pressing the play button, the 

animation manager begins to iterate through its data structures, constructs a packet for 

each frame of motion and sends that packet to the kinematic model and subsequently 

to the renderer. 

In the recording scenario, the animation manager opens all incoming communication 

channels and listens for system model messages. To visualize the motion as it is 

performed, the animation manager must bypass the outgoing playback signal and 

perform two tasks concurrently by employing two threads. The first task is to gather 

and store all incoming rotations while ensuring that no data is lost. The second task is 

to echo all incoming rotations straight to the kinematics model. Without concurrency, 

the functionality of real time motion visualization would be unachievable. 

As previously mentioned, the majority of inertial motion data consists of positional 

vectors and rotations. In the Skeletrix software environment, rotations are stored as 

quaternion data structures, which are significantly faster to compute than the Euler 
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equivalent. There are numerous methodologies for storing this type of data (e.g. 

simple floating-point precision numbers arrays). To optimize intercommunications, 

the animation model’s design takes into consideration the external needs of both 

system and kinematics models. Unique identifiers are used inform the software 

environment of each reading’s timestamp (the animation frame value) and destination 

(the skeletal object to which it is applied). 

Motion data is organized as a collection of tape objects. Tape objects are linear arrays 

enclosing the complete information required to reconstruct one frame of motion. 

Specifically, the first tape delineates the animation’s template by declaring one spatial 

positioning channel and multiple bone identifiers. In accordance to this template, each 

frame of motion will begin with a positional vector (used to displace the skeletal rig’s 

root) followed by a list of quaternion rotations (one for each bone). As a result, the 

animation model’s outgoing package must contain both the template tape and a frame 

tape. With that information, the kinematic model will proceed to assign 

transformations to the skeleton. Figure 3-6 illustrates this data structure in more detail. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Animation model data structure enclosing one template tape and a list of motion 

tapes. 
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3.5.2 Kinematic Model 

The kinematic component of the Skeletrix software environment is used to both 

visualize and process the incoming motion data to construct a skeletal rig. It is formed 

of a universal skeleton object that encloses a list of bones. To reconstruct a frame of 

motion, the skeleton retrieves data from the animation component and applies it 

recursively to that list of bones. The contained hierarchy cannot be traversed linearly 

because of the nature of inverse kinematics where transformations must be applied in 

a very specific order. In accordance to the specification of BVHE, the skeleton needs 

to support several types of data depending on the system in use. The incoming stream 

of angular readings, from the system object, may enclose local or world-space 

rotations depending on the system in use. In either case, the kinematic model will 

convert those rotations into local-space rotations. To support several types of 

information, each bone object is defined by four quaternions: local, world, correction 

and calibrated. The local quaternion represents a local-space rotation, as required for 

the animation model, BVH or BVHE files. The world quaternion represents a world-

space rotation, as required by the 3D engine. The correction and calibration 

quaternions store angular compensations. 

3.5.3 System Model 

The system model represents an intermediate stage of computations between the 

hardware and the kinematic model. The system and kinematic models share the same 

design with one fundamental difference: there is no object hierarchy. This is because 

daisy chained sensors do not require an object hierarchy and all skeletal information, 

which interconnects bone objects, is stored in the kinematic model. 

The system model contains sensor objects (virtual IMU objects), which are stored in a 

linear array. Those objects create a virtual representation of the BSN connected to the 

software environment. Therefore, the system model stores incoming rotations only 

temporarily before the data is applied to the kinematic model. 

Each sensor contains four rotational channels: gyroscope, accelerometer, 

magnetometer and fused. Provided that the system does not compute firmware-side 

sensor fusion, the first three channels are utilized for storing incoming data 

corresponding to gyroscopes, accelerometers and magnetometers readings. The fused 

channel will hold the processed motion if sensor fusion algorithms or filters are used. 
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One additional channel could be included to store positions for optical systems. Even 

though the software environment is not fundamentally designed to function with 

optical data, optical system could be integrated in the future. 

3.6 Interface Layer 
This section illustrates visually how the Skeletrix software environment operates and 

outlines the user experience. It discusses the four principal interface layer objects: 

core GUI, KinematicsViewer, SystemViewer and AnimationViewer. As previously 

mentioned, the design of the interface is crucial in achieving an intuitive user 

experience. The Skeletrix interface layer, designed and developed using QT [141], 

presents a combination of 2D and 3D elements for visualizing and interacting with 

motion capture data. Much attention was given to streamlining the user experience by 

simplifying the number of visual elements while maintaining the technical 

functionality specified in the requirements analysis. 

The communication between the software environment’s interface layer and back-end 

architecture is omnidirectional and achieved through signals and slots [142]. Each 

interface element transmits a signal in response to a user-performed action. QT 

provides a list of events that can be used to trigger signals (i.e. mouse click, mouse 

drag, mouse hover, keyboard input, etc.). In this context, a slot is a special type of 

function that is accessible by the interface.  

Although irrelevant to the field of research, the software environment’s aesthetics are 

important in the computer graphics industry. Competing developers are designing 

interfaces that deliver both functionality and pleasant visuals. QT relies on cascading 

style sheets (CSS) to format the look and feel of each interface element.  Therefore, 

the development of the software interface is similar to that of a website, making the 

interface highly customizable. To restyle the Skeletrix software environment, users 

are given access to an external CSS file enclosing the default template code. 

The interface also aims to provide users with a detailed understanding of the software 

environment’s inner workings. All back-end transformation sequences, used to 

convert raw motion into usable data, are on display. At the kinematic level, the 

interface displays the stages of calibration (previously discussed in Section 2.5.2) 

through which angular compensations, representing the rotational difference between 
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the kinematic rig and the motion performer, are calculated. At the system level, the 

interface displays the data obtained from the hardware. Once all the data is processed, 

the final result is displayed in the AnimationViewer interface. 

3.6.1 Core GUI 

The core GUI shown in Figure 3-7, is the largest interface layer component. It 

comprises of four logical subdivisions: a multimodal canvas, a set of drop-down 

menus, an information toolbar and a slider for animation playback. To begin with, the 

software’s back-end will be launching a thread to instantiate and render the viewport. 

The viewport camera can be repositioned and rotated manually or by selecting a pre-

set. The pre-sets allow users to view the animation from the top, left, front and 

perspective. Situated in the header, the dropdown menus provide the customary 

functionality (i.e. importing and exporting motion files). Situated vertically on the 

right hand side, the information toolbar contains three panes that exhibit a simplified 

overview of the animation data, kinematic skeleton and hardware configuration. Each 

pane can launch a viewer object for a more elaborate visualization of the information. 

Situated in the footer, the slider displays the animation timestamp along with the 

conventional controls for playing, pausing, stopping and recording the animation. 

 

Figure 3-7: Core GUI illustrating the landing of a pre-recorded jump animation. 
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3.6.2 KinematicsViewer 

As shown in Figure 3-8, the first of the three viewers, the KinematicsViewer, allows 

users to view all the vector positions, quaternion rotations (which are converted into 

Euler rotations by the interface for readability reasons) and kinematic model 

information. Once a motion file is imported, Skeletrix will instantiate this interface 

and populate it with objects. Users can select individual skeletal objects for 

inspection. As a bone is selected, data is retrieved from the back-end and displayed 

within four panes: general, rotations, vectors and hierarchy. The general pane displays 

the calculated lengths and weights of bones as floating-point numeric values. Weight 

models are introduced in the next sections in the context of person dead reckoning and 

the LACOMA algorithm. The rotations pane shows the local space, world space, 

corrected and calibrated transformations converted from quaternions to Euler for 

readability reasons. The vectors pane displays the origin, centre of mass and lists 

several offsets as bones may have multiple end points. The hierarchy pane encloses 

the title of the parent bone and lists the children. By inspecting these panes, the user 

will gain a better understanding of how the kinematic model is computed and identify 

any problem areas.  

 

Figure 3-8: KinematicsViewer illustrating the information of a hip bone. 
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3.6.3 SystemViewer 

As shown in Figure 3-9, the second of the three viewers, the SystemViewer, allows 

users to analyse the incoming stream of data as obtained from the hardware. In many 

respects, this interface resembles the KinematicsViewer. The SystemViewer has two 

distinct sections for configuring hardware and for inspecting individual sensors. To 

begin with, the hardware section displays the overall system data as found in BVHE 

files. That data is used to specify the driver, communication ports and other general 

properties. Several buttons allow the user to modify the driver configuration and 

perform system actions such as T-Pose calibration. Four additional actions are 

provided for systems that require specific handshaking instructions (e.g. the 

Animazoo IGS suits require Northing). Afterwards, the user may choose to inspect 

individual sensors. Sensor attributes are distributed throughout three panes that show 

general driver information, driver actions and IMU information. Once an IMU is 

selected, the rotations pane will display incoming sensor readings from gyroscopes, 

accelerometers and magnetometers. If sensor fusion is implemented, the fourth 

channel stores the fused result (i.e. the combined and filtered motion of the gyroscope, 

accelerometer and magnetometer). 

 

Figure 3-9: SystemViewer illustrating the information of a hip IMU. 
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3.6.4 AnimationViewer 

As shown in Figure 3-10, the last of the three viewers, the AnimationViewer, gives 

users access to the finalized motion. The resulting data is appropriate for behavioural 

experimentations or animating virtual characters. Unlike the previous two viewers, 

this interface is static and is generated after a recording session has terminated or 

when a pre-recorded animation is loaded. Motion capture files usually display 

readings as undecipherable blocks of numbers. This interface displays data in a 

coherent table where each column corresponds to a kinematic bone’s rotation channel 

and each row corresponds to a frame of motion. The first column will always contain 

rig displacement values. The animation data can be exported by employing the widely 

supported yet simple comma-separated values (CSV) file format. Users have the 

option of exporting precise blocks of motion by specifying the axis of rotation, the 

kinematic channels and the frame intervals. This feature allows researchers to focus 

their attention only on the significant data while ignoring unneeded values.  

 

Figure 3-10: AnimationViewer showing animation data in a tabular format.  
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3.6.5 Rendering 3D Skeletal Topologies 

Data is visualised in 3D using a viewport system. As shown in Figure 3-8, the 

viewport contains a drawing canvas that uses OpenGL to render the kinematic model. 

The skeleton geometry is computed locally, before any information is sent through the 

OpenGL pipeline. 

The kinematic hierarchy is traversed and each skeleton bone object is rendered in 

sequence. Each bone is rendered as a result of four computations, all of which are 

achieved at the software level: 

• Geometry Instantiation: The default bone topology is drawn facing upwards 

with a length and rotation of zero. Six vertices and 8 polygons form the bone’s 

geometry. 

• Scaling: Each bone is adjusted vertically so that its length matches the 

corresponding body part of the motion performer. The vertical axis coordinate 

of the upper most vertex is set to equal the bone’s length. 

• Rotation: The bone’s quaternion rotation is used to rotate the six vertices to 

assume the desired orientation. 

• Translation: The hierarchy of the kinematic model is traversed in order to 

compute the global origin of each bone. Based on those origins, the topologies 

are translated to interlink the bones and form a skeleton. 

Performing the geometry instantiation, scaling, rotating and translating within the 

software is computationally expensive. An alternative approach is to compute the 

graphics within the OpenGL pipeline using matrices, a process which is further 

discussed in Chapter 5 in the context of mobile computing where the computational 

resources of the device are very limited. 

The graphics are computed within software to allow the user to observe and 

potentially modify each stage of computation. As previously discussed the aim of this 

software environment is to provide a level of transparency to the researchers. 
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3.7 Concurrency and Software Timers 
To achieve real-time motion capture streaming, concurrency and software timers 

become very important. Concurrency and software timers have two very important 

roles. First, due to the multicore architecture of modern CPUs, concurrency helps the 

software environment perform computations more efficiently by distributing the 

workload.  

During recording sessions, the software environment fires two main concurrent 

threads, namely an interface thread and a back-end thread. Both threads employ 

timers to iterate through the code at different speeds. The interface thread focuses on 

GUI updates such as rendering or listening for user inputs. The back-end thread is 

aimed at computing motion as quickly as possible. Consequently, it is given priority 

over the interface thread to ensure that no data is lost or misinterpreted. This approach 

was chosen to prevent performance problems such as the interface slowing down the 

back-end processes. 

The interface thread cannot compute numerous computationally expensive interface 

updates and render 3D visualisations at the same time. Consequently, another thread 

is assigned to render the viewport. Figure 3-11, illustrates the three main threads. 

 

 

 

 

 

Figure 3-11: Skeletrix software environment multithreading diagram. 
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which is a time consuming process. The fundamental concept behind motion capture 

reanimation is to combine the configuration files within one singular file format, 

which is referred throughout this thesis as BVHE. The advantage of BVHE over any 

existing format is practicality (simplifying the motion capture workflow) as users only 

have to load one file into the software environment. Given that kinematic hierarchy is 

driven by a system, which contains a system configuration, it is both logical and 

necessary to form a relationship between the two by establishing one singular and 

more complete file format. 

In practice, the motion capture reanimation concept will becomes apparent shortly 

after being prompted by the user interface. Unlike other software environments that 

display pre-defined skeletal rigs upon start-up, the Skeletrix software environment 

stores no skeletal information natively. The user is asked to import a BVHE that 

automatically generates kinematic models, weight models, system models and 

software configurations. BVHE is the novel file type containing all these 

configuration attributes. This approach has a major impact on the software’s usability 

and simplifies the number of steps taken by a user when commencing a recording 

session. Figure 3-12 depicts the contrast between the Skeletrix software environment 

and other software environments. 

 

 

 

Figure 3-12: An overview of motion capture software environments highlighting the concept 

of motion capture reanimation and usability simplification through BVHE. 
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BVHE replaces the need for multiple configuration files with one singular input. Once 

a recording session is completed, the resulting BVHE file will store all the 

configuration information of that session. Therefore, it can be used at a later date as 

an input to configure the system for reuse.  

3.9 Biovision Hierarchy Extended 
The standardization of file formats is a frequent requirement in software development 

as it promotes interoperability and information sharing. The lack of a standard implies 

an industry that has too many incomplete solutions competing for software support. 

For this reason, introducing an entirely new format, in an otherwise saturated pool of 

solutions, can be counterintuitive as developers are not eager to learn or implement 

new file systems. A possible approach is to take an existing format, that developers 

are already familiar with, and extend it to suit the needs of the industry. 

This section introduces Biovision Hierarchy Extended (BVHE), a novel file type 

designed to simplify the user/system interaction during recording sessions. BVHE is 

an extended version of the Biovision Hierarchy (BVH) format. The new syntax allows 

the file type to store system specific data such as computer-hardware connection 

parameters and the sensor configuration parameters. It removes the need for actor file 

systems by repurposing BVH’s skeletal definitions to reflect the user’s bodily 

proportions. BVHE is an integral requirement and component for the Skeletrix 

software environment architecture. 

3.9.1 Biovision Hierarchy Format 

Given that BVHE encapsulates standard BVH code, it is appropriate to review the 

original format. BVH first establishes a skeletal rig consisting of multiple bone 

definitions and one kinematic hierarchy. A bone definition is characterized by three 

properties: length, orientation and channels. The length and orientation can be 

expressed as one positional offset where the vector distance is the length and the 

vector direction is the orientation. Notably, this approach is not good at defining a 

skeletal segment’s roll. The roll is often irrelevant if the rig is rendered as three-

dimensional lines or cylinders. Unlike other motion capture formats, BVH allows 

bone definitions to contain multiple offsets whereby one skeletal segment can have 

one origin and multiple endings. The channels specify three empty variables through 
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which a transformation sequence of angles can be assigned the skeletal segment in 

question. Next, the hierarchy element comes into play by constructing the skeleton. 

Indenting bone definition within brackets, whereby the indent value and bracket count 

symbolize the hierarchical depth, is an effective method for representing the hierarchy 

links. The visual reconstruction phase uses that information to reposition each bone so 

that its origin assumes the position of its parent’s end point. Finally, the motion data is 

placed at the end of the file as a list of floating-point values in accordance to the 

channel template. Most motion capture file formats specify the number of animation 

frames to simplify parsing. 

3.9.2 Biovision Hierarchy Extensions 

The new BVHE extensions are inserted in the middle of a standard BVH file, between 

the kinematic hierarchy specification and the motion data. To begin with, the new 

semantics help the software environment identify the appropriate driver for 

interfacing with a particular device. Then, both software and hardware are readied for 

intercommunication by defining the sensors, data channels and data properties. 

Delineating all system properties within an editable file allows users to customize the 

way in which they use motion capture devices. The BVHE extensions are denoted by 

the following attributes.  

• DLL: Once a software environment parses the motion file, the dynamic-link 

library (DLL) attribute specifies which driver to be loaded by default. This 

property should be editable through the interface. The user may be 

experimenting with various motion capture devices simultaneously. Stating the 

driver keeps track of what system should be used with this particular 

configuration. 

• Port: Operating systems use ports to communicate with peripherals through 

serial, USB or Bluetooth. Once the connection is acknowledged, each device 

is assigned a port value so that it may be accessed by software applications. 

Ports can vary depending on the machine in use. This attribute specifies a 

default port. 

• Versioning: If the user is developing drivers, this attribute is important in 

keeping track of development releases. 
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• Type: Although the Skeletrix software environment is primarily designed to 

support inertial systems; other technologies could also be integrated. This 

attribute informs the software environment if the system is inertial, 

exoskeleton or optical. Skeletrix anticipates rotational data from 

inertial/exoskeleton hardware and positions from optical devices. The default 

type is inertial. 

• Space: All rotations and positions can be expressed in world or local space. 

Devices containing multiple sensors may calculate inverse kinematics at a 

firmware or driver level. The software environment needs to know whether to 

calculate the kinematics or directly apply motion data to the skeleton. The 

default space is world. 

• Sensor: A BVHE file may contain multiple sensor definitions. The user may 

be experimenting with a single IMU or a more complex BSN. Sensor 

definitions are similar to kinematic hierarchies but linear. Each sensor controls 

the transformations of one or, through the kinematic constraints of the rig, 

several bone entities. Each sensor contains an optional rotational offset and a 

scale value. Although these two attributes are not implemented in the software 

environment, they are desirable for user profiling to calibrate the rig more 

accurately to match the motion performer’s body proportions. 

3.9.3 Biovision Hierarchy Extended Syntax 

The following syntax, shown in Figure 3-13, constitutes a basic BVHE file by first 

defining a BVH skeletal hierarchy encompassing three bones: chest, neck and head. 

Three channels are assigned for person dead reckoning while the following nine 

define the roll/yaw/pitch (in that specific order) of each bone. Therefore, each 

animation frame will require twelve numeric entries consisting of positional and 

angular readings. The BVHE extensions prepare the software environment for 

intercommunications with an inertial system encompassing a two-sensor 

configuration. That device utilizes the standard dynamic-link library to receive 

information from communication port three. The IMU naming scheme suggests 

hardware containing IMU3000 gyroscopes and MMA8450 accelerometers, matching 

the hardware presented in Chapter 4. This particular inertial device computes no 
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inverse kinematics and outputs world space rotations. The software environment will 

receive three numeric values from each sensor corresponding to yaw, pitch and roll. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-13: BVHE syntax denoting a three-bone hierarchy connected to two sensors. 

  

HIERARCHY 
 
ROOT Chest { 
  OFFSET 0 0 0 
  CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation 
  JOINT Neck { 
    OFFSET 0 20.6881 -0.73152 
    CHANNELS 3 Zrotation Xrotation Yrotation 
    JOINT Head { 
      OFFSET 0 11.7043 -0.48768 
      CHANNELS 3 Zrotation Xrotation Yrotation 
      END SITE { 
        OFFSET 1 0 0 
      } 
    } 
  } 
} 
 
SYSTEM 
 
DLL default.DLL 
PORT 3 
VERSIONING v1.0 
TYPE inertial 
SPACE world 
 
SENSOR imu3000_mma8450_1 { 
  BONE Chest 
  OFFSET 11 10 0 
  SCALE 110 
} 
 
SENSOR imu3000_mma8450_2 { 
  BONE Head 
  OFFSET 0 0 0 
  SCALE 100 
} 
 
MOTION 
 
FRAMES 3 
FRAME TIME 0.00833333 
52.122 85.152 1.6616 0.4511 -0.0026 0.0129 0.0 0.0 0.0 0.1245 -0.004 0.0215 
51.529 84.612 2.2768 0.9193 -4.1156 -3.465 0.0 0.0 0.0 0.1900 0.1221 -0.171 
51.528 84.551 2.1411 0.9276 -4.1653 -3.288 0.0 0.0 0.0 0.2635 0.2667 -0.376 
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3.9.4 File Parsing 

Because BVH and the new file format BVHE (published in Pascu et al. [17]) are 

somewhat similar, a shared parser was developed to support both file types. As 

previously mentioned, supporting BVH was important for cross-compatibility 

reasons. The Skeletrix software environment parser treats all files in the same fashion 

until BVHE syntax is identified. Figure 3-14 is an activity diagram that illustrates the 

entire parsing process whereby BVH/BVHE data is inputted to produce a kinematic 

model and an animation model that stores motion data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14: BVH/BVHE file parsing activity diagram.  
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3.10 Driver Development Kit 
Most motion editing packages provide methodologies for developing small plugins 

that suit the specific needs of users. Generally, a plugin is a small software application 

that embeds a new tool or feature within the software environment’s interface. Unlike 

motion editing packages, this software environment’s primary focus is to acquire and 

process motion data from hardware. Instead of plugins, it provides the capability to 

develop and import device drives. In this context, a driver is a small software 

application, enclosed within dynamic-link library (DLL), used to interface with 

external hardware and retrieve motion readings safely. Example source code of a 

driver can be seen in Appendix B. 

The driver development kit (DDK) provides researches with a bridging architecture 

for connecting to inertial motion devices. The underlining purpose is to motivate 

potential users to develop sensor devices by providing the tools to connect them to a 

computer. The multifaceted sequences of operations for gathering, refining and 

outputting usable motion capture data are provided as part of Skeletrix. Within the 

scope of this thesis, this DDK allows for experimentations that employ a wide range 

of motion capture devices such as the Shimmer R2, Razor Attitude Heading 

Reference System (AHRS) and the Motion Tracking Development System (MTDS) 

suit presented in the next chapter, Chapter 4. 

Enclosing drivers in DLLs can simplify the number of user-performed actions in 

connecting to a system. A major benefit is that DLLs do not require operating system 

installations. Notably, a significant limitation is that DLLs can only operate on 

Windows-based machines. This approach provides a level of modularity where one 

computer could be used to interface several dissimilar devices (or one device in 

different ways) by slotting in and out driver modules. 

Before enabling data intercommunications, the first step of the bridging procedure 

involves driver validation through which a connection is established between the 

software environment and driver. The system manager interrogates the driver and 

validates its attributes to ensure a trouble-free recording session. The sequence 

diagram depicted in Figure 3-15 illustrates the list of questions (or software 

interrogations) addressed to the driver. 
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Figure 3-15: Driver handshake sequence diagram. 
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to be validated. The four actions may be used by the more complex full body suits 

that require intermediate steps for hardware initialization. For example, the Animazoo 

IGS suits require additional handshaking and Northing for the magnetometers to be 

reset and tuned to face north. Northing could be assigned to one of the four actions 

and the corresponding code could be included in the driver. 

Having established a valid connection, the next step is data streaming whereby data is 

extracted from hardware and visualised in real-time. Each driver must have a buffer 

that fills up with angular readings. Motion capture recording sessions may require fast 

frequencies that put a lot of pressure on the connection between the computer and 

hardware. While a buffer will induce latency, a buffer is needed to relax that 

connection and ensure that no data is lost. The following sequence diagram, shown in 

Figure 3-16, illustrates the data acquisition process. The transmission rate, at which 

data buffers are received from the driver, is generally 30f/s. This speed is pre-

configured and required by the 3D engine to render smooth visualisations in real-time. 

For performance reasons, the 3D engine will only render the visualisation at this 

speed even if the transmission rate is faster. 

 

 

 

 

 

 

 

 

 

 

Figure 3-16: Driver data acquisition sequence diagram. 
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3.11 Versioning 
The development of the software environment was achieved in incremental stages, in 

parallel with the development of the MTDS hardware presented in Chapter 4. As 

shown in Table 3-1, this section discusses the five main release versions. 

The first version was centred on creating a kinematic model and visualising raw 

motion data in 3D. It featured the core libraries for vector and quaternion 

mathematics, the interface layer (that can render OpenGL graphics) and a file parser 

for BVH data. The next three versions expanded on: the concept of having viewers 

(AnimationViewer, KinematicsViewer and SystemViewer), the DDK, BVHE support 

and hardware integration. The development of the final version added Internet 

connectivity to interact with the Motion Cloud. 

Table 3-1: Skeletrix software environment versioning. 

  

Functionality 1.0 – 1.5 2.0 – 2.8 3.0 – 3.10 4.0 – 4.10 5.0 – 5.17 

Core Functionality      
Vector Library YES YES YES YES YES 
Quaternion Library YES YES YES YES YES 
OpenGL Renderer YES YES YES YES YES 
QT Interface Layer YES YES YES YES YES 
Multimodal Viewports N/A YES YES YES YES 
Data I/O (BVH) YES YES YES YES YES 
Data I/O (BVHE) N/A N/A YES YES YES 
Local Storage of Motion N/A YES YES YES YES 
Models      
Kinematic Model YES YES YES YES YES 
Animation Model N/A YES YES YES YES 
System Model N/A N/A YES YES YES 
Weight Model N/A N/A YES YES YES 
Viewers      
KinematicsViewer N/A YES YES YES YES 
AnimationViewer N/A N/A YES YES YES 
SystemViewer N/A N/A N/A YES YES 
MotionCloudViewer N/A N/A N/A N/A YES 
Driver Development      
MTDS YES YES YES YES YES 
Shimmer R2 N/A N/A YES YES YES 
Razor AHRS N/A N/A N/A YES YES 
Other 
DDK N/A N/A YES YES YES 
Web Connectivity N/A N/A N/A N/A YES 
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3.12 Lowest-Anchor Centre of Mass Algorithm 
Dead reckoning is the process of computing horizontal displacement over longer 

periods of time for a kinematic model. When taking a step, the body is propelled 

forward by a distance equal to the stride length. After a sequence of steps, several 

stride lengths are summed to determine the person’s position in space. Inertial motion 

capture systems have no inherent sensors to measure that displacement. While 

additional ultrasound or optical sensors can be used to aid the inertial system in 

computing dead reckoning, this solution overcomplicates the process. The simplest 

and possibly most problematic methodology, in terms of accuracy, for achieving this 

task is the lowest-point algorithm [127]. The lowest-point algorithm is an effective yet 

simple method of applying planar collision detection and inverse kinematics 

algorithms to a skeletal rig to compute dead reckoning. 

As previously published in Pascu et al. [18], the lowest-anchor centre of mass 

algorithm (LACOMA) is a more complex solution, using the body’s musculoskeletal 

centre of mass, aimed at computing the anchor of a kinematic model more accurately. 

The anchor of a skeletal rig is the support point on which the majority of the body’s 

weight is balanced. Knowing which kinematic segment is impacting the floor is 

important. For example, if a person is dragging their feet, the lowest-point algorithm 

will prevent the skeleton from moving. This problem can be found in a variety of 

gestures. In essence, the LACOMA study is aimed at finding whether the 

musculoskeletal axis of balance is beneficial in computing better anchors during gait. 

3.12.1  Understanding the Lowest-Point Algorithm 

But what is the lowest-point algorithm? As the title would imply, the lowest point (or 

kinematic segment) of the kinematic model is likely to be the supporting point of the 

body. This solution would be ideal in a scenario where the motion is recorded on a 

flat surface and the motion capture system is perfectly accurate. While gyroscopes 

drift, accelerometers and magnetometers produce noise. These inaccuracies cause the 

kinematic model to misrepresent the body. Additionally, it is likely that the kinematic 

model is not matching the motion performer in terms of proportions. Representing the 

otherwise complicated anatomy of the human body, as a simplistic list of 

approximately 40 bones, will produce even more inaccuracies. The body’s 

asymmetries are not often replicated in the kinematic model. Solutions for solving this 
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problem at the software level are often protected, or even patented, by the system 

manufacturers. The most common solution is the lowest-point algorithm because it is 

computationally inexpensive and straightforward to implement. 

During one ambulatory step, the anchor swaps between feet as the body switches from 

one foot to the other. Figure 3-17 illustrates how that swap occurs in three steps (this 

process has previously been discussed in Section 2.7.4 of the literature survey). The 

anchor swaps from the blue leg to the green leg. 

 

Figure 3-17: Anchor swapping during one ambulatory step. Source: Pascu et al. [18] 

Motion capture in a recording studio usually involves characters performing gestures 

on a flat surface. Although the lowest-point algorithm usually serves the purpose of 

computing kinematic displacement, it proves problematic in scenarios where the 

motion performers are not taking clear steps. For example, if a person is dragging 

their feet or shifting balance between feet while stationary, the algorithm will not 

work because the system is likely to miscalculate the correct foot. These errors are 

often corrected during data cleaning, a time consuming process where an animator 

corrects the recorded motion manually. Figure 3-18 shows how the software-level 

confusion occurs because the anchor selection becomes ambiguous. 

 

Figure 3-18: Confusion during the anchor selection when the motion performer is dragging 

their feet. Source: Pascu et al. [18] 
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3.12.2  Determining a Weight Model 

The first stage of LACOMA is methodology for adding physical properties to the 

kinematic model through a weight model. The weight model will later be used to 

compute the body’s musculoskeletal axis of balance. A weight model consists of 

positional offsets and weight values that are supplemented to a kinematic model, thus 

forming a primitive physics engine. Figure 3-19 shows an example of a weight model 

in the software environment, as used throughout the experiment. On the left (1), the 

kinematic model is rendered with bone geometry. In the middle (2), the kinematic 

joints are rendered alongside centres of weight. On the right (3), the weight model is 

render by itself. 

 

Figure 3-19: Weight model rendered using the software environment. Source: [18] 

A weight model is constructed by adding a balance ratio and a weight value to each 

bone in the kinematic skeleton. The balance ratio determines a skeletal segment’s the 

centre of weight using the tip and base. For example, a skeletal segment having a 

length of 10 units and balance ratio of 45% will have a centre of balance offset of 4.5 

units resulting in a base-heavy bone such as the bicep (which is heavier at the 

shoulder joint than it is at the elbow joint). A weight ratio greater than 50% will 

describe a tip-heavy bone. Each skeletal segment must be given a scalar coefficient 

that is less than 1 so that the combined weight of the model equals to 1. 
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The body generally becomes thinner and lighter towards its extremities. For example, 

the torso is the heaviest section, followed by the arms and shins, forearms and calves, 

hands and feet. In accordance to the kinematic model shown above, most of the 

skeletal segments will be base-heavy. As shown in table 3-2, the weight distribution 

throughout the body was determined by looking at studies focused on human anatomy 

such as [143]. Complex joints (e.g. shoulders, hips) were given an even distribution. 

Table 3-2: Weight model balance ratios and weight values. Source: [18] 

 

 

 

 

 

 

 

 

 

 

 

3.12.3  Computing the Anchor 

This section discusses the computation of the skeleton’s anchor point using the weight 

model and an axis of balance. Figure 3-20 illustrates the pseudo code for the 

algorithm, which works in three different stages. For the purpose of this algorithm, 

let’s establish that the vertical axis is Y. 

The first stage is to compute anchor candidates. Unlike the lowest-point algorithm 

that considers only one anchor, LACOMA first defines a set of multiple anchor 

candidates. A threshold plane is placed within the proximity of the ground, 

approximately at the height of the tibia. Any bone intersecting that plane will be 

Segment Weight Tip Distance Base Distance 

Upper Body 
Abdomen 0.09007 42.4% 57.6% 
Chest 0.11778 46% 54% 
Neck 0.03023 51% 49% 
Head 0.06928 50% 50% 
Left Shoulder 0.02887 50% 50% 
Right Shoulder 0.02887 50% 50% 
Left Arm 0.04850 50.7% 49.3% 
Right Arm 0.04850 50.7% 49.3% 
Left Forearm 0.03811 56.6% 43.4% 
Right Forearm 0.03811 56.6% 43.4% 
Left Hand 0.03579 54.2% 45.8% 
Right Hand 0.03579 54.2% 45.8% 
Lower Body 
Left Hip 0.02887 50% 50% 
Right Hip 0.02887 50% 50% 
Left Thigh 0.07737 53.5% 46.5% 
Right Thigh 0.07737 53.5% 46.5% 
Left Shin 0.06120 67.4% 32.6% 
Right Shin 0.06120 67.4% 32.6% 
Left Foot 0.02811 47.6% 52.4% 
Right Foot 0.02811 47.6% 52.4% 
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considered an anchor candidate. The intersection is calculated by simply verifying the 

vertical position of the bone. If the base, the tip or both are below the threshold, the 

bone is deemed an anchor candidate as its anchor flag is set to true. 

The second stage is to compute an axis of balance, which is a vertical vector defined 

by an x and z coefficient. The pseudo code traverses the skeleton and multiplies every 

positional centre of weight (only the x and z coefficients) by the scalar weight value. 

The result is concatenated to an array and the mean average of the array will produce 

the axis of balance. 

The third stage of the algorithm is to compute the correct anchor (or supporting bone) 

of the body. The algorithm iterates through the skeleton, selects the anchors and 

calculates the distance between each bone and the axis of balance. The weight model 

stores distances as proximity values. The skeletal segment with the lowest proximity 

value will be chosen as the final anchor. 

Figure 3-20: Computing the lowest anchor of a skeleton using a weight model. 

INITIALIZE temporary array ax AS empty 
INITIALIZE temporary array az AS empty 
INITIALIZE axis of balance AS vector {0,0} 
INITIALIZE anchor AS blank bone pointer 
 
// STAGE 1: DETECT ANCHORS CANDIDATES 
FOR EACH bone IN skeleton 

IF bone tip < threshold AND/OR bone base < threshold 
SET bone anchor TO true 

END IF 
END FOR EACH 
 
// STAGE 2: COMPUTE AXIS OF BALANCE 
FOR EACH bone IN skeleton 

CONCATENATE (bone centre of weight x * bone weight) 
TO temporary array ax 

CONCATENATE (bone centre of weight z * bone weight) 
TO temporary array ay 

END FOR EACH 
SET axis of balance x TO MEAN AVERAGE OF temporary array ax 
SET axis of balance z TO MEAN AVERAGE OF temporary array az 
 
// STAGE 3: FIND LOWEST ANCHOR 
FOR EACH bone IN skeleton WHERE anchor = true 

SET bone proximity 
 TO DISTANCE FROM axis of balance TO bone centre of weight 
IF bone proximity < previous bone proximity 
 SET anchor TO bone 
END IF 

END FOR EACH 
RETURN anchor 
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3.12.4  Simulations 

As published in Pascu et al. [18], the algorithm was tested through five simulations 

with the aim of demonstrating that the anchor is computed correctly. Five pre-

recorded gestures were loaded where the individual is: dragging their feet, shifting 

balance between legs, kneeling, crawling and going into prone position. Snapshots 

were taken of sections where the lowest-point algorithm would otherwise miscalculate 

the correct anchor. 

Table 3-3 illustrates the results of the simulations where LACOMA is used to 

compute a set of anchor candidates, an axis of balance and the proximity of each bone 

to the axis. The algorithm computes the proximity values to determine the correct 

anchor whereby the candidate with the lowest proximity value wins. These results 

demonstrate the proposed algorithm functioning correctly. 

 Table 3-3: LACOMA simulations computing the correct anchor. Source: Pascu et al. [18]  

Desired Anchor Anchor Candidate Distance to Axis of Balance 

Gesture 1: Dragging Feet 

Left Foot Left Foot 3.447140376 
Right Foot 7.360259044 

Gesture 2: Balance Shifting 

Left Foot Left Foot 2.634964232 
Right Foot 4.951058102 

Gesture 3: Kneeling 

Left Foot 

Left Foot 2.911940236 
Right Foot 4.033130481 
Left Shin 4.607794689 

Right Shin 5.749732326 
Gesture 4: Crawling 

Left Shin 

Left Foot 6.1504404348 
Right Foot 6.3562048703 
Left Shin 2.4627770625 
Right Shin 3.5748058548 
Left Hand 15.7069667215 

Right Hand 13.5998812961 
Gesture 5: Prone Position 

Right Shin 

Left Foot 19.0994519007 
Right Foot 18.0061532627 
Left Shin 12.8933432307 

Right Shin 11.5659549656 
Left Hand 23.8645977278 

Right Hand 22.3093305126 
Left Forearm 20.2661181134 

Right Forearm 18.5971782273 
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3.13 Conclusions 
This chapter has delineated the design and implementation of a software environment 

with two distinct goals. The large-scale goal is to provide a suitable simulation 

environment for motion capture experimentations to encourage users and researchers 

to join the field of inertial motion capture and BSNs. The Skeletrix software 

environment is an object-oriented tool for data gathering, processing and scientific 

analysis that employs multiple software development domains: concurrent 

programming, interactive visualizations, language processing, rendering, etc. It 

envelops methodologies for interfacing with a wide range of inertial and exoskeleton 

systems with potential (if developed further) for optical systems. Users can produce 

drivers to integrate various motion capture devices by using the DDK in conjunction 

with BVHE. 

In an effort to expand its spectrum of application areas, this software environment 

does not store any kinematic models, system models or motion data natively. By 

placing all those elements in an external configuration file (i.e. BVHE), Skeletrix 

provides a high level of customizability. All skeletal rig constructions and hardware 

configurations tasks are achieved by simply editing BVHE code. The requirements 

specification introduces the principle of transparency whereby users are given full 

access to observe and visualize the software’s back-end through its interface. Data can 

be accessed at three levels using the KinematicsViewer, SystemViewer and 

AnimationViewer accordance to the open source paradigm, this software environment 

also provides the programming scaffolding to support user-produced additions. The 

fourth viewer, the MotionCloudViewer, is further discussed in Chapter 6 in the 

context of the Motion Cloud. 

As identified in Chapter 2, file format standardization is a problem that limits 

software cross-compatibility and information sharing. The field of motion capture 

presents a saturated pool solutions competing for software support. This chapter has 

introduced a new approach to standardizing file systems. Instead of creating an 

entirely new language, which would require extensive implementations throughout 

the industry, BVHE repurposes existing BVH code. Applying existing file systems to 

solve reoccurring problems is an efficient approach that promotes existing software 

cross-compatibilities. The BVHE format includes hardware configuration data to 
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streamline the user’s interaction with hardware. As previously discussed, the main 

advantage of BVHE over any existing format is practicality by simplifying the motion 

capture workflow. Users only have to load one file into the software environment to 

start using an inertial motion capture system. Given that kinematic hierarchy is driven 

by a system, which contains a system configuration, it is both logical and necessary to 

form a relationship between the two by establishing one singular and more complete 

file format. The ultimate goal is to introduce plug-and-play simplicity of computer 

peripherals in the context of more complex inertial suits. 

This chapter has showcased the design and development of the DDK, a flexible 

approach for integrating inertial hardware with software. The DDK is designed to be 

modular whereby a module is a self-contained DLL. Each DLL must be built in 

accordance to a predefined template, which defines the bridging procedure between 

the two applications. The DDK will be further evaluated throughout the next chapters 

through the development of a motion capture suit and the integration of several sensor 

devices. 

This chapter has demonstrated how the Skeletrix software environment can be used to 

test and evaluate the lowest-anchor centre of mass algorithm (LACOMA), a solution 

for computing the supporting anchor of a kinematic model during gait. The proposed 

solution introduces the concept of a weight model to add basic physics to a kinematic 

model. The weight model is used to compute the axis of balance of the body. Using 

the axis of balance it the kinematic anchor of the skeleton can be estimated more 

accurately. While the algorithm shows potential through a set of five simulations, 

there is room for further development to integrate this solution throughout the 

Skeletrix framework. 

3.13.1  Application Areas 

This section introduces a set of potential application areas for the developments 

presented in this chapter. The proposed software environment represents a tool for 

developing inertial motion capture systems and is used throughout the remainder of 

this thesis. But first, let’s consider three additional scenarios: hardware development, 

constructing heterogeneous BSNs and benchmarking. 
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Scenario 1: Hardware Development 

The development of an inertial motion capture system requires computer-side 

software, as rotational data cannot be used in the context of character animation 

without kinematics. Throughout this chapter, emphasis was put on the DDK and 

BVHE to demonstrate a better approach for creating computer-hardware 

intercommunications. The Skeletrix software environment has the potential to be used 

as a tool for developing hardware as it simplifies the procedure of extracting and 

processing rotational data. The SystemViewer can be used to analyse the raw system 

data, the KinematicsViewer can be used to visualise the character motion and the 

AnimationViewer can be used to output the data for further analysis. This usability 

scenario is demonstrated throughout the next chapter, Chapter 4, in the context of 

MTDS. 

Scenario 2: Constructing Heterogeneous BSNs 

Inertial motion capture systems imply the use of an array of sensors. It is difficult to 

construct a BSN without acquiring an otherwise expensive motion capture system. 

The concept of a heterogeneous BSN, previously published in Pascu et al. [17] and 

previously discussed in Section 2.6.2, has the potential to make inertial motion 

capture system more attainable to the average user. While the DDK allows for the 

easy integration of hardware, the BVHE file format is specifies the hardware 

configuration of the system in use. Using these unique features, several dissimilar 

sensors (that may differ in terms of hardware) could be interconnected to form a 

prototype level motion capture system. Heterogeneous BSNs represent a step forward 

towards making inertial motion capture systems more flexible. 

Scenario 3: Benchmarking 

A key aspect of the field of motion capture is benchmarking whereby several systems 

are compared to measure performance. The concept of performance is introduced 

throughout this thesis as a measure of the difference between recorded and real life 

motion. There are many sensor attributes (see Section 2.5.2) that are significant 

factors in achieving performance. A key aspect of benchmarking is to avoid being 

bias towards a system. At present, inertial motion capture hardware can be 

benchmarked using their bespoke software applications, which achieve their 

functionality using varying methodologies. For example, benchmarking the hardware 
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inside two identical sensor devices, that use two software-side methods for 

calibration, will produce a bias. If one of the calibration methods is more successful 

than the other, the data will be compromised throughout the recording, thus making 

two identical systems have different performance attributes. Using the software 

environment presented in this chapter for both systems will remove that bias and 

make the benchmarking process more objective. This is because both system will use 

identical software. 
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CHAPTER FOUR 

4 Constructing Inertial Body Sensor 

Networks 

4.1 Introduction 
The Skeletrix software environment, previously introduced in Chapter 3, provides a 

software layer for inertial motion capture systems while providing unique solutions to 

the challenges faced when acquiring and processing motion data produced by body 

sensor networks (BSN). The motion data obtained must be processed in a specific 

manner to become useful in the context of skeletal motion reconstruction. 

While the previous chapter has focused on the software aspect, this chapter is centred 

on the integration of commercial hardware and the development of an entirely new 

BSN. As shown in Figure 4-1, the development of the new BSN comprises of both 

firmware and hardware development. 

 

 

 

 

 

 

 

Figure 4-1: A high-level representation of motion capture frameworks with emphasis on the 

firmware and hardware aspects and their technologies. 

In broad terms, hardware development involves printing circuit boards, integrating 

microcontrollers and integrating inertial motion sensors (e.g. gyroscopes, 

accelerometers and magnetometers). A BSN will consist of several inertial 
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measurement units (IMU) connected to a multiplexer. Firmware development is 

concerned with programming the microcontrollers to extract motion data from the 

sensors, process it and communicate it across the network. 

This chapter’s first aim is to demonstrate the integration of hardware within the 

framework using the Skeletrix software environment. Two commercially available 

IMUs are integrated to form two case studies. The two IMUs provide a source of 

motion data that can be used throughout the framework (e.g. with the Motion Cloud 

which is published in Pascu et al. [15] [16] [19]).  This chapter’s second aim is to 

form a critical discussion on the topic of BSN development. The discussion is centred 

on the development of a prototype BSN entitled Motion Tracking Development 

System (MTDS) Pascu et al. [18]. 

MTDS is discussed with emphasis on the requirements specification, 

conceptualization and development. MTDS is an upper body motion capture suit 

integrating a number of IMUs that are attached to the upper body using elastic straps. 

The MTDS multiplexer is a small belt-worn device that powers the suit from four AA 

batteries. The device functions primarily wirelessly as it uses a Bluetooth emitter to 

send data to the computer. While a serial port connector can be used, the wired 

version is primarily used to update the microcontroller firmware. The multiplexer is 

the central node of the BSN and its purpose is to acquire, validate, package and send 

data from each sensor. 

The MTDS IMU is a thumb-sized device containing a gyroscope, an accelerometer 

and a microcontroller. This configuration demonstrates the integration of multiple 

motion sensors within the same IMU. While a magnetometer would be desirable to 

for sensor fusion, the magnetometer was not integrated in this iteration of the system. 

In addition to cost and development time constraints, a magnetometer was not 

integrated because the scope of this research did not include the development of a new 

sensor fusion algorithm. The extended Kalman filter is a well-known and highly-

accurate solution for gyroscope, accelerometer and magnetometer sensor fusion (see 

Section 2.5.4). The performance of the MTDS IMU relies on the gyroscope. The 

IMU’s microcontroller is used to extract sensor data and convert it into world-space 

quaternions as required for the Skeletrix software environment.  
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4.2 Framework Relevance 

The developments presented in this chapter are important in demonstrating the 

functionality of the Skeletrix software environment. As previously mentioned, the 

functionality is demonstrated by integrating the two IMUs that are available 

commercially. The knowledge acquired from the two IMUs is then used to develop 

the MTDS prototype. The integration and development of the sensors is achieved 

using the Skeletrix software environment driver development kit (DDK) and BVHE 

features to form a gateway for inputting inertial motion data into the framework. 

As shown in Figure 4-2, the process of integrating hardware is an important layer of 

the Skeletrix framework. It provides the framework with motion data that can later be 

used to demonstrate its functionality. 

 

Figure 4-2: The Skeletrix software environment is evaluated using commercial IMUs and 

MTDS, a prototype BSN. Source: Pascu et al. [15] [16] 
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4.3 Integrating Hardware 
This section is focused on the integration of inertial motion capture sensors that are 

available commercially. Drivers are developed for two very different sensors to 

demonstrate the integration of a wireless software-centric and a wired hardware-

centric IMU. 

4.3.1 Case Study: Shimmer R2 

The Shimmer R2 [144], shown in Figure 4-3, is a wireless IMU that can be bought 

individually or as part of the Shimmer software development kit (SDK). The SDK 

includes documentation, software and firmware examples. The device contains a 

Texas Instruments MSP430 microcontroller [145] and an InvenSense IDG500 

gyroscope [146], an ADXL345 [147] accelerometer and a Honeywell HMC5843 

[148] magnetometer. The gyroscope is very similar to the one in the Nintendo Wii 

Motion Plus controller [149]. 

 

Figure 4-3: Shimmer R2 wireless IMU. Source: [150] 

Data can be extracted from the Shimmer R2 either through Bluetooth or 802.15.4 

radio. Bluetooth was chosen because it is compatible with most laptop computers and 

does not require an additional receiver.  The integration of these devices, to form a 

basic wireless body area network (WBAN), has previously been discussed in Pascu et 

al. [19]. Each IMU is paired with the computer through a virtual communication port 

(VCP) service using a predefined password that is written on the device itself. VCPs 

are ideal for development because they emulate serial communication ports. In 

essence, the computer can access the device by opening and querying a port. The 

microcontroller can be programmed with testing firmware to determine if the device 
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is communicating with the computer correctly. An instruction can be sent to the 

device to toggle its light-emitting diode (LED), giving the user a visual confirmation 

that the connection to the computer is successful.  

Once connected, the device will not start streaming data without a handshake 

procedure. The handshake implies sending a set of instructions to activate data 

streaming. That list of instruction is available within the device’s documentation. For 

devices that do not come with an SDK, a serial port listener can be used to observe, 

record and replicate how the hardware communicates with its factory software. The 

handshake instructions were replicated in a driver module, which was developed 

according to the DDK specifications discussed in Chapter 3. 

Once the Skeletrix software environment is connected and data is being streamed, 

focus is put on understanding the structure of the incoming messages. Data is received 

as a list of bytes as the device outputs gyroscope, accelerometer and magnetometer 

readings along with a timestamp and a byte delimiter. Because data is packaged as a 

stream of bytes, the delimiter allows the driver to understand where a sensor reading 

starts and finishes. A small parser can be developed to decode the data. The three 

sensors output raw data that requires conversions. For example, the gyroscope outputs 

angular speeds that must be converted into world-space rotations.  

The Shimmer R2 is a wireless IMU that is suitable for experimental research and 

development as it provides a first-hand understanding of how an IMU works through 

tutorials and example source code. However, a BSN integrating a large number of 

these devices cannot be constructed due to Bluetooth limitations. This problem 

becomes apparent in a research laboratory where there are a many wireless devices. 

4.3.2 Case Study: Razor AHRS 

The Razor Attitude Heading Reference System (AHRS) [151] is a wired IMU 

designed to be integrated like an Arduino development board. As shown in Figure 4-

4, this IMU was integrated using a Future Technology Devices International (FTDI) 

basic breakout board [152] and six connecting cables. The breakout board is used to 

convert and output the IMU’s data through USB. The IMU contains an ITG3200 

gyroscope [153], an ADXL345 accelerometer [147] and a HMC5883L magnetometer 

[154], making it a 9 degrees of freedom (DOF) IMU. Its microcontroller is 
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programmed with an STK500V1 boot loader. Therefore, a computer will recognise 

this device as being an Arduino development board.  

 

Figure 4-4: Razor AHRS setup with a FTDI basic breakout board. 

The device will begin streaming rotational data without any additional instructions or 

handshaking procedures. The microcontroller is programmed to automatically 

combine the data produced by the three sensors to produce world-space Euler 

rotations as required for most application areas. This IMU was integrated with the 

Skeletrix software environment by converting those Euler rotations into quaternions. 

The driver was developed in a similar fashion to the Shimmer R2 driver. The source 

code for the driver can be found in Appendix B. As shown in Figure 4-5, the rotations 

are applied to the skeleton’s root to rotate it in 3D space. The skeleton replicates the 

rotation of the device as it is tilted. 

 

Figure 4-5: Acquiring data from the Razor AHRS. 
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4.4 Motion Tracking Development System 
The Motion Tracking Development System (MTDS) is a purpose-built inertial motion 

capture suit designed to be worn on the upper body. It is developed in conjunction 

with the Skeletrix software environment (Pascu et al. [17] [18]) presented Chapter 3.  

While there are many IMUs available commercially, most devices are not designed to 

be interconnected to form a BSN. The MTDS contains several low-power IMU 

enclosing gyroscopes and accelerometers. Unlike other sensor products, the MTDS 

IMUs are specifically designed to be interconnected and form a BSN. The connection 

is achieved using a central multiplexer that is tasked with acquiring data from the 

sensors, packaging it and sending the package to the computer. This section discusses 

the requirements specification, conceptualization, design and implementation of the 

suit. 

4.4.1 Preliminary Requirements Specification 

The MTDS system is a BSN aimed at upper body character motion tracking. As 

previously discussed in Section 2.6, the development of any BSN should be achieved 

in accordance to four properties: hardware/software-centricity of the data processing, 

homogenous/heterogeneous nature of the sensors, directionality of the data 

intercommunications and networking. This section discusses those properties in the 

context of MTDS to produce a preliminary requirements specification. 

Hardware/Software-Centricity: Inertial motion capture systems require motion 

processing whereby the sensor outputs are converted in a suitable format that can be 

used to animate a kinematic skeleton. Motion processing can take place either at the 

hardware or software level. Software-centricity puts focus on computer drivers while 

hardware-centricity puts focus on firmware. Like the Razor AHRS, MTDS will 

compute motion within the hardware to reduce the size of the data packets 

communicated between the hardware and the computer. A hardware-centric BSN will 

be easier to integrate with software (thinner software layer as the computations are 

achieved in the firmware) and perform better (firmware can process motion data faster 

than software because it is closer to the its source). These benefits, justifying the need 

for hardware-centricity, are also discussed in Pascu et al. [17]. 
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Heterogeneous/Homogenous: Prototyping a system implies printing circuit boards, 

manufacturing hardware and developing firmware. The complexity and cost of the 

system can be reduced considerably by creating one sensor and replicating it 

throughout the BSN. Therefore, MTDS should be homogenous system.  

Directionality: MTDS must be a directional BSN whereby data is extracted from the 

sensors by the multiplexer and sent, directionally, directly to the computer as quickly 

as possible. Because the kinematic model is processed on the computer by the 

Skeletrix software environment, there is no logical reason for omnidirectional node 

communications in this BSN because it is hardware-centric and no data is sent from 

the software to the IMUs. An omnidirectional BSN is introduced in Chapter 5 in the 

context of mobile computing technologies and its benefits are also discussed. 

Networking: Data communications between BSN nodes can be achieved wirelessly, 

using wires or a combination of the two. As previously in the Shimmer R2 case study, 

adding wireless connectivity to every node in the network can be problematic due to 

the limited number of channels of supported by Bluetooth. Consequently, node 

intercommunications must be achieved using a lightweight cable that is both elastic 

and robust. However, it is desirable that all computer-hardware intercommunications 

are achieved wirelessly through Bluetooth to ensure that cables do not restrict 

movement. This approach can be found in the Animazoo [21] and XSens [98] [99] 

suits. 

Motion Processing: The integration of an MEMS gyroscope and accelerometer will 

require motion processing. Consequently, it is important to understand what the 

sensors output. The question arises: how usable is the motion data in the context of 

skeletal motion reconstruction? Like the Shimmer R2, this gyroscope outputs angular 

speeds that require conversions. Therefore, a small microcontroller must be 

implemented to perform the conversions. As required for the Skeletrix software 

environment, rotational data in the form of angular speeds must be converted into 

world-space quaternions. The quaternions must be compensated to reduce drift and to 

calibrate the sensors. The notion of calibration has previously been discussed in 

Section 2.5.2. 

Cost: Like with any hardware development, cost plays a very important role in the 

design and implementation process of a system. Aside from development costs, cost 
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also concerns the target audience. For example, a complex system containing military 

grade gyroscopes is expected to produce highly accurate motion data. However, 

MTDS is a prototype system using MEMS sensor chips that are available 

commercially. It investigates whether those sensor chips are sufficiently accurate to 

detect the articulated movement of the upper body. 

4.4.2 Conceptualizing a Motion Capture Suit 

Figure 4-6 illustrates how the MTDS suit works by highlighting its principal 

components and how they communicate. The computer, running the Skeletrix 

software environment, communicates with the suit through the MTDS multiplexer. 

The multiplexer encloses a microcontroller, a battery pack and a Bluetooth module.  

The multiplexer communicates with the seven IMUs through a harness containing 

only three cables. The first cable (red) must be used to send data (e.g. firmware 

updates, polling commands, instructions, etc.) to the BSN nodes. The second cable 

(green) is used to retrieve data such as angular readings. Lastly, the third cable (blue) 

powers the whole system from the multiplexer’s battery pack. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: How seven MTDS IMUs communicate motion data to the multiplexer. 
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As shown in Figure 4-7, the MTDS suit uses seven IMUs placed on the hands, 

forearms, arms and torso. The suit consists of seven straps, which can be worn on top 

of clothing. More specifically, the hands use fingerless gloves, the forearms use 

modified wristbands, the arms and torso use elastic straps. Two additional straps are 

wrapped around the shoulders to prevent the harness from getting in the way of the 

arm movements. 

The IMUs are daisy chained using a harness, which begins at the multiplexer, 

bifurcates at the chest and finished at the hands. The initial prototype used a ribbon 

cable but, due to its length, the three signals were interfering with each other. 

Additionally, the ribbon cable proved brittle and often broke at the connectors. The 

solution was to take three slightly thicker cables and plat them. The platted harness 

proved robust and elastic, making it less likely to break at the connectors. 

 

Figure 4-7: MTDS suit. 
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4.4.3 MTDS Inertial Measurement Unit 

The MTDS IMU is a small thumb-sized device designed to measure either rotations 

or gravitational accelerations of a body part. The device was designed to be 

lightweight so that it moves very little in relation to the body. The device was also 

designed to be flat so that it can be attached to the body with elastic straps. As shown 

in Figure 4-8, the device is a small circuit board with an insulation-displacement 

connector (IDC). The internal components are protected by heat-shrink rubber tube. 

 

Figure 4-8: MTDS inertial measurement unit. 

The circuit board integrates IMU3000 [155] gyroscope and, depending on availability, 

both MMA8451Q and MMA8452Q accelerometers [156]. At the time of 

development, the IMU3000 was one of the most powerful consumer-level gyroscopes. 

It is a newer and more powerful version of the IDG500, which can be found in 

Shimmer R2 IMU. The microcontroller used to process the motion is a low-power 

Atmel AVR RISC chip [157]. 

The desired output of the device is world-space quaternion rotations, as required by 

the Skeletrix software environment. Like the Shimmer R2, the IMU3000 outputs 

angular speeds instead of the more desirable world-space rotations. Consequently, the 

MTDS IMU’s microcontroller firmware had to convert angular speeds into 

quaternions. This conversion is a three-step process. To begin with, the 

microcontroller stores a timestamp with every recorded angular speed. Rotational 

increments can be calculated by multiplying the angular speed with the timestamp 

difference. Then, rotational increments are summed to produce world-space Euler 
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rotations. Lastly, the rotations are converted into quaternions using the conversion 

equations shown in Appendix A. 

The MTDS IMU has two operational modes that can be selected through a boot 

loader. On start-up, the boot loader decides which part of the firmware code to 

execute. The default operational mode is the development mode, which allows for 

firmware updates from the computer. Alternatively, the device will function as a BSN 

node whereby it outputs quaternions if a specific instruction is sent to the 

microcontroller. 

The MTDS IMU was developed to demonstrate the construction of a BSN and data 

acquisition from multiple motion sensors. A magnetometer was not necessary for this 

task. However, without a magnetometer sensor fusion is not possible. Alternative 

methods for drift compensation were used to reduce the amount of gyroscope drift. 

When started, the device must remain motionless for 10 seconds. Even though the 

device is motionless, the gyroscope outputs rotations that correspond to gyroscope 

drift. The microcontroller starts to read and sum those rotations and, after 10 seconds, 

concludes a compensation value. The compensation value is subtracted from every 

gyroscope output to follow, thus calibrating the gyroscope for use. Using this 

approach means that the sensor can only be used for short periods of time before drift 

becomes noticeable. Drift could be further compensated by integrating a 

magnetometer and performing sensor fusion. Notably, modern motion sensors (e.g. 

the InvenSense MPU9150 [158]) contain the gyroscope, accelerometer and 

magnetometer in the same chip capsule and perform sensor fusion automatically using 

an internal microcontroller. Such devices could be integrated in future iterations of the 

MTDS IMU to solve the drift problem. 

4.4.4 MTDS Multiplexer 

The MTDS multiplexer is the central node and power supply of the BSN. Because it 

contains four AA batteries, it is also the heaviest component of the suit. As shown in 

Figure 4-9, the small metal box is worn using a belt hook. Because the multiplexer is 

the main component of the suit, it contains the power switch that turns on and off all 

the IMUs. 
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Figure 4-9: MTDS multiplexer. 

As illustrated in Figure 4-10, the multiplexer contains a Bluetooth module, an IDC 

connector for the suit’s harness and two twin AA battery packs that power the suit. 

The multiplexer also encloses a MTDS IMU, which is integrated as part of the main 

circuit board. This means that there is a gyroscope and an accelerometer inside the 

device. However, the multiplexer’s sensors were made redundant for three reasons. 

First, the device’s microcontroller is not powerful enough to simultaneously process 

motion and acquire data from the BSN. Second, the multiplexer proved too heavy to 

be worn on the chest and wearing it on the belt gives inaccurate motion readings. 

Third, it proved time consuming to develop two separate iterations of the IMU 

firmware, one for the BSN nodes and one for the multiplexer’s sensors. The solution 

to these problems was to add an additional IMU to the BSN, which is external and 

connected to the multiplexer using the harness.  

 

Figure 4-10: MTDS multiplexer opened showing top (left) and bottom (right) views. 
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The multiplexer has three methods for communicating with the computer. The suit 

can be connected to the computer using a serial connector or through a USB 

convertor. The wired approach is primarily aimed at developing or updating or 

firmware for the multiplexer and the network’s IMUs. Alternatively, the suit can be 

used wirelessly though Bluetooth. As shown in Figure 4-4, the multiplexer integrates 

a Parani ESD100 Bluetooth module [159]. This module takes the input of a serial 

cable and outputs a Bluetooth signal that can be interpreted by the computer as a 

serial connection through a virtual port emulator. While the wireless approach is more 

desirable, the wired approach is more stable. In both scenarios, the suit is powered by 

the four AA batteries and not through the USB. 

The multiplexer’s microcontroller is an Atmel AVR RISC chip that is similar to the 

ones implemented in the IMUs. The microcontroller polls the sensors at specific time 

intervals while taking into account code execution delays to ensure that data is 

collected at the exactly the specified frame rate. The microcontroller does not have 

sufficient Random Access Memory (RAM) and there is no internal storage to buffer 

the result for longer periods of time, especially at high frame rates. Every time an 

IMU is polled, the result is sent straight to the Bluetooth module that forwards it to 

the computer. The IMU polling takes place in a sequential fashion. The multiplexer 

iterates through the network to poll every IMU individually. Data is extracted and 

packaged along with a unique identifier, which keeps track of which sensor has 

produced the reading. 

The multiplexer verifies the validity of the data using a cyclic redundancy check 

(CRC) function to ensure that the incoming sensor readings are feasible. The CRC 

function uses hash encoding and compares every sensor’s reading against previous 

readings. An incomplete reading or error will be discarded and replaced by a previous 

reading. If there is a problem (e.g. a sensor disconnects), this safety measure ensures 

that the BSN does not crash. Instead, the BSN remains partially operational until a 

sensor is reconnected. 
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4.4.5 Upper Body Character Motion Tracking 

The MTDS suit was evaluated through a series of upper body motion tracking 

experiments where the motion performer wears the suit and acts out upper body 

gestures. As shown in Figure 4-11, the kinematic model replicates the posture and 

motion of the performer real-time at the frame rate of 30f/s. 

 

Figure 4-11: MTDS upper body motion tracking using the Skeletrix software environment. 

Source: Pascu et al. [17]  
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4.5 Conclusions 
This chapter has demonstrated the integration of existing sensor hardware within the 

framework using the Skeletrix software environment. This chapter has two 

fundamental goals. The first goal is to demonstrate the integration of hardware, which 

is an important requirement for the framework. Hardware integration is required to 

create a source for inertial motion capture data that can later be used to test and 

evaluate the framework. For example, data recorded from these studies can be 

uploaded to the Motion Cloud and visualised using the web portal or the smartphone 

application presented in Chapter 5. The second goal is to discuss and demonstrate 

BSN development, a task which is achieved through the Shimmer R2, Razor AHRS 

and MTDS prototype. 

MTDS demonstrates how a BSN prototype can be constructed cost-effectively to be 

robust and suitable for experiments (due to the addition of a boot-loader that 

facilitates firmware updates), as required for the research work presented in this 

thesis. Its development is presented in three stages. The initial stage is focused on the 

conceptualization and requirement specification of the system to establish how the 

system will work in terms of hardware-centricity, connectivity, power consumption, 

etc. The second stage showcases the development of a multiplexer device, which is a 

central node for the network. The third stage is focused on the development and 

implementation of an IMU that is designed specifically to function as a BSN 

component. 

The MTDS suit was not benchmarked against other systems because there are no 

motion capture suits that provide SDKs or open source code. Benchmarking is a 

process that requires the testing and evaluation of each stage of the motion capture 

workflow (e.g. comparing methods for calibration, sensor fusion, etc.). Motion 

capture suit manufacturers, such as Animazoo [21] or XSens [98] [99], tend to protect 

their intellectual property and do not provide users with the source code. Instead of 

benchmarking, the three IMUs were compared and evaluated in accordance to the 

sensor attributes previously established in Chapter 2 in order to highlight the strengths 

and weaknesses of each sensor within the context of constructing a BSN. 

The Shimmer R2 IMU is the least powerful of the three presented and also the oldest. 

It is the only device that provides wireless connectivity and contains a battery. Using 
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the SDK, it is also the device most suitable for experimental research. Unlike the 

MTDS IMU, it includes a magnetometer and has potential to be flashed with sensor 

fusion firmware. Unlike the Razor AHRS, it comes in a small package that can be 

strapped to the body. Shimmer even supplies a strap with the device. Due to the 

limitations of Bluetooth many devices cannot be networked to form large WBANs. 

The Razor AHRS IMU is the most powerful of the three presented and also the 

newest. It is the only device that runs a sensor fusion algorithm. Consequently, it 

presents the least amount of gyroscope drift and can be used for long periods of time. 

The device is capable of producing world-space rotations straight out of the box. This 

device contains the most powerful gyroscope, accelerometer and magnetometer out of 

the three presented as its technical specifications are closely matched to the MTDS 

IMU. Like the MTDS IMU, this device can be used to construct a BSN by replacing 

the FTDI breakout board with a multiplexer. 

By today’s standards, the MTDS IMU contains a mid-range gyroscope and 

accelerometer. Considering its preliminary requirements specification, this device is 

the smallest of the three in terms of size and is ideal for constructing a BSN. Motion is 

processed at the hardware level with the aid of the multiplexer. 

These three sensors can be used to showcase the advances in MEMS technologies that 

took place throughout the completion of this thesis. Modern sensors, like the Razor 

AHRS, come programmed with sensor fusion algorithms from the factory.  The 

successor to the Shimmer R2, namely the Shimmer 3 [160], also provides that 

functionality. Sensor fusion is one of the most problematic yet important properties of  

MEMS technologies.  
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CHAPTER FIVE 

5 Sensing Through Mobile Computing 

Technologies 

5.1 Introduction 
Chapter 3 has introduced the Skeletrix software environment published in Pascu et al. 

[17] [18], a tool for developing inertial motion capture technologies. Emphasis was 

put on the individual challenges faced in extracting data from hardware and producing 

3D visualisations. As a result, this thesis has established a more efficient motion 

capture workflow aimed at tightening the relationship between hardware and 

software. Using the driver development kit, users can construct and integrate body 

sensor networks (BSN) using heterogeneous sensors. The hardware configuration and 

its output are stored in a revised file format entitled Biovision Hierarchy Extended 

(BVHE). To summarise, the software environment has presented a white-box 

approach to creating a motion capture workflow through which all the individual 

computations of motion are exposed to the developer.  

The smartphone is the most ubiquitous [161] wearable computing technology and its 

sensing capabilities have many application areas [162] [163]. Most people have 

smartphones and most smartphones enclose gyroscopes, accelerometers and 

magnetometers. This configuration is identical to that found in inertial measurement 

units (IMU). The smartphone’s worldwide uptake has prompted many advances in 

MEMS technologies whereby inertial motion sensors are now designed more robustly 

and are more affordable. In addition to inertial sensors, modern smartphones also 

enclose global positioning systems, optical cameras, pressure sensors, thermometers 

and light sensors. The smartphone’s inherent capability to sense while connected to 

the Internet has produced new application areas. When paired with web technologies, 

modern smartphones can form large sensor networks [164] focused around 

aggregating sensor data in online repositories. A popular application area for 

smartphone sensor networks is activity tracking whereby the device is able to 

determine the overall comportment of its operator [165] [166]. This chapter poses 

three important questions: What is the fundamental difference between sensor 
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networks and BSNs? Is it possible to construct BSNs using smartphones? If yes, is 

human motion capture possible through smartphone-driven BSNs? 

To answer those questions, this chapter introduces an innovative mobile application, 

which was published in Pascu et al. [15] [16] [19]. The mobile application makes use 

of the smartphone’s ability to constantly sustain an Internet connection to establish 

online BSNs. The goal is to create a motion capture system that can sense, compute 

and visualise motion completely independently of a computer. Using the mobile 

application, several smartphones running instances of the application can be 

interconnected over Wi-Fi or 3G. While a typical motion capture suit uses a 

multiplexer as a data hub between its constituent nodes, the proposed smartphone 

equivalent substitutes the concept of a multiplexer for an online server, which is 

entitled Motion Cloud and is further discussed in Chapter 6. Each device computes 

motion and uploads it in real-time to a server through a set of web services. The 

server merges the result and directs it back to every smartphone in the network, thus 

forming an omnidirectional BSN. The unique property of omnidirectional networks is 

that every sensor node communicates with every other node, thus eliminating the need 

for ranked roles (there are no master-slave relationships between network 

components). Every node is aware what every other node’s data, allowing it to 

compute motion more accurately. Additionally, the workload is distributed between 

several multicore processors making the BSN computations more efficient. 

Aside from the novel approach to capturing motion, the Skeletrix mobile application 

is unique in several aspects. While most inertial suits are developed to function in one 

particular configuration, the online server dictates the configuration of the 

smartphone-driven BSN, making the system highly customizable and modular. The 

user has the option to tailor the system to every individual experiment by choosing the 

number of smartphones to interconnect. This approach simplifies the task of adding or 

subtracting smartphones from a BSN. The user also has the option of creating very 

large BSNs because the server can support more connections than a physical 

multiplexer. 

In contrast to the software environment previously introduced, this chapter presents an 

automated workflow in accordance to the black-box paradigm whereby the software 

environment processes motion without user input. Like the software environment, the 
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smartphone application also contains kinematic models, an OpenGL ES renderer, file 

parsers, etc. Condensing the otherwise large components of the software environment 

into a mobile application required much optimization and simplification both at the 

view and controller layers. The mobile application is developed as a Model View 

Controller (MVC) architecture. 

To put the development of the mobile application into context, three fundamental 

questions arise. What could the mobile application be used for? What are its 

application areas? Are people going to strap smartphones to their bodies? The mobile 

application is not presented as a substitute for inertial motion capture systems, but as a 

suitable test bed for prototyping BSNs and creating small systems for experimental 

research. In situations where the experiment requires two or three sensors, it may be 

simpler to use smartphones than the much more difficult to attain and expensive 

motion capture alternatives. 

Users sometimes do wear smartphones strapped to their bodies, particularly in the 

context of activity tracking. For example, there are armbands available commercially 

that allow users to attach the smartphone to the arm while jogging to measure their 

physical activity in terms of number of steps, distance travelled, etc. Medical science 

is another very important application area for smartphones. Some medical disorders, 

such as idiopathic scoliosis [51] or Parkinson’s disease [48] [79], have a measurable 

effect on the motor functions of the body. The smartphone application could be used 

to track and evaluate the behaviour of patients. Because the smartphone application 

streams data in real-time, it could also be used to find anomalies that are indicative of 

emergency situations (e.g. an elderly person falling). These and other application 

areas are further discussed in Section 5.13.1. 

5.2 Framework Relevance 
This thesis investigates new technologies that may be relevant to inertial motion 

capture and BSNs. The mobile application explores the concept of sensing through 

mobile computing technologies. Although the mobile application has a unique 

purpose and functionality within the proposed framework, its development is 

fundamentally based on the Skeletrix software environment architecture. More 

specifically, the Skeletrix software environment is used as a starting point for the 

development of the mobile application. The revisited workflow is designed to take 
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into account the computational constraints of smartphones while following the black-

box paradigm to create a user-friendly system. 

While inertial motion capture is an important research topic that is relevant to many 

application areas (see Section 2.3), inertial BSNs are a niche sector of the animation 

and biomechanics industries. Because the smartphone is ubiquitous, the addition of 

mobile computing technologies to the Skeletrix framework creates a new spectrum of 

application areas centred on sensor networks. The mobile application is also a new 

source for motion data within the framework. One of the biggest contributions of the 

mobile application to the Skeletrix framework is the addition of web technologies to 

the workflow. Although the Motion Cloud is introduced in Chapter 6, its 

conceptualization originates from this chapter’s developments. Figure 5-1 illustrates 

this research work’s place in the framework. 

 

Figure 5-1: Skeletrix mobile application introduces web and mobile computing technologies 

to the framework. Source: Pascu et al. [15] [16] 
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5.3 Preliminary Requirements Specification 
As previously mentioned, the development of the online smartphone-driven BSN is 

derived from the Skeletrix software environment presented in Chapter 3. The process 

of porting the software environment to the Android platform involves a major 

redesign of the architecture in terms of front-end and back-end functionality. This 

section summarizes both functional and non-functional requirements to create a 

preliminary requirement specification. The resulting specification can be divided into 

system, interface and network requirements. 

5.3.1 System Requirements 

Object-Orientation: The Android platform uses Java, which is an object-oriented 

programming language that runs in a virtual machine. Object orientation allows the 

code to be efficient, modular, reusable and easy to maintain or extend. Consequently, 

the Java-based mobile application must be object-oriented whereby the code is 

divided into object and each object has a logical purpose by itself and as a component 

in the architecture. While memory management and garbage collection is achieved 

through the virtual machine, efficient object intercommunications are key in 

optimizing performance. 

Multithreading: Modern mobile computing technologies enclose multicore ARM or 

Intel processors that support multithreading. The smartphone requires a powerful 

processing unit to run multiple applications concurrently. Inertial motion capture 

implies computing motion as quickly as possible and multithreading is an integral part 

of that process. The tasks of processing motion data, computing kinematics, rendering 

3D visualisations, running the interface layer need to be allocated separate threads. 

Multithreading allows the code to execute concurrently on the processor, thus 

increasing the overall performance. 

Distributed Computing: The concept of smartphone-driven BSNs implies using 

devices that sense and process motion concurrently where a copy of the application is 

running on every network node. Rather than computing network’s motion on one 

single device, each network node can process its own motion. Distributed computing 

is key in ensuring an even allocation of tasks across the network. Using a 
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constellation of multicore processors amounts to one computationally powerful 

system. 

Motion Processing: By default, the smartphone does not produce usable motion. 

Because the accelerometer and magnetometer sensors are used by the interface, the 

Android Application-Programming Interface API provides functions for extracting 

and merging the accelerometer/magnetometer orientation. The orientation is provided 

as a world-space rotation that contains large amounts of noise. Post-processing filters 

must be applied to make that data usable for motion capture. Alternatively, the 

gyroscope data can be used as it contains little noise. However, the gyroscope data 

contains drift that can be compensated using the other two sensors. The ideal result 

should contain little noise or drift. 

5.3.2 Interface Requirements 

Black Box Paradigm: While the Skeletrix software environment was focused on 

creating a level of transparency that helps developers understand motion capture 

systems, the mobile application must be developed in accordance to the black box 

model [167] [168]. This is because the act of interacting with several device screens 

simultaneously is difficult and reducing the number of user-performed action will 

improve usability. Consequently, the majority of the mobile application’s 

functionality must be autonomous. The black box model defines a type of 

programming focused on inputs and outputs rather than the intermediary 

computations. As shown in Figure 5-2, the mobile application must achieve a lot of 

functionality with little user input from the interface layer. 

 

 

Figure 5-2: The black box model and Skeletrix mobile application. 

Multitouch Gesture Interaction: A key design decision for mobile computing 

technologies that minimise the complexity of user interfaces is multitouch gesture 

interaction. The study [169], which is primarily focused on tablet interactions, 

discusses the importance of multitouch gestures in the context of musculoskeletal 

systems and kinematic models. While the Skeletrix software environment uses mouse 

User	
  Input	
   Usable	
  Motion	
  
Black	
  Box	
  

(Skeletrix	
  Mobile	
  
Application)	
  



	
  

	
  

117 

and keyboard to interact with the 3D visualisations, the mobile application must 

replicate that functionality through multitouch gestures. The two most common 

gestures familiar to smartphone users are pinch to zoom and swipe. 

3D Data Visualisation: As previously discussed in the context of the software 

environment, 3D skeletal representations of motion using kinematic models are 

important in giving users an interpretable visualisation of motion. Rotational data 

must be gathered from all BSN nodes and applied to a kinematic model. Because the 

mobile application targets the Android platform, an OpenGL ES [170] renderer can be 

used to visualise the motion in 3D as a virtual skeleton.  

5.3.3 Network Requirements 

Omnidirectional Communications: The task of creating smartphone-driven BSN 

differs fundamentally from that of an inertial motion capture system. Smartphones 

present the unique property of combining both the hardware and software aspect of 

sensing into one device. Consequently, the smartphone-driven BSN does not require a 

designated computer. This poses the question: which body-worn smartphone becomes 

the computer? Omnidirectional BSNs are also beneficial because each node can take 

into consideration the data produced by its neighbouring nodes when computing its 

own motion, thus making the result more accurate. 

BSN Controller: Inertial motion capture systems have multiplexers, which are chest or 

belt worn devices tasked with gathering data from the sensors, synchronizing the data 

and sending the combined result to a computer. The multiplexer serves the 

fundamental purpose of turning several devices into one singular system. The 

smartphone-driven BSN must replicate that functionality in the absence of a physical 

multiplexer device. The only solution is to use a server and a set of web services to 

remote control the functionality of the smartphones and retrieve motion data. 

Data Streaming Protocols: While inertial motion capture systems use short-ranged 

communication protocols (e.g. Bluetooth), the smartphone equivalent will rely on 

Internet connectivity. Internet connectivity is particularly unstable depending on many 

factors such as signal strength and connectivity mode (i.e. 3G, 4G, Wi-Fi). A flexible 

data streaming protocol is required to ensure that no data is lost. 
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5.4 Conceptualizing a Smartphone-Driven BSN 
This section discusses how the smartphone can be converted into a BSN node in one 

tap. Figure 5-3 illustrates how three smartphones can be interconnected through the 

Motion Cloud repository and gateway. Each smartphones streams its data into 

repository channel objects. Simultaneously, each smartphone interrogates the 

repository to retrieve a complete data set. The BSN controller is a component of the 

Motion Cloud gateway that controls several BSN nodes remotely. Rather than starting 

each smartphone manually, the network nodes are connected to a gateway trigger 

object. Each network node constantly listens for trigger status changes. As a result, 

users can use one smartphone to control the whole network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Three smartphones form an omnidirectional BSN using the Motion Cloud 

repository and gateway. Source: Pascu et al. [15] [16] 
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5.4.1 Initializing the BSN 

The first stage of initializing the smartphone-driven BSN involves creating a Motion 

Cloud user account. Once logged in, users can create or select an existing recording 

object through the Motion Cloud web portal or the mobile application interface. User 

accounts and recording objects are required to allow multiple BSNs to function 

simultaneously on the Motion Cloud. Once a recording object is selected, the 

smartphones become a BSN by listening to a common gateway trigger. A successful 

BSN initialization can be observed visually as each smartphone’s interface turns from 

orange (inactive) to green (active). 

Once the BSN is initiated, the smartphones start streaming data. Figure 5-4 illustrates 

the internal workings of the mobile application as a flow diagram. The application’s 

recorder extracts and processes the motion data. The application verifies that the 

smartphone is online and communicates data to the server. The server receives the 

data and waits for all other nodes to upload. Once a complete set of data is found, the 

server applies a synchronization algorithm and sends the result back to the 

smartphones. Each smartphone cleans the data and applies it to the kinematic model, 

thus producing an animated skeletal rig. 

 

Figure 5-4: The stages of streaming motion data to and from the Motion Cloud server. 

Source: Pascu et al. [19] 
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5.4.2 Operating Modes 

The mobile application has been evaluated through four operating modes: offline, 

online, directional streaming and omnidirectional streaming. Through these operating 

modes, the proposed smartphone application becomes more versatile in a wider 

variety of contexts. Directional streaming was implemented in the final version of the 

mobile application. 

Mode 1: Offline 

Motion data can be recorded locally without web connectivity. If the smartphone is 

offline, the server communication stages will be bypassed and the data will be applied 

directly to the kinematic model. However, the interface allows users to manually 

upload data to a recording object. As a result, data can be recorded locally and 

uploaded later. 

Mode 2: Online 

It is not mandatory that data gets streamed to the server in real-time. The application’s 

second operating mode only uploads data to the server once a recording is complete. 

Data is buffered locally and the very end of the recording session, each smartphone 

sends larger packets for server-side synchronization and network distribution. This 

operating mode is primarily useful for situations in which the wireless signal is weak. 

Mode 3: Directional Streaming 

The relationship between the server and the smartphone can be configured to be 

directional whereby smartphones upload data without the server responding until the 

recording is stopped. The resulting motion can be accessed through the Motion Cloud 

web portal or at the end of the recording. This operating mode is primarily for 

situations where the result is only needed at the end of a recording session. 

Mode 4: Omnidirectional Streaming 

The last and most resource intensive operating mode, showcased in Figure 5-3, 

involves streaming data to and from the server in real-time. Every smartphone in the 

network uploads and downloads data from the Motion Cloud as quickly as possible 

through asynchronous tasks. This operating mode is primarily aimed at Wi-Fi 

connections. 
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5.5 Architecture Overview 
The Skeletrix mobile application architecture follows the principles of object-oriented 

programming. The code is written in Java and distributed throughout a set of objects. 

The objects are grouped into packages whereby a package represents a category of 

functionalities. The interface is written in eXtensible Markup Language (XML) using 

restyled Android interface objects. This approach is standard for an Android mobile 

application. Figure 5-5 shows the architecture’s six main packages entitled: launch, 

core, kinematics, mathematics, sensing and user interface. The diagram also describes 

objects and object interactions. This section continues to discuss the functionality of 

each package aside from the user interface. 

 

 

 

 

 

Figure 5-5: Skeletrix mobile application architecture diagram showing the main objects 

organised as packages. 
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5.5.1 Launch Package 

The launch package provides all the back-end functionality for initiating the mobile 

application. Its primary focus is to establish a connection with the Motion Cloud that 

will be used to transfer data between the BSN’s nodes. 

Login/Register Objects: The login object is used to authenticate the user with the 

Motion Cloud database. A unique user id is retrieved from the database and passed to 

the core package. For new users, the register object can be used to create a new 

Motion Cloud account.  

Selector Objects: The selector object is used to select a recording. Recordings define 

the web space used by the BSN to store motion data. Several smartphones sharing the 

same recording object automatically become a BSN. 

5.5.2 Core Package 

As with the software environment, the mobile application contains a centralised core 

package tasked with gathering and processing the data from every other package. All 

data passes through the core package at some point. 

Skeletrix: The Skeletrix object is the mobile application’s main object. It is used to 

gather and combine data from all the other packages. Other functionalities include 3D 

rendering kinematic models, multitouch gesture interaction with the viewport and 

animation controls. 

Storage: The storage object is a centralised object tasked with storing, managing and 

making accessible all data that is shared throughout the application (e.g. user id, 

recording id, kinematic model). 

Reader/Writer Objects: The reader object is used to parse Biovision Hierarchy (BVH) 

files from the smartphone’s Secure Digital (SD) card to create a kinematic model. The 

writing object is used to output the kinematic model and its motion data as a BVH 

file. BVHE is not supported because all Android smartphones have one standardised 

sensor configuration (a single sensor).  
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5.5.3 Mathematics Package 

The mathematics package contains libraries for vector and quaternion algebra and is 

very similar to that of the Skeletrix software environment.  

Vector Object: The vector object provides a library for vector operations, which is 

used frequently in the context of rotational and positional data. The reader, writer, 

sensor manager, renderer and interface layer primarily use vectors. 

Quaternion Object: For performance reasons and to avoid gimbal lock, quaternions 

are used to represent rotational transformations. The quaternion object uses some of 

the functionality of the vector object. 

5.5.4 Kinematics Package 

The kinematics package generates virtual bone objects and skeletal hierarchies to 

create kinematic models (or rigs). Those models are subsequently used to create 3D 

visualisations. 

Bone Object: The bone object consists fundamentally of a name, a positional offset 

and a list of quaternion rotations corresponding to frames of motion. 

Skeleton Object: The skeleton object takes a list of bones and forms a skeletal 

hierarchy consisting of both rotational and positional offsets. The skeleton object 

provides a list of functions for iterating through the hierarchy. The methodology for 

iterating through the hierarchy (in a specific order) is important in computing the 

rotational and positional constraints correctly. 

5.5.5 Sensing Package 

The sensing package is used to take data from the device’s gyroscope, accelerometer 

and magnetometer, compute a result and send that result throughout the BSN. 

Sensor Manager Object: The sensor manager performs handshakes with each of the 

sensors, namely the accelerometer and magnetometer. Data is extracted, merged and 

the result is sent to the recorder object. 

Recorder Object: The recorder object is tasked with controlling the recording process 

by listening for trigger events. The recorder streams data to and from the server and 

provides the BSN networking functionality.  
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5.5.6 Performance Optimization 

While smartphones benefit from multicore processors and large amounts of Random 

Access Memory (RAM), a large portion of that computational power is used by the 

operating system and application multitasking. For example, the smartphone may run 

several social media application, email clients and games simultaneously. 

Consequently, the Skeletrix mobile application had to be designed in accordance to 

the computational constraints of the smartphone. Optimization was primarily focused 

around kinematic motion reconstruction and multithreading. 

Kinematic Motion Reconstruction 

Kinematic motion reconstruction is the process of applying a set of angular readings 

to a kinematic model and rendering the result. The kinematic motion reconstruction is 

achieved in the graphics pipeline by passing 3D topologies and local rotations to 

OpenGL ES. Figure 5-6 shows a comparison between the motion reconstruction of 

the Skeletrix software environment and the mobile application. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6: Comparison between the Skeletrix software environment and the mobile 

application’s 3D motion reconstruction. 
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Multithreading 

Regardless of the targeted platform, multithreading is a key aspect of any motion 

capture software environment. Multithreading is needed because inertial motion 

capture happens very quickly. Aside from extracting data from sensors, software 

environments need to perform other tasks such as 3D rendering, motion processing, 

kinematic deployment of data, etc. All those tasks tend to block the main thread, thus 

preventing the software from sampling the sensors at the correct time intervals. This 

problem is amplified in the context of software environments that use Internet 

connections because it is impossible to know how quickly the server will respond and 

the recording process cannot halt. 

As shown in Figure 5-7 a thread is launched to drive the core package along with the 

main interface. This thread is set to tick at a low frame rate because most of the 

functionality is not important to the recording process. For example, multitouch 

gesture interaction and updating the display or loading BVH files are not urgent tasks. 

A second thread is launched to render motion to the OpenGL canvas at 30 f/s. The 

animation controller was designed to render high frequency recordings at low frame 

rates by skipping frames. A third thread, dedicated to extracting sensor data, is 

launched to run the sensor manager at frequencies specified by the BVH file in use. 

Generally, BVH files contain motion data at frame rates between 24 and 120 f/s. 

Aside from the main three threads, asynchronous tasks are used to upload, download 

or poll the server. Asynchronous tasks are short-lived threads that close automatically 

when their task is complete. 

 

 

 

 

 

Figure 5-7: Skeletrix mobile application multithreading diagram. 
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5.6 Interface Overview 
Condensing the functionality of the software environment to work in the context of 

mobile computing technologies, which have limited screen dimensions and 

touchscreen interfaces, proved difficult. This section discusses the functionality of the 

mobile application by looking at the design and development of the interface layer. 

5.6.1 Use Cases 

The following use case diagram, shown in Figure 5-8, was developed to meet the 

interface requirements of the application. Users are required to authenticate with a 

server by entering a unique username and password. Once authenticated, the user 

chooses a recording object corresponding to a BSN. Recording objects are further 

discussed in Chapter 6 in the context of the Motion Cloud. Once the smartphone is 

connected to a BSN, the user gains access to the main interface, which provides 

functionality for: loading kinematic models, saving kinematic models, controlling the 

animation, interacting with the viewport uploading and downloading data. After a 

kinematic model is chosen, the user can proceed to record motion. 

  

 

 

 

 

 

 

 

 

 

 

Figure 5-8: Skeletrix mobile application interface layer use case diagram. 
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5.6.2 Main Interfaces 

The interface layer was designed efficiently by keeping the number of interface pages 

to a minimum. Because the mobile application is designed for the Android OS, each 

interface object is written in XML using the Android Interface API. As shown in 

Figure 5-9, the application has two main interfaces: dashboard and recorder. 

The dashboard interface can be divided into three sections: toolbox, canvas and 

animation controls. To begin with, the toolbox is a horizontally scrollable menu 

located at the top of the screen allowing users to load files, save file, change camera 

viewports, upload or download data from the server. Each tool is represented by a 

clickable icon and descriptive text. Then, the canvas occupies the centre of the screen 

to render kinematic motion. The camera angle can be adjusted through two multitouch 

gestures: pinch to zoom and swipe to rotate. Lastly, the conventional animation 

controls can be found at the bottom of the screen. 

 

Figure 5-9: Dashboard (left) and recorder (right) diagram. 

Because the dashboard is crowded with functionality, the recording process is 

achieved in a secondary interface. When launched, the recorder page overlays the 

dashboard and blocks the real-time visualisation of motion. Notably, it is difficult to 

see or interact with the screen when the smartphone is being worn on the body. 

Consequently, the recorder page’s record button is large and changes colour from 

orange to green to give users a visual cue that motion is being captured. Additionally, 

the recorder page allows users to select the kinematic segment they wish to record. 
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5.7 Motion Processing 
The first step of the mobile application workflow is motion processing. Motion 

processing is the act of extracting raw data from the sensors and converting it into 

usable motion data. In this context, data is extracted from the smartphone’s 

accelerometer and magnetometer. The desired outcome of the motion processing 

stage is to produce world-space rotations as required to drive the kinematic model. 

The main objective of motion processing is to compute motion that contains little drift 

or noise. In the context of mobile computing technologies, the approach differs from 

that of traditional inertial motion capture system in terms of design and 

implementation. 

As identified in Chapter 2, the main problem with motion processing is that 

gyroscopes have no reference axis in space and therefore suffer from drift. When 

computing world-space rotations, the gyroscope’s accuracy decreases drastically over 

time. 

Accelerometers and magnetometer can be combined to produce a rough 

approximation of rotation to give the gyroscope reference axis. However, the 

combined accelerometer and magnetometer data will contain a significant amount of 

noise whereby the signal oscillates several degrees per frame of motion. Noise can be 

improved with post-processing filters. 

In the mobile application, motion processing is achieved in three stages: pre-

processing, data fusion and post-processing using only the accelerometer and 

magnetometer. 

5.7.1 Pre-Processing 

The first step of the pre-processing stage is to extract data from the accelerometer and 

magnetometer, a process that is facilitated by the Android API. Optionally the 

gyroscope data can also be extracted. The gyroscope outputs angular speeds that 

require converting into world-space rotations. This process can be achieved using a 

similar solution to that implemented in the Motion Tracking Development System 

(MTDS) IMU (see Section 4.4.3). It is also important to apply a set of transformations 

so that the data matches the 3D engine's orthogonal configuration as specified by 

OpenGL ES. 
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5.7.2 Data Fusion 

Sensor fusion is the process of merging the output of two or more sensors to produce 

a better result, which has little drift or noise. There are many methods to achieve this 

task such as the Kalman filter [171] [172] or complementary filters. Complementary 

filters merge the gyroscope, which has drift, with the accelerometer and 

magnetometer, which have noise, to produce a result that has little drift or noise. 

The final version of the mobile application takes the accelerometer and magnetometer 

values and combines them. This process is achieved using the getOrientation function 

call of the Android API. This approach is desirable for situations where older 

smartphones, that do not enclose gyroscopes, are used to record motion. However, 

using the accelerometer and magnetometer requires post-processing. 

5.7.3 Post-Processing 

Post-processing of inertial motion data is commonly referred to as data cleaning. The 

mobile application cleans the motion data in two stages: smoothing and error 

checking. A smoothing filter, which applies a Gaussian mask to the motion data, is 

used to remove unwanted noise. Notably, the smoothing filter is optional because it 

can reduce accuracy in favour of creating better-looking animation. Errors, which are 

miscalculated angular readings, can occur due to sensor or software problems. It is 

therefore important to check every angular reading against its neighbours and, if 

required, replace the angular reading with an interpolated substitute. 

After the motion data is cleaned, the mobile application applies smoothing to all the 

angular readings. Smoothing is an optional process whereby 2D Gaussian masks are 

applied to every frame of motion. Smoothing is optional because it compromises 

accuracy to produce a result that looks good. However, smoothing is desirable 

because the application fuses only the accelerometer and magnetometer data, thus 

producing a result that contains large amounts of noise. Raw data may be preferred 

for scientific studies (because it is more accurate) while fluent motion may be desired 

for animation (because it looks better). Although it is not implemented in the 

interface, the mobile application can be configured to enable or disable the amount of 

smoothing depending on the task. 
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5.8 Event Triggers 
Although an animation suit consists of several hardware devices networked together, 

the hardware behaves as a singular device. Consequently, an important element of a 

BSN is the control mechanism that allows multiple devices to be controlled by one 

centralised node that is often referred to as a multiplexer. The smartphone-driven 

BSN replaces the concept of a multiplexer for a server and the control mechanism 

needs to be implemented at the server level. In terms of usability, interacting with 

several body-worn smartphones simultaneously is difficult. The smartphones must be 

remote controlled using event triggers. The term event trigger describes a specific 

web service that sends events to multiple smartphones concurrently. Because the 

design of the BSN is omnidirectional, an event trigger may be accessed from the any 

networked smartphone’s interface. 

This example implementation of event triggers uses a passive server that cannot 

actively contact a smartphone. Each BSN’s online data is accompanied by a trigger 

value, which is represented by an integer. The trigger value can be modified by any 

networked smartphone through a web service. At the same time, every other 

smartphone listens to that integer for changes. If a change is discovered, the mobile 

application reacts accordingly. Figure 5-10 illustrates how multiple smartphones can 

be controlled from one interface. The white smartphone is tapped to begin recording, 

and after the black smartphones replicate that functionality. The status change is made 

visible as the interface changes colour from orange (inactive) to green (active). 

 

Figure 5-10: Remote-controlling smartphones using event triggers. 

Source: Pascu et al. [15] [16] 
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5.9 Data Communication Protocols 
An important aspect of the smartphone-driven BSN is data intercommunication 

between smartphones. While inertial motion capture suits use short distance 

connections such as Bluetooth, a smartphone connection can vary between three 

states: fast connectivity (i.e. Wi-Fi or 4G), slow connectivity (i.e. 3G) and no 

connectivity. Additionally, the signal strength may vary (e.g. in some circumstances 

making a 4G connection slower than a 3G connection). In many situations the 

connection will alternate between different modes. 

A flexible data communication protocol is needed to ensure that the smartphone can 

stream data to the Motion Cloud. The problem is not the quantity of data but the 

frequency at which a connection to the Motion Cloud is established. The proposed 

data streaming protocol allows the smartphone to send motion data to the server in 

variable-sized buffers. The size of the buffers is governed by the connection speed. 

The mobile application buffers data and starts asynchronous server calls. Data is 

uploaded by each asynchronous call in the form of JavaScript Object Notation (JSON) 

packets. 

Fast Connection 

In situations where the connection is fast, asynchronous calls are made as frequently 

as possible for real-time data streaming. The highest frequencies will likely be 

achieved over Wi-Fi. 

Slow Connection 

In situation where the connection is slow, the mobile application begins streaming 

data in larger chunks less frequently. Over 3G, the smartphone will upload data to the 

server approximately twice per second depending on signal strength. 

No Connection 

In situation where the connection drops, the mobile application begins recording 

motion into local storage. When a connection is eventually regained, all the buffered 

data is uploaded. This approach ensures that no motion data is lost. 
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5.10 Synchronization 
Synchronization primarily occurs once all the smartphones have uploaded their data 

to the Motion Cloud repository as channel objects. Synchronization is required as 

each smartphone begins and finishes recording at slightly different times depending 

on connection latencies. The beginning and end of each channel requires truncation to 

correct data misalignments. Figure 5-11 illustrates the simulated recording process of 

five smartphones for a short period of three seconds at the frequency of 10f/s. The 

darker rectangles are used to illustrate alignment. 

 

 

 

 

Figure 5-11: Smartphones starting and stopping the recording process through event triggers 

at varying times depending on connection latencies. 

Figure 5-12 illustrates how the motion data would be interpreted by smartphones 

without synchronization. The channel contents are pushed to the left because the BSN 

has no means of knowing when each smartphone has started or finished recording. 

The result is a misaligned set of data that can be aligned through synchronization. 

 

 

 

 

 

Figure 5-12: Smartphones interpreting unsynchronized data. 

The proposed methodology for synchronization consists of three solutions for: pre-

synchronization, post-synchronization and capping.  
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5.10.1  Pre-Synchronization 

Pre-synchronization is a simple process that takes place at the beginning of a 

recording session. Every channel in a recording is emptied when a smartphone is 

tapped to begin recording. As shown in Figure 5-11, smartphone S2 begins recording 

after S1. At the point where S2 has begun recording, S1’s channel already contains 

several frames of motion that will cause a misalignment in the data. Consequently, S2 

empties S1’s channel to synchronize the data. As shown in Figure 5-13, this approach 

improves the alignment of the data although the result is not perfect. 

 

 

 

 

Figure 5-13: Alignment of channel data using the pre-synchronization methodology. 

5.10.2  Post-Synchronization 

While the above methodology shows a significant improvement, the improvement is 

only noticeable if the connection is slow. Post-synchronization takes place after a 

recording session has finished. To synchronize the channels further, the smartphones 

takes advantage of the smartphone’s clock based on the assumption that two Android 

devices in the same time zone have the same or at least a very similar clock reading. 

Depending on how accurate the clock is, post-synchronization could improve data 

alignment. At the beginning of a recording session, each smartphone uploads a 

timestamp corresponding to the exact time it began recording. Table 5-1 illustrates the 

simulated timestamps of the five smartphones in the above examples. 

Table 5-1: Timestamps corresponding to the beginning of the recording session. 

Smartphone Channel Timestamp (ms) Difference 
(ms) 

Truncated 
frames 

S1 58752245 0 0 
S2 58752571 326 3 
S3 58752502 257 3 
S4 58752612 367 4 
S5 58752399 154 2 

motion	
  frames	
  

S1	
  

S2	
  

S3	
  

S4	
  

S5	
  

5	
   10	
   15	
   20	
   25	
   30	
  

ch
an

ne
ls
	
  

35	
  

improved	
  
alignment	
  



	
  

	
  

134 

The latest timestamp is used as a reference point to truncate any unwanted motion 

frames. The smallest timestamp is subtracted from each channel’s timestamp. The 

resulting difference is divided by number of milliseconds between two motion frames 

depending on the recording’s frame rate, to determine the number of motion frames 

that require truncation. As shown in Figure 5-14, the server iterates through the 

channels and removes the concluded amount of motion frames to synchronize the 

data. The desired result is a synchronized recording whereby the data is aligned 

correctly. Truncating motion frames implies removing data that could useful. An 

alternative and possibly better methodology would be to insert blank frames. 

 

 

 

 

 

Figure 5-14: Post-synchronization alignment of channel data. 

5.10.3  Capping 

As illustrated in Figure 5-15, the final stage of synchronization is to truncate the end 

of motion channels such that all channels are the same length. This step is required 

primarily for the mobile application’s parser to avoid potential errors. 

 

 

 

 

 

Figure 5-15: Synchronized result.  
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5.11 Versioning 
The development of the mobile application was achieved in incremental stages 

whereby each stage is focused on demonstrating part of the functionality. As shown in 

Table 5-2, this section discusses the five release versions, each having multiple 

subversions. 

The first version was focused on achieving core functionality that proved the concept 

to be viable. Data was extracted from the gyroscope, applied to a kinematic model and 

visualised in OpenGL ES and outputted as a BVH file. The second version was 

focused on evaluating the accelerometer and magnetometer while improving the 

overall interface with multitouch interaction and adding animation playback 

functionality. The third version was focused on adding networking functionality 

through web technologies whereby users can upload and download data from the 

server. The fourth version introduces data streaming, a process that required a 

redevelopment of the multithreading architecture. The final version brings all the 

previous developments into one large package. 

Table 5-2: Skeletrix mobile application versioning. 

Functionality 1.0 2.0 3.0 4.0 5.0 

Core Functionality      
Record Data (Gyro) YES YES YES YES YES 
Record Data (Acc/Mag) N/A YES YES YES YES 
Motion Processing N/A N/A N/A YES YES 
Kinematics YES YES YES YES YES 
Motion Files Parsing YES YES YES YES YES 
Local Storage of Motion N/A YES YES YES YES 
Interface Functionality      
OpenGL Rendering YES YES YES YES YES 
Multitouch Interaction N/A YES YES YES YES 
Camera Selection Tools N/A N/A YES YES YES 
Animation Playback YES YES YES YES YES 
Web Functionality      
Web Storage of Motion N/A N/A YES YES YES 
User Authentication N/A N/A YES YES YES 
User Registration N/A N/A N/A YES YES 
Create Recording Objects N/A N/A N/A N/A YES 
Upload Motion N/A N/A YES YES YES 
Download Motion N/A N/A YES YES YES 
Stream Motion N/A N/A N/A YES YES 
BSN Functionality      
Event Triggers N/A N/A YES YES YES 
Data Synchronization N/A N/A N/A YES YES 
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5.12 Capturing Motion 
The mobile application was evaluated in three stages whereby each stage 

demonstrates several aspects of the mobile application’s functionality. While the first 

stage involves simulating a hand wave gesture on a flat surface, the second stage 

focuses on capturing a body’s motion in the traditional way by strapping three 

smartphones to the body. The third stage demonstrates the mobile application’s ability 

to sense continuously through an example of activity tracking. These results have 

previously been published in Pascu et al. [15] [16] [19]. 

5.12.1  Simulating a Hand Wave 

As shown in Figure 5-16, the first and most simple test of the mobile application was 

performed on a flat surface using two networked Samsung Galaxy S3 smartphones. 

By sliding the two smartphones in an arch fashion, the kinematic model simulates a 

simple hand wave gesture. 

 

Figure 5-16: Simulating and capturing a hand wave gesture using two Samsung Galaxy S3s. 

Source: Pascu et al. [15] [16] 
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This study demonstrates the mobile application’s user journey through six user-

performed steps: 

1. Load Kinematic Models: The mobile application is launched on both 

smartphones and identical BVH files are loaded to generate the same 

kinematic model on both devices. 

2. Select Kinematic Joints: The recorder is opened and a kinematic segment is 

chosen. The black smartphone selects the rShldr joint (corresponding to the 

arm) and the white smartphone selects the rArm joint (corresponding to the 

forearm). 

3. Perform Calibration Gesture: The smartphones are placed horizontally for 

calibration whereby the difference between the kinematic model and the 

device’s rotation is compensated. This step works in a similar way to T-Pose 

calibration in motion capture suits. 

4. Begin Recording: One of the smartphones is tapped to begin recording and 

both interfaces turn green, thus demonstrating the concept of event triggers.  

5. Perform Animation: The smartphones are slid on the flat surface in an arch 

fashion to simulate a basic hand wave gesture consisting of two consecutive 

waves. Once the animation is completed, the smartphones are returned to their 

horizontal configuration. 

6. Visualise Results: Immediately after the smartphones are tapped to stop 

recording, the data is uploaded to the server and downloaded on each device. 

By pressing the play button, the result (highlighted in green) can be visualised 

on both smartphones. 

5.12.2  Recording a Hand Wave Gesture 

Having proved the concept that smartphones can be used to record articulated motion; 

the next step involved using smartphones to record real human motion. Three 

Samsung Galaxy S3 devices were strapped to the motion performer’s right arm to 

form a motion capture sleeve. More specifically, a smartphone was strapped to the 

arm, forearm and hand using elastic bands. This particular device is ill suited for this 

type of application due to its large screen dimensions. However, because the device 
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has a large surface area and is relatively light, it slides very little in relation to the 

body. 

During the experiment, the same recording object and kinematic rig were loaded on 

each of the three devices. The recorder was launched and the devices became 

networked. The recording frequency was set to 30f/s and the right arm was extended 

laterally away from the body to perform the T-pose. The record button was tapped 

and all devices started recording. 

As with the previous experiment, the performed gesture is a wave gesture of three 

consecutive swings of the right arm. This gesture was chosen for the experiment 

because it provides a clear image of the data. If a sensor is not synchronized or 

drifting, the error is immediately visible in the 3D reconstruction. Figure 5-17 shows a 

comparison between the real-life movement and its corresponding virtual 

reconstruction. 

 

Figure 5-17: Capturing an arm's motion using three body-worn Samsung Galaxy S3 

smartphones. Source: Pascu et al [19] 

Figure 5-18 shows the rotational data recorded during the gesture. The graph shows a 

repeating pattern between each kinematic channel and between consecutive waves. 

Throughout the gesture, the arm rotates approximately 20 degrees in each of the three 

axes. The forearm and hand move in tandem, rotating in excess of 100 degrees. From 
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the graphs we can determine that the arm does the least movement while the forearm 

and hand have produce nearly indistinguishable data sets. 

 

Figure 5-18: Rotational data of three consecutive hand wave gestures. 

Source: Pascu et al. [19] 

5.12.3  Recording Active and Sedentary Behaviour 

The previous examples have demonstrated BSNs worn by one person. In this activity-

tracking example, the BSN receives data from two separate individuals performing 

everyday activities over a time period of two hours. This experiment was designed to 

put stress on the mobile application’s data streaming protocol to see if continuous 

sensing is possible, if the mobile application crashes and if data is lost. 

To put the data into context, the smartphones are used to track the physical activity of 

a sedentary individual in the work environment and a more active individual going 

walking through a town’s centre. Both recordings take place simultaneously. While 

the first individual records motion through Wi-Fi, the second individual alternates 

between Wi-Fi, 3G and no connection. The BSN is used to aggregate and compare the 



	
  

	
  

140 

data. The combined rotation per frame of motion is summed to conclude a coefficient 

of activity based on the assumption that if a person is more active, the smartphone 

will rotate more. Figure 5-19 show a comparison between the two sets of data where 

sedentary (green) behaviour is superimposed on top of active (grey) behaviour. 

 

 

 

 

 

 

 

 

Figure 5-19: Graphical comparison between sedentary (green) behaviour and active (grey) 

behaviour. Source: Pascu et al. [19] 

While there are better methodologies for capturing activity data, these results 

demonstrate that the mobile application is abled to track motion continuously during 

everyday use. The task of incorporating a complex activity tracking system extends 

beyond the scope of this thesis. While activity tracking is generally achieved using 

accelerometer data, this example demonstrates that rotations can be used for this 

purpose. The mobile application could be calibrated against a commercial pedometer 

(e.g. FitBit [173], Jawbone UP [174], etc.) to compute the number of steps taken, 

calories burnt and distance walked. 

5.13 Conclusions 
Smartphones have a significant impact the field of inertial motion capture and BSNs 

because, like IMUs, smartphones contain gyroscopes, accelerometers and 

magnetometers along with telecommunication technologies. This chapter draws a 

parallel between the smartphones and IMUs to investigate the sensing capabilities of 

mobile computing technologies. While the concept of smartphone sensor networks is 
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not new to smartphones, the act of creating an omnidirectional smartphone-driven 

BSN for human motion tracking is. 

Within the scope of this thesis, the proposed mobile application is developed from the 

Skeletrix software environment presented in the Chapter 3. Unlike the Skeletrix 

software environment, where motion processing is made transparent to the users, the 

mobile application aims to automate the process to achieve a minimalistic user 

journey. This chapter investigates the implications of simplifying, porting and heavily 

modifying the Skeletrix software environment on the Android platform. 

The task of constructing an omnidirectional smartphone-driven BSN that uses web 

technologies was achieved through several key developments, all of which have been 

discussed throughout this chapter: motion processing, real-time data communication 

protocols, mechanisms for remote-controlling the functionality of network nodes, data 

synchronization, etc. Learning what smartphones can do can be beneficial to 

developing better inertial motion capture systems. Rather than defining the BSN 

configuration at the hardware level through a physical multiplexer (as demonstrated 

by MTDS), the BSN can now be conceptualised and created on a web server through 

software. For example, the number of nodes belonging to the BSN is no longer 

limited by the multiplexer. Smartphones can be added or removed with ease, thus 

allowing users to customize the BSN for their individual experiments. 

5.13.1  Application Areas 

This section discussed four potential usability scenarios that illustrate the versatility of 

the mobile application. The four proposed usability scenarios are: medical science, 

activity tracking, emergency responses, road and traffic condition monitoring. 

Scenario 1: Medical Science 

As published in Pascu et al. [15] [16], a very important application area for inertial 

motion capture is medical science. Some medical disorders have a measurable effect 

on the motor functions of the body. Smartphones can be used to track the motion of 

one or several points on the body. In the case of idiopathic scoliosis [51], a torso-

mounted device can determine the body’s axis of balance and identify 

musculoskeletal asymmetries. In the case of Parkinson’s disease [48] [79], a limb-

mounted device can measure symptoms such as shaking, body rigidity and slowness 
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of movement. A body-worn smartphone has the potential to measure treatment 

responses and while providing useful data to medical and healthcare professionals. 

Scenario 2: Activity Tracking 

In the context of health and fitness, the proposed mobile application can be used to 

compute a rough estimation of physical activity. The smartphone presents the 

necessary hardware to replicate the functionality of commercial pedometers. While 

this chapter has demonstrated basic activity tracking from kinematic rotations, there 

are more accurate solutions for tracking physical activity such as Samsung S-Health 

[175]. The application has the potential to be extended with algorithms for converting 

rotational data into activity parameters. For example, [176] shows a much more 

thorough approach for turning the smartphone into a pedometer using motion data. 

Scenario 3: Emergency Responses 

The mobile application allows the smartphone to stream motion data continuously 

into an online repository. That data can be processed to identify anomalies that are 

indicative of emergency situations. For example, inertial sensors could be used to 

detect if an elderly person has collapsed [177] or if someone has experienced an 

accident and notify authorities. 

Scenario 4: Road and Traffic Condition Monitoring 

The mobile application could be used outside the context of character motion tracking 

to record the motion of vehicles. In vehicles, the smartphone is commonly used either 

as a storage device for music or for GPS turn-by-turn navigation. Sensing the motion 

of the vehicle could be beneficial in monitoring road and traffic conditions [178]. For 

the mobile application to be used in this context, additional functionality is required to 

interpret the motion data and potentially merge it with geographical location data. 
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CHAPTER SIX 

6 Motion Cloud: A Repository and 

Gateway for Inertial Motion Data 

6.1 Introduction 
The focus of this chapter is the Motion Cloud as published in Pascu et al. [19], an 

online repository and gateway for all motion capture mediums: animation suits, 

smartphones, inertial measurement units and even activity tracking accelerometer-

based devices. The Motion Cloud elaborates the concepts of storing, organising and 

accessing motion data through an innovative set of web services and database models. 

The proposed architecture is highly extendable and optimized to handle large amounts 

of data. The research work presented in this chapter can be divided into three main 

categories: repository, gateway and web portal. While the repository and gateway are 

integral to the Motion Cloud technology, the web portal is an auxiliary component 

providing an interface layer. The interface layer is used to test the repository and the 

gateway and allows users visualise and manipulate the motion data. 

With the research work presented in this chapter, the Skeletrix software environment 

and mobile application are given functionality for communicating (streaming or 

uploading) inertial motion capture data into online storage. This concept was first 

introduced in the previous chapter in the context of online BSNs where the 

multiplexer is substituted for an online server. 

Unlike other motion libraries, the Motion Cloud is unique because it provides a more 

detailed methodology for interacting with the motion data. Each rotational value 

produced by an inertial motion capture system is stored as a single entry in the 

database. Therefore, the data can be accessed quickly through the web portal or 

through web services by software applications. This gives the Motion Cloud 

architecture a great potential to be extended to contain motion analysis and cleanup 

tools, thus allowing users to inspect or edit the data online. This is not currently 

possible with existing online motion databases that contain the motion data uploaded 

as files, which must be downloaded to be processed. 
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6.2 Framework Relevance 

The Motion Cloud can be seen as a bridging architecture between the two previously 

introduced software components of the Skeletrix framework, namely the software 

environment and the mobile application. The act of connecting the two framework 

components has positive ramifications. For example, all inertial technologies (e.g. 

smartphones, BSNs, inertial measurement units (IMU), development boards, 

pedometers, etc.) are treated equally allowing for performance evaluations and 

benchmarking. The Motion Cloud creates a methodology for transferring motion data 

between the software environment and the mobile application presented in this thesis. 

The motion capture workflow, which was previously limited to extracting data from 

hardware using a computer, is expanded to include web technologies. As shown in 

Figure 6-1, web technologies are the top layer of the proposed framework. To make 

the Motion Cloud concept relevant beyond the scope of this framework, the gateway 

is developed as an Application-Programming Interface (API) allowing for third-party 

software integration (e.g. downstream applications that can download motion data 

from the repository). 

 

Figure 6-1: The Motion Cloud adds web technologies to the Skeletrix framework. 

Source: Pascu et al. [15] [16] 
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6.3 Requirements Specification 
At its core, the design process of the Motion Cloud is focused on three principal areas: 

repository, gateway and web portal. This section summarizes both functional and non-

functional requirements to create a basic development specification.  

6.3.1 Repository 

Object-Oriented Data Model: Object-orientation provides an efficient approach to 

organising data so that it is easily accessible. Therefore, the data model should be 

object-oriented whereby a BSN’s output can be represented as a set of data model 

objects. Each data model object must have a logical purpose and exist both 

independently and as a component of a hierarchy. In the context of inertial motion 

capture, the hierarchy will mimic the skeletal definition of the system in use. For 

example, an upper body BSN, like the Motion Tracking Development System 

(MTDS), will produce seven channels objects, each containing multiple vector 

objects, of motion data in the Motion Cloud. 

Data Storage: Motion capture data streamed from a BSN, even over short periods of 

time, implies a large number of database entries. Every angular reading must be 

placed as an object in the database so that it may be identified and retrieved later. 

Additionally, the data model must be optimized to keep the database size to a 

minimum.  As previously discussed in Section 2.7.1, stored motion data must be in a 

format that is both intuitive and easy to extract from hardware. While quaternions and 

rotation matrices provide performance, only the Euler rotational model can be 

interpreted (through 2D graphs) without using 3D visualisations. 

Object Dependencies: All data stored in the repository hierarchy should conform to a 

list of dependencies. If a user deletes a channel, all hierarchy dependent vector model 

objects must also be removed. If a user uploads a recording, the repository must 

automatically generate and organize new data model objects. 

User Accounts: The repository should differentiate between its users to protect the 

stored data. To use the Motion Cloud, users are required to first register an account by 

providing personal information such as profile information and authentication details. 

While security and privacy are important, this requirement is not mandatory for a 
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prototype-level development. However, each motion recording must be bound to one 

user account that is protected by a password. 

6.3.2 Gateway 

Data Streaming: Because inertial motion capture systems do not store data internally, 

the gateway should allow systems to stream data to the repository. In theory, data can 

be streamed as it is obtained from the hardware, one angular reading at a time. In 

reality, data is buffered and streamed as packages, which contain several angular 

readings each. Data streaming involves asynchronous server calls made by client 

applications (e.g. software environments, drivers, etc.) to upload the buffered data as 

packets. 

Application-Programming Interface: The Motion Cloud is designed and implemented 

as an online platform for inertial motion capture data that can be integrated with third-

party software applications. An API consisting of generic web services and 

documentation is required to allow software developers to interface with the gateway. 

It is desirable for the web services to be versatile and to facilitate most usability 

scenarios. 

6.3.3 Web Portal 

Data Visualization: Graphs provide an instant overview of the motion whereby users 

can determine if an IMU is producing valid data and if the data contains drift and 

noise. Graphical spikes can provide a preliminary understanding of the recorded 

motion. For example, frequent highpoints and depressions would indicate active 

behaviour while flatter curves would suggest sedentary behaviour. Therefore, a 

requirement for the web portal is to generate graphs from motion data. 

Data Retrieval: The web portal should provide the functionality for exporting data in 

tabular or motion capture file formats. For example, an animation suit’s data that is 

streamed into the repository could be downloaded directly by the user in a tabular 

format. 

Data Manipulation: Data manipulation implies accessing, editing or deleting objects 

stored in the database. Through the web portal, all five layers of objects (i.e. profiles, 

groups, recordings, channels and vectors) must be made accessible and editable 

through the interface so that users have full control of their motion data. 
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6.4 Repository Design and Implementation 
The repository is designed to accommodate any configuration of sensors, whether it’s 

a single IMU streaming one channel of data or a full-body animation suit streaming 

eighteen channels. Therefore, the data model is both object-oriented and extensible to 

grow and shrink depending on the hardware output. The data model was designed and 

implemented using a set of abstraction layers whereby the user is the most abstract 

layer and vector objects are the least. As shown in Figure 6-2, the repository contains 

primarily five objects that form a hierarchy: vector, channel, recording, groups and 

profiles. 

 

 

 

 

 

 

Figure 6-2: Repository data model object hierarchy. 

6.4.1 Vector Objects 

Vectors are small table objects that store three floating-point numeric values 

corresponding to a sensor’s yaw, pitch and roll. Although the focal topic of this thesis 

is inertial motion capture, vectors could be used to cover other types of data such as 

positional vectors, gravitational forces, magnetic field readings, etc. For example, 

there is potential for other motion capture technologies, such as Microsoft Kinect, to 

store data in the same data model. This concept was evaluated by integrating the 

FitBit pedometer and storing its activity data, as vector objects, in the repository. 

Towards the end of this chapter, the concept of integration is discussed by developing 

a MotionCloudViewer for the software environment and a standalone driver for the 

Razor IMU presented in Chapter 4. 
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6.4.2 Channel Objects 

Channel objects enclose multiple vectors that represent a stream of recorded data 

where each vector is a single sensor reading from one BSN node. A single 

smartphone will only use one channel. A full-body animation suit will contain 

approximately twenty channels if the hardware’s data is uploaded directly. If the data 

is first passed through a kinematic model, the number of channels will double. This is 

because kinematic models contain dummy skeletal segments, which rotate and 

translate purely though kinematic constraints. The Motion Cloud would interpret 

those dummy skeletal segments as empty channels. For example, the motion 

performer may wear only one IMU on their back while the kinematics skeleton has an 

articulated spine consisting of several dummy skeletal segments. 

6.4.3 Recording Objects 

A recording, as the title would imply, contains all the data produced by a BSN from 

when it was activated to when it was switched off. Recording objects contain one or 

more channels whereby each channel corresponds to one BSN node. Additionally, 

recording objects contain a useful text description and title that can be used to label 

the performed motion. For example, during a behavioural experiment, the system 

operator can write the motion performer’s name in the recording title and outline the 

recording circumstances in the text description. 

6.4.4 Group Objects 

Groups are simple data structures enclosing one or more recording objects. Unlike the 

other levels of the hierarchy, groups are not integral to the storage mechanism. Once 

authenticated, the user can see all the recordings bound to his account or alternatively, 

only the ones belonging to a group. The group object can also be given a text 

description to summarise its contents. The concept of organising recordings in groups 

is open to interpretation. A group may contain all the recordings completed using a 

particular hardware configuration (e.g. all the motion data recorded using the MTDS 

system). For researchers, a group may include all the recordings relating to a 

particular experiment. This functionality was designed for research projects like the 

ones presented in Section 1.6, namely the Motion in Place Platform project (motion 

tracking of archaeologists) [25] [26] [27] and the forensic psychology experiment 

(motion tracking of burglars) [30] [31] [32]. These research projects involved 
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capturing several actions performed by actors, some of which required multiple takes. 

The group object simplifies the process storing, organising and categorising data in 

these scenarios. 

6.4.5 Profile Objects 

The highest and most abstract level of the data model hierarchy is the profile object. 

Anyone using the Motion Cloud must first register a user account and authenticate to 

be granted access to the data. The repository’s user object stores authentication 

details, first name, last name and contact details. 

6.4.6 Data Model Specification 

The following database schema, shown in Figure 6-3, was used as a development 

specification for the data model. It summarises the objects previously discussed and 

showcases their fields. 

 

 

 

 

 

 

Figure 6-3: Database schema of the repository data model. 

+	
  id:	
  int(255)	
  
+	
  username:	
  varchar(10)	
  
+	
  password:	
  varchar(10)	
  
+	
  firstname:	
  varchar(10)	
  
+	
  lastname:	
  varchar(10)	
  
+	
  email:	
  varchar(10)	
  

recording	
  

+	
  recording_id:	
  int(255)	
  <pk>	
  
+	
  owner:	
  int(255)	
  <fk>	
  
+	
  title:	
  varchar(10)	
  
+	
  description:	
  varchar(100)	
  
+	
  datetime:	
  datetime	
  
+	
  timestamp:	
  int(255)	
  
+	
  status:	
  tinyint(3)	
  

group	
  

+	
  group_id:	
  int(255)	
  <pk>	
  
+	
  title:	
  varchar(10)	
  
+	
  description:	
  varchar(10)	
  
+	
  datetime:	
  datetime	
  

+	
  channel_id:	
  int(255)	
  <pk>	
  
+	
  recording_id:	
  int(255)	
  <fk>	
  
+	
  name:	
  varchar(10)	
  
+	
  timestamp:	
  int(255)	
  

channel	
  
vector	
  

+	
  vector_id:	
  int(255)	
  <pk>	
  
+	
  channel_id:	
  int(255)	
  <fk>	
  
+	
  x	
  :float	
  
+	
  y:	
  float	
  
+	
  z:	
  float	
  

group_recording	
  

+	
  group_recording_id:	
  
int(255)	
  <pk>	
  
+	
  group_id:	
  int(255)	
  <fk>	
  
+	
  recording_id:	
  int(255)	
  
<fk>	
  
	
  

group_owner	
  

+	
  group_owner_id:	
  int(255)	
  <pk>	
  
+	
  group_id:	
  int(255)	
  <fk>	
  
+	
  owner_id:	
  int(255)	
  <fk>	
  
	
  

recording_owner	
  

+	
  recording_owner_id:	
  int(255)	
  <pk>	
  
+	
  recording_id:	
  int(255)	
  <fk>	
  
+	
  owner_id:	
  int(255)	
  <fk>	
  

user	
  
1	
  

1	
  

1	
  

1	
   1	
  

1	
  

1	
  

1	
  

*	
  

*	
  

*	
  

*	
  

*	
  

*	
  

*	
  

*	
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6.5 Gateway Design and Implementation 
Having defined a repository for storing BSN data, the next component of the Motion 

Cloud is the gateway. As shown in Figure 6-4, the gateway is an access layer for 

connecting the repository with software-environments, mobile applications, drivers, 

etc. The purpose of the gateway is to allow software developers to integrate third-

party applications with the Motion Cloud. The gateway features a flexible API 

consisting of a new set of web services allowing developers to create, retrieve, update 

and delete repository objects. Using the API, users develop motion capture software 

applications that communicate data to and from the Motion Cloud and benefit from its 

features (e.g. the web portal). 

 

 

 

 

 

  

 

Figure 6-4: Motion Cloud gateway layer integrating third party software applications through 

API calls. 

Each Motion Cloud API call is a PHP web service whose functionality can be 

identified by its title. For example, channel_getlist will return a list of channels, 

consisting of unique channel ids and names bound to an account and channel_get will 

return the contents of a single channel. Sending or retrieving data involves JavaScript 

Object Notation (JSON) packets and POST or GET HTTP requests. 

The API has been implemented and tested using the software environment, mobile 

application and web portal. This section continues to discuss the profile, group, 

recording, channel and vector categories of API calls. In a similar way to the 

repository, the API architecture also forms a hierarchy whereby a call may itself 

	
  API	
  Calls	
  

Repository	
  

Other	
  Drivers
Mobile	
  

Applications	
  
Software	
  

Environments	
  

Motion	
  Cloud	
  Gateway	
  



	
  

	
  

151 

access other calls. For example, making a request to obtain a recording’s data will 

invoke nested channel and vector calls.  

6.5.1 Profile API Calls 

The first stage of interacting with the Motion Cloud API from a client-side application 

is to create a profile and authenticate. Figure 6-1 summarises the profile API calls, the 

necessary input parameters and the expected functionality. Example JSON packets for 

these calls can be found in Appendix C.1. 

Table 6-1: Profile API calls. 

API Call Input Parameters Functionality 

profile_authenticate Unique username and 
password. 

Returns the user id if the 
password is correct and zero if 
it is not. 

profile_create Username, password, first 
name, last name and email 
address. 

Creates a user profile with the 
given information and returns 
the profile’s user id. 

profile_get Unique user id. Returns a JSON packet 
containing the username, 
password, first name, last name 
and email address. 

profile_update User id, username, password, 
first name, last name and email 
address. 

Updates a user profile with the 
given information. 

profile_delete Unique user id. Deletes a profile object. 

profile_check_username Unique username Checks whether the username 
is taken. 
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6.5.2 Group API Calls 

Table 6-2 summarises the group API calls, the necessary input parameters and the 

expected functionality. As previously mentioned, groups are an optional part of the 

API designed to organise repository data. Example JSON packets for these calls can 

be found in Appendix C.2. 

Table 6-2: Group API calls. 

 

API Call Input Parameters Functionality 

group_getlist Unique user id. Returns a JSON packet 
containing all list of groups 
bound to one account. The list 
consists of group unique ids, 
titles and descriptions. 

group_create Unique user id, title and 
description. 

Creates a blank group object. 

group_get Unique group id. Returns a JSON packet 
containing a hierarchy of 
recording objects containing 
channel and vector objects. 

group_add Unique group id and 
recording id. 

Adds a recording to a group. 

group_remove Unique group id and 
recording id. 

Removes a recording from a 
group. 

group_delete Unique group id. Deletes a group. 
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6.5.3 Recording API Calls 

The recording API is potentially the most used and important component of the 

gateway as every system, whether it’s a single IMU or a whole BSN, uploads data as 

recording objects. Table 6-3 summarises the API calls. Example JSON packets for 

these calls can be found in Appendix C.3. 

Table 6-3: Recording API calls. 

 

  

API Call Input Parameters Functionality 

recording_getlist_uid Unique user id. Returns a JSON packet 
containing all the unique 
recording ids, names and 
descriptions bound to one profile 
object. 

recording_getlist_gid Unique group id. Returns a JSON packet 
containing all the unique 
recording ids, names and 
descriptions bound to one group 
object. 

recording_create JSON packet containing a 
title, description and 
hierarchy of channels 
objects. 

Creates a blank recording object. 

recording_get Unique recording id. Returns a JSON packet 
containing a hierarchy of 
channel and vector objects. 

recording_update JSON packet containing a 
title, description and 
hierarchy of channels 
objects. 

Updates a recording with new 
channel and vector objects. 
Those objects are concatenated 
to the end of the recording. 

recording_share Unique user id of owner, 
username of receiver and 
unique recording id. 

Bounds a recording object to the 
second user account. The 
recording will appear on both 
user accounts. 

recording_clear Unique recording Deletes all the channel objects 
contained by the recording. 

recording_delete Unique recording id. Deletes a recording object. 
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6.5.4 Channel API Calls 

Table 6-4 summarises the channel category of API calls. Example JSON packets for 

these calls can be found in Appendix C.4. 

Table 6-4: Channel API calls. 

6.5.5 Vector API Calls 

As illustrated by Table 6-5, the API also allows software environments to access 

individual vector objects. While this category of calls is primarily used by the API 

itself, it provides developers with complete control of the repository data. Example 

JSON packets for these calls can be found in Appendix C.5. 

Table 6-5: Vector API calls. 

API Call Input Parameters Functionality 

channel_getlist Unique recording id. Returns a JSON packet 
containing a list of channel titles 
and names. 

channel_create Unique recording id and channel 
name. 

Creates a channel and adds it to a 
recording object. 

channel_get Unique channel id. JSON packet containing channel 
id, name and a list of vector 
objects. 

channel_update JSON packet containing recording 
id and a list of vector objects. 

Updates a channel with new 
vector objects. 

channel_delete Unique channel id. Deletes a channel object. 

API Call Input Parameters Functionality 

vector_gelist Unique channel id. Returns a JSON packet 
containing a list of vector ids. 

vector_create Unique channel id, yaw, pitch and 
roll values. 

Creates a new vector object and 
adds it at the end of the specified 
channel object. 

vector_get Unique vector id. JSON packet containing a 
unique vector id, yaw, pitch and 
roll values. 

vector_update Unique channel id, yaw, pitch and 
roll values. 

Creates a vector and adds it to a 
recording object. 

vector_delete Unique vector id. Deletes a vector object. 
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6.5.6 Stringing Together API Calls 

The act of integrating the Motion Cloud API with a client-side application involves 

stringing together API calls in a specific order. 

Figure 6-5 illustrates how a client-side application can upload a recording. The first 

step is to authenticate through the interface by entering a unique username and a 

secret password. The server-side controller takes those values and posts them to 

retrieve a unique profile id. The user id is then posted back to the server along with a 

JSON packet containing a recording’s data. The Motion Cloud parses the packet and 

creates a recording object in the repository. The recording object is populated with 

channels and each channel is populated with a list of vectors. To finalize the process, 

the application retrieves a recording id for safekeeping and to access the data at a later 

stage. 

Figure 6-5: Sequence diagram illustrating how API calls can form a BSN. 
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Figure 6-6 shows the integration of the API with the Skeletrix mobile application by 

demonstrating how two interconnected smartphones can form one BSN. More 

specifically, this example demonstrates how one smartphone’s data is communicated 

across the BSN to a second smartphone. This example assumes that the user has 

authenticated and chosen a recording on both devices.  

Smartphone S1 is tapped to initiate the BSN and subsequently modifies the recording 

status from 0 to 1. S1 continues to update a channel’s data with new angular readings. 

S2 is listening for status updates and detects a change. Because the recording status is 

set to 1, S2 begins recording by updating another channel’s data with new angular 

readings. After the two channels are updated, both smartphones download a fresh 

copy of the recording and place it into local storage. 

 

 

 

 

 

 

 

 

 

 

Figure 6-6: Uploading a recording object using the Motion Cloud API. 
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6.5.7 API Integration 

The Motion Cloud API was integrated with the software environment, mobile 

application and web portal. Table 6-6 shows how the API was integrated within 

Skeletrix framework with the web portal, mobile application and software 

environment. Because the web portal and the repository are stored on the same server, 

the API functionality was absorbed into the web portal code to prevent the 

unnecessary JSON packet transfers and optimize the system. 

Table 6-6: Framework API integration. 

  

API Call Web Portal Mobile Application Software Environment 
profile_authenticate YES YES YES 
profile_create YES YES N/A 
profile_get YES N/A N/A 
profile_update YES N/A N/A 
profile_delete YES N/A N/A 
profile_check_username YES YES N/A 
group_getlist YES N/A N/A 
group_create YES N/A N/A 
group_get YES N/A N/A 
group_add YES N/A N/A 
group_remove YES N/A N/A 
group_delete YES N/A N/A 
recording_getlist_uid YES YES YES 
recording_getlist_gid YES N/A N/A 
recording_create YES N/A N/A 
recording_get YES YES YES 
recording_update YES YES YES 
recording_start YES YES N/A 
recording_stop YES YES N/A 
recording_status YES YES N/A 
recording_share YES N/A N/A 
recording_clear YES YES N/A 
recording_delete YES N/A N/A 
channel_getlist YES N/A N/A 
channel_create YES N/A N/A 
channel_get YES N/A N/A 
channel_update YES YES N/A 
channel_delete YES N/A N/A 
vector_gelist YES N/A N/A 
vector_create YES N/A N/A 
vector_get YES N/A N/A 
vector_update YES N/A N/A 
vector_delete YES N/A N/A 
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6.6 Web Portal Design and Implementation 

The Motion Cloud’s data is made accessible to users through a web portal, in a format 

that is suitable for downstream applications (e.g. establishing a motion library to 

showcase and analyse recorded data, creating a database for activity tracker data, 

etc.). The web portal is an interface layer developed using the aforementioned API 

together with, HTML, JavaScript and PHP. This section discusses the development of 

the web portal in terms of user journey and functionality. 

6.6.1 Use Cases 

Figure 6-7 summarises all the functionality possible through the web portal. Users 

must register and authenticate to gain access to the dashboard. The dashboard allows 

user to open their profile, select recordings or groups of recordings. Once a recording 

is selected, the user can visualise, modify, export or share its contents with other 

users. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6-7: Motion Cloud web portal use case diagram.  
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6.6.2 Main Interface 

As shown in Figure 6-8, the most elaborate interface of the web portal is the recording 

page as it provides most of the functionality. Aside from the header and footer, the 

recording interface can be divided into three sections: recording panel, BSN controller 

and channel visualizer. 

 

Figure 6-8: Motion Cloud web portal user interface. 

The recording panel is located at the top of the screen. Each recording has a 

description and a title, which can be edited through the recording page. By editing the 

description, users can write explanatory text summarising the meaning of the motion 

data. The recording panel also allows users to delete, share or export the data in the 
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CSV formats. The share functionality allows several accounts to be linked to the same 

recording object. 

The BSN controller allows users to remote control the recording process of an online 

BSN. In the context of smartphone-driven BSNs, clicking the record button will have 

the same effect as tapping the smartphone interface. All the smartphones connected to 

the recording will begin capturing motion. Like the mobile application interface, the 

record button changes from orange to green to give users a visual cue of the BSN 

status. 

Using the Google Chart API [179], the channel visualizer creates a graph for every 

channel object belonging to the recording. Graphs allow for a preliminary 

interpretation the motion, before any 3D visualisations. Future iterations of the web 

portal may support Web Graphics Library (WebGL) [180], allowing for skeletal 

visualisations in the web browser. 

6.7 Motion Cloud Integration 
The integration of the Motion Cloud has been demonstrated in the previous chapter in 

the context of smartphone-driven BSNs where the gateway API is used to transfer 

data between smartphones. However, the API plays a larger role throughout the 

framework as it facilitates the transfer of data between the Skeletrix software 

environment and the mobile application. This section discusses the integration of the 

Motion Cloud with the Skeletrix software environment through the development of 

the MotionCloudViewer. 

The software environment was given Motion Cloud support through an additional 

viewer system, which resembles the structure of the AnimationViewer, 

KinematicsViewer and SystemViewer. The MotionCloudViewer allows users to 

extract data from sensors and upload it to the repository for safekeeping. This solution 

could be considered an alternative to motion capture file formats. Users can record 

motion data and upload it to the server. The motion data can be accessed or 

downloaded from the server at a later stage. Therefore, the server removes the need 

for any local storage and becomes a web-based substitute to motion capture file 

formats. This solution is important because it removes the need for local file storage 

by automating the process of soring and organising motion files. This solution saves 
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users time and effort while simplifying the act of using a motion capture system and 

improving overall the motion capture workflow. 

The MotionCloudViewer is closely interlinked with the animation model, which 

stores all the motion data. To upload data, the viewer grabs a copy of the animation 

model and iterates through the data to construct a JSON packet. That JSON packet is 

then posted to the server using a QNetworkAccessManager. QNetworkReply objects 

are used to receive messages from the server. 

Figure 6-9 illustrates the MotionCloudViewer interfaces. A section is added on the 

main GUI that allows users to authenticate with the Motion Cloud. A successful 

authentication will open the MotionCloudViewer interface where users can chose to 

upload the whole recording to a recording object in the repository.  

 

Figure 6-9: MotionCloudViewer adds Motion Cloud support to the Skeletrix software 

environment. 

Future iterations of the MotionCloudViewer will be focused on streaming data from 

systems. For example, motion could be visualised on a smartphone as it is being 

recorded by a full-body motion capture suit. Mobile computing devices could be used 

during recording sessions along with inertial motion capture systems to monitor and 

visualise the motion data. 
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6.8 Conclusions 
Fundamentally, the Motion Cloud is a large database designed to store inertial data 

produced by software environments (e.g. the Skeletrix software environment), mobile 

applications (e.g. the Skeletrix mobile application) and other third-party software 

applications. The Motion Cloud is used to demonstrate an implementation of web 

technologies that is designed specifically for the field of inertial motion capture and 

BSNs. The proposed solution is extendable and versatile, to meet the requirements of 

a wide range of sensors. Within the scope of the Skeletrix framework, the Motion 

Cloud is used to form a bridge between the developments presented in the previous 

chapters, namely the software environment and mobile application. 

This chapter begins with a requirement specification that puts emphasis on the design 

of the three main components that constitute Motion Cloud, namely the repository, 

gateway and web portal. 

The repository is a centralised database for inertial motion capture data originating 

from a single sensor or a more complex BSN. Unlike other motion databases, the 

Motion Cloud repository parses the data and divides it into database objects. The data 

model consists of a hierarchy of profile, recording, group, channel and vector objects. 

This unique approach allows for data streaming, online visualisations of motion, 

online data manipulation and other functionalities that are not possible with traditional 

motion libraries. Such functionality is possible because the data is parsed by the 

gateway and stored by the repository as objects rather than motion files. 

The gateway contains an API layer allowing the integration of third-party software 

environments. The API consists of web services for manipulating the contents of the 

repository. This chapter has presented the API documentation and provided an 

example of stringing together API calls to upload a BSN’s data. Like the repository, 

the API architecture also forms a hierarchy whereby a call may itself access other 

calls. 

The web portal is an interface layer for the Motion Cloud allowing users to visualise, 

modify and retrieve inertial motion capture data. Its purpose is to make data 

accessible to researches in a format that is suitable for experimental research. 

Additionally, the web portal is used to demonstrate an implementation of the API. 
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6.8.1 Application Areas 

This section showcases potential usability scenarios for the Motion Cloud that 

illustrate its versatility and wide range of application areas. The mobile application 

has already demonstrated how the Motion Cloud can be used as a multiplexer to 

construct online BSNs. Let’s consider four additional usability scenarios: motion 

library, prototyping environment, motion gateway and activity database. 

Scenario 1: Motion Library 

Most motion capture software and hardware developers provide libraries of motion, 

containing pre-recorded samples of motion, to their clients to showcase the accuracy 

of their systems. These libraries only allow users to upload or download files. There 

are no solutions for modifying or visualising data in a web browser. The current 

version of the Motion Cloud can be used as a motion library while providing a more 

detailed methodology for interacting with the data. Because each rotational value is 

stored as an entry in the database, it can be accessed with ease through a web portal or 

through web services. The web portal could be developed to contain motion analysis 

and cleanup tools, thus allowing users to inspect or edit the data quickly. This is not 

possible with existing motion libraries that contain the motion data uploaded as files. 

While the web portal provides an example interface layer for the repository, third-

party software developers can build better software or web-based interfaces that suit 

their specific needs. 

Scenario 2: Prototyping Environment 

While most IMU manufacturers provide open-source drivers for their products, 

researchers have to develop or integrate software for data visualisations and storage. 

Inertial data can be uploaded directly to the Motion Cloud from the driver. The result 

can be stored, visualised or accessed in a convenient format without any additional 

software development. To demonstrate this concept, a standalone driver was 

developed for the Razor IMU. A standalone driver is a small program that sits 

between an application and a hardware device. In this context, the application is the 

Motion Cloud and the device is a Razor IMU powered by an Arduino board and 

connected to the computer through a USB cable. Its implementation is derived from 

the driver presented in Appendix B. The standalone driver is a small executable that 
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runs in the background, without an interface, and streams data to the server as buffers 

containing several frames of motion each. 

Scenario 3: Motion Gateway 

A unique property of the Motion Cloud is the gateway, which allows users to send 

motion data between software environments, mobile applications, BSN nodes, etc. 

Effectively, the Motion Cloud becomes an online substitute for a multiplexer. This 

aspect has been demonstrated in the previous chapter in the context of online 

smartphone-driven BSNs. 

Scenario 4: Activity Database 

Activity tracking is an important application area for inertial sensing devices such as 

pedometers. The Motion Cloud can be used as a database for activity data (e.g. from a 

FitBit [173], Jawbone [174], etc.). That activity data can be stored in several formats. 

First, processed activity data can be stored in the form of calories burnt, steps taken 

and distance travelled. Second, raw activity data can be stored as rotations or 

gravitational accelerations to be used by processed at a later stage. In both scenarios, 

the Motion Cloud has the potential to be used as an activity database. 
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CHAPTER SEVEN 

7 Conclusions 

7.1 Summary 
This chapter concludes the work presented throughout this thesis by summarising and 

discussing the four main research bodies: inertial motion capture software 

environments, constructing inertial body sensor networks (BSN), sensing through 

mobile computing technologies and the Motion Cloud, a repository and gateway for 

inertial motion data. Potential extensions and plans for future development are also 

discussed. To summarise, this thesis has contributed to the field of inertial motion 

capture and BSNs through four developments, each presenting unique solutions to 

common problems. When combined, these developments produce a framework for 

constructing BSNs, which extracts motion data from inertial hardware and makes it 

accessible to downstream applications through the Motion Cloud. 

7.2 Inertial Motion Capture Software Environments 
The Skeletrix software environment published in Pascu et al. [17] [18] is developed in 

an attempt to define an improved motion capture workflow by analysing the list of 

procedures involved in extracting and computing inertial motion capture data. 

Notably, the software environment is not a motion-editing tool for character 

animation and does not replicate the core functionality found in other software 

applications. Instead, the software environment is presented as a tool for researchers 

interested in studying or developing BSNs. To summarise, the Skeletrix software 

environment’s first purpose is to provide a suitable experimentation environment, 

accompanied by programming scaffolding and a driver development kit, for users 

interested in integrating inertial BSNs or singular inertial measurement units (IMU) 

that enclose gyroscopes, accelerometers and magnetometers. The software 

environment architecture consists of three major core components: kinematic, 

animation and system engine. The kinematic model is used to construct a kinematic 

model that represents a virtual interpretation of the skeletal rig. The animation model 

stores recorded data and applies it to the kinematic model to animate skeletal rigs. The 

system model creates a virtual representation of the BSN at the software level, thus 
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allowing users to develop the inner workings of the hardware. In accordance with the 

concept of transparency, each model is given a viewer, which is an interface layer for 

viewing the model’s inner workings. The visualisation engine uses the OpenGL 

graphics pipeline to render 3D visualisations of the recorded motion. 

The standardization of file formats has become an important requirement for 

developing new software environments [131]. The lack of a standard implies an 

industry that has too many incomplete solutions competing for software support. For 

this reason, introducing an entirely new format can be counterintuitive as developers 

are not eager to learn or implement new file systems. The proposed solution is to 

extend an existing format that developers are already familiar with. Biovision 

Hierarchy Extended (BVHE) lies at the core of the Skeletrix software environment 

and aims to tighten the relationship between software and inertial motion capture 

hardware. Users can configure the BSN by simply loading a BVHE file.  

The Skeletrix software environment introduces the concept of a driver development 

kit (DDK) as a bridging architecture between hardware and software whereby driver 

modules can be developed for single IMUs or BSNs. A driver is a self-contained 

dynamic-link library (DLL) enclosing the code required to extract and parse the 

stream of motion data from the sensors. A driver must be built in accordance to a 

specification that allows the Skeletrix software environment to establish a valid 

connection. The first step is to connect the functions of the system model with the 

functions of the drivers, thus allowing the system model to control the actions of the 

driver. The second step focuses on hardware handshaking and is specific to each 

system. If the bridging is successful, data will begin to stream from the hardware and 

will display in the SystemViewer. Several drivers could be bridged simultaneously to 

stream data from several heterogeneous systems in real-time. As the implementation 

of the heterogeneous BSN demonstrates, the DDK facilitates a more flexible 

methodology for constructing BSNs and obtaining data from hardware. 

The software environment presents a novel approach for computing the correct anchor 

of kinematic models during gate, which is based on the lowest-point algorithm. The 

lowest-anchor centre of mass algorithm (LACOMA) (published in Pascu et al. [18]) 

works using a weight model, which is constructed by adding physics, such as weight 

and weight distribution, to the kinematic model. The algorithm calculates the body’s 
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musculoskeletal axis of balance to determine the supporting anchor of the body. This 

solution prevents problems caused by motion performers dragging their feet, kneeling, 

crouching, etc. 

To conclude, the Skeletrix software environment represents a tool for developing 

inertial motion capture systems. It provides a layer of software between the user and 

the hardware. This concept is demonstrated in Chapter 4 through the integration and 

development of IMUs. The fundamental architecture of the software environment is 

further used to develop the mobile application presented in Chapter 5. 

7.3 Constructing Inertial Body Sensor Networks 
Connecting sensors to the Skeletrix software environment through two case studies 

has been important to create a source of motion data and to demonstrate the 

functionality of the DDK and BVHE. This research work led to the development of 

the MTDS (published in Pascu et al. [18]), which is a new prototype-level inertial 

motion capture system.  

Current BSNs are developed to be software-centric whereby all the data is extracted 

from the hardware, in its raw form, and sent to the computer for processing. Raw data 

is larger in size and therefore the BSN needs to communicate larger messages 

between its nodes and to the computer. For example, software-centric IMUs 

containing gyroscopes, accelerometers and magnetometers output nine degrees of 

freedom. On the other hand, hardware-centric IMUs output fused data corresponding 

to three degrees of freedom. The Motion Tracking Development System (MTDS) 

demonstrates that hardware-to-hardware and hardware-computer 

intercommunications can be reduced if microcontrollers are programmed to process 

data at the hardware-level. Hardware-centricity is exploited in MTDS system through 

two hardware developments: a central multiplexer connecting a constellation of IMU 

nodes. Only four batteries can power the suit because the hardware is designed 

efficiently by using low-power microcontrollers. 

7.4 Sensing Through Mobile Computing Technologies 
Modern smartphones embed a variety of sensors such as gyroscopes, accelerometers 

and magnetometers. This combination of sensors can also be found in most IMUs. 

Modern smartphones meet the computational requirements to sense and compute 
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motion data. The proposed mobile application (Pascu et al. [15] [16] [19]) draws a 

parallel between mobile computing technologies and inertial motion capture with the 

goal of demonstrating the concept of smartphone-driven BSNs. The BSN is 

constructed using a centralised web server that replicates the functionality of a 

multiplexer. The conceptualisation of a smartphone-driven BSN is achieved through: 

motion processing, event triggers, data streaming protocols and data synchronization. 

The smartphone-driven BSN is evaluated in several contexts. To begin with, two 

smartphones are moved on a flat surface to capture and simulate the articulated 

kinematic motion of a hand wave. This experiment is taken further as three 

smartphones are placed on the body to record the articulated motion of a hand wave 

gesture. The results show that in the context of inertial character animation, the 

smartphone sensors show potential in terms of performance. The smartphone’s 

sensors are becoming sufficiently accurate to be deployed on bespoke circuit boards 

to create IMUs for BSNs, which can be used to capture kinematic human motion. 

This thesis continues to investigate a second application area, activity tracking. Two 

smartphones are networked to evaluate the difference between sedentary and active 

behaviour. There is a potential for the mobile application to be repurposed as an 

activity tracker, which produces a rough estimation of steps taken, calories burnt and 

distance travelled. Additional usability scenarios, which illustrate the versatility of the 

mobile application, are also discussed: medical science, emergency responses, road 

and traffic condition monitoring. 

7.5 Motion Cloud: A Repository and Gateway for Inertial 
Motion Data 

The Motion Cloud is developed in an attempt to extend the motion capture workflow 

with web technologies. Throughout this thesis, the Motion Cloud has elaborated the 

concept of storing, organising and accessing that data through extendable database 

models and multipurpose web services. The unique Motion Cloud architecture is 

designed to accommodate any configuration of sensors, from single sensors to full-

body sensor networks streaming data online. The Motion Cloud is the combined result 

of three main developments: the centralised motion repository, the gateway API and 

the web portal interface layer. 
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The Motion Cloud’s centralised repository is a large database designed to store inertial 

data produced by software environments, mobile applications and drivers. While most 

motion capture hardware developers provide online databases for storing motion files, 

this repository differentiates itself from existing solutions through an object-oriented 

design. Motion data is parsed and divided into objects that are subsequently stored in 

a database hierarchy. The hierarchy structure simulates the configuration of a 

kinematic model. 

The Motion Cloud’s gateway interconnects the Skeletrix software environment and 

mobile application presented in this thesis to form one framework. As a result, the 

gateway can also be used to transfer data between platforms. For example, motion 

recorded using a desktop computer and running the Skeletrix software environment 

can be uploaded, using the MotionCloudViewer, to the Motion Cloud and 

downloaded using the mobile application. 

The goal of this research work is to change the way users store and transfer motion 

data between computers, thus eliminating the need for local storage of data and 

motion capture file formats. The gateway is also presented as an intercommunications 

mechanism for developing online wireless BSNs. As a result, data can be streamed by 

each BSN node and downloaded by the whole network, a concept that is evaluated 

using mobile computing technologies. To make the Motion Cloud relevant beyond the 

scope of the Skeletrix framework, the gateway provides an API allowing third-party 

software applications to upload, download and stream data to and from the repository. 

The Motion Cloud’s web portal is an interface layer for the repository and the 

gateway. It provides tools for visualising, creating, modifying, deleting and exporting 

motion data in a format that is suitable for downstream applications. For example, the 

web portal could be used by healthcare workers to evaluate a patient’s response to 

treatments as discussed in Pascu et al. [15] [16]. Four additional usability scenarios, 

which illustrate the versatility of the Motion Cloud, are also discussed: motion library, 

prototyping environment, motion gateway and activity database. 

The Motion Cloud also blurs the boundaries of BSNs by integrating other inertial 

sensing devices, such as commercial pedometers (e.g. FitBit [173], Jawbone Up 

[174]), in the Skeletrix framework. Therefore, the Motion Cloud has the potential to 
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become an Internet of Things [34] platform through which all sensors are unified to 

produce data that is stored in one centralised repository. 

7.6 Towards a More Efficient Motion Capture Workflow 
Without the developments presented in this research, the traditional workflow for a 

typical motion capture suit is limited. With the developments presented in this thesis, 

the workflow is improved and extended with new technologies. This section presents 

two contrasting usability scenarios. 

Typical Inertial Motion Capture Scenario: 

A motion performer and a system operator use a motion capture suit to record 

full-body motion for the period of one hour. The purpose of the recording is to 

analyse human-environment interaction throughout urban households. The 

performer is dressed in the hardware with the help of the operator. This process 

takes approximately half an hour as nineteen IMUs and their interconnecting 

cables must be secured firmly on the body in a particular configuration (in 

accordance to the instruction manual). The suit is switched on and the network 

handshaking begins whereby the computer interrogates all sensor nodes 

individually. The user is asked to stand next to a reference object, which is 

used by the operator to adjust the onscreen kinematics to match the motion 

performer’s bodily proportions. The motion performer faces north and the 

magnetometers are zeroed. Performing the T-pose, which involves standing 

straight with both arms extended laterally away from the body, compensates 

the postural difference. The suit begins recording if all these steps are 

performed successfully. While navigating the household environment, sensors 

may switch off due to loose or damaged connectors. Additionally, the chance 

of the suit losing wireless signal due to distance or environment obstructions is 

high. A single sensor disconnecting implies a complete system restart, which 

involves repeating the aforementioned procedures. Once the recording session 

has completed successfully, the operator takes the data and applies a set of 

filters and data cleaning algorithms. The result is clean motion that can be used 

for scientific analysis and is stored using one of several file formats. 
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Through the Skeletrix framework, the motion capture workflow (the series of 

procedures required to initiate a BSN that are showcased in the aforementioned 

scenario) is simplified or automated. To begin a recording, users simply load a BVHE 

file and perform the onscreen motion to calibrate. Hardware integration is made 

flexible so that users can decide the configuration of their system such as specifying 

the number and sensors and kinematic model. As demonstrated through the 

development of the DDK, hardware can be connected to the computer using DLL-

enclosed drivers. The DDK is configured using the BVHE file format. As 

demonstrated by LACOMA, anchor selection can be improved by supplementing the 

kinematic model with weight models. Better anchor selection has the potential to 

improve the accuracy of foot placement estimation and subsequently the accuracy of 

dead reckoning. Using the Skeletrix framework, BSNs can be developed to be more 

hardware-centric whereby software functionality is achieved at the hardware level 

rather than software. As shown in the development of MTDS, embedding 

microcontrollers to process motion at the multiplexer and IMU levels, with carefully 

thought-out firmware, can solve this problem. The IMUs firmware can be designed so 

that the sensors restart autonomously, thus making the BSN more modular. 

Modularity was a design requirement as it improves versatility and makes the BSN 

applicable to a wider range of application areas. 

For situations where bespoke BSNs are not required (e.g. small experiments requiring 

few sensors), smartphones can be used to sense inertial motion capture. This thesis 

demonstrates how the smartphone, the most ubiquitous type of wearable computing, 

can be integrated into an inertial motion capture framework. Smartphones also have 

the potential to help BSN development by becoming test beds or prototyping 

environments for inertial motion capture systems. 

But is there a better methodology for storing, organising and transferring inertial data 

other than motion capture files once the motion data is obtained from hardware? As 

demonstrated by the Motion Cloud, web technologies can be used to extend the 

motion capture workflow and provide users with a better solution for storing, 

transferring and visualising motion capture data. That data is then made available for 

downstream applications through a unique and innovative API. 
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The following scenario puts the research work presented in this thesis into context. 

Proposed Scenario: 

A motion performer uses an MTDS suit to record motion for the period of one 

hour. The purpose of the recording is to analyse human-environment 

interaction throughout urban households. The performer puts on the hardware, 

a process that takes minutes to complete because the suit is lightweight. The 

performer opens the Skeletrix software environments, loads a BVHE file that is 

suited to their experiment and begins recording. The suit initiates itself, starts 

recording and the user mimics the onscreen motion to calibrate. If a sensor 

disconnects during the recording, that specific sensor reboots and joins the 

BSN automatically. Once the recording session is complete, the software 

environment uploads the motion data to the Motion Cloud for further analysis. 

That motion data can later be visualised using web or mobile computing 

technologies. 

7.7 Future Work 
The research presented in this thesis showcases several prototypes that have the 

potential to be developed further. While those prototypes showcase a variety of 

concepts, there is room for further improvements and new functionality. The research 

work presented in this thesis is taken forward by two research project proposals for 

funding that are focused on Parkinson’s disease research and digital tool chains for 

inertial motion capture. This section discusses potential extension for the Skeletrix 

software environment, mobile application, Motion Cloud and MTDS suit. 

7.7.1 Skeletrix Software Environment Extensions 

The Skeletrix software environment has demonstrated the benefits of using a motion 

capture file format that integrates system configuration data along with kinematic 

definitions and motion data. Although the semantics of BVHE contain all the 

information required to run a motion capture system, the syntax can be difficult to 

parse. In accordance to the premise of creating a file format that users are already 

familiar with, the Biovision Hierarchy (BVH) syntax was used as a starting point to 

provide users with a file type that they already understand. The development of new 

software that uses this format implies writing complicated parsers. A simpler and 
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more efficient approach would be to utilise eXtensive Markup Language (XML) in a 

similar way to Motion Capture Markup Language (MCML) [131] or JavaScript 

Object Notation (JSON). JSON is currently the most efficient way of storing data 

while XML is more intuitive. 

LACOMA computes motion in the horizontal plane based on foot placement 

estimation. However, there are many situations where the third axis is also required to 

determine vertical displacement. For example, the act of running implies “walking” 

where both feet detach from the ground plane during each consecutive gait cycle. It 

would be beneficial to add more physics to LACOMA so that users can perform 

gestures, such as jumping, where the kinematic model detaches entirely from the 

ground plane. However, this approach implies developing a basic physics engine and 

is beyond the scope of developing a solution for dead reckoning. 

7.7.2 Skeletrix Mobile Application Extensions 

The Skeletrix mobile application has demonstrated that inertial motion capture is 

possible using smartphones connected to the Internet. The resulting BSN is 

omnidirectional in the sense that every smartphone node communicates data to the 

entire network. The implementation of this solution is achieved using server-polling 

techniques. One smartphone uploads its data while the others constantly interrogate 

the server for updates. The server does not have the ability to send a message directly 

to a smartphone. A possible extension is to create a server controller that is abled to 

actively send data to the BSN nodes. This approach would decrease latencies and 

mobile data usage. 

7.7.3 Motion Cloud Extensions 

The Motion Cloud has demonstrated how web technologies can be used to enhance 

inertial motion capture in two ways. First, web technologies can extend the motion 

capture workflow to allow for a better methodology for storing and trading motion 

capture data. Second, web technologies can become an intercommunication 

mechanism for IMUs, allowing for more flexible wireless BSNs. There are other 

unexplored methods in which web technologies can become useful. A possible 

extension for the Motion Cloud is a social media module that brings together 

communities of developers interested in sharing knowledge. 
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The current data model is designed to accommodate only three-valued vectors such as 

angular readings or positional offsets. While the repository is designed specifically for 

inertial motion capture technologies, the data model can be used to store data from 

other mediums such as exoskeleton suits or optical sensors. All character motion 

capture technologies eventually produce animated kinematic models. Although the 

API requirement specification has taken into account those technologies, further 

research is required to develop the Motion Cloud in those contexts. 

The web portal makes motion capture data, obtained from hardware, more accessible 

to users. The only method for data visualisation data is through graphs or in a tabular 

format. Web Graphics Library (WebGL) [180] is a JavaScript library for 3D 

visualisations based on OpenGL ES 2.0 that makes use of the computer’s Graphics 

Processing Unit (GPU). A possible extension for the web portal is to visualise 

kinematic motion as demonstrated by the software environment and mobile 

application. 

While the gateway API has been shown to work with the software environment and 

the mobile application, it has not been evaluated with commercial software. Software 

applications such as MotionBuilder [133] and Blender [137] allow users to develop 

plugins or modify the source code. A potential extension is to integrate the Motion 

Cloud with other software applications outside the Skeletrix framework. 

7.7.4 MTDS Extensions 

The MTDS upper body suit was developed as a prototype using consumer-level 

sensors and microcontrollers. Sensor fusion is not possible because the suit does not 

implement magnetometers. As a result, the sensors have a significant amount of drift 

whereby the system can only be used for short periods of time. A possible extension is 

to redevelop the printed circuit boards to accommodate magnetometers. Alternatively, 

modern sensors include the gyroscope, accelerometer, magnetometer and small 

microcontrollers in the same chip capsule. Integrating a modern sensor chip would 

minimize drift and improve overall accuracy. 

In an attempt to improve power consumption, both the MTDS multiplexer and IMU 

use 8-bit microcontrollers to compute and transfer motion. However, the values 

produced by the sensors are floating-point numbers, which are inefficient to compute 
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on 8-bit microcontrollers. As a result, a possible extension to the MTDS architecture 

is to upgrade the hardware with 32 bit ARM microcontrollers (e.g. Cortex A50 Series 

microcontrollers [181]). This added computational capabilities would allow for an 

even more autonomous motion capture system. 
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Appendix A – Computing Quaternion Algebra 
At the software environment level, inertial motion capture relies on geometric 

calculations comprising of both rotational and positional data structures. This section 

introduces the fundamental geometry driving the software environment and the 

mobile application’s back-end. The software environment features two bespoke 

libraries, entitled Vector and Quaternion, containing all relevant mathematical 

functionality. The Vector library delineates the software environment’s most basic 

data structure: a linear three-valued matrix accompanied by a specific set of 

mathematical operations. A vector object may define a viewing direction, a translation 

transformation, a point in space or an Euler rotation. The Quaternion library is used to 

represent rotation and compute rotational operations. A quaternion is a four-

dimensional (4D) space vector defined by a three-dimensional axis of rotation and a 

scalar transformation along that axis. The quaternion rotational model is deployed, 

instead of the Euler equivalent, to avoid the gimbal lock problem. Because 

trigonometry is computationally expensive, most software environments adopt this 

approach for performance reasons. The following formula illustrates these two 

elementary data structures where 𝑣 is a vector, 𝑞 is a quaternion,  𝑣! ∈ 𝑞  and 𝑠 is the 

scalar value. 

𝑣   =   𝑥 𝑦 𝑧                                                   𝑞   = [  𝑠 𝑣!  ] 

Motion data is stored as Euler rotations. An initial conversion is required for Skeletrix 

to decipher and store rotational transformations. The following formula utilizes many 

trigonometric operations that compromise performance. In the following example, 

vector     𝑥 𝑦 𝑧    is converted into quaternion   𝑠 𝑣!          𝑣! 𝑣!   . 

        𝑠   = cos
𝑥
2 ∗ cos

𝑦
2 ∗ cos

𝑧
2 − sin

𝑥
2 ∗ sin

𝑦
2 ∗ sin

𝑧
2  

        𝑣!   =    cos
𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2 + sin

𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2  

        𝑣!   =    sin
𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2 + cos

𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2  

        𝑣!   =    cos
𝑥
2 ∗ sin

𝑦
2 ∗ cos

𝑧
2 − sin

𝑥
2 ∗ cos

𝑦
2 ∗ sin

𝑧
2   

The opposite conversion, quaternion to Euler, has two purposes. First, Euler results 

are required when outputting valid motion capture files (e.g. BVH or BVHE). Second, 
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all rotations must displayed comprehensibly throughout the interface layer (in 

accordance to the principle of transparency introduced in the requirements 

specification). The following formula, implemented in the Quaternion library, 

transforms quaternion   𝑠 𝑣!          𝑣! 𝑣!    into resulting vector 𝑟 . The result is in 

radians. 

𝑟!   =    tan!!
2 ∗ 𝑣! ∗ 𝑠 − (2 ∗ 𝑣! ∗ 𝑣!)
1− 2 ∗ 𝑣!! − 2 ∗ 𝑣!!

 

𝑟!   =    sin!! 2 ∗ 𝑣! ∗ 𝑣! + (2 ∗ 𝑣! ∗ 𝑠) 

𝑟!   =    tan!!
2 ∗ 𝑣! ∗ 𝑠 − (2 ∗ 𝑣! ∗ 𝑣!)
1− 2 ∗ 𝑣!! − 2 ∗ 𝑣!!

 

When applying motion data to its skeleton, the kinematic model computes numerous 

sequences of rotations. Those sequences employ quaternion multiplication, an 

associative yet non-commutative operation. The quaternion product is used to 

compute the blended result of two rotations. It uses computationally inexpensive 

mathematical operations such as multiplication, addition and subtraction. Given that 

Skeletrix performs thousands of multiplications every second, each computation must 

be conducted efficiently. Division, as needed during calibration when estimating 

compensational differences, is calculated by inverting one of the quaternions before 

applying the product formula. In the following example, 𝑟 stores the blended result of 

𝑞 and 𝑞!. Once completed, all quaternion products must be normalized. 

        𝑟!   = 𝑞! ∗ 𝑞!! −   𝑞!! ∗ 𝑞!!
! −   𝑞!! ∗ 𝑞!!

! −   𝑞!! ∗ 𝑞!!
! 

        𝑟!!   =   𝑞! ∗ 𝑞!!
! + 𝑞!! ∗ 𝑞!

! + 𝑞!! ∗ 𝑞!!
! −   𝑞!! ∗ 𝑞!!

! 

        𝑟!! = 𝑞! ∗ 𝑞!!
! − 𝑞!! ∗ 𝑞!!

! +   𝑞!! ∗ 𝑞!
! +   𝑞!! ∗ 𝑞!!

!   

        𝑟!! =   𝑞! ∗ 𝑞!!
! + 𝑞!! ∗ 𝑞!!

! − 𝑞!! ∗ 𝑞!!
! +   𝑞!! ∗ 𝑞!

! 

Aside from rotation sequences, there are many situations that require a joint effort 

between the Vector and Quaternion libraries. As previously mentioned, the rendering 

engine calculates all topology at the software environment level and not through the 

OpenGL pipeline. Each bone’s geometry is instantiated in its default form before 

becoming subject to a series of transformations. Those transformations can be 

rotations, size adjustments or translations. When the skeleton moves, its constituent 

topologies rotate in accordance to a set of kinematic constraints. The following 
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equation is relevant in that scenario. It rotates point 𝑝, in local space, by quaternion 𝑞 

to generate the resulting vector 𝑟. 

𝑟!   =    (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗   𝑣! ∗ 𝑝!)+ (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)

− (𝑞!!
! ∗ 𝑝!)+   (𝑠𝑞!! ∗ 𝑝!)   − (2 ∗ 𝑞!! ∗ 𝑞! ∗ 𝑝!)   − (𝑞!!

! ∗ 𝑝!) 

𝑟!   =    (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)− (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)

− (𝑞!!
! ∗ 𝑝!)+ (2 ∗ 𝑞! ∗ 𝑞!! ∗ 𝑝!)− (𝑞!!

! ∗ 𝑝!)+ (𝑞!! ∗ 𝑝!) 

𝑟!   =    (𝑞!! ∗ 𝑝!  )+ (2 ∗   𝑞!! ∗ 𝑞! ∗ 𝑝!)− (2 ∗   𝑞!! ∗ 𝑞! ∗ 𝑝!)+ (𝑞!!
! ∗ 𝑝!)+ (2

∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)+ (2 ∗ 𝑞!! ∗ 𝑞!! ∗ 𝑝!)− (𝑞!!
! ∗ 𝑝!)− (𝑞!!

! ∗ 𝑝!) 

There are several circumstances where vectors can represent gyrations. For example, 

a vector can be represented as a line segment starting at the origin and ending at a 

specific point in space. A second line segment 𝑣!, of length |  𝑣 |, is drawn in the 

default position: also starting at the origin but pointing upwards. In this circumstance, 

a rotation can be used to describe the transformation required for line segment 𝑣! to 

assume the orientation of 𝑣. This equation shows how to convert vector positions into 

rotations. Vector 𝑣! is defined as follows. 

𝑣!   = [0 𝑣 0] 

The subsequent equation is applied to conclude the desired rotation: 

𝑟   =
𝑣!×𝑣 ∗ 𝑣!×𝑣

2 ∗ |𝑣!| ∗ |𝑣|
|𝑣!×𝑣|  
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Appendix B – DDK Driver for Razor AHRS 
 

B.1 Razor Global Header 
The Razor_global class Defines the header of the DLL. 

Razor_global.h 

/**************************************************************************/ 
/*                            Razor_global Header                         */ 
/**************************************************************************/ 
 
#ifndef RAZOR_GLOBAL_H   
#define RAZOR_GLOBAL_H   
   
#include <QtCore>   
   
#if defined(RAZOR_LIBRARY)   
#  define RAZORSHARED_EXPORT Q_DECL_EXPORT   
#else   
#  define RAZORSHARED_EXPORT Q_DECL_IMPORT   
#endif   
   
#endif 

 

B.2 Razor Class 
The Razor class contains all the code required to package data from the BSN. 

Razor.h 

/**************************************************************************/ 
/*                            Razor Class Header                          */ 
/**************************************************************************/ 
 
#ifndef RAZOR_H 
#define RAZOR_H 
#include <iostream> 
#include <cmath> 
#include <cstdlib> 
#include <cstdio> 
#include <vector> 
#include <windows.h> 
#include <conio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <iomanip> 
#include <sstream> 
#include <string> 
#include <QThread> 
#include "Razor_global.h" 
#include "Sensor.h" 
 
using namespace std; 
 
class RAZORSHARED_EXPORT Razor { 
public: 
    void dllAction1(); 
    void dllAction2(); 
    void dllAction3(); 
    void dllAction4(); 
    void setPort(vector<int>); 
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    vector<float> getStream(); 
private: 
 
}; 
 
#endif /* RAZOR_H */ 

 
Razor.cpp 

/**************************************************************************/ 
/*                               Driver Class                             */ 
/**************************************************************************/ 
 
#include "Razor.h" 
#include <QThread> 
#include "Razor_global.h" 
#include "Sensor.h" 
Sensor* sensor = new Sensor(); 
 
extern "C" __declspec(dllexport) void dllAction1()   
{   
    sensor->action1(); 
}   
 
extern "C" __declspec(dllexport) void dllAction2()   
{ 
    sensor->action2(); 
}   
 
extern "C" __declspec(dllexport) void dllAction3()   
{ 
    sensor->action3(); 
}   
 
extern "C" __declspec(dllexport) void dllAction4() 
{ 
   QThread* thread = new QThread; 
   sensor->moveToThread(thread); 
   thread->connect(thread, SIGNAL(started()), sensor, SLOT(update())); 
   thread->start(); 
} 
 
extern "C" __declspec(dllexport) void setPort(int p) 
{   
    sensor->setPort(p); 
} 
 
extern "C" __declspec(dllexport) vector<float> getStream() 
{ 
    sensor->update(); 
    return sensor->stream; 
} 
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B.3 Sensor Class 
The Sensor class contains all the code required to package data from the BSN. 

Sensor.h 

/**************************************************************************/ 
/*                           Sensor Class Header                          */ 
/**************************************************************************/ 
 
#ifndef SENSOR_H 
#define SENSOR_H 
 
#include <QObject> 
#include <vector> 
#include <iostream> 
#include <cmath> 
#include <cstdlib> 
#include <cstdio> 
#include <vector> 
#include <windows.h> 
#include <conio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <iomanip> 
#include <sstream> 
#include <string> 
#include <QThread> 
 
using namespace std; 
 
class Sensor : public QObject 
{ 
   Q_OBJECT 
 
public: 
    int port, colon1, colon2, end; 
    char r[97]; 
    vector<float> stream; 
    HANDLE h; 
    DWORD writemsg; 
    DWORD readmsg; 
    string message; 
    Sensor(QObject* parent = 0); 
    void action1(); 
    void action2(); 
    void action3(); 
    void action4(); 
    void setPort(int); 
    std::vector<float> getStream(); 
    void unpack(); 
public Q_SLOTS: 
   void update(); 
}; 
 
#endif /* SENSOR_H */ 
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Sensor.cpp 

/**************************************************************************/ 
/*                               Sensor Class                             */ 
/**************************************************************************/ 
 
#include "Sensor.h" 
 
/* Constructor. */ 
Sensor::Sensor(QObject* parent) : QObject(parent) { 
    stream.push_back(0); 
    stream.push_back(0); 
    stream.push_back(0); 
    port = 0; 
} 
 
/* Driver action 1 that connects to the port. */ 
void Sensor::action1() { 
    writemsg = 1; 
    readmsg = 0; 
    message = ""; 
    std::wstring port_prefix = L"\\\\.\\COM"; 
    std::wostringstream int_to_wstring; 
    int_to_wstring << port; 
    std::wstring port_value = port_prefix + int_to_wstring.str(); 
    h = 
CreateFile(port_value.c_str(),GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTIN
G,0,NULL); 
    if(h != INVALID_HANDLE_VALUE) { 
        DCB dcb; 
        memset(&dcb,0,sizeof(dcb)); 
        dcb.DCBlength = sizeof(dcb); 
        dcb.BaudRate = 57600; 
        dcb.fBinary = 1; 
        dcb.fDtrControl = DTR_CONTROL_DISABLE; 
        dcb.fRtsControl = RTS_CONTROL_DISABLE; 
        dcb.Parity = NOPARITY; 
        dcb.StopBits = ONESTOPBIT; 
        dcb.ByteSize = 8; 
    } 
} 
 
/* Driver action 2. */ 
void Sensor::action2() { 
} 
 
/* Driver action 3. */ 
void Sensor::action3() { 
} 
 
/* Driver action 4. */ 
void Sensor::action4() { 
} 
 
/* Set communication port. */ 
void Sensor::setPort(int p) { 
    port = p; 
} 
 
/* Returns stream of data. */ 
vector<float> Sensor::getStream() { 
    return stream; 
} 
 
/* Parses the incoming data from the sensor. */ 
void Sensor::update() { 
    if(ReadFile(h,r,sizeof(r),&readmsg,NULL)){ 
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         colon1 = 0; 
         colon2 = 0; 
         end = 0; 
         string received(r); 
         if(received.substr(0,5) == "#YPR="){ 
             for(unsigned int i = 5; i < received.length(); i++){ 
                 if(received.at(i) == '\n') { 
                     end = i; 
                     break;   
                 } 
             } 
             message = received.substr(5,end-5); 
             for(unsigned int j = 0; j < message.length(); j++){ 
                 if(message.at(j) == ',') { 
                     if(colon1 == 0) { 
                         colon1 = j; 
                     }else{ 
                         colon2 = j; 
                         break; 
                     } 
                 } 
             } 
             if(colon1 != 0 && colon2 != 0) { 
                  stream[0] = 
::atof(message.substr(0,colon1).c_str())/57.2957795f; 
                  stream[1] = ::atof(message.substr(colon1+1,colon2-1 - 
colon1+1).c_str())/57.2957795f; 
                  stream[2] = 
::atof(message.substr(colon2+1,message.length() - 
colon2+1).c_str())/57.2957795f; 
             } 
         } 
     } 
} 
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Appendix C – MotionCloud API JSON Packets 
 

C.1 Profile 
This is an example JSON packet of what profile_get API call returns. 
 
Example Profile JSON Packet 

{ 
 "username" : "tpascu1", 
 "password" : "password1", 
 "password_confirm" : "password1", 
 "firstname" : "Tudor", 
 "lastname" : "Pascu", 
 "email" : "t.pascu@sussex.ac.uk" 
} 

C.2 Group 
This is an example JSON packet of what group_get API call returns. 
 
Example Group JSON Packet 

{ 
 "group_id": "20", 
 "title": "Smartphone Group 1", 
 "description": "7 smartphone motion recording.", 
 "recordings": [ 
  { 
   "recording_id": "50", 
         "name": "Smartphone Recording 1", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "51", 
         "name": "Smartphone Recording 2", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "52", 
         "name": "Smartphone Recording 3", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "53", 
         "name": "Smartphone Recording 4", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "54", 
         "name": "Smartphone Recording 5", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "55", 
         "name": "Smartphone Recording 6", 
         "channels": [ // channel data omitted ] 
  }, 
  { 
   "recording_id": "56", 
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         "name": "Smartphone Recording 7", 
         "channels": [ // channel data omitted ] 
  }, 
 
 ] 
} 

This is an example JSON packet of what group_getlist API call returns. 
 
Example Recording JSON Packet 

{ 
 "ids": [ 
   "20", 
   "21", 
   "22", 
   "23", 
   "24", 
   "25", 
   "26" 
  ], 
 "titles": [ 
   "Smartphone Group 1", 
   "Smartphone Group 2", 
   "Smartphone Group 3", 
   "Smartphone Group 4", 
   "Software Environment Recordings 1", 
   "Software Environment Recordings 2", 
   "Software Environment Recordings 3" 
 
  ], 
 "descriptions": [ 
   "7 smartphone motion recording.", 
   "5 smartphone motion recording.", 
   "5 smartphone motion recording.", 
   "Activity data uploaded from smartphone.", 
   "Recording Uploaded From Software Environment", 
   "Test Description of Smartphone Recording 2.", 
   "Test Description of Smartphone Recording 3." 
  ] 
} 

 

C.3 Recording 
This is an example JSON packet of what recording_get API call returns. 
 
Example Recording JSON Packet 

{ 
 "title": "Suit Recording", 
 "description": "7 channels of data", 
 "channels": [ 
  { 
   "channel_id": "1820", 
         "name": "Spine", 
         "vectors": [ // channel data omitted ] 
  }, 
  { 
         "channel_id": "1821", 
         "name": "Left_Arm", 
         "vectors": [ // channel data omitted ] 
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  }, 
  { 
         "channel_id": "1822", 
         "name": "Right_Arm", 
         "vectors": [ // channel data omitted ] 
  }, 
  { 
         "channel_id": "1823", 
         "name": "Left_Forearm", 
         "vectors": [ // channel data omitted ] 
  }, 
  { 
         "channel_id": "1824", 
         "name": "Right_Forearm", 
         "vectors": [ // channel data omitted ] 
  }, 
  { 
         "channel_id": "1825", 
         "name": "Left_Hand", 
         "vectors": [ // channel data omitted ] 
  }, 
  { 
         "channel_id": "1826", 
         "name": "Right_Hand", 
         "vectors": [ // channel data omitted ] 
  } 
 ] 
} 

This is an example JSON packet of what recording_getlist_uid API call returns. 
 
Example Recording JSON Packet 

{ 
 "ids": [ 
   "24", 
   "25", 
   "64", 
   "66", 
   "67" 
  ], 
 "titles": [ 
   "Suit Test Recording 1", 
   "Suit Test Recording 1", 
   "Android Recording 1", 
   "Android Recording 2", 
   "Android Recording 3" 
  ], 
 "descriptions": [ 
   "Test Description 1.", 
   "Test Description 2.", 
   "Test Description of Smartphone Recording 1.", 
   "Test Description of Smartphone Recording 2.", 
   "Test Description of Smartphone Recording 3." 
  ] 
} 
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C.4 Channel 
This is an example JSON packet of what channel_get API call returns. 
 
Example Channel JSON Packet 

{ 
 "channel_id": "1820", 
 "name": "Spine", 
 "vectors": [ 
  { 
   "vector_id": "565019", 
   "channel_id": "1820", 
   "x": "128.388", 
   "y": "-10.456, 
   "z": "8.844" 
  }, 
  { 
   "vector_id": "565020", 
   "channel_id": "1820", 
   "x": "129.618", 
   "y": "-10.691", 
   "z": "8.422" 
  }, 
  { 
   "vector_id": "565021", 
   "channel_id": "1820", 
   "x": "130.745", 
   "y": "-10.569", 
   "z": "8.474" 
  }, 
  { 
   "vector_id": "565022", 
   "channel_id": "1820", 
   "x": "132.898", 
   "y": "-10.850", 
   "z": "8.859" 
  }, 
  // values omitted 
 ] 
} 

This is an example JSON packet of what channel_getlist API call returns. 
 
Example Recording JSON Packet 

{ 
 "ids": [ 
   "1820", 
   "1821", 
   "1822", 
   "1823", 
   "1824", 
   "1825", 
   "1826" 
  ], 
 "names": [ 
   "Spine", 
   "Left_Arm", 
   "Right_Arm", 
   "Left_Forearm", 
   "Right_Forearm", 
   "Left_Hand", 
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   "Right_Hand" 
  ] 
} 

C.5 Vector 
This is an example JSON packet of what vector_get API call returns. 
 
Example Vector JSON Packet 

{ 
 "vector_id": "565019", 
 "channel_id": "1729", 
 "x": "128.388", 
 "y": "-10.456, 
 "z": "8.844" 
} 
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