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Abstract

In this thesis we study a mathematical system of equations that models multi phase tissue

growth. The mathematical system comprises of three coupled equations: an advection diffu-

sion equation for a scalar quantity that defines the volume fraction of one cell type and two

constitutive relations for the pressure field and volume averaged velocity field.

A numerical discretisation of this mathematical model is derived using a coupled finite volume

- finite difference scheme. Stability bounds on the approximate solution of a simplified version

of the model are proved together with a convergence results relating the approximate solution

to the weak solution of the simplified model.

In addition an efficient and reliable numerical scheme is implemented in the Matlab program-

ming language to solve the numerical approximation of the full model and computational results

are presented.
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Chapter 1

Introduction

This thesis is concerned with the numerical analysis of the one dimensional formulation of the

mathematical model of tissue growth presented and analysed in [12].

1.1 Mathematical models for tissue growth

In terms of scientific advancement, the study of tissue engineering has gained much popularity

and attention due to its importance in many fields of science especially biology. It involves the

replacement or repair, maintenance, enhancement of a tissue or a part of tissue like skin, blood

vessel, muscle etc, see [17, 18]. Since the tissue needs certain mechanical and structural prop-

erties for proper functioning. In order to grow the tissue out of the body requires proper culture

medium like bioreactor which is an advance tissue culture apparatus that attempts to stimulate

a physiological environment in order to promote cell or tissue growth in culture medium. Tis-

sue engineering is the combination of living cells, engineering, material methods and a suitable

environment to improve or replace the tissue.

The mathematical model of tissue growth that we consider is one in which the tissue undergoes

different phases/stages of growth. The tissue construct is a rich culture medium. The effects of

nutrients rich culture on the growth of tissue are neglected so that the model can better study

the effects of imposed flow on the response of cells. The presence of scaffold is also neglected

where scaffold is supporting structure in the growth of tissue. The physical set up of the model
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that is that of a two dimensional channel containing the tissue construct surrounded by culture

medium as shown below.

Cult ure medium

w = 1

T issue const r uct

n+ w = 1

Cult ure medium

w = 1

x axis

y axis

1

1

The mathematical model that we consider in this thesis was studied in [12]. It is a two phase

model that enables the effects of dynamic culture conditions on the growth of tissue to be ana-

lysed. The model describes the two phase fluids in a bioreactor which is a two dimensional

channel with rigid walls that contains ”tissue construct”. The one phase consist of cells and ex-

tracellular matrix (ECM) and second phase represent culture medium. The model also describes

the cell production and death as well. The imposed axial pressure drop generate the flow of cul-

ture medium which is represented by perfusion. It is important to note that “tissue construct”

term distinguish the region occupied by the interacting cell and culture medium phases from

the rest of the channel that contain only culture medium and we choose the interface between

tissue construct and culture medium to be sharp/non-diffusive (i.e D=0).

A Cartesian coordinate system (x, y) is chosen in the corresponding coordinate direction (x, y)

and the channel occupies space 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The volume fraction of cell and culture

medium phases are denoted by w, and n respectively and a volume averaged velocity u, pres-

sure p. We now assume that the tissue undergoes one-dimensional growth parallel to x − axis
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and associated pressure and velocity are functions of x and t only, where t represents time,

∂w

∂t
+
∂(wu)

∂x
= (km − kd)w +D

∂2w

∂x2
in Ω, (1.1)

∂2p

∂x2
=

4km
3

∂2w

∂x2
in Ω, (1.2)

∂2u

∂x2
=

∂p

∂x
− km

3

∂w

∂x
in Ω, (1.3)

where Ω = [0, 1], t = [0, T ], D is the diffusion coefficient and km and kd are constants which

are the rate of cell growth and cell death respectively. In general km and kd will depend upon

the cell’s environment (e.g. nutrients availability, growth factors, stress). Here we take km and

kd to be constants for the uniform growth of tissue but they could be functions of x and t, which

would imply that cell death results in a corresponding increase in culture medium.

The associated boundary conditions with the (1.1)-(1.3) are

p(0, t) = 0 p(1, t) = 0 ∀ t > 0,

u(0, t) = 1
∂u(1, t)

∂x
= 0 ∀ t > 0,

w(0, t) = 0 if u(0, t) < 0 ∀ t > 0,

w(1, t) = 0 if u(1, t) > 0 ∀ t > 0,

w(x, 0) = w0(x) in Ω.

Other two phase models have also been studied e.g. Landsman & Please [24], Breward et al

[25, 26], Franks et al. [23] and [19, 20, 21]; but in these models the solid characteristics of

tissue neglected.

The diffusive term has been added to (1.1) whilst cells do exhibit the random motion, the tissue

growth and perfusion induced flow fields are dominant mechanism for the cell movement, with

diffusive effects assumed to be negligible [22, 23].

By choosing the interface between the tissue construct and culture medium sharp, corresponding
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D = 0, the one dimensional model to

∂w

∂t
+
∂(wu)

∂x
= (km − kd)w in ΩT, (1.4)

∂2p

∂x2
=

4km
3

∂2w

∂x2
in ΩT, (1.5)

∂2u

∂x2
=

∂p

∂x
− km

3

∂w

∂x
in ΩT, (1.6)

p(0, t) = 0 p(1, t) = 0 ∀ t > 0, (1.7)

u(0, t) = 1
∂u(1, t)

∂x
= 0 ∀ t > 0, (1.8)

w(0, t) = 0 if u(0, t) < 0 ∀ t > 0, (1.9)

w(1, t) = 0 if u(1, t) > 0 ∀ t > 0, (1.10)

w(x, 0) = w0(x) in Ω (1.11)

where Ω = (0, 1) and ΩT = Ω× (0, T ).

In Chapter 2 we derive a discrete coupled finite volume - finite difference approximation of

(1.4)-(1.11). In Chapter 3 we assume that the velocity u(x, t) in the above model is given and

so by discarding (1.5) - (1.8) we consider the following simplified version of (1.4)-(1.11):

∂w

∂t
+
∂(wu)

∂x
= (km − kd)w in ΩT, (1.12)

w(0, t) = 0 w(1, t) = 0 ∀ t > 0, (1.13)

w(x, 0) = w0(x) in Ω (1.14)

where u(x, t) is a given smooth function that satisfies the boundary conditions

u(0, t) = 1,
∂u(1, t)

∂x
= 0 ∀ t > 0. (1.15)

In Chapter 3 we also analyse a finite volume approximation of the model (1.12)-(1.14) and

we show that as the time step, ∆t, and the mesh size, h, of the approximation, tend to zero, the

approximate solution ŵh of this discretization converges to the weak solutionw of (1.12)-(1.14).

In Chapter 4 we present some numerical results obtained from computationally solving the
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numerical discretization presented in Chapter 2.
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Chapter 2

Finite Volume - Finite Difference

Approximation of the Model

In this chapter we derive a finite volume - finite difference approximation of (1.4)-(1.11). We

first introduce some notation that will be useful in defining this approximation. We divide

Ω := (0, L) into J subintervals of length h and we set xj = jh, j = 0, . . . , J to be the nodes of

the discretisation and we define tn = n∆t. We define cell volumes as

Vj =


(
0, h

2

)
for j = 0(

xj − h
2
, xj + h

2

)
for j ∈ [1, J − 1](

L− h
2
, L
)

for j = J

and shown below

xj 1 xj xj + 1

hj 1 hj hj + 1

h

xj 1
2

h+

xj + 1
2

Cel l volume

Cent r oid spacing

Vj 1 Vj Vj + 1Cel ls:
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and we define Sh, S0
h, Wh and W 0

h by

Sh = {χ ∈ C(Ω) : χ|(jh,(j+1)h is linear ∀ j ∈ [0, J − 1]},

S0
h = {χ ∈ Sh : χ(x0) = χ(xJ) = 0},

Wh = {η ∈ L∞(Ω) : η|Vj := ηj ∀ j ∈ [0, J ]},

W 0
h = {η ∈ Wh : η|V0 = η|VJ = 0}.

Before we derive the finite volume - finite difference approximation of our model we first de-

scribe the finite difference approximation method for linear problems for functions of one vari-

able [1], and then we define the finite volume method for one space dimensional advection

equations [6].

2.1 Finite difference method

The finite difference method for the linear second order boundary-value problem

y′′ = p(x)y′ + q(x)y + r(x), 0 ≤ x ≤ L, y(0) = α, y(L) = β, (2.1)

involves the finite difference method for solving the boundary-value problems. The idea is

to replace each of the derivatives in the differential equation with the appropriate difference-

quotient approximation to approximate y′ and y′′. The particular difference quotient and step

size h are chosen to maintain a specified order of truncation error. However, h cannot be chosen

too small because of the instability of the derivative approximations.

We now follow the authors in [1] in describing the method:

First, we select the integer N > 0 and divide the interval [0, L] into (N + 1) equal subintervals

whose endpoints are mesh points xi = ih, for i = 0, 1, ..., N + 1, where h = L/(N + 1).

Choosing the step size h in this manner facilitates the application of a matrix algorithm, which

solves a linear system involving an N ×N matrix.
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At the interior mesh points xi, for i = 1, 2, ..., N , the differential equation to be approximated

is

y′′(xi) = p(xi)y
′(xi) + q(xi)y(xi) + r(xi). (2.2)

Expanding y in a third Taylor polynomial about xi evaluated at xi+1 and xi−1, we have, assum-

ing that y ∈ C4[xi−1, xi+1],

y(xi+1) = y(xi + h) = y(xi) + hy′(xi) +
h2

2
y′′(xi) +

h3

6
y′′′(xi) +

h4

24
y(4)(ξ+

i ),

for some ξ+ in (xi, xi+1), and

y(xi−1) = y(xi − h) = y(xi)− hy′(xi) +
h2

2
y′′(xi)−

h3

6
y′′′(xi) +

h4

24
y(4)(ξ−i ),

for some ξ− in (xi−1, xi). If these equations are added, we have

y(xi+1) + y(xi−1) = 2y(xi) + h2y′′(xi) +
h4

24
[y(4)(ξ+

i ) + y(4)(ξ−i )],

and solving for y′′(xi) gives

y′′(xi) =
1

h2
[y(xi+1)− 2y(xi) + y(xi−1)]− h2

24
[y(4)(ξ+

i ) + y(4)(ξ−i )].

The Intermediate Value Theorem can be used to simply this to

y′′(xi) =
1

h2
[y(xi+1)− 2y(xi) + y(xi−1)]− h2

12
y(4)(ξi), (2.3)

for some ξi in (xi−1, xi+1). This is called the centered-difference formula for y′′(xi).

A centered- difference formula for y′(xi) is obtained in a similar manner, resulting in

y′(xi) =
1

2h
[y(xi+1)− y(xi−1)]− h2

6
y′′′(ηi), (2.4)

for some ηi in (xi−1, xi+1).
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The use of these centered-difference formulas in (2.2) results in the equation

y(xi+1)− 2y(xi) + y(xi−1)

h2
= p(xi)[

y(xi+1)− y(xi−1)

2h
] + q(xi)y(xi)

+r(xi)−
h2

12
[2p(xi)y

′′′(ηi)− y(4)(ξi)].

A finite-difference method with truncation error of order 0(h2) results by using this equation

together with the boundary conditions y(0) = α and y(L) = β to define

w0 = α, wN+1 = β

and (
−wi+1 + 2wi − wi−1

h2

)
+ p(xi)

(
−wi+1 − wi−1

2h

)
+ q(xi)wi = −r(xi), (2.5)

for each i = 1, 2, ...N .

In the form we will consider, (2.5) is rewritten as

−
(

1 +
h

2
p(xi)

)
wi−1 + (2 + h2q(xi))wi −

(
1− h

2
p(xi)

)
wi+1 = −h2r(xi),

and the resulting system of equations is expressed in a tridiagonal N ×N matrix.

2.2 Finite Volume method

Consider a simple one dimensional advection problem defined by the following partial differ-

ential equation
∂ρ

∂t
+
∂f

∂x
= 0, 0 ≤ x ≤ L, t ≥ 0. (2.6)

Here, ρ = ρ(x, t) represents the state variable and f = f(ρ(x, t)) represents the flux or flow

of ρ. Conventionally, positive f represents flow to the right while negative f represents flow to

the left. We sub-divide the spatial domain [0, L] into finite volumes or cells, Vi (defined above),

with cell centres indexed as xi. For a particular cell Vi, we can define the volume average value
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of ρi(t) = ρ(x, t) at time t = t1 and x ∈ [xi− 1
2
, xi+ 1

2
], as

ρ̄i(t1) =
1

xi+ 1
2
− xi− 1

2

∫ x
i+1

2

x
i− 1

2

ρ(x, t1)dx, (2.7)

and at time t = t2 as

ρ̄i(t2) =
1

xi+ 1
2
− xi− 1

2

∫ x
i+1

2

x
i− 1

2

ρ(x, t2)dx, (2.8)

where xi− 1
2

and xi+ 1
2

represent the location of the upstream and downstream nodes respectively

of the ith cell.

Integrating (2.6) in time, we have:

ρ(x, t2) = ρ(x, t1)−
∫ t2

t1

∂f(x, t)

∂x
dt. (2.9)

To obtain the volume average of ρ(x, t) at time t = t2, we integrate ρ(x, t2) over the cell volume

[xi− 1
2
, xi+ 1

2
] and divide the result by ∆xi = xi+ 1

2
− xi− 1

2
i.e.

ρ̄i(t2) =
1

∆xi

∫ x
i+1

2

x
i− 1

2

{
ρ(x, t1)−

∫ t2

t1

∂f(x, t)

∂x
dt

}
dx (2.10)

Using integration by parts we obtain

ρ̄i(t2) = ρ̄i(t1)− 1

∆xi

(∫ t2

t1

fi+ 1
2
dt−

∫ t2

t1

fi− 1
2
dt
)
. (2.11)

where fi± 1
2

= f(xi± 1
2
, t).

We can therefore derive a semi - discrete numerical scheme for the above problem with cell

centres indexed as i, and with cell edge fluxes indexed as i ± 1
2
, by differentiating (2.11) with

respect to time to obtain
dρ̄i
dt

+
1

∆xi
[fi+ 1

2
− fi− 1

2
] = 0, (2.12)

where values for the edge fluxes, fi± 1
2

can be reconstructed by interpolation or extrapolation

of the cell averages. Equation (2.12) is exact for the volume averages; i.e., no approximations
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have been made during its derivation.

If we assume that ρ = ρi is constant on each cell (xi− 1
2
, xi+ 1

2
), i.e. ρ ∈ Wh, and we take f = ρu

then (2.6) takes the form
∂ρ

∂t
+
∂(ρu)

∂x
= 0

and the corresponding finite volume approximation is given by

dρi
dt

+
1

∆xi
[(ρu)i+ 1

2
− (ρu)i− 1

2
] = 0 (2.13)

where (ρu)i+ 1
2

= ρ(xi + h
2
, t)u(xi + h

2
, t). Since

ρ(x, t) =


ρi−1 x ∈ (xi− 3

2
, xi− 1

2
)

ρi x ∈ (xi− 1
2
, xi+ 1

2
)

ρi+1 x ∈ (xi+ 1
2
, xi+ 3

2
)

we approximate the value of ρi+ 1
2

by either ρi or ρi+1 and in the case of the upwind scheme we

make our choice depending on the velocity u, in particular we set

ρi+ 1
2

=

 ρi+1 if ui+ 1
2
< 0

ρi if ui+ 1
2
> 0.

We obtain the difference method using the Taylor series in t to form the difference quotient

∂ρ

∂t
(xi, tj) =

ρ(xi, tj+1)− ρ(xi, tj)

∆t
− k

2

∂2ρ

∂t2
(xj, µj+ 1

2
) (2.14)

for some µj+ 1
2
∈ (tj, tj+1).

Thus a fully discrete approximation of (2.13), known as an explicit method, is given by the

following

h

∆t

(
ρn+1
j − ρnj

)
= −

(
ρnj+1[un

j+ 1
2
]− + ρnj [un

j+ 1
2
]+ − ρnj [un

j− 1
2
]− − ρnj−1[un

j− 1
2
]+

)
(2.15)
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where [a]+ = max(a, 0) and [a]− = min(a, 0). The corresponding semi-implicit method (im-

plicit in ρ and explicit in u) is given by

h

∆t

(
ρn+1
j − ρnj

)
= −

(
ρn+1
j+1 [un

j+ 1
2
]− + ρn+1

j [un
j+ 1

2
]+ − ρn+1

j [un
j− 1

2
]− − ρn+1

j−1 [un
j− 1

2
]+

)
. (2.16)

2.3 A coupled finite volume - finite difference approximation

of the model

We now present a coupled finite volume - finite difference approximation of (1.4)-(1.11), in

particular we discretize (1.4) using the finite volume method and (1.5) and (1.6) using the finite

difference method.

We set our approximation wnh to w(x, t) to be such that wnh ∈ W 0
h with

wnh(x) = wnj for all x ∈ Vj, j ∈ [0, J ], n > 0,

and we set our approximations unh and pnh to u(x, t) and p(x, t) to be such that

unh =
J∑
j=0

ηju
n
j (x) ∈ Sh and pnh =

J∑
j=0

pnj χj(x) ∈ S0
h,

where χj is a piecewise linear basis function satisfying

χj(xk) = δjk ∀ j, k ∈ [0, J ]. (2.17)



13

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.1: Piecewise linear function

We begin by approximating the initial data w0(x) and the boundary data in the following way

w0
j =

1

h

∫
Vj

w0(x)dx ∀ j ∈ [1, J − 1], (2.18)

w0
0 = w0

J = 0. (2.19)

In order to approximate (1.4) we use the semi-implicit upwinding finite volume scheme de-

scribed in Section 2.2.

Similar to section (2.2) we have the following approximation of (1.4) which holds for all

j ∈ [1, J − 1] and all n ≥ 0:

h

∆t

(
wn+1
j (1 + (kd − km)) − wnj

)
=

−
(
wn+1
j+1 [un

j+ 1
2
]− + wn+1

j [un
j+ 1

2
]+ − wn+1

j [un
j− 1

2
]− − wn+1

j−1 [un
j− 1

2
]+

)
(2.20)

where we recall that un
j+ 1

2

= 1
2
(u(xj+1, t

n) + u(xj, t
n)).

We use a standard finite difference approximations of (1.5) and (1.6), see Section 2.1,

pnj+1 − 2pnj + pnj−1

h2
=

4km
3

(
wnj+1 − 2wnj + wnj−1

h2

)
∀ j ∈ [1, J − 1] (2.21)

unj+1 − 2unj + unj−1

h2
=

(
pnj+1 − pnj

h

)
− km

3

(
wn+1
j − wnj

h

)
∀ j ∈ [1, J − 1]. (2.22)
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From the boundary conditions (1.7)-(1.9) we set

wn0 = wnJ = 0, pn0 = pu, p
n
J = pd, u

n
1
2

= 1,
unJ − unj− 1

2

h
= 0 (2.23)

with the approximation of the initial data w0(x) satisfying (2.18).

We note that, as a result of the upwinding scheme, in order to solve (2.20) for all interior nodes

j ∈ [1, J − 1], we actually only need to define wn+1
h at the inflow boundary nodes where

un1
2

> 0 and un
J− 1

2

< 0. However in the later analysis we find it convenient to use the boundary

conditions given in (2.23).
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Chapter 3

Convergence of the numerical

approximation

The main result of this chapter is a convergence result of the approximate solution wnh of a finite

volume approximation of the simplified model (1.4)-(1.14) to the weak solution of this model.

Before proving this convergence result we give include some useful analytical definitions and

results from [7].

3.1 Useful definitions, notation and results

Definition. The norm of a function u is a scalar that satisfies:

1.‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0,

2.‖αu‖ = |α|‖u‖ for any constant α, and

3.‖u+ ν‖ ≤ ‖u‖+ ‖ν‖.

Definition. Suppose u, ν ∈ L1, and α is a multiindex. We say that ν is the αth -weak derivative

of u, written

Dαu = ν,

provided ∫
U

uDαφdx = (−1)|α|
∫
U

νφdx
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for all test functions φ.

In other words, if we are given u and if there happens to exist a function ν which verifies the

above equation for all φ, we say that Dαu = ν in the weak sense. If there does not exist such a

function ν, then u does not possess a weak αth-partial derivative.

Definition. If U is bounded open set in Rn, we denote u : Ū → Rn. Then the Holder space

Ck,r(Ū)

consists of all functions u ∈ Ck(Ū) for which the norm

‖u‖Ck,r(Ū) :=
∑
|α|≤k

‖Dαu‖C(Ū) +
∑
|α|=k

[Dαu]C0,r(Ū)

is finite, where C0,r(Ū) the space of uniformly holder continuous functions with exponent r in

U and [Dαu] is a semi-norm.

So the space Ck,r(Ū) consist of those functions u that are k-times continuously differentiable

and whose kth- partial derivatives are Holder continuous with exponent r. Such functions are

well behaved and furthermore the space Ck,r(Ū) itself possesses a good mathematical structure.

Definition. The Sobolev space consist of all locally summable functions

u : U → R

such that for each multiindex α with

|α| ≤ k

Dαu exists in the weak sense.

Remark. if p = 2, we usually write

Hk(U) = W k,2(U), k = 0, 1, ....

The letter H is used, since as we will see Hk(U) is Hilbert space. Note that H0(U) = L2(U).
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Definition. If u ∈ W k,p(U), we define its norm to be

‖u‖Wk,p(U) =

(
∑
|α|≤k

∫
U
|Dαu|pdx)

1
p , (1 ≤ p <∞)∑

|α|≤k ess supU |Dαu|, (p =∞).

Definition. (i) Let {um}∞m=1, u ∈ W k,p(U). We say um converges to u in W k,p(U), written

um → u in W k,p(U),

provided

lim
m→∞

‖um − u‖Wk,p(U) = 0.

(ii) We write

um → u in W k,p
loc (U),

to mean

um → u in W k,p(V )

for each compactly embedded subset V ⊂⊂ U .

Definition. The total variation of a real-valued function f , defined on an interval [a, b] ⊂ R is

the quantity

|f |TV [a,b] = sup
P∈P

nP−1∑
i=0

|f(xi+1) − f(xi)|

where the supremum is taken over the set P = {P = {x0, ..., xnp}|P is a partition of [a, b]} of

all partitions of the interval considered.

If f is differentiable and its derivative is Riemann-integrable, its total variation is the vertical

component of the arc-length of its graph, that is to say

V b
a (f) =

∫ b

a

|f ′(x)|dx.

A real-valued function f on the real line is said to be of bounded variation (a BV function) on
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a chosen interval [a, b] ⊂ R if its total variation is finite, i.e.

f ∈ BV ([a, b])⇐⇒ V b
a (f) ≤ +∞.

Definition. The Lp space consist of all measurable functions u : [0, t]→ X with

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖pdt
) 1

p

<∞

for 1 ≤ p <∞, and

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖ <∞

Definition. The space

C([0, T ];X)

comprises all continuous functions u : [0, T ]→ X with

‖u‖C([0,T ];X) := max
0≤t<T

‖u(t)‖ ≤ ∞

Definition. Let X is a Banach space. We say a sequence {uk}∞k=1 ⊂ X converges weakly to

u ∈ X , written

uk → u,

if

〈u∗, uk〉 → 〈u∗, u〉

for each bounded linear functional u∗ ∈ X∗.

It is easy to check that if uk → u, then uk → u. It is also true that any weakly convergent

sequence is bounded. In addition , if uk → u, then

‖u‖ ≤ lim
k→∞

inf‖uk‖.

Definition. Let X be a reflexive Banach space and suppose the sequence {uk}∞k=1 ⊂ X is
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bounded. Then there exists a subsequence {ukj}∞j=1 ⊂ {uk}∞k=1 and u ∈ X such that

ukj → u.

In other words, bounded sequences in a reflexive Banach space are weakly precompact. In

particular, a bounded sequence in a Hilbert space contains a weakly convergent subsequence.

3.2 Weak formulation of the problem

Multiplying (1.4) by ϕ ∈ W 1,∞(ΩT), integrating over Ω and from 0 to T , using integration by

parts and noting (1.13) we obtain the following weak form of (1.4)-(1.14)

∫ T

0

∫ 1

0

w(ϕt − uϕx + (kd − km)ϕ)dxdt+

∫ 1

0

w0ϕ(x, 0)dx = 0 ∀ϕ ∈ W 1,∞(ΩT). (3.1)

From Chapter 2 we have the following approximation of (1.4) - (1.14) which holds for all

j ∈ [1, J − 1] and all n ≥ 0:

h

∆t

(
wn+1
j (1 + (kd − km)) − wnj

)
=

−
(
wn+1
j+1 [un

j+ 1
2
]− + wn+1

j [un
j+ 1

2
]+ − wn+1

j [un
j− 1

2
]− − wn+1

j−1 [un
j− 1

2
]+

)
(3.2)

wn0 = wnJ = 0, n > 0, (3.3)

w0
j = w(xj, 0), ∀j ∈ [1, J − 1] (3.4)

where we have that un
j+ 1

2

= u(xj + h
2
, tn), with u(x, t) given.
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3.3 Stability bounds

Before proving the convergence result we will obtain stability bounds on the approximate solu-

tion ŵnh of the finite volume approximation (3.2)-(3.4).

We assume that u ∈ L∞(0, T ;H2(Ω)) ∩ W 1,1(0, T ;L∞(Ω)) and that un
j+ 1

2

= u(xj + h
2
, tn)

satisfies

|un
j+ 1

2
| ≤ Cu,

|un
j+ 1

2

− un
j− 1

2

|

h
≤ Cuu

|un
j+ 3

2

− 2un
j+ 1

2

+ un
j− 1

2

|

h2
≤ Cuuu, |un+1

j+ 1
2

−un
j+ 1

2
| ≤ C∆t.

(3.5)

In addition we assume that w ∈ L∞(ΩT ) and that

|wnj | ≤ Cw. (3.6)

Henceforth for the simplicity of notation we set A = km − kd.

Lemma 3.3.1. For all h > 0 and 0 < ∆t < 1−A
Cuu

, there exists a unique sequence {ŵnh} which

solves (3.2) for all n ≥ 1.

Proof: We rewrite (3.2) as

(
1−∆tA+

∆t

h
([un

j+ 1
2
]+ − [un

j− 1
2
]−)

)
wn+1
j +

∆t

h

(
[un
j+ 1

2
]−w

n+1
j+1 − [un

j− 1
2
]+w

+
j−1n+ 1

)
= wnj

which is a system of equations of the form

L(unh)wn+1
h = wnh, (3.7)

where L(unh) is a matrix with diagonal elements Ljj ≥ 1, and off-diagonal elements Ljk ≤ 0

for j 6= k. Since ∆t <
1− A
Cuu

and x = [x]+ + [x]− where

[x]+ = max(x, 0)

[x]− = min(x, 0),
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it follows that Ljj − |Ljj+1| − |Ljj+1| = 1−A+ ∆t
h

(un
j+ 1

2

− un
j− 1

2

) ≥ 1−A−∆tCuu > 0, and

hence L is strictly diagonally dominant and therefore invertible, giving a unique solution wn+1
h .

�

Remark. From Lemma 3.3.1 we see that for a unique solution of our scheme to exist we require

∆t <
1− A
Cuu

(3.8)

so from here onwards we assume ∆t satisfies (3.8).

Lemma 3.3.2. There exists a constant C independent of h and ∆t, such that

N−1∑
n=0

∆t
J−1∑
j=0

|wn+1
j − wn+1

j+1 |([unj+ 1
2
]+ − [un

j+ 1
2
]−) ≤ C√

h
.

Proof: We rewrite (3.2) as

h

∆t
(wn+1

j −wnj ) = −(wn+1
j+1−wn+1

j )[un
j+ 1

2
]−−(wn+1

j −wn+1
j−1 )[un

j− 1
2
]+−wn+1

j (un
j+ 1

2
−un

j− 1
2
)+hAwn+1

j

(3.9)

and since wn0 = wnJ = 0 we can multiply (3.9) by wn+1
j and sum from j = 0 to J to obtain

J∑
j=0

h

∆t
(wn+1

j − wnj )wn+1
j = −

J∑
j=0

(
wn+1
j (wn+1

j+1 − wn+1
j )[un

j+ 1
2
]− + wn+1

j (wn+1
j − wn+1

j−1 )[un
j− 1

2
]+

)
+

J∑
j=0

(wn+1
j )2(hA− un

j+ 1
2

+ un
j− 1

2
).
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Noting that [x]+ = −[−x]− and that (a− b)a = 1
2
(a2 − b2) + 1

2
(a− b)2 we have

J∑
j=0

h

∆t

(
(wn+1

j )2 − (wnj )2
)
≤

J∑
j=0

(wn+1
j − wn+1

j+1 )2[un
j+ 1

2
]− − (wn+1

j − wn+1
j−1 )2[un

j− 1
2
]+

+ 2
J∑
j=0

(wn+1
j )2(hA− un

j+ 1
2

+ un
j− 1

2
)

+
J∑
j=0

(
(wn+1

j )2 − (wn+1
j+1 )2

)
[un
j+ 1

2
]− −

J∑
j=0

(
(wn+1

j )2 − (wn+1
j−1 )2

)
[un
j− 1

2
]+

=
J∑
j=0

(wn+1
j − wn+1

j+1 )2([un
j+ 1

2
]− − [un

j+ 1
2
]+)

+ 2
J∑
j=0

(
(wn+1

j )2(hA− un
j+ 1

2
+ un

j− 1
2
) + (wn+1

j )2(un
j+ 1

2
− un

j− 1
2
)
)

≤
J∑
j=0

(wn+1
j − wn+1

j+1 )2([un
j+ 1

2
]− − [un

j+ 1
2
]+)

+
J∑
j=0

(wn+1
j )2

(
2hA− un

j+ 1
2

+ un
j− 1

2

)
. (3.10)

Summing (3.10) from n = 0 to N − 1, rearranging and using Lemma 3.3.1 gives

N−1∑
n=0

∆t
J∑
j=0

(wn+1
j+1 − wn+1

j )2([un
j+ 1

2
]+ − [un

j+ 1
2
]−) ≤ −

N−1∑
n=0

J∑
j=0

h((wn+1
j )2 − (wnj )2)

+
N−1∑
n=0

∆t
J∑
j=0

h(wn+1
j )2

( |un
j+ 1

2

− un
j− 1

2

|

h
+ 2A

)

≤
J∑
j=0

h((w0
j )

2 − (wNj )2) + CT ≤ C. (3.11)

From the Cauchy-Schwartz inequality we have

N−1∑
n=0

∆t
J∑
j=0

|wn+1
j+1 − wn+1

j |([un
j+ 1

2
]+ − [un

j+ 1
2
]−)

≤

(
N−1∑
n=0

∆t
J∑
j=0

(wn+1
j+1 − wn+1

j )2([un
j+ 1

2
]+ − [un

j+ 1
2
]−)

)1/2(N−1∑
n=0

∆t
J∑
j=0

([un
j+ 1

2
]+ − [un

j+ 1
2
]−)

)1/2

.
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From (3.5) we have
J∑
j=0

([un
j+ 1

2
]+ − [un

j+ 1
2
]−) ≤ Cu

h

and the result follows. �

We now establish further estimates on wnh .

Lemma 3.3.3. Set Λ∗ to be a constant. Then for all n ≥ 0 and all ∆t ≤ min
(

1−A
Cuu

, A+Cuu−(1−A)Λ∗

Λ∗Cuu

)
we have

|ŵnh |TV [0,L] =
J−1∑
j=0

|wnj+1 − wnj | ≤ C(|ŵ0
h|TV [0,L] + Λ∗(n+ 1)∆t),

where

C = eΛ∗(n+1)∆t.

Proof: From (3.2) we see that for j = 1, . . . , J − 1

(1−∆tA)wn+1
j = wnj −

∆t

h

(
wn+1
j+1 [un

j+ 1
2
]− + wn+1

j [un
j+ 1

2
]+ − wn+1

j [un
j− 1

2
]− − wn+1

j−1 [un
j− 1

2
]+

)
= wnj −

∆t

h

(
(wn+1

j+1 − wn+1
j )[un

j+ 1
2
]− + (wn+1

j − wn+1
j−1 )[un

j− 1
2
]+

)
−∆t

h
wn+1
j (un

j+ 1
2
− un

j− 1
2
). (3.12)

Hence for j = 0, 1, · · · , J − 2 we have

(1−∆tA)wn+1
j+1 = wnj+1−

∆t

h

(
(wn+1

j+2 − wnj+1)[un
j+ 3

2
]− + wn+1

j+1 (un
j+ 3

2
− un

j+ 1
2
) + (wn+1

j+1 − wn+1
j )[un

j+ 1
2
]+

)
.

Setting ξnj = wnj+1 − wnj , gives the following for j = 1, . . . , J − 2

(1−∆tA)ξn+1
j = ξnj −

∆t

h

(
ξn+1
j+1 [un

j+ 3
2
]− + wn+1

j+1 (un
j+ 3

2
− un

j+ 1
2
) + ξn+1

j [un
j+ 1

2
]+ − ξn+1

j [un
j+ 1

2
]−

)
+

∆t

h

(
wn+1
j (un

j+ 1
2
− un

j− 1
2
) + ξn+1

j−1 [un
j− 1

2
]+

)
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⇒
(

1−∆tA− ∆t

h
[un
j+ 1

2
]− +

∆t

h
[un
j+ 1

2
]+

)
ξn+1
j = ξnj −

∆t

h
[un
j+ 3

2
]−ξ

n+1
j+1 +

∆t

h
[un
j− 1

2
]+ξ

n+1
j−1

− ∆t
(
wn+1
j+1 (un

j+ 3
2
− un

j+ 1
2
)− wn+1

j (un
j+ 1

2
− un

j− 1
2
)
)

⇒
(

1−∆tA− ∆t

h
[un
j+ 1

2
]− +

∆t

h
[un
j+ 1

2
]+ + ∆t(un

j+ 3
2
− un

j+ 1
2
)

)
ξn+1
j

= ξnj −
∆t

h
[un
j+ 3

2
]−ξ

n+1
j+1 +

∆t

h
[un
j− 1

2
]+ξ

n+1
j−1 + ∆twn+1

j (un
j+ 3

2
− 2un

j+ 1
2

+ un
j− 1

2
).

From (3.8) we have that (1− A+ ∆t(un
j+ 1

2

− un
j− 1

2

)) > 0 and hence all the coefficients of ξ in

the above equation are positive, hence for j = 1, · · · , J − 2 we have

(
1−∆tA− ∆t

h
[un
j+ 1

2
]− +

∆t

h
[un
j+ 1

2
]+ + ∆t(un

j+ 3
2
− un

j+ 1
2
)

)
|ξn+1
j |

≤ |ξnj |−
∆t

h
[un
j+ 3

2
]−|ξn+1

j+1 |+
∆t

h
[un
j− 1

2
]+|ξn+1

j−1 |+h∆t|wn+1
j |

∣∣∣∣∣u
n
j+ 3

2

− 2un
j+ 1

2

+ un
j− 1

2

h2

∣∣∣∣∣ .
(3.13)

Summing (3.13) from j = 1 to J − 2 and using (3.5) gives

(1−∆tA− Cuu∆t)
J−2∑
j=1

|ξn+1
j | ≤

J−2∑
j=1

|ξnj | +
∆t

h

J−2∑
j=1

(
−|ξn+1

j+1 |[unj+ 3
2
]− + |ξn+1

j−1 |[unj− 1
2
]+

)
+

∆t

h

J−2∑
j=1

|ξn+1
j |

(
[un
j+ 1

2
]− − [un

j+ 1
2
]+

)
− CwCuuu∆t

J−2∑
j=1

h

=
J−2∑
j=1

|ξnj | − CwCuuu∆t
J−2∑
j=1

h

+
∆t

h

(
−|ξn+1

J−1|[u
n
j− 1

2
]− + |ξn+1

1 |[un3
2
]−

)
+

∆t

h

(
−|ξn+1

J−2|[u
n
j−2]+ + |ξn+1

0 |[un1
2
]+

)
(3.14)
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Using (2.23) and (3.12) we have

(1−∆tA)ξn+1
0 = ξn0 +

∆t

h

(
−ξn+1

1 [un3
2
]− − wn+1

1 (un3
2
− un1

2
)− ξn+1

0 [un1
2
]+

)
= ξn0 +

∆t

h

(
−ξn+1

1 [un3
2
]− − hwn+1

1 (un5
2
− un3

2
)− ξn+1

0 [un1
2
]+

)
= ξn0 +

∆t

h

(
−ξn+1

1 [un3
2
]− − hξn+1

0 (un5
2
− un3

2
)− ξn+1

0 [un1
2
]+

)

⇒ (1−∆tA+ ∆t(un5
2
− un3

2
) +

∆t

h
[un1

2
]+)ξn+1

0 = ξn0 −
∆t

h
ξn+1

1 [un3
2
]−.

Noting from (3.8) that 1 + ∆t(un5
2

− un3
2

) > 0 it follows that

((1−∆tA+ ∆t(un5
2
− un3

2
) +

∆t

h
[un1

2
]+)|ξn+1

0 | ≤ |ξn0 | −
∆t

h
ξn+1

1 [un3
2
]−

and similarly

(1−∆tA+ ∆t(un
J+ 1

2
− un

J− 1
2
)− ∆t

h
[un
J− 1

2
]−)|ξn+1

J−1| ≤ |ξ
n
J−1|+

∆t

h
ξn+1
J−2[un

J− 3
2
]+.

Hence

(1−∆tA− Cuu∆t)|ξn+1
0 | ≤ |ξn0 | −

∆t

h
|ξn+1

1 |[un3
2
]− −

∆t

h
|ξn+1

0 |[un1
2
]+

(1−∆tA− Cuu∆t)|ξn+1
J−1| ≤ |ξ

n
J−1|+

∆t

h
|ξn+1
J−2|[u

n
J− 3

2
]+ +

∆t

h
|ξn+1
J−1|[u

n
J− 1

2
]−.

Using the above definitions of |ξn+1
0 | and |ξn+1

J−1| in (3.14) and noting that ∆t ≤ A+Cuu−(1−A)Λ∗

Λ∗Cuu
,

we obtain

J−1∑
j=0

|ξn+1
j | ≤ 1

1−∆tA− Cuu∆t

J−1∑
j=0

|ξnj |+ C∆t ≤ (1 + Λ∗∆t)
J−1∑
j=0

|ξnj |+ C∆t,

⇒
J−1∑
j=0

|ξn+1
j | ≤ (1 + Λ∗∆t)n+1

J−1∑
j=0

|ξ0
j |+

n∑
j=0

(1 + Λ∗∆t)jC∆t

≤ (1 + Λ∗∆t)n+1

J−1∑
j=0

|ξ0
j |+ (n+ 1)(1 + Λ∗∆t)n+1C∆t,
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⇒
J−1∑
j=0

|ξn+1
j | ≤ e(n+1)Λ∗∆t

(
J−1∑
j=0

|ξ0
j |+ (n+ 1)Λ∗∆t

)
,

and the result follows. �

Lemma 3.3.4. There exists a constant C independent of h and ∆t, such that

||ŵn+1
h − ŵnh ||L1(0,L) =

J−1∑
j=1

h|wn+1
j − wnj | ≤ C∆t ∀ n ≥ 0, (3.15)

Proof: From (3.12) we have

h(wn+1
j −wnj ) = −∆t

(
(wn+1

j+1 − wn+1
j )[un

j+ 1
2
]− + wn+1

j (un
j+ 1

2
− un

j− 1
2

+ hA) + (wn+1
j − wn+1

j−1 )[un
j− 1

2
]+

)
⇒ h|wn+1

j − wnj | ≤ ∆t
(
−|ξn+1

j |[un
j+ 1

2

]− + |wn+1
j |(|un

j+ 1
2

− un
j− 1

2

|+ Ah) + |ξn+1
j−1 |[unj− 1

2

]+

)
= ∆t

(
−|ξn+1

j |[un
j+ 1

2

]− + h|wn+1
j |(

∣∣∣∣unj+1
2

−un
j− 1

2

h

∣∣∣∣+ A) + |ξn+1
j−1 |[unj− 1

2

]+

)
.

Summing the above equation from j = 1 to J − 1, and applying the result of Lemma 3.3.3 and

(3.5) gives (3.15). �

3.4 Convergence of the numerical approximation

Before we prove the main result of this section we introduce some notation and results.

We set (·, ·)h to be the discrete replacement of the L2 inner product over Ω, (·, ·), defined by the

following ‘lumped’ integration rule

(η, ϕ)h =
M∑
j=1

hηjϕj ∀ η, ϕ ∈ C(Ω), (3.16)

where ηj = η(xj) are the nodal values of ηh. For every continuous function ϕ on Ω we define

the interpolation operator πh : C(Ω) → Sh, by πhϕ ∈ Sh where πhϕ = ϕ at every node xj ,
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j ∈ [0, J ]. From [2] we have the following results

|ϕ− πhϕ|0 + h|ϕ− πhϕ|1 ≤ Ch2 ∀ ϕ ∈ H2(Ω), (3.17)

where C is a positive constant and

|ϕ|0 =

(∫
Ω

ϕ2dx

) 1
2

, |ϕ|1 =

(∫
Ω

|ϕx|2dx
) 1

2

.

It is well known that for all η, ϕ ∈ S0
h [16], we have

|(η, ϕ)− (η, ϕ)h| ≤ Ch2|η|1|ϕ|1 ≤ Ch|η|0|ϕ|1, (3.18)

and there exists constants C1 and C2 independent of h such that

C1|ϕ|0 ≤ |ϕ|h ≤ C2|ϕ|0 ∀ ϕ ∈ Sh. (3.19)

Let fn ∈ X , for a function space X where fn might be a finite element function. We define,

f∆t(t) := fn t ∈ [n∆t, (n+ 1)∆t), (3.20)

f+
∆t(t) := fn+1 t ∈ (n∆t, (n+ 1)∆t], (3.21)

f ∗∆t(t) := fn + (t− n∆t) (fn+1−fn)
∆t

t ∈ [n∆t, (n+ 1)∆t]. (3.22)

Lemma 3.4.1. There exists a function w ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;BV (Ω)) and a sub-

sequences such that

ŵh,∆t → w strongly in L1(ΩT), (3.23)

ŵ+
h,∆t → w strongly in L1(ΩT), (3.24)

wh,∆t → w strongly in L1(ΩT), (3.25)

w+
h,∆t → w strongly in L1(ΩT), (3.26)

wh,∆t → w weakly in L2(ΩT), (3.27)
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as h, ∆t→ 0.

Proof:

Using (3.15), (3.22) and Lemma 3.3.3 it follows that

||ŵ∗h,∆t||L∞(0,T ;BV (Ω)) ≤ C and ||∂t(ŵ∗h,∆t)||L∞(0,T ;L1(Ω)) ≤ C. (3.28)

Since BV is compactly embedded in L1, see [8], using [13] we conclude the existence of a

function w ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;BV (Ω)) such that

ŵ∗h,∆t → w strongly in C([0, T ];L1(Ω)). (3.29)

To prove (3.23) we see that from (3.22), (3.29) and (3.15) it follows that

∫ T

0

||ŵh,∆t − w||L1(Ω)dt ≤
∫ T

0

||ŵh,∆t − ŵ∗h,∆t||L1(Ω)dt+

∫ T

0

||ŵ∗h,∆t − w||L1(Ω)dt

≤
N−1∑
n=0

∫ tn+1

tn

|t− n∆t|||ŵ
n+1
h − ŵnh

∆t
||L1(Ω)dt+

∫ T

0

||ŵ∗h,∆t − w||L1(Ω)dt

−→ 0 as h,∆t→ 0. (3.30)

Using (3.15) and (3.30) it follows that

∫ T

0

||ŵ+
h,∆t − w||L1(Ω)dt ≤

∫ T

0

||ŵ+
h,∆t − ŵh,∆t||L1(Ω)dt+

∫ T

0

||ŵh,∆t − w||L1(Ω)dt

≤
N∑
n=0

∫ tn+1

tn

||ŵn+1
h − ŵnh ||L1(Ω)dt+

∫ T

0

||ŵh,∆t − w||L1(Ω)dt

−→ 0 as h,∆t→ 0,

which proves (3.24). We now prove (3.25), to this end we note that since

∫ T

0

∫ 1

0

|wh,∆t − w|dxdt ≤
∫ T

0

∫ 1

0

|wh,∆t − ŵh,∆t|dxdt+

∫ T

0

∫ 1

0

|ŵh,∆t − w|dxdt,
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using (3.23) it remains to show that

∫ T

0

∫ 1

0

|ŵh,∆t − wh,∆t|dxdt→ 0 as h and ∆t → 0.

From the definitions of wh,∆t(x, t) and ŵh,∆t(x, t) and Lemma 3.3.3 we have

∫ T

0

∫ 1

0

|ŵh,∆t(x, t) − wh,∆t|dxdt =
N−1∑
n=0

∫ (n+1)∆t

n∆t

J−1∑
j=0

∫ (j+1)h

jh

|ŵh,∆t − wh,∆t|dxdt

≤ h∆t

2

N−1∑
n=0

J−1∑
j=0

(
|wnj+1 − wnj |+ |wnj − wnj+1|

)
= N∆th

J−1∑
j=0

|wnj+1 − wnj | → 0 as h and ∆t → 0.

Thus (3.25) holds, and (3.26) can be proved in the same manner, furthermore using (3.5) and

(3.25) we easily conclude (3.27). �

Lemma 3.4.2. Let wh,∆t, uh,∆t and φh,∆t be such that

||uh,∆t||L∞(ΩT) ≤ C, ||φh,∆t||L∞(ΩT) ≤ C, ||wh,∆t||L∞(ΩT) ≤ C, (3.31)

uh,∆t −→ u strongly in L2(ΩT)

φh,∆t −→ φ strongly in L2(ΩT)

wh,∆t −→ w strongly in L1(ΩT)

 as h,∆t→ 0. (3.32)

Then ∫
ΩT

uh,∆tφh,∆twh,∆tdx −→
∫

ΩT

uφwdx as h,∆t→ 0. (3.33)
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Proof: Noting that∣∣∣∣∫
ΩT

(uh,∆tφh,∆twh,∆t − uφw)dx

∣∣∣∣ ≤ ∣∣∣∣∫
ΩT

(uh,∆t − u)φh,∆twh,∆tdx

∣∣∣∣
+

∣∣∣∣∫
ΩT

u(φh,∆t − φ)wh,∆tdx

∣∣∣∣
+

∣∣∣∣∫
ΩT

uφ(wh,∆t − w)dx

∣∣∣∣
≤ ||uh,∆t − u||L2(ΩT)||φh,∆twh,∆t||L2(ΩT)

+||φh,∆t − φ||L2(ΩT)||uwh,∆t||L2(ΩT)

+

∣∣∣∣∫
ΩT

uφ(wh,∆t − w)dx

∣∣∣∣
≤ ||uh,∆t − u||L2(ΩT)||φh,∆twh,∆t||L2(ΩT)

+||φh,∆t − φ||L2(ΩT)||uwh,∆t||L2(ΩT)

+||wh,∆t − w||L1(ΩT)||uφ||L∞(ΩT).

Using (3.31) and (3.32) gives (3.33). �

We set

ŵ0
h(x)|Vj := w0

j , ∀j ∈ [1, J − 1] (3.34)

then it is well known, see [13], that for all w0(x) ∈ BV (Ω) ∩ L∞(Ω)

w0
h → w0 strongly in L2(Ω) as h→ 0. (3.35)

Theorem 3.4.3. There exists a function w ∈ C([0, T ];L1(Ω)) ∩ L∞(0, T ;BV (Ω)) such that

ŵh,∆t → w strongly in L1(ΩT), (3.36)

where w is the unique solution of (3.1).

Proof: We note that for any continuous functions f, g we have

(f, g)h = (πhf, πhg)h =

∫
Ω

πh(fg)dx.
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In the following we repeatedly use (3.18) for f, g ∈ S0
h, where ||f ||L∞(Ω) ≤ C and g is the

interpolant of a smooth function to deduce that

lim
h→0

((f, g)h − (f, g)) = 0.

The existence of subsequences and a limit w that satisfies (3.36) follows directly from Lemma

3.4.1, so all that remains now is to prove that w is the unique solution of (3.1). To this end, from

[5], we see that for any φ ∈ C∞(ΩT), the mesh functions φh,∆t(t) and δt(φh,∆t)(t) defined on

[0, T ) by

φh,∆t(t) = πhφ(n∆t) ≡ φnh, ∀ t ∈ [n∆t, (n+ 1)∆t)

δt(φh,∆t)(t) = (φn+1
h − φnh)/∆t, ∀ t ∈ [n∆t, (n+ 1)∆t)

have the approximation properties

t = n∆t, πhφ(t)→ φ(t) strongly in H1
0 (Ω)

φh,∆t → φ strongly in L2(0, T ;H1
0 (Ω))

δt(φh,∆t)→ φt strongly in L2(0, T ;H1
0 (Ω)).

(3.37)

Next we note that (3.2) can be written as

h(wn+1
j − wnj ) = −∆t

2

(
(wn+1

j+1 + wn+1
j )un

j+ 1
2
− (wn+1

j + wn+1
j−1 )un

j− 1
2

)
+ ∆thAwn+1

j

+
∆t

2
(wn+1

j+1 − wn+1
j )([un

j+ 1
2
]+ − [un

j+ 1
2
]−)

−∆t

2
(wn+1

j − wn+1
j−1 )([un

j− 1
2
]+ − [un

j− 1
2
]−). (3.38)

Multiplying (3.38) by φnj (where φ ≡ πhφ(n∆t), φn0 = φnJ = 0 and φNj = 0) and summing
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from j = 1 to J − 1 and n = 0 to N − 1 gives

N−1∑
n=0

J−1∑
j=1

h(wn+1
j − wnj )φnj = −∆t

2

N−1∑
n=0

J−1∑
j=0

(wn+1
j+1 + wnj )un+1

j+ 1
2

(φnj − φnj+1) + ∆tA
N−1∑
n=0

J−1∑
j=0

hwn+1
j φnj

+
∆t

2

N−1∑
n=0

J−1∑
j=0

(wn+1
j+1− wn+1

j )([un
j+ 1

2
]+ − [un

j+ 1
2
]−)(φnj+1 − φnj )

= −∆t
N−1∑
n=0

∫ 1

0

wn+1
h unh(φnh)x + ∆tA

N−1∑
n=0

J−1∑
j=0

hwn+1
j φnj

+∆t
N−1∑
n=0

J−1∑
j=0

(wn+1
j+1 − wn+1

j )([un
j+ 1

2
]+ − [un

j+ 1
2
]−)(φnj+1 − φnj ).

Noting that φNj = 0 for all j ∈ [0, J ] gives

−
J−1∑
j=1

hw0
jφ

0
j−

N−1∑
n=0

J−1∑
j=1

hwn+1
j (φn+1

j −φnj ) = −∆t
N−1∑
n=0

∫ 1

0

wn+1
h (unh)(φnh)xdx+∆tA

N−1∑
n=0

J−1∑
j=0

hwn+1
j φnj

+∆t
N−1∑
n=0

J−1∑
j=0

(wn+1
j+1 − wn+1

j )([un
j+ 1

2
]+ − [un

j+ 1
2
]−)(φnj+1 − φnj ).

Using (3.16) we have

−
(
w0
h, φh,∆t(0)

)
h
−
∫ T

0

(
w+
h,∆t(t), δt(φh,∆t)(t)

)
h
dt

= −
∫ T

0

∫ 1

0

w+
h,∆t(t)uh,∆t(t)(φh,∆t)x(t)dxdt+ A

∫ T

0

(
w+
h,∆t, φh,∆t

)
h
dt

+∆t
N−1∑
n=0

J−1∑
j=1

(wn+1
j+1 − wn+1

j )([un
j+ 1

2
]+ − [un

j+ 1
2
]−)(φnj+1 − φnj ). (3.39)

From Lemma 3.3.2 and the fact that |φnj+1 − φnj | ≤ Ch, (since φ ∈ C∞(ΩT)) we have,

⇒ ∆t
N−1∑
n=0

J−1∑
j=1

|(wn+1
j+1 − wn+1

j )([un
j+ 1

2
]+ − [un

j+ 1
2
]−)(φnj+1 − φnj )|
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≤ C∆th
N−1∑
n=0

J−1∑
j=1

|wn+1
j+1 − wn+1

j |([un
j+ 1

2
]+ − [un

j+ 1
2
]−)

≤ C∆t
N−1∑
n=0

h
1
2 . (3.40)

Using (3.18), (3.27), (3.35) and (3.37), we can pass to the limit as h and ∆t tend to zero in the

left-hand side of (3.39) to obtain

∫ 1

0

w0(x)φ(x, 0)dx+

∫ T

0

∫ 1

0

wφtdxdt. (3.41)

Also using (3.25), (3.35), (3.36), (3.37) and Lemma 3.4.2 with φ replaced by φx, we can pass

to the limit as h and ∆t tend to zero in the first two terms on the right-hand side of (3.39) to

obtain ∫ T

0

∫ 1

0

wuφxdxdt+ A

∫ T

0

∫ 1

0

wφdxdt. (3.42)

From (3.40)-(3.42) it follows that letting h and ∆t tend to zero in (3.39) gives

∫ 1

0

w0(x)φ(x, 0)dx+

∫ T

0

∫ 1

0

wφt + w(kd − km)φdxdt =

∫ T

0

∫ 1

0

wuφxdxdt,

and hence w is a solution of (3.1).
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Chapter 4

Numerical Results

In this chapter we present some numerical results obtained from computationally solving the

numerical discretization of Chapter 2 and Chapter 3. The solutions are obtained by using the

coupled finite volume - finite difference method to the (2.20)-(2.23). The results of p, u and w

are shown in Figures 4.1-4.8 for the different values of km, where we keep the value of kd fixed,

where km and kd are the rates of cell growth and death respectively. Following figures shows

that the cell growth is advected with the time and imposed flow u. The results for the pressure

p are same as for w as it is directly proportional to w. The imposed flow advects the construct

to the end of the domain; following the initial growth phase which is

w(x, 0) = 0.1[tanh(50(x− 0.15))− tanh(50(x− 0.2))].

We see the comparison of cell growth phases in Figures 4.1-4.7 as t increases from 0 towards 0.9

by keeping the value of cell growth and death rate constant. Figures 4.1-4.4 shows the behavior

of growth of tissue with that obtained in the case of km = 10 and kd = 0.1, see [12], increases

with the increase in N from 100 to 1000. In Figure 4.1(c), we see the tissue growth w towards

the end domain boundary as time advance to final time. Identical behavior of pressure is seen in

Figure 4.1(a) because pressure is directly proportional to tissue growth w. Velocity profile can

be seen in Figure 4.1(b), which is constant prior to and after the tissue increasing approximately

linearly within. We can not see the so much changes in the growth of cell w, pressure p and
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velocity u as we increase the N from 100 to 200 and 500 as shown in 4.2, 4.3 respectively. But

when we increase of the value of N to 1000 Figure 4.4, the cell growth increase rapidly which

result in increase in pressure and velocity as well. We also computed the result by choosing

the smaller and higher value of km, which is 1 and 25 respectively but by keeping the value of

kd same; 0.1 and N = 1000 as in Figure 4.5-4.7. While keeping the value of km = 1.0 we

see the decrease in the pressure value; Figure 4.5(a) and in growth of tissue w; Figure 4.5(c)

as time advances. The velocity also decrease with time step approach to final timestep; Figure

4.5(b). With the decrease in the value of km from 10 to 1.0, we notice cell growth decrease

with decreasing the value of km; rate of cell growth. By taking value of km, 4 which is greater

than previous value of 1.0 we see the obvious increasing growth change in the tissue growth w,

pressure p where the velocity behavior is different, it start to decrease at the initial timestep but

as time approaches to final timestep, we see increasing behavior, Figure 4.6(b). For choosing

the highest value of km = 25, we see the big jumps in the tissue growth w, pressure p and

velocity profile u with time step approach to final time. By keeping the value of km same but

increasing the value of N from 1000 to 2000, we see solution converges more rapidly to final

solution, see Figure 4.8.

We conclude by increasing the value of N , we see the tissue undergoes the growth rapidly in

term of pressure, velocity and volume, Figure 4.1-4.4 while increasing or decreasing the growth

factor rate, km we see the big changes in the growth of tissue. Hence, the growth factor does

have greater impact in the growth of tissue volume w, pressure p and velocity u.
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Figure 4.1: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, with

N = 100 and for t = 0− 0.9 with time steps 0.01: parameter values: km = 10, kd = 0.1.
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Figure 4.2: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, at

t=0-0.9 with time steps 0.01: parameter values: km = 10, kd = 0.1 and N = 200.
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Figure 4.3: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w,with

N = 500 and at t=0-0.9 with time steps 0.01: parameter values: km = 10, kd = 0.1.
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Figure 4.4: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, with

N = 1000 and for t=0-0.9 with time steps 0.01: parameter values: km = 10, kd = 0.1.
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Figure 4.5: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, at

t=0-0.9 with time steps 0.01: parameter values: km = 1.0, kd = 0.1 where N = 1000.
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Figure 4.6: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, at

t=0-0.9 with time steps 0.01: parameter values: km = 4.0, kd = 0.1 and N = 1000.
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Figure 4.7: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, at

t=0-0.9 with time steps 0.01: parameter values: km = 25.0, kd = 0.1 where N = 1000.
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Figure 4.8: Plot of (a) pressure, p, and (b) the velocity, u, (c) the cell volume fraction, w, at

t=0-0.9 with time steps 0.01: parameter values: km = 25.0, kd = 0.1 where N = 2000.
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