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Abstract

The recent growth of exchanges has generated large trading platforms for investors.

The largest of these institutions, the Intercontinental Exchange and the Chicago Mer-

cantile Exchange group are now responsible for clearing trades for the majority of

investors worldwide and are perhaps, as large commercial banks are, too big to fail.

This has attracted attention from international regulating bodies to impose strict risk

management standards on the exchanges to ensure financial stability. In this thesis,

we identify first, that an investor in the market is strongly affected by margins set

by the exchanges in determining the transaction costs of a trade. We discuss the

possibility that a volatile margin movement would introduce further risks for such an

investor causing them to raise more capital to cover possible margin calls which can

perhaps lead to procyclicality. We follow this work by addressing how margins can be

determined in adherence to the new laws. Exchanges are now required to set margins

based on the Value-at-Risk, hence we search for the best Value-at-Risk method for

margining use. Here, we find that the simple Orthogonal Exponentially Weighted

Moving Average method is sufficient in forecasting the Value-at-Risk, which contra-

dicts a fair body of the literature who suggests that complex developments of GARCH

are superior. We then offer methods for setting and evaluating margin requirements

upon the Value-at-Risk estimates, concentrating on producing stable margin require-

ments. The automated methods produced in our work outperform all other methods

available in the literature. Furthermore, we are the first to provide methods for as-

sessing margin stability. Our work is timely in addressing the current affairs of the

world economy and is among the first to tackle the margin stability issue in detail.
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1. Introduction

The merger wave of futures exchanges in recent years has enhanced market liquid-

ity and facilitated faster transactions for investors. In 2013, the Intercontinental

Exchange (ICE) acquired the London International Financial Futures and Options

Exchange (LIFFE) and Euronext, creating the largest exchange in Europe, in compe-

tition with the Chicago Mercantile Exchange (CME) group in the USA (which now

includes the New York Mercantile Exchange (NYMEX), the Chicago Board of Trades

(CBOT), the Commodity Exchange (COMEX) and more recently the Kansas City

Board of Trade (KCBOT)). Both these exchanges control the majority of the world

trade platform. Market participants -hedgers and speculators- are directly affected by

margins issued by the exchange. Significant margin changes can perhaps cause these

investors to implement risk management procedures on a mass scale, exacerbating the

economic cycles which can ultimately lead to major financial distress. It is essential

that one understands the impact margins have on the investors and that margin levels

are controlled for the well-being of the world economy.

We first illustrate how margins can affect a common investor in the market, more

specifically a refinery which buys crude oil and sells refined products. A popular

hedging strategy for the refinery is delta-hedging, where one takes the positions on

the futures contract to hedge spot price exposures. We compare the effectiveness

minimum-variance hedging to the 1:1 naive hedge, and examine the transaction costs

generated by each method. We delved into hedging spreads on oil products so that

our results -on these complex underlyings- are generalisable to simpler products such

as single positions on an equity index futures. Upon this investigation, we find that

energy futures margins are difficult to recreate and that historical margins are un-

available. Hence, as a preliminary study, we assume that the margins remain constant

over time, which is adequate in comparing hedging strategies. The refinery is directly

affected by margin costs and should margins become variable, further risk factors such

as margin calls may arise.

We expand our study further to examine how margins can be issued in accordance

with new regulatory measures, paying special attention to generating stable margin
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1. Introduction

requirements. Here, the investigation is split into two separate studies: first, we search

for the most reliable Value-at-Risk (VaR) model for margin requirement purposes;

second, we suggest methods for setting and evaluating the margin requirements.

Detailed historical data for margin requirements is limited to ICE’s Brent crude

oil futures only hence we apply our margin models on this derivative. We compare

the results to historical margins produced by the Standard Portfolio Analysis of Risk

(SPAN) software developed in 1988 which is currently the most widely-used software

for determining the margin requirements. SPAN generates 16 scenarios for a portfo-

lio’s price movements, the most extreme of which (ScanRisk) is used as the margin

requirement. Despite its limitations, the popularity of the software has resulted in

the industry keeping its name and interface while the methods for generating the

16 scenarios adjust around its existence. The CME group for example now gener-

ates the scenarios using different Value-at-Risk (VaR) models, while ICE determines

the scenarios heuristically around historical profit and loss series. Note that futures

margining methodologies are not applicable to equity margining because stock margin

levels are set by regulating bodies (e.g. the Federal Reserves in the USA) which focus

only on maintaining the integrity of financial markets. This removes all competitive

pricing elements from the exchanges. Moreover, for a long position, leveraging ones

investment is a choice, not an obligation hence one cannot view the transaction costs

from equity margining in the same light as futures.

In the derivatives market, energy futures is one of the fastest growing sectors world-

wide. Its complex movements and richness in data combine to provide an excellent

testing ground for our analysis. In this chapter, we provide a short summary of en-

ergy spot and futures markets. This is followed by an analysis of how the market

players interact. Note that other derivatives, in particular options and swaps, are also

actively traded but are not the focal point of our study, although these instruments

provide interesting cases for further investigation.

1.1 Energy Markets

There are many complications in the trading of energy products. Unlike financial

assets, energy spot prices are difficult to determine. The use of energy spot price

data requires meticulous care in evaluating the price generation process, to determine

whether or not the spot is truly representative of the transactions in practice. In

this section, we present some of the physical aspects of the energy products traded

by investors in the spot market. This has implications for our analysis of how a

2



1. Introduction

refinery may adopt strategies to hedge their spot positions. This Thesis studies risk

management of crude oil and its refined products -gasoline and heating oil. A summary

of the physical aspects of these commodities are provided below.

1.1.1 Crude Oil

Almost all petroleum products used for everyday consumption (heating oil, jet fuel,

kerosene, bitumen to name a few) are refined from crude oil, making it the most traded

energy product worldwide. Crude oil is formed by intense heat and pressure on large

conglomerates of buried dead organisms and can be extracted from reservoirs naturally

occurring around the world. The highest concentrations of crude oil can be found

in Saudi Arabia, Iraq, Iran, Canada and Venezuela whose proved reserves1 exceed

140 billion barrels in December 2012 (source: www.eia.gov/countries/index.cfm?

view=reserves#allcountries). As such, political turmoil in these regions can affect

crude oil prices and result in large swings in the global financial markets.

The two most heavily traded crude oils are: West Texas Intermediate (WTI) and

Brent crude oil. WTI crude refers to a specific grade of crude oil with light, sweet

content, which entails a low American Petroleum Institute (API) gravity2 and low

concentration of sulphur (0.24%). This type of crude oil is primarily processed into

gasoline. The main trading hub of WTI crude is in Cushing, Oklahoma and is the

flagship crude oil product for the CME group. Up until March 2011, WTI was the

benchmark crude oil around the world where a barge of crude oil whose grade is

undefined will be traded at the WTI crude oil price published by Platts plus a spread.

Brent crude is extracted from the North Sea region and also possesses the light,

sweet property. Historically, Brent and WTI spot prices have a small spread but

in March 2011 inventory levels in the USA were full and barges of oil were turned

away at the port. WTI crude since lost its benchmark status to Brent crude and

their prices heavily decoupled for 2 years. Dated Brent crude oil is perhaps the most

heavily traded commodity to date. The term ‘dated’ refers to the price of a cargo

whose delivery date is specified in advance. This is by all means, not the same as the

futures price given the exchange of cash does not necessarily happen on the delivery

date. As of May 2011, 60% of crude oil traded throughout the world is priced relative

to Dated Brent.

1This refers to reserves where 90% of the well can be extracted with certainty
2A measure of the heaviness of the product relative to water

3
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1. Introduction

1.1.2 Refined products: Gasoline and Heating Oil

Gasoline and Heating oil are two of the major refined products from crude oil. Gaso-

line consumption as fuel for vehicles makes it one of the most popular petroleum

product. Leaded Gasoline was prohibited in the USA in 1995 due to environmen-

tal concerns thus making its unleaded counterpart the most heavily traded gasoline

contract until 2005 when it was replaced by Reformulated Blendstock for Oxygen

Blending (RBOB) gasoline, which is now the main type of gasoline traded in both

ICE and CME. Heating oil, (aka heating oil no.2 in the USA) is mostly used for

heating homes and is heavily traded in the US and Europe.

Refined products prices are affected by a number of factors, although the price of

crude oil is perhaps the most significant. Storage costs, convenience yield, seasonal

demands cause their steep term structure and highly volatile nature. Heating oil for

example is required for heating homes in the winter, hence its trading activity also

rises around the same time. Gasoline can go stale after only one month of storage,

while crude oil does not. These contribute to the volatile nature of the spread between

crude oil and refined products (crack spread, discussed further in chapter 3).

1.2 Energy Futures

Futures and forwards are contractual obligations between two counterparties to trade

a product at an agreed-upon price at expiry. Unlike forwards, futures contracts are

guaranteed by a central counterparty (CCP), usually a clearing house operating within

an exchange, and bears minimal counterparty risk. The exchange fixes the terms of

a futures contract, also specifying the amount of commodity to be delivered and the

location of the delivery. NYMEX’s WTI crude oil futures for example, states that

one futures contract denotes a trade of 1,000 barrels of WTI crude oil at expiry, to

be delivered at Cushing, Oklahoma.

Traditionally, futures are traded during pit-trading hours in an open-outcry market

where traders congregate to bid/ask for the best price. With the advancements of

electronic trading, the number of pit-trading venues has been diminishing since. Few

open-outcry platforms are present today, of which the London Metal Exchange (LME)

is perhaps the most well-known. Electronic systems generate faster transactions and

with it, rapidly growing trading volumes of derivatives cleared with a 2.1% rise in the

futures and options contract worldwide from 2012 to 2013, see Table 1.1.

The growing trend of derivatives trading is clearly focused on alternative products.

The fastest growing markets include commodity indices, credit, fertilizer, housing,

4



1. Introduction

inflation, lumber, plastics and weather which experienced a 95.2% increase in number

of contracts cleared while energy products are second with a 36.7% growth between

2012 and 2013. Precious metals futures clearing activities have also grown by a sig-

nificant amount at 34.9%. We choose to study energy futures as their term structures

are more convex due to their shorter life span. One cannot generalise results from

the prompt-month series on the rest of the term structure. Energy futures are also

important drivers to the world economy, thus our research would be of interest to a

greater audience.

Among the top ten energy products, futures outnumber options over 20 folds, see

Table 1.2. Of which, ICE’s Brent crude, CME’s light sweet crude (aka WTI crude),

RBOB gasoline and no.2 heating oil, which are considered in this study, account for

roughly 30% of all energy derivatives trades. ICE’s Brent crude has the largest trading

volume with 159 million contracts cleared between January and December 2013.

Category Jan-Dec 2012 Jan-Dec 2013 Change

Individual Equity 6,469,512,853 6,401,526,238 -1.1%
Equity Index 6,048,270,302 5,370,863,386 -11.2%
Interest Rate 2,931,840,769 3,330,719,902 13.6%

Currency 2,434,253,088 2,491,136,321 2.3%
Energy 925,590,232 1,265,568,992 36.7%

Agriculture 1,254,415,150 1,213,244,969 -3.3%
Non-Precious Metals 554,249,054 646,318,570 16.6%

Precious Metals 319,298,665 430,681,757 34.9%
Other 252,686,977 493,359,639 95.2%

Total 21,190,117,450 21,643,419,774 2.1%

Table 1.1.: Number of options and futures contracts traded globally between
January 2012 and December 2013. Other includes commodity
indices, credit, fertilizer, housing, inflation, lumber, plastics and
weather. Source: www.futuresindustry.org/downloads/FIA_

Annual_Volume_Survey_2013.pdf

We identify five major players in the energy futures trading platforms: speculators,

hedgers, exchanges and their clearing houses within, brokers (or clearing members)

and regulators. In this thesis, we concentrate on the operations of the hedger and the

exchange. First, we examine how margins can affect a hedger who implements hedging

strategies to reduce the volatility of their positions. Then we examine how margin

requirements can be set, which has a direct impact on the traders in the market. The

interactions between each of the player is summarised in Figure 1.1.

5
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Exchanges receive net positions from clearing members, 

large institutional investors and ask for margin deposits 

from each customer 

Exchanges 

Regulators Central Banks 
Central banks can suggest 

regulation amendments based 

on their observations of the 

exchanges’ behaviour 

Regulators set laws for exchanges to 

abide by, detailing margin requirements 

and capital standards 

Central banks oversee and supervise 

operations of exchanges 

Clearing Members 

Small Speculators 

and Hedgers 
Large Hedgers 

Clearing members act as 

brokers, receive positions from 

speculators and hedgers and 

may ask for margin 

requirements from each 

investor 

Large hedgers can 

register with the 

exchange and like 

clearing members, 

have special privileges 

e.g. initial margins are 

lower, equal to the 

maintenance margins 

Large Speculators 

Figure 1.1.: Diagram summarising players in the futures and their interactions
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Rank Contract Type Jan-Dec 2012 Jan-Dec 2013 Change

1 Brent Crude, ICE F 147,385,858 159,093,303 7.9%
2 LS Crude Oil, CME F 140,531,588 147,690,593 5.1%
3 HH Natural Gas, CME F 94,799,542 84,282,495 -11.1%
4 Gasoil, ICE F 63,503,591 63,964,827 0.7%
5 Crude Oil, MCX F 57,790,229 39,558,169 -31.5%
6 WTI Crude, ICE F 33,142,089 36,106,788 8.9%
7 NYH RBOB Gasoline, ICE F 36,603,841 34,470,288 -5.8%
8 No.2 Heating oil, CME F 36,087,707 32,749,553 -9.3%
9 LS Crude Oil, CME O 32,525,624 31,478,060 -3.2%
10 Natural Gas, MCX F 27,886,670 23,828,800 -14.6%

Table 1.2.: Top ten traded energy derivatives and their exchanges, ranked by
number of contracts traded between January 2012 and December
2013. Abbreviations: LS - Light Sweet, HH - Henry Hub, WTI -
West Texas Intermediate, NYH - New York Harbour, RBOB - Re-
formulated Gasoline Blenstock for Oxygen Blending, ICE - Inter-
continental Exchange, CME - Chicaco Mercantile Exchange, MCX
- Multi Commodity Exchange. Derivative types: F - Futures, O
- Options. Source: www.futuresindustry.org/downloads/FIA_

Annual_Volume_Survey_2013.pdf

1.2.1 Hedgers and Speculators

Hedgers are often business entities such as agricultural farmers, power stations, refiner-

ies, etc.. For this study, we assume that they concentrate on maximising sell volume

rather than generating profit from trades and fixing the profit margin is essential in

ensuring effective business operations. For example, a farmer may be interested in

selling corn in the next harvest season while they are obligated to pay other fixed

costs such as employee wages and utility bills. Therefore, they must know their profit

margin in advance so they can plan their expenditures. This can be achieved by tak-

ing positions in a futures or forward contract, expiring at the time of sale. It is highly

conceivable that the farmer would prefer futures over forwards, given it contains neg-

ligible counterparty risk. Speculators on the other hand bear this risk by taking the

opposite position with the aim of generating profits from the investment.

Upon entering a futures contract, each trader deposits a margin to the exchange

which is then marked to market on a daily basis (mechanisms and rationales explained

in section 1.2.2). Here, investors can offset (take the opposite position) at any point

in time and retrieve/lose the difference in the futures price since its first undertaking.

Hence, unlike the forward contract, the investor is not restricted to gaining the profits

and losses only at expiry. Perhaps, It is this mechanism that lured speculators to the
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futures trading platform, as evident in the large proportion of contracts being offset

where only 2% of commodity futures contracts were physically delivered in 2005 (see

Alexander and Sheedy (2006)). This introduces a problem for the exchange as they

must prepare the right amount of commodity to deliver upon expiry. To manage

this risk, the exchange introduced the financial contracts, whereby the value of the

commodity at expiry is delivered in cash instead.

Representative Investor: Refinery

Our first study concentrates on the refinery whose exposure to the crack spread has

led them to use NYMEX’s futures to hedge. Delivery points of gasoline, heating oil

are in New York Harbour, while WTI crude can be collected from Cushing, Oklahoma

and the refinery is assumed to be located in the USA.

We observe from Figure 1.2 that in 2012, the majority of US refineries are located

in the Gulf coast. It is therefore not surprising that the main port for WTI crude

oil delivery is in Oklahoma. Other refineries however are scattered around the US

and face additional problems when considering hedging using futures due to their

geographical location. A refinery based in Alaska for example is likely to take spot

positions from producers and retailers/consumers from roughly the same region to

reduce transportation costs, while taking positions in the NYMEX’s commodities

whose delivery points are in Oklahoma (WTI crude) and New York Harbour (Heatin

Oil and Gasoline). The prices of each product at the delivery points are not the

same as those in Alaska, hence the refinery is also exposed to the location spread.

Alternatively, the refinery can collect/deliver the products at the contracts’ delivery

points but then they would be exposed to transportation costs. Further assumptions

are discussed in chapter 3.

8
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Figure 1.2.: Map of refinery locations and refining capacity in the USA on 1st

January 2012. Source: http://www.eia.gov/todayinenergy/

detail.cfm?id=7170

1.2.2 Clearing House and Clearing Members

Since its introduction in 1853 the clearing house has developed two main roles: acting

as a broker, lending to investors who wishes to leverage their investments; and taking

on the counterparty risk of the buyer/seller of a futures contract, making sure the

product(s) is(are) delivered at the agreed-upon prices at maturity. The clearing house

is composed of clearing members, who act as brokers for smaller investors with higher

credit risk. On top of this, clearing members do their own proprietary trading and,

together with their clients’ trades, issue net positions to the clearing house for the

settlement process. The clearing house also allows registration from large speculators

(other large institutional investors) and hedgers (e.g. refineries, manufacturers) who,

contrary to smaller investors, have high credit ratings and are highly unlikely to

default.

When entering into a futures contract should the buyer/seller default anytime be-

tween purchase/sale and delivery, the clearing house would have to take on the position

of the defaulter and immediately look for a new match in the market. To reduce the

losses from the price movement between the time of purchase/sale and default, the

clearing house marks-to-market the client/clearing member’s net positions, where the

futures price P&L are transferred to and from the recipients on a daily basis.

The clearing house also asks for collateral in dollar amounts (aka initial margin)

to reduce the possible losses between marking-to-market periods. Should the margin

account (in dollar amounts) reduce below a predefined level (the maintenance margin),
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the exchange would ask for a margin call where the investor/clearing member must

replenish the margin account back to the initial margin level. Because hedgers and

members are generally more risk averse than speculators, exchanges such as ICE and

CME set the initial margin at the same level as the maintenance margin. In other

words, these investors do not need to raise as much initial margin as speculators but

are more exposed to margin calls, which are triggered from any fall in their portfolio

value. The amount paid to/received from the exchange is called the variation margin.

In addition to the margin requirement the clearing house also places its own capital

in a default fund to protect themselves during abnormally volatile market conditions.

In an event of a default, should the clearing house take on a loss, it would follow

the default waterfall, where the defaulter’s margin is first liquidated then losses are

further diffused by the risk-sharing pool (additional capital from clearing members)

and finally by the default fund. Hence, the initial margin does not necessarily have

to reflect extreme events since they are covered by these other risk management

strategies. This is also found in historical margin estimates; for instance, there was

no reaction from ICE’s historical Brent crude futures margin to the price spike on

5th May 2011. Capital levels for clearing houses present an interesting case, however

since we are solely dealing with margin requirements, no such attempt has been made

to model the rest of the capital structure in the default waterfall (see Shanker and

Balakrishnan (2006) for further details on clearing house capital requirements). A

summary of world’s top 10 exchanges and the number of contracts cleared are listed

in Table 1.3.

Rank Exchange Jan-Dec 2012 Jan-Dec 2013 % Change

1 CME Group 2,895,125,126 3,161,476,638 9.20%
2 Intercontinental Exchange 2,448,099,505 2,807,970,132 14.70%
3 Eurex 2,291,368,356 2,190,548,148 -4.40%
4 National Stock Exchange of India 2,010,958,057 2,135,637,457 6.20%
5 BM&FBovespa 1,636,327,195 1,603,600,651 -2.00%
6 CBOE Holdings 1,134,329,197 1,187,642,669 4.70%
7 Nasdaq OMX 1,115,078,250 1,142,955,206 2.50%
8 Moscow Exchange 1,062,244,624 1,134,477,258 6.80%
9 Korea Exchange 1,835,938,749 820,664,621 -55.30%
10 Multi Commodity Exchange 960,098,730 794,001,650 -17.30%

Table 1.3.: Number of futures and options contracts cleared by the
top 30 exchanges between January 2012 and December
2013. Source: www.futuresindustry.org/downloads/FIA_

Annual_Volume_Survey_2013.pdf
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1.2.3 Regulators

Following the 2008 financial crisis, margin requirements have received considerable

attention from international regulating bodies. We focus our discussion on Euro-

pean and US exchange laws as they make up the majority of the clearing operations

throughout the world, see Table 1.3 for more details.

The main regulating body for European clearing houses is the European Securities

and Markets Authority (ESMA) which replaced the Committee of European Secu-

rities Regulators (CESR) in 2011. The main goal of ESMA is to provide European

markets with strict supervision with special attention on credit rating agencies and

their valuation of the companies. In 2012, ESMA drafted EMIR which contains strict

details on clearing houses capital requirements and is currently going through the

implementation stage. EMIR suggests strict requirements on the coverage level of the

initial margin (two-day, 99% for non-OTC products) whilst requiring that the clearing

house must avoid large jumps in the maintenance margins to limit procyclicality.

A variety of EMIR Articles affect margin requirements directly. The EMIR recom-

mendations are suggestions to the central governing body (e.g. Bank of England in the

UK) for their implementation in national law. But even before local implementation,

adhering to EMIR will portray the clearing house in a positive light, strengthening

its reputation for good risk management infrastructure. Subsequently, this could be

highly beneficial to its business. As margin changes can cause investors to implement

risk management strategies simultaneously, further amplifying economic downturns,

EMIR regulations pay particular attention to avoid such an event. With large ex-

changes affecting more investors, it is expected that this procyclic nature will be

prominent now more than ever.

The most notable regulatory reform on clearing house’s margin requirement is out-

lined in the Title VII of the Dodd-Frank act in 2010 which require many over-the-

counter (OTC) derivatives, swaps in particular, to be cleared in exchanges. The Act

however does not impose any restrictions on futures margin requirements, hence ex-

changes are free to set margins as they want. The Dodd-Frank act is overseen by the

Commodity Futures Trading Commission (CFTC) and the Securities and Exchange

Commission (SEC).

The variety of regulatory system causes some divide between margin requirement

methodologies. But as financial derivatives are being traded in a global scale, investors

are free to move between exchanges as they wish. Unequal regulatory requirements

produces varying levels of benefits to investors and with this, possible mass migration

between exchanges may become prominent. It is beneficial for regulators to work
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together in creating laws to avoid such movements as closure of large exchanges may

be detrimental to the world economic outlook.

1.3 Summary and Layout of the Thesis

Although crude oil reserves are depleting, the energy derivatives market is expanding

rapidly. One would expect that the number of trading venues for such products

would increase to facilitate the growing number of contracts being cleared. Instead,

large exchanges are merging to facilitate the high demands for the liquidity of these

products. Furthermore, in the wake of the 2008 world-wide recession, regulators

are imposing stricter risk management standards to ensure the financial stability of

these large institutions. These changes entail a need for innovative risk management

methods. To this end, we examine the risk management methods for participants in

the energy market, paying particular attention to the changing circumstances of the

regulatory reforms.

The structure of the rest of the Thesis follows: first, we provide a critical exam-

ination of the literature which supports the rationale behind our minimum-variance

hedging tests, VaR models and margin rules. Second, we evaluate hedging approaches

carried out by a refinery, paying special attention to the transaction costs and how

margins may affect such an investor. Third, we search for the best VaR estimation

method, which will be applied to margin requirements. Fourth, we identify proce-

dures for setting and evaluating margin requirements, with the view to create stable

margins following current regulations. Lastly, we conclude.

12



2. Literature Review

In this review, we first evaluate the literature on commodity price behaviour, detailing

the complexity of their movements. Energy futures volatility, which is essential when

deriving minimum-variance hedge ratios, Value-at-Risk (VaR) and margin require-

ments, is hence difficult to forecast. We found a number of deterministic movements

prevalent in the literature, which may help improve the estimation power of volatility

models. We then identify gaps and inconsistencies in the literature on hedging, VaR

and margin requirements.

2.1 Commodity Price Behaviour

A significant amount of the underlying risk in the energy markets arises from the

price process, it is therefore important to understand this in order to model volatility

effectively. Commodity prices behave very differently to financial products, this is

due to several reasons: commodities are held for consumption purposes as well as

investment purposes, commodities require storage which is costly, financial products

are actively lent and borrowed whereas most commodity products are not, commodity

prices are genuinely more predictable since they are mean-reverting and also display

seasonality effects.

2.1.1 Seasonality

The supply and demand of commodities are driven by several external factors, e.g.

winter in cold countries causes a demand for more electricity and fuel for heating;

droughts cause the supply of agricultural products to diminish. Seasonality effects in

the literature are well established with evidences found in Fama and French (1987),

Milonas (1991) and Sorensen (2002). The seasonality effects on commodity prices

imply deterministic cycles of demand and supply patterns, commodity prices are

hence expected to exhibit regime switching behaviours in both price and volatility.

Subsequently, hedging models are expected to be responsive to the changing market

conditions.

13
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2.1.2 Samuelson Effect

The time-to-maturity effect or the Samuelson effect is when the variance of the futures

price increases as the contract approaches maturity. Samuelson (1965) proves that this

only occurs when the spot price of the underlying is a mean-reverting process. The

findings have influenced a substantial amount of literature on commodity derivatives,

Haigh and Holt (2002), Geman and Kharoubi (2008), Back et al. (2013) to name a

few.

The Samuelson effect has proved useful in several fields of study in the commodity

market (e.g. option pricing and hedging with futures). Integrating the effect for a

single asset is straight forward. For multiple assets however, this is not since the be-

haviour of the covariance between the commodity futures as it approaches maturity

is unclear. There is a lack of literature which had properly analysed this feature.

Haigh and Holt (2002) for example, model this effect by adding a matrix of so-called

‘exogenous’ variables. They did not however, explicitly explain how these were deter-

mined nor did they justify whether or not the model was successful. There are also

works which do not entirely agree with the Samuelson effect. Most notably, Fama

and French (1988) show that the effect does not hold at high inventory levels. Rout-

ledge and Seppi (2000) introduces a model for futures term structures which at times

predict that the variance of the futures prices remain constant towards maturity.

2.1.3 Stochastic Convenience Yield

The difference between the spot and futures price is referred to as the basis. It is

common among commodity markets that sometimes the basis is negative, the futures

price here is said to be in backwardation. There are several theories which try to

explain this behaviour, the most celebrated of which is the convenience-yield theory,

as supported by Kaldor (1939), Brennan (1958) and Fama and French (1987). This is

simply the premium at which the investor is willing to pay for an immediate replen-

ishment of their inventory. Commodity futures are hence derived not only from the

expected spot price and the carrying cost but also the convenience-yield as well. An

example of the application of this model for hedging purposes is Schwartz (1997), who

applies the Gibson and Schwartz (1990) two-factor model (with stochastic spot price

and convenience-yield) and also formulated the three-factor model (also including

stochastic interest rates) in the oil futures pricing process for hedging futures posi-

tions. More recently, Dempster et al. (2008) also uses the two-factor model in pricing

futures spreads directly. To our knowledge there are no application of stochastic

convenience yield models to estimating VaR.
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2.1.4 Mean-Reversion

The mean-reversion process (aka Ornstein-Uhlenbeck process) also plays a major role

in modelling commodity futures prices. The method of its application is well estab-

lished, the earliest application of this process in the commodity market is from Gibson

and Schwartz (1990) where the forward convenience yield is assumed to follow this

relationship. It is not until Schwartz (1997) however that this is extended to the log

spot prices as well, also providing a better fit to the market, hence allowing for more

effective outcomes when hedging futures positions in the oil markets.

2.2 Hedging

When one considers hedging the price risk, one takes the opposite position in a hedging

instrument that is highly correlated to their portfolio to ensure the most effective

hedge. Such instruments can be proxies which share the same demand and supply

patterns, or simply derivative contracts underlying the portfolio itself. In this section,

several different types of strategies are explored to give further ideas about what can

be used in our research.

According to Working (1953), the futures market in the commodity world is utilised

by hedgers and speculators. Hedgers are investors who buy the commodity at the spot

position and sell it at a later date. The main source of income for the hedger is not

from this operation but from the activities the commodity performs while under the

investor’s ownership. The hedger hence wishes to bear no price risk in the selling back

the commodity. Appropriate hedging strategies can be applied to minimise this risk.

Processing spreads however, apply to a slightly different type of investor, a refiner.

The investor here will need to replenish their inventory and sell their goods regularly,

hence they commit themselves to spot transactions on an equally frequent basis. Since

these occur in the future, the investor is exposed to the movement of the spread. There

are several derivatives which can be used to manage the price risk: spread futures,

spread options, Asian spread options, etc.. Unlike the other derivatives, futures have

a linear payoff and are much more straightforward to analyse, making it a popular

hedging instrument.

2.2.1 Hedging with Futures

The simplest manoeuvre to hedge an impending long(short) spot position would be to

buy(sell) the futures contract whose maturity coincides with the due date for the spot
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transaction. By doing this, the investor locks the price of the commodity, the portfolio

bears no price risk and the spot position is no longer needed. However, this is not

always possible given that there may not be a futures contract which exactly fits the

required specifications. In this case, the investor would need to adapt an alternative

strategy in order to execute the hedge. One method would be to take advantage of

the highly correlated nature between the futures and its underlying’s price by taking

an opposite position in the futures contract. The problem associated with this is that

once the futures contract expires, the investor is faced with an obligation to purchase

or sell an unwanted amount of the underlying. To avoid this, they must clear the

futures position and use the profits from this transaction to hedge the exposed spot

position. This strategy can be found in the works of Gagnon et al. (1998), Haigh

and Holt (2000) and Haigh and Holt (2002). Another point to consider, especially

in the case of the oil market is that, the investor would often have futures contracts

with several maturities to choose from. In this case, the entire term structure of

futures could be used to hedge a single spot position, this added flexibility could

prove beneficial to the hedging outcomes. There are many works associated with

hedging the term structure (Driessen et al. (2002) and Bliss (1997)) but none which

utilises it as a hedging tool.

After implementing a hedging strategy, the investor needs to determine the weight

on the hedging instrument for the most effective outcome. Consider a simple of case of

hedging a portfolio of spot positions with futures contracts (generalised from Working

(1953)), the hedged portfolio P&L, ∆Πt, can be described by vectors of m spot P&Ls,

futures P&Ls and hedge ratios (∆S′t, ∆Ft,T and β) such that

∆Πt = 1′m∆St + β′∆Ft,T , (2.1)

where 1m is a m × 1 vector of ones. The variance, V [∆Πt], of this portfolio is given

by

V [∆Πt] = 1′mV [∆St]1m + β′V [∆Ft,T ]β + 2β′Cov[∆Ft,T ,1
′
m∆St] , (2.2)

where V [∆Πt], V [∆St] and V [∆Ft,T ] are the covariance matrices of ∆Πt, ∆St and

∆Ft,T , respectively, and Cov[∆Ft,T ,1
′
m∆St] is a vector of covariances between 1′m∆St

and the individual elements of ∆Ft,T . Up until Johnson (1960), hedging involved the

investor taking an equal and opposite position in the futures contract compared to

the spot, i.e. β = −1m (also referred to as naive hedging). The intuition behind this

is: given that spot and futures are perfectly correlated, if the spot price moves, the

futures price would also move in the same direction. In the case where both the spot

and futures move by the same magnitude, the portfolio payoff ∆Πt would always be
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zero regardless of the direction of the spot movement, hence locking in the payoff of

the portfolio. In practice however, futures and spot prices rarely move with the same

magnitude hence the need for the formulation of the hedge ratio.

There are two main approaches of calculating the hedge ratio: the minimum-

variance approach and the mean-variance approach (aka ‘Optimal’ hedging). For

the former, the investor is only concerned about reducing the variance of the port-

folio. For the latter, the investor is also concerned with maximising the profit of

the portfolio as well as reducing the variance. The introduction of mean-variance

hedging started with Working (1953), arguing that when performing a naive hedge,

hedgers are more concerned about utilising the futures for speculation purposes as

well as hedging. Following this, Johnson (1960) points out that hedgers are inter-

ested in maximising the expected returns and reducing the variance of the portfolio

at the same time. From this, Johnson (1960) develops two methods for calculating

the hedge ratio: one based on the utility function and another for minimising the

price risk only. The former approach follows a mean-variance framework, the second

is the minimum-variance model. 1

2.2.2 Minimum-Variance Approach

The minimum-variance hedge ratio is derived by minimising the portfolio variance

under first-order conditions with respect to the investment weight on the futures

contract. Minimising the hedged-portfolio variance yields the optimal hedge ratio

vector

β = −V [∆Ft,T ]−1Cov[∆Ft,T ,1
′
m∆St] , (2.3)

which is the global minimum since ∂2V [∆Πt]
∂β′∂β

= V [∆Ft,T ] is always positive definite.

The hedge ratio is dependent upon Cov[∆Ft,T ,1
′
m∆St]. This however introduces a

problem of measuring these terms accurately. The simplest way to calculate these

would be to take a sample of returns or profits and losses (P&L’s) on each asset from

historical data and then calculate the sample unconditional variance and covariance

(aka OLS hedge ratio). However, this may not be responsive enough to the volatile

market conditions. Recently, there has been a number of studies which have used con-

ditional variance estimation techniques belonging in the GARCH family to estimate

1Johnson (1960) is often revered as the first work on the minimum-variance framework. However,
conclusions of the work clearly favour the idea that hedgers also display speculative behaviours,
thus supporting Working (1953). This has created some confusion among academics in the
past for example, Kahl (1986) heavily criticises Brown (1985) on the misinterpretation of the
approaches of Johnson (1960) and Stein (1961). In this review, Johnson (1960) is considered as
a follower of the mean-variance approach
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time-varying hedge ratios, some works in the minimum-variance framework include:

Baillie and Myers (1991) who implements the bivariate GARCH model in estimating

hedge ratios for multiple commodities at the same time; Moschini and Myers (2002)

supports the use of GARCH variance to calculate the hedge ratios in the corn mar-

ket; Chan and Young (2006) incorporates jump diffusion in the GARCH framework

and find that this is beneficial for hedging copper prices; Lee and Yorder (2007) uses

a Markov regime-switching GARCH model to test hedging results in the corn and

nickel markets. Alexander and Barbosa (2007) reject the usefulness of this and found

that simple constant variance or naive hedges outperform the GARCH hedge ratios

in several stock markets.

The effectiveness of the minimum-variance hedge is measured by the Ederington

Effectiveness (Ederington (1979)). This is simply the percentage reduction in the

variance gained by the hedging strategy, i.e. (σ2
u−σ2

π)/σ2
u, where σu is the variance of

the unhedged portfolio. Works which employ this measure, using the unconditional

variance and covariances include: Dale (1981) in the foreign exchange markets, Lence

et al. (1993) in the commodity markets and Herbst et al. (1989) in both. Lien (2005)

however, points out that the Ederington Effectiveness is biased towards unconditional

variance models over conditional variance models. Alexander and Barbosa (2007)

hence applies the use of a dynamic measure of hedging effectiveness by measuring

percentage changes in conditional variances instead.

2.2.3 Mean-Variance Approach

Most works in the mean-variance hedging school uses the exponential utility. The

hedge ratio under this assumption can be determined by maximising the certainty

equivalent income (CEI) with respect to the investment weight on the hedging instru-

ment. Following Working (1953), the investor’s expected utility value of the hedged

portfolio is measured by the certainty equivalent income, CEI[∆Πt]. Under certain

restrictive conditions this can be expressed analytically as

CEI[∆Πt] = E[∆Πt]−
1

2γ
V [∆Πt] , (2.4)

where γ is the coefficient of absolute risk tolerance and E[∆Πt] and V [∆Πt] denote the

expectation and variance of ∆Πt respectively. Maximising the CEI gives the optimal

mean-variance hedge ratio vector as

β∗ = V [∆Ft,T ]−1 (γE[∆Ft,T ]− Cov[∆Ft,T ,1
′
m∆St]) . (2.5)
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Unlike the minimum-variance approach, the hedge ratio here is not only governed

by the variance and covariance terms but also the expected P&L of the hedging

instrument. Most works however, assume that the futures contracts used as a hedging

instrument follows a martingale process with zero expected return, which is identical

to the minimum-variance framework. 2 Works which apply this, using the OLS

method include: Brown (1985) who applies portfolio maximisation theories to the

wheat, corn and soybean markets, Stulz (1984), on the foreign exchange markets and

Myers and Thompson (1989) on the corn, soybean and wheat markets. Those who

use conditional variances and covariances include: Kroner and Sultan (1993) and

Gagnon et al. (1998) with their works on the foreign exchange market; more recently,

Lee (2009) utilises jump-switching dynamics in the Generalised Orthogonal GARCH

model in hedging the FTSE100. On a conditional framework however, applying the

martingale property of futures is not entirely appropriate. The intuition of Working

(1953) follows that the expected return also influences the hedger; by ignoring this,

the works almost entirely defeat the ideology and may as well have followed the

minimum-variance approach instead. Works which do include the expected return

in their estimations include: Haigh and Holt (2000), Haigh and Holt (2002) and Lee

(2010). All of these tested both the minimum-variance and mean-variance hedge

ratios. The measure of hedging effectiveness in the mean-variance approach is simply

the increase in CEI of the hedged portfolio from the unhedged. Possible extensions

in the mean-variance framework include: exploring more utility functions or include

more moments in the exponential utility functions when calculating the CEI to also

take account of the skewness and kurtosis of the portfolio payoff as seen in Brooks

et al. (2002). For the latter extension however, one also needs to estimate the GARCH

skewness and kurtosis. So far, most works in the hedging area favours the use of time-

varying volatility estimation methods for computing the hedge ratios. The GARCH

model has been thoroughly analysed in both mean-variance and minimum-variance

hedging literature. Adding further extensions to this may complicate the model by

many folds, only to receive little gain in comparison. The best research strategy would

be to focus on simpler models which can provide hedge ratios that are just as effective.

2.2.4 Other Approaches: Cross and Composite Hedging

Cross hedging stems from Anderson and Danthine (1981) where prices from one mar-

ket is used as a hedging instrument against another. For example given that cotton-

2Although the hedge ratio between the two approaches are equivalent, we have chosen to class these
works in the mean-variance category since the approach taken involves maximising the certainty
equivalent income.
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seed and soybean share the same demand patterns and are highly correlated, taking

a short position in soybean futures would provide a hedge to a long position in cot-

tonseed. Composite hedging is when a single position is used to hedge several other

positions at the same time. There is a limited amount of literature on this, largely

stemming from Herbst and Marshall (1994). For commodity spread positions, hedging

strategies require using multiple futures contracts. The hedged portfolio in this case,

consists of futures positions from each commodity in the spread. When calculating

the hedge ratio of a portfolio of commodities, one takes account of the cross market

linkages between them. When the markets are highly linked, it is inherent that the

commodities are acting as composite and cross hedges to each other. For example,

when hedging a crack spread, natural gas futures in the portfolio also provide a hedge

to the crude oil spot position as well as crude oil futures.

To enhance the hedging effectiveness via cross hedging, the investor could add

futures from a different market to the hedged portfolio, some examples of cross market

hedges include: Witt et al. (1987), Miller (1985), Bennet (1990) , Rahman et al. (2001)

and Tanlapco et al. (2002). Given that most of these works use data which are now

outdated, most of the inter-market linkages (or lack of) established here cannot be

applied. A possible further expansion to our research could be to identify inter-market

linkages using the most up to date data for cross hedging the processing spread.

To implement composite hedging, the investor could try to reduce the number

of assets in the portfolio by taking advantage of the high correlation between the

assets.3 For example, both gasoline and heating oil positions in the crack spread

can be hedged by takings positions in say gasoline futures only. A test could be

carried out to determine the extent of which a larger hedged portfolio could provide a

better hedge than a smaller one if at all. A portfolio with a small number of assets is

simpler to analyse and will also be more attractive to investors (providing the hedging

effectiveness of both are on the same level).

2.2.5 Transaction Costs

A collection of different types of transaction costs from futures trades can be found

in Marshall et al. (2012), these consist of:

• Spread: aka tightness, breadth, and width - see Kyle (1985) is measured as the

difference between the futures traded price and the corresponding midpoint (see

3This only applies to the crack spread given evidences of high correlation between the commodities
from Paschke and Prokopczuk (2009). There are currently no sources that confirm the same
behaviour in crush spreads but this can also be investigated.
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further evaluations in Dunis et al. (2008))

• Depth: the number of contracts which can be bought/sold at the current best

bid-ask price

• Immediacy by trade size: whether or not an individual can execute an order

immediately

• Resilience: the length of time for spread and depth to return to normal condi-

tions following large trades which may cause liquidity to dry up

Works in the minimum-variance hedging literature include other types of transaction

costs such as round trip commission costs, see Haigh and Holt (2002). The margin

requirement literature includes costs in raising the margin but has not yet been im-

plemented in evaluating trading strategies. It is also possible to model transaction

costs using deterministic functions, though applications have been implemented in

derivative pricing, see Leland (1985) and and more recently Pennanen and Penner

(2010) for example. The same methods can be carried out for hedging transaction

costs although we evaluate popular hedging strategies and do not focus on this aspect.

Transaction costs play a vital role in determining whether or not a trading strategy

is worth carrying out. This is particularly important in the mean-variance framework

since the transaction cost diminishes the expected return. In a minimum-variance case

however, one may doubt the importance of transaction costs as the hedger is indifferent

about the profitability of the portfolio. For evaluation purposes, one can assume

that the investor first considers the variance reduction level from the hedging model.

However, when variances of different hedged portfolios are not significantly different

from one another, the investor would be indifferent about each hedging models and

instead must choose the models via other criteria, such as minimising transaction

costs.

2.3 Value-at-Risk Models

VaR is used for a variety of risk management methods: bank capital requirements,

setting clearing house margins, investors capital allocation for portfolio management

to name a few. Its most attractive feature is its simplicity whereby it is a single

number which describes the worse possible loss for a fixed probability over a fixed

investment horizon (although, forecasting the P&L or return distribution may be

difficult). There are three main methods for estimate VaR:

• Parametric: the VaR is linearly related to the standard deviation of the distri-

bution function
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• Quantile-based: the evolution of the VaR is described using an econometric

model

• Non(or semi)-parametric: the VaR is derived from the empirical distribution,

often through historical simulations

We present an examination of the literature from each strand below.

2.3.1 Parametric VaR

Since Fama (1965) showed that volatility in financial markets are time varying and

Engle (1982) and Bollerslev (1986) introduced GARCH models, the VaR literature

has been dominated by volatility models from the GARCH family. Estimation types

vary across markets, some recent examples include: Su et al. (2011) who suggests

the GJR-GARCH model is superior when estimating one-day-ahead downside VaR

forecasts and Chen et al. (2012) proposes that the GJR-GARCH model with Laplace

distribution innovations would perform best for the Hang Seng Index.

The VaR literature is dominated by parametric methods using the GARCH fam-

ily of volatility modelling. As multivariate GARCH modelling can be extended to

estimating term structure VaR, we evaluate the literature on multivariate volatility

models here also. The most widely-implemented multivariate GARCH model is En-

gle and Kroner (1995)’s BEKK GARCH, also prevalent in the portfolio management

and minimum-variance hedging literature, which details the specification for the con-

ditional covariance matrix estimate (see Grier et al. (2004), Kawakatsu (2006) for

examples of the model extensions and Bauwens et al. (2006) for a survey of multivari-

ate GARCH models). Implementing such a model for futures term structures however

would require estimation of a large number of parameters which can undermine the

stability of the VaR estimate.

As term structures are highly correlated systems which share common risk factors,

Principal Component Analysis (PCA) can be applied to isolate orthogonal movements,

reducing the number of the parameters to be estimated, thus reducing estimation

error in the process. See Alexander (2001) for estimation procedures on interest

rate and crude oil futures term structures and Van der Weide (2002) for cross-equity

indices systems - though the latter is more suitable for smaller, less-correlated systems.

With changing market circumstances to date, and when considering more convex

commodity term structures such those of natural gas, it is possible that adaptation

of these models can enhance estimation power of the VaR.

The literature for VaR on futures term structures is scarce, all of which utilises
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parametric methods for estimating VaR. To our knowledge, there are only three works

which vaguely mention VaR on a term structural level: Tolmasky and Hindanov

(2002) includes estimations of VaR for crack spread futures, although parameters are

calibrated under the risk-neutral measure which does not entail that the model is still

accurate under the physical measure; more recently Bauwens et al. (2013) examines

volatility modelling for electricity term structures and briefly mentions the possibility

of applying the model to calculate VaR, although they do not include any formal

backtests in the work. The only work to have thoroughly tackled VaR on a term

structural level is Nomikos and Pouliasis (2014). The work provides elaborate details

on energy futures term structure dynamics and introduces a model for modelling

the term structure. The proposed model is a development of Tolmasky and Hindanov

(2002) to include Markov regime-switching volatilities. Several analyses are presented,

however we concentrate on the final part of the work with reference to applications for

calculating VaR as this is the only part relevant to our study. Nomikos and Pouliasis

(2014) assume that an investor takes a set of weights (both long and short, generated

at random) along the term structure of energy spreads and holds this constant. The

model is calibrated via a maximum likelihood criterion via numerical optimization

methods. Although the individual futures are assumed to follow a term structural

GARCH process with normally distributed return innovations, their portfolios may

not have the same type of innovations hence, a series of portfolio distribution forecasts

is generated via filtered historical simulation. The series of VaR estimates is extracted

from this and is backtested via Kupiec (1995)’s unconditional coverage method and the

quantile loss method -introduced in the paper- which measures how accurately the tail

of the distribution is forecasted. This is repeated 3,000 times, each with a different

set of portfolio weights and compared to a benchmark - the Dynamic Conditional

Correlation (DCC) model of Engle (2004) - again, quantiles are estimated via filtered

historical simulation.

The proposed model performs well on average in comparison to the DCC model.

However, we find a number of factors in the study which indicates that their model

may not be appropriate for margin requirements. First, there is no mention of how well

the model performs on a conditional level. As exceedances may cluster, VaR may not

be reactive to changing market conditions leading to biased estimates. Second, when

clearing houses issue margin requirements, it is required that all futures along the term

structure must contain such estimates. The work focuses on portfolio management

purposes only. Lastly, as previously mentioned, backtesting for margin models must

be carried out at both long and short tails simultaneously as the clearing house is

exposed to both at the same time which is not carried out here. The study also
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lacks detailed information on how models’ performance may vary through the term

structure and only provides average test statistics. This may be biased as performance

may vary across the term structure and with different portfolio weights. Insight of

such characteristics is essential as the margin is directly effected by the shape of the

term structure of VaR estimates. The study’s time period is out of date, with data

ending on the 30th December 2009. Further testing is required to determine the best

VaR model for margin requirement purposes.

Although the recent VaR literature for commodity derivatives may vary in GARCH

specification, error term innovations and calibration methods, they all share the same

view -that one must account for the negative skewness and leptokurtosis in the return

or P&L distribution to forecast VaR accurately (see Fan et al. (2008), Huang et al.

(2009), Aloui and Mabrouk (2010) and Hammoudeh et al. (2011) for example). This

behaviour is not only prevalent in the first-to-mature series but extends throughout

the term structure hence a natural extension to Alexander (2001) would be to include

similar model specifications when modelling principal component volatilities.

2.3.2 Quantile-based VaR

The most prolific quantile-based VaR method is Engle and Manganelli (2004), where

the VaR is described as a conditional quantile. Parameters are estimated via quantile

regression and the properties of their CAViaR model parameters are derived in the

same work. The literature in support of quantile-based VaR is less extensive compared

to the parametric counterpart. Bao et al. (2006) for example, show support of the

CAViaR model in equity indices using White (2000)s Reality Check for data snooping

bias. For other works which also support this model, see Huang et al. (2009) on

crude oil futures and Huang (2010) for applications to equity indices. For a term

structure, one may require VaR on a multivariate setting, to which Embrechts and

Puccetti (2006) and Cousin and Bernardino (2013) have developed methods for such a

task. The formulations however are highly complex and are likely to yield inaccurate

forecasts in an out-of-sample basis.

2.3.3 Semi and Non-Parametric VaR

Unlike its parametric counterpart, non-parametric VaR methods do not assume any

probability distribution function for the returns. Instead, they focus on the empiri-

cal distribution derived from historical returns whose shape is often more elaborate:

negatively skewed and leptokurtic.
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The simplest methods for estimating non-parametric VaR is by interpolating the

relevant quantile from the empirical distribution of historical returns. The problem

here is, for a VaR estimate which is deep in the tail, one requires a large window of

historical data. This takes data which are too far in the past and may not reflect

current market conditions. A number of techniques can be employed to side-step this

issue: exponential weighting, volatility weighting, fitting kernel densities to data with

shorter window lengths, etc..

The most prevalent method in this category is Barone-Adesi et al. (2002)’s Filtered

Historical Simulation (FHS) model which combines time series modelling with his-

torical simulation (hence the term semi-parametric VaR). Here, historical returns are

described using a time series model (e.g. ARGARCH), a forecast of the distribution of

the error term is generated via bootstrapping. This is then multiplied by the current

volatility forecast to generate the empirical distribution forecast. This method retains

1) the elaborate shape of the empirical distribution via bootstrapping and sensitivity

to market condition via conditional volatility models. FHS has proved popular in a

number of works including one in the commodity VaR literature, see Kuester et al.

(2006) for example.

However, we find that this method may yet be unrefined. When applying for

example a GARCH filter, one calibrates the parameters using a maximum likelihood

criterion. Here, one must assume some parametric distribution for the innovation of

the error term, such as the normal distribution. In this case, to assume the empirical

distribution takes on any shape other than the normal distribution would not be

consistent with the calibration process. Further the works in support of this model

uses not advanced backtested methodology and may have retained their favourable

findings due to data snooping.

2.3.4 Backtesting Methodologies

Although backtesting methodologies have developed fruitfully over the past decade,

the majority of the studies aforementioned are somewhat stagnant when it comes to

evaluation methods; they choose to persist with traditional procedures from Kupiec

(1995) and Christoffersen (1998). The conditional test from Christoffersen (1998)

however only examine independence up to order 1 and is not particularly powerful

when evaluating VaR which produces few exceedances. Other methods developed in

Christoffersen and Pelletier (2004) based on duration between exceedances and Engle

and Manganelli (2004) based on conditional quantiles are hence preferred and already

implemented in some studies, see Diamandis et al. (2011) for example.
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It is clear that different VaR models are suitable for different tasks. Short position

holders are interested in the upper tail of futures returns, while long position holders

are interested in the lower tail. Some works have already taken this into account, see

Giot and Laurent (2003) for example. Clearing houses on the other hand, require ac-

curate VaR forecasts for both tails as they are exposed to the short and long positions

simultaneously. Though we find no works which address the need for a two-tail risk

estimate for the margin requirements problem. One must also consider the appropri-

ate level of protection as well. Although most regulations on VaR are based on the

99% level, see the 1996 Basel I amendment which requires banks to base their capital

on a 10-day 99% VaR on market risk exposures and EMIR regulations require margin

requirements to cover at least a 2-day, 99% VaR for exchange-traded derivatives for

example. It is essential to backtest VaR models according to these different require-

ments to ensure that the VaR is generalisable to several risk management methods,

a note often ignored in the literature.

2.4 Margin Requirements

There are two main schools of thought for setting margin requirements: the prudential

approach of Figlewski (1984b) and Gay et al. (1986) which argues that the main

purpose of margins is to cover the clearing house’s loss when participants default;

and the effcient contract design of Brennan (1986), which examines how margins and

price limits can be set to make the contracts self-enforcing.4

These pioneering works have lead extant literature to conclude that the optimal

margin level should be: (1) high enough to cover the default risk faced by the clearing

house when taking on defaulters’ positions; (2) low enough to limit investors’ oppor-

tunity costs and maintain liquidity in the market; and (3) stable enough to reduce

investors’ additional opportunity costs when margin changes. We find however, that

the stable-margin problem is poorly addressed in the academic literature. To this

end, our work introduces a model for a margin level that is stable yet also an accurate

reflection of dynamic market volatility. We ensure an optimal balance of such criteria

by calibrating the model in-sample and then employing fuzzy goal programming to

allow for stability out-of-sample.

4Day and Lewis (2004) suggests that margin calls can be hedged perfectly using binary options.
They derive a no-arbitrage relationship between the two and suggest how historical binary option
prices can be used to calculate a no-arbitrage margin level. however, this method is not yet
applicable to many markets as binary options are not always liquid.
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2.4.1 Prudential Margin Requirements

The prudentiality argument requires that margins must cover as many of the clearing

house’s losses as possible in an event of a client’s default. The question here lies in

the appropriate percentile one should set the margin at, i.e. how much of the loss

distribution should the margin cover? Most studies simply set the margin equal to a

quantile of the return distribution. We find a substantial amount of literature which

belong to this school of thought and follow Broussard and Booth (1998)’s view that,

given clients tend to default on extreme returns, margins should be high enough to

protect the exchange against movements that are described using Generalised Ex-

treme Value (GEV) distributions. Methods for fitting GEV can be found in Longin

(1999) who analyses COMEX silver futures return distributions between 1975-1994.

A return series is segmented into equal sections, minimum and maximum values of

each window are extracted and categorised as extreme losses for long and short posi-

tions respectively. The GEV is fitted to this sample via least squares methods and the

margin is then set as a quantile of the GEV distribution. This simple margin rule can

then be evaluated via coverage tests from Christoffersen (1998), see Chiu et al. (2006)

for example. Alternatively, margins can be evaluated by examining the historical its

coverage level, see Booth et al. (1997) and Cotter (2001) for GEV distributions. The

latter method is also used to evaluate margins which are set using different risk mea-

sures all together. Ma et al. (1993) suggests that margins should reflect the aggregate

utility of the clearing members since distribution forecasts are subject to risk toler-

ance levels. The margin levels are evaluated via a test for difference in confidence

interval to examine if one is significantly larger than the other. Similarly, Cotter and

Dowd (2006) suggests using Spectral Risk Measures which too takes the exchange’s

risk attitudes into consideration.

GEV distributions are also useful in setting circuit breakers, where trading is halted

should the futures price movement breach a predetermined level, see Longin (1999)

and Broussard (2001) for example. The risk measures are not backtested in these tests

because they are purely subjective to the clearing house’s outlook on the distribution.

We do not encourage the use of a utility as above because the exchange is not the

only player affected by the margin requirements. The clearing house’s loss at clientale

default diffuses further to the risk-sharing pool which are collected from other investors

and clearing members as well. Regulators who wish to protect the liquidity of the

financial markets should also ensure that a margin provides an adequate level of

protection of clearing house losses during client’s default. Not only this, even the

utility of other exchanges in competition can also be a significant factor of the margin
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level. To achieve a realistic model, margin requirements must take account of the

interaction between the utilities of all players in the market and not just the exchange

itself. This, however, requires an elaborate equilibrium model which provides an

interesting case for further investigation.

2.4.2 Efficient Contract Design and Opportunity Cost

Initiated by Brennan (1986), the framework focuses on setting margins and price

limits to minimise the probability of default by investors of a futures contract, i.e.

when there is no costly legal action required by each counterparty in the event of a

default. Here, when entering an agreement, the counterparties observe the market

futures price Ft,T and put up the initial margin MT , to the central counterparty. The

futures contract is to be signed at time t+ 1 but either investor can choose to renege

should their total loss, i.e. Ft+1,T − Ft−T −MT be greater than the legal costs. Now

let the movements be subject to the price limit PT , if Ft+1,T − Ft,T exceeds PT and

activates the circuit breaker, the counterparties will have no choice but to enter into

the agreement and risk gaining/losing Ft+1,T − Ft,T . Brennan (1986) concluded that

the absolute minimum level of the seller’s expected loss, assuming futures follow a

martingale, with no incentive to default can be described via the relationship

E[Ft+1,T − Ft,T |Ft+1,T − Ft,T ≥ PT ] = MT . (2.6)

In other words, the margin is the expected tail loss bounded by PT . Brennan (1986)

imposes a further restriction, which is to set PT andMT to reduce investors transaction

costs evaluated as the sum of: the opportunity cost of raising the initial margin, OMT

; the cost of price limits which can halt trading and decrease liquidity, CLT and the

probability of renege PrT defined as

OMT = κMT , (2.7)

CLT =
Pr(|∆Ft,T | > PT )

Pr(|∆Ft,T | < PT )
, (2.8)

PrT = 2βF(∆Ft,T > PT ) , (2.9)

where F(·) denotes the probability distribution function for futures prices. Brennan

(1986) also provides closed-form solutions for the margins and price limits under

normally-distributed and uniformly-distributed futures returns.

Further developments of the model include: Fenn and Kupiec (1993) who incorpo-
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rate settlement frequency; Shanker and Balakrishnan (2005) who extend the model

to differentiate between short and long positions and; Chou et al. (2006) who in-

clude price limits from the underlying as well as the futures. These works however

do not address how Brennan (1986)’s assumptions have changed over time, let alone

accounting for impending regulatory changes. Electronic platforms allow traders to

enter futures contracts immediately without signing. Circuit breakers do not stop

trading for an entire day; historically, trading halts have lasted as little as five min-

utes leaving scarce time to renege. Although a natural extension to the framework

would be to relax the normally-distributed-return assumptions and impose more flex-

ible return evolutions (such as stochastic volatility models), we do not concentrate

on expanding this literature as it requires major reformulation to adapt to changing

clearing house mechanics.

Yet, the intuitions here are still applicable. For example, given investors would only

default on margin calls, initial/maintenance margin ratios and price limits can be set

to avoid successive margin calls to maintain market stability. Some works in progress

have implemented this already, see Huang et al. (2011).

2.4.3 Rules for Margin Requirements

Some of the literature have suggested heuristic rules to help stabilise margins. Chiu

et al. (2006)5 imposes the tier-adjustment rule to Hang-Seng Index Futures, where

the margin Mt,T interacts with the V aRt−1,0.997,1,T via the relationship:

Mt,T =

Mt−1,T , for0.85Mt−1,T < V aRt−1,0.997,1,T < 1.15Mt−1,T

V aR∗t−1,0:997,1,T otherwise ,
(2.10)

where V aRt−1,0.997,1,T is the V aRt−1,0.997,1,T rounded to the nearest 10,000 NTD. They

find that the approach dampens the accuracy of the margin coverage level and hence

do not encourage the use of such rule. More recently, Lam et al. (2010)’s rules entail

that should percentile forecast fall outside a certain range i.e. the margin band b

where Mt,T follows:

Mt,T =

Mt−1,T forFt−1,Tkσ̂t,T − b < Ft−1,Tkσ̂t,T < Ft−1,Tkσ̂t,T + b

Ft−1,Tkσ̂t,T otherwise ,
(2.11)

5Also the only work we have come across to illustrate such margin levels graphically
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where σ̂t,T denotes the estimate of the volatility at time t, Ft−1,T is the futures price

and k and b are parameters to be optimised by minimising the overcharge rate and

maximising the margin level. Note that k and b do not change with T as Lam et al.

(2010) applies their model only on the first-to-mature series. The optimisation is

carried out in-sample on Hang Seng Index futures between 1996 and 2006. We find

some ineffcient methods from this study. First, the rule itself produces very large

margin changes; this does not agree with impending regulations which demand small

margin step sizes to limit procyclicality. Second, Lam et al. (2010) selects the volatility

models in view of minimising the overcharge rates and maximising the margin level,

which does not indicate that the volatility is representative of the market condition.

Lastly, the study does not demonstrate how the rule can be executed out-of-sample,

hence it may not be applicable in practice. Moreover, the studies above do not describe

how margin requirements can change as futures contracts time to maturity diminishes.

Since futures return VaR increases with decreasing time to maturity, so too should

the margins. Yang and Yan (2008) is the closest study to address this problem, they

examine margins for calendar spreads which are set equal to their GARCH volatilities

but does not elaborate on how such a model can be impractical.

2.4.4 Standard Portfolio Analysis of Risk (SPAN)

Since its introduction in 1988 by the CME, SPAN has developed into a complex tool

for setting margin requirements as well as for general risk management purposes. It

is widely used in a number of exchanges, including both the CME group and ICE,

with varying methodologies across different products. The programme generates 16

possible price movement scenarios; the scenario with the greatest loss is taken as the

margin. The methods are based on risk measures (VaR, ETL for example), which

again, vary among different products. The most detailed technical document, pub-

lished by the CME group, indicate that margins are calculated using 4 different VaR

estimation technique including: normal-mixture, EVT, EWMA and implied volatil-

ity where the margins are set at least to cover 99% of the price movements. There

are however no specifications to which VaR model should be implemented on which

product or the window size of historical data needed for the computation. For ICE

however, SPAN estimates margins via heuristic rules based on the historical futures

P&L series.

The methodologies for risk estimation has also evolved significantly over time, it

is therefore inherently difficult to test SPAN as parameters are time-varying. CME’s

technical documents issued in 2010 for example impose that the margin coverage level
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are between the 95-99% VaR while current documents state that all margins cover

more than the 99% VaR. The time at which such an estimate come into play is not

mentioned in any documents. Given the lack of clarity in the methodologies, SPAN is

difficult to recreate, see Kupiec (1994) and Kupiec and White (1996) who mimics and

test SPAN against regulation T (a strategy-based margining system for setting mar-

gins on equities and equity options) and find that SPAN provides lower margins on av-

erage and also covers the necessary amount of daily return movements. More recently,

Abruzzo and Park (2013) provide detailed accounts on how exchanges have changed

futures margins in the past and find that the strain of competition forces the CME and

ICE to alter margins to out price each other. Also, given parameters and VaR estima-

tion models for the margins have changed so frequently in the past, we conclude that

SPAN margin changes are heuristic by nature and make no attempt to recreate such

a system econometrically. Our examination concentrates on using historical mar-

gin levels obtained from http://www.cmegroup.com/clearing/risk-management/

historical-margins.html and https://www.theice.com/clear_europe_span.jhtml

instead. Abruzzo and Park (2013) also find that the CME’s decreases in margin re-

quirements are more cautious than increases. This is surprising given the race-to-

bottom attitude and chances to boost liquidity (see Hardouvelis and Theodossiou

(2002)) should encourage central counterparties to be prompt when decreasing mar-

gins.

2.4.5 Evaluating the Margin Model

The measurement of the overcharge/margin level optimality was introduced by Lam

et al. (2004). The prudentiality index for the margin MT and losses Lt,T is mea-

sured using the expected shortfall ESFt,T = −E[(Lt,T −MT )+] while the expected

overcharge EOCt,T is measured as the average losses which do not exceed the margin:

EOCt,T = E[(MT−Lt,T )+]. Combining the two criteria yields a straightforward result

to minimise

EOCt,T − ESFt,T = E[|MT − Lt,T |] . (2.12)

Although not mentioned in Lam et al. (2004), it is intuitive that the first-order-

optimal margin level is MT = E[Lt,T ] (i.e. equivalent to minimising E[(MT −Lt,T )2]);

the margin should be at the mean of the losses to satisfy both conditions. The lower

partial moment however, can be difficult to estimate, hence Lam et al. (2004) also

introduces a function of the current futures price Ft−1,T , returns Rt,T , its mean

and volatility estimates µ̂t,T , σ̂t,T and parameter kt,T which governs the percentile of
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estimate: the daily shortfall

SFt,T = −Ft−1,T (|Rt,T | − |µ̂t,T + kt,T σ̂t,T |)+ , (2.13)

and the daily overcharge

OCt,T = Ft−1,T (−|Rt,T |+ |µ̂t,T + kt,T σ̂t,T |)+ . (2.14)

The criteria are then optimised to find the the optimal value for kt,T which, in turn,

can be used to calculate the optimal margin level

M∗
t,T = Ft−1,T (µ̂t,T + kt,T σ̂t,T ) , (2.15)

assuming µ̂t,T + kt,T σ̂t,T > 0. Under Lam et al. (2004)’s redefinition, M∗
t,T is dynamic

which is inconsistent with minimising relationship 2.12. The equivalent in-sample

(constant) margin estimate can be found using the relationship MT = E[Ft−1,T (µ̂t,T +

kt,T σ̂t,T )]. Although the criterion is now on the absolute returns as opposed to the

losses, consistent with the first criterion, the optimal percentile level can be calculated

by minimising

OC∗t,T + SF ∗t,T = |Ft−1,T (µ̂t,T + kt,T σ̂t,T − |Rt,T |)| , (2.16)

with respect to kt,T . Again, the solution is analogous to minimising F 2
t,T (µ̂t,T +

kt,T σ̂t,T − |Rt,T |)2, that is kt,T =
|Rt,T |−µ̂t,T

σ̂t,T
. Substituting this into 2.15, we ob-

tain the margin estimate M∗
t,T = Ft−1,T |Rt,T |, with the in-sample (constant) margin

MT = E[|∆Ft,T |]. In other words, the optimal kt,T is simply the percentile where

the first moment of absolute profit and losses can be found, which in the case of a

normal distribution is roughly at the 80th percentile. Given forthcoming EMIR reg-

ulations require the margin to cover at least 99% of the distribution, we find that the

lower/upper partial moment may be too low, even for a highly leptokurtic distribu-

tion. Indeed, should we subject the optimality criteria of Lam et al. (2004) or Lam

et al. (2010) to the prudential evaluation methods of Booth et al. (1997), we would

find that the margin coverage level is inadequate. Hence we do not use these criteria

in our study. The margin model is evaluated in two folds: backtesting of the VaR

model to ensure the accuracy of the percentile estimates; and examining whether or

not the out-of-sample margin requirements produce the optimal trade-offs between

the criteria previously outlined.

We find no works which contain methods of measuring margin stability. This is
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essential when comparing different margin models.

2.5 Summary

In this literature review, due to storage costs and convenience yields, energy futures

returns and volatility are seasonal. Unlike other easy-to-store commodities such as

precious metals, energy futures term structures are more curved. These behaviour are

thoroughly analysed in the literature and there exists a large number of models which

can be applied in our work. We find though, that the majority of the literature has not

taken care when examining how these models can be used in practice, i.e. they fail to

account for parameter recalibration frequency and transactions. Hence, rather than

focusing on improving the models to account for further deterministic movements,

we first examine how the most popular models in the literature, i.e. GARCH and

EWMA can be used in practice.

We choose to concentrate on evaluating the four main gaps in the literature: first,

we evaluate minimum-variance hedging for a refinery, paying particular attention to

transaction costs and whether or not variance reduction from more complex models

are significantly different from simpler models. Second, we extend previous works

on VaR by extending backtesting procedures to test both long and short position

VaR simultaneously on the rest of the term structure. Lastly, we re-define previous

optimality criteria for futures margining to incorporate stability following recent reg-

ulatory changes and we derive rules to allow under such criteria to determine the best

margin requirement method. In this work, we also introduce a method for assessing

margin stability.
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Hedging: Application to the Crack

Spread

3.1 Introduction

There exists a substantial literature on minimum-variance hedging of spot positions

using futures contracts in which sophisticated econometric models are applied for

estimating the hedge ratios. The majority of these studies conclude that advanced

econometric tools improve the hedging performance over the näıve hedging strategy

of shorting one futures contract per unit of spot exposure. However, majority of stud-

ies ignore margin and transaction costs, and/or does not evaluate the improvement

in a statistically meaningful way. Even, in some cases, insufficient care is taken to

pre-filter the data for use in the analysis. Our contribution is to conduct an extensive

out-of-sample study of minimum-variance hedging for a complex underlying position,

with meticulous processing of the relevant data. We compare several popular hedging

approaches and covariance estimation techniques with the simple näıve hedge, explic-

itly taking margin and transaction costs into account. In contrast to the majority

of extant literature we find that none of the sophisticated methods are able to out-

perform the näıve hedge. Furthermore, our discussion uncovers how variable margin

levels could be detrimental for hedgers in the market and that they would benefit

from moving to an exchange whose margins are stable.

Minimum-variance hedging has been pioneered by Johnson (1960) and Stein (1961),

and further refined by Ederington (1979), Hill and Schneeweis (1982), Figlewski

(1984a) and Herbst et al. (1989) amongst many others. Since Fama (1965) found

that asset covariance structures are time-varying and Bollerslev (1986) introduced

the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) method of

estimating conditional variance the application of the GARCH family for estimating

hedge ratios has been rapidly growing in popularity. Baillie and Myers (1991) first
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derived hedge ratios using the bivariate GARCH model. Kroner and Sultan (1993)

utilise the CCC GARCH model in the foreign-exchange market and Gagnon et al.

(1998) expand the study for multi-asset portfolios using the BEKK GARCH model.

Haigh and Holt (2000) and Haigh and Holt (2002) analyse hedging in the freight

and crack spread markets using a modified BEKK GARCH model. Further work on

GARCH-based hedging includes Lee and Yorder (2007), Lien (2008), Lee (2009), Lee

(2010), Chang et al. (2011), and Ji and Fan (2011). All these works conclude that a

GARCH-based strategy is superior to other static hedges.

Supporters of GARCH hedge ratios argue in unison, that the implementation of

GARCH is necessary in order to capture the time-varying asset covariance struc-

ture. This should allow GARCH-based minimum-variance hedging to provide greater

variance reduction than näıve hedging. However, due to uncertainty in the GARCH

process specification and in its parameter estimates, this may not be the case in

practice. Moreover, typically, the hedge ratios derived from GARCH-type models

are extremely volatile, suggesting unrealistically frequent re-balancing and hence very

large transaction costs for the hedged portfolio.

Most previous papers utilise weekly log returns in the analysis, but log returns

are not realised and, for assets with prices that can jump, log returns can be highly

inaccurate proxies for percentage returns even when measured at the daily frequency.

Additionally, since the hedged portfolio can have zero value, even its percentage return

may be undefined. Thus, our hedging analysis is based on profit and loss (P&L)

rather than on log or percentage. Also, in most previous papers the estimation of

GARCH and OLS parameters is based on a very large sample size. This choice can

bias results towards the GARCH approach because OLS regression attributes equal

weight to all observations, including outdated information at the beginning of the

sample. Moreover, it will typically result in a relatively small out-of-sample period,

which consequently yields test results having relatively large standard errors.

However, the most important difference between our methodology and that em-

ployed by many of the papers cited above is the use of constant-maturity versus

rollover futures series. Recently, Nguyen et al. (2011) have highlighted the pitfalls of

using futures series which simply roll over into the next contract as expiry approaches.

This practice creates a saw-tooth pattern in the basis which has the unintended effect

of biasing the OLS minimum-variance hedge ratios. To avoid this bias, our analysis

is based on constant-maturity futures P&Ls.

We base our study on the problem of hedging crack spread positions. Although one

might argue that most of the previous literature has studied the problem of hedging
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equity or pure commodity positions, we decided to use this underlying as it is a

more complicated hedging problem, where prices are highly variable and subject to

frequent jumps. As such, more advanced methods have a greater chance to improve

the performance. Indeed, as mentioned above, Haigh and Holt (2002) conclude that

multivariate GARCH models are superior for hedging the crack spread, although they

use a mean-variance rather than a minimum-variance framework.

The rest of this chapter is structured as follows: section 3.2 describes the crack

spread and hedging implications; sections 3.3 and 3.4 presents the methodological

framework; section 4.3 describes the data; section 3.6 presents the results; section 3.7

concludes.

3.2 The Crack Spread

Like other processing spreads such as the crush spread and spark spread, it is heav-

ily traded by both large scale industrial refiners and speculators. In addition to the

characteristics mentioned previously, these spread positions display other unique re-

lationships which are useful when considering hedging strategies.

The crack spread represents the profits from a simultaneous purchase and sale of

crude oil and its refined products, mainly consisting of gasoline and heating oil. An

a : b : c crack spread is defined as buying a units of crude oil, and selling b and c

units of gasoline and heating oil, respectively. These ratios are set according to the

refineries production technologies.

There are many types of crack spread positions available on the NYMEX, which can

be identified by the ratios between the position on crude oil and the refined products
1 i.e. going long an i : j : k crack spread would refer selling i units of crude oil,

buying j units of gasoline and buying k units of heating oil. The current technology

allows for twice as much production of gasoline to that of heating oil, hence the most

commonly traded crack spread position is the 3 : 2 : 1 crack spread. For this reason,

most works on crack spreads also concentrate on this particular ratio.

In 1994 the New York Mercantile Exchange (NYMEX), which offers the highest

trading volume on oil-related futures amongst all exchanges worldwide, introduced

the possibility for refineries to put up a single margin for the 3:2:1 crack spread.

Thus, if refineries hedge this position as a whole using futures contracts on crude oil,

gasoline and heating oil in this fixed ratio, margin costs are reduced and maintaining

1Often heating oil and gasoline since these are the most abundant refined products. Together, they
represent almost the entire petroleum market in the US, see Tolmasky and Hindanov (2002).
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the account is simplified for both parties. The popularity of this product led NYMEX

to introduce single margins for any a : b : c crack spread position.

The most interesting feature of the crack spread is the high level of co-integration

between the commodities within the spread. This is when they share similar co-

movements in the long-run. Some evidences of this can be found in Girma and

Paulson (1999) and their analysis on the 3 : 2 : 1 crack spread from the NYMEX

between 1983 and 1994. More recently, Paschke and Prokopczuk (2009) finds that

crack spread commodities are both highly correlated and co-integrated and included

this behaviour in their pricing model. In this particular case, more effective hedging

strategies need to be implemented. For highly correlated series, one could be used as

a cross hedge to the other. This behaviour however, only reflects how two variables

move together in the short-run. Their movements in the long run may appear to be

much less synchronised therefore only short-term hedging strategies are appropriate

for such assets.

For long-term hedges, the investor could utilise the co-integrated nature of the

crack spread. There are several hedging methods which can be applied: spot-futures

arbitrage, yield curve modelling, index tracking and spread trading are some of tricks

that could be performed in this instance. Descriptions of the application of these can

be found in Alexander (1999). Our research will mainly concentrate on short-term

hedging, the literature on hedging co-integrated series are not explored here. This

however provides an interesting case for further expansion of our problem.

A more recent development of in the oil market is the invention of the Reformulated

Gasoline Blendstock for Oxygen Blending (RBOB gasoline) which replaced unleaded

gasoline in 2005. To our knowledge, all of the existing literature on crack spread

positions have concentrated on using unleaded gasoline since there is a richer data

source, expanding over two decades in the NYMEX (1984-2005). Unleaded gasoline

however, no longer exist in the NYMEX, an analysis on this will be less useful for

investors. Our work however will mainly concentrate on using RBOB gasoline instead.

This presents an opportunity for our research to be among the first to analyse the

behaviour of this type of gasoline in comparison to its predecessor.
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3.3 Minimum-Variance Hedging

3.3.1 Hedging Models

Let the a : b : c crack spread spot and futures prices, Szt and F z
t , be given by

Szt = −aSct + bSgt + cSht , F z
t = −aF c

t + bF g
t + cF h

t ,

where Sct , S
g
t , S

h
t , F

c
t , F

g
t and F h

t denote the spot and futures prices for crude oil,

gasoline and heating oil, respectively. The realised hedged portfolio P&L, ∆Πt =

Πt − Πt−1, is given by

∆Πt = ∆Szt + aβc∆F c
t − bβg∆F

g
t − cβh∆F h

t , (3.1)

where βc, βg, βh are the hedge ratios. For the näıve hedge, βc = βg = βh = 1.

The hedge ratios that minimise the variance of (3.1) can be obtained by solving

the first-order conditions aβc

−bβg

−cβh

 =

 a2σ∆F c
t ∆F c

t
−abσ∆F c

t ∆F g
t
−acσ∆F c

t ∆Fh
t

−abσ∆F g
t ∆F c

t
b2σ∆F g

t ∆F g
t

bcσ∆F g
t ∆Fh

t

−acσ∆Fh
t ∆F c

t
bcσ∆Fh

t ∆F g
t

c2σ∆Fh
t ∆Fh

t


−1  aσ∆Sz

t ∆F c
t

−bσ∆Sz
t ∆F g

t

−cσ∆Sz
t ∆Fh

t

 ,

(3.2)

where σij denotes the covariance between i and j. This method is analogous to Ordi-

nary Least Squares (OLS) regressions of the spot P&L on the hedging instrument(s).

In other words, finding the hedge ratios in (3.2) is analogous to performing the single-

equation, multiple-variable regression

∆Szt = α− aβc∆F c
t + bβg∆F g

t + cβh∆F h
t + εt , (3.3)

where εt denotes the regression residuals. We refer to this hedging model as the single-

equation, multiple-variable model. Since each commodity is exposed to closely related

risk factors, it is expected that multicollinearity is present in this setting. Conse-

quently, hedge ratios derived from (3.3) may have biased standard errors yielding to

imprecise hedge ratio estimates.

Alternatively, one might employ a multiple-equation, single-variable model in which
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the hedge ratios are estimated via three asset-by-asset regressions, as follows: a∆Sct

b∆Sgt

c∆Sht

 =

 α1

α2

α3

+

 aβc∆F c
t

bβg∆F g
t

cβh∆F h
t

+

 ε1,t

ε2,t

ε3,t

 .

This model does not account for the covariances between the futures P&Ls at all. In

other words, the hedge ratio calculation is the same as in (3.2), but the off-diagonal

elements in the square matrix are assumed to be zero.2

The first model requires estimates of several covariances and variances and each

are prone to estimation errors. In contrast, the second model assumes all futures

covariances to be zero. A third possibility is to simply impose the constraint βz :=

βc = βg = βh, whereby one obtains the parsimonious single-equation, single-variable

model for which the estimation errors might be significantly reduced. This model,

which is nested in (3.3), is given by

∆Szt = α + βz∆F z
t + εt , (3.4)

with optimal hedge ratio given by

βz =
σ∆Sz

t ∆F z
t

σ2
∆F z

t

.

The price to pay for a parsimonious model is the implicit assumption of constant cor-

relations between the futures P&Ls. This model has not previously been considered

in the literature, but when the correlations between the components of a multiple

hedge portfolio are high, then so are the estimation errors in the covariances of the

futures P&Ls in (3.3). Hence, one might expect a superior performance from the

single-equation, single-variable model despite its restrictive assumptions on correla-

tion.

3.3.2 Estimation Method

We now turn to the econometric methods used to estimate the variances and co-

variances in the hedging models. We employ four different popular estimation meth-

ods: OLS; exponentially weighted moving averages (EWMA); the standard symmetric

GARCH; and an asymmetric GARCH model. To conduct an out-of-sample study we

2We also estimated hedge ratios using generalised least squares (GLS) in a seemingly unrelated
regression equations (SURE) system for this model. As the hedging effectiveness results were
indistinguishable; we do not report them.
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re-estimate all parameters of the OLS and GARCH models using a rolling window of

length n. The parameter of the EWMA model is fixed, a priori.

With OLS, variances and covariances of two assets Y1 and Y2 are simply estimated

by their sample counterparts

σ̂2
∆Y1,t

=
1

n− 1

n∑
i=0

(∆Y1,t−i − ¯∆Y1,t)
2 ,

and

σ̂∆Y1∆Y2,t =
1

n− 1

n∑
i=0

(∆Y1,t−i − ¯∆Y1t)(∆Y2,t−i − ¯∆Y2,t) ,

respectively. EWMA variances and covariances are estimated via the recursions

σ̂2
∆Y1,t

= (1− λ)∆Y 2
1,t−1 + λσ̂2

∆Y1,t−1 ,

and

σ̂∆Y1∆Y2,t = (1− λ)∆Y1,t−1∆Y2,t−1 + λσ̂∆Y1∆Y2,t−1 ,

where λ is the EWMA decay coefficient which takes a value between 0 and 1. With a

lower λ more emphasis is placed on the most recent observations and the model hence

becomes more reactive to changing market conditions.

GARCH variances and covariances are obtained using the BEKK model speci-

fication of Engle and Kroner (1995). For a vector of zero mean P&Ls ∆Yt, the

multivariate GARCH covariance matrix estimate Ht is based on the dynamics

Ht = A′A + (B′∆Yt−1)(B′∆Yt−1)′ + C′Ht−1C ,

where A, B, C are m × m matrices of the BEKK parameters for m assets. The

parameter estimates are obtained by maximising the log-likelihood function3

lnL(θ) = −1

2

n∑
t=1

(ln(|Ht|) + ∆Y′tH
−1
t ∆Yt) .

As it is well known that the symmetric GARCH specification can be improved by

allowing for an asymmetric variance response to shocks we also employ the asymmetric

GARCH BEKK specification (AGARCH) of Grier et al. (2004). Here the variances

3We use Kevin Sheppard’s UCSD GARCH toolbox for the estimation, available at http://www.

kevinsheppard.com/wiki/UCSD_GARCH.
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dynamics are specified as

Ĥt = A′A + (B′∆Yt−1)(B′∆Yt−1)′ + C′Ĥt−1C + (D′∆Y∗t−1)(D′∆Y∗t−1)′ ,

where A, B, C, D are m ×m matrices of the asymmetric BEKK parameters for m

assets and Y∗t is a vector of max{Yt, 0} for a positively skewed sample or min{Yt, 0}
for a negatively skewed sample.

For ease of presentation, we abbreviate the hedging models and estimation tech-

niques bymodelij wheremodel denotes the estimation method, i.e. model = {OLS,EWMA,

GARCH,AGARCH}, and i = 1, 3 and j = 1, 3 denote the number of equations and

variables in the regression system respectively. For example, EWMA13 refers to the

single-equation, multiple-variable model as specified in (3.3) where the variances and

the covariances are estimated using the EWMA method, etc.

In total, seven hedging models are analysed: näıve, OLS31, OLS13, OLS11, EWMA11,

GARCH11 and AGARCH11. For the EWMA, GARCH and AGARCH estimation

methods we omit results for multiple-equation or multiple-variable models because

preliminary results, based only on the OLS models, show that the three regression

configurations are more or less equally effective. Moreover, the proliferation of pa-

rameters when GARCH and AGARCH models are applied to multiple-equation or

multiple-variable models exacerbates the problem of parameter estimate instability,

which is discussed later on with reference to Figure 3.4.

3.3.3 Transaction Costs

When trading futures on the NYMEX, transaction costs arise from the round trip

commission charged by the exchange and from the bid-ask spread. Since the early

2000’s, the NYMEX has reduced the round trip commission costs from $ 15.00 to

$ 1.45 per futures contract bought and sold. Although the NYMEX is an open-outcry

market (which allows limit orders) the hedger is assumed to place market orders,

to prioritise the variance reduction over possible gains from trading. The bid-ask

spreads of the three considered commodity futures, x, y and z are defined as the

average spread between the bid and the ask price divided by the average mid price

of each commodity futures. The dollar value of the bid-ask spreads, TCt, arises from

re-balancing the portfolio and is given by:

TCt = aF c
t |∆βct |x+ bF g

t |∆β
g
t |y + cF h

t |∆βht |z .
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The modulus signs are placed to indicate how the hedger loses the spread regardless

of the direction of trade. We follow Dunis et al. (2008) and set x, y and z to be 1 bps,

10 bps and 12 bps, respectively. Although these are bid-ask spreads of first-to-mature

rollover series, we assume that these are constant through the first two months of the

term structure and hence use the same for our constant-maturity futures.

Margin costs arise from raising the initial margin and from marking-to-market the

maintenance margins. In the past decade there have been several changes to the

NYMEX margin requirement rules. When trading an a : b : c crack spread, NYMEX

calculates the initial margins based on the portfolio VaR. For a hedger, who shorts a

crack spread expiring in 1 month, the initial margin is approximately $ 11, $ 18 and $
7 per 3:2:1, 5:3:2 and 2:1:1 crack spread bundles respectively (as opposed to $15, $25

and $10 for a speculator).4 We shall focus on the costs incurred by refineries, which

are generally treated as hedgers by the clearing house. The total cost mi
t from raising

the initial margin is

mi
t = |βzt |M(rdt − r

f
t ) ,

where rdt is the cost of raising the initial margin, rft is the risk-free rate of return

gained from depositing in the margin account, M is the initial margin required per

crack spread bundle and βzt is the number of crack spread bundles purchased. In the

cases where the hedge ratios do not allow for exact transaction of the bundles (i.e.

βc 6= βg 6= βh), the approximation βz ≈ aβc+bβg+cβh

a+b+c
is taken instead. The refinery is

assumed to raise debt for the initial margin, rdt is set as the average cost of debt in the

industry. The top ten US refineries are currently, on average, rated AA by Moody’s.

Hence Moody’s AA bond index is chosen as a proxy for the cost of debt rdt . The initial

margin is set at $ 11, $ 18 and $ 7 for the 3:2:1, 5:3:2 and 2:1:1 bundles, respectively.

These were the values quoted by NYMEX on 06/06/2011. Three-months US T-bill

rates are used as a proxy for rft .

The gains and losses from the maintenance margin arise from the movement in

the futures prices every day. These are marked-to-market daily but as we work with

weekly data, we employ a linear approximation of the daily changes in the margin

account. See Figure 3.1 for an illustration of this process, the thick black line represent

the linear approximation to the actual movements of the futures price from t to t+ 1

(blue line). The shaded pink area represents the total interest earned, which can be

calculated as 1
2
(F z

t+1 − F z
t )((t + 1) − t). The weekly interest on the margin account

4For an a : b : c crack spread, a “bundle” indicates simultaneously going long a barrels of crude oil,
short b barrels of gasoline and short c barrels of heating oil.
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t t + 1
F t

z

F t + 1
z

Figure 3.1.: Illustration of the one-half approximation to interest rates earned
on a P&L over the period t to t+ 1. F zt denotes the futures price
at time t.

mm
t is therefore approximated as

mm
t =

1

2

(
−aβct∆F c

t + bβgt ∆F g
t + cβht ∆F h

t

)
rft . (3.5)

The total hedged portfolio P&L including margin and transaction costs ∆Π∗t may now

be expressed as

∆Π∗t = ∆Πt +mm
t −mi

t − TCt . (3.6)

3.4 Evaluating Hedging Effectiveness

Hedging effectiveness is measured by the Ederington Effectiveness (EE) calculated as

EE =
σ2
u − σ2

h

σ2
u

,

where σ2
u and σ2

h are the variances of the unhedged and the hedged portfolios, re-

spectively. We compute the EE for each model in two ways: (i) using unconditional

variances over the whole sample period and (ii) using a rolling window of EWMA vari-

ances with λ = 0.97, i.e. we use the conditional EE measures employed by Alexander

and Barbosa (2007). The EWMA method is preferred to a rolling window of uncon-

ditional variances because the latter produces ghost features where the variances are

augmented as long as a spike in the P&L remains inside the window. This is also

to avoid any possible bias the unconditional EE may have over the conditional EE,
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as highlighted by Lien (2005) and Lien (2009). The conditional EE also allows us

to examine the how the models’ performance changes, as price series move through

volatile and non-volatile time periods. To test whether the variance reduction from

each model is significantly different from the variance reduction obtained using the

näıve hedge, we apply the standard F-test for equality of variances.

3.5 Data

3.5.1 Spot Prices

Wednesday spot prices from 30/12/1992 to 23/02/2011 of Cushing WTI light-sweet

crude oil, New York Harbour heating oil no.2, unleaded gasoline and RBOB gasoline

barges are taken from Platts. In the rare cases where Wednesday is not a trading

day, the price on Tuesday is taken instead.5 The delivery location of the spot prices

is the same as their corresponding NYMEX futures. We use Platts prices as these are

collected from a window of physical commodity buyers which truly reflect the spot of

the physical commodity trades. Energy products are primarily traded in barges and

cargoes. Upon arrival, an investigator takes a sample from the freight and assesses its

purity to determine a suitable price for the rest of the shipment. As such, prices may

vary from barge to barge. To determine the spot price, Platts takes actual traded price

from a window of energy traders and apply algorithms to determine the most likely

price a particular barge would be traded at. Platts’ prices are used as a benchmark

for energy prices around the world.

Platts prices are determined at 4:30pm GMT as opposed to the NYMEX futures

prices which are determined at 5:00pm GMT-5/6 (depending on summer/winter time

zones), posing a non-synchroneity problem between the two sources. This may invoke

a downward bias on the daily correlation between the spot and futures prices, but

our analysis is on weekly data with weekly hedging horizons. As such, this relatively

minor time difference will have negligible effect on the empirical results.

3.5.2 Futures Prices

Wednesday NYMEX futures prices of crude oil, heating oil, and gasoline from 30/12/1992

to 23/02/2011 are based on the NYMEX closing price. Among these three commodi-

ties, gasoline production has undergone some changes over time and therefore, since

5And in the case where Tuesday is not a trading day as well as Wednesday, Monday’s price is taken
instead. In the circumstance where none of those days are trading days, the week is omitted
entirely.
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2006, the NYMEX has no longer offered the original unleaded gasoline futures, replac-

ing them by Reformulated Blendstock for Oxygen Blending (RBOB) gasoline futures.

Due to data availability and low liquidity in the early years of the RBOB futures mar-

ket, we switch from unleaded to RBOB gasoline in different years in the spot (2003)

and futures markets (2006). This problem is of limited importance as both types of

gasoline face the same demand and supply trends so that the prices are extremely

highly correlated.

There are two ways to create a continuous series of futures P&Ls: the rollover

method and the constant-maturity method. A standard rollover series is constructed

by taking a futures price series up to a rollover date, the price series then jumps to the

prompt futures series which is taken up to the next rollover date and so on. Often,

the rollover dates are roughly a week before maturity to avoid thin market trading

but for the commodities we study there is no need for this adjustment since trading

continues in high volumes right up to the maturity date.

However, there are problems associated with the rollover futures series. As ex-

plained by Nguyen et al. (2011) where unlike constant-maturity series, any regression

relating spot data to futures data will be contaminated by the “saw-tooth” pattern

in the basis.

Galai (1979) compares two methods for creating constant-maturity futures which he

terms the value index (interpolation between prices) and the return index (interpola-

tion between returns). Galai shows that the return index method is the only one that

provides realisable investments. As we require realisable investments to implement

the optimal hedge ratios in practice, but our analysis must also be based on P&L

rather than returns, we adapt Galai’s return index method to the P&L as follows:

∆Ft,T = ηt∆Ft,T1 + (1− ηt)∆Ft,T2 , 0 ≤ ηt ≤ 1,

where ∆Ft,T is the constant-maturity futures P&L expiring in T days, ∆Ft,T1 and

∆Ft,T2 are the futures P&Ls expiring at T1 and T2 respectively, and

ηt =
T2 − (t+ T )

T2 − T1

, T1 < T < T2.

A reasonable choice for T is 44 calendar days, i.e. approximately 1.5 months. With

this choice there will always be two maturities straddling the constant-maturity. Of

course, to maintain a constant-maturity series of ∆F z
t for the regression (3.4), all

futures’ time to maturities must be the same.
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3.5.3 Summary Statistics

Tables 4.3 and 3.2 report summary statistics and correlations of the weekly spot

and constant-maturity futures P&L distributions based on the entire sample period.

Crude oil spot and futures are less volatile than gasoline and heating oil spot and

futures, and in each case the spot is more volatile than the futures. Each P&L except

spot heating oil is slightly negatively skewed and all series are highly leptokurtic.

∆F c ∆F g ∆F h ∆Sc ∆Sg ∆Sh

µ 0.0324 0.1100 0.0569 0.0820 0.0964 0.1045
σ 2.3609 2.7426 2.7518 2.4586 3.1717 2.9239
τ -0.2804 -0.3470 -0.0239 -0.1122 -0.3049 0.0431
κ 6.3410 3.3010 7.0075 6.1150 3.2928 5.8725

Table 3.1.: Summary statistics for weekly constant-maturity futures and spot
P&Ls for the sample period 30th December 1992 - 23rd February
2011. The total number of observations is 939 for each series. µ, σ, τ
and κ denote the mean, standard deviation, skewness and excess
kurtosis, respectively.

∆F c ∆F g ∆F h ∆Sc ∆Sg ∆Sh

∆F c 1 - - - - -
∆F g 0.8539 1 - - - -
∆F h 0.9006 0.8395 1 - - -
∆Sc 0.9718 0.8268 0.8683 1 - -
∆Sg 0.7357 0.9334 0.7423 0.7106 1 -
∆Sh 0.8385 0.7859 0.9507 0.8128 0.6981 1

Table 3.2.: Correlation matrix between spot and futures P&Ls for the sample
period 30th December 1992 - 23rd February 2011. The total number
of observations is 939 for each series.

Figure 3.2 displays the P&L time series for all six variables. We observe that all

series show rising volatility from the year 2000 onwards. Surges in prices produced by

unexpected supply shortages result in frequent jumps in all the series. In many cases

a decoupling of spot and futures prices results in a jump in the basis which is difficult

to hedge effectively with the one-for-one ratio, and possibly also with a minimum-

variance hedge ratio. Only one, very extreme spike in the data was removed. This

was during the week of Hurricane Katrina, during which we assume no trades were

made.
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Figure 3.2.: Spot and constant-maturity futures P&L series for each commod-
ity. Period: 30th December 1992 - 23rd February 2011. Prices
for the week of 28th August 2005 - 2nd February 2005 have been
removed due to abnormal market conditions caused by hurricane
Katrina. The investor is assumed to make no trades on this week.
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3.6 Empirical Results

We study the hedging performance of seven different models: näıve, OLS31, OLS13,

OLS11, EWMA11, GARCH11 and AGARCH11 both, in-sample and out-of-sample. For

the in-sample analysis, parameters are estimated using the entire data set, i.e. 939

weekly observations. Hedge ratios are then calculated based on these parameters

and held constant for computing the hedge performance. But clearly, the in-sample

analysis is just a data-fitting exercise – it is the out-of-sample analysis that matters

for practical purposes. Here, the parameters are estimated using a rolling window

of 260 weeks.6 The hedge ratios estimated at time t are then applied to the one

step ahead P&L. The hedger is assumed to re-estimate the parameters every week.

Since the EWMA parameter λ is always constant, EWMA results are the same both

in-sample and out-of-sample.

All empirical results presented are for the 3 : 2 : 1 crack spread bundle, as many

refineries have this approximate crack spread and the original NYMEX margin bundles

were also based on this spread.

3.6.1 Hedge Ratios

Table 3.3 reports the average hedge ratios for each model and their standard devia-

tions. In-sample hedge ratios are reported for completeness, we focus the following

discussion on the out-of-sample hedge ratios. The multiple-equation model OLS31

yields hedge ratios closer to 1.0, yet the single-equation models produce hedge ratios

nearer to 1.3. It is tempting to conclude that the OLS13 model produced these higher

hedge ratios because of multicollinearity. However, both OLS13 and OLS11 produce

hedge ratios of roughly the same magnitude, which brings into question any such

conclusion.

The OLS31 model produces smaller hedge ratios, closer to 1, because all cross-

market correlations are assumed to be zero. As they are certainly not (see Table

3.2) this produces a substantial bias. On the other hand, the OLS13 assumes an

equal cross-market correlation across all commodities – an assumption that seems

reasonable in light of Table 3.2.

Figure 3.3 displays the evolution of the OLS models’ out-of-sample hedge ratios over

6For the OLS methods we have also employed windows of length 104, 156, and 208 to ensure that
this choice is not the driver of our results. No significant differences were found. For the GARCH
models, shorter windows were not feasible due to the number of parameters to be estimated. In
some few instances, the optimisation of the GARCH parameters failed to converge. We then used
the estimates from the previous week.
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in-sample OLS13 OLS31 OLS11 EWMA11 GARCH11 AGARCH11

βc 1.285 1.012 1.277 1.381 1.363 1.381
- - - (0.215) (0.262) (0.205)

βg 1.296 1.079 1.277 1.381 1.363 1.381
- - - (0.215) (0.262) (0.205)

βh 1.202 1.010 1.277 1.381 1.363 1.381
- - - (0.215) (0.262) (0.205)

out-of-sample

βc 1.417 1.035 1.412 1.381 1.392 1.368
(0.162) (0.021) (0.135) (0.215) (0.343) (0.326)

βg 1.432 1.147 1.412 1.381 1.392 1.368
(0.109) (0.039) (0.135) (0.215) (0.343) (0.326)

βh 1.349 1.084 1.412 1.381 1.392 1.368
(0.363) (0.061) (0.135) (0.215) (0.343) (0.326)

Table 3.3.: Average in-sample and out-of-sample hedge ratios with standard
deviations in parentheses. In-sample ratios are estimated using the
entire sample period: 30th December 1992 - 23rd February 2011.
Out-of-sample hedge ratios are estimated using a moving window
of 260 weeks.

time. One can observe that OLS31 and OLS11 are relatively stable. In contrast, the

hedge ratio for the heating oil contract of OLS13 in particular exhibits some substantial

transitions over time. This is also reflected by the relatively high standard deviation

in Table 3.3. The GARCH11 estimation method produced the most volatile out-of-

sample hedge ratios. Although this characteristic is expected given that GARCH

parameters are generally more sensitive with respect to innovations in the data, the

volatility of the hedge ratios should roughly be of the same magnitude as the EWMA11

hedge ratios.7 According to Table 3.3 however, the out-of-sample GARCH11 hedge

ratios are roughly 33% more volatile than the EWMA11 hedge ratios.

This is also shown in Figure 3.4, which compares the behaviour of the hedge ratios

derived for the single-equation, single-variable models over time. Note how volatile

the GARCH hedge ratios are over time. Would a serious risk manager implement a

hedging strategy that involved re-balancing more than 100 % of the hedging portfolio

from week to week? This casts serious doubts on the merits of GARCH-based hedge

ratios.

7For some periods, the GARCH hedge ratios are unmanageably large for the investor (e.g. up to
±5 times the spot investment). To control these, when the absolute value of the GARCH hedge
ratios exceed twice the absolute value of the EWMA hedge ratio, the GARCH hedge ratio from
the previous time step is used instead.
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Figure 3.3.: OLS hedge ratios calculated using a moving window of 260 weeks.
Period: 14th January 1998 - 23rd February 2011.

The GARCH model parameter estimates are highly volatile over time. Table 3.4

displays the means of the estimated GARCH parameters, and their standard devia-

tions measured over the entire out-of-sample period. Clearly, the estimates are far

from being stable. Extending the length of the estimation windows up to 8 years

did not produce substantially more stable estimates. Hence, the problem is not one

of convergence to local optima instead of a global optimum, but rather an intrinsic

problem with applying GARCH models for hedging when there are frequent jumps

in a highly volatile basis. In this situation, large changes in the conditional variance

parameter estimates are only to be expected. Indeed, the finding of highly unstable

GARCH hedge ratios is nothing peculiar for our data set. Previous studies, e.g. Lee

and Yorder (2007) and Lee (2010), have found similar results.

Another problem concerns transaction costs. Re-balancing a hedge with such ex-

treme swings will amount to much higher transaction costs in comparison to the other
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Figure 3.4.: Comparisons between out-of-sample hedge ratio estimates of the
OLS11, EWMA11, GARCH11 and AGARCH11 models. EWMA11

hedge ratios estimated with λ = 0.97. Period: 14th January 1998
- 23rd February 2011.

methods having more stable hedge ratios. Table 3.5 presents the average transaction

costs (including margin costs) of the seven hedging strategies. One can see that the

GARCH11 and AGARCH11 models produce average transaction costs of $ 0.040 and

$ 0.059 per bundle. A refinery that purchases 50,000 3 : 2 : 1 crack spread bundles

per week for example, would be paying $ 156,000 per year only to implement their

hedging strategy. This is very large in comparison to the other models, especially

the näıve strategy, where hedging does not require re-balancing and the associated

margin and transaction costs are much smaller.

3.6.2 Hedging Effectiveness

We now consider the hedging effectiveness of each model. The main question is

whether the effort to implement more advanced models and the associated transac-

tion costs pay off in a superior hedging performance? Table 3.6 shows the overall

hedging performance measured by the unconditional EE of each model both, in- and

out-of-sample. In the more relevant out-of-sample test, all models produce variance

reductions in the range of 64-71% with the OLS11 as the most effective model. The

AGARCH11 model performs worst, with an EE of 64.81%.

Figure 3.5 displays the out-of-sample conditional EE for each model over time.
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GARCH11 AGARCH11

Parameter Mean St. Dev. Mean St. Dev.

A11 -0.423 (0.791) -0.292 (0.910)
A21 -0.785 (1.790) -0.887 (2.054)
A22 0.311 (0.381) 0.163 (0.203)
B11 -0.271 (0.257) 0.058 (0.393)
B12 -1.039 (0.548) -0.060 (0.808)
B21 0.022 (0.131) 0.031 (0.186)
B22 0.540 (0.194) -0.466 (0.685)
C11 0.818 (0.274) 0.865 (0.354)
C12 0.158 (0.191) 1.599 (0.668)
C21 0.034 (0.148) -0.023 (0.182)
C22 0.728 (0.136) -0.244 (0.423)
D11 - - 0.139 (0.224)
D12 - - 0.271 (0.669)
D21 - - 0.017 (0.209)
D22 - - -0.0.21 (0.421)

log-likelihood -1170.116 (240.992) -1161.063 (236.468)

Table 3.4.: Out-of-sample mean and standard deviation of GARCH11 and
AGARCH11 parameter estimates using a 260 weeks rolling win-
dow. Period: 14th January 1998 - 23rd February 2011.

näıve OLS13 OLS31 OLS11 EWMA11 GARCH11 AGARCH11

In-sample 0.008 0.010 0.008 0.009 0.014 0.024 0.050
(0.004) (0.005) (0.005) (0.005) (0.011) (0.027) (0.050)

Out-of-sample 0.008 0.013 0.009 0.011 0.014 0.040 0.059
(0.004) (0.005) (0.006) (0.007) (0.011) (0.047) (0.070)

Table 3.5.: Average margin and transactions costs in $ per spot bundle, num-
bers in parentheses represent standard deviations. Period 14th Jan-
uary 1998 - 23rd February 2011.

It is variable throughout the sample period and occasionally reacts to the jumps in

the basis. For instance, during the first quarter of 2000 the hedging effectiveness of

all models drops below 0% but then rises to about 40% after about 3 months. This

is due to the surge in heating oil prices (note the spike at this time in the bottom,

right-hand graph in Figure 3.2). We have not excluded data from this event because

the price shift occurred over a period of two months, and hedging would have been

necessary over such a long period. Although the GARCH models are expected to

perform better under these conditions since they are more capable to react to changing
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näıve OLS13 OLS31 OLS11 EWMA11 GARCH11 AGARCH11

In-sample 67.28% 69.98% 68.01% 70.47% 69.71% 67.33% 68.58%
Out-of-sample 67.28% 69.70% 67.78% 69.98% 69.71% 67.40% 64.81%

Table 3.6.: Whole-sample EE of each model in percentage points. Hedge ra-
tios calculated using a 260-week rolling window. Whole-sample
data points: 679. Period 14th January 1998 - 23rd February 2011.
Whole-sample unhedged portfolio variance: 44.34 $2. Hedged port-
folio includes margin and transaction costs.

market conditions, here they produce roughly the same hedging effectiveness as all

the other models.

From Figure 3.5 we can conclude that all models have similar effectiveness through-

out the entire sample period. To test this more formally, we perform a standard F-test,

for equality of variances: between the variance of P&L resulting from the näıve hedge

and the P&L variance from each of the models. We use the out-of-sample P&L and

evaluate the F-statistic using a rolling window to calculate the individual variances.8

Figure 3.6 depicts these F-statistics together with lines showing the critical values at

the 90% and 95% confidence level. We fail to reject the null hypothesis that the hedge

portfolio variance produced by more advanced models is significantly smaller than the

näıve strategy in every instance. No model is able to improve upon the näıve hedge,

utilising the 3:2:1 bundle offered by NYMEX. The same conclusion is reached for all

the a : b : c crack spreads considered, although those results have not been reported

for brevity.

A further robustness check was carried out to assess the dependence between the

EE and different volatility regimes. The results are presented in Tables 3.7 and

3.8. We re-estimated the average hedging effectiveness of each model: during high

volatility and low volatility time periods. As a preliminary test, the first half of the

sample (sample A) was taken as the low volatility regime (30th December 1992- 11th

August 2004, average underlying variance 10.12 $2), and the second half of the sample

(sample B) was the high volatility regime (11th August 2004 - 23rd February 2011,

average underlying variance 58.24 $2). Empirical results confirm that all models again

produce roughly the same EE, as for the full-sample results. We also find that the

models perform better in sample B than in sample A: in sample B the EE ranges

from 67-74 %, compared with 53-58 % in sample A. One might suppose that this was

because the correlation between the spot and futures crack spread increases during

8We have used a one year window (52 weeks) in order to obtain a long out-of-sample period. Results
for longer windows (260 weeks) yield identical conclusions.
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volatile times. However, upon further investigation we find that this is not the case.

The GARCH correlation levels remain roughly 0.80 throughout both samples, with

the exception of the period 26th January 2000 - 9th February 2000, where the futures-

spot correlation drops to -0.12 (attributed to the heating oil surge in January-March

2000). The downward jump in the EE that is evident in figure 3.5 is due to this

momentary shock alone. It so happens that the shock occurred during sample A, and

this is the reason why models perform better during sample B.

In-sample Out-of-sample
Whole Sample Whole Sample Sample A Sample B

näıve 67.28% 67.28% 53.38% 70.68%
OLS13 69.98% 69.70% 54.83% 70.95%
OLS31 68.01% 67.78% 57.16% 72.88%
OLS11 70.47% 69.98% 57.83% 73.47%

EWMA11 69.71% 69.71% 56.46% 73.05%
GARCH11 67.33% 67.40% 56.16% 70.26%

AGARCH11 68.58% 64.81% 54.54% 67.53%

Table 3.7.: Whole-sample EE of each model in percentage points. Hedge ra-
tios calculated using a 260-week rolling window. Whole-sample
data points: 679. Whole-sample period 4th February 1998 - 23rd

February 2011, Sample A period 3rd February 1999 - 9th February
2005, Sample B period 9th February 2005 - 23rd February 2011.
Whole-sample, Sample A, Sample B unhedged portfolio variances:
44.34 $2, 10.12 $2, 58.24 $2 respectively. Hedged portfolio includes
margin and transaction costs.

In-sample Out-of-sample
Whole Sample Whole Sample Sample A Sample B

näıve 62.02% 62.02% 59.35% 66.08%
OLS13 65.45% 63.99% 61.94% 68.44%
OLS31 63.06% 62.81% 60.53% 66.50%
OLS11 65.35% 64.54% 62.47% 68.96%

EWMA11 64.06% 64.06% 61.99% 68.30%
GARCH11 61.86% 62.34% 60.87% 66.07%

AGARCH11 62.77% 60.53% 59.67% 63.02%

Table 3.8.: Average EWMA EE of each model in percentage points. Hedge
ratios calculated using a 260-week rolling window. Hedged portfolio
sample period 13th January 1999 - 23rd February 2011. Hedged
portfolio includes margin and transaction costs.
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Figure 3.5.: Out-of-sample analysis: EWMA EE of each model. Period: 13th

January 1999 - 23rd February 2011. Hedge ratios calculated using
a 260-week rolling window.
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Figure 3.6.: Rolling-moving F-statistic for testing the equality of variances
between each hedging model and the näıve hedged portfolio.
Rolling-moving variances are calculated using a 52-week rolling
window. Hedge ratios calculated using a 260-week rolling win-
dow. Period: 13th January 1999 - 23rd February 2011. Horizontal
lines indicate two-sided critical values at 5% and 10% significance
levels, respectively.

To ensure that the hedging effectiveness is not driven by our assumption regarding
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the size of margin and transaction costs, we repeat the analysis, this time ignoring

those costs. The change in EE resulting from excluding margin and transaction

costs is found to be very small and mostly positive, the largest being 0.14% for the

AGARCH model. One could also account for the correlation between the margin

costs, or transactions costs, and the spot and futures P&L when minimising the

portfolio variance, i.e. minimising the variance of ∆Π∗t in equation 3.6 as opposed to

the variance of ∆Πt in equation 3.1. However, the correlations between the hedged

portfolio P&L and the margin costs, or transaction costs, are very small (in the region

of -0.09 to 0.03). Thus, we do not account for these correlations; it would have only

minimal effect on the empirical results.

3.6.3 Margin Calls

We now discuss the case where the refinery has to raise capital to cover the margin

call. While the variation in the transaction costs does not significantly undermine the

hedging effectiveness, raising the margin call poses a problem for the refinery.

Upon entering the bundle futures contract, the refinery deposits a margin which is

marked to market daily. We assume that the refinery has privileges as any exchange

member and are not subjected to margin calls intraday. Given the initial and main-

tenance margins are equal, should the value of the positions on the bundle fall at the

end of the next day, the refinery would receive a margin call. There are some studies

which suggest complex hedges for margin calls using binary options for speculators

(see Day and Lewis (2004)) but as the refinery is a hedger, we assume for now that

they are left with one option -to prepare capital to cover possible margin calls. The

amount of capital can equate to, say, the 99%, one-day VaR of the bundle’s movement.

Whilst this is exhausted upon one margin call, the refinery would have to replenish

this capital level back to its full amount to guard against the next. Note that, the only

risk under consideration here belongs purely to the futures bundle’s price movements.

Now, if the margin level is variable, the refinery faces two sources of uncertainty:

the changes in the bundle futures price and the changes in the margin level itself. The

refinery must then prepare a pool of capital to cover both sources of risk, i.e. the 99%,

one-day VaR of −∆F z
t −∆Mt. From this relationship, it is clear that the capital level

needed is highly dependent on the variability of ∆Mt. The larger the variability, the

greater the capital required and should this be excessive, the refinery may abandon

this strategy all together and bear the volatility of the spot market without hedging.

Furthermore, formulating a VaR estimate on such a portfolio is not straightforward.

Perhaps a closed-form solution is possible if Mt was set to a constant proportion of
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σzt (e.g. any parametric VaR) but given the variability of σzt is often large, especially

for energy portfolios, there remains a hurdle for the refinery to raise such capital.

This problem will not only be prevalent among hedgers but all investors in the

market. Variable ∆Mt is difficult to manage and adds to investors’ transaction costs.

It would hence be in the investors’ best interest to trade in an exchange who offers

stable margin requirements.
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3.7 Conclusions

We have compared seven different models for estimating hedge ratios for crack spread

delta hedging. Although all models are found to produce a healthy amount of variance

reduction (roughly 68% on average). The most complex models (i.e. GARCH mod-

els) deliver the worst hedging results. The hedging strategies derived from GARCH

models are not only more complicated to implement, they also generate the highest

transaction costs. Moreover, instability in parameter estimates is another problem

which can lead to unrealistically high hedge ratios associated with the most complex

models.

Our findings contradict a fair body of existing literature which concludes that

model-based minimum-variance hedging is superior, particularly when GARCH mod-

els are employed. In contrast, we find that the hedging effectiveness is statistically

indistinguishable between all the models considered. This finding is based on a very

long out-of-sample period, but we would have reached the same conclusion had we

used much shorter sub-periods or, indeed, had we based conclusions on in-sample

analysis alone.

We have taken much more care with the data than the previous studies that have

analysed the hedging of the crack spread. We use the best (Platts) spot prices and we

replace the rollover log return series, which are typically used in studies of this type

and are affected by the saw-tooth pattern in the basis that biases the OLS hedge ratios.

Moreover, we take meticulous care to account for all the costs involved in hedging. The

margin and transaction costs of minimum-variance hedging have a very small effect on

the hedging effectiveness, even for the excessively variable hedge ratios prescribed by

GARCH models. However, these costs are important to analyse, because they reveal

that GARCH hedging models would be too expensive to implement in practice, even

if they did provide statistically significant superior performance (which they do not).

Our discussion on margin calls further reveals that more variable margins imposes

more costs for investors since they need to raise additional capital to cover movements

in the initial margin. It would be in the investors’ best interest to move to an exchange

which issues stable margin requirements.

The main point for end-users to take away from our study is that, even for complex

underlyings such as spreads on oil-related commodities which produce a basis that

is extremely variable and jumpy, the maturity mismatch justification for minimum-

variance hedging is simply not viable. The näıve hedge ratio performs as well as any

other model, and it requires the least re-balancing of all. It may be that minimum-

58



3. (De)Merits of Minimum-Variance Hedging: Application to the Crack Spread

variance hedging can improve on the so-called “näıve” hedge when a proxy futures

contract must be used – but even this remains an open question waiting for a thorough

empirical analysis.
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4. Value-at-Risk for Energy Futures

Term Structures Margin

Requirements

4.1 Introduction

Since the financial crash in October 1987 and the development of advanced risk man-

agement tools, Value-at-Risk (VaR) has become the most popular market risk quan-

tification method worldwide This is evident in its implementation by international

regulating bodies: the Basel amendments in 1996, the Dodd-Frank act in 2010 and

more recently European Market Infrastructure Regulations (EMIR) coming in place

this year. With a significant proportion of investors migrating to the energy futures

market in search of alternative investments (especially crude oil), advancements in

VaR estimation for energy futures is essential for protecting financial institutions and

investors from unexpected loss.

In this study, we search for the best VaR model for margin requirement purposes

which includes two unique features not yet addressed in the literature. First, as

exchanges are faced with long and short positions simultaneously, the VaR model

must be able to accurately quantify both the upper and lower tail of the distribution

at the same time. Second, exchanges like to publish margin levels for individual futures

online hence all futures along the term structure must have margins assigned. To this,

the exchange requires a VaR model that can accurately describe, not only the first-

to-mature futures series, as is studied by the majority of works in the literature, but

for all available futures contracts along the term structure. We find few works which

examine VaR on a term structural basis, Nomikos and Pouliasis (2014) is perhaps the

most closely-related work in this respect. Their study however, analyses the use of

VaR models for portfolio management and not for margin requirements. Furthermore,

when backtesting, they do not consider clustering of exceedances which is essential

when examining the risk sensitivity of the VaR; their sample period also stretches up
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to 2009 only.

Here, we carry out rigorous examinations on VaR, where we use a rolling log-

likelihood statistic for the entire term structure. We also address some unanswered

questions on whether or not the use of returns or profit and losses (P&L’s) based

on constant-maturity or rollover futures are more appropriate. As discussed in the

chapter 3, the use of log returns is in appropriate. Log returns can be highly inaccu-

rate, even at the daily frequency and inappropriate when applied to constant-maturity

futures.

The rest of the chapter is structured as follows: first, we propose a rigorous method-

ology for examining VaR models for margin requirement purposes; second we present

the data; third, we discuss our results; and finally we conclude.

4.2 Methodology

We concentrate mainly on parametric VaR estimation methods as these are the most

prevalent in the literature and include one semi-parametric estimation method for

comparison. We have not considered more complex models here, as our study is

perhaps the first to address backtesting 2-tails VaR models for Brent crude oil futures,

further investigation could be to explore more advanced models.

4.2.1 Parametric VaR Models

For a parametric VaR model, one assumes the P&L’s or returns follow a paramet-

ric distribution. The parameters of the distribution are estimated and the VaR is a

percentile on such distribution. Here, we assume two different types of innovations:

normal and student t, with cumulative density function denoted as Φ[·] and tν [·] re-

spectively. The corresponding α percent, h-day VaR can then be estimated according

to the relationships:

V aRα,h
t,T = Φ−1[α]σ̂t,T ,

V aRα,h
t,T = t−1

ν [α]σ̂t,T , (4.1)

where σ̂t,T is the time-t volatility estimate of the futures return of P&L with maturity

T . We consider a number of volatility estimation methods used in practice and the

literature as parametric VaR is heavily reliant on this procedure.

61



4. Value-at-Risk for Energy Futures Term Structures Margin Requirements

Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA), popularised by JP Morgan, is

one of the models used by the CME. Its specification follows

σ̂2
t,T = λσ̂2

t−1,T + (1− λ)∆F 2
t−1,T , (4.2)

where Ft,T is the futures price at time t maturing at time T , assuming E[∆Ft−1,T ] = 0.

The same relationship can be derived for returns by replacing ∆Ft,T with ∆Ft,T
Ft−1,T+1

and

the corresponding dollar-VaR is found by multiplying the return VaR forecast to the

current futures price. All volatility processes described in this section can be derived

using both alternatives. In this chapter, we only show the P&L alternative for brevity.

Note that the time t+1 variance forecast for the EWMA specification is the same as the

variance estimate at time t. For the daily frequency, we choose the decay parameter

λ = 0.94 as recommended by JPMorgan’s RiskMetrics technical documents. Although

ν and λ can be calibrated to fit the data via a maximum-likelihood criterion, as is

carried out in any conventional GARCH calibration procedure, we do not encourage

such a procedure for the EWMA model as this would detract from its simplicity in

using ad hoc parameters. Note that, the excess kurtosis of the t distribution is 6
ν−4

,

hence for a positive and finite kurtosis, ν must be greater than 4. Here, we estimate

the VaR using ν = 6 and 12 as these can imitate the leptokurtic nature of futures

P&L’s well.

Generalised Auto-Regressive Conditional Heteroskedasticity

As the literature tend to favour student-t-asymmetric GARCH models (such as the

GED-GARCH model from Fan et al. (2008) or the skewed-t-APARCH model from

Giot and Laurent (2003)), we include the GJR-GARCH model in our analysis. The

specification is given by:

σ̂2
t,T = β̂0 + β̂1∆F 2

t−1,T + β̂2σ̂
2
t−1,T + β̂31∆Ft−1,T<0∆F 2

t−1,T , (4.3)

Note that the GJR GARCH configuration allows for different reaction in P&L de-

pending on its direction. What is not addressed in the literature (see Su et al. (2011)

for example), is that at time t−1, one does not know the direction of the P&L at time

t. The volatility for the upward movement would be different to that of a downward

movement. Hence at every time step t−1 we need two separate VaR estimations, one

based on the lower tail of the distribution and one on the upper tail. The variance
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forecast of ∆Ft,T is given by

σ̂2
t,T = β̂0 + (β̂1 + β̂2 + β̂31∆Ft−1,T<0)σ̂2

t−1,T , (4.4)

and the V aRα,1
t,T = t−1

ν [α]σ̂t,T . In the case of normal distribution innovations, pa-

rameter estimates β̂i for i = 0, 1, 2, 3 can be found by maximising the log-likelihood

function specified as:

LLt =
t∑

i=t−n+1

log f(Θi) , (4.5)

where n is the length of the estimation window and f probability density function

of the innovations with parameters Θ , i.e. the normal and student t distributions.

Although more complex calibration methods such as Markov Chain Monte Carlo can

improve GARCH parameter stability, our work is not primarily about calibration

methods and they will not be considered here.

Orthogonal Volatility Models

With regards to estimating volatility on a term structural basis in a similar spirit

to Tolmasky and Hindanov (2002) and Nomikos and Pouliasis (2014) - we test the

models using Principal Component Analysis (PCA). First, we model the orthogonal

movements (the first three are: shift, tilt and convexity) of the term structure instead

of all the individual series. The variance estimate can be described as:

σ̂2
t,T =

k∑
i=1

σ̂∗2t,iW
2
i,T , (4.6)

where σ̂∗2t,i is the variance of the ith eigenvector, Wi,T is the ith element of the T th

eigenvector of the unconditional covariance matrix which is estimated using a 1250-

day rolling window and k is number of eigenvectors. The equivalent Orthogonal VaR

estimate can then be calculated via the relationship 4.1. Following Nomikos and

Pouliasis (2014), we choose k = 3 as this can explain the majority of the movements

in the term structure. The covariance matrix is preferred to the correlation matrix in

this case because the Samuelson effect is embedded in its estimation procedure, which

also produces smoothing-decaying VaR estimates along the term structure.

For the EWMA model, we first estimate the volatilities on the principal components.

We make no assumption on the P&L distribution at this stage and we transform this

to the term structure volatilities according to the relationship 4.6. Then, we assume

that each futures P&L’s in the term structure are either t-distributed with ν = 6 or 12
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or normally distributed and calculate the VaR. On the other hand, we cannot apply

the GJRt model on an orthogonal basis. This is because we calibrate the GARCH

parameters on the principal components which include the degrees of freedom of the

innovations. Although, we can use relationship 4.6 to calculate the futures volatility,

we cannot determine the degrees of freedom the t distributions of the futures term

structures. Therefore, we employ orthogonalisation assuming normal distribution

innovations for the GARCH model only.

4.2.2 Semi-Parametric VaR Models

We include one semi-parametric VaR model, i.e. the Kernel-fitted VaR model, to

compare with the parametric VaR models. Although this model is not prevalent in

the literature, we find in our test samples that it can capture the skewness of the

return distribution well. We generate probability distributions using a normal-kernel

smoothing function based on 60 and 120-day (approximately 3 and 6 months) rolling

windows of historical empirical distribution of P&L’s and use the α percentile of the

kernel-fitted distribution as the estimate of V aRα,h
t,T . We have chosen relatively small

windows to allow the VaR to be reactive to market conditions. The time t VaR

forecast is assumed to be the same as its estimate at time t− 1.

4.2.3 Model Summary

In total, we test 11 different VaR models, including 2 semi-parametric models, see

Table 4.1 for more details.

4.2.4 Returns or Profit and Losses?

Previous literature concentrates on estimating VaR using returns and multiplying this

to the current futures price to calculate the dollar-VaR. These results are different for

calculating VaR on the P&L series. Although estimation of VaR on returns can be

more stable as these are more stationary than P&L’s, the corresponding dollar-VaR

estimation can be highly variable. This can be highly problematic for risk management

purposes; margin requirements in particular retain many advantages for reducing

procyclicality should it be based on more stable VaR estimates.

Here, we find that with volatility models which are adaptable to changing market

conditions such EWMA and GARCH, estimation on the P&L series can be just as

powerful as those on the return series. We estimate and backtest the VaR on both

P&L and returns and evaluate which alternative can produce more accurate VaR
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Model Name Volatility Estimation Method Distribution

EWMAt-6 EWMA, λ = 0.94 Student-t, ν = 6
EWMAt-12 EWMA, λ = 0.94 Student-t, ν = 12
EWMA EWMA, λ = 0.94 Normal
GJRt GJR Student-t
GJR GJR Normal
K-60 - Fitted Gaussian Ker-

nel using a 60-day
rolling window

K-120 - Fitted Gaussian Ker-
nel using a 120-day
rolling window

OEWMAt-6 Orthogonal EWMA, λ = 0.94, co-
variance matrix estimated using a
1250-day rolling window

Student-t, ν = 6

OEWMAt-12 Orthogonal EWMA, λ = 0.94, co-
variance matrix estimated using a
1250-day rolling window

Student-t, ν = 12

OEWMA Orthogonal EWMA, λ = 0.94, co-
variance matrix estimated using a
1250-day rolling window

Normal

OGJR Orthogonal GJR, covariance ma-
trix estimated using a 1250-day
rolling window

Normal

Table 4.1.: Summary of all tested models in this chapter
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forecasts. To the best of our knowledge, no previous study addresses this important,

yet, straightforward issue.

4.2.5 Constant-Maturity or Rollover Futures?

Previous studies tend to focus their analysis on the rollover series only. In the presence

of the Samuelson effect however, estimating the volatility on the rollover series can

lead to biased results. Nomikos and Pouliasis (2014) carried out their analysis on

constant-maturity data which are void of these effects. In the context of margin

requirements however, one requires the margin of all futures positions along the term

structure, which do not have constant maturity.

Methods for generating constant-maturity series is outlined in the previous chapter.

There is however one drawback in using constant-maturity series in estimating VaR for

margin requirements. To elaborate, consider an investor wishes to purchase a contract

with 15 days to maturity, the exchange therefore needs the VaR of this contract to

issue the margin. If the VaR term structure was estimated using constant-maturity

futures, the exchange would need to fit a spline through the term structure which are

at say 30,60, . . . , 360 days to maturity and use the same function to estimate the

VaR at 15 days to maturity. Intuitively speaking, the error involved in the spline-(or

curve-) fitting procedure will ultimately reduce the accuracy of the VaR forecast.

After selecting the most accurate VaR models using constant-maturity series, we

also fit a Hermite spline to the term structure at the 30,60, . . . , 360 days to maturity.

We compare the VaR estimates along the spline with the existing futures contracts’

P&L’s on the appropriate point in the term structure on a daily basis. We apply con-

ventional back testing methods (from Christoffersen (1998)) to evaluate the accuracy

of the VaR predictions (these models are hereafter denoted as CM-spline models).

We then compare this to results obtained from backtesting VaR calculated via the

rollover series.

4.2.6 Model Selection Methods

Here, we outline a rigorous backtesting procedures for the VaR, paying particular

attention to the nature of margin requirements and consistency of the VaR models’

performance. EMIR laws also require exchanges to publish backtesting reports to

ensure their estimations are statistically correct. In particular, Article 49 from EMIR

(European Union (2013)) reads

A CCP shall assess its margin coverage by performing an ex-post com-
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parison of observed outcomes with expected outcomes derived from the use

of margin models. Such backtesting analysis shall be performed each day

in order to evaluate whether there are any testing exceptions to margin

coverage.

The relationship between the use margin models and the VaR is discussed in the next

chapter.

We employ Christoffersen (1998)’s backtesting techniques to evaluate the models as

this is the most prevalent in the literature. As different interval forecasts are suitable

for different risk management purposes, especially for margin requirements, we require

backtesting at two intervals simultaneously according to reasons previously discussed

in section 4.1 and chapter 2.

For a series of VaR estimates on any P&L series length n, we divide the distribution

forecast into 3 sections: 1) ∆Ft,T < −V aR0.99,1
t,T 2) −V aR0.99,1

t,T < ∆Ft,T < V aR0.01,1
t,T

and 3) ∆Ft,T > V aR0.01,1
t,T . Denote the number of observed P&L’s in sections {1, 2, 3}

as n1, n2, n3 respectively and denote any P&L’s in section i = {1, 2, 3} immediately

followed by the P&L in section j = {1, 2, 3} as nij. Also, denote the expected propor-

tion of P&L’s in section i as pi. The unconditional and conditional log-likelihood-ratio

statistics evaluated at time t on ∆Ft,T , V aR0.99,1
t,T and V aR0.01,1

t,T , LRuc
t,T and LRcc

t,T , can

be calculated using the relationships

LRuc
t,T = −2(L(Π0

t,T )− L(Π̂2
t,T )) , (4.7)

LRcc
t,T = −2(L(Π0

t,T )− L(Π̂1
t,T )) , (4.8)

where

L(Π0
t,T ) =

3∑
i=1

log(pi) , (4.9)

L(Π̂1
t,T ) =

3∑
i=1

3∑
j=1

nij log

(
nij
ni

)
, (4.10)

L(Π̂2
t,T ) =

3∑
i=1

ni log
(ni
n

)
, (4.11)

and LRuc
t,T ∼ χ2

3 and LRcc
t,T ∼ χ2

6 respectively as specified in Christoffersen (1998).
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When applying this test, the majority of the literature assumes that the model

which produces the lowest log-likelihood ratios is the most accurate model, although

this is often not carried out in a statistically meaningful way. In fact, as pointed out

by Christoffersen et al. (2001), the log-likelihood ratios are nested. To elaborate, con-

sider a one-tail, unconditional test with LRuc
t,T ∼ χ2

1 as specified in 4.8. The degrees of

freedom of χ2
1 arises from the difference between the degrees of freedom of the distri-

butions of −2L(Π0
t,T ) and −2L(Π̂2

t,T ). That is, the former term has fewer restrictions

than the latter. However, when comparing models we are presented with two log-

likelihood statistics whose distributions contain the same degrees of freedom hence

the corresponding distribution of the log likelihood ratio is unknown. Christoffersen

et al. (2001) outlines the procedures to side step this issue but this is not considered

here as the methods are only applicable to parametric models, while we include a

semi-parametric model.

Instead, we judge the performance of a model based the consistency of its perfor-

mance on a 2500-day rolling-window for the whole term structure. Note that EMIR’s

Article 49 requires backtesting to be carried out each day hence our tests also mimic

what institutions will go through in practice. To our knowledge, this simple, yet

essential extension to the valuation method has not been implemented before in the

literature.

In this out-of-sample analysis, we recalibrate the GARCH parameters on a daily

basis on both P&L and returns over a one-day horizon (h = 1). We do not perform

backtesting for longer time horizons as VaR scaling can be highly inaccurate. In

addition, calculating VaR on data with lower frequency (even for a two-day horizon)

also significantly shortens the out-of-sample period. An accurate examination at 1%

or 99% levels however requires a large windows for a healthy amount of expected

exceedances.

Finally, we further test the models on their ability to predict the entire distribution

via methods introduced by Berkowitz (2001). The intuition here is as follows: denote

the estimate of the probability mass and cumulative density functions as f̂(·) and F̂ (·),
belonging to the process yt is xt =

∫ yt
−∞ f̂(u)du = F̂ (yt); for an accurate forecast, xt

must be iid and uniformly distributed on [0,1]. To carry out this test, we compute

a forecast of the distribution at every time step and make an ex post comparison

to the observed returns and P&L’s. For each period t, we compute the equivalent

xt,T and test whether or not zt,T = Φ−1(xt,T ) ∼ N(0, 1), iid. This can be achieved

using, for example, the Jarque-Bera test for normality, the Durbin-Watson test for

autocorrelation and the White test for Heteroskedasticity. In this study, we follow

Berkowitz (2001)’s procedure which encompasses all of the above via one log-likelihood
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statistic. For this, if zt,T follows

zt,T − µ = ρ(zt−1,T − µ) + ∆Ft,T , (4.12)

for zt,T ∼ N(0, 1), iid , then one requires µ = 0, ρ = 0 and σ2
∆Ft,T

= 1. The log-

likelihood function of this relationship is given by

L∗(µ, σ2
t,T , ρ) =− 1

2
log(2π)− 1

2
log[σ2

t,T/(1− ρ2)]− (z1,T − µ/(1− ρ))2

2σ2
t,T/(1− ρ2)

(4.13)

− T − 1

2
log(2π)− T − 1

2
log(σ2

t,T )−
T∑
t=2

(
(zt,T − µ− ρzt−1,T )2

2σ2
∆Ft,T

)
,

where the independence (to order 1) and conditional log-likelihood ratios can be com-

puted using the relationship

LRin∗
T = −2(logL∗(µ̂, σ̂2

t,T , 0)− logL∗(µ̂, σ̂2
t,T , ρ̂)) ∼ χ2

1 , (4.14)

LRcc∗
T = −2(logL∗(0, 1, 0)− logL∗(µ̂, σ̂2

t,T , ρ̂)) ∼ χ2
2 . (4.15)

We carry out this procedure on the whole 20-year period only.

The evaluation process thus follows:

1. We determine whether to use the returns or P&L series, this first study is

carried out on constant-maturity series only and the models are evaluated via

Christoffersen (1998)’s tests

2. We also determine whether to use constant-maturity or rollover series using

Christoffersen (1998)’s tests, this study is based on the best series obtained in

step 1)

3. We determine the best VaR model based on the results from steps 1) and 2),

using rolling LRcc
t,T statistics

4. We verify the estimation of the models in forecasting the entire distribution

using Berkowitz (2001)’s tests

4.3 Data

We show summary statistics of Brent crude oil futures in detail as the focal point of

our discussion is based on this commodity. We include futures with up to 10 months
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Months to mature µ̂× 100 σ̂ τ̂ κ̂
Return-index

1 0.071 0.020 -0.057 6.082
2 0.066 0.020 -0.043 6.274
3 0.069 0.018 -0.034 6.347
4 0.070 0.018 -0.059 6.311
5 0.068 0.017 -0.068 6.283
6 0.067 0.017 -0.068 6.299
7 0.067 0.016 -0.066 6.299
8 0.066 0.016 -0.063 6.323
9 0.065 0.016 -0.069 6.277
10 0.065 0.016 -0.078 6.218

P&L-index

1 2.026 1.160 -0.357 11.468
2 1.974 1.133 -0.348 11.890
3 2.132 1.113 -0.352 12.244
4 2.225 1.093 -0.360 12.598
5 2.241 1.076 -0.367 12.859
6 2.284 1.060 -0.370 13.101
7 2.311 1.046 -0.368 13.327
8 2.299 1.032 -0.374 13.589
9 2.316 1.021 -0.376 13.757
10 2.340 1.010 -0.382 13.926

Table 4.2.: Summary statistics for first 10-month to mature constant-maturity
P&L and returns Brent crude oil indices. Total number of obser-
vations: 4971. µ̂, σ̂, τ̂ and κ̂ denote the mean, standard deviation,
skewness and excess kurtosis, respectively. Period 18th April 1994
- 30th December 2013.

to maturity. 1 Our data stretches a approximately 20 years, between: April 1994

- December 2013. We have chosen this starting point since Brent crude oil futures

started experiencing higher trading volumes in April 1994.
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Rollover µ̂× 100 σ̂ τ̂ κ̂
Returns

1st 0.079 0.021 -0.020 6.247
2nd 0.066 0.020 -0.050 6.288
3rd 0.067 0.019 -0.015 6.441
4th 0.068 0.018 -0.042 6.388
5th 0.068 0.018 -0.061 6.365
6th 0.067 0.017 -0.065 6.358
7th 0.067 0.017 -0.062 6.340
8th 0.065 0.016 -0.057 6.359
9th 0.064 0.016 -0.063 6.336
10th 0.064 0.016 -0.070 6.259

P&L

1st 2.429 1.162 -0.320 11.374
2nd 1.883 1.144 -0.356 11.679
3rd 1.993 1.120 -0.353 12.095
4th 2.103 1.102 -0.361 12.435
5th 2.167 1.082 -0.364 12.774
6th 2.198 1.065 -0.373 13.025
7th 2.257 1.050 -0.372 13.237
8th 2.213 1.037 -0.374 13.477
9th 2.200 1.024 -0.378 13.731
10th 2.204 1.012 -0.379 13.881

Table 4.3.: Summary statistics for Brent crude oil P&L and returns for the first
10-month to mature rollover series. Total number of observations:
4971. µ̂, σ̂, τ̂ and κ̂ denote the mean, standard deviation, skewness
and excess kurtosis, respectively. Period 18th April 1994 - 30th

December 2013.

71



4. Value-at-Risk for Energy Futures Term Structures Margin Requirements

Months to Mature EWMAt-6 GJRt K-60 OEWMAt-6

P&L Return P&L Return P&L Return P&L Return

LRuc
t,T

1 0.87∗∗ 1.94∗∗ 1.47∗∗ 1.80∗∗ 2.08∗∗ 1.57∗∗ 1.36∗∗ 1.52∗∗

2 1.14∗∗ 0.34∗∗ 1.18∗∗ 2.23∗∗ 1.77∗∗ 2.64∗∗ 0.87∗∗ 0.30∗∗

3 1.09∗∗ 1.00∗∗ 1.69∗∗ 3.30∗∗ 1.22∗∗ 3.04∗∗ 0.87∗∗ 0.73∗∗

4 1.46∗∗ 1.57∗∗ 1.15∗∗ 2.11∗∗ 2.08∗∗ 2.86∗∗ 0.87∗∗ 1.19∗∗

5 1.00∗∗ 2.41∗∗ 2.44∗∗ 1.51∗∗ 3.54∗∗ 2.08∗∗ 0.64∗∗ 1.98∗∗

6 0.87∗∗ 1.98∗∗ 2.23∗∗ 1.70∗∗ 4.08∗∗ 2.81∗∗ 1.00∗∗ 3.01∗∗

7 1.57∗∗ 2.06∗∗ 1.94∗∗ 1.87∗∗ 3.85∗∗ 3.04∗∗ 1.59∗∗ 3.47∗∗

8 1.68∗∗ 2.43∗∗ 2.43∗∗ 0.51∗∗ 1.65∗∗ 3.01∗∗ 1.94∗∗ 4.64∗

9 0.73∗∗ 3.01∗∗ 0.87∗∗ 0.78∗∗ 0.97∗∗ 2.51∗∗ 1.94∗∗ 3.44∗∗

10 1.15∗∗ 3.44∗∗ 1.99∗∗ 1.58∗∗ 1.09∗∗ 1.65∗∗ 1.69∗∗ 4.02∗∗

LRcc
t,T

1 6.00∗∗ 6.56∗∗ 10.21∗∗ 17.94 11.70∗ 8.30∗∗ 6.30∗∗ 7.17∗∗

2 6.88∗∗ 5.68∗∗ 10.50∗∗ 15.02 14.16 12.19∗ 6.00∗∗ 6.00∗∗

3 13.13 5.84∗∗ 10.91∗ 16.57 16.70 13.08 11.96∗ 5.73∗∗

4 12.70 8.66∗∗ 9.22∗∗ 23.34 16.49 12.56∗ 11.96∗ 8.53∗∗

5 8.91∗∗ 9.27∗∗ 14.04 21.29 12.26∗ 9.98∗∗ 8.61∗∗ 8.88∗∗

6 6.17∗∗ 8.50∗∗ 9.71∗∗ 25.38 13.22 9.98∗∗ 6.47∗∗ 11.93∗

7 6.14∗∗ 8.39∗∗ 10.15∗∗ 19.72 10.68∗ 9.99∗∗ 8.72∗∗ 12.27∗

8 7.06∗∗ 11.85∗ 9.16∗∗ 27.34 16.97 10.44∗∗ 10.15∗∗ 13.06
9 6.43∗∗ 11.93∗ 8.49∗∗ 28.07 16.68 10.12∗∗ 10.15∗∗ 9.98∗∗

10 6.89∗∗ 12.44∗ 9.17∗∗ 16.34 16.46 16.34 5.00∗∗ 10.32∗∗

LRin
t,T

1 5.13∗∗ 4.62∗∗ 8.74∗ 16.14 9.62 6.73∗∗ 4.94∗∗ 5.65∗∗

2 5.74∗∗ 5.34∗∗ 9.32∗ 12.79 12.39 9.55 5.13∗∗ 5.70∗∗

3 12.04 4.84∗∗ 9.22∗ 13.27 15.48 10.04 11.09 5.00∗∗

4 11.24 7.09∗∗ 8.07∗ 21.23 14.41 9.70 11.09 7.34∗∗

5 7.91∗ 6.86∗∗ 11.6 19.78 8.72∗ 7.90∗ 7.97∗ 6.90∗∗

6 5.30∗∗ 6.52∗∗ 7.48∗∗ 23.68 9.14∗ 7.17∗∗ 5.47∗∗ 8.92∗

7 4.57∗∗ 6.33∗∗ 8.21∗ 17.85 6.83∗∗ 6.95∗∗ 7.13∗∗ 8.80∗

8 5.38∗∗ 9.42∗ 6.73∗∗ 26.83 15.32 7.43∗∗ 8.21∗ 8.42∗

9 5.70∗∗ 8.92∗ 7.62∗∗ 27.29 15.71 7.61∗∗ 8.21∗ 6.54∗∗

10 5.74∗∗ 9.00∗ 7.18∗∗ 14.76 15.37 14.69 3.31∗∗ 6.30∗∗

Table 4.4.: LRuct,T , LRcct,T and LRint,T statistics comparison between best per-
forming VaR models (the full selection is shown in the Appendix)
at 1% on both tails for the first 10-months-to-mature P&L- and
return-index constant-maturity futures. Out-of-sample test period
July 1999-December 2013.
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Figure 4.1.: 1 - 10 constant-maturity value-index Brent crude oil futures term
structure. Period: 18th April 1994 - 30th December 2013.

4.4 Results and Discussions

4.4.1 Constant-Maturity VaR: Return Versus P&L

We find that the dollar-VaR forecasts based on the return series are sometimes upward

sloping which disobeys the Samuelson effect (see figure 4.2 for an illustration using the

OEWMAt-6 model). Although VaR estimates on returns are downward sloping, once

multiplied by the futures prices which are at times steep in contango due to jumps,

the resulting dollar-VaR term structure is upward sloping. This occurred 36 times

through the 20 years out-of-sample period, most of which are concentrated between

November 2008 to January 2009 due to the world recession in 2008. VaR models

based on returns are not sensitive enough to fully capture this change in dynamics

and hence produce dollar-VaR term structures which are upward sloping. The VaR

calculated using P&L’s on the other hand are always downward sloping, regardless

of the economic conditions. When calculating margin requirements, investors would

expect front month contracts to consistently have higher margin requirements. The

violation of this rule can be costly to investors who rollover from one futures contract

to the next, indicating that they have to raise more capital for a contract which

1We assume that futures further out in the term structure will experience liquidity issues, the
corresponding margin requirement will require a premium since the liquidation period may be
larger. We do not consider such a case in our work, although this is an interesting point for
further study.
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should inherently be less risky. Hence, we focus our analysis on using the P&L series

only. We would also advise exchanges to favour VaR based on the P&L series as the

Samuelson effect is always observable.

From figure 4.2, one may find that VaR based on returns are lower than those

generated by the P&L series. This may be an attractive feature for the exchange,

as lower VaR term structures will allow for lower margins and consequently lower

transaction costs for investors. After further examination on the first to mature series

however (see figure 4.3), we find that this is not always the case. In fact, VaR estimates

from both series are roughly on par with each other throughout the sample. We find

that the VaR generated using the P&L is below its return counterpart 66% of the

time. In general, one can be larger than the other for 3-4 months, however these

instances are random.

To examine the tests in more detail, we analyse Table 4.4 which shows whole-sample

LRuc
t,T , LRcc

t,T , LRin
t,T based on Christoffersen (1998)’s tests for the 99% and 1%, two-tail

coverage level on both tails for top-performing models. There is no clear relationship

between the log-likelihood ratios and time to maturity, confirming that one cannot

generalise results used for the 1-month constant-maturity series on the rest of the term

structure. Note that for parametric VaR models, VaR of individual futures series tend

to produce lower LRuc
t,T and LRcc

t,T than their orthogonal counterparts.2 This is not

surprising given that orthogonalisation require estimation of the covariance matrix

using a rolling-window which may not be reactive to changing market conditions and

hence hinder the performance of the VaR model. The advantage of using orthogonal

VaR models is that they are less affected by noise along the term structure and

produces smooth-decaying VaR estimates. Although not shown in Table 4.4, at times,

performance of the model is more uniform across the term structure (see A.8 and A.9

from the Appendix).

We find that only the EWMAt-6 model produces LRuc
t,T and LRcc

t,T statistics which

are below the critical χ2
2 and χ2

6 statistics for both returns and P&L. Note that the

GARCH models (with both t and normal distribution innovations) considered in this

case tend to perform badly throughout except for the GJRt model estimated on

the P&L series which too produces coverage testing statistics under the 95% critical

statistic with the exception of the 5-month series. As our work employ GARCH

re-calibration on a daily basis, unlike most other works which hold the parameters

constant, it is possible that the inaccuracy of the GARCH models in VaR estimation

is caused by parameter uncertainty. The high accuracy of the GJRt model using

2The full set of results for all models are presented in the Appendix
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P&L’s may only be specific to this estimation window. Robustness tests are further

discussed in the section 4.4.3.

From these tests, in support of the literature (see Su et al. (2011) for example), we

find strong evidence against assuming the distributions are normal as this always un-

derestimates the VaR. We find that, with the exception of the GJR model on the 2nd-

and 3rd-to-mature series, all four models which assume normal distributions generate

inaccurate forecasts at all points along the term structure. Comparing these mod-

els’ performances from Tables A.4-A.5 to A.2-A.3, we find VaR estimates from both

returns and P&L series for non-GARCH models produce LRuc
t,T , and LRcc

t,T statistics

which are roughly on par with each other.
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4.4.2 Constant-Maturity Versus Rollover VaR

Table 4.5 shows LRuc
t,T , LRcc

t,T and LRin
t,T calculated using the CM-spline method for

constant-maturity futures and rollover futures for the EWMAt-6 and OEWMAt-6

models. The log-likelihood ratios produced by the CM-spline methods are higher than

those produced when estimating the VaR using the rollover series, where the LRuc
t,T

statistics for both models mostly confirm a rejection of the null hypothesis of a good

model at 95% for the entire term structure (with the exception of the 7th-to-mature

series for the EWMAt-6 model using the CM-spline method). When comparing these

results with Tables A.4 and A.5, we also observe that the VaR estimation on constant-

maturity P&L’s are almost always better than those on the rollover series. It is hence

clear that the VaR estimated using the rollover series is superior to those estimated

via constant-maturity futures for the purposes of margin requirements. This result

however is not generalisable to other risk management practices such as portfolio

management, as is demonstrated in Nomikos and Pouliasis (2014) who assumes that

investors take positions only on constant-maturity futures.

Thus far, we find that the OEWMAt-6 is the best model for margin requirement

purposes given this is the only model which can produce accurate VaR estimates for

the most number of points along the term structure. We apply further robustness

tests on some of the best performing models to further search for the most suitable

VaR model in this case.

4.4.3 Rolling Christoffersen (1998) Log-Likelihood Ratio Statistics

First we observe that the rolling LRin
t,T statistic is affected by noise. As exceedances

enter the estimation window, the statistic jumps up by roughly 10 points (see Fig-

ure 4.4). We find that the jump occurs from the counting convention according to

the Christoffersen (1998) methods. Consider a one-tail backtesting scenario with n1

number of exceedances, n11 exceedance clusters, n of observations with the last P&L

at time t. If the last P&L value is a VaR exceedance, the counting convention auto-

matically assumes that the P&L at time t + 1 will not be an exceedance. In other

words, the correct specification for this scenario would be to have n+ 1 observations,

not n, while all other inputs remain the same. It is in this bias that one witnesses an

augmentation in the LRin
t,T statistic.

To avoid this problem, one could simply readjust the observations to n+ 1 instead

of n in these instances. However, when examining the LRcc
t,T statistics on a rolling

window basis, the window lengths would vary between n and n+2 (should exceedances
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EWMAt-6 OEWMAt-6

Rollover series CM-spline Rollover CM-spline Rollover

LRuc
t,T

1st 9.25 2.74∗∗ 10.14 2.81∗∗

2nd 9.40 1.56∗∗ 11.39 2.60∗∗

3rd 8.54 1.98∗∗ 10.28 3.82∗∗

4th 11.65 3.89∗∗ 11.19 4.91∗

5th 9.60 4.31∗ 10.97 4.91∗

6th 8.55 5.27∗ 10.05 6.12
7th 6.75∗ 3.20∗∗ 6.75∗ 4.91∗∗

8th 6.24 1.91∗∗ 6.71∗ 3.52∗∗

9th 9.40 3.71∗∗ 8.76 4.91∗∗

10th 6.45 4.91∗ 7.44 4.78∗

LRcc
t,T

1st 12.68 5.06∗∗ 12.28∗ 5.74∗∗

2nd 12.59 4.19∗∗ 14.40 7.10∗∗

3rd 12.55∗ 5.27∗∗ 13.39 6.08∗∗

4th 17.55 12.39∗ 16.78 12.30∗

5th 15.27 12.62 18.13 12.30∗

6th 13.29 13.23 15.47 13.19
7th 11.30∗ 8.50∗∗ 12.19∗ 12.19∗

8th 11.14∗ 8.01∗∗ 12.22∗ 12.22∗

9th 20.46 21.85 15.15 15.15
10th 15.50 10.58∗∗ 12.53∗∗ 12.53∗

LRin
t,T

1st 3.43∗∗ 2.32∗∗ 2.14∗∗ 2.93∗∗

2nd 3.19∗∗ 2.63∗∗ 3.01∗∗ 4.50∗∗

3rd 4.01∗∗ 3.29∗∗ 3.11∗∗ 2.26∗∗

4th 5.09∗∗ 8.50∗ 5.59∗∗ 7.39∗

5th 5.97∗∗ 8.31∗ 7.16∗∗ 7.39∗

6th 4.74∗∗ 7.96∗ 5.42∗∗ 7.28∗

7th 4.55∗∗ 5.30∗∗ 3.90∗∗ 8.31∗

8th 4.90∗∗ 6.10∗∗ 5.22∗∗ 8.70
9th 11.06 18.14 7.94∗ 10.24
10th 9.05∗ 5.67∗∗ 2.69∗∗ 7.75∗

Table 4.5.: LRuct,T , LRcct,T and LRint,T statistics using the CM-spline method
and rollover futures P&L series. Models considered EWMAt-6 and
OEWMAt-12. Term structure length: constant maturity futures:
1 to 10 months to maturity; rollover - 1st to 10th rollover series.
Out-of-sample period: July 1999 - December 2013.
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Figure 4.3.: One-day, 99% OEWMAt-6 dollar-VaR (equivalent to the 1% for
a symmetric VaR model) on the 1-month constant-maturity re-
turn series multiplied by the value-index futures price (green) and
that of the 1-month constant-maturity P&L series (blue). Period:
April 1999 to December 2013.

appear both at the beginning and at the end of the window) which does not allow for

a controlled testing environment. Hence, we use a different approach in avoiding this

problem where should exceedances appear at the start or the end of the window, we

take the most recent log-likelihood ratios where this is not the case, i.e. should LRcc
t,T

be affected by starting/ending exceedances, we take LRcc
t−1,T , LRuc

t−1,T and LRin
t−1,T

instead and should this be affected also, then we take LRcc
t−2,T , LRuc

t−2,T , LRin
t−2,T and

so on.

Figure 4.5 shows rolling LRuc
t,T , LRcc

t,T and LRin
t,T of the top performing models for the

first-to-mature P&L series, cleaned as aforementioned. From the selection of models

considered, we find 4 models which are consistently accurate. These are EWMAt-6,

GJRt, K-60 and OEWMAt-6 (see figure 4.5 for more details). We observe that LRuc
t,T

statistics display step functions where jumps occur when exceedances enter and leave

the test window. Now we examine rollover LRcc
t,T statistics for the term structure,

we find that the OEWMAt-6 model remains the best model (see figure 4.6, all other

models’ performance can be found in the Appendix) as this is accurate for over 94% of

all instances along the term structure and out-of-sample periods, as the log-likelihood

ratios are rolled over. All other rollover LRcc
t,T surfaces and the number of instances

above the 95%, χ2
6 critical statistic can be found on Figure A.1 and Table A.1 the

Appendix.
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Figure 4.4.: LRint,T statistics based for the first-to-mature Brent crude oil P&L
series, with corresponding OEWMAt-6 VaR and P&L. Period:
23rd January 2009 - 30th December 2013.

4.4.4 Robustness Test: Berkowitz (2001)

Figures 4.6 and 4.7 shows LRcc∗
T , LRin∗

T based on Berkowitz (2001) coverage tests.

We find that for all instances along the term structure, none of the models are able

to forecast the entire distribution of futures P&L well. To our surprise, the Kernel-

fitted distribution forecast models performed badly, although these are more flexible

in terms of the shape of the probability distribution functions. We observe that the

kernel-fitted VaR model with a 120-days rolling window performed worse than that of

the 60-day rolling window, indicating that even with a short window of 120-days, the

sensitivity to the market movements is insufficient, placing too much importance to

data too far in the past. The main source of error in this case is possibly due to the fact

that each window does not contain enough data to produce a well-defined distribution.

This is all the more surprising given that the Kernel-VaR models performed well on

the Christoffersen (1998) coverage tests.

We also observe that most models’ performances tend to degrade with increasing

time-to-maturity. This is perhaps due to increasing excess kurtosis along the P&L

term structure. Note that at ν = 6, the excess kurtosis is 3, which compared to the

P&L’s summary statistics, with excess kurtosis roughly equal to 13, is inadequate.

Hence as the excess kurtosis increases beyond this point, so too does the inaccuracy of

the models. This is confirmed by LRcc∗
T statistics of the GJR-t model where ν is now
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Figure 4.5.: Top: rolling LRuct,T , middle: LRcct,T , bottom: rolling LRint,T for top
performing models on the first-to-mature P&L series (EWMAt-6,
GJRt, K-60,k-120 and OEWMAt-6). Coverage test levels at 0.01
and 0.99 simultaneously. Horizontal lines indicate the critical 95%
χ2

2, χ2
6, χ2

4 (from top to bottom). Includes 1274 sets of 2500 days
out-of-sample periods: rolling from 25th March 1999 -26th January
2009 to 8th April 2004 - 26th December 2013.
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Figure 4.6.: Rolling LRcct,T statistics for the same model. The transparent

surface represents the 95% critical statistics for χ2
6 distributions

for the conditional test.
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Rollover series EWMAt-6 EWMAt-12 EWMA GJRt GJR

LRcc∗
T

1st 15.68 14.48 28.97 51.18 19.10
2nd 15.05 13.93 27.03 45.83 19.17
3rd 14.04 12.61 26.65 47.08 17.31
4th 16.20 14.45 28.70 49.17 20.39
5th 15.47 13.86 28.22 49.71 18.90
6th 15.86 14.35 28.79 42.38 18.68
7th 17.85 16.27 30.41 46.64 19.74
8th 21.02 19.39 32.81 45.30 21.77
9th 21.71 19.79 33.42 49.28 21.16
10th 25.31 23.27 37.05 52.22 26.40

LRin∗
T

1st 5.02 4.77 4.28 5.79 4.11
2nd 5.65 5.28 4.60 5.98 4.24
3rd 4.97 4.60 3.89 5.35 3.95
4th 6.62 6.15 5.24 6.93 5.35
5th 6.58 6.13 5.26 6.85 5.35
6th 7.06 6.62 5.75 8.08 5.70
7th 9.07 8.56 7.53 9.33 7.29
8th 12.08 11.46 10.17 11.74 9.72
9th 12.92 12.23 10.76 13.171 10.38
10th 16.22 15.54 14.02 15.92 14.38

Table 4.6.: Whole-sample, two-tailed, 1% LRcc∗T , LRin∗T based on Berkowitz
(2001) coverage tests on the Brent futures P&L series for the first
10-to-mature series. ∗∗ and ∗ denotes failure to reject the null hy-
pothesis that the VaR model is accurate at 90% and 95% respec-
tively. Out-of-sample period: 29th March 1999 - 30th December
2013. Starting and final P&L values are not exceedances of the
VaR. Models considered: EWMAt-6, EWMAt-12, EWMA, GJRt,
GJR.
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Rollover series K-60 K-120 OEWMAt-6 OEWMAt-12 OEWMA OGJR

LRcc∗
T

1st 711.39 780.50 24.67 42.19 13.89 10.98
2nd 489.24 540.05 18.19 31.72 19.12 15.18
3rd 327.08 361.53 14.10 24.26 25.39 19.87
4th 226.65 244.65 14.52 22.12 33.70 27.75
5th 142.25 155.79 13.38 19.82 37.27 32.65
6th 83.90 95.74 13.83 19.80 39.35 36.03
7th 51.35 60.12 15.93 21.75 41.46 39.27
8th 32.43 39.61 19.37 25.73 41.90 42.03
9th 23.51 28.30 20.23 27.05 40.48 41.78
10th 26.09 28.36 24.32 31.71 42.85 45.37

LRin∗
T

1st 7.75 8.86 4.77 4.52 4.11 5.14
2nd 10.41 11.43 5.30 4.85 4.20 5.09
3rd 10.47 10.90 4.69 4.22 3.54∗ 4.20
4th 14.26 14.76 6.52 5.96 5.10 6.08
5th 14.69 15.58 6.68 6.14 5.30 6.66
6th 15.98 17.27 7.41 6.90 6.09 7.78
7th 18.46 19.70 9.45 8.90 7.99 10.07
8th 21.91 23.50 12.47 11.81 10.68 13.48
9th 22.15 23.49 13.13 12.34 11.02 14.13
10th 25.75 28.13 16.64 15.91 14.62 18.32

Table 4.7.: Whole-sample LRcc∗T , LRin∗T based on Berkowitz (2001) coverage
tests on the Brent futures P&L series for the first 10-to-mature
series. ∗∗ and ∗ denotes failure to reject the null hypothesis that the
VaR model is accurate at 90% and 95% respectively. Out-of-sample
period: 29th March 1999 - 30th December 2013. Starting and final
P&L values are not exceedances of the VaR. Models considered:
K-60, K-120, OEWMAt-6, OEWMAt-12, OEWMA, OGJR.
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calibrated. Although the performance of this model is much worse than the EWMA

models, the performance is much more uniform along the term structure.

Perhaps more complex models, such as regime-switching GARCH will flourish when

forecasting the entire distribution. For the purpose of margin requirement however,

the simple OEWMAt-6 model is adequate and is thus selected for further analysis in

the next chapter.

4.5 Conclusions

In this study, we have uncovered a number of issues for testing VaR using the tra-

ditional Christoffersen (1998) coverage tests. First, we support the use of the P&L

series over returns; although VaR performance between the two tend to be similar, as

P&L-based VaR consistently produces downward-sloping dollar-VaR series, margins

based on such a model would also be downward sloping. Investors will not have to

pay more for contracts which should inherently be less volatile. Second, although the

use of constant-maturity data has been gaining momentum in the VaR literature (see

Nomikos and Pouliasis (2014) for example), we find that this is not appropriate for

margin requirements given that the extrapolation of the VaR term structure hinders

the accuracy of the forecast.

Of the 11 VaR models considered, for Brent crude oil futures rollover P&L’s, we find

the OEWMAt-6 to be the best model, where it produces LRcc
t,T and LRuc

t,T statistics

on the 2-tail estimation which fails to reject the null hypothesis of an accurate model

at 95% over 94% of all instances. This model is hence selected for setting margin

requirements in the next chapter.

Finally, we would like to raise attention to the current trend of VaR modelling,

especially in the growing complexity of the models presented in current literature.

We have thoroughly shown, with results more robust than any current work known,

that the simplest VaR models perform just as well, if not better.
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5. Optimality Criteria and Rules for

Brent Crude Oil Futures Margin

Requirements

5.1 Introduction

The introduction of EMIR (European Union (2013)) limitations to margin require-

ments for clearing houses in 2012 raises concerns over the coverage levels and stability

of margin requirements. The most prevalent method for setting margin requirement

in the industry - Standard Portfolio Analysis of Risk (SPAN) produces margins whose

coverage levels are inadequate. The literature on margin requirements is extensive,

we discover two main branches including: the efficient contract design, pioneered

by Brennan (1986) and prudential margin requirements, pioneered by Booth et al.

(1997). Although their intuitions vary, their objectives are essentially the same - to

determine the ideal the coverage levels for margin requirements. We find however,

that the coverage level itself is volatile. A margin that is exactly equal to such a level

is inapplicable in practice as investors would face inappropriately high risks of margin

calls. Both branches do not address the need for stable margin requirements which is

one of the focal points of EMIR.

Our work is related to a much smaller branch of the literature, which concentrates

on formulating optimal decision processes to produce stable margin requirements. The

most closely related work, Lam et al. (2010) presents methods which are outdated and

requires further improvements to allow for margins which adhere to the news laws.

Our main contributions in this chapter are: 1) we introduce optimality criteria which

concentrate on achieving stable margin requirements following EMIR’s Article 28; 2)

using simple parameterisation, we mathematically describe how clearing houses can

change margins and 3) we provide methods for assessing margin stability.

The rest of the chapter is laid out as follows: first, we present the methodology which

includes the new criteria, rules for how margins can change with time, optimisation
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methods and out-of-sample testing procedures. We then show the calibration results

and discuss each method.

5.2 Methodology

We first argue what the optimal margin level should be and formulate criteria sur-

rounding our reasoning. We then derive heuristic rules to fit the criteria introduced.

Our arguments are developed not only after we examine the literature but also through

observing historical Brent crude oil margins issued by the Intercontinental Exchange

(ICE). Hence, we first present and analyse SPAN margins, which eventually leads to

the rationales for the optimality criteria and margin rules.

5.2.1 Data: The SPAN Term Structure

Summary statistics of Brent crude oil futures used in this chapter can be found in Ta-

ble 4.3 in chapter 4. Value-at-Risk (VaR) and margin estimations do not take account

of Brent futures P&L spikes on the 5th June 2011 and 29th June 2012 as these were

caused by rare events which only affected the market temporarily, see http://www.

reuters.com/article/2012/06/29/us-markets-oil-idUSBRE83H17O20120629 and

http://www.reuters.com/article/2011/05/05/us-markets-oil-idUSTRE7446BH20110505

for news stories linking to each events. SPAN Brent crude oil initial margins for mem-

bers/hedgers are computed using the SPAN software, hereafter denoted MS
t,T . The

corresponding margin estimates for the first 10-to-mature series are shown below:

5.2.2 Margin Optimality Criteria and Motivations

First, consider EMIR’s Article 24 which identifies the required coverage level of the

margins:

For the calculation of initial margins the CCP shall at least respect the fol-

lowing confidence intervals: (a) for OTC derivatives, 99,5 %;

(b) for financial instruments other than OTC derivatives, 99 %.

where the time horizon is defined in Article 26:

A CCP shall define the time horizons for the liquidation period taking into

account the characteristics of the financial instrument cleared, the market

where it is traded, and the period for the calculation and collection of the

margins. These liquidation periods shall be at least:
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Figure 5.1.: The first 10-to-mature SPAN Brent crude oil futures initial mar-
gins for members/hedgers in USD per barrel. Period: 1st July
2009 - 30th December 2013.

(a) five business days for OTC derivatives;

(b) two business days for financial instruments other than OTC deriva-

tives.

Brent crude oil futures is an exchange-traded product with high trading volume.

The required liquidation period and coverage level according to this Article is the

two-day, 99% horizon. We contemplate, however that this may be too high due to

two reasons.

First, taking a two-day time horizon would require forecasting two days in advance

which can be inaccurate given that the one-day VaR needs to be scaled to a two-day

VaR. We do not encourage finding the VaR on data with greater horizons as this can

greatly shortens the out of sample period, even for a two-day horizon.1 Second, ICE’s

margin requirements have historically been on par with the one-day VaR but fails to

cover V aR0.99,2
t,T the majority of the time. To confirm this, we examine the historical

SPAN margins, the one-day and two-day 99% VaR of the front-month Brent crude

oil futures using the Orthogonal EWMA method, assuming student-t distribution

innovations with 6 degrees of freedom (hereafter denoted MS
t,T , V aR0.99,1

t,T and V aR0.99,2
t,T

for a futures contract expiring at time T respectively).2, see Figure 5.2. Exchanges

1The one-day ahead VaR also has a concise formulation, while the two-day forecast however is
harder to obtain.

2Following the results from chapter 4, we calculate the margin requirements using the Orthogonal
EWMAt-6 VaR and decay factor 0.94 based on the rollover P&L series.
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(and its clearing houses within) rely on high trading volume to attract profit and

competition on costs is growing as more exchanges merge into huge conglomerates

- reducing bid-ask spreads and margins is more important today than ever before.

Such strain of competition (see Abruzzo and Park (2013)) has caused the CME to

calculate VaR using roughly the same time horizon. While Dodd-Frank regulations

do not prohibit the CME from using a one-day VaR, should ICE enforce the two-

day VaR recommended in Article 26, they would fail to generate enough profit. One

solution to this is to encourage international regulating bodies to work together when

imposing margin requirements. Santos and Scheinkman (2001) suggests competition

between exchanges lead to lower margin levels which can help sustain fruitful market

liquidity. Providing a platform for exchange competition would be beneficial to the

financial markets worldwide. Another solution is to follow Duffie and Zhu (2011)’s

suggestions of unionising central clearing for different classes of derivatives to reduce

counterparty risk. The element of competition is completely removed hence allowing

clearing houses to survive under different regulations. Such regulatory issues present

another interesting case for discussion. In this study, we assume that there exist

an environment suitable for competition, where EMIR has allowed for the margin

to cover at least V aR0.99,1
t,T . We base our optimality criteria (and subsequent margin

rules) on V aR0.99,1
t,T .

We now address Articles relating to margin stability. First, it is important to

distinguish between margins for leveraging stocks and futures as these may have dif-

ferent effects on procyclicality. For stocks, the margin account is composed purely

of the investor’s equity/debt levels; both the initial and maintenance margins are set

as gearing ratios denominated in percentages. Historically, stock margin levels have

fluctuated wildly on a year-to-year basis; changing to/from 50 - 100% at times, see

Largay and West (1973) and Eckardt and Rogoff (1976) for example. Such extreme

movements are not possible for futures margins, since these are obligatory, and mar-

ket volatility is hence presumed to be more sensitive to changes in margin. While

regulations pay particular attention to limiting procyclicality, the effects of changes

in margin requirements on subsequent market conditions is difficult to analyse be-

cause one requires a large sample of margins, which is hard to find. For works which

suggest margin changes are procyclical see Telser (1981), Hsieh and Miller (1990), Ku-

piec (1993).3 Hardouvelis (1990) is the only work to find margins are countercyclical

while others such as Kumar et al. (1991), Day and Lewis (1997) and Phylaktis and

Aristidou (2013) finds margin changes do not exacerbate market volatility. However,

3Defined differently for short and long positions. Note that when holding a short position, the
investor must leverage their position and is hence always susceptible to margin calls.
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Figure 5.2.: Margin requirements, V aR0.99,1
t,T , V aR0.99,2

t,T and MS
t,T of first-to-

mature Brent crude oil futures. Period 28th January 2009 to 26th

December 2013. VaR calculation method: Orthogonal EWMA,
using student-t distribution innovations with 6 degrees of freedom.

it is highly likely that such margin changes were carried out cautiously and have not

significantly contributed to procyclicality; whether or not these were set by the Feds

or the exchanges themselves.

In this study, we concentrate on futures margining. Let us assume the simplest

setting for the margin requirements, i.e. equal to V aR0.99,1
t,T . Here, the margin would

change daily as V aR0.99,1
t,T does, which is not applicable in practice. While daily mar-

gins would allow for smaller step changes and better reflections of current market

volatility, we find two arguments against such a practice. First, exchanges announce

margin changes 2 or 3 business days in advance which allows enough time for investors

to raise the needed capital. Should the margin change on a daily basis, it would not

reflect current market volatility but that from 2 or 3 days in the past. Second, as

found in Brunnermeier and Pedersen (2009), where stock margins are set equal to a

pseudo-ARCH-type VaR, increases in margins can cause increases in volatility which

in turn increases margins further. The series of knock-on effects can cause liquidity

to completely dry out.4 We discourage implementing daily margin changes for these

4We also find that much of the asset-pricing literature employs the margin requirement to explain
investors behaviour. Garleanu and Pedersen (2011) for example incorporate the margin to the
CAPM to explain asset returns behaviour. By describing the margin requirement in a practical

90



5. Optimality Criteria and Rules for Brent Crude Oil Futures Margin Requirements

reasons.

We observe that from the investor’s point of view, margin falls are always beneficial

while margin rises can be detrimental. To understand this, consider a scenario where

an investor who is long 1 futures contract with initial/maintenance margins 100/90

USD. Say the exchange announces that initial/maintenance margin will decrease to

90/80 USD in the next 3 business days. The investor now has a choice of:

1. Do nothing

2. Wait 3 days, offset and immediately retake the position to obtain 10 USD back

from the margin for reinvestment

If the reinvestment rate overrides the rebalancing costs, then the latter is preferable

and will always be carried out by the investor; a margin decrease is thus always

beneficial to investors. Now consider a margin increase from 100/90 USD to 110/100

USD. The choices now comprise of:

1. Do nothing

2. Raise capital to cover a possible margin call

3. Clear positions

Although it is clear that strategies (2) and (3) are preferable in reducing the risk of

margin call, it is conceivable that investors may adopt strategy (1) due to higher risk

tolerance. In other words, should margins change on a daily basis -as V aR0.99,1
t,T does-

the investor would always face the risk of either: not knowing how much capital to

raise for the next increase in margin; or bear the margin call risk which comprises of

both the volatility of the futures and the volatility of the VaR.5 It is clear that, variable

margins lead to higher the risk faced by investors. Therefore, it is not surprising that

regulators prefer stable margins, as a significant rise can cause investors to either pull

out of the market or borrow more cash on a mass scale; both of which may lead to

procyclicality. This asymmetry is also reflected in EMIR’s Article 28:

1. A CCP shall ensure that its policy for selecting and revising the confi-

dence interval, the liquidation period and the lookback period deliver for-

ward looking, stable and prudent margin requirements that limit procycli-

cality to the extent that the soundness and financial security of the CCP

is not negatively affected. This shall include avoiding when possible dis-

ruptive or big step changes in margin requirements and establishing trans-

parent and predictable procedures for adjusting margin requirements in re-

way, our model can enhance the factualness of such works.
5Also discussed in chapter 3
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sponse to changing market conditions. In doing so, the CCP shall employ

at least one of the following options:

(a) applying a margin buffer at least equal to 25 % of the calculated margins

which it allows to be temporarily exhausted in periods where calculated

margin requirements are rising significantly;

(b) assigning at least 25 % weight to stressed observations in the lookback

period calculated in accordance with Article 26;

(c) ensuring that its margin requirements are not lower than those that

would be calculated using volatility estimated over a 10 year historical look-

back period.

Options b) and c) are not being considered in this study although this provides an

interesting case for further investigation. Article 28 entails at least 1.25 times the

margin level which can be exhausted to avoid significant margin rises, not falls. Con-

trary to this, we argue that margin falls should also be controlled. Our intuition is as

follows:

Referring to Figure 5.2, we observe that V aR0.99,1
t,T rises and falls in cycles, which

may be due to a number of reasons: Brent crude oil volatility is subjected to eco-

nomic cycles, seasonal demand patterns and the Samuelson effect; crude oil prices

are sensitive to political unrest throughout the world, hence P&L spikes are common.

Should margins decrease too quickly in less volatile periods, a possible proceeding

jump in the volatility can cause a large step in the margin to follow. In other words,

uncontrolled margin falls may lead to larger, more frequent margin rises. This can

also help avoid sudden increases in trading volume which can provoke procyclicality,

see Kupiec and Sharpe (1991) and Coen-Pirani (2005) who also find decreases in stock

margins leads to increases in trading volume. Hence, we build our criteria to penalise

both directions of margin movements.

For a margin Mt,T corresponding to the futures contract Ft,T , the most desirable

margin movement should comprise of the smallest changes possible whose occurrences

are as infrequent as possible. The corresponding criteria are hence 1) to minimise the

the average margin step size throughout the term structure

MSt =
1

nTns

nT∑
k=1

t∑
i=t−n+1

|∆Mi,Tk | , (5.1)

where ns is the number of margin changes over the time period t − n + 1 to t , nT

is the number of futures series in the term structure and 2) to maximise the average

92



5. Optimality Criteria and Rules for Brent Crude Oil Futures Margin Requirements

time between margin changes throughout the term structure

MTt =
1

nT (ns − 1)

nT∑
k=1

ns∑
j=2

t∗j,Tk − t
∗
j−1,Tk

, (5.2)

where

t∗j,T =

t, for |∆Mt,T | > 0

0 otherwise .
(5.3)

Purely controlling for the above criteria however would generate margins which are as

high as possible at all times. Although this may be prudent, this is not implementable

as exchanges compete with each other and prefer low margin levels to reduce invest-

ment costs for investors.6 Hence, we introduce one further criterion to keep the margin

level at bay.

Assuming that one adds on the 25% buffer and hence the margin is now set equal to

1.25V aR0.99,1
t,T . Margins above/below this value would indicate that the buffer is being

added/exhausted. The optimal margin level, ignoring stability is when the buffer is

not utilised at all, i.e. equal to 1.25V aR0.99,1
t,T . Hence, our final criterion is to minimise

absolute margin deviations from this level,

MDt =
1

nTn

nT∑
k=1

t∑
i=t−n+1

|Mi,T − 1.25V aR0.99,1
i,T | , (5.4)

where n is the number of observations in the estimation window. This should allow

margins to fluctuate within the vicinity of 1.25V aR0.99,1
t,T . We also find that the first-to-

mature SPAN series is roughly on par with this level with MDt = 0.840 USD/barrel.

5.2.3 Margin Rules

We formulate the exchange’s decisions when changing margin requirements using mar-

gin rules. From hereafter, we present the methods for computing margin requirements

based on the long position VaR only; all methods are also applicable to the short po-

sition margin which is based on the short position VaR. As VaR is always expressed

as a positive number, we express the α% VaR as the absolute value of the α% quantile

of the P&L distribution. The 99% short position margin is hence analogous to the

long position |V aR0.01,1
t,T | (see more details in chapter 3). We consider 4 different rules

6We previously discussed possible extension from previous literature in chapter 2, namely Lam
et al. (2004) who addresses the same problem. We find that their solution is no longer applicable
as this will produce margin levels that are too low comparative to V aR0.99,1

t,T .
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in total, presented here in increasing order of flexibility.

The first rule is where the time t margin requirement for a futures contract with

maturity T is set equal to 1.25 times V aR0.99,1
t,T (hereafter denoted 1.25V aR0.99,1

t,T )

following EMIR’s Article 28, option a). Note that, this model produces daily margin

changes, i.e. the maximum frequency and the 25% margin buffer is never exhausted.

Next, we alleviate the restriction on the margin buffer so that it can be added/removed

to maintain stability. Of course, we restrict the margin to remain above V aR0.99,1
t,T

following our suggestions for amendments to EMIR’s Article 25. Here, the margin

remains at the same level, until it breaches ±15% of 1.25V aR0.99,1
t,T , where it re-adjusts

to 1.25V aR0.99,1
t,T . The ±15% band is also found in Chiu et al. (2006), and the corre-

sponding margin MC
t,T can be described by the relationship

MC
t,T =

MC
t−1,T , for 1.1V aR0.99,1

t,T < MC
t−1,T < 1.4V aR0.99,1

t,T

1.25V aR0.99,1
t,T otherwise .

(5.5)

We include this model as ad hoc parameters may avoid parameter uncertainty and

generate more stable margin requirements in an out-of-sample test. In reality the

margin may start at any point between 1.1V aR0.99,1
t,T and 1.4V aR0.99,1

t,T . In this study,

we apply MC
t,T = 1.25V aR0.99,1

t,T as a starting point for all in-sample period calibrations.

For the third rule, we further alleviate the above by allowing the margin thresholds

to be calibrated according to the criteria introduced in section 5.2.2. The idea of

calibrating margin thresholds is also seen in Lam et al. (2010). The margin under

this rule, ML
t,T follows:

ML
t,T =

ML
t−1,T , for (1.25− βL1 )V aR0.99,1

t,T < ML
t−1,T < V aR0.99,1

t,T (1.25 + βL2 )

1.25V aR0.99,1
t,T otherwise ,

(5.6)

where βL1 ,βL2 are parameters to be estimated. Unlike Lam et al. (2010), we also allow

the thresholds above and below the margin to take different values.

We introduce one further rule, which does not build upon any previous models.

Our aim is to generate margins which can reduce cautiously so it is unlikely to be

affected by V aR0.99,1
t,T jumps. Here, the margin M∗

t,T for a futures contract expiring at
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time T can be described by the relationship

M∗
t,T =


M∗

t−1,T , for V aR0.99,1
t,T < M∗

t−1,T < V aR0.99,1
t,T β1 ,

V aR0.99,1
t,T (1 + β2) for M∗

t−1,T < V aR0.99,1
t,T

V aR0.99,1
t,T (β1 − β2) otherwise .

(5.7)

The second line of the rule represents downward movements while the third line

represents the upward movements. The intuition behind this rule is as follows

• For an upward movement:

1. The margin increases when it is below V aR0.99,1
t,T

2. β2 governs how much further above the V aR0.99,1
t,T the margin increases to

• For a downward movement

1. The margin decreases when it is above β1V aR
0.99,1
t,T

2. β2 governs how much further below β1V aR
0.99,1
t,T the margin decreases to

In other words, low β2 allows for the margin to increase and decrease cautiously while

β1 governs the upper bound to which the margin is allowed to rise above V aR0.99,1
t,T .

It is not surprising to find that historically, MS
t,T also operate in a similar manner. In

fact, MS
t,T have been decreasing in small steps from June 2011 to May 2013.

5.2.4 Margin Term Structures

Here we present detailed analysis of SPAN, paying particular attention to its move-

ments along the term structure. This ultimately leads to the rationale on how margins

should decrease along the term structure. First, we observe that as of July 2011, MS
t,T

decreases every two contracts. By utilising the OEWMAt-6 method on the P&L’s

(also defined in the previous chapter), we achieve a smooth-decaying term structure

of V aR0.99,1
t,T . In this case, V aR0.99,1

t,T1
> V aR0.99,1

t,T2
for T1 < T2, hence setting margins

of a futures contract Mt,T2 as high as Mt,T1 will always allow for adequate coverage

of the 99% movement interval (see Figure 5.3 for snapshots of the SPAN margin and

V aR0.99,1
t,T1

term structures). Hereafter, we denote Ti as the time to maturity of the

ith-to-mature futures.

We observe that MS
t,Ti

, for i = 2 displays step patterns from June 2011 onwards

(see Figure 5.5). This is a result of SPAN margins increasing at roughly 45-50 days to

expiry (see Figure 5.4 for some examples). As Brent crude oil futures contracts expire

monthly, i.e. the rollover occurs roughly every 30 days, the first-to-mature series’s

time to expiry is always between 30 and 0 days and is therefore not affected. The
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Figure 5.3.: Snapshots of the margin requirements and V aR0.99,1
t,T of Brent

crude oil futures term structure. Period 28th January 2009 to 26th

December 2013. VaR calculation method: Orthogonal EWMA,
using student-t distribution innovations with 6 degrees of free-
dom.

second-to-mature series on the other hand has maturities between 60 and 30 days.

As the contract’s time to maturity decreases, it experiences a rise in the margin at

roughly 45-50 days to expiry. Once the contract reaches 30 days to expiry, the series

rolls over to the next contract and the margin decreases down the step again. This

pattern produces increasing and decreasing patterns, recurring at every 45-50 days to

maturity up to 300 days to expiry. Consequently, we observe similar behaviour for

MS
t,Ti

, for i = 4, 6, 8.

It is unlikely that investors would take positions in such a contract given the fluc-

tuation in the margin can increase investment costs and margin call risk. We do not

encourage the use of constant-maturity futures to resolve this issue as one would need

to assume that a synthetic a contract with maturity T , will have the same margin as

its neighbouring observable contract, with maturity T1 < T and T2 > T . Moreover,

as shown in the previous chapter, VaR extrapolation from constant-maturity futures

using a Hermite spline can undermine the VaR estimation process. Alternatively, one
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could select these margin steps in the term structure as rollover points for the series,

which would eliminate them. However, the steps occur at varying time to maturities

and thus cannot be replicated easily before 1st January 2009 where the SPAN data

does not stretch to.

In this study, we analyse Mt,Ti for i = 1, 3, 5, 7, 9 only. Although the amount of data

used in this study is halved from the previous chapter, the length of the out-of-sample

period is not affected. There remains an abundant number of data points which does

not undermine the stability of MSt, MTt and MDt. Furthermore, as we planned for

margins to decrease in steps of 2 contracts, removing Mt,Ti for i = 2, 4, 6, 8, 10 has no

effect on MSt and MTt.

Unlike Lam et al. (2010), we consider margin movements throughout the term struc-

ture and not only on the first-to-mature series. According to the Samuelson effect,

the volatility increases with decreasing time to maturity, so the margin requirements

should also follow the same movement.

We also find that, the VaR term structure may tilt which can sometimes push

margins with greater time to maturity above those with lesser time to maturity. To

avoid this, we allow the whole term structure to change only when the first-to-mature

series changes, that is

Mt,Ti =

Mt−1,Ti , for Mt,T1 = Mt−1,T1 ,

V aR0.99,1
t,Ti

Mt,T1

V aR0.99,1
t,T1

otherwise ,
(5.8)

where i = 3, 5, 7, 9.

5.2.5 Evaluating Margin Requirements

Although we are primarily concerned with stability, for an implementable margin

model, we assume that the exchange is interested in keeping low margin requirements

to attract new clients. Here, the criterion of minimising MDt has been employed to

keep the margin suitably low. We also observe that MS
t,Ti

moves very much on par

with 1.25V aR0.99,1
t,T . Hence we deem that the margin is at an adequate level should its

corresponding MDt be less than SPAN’s.

To our knowledge, our work is the first to tackle the margin stability issue, thus we

introduce some new measures for evaluating the margin in this respect. First, MSt

and MTt are applicable as measures themselves where a stable low MSt and high

MTt indicates stable margins. However, consider a scenario where we compare two

margin models, should one model generate both lower MSt and lower MTt than the
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Figure 5.4.: Snapshots of the margin requirements of individual Brent crude
oil contracts. Contracts expiry months: June 2013 - February
2014. Range of time to maturity: 54 to 40 days to maturity.

other, we would not be able to determine which is more stable.

To understand the behaviour of MSt and MTt, we examine the relationship between

them. Here, for the in-sample period 29th January 2009 to 30th December 2013, we

utilise relationship 5.6, using several combinations of 0 < βL1,t < 0.25 and 0 < βL1,t <

0.75, to calculate ML
t,T . We then compute the corresponding MSt and MTt for each

combination and construct a scatter plot between them with MSt on the x-axis and

MTt on the y-axis (see Figure 5.6).

The most desirable place to be on this plot is at the top-left corner of the graph,
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Figure 5.5.: kth-to-mature Brent crude oil SPAN margin series for k = 1 to 9.
Period 23rd December 2011 to 26th December 2013.

i.e. to maximise MTt and minimise MSt. The problem presented here is similar

to Markowitz’s efficient frontier, where the area covered by the blue points is an

opportunity set of stability. Like the efficient frontier, only the points along the

top-left edge of this area are optimally stable.

Now, consider a line drawn from the point MSt = 0 and MTt = 0 to any point

in the opportunity set. The most stable margin level would create an infinitely high

(MTt/MSt), while the least stable margin level would generate MTt/MSt = 0. Hence,

similar to the Sharpe ratio, we can use this gradient as a measure of stability.
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Figure 5.6.: Scatter plot of MSt versus MTt corresponding to ML
t,T , parameter

range 0 < βL1,t < 0.25 and 0 < βL1,t < 0.75. Period 29th January

2009 to 30th December 2013.

5.2.6 Calibration Method: Fuzzy Goal Programming for Stable Margin

Estimates

A number of issues arise when calibrating βL1 , βL2 , β∗1 , β∗2 . First, MSt, MTt and MDt

do not share the same units hence they are not directly comparable. Second, we wish

for stable parameters as the calibration window is rolled over since this would also

generate stable margin bands and ultimately, stable margins. Third, the exchange

may wish to place different emphasis on the different criteria, concentrating on the

margin level as opposed to stability for example. We employ Goal Programming (GP)

to resolve these issues.

Goal Programming (GP) practices include parameters which are adjusted to satisfy,

or get as close as possible to a known objective (aka goals). The difference between

the final outcome and the goal is known as the achievement function. Hereafter, we

refer to MSt, MTt, MDt as the achievement functions. The four main types of GP

described in Romero (2004) are

1. Weighted GP (aka Archimedean GP) sets weights on the objectives which both

normalises and rank them according to preferences

2. Lexicographic GP (aka non-Archimedean or pre-emptive GP) is similar to Weighted
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GP but here objectives can be sorted into groups with different priorities, the

group with the highest priority takes an infinite amount of importance and must

be satisfied first before moving to the next set of objectives

3. MINMAX GP (aka Chebyshev or Fuzzy GP) is again similar to the Weighted

GP, but here minimising the deviation from the goal is also a goal

Minimum-variance hedging as studied in chapter 3 for example can be described as

a variant of the Lexicographic GP, where the decision to minimise the variance takes

priority over all other criteria such as minimising transaction costs - which is then

considered last.

GP and other programming practices are already implemented widely in finance

(intentionally or otherwise), mostly in the portfolio management literature, see Board

et al. (2003) for an overview of general Operational Research techniques in the fi-

nancial markets. Note that like most works mentioned in Board et al. (2003), we do

not adhere to the same notations as those which may be found in the GP literature.

However, given our proposed decision making processes follow the GP formulation,

the result is essentially the same.

The nature of margin requirements does not allow for a similar problem, as the

goals are criteria to be minimised or maximised (such as margin step size and margin

change intervals). Our work is hence more related to Parra et al. (2001) who uses

GP to find optimal portfolio weights to maximise both investors utility and liquidity.

Parra et al. (2001) describes the objectives being Fuzzy, that is, the approximate

location of the objective is known hence one optimises the parameters within the

vicinity of the location. For margin requirements, it is clear that stable parameters

leads to stable margin bands and subsequently stable margins. As above, to tame the

volatility of the optimal parameters, one can also set the algorithm to search for a

local optimum around the previous parameter estimates. In this study we implement

two types of GP, Archimedean and Lexicographic.

Archimedean GP

Here, for the margin model i = L or ∗, we calibrate the parameters βit = {βi1,t, βi2,t}
by

βit = argmin
βi
1,t,β

i
2,t

{
wMD

MDt − µMD
t

σMD
t

+ wMS
MSt − µMS

t

σMS
t

− wMT
MTt − µMT

t

σMT
t

}
, (5.9)
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where wi, µ
i
t and σit are weights, means and standard deviations of achievement func-

tion i respectively. Note that βit is optimal for the window t − n + 1 to t only. As

the estimation window is rolled over, the optimal parameters may change, hence the

addition of the subscript t in this relationship. The negative sign on MTt indicates

maximisation as opposed to minimisation.

We normalise the achievement functions to prevent incommensurability given they

do not share the same units. For example, MTt is measured in days, while the

others are measured in USD/barrel. Without normalising, minimising MT would

dominate the other criteria in the optimisation scheme. A popular normalising method

in GP is to divide the achievement functions by the goal itself and multiplying by

100, that is, converting each achievement function into a percentage. We cannot

apply the same method as this would require dividing MSt by 0. Alternatively,

dividing by the achievement functions by the standard deviation would also solve the

incommensurability issue. From preliminary analysis however, we find that the mean

of MTt is much higher relative to MSt and once divided by the standard deviation,

MTt still significantly overrides MSt. Hence we normalise by both taking away the

mean and dividing by the standard deviation. Note that should we calculate µit and

σit in a conventional sense, e.g. µMS
t = 1

nTns

∑nT

k=1

∑t
i=t−n+1 |∆Mi,Tk | = MSt, σ

MS
t =√

1
nTns

∑nT

k=1

∑t
i=t−n+1(|∆Mi,Tk | −MSt)2, we would yield µMS

t = MSt, similarly we

would find that µMD
t = MDt and µMT

t = MTt and relationship 5.9 would always yield

0. Hence µit and σit of the achievement function i are found by using a different method.

For margin models j = {L, ∗} with parameters βj1,t and βj2,t: 1) we construct M j
t,T ,

2) we calculate the achievement functions for M j
t,T 3) we repeat this process using all

combinations of βj1,t and βj2,t in steps of 0.01 over the calibration range to produce

collections of MSt, MTt and MDt. Lastly, we use the mean and standard deviation

of each collection as estimates of µit and σit for i = MS, MT, MD. Furthermore, we

utilise wi to adjust the achievement functions when the calibration may be over defined

(discussed in more detail in section 5.3.1). We perform in-sample calibration over the

period 28th January 2009 to 30th December 2013. We first examine whether or not

the margin’s MDt is less than or equal to SPAN’s (0.840 USD/barrel), should this be

the case then we consider the margin to be at a suitable level. We then examine the

stability of each model by comparing MTt/MSt (MSt = 0.367 USD/barrel, MTt =

43.381 days, MTt/MSt = 118.202 days/(USD/barrel) for SPAN margins).

We observe that MS
t,T fulfils the our criteria very well, especially on the stability

front. This is because the SPAN system was never designed to interact with the

VaR -which is very volatile- in the first place. This comes at a cost of breaching the

one-day 99% VaR at several points in time, so even though EMIR were to reduce the
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two-day VaR restriction down to one-day as we suggest, the SPAN method would still

be inadequate.

We carry out the out-of-sample calibration using a 2500-day (10 years) rolling

window, starting from the window 29th March 1999 - 28th January 2009, rolling over

one business day at a time. Here, at time t, we assume the exchange has knowledge of

the information in the time window t− n+ 1 to t. We select the optimal parameters

βL1 , βL2 , β∗1 , β∗2 which generate optimal levels of MSt, MTt and MDt via the following

procedure:

1. At time t, generate a series of V aR0.99,1
t,T using the information set t− n+ 1 to t

2. As we are using the OEWMAt-6 method for calculating the VaR, we estimate

the time t+ 1 forecast via the relationship V aR0.99,1
t+1,T = V aR0.99,1

t,T

3. Calibrate βL1 , βL2 , β∗1 , β∗2 on the estimation window t−n to t+1 using relationship

5.9

4. Calculate Mt+1,T using the optimal parameters obtained

5. Rollover the calculations for the rest of the out-of-sample period

We assume that Mt+1,T is calculated and announced at time t, i.e. one business day

prior to the change in margin at time t + 1. Note that on this period, we cannot

combine the achievement functions to examine the overall performance of the margin

model as seen in relationship 5.9. The population of each margin level is limited to

only one set of movement and given the objective functions are averages themselves,

the estimate of µit for achievement function i is simply equal to itself; we compare

each criteria one-by-one instead.

Lexicographic GP

There are many different ways to which the exchange can prioritise the achievement

functions. Here, we first identify a pool of parameters suitable for generating margins

which meets a particular stability point and from this, determine which parameters

give the lowest margin level for competitive reasons. The target stability point in this

case is SPAN’s. Our calibration should ensure margin stability at roughly the same

level whilst keeping the margin suitably low so the exchange maintains competitive

advantage. The process for a window of VaR estimates hence follows:

1. We generate an MTt-MSt scatter plot for each margin rule

2. We identify a target margin stability point on this map and bind an area for all

the margins with higher MTt and lower MSt from this point
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3. Of this pool of parameters, select the set which produces the lowest MDt

First, we apply this procedure using the same in-sample range as the Archimedean GP

approach. The required area for margins more stable than SPAN is henceMSt < 0.367

USD/barrel, MTt > 43.381 days. We also apply this method out-of-sample using the

same periods as the previous section. Here, we roll the estimation window over and

repeat all of the above. If no parameters can produce estimates more stable than

SPAN, then take the previous parameters instead. However, we have no data for

MS
t,T covering the initial calibration period February 1999 - January 2009. More data

on this front would be of great benefit to our results, for now, we have to impose the

assumption that ICE have operated in the same manner as they have done, that is our

stability targets of MSt = 0.367 USD/barrel and MTt = 43.381 days remain constant

throughout. Further, VaR movements between February 1999 and January 2009

contain much more extreme swings than the period January 2009 - December 2013.

Although unobservable, we assume that the margin in the initial calibration period is

less stable than the out-of-sample period. Margins with characteristics MSt < 0.367

USD/barrel, MTt > 43.381 days would be more stable than those which were actually

set in practice. Again, to stop out-of-sample parameters from jumping, we impose the

vicinity±0.05 for the margin movements. Note that as each objective function is being

considered one-by-one, there is no need to impose normalising constants as carried

out when combining the criteria in an Archimedean GP arrangement. Hereafter, we

denote the margin generated using the Lexicographic GP method as M∗∗
t,T .

5.3 Results and Discussion

5.3.1 In-sample Calibration: βL1,t, β
L
2,t

In this analysis, we limit the parameters to the range 0 < βL1 < 0.25 and 0 < βL2 < 0.75

which should allow for the corresponding margin level to move within the vicinity of

1.25V aR0.99,1
t,T . Note that ranges βL1 , β

L
2 < 0 is not applicable according to relationship

5.6, as ML
t,T would always equal 1.25V aR0.99,t

t,T . The restriction 0 < βL2 < 0.75 ensures

that the margin does not move beyond 2V aR0.99,1
t,T .

Intuitively, relationship 5.6 entails that as βL1 and βL2 increase, the margin changes

should increase in size and decrease in frequency. Maps of the achievement functions

are shown in Figure 5.7. The corresponding margin achievement functions behave as

expected where MSt,T and MTt,T increase with decreasing (1.25− βL1 )V aR0.99,1
t,T and

increasing (1.25 + βL2 )V aR0.99,1
t,T . The initial calibration, with wMD, wMS, wMT = 1

resulted in optimal parameters βL1 = 0, βL2 = 0, i.e. to set ML
t,T = V aR0.99,1

t,T , which
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counters our expectations. Upon further investigation, we find that because of the

way relationship 5.6 is specified, having both parameters equal to 0 fulfils two of

the criteria -minimising both MSt and MDt simultaneously. To avoid this issue,

we set wMD = 0, our intuition follows that the margin level must always return to

1.25V aR0.99,1
t,T and the criteria to minimise MDt is already satisfied as long as βL2,t is not

too high; even its maximum βL2,t = 0.75, MDt according to this rule is below SPAN’s

(at 0.78 USD/barrel respectively). Here, the optimal parameters are βL1,t = 0.22 and

βL2,t = 0.61 with corresponding MSt = 1.024 USD/barrel and MTt = 87.482 days.

These estimates are far off our targets, upon assessing the stability map for this rule

(see Figure 5.8), we observe that none of the parameters in this range can produce

margins more stable than SPAN. it is clear that the underlying problem lies in the rule

itself and hence it would not be possible to generate favourable margin requirements

out-of-sample. We calibrate this rule out of sample to compare with other rules.
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Figure 5.7.: Map of each achievement function for margin ML
t,T with pa-

rameters βLt,1 from 0 to 0.25 and βLt,2 from 0 to 0.75. Period:

28th January 2009 to 30th December 2013. Optimal parameters:
βL1 = 0.25 and βL2 = 0.70, producing MSt = 1.024 USD/barrel
and MTt = 87.482 days. General statistics: µMS

t = 0.546,
σMS
t = 0.246 USD/barrel, µMT

t = 24.97 and σMT
t = 17.61 days.
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Figure 5.8.: Scatter plot of MSt versus MTt corresponding to ML
t,T , parameter

range 0 < βL1,t < 0.25 and 0 < βL1,t < 0.75. Period: 28th January

2009 to 30th December 2013.

5.3.2 In-sample Calibration II: β∗1,t, β
∗
2,t, β

∗∗
1,t, β

∗∗
2,t

The maps of the in-sample achievement functions are shown in Figure 5.9. As ex-

pected, the corresponding margin level increases with β∗1,t hence we need to minimise

MDt to allow for suitably low margins. Second, MTt tend to increase with β∗1,t, higher

upper margin threshold indicates less frequent changes. Third, MSt decreases with

increasing β∗1,t, this is rather surprising, given margin step sizes should be governed

by β∗2,t alone. We find that as the margin band narrows (with decreasing β∗1,t), the

margin tend to follow V aR0.99,1
t,T more. Given the VaR is quite volatile, lower β∗1,t also

equates to more volatile margins.

Since β∗2,t governs the step sizes, greater β∗2,t equates to higher MSt. Large step

sizes also moves the margin further away from the thresholds, hence the margin also

changes less frequently, that is higher β∗2,t indicates higher MTt. There is however

no relationship with respect to MDt, which again is not surprising given the margin

level is mainly govern by the upper threshold, i.e. β∗1,tV aR
0.99,1
t,T .
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The initial optimal parameters are: β∗1 = 2.24 and β∗2 = 0.06 and MSt = 0.388

USD/barrel, MTt = 61.111 days, MDt = 1.262 USD/barrel. The calibration is suc-

cessful in producing lower MSt and higher MTt than those from the preliminary

analysis. This shows that the rule introduced from scratch is more likely to outper-

form those from the previous literature in an out-of-sample analysis; although the

margin level is still too high. From this figure, we also observe that MTt is highly

nonlinear with respect to the parameters which results in patches of minima once

the achievement functions are combined. More notably, around 2.27 < β∗1,t < 2.30,

0.05 < β∗2,t < 0.09 indicated in Figure 5.9 by a dark blue patch, and a relatively smaller

area at 1.8 < β∗1,t < 2.1, 0.18 < β∗2,t < 0.2. There could hence be several solutions to

the optimal parameter estimates. For this procedure, wMS = wMT = wMD = 1, an

interesting further study may be to explore different sets of weights which may ensure

greater performance by the margin models.

With this rule, we find that there are several parameters whose margins are more

stable than SPAN (MSt < 0.367 USD/barrel, MTt > 43.38 days, see Figure 5.10).

At this point however, the margin level is too high, with MDt = 1.512 USD/barrel

and hence may not be to the likings of the exchange. Nonetheless, it is clear that

the nature of this rule is more flexible in generating stable margins than relationship

5.6 and we expect our rule to produce the best out-of-sample results among all rules

derived from the literature.

Now examining Lexicographic GP, we assume that in this period, the exchange aims

to produce margins at least as stable as SPAN. Hence, on the MSt versus MTt scatter

plot, we enclose an area with MTt > 43.48 days and MSt < 0.367 days, shown by the

green positions in Figure 5.10. Out of this set, we select the margin level which has the

lowest MDt, as this would produce the lowest margins possible. We obtain the results

with MSt = 0.355 USD/barrel, MTt = 45.381 days and MDt = 0.705 USD/barrel,

MTt/MSt = 127.890 days/(USD/barrel). Lexicographic GP is able to surpass SPAN

in all accounts, hence we expect M∗∗
t,T to generate the best results out-of-sample.
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Figure 5.9.: Map of each achievement function for margin M∗t,T with parame-

ters β∗t,1 from 1.8 to 2.3 and βLt,2 from 0 to 0.2. Period: 28th Jan-

uary 2009 to 30th December 2013. Optimal parameters: β∗1 = 1.92
and β∗2 = 0.11, producing MSt = 0.223 USD/barrel and MTt =
32.483 days, MDt = 1.299 USD/barrel, MTt/MSt = 145.664
days/(USD/barrel). Other statistics: µMS

t = 0.390, σMS
t = 0.181,

µMT
t = 45.017 days, σMT

t = 18.989 days, µMD
t = 1.007, σMD

t =
0.177 USD/barrel.

5.3.3 Out-of-Sample Calibration

Following the in-sample results, the initial calibration is carried out with the param-

eter range 1.8 < β∗1,t < 2.3, 0 < β∗2,t < 0.2 and 0 < βL1,t < 0.25, 0 < βL2,t < 0.75. The

range 1.8 < β∗1,t < 2.3 may seem ad hoc at this stage so we carried out a secondary

study for 1.25 < β∗1,t < 2, we find that the calibration follows a different minimum

patch at roughly β∗1,t = 1.5 with a much lower MDt. The margin according to this

area however is much less stable and results will not be shown here. We use all margin

estimates at the end of the initial in-sample calibration as the starting point of the

out-of-sample window.

Rolling over from the initial period, we fix the time t parameter range to ±0.05 of

the time t − 1 optimal parameters to ensure that optimal parameters do not jump

between minimum patches. The ±0.05 range covers a suitable amount of room for

the parameters to move within and also maintain parameter stability. This also helps
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Figure 5.10.: Scatter plot of MSt versus MTt corresponding to M∗∗t,T , param-

eter range 1.8 < β∗∗1,t < 2.3 and 0 < β∗∗2,t < 0.2. Period: 28th

January 2009 to 30th December 2013.

to reduce the computational speed by over 10 times.

Archimedean GP is successful in producing stable out-of-sample parameters. Figure

5.11 shows the optimal parameter estimates βLt,1, βLt,2, β∗t,1, β∗t,2, β∗∗t,1, β∗∗t,2. We observe

that β1,t bounces between 0.18 and 0.19 roughly around the period January 2013 and

December 2013. Note that this is not a result of the parameter confinement range

since the fluctuation occurs at 0 < βL1,t < 0.25. While the cause of this fluctuation

is unknown, its only effect is to generate similar fluctuations in the lower margin

threshold. Providing such movements are small and the margin does not breach this

threshold often, we should see no (or negligible) difference in the margin movements.

This is also shown in Figure 5.13, where ML
t,T1

does not contain fluctuations in the

same period.

We calculate MSt, MTt, MDt and MTt/MSt and compare the margin mod-

els.7 From Table 5.1, we find that keeping the margin equal to 1.25V aR0.99,1
t,T as

7Here we cannot calculate the mean and standard deviation of the margins as we have done in the
in-sample estimation given only one margin route is present per model.
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Figure 5.11.: Optimal parameter estimates for the period 28th January 2009
to 30th December 2013. Parameters calibrated using a 2500-day
rolling window. βLt,1 and βLt,2 confined to 0-0.25 and 0-0.75 re-
spectively. β∗t,1 and β∗t,2 confined to 0-0.2 and 1.8-2.3 respectively.
β∗∗t,1 and β∗∗t,2 also confined to 0-0.2 and 1.8-2.3 respectively. Each
parameter estimate at time t is restricted to move within the
vicinity of ±0.05 of the estimates at time t − 1. The first esti-
mation window is calibrated using the entire confinement range.
Calibration is carried out using the first 10-to-mature futures
series.

assumed by the majority of the literature provides the most unstable margin level with

MTt/MSt = 7.189 days/(USD/barrel). The technique of only changing the margin

when it breaches a threshold holds superior on this account where simply imposing a

110



5. Optimality Criteria and Rules for Brent Crude Oil Futures Margin Requirements

±0.15 band on the margin (MC
t,T ) is more than twice as stable withMTt/MSt = 18.097

days/(USD/barrel). Further alleviating the flexibility by optimally calibrating the

margin band produces margins (ML
t,T ) which are again two times more stable with

MTt/MSt = 45.804 days/(USD/barrel). This shows that, calibration strongly aids

the production of stable margins. Of all the automated systems, our rule provides

the most stable margins (M∗
t,T ) with MTt/MSt = 81.454 days/(USD/barrel), over 2.5

times that of ML
t,T . In fact, M∗

t,T is superior to MC
t,T on both accounts with greater MTt

and lower MSt. The most successful margin model here is M∗∗
t,T using Lexicographic

GP with corresponding MTt/MSt = 101.724 days/(USD/barrel).

Criteria 1.25V aR0.99,1
t,T MC

t,T ML
t,T M∗

t,T M∗∗
t,T MS

t,T

28th January 2009 - 30th December 2013

MSt 0.1390.1390.139 0.673 1.345 0.486 0.335 0.367
MTt 1.000 12.183 61.61161.61161.611 39.600 34.029 43.381
MDt 0.0000.0000.000 0.198 0.731 0.903 0.799 0.840

MTt/MSt 7.189 18.097 45.804 81.454 101.724 118.334118.334118.334

28th January 2011 - 14th July 2011

MSt 0.1450.1450.145 0.702 1.354 0.538 0.459 0.417
MTt 1.000 13.043 61.44461.44461.444 32.833 31.105 32.855
MDt 0.0000.0000.000 0.205 0.723 1.161 0.898 0.792

MTt/MSt 6.782 18.576 45.375 61.051 61.764 78.85278.85278.852

14th July 2011 - 30th December 2013

MSt 0.1310.1310.131 0.649 1.337 0.415 0.195 0.477
MTt 1.000 11.232 59.66759.66759.667 35.000 26.250 57.698
MDt 0.0000.0000.000 0.192 0.739 0.643 0.700 0.755

MTt/MSt 7.658 17.312 44.629 84.406 134.365 189.839189.839189.839

Table 5.1.: Out-of-sample MSt, MTt, MDt and MTt/MSt for all models de-
noted in USD/barrel, days, USD/barrel and days/(USD/barrel)
respectively. Estimation periods 28th January 2009 to 14th July
2011, 26th December 2013 and 14th July 2011 - 30th December
2013. Bold fonts indicate the best margin models for each achieve-
ment function.

There are some visible differences in the relative margin levels from the first half of

the out-of-sample period to the second. More notably, from January 2012 onwards,

M∗
t,T moves very much on par with MS

t,T with cautious decreases which indicates that

our rule is successful in mimicking this recent behaviour of the exchange. Prior to

this period however, between January 2009 and June 2010, all other rules generate

margins well above MS
t,T . This is due to the sudden decrease in margin levels by

ICE in April 2009, which is uncharacteristic. In fact, referring to Figure 5.2, MS
t,T1

111



5. Optimality Criteria and Rules for Brent Crude Oil Futures Margin Requirements

is often-times below V aR0.99,1
t,T , which is inadequate. Therefore, it is not surprising

that our margin rules would generate higher margin levels in this period. While M∗
t,T

and M∗∗
t,T remain high up until November 2009 and slowly decreases, ML

t,T however

displays the same sharp decreasing pattern as MS
t,T . This however rises again in July

2009 following a slight increase in V aR0.99,1
t,T , in conjunction with our hypothesis that

sharp margin falls may lead to more frequent margin rises.

To examine the impact of these movements on the achievement functions, we split

the analysis period in two halves: 28th January 2009 to 14th July 2011 and 14th July

2011 to 26th December 2013. The former sub period is slightly more volatile with mean

V aR0.99,1
t,T1

= 4.033 USD/barrel compared to the latter’s 3.232 USD/barrel. We do not

split the period into smaller sub periods to assess the upward volatility movement from

December 2011 to February 2012; we consider this too short to generate statistically

significant estimates of the achievement functions. We observe that 1.25V aR0.99,1
t,T and

MC
t,T perform worse in the latter sub period, with lower MTt/MSt estimates. This

confirms that although the market volatility is generally decreasing, the movement of

1.25V aR0.99,1
t,T is more erratic. The calibrated rules on the other hand perform better

in this latter period, demonstrating that applications of rules and proper calibration

techniques are essential in generating more stable margin requirements.

The whole sample results show that M∗∗
t,T is the best model for the period 28th

January 2009 to 14th July 2011 and the overall out-of-sample period. To further

examine the robustness of these results, we examine 500-days rolling-window estimates

of MTt/MSt and MDt starting on the period 28th January 2009 to 4th January 2011

(see illustrations in Figure 5.12). Here, MDt of each calibrated model tend to overlap

each other but remain roughly at the same level, approximately 0.8 USD/barrel.

Although the MDt for the models are not always consistently below SPAN’s, hence

there are some estimation windows where margins may be slightly too high. Estimates

of MTt/MSt tend to display step functions which is not surprising given that these

only move as margin changes leaves and enters the estimation window. We find that

in fact, MS
t,T is the most stable margin for the majority of the instances as the window

is rolled over. Of the automated systems however, M∗∗
t,T remains superior throughout.

Lexicographic GP using our rule is hence the best model in this case. Although,

further development is required to generate a suitable margin model. In the same

Figure, we observe that SPAN’s MTt/MSt is increasing with time, this is perhaps

due to ICE’s own development to promote stable margin requirements. Our rules

however, tend to generate more consistent MTt/MSt.
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Figure 5.12.: Rolling MTt/MSt and MDt estimates for all margin rules
denoted in days/(USD/barrel) and USD/barrel respectively.
Rolling window length: 500 days. Estimation period: 4th Jan-
uary 2011 - 30th December 2013.
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5.4 Conclusions and Further Work

In this chapter we introduce methods for evaluating margin requirements’ stability and

demonstrated methods for calibrating margin models. We compare 5 different margin

models’ ability to produce stable margin requirements for Brent crude oil futures term

structure. Although the margin models tested here cannot quite outperform SPAN

in producing more stable margin requirements, our methods are fully automated and

much simpler to implement. We also suggest a change to current regulations, which

require margins to cover the 99%, two-day VaR, to adjust their levels to the 99%,

one-day VaR to allow US and European exchanges to compete. Most importantly,

our methods ensure that the margin consistently remains above this coverage level.

Our measure of margin stability, the fraction between average the time and size of the

margin changes (MTt/MSt), is an easily understandable measure and also adaptable

on a regulatory basis. Together with our works in chapter 4, we generate out-of-sample

results on a rolling-window basis, following EMIR requirements.

The most successful rule in producing stable margins, is one which mimics the

movements of SPAN, where margins are allowed to decrease slowly to avoid sudden

increases in conjunction with the VaR. Prioritising some criteria results in more stable

margins as opposed to combining them in a linear manner. Lexicographic GP is hence

superior to its Archimedean counterpart for generating stable margin requirements.

The rules provided here highlight the how margins generated using different methods

result in varying levels of stability, our research provides a platform numerous studies

to come. This may include generating more flexible rules with more parameters, or

different prioritisations of criteria in the Lexicographic GP formulation.

The statistical methods presented in this work include estimating averages of time

and step sizes of the margin movements. The overall distribution of these terms are

however undefined. We note that the margin follows a Compound Poisson process,

calibrating the margin to such a process would provide better understanding in terms

of the statistical behaviour of the margin process. We can then perhaps compare the

poisson processes in a statistically meaningful way as was carried out in chapters 3

and 4.
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Following the substantial growth in the energy market, our studies investigate risk

management methods for its players. The numerous players: speculators, hedgers,

brokers, central banks, regulators, exchanges, interact in a complex manner, to which

we concentrate on two: the hedger, more specifically the refinery and the exchange.

The refinery buys crude oil and sells refined products, earning the spread (aka crack

spread) between them. While their aim is to generate as much sales as possible, the

crack spread may fluctuate and the refinery is exposed highly exposed to market risks.

We examine the short-term delta hedging problem, prevalent in the literature where

weekly spot prices are hedged using futures to ensure low volatility in the profits

and losses. This is a complex multi-asset hedging problem, which requires attention

to volatility estimation of the commodity prices and the correlation between them.

Contrary to the the majority of previous works, we find that advanced minimum-

variance hedge ratios not only provide negligible differences in variance reduction but

also generate excessive transaction costs. Hence we consider the naive hedge the best

strategy for hedging oil spreads in this instance. What this study highlight is the

importance of transaction costs in investments, of which the margin on the hedging

instrument -the futures contract- plays a central role. Upon carrying out this study, we

find that the margin data is not only hard to obtain but also impossible to replicate,

given the technical documents on the current methods are vague. We further find

that the nature of margin requirements are changing rapidly as new regulations are

introduced in the aftermath of the world recession in 2008. To this end, we turn

our attention to risk management of the exchange, and suggest methods for setting

margin requirements optimally in accordance to the regulatory changes.

Margin requirements is heavily based on the VaR, hence our first investigation

is to find the most accurate VaR forecasting method. We focus on Brent crude

oil futures as this is currently the most highly-traded energy derivative contract.

We found a number of issues surrounding the literature where comparisons of log-

likelihood ratios may lead to biased outcomes, especially when these ratios are of

similar magnitude. Our methods is amongst the first to examine VaR on a term
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structural basis. By producing rollover log-likelihood ratios, we identify jumps in the

independence statistics when exceedances are at the beginning and/or the end of the

estimation window. To our knowledge, this behaviour has not been recorded before

in the literature and can significantly bias VaR backtesting results. We conclude that

the Orthogonal EWMA using t-distribution innovations with 6 degrees of freedom is

the best method for forecasting Brent crude oil VaR.

Finally, we apply our VaR model to setting margin requirements for Brent crude

oil futures, which has as of late become the bench mark crude oil in the world trading

platform. New propositions from EMIR and Dodd Frank restrict ways in which

exchanges can set margin requirements. In our study, we formulate methods for

clearing houses to set margin requirements optimally, using automated methods which

is easy to replicate. Our methods concentrate on creating margin requirements with

small, infrequent changes in conjunction to regulations introduced by EMIR. For this,

we introduce three criteria for margin calibration, namely: maximising the average

time between margin changes and minimising the average step size of the margin

change to generate stable margin requirements; and minimising margin deviation

from 1.25 times the VaR which stops the margin from rising too high.

We also introduce measures to assess margin stability, the likes of which are easily

understandable and can be used in a regulatory context. By generating a scatter plot

of the average margin step size versus the average time between margin changes, we

create a graph with similar criteria to Markowitz’s efficient frontier. The gradient of

the line [0,0] to any point on the plot can hence be used as a measure for margin

stability where large gradients indicate stable margins.

Our analysis ends in comparing different margin models, three of which developed

from the literature to adhere to coming EMIR regulations, one newly introduced

and the historical margins themselves. We find that of the automated models, the

newly introduced model performs best. While this may not quite outperform SPAN’s

historical margin levels, our methods are simpler to implement. What we provide

here is merely a demonstration of what can be achieved, using detailed calibration

methods and measurement systems. The possibilities of margin rules is by no means

exhausted. We urge that the academic community continues to invent further rules,

on the grounds of our measures and perhaps this can ultimately lead to a truly stable

margin method, which can be implemented in the near future.
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Model Number of points Proportion (%)

EWMAt-6 1638 12.85
EWMAt-12 2451 19.22
EWMA 1107 86.88
GJRt 2793 21.91
GJR 10586 83.03
K-60 5770 45.25
K-120 5907 46.33
OEWMAt-6 771 6.05
OEWMAt-12 2520 19.78
OEWMA 10325 81.00
OGJR 12563 98.53

Table A.1.: Number of points and proportion above the 95%, χ2
6 critical statis-

tic for the rolling LRcct,T statistics for each model. Total number

of instances: 12750. Period: 28th January 2009 - 30th December
2013.
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Figure A.1.: Rolling LRcct,T statistics for all models for the first 10-to-mature

series. Period: 28th January 2009 - 30th December 2013. The
transparent surface represent the 95% critical statistic for χ2

6 dis-
tribution for the conditional coverage.
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Months to Maturity EWMAt-6 EWMAt-12 EWMA GJRt GJR

LRuc
t,T

1 1.94∗∗ 4.64∗ 17.10 1.80∗∗ 1.76∗∗

2 0.34∗∗ 4.12∗∗ 20.91 2.23∗∗ 2.18∗∗

3 1.00∗∗ 6.22 25.59 3.30∗∗ 1.59∗∗

4 1.57∗∗ 7.66 25.59 2.11∗∗ 2.45∗∗

5 2.41∗∗ 9.58 23.19 1.51∗∗ 3.18∗∗

6 1.98∗∗ 10.43 22.03 1.70∗∗ 4.42∗∗

7 2.06∗∗ 11.32 22.71 1.87∗∗ 3.96∗∗

8 2.43∗∗ 10.43 18.76 0.51∗∗ 5.38∗

9 3.01∗∗ 9.58 17.73 0.78∗∗ 6.51
10 3.44∗∗ 6.92 18.59 1.58∗∗ 6.51

LRcc
t,T

1 6.56∗∗ 14.12 25.32 17.94 10.53∗∗

2 5.68∗∗ 8.19∗∗ 30.22 15.02 12.16∗

3 5.84∗∗ 11.39∗ 39.25 16.57 15.71
4 8.66∗∗ 14.31 39.25 23.34 15.54
5 9.27∗∗ 15.62 31.19 21.29 15.30
6 8.50∗∗ 16.24 27.83 25.38 21.87
7 8.39∗∗ 16.91 26.19 19.72 21.88
8 11.85∗ 16.24 22.83 27.34 30.89
9 11.93∗ 15.62 21.99 28.07 30.58
10 12.44∗ 13.82 22.65 16.34 25.97

LRin
t,T

1 4.62∗∗ 9.48∗ 8.22∗ 16.14 8.77∗

2 5.34∗∗ 4.07∗∗ 9.31∗ 12.79 9.98
3 4.84∗∗ 5.17∗∗ 13.66 13.27 14.12
4 7.09∗∗ 6.65∗∗ 13.66 21.23 13.09
5 6.86∗∗ 6.04∗∗ 8.00∗ 19.78 12.12
6 6.52∗∗ 5.81∗∗ 5.80∗∗ 23.68 17.45
7 6.33∗∗ 5.59∗∗ 3.48∗∗ 17.85 17.92
8 9.42∗ 5.81∗∗ 4.07∗∗ 26.83 25.51
9 8.92∗ 6.04∗∗ 4.26∗∗ 27.29 24.07
10 9.00∗ 6.90∗∗ 4.06∗∗ 14.76 19.46

Table A.2.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures return
series for the first 10 months-to-mature constant-maturity series.
∗∗ and ∗ denotes failure to reject the null hypothesis that the VaR
model is accurate at 90% and 95% respectively. Out-of-sample
period: 29th March 1999 - 30th December 2013. Starting and final
return values are not exceedances of the VaR. Models considered:
EWMAt-6, EWMAt-12, EWMA, GJRt, GJR.
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Months to Maturity K-60 K-120 OEWMAt-6 OEWMAt-12 OEWMA OGJR

LRuc
t,T

1 1.57∗∗ 0.38∗∗ 1.52∗∗ 1.82∗∗ 12.24 1.95∗∗

2 2.64∗∗ 0.42∗∗ 0.30∗∗ 1.98∗∗ 17.06 1.76∗∗

3 3.04∗∗ 0.40∗∗ 0.73∗∗ 3.67∗∗ 22.55 3.13∗∗

4 2.86∗∗ 0.60∗∗ 1.19∗∗ 8.77 26.84 6.05
5 2.08∗∗ 0.70∗∗ 1.98∗∗ 9.14 30.10 6.51
6 2.81∗∗ 0.40∗∗ 3.01∗∗ 12.87 28.98 7.63
7 3.04∗∗ 0.47∗∗ 3.47∗∗ 12.61 29.35 9.39
8 3.01∗∗ 0.64∗∗ 4.64∗ 10.10 30.22 9.00
9 2.51∗∗ 0.42∗∗ 3.44∗∗ 10.37 32.37 12.19
10 1.65∗∗ 0.51∗∗ 4.02∗∗ 9.95 33.02 12.19

LRcc
t,T

1 8.30∗∗ 17.02 7.17∗∗ 13.57 20.68 26.09
2 12.19∗ 22.65 6.00∗∗ 6.49∗∗ 23.42 31.57
3 13.08 21.49 5.73∗∗ 10.10∗∗ 28.4 30.45
4 12.56∗ 20.63 8.53∗∗ 15.04 37.91 38.00
5 9.98∗∗ 16.32 8.88∗∗ 15.28 39.43 43.09
6 9.98∗∗ 16.62 11.93∗ 18.17 38.68 45.24
7 9.99∗∗ 16.27 12.27∗ 17.87 39.05 47.50
8 10.44∗∗ 22.41 13.06 16.05 43.86 48.75
9 10.12∗∗ 25.400 9.98∗∗ 16.16 45.48 62.18
10 16.34 26.16 10.32∗∗ 17.59 46.09 64.77

LRin
t,T

1 6.73∗∗ 16.64 5.65∗∗ 11.75 8.44∗ 24.14
2 9.55 22.23 5.70∗∗ 4.51∗∗ 6.36∗∗ 29.81
3 10.04 21.09 5.00∗∗ 6.43∗∗ 5.85∗∗ 27.32
4 9.70 20.03 7.34∗∗ 6.27∗∗ 11.07 31.95
5 7.90∗ 15.62 6.90∗∗ 6.14∗∗ 9.33∗ 36.58
6 7.17∗∗ 16.22 8.92∗ 5.30∗∗ 9.70 37.61
7 6.95∗∗ 15.80 8.80∗ 5.26∗∗ 9.70 38.11
8 7.43∗∗ 21.77 8.42∗ 5.95∗∗ 13.64 39.75
9 7.61∗∗ 24.98 6.54∗∗ 5.79∗∗ 13.11 49.99
10 14.69 25.65 6.30∗∗ 7.64∗∗ 13.07 52.58

Table A.3.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures return
series for the first 10 months-to-mature constant-maturity series.
∗∗ and ∗ denotes failure to reject the null hypothesis that the VaR
model is accurate at 90% and 95% respectively. Out-of-sample
period: 29th March 1999 - 30th December 2013. Starting and final
return values are not exceedances of the VaR. Models considered:
K-60, K-120, OEWMAt-6, OEWMAt-12, OEWMA, OGJR.
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Months to Mature EWMAt-6 EWMAt-12 EWMA GJRt GJR

LRuc
t,T

1 0.87∗∗ 5.33∗ 20.49 1.47∗∗ 13.78
2 1.14∗∗ 4.05∗∗ 22.03 1.18∗∗ 16.51
3 1.09∗∗ 7.15 23.74 1.69∗∗ 18.40
4 1.46∗∗ 8.16 26.84 1.15∗∗ 29.32
5 1.00∗∗ 9.25 28.79 2.44∗∗ 28.32
6 0.87∗∗ 9.25 22.71 2.23∗∗ 21.47
7 1.57∗∗ 7.66 22.71 1.94∗∗ 21.95
8 1.68∗∗ 6.92 24.17 2.43∗∗ 22.74
9 0.73∗∗ 7.93 23.42 0.87∗∗ 20.48
10 1.15∗∗ 7.15 18.76 1.99∗∗ 19.44

LRcc
t,T

1 6.00∗∗ 8.43∗∗ 30.03 10.21∗∗ 19.47
2 6.88∗∗ 10.74∗ 29.18 10.50∗∗ 22.44
3 13.13 16.10 30.49 10.91∗ 28.02
4 12.70 14.71 35.12 9.22∗∗ 37.01
5 8.91∗∗ 13.07 39.39 14.04 37.31
6 6.17∗∗ 13.07 29.74 9.71∗∗ 30.28
7 6.14∗∗ 11.80∗ 27.27 10.15∗∗ 28.86
8 7.06∗∗ 11.23∗ 32.75 9.16∗∗ 28.50
9 6.43∗∗ 12.19∗ 35.10 8.49∗∗ 23.76
10 6.89∗∗ 11.58∗ 29.51 9.17∗∗ 23.90

LRin
t,T

1 5.13∗∗ 3.10∗∗ 9.54 8.74∗ 5.69∗∗

2 5.74∗∗ 6.69∗∗ 7.15∗∗ 9.32∗ 5.93∗∗

3 12.04 8.95∗ 6.75∗∗ 9.22∗ 9.62
4 11.24 6.55∗∗ 8.28∗ 8.07∗ 7.69∗∗

5 7.91∗ 3.82∗∗ 10.60 11.60 8.99∗

6 5.30∗∗ 3.82∗∗ 7.03∗∗ 7.48∗∗ 8.81∗

7 4.57∗∗ 4.14∗∗ 4.56∗∗ 8.21∗ 6.91∗∗

8 5.38∗∗ 4.31∗∗ 8.58∗ 6.73∗∗ 5.76∗∗

9 5.70∗∗ 4.26∗∗ 11.68 7.62∗∗ 3.28∗∗

10 5.74∗∗ 4.43∗∗ 10.75 7.18∗∗ 4.46∗∗

Table A.4.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures P&L se-
ries for the first 10 months-to-mature constant-maturity series. ∗∗

and ∗ denotes failure to reject the null hypothesis that the VaR
model is accurate at 90% and 95% respectively. Out-of-sample
period: 29th March 1999 - 30th December 2013. Starting and final
P&L values are not exceedances of the VaR. Models considered:
EWMAt-6, EWMAt-12, EWMA, GJRt, GJR.
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Months to Mature K-60 K-120 OEWMAt-6 OEWMAt-12 OEWMA OGJR

LRuc
t,T

1 2.08∗∗ 1.76∗∗ 1.36∗∗ 5.71∗ 13.85 19.51
2 1.77∗∗ 3.32∗∗ 0.87∗∗ 9.41 25.59 24.66
3 1.22∗∗ 2.08∗∗ 0.87∗∗ 8.97 25.05 29.64
4 2.08∗∗ 3.55∗∗ 0.87∗∗ 13.85 30.10 32.37
5 3.54∗∗ 3.54∗∗ 0.64∗∗ 9.82 32.15 35.06
6 4.08∗∗ 2.06∗∗ 1.00∗∗ 10.10 25.76 36.13
7 3.85∗∗ 3.32∗∗ 1.59∗∗ 7.38 28.23 33.71
8 1.65∗∗ 2.86∗∗ 1.94∗∗ 8.74 29.35 31.80
9 0.97∗∗ 3.18∗∗ 1.94∗∗ 6.41 29.35 33.84
10 1.09∗∗ 2.81∗∗ 1.69∗∗ 6.22 24.17 32.55

LRcc
t,T

1 11.70∗ 9.81∗∗ 6.3∗∗ 11.44∗ 23.86 36.74
2 14.16 12.10∗ 6.00∗∗ 19.03 36.03 44.67
3 16.70 15.37 11.96∗ 20.31 31.56 47.98
4 16.49 17.70 11.96∗ 23.35 35.66 58.62
5 12.26∗ 24.33 8.61∗∗ 13.63 39.97 60.74
6 13.22 22.14 6.47∗∗ 13.77 29.83 58.02
7 10.68∗ 21.63 8.72∗∗ 11.66∗ 33.97 58.39
8 16.97 25.05 10.15∗∗ 12.85 41.12 58.46
9 16.68 25.02 10.15∗∗ 16.17 41.12 59.85
10 16.46 25.22 5.00∗∗ 19.60 35.13 61.60

LRin
t,T

1 9.62 8.05∗ 4.94∗∗ 5.73∗∗ 10.01 17.23
2 12.39 8.78∗ 5.13∗∗ 9.62 10.44 20.01
3 15.48 13.29 11.09 11.34 6.51∗∗ 18.34
4 14.41 14.15 11.09 9.50 5.56∗∗ 26.25
5 8.72∗ 20.79 7.97∗ 3.81∗∗ 7.82∗ 25.68
6 9.14∗ 20.08 5.47∗∗ 3.67∗∗ 4.07∗∗ 21.89
7 6.83∗∗ 18.31 7.13∗∗ 4.28∗∗ 5.74∗∗ 24.68
8 15.32 22.19 8.21∗ 4.11∗∗ 11.77 26.66
9 15.71 21.84 8.21∗ 9.76 11.77 26.01
10 15.37 22.41 3.31∗∗ 13.38 10.96 29.05

Table A.5.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures P&L se-
ries for the first 10 months-to-mature constant-maturity seriess.
∗∗ and ∗ denotes failure to reject the null hypothesis that the VaR
model is accurate at 90% and 95% respectively. Out-of-sample
period: 29th March 1999 - 30th December 2013. Starting and final
P&L values are not exceedances of the VaR. Models considered:
K-60, K-120, OEWMAt-6, OEWMAt-12, OEWMA, OGJR.
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Rollover series EWMAt-6 EWMAt-12 EWMA GJRt GJR

LRuc
t,T

1st 2.50∗∗ 7.52 28.76 2.23∗∗ 1.83∗∗

2nd 1.09∗∗ 8.66 20.27 0.42∗∗ 3.97∗∗

3rd 2.08∗∗ 13.39 21.95 2.67∗∗ 4.31∗∗

4th 2.74∗∗ 15.31 32.26 3.45∗∗ 5.04∗

5th 5.07∗ 21.59 34.09 4.13∗∗ 5.64∗

6th 5.73∗ 20.17 35.11 6.04 6.31
7th 2.79∗∗ 15.63 32.65 2.67∗∗ 6.06
8th 3.20∗∗ 10.41 28.05 2.34∗∗ 7.79
9th 4.44∗∗ 16.56 30.87 2.17∗∗ 6.42
10th 4.61∗ 14.78 26.35 3.54∗∗ 7.16

LRcc
t,T

1st 6.78∗∗ 11.28∗ 35.53 10.25∗∗ 6.38∗∗

2nd 5.95∗∗ 12.10∗ 30.37 6.73∗∗ 8.23∗∗

3rd 6.50∗∗ 15.15 23.86 9.54∗∗ 10.35∗∗

4th 7.52∗∗ 18.89 36.71 13.97 10.82∗

5th 11.48∗ 24.06 38.20 16.03 14.23
6th 12.01∗ 22.87 38.26 16.86 22.84
7th 9.58∗∗ 18.75 36.14 29.36 30.00
8th 10.43∗∗ 14.48 31.96 26.11 31.43
9th 21.12 26.98 39.90 32.97 30.44
10th 17.35 22.36 33.67 26.83 26.71

LRin
t,T

1st 4.28∗∗ 3.76∗∗ 6.77∗∗ 8.02∗ 4.55∗∗

2nd 4.86∗∗ 3.44∗∗ 10.1 6.31∗∗ 4.26∗∗

3rd 4.42∗∗ 1.76∗∗ 1.91∗∗ 6.87∗∗ 6.04∗∗

4th 4.78∗∗ 3.58∗∗ 4.45∗∗ 10.52 5.78∗∗

5th 6.41∗∗ 2.47∗∗ 4.11∗∗ 11.90 8.59∗

6th 6.28∗∗ 2.70∗∗ 3.15∗∗ 10.82 16.53
7th 6.79∗∗ 3.12∗∗ 3.49∗∗ 26.69 23.94
8th 7.23∗∗ 4.07∗∗ 3.91∗∗ 23.77 23.64
9th 16.68 10.42 9.03∗ 30.80 24.02
10th 12.74 7.58∗∗ 7.32∗∗ 23.29 19.55

Table A.6.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures return
series for the first 10-to-mature series. ∗∗ and ∗ denotes failure to
reject the null hypothesis that the VaR model is accurate at 90%
and 95% respectively. Out-of-sample period: 29th March 1999 -
30th December 2013. Starting and final return values are not ex-
ceedances of the VaR. Models considered: EWMAt-6, EWMAt-12,
EWMA, GJRt, GJR.
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Rollover series K-60 K-120 OEWMAt-6 OEWMAt-12 OEWMA OGJR

LRuc
t,T

1st 0.09∗∗ 0.66∗∗ 1.75∗∗ 1.41∗∗ 6.95 2.24∗∗

2nd 1.01∗∗ 0.08∗∗ 1.19∗∗ 3.18∗∗ 11.80 2.97∗∗

3rd 1.48∗∗ 0.18∗∗ 2.24∗∗ 9.47 22.16 5.62∗

4th 2.19∗∗ 0.02∗∗ 6.12 16.72 34.58 8.77
5th 1.39∗∗ 0.10∗∗ 6.33 19.20 37.64 6.95
6th 0.73∗∗ 0.10∗∗ 7.96 20.38 45.25 7.66
7th 1.00∗∗ 0.40∗∗ 7.06 20.38 43.62 10.88
8th 0.52∗∗ 0.22∗∗ 4.95∗ 17.18 40.78 9.59
9th 2.61∗∗ 0.05∗∗ 7.01 17.18 52.74 8.24
10th 1.01∗∗ 0.00∗∗ 5.91∗ 19.76 45.53 9.48

LRcc
t,T

1st 5.76∗∗ 10.39∗∗ 7.26∗∗ 6.02∗∗ 13.59 13.67
2nd 6.16∗∗ 9.10∗∗ 6.35∗∗ 7.27∗∗ 27.12 35.11
3rd 9.98∗∗ 12.10∗ 6.75∗∗ 12.78 23.08 34.13
4th 10.42∗∗ 12.93 9.72∗∗ 19.73 38.88 40.85
5th 9.89∗∗ 13.78 12.32∗ 21.86 41.37 30.76
6th 9.92∗∗ 13.78 13.23 22.95 47.63 41.54
7th 13.84 14.79 11.75∗ 22.95 49.19 42.15
8th 9.49∗∗ 30.45 10.72∗ 22.54 48.74 51.68
9th 19.67 41.79 14.34 29.90 70.01 61.08
10th 9.88∗∗ 35.85 11.90∗ 33.10 61.92 58.30

LRin
t,T

1st 5.67∗∗ 9.73 5.51∗∗ 4.61∗∗ 6.64∗∗ 11.43
2nd 5.15∗∗ 9.02∗ 5.16∗∗ 4.09∗∗ 15.32 32.14
3rd 8.5∗ 11.92 4.51∗∗ 3.31∗∗ 0.92∗∗ 28.51
4th 8.23∗ 12.91 3.60∗∗ 3.01∗∗ 4.30∗∗ 32.08
5th 8.5∗ 13.68 5.99∗∗ 2.66∗∗ 3.73∗∗ 23.81
6th 9.19∗ 13.68 5.27∗∗ 2.57∗∗ 2.38∗∗ 33.88
7th 12.84 14.39 4.69∗∗ 2.57∗∗ 5.57∗∗ 31.27
8th 8.97∗ 30.23 5.77∗∗ 5.36∗∗ 7.96∗ 42.09
9th 17.06 41.74 7.33∗∗ 12.72 17.27 52.84
10th 8.87∗ 35.85 5.99∗∗ 13.34 16.39 48.82

Table A.7.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures return
series for the first 10-to-mature series. ∗∗ and ∗ denotes failure
to reject the null hypothesis that the VaR model is accurate at
90% and 95% respectively. Out-of-sample period: 29th March
1999 - 30th December 2013. Starting and final return values are
not exceedances of the VaR. Models considered: K-60, K-120,
OEWMAt-6, OEWMAt-12, OEWMA, OGJR.
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Rollover series EWMAt-6 EWMAt-12 EWMA GJRt GJR

LRuc
t,T

1st 2.74∗∗ 5.30∗ 21.25 1.32∗∗ 21.48
2nd 1.56∗∗ 6.27 27.44 1.38∗∗ 16.09
3rd 1.98∗∗ 7.80 28.74 1.09∗∗ 14.00
4th 3.89∗∗ 14.25 31.73 3.82∗∗ 22.51
5th 4.31∗∗ 13.39 34.85 5.33∗ 22.83
6th 5.27∗ 15.47 34.78 4.28∗∗ 27.16
7th 3.20∗∗ 10.87 28.74 3.52∗∗ 26.87
8th 1.91∗∗ 7.79 26.17 3.40∗∗ 18.66
9th 3.71∗∗ 12.29 31.73 4.78∗ 24.59
10th 4.91∗ 13.23 26.87 4.28∗∗ 23.34

LRcc
t,T

1st 5.06∗∗ 7.96∗∗ 26.69 6.16∗∗ 25.42
2nd 4.19∗∗ 12.33∗ 31.33 9.93∗∗ 20.49
3rd 5.27∗∗ 12.67 34.50 6.62∗∗ 18.36
4th 12.39∗ 17.96 37.27 11.92∗ 31.69
5th 12.62 16.90 37.85 16.93 30.99
6th 13.23 18.74 37.65 16.31 33.98
7th 8.50∗∗ 14.49 32.22 12.22∗ 33.17
8th 8.01∗∗ 12.49∗ 27.74 15.90 26.55
9th 21.85 24.20 38.47 23.48 38.15
10th 10.58∗∗ 21.69 31.87 12.20∗ 34.40

LRin
t,T

1st 2.32∗∗ 2.66∗∗ 5.44∗∗ 4.84∗∗ 3.94∗∗

2nd 2.63∗∗ 6.06∗∗ 3.89∗∗ 8.55∗ 4.40∗∗

3rd 3.29∗∗ 4.87∗∗ 5.76∗∗ 5.53∗∗ 4.36∗∗

4th 8.50∗ 3.71∗∗ 5.54∗∗ 8.10∗ 9.18∗

5th 8.31∗ 3.51∗∗ 3.00∗∗ 11.60 8.16∗

6th 7.96∗ 3.27∗∗ 2.87∗∗ 12.03 6.82∗∗

7th 5.30∗∗ 3.62∗∗ 3.48∗∗ 8.70∗ 6.30∗∗

8th 6.10∗∗ 4.70∗∗ 1.57∗∗ 12.50 7.89∗

9th 18.14 11.91 6.74∗∗ 18.7 13.56
10th 5.67∗∗ 8.46∗ 5.00∗∗ 7.92∗ 11.06

Table A.8.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures P&L se-
ries for the first 10-to-mature series. ∗∗ and ∗ denotes failure to
reject the null hypothesis that the VaR model is accurate at 90%
and 95% respectively. Out-of-sample period: 29th March 1999 -
30th December 2013. Starting and final P&L values are not ex-
ceedances of the VaR. Models considered: EWMAt-6, EWMAt-12,
EWMA, GJRt, GJR.
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Rollover series K-60 K-120 OEWMAt-6 OEWMAt-12 OEWMA OGJR

LRuc
t,T

1st 1.34∗∗ 0.18∗∗ 2.81∗∗ 1.35∗∗ 14.05 13.01
2nd 2.33∗∗ 1.49∗∗ 2.60∗∗ 4.95∗ 22.62 19.15
3rd 3.12∗∗ 2.45∗∗ 3.82∗∗ 10.36 29.51 23.12
4th 2.01∗∗ 2.03∗∗ 4.91∗ 16.39 39.59 28.18
5th 2.45∗∗ 2.70∗∗ 4.91∗ 17.18 43.62 31.34
6th 3.61∗∗ 1.15∗∗ 6.12 15.83 44.43 34.78
7th 3.51∗∗ 1.01∗∗ 4.91∗ 11.80 41.41 32.05
8th 2.75∗∗ 1.00∗∗ 3.52∗∗ 9.47 37.07 30.69
9th 4.41∗∗ 2.36∗∗ 4.91∗ 11.33 37.91 27.44
10th 2.19∗∗ 3.64∗∗ 4.78∗ 14.57 36.52 30.08

LRcc
t,T

1st 5.95∗∗ 5.62∗∗ 5.74∗∗ 5.99∗∗ 16.25 24.98
2nd 11.07∗ 6.14∗∗ 7.10∗∗ 8.71∗∗ 25.44 43.87
3rd 10.74∗ 10.16∗∗ 6.08∗∗ 14.59 33.14 55.23
4th 12.12∗ 14.46 12.30∗ 21.77 43.37 57.01
5th 9.49∗∗ 18.00 12.30∗ 19.92 47.34 51.99
6th 12.46∗ 19.55 13.19 18.82 47.15 54.38
7th 18.37 20.00 12.19∗ 15.28 46.69 52.66
8th 19.11 26.17 12.22∗ 13.85 45.79 55.22
9th 24.89 29.43 15.15 17.35 52.11 57.49
10th 20.76 25.23 12.53∗ 25.83 53.83 58.97

LRin
t,T

1st 4.61∗∗ 5.44∗∗ 2.93∗∗ 4.64∗∗ 2.20∗∗ 11.97
2nd 8.74∗ 4.65∗∗ 4.50∗∗ 3.76∗∗ 2.82∗∗ 24.72
3rd 7.62∗∗ 7.71∗∗ 2.26∗∗ 4.23∗∗ 3.63∗∗ 32.11
4th 10.11 12.43 7.39∗∗ 5.38∗∗ 3.78∗∗ 28.83
5th 7.04∗∗ 15.30 7.39∗∗ 2.74∗∗ 3.72∗∗ 20.65
6th 8.85∗ 18.40 7.07∗∗ 2.99∗∗ 2.72∗∗ 19.60
7th 14.86 18.99 7.28∗∗ 3.48∗∗ 5.28∗∗ 20.61
8th 16.36 25.17 8.70∗ 4.38∗∗ 8.72∗ 24.53
9th 20.48 27.07 10.24 6.02∗∗ 14.20 30.05
10th 18.57 21.59 7.75∗∗ 11.26 17.31 28.89

Table A.9.: Whole-sample, two-tailed, 1% LRuct,T , LRcct,T , LRint,T based on
Christoffersen (1998) coverage tests on the Brent futures P&L
series for the first 10-to-mature series. ∗∗ and ∗ denotes failure
to reject the null hypothesis that the VaR model is accurate at
90% and 95% respectively. Out-of-sample period: 29th March
1999 - 30th December 2013. Starting and final P&L values are
not exceedances of the VaR. Models considered: K-60, K-120,
OEWMAt-6, OEWMAt-12, OEWMA, OGJR.
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