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Summary 

Unsupervised approaches to learning the morphology of a language play an important 

role in computer processing of language from a practical and theoretical perspective, 

due their minimal reliance on manually produced linguistic resources and human 

annotation. Such approaches have been widely researched for the problem of 

concatenative affixation, but less attention has been paid to the intercalated (non-

concatenative) morphology exhibited by Arabic and other Semitic languages.  

The aim of this research is to learn the root and pattern morphology of Arabic, with 

accuracy comparable to manually built morphological analysis systems. The approach is 

kept free from human supervision or manual parameter settings, assuming only that 

roots and patterns intertwine to form a word.  

Promising results were obtained by applying a technique adapted from previous work in 

concatenative morphology learning, which uses machine learning to determine 

relatedness between words. The output, with probabilistic relatedness values between 

words, was then used to rank all possible roots and patterns to form a lexicon.  Analysis 

using trilateral roots resulted in correct root identification accuracy of approximately 86% 

for inflected words.  

Although the machine learning-based approach is effective, it is conceptually complex. 

So an alternative, simpler and computationally efficient approach was then devised to 

obtain morpheme scores based on comparative counts of roots and patterns. In this 

approach, root and pattern scores are defined in terms of each other in a mutually 

recursive relationship, converging to an optimized morpheme ranking. This technique 

gives slightly better accuracy while being conceptually simpler and more efficient. 

The approach, after further enhancements, was evaluated on a version of the Quranic 

Arabic Corpus, attaining a final accuracy of approximately 93%. A comparative 

evaluation shows this to be superior to two existing, well used manually built Arabic 

stemmers, thus demonstrating the practical feasibility of unsupervised learning of non-

concatenative morphology.   
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Introduction and Background 

 Introduction 

1.1.1 Problem Definition 

The field of natural language processing has over the passing years seen a significant 

growth in the level of automation in building and devising tools and resources which 

rely only minimally or not at all on the expertise of a linguist. Current sophisticated 

empirical and machine learning methods typically apply supervised learning techniques 

in conjunction with labelled data to make predictions about the desired task which 

approach the performance of linguistic experts. The larger and more accurate the 

annotated database is, the better the model learnt for prediction. Yet, there are certain 

situations for which labelled data may be absent or insufficient to produce an effective 

system. For such tasks a more unsupervised approach is needed which is able to find the 

hidden structure in the unlabelled data.  One such field  of research which requires such 

an unsupervised approach is the learning of morphology, especially for morphologically 

rich languages with limited linguistic resources.  

The number and diversity of human languages makes it impractical to manually craft 

lexicons and morphological processors for more than a very small proportion of them. 

Further challenges are posed by the need to deal with dialects and colloquial forms of 

languages. This has motivated recent increased interest in approaches to morphological 

analysis based on unsupervised learning. Inspired by competitions such as the Morpho 

Challenge1, many techniques have been proposed for unsupervised morphology 

learning.  

                                                

1 Website http://research.ics.aalto.fi/events/morphochallenge/ accessed 3rd May 2014 

http://research.ics.aalto.fi/events/morphochallenge/
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Although these techniques are often intended to be language independent, they are often 

directed to a specific group of languages. Most work has aimed at sequential separation 

or segmentation of morphemes concatenated together in a surface word form. This type 

of analysis, outputting stems and appended morphemes aims to identify some kind of 

border between the different morphemes.  However, another type of word formation 

consists of the interdigitation of a root morpheme with an affix or pattern template; in 

this case there is no boundary between morphemes, since they are rather intertwined 

with each other. This type of non-concatenative morphology, which is characteristic of 

the Semitic group of languages, has attracted far less interest for unsupervised learning.  

In this research I present an approach to learning the non-concatenative morphology of 

Arabic, given unannotated data as found in naturally written texts, while minimising 

supervision and manual setting of parameters.  

 

1.1.2 Research Question 

This research tackles the following research questions: 

Can the non-concatenative morphology of Arabic be learnt effectively 

with performance reasonably close to that of linguistic resources and 

tools? To what extent can the devised approach be independent of 

manual settings and language specific parameters? 

 

1.1.3 Chapter Organization 

In this chapter, I first give a brief description of the background and characteristics of 

the Semitic languages detailing the development of Arabic language and its dialect 

(section 1.2). Thereafter, I define unsupervised learning in general and in the context of 

morphology learning (section 1.3). This includes specifying the inputs to the system, 

various layers of details that are output, and the justification for using unsupervised 

methods to learn morphology. Next, I introduce briefly the morphology of Arabic to the 

level needed to understand the problem of morphological processing in this work 

(section 1.4). The section covers the special challenge and justification for learning the 
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rich morphology of Arabic with reference to the two types of morphologies, 

concatenative and non-concatenative. This is followed by a formal definition of a model 

for unsupervised learning of Arabic non-concatenative morphology specifying the input 

and outputs, along with the techniques for unsupervised morphology induction 

(section 1.5). Finally, section 1.6 outlines the thesis organization. 

 

 Language Preliminaries 

1.2.1 Arabic and the Semitic Language Group 

Arabic belongs to the Semitic group of languages which, originating in the Near East, 

are currently spoken in the regions of West Asia (the Arab peninsula), North Africa and 

parts of the African Horn, and also expatriate communities in the North American and 

European continents.  

Arabic dominates the Semitic language family, being an official language, solely and 

jointly, of almost 20 countries in the region stretching from West Asia to North Africa. 

Out of the Semitic language group’s (approximate) 500 million speakers, Arabic  is 

spoken by nearly 300 million (Thompson & Phillips, 2013). The most prominent 

languages in this group are shown in Table 1.1 along with numbers of speakers. 

Language Speakers 

Arabic 300 million 

Amharic 22 million 

Hebrew 7 million 

Tigrinya 6.7 million 

Silt'e 0.8 million 

… … 

Table 1.1: Most spoken Semitic languages 
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1.2.2 Common Characteristics of Semitic Languages 

Nearly all languages in the Semitic family share common characteristics in terms 

phonology, morphology and syntax which make them quite distinct from languages of 

other regions. They exhibit a kind of engineered  structure showing remarkable 

organisation and arrangement with rich content expressed very concisely. Although 

having very different scripts, languages in the Semitic family share certain orthographic 

conventions. The most common is the use of optional diacritic markers to indicate short 

vowels and consonantal germination; the omission of these markers can lead to 

ambiguity in the analysis of words. The script for Maltese is the least ambiguous, with 

alphabetic spelling conventions resulting in a one-to-one mapping from grapheme to 

phoneme. Thereafter, Amharic with a syllabic writing system is arguably less 

ambiguous than Arabic, Hebrew and Syriac, which have the most ambiguity due to 

diacritic omission (Fabri et al, 2014) 

In terms of phonology, Semitic languages are marked by a dearth of vocalic sounds, 

while having a rich consonantal system (Watson, 2002). There are only three basic 

vowels a, I, u, which are realized  in their  short and long forms. The consonant 

collection is rich in guttural sounds. The consonantal phonemes of the language group 

are categorized as voiced, voiceless, and ‘emphatic’, thus constituting a triad in what is 

a subset of the coronal set. The emphatic phonemes may be realized 

as  pharyngealized, velarized, ejective, or plain voiced or voiceless consonants. 

A core characteristic of Semitic languages is their root-and pattern morphology. The 

root consists of 2, 3 or sometimes 4 letter literals denoting a broad meaning or concept, 

onto which a template (or pattern) is applied to form a derived word. Typically gender 

in such languages is expressed both in nouns and verbs. Plurality is also expressed in 

nouns, which besides singular and plural forms have a third type, dual, though this is 

seldom used in contemporary dialects. In terms of verb aspects and tense, there are two 

distinct types of markings which are common to almost all Semitic languages: suffix 

conjugations for past tense, and prefix-suffix conjugations for non-past tense. The 

former marks the verb for gender, number and person, while in the case of the latter the 

prefix primarily indicates person, and the suffix indicates number and gender whenever 

http://en.wikipedia.org/wiki/Pharyngealized
http://en.wikipedia.org/wiki/Velarized
http://en.wikipedia.org/wiki/Ejective
http://en.wikipedia.org/wiki/Voiced
http://en.wikipedia.org/wiki/Voiceless
http://en.wikipedia.org/wiki/Consonant
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the prefix does not indicate these. A more detailed account of Arabic morphology is 

given in section 1.4.1. 

Typical word order in Proto-Semitic languages such Arabic and Hebrew is the head-

first order V(erb)  S(ubject) (O)bject. This is in contrast to the distinct Ethiopian 

language Amharic which has the head final order S-O-V, with nominal phrases being 

Adjective-Noun. The emphatic  V-S-O order is giving way to S-V-O in modern Semitic 

language usage, especially for Arabic dialects and Hebrew, under the influence of 

English and other European languages.  In some dialects, particularly Bedouin, word 

order can be dependent on factors such as the main verb type (dynamic or stative), the 

type of text (distinct event narrative would tend to have head first clauses) and the tonal 

style or stylistics (Holes, 1995; Dahlgren, 1998). 

1.2.3 Origins and Growth of the Arabic Language 

Arabic has been the language of the people of the Arabian Peninsula since time 

immemorial. The language received significant impetus and spread with the coming of 

the religion of Islam. Over the 100 years after its emergence in the sixth century CE, the 

religion spread rapidly in the Arabian Peninsula reaching northern parts up to modern 

day Syria and Turkey; east into Iraq and western Iran; and west into Northern Africa. In 

the centuries to follow, the frontiers of the new faith reached far and wide, extending to 

Spain, Africa and Asian regions of India, Turkestan, China and further into Indonesia.  

The Arabic language is the language of the Holy Book, the Quran. Islam brought not 

only religious and cultural change but also promoted the language through which 

believers could better comprehend the divine literature and teachings of the Prophet 

 It became either the vernacular language of the regions to which Islam spread or .(ص)

was adopted alongside their native language. 

1.2.4 Standard Arabic  

While diversity in the Arabic language existed in pre-Islamic days, a formal standard 

form of the language began to emerge in the sixth century CE, before the advent of 

Islam. Poets started to use a Proto-Classical Arabic, taken predominantly from the 

Hejaz dialect and also other archaic dialects, to recite their poetry which was very 
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different from their own dialects (Lipinski, 1997). This Classical language was then 

codified by the revelation of the Quran adding richness to the grammatical forms. The 

richness of the grammar of Arabic was formalized by grammarians in the eighth century 

CE providing a standard for scholarly work and formal education and usage until today; 

this language is called Classical Arabic.  

Modern Standard Arabic (MSA) has emerged  as the norm for present-day formal  

usage, keeping largely the same syntax and morphology as Classical Arabic while 

differing considerably in lexis and stylistics. Standard Arabic is mostly taught in 

educational institutions and used for formal discourses. It is mostly written and seldom 

spoken, while the regional variety is the primary mode of oral communication.  This 

standard has helped to unite the Arab speaking nations with a common means of 

communication. There is continued effort to preserve and promote the standard 

language keeping its link with the classical form for literary understanding of traditional 

resources.  

1.2.5 Dialects 

As the Arabic language spread to the various nations around the Arab peninsula, 

regional influences of other Semitic and non-Semitic languages began to influence the 

original classical language over the centuries. For example in North Africa, the Arabic 

language of the region has been influenced considerably by Berber and the French 

language. There many dialects and also colloquial forms of the Arabic language in use 

today. Some of the varieties resemble each other while others are quite different and 

largely incomprehensible to speakers from other regions. Although variation in a 

language occurs along different dimensions, some geographically defined variants are 

recognized as: Hejaz and Najd Arabic of the Western and Central (Saudi) Arabia, 

respectively;  Maghrebi Arabic of Morocco, Algeria, Tunisia and Libya; Egyptian 

Arabic; Levantine Arabic  of Lebanon, Syria, Jordan and Palestine; Gulf Arabic spoken 

in Kuwait, Bahrain, Qatar, the U.A.E. and Oman; etc. 

Another important dimension of variation is social, according to the class hierarchy of a 

region.  So the urban dialect of the affluent would be different from that of rural less 

affluent people and also that of the poor Bedouin class (Habash, 2010).  Urban dialects 
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are more prone to evolution due to intermingling of speakers from diverse origins; on 

the other hand the dialect of the Bedouin is considered less prestigious, more rough, yet 

bearing more resemblance to the original Classical Arabic due to social isolation. These 

class-based variations in language are more pronounced in North Africa than they are in 

the Eastern region and Arab Peninsula. Speakers also have the tendency to switch 

dialects according the formality of the situation or when needing to communicate with 

people of other classes.  

The diglossia of using a vernacular regional variety alongside standard Arabic for 

formal situations has continued to exist over the centuries to this day. People mostly 

learn their regional variety as their mother tongue while using MSA in formal 

environments (Watson, 2002).  Speakers tend not to distinguish the two forms as 

separate languages, using them interchangeably according to situation. Each region feels 

their vernacular variant to be the one that mostly closely resembles the 

Standard/Classical form.  

 

 Unsupervised Learning 

Unsupervised Learning aims to identify an underlying structure of some input data 

revealed by the distributional patterns of the key features in the data. Unlike in 

supervised learning or reinforcement learning there is no example knowledge to affirm 

the choice of a particular solution. It has similarities to the problem of density 

estimation in statistics, which is the most basic task of unsupervised learning but also 

encompasses other procedures that aim to explain and summarize important aspects of 

the data.  

Studies show the existence of such learning taking place in the natural environment. 

The human mind, for example, processes information of visual images in an 

unsupervised manner. Clustering has been used in an unsupervised way in simulations 

to process the photoreceptor activities to capture the images of objects characterized by 

a low dimensional cluster having fewer degrees of variation (Dayan, 1999). 
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Unsupervised learning is widely used in scientific research where some of the common 

approaches include clustering, self-organizing map (SOM) from neural networks, 

hidden Markov models, principal component analysis etc. For example, SOM is used 

for certain pattern recognition tasks such as automatic target recognition, which is an 

element in robotic warfare (Ohno et al, 2013). 

In natural language processing, unsupervised learning has been used in a variety of 

tasks such as grammar and lexicon induction, part-of-speech tagging etc. In grammar 

induction, for example, the underlying syntactic structure of a grammatical component 

is recognized for use in further NLP tasks (Klein & Manning, 2002; Clark & Lappin, 

2010). One of the main reasons for the popularity of using this approach in NLP is the 

advantage of not requiring labelled datasets, which may be expensive to produce. 

 

1.3.1 Unsupervised Learning of Morphology (ULM) 

Unsupervised learning of morphology is a general expression referring to the problem 

of analysing text in the absence of annotation to reveal the required  levels of 

description of how morphemes have been combined to form words, in a particular 

language. There are expressions used to refer to this  problem, including (unsupervised) 

morphology induction, automatic word segmentation, and stemming.  

The various aspects of the problem of unsupervised morphology learning are discussed 

below. 

1.3.1.1 Input 

As the aim is to process a language without making use of any linguistic aids and tools, 

the input is simply the written text of the language without other knowledge or cues to 

describe the text except the words themselves. Hence, an important consideration is the 

size and composition of the dataset. Thus, standard, edited text, which is less likely to 

contain inaccuracies, while also being rich with morphed word types, is preferable in 

order to produce a sound analysis. System accuracy would be dependent on the ratio of 

inflected word frequency to non-inflected word types such as proper nouns. As the 

techniques are based on statistical counts of morphemes, uninflected word types would 
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add to noise in the data. It may be advantageous to work on smaller rather than larger 

datasets, particularly if the complexity of the learning algorithm is much worse than 

linear in the number of input word tokens that are input to the system.  

The structure of input text is another consideration for ULM systems. It is assumed that 

a sentence of the text data is broken down into word tokens, rather than a complete 

utterance as in the case of Chinese and Japanese where sentences but not word tokens 

are delimited. Such languages would first require segmentation of the sentence into its 

component words, as done by Xue (2003) and others, before input into the ULM system 

for morphological analysis. Word context may be of some use for the ULM problem but 

most systems in the literature base their processing on just the vocabulary of the dataset 

to produce the desired output. Hence for such systems, functioning on orthographic 

tokens, the input would be just a bag of words. 

1.3.1.2 Output 

The output of ULM varies significantly between researchers, ranging from the simplest 

task of affix induction to the more complex identification of paradigms for stems. 

Hammarström (2009) presents an ‘implication hierarchy’ to show the different types of 

analysis that ULM systems may output, illustrated in figure Figure 1.1. 

The lower levels in the hierarchy usually imply the higher level solutions, which are 

trivially obtainable. For example, it is possible to easily make same-stem decisions 

given a segmentation of the words. But the converse is not true. A segmentation of all 

words is not possible if the output is simply a same-stem decision.  
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List of affixes 
List, possibly ranked, of either prefixes, 

suffixes or patterns 

↑  

Same-stem decisions 
To decide  whether two stems have the 

same affix 

↑  

Segmentation 
Segment the words into constituent 

morphemes 

↑  

List of paradigms 
Paradigm are affixes subsets that occur 

with certain stem types. 

↑  

Lexicon+Paradigm 
List of stems with links to the paradigm 

that each stem is associated with. 

Figure 1.1: Possible levels of outputs from a ULM system 

 

1.3.1.3 Modelling  

Depending on the type of morphology to be learnt, e.g. either concatenative or non-

concatenative, an appropriate model is chosen to represent the problem for learning the 

morphology. Usually this model, although built with a specific language in perspective, 

is generic enough to be applied to other languages exhibiting the same characteristics of 

morphology represented by the chosen model.  

There are some common assumptions that guide all models designed for unsupervised 

morphology learning, such as, affix strings generally have higher occurrence counts 

than the remaining stem/root which has a relatively lower frequency of occurrence. 

Other assumptions might be specific to type of morphology being modelled.  
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1.3.1.4 Supervision 

The aim is to build into the unsupervised learning technique as few language specific 

assumptions as possible. In order to keep the technique purely unsupervised, there 

should be no parameters or thresholds that require to be set by a human.  

1.3.1.5 ULM Problem 

The ULM problem can be visualized as illustrated in Figure 1.2. 

 

Figure 1.2: General processing steps for unsupervised learning 

 

1.3.2 Justification for ULM 

Research in ULM has a long history. Researchers have been motivated by a variety of 

reasons for developing morphology induction techniques. As early as the 1950s, some 

researchers were interested in ULM from a theoretical perspective (Bloomfield, 1963), 

studying the morphological structure of language based on distribution rather than 

semantics (Andreev, 1963, 1965). Some researchers such as Clark (2002) are interested 

in the modelling of the human language acquisition process which is largely 

unsupervised in nature. Another reason has been the difficulty of accommodating large 

dictionaries in the limited memory and storage systems of the past (Wothke, 1986; 

Klenk, 1985).   

Raw Unannotated 
Text 

[sentences or 
vocabulary list] 

Unsupervised Learning 
[e.g. MaxEnt Modelling, Affix 

Extraction Algorithm etc.] 

Morphological 
Structure 

[segmentation, 
paradigms etc.] 

Minimal Assumptions 
(language specific parameters, 

thresholds, etc.) 
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Why would researchers be interested in investigating unsupervised learning approaches 

to morphology when advances have made it possible to build resources such as large 

manually encoded dictionaries, finite-state approaches with hand written rules, and 

techniques for supervised learning that are known to give high performance? The core 

reason has been to counter the cost of manual labour required in building lexical 

resources for use in advanced natural language applications. For very many languages 

and dialects there are no existing linguistic resources. In supervised learning, the 

labelled data may be difficult and expensive to obtain requiring intensive manual labour 

and standardization. Even for resource-rich languages there is a constant flux in 

vocabulary with new word usages and adaptations, thus requiring constant updating 

which itself is an overhead. On the other hand, unsupervised morphology learning 

offers the possibility to acquire the morphology of a language without incurring much 

expense and manual labour and can be applied to a diverse set of languages. 

 

 Morphology 

As the term implies literally, morphology (from ancient Greek, morphe + logos), is the 

study/discourse (logos) of changes in form (morphe). In the linguistic context it mostly 

refers to changes in the form of words of a language. In the linguistic context it mostly 

refers to changes in the form of words of a language. Words are the fundamental 

building blocks of language. The surface forms of words can vary from simple, single 

meaning bearing units, to complex units, the meaning of a complete sentence or 

proposition. Nearly all languages combine one or more grammatical units, called 

morphemes, to a base form in order to convey a different meaning to the base meaning. 

These morpheme combinations occur in a variety of manners with different levels of 

complexity. The study of rules for forming the words is given much emphasis by 

researchers as the correct unit chosen for building the syntactic or semantic structure of 

the system is of fundamental importance. Just as continued research in building better 

language processing systems in terms of speed, efficiency, cost, robustness and 

applicability while catering to a diverse set of languages is a requirement, a parallel 

effort is needed to develop dynamic ways to build suitable morpheme word bases on 

which the other language structures are built. 
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The ways in which morphemes combine can be categorized differently. One type of 

categorization relevant to the computational processing of morphology is referred to as 

concatenative as opposed to non-concatenative morphology. When surface forms are 

built using morphemes that append to the beginning or the end of a word, this type of 

process is called concatenative morphology. The appended morpheme at the beginning 

is called a prefix (such as re- in rewrite) and the end is called a suffix (such as -s in 

writes) while some languages have circumfixes consisting of a beginning and end 

element (e.g. in Malay a circumfix, ke..an added to adil “fair”, gives keadilan 

“fairness”).  In non-concatenative morphology there is a different kind of word 

formation which is more complex than simple end attachments. Usually an 

intermingling of morphemes is seen; for example, in the Philippine language Tagalog, 

the affix um “to do something” is infixed to the stem hingi “ask” to form humingi 

meaning “to ask for”. 

 

1.4.1 Arabic Morphology 

Arabic uses  both concatenative as well as non-concatenative morphological processes. 

There are two types of concatenations that take place: firstly, affixation by means of 

prefixes or suffixes, including inflectional morphemes marking gender, plurality and/or 

tense. Secondly, a final layer of clitics may attach to a word, including a subset of 

prepositions, conjunctions, determiners and pronouns; these appear at the beginning 

(proclitics) or end (enclitics) of a word. 

The core of the Arabic word formation process is non-concatenative, that is, it does not 

consist of  sequential appending together of morphemes. This type of word formation is 

sometimes called templatic morphology or root-and-pattern morphology, where a root 

and a pattern template intertwine to form a base word, which can be a noun, verb or 

adjective, all of which are semantically related to the root.  

In the case of Arabic, a further complication is that text is usually written without 

diacritics or short vowels which means that most of the template letters are missing in 

the final word, thus adding to the ambiguity of the analysis. Multiple analyses of a word 

are thus possible.  
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The following subsections describe each important aspect of Arabic morphology. In the 

rest of the chapter, the Arabic script will be accompanied with a Buckwalter 

transliteration (see Appendix A for details).  

1.4.1.1 Concatenative Morphology of Arabic 

Most affixes and clitics append to the beginning and end of nouns and verbs (and 

sometimes particles). A few of the affixes are infixes appearing in the middle of the 

word, which will be discussed later when discussing non-concatenative structure 

(section 1.3.1.2). These affixes may be pronouns, prepositions, conjunctions or case 

endings. Some affixes attach to any word, noun, verb or particle while others are 

specific to either nouns or verbs. In this section, a brief description is given of the 

different types of these morphemes that attach to nouns, verbs and particles. 

Amongst the common affixes, و (w) and ف (f) are clitics that appear as prefixes of any 

word. و (w) is a long vowel whose tendency is to appear in many weak root words hence 

is often confused between an affix and a word. The letter ل (l) has multiple roles in 

different contexts. In a noun it appears as a prepositional clitic, meaning to or for. In 

verbs, it is used periphrastically for emphasis in first and third person imperative, such 

as let/will certainly (e.g.,  ليَِذهبُوا = “Let them go” or “They will go”).  With particles, the 

 is sometimes (<) أ appears again as prepositional clitic. The interrogative marker (l) ل

attached to any first word of an interrogative sentence. Besides these common prefixes, 

some pronouns are suffixed to nouns, verbs and certain particles. Except for the 2nd 

person and 1st person singular the rest of the pronouns are the same for nouns and verb. 

Table 1.1 shows some common affixes including pronouns for the 1st, 2nd and 3rd person 

singular, masculine, with example usages with nouns, verbs and particles.  

http://en.wikipedia.org/wiki/Periphrasis
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 Some Prefixes 
Suffixed Pronouns  

(Masculine, Singular) 

 1st 2nd 3rd (l) ل (f) ف (w) و 

Noun 

كُتبُو     

(wakutub) 

and books 

 ف كُتبُ

(fakutub) 

so books 

 لكُِتبُ

(likutub) 

for books 

 كُتبُيِ

(kutubiy 

my books 

 كُتبُكُ  

(kutubiy) 

your books 

 كُتبُهُُ 

(kutubuhu) 

his books 

Verb 

ي كْتبُ  و 

(wayakutub) 

and he writes 

 ف ي كْتبُ

(fayakutub) 

then he writes 

 ليِ كْتبُ

(liyakutub) 

so he writes 

مِ  نيِع  س   

(samiEaniy) 

he heard me 

مِ  ك  ع  س   

(samiEaka) 

he heard you 

هُ ع  مِ س    

(samiEahu) 

he heard him 

Particle 

فيِ  و 

(wafi) 

and in 

 ف فيِ

(fafi) 

so in 

 ل فيِ

(lafi) 

certainly in 

 ليِ

(liy) 

for me 

 ل ك  

(laka) 

for you 

 ل هُ 

(lahu) 

for him 

Table 1.2: Example usages of common prefixes and suffixes 

In the case of nouns, the most common affix is the determiner ال (Al), which appears as 

a prefix, corresponding to the English determiner the. It has other variants, such as وال 

(wAl), meaning  and the and لل (ll), meaning for the, due to the preceding conjunctions, 

 In Arabic some prepositions that attach to the noun are inseparable. The .(l) ل and (w) و

five prefixed prepositions are ب (b) (meaning by/with), ك (k) (meaning as), ل (l) 

(meaning for), and و (w) (meaning (swearing) by the). Nouns often gets feminized by 

attaching the feminine marker ت (t) at the end of the word. The masculine and feminine 

sound plurals end with ون (wn) and ات (At) respectively, and the dual attachment for 

masculine/feminine is ان (An). In the case of feminized nouns, the ة (p) is replaced by ت 

(t) for dual when attaching the  ان (An). In the case of plurals the ة (p) is dropped, and ات 

(At) added. A list of selected prefixes and suffixes specific to nouns is shown with 

examples in Table 1.2. 
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 Noun Prefixing Number Marking 

 Singular Dual Plural (b) ب (Al) ال 

Masculine 

لِّم  الْمُع 

(AlmuEal~im) 

the teacher 

لِّم  بمُِع 

(bimuEal~im) 

by a teacher 

لِّم  مُع 

(muEal~im) 

a teacher 

ان لِّم   مُع 

(muEal~imAn) 

two teachers 

لِّمُون  مُع 

(muEal~imwn) 

teachers 

Feminine 

ة لِّم   الْمُع 

(AlmuEal~imap) 

the teacher (f) 

ة لِّم   بمُِع 

(bimuEal~imap) 

by a teacher (f) 

ة لِّم   مُع 

(muEal~imap) 

a teacher (f) 

تان لِّم   مُع 

(muEal~imatAn) 

two teachers (f) 

لِّم ات  مُع 

(muEal~imAt) 

teachers (f) 

Table 1.3: Example usages of noun prefixes and suffixes 

Besides the common affixes for nouns and verbs discussed above there is a class of 

prefixes and suffixes that is specific to verbs. Prefixes are added to represent the 

present-tense verb with different realizations for 1st, 2nd and 3rd person masculine and 

feminine. In the case of 2nd person feminine a suffix ي (y) is also added besides the 

prefix ت (t). The first three columns of Table 1.3 exemplify these different person forms 

for the singular. In order to put the same words into the future tense, the same prefixes 

are used for each respective form with the addition of the letter س (s) which is prefixed 

as a second layer on the present-tense prefix layer. An example of this is seen in column 

four of Table 1.3. Certain pronouns are excluded from the common pronoun suffixes. 

These pronouns are specific to verbs are listed in the table along with gender and person. 

Besides these prefixes, a suffix that may occur with 1st, 2nd and 3rd person singular 

feminine past-tense verbs is the attached 3rd person pronoun; for example the masculine 

 is attached as an object, making the word a sentence. This is (hA) ها or feminine (h) ه

shown in the last column of Table 1.3. Finally, the suffix, وا  (wA) is added to the 

imperfect, present and past tense referring to either second person or third person.  
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 Present Tense Prefixes 

(Masculine, Singular) 

Future tense 

marker 

3rd person 

pronoun suffix 

 1st  2nd  3rd  س (s) ه (h) / ها  (hA) 

Masculine 

مأ عْل    

(>aElam) 

I know 

 ت عْل م

(taElam) 

you know 

 ي عْل م

(yaElam) 

he knows 

ي عْل م  س 

(sayaElam) 

he will know 

ي عْل مُهُ   س 

(sayaElamuhu) 

he will know him 

Feminine 

 أ عْل م

(>aElam) 

I (f) know 

يت عْل مِ   

(taElamiy) 

you (f) 

know  

 ت عْل م

(taElam) 

she knows 

ت عْل م  س 

(sataElam) 

she will know 

ي عْل مُه ا  س 

(sayaElamuhaA) 

he will know her 

Table 1.4: Example usage of mostly verb prefixes and suffixes 

Other than these types of concatenative attachments there are some clitics such as ما 

(mA), لا (lA), and يا (yA) which may appear as proclitics of some words.  

1.4.1.2 Non-Concatenative or Templatic Morphology of Arabic 

As stated earlier templatic morphology is the process of word formation in which the 

base root letters, having a semantic meaning, intertwine with the pattern templates 

encoding syntactic information to obtain the derived stem word or lemma. Most Arabic 

roots are triliteral (3-letter), while some are quadraliteral (4-letter) and there are a few 5-

letter roots. There are approximately 9000 roots listed in the famous Arabic Dictionary, 

Lisan ul Araby (Moukdad, 2006) of which 5000 roots are in usage in Modern Standard 

Arabic (MSA) (Beesley, 1996). Attia et al (2011) have compiled up to 549 patterns in 

Arabic, of which most patterns are rarely used.  The different templatic formations can 

be categorized into three types: verb patterns, derivational patterns and nominal broken 

plural patterns.  

Verbs have a several patterns of which 12 basic patterns are the most important. A few 

additional patterns are not used frequently. Ten of the twelve patterns occur with 3-letter 
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roots and the remaining two occur with 4-letter roots. Verb patterns are  usually 

represented using three abstract letters ف(f), ع(E), and ل(l). The most basic pattern, 

which just used to represent the three and four letter root, is ل - ع - ف (f-E-l) and ع - ف - 

ل  - ل  (f-E-l-l) . This pattern representation is known as the scale or form. Each 

individual pattern on a particular scale has its own meaning but some of these scales are 

semantically related, one having been derived from the other; for example, the form II is 

the causative of form I. Some of the verb scales or forms are standardly denoted by 

Roman numerals in MSA; Table 1.4 shows a sample, with their respective meanings. 

Form Transliteration Meaning Example 

I   ل -f-a-E-a-l-a The simplest, basic form of 3 ف ع 

letter root in past tense verb 

ت ب  ك    (kataba) 

he wrote 

II   ل  f-a-EE-a-l-a Causative: to make someone do ف عَّ

an action 

م  لَّ ع    (Eallama) 

he taught 

III   ل  t-a-f-a-EE-a-l-a Reflexive of form I-II: this form ت ف عَّ

acts as the object receiving the 

action of Form I-II 

ر  كَّ ذ  ت    (ta*akkara) 

he received the 

reminder 

… … … … … 

QI   ف عْل ل f-a-E-l-a-l-a Basic form of 4-letter root   س سْو   (waswasa) و 

he whispered 

QII  ْل ل  ت ف ع  t-a-f-a-E-l-a-l-a Reflexive or reflexive causative 

of II-I, like form I-III 

س   سْو   (tawaswasa) ت و 

he was whispered 

to 

… … … … … 

Table 1.5: Some example patterns for 3 and 4 letter rooted verbs along with their 

meanings and examples  

Some words are derived from other words; the most common occurrence of derivation 

occurs where a noun derives from a verb form. Most of the derivational changes involve 

a change in pattern while sometimes affixes are appended. Sometimes there is a 

particular pattern that is applied to a particular verb form while elsewhere there is 



19 

 

 

 

considerable variety in the types of patterns that may be applied. For instance, a 

deverbal noun is obtained from a form I verb using a variety of patterns while the 

derivation from all other forms is obtained using a single pattern. The active participle 

and passive particle derive from verbs of different forms. Likewise, nouns of place, time 

and denoting instruments are also derivable from verbs. Some example derivations are 

shown in Table 1.5. 

Form Transliter-

ation 

Meaning Example 

 (kaAtib) كا تبِ   f-a-A-E-i-l Active participle of form I-I فا عِل

writer 

فْعُول كْتوُب m-a-f-E-u-w-l Passive participle of form I-I م   (maktuwb) م 

written 

ل فْع   m-a-f-E-a-l This form is used to indicate م 

noun of place and time 

كْت ب  (maktab) م 

office 

ال  m-i-f-E-a-A-l A nominal pattern to denote مِفْع 

instrument 

 (miktaAb) مِفْت اح

key (one that opens) 

… … … … 

 

Table 1.6: Example patterns for derivational morphology 

Another place where intercalated morphology is apparent is in the case of the Arabic 

broken (irregular) plural, where a singular word undergoes pattern changes, instead of 

the regular appending of a plural marker as seen earlier. Irregular plurals occur just as 

frequently as regular plurals. Patterns for the broken plural are sometimes the same as 

patterns for other derived words. For instance, the singular word كِت اب (kitAb) and the 

plural word ال ال share the same common pattern ,(rijAl) رِج   There is the .(fiEAl) فعِ 

possibility of multiple plurals for a word, which may be all broken or some broken 
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while others being regular plurals. Table 1.6 shows a few example patterns that are used 

to pluralize words.  

Pattern Example 

Arabic Transliteration Singular Plural 

ال ب ر a-f-E-a-A-l-< أفْع   (xabar) خ 

news 

 (xbaAr<) أخْب ار

news 

 (burj) برُج f-u-E-u-w-l فعُُول

tower 

جورُ بُ   (buruwj) 

towers 

ال جُل f-i-E-a-A-l فعِ   (rajul) ر 

man 

ال  (rijaAl) رِج 

men 

 (kitaAb) كِت اب f-u-E-u-l فعُُل

book 

 (kutub) كُتبُ

books 

Table 1.7: Example patterns for the broken plural 

 

1.4.2 Special Issues 

Below are discussed a few special issues that are of particular importance to the 

problem of Arabic morphology learning in this research. 

1.4.2.1 Missing Diacritics 

Diacritics (sometimes referred to as short vowels) in Arabic are symbols used to 

indicate vowels, definiteness, consonant doubling etc. These symbols, as opposed to 

letters, are considered optional and are omitted in most kinds of writing. The few places 

where text may be diacritized include religious text, especially the Quran, children’s 

literature, and poetry (Dukes & Habash, 2010). Text is typically written without 

diacritics except in some places they may be placed by the author in order to 

disambiguate a certain meaning of a word. In the absence of diacritics,  the same 

orthographic word form may indicate a variety of meanings. For example, the word  كتب  



21 

 

 

 

(ktb), without the short vowels, could be interpreted as    ت ب  he wrote (3rd (kataba) ك 

person past tense), ُكُتب (kutub) books, and   ِب  كُت  (kutiba) it was written (past passive verb), 

amongst other meanings.  

In the absence of short vowels, the number of distinct patterns also reduces resulting in 

fewer word formations. Of the 590 patterns identified by Attia et al (2011) some of 

these patterns are orthographically overlapping, having the same form but with distinct 

idiosyncratic meanings. Of these patterns, 306 patterns are orthographically non-

overlapping types. But in the absence of short vowels these patterns further conflate to 

180 types (see Appendix B) with a significant degree of overlap: an average of 3.2 

grammatical patterns are represented by a single undiacritized template.  

1.4.2.2 Morphophonemic Adjustments 

The process of intercalation and concatenation of a root morpheme with templates and 

affixations may not be a straightforward agglutination of morphemes; sometimes the 

resulting word form undergoes changes, which make it quite different from its 

constituents (Holes, 2004). These changes follow certain morphophonemic rules applied 

to the components in the interdigitation and concatenation process. One particular rule 

which is especially relevant to the morphology learning problem is known as the weak 

root radical rule.  

Weak roots are roots that contain one of the three long vowels w (wāw), y (yā ) 

or A (hamzah). Such types of root undergo changes to the weak radical containing the 

long vowel, to adapt to vocalic harmony, sometimes with the vowel being switched or 

being completely dropped from the final word. There are rare occasions where a root 

may contain a weak radical which behaves like a regular consonant, and thus does not 

undergo any morphophonemic changes. An example of these changes is in the case of 

the root letters و-ق- ل  (q-w-l) from the various derivational forms:  قال (qAl), he said; يقول 

(yqwl), he says; قول (qwl), a saying; قيل (qyl), it is said; قل (ql), say (imperative), etc. In 

such cases it is hard to analyse the word back to its root.  
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1.4.2.3 Normalization 

A natural language processing system may apply orthographic normalization to reduce 

noise and sparsity in the data. Generic tasks such as punctuation separation and 

encoding clean-up are universal for all types of language scripts. There are certain tasks 

that are specific to Arabic language processing, of which diacritic removal is 

particularly important. Infrequent and irregular occurrences of diacritics are considered 

noise and are therefore removed. Another important aspect which brings inconsistencies 

is that letter marking on certain types of letters is optional. Thus all letters in a particular 

class type are conflated to one class; for example, humzated forms of Alif (ا),  إ ,(>) أ (>), 

 ئ and (&) ؤ ,Similarly, non-Alif forms of Humza .(A) ا ,are replaced with bare Alif ,(|) آ

(}) are conflated to the bare humza letter ء (`).  One issue with applying unsupervised 

learning to normalized text is that known characteristics about the language are used to 

manually regularize the dataset.  

 

1.4.3 Motivation for Morphological Analysis 

As seen earlier, about 5000 roots can possibly combine with approximately 500 patterns 

to form base words which may be further appended with multiple layers of affixes and 

clitics. The proliferation of word types found in a dataset due to multi-layer fusion of 

morphemes is quite pronounced.  

With such a morphologically rich language, it becomes difficult to adequately capture 

word level dependencies. Due to the different patterns along with concatenation of 

morphemes, especially clitics, the number of alternative formations of words increases 

considerably. For instance, in the Quranic Arabic Corpus2 (comprising around 80,000 

word tokens) the root ت-ك- ب   has 43 realizations due to different pattern and 

concatenative affixes and clitics. These are shown in Table 1.7. 

From a machine learning perspective, derived and inflected forms reduce the number of 

instances of many words. This may give rise to data sparsity problems, which in turn 

                                                 

2 http://corpus.quran.com/download/default.jsp 



23 

 

 

 

may necessitate increasing the number of parameters to obtain feasible models. Also, 

unique word growth is seen to occur at an exponential rate with the growing corpus size 

making it difficult to apply to unseen data. In Figure 1.3, the vocabulary growth rate for 

Arabic is shown in contrast to English. The number of unique words in an Arabic 

corpus increases steadily as the size of the corpus increases. In contrast, in English the 

growth rate tends to flatten, meaning that relatively fewer new words are seen in a 

corpus as the size of the corpus increases. 

 

Word Translit- 

eration 

Gloss 

  bktAb By a book بكتاب

  bktAbkm By your book كتابكم

  bktAbY By my book بكتابى

  b'lktAb By the book بالكتاب

 fkAtbwhm His book كاتبوهم

انفاكتب  f'ktbnA Our book  

هفاكتبو  f'ktbwh so write it 

 flyktb so he writes فليكتب

اكتبهافس  fs'ktbhA So I will 

write it 

  kAtb Writer كاتب

  kAtbA Writer كاتبا

 kAtbwn Writers كاتبون

  kAtbyn Writers كاتبين

  ktAb Book كتاب

  ktAbA Book كتابا

Word Translit- 

eration 

Gloss 

  ktAbh His book كتابه

 ktAbhA Her book كتابها

  ktAbhm Their book كتابهم

  ktAbk Your book كتابك

 ktAbnA Our book كتابنا

 ktAbyh Booklet كتابيه

  Ktb Books كتب

 ktbnA Our books كتبنا

 ktbnAhA We write it كتبناها

 Ktbt You write كتبت

 kttbhA I make him' اكتتبها

write it 

كتابل  lktAb For a book  

  lktAb The book' الكتاب

  Llktb For the books للكتب

  mktwbA Written مكتوبا
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Word Translit- 

eration 

Gloss 

  Snktb We will write سنكتب

 Stktb Will be ستكتب

written  

 Tktbwh You write it تكتبوه

اتكتبوه  tktbwhA You write it 

  wb'lktAb By the book بالكتاب

  wktAb And Book وكتاب

 w'ktb And I write واكتب

 Wktbh And his وكتبه

Word Translit- 

eration 

Gloss 

books  

 wktbnA And we وكتبنا

wrote  

  w'lktAb And the book والكتاب

 Wlyktb And he وليكتب

writes  

  Wnktb And we write ونكتب

  Yktb He writes يكتب

 Yktbwn They write يكتبون

 

Table 1.8: 43 realizations of the root ت-ك- ب   in the QAC 

 

Figure 1.3: Vocabulary growth contrasted for English  

and Arabic (Kirchhoff et al, 2006) 
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 Unsupervised Learning for Arabic Morphology 

Having looked at the definition of unsupervised learning along with its related issues, 

and at the complexities of Arabic morphology, a model for learning the morphology of 

Arabic in an unsupervised manner is now presented. This section looks at: the input 

dataset and the characteristics of the language in it; the output, level of analysis and 

evaluation criteria; and, the techniques for unsupervised morphology learning using 

minimal supervision and language specific characteristics assumed. 

 

1.5.1 Input Data 

Unlike in supervised learning, where the training set is labelled and a separate 

unlabelled set is used for testing, in most work on unsupervised learning, the system 

learns from the unlabelled data and applies it back to the same. 

I have chosen the Quranic Arabic Corpus (QAC)3 as a  test-bed for investigating 

unsupervised learning techniques for non-concatenative morphology. Attributes of the 

QAC along with relevant pre-processing for input to an unsupervised learning system  

are discussed below. 

1.5.1.1 Undiacritized Text and Normalization 

Since most Arabic text is written without vowels, a realistic setting of unvowelled text 

is adopted for the dataset. Using undiacritized text can be an advantage or a 

disadvantage depending on the type of analysis which is being attempted. Since the 

scope of unsupervised morphological processing is limited in terms of analysis to either 

stem or root, working without diacritics is an advantage which decreases the diversity of 

forms to be learnt. The orthographic normalization process involves, besides removal of 

diacritics, the normalization of Alif (ا), Humza (ء) and Ya (ى) as stated in section 1.3.2.3.   

                                                 

3 See Appendix C for details of the Quranic Arabic Corpus (QAC) 
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1.5.1.2 Stemmed vs. Unstemmed Data 

Intuitively, it would be appropriate to stem off the sequentially appended morphemes 

before examining non-concatenative morphology. Unstemmed words would greatly 

increase data sparsity, making root identification extremely challenging. Longer words 

also imply an exponential increase in the search space of possible solutions making the 

algorithm computationally more expensive. Therefore, for learning non-concatenative 

morphology, I use stemmed data, in order to gauge the true performance of the 

templatic morphological learner. This means that all inflection prefixes, suffixes and 

clitics are removed. Since techniques for concatenative unsupervised morphology 

learning are fairly advanced, stemmed words are computable through such approaches. 

For this research however, stemmed words in the dataset were available through a 

manually created resource.  

1.5.1.3 Size and Composition  

Unsupervised, non-concatenative morphology of Arabic is learnt using the undiacritized, 

stemmed vocabulary of  the Quranic Arabic Corpus (QAC). The size of the vocabulary 

is 7369 words, of which approximately 88% of the words are derived words, composed 

of a pattern and a root. The high proportion of derivational forms makes it suitable for 

unsupervised learning. Also, the relatively small dataset size simulates the scenario for 

most of the world’s languages of scarcity of linguistic resources and data. 

 

1.5.2 Analysis Output  

The non-concatenative morphology learning algorithm has three outputs: a scored 

pattern lexicon, a scored root lexicon and a procedure for morphological analysis of a 

word into a root and pattern. The score of an entry in the lexicons indicates the 

confidence the learning algorithm assigns to each morpheme in terms of its soundness.  

The morphological analysis is the chosen root and pattern morpheme of a word which 

gives the highest combined score. In this work, the analysis is restricted to triliteral root 

morphemes as these account for most of the vocabulary of the language. In order to 

evaluate the accuracy of analyses, the percentage of correctly analysed roots is reported 
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as the performance measure for the algorithm. I consider only sound rooted words for 

evaluation. Weak rooted words would be out of the scope of the system to learn 

completely. (However, partial evaluation would be possible with correct identification 

of either one or two root radicals.) 

Patterns are henceforth represented using the ‘-‘ marker to indicate the abstract letters f, 

E or l, intertwined with pattern affix letters. Roots are represented as triliteral strings. 

Due to the absence of short vowels, words are expected to contain single letter infixes. 

Hence at some points,  the learning procedure is restricted to allow only single character 

occurrences between root radical place-holders in pattern templates. Two example 

analyses are shown in Table 1.8.  

Word Root Pattern 

ktAby Ktb --A-y 

tEArf Erf t-A-- 

Table 1.9: Example analyses of two words 

1.5.3 Model 

Model formulation for morphology is different for concatenative and non-concatenative 

morphological structure. For concatenative morphology learning, the search space of 

possible morphemes (i.e. a root and affixes) is all non-interleaved substrings of a word. 

For an n character word there are 2n-1 possibilities. In contrast, for non-concatenative 

morphology, the possibilities for the root of a word are all contiguous and non-

contiguous sequences of characters of length 1 and above. This corresponds to the 

powerset of the characters in the word minus the empty set; there are 2n -1 such 

possibilities. Hence, the search space for both kinds of morphology is exponential, but 

for any value of n>1, there are almost twice as many possibilities for non-concatenative 

morphology. Table 1.9 shows the possible analyses of a four-character word, showing 

the possible outcomes of concatenative and non-concatenative analyses. 
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No. Segmentations 
Root, Pattern  

Combinations 

1 a b c d a,-bcd 

2 a b cd b, a-cd 

3 a bcd c, ab-d 

4 ab cd d, abc- 

5 ab c d ab, --cd 

6 abc d ac, -b-d 

7 a bc d ad, -bc- 

8 abcd bc, a--d 

9  bd, a-c- 

10  cd, ab-- 

11  abc, ---d 

12  abd, --c- 

13  acd, -b-- 

14  bcd, a--- 

15  abcd, ---- 

Table 1.10: Comparing the number of possible analyses of a hypothetical 

word abcd for concatenative and non-concatenative morphology 

1.5.4 Unsupervised Learning Techniques 

This thesis describes two techniques to analyse the non-concatenative morphology of 

Arabic to obtain the analyses of words as described above. The first technique 

(described in Chapter 3) uses a machine learning technique, Maximum Entropy 
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modelling, adapted for unsupervised learning, inputting powerset like morpheme 

combinations as features to train a model to cluster words based on either root or pattern 

similarity. The lexicons are then derived in a subsequent stage. The second technique 

( Chapter 4 and Chapter 5) builds a graph of all possible connections between patterns 

and roots, then analyses the links to reveal the potential root and pattern lexicons. This 

technique falls in the domain of what are known as Link Analysis Ranking algorithms 

which have been applied to Internet webpage ranking (Borodin et al, 2005).  

Certain language specific characteristics are assumed in order to make the learning task 

feasible. As mentioned earlier, only 3-letter roots and corresponding 3-placeholder 

patterns are permitted. This is a supervised parameter which is basic to the learning of 

the morphology. Another such language specific property, in the case of undiacritized 

text, is to disallow root and pattern analyses where more than one consecutive infix 

letter is present in the pattern template. Arguably, for truly unsupervised learning there 

should be no such limitations; however these particular ones are minimal.  

The process for unsupervised learning of Arabic morphology is illustrated in Figure 1.4. 

 

Figure 1.4: Sketch of the unsupervised learning procedure 

 

Stemmed, 
Undiatritized 

vocabulary of QAC 
 

Unsupervised Learning 
[MaxEnt Modelling; Link 

Analysis Ranking] 

Root and Pattern 
Lexicon ; root and 
pattern analysis of 

word 

Minimal Supervision 
(3-letter root only, single infix 

patterns, etc.) 
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 Thesis Organization 

Chapter 2 presents a survey of previous work applying empirical methods to the 

problem of morphology learning. Then, the first of the two methods for unsupervised 

learning, based on Maximum Entropy modelling, is introduced in Chapter 3. The 

second methodology for morphology induction, contrastive learning, based on 

comparative counts of roots and pattern is described in Chapter 4. This second method 

is then extended in Chapter 5 along with a comparison with existing manually built 

stemming tools. Finally, Chapter 6 summarizes the outcomes of this research and 

proposes areas for future work. 
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Literature Survey 

 Introduction 

An active area of research in natural language processing is to have computer systems 

capable of processing human text with little explicit knowledge about a language; this 

has motivated the study of unsupervised or minimally supervised learning of the 

underlying structure of the language purely from naturally occurring text. In the last two 

decades, many techniques to process and learn morphology automatically have been 

applied. This is partly due to advances  in machine learning techniques and their 

successful application to such tasks, and also the increased availability of vast amounts 

of electronic text. 

Chapter 1 introduced the task of unsupervised or minimally supervised learning of 

morphology, which takes a large text corpus and outputs the analysis of each word 

occurring in the corpus with little or no explicit knowledge of the nature of the language 

under consideration. Section 1.2.1 presented an ‘implication hierarchy’ showing 

different levels of analysis chosen by researchers ranging from simple same-stem 

identification to more complex complete word-form analysis or morphological analysis. 

For concatenative languages commonly the task of unsupervised learning is the 

automatic segmentation of word forms into morphemes. For more complex intercalated, 

non-concatenative languages, additional analysis could include identification of root or 

base form. 

 

2.1.1 Chapter Organisation 

The literature review is divided into two main parts: firstly, the area of unsupervised 

learning of morphology is covered generally without focusing on particular morphology 
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type, introducing the main techniques that have been applied to numerous tasks in this 

area (section 2.2). This is followed by the second part which looks at general empirical 

methods and some unsupervised learning methods that have been developed for Arabic 

and other Semitic languages (section 2.3). The review concludes by surveying areas that 

have received little attention to date, and are the subject of the work in this thesis 

(section 2.4). 

 

 Unsupervised Approaches to Morphology Learning 

After introducing early approaches, the review goes on to cover work that has been 

influential in the past decade or so. Almost all approaches have two main steps to reach 

the final solution. The first step is a rough initial estimate of the solution arrived using 

methods involving frequency statistics of n-character grams taking their inspiration 

from the work of Harris (1955). Then follows an optimization step using various 

methods ranging from semantic clues to information theoretic approaches, to refine the 

initial solution. For non-concatenative morphology nearly all approaches involve an 

alignment step between inflected forms and root forms. 

 

2.2.1 Early Work 

The work of Harris (1955) is one of the first convincing attempts at unsupervised 

analysis of words based on the distribution of sub-strings. Harris applied his approach to 

English; the approach has been developed further by many researchers. The process 

considers distributional properties of phonemic representations of a large set of 

utterances, in order to identify morpheme boundaries, outputting segmented words. The 

technique is based on the concept of letter successor variety, where the frequency of the  

n + 1st  letter, given the first n letters, is measured and a potential morpheme boundary 

is hypothesized at positions where sudden frequency peaks occur. 

This work was given a more formal perspective by Hafer & Weiss (1974) in terms of 

probabilistic notions, with the inclusion of entropy into the formulation. They elucidate 

and make improvements on the heuristics proposed by Harris proposing many different 



33 

 

 

 

measures for identifying potential morpheme boundaries. Sometimes the best results 

were obtained using the local maximum of prefix conditional entropy, while in other 

cases obtaining a value above a certain threshold was used as the measure; and 

sometimes two measures were combined, one from the beginning to end and the other, 

from end to beginning of a word, using a predetermined threshold to yield the best 

results. While no one single measure gave the best overall performance, the best 

obtained result gave a precision score of 0.91 with recall of 0.61 on a corpus of 6200 

words.  

 

2.2.2 Information Theoretic Approaches 

2.2.2.1 Minimum Description Length (MDL) Approaches 

Goldsmith (2000, 2001, 2006) developed an unsupervised morphology induction system 

called Linguistica, which uses the Minimum Description Length (MDL) framework. 

Being publicly available, it has been used extensively as a standard for comparison by 

other researchers. Goldsmith focuses his attention only on suffixation (though the 

system is extendable to cover other affixations) applying his work to five languages, 

English, French, Spanish, Italian and Latin. Goldsmith’s application of MDL to the 

problem of unsupervised morphology seeks to globally optimize the analysis of the 

words in the corpus. It is based on the insight that the number of letters in a set of words 

(in written text) is greater than the number of letters if the same words were broken 

down into sets of stems and morphemes. Thus, the more accurately we are able to 

identify the correct morphemes, the smaller (more compressed) would be the length of 

the decomposed data.  

The input to the system is a large unannotated corpus and the output is a list of 

signatures and associated stems. Signatures are simply groups of suffixes that have been 

identified to be affixed by a certain group of stems e.g. NULL.er.ing.s. Signatures are 

different from paradigms as each signature may contain both derivational (-er) and 

inflectional affixes (-ing and -s) as in the above example. Also, each signature may not 

contain the complete set of affixes, as in paradigms such as those missing the past tense 

suffix, -ed, as in certain groups of stems having an irregular past tense e.g. blow, drink, 
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feel. Signatures are therefore only derived based on corpus statistics, and obtaining 

paradigmatic groupings from the signatures is not addressed in this work by Goldsmith. 

Obtaining signatures in Linguistica is a two-step process: firstly, candidate generation 

yields potential signatures and associated affixes as a starting point; secondly, candidate 

evaluation refines the initial set of candidates based on the MDL framework which is 

the main focus and novelty of the research. 

For candidate generation, Goldsmith considers two heuristic methods for obtaining the 

initial candidates, one more rigorous, considering every possible word split and the 

other more intelligent and computationally concise. In the latter, the author collects all 

statistics of word-endings of each word up to 5 characters (6-grams including an end 

word marker) since he is restricting himself to languages which can have suffixes of 

size at most 5 characters long. Using a metric he ranks the 100 most frequently 

occurring suffixes. The words in the corpus are parsed using these suffixes with 

possible multiple parses per word. The best parse for each word is then found using 

another metric which assigns a probability to each parse, preferring longer suffixes over 

shorter ones. The results of this process are groups of stems and their associated 

signature. Some further heuristic processing is applied to remove signatures with one 

stem and stems with one suffix in the signature, resulting in what he refers to as regular 

signatures. 

Once the initial set of signatures (and corresponding stems) have been obtained, in the 

candidate evaluation step these are further evaluated and refined. Based on the principle 

of MDL the best set will be the one that (on morphological decomposition) gives the 

most compact description of the corpus and of the morphology. Using different 

heuristics, many of the erroneous signatures are removed or modified. Each time the 

morphology is adjusted using a particular heuristic, MDL analysis is applied to verify 

any improvement in the adjustment. A lower description length indicates that the altered 

signature is more appropriate to keep; otherwise it is discarded. The author evaluated 

the system, Linguistica, in terms of accuracy (Goldsmith, 2006), which he sees as a 

‘practical’ consideration, as opposed to the commonly used recall/precision measure. A 

gold standard of 15,000 words with the correct morphological analyses was created. A 

positive value is assigned to the analyses of words that correctly matched the gold 
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standard analysis. Of the first 300,000 words of the Brown corpus, the system achieved 

an accuracy of 72%. 

2.2.2.2 Constraint Based Incremental Learning 

Cavar et al (2004, 2005) apply Alignment Based Learning (ABL) algorithms for 

grammar induction to unsupervised induction of morphological rules and lexicons. The 

approach differs from other MDL approaches in that it is an incremental generation and 

induction of the grammar, word by word, rather than one-off generation and revision, 

which is computationally intensive. Another key feature of their work is that there is no 

built-in knowledge in the system such as the type of morpheme, as with Goldsmith’s 

Linguistica. In the design of the algorithm, consideration is given to computational, 

cognitive and linguistic aspects for optimisation. Each iteration of the learning 

algorithm is divided into three steps: (i) In the ABL Hypothesis Generation step if a 

morpheme (restricted to independently occurring morphemes) is a sub-morpheme of an 

input word, the edges of the morpheme are considered to be the morpheme boundaries 

of that word, and a hypothesis is generated with the morpheme along with the affix 

morphemes. (ii) The Hypothesis Evaluation and Selection step uses a number of criteria 

to decide the credibility of a valid hypothesis. (iii) In the grammar extension step, for 

each valid hypothesis a signature is created, similar in structure to Goldsmith (2001), 

and is merged with an existing signature of the same base word. This extended grammar 

is final and not revised except in subsequent input iterations. 

The metrics used in hypothesis evaluation are of key consideration. Three information 

theoretic metrics, Mutual Information (MI), Description Length (DL) and Relative 

Entropy (RE) are used to optimize the size and efficiency of the generated grammar. 

They are motivated by cognitive aspects of languages and grammar, adding constraints 

which limit use of available memory resources; the metrics application process is fast, 

computationally efficient and results in a grammar which minimizes space usage. MI 

predicts the number of bits needed to the left and right of a morpheme. This value is 

maximized to prefer hypotheses with more segmentation. This in turn is countered by 

the other criteria to prefer fewer morphemes. RE measures the cost of adding a 

hypothesis to the grammar by minimizing the divergence of a particular hypothesis 

from the grammar. The notion of DL is similar to the case Goldsmith (2001) i.e. to be 
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able to determine for each hypothesis if the new grammar would have greater or smaller 

length. Besides these metrics, further criteria are used to refine the evaluation:  

boundary morpheme frequencies are used to detect a potential boundary for a word; 

hypotheses with longer morphemes are preferred in order to prevent a degenerate state 

where each letter becomes a morpheme candidate. Certain weights for the evaluation 

criteria have to be set arbitrarily although the authors argue these could be learnt in an 

unsupervised way with further research.  

Two types of evaluations were carried out by the authors: evaluation of the 

signature/rule and of the morphological parse of words. For the former, each rule was 

evaluated to determine whether it contained correct morphemes and stems. The best F-

score for the rule set was 80% on a large portion of the general fiction section of the 

Brown corpus. For the latter, the parsed words of the initial input “under certain 

circumstances” had precision of 100%, but a lower recall of 60%. 

 

2.2.3 Syntax and Semantics 

2.2.3.1 Latent Semantic Indexing 

Schone & Jurafsky (2000, 2001) argue that it is impractical to rely on orthographic and 

phonological features alone for morphology induction. Such approaches would 

incorrectly produce the analysis all+y as opposed to -ally and not cater for spelling 

changes by analysing for example, hated as hat+ed. They propose to incorporate 

semantics to aid in the induction of morphology. In their initial work (Schone & 

Jurafsky, 2000), they first identify and extract potential affixes. Although only suffixes 

are dealt with in this work, their approach is extendable to include prefixes and 

circumfixes; also unlike some previous work they do not ignore capitalization. They too 

have a two-step approach which first identifies a potential set of affixes and later apply 

their semantics approach to pairs of words. For the first step they build for all words 

what is called a character trie, which is a treelike data structure, the nodes of which are 

characters with edges linking the characters in each word. Morpheme boundaries are 

identified where branching occurs, i.e. a variety of subsequent character nodes is 

observed. Once they have identified morphemes, they pair words having the same stem 
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but different affixes (e.g. car/cars; care/cares). Thereafter they use Latent Semantic 

Analysis (LSA) as a means to induce the level of semantic relatedness between the 

words in each pair. The technique identifies semantically related word pairs which are 

morphological variants of each other. They apply their work to English and compare 

with Goldsmith’s Linguistica, showing comparable performance using their semantics-

only approach.  

In follow up work (Schone & Jurafsky, 2001), they extend their model to incorporate 

syntactic and orthographic features. While applying semantics three further cues, affix 

frequency, syntactic context, and transitive closure are included. Their model now 

incorporates prefixes and circumfixes, and they apply their extended algorithm to three 

languages, German, English and Dutch. First, the semantic probability of word 

relatedness is augmented with the orthographic probability of circumfixes (including 

prefixes and suffixes) measured using affix frequencies; thereafter the probability of the 

syntactic context for each morphologically related pair is incorporated into the 

formulation. Each of the additions progressively improves the performance with the 

best F-scores obtained being 88.1%, 92.3% and 85.8% for English, German and Dutch, 

respectively. The results are better than any other system of that time. 

2.2.3.2 Mutual Information 

Baroni et al (2002) use similar approach to Schone and Jurafsky, although instead of 

LSA, they use mutual information to infer the semantic relatedness between pairs of 

words. For orthographic similarity they measure the minimum edit distance between 

words. Their model does not assume any kind of morpheme concatenation nor do they 

incorporate distributional data of word sub-strings such as affix frequencies etc. 

 

2.2.4 Feature-based Classification 

De Pauw & Wagacha (2007) and De Pauw et  al (2007) adapt a machine learning 

methodology to learn the morphological relatedness of words. They consider words to 

be composed of features of initial, terminal and middle substrings. Using a maximum 

entropy classifier they build lists of related nearest neighbour words based on 

orthographic relatedness. The idea of using features is that common orthographic 



38 

 

 

 

features amongst words would be given lower weight while features that occur less 

frequently get higher weight thus potentially identifying a stems morpheme. This 

approach, the authors argue, has greater ability to capture long range dependencies 

between words than other approaches such as minimum edit distance, as used by Baroni 

et al. 

 

2.2.5 Irregular and Non-Concatenative Morphology 

Yarowsky & Wicentowski (2000) describe a lightly supervised technique for irregular 

and non-concatenative morphology induction from a large corpus. Their first goal is to 

learn from data a table of alignments mapping inflected forms to their roots. Thereafter, 

using this information they train a morphological analyser capable of performing 

automatic morphological induction. Some language specific resources are needed for 

the procedure: inflectional part-of-speech categories and corresponding canonical 

suffixes; a dictionary of noun, verb and adjective roots along with an approximate way 

of tagging words in the corpus; and finally, a list of consonants and vowels of the 

language. 

The main challenge addressed by Yarowsky & Wicentowski is to correctly align an 

irregular form with its root, e.g. sang with the root sing rather than the regular inflected 

form e.g. sanged. An obvious approach would be to just consider their ratios of 

occurrence in the corpus; for example, sang/sing with ratio 1.19/1 as compared to 

sanged/sang with ratio 0.007/1. However at times this can be misleading since some 

inflectional forms of words occur rarely. In order to deal with this the authors calculate 

the (smoothed) distributions of ratios over an entire class of inflected/root forms of 

words. For example, for the class VBD/VB (Penn Treebank tags for Past Tense 

Verb/Verb Root) the smoothed distribution, log(VBD/VB), is calculated and for each 

pair like sang/sing, the log ratio value indicates whether it fits the distribution well or 

not. This distribution is not obtained at the outset, as initially the alignments of 

irregular/root forms are unknown. The authors observe that the distribution of 

alignments of regular/root forms is similar to the irregular/root forms, so they initialize 

with statistics of simple suffix stripped and inflected forms. This is naturally noisy, but 

as the discovery of irregular forms progresses, the distribution improves. Other 
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distributions between ratios of inflected forms are also considered e.g. VBG/VBD 

(where VBG is a tag for gerund/particle ending in -ing).  

Two additional cues used to identify related forms are distributional and orthographic 

similarity. Weighted context vectors representing each word are compared to other word 

forms using the cosine similarity measure. The authors argue that morphologically 

inflected words have more similar contexts than synonym words. Further, they use the 

weighted Levenshtein edit distance to gauge orthographic similarity between words, 

assigning higher cost to consonant changes and lower cost to vowel changes. The end 

application is a morphological analyser, estimated using an interpolated back-off model, 

which predicts a stem change, given a root, suffix and POS tag. Although each 

individual metric discussed above does not on its own perform well, combining all the 

metrics together results in an effective morphological analyser giving accuracy of 99.2% 

over all evaluated words (including irregular). 

 

2.2.6 Complete Language Independence 

Hammarström (2007a) presents an exhaustive survey of research on Unsupervised 

Learning of Morphology (ULM). Based on this survey, he makes some key 

observations about previous research in this area: 

 Seemingly due to lack of awareness, a lot of work by different researchers has 

gone on in parallel streams. The same or related ideas have been pursued by 

different researchers with little sharing. 

 There have been lots of experimentation and heuristics proposed without sound 

supporting models or theory.  

 Most approaches are built with the aim of applying to a certain language or 

group of languages. These approaches are governed by language specific 

parameters and thresholds that need to be determined in a supervised manner.  

Based on these observations, Hammarström proposes a model for concatenative 

morphology to overcome shortcomings in past research, which aims to cater to a 

topologically diverse set of languages, without the incorporation of language specific 
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constants and parameters. The aim is to build a theory side-by-side with reasonable 

experimental results and not just to aim at good results without explanation. 

Hammarström (2006a) proposes a formalism which he calls a ‘Naive Model of Affix 

Extraction’. It is naive in the sense that it does not take into consideration the intricate 

affixational requirements of the different languages of the world. The formalism is 

based on the intuition that affix strings (he focusses on suffixes) occur in a corpus with 

much higher frequency than stem or base strings; this asymmetric relationship between 

base forms and suffixes can be exploited. Two main underlying assumptions are made: 

(1) Arbitrary Character Assumption (ACA) which states that a character is equally 

likely to occur in any word-position of the base or suffix string; (2) Frequent Flyer 

Assumption (FFA): the members of the set of suffixes are very frequent. The algorithm 

for identifying suffixes makes use of three properties of suffixes: Frequency, Curve 

Drop and Random Adjustment. All terminal segments and their respective frequencies 

are recorded. The Curve Drop property is then used to see which of these segments is 

well-segmented to the left i.e. -ing and not -ng. Random Adjustment is used to 

distinguish frequent but random segments such as -a from non-random segments (like -

ing or -ng). Finally the three properties are combined to give a score to each segment. A 

ranked list is produced with suffixes at the top and incoherent segments at the bottom. 

Exactly where the demarcation occurs between suffixes and such segments is a difficult 

problem to solve.  

Hammarström (2006b) applies the approach to the problem of same-stem word 

recognition, which is an easier problem than having to accurately extract suffixes. He 

uses a metric based on co-occurrence statistics to quantify which end-segments are 

prone to attach to the same stem. The technique achieves very good results when 

applied to four topologically diverse languages. The author has also successfully 

applied his affixation approach to the problem of language identification (Hammarström, 

2007b). Unlike previous approaches to this task which can analyse text in the range of 

100 characters or more, in this work the author builds a more fine-grained model which 

can accurately classify a one-word input and even classify concatenations of words from 

different languages. “Competitive” accuracy is reported in experiments on a 

multilingual parallel Bible corpus.  
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2.2.7 Conclusion 

This section has covered influential lines of work in unsupervised morphology learning. 

As stated earlier, the desired outputs differ considerably with some systems outputting 

segmentations, some identifying affixes etc. This lack of agreement makes it difficult to 

make reliable comparisons across different approaches. Much progress has been made 

in achieving high accuracy in unsupervised learning which is comparable to supervised 

systems. The MDL-based approach has gained much popularity; however, as pointed 

out by Hammarström (2007a), this technique lacks a sound theoretical basis; and on the 

experimental side, the use of thresholds and constants mars the success of reported 

results. A sound model for unsupervised morphology learning with a solid theoretical 

basis is yet to emerge. 

 

 Computational Morphology of Arabic and Semitic Languages 

Semitic languages, for example Arabic, are challenging to process automatically. This is 

due to several reasons including: rich morphology; ambiguity in the writing system due 

to omitted diacritics; complexity of the way roots and patterns combine to form a word; 

and lack of standardized encoding schemes. Most work in Arabic computational 

morphology so far has been built on knowledge-based, linguistic foundations and 

targeted only for Modern Standard Arabic (MSA). Tools constructed using this 

approach are expensive to build and cannot be easily adapted to other languages or 

dialects. The need for data-driven machine learning approaches is pronounced for such 

languages given the large number of variant dialects. 

This section surveys the various empirical techniques that have been used to learn 

Arabic and other Semitic language morphology. It starts by reviewing work on 

supervised approaches, followed by unsupervised techniques. For concatenative 

morphology, most of these techniques inherit from the general approaches of previous 

research with minor adaptations. The real challenge is to address non-concatenative 

morphology in order to identify the root and pattern from a given word and to 

simultaneously deal with concatenative morphology. 
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2.3.1 Supervised and Semi-Supervised Approaches 

2.3.1.1 Language Model (LM) based Arabic Word Segmentation 

Lee et al (2003) use bootstrapping to incrementally update a language model (LM) for 

best segmentations of a word into morphemes (prefix*-stem-suffix*), starting with a 

small manually segmented corpus and a table of prefixes and suffixes of the language. 

Although Lee et al don’t treat infixes, they segment into multiple prefix/suffixes as 

opposed to one prefix and/or suffix per word. This is important for applications such as 

machine translation, since almost every morpheme is meaning-bearing, having 

corresponding words in another language. The input to the algorithm is a sentence. Each 

token of the sentence is analysed in sequence. For each token all possible segmentation 

scores are computed using an initial trigram language model. The segmentation with the 

highest score is selected. At token boundaries, morphemes from the previous token are 

used as histories for the subsequent token morpheme. Unseen stems are classified as 

‘unknown’. Possible segmentations of a word are restricted to those derivable from a 

table of prefixes and suffixes, obtained from the initial corpus. Derivation of sub-

segmentations of matching prefixes/suffixes enables the system to identify possible 

segmentations which would have been missed out otherwise. However, there is some 

level of filtering (called PS-Filter) which detects illegal segmentations. For example, 

sub-segmentation of the whole prefix Al- into A- and l- is illegal and hence ignored.  

The way the algorithm works is that, starting with an initially segmented corpus and 

vocabulary, a language model based segmenter is built to segment subsequent partitions 

of the unsegmented corpus. The training corpus is divided into a number of partitions. 

At each iteration, the current segmenter is used to segment the next partition, thus 

acquiring new stems and adding new words to the vocabulary. The new segmenter is 

built using the enlarged vocabulary. The algorithm selects the final segmenter and 

vocabulary such that the next partition does not yield further improvement. New stems 

are acquired based on three criteria: (i) frequency threshold, (ii) filtering of stems 

containing substrings having high probability of being a prefix, suffix or prefix-suffix, 

and (iii) contextual filtering, which filters out stems with probability of occurrence of 

prefix/suffixes being greater or lesser than certain thresholds. 
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The authors evaluate performance using Word Error Rate (WER) on 28,449 words 

extracted from a test corpus. As a baseline, each word is assigned a segmentation which 

most frequently occurs in the training corpus. This gives a WER of 26%. Using only a 

trigram LM for segmentation, the WER reduces to 14.7 (an improvement of about 50%). 

Augmenting this trigram LM with the PS-Filter and the three criteria for new stem 

acquisition further improves the accuracy by about 30%. Some segmentations require 

the token’s Part-of-Speech (POS) to be known. Hence the authors adjust the model to 

accommodate sub-string POS probabilities into the model. They achieve an 

improvement of 10% (WER of 2.9% to 2.6% for 110K word training corpus). Overall 

they report 97.3% accuracy which is comparable to state-of-the-art performance of the 

time. 

2.3.1.2  Constraint Based Learning 

Daya (2004) applies a machine learning approach to identify roots for Hebrew, and 

extends the approach to Arabic (Daya et al, 2008). They use a multi-class classifier, 

SNoW, to build three classifiers for each of three root radicals in triliteral roots. They 

chose features having grammatical and statistical characteristics such as character 

location, character bi-grams, prefixes and suffixes. To train their classifiers they used a 

development set of 4800 words extracted from a corpus of 15,000 words and manually 

annotated with root information. Two baselines were built. Baseline ‘A’ was a single 

multi-class classifier attempting to learn the whole root at once. This was inaccurate 

given the large number of target roots and sparseness of the training data. Baseline ‘B’ 

was a combination of three classifiers, one for each consonant of the root. The target 

space for each classifier is now reduced to 22 (the number of letters in Hebrew) for 

which there is ample training data. Since the classifiers are combined straightforwardly 

and independently without considering interdependence of the root radicals, this too is 

inadequate. In order to account for this, they chose an HMM to model the sequential 

occurrence of the three consonants. The probability of the three consonants in sequence 

is now maximized given the word and model. But this too is simplistic and does not 

capture morpho-phonological alterations (such as assimilation and metathesis) from the 

root to the surface form; nor does this model irregular pattern formations. Also there are 

phonological constraints that limit the possibility of certain root formations. All these 
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linguistic constraints have to be accommodated for. The number of possible targets in 

the classifier is further reduced given the (linguistic) fact that (almost always) only 

consonants that occur in the inflected form occur in the root along with a few weak 

radicals that occur in different consonant places. The model with these classifiers 

becomes a new baseline for the extensions that follow.  

Further refinements are applied not to the classifier but rather to re-rank a ranked list of 

plausible roots that are output by the SNoW system for each word. Each root is assigned 

a confidence score based on the soundness of its formation assigned after applying some 

linguistic checks/constraints. A further measure taken into consideration is the inverse 

edit distance between the roots and the word. Thus three scores are combined (equally, 

by taking their product) to obtain a new ranking: (i) product of the three classifier 

outputs, (ii) confidence scores, and (iii) inverse edit distance. The top ranking roots are 

returned as output. Also, multiple roots are retrieved for some words whose scores are 

higher and close to each other. This boosts recall while minimally decreasing precision. 

Overall, the authors report 80.90% precision, 88.16% recall and F-score of 84.38% for 

held-out data. This performance is comparable to performance by Hebrew speaking 

human subjects (F-score of 81.86%) who too have difficulty in extracting correct roots 

from words.  

Daya et al extend the approach to Arabic, for which the problem is somewhat more 

difficult than for Hebrew: the number of letters is greater, hence the number of targets 

(40 in Buckwalter transliteration) is greater; more patterns and infix letters make the 

linguistic constraints more complicated; and the average number of ambiguous roots per 

word is much greater. One advantage over Hebrew is that training data is more 

abundant. Although the linguistic constraints are more simplistic, the system still 

achieves only slightly inferior performance to Hebrew with precision of 78.21%, 82.80% 

recall and F-measure of 80.44%. 

2.3.1.3 Automatic Morphological Analysis 

Darwish (2002) describes the development of an Arabic morphological analyser called 

Sebawai, which he later enhanced (Darwish & Oard, 2007). It learns a probabilistic 

model for combining affixes with stems based on the output of an existing Arabic 
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morphological analyser, ALPNET (Beesley, 1996). It derives the rules and statistics to 

estimate the occurrence probabilities of templates, prefixes, and suffixes. It is trained on 

a list of word-root pairs to first derive the templates that produce stems from roots. 

Thereafter, a list of prefixes and suffixes is generated. Finally, by estimating the 

probability of occurrence of templates, stems, and roots, the system is able to output a 

suitable analysis for a word. The author reports accuracy of 84% in extracting the 

correct root of a word. 

2.3.1.4 Finite State Transducers 

Clark (2001, 2002, 2007) experiments with memory-based algorithms for learning the 

morphology of a language with the aim of understanding human acquisition of language. 

He first builds a supervised model to address the problem of associating base with 

inflected forms, and then enhances the model so that it can be used with semi-

supervised learning. The choice of Arabic as a test-bed was to study modelling of the 

complex phenomena of non-concatenative morphology which can be best exemplified 

by the Arabic broken plural.  

Clark approaches the problem through the use of finite state methods which are able to 

model all morphological processes though with added extensions to accommodate for 

non-concatenation. The model used is a non-deterministic stochastic transducer, 

defining a joint probability over input and output distributions. The model attaches the 

output function to states rather than transitions, bringing it close to a type of Hidden 

Markov Model (HMM), called a Pair HMM (PHMM). This resemblance to HMMs 

allows them to be learnt in the same manner as HMMs. An adaptation of the 

Expectation Maximisation (EM) algorithm is used with extensions to the algorithm to 

accommodate all possible combinations of input and output strings. The trellis data 

structure in the Viterbi learning is extended to three dimensions, with two dimensions 

for the two inputs and one for the position. Unfortunately, sometimes the EM training is 

not effective, with the model converging to a local maximum, meaning that the most 

likely state transition sequence is not the most likely output. Although empirically the 

model works well for simple cases, a better approach is to infer the conditional 

probability distribution of the output given the input from the joint probability of the 

input and output strings and maximizing over the random samples. Another 
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complication is that a single large model models all possible input/output combinations 

which is inefficient, requiring a large parameter space. A more appropriate strategy is to 

use mixtures of models for each morphological paradigmatic class, which can then be 

parameterised easily. Clark therefore subdivides the training data into classes and builds 

a model for each class before mixing them. In order to extend the work to make it semi-

supervised, the author takes input as two lists of unaligned inflected and base forms. 

This can be viewed as a permutation of the two lists having n! alignments, and can be 

modelled as a hidden layer with n2
 parameters. Using the EM algorithm, the 

permutation and string transduction can be simultaneously optimized.  

For evaluation of the semi-supervised approach Clark used two types of datasets. The 

first (PN1) simply consisted of all singular forms in one list and all plurals in another. 

For this set near perfect alignments were obtained with precision and recall of 96.8% 

and 95.5%. A second more realistic set (PN2) consisted of lists with half the words 

randomly removed from each list resulting in half the number of words with correct 

alignments and the rest left unaligned. For this dataset, the system achieved alignments 

with precision and recall of 84.1% and 65.1%, respectively. 

 

2.3.2 Unsupervised Learning of Arabic Morphology 

2.3.2.1 Constraint Based Learning 

Rodrigues & Cavar (2005, 2007) apply their earlier work (Cavar et al, 2004, 2005) to 

induction of Arabic morphology. They have a two-tiered approach to dealing with the 

complex morphology of Arabic. In the first phase they deal with identification of the 

root and in the second they deal with concatenative morphology in the usual way. 

Identification of the root in Arabic is a difficult task due to the complex system of 

variation of the root word into many variant patterns, with the help of short vowel 

changes and infixes. The authors apply a heuristic unsupervised approach for 

identification of roots. The heuristics identify root letters by assigning them a 

confidence score. There are two parts to the score, the positive evidence which is 

normalized by the negative evidence. These are calculated in terms of frequency of 

occurrence of potential root letters and affixes. The intuition behind this measure is to 
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capitalize on the promiscuity of roots as compared to vowel templates. Root templates 

are a more frequent open class, whereas vowel templates are a less frequent closed class. 

Some restrictions and constraints are applied (in a supervised way) to the root learner in 

order to speed up the algorithm. The authors restrict themselves to identifying only 

three letter roots, which is the most common form of verbs in Arabic. Also, they 

constrain their search for roots by requiring a maximum distance of five characters 

between the first and last root radicals, and of three characters between each radical, 

thus excluding unlikely character combinations. Once the roots have been identified, the 

characters from first to last in the radical are replaced by a symbol and any occurrences 

of characters around the symbol are assumed to be concatenations which are then dealt 

with in the second phase of the algorithm in the same manner as in their previous work 

(Cavar et al, 2004, 2005).  

Rodrigues & Cavar tested their approach on 10,000 words having prefixes, suffixes and 

infixes, containing only triliteral roots, generated by the Buckwalter Morphological 

Analyser. Quantitative results were only obtained for the root identification part. The 

system reaches 75% precision after 10,000 words. They observe that incremental 

learning, with longer words input first gives higher final precision. Also, clustering by 

length and frequency of the words revealed distinct categories of open and closed class 

words. 

2.3.2.2 Parallel Corpora (Concatenative Morphology) 

Snyder & Barzilay (2008) harness the connection between languages through parallel 

corpora in order to learn morphology of three major Semitic languages, Arabic, Hebrew 

and Aramaic. They show how cross-lingual parallelism can be utilized to improve 

morphological segmentation without any supervision. Furthermore they investigate how 

the outcome is affected by languages of the same or different families. While 

researchers have in the past exploited parallel corpora for various linguistic tasks 

including morphology, they have done so in an asymmetric, supervised way using 

annotations in one resource-rich language to induce information in another. In contrast, 

Snyder & Barzilay build one multilingual model simultaneously capturing the structural 

regularities in each language without any supervision. Advantages from a joint analysis 

are that structural regularities and irregularities which occur between languages such as 
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prepositional morphemes attached to a word in one language can be identified by 

corresponding missing or detached occurrences in another language; cognates in two 

languages would tend to align, splitting off any attached affixes.  

The authors apply a hierarchical Bayesian model to capture multi- and monolingual 

dependencies between two languages, extendable to multiple languages. Distributions 

need to be identified over two types of morphemes, (i) stray, which are ones that occur 

in one language and not in the other, and (ii) abstract, which are morpheme pairs in two 

languages that may be cognates or share syntactic and semantic properties. The 

distributions over all finite-length stray morphemes in the respective languages are 

modelled using a Dirichlet Process (DP) having a base prior distribution encoding two 

properties of the morphemes: the morpheme length and the end-morpheme character. 

The distributions over all possible pairs of finite strings (from respective alphabets) of 

abstract morphemes are also modelled using a DP having a base prior distribution 

encoding the lengths of the component morphemes. In the case of related languages 

with known phonetic correspondences between alphabets, string-edit distance between 

the correspondences can also be used as a parameter for capturing cognate resemblance 

in the prior distribution. The advantage of using a DP is that it concentrates most of the 

probability mass on a small number of morphemes/morpheme pairs while still reserving 

a small proportion for all other possible strings/string-pairs. Once these two 

distributions are obtained, the next phase is to generate parallel phrases using a 

generative model. This is a four step process: (i) draw the counts of abstract and stray 

morphemes in each language from a Poisson distribution, (ii) draw the abstract and 

stray morphemes according to their counts from their respective DP distributions, (iii) 

order the morphemes using a uniform distribution over all permutations of morpheme 

orderings, and finally (iv) fuse the morphemes into words using again a uniform 

distribution over all permutations of morpheme fusions. The results of this phase are 

parallel phrases that have morphemes that have been implicitly aligned. The final step is 

to obtain a segmentation of the morphemes having high joint-probability marginalizing 

over all possible draws from all three distributions. This is achieved using Gibbs 

sampling.  
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For evaluation, the authors use two baselines: (i) a state-of-the-art system, Morfessor 

(2007), and (ii) monolingual segmentation obtained using monolingual morpheme 

distributions. They evaluate the bilingual models with and without character-to-

character morpheme correspondences. In the former case, they obtain a marked 

improvement over the monolingual baseline for all models (except one, Hebrew + 

Aramaic). No difference was observed between adding English (having a different 

morphological structure) over any other Semitic language (with similar structure). 

However when character-to-character morpheme correspondences were included, a 

boost in performance was seen, reducing relative error for Arabic/Hebrew by 24%. 

2.3.2.3 Learning Vowel-Consonant Distinction From Phonemes 

Goldsmith & Xanthos (2009) learn the vowel-consonant distinction and structure using 

statistical methods based on phonemes rather than word orthography. Starting with 

techniques applied by a Russian researcher, Boris Sukhotin, for the task of 

differentiating vowels from consonants, the authors explore two additional superior 

techniques for the task. They further apply the techniques to determine vowel harmony 

and syllable structure. They report excellent results for their applications.  

Sukhotin’s conceptually and computationally simple approach is based on the 

assumption that vowels occur more frequently than consonants and that alternation 

between vowels and consonants is much more frequent than between vowel-vowel and 

consonant-consonant. To accomplish the task, a square, symmetric matrix is used with 

rows and columns each representing phonemes in the corpus. The values in the matrix 

are the counts of the number of times in the corpus that a phoneme in a row occurs 

adjacent to a phoneme in a column. Next, one vowel is identified by assigning a score to 

each potential vowel. A candidate vowel phoneme would be one whose difference 

between its frequency with a consonant and its frequency with a vowel is positive and 

substantial. This difference is the score assigned to each phoneme; the one with the 

highest score, being the candidate, is then removed from the matrix. In this way two 

classes consisting of vowels and consonants is formed. Looking at the poor results 

obtained on a test set for the English and French datasets, Goldsmith & Xanthos 

identified two sources of failure: firstly, infrequent phonemes suffer from the problem 

of data sparsity, lacking diversity of context; and secondly, high frequency consonants 
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are likely to be classified as vowels since the initial decisions are based on only the 

overall frequency of the phonemes.  

Goldsmith & Xanthos discuss the  application of spectral clustering, in which the 

phonemes are presented as nodes in an undirected weighted graph. They obtain a 

symmetric square adjacency matrix with values being the ‘distributional similarity’ 

between the phonemes. This distributional similarity is calculated by evaluating 

similarity in the contexts of neighbouring phonemes. Thereafter spectral analysis is 

applied to the graph obtaining its second Eigenvector (Fiedler vector). This vector 

assigns a single value to each node of the graph, i.e. each phoneme, such that similar 

phonemes get similar values. This has the effect of grouping similar phonemes along 

different points on the linear scale. Considerable performance improvements were 

observed over Sukhotin’s algorithm, yet misclassification of phonemes were still 

observed.  

The final computational technique discussed by the authors is based on an HMM with 

two states, one for each class. Each state has a probability distribution across every 

phoneme it generates and a distribution over transitions to itself, or to the other state. 

The aim is to determine these two distributions such that the probability of the dataset is 

maximized. The Baum-Welch EM algorithm is used to estimate these distributions, 

guaranteeing a local maximum. This suffices, as only the local structure of words is 

being evaluated. The idea is that consonant-vowel variation will result in a different 

distribution of phonemes in each state. That is, if there is a tendency of a phoneme to 

alternate (i.e. between vowels and consonants) the two groupings would be expected to 

be divided such that the emission probabilities for one of the sets will be higher in one 

state than the other. Also with this tendency we would expect the transition probability 

between the two states to be higher than the transition probability between the same 

states. The results of experiments on both English and French confirm this hypothesis. 

Vowels and consonants of each language indeed converge perfectly to the two sets 

having different emissions in each state. 

Xanthos (2007) applied Sukhotin’s algorithm to a symbolically transcribed wordlist for 

Arabic. The transcriptions thus included short vowel symbols (represented by diacritics) 

in the phonetically transcribed text given as input to the system. Thus, given a word, as 
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a sequence of phonemic symbols, Xanthos’s system (named Arabica) attempts to 

decompose the transcription into a root and pattern, and also identifies the rules that 

govern their combination. It first applies Sukhotin’s algorithm, as described above, to 

identify vowels and consonants based on their distributions. Starting with the simple 

assumption that the root of a word is a sequence of consonants and a sequence of 

vowels is a pattern, the system looks through the dataset for regularities in the 

combinations of roots and patterns. That is, it tries to identify roots that consistently 

combine with certain patterns. Once it finds that a certain set of roots combine with a 

certain set of patterns, words are assigned a structure known as an RP-Structure, which 

can be thought of as a rule for combining certain roots with certain patterns. Words that 

are not assigned an RP-Structure are left unanalysed and their hypothetical roots and 

patterns are discarded. Next the system tries to extend its set of roots and patterns, by 

identifying a set of unanalysed words that correspond to a particular RP-Structure. 

These words are added to the structure, provided that the integration simplifies the 

morphology, gauged using the Minimum Description Length principle as introduced by 

Goldsmith (2001). The algorithm terminates when there are no unanalysed words left.  

 

  Conclusion and Prospective Work 

There is very little reported research on computational approaches to processing non-

concatenative morphology. Most work on unsupervised morphology learning has been 

targeted towards European languages, in which non-concatenative morphology is 

almost non-existent. For Semitic languages, many of the same techniques can be 

adapted for obtaining word segmentations. However, complete analysis of Semitic 

languages including both root-and-pattern morphology and segmentation of words is a 

difficult problem due to the morphological richness of the languages. This is evident in 

the work of Daya (2004) and Rodrigues & Cavar (2005) who manually encode many 

linguistic constraints and restrictions pertaining to a language. Arguably the best 

attempts to analyse the non-concatenative morphology of Arabic to date has been 

presented by Xanthos (2007), who presents an approach to statistically learn 

phonological categorizations of roots and patterns without any linguistic knowledge. 

Here too there is a restriction on the input to only non-inflected words. Simultaneously 
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dealing with concatenative and non-concatenative morphology is a problem that has 

been little explored. The divide-and-conquer approach dealing with concatenative and 

non-concatenative morphology separately, as adopted by Rodrigues & Cavar (2005), is 

a plausible way to obtain a complete analysis. One may be tempted to apply 

concatenative analysis and then deal with root identification; but as shown by Rodrigues 

& Cavar (2005), it is more efficient to deal with concatenation once the root is identified. 

No previous research appears to have addressed root identification for unvowelled text, 

which is the naturally written form of text with short vowels omitted. 

In the area of unsupervised learning of the complex morphology of Semitic languages, 

many problems remain to be addressed. A framework to represent the common morpho-

phonological alterations that occur amongst the various languages in this family needs 

to be formulated. Based on this, a model could be presented defining and learning 

parameters shared by these languages. Root and pattern categorization using spectral 

analysis and HMMs also seems a promising prospect that has so far not been explored. 

A practical tool is needed for analysis to deal with naturally occurring unvowelled text, 

outputting roots and patterns. 
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Maximum Entropy Based Learning 

 Introduction 

The past two decades have seen machine learning techniques applied to a wide range of 

tasks in natural language processing (NLP). Computational power has improved greatly 

making it possible to learn predictive models from vast amounts of information. 

Maximum Entropy (ME) modelling is one such statistical modelling technique which 

learns the most uniform model (having largest entropy) over data given the constraints.  

Although it is a supervised learning methodology, ME modelling has been adapted to 

do unsupervised learning to learn morphological relatedness between words in an 

unannotated corpus. This approach has been pioneered by De Pauw & Wagacha (2007) 

and De Pauw et al (2007) who apply the adapted methodology  to learn morphological 

relatedness for under-resourced languages exhibiting concatenative morphology. 

 

3.1.1 The Approach 

I approach the morphology induction problem by first deriving a morphological 

analyser consisting of two lexicons: a root lexicon and a pattern lexicon. The method for 

developing the lexicons is itself divided into two procedures. First, use the ME based 

machine learning approach to induce groupings or clusters4 of words with orthographic 

similarity between words in terms of the two kinds of morphemes: roots and patterns. 

Second, extract the morphemes from the clusters, which are identified on the basis of 

how the words are related, whether by pattern or by root.  This manner of morpheme 

identification is similar to the work of De Pauw & Wagacha (2007) who apply it to 

extract prefixes of words exhibiting concatenative affixation.  

                                                 

4 Cluster here refers to a collection of words related in terms of morpheme types, without referring to application of 

any clustering algorithm. 
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The output of the first step to obtain morphologically similar word collections is 

comparable to obtaining orthographic similarities between words using Minimum Edit 

distance metrics as used by Baroni et al (2002). Two simultaneous models are built: one 

model abstracts roots based on orthographic properties for each word, and is used to 

derive the root-based word clusters; the other model represents pattern based features in 

order to derive pattern-based clusters of words.   

Using machine learning, De Pauw & Wagacha (2007) capture dependencies between 

orthographically distinct words which are not identifiable by the Minimum Edit 

Distance approach. In the work described below, I present a model based on 

orthographic features for approximating word similarity; this considers two different 

types of morpheme features to obtain word similarity in terms of roots and patterns.  

From the morpheme based clusters resulting from the previous procedure, the next step 

extracts the morphemes from the clusters, which are identified on the basis of how the 

words are related, whether by pattern or by root. Two lists/lexicons are thus obtained for 

pattern templates and for roots, with each entry ranked according to its plausibility.  

These lexicons constitute the induced morphological analyser which is applied back to 

the vocabulary, analysing each word to obtain its root and pattern template.  

 

3.1.2 Chapter Organization 

The approach to unsupervised lexicon induction based on Maximum Entropy (ME) 

modelling is explained in section 3.2. The  section contains a brief introduction to ME 

modelling (3.2.1), followed by the feature selection process (3.2.2); thereafter model 

training with different possible settings  is discussed in detail (3.2.3) with a final 

discussion about model application (3.2.4). The next major phase is lexicon extraction 

which is described in section 3.3, covering the method for weighting the morphemes 

and different scoring methodologies. Section 3.4 describes the morphological analysis  

and section 3.5 presents an evaluation. Finally, the overall design of the system for 

unsupervised learning and conclusion are given in section 3.6 and 3.7, respectively. 
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 Morpheme-Based Clustering 

3.2.1 Maximum Entropy Modelling 

The main goal of machine learning is to make predictions about previously unseen cases 

or phenomena by generalizing from (incomplete) available data about the random 

process; this is known as a model of the data. Thereafter, using this model, predictions 

about future occurrences of the phenomena are made. There are two main tasks to be 

accomplished: firstly, the acquisition of useful facts about the data – this is called 

feature selection; and secondly, choosing a good representation by doing model 

selection.  

For the problem of morphology induction, I approach the goal of data prediction using a 

modelling approach based on the Maximum Entropy (ME) principle. The ME 

framework is able to represent unbounded problem-specific knowledge that is 

interdependent and overlapping which, unlike some  other machine learning paradigms, 

such as Naive Bayes, does not require the features to be independent. For example, in 

problems where classification decisions are made in a sequence, like parsing and 

tagging, it is possible that for the task of classification, the models would use the 

previous classification decisions that have been taken in the sequence. Other than that 

there is great diversity in the nature of features that is possible to incorporate, where the 

contribution, or weight of each feature is determined by a scaling process. Thus it is 

well suited to modelling morphological processes, where the morphological features 

derived from a word, e.g. book, could have the features for example, @b, @bo, @boo, 

ook#, ok#, k#, o, oo. Here the features are overlapping since they have overlapping 

characters with some features incorporating boundary markers to indicate context. 

These features are clearly not independent of each other.   

The basic idea behind maximum entropy modelling is to choose the most uniform 

model of the data given a set of constraints (which may be independent or overlapping); 

or, in other words, to model that which is known while not assuming anything about 

that which is not known. The ME model built for the morphological features as given in 

the above example would generalize over features which are infrequent yet occur more 

frequently than chance, representing the base forms or lemmas of words. The next two 
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subsections give an overview of ME modelling which has been adapted from the 

descriptions of Berger et al (1996) and Ratnaparkhi (1998).  

3.2.1.1 Modelling 

Let 𝑥 be the input of a particular random process from a set of all possible inputs 𝑋 that 

produces 𝑦 as output from a set of all possible outputs, 𝑌. The aim is to produce a model 

that would learn the conditional probability, 𝑝(𝑦|𝑥) i.e. to predict with what probability 

we expect to see the output 𝑦 given 𝑥 as the input.  Assume a random process that 

produces an output 𝑦 from a set of possible outputs. The building blocks of the model 

are the examples of 𝑥 and 𝑦 in the training data. For each input-output pair of a large 

number of samples (totalling N) from training data, (𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁), the 

expected probability of occurrences of each pair is calculated as 

 𝑝(𝑥, 𝑦) =
1

𝑁
× number of times (𝑥, 𝑦) are seen in the data (3.1) 

This value will typically be low, especially in the case where input variables and output 

classes are large, where it would be close to zero for most cases. Let 𝑓 be a function, 

called feature function or feature for short, that denotes the presence or absence of a 

pair (𝑥, 𝑦), 

 𝑓(𝑥, 𝑦) = {
1

 0 

   if 𝑥 and 𝑦 are found

otherwise
 (3.2) 

A feature is thus an individual measurable heuristic property of the phenomenon being 

observed. The expectation of 𝑓 with respect to the empirical probability distribution, 𝑝, 

would then be 

 
𝑝(𝑓) =∑𝑝(𝑥, 𝑦)𝑓(𝑥, 𝑦)

𝑥,𝑦

 
(3.3) 

http://en.wikipedia.org/wiki/Heuristic
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The probability that the model assigns to each feature, 𝑓, with respect to the model 

𝑝(𝑦|𝑥)  is given by the expected value,  

 𝑝(𝑓) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦) (3.4) 

 

where 𝑝(𝑥), is the distribution of 𝑥 in the training data. This model expectation is 

equated to the expected value of 𝑓 in the training data:  

 𝑝(𝑓) = 𝑝(𝑓) (3.5) 

 

 ∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦) =∑𝑝(𝑥, 𝑦)

𝑥,𝑦

𝑓(𝑥, 𝑦) (3.6) 

 

Thus the model of the process, 𝑝(𝑦|𝑥), has been constrained to considering only those 

cases which are in agreement to the training data where the output has the feature 𝑓. The 

equation is referred to as the constraint equation or simply constraint. Hence, any 

new knowledge can be incorporated in the model by constraining the expected value the 

model assigns to the corresponding feature as in (3.5) and (3.6). 

3.2.1.2 Principle of Maximum Entropy 

Assume a set of features 𝑓𝑖 for 𝑖 = 1,2, … 𝑛, each imposing a constraint 𝐶𝑖 and having 

probability, 𝑝(𝑓𝑖). In order to make the model conform to these features seen in the 

training sample, we have from (3.5), 𝑝(𝑓𝑖) =  𝑝(𝑓𝑖). As stated earlier, the aim of ME 

modelling is to find a uniform model, 𝑝 ∈ 𝐶, for 𝐶 = 𝐶1 ∩ 𝐶2 ∩ …𝐶𝑛, which is the set 

of allowable models confined to 𝑝(𝑓𝑖). A measure of uniformity over the conditional 

distribution 𝑝(𝑦|𝑥), is provided by conditional entropy, thus  
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 𝐻(𝑝) ≡∑𝑝(𝑥)𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)

𝑥,𝑦

 (3.7) 

A unique model 𝑝∗, which gives the maximum entropy from the set 𝐶 of possible 

models is selected as the best representative, 

 𝑝∗ = max
𝑝∈𝐶

𝐻(𝑝) (3.8) 

This is a problem in constrained optimization, wherein we try to find 𝑝∗, which gives 

the maximum conditional entropy of all models 𝑝 ∈ 𝐶. The method of Lagrange 

multipliers from theory of constrained maximization  has been used by Pietra et al. 

(1995) . The main steps are outlined below.  

The solution for model 𝑝∗ ∈ 𝐶 can be obtained using a parametric form 𝑝𝜆(𝑦|𝑥) 

deduced using a Lagrangian function, 

 𝑝𝜆(𝑦|𝑥) =
1

𝑍(𝑥)
exp(∑𝜆𝑖𝑓𝑖(𝑥, 𝑦)

𝑛

𝑖=1

) (3.9) 

where 𝜆𝑖 , the Lagrangian multiplier, is the weight of each feature, 𝑓𝑖 , and 𝑍(𝑥) is the 

normalization factor, or the partition factor ensuring ∑ 𝑝𝜆(𝑦|𝑥)𝑦 = 1 for all 𝑥. The 

probability distribution of the form  shown in (3.9) is the one that is closest to 𝑝  in 

terms  of Kullback-Leibler divergence, when subjected to the set of feature constraints. 

Given an exponential model with  𝑛 features and a set of training data (empirical 

distribution), the next step is to do parameter estimation: find the associated real-value 

weight, 𝜆 , for each of the 𝑛 features, which maximize the model's log-likelihood 𝐿(𝑝), 

 
𝐿(𝑝𝜆) =∑𝑝(𝑥, 𝑦) log 𝑝𝜆(𝑦|𝑥)

𝑥,𝑦

 
(3.10) 
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The optimized weight, 𝜆∗, with respect to the exponential model, 𝑝𝜆 is  

 𝜆∗ = argmax
𝜆

𝐿(𝑝𝜆) (3.11) 

The maximum 𝑝∗ of 𝐻(𝑝) for 𝑝 ∈ 𝐶 is then 

 𝑝∗ = 𝑝𝜆∗ (3.12) 

There are numerous techniques to find 𝜆∗, for which the solution cannot be found 

analytically but can only be obtained through numerical methods. 

Certain optimization methods are specifically tailored for maximum entropy modelling. 

One such method is the iterative scaling method designed by Darroch & Ratcliff (1972) 

which is applicable to the problems where feature functions are nonnegative, which of 

course is true for a binary-valued feature-function. Another efficient optimization 

method recently found to be quite effective for ME modelling is the Limited-Memory 

Variable Metric (LBFGS) of Malouf (2002). More details on these optimization 

schemes and the methods chosen follow in section 3.2.3.  

 

3.2.2 Morphological Features  

Features are encoded as feature functions as described in equation (3.2), referred to as 

contextual predicates in the terminology of Ratnaparkhi (1998). Thus each contextual 

predicate holds a certain (output) class, of the classification problem, as true if the 

required set of possible contexts or textual material is observed. With interdependent 

features, there is a possibility that a contextual predicate may depend on the outcome of 

another contextual predicate.  

3.2.2.1 Feature Sets 

There are two feature sets that need to be determined for building two separate models, 

one for root based clustering and the other for pattern based clustering. Both kinds of 

models are considered below.  
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In conventional uses of ME modelling for classification tasks, the problem is usually to 

classify entities, based on the contexts in which they occur, into a pre-defined collection 

of output classes. Contexts are encoded as features. In our case, the entities, i.e. 

vocabulary words, are themselves the output classes and rather than learning a 

classification of these entities, the aim is to determine the proximity between the classes.  

In this approach, there is no consideration of the external context of occurrence of the 

word entities themselves but rather, the context features are derived from each word’s 

orthography, consisting of characters and subwords with different placements within the 

word. For example, given an (outcome) word ‘WORD’, its context may be {B=W, 

B=WO, B=WOR,I=O, I=R, I=OR, E=ORD, E=RD, E=D} where each feature value is 

tagged with the position of occurrence of the subwords within the word, such that “B=” 

is beginning of word, “I=” is inside the word and “E=” is the ending part of the word.  

We define a contextual template to automatically derive context from each vocabulary 

word, to be used as its contextual predicate. Further, using adaptations and linguistically 

motivated heuristics, different levels of feature details can be obtained. These vary from 

an exhaustive feature set, containing every possible combination of characters derivable 

from a word, down to a more selective set. The aim is to discover which feature types 

are contributing towards better efficiency while minimizing the set size to reduce the 

computational cost of model building and application.  

3.2.2.2 Feature Extraction 

The template for building the initial feature set for root based clustering is simply to 

take the powerset combinations of every character occurring in the word; interpreting 

each element of the set as an ordered sequence of characters – the ordering matching 

that of the original word. The feature set thus contains the features from a single 

character to multiple character combinations with contiguous and non-contiguous 

characters from the word. Non-contiguous character combinations account for the inter-

digitation of roots with pattern templates, by bringing the root radicals together from the 

word where they occur non-contiguously, intertwined with pattern characters. In 

contrast, for concatenative morphology, the set would be reduced to only considering 

sequential subsets of character combinations as in the case of the ‘WORD’ example in 
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the previous subsection. The explosion of features due to taking the powerset shows 

how more complicated the task becomes for non-concatenative languages. 

The feature set for the pattern-based clustering model follows from the root based 

feature set: root radicals are replaced by placeholder characters (‘-’) in the pattern; 

characters that are dropped from the root features (i.e. from the non-contiguous 

character combinations), simply appear as affix characters in the pattern template. An 

example of this template application for root-based and pattern-based features is shown 

in the third column of Table 3.1. This feature set is referred to as PS_NBC. 

Word Root-Based Feature Pattern-Based Features 

slAm 

              

s, sl, slA,  

slAm, slm, sA,  

sAm, sm, l,  

lA, lAm, lm,  

A Am m 

-lAm, --Am, ---m, 

 ----, --A-, -l-m,  

-l--, -lA-, s-Am,  

s--m, s---, s-A-,  

sl-m, sl--, slA- 

Table 3.1: PS_NBC features as powerset combination of word  

characters without boundary characters  

A starting boundary character (‘@’) and an ending boundary character (‘#’) are 

appended to the word before applying the contextual template. These added features 

contribute information to reveal the context of the characters, while giving required 

emphasis to the first and last character of the word. Feature sets with boundary 

characters appended to the word undergo refinement by removal of features.  

The experiments (described in section 3.5, below) evaluate five different variants of test 

features (including PS_NBC above). 

From the set of all possible powerset combinations of characters including the boundary 

characters, all spurious boundary character features such as individual occurrences of  

either ‘@’ or ‘#’ or  those without word characters such as “@#” are removed. This 

comprehensive feature set is referred to as PS_XBC. The next feature set I consider is 

one that resembles the type of features used by De Pauw & Wagacha (2007) who 
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append features  with strings to mark beginning, ending, and inside character substrings. 

These distinguish where the word beginning and ending occurs similarly to the case of 

the “WORD” example where features are tagged with “B=” and “E=” tags to indicate 

beginning and ending of word; the absence of boundary characters would indicate the 

inside subword feature similar to the “I=” features. Thus, strings where the first and last 

character of the word appear without a boundary character are dropped. This feature set  

is referred to as PS_BBC. 

Another smaller feature set, PS_1BC, is considered, where I remove features where 

starting and ending boundary characters both occur. This is in order to gauge the 

advantage of using a smaller feature set, while observing any significant change in 

performance.  

Finally, the last type of feature set, NC1_BBC excludes those feature strings with  two 

consecutive characters formed by non-contiguous characters from the word spaced apart 

by two or more characters. In other words, two consecutive characters as potential 

infixes are not allowed. This restriction is based on the fact that for undiacritized text we 

would expect to see only single infix characters.  

 

Table 3.2 illustrates the operation of these feature variants for the word slAmA  

(meaning peace) after appending the boundary characters. The corresponding pattern-

based features derived from the root features in a similar manner to that described for 

PS_NBC, appear in Table 3.3. Here, if a boundary character occurs in the root feature, 

the corresponding pattern feature also retains the same boundary character.  
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PS_XBC PS_BBC PS_1BC NC1_BBC 

 

@s, @sl, @slA, @slAm, 

@slAmA, @slAmA#, 

@slAm#, @slAA, 

@slAA#, @slA#, @slm, 

@slmA, @slmA#, 

@slm#, @slA, @slA#, 

@sl#, @sA, @sAm, 

@sAmA, @sAmA#, 

@sAm#, @sAA, 

@sAA#, @sA#, @sm, 

@smA, @smA#, @sm#, 

@sA, @sA#, @s#, @l, 

@lA, @lAm, @lAmA, 

@lAmA#, @lAm#, 

@lAA, @lAA#, @lA#, 

@lm, @lmA, @lmA#, 

@lm#, @lA, @lA#, @l#, 

@A, @Am, @AmA, 

@AmA#, @Am#, @AA, 

@AA#, @A#, @m, 

@mA, @mA#, @m#, 

@A, @A#, s, sl, slA, 

slAm, slAmA, slAmA#, 

slAm#, slAA, slAA#, 

slA#, slm, slmA, slmA#, 

slm#, slA, slA#, sl#, sA, 

sAm, sAmA, sAmA#, 

sAm#, sAA, sAA#, sA#, 

sm, smA, smA#, sm#, 

sA, sA#, s#, l, lA, lAm, 

lAmA, lAmA#, lAm#, 

lAA, lAA#, lA#, lm, 

lmA, lmA#, lm#, lA, lA#, 

l#, A, Am, AmA, AmA#, 

Am#, AA, AA#, A#, m, 

mA, mA#, m#, A, A# 

@s, @sl, @slA, 

@slAm, 

@slAmA#, 

@slAm#, 

@slAA#, @slA#, 

@slm, @slmA#, 

@slm#, @slA#, 

@sl#, @sA, 

@sAm, 

@sAmA#, 

@sAm#, @sAA#, 

@sA#, @sm, 

@smA#, @sm#, 

@sA#, @s#, @l, 

@lA, @lAm, 

@lAmA#, 

@lAm#, @lAA#, 

@lA#, @lm, 

@lmA#, @lm#, 

@lA#, @l#, @A, 

@Am, @AmA#, 

@Am#, @AA#, 

@A#, @m, 

@mA#, @m#, 

@A#, l, lA, lAm, 

lAmA#, lAm#, 

lAA#, lA#, lm, 

lmA#, lm#, lA#, 

l#, A, Am, 

AmA#, Am#, 

AA#, A#, m, 

mA#, m#, A# 

 

@s, @sl, @slA, 

@slAm, @slm, @sA, 

@sAm, @sm, @l, 

@lA, @lAm, @lm, 

@A, @Am, @m, l, 

lA, lAm, lAmA#, 

lAm#, lAA#, lA#, lm, 

lmA#, lm#, lA#, l#, 

A, Am, AmA#, Am#, 

AA#, A#, m, mA#, 

m#, A# 

 

@s, @sl, @slA, 

@slAm, @slAmA#, 

@slAm#, @slAA#, 

@slA#, @slm, 

@slmA#, @slm#, 

@sl#, @sA, @sAm, 

@sAmA#, @sAm#, 

@sAA#, @sA#, @s#, 

@l, @lA, @lAm, 

@lAmA#, @lAm#, 

@lAA#, @lA#, @lm, 

@lmA#, @lm#, @l#, 

@A, @Am, @AmA#, 

@Am#, @AA#, 

@A#, @m, @mA#, 

@m#, @A#, l, lA, 

lAm, lAmA#, lAm#, 

lAA#, lA#, lm, lmA#, 

lm#, l#, A, Am, 

AmA#, Am#, AA#, 

A#, m, mA#, m#, A# 

 

 

Table 3.2: Root based feature sets for @slAmA# 
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PS_XBC 

 

 

PS_BBC 

 

 

PS_1BC 

 

 

NC1_BBC 

 

@-lAmA, @--AmA, @---mA, 

@----A, @-----, @-----#, @----

A#, @---m-, @---m-#, @---mA#, 

@--A-A, @--A--, @--A--#, @--

A-A#, @--Am-, @--Am-#, @--

AmA#, @-l-mA, @-l--A, @-l---, 

@-l---#, @-l--A#, @-l-m-, @-l-

m-#, @-l-mA#, @-lA-A, @-lA--, 

@-lA--#, @-lA-A#, @-lAm-, @-

lAm-#, @-lAmA#, @s-AmA, 

@s--mA, @s---A, @s----, @s----

#, @s---A#, @s--m-, @s--m-#, 

@s--mA#, @s-A-A, @s-A--, @s-

A--#, @s-A-A#, @s-Am-, @s-

Am-#, @s-AmA#, @sl-mA, @sl-

-A, @sl---, @sl---#, @sl--A#, 

@sl-m-, @sl-m-#, @sl-mA#, 

@slA-A, @slA--, @slA--#, 

@slA-A#, @slAm-, @slAm-#, -

lAmA, --AmA, ---mA, ----A, -----

, -----#, ----A#, ---m-, ---m-#, ---

mA#, --A-A, --A--, --A--#, --A-

A#, --Am-, --Am-#, --AmA#, -l-

mA, -l--A, -l---, -l---#, -l--A#, -l-

m-, -l-m-#, -l-mA#, -lA-A, -lA--, 

-lA--#, -lA-A#, -lAm-, -lAm-#, -

lAmA#, s-AmA, s--mA, s---A, s--

--, s----#, s---A#, s--m-, s--m-#, s-

-mA#, s-A-A, s-A--, s-A--#, s-A-

A#, s-Am-, s-Am-#, s-AmA#, sl-

mA, sl--A, sl---, sl---#, sl--A#, sl-

m-, sl-m-#, sl-mA#, slA-A, slA--, 

slA--#, slA-A#, slAm-, slAm-# 

@-lAmA, @--AmA, 

@---mA, @----A, @---

--#, @----A#, @---m-

#, @---mA#, @--A-A, 

@--A--#, @--A-A#, 

@--Am-#, @--AmA#, 

@-l-mA, @-l--A, @-l-

--#, @-l--A#, @-l-m-#, 

@-l-mA#, @-lA-A, 

@-lA--#, @-lA-A#, 

@-lAm-#, @-lAmA#, 

@s-AmA, @s--mA, 

@s---A, @s----#, @s--

-A#, @s--m-#, @s--

mA#, @s-A-A, @s-A-

-#, @s-A-A#, @s-Am-

#, @s-AmA#, @sl-

mA, @sl--A, @sl---#, 

@sl--A#, @sl-m-#, 

@sl-mA#, @slA-A, 

@slA--#, @slA-A#, 

@slAm-#, s-AmA, s--

mA, s---A, s----#, s---

A#, s--m-#, s--mA#, s-

A-A, s-A--#, s-A-A#, 

s-Am-#, s-AmA#, sl-

mA, sl--A, sl---#, sl--

A#, sl-m-#, sl-mA#, 

slA-A, slA--#, slA-A#, 

slAm-# 

 

@-lAmA, 

@--AmA, 

@---mA, @-

---A, @--A-

A, @-l-mA, 

@-l--A, @-

lA-A, @s-

AmA, @s--

mA, @s---A, 

@s-A-A, 

@sl-mA, 

@sl--A, 

@slA-A, s-

AmA, s--

mA, s---A, s-

---#, s---A#, 

s--m-#, s--

mA#, s-A-A, 

s-A--#, s-A-

A#, s-Am-#, 

s-AmA#, sl-

mA, sl--A, 

sl---#, sl--

A#, sl-m-#, 

sl-mA#, slA-

A, slA--#, 

slA-A#, 

slAm-# 

 

@-lAmA, @--

AmA, @---mA, 

@----A, @-----#, 

@----A#, @---m-

#, @---mA#, @--

A-A, @--A--#, 

@--A-A#, @--

AmA#, @-l-mA, 

@-l--A, @-l---#, 

@-l--A#, @-l-m-

#, @-l-mA#, @-

lAmA#, @s-

AmA, @s--mA, 

@s---A, @s----#, 

@s---A#, @s--m-

#, @s--mA#, @s-

A-A, @s-A--#, 

@s-A-A#, @s-

AmA#, @sl-mA, 

@sl--A, @sl---#, 

@sl--A#, @sl-m-

#, @sl-mA#, 

@slA-A, @slA--

#, @slA-A#, 

@slAm-#, s-

AmA, s--mA, s---

A, s----#, s---A#, 

s--m-#, s--mA#, 

s-A-A, s-A--#, s-

A-A#, s-AmA#, 

sl-mA, sl--A, sl---

#, sl--A#, sl-m-#, 

sl-mA#, slA-A, 

slA--#, slA-A#, 

slAm-# 

Table 3.3: Corresponding pattern based feature sets derived from the root based feature 

set (Table 3.2) replacing root characters with ‘-‘ while copying missing characters from 

the word. Boundary characters are copied from the root-based features without change. 
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3.2.3 Model Training 

3.2.3.1 Parameter Estimation  

Section 3.2.1 argued that one advantage of ME modelling is the ability to incorporate a 

wide diversity of features which are overlapping and therefore not independent of each 

other. But there is a cost to this kind of  representation. The model parameters that need 

to be estimated require large amounts of training data since there are large number of 

free parameters. Also, the estimation process could be subject to rounding-off errors due 

to sparsity of the features. Due to these reasons, a highly efficient and accurate method 

of parameter estimation is required. 

The general algorithm for parameter estimation is as follows:  

Input: Feature functions, 𝑓1, 𝑓2, … 𝑓𝑛  ; empirical distribution 𝑝(𝑥, 𝑦) 

Output: Optimal parameter values; optimal model 𝑝.  

1. Initialize 𝜆𝑖 = 0, 𝑖 ∈ {1,2,3, … , 𝑛} 

2. Do for each, 𝑖 ∈ {1,2,3, … , 𝑛} 

a. Apply method to compute ∆𝜆𝑖 

b. Perform update : 𝜆𝑖 ← 𝜆𝑖 + ∆𝜆𝑖 

3. Repeat step 2 until 𝜆𝑖 converges 

The most significant step (2a) in the algorithm is the method that is used to compute the 

updates ∆𝜆𝑖. There are two types of estimation methods used for computing the updates 

for maximum entropy modelling in the context of natural language processing: iterative 

scaling and gradient-based learning. In this section we outline each of these two types of 

estimation techniques and their merits.  

Iterative Scaling  

Iterative scaling (Huang et al, 2010) is based on iteratively updating the parameters 

ensuring that the objective function is improved at each iteration. Thus, weights are 

updated such that the change in log-likelihood, 𝐿(𝑝𝜆+∆𝜆) − 𝐿(𝑝𝜆) is always positive 

leading to the maximal value for 𝐿(𝑝𝜆). Leaving aside the details of the derivation, after 
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solving for the change in log-likelihood, the updates,  ∆𝜆𝑖, are optimized by finding the 

solution to the equation 

 𝑝(𝑓𝑖) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦)exp( ∆𝜆𝑖𝑓
#(𝑥, 𝑦)) (3.13) 

where 

 𝑓#(𝑥, 𝑦) =∑𝑓𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 (3.14) 

There are two methods for iterative scaling: Generalized Iterative Scaling (GIS) 

(Darroch & Ratcliff, 1972) and Improved Iterative Scaling (IIS) (Berger, 1997; Pietra et 

al, 1995). GIS requires that the value of 𝑓#(𝑥, 𝑦) = 𝐶, a constant, i.e. that the features 

sum to a constant. In this case the updates can be determined analytically by taking the 

factor proportional ratio 

 ∆𝜆𝑖 = log (
𝑝(𝑓𝑖)

𝑝𝜆(𝑓𝑖)
)

1
𝐶

 (3.15) 

If the rows of the training data do not sum to a constant, then the value of the constant C 

is determined empirically by introducing a “correction” feature 𝑓𝑛+1 

 𝐶 = max
𝑥,𝑦

𝑓#(𝑥, 𝑦) (3.16) 

 

 𝑓𝑛+1 = 𝐶 −max
𝑥,𝑦

𝑓#(𝑥, 𝑦) (3.17) 

 

The rate of convergence depends on the step-size, which in turn is determined by the 

value of C: the higher value of C the smaller will be the step size.  



67 

 

 

 

The disadvantage of GIS is that the step size may be very small due to the factor 1 𝐶⁄  

leading to a slow convergence. IIS tries to avoid the use of a correction feature and 

hence the slow convergence by obtaining the solution to the equation (3.13), where 𝑓# 

is the sum of feature values for event 𝑦, and exp(∆𝜆𝑖) is determined numerically, as 

opposed to analytical solution for GIS, by using Newton’s method.  

Gradient-Based Method 

Gradient Based methods (Malouf, 2002) aim to optimize the weight updates according 

to the gradient function  

 𝐺(𝜆) = �̃�(𝑓𝑖) − 𝑝𝜆(𝑓𝑖) (3.18) 

Again, a solution cannot simply be obtained analytically by equating 𝐺(𝜆) = 0 and 

solving for 𝜆. Numerical methods must be applied, adjusting the value of 𝜆 at each step. 

The primary strength of iterative scaling methods lies in the ability to compute the 

expected value 𝑝(𝑓𝑖) without explicitly depending on the expensive calculation of the 

gradient of the log-likelihood function. In actual fact, the expected values vector 

required by the iterative scaling methods is essentially the gradient itself.  

Since the objective is to maximize the log-likelihood, the parameter needs to be updated 

at each step 𝑘, in the direction  in which the objective function’s value increases rapidly, 

maximizing the log-likelihood, 𝐿(𝜆𝑘 + ∆𝜆𝑘). The update for the weights is thus, 

  ∆𝜆𝑘 = 𝑎𝑘𝒅𝑘 (3.19) 

where 𝑎𝑘 is the step size usually set such that 𝐿(𝜆𝑘 + ∆𝜆𝑘) > 𝐿(𝜆𝑘), and 𝒅𝑘 is the 

direction step calculated such that 𝒅𝑘𝐺(𝜆) > 0. As the log-likelihood function is 

concave, the method of steepest ascent (𝒅𝑘 =  𝐺(𝜆)) is guaranteed to find the optimal 

solution. The Newton method further takes into consideration the curvature of the 

gradient,  determining the direction 𝒅𝑘 = 𝐻−1𝐺(𝜆) where 𝐻−1 is the inverse Hessian 

matrix. The Newton Method converges quickly but involves the expensive calculation 

of the Hessian matrix. An approximation of the 𝐻−1 matrix is a matrix 𝐵𝑘, obtained 
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with current and previous updates and gradients by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. The matrix 𝐵𝑘 is expensive to store, hence a Limited Memory 

Variable Method (LMVM) is used which approximates the matrix using only the 

current parameters, i.e.  the previous m values of the updates and the gradient. 

A special advantage of the LMVM-BFGS algorithm is that it is proven to converge very 

fast (Malouf, 2002; Andrew & Gao, 2007). It requires only the gradient to be computed 

at each step, unlike iterative scaling which needs several derivational steps to obtain 

update rules.  

3.2.3.2 Smoothing 

As we are dealing with many features we are bound to encounter issues of data sparsity. 

Several strategies have been proposed to deal with this issue. One possibility is to 

perform a limited number of iterations of model weight training in order to avoid over-

fitting. Another approach is the cut-off method, i.e. to exclude from training features 

which have low frequency counts which are deemed to be uninformative and 

insignificant. 

A technique that has recently been found to be more successful with dealing with data 

sparsity is to replace Maximum Likelihood (ML) estimation with maximum a posteriori 

estimation (MAP) with Gaussian Priors (Chen & Rosenfeld, 2000). The weights, 𝜆, are 

determined to maximize the posterior probability of the model trained on data, 𝐷. 

According to Bayes’ Rule 

 𝑃𝑝𝑜𝑠(𝜆|𝐷) = 𝑃(𝐷|𝜆) × 𝑃𝑝𝑟𝑖𝑜𝑟(𝜆) (3.20) 

Taking the log,  

 �̂�(𝑝𝜆) = 𝐿(𝑝𝜆) −∑(
1

2𝜎𝑖
2)

𝑖

 𝜆𝑖
2 (3.21) 

Setting the prior has the effect that it gives a penalty to the model if the model weights 

are too high or too small. Penalizing this objective function has the effect of avoiding 
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over-fitting. Modifications to the iterative scaling weight calculation algorithm are 

apparent in the update equation, 

 𝑝(𝑓𝑖) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦)exp( ∆𝜆𝑖𝑓
#(𝑥, 𝑦)) −

𝜆𝑖 + ∆𝜆𝑖

𝜎𝑖
2  (3.22) 

This equation again has no analytical solution but can be solved with little overhead 

using, for example, the Newton-Raphson method. For the gradient function we have the 

following modification, 

 𝐺(𝜆) = 𝑝(𝑓𝑖) − 𝑝𝜆(𝑓𝑖) −
𝜆𝑖

𝜎𝑖
2 (3.23) 

This modification also does not have a substantial overhead. 

Gaussian MAP estimation  has been successfully applied to various NLP tasks and 

shown to reduce overfitting. Examples include part-of-speech tagging (Curran & Clark, 

2003)  and language modelling (Berger, 1998).  

3.2.3.3 Model Training for Morphology Induction  

I used a ME modelling toolkit, implemented by Zhang (2004), which implements GIS 

for iterative scaling and the LMVM-BFGS gradient-based method. In the experiments I 

tested with both types of estimation method to see which would work best for the 

unsupervised training task.  

As for the smoothing of ME models, in supervised learning tasks the Gaussian prior is 

usually determined using held-out data. I experimented with various values for the 

Gaussian prior ranging from 0 to 2 or order to gauge any difference in performance due 

to using the different priors.  

The number of iterations also plays a vital role in determining model performance. 

Undertraining and over-training would both result in suboptimal performance. After 

each step of the training iteration, the log likelihood of the model is increasing (i.e. the 
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probability decreases). I choose a cut-off point for the number of  iterations to be where 

the training accuracy reaches 100%. 

 

3.2.4 Model  Application  

Having obtained the various models,  I apply the models back to the same training data 

features. In supervised machine learning tasks, the trained model would be applied to 

unseen data to obtain the best classification output. For the unsupervised learning, for 

every target  word’s feature set, rather than retrieve only the best class, which would be 

the target word itself, all classes are retrieved with proximity values to the target word’s 

features. This proximity is the probability for each class estimated by the maximum 

entropy model given the morpho-orthographic constraints. The novel application of a 

machine learning technique in this manner, where reclassification of the training data 

set takes place, does not bring any kind of unfair advantage in the unsupervised learning 

process (DePauw & Wagacha, 2007). 

Given 𝑉 vocabulary  words, in the application phase, for each word of the corpus 

vocabulary, its features are applied to the model to get 𝑉 word classes with proximity 

values. Sorted in descending order, this results in a ranking of word proximities with the 

most similar words at the top. The top entry in the ranking with score ≈1 would be the 

target word itself whose features are input into the model. Thereafter words with the 

most probable features to the target word’s features are ranked in order. Probability 

values along the ranked list drop drastically, so I decided to cut off the list at k=500 

words, as a sufficient number to gauge proximity for root based and pattern based  word 

similarity.  In summary, the output file of the model application phase consists of 𝑉 

clusters of 𝑘 nearest neighbour words. An example of one such pair of root and pattern 

clusters for the word, slAm is shown in Table 3.4. 
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 slAm 0.999664   slAm 0.998416 

1 slAmA 0.000283  1 slym 0.000853 

2 ElAm 2.24E-05  2 ElAm 1.89E-05 

3 ZlAm 7.80E-06  3 klAm 1.84E-05 

4 slm 7.39E-06  4 glAm 1.84E-05 

5 'slAm 4.87E-06  5 ZlAm 1.84E-05 

6 slmA 4.43E-06  6 sqym 6.32E-06 

7 glAm 2.68E-06  7 smwm 6.28E-06 

8 klAm 1.07E-06  8 sAhm 6.28E-06 

9 slAlp 5.73E-07  9 slmA 1.28E-06 

10 slTAn 5.46E-07  10 slfA 1.27E-06 

11 sAlt 1.54E-07  11 Hlym 1.27E-06 

12 Alm 1.31E-07  12 tlwm 1.27E-06 

13 lA 1.15E-07  13 Elym 1.26E-06 

14 sAlmwn 9.73E-08  14 mlym 1.26E-06 

15 mslmA 9.10E-08  15 smAn 1.26E-06 

16 rslA 8.70E-08  16 'lym 1.26E-06 

17 lm 5.82E-08  17 tlkm 1.25E-06 

18 slfA 4.71E-08  18 'qAm 1.24E-06 

19 'zlAm 3.20E-08  19 sHAr 1.24E-06 

20 'HlAm 2.52E-08  20 s'Al 1.24E-06 

Table 3.4: Top entries for the nearest neighbours to the target word slAm (peace) in 

terms of root (left side) and pattern (right side) 
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The advantage of this approach to obtaining the morphological relatedness of words 

over other approaches such as minimum edit distance is the ability to identify and better 

capture morpheme dependencies between words which may be orthographically quite 

different.  This is especially so for morphologically complex languages where the base 

form is quite small, as in the case of Arabic, with the root consisting of mostly three 

letters or sometimes 4 (and very rarely 5). Indeed, the number of affix characters may 

typically equal or even exceed the number of base characters.  

An ME based technique is well suited to such morphologically complex cases since it is 

able to find morpheme relatedness of morphological features, (automatically) generated 

from a word. Considering the examples in Table 3.2 and Table 3.3, common features 

such as “@s”, “l”, “m#”, would lack selective power, providing  weak constraints to 

group words. Other features such as @slm#,  occurring less frequently, should carry 

more weight and form useful constraints to group words. 

 

 Lexicon Extraction 

The approach described above uses machine learning to obtain the morphological 

relatedness of words. However, it does not separate words into morphemes.  The next 

step applies a procedure which utilizes the clusters’ word proximities  to give a weight 

to each prospective morpheme. Each morpheme is given a weight. The morphemes are 

sorted so those with the highest weights are at the top. This results in two sorted lists of 

roots and patterns each with the most  plausible morphemes at the top. These two lists 

form lexicons that support the process of morphological analysis.  

The next subsection outlines the procedure to weight each morpheme, given cluster 

proximities. The technique is again inspired by the work of De Pauw & Wagacha 

(2007), but correcting a significant flaw in their method.  
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3.3.1 Morpheme Weighting 

The clusters are each used to weight the two types of morphemes: affixes are weighted 

using the root-related word proximity clusters; likewise roots are weighed utilizing the 

pattern-related word proximities.  

The proximity score for each morpheme type is accumulated at two levels: the local 

cluster level and globally over the entire set of clusters. Looking at the clusters, the top 

element is the word whose features exactly match its own features giving the probability 

score ≈1. This top element is referred to as the headword, with each subsequent word 

having proximity to the headword based on either root oriented feature constraints or 

pattern oriented constraints. The set of all headwords of each cluster constitutes the 

vocabulary of the dataset.  

The headword of each cluster is decomposed into all possible combinations of triliteral 

roots and corresponding patterns. For example the word yErf (meaning he knows) is 

decomposed into the four possible pairs of root and pattern morphemes: 

 𝑦𝐸𝑟𝑓 →

{
 

 
〈𝑦 𝐸 𝑟, − − −𝑓 〉,
〈𝑦 𝐸 𝑓, − − 𝑟 −〉,

 〈𝑦 𝑟 𝑓, −𝐸 − −〉,
〈𝐸 𝑟 𝑓, 𝑦 − − −〉}

 

 
 (3.24) 

These are the candidate morphemes which are each assigned weights, locally at each 

cluster level and globally over all the clusters. Firstly, weights are assigned to the 

patterns using the root-related clusters. For each pattern in the headword we match all 

words in our cluster which contain the corresponding root and accumulate the score of 

each of the matched words. Conversely, for each root in the headword we match all 

words in the cluster which contain the corresponding root and accumulate the score of 

each of the matched words. The scoring method is described below in 3.3.2. For 

example, using the 20 top entry clusters shown in Table 3.4, the local score for root and 

pattern candidates of word slAm, is shown in Table 3.5 
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Root  Pattern  
Word with  

Pattern 

Cumulative 

PatternScore  

Word with 

Root 

Cumulative 

Pattern 

Score  

slA - - - m slym, 

ElAm, 

klAm, 

glAm, 

ZlAm, 

sqym, 

smwm, 

sAhm, 

Hlym, 

tlwm, 

Elym, 

mlym, 

'lym, 

tlkm, 

'qAm 

0.000853 + 

1.89E-05 + 

1.84E-05 + 

1.84E-05 + 

1.84E-05 + 

6.32E-06 + 

6.28E-06 + 

6.28E-06 + 

1.27E-06 + 

1.27E-06 + 

1.26E-06 + 

1.26E-06 + 

1.26E-06 + 

1.25E-06 + 

1.24E-06 = 

0.000955 

slAmA,  

'slAm,  

slmA,  

mslmA,  

slfA 

0.000282663 + 

4.87324E-06 + 

4.42598E-06 + 

9.09942E-08 + 

4.71455E-08 = 

0.0002921 

slm - - A -  ElAm, 

klAm, 

glAm, 

ZlAm, 

smAn, 

'qAm, 

sHAr, 

s'Al 

1.89E-05 + 

1.84E-05 + 

1.84E-05 + 

1.84E-05 + 

1.26E-06 + 

1.24E-06 + 

1.24E-06 + 

1.24E-06 = 

7.91E-05 

slAmA,  

slm,  

'slAm,  

slmA,  

sAlmwn, 

mslmA 

0.000282663 + 

7.38568E-06 + 

4.87324E-06 + 

4.42598E-06 + 

9.73338E-08 + 

9.09942E-08 = 

0.000299536 

sAm  - l - - slym, 0.000853 + slAmA, 0.000282663 + 
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ElAm, 

klAm, 

glAm, 

ZlAm, 

slmA, 

slfA, 

Hlym, 

tlwm, 

Elym, 

mlym, 

'lym, 

tlkm 

 

1.89E-05 + 

1.84E-05 + 

1.84E-05 + 

1.84E-05 + 

1.28E-06 + 

1.27E-06 + 

1.27E-06 + 

1.27E-06 + 

1.26E-06 + 

1.26E-06 + 

1.26E-06 + 

1.25E-06 = 

0.000938 

'slAm, 

sAlmwn 

4.87324E-06 + 

9.73338E-08 = 

0.000287633 

lAm s - - - slym, 

sqym, 

smwm, 

sAhm, 

slmA, 

slfA, 

smAn 

0.000853 + 

6.32E-06 + 

6.28E-06 + 

6.28E-06 + 

1.28E-06 + 

1.27E-06 + 

1.26E-06 = 

0.000876 

slAmA, 

ElAm, 

ZlAm, 

'slAm, 

glAm, 

klAm, 

'zlAm, 

'HlAm, 

0.000282663 + 

2.24062E-05 + 

7.80066E-06 + 

4.87324E-06 + 

2.68159E-06 + 

1.07234E-06 + 

3.20347E-08 + 

2.51734E-08 = 

0.000321554 

Table 3.5: Example of Pattern and Root candidates scoring for word ‘slAm’ 

 

Each morpheme’s score further is summed globally over all the local cluster scores 

where the morpheme occurs in the headword of the clusters. Even though locally some 

implausible morpheme might have a higher score, as we accumulate the score globally, 

the more sound morphemes such as slm and - - A- would tend to gain weight and 

progress up the list of plausible roots and patterns. Some examples of top scoring 

morphemes are shown in Table 3.6. 
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Pattern Roots (Sense) 

 - - -A Sdq (truth) 

 - - - -A 'mn (faith) 

 - -A - Hsn (beauty) 

 -A - - xrj (depart) 

 - - -t qym (establish) 

' - - - Elm (know) 

m - - - nzl (descend) 

 - - - -Y kfr (disbelieve) 

 - -y - jmE (gather) 

t - - - smE (listen) 

t - - - - xlf (differ) 

y - - -  slm (submit) 

…  … 

Table 3.6: Top scoring patterns and  

roots after global scoring 

3.3.2 Scoring Measure 

Empirically, the raw probability values obtained for each word’s proximities to the 

headword decrease exponentially going down the cluster list. The ratios are hard to 

compare and aggregate over since similar words with lower values tend to give 

insignificant contributions to the score. This is shown in Figure 3.1a. Thus a method is 

required to scale these raw probability values such that the relative difference is reduced, 

bringing them closer to a linear scale. 
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Logarithmic scaling is a technique that is often applied to data of this nature, 

transforming exponential functions into linear ones. In this case the function to compute 

an exact linear form would be too intricate to obtain since it would be a combination of 

feature weights and other parameters. In order to visualise this effect,  Figure 3.1 plots 

the raw probabilities to the log scaled values for the first 20 cluster values for the word 

slAm.  

  

(a) Raw probability values for top 20 

words in the cluster. 

(b) Log scaled probability values for the 

same words 

Figure 3.1: Comparison of raw probabilities with log scaled ratios for the first 20 entries 

As we would be taking sum of the log probabilities, negative values for the resulting 

logarithmic score are undesirable. In order to obtain a positive range of values, all 

probabilities are divided by a reference probability before taking the log. The reference 

probability is the lowest probability globally in the entire set of clusters, 𝑃𝑟𝑜𝑏𝑚𝑖𝑛:  

 log (
𝑃𝑟𝑜𝑏

𝑃𝑟𝑜𝑏𝑚𝑖𝑛
) ≡ log(𝑃𝑟𝑜𝑏) − log (𝑃𝑟𝑜𝑏𝑚𝑖𝑛) (3.25) 

This approach differs from that of DePauw & Wagacha (2007) who incorrectly take the 

negative log of the probability in order to make the log score positive before summing 
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the probabilities5. Contrary to intuition, when going down the ranked cluster list the 

proximity of the words to the headword increases instead of decreasing. Words having 

lower probability would contribute a higher score which contradicts the principle of 

morphological relatedness as implied here. Even though intuitively incorrect, De Pauw 

& Wagacha (2007) report good results. The reason is that this scoring measure tends to 

give more consideration to longer matched words that appear lower in the cluster list. 

The way to amend this aspect is to give appropriate consideration to longer morphemes. 

I therefore introduce an adjustment to accommodate for varying lengths of each 

morpheme, as described below. 

 

3.3.3 Length Adjustment 

As discussed in the previous section, the character length of morphemes affects their 

ranking in the lexicon. Since we are only considering triliteral root morphemes, the 

length adjustment procedure need not be applied to root morphemes. But pattern 

morphemes vary in length depending on the number of infix characters in the pattern 

template. Some advantage needs to be given to longer patterns since words containing 

longer patterns tend to get lower probability scores in the morpheme based clusters.  

The length adjustment procedure is based on a technique of Chung & Gildea (2009) and 

Liang & Klein (2009), who use an exponential length penalty measure to adjust their 

Chinese word segmentation model according to the number of segments. They penalise 

longer segmentations of a sentence using the penalty 𝑒−|𝑧𝑘|
𝛽

, where |𝑧𝑘| is the number 

of word segments, and 𝛽 is the strength of the penalty.  

I adapt this measure, such that, to give advantage to higher length morphemes, I 

multiply each pattern morpheme score by 𝑒|𝑝|, where |𝑝| is the number of characters in 

the pattern morphemes. I overlook the 𝛽 penalty strength parameter in order to keep the 

procedure as parameter free as possible, assuming unit strength (𝛽 = 1). This measure 

is intuitively appealing since it can be expected that morpheme frequencies are 

exponentially related to the character length of the morpheme.  

                                                 

5 This flaw has been communicated to the authors of the paper, who have acknowledged it. 
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 Morphological Analysis 

Given the root and pattern lexicons, I use a simple procedure for morphological analysis. 

A word is analysed into its root and pattern template by considering every possible 

combination of triliteral roots and corresponding patterns, 〈𝑟𝑥, 𝑝𝑥〉 , as exemplified in 

(3.24). A combined score for each root and pattern combination is computed, i.e. each 

analysis is scored with the sum of the scores for the root, 𝑟𝑥, and pattern, 𝑝𝑥, in the root 

lexicon and pattern lexicon, respectively. Due to the different ranges of scores for root 

and pattern, the score for the root morphemes is scaled with respect to the pattern 

morphemes, as shown in the equation below, in order to guarantee equal contributions:  

 
𝑆𝑆(𝑟) = 𝑆(𝑟) ×

max (𝑆(𝑝))

max (𝑆(𝑟))
 

(3.26) 

The analysis, 𝑥, with the highest score is selected as the output: 

 
max
𝑥=1..𝑛

( 𝑆( 𝑟𝑤 
𝑥 ) + 𝑆𝑆(𝑝𝑤

𝑥 )  ) 
(3.27) 

 

 Evaluation 

In common with the evaluations elsewhere in this thesis, this evaluation assumes a 

realistic setting of unvowelled text, since most Arabic text is written without vowels. 

The  data is an undiacritized version of the Quranic Arabic Corpus (see Appendix C); I 

chose this corpus since it identifies the root of each word, facilitating robust evaluation. 

The fact that the corpus contains a relatively small vocabulary of around 7000 words 

also simulates the scenario for most of the world’s languages of scarcity of linguistic 

resources and data. 

The next section (3.5.1) describes the evaluation data. This is followed by an 

explanation of the baseline and the measure used for evaluation (3.5.2).  
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3.5.1 The Dataset 

The Quranic Arabic Corpus (QAC) consists of approximately 77,900 word tokens, with 

a total of around 19,000 unique tokens. Since I am interested in investigating learning 

from undiacritized text, I removed all short vowels and diacritical markers. The size of 

the resulting vocabulary, after removal of vowels,  is approximately 14,850. Further 

details of the corpus and steps taken to prepare  the input, such as diacritic removal,  are 

given in Appendix A.  

I took as input lightly stemmed words, i.e. words with clitics removed, but with most 

inflectional markers attached. The justification for this is that stemmed words are 

obtainable using existing tools for unsupervised concatenative morphology learning. 

For example, the technique of Poon et al (2009) could be used to accurately extract the 

stem for each word. The stemmed unvowelled vocabulary size is around 7370. 

The original corpus is annotated with roots for all derived and inflected words. More 

than 95% of words are tagged with their root forms since the Quran consists mostly of 

inflected forms, with very few proper nouns. There are 7192 stemmed words with 

available roots.  

In Arabic, some morphological alterations take place; for example, when moving from a 

root containing a long vowel to the surface word, the long vowel might change its form. 

Such words, whose characters do not match every radical of the root, were removed 

from the evaluation as they are beyond the scope of the learning algorithm to identify.  

Removing these word and root pairs leaves 5532 stemmed types.  

Triliteral roots account for the vast majority of root types in Arabic. In the QAC, 64 out 

of the total of 5532 stemmed types have quadraliteral roots and none have any other 

root types. These 4-letter root words form 1.15 % of the total stemmed types. Removing 

these leaves 5468 triliteral root words.  
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3.5.2 The Baseline and Evaluation Measure 

As a baseline for evaluation, I derived root and pattern lexicons in a similar manner to 

the procedure for lexicon extraction described in section 3.3. Patterns are scored by 

counting the number of co-occurring roots in the vocabulary. Likewise, the root score is 

obtained by counting the number of words in the vocabulary with co-occurring patterns. 

In contrast to lexicon extraction from ME based clusters, the baseline can be viewed as 

accumulation of unit weight of 1 from a single ‘cluster’, the vocabulary set.  

The evaluation measures the accuracy of morphological analysis of the 5468 words in 

the evaluation dataset, described in the previous section. The morphological analysis 

procedure (section 3.4) is applied to each word and the percentage of correct analyses is 

recorded. 

 

3.5.3 System Configuration 

The experiments compare a number of system configurations, as outlined below. 

The five variant sets of morphological features described in section 3.2.2 are: 

 PS_NBC: powerset feature combinations without boundary characters 

 PS_XBC: powerset features with boundary characters appended, after removal 

of uninteresting features common in all words such as ‘@’, ‘#’, etc.  

 PS_BBC: PS_XBC after removing features where the beginning and end word 

characters occur  without the boundary character.  

 PS_1BC: a slightly more refined feature set than PS_BBC after considering 

features with either of the two boundary characters.  

 NC1_BBC: further refinement by removal of features from PS_BBC with two or 

more non-contiguous characters. 

As stated earlier, the various feature-sets have been selected for comparison purposes. 

PS_BBC seems likely to give the best results given its meaningful boundary character 

usage and its close resemblance to the feature set used by DePauw & Wagacha (2007).  

Two weight optimization schemes (section 2.3.2) are investigated:  
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 ME_IIS: Maximum Entropy model based on IIS  

 ME_LBFGS: Maximum Entropy model based Limited memory BFGS 

LBFGS is the preferred optimization scheme as this has been shown to perform better, 

in terms of faster convergence and prediction accuracy, for Maximum Entropy 

modelling (Malouf, 2003).  

For model smoothing, three approaches are compared (section 3.2.3.2) 

 ME_GS_Val: where Val is the value of the Gaussian from the set {0.0, 0.5, 1.0, 

1.5, 2.0} 

 ME_PB_ItrN: where N is the number of iterations for pattern based feature 

model training 

 ME_RB_ItrN: where N is the number of iterations for root based feature model 

training 

Three types of length adjustment methods are compared, the third following the 

procedure of section 3.3.3. 

 ME_RW: raw probability values used as word scores  

 ME_LS _LA: log-scaled  probability values as word scores 

 ME_LS_LA: log-scaled scores adjusted for morpheme length  

 

3.5.4 System Evaluation and Discussion 

This section presents a comparative evaluation between the preferred and other system 

configurations defined in section 3.5.3, based on the evaluation criteria described in 

section 3.5.2. 

3.5.4.1 Feature Set Evaluation 

The first evaluation is over the different feature sets to compare the performance of the 

chosen set with the others. We compare the different powerset combinations with and 

without the boundary character as defined in section 3.2.2. Table 3.7  outlines the 

results of the comparison of the different feature sets.  
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Configuration Total  

Correct 

Percentage 

Correct 

PS_NBC 4551 83.23 

PS_XBC 4447 81.33 

PS_BBC 4715 86.23 

PS_1BC 4695 85.86 

NC1_BBC 4680 85.60 

Table 3.7: Comparison of different feature sets 

The feature set computed without the boundary character (PS_NBC) gives lower 

performance than the feature sets computed with the boundary characters attached 

(PS_BBC, PS_1BC, NC1_BBC). Simply appending the boundary characters before 

computing the complete powerset (PS_XBC) does not give any advantage in 

distinguishing word beginning and ending, but instead adds to the ambiguity due to the 

introduction of the two additional characters. The set needs to be cut down to allow only 

those features where the first and last characters of the word are attached with the 

boundary characters (@,#). PS_BBC disallows features where first and last characters 

occur without the boundary character. This model is able to better predict the 

relatedness of words. 

The results also show that dropping features containing simultaneous occurrences of 

both boundary characters (PS_1BC) gives a slight loss in performance. Nor is there any 

gain by only considering features with single non-contiguous characters (NC1_BBC). 

However, these sets may have advantages in cases where lower computation cost is a 

requirement  for model training and application, since there are fewer features in these 

sets.  

3.5.4.2 Optimization Scheme Evaluation 

Using the chosen PS_BBC feature set, schemes for parameter estimation are compared. 

The two types of weight optimization schemes are the chosen LBFGS method and IIS. 
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Configuration Total  

Correct 

Percentage 

Correct 

ME_LBFGS 4715 86.23 

PS_IIS 4197 76.76 

Table 3.8: Comparison of two parameter estimation techniques 

The results in Table 3.8 show a marked performance benefit for LBFGS over iterative 

scaling. This agrees with previous results (Malouf, 2002), where the LBFGS method for 

parameter estimation is shown to be a more effective and efficient method especially 

suited to Maximum Entropy modeling.  

3.5.4.3 Gaussian Smoothing Evaluation 

For unsupervised learning, keeping the technique parameter free, I assume no Gaussian 

prior (=0.0) but for experimental purposes, I compare different values of the Gaussian 

prior in the range 0.0-2.0.  

 

Configuration Total  

Correct 

Percentage  

Correct 

ME_GS_0.0 4715 86.23 

ME_GS_0.5 4660 85.22 

ME_GS_1.0 4612 84.34 

ME_GS_1.5 4622 84.53 

ME_GS_2.0 4604 84.20 
 

Figure 3.2: Illustration of Table 3.9 

 

Table 3.9: Comparison of different 

Gaussian Priors 

As seen in Figure 3.2 and Table 3.9 contrary to expectation, the performance drops 

when adding a prior for Gaussian smoothing. Thus, Maximum A Posteriori (MAP) 

learning does not give any advantage over Maximum Likelihood Estimation (MLE). 

Perhaps over-fitting is not a serious concern here as the training and test sets are the 

same.  
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3.5.4.4 Number of Iterations Evaluation 

Model training using LBFGS parameter estimation was performed with cut-offs at 

various numbers of iterations. I compared the two models, the Root Based (RB) feature 

model and the Pattern Based (PB) feature model  separately. For each I evaluated as 

before with respect to correct analysis accuracy while simultaneously reading training 

log-likelihood and training accuracy. The results for RB model are shown in Figure 3.3 

and Table 3.10, and for PB model are shown in Figure 3.4 and Table 3.11. 

 

Itera- 

tion 

Training 

Log- 

Like-

lihood 

Training  

Accu-

racy(%) 

Total  

Corr-

ect 

% 

Corr-

ect 

1 -7.20 59.54 4521 82.68 

3 -1.07 91.45 4717 86.26 

10 -9.54e-3 99.99 4720 86.32 

12 -6.90e-3 100.00 4717 86.26 

14 -3.72e-3 100.00 4714 86.21 

20 -1.78e-3 100.00 4718 86.28 

25 -9.52e-4 100.00 4723 86.37 

30 -3.66e-4 100.00 4722 86.35 
 

Figure 3.3: Illustration of Table 3.10 

 

Table 3.10: Comparison of RB models trained at   

different iteration levels. 
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Itera- 

tion 

Training 

Log- 

Like-

lihood 

Training  

Accu-

racy(%) 

Total  

Corr-

ect 

% 

Corr-

ect 

1 -3.61 100.000 4717 86.26 

3 -1.25e-1 100.000 4717 86.26 

7 -3.63e-3 100.000 4714 86.21 

10 -7.33e-4 100.000 4714 86.21 

15 -4.47e-5 100.000 4718 86.28 

20 -1.22e-6 100.000 4711 86.15 

25 -8.03e-8 100.000 4711 86.15 

30 -5.66e-9 100.000 4686 85.70 
 

Figure 3.4: Illustration of Table 3.11 
Table 3.11: Comparison of PB models trained at 

different iteration levels. 

The log-likelihood decreases consistently with each iteration in both models and is not a 

good indicator of a stopping point. Interestingly, the analysis accuracy for the two 

models shows opposite behavior. With each iteration of the RB model, accuracy tends 

to show very gradual improvement without showing any sign of over-fitting at higher 

iteration levels. For the PB model, accuracy tends to gradually fall, with a sudden drop 

seen at higher iterations. Here the PB model seems to be suffering from over-training.  

A good indicator for the stopping point in both cases is where the training accuracy 

reaches 100%. For the RB model this is achieved at the 12th iteration (square marker in 

Figure 3.3) beyond which there is a very faint improvement in analysis accuracy. For 

the PB model, the training accuracy reaches 100% after the 1st iteration and hence it is 

stopped here or else the analysis accuracy may deteriorate further in subsequent 

iterations.  

3.5.4.5 Length Adjustment Evaluation 

Finally the different length adjustment methods are compared: cumulative raw 

probability, cumulative log scaled probability and morpheme length adjusted log scores. 

The three results are shown in Table 3.12. 
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Configuration Total  

Correct 

Percentage 

Correct 

ME_RW 3491 63.84 

ME_LS 4364 79.81 

ME_LS_LA 4717 86.26 

Table 3.12: Comparison of the methods using scaled score and length 

adjustment against the raw score 

The poor performance of using raw probability values in calculating the cumulative 

morpheme score is visible in this comparison. With logarithmically scaled scores, 

accuracy is increased by approximately 6% over raw scoring. With length adjustment a 

further improvement of 7% is seen in comparison to the simple log-scaled value.  

3.5.4.6 Comparison with the Baseline 

The overall best configuration is based on PS_BBC, using LBFGS, without any 

Gaussian smoothing, and trained to give 100% accuracy on training data. This is used to 

score morphemes after logarithmically scaling probability values and length adjusting 

the scores. Table 3.13 shows the accuracy for the resulting lexicons of morphemes 

compared to the baseline lexicon. This configuration is more accurate than the baseline 

by 12.1 percentage points.   

Configuration Total  

Correct 

Percentage 

Correct 

ME 4717 86.26 

Baseline 4055 74.16 

Table 3.13: Comparison of the final ME model with the baseline 

As stated earlier, two aspects of the ME based approach give it an advantage over the 

baseline: the clustering and the word proximity scores. In the baseline there is only one 

cluster which is the vocabulary set and a unit proximity value to mark the presence of 

morpheme in a word of the vocabulary. 
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 System Design for Unsupervised Learning 

For unsupervised learning, we would want to  the system be fully automated, free from 

any kind of external parameter settings. I have aimed to achieve this, and let the system 

choose its parameters from the data without external intervention. The final system 

configuration is given in Table 3.14. 

System Module System Parameter Automatic Parameter Setting 

Word Cluster 

Formation 

Feature Generation 

RB features: Powerset 

combination of word 

characters where first and last 

character occur with boundary 

character 

PB features: Replace root 

characters in RB features with 

placeholder character and copy 

missing ones from word 

Parameter Estimation LBFGS 

Gaussian Smoothing None 

Number of training 

Iterations 

When training data accuracy 

reaches 100% 

Morpheme Extraction 

Size of Word Cluster Arbitrarily large 

Scoring 
Logarithmically scaled 

probability value 

Length Adjustment 

Exponential in terms of each 

morpheme length and 

independent of penalty strength 

parameter 

Table 3.14: Final unsupervised ME based morphology induction system 

 without any dependence on external parameters 
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 Conclusions 

This chapter addresses the task of analyzing the non-concatenative morphology of 

Arabic in an unsupervised manner. I adapted a technique for unsupervised concatenative 

morphological analysis described by DePauw & Wagacha (2007). They apply a 

machine learning approach using Maximum Entropy modeling to obtain groupings of 

words which are morphologically similar.  

One novelty in my work is the selection of features which are suited to generalize over 

morphemes from the intercalated morphology of Arabic. Moreover, I was able to mirror 

the modeling procedure for two morpheme pairs in a word, the root and the pattern, by 

choosing features that are the converses of each other. I studied the different aspects of 

the machine learning process, experimenting with different types of feature sets, weight 

optimization methods, smoothing and number of iterations for training models. 

In the subsequent step for morpheme extraction from morphologically related words I 

thoroughly investigated the morpheme scoring procedure. I introduced a procedure for 

logarithmic scaling which brings the ratios of related words into a comparable range and 

able to be combined arithmetically. Further, these scores were adjusted for the length of 

each morpheme.  

Using a morphological analysis procedure based on the best root and pattern 

combination for each word I evaluated the inflected words of the Quranic Arabic 

Corpus for the correct identification of the root. The final ME system was devised such 

that the parameters of the system are automatically set by the system. 

There are a number of areas that warrant further investigation. These include different 

morphological feature sets. The failure of Gaussian smoothing perhaps needs attention 

too. For morpheme extraction from word clusters, the range of word relatedness values 

is quite variable. Besides logarithmic scaling, further scaling procedures could be 

investigated.  

Although reasonably effective and accurate, the procedure for morphological analysis 

using machine learning is computationally expensive. This could be a serious 
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impediment to the successful application of unsupervised natural language processing 

techniques that besides accuracy, need swift processing.  

Indeed, the baseline obtained using a method for quickly obtaining lexicons was fairly 

competitive. This suggests that it would be fruitful to investigate this method further, to 

replace the machine learning based techniques with a conceptually simpler, rescoring 

technique; such a technique is described in the next chapter. 

  



91 

 

 

 

  

Contrastive Learning 

 Introduction 

The work described in this chapter addresses the same task as in the previous chapter: to 

analyse the non-concatenative morphology of the Arabic Language in an unsupervised 

manner. Thus the input and outcome remain the same but the approach differs. The 

machine learning approach to this task, described in Chapter 4, was a lengthy process 

having multiple stages of processing before obtaining the lexicons. This chapter builds 

on the method used to obtain the baseline in Chapter 4, which is a faster method to 

obtain morpheme rankings. The algorithm is comparable in accuracy to the one 

described in the previous chapter but it is much more computationally efficient, giving 

the output in a matter of seconds as compared to possibly hours in the machine learning 

case.  

 

4.1.1 The Approach 

The motivation for the approach is based on the desire to use simple counts of root and 

pattern morphemes co-occurring together in words of the vocabulary to develop a faster 

and efficient algorithm. The chapter describes a technique that develops into a link 

analysis algorithm for ranking morphemes.  The insight behind the technique is that 

roots are linked to (co-occur with) a variety of patterns and likewise patterns are linked 

to a many roots. Mutual learning takes place in a recursive manner to identify potential 

morphemes. This computation of the ranking corresponds to using the power method 

from linear algebra  to compute the eigenvector of the adjacency matrix representing the 

link structure of the root and pattern morphemes. I compare my algorithm to a very 

similar, well recognized algorithm for ranking webpages, the Hyperlink-Induced Topic 

Search (HITS) algorithm (Kleinberg, 1999).  
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4.1.2 Chapter Organization 

Before describing the algorithms, some mathematical notations are first introduced in 

section 4.2. The contrastive morpheme learning approach is explained in section 4.3 and 

the contrastive learning approach is developed into mutually recursive algorithm, 

described in section 4.4. The comparison and application of the HITS algorithm is given 

in section 4.5. The morphological analysis process is outlined in section 4.6. The 

evaluation of the different scoring and rescoring methods is presented in section 4.7. 

Finally, section 4.8 concludes. 

 

 Preliminaries 

In order to present the technique, it is necessary to define some mathematical notations. 

This section introduces the basic notations for word and morpheme formation, explains 

the process of morpheme derivation using a decomposition function and introduces the 

sets and other notation based on the morpheme derivation, which will be used in the 

remainder of the chapter.  

 

4.2.1 Base Notations and Sets 

The basic notations and sets are as follows: 

 Lowercase-letter variables, such as, 𝑤, 𝑟, 𝑝, 𝑠, … ∈ ∑∗ are character strings 

ranging over the alphabet ∑ and could represent words, morphemes, strings, etc. 

 𝑉, 𝑅, 𝑃, … ⊆ ∑∗ are capital-letter variables ranging over sets of words, 

morphemes or strings 

 𝑉 = {𝑤1, 𝑤2, 𝑤3, …,𝑤𝑛} is the set of all word types in the vocabulary. 

 | ∙ | denotes either length of a string or cardinality of a set. 

 The character sequence, 𝐶𝑤 = (𝑐1, 𝑐2, … , 𝑐𝑙, … , 𝑐|𝑤|)  is the sequence of 

characters, 𝑐𝑙, constituting a word, 𝑤 with 𝑙 as the index position of the character 

in 𝑤 with length |𝑤|. 

 ∸ is a special character which is used to denote a placeholder or slot for 

character, 𝑐𝑙, in a word character sequence, 𝐶𝑤. 



93 

 

 

 

 𝑓𝑝(∸) denotes the frequency of occurrence of character ∸ in the pattern 𝑝. 

 𝑟 ⊲ 𝑤: 𝑟 is the potential root of a word, 𝑤,  which is formed of a subset of 

characters, 𝑐𝑙 of 𝐶𝑤 along with the condition, |𝑟| < |𝑤|. In this chapter, |𝑟| ≥ 3.  

Thus, 𝐶𝑟 ⊆ 𝐶𝑤  and  |𝑤| > |𝐶𝑤| ≥ 3; in other words, a root is formed of any 

possible combination of characters, 𝑐𝑙 in 𝐶𝑤with a minimum length of three 

characters and a maximum length |𝑤| − 1. 

 𝑝 ⊳ 𝑤|𝑟: 𝑝 is the potential pattern string derived from 𝑤 given 𝑟, consisting of 

𝑐𝑙 in 𝐶𝑤 and ∸, such that we copy each character in 𝑤 to 𝑝 except  those in 𝑟, 

which are replaced by ∸ in 𝑝. Hence, 𝐶𝑝 = (𝐶𝑤 − 𝐶𝑟) ∩ {∸}  and also  𝑓𝑝(∸) =

|𝑟| ≥ 3. Note that |𝑤| = |𝑝| or |𝐶𝑤| = |𝐶𝑝|. 

 𝑝⊕ 𝑟 = 𝑤 : a pattern 𝑝 and root 𝑟 may combine to form a word 𝑤 if 𝑓𝑝(∸) =

|𝑟|, such that each ∸ in 𝑝 is replaced by each character in 𝑟 in sequence.  

 〈𝑟, 𝑝〉: the pair of adjoining or co-occurring morphemes, 𝑟 and 𝑝, such that 𝑝⊕

𝑟 = 𝑤. 

 

4.2.2 Decomposition Function 

A word may be decomposed into a set of constituent root and pattern pairs, each pair 

having a minimum of three characters or three slots for root radicals, respectively. Here 

we formalize the procedure for decomposing words described informally in chapter 4, 

by using a decomposition function, 𝐷(𝑤), 

 𝐷:𝑤 → 𝐷(𝑤) = { 〈𝑟, 𝑝〉 | 𝑟 = 𝑟 ⊲ 𝑤  ⋀     𝑝 = 𝑝 ⊳ 𝑤 ∶  

𝑤 ∈ V , 𝐶𝑟 ∈ ℙ(𝐶𝑤), 𝑓𝑝(∸) = |𝐶𝑟| ≥ 3  } 
(4.1) 

In equation (4.1), 𝑟 is derived from 𝑤such that 𝑟 consists of all character sequences that 

can combine as a powerset combination of characters in 𝑤, ℙ(𝐶𝑤). Let 𝐷𝑤 be the set of 

root and pattern pairs obtained using the decomposition  function 𝐷(𝑤), 

 𝐷𝑤 = {〈𝑟, 𝑝〉1, 〈𝑟, 𝑝〉2, … , 〈𝑟, 𝑝〉𝐿(|𝑤|)} (4.2) 
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The number of elements in 𝐷𝑤 is given by the powerset cardinality (2𝑛) minus the 

sequences with fewer than 3 characters, 

 𝐿(|𝑤|) = 2|𝑤| − (
|𝑤|
2
) − (

|𝑤|
1
) − 1 (4.3) 

 

4.2.3 Further Notations and Sets 

Based on the decomposition function, below are some set notations upon which the 

algorithms and scoring functions will be based.  

 𝐷𝑉 = 𝐷𝑤1 ∪ 𝐷𝑤2 ∪ 𝐷𝑤3 …∪ 𝐷𝑤𝑛  : the set of all possible root and pattern pairs  

derived from every word of the vocabulary 𝑉. 

 𝑃𝑤 = {𝑝1, 𝑝2, … 𝑝𝐿(|𝑤|)}: the set of all possible patterns of the word 𝑤 obtained 

from 𝐷𝑤 

 𝑅𝑤 = {𝑟1, 𝑟2, … 𝑟𝐿(|𝑤|)}: the set of all possible roots of the word 𝑤 obtained from 

𝐷𝑤 

 𝑃𝑉 = 𝑃𝑤1 ∩ 𝑃𝑤2 ∩ …𝑃𝑤𝑛 = {𝑝1, 𝑝2, … 𝑝𝑚}: the set of all possible patterns of all 

words obtained using the decomposition function, over the entire vocabulary 

 𝑅𝑉 = 𝑅𝑤1 ∩ 𝑅𝑤2 ∩ …𝑅𝑤𝑛 = {𝑟1, 𝑟2, … 𝑟𝑚}: the set of all possible roots of all 

words obtained using the decomposition function, over the entire vocabulary 

 𝑃𝑟 = {𝑝1, 𝑝2, … 𝑝|〈𝑟,𝑝𝑖 〉|}: the set of patterns 𝑝𝑖 ∈ 𝑃𝑉 that occur with root 𝑟 i.e. 

|〈𝑟, 𝑝𝑖 〉| ∈ 𝐷𝑉 

 𝑅𝑝 = {𝑟1, 𝑟2, … 𝑟|〈𝑟𝑖,𝑝 〉|}: the set of roots 𝑟𝑖 ∈ 𝑅𝑉 that occur with pattern 𝑝 i.e. 

|〈𝑟𝑖, 𝑝 〉| ∈ 𝐷𝑉 
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 Contrastive Learning 

Most accounts of morphology learning have focused attention on attempting to identify 

morphemes by looking at the frequency of occurrence of segments to distinguish the 

most frequent substrings as possible candidates.  This is based on the notion that the 

more frequent a substring is, after adjusting for randomness, the more likely it is a 

candidate for being a morpheme. These methods usually look at the frequency of a 

substring directly to establish its significance.  

Here I propose to learn the morphology gauging the importance of a morpheme by 

examining the frequency of occurrence of adjoining morphemes. Thus, for example the 

importance of a stem could be judged by the frequency of occurrence of adjoining 

affixes. Likewise, the significance of root could be gauged by the frequency of 

occurrence of the intercalated pattern. Based on the notion that entities may be revealed 

by their converses, I apply a contrastive scoring method to learn roots based on pattern 

counts, and patterns based on root counts. Thus, if a potential root occurs with a 

particular pattern, that pattern (if valid) should be fairly common in the dataset, hence 

should be assigned a high score to the root and vice versa. I refer to the score functions 

as the base scoring functions, and the outputs of these functions will be used in 

subsequent scoring processes. 

 

4.3.1 Base Scoring Functions 

Decomposing each word into all of its constituent root and pattern morpheme pairs, 

each candidate root is scored by counting the number of words with the co-occurring 

pattern. Each time the same root is encountered in other words in the vocabulary, the 

counts of co-occurring patterns are accumulated. In this way, each root’s score is the 

frequency of all the patterns that the root occurs within the dataset. An analogous 

procedure is performed for each pattern.  

Let 𝑆 generically denote a scoring function for a morpheme type, then scoring functions 

𝑆# for root and pattern morphemes are, 
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𝑆#(𝑟) = ∑ ∑ ( 1 |〈𝑟,  𝑝〉 ∈ 𝐷𝑤𝑖   ⋀  𝑝 ∈ 𝑃𝑤𝑗  )

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.4) 

 

 

𝑆#(𝑝) = ∑ ∑ ( 1 |〈𝑟,  𝑝〉 ∈ 𝐷𝑤𝑖   ⋀  𝑟 ∈ 𝑅𝑤𝑗  )

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.5) 

 

The inner summation represents the co-occurring morphemes’ frequencies, while the 

outer summation denotes the cumulative frequencies of all co-occurring morphemes for 

a scored morpheme over the entire vocabulary. The thing to note in these functions is 

that the morpheme score is not only dependent on the co-occurring morpheme’s 

frequency count but also depends on its own frequency of occurrence.  Thus the inner 

summation determines the co-occurring frequency counts while the outer summation is 

the accumulation of the score over the number of occurrences of the target scored 

morpheme. This is referred to below as contrast-plus scoring. 

The scoring function 𝑆∗ averages over the frequency counts of co-occurring morphemes 

and is thus independent of the frequency of occurrence of the target morpheme being 

scored. This is referred to below as contrast-pure scoring, 

 

𝑆∗(𝑟) =
1

|𝑃𝑟|
∑ ∑ ( 1 |〈𝑟,  𝑝〉 ∈ 𝐷𝑤𝑖   ⋀  𝑝 ∈ 𝑃𝑤𝑗  )

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.6) 

 

 

𝑆∗(𝑝) =
1

|𝑅𝑝|
∑ ∑ ( 1 |〈𝑟,  𝑝〉 ∈ 𝐷𝑤𝑖   ⋀  𝑟 ∈ 𝑅𝑤𝑗  )

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.7) 



97 

 

 

 

To illustrate the working of the scoring functions,  shows an example for the 

transliterated Arabic word yErf. The word is decomposed into its constituents 〈𝑟, 𝑝〉𝑥 ∈

 𝐷𝑤=𝑦𝐸𝑟𝑓, as shown in first two columns of the table. Example words containing root 

𝑟𝑥 ∈ 𝑅𝑤𝑖, are shown in column 3 with their counts in columns 5; likewise, words 

containing patterns, 𝑝𝑥 ∈ 𝑃𝑤𝑖, are shown in column 4 with counts in column 6. This 

corresponds to the inner summation of the cumulative scoring formula for a particular 

morpheme, where each morpheme has been assigned a local score based on its 

occurrence in the word yErf. 

Pattern, 

𝒑𝒙 ∈ 𝑃𝒘𝒊 

Root 

𝒓𝒙 ∈

𝑹𝒘𝒊 

Words, 𝑾𝒓 

 

Words, 𝑾𝒑 

 

|𝑾𝒓| |𝑾𝒑| 

y--- Erf 'ErAf, Erf, ErfA, ErfAt, 'Etrf, 

mErwf, mErwfA, mErwfp, 

tEArf, tErf, yErf, ytEArf 

yAbs, y$Aq, 

 …yzyd, yzyg 

12 490 

-E-- Yrf yErf, yHrf, yqtrf, yrfE, ysrf, 

ySrf, ytEArf 

bEdA, bEDA, … 

yEZm, zEym 

7 161 

--r- yEf yDAEf, yEf, yEfw, yEfwA, 

yEkf, yErf, ystDEf, ystEff, 

ytEArf 

$Ark, bArd,…  

zwrA, zxrf 

9 280 

---f yEr yEmr, y$Er, yEr$, yErD, yErf, 

yErj, yESr, yEt*r, ytEArf 

'Asf, 'DEf,… 

'zlf, zxrf 

9 77 

Table 4.1: The counts of morphemes in each word of the vocabulary (local score) 

Next, consider the global score of a particular morpheme over the entire dataset. An 

illustration with the pattern and root morphemes, y- - - , and Erf, respectively, is shown 

in Table 4.2. Summing over all the local scores that the morpheme occurs in gives the 

global score of each morpheme. For example, the local score for y- - -  in word yErf, as 

computed previously is 12, but its local score in word yktb is 18 which is the frequency 

of occurrence of root ktb. Thus summing over all the local scores gives the global sum 
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for the pattern morpheme y- - -  as 2143. Using the first pair of scoring functions, 𝑆#, we 

can leave the score as the global sum. But the in the latter case, 𝑆∗, I take the average of 

all local scores. In this way the score for y- - -  is independent of its count, distributed 

evenly amongst its 490 occurrences in the vocabulary. 

Pattern 

𝑝𝑥 ∈ 𝑃𝑉 
𝒘𝒊 

𝒓𝒚 

∈ 𝑹𝒑𝒙 
|𝑾𝒓𝒚| 𝑆

#(𝒑𝒙) 𝑆
∗(𝒑𝒙)  

Root 

𝑟𝑦 ∈ 𝑅𝑉 
𝒘𝒊 

𝒑𝒙 
∈ 𝑷𝒓𝒚 

|𝑾𝒓𝒚| 𝑆
#(𝒑𝒙) 𝑆

∗(𝒑𝒙) 

y--- 

yErf Erf 12 12+ 

18+ 

19+ 

3+ 

… 

= 

2143 

2143

490
 

=4.37 

 

Erf 

'ErAf ‘- - A - 132 

132+ 

507+ 

45+ 

88+ 

… 

= 

1746 

1746

12
 

=145.5 

Yktb ktb 18  ErfA - - - A 507 

Yslm slm 19  ErfAt - - - At 45 

ybd' bd' 3  'Etrf ‘ - t - - 88 

… … … … 

 

 … … … …  

… … … … … …  … … … … … … 

Table 4.2: Aggregating and averaging the counts over all  

the whole vocabulary (global score) 

Note the range of the scores 𝑆#(𝑟) and 𝑆#(𝑝) are quite similar because the combination 

of local and global scores balance each other out, bringing them into comparable range. 

This is not so for 𝑆∗(𝑟) and 𝑆∗(𝑝), where 𝑆∗(𝑟) ≫ 𝑆∗(𝑝), since the average frequency 

of occurrence of pattern morphemes is much greater than the average frequency of 

occurrence of  root morphemes. Hence, some kind of normalization of scores is needed 

to bring the scores into a comparable range (see section 4.4.1).  

 

4.3.2 Alternative Representation 

The procedure described above for computing scores is computationally expensive and 

can be simplified by viewing the connections between root and pattern morphemes as 

links between two sets of vertices of a bipartite undirected graph (or bigraph). The 

graph, 𝐺, is defined as, 

𝐺 = (𝑅𝑉, 𝑃𝑉, 𝐸) 
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𝐸 = {(𝑟, 𝑝): 𝑟 ∈ 𝑅𝑉 , 𝑝 ∈ 𝑃𝑉} 

The links (or edges), 𝑒𝑖 ∈ 𝐸 in the graph correspond to the pair 〈𝑟, 𝑝〉𝑖 ∈ 𝐷𝑉. The 

morphemes 𝑟 and 𝑝 are thus co-occurring morphemes. The degree of a particular 

morpheme vertex corresponds to the number of patterns linked to that morpheme. For 

example the degree of any root 𝑟 is equal to |𝑃𝑟| . Also note the bigraph  is balanced 

with |𝑅𝑉| = |𝑃𝑉|. Based on this representation, four more sets are defined: 

 𝑅𝑃 = {〈𝑟1, 𝑃𝑟1〉, 〈𝑟2, 𝑃𝑟2〉,… , 〈𝑟𝑚, 𝑃𝑟𝑚〉} 

 𝑃𝑅 = {〈𝑝1, 𝑅𝑝1〉, 〈𝑝2, 𝑅𝑝2〉, … , 〈𝑝𝑚, 𝑅𝑝𝑚〉} 

Below is an example graph to clarify the concepts. This example is referenced in later 

parts of the chapter. 

4.3.2.1 Example 

 

Figure 4.1: Example graph linking roots and patterns 

 

Consider an example graph 𝐺𝑋, shown in Figure 4.1, 

r1 
p1 

r2 

p3 

p2 

r3 
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For 𝐺𝑋, the sets defined above are: 

𝑅𝑉 = {𝑟1, 𝑟2 , 𝑟3} 

𝑃𝑉 = {𝑝1, 𝑝2 , 𝑝3} 

𝑅𝑃 = {〈𝑟1, {𝑝1, 𝑝2}〉, 〈𝑟2, {𝑝2, 𝑝3}〉, 〈𝑟3, {𝑝2}〉} 

𝑃𝑅 = {〈𝑝1, {𝑟1}〉, 〈𝑝2, {𝑟1, 𝑟2, 𝑟3}〉, 〈𝑝3, {𝑟2}〉} 

Table 4.3a and Table 4.3b tabulate the co-occurring morphemes in column 2, for each 

morpheme in column 1, along with the degree of the co-occurring morpheme in column 

3. These morphemes and counts are referenced in the scoring functions defined in the 

next sections. 

 

 

Pattern, 𝒑𝒊 ∈

𝑷𝑽 
𝒓 ∈ 𝑹𝒑𝒊 |𝑷𝒓𝒊|  Root, 𝒓𝒊 ∈ 𝑹𝑽 𝒑 ∈ 𝑷𝒓𝒊 |𝑹𝒑𝒊| 

𝒑𝟏 𝑟1 2  𝒓𝟏 𝑝1 1 

𝒑𝟐 𝑟1 2  𝑝2 3 

𝑟2 2  𝒓𝟐 𝑝2 3 

𝑟3 1  𝑝3 1 

𝒑𝟑 𝑟2 2  𝒓𝟑 𝑝2 3 

(a)  (b) 

Table 4.3: Table showing co-occurring morphemes   

and degree of co-occurring morphemes 
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4.3.3 Simplified Base Scoring Functions 

It is possible to simplify the formulae, (4.4) and (4.5) in order to make a 

computationally less expensive algorithm, taking advantage of this representation to 

first defining initial, base scoring functions. For each 𝑟 in 〈𝑟, 𝑃𝑟〉 ∈  𝑅𝑃, 

 𝑆#(𝑟) = ∑ |𝑅𝑝𝑖|

|𝑃𝑟|

𝑝𝑖=1

 (4.8) 

 

Conversely, for each 𝑝 in 〈𝑝, 𝑅𝑝〉 ∈ 𝑃𝑅, 

 𝑆#(𝑝) = ∑ |𝑃𝑟𝑖|

|𝑅𝑝|

𝑟𝑖=1

 (4.9) 

 

Likewise for the contrast-pure scoring, 

 𝑆∗(𝑟) =
1

|𝑃𝑟|
∑ |𝑅𝑝𝑖|

|𝑃𝑟|

𝑝𝑖=1

 (4.10) 

 

 𝑆∗(𝑝) =
1

|𝑅𝑝|
∑ |𝑃𝑟𝑖|

|𝑅𝑝|

𝑟𝑖=1

 (4.11) 

 

These correspond to equations (4.6) and (4.7) defined earlier. 
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 Mutual Recursion 

As root and pattern scores are defined in terms of each other, it is possible to define a 

mutually recursive procedure to update the score of each morpheme using the other kind. 

Starting with the scores obtained from the base scoring functions as seeds, we can 

rescore each of the morphemes; and thereafter, iteratively rescore the morphemes using 

the previous scores until convergence in ranking is achieved.  Since previous scores are 

being reapplied in subsequent iterations, there is a need to normalize the scores since 

they would otherwise increase without bound.   

Let �̂� denote the normalized scores and 𝑘 denote the iteration. The iterative scoring 

functions for contrast-plus can be defined as, 

 𝑆𝑘
#(𝑟) = ∑ �̂�𝑘−1

# (𝑝𝑖) ∗

|𝑃𝑟|

𝑝𝑖=1

|𝑅𝑝𝑖| (4.12) 

 

 𝑆𝑘
#(𝑝) = ∑ �̂�𝑘−1

# (𝑟𝑖) ∗

|𝑅𝑝|

𝑟𝑖=1

|𝑃𝑟𝑖| (4.13) 

 

and for contrast-pure, 

 𝑆𝑘
∗(𝑟) =

1

|𝑃𝑟|
∑ �̂�𝑘−1

∗ (𝑝𝑖) ∗

|𝑃𝑟|

𝑝𝑖=1

|𝑅𝑝𝑖| (4.14) 

 

 

𝑆𝑘
∗(𝑝) =

1

|𝑅𝑝|
∑ �̂�𝑘−1

∗ (𝑟𝑖) ∗

|𝑅𝑝|

𝑟𝑖=1

|𝑃𝑟𝑖| 
(4.15) 
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It is important to distinguish the two types of convergence taking place: convergence in 

ranking and convergence in score values. In the absence of any normalization, 

convergence in ranking would be reached at some 𝑘, though with extremely high values 

for the scoring vectors (if at all computable). Section 4.5.1.4 presents a proof of 

convergence in ranking for the mutually recursive algorithms. With normalization, 

scores converge to certain fixed values as 𝑘 → ∞, while convergence in ranking would 

be reached at a certain value of 𝑘, remaining stable thereafter.  

 

4.4.1 Score Normalization 

Score normalization is achieved by simply dividing the score of each morpheme by the 

norm of its respective score vector. In other words, the vectors are converted into unit 

vectors, without changing their direction, thus keeping the relative ranking.  Let �̂� 

denote the normalized score, then 

 �̂� =
𝑆

‖𝑆‖
 (4.16) 

 

where ‖𝑆‖ is the norm of the score vector 𝑆. Two types of norms are considered, the 

Manhattan norm, ‖𝑆‖1 and the Maximum or max norm, ‖𝑆‖∞ defined respectively as 

 ‖𝑆‖1 =∑𝑆(𝑟𝑖)

|𝑅𝑉|

𝑖=1

 (4.17) 

 

 ‖𝑆‖∞ = max(𝑆(𝑟𝑖)) (4.18) 

Empirically, these two norms have different behaviours. The max norm has the effect of 

scaling the two different quantities  with respect to each other, bringing them into 

comparable range. The Manhattan norm preserves the relative differences in magnitudes 



104 

 

 

 

of quantities which are already in comparable range.  

 

4.4.2 Initialization 

An important consideration is how to initialize the scoring functions in the first iteration.  

There are three possible ways: (i) initialize both scoring functions 𝑆(𝑟)1 and 𝑆(𝑝)1 with 

normalized seed scores �̂�0 as in (4.20) obtained by the 1s vector from 𝑆0 (4.19); (ii) 

initialize 𝑆(𝑟)1with the 1s vector, and 𝑆(𝑝)1 with 𝑆(𝑟)1; or (iii) initialize 𝑆(𝑝)1 with the 

1s vector, and 𝑆(𝑟)1 with 𝑆(𝑝)1. 

 𝑆(𝑟)0 = 𝑆(𝑝)0 = (1, 1, … 1) (4.19) 

According to their respective norm definitions, each score vector is converted to a unit 

vector. For the Manhattan norm, ‖𝑆0‖1 = ∑ 𝑆(𝑟𝑖)
|𝑅𝑉|
𝑖=1 = ∑ 𝑆(𝑝𝑖)

|𝑃𝑉|
𝑖=1 = |𝑅𝑉| = |𝑃𝑉| =

𝑚 , the total number of decomposed morphemes of either type. The normalized form is 

then:  

 �̂�(𝑟)0 = �̂�(𝑝)0 = (1/𝑚, 1/𝑚,…1/𝑚) (4.20) 

For the Maximum norm the normalized score is the same as the normalized seed score.  

 �̂�(𝑟)0 = �̂�(𝑝)0 = (1/1, 1/1,… 1/1) =  (1, 1, … 1) (4.21) 

This is because ‖𝑆0
∗‖∞ = max(1, 1, … 1) = 1. 

The choice between the two types of initialization may have a significant bearing on the 

outcome of the scores. Scores based on pattern counts are more accurate than those 

based on root counts since patterns are few and abundant hence easily identifiable. Root 

or pattern scores based on these counts as seeds are likely to give better results. 

Therefore the initialization choice depends on the scoring function used. For contrastive 

scoring, type (iii) is more appropriate where pattern seed counts are used to initialize 
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𝑆(𝑟)1. 

 

4.4.3 An Example  

This section exemplifies the working of the mutually recursive ranking algorithm using 

the graph 𝐺𝑋 of section 4.3.2.1. Table 4.4 and Table 4.5 show the first two of the 𝑁 

iterations the algorithm performs for the contrast-plus and contrast-pure scoring 

functions, respectively.  I use type (i) initialization for the former and type (iii) for the 

latter. The Manhattan norm is used in both cases. These tables  illustrate how the 

calculations of the scoring functions are performed at each iterative step.  For this very 

simple graph the rankings converge in the first iteration and do not change with each 

iteration. For contrast-plus, the score has not converged in the first two iterations but the 

contrast-pure score converges at 𝑘 = 1.  

𝒑
𝒓⁄  𝑺𝟏

#(𝒑) 𝑺𝟏
#(𝒓) �̂�𝟏

#(𝒑) �̂�𝟏
#(𝒓) 𝑺𝟐

#(𝒑) 𝑺𝟐
#(𝒓) �̂�𝟐

#(𝒑) �̂�𝟐
#(𝒓) … 

1 
(2 ×

1

3
)

= 2 3⁄  

(1 ×
1

3
) + 

(3 ×
1

3
)

=
4

3
 

2 3⁄

3
 

=
2

9
 

4 3⁄

11 3⁄
 

=
4

11
 

(2 ×
4

11
)

=
8

11
 

(1 ×
2

9
) + 

(3 ×
5

9
)

=
17

9
 

8 11⁄

35/11
 

=
8

35
 

17 9⁄

43 9⁄
 

=
17

43
 

… 

2 
(2 ×

1

3
) + 

(2 ×
1

3
) + 

(1 ×
1

3
) =

5

3
 

(3 ×
1

3
) + 

(1 ×
1

3
)

=
4

3
 

5 3⁄

3
 

=
5

9
 

4 3⁄

11 3⁄
 

=
4

11
 

(2 ×
4

11
) + 

(2 ×
4

11
) + 

(1 ×
3

11
)

=
19

11
 

(3 ×
5

9
) + 

(1 ×
2

9
)

=
17

9
 

19 11⁄

35/11
 

=
19

35
 

17 9⁄

43 9⁄
 

=
17

43
 

… 

3 
(2 ×

1

3
) =

2

3
 (3 ×

1

3
)

= 1 

2 3⁄

3
 

=
2

9
 

1

11 3⁄
 

=
3

11
 

(2 ×
4

11
)

=
8

11
 

(3 ×
5

9
)

=
15

9
 

8 11⁄

35/11
 

=
8

35
 

15/9

43 9⁄
 

=
15

43
 

… 

Table 4.4: Mutual recursion for contrast-plus scoring using type (i)  

initialization and the Manhattan norm 
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𝒑
𝒓⁄  𝑺𝟏

∗ (𝒑) �̂�𝟏
∗ (𝒑) 𝑺𝟏

∗ (𝒓) �̂�𝟏
∗ (𝒓) 𝑺𝟐

∗ (𝒑) �̂�𝟐
∗ (𝒑) 𝑺𝟐

∗ (𝒓) �̂�𝟐
∗ (𝒓) … 

1 
(2 ×

1

3
) /1

= 2 3⁄  

2 3⁄

17/9
 

=
6

17
 

(1 ×
6

17
) + 

(3 ×
5

17
)/2

=
21

34
 

21 34⁄

36 17⁄
 

=
7

24
 

(2 ×
7

24
) /1

=
7

12
 

7/12

119/72
 

=
6

17
 

(1 ×
6

17
) + 

(3 ×
5

17
) /2

=
21

34
 

21 34⁄

36 17⁄
 

=
7

24
 

… 

2 
(2 ×

1

3
) + 

(2 ×
1

3
) + 

(1 ×
1

3
) /3

=
5

9
 

5 9⁄

17/9
 

=
5

17
 

(3 ×
5

17
) + 

(1 ×
6

17
)/2

=
21

34
 

21 34⁄

36 17⁄
 

=
7

24
 

(2 ×
7

24
) + 

(2 ×
7

24
) + 

(1 ×
7

24
) /3 

=
35

72
 

35 72⁄

119 72⁄
 

=
5

17
 

(3 ×
5

17
) + 

(1 ×
6

17
) 2⁄  

=
21

34
 

21 34⁄

36 17⁄
 

=
7

24
 

… 

3 
(2 ×

1

3
) /1

=
2

3
 

2 3⁄

17/9
 

=
6

17
 

(3 ×
5

17
) =

15

17
 

15/17

36 17⁄
 

=
5

12
 

(2 ×
7

24
) /1

=
7

12
 

7/12

119/72
 

=
6

17
 

(3 ×
5

17
) =

15

17
 

15/17

36 17⁄
 

=
5

12
 

… 

Table 4.5: Mutual recursion for contrast-pure scoring using type (iii) initialization and the 

Manhattan norm 

 

 Hyperlink-Induced Topic Search 

I now compare my algorithm to a very similar algorithm used for ranking webpages, 

which is  well recognized in the field of Information Retrieval, known as Hyperlink-

Induced Topic Search (HITS), and also sometimes referred to as the Hubs and 

Authorities algorithm. This algorithm was developed by Jon Kleinberg (1999), and was 

a seminal contribution to the family of Link Analysis Ranking (LAR) algorithms used 

to rank webpages. HITS was a precursor to the PageRank algorithm (Brin et al, 1998) 

currently in use by Google.  

I will first discuss the background of this algorithm outlining how the problem of page 

ranking as described by Kleinberg relates to my work, and then apply the technique to 

rank morphemes. Finally, I describe the proof of ranking convergence for both HITS 

and my approach. 
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Background 

There are two types of pages relevant to webpage ranking: authority pages and hub 

pages. Hubs appear as sizable catalogues acting as gateways to authority pages which 

actually hold the information useful for a particular information request. Thus, hub 

pages direct users to useful webpages which are an authority on a particular subject of 

user interest.  The aim is then to distinguish  good hub pages from good authority pages. 

One way proposed by Kleinberg, is to consider those pages which link to many other 

pages as  good hubs, and those pages that are linked to by many other pages as 

potentially good authority pages. Each page  is assigned two scores, a hub score and an 

authority score. Links to/from important pages, having a high score, in turn contribute 

to a higher ranking for the page with respect to either the hub or authority being scored. 

Procedure 

The algorithm works at query time, unlike its successor the PageRank algorithm which 

computes scores at indexing time. In HITS, the search query is first used to retrieve 

relevant pages known as the root set. This set is then augmented with pages that link to 

pages in this set and those pages that are linked from the root set. The augmented set is 

called the base set. The idea behind making such a set, according to Kleinberg,  is to 

gather the most important authorities. This set with interlinks between webpages, forms 

a  ‘focused sub-graph’ which is a directed graph with edges indicating the linkages 

between the pages. This is similar to the bipartite graph for morphemes in section 4.3.2. 

Likewise in a similar way to the calculation of morpheme scores, the authority and hub 

scores are defined in terms of each other in a mutually recursive relationship. The 

authority score for a page is computed as the sum of the hub scores that point to the 

page. Conversely, the hub score for a page is computed by summing the scores of the 

authority scores of the pages that are pointed to by the hub page. Kleinberg uses the 

Euclidean norm to normalize the scores after each iteration.  
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Application of HITS to Morphology 

Applying the HITS algorithm to the morphology learning task is quite straightforward, 

and the root and pattern scores can be computed in a similar way as with contrastive 

learning:  

 𝑆𝑘
𝐻(𝑟) =

1

|𝑃𝑟|
∑ �̂�𝑘−1

𝐻 (𝑝𝑖)

|𝑃𝑟|

𝑝𝑖=1

 (4.22) 

For 𝑘 = 0,1,2… 

 𝑆𝑘
𝐻(𝑝) =

1

|𝑅𝑝|
∑ �̂�𝑘−1

𝐻 (𝑟𝑖)

|𝑅𝑝|

𝑟𝑖=1

 (4.23) 

For 𝑘 = 1,2,3… 

As can be seen from the formulation of the HITS scoring functions, the initial values of 

the scored morpheme directly depend on counts of the morpheme, unlike in contrastive 

learning where they are determined by the counts of the co-occurring morphemes. 

Subsequently, the counts are scaled according to the score of each co-occurring 

morpheme which in turn have initially been determined by their own occurrence counts. 

So if root morpheme scores are taken as the seed scores, then the initial scores for the 

root morphemes are  

 𝑆0
𝐻(𝑟) = ∑ 1

|𝑃𝑟|

𝑝𝑖=1

= |𝑃𝑟| (4.24) 

We can easily see that |𝑃𝑟| is the count of the number of words in which 𝑟 occurs as 

opposed to the contrastive case where the initial score for 𝑟 would be |𝑅𝑝|, i.e. the 

number of words with 𝑝 such that 〈𝑟, 𝑝〉 ∈ 𝐷𝑉. Thus in essence both algorithms score  

morphemes through mutual reinforcement but the key difference lies in the contribution 
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through either self or affiliate morpheme. One can perceive HITS is a simpler version of 

the contrastive learning algorithm which although computed differently would 

eventually give a similar or the same ranking. This will be seen in more detail in the 

evaluation (section 4.7.3).  

Applying HITS scoring to the example graph 𝐺𝑋 from section 4.3.2.1, Table 4.6 shows 

the scores for the root and pattern morphemes for the first two iterations but using the 

Manhattan norm for comparison purposes, rather than the Euclidean norm as in the 

original HITS implementation. The tables show again that ranking convergence is 

reached in the first iteration but scoring convergence is not reached in these iterations as 

for the contrast-plus case.  

Table 4.7 shows the ranking for the roots and patterns according to contrastive learning 

and according to HITS. While relative rankings for 𝑝1, 𝑝3 and 𝑟1,𝑟2 stay the same due to 

their similar link structure, it is noteworthy to see that the ranking for 𝑟3 and 𝑝2 is 

reversed in the two types of scoring, since one gives more emphasis to the morphemes 

with more links from itself while the other gives more importance to the number of 

links of associated morphemes. So, the graph shows that 𝑟3 itself has degree one, 

therefore getting a lower score with HITS but its only co-occurring morpheme has 

degree three, hence it is given more importance by contrastive learning. 
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𝒑
𝒓⁄  𝑺𝟏

𝑯(𝒑) �̂�𝟏
𝑯(𝒑) 𝑺𝟏

𝑯(𝒓) �̂�𝟏
𝑯(𝒓) 𝑺𝟐

𝑯(𝒑) �̂�𝟐
𝑯(𝒑) 𝑺𝟐

𝑯(𝒓) �̂�𝟐
𝑯(𝒓) … 

1 1

3
 

1

3
/
5

3
 

=
1

5
 

1

5
+
3

5
 

=
4

5
 

4

5
/
11

5
 

=
4

11
 

4

11
 

4

11
/
19

11
 

=
4

19
 

4

19
+
11

19
 

=
15

19
 

15

19
/
41

19
 

=
15

41
 

… 

2 1

3
+
1

3
+ 

1

3
= 1 

3/
5

3
 

=
3

5
 

3

5
+
1

5
 

=
4

5
 

4

5
/
11

5
 

=
4

11
 

4

11
+
4

11

+ 

3

11
= 1 

1/
19

11
 

=
11

19
 

11

19
+
4

19
 

=
15

19
 

15

19
/
41

19
 

=
15

41
 

… 

3 1

3
 

1

3
/
5

3
 

=
1

5
 

3

5
 

3

5
/
11

5
 

=
3

11
 

4

11
 

4

11
/
19

11
 

=
4

19
 

11

19
 

11

19
/
41

19
 

=
11

41
 

… 

Table 4.6: Mutual recursion for HITS 

using type (ii) initialization and the Manhattan norm 

 

Contrast-Pure (𝑺∗) HITS (𝑺𝑯) 

Root Pattern Root Pattern 

𝑟3 𝑝1/𝑝3 𝑟1/𝑟2 𝑝2 

𝑟1/𝑟2 𝑝1/𝑝3 𝑟1/𝑟2 𝑝1/𝑝3 

𝑟1/𝑟2 𝑝2 𝑟3 𝑝1/𝑝3 

Table 4.7: Root and pattern ranking comparison  

between HITS and contrast-pure 
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4.5.1 Proof of Convergence 

The proof of convergence of the mutually recursive algorithms given below uses 

concepts from linear algebra. The approach to proving  ranking convergence is similar 

to one presented in the literature (Borodin et al, 2005; Tsaparas, 2004) on linear link 

analysis algorithms used for ranking pages of a network based on links between pages, 

such as PageRank, HITS, etc.– also referred to as eigenvector-based ranking algorithms. 

Here I first adapt the proof for the convergence of the HITS algorithm applied to 

morpheme ranking, which is congruent to the page ranking problem. Thereafter, I prove 

convergence for the contrastive algorithms. But firstly, I translate the problem and 

formulae into an algebraic representation.  

4.5.1.1 Algebraic Representation 

I assume the bipartite graph as defined in section 4.3.2 to represent the link structure of 

the morphemes. Thus, in contrast to LAR, where a graph is defined as directed with 

edges from page to page, the graph for morpheme ranking  

 

𝐺 = (𝑅𝑉, 𝑃𝑉, 𝐸) 

𝐸 = {(𝑟, 𝑝): 𝑟 ∈ 𝑅𝑉  , 𝑝 ∈ 𝑃𝑉} 
(4.25) 

maps to a 𝑚 ×𝑚 adjacency matrix, 𝐴, where the rows are represented by 𝑖th root 

entries and columns with 𝑗th pattern entries. If there is a link from 𝑟𝑖 to  𝑝𝑗 in graph 𝐺, 

then, 𝑎𝑖𝑗 = 1; all other entries of the matrix are 0. An example adjacency graph for the 

example 𝐺𝑋 is: 

 𝐴𝐺𝑋 = (
1 1 0
0 1 1
0 1 0

) (4.26) 

Taking the sum of the columns results in a vector where each element 𝑖, corresponds to 

the count, |𝑃𝑟𝑖| . Let this resulting sum of columns vector be 𝜙𝐴. Similarly, summing 

vertically over all the rows 𝑖 gives a vector with each element 𝑗 corresponding to the 
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count |𝑅𝑝𝑗|. This latter vector is equivalent to taking the sum of rows 𝑖, horizontally 

over the transpose of the adjacency matrix, 𝐴𝑇, which is represented as the vector, 𝜙𝐴𝑇. 

Further, I refer to inverse of the horizontal and vertical summation vectors, 𝜙−1
𝐴

 and 

𝜙−1
𝐴𝑇

, as corresponding to values 1 |𝑃𝑟𝑖|⁄  and 1 |𝑅𝑝𝑗|⁄ , respectively. Thus for 𝐴𝐺𝑋 , 

 
𝜙𝐴𝐺𝑋 = (

2
2
1
) , 𝜙𝐴𝐺𝑋𝑇 = (

1
3
1
) , 

  𝜙−1
𝐴𝐺𝑋

= (
1 2⁄

1 2⁄

1 1⁄
) , 𝜙−1

𝐴𝐺𝑋
𝑇 = (

1 1⁄

1 3⁄

1 1⁄
) 

(4.27) 

Let 𝑟𝑘 be the root weight vector used to represent the scores 

𝑆𝑘(𝑟1), 𝑆𝑘(𝑟2), 𝑆𝑘(𝑟3),… 𝑆𝑘(𝑟𝑚) at a particular iteration 𝑘. Similarly let �⃑�𝑘 be the pattern 

weight vector used to represent the scores 𝑆𝑘(𝑝1), 𝑆𝑘(𝑝2), 𝑆𝑘(𝑝3),… 𝑆𝑘(𝑝𝑚) at iteration 

𝑘. 𝑟𝑘 and �⃑�𝑘 are both column vectors.  

The scoring and rescoring functions can be expressed in terms of the vector based 

representation with 𝐴 as the adjacency matrix of graph G containing links between roots 

and patterns, and weight vectors, 𝑟 and �⃑�, respectively. Denoting 𝑀𝑇 as the transpose of 

matrix 𝑀, the updated weights for the root and pattern, as described in the equations 

(4.22) and (4.23) for HITS, are written using vector representation as   

 𝑟𝑘 = 𝜌𝑘𝐴 �⃑�𝑘−1 (4.28) 

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇 𝑟𝑘 (4.29) 

 

where 𝛾𝑘and 𝜌𝑘 are normalization constants to ensure that the root and pattern weight 

vectors are normalized: 

 
𝜌𝑘 =

1

‖𝑟𝑘−1‖
 ,      𝛾𝑘 =

1

‖�⃑�𝑘−1‖
 

(4.30) 
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For contrast-plus, let Φ represent the diagonal matrix, 

 Φ𝐴 = diag(𝜙𝐴) and Φ𝐴𝑇 = diag(𝜙𝐴𝑇) (4.31) 

then, 

 𝑟𝑘 = 𝜌𝑘𝐴 Φ𝐴 �⃑�𝑘−1 (4.32) 

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇Φ𝐴𝑇  𝑟𝑘−1 (4.33) 

Where 

 
𝜌𝑘 =

1

‖Φ𝐴𝑟𝑘−1‖
 ,      𝛾𝑘 =

1

‖Φ𝐴𝑇�⃑�𝑘−1‖
 

(4.34) 

For contrast-pure, let Ψ represent the diagonal matrix, 

 Ψ𝐴 = diag(𝜙𝐴)diag(𝜙
−1
𝐴𝑇
) and Ψ𝐴𝑇 = diag(𝜙𝐴𝑇)diag(𝜙

−1
𝐴
) (4.35) 

then, 

 𝑟𝑘 = 𝜌𝑘𝐴 Ψ𝐴 �⃑�𝑘−1 (4.36) 

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇Ψ𝐴𝑇  𝑟𝑘−1 (4.37) 

where 

 
𝜌𝑘 =

1

‖Ψ𝐴𝑟𝑘−1‖
 ,      𝛾𝑘 =

1

‖Ψ𝐴𝑇�⃑�𝑘−1‖
 

(4.38) 
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4.5.1.2 Background Concepts 

For a symmetric matrix 𝑀, 𝑛 × 𝑛 there exists a vector 𝑣, which when multiplied by 𝑀, 

yields a constant multiple of 𝑣: 

 𝑀𝑣 = 𝜆𝑣 (4.39) 

Vector 𝑣 is referred to as the eigenvector and the multiplier, 𝜆, is referred to as the 

eigenvalue corresponding to 𝑣.  

The Perron-Frobenius Theorem states that if 𝑀 is a non-negative6 (i.e. all values are 

≥ 0) irreducible or a symmetric square matrix, then there exists an eigenvalue 𝑎 such 

that the modulus of all other eigenvalues does not exceed 𝑎. Corresponding to this 

eigenvalue an eigenvector can be chosen which is also non-negative. 

The set of all eigenvectors associated with a particular eigenvalue 𝜆 is known as the 

eigenspace of matrix 𝑀 from the space ℝ𝑛. The dimension of this space is the 

multiplicity of 𝜆. Since 𝑀 is symmetric, the set of all eigenvalues is real and is known to 

have at most 𝑛 distinct eigenvalues summing over all multiplicities. The eigenvalues of 

𝑀can be written with multiplicities indexed in order of decreasing magnitude: 

 |𝜆1| ≥ |𝜆2| ≥ |𝜆3| ≥ ⋯ |𝜆𝑛| (4.40) 

For each eigenvalue 𝜆𝑖, there exists a corresponding eigenvector vector 𝑣𝑖, such that the 

eigenvectors are an orthogonal basis of their respective eigenspaces. A dominant or 

principal eigenvector exists such that the eigenvalue associated with this eigenvector 

has the largest magnitude. In turn this eigenvalue is also referred to as the dominant or 

largest eigenvalue of the matrix. Thus, if the assumption |𝜆1| > |𝜆2| holds, 𝜆1 is the 

dominant or principal eigenvalue.  

                                                 

6 The original theorem of Perron requires 𝑀 to have positive entries, but this was extended to non-

negative by Frobenius. 
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4.5.1.3 The Proof (HITS) 

Combining the two equations (4.28) and  gives a method for calculating the score 

vectors in term of the score vector of the same morpheme from the previous iteration, 

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1(𝐴𝐴
𝑇)𝑟𝑘−1 (4.41) 

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘(𝐴
𝑇𝐴)�⃑�𝑘−1 (4.42) 

Note that the product of the adjacency matrix with its transpose, 𝐴𝐴𝑇 and 𝐴𝑇𝐴 , gives a 

symmetric matrix which will be useful in the derivation of the principal eigenvector in 

the proof of convergence, below.  

As 𝑘 grows large, the two weight vectors converge to 𝑟𝑘
∗
 and �⃑�𝑘

∗
, respectively, 

 𝑟𝑘
∗
= 𝜆∗𝐴𝐴𝑇𝑟𝑘

∗
 (4.43) 

 �⃑�𝑘
∗
= 𝜆∗𝐴𝑇𝐴�⃑�𝑘

∗
 (4.44) 

The convergent vectors 𝑟𝑘
∗
 and �⃑�𝑘

∗
 each correspond to the dominant eigenvectors of 

matrices 𝐴𝐴𝑇 and 𝐴𝑇𝐴, respectively, which are both symmetric, and 𝜆∗ as the dominant 

eigenvalue for each of the matrices. Thus we must prove that the sequence {𝑟𝑘} 

converges to a vector, 𝑟𝑘
∗
, which is a non-negative eigenvector of the largest  

eigenvalue of 𝐴𝐴𝑇, 𝜆∗. Likewise, the pattern vector sequence, {�⃑�𝑘}, converges to a 

vector �⃑�𝑘
∗
, which again is a non-negative eigenvector of the largest  eigenvalue of 𝐴𝑇𝐴, 

𝜆∗.   

Since 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are symmetric their eigenvalues are real and non-negative. As seen 

above, while the largest modulus eigenvalue can have multiplicity greater than 1, all the 

other eigenvalues would have a smaller magnitude. The eigenspaces corresponding to 

each distinct eigenvalue would be orthogonal. In the dominant eigenspace for the largest 

eigenvalue, we can choose any non-negative orthogonal vector. Since the initial vectors 

𝑟0 and 𝑝0 are positive, they are not orthogonal to the chosen dominant eigenvectors 
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which are also non-negative, i.e. the dot product of 𝑟0 or �⃑�0 with the principal 

eigenvector is positive. According to the Von Mises iteration algorithm (von Mises & 

Pollaczek-Geiringer, 1929), since 𝑟0 or �⃑�0 would have a nontrivial component in the 

eigenspace of the principal eigenvector, the vectors {𝑟𝑘}  and {�⃑�𝑘} in the same direction 

would converge to their respective dominant or principal eigenvectors, 𝑟𝑘
∗
 and  �⃑�𝑘

∗
 with 

largest eigenvalue modulus 𝜆∗ (Golub & Van Loan, 1989).  

An alternative way to look at this convergence of the algorithm, as described by Farahat 

et al (2006), is to consider the pattern vector �⃑� as a linear combination of the 

eigenvectors, �⃑�1, �⃑�2, �⃑�3, … �⃑�𝑛 .  

 �⃑�1 = 𝑐1�⃑�1 +⋯𝑐𝑛�⃑�𝑛 (4.45) 

where 𝑐𝑖 = �⃑�1 ∙ �⃑�𝑖 ‖�⃑�𝑖‖⁄  

 �⃑�2 = 𝜆1𝛼1�⃑�1 +⋯𝜆𝑛𝛼𝑛�⃑�𝑛 (4.46) 

or 

 �⃑�2 = 𝜆1(𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟) + 𝜆𝑟+1𝛼𝑟+1�⃑�𝑟+1 +⋯𝜆𝑛𝛼𝑛�⃑�𝑛 (4.47) 

if, 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑟 ≠ 𝜆𝑟+1 

Subsequently, 

 
�⃑�𝑘+1 = 𝜉𝑘 (𝜆1

𝑘[𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟] + ∑ 𝜆𝑖
𝑘𝛼𝑖�⃑�𝑖

𝑛

𝑖=𝑟+1

) (4.48) 

where 𝜉𝑘 = 𝜌𝑘𝛾𝑘𝜉𝑘−1 

As 𝑘 grows large, 𝜆1
𝑘 dominates, thus, 
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 �⃑�𝑘 → 𝑐(𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟) (4.49) 

and 

 𝜌𝑘𝛾𝑘 → 𝜆1 (4.50) 

Thus the pattern weight vector �⃑�𝑘 converges to the eigenvector of the dominant 

eigenvalue 𝜆1. 

4.5.1.4 Convergence for Contrastive Learning 

The two equations (4.32) and (4.33) for contrast-plus scoring combine to calculate the 

score vectors in terms of themselves, 

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1 (𝐴Φ𝐴𝐴
𝑇) Φ𝐴𝑇  𝑟𝑘−1 (4.51) 

 

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘 (𝐴
𝑇Φ𝐴𝑇𝐴) Φ𝐴 �⃑�𝑘−1 (4.52) 

Similarly to  𝐴𝐴𝑇 and 𝐴𝑇𝐴,  𝐴Φ𝐴𝐴
𝑇and 𝐴𝑇Φ𝐴𝑇𝐴 are also symmetric with eigenvalues 

that are real and non-negative. Since Φ𝐴𝑇 and  Φ𝐴 are positive their products with the 

initial vectors, 𝑟0 and �⃑�0, i.e. Φ𝐴𝑇  𝑟0 and Φ𝐴�⃑�0 are positive vectors. They are not 

orthogonal to the chosen dominant non-negative eigenvectors since the dot product of 

Φ(𝐴𝑇) 𝑟0 or Φ𝐴�⃑�0 with the principal eigenvector is positive. Thus, the vectors {Φ𝐴𝑇𝑟𝑘}  

and {Φ𝐴�⃑�𝑘} are in the same direction as Φ𝐴𝑇  𝑟0 and Φ𝐴�⃑�0 and converge to their 

dominant eigenvectors, 𝑟𝑘
∗
 and  �⃑�𝑘

∗
 with largest eigenvalue modulus 𝜆∗ 

For contrast-pure scoring the equations (4.36) and (4.37)  are combined: 

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1 (𝐴Ψ𝐴𝐴
𝑇) Ψ𝐴𝑇 𝑟𝑘−1 (4.53) 



118 

 

 

 

 

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘 (𝐴
𝑇Ψ𝐴𝑇𝐴) Ψ𝐴 �⃑�𝑘−1 (4.54) 

 Morphological Analysis 

As in Chapter 4, I run a set of experiments to perform morphological analysis for every 

word in the dataset using the root and pattern lexicons obtained using each scoring 

technique. Each word to be analysed is decomposed using the decomposition function, 

𝐷𝑤. For each 〈𝑟, 𝑝〉 in 𝐷𝑤 the analysis score is computed using the respective lexicons 

containing normalized scores for the morphemes. There are several ways to combine the 

morpheme scores to obtain the analysis score. In each of the cases, the combined 

analysis scores are ranked from highest to lowest score, revealing the best analyses on 

top. As the scores are normalized there is no need to scale the scores as was done in the 

previous chapter.  

 

One type of combination is considered in the previous chapter, where the scores of the 

morphemes from their respective lexicons are added linearly. This type of analysis score 

computation is suited for contrast-plus scoring where the morpheme scores are an 

amalgamation of root and pattern occurrences. For a word 𝑤, given the analysis 〈𝑟, 𝑝〉𝑖 

in 𝐷𝑤, the maximum analysis score is selected as the output:  

 

 max
𝑖=1..𝐿(|𝑤|)

( �̂�#( 𝑟𝑖 ) + �̂�
#(𝑝𝑖 ) ) (4.55) 

For contrast-pure and HITS, the scores for each morpheme are wholly representative of 

one morpheme type. If one score was computed on the basis of root occurrences then 

the other would be computed in terms of pattern occurrences.  Hence a more appropriate 

method of analysis score calculation is to take the product of scores of roots and 

patterns. The best analysis would be selected as the maximum of the product of the pair 

of  scored morphemes: 
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 max
𝑖=1..𝐿(|𝑤|)

( �̂�∗( 𝑟𝑖 )  × �̂�
∗(𝑝𝑖 ) ) (4.56) 

 

 max
𝑖=1..𝐿(|𝑤|)

( �̂�𝐻( 𝑟𝑖 )  × �̂�
𝐻(𝑝𝑖 ) ) (4.57) 

 

 Evaluation 

The evaluation is performed using the Quranic Arabic Corpus (QAC) with the same 

setup as in section 3.5. The evaluation measure  is also the same as before: the 

percentage of roots that are correctly analysed against the correctly identified roots 

available for the QAC. The total number of evaluated words is 54817. The evaluation is 

divided into three parts. The first part compares the different base scoring strategies for 

the three types of scoring methods, contrast-plus, contrast-pure and HITS, taking into 

consideration the various features and configurations. The second part evaluates the 

iterative mutual recursive scoring technique applied to each of the scoring methods. The 

final part evaluates the refinement procedure for contrast-pure and HITS. 

 

4.7.1 Base Scoring Evaluation 

I start by comparing the performance of the base scoring functions i.e. contrast-plus, 

contrast-pure and HITS without recursion. I also consider these as the baselines to 

which mutually recursive scoring is compared. These can be considered as the first  

iteration  of the mutually recursive algorithm. At this stage, I also look at the effect of 

different norms used, initialization using root or pattern or both simultaneously,  and 

finally the two ways of aggregating morpheme scores using summation or product. 

                                                 

7 This number is slightly different to that in section  3.5 as there were some words whose  root characters 

needed to undergo normalization; hence 13 additional words now formed part of the evaluation set. 
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Starting with a seed score of all ones, I perform sequential score updates starting with 

either roots or patterns. This sequence of  dual updates – firstly for the chosen 

morpheme score with the seed score, and secondly based on counterpart morpheme 

scores – constitutes one cycle and corresponds to the first iteration of  the recursive 

algorithm. The choice of which morpheme to start with, either root first then pattern 

(Root-Pattern) or pattern first then root (Pattern-Root), may be of importance for the 

base scoring functions. I compare this with parallel or simultaneous update of both 

pattern and root both initialized using an all ones seed score.  The results for the three 

scoring functions are shown in Table 4.8, showing the number of correctly identified 

roots from a total of 5481 evaluated words. The scoring functions for these outputs have 

been normalized using the Manhattan norm and the analysis score computed by taking 

the product of morpheme scores.  

Initialization Contrast-

plus 

Contrast-

pure 

HITS 

Root-Pattern 4632 4321 2805 

Pattern-Root 4503 3343 3506 

Simultaneous 4293 3900 3026 

Table 4.8: Numbers of correct analyses using different 

initializations 

The best performance is exhibited by Root-Pattern  for both contrastive scoring methods, 

but for HITS, Pattern-Root gives the best performance. Here for all three scoring 

methods, the seed score counts are computed based on pattern occurrence counts. This 

shows that the counts for patterns are more reliable and accurate than those for roots. 

This is understandable because there are relatively few patterns but their frequency of 

occurrence is very high. This makes them easily distinguishable from other morphemes. 

Triliteral roots occur in large variety having fewer individual counts, and also 

sometimes overlapping with three letter affixes. Hence these are less easily discernible 

than their counterparts. For all three methods, simultaneous scoring of morphemes 

shows inferior performance to the other initializations. All the experimental results 

below use Root-Pattern initialization for contrastive learning and Pattern-Root for HITS. 
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Next I look at two types of norms, Manhattan and maximum. Each is a different way to 

measure the size of a vector. Here the purpose of using the norm is to scale the scores in 

order to make them comparable and  to prevent overflow or underflow for the recursive 

algorithm.  Alongside using the different norms, I look at the way that the analysis score 

is combined – either using summation or product.  The results are shown in Table 4.9.  

 Manhattan Maximum 

Summation Product Summation Product 

Contrast-plus 4799 4632 4346 4632 

Contrast-pure 4190 4321 3772 4321 

HITS 2977 3506 3524 3506 

Table 4.9: Comparison using different norms  

and analysis scoring combinations 

One thing that can readily be seen is that using product to obtain analysis scores makes 

the scoring independent of the type of norm: the scores for Manhattan and maximum 

are the same when using product. This is to be expected, as the ranking is independent 

of the normalization.  Also, the results are generally superior when using product. The 

scores for roots and patterns are computed in terms of each other, hence using  product 

brings out the best morpheme composition in the word. The main exception is contrast-

plus where much better results are obtained using summation, normalized using the 

Manhattan norm. As stated earlier, the morpheme scores in this are a balanced 

combination of root and pattern occurrences. The Manhattan norm scales yet preserves 

the relative differences in magnitudes of scored quantities for contrast-plus morpheme 

scores which are in a comparable range. Thus a linear combination of the quantities 

yields a better solution.  

In all the following experiments, contrast-pure and HITS use product to obtain analysis 

scores; contrast-plus uses summation and the Manhattan norm for score scaling. The 

three base scoring methodologies are compared in the  which shows their percentage 

accuracies. 
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 Correct Accuracy (%) 

Contrast-plus 4799 87.56 

Contrast-pure 4321 78.88 

HITS 3506 63.40 

Table 4.10: Comparison of the best performance  

of the three base scoring methods 

Table 4.10 clearly shows the advantage of using contrast-plus scoring. Contrastive 

learning in which morphemes are scored based on all co-occurring morpheme counts, 

perhaps performs better because it is computed based on statistics of both morpheme 

types while the other  two scoring functions are computed using one morpheme type; 

the latter two methods could be expected to show better performance when the scores 

are combined in the mutually recursive calculation process.  

 

4.7.2 Mutually Recursive Rescoring Evaluation 

The next set of experiments explores the approach where scoring functions are subject 

to iterative improvement based on scores computed in the previous cycle in a mutually 

recursive relationship, until convergence is achieved. There are several aspects to 

investigate besides identifying the best scoring function, for example rates of 

convergence, the levels of improvement etc.   

Starting with their respective base scores, the recursive functions are repeatedly applied 

until convergence. I chose 𝑁 = 10 as a sufficiently large number of iterations in order 

to achieve convergence but as seen in the results below convergence is reached before 

the 6th iteration.  
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No. of Iterations Correct Accuracy (%) 

0 4799 87.56 

1 4894 89.29 

2 4909 89.56 

3 4908 89.55 

4 4908 89.55 

5 4908 89.55 

6 4909 89.56 

Table 4.11: Contrast-plus accuracy at  

different iterations 

For contrast-plus, we see from Table 4.11 that the second iteration shows a sudden 

increase in accuracy by 1.73 percentage points, and then a slight improvement in the 

third iteration. Thereafter the performance stays more or less constant. After the 6th 

iteration, the accuracy figures remain unchanged. 
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No. of Iterations Correct Accuracy(%) 

0 4321 78.84 

1 4964 90.57 

2 5024 91.66 

3 5041 91.97 

4 5046 92.06 

5 5046 92.06 

6 5046 92.06 

Table 4.12: Contrast-pure accuracy at  

different iterations 

For contrast-pure, there is a large initial increase in performance of 11.7 percentage 

points which takes the accuracy from a long way below contrast-plus to just above. 

Thereafter, the increase is more gradual with the accuracy reaching 92.06 in the fifth 

iteration.  
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No. of Iterations Correct Accuracy(%) 

1 3506 63.97 

2 4590 83.74 

3 4983 90.91 

4 5058 92.28 

5 5072 92.54 

6 5076 92.61 

7 5076 92.61 

Table 4.13: HITS accuracy at different 

iterations 

Finally, for HITS the increase in performance is even more marked (almost 20 

percentage points) than for contrast-pure in the second iteration. Keeping up the 

improvement in subsequent iterations HITS finishes at 92.61 in the sixth iteration, 

thereafter remaining unchanged. 

Finally, Figure 4.2 and the associated Table 4.14 show the learning rates of the three 

scoring functions. It is interesting to see that contrast-plus starts out as the best base 

scoring method but shows the least improvement in the subsequent recursive learning 

process; whereas HITS starts off with the lowest accuracy, but improves to best 

performing procedure amongst the three with the highest increase in accuracy with an 

increase of 28.6 percentage points from base to convergence. The  contrast-pure 

learning rates are is between the extremes ending up with a  performance only slightly 

below HITS by about 0.55 percentage points.  
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No. 

of 

Iter-

ation 

Accuracy Increase (% points) 

Contrast-

Plus 

Contrast-

Pure 

HITS 

1 1.73 11.73 19.78 

2 0.27 1.09 7.17 

3 -0.02 0.31 1.37 

4 0.0 0.09 0.26 

5 0.0 0.0 0.07 

6 0.018 0.0 0.0 

0-7 2.01 13.23 28.64 
 

Figure 4.2: Comparison of the three methods 

showing accuracies at each iteration 

 

Table 4.14:  Comparison of the three  

methods with accuracy differences 

relative to the previous iteration 

 

4.7.3 Summary of Evaluation Results 

 

Table 5.1 summarizes the results, for the three scoring methods after the base scoring 

and recursive scoring. Overall, the morpheme learning techniques described in this 

chapter reach approximately 93% correct root morpheme identification. 

 Base Recursive Scoring 

Contrast Plus 87.5 89.56 

Contrast Pure 78.8 92.06 

HITS 63.9 92.61 

Table 4.15:  Comparison of the three methods in terms of accuracy 
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 Conclusion 

This chapter investigated morphology learning using counts of root and pattern 

occurrences. A contrastive learning approach was presented in which a good root 

candidate is one that co-occurs with a large number or variety of pattern morphemes, 

and vice-versa. Within this approach two different strategies were considered: one 

considering own morpheme counts along with opposite morpheme occurrences were 

considered, known as contrast-plus; and the other where only opposite morpheme 

counts were considered, known as contrast-pure.  

This contrastive learning approach was then developed further, with previous root 

scores being used to enhance pattern scores in each subsequent iteration,  and pattern 

scores used to enhance root scores in a mutually recursive relationship until 

convergence is reached. At this point I introduced for comparison, the well-recognized 

HITS algorithm, used for ranking web-pages, and applied it to ranking morphemes. 

There is much similarity between the contrastive learning algorithm and the HITS 

algorithm. Intuitively, the recursive contrast-pure algorithm is essentially the same as 

HITS formulated slightly differently. This is verified by the evaluation results, as both 

methods give only slightly different results.  

The three scoring methods were evaluated at different stages of development: at the 

base level, in the absence of recursive application, it was shown that the best performing 

method was contrast-plus with an accuracy of 87.5%; it takes into consideration the 

counts of both morphemes, its own counts and the co-occurring morphemes’ counts. 

The other two methods, i.e. contrast-pure and HITS, gave poorer performance of 78.8% 

and 63.9%, respectively,  at this point relying purely on co-occurring morphemes’ 

counts. However, when the latter two methods were applied in a mutually recursive 

learning algorithm, they out-performed the former method by about 3 percentage points. 

Both the contrast-pure and HITS are almost at par due to recursive rescoring, with HITS 

giving slightly better performance (by 0.55 percentage points).  

The contrastive learning approach is a simple yet powerful approach which is superior 

to the machine learning technique described in Chapter 3 which takes considerably 

more time in model training and application besides the added complications of 
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parameter estimation. In Chapter 3, the best performing method gave an accuracy of  

86.26% compared to 92.61% for contrastive learning, an improvement of 6.4 percentage 

points. 
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Contrastive Learning Extensions  

and Stemmer Comparison 

 Introduction 

Chapter 4 demonstrated the superiority of contrastive learning over the machine 

learning  based approach to non-concatenative morphology induction described in 

chapter 3 in terms of accuracy and computational efficiency.  

This chapter investigates two extensions intended to enhance the contrastive learning 

technique devised in the previous chapter. The first extension is a refinement procedure 

which rescores the scores obtained from the base procedure. The intuition behind the 

rescoring procedure is that a potentially sound morpheme should be recognized if it 

keeps ‘good company’:  it should receive a higher score if all the morphemes co-

occurring with it have high scores. The procedure thus averages the scores of a 

morpheme over all of its co-occurring morphemes instead of taking the counts of the 

co-occurring morphemes as was the case in the base procedure.  

The second extension is a root size normalization procedure. Shorter potential root 

morphemes are by their very nature very frequent. Since the contrastive learning 

technique is wholly dependent on morpheme counts it is important to normalize these 

counts across the different morpheme sizes. Up to this point the procedure has worked 

because the analysis has been restricted to consider only triliteral morphemes. After 

application of the normalization it would be possible to remove this restriction.  

Finally, in order to gauge the merit of the unsupervised learning technique, I carry out a 

comparative evaluation against existing, widely used rule-based Arabic stemmers. 
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5.1.1  Chapter Organization 

The chapter reports three related strands of work. Firstly, section 5.2 formulates a 

refinement procedure that is applied to the contrastive learning technique. The section 

discusses methods for rescoring hypothesised morphemes and associated initialization 

and stopping criteria, and goes on to present a set of experiments. Secondly, section 5.3 

introduces a root normalization procedure, outlining two ways to normalize morpheme 

counts in order to extend morphological induction beyond triliteral roots; the section 

concludes with a further set of experiments. Thirdly, section 5.4 compares existing 

stemmers with the contrastive learning procedure incorporating the extensions described 

in the two previous sections. Section 5.5 concludes with a summary of the three strands 

of work, and proposes further avenues for investigation. 

 

 Contrastive Learning Refinement: Mean Rescoring 

This section explores a refinement procedure that is applied to the recursively derived 

scores for each morpheme from equations (4.14) and (4.15) of Chapter 4. In this 

procedure, each morpheme is rescored by taking the average of the scores of all co-

occurring morphemes. The idea is that a sound root and pattern should always co-occur 

with high scoring patterns and roots. If a morpheme co-occurs with a mixture of high 

and low scoring morphemes then its overall score would decrease, reflecting the fact 

that it is less reliable. In contrast, if a morpheme always has high scoring co-occurring 

morphemes it would get a higher overall score.  

In this section, the previously described mutually recursive scoring procedure is referred 

to as the base procedure/algorithm/scoring, to which is applied the refinement step or 

rescoring. Also, consideration is restricted to the two cases, contrast-pure  and HITS. 

Hence, contrast-pure is referred to simply as contrastive learning.  

The rescoring procedure is recursive, using the seed score initialized from any of the 

previous scoring methods of the base procedure. The refinement rescoring functions, 

denoted by 𝑅S, are initialized using the converged scores  𝑅𝑆0(∙) = 𝑆𝑁(∙) from the base 

procedure:  
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𝑅𝑆𝑘(𝑟) = ∑ 𝑅𝑆𝑘−1(𝑝)

|𝑃𝑟|

𝑝𝑖=1

 (5.1) 

 

𝑅𝑆𝑘(𝑝) = ∑𝑅𝑆𝑘−1(𝑟)

|𝑅𝑝|

𝑟𝑖=1

 (5.2) 

If 𝑅𝑆𝑘(𝑟) is computed first then it uses the values, 𝑘 = 1, 3, 5…, and the values 𝑘 =

2, 4, 6, … for 𝑅𝑆𝑘(𝑝). The values for 𝑘 get switched if 𝑅𝑆𝑘(𝑝) is computed first. The 

recursive iteration differs from the base procedure in that in each iteration only one of 

the two functions’ scores gets computed rather than both. Unlike for contrastive 

learning and HITS, in this refinement step the rescored vectors do not converge as  𝑘 →

∞,  as will be seen below; hence the stopping criterion at iteration, 𝑘 = 𝐾  needs to be 

determined. Also, note that in the rescoring formula the score vectors from the previous 

iterations are not normalized as has been the case previously, since the rescoring here is 

based on computing the mean of scores, resulting in there being no chance of overflow 

or underflow at each iteration.  

 

5.2.1 Initialization 

Similarly to the initialization of the mutual recursion of the base scoring method 

(section 4.4), there are two choices for initialization: (i) initialize 𝑅𝑆1(𝑟) with the 

pattern count oriented score and 𝑅𝑆1(𝑝) with 𝑅𝑆1(𝑟); or (ii) initialize 𝑅𝑆1(𝑝) with the 

pattern count oriented score and 𝑅𝑆1(𝑟) with 𝑅𝑆1(𝑝). From step one, the pattern count 

oriented score is that which was chosen by the mutual recursive step based on pattern 

counts. Thus for HITS the pattern count oriented score is 𝑆(𝑝), hence my choice is type 

(i) initialization for refinement rescoring. For the contrastive case I use type (ii) where 

𝑆(𝑟) is the pattern oriented score in step one.  
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5.2.2 Convergence 

Transforming the rescoring functions into a linear algebraic representation, using 𝑟 to 

denote the root score and �⃑� to denote the pattern score, 

 𝑟𝑘 = 𝐴𝑟 �⃑�𝑘−1 (5.3) 

 �⃑�𝑘 = 𝐴𝑐 𝑟𝑘−1 (5.4) 

where 𝐴𝑟 = 𝐴 𝑑𝑖𝑎𝑔(𝜙−1
𝐴
) and 𝐴𝑐 = 𝐴 𝑑𝑖𝑎𝑔(𝜙

−1
𝐴𝑇
), which are the adjacency matrix 

divided by the sum of rows of 𝐴 (i.e. 1 |𝑃𝑟𝑖|⁄ ) and the sum of columns of A (i.e. 

1 |𝑅𝑝𝑗|⁄ ), respectively. Combining the two equations (5.3) and (5.4) results in: 

 𝑟𝑘 = (𝐴𝑟𝐴𝑐
𝑇)𝑟𝑘−2 (5.5) 

 �⃑�𝑘 = (𝐴𝑐
𝑇𝐴𝑟)�⃑�𝑘−2 (5.6) 

As shown in Chapter 4, it is possible to compute the dominant eigenvalue for a matrix 

using the power law to prove convergence. For the algorithm to converge, the product 

of the adjacency matrix product with its transpose has to be either symmetric or 

diagonalizable. Unfortunately, neither 𝐴𝑟𝐴𝑐
𝑇

  nor 𝐴𝑐
𝑇𝐴𝑟 are symmetric. For a matrix 

𝐴𝑟𝐴𝑐
𝑇
  or  𝐴𝑐

𝑇𝐴𝑟 to be diagonalizable, the graph represented by 𝐴 must be fully 

connected. This is also not true since it is not likely that all morphemes would be 

interconnected. Therefore, an alternative solution must be sought for stopping the 

iterations. 

 

5.2.3 Stopping Criterion 

An important thing to note about the recursive rescoring functions is that a root is 

assigned a score averaged over some patterns; likewise a pattern is assigned a mean  

score over a certain set of roots. The dimensions of the two morpheme score vectors are 

different. Since there is a single initial seed score based on the reliable pattern 
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occurrence counts (as described in section 5.2.1) the initial scores for patterns and roots 

computed using the rescoring functions have different dimensions indicated by the size 

or norm of the score vectors. As the algorithm iterates, there comes a point, 𝑘 = 𝐾, 

when the size or norm of the root and pattern vectors are nearly equal, hence the 

difference, 𝛿𝑘 between them is minimized,  

 
𝛿𝑘 = 1 −

‖𝑅𝑆𝑘(𝑝)‖

‖𝑅𝑆𝑘(𝑟)‖
 

𝐾 = min
𝑘
 (𝛿𝑘)  

(5.7) 

Thereafter, the difference between the vector sizes starts to increase again. This is 

illustrated in Figure 5.1, for an example using rescoring on contrastive learning. So, in 

this case, at 𝐾 = 4 the iterations are stopped and the refined root and pattern vectors are 

output. 

 

Figure 5.1: The size difference between the root and the pattern vectors 
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5.2.4 Refinement Scoring Experiments 

The refinement procedure is also a recursive procedure where it is crucial to identify the 

iteration to stop at. Hence while evaluating the contrastive and HITS methods using the 

same accuracy measure we will also look at how to identify a stopping criterion.  

As stated in section 5.2.3, while iterating through the refinement procedure, there comes 

a point when the difference between the size of the root vector and pattern vector is 

minimized. This is the point when the two vectors are comparable and accuracy is 

expected to be maximized.  

For contrastive learning, in Figure 5.2, the plot for the vector difference between root 

and pattern score vectors along with accuracy is plotted on the same graph at each 

iteration. The two plots indicates clearly that there exists an inverse relationship 

between the vector difference, 𝛿 and accuracy. Hence, at iteration 4, when the value of 𝛿 

is minimized the accuracy of the lexicons is maximized.  

 

 

Figure 5.2: The size differences between root and pattern vector 

 alongside the accuracy, for contrastive learning 
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Almost exactly the same trend is seen for the HITS refinement procedure. Figure 5.3 

shows the two plots for vector difference and accuracy, following the same behaviour 

with only vector difference values scaled differently. This behaviour further 

corroborates the hypothesis that the contrastive learning and HITS procedure are the 

same in terms of ranking morphemes.  

 

   

Figure 5.3: The size differences between root and pattern vector 

 alongside the accuracy, for HITS 

 

5.2.5 Summary of Evaluation Results 

Table 5.1 summarizes the results for the three scoring methods after the base scoring, 

recursive scoring and refinement steps. Overall, the morpheme learning technique 

extended with the refinement step identifies almost 95% root morphemes correctly. 
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 Base Recursive Scoring Refinement 

Contrast-Plus 87.5 89.56 --- 

Contrast-Pure 78.8 92.06 94.7 

HITS 63.9 92.61 94.7 

Table 5.1:  Comparison of the three methods in terms of accuracy 

 Root Normalization: Unrestricted Morpheme Size  

Up to this point the techniques and experiments have been restricted to triliteral root and 

pattern morphology induction. In the Arabic language, most words are derived from 

triliteral roots but there are a few four letter roots and a very few five letter roots. In the 

QAC, 98.84 % of the derivable words are from three letter roots; the remaining ones 

(1.16%) are four letter roots and there are no 5-letter roots. Therefore it is not 

inappropriate to assume only triliteral roots for analysis. However, a goal of this work is 

to avoid pre-defined parameter settings, since such artificial constraints subvert the 

objective of unsupervised learning. Thus, the algorithm should be able to freely 

discover the correct root from any length of substring morphemes, from a single 

character root upwards.   

Root normalization is the procedure which is applied to remove the restriction of only 

three letter roots. The procedure balances the higher weights of shorter morphemes with 

the lower weights of longer morphemes. There are two types of normalizations that are 

carried out in order to balance the raw counts, namely, root weighting and variety 

counts; in addition, a combination of both types is referred to as weighted variety counts. 

This work also proposes a method to decide whether or not to apply a candidate pattern 

to a split a word into a root and pattern or to leave it unanalysed.  
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5.3.1 Root Weighting 

So far, the techniques have used raw morpheme counts. However, by their very nature, 

shorter potential morphemes occur more frequently than longer ones. For example, if a 

language has three characters in its alphabet, ∑ = {𝑎, 𝑏, 𝑐}, then there are four possible 

strings containing each of the single character substrings, e.g. a is contained in a, ab, ac, 

and abc; similarly, each two character substring is found in two strings of maximum 

length three, e.g. ab is found in ab and abc. In general, a substring of size 𝑥 would occur 

in 2𝑥−𝑦 strings of maximum length 𝑦. Using this count, it is possible to normalize the 

weight, 𝛿𝑟
𝑤, of each root, 𝑟,  according to its size in each word, 𝑤, applying the formula:  

 
𝛿𝑟
𝑤 =

1

(2 |𝑤|−|𝑟|)
 

(5.8) 

Table 5.2 shows an example of the three possible sizes of roots in a four character word, 

along with the corresponding weights, 𝛿𝑟,  in the word. 

Root, 𝒓 Word, 𝒘 Weight, 𝜹𝒓
𝒘 

a abcd 1/24−1 = 0.125 

ab abcd 1/24−2 = 0.25 

abc abcd 1/24−3 = 0.5 

Table 5.2: Weighted counts of a root relative to its size in a word 

Thus, the raw counts of  |𝑃𝑟𝑖| in the summation formula of the pattern scoring procedure, 

are replaced with the aggregated weights, 𝑊𝑇, for each 𝛿𝑟𝑖
𝑤 of each 𝑟𝑖 in 𝑤  such that 

𝑟𝑖 ⊲ 𝑤 : 

 𝑊𝑇(𝑟𝑖) = ∑𝛿𝑟𝑖
𝑤

|𝑃𝑟|

𝑟𝑖=1

 (5.9) 
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5.3.2 Root Variety Counts 

Another type of normalization of the root counts uses variety counts instead of raw 

counts. Variety counts are the counts of a root morpheme which do not include the 

counts of any morphemes for which the former is a substring of the latter. For example, 

given the three strings nktb, tktb and  ktbA, the variety count of ktb is 3, as this root 

substring occurs with three different characters. Although the raw count of  kt is also 3,  

since it is a substring of ktb whose count is 3, the variety count of kt is 1.  

The procedure for adjusting the counts is as follows. Roots 𝑟𝑖 in 𝑅𝑝  are traversed in 

descending order of root size. Let  𝑉𝐶𝑟𝑖 denote the variety count of 𝑟𝑖. Starting with 

longest strings which are not substrings of any other root string, the value of  𝑉𝐶𝑟𝑖 =

|𝑃𝑟𝑖|, the raw count is assigned. For each root, 𝑟𝑖 that is traversed, the counts for all of its 

substrings, 𝑟𝑗 having size |𝑟𝑖|-1, are adjusted by subtracting the counts,  𝑉𝐶𝑟𝑗 = |𝑃𝑟𝑗| −

 𝑉𝐶𝑟𝑖 + 1 if 𝑟𝑗 has not been visited, or  𝑉𝐶𝑟𝑗 =  𝑉𝐶𝑟𝑗 −  𝑉𝐶𝑟𝑖 + 1 if it has been visited. 

Also, a wordlist is maintained for each 𝑟𝑗 containing words, 𝑤𝑘 such that if another root 

𝑟𝑖 belonging to 𝑅𝑤𝑘 is traversed,  𝑉𝐶𝑟𝑗 is not updated; this is in order to prevent double 

counting in the case of encountering substrings of substrings. Hence, in this way the 

counts of shorter morphemes which tend to occur as substrings of other morphemes are 

reduced. 

 

5.3.3 Weighted Variety Counts 

A third type of normalization is based on the variety counts, but instead of using the raw 

counts, the weighted counts from section 5.3.1 are used. In the example given above, for 

the three strings, nktb, tktb and  ktbA, the weighted variety count of ktb is 1.5 

(0.5+0.5+0.5) instead of the raw count 3; and the weighted variety count of kt is 0.25 

(0.25+0.25+0.25/3), the average weight of kt in the three strings, instead of the raw 

count 1.  

The formulae above are adjusted, such that for the root 𝑟𝑖 in descending order, 𝑉𝐶𝑟𝑖 =

 𝑊𝑇(𝑟𝑖) and for the substrings 𝑟𝑗, 
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  𝑉𝐶𝑟𝑗 = 𝑊𝑇(𝑟𝑗) −  𝑉𝐶𝑟𝑖 +  𝐴𝑊𝑇(𝑟𝑖) (5.10) 

and  

  𝑉𝐶𝑟𝑗 =  𝑉𝐶𝑟𝑗 −  𝑉𝐶𝑟𝑖 +  𝐴𝑊𝑇(𝑟𝑖) (5.11) 

where  

 𝐴𝑊𝑇(𝑟𝑖) =
1

|𝑃𝑟|
∑ 𝛿𝑟𝑖

𝑤

|𝑃𝑟|

𝑟𝑖=1

 (5.12) 

 

5.3.4 Extended Analysis 

Since morphology learning has previously been restricted to triliteral roots, the 

adjacency graph includes roots of size |𝑟| = 3 and patterns with 𝑓𝑝(∸) = 3 from 𝑤 

where |𝑤| > 3. For example, the decomposition of word yErf is  

𝐷(𝑦𝐸𝑟𝑓) =

{
 

 
〈𝑦 𝐸 𝑟, − − −𝑓 〉,
〈𝑦 𝐸 𝑓, − − 𝑟 −〉,

 〈𝑦 𝑟 𝑓, −𝐸 − −〉,
〈𝐸 𝑟 𝑓, 𝑦 − − −〉}

 

 
 

Further, when analysing a word with |𝑤| > 3, it has to undergo a compulsory analysis 

into root and pattern outputting as |𝑟| = 3, the only root size available in set 𝑅𝑤. Words 

where |𝑤| ≤ 3 are thus output as whole, unanalysed by the procedure. The accuracy 

figures quoted so far thus include the correctly identified three letter roots as well as the 

unanalysed three letter words.  

Relaxing the restriction would allow any root size, extending the 〈𝑟, 𝑝〉 pairs in the 

above example to also include pairs such as {〈𝑦, −𝐸𝑟𝑓〉, 〈𝑦𝐸, − − 𝑟𝑓〉,… }. The 

unrestricted set 𝑅𝑤 of all possible substrings 𝑟𝑖 of 𝑤 would analyse any word of size  
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|𝑤| > 1. However due to the restriction |𝑟| < |𝑤|, i.e. excluding  𝑟 = 𝑤 in 𝑅𝑤, every 

word would undergo compulsory analysis to a root of maximum size |𝑤| − 1. Thus, for 

example a word ktb would be forced down to perhaps kt or kb without allowing the 

output ktb which is the correct root form. 

In order to remove this limitation, allowing words to be output unanalysed,  I now 

extend 𝑅𝑤 to include 𝑟 such that 𝑟 = 𝑤. 𝑅𝑤 thus includes all possible substrings of 𝑤 

including 𝑤. When 𝑟 = 𝑤, the corresponding pattern 𝑝 has 𝑓𝑝(∸) = |𝑤|, i.e. all blanks 

with no affix characters. These patterns will be referred to as null patterns, �̅�. For the 

example word yErf, the pair 〈𝑦𝐸𝑟𝑓, − − − −〉 is now included as a potential analysis. 

Thus the analysis output has been extended to include whole words instead of 

compulsory root and pattern constituents.  

The raw count of null patterns, |𝑅�̅�| is the count of the number of words having 

𝑓�̅�(∸) = |𝑤|,  which is a very large number in comparison to other pattern counts. This 

would force the analysis to output whole words only, without possible analysis into root 

and pattern constituents. An adjustment of the count |𝑅�̅�| to a suitable lower value is 

required in order to induce analysis. I chose to heuristically set the value of |𝑅�̅�| to the 

largest count of a non-null pattern, 𝑝𝑖 with 𝑓�̅�(∸) = 𝑓𝑝𝑖(∸). Hence, for example if the 

largest pattern count occurs for a pattern ‘y---‘ is  |𝑅𝑝=𝑦−−−| = 150, then |𝑅𝑝=−−−| =

150 instead of the count of the number of three letter words, which could be in the 

thousands.  

 

5.3.5 Experimental Results for Root Normalization 

This section presents an evaluation of the various root normalizations, removing the 

restriction of only considering 3-letter root and pattern template, along with extended 

analysis to allow  whole (unanalysed) words to be output. Previously, the number of 

evaluated words with triliteral roots was 5481. This increases to 5545 forming the entire 

set of derivable words for evaluation, with the inclusion of the 64 four-letter root words 

in the QAC.  
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Starting with the contrastive learning base algorithm (from Chapter 4), I first compare 

weighted root normalization (CL_WR), followed by variety count (CL_VC) and weight 

variety count (CL_WVC), finally concluding with the extended analysis 

(CL_EA_WVC). The comparison of the different configurations is shown in Table 5.3.  

Stemmer Correct (out of 5545) Percentage Accuracy 

Base 0 0 

CL_WR 4268 76.97 

CL_VC 4273 77.06 

CL_WVC 4297 77.49 

CL_EA_WVC 5056(20) 91.18 

Table 5.3: Comparison of different root count normalization and extended analysis 

As expected, the base algorithm is unable to perform in the absence of the 3-letter root 

restriction, producing only single character roots as the output for all the words. This is 

because short root substrings have very high counts, in the order of thousands, whereas 

triliteral root counts would be in the range zero to 10. By applying root weighting, 

(CL_WV) an appropriate analysis is output with a considerable number of roots 

correctly identified. This output, with an accuracy of 76.97%, shows the importance of 

assigning the correct count weight to each root substring relative to the word size in 

which the substring occurs.  

Next, the variety count normalization (CL_VC) is applied. This normalization scheme 

shows slightly better performance than root weighting (CL_WR). The variety count not 

only reduces the count of shorter morpheme substrings relative to the size of a word but 

also assigns a standalone count independent of the counts of its superstrings. CL_WVC 

shows further improvement, indicating the advantage of the combined formulation.  

Extending the analysis to allow whole words to be output permits words such as ktb 

which have been previously analysed as kt to be correctly analysed as the root ktb. The 
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output shows more than 760 three character words have been correctly analysed which 

were previously constrained to be analysed into the root substring of the word. 

Moreover, 20 four-letter root words have been correctly analysed which demonstrates 

that the extensions work beyond triliteral roots. There is only 31.25% accuracy for four 

letter roots but usually quadraliteral roots are hard to recognize. Since the dataset 

consists of predominantly three-lettered roots (98.4%), the number of pattern counts 

associated with 3-letter roots, 𝑟𝑖
3 is far greater than the number of pattern counts for four 

letter roots, 𝑟𝑖
4: |𝑃𝑟𝑖

3| ≫ |𝑃𝑟𝑖
4|. This, therefore, undermines the importance (weight) of 

the associated four letter substrings.  

Thus the performance after applying these extensions is comparable to the performance 

of the triliteral root restricted system of Chapter 4. 

 

 Stemmer Comparison 

With the developments to the contrastive learning procedure for unsupervised learning 

of morphology, I compare the technique to manually built tools for root extraction 

known as ‘stemmers’8. 

There are several stemmers that have been implemented for Arabic which are able to 

analyse an Arabic word and output its root.  Most of these stemmers are rule-based, 

defining manually written procedures for removing affixes from words relying on hand 

encoded lists of patterns and affixes and even lists of roots. Some prominent stemmers 

are described by Khoja & Garside (1999), Al-Shalabi (2005), Taghva et al(2005), 

Ghwanmeh et al (2005), and Sonbol et al (2008). All of these were produced by labour 

intensive methods and are limited to the encoded list of patterns and affixes. 

I compare my unsupervised learning technique evaluated on accuracy of root extraction 

to two existing rule based stemmers: (i) the Khoja Stemmer (Khoja & Garside, 1999) 

                                                 

8 Although generally referred to the process of obtaining stems by removal of prefixes and suffixes, 

‘stemming’ is sometimes referred  to mean the process of removing any affixes from words, and reducing 

these words to their roots. 
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and the (ii) ISRI Stemmer (Taghva et al, 2005). These systems are representative of this 

class of Arabic stemmers. 

 

5.4.1 Khoja Stemmer 

This stemmer makes use of a dictionary of roots and patterns to produce the desired root 

of a word. The stemmer first removes the longest suffix and the longest prefix using a 

list of affixes. What remains is then matched with the verbal and noun patterns, thus 

extracting the potential root. This root is looked up in a root dictionary. If found in the 

dictionary, the correct analysis is output. In more detail, the procedure for stemming is 

outlined below: 

1. Text is normalized, removing punctuation, numbers and any traces of diacritics 

representing short vowels.  

2. Stop words are removed. 

3. Clitics such as the definite article ال (Al) and conjunctions و (w) are removed 

4. Longest suffixes are removed. 

5. Longest prefixes are removed. 

6. The resulting stem is matched against a list of pattern templates to extract the 

root. 

7. The root is validated against a dictionary of correct roots. If it is not found, the 

stem is output. 

8. All weak radicals or long vowels ا(A), و(w) and ي(y) are conflated to the single 

vowel و(w). 

9. All occurrences of humza letters (أ,ء ,ئ ,ؤ) are conflated to a single letter أ(<)

  

10. If the root resulting from step 7  has only two characters then the root dictionary 

is checked to see if there are reduplicated letters, which are then added to the 

root.   

The conflation of weak radical to a vowel letter (step 8) is a debatable attempt to 

implement the weak root radical rule (section 1.3.1.3).  This is an oversimplification, 

making the analysis of weak radical roots correct for only two possible radicals of the 
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root. It also gives rise to errors in the analysis of non-weak roots, as pointed out by 

Taghva et al (2005), where for example the word mnZmAt receives the incorrect 

analysis Zm< instead of the root nZm. 

 

5.4.2 Information Science Research Institute (ISRI) Stemmer 

The stemmer developed by Taghva et al (2005) at the Information Science Research 

Institute (ISRI) is an attempt to overcome the Khoja stemmer’s dependence on a root 

list. It is currently part of the Natural Language Tool Kit (NLTK)9 as the stemmer for 

Arabic. It builds on and improves the rules implemented by the Khoja stemmer without 

relying on the root dictionary. 

Affixes are assigned to classes. Prefixes and suffixes are classified according to their 

character lengths. Pattern templates are classified in terms of length of the pattern and 

the length of the root. Also the order of application of each affix within each class is 

fixed. Thereafter, the procedure, similarly to the Khoja stemmer is applied with a 

specific order of application of the different classes of prefixes, suffixes and pattern 

templates. The procedure is outlined below: 

1. Normalization: diacritic removal; Humzated letter conflation. 

2. Remove longest prefix (length three then two) 

3. Remove the conjunction w(و) in the case of two consecutive w (و و). 

4. Conflate all marked alif (إ ,أ) to the unmarked alif (ا) or A. 

5. If the resulting stem is three characters long, output the stem as the root. 

6. Length 4 stem: match pattern template to extract three letter root; if there is no 

match them check suffix and prefix in order. Output triliteral root if there is a 

match; else output the noralized word. 

7. Length 5 stem: first apply step 6 except; if still a 5 character stem remains then 

apply pattern template with 4 letter roots. Output root if a match is found. 

8. Length 6 stem: match appropriate 3-root pattern. If no match remove 1-character 

suffix or prefix if matched. If removed repeat step 7.  

                                                 

9 http://www.nltk.org/  

http://www.nltk.org/
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9. Match 1-character suffix or prefix. If found repeat step 8. 

In summary the algorithm applies certain rules to remove prefixes and suffixes in a 

particular order, matching the stripped word against a set of patterns for either three or 

four letter roots; if a pattern is found, the root is then output. The tool minimizes the set 

of patterns used thus putting less dependence on pre-encoded lists. Taghva considers 

this to be the main difference between this algorithm and other Arabic root finding 

algorithms. 

 

5.4.3 Shortcomings of Existing Stemmers 

Most Arabic stemmers suffer from the ‘affix ambiguity problem’ (Al-Shawakfa et al, 

2010). This ambiguity arises due to a failure to distinguish the suffix and prefix from 

the pattern affix in a word, leading to application of the incorrect rule. For example, a 

stemmer might incorrectly stem the word mskwn to msk, stripping away the suffix wn, 

instead of applying the mfEwl pattern to retrieve the correct root, skn. The ambiguity 

also extends to choices for prefix and suffix morphemes which may have the same form 

as peripheral pattern characters.  

The main reason for this failure is the hard-coded order of removal of affixes. Stemmers 

differ in their sequence of rule applications but these are mostly based on linguistic 

judgement which caters for the majority of cases in a development dataset but may fail 

in other kinds of text. Besides, there is the additional overhead of maintenance of the 

rules to adjust to different language variants.  

Dictionary maintenance and updating is a resource intensive requirement for stemmers 

having modifiable lists of roots and patterns. Though most authors do away with the 

root dictionary, as in the ISRI stemmer, defining the patterns to be incorporated and the 

order of application of these patterns is non-trivial. Taghva et al (2005) use 44 patterns, 

while Ghwanmeh et al (2005) use up to 80 patterns. This can be compared with a total 

of 185 (undiacritized) distinct pattern types (see Appendix A) derived from Attia (2011). 

According to  Al-Kabi et al (2011), the Ghwanmeh et al (2005) stemmer overall 

performs better than ISRI but on certain occasions ISRI performs better at finding the 
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correct roots. This is due to the arbitrary choice of pattern order in the stemmers. 

 

5.4.4 Experiments 

This section empirically compares the Khoja and ISRI stemmers to the contrastive 

learning technique in terms of root extraction accuracy. The same normalization 

procedure is used in both stemmers but this differs slightly from the transliteration and 

normalization defined in Appendix C which is used in the previous evaluations in this 

thesis. Hence the vocabulary of conjugated words reduces to 5366 from 5429 due to a 

smaller alphabet resulting in more conflated character classes. For example, previously 

the alif madda letter (آ) was transliterated to two consecutive characters ` and A; whereas 

now it must be classed with other Humzated alif letters (أ and إ) which are conflated to 

the single ا (A). 

As stated above, conflation of the weak radical to a single letter  is an inadequate 

attempt to implement the weak root radical rule. Nonetheless for the sake of fair 

comparison with the Khoja stemmer, I consider two types of evaluations: one where the 

weak root letters are not conflated and one where they are conflated. The comparison 

showing the former evaluation type is shown in Table 5.4.  

Stemmer Correct (out of 5429) 

(total)(quadraliteral) 

Percentage Accuracy 

Khoja 4431(33) 81.62 

ISRI 4504(26) 82.96 

Contrastive Learning 4899(0) 90.24 

Table 5.4: Accuracy comparison of the Khoja and ISRI stemmers with contrastive 

learning without weak radical conflation. The number of correct quadraliteral root 

words shown in brackets. 

As expected, the accuracy of the Khoja stemmer is lower than the other two methods. 

ISRI outperforms Khoja despite not using a root dictionary, but this superiority is only 
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due to the oversimplification of root radical conflation which renders many of the weak 

radical roots invalid for Khoja. The comparison shows the significant superiority of the 

unsupervised learning technique, with an improvement of 7.28 percentage points over 

the manually built stemmers.  

One surprising outcome is that with a slightly different normalization procedure applied 

to the same dataset, the contrastive learning technique fails to recognize any four letter 

roots. This may be because simplifying the words conflates important pattern templates 

thus giving unclear indication of roots. This aspect needs further investigation to know 

what conflation classes cause the algorithm to perform less well. 

The final evaluation conflates the weak root radicals to accommodate for the Khoja 

stemmer. The results are shown in Table 5.5. In this evaluation, the Khoja stemmer 

outperforms the ISRI stemmer by 3.33 percentage points. Yet again, as seen in the table, 

the accuracy of unsupervised contrastive learning without the refinement step is better 

still, by 3.1 percentage points over the manual approach. With refinement, the accuracy 

increases giving an overall improvement of 5.07 percentage points over the Khoja 

stemmer.  

Stemmer Correct (out of 5429) 

(total)(quadraliteral) 

Percentage Accuracy 

Khoja 4775(33) 87.95 

ISRI 4594(26) 84.62 

Contrastive Learning 

(basic) 

4943(0) 91.05 

Refined   5050(0)  93.02 

Table 5.5: Accuracy comparison of the Khoja and ISRI stemmers with contrastive 

learning and refined contrastive learning using weak radical conflation. Number of 

correct Quadraliteral again shown brackets.  
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5.4.5 Discussion 

These comparisons  with existing, widely-used Arabic stemmers confirm the worth of 

the unsupervised learning technique developed in this thesis. In comparison to the 

stemmers, the contrastive learning technique bases the analysis of a word not just on the 

affix pattern but also the strength of the resulting root. Thus, character sequences 

weighted highly as a consequence of a strong co-occurring affix pattern would be likely 

root candidates, whereas no such gauge for potential roots is available in rule-based 

stemmers. Also, the technique automatically learns a meaningful ordering of 

morphemes in the lexicon, thus eliminating the manual task of setting the right order 

affix/pattern application in the stemmers. In addition, there is no arbitrary choice of 

affixes and patterns hand coded into the system which determines the scope of 

application of the stemmers; instead the unsupervised learning techniques discover 

patterns based on their occurrence in the corpus. Even if there is a rare pattern in the 

corpus, it may be correctly recognized as a consequence of the weights assigned to 

potential roots that occur with other patterns. But it would not be analysed by the 

stemmers if it were omitted from their encoded pattern lists.  

These advantages are reflected in the evaluation results. The affix ambiguity problem is 

reduced due to the learned ordering. For example, for the Khoja stemmer, the word 

mrjAn is  analysed to rjn, applying the pattern  m - - A -  instead of removing the suffix 

An; the ambiguity between the affixes prevents it yielding the correct root mrj. But in 

the contrastive learning algorithm this ambiguity is removed; the roots rjn and mrj with 

weights 1.40743e-05 and 8.64987e-05 and patterns m - - A - and - - - An with weights 

0.000193684 and 0.000103935 lead to the correct analysis 〈mrj , - - - An 〉  with 

aggregate weight 1.67534e-08, compared to the incorrect analysis 〈rjn , m - - A - 〉 with 

lower weight, 1.46281e-09. The algorithm’s assignment of weights to the root and 

pattern reflects their significance in the corpus, whereas no such knowledge is available 

to the dictionary based stemmers.  

 



149 

 

 

 

 Conclusion 

This chapter concludes the description and evaluation of an unsupervised approach to 

learning the intercalated morphology of Arabic. Starting off with the basic link analysis 

based algorithm, a refinement method is first formulated to further improve the results. 

This iterative rescoring procedure helped increase performance without compromising 

unsupervised learning. Next, moving beyond triliteral roots, morpheme count 

normalization methods were introduced to allow recognition of roots without restricting 

morpheme size. This allowed the correct analysis to be chosen for any of root size 

starting from single character substrings. Finally a comparative evaluation with existing, 

widely used stemmers establishes the true significance of the unsupervised contrastive 

learning technique which outperforms the rule-based tools in terms of root identification 

accuracy.  

The work reported in this thesis has explored several issues but there are further areas 

that warrant investigation. The refinement procedure lacks a theoretical foundation and 

could be studied further in term of graph connectivity. It might be possible to identify 

groupings of morphemes that are connected in the graph to reveal paradigm-like 

associations between root and pattern morphemes.   

The normalization procedure looked into root variety count normalization but no 

investigation into pattern variety counts was carried out. This may further enhance the 

ability to capture the right analysis given balanced pattern counts. Also, while extending 

morphological analysis to whole words, a simple approach was used to induce the 

analysis of words, where null patterns were assigned weights of the highest non-null 

patterns (section 5.3.4). Other approaches could be investigated for this sub-task.  

Although the current approach does give some idea about when to and when not to 

analyse words, a more in-depth investigation might be worthwhile investigating. There 

could be an automatic procedure to determine a threshold such that words with scores 

below a certain threshold value are left unanalysed. Other approaches include making 

use of the Minimum Description Length (MDL) principle to decide whether a particular 

analysis would reduce the total size of representation of the morphemes.  
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The unsupervised learning techniques proposed in this thesis were designed to be 

parameter free and independent of language specific choices. Yet, the techniques 

perform comparably or better than existing manual tools. In principle, it would be  

possible to use the same techniques across different datasets and languages without the 

need to understand the structure of the language. 
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Conclusions 

 Introduction 

The aim of the research reported in this thesis was to develop and investigate techniques 

for learning the non-concatenative morphology of Arabic in an unsupervised manner. 

Making the techniques unsupervised means that the developer does not need to know 

the linguistic structure and morphological rules of the language. Thus, no manual labour 

is required for coding such rules; nor is there a need to obtain annotated datasets for 

training supervised learning models for learning word structure.  To be used in practical 

applications, an unsupervised learning approach must give performance comparable to 

systems based on manually developed rules or supervised learning. While effective 

unsupervised learning methods have been built for concatenative morphology it has not 

previously been shown whether effective systems can be built for non-concatenative 

morphology. 

The research questions stated at the beginning of the thesis were: 

Can the non-concatenative morphology of Arabic be learnt effectively 

with performance reasonably close to that of linguistic resources and 

tools? To what extent can the devised approach be independent of 

manual settings and language specific parameters? 

In order to answer these questions, two techniques were devised to learn lexicons of 

roots and patterns. The first technique was inspired by an existing one based on 

Maximum Entropy modelling adapted for unsupervised learning, which was originally 

used to identify affixes sequentially appended to a stem (concatenative morphology). 

The second technique learns the lexicons using a simpler yet more efficient approach 

based on mutually recursive count updates of co-occurring root and pattern morphemes. 

The more effective of  the two methods was the latter, the contrastive learning approach. 

This was then extended, resulting in a robust procedure for producing a ranked list of 
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root and pattern morphemes, which are then used to produce an analysis of a word into 

its root and pattern morphemes. Careful steps were taken to keep the techniques free of 

any parameter settings or language specific information. The final extended technique 

was compared with two rule-based Arabic stemmers, through an evaluation on data 

from the Quranic Arabic Corpus. The unsupervised learning approach gave comparable 

or better performance than the manually built tools, in terms of accuracy of root 

identification.  

This chapter highlights the strengths and novelties of the implemented unsupervised 

learning techniques, as reflected in the empirical findings. It also highlights limitations 

that are difficult to address in unsupervised approaches. Since this research is a 

preliminary attempt to address the problem of non-concatenative morphology, there are 

several aspects that deserve further explanation in order to determine the full potential 

of such unsupervised methods. 

 

6.1.1 Chapter Organization 

Section 6.2 discusses the contributions of the research. Limitations are discussed in 

section 6.3, and aspects that are missing pointed out in section 6.4. Based on these 

shortcomings, section 6.5 outlines possible future work. Section 6.6 concludes.  

 

 The Strengths and Contributions 

This research addresses the unsupervised learning of non-concatenative morphology for 

naturally written undiacritized Arabic text, in which a word is broken down into all 

possible root and pattern combinations. For a word of length n, the number of 

combinations of root and corresponding pattern pairs amounts to 2n -1, an exponential 

number. This model could only be feasibly applied to stemmed, undiacritized words 

which are relatively short. Experiments to learn the morphology of vowelled text by 

Rodrigues & Cavar (2007) and Xanthos (2007) have had to use heuristics to reduce the 

search space of possible analysis before applying their respective unsupervised learning 

techniques. For instance, Xanthos uses Sukhotin’s vowel identification algorithm to first 
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narrow down potential possible patterns before applying an MDL based unsupervised 

learning technique.  However, this initial pruning of the possible analysis set is likely to 

result in sub-optimal morphology learning accuracy. 

The contrastive learning approach, developed in Chapter 4 and extended in Chapter 5, is 

a novel method of (unsupervised) learning of the morphology of Arabic which is 

designed to simultaneously learn roots and patterns, exploiting their mutual inter-

dependence. It employs a mutually recursive procedure which gives an optimized 

morpheme weighting. This strategy is in contrast to most contemporary approaches to 

unsupervised morphology learning which are based on data compression techniques. 

Such compression or MDL-inspired approaches have been criticized for  their weak 

theoretical and practical basis (Hammarström, 2007): intuitively, there is little link 

between data compression and what linguists conceive as  morpheme units; 

experimentally, such compression based methods usually depend on thresholds and 

supervised parameters.     

Approaches that are free of language specific parameters and thresholds are more 

applicable to other languages in the Semitic group and also to other Arabic dialects, 

which all exhibit similar root and pattern structure. This was a central concern in this 

work in order to make it suitable for other similar applications. In particular, some other 

unsupervised learning techniques make use of inter-radical distance thresholds  and are 

limited to learning triliteral roots (e.g. Elghamry, 2004; Rodrigues & Cavar, 2005).  

Most previous work aims to learn affixes by using only information from affix or other 

substring counts, but not whole lemma (stem/root) counts. The approach pursued in this 

thesis is distinctive in that it learns affixes and lemmas simultaneously, making use of 

information from both types of morphemes. In this way, the analysis procedure is 

strengthened by not just good affix candidates but also plausible lemma candidates in a 

word.  

The approach produces a ‘natural’ ordering of morphemes in the lexicons according to 

their prevalence in the vocabulary dataset. This is one of the strengths of the algorithm 

over manually-based approaches.  Manually built tools for Arabic morphological 

analysis usually rely on a list of affixes and an arbitrary ordering of these affixes to be 
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applied when there is ambiguity in the analysis. This ordering relies on linguistic 

judgement and may not reflect the actual occurrence of morphemes in the text being 

analysed. The learning method offers morpheme ranking that reflects the actual 

morpheme usage in the text.  

Most systems for Arabic root identification are limited to identifying triliteral roots and 

do not provide a means to go beyond to quadraliteral or other sized roots. In this work, 

an attempt to recognize any size roots is presented which has been successful to some 

extent in capturing roots of any size. With some further refinements to the system it 

may be possible to improve the performance on other sized roots beyond triliteral. 

In the maximum entropy based learning approach, as well as adapting it to non-

concatenative morphology, I worked on correcting the formula for obtaining the log 

based morpheme score from that originally proposed. Previously, the calculation was 

contrary to intuition, giving higher weight to unrelated words. I modified the log scoring 

formula to invert the incorrect scoring trend while also introducing a measure to give 

emphasis to the length of related words.  

 

 Limitations  

As discussed earlier, Arabic word formation includes certain morphophonemic 

adjustments, such as the weak root radical rule, i.e. changing long vowels in the root to 

a different long vowel in the actual words. Similarly, at times the long vowel is 

completely dropped in the final word, leaving only two root radicals from a tri-literal 

root. Also, reduplicated root radicals are represented with a shaddah marker (  ّ ) which 

is omitted in undiacritized texts, again resulting in only two radicals in the final word. 

The unsupervised learning technique is incapable of identifying such roots correctly as a 

whole, although partial identification may be possible. Thus if two out of the three root 

radicals are identified correctly the analysis could be classed as a correct, but not the 

complete solution. To map back exactly to the modified radical would be very hard to 

accomplish with unsupervised learning.  
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Unlike manually-based systems, which can be applied to single words at a time in order 

to obtain a satisfactory result, unsupervised techniques are dependent on having a 

sizable corpus to extract a lexicons. Hence, methods for unsupervised learning are 

sensitive to corpus  content and size. This sensitivity is somewhat visible in the different 

performance for the two different normalizations of the QAC (section 5.4).   The input 

needs to contain a large number of morphologically inflected words; uninflected words, 

such as proper nouns, are like noise for the learning algorithm.  

Another drawback of unsupervised systems is computational cost. Although there are 

no dictionary storage requirements as for manual tools, the procedure for induction 

requires processor and memory resources. Processing times may be significantly longer 

than manually-based systems which may only perform string search operations. For the 

machine learning based approach, with the QAC vocabulary it can take up to a few 

hours to build a model and apply the model back to obtain nearest neighbour clusters.  

On the other hand, the contrastive learning approach requires only a couple of minutes 

to extract the lexicons, depending on the number of iterations performed. Long 

processing time is the result of the large search space of possible analyses which are 

exponential in the length of each word. Fortunately, for stemmed, undiacritized Arabic 

words this search space is considerably reduced. Memory requirements are likewise 

high  when it is necessary to store a list of all possible root and pattern combinations for 

all vocabulary words.  

 

 Omissions 

An aspect that was not investigated is the process of deciding when to analyse or to 

leave a word unanalysed. It was only briefly touched on from one angle when 

considering the morpheme count of the null pattern (section 5.3), where words were left 

unanalysed if they occurred more frequently  as a whole than as a substring. However, 

this is not a principled solution. 

The lexicons derived are ranked lists of all possible morphemes, with the most 

promising ones appearing at the top. There is a need to automatically determine a cut-

off point for the roots and patterns in order to filter out morphemes that are not in the 
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language. This would reduce the computational cost at each iteration and also provide a 

means of deciding which words should be morphologically analysed.  

With regards to formal evaluation, most morphological analysis systems are evaluated 

using F1-score, with precision and recall values being recorded over the entire 

vocabulary and not just inflected words. This kind of evaluation would be possible if the 

above limitation on making analysis decisions could be addressed.  

Applying these techniques to day-to-day written texts, such as newswire, would test 

their robustness. The QAC, having a vocabulary with relatively few uninflected words, 

is not completely representative of naturally composed Arabic text in current daily 

usage. Some researchers (e.g. Rodrigues & Cavar, 2007; Xanthos, 2007) have used only 

artificially inflected words derived from verb conjugators or the Buckwalter 

morphological analyser (BAMA) in order to test their root extraction methods. Such 

word lists do not gauge the true effectiveness of their techniques for practical 

applications.  

A further issue that is not investigated in this thesis is the size of corpus used for 

morphology learning. The QAC contains approximately 7000 word types. It would be 

interesting to experiment with smaller random samples of the corpus to determine the 

impact of corpus size.  

 

 Future Work 

Having considered some of the weaknesses and shortcomings, the following areas 

warrant further investigation: 

 Address the analysis decision problem:  

o Formulate a method to determine whether to analyse a word or leave it 

unanalysed. 

o Automatically determine a value for the morpheme list cut-off.  

o Experiment with different approaches to determine the null-pattern count.  

o Evaluate morphological analysis output for the entire corpus vocabulary 

using F1 score. 
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 Apply the technique to other corpora such as the Penn Arabic Treebank10, or the 

Arabic Gigaword11.  Unfortunately, the only satisfactory evaluation corpus for 

non-concatenative morphological analysis is currently the QAC. To produce 

another gold standard, one might apply an existing morphological analyser that 

outputs all possible analyses and disambiguate the result by hand.  

 

 Extend the technique to  apply it to dialects such as Egyptian Arabic and also to 

other Semitic languages such as Hebrew. The morphology of Semitic languages 

has the unique unifying aspect that it is based on a templatic structure, 

distinguishing it from other language families. The unsupervised technique 

presented in this thesis could in principle accommodate the variations in patterns 

of the various Semitic languages. The corpus normalization procedure would 

however have to be adjusted to remove diacritics appropriately for each 

language as they have different sets of short and long vowels and also possibly 

different conventions of omission and inclusions in written text. Other minor 

regularization might be required, e.g. for Hebrew normalising the sofit (final) 

letters to non-sofit form. 

 

 By treating the corpus used for learning as running text, it may be possible to 

apply unsupervised pre-processing methods to distinguish word types into nouns, 

verb, particles, proper nouns etc. and apply the morphology learning technique 

to word subgroups in order to obtain pattern templates for respective groups, or 

paradigms. These subgroups may be obtained by applying automatic syntactic 

categorization, for example as proposed by Clark (2000). 

 

 Compare contrastive learning with the widely used MDL-based approaches to 

morphology learning. This will give an understanding of how this technique 

compares to compression based techniques for unsupervised learning.  

 

                                                 

10 Website: http://www.ircs.upenn.edu/arabic/ 

11 Website: http://catalog.ldc.upenn.edu/LDC2011T11 
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 Exploit the large amount of research and advances made in ranking webpages 

using Link Analysis Ranking (LAR) algorithms – to which contrastive learning 

bears much resemblance. One promising avenue of investigation is the SALSA 

algorithm (Lempel and Moran, 2000), which is essentially the same as the 

refinement part of contrastive learning (section 5.2), but applies an alternative 

stationary solution rather than a non-convergent recursive formula.  The 

algorithm would consider each morpheme’s count in each connected component 

of the adjacency graph, rather than the overall structure of the graph.  

 

 The contrastive learning approach could be applied directly to unstemmed data, 

although in this case overlapping patterns would be underrepresented due to data 

sparsity. This could be addressed by considering pattern variety count 

normalization similar to the root variety normalization carried out in section 5.3.  

 

 Contrastive learning could be adapted for concatenative morphology by learning 

affix-stem pairs instead of roots and patterns. Alternatively, the technique could 

be adjusted to consider a pair of adjacency graphs: prefix-stem, stem-suffix, with 

a composite score for each possible analysis.  

 

 Finally, the contrastive learning technique could be used to enhance the 

performance of existing stemmers when they are applied to a corpus: since the 

root and pattern lists are known, these morphemes could be scored using the 

iterative scoring procedure to help order the morphemes. 

 

 Outlook 

This research has demonstrated the feasibility of unsupervised learning of non-

concatenative morphology, with performance comparable to that of manually based 

systems. It has the potential to adapt to different languages while assuming no prior 

knowledge about the language. There is good potential to further develop and improve 

the techniques and to apply them in new settings. 
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Appendix A 

Buckwalter Transliteration 

 

A.1 Original Buckwalter transliteration12 

Table  A.1 below gives a one-to-one mapping of most Modern Standard Arabic 

(MSA)characters in common usage to Latin characters and symbols, as transcribed by 

Tim Buckwalter13. 

 

U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyph ASCII Orthography 

1569 U+0621 
 

' Hamza 

1571 U+0623 
 

> Alif + HamzaAbove 

1572 U+0624 
 

& Waw + HamzaAbove 

1573 U+0625 
 

< Alif + HamzaBelow 

1574 U+0626 
 

} Ya + HamzaAbove 

1575 U+0627 
 

A Alif 

1576 U+0628 
 

b Ba 

1577 U+0629 
 

p TaMarbuta 

1578 U+062A 
 

t Ta 

                                                 

12 Source: http://corpus.quran.com/java/buckwalter.jsp 

13 http://www.qamus.org/transliteration.htm 
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U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyph ASCII Orthography 

1579 U+062B 
 

v Tha 

1580 U+062C 
 

j Jeem 

1581 U+062D 
 

H HHa 

1582 U+062E 
 

x Kha 

1583 U+062F 
 

d Dal 

1584 U+0630 
 

* Thal 

1585 U+0631 
 

r Ra 

1586 U+0632 
 

z Zain 

1587 U+0633 
 

s Seen 

1588 U+0634 
 

$ Sheen 

1589 U+0635 
 

S Sad 

1590 U+0636 
 

D DDad 

1591 U+0637 
 

T TTa 

1592 U+0638 
 

Z DTha 

1593 U+0639 
 

E Ain 

1594 U+063A 
 

g Ghain 

1600 U+0640 
 

_ Tatweel 

1601 U+0641 
 

f Fa 
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U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyph ASCII Orthography 

1602 U+0642 
 

q Qaf 

1603 U+0643 
 

k Kaf 

1604 U+0644 
 

l Lam 

1605 U+0645 
 

m Meem 

1606 U+0646 
 

n Noon 

1607 U+0647 
 

h Ha 

1608 U+0648 
 

w Waw 

1609 U+0649 
 

Y AlifMaksura 

1610 U+064A 
 

y Ya 

1611 U+064B 
 

F Fathatan 

1612 U+064C 
 

N Dammatan 

1613 U+064D 
 

K Kasratan 

1614 U+064E 
 

a Fatha 

1615 U+064F 
 

u Damma 

1616 U+0650 
 

i Kasra 

1617 U+0651 
 

~ Shadda 

1618 U+0652 
 

o Sukun 

1648 U+0670 
 

` AlifKhanjareeya 
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U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyph ASCII Orthography 

1649 U+0671 
 

{ Alif + HamzatWasl 

Table  A.1: Buckwalter Transliteration 

 

A.2 Extended Transliteration14 

Table A.2 below shows the extended transliteration mapping for certain characters used 

in classical Arabic 

 

U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyp

h 

ASCII Orthography 

1619 U+0653 
 

^ Maddah 

1620 U+0654 
 

# HamzaAbove 

1756 U+06DC 
 

: SmallHighSeen 

1759 U+06DF 
 

@ SmallHigh-

RoundedZero 

1760 U+06E0 
 

" SmallHighUpright-

RectangularZero 

1762 U+06E2 
 

[ SmallHighMeem-

                                                 

14 Source: http://corpus.quran.com/java/buckwalter.jsp 
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U N I CO DE  B U C KW AL TE R  

Decimal Hex Glyp

h 

ASCII Orthography 

IsolatedForm 

1763 U+06E3 
 

; SmallLowSeen 

1765 U+06E5 
 

, SmallWaw 

1766 U+06E6 
 

. SmallYa 

1768 U+06E8 
 

! SmallHighNoon 

1770 U+06EA 
 

- EmptyCentreLowStop 

1771 U+06EB 
 

+ EmptyCentreHighStop 

1772 U+06EC 
 

% RoundedHighStopWit

hFilledCentre 

1773 U+06ED 
 

] SmallLowMeem 

Table A.2: Extended transliteration for classical Arabic characters 
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Appendix B  

Undiacritized Pattern List 

 

B.1 Unvowelled Pattern from 

Table B.1 below gives the unvowelled conflated patterns from vowelled pattern from 

Attia’s compilation of Arabic Morphology Patterns (Attia et al, 2011). 

Word Forms 

(unvowelled) 
Pattern 

 A... (A...) ا...

 tA... (tA...) تا...

 tAn... (tAn...) تان...

  - t -  - A (tfEAl) تفعال

  -  - t (tfE) تفع

 t -  -  - p (tfElp) تفعلة

  -  -  - t (tfEl) تفعل

 t -  - y (tfEy) تفعي

 t -  - Y (tfEY) تفعى

 t -  - y - p (tfEylp) تفعيلة

  -  -  -  - t (tfEll) تفعلل

  - t -  - y (tfEyl) تفعيل

  - t - A (tfAE) تفاع

Word Forms 

(unvowelled) 
Pattern 

  -  - t - A (tfAEl) تفاعل

 t - A - y (tfAEy) تفاعي

 t - A - Y (tfAEY) تفاعى

  - t - A - y (tfAEyl) تفاعيل

 ty... (ty...) تي...

 tyn... (tyn...) تين...

  - A - | (EAl|) آعال

  -  - | (El|) آعل

 p -  - | (Elp|) آعلة

 yp - | (Eyp|) آعية

 'A... ('A...) اء...

 At... (At...) ات...

 p... (p...) ة...
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Word Forms 

(unvowelled) 
Pattern 

 An... (An...) ان...

  - | (l|) آل

  -  - < (fE<) أفع

 p -  - < (fEp<) أفعة

  - A -  - < (fEAE<) أفعاع

 'A -  - > ('fEA>) إفعاء

  - A -  - < (fEAl<) أفعال

  - A -  - > (fEAl>) إفعال

  - y - A> (yEAl>) إيعال

  -  -  - < (fEl<) أفعل

  -  -  - > (fEl>) إفعل

 Y -  - < (fEY<) أفعى

 p -  -  - < (fElp<) أفعلة

عيةأف  (>fEyp) > -  - yp 

 'A -  -  - < ('fElA<) أفعلاء

 An -  -  - < (fElAn<) أفعلان

  - w -  - < (fEwl<) أفعول

  -  - A - < (fAEl<) أفاعل

Word Forms 

(unvowelled) 
Pattern 

 A – y - < (fAEy<) أفاعي

 A -  - p - < (fAElp<) أفاعلة

  - A - y - < (fAEyl<) أفاعيل

 'A - | ('fA|) آفاء

  - A - | (fAl|) آفال

  - A - < (fAl<) أفال

 A – p - < (fAlp<) أفالة

  -  - < (fl<) أفل

 p -  - < (flp<) أفلة

 'A -  - < ('flA<) أفلاء

  - yA - < (fyAl<) أفيال

  -  -  (fE) فع

  -  -  -  (fEE) فعع

 p -  -  -  (fEEp) فععة

 A -  -  (fEA) فعا

  -  - A -  -  (fEAEl) فعاعل

عاةف  (fEAp)  -  - Ap 

  - {A -  -  (fEA}l) فعائل
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Word Forms 

(unvowelled) 
Pattern 

  - A -  -  (fEAl) فعال

 A – A -  -  (fEAlA) فعالا

 A – p -  -  (fEAlp) فعالة

 AyA -  -  (fEAyA) فعايا

  -  - A -  -  (fEAll) فعالل

 A – y -  -  (fEAly) فعالي

 A – Y -  -  (fEAlY) فعالى

  - Ay -  -  (fEAyl) فعايل

 A -  - p -  -  (fEAllp) فعاللة

  - A - y -  -  (fEAlyl) فعاليل

  -  -  -  (fEl) فعل

 y -  -  (fEy) فعي

 Y -  -  (fEY) فعى

 p -  -  -  (fElp) فعلة

 'A -  -  -  ('fElA) فعلاء

  - A -  -  -  (fElAl) فعلال

 An -  -  -  (fElAn) فعلان

  -  - A -  -  -  (fElAll) فعلالل

Word Forms 

(unvowelled) 
Pattern 

 A – yp -  -  -  (fElAlyp) فعلالية

  -  -  -  -  (fEll) فعلل

 Y -  -  -  (fElY) فعلى

  - w -  -  (fEwl) فعول

  - y -  -  (fEyl) فعيل

 wt -  -  -  (fElwt) فعلوت

 p -  -  -  -  (fEllp) فعللة

 w - p -  -  (fEwlp) فعولة

 y - p -  -  (fEylp) فعيلة

 An -  -  -  -  (fEllAn) فعللان

 wAn -  -  -  (fElwAn) فعلوان

  - w -  -  -  (fElwl) فعلول

  - y -  -  -  (fElyl) فعليل

  -  - w -  -  (fEwll) فعولل

 yp -  -  -  -  (fEllyp) فعللية

  - w -  -  -  -  (fEllwl) فعللول

  - st -  - A} (stfEAl}) ٱستفعال

  -  -  - mst (mstfEl) مستفعل
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Word Forms 

(unvowelled) 
Pattern 

 mst -  - y (mstfEy) مستفعي

  -  -  - st} (stfEl}) ٱستفعل

 st -  - Y} (stfEY}) ٱستفعى

  - mst - A (mstfAl) مستفال

 st - A - p} (stfAlp}) ٱستفالة

  - st - A} (stfAl}) ٱستفال

  -  - mst (mstfl) مستفل

  - sty - A} (styfAl}) ٱستيفال

  -  - st} (stfl}) ٱستفل

  - mst - y (mstfyl) مستفيل

  - t - A} (tEAl}) ٱتعال

  -  - mt (mtEl) متعل

  -  - t} (tEl}) ٱتعل

  -  -  - mt (mtfEl) متفعل

 mt -  - y (mtfEy) متفعي

  -  -  -  - mt (mtfEll) متفعلل

  -  - mt - A (mtfAEl) متفاعل

  - mt - A (mtfAl) متفال

Word Forms 

(unvowelled) 
Pattern 

  - A -  (fAE) فاع

  -  - A -  (fAEl) فاعل

 A - Y -  (fAEY) فاعى

  -  - |m (m|El) مآعل

 A -  - p -  (fAElp) فاعلة

  - A - w -  (fAEwl) فاعول

 A - w - p -  (fAEwlp) فاعولة

  - A -  (fAl) فال

 A - p -  (fAlp) فالة

  -  - |m (m|ll) مآلل

 yp... (yp...) ية...

لف  (fl)  -  -  

  -  - m (mfE) مفع

 m -  - Ap (mfEAp) مفعاة

  - A -  - } (fEAl}) ٱفعال

  - y - A -  (fyEAl) فيعال

 y - An -  (fyEAn) فيعان

  - m -  - A (mfEAl) مفعال
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Word Forms 

(unvowelled) 
Pattern 

  -  -  - } (fEl}) ٱفعل

  -  - w -  (fwEl) فوعل

  -  - y -  (fyEl) فيعل

  -  -  - m (mfEl) مفعل

 m -  - y (mfEy) مفعي

 m -  - Y (mfEY) مفعى

 An -  -  -  - } (fElEAn}) ٱفعلعان

  -  - w -  - } (fEwEl}) ٱفعوعل

 w -  - p -  (fwElp) فوعلة

 m -  -  - p (mfElp) مفعلة

 Ap -  -  -  -  (flElAp) فلعلاة

  - A -  -  - } (fElAl}) ٱفعلال

 m -  -  - An (mfElAn) مفعلان

ةفوعلالي  (fwElAlyp)  - w -  - A – yp 

  -  -  -  - } (fEll}) ٱفعلل

  -  -  -  - m (mfEll) مفعلل

  - m -  - w (mfEwl) مفعول

  - m -  - y (mfEyl) مفعيل

Word Forms 

(unvowelled) 
Pattern 

  - y -  - w (yfEwl) يفعول

  - t - A - } (ftEAl}) ٱفتعال

 t - A – p - } (ftEAlp}) ٱفتعالة

  -  - t - } (ftEl}) ٱفتعل

 t – Y - } (ftEY}) ٱفتعى

  -  - m - t (mftEl) مفتعل

  - tA - } (ftAl}) ٱفتال

  - t - } (ftl}) ٱفتل

  - m - t (mftl) مفتل

  - wA -  (fwAE) فواع

  - m - A (mfAE) مفاع

 m - A – Ap (mfAEAp) مفاعاة

  -  - A -  -  (flAEl) فلاعل

  -  - T - } (fTEl}) ٱفطعل

  -  - wA -  (fwAEl) فواعل

  -  - yA -  (fyAEl) فياعل

  -  - m - A (mfAEl) مفاعل

  -  - m - T (mfTEl) مفطعل
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Word Forms 

(unvowelled) 
Pattern 

 m - A -  - p (mfAElp) مفاعلة

  - wA - y -  (fwAEyl) فواعيل

  - m - A - y (mfAEyl) مفاعيل

  - y - A - y (yfAEyl) يفاعيل

  - {m - A (mfA}l) مفائل

  - A -  -  (flAl) فلال

  - m - A (mfAl) مفال

  -  -  -  (fll) فلل

  - w -  (fwl) فول

  - y -  (fyl) فيل

  -  - m (mfl) مفل

 'n -  - A} ('nfEA}) ٱنفعاء

  - n -  - A} (nfEAl}) ٱنفعال

 n -  - A - p} (nfEAlp}) ٱنفعالة

  -  -  - mn (mnfEl) منفعل

  -  -  - n} (nfEl}) ٱنفعل

Word Forms 

(unvowelled) 
Pattern 

 n -  - Y} (nfEY}) ٱنفعى

 w - An -  (fwlAn) فولان

 y - An -  (fylAn) فيلان

  - n - A} (nfAl}) ٱنفال

  - m - w (mfwl) مفول

  - m - y (mfyl) مفيل

  -  - mn (mnfl) منفل

  -  - mw (mwfl) موفل

  -  - n} (nfl}) ٱنفل

 m - w - p (mfwlp) مفولة

 m - y - p (mfylp) مفيلة

 wn... (wn...) ون...

 yn... (yn...) ين...

 w... (w...) و...

 y... (y...) ي...

 

 

Table B.1: Undiacritized patterns of Arabic 
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Appendix C  

Processing the Quranic Arabic Corpus 

 

I obtained the vocabulary from the Quranic Arabic Corpus (QAC) tagged with 

morphological data contained in a text file downloaded from the QAC website15. The 

QAC uses the Buckwalter transliteration, as in section A.1, covering the character set 

pertaining to MSA; it is extended to transliteration mapping, as in section A.2, catering 

for classical Arabic text as found in the QAC.  

From this dataset I selected only the stems and thereafter filtered diacritical markers 

shown in Table  C.1. 

ASCII 

(Buckwalter) 

Glyph 

(Corresponding) 

a | u | i | o | ~ | ^ | :  ََ  |  َُ  |  َِ  |   َ  |   َ  |   َ  |   َ  

Table  C.1: Omitted diacritical markers 

I conflated all long vowels with ‘humza’ marker (  ّ  |   ّ )  to single letter  humza (ء), 

shown in Table C.2. Also, I changed the diacritic marker ‘Alif Khanjareeya,’ ‘^’ (  ّ ) to 

an ‘Alif’ ‘A’ (ا). 

                                                 

15 http://corpus.quran.com/download/default.jsp 
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Letter with ‘Humza’ 
Conflated 

to ‘Humza’ 
ASCII Glyph 

 ء ' ٸ | ٶ | ٳ | ٲ | ٱ { | & | < | > | }

Table C.2: Conflation of Humza letters to 

single letter 

 

Table  C.3 shows an example of the vocabulary from the first chapter of the Quran, 

consisting of undiacritized stems (along with the Arabic script shown in the 3rd and 4th 

columns) used in the experiments after applying the above processing to the stemmed 

words (shown in the 1st and 2nd columns). 

 

Stemmed Words with 

Diacritics 
Undiacritized Stems 

Buckwalter Arabic Buckwalter Arabic 

Somi  ِسْم Sm سم 

{ll~ahi ٱ ِ  ءلله llh‘ للهَّ

r~aHoma`ni  ِن حْم    رحمان rHmAn رَّ

r~aHiymi  ِحِيم  رحيم rHym رَّ

Hamodu  ُمْد  حمد Hmd ح 

l~ahi  ِلَّه Lh له 

rab~i  ِّب  رب Rb ر 
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Stemmed Words with 

Diacritics 
Undiacritized Stems 

Buckwalter Arabic Buckwalter Arabic 

Ea`lamiyna   ل مِين  عالمين EAlmyn ع  

r~aHoma`ni  ِن حْم    رحمان rHmAn رَّ

r~aHiymi  ِحِيم  رحيم rHym رَّ

ma`liki  ِِلك  مالك mAlk م  

yawomi  ِي وْم ywm يوم 

d~iyni  ِين  دين dyn دِّ

naEobudu  ُُن عْبد nEbd نعبد 

nasotaEiynu  ُن سْت عِين nstEyn نستعين 

{hodi هْدِ ٱ ‘hd ءهد 

S~ira`Ta   ط ر    صراط SrAT صِّ

musotaqiym

a 
 مستقيم mstqym مُسْت قيِم  

Sira`Ta   ط  صراط SrAT صِر  

>anoEamo  ْم  ءنعم nEm' أ نْع 
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Stemmed Words with 

Diacritics 
Undiacritized Stems 

Buckwalter Arabic Buckwalter Arabic 

 

gayori 
يْرِ   غير gyr غ 

magoDuwbi  ِغْضُوب  مغضوب mgDwb م 

D~aA^l~iyn

a 
ا  ضالين DAlyn لِّين  ^ضَّ

Table C.3: Orthographic changes from diacritized 

to undiacritized text 
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