

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Unsupervised Learning of Arabic

Non-Concatenative Morphology

Bilal Khaliq

Submitted for the degree of Doctor of Philosophy

University of Sussex

May 2015

ii

Declaration

I hereby declare that this thesis has not been and will not be, submitted in whole or in

part to another University for the award of any other degree.

Signature:

 Bilal Khaliq

iii

Summary

Unsupervised approaches to learning the morphology of a language play an important

role in computer processing of language from a practical and theoretical perspective,

due their minimal reliance on manually produced linguistic resources and human

annotation. Such approaches have been widely researched for the problem of

concatenative affixation, but less attention has been paid to the intercalated (non-

concatenative) morphology exhibited by Arabic and other Semitic languages.

The aim of this research is to learn the root and pattern morphology of Arabic, with

accuracy comparable to manually built morphological analysis systems. The approach is

kept free from human supervision or manual parameter settings, assuming only that

roots and patterns intertwine to form a word.

Promising results were obtained by applying a technique adapted from previous work in

concatenative morphology learning, which uses machine learning to determine

relatedness between words. The output, with probabilistic relatedness values between

words, was then used to rank all possible roots and patterns to form a lexicon. Analysis

using trilateral roots resulted in correct root identification accuracy of approximately 86%

for inflected words.

Although the machine learning-based approach is effective, it is conceptually complex.

So an alternative, simpler and computationally efficient approach was then devised to

obtain morpheme scores based on comparative counts of roots and patterns. In this

approach, root and pattern scores are defined in terms of each other in a mutually

recursive relationship, converging to an optimized morpheme ranking. This technique

gives slightly better accuracy while being conceptually simpler and more efficient.

The approach, after further enhancements, was evaluated on a version of the Quranic

Arabic Corpus, attaining a final accuracy of approximately 93%. A comparative

evaluation shows this to be superior to two existing, well used manually built Arabic

stemmers, thus demonstrating the practical feasibility of unsupervised learning of non-

concatenative morphology.

iv

Acknowledgements

 الحمد لله

(All Praise is due to Allah)

 ولا حول ولا قوة الا بالله

(And there is no power nor strength except with Allah)

The one thing that brought me to a research degree at Sussex was my supervisor,

Professor John Carroll with whom I got along comfortably from the first day. He always

kept a positive attitude towards my work and my circumstances. He has been

understanding with respect to my personal commitments and in difficult times he has

been supportive and always giving encouragement. I couldn’t imagine somebody better

than John as supervisor to whom I am greatly indebted.

Dr. Bill Keller, as my second supervisor, has also been immensely supportive and

helpful. He always kept a keen interest in my work I always found him available to

offer guidance in any aspect I needed. I truly appreciate his help and contribution in this

work.

I’d like to specially thank Professor David Weir for providing useful comments and

feedback in the annual review meeting which helped steer my work in the right

direction. Simon, Hamish, Jeremy and others in the NLP group have been always

helpful whenever I needed to turn to them for any problem. My former and current

room-mates, Rob Koeling, El-Tayyab and Raphael have been great companions with

whom I enjoyed working and always had interesting discussions with, often to relieve

the stress from work.

I owe endless gratitude to my parents and parents-in-law who gave me the opportunity

to pursue my PhD, supporting me in every way. They provided me with the maximum

comfort and ease to help me focus on my work without letting me get distracted. The

same for my sisters who have shown equal support. They all have been patiently

persevering through the duration of my study.

v

The closest one to feel all the ups and downs during my study has been my family who

has been key players in the accomplishment of my work. My wife has stood by my side

all along. She has been there patiently bearing along with me, sharing my emotions in

happy and stressful times. The children have been a pleasure to see and play with after a

day’s work.

vi

Preface

Some of the research presented in this thesis has been published in peer-reviewed

conference proceedings as follows.

Chapter 3

 Khaliq, B., Carroll, J. (2013). Unsupervised morphology learning using the

Quranic Arabic Corpus. In Proceedings of the Second Workshop on Arabic

Corpus Linguistics (WACL'2), Lancaster, UK.

 Khaliq, B., Carroll, J. (2013). Unsupervised induction of Arabic root and pattern

lexicons using machine learning. In Proceedings of the International Conference

Recent Advances in Natural Language Processing (RANLP), Hissar, Bulgaria.

350-356.

Chapter 4

 Khaliq, B., Carroll, J. (2013). Induction of root and pattern lexicon for

unsupervised morphological analysis of Arabic. In Proceedings of the 6th

International Joint Conference on Natural Language Processing (IJCNLP),

Nagoya, Japan. 1012-1016.

Table of Contents

DECLARATION .. II

SUMMARY .. III

ACKNOWLEDGEMENTS ... IV

TABLE OF CONTENTS .. VII

LIST OF TABLES ... XI

LIST OF FIGURES ... XIV

 INTRODUCTION AND BACKGROUND 1

 INTRODUCTION .. 1

1.1.1 Problem Definition ... 1

1.1.2 Research Question .. 2

1.1.3 Chapter Organization ... 2

 LANGUAGE PRELIMINARIES .. 3

1.2.1 Arabic and the Semitic Language Group .. 3

1.2.2 Common Characteristics of Semitic Languages ... 4

1.2.3 Origins and Growth of the Arabic Language ... 5

1.2.4 Standard Arabic .. 5

1.2.5 Dialects ... 6

 UNSUPERVISED LEARNING .. 7

1.3.1 Unsupervised Learning of Morphology (ULM) .. 8

1.3.2 Justification for ULM .. 11

 MORPHOLOGY ... 12

1.4.1 Arabic Morphology ... 13

1.4.2 Special Issues .. 20

1.4.3 Motivation for Morphological Analysis .. 22

 UNSUPERVISED LEARNING FOR ARABIC MORPHOLOGY ... 25

1.5.1 Input Data ... 25

1.5.2 Analysis Output ... 26

1.5.3 Model .. 27

1.5.4 Unsupervised Learning Techniques .. 28

 THESIS ORGANIZATION ... 30

 LITERATURE SURVEY ... 31

 INTRODUCTION .. 31

2.1.1 Chapter Organisation ... 31

 UNSUPERVISED APPROACHES TO MORPHOLOGY LEARNING 32

2.2.1 Early Work .. 32

2.2.2 Information Theoretic Approaches ... 33

2.2.3 Syntax and Semantics .. 36

2.2.4 Feature-based Classification .. 37

2.2.5 Irregular and Non-Concatenative Morphology .. 38

2.2.6 Complete Language Independence ... 39

2.2.7 Conclusion .. 41

 COMPUTATIONAL MORPHOLOGY OF ARABIC AND SEMITIC LANGUAGES 41

2.3.1 Supervised and Semi-Supervised Approaches .. 42

2.3.2 Unsupervised Learning of Arabic Morphology .. 46

 CONCLUSION AND PROSPECTIVE WORK ... 51

 MAXIMUM ENTROPY BASED LEARNING 53

 INTRODUCTION .. 53

3.1.1 The Approach .. 53

3.1.2 Chapter Organization ... 54

 MORPHEME-BASED CLUSTERING .. 55

3.2.1 Maximum Entropy Modelling ... 55

3.2.2 Morphological Features ... 59

3.2.3 Model Training ... 65

3.2.4 Model Application .. 70

 LEXICON EXTRACTION .. 72

3.3.1 Morpheme Weighting .. 73

3.3.2 Scoring Measure ... 76

3.3.3 Length Adjustment .. 78

 MORPHOLOGICAL ANALYSIS ... 79

 EVALUATION ... 79

3.5.1 The Dataset ... 80

3.5.2 The Baseline and Evaluation Measure ... 81

3.5.3 System Configuration .. 81

3.5.4 System Evaluation and Discussion ... 82

 SYSTEM DESIGN FOR UNSUPERVISED LEARNING .. 88

 CONCLUSIONS .. 89

 CONTRASTIVE LEARNING ... 91

 INTRODUCTION .. 91

4.1.1 The Approach .. 91

4.1.2 Chapter Organization ... 92

 PRELIMINARIES .. 92

4.2.1 Base Notations and Sets .. 92

4.2.2 Decomposition Function ... 93

4.2.3 Further Notations and Sets ... 94

 CONTRASTIVE LEARNING .. 95

4.3.1 Base Scoring Functions .. 95

4.3.2 Alternative Representation.. 98

4.3.3 Simplified Base Scoring Functions ... 101

 MUTUAL RECURSION ... 102

4.4.1 Score Normalization ... 103

4.4.2 Initialization .. 104

4.4.3 An Example ... 105

 HYPERLINK-INDUCED TOPIC SEARCH ... 106

4.5.1 Proof of Convergence ... 111

 MORPHOLOGICAL ANALYSIS ... 118

 EVALUATION ... 119

4.7.1 Base Scoring Evaluation ... 119

4.7.2 Mutually Recursive Rescoring Evaluation .. 122

4.7.3 Summary of Evaluation Results .. 126

 CONCLUSION.. 127

 CONTRASTIVE LEARNING EXTENSIONS AND STEMMER

COMPARISON .. 129

 INTRODUCTION .. 129

5.1.1 Chapter Organization ... 130

 CONTRASTIVE LEARNING REFINEMENT: MEAN RESCORING 130

5.2.1 Initialization .. 131

5.2.2 Convergence ... 132

5.2.3 Stopping Criterion .. 132

5.2.4 Refinement Scoring Experiments .. 134

5.2.5 Summary of Evaluation Results .. 135

 ROOT NORMALIZATION: UNRESTRICTED MORPHEME SIZE 136

5.3.1 Root Weighting ... 137

5.3.2 Root Variety Counts .. 138

5.3.3 Weighted Variety Counts .. 138

5.3.4 Extended Analysis ... 139

5.3.5 Experimental Results for Root Normalization .. 140

 STEMMER COMPARISON .. 142

5.4.1 Khoja Stemmer .. 143

5.4.2 Information Science Research Institute (ISRI) Stemmer ... 144

5.4.3 Shortcomings of Existing Stemmers .. 145

5.4.4 Experiments .. 146

5.4.5 Discussion ... 148

 CONCLUSION.. 149

 CONCLUSIONS ... 151

 INTRODUCTION .. 151

6.1.1 Chapter Organization ... 152

 THE STRENGTHS AND CONTRIBUTIONS ... 152

 LIMITATIONS .. 154

 OMISSIONS ... 155

 FUTURE WORK .. 156

 OUTLOOK ... 158

BIBLIOGRAPHY ... 159

APPENDIX A BUCKWALTER TRANSLITERATION 168

A.1 ORIGINAL BUCKWALTER TRANSLITERATION .. 168

A.2 EXTENDED TRANSLITERATION .. 171

APPENDIX B UNDIACRITIZED PATTERN LIST .. 173

B.1 UNVOWELLED PATTERN FROM .. 173

APPENDIX C PROCESSING THE QURANIC ARABIC CORPUS 179

xi

List of Tables

Table 1.1: Most spoken Semitic languages ... 3

Table 1.2: Example usages of common prefixes and suffixes .. 15

Table 1.3: Example usages of noun prefixes and suffixes .. 16

Table 1.4: Example usage of mostly verb prefixes and suffixes..................................... 17

Table 1.5: Some example patterns for 3 and 4 letter rooted verbs along with their

meanings and examples... 18

Table 1.6: Example patterns for derivational morphology ... 19

Table 1.7: Example patterns for the broken plural .. 20

Table 1.8: 43 realizations of the root ت-ك- ب in the QAC ... 24

Table 1.9: Example analyses of two words ... 27

Table 1.10: Comparing the number of possible analyses of a hypothetical word abcd for

concatenative and non-concatenative morphology ... 28

Table 3.1: PS_NBC features as powerset combination of word characters without

boundary characters .. 61

Table 3.2: Root based feature sets for @slAmA# .. 63

Table 3.3: Corresponding pattern based feature sets derived from the root based feature

set (Table 3.2) replacing root characters with ‘-‘ while copying missing characters from

the word. Boundary characters are copied from the root-based features without change.

 ... 64

xii

Table 3.4: Top entries for the nearest neighbours to the target word slAm (peace) in

terms of root (left side) and pattern (right side) .. 71

Table 3.5: Example of Pattern and Root candidates scoring for word ‘slAm’ 75

Table 3.6: Top scoring patterns and roots after global scoring 76

Table 3.7: Comparison of different feature sets .. 83

Table 3.8: Comparison of two parameter estimation techniques 84

Table 3.9: Comparison of different Gaussian Priors ... 84

Table 3.10: Comparison of RB models trained at different iteration levels. 85

Table 3.11: Comparison of PB models trained at different iteration levels. 86

Table 3.12: Comparison of the methods using scaled score and length adjustment

against the raw score ... 87

Table 3.13: Comparison of the final ME model with the baseline 87

Table 3.14: Final unsupervised ME based morphology induction system without any

dependence on external parameters .. 88

Table 4.1: The counts of morphemes in each word of the vocabulary (local score) 97

Table 4.2: Aggregating and averaging the counts over all the whole vocabulary (global

score) ... 98

Table 4.3: Table showing co-occurring morphemes and degree of co-occurring

morphemes .. 100

Table 4.4: Mutual recursion for contrast-plus scoring using type (i) initialization and

the Manhattan norm .. 105

Table 4.5: Mutual recursion for contrast-pure scoring using type (iii) initialization and

the Manhattan norm .. 106

Table 4.6: Mutual recursion for HITS using type (ii) initialization and the Manhattan

norm .. 110

xiii

Table 4.7: Root and pattern ranking comparison between HITS and contrast-pure 110

Table 4.8: Numbers of correct analyses using different initializations 120

Table 4.9: Comparison using different norms and analysis scoring combinations...... 121

Table 4.10: Comparison of the best performance of the three base scoring methods . 122

Table 4.11: Contrast-plus accuracy at different iterations ... 123

Table 4.12: Contrast-pure accuracy at different iterations ... 124

Table 4.13: HITS accuracy at different iterations ... 125

Table 4.14: Comparison of the three methods with accuracy differences relative to the

previous iteration ... 126

Table 4.15: Comparison of the three methods in terms of accuracy 126

Table 5.1: Comparison of the three methods in terms of accuracy 136

Table 5.2: Weighted counts of a root relative to its size in a word 137

Table 5.3: Comparison of different root count normalization and extended analysis .. 141

Table 5.4: Accuracy comparison of the Khoja and ISRI stemmers with contrastive

learning without weak radical conflation. The number of correct quadraliteral root

words shown in brackets. .. 146

Table 5.5: Accuracy comparison of the Khoja and ISRI stemmers with contrastive

learning and refined contrastive learning using weak radical conflation. Number of

correct Quadraliteral again shown brackets. ... 147

xiv

List of Figures

Figure 1.1: Possible levels of outputs from a ULM system .. 10

Figure 1.2: General processing steps for unsupervised learning..................................... 11

Figure 1.3: Vocabulary growth contrasted for English and Arabic (Kirchhoff et al, 2006)

 ... 24

Figure 1.4: Sketch of the unsupervised learning procedure .. 29

Figure 3.1: Comparison of raw probabilities with log scaled ratios for the first 20 entries

 ... 77

Figure 3.2: Illustration of Table 3.9 .. 84

Figure 3.3: Illustration of Table 3.10 .. 85

Figure 3.4: Illustration of Table 3.11 .. 86

Figure 4.1: Example graph linking roots and patterns .. 99

Figure 4.2: Comparison of the three methods showing accuracies at each iteration 126

Figure 5.1: The size difference between the root and the pattern vectors..................... 133

Figure 5.2: The size differences between root and pattern vector alongside the accuracy,

for contrastive learning ... 134

Figure 5.3: The size differences between root and pattern vector alongside the accuracy,

for HITS .. 135

1

Introduction and Background

 Introduction

1.1.1 Problem Definition

The field of natural language processing has over the passing years seen a significant

growth in the level of automation in building and devising tools and resources which

rely only minimally or not at all on the expertise of a linguist. Current sophisticated

empirical and machine learning methods typically apply supervised learning techniques

in conjunction with labelled data to make predictions about the desired task which

approach the performance of linguistic experts. The larger and more accurate the

annotated database is, the better the model learnt for prediction. Yet, there are certain

situations for which labelled data may be absent or insufficient to produce an effective

system. For such tasks a more unsupervised approach is needed which is able to find the

hidden structure in the unlabelled data. One such field of research which requires such

an unsupervised approach is the learning of morphology, especially for morphologically

rich languages with limited linguistic resources.

The number and diversity of human languages makes it impractical to manually craft

lexicons and morphological processors for more than a very small proportion of them.

Further challenges are posed by the need to deal with dialects and colloquial forms of

languages. This has motivated recent increased interest in approaches to morphological

analysis based on unsupervised learning. Inspired by competitions such as the Morpho

Challenge1, many techniques have been proposed for unsupervised morphology

learning.

1 Website http://research.ics.aalto.fi/events/morphochallenge/ accessed 3rd May 2014

http://research.ics.aalto.fi/events/morphochallenge/

2

Although these techniques are often intended to be language independent, they are often

directed to a specific group of languages. Most work has aimed at sequential separation

or segmentation of morphemes concatenated together in a surface word form. This type

of analysis, outputting stems and appended morphemes aims to identify some kind of

border between the different morphemes. However, another type of word formation

consists of the interdigitation of a root morpheme with an affix or pattern template; in

this case there is no boundary between morphemes, since they are rather intertwined

with each other. This type of non-concatenative morphology, which is characteristic of

the Semitic group of languages, has attracted far less interest for unsupervised learning.

In this research I present an approach to learning the non-concatenative morphology of

Arabic, given unannotated data as found in naturally written texts, while minimising

supervision and manual setting of parameters.

1.1.2 Research Question

This research tackles the following research questions:

Can the non-concatenative morphology of Arabic be learnt effectively

with performance reasonably close to that of linguistic resources and

tools? To what extent can the devised approach be independent of

manual settings and language specific parameters?

1.1.3 Chapter Organization

In this chapter, I first give a brief description of the background and characteristics of

the Semitic languages detailing the development of Arabic language and its dialect

(section 1.2). Thereafter, I define unsupervised learning in general and in the context of

morphology learning (section 1.3). This includes specifying the inputs to the system,

various layers of details that are output, and the justification for using unsupervised

methods to learn morphology. Next, I introduce briefly the morphology of Arabic to the

level needed to understand the problem of morphological processing in this work

(section 1.4). The section covers the special challenge and justification for learning the

3

rich morphology of Arabic with reference to the two types of morphologies,

concatenative and non-concatenative. This is followed by a formal definition of a model

for unsupervised learning of Arabic non-concatenative morphology specifying the input

and outputs, along with the techniques for unsupervised morphology induction

(section 1.5). Finally, section 1.6 outlines the thesis organization.

 Language Preliminaries

1.2.1 Arabic and the Semitic Language Group

Arabic belongs to the Semitic group of languages which, originating in the Near East,

are currently spoken in the regions of West Asia (the Arab peninsula), North Africa and

parts of the African Horn, and also expatriate communities in the North American and

European continents.

Arabic dominates the Semitic language family, being an official language, solely and

jointly, of almost 20 countries in the region stretching from West Asia to North Africa.

Out of the Semitic language group’s (approximate) 500 million speakers, Arabic is

spoken by nearly 300 million (Thompson & Phillips, 2013). The most prominent

languages in this group are shown in Table 1.1 along with numbers of speakers.

Language Speakers

Arabic 300 million

Amharic 22 million

Hebrew 7 million

Tigrinya 6.7 million

Silt'e 0.8 million

… …

Table 1.1: Most spoken Semitic languages

4

1.2.2 Common Characteristics of Semitic Languages

Nearly all languages in the Semitic family share common characteristics in terms

phonology, morphology and syntax which make them quite distinct from languages of

other regions. They exhibit a kind of engineered structure showing remarkable

organisation and arrangement with rich content expressed very concisely. Although

having very different scripts, languages in the Semitic family share certain orthographic

conventions. The most common is the use of optional diacritic markers to indicate short

vowels and consonantal germination; the omission of these markers can lead to

ambiguity in the analysis of words. The script for Maltese is the least ambiguous, with

alphabetic spelling conventions resulting in a one-to-one mapping from grapheme to

phoneme. Thereafter, Amharic with a syllabic writing system is arguably less

ambiguous than Arabic, Hebrew and Syriac, which have the most ambiguity due to

diacritic omission (Fabri et al, 2014)

In terms of phonology, Semitic languages are marked by a dearth of vocalic sounds,

while having a rich consonantal system (Watson, 2002). There are only three basic

vowels a, I, u, which are realized in their short and long forms. The consonant

collection is rich in guttural sounds. The consonantal phonemes of the language group

are categorized as voiced, voiceless, and ‘emphatic’, thus constituting a triad in what is

a subset of the coronal set. The emphatic phonemes may be realized

as pharyngealized, velarized, ejective, or plain voiced or voiceless consonants.

A core characteristic of Semitic languages is their root-and pattern morphology. The

root consists of 2, 3 or sometimes 4 letter literals denoting a broad meaning or concept,

onto which a template (or pattern) is applied to form a derived word. Typically gender

in such languages is expressed both in nouns and verbs. Plurality is also expressed in

nouns, which besides singular and plural forms have a third type, dual, though this is

seldom used in contemporary dialects. In terms of verb aspects and tense, there are two

distinct types of markings which are common to almost all Semitic languages: suffix

conjugations for past tense, and prefix-suffix conjugations for non-past tense. The

former marks the verb for gender, number and person, while in the case of the latter the

prefix primarily indicates person, and the suffix indicates number and gender whenever

http://en.wikipedia.org/wiki/Pharyngealized
http://en.wikipedia.org/wiki/Velarized
http://en.wikipedia.org/wiki/Ejective
http://en.wikipedia.org/wiki/Voiced
http://en.wikipedia.org/wiki/Voiceless
http://en.wikipedia.org/wiki/Consonant

5

the prefix does not indicate these. A more detailed account of Arabic morphology is

given in section 1.4.1.

Typical word order in Proto-Semitic languages such Arabic and Hebrew is the head-

first order V(erb) S(ubject) (O)bject. This is in contrast to the distinct Ethiopian

language Amharic which has the head final order S-O-V, with nominal phrases being

Adjective-Noun. The emphatic V-S-O order is giving way to S-V-O in modern Semitic

language usage, especially for Arabic dialects and Hebrew, under the influence of

English and other European languages. In some dialects, particularly Bedouin, word

order can be dependent on factors such as the main verb type (dynamic or stative), the

type of text (distinct event narrative would tend to have head first clauses) and the tonal

style or stylistics (Holes, 1995; Dahlgren, 1998).

1.2.3 Origins and Growth of the Arabic Language

Arabic has been the language of the people of the Arabian Peninsula since time

immemorial. The language received significant impetus and spread with the coming of

the religion of Islam. Over the 100 years after its emergence in the sixth century CE, the

religion spread rapidly in the Arabian Peninsula reaching northern parts up to modern

day Syria and Turkey; east into Iraq and western Iran; and west into Northern Africa. In

the centuries to follow, the frontiers of the new faith reached far and wide, extending to

Spain, Africa and Asian regions of India, Turkestan, China and further into Indonesia.

The Arabic language is the language of the Holy Book, the Quran. Islam brought not

only religious and cultural change but also promoted the language through which

believers could better comprehend the divine literature and teachings of the Prophet

 It became either the vernacular language of the regions to which Islam spread or .(ص)

was adopted alongside their native language.

1.2.4 Standard Arabic

While diversity in the Arabic language existed in pre-Islamic days, a formal standard

form of the language began to emerge in the sixth century CE, before the advent of

Islam. Poets started to use a Proto-Classical Arabic, taken predominantly from the

Hejaz dialect and also other archaic dialects, to recite their poetry which was very

6

different from their own dialects (Lipinski, 1997). This Classical language was then

codified by the revelation of the Quran adding richness to the grammatical forms. The

richness of the grammar of Arabic was formalized by grammarians in the eighth century

CE providing a standard for scholarly work and formal education and usage until today;

this language is called Classical Arabic.

Modern Standard Arabic (MSA) has emerged as the norm for present-day formal

usage, keeping largely the same syntax and morphology as Classical Arabic while

differing considerably in lexis and stylistics. Standard Arabic is mostly taught in

educational institutions and used for formal discourses. It is mostly written and seldom

spoken, while the regional variety is the primary mode of oral communication. This

standard has helped to unite the Arab speaking nations with a common means of

communication. There is continued effort to preserve and promote the standard

language keeping its link with the classical form for literary understanding of traditional

resources.

1.2.5 Dialects

As the Arabic language spread to the various nations around the Arab peninsula,

regional influences of other Semitic and non-Semitic languages began to influence the

original classical language over the centuries. For example in North Africa, the Arabic

language of the region has been influenced considerably by Berber and the French

language. There many dialects and also colloquial forms of the Arabic language in use

today. Some of the varieties resemble each other while others are quite different and

largely incomprehensible to speakers from other regions. Although variation in a

language occurs along different dimensions, some geographically defined variants are

recognized as: Hejaz and Najd Arabic of the Western and Central (Saudi) Arabia,

respectively; Maghrebi Arabic of Morocco, Algeria, Tunisia and Libya; Egyptian

Arabic; Levantine Arabic of Lebanon, Syria, Jordan and Palestine; Gulf Arabic spoken

in Kuwait, Bahrain, Qatar, the U.A.E. and Oman; etc.

Another important dimension of variation is social, according to the class hierarchy of a

region. So the urban dialect of the affluent would be different from that of rural less

affluent people and also that of the poor Bedouin class (Habash, 2010). Urban dialects

7

are more prone to evolution due to intermingling of speakers from diverse origins; on

the other hand the dialect of the Bedouin is considered less prestigious, more rough, yet

bearing more resemblance to the original Classical Arabic due to social isolation. These

class-based variations in language are more pronounced in North Africa than they are in

the Eastern region and Arab Peninsula. Speakers also have the tendency to switch

dialects according the formality of the situation or when needing to communicate with

people of other classes.

The diglossia of using a vernacular regional variety alongside standard Arabic for

formal situations has continued to exist over the centuries to this day. People mostly

learn their regional variety as their mother tongue while using MSA in formal

environments (Watson, 2002). Speakers tend not to distinguish the two forms as

separate languages, using them interchangeably according to situation. Each region feels

their vernacular variant to be the one that mostly closely resembles the

Standard/Classical form.

 Unsupervised Learning

Unsupervised Learning aims to identify an underlying structure of some input data

revealed by the distributional patterns of the key features in the data. Unlike in

supervised learning or reinforcement learning there is no example knowledge to affirm

the choice of a particular solution. It has similarities to the problem of density

estimation in statistics, which is the most basic task of unsupervised learning but also

encompasses other procedures that aim to explain and summarize important aspects of

the data.

Studies show the existence of such learning taking place in the natural environment.

The human mind, for example, processes information of visual images in an

unsupervised manner. Clustering has been used in an unsupervised way in simulations

to process the photoreceptor activities to capture the images of objects characterized by

a low dimensional cluster having fewer degrees of variation (Dayan, 1999).

8

Unsupervised learning is widely used in scientific research where some of the common

approaches include clustering, self-organizing map (SOM) from neural networks,

hidden Markov models, principal component analysis etc. For example, SOM is used

for certain pattern recognition tasks such as automatic target recognition, which is an

element in robotic warfare (Ohno et al, 2013).

In natural language processing, unsupervised learning has been used in a variety of

tasks such as grammar and lexicon induction, part-of-speech tagging etc. In grammar

induction, for example, the underlying syntactic structure of a grammatical component

is recognized for use in further NLP tasks (Klein & Manning, 2002; Clark & Lappin,

2010). One of the main reasons for the popularity of using this approach in NLP is the

advantage of not requiring labelled datasets, which may be expensive to produce.

1.3.1 Unsupervised Learning of Morphology (ULM)

Unsupervised learning of morphology is a general expression referring to the problem

of analysing text in the absence of annotation to reveal the required levels of

description of how morphemes have been combined to form words, in a particular

language. There are expressions used to refer to this problem, including (unsupervised)

morphology induction, automatic word segmentation, and stemming.

The various aspects of the problem of unsupervised morphology learning are discussed

below.

1.3.1.1 Input

As the aim is to process a language without making use of any linguistic aids and tools,

the input is simply the written text of the language without other knowledge or cues to

describe the text except the words themselves. Hence, an important consideration is the

size and composition of the dataset. Thus, standard, edited text, which is less likely to

contain inaccuracies, while also being rich with morphed word types, is preferable in

order to produce a sound analysis. System accuracy would be dependent on the ratio of

inflected word frequency to non-inflected word types such as proper nouns. As the

techniques are based on statistical counts of morphemes, uninflected word types would

9

add to noise in the data. It may be advantageous to work on smaller rather than larger

datasets, particularly if the complexity of the learning algorithm is much worse than

linear in the number of input word tokens that are input to the system.

The structure of input text is another consideration for ULM systems. It is assumed that

a sentence of the text data is broken down into word tokens, rather than a complete

utterance as in the case of Chinese and Japanese where sentences but not word tokens

are delimited. Such languages would first require segmentation of the sentence into its

component words, as done by Xue (2003) and others, before input into the ULM system

for morphological analysis. Word context may be of some use for the ULM problem but

most systems in the literature base their processing on just the vocabulary of the dataset

to produce the desired output. Hence for such systems, functioning on orthographic

tokens, the input would be just a bag of words.

1.3.1.2 Output

The output of ULM varies significantly between researchers, ranging from the simplest

task of affix induction to the more complex identification of paradigms for stems.

Hammarström (2009) presents an ‘implication hierarchy’ to show the different types of

analysis that ULM systems may output, illustrated in figure Figure 1.1.

The lower levels in the hierarchy usually imply the higher level solutions, which are

trivially obtainable. For example, it is possible to easily make same-stem decisions

given a segmentation of the words. But the converse is not true. A segmentation of all

words is not possible if the output is simply a same-stem decision.

10

List of affixes
List, possibly ranked, of either prefixes,

suffixes or patterns

↑

Same-stem decisions
To decide whether two stems have the

same affix

↑

Segmentation
Segment the words into constituent

morphemes

↑

List of paradigms
Paradigm are affixes subsets that occur

with certain stem types.

↑

Lexicon+Paradigm
List of stems with links to the paradigm

that each stem is associated with.

Figure 1.1: Possible levels of outputs from a ULM system

1.3.1.3 Modelling

Depending on the type of morphology to be learnt, e.g. either concatenative or non-

concatenative, an appropriate model is chosen to represent the problem for learning the

morphology. Usually this model, although built with a specific language in perspective,

is generic enough to be applied to other languages exhibiting the same characteristics of

morphology represented by the chosen model.

There are some common assumptions that guide all models designed for unsupervised

morphology learning, such as, affix strings generally have higher occurrence counts

than the remaining stem/root which has a relatively lower frequency of occurrence.

Other assumptions might be specific to type of morphology being modelled.

11

1.3.1.4 Supervision

The aim is to build into the unsupervised learning technique as few language specific

assumptions as possible. In order to keep the technique purely unsupervised, there

should be no parameters or thresholds that require to be set by a human.

1.3.1.5 ULM Problem

The ULM problem can be visualized as illustrated in Figure 1.2.

Figure 1.2: General processing steps for unsupervised learning

1.3.2 Justification for ULM

Research in ULM has a long history. Researchers have been motivated by a variety of

reasons for developing morphology induction techniques. As early as the 1950s, some

researchers were interested in ULM from a theoretical perspective (Bloomfield, 1963),

studying the morphological structure of language based on distribution rather than

semantics (Andreev, 1963, 1965). Some researchers such as Clark (2002) are interested

in the modelling of the human language acquisition process which is largely

unsupervised in nature. Another reason has been the difficulty of accommodating large

dictionaries in the limited memory and storage systems of the past (Wothke, 1986;

Klenk, 1985).

Raw Unannotated
Text

[sentences or
vocabulary list]

Unsupervised Learning
[e.g. MaxEnt Modelling, Affix

Extraction Algorithm etc.]

Morphological
Structure

[segmentation,
paradigms etc.]

Minimal Assumptions
(language specific parameters,

thresholds, etc.)

12

Why would researchers be interested in investigating unsupervised learning approaches

to morphology when advances have made it possible to build resources such as large

manually encoded dictionaries, finite-state approaches with hand written rules, and

techniques for supervised learning that are known to give high performance? The core

reason has been to counter the cost of manual labour required in building lexical

resources for use in advanced natural language applications. For very many languages

and dialects there are no existing linguistic resources. In supervised learning, the

labelled data may be difficult and expensive to obtain requiring intensive manual labour

and standardization. Even for resource-rich languages there is a constant flux in

vocabulary with new word usages and adaptations, thus requiring constant updating

which itself is an overhead. On the other hand, unsupervised morphology learning

offers the possibility to acquire the morphology of a language without incurring much

expense and manual labour and can be applied to a diverse set of languages.

 Morphology

As the term implies literally, morphology (from ancient Greek, morphe + logos), is the

study/discourse (logos) of changes in form (morphe). In the linguistic context it mostly

refers to changes in the form of words of a language. In the linguistic context it mostly

refers to changes in the form of words of a language. Words are the fundamental

building blocks of language. The surface forms of words can vary from simple, single

meaning bearing units, to complex units, the meaning of a complete sentence or

proposition. Nearly all languages combine one or more grammatical units, called

morphemes, to a base form in order to convey a different meaning to the base meaning.

These morpheme combinations occur in a variety of manners with different levels of

complexity. The study of rules for forming the words is given much emphasis by

researchers as the correct unit chosen for building the syntactic or semantic structure of

the system is of fundamental importance. Just as continued research in building better

language processing systems in terms of speed, efficiency, cost, robustness and

applicability while catering to a diverse set of languages is a requirement, a parallel

effort is needed to develop dynamic ways to build suitable morpheme word bases on

which the other language structures are built.

13

The ways in which morphemes combine can be categorized differently. One type of

categorization relevant to the computational processing of morphology is referred to as

concatenative as opposed to non-concatenative morphology. When surface forms are

built using morphemes that append to the beginning or the end of a word, this type of

process is called concatenative morphology. The appended morpheme at the beginning

is called a prefix (such as re- in rewrite) and the end is called a suffix (such as -s in

writes) while some languages have circumfixes consisting of a beginning and end

element (e.g. in Malay a circumfix, ke..an added to adil “fair”, gives keadilan

“fairness”). In non-concatenative morphology there is a different kind of word

formation which is more complex than simple end attachments. Usually an

intermingling of morphemes is seen; for example, in the Philippine language Tagalog,

the affix um “to do something” is infixed to the stem hingi “ask” to form humingi

meaning “to ask for”.

1.4.1 Arabic Morphology

Arabic uses both concatenative as well as non-concatenative morphological processes.

There are two types of concatenations that take place: firstly, affixation by means of

prefixes or suffixes, including inflectional morphemes marking gender, plurality and/or

tense. Secondly, a final layer of clitics may attach to a word, including a subset of

prepositions, conjunctions, determiners and pronouns; these appear at the beginning

(proclitics) or end (enclitics) of a word.

The core of the Arabic word formation process is non-concatenative, that is, it does not

consist of sequential appending together of morphemes. This type of word formation is

sometimes called templatic morphology or root-and-pattern morphology, where a root

and a pattern template intertwine to form a base word, which can be a noun, verb or

adjective, all of which are semantically related to the root.

In the case of Arabic, a further complication is that text is usually written without

diacritics or short vowels which means that most of the template letters are missing in

the final word, thus adding to the ambiguity of the analysis. Multiple analyses of a word

are thus possible.

14

The following subsections describe each important aspect of Arabic morphology. In the

rest of the chapter, the Arabic script will be accompanied with a Buckwalter

transliteration (see Appendix A for details).

1.4.1.1 Concatenative Morphology of Arabic

Most affixes and clitics append to the beginning and end of nouns and verbs (and

sometimes particles). A few of the affixes are infixes appearing in the middle of the

word, which will be discussed later when discussing non-concatenative structure

(section 1.3.1.2). These affixes may be pronouns, prepositions, conjunctions or case

endings. Some affixes attach to any word, noun, verb or particle while others are

specific to either nouns or verbs. In this section, a brief description is given of the

different types of these morphemes that attach to nouns, verbs and particles.

Amongst the common affixes, و (w) and ف (f) are clitics that appear as prefixes of any

word. و (w) is a long vowel whose tendency is to appear in many weak root words hence

is often confused between an affix and a word. The letter ل (l) has multiple roles in

different contexts. In a noun it appears as a prepositional clitic, meaning to or for. In

verbs, it is used periphrastically for emphasis in first and third person imperative, such

as let/will certainly (e.g., ليَِذهبُوا = “Let them go” or “They will go”). With particles, the

 is sometimes (<) أ appears again as prepositional clitic. The interrogative marker (l) ل

attached to any first word of an interrogative sentence. Besides these common prefixes,

some pronouns are suffixed to nouns, verbs and certain particles. Except for the 2nd

person and 1st person singular the rest of the pronouns are the same for nouns and verb.

Table 1.1 shows some common affixes including pronouns for the 1st, 2nd and 3rd person

singular, masculine, with example usages with nouns, verbs and particles.

http://en.wikipedia.org/wiki/Periphrasis

15

 Some Prefixes
Suffixed Pronouns

(Masculine, Singular)

 1st 2nd 3rd (l) ل (f) ف (w) و

Noun

كُتبُو

(wakutub)

and books

 ف كُتبُ

(fakutub)

so books

 لكُِتبُ

(likutub)

for books

 كُتبُيِ

(kutubiy

my books

 كُتبُكُ

(kutubiy)

your books

 كُتبُهُُ

(kutubuhu)

his books

Verb

ي كْتبُ و

(wayakutub)

and he writes

 ف ي كْتبُ

(fayakutub)

then he writes

 ليِ كْتبُ

(liyakutub)

so he writes

مِ نيِع س

(samiEaniy)

he heard me

مِ ك ع س

(samiEaka)

he heard you

هُ ع مِ س

(samiEahu)

he heard him

Particle

فيِ و

(wafi)

and in

 ف فيِ

(fafi)

so in

 ل فيِ

(lafi)

certainly in

 ليِ

(liy)

for me

 ل ك

(laka)

for you

 ل هُ

(lahu)

for him

Table 1.2: Example usages of common prefixes and suffixes

In the case of nouns, the most common affix is the determiner ال (Al), which appears as

a prefix, corresponding to the English determiner the. It has other variants, such as وال

(wAl), meaning and the and لل (ll), meaning for the, due to the preceding conjunctions,

 In Arabic some prepositions that attach to the noun are inseparable. The .(l) ل and (w) و

five prefixed prepositions are ب (b) (meaning by/with), ك (k) (meaning as), ل (l)

(meaning for), and و (w) (meaning (swearing) by the). Nouns often gets feminized by

attaching the feminine marker ت (t) at the end of the word. The masculine and feminine

sound plurals end with ون (wn) and ات (At) respectively, and the dual attachment for

masculine/feminine is ان (An). In the case of feminized nouns, the ة (p) is replaced by ت

(t) for dual when attaching the ان (An). In the case of plurals the ة (p) is dropped, and ات

(At) added. A list of selected prefixes and suffixes specific to nouns is shown with

examples in Table 1.2.

16

 Noun Prefixing Number Marking

 Singular Dual Plural (b) ب (Al) ال

Masculine

لِّم الْمُع

(AlmuEal~im)

the teacher

لِّم بمُِع

(bimuEal~im)

by a teacher

لِّم مُع

(muEal~im)

a teacher

ان لِّم مُع

(muEal~imAn)

two teachers

لِّمُون مُع

(muEal~imwn)

teachers

Feminine

ة لِّم الْمُع

(AlmuEal~imap)

the teacher (f)

ة لِّم بمُِع

(bimuEal~imap)

by a teacher (f)

ة لِّم مُع

(muEal~imap)

a teacher (f)

تان لِّم مُع

(muEal~imatAn)

two teachers (f)

لِّم ات مُع

(muEal~imAt)

teachers (f)

Table 1.3: Example usages of noun prefixes and suffixes

Besides the common affixes for nouns and verbs discussed above there is a class of

prefixes and suffixes that is specific to verbs. Prefixes are added to represent the

present-tense verb with different realizations for 1st, 2nd and 3rd person masculine and

feminine. In the case of 2nd person feminine a suffix ي (y) is also added besides the

prefix ت (t). The first three columns of Table 1.3 exemplify these different person forms

for the singular. In order to put the same words into the future tense, the same prefixes

are used for each respective form with the addition of the letter س (s) which is prefixed

as a second layer on the present-tense prefix layer. An example of this is seen in column

four of Table 1.3. Certain pronouns are excluded from the common pronoun suffixes.

These pronouns are specific to verbs are listed in the table along with gender and person.

Besides these prefixes, a suffix that may occur with 1st, 2nd and 3rd person singular

feminine past-tense verbs is the attached 3rd person pronoun; for example the masculine

 is attached as an object, making the word a sentence. This is (hA) ها or feminine (h) ه

shown in the last column of Table 1.3. Finally, the suffix, وا (wA) is added to the

imperfect, present and past tense referring to either second person or third person.

17

 Present Tense Prefixes

(Masculine, Singular)

Future tense

marker

3rd person

pronoun suffix

 1st 2nd 3rd س (s) ه (h) / ها (hA)

Masculine

مأ عْل

(>aElam)

I know

 ت عْل م

(taElam)

you know

 ي عْل م

(yaElam)

he knows

ي عْل م س

(sayaElam)

he will know

ي عْل مُهُ س

(sayaElamuhu)

he will know him

Feminine

 أ عْل م

(>aElam)

I (f) know

يت عْل مِ

(taElamiy)

you (f)

know

 ت عْل م

(taElam)

she knows

ت عْل م س

(sataElam)

she will know

ي عْل مُه ا س

(sayaElamuhaA)

he will know her

Table 1.4: Example usage of mostly verb prefixes and suffixes

Other than these types of concatenative attachments there are some clitics such as ما

(mA), لا (lA), and يا (yA) which may appear as proclitics of some words.

1.4.1.2 Non-Concatenative or Templatic Morphology of Arabic

As stated earlier templatic morphology is the process of word formation in which the

base root letters, having a semantic meaning, intertwine with the pattern templates

encoding syntactic information to obtain the derived stem word or lemma. Most Arabic

roots are triliteral (3-letter), while some are quadraliteral (4-letter) and there are a few 5-

letter roots. There are approximately 9000 roots listed in the famous Arabic Dictionary,

Lisan ul Araby (Moukdad, 2006) of which 5000 roots are in usage in Modern Standard

Arabic (MSA) (Beesley, 1996). Attia et al (2011) have compiled up to 549 patterns in

Arabic, of which most patterns are rarely used. The different templatic formations can

be categorized into three types: verb patterns, derivational patterns and nominal broken

plural patterns.

Verbs have a several patterns of which 12 basic patterns are the most important. A few

additional patterns are not used frequently. Ten of the twelve patterns occur with 3-letter

18

roots and the remaining two occur with 4-letter roots. Verb patterns are usually

represented using three abstract letters ف(f), ع(E), and ل(l). The most basic pattern,

which just used to represent the three and four letter root, is ل - ع - ف (f-E-l) and ع - ف -

ل - ل (f-E-l-l) . This pattern representation is known as the scale or form. Each

individual pattern on a particular scale has its own meaning but some of these scales are

semantically related, one having been derived from the other; for example, the form II is

the causative of form I. Some of the verb scales or forms are standardly denoted by

Roman numerals in MSA; Table 1.4 shows a sample, with their respective meanings.

Form Transliteration Meaning Example

I ل -f-a-E-a-l-a The simplest, basic form of 3 ف ع

letter root in past tense verb

ت ب ك (kataba)

he wrote

II ل f-a-EE-a-l-a Causative: to make someone do ف عَّ

an action

م لَّ ع (Eallama)

he taught

III ل t-a-f-a-EE-a-l-a Reflexive of form I-II: this form ت ف عَّ

acts as the object receiving the

action of Form I-II

ر كَّ ذ ت (ta*akkara)

he received the

reminder

… … … … …

QI ف عْل ل f-a-E-l-a-l-a Basic form of 4-letter root س سْو (waswasa) و

he whispered

QII ْل ل ت ف ع t-a-f-a-E-l-a-l-a Reflexive or reflexive causative

of II-I, like form I-III

س سْو (tawaswasa) ت و

he was whispered

to

… … … … …

Table 1.5: Some example patterns for 3 and 4 letter rooted verbs along with their

meanings and examples

Some words are derived from other words; the most common occurrence of derivation

occurs where a noun derives from a verb form. Most of the derivational changes involve

a change in pattern while sometimes affixes are appended. Sometimes there is a

particular pattern that is applied to a particular verb form while elsewhere there is

19

considerable variety in the types of patterns that may be applied. For instance, a

deverbal noun is obtained from a form I verb using a variety of patterns while the

derivation from all other forms is obtained using a single pattern. The active participle

and passive particle derive from verbs of different forms. Likewise, nouns of place, time

and denoting instruments are also derivable from verbs. Some example derivations are

shown in Table 1.5.

Form Transliter-

ation

Meaning Example

 (kaAtib) كا تبِ f-a-A-E-i-l Active participle of form I-I فا عِل

writer

فْعُول كْتوُب m-a-f-E-u-w-l Passive participle of form I-I م (maktuwb) م

written

ل فْع m-a-f-E-a-l This form is used to indicate م

noun of place and time

كْت ب (maktab) م

office

ال m-i-f-E-a-A-l A nominal pattern to denote مِفْع

instrument

 (miktaAb) مِفْت اح

key (one that opens)

… … … …

Table 1.6: Example patterns for derivational morphology

Another place where intercalated morphology is apparent is in the case of the Arabic

broken (irregular) plural, where a singular word undergoes pattern changes, instead of

the regular appending of a plural marker as seen earlier. Irregular plurals occur just as

frequently as regular plurals. Patterns for the broken plural are sometimes the same as

patterns for other derived words. For instance, the singular word كِت اب (kitAb) and the

plural word ال ال share the same common pattern ,(rijAl) رِج There is the .(fiEAl) فعِ

possibility of multiple plurals for a word, which may be all broken or some broken

20

while others being regular plurals. Table 1.6 shows a few example patterns that are used

to pluralize words.

Pattern Example

Arabic Transliteration Singular Plural

ال ب ر a-f-E-a-A-l-< أفْع (xabar) خ

news

 (xbaAr<) أخْب ار

news

 (burj) برُج f-u-E-u-w-l فعُُول

tower

جورُ بُ (buruwj)

towers

ال جُل f-i-E-a-A-l فعِ (rajul) ر

man

ال (rijaAl) رِج

men

 (kitaAb) كِت اب f-u-E-u-l فعُُل

book

 (kutub) كُتبُ

books

Table 1.7: Example patterns for the broken plural

1.4.2 Special Issues

Below are discussed a few special issues that are of particular importance to the

problem of Arabic morphology learning in this research.

1.4.2.1 Missing Diacritics

Diacritics (sometimes referred to as short vowels) in Arabic are symbols used to

indicate vowels, definiteness, consonant doubling etc. These symbols, as opposed to

letters, are considered optional and are omitted in most kinds of writing. The few places

where text may be diacritized include religious text, especially the Quran, children’s

literature, and poetry (Dukes & Habash, 2010). Text is typically written without

diacritics except in some places they may be placed by the author in order to

disambiguate a certain meaning of a word. In the absence of diacritics, the same

orthographic word form may indicate a variety of meanings. For example, the word كتب

21

(ktb), without the short vowels, could be interpreted as ت ب he wrote (3rd (kataba) ك

person past tense), ُكُتب (kutub) books, and ِب كُت (kutiba) it was written (past passive verb),

amongst other meanings.

In the absence of short vowels, the number of distinct patterns also reduces resulting in

fewer word formations. Of the 590 patterns identified by Attia et al (2011) some of

these patterns are orthographically overlapping, having the same form but with distinct

idiosyncratic meanings. Of these patterns, 306 patterns are orthographically non-

overlapping types. But in the absence of short vowels these patterns further conflate to

180 types (see Appendix B) with a significant degree of overlap: an average of 3.2

grammatical patterns are represented by a single undiacritized template.

1.4.2.2 Morphophonemic Adjustments

The process of intercalation and concatenation of a root morpheme with templates and

affixations may not be a straightforward agglutination of morphemes; sometimes the

resulting word form undergoes changes, which make it quite different from its

constituents (Holes, 2004). These changes follow certain morphophonemic rules applied

to the components in the interdigitation and concatenation process. One particular rule

which is especially relevant to the morphology learning problem is known as the weak

root radical rule.

Weak roots are roots that contain one of the three long vowels w (wāw), y (yā)

or A (hamzah). Such types of root undergo changes to the weak radical containing the

long vowel, to adapt to vocalic harmony, sometimes with the vowel being switched or

being completely dropped from the final word. There are rare occasions where a root

may contain a weak radical which behaves like a regular consonant, and thus does not

undergo any morphophonemic changes. An example of these changes is in the case of

the root letters و-ق- ل (q-w-l) from the various derivational forms: قال (qAl), he said; يقول

(yqwl), he says; قول (qwl), a saying; قيل (qyl), it is said; قل (ql), say (imperative), etc. In

such cases it is hard to analyse the word back to its root.

22

1.4.2.3 Normalization

A natural language processing system may apply orthographic normalization to reduce

noise and sparsity in the data. Generic tasks such as punctuation separation and

encoding clean-up are universal for all types of language scripts. There are certain tasks

that are specific to Arabic language processing, of which diacritic removal is

particularly important. Infrequent and irregular occurrences of diacritics are considered

noise and are therefore removed. Another important aspect which brings inconsistencies

is that letter marking on certain types of letters is optional. Thus all letters in a particular

class type are conflated to one class; for example, humzated forms of Alif (ا), إ ,(>) أ (>),

 ئ and (&) ؤ ,Similarly, non-Alif forms of Humza .(A) ا ,are replaced with bare Alif ,(|) آ

(}) are conflated to the bare humza letter ء (`). One issue with applying unsupervised

learning to normalized text is that known characteristics about the language are used to

manually regularize the dataset.

1.4.3 Motivation for Morphological Analysis

As seen earlier, about 5000 roots can possibly combine with approximately 500 patterns

to form base words which may be further appended with multiple layers of affixes and

clitics. The proliferation of word types found in a dataset due to multi-layer fusion of

morphemes is quite pronounced.

With such a morphologically rich language, it becomes difficult to adequately capture

word level dependencies. Due to the different patterns along with concatenation of

morphemes, especially clitics, the number of alternative formations of words increases

considerably. For instance, in the Quranic Arabic Corpus2 (comprising around 80,000

word tokens) the root ت-ك- ب has 43 realizations due to different pattern and

concatenative affixes and clitics. These are shown in Table 1.7.

From a machine learning perspective, derived and inflected forms reduce the number of

instances of many words. This may give rise to data sparsity problems, which in turn

2 http://corpus.quran.com/download/default.jsp

23

may necessitate increasing the number of parameters to obtain feasible models. Also,

unique word growth is seen to occur at an exponential rate with the growing corpus size

making it difficult to apply to unseen data. In Figure 1.3, the vocabulary growth rate for

Arabic is shown in contrast to English. The number of unique words in an Arabic

corpus increases steadily as the size of the corpus increases. In contrast, in English the

growth rate tends to flatten, meaning that relatively fewer new words are seen in a

corpus as the size of the corpus increases.

Word Translit-

eration

Gloss

 bktAb By a book بكتاب

 bktAbkm By your book كتابكم

 bktAbY By my book بكتابى

 b'lktAb By the book بالكتاب

 fkAtbwhm His book كاتبوهم

انفاكتب f'ktbnA Our book

هفاكتبو f'ktbwh so write it

 flyktb so he writes فليكتب

اكتبهافس fs'ktbhA So I will

write it

 kAtb Writer كاتب

 kAtbA Writer كاتبا

 kAtbwn Writers كاتبون

 kAtbyn Writers كاتبين

 ktAb Book كتاب

 ktAbA Book كتابا

Word Translit-

eration

Gloss

 ktAbh His book كتابه

 ktAbhA Her book كتابها

 ktAbhm Their book كتابهم

 ktAbk Your book كتابك

 ktAbnA Our book كتابنا

 ktAbyh Booklet كتابيه

 Ktb Books كتب

 ktbnA Our books كتبنا

 ktbnAhA We write it كتبناها

 Ktbt You write كتبت

 kttbhA I make him' اكتتبها

write it

كتابل lktAb For a book

 lktAb The book' الكتاب

 Llktb For the books للكتب

 mktwbA Written مكتوبا

24

Word Translit-

eration

Gloss

 Snktb We will write سنكتب

 Stktb Will be ستكتب

written

 Tktbwh You write it تكتبوه

اتكتبوه tktbwhA You write it

 wb'lktAb By the book بالكتاب

 wktAb And Book وكتاب

 w'ktb And I write واكتب

 Wktbh And his وكتبه

Word Translit-

eration

Gloss

books

 wktbnA And we وكتبنا

wrote

 w'lktAb And the book والكتاب

 Wlyktb And he وليكتب

writes

 Wnktb And we write ونكتب

 Yktb He writes يكتب

 Yktbwn They write يكتبون

Table 1.8: 43 realizations of the root ت-ك- ب in the QAC

Figure 1.3: Vocabulary growth contrasted for English

and Arabic (Kirchhoff et al, 2006)

25

 Unsupervised Learning for Arabic Morphology

Having looked at the definition of unsupervised learning along with its related issues,

and at the complexities of Arabic morphology, a model for learning the morphology of

Arabic in an unsupervised manner is now presented. This section looks at: the input

dataset and the characteristics of the language in it; the output, level of analysis and

evaluation criteria; and, the techniques for unsupervised morphology learning using

minimal supervision and language specific characteristics assumed.

1.5.1 Input Data

Unlike in supervised learning, where the training set is labelled and a separate

unlabelled set is used for testing, in most work on unsupervised learning, the system

learns from the unlabelled data and applies it back to the same.

I have chosen the Quranic Arabic Corpus (QAC)3 as a test-bed for investigating

unsupervised learning techniques for non-concatenative morphology. Attributes of the

QAC along with relevant pre-processing for input to an unsupervised learning system

are discussed below.

1.5.1.1 Undiacritized Text and Normalization

Since most Arabic text is written without vowels, a realistic setting of unvowelled text

is adopted for the dataset. Using undiacritized text can be an advantage or a

disadvantage depending on the type of analysis which is being attempted. Since the

scope of unsupervised morphological processing is limited in terms of analysis to either

stem or root, working without diacritics is an advantage which decreases the diversity of

forms to be learnt. The orthographic normalization process involves, besides removal of

diacritics, the normalization of Alif (ا), Humza (ء) and Ya (ى) as stated in section 1.3.2.3.

3 See Appendix C for details of the Quranic Arabic Corpus (QAC)

26

1.5.1.2 Stemmed vs. Unstemmed Data

Intuitively, it would be appropriate to stem off the sequentially appended morphemes

before examining non-concatenative morphology. Unstemmed words would greatly

increase data sparsity, making root identification extremely challenging. Longer words

also imply an exponential increase in the search space of possible solutions making the

algorithm computationally more expensive. Therefore, for learning non-concatenative

morphology, I use stemmed data, in order to gauge the true performance of the

templatic morphological learner. This means that all inflection prefixes, suffixes and

clitics are removed. Since techniques for concatenative unsupervised morphology

learning are fairly advanced, stemmed words are computable through such approaches.

For this research however, stemmed words in the dataset were available through a

manually created resource.

1.5.1.3 Size and Composition

Unsupervised, non-concatenative morphology of Arabic is learnt using the undiacritized,

stemmed vocabulary of the Quranic Arabic Corpus (QAC). The size of the vocabulary

is 7369 words, of which approximately 88% of the words are derived words, composed

of a pattern and a root. The high proportion of derivational forms makes it suitable for

unsupervised learning. Also, the relatively small dataset size simulates the scenario for

most of the world’s languages of scarcity of linguistic resources and data.

1.5.2 Analysis Output

The non-concatenative morphology learning algorithm has three outputs: a scored

pattern lexicon, a scored root lexicon and a procedure for morphological analysis of a

word into a root and pattern. The score of an entry in the lexicons indicates the

confidence the learning algorithm assigns to each morpheme in terms of its soundness.

The morphological analysis is the chosen root and pattern morpheme of a word which

gives the highest combined score. In this work, the analysis is restricted to triliteral root

morphemes as these account for most of the vocabulary of the language. In order to

evaluate the accuracy of analyses, the percentage of correctly analysed roots is reported

27

as the performance measure for the algorithm. I consider only sound rooted words for

evaluation. Weak rooted words would be out of the scope of the system to learn

completely. (However, partial evaluation would be possible with correct identification

of either one or two root radicals.)

Patterns are henceforth represented using the ‘-‘ marker to indicate the abstract letters f,

E or l, intertwined with pattern affix letters. Roots are represented as triliteral strings.

Due to the absence of short vowels, words are expected to contain single letter infixes.

Hence at some points, the learning procedure is restricted to allow only single character

occurrences between root radical place-holders in pattern templates. Two example

analyses are shown in Table 1.8.

Word Root Pattern

ktAby Ktb --A-y

tEArf Erf t-A--

Table 1.9: Example analyses of two words

1.5.3 Model

Model formulation for morphology is different for concatenative and non-concatenative

morphological structure. For concatenative morphology learning, the search space of

possible morphemes (i.e. a root and affixes) is all non-interleaved substrings of a word.

For an n character word there are 2n-1 possibilities. In contrast, for non-concatenative

morphology, the possibilities for the root of a word are all contiguous and non-

contiguous sequences of characters of length 1 and above. This corresponds to the

powerset of the characters in the word minus the empty set; there are 2n -1 such

possibilities. Hence, the search space for both kinds of morphology is exponential, but

for any value of n>1, there are almost twice as many possibilities for non-concatenative

morphology. Table 1.9 shows the possible analyses of a four-character word, showing

the possible outcomes of concatenative and non-concatenative analyses.

28

No. Segmentations
Root, Pattern

Combinations

1 a b c d a,-bcd

2 a b cd b, a-cd

3 a bcd c, ab-d

4 ab cd d, abc-

5 ab c d ab, --cd

6 abc d ac, -b-d

7 a bc d ad, -bc-

8 abcd bc, a--d

9 bd, a-c-

10 cd, ab--

11 abc, ---d

12 abd, --c-

13 acd, -b--

14 bcd, a---

15 abcd, ----

Table 1.10: Comparing the number of possible analyses of a hypothetical

word abcd for concatenative and non-concatenative morphology

1.5.4 Unsupervised Learning Techniques

This thesis describes two techniques to analyse the non-concatenative morphology of

Arabic to obtain the analyses of words as described above. The first technique

(described in Chapter 3) uses a machine learning technique, Maximum Entropy

29

modelling, adapted for unsupervised learning, inputting powerset like morpheme

combinations as features to train a model to cluster words based on either root or pattern

similarity. The lexicons are then derived in a subsequent stage. The second technique

(Chapter 4 and Chapter 5) builds a graph of all possible connections between patterns

and roots, then analyses the links to reveal the potential root and pattern lexicons. This

technique falls in the domain of what are known as Link Analysis Ranking algorithms

which have been applied to Internet webpage ranking (Borodin et al, 2005).

Certain language specific characteristics are assumed in order to make the learning task

feasible. As mentioned earlier, only 3-letter roots and corresponding 3-placeholder

patterns are permitted. This is a supervised parameter which is basic to the learning of

the morphology. Another such language specific property, in the case of undiacritized

text, is to disallow root and pattern analyses where more than one consecutive infix

letter is present in the pattern template. Arguably, for truly unsupervised learning there

should be no such limitations; however these particular ones are minimal.

The process for unsupervised learning of Arabic morphology is illustrated in Figure 1.4.

Figure 1.4: Sketch of the unsupervised learning procedure

Stemmed,
Undiatritized

vocabulary of QAC

Unsupervised Learning
[MaxEnt Modelling; Link

Analysis Ranking]

Root and Pattern
Lexicon ; root and
pattern analysis of

word

Minimal Supervision
(3-letter root only, single infix

patterns, etc.)

30

 Thesis Organization

Chapter 2 presents a survey of previous work applying empirical methods to the

problem of morphology learning. Then, the first of the two methods for unsupervised

learning, based on Maximum Entropy modelling, is introduced in Chapter 3. The

second methodology for morphology induction, contrastive learning, based on

comparative counts of roots and pattern is described in Chapter 4. This second method

is then extended in Chapter 5 along with a comparison with existing manually built

stemming tools. Finally, Chapter 6 summarizes the outcomes of this research and

proposes areas for future work.

31

Literature Survey

 Introduction

An active area of research in natural language processing is to have computer systems

capable of processing human text with little explicit knowledge about a language; this

has motivated the study of unsupervised or minimally supervised learning of the

underlying structure of the language purely from naturally occurring text. In the last two

decades, many techniques to process and learn morphology automatically have been

applied. This is partly due to advances in machine learning techniques and their

successful application to such tasks, and also the increased availability of vast amounts

of electronic text.

Chapter 1 introduced the task of unsupervised or minimally supervised learning of

morphology, which takes a large text corpus and outputs the analysis of each word

occurring in the corpus with little or no explicit knowledge of the nature of the language

under consideration. Section 1.2.1 presented an ‘implication hierarchy’ showing

different levels of analysis chosen by researchers ranging from simple same-stem

identification to more complex complete word-form analysis or morphological analysis.

For concatenative languages commonly the task of unsupervised learning is the

automatic segmentation of word forms into morphemes. For more complex intercalated,

non-concatenative languages, additional analysis could include identification of root or

base form.

2.1.1 Chapter Organisation

The literature review is divided into two main parts: firstly, the area of unsupervised

learning of morphology is covered generally without focusing on particular morphology

32

type, introducing the main techniques that have been applied to numerous tasks in this

area (section 2.2). This is followed by the second part which looks at general empirical

methods and some unsupervised learning methods that have been developed for Arabic

and other Semitic languages (section 2.3). The review concludes by surveying areas that

have received little attention to date, and are the subject of the work in this thesis

(section 2.4).

 Unsupervised Approaches to Morphology Learning

After introducing early approaches, the review goes on to cover work that has been

influential in the past decade or so. Almost all approaches have two main steps to reach

the final solution. The first step is a rough initial estimate of the solution arrived using

methods involving frequency statistics of n-character grams taking their inspiration

from the work of Harris (1955). Then follows an optimization step using various

methods ranging from semantic clues to information theoretic approaches, to refine the

initial solution. For non-concatenative morphology nearly all approaches involve an

alignment step between inflected forms and root forms.

2.2.1 Early Work

The work of Harris (1955) is one of the first convincing attempts at unsupervised

analysis of words based on the distribution of sub-strings. Harris applied his approach to

English; the approach has been developed further by many researchers. The process

considers distributional properties of phonemic representations of a large set of

utterances, in order to identify morpheme boundaries, outputting segmented words. The

technique is based on the concept of letter successor variety, where the frequency of the

n + 1st letter, given the first n letters, is measured and a potential morpheme boundary

is hypothesized at positions where sudden frequency peaks occur.

This work was given a more formal perspective by Hafer & Weiss (1974) in terms of

probabilistic notions, with the inclusion of entropy into the formulation. They elucidate

and make improvements on the heuristics proposed by Harris proposing many different

33

measures for identifying potential morpheme boundaries. Sometimes the best results

were obtained using the local maximum of prefix conditional entropy, while in other

cases obtaining a value above a certain threshold was used as the measure; and

sometimes two measures were combined, one from the beginning to end and the other,

from end to beginning of a word, using a predetermined threshold to yield the best

results. While no one single measure gave the best overall performance, the best

obtained result gave a precision score of 0.91 with recall of 0.61 on a corpus of 6200

words.

2.2.2 Information Theoretic Approaches

2.2.2.1 Minimum Description Length (MDL) Approaches

Goldsmith (2000, 2001, 2006) developed an unsupervised morphology induction system

called Linguistica, which uses the Minimum Description Length (MDL) framework.

Being publicly available, it has been used extensively as a standard for comparison by

other researchers. Goldsmith focuses his attention only on suffixation (though the

system is extendable to cover other affixations) applying his work to five languages,

English, French, Spanish, Italian and Latin. Goldsmith’s application of MDL to the

problem of unsupervised morphology seeks to globally optimize the analysis of the

words in the corpus. It is based on the insight that the number of letters in a set of words

(in written text) is greater than the number of letters if the same words were broken

down into sets of stems and morphemes. Thus, the more accurately we are able to

identify the correct morphemes, the smaller (more compressed) would be the length of

the decomposed data.

The input to the system is a large unannotated corpus and the output is a list of

signatures and associated stems. Signatures are simply groups of suffixes that have been

identified to be affixed by a certain group of stems e.g. NULL.er.ing.s. Signatures are

different from paradigms as each signature may contain both derivational (-er) and

inflectional affixes (-ing and -s) as in the above example. Also, each signature may not

contain the complete set of affixes, as in paradigms such as those missing the past tense

suffix, -ed, as in certain groups of stems having an irregular past tense e.g. blow, drink,

34

feel. Signatures are therefore only derived based on corpus statistics, and obtaining

paradigmatic groupings from the signatures is not addressed in this work by Goldsmith.

Obtaining signatures in Linguistica is a two-step process: firstly, candidate generation

yields potential signatures and associated affixes as a starting point; secondly, candidate

evaluation refines the initial set of candidates based on the MDL framework which is

the main focus and novelty of the research.

For candidate generation, Goldsmith considers two heuristic methods for obtaining the

initial candidates, one more rigorous, considering every possible word split and the

other more intelligent and computationally concise. In the latter, the author collects all

statistics of word-endings of each word up to 5 characters (6-grams including an end

word marker) since he is restricting himself to languages which can have suffixes of

size at most 5 characters long. Using a metric he ranks the 100 most frequently

occurring suffixes. The words in the corpus are parsed using these suffixes with

possible multiple parses per word. The best parse for each word is then found using

another metric which assigns a probability to each parse, preferring longer suffixes over

shorter ones. The results of this process are groups of stems and their associated

signature. Some further heuristic processing is applied to remove signatures with one

stem and stems with one suffix in the signature, resulting in what he refers to as regular

signatures.

Once the initial set of signatures (and corresponding stems) have been obtained, in the

candidate evaluation step these are further evaluated and refined. Based on the principle

of MDL the best set will be the one that (on morphological decomposition) gives the

most compact description of the corpus and of the morphology. Using different

heuristics, many of the erroneous signatures are removed or modified. Each time the

morphology is adjusted using a particular heuristic, MDL analysis is applied to verify

any improvement in the adjustment. A lower description length indicates that the altered

signature is more appropriate to keep; otherwise it is discarded. The author evaluated

the system, Linguistica, in terms of accuracy (Goldsmith, 2006), which he sees as a

‘practical’ consideration, as opposed to the commonly used recall/precision measure. A

gold standard of 15,000 words with the correct morphological analyses was created. A

positive value is assigned to the analyses of words that correctly matched the gold

35

standard analysis. Of the first 300,000 words of the Brown corpus, the system achieved

an accuracy of 72%.

2.2.2.2 Constraint Based Incremental Learning

Cavar et al (2004, 2005) apply Alignment Based Learning (ABL) algorithms for

grammar induction to unsupervised induction of morphological rules and lexicons. The

approach differs from other MDL approaches in that it is an incremental generation and

induction of the grammar, word by word, rather than one-off generation and revision,

which is computationally intensive. Another key feature of their work is that there is no

built-in knowledge in the system such as the type of morpheme, as with Goldsmith’s

Linguistica. In the design of the algorithm, consideration is given to computational,

cognitive and linguistic aspects for optimisation. Each iteration of the learning

algorithm is divided into three steps: (i) In the ABL Hypothesis Generation step if a

morpheme (restricted to independently occurring morphemes) is a sub-morpheme of an

input word, the edges of the morpheme are considered to be the morpheme boundaries

of that word, and a hypothesis is generated with the morpheme along with the affix

morphemes. (ii) The Hypothesis Evaluation and Selection step uses a number of criteria

to decide the credibility of a valid hypothesis. (iii) In the grammar extension step, for

each valid hypothesis a signature is created, similar in structure to Goldsmith (2001),

and is merged with an existing signature of the same base word. This extended grammar

is final and not revised except in subsequent input iterations.

The metrics used in hypothesis evaluation are of key consideration. Three information

theoretic metrics, Mutual Information (MI), Description Length (DL) and Relative

Entropy (RE) are used to optimize the size and efficiency of the generated grammar.

They are motivated by cognitive aspects of languages and grammar, adding constraints

which limit use of available memory resources; the metrics application process is fast,

computationally efficient and results in a grammar which minimizes space usage. MI

predicts the number of bits needed to the left and right of a morpheme. This value is

maximized to prefer hypotheses with more segmentation. This in turn is countered by

the other criteria to prefer fewer morphemes. RE measures the cost of adding a

hypothesis to the grammar by minimizing the divergence of a particular hypothesis

from the grammar. The notion of DL is similar to the case Goldsmith (2001) i.e. to be

36

able to determine for each hypothesis if the new grammar would have greater or smaller

length. Besides these metrics, further criteria are used to refine the evaluation:

boundary morpheme frequencies are used to detect a potential boundary for a word;

hypotheses with longer morphemes are preferred in order to prevent a degenerate state

where each letter becomes a morpheme candidate. Certain weights for the evaluation

criteria have to be set arbitrarily although the authors argue these could be learnt in an

unsupervised way with further research.

Two types of evaluations were carried out by the authors: evaluation of the

signature/rule and of the morphological parse of words. For the former, each rule was

evaluated to determine whether it contained correct morphemes and stems. The best F-

score for the rule set was 80% on a large portion of the general fiction section of the

Brown corpus. For the latter, the parsed words of the initial input “under certain

circumstances” had precision of 100%, but a lower recall of 60%.

2.2.3 Syntax and Semantics

2.2.3.1 Latent Semantic Indexing

Schone & Jurafsky (2000, 2001) argue that it is impractical to rely on orthographic and

phonological features alone for morphology induction. Such approaches would

incorrectly produce the analysis all+y as opposed to -ally and not cater for spelling

changes by analysing for example, hated as hat+ed. They propose to incorporate

semantics to aid in the induction of morphology. In their initial work (Schone &

Jurafsky, 2000), they first identify and extract potential affixes. Although only suffixes

are dealt with in this work, their approach is extendable to include prefixes and

circumfixes; also unlike some previous work they do not ignore capitalization. They too

have a two-step approach which first identifies a potential set of affixes and later apply

their semantics approach to pairs of words. For the first step they build for all words

what is called a character trie, which is a treelike data structure, the nodes of which are

characters with edges linking the characters in each word. Morpheme boundaries are

identified where branching occurs, i.e. a variety of subsequent character nodes is

observed. Once they have identified morphemes, they pair words having the same stem

37

but different affixes (e.g. car/cars; care/cares). Thereafter they use Latent Semantic

Analysis (LSA) as a means to induce the level of semantic relatedness between the

words in each pair. The technique identifies semantically related word pairs which are

morphological variants of each other. They apply their work to English and compare

with Goldsmith’s Linguistica, showing comparable performance using their semantics-

only approach.

In follow up work (Schone & Jurafsky, 2001), they extend their model to incorporate

syntactic and orthographic features. While applying semantics three further cues, affix

frequency, syntactic context, and transitive closure are included. Their model now

incorporates prefixes and circumfixes, and they apply their extended algorithm to three

languages, German, English and Dutch. First, the semantic probability of word

relatedness is augmented with the orthographic probability of circumfixes (including

prefixes and suffixes) measured using affix frequencies; thereafter the probability of the

syntactic context for each morphologically related pair is incorporated into the

formulation. Each of the additions progressively improves the performance with the

best F-scores obtained being 88.1%, 92.3% and 85.8% for English, German and Dutch,

respectively. The results are better than any other system of that time.

2.2.3.2 Mutual Information

Baroni et al (2002) use similar approach to Schone and Jurafsky, although instead of

LSA, they use mutual information to infer the semantic relatedness between pairs of

words. For orthographic similarity they measure the minimum edit distance between

words. Their model does not assume any kind of morpheme concatenation nor do they

incorporate distributional data of word sub-strings such as affix frequencies etc.

2.2.4 Feature-based Classification

De Pauw & Wagacha (2007) and De Pauw et al (2007) adapt a machine learning

methodology to learn the morphological relatedness of words. They consider words to

be composed of features of initial, terminal and middle substrings. Using a maximum

entropy classifier they build lists of related nearest neighbour words based on

orthographic relatedness. The idea of using features is that common orthographic

38

features amongst words would be given lower weight while features that occur less

frequently get higher weight thus potentially identifying a stems morpheme. This

approach, the authors argue, has greater ability to capture long range dependencies

between words than other approaches such as minimum edit distance, as used by Baroni

et al.

2.2.5 Irregular and Non-Concatenative Morphology

Yarowsky & Wicentowski (2000) describe a lightly supervised technique for irregular

and non-concatenative morphology induction from a large corpus. Their first goal is to

learn from data a table of alignments mapping inflected forms to their roots. Thereafter,

using this information they train a morphological analyser capable of performing

automatic morphological induction. Some language specific resources are needed for

the procedure: inflectional part-of-speech categories and corresponding canonical

suffixes; a dictionary of noun, verb and adjective roots along with an approximate way

of tagging words in the corpus; and finally, a list of consonants and vowels of the

language.

The main challenge addressed by Yarowsky & Wicentowski is to correctly align an

irregular form with its root, e.g. sang with the root sing rather than the regular inflected

form e.g. sanged. An obvious approach would be to just consider their ratios of

occurrence in the corpus; for example, sang/sing with ratio 1.19/1 as compared to

sanged/sang with ratio 0.007/1. However at times this can be misleading since some

inflectional forms of words occur rarely. In order to deal with this the authors calculate

the (smoothed) distributions of ratios over an entire class of inflected/root forms of

words. For example, for the class VBD/VB (Penn Treebank tags for Past Tense

Verb/Verb Root) the smoothed distribution, log(VBD/VB), is calculated and for each

pair like sang/sing, the log ratio value indicates whether it fits the distribution well or

not. This distribution is not obtained at the outset, as initially the alignments of

irregular/root forms are unknown. The authors observe that the distribution of

alignments of regular/root forms is similar to the irregular/root forms, so they initialize

with statistics of simple suffix stripped and inflected forms. This is naturally noisy, but

as the discovery of irregular forms progresses, the distribution improves. Other

39

distributions between ratios of inflected forms are also considered e.g. VBG/VBD

(where VBG is a tag for gerund/particle ending in -ing).

Two additional cues used to identify related forms are distributional and orthographic

similarity. Weighted context vectors representing each word are compared to other word

forms using the cosine similarity measure. The authors argue that morphologically

inflected words have more similar contexts than synonym words. Further, they use the

weighted Levenshtein edit distance to gauge orthographic similarity between words,

assigning higher cost to consonant changes and lower cost to vowel changes. The end

application is a morphological analyser, estimated using an interpolated back-off model,

which predicts a stem change, given a root, suffix and POS tag. Although each

individual metric discussed above does not on its own perform well, combining all the

metrics together results in an effective morphological analyser giving accuracy of 99.2%

over all evaluated words (including irregular).

2.2.6 Complete Language Independence

Hammarström (2007a) presents an exhaustive survey of research on Unsupervised

Learning of Morphology (ULM). Based on this survey, he makes some key

observations about previous research in this area:

 Seemingly due to lack of awareness, a lot of work by different researchers has

gone on in parallel streams. The same or related ideas have been pursued by

different researchers with little sharing.

 There have been lots of experimentation and heuristics proposed without sound

supporting models or theory.

 Most approaches are built with the aim of applying to a certain language or

group of languages. These approaches are governed by language specific

parameters and thresholds that need to be determined in a supervised manner.

Based on these observations, Hammarström proposes a model for concatenative

morphology to overcome shortcomings in past research, which aims to cater to a

topologically diverse set of languages, without the incorporation of language specific

40

constants and parameters. The aim is to build a theory side-by-side with reasonable

experimental results and not just to aim at good results without explanation.

Hammarström (2006a) proposes a formalism which he calls a ‘Naive Model of Affix

Extraction’. It is naive in the sense that it does not take into consideration the intricate

affixational requirements of the different languages of the world. The formalism is

based on the intuition that affix strings (he focusses on suffixes) occur in a corpus with

much higher frequency than stem or base strings; this asymmetric relationship between

base forms and suffixes can be exploited. Two main underlying assumptions are made:

(1) Arbitrary Character Assumption (ACA) which states that a character is equally

likely to occur in any word-position of the base or suffix string; (2) Frequent Flyer

Assumption (FFA): the members of the set of suffixes are very frequent. The algorithm

for identifying suffixes makes use of three properties of suffixes: Frequency, Curve

Drop and Random Adjustment. All terminal segments and their respective frequencies

are recorded. The Curve Drop property is then used to see which of these segments is

well-segmented to the left i.e. -ing and not -ng. Random Adjustment is used to

distinguish frequent but random segments such as -a from non-random segments (like -

ing or -ng). Finally the three properties are combined to give a score to each segment. A

ranked list is produced with suffixes at the top and incoherent segments at the bottom.

Exactly where the demarcation occurs between suffixes and such segments is a difficult

problem to solve.

Hammarström (2006b) applies the approach to the problem of same-stem word

recognition, which is an easier problem than having to accurately extract suffixes. He

uses a metric based on co-occurrence statistics to quantify which end-segments are

prone to attach to the same stem. The technique achieves very good results when

applied to four topologically diverse languages. The author has also successfully

applied his affixation approach to the problem of language identification (Hammarström,

2007b). Unlike previous approaches to this task which can analyse text in the range of

100 characters or more, in this work the author builds a more fine-grained model which

can accurately classify a one-word input and even classify concatenations of words from

different languages. “Competitive” accuracy is reported in experiments on a

multilingual parallel Bible corpus.

41

2.2.7 Conclusion

This section has covered influential lines of work in unsupervised morphology learning.

As stated earlier, the desired outputs differ considerably with some systems outputting

segmentations, some identifying affixes etc. This lack of agreement makes it difficult to

make reliable comparisons across different approaches. Much progress has been made

in achieving high accuracy in unsupervised learning which is comparable to supervised

systems. The MDL-based approach has gained much popularity; however, as pointed

out by Hammarström (2007a), this technique lacks a sound theoretical basis; and on the

experimental side, the use of thresholds and constants mars the success of reported

results. A sound model for unsupervised morphology learning with a solid theoretical

basis is yet to emerge.

 Computational Morphology of Arabic and Semitic Languages

Semitic languages, for example Arabic, are challenging to process automatically. This is

due to several reasons including: rich morphology; ambiguity in the writing system due

to omitted diacritics; complexity of the way roots and patterns combine to form a word;

and lack of standardized encoding schemes. Most work in Arabic computational

morphology so far has been built on knowledge-based, linguistic foundations and

targeted only for Modern Standard Arabic (MSA). Tools constructed using this

approach are expensive to build and cannot be easily adapted to other languages or

dialects. The need for data-driven machine learning approaches is pronounced for such

languages given the large number of variant dialects.

This section surveys the various empirical techniques that have been used to learn

Arabic and other Semitic language morphology. It starts by reviewing work on

supervised approaches, followed by unsupervised techniques. For concatenative

morphology, most of these techniques inherit from the general approaches of previous

research with minor adaptations. The real challenge is to address non-concatenative

morphology in order to identify the root and pattern from a given word and to

simultaneously deal with concatenative morphology.

42

2.3.1 Supervised and Semi-Supervised Approaches

2.3.1.1 Language Model (LM) based Arabic Word Segmentation

Lee et al (2003) use bootstrapping to incrementally update a language model (LM) for

best segmentations of a word into morphemes (prefix*-stem-suffix*), starting with a

small manually segmented corpus and a table of prefixes and suffixes of the language.

Although Lee et al don’t treat infixes, they segment into multiple prefix/suffixes as

opposed to one prefix and/or suffix per word. This is important for applications such as

machine translation, since almost every morpheme is meaning-bearing, having

corresponding words in another language. The input to the algorithm is a sentence. Each

token of the sentence is analysed in sequence. For each token all possible segmentation

scores are computed using an initial trigram language model. The segmentation with the

highest score is selected. At token boundaries, morphemes from the previous token are

used as histories for the subsequent token morpheme. Unseen stems are classified as

‘unknown’. Possible segmentations of a word are restricted to those derivable from a

table of prefixes and suffixes, obtained from the initial corpus. Derivation of sub-

segmentations of matching prefixes/suffixes enables the system to identify possible

segmentations which would have been missed out otherwise. However, there is some

level of filtering (called PS-Filter) which detects illegal segmentations. For example,

sub-segmentation of the whole prefix Al- into A- and l- is illegal and hence ignored.

The way the algorithm works is that, starting with an initially segmented corpus and

vocabulary, a language model based segmenter is built to segment subsequent partitions

of the unsegmented corpus. The training corpus is divided into a number of partitions.

At each iteration, the current segmenter is used to segment the next partition, thus

acquiring new stems and adding new words to the vocabulary. The new segmenter is

built using the enlarged vocabulary. The algorithm selects the final segmenter and

vocabulary such that the next partition does not yield further improvement. New stems

are acquired based on three criteria: (i) frequency threshold, (ii) filtering of stems

containing substrings having high probability of being a prefix, suffix or prefix-suffix,

and (iii) contextual filtering, which filters out stems with probability of occurrence of

prefix/suffixes being greater or lesser than certain thresholds.

43

The authors evaluate performance using Word Error Rate (WER) on 28,449 words

extracted from a test corpus. As a baseline, each word is assigned a segmentation which

most frequently occurs in the training corpus. This gives a WER of 26%. Using only a

trigram LM for segmentation, the WER reduces to 14.7 (an improvement of about 50%).

Augmenting this trigram LM with the PS-Filter and the three criteria for new stem

acquisition further improves the accuracy by about 30%. Some segmentations require

the token’s Part-of-Speech (POS) to be known. Hence the authors adjust the model to

accommodate sub-string POS probabilities into the model. They achieve an

improvement of 10% (WER of 2.9% to 2.6% for 110K word training corpus). Overall

they report 97.3% accuracy which is comparable to state-of-the-art performance of the

time.

2.3.1.2 Constraint Based Learning

Daya (2004) applies a machine learning approach to identify roots for Hebrew, and

extends the approach to Arabic (Daya et al, 2008). They use a multi-class classifier,

SNoW, to build three classifiers for each of three root radicals in triliteral roots. They

chose features having grammatical and statistical characteristics such as character

location, character bi-grams, prefixes and suffixes. To train their classifiers they used a

development set of 4800 words extracted from a corpus of 15,000 words and manually

annotated with root information. Two baselines were built. Baseline ‘A’ was a single

multi-class classifier attempting to learn the whole root at once. This was inaccurate

given the large number of target roots and sparseness of the training data. Baseline ‘B’

was a combination of three classifiers, one for each consonant of the root. The target

space for each classifier is now reduced to 22 (the number of letters in Hebrew) for

which there is ample training data. Since the classifiers are combined straightforwardly

and independently without considering interdependence of the root radicals, this too is

inadequate. In order to account for this, they chose an HMM to model the sequential

occurrence of the three consonants. The probability of the three consonants in sequence

is now maximized given the word and model. But this too is simplistic and does not

capture morpho-phonological alterations (such as assimilation and metathesis) from the

root to the surface form; nor does this model irregular pattern formations. Also there are

phonological constraints that limit the possibility of certain root formations. All these

44

linguistic constraints have to be accommodated for. The number of possible targets in

the classifier is further reduced given the (linguistic) fact that (almost always) only

consonants that occur in the inflected form occur in the root along with a few weak

radicals that occur in different consonant places. The model with these classifiers

becomes a new baseline for the extensions that follow.

Further refinements are applied not to the classifier but rather to re-rank a ranked list of

plausible roots that are output by the SNoW system for each word. Each root is assigned

a confidence score based on the soundness of its formation assigned after applying some

linguistic checks/constraints. A further measure taken into consideration is the inverse

edit distance between the roots and the word. Thus three scores are combined (equally,

by taking their product) to obtain a new ranking: (i) product of the three classifier

outputs, (ii) confidence scores, and (iii) inverse edit distance. The top ranking roots are

returned as output. Also, multiple roots are retrieved for some words whose scores are

higher and close to each other. This boosts recall while minimally decreasing precision.

Overall, the authors report 80.90% precision, 88.16% recall and F-score of 84.38% for

held-out data. This performance is comparable to performance by Hebrew speaking

human subjects (F-score of 81.86%) who too have difficulty in extracting correct roots

from words.

Daya et al extend the approach to Arabic, for which the problem is somewhat more

difficult than for Hebrew: the number of letters is greater, hence the number of targets

(40 in Buckwalter transliteration) is greater; more patterns and infix letters make the

linguistic constraints more complicated; and the average number of ambiguous roots per

word is much greater. One advantage over Hebrew is that training data is more

abundant. Although the linguistic constraints are more simplistic, the system still

achieves only slightly inferior performance to Hebrew with precision of 78.21%, 82.80%

recall and F-measure of 80.44%.

2.3.1.3 Automatic Morphological Analysis

Darwish (2002) describes the development of an Arabic morphological analyser called

Sebawai, which he later enhanced (Darwish & Oard, 2007). It learns a probabilistic

model for combining affixes with stems based on the output of an existing Arabic

45

morphological analyser, ALPNET (Beesley, 1996). It derives the rules and statistics to

estimate the occurrence probabilities of templates, prefixes, and suffixes. It is trained on

a list of word-root pairs to first derive the templates that produce stems from roots.

Thereafter, a list of prefixes and suffixes is generated. Finally, by estimating the

probability of occurrence of templates, stems, and roots, the system is able to output a

suitable analysis for a word. The author reports accuracy of 84% in extracting the

correct root of a word.

2.3.1.4 Finite State Transducers

Clark (2001, 2002, 2007) experiments with memory-based algorithms for learning the

morphology of a language with the aim of understanding human acquisition of language.

He first builds a supervised model to address the problem of associating base with

inflected forms, and then enhances the model so that it can be used with semi-

supervised learning. The choice of Arabic as a test-bed was to study modelling of the

complex phenomena of non-concatenative morphology which can be best exemplified

by the Arabic broken plural.

Clark approaches the problem through the use of finite state methods which are able to

model all morphological processes though with added extensions to accommodate for

non-concatenation. The model used is a non-deterministic stochastic transducer,

defining a joint probability over input and output distributions. The model attaches the

output function to states rather than transitions, bringing it close to a type of Hidden

Markov Model (HMM), called a Pair HMM (PHMM). This resemblance to HMMs

allows them to be learnt in the same manner as HMMs. An adaptation of the

Expectation Maximisation (EM) algorithm is used with extensions to the algorithm to

accommodate all possible combinations of input and output strings. The trellis data

structure in the Viterbi learning is extended to three dimensions, with two dimensions

for the two inputs and one for the position. Unfortunately, sometimes the EM training is

not effective, with the model converging to a local maximum, meaning that the most

likely state transition sequence is not the most likely output. Although empirically the

model works well for simple cases, a better approach is to infer the conditional

probability distribution of the output given the input from the joint probability of the

input and output strings and maximizing over the random samples. Another

46

complication is that a single large model models all possible input/output combinations

which is inefficient, requiring a large parameter space. A more appropriate strategy is to

use mixtures of models for each morphological paradigmatic class, which can then be

parameterised easily. Clark therefore subdivides the training data into classes and builds

a model for each class before mixing them. In order to extend the work to make it semi-

supervised, the author takes input as two lists of unaligned inflected and base forms.

This can be viewed as a permutation of the two lists having n! alignments, and can be

modelled as a hidden layer with n2
 parameters. Using the EM algorithm, the

permutation and string transduction can be simultaneously optimized.

For evaluation of the semi-supervised approach Clark used two types of datasets. The

first (PN1) simply consisted of all singular forms in one list and all plurals in another.

For this set near perfect alignments were obtained with precision and recall of 96.8%

and 95.5%. A second more realistic set (PN2) consisted of lists with half the words

randomly removed from each list resulting in half the number of words with correct

alignments and the rest left unaligned. For this dataset, the system achieved alignments

with precision and recall of 84.1% and 65.1%, respectively.

2.3.2 Unsupervised Learning of Arabic Morphology

2.3.2.1 Constraint Based Learning

Rodrigues & Cavar (2005, 2007) apply their earlier work (Cavar et al, 2004, 2005) to

induction of Arabic morphology. They have a two-tiered approach to dealing with the

complex morphology of Arabic. In the first phase they deal with identification of the

root and in the second they deal with concatenative morphology in the usual way.

Identification of the root in Arabic is a difficult task due to the complex system of

variation of the root word into many variant patterns, with the help of short vowel

changes and infixes. The authors apply a heuristic unsupervised approach for

identification of roots. The heuristics identify root letters by assigning them a

confidence score. There are two parts to the score, the positive evidence which is

normalized by the negative evidence. These are calculated in terms of frequency of

occurrence of potential root letters and affixes. The intuition behind this measure is to

47

capitalize on the promiscuity of roots as compared to vowel templates. Root templates

are a more frequent open class, whereas vowel templates are a less frequent closed class.

Some restrictions and constraints are applied (in a supervised way) to the root learner in

order to speed up the algorithm. The authors restrict themselves to identifying only

three letter roots, which is the most common form of verbs in Arabic. Also, they

constrain their search for roots by requiring a maximum distance of five characters

between the first and last root radicals, and of three characters between each radical,

thus excluding unlikely character combinations. Once the roots have been identified, the

characters from first to last in the radical are replaced by a symbol and any occurrences

of characters around the symbol are assumed to be concatenations which are then dealt

with in the second phase of the algorithm in the same manner as in their previous work

(Cavar et al, 2004, 2005).

Rodrigues & Cavar tested their approach on 10,000 words having prefixes, suffixes and

infixes, containing only triliteral roots, generated by the Buckwalter Morphological

Analyser. Quantitative results were only obtained for the root identification part. The

system reaches 75% precision after 10,000 words. They observe that incremental

learning, with longer words input first gives higher final precision. Also, clustering by

length and frequency of the words revealed distinct categories of open and closed class

words.

2.3.2.2 Parallel Corpora (Concatenative Morphology)

Snyder & Barzilay (2008) harness the connection between languages through parallel

corpora in order to learn morphology of three major Semitic languages, Arabic, Hebrew

and Aramaic. They show how cross-lingual parallelism can be utilized to improve

morphological segmentation without any supervision. Furthermore they investigate how

the outcome is affected by languages of the same or different families. While

researchers have in the past exploited parallel corpora for various linguistic tasks

including morphology, they have done so in an asymmetric, supervised way using

annotations in one resource-rich language to induce information in another. In contrast,

Snyder & Barzilay build one multilingual model simultaneously capturing the structural

regularities in each language without any supervision. Advantages from a joint analysis

are that structural regularities and irregularities which occur between languages such as

48

prepositional morphemes attached to a word in one language can be identified by

corresponding missing or detached occurrences in another language; cognates in two

languages would tend to align, splitting off any attached affixes.

The authors apply a hierarchical Bayesian model to capture multi- and monolingual

dependencies between two languages, extendable to multiple languages. Distributions

need to be identified over two types of morphemes, (i) stray, which are ones that occur

in one language and not in the other, and (ii) abstract, which are morpheme pairs in two

languages that may be cognates or share syntactic and semantic properties. The

distributions over all finite-length stray morphemes in the respective languages are

modelled using a Dirichlet Process (DP) having a base prior distribution encoding two

properties of the morphemes: the morpheme length and the end-morpheme character.

The distributions over all possible pairs of finite strings (from respective alphabets) of

abstract morphemes are also modelled using a DP having a base prior distribution

encoding the lengths of the component morphemes. In the case of related languages

with known phonetic correspondences between alphabets, string-edit distance between

the correspondences can also be used as a parameter for capturing cognate resemblance

in the prior distribution. The advantage of using a DP is that it concentrates most of the

probability mass on a small number of morphemes/morpheme pairs while still reserving

a small proportion for all other possible strings/string-pairs. Once these two

distributions are obtained, the next phase is to generate parallel phrases using a

generative model. This is a four step process: (i) draw the counts of abstract and stray

morphemes in each language from a Poisson distribution, (ii) draw the abstract and

stray morphemes according to their counts from their respective DP distributions, (iii)

order the morphemes using a uniform distribution over all permutations of morpheme

orderings, and finally (iv) fuse the morphemes into words using again a uniform

distribution over all permutations of morpheme fusions. The results of this phase are

parallel phrases that have morphemes that have been implicitly aligned. The final step is

to obtain a segmentation of the morphemes having high joint-probability marginalizing

over all possible draws from all three distributions. This is achieved using Gibbs

sampling.

49

For evaluation, the authors use two baselines: (i) a state-of-the-art system, Morfessor

(2007), and (ii) monolingual segmentation obtained using monolingual morpheme

distributions. They evaluate the bilingual models with and without character-to-

character morpheme correspondences. In the former case, they obtain a marked

improvement over the monolingual baseline for all models (except one, Hebrew +

Aramaic). No difference was observed between adding English (having a different

morphological structure) over any other Semitic language (with similar structure).

However when character-to-character morpheme correspondences were included, a

boost in performance was seen, reducing relative error for Arabic/Hebrew by 24%.

2.3.2.3 Learning Vowel-Consonant Distinction From Phonemes

Goldsmith & Xanthos (2009) learn the vowel-consonant distinction and structure using

statistical methods based on phonemes rather than word orthography. Starting with

techniques applied by a Russian researcher, Boris Sukhotin, for the task of

differentiating vowels from consonants, the authors explore two additional superior

techniques for the task. They further apply the techniques to determine vowel harmony

and syllable structure. They report excellent results for their applications.

Sukhotin’s conceptually and computationally simple approach is based on the

assumption that vowels occur more frequently than consonants and that alternation

between vowels and consonants is much more frequent than between vowel-vowel and

consonant-consonant. To accomplish the task, a square, symmetric matrix is used with

rows and columns each representing phonemes in the corpus. The values in the matrix

are the counts of the number of times in the corpus that a phoneme in a row occurs

adjacent to a phoneme in a column. Next, one vowel is identified by assigning a score to

each potential vowel. A candidate vowel phoneme would be one whose difference

between its frequency with a consonant and its frequency with a vowel is positive and

substantial. This difference is the score assigned to each phoneme; the one with the

highest score, being the candidate, is then removed from the matrix. In this way two

classes consisting of vowels and consonants is formed. Looking at the poor results

obtained on a test set for the English and French datasets, Goldsmith & Xanthos

identified two sources of failure: firstly, infrequent phonemes suffer from the problem

of data sparsity, lacking diversity of context; and secondly, high frequency consonants

50

are likely to be classified as vowels since the initial decisions are based on only the

overall frequency of the phonemes.

Goldsmith & Xanthos discuss the application of spectral clustering, in which the

phonemes are presented as nodes in an undirected weighted graph. They obtain a

symmetric square adjacency matrix with values being the ‘distributional similarity’

between the phonemes. This distributional similarity is calculated by evaluating

similarity in the contexts of neighbouring phonemes. Thereafter spectral analysis is

applied to the graph obtaining its second Eigenvector (Fiedler vector). This vector

assigns a single value to each node of the graph, i.e. each phoneme, such that similar

phonemes get similar values. This has the effect of grouping similar phonemes along

different points on the linear scale. Considerable performance improvements were

observed over Sukhotin’s algorithm, yet misclassification of phonemes were still

observed.

The final computational technique discussed by the authors is based on an HMM with

two states, one for each class. Each state has a probability distribution across every

phoneme it generates and a distribution over transitions to itself, or to the other state.

The aim is to determine these two distributions such that the probability of the dataset is

maximized. The Baum-Welch EM algorithm is used to estimate these distributions,

guaranteeing a local maximum. This suffices, as only the local structure of words is

being evaluated. The idea is that consonant-vowel variation will result in a different

distribution of phonemes in each state. That is, if there is a tendency of a phoneme to

alternate (i.e. between vowels and consonants) the two groupings would be expected to

be divided such that the emission probabilities for one of the sets will be higher in one

state than the other. Also with this tendency we would expect the transition probability

between the two states to be higher than the transition probability between the same

states. The results of experiments on both English and French confirm this hypothesis.

Vowels and consonants of each language indeed converge perfectly to the two sets

having different emissions in each state.

Xanthos (2007) applied Sukhotin’s algorithm to a symbolically transcribed wordlist for

Arabic. The transcriptions thus included short vowel symbols (represented by diacritics)

in the phonetically transcribed text given as input to the system. Thus, given a word, as

51

a sequence of phonemic symbols, Xanthos’s system (named Arabica) attempts to

decompose the transcription into a root and pattern, and also identifies the rules that

govern their combination. It first applies Sukhotin’s algorithm, as described above, to

identify vowels and consonants based on their distributions. Starting with the simple

assumption that the root of a word is a sequence of consonants and a sequence of

vowels is a pattern, the system looks through the dataset for regularities in the

combinations of roots and patterns. That is, it tries to identify roots that consistently

combine with certain patterns. Once it finds that a certain set of roots combine with a

certain set of patterns, words are assigned a structure known as an RP-Structure, which

can be thought of as a rule for combining certain roots with certain patterns. Words that

are not assigned an RP-Structure are left unanalysed and their hypothetical roots and

patterns are discarded. Next the system tries to extend its set of roots and patterns, by

identifying a set of unanalysed words that correspond to a particular RP-Structure.

These words are added to the structure, provided that the integration simplifies the

morphology, gauged using the Minimum Description Length principle as introduced by

Goldsmith (2001). The algorithm terminates when there are no unanalysed words left.

 Conclusion and Prospective Work

There is very little reported research on computational approaches to processing non-

concatenative morphology. Most work on unsupervised morphology learning has been

targeted towards European languages, in which non-concatenative morphology is

almost non-existent. For Semitic languages, many of the same techniques can be

adapted for obtaining word segmentations. However, complete analysis of Semitic

languages including both root-and-pattern morphology and segmentation of words is a

difficult problem due to the morphological richness of the languages. This is evident in

the work of Daya (2004) and Rodrigues & Cavar (2005) who manually encode many

linguistic constraints and restrictions pertaining to a language. Arguably the best

attempts to analyse the non-concatenative morphology of Arabic to date has been

presented by Xanthos (2007), who presents an approach to statistically learn

phonological categorizations of roots and patterns without any linguistic knowledge.

Here too there is a restriction on the input to only non-inflected words. Simultaneously

52

dealing with concatenative and non-concatenative morphology is a problem that has

been little explored. The divide-and-conquer approach dealing with concatenative and

non-concatenative morphology separately, as adopted by Rodrigues & Cavar (2005), is

a plausible way to obtain a complete analysis. One may be tempted to apply

concatenative analysis and then deal with root identification; but as shown by Rodrigues

& Cavar (2005), it is more efficient to deal with concatenation once the root is identified.

No previous research appears to have addressed root identification for unvowelled text,

which is the naturally written form of text with short vowels omitted.

In the area of unsupervised learning of the complex morphology of Semitic languages,

many problems remain to be addressed. A framework to represent the common morpho-

phonological alterations that occur amongst the various languages in this family needs

to be formulated. Based on this, a model could be presented defining and learning

parameters shared by these languages. Root and pattern categorization using spectral

analysis and HMMs also seems a promising prospect that has so far not been explored.

A practical tool is needed for analysis to deal with naturally occurring unvowelled text,

outputting roots and patterns.

53

Maximum Entropy Based Learning

 Introduction

The past two decades have seen machine learning techniques applied to a wide range of

tasks in natural language processing (NLP). Computational power has improved greatly

making it possible to learn predictive models from vast amounts of information.

Maximum Entropy (ME) modelling is one such statistical modelling technique which

learns the most uniform model (having largest entropy) over data given the constraints.

Although it is a supervised learning methodology, ME modelling has been adapted to

do unsupervised learning to learn morphological relatedness between words in an

unannotated corpus. This approach has been pioneered by De Pauw & Wagacha (2007)

and De Pauw et al (2007) who apply the adapted methodology to learn morphological

relatedness for under-resourced languages exhibiting concatenative morphology.

3.1.1 The Approach

I approach the morphology induction problem by first deriving a morphological

analyser consisting of two lexicons: a root lexicon and a pattern lexicon. The method for

developing the lexicons is itself divided into two procedures. First, use the ME based

machine learning approach to induce groupings or clusters4 of words with orthographic

similarity between words in terms of the two kinds of morphemes: roots and patterns.

Second, extract the morphemes from the clusters, which are identified on the basis of

how the words are related, whether by pattern or by root. This manner of morpheme

identification is similar to the work of De Pauw & Wagacha (2007) who apply it to

extract prefixes of words exhibiting concatenative affixation.

4 Cluster here refers to a collection of words related in terms of morpheme types, without referring to application of

any clustering algorithm.

54

The output of the first step to obtain morphologically similar word collections is

comparable to obtaining orthographic similarities between words using Minimum Edit

distance metrics as used by Baroni et al (2002). Two simultaneous models are built: one

model abstracts roots based on orthographic properties for each word, and is used to

derive the root-based word clusters; the other model represents pattern based features in

order to derive pattern-based clusters of words.

Using machine learning, De Pauw & Wagacha (2007) capture dependencies between

orthographically distinct words which are not identifiable by the Minimum Edit

Distance approach. In the work described below, I present a model based on

orthographic features for approximating word similarity; this considers two different

types of morpheme features to obtain word similarity in terms of roots and patterns.

From the morpheme based clusters resulting from the previous procedure, the next step

extracts the morphemes from the clusters, which are identified on the basis of how the

words are related, whether by pattern or by root. Two lists/lexicons are thus obtained for

pattern templates and for roots, with each entry ranked according to its plausibility.

These lexicons constitute the induced morphological analyser which is applied back to

the vocabulary, analysing each word to obtain its root and pattern template.

3.1.2 Chapter Organization

The approach to unsupervised lexicon induction based on Maximum Entropy (ME)

modelling is explained in section 3.2. The section contains a brief introduction to ME

modelling (3.2.1), followed by the feature selection process (3.2.2); thereafter model

training with different possible settings is discussed in detail (3.2.3) with a final

discussion about model application (3.2.4). The next major phase is lexicon extraction

which is described in section 3.3, covering the method for weighting the morphemes

and different scoring methodologies. Section 3.4 describes the morphological analysis

and section 3.5 presents an evaluation. Finally, the overall design of the system for

unsupervised learning and conclusion are given in section 3.6 and 3.7, respectively.

55

 Morpheme-Based Clustering

3.2.1 Maximum Entropy Modelling

The main goal of machine learning is to make predictions about previously unseen cases

or phenomena by generalizing from (incomplete) available data about the random

process; this is known as a model of the data. Thereafter, using this model, predictions

about future occurrences of the phenomena are made. There are two main tasks to be

accomplished: firstly, the acquisition of useful facts about the data – this is called

feature selection; and secondly, choosing a good representation by doing model

selection.

For the problem of morphology induction, I approach the goal of data prediction using a

modelling approach based on the Maximum Entropy (ME) principle. The ME

framework is able to represent unbounded problem-specific knowledge that is

interdependent and overlapping which, unlike some other machine learning paradigms,

such as Naive Bayes, does not require the features to be independent. For example, in

problems where classification decisions are made in a sequence, like parsing and

tagging, it is possible that for the task of classification, the models would use the

previous classification decisions that have been taken in the sequence. Other than that

there is great diversity in the nature of features that is possible to incorporate, where the

contribution, or weight of each feature is determined by a scaling process. Thus it is

well suited to modelling morphological processes, where the morphological features

derived from a word, e.g. book, could have the features for example, @b, @bo, @boo,

ook#, ok#, k#, o, oo. Here the features are overlapping since they have overlapping

characters with some features incorporating boundary markers to indicate context.

These features are clearly not independent of each other.

The basic idea behind maximum entropy modelling is to choose the most uniform

model of the data given a set of constraints (which may be independent or overlapping);

or, in other words, to model that which is known while not assuming anything about

that which is not known. The ME model built for the morphological features as given in

the above example would generalize over features which are infrequent yet occur more

frequently than chance, representing the base forms or lemmas of words. The next two

56

subsections give an overview of ME modelling which has been adapted from the

descriptions of Berger et al (1996) and Ratnaparkhi (1998).

3.2.1.1 Modelling

Let 𝑥 be the input of a particular random process from a set of all possible inputs 𝑋 that

produces 𝑦 as output from a set of all possible outputs, 𝑌. The aim is to produce a model

that would learn the conditional probability, 𝑝(𝑦|𝑥) i.e. to predict with what probability

we expect to see the output 𝑦 given 𝑥 as the input. Assume a random process that

produces an output 𝑦 from a set of possible outputs. The building blocks of the model

are the examples of 𝑥 and 𝑦 in the training data. For each input-output pair of a large

number of samples (totalling N) from training data, (𝑥1, 𝑦1), (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁), the

expected probability of occurrences of each pair is calculated as

 𝑝(𝑥, 𝑦) =
1

𝑁
× number of times (𝑥, 𝑦) are seen in the data (3.1)

This value will typically be low, especially in the case where input variables and output

classes are large, where it would be close to zero for most cases. Let 𝑓 be a function,

called feature function or feature for short, that denotes the presence or absence of a

pair (𝑥, 𝑦),

 𝑓(𝑥, 𝑦) = {
1

 0

 if 𝑥 and 𝑦 are found

otherwise
 (3.2)

A feature is thus an individual measurable heuristic property of the phenomenon being

observed. The expectation of 𝑓 with respect to the empirical probability distribution, 𝑝,

would then be

𝑝(𝑓) =∑𝑝(𝑥, 𝑦)𝑓(𝑥, 𝑦)

𝑥,𝑦

(3.3)

http://en.wikipedia.org/wiki/Heuristic

57

The probability that the model assigns to each feature, 𝑓, with respect to the model

𝑝(𝑦|𝑥) is given by the expected value,

 𝑝(𝑓) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦) (3.4)

where 𝑝(𝑥), is the distribution of 𝑥 in the training data. This model expectation is

equated to the expected value of 𝑓 in the training data:

 𝑝(𝑓) = 𝑝(𝑓) (3.5)

 ∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦) =∑𝑝(𝑥, 𝑦)

𝑥,𝑦

𝑓(𝑥, 𝑦) (3.6)

Thus the model of the process, 𝑝(𝑦|𝑥), has been constrained to considering only those

cases which are in agreement to the training data where the output has the feature 𝑓. The

equation is referred to as the constraint equation or simply constraint. Hence, any

new knowledge can be incorporated in the model by constraining the expected value the

model assigns to the corresponding feature as in (3.5) and (3.6).

3.2.1.2 Principle of Maximum Entropy

Assume a set of features 𝑓𝑖 for 𝑖 = 1,2, … 𝑛, each imposing a constraint 𝐶𝑖 and having

probability, 𝑝(𝑓𝑖). In order to make the model conform to these features seen in the

training sample, we have from (3.5), 𝑝(𝑓𝑖) = 𝑝(𝑓𝑖). As stated earlier, the aim of ME

modelling is to find a uniform model, 𝑝 ∈ 𝐶, for 𝐶 = 𝐶1 ∩ 𝐶2 ∩ …𝐶𝑛, which is the set

of allowable models confined to 𝑝(𝑓𝑖). A measure of uniformity over the conditional

distribution 𝑝(𝑦|𝑥), is provided by conditional entropy, thus

58

 𝐻(𝑝) ≡∑𝑝(𝑥)𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)

𝑥,𝑦

 (3.7)

A unique model 𝑝∗, which gives the maximum entropy from the set 𝐶 of possible

models is selected as the best representative,

 𝑝∗ = max
𝑝∈𝐶

𝐻(𝑝) (3.8)

This is a problem in constrained optimization, wherein we try to find 𝑝∗, which gives

the maximum conditional entropy of all models 𝑝 ∈ 𝐶. The method of Lagrange

multipliers from theory of constrained maximization has been used by Pietra et al.

(1995) . The main steps are outlined below.

The solution for model 𝑝∗ ∈ 𝐶 can be obtained using a parametric form 𝑝𝜆(𝑦|𝑥)

deduced using a Lagrangian function,

 𝑝𝜆(𝑦|𝑥) =
1

𝑍(𝑥)
exp(∑𝜆𝑖𝑓𝑖(𝑥, 𝑦)

𝑛

𝑖=1

) (3.9)

where 𝜆𝑖 , the Lagrangian multiplier, is the weight of each feature, 𝑓𝑖 , and 𝑍(𝑥) is the

normalization factor, or the partition factor ensuring ∑ 𝑝𝜆(𝑦|𝑥)𝑦 = 1 for all 𝑥. The

probability distribution of the form shown in (3.9) is the one that is closest to 𝑝 in

terms of Kullback-Leibler divergence, when subjected to the set of feature constraints.

Given an exponential model with 𝑛 features and a set of training data (empirical

distribution), the next step is to do parameter estimation: find the associated real-value

weight, 𝜆 , for each of the 𝑛 features, which maximize the model's log-likelihood 𝐿(𝑝),

𝐿(𝑝𝜆) =∑𝑝(𝑥, 𝑦) log 𝑝𝜆(𝑦|𝑥)

𝑥,𝑦

(3.10)

59

The optimized weight, 𝜆∗, with respect to the exponential model, 𝑝𝜆 is

 𝜆∗ = argmax
𝜆

𝐿(𝑝𝜆) (3.11)

The maximum 𝑝∗ of 𝐻(𝑝) for 𝑝 ∈ 𝐶 is then

 𝑝∗ = 𝑝𝜆∗ (3.12)

There are numerous techniques to find 𝜆∗, for which the solution cannot be found

analytically but can only be obtained through numerical methods.

Certain optimization methods are specifically tailored for maximum entropy modelling.

One such method is the iterative scaling method designed by Darroch & Ratcliff (1972)

which is applicable to the problems where feature functions are nonnegative, which of

course is true for a binary-valued feature-function. Another efficient optimization

method recently found to be quite effective for ME modelling is the Limited-Memory

Variable Metric (LBFGS) of Malouf (2002). More details on these optimization

schemes and the methods chosen follow in section 3.2.3.

3.2.2 Morphological Features

Features are encoded as feature functions as described in equation (3.2), referred to as

contextual predicates in the terminology of Ratnaparkhi (1998). Thus each contextual

predicate holds a certain (output) class, of the classification problem, as true if the

required set of possible contexts or textual material is observed. With interdependent

features, there is a possibility that a contextual predicate may depend on the outcome of

another contextual predicate.

3.2.2.1 Feature Sets

There are two feature sets that need to be determined for building two separate models,

one for root based clustering and the other for pattern based clustering. Both kinds of

models are considered below.

60

In conventional uses of ME modelling for classification tasks, the problem is usually to

classify entities, based on the contexts in which they occur, into a pre-defined collection

of output classes. Contexts are encoded as features. In our case, the entities, i.e.

vocabulary words, are themselves the output classes and rather than learning a

classification of these entities, the aim is to determine the proximity between the classes.

In this approach, there is no consideration of the external context of occurrence of the

word entities themselves but rather, the context features are derived from each word’s

orthography, consisting of characters and subwords with different placements within the

word. For example, given an (outcome) word ‘WORD’, its context may be {B=W,

B=WO, B=WOR,I=O, I=R, I=OR, E=ORD, E=RD, E=D} where each feature value is

tagged with the position of occurrence of the subwords within the word, such that “B=”

is beginning of word, “I=” is inside the word and “E=” is the ending part of the word.

We define a contextual template to automatically derive context from each vocabulary

word, to be used as its contextual predicate. Further, using adaptations and linguistically

motivated heuristics, different levels of feature details can be obtained. These vary from

an exhaustive feature set, containing every possible combination of characters derivable

from a word, down to a more selective set. The aim is to discover which feature types

are contributing towards better efficiency while minimizing the set size to reduce the

computational cost of model building and application.

3.2.2.2 Feature Extraction

The template for building the initial feature set for root based clustering is simply to

take the powerset combinations of every character occurring in the word; interpreting

each element of the set as an ordered sequence of characters – the ordering matching

that of the original word. The feature set thus contains the features from a single

character to multiple character combinations with contiguous and non-contiguous

characters from the word. Non-contiguous character combinations account for the inter-

digitation of roots with pattern templates, by bringing the root radicals together from the

word where they occur non-contiguously, intertwined with pattern characters. In

contrast, for concatenative morphology, the set would be reduced to only considering

sequential subsets of character combinations as in the case of the ‘WORD’ example in

61

the previous subsection. The explosion of features due to taking the powerset shows

how more complicated the task becomes for non-concatenative languages.

The feature set for the pattern-based clustering model follows from the root based

feature set: root radicals are replaced by placeholder characters (‘-’) in the pattern;

characters that are dropped from the root features (i.e. from the non-contiguous

character combinations), simply appear as affix characters in the pattern template. An

example of this template application for root-based and pattern-based features is shown

in the third column of Table 3.1. This feature set is referred to as PS_NBC.

Word Root-Based Feature Pattern-Based Features

slAm

s, sl, slA,

slAm, slm, sA,

sAm, sm, l,

lA, lAm, lm,

A Am m

-lAm, --Am, ---m,

 ----, --A-, -l-m,

-l--, -lA-, s-Am,

s--m, s---, s-A-,

sl-m, sl--, slA-

Table 3.1: PS_NBC features as powerset combination of word

characters without boundary characters

A starting boundary character (‘@’) and an ending boundary character (‘#’) are

appended to the word before applying the contextual template. These added features

contribute information to reveal the context of the characters, while giving required

emphasis to the first and last character of the word. Feature sets with boundary

characters appended to the word undergo refinement by removal of features.

The experiments (described in section 3.5, below) evaluate five different variants of test

features (including PS_NBC above).

From the set of all possible powerset combinations of characters including the boundary

characters, all spurious boundary character features such as individual occurrences of

either ‘@’ or ‘#’ or those without word characters such as “@#” are removed. This

comprehensive feature set is referred to as PS_XBC. The next feature set I consider is

one that resembles the type of features used by De Pauw & Wagacha (2007) who

62

append features with strings to mark beginning, ending, and inside character substrings.

These distinguish where the word beginning and ending occurs similarly to the case of

the “WORD” example where features are tagged with “B=” and “E=” tags to indicate

beginning and ending of word; the absence of boundary characters would indicate the

inside subword feature similar to the “I=” features. Thus, strings where the first and last

character of the word appear without a boundary character are dropped. This feature set

is referred to as PS_BBC.

Another smaller feature set, PS_1BC, is considered, where I remove features where

starting and ending boundary characters both occur. This is in order to gauge the

advantage of using a smaller feature set, while observing any significant change in

performance.

Finally, the last type of feature set, NC1_BBC excludes those feature strings with two

consecutive characters formed by non-contiguous characters from the word spaced apart

by two or more characters. In other words, two consecutive characters as potential

infixes are not allowed. This restriction is based on the fact that for undiacritized text we

would expect to see only single infix characters.

Table 3.2 illustrates the operation of these feature variants for the word slAmA

(meaning peace) after appending the boundary characters. The corresponding pattern-

based features derived from the root features in a similar manner to that described for

PS_NBC, appear in Table 3.3. Here, if a boundary character occurs in the root feature,

the corresponding pattern feature also retains the same boundary character.

63

PS_XBC PS_BBC PS_1BC NC1_BBC

@s, @sl, @slA, @slAm,

@slAmA, @slAmA#,

@slAm#, @slAA,

@slAA#, @slA#, @slm,

@slmA, @slmA#,

@slm#, @slA, @slA#,

@sl#, @sA, @sAm,

@sAmA, @sAmA#,

@sAm#, @sAA,

@sAA#, @sA#, @sm,

@smA, @smA#, @sm#,

@sA, @sA#, @s#, @l,

@lA, @lAm, @lAmA,

@lAmA#, @lAm#,

@lAA, @lAA#, @lA#,

@lm, @lmA, @lmA#,

@lm#, @lA, @lA#, @l#,

@A, @Am, @AmA,

@AmA#, @Am#, @AA,

@AA#, @A#, @m,

@mA, @mA#, @m#,

@A, @A#, s, sl, slA,

slAm, slAmA, slAmA#,

slAm#, slAA, slAA#,

slA#, slm, slmA, slmA#,

slm#, slA, slA#, sl#, sA,

sAm, sAmA, sAmA#,

sAm#, sAA, sAA#, sA#,

sm, smA, smA#, sm#,

sA, sA#, s#, l, lA, lAm,

lAmA, lAmA#, lAm#,

lAA, lAA#, lA#, lm,

lmA, lmA#, lm#, lA, lA#,

l#, A, Am, AmA, AmA#,

Am#, AA, AA#, A#, m,

mA, mA#, m#, A, A#

@s, @sl, @slA,

@slAm,

@slAmA#,

@slAm#,

@slAA#, @slA#,

@slm, @slmA#,

@slm#, @slA#,

@sl#, @sA,

@sAm,

@sAmA#,

@sAm#, @sAA#,

@sA#, @sm,

@smA#, @sm#,

@sA#, @s#, @l,

@lA, @lAm,

@lAmA#,

@lAm#, @lAA#,

@lA#, @lm,

@lmA#, @lm#,

@lA#, @l#, @A,

@Am, @AmA#,

@Am#, @AA#,

@A#, @m,

@mA#, @m#,

@A#, l, lA, lAm,

lAmA#, lAm#,

lAA#, lA#, lm,

lmA#, lm#, lA#,

l#, A, Am,

AmA#, Am#,

AA#, A#, m,

mA#, m#, A#

@s, @sl, @slA,

@slAm, @slm, @sA,

@sAm, @sm, @l,

@lA, @lAm, @lm,

@A, @Am, @m, l,

lA, lAm, lAmA#,

lAm#, lAA#, lA#, lm,

lmA#, lm#, lA#, l#,

A, Am, AmA#, Am#,

AA#, A#, m, mA#,

m#, A#

@s, @sl, @slA,

@slAm, @slAmA#,

@slAm#, @slAA#,

@slA#, @slm,

@slmA#, @slm#,

@sl#, @sA, @sAm,

@sAmA#, @sAm#,

@sAA#, @sA#, @s#,

@l, @lA, @lAm,

@lAmA#, @lAm#,

@lAA#, @lA#, @lm,

@lmA#, @lm#, @l#,

@A, @Am, @AmA#,

@Am#, @AA#,

@A#, @m, @mA#,

@m#, @A#, l, lA,

lAm, lAmA#, lAm#,

lAA#, lA#, lm, lmA#,

lm#, l#, A, Am,

AmA#, Am#, AA#,

A#, m, mA#, m#, A#

Table 3.2: Root based feature sets for @slAmA#

64

PS_XBC

PS_BBC

PS_1BC

NC1_BBC

@-lAmA, @--AmA, @---mA,

@----A, @-----, @-----#, @----

A#, @---m-, @---m-#, @---mA#,

@--A-A, @--A--, @--A--#, @--

A-A#, @--Am-, @--Am-#, @--

AmA#, @-l-mA, @-l--A, @-l---,

@-l---#, @-l--A#, @-l-m-, @-l-

m-#, @-l-mA#, @-lA-A, @-lA--,

@-lA--#, @-lA-A#, @-lAm-, @-

lAm-#, @-lAmA#, @s-AmA,

@s--mA, @s---A, @s----, @s----

#, @s---A#, @s--m-, @s--m-#,

@s--mA#, @s-A-A, @s-A--, @s-

A--#, @s-A-A#, @s-Am-, @s-

Am-#, @s-AmA#, @sl-mA, @sl-

-A, @sl---, @sl---#, @sl--A#,

@sl-m-, @sl-m-#, @sl-mA#,

@slA-A, @slA--, @slA--#,

@slA-A#, @slAm-, @slAm-#, -

lAmA, --AmA, ---mA, ----A, -----

, -----#, ----A#, ---m-, ---m-#, ---

mA#, --A-A, --A--, --A--#, --A-

A#, --Am-, --Am-#, --AmA#, -l-

mA, -l--A, -l---, -l---#, -l--A#, -l-

m-, -l-m-#, -l-mA#, -lA-A, -lA--,

-lA--#, -lA-A#, -lAm-, -lAm-#, -

lAmA#, s-AmA, s--mA, s---A, s--

--, s----#, s---A#, s--m-, s--m-#, s-

-mA#, s-A-A, s-A--, s-A--#, s-A-

A#, s-Am-, s-Am-#, s-AmA#, sl-

mA, sl--A, sl---, sl---#, sl--A#, sl-

m-, sl-m-#, sl-mA#, slA-A, slA--,

slA--#, slA-A#, slAm-, slAm-#

@-lAmA, @--AmA,

@---mA, @----A, @---

--#, @----A#, @---m-

#, @---mA#, @--A-A,

@--A--#, @--A-A#,

@--Am-#, @--AmA#,

@-l-mA, @-l--A, @-l-

--#, @-l--A#, @-l-m-#,

@-l-mA#, @-lA-A,

@-lA--#, @-lA-A#,

@-lAm-#, @-lAmA#,

@s-AmA, @s--mA,

@s---A, @s----#, @s--

-A#, @s--m-#, @s--

mA#, @s-A-A, @s-A-

-#, @s-A-A#, @s-Am-

#, @s-AmA#, @sl-

mA, @sl--A, @sl---#,

@sl--A#, @sl-m-#,

@sl-mA#, @slA-A,

@slA--#, @slA-A#,

@slAm-#, s-AmA, s--

mA, s---A, s----#, s---

A#, s--m-#, s--mA#, s-

A-A, s-A--#, s-A-A#,

s-Am-#, s-AmA#, sl-

mA, sl--A, sl---#, sl--

A#, sl-m-#, sl-mA#,

slA-A, slA--#, slA-A#,

slAm-#

@-lAmA,

@--AmA,

@---mA, @-

---A, @--A-

A, @-l-mA,

@-l--A, @-

lA-A, @s-

AmA, @s--

mA, @s---A,

@s-A-A,

@sl-mA,

@sl--A,

@slA-A, s-

AmA, s--

mA, s---A, s-

---#, s---A#,

s--m-#, s--

mA#, s-A-A,

s-A--#, s-A-

A#, s-Am-#,

s-AmA#, sl-

mA, sl--A,

sl---#, sl--

A#, sl-m-#,

sl-mA#, slA-

A, slA--#,

slA-A#,

slAm-#

@-lAmA, @--

AmA, @---mA,

@----A, @-----#,

@----A#, @---m-

#, @---mA#, @--

A-A, @--A--#,

@--A-A#, @--

AmA#, @-l-mA,

@-l--A, @-l---#,

@-l--A#, @-l-m-

#, @-l-mA#, @-

lAmA#, @s-

AmA, @s--mA,

@s---A, @s----#,

@s---A#, @s--m-

#, @s--mA#, @s-

A-A, @s-A--#,

@s-A-A#, @s-

AmA#, @sl-mA,

@sl--A, @sl---#,

@sl--A#, @sl-m-

#, @sl-mA#,

@slA-A, @slA--

#, @slA-A#,

@slAm-#, s-

AmA, s--mA, s---

A, s----#, s---A#,

s--m-#, s--mA#,

s-A-A, s-A--#, s-

A-A#, s-AmA#,

sl-mA, sl--A, sl---

#, sl--A#, sl-m-#,

sl-mA#, slA-A,

slA--#, slA-A#,

slAm-#

Table 3.3: Corresponding pattern based feature sets derived from the root based feature

set (Table 3.2) replacing root characters with ‘-‘ while copying missing characters from

the word. Boundary characters are copied from the root-based features without change.

65

3.2.3 Model Training

3.2.3.1 Parameter Estimation

Section 3.2.1 argued that one advantage of ME modelling is the ability to incorporate a

wide diversity of features which are overlapping and therefore not independent of each

other. But there is a cost to this kind of representation. The model parameters that need

to be estimated require large amounts of training data since there are large number of

free parameters. Also, the estimation process could be subject to rounding-off errors due

to sparsity of the features. Due to these reasons, a highly efficient and accurate method

of parameter estimation is required.

The general algorithm for parameter estimation is as follows:

Input: Feature functions, 𝑓1, 𝑓2, … 𝑓𝑛 ; empirical distribution 𝑝(𝑥, 𝑦)

Output: Optimal parameter values; optimal model 𝑝.

1. Initialize 𝜆𝑖 = 0, 𝑖 ∈ {1,2,3, … , 𝑛}

2. Do for each, 𝑖 ∈ {1,2,3, … , 𝑛}

a. Apply method to compute ∆𝜆𝑖

b. Perform update : 𝜆𝑖 ← 𝜆𝑖 + ∆𝜆𝑖

3. Repeat step 2 until 𝜆𝑖 converges

The most significant step (2a) in the algorithm is the method that is used to compute the

updates ∆𝜆𝑖. There are two types of estimation methods used for computing the updates

for maximum entropy modelling in the context of natural language processing: iterative

scaling and gradient-based learning. In this section we outline each of these two types of

estimation techniques and their merits.

Iterative Scaling

Iterative scaling (Huang et al, 2010) is based on iteratively updating the parameters

ensuring that the objective function is improved at each iteration. Thus, weights are

updated such that the change in log-likelihood, 𝐿(𝑝𝜆+∆𝜆) − 𝐿(𝑝𝜆) is always positive

leading to the maximal value for 𝐿(𝑝𝜆). Leaving aside the details of the derivation, after

66

solving for the change in log-likelihood, the updates, ∆𝜆𝑖, are optimized by finding the

solution to the equation

 𝑝(𝑓𝑖) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦)exp(∆𝜆𝑖𝑓
#(𝑥, 𝑦)) (3.13)

where

 𝑓#(𝑥, 𝑦) =∑𝑓𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 (3.14)

There are two methods for iterative scaling: Generalized Iterative Scaling (GIS)

(Darroch & Ratcliff, 1972) and Improved Iterative Scaling (IIS) (Berger, 1997; Pietra et

al, 1995). GIS requires that the value of 𝑓#(𝑥, 𝑦) = 𝐶, a constant, i.e. that the features

sum to a constant. In this case the updates can be determined analytically by taking the

factor proportional ratio

 ∆𝜆𝑖 = log (
𝑝(𝑓𝑖)

𝑝𝜆(𝑓𝑖)
)

1
𝐶

 (3.15)

If the rows of the training data do not sum to a constant, then the value of the constant C

is determined empirically by introducing a “correction” feature 𝑓𝑛+1

 𝐶 = max
𝑥,𝑦

𝑓#(𝑥, 𝑦) (3.16)

 𝑓𝑛+1 = 𝐶 −max
𝑥,𝑦

𝑓#(𝑥, 𝑦) (3.17)

The rate of convergence depends on the step-size, which in turn is determined by the

value of C: the higher value of C the smaller will be the step size.

67

The disadvantage of GIS is that the step size may be very small due to the factor 1 𝐶⁄

leading to a slow convergence. IIS tries to avoid the use of a correction feature and

hence the slow convergence by obtaining the solution to the equation (3.13), where 𝑓#

is the sum of feature values for event 𝑦, and exp(∆𝜆𝑖) is determined numerically, as

opposed to analytical solution for GIS, by using Newton’s method.

Gradient-Based Method

Gradient Based methods (Malouf, 2002) aim to optimize the weight updates according

to the gradient function

 𝐺(𝜆) = �̃�(𝑓𝑖) − 𝑝𝜆(𝑓𝑖) (3.18)

Again, a solution cannot simply be obtained analytically by equating 𝐺(𝜆) = 0 and

solving for 𝜆. Numerical methods must be applied, adjusting the value of 𝜆 at each step.

The primary strength of iterative scaling methods lies in the ability to compute the

expected value 𝑝(𝑓𝑖) without explicitly depending on the expensive calculation of the

gradient of the log-likelihood function. In actual fact, the expected values vector

required by the iterative scaling methods is essentially the gradient itself.

Since the objective is to maximize the log-likelihood, the parameter needs to be updated

at each step 𝑘, in the direction in which the objective function’s value increases rapidly,

maximizing the log-likelihood, 𝐿(𝜆𝑘 + ∆𝜆𝑘). The update for the weights is thus,

 ∆𝜆𝑘 = 𝑎𝑘𝒅𝑘 (3.19)

where 𝑎𝑘 is the step size usually set such that 𝐿(𝜆𝑘 + ∆𝜆𝑘) > 𝐿(𝜆𝑘), and 𝒅𝑘 is the

direction step calculated such that 𝒅𝑘𝐺(𝜆) > 0. As the log-likelihood function is

concave, the method of steepest ascent (𝒅𝑘 = 𝐺(𝜆)) is guaranteed to find the optimal

solution. The Newton method further takes into consideration the curvature of the

gradient, determining the direction 𝒅𝑘 = 𝐻−1𝐺(𝜆) where 𝐻−1 is the inverse Hessian

matrix. The Newton Method converges quickly but involves the expensive calculation

of the Hessian matrix. An approximation of the 𝐻−1 matrix is a matrix 𝐵𝑘, obtained

68

with current and previous updates and gradients by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. The matrix 𝐵𝑘 is expensive to store, hence a Limited Memory

Variable Method (LMVM) is used which approximates the matrix using only the

current parameters, i.e. the previous m values of the updates and the gradient.

A special advantage of the LMVM-BFGS algorithm is that it is proven to converge very

fast (Malouf, 2002; Andrew & Gao, 2007). It requires only the gradient to be computed

at each step, unlike iterative scaling which needs several derivational steps to obtain

update rules.

3.2.3.2 Smoothing

As we are dealing with many features we are bound to encounter issues of data sparsity.

Several strategies have been proposed to deal with this issue. One possibility is to

perform a limited number of iterations of model weight training in order to avoid over-

fitting. Another approach is the cut-off method, i.e. to exclude from training features

which have low frequency counts which are deemed to be uninformative and

insignificant.

A technique that has recently been found to be more successful with dealing with data

sparsity is to replace Maximum Likelihood (ML) estimation with maximum a posteriori

estimation (MAP) with Gaussian Priors (Chen & Rosenfeld, 2000). The weights, 𝜆, are

determined to maximize the posterior probability of the model trained on data, 𝐷.

According to Bayes’ Rule

 𝑃𝑝𝑜𝑠(𝜆|𝐷) = 𝑃(𝐷|𝜆) × 𝑃𝑝𝑟𝑖𝑜𝑟(𝜆) (3.20)

Taking the log,

 �̂�(𝑝𝜆) = 𝐿(𝑝𝜆) −∑(
1

2𝜎𝑖
2)

𝑖

 𝜆𝑖
2 (3.21)

Setting the prior has the effect that it gives a penalty to the model if the model weights

are too high or too small. Penalizing this objective function has the effect of avoiding

69

over-fitting. Modifications to the iterative scaling weight calculation algorithm are

apparent in the update equation,

 𝑝(𝑓𝑖) =∑𝑝(𝑥)𝑝(𝑦|𝑥)

𝑥,𝑦

𝑓(𝑥, 𝑦)exp(∆𝜆𝑖𝑓
#(𝑥, 𝑦)) −

𝜆𝑖 + ∆𝜆𝑖

𝜎𝑖
2 (3.22)

This equation again has no analytical solution but can be solved with little overhead

using, for example, the Newton-Raphson method. For the gradient function we have the

following modification,

 𝐺(𝜆) = 𝑝(𝑓𝑖) − 𝑝𝜆(𝑓𝑖) −
𝜆𝑖

𝜎𝑖
2 (3.23)

This modification also does not have a substantial overhead.

Gaussian MAP estimation has been successfully applied to various NLP tasks and

shown to reduce overfitting. Examples include part-of-speech tagging (Curran & Clark,

2003) and language modelling (Berger, 1998).

3.2.3.3 Model Training for Morphology Induction

I used a ME modelling toolkit, implemented by Zhang (2004), which implements GIS

for iterative scaling and the LMVM-BFGS gradient-based method. In the experiments I

tested with both types of estimation method to see which would work best for the

unsupervised training task.

As for the smoothing of ME models, in supervised learning tasks the Gaussian prior is

usually determined using held-out data. I experimented with various values for the

Gaussian prior ranging from 0 to 2 or order to gauge any difference in performance due

to using the different priors.

The number of iterations also plays a vital role in determining model performance.

Undertraining and over-training would both result in suboptimal performance. After

each step of the training iteration, the log likelihood of the model is increasing (i.e. the

70

probability decreases). I choose a cut-off point for the number of iterations to be where

the training accuracy reaches 100%.

3.2.4 Model Application

Having obtained the various models, I apply the models back to the same training data

features. In supervised machine learning tasks, the trained model would be applied to

unseen data to obtain the best classification output. For the unsupervised learning, for

every target word’s feature set, rather than retrieve only the best class, which would be

the target word itself, all classes are retrieved with proximity values to the target word’s

features. This proximity is the probability for each class estimated by the maximum

entropy model given the morpho-orthographic constraints. The novel application of a

machine learning technique in this manner, where reclassification of the training data

set takes place, does not bring any kind of unfair advantage in the unsupervised learning

process (DePauw & Wagacha, 2007).

Given 𝑉 vocabulary words, in the application phase, for each word of the corpus

vocabulary, its features are applied to the model to get 𝑉 word classes with proximity

values. Sorted in descending order, this results in a ranking of word proximities with the

most similar words at the top. The top entry in the ranking with score ≈1 would be the

target word itself whose features are input into the model. Thereafter words with the

most probable features to the target word’s features are ranked in order. Probability

values along the ranked list drop drastically, so I decided to cut off the list at k=500

words, as a sufficient number to gauge proximity for root based and pattern based word

similarity. In summary, the output file of the model application phase consists of 𝑉

clusters of 𝑘 nearest neighbour words. An example of one such pair of root and pattern

clusters for the word, slAm is shown in Table 3.4.

71

 slAm 0.999664 slAm 0.998416

1 slAmA 0.000283 1 slym 0.000853

2 ElAm 2.24E-05 2 ElAm 1.89E-05

3 ZlAm 7.80E-06 3 klAm 1.84E-05

4 slm 7.39E-06 4 glAm 1.84E-05

5 'slAm 4.87E-06 5 ZlAm 1.84E-05

6 slmA 4.43E-06 6 sqym 6.32E-06

7 glAm 2.68E-06 7 smwm 6.28E-06

8 klAm 1.07E-06 8 sAhm 6.28E-06

9 slAlp 5.73E-07 9 slmA 1.28E-06

10 slTAn 5.46E-07 10 slfA 1.27E-06

11 sAlt 1.54E-07 11 Hlym 1.27E-06

12 Alm 1.31E-07 12 tlwm 1.27E-06

13 lA 1.15E-07 13 Elym 1.26E-06

14 sAlmwn 9.73E-08 14 mlym 1.26E-06

15 mslmA 9.10E-08 15 smAn 1.26E-06

16 rslA 8.70E-08 16 'lym 1.26E-06

17 lm 5.82E-08 17 tlkm 1.25E-06

18 slfA 4.71E-08 18 'qAm 1.24E-06

19 'zlAm 3.20E-08 19 sHAr 1.24E-06

20 'HlAm 2.52E-08 20 s'Al 1.24E-06

Table 3.4: Top entries for the nearest neighbours to the target word slAm (peace) in

terms of root (left side) and pattern (right side)

72

The advantage of this approach to obtaining the morphological relatedness of words

over other approaches such as minimum edit distance is the ability to identify and better

capture morpheme dependencies between words which may be orthographically quite

different. This is especially so for morphologically complex languages where the base

form is quite small, as in the case of Arabic, with the root consisting of mostly three

letters or sometimes 4 (and very rarely 5). Indeed, the number of affix characters may

typically equal or even exceed the number of base characters.

An ME based technique is well suited to such morphologically complex cases since it is

able to find morpheme relatedness of morphological features, (automatically) generated

from a word. Considering the examples in Table 3.2 and Table 3.3, common features

such as “@s”, “l”, “m#”, would lack selective power, providing weak constraints to

group words. Other features such as @slm#, occurring less frequently, should carry

more weight and form useful constraints to group words.

 Lexicon Extraction

The approach described above uses machine learning to obtain the morphological

relatedness of words. However, it does not separate words into morphemes. The next

step applies a procedure which utilizes the clusters’ word proximities to give a weight

to each prospective morpheme. Each morpheme is given a weight. The morphemes are

sorted so those with the highest weights are at the top. This results in two sorted lists of

roots and patterns each with the most plausible morphemes at the top. These two lists

form lexicons that support the process of morphological analysis.

The next subsection outlines the procedure to weight each morpheme, given cluster

proximities. The technique is again inspired by the work of De Pauw & Wagacha

(2007), but correcting a significant flaw in their method.

73

3.3.1 Morpheme Weighting

The clusters are each used to weight the two types of morphemes: affixes are weighted

using the root-related word proximity clusters; likewise roots are weighed utilizing the

pattern-related word proximities.

The proximity score for each morpheme type is accumulated at two levels: the local

cluster level and globally over the entire set of clusters. Looking at the clusters, the top

element is the word whose features exactly match its own features giving the probability

score ≈1. This top element is referred to as the headword, with each subsequent word

having proximity to the headword based on either root oriented feature constraints or

pattern oriented constraints. The set of all headwords of each cluster constitutes the

vocabulary of the dataset.

The headword of each cluster is decomposed into all possible combinations of triliteral

roots and corresponding patterns. For example the word yErf (meaning he knows) is

decomposed into the four possible pairs of root and pattern morphemes:

 𝑦𝐸𝑟𝑓 →

{

〈𝑦 𝐸 𝑟, − − −𝑓 〉,
〈𝑦 𝐸 𝑓, − − 𝑟 −〉,

 〈𝑦 𝑟 𝑓, −𝐸 − −〉,
〈𝐸 𝑟 𝑓, 𝑦 − − −〉}

 (3.24)

These are the candidate morphemes which are each assigned weights, locally at each

cluster level and globally over all the clusters. Firstly, weights are assigned to the

patterns using the root-related clusters. For each pattern in the headword we match all

words in our cluster which contain the corresponding root and accumulate the score of

each of the matched words. Conversely, for each root in the headword we match all

words in the cluster which contain the corresponding root and accumulate the score of

each of the matched words. The scoring method is described below in 3.3.2. For

example, using the 20 top entry clusters shown in Table 3.4, the local score for root and

pattern candidates of word slAm, is shown in Table 3.5

74

Root Pattern
Word with

Pattern

Cumulative

PatternScore

Word with

Root

Cumulative

Pattern

Score

slA - - - m slym,

ElAm,

klAm,

glAm,

ZlAm,

sqym,

smwm,

sAhm,

Hlym,

tlwm,

Elym,

mlym,

'lym,

tlkm,

'qAm

0.000853 +

1.89E-05 +

1.84E-05 +

1.84E-05 +

1.84E-05 +

6.32E-06 +

6.28E-06 +

6.28E-06 +

1.27E-06 +

1.27E-06 +

1.26E-06 +

1.26E-06 +

1.26E-06 +

1.25E-06 +

1.24E-06 =

0.000955

slAmA,

'slAm,

slmA,

mslmA,

slfA

0.000282663 +

4.87324E-06 +

4.42598E-06 +

9.09942E-08 +

4.71455E-08 =

0.0002921

slm - - A - ElAm,

klAm,

glAm,

ZlAm,

smAn,

'qAm,

sHAr,

s'Al

1.89E-05 +

1.84E-05 +

1.84E-05 +

1.84E-05 +

1.26E-06 +

1.24E-06 +

1.24E-06 +

1.24E-06 =

7.91E-05

slAmA,

slm,

'slAm,

slmA,

sAlmwn,

mslmA

0.000282663 +

7.38568E-06 +

4.87324E-06 +

4.42598E-06 +

9.73338E-08 +

9.09942E-08 =

0.000299536

sAm - l - - slym, 0.000853 + slAmA, 0.000282663 +

75

ElAm,

klAm,

glAm,

ZlAm,

slmA,

slfA,

Hlym,

tlwm,

Elym,

mlym,

'lym,

tlkm

1.89E-05 +

1.84E-05 +

1.84E-05 +

1.84E-05 +

1.28E-06 +

1.27E-06 +

1.27E-06 +

1.27E-06 +

1.26E-06 +

1.26E-06 +

1.26E-06 +

1.25E-06 =

0.000938

'slAm,

sAlmwn

4.87324E-06 +

9.73338E-08 =

0.000287633

lAm s - - - slym,

sqym,

smwm,

sAhm,

slmA,

slfA,

smAn

0.000853 +

6.32E-06 +

6.28E-06 +

6.28E-06 +

1.28E-06 +

1.27E-06 +

1.26E-06 =

0.000876

slAmA,

ElAm,

ZlAm,

'slAm,

glAm,

klAm,

'zlAm,

'HlAm,

0.000282663 +

2.24062E-05 +

7.80066E-06 +

4.87324E-06 +

2.68159E-06 +

1.07234E-06 +

3.20347E-08 +

2.51734E-08 =

0.000321554

Table 3.5: Example of Pattern and Root candidates scoring for word ‘slAm’

Each morpheme’s score further is summed globally over all the local cluster scores

where the morpheme occurs in the headword of the clusters. Even though locally some

implausible morpheme might have a higher score, as we accumulate the score globally,

the more sound morphemes such as slm and - - A- would tend to gain weight and

progress up the list of plausible roots and patterns. Some examples of top scoring

morphemes are shown in Table 3.6.

76

Pattern Roots (Sense)

 - - -A Sdq (truth)

 - - - -A 'mn (faith)

 - -A - Hsn (beauty)

 -A - - xrj (depart)

 - - -t qym (establish)

' - - - Elm (know)

m - - - nzl (descend)

 - - - -Y kfr (disbelieve)

 - -y - jmE (gather)

t - - - smE (listen)

t - - - - xlf (differ)

y - - - slm (submit)

… …

Table 3.6: Top scoring patterns and

roots after global scoring

3.3.2 Scoring Measure

Empirically, the raw probability values obtained for each word’s proximities to the

headword decrease exponentially going down the cluster list. The ratios are hard to

compare and aggregate over since similar words with lower values tend to give

insignificant contributions to the score. This is shown in Figure 3.1a. Thus a method is

required to scale these raw probability values such that the relative difference is reduced,

bringing them closer to a linear scale.

77

Logarithmic scaling is a technique that is often applied to data of this nature,

transforming exponential functions into linear ones. In this case the function to compute

an exact linear form would be too intricate to obtain since it would be a combination of

feature weights and other parameters. In order to visualise this effect, Figure 3.1 plots

the raw probabilities to the log scaled values for the first 20 cluster values for the word

slAm.

(a) Raw probability values for top 20

words in the cluster.

(b) Log scaled probability values for the

same words

Figure 3.1: Comparison of raw probabilities with log scaled ratios for the first 20 entries

As we would be taking sum of the log probabilities, negative values for the resulting

logarithmic score are undesirable. In order to obtain a positive range of values, all

probabilities are divided by a reference probability before taking the log. The reference

probability is the lowest probability globally in the entire set of clusters, 𝑃𝑟𝑜𝑏𝑚𝑖𝑛:

 log (
𝑃𝑟𝑜𝑏

𝑃𝑟𝑜𝑏𝑚𝑖𝑛
) ≡ log(𝑃𝑟𝑜𝑏) − log (𝑃𝑟𝑜𝑏𝑚𝑖𝑛) (3.25)

This approach differs from that of DePauw & Wagacha (2007) who incorrectly take the

negative log of the probability in order to make the log score positive before summing

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

1 3 5 7 9 11 13 15 17 19

R
aw

P
ro

b
ab

ili
ti

e
s

Raw Probability Ratio

90

91

92

93

94

95

96

97

1 3 5 7 9 11 13 15 17 19

Lo
g

 P
ro

b
ab

ili
ty

Log Scaled Ratio

78

the probabilities5. Contrary to intuition, when going down the ranked cluster list the

proximity of the words to the headword increases instead of decreasing. Words having

lower probability would contribute a higher score which contradicts the principle of

morphological relatedness as implied here. Even though intuitively incorrect, De Pauw

& Wagacha (2007) report good results. The reason is that this scoring measure tends to

give more consideration to longer matched words that appear lower in the cluster list.

The way to amend this aspect is to give appropriate consideration to longer morphemes.

I therefore introduce an adjustment to accommodate for varying lengths of each

morpheme, as described below.

3.3.3 Length Adjustment

As discussed in the previous section, the character length of morphemes affects their

ranking in the lexicon. Since we are only considering triliteral root morphemes, the

length adjustment procedure need not be applied to root morphemes. But pattern

morphemes vary in length depending on the number of infix characters in the pattern

template. Some advantage needs to be given to longer patterns since words containing

longer patterns tend to get lower probability scores in the morpheme based clusters.

The length adjustment procedure is based on a technique of Chung & Gildea (2009) and

Liang & Klein (2009), who use an exponential length penalty measure to adjust their

Chinese word segmentation model according to the number of segments. They penalise

longer segmentations of a sentence using the penalty 𝑒−|𝑧𝑘|
𝛽

, where |𝑧𝑘| is the number

of word segments, and 𝛽 is the strength of the penalty.

I adapt this measure, such that, to give advantage to higher length morphemes, I

multiply each pattern morpheme score by 𝑒|𝑝|, where |𝑝| is the number of characters in

the pattern morphemes. I overlook the 𝛽 penalty strength parameter in order to keep the

procedure as parameter free as possible, assuming unit strength (𝛽 = 1). This measure

is intuitively appealing since it can be expected that morpheme frequencies are

exponentially related to the character length of the morpheme.

5 This flaw has been communicated to the authors of the paper, who have acknowledged it.

79

 Morphological Analysis

Given the root and pattern lexicons, I use a simple procedure for morphological analysis.

A word is analysed into its root and pattern template by considering every possible

combination of triliteral roots and corresponding patterns, 〈𝑟𝑥, 𝑝𝑥〉 , as exemplified in

(3.24). A combined score for each root and pattern combination is computed, i.e. each

analysis is scored with the sum of the scores for the root, 𝑟𝑥, and pattern, 𝑝𝑥, in the root

lexicon and pattern lexicon, respectively. Due to the different ranges of scores for root

and pattern, the score for the root morphemes is scaled with respect to the pattern

morphemes, as shown in the equation below, in order to guarantee equal contributions:

𝑆𝑆(𝑟) = 𝑆(𝑟) ×

max (𝑆(𝑝))

max (𝑆(𝑟))

(3.26)

The analysis, 𝑥, with the highest score is selected as the output:

max
𝑥=1..𝑛

(𝑆(𝑟𝑤
𝑥) + 𝑆𝑆(𝑝𝑤

𝑥))
(3.27)

 Evaluation

In common with the evaluations elsewhere in this thesis, this evaluation assumes a

realistic setting of unvowelled text, since most Arabic text is written without vowels.

The data is an undiacritized version of the Quranic Arabic Corpus (see Appendix C); I

chose this corpus since it identifies the root of each word, facilitating robust evaluation.

The fact that the corpus contains a relatively small vocabulary of around 7000 words

also simulates the scenario for most of the world’s languages of scarcity of linguistic

resources and data.

The next section (3.5.1) describes the evaluation data. This is followed by an

explanation of the baseline and the measure used for evaluation (3.5.2).

80

3.5.1 The Dataset

The Quranic Arabic Corpus (QAC) consists of approximately 77,900 word tokens, with

a total of around 19,000 unique tokens. Since I am interested in investigating learning

from undiacritized text, I removed all short vowels and diacritical markers. The size of

the resulting vocabulary, after removal of vowels, is approximately 14,850. Further

details of the corpus and steps taken to prepare the input, such as diacritic removal, are

given in Appendix A.

I took as input lightly stemmed words, i.e. words with clitics removed, but with most

inflectional markers attached. The justification for this is that stemmed words are

obtainable using existing tools for unsupervised concatenative morphology learning.

For example, the technique of Poon et al (2009) could be used to accurately extract the

stem for each word. The stemmed unvowelled vocabulary size is around 7370.

The original corpus is annotated with roots for all derived and inflected words. More

than 95% of words are tagged with their root forms since the Quran consists mostly of

inflected forms, with very few proper nouns. There are 7192 stemmed words with

available roots.

In Arabic, some morphological alterations take place; for example, when moving from a

root containing a long vowel to the surface word, the long vowel might change its form.

Such words, whose characters do not match every radical of the root, were removed

from the evaluation as they are beyond the scope of the learning algorithm to identify.

Removing these word and root pairs leaves 5532 stemmed types.

Triliteral roots account for the vast majority of root types in Arabic. In the QAC, 64 out

of the total of 5532 stemmed types have quadraliteral roots and none have any other

root types. These 4-letter root words form 1.15 % of the total stemmed types. Removing

these leaves 5468 triliteral root words.

81

3.5.2 The Baseline and Evaluation Measure

As a baseline for evaluation, I derived root and pattern lexicons in a similar manner to

the procedure for lexicon extraction described in section 3.3. Patterns are scored by

counting the number of co-occurring roots in the vocabulary. Likewise, the root score is

obtained by counting the number of words in the vocabulary with co-occurring patterns.

In contrast to lexicon extraction from ME based clusters, the baseline can be viewed as

accumulation of unit weight of 1 from a single ‘cluster’, the vocabulary set.

The evaluation measures the accuracy of morphological analysis of the 5468 words in

the evaluation dataset, described in the previous section. The morphological analysis

procedure (section 3.4) is applied to each word and the percentage of correct analyses is

recorded.

3.5.3 System Configuration

The experiments compare a number of system configurations, as outlined below.

The five variant sets of morphological features described in section 3.2.2 are:

 PS_NBC: powerset feature combinations without boundary characters

 PS_XBC: powerset features with boundary characters appended, after removal

of uninteresting features common in all words such as ‘@’, ‘#’, etc.

 PS_BBC: PS_XBC after removing features where the beginning and end word

characters occur without the boundary character.

 PS_1BC: a slightly more refined feature set than PS_BBC after considering

features with either of the two boundary characters.

 NC1_BBC: further refinement by removal of features from PS_BBC with two or

more non-contiguous characters.

As stated earlier, the various feature-sets have been selected for comparison purposes.

PS_BBC seems likely to give the best results given its meaningful boundary character

usage and its close resemblance to the feature set used by DePauw & Wagacha (2007).

Two weight optimization schemes (section 2.3.2) are investigated:

82

 ME_IIS: Maximum Entropy model based on IIS

 ME_LBFGS: Maximum Entropy model based Limited memory BFGS

LBFGS is the preferred optimization scheme as this has been shown to perform better,

in terms of faster convergence and prediction accuracy, for Maximum Entropy

modelling (Malouf, 2003).

For model smoothing, three approaches are compared (section 3.2.3.2)

 ME_GS_Val: where Val is the value of the Gaussian from the set {0.0, 0.5, 1.0,

1.5, 2.0}

 ME_PB_ItrN: where N is the number of iterations for pattern based feature

model training

 ME_RB_ItrN: where N is the number of iterations for root based feature model

training

Three types of length adjustment methods are compared, the third following the

procedure of section 3.3.3.

 ME_RW: raw probability values used as word scores

 ME_LS _LA: log-scaled probability values as word scores

 ME_LS_LA: log-scaled scores adjusted for morpheme length

3.5.4 System Evaluation and Discussion

This section presents a comparative evaluation between the preferred and other system

configurations defined in section 3.5.3, based on the evaluation criteria described in

section 3.5.2.

3.5.4.1 Feature Set Evaluation

The first evaluation is over the different feature sets to compare the performance of the

chosen set with the others. We compare the different powerset combinations with and

without the boundary character as defined in section 3.2.2. Table 3.7 outlines the

results of the comparison of the different feature sets.

83

Configuration Total

Correct

Percentage

Correct

PS_NBC 4551 83.23

PS_XBC 4447 81.33

PS_BBC 4715 86.23

PS_1BC 4695 85.86

NC1_BBC 4680 85.60

Table 3.7: Comparison of different feature sets

The feature set computed without the boundary character (PS_NBC) gives lower

performance than the feature sets computed with the boundary characters attached

(PS_BBC, PS_1BC, NC1_BBC). Simply appending the boundary characters before

computing the complete powerset (PS_XBC) does not give any advantage in

distinguishing word beginning and ending, but instead adds to the ambiguity due to the

introduction of the two additional characters. The set needs to be cut down to allow only

those features where the first and last characters of the word are attached with the

boundary characters (@,#). PS_BBC disallows features where first and last characters

occur without the boundary character. This model is able to better predict the

relatedness of words.

The results also show that dropping features containing simultaneous occurrences of

both boundary characters (PS_1BC) gives a slight loss in performance. Nor is there any

gain by only considering features with single non-contiguous characters (NC1_BBC).

However, these sets may have advantages in cases where lower computation cost is a

requirement for model training and application, since there are fewer features in these

sets.

3.5.4.2 Optimization Scheme Evaluation

Using the chosen PS_BBC feature set, schemes for parameter estimation are compared.

The two types of weight optimization schemes are the chosen LBFGS method and IIS.

84

Configuration Total

Correct

Percentage

Correct

ME_LBFGS 4715 86.23

PS_IIS 4197 76.76

Table 3.8: Comparison of two parameter estimation techniques

The results in Table 3.8 show a marked performance benefit for LBFGS over iterative

scaling. This agrees with previous results (Malouf, 2002), where the LBFGS method for

parameter estimation is shown to be a more effective and efficient method especially

suited to Maximum Entropy modeling.

3.5.4.3 Gaussian Smoothing Evaluation

For unsupervised learning, keeping the technique parameter free, I assume no Gaussian

prior (=0.0) but for experimental purposes, I compare different values of the Gaussian

prior in the range 0.0-2.0.

Configuration Total

Correct

Percentage

Correct

ME_GS_0.0 4715 86.23

ME_GS_0.5 4660 85.22

ME_GS_1.0 4612 84.34

ME_GS_1.5 4622 84.53

ME_GS_2.0 4604 84.20

Figure 3.2: Illustration of Table 3.9

Table 3.9: Comparison of different

Gaussian Priors

As seen in Figure 3.2 and Table 3.9 contrary to expectation, the performance drops

when adding a prior for Gaussian smoothing. Thus, Maximum A Posteriori (MAP)

learning does not give any advantage over Maximum Likelihood Estimation (MLE).

Perhaps over-fitting is not a serious concern here as the training and test sets are the

same.

83

83.5

84

84.5

85

85.5

86

86.5

0 0.5 1 1.5 2

A
cc

u
ra

cy
 (

%
)

Gaussian Prior

Gaussian Smoothing

85

3.5.4.4 Number of Iterations Evaluation

Model training using LBFGS parameter estimation was performed with cut-offs at

various numbers of iterations. I compared the two models, the Root Based (RB) feature

model and the Pattern Based (PB) feature model separately. For each I evaluated as

before with respect to correct analysis accuracy while simultaneously reading training

log-likelihood and training accuracy. The results for RB model are shown in Figure 3.3

and Table 3.10, and for PB model are shown in Figure 3.4 and Table 3.11.

Itera-

tion

Training

Log-

Like-

lihood

Training

Accu-

racy(%)

Total

Corr-

ect

%

Corr-

ect

1 -7.20 59.54 4521 82.68

3 -1.07 91.45 4717 86.26

10 -9.54e-3 99.99 4720 86.32

12 -6.90e-3 100.00 4717 86.26

14 -3.72e-3 100.00 4714 86.21

20 -1.78e-3 100.00 4718 86.28

25 -9.52e-4 100.00 4723 86.37

30 -3.66e-4 100.00 4722 86.35

Figure 3.3: Illustration of Table 3.10

Table 3.10: Comparison of RB models trained at

different iteration levels.

82
82.5

83
83.5

84
84.5

85
85.5

86
86.5

87

0 10 20 30 40

A
cc

u
ra

cy
 (

%
)

No. of Iterations

Root Based Feature Model Training

86

Itera-

tion

Training

Log-

Like-

lihood

Training

Accu-

racy(%)

Total

Corr-

ect

%

Corr-

ect

1 -3.61 100.000 4717 86.26

3 -1.25e-1 100.000 4717 86.26

7 -3.63e-3 100.000 4714 86.21

10 -7.33e-4 100.000 4714 86.21

15 -4.47e-5 100.000 4718 86.28

20 -1.22e-6 100.000 4711 86.15

25 -8.03e-8 100.000 4711 86.15

30 -5.66e-9 100.000 4686 85.70

Figure 3.4: Illustration of Table 3.11
Table 3.11: Comparison of PB models trained at

different iteration levels.

The log-likelihood decreases consistently with each iteration in both models and is not a

good indicator of a stopping point. Interestingly, the analysis accuracy for the two

models shows opposite behavior. With each iteration of the RB model, accuracy tends

to show very gradual improvement without showing any sign of over-fitting at higher

iteration levels. For the PB model, accuracy tends to gradually fall, with a sudden drop

seen at higher iterations. Here the PB model seems to be suffering from over-training.

A good indicator for the stopping point in both cases is where the training accuracy

reaches 100%. For the RB model this is achieved at the 12th iteration (square marker in

Figure 3.3) beyond which there is a very faint improvement in analysis accuracy. For

the PB model, the training accuracy reaches 100% after the 1st iteration and hence it is

stopped here or else the analysis accuracy may deteriorate further in subsequent

iterations.

3.5.4.5 Length Adjustment Evaluation

Finally the different length adjustment methods are compared: cumulative raw

probability, cumulative log scaled probability and morpheme length adjusted log scores.

The three results are shown in Table 3.12.

85.6

85.7

85.8

85.9

86

86.1

86.2

86.3

86.4

0 10 20 30 40

A
cc

u
ra

cy
 (

%
)

No. of Iterations

Pattern Based Feature Model
Training

87

Configuration Total

Correct

Percentage

Correct

ME_RW 3491 63.84

ME_LS 4364 79.81

ME_LS_LA 4717 86.26

Table 3.12: Comparison of the methods using scaled score and length

adjustment against the raw score

The poor performance of using raw probability values in calculating the cumulative

morpheme score is visible in this comparison. With logarithmically scaled scores,

accuracy is increased by approximately 6% over raw scoring. With length adjustment a

further improvement of 7% is seen in comparison to the simple log-scaled value.

3.5.4.6 Comparison with the Baseline

The overall best configuration is based on PS_BBC, using LBFGS, without any

Gaussian smoothing, and trained to give 100% accuracy on training data. This is used to

score morphemes after logarithmically scaling probability values and length adjusting

the scores. Table 3.13 shows the accuracy for the resulting lexicons of morphemes

compared to the baseline lexicon. This configuration is more accurate than the baseline

by 12.1 percentage points.

Configuration Total

Correct

Percentage

Correct

ME 4717 86.26

Baseline 4055 74.16

Table 3.13: Comparison of the final ME model with the baseline

As stated earlier, two aspects of the ME based approach give it an advantage over the

baseline: the clustering and the word proximity scores. In the baseline there is only one

cluster which is the vocabulary set and a unit proximity value to mark the presence of

morpheme in a word of the vocabulary.

88

 System Design for Unsupervised Learning

For unsupervised learning, we would want to the system be fully automated, free from

any kind of external parameter settings. I have aimed to achieve this, and let the system

choose its parameters from the data without external intervention. The final system

configuration is given in Table 3.14.

System Module System Parameter Automatic Parameter Setting

Word Cluster

Formation

Feature Generation

RB features: Powerset

combination of word

characters where first and last

character occur with boundary

character

PB features: Replace root

characters in RB features with

placeholder character and copy

missing ones from word

Parameter Estimation LBFGS

Gaussian Smoothing None

Number of training

Iterations

When training data accuracy

reaches 100%

Morpheme Extraction

Size of Word Cluster Arbitrarily large

Scoring
Logarithmically scaled

probability value

Length Adjustment

Exponential in terms of each

morpheme length and

independent of penalty strength

parameter

Table 3.14: Final unsupervised ME based morphology induction system

 without any dependence on external parameters

89

 Conclusions

This chapter addresses the task of analyzing the non-concatenative morphology of

Arabic in an unsupervised manner. I adapted a technique for unsupervised concatenative

morphological analysis described by DePauw & Wagacha (2007). They apply a

machine learning approach using Maximum Entropy modeling to obtain groupings of

words which are morphologically similar.

One novelty in my work is the selection of features which are suited to generalize over

morphemes from the intercalated morphology of Arabic. Moreover, I was able to mirror

the modeling procedure for two morpheme pairs in a word, the root and the pattern, by

choosing features that are the converses of each other. I studied the different aspects of

the machine learning process, experimenting with different types of feature sets, weight

optimization methods, smoothing and number of iterations for training models.

In the subsequent step for morpheme extraction from morphologically related words I

thoroughly investigated the morpheme scoring procedure. I introduced a procedure for

logarithmic scaling which brings the ratios of related words into a comparable range and

able to be combined arithmetically. Further, these scores were adjusted for the length of

each morpheme.

Using a morphological analysis procedure based on the best root and pattern

combination for each word I evaluated the inflected words of the Quranic Arabic

Corpus for the correct identification of the root. The final ME system was devised such

that the parameters of the system are automatically set by the system.

There are a number of areas that warrant further investigation. These include different

morphological feature sets. The failure of Gaussian smoothing perhaps needs attention

too. For morpheme extraction from word clusters, the range of word relatedness values

is quite variable. Besides logarithmic scaling, further scaling procedures could be

investigated.

Although reasonably effective and accurate, the procedure for morphological analysis

using machine learning is computationally expensive. This could be a serious

90

impediment to the successful application of unsupervised natural language processing

techniques that besides accuracy, need swift processing.

Indeed, the baseline obtained using a method for quickly obtaining lexicons was fairly

competitive. This suggests that it would be fruitful to investigate this method further, to

replace the machine learning based techniques with a conceptually simpler, rescoring

technique; such a technique is described in the next chapter.

91

Contrastive Learning

 Introduction

The work described in this chapter addresses the same task as in the previous chapter: to

analyse the non-concatenative morphology of the Arabic Language in an unsupervised

manner. Thus the input and outcome remain the same but the approach differs. The

machine learning approach to this task, described in Chapter 4, was a lengthy process

having multiple stages of processing before obtaining the lexicons. This chapter builds

on the method used to obtain the baseline in Chapter 4, which is a faster method to

obtain morpheme rankings. The algorithm is comparable in accuracy to the one

described in the previous chapter but it is much more computationally efficient, giving

the output in a matter of seconds as compared to possibly hours in the machine learning

case.

4.1.1 The Approach

The motivation for the approach is based on the desire to use simple counts of root and

pattern morphemes co-occurring together in words of the vocabulary to develop a faster

and efficient algorithm. The chapter describes a technique that develops into a link

analysis algorithm for ranking morphemes. The insight behind the technique is that

roots are linked to (co-occur with) a variety of patterns and likewise patterns are linked

to a many roots. Mutual learning takes place in a recursive manner to identify potential

morphemes. This computation of the ranking corresponds to using the power method

from linear algebra to compute the eigenvector of the adjacency matrix representing the

link structure of the root and pattern morphemes. I compare my algorithm to a very

similar, well recognized algorithm for ranking webpages, the Hyperlink-Induced Topic

Search (HITS) algorithm (Kleinberg, 1999).

92

4.1.2 Chapter Organization

Before describing the algorithms, some mathematical notations are first introduced in

section 4.2. The contrastive morpheme learning approach is explained in section 4.3 and

the contrastive learning approach is developed into mutually recursive algorithm,

described in section 4.4. The comparison and application of the HITS algorithm is given

in section 4.5. The morphological analysis process is outlined in section 4.6. The

evaluation of the different scoring and rescoring methods is presented in section 4.7.

Finally, section 4.8 concludes.

 Preliminaries

In order to present the technique, it is necessary to define some mathematical notations.

This section introduces the basic notations for word and morpheme formation, explains

the process of morpheme derivation using a decomposition function and introduces the

sets and other notation based on the morpheme derivation, which will be used in the

remainder of the chapter.

4.2.1 Base Notations and Sets

The basic notations and sets are as follows:

 Lowercase-letter variables, such as, 𝑤, 𝑟, 𝑝, 𝑠, … ∈ ∑∗ are character strings

ranging over the alphabet ∑ and could represent words, morphemes, strings, etc.

 𝑉, 𝑅, 𝑃, … ⊆ ∑∗ are capital-letter variables ranging over sets of words,

morphemes or strings

 𝑉 = {𝑤1, 𝑤2, 𝑤3, …,𝑤𝑛} is the set of all word types in the vocabulary.

 | ∙ | denotes either length of a string or cardinality of a set.

 The character sequence, 𝐶𝑤 = (𝑐1, 𝑐2, … , 𝑐𝑙, … , 𝑐|𝑤|) is the sequence of

characters, 𝑐𝑙, constituting a word, 𝑤 with 𝑙 as the index position of the character

in 𝑤 with length |𝑤|.

 ∸ is a special character which is used to denote a placeholder or slot for

character, 𝑐𝑙, in a word character sequence, 𝐶𝑤.

93

 𝑓𝑝(∸) denotes the frequency of occurrence of character ∸ in the pattern 𝑝.

 𝑟 ⊲ 𝑤: 𝑟 is the potential root of a word, 𝑤, which is formed of a subset of

characters, 𝑐𝑙 of 𝐶𝑤 along with the condition, |𝑟| < |𝑤|. In this chapter, |𝑟| ≥ 3.

Thus, 𝐶𝑟 ⊆ 𝐶𝑤 and |𝑤| > |𝐶𝑤| ≥ 3; in other words, a root is formed of any

possible combination of characters, 𝑐𝑙 in 𝐶𝑤with a minimum length of three

characters and a maximum length |𝑤| − 1.

 𝑝 ⊳ 𝑤|𝑟: 𝑝 is the potential pattern string derived from 𝑤 given 𝑟, consisting of

𝑐𝑙 in 𝐶𝑤 and ∸, such that we copy each character in 𝑤 to 𝑝 except those in 𝑟,

which are replaced by ∸ in 𝑝. Hence, 𝐶𝑝 = (𝐶𝑤 − 𝐶𝑟) ∩ {∸} and also 𝑓𝑝(∸) =

|𝑟| ≥ 3. Note that |𝑤| = |𝑝| or |𝐶𝑤| = |𝐶𝑝|.

 𝑝⊕ 𝑟 = 𝑤 : a pattern 𝑝 and root 𝑟 may combine to form a word 𝑤 if 𝑓𝑝(∸) =

|𝑟|, such that each ∸ in 𝑝 is replaced by each character in 𝑟 in sequence.

 〈𝑟, 𝑝〉: the pair of adjoining or co-occurring morphemes, 𝑟 and 𝑝, such that 𝑝⊕

𝑟 = 𝑤.

4.2.2 Decomposition Function

A word may be decomposed into a set of constituent root and pattern pairs, each pair

having a minimum of three characters or three slots for root radicals, respectively. Here

we formalize the procedure for decomposing words described informally in chapter 4,

by using a decomposition function, 𝐷(𝑤),

 𝐷:𝑤 → 𝐷(𝑤) = { 〈𝑟, 𝑝〉 | 𝑟 = 𝑟 ⊲ 𝑤 ⋀ 𝑝 = 𝑝 ⊳ 𝑤 ∶

𝑤 ∈ V , 𝐶𝑟 ∈ ℙ(𝐶𝑤), 𝑓𝑝(∸) = |𝐶𝑟| ≥ 3 }
(4.1)

In equation (4.1), 𝑟 is derived from 𝑤such that 𝑟 consists of all character sequences that

can combine as a powerset combination of characters in 𝑤, ℙ(𝐶𝑤). Let 𝐷𝑤 be the set of

root and pattern pairs obtained using the decomposition function 𝐷(𝑤),

 𝐷𝑤 = {〈𝑟, 𝑝〉1, 〈𝑟, 𝑝〉2, … , 〈𝑟, 𝑝〉𝐿(|𝑤|)} (4.2)

94

The number of elements in 𝐷𝑤 is given by the powerset cardinality (2𝑛) minus the

sequences with fewer than 3 characters,

 𝐿(|𝑤|) = 2|𝑤| − (
|𝑤|
2
) − (

|𝑤|
1
) − 1 (4.3)

4.2.3 Further Notations and Sets

Based on the decomposition function, below are some set notations upon which the

algorithms and scoring functions will be based.

 𝐷𝑉 = 𝐷𝑤1 ∪ 𝐷𝑤2 ∪ 𝐷𝑤3 …∪ 𝐷𝑤𝑛 : the set of all possible root and pattern pairs

derived from every word of the vocabulary 𝑉.

 𝑃𝑤 = {𝑝1, 𝑝2, … 𝑝𝐿(|𝑤|)}: the set of all possible patterns of the word 𝑤 obtained

from 𝐷𝑤

 𝑅𝑤 = {𝑟1, 𝑟2, … 𝑟𝐿(|𝑤|)}: the set of all possible roots of the word 𝑤 obtained from

𝐷𝑤

 𝑃𝑉 = 𝑃𝑤1 ∩ 𝑃𝑤2 ∩ …𝑃𝑤𝑛 = {𝑝1, 𝑝2, … 𝑝𝑚}: the set of all possible patterns of all

words obtained using the decomposition function, over the entire vocabulary

 𝑅𝑉 = 𝑅𝑤1 ∩ 𝑅𝑤2 ∩ …𝑅𝑤𝑛 = {𝑟1, 𝑟2, … 𝑟𝑚}: the set of all possible roots of all

words obtained using the decomposition function, over the entire vocabulary

 𝑃𝑟 = {𝑝1, 𝑝2, … 𝑝|〈𝑟,𝑝𝑖 〉|}: the set of patterns 𝑝𝑖 ∈ 𝑃𝑉 that occur with root 𝑟 i.e.

|〈𝑟, 𝑝𝑖 〉| ∈ 𝐷𝑉

 𝑅𝑝 = {𝑟1, 𝑟2, … 𝑟|〈𝑟𝑖,𝑝 〉|}: the set of roots 𝑟𝑖 ∈ 𝑅𝑉 that occur with pattern 𝑝 i.e.

|〈𝑟𝑖, 𝑝 〉| ∈ 𝐷𝑉

95

 Contrastive Learning

Most accounts of morphology learning have focused attention on attempting to identify

morphemes by looking at the frequency of occurrence of segments to distinguish the

most frequent substrings as possible candidates. This is based on the notion that the

more frequent a substring is, after adjusting for randomness, the more likely it is a

candidate for being a morpheme. These methods usually look at the frequency of a

substring directly to establish its significance.

Here I propose to learn the morphology gauging the importance of a morpheme by

examining the frequency of occurrence of adjoining morphemes. Thus, for example the

importance of a stem could be judged by the frequency of occurrence of adjoining

affixes. Likewise, the significance of root could be gauged by the frequency of

occurrence of the intercalated pattern. Based on the notion that entities may be revealed

by their converses, I apply a contrastive scoring method to learn roots based on pattern

counts, and patterns based on root counts. Thus, if a potential root occurs with a

particular pattern, that pattern (if valid) should be fairly common in the dataset, hence

should be assigned a high score to the root and vice versa. I refer to the score functions

as the base scoring functions, and the outputs of these functions will be used in

subsequent scoring processes.

4.3.1 Base Scoring Functions

Decomposing each word into all of its constituent root and pattern morpheme pairs,

each candidate root is scored by counting the number of words with the co-occurring

pattern. Each time the same root is encountered in other words in the vocabulary, the

counts of co-occurring patterns are accumulated. In this way, each root’s score is the

frequency of all the patterns that the root occurs within the dataset. An analogous

procedure is performed for each pattern.

Let 𝑆 generically denote a scoring function for a morpheme type, then scoring functions

𝑆# for root and pattern morphemes are,

96

𝑆#(𝑟) = ∑ ∑ (1 |〈𝑟, 𝑝〉 ∈ 𝐷𝑤𝑖 ⋀ 𝑝 ∈ 𝑃𝑤𝑗)

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.4)

𝑆#(𝑝) = ∑ ∑ (1 |〈𝑟, 𝑝〉 ∈ 𝐷𝑤𝑖 ⋀ 𝑟 ∈ 𝑅𝑤𝑗)

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.5)

The inner summation represents the co-occurring morphemes’ frequencies, while the

outer summation denotes the cumulative frequencies of all co-occurring morphemes for

a scored morpheme over the entire vocabulary. The thing to note in these functions is

that the morpheme score is not only dependent on the co-occurring morpheme’s

frequency count but also depends on its own frequency of occurrence. Thus the inner

summation determines the co-occurring frequency counts while the outer summation is

the accumulation of the score over the number of occurrences of the target scored

morpheme. This is referred to below as contrast-plus scoring.

The scoring function 𝑆∗ averages over the frequency counts of co-occurring morphemes

and is thus independent of the frequency of occurrence of the target morpheme being

scored. This is referred to below as contrast-pure scoring,

𝑆∗(𝑟) =
1

|𝑃𝑟|
∑ ∑ (1 |〈𝑟, 𝑝〉 ∈ 𝐷𝑤𝑖 ⋀ 𝑝 ∈ 𝑃𝑤𝑗)

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.6)

𝑆∗(𝑝) =
1

|𝑅𝑝|
∑ ∑ (1 |〈𝑟, 𝑝〉 ∈ 𝐷𝑤𝑖 ⋀ 𝑟 ∈ 𝑅𝑤𝑗)

|𝑉|

𝑤𝑗=1

|𝑉|

𝑤𝑖=1

 (4.7)

97

To illustrate the working of the scoring functions, shows an example for the

transliterated Arabic word yErf. The word is decomposed into its constituents 〈𝑟, 𝑝〉𝑥 ∈

 𝐷𝑤=𝑦𝐸𝑟𝑓, as shown in first two columns of the table. Example words containing root

𝑟𝑥 ∈ 𝑅𝑤𝑖, are shown in column 3 with their counts in columns 5; likewise, words

containing patterns, 𝑝𝑥 ∈ 𝑃𝑤𝑖, are shown in column 4 with counts in column 6. This

corresponds to the inner summation of the cumulative scoring formula for a particular

morpheme, where each morpheme has been assigned a local score based on its

occurrence in the word yErf.

Pattern,

𝒑𝒙 ∈ 𝑃𝒘𝒊

Root

𝒓𝒙 ∈

𝑹𝒘𝒊

Words, 𝑾𝒓

Words, 𝑾𝒑

|𝑾𝒓| |𝑾𝒑|

y--- Erf 'ErAf, Erf, ErfA, ErfAt, 'Etrf,

mErwf, mErwfA, mErwfp,

tEArf, tErf, yErf, ytEArf

yAbs, y$Aq,

 …yzyd, yzyg

12 490

-E-- Yrf yErf, yHrf, yqtrf, yrfE, ysrf,

ySrf, ytEArf

bEdA, bEDA, …

yEZm, zEym

7 161

--r- yEf yDAEf, yEf, yEfw, yEfwA,

yEkf, yErf, ystDEf, ystEff,

ytEArf

$Ark, bArd,…

zwrA, zxrf

9 280

---f yEr yEmr, yEr, yEr, yErD, yErf,

yErj, yESr, yEt*r, ytEArf

'Asf, 'DEf,…

'zlf, zxrf

9 77

Table 4.1: The counts of morphemes in each word of the vocabulary (local score)

Next, consider the global score of a particular morpheme over the entire dataset. An

illustration with the pattern and root morphemes, y- - - , and Erf, respectively, is shown

in Table 4.2. Summing over all the local scores that the morpheme occurs in gives the

global score of each morpheme. For example, the local score for y- - - in word yErf, as

computed previously is 12, but its local score in word yktb is 18 which is the frequency

of occurrence of root ktb. Thus summing over all the local scores gives the global sum

98

for the pattern morpheme y- - - as 2143. Using the first pair of scoring functions, 𝑆#, we

can leave the score as the global sum. But the in the latter case, 𝑆∗, I take the average of

all local scores. In this way the score for y- - - is independent of its count, distributed

evenly amongst its 490 occurrences in the vocabulary.

Pattern

𝑝𝑥 ∈ 𝑃𝑉
𝒘𝒊

𝒓𝒚

∈ 𝑹𝒑𝒙
|𝑾𝒓𝒚| 𝑆

#(𝒑𝒙) 𝑆
∗(𝒑𝒙)

Root

𝑟𝑦 ∈ 𝑅𝑉
𝒘𝒊

𝒑𝒙
∈ 𝑷𝒓𝒚

|𝑾𝒓𝒚| 𝑆
#(𝒑𝒙) 𝑆

∗(𝒑𝒙)

y---

yErf Erf 12 12+

18+

19+

3+

…

=

2143

2143

490

=4.37

Erf

'ErAf ‘- - A - 132

132+

507+

45+

88+

…

=

1746

1746

12

=145.5

Yktb ktb 18 ErfA - - - A 507

Yslm slm 19 ErfAt - - - At 45

ybd' bd' 3 'Etrf ‘ - t - - 88

… … … …

 … … … …

… … … … … … … … … … … …

Table 4.2: Aggregating and averaging the counts over all

the whole vocabulary (global score)

Note the range of the scores 𝑆#(𝑟) and 𝑆#(𝑝) are quite similar because the combination

of local and global scores balance each other out, bringing them into comparable range.

This is not so for 𝑆∗(𝑟) and 𝑆∗(𝑝), where 𝑆∗(𝑟) ≫ 𝑆∗(𝑝), since the average frequency

of occurrence of pattern morphemes is much greater than the average frequency of

occurrence of root morphemes. Hence, some kind of normalization of scores is needed

to bring the scores into a comparable range (see section 4.4.1).

4.3.2 Alternative Representation

The procedure described above for computing scores is computationally expensive and

can be simplified by viewing the connections between root and pattern morphemes as

links between two sets of vertices of a bipartite undirected graph (or bigraph). The

graph, 𝐺, is defined as,

𝐺 = (𝑅𝑉, 𝑃𝑉, 𝐸)

99

𝐸 = {(𝑟, 𝑝): 𝑟 ∈ 𝑅𝑉 , 𝑝 ∈ 𝑃𝑉}

The links (or edges), 𝑒𝑖 ∈ 𝐸 in the graph correspond to the pair 〈𝑟, 𝑝〉𝑖 ∈ 𝐷𝑉. The

morphemes 𝑟 and 𝑝 are thus co-occurring morphemes. The degree of a particular

morpheme vertex corresponds to the number of patterns linked to that morpheme. For

example the degree of any root 𝑟 is equal to |𝑃𝑟| . Also note the bigraph is balanced

with |𝑅𝑉| = |𝑃𝑉|. Based on this representation, four more sets are defined:

 𝑅𝑃 = {〈𝑟1, 𝑃𝑟1〉, 〈𝑟2, 𝑃𝑟2〉,… , 〈𝑟𝑚, 𝑃𝑟𝑚〉}

 𝑃𝑅 = {〈𝑝1, 𝑅𝑝1〉, 〈𝑝2, 𝑅𝑝2〉, … , 〈𝑝𝑚, 𝑅𝑝𝑚〉}

Below is an example graph to clarify the concepts. This example is referenced in later

parts of the chapter.

4.3.2.1 Example

Figure 4.1: Example graph linking roots and patterns

Consider an example graph 𝐺𝑋, shown in Figure 4.1,

r1
p1

r2

p3

p2

r3

100

For 𝐺𝑋, the sets defined above are:

𝑅𝑉 = {𝑟1, 𝑟2 , 𝑟3}

𝑃𝑉 = {𝑝1, 𝑝2 , 𝑝3}

𝑅𝑃 = {〈𝑟1, {𝑝1, 𝑝2}〉, 〈𝑟2, {𝑝2, 𝑝3}〉, 〈𝑟3, {𝑝2}〉}

𝑃𝑅 = {〈𝑝1, {𝑟1}〉, 〈𝑝2, {𝑟1, 𝑟2, 𝑟3}〉, 〈𝑝3, {𝑟2}〉}

Table 4.3a and Table 4.3b tabulate the co-occurring morphemes in column 2, for each

morpheme in column 1, along with the degree of the co-occurring morpheme in column

3. These morphemes and counts are referenced in the scoring functions defined in the

next sections.

Pattern, 𝒑𝒊 ∈

𝑷𝑽
𝒓 ∈ 𝑹𝒑𝒊 |𝑷𝒓𝒊| Root, 𝒓𝒊 ∈ 𝑹𝑽 𝒑 ∈ 𝑷𝒓𝒊 |𝑹𝒑𝒊|

𝒑𝟏 𝑟1 2 𝒓𝟏 𝑝1 1

𝒑𝟐 𝑟1 2 𝑝2 3

𝑟2 2 𝒓𝟐 𝑝2 3

𝑟3 1 𝑝3 1

𝒑𝟑 𝑟2 2 𝒓𝟑 𝑝2 3

(a) (b)

Table 4.3: Table showing co-occurring morphemes

and degree of co-occurring morphemes

101

4.3.3 Simplified Base Scoring Functions

It is possible to simplify the formulae, (4.4) and (4.5) in order to make a

computationally less expensive algorithm, taking advantage of this representation to

first defining initial, base scoring functions. For each 𝑟 in 〈𝑟, 𝑃𝑟〉 ∈ 𝑅𝑃,

 𝑆#(𝑟) = ∑ |𝑅𝑝𝑖|

|𝑃𝑟|

𝑝𝑖=1

 (4.8)

Conversely, for each 𝑝 in 〈𝑝, 𝑅𝑝〉 ∈ 𝑃𝑅,

 𝑆#(𝑝) = ∑ |𝑃𝑟𝑖|

|𝑅𝑝|

𝑟𝑖=1

 (4.9)

Likewise for the contrast-pure scoring,

 𝑆∗(𝑟) =
1

|𝑃𝑟|
∑ |𝑅𝑝𝑖|

|𝑃𝑟|

𝑝𝑖=1

 (4.10)

 𝑆∗(𝑝) =
1

|𝑅𝑝|
∑ |𝑃𝑟𝑖|

|𝑅𝑝|

𝑟𝑖=1

 (4.11)

These correspond to equations (4.6) and (4.7) defined earlier.

102

 Mutual Recursion

As root and pattern scores are defined in terms of each other, it is possible to define a

mutually recursive procedure to update the score of each morpheme using the other kind.

Starting with the scores obtained from the base scoring functions as seeds, we can

rescore each of the morphemes; and thereafter, iteratively rescore the morphemes using

the previous scores until convergence in ranking is achieved. Since previous scores are

being reapplied in subsequent iterations, there is a need to normalize the scores since

they would otherwise increase without bound.

Let �̂� denote the normalized scores and 𝑘 denote the iteration. The iterative scoring

functions for contrast-plus can be defined as,

 𝑆𝑘
#(𝑟) = ∑ �̂�𝑘−1

(𝑝𝑖) ∗

|𝑃𝑟|

𝑝𝑖=1

|𝑅𝑝𝑖| (4.12)

 𝑆𝑘
#(𝑝) = ∑ �̂�𝑘−1

(𝑟𝑖) ∗

|𝑅𝑝|

𝑟𝑖=1

|𝑃𝑟𝑖| (4.13)

and for contrast-pure,

 𝑆𝑘
∗(𝑟) =

1

|𝑃𝑟|
∑ �̂�𝑘−1

∗ (𝑝𝑖) ∗

|𝑃𝑟|

𝑝𝑖=1

|𝑅𝑝𝑖| (4.14)

𝑆𝑘
∗(𝑝) =

1

|𝑅𝑝|
∑ �̂�𝑘−1

∗ (𝑟𝑖) ∗

|𝑅𝑝|

𝑟𝑖=1

|𝑃𝑟𝑖|
(4.15)

103

It is important to distinguish the two types of convergence taking place: convergence in

ranking and convergence in score values. In the absence of any normalization,

convergence in ranking would be reached at some 𝑘, though with extremely high values

for the scoring vectors (if at all computable). Section 4.5.1.4 presents a proof of

convergence in ranking for the mutually recursive algorithms. With normalization,

scores converge to certain fixed values as 𝑘 → ∞, while convergence in ranking would

be reached at a certain value of 𝑘, remaining stable thereafter.

4.4.1 Score Normalization

Score normalization is achieved by simply dividing the score of each morpheme by the

norm of its respective score vector. In other words, the vectors are converted into unit

vectors, without changing their direction, thus keeping the relative ranking. Let �̂�

denote the normalized score, then

 �̂� =
𝑆

‖𝑆‖
 (4.16)

where ‖𝑆‖ is the norm of the score vector 𝑆. Two types of norms are considered, the

Manhattan norm, ‖𝑆‖1 and the Maximum or max norm, ‖𝑆‖∞ defined respectively as

 ‖𝑆‖1 =∑𝑆(𝑟𝑖)

|𝑅𝑉|

𝑖=1

 (4.17)

 ‖𝑆‖∞ = max(𝑆(𝑟𝑖)) (4.18)

Empirically, these two norms have different behaviours. The max norm has the effect of

scaling the two different quantities with respect to each other, bringing them into

comparable range. The Manhattan norm preserves the relative differences in magnitudes

104

of quantities which are already in comparable range.

4.4.2 Initialization

An important consideration is how to initialize the scoring functions in the first iteration.

There are three possible ways: (i) initialize both scoring functions 𝑆(𝑟)1 and 𝑆(𝑝)1 with

normalized seed scores �̂�0 as in (4.20) obtained by the 1s vector from 𝑆0 (4.19); (ii)

initialize 𝑆(𝑟)1with the 1s vector, and 𝑆(𝑝)1 with 𝑆(𝑟)1; or (iii) initialize 𝑆(𝑝)1 with the

1s vector, and 𝑆(𝑟)1 with 𝑆(𝑝)1.

 𝑆(𝑟)0 = 𝑆(𝑝)0 = (1, 1, … 1) (4.19)

According to their respective norm definitions, each score vector is converted to a unit

vector. For the Manhattan norm, ‖𝑆0‖1 = ∑ 𝑆(𝑟𝑖)
|𝑅𝑉|
𝑖=1 = ∑ 𝑆(𝑝𝑖)

|𝑃𝑉|
𝑖=1 = |𝑅𝑉| = |𝑃𝑉| =

𝑚 , the total number of decomposed morphemes of either type. The normalized form is

then:

 �̂�(𝑟)0 = �̂�(𝑝)0 = (1/𝑚, 1/𝑚,…1/𝑚) (4.20)

For the Maximum norm the normalized score is the same as the normalized seed score.

 �̂�(𝑟)0 = �̂�(𝑝)0 = (1/1, 1/1,… 1/1) = (1, 1, … 1) (4.21)

This is because ‖𝑆0
∗‖∞ = max(1, 1, … 1) = 1.

The choice between the two types of initialization may have a significant bearing on the

outcome of the scores. Scores based on pattern counts are more accurate than those

based on root counts since patterns are few and abundant hence easily identifiable. Root

or pattern scores based on these counts as seeds are likely to give better results.

Therefore the initialization choice depends on the scoring function used. For contrastive

scoring, type (iii) is more appropriate where pattern seed counts are used to initialize

105

𝑆(𝑟)1.

4.4.3 An Example

This section exemplifies the working of the mutually recursive ranking algorithm using

the graph 𝐺𝑋 of section 4.3.2.1. Table 4.4 and Table 4.5 show the first two of the 𝑁

iterations the algorithm performs for the contrast-plus and contrast-pure scoring

functions, respectively. I use type (i) initialization for the former and type (iii) for the

latter. The Manhattan norm is used in both cases. These tables illustrate how the

calculations of the scoring functions are performed at each iterative step. For this very

simple graph the rankings converge in the first iteration and do not change with each

iteration. For contrast-plus, the score has not converged in the first two iterations but the

contrast-pure score converges at 𝑘 = 1.

𝒑
𝒓⁄ 𝑺𝟏

#(𝒑) 𝑺𝟏
#(𝒓) �̂�𝟏

#(𝒑) �̂�𝟏
#(𝒓) 𝑺𝟐

#(𝒑) 𝑺𝟐
#(𝒓) �̂�𝟐

#(𝒑) �̂�𝟐
#(𝒓) …

1
(2 ×

1

3
)

= 2 3⁄

(1 ×
1

3
) +

(3 ×
1

3
)

=
4

3

2 3⁄

3

=
2

9

4 3⁄

11 3⁄

=
4

11

(2 ×
4

11
)

=
8

11

(1 ×
2

9
) +

(3 ×
5

9
)

=
17

9

8 11⁄

35/11

=
8

35

17 9⁄

43 9⁄

=
17

43

…

2
(2 ×

1

3
) +

(2 ×
1

3
) +

(1 ×
1

3
) =

5

3

(3 ×
1

3
) +

(1 ×
1

3
)

=
4

3

5 3⁄

3

=
5

9

4 3⁄

11 3⁄

=
4

11

(2 ×
4

11
) +

(2 ×
4

11
) +

(1 ×
3

11
)

=
19

11

(3 ×
5

9
) +

(1 ×
2

9
)

=
17

9

19 11⁄

35/11

=
19

35

17 9⁄

43 9⁄

=
17

43

…

3
(2 ×

1

3
) =

2

3
 (3 ×

1

3
)

= 1

2 3⁄

3

=
2

9

1

11 3⁄

=
3

11

(2 ×
4

11
)

=
8

11

(3 ×
5

9
)

=
15

9

8 11⁄

35/11

=
8

35

15/9

43 9⁄

=
15

43

…

Table 4.4: Mutual recursion for contrast-plus scoring using type (i)

initialization and the Manhattan norm

106

𝒑
𝒓⁄ 𝑺𝟏

∗ (𝒑) �̂�𝟏
∗ (𝒑) 𝑺𝟏

∗ (𝒓) �̂�𝟏
∗ (𝒓) 𝑺𝟐

∗ (𝒑) �̂�𝟐
∗ (𝒑) 𝑺𝟐

∗ (𝒓) �̂�𝟐
∗ (𝒓) …

1
(2 ×

1

3
) /1

= 2 3⁄

2 3⁄

17/9

=
6

17

(1 ×
6

17
) +

(3 ×
5

17
)/2

=
21

34

21 34⁄

36 17⁄

=
7

24

(2 ×
7

24
) /1

=
7

12

7/12

119/72

=
6

17

(1 ×
6

17
) +

(3 ×
5

17
) /2

=
21

34

21 34⁄

36 17⁄

=
7

24

…

2
(2 ×

1

3
) +

(2 ×
1

3
) +

(1 ×
1

3
) /3

=
5

9

5 9⁄

17/9

=
5

17

(3 ×
5

17
) +

(1 ×
6

17
)/2

=
21

34

21 34⁄

36 17⁄

=
7

24

(2 ×
7

24
) +

(2 ×
7

24
) +

(1 ×
7

24
) /3

=
35

72

35 72⁄

119 72⁄

=
5

17

(3 ×
5

17
) +

(1 ×
6

17
) 2⁄

=
21

34

21 34⁄

36 17⁄

=
7

24

…

3
(2 ×

1

3
) /1

=
2

3

2 3⁄

17/9

=
6

17

(3 ×
5

17
) =

15

17

15/17

36 17⁄

=
5

12

(2 ×
7

24
) /1

=
7

12

7/12

119/72

=
6

17

(3 ×
5

17
) =

15

17

15/17

36 17⁄

=
5

12

…

Table 4.5: Mutual recursion for contrast-pure scoring using type (iii) initialization and the

Manhattan norm

 Hyperlink-Induced Topic Search

I now compare my algorithm to a very similar algorithm used for ranking webpages,

which is well recognized in the field of Information Retrieval, known as Hyperlink-

Induced Topic Search (HITS), and also sometimes referred to as the Hubs and

Authorities algorithm. This algorithm was developed by Jon Kleinberg (1999), and was

a seminal contribution to the family of Link Analysis Ranking (LAR) algorithms used

to rank webpages. HITS was a precursor to the PageRank algorithm (Brin et al, 1998)

currently in use by Google.

I will first discuss the background of this algorithm outlining how the problem of page

ranking as described by Kleinberg relates to my work, and then apply the technique to

rank morphemes. Finally, I describe the proof of ranking convergence for both HITS

and my approach.

107

Background

There are two types of pages relevant to webpage ranking: authority pages and hub

pages. Hubs appear as sizable catalogues acting as gateways to authority pages which

actually hold the information useful for a particular information request. Thus, hub

pages direct users to useful webpages which are an authority on a particular subject of

user interest. The aim is then to distinguish good hub pages from good authority pages.

One way proposed by Kleinberg, is to consider those pages which link to many other

pages as good hubs, and those pages that are linked to by many other pages as

potentially good authority pages. Each page is assigned two scores, a hub score and an

authority score. Links to/from important pages, having a high score, in turn contribute

to a higher ranking for the page with respect to either the hub or authority being scored.

Procedure

The algorithm works at query time, unlike its successor the PageRank algorithm which

computes scores at indexing time. In HITS, the search query is first used to retrieve

relevant pages known as the root set. This set is then augmented with pages that link to

pages in this set and those pages that are linked from the root set. The augmented set is

called the base set. The idea behind making such a set, according to Kleinberg, is to

gather the most important authorities. This set with interlinks between webpages, forms

a ‘focused sub-graph’ which is a directed graph with edges indicating the linkages

between the pages. This is similar to the bipartite graph for morphemes in section 4.3.2.

Likewise in a similar way to the calculation of morpheme scores, the authority and hub

scores are defined in terms of each other in a mutually recursive relationship. The

authority score for a page is computed as the sum of the hub scores that point to the

page. Conversely, the hub score for a page is computed by summing the scores of the

authority scores of the pages that are pointed to by the hub page. Kleinberg uses the

Euclidean norm to normalize the scores after each iteration.

108

Application of HITS to Morphology

Applying the HITS algorithm to the morphology learning task is quite straightforward,

and the root and pattern scores can be computed in a similar way as with contrastive

learning:

 𝑆𝑘
𝐻(𝑟) =

1

|𝑃𝑟|
∑ �̂�𝑘−1

𝐻 (𝑝𝑖)

|𝑃𝑟|

𝑝𝑖=1

 (4.22)

For 𝑘 = 0,1,2…

 𝑆𝑘
𝐻(𝑝) =

1

|𝑅𝑝|
∑ �̂�𝑘−1

𝐻 (𝑟𝑖)

|𝑅𝑝|

𝑟𝑖=1

 (4.23)

For 𝑘 = 1,2,3…

As can be seen from the formulation of the HITS scoring functions, the initial values of

the scored morpheme directly depend on counts of the morpheme, unlike in contrastive

learning where they are determined by the counts of the co-occurring morphemes.

Subsequently, the counts are scaled according to the score of each co-occurring

morpheme which in turn have initially been determined by their own occurrence counts.

So if root morpheme scores are taken as the seed scores, then the initial scores for the

root morphemes are

 𝑆0
𝐻(𝑟) = ∑ 1

|𝑃𝑟|

𝑝𝑖=1

= |𝑃𝑟| (4.24)

We can easily see that |𝑃𝑟| is the count of the number of words in which 𝑟 occurs as

opposed to the contrastive case where the initial score for 𝑟 would be |𝑅𝑝|, i.e. the

number of words with 𝑝 such that 〈𝑟, 𝑝〉 ∈ 𝐷𝑉. Thus in essence both algorithms score

morphemes through mutual reinforcement but the key difference lies in the contribution

109

through either self or affiliate morpheme. One can perceive HITS is a simpler version of

the contrastive learning algorithm which although computed differently would

eventually give a similar or the same ranking. This will be seen in more detail in the

evaluation (section 4.7.3).

Applying HITS scoring to the example graph 𝐺𝑋 from section 4.3.2.1, Table 4.6 shows

the scores for the root and pattern morphemes for the first two iterations but using the

Manhattan norm for comparison purposes, rather than the Euclidean norm as in the

original HITS implementation. The tables show again that ranking convergence is

reached in the first iteration but scoring convergence is not reached in these iterations as

for the contrast-plus case.

Table 4.7 shows the ranking for the roots and patterns according to contrastive learning

and according to HITS. While relative rankings for 𝑝1, 𝑝3 and 𝑟1,𝑟2 stay the same due to

their similar link structure, it is noteworthy to see that the ranking for 𝑟3 and 𝑝2 is

reversed in the two types of scoring, since one gives more emphasis to the morphemes

with more links from itself while the other gives more importance to the number of

links of associated morphemes. So, the graph shows that 𝑟3 itself has degree one,

therefore getting a lower score with HITS but its only co-occurring morpheme has

degree three, hence it is given more importance by contrastive learning.

110

𝒑
𝒓⁄ 𝑺𝟏

𝑯(𝒑) �̂�𝟏
𝑯(𝒑) 𝑺𝟏

𝑯(𝒓) �̂�𝟏
𝑯(𝒓) 𝑺𝟐

𝑯(𝒑) �̂�𝟐
𝑯(𝒑) 𝑺𝟐

𝑯(𝒓) �̂�𝟐
𝑯(𝒓) …

1 1

3

1

3
/
5

3

=
1

5

1

5
+
3

5

=
4

5

4

5
/
11

5

=
4

11

4

11

4

11
/
19

11

=
4

19

4

19
+
11

19

=
15

19

15

19
/
41

19

=
15

41

…

2 1

3
+
1

3
+

1

3
= 1

3/
5

3

=
3

5

3

5
+
1

5

=
4

5

4

5
/
11

5

=
4

11

4

11
+
4

11

+

3

11
= 1

1/
19

11

=
11

19

11

19
+
4

19

=
15

19

15

19
/
41

19

=
15

41

…

3 1

3

1

3
/
5

3

=
1

5

3

5

3

5
/
11

5

=
3

11

4

11

4

11
/
19

11

=
4

19

11

19

11

19
/
41

19

=
11

41

…

Table 4.6: Mutual recursion for HITS

using type (ii) initialization and the Manhattan norm

Contrast-Pure (𝑺∗) HITS (𝑺𝑯)

Root Pattern Root Pattern

𝑟3 𝑝1/𝑝3 𝑟1/𝑟2 𝑝2

𝑟1/𝑟2 𝑝1/𝑝3 𝑟1/𝑟2 𝑝1/𝑝3

𝑟1/𝑟2 𝑝2 𝑟3 𝑝1/𝑝3

Table 4.7: Root and pattern ranking comparison

between HITS and contrast-pure

111

4.5.1 Proof of Convergence

The proof of convergence of the mutually recursive algorithms given below uses

concepts from linear algebra. The approach to proving ranking convergence is similar

to one presented in the literature (Borodin et al, 2005; Tsaparas, 2004) on linear link

analysis algorithms used for ranking pages of a network based on links between pages,

such as PageRank, HITS, etc.– also referred to as eigenvector-based ranking algorithms.

Here I first adapt the proof for the convergence of the HITS algorithm applied to

morpheme ranking, which is congruent to the page ranking problem. Thereafter, I prove

convergence for the contrastive algorithms. But firstly, I translate the problem and

formulae into an algebraic representation.

4.5.1.1 Algebraic Representation

I assume the bipartite graph as defined in section 4.3.2 to represent the link structure of

the morphemes. Thus, in contrast to LAR, where a graph is defined as directed with

edges from page to page, the graph for morpheme ranking

𝐺 = (𝑅𝑉, 𝑃𝑉, 𝐸)

𝐸 = {(𝑟, 𝑝): 𝑟 ∈ 𝑅𝑉 , 𝑝 ∈ 𝑃𝑉}
(4.25)

maps to a 𝑚 ×𝑚 adjacency matrix, 𝐴, where the rows are represented by 𝑖th root

entries and columns with 𝑗th pattern entries. If there is a link from 𝑟𝑖 to 𝑝𝑗 in graph 𝐺,

then, 𝑎𝑖𝑗 = 1; all other entries of the matrix are 0. An example adjacency graph for the

example 𝐺𝑋 is:

 𝐴𝐺𝑋 = (
1 1 0
0 1 1
0 1 0

) (4.26)

Taking the sum of the columns results in a vector where each element 𝑖, corresponds to

the count, |𝑃𝑟𝑖| . Let this resulting sum of columns vector be 𝜙𝐴. Similarly, summing

vertically over all the rows 𝑖 gives a vector with each element 𝑗 corresponding to the

112

count |𝑅𝑝𝑗|. This latter vector is equivalent to taking the sum of rows 𝑖, horizontally

over the transpose of the adjacency matrix, 𝐴𝑇, which is represented as the vector, 𝜙𝐴𝑇.

Further, I refer to inverse of the horizontal and vertical summation vectors, 𝜙−1
𝐴

 and

𝜙−1
𝐴𝑇

, as corresponding to values 1 |𝑃𝑟𝑖|⁄ and 1 |𝑅𝑝𝑗|⁄ , respectively. Thus for 𝐴𝐺𝑋 ,

𝜙𝐴𝐺𝑋 = (

2
2
1
) , 𝜙𝐴𝐺𝑋𝑇 = (

1
3
1
) ,

 𝜙−1
𝐴𝐺𝑋

= (
1 2⁄

1 2⁄

1 1⁄
) , 𝜙−1

𝐴𝐺𝑋
𝑇 = (

1 1⁄

1 3⁄

1 1⁄
)

(4.27)

Let 𝑟𝑘 be the root weight vector used to represent the scores

𝑆𝑘(𝑟1), 𝑆𝑘(𝑟2), 𝑆𝑘(𝑟3),… 𝑆𝑘(𝑟𝑚) at a particular iteration 𝑘. Similarly let �⃑�𝑘 be the pattern

weight vector used to represent the scores 𝑆𝑘(𝑝1), 𝑆𝑘(𝑝2), 𝑆𝑘(𝑝3),… 𝑆𝑘(𝑝𝑚) at iteration

𝑘. 𝑟𝑘 and �⃑�𝑘 are both column vectors.

The scoring and rescoring functions can be expressed in terms of the vector based

representation with 𝐴 as the adjacency matrix of graph G containing links between roots

and patterns, and weight vectors, 𝑟 and �⃑�, respectively. Denoting 𝑀𝑇 as the transpose of

matrix 𝑀, the updated weights for the root and pattern, as described in the equations

(4.22) and (4.23) for HITS, are written using vector representation as

 𝑟𝑘 = 𝜌𝑘𝐴 �⃑�𝑘−1 (4.28)

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇 𝑟𝑘 (4.29)

where 𝛾𝑘and 𝜌𝑘 are normalization constants to ensure that the root and pattern weight

vectors are normalized:

𝜌𝑘 =

1

‖𝑟𝑘−1‖
 , 𝛾𝑘 =

1

‖�⃑�𝑘−1‖

(4.30)

113

For contrast-plus, let Φ represent the diagonal matrix,

 Φ𝐴 = diag(𝜙𝐴) and Φ𝐴𝑇 = diag(𝜙𝐴𝑇) (4.31)

then,

 𝑟𝑘 = 𝜌𝑘𝐴 Φ𝐴 �⃑�𝑘−1 (4.32)

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇Φ𝐴𝑇 𝑟𝑘−1 (4.33)

Where

𝜌𝑘 =

1

‖Φ𝐴𝑟𝑘−1‖
 , 𝛾𝑘 =

1

‖Φ𝐴𝑇�⃑�𝑘−1‖

(4.34)

For contrast-pure, let Ψ represent the diagonal matrix,

 Ψ𝐴 = diag(𝜙𝐴)diag(𝜙
−1
𝐴𝑇
) and Ψ𝐴𝑇 = diag(𝜙𝐴𝑇)diag(𝜙

−1
𝐴
) (4.35)

then,

 𝑟𝑘 = 𝜌𝑘𝐴 Ψ𝐴 �⃑�𝑘−1 (4.36)

 �⃑�𝑘 = 𝛾𝑘𝐴
𝑇Ψ𝐴𝑇 𝑟𝑘−1 (4.37)

where

𝜌𝑘 =

1

‖Ψ𝐴𝑟𝑘−1‖
 , 𝛾𝑘 =

1

‖Ψ𝐴𝑇�⃑�𝑘−1‖

(4.38)

114

4.5.1.2 Background Concepts

For a symmetric matrix 𝑀, 𝑛 × 𝑛 there exists a vector 𝑣, which when multiplied by 𝑀,

yields a constant multiple of 𝑣:

 𝑀𝑣 = 𝜆𝑣 (4.39)

Vector 𝑣 is referred to as the eigenvector and the multiplier, 𝜆, is referred to as the

eigenvalue corresponding to 𝑣.

The Perron-Frobenius Theorem states that if 𝑀 is a non-negative6 (i.e. all values are

≥ 0) irreducible or a symmetric square matrix, then there exists an eigenvalue 𝑎 such

that the modulus of all other eigenvalues does not exceed 𝑎. Corresponding to this

eigenvalue an eigenvector can be chosen which is also non-negative.

The set of all eigenvectors associated with a particular eigenvalue 𝜆 is known as the

eigenspace of matrix 𝑀 from the space ℝ𝑛. The dimension of this space is the

multiplicity of 𝜆. Since 𝑀 is symmetric, the set of all eigenvalues is real and is known to

have at most 𝑛 distinct eigenvalues summing over all multiplicities. The eigenvalues of

𝑀can be written with multiplicities indexed in order of decreasing magnitude:

 |𝜆1| ≥ |𝜆2| ≥ |𝜆3| ≥ ⋯ |𝜆𝑛| (4.40)

For each eigenvalue 𝜆𝑖, there exists a corresponding eigenvector vector 𝑣𝑖, such that the

eigenvectors are an orthogonal basis of their respective eigenspaces. A dominant or

principal eigenvector exists such that the eigenvalue associated with this eigenvector

has the largest magnitude. In turn this eigenvalue is also referred to as the dominant or

largest eigenvalue of the matrix. Thus, if the assumption |𝜆1| > |𝜆2| holds, 𝜆1 is the

dominant or principal eigenvalue.

6 The original theorem of Perron requires 𝑀 to have positive entries, but this was extended to non-

negative by Frobenius.

115

4.5.1.3 The Proof (HITS)

Combining the two equations (4.28) and gives a method for calculating the score

vectors in term of the score vector of the same morpheme from the previous iteration,

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1(𝐴𝐴
𝑇)𝑟𝑘−1 (4.41)

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘(𝐴
𝑇𝐴)�⃑�𝑘−1 (4.42)

Note that the product of the adjacency matrix with its transpose, 𝐴𝐴𝑇 and 𝐴𝑇𝐴 , gives a

symmetric matrix which will be useful in the derivation of the principal eigenvector in

the proof of convergence, below.

As 𝑘 grows large, the two weight vectors converge to 𝑟𝑘
∗
 and �⃑�𝑘

∗
, respectively,

 𝑟𝑘
∗
= 𝜆∗𝐴𝐴𝑇𝑟𝑘

∗
 (4.43)

 �⃑�𝑘
∗
= 𝜆∗𝐴𝑇𝐴�⃑�𝑘

∗
 (4.44)

The convergent vectors 𝑟𝑘
∗
 and �⃑�𝑘

∗
 each correspond to the dominant eigenvectors of

matrices 𝐴𝐴𝑇 and 𝐴𝑇𝐴, respectively, which are both symmetric, and 𝜆∗ as the dominant

eigenvalue for each of the matrices. Thus we must prove that the sequence {𝑟𝑘}

converges to a vector, 𝑟𝑘
∗
, which is a non-negative eigenvector of the largest

eigenvalue of 𝐴𝐴𝑇, 𝜆∗. Likewise, the pattern vector sequence, {�⃑�𝑘}, converges to a

vector �⃑�𝑘
∗
, which again is a non-negative eigenvector of the largest eigenvalue of 𝐴𝑇𝐴,

𝜆∗.

Since 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are symmetric their eigenvalues are real and non-negative. As seen

above, while the largest modulus eigenvalue can have multiplicity greater than 1, all the

other eigenvalues would have a smaller magnitude. The eigenspaces corresponding to

each distinct eigenvalue would be orthogonal. In the dominant eigenspace for the largest

eigenvalue, we can choose any non-negative orthogonal vector. Since the initial vectors

𝑟0 and 𝑝0 are positive, they are not orthogonal to the chosen dominant eigenvectors

116

which are also non-negative, i.e. the dot product of 𝑟0 or �⃑�0 with the principal

eigenvector is positive. According to the Von Mises iteration algorithm (von Mises &

Pollaczek-Geiringer, 1929), since 𝑟0 or �⃑�0 would have a nontrivial component in the

eigenspace of the principal eigenvector, the vectors {𝑟𝑘} and {�⃑�𝑘} in the same direction

would converge to their respective dominant or principal eigenvectors, 𝑟𝑘
∗
 and �⃑�𝑘

∗
 with

largest eigenvalue modulus 𝜆∗ (Golub & Van Loan, 1989).

An alternative way to look at this convergence of the algorithm, as described by Farahat

et al (2006), is to consider the pattern vector �⃑� as a linear combination of the

eigenvectors, �⃑�1, �⃑�2, �⃑�3, … �⃑�𝑛 .

 �⃑�1 = 𝑐1�⃑�1 +⋯𝑐𝑛�⃑�𝑛 (4.45)

where 𝑐𝑖 = �⃑�1 ∙ �⃑�𝑖 ‖�⃑�𝑖‖⁄

 �⃑�2 = 𝜆1𝛼1�⃑�1 +⋯𝜆𝑛𝛼𝑛�⃑�𝑛 (4.46)

or

 �⃑�2 = 𝜆1(𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟) + 𝜆𝑟+1𝛼𝑟+1�⃑�𝑟+1 +⋯𝜆𝑛𝛼𝑛�⃑�𝑛 (4.47)

if, 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑟 ≠ 𝜆𝑟+1

Subsequently,

�⃑�𝑘+1 = 𝜉𝑘 (𝜆1

𝑘[𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟] + ∑ 𝜆𝑖
𝑘𝛼𝑖�⃑�𝑖

𝑛

𝑖=𝑟+1

) (4.48)

where 𝜉𝑘 = 𝜌𝑘𝛾𝑘𝜉𝑘−1

As 𝑘 grows large, 𝜆1
𝑘 dominates, thus,

117

 �⃑�𝑘 → 𝑐(𝛼1�⃑�1 +⋯𝛼𝑟�⃑�𝑟) (4.49)

and

 𝜌𝑘𝛾𝑘 → 𝜆1 (4.50)

Thus the pattern weight vector �⃑�𝑘 converges to the eigenvector of the dominant

eigenvalue 𝜆1.

4.5.1.4 Convergence for Contrastive Learning

The two equations (4.32) and (4.33) for contrast-plus scoring combine to calculate the

score vectors in terms of themselves,

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1 (𝐴Φ𝐴𝐴
𝑇) Φ𝐴𝑇 𝑟𝑘−1 (4.51)

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘 (𝐴
𝑇Φ𝐴𝑇𝐴) Φ𝐴 �⃑�𝑘−1 (4.52)

Similarly to 𝐴𝐴𝑇 and 𝐴𝑇𝐴, 𝐴Φ𝐴𝐴
𝑇and 𝐴𝑇Φ𝐴𝑇𝐴 are also symmetric with eigenvalues

that are real and non-negative. Since Φ𝐴𝑇 and Φ𝐴 are positive their products with the

initial vectors, 𝑟0 and �⃑�0, i.e. Φ𝐴𝑇 𝑟0 and Φ𝐴�⃑�0 are positive vectors. They are not

orthogonal to the chosen dominant non-negative eigenvectors since the dot product of

Φ(𝐴𝑇) 𝑟0 or Φ𝐴�⃑�0 with the principal eigenvector is positive. Thus, the vectors {Φ𝐴𝑇𝑟𝑘}

and {Φ𝐴�⃑�𝑘} are in the same direction as Φ𝐴𝑇 𝑟0 and Φ𝐴�⃑�0 and converge to their

dominant eigenvectors, 𝑟𝑘
∗
 and �⃑�𝑘

∗
 with largest eigenvalue modulus 𝜆∗

For contrast-pure scoring the equations (4.36) and (4.37) are combined:

 𝑟𝑘 = 𝜌𝑘𝛾𝑘−1 (𝐴Ψ𝐴𝐴
𝑇) Ψ𝐴𝑇 𝑟𝑘−1 (4.53)

118

 �⃑�𝑘 = 𝛾𝑘𝜌𝑘 (𝐴
𝑇Ψ𝐴𝑇𝐴) Ψ𝐴 �⃑�𝑘−1 (4.54)

 Morphological Analysis

As in Chapter 4, I run a set of experiments to perform morphological analysis for every

word in the dataset using the root and pattern lexicons obtained using each scoring

technique. Each word to be analysed is decomposed using the decomposition function,

𝐷𝑤. For each 〈𝑟, 𝑝〉 in 𝐷𝑤 the analysis score is computed using the respective lexicons

containing normalized scores for the morphemes. There are several ways to combine the

morpheme scores to obtain the analysis score. In each of the cases, the combined

analysis scores are ranked from highest to lowest score, revealing the best analyses on

top. As the scores are normalized there is no need to scale the scores as was done in the

previous chapter.

One type of combination is considered in the previous chapter, where the scores of the

morphemes from their respective lexicons are added linearly. This type of analysis score

computation is suited for contrast-plus scoring where the morpheme scores are an

amalgamation of root and pattern occurrences. For a word 𝑤, given the analysis 〈𝑟, 𝑝〉𝑖

in 𝐷𝑤, the maximum analysis score is selected as the output:

 max
𝑖=1..𝐿(|𝑤|)

(�̂�#(𝑟𝑖) + �̂�
#(𝑝𝑖)) (4.55)

For contrast-pure and HITS, the scores for each morpheme are wholly representative of

one morpheme type. If one score was computed on the basis of root occurrences then

the other would be computed in terms of pattern occurrences. Hence a more appropriate

method of analysis score calculation is to take the product of scores of roots and

patterns. The best analysis would be selected as the maximum of the product of the pair

of scored morphemes:

119

 max
𝑖=1..𝐿(|𝑤|)

(�̂�∗(𝑟𝑖) × �̂�
∗(𝑝𝑖)) (4.56)

 max
𝑖=1..𝐿(|𝑤|)

(�̂�𝐻(𝑟𝑖) × �̂�
𝐻(𝑝𝑖)) (4.57)

 Evaluation

The evaluation is performed using the Quranic Arabic Corpus (QAC) with the same

setup as in section 3.5. The evaluation measure is also the same as before: the

percentage of roots that are correctly analysed against the correctly identified roots

available for the QAC. The total number of evaluated words is 54817. The evaluation is

divided into three parts. The first part compares the different base scoring strategies for

the three types of scoring methods, contrast-plus, contrast-pure and HITS, taking into

consideration the various features and configurations. The second part evaluates the

iterative mutual recursive scoring technique applied to each of the scoring methods. The

final part evaluates the refinement procedure for contrast-pure and HITS.

4.7.1 Base Scoring Evaluation

I start by comparing the performance of the base scoring functions i.e. contrast-plus,

contrast-pure and HITS without recursion. I also consider these as the baselines to

which mutually recursive scoring is compared. These can be considered as the first

iteration of the mutually recursive algorithm. At this stage, I also look at the effect of

different norms used, initialization using root or pattern or both simultaneously, and

finally the two ways of aggregating morpheme scores using summation or product.

7 This number is slightly different to that in section 3.5 as there were some words whose root characters

needed to undergo normalization; hence 13 additional words now formed part of the evaluation set.

120

Starting with a seed score of all ones, I perform sequential score updates starting with

either roots or patterns. This sequence of dual updates – firstly for the chosen

morpheme score with the seed score, and secondly based on counterpart morpheme

scores – constitutes one cycle and corresponds to the first iteration of the recursive

algorithm. The choice of which morpheme to start with, either root first then pattern

(Root-Pattern) or pattern first then root (Pattern-Root), may be of importance for the

base scoring functions. I compare this with parallel or simultaneous update of both

pattern and root both initialized using an all ones seed score. The results for the three

scoring functions are shown in Table 4.8, showing the number of correctly identified

roots from a total of 5481 evaluated words. The scoring functions for these outputs have

been normalized using the Manhattan norm and the analysis score computed by taking

the product of morpheme scores.

Initialization Contrast-

plus

Contrast-

pure

HITS

Root-Pattern 4632 4321 2805

Pattern-Root 4503 3343 3506

Simultaneous 4293 3900 3026

Table 4.8: Numbers of correct analyses using different

initializations

The best performance is exhibited by Root-Pattern for both contrastive scoring methods,

but for HITS, Pattern-Root gives the best performance. Here for all three scoring

methods, the seed score counts are computed based on pattern occurrence counts. This

shows that the counts for patterns are more reliable and accurate than those for roots.

This is understandable because there are relatively few patterns but their frequency of

occurrence is very high. This makes them easily distinguishable from other morphemes.

Triliteral roots occur in large variety having fewer individual counts, and also

sometimes overlapping with three letter affixes. Hence these are less easily discernible

than their counterparts. For all three methods, simultaneous scoring of morphemes

shows inferior performance to the other initializations. All the experimental results

below use Root-Pattern initialization for contrastive learning and Pattern-Root for HITS.

121

Next I look at two types of norms, Manhattan and maximum. Each is a different way to

measure the size of a vector. Here the purpose of using the norm is to scale the scores in

order to make them comparable and to prevent overflow or underflow for the recursive

algorithm. Alongside using the different norms, I look at the way that the analysis score

is combined – either using summation or product. The results are shown in Table 4.9.

 Manhattan Maximum

Summation Product Summation Product

Contrast-plus 4799 4632 4346 4632

Contrast-pure 4190 4321 3772 4321

HITS 2977 3506 3524 3506

Table 4.9: Comparison using different norms

and analysis scoring combinations

One thing that can readily be seen is that using product to obtain analysis scores makes

the scoring independent of the type of norm: the scores for Manhattan and maximum

are the same when using product. This is to be expected, as the ranking is independent

of the normalization. Also, the results are generally superior when using product. The

scores for roots and patterns are computed in terms of each other, hence using product

brings out the best morpheme composition in the word. The main exception is contrast-

plus where much better results are obtained using summation, normalized using the

Manhattan norm. As stated earlier, the morpheme scores in this are a balanced

combination of root and pattern occurrences. The Manhattan norm scales yet preserves

the relative differences in magnitudes of scored quantities for contrast-plus morpheme

scores which are in a comparable range. Thus a linear combination of the quantities

yields a better solution.

In all the following experiments, contrast-pure and HITS use product to obtain analysis

scores; contrast-plus uses summation and the Manhattan norm for score scaling. The

three base scoring methodologies are compared in the which shows their percentage

accuracies.

122

 Correct Accuracy (%)

Contrast-plus 4799 87.56

Contrast-pure 4321 78.88

HITS 3506 63.40

Table 4.10: Comparison of the best performance

of the three base scoring methods

Table 4.10 clearly shows the advantage of using contrast-plus scoring. Contrastive

learning in which morphemes are scored based on all co-occurring morpheme counts,

perhaps performs better because it is computed based on statistics of both morpheme

types while the other two scoring functions are computed using one morpheme type;

the latter two methods could be expected to show better performance when the scores

are combined in the mutually recursive calculation process.

4.7.2 Mutually Recursive Rescoring Evaluation

The next set of experiments explores the approach where scoring functions are subject

to iterative improvement based on scores computed in the previous cycle in a mutually

recursive relationship, until convergence is achieved. There are several aspects to

investigate besides identifying the best scoring function, for example rates of

convergence, the levels of improvement etc.

Starting with their respective base scores, the recursive functions are repeatedly applied

until convergence. I chose 𝑁 = 10 as a sufficiently large number of iterations in order

to achieve convergence but as seen in the results below convergence is reached before

the 6th iteration.

123

No. of Iterations Correct Accuracy (%)

0 4799 87.56

1 4894 89.29

2 4909 89.56

3 4908 89.55

4 4908 89.55

5 4908 89.55

6 4909 89.56

Table 4.11: Contrast-plus accuracy at

different iterations

For contrast-plus, we see from Table 4.11 that the second iteration shows a sudden

increase in accuracy by 1.73 percentage points, and then a slight improvement in the

third iteration. Thereafter the performance stays more or less constant. After the 6th

iteration, the accuracy figures remain unchanged.

124

No. of Iterations Correct Accuracy(%)

0 4321 78.84

1 4964 90.57

2 5024 91.66

3 5041 91.97

4 5046 92.06

5 5046 92.06

6 5046 92.06

Table 4.12: Contrast-pure accuracy at

different iterations

For contrast-pure, there is a large initial increase in performance of 11.7 percentage

points which takes the accuracy from a long way below contrast-plus to just above.

Thereafter, the increase is more gradual with the accuracy reaching 92.06 in the fifth

iteration.

125

No. of Iterations Correct Accuracy(%)

1 3506 63.97

2 4590 83.74

3 4983 90.91

4 5058 92.28

5 5072 92.54

6 5076 92.61

7 5076 92.61

Table 4.13: HITS accuracy at different

iterations

Finally, for HITS the increase in performance is even more marked (almost 20

percentage points) than for contrast-pure in the second iteration. Keeping up the

improvement in subsequent iterations HITS finishes at 92.61 in the sixth iteration,

thereafter remaining unchanged.

Finally, Figure 4.2 and the associated Table 4.14 show the learning rates of the three

scoring functions. It is interesting to see that contrast-plus starts out as the best base

scoring method but shows the least improvement in the subsequent recursive learning

process; whereas HITS starts off with the lowest accuracy, but improves to best

performing procedure amongst the three with the highest increase in accuracy with an

increase of 28.6 percentage points from base to convergence. The contrast-pure

learning rates are is between the extremes ending up with a performance only slightly

below HITS by about 0.55 percentage points.

126

No.

of

Iter-

ation

Accuracy Increase (% points)

Contrast-

Plus

Contrast-

Pure

HITS

1 1.73 11.73 19.78

2 0.27 1.09 7.17

3 -0.02 0.31 1.37

4 0.0 0.09 0.26

5 0.0 0.0 0.07

6 0.018 0.0 0.0

0-7 2.01 13.23 28.64

Figure 4.2: Comparison of the three methods

showing accuracies at each iteration

Table 4.14: Comparison of the three

methods with accuracy differences

relative to the previous iteration

4.7.3 Summary of Evaluation Results

Table 5.1 summarizes the results, for the three scoring methods after the base scoring

and recursive scoring. Overall, the morpheme learning techniques described in this

chapter reach approximately 93% correct root morpheme identification.

 Base Recursive Scoring

Contrast Plus 87.5 89.56

Contrast Pure 78.8 92.06

HITS 63.9 92.61

Table 4.15: Comparison of the three methods in terms of accuracy

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7

A
cc

u
ra

cy
 (

%
)

Number of Iterations

HITS Contrast-pure Contrast-plus

127

 Conclusion

This chapter investigated morphology learning using counts of root and pattern

occurrences. A contrastive learning approach was presented in which a good root

candidate is one that co-occurs with a large number or variety of pattern morphemes,

and vice-versa. Within this approach two different strategies were considered: one

considering own morpheme counts along with opposite morpheme occurrences were

considered, known as contrast-plus; and the other where only opposite morpheme

counts were considered, known as contrast-pure.

This contrastive learning approach was then developed further, with previous root

scores being used to enhance pattern scores in each subsequent iteration, and pattern

scores used to enhance root scores in a mutually recursive relationship until

convergence is reached. At this point I introduced for comparison, the well-recognized

HITS algorithm, used for ranking web-pages, and applied it to ranking morphemes.

There is much similarity between the contrastive learning algorithm and the HITS

algorithm. Intuitively, the recursive contrast-pure algorithm is essentially the same as

HITS formulated slightly differently. This is verified by the evaluation results, as both

methods give only slightly different results.

The three scoring methods were evaluated at different stages of development: at the

base level, in the absence of recursive application, it was shown that the best performing

method was contrast-plus with an accuracy of 87.5%; it takes into consideration the

counts of both morphemes, its own counts and the co-occurring morphemes’ counts.

The other two methods, i.e. contrast-pure and HITS, gave poorer performance of 78.8%

and 63.9%, respectively, at this point relying purely on co-occurring morphemes’

counts. However, when the latter two methods were applied in a mutually recursive

learning algorithm, they out-performed the former method by about 3 percentage points.

Both the contrast-pure and HITS are almost at par due to recursive rescoring, with HITS

giving slightly better performance (by 0.55 percentage points).

The contrastive learning approach is a simple yet powerful approach which is superior

to the machine learning technique described in Chapter 3 which takes considerably

more time in model training and application besides the added complications of

128

parameter estimation. In Chapter 3, the best performing method gave an accuracy of

86.26% compared to 92.61% for contrastive learning, an improvement of 6.4 percentage

points.

129

Contrastive Learning Extensions

and Stemmer Comparison

 Introduction

Chapter 4 demonstrated the superiority of contrastive learning over the machine

learning based approach to non-concatenative morphology induction described in

chapter 3 in terms of accuracy and computational efficiency.

This chapter investigates two extensions intended to enhance the contrastive learning

technique devised in the previous chapter. The first extension is a refinement procedure

which rescores the scores obtained from the base procedure. The intuition behind the

rescoring procedure is that a potentially sound morpheme should be recognized if it

keeps ‘good company’: it should receive a higher score if all the morphemes co-

occurring with it have high scores. The procedure thus averages the scores of a

morpheme over all of its co-occurring morphemes instead of taking the counts of the

co-occurring morphemes as was the case in the base procedure.

The second extension is a root size normalization procedure. Shorter potential root

morphemes are by their very nature very frequent. Since the contrastive learning

technique is wholly dependent on morpheme counts it is important to normalize these

counts across the different morpheme sizes. Up to this point the procedure has worked

because the analysis has been restricted to consider only triliteral morphemes. After

application of the normalization it would be possible to remove this restriction.

Finally, in order to gauge the merit of the unsupervised learning technique, I carry out a

comparative evaluation against existing, widely used rule-based Arabic stemmers.

130

5.1.1 Chapter Organization

The chapter reports three related strands of work. Firstly, section 5.2 formulates a

refinement procedure that is applied to the contrastive learning technique. The section

discusses methods for rescoring hypothesised morphemes and associated initialization

and stopping criteria, and goes on to present a set of experiments. Secondly, section 5.3

introduces a root normalization procedure, outlining two ways to normalize morpheme

counts in order to extend morphological induction beyond triliteral roots; the section

concludes with a further set of experiments. Thirdly, section 5.4 compares existing

stemmers with the contrastive learning procedure incorporating the extensions described

in the two previous sections. Section 5.5 concludes with a summary of the three strands

of work, and proposes further avenues for investigation.

 Contrastive Learning Refinement: Mean Rescoring

This section explores a refinement procedure that is applied to the recursively derived

scores for each morpheme from equations (4.14) and (4.15) of Chapter 4. In this

procedure, each morpheme is rescored by taking the average of the scores of all co-

occurring morphemes. The idea is that a sound root and pattern should always co-occur

with high scoring patterns and roots. If a morpheme co-occurs with a mixture of high

and low scoring morphemes then its overall score would decrease, reflecting the fact

that it is less reliable. In contrast, if a morpheme always has high scoring co-occurring

morphemes it would get a higher overall score.

In this section, the previously described mutually recursive scoring procedure is referred

to as the base procedure/algorithm/scoring, to which is applied the refinement step or

rescoring. Also, consideration is restricted to the two cases, contrast-pure and HITS.

Hence, contrast-pure is referred to simply as contrastive learning.

The rescoring procedure is recursive, using the seed score initialized from any of the

previous scoring methods of the base procedure. The refinement rescoring functions,

denoted by 𝑅S, are initialized using the converged scores 𝑅𝑆0(∙) = 𝑆𝑁(∙) from the base

procedure:

131

𝑅𝑆𝑘(𝑟) = ∑ 𝑅𝑆𝑘−1(𝑝)

|𝑃𝑟|

𝑝𝑖=1

 (5.1)

𝑅𝑆𝑘(𝑝) = ∑𝑅𝑆𝑘−1(𝑟)

|𝑅𝑝|

𝑟𝑖=1

 (5.2)

If 𝑅𝑆𝑘(𝑟) is computed first then it uses the values, 𝑘 = 1, 3, 5…, and the values 𝑘 =

2, 4, 6, … for 𝑅𝑆𝑘(𝑝). The values for 𝑘 get switched if 𝑅𝑆𝑘(𝑝) is computed first. The

recursive iteration differs from the base procedure in that in each iteration only one of

the two functions’ scores gets computed rather than both. Unlike for contrastive

learning and HITS, in this refinement step the rescored vectors do not converge as 𝑘 →

∞, as will be seen below; hence the stopping criterion at iteration, 𝑘 = 𝐾 needs to be

determined. Also, note that in the rescoring formula the score vectors from the previous

iterations are not normalized as has been the case previously, since the rescoring here is

based on computing the mean of scores, resulting in there being no chance of overflow

or underflow at each iteration.

5.2.1 Initialization

Similarly to the initialization of the mutual recursion of the base scoring method

(section 4.4), there are two choices for initialization: (i) initialize 𝑅𝑆1(𝑟) with the

pattern count oriented score and 𝑅𝑆1(𝑝) with 𝑅𝑆1(𝑟); or (ii) initialize 𝑅𝑆1(𝑝) with the

pattern count oriented score and 𝑅𝑆1(𝑟) with 𝑅𝑆1(𝑝). From step one, the pattern count

oriented score is that which was chosen by the mutual recursive step based on pattern

counts. Thus for HITS the pattern count oriented score is 𝑆(𝑝), hence my choice is type

(i) initialization for refinement rescoring. For the contrastive case I use type (ii) where

𝑆(𝑟) is the pattern oriented score in step one.

132

5.2.2 Convergence

Transforming the rescoring functions into a linear algebraic representation, using 𝑟 to

denote the root score and �⃑� to denote the pattern score,

 𝑟𝑘 = 𝐴𝑟 �⃑�𝑘−1 (5.3)

 �⃑�𝑘 = 𝐴𝑐 𝑟𝑘−1 (5.4)

where 𝐴𝑟 = 𝐴 𝑑𝑖𝑎𝑔(𝜙−1
𝐴
) and 𝐴𝑐 = 𝐴 𝑑𝑖𝑎𝑔(𝜙

−1
𝐴𝑇
), which are the adjacency matrix

divided by the sum of rows of 𝐴 (i.e. 1 |𝑃𝑟𝑖|⁄) and the sum of columns of A (i.e.

1 |𝑅𝑝𝑗|⁄), respectively. Combining the two equations (5.3) and (5.4) results in:

 𝑟𝑘 = (𝐴𝑟𝐴𝑐
𝑇)𝑟𝑘−2 (5.5)

 �⃑�𝑘 = (𝐴𝑐
𝑇𝐴𝑟)�⃑�𝑘−2 (5.6)

As shown in Chapter 4, it is possible to compute the dominant eigenvalue for a matrix

using the power law to prove convergence. For the algorithm to converge, the product

of the adjacency matrix product with its transpose has to be either symmetric or

diagonalizable. Unfortunately, neither 𝐴𝑟𝐴𝑐
𝑇

 nor 𝐴𝑐
𝑇𝐴𝑟 are symmetric. For a matrix

𝐴𝑟𝐴𝑐
𝑇
 or 𝐴𝑐

𝑇𝐴𝑟 to be diagonalizable, the graph represented by 𝐴 must be fully

connected. This is also not true since it is not likely that all morphemes would be

interconnected. Therefore, an alternative solution must be sought for stopping the

iterations.

5.2.3 Stopping Criterion

An important thing to note about the recursive rescoring functions is that a root is

assigned a score averaged over some patterns; likewise a pattern is assigned a mean

score over a certain set of roots. The dimensions of the two morpheme score vectors are

different. Since there is a single initial seed score based on the reliable pattern

133

occurrence counts (as described in section 5.2.1) the initial scores for patterns and roots

computed using the rescoring functions have different dimensions indicated by the size

or norm of the score vectors. As the algorithm iterates, there comes a point, 𝑘 = 𝐾,

when the size or norm of the root and pattern vectors are nearly equal, hence the

difference, 𝛿𝑘 between them is minimized,

𝛿𝑘 = 1 −

‖𝑅𝑆𝑘(𝑝)‖

‖𝑅𝑆𝑘(𝑟)‖

𝐾 = min
𝑘
 (𝛿𝑘)

(5.7)

Thereafter, the difference between the vector sizes starts to increase again. This is

illustrated in Figure 5.1, for an example using rescoring on contrastive learning. So, in

this case, at 𝐾 = 4 the iterations are stopped and the refined root and pattern vectors are

output.

Figure 5.1: The size difference between the root and the pattern vectors

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8

D
if

fe
re

n
ce

 𝛿

Iterations

134

5.2.4 Refinement Scoring Experiments

The refinement procedure is also a recursive procedure where it is crucial to identify the

iteration to stop at. Hence while evaluating the contrastive and HITS methods using the

same accuracy measure we will also look at how to identify a stopping criterion.

As stated in section 5.2.3, while iterating through the refinement procedure, there comes

a point when the difference between the size of the root vector and pattern vector is

minimized. This is the point when the two vectors are comparable and accuracy is

expected to be maximized.

For contrastive learning, in Figure 5.2, the plot for the vector difference between root

and pattern score vectors along with accuracy is plotted on the same graph at each

iteration. The two plots indicates clearly that there exists an inverse relationship

between the vector difference, 𝛿 and accuracy. Hence, at iteration 4, when the value of 𝛿

is minimized the accuracy of the lexicons is maximized.

Figure 5.2: The size differences between root and pattern vector

 alongside the accuracy, for contrastive learning

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
 (

%
)

D
if

fe
re

n
ce

 𝛿

Iterations

Vector Difference 𝛿 Accuracy

135

Almost exactly the same trend is seen for the HITS refinement procedure. Figure 5.3

shows the two plots for vector difference and accuracy, following the same behaviour

with only vector difference values scaled differently. This behaviour further

corroborates the hypothesis that the contrastive learning and HITS procedure are the

same in terms of ranking morphemes.

Figure 5.3: The size differences between root and pattern vector

 alongside the accuracy, for HITS

5.2.5 Summary of Evaluation Results

Table 5.1 summarizes the results for the three scoring methods after the base scoring,

recursive scoring and refinement steps. Overall, the morpheme learning technique

extended with the refinement step identifies almost 95% root morphemes correctly.

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
 (

%
)

D
if

fe
re

n
ce

 𝛿

Iterations

Vector Difference 𝛿 Accuracy

136

 Base Recursive Scoring Refinement

Contrast-Plus 87.5 89.56 ---

Contrast-Pure 78.8 92.06 94.7

HITS 63.9 92.61 94.7

Table 5.1: Comparison of the three methods in terms of accuracy

 Root Normalization: Unrestricted Morpheme Size

Up to this point the techniques and experiments have been restricted to triliteral root and

pattern morphology induction. In the Arabic language, most words are derived from

triliteral roots but there are a few four letter roots and a very few five letter roots. In the

QAC, 98.84 % of the derivable words are from three letter roots; the remaining ones

(1.16%) are four letter roots and there are no 5-letter roots. Therefore it is not

inappropriate to assume only triliteral roots for analysis. However, a goal of this work is

to avoid pre-defined parameter settings, since such artificial constraints subvert the

objective of unsupervised learning. Thus, the algorithm should be able to freely

discover the correct root from any length of substring morphemes, from a single

character root upwards.

Root normalization is the procedure which is applied to remove the restriction of only

three letter roots. The procedure balances the higher weights of shorter morphemes with

the lower weights of longer morphemes. There are two types of normalizations that are

carried out in order to balance the raw counts, namely, root weighting and variety

counts; in addition, a combination of both types is referred to as weighted variety counts.

This work also proposes a method to decide whether or not to apply a candidate pattern

to a split a word into a root and pattern or to leave it unanalysed.

137

5.3.1 Root Weighting

So far, the techniques have used raw morpheme counts. However, by their very nature,

shorter potential morphemes occur more frequently than longer ones. For example, if a

language has three characters in its alphabet, ∑ = {𝑎, 𝑏, 𝑐}, then there are four possible

strings containing each of the single character substrings, e.g. a is contained in a, ab, ac,

and abc; similarly, each two character substring is found in two strings of maximum

length three, e.g. ab is found in ab and abc. In general, a substring of size 𝑥 would occur

in 2𝑥−𝑦 strings of maximum length 𝑦. Using this count, it is possible to normalize the

weight, 𝛿𝑟
𝑤, of each root, 𝑟, according to its size in each word, 𝑤, applying the formula:

𝛿𝑟
𝑤 =

1

(2 |𝑤|−|𝑟|)

(5.8)

Table 5.2 shows an example of the three possible sizes of roots in a four character word,

along with the corresponding weights, 𝛿𝑟, in the word.

Root, 𝒓 Word, 𝒘 Weight, 𝜹𝒓
𝒘

a abcd 1/24−1 = 0.125

ab abcd 1/24−2 = 0.25

abc abcd 1/24−3 = 0.5

Table 5.2: Weighted counts of a root relative to its size in a word

Thus, the raw counts of |𝑃𝑟𝑖| in the summation formula of the pattern scoring procedure,

are replaced with the aggregated weights, 𝑊𝑇, for each 𝛿𝑟𝑖
𝑤 of each 𝑟𝑖 in 𝑤 such that

𝑟𝑖 ⊲ 𝑤 :

 𝑊𝑇(𝑟𝑖) = ∑𝛿𝑟𝑖
𝑤

|𝑃𝑟|

𝑟𝑖=1

 (5.9)

138

5.3.2 Root Variety Counts

Another type of normalization of the root counts uses variety counts instead of raw

counts. Variety counts are the counts of a root morpheme which do not include the

counts of any morphemes for which the former is a substring of the latter. For example,

given the three strings nktb, tktb and ktbA, the variety count of ktb is 3, as this root

substring occurs with three different characters. Although the raw count of kt is also 3,

since it is a substring of ktb whose count is 3, the variety count of kt is 1.

The procedure for adjusting the counts is as follows. Roots 𝑟𝑖 in 𝑅𝑝 are traversed in

descending order of root size. Let 𝑉𝐶𝑟𝑖 denote the variety count of 𝑟𝑖. Starting with

longest strings which are not substrings of any other root string, the value of 𝑉𝐶𝑟𝑖 =

|𝑃𝑟𝑖|, the raw count is assigned. For each root, 𝑟𝑖 that is traversed, the counts for all of its

substrings, 𝑟𝑗 having size |𝑟𝑖|-1, are adjusted by subtracting the counts, 𝑉𝐶𝑟𝑗 = |𝑃𝑟𝑗| −

 𝑉𝐶𝑟𝑖 + 1 if 𝑟𝑗 has not been visited, or 𝑉𝐶𝑟𝑗 = 𝑉𝐶𝑟𝑗 − 𝑉𝐶𝑟𝑖 + 1 if it has been visited.

Also, a wordlist is maintained for each 𝑟𝑗 containing words, 𝑤𝑘 such that if another root

𝑟𝑖 belonging to 𝑅𝑤𝑘 is traversed, 𝑉𝐶𝑟𝑗 is not updated; this is in order to prevent double

counting in the case of encountering substrings of substrings. Hence, in this way the

counts of shorter morphemes which tend to occur as substrings of other morphemes are

reduced.

5.3.3 Weighted Variety Counts

A third type of normalization is based on the variety counts, but instead of using the raw

counts, the weighted counts from section 5.3.1 are used. In the example given above, for

the three strings, nktb, tktb and ktbA, the weighted variety count of ktb is 1.5

(0.5+0.5+0.5) instead of the raw count 3; and the weighted variety count of kt is 0.25

(0.25+0.25+0.25/3), the average weight of kt in the three strings, instead of the raw

count 1.

The formulae above are adjusted, such that for the root 𝑟𝑖 in descending order, 𝑉𝐶𝑟𝑖 =

 𝑊𝑇(𝑟𝑖) and for the substrings 𝑟𝑗,

139

 𝑉𝐶𝑟𝑗 = 𝑊𝑇(𝑟𝑗) − 𝑉𝐶𝑟𝑖 + 𝐴𝑊𝑇(𝑟𝑖) (5.10)

and

 𝑉𝐶𝑟𝑗 = 𝑉𝐶𝑟𝑗 − 𝑉𝐶𝑟𝑖 + 𝐴𝑊𝑇(𝑟𝑖) (5.11)

where

 𝐴𝑊𝑇(𝑟𝑖) =
1

|𝑃𝑟|
∑ 𝛿𝑟𝑖

𝑤

|𝑃𝑟|

𝑟𝑖=1

 (5.12)

5.3.4 Extended Analysis

Since morphology learning has previously been restricted to triliteral roots, the

adjacency graph includes roots of size |𝑟| = 3 and patterns with 𝑓𝑝(∸) = 3 from 𝑤

where |𝑤| > 3. For example, the decomposition of word yErf is

𝐷(𝑦𝐸𝑟𝑓) =

{

〈𝑦 𝐸 𝑟, − − −𝑓 〉,
〈𝑦 𝐸 𝑓, − − 𝑟 −〉,

 〈𝑦 𝑟 𝑓, −𝐸 − −〉,
〈𝐸 𝑟 𝑓, 𝑦 − − −〉}

Further, when analysing a word with |𝑤| > 3, it has to undergo a compulsory analysis

into root and pattern outputting as |𝑟| = 3, the only root size available in set 𝑅𝑤. Words

where |𝑤| ≤ 3 are thus output as whole, unanalysed by the procedure. The accuracy

figures quoted so far thus include the correctly identified three letter roots as well as the

unanalysed three letter words.

Relaxing the restriction would allow any root size, extending the 〈𝑟, 𝑝〉 pairs in the

above example to also include pairs such as {〈𝑦, −𝐸𝑟𝑓〉, 〈𝑦𝐸, − − 𝑟𝑓〉,… }. The

unrestricted set 𝑅𝑤 of all possible substrings 𝑟𝑖 of 𝑤 would analyse any word of size

140

|𝑤| > 1. However due to the restriction |𝑟| < |𝑤|, i.e. excluding 𝑟 = 𝑤 in 𝑅𝑤, every

word would undergo compulsory analysis to a root of maximum size |𝑤| − 1. Thus, for

example a word ktb would be forced down to perhaps kt or kb without allowing the

output ktb which is the correct root form.

In order to remove this limitation, allowing words to be output unanalysed, I now

extend 𝑅𝑤 to include 𝑟 such that 𝑟 = 𝑤. 𝑅𝑤 thus includes all possible substrings of 𝑤

including 𝑤. When 𝑟 = 𝑤, the corresponding pattern 𝑝 has 𝑓𝑝(∸) = |𝑤|, i.e. all blanks

with no affix characters. These patterns will be referred to as null patterns, �̅�. For the

example word yErf, the pair 〈𝑦𝐸𝑟𝑓, − − − −〉 is now included as a potential analysis.

Thus the analysis output has been extended to include whole words instead of

compulsory root and pattern constituents.

The raw count of null patterns, |𝑅�̅�| is the count of the number of words having

𝑓�̅�(∸) = |𝑤|, which is a very large number in comparison to other pattern counts. This

would force the analysis to output whole words only, without possible analysis into root

and pattern constituents. An adjustment of the count |𝑅�̅�| to a suitable lower value is

required in order to induce analysis. I chose to heuristically set the value of |𝑅�̅�| to the

largest count of a non-null pattern, 𝑝𝑖 with 𝑓�̅�(∸) = 𝑓𝑝𝑖(∸). Hence, for example if the

largest pattern count occurs for a pattern ‘y---‘ is |𝑅𝑝=𝑦−−−| = 150, then |𝑅𝑝=−−−| =

150 instead of the count of the number of three letter words, which could be in the

thousands.

5.3.5 Experimental Results for Root Normalization

This section presents an evaluation of the various root normalizations, removing the

restriction of only considering 3-letter root and pattern template, along with extended

analysis to allow whole (unanalysed) words to be output. Previously, the number of

evaluated words with triliteral roots was 5481. This increases to 5545 forming the entire

set of derivable words for evaluation, with the inclusion of the 64 four-letter root words

in the QAC.

141

Starting with the contrastive learning base algorithm (from Chapter 4), I first compare

weighted root normalization (CL_WR), followed by variety count (CL_VC) and weight

variety count (CL_WVC), finally concluding with the extended analysis

(CL_EA_WVC). The comparison of the different configurations is shown in Table 5.3.

Stemmer Correct (out of 5545) Percentage Accuracy

Base 0 0

CL_WR 4268 76.97

CL_VC 4273 77.06

CL_WVC 4297 77.49

CL_EA_WVC 5056(20) 91.18

Table 5.3: Comparison of different root count normalization and extended analysis

As expected, the base algorithm is unable to perform in the absence of the 3-letter root

restriction, producing only single character roots as the output for all the words. This is

because short root substrings have very high counts, in the order of thousands, whereas

triliteral root counts would be in the range zero to 10. By applying root weighting,

(CL_WV) an appropriate analysis is output with a considerable number of roots

correctly identified. This output, with an accuracy of 76.97%, shows the importance of

assigning the correct count weight to each root substring relative to the word size in

which the substring occurs.

Next, the variety count normalization (CL_VC) is applied. This normalization scheme

shows slightly better performance than root weighting (CL_WR). The variety count not

only reduces the count of shorter morpheme substrings relative to the size of a word but

also assigns a standalone count independent of the counts of its superstrings. CL_WVC

shows further improvement, indicating the advantage of the combined formulation.

Extending the analysis to allow whole words to be output permits words such as ktb

which have been previously analysed as kt to be correctly analysed as the root ktb. The

142

output shows more than 760 three character words have been correctly analysed which

were previously constrained to be analysed into the root substring of the word.

Moreover, 20 four-letter root words have been correctly analysed which demonstrates

that the extensions work beyond triliteral roots. There is only 31.25% accuracy for four

letter roots but usually quadraliteral roots are hard to recognize. Since the dataset

consists of predominantly three-lettered roots (98.4%), the number of pattern counts

associated with 3-letter roots, 𝑟𝑖
3 is far greater than the number of pattern counts for four

letter roots, 𝑟𝑖
4: |𝑃𝑟𝑖

3| ≫ |𝑃𝑟𝑖
4|. This, therefore, undermines the importance (weight) of

the associated four letter substrings.

Thus the performance after applying these extensions is comparable to the performance

of the triliteral root restricted system of Chapter 4.

 Stemmer Comparison

With the developments to the contrastive learning procedure for unsupervised learning

of morphology, I compare the technique to manually built tools for root extraction

known as ‘stemmers’8.

There are several stemmers that have been implemented for Arabic which are able to

analyse an Arabic word and output its root. Most of these stemmers are rule-based,

defining manually written procedures for removing affixes from words relying on hand

encoded lists of patterns and affixes and even lists of roots. Some prominent stemmers

are described by Khoja & Garside (1999), Al-Shalabi (2005), Taghva et al(2005),

Ghwanmeh et al (2005), and Sonbol et al (2008). All of these were produced by labour

intensive methods and are limited to the encoded list of patterns and affixes.

I compare my unsupervised learning technique evaluated on accuracy of root extraction

to two existing rule based stemmers: (i) the Khoja Stemmer (Khoja & Garside, 1999)

8 Although generally referred to the process of obtaining stems by removal of prefixes and suffixes,

‘stemming’ is sometimes referred to mean the process of removing any affixes from words, and reducing

these words to their roots.

143

and the (ii) ISRI Stemmer (Taghva et al, 2005). These systems are representative of this

class of Arabic stemmers.

5.4.1 Khoja Stemmer

This stemmer makes use of a dictionary of roots and patterns to produce the desired root

of a word. The stemmer first removes the longest suffix and the longest prefix using a

list of affixes. What remains is then matched with the verbal and noun patterns, thus

extracting the potential root. This root is looked up in a root dictionary. If found in the

dictionary, the correct analysis is output. In more detail, the procedure for stemming is

outlined below:

1. Text is normalized, removing punctuation, numbers and any traces of diacritics

representing short vowels.

2. Stop words are removed.

3. Clitics such as the definite article ال (Al) and conjunctions و (w) are removed

4. Longest suffixes are removed.

5. Longest prefixes are removed.

6. The resulting stem is matched against a list of pattern templates to extract the

root.

7. The root is validated against a dictionary of correct roots. If it is not found, the

stem is output.

8. All weak radicals or long vowels ا(A), و(w) and ي(y) are conflated to the single

vowel و(w).

9. All occurrences of humza letters (أ,ء ,ئ ,ؤ) are conflated to a single letter أ(<)

10. If the root resulting from step 7 has only two characters then the root dictionary

is checked to see if there are reduplicated letters, which are then added to the

root.

The conflation of weak radical to a vowel letter (step 8) is a debatable attempt to

implement the weak root radical rule (section 1.3.1.3). This is an oversimplification,

making the analysis of weak radical roots correct for only two possible radicals of the

144

root. It also gives rise to errors in the analysis of non-weak roots, as pointed out by

Taghva et al (2005), where for example the word mnZmAt receives the incorrect

analysis Zm< instead of the root nZm.

5.4.2 Information Science Research Institute (ISRI) Stemmer

The stemmer developed by Taghva et al (2005) at the Information Science Research

Institute (ISRI) is an attempt to overcome the Khoja stemmer’s dependence on a root

list. It is currently part of the Natural Language Tool Kit (NLTK)9 as the stemmer for

Arabic. It builds on and improves the rules implemented by the Khoja stemmer without

relying on the root dictionary.

Affixes are assigned to classes. Prefixes and suffixes are classified according to their

character lengths. Pattern templates are classified in terms of length of the pattern and

the length of the root. Also the order of application of each affix within each class is

fixed. Thereafter, the procedure, similarly to the Khoja stemmer is applied with a

specific order of application of the different classes of prefixes, suffixes and pattern

templates. The procedure is outlined below:

1. Normalization: diacritic removal; Humzated letter conflation.

2. Remove longest prefix (length three then two)

3. Remove the conjunction w(و) in the case of two consecutive w (و و).

4. Conflate all marked alif (إ ,أ) to the unmarked alif (ا) or A.

5. If the resulting stem is three characters long, output the stem as the root.

6. Length 4 stem: match pattern template to extract three letter root; if there is no

match them check suffix and prefix in order. Output triliteral root if there is a

match; else output the noralized word.

7. Length 5 stem: first apply step 6 except; if still a 5 character stem remains then

apply pattern template with 4 letter roots. Output root if a match is found.

8. Length 6 stem: match appropriate 3-root pattern. If no match remove 1-character

suffix or prefix if matched. If removed repeat step 7.

9 http://www.nltk.org/

http://www.nltk.org/

145

9. Match 1-character suffix or prefix. If found repeat step 8.

In summary the algorithm applies certain rules to remove prefixes and suffixes in a

particular order, matching the stripped word against a set of patterns for either three or

four letter roots; if a pattern is found, the root is then output. The tool minimizes the set

of patterns used thus putting less dependence on pre-encoded lists. Taghva considers

this to be the main difference between this algorithm and other Arabic root finding

algorithms.

5.4.3 Shortcomings of Existing Stemmers

Most Arabic stemmers suffer from the ‘affix ambiguity problem’ (Al-Shawakfa et al,

2010). This ambiguity arises due to a failure to distinguish the suffix and prefix from

the pattern affix in a word, leading to application of the incorrect rule. For example, a

stemmer might incorrectly stem the word mskwn to msk, stripping away the suffix wn,

instead of applying the mfEwl pattern to retrieve the correct root, skn. The ambiguity

also extends to choices for prefix and suffix morphemes which may have the same form

as peripheral pattern characters.

The main reason for this failure is the hard-coded order of removal of affixes. Stemmers

differ in their sequence of rule applications but these are mostly based on linguistic

judgement which caters for the majority of cases in a development dataset but may fail

in other kinds of text. Besides, there is the additional overhead of maintenance of the

rules to adjust to different language variants.

Dictionary maintenance and updating is a resource intensive requirement for stemmers

having modifiable lists of roots and patterns. Though most authors do away with the

root dictionary, as in the ISRI stemmer, defining the patterns to be incorporated and the

order of application of these patterns is non-trivial. Taghva et al (2005) use 44 patterns,

while Ghwanmeh et al (2005) use up to 80 patterns. This can be compared with a total

of 185 (undiacritized) distinct pattern types (see Appendix A) derived from Attia (2011).

According to Al-Kabi et al (2011), the Ghwanmeh et al (2005) stemmer overall

performs better than ISRI but on certain occasions ISRI performs better at finding the

146

correct roots. This is due to the arbitrary choice of pattern order in the stemmers.

5.4.4 Experiments

This section empirically compares the Khoja and ISRI stemmers to the contrastive

learning technique in terms of root extraction accuracy. The same normalization

procedure is used in both stemmers but this differs slightly from the transliteration and

normalization defined in Appendix C which is used in the previous evaluations in this

thesis. Hence the vocabulary of conjugated words reduces to 5366 from 5429 due to a

smaller alphabet resulting in more conflated character classes. For example, previously

the alif madda letter (آ) was transliterated to two consecutive characters ` and A; whereas

now it must be classed with other Humzated alif letters (أ and إ) which are conflated to

the single ا (A).

As stated above, conflation of the weak radical to a single letter is an inadequate

attempt to implement the weak root radical rule. Nonetheless for the sake of fair

comparison with the Khoja stemmer, I consider two types of evaluations: one where the

weak root letters are not conflated and one where they are conflated. The comparison

showing the former evaluation type is shown in Table 5.4.

Stemmer Correct (out of 5429)

(total)(quadraliteral)

Percentage Accuracy

Khoja 4431(33) 81.62

ISRI 4504(26) 82.96

Contrastive Learning 4899(0) 90.24

Table 5.4: Accuracy comparison of the Khoja and ISRI stemmers with contrastive

learning without weak radical conflation. The number of correct quadraliteral root

words shown in brackets.

As expected, the accuracy of the Khoja stemmer is lower than the other two methods.

ISRI outperforms Khoja despite not using a root dictionary, but this superiority is only

147

due to the oversimplification of root radical conflation which renders many of the weak

radical roots invalid for Khoja. The comparison shows the significant superiority of the

unsupervised learning technique, with an improvement of 7.28 percentage points over

the manually built stemmers.

One surprising outcome is that with a slightly different normalization procedure applied

to the same dataset, the contrastive learning technique fails to recognize any four letter

roots. This may be because simplifying the words conflates important pattern templates

thus giving unclear indication of roots. This aspect needs further investigation to know

what conflation classes cause the algorithm to perform less well.

The final evaluation conflates the weak root radicals to accommodate for the Khoja

stemmer. The results are shown in Table 5.5. In this evaluation, the Khoja stemmer

outperforms the ISRI stemmer by 3.33 percentage points. Yet again, as seen in the table,

the accuracy of unsupervised contrastive learning without the refinement step is better

still, by 3.1 percentage points over the manual approach. With refinement, the accuracy

increases giving an overall improvement of 5.07 percentage points over the Khoja

stemmer.

Stemmer Correct (out of 5429)

(total)(quadraliteral)

Percentage Accuracy

Khoja 4775(33) 87.95

ISRI 4594(26) 84.62

Contrastive Learning

(basic)

4943(0) 91.05

Refined 5050(0) 93.02

Table 5.5: Accuracy comparison of the Khoja and ISRI stemmers with contrastive

learning and refined contrastive learning using weak radical conflation. Number of

correct Quadraliteral again shown brackets.

148

5.4.5 Discussion

These comparisons with existing, widely-used Arabic stemmers confirm the worth of

the unsupervised learning technique developed in this thesis. In comparison to the

stemmers, the contrastive learning technique bases the analysis of a word not just on the

affix pattern but also the strength of the resulting root. Thus, character sequences

weighted highly as a consequence of a strong co-occurring affix pattern would be likely

root candidates, whereas no such gauge for potential roots is available in rule-based

stemmers. Also, the technique automatically learns a meaningful ordering of

morphemes in the lexicon, thus eliminating the manual task of setting the right order

affix/pattern application in the stemmers. In addition, there is no arbitrary choice of

affixes and patterns hand coded into the system which determines the scope of

application of the stemmers; instead the unsupervised learning techniques discover

patterns based on their occurrence in the corpus. Even if there is a rare pattern in the

corpus, it may be correctly recognized as a consequence of the weights assigned to

potential roots that occur with other patterns. But it would not be analysed by the

stemmers if it were omitted from their encoded pattern lists.

These advantages are reflected in the evaluation results. The affix ambiguity problem is

reduced due to the learned ordering. For example, for the Khoja stemmer, the word

mrjAn is analysed to rjn, applying the pattern m - - A - instead of removing the suffix

An; the ambiguity between the affixes prevents it yielding the correct root mrj. But in

the contrastive learning algorithm this ambiguity is removed; the roots rjn and mrj with

weights 1.40743e-05 and 8.64987e-05 and patterns m - - A - and - - - An with weights

0.000193684 and 0.000103935 lead to the correct analysis 〈mrj , - - - An 〉 with

aggregate weight 1.67534e-08, compared to the incorrect analysis 〈rjn , m - - A - 〉 with

lower weight, 1.46281e-09. The algorithm’s assignment of weights to the root and

pattern reflects their significance in the corpus, whereas no such knowledge is available

to the dictionary based stemmers.

149

 Conclusion

This chapter concludes the description and evaluation of an unsupervised approach to

learning the intercalated morphology of Arabic. Starting off with the basic link analysis

based algorithm, a refinement method is first formulated to further improve the results.

This iterative rescoring procedure helped increase performance without compromising

unsupervised learning. Next, moving beyond triliteral roots, morpheme count

normalization methods were introduced to allow recognition of roots without restricting

morpheme size. This allowed the correct analysis to be chosen for any of root size

starting from single character substrings. Finally a comparative evaluation with existing,

widely used stemmers establishes the true significance of the unsupervised contrastive

learning technique which outperforms the rule-based tools in terms of root identification

accuracy.

The work reported in this thesis has explored several issues but there are further areas

that warrant investigation. The refinement procedure lacks a theoretical foundation and

could be studied further in term of graph connectivity. It might be possible to identify

groupings of morphemes that are connected in the graph to reveal paradigm-like

associations between root and pattern morphemes.

The normalization procedure looked into root variety count normalization but no

investigation into pattern variety counts was carried out. This may further enhance the

ability to capture the right analysis given balanced pattern counts. Also, while extending

morphological analysis to whole words, a simple approach was used to induce the

analysis of words, where null patterns were assigned weights of the highest non-null

patterns (section 5.3.4). Other approaches could be investigated for this sub-task.

Although the current approach does give some idea about when to and when not to

analyse words, a more in-depth investigation might be worthwhile investigating. There

could be an automatic procedure to determine a threshold such that words with scores

below a certain threshold value are left unanalysed. Other approaches include making

use of the Minimum Description Length (MDL) principle to decide whether a particular

analysis would reduce the total size of representation of the morphemes.

150

The unsupervised learning techniques proposed in this thesis were designed to be

parameter free and independent of language specific choices. Yet, the techniques

perform comparably or better than existing manual tools. In principle, it would be

possible to use the same techniques across different datasets and languages without the

need to understand the structure of the language.

151

Conclusions

 Introduction

The aim of the research reported in this thesis was to develop and investigate techniques

for learning the non-concatenative morphology of Arabic in an unsupervised manner.

Making the techniques unsupervised means that the developer does not need to know

the linguistic structure and morphological rules of the language. Thus, no manual labour

is required for coding such rules; nor is there a need to obtain annotated datasets for

training supervised learning models for learning word structure. To be used in practical

applications, an unsupervised learning approach must give performance comparable to

systems based on manually developed rules or supervised learning. While effective

unsupervised learning methods have been built for concatenative morphology it has not

previously been shown whether effective systems can be built for non-concatenative

morphology.

The research questions stated at the beginning of the thesis were:

Can the non-concatenative morphology of Arabic be learnt effectively

with performance reasonably close to that of linguistic resources and

tools? To what extent can the devised approach be independent of

manual settings and language specific parameters?

In order to answer these questions, two techniques were devised to learn lexicons of

roots and patterns. The first technique was inspired by an existing one based on

Maximum Entropy modelling adapted for unsupervised learning, which was originally

used to identify affixes sequentially appended to a stem (concatenative morphology).

The second technique learns the lexicons using a simpler yet more efficient approach

based on mutually recursive count updates of co-occurring root and pattern morphemes.

The more effective of the two methods was the latter, the contrastive learning approach.

This was then extended, resulting in a robust procedure for producing a ranked list of

152

root and pattern morphemes, which are then used to produce an analysis of a word into

its root and pattern morphemes. Careful steps were taken to keep the techniques free of

any parameter settings or language specific information. The final extended technique

was compared with two rule-based Arabic stemmers, through an evaluation on data

from the Quranic Arabic Corpus. The unsupervised learning approach gave comparable

or better performance than the manually built tools, in terms of accuracy of root

identification.

This chapter highlights the strengths and novelties of the implemented unsupervised

learning techniques, as reflected in the empirical findings. It also highlights limitations

that are difficult to address in unsupervised approaches. Since this research is a

preliminary attempt to address the problem of non-concatenative morphology, there are

several aspects that deserve further explanation in order to determine the full potential

of such unsupervised methods.

6.1.1 Chapter Organization

Section 6.2 discusses the contributions of the research. Limitations are discussed in

section 6.3, and aspects that are missing pointed out in section 6.4. Based on these

shortcomings, section 6.5 outlines possible future work. Section 6.6 concludes.

 The Strengths and Contributions

This research addresses the unsupervised learning of non-concatenative morphology for

naturally written undiacritized Arabic text, in which a word is broken down into all

possible root and pattern combinations. For a word of length n, the number of

combinations of root and corresponding pattern pairs amounts to 2n -1, an exponential

number. This model could only be feasibly applied to stemmed, undiacritized words

which are relatively short. Experiments to learn the morphology of vowelled text by

Rodrigues & Cavar (2007) and Xanthos (2007) have had to use heuristics to reduce the

search space of possible analysis before applying their respective unsupervised learning

techniques. For instance, Xanthos uses Sukhotin’s vowel identification algorithm to first

153

narrow down potential possible patterns before applying an MDL based unsupervised

learning technique. However, this initial pruning of the possible analysis set is likely to

result in sub-optimal morphology learning accuracy.

The contrastive learning approach, developed in Chapter 4 and extended in Chapter 5, is

a novel method of (unsupervised) learning of the morphology of Arabic which is

designed to simultaneously learn roots and patterns, exploiting their mutual inter-

dependence. It employs a mutually recursive procedure which gives an optimized

morpheme weighting. This strategy is in contrast to most contemporary approaches to

unsupervised morphology learning which are based on data compression techniques.

Such compression or MDL-inspired approaches have been criticized for their weak

theoretical and practical basis (Hammarström, 2007): intuitively, there is little link

between data compression and what linguists conceive as morpheme units;

experimentally, such compression based methods usually depend on thresholds and

supervised parameters.

Approaches that are free of language specific parameters and thresholds are more

applicable to other languages in the Semitic group and also to other Arabic dialects,

which all exhibit similar root and pattern structure. This was a central concern in this

work in order to make it suitable for other similar applications. In particular, some other

unsupervised learning techniques make use of inter-radical distance thresholds and are

limited to learning triliteral roots (e.g. Elghamry, 2004; Rodrigues & Cavar, 2005).

Most previous work aims to learn affixes by using only information from affix or other

substring counts, but not whole lemma (stem/root) counts. The approach pursued in this

thesis is distinctive in that it learns affixes and lemmas simultaneously, making use of

information from both types of morphemes. In this way, the analysis procedure is

strengthened by not just good affix candidates but also plausible lemma candidates in a

word.

The approach produces a ‘natural’ ordering of morphemes in the lexicons according to

their prevalence in the vocabulary dataset. This is one of the strengths of the algorithm

over manually-based approaches. Manually built tools for Arabic morphological

analysis usually rely on a list of affixes and an arbitrary ordering of these affixes to be

154

applied when there is ambiguity in the analysis. This ordering relies on linguistic

judgement and may not reflect the actual occurrence of morphemes in the text being

analysed. The learning method offers morpheme ranking that reflects the actual

morpheme usage in the text.

Most systems for Arabic root identification are limited to identifying triliteral roots and

do not provide a means to go beyond to quadraliteral or other sized roots. In this work,

an attempt to recognize any size roots is presented which has been successful to some

extent in capturing roots of any size. With some further refinements to the system it

may be possible to improve the performance on other sized roots beyond triliteral.

In the maximum entropy based learning approach, as well as adapting it to non-

concatenative morphology, I worked on correcting the formula for obtaining the log

based morpheme score from that originally proposed. Previously, the calculation was

contrary to intuition, giving higher weight to unrelated words. I modified the log scoring

formula to invert the incorrect scoring trend while also introducing a measure to give

emphasis to the length of related words.

 Limitations

As discussed earlier, Arabic word formation includes certain morphophonemic

adjustments, such as the weak root radical rule, i.e. changing long vowels in the root to

a different long vowel in the actual words. Similarly, at times the long vowel is

completely dropped in the final word, leaving only two root radicals from a tri-literal

root. Also, reduplicated root radicals are represented with a shaddah marker (ّ) which

is omitted in undiacritized texts, again resulting in only two radicals in the final word.

The unsupervised learning technique is incapable of identifying such roots correctly as a

whole, although partial identification may be possible. Thus if two out of the three root

radicals are identified correctly the analysis could be classed as a correct, but not the

complete solution. To map back exactly to the modified radical would be very hard to

accomplish with unsupervised learning.

155

Unlike manually-based systems, which can be applied to single words at a time in order

to obtain a satisfactory result, unsupervised techniques are dependent on having a

sizable corpus to extract a lexicons. Hence, methods for unsupervised learning are

sensitive to corpus content and size. This sensitivity is somewhat visible in the different

performance for the two different normalizations of the QAC (section 5.4). The input

needs to contain a large number of morphologically inflected words; uninflected words,

such as proper nouns, are like noise for the learning algorithm.

Another drawback of unsupervised systems is computational cost. Although there are

no dictionary storage requirements as for manual tools, the procedure for induction

requires processor and memory resources. Processing times may be significantly longer

than manually-based systems which may only perform string search operations. For the

machine learning based approach, with the QAC vocabulary it can take up to a few

hours to build a model and apply the model back to obtain nearest neighbour clusters.

On the other hand, the contrastive learning approach requires only a couple of minutes

to extract the lexicons, depending on the number of iterations performed. Long

processing time is the result of the large search space of possible analyses which are

exponential in the length of each word. Fortunately, for stemmed, undiacritized Arabic

words this search space is considerably reduced. Memory requirements are likewise

high when it is necessary to store a list of all possible root and pattern combinations for

all vocabulary words.

 Omissions

An aspect that was not investigated is the process of deciding when to analyse or to

leave a word unanalysed. It was only briefly touched on from one angle when

considering the morpheme count of the null pattern (section 5.3), where words were left

unanalysed if they occurred more frequently as a whole than as a substring. However,

this is not a principled solution.

The lexicons derived are ranked lists of all possible morphemes, with the most

promising ones appearing at the top. There is a need to automatically determine a cut-

off point for the roots and patterns in order to filter out morphemes that are not in the

156

language. This would reduce the computational cost at each iteration and also provide a

means of deciding which words should be morphologically analysed.

With regards to formal evaluation, most morphological analysis systems are evaluated

using F1-score, with precision and recall values being recorded over the entire

vocabulary and not just inflected words. This kind of evaluation would be possible if the

above limitation on making analysis decisions could be addressed.

Applying these techniques to day-to-day written texts, such as newswire, would test

their robustness. The QAC, having a vocabulary with relatively few uninflected words,

is not completely representative of naturally composed Arabic text in current daily

usage. Some researchers (e.g. Rodrigues & Cavar, 2007; Xanthos, 2007) have used only

artificially inflected words derived from verb conjugators or the Buckwalter

morphological analyser (BAMA) in order to test their root extraction methods. Such

word lists do not gauge the true effectiveness of their techniques for practical

applications.

A further issue that is not investigated in this thesis is the size of corpus used for

morphology learning. The QAC contains approximately 7000 word types. It would be

interesting to experiment with smaller random samples of the corpus to determine the

impact of corpus size.

 Future Work

Having considered some of the weaknesses and shortcomings, the following areas

warrant further investigation:

 Address the analysis decision problem:

o Formulate a method to determine whether to analyse a word or leave it

unanalysed.

o Automatically determine a value for the morpheme list cut-off.

o Experiment with different approaches to determine the null-pattern count.

o Evaluate morphological analysis output for the entire corpus vocabulary

using F1 score.

157

 Apply the technique to other corpora such as the Penn Arabic Treebank10, or the

Arabic Gigaword11. Unfortunately, the only satisfactory evaluation corpus for

non-concatenative morphological analysis is currently the QAC. To produce

another gold standard, one might apply an existing morphological analyser that

outputs all possible analyses and disambiguate the result by hand.

 Extend the technique to apply it to dialects such as Egyptian Arabic and also to

other Semitic languages such as Hebrew. The morphology of Semitic languages

has the unique unifying aspect that it is based on a templatic structure,

distinguishing it from other language families. The unsupervised technique

presented in this thesis could in principle accommodate the variations in patterns

of the various Semitic languages. The corpus normalization procedure would

however have to be adjusted to remove diacritics appropriately for each

language as they have different sets of short and long vowels and also possibly

different conventions of omission and inclusions in written text. Other minor

regularization might be required, e.g. for Hebrew normalising the sofit (final)

letters to non-sofit form.

 By treating the corpus used for learning as running text, it may be possible to

apply unsupervised pre-processing methods to distinguish word types into nouns,

verb, particles, proper nouns etc. and apply the morphology learning technique

to word subgroups in order to obtain pattern templates for respective groups, or

paradigms. These subgroups may be obtained by applying automatic syntactic

categorization, for example as proposed by Clark (2000).

 Compare contrastive learning with the widely used MDL-based approaches to

morphology learning. This will give an understanding of how this technique

compares to compression based techniques for unsupervised learning.

10 Website: http://www.ircs.upenn.edu/arabic/

11 Website: http://catalog.ldc.upenn.edu/LDC2011T11

158

 Exploit the large amount of research and advances made in ranking webpages

using Link Analysis Ranking (LAR) algorithms – to which contrastive learning

bears much resemblance. One promising avenue of investigation is the SALSA

algorithm (Lempel and Moran, 2000), which is essentially the same as the

refinement part of contrastive learning (section 5.2), but applies an alternative

stationary solution rather than a non-convergent recursive formula. The

algorithm would consider each morpheme’s count in each connected component

of the adjacency graph, rather than the overall structure of the graph.

 The contrastive learning approach could be applied directly to unstemmed data,

although in this case overlapping patterns would be underrepresented due to data

sparsity. This could be addressed by considering pattern variety count

normalization similar to the root variety normalization carried out in section 5.3.

 Contrastive learning could be adapted for concatenative morphology by learning

affix-stem pairs instead of roots and patterns. Alternatively, the technique could

be adjusted to consider a pair of adjacency graphs: prefix-stem, stem-suffix, with

a composite score for each possible analysis.

 Finally, the contrastive learning technique could be used to enhance the

performance of existing stemmers when they are applied to a corpus: since the

root and pattern lists are known, these morphemes could be scored using the

iterative scoring procedure to help order the morphemes.

 Outlook

This research has demonstrated the feasibility of unsupervised learning of non-

concatenative morphology, with performance comparable to that of manually based

systems. It has the potential to adapt to different languages while assuming no prior

knowledge about the language. There is good potential to further develop and improve

the techniques and to apply them in new settings.

159

Bibliography

Al-Kabi, M. N., Al-Radaideh, Q. A., Akkawi K. W. (2011). Benchmarking and

assessing the performance of Arabic stemmers. Journal of Information Science, 37(111).

Al-Shalabi, R. (2005). Pattern-based stemmer for finding Arabic roots. Information

Technology Journal, 4(1), 38–43.

Al-Shawakfa, E., Al-Badarneh, A., Shatnawi, S., Al-Rabab’ah, K., Bani-Ismail, B.

(2010). A comparison study of some Arabic root finding algorithms. Journal of the

American Society for Information Science, 61(5), 1015–1024.

Andreev, N. D. (1959). Modelirovanije jazyka na base ego statističeskoj i teoretiko-

množestvennoj struktury (Modelling languages on the basis of their statistical and set

theoretical structure). In Tezisy soveščanija pomatematičeskoj lingvistike, 14–21 Aprelja

1959 goda. Ministerstvo vysšego obrazovanija SSSR, Leningrad, pages 15–22.

Andreev, N. D. (1963). Algoritmy statistiko-kombinatornogo modelirovanija morfologii,

sintaksisa, slovoobrazovanija i semantiki (Algorithms for statistical-combinatory

modelling of morphology, syntax, word formation and semantics). In Materialy po

matematiˇceskoj lingvistike i mašinomu perevodu: Sbornik II. Izdatel’stvo

Leningradskogo universiteta, Leningrad, pages 3–44.

Andrew, G., Gao, J. (2007). Scalable training of L1-regularized log-linear models.

International Conference on Machine Learning (pp. 33–40).

Attia, M., Pecina, P., Tounsi, L., Toral, A., Genabith J. (2011). Lexical Profiling for

Arabic. Electronic Lexicography in the 21st Century, Bled, Slovenia.

Source of Morphological Patterns: http://www.attiaspace.com/

Baroni, M., Matiasek, J., Trost, H. (2002). Unsupervised discovery of morphologically

related words based on orthographic and semantic similarity. In Proceedings of the

Workshop on Morphological & Phonological Learning of at ACL, pages 48–57.

160

Beesley, K. R. (1996). Arabic finite-state morphological analysis and generation. In

Proceedings of the 16th International Conference on Computational Linguistics

(COLING '96), volume 1, pages 89-94.

Berger, A. (1997). The improved iterative scaling algorithm: A gentle introduction.

http://www.cs.cmu.edu/~aberger/pdf/scaling.pdf (last accessed 15th December 2014).

Berger, A., Della Pietra, S. A., Della Pietra, V. J. (1996). A Maximum Entropy

Approach to Natural Language Processing. Computational Linguistics, 22(1):39-71.

Berger, A., Miller, R. (1998). Just-in-time language modelling. Proceedings of

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Bloomfield, L. (1933). Language. Henry Holt & Co, New York.

Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P. (2005). Link Analysis Ranking

Algorithms Theory And Experiments. ACM Transactions on Internet Technology, 5(1).

231-297.

Brin, S., Page, L. (1998). Anatomy of a large-scale hypertextual web search engine. In

Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia,

Apr. 14–18. pp. 107–117.

Cavar, D., Herring, J., Ikuta, T., Rodrigues, P., Schrementi, G. (2004). On Induction of

Morphology Grammars and its Role in Bootstrapping. In Proceedings of the 9th

Conference on Formal Grammar, pages 47–62, 2004.

Cavar, D., Rodrigues, P., Schrementi, G. (2005). Unsupervised morphology induction

for part-of-speech tagging. In U. Penn Working Papers in Linguistics: Proceedings of

the 29th Annual Penn Linguistics Colloquium, pages 47–62, 2005.

Chen, S. F., Rosenfeld, R. (2000). A survey of smoothing techniques for ME models.

IEEE Transactions on Speech and Audio Processing, 8(1):37–50.

Chung, T., Gildea, D. (2009). Unsupervised Tokenization for Machine Translation. In

Proceedings of EMNLP 2009, pages 718–726, Singapore.

http://www.cs.cmu.edu/~aberger/pdf/scaling.pdf

161

Clark, A. (2000). Inducing syntactic categories by context distribution clustering. In

Proceedings of the Fourth Conference on Natural Language Learning (CoNLL-2000

and LLL-2000), pages 91-94.

Clark, A. (2001). Learning Morphology with Pair Hidden Markov Models. In

Proceedings of the Student Workshop at the 39th Annual Meeting of the Association of

Computational Linguistics (ACL), pages 55–60, Toulouse, France.

Clark, A. (2002). Memory-based learning of morphology with stochastic transducers. In

Proceedings of the 40th Annual Meeting on of the Association for Computational

Linguistics, pages 513–520, Morristown, NJ, USA.

Clark, A. (2007). Supervised and unsupervised learning of Arabic morphology. In

Arabic Computational Morphology, volume 38 of Text, Speech and Language

Technology, pages 181–200. Springer Netherlands.

Clark, A., Lappin, S. (2010). Unsupervised learning and grammar induction. In The

Handbook of Computational Linguistics and Natural Language Processing. Wiley-

Blackwell.

Creutz, M., Lagus, K. (2007). Unsupervised models for morpheme segmentation and

morphology learning. ACM Trans. Speech Lang. Process., 4(1):1–34.

Curran, J. R., Clark, S. (2003). Investigating GIS and smoothing for maximum entropy

taggers. In Proceedings of the 10th Meeting of the EACL, pages 91–98, Budapest,

Hungary.

Dahlgren, S. (1998). Word Order in Arabic. Goteborg: Acta Universitatis

Gothoburgensis.

Darroch, J., Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. The

Annals of Mathematical Statistics, Vol. 43:pp 1470-1480.

Darwish, K. (2002). Building a shallow Arabic morphological analyser in one day. In

Proceedings of the Workshop on Computational Approaches to Semitic Languages,

pages 22–29, Philadelphia, July.

162

Darwish, K., Oard, D. (2007). Adapting Morphology for Arabic Information Retrieval.

In Adapting Morphology for Arabic Information Retrieval, pp. 245262, Springer.

Daya, E. (2004). Learning Hebrew roots: Machine learning with linguistic constraints.

In Proceedings of EMNLP04, pages 357–364, 2004.

Daya, E., Roth, D., Wintner, S. (2008). Identifying Semitic roots: Machine learning

with linguistic constraints. Computational Linguistics, 34:429–448.

Dayan, P. (1999). Unsupervised learning. The MIT Encyclopaedia of the Cognitive

Science.

De Pauw, G., Wagacha, P. (2007). Bootstrapping morphological analysis of Gikuyu

using unsupervised maximum entropy learning. In Proceedings of the Eighth Annual

Conference of the International Speech Communication Association. Antwerp, Belgium.

De Pauw, G., Wagacha, P. Abade, D. (2007). Unsupervised induction of Dholuo word

classes using maximum entropy learning. In Proceedings of the First International

Conference in Computer Science and Informatics (COSCIT 2007). Nairobi, Kenya:

University of Nairobi.

Dukes, K., Habash, N. (2010). Morphological Annotation of Quranic Arabic. In

Proceedings of the Language Resources and Evaluation Conference (LREC), Malta.

Elghamry, K. (2004). A Constraint-based Algorithm for the Identification of Arabic

Roots. Proceedings of the Midwest Computational Linguistics Colloquium. Indiana

University. Bloomington.

Fabri, R., Gasser, M., Habash, N., Kiraz, G., Wintner, S. (2014). Linguistic introduction:

The orthography, morphology and syntax of Semitic languages. In Natural Language

Processing of Semitic Languages. Berlin and Heidelberg: Springer, pp. 3–41.

Farahat, A., LoFaro, T., Miller, J. C., Raey, G., Ward, L. A. (2006). Authority Rankings

from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization.

SIAM Journal on Scientific Computing. Volume 27, Issue 4, pp. 1181-1201.

163

Ghwanmeh, S., Al-Shalabi, R., Kanaan, G., Khanfar, K., Rabab'ah, S. (2005). An

algorithm for extracting the root for the Arabic language. Paper presented at the Fifth

International Business Information Management Association Conference (IBIMA),

Cairo, Egypt.

Goldsmith, J. (2000). Linguistica: An automatic morphological analyser. In

Proceedings from the Main Session of the Chicago Linguistic Society’s thirty-sixth

Meeting, pages 125–139. Chicago Linguistics Society, Chicago.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language.

Computational Linguistics, 27:153–198.

Goldsmith, J. (2006). An algorithm for the unsupervised learning of morphology.

Natural Language Engineering, 12(4):353–371.

Goldsmith, J., Xanthos, A., Goldsmith, J. (2009). Learning phonological categories.

Language. Project Muse, 85.1:4–38.

Golub, G., Van Loan, C.F. (1989). Matrix Computations, Johns Hopkins University

Press.

Habash, N. (2010). Introduction to Arabic Natural Language Processing. Morgan &

Claypool.

Hafer, M. A., Weiss, S. F. (1974). Word segmentation by letter successor varieties.

Information Storage and Retrieval, 10(11-12):371 – 385.

Hammarström, H. (2006a). A naive theory of affixation and an algorithm for extraction.

In SIGPHON ’06: Proceedings of the Eighth Meeting of the ACL Special Interest Group

on Computational Phonology and Morphology, pages 79–88, Morristown, NJ, USA.

Hammarström, H. (2006b). Poor man’s stemming: Unsupervised recognition of same

stem words. Information Retrieval Technology, volume 4182 of Lecture Notes in

Computer Science, pages 323–337. Springer Berlin / Heidelberg.

164

Hammarström, H. (2007a). A Survey and Classification of Methods for (Mostly)

Unsupervised Learning of Morphology. In NODALIDA, the 16th Nordic Conference of

Computational Linguistics, Tartu, Estonia, pages 25–26..

Hammarström, H. (2007b). Unsupervised Learning of Morphology: Survey, Model,

Algorithm and Experiments. In Proceedings of iNEWS-07Workshop at SIGIR 2007,

pages 14-20.

Hammarström, H. (2009). Unsupervised Learning of Morphology and the Languages of

the World. Ph.D. thesis, Chalmers University of Technology and University of

Gothenburg.

Harris, Z. S. (1955). From phoneme to morpheme. Language, 31(2):190–222.

Holes, C. (2004). Modern Arabic: Structures, Functions, and Varieties. Georgetown

Classics in Arabic Language and Linguistics. Georgetown University Press.

Holes, C. D. (1995). Modern Arabic: Structures, Functions and Varieties. London and

New York: Longman.

Huang, F., Hsieh, C., Chang K., Lin, C. (2010). Iterative scaling and coordinate descent

methods for maximum entropy. Journal of Machine Learning Research, 11:815–848.

Khoja, S., Garside, R. (1999). Stemming Arabic text. Lancaster, UK: Lancaster

University, Computing Department.

Kirchhoff, K., Bilmes, J., Henderson, J., Schwartz, R., Noamany, M., Schone, P., Ji, G.,

Das, S., Egan, M., He, F., Vergyri, D., Liu, D., Duta, N. (2002). Novel speech

recognition models for Arabic. Technical Report, Johns Hopkins University.

Kirchhoff, K., Vergyri, D., Bilmes, J., Duh, K., Stolcke, A. (2006). Morphology-based

language modeling for Arabic speech recognition. Computer. Speech and Language. 20,

4, 589–608.

Klein, D., Manning, C. (2002). Natural language grammar induction using a

constituent-context model. In Advances in Neural Information Processing Systems

(NIPS 14), pages 35–42.

165

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment, Journal of the

ACM, 46, pp. 604-632.

Klenk, U. (1985). Recognition of Spanish inflectional endings based on the distribution

of characters. In Computers in Literary and Linguistic Computing: Proceedings of the

Eleventh International Conference [L’ordinateur et les recherches littéraires et

linguistiques: actes de la XIe Conférence internationale], pages 246–253, Louvain.

Lee,Y., Papineni, K., Roukos, S., Emam O., Hassan, H. (2003). Language model based

Arabic word segmentation. In ACL ’03: Proceedings of the 41st Annual Meeting of the

Association for Computational Linguistics, pages 399–406, Morristown, NJ, USA.

Lempel, R., Moran, S. (2000). The Stochastic Approach for Link-Structure Analysis

(SALSA) and the TKC Effect. Computer Networks 33:1-6 , 387-401.

Liang, P., Klein, D. (2009). Online EM for unsupervised models. In Proceedings of

NAACL-HLT, pages 611-619.

Lipinski, E. (1997). Semitic Languages: Outline of a Comparative Grammar. Leuven:

Peters.

Malouf, R. (2002). A comparison of algorithms for maximum entropy parameter

estimation. In Proceedings of CoNLL-2002, pages 49-55.

McCarthy, J. J. (1979). Formal Problems in Semitic Phonology and Morphology. Ph.D.

dissertation, MIT. (Published by Garland Press, New York, 1985.)

Moukdad, H. (2006). Stemming and root-based approaches to the retrieval of Arabic

documents on the Web. Webology, 3(1).

Ohno, S., Kidera, S., Kirimoto, T. (2013). Efficient automatic target recognition method

for aircraft SAR image using supervised SOM clustering. In Asia-Pacific Conference on

Synthetic Aperture Radar (APSAR), pages 601-604.

Pietra, S. D., Pietra, V. D., Lafferty, J. (1995). Inducing Features of Random Fields.

Technical Report CMUCS-CS95-144, School of Computer Science, Carnegie Mellon

University.

166

Poon, H., Cherry, C., Toutanova, K. (2009). Unsupervised morphological segmentation

with log-linear models. In the Proceedings of NAACL ’09: The 2009 Annual Conference

of the North American Association for Computational Linguistics, pages 209–217,

Morristown, NJ.

Ratnaparkhi, A. (1998). Maximum Entropy Models for Natural Language Ambiguity

Resolution. PhD thesis, University of Pennsylvania.

Rodrigues, P., Cavar, D. (2005). Learning Arabic Morphology Using Information

Theory. In Proceedings from the Annual Meeting of the Chicago Linguistic Society,

41(2):49–58.

Rodrigues, P., Cavar, D. (2007). Learning Arabic Morphology Using Statistical

Constraint Satisfaction Models. In Perspectives on Arabic Linguistics XIX: Proceedings

of the 19th Arabic Linguistics Symposium, Urbana, IL, USA.

Schone, P., Jurafsky, D. (2000). Knowledge-free induction of morphology using latent

semantic analysis. In Proceedings of CoNLL-2000 and LLL-2000, pages 67–72, Lisbon.

Schone, P., Jurafsky, D. (2001). Knowledge-free induction of inflectional morphologies.

In Proceedings of the North American Chapter of the ACL, pages 183–191.

Snyder, B., Barzilay, R. (2008). Unsupervised multilingual learning for morphological

segmentation. In Proceedings of ACL-08: HLT, pages 737–745, Columbus, Ohio.

Sonbol, R., Ghneim, N., Desouki, M.S. (2008). Arabic morphological analysis: A new

approach. In Proceedings of the Third International Conference on Information and

Communication Technologies: From Theory to Applications (ICTTA 2008) (pp. 1-6).

Piscataway, NJ:IEEE.

Taghva, K., Elkhoury, R., Coombs, J. (2005). Arabic stemming without a root

dictionary. In Proceedings of ITCC 2005 International Conference on Information

Technology: Coding and Computing.

167

Thompson, I., Philips, J. (2013). About world languages: Semitic Branch.

http://www.aboutworldlanguages.com/semitic-branch (last accessed 15th December

2014).

Tsaparas, P. (2004). Link analysis ranking. Ph.D. thesis, University of Toronto.

von Mises, R., Pollaczek-Geiringer, H. (1929). Praktische Verfahren der

Gleichungsauflösung (Practical methods for solving equations). ZAMM - Zeitschrift für

Angewandte Mathematik und Mechanik. Volume 9, Issue 2, pp. 152-164.

Watson, J. (2002). The Phonology and Morphology of Arabic. Oxford: Oxford

University Press.

Wothke, K. (1986). Machine learning of morphological rules by generalization and

analogy. In Proceedings of the 11th Conference on Computational Linguistics, pages

289–293, Morristown, NJ.

Xanthos, A. (2007). Apprentissage automatique de la morphologie: le cas des

structures racine-schéme. PhD thesis, University of Lausanne.

Xue, N. (2003). Chinese Word Segmentation as Character Tagging. International

Journal of Computational Linguistics and Chinese Language Processing, 8(1).

Yarowsky, D., Wicentowski, R. (2000). Minimally supervised morphological analysis

by multimodal alignment. In Proceedings of the 38th Annual Meeting of the Association

for Computational Linguistics (ACL), pages 207–216, Hong Kong.

 Zhang L. (2004). Maximum entropy modelling toolkit for Python and C++. Technical

Report, Centre for Speech Technology Research of the University of Edinburgh.

http://www.aboutworldlanguages.com/semitic-branch
http://en.wikipedia.org/wiki/Richard_von_Mises

168

Appendix A

Buckwalter Transliteration

A.1 Original Buckwalter transliteration12

Table A.1 below gives a one-to-one mapping of most Modern Standard Arabic

(MSA)characters in common usage to Latin characters and symbols, as transcribed by

Tim Buckwalter13.

U N I CO DE B U C KW AL TE R

Decimal Hex Glyph ASCII Orthography

1569 U+0621

' Hamza

1571 U+0623

> Alif + HamzaAbove

1572 U+0624

& Waw + HamzaAbove

1573 U+0625

< Alif + HamzaBelow

1574 U+0626

} Ya + HamzaAbove

1575 U+0627

A Alif

1576 U+0628

b Ba

1577 U+0629

p TaMarbuta

1578 U+062A

t Ta

12 Source: http://corpus.quran.com/java/buckwalter.jsp

13 http://www.qamus.org/transliteration.htm

169

U N I CO DE B U C KW AL TE R

Decimal Hex Glyph ASCII Orthography

1579 U+062B

v Tha

1580 U+062C

j Jeem

1581 U+062D

H HHa

1582 U+062E

x Kha

1583 U+062F

d Dal

1584 U+0630

* Thal

1585 U+0631

r Ra

1586 U+0632

z Zain

1587 U+0633

s Seen

1588 U+0634

$ Sheen

1589 U+0635

S Sad

1590 U+0636

D DDad

1591 U+0637

T TTa

1592 U+0638

Z DTha

1593 U+0639

E Ain

1594 U+063A

g Ghain

1600 U+0640

_ Tatweel

1601 U+0641

f Fa

170

U N I CO DE B U C KW AL TE R

Decimal Hex Glyph ASCII Orthography

1602 U+0642

q Qaf

1603 U+0643

k Kaf

1604 U+0644

l Lam

1605 U+0645

m Meem

1606 U+0646

n Noon

1607 U+0647

h Ha

1608 U+0648

w Waw

1609 U+0649

Y AlifMaksura

1610 U+064A

y Ya

1611 U+064B

F Fathatan

1612 U+064C

N Dammatan

1613 U+064D

K Kasratan

1614 U+064E

a Fatha

1615 U+064F

u Damma

1616 U+0650

i Kasra

1617 U+0651

~ Shadda

1618 U+0652

o Sukun

1648 U+0670

` AlifKhanjareeya

171

U N I CO DE B U C KW AL TE R

Decimal Hex Glyph ASCII Orthography

1649 U+0671

{ Alif + HamzatWasl

Table A.1: Buckwalter Transliteration

A.2 Extended Transliteration14

Table A.2 below shows the extended transliteration mapping for certain characters used

in classical Arabic

U N I CO DE B U C KW AL TE R

Decimal Hex Glyp

h

ASCII Orthography

1619 U+0653

^ Maddah

1620 U+0654

HamzaAbove

1756 U+06DC

: SmallHighSeen

1759 U+06DF

@ SmallHigh-

RoundedZero

1760 U+06E0

" SmallHighUpright-

RectangularZero

1762 U+06E2

[SmallHighMeem-

14 Source: http://corpus.quran.com/java/buckwalter.jsp

172

U N I CO DE B U C KW AL TE R

Decimal Hex Glyp

h

ASCII Orthography

IsolatedForm

1763 U+06E3

; SmallLowSeen

1765 U+06E5

, SmallWaw

1766 U+06E6

. SmallYa

1768 U+06E8

! SmallHighNoon

1770 U+06EA

- EmptyCentreLowStop

1771 U+06EB

+ EmptyCentreHighStop

1772 U+06EC

% RoundedHighStopWit

hFilledCentre

1773 U+06ED

] SmallLowMeem

Table A.2: Extended transliteration for classical Arabic characters

173

Appendix B

Undiacritized Pattern List

B.1 Unvowelled Pattern from

Table B.1 below gives the unvowelled conflated patterns from vowelled pattern from

Attia’s compilation of Arabic Morphology Patterns (Attia et al, 2011).

Word Forms

(unvowelled)
Pattern

 A... (A...) ا...

 tA... (tA...) تا...

 tAn... (tAn...) تان...

 - t - - A (tfEAl) تفعال

 - - t (tfE) تفع

 t - - - p (tfElp) تفعلة

 - - - t (tfEl) تفعل

 t - - y (tfEy) تفعي

 t - - Y (tfEY) تفعى

 t - - y - p (tfEylp) تفعيلة

 - - - - t (tfEll) تفعلل

 - t - - y (tfEyl) تفعيل

 - t - A (tfAE) تفاع

Word Forms

(unvowelled)
Pattern

 - - t - A (tfAEl) تفاعل

 t - A - y (tfAEy) تفاعي

 t - A - Y (tfAEY) تفاعى

 - t - A - y (tfAEyl) تفاعيل

 ty... (ty...) تي...

 tyn... (tyn...) تين...

 - A - | (EAl|) آعال

 - - | (El|) آعل

 p - - | (Elp|) آعلة

 yp - | (Eyp|) آعية

 'A... ('A...) اء...

 At... (At...) ات...

 p... (p...) ة...

174

Word Forms

(unvowelled)
Pattern

 An... (An...) ان...

 - | (l|) آل

 - - < (fE<) أفع

 p - - < (fEp<) أفعة

 - A - - < (fEAE<) أفعاع

 'A - - > ('fEA>) إفعاء

 - A - - < (fEAl<) أفعال

 - A - - > (fEAl>) إفعال

 - y - A> (yEAl>) إيعال

 - - - < (fEl<) أفعل

 - - - > (fEl>) إفعل

 Y - - < (fEY<) أفعى

 p - - - < (fElp<) أفعلة

عيةأف (>fEyp) > - - yp

 'A - - - < ('fElA<) أفعلاء

 An - - - < (fElAn<) أفعلان

 - w - - < (fEwl<) أفعول

 - - A - < (fAEl<) أفاعل

Word Forms

(unvowelled)
Pattern

 A – y - < (fAEy<) أفاعي

 A - - p - < (fAElp<) أفاعلة

 - A - y - < (fAEyl<) أفاعيل

 'A - | ('fA|) آفاء

 - A - | (fAl|) آفال

 - A - < (fAl<) أفال

 A – p - < (fAlp<) أفالة

 - - < (fl<) أفل

 p - - < (flp<) أفلة

 'A - - < ('flA<) أفلاء

 - yA - < (fyAl<) أفيال

 - - (fE) فع

 - - - (fEE) فعع

 p - - - (fEEp) فععة

 A - - (fEA) فعا

 - - A - - (fEAEl) فعاعل

عاةف (fEAp) - - Ap

 - {A - - (fEA}l) فعائل

175

Word Forms

(unvowelled)
Pattern

 - A - - (fEAl) فعال

 A – A - - (fEAlA) فعالا

 A – p - - (fEAlp) فعالة

 AyA - - (fEAyA) فعايا

 - - A - - (fEAll) فعالل

 A – y - - (fEAly) فعالي

 A – Y - - (fEAlY) فعالى

 - Ay - - (fEAyl) فعايل

 A - - p - - (fEAllp) فعاللة

 - A - y - - (fEAlyl) فعاليل

 - - - (fEl) فعل

 y - - (fEy) فعي

 Y - - (fEY) فعى

 p - - - (fElp) فعلة

 'A - - - ('fElA) فعلاء

 - A - - - (fElAl) فعلال

 An - - - (fElAn) فعلان

 - - A - - - (fElAll) فعلالل

Word Forms

(unvowelled)
Pattern

 A – yp - - - (fElAlyp) فعلالية

 - - - - (fEll) فعلل

 Y - - - (fElY) فعلى

 - w - - (fEwl) فعول

 - y - - (fEyl) فعيل

 wt - - - (fElwt) فعلوت

 p - - - - (fEllp) فعللة

 w - p - - (fEwlp) فعولة

 y - p - - (fEylp) فعيلة

 An - - - - (fEllAn) فعللان

 wAn - - - (fElwAn) فعلوان

 - w - - - (fElwl) فعلول

 - y - - - (fElyl) فعليل

 - - w - - (fEwll) فعولل

 yp - - - - (fEllyp) فعللية

 - w - - - - (fEllwl) فعللول

 - st - - A} (stfEAl}) ٱستفعال

 - - - mst (mstfEl) مستفعل

176

Word Forms

(unvowelled)
Pattern

 mst - - y (mstfEy) مستفعي

 - - - st} (stfEl}) ٱستفعل

 st - - Y} (stfEY}) ٱستفعى

 - mst - A (mstfAl) مستفال

 st - A - p} (stfAlp}) ٱستفالة

 - st - A} (stfAl}) ٱستفال

 - - mst (mstfl) مستفل

 - sty - A} (styfAl}) ٱستيفال

 - - st} (stfl}) ٱستفل

 - mst - y (mstfyl) مستفيل

 - t - A} (tEAl}) ٱتعال

 - - mt (mtEl) متعل

 - - t} (tEl}) ٱتعل

 - - - mt (mtfEl) متفعل

 mt - - y (mtfEy) متفعي

 - - - - mt (mtfEll) متفعلل

 - - mt - A (mtfAEl) متفاعل

 - mt - A (mtfAl) متفال

Word Forms

(unvowelled)
Pattern

 - A - (fAE) فاع

 - - A - (fAEl) فاعل

 A - Y - (fAEY) فاعى

 - - |m (m|El) مآعل

 A - - p - (fAElp) فاعلة

 - A - w - (fAEwl) فاعول

 A - w - p - (fAEwlp) فاعولة

 - A - (fAl) فال

 A - p - (fAlp) فالة

 - - |m (m|ll) مآلل

 yp... (yp...) ية...

لف (fl) - -

 - - m (mfE) مفع

 m - - Ap (mfEAp) مفعاة

 - A - - } (fEAl}) ٱفعال

 - y - A - (fyEAl) فيعال

 y - An - (fyEAn) فيعان

 - m - - A (mfEAl) مفعال

177

Word Forms

(unvowelled)
Pattern

 - - - } (fEl}) ٱفعل

 - - w - (fwEl) فوعل

 - - y - (fyEl) فيعل

 - - - m (mfEl) مفعل

 m - - y (mfEy) مفعي

 m - - Y (mfEY) مفعى

 An - - - - } (fElEAn}) ٱفعلعان

 - - w - - } (fEwEl}) ٱفعوعل

 w - - p - (fwElp) فوعلة

 m - - - p (mfElp) مفعلة

 Ap - - - - (flElAp) فلعلاة

 - A - - - } (fElAl}) ٱفعلال

 m - - - An (mfElAn) مفعلان

ةفوعلالي (fwElAlyp) - w - - A – yp

 - - - - } (fEll}) ٱفعلل

 - - - - m (mfEll) مفعلل

 - m - - w (mfEwl) مفعول

 - m - - y (mfEyl) مفعيل

Word Forms

(unvowelled)
Pattern

 - y - - w (yfEwl) يفعول

 - t - A - } (ftEAl}) ٱفتعال

 t - A – p - } (ftEAlp}) ٱفتعالة

 - - t - } (ftEl}) ٱفتعل

 t – Y - } (ftEY}) ٱفتعى

 - - m - t (mftEl) مفتعل

 - tA - } (ftAl}) ٱفتال

 - t - } (ftl}) ٱفتل

 - m - t (mftl) مفتل

 - wA - (fwAE) فواع

 - m - A (mfAE) مفاع

 m - A – Ap (mfAEAp) مفاعاة

 - - A - - (flAEl) فلاعل

 - - T - } (fTEl}) ٱفطعل

 - - wA - (fwAEl) فواعل

 - - yA - (fyAEl) فياعل

 - - m - A (mfAEl) مفاعل

 - - m - T (mfTEl) مفطعل

178

Word Forms

(unvowelled)
Pattern

 m - A - - p (mfAElp) مفاعلة

 - wA - y - (fwAEyl) فواعيل

 - m - A - y (mfAEyl) مفاعيل

 - y - A - y (yfAEyl) يفاعيل

 - {m - A (mfA}l) مفائل

 - A - - (flAl) فلال

 - m - A (mfAl) مفال

 - - - (fll) فلل

 - w - (fwl) فول

 - y - (fyl) فيل

 - - m (mfl) مفل

 'n - - A} ('nfEA}) ٱنفعاء

 - n - - A} (nfEAl}) ٱنفعال

 n - - A - p} (nfEAlp}) ٱنفعالة

 - - - mn (mnfEl) منفعل

 - - - n} (nfEl}) ٱنفعل

Word Forms

(unvowelled)
Pattern

 n - - Y} (nfEY}) ٱنفعى

 w - An - (fwlAn) فولان

 y - An - (fylAn) فيلان

 - n - A} (nfAl}) ٱنفال

 - m - w (mfwl) مفول

 - m - y (mfyl) مفيل

 - - mn (mnfl) منفل

 - - mw (mwfl) موفل

 - - n} (nfl}) ٱنفل

 m - w - p (mfwlp) مفولة

 m - y - p (mfylp) مفيلة

 wn... (wn...) ون...

 yn... (yn...) ين...

 w... (w...) و...

 y... (y...) ي...

Table B.1: Undiacritized patterns of Arabic

179

Appendix C

Processing the Quranic Arabic Corpus

I obtained the vocabulary from the Quranic Arabic Corpus (QAC) tagged with

morphological data contained in a text file downloaded from the QAC website15. The

QAC uses the Buckwalter transliteration, as in section A.1, covering the character set

pertaining to MSA; it is extended to transliteration mapping, as in section A.2, catering

for classical Arabic text as found in the QAC.

From this dataset I selected only the stems and thereafter filtered diacritical markers

shown in Table C.1.

ASCII

(Buckwalter)

Glyph

(Corresponding)

a | u | i | o | ~ | ^ | : ََ | َُ | َِ | َ | َ | َ | َ

Table C.1: Omitted diacritical markers

I conflated all long vowels with ‘humza’ marker (ّ | ّ) to single letter humza (ء),

shown in Table C.2. Also, I changed the diacritic marker ‘Alif Khanjareeya,’ ‘^’ (ّ) to

an ‘Alif’ ‘A’ (ا).

15 http://corpus.quran.com/download/default.jsp

180

Letter with ‘Humza’
Conflated

to ‘Humza’
ASCII Glyph

 ء ' ٸ | ٶ | ٳ | ٲ | ٱ { | & | < | > | }

Table C.2: Conflation of Humza letters to

single letter

Table C.3 shows an example of the vocabulary from the first chapter of the Quran,

consisting of undiacritized stems (along with the Arabic script shown in the 3rd and 4th

columns) used in the experiments after applying the above processing to the stemmed

words (shown in the 1st and 2nd columns).

Stemmed Words with

Diacritics
Undiacritized Stems

Buckwalter Arabic Buckwalter Arabic

Somi ِسْم Sm سم

{ll~ahi ٱ ِ ءلله llh‘ للهَّ

r~aHoma`ni ِن حْم رحمان rHmAn رَّ

r~aHiymi ِحِيم رحيم rHym رَّ

Hamodu ُمْد حمد Hmd ح

l~ahi ِلَّه Lh له

rab~i ِّب رب Rb ر

181

Stemmed Words with

Diacritics
Undiacritized Stems

Buckwalter Arabic Buckwalter Arabic

Ea`lamiyna ل مِين عالمين EAlmyn ع

r~aHoma`ni ِن حْم رحمان rHmAn رَّ

r~aHiymi ِحِيم رحيم rHym رَّ

ma`liki ِِلك مالك mAlk م

yawomi ِي وْم ywm يوم

d~iyni ِين دين dyn دِّ

naEobudu ُُن عْبد nEbd نعبد

nasotaEiynu ُن سْت عِين nstEyn نستعين

{hodi هْدِ ٱ ‘hd ءهد

S~ira`Ta ط ر صراط SrAT صِّ

musotaqiym

a
 مستقيم mstqym مُسْت قيِم

Sira`Ta ط صراط SrAT صِر

>anoEamo ْم ءنعم nEm' أ نْع

182

Stemmed Words with

Diacritics
Undiacritized Stems

Buckwalter Arabic Buckwalter Arabic

gayori
يْرِ غير gyr غ

magoDuwbi ِغْضُوب مغضوب mgDwb م

D~aA^l~iyn

a
ا ضالين DAlyn لِّين ^ضَّ

Table C.3: Orthographic changes from diacritized

to undiacritized text

	DPhil Coversheet
	Khaliq, Bilal

