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Stator Cavities 
 

 

SUMMARY 
 

 

The torque associated with overcoming the losses on a rotating disc is of particular 

importance to the designers of gas turbine engines. Not only does this represent a reduction 

in useful work, but it also gives rise to unwanted heating of metal surfaces and the adjacent 

fluid. This research presents a numerical study on the effect of rotor-mounted bolts on the 

moment coefficient and flow structure within a rotor–stator cavity under conditions 

representative of modern gas turbine engine design. Steady-state, two-dimensional and 

three-dimensional, computational fluid dynamics simulations are obtained using the 

FLUENT commercial code with a standard k-turbulence model. The model is firstly 

validated against experimental data and then used to study the effects of presence of rotor-

mounted hexagonal bolts in the rotor-stator cavity under investigation using different 

dimensionless flow parameters. Also investigated were the effects of changing the number 

and size of rotor-mounted bolts on the flow structure and amount of losses for two test 

cases; one corresponding a throughflow dominated condition and the other corresponding a 

rotationally dominated one. 

 

The simulation results showed that decreasing the throughflow rate reduces the area of the 

wake region causing the wakes to become more circumferential in their path around the 



 v

bolts. Also it was found that increasing the number and diameter of bolts respectively 

reduces and increases the area of the wake region. For N>18 a separation bubble forms 

above the bolt which its length increases with increasing the number of bolts. 

 

The total moment coefficient of all bolts in the system increases with increasing the number 

of bolts. However, the rate of this increase reduces by mounting more bolts. While 

increasing the diameter of the bolts consistently increases the moment and drag coefficients 

for the rotationally dominated condition, for the throughflow dominated case an increase 

and a reduction was observed for respectively the moment and drag coefficients.  
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1. Introduction 

 

 

1.1 Purpose of the Study 

Improving engine performance, reducing the cost of new products and complying with 

environmental regulations are areas of intense interest for the turbomachinery industry. In 

order to increase the specific power output of a gas turbine and consequently reduce the 

size of the power plant, higher turbine entry temperatures of the main gas flow are 

accompanied by higher pressure ratios. Turbine entry temperatures in modern civil engines 

are currently above 1600˚C, and components in contact with a flow at such high 

temperatures will rapidly exceed their creep and fatigue limits, leading to catastrophic 

failure. It is only possible to operate at these elevated temperatures because of the internal 

air system, which uses some of the compressor’s air to cool the turbine discs, blades and 

nozzle guide vanes. Figure 1.1 shows a typical gas turbine internal air system. 

The air used for cooling will be heated as a result of viscous dissipation as it flows over 

both rotating and stationary surfaces. A torque needs to be provided to overcome the 

irreversible losses, and this parasitic phenomenon is referred to as windage. Skin friction is 

the source of windage for a smooth surface. However, it is not uncommon for protrusions 

such as bolts to be attached to the rotating and stationary surfaces. In such cases, form drag 

also contributes to windage. It is worth noting that there will also be a torque associated 

with the so-called pumping losses that occur as a result of the work done by a protrusion 

changing the angular momentum of the fluid. It is important to make the distinction 

between these and windage because the pumping loss term is isentropic. The sum of the 

irreversible torque (due to windage) and the reversible torque (due to pumping work) is 

embodied in the moment coefficient, which is defined in the next chapter. A detailed 

knowledge of the influence of protrusions on flow physics as well as more accurate 
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predictions of windage offer potential for improved design of the internal air system, with 

associated increases in thrust and efficiency. 

 

 

Figure  1.1: The Internal Air Paths in a Gas Turbine Engine, courtesy of Rolls-Royce plc. 

 

 

Computational fluid dynamics (CFD) is now widely recognised as an established tool for 

modelling the internal air system of a gas turbine engine. CFD developments started around 

1960. However, due to limitations in computing power its usage was limited to simple two-

dimensional flows. The rapid growth of computer power in addition to advancements in 

numerical techniques improved CFD methods and made it a powerful and essential tool for 

modelling turbomachinery flows. CFD solutions in combination with theoretical and 

experimental approaches can improve gas turbine design by offering a powerful way to 

develop a physical understanding of the flow phenomena through the system under 

investigation. Experimental measurements can provide reliable data. However, they are 

often limited to a narrow scope of variables. This is because of the high cost of 

experiments. Furthermore, some variables are almost impossible to be measured at some 
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specific locations. Therefore, experimental measurements are not able to obtain a 

continuous picture of variables in the system. In these circumstances, CFD methods can be 

applied to represent the flow phenomena and to account for all the major flow parameters 

in each turbine component.  

Based on CFD improvements, different simulation packages have been developed. One of 

these packages is FLUENT, which is a well-recognised validated commercial package and 

provides the features needed for the analysis of almost all components of the system. In 

addition, the turbulence models in FLUENT are well-validated and have the ability to be 

coupled with mesh adaptation in the near-wall regions. Based on these considerations, 

FLUENT is used for flow simulations in this thesis. 

This research work aims to improve the physical understanding of the fluid flow 

phenomena caused by mounting protrusions in a rotor-stator cavity and to quantify the 

amount of their power loss. This will provide best practice for the design of all rotating 

surfaces with attached protrusions in a gas turbine engine. These aims will be achieved by a 

combination of experimental, theoretical and numerical approaches. This thesis will use the 

outcomes of previous research to validate the CFD software and assess its ability to model 

the flow in the rotor-stator cavity and, consequently, will use the CFD to answer those 

questions that have not been answered before. Since a commercial CFD software package 

(FLUENT) is used as the simulator in this research, validation does not have its common 

meaning. Instead, it means finding suitable controls of the software’s features in order to 

obtain results that are acceptable in comparison to the relevant experimental or validated 

numerical data and that also are cost- and time-effective. 

 

1.2 Research Questions 

The central question that this thesis examines is: 

What are the influences of protrusions on the flow structure, flow parameter distributions, 

and power loss in a rotor-stator cavity with radial outflow? 
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The central research question will be approached by answering three specific supporting 

research questions: 

1- What are the effects of adding protrusions in a rotor-stator cavity in terms of flow 

structure and flow parameter distributions such as velocity and pressure? How do 

these parameters vary around protrusions? Do Taylor columns occur on top of a 

bolt and extend across the axial width of the cavity from rotor to stator? 

2- What are the effects of adding protrusions in a rotor-stator cavity in terms of losses? 

How does the drag coefficient of the protrusions vary with Reynolds numbers? 

Does the drag from the bolts have substantially different behaviour in regimes 

where it is expected to be notionally laminar or notionally turbulent? 

3- To what extent do the number and size of protrusions affect the flow structure and 

amount of losses in the cavity?  

The above set of questions provides a reasonable opportunity for a more detailed 

investigation of the influence of protrusions in a rotor-stator cavity. 

 

1.3 Overview of the Thesis 

The thesis is composed of seven chapters.  The chapters are as follows: 

Chapter 1: Introduction 

Chapter 1 gives an introductory description of the subject of the research. A brief 

explanation is also given of how the research can contribute to knowledge, as well as an 

overview of the thesis. 

Chapter 2: Review of previous work 

Chapter 2 aims to establish the theoretical and empirical framework for the thesis. The 

thesis builds upon literature on fluid flows in rotor-stator cavities and power loss prediction 

in these systems, in particular on studies that have examined the effects of attached 
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protrusions. In this chapter, a review of the theoretical and experimental work conducted in 

fluid flows in rotor-stator cavities is first presented. Subsequently, a critical analysis of the 

previous literature about the flow in rotor-stator cavities with protrusions is given, aiming 

to understand what has been done before, and to find gaps for further work. The chapter 

then reviews the progress of numerical methods in modelling the fluid flows particularly 

within rotor-stator cavities. Finally, a brief description of the experimental test rig that is 

modelled and used for simulations in this thesis is given.   

Chapter 3: Computational model validation 

The CFD modelling package, FLUENT, is validated in this chapter. As mentioned, what is 

referred to as validation in this chapter is the process of finding suitable controls for the 

software to produce results that are computationally both time- and cost-effective and that 

also have acceptable accuracy, compared to relevant experimental or validated numerical 

results. Three rotor-stator test cases are selected from literature and simulated using the 

CFD model. The selection of the cases for validation is based on different considerations, 

such as similarities in geometric configuration and flow conditions with the cases 

investigated in this research, as well as the availability of experimental or validated 

numerical data. The validation results are drawn out in order to be used in simulations of 

main rotor-stator cases in the research. 

Chapter 4: Plain disc simulations 

This chapter is concerned with investigating the simulation results of the plain disc (i.e. 

without protrusions) configuration. Plain disc simulations are used to provide baseline data 

to study the effect of adding protrusions to the system. Hence, complete analysis of 

different aspects of flow for the plain disc system under different flow conditions is 

presented in this chapter. 

Chapter 5: Rotor-stator system with mounted bolts: investigation of the effects of flow 

condition variations 
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This chapter is concerned with detailed analyses of the flow phenomena in the rotor-stator 

cavity with rotor-mounted bolts. The results of these analyses present the main 

aerodynamics of the flow as well as the impact of protrusions on the flow behaviour and the 

amount of losses. Simulations are performed for a fixed number and diameter of bolts. 

Detailed 3-dimensional variations of flow parameters both in the vicinity of and far from 

the bolts under different flow conditions are investigated.  

Chapter 6: Rotor-stator system with mounted bolts: investigation of the effects of 

changing the number and diameter of bolts  

This chapter extends the work presented in Chapter 5 to consider the effects of varying the 

number and diameter of bolts. Rotor-stator cavity with different numbers and diameters of 

bolts are simulated under two different dominating flow conditions. In addition, the validity 

of the assumption used during experimental measurements that there is an equal amount of 

rotor moment for the cavity with and without protrusions is investigated. 

Chapter 7: Conclusions 

Chapter 7 summarises the main findings of the thesis and answers the research questions. It 

also outlines the research limitations and suggests some directions for future work. 
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2. Review of Previous Work 

 

2.1 Introduction 

The purpose of this chapter is to review the current state of knowledge regarding the fluid 

flow in rotor-stator systems, particularly on those with mounted protrusions, and to 

establish a theoretical framework for the case study chapters. Interest is centred on studies 

that examine the turbulent flow regime and give results about the power loss or moment 

coefficient within the rotor-stator systems. The relevant literature is divided into two 

sections: a review of both experimental and theoretical work, and a review of numerical 

investigations. First, a review is given of the main work conducted on the fluid flow in 

rotor-stator cavities, considering the main focus of this research. Subsequently, a critical 

review of existing studies about the effects of protrusions in rotor-stator cavities is 

presented, aiming to identify their gaps and limitations. Finally, a review of the progress of 

numerical methods in modelling the fluid flows particularly within rotor-stator cavities is 

given. 

The chapter is composed of five sections. Section 2.2 reviews analytical and experimental 

investigations about the fluid flow in rotor-stator cavities. It first describes the simple cases 

of a rotating disc adjacent to a quiescent flow and a stationary disc adjacent to a rotating 

flow as an introduction to rotating flow associated with discs. It then moves toward the 

common configurations of a stationary housing in close proximity to a rotating disc and 

reviews the fluid flow investigations of rotor-stator systems with and without superimposed 

flow. Subsequently it examines the main literature on which this thesis is built, relating to 

the rotor-stator cavities with protrusions. Section 2.3 reviews the numerical methods of 

modelling the rotating flows. Section 2.4 describes the details of the test rig assembly that 

was used in the Thermo Fluid Mechanics Research Centre at Sussex University for 

experimental measurements. The geometric specifications of the test rig are the same as 

those used for CFD simulations in this thesis. In addition, the experimental measurements 
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conducted on this test rig are used in this research for validating the computational CFD 

model. Finally, Section 2.5 gives a summary of the chapter. 

 

2.2 Theoretical and Experimental Investigations 

There is a large range of applications and geometric configurations for the flow associated 

with discs. The range extends from simple configurations of rotating or stationary discs in 

an initially quiescent or rotating flow to complicated configurations of two rotating discs or 

rotor-stator discs with throughflow. A complete review of flow associated with rotating 

discs for different geometric configurations has been conducted by Owen and Rogers 

(1989), Owen and Rogers (1995) and Childs (2007). Here, only those investigations within 

the literature about the fluid flow in rotor-stator cavities with protrusions on which the basic 

concepts of this thesis are built will be reviewed. Prior to this review, it is necessary to 

define a series of non-dimensional parameters that are used to describe the flow associated 

with discs. The definitions of these dimensionless parameters are as follows: 

 Rotational Reynolds number Re 





b2

Re                                                                                                                          2.1 

Where b is the outer radius of the disc, μ and ρ are the dynamic viscosity and density of the 

fluid respectively, and  is the angular velocity of the disc.                                                                                                  

  Mass flow coefficient or throughflow Reynolds number Cw, which describes the radial 

flow in the rotor-stator cavity. 

b
mCw 


                                                                                                                               2.2 

Where m is the mass flow rate pumped by the disc.                                                         
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 Turbulent flow parameter, λT, which is a useful parameter developed by Owen and 

Rogers (1989) that takes its definition from a momentum integral solution of the 

boundary layer equations using 1/7th power law velocity profile (Von Karman, 1921). It 

relates the rotational Reynolds number to the throughflow Reynolds number in order to 

describe the flow in rotor-stator cavities with throughflow. In addition, based on the 

results obtained by Owen and Rogers, for λT < 0.2 the flow regime is described as 

rotationally dominated and for λT    0.2 is described as throughflow dominated. 

8.0Re

 w
T

C
                                                                                                                           2.3 

 Moment coefficient Cm 

52

2
1 b

MCm


                                                                                                                     2.4 

Where M is the moment on one side of the disc. 

 Gap ratio, which describes the dimensions of rotor-stator systems as the ratio of the 

rotor-stator spacing to disc radius. 

b
sG                                                                                                                                     2.5 

Where s is the axial distance between the rotor and the stator. 

 Swirl ratio 


 

r
V

                                                                                                                                 2.6 

Where V is the tangential velocity of the core of fluid between the rotor and the stator. 
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2.2.1 Rotating Disc Adjacent to a Quiescent Flow, Stationary Disc 
Adjacent to a Rotating Flow 

It is instructive to study the flow over a rotating disc as the basis of all rotating flows before 

looking at more complex rotating flow cases. The initial studies on flow characteristics near 

rotating discs were conducted by Von Karman (1921). He considered the simple case of a 

disc with radius b rotating with an angular velocity  in an initially quiescent fluid. This 

simple case is referred to as “free disc”. The general flow structure of the free disc system 

is composed of a boundary layer attached to the disc with a radially outward flow. The 

formation of this outflow is known as the free disc pumping effect. There is an axial 

entrainment flow that balances the mass flow rate within the system. Figure 2.1 shows a 

schematic configuration of the free disc case. 

 

 

Figure  2.1: Fluid Initially at Rest Adjacent to a Rotating Disc, from Schlichtling and Gersten (1999) 
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Assuming that the fluid is incompressible and isothermal and that the system is 

axisymmetric, Von Karman simplified the equations of motion to a set of ordinary 

differential equations. He also provided solutions to these equations both for laminar and 

turbulent flows. For the turbulent flow, he used the momentum integral method and the 

1/7th power law velocity profile for both the radial and tangential velocities to calculate the 

moment coefficient and the mass flow coefficient. 

The free disc problem has been analysed by different researchers (Cochran (1934), 

Goldstein (1935), Theodorsen and Regier (1944), Dorfman (1963), Bayley and Owen 

(1969), Owen and Rogers (1989), Schlichtling and Gersten (1999)), and different 

correlations have been suggested for the mass flow coefficient and disc moment coefficient. 

 In 1940, Bodewadt followed the Von Karman analysis and investigated numerically the 

case of an infinite stationary disc adjacent to a flow with solid body rotation. This 

configuration was also studied by Rogers and Lance (1960), Nydahl (1971), Owen and 

Rogers (1989) and Schlichtling and Gersten (1999). Contrary to the free disc case, the 

boundary layer close to the disc was found to have a radial inward flow, which produces 

axial flow pumping outside the boundary layer due to conservation of mass (see Figure 

2.2). The thickness of this boundary layer is greater than the free disc boundary layer, 

because the axial outflow tends to thicken the boundary layer while the axial inflow in the 

free disc case suppresses the boundary layer. 
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Figure  2.2: Rotating Fluid over a Stationary Disc, from Schlichtling and Gersten (1999) 

 

2.2.2 Rotor-Stator Cavities 

Rotor-stator systems are common configurations in rotating flow applications. The early 

studies of the fluid flow between two finite rotating and stationary discs with no 

throughflow were conducted by Schultz-Grunow (1935). Although the application of 

engines with rotor-stator cavities without throughflow is very limited, experimental and 

numerical investigations of these systems have been widely considered to date. This has 

been with the aim of providing a database for better understanding of systems with 

throughflow and also for CFD validation of rotating cavity cases. 

Having a stationary disc adjacent to a rotating disc significantly alters each of the flow 

structures examined in the previous section. Schultz-Grunow found that for high Re, there 

is a radially outward flow on the rotor and a radially inward flow on the stator. He showed 

that outside these two boundary layers, there is a core of fluid that rotates about half of the 

angular velocity of the rotor. 
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The general problem of flow between an infinite rotating disc co-axially located adjacent to 

an infinite stationary disc was investigated by Batchelor (1951). Batchelor used Von 

Karman’s solutions of Navier-Stokes equations and predicted that there was a core of fluid 

between the rotor and the stator that rotates with an intermediate velocity between that of 

the rotor and the stator. In contrast, Stewartson (1952) found that for low rotational 

Reynolds numbers there is no core rotation and the non-zero tangential velocity only exists 

in the disc boundary layer. Later, Mellor et al. (1968) conducted numerical investigations 

and found that the two flow patterns suggested by Batchelor and Stewartson could be found 

in rotor-stator systems. 

Daily and Nece (1960) performed experimental measurements to investigate the flow in a 

shrouded enclosed rotor-stator system. A schematic diagram of an enclosed rotor-stator 

system is shown in Figure 2.3. The axial distance between the rotor and stator was varied 

during the experiments. The variations were so that the range of the gap ratio, G, was from 

0.0127 to 0.217. Both laminar and turbulent flows were studied during the experiments. 

 

 

 

Figure  2.3: Schematic Diagram of an Enclosed Rotor-Stator System 

  

b 

s Rotating disc Stationary casing 
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Four flow regimes were identified by Daily and Nece: 

1. Regime 1: small G (merged boundary layers), laminar flow 

2. Regime 2: small G (merged boundary layers), turbulent flow 

3. Regime 3: large G (separate boundary layers), laminar flow 

4. Regime 4: large G (separate boundary layers), turbulent flow 

As a rough guide, the flow is turbulent for Re > 105 and for turbulent flow, G is 

considered to be large when G > 0.04. 

Daily and Nece also measured the disc frictional torque at different rotational Reynolds 

numbers and correlated the moment coefficient for each flow regime as follows: 

Regime 1:   



Re
2

G
Cm                                                                                                       2.7 

Regime 2:  25.0167.0 Re
08.0

G
Cm                                                                                              2.8 

Regime 3:  5.0

1.0

Re
7.3



GCm                                                                                                       2.9 

Regime 4:  2.0

1.0

Re
0102.0



GCm                                                                                               2.10 

Owen (1969) measured the moment coefficient of a rotating disc adjacent to a stationary 

disc and concluded that the disc moment coefficient is strongly dependent on the gap ratio, 

G, and for the values of G > 0.12, it reduces to the free disc values. 

Gartner (1987) performed both experimental measurements and numerical analysis to 

determine the moment coefficient of an enclosed rotating disc. A range of rotational 

Reynolds numbers up to 107 was used with a variable gap ratio. For lower gap ratios, he 

found merged boundary layers with the swirl ratio, β, below 0.4 for high radial locations. 

For higher gap ratios, separate boundary layers were found with a core region rotating with 
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β = 0.4. Gartner also found a 20% increase of the moment coefficient for higher gap ratios 

in comparison to that for lower gap ratios. Furthermore, he used his own velocity 

measurements and the Euler equation for angular momentum in order to calculate the 

moment coefficient. According to his conclusions, about 60% of power loss was found to 

be due to the losses occurring in the rotor boundary layer, 30% in the stator boundary layer, 

and 10% due to pushing the flow axially between the rotor and stator. Gartner’s numerical 

results show good agreement with his experimental measurements. 

Graber et al. (1987) performed experimental measurements on different closed geometries 

of rotating discs, as well as discs with mounted bolts. They found that while radial inflow 

reduces the disc moment coefficient, radial outflow increases it. The results of the moment 

coefficient for the systems with bolts mounted on the rotor showed an increase of about two 

times that of the rotor without mounted bolts. 

Romero-Hernandez et al. (2001) performed experiments on a small enclosed rotor-stator rig 

and measured the windage friction for speeds of the rotor up to 30,000 rpm. The 

experimental results were used for the validation of their numerical approach in which the 

k-ε turbulence model was used. The CFD results were about 10% lower than the 

correlations used by Daily and Nece. This discrepancy was explained as the result of 

turbulence modelling inaccuracies. 

All the above-mentioned investigations into rotor-stator systems did not consider 

throughflow in the cavity. Rotor-stator cavities with throughflow have a wide range of 

applications in industry, especially in gas turbine engines. Bayley and Conway (1964) 

conducted experimental measurements on an un-shrouded rotor-stator disc system with 

radial inflow and measured the moment coefficient. They concluded that increasing the 

mass flow coefficient from zero to the order of 104 doubles the disc moment coefficient. 

Daily et al. (1964) performed both experimental measurements and analytical analysis on a 

rotor-stator system with radial outflow. The gap ratio of 0.01 ≤ G ≤ 0.1 and rotational 

Reynolds numbers up to 106 were tested using water as the working fluid. Based on the 

results of their experiments, they correlated the moment coefficient results. This correlation 

uses a modification of the correlation given by Daily and Nece (Equation 2.10) for closed 



 16

cavities, so that the percentage of the increased moment coefficient due to throughflow 

effects is added to the Daily and Nece’s correlation. 

125.00 ][
1390% 

G
TKC F

m                                                                                                      2.11 

Where: 

2.0
3 Reb

QTF                                                                                                                    2.12 

K0 is the non-dimensional tangential velocity of the core of fluid for the no-throughflow 

case and is dependent on the gap ratio. For G = 0.1, K0 is 0.42. Q is the volumetric flow rate 

of fluid.  

In addition, Daily et al. found the following correlation for the moment coefficient based on 

their analytical analysis: 
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C is a constant and a function of rotational Reynolds number. 

Considering both the experimental and analytical correlations, it is found that the moment 

coefficient of the disc with throughflow is higher than that with no throughflow. This 

increase can be attributed to the reduction of core rotation by increasing the throughflow 

rate. 
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Bayley and Owen (1970) used a rotor-stator rig with radial outflow in order to investigate 

the effects of throughflow on the moment coefficient. The gap ratio was varied throughout 

their measurements. They found that the moment coefficient is dependent upon whether a 

shroud is used in the system or not. According to their conclusions, a shrouded system with 

no throughflow has a lower moment coefficient than that without a shroud. This is due to 

the increased amount of ingress of fluid for un-shrouded rotor-stator systems. Accordingly, 

the amount of relative velocity between the core and the disc increases and, as a result, it 

increases the drag on the rotor. In contrast, they found that for cases with throughflow, 

shrouded systems have a higher moment coefficient in comparison with un-shrouded ones. 

Bayley and Owen also found that increasing the throughflow rate and reducing the 

rotational Reynolds number reduces the tangential velocity of the core, but increases the 

moment coefficient of the disc. Furthermore, they found that having a rotor-stator system 

with lower gap ratios produces higher moment coefficients. 

Owen (1988) suggested a solution for the moment coefficient of rotor-stator system with 

throughflow that accounts for the core rotation using a term that is dependent on T.  

For T < 0.2: 

)]}1(4.90)1(7.14)1[(0389.00729.0{Re 6.0226.46.42.0   cTcTccm xxxxC      2.15 

Where: 

13
5

79.1 Tcx                                                                                                                      2.16 

And for T > 0.2: 

2.0Re333.0  TmC                                                                                                          2.17 

Owen and Rogers (1989) found that the presence of superimposed radial flow complicates 

the boundaries between the four flow regimes suggested by Daily and Nece. In particular, a 

large superimposed flow can cause the flow to be turbulent even when there is no rotation. 

They also considered the more general case of a rotating disc in a rotating fluid. This is a 
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good approximation of the flow behaviour in un-shrouded rotor-stator systems where the 

axial gap between the discs exceeds boundary layer thickness. The flow entrained by the 

rotor is given by: 

8.0
, RementwC                                                                                                                    2.18

    

Where the coefficient m depends on β. For T < εm, the flow structure is dominated by 

rotation, and for T > εm , the throughflow dominates. There is no simple closed form 

relationship to express εm (β), but using a quadratic fit of the tabulated data by Owen and 

Rogers gives: 

8.02
, Re)219.0441.02242.0(  entwC                                                                       2.19 

For β = 0 (free disc) this gives the well-known result: 

8.0
, Re219.0 entwC                                                                                                             2.20 

For β = 0.42, which corresponds to a rotor stator system with Cw = 0: 

8.0
, Re073.0 entwC                                                                                                             2.21 

Since β depends on T, the above equations suggest that there is no single value of εm that 

can be used to delineate the flow regime. However, for a superimposed radial outflow, a 

value of T = 0.219 represents an upper limit to the value of εm and consequently an upper 

limit to a flow that is dominated by rotation effects.   

Gartner (1997) developed a semi-empirical correlation that gives satisfactory agreement for 

the moment coefficient from a rotor-stator cavity over a wide range of dimensionless mass 

flows. He also suggested solutions for the moment coefficient of a rotor-stator system with 

throughflow based on the value of T.  
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2.2.3 Rotor-Stator Cavities with Attached Protrusions  

Protrusions are common features attached to the rotating or the stationary discs in practical 

applications of rotor-stator systems. These three-dimensional features significantly alter the 

flow structure in the system, particularly in their vicinity, and produce additional losses due 

to their viscous and form drags. Investigations into the effects of these protrusions on the 

fluid flow within the system have been conducted over the most recent two decades. 

Dibelius et al. (1984) performed the first studies on the effects of protrusions in rotor-stator 

cavities. They used a test rig with a rotor disc in an enclosed housing. For rotor-mounted 

bolts, they noted a significant increase in the moment coefficient above that of a plain disc. 

This occurred for both zero superimposed flow and large values of superimposed flow. 

They also used the radial pressure gradient to derive an axial thrust term in order to 

demonstrate the effects of protrusions. Comparing the axial thrust values, they noticed that 

the effect of protrusions on the flow structure was more pronounced when the flow was 

dominated by rotational effects. 

Subsequently, Zimmerman et al. (1986) measured the effect of various bolt designs on 

shaft torque. Those designs considered were: staged (i.e. axially stacked concentric bolts of 

reducing diameter), cylindrical rotor bolts, partially-covered (by a fin) rotor bolts, and 

fully-covered (by an annular ring) rotor bolts. It was found that 18 staged bolts on a disc at 

a radius ratio of rp/b = 0.75 increased the measured torque over the plain disc by a factor of 

2.5, with further increases for cylindrical shaped bolts. Partially-covered bolts gave little 

benefit in reducing the overall torque compared to uncovered bolts. However, fully-covered 

bolts gave a significant reduction in the moment coefficient compared with uncovered 

bolts, and a moment coefficient of approximately 25% above that of a plain disc.   

Zimmermann et al. explained the results of their torque measurements by plotting the 

moment coefficient for different rotational Reynolds numbers for no-throughflow and 

throughflow with Cw = 2.6 x 104. The effect of the superimposed flow was to increase the 

moment coefficient by 50% for all the bolt designs investigated. The non-dimensional flow 

conditions used by Zimmermann et al. during their measurements (Re ≤ 107 and Cw ≤ 2.6 
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x 104) were lower than the real conditions of a gas turbine engine (2.5 x 106 ≤ Re ≤ 2.5 x 

107 and 3 x 104 ≤ Cw ≤ 1 x 105). Therefore, it is necessary to extend these ranges and re-

examine the variations of moment coefficient under higher non-dimensional parameters. 

Additionally, Zimmermann et al. carried out a theoretical analysis and attributed the 

increase in moment coefficient in the presence of rotor-mounted protrusions to the 

superposition of three elements: form drag, skin friction and pumping losses. They found 

that for a small number of bolts (N<13), form drag dominates the additional moment 

produced, whereas for a large number of bolts the pumping losses become more important. 

They suggested three equations for the moment coefficient produced by each of the three 

elements (Equations 2.22 to 2.24). However, since there is no empirical method to measure 

these three components separately, their equations have not yet been investigated. In 

addition, Zimmerman et al. suggested a theoretical limit where increasing the number of 

bolts will actually cause a decrease in the moment coefficient. The validity of the presence 

of this theoretical limit has not yet been investigated either empirically or numerically. 

For pumping losses: 

prP )( ,,,, praaprbbpr rVrVm                                                                                             2.22 

Where V,b is the tangential velocity of the fluid driven by the bolt at its outer radius, V,a is 

the tangential velocity of the fluid driven by the bolt at its inner radius, rb,pr is the bolt’s 

outer radius, ra,pr is the bolt’s inner radius and prm  is the mass flow pumped by the bolt 

heads. 

Form drag: 
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Where CD is the drag coefficient of the bolt, N is the number of bolts, rp is the bolt’s circle 

radius, H is the height of the bolt, D is the diameter of the bolt and F is a drag correction 

factor due to interference with the wakes of neighbouring bolts. 
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Boundary layer losses: 
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The next experiments on the effects of protrusions in rotor-stator cavities were carried out 

by Millward and Robinson (1989), who measured enthalpy rise in supplied flow. These 

experiments were carried out by varying the number of bolts, their diameter and 

circumferential pitch, and the projected cross-sectional area with bolts attached to both the 

rotor and the stationary casing. Millward and Robinson obtained a correlation of their 

results for bolts attached to the rotor. Equation 2.25 shows the rewritten correlation in terms 

of Cm. They also noted that the effect on enthalpy rise of bolts located towards the outer 

radius was very significant, whereas those located towards the inner radius had little effect.  

For stator-mounted bolts, there was insufficient data to derive a correlation, but it was noted 

that the enthalpy rise due to stator bolts was about one-third of the corresponding 

conditions with rotor bolts. Tests were also carried out with full and partial covering of both 

stator and rotor bolts. No measurable effect was found by partially covering the rotor bolts 

but the stator bolts showed a reduction in enthalpy rise at high mass flows. Fully covered 

bolts, however, gave similar results to a plain disc, and in some cases a reduction was 

actually observed. 
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The correlation is valid for the following ranges: 
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Similar to Zimmermann et al.’s measurements, the range of non-dimensional flow 

conditions used by Millward and Robinson were Re ≤ 107 and Cw ≤ 104, which were again 

lower than real gas turbine flow conditions. The applicability of their correlation beyond 

these ranges should therefore be investigated. 

Gartner (1998) used a momentum integral method to predict the frictional torque from a 

single disc with protrusions. The predictions agree well with available data, provided that 

the spacing between the bolts is not so small that wake effects become significant. Gartner 

used a theoretical model as well as experimental measurements to calculate the power loss 

due to protrusions. However, the integral method used for his theoretical model was 

confined to the free disc case; it is the same with his experimental measurements. This 

confines the usage of his correlation to rotor-stator systems. In addition, theoretical 

calculations of the moment coefficient were based on the 1/7th power law for the velocity 

profiles in the disc boundary layer, while the validity of this assumption is doubted. 

Furthermore, the correlation suggested for the moment coefficient was based on the drag 

coefficient correlation suggested by Taniguchi et al. (1981) for isolated cylinders attached 

to a stationary wall in wind tunnel. Therefore, the limitations of that correlation (neglecting 

the viscous drag in comparison to pressure drag, assuming a uniform two-dimensional 

boundary layer for cylindrical protrusions mounted on the stationary wall) should also be 

considered. 

The effects of protrusions in rotor-stator systems were also experimentally investigated by 

Coren (2007). The geometric specifications of the test rig he used as well as the range of 

dimensionless parameters are the same as those used for CFD simulations in this thesis. 

Coren performed an experimental study on windage effects in rotor-stator cavities. Tests 

were carried out on a smooth disc with and without mounted protrusions inside an enclosed 

pressurised housing. The gap ratio was kept constant (G = 0.1) during the experiments and 



 23

the range of the rotational Reynolds number and mass flow coefficient were 2.5 x 106 ≤ Re 

≤ 2.5 x 107 and 3 x 104 ≤ Cw ≤ 1 x 105 respectively, which corresponds with modern gas 

turbine conditions. Coren compared the experimental results of the moment coefficient for 

the rotor-stator system without bolts (plain disc) with the correlations suggested by Daily et 

al. (1964), Owen (1988) and Gartner (1997), and found the best match for cases where T < 

0.2 with the model of Owen, and for cases where T > 0.2 with the model of Gartner. In 

addition, Coren used the results of his experiments to find a correlation for the moment 

coefficient of the plain disc system (Equation 2.26).  

 

0028.0][Re][52.0 57.037.0  
wm CC                                                                                 2.26 

Coren also carried out an experimental study on the windage effects of rotor and stator 

mounted bolts in the same rotor-stator cavity. Measurements were carried out for N = 3, 9, 

and 18 bolts of diameter D = 16mm mounted on both rotor and stator. He suggested a 

correlation for the moment coefficient as a function of the rotational Reynolds number, 

mass flow coefficient, number, and radius of mounted bolts (see Equation 2.27). He found 

that stator mounted bolts give the highest moment coefficient for rotationally dominated 

flow conditions. In contrast, for rotor-mounted bolts, the highest moment coefficient was 

produced by radially dominated flow conditions. Laser Doppler Anemometry (LDA) was 

also used to measure the radial and tangential components of velocity. Coren found that for 

rotor-mounted bolts and rotationally dominated flow conditions, the core rotational speed 

could reach that of the disc. 
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Where X is 1 for rotor-mounted bolts and 0.32 for stator-mounted bolts. Also, 
p

p

B
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where rp is the radius at which the bolts are mounted and Bp is the bolt’s pitch arc length. 



 24

Although the effect of the number of bolts is indirectly considered in Coren’s correlation by 

considering Bp, the validity of this correlation for a large number of bolts, where the space 

between the bolts is significantly lower than that used in his measurements, is doubted 

considerably. In addition, the effect of the diameter of bolts is not examined in Coren’s 

correlation. 

Miles (2011) conducted experimental measurements on the same test rig that was used by 

Coren (2007). A set of plain disc tests as well as tests with rotor- and stator-mounted 

protrusions were carried out under a range of flow conditions that are typical for gas turbine 

engines. Different numbers (N = 3, 9, and 18) and diameters (D = 10mm, 13mm, and 

16mm) of hexagonal bolts were used during the experiments. Miles also carried out a set of 

tests with bi-hexagonal bolts and pockets. She found that increasing the number and 

diameter of bolts increases the moment coefficient. She also suggested a correlation for the 

moment coefficient as a function of dimensionless flow parameters and the ratio of 

diameter to the circumferential pitch of the bolts (see Equation 2.28). For the rotor-stator 

system with bi-hexagonal bolts, Miles found that the moment coefficient is reduced, in 

comparison with the system with hexagonal bolts. The use of pockets showed little effect in 

comparison to protrusions. Although the measurements conducted by Miles correlated 

windage as a function of flow parameters and the number and size of protrusions, she added 

little information about the flow structure and flow parameter variations in the range of 

interference of the protrusions. In addition, she estimated the drag coefficient of the bolts 

with the drag coefficient of a circular cylinder by defining a Reynolds number based on the 

core velocity and diameter of the bolts. Using this estimation, she proposed that the drag 

coefficient of the bolts could be in the range of laminar to turbulent separation. Although 

the drag coefficient of the bolts could be roughly estimated by assuming them to be 

cylinders, there is still a need for the drag coefficient of the bolts to be accurately 

calculated. 
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2.3 Numerical Methods 

In addition to experimental and theoretical investigations, rotating flows have been the 

subject of many numerical simulation investigations. Today, Computational Fluid 

Dynamics (CFD) is recognised as an established tool for use in areas such as 

turbomachinery applications where rotating flows are one of the most important flow 

phenomena. Modelling these flows requires the solution of a set of simultaneous, non-

linear, partial-differential equations resulting from a strong coupling of the momentum 

conservation equation components. For the case of non-isothermal turbulent flows, the 

energy conservation equation and the difficulties of finding a suitable turbulence model are 

added to the numerical difficulties of the system. In addition, it is now well-recognised that 

the experimental and theoretical approaches are essential complementary parts of 

developing computational methods. Hence, the lack of suitable experimental measurements 

as well as the previously-mentioned numerical difficulties have slowed down the process of 

developing CFD techniques. Nevertheless, CFD is now a powerful tool for modelling fluid 

flow and heat transfer, including within the turbomachinery industry. 

Early numerical methods solving the fluid flow in rotating cavities were developed for 

incompressible laminar flows, which were restricted to low rotational Reynolds numbers 

(Pao (1970), Gosman and Splalding (1970), Patankar and Spalding (1972), Gosman and 

Ideriah (1976)). Different pressure correction methods, due to the incompressible 

assumption of the fluid, were used during these investigations. It was around the mid-1990s 

that steady, axisymmetric, incompressible CFD methods were established in industry (Virr 

et al. (1993)). However, with the progress of computing power, more and more restrictions 

have been relaxed. Compressibility effects were added to the system by extending the 

algorithms for pressure correction methods, and density-based methods were extended for 

low Mach number regimes (Chew and Hills (2007)). 

 The low rotational Reynolds number assumptions that were the other restriction of early 

computations were gradually eliminated by the development of turbulence modelling 

methods. Modelling highly turbulent flows is now common using the large eddy simulation 

(LES) and Reynolds-averaged Navier-Stokes (RANS) equations. Today, the main problem 
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is to find the most appropriate turbulence model based on the flow characteristics and the 

money and time available. Some researchers recommend the k-ε model with standard wall 

function for rotating flows due to its satisfactory results and lower time and cost 

requirements in comparison to Reynolds stress models (RSM) (Virr et al. (1994)). Others 

prefer using RSM due to its improvements in modelling rotating flows in certain cases over 

the k-ε model (Lee et al. (2004)). However, still there is no single turbulence model that can 

be recommended for CFD methods in all cases. Hence, finding a suitable model largely 

depends on comparing the results of different models with relevant experimental data and 

simultaneously considering the available time and money. 

One of the first numerical investigations into the special rotating flow case of rotor-stator 

cavities was conducted by Chew (1984), who modelled a rotor-stator system with 

throughflow using a low Reynolds number k-ε model. Consequently, Chew and Vaughan 

(1988) examined this type of flow with and without throughflow using a model based on 

mixing length hypothesis, and obtained acceptable velocity profile and moment coefficient 

results compared to the experimental measurements of Daily and Nece (1960) and Daily et 

al. (1964). 

Later, Iacovides and Toumpanakis (1993) modelled a closed rotor-stator cavity using four 

turbulence models including a k-ε model coupled with a one-equation model, the Launder 

and Sharma k-ε model, a k-ω model and RSM, and showed that RSM provides the 

appropriate level of closure for the system. Consequently, Kilic et al. (1994) modelled a 

similar rotor-stator cavity to Daily and Nece’s using the Launder and Sharma low Reynolds 

number k-ε turbulence model. The results of their computations showed good agreement 

with the experimental data. 

The development of improved turbulence models for use in numerical analysis of rotor-

stator systems has been an area of extensive research. A review of these investigations was 

conducted by Iacovides and Launder (1995). Improved results were obtained using 

Reynolds stress models (RSM). Elena and Schiestel (1996) tested these models and found 

that they give better results, especially for systems with rotation. However, using RSM is 

very expensive and often has stability problems. The results of investigations conducted by 
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Iacovides and Launder (1995) and Ton and Lin (1994) show that the k-ε model is able to 

reach a compromise between accuracy and CPU time for numerical simulations of rotor-

stator systems. 

In the previous section, the gaps and limitations of the main literature investigating the 

effects of adding protrusions to rotor-stator cavities were presented. There are some gaps in 

common in all the literature, and these include the limitations of theoretical and 

experimental work in comparison with CFD simulations. One of these limitations is that it 

is not possible to measure the torque produced by individual bolts through experimental 

techniques. The only possible method is to measure the produced torque in two cases: the 

system with attached bolts and the system without them. The result of subtracting one of 

these values from the other could be considered as the torque due to bolts. Although this is 

the only applicable method, it is based on an assumption that the amount of torque 

produced by the disc remains constant for the system with bolts and the system without 

bolts. The validity of this assumption is questionable. In addition, most experimental 

measurements have been carried out only at discrete points, usually far from the bolts. In 

contrast, CFD simulations are able to produce a continuous picture of all parameters 

variations and distributions in the system, even in the vicinity of the bolts. Another 

advantage of CFD methods is that changing the flow conditions or protrusion dimensions 

and repeating the data acquisition is not as time-consuming and costly a process as using 

experimental methods. These concerns motivated this research in order to investigate flow 

in a rotor-stator cavity with protrusions using CFD simulations. 

 

2.4 The Bolt windage test rig 

Figure 2.4 shows a general assembly of the test rig used for experimental measurements at 

the Thermo Fluid Mechanics Research Centre (TFMRC) at Sussex University (Miles, 

2011) . This consists of a shaft-mounted titanium alloy disc with an outer radius of b = 

225mm enclosed within a sealed steel pressure casing. The maximum clearance between 

the rotor and the casing is s = 22mm. Around the outer rim of the disc is a labyrinth seal 
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and a stator-mounted shroud encases the cavities on either side of the disc. The disc is 

driven by a 50 kW motor through a 5:1 step-up gearbox. Mounted between the gearbox and 

the disc is an in-line torquemeter. The test side of the disc (labelled ‘front cavity’ in Figure 

2.4) carries the majority of the instrumentation, whereas the balance side (labelled ‘rear 

cavity’ in Figure 2.4) has sufficient instrumentation to balance the flow conditions on both 

sides of the disc. A superimposed flow of air enters the rig centrally on the test side, flows 

radially outward through the cavity and leaves through the labyrinth seal at the perimeter. 

An equal amount of air is supplied to the balance side, where it enters through four inlet 

pipes equally spaced around the central shaft. There are four orifice plates positioned 

upstream and downstream of the test rig on both the test and balance side to measure the 

mass flow of air into and out of the rig, and this ensures both sides are balanced. The air is 

supplied at pressures of up to 7.5 bar (absolute), and mass flows (to both sides) of up to 

0.82 kg/s by an Atlas Copco screw type compressor, and treated with an Atlas Copco air 

conditioning unit to provide dry air in the range of 15 to 25 ºC prior to delivery to the rig.  

The simulations covered the following range of dimensionless parameters that are typical 

for a gas turbine engine: 

0.27 x 107   Re 1.4 x 107 

0.3 x 105Cw  1 x 105 

0.06   T   0.58 

A shaft-mounted Vibrometer TM112 in-line torquemeter measures torque and rotational 

speed. The 95% confidence interval in torque measurement is less than  1 N m. The 

uncertainty in speed measurement is less than  5 rev/min. The torque due to bearing 

friction in the test rig depends on rotational speed and was obtained from a previous 

calibration. This driveline torque was subtracted from all of the measured values of torque 

to obtain a value of the torque transmitted to the fluid, M. The magnitude of the driveline 

torque varied from approximately 2% of the total at high rotational speeds to approximately 

20% at low values of rotational speed. 
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It is important to note that the test rig was designed with the intention of making the torque 

on the test and balance sides equal. The two sides have the same geometrical configuration 

with bolts located on both sides of the disc at the same radius. Furthermore, the pressure 

was kept equal on both sides of the cavity to provide the same flow conditions. The cooling 

flow enters into the balance side at a much higher radius (r/b = 0.55) than on the test side 

(r/b = 0.1). As a result, the flow travels over a smaller section of the disc before exiting the 

system. There are two reasons why this difference in inlet radius is thought to have an 

insignificant effect on the torque. Firstly, the torque on a plain disc is a strong function of 

the radius. Consequently, most of the contribution to the torque experienced by the balance 

side comes from that radially outward of the inlet. Secondly, the tangential velocity of the 

disc at this higher radius will also be proportionally higher, leading to greater shear 

between the disc and the non-rotating fluid near the entry point. This will increase the local 

moment coefficient in this region, which will act to balance the torque experienced on each 

side of the disc.  

Tests were carried out with N = 3, 9 and 18 and D = 10mm, 13mm, and 16mm hexagonal 

bolts of height H = 11mm. These were attached, at a radius of 0.2m, rb/b = 0.889, to both 

sides of the disc surface to ensure similar conditions on either side and to minimise axial 

heat conduction. For reference, the orientation of the bolts relative to the direction of 

rotation is shown in Figure 2.5. 
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Figure  2.4: Schematic Diagram of the Bolt Windage Test Rig (Miles, 2011) 
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Figure  2.5: Orientation of the Bolts with Respect to Rotation 

 

 

2.5 Summary 

This chapter has established the theoretical and empirical framework for the thesis by 

reviewing the literature about fluid flow in rotor-stator cavities, particularly that which has 

examined the effects of attached protrusions. From this review it is clear that a certain 

amount of theoretically- and experimentally-gathered information regarding power loss and 

fluid flow in rotor-stator systems with protrusions is available. However, a detailed picture 

of flow parameters variations in the cavity, particularly in the range of interference of bolts, 

has not yet been obtained. In addition, it was found that all of the experimental 

measurements of power loss due to protrusions have been based on the assumption that 

there is an equal amount of disc moment coefficient for systems with bolts and systems 

without bolts. The validity of this assumption is questionable and should also be 

investigated. Therefore, this study was initiated with the objective of utilising CFD to 

provide detailed information about fluid flow in rotor-stator systems with protrusions so 

that a better understanding of flow behaviour in such systems can be established. 
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3. Computational Model Validation 

 

 

3.1 Introduction 

Validation of the CFD code, ANSYS FLUENT, against three rotor-stator test cases is 

presented in this chapter. Since commercial CFD software is used as the simulator in this 

research, validation does not have its common meaning. What is referred to as validation in 

this chapter is finding suitable controls for the software to produce results that are both 

computationally time- and cost-effective and also have acceptable accuracy compared to 

relevant experimental or validated numerical results. It should be noted that further 

validation of the CFD code for the case of three-dimensional rotor-stator systems with 

protrusions will be continued in Chapters 5 and 6. 

The chapter is composed of four sections. In Section 3.2, the rotor-stator cavity with 

superposed radial outflow that was used by Coren (2007) during his experimental 

measurements is simulated. In Section 3.3, simulations are carried out for the rotor-stator 

cavity with superposed radial outflow that was used by Vaughan (1987) during his 

numerical analysis. Section 3.4 validates the modelling software against the experimental 

measurements conducted by Daily et al. (1964) in a rotor-stator cavity with superposed 

radial outflow. Finally, Section 3.5 summarises the chapter. 

 

3.2 Selecting the Validation Cases 

As mentioned, three test cases have been selected from literature in order to validate the 

CFD simulation software. The selection of the validation cases was based on different 

considerations, such as similarities in geometric configurations and flow conditions with 

the cases investigated in this research, as well as the availability of experimental or 

validated numerical data. Some considerations are similar between the three cases, and 
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some reasons are specific to each individual case. The geometric specification of the three 

selected cases is in the category of shrouded rotor-stator systems with large clearances. For 

all of the cases there is an axial throughflow and radial outflow. In addition, the flow is 

expected to be turbulent for all three validation cases. Aside from these considerations, the 

cases were also selected for the following reasons:   

 Validation Case No. 1: Experimental Measurements of Coren (2007) 

The geometric specification of the test rig and the range of non-dimensional parameters 

used by Coren were the same as those used in this thesis. Hence, it provides good 

information for evaluating the CFD results. Data of both power loss (moment coefficient) 

and velocity variations through the width of the cavity were provided in Coren’s 

measurements.  

 Validation Case No.2: Numerical Analysis of Vaughan (1987) 

Vaughan carried out numerical calculations of the flow in a shrouded rotor-stator system 

with radial outflow. He provided useful data about the core swirl ratio, as well as the 

moment coefficient. He plotted the variations of / *  for different turbulent flow 

parameters in the plane midway through the cavity, and compared his results with earlier 

experimental and numerical investigations. Since similar comparisons are made for plain 

disc system, this validation is useful. 

 Validation Case No.3: Experimental Measurements of Daily et al. (1964) 

This test case has been selected due to the completeness of the investigations of different 

aspects of flow in rotor-stator cavities with throughflow. Radial and tangential velocity 

distributions in different radial locations were reported by the researchers. The researchers 

also measured and correlated the radial pressure variation as well as core swirl ratio and 

rotor boundary layer thickness. Results of the mentioned correlations are used in Chapter 4 

for flow analysis in the plain disc system. The data were provided for different throughflow 

rates and rotational Reynolds numbers. The moment coefficient produced by the disc was 



 34

also measured and correlated by the researchers. This set of information could be used to 

validate the CFD code very effectively. 

 

3.3 Validation Case No. 1: Experimental Measurements of Coren 
(2007) 

Validation was performed against the plain disc experimental measurements that Coren 

(2007) carried out on the rotor-stator test rig described in Section 2.4. No bolts were 

attached to either the rotor or stator. The computations were carried out for two cases of 

interest: 1) throughflow dominated (λT = 0.21, Cw = 0.3 x 105, Re = 0.26 x 107); and 2) 

rotationally dominated (λT = 0.09, Cw = 0.3 x 105, Re = 0.81 x 107). The absolute inlet air 

pressure and temperature for the throughflow dominated case are 2.07 bar and 306 K, while 

for the rotationally dominated case they are 3.04 bar and 301 K. 

A schematic diagram of the geometry modelled is shown in Figure 3.1. A model of the 

geometry in two dimensions was built and meshed for use with enhanced wall treatment. 

Further details about the near wall treatment may be found in Appendix 2. There is an 

extended geometry after the outlet, which is used to avoid reversed flow through the 

outflow boundary. This extended geometry provides a uniform flow before the outlet 

boundary, and prevents it from changing direction and re-entering through the outlet, which 

could cause numerical instability. A grid independence study was carried out in order to 

make sure that the computational results were unaffected by grid size. To achieve this, the 

number of grid cells was doubled. The results were then compared with the coarser mesh. If 

the discrepancies between the two results were considered to be negligible, the coarser 

mesh was selected for further simulations. The number of points for the grid independent 

simulation in this case is 18,000 for use with the enhanced wall treatment. The Pressure-

based, steady state solver was used with the 2nd order discretisation method (see Appendix 

1 for further explanations about the CFD procedure).  
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The air is taken to be compressible, and ideal gas law provides a relationship between 

density, pressure and temperature. The pressure and temperature boundary conditions used 

at the inlet for each case were obtained from the experimental data. The outlet static 

pressure was set so that it produced the measured mass flow rate. A rotating reference 

frame with an angular velocity of the rotor speed was used.  

During the solution process the residuals and the lift, drag, and moment coefficients can be 

monitored continuously in order to identify the convergence. The convergence criteria were 

as follows:  

1. Iterations residual for all the variables except the energy equation are less than 10-5. 

For the energy equation, the residual is less than 10-6. 

2. Fluctuations of outlet mass flow rate are less than 0.1% of inlet mass flow rate. 
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Figure  3.1: Schematic Diagram of the Two-dimensional Simulated Geometry 

 

Six different turbulence models available within FLUENT were used to assess and compare 

the functionality of each model: standard k-, realizable k-, RNG (Renormalisation group) 

k-, standard k-, SST k- and RSM (Reynolds Stress Model) (see Appendix 2). The 

output of this comparison will be the most appropriate model to be used in this thesis.  

In general, finding an appropriate turbulence model for each particular class of application 

is both a challenging and a critical step during CFD simulations. The level of accuracy of 

the model, and the computational effort and cost in terms of CPU time and memory usage 

are the points that should be considered. It is now well known that the RSM provides better 
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predictions for situations in which the flow is anisotropic, including separated flows, flows 

with strong streamline curvature, vortices and rotating flows. However, it should be noted 

that application of RSM is still limited, particularly for three-dimensional flows. This is 

mainly due to the large resources required. In addition, the RSM that is used within 

FLUENT does not always predict more accurately than the two equation models. This is 

due to the closure assumptions used to model various terms in the transport equations for 

Reynolds stresses (Jones and Clarke, 2005 and Rodi, et al., 1998). For both of the simulated 

flow conditions in this validation case, the RSM required about five times more CPU time 

on average for reaching the convergence compared to the standard k-ε model. In addition, 

obtaining a converged solution for RSM was also more challenging compared to the two 

equation models.  

Figures 3.2 and 3.3 show comparisons of the simulation results between the dimensionless 

radial and tangential velocities at r/b = 0.79 for the rotationally dominated case (λT = 0.09) 

using the experimental data of Coren. Note that z/s = 0 (local amount of s is used) 

corresponds to the rotor surface, and z/s = 1 to the stator surface. Figures 3.4 and 3.5 show 

similar comparisons of results for the throughflow dominated case (λT = 0.21). It should be 

noted that Coren performed his experimental measurements at three discrete axial locations 

through the width of the cavity. However, these points are located outside the boundary 

layer thickness of both the rotor and the stator. Therefore, it is only possible to validate the 

results obtained for the core of flow between the rotor and the stator.  

Additionally, Figure 3.6 illustrates comparisons of the computed values of the moment 

coefficient with the experimental measurements for λT = 0.09 and 0.21.  
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Figure  3.2: Comparison between the Axial Distribution of Dimensionless Radial Velocity for Different 
Turbulence Models with the Experimental Data of Coren (2007) at r/b = 0.79; Re = 0.81 x 107, Cw = 0.3 

x 105 (λT = 0.09) 

Note: z/s = 0 is located on the rotor. This is also the case for Figures 3.3 to 3.9. 
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Figure  3.3: Comparison between Axial Distribution of Dimensionless Tangential Velocity for Different 
Turbulence Models with the Experimental Data of Coren (2007) at r/b = 0.79; Re = 0.81 x 107, Cw = 0.3 

x 105, (λT = 0.09) 
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Figure  3.4: Comparison between the Axial Distribution of Dimensionless Radial Velocity for Different 
Turbulence Models with the Experimental Data of Coren (2007) at r/b = 0.79; Re = 0.271 x 107, Cw = 

0.3 x 105, (λT = 0.21) 
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Figure  3.5: Comparison between the Axial distribution of Dimensionless Tangential Velocity for 
Different Turbulence Models with the Experimental Data of Coren (2007) at r/b = 0.79; Re = 0.271 x 

107, Cw = 0.3 x 105, (λT = 0.21) 
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Figure  3.6: Comparison of the Moment Coefficient Results of Different Turbulence Models with the 
Experimental Data of Coren (2007) 

 

 

 It can be seen from Figures 3.2 and 3.4 that there are noticeable differences between the 

results obtained for the radial velocity distribution using different turbulence models. The 

differences are more pronounced within the boundary layers. Considering the tangential 

velocity and the moment coefficient, it can be observed that acceptable agreement exists 

between the experimental data and the simulation results (with the exception of RSM).  

Furthermore, it can be seen that the results of tangential velocity and moment coefficient 

that were obtained using different turbulence models (with the exception of RSM) show 

only small discrepancies. As a result, it can be concluded that the tangential velocity and 

moment coefficient have low sensitivity to the selection of turbulence model.  
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Reaching convergence was also difficult for the RNG k- model, and it took about three 

times more CPU time for reaching a converged solution compared to the standard k-ε 

model. The maximum number of iterations for achieving a stabilised solution for the 

standard and realizable k- and the two k-ω (standard and SST) models was about 2500. 

However, for the RNG model, the solution was stabilised after about 8000 iterations. This 

could be due to the additional non-linear terms in the governing equations of the RNG 

model.  

Based on the simulation results, the RSM was noticeably less accurate than all other models 

in predicting the tangential velocity and moment coefficient, while the remaining models 

showed similar level of accuracy. However, RSM, standard k-ε and realizable k-ε models 

showed to have better predictions for radial velocity in comparison to the experimental 

data. In addition, although the realizable k- model has been shown to provide better 

performance for several applications including separated flows and flow features having 

strong rotation and vortices, it requires about twice of the CPU time and more solution 

features tuning to reach a converged solution than the standard k- model.  

It is also worth commenting on the effect of near wall treatments on the moment coefficient 

and velocity distributions. Using the enhanced wall treatment requires sufficiently fine 

meshes near the walls in order to model the viscous sub-layer. This increases the total 

number of points and, as a result, the computational time. Therefore, another mesh was 

generated for use with standard wall function. The number of points for the grid 

independent simulation for use with the standard wall function was 18,000. The effect of 

near wall treatments on the velocity distribution across the cavity at r/b = 0.79 is shown in 

Figures 3.7, 3.8, 3.9 and 3.10. The radial and tangential velocities for λT = 0.09 are shown 

in Figures 3.7 and 3.8, and those for λT = 0.21 in Figures 3.9 and 3.10 respectively. Two 

wall treatment schemes were used: standard wall function and enhanced wall treatment 

both with the standard k-ε turbulence model (see Appendix 2 for an explanation of different 

near wall modelling types).  
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Figure  3.7: Simulation Results of Radial Velocity at r/b = 0.79 for Different near Wall Treatments, 
Using the Standard k-ε Model for Re = 0.81 x 107, Cw = 0.3 x 105, (λT = 0.09) 
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Figure  3.8: Simulation Results of Tangential Velocity at r/b = 0.79 for Different near Wall 
Treatments, Using the Standard k-ε Model for Re = 0.81 x 107, Cw = 0.3 x 105, (λT = 0.09) 
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Figure  3.9: Simulation Results of Radial Velocity at r/b = 0.79 for Different near Wall Treatments, 
Using the Standard k-ε Model for Re = 0.271 x 107, Cw = 0.3 x 105, (λT = 0.21) 
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Figure  3.10: Simulation Results of Tangential Velocity at r/b = 0.79 for Different near Wall 
Treatments, Using the Standard k-ε Model for Re = 0.271 x 107, Cw = 0.3 x 105, (λT = 0.21) 
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For λT = 0.09 there is generally good agreement between the two methods of wall 

treatment outside the boundary layers. However, it can be seen from Figure 3.9 that the 

standard wall function approach fails to predict a negative radial velocity near the stator. 

This results in an over-prediction of radial velocity in that region, and since the radial 

velocity continues to increase away from the stator, this over-prediction will 

accordingly continue across the whole width of the cavity. However, it appears that the 

enhanced wall treatment is able to predict the negative radial velocity region near the 

stator and give results that are more consistent with the theoretical data in the literature. 

The better prediction of the enhanced wall treatment was not un-expected due to the 

improved modelling level of the near wall region in comparison with the standard wall 

function (see Appendix 2).  

A comparison was also made between the simulation results of the moment coefficient 

for λT = 0.09 and λT = 0.21 using the two different near wall treatments. It was found 

that the standard wall function gives a lower value of the moment coefficient (by about 

8%) compared to the results from the enhanced wall treatment. This happens because 

the standard wall function does not model the details of the laminar sub-layer and the 

buffer layer regions, and hence fails to accurately predict the viscous losses in those 

areas.  

In order to further inspect the simulated results of the rotor-stator system, it is 

interesting to investigate the effects of inlet boundary conditions on the flow structure 

within the cavity and the amount of losses. Normally, attaching a pipe to the entrance of 

rotating cavities provides a fully developed velocity profile. Since the simulated 

geometry includes an inlet pipe (L = 25cm), investigation of the effects of changing its 

length would be of interest. As a result, a sensitivity analysis was performed by 

simulating another geometry with a long inlet pipe (L = 125cm). Simulations were also 

carried out using different turbulent intensities of I = 2%, 5%, and 10% at the inlet 

boundary condition to investigate the influence of turbulent intensity variations on the 

flow behaviour within the system. Figures 3.11 and 3.12 show respectively the 

dimensionless radial and tangential velocities at two radial locations of r/b = 0.31 and 

r/b = 0.79 for λT = 0.09 using different inlet pipe lengths and turbulent intensities. 

Figures 3.13 and 3.14 show similar comparisons for λT = 0.21. 
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(b) 

 3.11:Comparison of the Radial Velocity for Different Inlet Pipe Lengths and Inlet Turbulent 
Intensities Using the Standard k-ε Model with Enhanced Wall Treatment for Re = 0.81 x 107, Cw = 

0.3 x 105, (λT = 0.09) at (a): r/b = 0.31, and (b) r/b = 0.79 
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(b) 

Figure  3.12: Comparison of the Tangential Velocity for Different Inlet Pipe Lengths and Inlet 
Turbulent Intensities Using the Standard k-ε Model with Enhanced Wall Treatment for Re = 0.81 

x 107, Cw = 0.3 x 105, (λT = 0.09) at (a): r/b = 0.31, and (b) r/b = 0.79 
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(b) 

Figure  3.13: Comparison of the Radial Velocity for Different Inlet Pipe Lengths and Inlet 
Turbulent Intensities Using the Standard k-ε Model with Enhanced Wall Treatment for Re = 0.271 

x 107, Cw = 0.3 x 105, (λT = 0.21) at (a): r/b = 0.31, and (b) r/b = 0.79 
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(b) 

Figure  3.14:Comparison of the Tangential Velocity for Different Inlet Pipe Lengths and Inlet 
Turbulent Intensities Using the Standard k-ε Model with Enhanced Wall Treatment for Re = 0.271 

x 107, Cw = 0.3 x 105, (λT = 0.21) at (a): r/b = 0.31, and (b) r/b = 0.79 
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It can be seen that changing the inlet pipe length and the inlet turbulent intensities does 

not change the tangential velocity distribution, even for small radial locations where the 

effects of entering fluid have not fully vanished. Considering the radial velocity 

distribution, it appears that changing the inlet pipe length does not change the radial 

velocity profile at higher radii. However, small differences could be observed at lower 

radial locations close to the entrance of the cavity. Regarding the inlet turbulent 

intensity, it appears that its variations have no effect on the radial velocity distribution 

using the long pipe (L = 125cm). This is because flow has the chance to eliminate the 

irregularities of high-turbulence before entering the cavity. In contrast, for the short pipe 

(L = 25cm), increasing the inlet turbulent intensity decreases the peak of radial velocity 

in the boundary layer attached to the rotor. 

Tables 3.1 and 3.2 show a comparison between the simulation results of the moment 

coefficient for different inlet pipe lengths and inlet turbulent intensities under the two 

mentioned flow conditions. It can be seen that changing both the inlet pipe length and 

the inlet turbulent intensity do not affect the moment coefficient results. 

 

Table  3.1: Comparison of Moment Coefficient for Different Inlet Pipe Lengths and Different Inlet 
Turbulent Intensities Using the Standard k-ε Model with Enhanced Wall Treatment for Re = 0.81 

x 107, Cw = 0.3 x 105, (λT = 0.09) 

 Cm (two sides) 

L = 125 cm,  I = 2% 0.005766 

L = 125 cm, I = 5% 0.005763 

L = 125 cm, I = 10% 0.005761 

L = 25 cm, I = 2% 0.005768 

L = 25 cm, I = 5% 0.005767 

L = 25 cm, I = 10% 0.005766 
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Table  3.2: Comparison of Moment Coefficient for Different Inlet Pipe Lengths and Different Inlet 
Turbulent Intensities Using the Standard k-ε Model for Re = 0.271 x 107, Cw = 0.3 x 105, (λT = 0.21) 

 Cm (two sides) 

L = 125 cm,  I = 2% 0.00876 

L = 125 cm, I = 5% 0.00875 

L = 125 cm, I = 10% 0.00874 

L = 25 cm, I = 2% 0.00875 

L = 25 cm, I = 5% 0.00874 

L = 25 cm, I = 10% 0.00873 

  

 

3.4 Validation Case No.2: Numerical Analysis of Vaughan 
(1987)  

In this case, validation of the code is given using the numerical calculations of Vaughan 

(1987). Vaughan compared his numerical results with the experimental measurements 

of Pincombe and El-Oun (1986). Air at an ambient temperature enters a rotor-stator 

cavity through a gap at the centre of the stator and leaves it from a periphery in the 

shroud. In addition to the inlet throughflow, there is an external flow above the rotor-

stator system. Figure 3.15 shows a schematic diagram of the geometry with the 

following dimensions: s = 19mm, b = 190mm (G = 0.1), a = 19mm, rsh = 186mm, re = 

233mm, sc = 1.9mm. Computations were carried out for the following three flow 

conditions: 1- Cw = 1000 and Re = 8 x 105 (λT = 0.019), 2- Cw  = 2000 and Re = 8 x 

105 (λT = 0.038), and 3- Cw = 1000 and Re = 4 x 105 (λT = 0.033). For all cases, the 

external flow Reynolds number was 6 x 105, which is calculated using Equation 3.1.  


 bue

w Re                                                                                                                    3.1 

Where ue is the velocity of external flow. 
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Figure  3.15: Schematic Diagram of Validation Test Case No.2 

 

Meshes were generated for use with the enhanced wall treatment. The grid 

independence study was also performed. There is an extended geometry at the outlet 

and an attached pipe at the inlet, which provides sufficient length for a fully developed 

velocity profile.  

Although Vaughan considered the fluid to be incompressible, it is worth comparing his 

computations with computations considering the fluid to be compressible, and 

comparing both results with the experimental measurements. Hence, the ideal gas law 

was used for modelling the density, and Sutherland’s law for modelling the viscosity. 

The inlet mass flow rate and rotational speed for each of the flow conditions were 

calculated using the relevant mass flow coefficient and rotational Reynolds numbers. 

2nd discretisation was used for all variables. The convergence criteria were the same as 

those used in the first validation case. The six turbulence models that were used in 

previous section were used here as well. 

Vaughan plotted the variations of / *  for different turbulent flow parameters in the 

plane midway through the cavity and at r/b = 0.5.  is the dimensionless tangential 
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velocity or swirl ratio, and *  is the value of β for zero throughflow. The figure 

compares the experimental measurements of Pincombe and El-Oun (1986) and the 

correlations of Daily et al. (1964) and Owen (1988) with the numerical calculations of 

Vaughan. 

Daily et al.’s correlation is based on their measurements of the core rotation at three 

different radius ratios of r/b = 0.469, 0.648, and 0.828 and at three gap ratios of G = 

0.0273, 0.069, 0.124 (see Equation 3.2).  

1

5
13*

)(
74.121























b
r

T

                                                                                              3.2 

The measured values of *  for the three gap ratios are 0.475, 0.45, and 0.42 

respectively. 

Owen (1988) suggested two correlations for core rotation in turbulent flows (Equations 

3.3 and 3.4); each correlation corresponds to a specific approximation method for 

calculating β. Based on Owen’s approximate theory (Owen, 1988), *  was taken as 

0.426, and it is this value that was used in Equation 3.2 by Vaughan. This is a 

reasonable estimate of *  for G = 0.1, considering Daily et al.’s measurements. 

6.28.06.1 )(57.4638.0)51.01()1( 
b
r

T                                                           3.3 

6.2

8.06.1

)(1395.0
1)1sgn(

b
r

T                                                                         3.4 

Figure 3.16 compares the simulation results of different turbulence models with the 

experimental measurements of Pincombe and El-Oun (1986), the correlations of Daily 

et al. (1964) and Owen (1988), and the numerical calculations of Vaughan (1987), 

zooming in on the regions where the flow conditions of this case are located. 
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Figure  3.16: Comparison of /* for the Simulation Results Using Different Turbulence Models 
with the Experimental Measurements of Pincombe and El-Oun (1986) (for Re = 0.93 x 105 and 1.12 

x 105), the Correlations of Daily et al. (1964) and Owen (1988), and Numerical Calculations of 
Vaughan (1987) 

 

It can be seen that all of the turbulence models except the standard k-ω have acceptable 

results comparable with the experimental measurements of Pincombe and El-Oun. 

Regarding the standard k-ω model, it is known that the ω-equation in the standard k-ω 

model shows a strong sensitivity to the values of ω in the free stream region outside the 

boundary layer (Menter, 1994). This could be the reason for the weak predictions of the 

standard k-ω model. However, it should be noted that dividing β over *  approximately 

doubles the difference between the results of dimensionless tangential velocity for 

different turbulence models. The observable differences between the data may be 

understood by plotting  for different turbulence models where Re = 8 x 105 and Cw = 

2000 (see Figure 3.17). Accordingly, it can be seen that the difference between the 

results of the standard k-ω and the other models becomes less noticeable when is the 

subject of comparison. 
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Figure  3.12: Comparison of β at r/b = 0.5 for Different Turbulence Models; Re = 8 x 105, Cw = 2000 
Note: z/s = 0 is located on the rotor.  

 

Table 3.3 compares the simulation results of the moment coefficient using different 

turbulence models with the correlations of Daily et al. (Equation 2.11) and Owen 

(Equation 2.15) for the three simulated flow conditions. According to the results given 

in Table 3.3, the variations of the moment coefficient using different turbulence models 

can be considered to be negligible. 
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Table  3.3: Comparison between the Rotor Moment Coefficient results of Different Turbulence 
Models and Daily et al.’s and Owen’s Correlations 

Turbulence Model 

Cm (One-sided) 

Re = 8 x 105 

Cw = 1000 

Re = 8 x 105 

Cw = 2000 

Re = 4 x 105 

Cw = 1000 

Standard- k- 0.003003 0.003395 0.004151 

Realizable- k- 0.003007 0.003423 0.004149 

RNG- k- 0.00302 0.003421 0.004153 

Standard- k- 0.002885 0.00325 0.004042 

SST- k- 0.002958 0.003327 0.004108 

RSM 0.0033 0.00375 0.0048 

Daily et al.’s correlation (Equation 

2.11) (Averaged 3 % of difference 

from the results of Standard k- 

model) 

0.003 0.0034 0.0038 

Owen’s correlation  (Equation 2.15) 0.0025 0.00333 0.00363 

 

Similar to the first validation case, another mesh was generated to use with the standard 

wall function using the standard k-ε model. Tables 3.4 and 3.5 compare the results of 

the swirl ratio and the moment coefficient for the enhanced wall treatment and the 

standard wall function for the three flow conditions explored in this section. It can be 

seen that the differences between the values of the moment coefficient and the swirl 

ratio, using the two near wall treatments, are not significant. 

 

Table  3.4: Comparison between the Simulation Result of Swirl Ratio Using the Standard k-ε Model 
and Different Near Wall Treatments 

Model 

β 

Re = 8 x 105 

Cw = 1000 

Re = 8 x 105 

Cw = 2000 

Re = 4 x 105 

Cw = 1000 

Standard- k-- Enhanced wall treatment 0.22 0.114 0.14 

Standard- k- - Standard wall function 0.2 0.09 0.12 
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Table  3.5: Comparison between the Simulation Results of Moment Coefficient Using the Standard 
k-ε Model and Different Near Wall Treatments 

Model 

Cm 

Re = 8 x 105 

Cw = 1000 

Re = 8 x 105 

Cw = 2000 

Re = 4 x 105 

Cw = 1000 

Standard- k-- Enhanced wall treatment 0.003 0.003395 0.0041 

Standard- k- - Standard wall function 0.0029 0.0033 0.004 

 

 

3.5 Validation Case No.3: Experimental Measurements of 
Daily et al. (1964) 

This case is taken from the experiments of Daily et al. (1964). Air at an ambient 

temperature enters a rotor-stator cavity axially through an opening between the stator 

and the shaft and leaves the cavity radially through a gap between the shroud and the 

stator. Figure 3.18 shows a schematic diagram of the cavity, with the following 

dimensions: s = 15.83mm, b = 230.2mm (G = 0.0687), a = 37.6mm, rs = 25.4mm, and sc 

= 3.57mm. The dimensionless flow conditions are: Re = 6.9 x 105 and Cw = 472 (λT = 

0.01). 
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Figure  3.18: Schematic Diagram of Validation Test Case No.3 

 

Meshes were generated for use with the enhanced wall treatment. The grid 

independence study was also performed. An extended geometry was used at the outlet 

and an attached pipe at the inlet. The fluid was taken to be compressible; the ideal gas 

law was used for modelling the density and Sutherland’s law was used for modelling 

the viscosity. The inlet mass flow rate and the rotational speed of the rotor were set 

from the rotational Reynolds number and the mass flow coefficient. 2nd order 

discretisation was used for all variables. Similar to the previous cases, six turbulence 

models were examined. The convergence criteria are the same as those used in previous 

sections. 

Figure 3.19 compares the simulation results of the non-dimensional radial velocity with 

the experimental results of Daily et al. at r/b = 0.648 and r/b = 0.828. Figure 3.20 

illustrates similar comparisons for the dimensionless tangential velocity. Additionally, 

Table 3.6 compares the moment coefficient obtained using different turbulence models 

with the results obtained using Daily et al.’s (Equation 2.11) and Owen’s (Equation 

2.15) correlations. 
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(b) 

Figure  3.19: Comparison of the Radial Velocity Using Different Turbulence Models with the 
Experimental Data of Daily et al. (1964) at (a): r/b=0.648 and (b): r/b=0.828 

Note: z/s = 0 is located on the rotor. This is also the case for Figure 3.20. 
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(b) 

Figure  3.20: Comparison of the Tangential Velocity Using Different Turbulence Models with the 
Experimental Data of Daily et al. (1964) at (a): r/b=0.648 and (b): r/b=0.828 
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Table  3.6: Comparison between the Rotor Moment Coefficients of Different Turbulence Models, 
with Daily et al.’s and Owen’s Correlations 

Model Cm (One-sided) 

Standard- k-  0.003308 

Realizable- k-  0.003313 

RNG- k-  0.003314 

Standard- k- 0.00323 

SST- k- 0.003285 

RSM 0.003815 

Daily et al.’s correlation (Equation 2.11) 0.0029 

Owen’s correlation (Equation 2.15) 0.00423 

 

 

Based on the results displayed in Figures 3.19 and 3.20, all of the turbulence models 

show similar predictions for the radial velocity outside the boundary layer. The results 

show good agreement with the experimental data. However, the standard-k- and SST- 

k- models have better predictions inside the boundary layers. Considering the 

tangential velocity, the predictions of all the models are broadly similar and show good 

agreement with the experimental measurements.  

Regarding the moment coefficient, it can be seen from Table 3.6 that the different 

models have extremely similar predictions with the exception of the RSM. It can be 

seen that RSM has an over-prediction for the moment coefficient and, as it was 

explained in the first validation case, this could be due to the closure assumptions used 

within FLUENT to model various terms in the transport equations for Reynolds 

stresses. Also, as it was concluded in the previous validation cases, moment coefficient 

has low sensitivity to the selected turbulence model. In addition, it appears that both the 

simulation results and the results obtained from Owen’s correlation overestimate the 

moment coefficient in comparison with Daily et al.’s correlation.  

Similar to the previous validation cases, another simulation was implemented using the 

standard k-ε model with standard wall function, and the results were compared with the 

results of the standard k-ε model with enhanced wall treatment. Hence, another mesh 

was produced for use with the standard wall function. Figures 3.21 and 3.22 display the 
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non-dimensional radial and tangential velocity distributions at two radial locations of 

r/b = 0.648 and r/b = 0.828 using the two mentioned near wall treatments. A 

comparison of the moment coefficient for the two near wall treatments is also given in 

Table 3.7.  
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Figure  3.21: : Comparison of Axial Variation of Radial Velocity Using Standard k-ε Model between 
Enhanced Wall Treatment and Standard Wall Function at (a): r/b=0.648 and (b): r/b = 0.828 
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(b) 

Figure  3.22: Comparison of Axial Variation of Tangential Velocity Using Standard k-ε Model 
between Enhanced Wall Treatment and Standard Wall Function at (a): r/b=0.648 and (b): r/b = 

0.828 
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Table  3.7: Comparison of Rotor Moment Coefficients using standard k-ε Model between Enhanced 
Wall Treatment and Standard Wall Function 

Model Cm  

Standard-k-- Enhanced wall treatment 0.0033 

Standard-k-- Standard wall function 0.0032 

 

 

According to Figures 3.21 and 3.22, the results of the two near wall treatments do not 

show significant differences. This is also confirmed in Table 3.7, which compares the 

simulation results of the moment coefficient for the two near wall treatments.  

 

 

3.6 Summary 

Three validation cases were selected from the literature and simulated in this chapter. 

Simulations were performed using six different turbulence models, including the RSM.  

Based on the results gathered in this chapter, the moment coefficient showed a relatively 

low sensitivity to the selection of turbulence model (with the exception of RSM). The 

RSM noticeably over-predicts the moment coefficient of the disc. In addition, the 

results obtained using RSM for the radial and tangential velocity distributions were no 

better than the simpler linear eddy viscosity models. Comparing the results obtained by 

k- and k- models, it was found that k- models have similar level of accuracy for 

calculating the disc moment coefficient in comparison with other two equation 

turbulence models. However, the number of iterations for reaching a converged 

solution, in particular, for the SST k- model was about twice of that for the standard k-

 model. Regarding the three types of the k- models, the RNG k- showed poor 

predictions for the radial and tangential velocity distributions of the first validation case. 

Also, the number of iterations for reaching a converged solution using the RNG k- 

model was about three times more than of that for the standard k- model. Analysis of 
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the results obtained by the standard k-ε and the realizable k-ε showed acceptable 

predictions for tangential and radial velocity distributions in the three validation cases. 

While both models showed similar level of accuracy, realizable k- model required 

twice of the required time and more solution features tuning to reach a converged 

solution than the standard k- model. Based on the above considerations, it would 

appear that the standard k-ε model offers the best combination of computational 

accuracy combined with simplicity of reaching convergence and acceptable 

computational costs. Hence, this model was selected as the turbulence model for the 

simulations in this thesis. However, since the flow in the protruded rotor-stator cavity is 

highly three-dimensional and the effects of rotation and boundary layer separation 

complicate the flow phenomena in vicinity of the bolts, the validity of the results 

obtained by the standard k-model will be re-examined in Chapter 5. 

Comparison was also made to examine the effects of near wall treatments on the 

velocity distributions and moment coefficient. Accordingly, the standard wall function 

and enhanced wall treatment were applied to the simulations using the standard k- 

model. It was found that simulations using the enhanced wall treatment predicted the 

moment coefficient and the tangential and radial velocities more accurately, particularly 

in the boundary layers, than the standard wall function. Therefore, the enhanced wall 

treatment is selected as the near wall function for modelling the near wall regions of the 

rotor-stator system with mounted bolts. 
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4. Plain disc simulations 

 

 

4.1 Introduction 

In this chapter the simulation results of the plain disc configuration (i.e. the rotor-stator 

system without protrusions) are investigated. This chapter extends the numerical 

analysis of the plain disc cavity investigated in Section 3.2 to different flow conditions 

and tries to gather all the fluid flow information that can be found from the numerical 

simulation of the system. Before any attempt can be made to analyse the effects of 

protrusions on the flow structure in a rotor-stator cavity, flow physics and the amount of 

losses should be examined in the plain disc system. Such an investigation provides 

baseline data to study the impacts of adding protrusions to the system. Complete 

analysis of different aspects of flow for the plain disc system under different flow 

conditions is therefore essential.  

The chapter is composed of six sections. Section 4.2 describes the simulation procedure 

for the two-dimensional plain disc system. In Section 4.3, simulations of the complete 

system (two-sided cavity) are provided, and the results of the disc moment coefficient 

for the rear and front sides of the cavity are compared. This analysis examines the 

possibility of simulating only one side of the cavity and reducing the mesh size by 50%.  

Section 4.4 illuminates different flow aspects of the rotationally dominated and 

throughflow dominated regimes. The moment coefficient of the plain disc system is 

presented for different flow conditions in Section 4.5. Finally, Section 4.6 summarises 

the chapter. 

 

4.2 Simulation procedure 

The geometry of the plain disc system is the same as the geometry used by Coren 

(2007), which was explained in Section 3.2. Similarly, two-dimensional simulations 

have been used in this chapter due to the axially symmetric geometry of the plain disc 
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configuration. Figure 4.1 shows a schematic diagram of the simulated system with a cut 

of the generated grids. There is an extended geometry at the outlet, and a pipe attached 

to the inlet. A 200 x 60 mesh in the r-z plane proved to be sufficient to get grid-

independent solutions using the enhanced wall treatment. The boundary conditions are 

summarised in Table 4.1. A more detailed explanation of the selected boundary 

conditions and the convergence criteria were given in Section 3.2, as well as in 

Appendix 1. Based on the results described in Chapter 3, the standard k-ε model with 

enhanced wall treatment was used for the simulations in this and the following chapters. 

However, for the three-dimensional rotor-stator system with protrusions, simulations 

were also carried out using the realizable k-, SST-k- and RSM models, in order to 

validate the accuracy of the standard k- model in the three-dimensional system where 

the effects of rotation and boundary layer separation simultaneously exist in the vicinity 

of the bolt (see Section 5.6). 

Different flow conditions were used for the simulations, providing a large database for 

analysis. The flow conditions are grouped into two matrices with nominal values of 

throughflow Reynolds numbers: Cw = 0.3 x 105, and Cw = 105. Rotational Reynolds 

numbers range from 0.171 x 107 to 1.61 x 107. The flow conditions were obtained from 

the experimental measurements carried out by Miles (2011), which cover a range of 

non-dimensional parameters found in modern gas turbine engines. The data are given in 

Table 4.2. 
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Figure  4.1: Schematic Diagram of the Two-dimensional Simulated Geometry with a Cut of 
Generated Grids Between the Rotor and the Stator 
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Table  4.1: Boundary and Simulation Conditions of the Plain Disc System 

Solution methods 2nd order discretisation scheme set for all variables 

Material 
Air, ideal gas is used for modelling density and Sutherland’s law used for 

modelling viscosity, constant specific heat capacity of 1006.43  J/kg K 

Rotor Adiabatic rotating wall at speed of  

Stator, shroud, pipe Adiabatic Stationary wall 

Inlet 
Pressure inlet, total pressure and total temperature are set from experimental 

data. Hydraulic diameter of 50 mm, and turbulent intensity of 5% 

Outlet 
Pressure outlet, static pressure is set so that the pressure difference of the 

inlet and outlet provides the desired mass flow rate 

 

Table  4.2: Matrix of Flow Conditions for the Plain Disc System (Miles, 2011) 

ω 
(rad/s) 

m  

 (kg/s) 

Reφ 
(/107) 

Cw 
(/105) λT 

Pin
* 

(bar) 

Tin
 ** 

(K) 
261.9 0.125 0.171 0.31 0.32 1.98 293.5 

407.9 0.122 0.271 0.3 0.21 2.04 294.45 

617.1 0.124 0.578 0.299 0.12 3.02 297.75 

915.7 0.123 0.802 0.284 0.085 3.04 298.65 

1057.4 0.123 1.167 0.286 0.063 4.03 297.75 

207.5 0.413 0.348 1.029 0.6 5.05 294.5 

415.4 0.419 0.68 1.029 0.35 5.02 296.25 

628.1 0.418 1.012 1.018 0.25 5.03 296.65 

912.2 0.4177 1.42 1 0.19 5.08 297.45 

1060.6 0.418 1.61 0.986 0.17 5.12 298.15 

                        *: Static pressure 
                        **: Static temperature 

 

4.3 Two-sided cavity simulations 

As mentioned in Chapter 2, the bolt windage rig has a double-sided disc, and the 

experiments were carried out by balancing the flow to both sides. Balancing the test 

(front) and balance (rear) sides of the cavity was achieved by matching the mass flow 

together with the inlet and outlet pressures. As well as reducing the net axial load on the 

rotor, this also ensures minimum leakage at the peripheral seals between the front and 

rear sides of the disc. Consequently, it is possible to simulate one side of the cavity in 
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isolation to reduce the mesh size by 50%. In order to ensure that little leakage occurred 

in the experiment between the rear and front sides of the cavity, the two-sided geometry 

of the plain disc was meshed and modelled with the CFD code. The flow conditions 

used for the simulations included two sets of throughflow Reynolds numbers, each 

including four different rotational Reynolds numbers: 1- Cw = 0.3 x 105 with (Re = 0.27 

x 107, 0.578 x 107, 0.802 x 107 and 1.17 x 107 (0.063 < λT < 0.21), and 2- Cw = 105 with 

(Re = 0.68 x 107, 1.012 x 107, 1.42 x 107 and 1.61 x 107 (0.17 < λT < 0.35). Figure 4.2 

shows the simulated geometry of the two-sided cavity.  

 

 
Figure  4.2: Schematic Diagram of the Two-sided Simulated Geometry 
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According to the simulation results, the maximum amount of flow leakage (about 3% of 

the total mass flow rate) occurred for Cw = 105 and Re = 0.68 x 107. Comparison of the 

flow leakage for the simulated flow conditions reveals that this value reduces when 

reducing the inlet mass flow rate or increasing the rotational Reynolds number. 

Although the maximum amount of flow leakage is very small, it is still necessary to 

investigate whether this amount of leakage changes the moment produced by the disc in 

the rear and front sides of the cavity.  

The total viscous moment coefficient of the disc can be divided into three sources: that 

from the front side of the disc, that from the rear side of the disc, and that from the 

peripheral seal. Figures 4.3 and 4.4 respectively show the contributions of these sources 

of moment coefficient to the total for Cw = 0.3 x 105 and Cw = 105 and the different 

rotational Reynolds numbers. It can be seen that the moment coefficient of the front and 

rear sides are almost the same. This is also shown in Tables 4.3 and 4.4, which give the 

percentage contribution of each component to the total moment coefficient for Cw = 0.3 

x 105 and Cw = 105 respectively. Accordingly, it appears that the flow was balanced in 

the front and rear sides of the cavity and the leakage of flow between the two sides 

could be disregarded. 

It is also relevant to note that the moment coefficient for the peripheral seal is generally 

around 11% of the total moment coefficient (or 1/9th of the value obtained from the two 

disc surfaces). This fact is used in subsequent computations where just one side of the 

cavity without the peripheral seal is modelled. The experimentally measured values of 

the moment coefficient take account of the frictional toques experienced on both sides 

of the disc and the peripheral seal. Thus, computed values from a one-sided model of 

the cavity can be compared with the experimental values by halving 89% (the amount of 

moment coefficient produced by the peripheral seal was subtracted) of the total moment 

coefficient obtained during experiments. 

The moment produced by the labyrinth seal was also predicted by Millward and 

Edwards (1994), using the following correlations. 

65.0

55.0

, Re












 f

w
sealm nCC



                                                                                                4.1 



 73

 42
, bLCM sealmL                                                                                                       4.2 

Where L is the length of the seal, and nf is the number of the fins. For the test rig under 

investigation, L = 0.0212m and nf = 2 (Miles, 2011). 

Miles (2011) used this mentioned correlation in order to calculate the moment 

coefficient produced by the peripheral seal. The calculated moment was then subtracted 

from the total moment in order to find the moment produced by the disc alone. 

Accordingly, Miles found that the labyrinth seal contributes between 16% and 23% of 

the total measured moment, depending on the flow condition. However, based on the 

simulation results, the amount of moment produced by the peripheral seal is lower than 

that value, between 9% and 12% of the total moment. 

 

0

0.004

0.008

0.012

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Re/(107)

C m

Test side Balance side
Peripheral seal Numerical results (total)
Experimental results- Miles (2011)

 

Figure  4.3: Contribution to the Total Moment Coefficient Produced by the Different Rotating 
Components  in the Simulated Two-sided Plain Disc Geometry, Cw = 0.3 x 105  
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Figure  4.4: Contribution to the Total Moment Coefficient Produced by the Different Rotating 

Components in the Simulated Two-sided Plain Disc Geometry, Cw = 105  

 

 

Table  4.3:Contribution to the Total Moment Coefficient Produced by the Different Rotating 
Components in the Simulated Two-sided Plain Disc Geometry, Cw = 0.3 x 105 

Re/ 107 
Percentage of total moment coefficient 

Test side Balance side Peripheral seal 

0.271 0.46 0.43 0.11 
0.578 0.46 0.45 0.09 

0.802 0.46 0.45 0.09 

1.167 0.46 0.44 0.1 

 

Table  4.4: Contribution to the Total Moment Coefficient Produced by the Different Rotating 
Components in the Simulated Two-sided Plain Disc Geometry, Cw = 105 

Re/ 107 
Percentage of total moment coefficient 

Test side Balance side Peripheral seal 

0.68 0.45 0.45 0.1 

1.012 0.45 0.44 0.11 

1.42 0.45 0.43 0.12 

1.61 0.45 0.44 0.11 
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4.4 Plain disc flow structure 

The plain disc system is a widely investigated case. Hence, flow structure and energy 

losses in this system have been reported in the literature under different flow conditions 

and geometric specifications. Detailed reviews of previous studies were presented by 

Owen and Rogers (1989) and Childs (2007). For the applications analysed in this work, 

the flow is expected to be turbulent, and for the geometries analysed G = 0.1.  

Simulation results of four different typical flow conditions were selected from Table 4.2 

to be analysed: 1- Re = 1.61 x 107, Cw = 105 (T = 0.17), 2- Re = 1.167 x 107, Cw = 0.3 

x 105 (T = 0.063), 3- Re = 0.171 x 107, Cw = 0.3 x 105 (T = 0.31), and 4- Re = 0.348 

x 107, Cw = 105 (T = 0.6). The first two flow conditions are representative of the 

rotationally dominated flow pattern, and the second two flow conditions are 

representative of the throughflow dominated flow regime. 

Figures 4.5 through 4.8 show a set of different flow parameters variations in the plain 

disc system for the mentioned flow conditions. Typical circumferentially averaged 

structure of the mean flow in the plain disc system is shown in Figure 4.5 (a) to (d). The 

tangential velocity distributions of the mentioned flow conditions are shown in Figure 

4.6 at two different radial locations of r/b = 0.62 and r/b = 0.8. Figures 4.7 and 4.8 show 

similar plots for the radial and axial velocity distributions respectively.   
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Figure  4.5: Flow Streamlines (relative total velocity) for the Plain Disc System under Different Flow 
Conditions:  

(a) Re = 0.171 x 107, Cw = 0.3 x 105 (T = 0.31) 
(b) Re = 1.167 x 107, Cw = 0.3 x 105 (T = 0.063) 

(c) Re = 0.348 x 107, Cw = 105 (T = 0.6) 
(d) Re = 1.61 x 107, Cw = 105 (T = 0.17) 
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(a): r/b = 0.62 

 
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
z/s

V 
/r

. w

(a) (b) (c) (d)  
 

(b): r/b = 0.8 
 

Figure  4.6: Tangential Velocity Distributions at the radial locations of r/b = 0.62 and r/b = 0.8 for: 
(a) Re = 0.171 x 107, Cw = 0.3 x 105 (T = 0.32) 

(b) Re = 1.167 x 107, Cw = 0.3 x 105 (T = 0.063) 
 (c) Re = 0.348 x 107, Cw = 105 (T = 0.6) 
 (d) Re = 1.61 x 107, Cw = 105 (T = 0.17) 

Note: z/s = 0 is located on rotor. This is also the case for Figures 4.7 and 4.8. 
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(a): r/b = 0.62 
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Figure  4.7: Radial Velocity Distributions at the radial locations of r/b = 0.62 and r/b = 0.8 for: 

            (a) Re = 0.171 x 107, Cw = 0.3 x 105, (T = 0.32 
                (b) Re = 1.167 x 107, Cw = 0.3 x 105, (T = 0.063), 

(c) Re = 0.348 x 107, Cw = 105, (T = 0.6) 
 (d) Re = 1.61 x 107, Cw = 105, (T = 0.17) 
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Figure  4.8: Axial Velocity Distributions at the radial locations of r/b = 0.62 and r/b = 0.8 for: 
           (a) Re = 0.171 x 107, Cw = 0.3 x 105, (T = 0.32) 

              (b) Re = 1.167 x 107, Cw = 0.3 x 105, (T = 0.063) 
(c) Re = 0.348 x 107, Cw = 105, (T = 0.6) 
(d) Re = 1.61 x 107, Cw = 105, (T = 0.17) 
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The results obtained from the simulations (shown in Figures 4.5 to 4.8) are quite 

comparable to the experimental observations of Daily et al. (1964) and the predictions 

of Owen and Rogers (1989) for the turbulent flow structure in rotor-stator cavities with 

large clearances. Accordingly, the flow structure in the rotor-stator wheel-space could 

be categorised into the two models of Stewartson (1952) and Batchelor (1950). 

Stewartson’s model explains the flow with a throughflow dominated condition in which 

rotation has a small influence on the flow structure. In contrast, Batchelor’s flow pattern 

models the flow with a rotationally dominated condition. Here, rotation plays an 

important role in the flow structure inside the cavity.  

In rotor-stator cavities, the parameter that is most important to categorise the flow 

regime is the turbulent flow parameter, T. It is used as an indicator in Batchelor and 

Stewartson’s flow structures. The turbulent flow parameter of 0.219 is the transitional 

point above which transition from a rotationally dominated condition (Batchelor’s flow 

pattern) to a throughflow dominated condition (Stewartson’s flow pattern) occurs 

(Owen and Rogers, 1989). The effects of the turbulent flow parameter variations on the 

flow structure can be seen by comparing the velocity streamlines in Figure 4.5 (a) to (d), 

as well as the velocity distributions in Figures 4.6 to 4.8. Keeping the throughflow rate 

constant and increasing the disc speed, and, as a result, the rotational Reynolds number, 

moves the flow pattern to Batchelor’s model, where the flow is divided into three 

distinct zones: separate boundary layers near the rotor and stator with a rotating core in 

between. In this model, a net radial outflow and inflow exist, close to the rotor and 

stator respectively. This is shown by the negative and positive radial velocities close to 

the stator and rotor respectively in Figure 4.7. The core has zero radial velocity and a 

swirl ratio of . Increasing the rotational Reynolds number increases the tangential 

velocity of the core (compare the tangential velocity of the core displayed in Figure 

4.6).  

Increasing the throughflow rate influences the flow field to a great extent. By increasing 

Cw, the central core disappears and an outward radial flow (Vr > 0) forms everywhere, 

even in the stator boundary layer. The flow then follows Stewartson’s model. In this 

model, tangential velocity variation only exists in the rotor boundary layer and is almost 

zero outside it (see Figures 4.6 and 4.7). According to the simulation results, at high 



 81

throughflow rates the change in tangential velocity in the disc boundary layer is close to 

rω.  

Effects of the radius on the radial and tangential velocity distributions can be observed 

in Figures 4.6 to 4.8 by comparing the velocity distribution results at the radial locations 

of r/b = 0.62 and r/b = 0.8. It can be seen that for high rotational Reynolds numbers, the 

zero radial velocity of the core only exists for higher radial locations. In addition, for 

lower values of Re particularly at low radii, radial velocity has a very steep profile. 

Furthermore, while the radial velocity distribution does not vary very much with radius 

for higher values of Re, it varies significantly for lower values of Re. Regarding the 

tangential velocity distribution, it is clear that the core speeds up with an increase in 

radius.  

Inspecting the axial velocity distributions, which are shown in Figure 4.8, it can be 

observed that there is almost a zero axial velocity for all flow conditions through the 

whole width of the cavity.  

It is also interesting to investigate the boundary layer growth on the rotor surface for 

different flow conditions, and to compare it with the relevant correlations suggested in 

the literature. Calculation of the rotor boundary layer thickness is required in almost all 

of the analytic modelling of flow in rotor-stator cavities that emerges from the integral 

boundary layer theory. Smaller boundary layer thicknesses result in stronger velocity 

gradients between the core and the wall, and consequently higher values of viscous 

moment coefficient. Due to the dominance of the tangential shear stress component in 

developing the boundary layers on both walls, it is the tangential velocity distribution 

that specifies the boundary layer thickness (Daily et al., 1964). The boundary layer 

thickness of the rotor can be defined as the axial distance away from the wall where the 

non-dimensional tangential velocity reaches 1.1.   

The simulation results of rotor boundary layer thickness could be compared with the 

boundary layer thickness obtained from solutions of Ekman boundary layer equations 

assuming 1/7th power law velocity profiles (Owen and Rogers, 1989). Accordingly, 

Equation 4.3 gives the boundary layer thickness for a rotating fluid over a rotating wall 

(Owen, 1987). In addition to Owen’s correlation for rotor boundary layer thickness, 

Daily et al. (1964) also proposed a relation between the rotor boundary layer thickness 
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and Re as well as  (see Equation 4.4) based on their experimental measurements. 

Comparison of the results of boundary layer thickness obtained from the simulations 

with those obtained using Equations 4.3 and 4.4 are tabulated in Tables 4.5 and 4.6 at 

r/b = 0.8 and r/b = 0.62 respectively. The numerical results were obtained by plotting 

the dimensionless tangential velocity distribution and finding the axial location where it 

reaches approximately 1.1.    
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Table  4.5: Rotor Boundary Layer Thickness at r/b = 0.8 

Re/107 Cw/105 rotor (mm) 
Numerical results 

rotor (mm) 
Owen (1987) 

rotor (mm) 
Daily et al. 

(1964) 

0.171 0.3 4.4 1.078 3.9 

1.167 0.3 1.916 0. 73 2.6 

0.348 1 4.3 0. 94 3.3 

1.61 1 3.9 0. 67 2.5 

  

 

Table  4.6: Rotor Boundary Layer Thickness at r/b = 0.6 

Re/107 Cw/105 rotor (mm) 
Numerical results 

rotor (mm) 
Owen (1987) 

rotor (mm) 
Daily et al. 

(1964)

0.171 0.3 3.3 0.84 3 

1.167 0.3 1.55 0.53 1.6 

0.348 1 3.7 0.73 2.6 

1.61 1 3.3 0.54 1.94 
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The first point that can be gleaned from Tables 4.5 and 4.6 is that the difference 

between the solution of Ekman boundary layer equations and the CFD results is quite 

significant. This could be explained due the assumption made regarding the mentioned 

equations: that the equations are strictly valid for 1  (Owen, 1987) and also the 

limitations of the numerical methodology and the associated assumptions. However,  

is noticeably far from 1 in the simulated cases. The highest amount of  that occurs for 

the flow condition of Cw = 0.3 x 105 and Re = 1.167 x 107 is 0.14 at r/b = 0.6 and 0.25 

at r/b = 0.8. 

Inspection of the data shown in Tables 4.5 and 4.6 indicates that increasing Re 

decreases the rotor boundary layer. This could be explained due to the increase in 

centrifugal forces compressing the boundary layer on the rotor. In addition, as it is 

evident in the correlation suggested by Daily et al., rotor boundary layer thickness is a 

function of (1-). Hence, increasing Re increases  and, as a result, reduces the rotor 

boundary layer thickness. Moreover, with an increase in throughflow rate, the degree of 

turbulence in rotor boundary layer increases, resulting in its thickening. Finally, as is 

clearly shown in Tables 4.5 and 4.6, the rotor boundary layer thicknesses increase with 

increasing radius, which is characteristic of turbulent flows.  

It is also necessary to investigate the extent to which the numerical results of the rotor 

boundary layer thickness change with changing the type of turbulence model. 

Simulations were therefore carried out for a typical flow condition of Re = 0.171 x 107 

and Cw = 0.3 x 105 using the RSM and realizable k-turbulence models with enhanced 

wall treatment. The results of these simulations are displayed in Table 4.7. 

 

Table  4.7: Comparison of the Numerical Results of Rotor Boundary Layer Thickness (mm) for Re 
= 0.171 x 107 and Cw = 0.3 x 105 

r/b 
RSM  with 

enhanced wall 
treatment 

Realizable k- with 
enhanced wall 

treatment 

Standard k-  with 
enhanced wall 

treatment 
0.6 4 3.27 3.3 

0.8 4.9 4.36 4.4 
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Based on the simulation results of tangential velocity distributions, similar to the cases 

discussed in Section 3.2, RSM over-predicts the tangential velocity of the core as well 

as the rotor boundary layer thickness. The standard and realizable k- models also had 

similar predictions of tangential velocity and the thickness of the rotor boundary layer. 

It is also interesting to investigate how the core swirl ratio is affected by different flow 

conditions in the plain disc system. Owen and Rogers (1989) modelled the core rotation 

using the generalised solution of momentum integral equations. Similar investigations 

were performed by Daily et al. (1964), Owen (1986) and Dadkhah (1989). Figure 4.9 

compares the simulation results of the core swirl ratio with the results obtained by these 

researchers. 

Comparison of the analytical correlations of Owen and the empirical correlations of 

Daily et al. and Dadkhah with the simulation results show that for Tx-2.6 < 0.25 the 

analytical results of Owen, for 0.25 < Tx-2.6 < 1.5 the empirical correlation of Dadkhah, 

and for 1.5 < Tx-2.6 the empirical correlation of Daily et al. give closer results to the 

numerical predictions. This could be explained by the range of non-dimensional 

parameters in which each of the correlations is valid. Similar results were also obtained 

by Childs (2007). 
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Figure  4.9:  Variations of  / *   with λT(r/b)-13/5 
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To complement the analysis of flow phenomena in the plain disc system, radial pressure 

distribution was also examined. Figure 4.10 shows the simulation results of the 

dimensionless pressure coefficient 
 

2

2


bpp

Cp rb  , used by Daily et al. (1964) and 

Bayley and Owen (1969), as a function of radius for different Cw and Re. 

Variations of radial pressure could be explained considering Equation 4.5, which was 

derived from the radial momentum equation (Daily et al., 1964). 
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According to Equation 4.5, the radial pressure is controlled by two mechanisms: radial 

flow effect and rotational (tangential velocity) effect. For the conditions where both the 

radial and tangential velocities are small, the radial pressure gradient remains constant 

and very close to zero. 
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Figure  4.10: Radial Pressure Distribution for the Plain Disc System for the Flow Conditions of: 
               (a) Re = 0.171 x 107, Cw = 0.3 x 105, (T = 0.32) 

                  (b) Re = 1.167 x 107, Cw = 0.3 x 105, (T = 0.063) 
                                                      (c) Re = 1.012 x 107, Cw = 105, (T = 0.25) 
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As can be seen in Figure 4.10, pressure rises towards the peripheral seal of the cavity. 

Comparison of the presented plots reveals that for a constant value of Cw, the radial 

pressure difference between the inlet and outlet of the cavity increases significantly by 

increasing the rotational Reynolds number. In contrast, increasing the throughflow rate 

for approximately similar values of Re slightly decreases the radial pressure gradient. 

Therefore, as was expected, the pressure gradient in the cavity is primarily determined 

by rotation. It can also be seen that the effect of the rotational Reynolds number 

becomes less significant by increasing the throughflow rate. It is interesting to note that 

for the rotationally dominated cases, there is a small pressure variation from the inlet to 

the center of the cavity. Subsequently, pressure rapidly increases from the centre to the 

periphery of the system. This is contrary to the throughflow dominated condition where 

the pressure varies noticeably from the inlet to the center of the cavity and then stays at 

a constant value for higher radial locations. The trend of radial pressure difference 

variations with Re and Cw is quite compatible with those variations obtained by the 

experimental measurements of Bayley and Owen (1969). 

It is also interesting to investigate whether any axial pressure gradients exist in the 

cavity from the rotor to the stator or in the opposite direction. Hence, the axial pressure 

difference was calculated for three flow conditions: Re = 0.348 x 107, Cw = 105, (T = 

0.6), Re = 0.171 x 107, Cw = 0.3 x 105, (T = 0.32) and Re = 1.167 x 107, Cw = 0.3 x 

105, (T = 0.063) at r/b = 0.6 and r/b = 0.8. It was found that the maximum axial 

pressure difference (about 8 Pa) occurs at lower radii and for the flow condition with the 

highest turbulent flow parameter (Re = 1.012 x 107, Cw = 105, T = 0.25). For the other 

two flow conditions, particularly at higher radial locations, the pressure difference is 

less than 2 Pa. Therefore, it appears that there is a minor axial pressure difference 

between the rotor and stator. This could also be confirmed by looking at the axial 

velocity distribution along the z-axis (see Figure 4.8). Accordingly, there is almost zero 

axial velocity through the width of the cavity. 
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4.5 Moment coefficient results 

An important requirement in analysing rotor-stator systems is not only to understand the 

physics of flow and the mechanisms of losses but also to quantify the amount of losses 

associated with the systems. The tangential shear stress at the surface of the disc 

produces viscous friction and, consequently, a viscous moment. As was mentioned in 

the previous chapter, it is more convenient to use the moment coefficient, rather than the 

moment, for power loss calculations in rotor-stator systems. Accordingly, Figures 4.11 

and 4.12 show variations of the moment coefficient for Cw = 0.3 x 105 as a function of 

the rotational Reynolds number and turbulent flow parameter, respectively. Figures 4.13 

and 4.14 show similar variations for Cw = 105. Comparisons were made with the 

experimental measurements carried out by Miles (2011). 
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Figure  4.11: Variation of Moment Coefficient with Rotational Reynolds number. Comparison 
between Numerical and Experimental Results for plain disc, Cw = 0.3 x 105 
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Figure  4.12: Variation of Moment Coefficient with Turbulent Flow Parameter. Comparison 
between Numerical and Experimental Results for plain disc, Cw = 0.3 x 105 
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Figure  4.13: Variation of Moment Coefficient with Rotational Reynolds number. Comparison 

between Numerical and Experimental Results for plain disc, Cw = 105 
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Figure 4.14: Variation of Moment Coefficient with Turbulent Flow Parameter. Comparison 
between Numerical and Experimental Results for plain disc, Cw = 105 

 

 

Examination of Figures 4.11 to 4.14 reveals that there is very good agreement between 

the numerical and the experimental data for most of the rotational Reynolds numbers 

and turbulent flow parameters. However, there is a divergence for the lower values of 

Re and the higher values of T. This can be explained by considering the experimental 

uncertainties in measuring the moment for lower values of rotational Reynolds 

numbers. According to the experimental uncertainty analysis, the relative uncertainty 

was about 24% (Miles, 2011). Since the amount of moment produced by the disc is very 

low for lower values of the disc speed, the measured moment approaches the same order 

of magnitude as the measured uncertainties.  

Further inspection of Figures 4.11 to 4.14 illustrates that increasing the turbulent flow 

parameter, which is associated with a reduction in Re or an increase in the throughflow 

rate, increases the moment coefficient of the disc. For a constant value of Cw, increasing 

the rotational speed of the disc makes rotation the dominant mechanism in the system. 

Having a disc with higher rotational velocity speeds up the core and, as a result, 

increases the core swirl ratio (see Figure 4.6). This will increase the velocity gradient 

between the core and the disc and consequently produce higher shear stress. This leads 

to the production of higher disc moments. However, since the rotational speed is 
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squared in the moment coefficient formula, the moment coefficient decreases when 

increasing the disc’s rotational speed.  

For a constant value of Re, increasing the throughflow rate brings about a reduction in 

the tangential velocity of the core. This occurs due to the conservation of angular 

momentum, and is a well-known phenomenon in plain disc systems (Owen and Rogers, 

1989). Consequently, increasing Cw increases the relative (rotor to core) tangential 

velocity, resulting in an increase in the moment coefficient produced by the skin 

friction. 

It is also of interest to compare the numerical results of the moment coefficient with 

earlier experimental data. The work of Daily et al. (1964) (see Equation 2.11), Coren 

(2007) (see Equation 4.6) and Owen (1988) (see Equations 2.15 and 2.17) were 

compared against the CFD data. Figures 4.15 and 4.16 demonstrate such a comparison 

for Cw = 0.3 x 105 and Cw = 105, respectively.  

2/}0028.0][Re][52.0{ 57.037.0  
wm CC                                                                      4.6 

 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.05 0.1 0.15 0.2 0.25 0.3
T

C m

CFD results Experimental data - Miles (2011)
Daily et al. (1964) Owen (1988)
Coren (2007)

 
Figure  4.15: Comparison of the Simulation Results of Moment Coefficient with the Experimental 
and Analytical Correlations as well as the Experimental Measurements of Miles (2011); Cw = 0.3 x 

105 
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Figure  4.16: Comparison of the Simulation Results of Moment Coefficient with the Experimental 
and Analytical Correlations as well as the Experimental Measurements of Miles (2011); Cw = 105 

 

 

As can be observed, there is good agreement between the data, particularly for T < 0.2. 

Among the correlations, the correlation suggested by Coren gives the closest moment 

coefficient to that obtained by the numerical results. This could be explained due to the 

similarity of the geometric configuration as well as the range of non-dimensional 

parameters used in both investigations. Considering the work conducted by Owen and 

Daily et al., the differences between the results could result from the low ranges of Re 

and Cw used in their experiments. 

 

4.6 Summary 

The rotor-stator cavity with no protrusions (plain disc configuration) was simulated in 

two dimensions using the standard k- turbulence model. A complete analysis of 

different aspects of flow as well as loss coefficients under different dimensionless 

conditions has been presented in this chapter. The data will be used in the following 

chapters for investigating the effects of adding protrusions to the system.  
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Simulations of the complete system (two-sided cavity) have also been provided, and the 

results of the disc moment coefficient for the rear and front sides of the cavity were 

compared. It was found that very little leakage exists between the rear and front sides of 

the cavity. It was also found that the moment coefficient for the peripheral seal is 

generally around 11% of the total moment coefficient, and the moment coefficient 

produced by the front side and the rear side of the cavity are almost equal. 

Investigating the flow pattern in the simulated rotor-stator cavity under different non-

dimensional flow conditions showed that, as was expected from the literature, the two 

flow patterns of Batchelor and Stewartson could be distinguished in the system: the 

former corresponds to rotationally dominated flow with two boundary layers and a 

rotating core, and the latter corresponds to a throughflow dominated condition with one 

boundary layer attached to the rotor. In addition, the moment coefficient of the plain 

disc system was compared with the results of the experimental correlations suggested 

by Coren (2007), Daily et al. (1964) and Owen (1988). It was found that the correlation 

suggested by Coren gives the closest moment coefficient to that obtained from the 

numerical results.  
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5. Rotor-Stator System with Mounted Bolts: 
Investigation of the Effects of Flow Condition 

Variations 

 

5.1 Introduction 

A detailed analysis of flow structure and energy losses in the rotor-stator cavity with 

rotor-mounted bolts is presented in this chapter. According to the literature review (see 

Sections 2.2.3 and 2.3), a complete and detailed analysis of flow phenomena in rotor-

stator cavities with mounted protrusions has not yet been systematically conducted. This 

could be because of the difficulties in using experimental techniques to perform 

measurements in the vicinity of protrusions and to directly measure the losses caused by 

them, or the complexities of numerical methods in predicting flow mechanisms, 

particularly around protrusions. This chapter is therefore strategically focused on what 

flow phenomena can be explored from the CFD simulations of the rotor-stator system 

with mounted bolts. Discussions are provided for constant numbers and geometric 

specifications of hexagonal bolts. The effects of changing the diameter and number of 

bolts will be explored in the next chapter.   

This chapter comprises seven sections. In Section 5.2, the general simulation 

specifications of three-dimensional systems are described. Section 5.3 deals with the 

analysis of simulation results investigating the flow structure under different flow 

conditions. A comparison of flow phenomena between the plain disc and protruded disc 

systems is presented in this section. In addition, different flow parameter variations are 

examined in three dimensions around the bolts. Section 5.4 provides the simulation 

results of the bolt drag coefficient for different flow conditions. The results of the flow 

structure analysis are used to distinguish those parameters affecting the drag coefficient 

variations for different flow conditions. Section 5.5 provides a discussion of the 

moment coefficient of individual bolts as well as the total rotor-stator system. Section 

5.6 investigates the simulation results obtained by using the standard k-, the realizable 

k-theSST k- and the RSM turbulence models for a typical flow condition, and 

compares them with those obtained using the standard k- turbulence model. The 
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comparison reveals the extent to which the standard k- model is able to predict reliable 

results in three dimensions, in particular around the protrusions. Finally, Section 5.7 

presents a summary of the chapter. 

 

5.2 Simulation specifications of the BWR system 

The presence of bolts in the rotor-stator cavity disturbs the two-dimensional 

characteristics of the system and necessitates three-dimensional simulations. Figure 5.1 

shows the computational domain and two cuts of the three-dimensional mesh used in 

the computational model for the rotor-stator cavity with rotor-mounted bolts. This 

chapter presents the simulation results for 18 bolts, 16mm in diameter and 11mm in 

height, which were attached to the disc at a radius of 0.2 m, r/b = 0.889. The bolts cover 

about half of the width of the cavity (z/s of the tip of the bolts is 0.5). The angular extent 

of the sector simulated for 18 bolts is 20°.  

The required number of elements for the three-dimensional meshing of the rotor-stator 

system with mounted bolts was significantly larger than for the equivalent two-

dimensional model. The approximate number of elements used for modelling the two-

dimensional plain disc system was about 18,000, while it was about 810,000 for the 20° 

sector of the three-dimensional system. Unstructured grids were used in the r- plane 

only. Finer grids were used near the bolt. The distance between the first point of the 

meshes and the walls was specified to allow the use of enhanced wall treatments. The 

standard k model was used for the simulations. However, comparisons were also 

made between the results of the standard k- model, realizable k-SST k-and RSM 

model in order to ensure whether the use of the standard k- model is suitable for three-

dimensional simulations. The results of these comparisons are presented in Section 5.6. 

All other simulation specifications were the same as those mentioned in Section 4.2. 

Similar to the plain disc simulations, the simulation results for 18 bolts were grouped in 

two matrices with two values of throughflow Reynolds number: Cw = 0.3 x 105, and Cw 

= 105. Different rotational speeds of rotor were used for the simulations, providing a 

large database for analysis. The arranged cases are given in Table 5.1. 
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(a) 
 

 
 

(b) 
 

Figure  5.1: The Computational Domain Used for the Three-dimensional Simulations of the 
Protruded Rotor-Stator System with 18 Bolts, Showing the Mesh in: (a) r-φ Plane, and (b) r-z Plane 
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Table  5.1: Matrix of Flow Conditions for the Rotor-Mounted Bolt System; D = 16 mm, N = 18 
 

ω  

(rad/s) 

m  

 (kg/s) 

Reφ 

(/107) 

Cw 

(/105) 
λT 

Pin
* 

(bar) 

Tin
 ** 

(K) 

264.5 0.1248 0.177 0.311 0.31 2 288.45 

411 0.1242 0.272 0.307 0.22 2.02 289 

902.5 0.1188 0.716 0.268 0.09 3 292 

1060.1 0.1149 0.933 0.242 0.06 4.08 300.55 

211.9 0.4104 0.362 1.022 0.58 5.11 292.1 

409.5 0.4152 0.668 1.017 0.35 5.1 296.7 

618.8 0.4121 0.999 0.994 0.25 5.17 292.35 

889.5 0.4119 1.323 0.963 0.19 5.15 288.1 

                       *: Static pressure 
                       **: Static temperature 

 

 

5.3 Flow structure investigation  

A complete and detailed analysis of flow phenomena in the plain disc system were 

presented in Chapter 4. However, mounting protrusions in the plain disc system 

significantly alters the flow structure and the amount of losses. Protrusions such as bolts 

are common features in rotating machineries. Hence, an investigation of the effects of 

these features on the flow physics and the amount of losses is needed for detailed design 

of those systems. In order to investigate the impacts of mounting protrusions in the plain 

disc system, it is more convenient to first examine different parameter variations at 

radial locations out of the range of interference of the bolts, and subsequently 

investigate the flow structure in the range of their interference. 

 

5.3.1 Investigation of the effects of mounting protrusions on the 
flow structure out of the range of interference of the bolts 

Two typical flow conditions were selected for comparing the flow structure in the plain 

disc and protruded disc systems: Re = 0.177 x 107, Cw = 0.3 x 105, (T = 0.31) 
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representing a throughflow dominated condition, and Re = 0.72 x 107, Cw = 0.3 x 105, 

(T = 0.09) representing a rotationally dominated flow condition. Figures 5.2 and 5.3 

show comparisons of the flow streamline in the plain disc system with that in the 

protruded system at  = 90˚ for the two mentioned flow conditions.  

 

 

 

Figure  5.2: Flow Streamlines (relative total velocity) for the Plain Disc and Protruded Disc Systems; 
Re = 0.177 x 107, Cw = 0.3 x 105, (T = 0.31) 
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Figure  5.3: Flow Streamlines (relative total velocity) for the Plain Disc and Protruded Disc Systems; 

Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) 

 

It appears that the presence of bolts on the rotor reduces the recirculation zone close to 

the inlet, particularly for lower values of the turbulent flow parameter. This recirculation 

region is produced due to the 90° turn of the fluid from the axial to the radial direction 

as it enters the cavity. In addition, it can be seen that for the system with mounted bolts, 

the recirculation area close to the outlet is enlarged and covers almost the whole area 

above the bolts. 

Figures 5.5 and 5.6 illustrate the simulation results of tangential velocity for the plain 

disc and rotor-mounted bolt systems at r/b = 0.62 and r/b = 0.8 (Figure 5.4 shows a 

side-view of the cavity with the selected two radial locations), for Re = 0.177 x 107, Cw 

= 0.3 x 105, (T = 0.31) and Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) respectively. 

Figures 5.7 and 5.8 show the results for radial velocity. It can be seen that for both of 

the flow conditions, the radial and tangential velocities of the plain disc system are 

almost equal with the rotor-mounted bolt system at lower radial locations. However, as 
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was expected, for higher radial locations the tangential velocity of the protruded disc 

system is higher than the plain disc system. In contrast, the radial velocity of the plain 

disc system is higher than the radial velocity of the protruded disc system. 

Further inspection of the tangential velocity profiles reveals that for the throughflow 

dominated condition, the boundary layer thicknesses of the plain disc system are almost 

equal with those of the protruded disc system at both higher and lower radial locations. 

This is also the case for the rotationally dominated condition at lower radial locations. 

However, for the rotationally dominated condition at higher radii, the boundary layer 

thickness of the plain disc system is noticeably larger than that for the protruded system. 

This agrees with the results obtained in the previous chapter and also the results 

proposed by Daily et al. (1964) that the boundary layer thickness of the rotating disc 

increases with a reduction in the tangential velocity of the core.  

 

 

Figure  5.4: Side view of the Rotor-Stator System with Bolts (The Two Radial Locations where 
Tangential and Radial Velocities Distributions were obtained are shown) 
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(b) 

Figure  5.5: Comparison of the Dimensionless Tangential Velocity Distribution between the Plain 
Disc and Protruded Disc Systems for Re = 0.177 x 107, Cw = 0.3 x 105, (T = 0.31) at (a) r/b =0.62 

and (b) r/b = 0.8  
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(b) 

Figure  5.6: Comparison of the Dimensionless Tangential Velocity Distribution between the Plain 
Disc and Protruded Disc Systems for Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) at (a) r/b =0.62 and 

(b) r/b = 0.8  
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(b)  

Figure  5.7: Comparison of the Dimensionless Radial Velocity Distribution between the Plain Disc 
and Protruded Disc Systems for Re = 0.177 x 107, Cw = 0.3 x 105, (T = 0.31) at (a) r/b =0.62 and (b) 

r/b = 0.8  
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(b) 

Figure  5.8: Comparison of the Dimensionless Radial Velocity Distribution between the Plain Disc 
and Protruded Disc Systems for Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) at (a) r/b =0.62 and (b) 

r/b = 0.8  
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It is also interesting to examine the radial pressure distribution in the system with 

mounted bolts and compare it with the relevant results for the plain disc system. Figure 

5.9 demonstrates the simulation results of the dimensionless pressure coefficient 

 
2

2


bpp

Cp rb   as a function of radius for the two mentioned flow conditions. 

Inspection of Figure 5.9 reveals that for the rotationally dominated case, a small 

pressure variation exists from the lower radial locations up to the radius where the 

bottom of the bolt (r/b = 0.85) is located. Subsequently, pressure rapidly increases when 

approaching the peripheral seal. Based on these results, for the rotationally dominated 

condition the pressure difference between the inlet and the outlet of the cavity 

noticeably rises for the protruded disc system in comparison to the plain disc cavity. 

However, it appears that the radial pressure gradient is very close to zero for both the 

plain disc and protruded disc systems under the throughflow dominated condition. 
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Figure  5.9: Comparison of the Radial Pressure Distribution between the Plain Disc and Protruded 
Disc Systems for the Rotationally Dominated Condition (Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) 
) and Throughflow Dominated Condition (Re = 0.177 x 107, Cw = 0.3 x 105, (T = 0.31)) at z/s = 0.52 
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It is also interesting to investigate the axial pressure gradient for the rotor-mounted bolt 

system. The axial pressure difference was found for the flow conditions of Re = 0.177 

x 107, Cw = 0.3 x 105, (T = 0.31) and Re = 0.72 x 107, Cw = 0.3 x 105, (T = 0.09) at r/b 

= 0.6 and r/b = 0.8. Based on the simulation results, there is a small pressure difference 

(less than 2 Pa) between the rotor and stator at lower radial locations. This was also the 

case for the plain disc cases. However, in contrast to the plain disc cases, the axial 

pressure difference increases noticeably at higher radial locations, particularly for the 

flow condition with the lower turbulent flow parameter. For instance, the pressure 

difference between the rotor and stator was found to be about 1000 Pa for T = 0.09 at 

r/b = 0.8.  

The axial pressure difference produces an axial velocity in the negative direction of the 

z-axis (from the stator towards the rotor). This result was also found by Farthing (1988) 

during his experimental investigation of flow structure in a rotating cavity with mounted 

protrusions. He observed that mounting protrusions in the rotating cavity produces an 

axial flow between the rotating discs. 

 

 

5.3.2 Investigation of the effects of mounting protrusions on the 
flow structure in the range of interference of the bolts for a 
specific flow condition 

The focus in this section is on investigating the flow structure and different parameter 

variations in the vicinity of the bolts for a specific flow condition. The impact of 

changing the flow conditions will be explored in Section 5.3.3. The analysis provides a 

valuable insight into the key flow phenomena in protruded rotor-stator systems. 

Investigations were conducted for Re = 0.177 x 107 and Cw = 0.3 x 105, (T = 0.31). 

While both the disc and the bolts are rotating with a constant angular speed in a moving 

fluid, it is more convenient to look at the fluid in the relative frame.  

The flow field around the bolt can be explained by simultaneously studying flow 

streamlines, pressure distribution and wall shear stress distribution around the bolt. 
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Figure 5.10 (a) illustrates the relative velocity vectors around the bolt on a typical cross-

sectional plane located close to the root of the bolt at z/s = 0.045. The angular locations 

of the corners of the bolt are shown in Figure 5.10 (b). Static pressure distribution 

around the bolt is plotted in Figure 5.11 (a) demonstrating the pressure coefficient (see 

Equation 5.1) as a function of angular location. Figure 5.11 (b) displays the static 

pressure contour at z/s = 0.045. In addition, Figure 5.12 exhibits the -wall shear stress 

distribution around the bolt at z/s = 0.045. -wall shear stress is the angular component 

of the force acting tangential to the surface of the bolt due to friction, and its unit 

quantity is pressure. Finally, Figure 5.13 displays the relative total velocity contour at 

z/s = 0.045. 

2

2
1

)(

rel

s
p

V
pp

C



                                                                                                               5.1 

Where ps is the static pressure, p is the free-stream static pressure and Vrel is the free-

stream relative total velocity. 

It is important to note that the selected axial location (z/s = 0.045) is located in the rotor 

boundary layer. Therefore, the flow parameter variations are also influenced by the 

boundary layer effects of the rotor.  
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 (a) 

 

 (b) 

Figure  5.10: Relative Total Velocity Vectors around the Bolt at z/s = 0.045 for Re = 0.177 x 107, Cw 
= 0.3 x 105 (T = 0.31). Rotor Rotates in Anti-clockwise Direction. 

 

A 

B C 

D 

E F 

A = 87.36˚,D = 92.64˚ 

F = 88.62˚,E = 91.38˚ 
B = 88.73˚,C = 91.27˚  
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(a) 

 

(b) 

Figure  5.11: Static Pressure Distribution on the Bolt Surface at z/s = 0.045 for Re = 0.177 x 107, Cw 
= 0.3 x 105 (T = 0.31); (a) Pressure Coefficient Distribution, (b) Static Pressure Contour.  

Note: The Angular Coordinates of the Corners of the Bolt are also shown in the Figure (a) and 
Rotor Rotates in Anti-clockwise Direction. 

 



 109

Point C
Point D

Point F

Point A

Point B

Point E

-10

0

10

20

30

40

50

60

70

87 87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5 93
deg

-
w

al
l s

he
ar

 s
tre

ss
 (p

a)

Upper surface Lower surface Point A Point B
Point C Point D Point E Point F

 

Figure  5.12: -Wall Shear Stress Distribution on the Bolt Surface at z/s = 0.045 for Re = 0.177 x 
107, Cw = 0.3 x 105 (T = 0.31).  

Note: The Angular Coordinates of the Corners of the Bolt are also shown in the Figure and Rotor 
Rotates in Anti-clockwise Direction. 

 

 

Figure  5.13: Total Relative Velocity Contour at z/s = 0.045 for Re = 0.177 x 107, Cw = 0.3 x 105 (T = 
0.31) 
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As shown in Figure 5.10, flow having both radial and tangential velocities hits the bolt 

with a non-zero angle of attack. The point at which the flow hits the bolt and is brought 

to rest is called the stagnation point, G. The location of the stagnation point can be 

found using the pressure distribution plot around the bolt. The pressure coefficient is 1 

at the stagnation point. According to Figure 5.11, the stagnation point is at φ = 87.97˚.  

Inspection of Figure 5.11 reveals that, aside from the region close to the stagnation 

point, the static pressure of the bolt is lower than the free-stream static pressure. In 

addition, aside from the region near the stagnation point, the static pressure of the upper 

surface of the bolt is higher than the static pressure of its lower surface (see Figure 5.11 

(a)). The reason is that the velocity on the upper side of the bolt is lower than its lower 

side. 

It can be seen in Figure 5.11 (a) that there is a high static pressure zone near the 

stagnation point where the pressure coefficient peaks. From the stagnation point, a 

noticeable drop in pressure occurs and the boundary layer develops under a negative 

pressure gradient. Eventually, the pressure reaches a minimum near the front upper and 

lower corners of the bolt, and after that the boundary layer develops with a positive or 

adverse pressure gradient. Based on Bernoulli's equation, as the pressure of fluid 

increases in the adverse pressure region, its velocity reduces. The pressure increases up 

to a point at which the velocity gradient becomes zero (points S in Figure 5.10 (a)). At 

these points, the flow encounters separation, where the momentum of fluid cannot 

overcome the adverse pressure gradient. Separation causes the boundary layer to detach 

from the bolt, making the fluid be pushed backward by the pressure gradient and a wake 

region to be formed. This region is the source of the form drag of the bolt and is 

characterised by a vortex formation. The separation points in the adverse pressure 

region can be approximately identified as the start of the region over which the surface 

static pressure is nearly constant (Tani, 1964). According to Figure 5.11, this constant-

pressure region extends to the trailing edge of the bolt. Based on the findings obtained 

by Tani (1964), the extension of the constant pressure region to the trailing edge of an 

airfoil indicates that the flow fails to reattach to the surface. This appears to also be the 

case for the flow around the bolt with this specific flow condition where there is no 

reattachment of flow after the separation points.  
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In order to completely analyse the flow field around the bolt, it is also necessary to 

investigate the wall shear stress distribution around it. Wall shear stress varies along the 

bolt surface, reflecting the influence of the pressure gradient and the flow phenomena, 

such as separation, reattachment and laminar to turbulent transition of the boundary 

layer over the bolt. Moreover, it would be helpful to simultaneously study the velocity 

variations around the bolt. As can be seen in Figure 5.12, the -wall shear stress 

distribution along the bolt shows a small negative region close to the stagnation point. 

This region is restricted by the points of zero wall shear stress; one corresponds to the 

front middle corner of the bolt, and the other corresponds to a point close to the 

stagnation point. The negative values of wall shear stress over the bolt in that region can 

be attributed to the changing direction of the flow as it stagnates on the bolt.  

Following the flow from this region, it can be seen that the wall shear stress increases 

on the top and bottom surfaces of the bolt. This is due to the pressure reduction along 

these regions. Wall shear stress is then reduced and reaches zero at around φ = 89.17˚ 

on the upper surface and φ = 91.34˚ on the lower surface of the bolt. These points are 

the locations where the flow separates from the bolt surface. The region between these 

two points is the recirculation or wake region, in which the wall shear stress stays at 

small negative values. According to Figure 5.12, wall shear stress does not change sign 

from negative to positive after the separation points, which means that flow does not 

reattach to the surface of the bolts. This confirms the result concluded from the pressure 

distribution investigations around the bolt.  

Considering Figure 5.13, it can be seen that there is a low velocity region near the 

stagnation point, which is followed by an increase in the velocity along the bolt surface. 

Velocity reaches a maximum at the upper and lower front corners of the bolt, where the 

wall shear stress also peaks and the pressure coefficient reaches its minimum value. The 

wake region is characterised as a near zero velocity region at the rear side of the bolt.  

As mentioned above, since the selected axial location (z/s = 0.045) for the discussed 

variations of flow parameters is in the rotor boundary layer, the flow parameter 

variations are influenced by the boundary layer effects of the rotor. Hence, in order to 

study the effects of the bolt alone, it is necessary to re-examine flow parameter 

variations at other axial locations out of the rotor boundary layer. Accordingly, two 
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axial locations, one at z/s = 0.22 and the other at z/s = 0.4 were selected for analysis. 

Note that z/s = 0.5 is the axial location of the tip of the bolt. 

Before analysing the simulation results at z/s = 0.4 and z/s =0.22, it is of interest to 

study the extent of the influence of the bolts on the boundary layer thickness of the rotor 

in the range of their interference. Therefore, the tangential velocity profiles were plotted 

at different radial and angular locations around the bolt. Inspection of the tangential 

velocity plots reveals that the thickness of the boundary layer attached to the rotor 

reduces when moving from the bottom to the top of the bolt. For instance, the rotor 

boundary layer thickness at r/b = 0.86 and φ = 87.28˚ is  = 3.3mm, which reduces to  

= 1.2mm at r/b = 0.92 and φ = 87.28˚. This is due to the increased effects of the bolts on 

the dimensionless tangential velocity of the core. As was mentioned in Chapter 4, the 

rotor boundary layer thickness is a function of (1-). Hence, increasing the core swirl 

ratio ends up with a reduction of the boundary layer thickness.  

In contrast to the radial variations of the rotor boundary layer thickness, variations in the 

boundary layer thickness along the angular direction do not follow a regular pattern 

with the increase of the angular distance from the bolts, and depend instead on the 

selected radial location.  

Figures 5.14 through 5.18 illustrate respectively relative velocity vectors, static pressure 

distribution, -wall shear stress distribution, static pressure contour, and total relative 

velocity contour at z/s = 0.4 and z/s = 0.22.  
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(a) 

 

(b) 

Figure  5.14: Relative Velocity Vectors around the Bolt for Re = 0.177 x 107, Cw = 0.3 x 105 (T = 
0.31) at (a): z/s = 0.4 and (b): z/s = 0.22 
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Figure  5.15: Pressure Coefficient Distribution on the Bolt Surface at z/s = 0.4 and z/s = 0.22 for Re 
= 0.177 x 107, Cw = 0.3 x 105 (T = 0.31  
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Figure  5.16:  -Wall Shear stress Distribution on the Bolt Surface at z/s = 0.4 and z/s = 0.22 for Re 

= 0.177 x 107, Cw = 0.3 x 105 (T = 0.31) 
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(a) 

 

(b) 

Figure  5.17:  Static Pressure Contour around the Bolt Surface for Re = 0.177 x 107, Cw = 0.3 x 105 
(T = 0.31) at (a): z/s = 0.4 and (b): z/s = 0.22  
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(a) 

 

(b) 

Figure  5.18: Total Relative Velocity Contour for Re = 0.177 x 107, Cw = 0.3 x 105 (T = 0.31) at (a): 
z/s = 0.4 and (b): z/s = 0.22 

 

Considering Figure 5.14 and comparing it with Figure 5.10, it can be seen that the wake 

region is moved towards the rear section of the bolt and is significantly smaller than the 

wake region at z/s = 0.045. Comparison of Figures 5.16 and 5.12 shows that the 

separation point on the upper side of the bolt was moved from around φ = 89.17˚ at z/s 

= 0.045 to φ = 91.41˚ at z/s = 0.22 and then to φ = 91.67˚ at z/s = 0.4. In addition, the 
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separation point on the lower side of the bolt was moved from around φ = 91.34˚ at z/s 

= 0.045 to φ = 91.64˚ at z/s = 0.22 and then to φ = 92.35˚ at z/s = 0.4. The mentioned 

displacements result in a smaller wake region, and confirm the results obtained by 

comparing the two flow streamline plots.  

Further inspection of Figure 5.16 reveals that the -wall shear stress profile at z/s = 0.22 

and z/s = 0.4 has two peaks. This is contrary to the relevant plot at z/s = 0.045. The 

location of the second maximum in the wall shear stress plot at z/s = 0.22 and z/s = 0.4 

corresponds to the second minimum in the pressure distribution plot (see Figure 5.15). 

Similarly, this second minimum was not observed in the pressure distribution profile at 

z/s = 0.045. Hence, since the bolt is located in the rotor boundary layer at z/s = 0.045, 

the reason for the different patterns observed in the wall shear stress and pressure plots 

at z/s = 0.045 could be attributed to the interaction of the flow around the bolt with the 

boundary layer of the rotor. 

Considering the pressure distribution, comparison of the two relevant plots (Figures 

5.11 and 5.15) demonstrates that the stagnation point is moved toward the lower surface 

of the bolt at around φ = 88.04˚.  

In order to explain the reasons for the mentioned variations of flow parameters along the 

axial direction, it is required to calculate the three key parameters that affect the flow 

structure around immersed bodies. As mentioned by Schlichting and Gersten (1999), the 

mean flow around immersed bodies is mainly governed by three control parameters: the 

free-stream Reynolds number, ReD (see Equation 5.2), the angle of attack,  (see 

Equation 5.3), and the Mach number of the flow approaching the bodies. However, the 

effects of the Mach number are only important for Mach numbers greater than about 0.4 

(White, 1998). 
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Where Vr, V-rel and Vrel are, respectively, the radial, relative tangential and relative total 

velocities, and D is the diameter of the bolt. 

In order to calculate the Mach number, free-stream Reynolds number and angle of 

attack of the flow approaching the bolt, it is necessary to first calculate the relevant 

velocity magnitudes used in the equations. However, finding these velocity components 

is not a simple task. The reason is that the velocity field of the flow approaching the 

bolts is highly non-uniform and three-dimensional. Hence, the only applicable method 

for calculating the necessary velocity components is to average each of them on a plane 

downstream from the bolt. This plane is used for calculating the total values of the free-

stream Reynolds number, angle of attack and Mach number, and is selected at a distance 

from the bolt where velocity variations due to the boundary layer effects of the bolts are 

negligible. Accordingly, a bounded plane with a width of 11mm (the height of the bolt) 

and a length of 16mm (the diameter of the bolt) located at φ = 87.28˚ is selected for the 

averaging calculations. Using the resulting values of the averaged velocity components, 

it is possible to obtain the Mach number, free-stream Reynolds number and angle of 

attack.  

As mentioned, averaging the velocity components over the selected plane yields the 

total amounts of ReD,  and Ma. However, in order to determine the local values of 

these parameters at z/s = 0.045, z/s = 0.22 and z/s = 0.4 it is required to average the 

velocity components on three lines located on the selected plane at the axial locations 

under investigation. The results of the total values as well as the local values of the free-

stream Reynolds number, angle of attack and Mach number at the mentioned axial 

locations are tabulated in Table 5.2.  

 
Table  5.2: Results of the Free-stream Reynolds Number, Angle of Attack and Mach Number of The 

Flow Approaching the Bolt for Re = 0.177 x 107 and Cw = 0.3 x 105, (T = 0.31) 

 ReD 
 (/105) 


 (deg) Ma 

Local value at z/s = 0.045 0.51 40 0.12 

Local value at z/s = 0.22 0.52 32 0.115 

Local value at z/s = 0.4 0.53 28 0.11 

Total value 0.54 30 0.11 
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According to the results presented in Table 5.2, since the Mach number is lower than 

0.4, it is expected that compressibility effects do not influence the flow structure around 

the bolt. In addition, it can be seen that the free-stream Reynolds number did not vary 

noticeably from the root to the tip of the bolt. This is in contrast to the angle of attack, 

which had significant variations along the axial direction. Based on these results, it 

appears that it is the angle of attack rather than the free-stream Reynolds number that 

affects the flow structure variations around the bolts in z-direction. 

Schlichting and Gersten (1999) found that for a NACA 4412 airfoil, both the pressure 

distribution and the lift coefficient are dependent on the angle of attack. According to 

their measurements at a constant Reynolds number, increasing the angle of attack from 

α = 0˚ to α = 8˚ changes the symmetric pressure distribution to a significantly different 

pressure profile at the upper and lower sides, and reduces the pressure difference around 

the airfoil. In addition, it was found by Tani (1964) that increasing the angle of attack 

for an airfoil advances the separation and reattachment points toward the leading edge. 

Although the geometric shape of the hexagonal bolt is very different from an airfoil, 

similar trends of movement of the separation point could be observed for the flow 

passing the bolt in the rotor-stator cavity.  

It would be of interest to restudy the flow structure variations along z-direction in order 

to identify the presence of Taylor columns. The occurrence of Taylor columns was 

investigated by Farthing (1988). Farthing performed experimental measurements inside 

a rotating cavity with a radial outflow of air and four cylindrical protrusions. Using 

smoke injections, he observed the flow pattern inside the cavity and compared it with 

the relevant pattern in a rotating cavity without protrusions. According to his 

experimental measurements, for both the turbulent and laminar flows Taylor columns 

could be produced in the system up to very high Rossby numbers (about 0.4 for 

turbulent flow). 

Taylor columns are imaginary cylinders projected above and below a real cylinder in a 

steady flow with strong rotations. According to the Taylor-Proudman theorem, the flow 

will curve around this cylinder and the directional derivatives of velocity in the 

direction of the axis of rotation will vanish. Since the existence of strong rotation (Ro 

<< 1) is necessary for producing Taylor columns, Rossby number, Ro, can be used as an 
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indicator. Equation 5.4 displays the Rossby number as a function of the core swirl ratio 

(Farthing, 1988 and Gartner, 1998). 


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For the case of the rotor-stator cavity under investigation and for Re = 0.177 x 107 and 

Cw = 0.3 x 105 (T = 0.31), the Rossby number is 0.6. Although the magnitude of the 

Rossby number is near the maximum value obtained by Farthing for a rotating cavity 

with mounted protrusions, the simulation results show no evidence of any imaginary 

cylinder above the bolts. This result is obtained by looking at the velocity vectors in 

planes located at different axial locations perpendicular to the axis of rotation above the 

bolts. Accordingly, no imaginary cylinder and, as a result, no Taylor column is formed 

above the bolt in the system. 

Further investigation of the flow around the bolts could be conducted by studying the 

flow structure variations along the radial direction. Figure 5.19 illustrates the flow 

streamlines around the bolt at three different radial locations: r/b = 0.86, r/b = 0.89 and 

r/b = 0.92. As can be observed, the area of the wake region increases, moving from the 

bottom to the middle section of the bolt and then decreases, moving from the middle 

section towards the top of the bolt. This could be explained by comparing the local 

values of angle of attack and free-stream Reynolds number for the flow approaching the 

bolt at the mentioned radial locations. Based on the simulation results, the free-stream 

Reynolds number reduces by moving from r/b = 0.86 to r/b = 0.89 and then increases 

with the further increase of the radial location up to r/b =0.92. Regarding the angle of 

attack, it can be seen that it increases from r/b = 0.86 to r/b = 0.89 and is then reduced 

by moving to r/b = 0.92. These variations could be attributed to the variation of both 

direction and magnitude of the radial and relative tangential velocity vectors in the 

upper and lower sections of the bolt. Based on the simulation results, radial velocity 

increases by moving from the bottom towards the middle section of the bolt and then 

reduces towards its upper surface. However, the relative tangential velocity has a 

reverse trend and it reduces by moving from the lower section of the bolt towards the 

middle of it, and it is then increased by further movement towards the upper section of 

the bolt. The trend of variations of the total relative velocity magnitude is similar to that 

described for the relative tangential velocity. 
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Figure  5.19: Flow Streamlines around the Bolt for Re = 0.177 x 107, Cw = 0.3 x 105 (T = 0.31) at (a) 
r/b = 0.92, (b) r/b = 0.89 and (c) r/b = 0.86 

 

 

5.3.3 Investigation of the effects of changing the flow conditions on 
the flow structure in the range of interference of the bolt 

The results of the flow structure analysis for Re = 0.177 x 107 and Cw = 0.3 x 105 (T = 

0.31) showed that the free-stream Reynolds number and angle of attack of the flow 

approaching the bolt are the governing parameters that affect the flow structure 

variations in three dimensions around the bolt. In addition, it is expected that variations 
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of the rotational Reynolds number and the throughflow rate indirectly affect the flow 

structure around the bolt by varying the free-stream Reynolds number and angle of 

attack of the flow hitting the bolt. These effects are graphically displayed in Figure 5.20, 

which shows relative velocity vectors around the bolt at z/s = 0.045 for the matrix of 

flow conditions presented in Table 5.1. This axial location was selected because at z/s = 

0.045 the angle of attack of the flow hitting the bolt, the size of the wake region and, as 

a result, the boundary layer effects of the bolt have their highest values. However, the 

results of changing the axial location are also described in the following pages. Figures 

5.21 and 5.22 show the pressure and -wall shear stress distributions around the bolt at 

z/s = 0.045 for a constant Cw and two different values of Re. Figures 5.23 and 5.24 

display similar results for approximately similar values of Re and two different values 

of Cw.  

To complement the discussions about the effects of changing the flow conditions on the 

flow structure around the bolt, it is necessary to calculate the local free-stream Reynolds 

number and angle of attack of the flow approaching the bolt at z/s = 0.045. The results 

are tabulated in Table 5.3. It should be noted that the total Mach number of the flow 

approaching the bolt ranges from about 0.08 for Re = 0.362 x 107 and Cw = 105 (T = 

0.58) to about 0.41 for Re = 0.933 x 107 and Cw = 0.3 x 105 (T = 0.06). Accordingly, it 

appears that compressibility effects do not influence the flow structure around the bolts 

for the range of the simulated non-dimensional parameters. In addition, Table 5.4 

compares the stagnation and separation points at z/s = 0.045 for the flow conditions 

presented in Table 5.3. 
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(a): Cw = 0.3 x 105, Re = 0.177 x 107, T = 0.31 

 

(b): Cw = 0.3 x 105, Re = 0.272 x 107, T = 0.22 

Figure  5.20: Comparison of Relative Velocity Vectors at z/s = 0.045 for Different Flow Conditions 
(Continued)  
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(c): Cw = 0.3 x 105, Re = 0.716 x 107, T = 0.088 

 

(d): Cw = 0.3 x 105, Re = 0.933 x 107, T = 0.064 

Figure  5.20: Comparison of Relative Velocity Vectors at z/s = 0.045 for Different Flow Conditions  

(Continued) 
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(e): Cw = 105, Re = 0.362 x 107, T = 0.58 

 

(f): Cw = 105, Re = 0.668 x 107, T = 0.35 

Figure  5.20: Comparison of Relative Velocity Vectors at z/s = 0.045 for Different Flow Conditions  

(Continued) 
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(g): Cw = 105, Re = 0.999 x 107, T = 0.25 

 

(h): Cw = 105, Re = 1.323 x 107, T = 0.19 

Figure  5.20: Comparison of Relative Velocity Vectors at z/s = 0.045 for Different Flow Conditions  
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Figure  5.21: Comparison of the Pressure Distribution around the Bolt at z/s = 0.045 between (a): Cw 
= 0.3 x 105, Re = 0.9 x 107, (T   = 0.064) and (b): Cw = 0.3 x 105, Re = 0.177 x 107 (T = 0.31) 
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Figure  5.22: Comparison of the -wall Shear Stress Distribution around the Bolt at z/s = 0.045 
between (a) Cw = 0.3 x 105, Re = 0.177 x 107 (T = 0.31) and (b) Cw = 0.3 x 105, Re = 0.9 x 107, (T   = 

0.064) 
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Figure  5.23: Comparison of the Pressure Distribution around the Bolt at z/s = 0.045 between (a): Cw 
= 0.3 x 105, Re = 0.9 x 107, (T   = 0.064) and (b): Cw = 105, Re = 0.9 x 107, (T   = 0.25) 
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Figure  5.24: Comparison of the -wall Shear Stress Distribution around the Bolt at z/s = 0.045 
between (a): Cw = 105, Re = 0.9 x 107, (T   = 0.25) and (b): Cw = 0.3 x 105, Re = 0.9 x 107, (T   = 

0.064) 
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Table  5.3: Comparison of the Local Free-stream Reynolds Number and Angle of Attack at z/s = 
0.045 for Different Flow Conditions 

ω  

(rad/s)

Reφ 

(/107) 

Cw 

 (/105) 

α  

(deg) 

ReD 

(/105) 

264.5 0.177 0.311 40 0.51 

411 0.272 0.307 38.6 0.73 

902.5 0.716 0.268 30.1 1.24 

1060.1 0.933 0.242 27 1.38 

211.9 0.362 1.022 41.4 1.06 

409.5 0.668 1.017 39.3 2.25 

618.8 0.999 0.994 35.8 2.8 

889.5 1.323 0.963 32.9 3.3 

  

 

Table  5.4: Comparison of the Stagnation and Separation Points on a Plane Cut at z/s = 0.045 for 
Different Flow Conditions 

ω 
(rad/s) 

Reφ 
(/107) 

Cw  

(/105) 

φstagnation 

(deg) 

φseparation-

upper surface 

(deg) 

φseparation-

lower surface 

(deg) 
264.5 0.177 0.311 87.97 89.17 91.399 

411 0.272 0.307 87.95 89.2 91.4 

902.5 0.716 0.268 87.84 89.3 91.41 

1060.1 0.933 0.242 87.72 89.31 91.45 

211.9 0.362 1.022 87.96 89.24 91.42 

409.5 0.668 1.017 87.95 89.298* 91.45 

618.8 0.999 0.994 87.91 91.27 91.455 

889.5 1.323 0.963 87.88 91.29 91.46 
*The angular location corresponds to the first separation point. 

 

According to the results demonstrated in Table 5.3, for a constant value of throughflow 

rate, increasing Re increases the free-stream Reynolds number and reduces the angle of 

attack of the flow approaching the bolt. It is therefore expected that a delayed separation 

occurs on the surface of the bolt. Inspection of the flow streamlines shown in Figure 

5.20 (a) to (h) confirms this expectation and reveals that increasing the rotational 
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Reynolds number gradually moves the separation point toward the trailing edge of the 

bolt and reduces the area of the wake region. This result agrees with the results obtained 

by Schlichting and Gersten (1999) for a cylinder immersed in a flow with different 

values of ReD.  

For a constant value of Re, increasing Cw increases the angle of attack and the free-

stream Reynolds number of the flow hitting the bolt. Based on the findings of 

Schlichting and Gersten (1999), while increasing ReD delays the separation and 

produces a wake region with a smaller area, increasing the angle of attack moves the 

separation point downstream from the bolt and produces a wake region with a larger 

size. Hence, in order to identify which of the mentioned variations affects the location 

of the separation point more than the others, it is necessary to compare the results 

displayed in Table 5.4. Accordingly, it can be seen that increasing the throughflow rate 

for approximately similar values of rotational Reynolds numbers noticeably delays the 

separation and reduces the area of the wake region. As a result, it appears that it is the 

free-stream Reynolds number that has the major effect on the flow structure around the 

bolt. This is due to, as will be discussed later in this chapter, laminar to turbulent 

transition of the boundary layer over the bolt for higher values of Cw (Cw = 105). Such a 

transition delays the separation and, as will be discussed later, reduces the amount of 

form drag. 

Comparison of the shape of the wakes in Figure 5.20 (a) to (h) shows that decreasing 

the throughflow rate causes the wakes to become more circumferential in their path 

around the bolt. In addition, a decrease in T causes an increase in the wake shed from 

the trailing edge of one bolt to the leading edge of the next, which reduces the area of 

the wake region (compare Figure 5.20 (a) with (d) or (e) with (h)).  

It is apparent from the velocity vector plots for Cw = 105 that a separation bubble is 

formed over the upper surface of the bolt for the two rotational Reynolds numbers of 

Re = 0.362 x 107 and Re = 0.67 x 107. As was mentioned by Tani (1964), a separation 

bubble is formed over an airfoil when a reattachment of flow occurs downstream from 

the separation point. Careful inspection of the -wall shear stress distribution plots for 

the two mentioned flow conditions reveals that for Re = 0.362 x 107, the wall shear 

stress closely approaches the x-axis (after the separation point) but does not meet it. 



 131

Therefore, reattachment of flow has not occurred for this value of Re. However, the 

wall shear stress distribution for Re = 0.67 x 107 shows that flow reattaches to the 

surface of the bolt at φ = 90.32˚ downstream from the separation point, which is located 

at φ = 89.298˚. In addition, there is another separation of flow following the 

reattachment point at φ = 91.24˚. As will be discussed later in this chapter, the free-

stream Reynolds number for Cw = 105 and Re = 0.67 x 107 corresponds to a fully 

turbulent regime. For Cw = 105 and higher values of rotational Reynolds numbers (Re = 

0.999 x 107 and 1.323 x 107) the extent of turbulence has increased so that the separation 

point was moved towards the trailing edge of the bolt.  

According to Figure 5.21, for a constant value of Cw, increasing the rotational Reynolds 

number increases the static pressure difference between the upper and lower surfaces of 

the bolt. Simulation results also show that, with an increase in Re the relative total 

pressure difference between the upper and lower surfaces of the bolt noticeably 

increases. In addition, increasing Re moves the stagnation point toward the lower 

surface of the bolt.  

Regarding Figure 5.23, it can be seen that for a constant value of Re, increasing Cw 

moves the stagnation point towards the lower surface of the bolt and reduces the static 

pressure difference around the bolt. Using the simulation results to plot the relative total 

pressure around the bolt, it can be found that increasing the throughflow rate reduces the 

relative total pressure difference between the upper and lower sides of the bolt. 

Considering the wall shear stress distribution, it is clear from Figures 5.22 and 5.24 that 

the wall shear stress has higher values for higher amounts of Cw and Re. In addition, 

increasing the rotational Reynolds number and throughflow rate increases the maximum 

-wall shear stress at both the upper and lower sides of the bolt as well as the wall shear 

stress difference around the bolt. Furthermore, for higher values of Cw and Re a 

delayed separation can be observed.  

Variations of different flow parameters were also examined along the axial direction for 

different flow conditions. Accordingly, it was found that the rate of reduction of the 

angle of attack along the axial direction (from the root to the tip of the bolt) reduces 

when decreasing the turbulent flow parameter. However, the free-stream Reynolds 
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number was shown to have very small variations along this direction. It was also found 

that for the higher value of T, the location of the separation point has minor variations, 

moving from the root to the tip of the bolt. This contrasts with lower turbulent flow 

conditions, in which both the angle of attack and the area of the wake region noticeably 

reduce when moving from the root towards the tip of the bolt. 

Regarding the radial variations of different flow parameters around the bolt, similar 

trends to those observed for the specific flow condition discussed in the previous section 

were also found for the other flow conditions.  

It is interesting to study how the boundary layer thickness of the rotor, in the range of 

interference of the bolt, varies with changing the flow conditions. The results of the 

tangential velocity distribution along the axial location at r/b = 0.91 and φ = 87.28˚ 

show that, for a specific value of Cw, increasing Re reduces the boundary layer 

thickness of the rotor. For instance, the rotor boundary layer thickness for Cw = 0.3 x 

105 and Re = 0.177 x 107 is  = 1.54mm, which is reduced to  = 0.2mm for Cw = 0.3 x 

105 and Re = 0.933 x 107. This is due to the increase in the tangential velocity of the 

core. In addition, comparison of the boundary layer thickness of the rotor for two 

typical flow conditions with similar values of Reand different throughflow rates 

reveals that increasing Cw increases the boundary layer thickness of the rotor. For 

example, the thickness of the rotor boundary layer for Cw = 105 and Re = 0.9 x 107 at 

r/b = 0.91 and φ = 87.28˚ is  = 1.2mm, which reduces to = 0.4mm for Cw = 0.3 x 105 

and Re = 0.9 x 107.

The occurrence of Taylor columns above the bolts can also be investigated for the 

different flow conditions studied in this section. Table 5.5 displays the Rossby number 

at the location of the bolts for different values of Re and Cw. According to the results 

shown in this table, the condition of strong rotation (Ro <<1), which is crucial for 

occurrence of Taylor columns, was not satisfied and, as a result, it is expected that no 

Taylor column is produced above the bolts. This is confirmed by looking at the velocity 

vectors above the bolts for the different flow conditions investigated. In conclusion, it 

appears that, contrary to the findings of Farthing (1988), for a rotating cavity with 

mounted bolts, Taylor columns cannot be produced in this specific configuration of a 

rotor-stator system with rotor-mounted bolts. 
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Table  5.5: Comparison of the Rossby Number at the Location of the Bolts for Different Flow 
Conditions 

ω  

(rad/s)

Re 

 (/107) 

Cw 

 (/105) 
Ro 

264.5 0.177 0.311 0.6 

411 0.272 0.307 0.51 

902.5 0.716 0.268 0.32 

1060.1 0.933 0.242 0.25 

211.9 0.362 1.022 0.89 

409.5 0.668 1.017 0.52 

618.8 0.999 0.994 0.42 

889.5 1.323 0.963 0.36 

 

 

5.4 Investigation of bolt drag coefficient 

In the previous section, variations of flow structure in and out of the range of 

interference of the bolts were investigated for different flow conditions. This section 

examines the relation between those variations and the amounts of losses in the system.  

A body moving relative to a fluid experiences a drag force, which is usually divided 

into two components: frictional or viscous drag, and pressure or form drag. Viscous 

drag comes from the wall shear stress in the direction of flow, and pressure drag comes 

from the pressure component in the direction of flow. It is common to report the drag 

force with the indicative factor of the drag coefficient. Drag coefficient, CD, is a useful 

parameter for analysing the flow past immersed bodies, and is defined in Equation 5.5. 

2

2
1 V

A
F

C p

D

D


                                                                                                               5.5 

Where FD is the drag force, Ap is the projected area of the body on a plane perpendicular 

to the direction of flow, and V is the velocity of the approaching stream. 
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In addition to the shape of the body that affects the drag force, the angle of attack of the 

flow hitting it and the velocity distribution of the approaching stream are the two other 

important parameters that can significantly change the pressure distribution and flow 

structure around the body. For symmetric pressure distribution around the body, the 

pressure gradient between the top and bottom sections is zero or very small and, as a 

result, pressure drag is only produced due to the pressure losses in the wake region. This 

symmetric pressure distribution occurs when the angle of attack is zero or very small 

and also when the velocity distribution of the approaching flow is uniform. However, 

for non-uniform velocity distributions of approaching flow or large angles of attack, the 

pressure difference between the top and bottom sections of the body increases. In these 

cases the pressure drag is not only produced by the pressure losses in the wake region 

but also by the high pressure difference around the body, which makes it act like a 

pump. Accordingly, the three elements producing the bolts’ moment and moment 

coefficient that were considered by Zimmerman et al. (1986) can be recognised for the 

drag force and drag coefficient as well: the drag force produced by the wakes, the drag 

force produced by the pressure difference around the bolt (pumping losses), and the 

viscous drag. The pressure or form drag includes the first two elements of the drag 

force. 

In order to calculate the drag force, it is necessary to first calculate the total angle of 

attack for the flow approaching the bolt and, consequently, project the forces in x-, z-, 

and y- directions in the direction of the calculated angle of attack. In addition, the angle 

of attack can be used to calculate the projected area of the bolts in the direction of flow. 

Using the calculated values of the total drag force and the projected area, it is possible 

to calculate the drag coefficient using Equation 5.5. Table 5.6 gives the drag coefficient 

of the bolts for different flow conditions. In addition, the results of the total free-stream 

Reynolds number and angle of attack that were presented in the previous section are re-

displayed in Table 5.6 in order to use them to explain the variations in the drag 

coefficient for different flow conditions. Furthermore, Figure 5.25 graphically 

demonstrates the drag coefficient of individual bolts versus ReD for Cw = 0.3 x 105 and 

Cw = 105. Also included in Figure 5.25 are the results of the drag coefficient of a 

circular cylinder and a sphere proposed by Schlichting and Gersten (1999). 
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Table  5.6: Comparison of the Total Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolt as well as the Individual Bolts Drag Coefficient for Different Flow Conditions 

ω  

(rad/s)

Reφ 
(/107) 

Cw  

(/105) 

α  

(deg) 

ReD 

(/105) 
CD 

264.5 0.177 0.311 30 0.54 1.28 

411 0.272 0.307 29.6 0.74 1.23 

902.5 0.716 0.268 27 1.26 1.22 

1060.1 0.933 0.242 26.9 1.41 1.06 

211.9 0.362 1.022 32.4 1.14 1.52 

409.5 0.668 1.017 32 2.07 0.89 

618.8 0.999 0.994 31.9 2.7 0.82 

889.5 1.323 0.963 31.5 3.06 0.8 
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Figure  5.25: Variations of the Drag Coefficient as a Function of ReD. Comparison between the Drag 
Coefficient of Hexagonal Bolts Mounted on Rotor with the Drag Coefficient of Circular Cylinder 

and Sphere using the Results Obtained by Schlichting and Gersten (1999) 
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According to the results presented in Table 5.6, for a constant Cw, increasing Re 

reduces the angle of attack and increases the free-stream Reynolds number of the flow 

hitting the bolt. As mentioned in Section 5.3, decreasing the angle of attack delays the 

separation (see also Table 5.4) and reduces the area of the wake region and, as a 

consequence, reduces the form drag produced by the pressure losses of the wakes. 

Regarding the free-stream Reynolds number, increasing ReD (up to the critical free-

stream Reynolds number at which transition of laminar to turbulent boundary layer 

occurs) increases the shear stress and the frictional force between the fluid and the bolt, 

and consequently its viscous drag (Schlichting an Gersten, 1999). In addition, as 

discussed before, increasing the rotational Reynolds number increases both the static 

and relative total pressure differences between the upper and lower surfaces of the bolts 

and, as a result, the pressure drag produced by the pumping losses. Based on the 

simulation results, the overall effect of increasing Re is an increase in the total drag 

force of the bolt. However, since the relative total velocity magnitude also noticeably 

increases when increasing Re and it is squared in the denominator of the drag 

coefficient formula, drag coefficient decreases when increasing the disc’s rotational 

speed.  

Comparison of the results given in Table 5.6 reveals that increasing the throughflow 

rate for approximately similar values of Re results in an increase in the angle of attack 

and the free-stream Reynolds number of the flow hitting the bolt. According to the 

results displayed in Table 5.5, the overall effect of increasing Cw is a noticeable 

reduction in the total drag coefficient. While increasing the angle of attack of the flow 

approaching the bolt increases the total drag coefficient, the only reason for this 

reduction could be attributed to the boundary layer transition from laminar to turbulent, 

which delays the separation and results in a sudden decrease in the drag coefficient 

(Schlichting and Gersten, 1999). The critical ReD at which the transition occurs could be 

found by plotting the drag coefficient as a function of ReD (see Figure 5.25). The 

location where a sudden drop of drag coefficient could be captured indicates the critical 

Reynolds number. Based on the presented results, laminar to turbulent transition of the 

boundary layer occurs approximately in the range of 2 x 105 < ReD < 4.5 x 105 for a 

circular cylinder. However, the transition of the boundary layer above the bolt from 

laminar to turbulent occurs earlier and in the range of ReD between 1 x 105 and 2 x 105. 

Hence, For Cw = 105 the boundary layer above the bolt encounters laminar to turbulent 
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transition between Re = 0.36 x 107 and 0.67 x 107 and is turbulent for Re   0.67 x 107. 

However, for Cw = 0.3 x 105 the boundary layer above the bolt is laminar for Re < 0.72 

x 107 and becomes transient for higher values of Re. In addition, it can be seen from 

Figure 5.25 that the maximum drag coefficient obtained in the present study for N = 18 

and D = 16mm is about 1.52, which occurs for a free-stream Reynolds number of about 

1.14 x 105. 

 

5.5 Moment coefficient variations  

The simulation results of the moment coefficient are shown in Figures 5.26 and 5.27 as 

a function of, respectively, Re and T for Cw = 0.3 x 105. Figures 5.28 and 5.29 show 

the results for Cw = 105. The results displayed in Figures 5.26 to 5.29 are given as five 

separate plots including the experimental results for the total moment coefficient, the 

CFD results for the plain disc moment coefficient and the CFD results for the viscous, 

pressure, and total moment coefficient of the rotor-mounted bolt system. Note that all of 

the moment coefficient results (experimental and numerical) shown in this chapter were 

obtained for one side of the disc. 
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Figure  5.26: Variation of Moment Coefficient with Rotational Reynolds Number, Cw = 0.3 x 105 
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Figure  5.27: Variation of Moment Coefficient with Turbulent Flow Parameter, Cw = 0.3 x 105 
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Figure  5.2816: Variation of Moment Coefficient with Rotational Reynolds Number, Cw = 105 
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Figure  5.29: Variation of Moment Coefficient with Turbulent Flow Parameter, Cw = 105 

 

 

According to Figures 5.26 to 5.29, there is very good agreement between the simulation 

results and the experimental data for both of the throughflow Reynolds numbers. 

Similar to the results obtained for the plain disc simulations, there is a divergence and a 

change of slope between the total moment coefficient plots of the experimental 

measurements and the numerical results for lower values of Re and higher values of T. 

The reason for this discrepancy is similar to that explained for the plain disc system (see 

Section 4.5).  

Comparison of the moment coefficient results between the rotor-mounted bolt system 

and the plain disc system shows that, as expected, the presence of bolts causes a 

significant rise in the moment coefficient above that of a plain disc. In order to 

investigate the reasons for this noticeable difference, it is necessary to break down the 

total amount of moment coefficient into its components. One of the advantages of CFD 

is the ability to look at the individual contributions to the total moment coefficient. 

Total moment is composed of pressure and viscous moments.  
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Examination of the results shown in Figures 5.26 to 5.29 reveals that the pressure 

moment coefficient contributes the highest part of the total moment coefficient. Hence, 

it is the pressure moment that increases the moment coefficient of the rotor-mounted 

bolt system well beyond that of the plain disc system.  

It is interesting to note that the three elements of total moment coefficient for a 

protruded rotor-stator cavity that were considered by Zimmerman et al. (1986) can be 

recognised here as well: the pressure moment produced by the wakes, the pressure 

moment produced by the pressure difference around the bolts (pumping losses) and the 

viscous moment. It should be noted that since FLUENT reports only the viscous 

moment and the pressure moment (which includes both the moment produced by the 

wakes and by the pumping action) separately, it is not possible to report the pressure 

moment produced by the wakes and that produced by the pumping losses separately.   

Further inspection of Figures 5.26 through 5.29 reveals that both of the two components 

(viscous and pressure) of total moment coefficient increase when increasing T and 

decreasing Re. It can also be seen that the moment coefficient of the throughflow 

dominated cases is significantly higher than that of the rotationally dominated cases. 

The reason could be because of the reduction in the core tangential velocity produced by 

increasing the throughflow rate. This occurs due to the conservation of angular 

momentum and is a well-known phenomenon in a plain disc rotor-stator cavity (Owen 

and Rogers, 1989); as it has been shown, it is also true in a rotor-stator system with 

rotor-mounted bolts. Consequently, the relative (rotor to core) tangential velocity is 

increased with an increase in superimposed flow, and this leads to an increase in the 

moment coefficient due to an increase in skin friction. 

It would also be of interest to study whether any equivalency could be found between 

the moment coefficient of individual bolts and their drag coefficient. Miles et al. (2009) 

suggested such an equivalency by assuming the bolts as cylinders having the same 

diameter D and the same height H. They also assumed that the velocity of the flow 

approaching the bolt is uniform and equal to the relative tangential velocity of the bolts 

and the core (U = (1 – β)r). In addition, they assumed that the flow hits the bolt with a 

zero angle of attack. Considering these assumptions, the free-stream Reynolds number 

and drag coefficient of individual bolts can be written as below: 
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Where rb is the radial location of the centre of the bolts, Cm,bolt is the moment coefficient 

of the individual bolt, and b is the diameter of the disc.  

The above equations were also used by Gartner (1998) in order to calculate the moment 

coefficient of the bolts from their drag coefficient. He assumed that the drag coefficient 

of the bolts could be obtained from the experimental data of the drag coefficient of a 

smooth circular cylinder. 

The two equations above give the transformation between the dimensionless groups 

used in rotor-stator systems and those appropriate to drag over shapes. Although the 

mentioned assumptions are not realistic, it is worth investigating the extent to which the 

calculated drag coefficients and free-stream Reynolds numbers differ from those 

calculated in the previous section. Table 5.7 shows the results of such a comparison. 

Additionally, Figure 5.30 graphically displays the results tabulated in Table 5.7. 

 

Table  5.7:Comparison of the Drag Coefficient and Free-stream Reynolds Number Obtained by the 
Simulation Results with Those Calculated Using Equations 5. 6 and 5.7 for the Simulated Matrix of 

Flow Conditions 

ω 

(rad/s) 
λT Reφ 

(/107) 

Cw 

(/105) 

ReD(/105) CD 

Simulation 

results 

Using 

Equation 5.6 

Simulation 

results 

Using 

Equation 5.7 

264.5 0.31 0.177 0.311 0.54 0.67 1.28 1.16 

411 0.22 0.272 0.307 0.74 0.84 1.23 1.33 

902.5 0.09 0.716 0.268 1.26 1.49 1.22 1.43 

1060.1 0.06 0.933 0.242 1.4 1.71 1.06 1.45 

211.9 0.58 0.362 1.022 1.1 1.9 1.52 0.74 

409.5 0.35 0.668 1.017 2.07 2.3 0.89 1.13 

618.8 0.25 0.999 0.994 2.7 2.8 0.82 1.28 

889.5 0.19 1.323 0.963 3.06 3.28 0.8 1.3 
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Figure  5.30: Comparison of the Drag Coefficient Obtained by the Simulation Results with Those 

Calculated Using Equation 5.7  

 

According to the results demonstrated in Table 5.7 and Figure 5.30, as was expected, 

there are significant differences not only in the magnitude of the drag coefficients 

obtained using the simulation results and those obtained using Miles et al.’s 

assumptions, but also in the trend of the their variations with ReD. It should be noted 

that, aside from the non-realistic assumptions about considering the bolts as cylinders 

and the free-stream velocity to be equal to U = (1 – β)r, since the angles of attack of 

the flow hitting the bolts are noticeably larger than zero, the forces that produce the 

moment of the bolt are not the same as the forces producing the total drag. Hence, it is 

not reasonable to consider the moment and drag coefficients of the bolts to be 

equivalent.  
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5.6 The standard k- model and protrusions  

As mentioned in Chapter 3, selection of the appropriate turbulence model influences the 

accuracy and reliability of the simulation results. Each turbulence model has its 

strengths and weaknesses. Based on the discussions presented in Section 3.2, among the 

different simulation turbulence models, the standard and realizable k- models were 

proposed to be more suitable for simulating the plain disc cavity. However, while the 

two models predicted similar results with acceptable accuracy, it was the standard k- 

model that was finally selected as the turbulence model for the subsequent simulations. 

This was due to the much higher CPU time and the higher calculation tuning required 

getting converged results for the realizable k- model compared to the standard k- 

model. However, the standard k- model in literature is normally known to have 

inaccurate predictions for three-dimensional flows with boundary layer separation and 

rotation. Therefore, it seems necessary to compare the results obtained by three-

dimensional simulations using the standard k- model with those obtained by the 

turbulence models that in theory are suggested for flows with curvature and boundary 

layer separation.  

Hence, in order to validate the superior adequacy of the standard k- model compared to 

other turbulence models, the condition of Re = 0.27 x 107 and Cw = 0.3 x 105 (T = 

0.22) was randomly selected in which the results of the realizable k-, the RSM and 

SST-k-compared with each other.  

Figures 5.31 and 5.32 show comparisons of the simulation results for the pressure and 

-wall shear stress distributions respectively at z/s = 0.045. Also, Table 5.8 shows a 

comparison of the simulation results of the total ReD and  of the flow approaching the 

bolt as well as the CD and the Cm of individual bolts between the simulated models.  
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Figure  5.31: Comparison of the Pressure Distribution Predicted by the Standard k- Model with 
that Predicted by the Realizable k- SST-k-w and RSM at z/s = 0.045; Re = 0.27 x 107, Cw = 0.3 x 

105 (T = 0.22) 
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Figure  5.32: Comparison of the -Wall Shear Stress Distribution Predicted by the Standard k- 

Model with that Predicted by the Realizable k- SST-k-w and RSM at z/s = 0.045; Re = 0.27 x 107, 
Cw = 0.3 x 105 (T = 0.22) 
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Table  5.8: Comparison of the Total Free-stream Reynolds Number and Angle of Attack of the Flow 

approaching the Bolt as well as the drag coefficient and Moment coefficient of Individual Bolts 

Resulted from the Predictions of Realizable k-, Standard k- , SST-k-w and RSM Turbulence 

Models; Re = 0.27 x 107, Cw = 0.3 x 105 (T = 0.22) 

Turbulence model 
ReD 

(/105) 



(deg) 
CD Cm 

Realizable- k- 0.765 29.15 1.19 0.0162 

Standard-k- 0.742 29.65 1.23 0.0167 

SST-k- 0.78 25.3 0.9 0.014 

RSM 0.72 28.2 0.99 0.015 

Note: The experimental amount of the moment coefficient for one side of the total system is Cm = 0.0175 

(Miles, 2011). 

 

According to the results shown in Figures 5.31 and Figure 5.32, the pressure and wall 

shear stress distributions can similarly be predicted by the simulated models, except the 

SST-k-. In addition, based on the simulation results, the location of the upper and 

lower separation points were closely predicted by the realizable and standard k- models 

(about  = 89.2˚) and the RSM (  = 89.35˚) with the exception of the SST k- model 

which predicted a delayed separation about  = 90.8˚. Therefore, the area of the wake 

region would also be similar for the standard k-, realizable k- and RSM and is 

considerably larger than that predicted by the SST k-. Considering Table 5.8, it can be 

seen that while the standard and realizable k- models have similar results in terms of 

the moment and drag coefficients, the RSM and SST-k- models under-predicted the 

moment coefficient in comparison with the experimental data. Based on these results, it 

appears that although the standard k- model is known to have inaccurate predictions 

for three-dimensional flows with separation and rotation, for the flow simulations 

analysed in this research this is not valid. This could be due to the near wall modeling 

(the enhanced wall treatment) used for the simulations with the standard k-, which is 

able to model the near wall region around the bolt very well. Therefore, it appears that 

the standard k- model used in conjunction with enhanced wall treatment provides both 

the accuracy and efficiency of time and CPU usage for the three-dimensional 
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simulations. This gives confidence in using the results of the standard k- model for the 

rest of the simulations in this thesis.  

There is still one limitation for the standard k- model in predicting the flow around the 

bolts. The analysis of the simulation results (see Section 5.4) showed that the boundary 

layer around the bolt may have laminar-to-turbulent transition depending on the 

conditions of the flow approaching it. Therefore, a transitional model should be used to 

simulate the flow phenomena in the transitional boundary layer around the bolts. 

Modelling three-dimensional transition is difficult almost for all the turbulence models 

since they are unable to consider the physics of the transition process. Although the 

transition process could be mimicked by the low-Reynolds- number turbulence models, 

the positions and the growth rate of the transition is often poorly predicted and thus 

empirical correlations are needed to complement modelling of the transition process 

(Fadai-Ghotbi, 2007). In addition, the application of the transitional model for the 

protruded rotor-stator cavity in this study is only necessary for modelling the narrow 

boundary layer region around the bolts. With respect to these considerations, the 

strategy of this research is to continue with the standard k- model and suggests future 

research projects to complement the findings of this thesis by using or developing a 

suitable transitional model.  

 

5.7 Summary 

The simulation results of 18 bolts with 16mm diameters have been investigated in this 

chapter. Compared to the relevant plain disc cases, it was found that the flow structure 

in the rotor-mounted bolt system is almost unaffected at low radial locations out of the 

range of interference of the bolts. However, radial and axial pressure gradients as well 

as the tangential velocity increase when increasing the radial location in the protruded 

system in comparison with the plain disc system. 

It was found that the flow structure around the bolts is governed by the angle of attack 

and the free-stream Reynolds number of the flow approaching the bolts. In addition, 

local values of these two parameters affect the local variations of flow structure in terms 
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of the location of the separation point and the area of the wake region, as well as the 

velocity and pressure distributions around the bolt. 

Based on the simulation results, for a constant value of throughflow rate, increasing Re 

increases the free-stream Reynolds number and decreases the angle of attack of the flow 

approaching the bolt, causing a delayed separation on the surface of the bolt, which 

reduces the area of the wake region. In addition, the overall effect of increasing the 

rotational Reynolds number is a reduction in the bolt’s drag coefficient. 

For a constant value of Re, increasing Cw increases the angle of attack and the free-

stream Reynolds number of the flow hitting the bolt, which delays the separation and 

reduces the area of the wake region. The overall effect of increasing Cw is a noticeable 

reduction in the total drag coefficient. This could be attributed to the boundary layer 

transition from laminar to turbulent, which results in a sudden decrease in the drag 

coefficient. Furthermore, it was found that decreasing the throughflow rate causes the 

wakes to become more circumferential in their path around the bolt; additionally, a 

decrease in T causes an increase in the wake shed from the trailing edge of one bolt to 

the leading edge of the next, which reduces the area of the wake region.  

Regarding the production of Taylor columns, it was found that Taylor columns cannot 

be produced in this specific configuration of a rotor-stator system with rotor-mounted 

bolts. 
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6.  Rotor-Stator System with Mounted Bolts: 
Investigation of the Effects of Changing the Number 

and Diameter of Bolts 

 

6.1 Introduction 

One of the most important questions in analysing the rotor-stator cavity with mounted 

bolts is the extent to which the moment coefficient and flow structure vary with the 

number and diameter of bolts. This chapter aims to shed light on this question and 

generalise the findings obtained in Chapter 5. The effects of changing the number and 

diameter of the bolts are investigated for two typical flow conditions, one representing a 

throughflow dominated regime and the other representing a rotationally dominated one. 

Also included are data comparing the disc moment coefficient in the plain disc system 

with that in the protruded disc system. Such a comparison validates the assumption used 

in the empirical measurements, in which the disc moment coefficient was considered to 

be equal for the two systems. 

This chapter is composed of six sections. Section 6.2 discusses the simulation results of 

different numbers of bolts, keeping the diameter of bolts constant. Section 6.3 provides 

a discussion for a specific number of bolts but with different diameters. Section 6.4 

investigates the effects of varying both the diameter and the number of bolts on the 

amount of losses. Section 6.5 examines the validity of the assumption made in the 

experimental measurements. Finally, Section 6.6 gives a summary of the chapter.  

 

6.2 Investigation of the variations of flow structure and the 
amount of losses for a specific diameter and different 
number of bolts 

Two different flow conditions were selected for the analysis: Re  = 0.67 x 107, Cw = 

105, (λT = 0.35) and Re = 0.72 x 107, Cw = 0.3 x 105, (λT = 0.09). The former 
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corresponds to a throughflow dominated regime, and the latter a regime where 

rotational effects are expected to dominate. Other dimensional parameters are given in 

Table 6.1.   

Simulations were performed in this section for D = 16mm, and different number of bolts 

N = 0 (plain disc), 3, 9, 18, 36, 45 and 60 (for N = 60, the circumferential spacing 

between one bolt and the next is less than D/4). In addition, another geometry was built 

using a continuous ring with 16mm radial thickness and 11mm height at r = 0.2m on the 

rotor, representing the case of an infinite number of bolts. Figure 6.1 displays the front 

view, in r- plane, of the simulated geometries for N = 9, 18, 36, 45 and 60. The angular 

extent of the sector simulated depends on the number of bolts, so for three bolts a 120° 

sector is used, for nine bolts a 40° sector is used, for 18 bolts a 20° sector is used, and so 

on. The simulation specifications were the same as those used in Chapter 5.  

 

Table  6.1: Matrix of Flow Conditions 

ω 

(rad/s) 

m  

(kg/s) 

Reφ 

(/107) 

Cw 

(/105) 
λT 

Pin
* 

(bar) 

Tin
 ** 

(K) 

902.5 0.1188 0.716 0.268 0.09 3 292 

409.5 0.4152 0.668 1.017 0.35 5.1 296.7 

                        *: Static pressure 
                        **: Static temperature 
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Figure  6.1: Simulated Geometries for Different Number of Bolts in r- Plane 

 

 

6.2.1 Flow structure analysis 

Increasing the number of bolts reduces the distance between two neighbouring bolts. 

For the bolts located in close proximity, the flow field and the forces experienced by 

them are entirely different from those observed when the bolts are far from each other 

and isolated in the fluid stream. The differences become more important when the 

distance between two bolts is so small that one of them is immersed in the wake of the 

other. 

The situation of bodies in close proximity to each other was investigated for parallel 

circular cylinders of diameter D, separated by a centre-to-centre distance of L (the 

Tandem arrangement) by Zdravkovich (1977), Zdravkovich (1987) and Zdravkovich 

(1997). Based on these investigations, the pressure distribution and drag coefficient of 

the two cylinders depends on the Reynolds number and the L/D or the spacing between 

them. It was also found that the pressure distribution around each cylinder and the 

9 Bolts 18 Bolts 36 Bolts 45 Bolts 60 Bolts 
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amount of its drag coefficient does not follow a regular pattern, as L/D varies and is a 

unique function of the spacing for the given Reynolds Number. 

In the same manner, for the case of the bolts mounted on the rotor in the rotor-stator 

cavity under investigation, the extent of interference of one bolt on the flow structure 

and power losses of the neighbouring bolt strongly depends on the number of bolts, or 

the bolts’ spacing. An inspection of the wake region in relative velocity vector plots 

around the bolts could help to find the number of bolts above which the flow structure 

of the downstream bolt is affected by the upstream one. As was found in the previous 

chapter, the largest area of the wake region and, as a result, the greatest extent of 

interference between the wake of one bolt and the flow structure of the neighbouring 

bolt occurs at the axial locations close to the root of the bolt. Therefore, the cross-

sectional plane at z/s = 0.045 was selected for flow structure analysis. Figures 6.2 and 

6.3 illustrate relative velocity vectors around the bolts for N = 9, 18, 45 and 60, and the 

two mentioned flow conditions. Also included in Figures 6.2 and 6.3 are the bolts’ 

spacing, which is defined as the ratio of the bolt pitch arc length, xpr, to the bolt 

diameter.  

D
x

X pr
b                                                                                                                          6.1 
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N = 9, bX = 8.7 

 
N = 18, bX = 4.36 

 
                                       N = 45, bX = 1.74                                                               N = 60, bX = 1.31 
 
Figure  6.2: Relative Velocity Vectors at z/s = 0.045 for Different Number of Bolts; Re  = 0.72 x 107 

and Cw = 0.3 x105 (λT = 0.09) 
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N = 9, bX = 8.7 

 
N = 18, bX = 4.36 

 
                 N = 45, bX = 1.74                                                       N = 60, bX = 1.31 

 
Figure  6.3:  Relative Velocity Vectors at z/s = 0.045 for Different Number of Bolts; Re  = 0.67 x 107 

and Cw = 105 (λT = 0.35)  
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Based on the results obtained by Zdravkovich (1987), the flow structure around the 

tandem arrangement of cylinders could be categorised into two different types. 

Accordingly, for the first type of flow regime (1 < L/D < 3.4 to 3.8), the wake formation 

of the upstream cylinder is affected by the presence of the downstream cylinder. 

However, for the second type of flow regime (L/D > 3.4 to 3.8), a complete wake was 

formed in the gap between the cylinders. It is apparent from Figures 6.2 and 6.3 that the 

mentioned flow patterns could also be observed around the bolts in the rotor-stator 

system. It appears that there is a minor interaction between the wake of one bolt and the 

flow field of the neighbouring bolt for N18. This makes the shear layers from the front 

bolt not impinge directly on the rear bolt. However, when the number of bolts increases 

(N > 18), the downstream bolt is immersed in the wake region of the upstream bolt and 

the shear layers from the front bolt either envelop or impinge directly on the rear bolt. 

The extent of this interference increases when increasing the number of bolts. 

Considering Figures 6.2 and 6.3, it is evident that the form of the wake changes with the 

number of bolts fitted to the rotor. For N > 18 the wake falls on the upper section of the 

bolt. Comparing the shape of the wakes in Figures 6.2 and 6.3, it can also be seen that 

decreasing the throughflow rate (or decreasing T) pushes the wakes toward the rear 

section of the bolt and increases their interference with the flow field of the 

neighbouring bolt. This agrees with the predictions of Zimmerman et al. (1986). They 

found that the interference effects of the wakes are reduced by increasing the 

throughflow rate. 

In order to gain further insight into the interaction of the gap flow with the bolts, 

pressure and wall shear stress distributions were examined. Accordingly, Figures 6.4 

and 6.5 respectively illustrate the -wall shear stress and pressure coefficient 

distributions on the bolt for Re  = 0.67 x 107, Cw = 105 and N = 3, 18, 45 and 60 at z/s = 

0.045. Figures 6.6 and 6.7 show the plots for Re = 0.72 x 107, Cw = 0.3 x 105. 

Additionally, angular locations of stagnation and separation points are tabulated in 

Tables 6.2 and 6.3 for the simulated flow conditions. Also included in Tables 6.2 and 

6.3 are the calculated values of local free-stream Reynolds numbers and angles of attack 

of the flow approaching the bolt at z/s = 0.045. Figure 6.8 zooms in the relative velocity 

vector plot of a typical simulated case (N = 45, Re  = 0.67 x 107, Cw = 105 (λT = 0.35)) 
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in order to graphically show the locations of the first and second upper separation and 

the reattachment points. 

It should be noted that the results presented in Tables 6.2 and 6.3 for ReD and  were 

obtained by averaging the relevant velocity components on a bounded line located at φ 

= 87.28˚. The angular location of this line is selected where the boundary layer effects 

of the bolt have approximately vanished for different numbers of bolts. Regarding the 

length of the line, it was reduced by increasing the number of bolts in order to evaluate 

the angle of attack of the flow hitting the bolt. This was due to the movement of the 

stagnation point towards the lower section of the bolt. However, the length of the 

selected line for determining ReD for different number of bolts was constant and equal 

to the bolts’ diameter.  

Based on the simulation results, the Mach number ranges from 0.05 for the plain disc to 

0.23 for 60 bolts for Re = 0.67 x 107, Cw = 105 and from 0.15 for the plain disc to 0.42 

for 60 bolts for Re = 0.72 x 107, Cw = 0.3 x 105. Hence, it appears that compressibility 

effects do not have a considerable influence on the flow structure around the bolt when 

varying the number of bolts.  

 

-100

-50

0

50

100

150

200

250

300

350

87 88 89 90 91 92 93

  (deg)


-w

al
l s

he
ar

 s
tre

ss
 (p

a)

N = 3 N = 18 N = 45 N = 60  
Figure  6.4: -wall Shear Stress Distribution on the Bolt at z/s = 0.045 for Re  = 0.67 x 107, Cw = 105 

(λT = 0.35); N = 3, 18, 45 and 60 
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Figure  6.5: Pressure Coefficient Distribution on the Bolt at z/s = 0.045 for Re  = 0.67 x 107, Cw = 105 
(λT = 0.35); N = 3, 18, 45 and 60 
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Figure  6.6: -wall Shear Stress Distribution on the Bolt at z/s = 0.045 for Re  = 0.72 x 107, Cw = 0.3 
x 105 (λT = 0.09); N = 3, 18, 45 and 60 
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Figure  6.7:  Pressure Coefficient Distribution on the Bolt at z/s = 0.045 for Re  = 0.72 x 107, Cw = 0.3 
x 105 (λT = 0.09); N = 3, 18, 45 and 60 

 
 
 

Table  6.2: Comparison of the Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolt at z/s =0.045 as well as the Location of the Stagnation and Separation Points 

for Different Number of Bolts; Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) 

N 


(deg) 

ReD 

(/105) 

stagnation 

(deg) 

separation-upper 

surface 

(deg) 

separation-lower 

surface 

(deg) 

3 18.1 1.91 87.6 90.6 91.42 

9 22 1.53 87.74 89.8 91.42 

18 30.1 1.24 87.84 89.3 91.41 

36 38.8 1.2 88.3 89.17 91.4 

45 47.2 1.16 88.4 89.13 91.4 

60 49.2 1.14 88.5 89.02 91.39 
*Note that the angular locations reported in Table 6.2 corresponds to the first separation points. This is 

also the case for Table 6.3. 
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Figure  6.8: Relative Velocity Vectors around the Bolt for N = 45, Re  = 0.67 x 107, Cw = 105 (λT = 
0.35), Zooming on the Locations of the First and Second Separation (S1 and S2) and Reattachment 

(R) Points 

 

Table  6.3: Comparison of the Free-stream Reynolds Number and Angle of Attack of the Flow 

Approaching the Bolt at z/s =0.045 as well as the Location of the Stagnation and Separation Points 

for Different Number of Bolts; Re = 0.67 x 107, Cw = 105 (λT = 0.35) 

N 


(deg) 

ReD 

(/105) 

stagnation 

(deg)

separation-upper 

surface 

(deg) 

separation-lower 

surface 

(deg)

3 16.3 2.9 87.7 91.25 91.47 

9 26.9 2.56 87.82 91 91.47 

18 39.3 2.25 87.95 89.298 91.45 

36 44.8 2.15 88.44 89.26 91.45 

45 50.6 2.1 88.49 89.17 91.44 

60 53.4 2 88.54 89.14 91.44 
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Inspection of Figures 6.4 through 6.7 as well as Tables 6.2 and 6.3 permits several 

conclusions to be made about the flow.  

Based on the results presented in Tables 6.2 and 6.3, increasing the number of bolts 

noticeably increases the angle of attack of the flow approaching the bolt. However, the 

decreasing trend of ReD with the number of bolts is slightly lower than that observed for 

the angle of attack. The trend of the increase for both of the parameters slows down for 

N > 36.   

As discussed in Chapter 5, the combined effects of these variations of angle of attack 

and free-stream Reynolds number with an increasing number of bolts end up with a 

forward movement of the separation points, particularly at the upper side of the bolt. It 

is interesting to note that for both of the flow conditions, increasing the number of bolts 

beyond N = 18 makes the separated shear layer reattach to the upper surface of the bolt 

and separate again at a distance downstream. Hence, for N > 18 a separation bubble is 

formed over the top surface of the bolt. This can be observed by inspecting the wall 

shear stress distribution plots (Figures 6.4 and 6.6). The second zero in the wall shear 

stress distribution of the upper surface of the bolt indicates the location of the 

reattachment point.  

It can be seen in Table 6.3 that increasing the number of bolts from 18 to 45 for Re = 

0.67 x 107 and Cw = 105 (λT  = 0.35) advances the separation location from  = 89.298˚ 

to 89.17˚. On the basis of the simulation results, for N = 45, flow reattaches to the bolts’ 

surface at  = 90.34˚ and forms a separation bubble over the upper surface of the bolt. 

Following the reattachment point, another separation of flow occurs at  = 91.22˚. 

Hence, a wake region is formed behind the bolt between  = 91.27˚ (located on the 

upper side of the bolt) and  = 91.44˚, which is the location of the separation point on 

the lower side of the bolt. Increasing the number of bolts from N = 45 to N = 60 further 

advances the location of the separation bubble at the top surface and places it between  

= 89.14˚ and  = 90.37˚. Flow separates again from the upper surface of the bolt at  = 

91.19˚, which is slightly upstream from the second separation point for N = 45. 

Comparison of the separation and reattachment locations between N = 45 and N = 60 

reveals that the length of the separation bubble increases with increasing the number of 

bolts. Since increasing the number of bolts reduces the free-stream Reynolds number of 
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the flow approaching the bolt, it could be concluded that the increase in the length of the 

separation bubble is because of a reduction in the free-stream Reynolds number. This 

result agrees with the findings obtained by Tani (1964) for an airfoil. Tani proposed that 

increasing the Reynolds number decreases the separation bubble length. 

Inspection of the results in Table 6.2 for Re = 0.72 x 107 and Cw = 0.3 x 105 (λT = 0.09) 

shows a similar trend of displacement of separation and reattachment points.  

It is also evident in Figures 6.4 and 6.6 that increasing the number of bolts noticeably 

increases the wall shear stress difference between the bottom side and the top side of the 

bolt. However, the trend of this increase reduces for N > 45. This could be 

representative of the large differences between the viscous forces exerted on the top and 

bottom sections of the bolts. In addition, increasing the number of bolts reduces the 

peak of shear stress as well as the shear stresses of the lower and upper sides of the bolt. 

Regarding the pressure distribution around the bolt, it can be observed in Figures 6.5 

and 6.7 that increasing the number of bolts increases the peak of static pressure as well 

as the static pressure difference across each individual bolt. However, it should be noted 

that increasing the number of bolts reduces the relative total pressure difference between 

the upper and lower surfaces of the bolt, which is more noticeable for the rotationally 

dominated flow condition. This is due to the reduction of relative total velocity of the 

flow around the bolt by increasing the number of bolts. In addition, it is evident in 

Figures 6.5 and 6.7 that the stagnation point is moved toward the bottom section of the 

bolt when increasing the number of bolts. This is attributed to the increase in the angle 

of attack for higher numbers of bolts (Tani, 1964). Differences are also noticed in the 

pressure coefficient of the upper surface of the bolt for N = 45 and 60. Accordingly, the 

constant pressure region is followed by a slight increase of pressure, showing the 

reattachment of flow (Tani, 1964).  

Variations of different parameters were also investigated at another axial location, z/s = 

0.4, which is close to the tip of the bolt. Based on the simulation results, for N = 60 and 

Re  = 0.67 x 107 and Cw = 105 (λT = 0.35), both the angle of attack and the free-stream 

Reynolds number slightly reduce when moving from the root to the tip of the bolt. 

However, since the differences were not considerable, very minor differences were 

observed for the location of the separation points when moving from the root to the tip 
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of the bolt. This result is similar to the results obtained for N =18 and similar flow 

condition in Chapter 5. 

It is also interesting to investigate the effect of the number of bolts on the axial variation 

of the dimensionless tangential velocity. Hence, Figures 6.9 and 6.10 illustrate the 

tangential velocity distribution at r/b = 0.9 for the two flow conditions investigated in 

Figures 6.2 to 6.7. The horizontal axis starts at z/s = 0.5, which corresponds to the axial 

location of the tip of the bolt or the ring. The tangential velocity varies around the 

circumference of the bolt radius, and the value used in these graphs is that obtained at 

the location of the centreline of the bolt. 

It is clear from Figures 6.9 and 6.10 that the presence of bolts on the rotor brings about 

an increase in the tangential velocity of the core (V/r). Although increasing N 

generally increases V/r, there is a levelling off. It is also interesting to note that 

although the plain disc (N = 0) values of V/r for T = 0.35 and T = 0.09 are quite 

different (V/r   0.04 and 0.3 respectively), this discrepancy reduces with the 

presence of bolts. In the limit of N = 60, V/r   0.8 for both T = 0.35 and T = 0.09. 
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Figure  6.9: Predicted Axial Variation of Dimensionless Tangential Velocity at r/b = 0.9, Re  = 0.67 
x 107 and Cw = 105 (λT = 0.35) 

Note: z/s = 0 is located on rotor.  This is also the case for Figure 6.10. 
 



 162

0

0.2

0.4

0.6

0.8

1

0.5 0.64 0.78 0.92
z/s

V 
/r
w

N = 9 N = 18
N = 36 N = 45
N = 60 Plain disc
Continuous ring

 
Figure  6.10:  Predicted Axial Variation of Dimensionless Tangential Velocity at r/b = 0.9, Re  = 

0.72 x 107 and Cw = 0.3 x105 (λT = 0.09) 

 

 

It is of interest to study how the boundary layer thickness of the disc varies with 

increasing the number of bolts. This can be achieved by plotting the dimensionless 

tangential velocity profile versus the axial location and calculating the distance from the 

rotor at which the dimensionless tangential velocity reaches 1.1 Table 6.4 compares 

the simulation results of rotor boundary layer thickness for the plain disc as well as N = 

18, 36 and 60 for the two simulated flow conditions at r/b = 0.91 and φ = 87.28˚. 

Inspection of these tangential velocity profiles reveals that increasing the number of 

bolts reduces the thickness of the boundary layer attached to the rotor. This is due to the 

increase in the tangential velocity of the core with the increasing number of bolts.  
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Table  6.4: Comparison of the Rotor Boundary Layer Thickness for Different Number of attached 
Bolts at r/b = 0.91 and φ = 87.28˚ 

N 

(mm)

Re  = 0.67 x 107    

Cw = 105  (λT = 0.35) 

Re  = 0.72 x 107           

Cw =0.3 x105  (λT = 0.09) 

Plain disc 4.1 2.2 

18 0.9 0.4 

36 0.5 0.1 

60 0.2 0.04 

 

 

The occurrence of Taylor columns could also be investigated for different numbers of 

bolts. As mentioned in Chapter 5, a Rossby number can be used as an indicator of the 

occurrence of Taylor columns. Based on the simulation results, Rossby numbers ranged 

from 0.98 for the plain disc to 0.27 for 60 bolts for the flow condition of Re  = 0.67 x 

107, Cw = 105 and from 0.74 for the plain disc to 0.14 for 60 bolts for Re= 0.72 x 107, 

Cw = 0.3 x 105. According to these ranges of Rossby numbers, there is an intermediate 

rotation for the two flow conditions for all the numbers of bolts used in the system 

(except for the 60 bolts under the rotationally dominated condition). As a result, it is 

expected that no Taylor columns are produced in the system. Inspection of the velocity 

vectors above the bolts confirms this expectation. 

 

6.2.2 Moment and drag coefficients 

Figures 6.11 and 6.12 illustrate the moment coefficient variations with number of bolts 

N for Re  = 0.67 x 107, Cw = 105, (λT = 0.35) and Re = 0.72 x 107, Cw = 0.3 x 105, (λT = 

0.09). The experimental results, together with those from the CFD simulations, are 

shown for N = 3, 9 and 18 bolts as well as for a plain disc. As can be seen, there is good 

overall agreement between the predictions and the experimental data. Figures 6.13 and 

6.14 demonstrate the variations of the moment coefficient with the number of bolts N = 

3, 9, 18, 36, 45 and 60 and the plain disc as well as the continuous ring for the two flow 

conditions. The CFD results shown in Figures 6.13 and 6.14 extend the range of those 
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shown in Figures 6.11 and 6.12 and provide a consistent picture of the effect of the 

number of bolts on the moment coefficient. In addition, the contribution of skin friction 

and pressure-related (form drag and radial pumping) losses to the overall moment 

coefficient for the two flow conditions are presented in Figures 6.15 and 6.16.  
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Figure  6.11:  Variation of Moment Coefficient with Number of Bolts N. Comparison Between 
Numerical and Experimental Results  for 3, 9 and 18 Bolts and a Plain Disc: Re  = 0.67 x 107, Cw = 

105 (T = 0.35) 
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Figure  6.12: Variation of Moment Coefficient with Number of Bolts N. Comparison Between 
Numerical and Experimental Results  for 3, 9 and 18 Bolts and a Plain Disc: Re  = 0.72 x 107, Cw = 

0.3 x 105 (T = 0.09) 
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Figure  6.13: Predicted Variation of Moment Coefficient with Number of Bolts, N for Re  = 0.67 x 
107, Cw = 105 (λT = 0.35) 
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Figure  6.14: Predicted Variation of Moment Coefficient with Number of Bolts, N for Re  = 0.72 x 
107, Cw =0.3 x 105 (λT = 0.09) 
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Figure  6.15:  Variation of the Overall Moment Coefficient, Viscous and Pressure-related (Form 
Drag and Radial Pumping) Contributions with Number of Bolts (Re  = 0.67 x 107, Cw = 105 and λT = 

0.35) 
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Figure  6.16: Variation of the Overall Moment Coefficient, Viscous and Pressure-related (Form 
Drag and Radial Pumping) Contributions with Number of Bolts (Re  = 0.72 x 107, Cw =0.3 x105 and 

λT = 0.09) 

 

 

It can be seen that, not surprisingly, increasing the number of bolts increases Cm. There 

also appears to be a value of N for which the rate of increase of Cm noticeably reduces 

when further increasing the number of bolts. For λT = 0.35, this occurs when 

approximately N > 50 and for λT = 0.09 when N > 20. It is interesting to see in Figures 

6.13 and 6.14 that the moment coefficient of the ring is approximately equal to the 

moment coefficient of a plain disc. This is in agreement with the investigations of 

Millward and Robinson (1989). 

Considering Figures 6.15 and 6.16, it can be seen that the skin friction contributes less 

to the overall moment coefficient than the pressure does. This agrees with the 

predictions of Zimmerman et al. (1986). They proposed that the moment coefficient 

produced because of the viscous effects is always relatively small. Note that, since the 

amount of viscous moment coefficient is noticeably less than the pressure moment 

coefficient, its variation with the number of bolts could not be easily seen in these 

figures. 
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The total drag and moment coefficient of individual bolts continuously reduce when 

increasing the number of bolts. This is contrary to the theoretical predictions made by 

Zimmerman et al. (1986). They proposed that the moment coefficient of the bolts 

increases when increasing the number of bolts up to approximately N = 13, and then 

reduces when mounting more bolts into the system. 

Based on the simulation results, increasing the number of bolts reduces the area of the 

wake region and causes an increase in the wake shed from the trailing edge of one bolt 

to the leading edge of the next. This also brings about a reduction in Cm through the 

mechanism of form drag. In addition, there is the (reversible) loss associated with the 

pumping mechanism of the bolts. It would be of interest to further investigate the 

contribution to Cm. However, since FLUENT reports only the viscous moment and the 

pressure moment (which includes both the moment produced by the wakes and by the 

pumping action) separately, it is not possible to find the amount of moment produced by 

the wakes alone. As mentioned, increasing the number of bolts decreases the relative 

total pressure difference across each individual bolt. This leads to a net decrease in the 

moment. However, since there are more bolts, the contribution of the pressure-related 

moment of all the bolts together increases. Therefore, the simulation results show that 

the net effect of increasing the number of bolts is to increase the overall moment 

coefficient. However, for the reasons explained above concerning the structure of the 

wakes, the rate at which Cm increases with N decreases as N becomes larger. 

It is also important to study the variations of the bolt drag coefficient with the number 

of bolts. Tables 6.5 and 6.6 display the results of the total angle of attack and the free-

stream Reynolds number of the flow approaching the bolts as well as the drag 

coefficient of individual bolts for different N and the two simulated flow conditions. 

Additionally, Figures 6.17 and 6.18 graphically exhibit the drag coefficient and the 

moment coefficient respectively of individual bolts as a function of N. 
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Table  6.5: Comparison of the Total Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolts as well as the Drag Coefficient of Individual Bolts for N = 3, 9, 18, 36, 45, 

and 60; Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) 

N 


(deg) 

ReD 

(/105) 
CD 

3 10 1.76 1.99 

9 18.7 1.4 1.65 

18 27 1.26 1.22 

36 35.5 1.03 0.85 

45 42 1 0.65 

60 43 0.99 0.5 

 

 

 

Table  6.6: Comparison of the Total Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolts as well as the Drag Coefficient of Individual Bolts for N = 3, 9, 18, 36, 45, 

and 60;Re  = 0.67 x 107, Cw = 105 (λT = 0.35) 

N 


(deg) 

ReD 

(/105) 
CD 

3 10.5 2.49 1.6 

9 19.4 2.27 1.32 

18 32 2.07 0.89 

36 38 1.8 0.58 

45 43.5 1.7 0.4 

60 45 1.65 0.32 
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Figure  6.17: Comparison of the Drag Coefficient of Individual Bolts as a Function of N for (a): Re  
= 0.67 x 107, Cw = 105 (λT = 0.35), and (b): Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) 
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Figure  6.18: Comparison of the Moment Coefficient of Individual Bolts as a Function of N for (a): 
Re  = 0.67 x 107, Cw = 105 (λT = 0.35), and (b): Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) 
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According to the results presented in Tables 6.5 and 6.6, increasing the number of bolts 

reduces the total free-stream Reynolds number and increases the total angle of attack of 

the approaching flow. These variations are similar to those obtained for the local free-

stream Reynolds number and the angle of attack (see Tables 6.2 and 6.3). As was 

discussed earlier, it is expected that the combined effects of these variations end up with 

an increase in the total drag coefficient of individual bolts. However, inspection of the 

drag coefficient variations in Tables 6.5 and 6.6, as well as those in Figure 6.17, 

indicates a reverse trend with increasing N. This could be attributed to the fact that 

increasing the number of bolts and, as a result, decreasing the gap between two 

neighbouring bolts disturbs the full formation of the wakes behind the bolts. In addition, 

due to the reduced influence of wakes from upstream bolts, a smaller pressure 

difference is produced across the bolt. Hence, increasing the number of bolts causes a 

reduction of the pressure drag coefficient produced by the wakes and that produced by 

the pumping losses and, as a consequence, reduces the total drag coefficient. 

It would be of interest to investigate the boundary layer flow separation regime 

variations around the bolt by increasing the number of bolts.  It was concluded in 

Chapter 5 that for N = 18 laminar to turbulent transition of the boundary layer above the 

bolt occurs in the range of ReD between about 1.2 x 105 and 2 x 105. However, 

increasing the number of bolts increases the interaction of upstream and downstream 

bolt and, as a result, increases the degree of unsteadiness and disturbance of the 

boundary layer over the bolt due to the impingement of the upstream wake. Therefore, it 

is not only the free-stream Reynolds number that can affect the transition of the 

boundary layer over the bolt but also it is affected by the wake impingement of 

upstream bolt.  Transition due to the wake impingement also occurs in the boundary 

layer over the blades of a multi-stage turbomachinery. The situation was studied by Wu 

et al. (1999) and Lien et al. (1998). Accordingly, they found that three types of 

boundary layer transition are typical in gas turbine engines: the bypass transition, the 

separated-flow transition and the wake-induced transition. In the first type the free-

stream turbulence produces the disturbances in the boundary layer. The second type of 

transition occurs close to the reattachment point of a laminar separation bubble. Finally, 

the third type of transition is caused by the passing wakes from upstream airfoil. It 

appears that all of the mentioned mechanisms of transition could cause the transition of 

flow in the boundary layer above the bolts for N> 18. However, detailed detection of the 
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transitional mechanisms and the boundary layer regime variations over the bolts 

requires using unsteady simulations with transitional modelling of the boundary layer 

which is not the subject of investigation in this research. 

 

6.3 Investigation of the variations of flow structure and 
amount of losses for a specific number and different 
diameters of bolts 

Investigations were carried out in this section for 18 bolts with three different diameters: 

D = 10, 13 and 16mm. The flow conditions studied in Section 6.2 were used in this 

section as well: Re = 0.67 x 107, Cw = 105 (λT = 0.35) and Re = 0.72 x 107, Cw = 0.3 x 

105 (λT = 0.09).  

The flow structure is studied by plotting relative velocity vectors as well as static 

pressure and -wall shear stress distributions on the bolt at z/s = 0.045. Accordingly, 

Figures 6.19 and 6.20 exhibit the relative velocity vectors for Re = 0.67 x 107, Cw = 105 

(λT = 0.35) and Re = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09), respectively. Figures 6.21 

and 6.22 respectively demonstrate the -wall shear stress and pressure coefficient 

distributions for Re = 0.67 x 107, Cw = 105 (λT = 0.35). Similar plots to those shown in 

Figures 6.21 and 6.22 are displayed in Figures 6.23 and 6.24 for Re = 0.72 x 107 and 

Cw = 0.3 x 105 (λT = 0.09). In addition, results of the local free-stream Reynolds 

numbers and angles of attack of the flow approaching the bolt at z/s = 0.045 as well as 

the locations of the stagnation and separation points are tabulated in Tables 6.7 and 6.8.  
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(a) 

 
(b) 

 
(c) 

 
Figure  6.19: Relative Velocity Vectors for Re = 0.67 x 107, Cw = 105 (λT = 0.35) at z/s = 0.045; N =18, 

(a) D =1 6 mm, (b) D = 13 mm, and (c) D = 10 mm 
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(a) 

 

 
(b) 

 
(c) 

 
Figure  6.20: Relative Velocity Vectors for Re = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) at z/s = 0.045, N 

=18, (a) D =1 6 mm, (b) D = 13 mm, and (c) D = 10 mm 
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Figure  6.21: Variations of -wall Shear Stress Distribution on the Bolt for Different Diameters of 
Bolts at z/s = 0.045, Re = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09), N =18 
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Figure  6.22: Variations of Pressure Distribution on the Bolt for Different Diameters of Bolts at z/s = 
0.045, Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09), N =18  
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Figure  6.23: Variations of -wall Shear Stress Distribution on the Bolt for Different Diameters of 
Bolts at z/s = 0.045, Re  = 0.67 x 107, Cw = 105 (λT = 0.35), N = 18 

 
 
 
 

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

87 88 89 90 91 92 93

  (deg)

C
p

D = 10 mm D = 13 mm D = 16 mm
 

Figure  6.24: Variations of Pressure Distribution on the Bolt for Different Diameters of bolts at z/s = 
0.045, Re  = 0.67 x 107, Cw = 105 (λT = 0.35), N =18 
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Table  6.7: Comparison of the Local Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolt at z/s =0.045 as well as the Location of the Stagnation and Separation Points 

for Different Diameters of bolts, Re  = 0.67 x 107, Cw = 105 (λT = 0.35), N = 18 

D 

(mm) 



(deg) 

ReD 

(/105) 

stagnation 

(deg)

separation-

upper surface 

(deg) 

separation-lower 

surface 

(deg)

10 28.2 1.62 88.65 90.9 91.44 

13 33.4 1.93 88.16 90.67 91.44 

16 39.3 2.25 87.95 89.298* 91.45 
*The angular location corresponds to the first separation point. 

 

Table  6.8: Comparison of the Local Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolt at z/s =0.045 as well as the Location of the Stagnation and Separation Points 

for Different Diameters of bolts, Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09), N = 18 

D 

(mm) 



(deg) 

ReD 

(/105) 

stagnation 

(deg)

separation-

upper surface 

(deg) 

separation-lower 

surface 

(deg)

10 21.7 1.14 88.8 89.85 91.4 

13 25.2 1.18 88.46 89.63 91.4 

16 30.1 1.24 87.84 89.3 91.41 

 

Based on the results presented in Tables 6.7 and 6.8, increasing the diameter of bolts 

causes an earlier flow separation, which leads to an increase in the area of the wake 

region (see also Figures 6.19 and 6.20). This could be attributed to the fact that the 

angle of attack of the flow approaching the bolt increases when increasing the bolt’s 

diameter. Considering the free-stream Reynolds number, increasing D slightly increases 

ReD.  

Considering the range of ReD for laminar to turbulent transition of the boundary layer 

above the bolt which was obtained for N = 18 (see section 5.4), for Re = 0.72 x 107 and 

Cw = 0.3 x 105 (λT = 0.09), flow in the boundary layer attached to the bolt remains in the 

laminar regime for the three simulated diameters of the bolts. However, for Re = 0.67 x 

107 and Cw = 105 (λT = 0.35), the boundary layer flow is in the transitional regime for D 
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= 13mm and 10mm, and is moved to the fully turbulent regime for D = 16mm. Note that 

the angular location of the separation point for Re = 0.67 x 107 and Cw = 105 and D = 

16mm corresponds to the location of the first separation point. It should be recalled that 

for Re = 0.67 x 107 and Cw = 105 and D = 16mm the turbulent boundary layer on the 

upper surface of the bolt reattaches the flow and forms a separation bubble over its 

upper side.  

Inspection of pressure coefficient distributions reveals that the static pressure difference 

around the bolt increases when increasing the diameter of the bolts. However, the 

minimum static pressure as well as the relative total pressure difference between the 

lower and upper surfaces of the bolt are reduced with increasing D. This can be 

attributed to the reduction of the relative total velocity between the upper and lower 

sides of the bolts for the bolts with larger diameters. In addition, increasing D moves the 

stagnation point toward the upper surface of the bolt. This is due to the increase in the 

angle of attack with the diameter of the bolts.  

It is also interesting to investigate the variations in rotor boundary layer thickness with 

changing the diameter of bolts in the range of their interference. Table 6.9 displays the 

boundary layer thickness of the rotor for different diameters of bolts at r/b = 0.91 and φ 

= 87.28˚. Accordingly, it appears that the boundary layer thickness of the rotor is at its 

lowest for D = 16mm. The reason is that the core swirl ratio for D = 16mm is at its 

highest in comparison with that for the two other simulated diameters. 

 

Table  6.9: Comparison of the Boundary Layer Thickness of the Rotor for Different Diameters of 
attached Bolts at r/b = 0.91 and φ = 87.28˚ 

D 

(mm) 

(mm)

Re  = 0.67 x 107           

Cw = 105  (λT = 0.35) 

Re  = 0.72 x 107     Cw 

=0.3 x105(λT = 0.09) 

10 0.99 0.5 

13 0.94 0.45 

16 0.9 0.4 
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It is important to investigate the loss coefficients produced by bolts with different 

diameters. Hence, the results of the moment and drag coefficients of individual bolts 

with different diameters as well as the total values of the free-stream Reynolds number 

and the angle of attack of the flow approaching the bolts are tabulated in Tables 6.10 

and 6.11 for Re = 0.67 x 107, Cw = 105 (λT = 0.35) and Re = 0.72 x 107, Cw = 0.3 x 105 

(λT = 0.09) respectively. In addition, the drag and moment coefficients of individual 

bolts are graphically presented in Figures 6.25 and 6.26. 

 

Table  6.10: Variations of Total Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolts as well as the Drag and Moment Coefficients of Individual Bolts for 

Different Diameters, Re = 0.67 x 107, Cw = 105 (λT = 0.35), N =18 

D 

(mm) 



(deg) 

ReD 

(/105) 
CD Cm 

10 21 1.6 1.03 0.0007 

13 27 1.97 0.98 0.00085 

16 32 2.07 0.89 0.00098 

 

 

 

Table  6.11: Variations of the Total Free-stream Reynolds Number and Angle of Attack of the Flow 
Approaching the Bolts as well as the Drag and Moment Coefficients of Individual Bolts  for 

Different Diameters of Bolts, Re  = 0.72 x 107, Cw = 0.3 x 105 (λT = 0.09), N =18 

D 

(mm) 



(deg) 

ReD 

(/105) 
CD Cm 

10 19 1.05 1.13 0.00033 

13 22.6 1.12 1.18 0.00037 

16 27 1.26 1.22 0.00047 
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Figure  6.25: Variations of the Drag Coefficient of Individual Bolts for N = 18 (a): Re  = 0.67 x 107, 
Cw = 105 (λT=0.35) and (b): Re = 0.72 x 107, Cw = 0.3 x 105 (λT=0.09) 
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Figure  6.26: Variations of the Moment Coefficient of Individual Bolts for N = 18 (a): Re  = 0.67 x 
107, Cw = 105 (λT=0.35) and (b): Re = 0.72 x 107, Cw = 0.3 x 105 (λT=0.09) 
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As mentioned by Schlichting and Gersten (1999), the relative contribution of viscous 

and pressure drags depends on the thickness of the body. For small thicknesses of the 

body, viscous drag has the major contribution to the total drag. However, as the 

thickness of the body increases, viscous drag decreases, and for blunt bodies like 

cylinders it is dominated significantly by pressure drag. The same observations were 

obtained from the simulation results of the bolts with different diameters. 

Miles (2011) could not find a measurable increase of the moment coefficient between D 

= 10mm and D = 13mm due to the uncertainty of measurements at low rotational 

Reynolds numbers. However, on the basis of the results presented in Tables 6.10 and 

6.11, increasing the diameter of the bolts consistently increases the moment and drag 

coefficients for Re = 0.72 x 107 and Cw = 0.3 x 105 (λT = 0.09). Although the moment 

coefficient of the bolts increases with increasing D for Re = 0.67 x 107 and Cw = 105 (λT 

= 0.35), a reducing trend is evident for the variations of the bolts’ drag coefficient. This 

could be explained by examining the flow regimes around the bolts with different 

diameters for the mentioned flow conditions. According to the results shown in Table 

6.11, flow is in the transitional regime for D = 10mm and 13mm, and moves to the fully 

turbulent regime for D = 16mm. This is contrary to the flow regime in the boundary 

layer over the bolt for Re = 0.72 x 107 and Cw = 0.3 x 105 where flow is in the laminar 

regime for all of the three diameters of bolts simulated. As a result, it appears that the 

predictions proposed by Schlichting and Gersten (1999) are only valid for variations of 

the bolts’ drag coefficient with diameters for Re = 0.72 x 107 and Cw = 0.3 x 105 (λT = 

0.09). 

It also appears from Figure 6.25 that the rate of drag coefficient variations is higher 

between D = 13mm and D = 16mm in comparison to its variations between D = 10mm 

and D = 13mm for Re = 0.67 x 107 and Cw = 105 (λT = 0.35). In addition, it appears that 

the total variations of the bolts’ drag coefficient between D = 10mm and D = 16mm for 

the mentioned flow conditions are higher than their variations for Re = 0.72 x 107 and 

Cw = 0.3 x 105 (λT = 0.09). A similar observation could be made by comparing the 

moment coefficient variations between the two flow conditions. 

 

 



 182

6.4 Investigation of the moment and drag coefficient 
variations by varying the diameter and number of bolts 
simultaneously 

In Sections 6.2 and 6.3, variations of the moment coefficient in the rotor-stator system 

were investigated by varying either the number or diameter of the bolts. However, it is 

interesting to investigate whether it is possible to find a general trend between the 

moment coefficient and the number of bolts, independent of their diameter. Hence, two 

sets of simulations were conducted, one for D = 10mm in which N ranges from 3 to 96, 

and the other for D = 13mm in which N ranges from 3 to 75. These sets of simulations 

as well as the simulations performed for D = 16mm in which N ranges from 3 to 60 

provide a large database for analysis. Note that N = 60 for simulations with D = 16mm, 

N = 75 for simulations with D = 13mm and N = 96 for simulation with D = 10mm are 

the maximum possible number of bolts that can circumferentially be placed on the rotor 

at r/b = 0.9. The bolts were made non-dimensional by defining the ratio of the bolts’ 

pitch arc length, xpr, to the bolts’ diameter and the bolts spacing, as displayed in 

Equation 6.1.  

Figures 6.27 and 6.28 show the variations of the total moment coefficient for different 

numbers of bolts as a function of Xb for Re = 0.67 x 107, Cw = 105 (λT = 0.35) and Re = 

0.72 x 107, Cw = 0.3 x 105 (λT = 0.09) respectively. Also included in Figures 6.27 and 

6.28 are the results of the correlation obtained by the experimental measurements of 

Miles (2011). The correlation suggests a relation between the dimensionless parameters 

and the bolts’ spacing (see Equation 6.2).  
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In addition, variations of the drag coefficient of the individual bolts as a function of Xb 

are shown in Figures 6.29 and 6.30 for the two simulated flow conditions. The range of 

applicability of Equation 6.2 is as follows: 
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0.17 x 107  Re  1.5 x 107 

0.24 x 105  Cw  1.06 x 105 

4   (p/D)  42 
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Figure  6.27: Variations of Total Moment Coefficient as a Function of Bolts Spacing for Different 
Diameters of Bolts; Re  = 0.67 x 107, Cw = 105 (λT = 0.35) 
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Figure  6.28: Variations of Total Moment Coefficient as a Function of Bolts Spacing for Different 
Diameters of Bolts; Re  = 0.72 x 107, Cw =0.3 x105 (λT = 0.09) 
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Figure  6.29: Variations of Drag Coefficient of Individual Bolts as a Function of Bolts Spacing for 
Re  = 0.67 x 107, Cw = 105 (λT = 0.35) 
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Figure  6.30: Variations of Drag Coefficient of Individual Bolts as a Function of Bolts Spacing for 
Re  = 0.72 x 107, Cw =0.3 x105 (λT = 0.09) 

 

 

As can be observed, the moment coefficients of the bolts with equal values of Xb are 

approximately equal in almost the whole range of Xb apart from at its lower values. The 

reason for this observed discrepancy is that for a specific value of Xb the difference 

between the number of bolts for each diameter becomes larger. For example, at Xb = 25 

the number of bolts for D = 16mm, 13mm, and 10mm is three, four and five 

respectively,, while for Xb = 1.3 it is 60, 75 and 96 respectively. 

In addition, apart from the lower values of Xb (Xb < 4), a good overall agreement could 

be observed between the simulation results and the results obtained using Miles’s 

correlation. However, it should be noted that the maximum number of bolts used in the 

experimental measurements conducted by Miles was N = 18. Hence, the validity of their 

suggested correlation for higher numbers of bolts (lower values of Xb) is doubted. 

Regarding the drag coefficient, it can be seen from Figures 6.29 and 6.30 that its value 

is almost the same for different diameters having equal values of Xb.  
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6.5 Investigation of the validity of experimental measurement 
assumptions: equal amounts of disc moment 
coefficients for a system with bolts and a system without 
bolts 

The experimental measurements for windage losses are primarily based on two 

methods: the first method is to measure the heat added to the fluid by the windage 

effects, and the second is to measure the additional torque that is produced by windage. 

However, since there is no direct method to separately measure the windage added by 

protrusions, an indirect method is used in both of the two experimental measurements. 

In the indirect method, the torque (or enthalpy change) of the whole system is measured 

in two cases: the rotor-stator system with mounted bolts, and the rotor-stator system 

without mounted bolts (plain disc system). Then the torque (or enthalpy change) of the 

bolts is achieved by subtracting one of these two values from the other (see Equation 

6.3). Although this is the only applicable method for measuring the losses produced by 

the protrusions, the results are based on a specific assumption. The assumption is that 

the amount of losses produced by the disc is equal for the two systems. However, the 

validity of this assumption is highly doubted because the presence of protrusions in a 

rotor-stator system significantly alters the flow phenomena, particularly in the range of 

their interference. 

plaindiscmtotalmboltm CCC ,,,                                                                                               6.3 

As mentioned before, it is possible in FLUENT to find the moment coefficient produced 

by the disc and that produced by the bolts separately. The results could be used in order 

to validate the assumption mentioned above. 

Accordingly, Figure 6.31 displays the moment coefficient of the rotor as a function of 

Refor the plain disc system and the rotor-mounted bolt system with N = 18 and D = 

16mm. In addition, Figure 6.32 compares the moment coefficient of the rotor with a 

different number of mounted bolts (D = 16mm). 
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Figure  6.31: Variations of Moment Coefficient Results Produced by the Rotor Between (a): Rotor-
mounted Bolts System with Cw = 105, (b): Rotor-mounted Bolts System with Cw = 0.3 x 105, (c): 

Plain Disc System with Cw = 105, and (d): Plain disc System with Cw = 0.3 x 105 
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Figure  6.32: Variations of Moment Coefficient Produced by the Rotor with Different Number of 
Mounted Bolts, D = 16 mm; (a) Re  = 0.67 x 107, Cw = 105 (λT = 0.35) and (b) Re  = 0.72 x 107, Cw 

=0.3 x105 (λT = 0.09) 
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As can be observed in Figure 6.31, the amount of the moment coefficient produced by 

the rotor in the plain disc system is considerably higher than that for the protruded disc 

system. The reason for this difference could be attributed to the shear stress that the 

fluid exerts on the disc by viscous friction. As mentioned above, the presence of bolts in 

the system speeds up the tangential velocity of the core. This reduces the shear stress 

and, as a result, the viscous friction and consequently the viscous moment. In addition, 

it should be noted that part of the disc is covered by the bolts in the protruded rotor-

stator system. This results in a further reduction of the moment coefficient produced by 

the rotor. Therefore, it can be concluded that the amount of moment coefficient 

produced by the disc is significantly dependent on the presence and the number and size 

of the mounted bolts. However, because the amount of viscous moment coefficient 

produced by the rotor is noticeably less than the amount of moment coefficient 

produced by the bolts, it is expected that this non-equality does not have a significant 

effect on the amount of moment coefficient produced by the bolts using Equation 6.3. 

Nevertheless, it is necessary to make sure that this expectation is reasonable. Hence, 

Tables 6.12, 6.13 and 6.14 compare the results of the bolts’ moment coefficient 

obtained by the CFD results with those obtained using Equation 6.3.  

 

 6.12:Table  6.33: Comparison of the Results of Bolts Moment Coefficient Obtained by the CFD 
Results with those Obtained Using Equation 6.3 for Different Number of Bolts, D = 16 mm; Re  = 

0.67 x 107, Cw = 105 (λT = 0.35) 

N 

Cm,total bolts 

 calculated by 

FLUENT 

Cm,total bolts 

calculated by using 

Equation 6.3 

Percentage of difference 

between the experimental 

assumption and CFD results 

3 0.004745 0.004026508 15.14699 

9 0.010593 0.009309746 12.11236 

18 0.015044 0.013264936 11.82784 

36 0.019101 0.017181307 10.04898 

45 0.021558 0.019332955 10.3206 

60 0.023122 0.020770146 10.17276 
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Table  6.13: Comparison of the Results of Bolts Moment Coefficient Obtained by the CFD Results 
with those Obtained Using Equation 6.3 for Different Number of Bolts, D =16 mm; Re  = 0.72 x 

107, Cw =0.3 x105 (λT = 0.09) 

N 

Cm,total bolts 

calculated by 

FLUENT 

Cm,total bolts 

calculated by using 

Equation 6.3 

Percentage of difference 

between the experimental 

assumption and CFD results 

3 0.0026 0.00223 14.3899 

9 0.005 0.00401 20.369 

18 0.0068 0.0055 19.66 

36 0.0082 0.0066 18.92 

45 0.0091 0.0075 17.0898 

60 0.0087 0.00706 18.877 

 

 

 

Table  6.14: Comparison of the Results of Bolts Moment Coefficient Obtained by the CFD Results 
with those Obtained Using Equation 6.3 for Different Flow Conditions, N =18, D = 16 mm 

ω  

(rad/s) 
Re 

 (/107) 

Cw 

 (/105) 

Cm,total bolts 

calculated 

by FLUENT 

Cm,total bolts 

calculated by 

using Equation 

6.3 

Percentage of difference 

between the 

experimental 

assumption and CFD 

results 

264.5 0.177 0.311 0.01856 0.01693 8.81 

411 0.272 0.307 0.01397 0.01249 10.56 

902.5 0.716 0.268 0.00685 0.00551 19.59 

1060.1 0.933 0.242 0.00537 0.00459 14.67 

211.9 0.362 1.022 0.02304 0.02115 8.19 

409.5 0.668 1.017 0.01506 0.01328 11.81 

618.8 0.999 0.994 0.01107 0.00991 10.47 

889.5 1.323 0.963 0.00876 0.00826 5.74 
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Based on the results given in Tables 6.12 and 6.13, on average the calculated bolt 

moment coefficient using the two methods has about 11% difference for Re  = 0.67 x 

107, Cw = 105 (λT = 0.35), and about 18% difference for Re  = 0.72 x 107, Cw = 0.3 x105 

(λT = 0.09). Considering the data presented in Table 6.14, the percentage of difference 

between the two results was about 13% for Cw = 0.3 x 105 and about 9% for Cw = 105. 

Therefore, it appears that the reported differences should be considered when the 

assumption of equal rotor moment coefficient for the system with bolts and the system 

without bolts is applied. It should also be noted that the non-validity of this assumption 

increases when decreasing λT. 

 

6.6 Summary 

The effects of changing the number and diameter of bolts on the moment coefficient and 

flow structure have been investigated in this chapter for one typical rotationally 

dominated condition and one typical throughflow dominated condition. It was found 

that for both of the flow conditions the downstream bolt is immersed in the wake region 

of the upstream bolt for N > 18. Also, for N > 18 the wake falls on the upper section of 

the bolt. 

Increasing the number of bolts was found to move the separation point towards the 

leading edge of the bolt. In addition, for both of the flow conditions and for N > 18 a 

separation bubble was observed over the top surface of the bolt, the length of which 

increases with an increasing number of bolts. Furthermore, increasing the number of 

bolts creates an increase in the total moment coefficient. However, a limit was found 

after which further increases in N do not bring about increases in Cm. There also appears 

to be very little difference between the values of Cm obtained for a plain disc and those 

for a continuous ring. In addition, increasing the number of bolts causes a reduction of 

the pressure drag coefficient and, as a consequence, the total drag coefficient of an 

individual bolt. 

Increasing the diameter of bolts causes an earlier flow separation, which leads to an 

increase in the area of the wake region. In addition, increasing the diameter of the bolts 

consistently increases the moment and drag coefficients for the rotationally dominated 
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condition. However, although the moment coefficient of the bolts increases with 

increasing D for the throughflow dominated case, a reducing trend was evident for the 

variations of the bolts’ drag coefficient.  

It was also found that both the drag and moment coefficients of the bolts with equal 

values of Xb (the ratio of the bolts’ pitch arc length to the bolts’ diameter) are 

approximately equal at almost the whole range of Xb apart from at its lower values. In 

addition, it was found that increasing the number and diameter of the bolts had no 

influence on the production of Taylor columns. 

The validity of the assumption used during experimental measurements that an equal 

amount of rotor moment exists for cavities with protrusions and those without 

protrusion was also investigated in this chapter. It was found that this assumption is 

subject to noticeable differences in the calculated moment coefficient of the total bolts, 

and the non-validity of this assumption increases by decreasing λT. 
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7. Conclusions and recommendations for future work 

 

7.1 Introduction 

This thesis has aimed to understand the fluid flow in a protruded rotor-stator cavity with 

superimposed radial outflow using CFD simulations. Extending the theoretical and 

experimental investigations, this thesis has focused on different parameter variations in 

the range of interference of the bolts as well as the loss coefficients of hexagonal bolts 

mounted on the rotor. The effects of changing the flow conditions as well as the number 

and diameter of the hexagonal bolts have also been examined. In this light, three 

research questions were posed. In the following paragraphs, the research questions are 

first recalled and then answered accordingly. 

1- What are the effects of adding protrusions in a rotor-stator cavity in terms of 

flow structure and flow parameter distributions such as velocity and pressure? 

How do these parameters vary around protrusions for different flow conditions? 

Do Taylor columns occur on top of a bolt and extend across the axial width of 

the cavity from rotor to stator? 

Chapter 5 clarified the effects of adding protrusions in the rotor-stator cavity, both in 

terms of different parameter variations and loss coefficients. Comparing the relevant 

plain disc cases, it was found that protrusions do not affect the flow structure in the 

rotor-mounted bolt system at lower radial locations. However, almost all of the flow 

aspects are considerably affected by the presence of bolts at higher radial locations close 

to the bolts. These effects are more noticeable for the rotationally dominated flow 

conditions where the tangential velocity of the core is increased. The presence of bolts 

for the rotationally dominated flow condition reduces the rotor boundary layer thickness 

and increases the radial and axial pressure gradients at higher radial locations.  

The analysis of flow structure and different parameter variations in the vicinity of the 

bolts revealed that the flow structure around the bolts is governed by the angle of attack 

and the free-stream Reynolds number of the flow approaching the bolts. In addition, 

local values of these two parameters affect the local variations of flow structure in terms 
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of the location of the separation point and the area of the wake region as well as the 

velocity and pressure distributions around the bolt.  

It was found that while the free-stream Reynolds number did not vary noticeably from 

the root to the tip of the bolt for almost all of the simulated flow conditions, the angle of 

attack had noticeable variations along the axial direction. However, the rate of reduction 

of the angle of attack along the axial direction reduces when decreasing the turbulent 

flow parameter. In addition, it was found that the angular distributions of different flow 

parameters are a function of axial and radial locations. Accordingly, it was found that 

for higher values of T the location of the separation point has minor variations when 

moving from the root to the tip of the bolt. This showed to be contrary for lower values 

of T, at which both the angle of attack and the area of the wake region noticeably 

reduce when moving from the root towards the tip of the bolt. Regarding the radial 

variations of flow parameters around the bolts, it was observed that the area of the wake 

region increases when moving from the bottom to the middle section of the bolt, and 

then decreases when moving from the middle section towards the top of the bolt. This 

was attributed to the reduction of the free-stream Reynolds number and the increase of 

the angle of attack of the flow approaching the bolt when moving from the bottom to 

the middle section of the bolt, which is followed by an increase of the free-stream 

Reynolds number and a reduction of the angle of attack from that location towards the 

top of the bolt.  

Based on the simulation results, for a constant value of throughflow rate, increasing Re 

increases the free-stream Reynolds number and reduces the angle of attack of the flow 

approaching the bolt, causing a delayed separation on the surface of the bolt that 

reduces the area of the wake region. In addition, increasing the rotational Reynolds 

number increases the static and relative total pressure differences between the upper and 

lower surfaces of the bolt. 

For a constant value of Re, increasing Cw increases the angle of attack and the free-

stream Reynolds number of the flow hitting the bolt, which delays the separation and 

reduces the area of the wake region. In addition, it was found that the flow regime in the 

boundary layer over the bolt changes from laminar to turbulent for higher rotational 

Reynolds numbers (Re   0.67 x 107) of the flow conditions with Cw = 105. However, it 
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appears that the flow remains in the laminar regime for lower throughflow Reynolds 

numbers (Cw = 0.3 x 105), even when increasing the rotational Reynolds number up to 

Re = 0.716 x 107, and then becomes transient for higher values of Re. Laminar to 

turbulent transition of the boundary layer over the bolt occurs approximately in the 

range of  2 x 105 < ReD < 4.5 x 105 for a circular cylinder. However, the transition of the 

boundary layer above the bolt from laminar to turbulent occurs earlier and in the range 

of ReD between 1 x 105 and 2 x 105.  

In addition, the increased level of turbulence in the turbulent boundary layer over the 

upper surface of the bolt reattaches the flow, causing a separation bubble for the 

rotational Reynolds number of Re = 0.67 x 107. The separation bubble is followed by a 

second separation of flow, which forms the wake region behind the bolt. However, for 

higher values of rotational Reynolds numbers (Re   0.999 x 107) due to the increased 

extent of turbulence the separation point is moved toward the trailing edge of the bolt 

and, as a result, no separation bubble is formed over the bolt.  

It was found that for a constant amount of Re, increasing Cw reduces the static and 

relative total pressure differences between the upper and lower surfaces of the bolt.  

It was also found that decreasing the throughflow rate causes the wakes to become more 

circumferential in their paths around the bolt. Furthermore, a decrease in T causes an 

increase in the wake shed from the trailing edge of one bolt to the leading edge of the 

next, which reduces the area of the wake region.  

In addition, it was found that the boundary layer thickness of the rotor in the vicinity of 

the bolts is a function of both angular and radial locations. While the rotor boundary 

layer thickness is reduced when increasing the radial location around the bolt, it does 

not follow a regular pattern along the angular direction. Additionally, it was found that 

for a specific value of Cw, increasing Re reduces the boundary layer thickness of the 

rotor. In addition, increasing Cw increases the boundary layer thickness of the rotor.  

Regarding the production of Taylor columns, it was found that, contrary to the findings 

of Farthing (1988) for a rotating cavity with mounted bolts, Taylor columns cannot be 

produced in this specific configuration of a rotor-stator system with rotor-mounted bolts 
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for all numbers of bolts mounted on the rotor and under all of the simulated flow 

conditions. 

2- What are the effects of adding protrusions in a rotor-stator cavity in terms of 

losses? How does the drag coefficient of the protrusions vary with Reynolds 

numbers? Does the drag from the bolts have substantially different behaviour in 

regimes where it is expected to be notionally laminar or notionally turbulent? 

Based on the simulation results, as expected, adding protrusions considerably increases 

the total moment coefficient of the rotor-stator system. Although the moment 

coefficient produced by the rotor was reduced when protrusions were added to the 

system (due to the increased value of the core tangential velocity and the reduction of 

the relative velocity between the rotor and the core), this reduction was dominated by 

the moment coefficient produced by the bolts. Similar to the investigations carried out 

by Zimmerman et al. (1986), three elements were considered to contribute into the 

bolts’ moment and drag coefficients, including the pressure losses produced by the 

wakes, the pressure losses produced by the pressure difference around the bolts 

(pumping losses), and the viscous losses. Examination of the results shown in Chapter 5 

revealed that the pressure loss coefficient (pumping losses and form drag losses) 

contributes the highest part of the total moment coefficient and is responsible for the 

significant increases in the moment coefficient of the rotor-mounted bolts system in 

comparison to the plain disc system.  

Variations of the flow conditions in the rotor-stator cavity with rotor-mounted bolts 

affect the loss coefficients noticeably. It was found that for a constant Cw increasing Re 

reduces the pressure drag produced by the wakes (due to the reduced area of the wake 

region), increases the pressure drag produced by the pumping losses (due to the increase 

in both the static and relative total pressure differences between the upper and lower 

surfaces of the bolts), and increases the viscous drag (due to the increase in the shear 

stress and the frictional force between the fluid and the bolt). Based on the simulation 

results, the overall effect of increasing Re is an increase in the total drag force of the 

bolt. However, since the relative total velocity magnitude also noticeably increases 

when increasing Re, the drag coefficient decreases when increasing the disc’s 

rotational speed.  
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The overall effect of increasing Cw is a noticeable reduction in the total drag coefficient. 

This was attributed to the boundary layer transition from laminar to turbulent which 

delays separation and results in a sudden decrease in the drag coefficient.  

Investigations were also carried out in order to find out whether any equivalency could 

be considered between the moment coefficient of individual bolts and their drag 

coefficient. According to the results demonstrated in Chapter 5, since the angles of 

attack of the flow hitting the bolts were noticeably larger than zero, the forces that 

produce the moment of the bolts are not the same as the forces producing the drag. 

Hence, considering the moment and drag coefficients of the bolts to be equivalent is not 

reasonable.  

The validity of the assumption used during experimental measurements assuming an 

equal amount of rotor moment for cavities with protrusions and those without 

protrusion was investigated in Chapter 6. It was found that the amount of moment 

coefficient produced by the disc is significantly dependent on the presence and also the 

number and size of mounted bolts. Although the moment coefficient produced by the 

bolts is significantly higher than that produced by the rotor, and it is expected that the 

error in calculating the rotor moment coefficient using the assumption does not have a 

significant effect on the amount of moment coefficient produced by the bolts, the 

simulation results showed that there are considerable differences between the bolts’ 

moment coefficient obtained using the assumption and that obtained by the simulations. 

Additionally, the non-validity of this assumption increases when decreasing λT. 

3- To what extent do different numbers and sizes of protrusions affect the flow 

structure and the amount of losses in the cavity?  

Chapter 6 clarified this question. The effects of changing the number and diameter of 

the bolts were investigated for two typical flow conditions: one representing a 

throughflow dominated regime and the other representing a rotationally dominated one. 

Based on the flow analysis results for both of the simulated flow conditions, the flow 

between two neighbouring bolts could be described by two regimes. For N   18 (Xb    

4.36), the presence of a downstream bolt does not noticeably affect the wake of the 

upstream bolt. However, for N > 18 (Xb < 4.36) the wake of the upstream bolt either 

impinges or envelops the downstream bolt. The extent of the wake interference is 
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increased with increasing the number of bolts, so that for N > 45 the downstream bolt is 

completely immersed in the wake of the upstream bolt. In addition, it was found that 

increasing the number of bolts pushes the wakes towards the upper section of the bolts.  

The wake interference of two neighbouring bolts significantly affects different 

parameter distributions around the bolts. Increasing the number of bolts beyond N = 18 

noticeably increases the static pressure difference between the upper and lower surfaces 

of the bolt, so that for N   45 the pressure coefficient of the upper section of the bolt 

can reach positive values. However, it was found that the relative total pressure 

difference between the upper and lower sides of the bolt reduces when increasing N. 

The rate of this reduction was higher for the rotationally dominated flow condition. In 

addition, it was found that the relative total pressure of the leading edge of the bolt 

approaches approximately that of the trailing edge of the bolt by increasing the number 

of bolts. Investigations were also carried out in order to examine the variations of the 

free-stream Reynolds number and the angle of attack of the flow approaching the bolt 

for different numbers of bolts attached to the rotor. Based on the results presented in 

Chapter 6, increasing the number of bolts increases the angle of attack of the flow 

approaching the bolt. However, the reducing trend of ReD with the number of bolts is 

slightly lower than that observed for the angle of attack. The trend of the increase for 

both of the parameters slows down for N > 36. Moreover, increasing N increases the 

tangential velocity of the fluid approaching the bolt as well as the core tangential 

velocity, and decreases the relative tangential velocity between the rotor and the core.  

Increasing the number of bolts ends up with a forward movement of the separation 

points, particularly at the upper side of the bolt. It is interesting to note that for both of 

the flow conditions, increasing the number of bolts beyond N = 18 makes the separated 

shear layer reattach to the upper surface of the bolt and separate again at a distance 

downstream. Hence, for N > 18 a separation bubble is formed over the top surface of the 

bolt, the length of which increases with an increasing number of bolts.  

The thickness of the boundary layer attached to the rotor in the vicinity of the bolts was 

also investigated for different numbers of mounted bolts. It was found that increasing 

the number of bolts reduces the thickness of the boundary layer attached to the rotor.  
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There appears to be very little difference between the values of Cm obtained for a plain 

disc with those obtained for a continuous ring. Increasing the number of bolts creates an 

increase in the moment coefficient of the total system. However, this reaches a limit 

where further increases in N do not bring about an increase in Cm. This can be explained 

by examining the separate contributions that skin friction and pressure-related drag 

make to the overall moment coefficient. The skin friction actually reduces as the 

number of bolts is increased. This is because increasing N causes the tangential velocity 

of the core to increase, which decreases the relative rotor-to-core velocity. The pressure-

related drag (it was not possible to distinguish between form drag and pumping loss in 

this study) is also affected by increasing N. The more bolts attached, the more the wake 

of the leading bolt affects that of the bolt immediately behind. As a result, the viscous, 

pressure and total drag for each individual bolt is reduced, but as there are more bolts, 

the overall drag increases. The direction of the wake shed by one bolt and therefore its 

influence on another bolt is also found to be affected by T. Decreasing the throughflow 

rate (or decreasing T) pushes the wakes toward the rear section of the bolt and 

increases their interference with the flow field of the neighbouring bolt.  

Analysis of the flow around bolts with different diameters revealed that increasing the 

diameter of the bolts causes an earlier flow separation, which leads to an increase in the 

area of the wake region. This was attributed to the increase of both the angle of attack 

and the free-stream Reynolds number of the flow approaching the bolt. Inspection of 

pressure coefficient distributions around the bolts also revealed that the static pressure 

difference between the upper and lower sides of the bolt increases when increasing the 

diameter of the bolts.  

The thickness of the rotor boundary layer in the vicinity of the bolts was also 

investigated for the three diameters simulated. Accordingly, it was found that the 

boundary layer thickness of the rotor is at its lowest for D = 16mm.  

As mentioned by Schlichting and Gersten (1999), the relative contribution of viscous 

and pressure drags depends on the thickness of the body. For small thicknesses of the 

body, viscous drag has the major contribution to the total drag. However, as the 

thickness of the body increases, viscous drag decreases and for blunt bodies like 
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cylinders it is dominated significantly by pressure drags. The same observations were 

obtained from the simulation results of the bolts with different diameters. 

On the basis of the results presented in Chapter 6, increasing the diameter of the bolts 

consistently increases the moment and drag coefficients for the rotationally dominated 

flow condition. However, although the moment coefficient of the bolts increases with 

increasing D for the throughflow dominated case, a reducing trend was evident for the 

variations of the bolts’ drag coefficient. The reason was attributed to the flow regimes in 

the boundary layer over the bolt. It was found that a laminar boundary layer formed 

above the bolts for all three simulated diameters and the rotationally dominated 

condition. However, for the throughflow dominated case, the flow was in the 

transitional regime for D = 13mm and 10mm, and was moved to the fully turbulent 

regime for D = 16mm.  

The loss coefficients of the bolts were also investigated in Chapter 6 by making the 

bolts non-dimensional. Accordingly, further simulations were carried out for D = 10mm 

and D = 13mm with different numbers of bolts ranging from 0 (plain disc system) to the 

maximum possible number of bolts that can circumferentially be placed on the rotor at 

r/b = 0.9.  

It was found that the moment and drag coefficients of the bolts with equal values of Xb 

were approximately equal in almost the whole range of Xb apart from at its lower values. 

The reason for the observed discrepancy for the lower values of Xb was attributed to the 

fact that for specific low values of Xb the difference between the number of bolts 

mounted on the rotor for each of the simulated diameters becomes larger. In addition, 

apart from the lower values of Xb (Xb < 4), a good overall agreement was observed 

between the simulation results and the results obtained using Miles et al.’s correlation 

(2007).  

 

7.2 Recommendations for future work 

While the standard k- model with the enhanced wall treatment shows acceptable 

predictions for the flow structure as well as loss coefficients in the protruded rotor-stator 
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cavity, other complex methods of turbulence modeling such as DNS, and LES (see 

Appendix 2) may consolidate this thesis findings. Since, the mentioned models are 

expensive both in terms of CPU memory and time particularly for large number of 

simulations, they were not used in this study. 

In addition, all of the simulations in this thesis were implemented with the assumption 

of the steady state condition of the flow within the cavity. According to the findings of 

this thesis, when the number of bolts is increased beyond N > 18 the flow around the 

bolts is subjected to a substantial degree of unsteadiness. This is because of the 

impinging wakes of the upstream bolt. Hence, unsteady simulations can be implemented 

in order to check the validity of the simulation results under steady and unsteady 

circumstances. 

Furthermore, based on the findings of this thesis laminar to turbulent transition may 

occur in the boundary layer over the bolts. Hence, mechanisms of the laminar to 

turbulent transition of the boundary layer above the bolt should be examined. It is also 

interesting to investigate the location of the laminar to turbulent transition of the 

boundary layer above the bolt in order to find possible relations with the locations of the 

separation and reattachment points. The complementary studies can also investigate 

heat transfer effects and temperature distribution around the bolts. 

During simulations, the radial location of the mounted bolts on the rotor was constant 

and close to the cavity outlet. Therefore, further investigations could be carried out in 

order to examine how the fluid flow is affected by changing the radial locations of the 

mounted bolts. Further investigations could also be carried out in order to understand 

the fluid flow phenomena in a cavity with bolts attached both on rotor and stator.  

The shape of protrusions could also be changed. Miles (2011) carried out experimental 

measurements using bi-hexagonal bolts attached to rotor which are common protrusions 

used in internal structures of gas turbine engines. She found that the use of bi-hexagonal 

bolts reduces the overall drag and windage heating in the cavity. However, it is also 

interesting to investigate other shapes of protrusions like cylindrical or staged 

protrusions. 
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Appendix 1: CFD Procedure 

 

In this research, the well-recognised CFD code, FLUENT, was used for modelling the 

flow. FLUENT numerically solves the governing differential equations of mass, 

momentum, energy and other equations such as turbulence and chemical species. 

FLUENT uses the finite volume method for integrating the governing differential 

equations over the total control volume. The resultant discretised equations are 

linearised and then iteratively solved to yield approximate values of variables, which are 

stored at the cell-centres.   

Simulation in FLUENT primarily consists of three general steps: 1-Pre-processing; 2-

Solver; 3-Post-processing. 

In further detail, these steps include:  

 Pre-processing section: 

The first step of the simulation process in FLUENT is the pre-processing step, in which 

the flow domain is described and the physics of problem is identified. The geometry 

that was meshed is loaded into FLUENT and checked. Then the solver options 

(including pressure-based, density-based, unsteady, etc.), the physical models (including 

turbulence, multiphase, combustion, etc.) are set and the material properties are defined. 

Subsequently, the appropriate operating conditions and boundary conditions at each 

boundary zone are defined. The solution methods including the appropriate solution 

scheme and spatial discretisation are also selected. 

In this research, the pressure-based solver with relative velocity formulation under the 

steady state condition was used for simulations. The difference between the two 

approaches of pressure-based and density-based solvers is in the way that the continuity, 

momentum, energy and species equations are solved. Since the density-based solver 

was defined for high-speed compressible flows, the pressure-based approach was 
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selected as the solver type in this research. In addition, the segregated algorithm (with 

SIMPLE type), in which the governing equations are solved sequentially, segregated 

from one another, was selected for the simulations. Moreover, since the flow is rotating 

in the flow domain, the relative velocity formulation was preferred.  

Since the geometry is meshed with the triangular grids (in the r- plane) and as a result, 

the flow is not aligned with the grids, second-order discretisation was selected for 

obtaining more accurate results. 

 Solver section: 

The simulation starts with an initial solution and then iteratively continues to reach 

convergence. The convergence criteria are generally reached when the variables’ 

residuals could be considered negligible and the overall property conservation is 

achieved within the system. During the solution process the residuals and the lift, drag, 

and moment coefficients can be monitored continuously in order to identify the 

convergence. 

 Post-processing section:  

In this section the results are analysed and the desired flow properties, including the 

forces, moments, velocities, flow pattern, etc., are extracted from the solution of the 

flow field. 
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Appendix 2: Turbulence Modelling 

 

An overview of the turbulence models, particularly that provided by FLUENT, is given 

in this Appendix. Wilcox (2006) defined a turbulence model as “a mathematical model 

that approximates the physical behaviour of turbulent flows”. He mentioned that “the 

function of turbulence modelling is to devise approximations for the unknown 

correlations in terms of flow properties that are known so that a sufficient number of 

equations exist. In making such approximations, we close the system”. 

Turbulent flows are described as velocity fields that have fluctuations in all scales and 

frequencies. Simulating both small scale and small frequency fluctuations is 

computationally very expensive. Therefore, a method should be provided that can 

eliminate the resolving of these fluctuations. There are two methods that can do this job: 

Reynolds averaging and filtering. 

There is another method of modelling turbulent flows, which is called “direct numerical 

simulation” (DNS). In this method, the complete three-dimensional time-dependent 

Navier Stokes equations as well as the continuity equation are solved.  

 

Reynolds averaging approach 

The basis of the Reynolds averaging models is to convert the simultaneous variables in 

the Navier Stokes equations to time-averaged variables. The only difference between 

the time-averaged and the original Navier Stokes equations is the appearance of the 

term i ju u  . Equation A2.1 shows the general averaged Navier Stokes equation for 

incompressible fluids: 

(2 )i i
j ji i j

j i j

U U pU S u u
t x x x

            
   

                                                  A2.1 



 218

The above equation is the well-known Reynolds-averaged Navier Stokes equation 

(RANS), and the term i ju u    is the Reynolds stress tensor. The Reynolds stress tensor 

is denoted by ij , where ij  is the specific Reynolds stress tensor (Wilcox, 2006). In 

order to solve equation 3.13, a presentation for computing i ju u   is needed. 

ij i ju u                                                                                                                       A2.2 

There are different turbulence models that can compute the Reynolds stress tensor, such 

as the Spalart Allmaras, the k- and its variants, the k- and its variants, and the RSM. 

The first three models use an assumption called the Boussinesq eddy viscosity 

approximation in order to calculate the Reynolds stress tensor, while the latter model 

(the RSM) computes the i ju u   terms without any pre-assumption. 

A simple way to compute the Reynolds stress tensor is to use the Boussinesq eddy 

viscosity approximation, which defines the Reynolds stress terms as the product of an 

eddy viscosity (which is a flow property rather than a fluid property) and the mean 

strain-rate tensor. The limitation of the Boussinesq approximation is the assumption of 

isotropic eddy viscosity. In the isotropic assumption, the values of T  (turbulent eddy 

viscosity) are assumed to be the same for different i ju u   terms. Therefore the effects of 

rotation, curvature and buoyancy forces will be neglected, and in order to be considered, 

they should be modelled separately.  

There are different turbulence models that use the Boussinesq approximation. However, 

FLUENT only provides the Spalart Allmaras model, the k- models, and the k- 

models. 

 

The Spalart Allmaras model 

The Spalart Allmaras model is a one-equation turbulence model that was developed by 

Spalart and Allmaras (1992). This model solves only one additional transport equation 

representing the turbulent eddy viscosity. The defining equations of the model are as 

follows. 
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Kinematic eddy viscosity: 
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Spalart and Allmaras suggested their model for aerospace applications, but it has been 

used for many engineering applications, especially for wall-bounded flows. 

Furthermore, it has been widely used in turbomachinery applications. 

FLUENT provides two versions of the Spalart Allmaras model: vorticity-based, which 

is the original model, and strain/vorticity based, which is a modified version and 

considers the effect of rotation and strain tensors in the definition of the production 

term. It should be noted that the Spalart Allmaras model was designed for wall-bounded 
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flows. Therefore, fine grids are needed near the walls to properly resolve the laminar-

sub-layer region.  

  

The k- model 

The k- model is a two-equation models and has been widely used in industrial flow and 

heat transfer simulations. Two equation models provide two additional transport 

equations for calculating turbulent kinetic energy as well as equations for calculating the 

turbulent length scale or its equivalent (Wilcox, 2006). Therefore two equation models 

are complete. The first k- model is based on the efforts of Chou (1945), Davidov 

(1961), and Harlow and Nakayana (1968). FLUENT provides three versions of the k- 

model: the standard k-, the renormalization group (RNG) k-, and the realizable k- 

The standard k- model was introduced by Launder and Sharma (1974). It is a semi-

empirical model that computes turbulent viscosity as a function of turbulent kinetic 

energy (k) and the turbulent dissipation rate (). The exact equations of turbulent 

viscosity are summarised by Wilcox (2006) as follows. 
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Turbulence Kinetic Energy: 
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Dissipation Rate: 
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Closure Coefficients and Auxiliary Relations: 

1 1.44C   ,    2 1.92C   ,    0.09C   ,     1.0k  ,    1.3                  
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The second version of the k- model is the RNG model, which was developed by 

Yakhot and Orszag (1986). RNG stands for the renormalization group, and is a 

mathematical technique for solving instantaneous Navier Stokes equations. The 

equations of eddy viscosity, k, and  are the same as the standard k- model, while a 

modified coefficient, C2 was defined for the RNG model. This model has the capability 

of modelling turbulence in rapidly strained and swirling flows. Furthermore, FLUENT 

provides two other options for the RNG model, which are the swirl modification, and 

the differential viscosity. The exact equations of turbulent viscosity are summarised by 

Wilcox (2006) as follows. 
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The closure coefficients for the RNG model are: 

42.11 C      ,       68.1~
2 C       ,      085.0C       ,     72.0k         

72.0          ,          012.0       ,        38.4o                                 

 

The third version of the k- model is the realizable k- model, which was developed by 

Shih et al. (1995). This model was proposed to improve the ability of the standard k- 

model to predict complex turbulent flows. It suggests new equations for both the 

dissipation rate and the eddy viscosity. The new equations for  are based on the 

dynamic equation for fluctuating vorticity, while the new equation for eddy viscosity 

contains the effect of mean rotation on turbulence stresses and ensures realizability, 

which are certain mathematical constraints on the Reynolds stresses in consistent with 

the physical behaviour of turbulent flow (Shih et al., 1995). This model has been 

validated for various flows, including rotating homogenous shear flows, boundary-free 

shear flows, channel and flat boundary layer flows with and without pressure gradients, 
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and backward facing step flows (Shih et al.). The results of these validation cases show 

better flow predictions in comparison with the standard k- model (Shih et al., 1995). 

The formulations of the realizable model are given bellow. 
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Mohammadi and Pironneau (1994) investigated the k- models. They mentioned that 

the viscous sub-layer and the log-law region should be removed from the computational 

domain and the log-law should be used as the boundary condition. This idea works only 

if *20 100
y


   (where Y+
*y


 ) and when there is no boundary layer separation. 

The k- models are valid in fully turbulent (log-law) regions. The log-law for mean 

velocity is valid for Y+ > 30-60. In FLUENT, the log-law is employed when Y+ > 

11.225. In order to use finer meshes near the walls, the enhanced wall treatment option 

in FLUENT should be enabled, in which the viscous sub-layer can be modelled. When 

the enhanced wall treatment is enabled, Y+ should be in the order of 1. 

 

The k-w model 

The k- model is another popular two-equation turbulence model. It computes the 

turbulent eddy viscosity as a function of turbulent kinetic energy (k) and the specific 
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dissipation rate (). FLUENT provides the standard k- model and the SST k- model. 

The first k- model was proposed by Kolmogorov (1942). Since then, different 

modifications have been offered. The most well-known k- model is the Wilcox k- 

model. The advantage of the k- model compared with the k- model is its ability to 

model the flow near the walls, and its success in modelling flows with moderate adverse 

pressure gradients (Menter, 1994). However, the standard k- model has limitations for 

flows with pressure-induced separation. These limitations have been eliminated in the 

SST k- model, which predicts flows with strong adverse pressure gradients and 

separation (Menter et.al., 2003). 

The standard k- model in FLUENT is based on the model proposed by Wilcox (1998). 

It computes the eddy viscosity as a function of turbulent kinetic energy (k) and the 

specific dissipation rate (), which itself can be thought of as the ratio of  to k.   

Wilcox described his model using the following equations (Wilcox, 2006): 

Kinematic Eddy Viscosity: 
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Specific Dissipation Rate:  
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Closure Coefficients and Auxiliary Relations: 
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Another version of the k- model is the shear stress transport (SST) k- model, which 

was developed by Menter (1994) and was originally used for aeronautics applications. 

This model has a modification to account for the principal turbulent shear stress in the 

eddy viscosity equation. It blends the standard k- model with the k- model so that the 

k- model will be activated near the walls and will be put to zero far from the walls, 

while activating the k- model. 

Considering the limitations of the Boussinesq approximation, Mentor and Smirnov 

(2009) modified the SST model with the rotation-curvature correction (CC), and 

validated it for a wide range of turbulent flows. 

Wilcox (2006) investigated the influence of a solid surface on flow behaviour. He 

described different numerical considerations for his turbulence model, and mentioned 

that “quantities such as the dissipation rate, , and specific dissipation rate, , grow so 

rapidly approaching a solid boundary that they appear to be singular. In fact,  is 

singular for a perfectly-smooth wall. Also, at interfaces between turbulent and 

nonturbulent regions, velocity and other properties have nearly discontinuous slopes 

approaching the interface. Because wall-bounded flows typically involve both types of 
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boundaries, accurate numerical solutions must account for the spatial problems 

presented by this unusual solution behaviour”.  

For the k- turbulence model, the exact solution of the  equation in the viscous sub-

layer is given by Wilcox (2006). As he stated, this equation should be used for the first 

seven to ten grid points above the surface, where the wall Y+ should lie below Y+ = 2.5 

(Wilcox, 2006).  

In FLUENT, the Y+ criteria for k- models (standard and SST) are the same as those of 

the k- models when the enhanced wall treatment is enabled.  
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176.11, k     0.21,        0.12, k     168.12,      31.01 a     075.01, i  

0828.02, i  

All additional model constants have the same values as the standard k-model. 

 

The Reynolds stress model (RSM) 

The alternative approach to the Boussinesq eddy viscosity approximation is the RSM, 

which solves each of the terms in the Reynolds stress tensor and suggests an equation 

for determining the scale of turbulence (usually for ). Therefore, it generates seven 

additional equations in 3D, and five additional equations in 2D. 

ANSYS FLUENT provides three options for modelling the pressure-strain term in the 

RSM, which are the linear pressure-strain model, the quadratic pressure-strain model, 

and the low-Re stress-Omega model.  

The quadratic pressure-strain model has the advantage of good predictions for shear 

flows, and flows with streamlined curvature. The low-Re stress-Omega model is based 

on the omega equation and LRR, which has a good performance in flows over curved 

surfaces and swirling flows. It is similar to the k- model and can predict a wide range 

of turbulent flows very well. The exact transport equation of RSM is as follows: 
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While the terms DT,ij, Gij, ij and ij need to be modelled, the terms  Cij, DL,ij, Pij and Fij 

do not require any modelling.  
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Filtering 

Filtering is another general method for solving Navier Stokes equations, which has not 

been used as widely as the RANS method in engineering applications. The basis of the 

method is to filter all turbulent eddies which are smaller than the filter size, using either 

Fourier (wave-number) space or configuration (physical) space in time-dependent 

Navier Stokes equations. The filter works similarly to the averaging process and 

separates the resolvable scales from the sub-grid scale (Wilcox, 2006). This method is 
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used in the large eddy simulation (LES), in which large eddies are computed and the 

smallest, sub-grid scale (SGS) eddies are modelled (Wilcox, 2006).  

There is another method called detached eddy simulation (DES), which is a blending of 

LES and RANS, so that the largest eddies are modelled by LES, while the boundary 

layers and thin shear layers are handled with RANS (Wilcox, 2006). 

 

Near wall treatment 

As mentioned above, the k- models, LES and RSM are not applicable in viscosity-

affected near wall regions. Therefore, it is necessary to bridge the viscous region by 

using semi-empirical formulae called wall functions. The near-wall region is divided 

into three zones, as follows: 

 Viscous or laminar sub-layer (y+ < 5) 

 Buffer layer (5 < y+ < 30) 

 Fully turbulent or log-law region (y+ > 30 to 60) 

The dimensionless wall distance, y+, is an important parameter for resolving the 

boundary layer in a numerical simulation.  
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Where uis the friction velocity, y is the actual distance from the wall and w is the 

shear stress (based on the velocity gradient in the direction normal to the surface of the 

wall) at the wall. 

The position of the first cell near the walls depends on whether it is desirable that the 

calculations cover the laminar sub-layer or be started from the turbulent core. The near 
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wall region can be modelled using two approaches. In the first approach, the laminar 

sub-layer is modelled using a semi-empirical formula called wall function, which 

bridges the wall to the fully turbulent region. The wall functions provided in FLUENT, 

depending on the turbulence model selected, are: standard wall function and non-

equilibrium wall function. In the second approach, turbulence models are modified so 

that they can model the laminar sub-layer region. In the second approach, enhanced wall 

treatment is used for near wall modelling. 

The standard wall function in FLUENT is based on the model suggested by Launder 

and Spalding (1974) which uses the logarithmic law-of-the-wall for modelling the mean 

velocity, and a similar logarithmic law for modelling the temperature. The standard wall 

function assumes constant shear stress and local equilibrium hypotheses for modelling 

the flow. Hence, it is not reliable to model the near wall region when there are severe 

pressure gradients and when the flows are in strong non-equilibrium. The effects of 

pressure gradient and non-equilibrium conditions are included in the non-equilibrium 

wall functions. However, the applicability of the wall function approach remains limited 

due to the ideal conditions underlying the wall functions. These conditions include 

severe pressure gradients leading to boundary layer separation, strong body forces, and 

high three-dimensional flows near the walls. In such situations, enhanced wall treatment 

should be used for modelling the near wall region, which combines a two-layer model 

with enhanced wall functions. Since the viscosity-affected region is modelled by the 

enhanced wall treatment, the quality of the meshes near the walls should be fine enough 

(y+ < 4 or 5) (Fluent Inc. 2003). 
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