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ABSTRACT 

 

Bimetallic Complexes of d- and f-Block Metals with Pentalene Ligands 

Alexander F. R. Kilpatrick 

Ph.D Thesis 

 

The focus of this thesis is the synthesis and characterisation of organometallic 

complexes incorporating the silylated pentalene ligand, [C8H4{SiiPr3-1,4}2]2- (= Pn†), 

bound to more than one metal centre. In general, metals in low oxidation states from the 

d- and f-block of the periodic table have been selected for these bimetallic complexes, 

as they are potentially reactive with small molecule substrates.  

Chapter One introduces the pentalene molecule and its derivatives, and discusses their 

use as ligands in organometallic chemistry. Particular emphasis is given to the 

application of organometallic pentalene complexes, ranging from conducting polymers 

in materials chemistry to small molecule activation and catalysis. 

In Chapter Two the silylated pentalene ligand Pn† is used to bridge two lanthanide(II) 

centres in anti-bimetallic sandwich complexes of the type [Cp*Ln]2(µ-Pn†) (Ln = Yb, 

Eu and Sm). Magnetic measurements and electrochemical methods are used to 

investigate the extent of intermetallic communication in some of these systems, which 

show potential for the design of organometallic 'molecular-wires'. Chemical oxidation 

of [Cp*Yb]2(µ-Pn†) leads to dissociation into mononuclear fragments (η8-Pn†)YbCp* 

and [Cp*Yb]+, and reaction of [Cp*Sm]2(µ-Pn†) with CO yields (η8-Pn†)SmCp*. 

Rational synthetic routes to mononuclear mixed-sandwich Pn†/Cp* compounds with 

trivalent f-block ions (Dy, Tb and U) are also developed, and their magnetic properties 

are studied by SQUID magnetometry including variable-frequency ac susceptibility 

measurements. These studies identified (η8-Pn†)DyCp* as the first known example of a 

pentalene based single molecule magnet, with a closed-waist hysteresis loop observed 

up to 2 K.  

Chapter Three describes the synthesis of iron(II) complexes with silylated pentalene 

ligands, and efforts towards incorporating them into extended organometallic arrays and 

heteronuclear anti-bimetallic complexes. Six complexes have been structurally 



characterised including the triple-decker homobimetallic [Cp*Fe]2(µ-Pn†), and the 

potassium salt [Cp*Fe(η5-Pn†)][K] which is an organometallic polymer in the solid 

state. 

Chapter Four documents efforts towards the synthesis of syn-bimetallic pentalene 

complexes, including the first row d-block metals V, Ti and Sc. A novel synthetic route 

to the di-titanium bis(pentalene) 'double-sandwich' complex (Pn†)2Ti2 is developed, via 

chloride-bridged dimers [(η8-Pn†)Ti]2(µ-Cl)x (x = 2 and 3). The electronic and magnetic 

properties of the latter are investigated using EPR spectroscopy and SQUID 

magnetometry, and the structure and bonding in (Pn†)2Ti2 is examined using 

spectroscopic, crystallographic, electrochemical and computational techniques. 

Preliminary studies toward the synthesis of an analogous di-scandium complex were 

unsuccessful, however three novel complexes have been synthesised including (η8-

Pn†)ScCp* which is first example of a Sc complex bearing a Pn† ligand to be 

characterised by X-ray diffraction. 

Chapter Five explores the reactivity of the double-sandwich compound (Pn†)2Ti2 

prepared in Chapter Four, with small molecules which are of industrial and 

environmental importance. The relatively open structure of (Pn†)2Ti2 allows the 

formation of adducts with unsaturated small molecules CO, MeNC and CO2. In the 

latter case the adduct formed is unstable at room temperature and the coordinated CO2 

molecule is reduced to give a bis(oxo) bridged dimer and a di-carbonyl complex. This 

provides the first example of small molecule activation by a di-metal bis(pentalene) 

double-sandwich complex. 

The reactivity survey of (Pn†)2Ti2 is extended in Chapter Six to other substrates; 

including unsaturated heteroallenes as model molecules for CO2. In the case of non-

polar heteroallenes CS2 and carbodiimide, thermally stable adducts are isolated and 

have been structurally characterised. Polar heteroallenes COS and organic isocyanates 

undergo reductive transformations to give sulfide- and carbonimidate-bridged 

complexes respectively. The reactivity of (Pn†)2Ti2 with organic molecules containing 

heteroatom-heteroatom bonds is also described; the reactions with 

diphenyldichalcogenides and azobenzene show the ability of the double-sandwich 

complex to act as a 2e- and 4e- reducing agent respectively. The rich and varied 

chemistry shown by (Pn†)2Ti2 is evaluated and future work is suggested. 
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"We construct and keep on constructing, yet intuition is a good thing. You can do a 

good deal without it, but not everything. Where intuition is combined with exact 

research it speeds up the progress of research. Exactitude winged by intuition is at 

times best. But because exact research is exact research, it gets ahead even without 

intuition, though perhaps not very quickly." 

 

Paul Klee, 'Exact Experiments in the Realm of Art', 1928. 
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1 CHAPTER ONE: Introduction 

1.1 Fundamentals of Pentalene Chemistry 

The pentalene molecule has fascinated chemists for over 50 years and has sparked much 

debate and occasional controversy: from the time its existence was first hypothesised, 

through the practical difficulties in achieving its synthesis, and ultimately to speculation 

as to its potential applications in materials chemistry. 

The use of pentalene as a versatile ligand in coordination chemistry has been 

extensively reviewed.1-4 This chapter serves to briefly introduce the fundamentals of 

pentalene chemistry, its nomenclature, synthesis and bonding modes, and draw attention 

to the areas in which pentalene complexes have been applied in the frontiers of modern 

organometallic chemistry. 

1.1.1 Nomenclature 

In this work, the term 'pentalene' is used to refer to any generic pentalene derivative, 

neutral or charged. Specific fragments which are referred to include 'dihydropentalene' 

[C8H8], 'hydropentalenyl' [C8H7]- and 'pentalenyl' [C8H6]2-.  

The numbering system for the carbon framework, used for naming substituted 

pentalenes, is shown in Figure 1.1. Carbon atom 7 and 8 are referred to as the 

'bridgehead' carbons, and 1, 2, 3, 4, 5 and 6 as the 'wing' carbons. The latter group are 

sub-categorised as follows; carbons 2 and 5 are the 'wing-tip' positions, carbons 1, 3, 4 

and 6 are the 'wing-side' positions. Pentalene shows a variety of coordination modes in 

its organometallic complexes (vide infra), hence the coordination mode will be stated 

unless in reference to a complex which has not been structurally authenticated, a series 

of related complexes, or if the binding mode is otherwise unambiguous. 

 

 

Figure 1.1 Numbering system for pentalene. 
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1.1.2 Synthesis of pentalene derivatives 

Pentalene, C8H6, is an eight carbon molecule that can be considered as the double-ring 

fused relative of cyclopentadiene, or as cyclooctatetraene with a 1,5-transannular bond. 

The neutral species is an 8π Huckel anti-aromatic hydrocarbon with a double-bond 

alternant C2h structure, and the molecule has only been isolated in matrices at very low 

temperatures.5 Neutral pentalene is unstable above -196 °C and undergoes a rapid Diels-

Alder reaction to the [2+2] dimer (Scheme 1.1).6  

 

 

Scheme 1.1 Dimerisation of neutral pentalene.6 

 

In contrast the dianionic form, [C8H6]2- (= Pn), is a 10π aromatic species and is 

consequently thermally stable at room temperature. The pentalenyl dianion has been 

crystallographically characterised as a dilithiated dimethyoxyethane (DME) adduct 

[Li(DME)]2Pn,6 and the carbocycle shows D2h symmetry, with lithium ions in an η5,η5-

coordination mode on opposite faces of the planar pentalene ring. Napthalene, which is 

structurally related to benzene as pentalene is to cyclopentadiene, also shows an anti 

geometry of alkali metal atoms in its dilithium salt.7 Alkali metal salts of the ligand are 

presumed to have ionic, carbanion-like character and provide the most accessible source 

of the Pn moiety in organometallic synthesis, in a similar fashion to the use of [C5H5]- 

(= Cp). This analogy is evident in the initial synthesis of [Li]2Pn, which was achieved 

by Katz et al. by double deprotonation of 1,5-dihydropentalene (PnH2) with two mole 

equivalents of nBuLi in THF, a preparation which parallels the facile synthesis of LiCp 

from cyclopentadiene (CpH).8  

Dihydropentalenes may be prepared by various synthetic routes. Katz et al. reported the 

pyrolysis of iso-dicyclopentadiene at 575 °C under a dinitrogen stream, to afford PnH2 

in 33% yield (Scheme 1.2, top).9 The reaction proceeds via a 1,2-hydrogen shift 

followed by a retro Diels-Alder reaction, and product was assigned a single isomer,  

1,5-PnH2, on the basis of (UV and 1H NMR) spectroscopic evidence.  

h! (254 nm)
- 196 °C

!
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An alternative procedure, as first demonstrated by Jones and Schwab,10 involves the 

flash vacuum pyrolysis (FVP) of COT which produces PnH2 as a mixture of four 

isomers. This procedure was later optimised by Cloke et al. using careful control of 

conditions including flow rate, pressure, COT addition rate and temperature to produce 

various isomers of PnH2 (Scheme 1.2, bottom).11 These isomers are condensed at -78 °C 

and then collectively deprotonated with nBuLi in DME/hexane to afford [Li(DME)]2Pn 

on a 25 g scale in ca. 90% yield. 

  

 

Scheme 1.2 Pyrolytic routes to dihydropentalenes.9-11 

 

Research into the organometallic chemistry of pentalene has gradually increased as the 

as the number of reliable synthetic routes to substituted pentalene ligands has 

developed. Cloke et al. have reported that trialkylsilyl substituents (SiR3) can be 

installed regiospecifically into the 1 and 4 positions of the pentalene ring, by reaction of 

the nucleophilic pentalene dianion with the appropriate silyl electrophile.11 For example, 

reaction of [Li(DME)]2Pn with two equivalents of Me3SiCl affords C8H6{SiMe3-1,4}2 

(= Pn'H2) as a mixture of racemic and meso isomers in ca. 90% purity by 1H NMR 

spectroscopy. Reaction of [Li(DME)]2Pn with two equivalents of triisopropylsilyl 

triflate, produces C8H6{SiiPr3-1,4}2 (= Pn†H2), isolated as an off-white crystalline solid 

which is thermally unstable above -30 °C. Pn†H2 was identified as a single diastereomer 

by NMR spectroscopy, which was structurally verified by a single crystal X-ray 

diffraction (XRD) study showing the bulky SiR3 (R = iPr) groups arranged in an anti 

configuration.  

FVP

FVP

 - C2H4

615 °C

1.5 cm3 min-1 N2

1.0 mbar pressure

0.5 cm3 h-1 COT addn. rate

575 °C
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By careful control of stoichiometry and reaction conditions, the appropriate basic 

lithium or potassium reagent may be selected to furnish the mono- or di-alkali metal 

salts, which are used as transfer agents for the silylated hydropentalenyl (Pn'H and 

Pn†H) or pentalenyl (Pn' and Pn†) moieties (Scheme 1.3).2,11-13  

 

Scheme 1.3 Synthesis of silylated pentalenes.11 

Non-pyrolytic routes to [Li]2Pn have been reported, in particular the Skattebøl 

rearrangement of a geminal dibromocyclopropane-fused cycloheptatriene.14 This 

method provides a convenient method for incoporating alkyl substituents into the ring, 

via the use of the 7-alkyl substituted cycloheptatrienes, to afford the dilithium/DME 

salts of [C8H6{1-R}]2- (= PnR, R = Me, Et, iPr) in ca. 40% yields (Scheme 1.4, top).15 

The organometallic complexes derived from PnR ligands showed increased solubility 

with respect to their unsubstituted analogues, however their purification is often 

hampered by complex mixtures of diastereomers forming, which may be attributed to 

the significant asymmetry in the mono-substituted ligand.16  

The total synthesis of an organic precursor and its conversion into the dilithium salt of 

permethylpentalene [C8Me6]2- (= Pn*) have been reported by O'Hare et al. (Scheme 1.4, 

bottom).17,18 Furthermore these researchers have utilised the organotin(IV) complexes, 

cis- and trans-(SnMe3)2Pn*, as ‘softer’ transfer agents for the Pn* fragment.19,20 

Permethylation of the pentalene ring confers enhanced stability, solubility and 

crystallinity on its metal complexes, in a fashion that resembles the widespread 

[Li(DME)]2Pn

HR3Si

R3Si H

 2 nBuLi, DME/hexane 
or 2 KNH2, Et2O        

R = Me or iPr
[M+]2

R3Si

SiR3

2 R3SiX        
                     
                     

THF
-50 °C

H SiR3

SiR3

[M+]

1 nBuLi, Et2O (R = Me)      
or 1 MeLi, THF (R = iPr)     

or 1 KBn, tBuOMe (R = iPr)

M = Li or K

R = Me, X = Cl 
R = iPr, X =  OTf

0 °C

0 °C
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replacement of Cp with permethylcyclopentadienyl (Cp*) ligands in organometallic 

chemistry.21-26  

 

Scheme 1.4 Solution-phase synthesis of alkylated pentalenes.15,17 

The benzannulated dibenzo[a,e]pentalene dianion, [C16H10]2-, has attracted renewed 

attention in recent years as a potential π-extended ligand.27,28 Saito et al. reported in a 

communication that the reduction of phenyl silyl acetylenes with lithium led to the 

unexpected formation of a dilithium dibenzopentalene derivative in 8% yield (Scheme 

1.5, top).29 An improved procedure to furnish the analogous dipotassium salts (35 - 89% 

yields) was the subject of a subsequent full report by these researchers,30 which also 

included the synthesis of the first transition metal dibenzopentalene complex. The 

synthesis of barium dibenzopentalene, the first example of main-group metal bound in 

an η8-coordination mode, was recently reported by Xi et al. by reaction of phenyl 

substituted 1,4-dilithio-1,3-butadiene with Ba[N(SiMe3)2]2 (Scheme 1.5, bottom).31 

 

Scheme 1.5 Synthetic routes to silylated dibenzopentalene salts.29-31 
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1.1.3 Bonding in pentalene complexes 

When acting as a ligand with transition metals pentalene has a maximum of 8 bonding 

electrons, L3X2 function in a neutral counting scheme,32 and shows a variety of 

multihaptic bonding modes (Figure 1.2).  

 

 

Figure 1.2 Examples of the coordination modes of pentalene ligands. 

 

The η8-mode, in which all eight carbons are involved in bonding to the metal (Figure 

1.2 (a)), leads to a folding of the ligand about its C−C bridgehead bond towards the 

metal centre. This is commonly encountered in pentalene complexes with f- and early  

d-block elements, as the 'umbrella'-like effect of the folded ligand aids the steric 

stabilisation of the metal centres.1 This distortion from planarity is accompanied by a 

loss of aromaticity, and is quantified by the 'fold angle' (Figure 1.3), which is dependent 

on both steric and electronic factors.  

 

 

Figure 1.3 Fold angle for an η8-bound pentalene complex. 
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In general, for complexes with a given ligand set the fold angle may be simply related 

inversely to the size of the central metal.1 For example, (η8-Pn)MCp complexes 

reported by Jonas et al. show a marked increase in fold angle from M = Ti (37.0°) to V 

(43.0°) in accordance with the decreasing ionic radii (0.670 vs 0.640 Å respectively for 

6-coordinate M3+ ions).33 However comparing the series of group 4 permethylpentalene 

complexes Pn*MCpCl and Pn*MCp2 for M = Ti, Zr, Hf,34 the titanium and hafnium 

species have near identical fold angles, despite the considerably larger size of Hf4+  

(0.71 Å) relative to Ti4+ (0.605 Å).33 O'Hare et al. attributed this to the more diffuse 

nature of the atomic orbitals for the 3rd row transition metal leading to better orbital 

overlap with Pn*, which compensates for the loss in aromaticity as the ligand folds 

away from planarity.34 Within a series of complexes bearing the same metal and 

pentalene ligand, the fold angles increase as electron deficiency at the metal centre 

increases. For example, Cloke et al. reported the mononuclear tantalum(V) complexes 

(η8-Pn†)TaClxMe3-x for x = 0-3, which show a small but discernable increase in fold 

angle as the number of electron withdrawing chloride ligands increases.35 Furthermore, 

the electronic properties of the pentalene ligand itself have an effect on fold angle, as 

first shown by comparison of the fold angles for (η8-Pn)ZrCpCl (33.0°)36 and  

(η8-Pn*)ZrCpCl (30.7°),34,37 which provides evidence for the enhanced donor ability of 

the permethylated ligand.  

The η5-mode of pentalene most closely resembles that of Cp metallocenes, with 

donation of 5 bonding electrons (L2X function) to each metal centre by virtue of the fact 

that the bridgehead double bond in the ‘bis(allyl)’ resonance form of Pn (Figure 1.4) can 

act as an µ-L donor. This mode is commonly encountered in bimetallic complexes, with 

the metal centres either bound to the same (syn) or opposite (anti) faces of the ligand 

(Figure 1.2 (b) and (c)).  

 

 

Figure 1.4 Representation of the ‘bis(allyl)’ (L3X2) resonance form of pentalene.38 
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For instance in the anti-bimetallic complex [Cp*Fe]2(µ-η5:η5-Pn) (Figure 1.5 (a)), 

pentalene can be viewed as an L2X donor to each metal centre, providing a bonding 

description in which each iron centre achieves a valence electron (VE) count of 18 

(ML4X2).38 The neutral compound [Cp*Fe]2(µ-η5:η5-Pn) is diamagnetic, and its di-

cation [[Cp*Fe]2(µ-η5:η5-Pn)]2+ has two unpaired electrons, consistent with this 

bonding picture. Extended Hückel calculations by Garland et al.39 on the model anti-

bimetallic system [CpFe]2(µ-η5:η5-Pn), revealed bonding interactions which increase 

significantly if the two CpFe units are allowed to slip to the edges of the Pn rings. This 

description is in good agreement with X-ray structural data for [Cp*Fe]2(µ-η5:η5-Pn) 

and other anti-bimetallic complexes.40,41 Hence, slippage of the metal from the 

bridgehead towards the 'wing-tip' positions may be quantified by a geometric parameter, 

Δ (Figure 1.5 (b)). 

 

 

Figure 1.5 Examples of anti-bimetallic pentalene complexes, and a definition of Δ. 

 

In more extreme cases (Δ > ca. 0.2) this ring slippage leads to an η3-coordination mode 

in preference to η5, akin to the 'ene-allyl' distortion found in indenyl and other Cp 

complexes.42 The first structurally characterised complex of this class was 

[(allyl)Ni]2(µ-η3:η3-Pn) (Figure 1.5 (c)), prepared by Kanai et al.43 In η3-mode the 

'allyl-like' fragment of the pentalene ligand donates 3 electrons (LX function) to a metal 

centre. However caution must be taken with this bonding description, given the fact that 

the 'allyl' unit is electronically linked to the remainder of the Pn dianion.  

Fe

Fe

M
! = "(M-Cbridge)/2 - "(M-Cwing)/3

Ni

Ni

! = 0.21! = 0.10

(a)

(b)

(c)
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η5-binding is not exclusive to bimetallics, and is commonly found in the monomeric 

complexes bearing the hydropentalenyl ligand (Figure 1.6 (a)),15,44-46 which may be 

considered as a substituted Cp ligand (L2X function). Rare examples of η5-binding are 

also found in monometallic complexes such as Cp*Co(η5-Pn) (Figure 1.6(b)), where the 

pentalene ligand is planar and aromatic but one ring is uncoordinated due to a saturation 

of the metal's steric/electronic requirements. This may be represented as a zwitterionic 

structure in which the metal has a formal positive charge and there is a formal negative 

charge on the uncoordinated part of the aromatic Pn. The simplest metal-pentalene 

bonding mode is η1-'allyl-like' coordination (X function), and is most common for 

Sn(IV) complexes (Figure 1.6 (c)).17,19,20,47,48  

 

 

 

Figure 1.6 Examples of η5 and η1-coordinated pentalene complexes. 

 

1.2 Applications of Organometallic Complexes with Pentalene Ligands 

1.2.1  Studying interactions in bimetallic complexes 

Molecules containing more than one metal centre can exhibit profoundly different 

physical properties and reactivity to monometallic complexes, particularly where there 

is a strong interaction between the metal centres.49-52 The synthesis of polymers which 

contain metallocene units in close proximity are highly desirable as they should allow 

extended metal–metal interactions throughout the chain. In such cases, polymers with 

interesting electrical, magnetic or other physical properties might be envisaged.53  

A brief overview of the classification of the mixed-valence (MV) state with a particular 

focus on pentalene bridged bimetallics is presented herein.  

CoFe

SnMe3

Me3Sn

(a) (b) (c)
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In a complex with two redox centres that are electronically coupled to some extent, e.g. 

a generic pentalene bridged bimetallic LnM(µ-Pn)M'Ln (where M and M' are divalent in 

the reduced form), removal of an electron creates a so-called MV system, with two 

formally different oxidation states. Depending on the strength of the electronic 

coupling, the unpaired electron is either concentrated on one of the redox centres, or it is 

symmetrically delocalised between the two sites. These are the extreme situations (I and 

III respectively) of the Robin-Day classification for a MV species.54,55 Class I bimetallic 

compounds show no metal-metal interactions and have electronic properties 

corresponding to the separate sites Mn+ and M(n+1)+, Class III systems have very strong 

metal-metal interactions and are obvious candidates for use as ‘molecular wires’ in the 

field of molecular electronics.56,57 Between these two extremes are Class II complexes, 

which exhibit intermediate metal-metal interactions. Where a bimetallic complex lies in 

this classification depends on the strength of electronic coupling, and can be 

investigated using a number of physical techniques. 

Electrochemical methods, particularly cyclic voltammetry (CV), provide a convenient 

way of inferring the extent of delocalisation in MV state. In the case of a homo-

bimetallic compound (M = M') two redox processes (E (1) and E (2)) should be observed. 

The potential difference between two reversible electrochemical processes,  

ΔE½= |E½(1) - E½(2)|, is indicative of the thermodynamic stability of the MV state with 

respect to other redox states. ΔE½ separations close to zero are characteristic of non-

interacting metal sites (Class I), either due to large distance between them or because 

the ligand does not provide an electronic coupling pathway. Small values of ΔE½ 

suggest weak electronic coupling, corresponding to a small comproportionation 

constant Kc (Scheme 1.6) and a MV state involving so-called ‘trapped’ valence metal 

centres (Class II).  

 

 

Scheme 1.6 Formation of Class I and II mixed-valence pentalene bridged bimetallics, 

where Kc = comproportionation equilibrium constant. 

 

mixed-valence species

Kc

M2+-(Pn)-M'3+  +  M3+-(Pn)-M'2+M2+-(Pn)-M'2+  +  M3+-(Pn)-M'3+
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Large ΔE½ separations (above ca. 200 mV, corresponding to Kc ≥ 104, Scheme 1.7) are 

commonly cited as evidence for a highly delocalised system with a strong degree of 

thermodynamic stabilisation of the MV state (Class III).  

 

 

Scheme 1.7 Fully delocalised Class III bimetallics with large Kc. 

 

In the case of heteronuclear complexes (M ≠ M') a non-zero ΔE½ is expected even in the 

absence of any metal-metal interactions, due to the different redox properties of metal 

centres present in the molecule.  

Assigning Robin-Day classification to electronic interaction in a MV species should not 

be based on ΔE½ alone, since it is purely a measure of thermodynamic stabilisation of 

the MV state for which other energetic terms such as through-space electrostatics, 

solvation or entropy may also make a significant contribution.58 However 

electrochemical methods such as CV are a useful screening technique for bimetallic 

complexes, which may exhibit other interesting interactions. For example MV species 

can exhibit strong intervalence charge transfer (IVCT) bands in the near-infrared (NIR). 

Other techniques commonly used include EPR and 57Fe Mössbauer spectroscopy to 

study the electronic and nuclear interactions respectively, SQUID magnetometry for 

magnetic interactions, and NMR spectroscopy and X-ray crystallography to provide 

structural information in the solution and solid state.  

 

1.2.2 Electronic delocalisation in pentalene-bridged complexes 

The aromatic nature of the pentalene ligand has been shown to induce very strong 

electronic delocalisation in anti-bimetallic complexes and promote coupling effects 

through the planar π-system.2 Metal-metal interactions have been studied extensively by 

Manriquez et al. for the capped triple decker-complexes [Cp*M(µ-η5:η5-Pn)MCp*]n+ 

with transition metals (Figure 1.7 (a), M = Fe, Co, Ni, Ru) using a variety of physical 

techniques.40,59-61 

Kc

M2+-(Pn)-M'3+ + M3+-(Pn)-M'2+  2 M2.5+-(Pn)-M'2.5+
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Figure 1.7 Examples of anti-bimetallic complexes studied for metal-metal interactions. 

 

Cyclic voltammetry shows that these compounds undergo two successive one-electron 

transfers, with large potential separations between successive oxidations (decreasing in 

the order Fe > Co > Ni > Ru). Oxidation to the cationic forms (n = +1 and +2) was 

achieved for each complex, of which the MV forms (n = +1) show IVCT bands in the 

NIR spectrum that are not observed in the neutral or di-cationic forms. 57Fe Mössbauer 

spectroscopy (timescale ≈ 10-7 s) studies of the cationic [Cp*Fe(µ-η5:η5-Pn)FeCp*]+ 

species found the iron environment to be fully averaged down to 1.5 K, indicative of a 

strong electronic interaction between the metal centres and extensive delocalisation in 

the MV state.  

Bimetallic complexes of group 7 metal carbonyls, [M(CO)3]2(µ:η5,η5-Pn) for M = Mn 

and Re, were synthesised by O'Hare et al. by treatment of [Li(DME)]2Pn with two 

equivalents of Mn(CO)3(py)2Br or one equivalent of [Re(CO)3(THF)Br]2 respectively.62 

The manganese(I) complex, formed as an exclusively anti-bimetallic, is particularly 

noteworthy. [Mn(CO)3]2(µ:η5,η5-Pn) may be reduced by electrochemical or chemical 

methods to yield both the dianion as a dilithium salt, or the mono-anion stabilised by a 

[FeCp(C6Me6)]+ counterion (Figure 1.7 (b)). The latter is formally a Mn(I)/Mn(0) 

mixed-valence complex and shows hyperfine coupling with the two equivalent 55Mn  

(I = 5/2) centres in the EPR spectrum, consistent with a Robin-Day class III system.54 

This MV anion remains one of the most delocalised organometallic systems reported to 

date. 

LnII

LnII
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O
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Anti-bimetallic complexes of the divalent lanthanides with silylated pentalene ligands, 

[Cp*Ln(THF)]2(µ:η5,η5-Pn†) for Ln = Eu and Yb (Figure 1.7 (c)), were prepared by 

Cloke et al. from the one-pot reaction of LnI2(THF)x and KCp* and the subsequent 

addition of half an equivalent of [K]2Pn†.63 These complexes are of interest as molecular 

models for lanthanide-based polymers,64,65 which have potential applications as 

magnetic materials,66-69 molecular catalysis,70,71 and luminescent devices.72-74  

CV studies indicated that [Cp*Eu(THF)]2(µ:η5,η5-Pn†) decomposes readily upon 

oxidation but the [[Cp*Yb(THF)]2(µ:η5,η5-Pn†)]+ mono-cation appeared to be stable 

under the conditions and timescale of the experiment. Furthermore through-ligand 

Yb−Yb coupling was suggested by the electrochemical data for 

[Cp*Yb(THF)]2(µ:η5,η5-Pn†), of magnitude similar to that of its transition metal 

analogues.  

Despite the number of pentalene-bridged homobimetallic compounds of the general 

formula LnM(µ-η5:η5-Pn)M'Ln' (M = M') that have been synthesised, comparatively few 

heterobimetallic (M ≠ M') examples are known. The main synthetic challenge is 

selective coordination of two different metal centres to the pentalene bridge to give a 

mixed-metal complex, whilst preventing formation of homobimetallic species. 

Strategies for the rational synthesis of such materials were pioneered by Manriquez et 

al. starting with dihydropentalene via successive deprotonation and incorporation of the 

appropriate metal ‘half-sandwich’ synthon (Scheme 1.8).59  

 

 

Scheme 1.8 ‘Building block’ synthetic route to heterobimetallics.59  

 

The heterobimetallic complex [Cp*Ru(µ-η5:η5-Pn)FeCp*]+ was studied by 57Fe 

Mössbauer spectroscopy, which indicates full delocalisation and a unique Fe 

environment for the mono-cation over the entire temperature range 1.5−300 K.75,76  

i) 1 nBuLi
ii) {Fe(acac)2 + LiCp*}

iii) 1 nBuLi
iv) Cp*M'X

PnH2

Fe

M'

M' = Co, X = acac
M' = Ru, X = Cl
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It has been suggested that the pentalene ligand allows an extent of electronic 

communication between the Fe/Ru centres which is not observed between these metal 

centres with other unsaturated bridging ligands such as fulvalene.77 The MV form of 

both heteronuclear complexes [Cp*M'(µ-η5:η5-Pn)FeCp*]+ M' = Ru and Co, exhibit 

IVCT bands in the NIR region not observed in the neutral and di-cationic species, and 

were classified as Class III and Class II respectively. 

In a modification of the ‘building block’ synthetic route, Fe(η5-PnH)2 was lithiated in 

situ and used to incorporate a Cp*Co unit into the chain, forming Cp*Co(µ-η5:η5-

Pn)Fe(η5-PnH) (Figure 1.8, left), classified as an asymmetric anti-bimetallic due to the 

different ligand environments of the two metals (Ln ≠ Ln').60 Interestingly the 

introduction of asymmetry in the ligand environment in [Cp*Co(µ-η5:η5-Pn)Fe(η5-

PnH)]+ leads to Class I behavior based on the electrochemical (CV) and spectroscopic 

(NIR, Mössbauer) evidence,61 whereas the symmetric congener [Cp*Co(µ-η5:η5-

Pn)FeCp*]+ is Class II. It was suggested that ligand asymmetry in general introduces a 

barrier for electron transfer and as a result decreases the extent of electronic interaction. 

This has a larger impact for heteronuclear complexes which already have an built-in 

barrier for electron transfer from the different electronic nature of the metal centres, and 

the subtle effect of changing the terminal ligand in this case can cause a complete loss 

of electronic communication. 

 

 

Figure 1.8 Examples of hetero-bimetallics with asymmetric ligand environments. 

 

The synthesis of oligomeric or polymeric materials consisting of alternating metal 

atoms and fused-ring ligands is expected to offer a range of interesting delocalised 

properties.49 Strategies for the rational synthesis of such materials were pioneered by 

Co
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Manriquez et al. who extended work on bimetallic pentalene systems described above 

to incorporate further organometallic fragments into the chain.60  

 

 

Scheme 1.9 Synthetic routes to trimetallic pentalene complexes.60 

 

The fully capped trimetallic complex (Cp*Fe)2[Pn2Fe] was synthesised from  

Fe(η5-PnH)2 by lithiation with nBuLi followed by addition of FeCp*(acac) in two 

successive iterations (Scheme 1.9 (a)). A potentially iterative process to higher chain 

oligomers was presented in the synthesis of a novel quadruple decker iron-pentalene 

complex from reaction of [Li][PnFe(η5-PnH)] with 0.5 equivalents of Fe(acac)2 in THF 

(Scheme 1.9 (b)). The quadruple-decker complex ({η5-PnH}Fe)2[Pn2Fe] was 

characterised by mass spectrometry and IR spectroscopy, however NMR and structural 

characterisation by single crystal XRD were hampered by its low solubility in 

hydrocarbon solvents (400 mg L-1 of boiling toluene), and this has prevented synthesis 

of higher chain oligomers.  

Subsequent investigations employing alkylated (PnR) or silylated (Pn†) pentalene 

ligands have successfully introduced greater degree of solubility in hydrocarbons to the 

resulting iron(II) complexes.12,16 However due to the lack of symmetry in these ligands, 

a mixture of isomeric multi-decker species were isolated as oils which could not be 

purified, and precluded full characterisation. The formation of multiple isomers also 
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prevented unambiguous assignment of the electrochemical data obtained, and their 

potential as delocalised organometallic polymers could not be fully determined. 

 

1.2.3 Synthesis of metal-metal bonded complexes 

The ability of pentalene to coordinate two metals on the same side of the ligand can 

facilitate direct bonding interactions between the metals. The feature of metal-metal 

bonds is often cited as the reason for bimetallic pentalene complexes to adopt a syn 

disposition as opposed to the sterically favourable anti conformation. However the 

existence of syn-bimetallics containing a bona fide metal-metal bond as opposed to 

merely a close proximity of metal centres has been the subject of some debate, and is 

best clarified using a combination of spectroscopic, structural and theoretical evidence.  

Dinuclear iron pentacarbonyl complexes, syn-(µ-η5:η5-Pn1,3-RR')[Fe(CO)2]2(µ-CO), have 

been synthesised by reaction of substituted dihydropentalenes with Fe(CO)5,78 and also 

by fission of neutral pentalene dimers with excess Fe2(CO)9 (Scheme 1.10).79  

IR spectroscopy of these complexes revealed a bridging carbonyl stretch between 1750-

1785 cm-1, as well as ν(CO) bands for the terminal carbonyl ligands. The structure 

shown in Scheme 1.10 featuring a M−M single bond was inferred by analogy with the 

isoelectronic syn-(µ-COT)[Fe(CO)2]2(µ-CO),80 however this has not been confirmed in 

the pentalene complex by XRD methods.  

 

 

Scheme 1.10 Synthesis of iron carbonyl syn-bimetallics.78,79 
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Recently Green et al. have shown that the ability of pentalene to act as an L2X donor to 

each metal centre provides a simple structure-bonding representation that requires no 

Fe−Fe bond for each to achieve an 18 VE configuration (Figure 1.9, left).38  

This description was consistent with theoretical calculations on the permethylated 

analogue syn-(µ-η5:η5-Pn*)[Fe(CO)2]2(µ-CO);81 the intermetallic distance in the latter 

(2.6869(5) Å) does not necessarily imply an Fe−Fe bond, since the metal centres are 

held at close length as a requirement of the pentalene ligand framework. 

 

Figure 1.9 Structure-bonding representations of syn-(µ-η5:η5-Pn)[Fe(CO)2]2(µ-CO) and 

syn-(µ-η5:η5-Pn)[Ru(CO)2(GeMe3)]2.38 

An alternative route to syn-bimetallic pentalene complexes was pioneered by Knox and 

Stone,82 who showed that the dehydrogenative transannular ring closure of 

unsubstituted, alkylated, and silylated COT derivatives is facilitated by ruthenium 

carbonyls in boiling heptane.83-85 This allowed for the first structural characterisation of 

a syn-bimetallic pentalene complex by X-ray methods, syn-(µ-η5:η5-Pn) 

[Ru(CO)2(GeMe3)]2 (Scheme 1.11),83 which revealed a short distance between the 

ruthenium atoms (3.05 Å). The pentalene ring is non-planar in this complex, with a fold 

angle of 7° in the direction away from the Ru2 core, in order to hold the metals in close 

enough proximity. However syn-(µ-η5:η5-Pn)[Ru(CO)2(GeMe3)]2 is another example of 

a complex that according to DFT calculations does not have a metal-metal bond,86 and 

is consistent with a structure-bonding representation that invokes the pentalene ligand as 

an L2X donor to each ruthenium (Figure 1.9, right).  

 

Scheme 1.11 Synthesis of ruthenium carbonyl syn-bimetallics.83 
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Salt metathesis routes are typically used to synthesise syn-bimetallics with multiple 

metal-metal bonds. For example O'Hare et al. reported reaction of [Li(DME)]2Pn with 

two equivalents of the half-sandwich V(II) complex [CpVCl(THF)]n, to produce syn-

[Cp2V]Pn (Scheme 1.12).87 The X-ray structure shows a fold angle of 13° and an 

intermetallic distance of 2.5380(5) Å, described with support of DFT calculations as a 

V−V triple bond. Multiple bonds between vanadium atoms are very rare in comparison 

to wealth of examples in di-chromium complexes.88 

 

 

Scheme 1.12 Synthesis of a V≡V bonded syn-bimetallic.87 

 

Of the (Pn)2M2 ‘double-sandwich’ complexes that have been synthesised (Figure 1.10), 

multiple metal-metal bonding interactions are well described by X-ray and DFT 

methods for M = Cr, Mo, with Pn† (Figure 1.10 (b)),89-91 and M = V, Cr with Pn* 

(Figure 1.10 (c)).19  

 

 

Figure 1.10 Examples of di-metal bis(pentalene) double-sandwich complexes. 

 

The most successful synthetic route to multiple M−M bonded complexes of this type 

involves a metathesis reaction with a divalent metal salt that already contains a degree 

of metal-metal interaction. For example the choice of VCl2(DME) as a V(II) precursor 
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with all-bridging chlorides, proved critical in the first synthesis of a di-vanadium 

double-sandwich complex, (µ:η5,η5-Pn*)2V2 by O'Hare et al.19 This strategy was 

recently extended by Cloke et al. for the synthesis of the heteronuclear double-sandwich 

complex, (µ:η5,η5-Pn†)2MoW, by reaction of MoW(tBuCO2)4 with two equivalents of 

[K2]Pn† (Scheme 1.3),92 in which the Pn† dianion serves to ‘trap’ the M−M' multiple 

bond present in the ‘paddlewheel’ carboxylate precursor.93 

 

 

Scheme 1.13 Synthesis of a heteronuclear double-sandwich complex.92 

 

XRD studies revealed a distance of 2.3638(3) Å between Mo and W atoms, which are 

disordered over two identical sites. This was described as a molybdenum-tungsten 

double bond by analogy with the isoelectronic di-molybdenum analogue.90 Compounds 

containing heteronuclear metal-metal bonds have sustained interest in the field of small 

molecule activation, as M−M' bond polarity can have a profound influence on 

reactivity.94-100  

 

1.2.4 Magnetic interactions and spin transport 

There is growing research interest in metallocene based charge-transfer complexes as 

models for magnetic materials,101-104 which have potential applications in information 

storage devices and molecular spintronics.105-108 The ability of the pentalene ligand to 

promote spin-spin interactions was first reported by Katz et al. in the double-sandwich 

complexes (Pn)2M2 for M = Co and Ni (Figure 1.11 (a)).109,110 These complexes are 

diamagnetic in contrast to their mononuclear cyclopentadienyl counterparts, Cp2Co and 

Cp2Ni (Figure 1.11 (b)) which are paramagnetic,111,112 with one and two unpaired 

electrons respectively (Table 1.1).  
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Table 1.1 Solid state effective magnetic moments (µeff) for selected sandwich and 

double-sandwich compounds. 

Compound µeff / µB 
a temp range / K ref 

(Cp1,3-tBu)2Ti 2.44 5-300 113 

(Cp*)2Ti 2.48-2.60 129-298 114 

  Cp2V 3.78 14-430 115,116 

(Cp*)2V 3.68 5-64 117 

(Pn*)2V2 diamagnetic  19 

Cp2Cr 3.20 90-295 115,116 

(Cp*)2Cr 1.45 5-130 117 

(Pn*)2Cr2 1.76 b 298 19 

(Pn†)2Cr2 2.12 b 298 91 

(Cp1,3-{SiMe3}2)2Mn (h.s.) 5.88 5-300 118 

(Cp*)2Mn (l.s.) 2.16 4-116 23 

(Pn*)2Mn2 2.78 4-300 19 

(Pn†)2Mn 5.15-5.32 4-300 119 

Cp2Fe, (Cp*)2Fe diamagnetic  120,121 

Cp2Co 2.04 b 83-298 122 

Cp*2Co 1.45 5-130 117 

(Pn)2Co2, (Pn*)2Co2 diamagnetic  19,110 

Cp2Ni 2.89 70-300 116 

Cp*2Ni 2.93 6-100 117 

(Pn)2Ni2, (Pn*)2Ni2 diamagnetic  19,109 

a Data obtained from linear section of the Curie-Weiss (χm vs T) plot. 
b Non-Curie behaviour. 
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The permethylated analogues (Pn*)2M2, (M = Co, Ni),19 have been comprehensively 

characterised, including by XRD studies, and their bonding has been studied by DFT. 

The X-ray structure of the cobalt complex shows a Co−Co distance of 2.491(2) Å which 

is in the range of a typical Co−Co single bond, however DFT calculations suggest a  

π*-antibonding HOMO and a reduced metal-metal interaction (ground state M−M bond 

order of -0.59). The nickel complex shows a η3:η3 coordination of the metal centres, in 

a geometry which positions them out of range for metal-metal bonding (Ni−Ni distance 

= 2.569 Å), supported by DFT calculations (ground state M−M bond order of 0.03). 

(Pn*)2Ni2 was also found to have diamagnetic properties, supporting the argument for 

antiferromagnetic coupling of the d8 centres via ligand orbitals rather than direct metal-

metal bonding in this and Katz's unsubstituted double-sandwich complex.  

 

Figure 1.11 Examples of sandwich complexes with different (total) spin angular 

momentum (= S) ground states. 

The analogous complexes with silylated pentalene ligands, (Pn†)2M2, further illustrate 

the ability of the double-sandwich motif to support metal centres with divergent 

magnetic properties. Variable temperature magnetic studies on the M = Cr complex 

reveal a spin equilibrium between an S = 0 ground state and a thermally populated S = 1 

excited state.91 In contrast the M = Mn complex (Figure 1.11 (c)) is best described as 

having an S = 3 ground state containing both high spin (h.s.) and low spin (l.s.) 

manganese.119 

Theoretical studies by Zeng et al. using the double-sandwich motif in extended 1D 

organometallic ‘nanowires’ (Figure 1.12, left) have described rich magnetic 

properties,123 for example the M = Mn nanowire is ferromagnetic with strong coupling 

between M and Pn mainly attributed to a double exchange mechanism.124,125  
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Molecular spintronic devices, which control the electron current via the spin-up and 

spin-down states in organometallic compounds, require spin signals to be transmitted 

over long enough distances to allow for spin manipulation.105 Hence, a ligand that can 

facilitate through-bond delocalisation of charge and magnetisation would be desirable. 

Towards these ends, the anti-bimetallic complexes, Cp*M(µ-η5:η5-Pn)M'Cp* were 

studied by Manriquez et al. using SQUID magnetometry.59 The hetero-bimetallic M = 

Fe, M' = Co is paramagnetic at room temperature with an unpaired electron on the 

cobalt atom, however intermolecular exchange was weak and antiferromagnetically 

coupled with no cooperative magnetic behavior. In the case of the FeIII-FeIII di-cation 

[Cp*Fe(µ-η5:η5-Pn)FeCp*]2+, an intramolecular ferromagnetic coupling of spins was 

suggested by variable temperature magnetic data. 

 

Figure 1.12 Theoretical models for extended organometallic nanowires. 

The spin transport properties for anti-bimetallic pentalene complexes have recently been 

investigated using DFT by Matsuura (Figure 1.12, right),126 and it was reported that 

heterobimetallic systems containing an odd number of electrons exhibit high electronic 

conduction and good spin filter behavior when sandwiched between two gold 

electrodes. However experimental evidence to corroborate these theoretical predictions 

remain lacking, so ultimately the potential applications for these complexes in magnetic 

materials remain entirely speculative. 

1.2.5 Small molecule activation 

In light of global energy demands there is considerable interest in the activation of small 

molecules (such as CO, CO2, N2, H2 and CH4) for use as chemical feedstocks for 

industrially important commodity chemicals.127-129 The difficulty in achieving such 

transformations of small molecules often lies in the kinetic barrier to their activation, 
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and as a result highly reducing metal complexes are typically employed. Pentalene 

ligands have shown the ability to stabilise complexes containing highly reactive metal 

centres, particularly when coordinated in an η8-mode to a early transition or f-block 

metal as previously described.1 However, reports of small molecule activation in 

organometallic chemistry of pentalene are limited to a handful of examples.  

Cloke et al. have reported the reaction of uranium(III) mixed-sandwich complex  

(η8-Pn†)UCp* with dinitrogen.130 The reaction is reversible and the di-uranium(IV) 

product, [(η8-Pn†)UCp*]2(µ-η2:η2-N2), features a 'side-on' bridging N2 ligand in its 

molecular structure (Scheme 1.14 (a)). The N−N distance of 1.232(10) Å in this 

complex is lengthened with respect to free N2 (1.098 Å)131 indicating a significant 

activation resulting in a reduced formal bond order of two, which was supported by a 

DFT study.  

Another example of the reductive capability of (η8-Pn†)UCp* is found in the recent 

report of its reaction with the phosphaalkyne, tBuCP.132 The X-ray structure of the 

product isolated from this reaction, [(η8-Pn†)UCp*]2(µ-η2:η1-tBuCP), shows a tBuCP 

ligand which has been doubly reduced and binds to one of the U(IV) centres in an 

unprecedented η2-mode (Scheme 1.14 (b)). 

 

 

Scheme 1.14 Activation of N2 and tBuCP by a U(III) complex.130,132 

 

Recent CV studies by Cloke et al. on (η8-Pn†)UCp* in [nBu4N][B(C6F5)4]/THF suggest 
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complex bearing the isoelectronic 1,4-bis(triisopropylsilyl)cyclooctatetraenyl [COT†]2- 

ligand, (η8-COT†)UCp*{THF}.13,133 Furthermore the latter complex shows no reactivity 

with dinitrogen,133,134 consistent with the additional electronic donation provided by the 

folded η8- carbocyclic ligand, Pn†, as compared with the planar COT†. 

The only other significant contribution to small molecule activation chemistry provided 

by organometallic pentalene complexes comes from the recent report of the 

permethylpentalene Ti(IV) dialkyls, (η8-Pn*)TiR2, R = Me, CH2Ph, CH2SiMe3 and 

CH2
tBu, by O'Hare et al. and investigations into their reactions with CO2, CO and H2.4 

These highly electron deficient 14 VE complexes readily undergo insertion reactions 

with CO2 into the Ti−C bond, to yield di-carboxylate complexes, (η8-Pn*)Ti(κ2-O2CR)2 

which are 18 VE (Scheme 1.15, top). These complexes have structurally characterised 

for R = Me, CH2Ph and CH2SiMe3, and each show symmetrical bidentate coordination 

of the RCO2 units. More interestingly, reactions of these complexes with CO led to 

direct reductive coupling of CO to give the mono cis-enediolate products, and a rare 

example of a dimeric titanaoxirane (Scheme 1.15, bottom). 

 

 

Scheme 1.15 Activation of CO and CO2 by 14 VE Ti(IV) di-alkyl complexes.4 
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Reactivity of (η8-Pn*)TiR2 with dihydrogen showed more complex results, however 

reaction of the R = CH2SiMe3 complex with H2 led to the isolation of the unusual 

trimeric cluster, [(η8-Pn*)Ti(µ2-H)]3(µ3-H) (Figure 1.13). This intriguing compound 

was assigned as a formally TiIII/TiIII/TiIV MV species on the basis of NMR spectroscopy 

and single crystal XRD evidence. 

 

 

Figure 1.13 Bonding in a TiIII/TiIII/TiIV mixed-valence hydride cluster.4 

 

1.2.6 Catalysis 

In over 30 years since Sinn and Kaminsky's discovery that partially hydrolysed Al2Me6, 

now known as methylaluminoxane (MAO), dramatically improves the activity of group 

4 metallocenes for the polymerisation of ethylene and α-olefins,135,136 transition metal 

catalysts bearing cyclopentadienyl ligands have become ubiquitous in homogeneous 

Ziegler-Natta catalysis research.137-140 In light of the intense exploration and 

commercialisation of new technologies based on single-site olefin polymerisation 

catalysts and the focus on the design of catalyst precursors, it seems surprising that there 

are very few catalytic applications of organometallic complexes with pentalene ligands 

reported in the literature.  

 

 

Figure 1.14 Examples of group 4 pentalene complexes tested for olefin polymerisation 

activity. 
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Jonas et al. have reported as a patent the ethylene polymerisation activity of (η8-Pn)- 

ZrCl2, (η8-Pn)Zr(allyl)2 and (η8-Pn)Zr(indenyl)Cl,141 and the latter was found to give 

the best activity of 712.0 kg(PE) mol(cat)-1 h-1 bar-1, which is rated as 'high' on the 

Gibson scale.142 Cloke et al. have also reported patents for the synthesis of group 4 

analogues with silylated pentalene ligands, (η8-Pn')MCpCl for M = Ti, Zr, and  

(η8-Pn')ZrCp*Cl, and their potential for Ziegler-Natta polymerisation of ethylene in the 

presence of MAO.143 However initial catalytic screenings did not show promising 

results and were not subsequently optimised. O'Hare et al. have tested the 

aforementioned titanium(IV) permethylpentalene di-alkyl complexes, (η8-Pn*)TiR2  

(R = Me, CH2Ph, CH2SiMe3 and CH2
tBu),4 for the homogeneous polymerisation of 

ethylene in combination with borane and borate activators.144 Despite the electron 

deficiency of these 14 VE complexes, the best complex (R = CH2SiMe3) showed 

moderate activity on the Gibson scale,142 with co-catalyst [Ph3C][B(C6F5)4]. Recently 

these researchers have reported the synthesis and characterisation of a series of 18 VE 

group 4 mixed-ring complexes, (η8-Pn*)MCp2-xClx, (M = Ti, Zr, Hf; x = 0, 1),34 which 

are more promising precatalysts for the homogeneous polymerisation of ethylene. The 

zirconium complexes in the presence of MAO showed very high activity on the Gibson 

scale,142 the best performing was (η8-Pn*)ZrCpCl (Figure 1.14, right) which showed 

activity of 6993 kg(PE) mol(cat)-1 h-1 bar-1 at 80 °C.  

The use of pentalenes in ansa-metallocenes has been limited, presumably due to the 

limited availability of a suitable tethered ligand precursor. However an example of a 

mixed pentalene-indenyl ansa-metallocene has been reported, which was synthesised by 

reaction of a di-substituted hydropentalene with an indenyl salt to form the annulated 

ligand in situ followed by reaction with ZrCl4 (Scheme 1.16).145,146 This bridged 

zirconocene has been used in the co-polymerisation of ethylene with cyclic olefins.147 

 

Scheme 1.16 Synthesis of an ansa-zirconocene from dihydropentalenes.145 
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Outside the field of olefin polymerisation, reports of pentalene complexes with catalytic 

behavior in the literature are limited to a single case, starting from Cp*Ru(µ-η5:η3-Pn)- 

Rh(η4-COD) (COD = 1,5-cyclooctadiene). This asymmetric heterobimetallic complex, 

was synthesised via a stepwise ‘building block’ method from [Li][Cp*Ru(η5-Pn)] and 

[Rh(η4-COD)Cl]2.148,149  

 

 

Scheme 1.17 Synthesis of Cp*Ru(µ-η5:η3-Pn)Rh(CO)3.148 

 

Cp*Ru(µ-η5:η3-Pn)Rh(η4-COD) reacts with carbon monoxide, displacing the COD 

ligand to afford Cp*Ru(µ-η5:η3-Pn)Rh(CO)3 (Scheme 1.17), which is a relatively 

unstable species and was characterised solely by IR and NMR spectroscopic methods. 

This complex is of interest in the context of cooperative interactions between metals, 

which are known to enhance reactivity in small molecule activation,94,150-153 and 

improve the rate of certain catalytic processes.154-156 Indeed, Cp*Ru(µ-η5:η3-Pn)- 

Rh(CO)3 shows one of the highest activities as a precatalyst for the dehydrogenative 

silylation of styrene (Scheme 1.18). 

 

 

Scheme 1.18 Catalytic dehydrogenative silylation of styrene by a Ru/Rh complex.148 
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1.3 Aims of This Thesis 

This review demonstrates the versatility of the pentalene ligand in its organometallic 

complexes, which display interesting electronic and magnetic properties and also show 

novel reactivity. The aim of this thesis is to explore the organometallic chemistry of the 

1,4-triisopropylsilyl substituted hydropentalene (Pn†H) and pentalene ligand (Pn†) with 

the aforementioned areas of potential application firmly in mind.  
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2 CHAPTER TWO: Electrochemical and Magnetic Studies of f-Block 

Pentalene Complexes 

2.1 Introduction 

This chapter describes studies towards the synthesis and characterisation of triple-

decker complexes using the silylated pentalene ligand [C8H4{SiiPr3-1,4}2]2- (= Pn†) to 

bridge f-block metals in homo-bimetallics capped with [C5Me5] (= Cp*) ligands. 

Magnetic measurements and electrochemical methods are used to investigate the extent 

of intermetallic communication in these systems, which can be studied as molecular 

models for organolanthanide based conducting materials1,2 and (polynuclear) single 

molecule magnets.3-6 

Cyclic voltammetry (CV) is a powerful technique for investigating the electronic 

properties of organometallic complexes.7 In f-element chemistry CV is commonly used 

to rationalise trends in reactivity arising from a different set of ligands on a common 

metal or vice versa. The thermodynamic trend in 3+/2+ reduction potentials for Yb and 

Sm complexes is expected to follow that of the Ln3+ ions in acidic aqueous media,8 with 

the latter metal ca. 0.5 V more reducing than the former. However, direct observation of 

the reverse process, i.e. Ln2+/3+ oxidation, is complicated by the high reactivity of Ln(II) 

complexes and the fact that the expected redox event lies outside the potential window 

of many solvent/electrolyte systems commonly used in organotransition metal 

chemistry. Nonetheless mid-peak potential (E½) values have been determined by CV in 

select examples of Ln(II) metallocenes which show appreciable stability in the chosen 

electrolytic medium (Table 2.1). 

Table 2.1 Mid-peak potentials (E½) vs FeCp2
+/0 of the Ln(III)/Ln(II) couple in divalent 

lanthanide metallocenes with a [nBu4N][A] supporting electrolyte. 

Compound E½ (Ln3+/2+) / V solvent electrolyte [A]- ref 

Cp*2Yb -1.48 THF [B(C6F5)4] 9
 

(CpMe4Et)2Sm -2.12 THF [B(C6F5)4] 10 
Cp*2Yb -1.78 MeCN [PF6] 11 

Cp*2Eu -1.22 MeCN [PF6] 11 
Cp*2Sm -2.41 MeCN [PF6] 11 
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2.2 Anti-Bimetallic Complexes of the f-Block Metals 

As described in chapter one, Cloke et al. have studied the anti-bimetallic complexes of 

the divalent lanthanides [Cp*Ln(THF)]2(µ:η5,η5-Pn†) Ln = Yb, Eu by CV, which 

showed some evidence for through ligand Ln−Ln coupling for Ln = Yb.12 Attempts to 

prepare a mixed-valence species chemically were hampered by the poor solubility of 

[Cp*Yb(THF)]2(µ:η5,η5-Pn†), even in strongly coordinating solvents such as THF and 

DME, a problem that was sought to be remedied by the synthesis of base-free 

analogues. 

Attempts to prepare the analogous Ln = Sm anti-bimetallic by a similar synthetic route, 

yielded instead the monomeric sandwich complexes (η8-Pn†)SmCp* and  

(η8-Pn†)Sm(η5-Pn†H) and the mixed-valence cluster [Cp*6Sm6(OMe)8O][K(THF)6] via 

solvent activation of THF (Scheme 2.1).12 It was suggested that the strongly reducing 

nature of Sm(II) and the smaller size of this ion when compared to the larger, less 

reducing Eu(II) and Yb(II), made it better stabilised, electronically and sterically, in the 

+3 oxidation state with Pn†. Furthermore, the half-sandwich reagent used in this 

reaction [Cp*Sm(µ-I)(THF)2]2 possesses a coordinated THF molecule which can be 

non-innocent in reactions with highly reducing metal centres.13-15  

 

 

Scheme 2.1 Synthesis of samarium(III) pentalene sandwich compounds.12  

 

Recently the synthesis of mono-Cp* lanthanide(II) tetraphenylborate complexes was 

reported by Evans et al. (Scheme 2.2).16,17 Complexes of the type Cp*Ln(µ-η6:η1-Ph)2- 

BPh2 (Ln = Yb, Eu and Sm) are base-free and readily soluble in arene solvents, and 

therefore present alternative half-sandwich precursors to unsolvated Ln(II) anti-

bimetallics via salt metathesis elimination of [M][BPh4] (e.g. M+ = K+).18 The half-

sandwich synthons Cp*Ln(BPh4), for Ln = Yb and Eu, were prepared via the 
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corresponding unsolvated metallocenes,19,20 in 46% and 59% overall yield with respect 

to LnI2. The Sm(II) analogue, Cp*Sm(BPh4), was synthesised by a similar route in 31% 

overall yield with respect to SmI2(THF)2. 

 

 

Scheme 2.2 Synthesis of mono-Cp* Ln(II) tetraphenylborate complexes.19,20 

 

2.2.1 Synthesis of [Cp*Ln]2(µ-Pn†) complexes 

The synthesis of the unsolvated triple-decker metallocenes, [Cp*Ln]2(µ-Pn†) (Ln = Yb 

(2.1), Eu (2.2) and Sm (2.3)), was achieved by reaction of Cp*Ln(BPh4) with half an 

equivalent of the pentalene dianion [K]2Pn†
 in toluene or benzene (Scheme 2.3).  

 

 

Scheme 2.3 General synthesis of [Cp*Ln]2(µ-Pn†). R = SiiPr3. 

 

This general procedure, and subsequent work-up and recrystallisation from non-

coordinating solvents, afforded the base free compounds 2.1, 2.2 and 2.3 in 61, 68 and 

46% yields respectively. The relatively poor yield of the Sm(II) bimetallic may be 

explained by a secondary product which was isolated in 22% yield, and identified by 

mass spectrometry (EI) and 1H NMR spectroscopy as the known mixed-sandwich 
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complex (η8-Pn†)SmCp*.21 An NMR scale reaction of a 2:1 mixture of Cp*Sm(BPh4) 

and [K]2Pn† in C6D6 showed 1H signals of both 2.2 and (η8-Pn†)SmCp* after 12 h, 

indicating that formation of the Sm(III) by-product is inherent in the reaction 

conditions, rather than through adventitious oxidation. Gratifyingly, the two products 

can be separated by fractional crystallisation due to the lower solubility of the bimetallic 

complex 2.3 in pentane. The optimised yield (46%) was obtained by slow addition of 

the Cp*Sm(BPh4) solution to a concentrated solution of [K]2Pn†, and since 2.3 was 

found to be temperature sensitive, minimising the time the reaction mixture was kept at 

room temperature (< 12 h) proved beneficial. 

2.2.2 Characterisation of [Cp*Yb]2(µ:η5,η5-Pn†) (2.1) 

Compound 2.1 was isolated from tetramethylsilane as a brown crystalline solid, which 

was characterised by spectroscopic and analytical methods. The co-crystallised solvent 

in the molecular structure determined by single crystal X-ray diffraction (Section 2.2.5) 

was lost from the bulk solid after rigorous drying in vacuo, as confirmed by 

microanalysis. Complex 2.1 was found to be diamagnetic, consistent with a ground state 

4f14 configuration for each Yb(II) centre, and displays sharp peaks in its multinuclear 

(1H 13C, 29Si, 171Yb) NMR spectra in C6D6 at 303 K. The 1H NMR spectrum contains 

two doublet signals assigned to the aromatic Pn† ring protons, and a singlet due to the 

Cp* CH3 groups. Furthermore the triisopropylsilyl groups appear as a septet and a 

doublet for the CH and CH3 groups respectively in the 1H spectrum, while the 29Si{1H} 

spectrum shows a singlet (see Section 2.2.4, Table 2.3). These observations are 

consistent with a solution structure on the NMR timescale that contains an inversion 

centre at the midpoint of the Pn† bridgehead bond and is in agreement with the solid 

state structure. The 13C{1H} spectrum was consistent with this interpretation, with full 

assignment of resonances achieved by HSQC and HMBC experiments. 

Ytterbium possesses a spin-½ isotope (171Yb) of relatively high natural abundance 

(14.3%) and sensitivity four times greater than that of 13C.22 Its first high resolution 

direct NMR observation in an organometallic complex was reported in 1989 by Lappert 

et al.22 and exploration of the Yb(II) oxidation state has since been considerably 

facilitated by high resolution 171Yb NMR spectroscopy.23-28 The 171Yb{1H} NMR 

spectrum of 2.1 shows one signal at 59.9 ppm, consistent with two equivalent Yb(II) 

centres in the symmetrical anti-bimetallic, which is comparable to the other Yb(II) 
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compounds characterised in this work as well as literature values for unsolvated 

ytterbocene(II) complexes (Table 2.2). However it should be noted that large variations 

in 171Yb chemical shift have been reported for Cp*2Yb, thus making a more detailed 

comparison difficult.29,30 

 

Table 2.2 Solution 171Yb{1H} NMR spectroscopic chemical shifts (δYb) for 2.1 and 

related ytterbocene(II) complexes. 

Compound δYb / ppm (T / K) solvent ref 

[Cp*Yb]2(µ:η5,η5-Pn†) (2.1) 59.9 (303) benzene this work 

[Cp*Yb(OEt2)3][B(C6F5)4] (2.4) 89.0 (303) THF this work 

Yb(CpCH{SiMe3}2)2 118.7 (295) toluene - 
benzene 

27 

Yb(Cp{SiMe2tBu-1,3}2)2 -7.02 (304) toluene - 
benzene 

27 

[YbCp*2]∞ -3.3 (298) toluene 31 

(Cp*Yb{µ-COT'''})2Yb 595, 364 (298) THF 28 

 

Unfortunately 171Yb NMR data have not been provided for the cyclooctatetrenyl (COT)-

bridged bimetallic Yb(II) complexes [Cp*Yb]2(µ-η8:η8-COT), [Cp*Yb(THF)](µ-η8:η8-

COT)[YbCp*] and [{(Me3Si}2N)Yb(THF)]2(µ-η8:η8-COT),32-34 and multinuclear NMR 

spectroscopy was not possible for the THF solvate [Cp*Yb(THF)]2(µ:η5,η5-Pn†) due to 

its low solubility. In contrast, the base-free complex 2.1 is highly soluble in 

hydrocarbon solvents, which spurred interest in studying its reactivity. Specifically, the 

use of non-polar solvents has been recommended for the precipitation of charged 

products of redox reactions,35 which may be useful in attempts to synthesise a stable 

mixed-valence [YbII−YbIII] complex (vide infra). 
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2.2.3 Characterisation of [Cp*Eu]2(µ-Pn†) (2.2) 

Compound 2.2 was isolated as an orange solid from toluene-pentane solution, and was 

identified by single crystal XRD studies (Section 2.2.5) as a toluene solvate. Analytical 

measurements indicated that this solvent molecule remained in powdered samples that 

had been rigorously dried in vacuo, and duplicate microanalysis measurements for 

2.2.(C7H8)x best fit to x = 1.6. However, the molecular ion was observed at m/z = 988 in 

the mass spectrum (EI) with an isotopic envelope consistent with the proposed 

formulation. The paramagnetic nature of 2.2 precludes NMR analysis, giving a broad, 

unresolved 1H spectrum.  

The magnetic susceptibility of 2.2 was studied in solution and the solid state. The 

magnetic properties of lanthanide ions due to unpaired 4f electrons are generally well 

described by the coupling of spin (S) and orbital (L) angular momenta in the Russell-

Saunders coupling scheme to give a total angular momentum (J = L + S). Spin-orbit 

coupling constants (ca. 1000 cm-1) are typically much larger than ligand-field splittings 

(ca. 100 cm-1) so that only the ground J state is thermally populated. Using these 

assumptions the effective magnetic moment (µeff) is given by the Landé formula: 

       Equation 2.1 

where, gJ is the Landé g-factor: 

       Equation 2.2 

Divalent europium ions have a 4f7 configuration with term symbol 8S. The effective 

magnetic moment (µeff) of 2.2 determined by the Evans method36,37 in C6D6 solution 

was 7.64 µB per M at 303 K, which is in reasonable agreement with the value for the 

Eu2+ free ion calculated using the Landé formula (7.94 µB). The solid state magnetism 

of powdered crystalline 2.2.(C7H8)1.6 was measured as a function of temperature by 

SQUID magnetometry. The majority of paramagnetic substances have a molar 

susceptibility (χm) that obeys the Curie-Weiss law, that is:  

    

€ 

χm =
C

T −Θ
    Equation 2.3 

! 

µeff = gJ J(J +1) µB

! 

gJ =
3
2

+
S(S +1) " L(L +1)

2J(J +1)
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where C is the Curie constant and Θ is the Weiss constant. The plot of χm
-1 vs T for 2.2 

(Figure 2.1) follows Curie-Weiss behavior from 16-300 K, with C = 7.415 K-1 mol-1 and 

Θ = -1.5 K. This corresponds to a µeff of 7.68 µB per M at 300 K which is comparable 

with that of monomeric metallocenes Cp2Eu (7.63 µB) and Cp*2Eu  

(7.70 µB),20 suggesting that at these temperatures 2.2 behaves as two non-interacting 

Eu2+ centres. The observed intramolecular Eu…Eu distance (5.1605(5) Å) is relatively 

long compared with the analogous 1,4-bis(triisopropylsilyl)cyclooctatetraenyl (= COT†) 

complex, [Cp*Eu]2(µ-COT†) (4.293(5) Å),12 and may explain the lack of magnetic 

interactions. However, long range ferromagnetic f-f interactions have been reported by 

Fukuda et al. in heterobimetallic quadruple-decker phthalocyanine complexes 

containing Y3+/Dy3+ or Y3+/Er3+ ions at distances up to 6.8 Å.38  

 

 
Figure 2.1 Temperature dependence of the solid state µeff and χm

-1 for 2.2 at 1 Tesla.  

 

Field dependent magnetisation measurements from 0 to 5 Tesla (Figure 2.2) reveal that 

at 16 K, the magnetisation (M) increases almost linearly with applied field, as expected 

for a paramagnetic system in which interactions between neighbouring ions are weak. 

At lower temperatures, M no longer increases linearly with H, and takes the form of a 

curve described by the Brillouin function.39 The M vs H curve at 2 K approaches a 

limiting value at 5 Tesla, which is the saturation magnetisation of the sample when all 

of the spins have aligned. 
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Figure 2.2 Field dependence of the solid state magnetisation for 2.2. 

 

2.2.4 Characterisation of [Cp*Sm]2(µ:η5,η5-Pn†) (2.3) 

The Sm2+ ion is a 4f6 ion with term symbol 7F0, which is a special case, in that the Landé 

formula predicts (incorrectly) a µeff of zero, hence f6 ions Sm2+ and Eu3+ were termed 

anomalous by Van Vleck.39 For these ions the separation of the J = 0 and J = 1 states is 

ca. 300 cm-1, and the J = 1 and J = 2 states is ca. 200 cm-1, both of which are of the 

order of kBT.20 This means at normal temperatures there must be a significant 

population of the excited multiplet states, and this immediately invalidates the Landé 

formula. Furthermore, the unusually small multiplet intervals suggest the possibility of 

important second order contributions to µeff, and complex paramagnetism is 

anticipated.40 As a result, the 1H NMR spectrum of 2.3 in C6D6 revealed a set of widely 

shifted signals with significant line-broadening typical of organometallic Sm(II) 

complexes. Nonetheless a full assignment of the 1H NMR data was made for the Cp* 

and Pn† ligands of complex 2.3 by the integration of the relavent peaks (Table 2.3). As 

for 2.1, the SiiPr3 methyl groups were found to be chemically equivalent (i.e. non-

diastereotopic) corresponding to a symmetrical bimetallic structure in solution. 
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Table 2.3. 1H and 29Si{1H} NMR chemical shifts of [Cp*M]2(µ-Pn†) complexes,  

for M = Yb (2.1), Sm (2.3), and Fe (3.3, see chapter three, Section 3.3.4). 

Nucleus Assignment 2.1 2.3 3.3 

Cp* CH3 2.01 -2.71 1.51 

Pn† H 6.69, 5.58 10.15, 7.50 4.67, 3.69 

iPr CH 1.28 20.09 2.15 
δH 

iPr CH3 1.13 15.53 1.67, 1.54 

δSi SiiPr3 -2.02 117.7 6.89 

 

The 13C{1H} NMR spectrum for 2.3 shows the expected number of peaks, again 

paramagnetically shifted, which could not be assigned unequivocally due to the 

unsuitability of two dimensional 13C-1H correlation experiments for this paramagnetic 

complex. The molecular ion was observed at m/z = 985 in the mass spectrum (EI) with 

an isotopic envelope in good agreement with the proposed formulation.  

The magnetochemistry of 2.3 was studied in solution and the solid state. Complex 2.3 is 

temperature sensitive, decomposing to Sm(III) complexes when stored at room 

temperature, so solution samples were prepared at -78 °C and magnetic measurements 

made in an NMR probe pre-cooled to -65 °C. At this temperature, the magnetic moment 

determined by the Evans method36,37 in toluene-d8 was 3.15 µB per M. The solid state 

magnetism for 2.3 was measured by SQUID magnetometry. The χm
-1 vs T plot (Figure 

2.3) has a shallow slope below 40 K, suggesting that at these temperatures, when most 

of the electrons are in the ground state, complex 2.3 behaves as a temperature 

independent paramagnet. However, as T increases the J = 1 and J = 2 states become 

increasingly populated, so that at 200 K µeff has increased to a value of 3.04 µB per M. 

The plot of χm
−1 vs T for 2.3 is comparable to those for the monomeric samarium 

metallocenes Cp*2Sm(THF)(OEt2) and Cp*2Sm,20 as well as those found for simple 

Eu3+ salts, which are also f6 ions.41,42 There are no features of the χm
-1 vs T plot that 

indicate intramolecular interactions between the two paramagnetic centres. This is 

somewhat expected based on the relatively long intramolecular Sm…Sm distance  

(av. 5.336 Å) found in the molecular structure and the poor radial extension of 4f 

orbitals, which typically results in weak exchange coupling between lanthanide ions.2 
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However Murugesu et al. have recently shown that the anti-bimetallic complexes, 

[COT'Ln]2(µ:η8,η8-COT') (Ln = Dy, Er; COT' = [C8H6{SiMe3-1,4}2]2-),4,43 have a non-

negligable interaction between Ln3+ centres which is facilitated by the bridging COT' 

ligand.  

 

 

Figure 2.3 Temperature dependence of the solid state µeff and χm
-1 for 2.3 at 1 Tesla. 

 

Complex 2.3 was found to be extremely thermally sensitive and, despite strict exclusion 

of air and moisture from the SQUID chamber, samples decomposed to a green 

paramagnetic solid over the timescale of the SQUID measurement (ca. 12 h). 

Reproducible data for increasing and decreasing temperature scans were obtained only 

if the sample was kept at 200 K or below, and for this reason only these data are 

included in Figure 2.3. Fitting a straight line to χm
-1 vs T in the Curie-Weiss regime 

(between 100-200 K) gives C = 3.737 K-1 mol-1, Θ = -123.4 K and an extrapolated µeff 

of 3.22 µB per M at 282 K, which is comparable with the solid state susceptibility of 

Cp*2Sm (3.36 µB) reported at this temperature.20 Field-dependent measurements (Figure 

2.4) further illustrate that the magnetisation of 2.3 is temperature independent at 32 K 

and below. The magnetisation increases almost linearly with applied field, as expected 

for a paramagnetic system in which intermolecular interactions are weak, confirming 

that there is no ferromagnetic impurity in the sample.  
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Figure 2.4 Field dependence of the solid state magnetisation for 2.3. 

 

2.2.5 X-ray crystallographic studies of 2.1, 2.2 and 2.3  

Anti-bimetallic complexes 2.1, 2.2 and 2.3 were characterised in the solid state by 

single crystal X-ray diffraction, and views of their molecular structures are depicted in 

Figure 2.5. 2.1 crystallises in the monoclinic space group P21/c with one half-molecule 

in the asymmetric unit, whereas 2.3 crystallises in the triclinic space group P-1 and 

contains two independent half-molecules, each with different structural parameters, 

which are compared in Table 2.4. 

Compounds 2.1 and 2.3 are not isomorphous, but are similar in many respects. In the 

solid state both anti-bimetallics exhibit a slipped triple-decker arrangement and an η5:η5 

metallocene-like bonding mode. They are symmetrical and possess an inversion centre 

at the midpoint of the bridgehead carbons, which results in a 180° 

Ct(Cp*)−M−M−Ct(Cp*) torsional angle. The pentalene and Cp* ligands are planar but 

not mutually coplanar, instead adopting a bent arrangement of rings around the metal, as 

is well-known for the divalent lanthanide metallocenes.19,44,45  
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Figure 2.5 Displacement ellipsoid plots (50% probability) of [Cp*Ln]2(µ-Pn†)  

(Ln = Yb (2.1), Eu (2.2), Sm (2.3) top to bottom).  

H atoms, iPr groups and co-crystallised solvent molecules omitted for clarity. 
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Table 2.4 Selected distances (Å), angles (°), and parameters (defined in Figure 2.6) for 

2.1, 2.2 and 2.3. Ct1 and Ct2 correspond to the η5,η5-centroids of the Pn ring. Ct3 and 

Ct4 correspond to the η5-centroids of the Cp* rings. 

Parameter 2.1 2.2 2.3 

M…M 5.230(2) 5.1605(5) 5.2737(12), 5.3973(6) 

M1−Ct1 2.389(3) 2.5689(18) 2.476(4), 2.508(4) 

M1−Ct3 2.397(3) 2.516(2) 2.493(5), 2.498(5) 

M2−Ct1 - 2.6365(18) - 

M2−Ct2 - 2.5043(16) - 

M2−Ct4 - 2.540(2) - 

ΔM1-Ct1 0.052 0.069 -0.047, 0.006 

ΔM2-Ct2 - -0.268 - 

Ct1−M1−Ct3 139.31(8) 131.78(7) 133.711(6), 135.06(9) 

Ct1−M2−Ct4 - 157.63 - 

Ct2−M2−Ct4 - 153.09 - 

av. Pn C−Cring  1.437(7) 1.435(5) 1.435(14), 1.434(14) 

M−Cagostic 
a 3.1399(5) 3.114(6) 3.278(10), 3.359(11) 

Fold angle 0.0 16.1 0.0, 0.0 

a Shortest M−iPr CH3 distance within each independent molecule. 

 

   

Figure 2.6  
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The extent of bending in these compounds, as well as their alkaline earth analogues, has 

been related to metal size.46 Complexes of the smallest metals, which have the rings 

closest together, have the most linear structures. The Ct(Cp*)−M−Ct(Pn) angles for 2.1 

and 2.3 follow this trend, reflecting the smaller ionic radius of the Yb2+ centre compared 

with Sm2+ (rLn2+ = 1.02 and 1.22 Å respectively for 7-coordinate ions).47 This angle in 

2.1 (139.31(8)°) is larger than that in the THF solvated analogue 

[Cp*Yb(THF)]2(µ:η5,η5-Pn†) (138.2(2)°), just as the Ct(Cp*)−M−Ct(Cp*) angle in 

Cp*2Yb (145.0°) is larger than in solvated Cp*2Yb(THF) (143.5(3)°).48 For comparison, 

the Ct(Cp*)−M−Ct(Cp*) angles are 140.1° in unsolvated Cp*2Sm,44 and 136.7° in 

solvated Cp*2Sm(THF)2.49  

Slight differences between the structures are found in the ligand-metal bonding 

distances and reflect the variation in metal ionic radii. The smaller Yb(II) centre is 

found to allow closer coordination of the carbocyclic ligands in 2.1 compared to 2.3, 

M−Ct(Pn) = 2.389(3) and av. 2.492(4) Å, M−Ct(Cp*) = 2.389(3) and av. 2.496(5) Å, 

respectively. The average M−Cring(Cp*) distances are comparable to those in the 

corresponding [Cp*Ln]2(µ-η8:η8-COT), [Cp*Ln]2(µ-η8:η8-COT†), and Cp*2Ln 

complexes.12,19,32,50,51 Additionally, all three structures 2.1, 2.2 and 2.3 show close 

intermolecular contact between the Ln(II) centres and one of the methyls of the 

pentalene SiiPr3
 groups, as often occurs in lanthanide complexes with N(SiMe3)2 

ligands.52-56  

Complex 2.2 has a solid state molecular structure in which the two europium centres 

occupy radically different coordination environments. Eu1 is in the expected bent η5,η5-

metallocene configuration, with M−Ct(Pn) and Ct(Cp*) distances and angles similar to 

those found in the THF solvate [Cp*Eu(THF)]2(µ:η5,η5-Pn†) (2.502(6) Å, 2.477(5) Å, 

and 131.5(2)° respectively).12 However Eu2 interacts with all 8 carbons of the pentalene 

ring, which folds by 16.1° to accommodate the electropositive centre, as is typical for 

the structures of mono f-element pentalene compounds.21,57 This unusual coordination 

environment for Eu2 is quantified by the ring slippage parameter (-0.268 Å) with its 

proximal pentalene C5-centroid (see Figure 2.6 for definition of ΔM-Ct) which is 

exceptionally large and negative in comparison to this parameter for Eu1 (0.069 Å), and 

those for 2.1 and 2.3.  
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Pentalene is normally considered as a dianionic ligand in the η8- bonding mode to a 

single metal centre, and monoanionic in η5- mode,58 which would indicate, prima facie, 

a +3 oxidation state for Eu2. However, SQUID magnetometry measurements (Section 

2.2.3) are fully consistent with a +2 oxidation state of each Eu centre in 2.2. 

Furthermore, addition of THF to 2.2 was shown by IR spectroscopy (vide infra) to yield 

the solvated complex [Cp*Eu(THF)]2(µ-Pn†) in which the bridging pentalene ligand 

adopts the expected η5,η5- binding mode in the solid state, leaving no ambiguity in the 

divalent state for each Eu. The distance between Eu2 and the distal pentalene C5-

centroid in the molecular structure of 2.2 (2.6365(18) Å) is longer than in any 

Ln−Ct(Pn) formal bonding distance reported to date,59 and is thus best considered as a 

subtle interaction that may be attributed to crystal packing forces. A list of short 

intermolecular contacts (less than the sum of the van der Waals radii), and an ORTEP 

view of the unit cell of 2.2 are included in appendix A2. 

 

2.2.6 Solvation of 2.1, 2.2 and 2.3  

Given the base-free synthetic route to 2.1, 2.2 and 2.3, an investigation into the stability 

of these complexes in polar solvents was required, in order to select a suitable 

electrolytic medium for subsequent CV studies. This was particularly critical for 

complex 2.3, for which the synthesis could not be achieved in the presence of THF,21 

and the tendency for rapid halide abstraction by Sm(II) complexes in the presence of 

halogenated solvents.11  

Treatment of 2.1 with five drops of THF-d8 resulted in a green solution above a dark 

green precipitate, suggesting the formation of the sparingly soluble THF adduct 

[Cp*Yb(THF)]2(µ:η5,η5-Pn†),12 which was confirmed by IR and 1H NMR spectroscopy 

(Scheme 2.4, top). Similarly, complex 2.2 reacts with THF to form the orange THF 

adduct [Cp*Eu(THF)]2(µ:η5,η5-Pn†),12 evidenced by a characteristic band in its IR 

spectrum at ν 1145 cm-1. Addition of THF to 2.3 resulted in a dark brown solution 

which after 12 h at room temperature deposited a dark green solid. The 1H NMR 

spectrum of the green precipitate contained a plethora of new peaks between -3 and 28 

ppm, which could not be assigned unambiguously and it was assumed decomposition 

had occurred (Scheme 2.4, bottom). 

 



    
49 

 

Scheme 2.4 Solvation reactions for 2.1, 2.2 and 2.3 with THF. R = SiiPr3. 

 

Preliminary trials to determine stability in other common electrochemical solvents were 

carried out on 2.1 due to its straightforward characterisation by 1H NMR spectroscopy. 

If the Yb(II) complex showed appreciable stability in the given solvent, studies were 

extended to the more reactive Sm(II) complex 2.3. Addition of DME or CH2Cl2 to 2.1 

in C6D6 in both cases resulted in a colour change from brown to yellow (typical of Yb3+ 

complexes) and only intractable mixtures of different products were observed in the 1H 

NMR spectra.  

Complex 2.1 was soluble in the presence of 1,2-difluorobenzene, and showed no 

reaction by 1H NMR, however with 2.3 disappearance of the Sm(II) complex was 

observed in the 1H spectrum, and a new peak at -113.3 ppm was observed in the 19F 

spectrum, suggesting fluoride abstraction had taken place. Hence 1,2-difluorobenzene 

and other aryl fluorides were deemed unsuitable solvents for CV.  

Complex 2.1 was sparingly solubile in acetonitrile forming a green solution, which was 

sufficiently stable for electrochemical studies (vide infra). Unfortunately 2.3 was almost 

insoluble in acetonitrile, such that voltammetric responses were not observed, and the 

solution appeared very pale yellow in colour. Complexes 2.2 and 2.3 were inert to 

ethereal solvents tBuOMe, and Et2O, showing no reactivity and very limited solubility. 
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2.2.7 Electrochemical studies of 2.1, 2.2 and 2.3  

Complexes 2.1 and 2.2 are readily soluble in hydrocarbon solvents (ca. 0.1 mmol cm-3 

in benzene) with respect to their THF solvated analogues, however finding a suitable 

solvent/electrolyte system compatible for comparative electrochemical studies for these 

complexes and 2.3 proved non-trivial. As described in Section 2.2.6, the Sm(II) 

complex 2.3 reacts with THF over the course of 12 h, however reasonable CV data were 

obtained in this solvent when measured within a 1 h period after dissolution. Using 

[nBu4N][PF6] supporting electrolyte, two processes were observed within the 

electrochemical window (Figure 2.7).  

 

 

Figure 2.7 Overlaid CV scans (3 cycles) for 2.3 in THF / 0.1 M [nBu4N][PF6], scan rate 

100 mV s-1. 

 

Process 1, with a mid-peak potential (E½ = {Epa + Epc}/2) of -2.0 V vs FeCp2
+/0 (a 

convention which is assumed for all potentials quoted henceforth), is tentatively 

assigned to a [SmII-SmII]/[SmIII-SmII] oxidation on the basis of comparable values of the 

Sm(III/II) couple in this solvent.10 Repetitive potential cycling over process 1 in 

isolation using varied scan rates (50 to 500 mV s-1), showed electrochemical behaviour 

best described as quasi-reversible.60 The peak-to-peak separation (ΔEpp) was 
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comparable to that for ferrocene under the same conditions (ca. 150 mV), suggesting 

that only one electron is being transferred. Process 2 shows an anodic wave with a peak 

potential (Epa) of -1.5 V in the forward scan, however no associated cathodic wave was 

observed in the reverse scan. Irreversible behaviour suggests that the product of this 

second oxidation is not stable under the conditions and timescale of the experiment. It is 

noted that process 1 shows a lower current response than process 2. Due to the highly 

negative region of the potential window which at these processes occur, it may be that 

appreciable oxidation of the Sm(II) species had occured prior application of the initial 

potential of the forward scan (-2.2 V). After a period of ca. 1 h, the current response of 

process 1 diminished almost entirely and additional anodic waves appeared upon 

scanning to more positive potentials. Presumably after this period the Sm(II) species has 

nearly completely decomposed, consitent with 1H NMR spectroscopy observations.  

The electrochemical behaviour of 2.3 in THF/[nBu4N][PF6], is qualitatively comparable 

to that previously reported for [Cp*Yb(THF)]2(µ:η5,η5-Pn†) in THF/[nBu4N][B(3,5-

{CF3}2C6H3)4],12 which shows a quasi-reversible oxidation to the mono-cation followed 

by irreversible behaviour in the second oxidation. For a better comparison, CV studies 

of 2.3 were attempted using the alternative weakly coordinating electrolye 

[nBu4N][B(C6F5)4] in THF,61 however the voltammograms obtained were distorted due 

to high solution resistance. Inspection of the gold disc working electrode showed solid 

deposits on the surface, indicative of electrode fouling. 

The CV data for [Cp*Ln]2(µ-Pn†) complexes 2.1, 2.2 and 2.3 are given in Table 2.5. 

The oxidative potentials follow the thermodynamic trend for reducing power Sm > Yb > 

Eu,8 although a more in-depth comparison cannot be made due to the different 

electrolytic media used. Furthermore, the peak separations between the oxidation waves 

(ΔE) does not represent the difference between mid-peak potentials (hence not 

designated ΔE½), and hence the value does not represent a true thermodynamic 

measurement of the comproprtionation equilibrium constant (Kc, see chapter one) for 

the mixed-valence mono-cation. 
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Table 2.5 Electrode potentials vs FeCp2
+/0 in 0.1 M [nBu4N][A]. 

Compound E(1) / V E(2) / V ΔE(2)-(1) / V solvent electrolyte [A]- ref 

2.1 -1.9 -1.5a 0.4 THF [B(3,5-{CF3}2C6H3)4] 12 

2.1 -1.7a -1.3 0.5 THF [B(C6F5)4] this work 

2.1 -1.7 -1.5 0.2 MeCN [PF6] this work 

2.2 -1.4a -1.1a 0.3 THF [B(3,5-{CF3}2C6H3)4] 12 

2.3 -2.0 -1.5 a 0.5 THF [PF6] this work 

a Anodic peak potentials (Epa) are quoted for irreversible processes.  

 

2.2.8 Redox reactions of 2.1; Synthesis and characterisation of [Cp*Yb(OEt2)3] 

[B(C6F5)4] (2.4)  

The CV measurements reveal the potential for oxidation of [LnII-LnII] complexes 2.1, 

2.2 and 2.3. With this in hand, the synthesis of a mixed-valence [LnIII-LnII] complex 

was attempted on a preparative scale. Complex 2.1 was selected for preliminary 

reactivity studies for the series. It was envisaged that the milder reducing potential for 

Yb(II) compared with Sm(II) may result in a stable mixed-valence complex.  

Reaction of 2.1 with one equivalent of [FeCp*2][B(C6F5)4] in Et2O at -40 °C resulted in 

an orange solution. Following evaporation of the solvent and removal of FeCp*2 by 

washing with pentane, the residues were recrystallised from Et2O/(Me3Si)2O at -35 °C 

yielding [Cp*Yb(OEt2)3][B(C6F5)4] (2.4) as a yellow solid. Ion-pair 2.4 was 

characterised by NMR spectroscopy, elemental analysis and X-ray crystallography. 

 

 

Scheme 2.5 Oxidation of 2.1 with [FeCp*2][B(C6F5)4]. R = SiiPr3. 

2.1 2.4

Et2O, -40 ºC

- FeCp*2             
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[FeCp*2][B(C6F5)4]



    
53 

 

The 1H NMR spectrum shows resonances for the Cp* methyl groups at 1.97 ppm, and 

coordinated Et2O appears at 3.38 and 1.11 ppm. Relative integration of these peaks 

indicated the presence of 3 moles of Et2O per Cp* ligand. The 

tetrakis(perfluorophenyl)borate counter anion is easily identified by a sharp singlet in 

the 11B{1H} spectrum at -14.7 ppm and three signals at -130, -163.3 and -166.8 ppm in 

the 19F spectrum for the o, p and m-F respectively.  

The molecular structure (Figure 2.8) reveals a mononuclear half-sandwich Yb(II) 

cation, [Cp*Yb(OEt2)3]+, and an outer-sphere [B(C6F5)4]- anion, each displaying a 

distorted tetrahedral geometry about the central atoms (Yb1 and B1 respectively). The 

Yb and B atoms of the ion-pair 2.4 are separated by 8.128(6) Å, in contrast to 

ytterbium(II) tetraphenylborate complexes [(N{SiMe3}2)Yb(THF)BPh4],62 

[(tBu2pz)Yb(THF)BPh4],63 and Cp*Yb(BPh4)16 in which two of the phenyl rings of the 

anion can bind in an η6-mode to the metal centre, resulting in closer Yb…B distances of 

3.690(3), 3.636(2) and 3.708(5) Å respectively.  

 

 

Figure 2.8 ORTEP view of 2.4 (50% probability) with H atoms omitted for clarity.  
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Table 2.6 Selected structural parameters for 2.4. Ct1 denotes the η5-centroid  

of the Cp* ligand. Ct2 denotes the ring centroid of the proximal C6F5 group. 

Distances (Å) 

Yb−Ct1 2.369(2) Yb−O1 2.404(3) 

Yb…Ct2 6.769(3) Yb−O2 2.394(3) 

Yb…B 8.128(6) 

 

Yb−O3 2.383(3) 

Angles (°) 

O1−Yb−O2 104.43(11) O1−Yb−O3 90.74(13) 

O2−Yb−O3 111.06(12) O1−Yb−Ct1 122.61(12) 

O2−Yb−Ct1 113.62(9) O3−Yb−Ct1 112.07(9) 

C24−B−C30 114.7(4) C30−B−C42 101.7(4) 

C36−B−C42 114.7(3) 

 

 
 

 
 

 C24−B−C36 100.7(4) 

 

Presumably the second Yb-containing product in this reaction is the mixed-sandwich 

compound (η8-Pn†)YbCp*, which is expected to be readily soluble in pentane, and 

hence extracted with the decamethylferrocene fraction (Scheme 2.5). Evans et al. have 

reported the synthesis of the related mixed-sandwich compound, (η8-COT)YbCp*, by 

addition of cyclooctatetraene to [Cp*Yb]2(µ-η8:η8-COT).32 Repeating the reaction of 

2.1 with one equivalent of [FeCp*2][B(C6F5)4] in Et2O at -40 °C, followed by removal 

of the solvent and decamethylferrocene via vacuum sublimation resulted in a equimolar 

mixture of 2.4 and (η8-Pn†)YbCp*, as identified by mass spectrometry and multinuclear 

(1H, 13C, 11B, 19F, 29Si, 171Yb) NMR spectroscopy.  

Despite the relatively mild oxidising power of the decamethylferrocenium ion 

(measured as E½= -0.52 V in THF/0.1 M [nBu4N][B(C6F5)4]), its reaction with 2.1 leads 

to dissociation rather than stabilisation of the mixed-valence bimetallic. Previous 

attempts by Cloke et al. using more potent oxidising agents such as [Cp2Fe][B(3,5-

{CF3}2C6H3)4] and [Ag][BPh4] failed to give tractable products.12,64-66 This suggests that 

despite CV evidence in a previous report for a stable mixed-valence pentalene bridged 

bimetallic, e.g. [Cp*Ln]2(µ-Pn†)]+, its large-scale preparation using available chemical 
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redox agents is not possible. In this case, the η5- and η8- bonding modes that are 

available to the pentalene dianion are detrimental to the formation of bridged bimetallic 

species such as [Cp*Ln(µ-Pn†)LnCp*]+, since the +3 oxidation state is better stabilised, 

both sterically and electronically, in mononuclear sandwich compounds of the type (η8-

Pn†)LnCp*, leading to dissociation (Scheme 2.6).  

 

 

Scheme 2.6 Possible decomposition pathway of mixed-valence bimetallic. R = SiiPr3. 

In principle, this decomposition pathway could be prevented by targeting a 

heterobimetallic Ln/M complex in which the second metal, M, is pre-disposed to favour 

η5,η5- metallocene type bonding. Following oxidation, the Ln(III) centre would then be 

constrained to maintain a bimetallic complex. This synthetic strategy was pursued in 

further work using M = Fe, and the results are discussed in chapter three. 

 

2.2.9 Synthesis and characterisation of [(η8-Pn†)2Yb][K] (2.5)  

In an attempt to prepare an authentic sample of (η8-Pn†)YbCp* via a direct, one-pot 

route, YbI3 was reacted with KCp* and [K]2Pn† in THF. Subsequent work-up and 

recrystallisation from pentane furnished the homoleptic complex [(η8-Pn†)2Yb][K] (2.5) 

in 15% yield, as identified by elemental analysis and mass spectrometry. 1H NMR 

spectroscopy in THF-d8 showed broad signals consistent with a paramagnetic Yb(III) 

(f13) complex which could be assigned to the Pn† ligand by relative integration ratios. X-

ray crystallography established the connectivity of the atoms in 2.5 as the ‘ate’ complex 

shown in Figure 2.9, however the low quality of the data precluded accurate refinement 

of metric parameters. There is precedent for such Ln(III) anionic bis(pentalene) 

sandwich complexes with Ln = Ce,64,66 emphasising the steric and electronic 

stabilisation achieved for the f-elements with the pentalene ligand in η8-mode. 

LnIII +

LnII

LnIII

R

R LnII

R
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Figure 2.9 ORTEP (30% probability) diagram of partially refined (R1 = 12.7%) 

molecular structure of 2.5. H atoms and iPr groups omitted for clarity. 

 

2.2.10 Reaction of 2.3 with carbon monoxide 

Since the reductive homologation of carbon monoxide ketene carboxylate by 

Cp*2Sm(THF)2 was reported by Evans et al.,67 there has been considerable interest in 

the reduction of CO by other soluble Sm(II) reagents.55,68 Reaction of 2.3 in C6D6 with 

an excess of 13CO produced a brown solution above a small amount of precipitate. 1H 

NMR spectroscopy showed conversion to the mononuclear mixed-sandwich product 

(η8-Pn†)SmCp* after 10 mins (Scheme 2.7).  

 

Scheme 2.7 Reaction of 2.3 with CO. 

13C{1H} NMR spectroscopy of the reaction mixture showed no labelled 13C resonances, 

and no ν(CO) stretches were observed in the IR spectrum. As a control experiment, a 

freeze-thaw degassed solution of 2.3 in C6D6 was exposed to excess N2 (1 atm), and 

showed no change by 1H NMR spectroscopy after 24 h. The formation of a trivalent 

product and an insoluble black solid from Sm(II) complex 2.3 with CO a suggests 

disproportionation. The reactivity of 2.3 with CO to form (η8-Pn†)SmCp* parallels that 
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R
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of (Cp'')2Sm(THF) (Cp'' = η5-[C5H3{1,3-SiMe3}2]-) reported by Evans et al.,68 in which 

the tris-ring complex (Cp'')3Sm was the only isolated product. Indeed, these researchers 

have suggested that the key feature in the CO reduction chemistry shown by 

Cp*2Sm(THF)2, is that the tris-ring complex is not the favoured product due to steric 

hindrance.69 

 

2.2.11 Attempted synthesis of a pentalene bridged uranium bimetallic 

Following on from the successful synthesis of [Cp*Ln]2(µ-Pn†) complexes, exploiting 

tetraphenylborate salts of Cp*Ln(II) as precursors, efforts were made towards the 

synthesis of a uranium anti-bimetallic pentalene complex via a similar synthetic route. It 

was envisaged that a hypothetical [L2U]2(µ:η5,η5-Pn†) complex would make for an 

interesting structural comparison with mononuclear U(III) mixed-sandwich complexes 

of the type LU(η5-CpMe4R) (L = COT', COT†, and Pn†) for which synthesis and 

reactivity with small molecules have been extensively studied by Cloke et al.57,70-74  

Attempts to synthesise a substituted cyclooctatetraene U(III) half-sandwich reagent 

containing a labile iodide ligand, by reaction of UI3 with one equivalent of [K]2COT† in 

THF or DME, instead resulted in disproportionation, with U(COT†)2 as the sole product 

identified by 1H NMR and EI-MS. It was proposed that coordinating solvents may 

facilitate this redox reaction by stabilisation of charged intermediates, therefore a base-

free complex was desireable, which could be utilised in the absence of coordinating 

solvents. Evans et al. have reported the synthesis of Cp*2U(BPh4) (Scheme 2.8) and its 

subsequent use as a synthon for the preparation of complexes of the type [Cp*2UX] (X 

= NR2, Cp*).75 These researchers have also demonstrated that the Cp* ligand can be 

displaced from Cp*Ln(BPh4) by other monoanionic ligands (e.g., NR2
-) or indeed by 

bidentate anionic ligands (with co-substitution of [BPh4]-).18,75-77  

 

 

Scheme 2.8 Synthetic route to Cp*2U(BPh4).75,76 

Cp*2UCl2

2 MeLi
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Reaction of Cp*2U(BPh4) with half an equivalent of [K]2Pn† via dropwise addition in 

benzene produced a brown solution. Work up and recrystallisation from pentane 

furnished the known complex (η8-Pn†)UCp*, as identified by 1H NMR spectroscopy. 

Despite the 2:1 stoichiometric ratio of U:Pn† employed in this reaction, the isolation of 

monomeric U(III) complex (η8-Pn†)UCp* via the substitution of Cp* and [BPh4]-, 

illustrates the preference of Pn† for η8- hapticity in f-block metal complexes. The 

original preparation of (η8-Pn†)UCp* reported by Cloke et al.,57 can be subject to 

variable, often very low yields. This is presumably because the mixed-valence trimer 

[Cp*U(µ-I)2]3(µ-O)3 is formed from the reaction of UI3 and KCp* in Et2O in the first 

synthetic step.78 The reaction of Cp*2U(BPh4) with [K]2Pn† in benzene was repeated 

employing a 1:1 stoichiometry, which afforded (η8-Pn†)UCp* in 43% optimised yield 

(Scheme 2.9).  

 

 

Scheme 2.9 Alternative synthetic route to (η8-Pn†)UCp*. R = SiiPr3. 

 

The desired [L2U]2(µ:η5,η5-Pn†) complex could not be synthesised via this route, and 

subsequent attempts towards a uranium anti-bimetallic complex were abandoned. 

However the reaction of Cp*2U(BPh4) with [K]2Pn† presents a reliable new synthetic 

route for the preparation of (η8-Pn†)UCp* and the reactivity of this complex was 

subsequently investigated by Cloke et al. with low coordinate phosphorus compounds, 

from which the first example of the two-electron reduction of a phosphaalkyne was 

reported.79  

 

U

R

RU B
[K]2Pn†

C6H6
RT



    
59 

2.3 Mononuclear Lanthanide(III) Complexes as Single Ion Magnets 

2.3.1 Background 

There has been fundamental interest for over a decade in discrete molecules which 

exhibit slow relaxation of their magnetisation at low temperatures, so-called single 

molecule magnets (SMMs).80-82 In recent years a more rational synthetic approach has 

developed in the pursuit of new SMMs with more favourable properties such as higher 

energy barriers to magnetisation relaxation.83,84 To this end, complexes of the f-

elements have attracted increased attention,85-88 in particular those of the late lanthanide 

ions Tb3+, Dy3+, Ho3+ and Er3+, due to their large number of unpaired electrons and 

strong single-ion anisotropy.89,90 Long et al. have highlighted that a sandwich-type 

ligand architecture provides the ideal crystal field environment for Ln3+ complexes to 

maximise the anisotropy of oblate ions such as Dy3+,85 since the ligand electron density 

is concentrated above and below the xy plane. This concept has been practically 

demonstrated by Ishikawa et al. who reported a series of ‘double-decker’ complexes 

with bis-pthalocyanine (Pc) ligands and a single ion (Dy3+, Ho3+ or Yb3+), which display 

magnetic hysteresis under favourable conditions.3,91-96 More recently, it has been shown 

that strong anisotropy can be harnessed in sandwich complexes of lanthanide centres 

with axial ligand fields provided by carbocyclic ligands such as COT, COT' and Cp*.4-

6,43,97-101 Indeed, these sandwich complexes exhibit some remarkable magnetic 

properties, with [(COT)2Er]- standing as the current record holder for the highest 

blocking temperature recorded for a single ion SMM.100  

A noteworthy feature of the mixed-sandwich pentalene/Cp* complexes such as (η8-

Pn†)SmCp* encountered previously in this work, is their near axial symmetry 

(Ct(Cp*)−M−Ct(Pn bridgehead) angle = 174.56°).21,57 This prompted a preliminary 

investigation into lanthanide Pn† complexes for comparison with those of COT, with a 

particular focus on the relative ability of the pentalene ligand to promote crystal field 

influence on the lanthanide ion's magnetic behaviour. 
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2.3.2 Synthesis and characterisation of (η8-Pn†)LnCp*complexes for Ln = Dy (2.6), 

Tb (2.7) and Y (2.8) 

The synthesis of the mononuclear mixed-sandwich complexes, (η8-Pn†)LnCp* (Ln = Dy 

(2.6), Tb (2.7), Yb (2.8)), was achieved by reaction of LnX3 with one equivalent of 

[K]2Pn†
 and NaCp* in THF (Scheme 2.10). Subsequent work-up and recrystallisation 

from pentane furnished 2.6, 2.7 and 2.8 as yellow crystals in ca. 35% yield, which were 

identified by elemental analysis and mass spectrometry. The yttrium complex 2.8 was 

diamagnetic, which allowed for additional characterisation by (1H, 13C, 29Si) NMR 

spectroscopy. 

 

 

Scheme 2.10 Synthesis of (η8-Pn†)LnCp* complexes. 

 

X-ray diffraction analysis of 2.6, 2.7 and 2.8 revealed a molecular structure (Figure 

2.10) comparable with the f-element mixed sandwich complexes (η8-Pn†)SmCp* and 

(η8-Pn†)UCp* reported by Cloke et al.21,57 Structures 2.6, 2.7 and 2.8 are isomorphous 

and the Ct(Cp*)–metal–Ct(Pn bridgehead) angle (ca. 170°) shows that the mixed-

sandwich structure provides a near axial coordination environment for the Ln3+ ions.  
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Figure 2.10 ORTEP views of 2.6 and 2.7 (part 1) with ellipsoids at 50% probability.  
iPr groups and H atoms omitted for clarity. Dynamic disorder in the Cp* ligands was 

modelled over two positions, with carbon atoms left isotropic for 2.7.  

 

Table 2.7 Selected distances (Å) and angles (°) for 2.6, 2.7 (part 1) and 2.8 (part 1).  

Ct1 and Ct2 are the η5,η5-centroids of the Pn ring and Ct3 is the midpoint of the 

bridgehead bond. Ct4 is the η5-centroid of the Cp* ring. 

 2.6 2.7 2.8 

M–Ct1(Pn) 2.2361(5) 2.2447(2) 2.2262(13) 

M–Ct2(Pn) 2.2426(5) 2.2492(2) 2.2248(14) 

M–Ct4(Cp*) 2.3749(5) 2.3862(2) 2.327(4) 

Ct3−M−Ct4 170.83(2) 170.78(11) 170.93(9) 

Fold angle 26.5(3) 26.8(2) 27.5(2) 

 

2.3.3 Magnetic studies 

The magnetic properties of 2.6 were studied by Layfield et al.102 The magnetic 

susceptibility of 2.6 was measured under an applied field of 0.1 Tesla in the temperature 

range 1.8 - 300 K (Figure 2.11, left). The room temperature χmT value of  

12.14 cm3 K mol-1
 is slightly lower than the calculated value for a Dy3+ free ion using 
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the Landé formula (4f9, ground term 6H15/2, gJ = 4/3, χmT = 14.17 cm3 K mol-1), and a 

repeat measurement would be required to be confident of the value. The χmT product 

gradually decreases with decreasing temperature, and reaches a minimum value of 

10.00 cm3 K mol-1
 at 2 K. The decrease in magnetisation at low temperatures has been 

attributed to the large inherent magnetic anisotropy of the Dy3+ ion,4 however 

depopulation of the excited states in conjunction with weak intermolecular interactions 

cannot be ruled out as a contributing factor.103  

Field dependent measurements from 0 to 7 Tesla at low temperatures (Figure 2.11, 

right) suggest that saturation of the magnetisation occurs in the high field limit, reaching 

a value of 6.89 µB at 7 Tesla for 1.8 K. The M vs H plots recorded at different 

temperatures are close to superimposition at high field, which is consistent with a well-

separated ground state. 

 

 

Figure 2.11 Variable temperature (left) and field (right) magnetism of 2.6.102 

 

Variable-frequency alternating current (ac) susceptibility measurements were performed 

to gain insight into the dynamics of magnetisation relaxation, using an oscillating field 

of 3.5 Oe. The out-of-phase ac susceptibility (χ'') of 2.6 in the absence of an applied dc 

field (Figure 2.12, left) shows a frequency dependence in the range of 5 to 39 K, which 

confirms the SMM nature of complex 2.6.87 At temperatures below ca. 20 K the 

frequency dependence of χ'' is less pronounced, which is typical of efficient quantum 

tunneling of magnetisation (QTM) due to the mixing of Kramers ground states.6,104,105 

Above this temperature there is a gradual shift to a second regime, which is more 

strongly temperature dependent.  
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Figure 2.12 Frequency dependence of the out-of-phase (χ'', left) and in-phase (χ', right) 

component of the ac susceptibility for 2.6 in zero applied dc field.102 

The related Ln(III) mixed-sandwich complex, (η8-COT)ErCp*,106 studied by Wang and 

Gao et al.6 also shows two magnetic relaxation processes, which these researchers 

linked to the presence of two static conformations of the COT ring in its crystal 

structure.33 This Er3+ complex also showed QTM at zero dc field and low temperature 

which was attributed to the deviation from ideal axial symmetry induced by an 8° tilting 

of the planar COT/Cp* rings. Compound 2.6 shows crystallographic disorder in the Cp* 

ligand although it is more likely that this arises from dynamic positional disorder rather 

than the coexistence of two static conformers. The ratio of the Cp* positions was 

determined to be 57:43 by refinement of the X-ray data at 173 K. 

QTM can be effectively suppressed by performing the ac magnetic measurements in the 

presence of an external dc field, resulting in significant improvement of the ac response 

of the complex. In the presence of a 1000 Oe applied dc field, the χ'' vs ν plots for 2.6 

show clear maxima which are frequency and temperature dependent (Figure 2.13, left).  

 
Figure 2.13 Frequency dependence of the out-of-phase (χ'', left) and in-phase (χ', right) 

component of he ac susceptibility for 2.6 in 1000 Oe applied dc field.102 
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A quantitative analysis method of SMM behavior is the construction of an out-of-phase 

(χ'') vs in-phase (χ') ac susceptibility plot, known as a Cole-Cole plot.84,87 This type of 

plot is particularly useful for describing the distribution of relaxation times with an 

empirical parameter, α.83 The χ'' vs χ' data for 2.6 were fitted to a modified Debye 

model (Figure 2.14, left),107,108 giving an α-parameter which is close to zero (0.073  

≥ α), indicating a narrow distribution of relaxation times. This is consistent with one 

dominant relaxation process, suggesting that the 1000 Oe applied dc field leads to 

suppression of the QTM in 2.6. 

 

 

Figure 2.14 Cole-Cole (left) and Arrhenius (right) plots for 2.6 in 1000 Oe applied dc 

field. Black lines represent a best fit of the data at each temperature between 14 - 42 K. 

The red line is the best fit of the data in the thermally activated regime (T > 42 K).102 

 

The χ'' data were plotted as a function of frequency for each temperature, which allows 

the relaxation time constant (τ) to be calculated using τ = 1/(2πν) where ν is the 

frequency corresponding to the χ'' maxima. A plot of τ vs T allows the experimental 

data to be fitted to an Arrhenius law: 

                  Equation 2.4 

 

where τ0 (in units of s) is a pre-exponential factor that depends on the environment of 

the individual molecules and Ueff (in units of cm-1) is the effective barrier to 

magnetisation reversal (or the anisotropy barrier). The magnitude of Ueff is one way of 
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comparing the success of different SMMs, especially lanthanide based SMMs due to the 

prevalence of QTM. The greater the barrier, the more prominent the SMM properties at 

higher temperatures.88 The Arrhenius plot of ln(τ) against 1/T is linear in the high 

temperature region (Figure 2.14, right). Fitting the data above this temperature to the 

Arrhenius law produced a Ueff of 176 ± 1 cm-1 and τ0 = 2.4 × 10-7 s. This value is of the 

order of magnitude of lanthanide single ion SMMs with COT ligands found in the 

literature (Table 2.8).  

 

Table 2.8 Effective barriers recorded for single ion Ln3+ SMMs with COT ligands. 

Compound Ueff / cm-1 τ0 / s dc field / Oe ref 

(COT)ErCp* 
(i) 137 
(ii) 224 

(i) 8.17 × 10-11 

(ii) 3.13 × 10-7 
0 6 

(COT)HoCp* 
(i) 23.5 
(ii) 17.0 

(i) 2.4 × 10-5 

(ii) 7.0 × 10-6 
6000 98 

(COT)DyCp* 25.2 1 × 10-6 100 98 

[(COT)2Er][K(18-C-6)] 147 8.3 × 10-8 0 100 

[(COT)2Dy][K(18-C-6)] 9 2.7 × 10-8 0 4 

[(COT')2Er][Li(DME)3] 130 4 × 10-8 0 99 

[(COT')2Dy][Li(DME)3] 17.4 6.1 × 10-6 0 4 

 

In the hysteresis measurement the change in magnetisation of the sample is monitored 

as the field is swept from +H to -H and back to +H at a range of temperatures.109 

Hysteresis loops are observed when the magnetisation of the sample depends on its 

history, which is the basis of the use of magnets for storing information.84 Variable field 

measurements of 2.6 within ±2 T (Figure 2.15) revealed a waist-restricted hysteresis 

loop at 1.8 and 2 K at a sweep rate of 7.6 mT s-1, which is indicative of SMM 

behaviour. The sharp change in magnetisation at zero field is attributed to efficient 

quantum tunneling of magnetisation (QTM), which is a common occurrence in 

organolanthanide SMMs.88,98  
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Figure 2.15 Variable field magnetisation for 2.6 near zero field, revealing hysteresis.102 

Magnetic dilution studies are required to confirm whether it is indeed a single ion 

feature rather than a long-range interaction that is responsible for the observed 

hysteresis.43,98,100 However in literature examples such as (COT)DyCp*,6 magnetic site 

dilution leads to enhanced SMM properties. Diluted samples with approximate 

composition [(η8-Pn†)Dy0.05Y0.95Cp*] were readily prepared by co-crystallisation of 2.6 

with the Y3+ complex 2.8, as the structures are isomorphous. Unfortunately, magnetic 

studies on the diluted samples were not possible due to time constraints. 

 

2.4 Conclusions 

The synthesis of anti-bimetallic complexes of the divalent lanthanides was first 

investigated, with the half-sandwich Cp*Ln(BPh)4 precursor allowing for the 

preparation of base-free complexes [Cp*Ln]2(µ-Pn†) for Ln = Yb (2.1), Eu (2.2) and Sm 

(2.3). Isolation of latter compound is a particular achievement, given that it could not be 

prepared by a similar method using the [Cp*Sm(µ-I)(THF)2]2 half-sandwich precursor, 

due to THF activation. The attempted synthesis of a pentalene bridged U(III) bimetallic 

by a parallel synthetic route was unsuccessful, but did provide a reliable new route for 

the preparation of mononuclear complex (η8-Pn†)UCp*, which is of interest for small 

molecule activation. 

The Ln(II) anti-bimetallic complexes were characterised by XRD analysis, which 

revealed similarities between the symmetrical structures 2.1 and 2.3, and those of THF 
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solvates [Cp*Ln{THF}2]2(µ-Pn†) (Ln = Yb and Eu) previously reported by Cloke et al. 

Unexpectedly, 2.3 showed a solid state molecular structure in which one Eu centre 

interacts with all 8 carbons of the Pn† ring, which was attributed to crystal packing 

forces. Paramagnetic complexes 2.2 and 2.3 were studied by variable temperature and 

field SQUID magnetometry, which revealed very similar magnetic behaviour to their 

respective mononuclear Cp*2Ln(II) complexes. The lack of magnetic interaction 

between the metal centres may be explained by the large Ln…Ln distance (> 5 Å) and 

the ‘core-like’ radial distribution of f-orbitals.  

Electrochemical studies of [Cp*Ln]2(µ-Pn†) were complicated by their reactivity with 

polar solvents. The Sm(II) complex 2.3 showed sufficient stability in THF/ 

[nBu4N][PF6] over 1 h, and its CV was qualitatively comparable to that for the Yb(II) 

complex studied in this solvent. In each case the first oxidation processes had some 

reversibility, with E½ values that are consistent with the thermodynamic trend for the 

Ln3+/2+ couple. However the second process was irreversible, suggesting that the 

product of this second oxidation is not stable under the conditions and timescale of the 

experiment.  

Attempted synthesis of a mixed-valence [LnIII-LnII] complex by chemical oxidation of 

2.1 with [FeCp*2][B(C6F5)4] lead to dissociation and a mononuclear half-sandwich 

cation 2.4, was isolated and structurally characterised. Reaction of Sm(II) complex 2.3 

with carbon monoxide also yielded a mononuclear complex (η8-Pn†)SmCp*, which 

further illustrates the preference of Pn† for η8- hapticity in f-block metal complexes.  

The synthesis of the mononuclear mixed-sandwich complexes, (η8-Pn†)LnCp* (Ln = Dy 

(2.6), Tb (2.7) and Y (2.9)) was achieved via a rational salt metathesis route, however 

attempts to prepare the Yb analogue by this method instead yielded the bis(pentalene) 

‘ate’ complex 2.5. The magnetic properties of the Dy complex 2.6 were studied by 

SQUID magnetometry, including variable-frequency ac susceptibility measurements. 

These studies identified 2.6 as the first known example of a pentalene based SMM, with 

a closed-waist hysteresis loop observed up to 2 K. Further work is warranted to fully 

investigate the effects the axial Pn†/Cp* ligand environment have on the magnetic 

properties of Dy3+ (2.6) and other highly anisotropic ions Tb3+ (2.7), Ho3+ and Er3+. It 

would also be of interest to incorporate these Ln3+ ions into pentalene bridged anti-

bimetallics as models for multi-decker single chain magnets,84,110 which have potential 

applications in quantum information processing and spintronics.111  
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2.5 Experimental Details for Chapter Two 

General experimental details are given in appendix A1. 

2.5.1 Synthesis of [Cp*Yb]2(µ:η5,η5-Pn†) (2.1) 

[K]2Pn† (580 mg, 1.18 mmol) in benzene (20 mL) was added portionwise to a green 

solution of Cp*Yb(BPh4) (1.479 g, 2.357 mmol) in benzene (50 mL) at room 

temperature and allowed to stir overnight. The resulting brown suspension was filtered 

through Celite on a frit and evaporated to dryness in vacuo, to afford a brown residue. 

Recrystallisation from SiMe4 at -35 °C afforded X-ray quality crystals of 2.1.(SiMe4).  

Total yield: 744 mg (61% with respect to [K]2Pn†). 

1H NMR (C6D6, 499.9 MHz, 303 K): δH 6.69 (2H, d, 3JHH = 2.5 Hz, Pn CH), 5.58 (2H, 

d, 3JHH = 2.5 Hz, Pn CH), 2.01 (30H, s, Cp* CH3), 1.28 (6H, septet, 3JHH = 7.3 Hz, iPr 

CH), 1.13 (36H, d, 3JHH = 7.3 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 138.3 (Pn bridgehead C), 114.7 (Cp*-

CCH3), 94.92 (Pn CH), 89.77 (Pn C-Si), 19.91 (iPr CH3), 13.32 (iPr CH), 11.49 (Cp* 

CCH3). 

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi -2.02.  

171Yb{1H} NMR (C6D6, 69.9 MHz, 303 K): δYb 59.9.  

EI-MS: m/z = 1004 (65%), [M - CCH3]+; 723 (15%), [M - YbCp*]+. 

Anal. found (calcd. for C46H76Yb2Si2): C, 53.69 (53.57); H, 7.36 (7.43) %. 

Crystal data for 2.1.SiMe4: 2(C27H50Si2Yb), Mr = 603.89, monoclinic, space group  

P 21/c, brown block, a = 13.133(3) Å, b = 17.767(4) Å, c = 13.725(3) Å, α =γ = 90°, β = 

114.10(3)°, V = 2923.2(10) Å3, T = 173 K, Z = 4, Rint = 0.0821, λMo(Kα) = 0.71073 Å, 

θmax = 27.48°, R1 [I >2σ(I)] = 0.0457, wR2 (all data) = 0.0946, GooF = 1.008. 

Addition of 5 drops of THF to a C6D6 solution of 2.1 resulted in a brown solution, with 

a characteristic IR band at ν 1582 cm-1 and an 1H NMR spectrum consistent with the 

known complex [Cp*Yb{THF}]2(µ:η5,η5-Pn†).12 
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2.5.2 Synthesis of [Cp*Eu]2(µ-Pn†) (2.2) 

A solution of [K]2Pn† (313 mg, 0.635 mmol) in toluene (30 mL) was added dropwise to 

a solution of Cp*Eu(BPh4) (750 mg, 1.237 mmol) in a mixture of toluene-benzene (1:1 

ratio, 60 mL) and allowed to stir overnight. The resulting orange suspension was filtered 

through Celite and the filtrate evaporated to dryness in vacuo to give an orange residue. 

Recrystallisation by slow evaporation of a toluene-pentane solution (1:3 ratio, 6 mL) at 

-35 °C afforded orange X-ray quality crystals of 2.2.(C7H8). Duplicate microanalysis 

measurements on samples of powdered crystalline 2.2.(C7H8)x from two independent 

facilities best fit to a value of x = 1.6.  

Total yield: 484 mg (68% with respect to [K]2Pn†). 

EI-MS: m/z = 988 (45%), [M]+; 853 (50%), [M - Cp*]+. 

Anal. found (calcd. for C46H76Eu2Si2.(C7H8)1.6): C, 60.59 (60.44); H, 8.02 (7.87) %.  

Mag. suscep. (Evans method, C6D6, 303 K): µeff = 7.64 µB per M; (SQUID, 300 K): µeff = 

7.68 µB per M. 

Crystal data for 2.2.(C7H8): C53H84Eu2Si2, Mr = 1081.30, monoclinic, space group  

P 21/n, orange block, a = 16.8151(6) Å, b = 15.4458(7) Å, c = 20.1800(7) Å, α =γ = 

90°, β = 99.859(3)°, V = 5163.8(4) Å3, T = 173 K, Z = 4, Rint = 0.0715, λCu(Kα) = 

1.54184 Å, θmax = 71.507°, R1 [I >2σ(I)] = 0.0470, wR2 (all data) = 0.1229, GooF = 

1.057. 

Addition of 5 drops of THF to 2.2 resulted in an orange solution, with a characteristic 

IR band at ν 1145 cm-1 and a IR fingerprint matching that of an authentic sample of the 

known complex [Cp*Eu{THF}]2(µ:η5,η5-Pn†).12 

2.5.3 Synthesis of [Cp*Sm]2(µ:η5,η5-Pn†) (2.3) 

A solution [K]2Pn† (471 mg, 0.957 mmol) in benzene (60 mL) was added dropwise to a 

solution of Cp*Sm(BPh4) (1.159 g, 1.916 mmol) in benzene (30 mL) and allowed to stir 

for 8 h. The resulting brown-green suspension was filtered through Celite and the 

filtrate evaporated to dryness in vacuo to give a brown-green residue. Recrystallisation 

from pentane at -35 °C afforded X-ray quality crystals of 2.3. In the solid state and 

solution, 2.3 slowly decomposes at room temperature to give a green compound, 

presumably (η8-Pn†)SmCp*, and therefore requires storage at -35 °C or below. 
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Total yield: 437 mg (46% with respect to [K]2Pn†). 

1H NMR (C6D6, 499.9 MHz, 303 K, selected data): δH 20.09 (6H, br, iPr CH), 15.53 

(36H, br, iPr CH3), 10.15 (2H, br, Pn H), 7.50 (2H, br, Pn H), -2.71 (30H, s, Cp* CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 24.50, 17.22, 6.45, -6.73, -24.04, -35.04,  

-45.84, -93.11.  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 117.7.  

EI-MS: m/z = 976-992 (principal peak 985, 25%), [M]+; 696-705 (principal peak 701, 

100%), [M - SmCp*]+; 558-571 (principal peak 567, 35%), [M - SmCp*2]+. 

Anal. found (calcd. for C46H76Sm2Si2): C, 55.87 (56.03); H, 7.56 (7.77) %. 

Mag. suscep. (Evans method, toluene-d8, 213 K): µeff = 3.15 µB per M; (SQUID, 200 K): 

µeff = 3.04 µB per M. 

Crystal data for 2.3: C46H76Sm2Si2, Mr = 985.95, triclinic, space group P-1, brown 

needle, a = 8.3909(10) Å, b = 11.4240(15) Å, c = 24.064(3) Å, α = 94.072(7)°,  

β = 94.267(7)°, γ = 92.703(7)°, V = 2291.3(5) Å3, T = 100 K, Z = 2, Rint = 0.1189, 

λMo(Kα) = 0.71073 Å, θmax = 25.03°, R1 [I >2σ(I)] = 0.0698, wR2 (all data) = 0.1508, 

GooF = 1.044. 

Removal of the solvent from the supernatant solution followed by recrystallisation from 

SiMe4 at -35 °C afforded green crystals, which were identified by 1H NMR 

spectroscopy as the known complex, (η8-Pn†)SmCp*,21 in 22% yield with respect to 

[K]2Pn†. 

2.5.4 Synthesis of [Cp*Yb(OEt2)3][B(C6F5)4] (2.4) 

To a stirred suspension of 2.1 (79 mg, 0.077 mmol) in Et2O (10 mL) at -40 °C was 

added [FeCp*2][B(C6F5)4] (77 mg, 0.077 mmol), and the resultant orange mixture was 

allowed to warm to room temperature. After 30 min the solvent was removed under 

reduced pressure to afford an orange-brown residue that was washed thoroughly with 

pentane (1 x 50, 2 x 5 mL) to remove FeCp*2 until the washings were colourless. The 

residue was then extracted with Et2O (4 mL), concentrated to ca. 3 mL and 5 drops of 

(Me3Si)2O were added. Cooling this solution to -35 °C produced yellow crystals that 

were isolated by decantation and dried in vacuo. 

Total yield: 63 mg (68% with respect to 2.1).  
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1H NMR (THF-d8, 399.5 MHz, 303 K): δH 3.38 (12H, q, 3JHH = 7.0 Hz, OEt2 CH2), 1.97 

(15H, s, Cp* CH3), 1.11 (18H, t, 3JHH = 7.0 Hz, OEt2 CH3). 

13C{1H} NMR (THF-d8, 100.5 MHz, 303 K): δC 113.6 (Cp* ring C), 66.46 (OEt2 CH2), 

15.82 (OEt2 CH3), 11.37 (Cp* CH3). 

19F NMR (THF-d8, 375.9 MHz, 303 K): δF -130.9 (br, o-F), -163.3 (t, 3JFF = 20.2 Hz,  

p-F), -166.8 (br t, 3JFF = 17.5 Hz, m-F).  

11B{1H} NMR (THF-d8, 128.2 MHz, 303 K): δB -14.74. 

171Yb{1H} NMR (THF-d8, 69.9 MHz, 303 K): δYb 89.04.  

EI-MS: No volatility. 

Anal. found (calcd. for C46H45BF20O3Yb): C, 45.55 (45.67); H, 3.87 (3.75) %. 

Crystal data for 2.4: C46H45BF20O3Yb, Mr = 1209.67, monoclinic, space group P21/c, 

yellow block, a = 12.660(3) Å, b = 28.204(6) Å, c = 13.915(3) Å, α =γ = 90°, β = 

103.12(3)°, V = 4838.8(17) Å3, T = 173 K, Z = 4, Rint = 0.0966, λMo(Kα) = 0.71075 Å, 

θmax = 27.47°, R1 [I >2σ(I)] = 0.0475, wR2 (all data) = 0.1043, GooF = 1.009. 

2.5.5 Synthesis of [(η8-Pn†)Yb][K] (2.5) 

THF (20 mL) was added to a solid mixture of YbI3 (312 mg, 0.563 mmol) and [K]2Pn† 

(276 mg, 0.563 mmol) and the resultant green suspension was stirred at room 

temperature for 4 h. Solid NaCp* (89 mg, 0.563 mmol) was added slowly, stirred at 

room temperature for 2 d and refluxed at 70 °C for 5 h. The mixture was stripped to 

dryness and the residues were extracted with pentane (3 x 4 mL) and filtered through 

Celite on a frit. The bright green filtrate was concentrated to ca. 2 mL and following 

storage at -35 °C produced green crystals, which were isolated by decantation and dried 

in vacuo. 

Total yield: 88 mg (15% with respect to [K]2Pn†).  

1H NMR (THF-d8, 399.5 MHz, 303 K): δH 4.90 (6H br, Δν½ = 80 Hz, iPr CH), 1.77 

(36H br, Δν½ = 58 Hz, iPr CH3), 1.10 (12H br, Δν½ = 62 Hz, iPr CH), -47.66 (4H br, 

Δν½ = 550 Hz, Pn H).  

13C, 29Si and 171Yb NMR resonances were not observed due to the paramagnetic nature 

of 2.5. 
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EI-MS: m/z = 1042 (100%), [M]+. 

Anal. found (calcd. for C52H92KSi4Yb): C, 60.05 (59.95); H, 9.32 (8.90) %. 

Partially refined crystal data for 2.5: C52H92KSi4Yb, Mr = 1041.78, monoclinic, space 

group P21/n, green plate, a = 14.0303(10) Å, b = 35.391(3) Å, c = 23.0682(16) Å, α =γ 

= 90°, β = 93.8875(16)°, V = 11428(12) Å3, T = 100 K, Z = 4, λMo(Kα) = 0.71075 Å, 

θmax = 27.5°, R1 [I >2σ(I)] = 0.1271, wR2 (all data) = 0.4027, GooF = 1.096. 

2.5.6 Synthesis of (η8-Pn†)UCp*  

A solution of [K]2Pn† (159 mg, 0.324 mmol) in benzene (15 mL) was added dropwise to 

a solution of Cp*2U(BPh4) (268 mg, 0.324 mmol) in benzene (20 mL) and allowed to 

stir for 12 h. The resulting brown suspension was filtered through Celite and the filtrate 

evaporated to dryness in vacuo to give a brown residue. Recrystallisation from pentane 

at -35 °C afforded brown crystals of the known compound, (η8-Pn†)UCp*,57 in 40% 

yield with respect to [K]2Pn†.  

2.5.7 Synthesis of (η8-Pn†)DyCp* (2.6) 

A solution of [K]2Pn† (590 mg, 1.20 mmol) in THF (20 mL) was added dropwise to a 

suspension of DyCl3 (322 mg, 1.20 mmol) in THF (40 mL) and allowed to stir for 3 h. 

Solid NaCp* (189 mg, 1.19 mmol) was added slowly and the resultant orange mixture 

was stirred at room temperature for 12 h, then at 75 °C for 3 h. The solvent was 

removed in vacuo and the residues were extracted with hexane (3 x 10 mL) and filtered 

through Celite on a frit. The filtrate was stripped to dryness and the crude orange solids 

were recrystallised from pentane at -35 °C.  

Total yield: 290 mg (34% with respect to [K]2Pn†).  

EI-MS: m/z = 712 (100%), [M]+; 669 (25%), [M - iPr]+; 577 (20%), [M - Cp*]+. 

Anal. found (calcd. for C36H61DySi2): C, 60.52 (60.68); H, 8.72 (9.62) %. 

Mag. suscep. (SQUID, 200 K): µeff = 9.85 µB. 

Crystal data for 2.6: C36H61DySi2, Mr = 712.52, triclinic, space group P-1, yellow block, 

a = 9.6968(5) Å, b = 12.7898(6) Å, c = 16.0392(7) Å, α = 71.948(4)°, β = 75.157(4)°, γ 

= 80.771(4)°, V = 1821.05(16) Å3, T = 173 K, Z = 2, Rint = 0.0519, λCu(Kα) = 1.54184 

Å, θmax = 71.520°, R1 [I >2σ(I)] = 0.0474, wR2 (all data) = 0.1130, GooF = 0.937. 
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The magnetic site 20-fold diluted complex was synthesised by combination of the crude 

solids 2.8 and 2.6 in a 20:1 mole ratio, followed by recrystallisation from pentane at -35 

°C. The presence of 2.8 and 2.6 in the resulting orange crystals was confirmed by EI-

MS. 

2.5.8 Synthesis of (η8-Pn†)TbCp* (2.7) 

Following a procedure analogous to the preparation of 2.6 starting from TbI3 (479 mg, 

0.888 mmol) afforded crystals of 2.7 in 36% yield. 

EI-MS: m/z = 706-710 (principal peak 708, 100%), [M]+; 665 (15%), [M - iPr]+. 

Anal. found (calcd. for C36H61Si2Tb): C, 60.83 (60.99); H, 8.76 (8.67) %. 

Crystal data for 2.7: C36H61Si2Tb, Mr = 708.94, the unit cell parameters are isomorphous 

with 2.6, T = 173 K, Z = 2, Rint = 0.0322, λMo(Kα) = 0.71073 Å, θmax = 29.210°,  

R1 [I >2σ(I)] = 0.0394, wR2 (all data) = 0.0943, GooF = 1.056. 

2.5.9 Synthesis of (η8-Pn†)YCp* (2.8) 

Following a procedure analogous to the preparation of 2.6 starting from YCl3 (153 mg, 

0.784 mmol) afforded 2.8 in 30% yield. X-ray quality crystals were grown from a 

saturated pentane-toluene solution (10:1 v/v) at -35 °C.  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.74 (2H, dd, JYH = 1.1, 3JHH = 3.0 Hz, Pn H), 

5.40 (2H, d, 3JHH = 3.1 Hz, Pn H), 1.96 (15H, s, Cp* CH3), 1.26 (6H, m, iPr CH), 1.15 

(18H, d, 3JHH = 7.2 Hz, iPr CH3), 1.03 (18H, d, 3JHH = 7.3 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 147.1 (d, JYC = 3.2 Hz, Pn bridgehead C), 

131.8 (d, JYC = 1.4 Hz, Pn CH), 119.5 (d, JYC = 1.8 Hz, Pn CH), 103.1 (s, Cp* CCH3), 

98.48 (d, JYC = 1.7 Hz, Pn C-Si), 19.68 (s, iPr CH3), 19.47 (s, iPr CH3), 12.76 (s, iPr 

CH), 11.50 (s, Cp*-CCH3). 

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 1.98. 

EI-MS: m/z = 639 (100%), [M]+. 

Anal. found (calcd. for C36H61Si2Y): C, 67.51 (67.67); H, 9.58 (9.62) %. 

Crystal data for 2.8: C36H61Si2Y, Mr = 638.93, the unit cell parameters are isomorphous 

with 2.6 and 2.7, T = 173 K, Z = 2, Rint = 0.0399, λMo(Kα) = 0.71073 Å, θmax = 26.37°,  

R1 [I >2σ(I)] = 0.0415, wR2 (all data) = 0.0972, GooF = 1.039. 
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3 CHAPTER THREE: Towards Oligomeric and Heteronuclear Pentalene-

Bridged Iron Complexes 

3.1 Introduction 

The discovery of ferrocene,1-3 and the elucidation of its then unprecedented sandwich 

structure4 spurred a frenzy of research interest in the chemistry of the transition metals 

with cyclopentadienyl (= Cp) ligands that has lasted for over 60 years.5,6 This landmark 

discovery was further extended to prepare trivalent lanthanide (Ln) complexes, of the 

general formula Ln(Cp)3.7 Lanthanide elements (Yb, Eu and Sm) with an easily 

accessible +2 oxidation state also form bis(cyclopentadienyl) complexes,8,9 but these are 

polymeric in the solid state, and suffer from low solubility in organic solvents.10 

Increasing steric bulk on the [C5R5]- ligand, most commonly with R = Me (Cp*), 

significantly enhanced the steric and electronic stability of these complexes and allowed 

the isolation of soluble Cp*2Ln(L)x complexes (where L is a donor solvent) for Ln(II) = 

Yb, Eu, Sm.11-13 The use of sterically hindered CpR ligands was beneficial for the 

isolation of the first metallocene complex of Tm(II),14 and the ‘ate’-complexes of 

Dy(II),15 Nd(II),16 and recently for all of the other remaining Ln2+ ions,17-20 except the 

radioactive promethium. 

The bonding in ferrocene and its first row transition metal analogues is well described 

by molecular orbital methods, involving a symmetry adapted linear combination of  

π-orbitals from the two aromatic rings and the metal 3d-orbitals.21,22 In contrast, the 

ligand-metal bonding in Ln(III) sandwich complexes is thought to be more electrostatic 

than covalent.23,24 The picture is less clear for the Ln(II) metallocenes, since the 

electronic properties of the ligand do have a significant influence on their reduction 

potentials and observed reactivity,25,26 and a contribution from the metal 5d orbitals has 

been invoked in the bonding description.27  

As described in chapter one, the pentalene ligand [C8H6]2- (= Pn) has shown ability to 

delocalise electron density between metal centres in anti-bimetallic transition metal 

compounds. The parallels between mononuclear Cp chemistry and bimetallic Pn 

complexes provides a model for investigating the extent of delocalisation of electron 

density in homonuclear anti-bimetallic complexes of the divalent lanthanides.28 As an 

extension of this study, the introduction of a transition metal into a heteronuclear anti-
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bimetallic complex was suggested as a method of probing the d-orbital influence. 

Furthermore because there is a tendancy for the Pn† ligand favour an η8- coordination 

mode over η5- with f-block metals (particularly upon oxidation of Ln2+ to Ln3+, as 

described in chapter two), it was necessary to exploit a strongly η5-coordinating metal 

for heteronuclear complexes, for which iron seemed the rational choice.  

3.2 Iron Bis(Pentalene) Complexes 

The X-ray structure of the homoleptic iron(II) complex Fe(η5-Pn†H)2 (3.1) was 

previously determined by Cloke et al.29 and provided a convenient entry point for these 

synthetic studies. With a view to extending the metal-pentalene chain of 3.1, a strategy 

analogous to that employed by Manriquez et al. was envisaged (Scheme 3.1),30 in which 

deprotonation of the uncoordinated ring of a bound hydropentalenyl ligand would 

provide an opportunity for coordination of the resultant anion to other organometallic 

fragments (MLn). The doubly deprotonated Fe(II) bis(pentalenyl) dianion was targeted, 

with the aim of incorporating two additional MLn units into the metal-pentalene chain in 

one synthetic step.  

 

Scheme 3.1 Proposed route to polymetallic Fe/M-pentalene complexes. 

3.2.1 Synthesis and characterisation of Fe(η5-Pn†H)2 (3.1) 

Compound 3.1 was prepared by reaction of the hydropentalenyl mono-potassium salt 

[K]Pn†H with FeCl2(THF)1.1 in THF at -78 °C which gave a red suspension upon 

warming to room temperature. After pentane work-up a crude red solid was isolated 

which was recrystallised from Et2O at -50 °C to afford 3.1 in 65% yield (Scheme 3.2).  

 

FeFeH

R

-2 H+

Fe

MLn

MLn

-2 [X]-

H

R
2 MLn[X]

R

R R

R

R

R

R

R

R

R

R = SiiPr3



    
80 

 

Scheme 3.2 Synthesis of 3.1. 

 

The 1H NMR spectrum of 3.1 in C6D6 shows two sets of five peaks in ratio ca. 2:1, 

suggesting 3.1 crystallises as a mixture of two products. A similar phenomenon has 

been reported for Katz’s Fe(η5-PnH)2 complex which crystallises as two double-bond 

isomers.31 Analytical methods agreed with the molecular formula of two Pn†H ligands 

and one Fe atom, thus confirming purity and corroborating NMR spectroscopy over the 

existence of two isomers. Variable temperature NMR studies showed that the two 

isomers do not interconvert in toluene-d8 solution at 110 °C. NMR spectral assignments 

(Table 3.1) were verified by recourse to 2D correlation experiments (1H-1H, 13C-1H and 
29Si-1H). 

 

Table 3.1 1H and 29Si{1H} NMR chemical shifts (ppm) in C6D6 for isomers of 3.1. 

Nucleus Assignment Isomer I Isomer II 

Pn† vinylic H 6.63, 6.51 6.59, 6.22 

Pn† aromatic H 4.01, 3.93 4.20, 4.14 

Pn† allylic H 3.58 2.29 

iPr CH 
(overlapping) 1.36 1.36 

δH 

iPr CH3
 1.29, 1.27, 1.14, 

1.04 
1.31, 1.26, 1.10, 

1.03 

allylic SiiPr3 5.50 5.67 
δSi 
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The Pn†H ligand is facially enantiotopic; hence its sandwich complexes would be 

expected to exist, in principle, as different diastereomers. In an idealised conformation 

with the frameworks of the carbocyclic rings eclipsing, there are two possible 

arrangements of the 1,4-SiiPr3 substituents on each ligand; eclipsed and staggered. With 

eclipsed SiiPr3 groups on each ligand three diastereomers are possible (Scheme 3.3), 

two with the SiiPr3 groups on the sp3 carbon of the uncoordinated ring mutually exo and 

endo (S,R and R,S) and one diastereomer that exists as a pair of enantiomers (R,R and 

S,S). A 180° rotation about one Fe−centroid bond would relieve the relative strain 

energy due to the bulky SiiPr3 groups.  

 

 

Scheme 3.3 Possible isomers of 3.1 with eclipsed 1,4-R (= SiiPr3) substituents. The S,S 

stereoisomer has been omitted for clarity. 

 

A further three diastereomers are possible with SiiPr3 groups staggered (in a 

conformation with the two pentalene frameworks eclipsed); again one exo, one endo 

and one chiral (Scheme 3.4). A 180° rotation about one Fe−centroid bond this time 

introduces symmetry to the R,R and S,S diastereomers. 
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Scheme 3.4 Possible isomers of 3.1 with staggered 1,4-R (= SiiPr3) substituents. 

The R,S stereoisomer has been omitted for clarity.  

 

Given that the room temperature 1H NMR spectrum of 3.1 shows five Pn†H ring signals 

per isomer, the two ligands must be related by symmetry over the timescale of the 

experiment, which implies a, b, c, and d as possible structures (highlighted in red in 

Scheme 3.3 and 3.4). It is postulated that the extra strain of the SiiPr3 groups pointing in 

towards the rest of the molecule in an endo conformation would make these isomers 

less favourable energetically. Therefore a and c are proposed as the two isomers 

formed. The stereochemistry of the crystallographically characterised molecule (see 

Section 3.2.3, Figure 3.1) corresponds to that of diastereomer 3.1a, adopting a 

conformation in the solid state with a dihedral angle (ϕ, defined by the angle between 

the mean planes of the Fe atom and the wing-tip C atoms of the two Pn†H ligands, see 

Section 3.2.3, Figure 3.3) of 113.88(7)° that lies between the two idealised 

conformations depicted in Scheme 3.3. Assuming in solution the energy barrier to 

rotation about the metal-centroid bonds is small in comparison with kBT, the two Pn†H 

rings within each isomer are chemically equivalent on the NMR timescale.  
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3.2.2 Synthesis and characterisation of (η5-Pn†H)Fe[η5-Pn†(η5-K{THF}2)] (3.2) 

Facile mono and double deprotonation of Katz’s Fe(η5-PnH)2 complex was achieved 

using n- and t-butyllithium,31 showing that the allylic proton on the uncoordinated ring 

of the hydropentalenyl ligand is relatively acidic. The ligand fragment produced, 

effectively a pentalenyl dianion, would have stability as a fully delocalised 10π electron 

aromatic system. It was proposed the trialkylsilyl-substituted hydropentalenyl ligands in 

3.1 may be relatively more acidic than their unsubstituted equivalents in Fe(η5-PnH)2, 

given that the allylic proton is α- to silicon.32,33 However, 3.1 proved to be surprisingly 

unreactive towards many strong bases, and no reaction was observed with n- or t-

BuLi/TMEDA, KH, K(N{SiMe3}2), Bu2Mg, or Ca(N{SiMe3}2)2. Reaction of 3.1 with 

two equivalents of potassium amide in THF at -78 °C, produced a red-green colour 

upon warming to room temperature. Work-up and recrystallisation from pentane at -50 

°C afforded dark red crystals which were identified by XRD analysis as the mono-

deprotonated species, 3.2 (Scheme 3.5). The molecular structure of 3.2 is discussed in 

Section 3.2.3. 

 

Scheme 3.5 Mono-deprotonation of 3.1. R = SiiPr3. 

Complex 3.2 was found to be extremely air and moisture sensitive and satisfactory 

elemental analysis could not be obtained. Furthermore, the 1H NMR spectrum in  

THF-d8 was complex and could not be assigned unambiguously.  

Subsequent attempts to doubly deprotonate 3.1 using an excess of KNH2 (6 mol 

equivalents) and 18-crown-6 were unsuccessful, yielding complex 3.2 exclusively. 

Hence, it was decided to use 3.2 without prior isolation in attempts to incorporate 

additional organometallic moieties into the chain. 
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3.2.3 X-ray crystallographic studies of 3.1 and 3.2  

The molecular structures of 3.1 (Figure 3.1)29 and 3.2 (Figure 3.2) were determined by 

X-ray crystallography allowing for comparison of their metric parameters (Table 3.2). 

These sandwich structures have very similar geometries around the Fe centre, with 

metal-centroid distances and near linear centroid−metal−centroid angles which are 

consistent with ferrocene and its pentalene analogues that have been previously 

determined by X-ray diffraction studies.34-38  

Removal of an allylic proton from 3.1 to form 3.2 results in a formal negative charge on 

the five membered ring of the coordinated pentalene ligand, to which potassium 

coordinates in an η5- mode. The K−Cring bond lengths for 3.2 lie in the range  

2.943(4) - 3.046(4) Å, which are comparable with potassium cyclopentadienyl 

derivatives such as [K-Cp']n (2.988(8) - 3.074(10) Å).39  

Key structural differences are found in the carbocyclic ligands when comparing 

compounds bearing a Pn†H ligand with one C5-ring that is not coordinated to a metal, 

such as 3.1, with bimetallic complexes bearing a dianionic Pn† ligand, such as 3.2. In 

particular the C6−C7 bond for 3.1 (1.339(3) Å) is significantly shorter than the other 

C−C distances in the pentalene skeleton (1.421(3) - 1.517(3) Å). This is consistent with 

a localised double bond, and similar values are found in previously reported 

hydropentalenyl compounds Fe(η5-PnH)2,34 [Re(CO)3](η5-PnH),40 and (η8-Pn†)Sm 

(η5-Pn†H),41 (dC=C = 1.329(8), 1.377(9) and 1.354(7) Å respectively).  

The C2−C1−Si1 bond angles for 3.1 and 3.2 (126.85(18)° and 125.0(2)° respectively) 

are consistent with a near planar C1 in the η5-coordinated ring of both Pn†H and Pn† 

ligands. This contrasts with the C7−C8−Si2 angles (115.08(17)° and 125.3(3)° 

respectively), which are significantly smaller for 3.1 illustrating the near tetrahedral 

geometry of the allylic C8 in the uncoordinated ring of these complex. The allylic 

protons H8 and H27 in 3.1 are arranged endo to the Fe centre and are sterically shielded 

by the exo SiiPr3 groups, which is a possible reason for the difficulty of deprotonation at 

these positions with strong bases such as tBuLi. Both Pn† and Pn†H ligands serve as 5 

electron donors (L2X) to each metal centre in η5-mode, but in the Pn†H case the π-

electron density is only delocalised around one half of the pentalene skeleton.31,42 This 

is reflected in shorter Fe−Ct1 distances and smaller Δ values for 3.1 compared with 3.2.  
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Figure 3.1 Displacement ellipsoid plot (50% probability) of 3.1.29  

H atoms (except H8 and H27) and iPr groups omitted for clarity. 

 

 

Figure 3.2 Displacement ellipsoid plot (50% probability) of 3.2.  

H atoms (except H27) and iPr groups omitted for clarity.  
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Table 3.2 Selected distances (Å), angles (°) and parameters (defined in Figure 3.3) for 

3.1 and 3.2. Ct1 and Ct3 correspond to the η5-centroids of the Pn1 and Pn2 rings 

respectively. 

Parameter 3.1 3.2 

Fe−C1 2.086(2) 2.085(3) 

Fe−C2 2.022(2) 2.024(4) 

Fe−C3 2.051(2) 2.065(5) 

Fe−C4 2.098(2) 2.173(4) 

Fe−C5 2.094(2) 2.120(3) 

ϕ 113.9 95.7 

ΔFe-Ct1  0.043 0.089 

Fe−Ct1 1.6731(11) 1.6936(5) 

Fe−Ct3 1.6719(10) 1.6756(5) 

Ct1−Fe−Ct3 173.48(5) 170.83(8) 

C1−C2 1.451(3) 1.454(5) 

C2−C3 1.429(3) 1.429(5) 

C6−C7 1.339(3) 1.384(6) 

C7−C8 1.517(3) 1.423(5) 

av. C−Cring  1.444(3) 1.436(5) 

C2−C1−Si1 126.85(18) 125.0(2) 

C7−C8−Si2 115.08(17) 125.3(3) 

Fe…K - 4.773 

 

 

Figure 3.3 

 

R

R

R

R

!

M
 " = #(M-Cbridge)/2 - #(M-Cwing)/3

Ring slippage (")Dihedral angle (!)



    
87 

3.2.4 Reactions of 3.2 

Taking inspiration from the quadruple-decker iron-pentalene complexes of Manriquez 

et al., two equivalents of the monoanionic 3.2 were reacted with one equivalent of a 

divalent metal salt, MX2, in an attempt to link two bis(pentalenyl)iron fragments via a 

divalent metal (Scheme 3.6). Possible candidates for M2+ included Fe and Yb, since 

they would give diamagnetic products. 

 

 

Scheme 3.6 Proposed route to trimetallic complexes. 

 

A solution of 3.2 in THF, generated in situ, was added dropwise to a suspension of 

FeCl2(THF)1.1 in THF at -78 °C. The reaction mixture was allowed to warm to room 

temperature and stir for five days, resulting in a red solution and the precipitation of a 

dark solid. Unfortunately after work-up the only constituent of the resultant crude 

solution was 3.1 (present as a mixture of isomers, 3.1a and 3.1c inter alia). Further 

work was carried out in an attempt to use 3.2 to incorporate further organometallic 

fragments, by reaction with divalent metal salts (MX2 = Fe(acac)2 and YbI2) and mono-

Cp* complexes (Cp*MX = Cp*Fe(acac), Cp*FeCl(TMEDA)). In all cases the products 

isolated after work-up were identified by EI-MS and NMR as Fe(η5-Pn†H)2, present as 

mixture of three diastereomers. Clearly the decomposition of 3.2 to 3.1 in these 

reactions involves protonation of a bound Pn† ligand. The fact that 3.1 is produced as a 

mixture of diastereomers suggests protonation of the planar pentalene ring occurs in a 

stereochemically undefined process, and therefore likely to arise from an intermolecular 

decomposition reaction or by solvent activation.  
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3.3 Mixed-Sandwich Iron Complexes 

3.3.1 Synthesis and characterisation of Cp*Fe(η5-Pn†H) (3.3) 

An alternative route to heterobimetallics was explored via mixed-sandwich complexes, 

with Pn†H and Cp* ligands, which possess higher symmetry allowing for more 

straightforward interpretation of NMR spectra and potentially avoid the formation of 

isomers complicating the situation. Synthesis of 3.3 was achieved by reaction of 

[K]Pn†H with Cp*FeCl(TMEDA) in THF, which following work-up, was isolated as 

orange crystals in 81% yield (Scheme 3.7).  

 

Scheme 3.7 Synthesis of 3.3. 

Mass spectrometry and elemental analysis confirmed the identity and purity of the 

product. 1H, 13C{1H} and 29Si{1H} NMR spectroscopy showed the existence of a single 

species and the spectra consisted of signals corresponding to the proposed formula. The 

latter was ultimately confirmed by single crystal a XRD study which agrees with 

solution NMR spectroscopy. The molecular structure and metric parameters are 

discussed in Section 3.3.3. 

3.3.2 Synthesis and characterisation of [FeCp*(µ-η5:η5-Pn†)][K] (3.4)  

With a view to extending the metal-pentalene chain of 3.3, the ‘building block’ 

synthetic approach of Manriquez et al. was again pursued, in which deprotonation of the 

uncoordinated ring of a bound Pn†H ligand would provide an opportunity for 

coordination of the resultant anion to other metal units. However, as found with the 

homoleptic analogue 3.1, complex 3.3 was unreactive with many strong bases, 

including tBuLi, MeLi, NaNH2, MeK and KH. Given that Manriquez et al. reported that 

deprotonation of the unsubstituted complex Cp*Fe(η5-PnH) is facile with nBuLi, it is 

HiPr3Si

Pr3Si

Cp*FeCl(TMEDA)       
                                  

THF                             
- 78 ºCi

[K]+ Fe

SiiPr3

H

Pr3Sii

3.3



    
89 

postualted that the bulky exo SiiPr3 group hinders deprotonation of H8 (H8 in Section 

3.3.3, Figure 3.4).  

Reaction of 3.3 with an excess of KNH2 in THF-d8 resulted in a colour change from 

orange to dark red over 4 days. 1H NMR spectroscopy of the red solution after filtration 

revealed complete disappearance of the five pentalene ring signals for 3.3 and the 

appearance of a new set of peaks, including four doublets in equal ratio which were 

assigned to an aromatic pentalenyl ligand. 29Si{1H} NMR showed two peaks indicating 

an asymmetric Pn† ring and the formulation of a deprotonated species  

[Cp*Fe(µ-η5:η5-Pn†)][K] (3.4) was proposed. 1H, 13C and 29Si NMR assignments were 

corroborated through the use of two dimensional 1H-1H, 13C-1H and 29Si-1H correlation 

experiments. Single crystals of 3.4 suitable for X-ray studies were grown from Et2O and 

the molecular structure is discussed in Section 3.3.3. Elemental analysis of crystalline 

samples of 3.4 gave unsatisfactory carbon values (ca. 0.5% higher than calculated), 

presumably due to partial decomposition. 

The anion-cation pair 3.4 is extremely sensitive to air and moisture, readily 

decomposing to afford, inter alia, complex 3.3 unless the most stringent precautions are 

taken with all glassware (flame-dried under vacuum before use) and solvents (THF and 

benzene pre-dried and distilled from Na/K alloy before use). Furthermore, solutions of 

3.4 in THF are unstable upon solvent removal in vacuo; a J. Young NMR tube 

containing a spectroscopically pure sample of 3.4 in THF-d8 was carefully exposed to 

dynamic vacuum, taken to dryness, and then redissolved in C6D6. The 1H NMR 

spectrum of the resulting solution showed the presence of 3.3 with the appearance of 

five new ring H signals, corresponding to a previously unidentified decomposition 

product, 3.5, in ca. 25% conversion. Compound 3.5 was separated from the reaction 

mixture by toluene extraction and recrystallisation from Et2O. X-ray diffraction analysis 

identified these green crystals as Cp*Fe(η5-C8H5{SiiPr3-1,4}2) (3.5), the double bond 

isomer of 3.3 (Section 3.3.3, Figure 3.6). The 1H NMR spectrum of 3.5 showed two 

allylic H signals at 2.93 and 2.67 ppm, with a geminal coupling (2JHH = 21.5 Hz) 

corroborating the migration of the C=C double bond. Complex 3.5 was further 

characterised by 13C{1H} and 29Si{1H} NMR spectroscopy, mass spectrometry and 

elemental analysis. The deprotonation of mixed-sandwich iron complex 3.3 to form 3.4, 

and the subsequent decomposition pathway of the latter are summarised in Scheme 3.8. 
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Scheme 3.8 Synthesis and decomposition of 3.4. 

3.3.3 X-ray crystallographic studies of 3.3, 3.4 and 3.5  

As found for 3.1 and 3.2, there are variations in ligand bond lengths and angles of the 

complexes with Pn†H ligands (3.3 and 3.5) compared with Pn† (3.4). Comparing 3.5 and 

3.3, which can be considered as isomers of Cp*Fe(η5-Pn†H), reveals a decrease in 

distance C7−C8 of 0.091 Å and an elongation along C6−C7 of 0.059 Å, which is 

consistent with the migration of the double bond. Inspection of the metal-centroid 

distances shows that the mono-metallated Pn†H ligand in 3.3 and 3.5 allows for closer 

coordination of the Fe centre compared with the di-metallated Pn† ligand in 3.4. This 

situation is also observed between the two ligands in 3.2 and other bimetallic iron 

complexes, [Cp*M](µ-η5:η5-Pn)[Fe(PnH)] where M = Fe or Co.37,36  

 

 

Figure 3.4 Displacement ellipsoid plot (50% probability) of 3.3.  

H atoms (except H8) and iPr groups omitted for clarity.  
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Figure 3.5 Displacement ellipsoid plot (50% probability) of 3.4.  

H atoms and iPr groups omitted for clarity. 

 

 

Figure 3.6 Displacement ellipsoid plot (50% probability) of 3.5.  

H atoms (except H6a and H6b) and iPr groups omitted for clarity.  
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Table 3.3 Selected distances (Å), angles (°) and parameters (Figure 3.3) for 3.3, 3.4 and 

3.5. Ct1 and Ct3 correspond to the η5-centroids of Pn and Cp* rings respectively. 

Parameter 3.3 3.4 3.5 

Fe−C1 2.101(3) 2.088(4) 2.079(3) 

Fe−C2 2.043(3) 2.014(4) 2.029(3) 

Fe−C3 2.050(3) 2.052(4) 2.057(3) 

Fe−C4 2.079(3) 2.183(4) 2.136(3) 

Fe−C5 2.069(3) 2.135(4) 2.091(3) 

ΔFe-Ct1 0.009 0.108 0.059 

Fe−Ct1 1.6700(16) 1.6937(18) 1.6799(18) 

Fe−Ct3 1.6667(17) 1.6468(18) 1.701(2) 

Ct1−Fe−Ct3 175.53(6) 173.91(11) 176.56(8) 

C1−C2 1.446(4) 1.457(6)  1.455(4) 

C2−C3 1.426(4) 1.436(6) 1.419(5) 

C6−C7 1.350(4) 1.393(6) 1.420(4) 

C7−C8 1.504(4) 1.432(6) 1.409(4) 

av. C−Cring 1.443(4) 1.440(6) 1.436(5) 

C2−C1−Si1 122.2(2) 121.2(3) 125.0(2) 

C7−C8−Si2 113.3(3) 122.4(3) 123.1(3) 

Fe…K - 4.834 - 

 

The K atom is closer to the Pn† ring in 3.4 than in 3.2, such that it should not be 

considered as a discrete [LFePn†]-[K]+ ion pair. Interestingly, the K atom also has close 

interactions with the Cp* ring of another molecule in the lattice, with K−C distances in 

the range 3.077(4) - 3.285(4) Å. An extended ellipsoid plot (Figure 3.7) shows that 3.4 

is an organometallic polymer in the solid state. 
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Figure 3.7 ORTEP view of the unit cell of 3.4 (50% ellipsoids).  

H atoms and iPr groups removed for clarity.  

3.3.4 Synthesis and characterisation of [FeCp*]2(µ:η5,η5-Pn†) (3.6) 

Despite its extreme sensitivity, Fe/K complex 3.4 presents a potentially useful precursor 

for other Fe/M' anti-bimetallics or for introducing additional substituents to the Pn† 

ligand. As an initial proof of concept, the synthesis of a homonuclear bimetallic from 

3.4 was attempted. 

To a solution of 3.4 in THF-d8, generated from an equimolar mixture of 3.3 and 

benzylpotassium, was added one equivalent of Cp*FeCl(TMEDA). The tube was 

shaken and a colour change to brown was observed after 4 h with the appearance of a 

brown solid, which was removed by filtration. 1H NMR spectroscopy of the filtrate 

showed complete disappearance of the four aromatic signals of 3.4, and appearance of 

two new doublets at 4.67 and 3.69 ppm, assigned to [Cp*Fe]2(µ:η5,η5-Pn†) (3.6) in ca. 

40% conversion by integration. Additional products identified by 1H NMR were 

Cp*Fe(η5-Pn†H) isomers 3.3 and 3.5 resulting from adventitious protonation of 3.4. 

Despite the presence of additional decomposition products, the stepwise synthesis of 

homonuclear bimetallic 3.6 (Scheme 3.9, top) from the deprotonated species 3.4 

presents a proof of concept, which was then expanded as a potential route towards 

trimetallic and heteronuclear organoiron complexes. 
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The homonuclear bimetallic complex 3.6 was independently synthesised in a single step 

by reaction of two equivalents of Cp*FeCl(TMEDA) with [K]2Pn† in THF (Scheme 3.9, 

bottom), and isolated after work-up as dark green crystals in 34% yield.  

 

Scheme 3.9 Synthetic routes to 3.6. 

Analytical and spectroscopic measurements were consistent with the proposed 

formulation of 3.6, and the molecular structure of 3.6 was confirmed by a single crystal 

XRD study (Figure 3.8). 3.6 was poorly soluble in aliphatic and aromatic hydrocarbons 

and polar solvents (MeCN, tBuOMe, and Et2O) at room temperature, despite the 

precedent for improved solubility of complexes with SiiPr3 substituted pentalene 

ligands.43 However, 3.6 was sufficiently soluble in THF-d8 for its 1H NMR to be 

identified and allowed for its electrochemistry to be studied in this solvent (see Section 

3.4). Multinuclear (1H, 13C, 29Si) NMR spectra of 3.6 were consistent with a 

centrosymmetric structure on the NMR timescale (see chapter two, Table 2.3). The Pn† 

ligand exhibits metallocene-like µ-η5:η5 coordination of the two metal centres in 3.6, 

but with the Fe atoms more distant from the bridgehead carbon atoms (C4 and C4') than 

the three wingtip carbons (C1, C2 and C3), as quantified by the large ring-slippage (Δ) 

value of 0.128 Å for this complex. A similar slipping distortion has been reported in 

several indenyl-44 and pentalenyl-37,45 metal complexes. This has been attributed in the 

latter to a maximisation of interaction of the metal with the π-electron density of the 

fused ring system, which is delocalised around its perimeter. Homo-bimetallic 3.6 

shows the longest average C−C ring distances (1.454(4) Å) of the complexes in this 

work, and in general a smaller range of ring C−C distances are found in those 

complexes bearing the aromatic Pn† ligand. For comparison the ring C−C distances in 

Fe/K hetero-bimetallic complexes 3.2 and 3.4 are intermediate between these extremes 

of ‘aromatic’ and ‘localised’ character.  
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Figure 3.8 Displacement ellipsoid plot (50% probability) of 3.6. H atoms and iPr groups 

omitted for clarity. Primed atoms are generated by symmetry. 

 

Table 3.4 Selected distances (Å), angles (°) and parameters (Figure 3.3) for 3.6. Ct1 and 

Ct3 are the η5-centroids of the Pn and Cp* rings respectively. 

Parameter 3.6 Parameter 3.6 

Fe−C1 2.123(3) Fe−Ct1 1.7193(13) 

Fe−C2 2.033(3) Fe−Ct3 1.7064(13) 

Fe−C3 2.045(3) Ct1−Fe−Ct3 173.36(7) 

Fe−C4 2.195(3) C1−C2 1.456(4) 

ΔFe-Ct1 0.128 C2−C3 1.425(4) 

Fe…Fe 4.132 C2−C1−Si1 125.4(2) 
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3.3.5 Towards oligomeric and heteronuclear pentalene-bridged complexes 

Following the successful synthesis of 3.6, the same methodology was employed in the 

attempted synthesis of heteronuclear Fe/Ln pentalene complexes, Cp*Fe(µ-Pn†)LnCp* 

(Ln = Yb, Sm). As a general procedure, a THF solution of 3.4 was prepared in situ and 

treated with one equivalent (per Ln) of half-sandwich complexes [Cp*Ln(µ-I){THF}]2 

or Cp*Ln(BPh4). The reaction mixture was then filtered and analysed by 1H NMR 

spectroscopy and mass spectrometry. In each case, monometallic Cp*Fe(η5-Pn†H) 

isomers 3.3 and 3.5 were the sole products identified in the 1H NMR spectra, and EI-

MS showed a parent ion at m/z = 607 (100%) with no higher peaks assignable to 

bimetallic complexes.  

The deprotonated complex 3.4 is clearly unsuitable for the synthesis of heterobimetallic 

Fe/Ln pentalene complexes via salt metathesis reactions with Cp*Ln(II) reagents. This 

may be rationalised by inspecting the DFT structure of unsubstituted analogue 

[CpFe(η5-Pn)]-, reported by Saillard et al.46 The net charges on the uncomplexed part of 

the pentalene ring in this model complex do not show any significant carbanionic 

character (Figure 3.9), which is consistent with it being less nucleophilic at these 

positions. However calculated charges are method dependent (it is assumed Saillard et 

al. employed Mulliken charges, although details are not specified in their report)46 and 

other computational methods give C6 and C8 as the most negatively charged of the Pn 

ligand.47 The MOs of [CpFe(η5-Pn)]- calculated by Green (see appendix A1.3.9 for 

computational methods) show a HOMO which has approximately equal ligand:metal 

character (Figure 3.10, left).  

 

Figure 3.9 Ball and stick diagram of calculated structure of [CpFe(η5-Pn)]- constructed 

from coordinates published by Saillard et al.46 Net charges on C atoms shown in blue.  
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The uncoordinated ring resembles the 'allyl' functionality of Pn and has an out-of-phase 

interaction with the dxy orbital of Fe. This suggests a repulsive interaction between Fe 

and the uncoordinated allyl fragment, which is consistent with the larger ring slippage 

in the molecular structure of 3.4 relative to 3.3 (Δ = 0.108 and 0.009 respectively). 

 

 

Figure 3.10 Isosurfaces for selected orbitals of [CpFe(η5-Pn)]-.47 

 

It must be emphasied that these DFT modelled structures do not take into account the 

SiiPr3 substituent on the uncoordinated ring in 3.4, which is likely to obstruct the 

approach of a large Cp*Ln(II) electrophile. Furthermore 3.4 exists as an oligomer in the 

solid state and if this structure persists to some extent in solution, it may provide an 

additional kinetic barrier to substitution reactions with Cp*LnX.  

3.4 Electrochemical Studies 

The electrochemistry of the Fe(II) complexes in THF was studied by cyclic 

voltammetry (CV) to gain insight into the electron donating properties of silylated 

pentalene ligands, and their ability to delocalise charge over two metal centres in anti-

bimetallic complexes. The use of [nBu4N][B(C6F5)4] as the supporting electrolye 

resulted in better resolution CV data compared with [nBu4N][PF6], due to its lower ion-

pairing capabilities (spherical diameter [B(C6F5)4]- = 10 Å; [PF6]- = 3.3 Å)48 which is 

beneficial for the study of multi-electron processes with positively charged analytes.49  
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Complexes 3.1 and 3.3 (Figure 3.11) each show a single diffusion controlled redox 

process assigned to the Fe(III)/Fe(II) couple. Repetitive potential cycling over 

electrochemical events revealed that the voltammetric responses for the oxidative and 

reductive waves are stable, while varying the scan rate again revealed that the 

voltammetry was under diffusion control and that no fouling or adsorption onto the 

electrode surface was occurring. In each case the ratio of oxidative and reductive peak 

currents (ipa/ipc) is close to unity, signifying a quasi-reversible process. The peak-to-

peak separation (ΔEpp) is comparable to that for ferrocene under the same conditions 

(ca. 100 mV), showing that only one electron is being transferred. The ideal ΔEpp for a 

fully reversible single electron transfer at 298 K is 59 mV,50 however this discrepancy is 

attributed to Ohmic losses (iR drop) in THF rather than sluggish electron transfer 

kinetics.  

 

Figure 3.11 Overlaid CV scans (20 cycles) for 3.3 in THF / 50 mM [nBu4N][B(C6F5)4], 

scan rate 100 mV s-1.  

 

The mid-peak potential (E½ = {Epa + Epc}/2) of substituted ferrocene complexes shift to 

more negative values as the electron donor properties of the ligand increases.51,52 For 

example the E½ of decamethylferrocene under these conditions is -0.52 V (vs FeCp2
+/0, a 

convention which is assumed for all potentials quoted henceforth),48 due to the electron 

donating (+I effect) of the methyl substituents on the Cp* ring. The E½ for 3.1 and 3.3 

are -0.21 and -0.42 V respectively, implying that the electron donating properties of the 

η5- ligands to the Fe(II) centre increases in the sequence Cp < Pn†H < Cp* (Table 3.5). 

In this context the η5-Pn†H ligand can be viewed as one cyclopentadienyl ring with one 

silyl and two alkyl substituents, leading to an increased +I effect with respect to Cp.  
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The electrochemistry of 3.4 was of interest in terms of the bonding in the anionic 

[Cp*Fe(η5-Pn†)]- fragment, for comparison with the DFT calculations on model systems 

reported by Saillard et al.46 These researchers predicted [CpFe(η5-Pn)]- to be stable due 

to its large HOMO-LUMO gap (1.68 eV), isoelectronic structure with ferrocene (18 VE 

on Fe) and lack of strong carbanionic character on the uncomplexed part of the 

pentalene ring (Section 3.3.5, Figure 3.9). In contrast, the [CpFe(η5-Pn)]+ cation, was 

predicted to be highly reactive (HOMO-LUMO gap = 0.68 eV). Inspection of the 

LUMO revealed that the electron deficiency is shared between the Fe centre and the two 

'wing-side' carbon atoms of the pentalene ligand (C4 and C6 in the labeling convention 

outlined in chapter one), making it susceptible to hydride attack at these positions to 

give hydropentalenyl complexes, which have been experimentally observed.31,34 

Therefore a Lewis structure with an 18-electron count on Fe was preferred (3.IV and 

3.IV' in Scheme 3.10), resulting in a formally neutral pentalene ligand made of an 

anionic aromatic C5-ring linked to an allylic cation. 

 

 

Scheme 3.10 The canonical Lewis formulae for [CpFe(η5-Pn)]+.46 

 

The CV of 3.4 (Figure 3.12) shows two quasi-reversible one electron processes at -1.88 

and -0.35 V. In the context of the DFT bonding interpretation in the aforementioned 

model systems,46 these two successive oxidation processes to [Cp*Fe(η5-Pn†)]0 and 

[Cp*Fe(η5-Pn†)]+ may be considered as originating from orbitals that have both metal 

and ligand character, rather than purely metal based processes corresponding to 

Fe(II)/Fe(III) and Fe(III)/Fe(IV) oxidations respectively. DFT analysis by Green 

revealed that removal of two electrons from the [CpFe(η5-Pn)]- HOMO (Section 3.3.5, 

Figure 3.10) resulted in the 'allyl' portion of the uncoordinated ring becoming weakly 

bonding with the Fe orbitals.47 This was accompanied by a 0.17 Å shift in Fe position 

towards the 'wing-side' carbon atoms (C6 and C8) in the calculated structure of the 

Fe
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[CpFe(η5-Pn)]+ cation (see appendix A2 for MOs). Further experiments such as in situ 

UV-Vis spectroelectrochemistry would be required to determine the extent to which the 

two oxidations of 3.4 are metal or ligand based. The reversibility of the two processes 

suggests that the [Cp*Fe(η5-Pn†)]+ cation is stable on the experimental timescale, 

however due to time constraints the synthesis of this complex on a preparative scale was 

not pursued in this study. 

 

Figure 3.12 Overlaid CV scans (10 cycles) for 3.4 in THF / 50 mM [nBu4N][B(C6F5)4], 

scan rate 100 mV s-1.  

Table 3.5 Electrode potentials (E½) vs FeCp2
+/0 in THF/[nBu4N][A]. 

  Compound E½ / V electrolyte [A]- ref 

FeCp2 0.00 [B(C6F5)4] by definition 

Fe(η5-Pn†H)2 (3.1) -0.28 [B(C6F5)4] this work 

Cp*Fe(η5-Pn†H) (3.3) -0.41 [B(C6F5)4] this work 

FeCp*2 -0.52 [B(C6F5)4] 48 
[Cp*Fe(η5-Pn†)][K] (3.4) 

 
(I) -1.88 
(II) -0.35 

[B(C6F5)4] this work 

[Cp*Fe]2(µ-Pn†) (3.6) (I) -0.41 
(II) +0.45a 

[B(C6F5)4] this work 

[Cp*Fe]2(µ-Pn) (I) -0.84b 
(II) +0.01b 

[ClO4] 53 

a Irreversible anodic process. 

b Converted using E½(FeCp2
+/0) = 0.53 V vs SCE in THF/[nBu4N][ClO4].54 
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As outlined in chapter one, CV allows an initial investigation into the stability of the 

mixed-valence states in bimetallic complexes e.g. [FeII−FeIII]+, and enables the 

appropriate chemical redox agent to be chosen for their large-scale preparation. The CV 

of 3.6 (Figure 3.13) shows two successive one-electron transfers: the first redox process 

centred at E½(1)
 = -0.41 V was stable over 20 cycles, and is assigned to a quasi-reversible 

oxidation of 3.6 the mixed valence FeII−FeIII mono-cation. The second process was an 

irreversible oxidation peak at Epa
(2) = +0.45 V indicating that the FeIII−FeIII di-cation is 

not stable under the conditions and timescale of the experiment. The CV was recorded 

at a potential scan rate of 100 mV s-1, and using faster scan rates up to 1 V s-1 did not 

improve the irreversibility of this second electrochemical event.  

 

 

Figure 3.13 Overlaid CV scans (5 cycles) for 3.6 in THF / 50 mM [nBu4N][B(C6F5)4], 

scan rate 100 mV s-1.  

 

The potential separation between the two electrochemical events, ΔE(2)-(1)
 = 0.86 V, is 

consistent with the strong electronic interaction between the Fe centres and extensive 

delocalisation in the mixed-valence state, of the same magnitude as that recorded for the 

unsubstituted pentalene analogue [Cp*Fe]2(µ-Pn) in THF (ΔE½ = 0.85 V).53 However 

the E½ values are notably different for [Cp*Fe]2(µ-Pn) and 3.6 (Table 3.5), which is 

presumably due to the different supporting electrolytes used ([nBu4N][ClO4] in the 

former case), as the electron density at the Fe(II) centres are expected to be similar for 

these complexes. Preliminary redox experiments on a preparative scale suggested that 

3.6, like [Cp*Fe]2(µ-Pn), is oxidised by a stoichiometric amount of [FeCp2][BF4] in 
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THF to form the mixed-valence species [3.6][BF4]. However in the interest of time, and 

the wealth of homo-bimetallic iron complexes already present in the literature, these 

experiments were not pursued.  

3.5 Conclusions  

In these studies towards oligomeric and heteronuclear organometallic complexes, a total 

of six new Fe(II) compounds incorporating silylated pentalene ligands have been 

synthesised and characterised. A combination of NMR spectroscopic and single crystal 

XRD methods were used to elucidate the different isomers that form in the case of the 

homoleptic Pn†H complex 3.1. Subsequent synthetic studies showed that 3.1 could be 

singly deprotonated to form the mono-potassium salt 3.2, however the latter was 

unsuitable as a synthon for incorporating further metal fragments into the chain, and 

instead underwent decomposition reactions to a mixture of isomers. The mixed-

sandwich Pn†H/Cp* complex 3.3, formed as a single isomer, was synthesised as a more 

symmetrical precursor to trimetallic and heteronuclear complexes. Complex 3.3 could 

also be deprotonated to form potassium salt 3.4, which shows an intriguing polymeric 

stucture in the solid state. Compound 3.4 was utilised in the stepwise synthesis of 

homonuclear bimetallic 3.6, albeit in poor yield, but ultimately 3.4 also proved 

unsuitable for the synthesis of trimetallic or heterobimetallic Fe-Ln(II) complexes.  

Electrochemical studies were used to quantify the relative electron donating ability of 

the η5- ligands to the Fe(II) centre, and Pn†H was found to be more electron donating 

than Cp but less than Cp* ligands. CV of the anion 3.6 revealed two oxidation 

processes, suggesting the [Cp*Fe(Pn†H)]+ cation has some stability on the experimental 

timescale but further work is required to isolate this species. The difference in redox 

potentials between centres bridged by the Pn† ligand in 3.6, was of a similar order to 

that of found by Manriquez et al. using Pn, however the second oxidation process for 

3.6 was irreversible. The conclusion of this work is that the Pn† ligand is not as suitable 

for the synthesis of extended Fe 'nanowires' as was envisaged. 
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3.6 Experimental Details for Chapter Three  

3.6.1 Synthesis of Fe(η5-Pn†H)2 (3.1) 

 [K]Pn†H (1.60 g, 3.37 mmol) in THF (20 mL) was added dropwise to a suspension of 

FeCl2(THF)1.1 (0.45 g, 2.18 mmol) in THF (20 mL) while stirring at -78 °C; the 

resulting mixture was then allowed to warm to room temperature and stirred overnight. 

The volatiles were removed under reduced pressure, and the products extracted into 

pentane (3 x 20 mL) and filtered through Celite. The filtrate was stripped to dryness to 

afford a crude red solid. 3.1 was recrystallised from a saturated Et2O (20 mL) solution at 

-50 °C as dark red crystals which were washed with pentane at -78 °C and dried in 

vacuo.  

Yield: 1.26 g (65% with respect to FeCl2(THF)1.1).  

Major isomer 1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.63 (2H, dd, 3JHH = 5.3, 2.2 Hz, 

Pn vinylic H), 6.51 (2H, dd, 3JHH = 5.3, 4JHH = 1.6 Hz, Pn vinylic H), 4.01 (2H, d, 3JHH 

= 1.8 Hz, Pn aromatic H), 3.93 (2H, d, 3JHH = 1.8 Hz, Pn aromatic H), 3.58 (2H, 

apparent t, 3JHH = 2.2 Hz, Pn allylic H), 1.36 (12H, m, iPr CH), 1.29 (18H, br, iPr CH3), 

1.27 (18H, d, 3JHH = 7.1 Hz, iPr CH3), 1.14 (18H, br, iPr CH3), 1.04 (18H, br, iPr CH3). 

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 138.48 (Pn vinylic C), 129.80 (Pn vinylic 

C), 102.76 (Pn bridgehead C), 99.42 (Pn bridgehead C), 78.46 (Pn aromatic C), 68.99 

(Pn aromatic C), 59.99 (Pn aromatic C-Si), 36.20 (Pn allylic C), 19.78 (iPr CH), 19.73 

(iPr CH), 19.54 (iPr CH), 19.29 (iPr CH), 12.68 (iPr CH3), 12.04 (iPr CH3).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 5.50 (allylic Si), 5.22 (aromatic Si).  

Minor isomer 1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.59 (2H, dd, 3JHH = 5.2, 4JHH = 

1.1 Hz, Pn vinylic H) 6.22 (2H, dd, 3JHH = 5.2, 2.3 Hz, Pn vinylic H), 4.20 (2H, d, 3JHH 

= 1.7 Hz, Pn aromatic H), 4.14 (2H, d, 3JHH = 1.7 Hz, Pn aromatic H), 2.29 (2H, 

apparent t, 3JHH = 2.2 Hz, Pn allylic H), 1.36 (12H, m, iPr CH), 1.31 (18H, br, iPr CH3), 

1.26 (18H, d, 3JHH = 7.1 Hz, iPr CH3), 1.10 (18H, br, iPr CH3), 1.03 (18H, br, iPr CH3). 

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 137.36 (Pn vinylic C), 125.88 (Pn vinylic 

C), 102.03 (Pn bridgehead C), 98.26 (Pn bridgehead C), 78.13 (Pn aromatic C), 64.68 

(Pn aromatic C), 59.53 (Pn aromatic C-Si), 26.51 (Pn allylic C), 19.62 (iPr CH), 19.45 

(iPr CH), 19.20 (iPr CH), 12.75 (iPr CH3), 12.27 (iPr CH3).  
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29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 5.67 (allylic Si), 4.58 (aromatic Si).  

EI-MS: m/z = 887 (100%), [M]+.  

Anal. found (calcd. for C52H94FeSi4): C, 70.48 (70.37); H, 10.60 (10.68) %.  

Crystal data for 3.1: C52H94FeSi4, Mr = 887.48, triclinic, space group P-1, red prism, a = 

13.7619(4) Å, b = 14.2017(4) Å, c = 14.2557(3) Å, α = 89.584(2)°, β = 87.110(2)°, γ = 

71.362(1)°, V = 2636.58(12) Å3, T = 173 K, Z = 2, Rint = 0.060, λMo(Kα) = 0.71073 Å, 

θmax = 27.09°, R1 [I >2σ(I)] = 0.051, wR2 (all data) = 0.126, GooF = 1.017. 

3.6.2 Synthesis of (η5-Pn†H)Fe[η5-Pn†(η5-K{THF}2)] (3.2) 

Pre-cooled THF (-78 °C, 20 mL) was added to an ampoule containing a solid mixture of 

3.1 (48 mg, 0.07 mmol) and KNH2 (8 mg, 0.14 mmol) at -78 °C. The resulting 

suspension was stirred at -78 °C for 30 min, then allowed to warm to room temperature 

and stir for 12 h yielding a red-green solution. The volatiles were removed under 

reduced pressure and the resulting solids extracted into pentane (20 mL) and filtered. 

Concentration of the filtrate and subsequent cooling to -50 °C yielded dark red crystals 

of 3.2 suitable for XRD analysis.  

Yield: 39 mg (52% with respect to 3.1).  

1H NMR (THF-d8, 399.5 K, 303 K, selected data): δH 6.92 (1H, br s, Pn H), 6.81 (1H, d, 
3JHH = 3.4 Hz, Pn H), 6.58 (1H, d, 3JHH = 3.7 Hz, Pn H), 5.48 (1H, d, 3JHH = 3.7 Hz, Pn 

H), 5.39 (1H, br d, 3JHH = 3.6 Hz, Pn H), 5.22 (1H, d, 3JHH = 3.4 Hz, Pn H), 4.74 (1H, br 

s, Pn H), 4.39 (1H, br d, 3JHH = 1.6 Hz, Pn H), 3.41 (1H, br d, 3JHH = 2.0 Hz, Pn H), 

1.37 (12H, m, iPr CH), 1.23 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.00 (18H, d, 3JHH = 7.4 

Hz, iPr CH3), 0.97 (18H, d, 3JHH = 7.5 Hz, iPr CH3), 0.93 (9H, d, 3JHH = 7.3 Hz, iPr 

CH3). 

 13C{1H} NMR (THF-d8, 100.5 MHz, 303 K, selected data): δC 138.2 (Pn C), 132.8 (Pn 

C), 122.1 (Pn C), 100.5 (Pn C), 98.79 (Pn C), 78.18 (Pn C), 75.51 (Pn C), 73.86 (Pn C), 

71.27 (Pn C), 54.24 (Pn C), 43.20 (Pn C), 19.74 (iPr CH3), 19.72 (iPr CH3), 19.69 (iPr 

CH3), 19.64 (iPr CH3), 19.57 (iPr CH3), 19.55 (iPr CH3), 19.49 (iPr CH3), 19.44 (iPr 

CH3), 13.04 (iPr CH), 13.01 (iPr CH), 12.98 (iPr CH), 12.83 (iPr CH). 

29Si{1H} NMR (THF-d8, 79.4 MHz, 303 K, selected data): δSi 8.53, -2.74.  
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EI-MS: No volatility. 

Anal. found (calcd. for C60H107FeKO2Si4): C, 70.48 (67.49); H, 10.60 (10.10) %.  

Crystal data for 3.2: C60H107FeKO2Si4, Mr = 1069.78, triclinic, space group P-1, purple 

block, a = 17.2509(3) Å, b = 18.7591(4) Å, c = 21.6908(4) Å, α = 66.853(1)°, β = 

73.831(1)°, γ = 82.968(1)°, V = 6198.4(2) Å3, T = 120 K, Z = 4, Rint = 0.068, λMo(Kα) = 

0.71073 Å, θmax = 27.48°, R1 [I >2σ(I)] = 0.081, wR2 (all data) = 0.170, GooF = 1.082. 

3.6.3 Synthesis of Cp*Fe(η5-Pn†H) (3.3) 

[K]Pn†H (4.35 mmol) in THF (30 mL) was added dropwise to a green solution of 

FeCp*Cl(TMEDA) (1.492 g, 342.7 mmol) in THF (20 mL) at -78 °C, and allowed to 

warm to room temperature overnight. The resulting red suspension was stripped of 

solvent, and the products extracted into hexane (100 mL) and filtered through Celite on 

a frit. The solvent was removed under reduced pressure to afford a crude orange solid. 

3.6 was recrystallised from a saturated Et2O (40 mL) solution at -20 °C as orange-red 

blocks which were washed with pentane at -78 °C and dried in vacuo. A second crop of 

crystals was obtained from slow cooling the combined supernatant and washings to -50 

°C.  

Total yield: 1.58 g (81% with respect to [K]Pn†H).  

1H NMR (C6D6, 499.9 MHz, 303 K): δH 6.49 (1H, dd, 3JHH = 5.4, 2.1 Hz, Pn vinylic H), 

6.43 (1H, dd, 3JHH = 5.4, 4JHH = 1.7 Hz, Pn vinylic H), 3.79 (1H, d, 3JHH = 2.1 Hz, Pn 

aromatic H), 3.67 (1H, d, 3JHH = 1.9 Hz, Pn aromatic H), 3.26 (1H, apparent t, 3JHH = 

2.1 Hz, Pn allylic H), 1.74 (15H, s, Cp* CH3), 1.39 (3H, m, iPr CH), 1.27 (9H, d, 3JHH = 

7.4 Hz, iPr CH3), 1.25 (9H, d, 3JHH = 7.4 Hz, iPr CH3), 1.20 (3H, m, iPr CH), 1.14 (9H, 

br, iPr CH3), 1.08 (9H, br, iPr CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 135.85 (Pn vinylic C), 129.05 (Pn vinylic 

C), 102.34 (Pn bridgehead C), 98.50 (Pn bridgehead C), 80.77 (Pn aromatic C), 78.27 

(Cp*-CCH3), 68.75 (Pn aromatic C), 61.20 (Pn aromatic C-Si), 32.68 (Pn allylic C), 

19.78 (iPr CH), 19.68 (iPr CH), 19.57 (iPr CH), 19.39 (iPr CH), 12.42 (iPr CH3), 12.09 

(iPr CH3), 10.69 (Cp* CH3).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 5.62 (allylic Si), 5.57 (aromatic Si).  

EI-MS: m/z = 607 (100%), [M]+.  
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Anal. found (calcd. for C36H62FeSi2): C, 71.15 (71.25); H, 10.25 (10.30) %.  

Crystal data for 3.3: C36H62FeSi2, Mr = 606.89, triclinic, space group P-1, orange block, 

a = 10.905(2) Å, b = 11.529(2) Å, c = 16.367(3) Å, α = 69.87(3)°, β = 80.46(3)°,  

γ = 66.41(3)°, V = 1769.7(6) Å3, T = 173 K, Z = 2, Rint = 0.0800, λMo(Kα) = 0.71073 Å,  

θmax = 27.12°, R1 [I >2σ(I)] = 0.0555, wR2 (all data) = 0.1347, GooF = 1.031. 

3.6.4 Synthesis of [Cp*Fe(η5-Pn†)][K] (3.4) 

An ampoule was charged with 3.3 (107 mg, 0.18 mmol) and KNH2 (19 mg, 0.80 mmol) 

to which was added THF (20 mL). The mixture was stirred for 4 days yielding a dark 

red suspension. Filtration on a frit through dry Celite yields a red solution containing 

3.4 in approx. quantitative yield by NMR spectroscopy. The volatiles were removed 

under reduced pressure and the resulting residue extracted into Et2O (10 mL). Storage of 

this solution at -35 °C yielded dark red crystals of 3.4 suitable for X-Ray diffraction.  

Yield: 85 mg (75% with respect to 3.3).  

1H NMR (C6D6
 / THF-d8, 499.9 MHz, 303 K): δH 7.33 (1H, d, 3JHH = 3.7 Hz, Fe-Pn 

CH), 5.65 (1H, d, 3JHH = 3.7 Hz, Fe-Pn wingtip CH), 4.14 (1H, d, 3JHH = 2.0 Hz, K-Pn 

CH), 3.35 (1H, d, 3JHH = 2.0 Hz, K-Pn wingtip CH), 1.84 (15H, s, Cp* CH3), 1.54 (3H, 

overlapping m, iPr CH), 1.46 (3H, overlapping m, iPr CH), 1.41 (9H, d, 3JHH = 7.4 Hz, 
iPr CH3), 1.36 (9H, d, 3JHH = 7.4 Hz, iPr CH3), 1.35 (9H, br, iPr CH3), 1.33 (9H, br, iPr 

CH3). 

13C{1H} NMR (C6D6 / THF-d8, 125.7 MHz, 303 K): δC 138.28 (Fe-Pn CH), 110.53 (Pn 

bridgehead C), 98.91 (Pn bridgehead C), 93.66 (Fe-Pn wingtip CH), 76.88 (Fe-Pn C-Si), 

76.53 (K-Pn CH), 76.10 (Cp*-CCH3), 61.25 (K-Pn wingtip CH), 48.18 (K-Pn C-Si), 

20.60 (iPr CH3), 20.54 (iPr CH3), 20.36 (iPr CH3), 20.33 (iPr CH3), 14.67 57 (iPr CH), 

13.86 57 (iPr CH), 11.22 (Cp* CH3).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 5.60 (Fe-Pn Si), -5.98 (K-Pn Si). 

EI-MS: m/z = 607 (100%), [M - K + H]+.  

Anal. found (calcd. for C36H61FeKSi2): C, 67.51 (67.04); H, 9.97 (9.53) %. 

Crystal data for 3.4: C36H61FeKSi2, Mr = 644.98, monoclinic, space group P21/c, red 

plate, a = 8.5189(17) Å, b = 18.474(4) Å, c = 22.809(5) Å, α =γ = 90°, β = 94.48(3)°,  
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V = 3578.7(12) Å3, T = 173 K, Z = 4, Rint = 0.0553, λMo(Kα) = 0.71073 Å,  

θmax = 27.43°, R1 [I >2σ(I)] = 0.0632, wR2 (all data) = 0.2077, GooF = 0.824. 

3.6.5 Characterisation of double bond isomer Cp*Fe(η5-Pn†H) (3.5) 

1H NMR (toluene-d8, 399.5 MHz, 303 K, selected data): δH 6.57 (1H, s, Pn vinylic CH), 

3.75 (1H, d, 3JHH = 2.3 Hz, Pn vinylic CH), 3.64 (1H, d, 3JHH = 2.6 Hz, Pn vinylic CH), 

2.93 (1H, dd, 2JHH = 22.3, 3JHH = 1.7 Hz, Pn allylic CH), 2.67 (1H, dd, 2JHH = 22.3, 3JHH 

= 2.5 Hz, Pn allylic CH), 1.76 (15H, s, Cp* CH3), 1.31 (6H, overlapping m, iPr CH), 

1.21 (9H, d, 3JHH = 6.9 Hz, iPr CH3), 1.17 (18H, br, iPr CH3), 1.05 (6H, d, J = 7.1 Hz, 
iPr CH).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K, selected data): δC 135.85 (Pn vinylic C), 

148.91 (Pn vinylic CH), 148.77 (Pn vinylic C-Si), 106.49 (Pn bridgehead C), 97.44 (Pn 

bridgehead C), 80.78 (Pn aromatic C), 79.30 (Cp* CCH3), 68.52 (Pn aromatic C), 64.22 

(Pn aromatic C-Si), 37.02 (Pn allylic C), 20.09 (iPr CH), 19.87 (iPr CH), 19.72 (iPr CH), 

19.61 (iPr CH), 12.60 (iPr CH3), 12.43 (iPr CH3), 11.59 (Cp* CCH3).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K, selected data): δSi 6.20, -0.66.  

EI-MS: m/z = 607 (100%), [M]+.  

Anal. found (calcd. for C36H62FeSi2): C, 71.13 (71.25); H, 10.20 (10.30) %.  

Crystal data for 3.5: C36H62FeSi2, Mr = 606.89, triclinic, space group P-1, green plate,  

a = 10.245(2) Å, b = 13.108(2) Å, c = 15.104(3) Å, α = 67.52(3)°, β = 73.87(3)°,  

γ = 76.97(3)°, V = 1784.1(6) Å3, T = 173 K, Z = 2, Rint = 0.0709, λMo(Kα) = 0.71073 Å, 

θmax = 27.60°, R1 [I >2σ(I)] = 0.0588, wR2 (all data) = 0.1752, GooF = 1.032. 

3.6.6 Synthesis of [Cp*Fe]2(µ:η5,η5-Pn†) (3.6) 

[K]2Pn† (119 mg, 0.241 mmol) in THF (15 mL) was added dropwise to a green solution 

of FeCp*Cl(TMEDA) (166 mg, 0.482 mmol) in THF (10 mL) at -78 °C; the reaction 

flask was then sealed and allowed to warm to room temperature overnight. The 

resulting brown suspension was stripped of solvent, and the products extracted with hot 

(ca. 80 °C) toluene (2 x 40 mL), followed by brief sonication and filtration on a frit 

through dry Celite. The solution was concentrated to 15 mL and the precipitated solid 
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was warmed to ca. 80 °C and brought back into solution. Green crystals of 3.6 were 

formed by slowly cooling this solution to ambient temperature. A second crop of 

crystals was obtained by removal of the solvent from the supernatant and recrystallision 

of the resulting brown residues from Et2O (3 mL) at -35 °C.  

Total Yield: 66 mg (34% with respect to [K]2Pn†).  

1H NMR (toluene-d8, 499.9 MHz, 303 K): δH 4.67 (2H, d, 3JHH = 2.1 Hz, Pn CH), 3.69 

(2H, d, 3JHH = 2.1 Hz, Pn CH), 2.15 (6H, septet, 3JHH = 7.5 Hz, iPr CH), 1.67 (18H, d, 
3JHH = 7.6 Hz, iPr CH3), 1.54 (18H, d, 3JHH = 7.6 Hz, iPr CH3), 1.51 (30H, s, Cp* CH3).  

13C{1H} NMR (toluene-d8, 125.7 MHz, 303 K): δC 102.34 (Pn bridgehead C), 98.50 (Pn 

bridgehead C), 87.65 (Pn CH), 78.06 (Cp* CCH3), 65.32 (Pn CH), 61.20 (Pn C-Si), 

22.10 (iPr CH3), 21.65 (iPr CH3), 17.20 (iPr CH), 11.84 (Cp* CCH3).  

29Si{1H} NMR (toluene-d8, 79.4 MHz, 303 K): δSi 6.89.  

EI-MS: m/z = 797 (15%), [M]+; 605 (100%), [M - FeCp*]+; 562 (40%), [M - FeCp* - 
iPr]+; 448 (20%), [M - FeCp* - SiiPr3]+.  

Anal. found (calcd. for C46H76Fe2Si2): C, 69.25 (69.33); H, 9.69 (9.61) %. 

Crystal data for 3.6: C46H76Fe2Si2, Mr = 796.94, monoclinic, space group P 21/n, green 

plate, a = 8.8330(18) Å, b = 13.215(3) Å, c = 18.360(4) Å, α =γ = 90°, β = 91.30(3)°, V 

= 2142.5(7) Å3, T = 173 K, Z = 4, Rint = 0.0580, λMo(Kα) = 0.71073 Å, θmax = 27.47°, R1 

[I >2σ(I)] = 0.0492, wR2 (all data) = 0.1195, GooF = 1.019. 
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4 CHAPTER FOUR: Double-Sandwich Complexes of the d-Block Elements 

4.1  Introduction  

Bimetallic complexes of the type (L)2M2 (L = aromatic ligand), so-called ‘double-

sandwiches’, have attracted increasing attention due to their propensity to facilitate 

metal–metal bonding and display unusual electronic and magnetic properties.1-3 

Considerable theoretical interest has also been paid to organometallic sandwich 

nanowires, [Mx(L)]n, as models for molecular ferromagnets and spintronic devices.4-7  

As outlined in chapter one, the aromatic pentalene dianion, [C8H6]2- = Pn, displays a 

unique variety of coordination modes in its organometallic complexes.8 In particular its 

ability to coordinate two metals in a syn-facial manner has proved ideal for the 

synthesis of such double-sandwich complexes. Katz et al. reported the first (Pn)2M2 

complexes, for M = Co, Ni, in which the double-metallocene structure was proposed.9,10 

These dimers are diamagnetic, in contrast to the paramagnetic behaviour shown by their 

monometallic cyclopentadienyl (Cp) counterparts. Cloke and co-workers established 

η5,η5- ligation of the silylated pentalene ligand, [C8H4{SiiPr3-1,4}2]2- = Pn†, with a 

metal–metal bonded core in (Pn†)2Mo2, confirmed by X-ray crystallography.11 These 

researchers have since reported bis(pentalene) dimers for M = Cr, Mn, Rh and Pd.12-14 A 

comprehensive study of double-sandwiches of the first-row d-block elements was also 

reported by O’Hare et al., using the permethylated pentalene ligand, [C8Me6]2- = Pn*, in 

the successful synthesis of (Pn*)2M2 complexes M = V, Cr, Mn, Co, Ni.15  

This chapter details synthetic studies towards expanding the range of syn-bimetallic 

complexes of d-block metals with pentalene ligands. The synthesis of early transition 

metal M = V, Ti and Sc double-sandwich complexes was targeted, which were of 

particular interest in potentially providing a very rare example of M–M multiple 

bonding for these atoms. Furthermore, the rich and varied chemistry shown by these 

electron-deficient metals makes the target compounds potentially reactive with small 

molecule substrates.  
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4.2  Vanadium 

4.2.1 Synthesis and characterisation of (µ:η5,η5-Pn†)2V2 

The conventional synthetic route to (Pn)2M2 complexes involves a salt metathesis 

reaction of the pentalene dianion with a divalent metal salt in which there is a degree of 

metal-metal interaction already in place. For example, the synthesis and characterisation 

of syn-bimetallic complex (µ:η5,η5-Pn†)2V2 was reported during the course of these 

studies,16 as part of work in collaboration with the author. The preparation of this 

complex parallels that of the permethylpentalene analogue (µ:η5,η5-Pn*)2V2 reported by 

O'Hare et al.,15 in which the choice of V(II) precursor VCl2(DME), with all-bridging 

chloride ligands, proved critical to the isolation of the metal-metal bonded bimetallic 

(Scheme 4.1).  

 

 

Scheme 4.1 Synthesis of (µ:η5,η5-Pn†)2V2. 

 

Complex (µ:η5,η5-Pn†)2V2 was isolated as a red crystalline solid in 35% yield. 

Multinuclear (1H, 13C, 29Si, 51V) NMR of the crystalline product revealed two products 

in ca. 2:3 ratio, which both show D2 symmetry in solution on the NMR timescale. Mass 

spectrometry and elemental analysis were fully consistent with the formula proposed, 

suggesting that co-crystallised compounds were isomeric. Single-crystal XRD analysis 

revealed a molecular structure with the pentalene rings in a near parallel configuration, 

and the bulky 1,4-SiiPr3 groups of each ligand adopting a mutually staggered 

conformation (Figure 4.1).  
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Figure 4.1 ORTEP (50% probability) views of (µ:η5,η5-Pn†)2V2.16  

H atoms and iPr groups omitted for clarity. 

 

It was postulated that the minor component of the (µ:η5,η5-Pn†)2V2 mixture featured 1,4-

SiiPr3 groups of each ligand in the more sterically demanding eclipsed conformation. 

The intermetallic distance in the crystallographically characterised complex was 

2.204(2) Å, which lies within the expected range of a V−V triple bond (1.978(2) - 

2.462(2) Å).17,18 By analogy with the MO scheme in the related permethylpentalene 

complex,15 the V−V bonding was best described by σ, π and δ components. 

Furthermore, variable temperature NMR spectra for (µ:η5,η5-Pn†)2V2 showed that the 

chemical shifts of the aromatic ring protons do not obey the Curie law between  

180-375 K. This was attributed to a diamagnetic ground state with a low-lying 

paramagnetic excited state, as observed in the related V≡V bonded complex 

[CpV]2Pn.19 Reactivity studies of (µ:η5,η5-Pn†)2V2 in C6D6 with small molecules H2, 

CO, and CO2 showed no reaction by 1H NMR spectroscopy, and it was assumed that the 

steric demands of the bulky 1,4-SiiPr3 groups prevented approach of these small 

molecules to the potentially redox active [V2]4+ core.  
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4.3  Titanium 

4.3.1 Synthesis and characterisation of [(η8-Pn†)Ti]2(µ-Cl)3 (4.1) 

Given the rich and varied chemistry of low-valent group IV sandwich complexes,20 and 

the prospect of a very rare example of a Ti–Ti multiple bond, the aim henceforth was to 

synthesise an analagous di-titanium bis(pentalene) complex. Previous studies toward 

this end by Cloke et al. established that the reaction of [K]2Pn† with TiCl2 in THF 

resulted in disproportionation, producing an insoluble metallic solid, assumed to be 

Ti(0), and the Ti(IV) complex Ti(Pn†)2.21 An alternative route to double-sandwich 

complexes that has proved successful in the synthesis of a variety of M–M bonded 

species involves reduction of a metal halide precursor with an excess of a strong 

reducing agent.22-26  

The stoichiometric reaction of [K]2Pn† with TiCl3(THF)3 was carried out, involving a 

very slow dropwise addition of a THF solution of [K]2Pn† to a stirred suspension of 

TiCl3(THF)3 in THF at 0 °C. These conditions were optimised as to best keep the 

sparingly soluble Ti(III) salt in constant excess with respect to Pn†, in order to promote 

the desired salt metathesis reaction and minimise the competing disproportionation 

pathway to Ti metal and Ti(Pn†)2. The resultant dark green solution was stirred 

overnight at 0 °C, and following work-up from toluene, afforded a dark green solid. 

Elemental analysis of this solid formulated as Pn†
2Ti2Clx best fit to a value of x = 2.6 

suggesting a mixture of products 4.1 and 4.2 was formed (Scheme 4.2).  

 

 

Scheme 4.2 Synthesis of 4.1 and 4.2. R = SiiPr3. 

  

Complex [(η8-Pn†)Ti]2(µ-Cl)3 (4.1) was isolated from the crude mixture by extraction 

with THF and cooling to -35 °C, as a red-green dichroic solid in 80% yield. EI-MS and 

elemental analysis confirmed the identity and purity of the microcrystalline product.  
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Compound 4.1 was found to be temperature sensitive in the solid state and solution, 

decomposing over ca. 12 h at room temperature to give an unidentified orange 

compound. Red crystals of 4.1 were studied by X-ray diffraction and while disorder in 

the Pn† and Cl ligands meant the final refinement parameters did not converge to a 

satisfactory level (R1 = 11.7%), basic connectivity could be established (Figure 4.2).  

 

 

Figure 4.2 Partially refined model of 4.1 with thermal ellipsoids at 50% probability.  

Hydrogen atoms and iPr groups have been omitted for clarity. The Pn† and Cl ligands 

are both disordered over two positions, with only part 1 shown. 

 

The pentalene ligand binds in an η8-fashion to each Ti centre, as is commonly 

encountered in its complexes with early transition metals,27-31 with bridging chloride 

ligands. The analogous permethylpentalene complex [(η8-Pn*)Ti]2(µ-Cl)3, synthesised 

by reduction of [(η8-Pn*)TiCl(µ-Cl)]2 with KC8, has been structurally characterised by 

O'Hare et al.32 The molecular structure of [(η8-Pn*)Ti]2(µ-Cl)3 shows a near parallel 

arrangement of Pn* ligands, and a tripodal disposition of bridging Cl ligands between 

the Ti centres. Despite a relatively short Ti…Ti distance (3.219 Å), [(η8-Pn*)Ti]2(µ-Cl)3 

did not produce a Ti(II) complex with excess reducing agent.33  

The proposed formulation implies 4.1 is a formally mixed-valence Ti(III)/Ti(IV) 

species, however since the molecular structure could not be solved unambiguously by 

X-ray crystallography, the electronic and magnetic properties were investigated in 

detail.  
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4.3.2 Electronic and magnetic studies of 4.1 

Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for 

elucidating the environment of the unpaired electron in paramagnetic compounds. The 

g-value in EPR can provide information about the orbital in which the unpaired electron 

resides. The g-value for the free electron (ge = 2.002319 to 6 d.p.) is a fundamental 

constant, related to the magnetic moment of the electron due to its spin angular 

momentum. In real materials the measured g-value is not equal to ge because of an 

orbital angular momentum contribution to the magnetic moment. This can be mediated 

by the electronic ground state with a large orbital moment, or mixing with excited states 

via spin-orbit coupling (SOC). The latter has a small orbital moment that is related to 

the energy gap between the excited state and the ground state (ΔE), as expressed in 

Equation 4.1. 

        Equation 4.1 

  where,  λ  =  SOC constant 

    a2 (≤ 1)  =  covalency parameter 

    n   =  quantum mechanical coefficient 

 

Transition metal ions typically have a relatively small ΔE due to crystal field splittings, 

but a large λ value, so g varies significantly from ge and is often discussed according to 

a ‘g-shift’ (Δg) as expressed in Equation 4.2. 

        Equation 4.2 

Polycrystalline EPR spectra are broadened by dipolar coupling between molecules and 

EPR spectroscopy of fluid solutions also give isotropic spectra due to the free tumbling 

of molecules. When immobilised in a frozen solution, the different excited states of a 

molecule contribute to the magnetic moment in different orientations, and hence g-

values are anisotropic and dependent on molecular symmetry. 

EPR spectra of polycrystalline 4.1 at 293 and 10 K exhibit a single broad resonance 

(Figure 4.3), so while this signal could be attributed to a single paramagnetic species, 

the large linewidth may obscure other paramagnetic impurities. For a d1 system such as 

! 

g = ge "
a2n#
$E

! 

"g = g # ge
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the Ti3+ ion, the unpaired electron is coupling with an empty orbital, which results in a 

negative contribution to Δg. This is consistent with the isotropic g-value of 1.985 for 

polycrystalline 4.1 at 293 K. 

 

Figure 4.3 X-band EPR spectra of solid 4.1 at 293 K (solid line) and 10 K (dashed). 

The X-band EPR spectrum of 4.1 in toluene solution at 293 K (see appendix A2) shows 

a principal signal at g = 1.985 assigned to [(η8-Pn†)Ti]2(µ-Cl)3, and two additional 

features (g = 1.996 and 1.993) assigned to a trace Ti-based impurity. The X-band 

spectrum of a frozen toluene solution at 150 K (Figure 4.4) shows a rhombic signal with 

three principal g-values simulated, giving an average g-value (giso = {g1 + g2 + g3}/3) of 

1.986. An additional feature is observed on the low-field side of g2, which is assigned to 

a Ti-based decomposition product. The Q-band EPR spectrum of 4.1 in frozen toluene 

solution (see appendix A2) similarly shows a rhombic signal with giso = 1.983.  

 
Figure 4.4 X-band EPR spectrum of 4.1 in toluene solution at 150 K (black) and 

corresponding simulation (red).  
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These data are consistent with a formally mixed-valence Ti(III)/Ti(IV) species with an S 

= 1/2 ground state. EPR studies by Mach et al. of a related complex with 1,4-

bis(trimethylsilyl)cyclooctatetraenyl [COT']2- ligands, [(η8-COT')Ti]2(µ-Cl)3 (COT' = 

C8H6{SiMe3-1,4}2),34 show a comparable giso = 1.988. The latter compound was 

prepared by an analogous synthetic route to 4.1, also involving disproportionation to 

give the mixed-valence Ti(III)/Ti(IV) species. 

In the 1H NMR spectrum of 4.1 only broad signals were observed, and the solution 

magnetic moment determined by the Evans method was 1.70 µB per dimer at 303 K.35,36 

Comparable data were observed in the solid state by SQUID magnetometry, µeff(250 K) 

= 1.72 µB, a value consistent with 1 unpaired electron per dimer. Figure 4.5 shows the 

linear dependence of χm
-1 vs T between 2 - 250 K, which is typical of a Curie-Weiss 

paramagnet with C = 0.370 K-1 mol-1 and Θ = -3.5 K, suggesting there are no magnetic 

exchange interactions between the two Ti centres in 4.1 at these temperatures. 

 

 

Figure 4.5 Temperature dependence of the solid state µeff and χm
-1 for 4.1 at 1 Tesla. 

 

The redox properties of 4.1 in THF were investigated by cyclic voltammetry. Using 

[nBu4N][PF6] electrolyte two processes were observed inside the electrochemical 

window, a quasi-reversible process at E½ = -1.53 V vs FeCp2
+/0 assigned to a one-

electron reduction, and an irreversible oxidative process at Epa = -0.88 V. Chemical 

reduction of 4.1, to a formally Ti(II)-Ti(II) double-sandwich complex would require a 3 
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electron gain per dimer. Based on the reduction potential of 4.1 a strong reducing agent 

such as Na or K (E° = -2.25 and -2.38 V vs FeCp2
+/0 respectively)37,38 would be 

required. 

4.3.3 Synthesis and characterisation of [(η8-Pn†)Ti(py)(µ-Cl)]2 (4.2(py)2) 

A second component was isolated from the reaction of TiCl3(THF)3 and [K]2Pn† by 

fractional crystallisation. The crude green residue from the reaction was treated with 

hexane and 5 drops of pyridine, resulting in a colour change to brown. The mixture was 

filtered and cooled to -35 °C, which provided red crystals of suitable quality for XRD 

analysis. The molecular structure (Figure 4.6) revealed a centrosymmetric dimer, with a 

coordinated pyridine and two bridging chloride ligands resulting in a formal electron 

count of 17 VE per Ti.  

The pyridine ligand in 4.2(py)2 is coordinated to the Ti(III) centres with a Ti−N bond 

length of 2.275(3) Å, comparable with the titanocene(II) dimethylaminopyridine 

(DMAP) adduct (CpMe4iPr)2Ti(DMAP), (Ti−N = 2.2437(11) Å).39 The the average 

Ti−centroid and the average Ti−(µ-Cl) distances are slightly longer than those in the 

related Ti(IV) complex, [(η8-Pn*)TiCl(µ-Cl)]2 (1.955(2) and 2.485(1) Å respectively),30 

as would be expected for the larger Ti(III) centre in 4.2 (rTi3+ = 0.670 Å, rTi4+ = 0.605 

Å).40 The fold angle of 31.3° is typical for that of an η8-pentalene ligand bound to group 

IV metal.8 The η8-Pn† ligands are in a perfect eclipsed arrangement (twist angle = 0°) 

and interestingly the SiiPr3 substituents also adopt an eclipsed confirmation. The Ti…Ti 

distance in 4.2 (3.8834(12) Å) reflects the large separation between the Pn† ligands 

within the dimer, and hence the strain associated with the more congested disposition of 

these bulky substituents is not the dominant factor in the solid-state structure of the 

molecule as a whole. The only previous structurally authenticated example of eclipsed 

SiiPr3 groups in η8-Pn† chemistry is the tantalum(V) methylene-bridged dimer, [(η8-

Pn†)TiCl(µ-CH2)]2.41 Furthermore a di-molybendum double-sandwich complex 

(µ:η5,η5-Pn†)2Mo2 with eclipsed SiiPr3 groups, has recently been identified by an X-ray 

diffraction study.16 The latter finding settles some debate in the original report of 

(µ:η5,η5-Pn†)2Mo2, concerning the structure of the minor isomer which was identified by 

NMR spectroscopy.11 
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Figure 4.6 ORTEP (30% probability) diagram of 4.2(py)2. H atoms and iPr groups 

omitted for clarity. Primed atoms are generated by symmetry. 

Table 4.1 Selected distances (Å), angles (°) and parameters (defined in Figure 4.7) for 

4.2(py)2. Ct denotes the η5-centroid of the Pn ring. 

Parameter 4.2(py)2 Parameter 4.2(py)2 

Ti1…Ti1' 3.8834(12) Ti1−Cl1−Ti1' 100.33(4) 

Ti1−Cl1 2.5207(10) Cl1−Ti1−Cl1' 79.67(4) 

Ti1−Cl1' 2.5366(13) Ct1−Ti−Ct1' 56.38(8) 

Ti1−N1 2.275(3) Twist angle 0 

Ti−Ct a 1.989(2) Hinge Angle 2.9(5) 

Ti–Cring a 2.370(2) Fold angle 31.343(5) 

a Average values 

 

Figure 4.7  
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The solution magnetic moment of 4.2(py)2 determined by the Evans method was 2.13 

µB per dimer (1.50 µB per M) at 303 K.35,36 Solid-state SQUID magnetometry data show 

a µeff of 2.14 µB per dimer (1.51 µB per M) at 250 K, which is larger than the 

corresponding value for 4.1, and is comparable with [Cp2Ti(µ-Cl)]2 (µeff(260 K) = 2.08 

µB per dimer).42,43 The structural and magnetic properties of the latter compound, and 

the analogous dimers [CpMe
2Ti(µ-Cl)]2 and [CpMe

2Ti(µ-Br)]2, have been studied in depth 

by Stucky et al.44 These researchers described antiferromagnetic interactions which 

increase as metal-metal distance decreases: a magnetic exchange pathway mediated by 

direct overlap of metal orbitals rather than superexchange through the halide bridges. In 

contrast, the solid-state magnetic susceptibility data for complex 4.1 (Figure 4.8) do not 

show signs of antiferromagnetic behaviour, despite a shorter distance between the two 

Ti centres in the molecular structure. The inverse magnetic susceptibility was fitted to 

the Curie-Weiss law between 60-250 K to give C = 0.600 K-1 mol-1 and Θ = -14.3 K. 

 

 

Figure 4.8 Temperature dependence of the solid state µeff and χm
-1 for 4.2(py)2  

at 1 Tesla. 

 

EPR spectroscopy of 4.2 in a frozen toluene solution revealed series of very broad 

features were observed which could not be adequately simulated (see appendix A2). It is 

possible that some dissociation of the pyridine occurs upon dissolution in toluene, 

which could explain the broad and convoluted EPR spectra.  
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4.3.4 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2 (4.3) 

4.1 and 4.2 may be exploited as starting materials for the synthesis of a di-titanium 

double-sandwich complex. In preliminary experiments both complexes reacted with an 

excess of KC8 in toluene-d8, each giving a red complex with a diamagnetic 1H NMR 

spectrum (vide infra). Multi-gram scale reactions were carried out without isolation of 

the individual components of the TiCl3(THF)3 / [K]2Pn† reaction mixture in order to 

optimise yields, with potassium amalgam chosen as the most convenient reducing agent 

on these scales. The optimised procedure is outlined in Scheme 4.3 which, following 

pentane work-up, afforded deep red (µ:η5,η5-Pn†)2Ti2 (4.3) in 60% yield, as identified 

by NMR spectroscopy, elemental analysis and X-ray crystallography. 

 

Scheme 4.3 Synthetic route to 4.3.  

Single crystals of 4.3 suitable for X-ray diffraction studies were obtained from a 

concentrated pentane solution at -50 °C (Figure 4.9 and Table 4.2). 

 

 

Figure 4.9 ORTEP views of 4.3. H atoms and iPr groups omitted for clarity.  

Ellipsoids at 50% probability. 

(i) [K]2Pn†, THF, 0 °C

Ti Ti
Pr3Si

SiiPr3

SiiPr3

Pr3Sii
iTiCl3(THF)3

(ii) K/Hg, hexane, RT

4.3
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Table 4.2 Selected distances (Å), angles (°) and parameters (defined in Figure 4.7) for 

4.3. Ct denotes the η5-centroid of the Pn ring. 

Parameter 4.3 Parameter 4.3 

Ti1−Ti2 2.399(2) Δ a 0.005(7) 

Ti−Ct a 2.036(4) Twist angle 20.1(8) 

Ti–Cring a 2.378(7) Hinge angle  3.8(8) 

C−Cring 
a 1.449(10) Fold angle 8.7(4) 

Ct−Ti−Ct a 155.2(2)   

aAverage values. 

 

The most noteworthy structural feature in 4.3 is the bent arrangement of the pentalene 

ligands around the Ti2 core; the centroid–metal–centroid angles around Ti1 and Ti2 are 

153.84(17)° and 156.6(2)° respectively. This bending is unprecedented amongst 

(Pn)2M2 complexes reported to date, all of which exhibit near-parallel pentalene rings in 

an idealised D2h structure. The short Ti–Ti distance of 2.399(2) Å indicates significant 

bonding between the Ti atoms. This distance in 4.3 considerably shorter than that found 

in the metal (2.951 Å for Ti(α) at 25 °C),45 and the only shorter titanium–titanium bond 

in the literature is 2.326(2) Å for (COT')2Ti2.23 The latter complex makes an excellent 

comparison with 4.3, since the bridging COT' ligands in the centrosymmetric dimer are 

concave-bent to allow µ:η5,η5-coordination, thus resembling a pentalene ligand but 

lacking a C–C bond at its bridgehead (Figure 4.10, left). The metal–η5-centroid 

distances in 4.3 (2.023(4) and 2.061(4) Å for Ti1, 2.042(4) and 2.016(4) Å for Ti2) are 

considerably longer than those in (COT')2Ti2 (1.808(4) and 1.810(4) Å) but are 

comparable to those found in monomeric titanocenes which have been structurally 

characterised [Ti(η5-C5Me4{SitBuMe2})2,46 d(Ti–Ct(Cp)) = 2.018(4) Å; Ti(η5-

C5Me4{SiMe3})2,47 d(Ti–Ct(Cp)) = 2.020(2) Å, where Ct(Cp) denotes the η5-centroid of 

the corresponding Cp ring]. 
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Figure 4.10 Examples of structurally characterised Ti(II) sandwich complexes.23,46 

The identity of 4.3 was also confirmed by spectroscopic and analytical methods. The 1H 

NMR spectrum consists of two doublets at 6.83 and 6.34 ppm in the aromatic region, 

indicative of chemical equivalence of the Pn† rings on the NMR timescale. This can be 

attributed to a fluxional process involving ring slippage across the Ti2 core, resulting in 

an averaged structure of D2 symmetry. Variable temperature studies show the two Pn† 

rings remain chemically equivalent on the NMR timescale down to -80 °C. The sharp 

signals observed and negligible temperature dependence of their chemical shift are 

consistent with a diamagnetic complex. This is in direct contrast to the mononuclear 

titanocenes Ti(η5-C5Me4R)2, (R = Me,48 Et,49 iPr, tBu,50 Ph, 3,5-Me2-C6H3,49 

SitBuMe2,46 SiMe3,47 SiMe2CH2CH2Ph, SiMe2Ph, and SiMePh2
51), and Ti(η5-C5H3-1,3-

tBu2)2,52 which are all paramagnetic. The parent ion for 4.3 in the mass spectrum (EI) 

has a complex mass envelope in the region m/z = 910–928 amu and an isotopic pattern 

consistent with two Ti atoms. 

DFT calculations were carried out by Green using the model ligand [C8H6]2- (Pn) using 

two codes (ADF and Gaussian, see appendix A1 for details).53 The dimer Pn2Ti2 was 

optimised with no symmetry restrictions and subsequently with both D2h (4.IIIa) and 

C2v (4.IIIb) symmetry. Important structural parameters are listed in Table 4.3, in which 

ADF values are in normal font and Gaussian values are given in italics.  

 

Table 4.3 Selected structural parameters (Å, °) for calculated structures of Pn2Ti2. 

Structure Symmetry Ti-Ti Ti-Ct Ct-Ti-Ct 

4.IIIa D2h 2.33, 2.34 2.01, 2.01 180, 180 

4.IIIb C2v 2.37, 2.31 2.00, 2.03 153, 158 
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The energy difference between the two structures was within computational error 

(E(4.IIIb)-E(4.IIIa)/kcal mol-1 = -2; +1), which supports the idea of rapid 

interconversion between geometries in solution. The D2h structure (4.IIIa) had one 

imaginary frequency of b2u symmetry and wavenumber -80i cm-1. The C2v structure 

(4.IIIb) had all positive frequencies indicating a local minimum. The calculated Ti–Ti 

distances for 4.IIIb (2.37, 2.31 Å) are in good agreement with the experimental value 

for 4.3 (2.399(2) Å), as are the centroid-metal-centroid angles (calc.: 153°, 158°; exp.: 

155.2(2)° av.). The metal based frontier orbitals for 4.IIIa and 4.IIIb (Figure 4.11) are 

occupied by four electrons resulting in a double bond between the Ti atoms. When the 

symmetry is lowered from D2h to C2v the HOMO and HOMO-1 become 'a' symmetry 

and mix to give two bonds, equivalent to a σ and a π component. The Pn2Ti2 LUMO is 

only weakly metal-metal bonding due to poor overlap, in contrast to the vanadium 

analogue in which it is doubly occupied.15 

 

 

Figure 4.11 Isosurfaces of the frontier orbitals for Pn2Ti2.53 
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Pentalene can be considered a 5-electron (L2X) donor to each metal centre in a neutral 

counting scheme,54 meaning a M–M bond order of 2 (with σ and π components, Figure 

4.11) results in 16 electrons (ML4X4) per Ti for 4.3. 

4.3.5 Electrochemical studies; synthesis and characterisation of [(µ:η5,η5-Pn†)2Ti2] 

[B(C6F5)4] (4.4). 

As outlined in the previous chapters, cyclic voltammetry (CV) allows an initial 

investigation into the stability of the mixed-valence state in bimetallic complexes and 

enables the appropriate chemical redox agent to be chosen for their large-scale 

preparation. 

 

Figure 4.12 Overlaid CV scans (3 cycles) for 4.3 in THF / 0.1 M [nBu4N][PF6], scan 

rate 100 mV s-1.  

Complex 4.3 exhibits two successive one-electron transfers; the first process centered at 

E½ = -2.50 V is assigned to a one electron oxidation (Figure 4.12), and the second 

process an irreversible oxidation at Epa
 = -0.95 V, is tentatively assigned to a two-step 

process involving oxidative cleavage of the M−M bond after oxidation (vide infra). The 

first electrochemical event did not display the ideal ΔEpp of 59 mV for a fully reversible 

single-electron transfer at 298 K, indicating that this process is quasi-reversible on the 

timescale of the experiment.55 However, the quasi-reversibilty of this oxidation does 

indicate that the [4.3]+ cation is stable on the timescale of the CV experiment, and 

therefore its synthesis by chemical methods was attempted, using a relatively mild 

oxidising agent, [FeCp*2][B(C6F5)4] (E½ = -0.52 V in THF).  

Reaction of 4.3 with [FeCp*2][B(C6F5)4] at -35 °C resulted in a brown suspension. 

Following evaporation of the solvent and removal of FeCp*2 by washing with hexane, 
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the residues were recrystallised from a concentrated Et2O/hexane solution at -35 °C 

yielding [4.3][B(C6F5)4] (= 4.4) as green crystals in 15% (non-optimised) yield. Ion-pair 

4.4 was characterised by NMR spectroscopy, elemental analysis and X-ray 

crystallography. The molecular structure (Figure 4.13) reveals a ‘naked’ double-

sandwich cation with no interactions between the anion and the metal-metal bonded 

core. 

 

Figure 4.13 Displacement ellipsoid plot (30% probability) of 4.4. H atoms and iPr 

groups omitted for clarity. F and Si atoms are shown in orange and pink respectively. 

 

Table 4.4 Selected distances (Å), angles (°) and parameters (defined in Figure 4.7) for 

4.4. Ct denotes the η5-centroid of the Pn ring. 

Parameter 4.4 Parameter 4.4 

Ti1−Ti2 2.5091(9) Ct−Ti−Ct a 142.38(6) 

Ti−Ct a 2.0233(14) Δ a 0.105(3) 

Ti–Cring a 2.384(3) Twist angle 14.44(9) 

C−Cring 
a 1.437(4) Hinge angle  5.5(3) 

Ti1−B1 7.134(4) Fold angle 8.38(13) 

aAverage values. 
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The important structural parameters are shown in Table 4.4, the most noteworthy being 

the significantly longer Ti-Ti bond distance in 4.4 (2.5091(9) Å) compared with 4.3 

(2.399(2) Å). This elongation is consistent with the removal of an electron from the 

M−M bonding HOMO (16a1) in the molecular orbital scheme for Pn2Ti2 (Figure 4.11). 

There is no significant difference in Ti−C and Pn C−C bond lengths between 4.3 and 

4.4, however the pentalene ligands bend around the Ti2 core to a greater extent in the 

cationic complex; the centroid–metal–centroid angles around Ti1 and Ti2 are 

142.28(6)° and 142.48(6)° respectively, compared with the respective angles 

153.84(17)° and 156.6(2)° in the neutral complex. The decamethyltitanocene cation in 

[Cp*2Ti][BPh4]56 also adopts a more bent structure than in neutral titanocenes.46,47 Ab 

initio calculations on the [Cp2M]+ system (M = Sc and La) by Schleyer et al. indicated 

these metallocene cations prefer a bent structure due to covalent σ-bonding 

contributions to the metal d-orbitals.57 

The cation in 4.4 is, to the best of the authors knowledge, the first example of a formally 

a Ti(II)-Ti(III) mixed-valence species. As expected 4.4 is paramagnetic; the 1H, 13C, and 
29Si NMR spectra in THF-d8 are broad and uninformative, however the 19F and 11B{1H} 

NMR spectra showed well-resolved signals at δF -132.7, -165.2 and -168.7 and δB -

14.75 respectively, attributable to the outer-sphere tetrakis(perfluorophenyl)borate 

anion. The solution phase magnetic moment of 4.4 determined by the Evans method 

was 1.96 µB per dimer which is slightly greater than the spin-only moment for one 

unpaired electron (1.73 µB). The SOMO is assumed to be 16a1 in Figure 4.11, which 

may show hyperfine coupling to the two Ti centres (47Ti, I = 5/2, 7.4%; 49Ti, I = 7/2, 

5.4%). Time constraints precluded characterisation of 4.4 by EPR spectroscopy. The 

poor crystalline yield obtained from the reaction mixture meant there was insufficient 

material for SQUID magnetometry. The CV of 4.4 in 0.1 M [nBu4N][B(C6F5)4] / THF 

showed a single irreversible process, which is tentatively assigned to a chemical change 

after oxidation (a so-called EC process),55 possibly involving metal-metal bond 

cleavage. However the peak potential (Epa) for this oxidation, +0.43 V vs FeCp2
+/0, is in 

poor agreement with the second oxidation in the CV of 4.3 (-0.59 V) and should be 

treated with caution, since 4.4 was found to polymerise THF over the course of 12 h.  

In summary, four new bimetallic Ti pentalene complexes have been synthesised and 

characterised. The double-sandwich species 4.3 is particularly noteworthy, as it adopts 

an unprecedented bent structure in the solid state with a very short intermetallic distance 
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consistent with a Ti–Ti double bond. DFT calculations indicate very little difference in 

energy between structures with bent and parallel pentalene rings, and 4.3 is 

consequently fluxional in solution. Given the rich and varied chemistry of low-valent Ti 

sandwich complexes,20 the reactivity of complex 4.3 towards small molecules, in 

particular CO and CO2, was investigated and the results are discussed in chapter five 

and chapter six. 

 

4.4 Scandium 

4.4.1 Synthesis and characterisation of [(η8-Pn†)Sc(THF)(µ-Cl)]2 (4.5) 

Following on from the successful synthesis of titanium double-sandwich compound 4.3, 

via bridging chloride complex 4.2, the synthesis of a scandium congener was attempted 

using a parallel synthetic pathway. Reaction of ScCl3 with [K]2Pn† in THF at room 

temperature afforded, after pentane work up, orange crystals of [(η8-Pn†)Sc(THF)(µ-

Cl)]2 (4.5) in 86% yield (Scheme 4.4).  

 

 

Scheme 4.4 Synthesis of 4.5. R = SiiPr3. 

 

The 1H NMR spectrum of 4.5 in C6D6 contains two aromatic resonances at 6.77 and 

6.34 ppm corresponding to the Pn† ring protons in a D2 structure on the NMR timescale, 

and resonances at 1.38, 1.27 and 1.23 ppm are assigned to the iPr groups, with the 

anticipated multiplicity. 1H NMR signals at 3.66 and 1.40 are assigned to a THF 

molecule coordinated to the highly Lewis acidic scandium centre, with an integration 

ratio consistent with one THF molecule per Pn† ligand. Multinuclear (13C and 29Si) 

NMR spectra were consistent with this interpretation.  
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Mass spectrometry (EI) showed a parent ion at m/z = 875, suggesting redistribution to 

the homoleptic species [Pn†
2Sc]+ occurs in the gas phase, which has also been observed 

for Ln(III) pentalene complexes in chapter three.  

Orange crystals of 4.5 were analysed by X-ray diffraction, however, due to disorder in 

the THF ligands, the final refinement indices are somewhat high (R1 = 12.6%) and only 

tentative conclusions may be drawn. Nonetheless, the molecular structure (Figure 4.14) 

provides an unambiguous confirmation of connectivity. The asymmetric unit contains 

one and a half-molecules, which both have very similar geometries. In a similar fashion 

to the Ti(III) bridged chloride complex 4.2.(py)2 the η8-Pn† ligands in 4.5 are in a near 

parallel arrangement and the SiiPr3 groups adopt an eclipsed confirmation.  

 

 

Figure 4.14 Partially refined molecular structure of 4.5, with thermal ellipsoids at 50% 

probability. Hydrogen atoms and iPr groups omitted for clarity.  

 

Complex 4.5 exists as a THF solvated dimer to alleviate the co-ordinatively unsaturated 

and electron deficient scandium centre, in a similar manner to the bis(cyclopentadienyl) 

complex [Cp2ScCl(THF)]2,58 and the related yttrium iodide-bridged dimer  

[(η8-Pn†)Y(THF)(µ-I)]2.59 Attempts to desolvate 4.5 in vacuo at temperatures up to 150 

°C/10-6 mbar were unsuccessful; no sublimation occurred and 1H NMR spectroscopy of 

the orange residue showed decomposition. [Cp2ScCl(THF)]2, although volatile does not 

lose coordinated THF upon sublimation,58 whereas the 16 VE monomers 

(CpMe4R)2ScCl(THF) (R = H or Me) sublime to afford base-free complexes, 
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(CpMe4R)2ScCl.60,61 This difference has been attributed to the degree of steric saturation 

provided by two bulky CpMe4R ligands,60 which is not provided in this case with a single 

Pn†
 ligand. 

4.4.2 Reactivity studies of 4.5. 

Compound 4.5 is the first well-defined scandium Pn† complex, one which should be a 

useful precursor to a wide range of derivatives of this class. Reactions of 4.5 with 

various strong reducing agents (Na amalgam, K metal, NaK3 alloy, KC8, etc.) under a 

range of conditions were explored. In all cases no reaction was observed by 1H NMR 

spectroscopy, reflecting the stability of the Sc(III) oxidation state.  

An alternative synthetic route to low-valent scandium was pursued, taking inspiration 

from the recent report of a scandium dinitrogen complex, [(CpMe4H)2Sc]2(µ-η2:η2-N2), 

by Evans et al.61 The latter complex was formed by KC8 reduction of 

[(CpMe4H)2Sc][BPh4] under an N2 atmosphere, and tetraphenylborate salts of 

metallocene cations have proven to be excellent starting materials for the general 

synthesis of reduced dinitrogen complexes for yttrium and the lanthanides.62,63 It was 

postulated by Evans et al. that these reactions proceed via a putatative divalent 

metallocene intermediate, an idea which if extended to a hypothetical ‘Pn†Sc(II)’ 

species in the present case, may undergo dimerisation in the absence of N2 to give a 

double-sandwich complex.  

The synthetic sequence to [(CpMe4H)2Sc][BPh4] is outlined in Scheme 4.5, in which the 

scandium allyl complex (CpMe4H)2Sc(η3-C3H5) was isolated free from coordinating 

THF. Base free alkyl precursors appear to be a prerequisite for the synthesis of cationic 

tetraphenylborate complexes via protonolysis routes such as this, since Evans et al. have 

suggested that tightly-bound THF ligands can lead to problems in reactions with the 

Brønsted acid [Et3NH][BPh4].64 

 

Scheme 4.5 Synthetic route to a scandium tetraphenylborate complex by Evans et al.61 

(CpMe4H)2ScCl(THF) Sc

B

[Et3NH][BPh4] 
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Following this logic, an unsolvated complex of the type [Pn†ScR] was targeted, and 

preliminary reactivity studies of 4.5 were carried out. Reaction of allylmagnesium 

chloride with 4.5 in toluene at -78 °C produced an orange solution after warming to 

room temperature. Work-up and recrystallisation from pentane afforded a yellow 

crystalline solid which is given the tentative formulation [(η8-Pn†)Sc(C3H5)(THF)]x 

(4.6) on the basis of NMR spectroscopy in C6D6. The Pn† ligand was identified by 

aromatic signals at 6.71 and 5.50 ppm and iPr signals at 1.30, 1.23 and 1.14 ppm with 

the expected multiplicity. Signals at 6.35 and 3.29 ppm in 1:4 ratio by integration, were 

assigned to the CH and CH2 groups of the allyl ligand respectively, with broad 

linewidths (Δν½ = 1.3 Hz) possibly indicative of fluxionality between η1- and η3- 

binding modes as has been observed for allyl derivatives of ansa-scandocenes.65 

Coordinated THF was identified by signals at 3.24 and 0.97 ppm in the 1H NMR 

spectrum and signals at 67.2 and 25.3 ppm in the 13C{1H} spectrum. Relative 

integration of the 1H signals indicated the presence of 1 mole of THF per allyl ligand. 

Elemental analysis of 4.6 show consistently low carbon values over repeat 

measurements, even when combusted with added V2O5 oxidant. This problem has been 

reported previously for organoscandium complexes with a high carbon-content,65-69 and 

has been attributed to the formation of inert carbide species.56 The reactivity of 4.6 with 

[Et3NH][BPh4] in toluene-d8 was tested on an NMR scale, however only intractable 

mixtures of different products were observed by NMR spectroscopy. Evidently the 

presence of coordinated THF in the isolated product means it is not a suitable candidate 

for the synthesis of an unsolvated [(η8-Pn†)Sc]+ cation via protonolysis with 

[Et3NH][BPh4], and further efforts to purify and fully characterise complex 4.6 were 

abandoned.  

4.4.3 Synthesis and characterisation of (η8-Pn†)ScCp* (4.7) 

Pentalene can be considered as an 8 electron donor (L3X2 in a neutral counting 

scheme)54 when coordinated in an η8- fashion to a single metal centre, which means the 

formal electron count of the (η8-Pn†)Sc moiety is 2 less than that of (CpMe4H)2Sc. 

Therefore an R ligand with an electron count 2 greater than for R = η3-C3H5 (L2X) 

would give the desired base-free (η8-Pn†)ScR complex the same electron count as 

(CpMe4H)2Sc(η3-C3H5). A suitable candidate was R = Cp* which is a 5 electron donor 
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(L2X) and the permethylated ring was chosen specifically to provide steric stabilisation 

and potentially give a monomeric complex.  

Reaction of 4.5 with KCp* in THF produced a red mixture which after work-up and 

recrystallisation from pentane furnished (η8-Pn†)ScCp* (4.7) as orange crystals in 43% 

yield (Scheme 4.6).  

 

 

Scheme 4.6 Synthesis of 4.7. R = SiiPr3. 

 

Multinuclear (1H, 13C, 29Si) NMR spectra in C6D6 show the expected resonances due to 

the Pn† and Cp* ligands, and confirmed the absence of coordinating THF. Mass 

spectrometry (EI) and elemental analysis were consistent with the proposed 

formulation.  

X-ray diffraction analysis of 4.7 reveals a molecular structure (Figure 4.15) comparable 

with those of 2.6, 2.7 and 2.8 in this work, and the f-element mixed sandwich 

complexes (η8-Pn†)SmCp* and (η8-Pn†)UCp* reported by Cloke et al.70,71 Structural 

data for this complex listed in Table 4.5, show that the smaller radius of the Sc3+ ion 

(rSc3+ = 0.745 Å) allows for closer approach of the carbocyclic ligands and, in turn, the 

pentalene ring folds about its bridgehead bond to a greater extent (30.1°) to 

accommodate the smaller metal.  

4.7 is the first example of a scandium complex bearing a trialkylsilyl-substituted 

pentalene ligand to be characterised by X-ray diffraction and to the best of the authors 

knowlege the only other scandium pentalene complexes outside this work are (η8-

Pn)ScR{THF} R = Cp, Cp*, indenyl, reported in a patent by Jonas et al.72 However no 

crystallographic data have been reported for any of the latter, which precludes any 

structural comparison with 4.7. 
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Figure 4.15 Displacement ellipsoid plot (50% probability) of 4.7. H atoms and iPr 

groups omitted for clarity. The Cp*-CH3 groups were disordered over two positions 

with only part 1 shown.  

 

Table 4.5 Selected distances (Å), angles (°) and parameters for 4.7. Ct1 and Ct2 are the 

η5,η5-centroids and Ct4 is the midpoint of the bridgehead bond of the Pn ring. Ct3 is the 

η5-centroid of the Cp* ring. 

Parameter 4.7 Parameter 4.7 

Sc1−Ct1 2.0631(11) C−Cring(Pn) 
a 1.433(3) 

Sc1−Ct2 2.0617(11) Ct1−Sc1−Ct2 152.18(7) 

Sc1−Ct3 2.147(2) Ct2−Sc1−Ct3 54.77(7) 

Sc1−Ct4 2.094(18) Ct4−Sc1−Ct3 179.22(7) 

Sc–Cring(Pn) a 2.435(2) Fold angle 30.06(12) 

aAverage values. 

 

An orange solution of 4.7 in toluene-d8 was treated with [Et3NH][BPh4] and heated to 

100 °C for 3 days, however no reaction was observed by 1H NMR spectroscopy. 

Despite examples from Evans et al. of facile protonolysis of Cp* ligands bound to 
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Ln(II) centres (as discussed in chapter two), this ligand interacts more strongly with the 

highly ionic Sc(III) centre, as exemplified by the shorter metal−Cp* centroid distance in 

4.7 (2.147(2) Å) compared with those in [Cp*Ln]2(µ-Pn†) (range 2.397(3) - 2.540(2) Å). 

Therefore protonolysis with [Et3NH][BPh4] to give Cp*H (pKa = 26.1),73 Et3N and the 

desired (η8-Pn†)Sc(BPh4) complex is not viable. Other candidates for R ligands which 

may be more labile when attached to the Sc(III) centre include pentadienyl, mesityl, 

CH(SiMe3)2, CH2Ph, and CHPh2. However due to time constraints further reactivity 

studies of 4.5 were not undertaken. 

 

4.5  Experimental Details for Chapter Four 

4.5.1 Synthesis of [(η8-Pn†)Ti]2(µ-Cl)3 (4.1)  

A THF (50 mL) solution of [K]2Pn† (1.376 g, 2.79 mmol) was added dropwise to a 

stirred suspension of TiCl3(THF)3 (1.089 g, 2.96 mmol) in THF (100 mL) at 0 °C. The 

resultant olive green reaction mixture was allowed to warm to room temperature whilst 

stirring overnight, after which time the solvent was removed in vacuo and the solid 

residues were extracted with toluene (100 mL) and filtered through Celite on a frit. The 

resultant solution was stripped to dryness to afford a green microcrystalline solid.  

Total yield: 1.220 g (80% with respect to TiCl3(THF)3).  

An analytically pure sample of 4.1, and crystals suitable for X-ray diffraction were 

obtained by slow cooling of a saturated THF solution to -35 °C. In the solid state and 

solution, 4.1 slowly decomposes at room temperature to give an uncharacterised orange 

coloured compound and requires storage at -35 °C or below.  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 1.09 (br, Δν½ = 80 Hz, iPr CH), 1.46, (br, Δν½ 

= 98 Hz, iPr CH3).  

EPR (solid state, 293 K, X-band): giso = 1.985; (toluene, 150 K, X-band) g1 = 2.002, g2 

= 1.989, g3 = 1.967, giso = 1.986; (toluene, 150 K, Q-band): g1 = 2.001, g2 = 1.987, g3 = 

1.961, giso = 1.983.  

IR (NaCl): 2963, 2944, 2890, 2866, 1671, 1463, 1415, 1382, 1261 cm-1.  
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EI-MS: m/z = 1031 (25%), [M]+; 996 (15%), [M - Cl]+; 913 (90%), [M - TiCl2]+; 877 

(85%), [M - TiCl3]+.  

Anal. found (calcd for C52H92Cl3Si4Ti2): C, 60.25 (60.54); H, 8.82 (8.99)%.  

Mag. suscep. (toluene-d8, 303 K): µeff = 1.70 µB per dimer; (solid state, 250 K): µeff = 

1.72 µB per dimer; (calcd. from solid state EPR spectrum using giso = 1.985, 293 K): µeff 

= 1.72 µB per dimer. 

Partially refined crystal data for 4.1: C52H92Cl3Si4Ti2, Mr = 1396.1, red blade, triclinic, 

space group P-1, a = 8.511(4) Å, b = 13.784(6) Å, c = 14.767(5) Å, α = 59.36(2)°,  

β = 69.98(3)°, γ = 83.67(4)°, V = 1396(12) Å3, T = 100 K, Z = 1, λMo(Kα) = 0.71073 Å,  

θmax = 27.6°, R1 [I >2σ(I)] = 0.1168, wR2 (all data) = 0.3674, GooF = 1.432. 

4.5.2 Synthesis of [(η8-Pn†)Ti{py}]2(µ-Cl)2 (4.2)(py)2 

The reaction of [K]2Pn† and TiCl3(THF)3 was carried out as above and a 100 mg sample 

of the crude green solid was treated with hexane (3 mL) and pyridine (1 mL) resulting 

in a colour change to brown. The volatiles were removed under reduced pressure and 

the solid residues were extracted with toluene (2 mL) and filtered. The filtrate was 

cooled to -35 °C, affording (4.2)(py)2 as red crystals which were isolated by 

decantation, washed with pentane (1 mL) at -35 °C, and dried in vacuo. 

1H NMR (toluene-d8, 399.5 MHz, 303 K): δH 2.90 (br, Δν½ = 80 Hz, iPr CH), 1.46, (br, 

Δν½ = 98 Hz, iPr CH3).  

IR (NaCl): 2943, 2866, 1603, 1462, 1442, 1386, 1260, 1172, 1070, 1018, cm-1.  

EI-MS: m/z = 526-535 (principal peak 532, 25%), [M - TiPn† - 2py]+; 489 (100%), [M - 

TiPn† - iPr - 2py]+. 

Anal. found (calcd. for C62H102Cl2N2Si4Ti2): C, 64.05 (64.50); H, 8.92 (8.91); N, 2.50 

(2.43) %.  

Mag. suscep. (toluene-d8, 303 K): µeff = 2.13 µB per dimer; (solid state, 250 K): µeff = 

2.14 µB per dimer. 

Crystal data for 4.2(py)2: C62H102Cl2N2Si4Ti2, Mr = 1154.51, triclinic, space group P-1, 

dark red plate, a = 10.6847(8) Å, b = 11.5207(8) Å, c = 14.2783(10) Å, α = 78.884(8)°, 

β = 70.774(7)°, γ = 89.374(9)°, V = 1625.8(2) Å3, T = 100 K, Z = 1, Rint = 0.0681, 
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λMo(Kα) = 0.71073 Å, θmax = 25.242°, R1 [I >2σ(I)] = 0.0726, wR2 (all data) = 0.1946, 

GooF = 1.05. 

4.5.3 Synthesis of (µ:η5,η5-Pn†)2Ti2 (4.3) 

To a solution of 4.1 (355 mg, 0.344 mmol) in hexane (40 mL) was added potassium 

amalgam, freshly prepared from mercury (4 mL) and potassium (109 mg, 2.79 mmol). 

The reaction mixture was stirred vigorously for 24 h at room temperature, to afford a 

red suspension that was filtered through Celite and the solvent removed in vacuo. 

Complex 2 was recrystallised from a saturated pentane (5 mL) solution at -50 °C as 

deep red blocks, which were isolated by decantation and dried in vacuo.  

Total yield: 79 mg (25% with respect to 4.1). Improved crystalline yields of 4.3 (60% 

with respect to [K]2Pn† on a 3.3 mmol scale) were obtained in a one-pot synthesis via 

K/Hg reduction of 4.1 the without latter being isolated.  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.83 (4H, d, 3JHH = 3.1 Hz, Pn H), 6.34 (4H, d, 
3JHH = 3.2 Hz, Pn H), 1.16 (12H, m, iPr CH), 0.91 (36H, d, 3JHH = 7.4 Hz, iPr CH3),  

0.77 (36H, d, 3JHH = 7.4 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 133.44 (Pn bridgehead C), 132.63 (Pn 

aromatic C), 111.28 (Pn aromatic C), 102.28 (Pn aromatic C-Si), 19.24 (iPr CH3), 19.03 

(iPr CH3), 13.44 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 4.32.  

EI-MS: m/z = 916-927 (principal peak 922, 100%), [M]+; 877 (50%), [M - Ti]+. 

Anal. found (calcd. for C52H92Si4Ti2): C, 67.38 (67.49); H, 9.91 (10.02) %.  

IR (NaCl): 2941, 2889, 2863, 1463, 1410, 1382, 1261 cm-1.  

Crystal data for 4.2: C52H92Si4Ti2, Mr = 925.42, triclinic, space group P-1, orange plate, 

a = 13.055(7) Å, b = 13.064(5) Å, c = 19.698(10) Å, α = 95.75(6)°, β = 103.67(7)°,  

γ = 119.44(3)°, V = 2749(2) Å3, T = 100 K, Z = 2, Rint = 0.1059, λMo(Kα) = 0.71073 Å,  

θmax = 24.71°, R1 [I >2σ(I)] = 0.0927, wR2 (all data) = 0.2008, GooF = 1.079. 



    
138 

4.5.4 Synthesis of [(µ:η5,η5-Pn†)2Ti2] [B(C6F5)4] (4.4). 

To a stirred, solid mixture of 4.3 (81.5 mg, 0.088 mmol) and [FeCp*2][B(C6F5)4] (127 

mg, 0.126 mmol) at -35 °C was added Et2O (3 mL), pre-cooled to -35 °C, and the 

resultant brown mixture was allowed to warm to room temperature. After 20 mins the 

solvent was removed under reduced pressure to afford a brown residue that was washed 

thoroughly with hexane (4 × 15 mL) to remove FeCp*2 until the washings ran 

colourless. The residue was then extracted with Et2O (2 × 2 mL), filtered and the brown 

filtrate concentrated to ca. 1 mL by slow evaporation at ambient pressure. Cooling this 

solution to -35 °C produced green crystals that were isolated by decantation and dried in 

vacuo. 

Total yield: 21 mg (15% with respect to 4.3).  

1H NMR (THF-d8, 399.5 MHz, 303 K): δH 2.97 (br, Δν½ = 79 Hz, iPr H). 13C and 29Si 

NMR resonances were not observed due to the paramagnetic nature of 4.4.  

19F NMR (THF-d8, 375.9 MHz, 303 K): δF -132.7 (br, o-F), -165.2 (t, 3JFF = 20.2 Hz,  

p-F), -168.7 (br t, 3JFF = 19.3 Hz, m-F).  

11B{1H} NMR (THF-d8, 128.2 MHz, 303 K): δB -14.75. 

EI-MS: No volatility. 

Anal. found (calcd. for C76H92BF20Si4Ti2): C, 56.72 (56.89); H, 5.83 (5.78) %. 

Mag. suscep. (THF-d8, 303 K): µeff = 1.96 µB per dimer. 

Crystal data for 4.4.½(C6H14): C79H99BF20Si4Ti2, Mr = 1647.55, triclinic, space group  

P-1, green plate, a = 14.217(3) Å, b = 15.491(3) Å, c = 19.366(4) Å, α = 89.30(3)°,  

β = 88.71(3)°, γ = 67.67(3)°, V = 3944.1(16) Å3, T = 100 K, Z = 2, Rint = 0.079, λMo(Kα) 

= 0.71075 Å, θmax = 26.372°, R1 [I >2σ(I)] = 0.0562, wR2 (all data) = 0.1656,  

GooF = 1.025. 

4.5.5 Synthesis of [(η8-Pn†)Sc(THF)(µ-Cl)]2 (4.5) 

A solution of [K]2Pn† (650 mg, 1.32 mmol) in THF (20 mL) was added dropwise to a 

suspension of ScCl3 (200 mg, 1.32 mmol) in THF (100 mL) and stirred overnight at 

room temperature. The resultant red mixture was stripped to dryness and the solid 
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residues were extracted with pentane (3 × 10 mL) and filtered through Celite on a frit. 

The orange filtrate was concentrated to ca. 5 mL and filtered. Cooling this solution to -

50 °C produced orange crystals that were isolated by decantation and dried in vacuo. 

Total yield: 643 mg (86% with respect to [K]2Pn†).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.77 (4H, d, 3JHH = 2.8 Hz, Pn H), 6.34 (4H, br 

s, Δν½ = 16.5 Hz, Pn H), 3.66 (8H, br s, Δν½ = 14.3 Hz, THF OCH2), 1.40 (s, THF 

CH2), 1.38 (m, iPr CH), 1.27 (36H, d, 3JHH = 7.3 Hz, iPr CH3), 1.23 (36H, d, 3JHH = 7.3 

Hz, iPr CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 149.1 (Pn aromatic C), 68.45 (THF 

OCH2), 25.76 (THF CH2), 20.88 - 18.41 (overlapping signals, iPr CH3), 13.67 - 

11.25 (overlapping signals, iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi -25.00.  

45Sc{1H} NMR (C6D6, 97.04 MHz, 303 K): δSc -7.14. 

EI-MS: m/z = 874 (100%), [Pn†
2Sc]+; 831 (15%), [Pn†

2Sc - iPr]+. 

Anal. found (calcd. for C60H106Cl2O2Sc2Si4): C, 63.45 (63.62); H, 9.38 (9.43)%. 

Partially refined crystal data for 4.5: C60H108Cl2O2Sc2Si4, Mr = 1134.6, triclinic, space 

group P-1, orange block, a = 15.211(4) Å, b = 17.520(6) Å, c = 19.602(7) Å, α = 

82.38(3)°, β = 71.63(2)°, γ = 77.84(3)°, V = 4834(3) Å3, T = 100 K, Z = 3, λMo(Kα) = 

0.71073 Å, θmax = 24.5°, R1 [I >2σ(I)] = 0.1256, wR2 (all data) = 0.3096, GooF = 1.156. 

4.5.6 Synthesis of [(η8-Pn†)Sc(C3H5){THF}]x (4.6) 

A solution of allylmagnesium chloride (32 mL, 0.649 mmol, 2.0 M in THF) was added 

to a solution of 4.5 (350 mg, 0.309 mmol) in toluene (10 mL) at -78 °C. The orange 

reaction mixture was stirred for 40 min at -78 °C and then allowed to warm to room 

temperature. After 5 h the solvent was removed under reduced pressure, yielding an 

orange residue which was treated with hexane (20 mL) and dried in vacuo. Extraction 

with 1,4 dioxane (1 mL) in hexane (50 mL), followed by standing for 3 h allowed the 

separation of a white precipitate. The yellow-orange supernatant was decanted and 

filtered through Celite on a frit. Removal of the solvent yielded 4.6 as a bubbly yellow 

solid, which was recrystallised from pentane at -35 °C. 
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Total yield: 89 mg (24% with respect to C3H5MgCl).  

1H NMR (C6D6, 499.9 MHz, 303 K): δH 6.72 (2H, d, 3JHH = 2.5 Hz, Pn H), 6.35 (1H, m, 

J = 11.1 Hz, allyl CH), 5.51 (2H, d, 3JHH = 2.9 Hz, Pn H), 3.29 (4H, br s, Δν½ = 1.28 

Hz, allyl CH2), 3.24 (4H, br t, 3JHH = 6.4 Hz, THF OCH2), 1.30 (m, iPr CH), 1.23 (18H, 

d, 3JHH = 7.0 Hz, iPr CH3), 1.14 (18H, d, 3JHH = 7.2 Hz, iPr CH3), 0.97 (4H, br t, 3JHH = 

6.5 Hz, THF CH2). 

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 145.20 (Pn bridgehead C), 142.60 (allyl 

CH), 131.50 (Pn C), 104.29 (Pn C), 95.45 (Pn C-Si), 71.00 (allyl CH2), 67.24 (THF 

OCH2), 25.17 (THF CH2), 19.66 (iPr CH3), 13.00 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 0.69.  

EI-MS: m/z = 873 (100%), [Pn†
2Sc]+; 716 (30%), [Pn†

2Sc - SiiPr3]+. 

Anal. found (calcd. for C33H58OScSi2): C, 53.31, 58.92 (69.30); H, 8.22, 8.21 (10.22)%. 

4.5.7 Synthesis of (η8-Pn†)ScCp* (4.7) 

To a stirred mixture of 4.5 (301 mg, 0.266 mmol) and KCp* (94 mg, 0.540 mmol) was 

added THF (50 mL) at room temperature. After 12 h the solvent was removed under 

reduced pressure, yielding an orange residue which was treated with pentane (20 mL) 

and dried in vacuo. Extraction with pentane (2 × 50 mL) followed by filtration and 

removal of the solvent yielded 4.7 as a bubbly orange solid, which was recrystallised 

from pentane at -35 °C. 

Total yield: 138 mg (43% with respect to KCp*).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.74 (2H, d, 3JHH = 3.0 Hz, Pn H), 5.29 (2H, d, 
3JHH = 3.0 Hz, Pn H), 1.98 (15H, s, Cp* CH3), 1.25 (6H, m, iPr CH), 1.14 (18H, d, 3JHH 

= 7.4 Hz, iPr CH3), 1.11 (18H, d, 3JHH = 7.4 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 125.7 MHz, 303 K): δC 151.65 (Pn bridgehead C), 135.09 (Pn 

aromatic CH), 120.36 (Cp* CCH3), 105.86 (Pn aromatic CH), 102.20 (Pn aromatic  

C-Si), 19.75 (iPr CH3), 19.50 (iPr CH3), 12.65 (iPr CH), 12.12 (Cp* CH3). 

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 1.56. 

EI-MS: m/z = 594 (90%), [M]+; 551 (75%), [M - iPr]+; 437 (10%), [M - SiiPr3]+. 
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Anal. found (calcd. for C36H61Sc2Si2): C, 72.59 (72.67); H, 10.42 (10.33)%. 

Crystal data for 4.6: C36H61ScSi2, Mr = 594.98, triclinic, space group P-1, orange block, 

a = 9.3802(19) Å, b = 12.717(3) Å, c = 15.862(3) Å, α = 78.23(3)°, β = 77.28(3)°,  

γ = 77.98(3)°, V = 1780.2(7) Å3, T = 100 K, Z = 2, Rint = 0.0549, λMo(Kα) = 0.71073 Å,  

θmax = 27.482°, R1 [I >2σ(I)] = 0.0512, wR2 (all data) = 0.1385, GooF = 1.018. 
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5 CHAPTER FIVE: Reactivity of (µ:η5,η5-Pn†)2Ti2 with Carbon Monoxide 

and Carbon Dioxide 

5.1 Introduction 

Despite the considerable number of di-metal bis(pentalene) ‘double-sandwich’ 

complexes known prior to this study,1-3 no subsequent reaction chemistry had been 

reported. The first of these complexes to be structurally authenticated (Pn†)2Mo2,  

(Pn† = [C8H4{SiiPr3-1,4}2]2-) shows a near-parallel arrangement of pentalene ligands 

with the SiiPr3 groups staggered.4 DFT calculations describe a Mo–Mo bond order of 

two and a formal electron count of 28 per dimer, indicating an electronically deficient 

system.5 However the implicit effect on reactivity was not observed and (Pn†)2Mo2 

shows resistance to coordination of Lewis bases such as CO or PMe3, attributed to the 

sterically crowded environment around the metal centres.4 Recent work by Cloke et al. 

has shown that (Pn†)2V2, containing a reduced [V2]4+ core with a V–V triple bond, also 

showed no reaction with H2, CO or CO2.6 The previous chapter describes the synthesis 

and characterisation of the di-titanium bis(pentalene) complex, (µ:η5,η5-Pn†)2Ti2 (4.3), 

which features a rare example of a Ti–Ti multiple bond. 4.3 has a solid state structure 

unique amongst the Pn2M2 complexes, in which the pentalene ligands are non-parallel 

and tilted around the Ti2 core. DFT studies on model system Pn2Ti2 calculated a M–M 

bond order of 2 (with σ and π components), and an optimised C2v molecular symmetry, 

providing a relatively open structure in which the frontier orbitals are sterically 

accessible.7  

The prospect of a low valent group 4 metal with the unusual characteristics of a  

metal-metal bond prompted a reactivity study of 4.3 with small molecules, in particular 

CO and CO2. Previous reports of CO and CO2 activation at low valent titanium centres 

and comparable M–M bonded complexes will be briefly summarised. 

 

5.1.1 Carbon monoxide  

Carbon monoxide, CO, is the most extensively studied ligand in transition metal 

chemistry,8,9 and carbonyl complexes are known for each one of the transition  

metals.10-12 Bonding in transition metal carbonyls is a synergic process involving 
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electron donation from the filled σ-orbital on carbon into an empty metal orbital of the 

same symmetry and similar energy, and back donation from filled metal π-orbitals into 

the empty π*-antibonding orbital of the CO ligand. Therefore carbonyl complexes are 

stabilised by low oxidation state metals, which have electrons available for back 

donation. This feature was exploited for Ti(II) by Murray in 1959 with the first 

preparation of a titanium carbonyl complex, Cp2Ti(CO)2, by reduction of Cp2TiCl2 in 

the presence of CO.13 In this reaction, the coordination of two neutral (L) ligands is a 

prerequisite for trapping the highly reactive ‘titanocene’ (Cp2Ti) intermediate, which 

was later established to be unstable with respect to the fulvalene-bridged Ti(III) hydride 

dimer, (µ-C10H8)[(η5-Cp)Ti(µ-H)]2.14,15 Higher yielding synthetic routes to Cp2Ti(CO)2 

were subsequently developed,16-19 leading to its structural characterisation by X-ray 

crystallography,20 which confirmed that the carbonyl groups bond to titanium in a 

strictly linear fashion. Given that a simple titanocene precluded isolation and 

spectroscopic characterisation, Cp2Ti(CO)2 is a relatively stable diamagnetic complex, 

and provided a convenient entry point for reactivity studies of the Ti(II) oxidation state. 

Pioneering work by Floriani et al. using Cp2Ti(CO)2 with electrophilic substrates 

(including azobenzene, alkynes, organic disulfides, and acyl halides) showed primarily 

metal-based reactivity with liberation of carbon monoxide, and helped establish the 

carbenoid-like behavior of the Cp2Ti moiety.21-26 Substituted titanocene di-carbonyl 

complexes, (CpR)2Ti(CO)2 (CpR = [η5-C5R5]-, R = H, Me), have also proved useful as a 

source of the respective (CpR)2Ti fragment in coupling reactions of organic carbonyl-

containing compounds (including aldehydes, ketones, and diethyl ketomalonate) to give 

pinacols and olefins.27,28 

Examples from titanium chemistry in which a bound CO undergoes further reactivity 

are limited, largely due to the thermodynamic barrier from the extremely high CO bond 

enthalpy (1076.5 ± 0.4 kJ mol-1).29 However, Choukroun et al. have reported that the 

reaction of Cp2Ti(CO)2 with B(C6F5)3 leads to the acylborane complex Cp2Ti(CO)(η2-

OC-B{C6F5}3) in which the electrophilic borane attaches to the carbon of the carbonyl 

moiety rather than the oxygen atom (Scheme 5.1).30  
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Scheme 5.1 Carbonyl based reactivity of Cp2Ti(CO)2 with B(C6F5)3.30 

 

The action of syngas (CO + H2) on Cp2Ti(CO)2 has also been reported, resulting in the 

hydrogenation of carbon monoxide to methane, and a hexanuclear cluser with 

stoichiometry [Ti6O8Cp6] as a by-product.31 Although making methane from syngas is 

not in itself a desireable transformation,32 the production of higher Cn products in the 

Fischer-Tropsch process is of high industrial importance for use as liquid fuels and bulk 

chemicals.33-36 Group 4 metal complexes, primarily with zirconium, have attracted 

considerable interest as well-defined models for homogeneous Fischer-Tropsch 

chemistry, as reactive Zr(IV) hydrides are able to reduce CO,37-41 and in some cases 

give C−C coupled products (Scheme 5.2).42,43 

 

 

Scheme 5.2 Nucleophilic Zr(IV) hydrides for the coupling of CO.42 

 

Multiple metal-metal bonded complexes provide an interesting scaffold for CO binding 

and activation, due to the close proximity of the metals in the M2 core and the unusual 

oxidation states that can be supported in these complexes. Given the paucity of 

homonuclear bonds between group 4 metals in the literature,44,45 examples pertinent to 

the current study may be found in the group 6 complexes of the type M2(OR)6 reported 

by Cotton and Chisholm et al.46 These complexes contain an electron rich [M2]6+ centre 

pentane 
50 °C

B(C6F5)3
Ti

CO

O

B(C6F5)3Ti
CO

CO - CO

THF

Ti

THF

O

B(C6F5)3

Cp*2Zr
H

H
Cp*2Zr

H

H
CO

CO Cp*2ZrH2
Cp*2Zr

H2
C

H
ZrCp*2

O

H

CO

Cp*2Zr
O

H
ZrCp*2

H

H
C
H

H
C

H2

Cp*2Zr
H

H
+ Cp*2Zr

OCH3

H



    
147 

with supporting ligands in which the R group can be modified to change the steric and 

electronic properties, as exemplified by their extensive redox chemistry with π-acceptor 

organic molecules.  

The first example of a carbonyl ligand bridging a metal-metal double bond was 

synthesised by treatment of Mo2(OtBu)6 with CO in a reversible reaction to form 

Mo2(µ-CO)(OtBu)6.47 The analogous di-tungsten carbonyl complex, W2(µ-CO)(OtBu)6, 

is kinetically stable to CO loss.48 The X-ray structures of these Mo2 and W2 complexes 

both show symmetrical binding of the CO ligand between the two metal atoms (Scheme 

5.3, left), with low ν(CO) IR bands at 1625 and 1575 cm-1 respectively. Reaction of the 

di-tungsten carbonyl complex with W2(OiPr)6 in the presence of an excess of iPrOH 

results in the reductive cleavage of CO to carbide and oxo ligands in tetranuclear 

clusters (Scheme 5.3, right).49 

 

 

Scheme 5.3 Reductive cleavage of CO by W(III) alkoxide clusters. Alkyl groups 

omitted and W atoms in green. CO/carbide/oxo ligands labelled for clarity.49 

 

Further studies on triply bonded di-tungsten complexes with [tBu3SiO]- (= silox) ligands 

by Wolczanski et al. showed that treatment of [(silox)4W2Cl2] with CO afforded the di-

carbonyl complex, [(silox)4W2Cl2(CO)2].50 Upon thermolysis this dimer loses one CO 

and cleaves the remaining one to give a bridging carbide-oxo-dichloride (Scheme 5.4). 

Reduction of this complex was possible upon exposure to H2 with Na/Hg, resulting in 

partial hydrogenation of the carbide bridge to generate a bridging methylidyne-oxo-

hydride complex.  
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Scheme 5.4 Carbide formation via CO dissociation across a W≡W bond. R = SitBu3.50 

 

5.1.2 Isocyanides 

Organic isocyanides (RNC) are considered to be isolobal with carbon monoxide, and 

have shown interesting reactivity with low-valent transition metals and M−M bonded 

complexes to complement that of CO.51 Titanocene(II) complexes are known to form 

di-isocyanide adducts of the type Cp2Ti(L)2, in a similar manner to their CO and PR3 

adducts.52 The first crystallographically characterised Ti(II) example being the  

ansa-bridged complex Me2SiCp2Ti(CNXyl)2 which shows linear bonding of the 

isocyanide groups.53 Isocyanides have also proved useful as model molecules for CO to 

study the mechanism for reduction by zirconocene hydrides.54,55  

It has been well established that reaction of isocyanides with di-metal complexes with 

[Cr2]4+, [Mo2]4+, [W2]4+
 or [Re2]6+ cores, which are not supported by bridging ligands, 

leads to cleavage of the metal-metal bond and formation of mononuclear products.56-60 

However, di-tungsten hexaalkoxides W2(OtBu)6 and W2(OiPr)6(py)2 form stable 1:1 

adducts with isocyanides, RNC (R = Xyl and tBu).61 The XylNC complexes were 

structurally characterised by XRD, which revealed the isocyanide ligand adopting a 

bridging binding mode, similar to that found in their mono-CO counterparts.48 The 

bridging isocyanide is asymmetrically bound between the W2 core in these complexes, 

with a significant bending about the nitrogen atom (C−N−C ca. 130°).  

There is growing interest in the coupling of isocyanides to alkynes,62 and longer chain 

organic molecules,63,64 and metal-metal bonded compounds have provided some 

breakthrough examples. Theopold et al. have recently reported the reductive coupling of 

CyNC by the quintuply bonded α-diimine chromium dimer [HLiPrCr]2 to produce several 

nitrogen heterocycles (Scheme 5.5).65 
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Scheme 5.5 Reductive coupling of isocyanides by Cr(I) dimer.65 

 

Another notable example is the reactivity of β-diketiminate coordinated Mg(I) dimers 

(L)2Mg2 (L = [(ArNCMe)2CH2]-, Ar = Mes or Dip = C6H3
iPr2-2,6) with tBuNC and 

XylNC, which give the C−C coupled 1,4-diazadiene-2,3-diyl fragments (Scheme 5.6).66 

 

 

Scheme 5.6 Reductive coupling of isocyanides by Mg(I) dimers. 
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5.1.3 Carbon dioxide  

In light of increasing global energy demands and environmental concerns over 

anthropogenic climate change,67 there is considerable interest in the utilisation of CO2 as 

a renewable C1 feedstock for industrially important chemicals.68-70 One of the most 

promising methods is the use of transition metal catalysts to bring about selective and 

energy-efficient CO2 incorporation into organic compounds or reduction to CO, which 

can then be converted into liquid fuels via Fisher-Tropsch chemistry.32  

The difficulty in achieving CO2 reduction lies in the thermodynamic stability of the CO2 

molecule and the kinetic barrier to its activation. As a result highly reducing oxophilic 

metal complexes are typically employed. Stoichiometric CO2 activation has been 

achieved using well-defined complexes of the main group and transition  

metals,71-74 as well as metal free systems based on frustrated Lewis pairs (FLPs).75-77 

Nonetheless better understanding of the mechanisms for these reductive transformations 

is required, with a view to tuning the structure of the active complex or the reaction 

conditions to give more useful product outcomes, and assess the potential for catalytic 

turnover.  

Evans et al. have shown that samarium(II) metallocenes facilitate the reductive coupling 

of CO2 to oxalate [O2CCO2]2-,78,79 and the reductive disproportionation of COS to 

[S2CO]2- and CO.79 More recently, organouranium(III) complexes have gained 

significant interest due to their high ability for CO2 activation.80-82 For example, 

trivalent uranium metallocenes U(CpR)3 reductively activate CO2 (for CpR =  

[η5-C5H4{SiMe3}]-) and COS (for CpR = [η5-C5H4Me]-) to generate µ-oxo/µ-sulfido 

products, with concomitant release of CO.83,84 DFT studies by Maron et al. have 

provided insight into the mechanism of reductive CO2 and COS activation at Sm(II)85 

and U(III)86,87 centres, and in each case a reaction pathway involving a bimetallic  

µ-CO2 complex was implicated, in which carbon dioxide was doubly reduced. The 

possibility of a concerted pathway involving an monometallic CO2 intermediate with a 

radical anionic [CO2].- ligand was ruled out on the basis of the observed product 

outcomes. Recent studies by Cloke et al. with mixed-sandwich U(III) complexes 

(COT')UCpMe4R{THF}x (COT' = [η8-C8H6{SiMe3-1,4}2]2-, R = Me, Et, iPr, tBu) have 

shown that the steric environment around the metal centre plays a key role in guiding 

the possible reductive transformation pathways of CO2, i.e. reductive coupling, 

disproportionation, or deoxygenation (Scheme 5.7).88  
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Scheme 5.7 Selectivity control in CO2 reduction by U(III) complexes.88 

 

Divalent titanium sandwich complexes have shown rich and varied chemistry with a 

variety of small molecules,89,90 however there are very few examples of  

Ti(II)-promoted CO2 activation. Alt et al. reported the synthesis of a titanium CO2 

adduct Cp2Ti(CO2)(PMe3),91 via simple ligand substitution of Cp2Ti(PMe3)2. Although 

Cp2Ti(CO2)(PMe3) precluded characterisation by X-ray diffraction, an isotope labelling 

study by Mascetti et al. enabled detailed assignment of its IR spectrum, revealing a  

C-coordinated CO2 ligand.92 

A number of acetylene complexes of Cp2Ti exhibit CO2 insertion into the Ti−C bond of 

the titanacyclopropene ring.93-96 Reductive disproportionation of CO2 has been achieved 

by Cp2Ti(CO)2 to generate CO and the carbonate-bridged tetranuclear structure 

[(Cp2Ti)2(CO3)]2.97 Titanium(III) complexes have also shown efficacy for the reductive 

transformations of CO2 to yield oxo-,97 carbonate-,97-100 and oxalate-101 products, and 

the relative inexpense and low toxicity of this metal makes it attractive for potential use 

in a catalytic system.  

Homonuclear M–M bonded complexes have also shown ability to facilitate the 

reductive activation of CO2. For example, Jones et al. have shown that the  

β-diketiminate coordinated Mg(I) dimer, (L)2Mg2 (L = [(DipNCMe)2CH2]-, Dip = 

C6H3
iPr2-2,6), can facilitate the reductive disproportionation of CO2 to yield free CO 

and a carbonate bridged Mg(II) complex in high yield (Scheme 5.8).102  
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Scheme 5.8 Reductive disproportion of CO2 by a Mg(I) dimer.102 

 

More recently, Kempe et al. have described a quintuply bonded di-chromium complex 

stabilised by aminopyridinato ligands which activates CO2, yielding to a doubly CO 

bridged chromium complex in which the metal-metal bond order is formally reduced 

(Scheme 5.9).103 The suggested by-product was a paramagnetic [CrO]4 cluster, as a 

result of oxygen abstraction from CO2. 

 

 

Scheme 5.9 Reductive activation CO2 by a Cr2 dimer.103 
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5.2  Reactivity of 4.3 with CO and Related Molecules 

5.2.1 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2(CO) (5.1).  

Following the varied reactivity of Ti(II) and reduced M−M bonded complexes reported 

in the literature, and the aforementioned electronic and steric attributes of 4.3, its 

reactivity with carbon monoxide was investigated.  

Depending on the stoichiometry of CO gas employed in the reaction with 4.3, different 

adducts form. The mono-carbonyl complex 5.1 was synthesised by the slow addition of 

one equivalent of CO to solutions of 4.3 at -78 °C via Toepler line. 1H NMR 

spectroscopy showed the reaction is quantitative, and red crystals of 5.1 were isolated 

from pentane at -35 °C in 62% yield. The 1H NMR spectrum of 5.1 consists of eight 

doublet signals in the aromatic region (Figure 5.1), consistent with an unsymmetrical 

structure in which all of the ring protons in the two Pn† ligands are chemically 

inequivalent. The 1H NMR spectrum of the isotopically labelled product 13C-5.1 (Figure 

5.1, inset) differs from 12C-5.1 in that the Pn† ring signal at 7.69 ppm appears as a triplet 

(J = 3.2 Hz) with a 1H-13C (HMBC) correlation to the isotopically enriched µ-13CO. 

Inspection of the 29Si{1H} NMR spectra, which consists of four singlets for 12C-5.1, 

reveals one signal splitting into a doublet (J = 1.5 Hz) for 13C-5.1 (Figure 5.2).  

 

 

Figure 5.1 Selected regions of the 1H NMR spectra of 5.1 and 13C-5.1 (inset).  
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Figure 5.2 29Si{1H} NMR spectrum of 13C-5.1 in methylcyclohexane-d14. 

 

These features are attributed to through-space J couplings between the carbonyl carbon 

and the hydrogen and silicon in the proximal ‘wing-side’ position of the Pn† ligands 

above and below (Figure 5.3). The average distance between the CCO and these H and Si 

atoms in the solid state structure (Section 5.2.5) are 2.807(8) and 3.846(11) Å 

respectively. 

  

Figure 5.3 Through-space coupling between CO and Pn† wing-side substituents.  

 

The solid-state IR spectrum of 5.1 exhibits a broad CO stretching band at 1655 cm-1, 

which shifts to 1616 cm-1 upon 13C isotopic substitution. Abnormally low ν(CO) 

frequencies are characteristic of bridging carbonyl ligands which can act as 4e- donors, 

bonding to the metal through one of the CO π bonds as well as the carbon atom.  

Compound 5.1 is, to the best of the author’s knowledge, the first example of a 

semibridging carbonyl ligand between two titanium centres, and heterometallic 

examples involving titanium carbonyls are very rare. A weak semibridging carbonyl-
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gold interaction was inferred in the anionic gold-titanium complex  

[K(15-crown-5)2][Ti(CO)6(AuPEt3)] on the basis of X-ray structural parameters and a 

difference between the solid-state and solution IR ν(CO) stretching frequencies.104 

Semibridging carbonyls have also been observed in Ti/M heterobimetallics  

Cp2Ti(µ-PEt3)(µ-η1:η2-OC)M(CO)Cp (M = Mo, W),105 Cp2Ti(µ-C{R}CH2)- 

(µ-η1:η2-OC)W(CO)Cp,106,107 and Cp2Ti(µ-CR)(µ-η1:η2-OC)W(CO)Cp (R = p-Tol),108 

which show substantial reduction in the C−O bond order compared to typical terminal 

carbonyl moieties, as evidenced by the C−O bond distance and ν(CO). 

 

5.2.2 Synthesis and characterisation of (µ:η5,η5-Pn†)2[Ti(CO)]2 (5.2).  

Reaction of 4.3 with two equivalents of CO, produced a green-brown solution, found to 

be the di-carbonyl complex (µ:η5,η5-Pn†)2[Ti(CO)]2 (5.2). 1H NMR spectroscopy shows 

the reaction is quantitative, however due to the extreme solubility of the complex in 

hydrocarbon solvents, brown crystals of 5.2 were isolated from pentane at -35 °C in a 

modest 39% yield. The molecular structure determined by single crystal XRD is 

discussed in Section 5.2.5.  

Complex 5.2 shows four 1H NMR signals in the aromatic region of the spectrum, 

consistent with a C2 structure on the NMR timescale, in contrast to the 1H NMR 

spectrum of 4.3, which shows only two aromatic signals due to fluxionality in solution. 

The 13C{1H} spectrum of 5.2 shows a sharp resonance at 232 ppm assigned to the two 

chemically equivalent carbonyl ligands. The IR stretching frequencies of the CO ligands 

are observed at 1991 and 1910 cm-1, and a frequency shift is observed when using 13C 

labelled gas (νCO = 1947 and 1867 cm-1) each with a 13C/12C isotopic ratio  

R (0.9779 and 0.9774), consistent with the value calculated using the reduced mass 

ratio, µ(13CO)/µ(12CO) = 0.9777.109,110 These stretching frequencies are considerably 

higher than those of titanocene mono-carbonyls characterised by IR,111 indicating the 

metal centres in the double-sandwich complex are more electron deficient. 

Carbonyl complexes 5.1 and 5.2 are stable with respect to CO loss following exposure 

to a turbo pump operating at ca. 10-6 mbar for 1 h at room temperature, as confirmed by 
1H NMR spectroscopy and elemental analysis. However loss of carbonyl ligands from 

5.1 and 5.2 is facile under the conditions of the mass spectrometer in EI mode. 
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5.2.3 Synthesis and characterisation of (µ:η5,η5-Pn†)2[Ti(CO)]2(µ-CO) (5.3).  

Exposure of a pentane solution of 4.3 to an excess of CO at -78 °C led to a rapid colour 

change from deep red to orange-brown. Removal of CO gas from the reaction 

headspace followed by warming to room temperature resulted in a colour change to a 

green-brown solution, characteristic of the di-carbonyl complex 5.2. These observations 

hinted that an additional product is formed in the presence of excess CO at low 

temperatures, which was investigated by NMR spectroscopy.  

Addition of an excess of 13CO (0.86 bar) to a solution of isotopically labelled 13C-5.2 in 

methylcyclohexane-d14, resulted in a colour change to the darker orange-brown of 5.3. 

The J. Young NMR tube was sealed under a 13CO atmosphere and variable temperature 

NMR studies were carried out in 5 °C increments between -70 and 30 °C. The 13C{1H} 

NMR spectrum at 30 °C (Figure 5.4, top) showed a very broad resonance centred at 232 

ppm (Δν½ = 190 Hz). The spectrum is resolved by cooling to -70 °C (Figure 5.4, 

bottom) showing two labelled 13C peaks in ca. 2:1 ratio at 268 and 257 ppm, and a peak 

at 186 ppm corresponding to free 13CO in solution. These three 13C peaks broaden upon 

warming and coalesce at 5 °C (Figure 5.4, middle), consistent with a dynamic 

intermolecular exchange process between 13C-5.2 and free 13CO. 

 

 

Figure 5.4 Selected VT 13C{1H} NMR spectra of 13C-5.3 in MeCy-d14 solution. 
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The 1H NMR spectrum at -70 °C consists of four sharp peaks in the aromatic region, the 

peak at 6.35 ppm shifts downfield to 7.01 ppm upon warming to 5 °C and broadens 

significantly (Δν½ = 57 Hz). This 1H resonance continues to shift downfield upon 

warming to 30 °C and the peak sharpens (δH 7.80, Δν½ = 8 Hz). Removal of the 13CO 

headspace from the NMR tube resulted in quantitative conversion of 13C-5.3 to 13C-5.2. 

The proposed formulation of 5.3 based on spectroscopic evidence is  

(µ:η5,η5-Pn†)2[Ti(CO)]2(µ-CO), with a bridging carbonyl ligand that is chemically 

inequivalent to the two terminal carbonyls at -70 °C.  

The dynamic behavior of terminal and bridging CO ligands of 5.3 in 

methylcyclohexane-d14 was further investigated by an isotopic labelling experiment. 

The 13C{1H} NMR (30 °C) spectrum of 5.2, was collected over 1000 scans, which was 

not sufficiently large an acquisition to observe the natural abundance carbonyl 13C 

signal. To this was added an excess of 13CO (0.86 bar) at -78 °C producing an orange-

brown solution of 13C-5.3 which was identified by a very broad resonance centred at 

235 ppm (Δν½ = 837 Hz) in its 13C{1H} NMR (30 °C, 1000 scans) spectrum. Removal 

of the headspace from the NMR tube by exposure to an argon atmosphere resulted in a 

colour change back to green-brown and the 13C{1H} NMR (30 °C, 1000 scans) 

spectrum displayed a sharp peak at 231 ppm. Incorporation of labelled 13CO into the di-

carbonyl complex 5.2 implies there is dynamic intramolecular exchange of bridging and 

terminal carbonyl ligands in 5.3 (Scheme 5.10), in addition to the intermolecular 

exchange with free CO. This was confirmed by a 13C-13C EXSY experiment (-40 °C, 

mixing time = 500 ms) following the addition of excess 13CO (4 mol eq.) to a solution 

of 4.3 in methylcyclohexane-d14. Cross peaks were observed between the bridging and 

terminal carbonyl ligands of 5.3 which both, in turn, showed cross peaks with the 

carbonyl ligands of 5.2, also present in the reaction mixture. 

 

 

Scheme 5.10 Summary of NMR experiments with isotopically labelled CO. 
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The carbonylation of 4.3 was studied by in situ IR spectroscopy. An excess of CO (0.86 

bar) was added via Toepler line to 4.3 in methylcyclohexane solution at -55 °C and IR 

spectra were collected every 5 s. In the initial 4 min following the first gas addition 

cycle an IR band in the ν(CO) region at 1992 cm-1 is formed, which then decreases in 

intensity and levels off as a ν(CO) stretch at 1910 cm-1 grows in. This lower energy 

ν(CO) stretch became the major IR band at -55 °C once gas addition was complete 

(Figure 5.5). 

 

 

Figure 5.5 ν(CO) region of the React IR spectrum of 4.3 with CO at -55 °C. 

 

The solution was warmed to 26 °C under CO, and the intensities of the two bands 

reversed, with 1992 cm-1 as the major ν(CO) stretching band. Removal of the CO 

headspace in vacuo led to near complete removal in the lower energy ν(CO) stretch at 

1910 cm-1. These results suggest that the band centred at 1992 cm-1 is the di-carbonyl 

complex 5.2, which is the major product in the initial stages of reaction and upon 

warming to 26 °C when CO becomes less soluble. The IR band at 1910 cm-1 is assigned 

to the terminal ν(CO) stretch in complex 5.3, which is the major product in solution 

under excess CO at -55 °C, but diminishes following removal of the reaction headspace 

and warming to room temperature. An analogous experiment was performed using 
13CO, and gave similar qualitative results with IR bands at 1948 cm-1 and 1867 cm-1 

assigned to the terminal ν(CO) in 13C-5.2 and 13C-5.3 respectively. IR bands for the 
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bridging CO ligands, expected in the region 1850-1600 cm-1,112 were not observed in 

the solution spectra for 5.1 and 5.3, presumably due to extensive broadening. 

Orange crystals of 5.3 were grown under an atmosphere of CO from a saturated toluene 

solution stored at -80 °C. Unfortunately analysis of the orange plates by XRD was 

hampered by their deterioration when placed in vacuum oil, with effervescence of gas 

accompanying crystalline decomposition. However, elemental analysis of the orange 

crystals was consistent with the proposed formulation for 5.3.  

 

 

Scheme 5.11 Summary of reactions of 4.3 with carbon monoxide (R = SiiPr3).  

 

5.2.4 Reactivity of 4.3 with isocyanides 

Treatment of a solution of 4.3 in toluene-d8 with two equivalents of MeNC resulted in a 

purple mixture, the 1H NMR spectrum of which showed eight doublet signals in the 

aromatic region, similar to that of mono-carbonyl adduct 5.1. A 1H signal at 3.25 ppm 

was assigned to the methyl group of coordinated MeNC, with a signal at 1.18 ppm for 

the free isocyanide in approximately equal ratio by integration. These observations are 

consistent with a 1:1 adduct 5.4 as the sole product (Scheme 5.12, top). Excess MeNC 

was identified by a singlet signal at 1.18 ppm in the 1H NMR spectrum. Apparently, the 

steric congestion due to the SiiPr3 groups prevents ligation of a second molecule of 

MeNC, in contrast to the multiple adducts formed with 4.3 and CO. The quaternary 

MeNC carbon in 5.4 was identified in the 13C NMR spectrum at 289 ppm, and the Pn† 

ring 13C signals were consistent with an unsymmetrical structure in which the two 

ligands are chemically inequivalent.  

The solution structure was confirmed in the solid state by a single crystal XRD study, 

revealing a µ-CNMe ligand asymmetrically bridging the Ti2 core (Section 5.2.5, Figure 

5.6). The IR spectrum of 5.4 shows a ν(CN) stretch at 1642 cm-1, which is unusually 
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low for bridging isocyanide ligands in bimetallic complexes, which typically range from 

1700 to 1870 cm-1.113 However the aforementioned di-tungsten mono(µ-CNR) adducts 

reported by Chisholm et al. also showed very low ν(CN) IR bands (ca. 1530 cm-1),61 

which these researchers attributed to a high degree of back bonding from the metal d-

orbitals to the vacant high-energy π*-orbitals of the isocyanide ligand. 

The reaction of 4.3 with tBuNC was carried out to investigate the effect of increasing 

steric bulk on the isocyanide ligand. Addition of an excess of tBuNC to 4.3 in C6D6 

resulted in a metallic precipitate and a brown solution, the 1H NMR spectrum of which 

showed a complex mixture of products. A prominent ion at m/z = 878 (90%) 

corresponding to the homoleptic Ti(IV) species, [Ti(Pn†)2]+, was observed in the mass 

spectrum of the crude residue, suggesting possible cleavage of the M−M bond had 

occurred. A possible by-product of the proposed disproportionation reaction would be 

the 18-electron complex Ti(CNtBu)7 and a corresponding peak at m/z = 631 was 

identified in the mass spectrum, albeit with low intensity (10%). However, zero-valent 

Ti(CNtBu)7 is expected to be unstable with respect to Ti metal, which is the likely 

identity of the precipitate formed in this reaction. The analogous zero-valent carbonyl 

complex Ti(CO)7 is unknown, however thermodynamically stable derivatives, 

Ti(CO)3(R2PC2H2PR2)2 (R= Me, Et), have been synthesised by Wreford and  

co-workers.114 Attempts to isolate and purify the soluble products by recrystallisation 

failed.  

The reactions of 4.3 with MeNC and tBuNC are summarised in Scheme 5.12. The 

reason for the observed difference in reactivity of 4.3 with these alkyl isocyanides is 

unclear, however one may speculate that the increased σ-donating character of the 
tBuNC ligand leads to M−M bond cleavage over adduct formation.  

 

Scheme 5.12 Reactivity of 4.3 with alkyl isocyanides. 
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5.2.5 X-ray crystallographic studies of 5.1, 5.2 and 5.4 

The solid-state structure of 5.1 determined by X-ray crystallography (Figure 5.6, top) 

shows the CO ligand bound side-on, asymmetrically bridging the two Ti centres. The 

carbonyl group was disordered and the disorder was adequately modeled over two 

crystallographic positions (by restraining the C−O bond lengths to be equal within 

ESDs). Hence, a degree of caution must be taken when interpreting bond lengths for the 

carbonyl moiety from these X-ray data (Table 5.2). The proximal Ti atom lies closer to 

the CO ligand in 5.1 than in the di-carbonyl complex 5.2, and additional interaction 

between the CO and the distal Ti atom is clearly in effect in the former complex 

(Ti1−C53a = 2.245(10) Å, Ti1−O1a = 2.294(5) Å), causing the O−C53−Tiproximal angle 

to bend considerably from linearity.  

The geometric function Ω = exp[d(Mdistal−C)/d(Mdistal−O)] measures the extent of 

interaction of the distal metal with the C and O ends of the CO ligand.115 This function 

can be used to differentiate between C- and O- bonded metal carbonyls in ‘end on’  

(∑-CO) and ‘side-on’ (∏-CO) disposition (Table 5.1), although there is no obvious 

break in values for conventional C-bridging and ∏-CO. The average value for 5.1 (Ω = 

2.69) lies comfortably in the range for a ∏-CO, and comparable values are found for the 

aforementioned Ti/M heterobimetallics with semibridging CO ligands, Cp2Ti- 

(µ-C{p-Tol}CH2)(µ-η1:η2-OC)W(CO)Cp (Ω = 2.65),106,107 and Cp2Ti(µ-C{p-Tol})- 

(µ-η1:η2-OC)W(CO)Cp (Ω = 2.63).108 

 

Table 5.1 The disposition of CO in bimetallic systems. 

CO disposition C-bridging ∏-CO ∑-CO 

Diagram 

  
 

Typical Ω range 1.7 - 2.3 2.2 - 3.3 3.9 - 5.0 

 

 

M M'

C

O

M M'

C
O

M M'CO
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The C−O bond distance in 5.1 (av. 1.211(11) Å) is lengthened with respect to free CO 

(1.128 Å),116 to an extent that is comparable to ∑-CO complexes 

Cp2Ti(THF)(OC)Mo(CO)2Cp (1.201(8) Å)117 and Cp*2Ti(Me)(OC)Mo(CO)2Cp 

(1.212(5) Å)118 in which the titanocene moiety behaves as a Lewis acid, coordinating to 

an oxygen atom of the Lewis basic [CpMo(CO)3]- fragment.  

Comparison of the solid-state structures of side-on mono-CO (5.1) and mono-MeNC 

(5.4) adducts reveals slightly longer Ti−Ti and Ti−C53 distances in the latter complex. 

However 5.4 shows a closer approach of the MeNC-nitrogen atom to the distal Ti atom 

compared with that of the CO-oxygen atom in 5.1, consistent with the relative 

availability of the N lone pair in valence bond structure for isocyanides,119 compared 

with the predominantly zwiterrionic valence bond character of CO.120 This is reflected 

in a more acute angle Ti2−C53−E about the semibridging carbon atom in 5.4 (133.3(6)°, 

E=N1) compared with 5.1 (143.8(13)°, E=O1a). However, the relatively poor quality of 

the structure of 5.4 due to low resolution X-ray data at high diffraction angle, warrants a 

degree of caution with regard to this interpretation.  
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Figure 5.6 ORTEP plots of (top-bottom) 5.1 part 1, 5.2 and 5.4.  

H atoms and iPr groups omitted for clarity. 30% ellipsoids. 
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Table 5.2 Selected distances (Å), angles (°) and parameters (defined in Figure 5.7) for 

4.3, 5.1, 5.2, and 5.4. Ct denotes the η5-centroid of a Pn ring. 

Parameter 4.3 5.1 5.2 5.4 

Ti−Ti 2.399(2) 2.4047(5) 2.425(10) 2.4120(15) 

C53−Tiproximal - 1.975(9)a 2.100(5)a 2.016(6) 

C53−Tidistal - 2.322(15)a - 2.326(7) 

O1/N1−Tidistal - 2.352(6)a - 2.147(6) 

C53−O1/N1 - 1.211(11)a 1.141(6)a 1.219(10) 

Ti−Ct a 2.036(4) 2.058(9) 2.0453(15) 2.080(2) 

Ti−Cring a 2.378(7) 2.395(2) 2.382(2) 2.412(2) 

Ct−Ti−Ct a 155.22(19) 146.41(5) 144.53(8) 142.94(11) 

Ti−C53−O1/N1 - 143.8(13)a 178.05(4)a 133.3(6) 

Δ a 0.005(7) 0.093(2) 0.083(2) 0.103 

Twist angle  20.1(8) 17.02(15) 15.3(3) 17.5(4) 

Hinge angle a 3.8(8) 5.0(2) 5.0(2) 4.6(2) 

Fold angle a 8.7(4) 5.85(2) 7.5(2) 5.1 

aAverage values. 
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5.2.6 DFT studies of 5.1, 5.2 and 5.3 

Theoretical calculations by Green on the carbonyl adducts employed a model system 

with the pentalene substituents replaced by H atoms.121 Key structural parameters are 

given in Table 5.3. Data for the two different computational methods, ADF and 

Gaussian, are given in normal font and italics respectively. 

Geometry optimisation of Pn2Ti2(CO) had Cs symmetry with the carbonyl ligand bound 

sideways-on to the Ti dimer (5.I). A double bond is retained between the two Ti atoms 

in 5.I (Figure 5.8, 55a) and the calculated Ti−Ti distances (2.38, 2.36 Å) are in 

reasonable agreement with the X-ray interpretation (2.4047(5) Å). The wavenumber for 

the CO stretch was calculated as 1644 cm-1 in 5.I, which is lower than the range for 

symmetric bridging carbonyls (1850-1600 cm-1),112 but in good agreement with the 

experimental value of 1655 cm-1 in 5.1.  

 

Figure 5.8 Calculated structure for 5.I and its HOMO 55a and HOMO-1 54a.121 

Geometry optimisation of Pn2Ti2(CO)2 (5.II) by both computational methods gave a 

structure of Cs symmetry only slightly displaced from C2v symmetry, which agrees well 

with that found experimentally. The Ti−Ti bonding orbital, 36a (Figure 5.9), remains 

intact but is straighter than found for the other derivatives, consistent with the slightly 

elongated Ti−Ti distance in 5.2 (2.425(10) Å) with no reduction in bond order. Back-

bonding to both carbonyl ligands occurs in orbital 35a, which has clear origins in the 

HOMO-1 of Pn2Ti2 (6b3u of 4.IIIa, see Section 4.3.4, Figure 4.11). The calculated 

vibrations for the antisymmetric and symmetric CO stretches in 5.II are 1947, 1899, and 

1878, 1810 cm-1 respectively, which are higher than the ν(CO) values found 

experimentally in 5.2 (1910 and 1987 cm-1), but reasons for this discrepancy are 

unclear. 
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Figure 5.9 Calculated structure for 5.II and its MOs.121 

Geometry optimisation of Pn2Ti2(CO)3 resulted in structure 5.III (Figure 5.10), which is 

particularly insightful given that the labile nature of the tricarbonyl species 5.3. The 

Ti−Ti distance is significantly longer than found in 4.III, 5.I and 5.II. The structure is 

asymmetric with two terminal carbonyls and one semibridging. The two highest 

occupied orbitals, 65a and 64a (Figure 5.10), are principally involved in back-donation 

to the CO ligands. The HOMO 65a is focused on the titanium atom with just one CO 

bound. The HOMO-1 64a binds two CO ligands but retains a small amount of Ti−Ti 

bonding character. Three IR active CO stretches were predicted for 5.III (1941, 1894, 

1873, 1918, 1868, 1835 cm-1), however the lowest frequency vibration has a relatively 

low calculated intensity, which may explain why only two CO stretches are observed in 

the IR spectrum of 5.3 (1991, 1910 cm-1). 

 
Figure 5.10 Calculated structure for 5.III and its HOMO 65a and HOMO-1 64a. 

The structural parameters for Pn2Ti2(CNMe) (5.IV) calculated using DFT (Table 5.3) 

are in reasonable agreement with the experimental values for 5.4, and are in keeping 

with the comparison with the mono-CO complex, showing slightly longer Ti−Ti, 

C−Tiproximal and C−O/N distances and a stronger interaction between the MeNC-

nitrogen atom to the distal Ti atom in 5.IV compared with that of the CO-oxygen atom 

in 5.I.  
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Table 5.3 Selected structural parameters (Å, °) for calculated structures.121 Ct denotes 

the η5-centroid of a Pn ring. ADF values are in normal font, Gaussian values in italics.  

Parameter 5.I 5.II 5.III 5.IV 

Ti−Ti 2.38, 2.36 2.42, 2.42 2.63, 2.64 2.40 

C53−Tiproximal 2.04, 2.02 2.08, 2.08 2.02, 1.99 
2.06, 2.05 

2.07, 2.03 

2.05 

O/N−Tidistal 2.35, 2.26 - - 2.15 

C53−O/N 1.21, 1.25 1.17, 1.17 1.17, 1.19 

1.17, 1.19 
1.16, 1.18 

1.26 

Ti−Ct  2.06, 2.08 2.05, 2.05 2.04, 2.07 
2.09, 2.11 

2.09, 
2.07 

Ct−Ti−Ct 143, 143 144, 144 
142, 144 

143, 142 
137, 137 

140, 
144 

 

The facile coordination of carbon monoxide and isocyanides to complex 4.3 marks the 

first reported example of reactivity of di-metal bis(pentalene) double-sandwich 

complexes. The ability of 4.3 to form multiple adducts illustrates the sterically 

accessible nature of the frontier orbitals of this complex, which were well described 

using DFT calculations using a model ligand system. The propensity for these 

unsaturated substrates to bridge across the two metals may be exploited in further 

chemistry. The mono-carbonyl complex 5.1 is of particular interest because 

semibridging CO is implicated as a precursor to the cleavage of CO on metal surfaces, 

such as those employed in Fischer-Tropsch catalysis.115,122 Further studies are required 

to investigate 5.1 for potential CO cleavage and reduction, however due to time 

constraints these are not pursued in the current study. 
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5.3   Reactivity of 4.3 with CO2 

5.3.1 Reaction of 4.3 with CO2 at room temperature 

Exposure of a deep red solution of 4.3 to a stoichiometric amount of CO2 gas at room 

temperature resulted in an instantaneous colour change to red brown, and subsequent 

analysis of the 1H NMR spectrum showed complete conversion to two compounds, 5.5 

and 5.2 (Scheme 5.13) in approximately equal ratio.  

 

Scheme 5.13 Room temperature reaction of 4.3 with CO2. R = SiiPr3. 

The reaction mixture was left to stand at room temperature overnight and deposited 

orange crystals, which were isolated (77% yield) and identified as component 5.5 by  
1H NMR, mass spectrometry and elemental analysis. The crystals were analysed by  

XRD and though a fully refined model could not be achieved, the data were of adequate 

quality to verify connectivity (see appendix A2). Compound 5.5 is a bis(µ-oxo) dimer 

which lacks a Ti−Ti bond and the pentalene ligands bind in an η8- fashion to each 

formally Ti(IV) centre. 5.5 was independently prepared in high yields (90%) by 

treatment of 4.3 with two molar equivalents of N2O, a reagent commonly used as a 

source of oxygen atoms for the synthesis of oxometallocenes (Scheme 5.14).98,123 5.5 is 

sparingly soluble in hydrocarbon and ethereal solvents, but can be fully dissolved by 

treatment with pyridine to form [(η5-Pn†)Ti(µ-O)(py)]2 (5.6). Cooling a hexane solution 

of 5.6 afforded X-ray quality red crystals (48% yield), which were prone to solvent loss 

and reformed 5.5 in the absence of excess pyridine, as confirmed by spectroscopic and 

analytical data.  

 

Scheme 5.14 Synthesis of 5.5 and 5.6. R = SiiPr3.  
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Figure 5.11 Displacement ellipsoid plot (30% probability) of 5.6.  

Hydrogen atoms and iPr groups omitted for clarity.  

 

Table 5.4 Selected interatomic distances (Å), angles (°) and parameters (defined in 

Figures 5.9 and 5.14) for 5.6. Ct denotes the η5-centroid of the Pn† ligand. 

Parameter 5.6 Parameter 5.6 

Ti1…Ti2 2.7376(6) Ti1−O1−Ti2 95.35(8) 

Ti1−O1 1.8531(17) Ti1−O1−Ti2 95.33(8) 

Ti1−O2 1.8416(17) Ti1−N1 2.174(2) 

Ti2−O1 1.8495(17) Ti2−N2 2.165(2) 

Ti2−O2 1.8615(17) Ti–Cring a 2.338(2) 

Ti−Ct a 1.9949(9) ϕ 162.12(7) 

Δ a 0.046(2) Fold angle a 0.62(15) 

aAverage values. 
 

 

Figure 5.12  
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The molecular structure of this pyridine adduct (Figure 5.11) shows pentalene binding 

through only five of eight carbons of the aromatic ligand. The range of Ti–C distances 

is 2.283(2)-2.407(2) Å, with an average value of 2.338(2) Å. The average  

metal-centroid distance is 1.9949(9) Å and the average ring slippage (Δ)124 value of 

0.046(2) Å is small enough that pentalene may be essentially considered as an η5- 

ligand. This results in a double zwitterionic structure, with a formal positive charge on 

each Ti(IV) centre and a negative charge on the noncoordinated part of the pentalene 

ligand. This unusual binding mode has previously been observed by Jonas et al. in the 

mononuclear complexes (η5-Pn)MCp* (M = Cr, Co and Rh), and  

Li2[Zr(η5-Pn)Me2].125-127 However no crystallographic data have been reported for any 

of the latter, which precludes any structural comparison with 5.6. The C−C bond lengths 

of both the coordinated and uncoordinated 5-membered rings in 5.6 (which range from 

1.393(4)-1.455(4) Å) are comparable to those found in the anti-bimetallic complex 

[YbCp*(THF)]2(µ:η5:η5-Pn†) (which range from 1.401(8)-1.457(1) Å), in which both 5-

membered rings are fully coordinated and aromatic.128 The 1H NMR spectrum of 5.6 in 

C6D6 is consistent with the unsolvated complex 5.5 and free pyridine, however the 

spectrum in pyridine-d5 is broad and unresolved, even at 235 K, possibly indicative of 

rapid exchange between free and bound pyridine.  

The di-carbonyl compound, 5.2, was separated from the room temperature CO2 reaction 

mixture by TMS2O extraction and isolated in 92% yield with respect to the reaction 

stoichiometry in Scheme 5.13. The reaction of 4.3 with CO2 marks the first reported 

example of small molecule activation by a bis(pentalene) double-sandwich complex,129 

and may be considered as the result of a 2e- reduction per CO2 driven by the oxidative 

cleavage of the Ti=Ti double bond to give the Ti(IV) bis(oxo) complex, 5.5. As a first 

approximation of the mechanism it was assumed that the concomitantly formed CO 

rapidly reacts with remaining 4.3 to afford the di-carbonyl complex, 5.2. 

 

5.3.2 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2(CO2) (5.7).  

In order to investigate the mechanistic pathway for the reductive deoxygenation, the 

reaction of 4.3 with one equivalent of either 12CO2 or 13CO2 was carried out in 

methylcyclohexane-d14 at -78 °C. This resulted in a colour change from deep red to a 

dark green solution, which accompanied quantitative conversion to an intermediate 
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species (5.7) observed by low temperature spectroscopic measurements, which had not 

been previously detected in the room temperature reaction.  

 

 

Scheme 5.15 Synthesis of low temperature CO2 intermediate 5.7. 

 

The 1H NMR spectrum of 5.7 at -30 °C showed four sharp doublets in the aromatic 

region consistent with a diamagnetic complex that exhibits C2 molecular symmetry on 

the NMR timescale, while the 13C{1H} spectrum showed a singlet at 219 ppm with no 

further labeled 13C signals. In situ IR studies of 5.7 at -65 °C showed distinct bands at 

1678 and 1236 cm-1, and these IR bands shifted to 1637 and 1217 cm-1 respectively in 

the isotopically labeled 13C-5.7. By analogy with monomeric titanium CO2 complex 

Cp2Ti(CO2)(PMe3) studied in depth by Mascetti et al.91,92 the IR bands at 1678 and 

1236 cm-1 in 5.7 are assigned to an asymmetric and symmetric ν(OCO) stretch 

respectively of the CO2 ligand, with a C-coordinated bonding mode. The reactivity of 

5.7 allows for spectroscopic elucidation only at low temperatures, and all attempts to 

isolate crystalline samples of this intermediate proved unsuccessful.  

Geometry optimisation of the model system Pn2Ti2(CO2) gave a structure with C2v 

symmetry with a bent CO2 group bound symmetrically between the two Ti atoms 

(Figure 5.13). The calculated wavenumbers for the CO2 group are 1669 cm-1 for the 

asymmetric stretch and 1214 cm-1 for the symmetric stretch, which are in good 

agreement with the experimental results. A good match between the metal-metal 

bonding orbitals and the π-anti-bonding LUMO of CO2 results in stabilisation of the 

metal electrons and binding of the substrate. A metal-metal bond is retained between the 

two Ti atoms consistent with the calculated Ti−Ti distance of 2.41 Å. 
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Figure 5.13 Calculated structure of 5.VII, and schematic drawing of its HOMO (19a1), 

the LUMO of bent CO2 and bonding orbital 18a1.121 

 

CO2 has been observed to bind to dinuclear metal sites with three different bonding 

modes (Figure 5.14)74,130-132 and the proposed µ:η2,η2- coordination geometry has only 

recently been structurally authenticated by X-ray crystallography in an N-heterocyclic 

carbene (NHC) nickel(0) dimer, [(IPr)Ni]2(µ-CO)(µ:η2,η2-CO2), (IPr = 1,3-bis- 

(2,6-diisopropylphenyl)imidazol-2-ylidene) by Sadighi et al.133 

 

 

Figure 5.14 Crystallographically characterised bonding modes of CO2 in bimetallic 

complexes. 

 

5.3.3 Synthesis and characterisation of mono(µ-oxo) complexes 5.8 and 5.9 

The red mono-oxo complex 5.8 was isolated by allowing methylcyclohexane solutions 

of 5.7 to warm from -78 °C to room temperature under dynamic vacuum, or 

alternatively, by the slow addition of one equivalent of N2O to 4.3 via Toepler line 

(Scheme 5.16).  
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Scheme 5.16 Synthesis of 5.8 and 5.9. R = SiiPr3. 

 

The 1H NMR spectrum of 5.8 shows four sharp doublets in the aromatic region, 

consistent with a diamagnetic complex with C2 symmetry. Elemental analysis and mass 

spectrometry measurements support the proposed formulation.  

The molecular structure determined by single crystal XRD reveals a 'dimetallo-epoxide' 

structure (Figure 5.15), with an oxo ligand symmetrically bridging two formally Ti(III) 

centres. The molecule posses a 2-fold improper rotation axis (S2) passing through the  

µ-O ligand and the midpoint of the Ti−Ti bond, which results in one half of the dimer 

being generated by symmetry. The Pn† ligands are less tightly bound to the Ti2 core of 

5.8 relative to 4.3, and show the largest average Ti−C and Ti−centroid distances of all 

the double-sandwich derivatives structurally characterised in this work. Interestingly, 

the ring slippage parameter (Δ = 0.15) and twist angle between the Pn† ligands and the 

di-metal unit (26.6(5)°) also have the largest value of all of these structures. These 

observations in the solid state structure may be construed as a ‘snap shot’ of the Pn† 

rings as they move across the Ti2 core from a bridging (η5,η5-) bonding mode in 5.8 

towards a capping (η8-) mode in structural isomer 5.9 (vide infra). 
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Figure 5.15 ORTEP (30% probability) diagram of 5.8. Hydrogen atoms and iPr groups 

omitted for clarity. Primed atoms are generated by symmetry. 

 

Table 5.5 Selected distances (Å), angles (°) and parameters (defined in Figure 5.7) for 

5.8. Ct1, Ct2 and Ct1’, Ct2’ are the η5,η5-centroids of the Pn1 and Pn1’ rings 

respectively. 

Parameter 5.8 Parameter 5.8 

Ti1−Ti1’ 2.3991(7) Ti1−O1−Ti1’ 80.28(8) 

Ti1−O1 1.8607(15) O1−Ti1−Ti1’ 49.86(4) 

Ti−Ct a 2.133(10) Ct1−Ti1−Ct2’ 139.722(12) 

Ti–Cring a 2.4548(19) Fold angle  0.15(13) 

Δ a 0.150(19) Twist angle  26.6(5) 

aAverage values. 
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Complex 5.8 is thermally sensitive, and allowing a red C6D6 solution to stand for 12 

hours at room temperature led to the precipitation of green crystals of 5.9. Elemental 

analysis and mass spectrometry measurements identified 5.9 as a mono-oxo complex, 

isomeric with 5.8. X-ray crystallography established the connectivity of the atoms in 

5.9 as a µ-O dimer in which the Ti−Ti bond has been cleaved and the pentalene ligands 

bind in an η8- fashion to each formally Ti(III) centre (Figure 5.16). However, problems 

with the data set precluded accurate refinement of metric parameters (R1 = 13.8%). 

Examination of the raw intensity data revealed that the crystal used in the data 

collection was twinned, and despite several recrystallisations of 5.9, single crystals of a 

higher quality could not be obtained. 

 

 

Figure 5.16 Partially refined molecular structure of 5.9 (thermal ellipsoids at 30%), 

showing two crystallographically independent molecules in the asymmetric unit.  

Hydrogen atoms and iPr groups omitted for clarity. 

 

In the 1H NMR spectrum of 5.9 in THF-d8 solution only broad signals were observed, 

and the effective magnetic moment determined by the Evans method134,135 was 1.73 µB 

per Ti, a value consistent with one unpaired electron per metal centre. EPR 

spectroscopy of 5.8 was complicated by its extreme sensitivity both in the solid state 

and THF solution, and its poor solubility in more innocent solvents such as hexane or 

toluene. The X-band EPR spectrum of a frozen 2-methyltetrahydrofuran solution at 120 

K (see Appendix A2) shows a broad principal feature centered at 3095 G assigned to a 

decomposition product, and a rhombic signal centered at 3374 G, for which an average 
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g-value of 1.967 is calculated. The latter features may be tentatively assigned to the 

ΔMS = 1 transitions of the Ti(III)−O−Ti(III) system 5.8, however the expected features 

at half magnetic field for the ΔMS = 2 transitions of an electronic triplet state were not 

observed. 

DFT calculations on Pn2Ti2O with a double-sandwich structure found a local minimum 

with C2v symmetry, 5.VIII.121 The structure of [(η8-Pn)Ti]2O was optimised with both a 

singlet (5.IXs) and a triplet (5.IXt) ground state (see appendix A2 for calculated 

structures and MOs). The energies of all three structures are close and the most stable is 

both method and temperature dependent (Table 5.6). ADF has the double-sandwich 

structure the most stable. Gaussian estimates the energy (using the self-consistent field 

method, SCF) of the sandwich structure to be the lowest, however the free energy at 298 

K gives the triplet η8-coordinated structure to be the most stable. This in agreement with 

experiment as the sandwich structure of the mono-oxo complex 5.8 converts to the 

triplet state 5.9 at room temperature.  

 

Table 5.6 Ti−O−Ti angles (°) and relative energies (kcal mol-1) of structures found for 

Pn2Ti2O.121 ADF values are in normal font and Gaussian values are given in italics. 

Structure Ti−O−Ti ΔE(SCF) ΔH0
298 ΔG0

298 

5.VIII 79, 79 0, 0 0, 0 0, 2 

5.IXt 133, 180 12, 4 13, 3 8, 0 

5.IXs 103, 100 12, 19 13, 21 10, 20 

 

5.3.4 Mechanistic investigation of reaction of 4.3 with CO2  

Reaction of 4.3 with CO2 when carried out at low temperatures (between -90 °C and  

-30 °C) leads to the quantitative formation of CO2 adduct 5.7. When solutions of 5.7 

were allowed to reach room temperature a colour change from green to brown was 

observed and the coordinated CO2 molecule is reduced quantitatively over a period of 

minutes, to give a bis(oxo) bridged dimer 5.5 and the di-carbonyl complex 5.2.  
1H NMR spectra measured during the course of this reaction showed additional 

transient species, of which mono-oxo 5.8 and mono-carbonyl 5.1 were identified by 
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comparison with the spectra of independently synthesised samples (Scheme 5.17).  

With characterisation of these complexes in hand together with their calculated 

structures, a combined experimental and computational study was undertaken to probe 

the mechanism for the reaction of 4.3 with CO2.  

 

 

Scheme 5.17 Summary of reactivity of 4.3 with CO, CO2 and N2O. 

 

As a preliminary study to track the course of these intermediates and determine their 

role in the reaction mechanism, the decomposition of 5.7 at temperatures above 10 °C 

was monitored by in situ IR and NMR spectroscopy.  

The rate of decomposition of 5.7 was such that it could be conveniently followed by 1H 

NMR spectroscopy. In a typical experiment, a 0.028 M solution of 4.3 in 

methylcylcohexane-d14 at -78 °C (in the presence of ferrocene as an internal standard) 

was treated with one equivalent of CO2 and shaken over 60 mins until complete 
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conversion to dark green 5.7 was observed. The reaction mixture was then placed in a 

pre-warmed NMR probe, allowed to thermally equilibrate and the conversion of 

reactants to products was measured over time. Plots of concentration vs time at 30 °C 

(Figure 5.17) follow a first order exponential decay.  

 

 

Figure 5.17 Concentration vs time curve for the decomposition of 5.7 to oxo products 

5.8 and 5.5 at 30 °C, monitored by 1H NMR.  

 

In the initial stages of reaction at 30 °C the disappearance of 5.7 is accompanied by the 

appearance of 5.8. The rate of increase of 5.8 slows after 200 s with the appearance of 

5.5 as the final oxo product. However, the partial precipitation of 5.5 from 

methylcyclohexane-d14 solution does not permit reliable integrations and prohibits 

reliable determination of rate constants based on the appearance of the products.  

A possible reaction pathway was modeled by DFT, which encompasses the 

intermediates that have been detected experimentally.121 The free energy profile is 

shown in Figure 5.18. The two computation methods (ADF and Gaussian) differ 

quantitatively but overall the energy profiles are similar. Binding of CO2 to form the 

symmetrically bridged adduct is energetically favorable. The route to intermediate 

Pn2Ti2O(CO) (INT) passes through transition state TS1 with an energy which is 

thermally accessible at room temperature (22, 13, kcal mol-1). Loss of CO from INT to 

form 5.VIII is endoenergetic but the products lie below the energy of the previous 
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transition state. Disproportionation of 5.VIII to reform 4.III and 5.V is just viable (-2, 0 

kcal mol-1) but is driven by coordination of the liberated CO to form 5.I (-31, -33 kcal 

mol-1). Further CO then forms the di-carbonyl, 5.II. 

 

 

Figure 5.18 Energy profile for the proposed formation and decomposition of 5.VII.121 

 

Preliminary trials on an NMR scale to observe the proposed mono(µ-oxo) mono-

carbonyl intermediate by reaction of 13C-5.1 with 1 equivalent of N2O, or 5.8 with  

1 equivalent of 13CO, were inconclusive. The 13C{1H} NMR spectra were complex in 

each case, with the di-carbonyl complex 13C-5.2 identified as the major labelled product 

after warming to room temperature. 1H NMR spectra confirmed the presence of di-oxo 

5.5 in each case, which is a thermodynamic sink in the reaction of 4.3 with CO2, due to 

the formation of strong Ti−O bonds. This prompted an investigation into 4.3 with 

heteroallenes such as CS2 as model molecules for CO2 with the view to producing more 

stable and potentially isolable products. The results of these studies are discussed in 

chapter six. 
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5.4 Experimental Details for Chapter Five 

5.4.1 Synthesis of (µ:η5,η5-Pn†)2Ti2(CO) (5.1).  

An ampoule charged with 4.3 (50 mg, 0.054 mmol) and toluene (0.5 mL) was cooled to 

-78 °C and the headspace evacuated. CO gas (0.9 mol eq., 0.050 mmol) was admitted 

slowly to the mixture with vigorous stirring, resulting in a colour change from deep red 

to purple. After warming to room temperature the volatiles were removed in vacuo to 

afford a crude purple solid that was recrystallised from pentane (1 mL) at -35 °C.  

Total yield: 32 mg (62% with respect to 4.3).  

Alternatively, exposing a methylcyclohexane-d14 solution of 4.3 to 0.9 eq. 13CO via 

Toepler pump yields the labeled product, 13C-5.1.  

1H NMR (methylcyclohexane-d14, 399.5 MHz, 303 K): δH 7.69 (1H, apparent t,  
3JHH = 3.2 Hz, Pn H), 7.10 (1H, d, 3JHH = 3.2 Hz, Pn H), 6.62 (1H, d, 3JHH = 3.5 Hz,  

Pn H), 6.34 (1H, d, 3JHH = 3.5 Hz, Pn H), 6.30 (2H, d, 3JHH = 3.2 Hz, Pn H), 6.22 (2H, 

d, 3JHH = 3.6 Hz, Pn H), 5.74 (1H, d, 3JHH = 3.5 Hz, Pn H), 5.62 (1H, d, 3JHH = 3.2 Hz,  

Pn H), 1.62-1.25 (12H, overlapping m, iPr CH), 1.25-0.83 (72H, overlapping m,  
iPr CH3).  

13C{1H} NMR (methylcyclohexane-d14, 100.5 MHz, 303 K): δC 295.1 (s, CO), 136.8 

(Pn C), 132.5 (Pn C), 132.4 (Pn C), 129.1 (Pn C), 127.7 (Pn C), 125.1 (Pn C), 124.9  

(Pn C), 115.1 (Pn C), 108.2 (Pn C), 104.7 (Pn C), 103.2 (Pn C), 101.5 (Pn C), 99.75  

(Pn C), 95.08 (Pn C), 93.16 (Pn C), 89.87 (Pn C), 20.94 (iPr CH3), 20.84 (iPr CH3), 

20.79 (iPr CH3), 20.64 (iPr CH3), 20.62 (iPr CH3), 20.37 (iPr CH3), 20.36 (iPr CH3), 

20.13 (iPr CH3), 15.14 (iPr CH), 15.12 (iPr CH), 14.45 (iPr CH), 14.22 (iPr CH).  

29Si{1H} NMR (methylcyclohexane-d14, 79.4 MHz, 303 K): δSi 3.40 (s), 2.88  

(d, JSiC = 1.2 Hz), 2.40 (s), 2.22 (s).  

EI-MS: m/z = 924 (100%), [M - CO]+, 882 (10%), [M - CO - iPr]+.  

Anal. found (calcd. for C53H92Si4Ti2): C, 66.78 (66.77); H, 9.81 (9.73) %. 

IR (NaCl): 5.1 1655 (br, ν CO); 13C-5.1 1616 (br, ν 13CO) cm-1.  

Crystal data for 5.1: C53H93OSi4Ti2, Mr = 954.43, monoclinic, space group C 2/c, brown 

plate, a = 23.4629(16) Å, b = 11.6983(8) Å, c = 39.655(3) Å, α = 90°, β = 92.283(2)°,  
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γ = 90°, V = 10875.7(13) Å3, T = 100 K, Z = 8, Rint = 0.0541, λMo(Kα) = 0.71075 Å, 

θmax = 27.485°, R1 [I >2σ(I)] = 0.0411, wR2 (all data) = 0.1107, GooF = 1.021. 

5.4.2 Synthesis of (µ:η5,η5-Pn†)2Ti2(CO)2 (5.2).  

A freeze-thaw degassed solution of 4.3 (63 mg, 0.068 mmol) in pentane (5 mL), kept 

under static vacuum, was exposed to 12CO gas (1 atm) at -78 °C before warming to 

room temperature. Shortly after gas addition the solution appeared orange-brown in 

colour. The reaction mixture was freeze-thaw degassed, and exposed to an argon 

atmosphere which resulted in a colour change to green-brown. Storage of this solution 

at -35 °C afforded brown crystals of 5.2 which were isolated by decantation and dried in 

vacuo.  

Total yield: 26 mg (39% with respect to 4.3).  

Alternatively, exposing a C6D6 solution of 4.3 to 2 eq. 13CO via Toepler pump, yields 

the labeled product 13C-5.2.  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 7.59 (2H, d, 3JHH = 3.1 Hz, Pn H), 7.51 (2H, d, 
3JHH = 3.3 Hz, Pn H), 5.12 (2H, d, 3JHH = 3.3 Hz, Pn H), 4.72 (2H, d, 3JHH = 3.3 Hz,  

Pn H), 1.68 (6H, m, iPr CH), 1.41 (6H, m, iPr CH), 1.33 (18H, d, 3JHH = 7.4 Hz,  
iPr CH3), 1.19 (18H, d, 3JHH = 7.3 Hz, iPr CH3), 1.15 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 

0.93 (18H, d, 3JHH = 7.4 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 231.6 (CO), 122.8 (Pn C), 122.1 (Pn C), 

121.9 (Pn C), 105.7 (Pn C), 103.0 (Pn C), 90.2 (Pn C), 85.0 (Pn C), 20.1 (iPr CH3), 20.0 

(iPr CH3), 19.8 (iPr CH3), 19.5 (iPr CH3), 14.1 (iPr CH), 12.8 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 3.69, 2.85.  

EI-MS: m/z = 923 (100%), [M - 2CO]+.  

Anal. found (calcd. for C54H92O2Si4Ti2): C, 65.99 (66.09); H, 9.49 (9.45) %.  

IR (NaCl): 5.2 1987 (s, ν CO), 1910 (w, ν CO); 13C-5.3 1942 (s, ν 13CO), 1868  

(w, ν 13CO) cm-1. 

IR (methylcyclohexane, 26 °C): 5.2 1991 (s, ν CO), 1910 (w, ν CO); 13C-5.3 1948  

(s, ν 13CO), 1867 (w, ν 13CO) cm-1. 
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Crystal data for 5.2: C54H92O2Si4Ti2, Mr = 981.44, monoclinic, space group P21/n, 

brown plate, a = 12.894(3) Å, b = 22.342(5) Å, c = 19.113(4) Å, α = 90°,  

β = 92.18(3)°, γ = 90°, V = 5502.1(19) Å3, T = 100 K, Z = 4, Rint = 0.1018,  

λMo(Kα) = 0.71073 Å, θmax = 27.483°, R1 [I > 2σ(I)] = 0.0766, wR2 (all data) = 0.2278, 

GooF = 1.067. 

5.4.3 Synthesis of (µ:η5,η5-Pn†)2Ti2(CO)3 (5.3). 

To a degassed solution of 5.2 (10 mg, 0.0108 mmol) in methylcyclohexane-d14  

(0.5 mL) at -78 °C was added 13CO (0.85 bar). Warming of the mixture resulted in a 

colour change from green-brown to orange-brown. 

NMR yield: quantitative with respect to 5.2.  

1H NMR (methylcyclohexane-d14, 399.5 MHz, 303 K): δH 7.31 (2H, d, 3JHH = 2.9 Hz, 

Pn H), 7.22 (2H, br s, Δν½ = 10 Hz, Pn H), 5.10 (2H, d, 3JHH = 2.8 Hz, Pn H), 4.96 (2H, 

d, 3JHH = 3.0 Hz, Pn H), 1.59 (6H, m, iPr CH), 1.43 (6H, m, iPr CH), 1.20 (18H, d,  
3JHH = 7.4 Hz, iPr CH3), 1.17 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.08 (18H, d,  
3JHH = 7.4 Hz, iPr CH3), 0.93 (18H, d, 3JHH = 7.4 Hz, iPr CH3). 1H NMR 

(methylcyclohexane-d14, 399.5 MHz, 193 K): δH 7.00 (2H, s, Pn H), 6.00 (2H, s, Pn H), 

5.47 (2H, s, Pn H), 5.29 (2H, s, Pn H), 1.60 (6H, s, iPr CH), 1.44 (6H, s, iPr CH), 1.26 - 

1.08 (36H, overlapping m, iPr CH3), 1.02 (18H, s, iPr CH3), 0.84 (18H, s, iPr CH3).  

13C{1H} NMR (methylcyclohexane-d14, 100.5 MHz, 303 K): δC 232.1 (br, Δν½ = 190 

Hz, CO), 128.3 (Pn C), 123.3 (Pn C), 123.0 (Pn C), 122.8 (Pn C), 106.3 (Pn C), 103.9 

(Pn C), 91.3 (Pn C), 86.2 (Pn C), 21.0 (iPr CH3), 20.9 (iPr CH3), 20.8 (iPr CH3), 20.4 

(iPr CH3), 15.3 (iPr CH), 13.9 (iPr CH). 13C{1H} NMR (methylcyclohexane-d14, 100.5 

MHz, 193 K): δC 267.8 (CO), 256.7 (CO), 185.9 (free CO), 128.6 (Pn C), 119.0 (Pn C), 

115.1 (Pn C), 114.5 (Pn C), 100.3 (Pn C), 96.2 (Pn C), 91.6 (Pn C), 90.5  

(Pn C), 21.2 (iPr CH3), 21.0 (iPr CH3), 20.9 (iPr CH3), 15.4 (iPr CH), 13.5 (iPr CH).  

29Si{1H} NMR (methylcyclohexane-d14, 79.4 MHz, 303 K): δSi 3.59, 3.09.  

Anal. found (calcd. for C55H92O3Si4Ti2): C, 65.53 (65.44); H, 9.27 (9.19) %.  

IR (methylcyclohexane, -65 °C): 5.3 1991 (w, ν CO), 1910 (s, ν CO); 13C-5.3 1948  

(w, ν 
13CO), 1867 (s, ν 

13CO) cm-1. 
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5.4.4 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ:η2-CNMe) (5.4). 

A solution of MeNC (32 µL, 3.1 M in toluene-d8, 0.099 mmol) was added dropwise to a 

solution of 4.3 (46 mg, 0.050 mmol) in pentane (1.5 mL) at -35 °C. Following addition, 

the purple mixture was allowed to warm to room temperature and stir for 20 min. The 

resultant solution was filtered and concentrated to ca. 0.5 mL and after cooling to -35 

°C deposited dark red crystals that were isolated by decantation and dried in vacuo.  

Total yield: 39 mg (81% with respect to 4.3).  

1H NMR (toluene-d8, 399.5 MHz, 303 K): δH 7.70 (1H, d, 3JHH = 3.4 Hz, Pn H), 7.25 

(1H, d, 3JHH = 3.0 Hz, Pn H), 6.55 (1H, d, 3JHH = 3.2 Hz, Pn H), 6.19 (1H, d,  
3JHH = 3.3 Hz, Pn H), 6.01 (1H, d, 3JHH = 2.9 Hz, Pn H), 5.96 (1H, d, 3JHH = 3.2 Hz,  

Pn H), 5.89 (1H, d, 3JHH = 3.5 Hz, Pn H), 5.77 (1H, d, 3JHH = 3.4 Hz, Pn H), 3.25 (3H, s, 

CNCH3), 1.48 (6H, m, iPr CH), 1.31 (6H, m, iPr CH), 1.19 (9H, d, 3JHH = 6.4 Hz,  
iPr CH3), 1.18 (9H, d, 3JHH = 7.1 Hz, iPr CH3), 1.17 (9H, d, 3JHH = 6.9 Hz, iPr CH3), 

1.13 (9H, d, 3JHH = 7.3 Hz, iPr CH3), 1.06 (9H, d, 3JHH = 7.5 Hz, iPr CH3), 1.03 (9H, d, 
3JHH = 7.3 Hz, iPr CH3), 0.99 (9H, d, 3JHH = 6.6 Hz, iPr CH3), 0.97 (9H, d,  
3JHH = 7.0 Hz, iPr CH3). 

13C{1H} NMR (toluene-d8, 100.5 MHz, 303 K): δC 289.2 (CNCH3), 132.5 (Pn C), 132.2 

(Pn C), 130.5 (Pn C), 126.2 (Pn C), 126.0 (Pn C), 123.2 (Pn C), 111.1 (Pn C), 107.5 (Pn 

C),107.0 (Pn C), 106.3 (Pn C), 106.2 (Pn C), 94.78 (Pn C), 94.25 (Pn C), 91.44 (Pn C), 

90.81 (Pn C), 44.65 (CNCH3), 20.46 (iPr CH3), 20.40 (iPr CH3), 20.35 (iPr CH3), 20.27 

(iPr CH3), 20.19 (br, overlapping m, iPr CH3), 20.09 (iPr CH3), 19.91 (iPr CH3), 14.67 

(iPr CH), 14.50 (iPr CH), 13.91 (iPr CH), 13.44 (iPr CH).  

29Si{1H} NMR (toluene-d8, 79.4 MHz, 303 K): δSi 7.92, 7.26, 7.23, 6.25.  

EI-MS: m/z = 967 (25%), [M]+; 952 (10%), [M - Me]+, 926 (100%), [M - MeNC]+.  

Anal. found (calcd. for C54H95NSi4Ti2): C, 66.99 (67.11); H, 10.03 (9.91) %.  

IR (NaCl): 1642 (ν CN) cm-1.  

Crystal data for 5.4: C54H95NSi4Ti2, Mr = 966.41, monoclinic, space group P21/n, dark 

red plate, a = 12.8717(9) Å, b = 22.7580(16) Å, c = 18.8770(13) Å, α = γ = 90°,  

β = 91.730(2)°, V = 5527.2(7) Å3, T = 100 K, Z = 4, Rint = 0.161, λMo(Kα) = 0.71075 Å,  

θmax = 25.0°, R1 [I >2σ(I)] = 0.0805, wR2 (all data) = 0.2503, GooF = 1.004. 
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5.4.5 Synthesis of [(η8-Pn†)Ti(µ-O)]2 (5.5).  

An ampoule charged with 4.3 (163.5 mg, 0.177 mmol) and toluene (3 mL) was cooled 

to -78 °C and the headspace evacuated. N2O gas (0.37 mmol) was admitted and the 

reaction mixture was allowed to warm to room temperature, resulting in a colour change 

from deep red to yellow-brown. After stirring for 1 h a yellow precipitate formed which 

was taken back into solution by heating the mixture to 100 °C. The hot solution was 

filtered and the filtrate stripped to dryness, affording a yellow microcrystalline solid, 

which was treated with pentane (3 mL) and dried in vacuo.  

Total yield: 152 mg (90% with respect to 4.3). 

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.51 (4H, d, 3JHH = 3.3 Hz, Pn H), 5.76 (4H, d, 
3JHH = 3.3 Hz, Pn H), 1.26 (12H, m, iPr CH), 1.18 (36H, d, 3JHH = 7.1 Hz, iPr CH3), 

1.12 (36H, d, 3JHH = 7.2 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 149.4 (Pn C), 129.9 (Pn C), 113.6  

(Pn C), 112.6 (Pn C), 19.4 (iPr CH3), 19.2 (iPr CH3), 12.1 (iPr CH). 

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi -0.34.  

EI-MS: m/z = 956 (100%), [M]+; 913 (25%), [M - iPr3]+.  

Anal. found (calcd. for C52H92O2Si4Ti2): C, 65.49 (65.24); H, 9.39 (9.69) %. 

Partially refined crystal data for 5.5: C52H92O2Si4Ti2, Mr = 957.36, triclinic, space group 

P-1, orange plate, a = 15.6612(11) Å, b = 15.6500(11) Å, c = 22.1257(16) Å,  

α = 88.156(8)°, β = 88.188(8)°, γ = 89.885(8)°, V = 5417.4(6) Å3 T = 100 K, Z = 4,  

Rint = 0.094, λMo(Kα) = 0.71075 Å, θmax = 24.7°, R1 [I >2σ(I)] = 0.205,  

wR2 (all data) = 0.526, GooF = 1.942. 

 

5.4.6 Synthesis of [(η5-Pn†)Ti(µ-O)(py)]2 (5.6). 

A frozen, degassed solution of 4.3 (52 mg, 0.056 mmol) in hexane (1.5 mL) was 

exposed to N2O gas (0.11 mmol) and allowed warm to room temperature. After thawing 

and stirring for 1 h the reaction mixture appeared as a yellow-brown solution with 

yellow precipitate, characteristic of 5.5. An excess of pyridine (0.4 mL) was added 

dropwise until the precipitate fully dissolved, giving a green solution, which was 

filtered and concentrated to ca. 1 mL. Storage of this solution at -35 °C afforded red 
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crystals of 5.6, which were isolated by decantation. Total yield: 30 mg (48% with 

respect to 4.3). 5.6 is prone to solvent loss and reforms 5.5 in the absence of excess 

pyridine, as confirmed by spectroscopic and analytical data.  

1H NMR (pyridine-d5, 399.5 MHz, 303 K): δH 6.38 (2H, br d, Pn H), 6.33 (2H, br d,  

Pn H), 1.36 (6H, br m, iPr CH), 1.29 (6H, br m, iPr CH), 1.21 (18H, br d, iPr CH3), 1.16 

(18H, br d, iPr CH3), 1.15 (18H, br d, iPr CH3), 1.13 (18H, br d, iPr CH3).  

13C{1H} NMR (pyridine-d5, 100.5 MHz, 303 K): δC 140.7 (Pn C), 132.4 (Pn C), 111.8 

(Pn C), 110.9 (Pn C), 20.05 (iPr CH3), 13.05 (iPr CH).  

29Si{1H} NMR (pyridine-d5, 79.4 MHz, 303 K): resonances could not be identified.  

EI-MS: m/z = 953-959 (principal peak 955, 100%), [M - py]+; 910-915 (principal peak 

912, 25%), [M - py - iPr3]+.  

Anal. found (calcd. for C52H92O2Si4Ti2 = 5.6 - py): C, 65.14 (65.24); H, 9.81 (9.69); N 

<0.1 (0.00) %. 

Crystal data for 5.6.(C5H5N): C67H107N3O2Si4Ti2, Mr = 1194.71, triclinic, space group 

P-1, red block, a = 13.7134(6) Å, b = 16.0497(6) Å, c = 18.5403(6) Å, α = 85.689(3)°, 

β = 86.517(3)°, γ = 66.630(4)°, V = 3733.1(3) Å3, T = 173 K, Z = 2, Rint = 0.0654, 

λCu(Kα) = 1.54184 Å, θmax = 71.480°, R1 [I > 2σ(I)] = 0.0562, wR2 = 0.1626, GooF = 

0.999. 

5.4.7 Synthesis of (µ:η5,η5-Pn†)2Ti2(CO2) (5.7).  

A J. Young NMR tube was charged with 4.3 (16 mg, 0.017 mmol) and 

methylcyclohexane-d14 (0.5 mL). The solution was cooled to -78 °C, the headspace 

evacuated, and CO2 (0.017 mmol) admitted. The tube was briefly shaken and a colour 

change from deep red to dark green was observed. NMR spectra were immediately 

measured, with the probe pre-cooled to -30 °C. Alternatively, using 13CO2 in the method 

above yields the labeled product, 13C-5.7.  

NMR yield: quantitative with respect to 4.3.  

1H NMR (methylcyclohexane-d14, 399.5 MHz, 243 K): δH 5.98 (2H, d, 3JHH = 3.6 Hz, 

Pn H), 5.83 (2H, d, 3JHH = 2.9 Hz, Pn H), 5.66 (2H, d, 3JHH = 2.8 Hz, Pn H), 5.37 (2H, 

d, 3JHH = 3.6 Hz, Pn H), 0.69 (6H, dt, 3JHH = 7.4, 14.9 Hz, iPr CH), 0.57 (6H, dt,  
3JHH = 7.4, 14.7 Hz, iPr CH), 0.34 (18H, d, 3JHH = 7.3 Hz, iPr CH3), 0.31 (18H, d,  



    
186 

3JHH = 7.5 Hz, iPr CH3), 0.20 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 0.16 (18H, d,  
3JHH = 7.4 Hz, iPr CH3).  

13C{1H} NMR (methylcyclohexane-d14, 100.5 MHz, 243 K, selected data): δC 219  

(s, CO2).  

29Si{1H} NMR (methylcyclohexane-d14, 79.4 MHz, 243 K): δSi 2.12, 1.88.  

IR (methylcyclohexane, -65 °C): 5.7 1678 (νasym OCO), 1236 (νsym OCO); 13C-5.7 1637 

(νasym O13CO), 1217 (νsym O13CO) cm-1. 

5.4.8 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ-O) (5.8). 

METHOD A: A J. Young NMR tube was charged with 4.3 (17 mg, 0.018 mmol) and 

C6D6 (0.6 mL). The solution was frozen at -78 °C, the headspace evacuated, and N2O 

(0.016 mmol) admitted. The tube was warmed to room temperature and a colour change 

to bright red was observed as the solution thawed.  

NMR yield: 68% with respect to 4.3.  

METHOD B: An ampoule charged with 4.3 (78.5 mg, 0.0848 mmol) and 

methylcyclohexane (5 mL) was cooled to -78 °C and the headspace evacuated. CO2 gas 

(1 atm) was admitted, resulting in a colour change from deep red to dark green. The 

ampoule was placed under reduced pressure then removed from the -78 °C bath. The 

solvent was slowly removed in vacuo as the reaction mixture warmed to room 

temperature, giving a crude red residue. Recrystallisation from toluene (1 mL) at -35 °C 

afforded 5.8 as a red microcrystalline solid.  

Total yield: 66.3 mg (83% with respect to 4.3).  

Subsequent recrystallisation from a concentrated toluene/pentane solution at -35 °C 

afforded X-ray quality crystals. 

1H NMR (C6D6, 399.5 MHz, 303 K, selected data): δH 7.86 (2H, d, 3JHH = 3.3 Hz,  

Pn H), 6.78 (2H, d, 3JHH = 3.2 Hz, Pn H), 6.45 (2H, d, 3JHH = 3.2 Hz, Pn H), 6.39 (2H, 

d, 3JHH = 3.2 Hz, Pn H), 1.55 (6H, m, iPr CH), 1.26 (6H, m, iPr CH), 1.13 (18H, d,  
3JHH = 7.2 Hz, iPr CH3), 1.10 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.01 (18H, d,  
3JHH = 7.4 Hz, iPr CH3), 0.96 (18H, d, 3JHH = 7.4 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K, selected data): δC 134.2 (Pn C), 133.4 (Pn C), 

132.6 (Pn C), 114.9 (Pn C), 111.3 (Pn C), 108.1 (Pn C), 102.2 (Pn C), 99.47 (Pn C), 
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19.94 (iPr CH), 19.89 (iPr CH), 19.39 (iPr CH3), 19.35 (iPr CH3), 14.11 (iPr CH), 12.97 

(iPr CH).  

29Si{1H} NMR (C6D6, 303 K): δSi 2.39, 1.01.  

EI-MS: m/z = 941 (100%), [M]+.  

Anal. found (calcd. for C52H92OSi4Ti2): C, 66.21 (66.35); H, 9.70 (9.85) %. 

Crystal data for 5.8: C52H92O1Si4Ti2, Mr = 941.41, monoclinic, space group C 2/c, 

bronze block, a = 24.0505(8) Å, b = 11.2805(5) Å, c = 22.8005(14) Å, α = γ = 90°,  

β = 120.421(6)°, V = 5334.2(5) Å3, T = 173 K, Z = 4, Rint = 0.0344, λMo(Kα) = 0.71073 

Å, θmax = 28.617°, R1 [I > 2σ(I)] = 0.0433, wR2 (all data) = 0.1241, GooF = 1.049. 

5.4.9 Synthesis of [(η8-Pn†)Ti]2(µ-O) (5.9). 

Storage of a C6D6 solution of 5.8 (6.6 µmol) overnight at room temperature afforded 

green crystals of 5.9 which were isolated by decantation, washed with cold pentane  

(1 mL, -35 °C) and dried in vacuo.  

Total yield = 2.0 mg, 32% with respect to 5.8. 

1H NMR (toluene-d8, 399.5 MHz, 303 K): δH 4.09 (br, Δν½ = 138 Hz, Pn H), 4.09  

(br, Δν½ = 138 Hz, Pn H), 1.77 (br, Δν½ = 110 Hz, iPr CH), 1.13 (br, Δν½ = 106 Hz,  
iPr CH3).  

13C and 29Si NMR resonances were not observed due to the paramagnetic nature of 5.9. 

EPR (2-methyltetrahydrofuran, 120 K, X-band, selected data): g1 = 1.998, g2 = 1.983, g3 

= 1.919, giso = 1.967 (ΔMS = 1); g = 3.592 (singlet, ΔMS = 2).   

EI-MS: m/z = 941 (100%), [M]+.  

Anal. found (calcd. for C52H92OSi4Ti2): C, 66.17 (66.35); H, 9.75 (9.85) %.  

Mag. suscep. (Evans method, THF-d8, 303 K): µeff = 2.45 µB per molecule = 1.73 µB per 

Ti. 
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6 CHAPTER SIX: Reactivity of (µ:η5,η5-Pn†)2Ti2 with Heteroallenes and E−E 

Bonds 

6.1 Introduction 

"There is the implicit conviction, or perhaps the hope, that through the study of related 

molecules (e.g. CS2 and COS) on comparable transition-metal systems, some 

understanding of the reaction chemistry of these molecules and perhaps of CO2 will be 

forthcoming." 

J. A. Ibers. Centenary Lecture delivered at Queen’s College, Belfast, 27 April 1981.1 

 

(µ:η5,η5-Pn†)2Ti2 (4.3) shows exceptional reactivity amongst di-metal bis(pentalene) 

double sandwich complexes,2-9 including multiple adduct formation with carbon 

monoxide and reductive activation of carbon dioxide.10 Mechanistic studies show that 

4.3 binds CO2 at low temperatures, however, this adduct is thermally unstable and upon 

warming to room temperature reaction of the coordinated molecule occurs. 

Investigations in the reactivity of 4.3 with heteroallenes and other organic substrates 

containing heteroatoms (E) were undertaken a view to forming more stable adducts and 

exploring the scope for reductive transformations at the [Ti2]4+ core. 

Heteroallenes are unsaturated molecules of general formula X=Y=Z where at least one 

of the functional atoms X, Y or Z is a heteroatom, most commonly N, O, S or P. These 

molecules are commonly used to model the reactivity of CO2,11 however the reactivity 

of heteroallenes can be strongly influenced by the electronegativity of the functional 

atoms and the electronic effects of the attached substituents.12 Examples of the 

reactivity of the heteroallenes and organic molecules containing heteroatoms relevant to 

the current study will be briefly summarised.  

 

6.1.1 Carbon disulfide and carbonyl sulfide 

CS2 is a versatile ligand and its coordination chemistry with transition metals is 

generally more extensive than that of CO2.1,13-16 M−CS2 complexes have a greater 

stability relative to that of M−CO2 complexes, which tend to undergo further conversion 
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via insertion into M−E bonds,17 or metal-promoted C=O bond cleavage.18,19 Transition 

metal CS2 complexes are also more stable in comparison to those of COS,16,20 due to the 

stronger C=S double bond of CS2 (Table 6.1). Hence COS can function as a good sulfur 

transfer agent in the presence of a thiophilic metal complex, such as those of the early 

transition metals21 or f-block metals.22  

 

Table 6.1 Selected properties of CO2, CS2 and COS.  

 CO2 CS2 COS ref 

Point group D∞h D∞h C∞v 23 

Bond length (Å) 1.162 (C−O) 1.554 (C−S) 1.160 (C−O) 

1.560 (C−S) 

24 

Bond energy (eV)  5.453 4.463 3.12 (OC−S) 

6.81 (O−CS) 

25,26 

IR data (cm-1) 2349 
677 

1535 
397 

2062 
859 

520 

27 

 

Simple carbon disulfide adducts of titanium have been prepared by the reaction of 

Cp2Ti(PMe3)2 and Cp2Ti(η3-allyl)2 with CS2 to afford Cp2Ti(η2-CS2)(PMe3)28 and 

Cp2Ti(η2-CS2)29 respectively. These compounds precluded structural characterisation, 

however a ‘side-on’ coordination mode of CS2 was proposed on the basis of IR 

spectroscopy. The observed ν(CS) IR bands at ca. 1100 cm-1 are considerably lower 

than that of free CS2 (1535 cm-1),27 suggesting a reduction in the C−S bond order. 

The reaction of Cp2Ti(CO)2 with neat CS2 results in ‘head to head’ reductive coupling to 

give diamagnetic [Cp2Ti]2(µ-η2:η2-C2S4) in high yield. In contrast, the [C2O4]2- and 

[C2(NR)4]2- bridged titanocene analogues are paramagnetic and consistent with two non-

interacting Ti(III) centres.30,31 On the basis of magnetic data, electrochemical and XRD 

studies, the C2S4 moiety was classed as a strong electron acceptor, with a formal 

oxidation state intermediate between the tetrathiooxalate [C2S4]2- and the 

ethylenetetrathiolate [C2S4]4- extremes. Such electron delocalising abilities of [C2S4]n- 
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ligands have subsequently been applied in materials chemistry as the conducting units 

in multimetallic complexes.32-34  

 

6.1.2 Carbodiimides 

Carbodiimides (X = Z = NR, Y = C) have been widely studied as model molecules for 

the reductive transformations of CO2,35-37 and have shown particularly varied reactivity 

with low valent titanium complexes.38,39 For example, Floriani et al. reported the 

reductive coupling of 1,3-N,N’-di-p-tolylcarbodiimide (p-TCD) by Cp2Ti(CO)2 to the 

delocalised η2:η2-tetra-p-tolyloxalylamidine [C2(NR)4]2- ligand, bridging two Ti(III) 

centres (Scheme 6.1).40,41  

 

 

Scheme 6.1 Reductive coupling of carbodiimide by a Ti(II) complex.40,41  

 

Recent studies by Rosenthal et al. using titanocene(II) alkyne complexes with a variety 

of different RNCNR' substrates have resulted in insertion, isomerisation, or C−C 

coupling of the applied carbodiimide depending on the substituents R and R', to form 

unusual mono-, di-, and tetranuclear Ti(III) complexes.42 Theoretical analysis by these 

researchers suggested a four-membered heterometallacycloallene as a likely 

intermediate in these reactions.43 However, attempts at isolation of this mononuclear 

carbene-like species failed, and instead reductive coupling or complexation with another 

titanocene fragment occurred, yielding bimetallic complexes.44 
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Scheme 6.2 Carbodiimide reactivity with a Ti(II) alkyne complex.42 

 

The tungsten(III) alkoxide dimers, W2(OR)6 (R = tBu and CMe2CF3), form stable 1:1 

adducts with R'NCNR' (R' = p-Tol, Cy, iPr) in which the bridging carbodiimide lies 

parallel to the M–M axis in a µ:η2,η2- fashion (Figure 6.1, left).45-47 As an illustrative 

example, the X-ray structure of W2(OtBu)6(µ-{p-Tol}NCN{p-Tol}) shows a longer  

M–M distance (2.482(1) Å) in comparison to W2(OtBu)6 (av. 2.332(1) Å)48 and its  

4-methylpyridine adduct W2(OtBu)6(4-Me-py)2 (2.397(1) Å).47. The deviation of the 

carbodiimide CNCNC chain from linearity (angle N–C–N = 154.0(2)°) is consistent 

with a partially reduced carbodiimide ligand. A simplified bonding picture was 

proposed involving a combination of the heteroallene π-system (both bonding and  

non-bonding components, occupied by 4 electrons) with two singly occupied d-orbitals 

previously involved in M–M π-bonding (Figure 6.1, right).45 This description results in 

a three-centre two-electron bond extending over the two W atoms and the central C 

atom, and two W–N single bonds, consistent with the short M–C and M–N and 

distances observed experimentally. Fenske-Hall calculations on the related allene 

adduct, [W2(OH)6(C3H4)], also show extensive mixing of W(dπ)–W(dπ) and allene pπ 

orbitals in the HOMO.49  
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Figure 6.1 Simplified bonding description of W2 carbodiimide adducts.45 

 

In contrast to the facile insertion chemistry reported for W2(OR)6 complexes with CO2 

and isocyanates,50,51 the carbodiimide adducts showed no further reactivity with excess 

carbodiimide or at elevated temperatures, and failed to react with other substrates 

(PhNCO, PMe3, LiOtBu, LiOiPr, CO or CO2) which was attributed to the bulky nature of 

the diimide.46  

 

6.1.3 Organic Isocyanates 

Organic isocyanates, RN=C=O, have also been studied as reagents for modeling the 

reactivity of CO2, since the introduction of an amido (RN) group results in polarization 

of the double bonds and thus increased reactivity.52 Floriani et al. reported the 

conversion of phenylisocyanate into the diphenylurelyene(2-) ligand, which was found 

coordinated in three different ways to one or more Ti centres (Figure 6.2).53 

 

 

Figure 6.2 Coordination modes of [(PhN)2CO]2- to titanocene moieties, formed from 

reductive coupling of PhNCO by Cp2Ti(CO)2.53 

 

In 1985 Cotton et al. reported the structure of M−M bonded di-tungsten complex 

W2(OtBu)6(µ-OCNPh), in which the isocyanate behaves as a side-on bridging ligand 

across the M2 core, in a very similar manner to the carbodiimide adduct W2(OtBu)6(µ-

C(NR)2).45,46 Complex W2(OtBu)6(µ-OCNPh) was identified as the low-temperature 
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intermediate in the reaction of W2(OtBu)6 with two equivalents of PhNCO,51 which 

yielded W2(OtBu)4[µ-PhNC(O)OtBu]2 after warming to room temperature (Scheme 6.3). 

The formation of the monanionic carbamato ester ligand is postulated to proceed via a 

nucleophile-induced migratory insertion of the coordinated alkoxide ligand.54 

 

 

Scheme 6.3 Reaction of phenyl isocyanate with a W(III) alkoxide dimer.51,54 

More recently Jones et al. have used the β-diketiminate coordinated Mg(I) dimers 

(L)2Mg2 (L = [(ArNCMe)2CH2]-) to facilitate the reductive C−C coupling of tert-butyl 

isocyanate. The Mg(I) dimer with Ar = 2,6-iPr2C6H3 (= Dip) reacts with two equivalents 

of tBuNCO to give an N,N'-di-tert-butyl-oxalamide(2-) coupled product, with an 

unprecedented N,O/O,O' ligation to two Mg(L) fragments (Figure 6.3, left).55 The same 

bridging [O2C2N2
tBu2]2- moiety is formed in the reaction of tBuNCO with the  

Ar = 2,4,6-Me3C6H2 (= Mes) complex, however it exhibits delocalisation over its NCO 

units and coordinates two Mg(L) fragments in an N,N'/O,O'-mode (Figure 6.3, right).56 

These researchers reasoned that the different ligating modes was due to sterics, since the 

(L)Mg moiety with Ar = Mes and allows for closer approach of the bulky NtBu units in 

an N,N'-chelate ring, which is disfavoured for the comparatively larger Ar = Dip 

complex. 

 

Figure 6.3 Coordination modes of [O2C2N2
tBu2]2- ligand to Mg(II) moieties.55,56 
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6.1.4 Homonuclear E−E bonds; Organic dichalcogenides and azobenzene 

Organic dichalcogenides, R2E2 (E = S, Se, Te; R = alkyl or aryl) are commonly 

employed as redox active substrates with low valent metal complexes including those of 

early transition metals.57-59 Other examples include lanthanides Yb(II)60,61 and 

Sm(II),62,63 and more recently U(III)64 and low-valent Th.65 With highly reducing metal 

complexes E−E bond cleavage of the dichalcogenide routinely occurs to yield a 

complex bearing the respective chalcogenoate (RE)- ligands (Equation 6.1).  

  LnM + RE−ER → LnM(ER)2    Equation 6.1 

As part of their extensive investigations into the reactions of early d-block 

metallocenes,66 Floriani et al. reported in 1974 the oxidative addition of organic 

disulfides to Cp2Ti(CO)2, yielding Ti(IV) dithiolate complexes Cp2Ti(SR)2.57 Song et 

al. have extended this chemistry by treatment of an in situ generated ‘Cp2Ti’ synthon 

with organic diselenides to afford Ti(IV) alkyl and aryl diselenolate complexes, 

Cp2Ti(SeR)2, in high yields.59 While the first example of a tellurolate congener, 

Cp2Ti(TePh)2, also dates back to 1974,67 complexes of this type remain very rare and are 

typically synthesised by salt metathesis routes from the corresponding titanocene(IV) 

dichloride with organotellurolate Li or MgBr salts.68-70 More recently Reid et al. have 

shown titanocene(IV) complexes with di(selenolate) ligands Cp2Ti(SeR)2 to be suitable 

as precursors for single source low pressure chemical vapour deposition (CVD) of TiSe2 

thin films,71 which are attracting great attention for their intriguing electronic 

properties72,73 and application in 2D inorganic materials.74-76 

Diphenylchalcogenides present easily reducible ‘test cases’ for E−E bond activation, 

however the formal potential of the Ph2E2/2(EPh)- couple is system dependent and 

cannot be rationalised straightforwardly. For example irreversible reduction potentials 

for Ph2S2 and Ph2Se2 were measured at -1.6 and -0.9 V respectively vs Ag/AgNO3 in 

DME/[nBu4N][ClO4],77 and irreversible Ph2Te2 reduction has been observed at -1.06 V 

vs SCE in CH2Cl2/[nBu4N][ClO4].78 However subsequent studies by Ludvík et al. have 

shown that Ph2Se2 and Ph2Te2 react with mercury electrodes, which may lead to 

erroneous formal potentials (E°) being quoted.79  

The redox chemistry of azobenzene, PhN=NPh, with low-valent metal complexes has 

been widely studied.80 Floriani et al. reported the synthesis of a cis-azobenzene adduct 

of titanocene, Cp2Ti(η2-N2Ph2), by the reaction of Cp2Ti(CO)2 with Ph2N2.81,82 
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Subsequent ab initio MO calculations suggest this diamagnetic complex is best 

described as a 1,2-diphenylhydrazido(2-) ligand and a formally Ti(IV) centre.83 Recent 

work by Beckhaus et al. has utilised this preference for cis-azo ligation to titanocene 

fragments to synthesise supramolecular squares (Scheme 6.4).84 

 

 

Scheme 6.4 Synthesis of supramolecular squares by cis-azo ligation to 

decamethyltitanocene units.84  

 

The reaction of the Ti(III) complex CpTiCl2 with azobenzene formed a dimeric 

complex, [(CpTiCl)2(µ-PhN)(µ-Ph2N2)], which features both a bridging  

1,2-diphenylhydrazido(2-) and a bridging phenylimido(2-) ligand (Figure 6.4), the latter 

resulting from N=N bond cleavage promoted by Ti(III).85 

 

 

Figure 6.4  

 

There are also several examples of azobenzene reduction and cleavage leading to 

terminal phenylimido complexes in Ti chemistry,86-90 which constitutes a four-electron 

process per azobenzene (Equation 6.2).  

  LnTiII + ½ PhN=NPh → LnTiIV=NPh   Equation 6.2 

Cp2Ti

SiMe3

SiMe3 benzene, RT

N
N

N

N
2

- 4 C2(SiMe3)2

+

4 * Cp2Ti TiCp2

Cp2Ti TiCp2

N

N

N

N

N

N

N

N

*

*

*

*

NN

Cp(Cl)Ti
N

Ti(Cl)Cp

Ph

PhPh



    
201 

Azobenzene is known to undergo two one-electron reductions in non-aqueous solvents 

such as acetonitrile, pyridine, and dimethylformamide, with E° values in the ranges  

-1.35 to -1.41 V and -1.75 to -2.03 V vs SCE depending on the solvent.91 Given the high 

reducing potential for the [Ti2]5+/[Ti2]4+ couple (E½ = -2.50 V vs FeCp2
+/0 or -1.94 V vs 

SCE)92 it is reasonable that 4.3 should be able to reduce azobenzene to both the 

monoanion and the dianion. 

 

6.2 Reactivity of 4.3 with Heteroallenes 

6.2.1 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2(µ:η2,η2-CS2) (6.1) 

Given the transient nature of the intermediates identified in the reaction of 4.3 with 

CO2, the reactivity with CS2 as a model molecule was explored. Treatment of a pentane 

solution of 4.3 with CS2 at -35 °C, gave a dark green solution upon warming to room 

temperature. Subsequent work-up and cooling to -35 °C produced a red microcrystalline 

solid in 62% yield, which was identified by spectroscopic and analytical methods as 6.1. 

Crystals suitable for X-ray studies were grown from Et2O solution and the molecular 

structure (Figure 6.5) reveals a bent CS2 molecule in a µ:η2,η2- binding mode between 

two Ti centres.  

The CS2 ligand in 6.1 is bent with an S−C−S angle of 137.4(3)° while the C−S bond 

lengths (av. 1.657(4) Å) are longer than the C−S bond length of free CS2 (1.554 Å).24 

The double-sandwich structure remains intact, with an elongated Ti−Ti distance 

(2.4432(10) Å) with respect to 4.3 (2.399(2) Å), and a smaller angle between the 

pentalene rings and the Ti2 unit (av. Ct−Ti−Ct = 138.02(9)°), giving a more open 

sandwich structure. The ring slippage parameters for each metal (ΔTi1 = 0.145, 0.092; 

ΔTi2 = 0.138, 0.082) indicate differential bonding to each side of the pentalene ligand. 

This feature has been observed to a greater extent in the permethylpentalene complex 

(µ-η5,η3-Pn*)2Co2 (ΔCo = 0.367, 0.089), in which the Co centres are too far apart (2.491 

Å) to support a metal-metal bond.7 The distance between the Ti and S atoms (av. 

2.497(16) Å) is larger than the sum of their covalent radii (0.239 Å),93 however there is 

an interaction in place.  
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Figure 6.5 ORTEP (50% probability) diagram of 6.1. H atoms and iPr groups omitted 

for clarity. 

 

Table 6.2 Selected distances (Å), angles (°) and parameters for 6.1. Ct denotes the η5-

centroid of the Pn ring. 

Parameter 6.1 Parameter 6.1 

Ti1−Ti2 2.4432(10) Ti−Ct a 2.104(13) 

Ti1−C53 2.230(4) Ti–Cring a 2.428(4) 

Ti2−C53 2.245(4) Δ a 0.114(4) 

Ti1−S1 2.4915(16) S1−C53−S2 137.4(3) 

Ti2−S2 2.5032(15) Ti1−C53−Ti2 66.18(13) 

C53−S1 1.649(4) Ct−Ti−Ct a 138.02(9) 

C53−S2 1.664(4) Twist angle  20.8(2) 

aAverage values. 
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Geometry optimisation of Pn2Ti2CS2 resulted in structure 6.I (Figure 6.6),94 which is in 

good agreement with the experimental structure. The calculated MOs show that one 

Ti−Ti bonding orbital (19a1) remains intact, which is also the case for the CO2 adduct 

5.VII. However the CS2 bonding orbital (18a1) is more delocalised and multicentred 

than in 5.VII, consistent with sulfur acting as a better donor to the proximal titanium 

atoms.  

 

 

Figure 6.6 Calculated structure of 6.I and its Ti−Ti bonding orbital (19a1) and Ti2−CS2 

bonding orbital (18a1).94 

 

The solution IR spectrum of 6.1 shows a band at 1104 cm-1 which, compared to the 

asymmetric stretch of free CS2 (1535 cm-1),27 is consistent with a sulfur bound CS2 

moiety. This is in fair agreement with the stretching vibration for model system 6.I 

(1079 cm-1) calculated by DFT methods.94 Precedent for this type of CS2 coordination 

involving both C=S π-bonds is limited to a single example, of a dinuclear Cu(I) 

complex, recently reported by Limberg et al.95 However in this complex the mean plane 

of the CS2 atoms is twisted (49.1°) with respect to the M−C−M mean plane, whereas for 

6.1 it is near parallel (3.1°). The solid state structure of 6.1 provides supporting 

evidence for the doubly bridging CO2 ligand in 5.7, as modeled by calculated structure 

5.VII (Section 5.3.2). However 6.1 is stable at room temperature and does not 

decompose even upon heating at 100 °C, in stark contrast to CO2 adduct 5.7 which 

decomposes above -30 °C to give µ-oxo complexes with concomitant liberation of 

carbon monoxide. This may be explained by the relative stability of CO compared with 

CS (ΔfH0
298 K = -110.5 and 276.5 kJ mol-1 respectively)96,97 and the driving force for 
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Ti−O bond formation (ΔbondH0
298 K = 672.4 ±9.2 kJ mol-1) relative to Ti−S (ΔbondH0

298 K 

= 418 ±3 kJ mol-1).98 

6.2.2 Reactivity studies with COS 

The notable difference in the reactivity of CS2 versus CO2 with 4.3, prompted a study 

with COS. Reaction of 4.3 with one equivalent of COS at -78 °C in methylcylcohexane-

d14 produced a metastable adduct (6.2) that shows a 1H NMR spectrum consistent with 

the loss of C2 molecular symmetry, as opposed to that of the C2 symmetric species 5.7 

and 6.1. The 13C{1H} NMR spectrum of 6.2 shows a singlet at 282 ppm, a value 

intermediate between the CO2 and CS2 analogues (219 and 356 ppm respectively). In 

situ IR spectroscopy at -65 °C shows a band at 1498 cm-1 which is tentatively assigned 

to the ν(CO) stretch of coordinated COS, and is in good agreement with the stretching 

vibration for model system 6.II (1487 cm-1) calculated by DFT methods (Figure 6.7, 

left).94 

 
Figure 6.7 Calculated structures for Pn2Ti2(COS) and Pn2Ti2(S)(CO).94  

However the COS adduct 6.2 proved to be more thermally unstable than that of CO2 

(5.7), and the coordinated molecule undergoes scission to a mono(µ-S) mono(CO) 

species 6.3, in 41% conversion by 1H NMR at -40 °C. Intermediate 6.3 was 

independently prepared by reaction of mono(µ-S) complex 6.4 with one equivalent of 

CO; 6.4 itself was readily synthesised by the reaction of 4.3 with Ph3PS (Scheme 6.5), 

and fully characterised by spectroscopic and analytical methods (vide infra). 

The mono(µ-S) mono(CO) intermediate 6.3 precluded isolation in the solid state but 

was charactersied by spectroscopic methods. In situ IR spectroscopy shows a broad 

band at 2011 cm-1, in the expected region for a terminal CO ligand, that shifts to  

1966 cm-1 in the isotopically labeled 13C-6.3. The 1H NMR spectrum of 6.3 consists of 

four doublets in the aromatic region, indicative of chemically equivalent Pn† rings on 
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the NMR timescale. This can be attributed to a fluxional process involving 

intramolecular exchange of CO between the two Ti centres in a similar manner to  

tri-carbonyl species 5.3 which also shows an averaged NMR structure of C2 symmetry. 

In the presence of excess of COS, green solutions of 6.3 decompose within hours at 

room temperature to give a brown solution (Scheme 6.5). 1H NMR spectroscopy of the 

brown solution showed near quantitative conversion to the bis(µ-sulfide) bridged dimer 

[(η8-Pn†)Ti(µ-S)]2 (6.5) as the sole Ti-containing product, in contrast to the 

decomposition of CO2 adduct 5.7 which also gives di-carbonyl complex 5.2. The 

reasons for this difference in product outcomes is unclear, since 6.3 does not show 

sufficient lifetime to be isolated free from other the products in this complex reaction 

sequence, and has not been structurally verified by X-ray crystallography. The related  

oxo-species, Pn2Ti2(O)(CO), was implicated in the DFT modelled pathway of the CO2 

reaction, but was not observed by in situ IR or NMR spectroscopy experiments.  

 

 

Scheme 6.5 Reactivity of 4.3 with COS and Ph3PS. R = SiiPr3. 
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6.2.3 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2(µ-S) (6.4) 

Synthesis of compound 6.4 was achieved by reaction of 4.3 with one equivalent of 

Ph3PS in toluene (Scheme 6.5), which following work-up, was isolated as red crystals in 

52% yield. The mass spectrum for mono-sulfide 6.4 shows the expected molecular ion 

(m/z = 957), together with peaks corresponding to di-sulfide 6.5 (m/z = 989) and 

(Pn†)2Ti (m/z = 877), suggesting ligand redistribution occurs under EI-MS conditions. 

However the proposed formulation of 6.4 is consistent with (1H, 13C, 29Si) NMR and 

elemental analysis data, and was ultimately confirmed by a single crystal XRD study. 

The molecular structure of 6.4 (Figure 6.8) shows the sulfide ligand bridging two Ti 

centres in a three-membered ring, akin to mono(µ-oxo) complex 5.8. The Ti−Ti bond is 

considerably longer in 6.4 than 5.8 (2.4880(8) and 2.3991(7) Å respectively), and the 

larger bridging chalcogen atom is bonded at a greater distance from the Ti2 core  

(av. Ti−S = 2.3728(8) cf. Ti−O = 1.8607(15) Å) with a more acute Ti−E−Ti angle 

(62.68(4)° and 80.28(8)° respectively). However smaller values of Ti−Ct, ring slippage 

(Δ) and the twist angle for 6.4 reflect that the Pn† ligands are more tightly bound 

compared with 5.8 and this may explain the relative stability of this mono(µ-S) 

complex.  

This triangular M−S−M structural motif is common amongst binuclear complexes with 

thiolato bridges, but is unique in titanocene mono-sulfide chemistry. For example 

[Cp*2Ti]2(µ-S) is a green paramagnetic complex with Ti…Ti separation of 4.7069(7) Å 

and a Ti−S−Ti angle of 174.37(4)°.99 The lack of a bonding (or an antiferromagentic 

coupling) interaction between the two d1 centres in [Cp*2Ti]2(µ-S) gives rise to a 

electronic triplet state. In contrast, both 6.4 and 6.3 are diamagnetic.  
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Figure 6.8 ORTEP (30% probability) diagram of 6.4. H atoms and iPr groups omitted. 

 

Table 6.3 Selected interatomic distances (Å), angles (°) and parameters for 6.4.  

Ct denotes the η5-centroid of the Pn ring. 

Parameter 6.4 Parameter 6.4 

Ti1−Ti2 2.4880(8) Ti1−S1−T2 62.68(4) 

Ti1−S1 2.3728(8) S1−Ti1−Ti2 58.72(3) 

Ti−Ct a 2.1088(13) Ct−Ti−Ct a 137.11(5) 

Ti–Cring a 2.436(2) Fold angle  3.86(8) 

Δ a 0.135(2) Twist angle  20.28(15) 

aAverage values. 
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6.2.4 Synthesis and characterisation of [(η8-Pn†)Ti(µ-S)]2 (6.5). 

The bis(µ-sulfide) complex (6.5) was independently synthesised by the reaction of 4.3 

with two equivalents of Ph3PS in toluene (Scheme 6.5), and isolated in 80% yield. NMR 

spectroscopy, mass spectrometry and elemental analysis confirmed the identity and 

purity of the product. Single crystals suitable for X-ray diffraction analysis were grown 

from a saturated Et2O solution at -35 °C, and its molecular structure is depicted in 

Figure 6.9 with important structural parameters listed in Table 6.4. Complex 6.5 

crystallises in the tetragonal space group P42/nbc and is highly symmetrical; the 

asymmetric unit contains one quarter-molecule of the constituent dimer, giving rise to a 

Ti2S2 unit which makes a regular ring which has a perfectly planar diamond core 

(torsion angle Ti1−S1−Ti1'−S1' = 0°). However there is significant asymmetry in the 

Ti−S bond lengths (2.2238(16) and 2.4227(16) Å). The Ti−S−Ti angle is relatively 

acute (84.92(6)°), yet the Ti…Ti distance is considerably longer than in the bis(µ-oxo) 

congener (2.7376(6) Å).10 The relative orientation of the η8-pentalene ligands (as 

defined by the angles between the two bridgehead C−C vectors) is 21.1(5)°.  

 



    
209 

 

Figure 6.9 ORTEP (30% probability) diagram of 6.5. H atoms and iPr groups omitted 

for clarity. Ct1 and Ct1' are the η5,η5-centroids of the Pn ring. 

 

Table 6.4 Selected interatomic distances (Å) and angles (°) for 6.5. Ct denotes the η5-

centroid of the Pn ring. 

Parameter 6.5 Parameter 6.5 

Ti1…Ti1' 3.1402(6) Ti1−S1−Ti1' 84.92(6) 

Ti1−S1 2.2238(16) Ct1−Ti−Ct1' 57.09(9) 

Ti1−S1' 2.4227(16) Twist angle 21.1(5) 

Ti−Ct a 1.9470(18) Fold angle 17.30(12) 

Ti–Cring a 2.326(4) Hinge Angle 1.4(4) 

a Average values 
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6.2.5 Synthesis and characterisation of (µ:η5,η5-Pn†)2Ti2(µ-C{N(4-C6H4CH3)}2) (6.6) 

Addition of one equivalent of 1,3-N,N’-di-p-tolylcarbodiimide (p-TCD) to a solution of 

4.3 in pentane resulted in a colour change to brown-green. Subsequent work-up and 

recrystallisation from SiMe4 afforded bronze crystals in good yield (92%), which were 

identified as compound 6.6 (Scheme 6.6).  

 

 

Scheme 6.6 Synthesis of carbodiimide adduct 6.6. R = SiiPr3. 

 

Elemental analysis and mass spectrometry (EI) were consistent with the formation of a 

1:1 carbodiimide adduct. The 1H NMR spectrum of 6.6 shows four sharp doublets 

assigned to the Pn† ring protons, typical of a diamagnetic C2-symmetric double-

sandwich complex in solution. The 13C{1H} spectrum shows a singlet at 181.9 ppm, 

which is assigned to the carbodiimide central carbon atom. 

Single crystal XRD studies unambiguously confirmed the molecular structure of 6.6 in 

the solid state, which agrees with solution NMR spectroscopic data. The molecular 

structure (Figure 6.10) shows a bent p-TCD ligand in a µ:η2,η2- binding mode between 

two Ti centres forming a dimetallocyclopropane-type motif with a Ti−C−Ti angle of 

68.2(2)°. In a similar fashion to the µ-oxo 5.8, the molecule posses a 2-fold 

rotoinversion axis (S2) passing through the carbodiimide carbon (C53) the midpoint of 

the Ti−Ti bond, which results in one half of the dimer being generated by symmetry. 
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Figure 6.10 ORTEP (30% probability) diagram of 6.6. H atoms and iPr groups omitted 

for clarity. Primed atoms are generated by symmetry.  

 

Table 6.5 Selected distances (Å), angles (°) and parameters for 6.6. Ct denotes the η5-

centroid of the Pn ring. 

Parameter 6.6 Parameter 6.6 

Ti1−Ti1' 2.4374(8) Ti1−C53−Ti1' 68.13(7) 

Ti1−C53 2.176(2) C53−Ti1−Ti1' 55.94(4) 

Ti1−N1 2.1159(15) Ti1−C53−N1 69.87(9) 

C53−N1 1.3004(15) N1−C53−N1' 152.2(2) 

Ti−Ct a 2.1218 Ct1−Ti1−Ct2 137.83(4) 

Ti–Cring a 2.419(2) Twist angle 22.5(3) 

Δ a 0.034(2) Hinge angle  3.8(2) 

Pn C–Cring a 1.459(3) Fold angle 4.59(10) 

p-Tol C–Cring a 1.390(3)   

aAverage values. 
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The distance of each Ti atom 6.6 to the carbodiimide central carbon atom is 2.176(2) Å, 

in the range of a Ti−C single bond (∑rcov = 2.11 Å),100 and comparable with that found 

in Rosenthal's carbene-like dinuclear Ti(III) complex, [Cp2Ti(µ-κ2:η1- 

{Cy}NCN{Cy})TiCp2], (2.199(4) Å) (Section 6.1.2, Scheme 6.2).44 Indeed, the Ti−C 

distance in 6.6 is comparable with the shorter Ti−Ccarbene distances in titanium 

complexes with NHC ligands reported to date, which range from 2.160(3)101 to 2.212 

Å,102 however it is significantly longer than those for titanium Schrock carbene 

complexes. Examples of this class include terminal alkylidene complexes, which have 

very short Ti=C bonds (ca. 1.830 Å),103-106 and bridging alkylidene complexes,107-111 

most famously the Tebbe reagent [Cp2Ti(µ-Cl)(µ-CH2)AlMe2],112-115 which has a 

Ti−Ccarbene distance of 2.095(5) Å.112 

The Ti−N distance of 2.1159(15) Å, while in the range of a Ti−N single bond (∑rcov = 

2.07 Å),100 is notably longer than those of titanocene(III) amides such as Cp*2Ti(NRH) 

(1.9555(5) Å R = Me,116 Å, 1.944(2) R = H,117) as these complexes have an additional 

π-bonding interaction from the N lone pair. However this value is shorter than in 

Cp*2Ti(NMePh) (2.157(5) Å),118 where the Ti−amide bond lacks its π-constituent due 

to steric congestion. The metrics of the TiNC unit in 6.6 are best compared with those 

found in monomeric titanocene(III) η2-aminoacyl complexes, for example Cp2Ti(η2-

{Ph}CN{Xyl})119 and [Cp2Ti(η2-{Me}CN{tBu})][BPh4] (Ti–C = 2.096(4) and 2.080(6) 

Å; Ti–N = 2.149(7) and 2.125(5) Å respectively). 6.6 features a more acute Ti–C–N 

angle (69.87(9)°) than in these η2-aminoacyl complexes presumably due to further 

conjugation at the carbodiimide central carbon atom to the second half of the dimer.  

The carbodiimide moiety in 6.6 is bent with a N−C−N angle of 152.2(2)° and the C−N 

bond lengths of 1.3004(15) Å are consistent with the partial loss of the cumulene 

structure of the free substrate upon complexation. For comparison, in the free 

carbodiimide, the N=C=N angle is 170.4(4)° and the C−N bond lengths are 1.223(5) 

and 1.204(4) Å.120 This is reflected in the IR spectrum of 6.6 which shows a ν(NCN) 

asymmetric stretching vibration at 1659 cm-1, a value significantly lower than that of p-

TCD (νNCN = 2139 cm-1).121 The molecular structure of 6.6 is reminiscent of 

carbodiimide adducts of M−M bonded di-tungsten complexes W2(OtBu)6 and 

W2(OCMe2CF3),45,47 which have been structurally characterised.  
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Compound 6.6 is thermally robust, with no change observed by 1H NMR spectroscopy 

after heating at 100 °C in methylcyclohexane-d14 for 4 days. This may be attributed to 

the kinetic stability imparted on the carbenic carbon atom, which is a potential reactive 

site, but is somewhat buried in the ‘cleft’ provided by Ti2 double-sandwich structure. 

Additional steric protection is provided by the para-tolyl substituents on the bound 

carbodiimide and hence the approach of a second molecule is severely hindered. 

 

6.2.6 Synthesis and characterisation of [(η8-Pn†)Ti]2(µ-κ2:κ2-O2CNPh) (6.7)  

Slow addition of PhNCO to a pentane solution of 4.3 at -35 °C resulted in a green-

brown solution upon warming to room temperature, which after concentration and 

cooling to -35 °C, deposited green crystals suitable for X-ray diffraction analysis. The 

molecular structure (Figure 6.11) revealed not the anticipated PhNCO adduct but 

complex 6.7 in which the double-sandwich structure has been cleaved and an unusual 

phenyl-carbonimidate ligand bridges two formally Ti(III) centres. Complex 6.7 was 

further characterised by mass spectrometry, elemental analysis and shows a 

characteristic IR band at ν 1564 cm-1, assigned to the aromatic C=C stretch of the 

phenyl group. In the 1H NMR spectrum of 6.7 in THF-d8 solution only broad signals 

were observed, and the effective magnetic moment determined by the Evans method 

was 1.3 µB per Ti, which is less than the spin-only value for a Ti3+ ion (1.73 µB).  

SQUID and EPR studies were not possible due to the small amount of material isolated 

from the reaction with PhNCO.  
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Figure 6.11 ORTEP (30% probability) diagram of 6.7. H atoms and iPr groups omitted. 

 

Table 6.6 Selected distances (Å), angles (°) and parameters for 6.7.  

Ct denotes the η5-centroid of the Pn ring. 

Distance 6.7 Angle 6.7 

Ti1…Ti2 4.3011(11) Ti1−O1−Ti2 176.44(12) 

Ti1−O1 2.145(2) O1−Ti1−N1 62.90(9) 

Ti2−O1 2.146(2) O1−Ti2−O2 63.10(9) 

Ti1−N1 2.124(3) O1−C53−N1 113.4(3) 

Ti2−O2 2.081(3) O1−C53−O2 114.8(3) 

C53−O1 1.350(4) O2−C53−N1 131.7(3) 

C53−O2 1.275(4) Ct−Ti−Ct a 57.32(9) 

C53−N1 1.314(4) Fold angle a 35.1(3) 

Ti−Ct a 1.9354(18) Hinge Angle a 3.2(6) 

Ti–Cring a 2.325(5)   

a average values 
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The C−O distances about the central carbon atom of the bridging ligand are between the 

range of lengths for a C(sp2)−O single and double bond (1.293-1.407 Å and  

1.187-1.255 Å respectively);122 furthermore, the C−N distance also lies between the 

C(sp2)−N single and double bond range (1.279-1.329 Å and 1.321-1.416 Å 

respectively).122,123 The NCO2 core is planar and the sum of its angles are 360°. These 

results indicate the delocalisation of negative charge over the bidentate phenyl-

carbonimidate ligand. Other examples of this ligand in the Cambridge Structural 

Database (CSD) are limited to a single report by Zhou et al.,124 which details a series of 

lanthanide(III) complexes, [Cp2Ln(THF)]2(µ-κ2:κ2-O2CNPh) (Ln = Y, Er, Yb), showing 

similar metrics about the [PhNCO2]2- bridge. These complexes were prepared from the 

lanthanocene(III) hydroxides [Cp2Ln(µ-OH)(THF)]2 and PhNCO followed by reaction 

with the corresponding Cp3Ln. In contrast a redox reaction has clearly taken place 

between 4.3 and PhNCO to afford 6.7.  

The yield was 40% with respect to 4.3 and PhNCO, however based on the formula of 

6.7 with two oxygens atoms in the bimetallic product, it follows that the reaction 

stoichiometry requires two equivalents of PhNCO per dimer. The mechanism for this 

unexpected transformation is unclear, but is postulated to proceed via O-atom transfer 

from PhNCO to give the mono(µ-oxo) complex 5.8, which is known to be thermally 

unstable with respect to the more open triplet structure 5.9. The second step involves 

nucleophilic attack of the µ-O ligand at the carbon atom of a second PhNCO molecule, 

a position which is generally nucleophilic.125 

Further studies are needed to establish how general this Ti-mediated isocyanate to 

carbonimidate transformation is. However, it is remarkable that the reaction 4.3 with 

PhNCO is kinetically stabilised at a carbonimidate-bridged Ti(III)−Ti(III) complex, in 

contrast to the heteroallenes CO2 and COS which give oxo- and sulfido-bridged 

Ti(IV)−Ti(IV) products respectively.  
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Scheme 6.7 Synthetic route to 6.7 (R = SiiPr3), via postulated intermediates. 
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6.3 Reactivity of 4.3 with Homonuclear E−E Bonds 

6.3.1 Synthesis and characterisation of (µ:η5,η5-Pn†)2[Ti(EPh)]2, for E = S (6.8), Se 

(6.9) and Te (6.10). 

When deep red solutions of 4.3 in toluene were treated with one equivalent of Ph2E2 

reagent (R = S, Se and Te) an immediate colour change from deep red to red-brown was 

observed. Subsequent work-up and recrystallisation from pentane furnished the 

respective di-phenylchalcogenoate complexes (µ:η5,η5-Pn†)2[Ti(EPh)]2, for E = S (6.8), 

Se (6.9) and Te (6.10) as analytically pure brown solids (Scheme 6.8).  

 

 

Scheme 6.8 Synthesis of di-phenylchacogenoate complexes. R = SiiPr3. 

 

EI-MS showed a parent ion or a common fragment ([M - Ph]+ or [M - iPr]+) for each 

complex. Solid state IR for 6.9 and 6.10 showed essentially identical spectra with a 

sharp band at ca. 1570 cm-1 assigned to the aromatic C=C stretch of the phenyl group. In 

contrast 6.8 shows a broad IR band at 1620 cm-1. 1H NMR spectroscopy showed very 

similar spectra for 6.8, 6.9 and 6.10, consisting of seven sharp signals in the aromatic 

region; three of which were assigned to the o, m, and p-H of the two equivalent Ph 

groups with integration (ratio 2:2:1 respectively) and multiplicity as expected (d, t and t 

respectively); four doublet signals of equal intensity were assigned to the Pn† ring 

protons in a double-sandwich structure with C2 symmetry on the NMR timescale. 

Multinuclear (13C, 29Si) NMR spectra were consistent with this interpretation. The 
77Se{1H} and 125Te{1H} NMR of 6.9 and 6.10 respectively showed one singlet signal at 

δSe 511 and δTe 418 respectively. These chemical shifts are relatively upfield in 

comparison with those of known titanium selenolate and tellurolate complexes, for 

which 77Se{1H} and 125Te{1H} NMR spectroscopic data have been provided (Table 

6.7). This may be correlated with the Ti(III)−Ti(III) oxidation state in 6.9 and 6.10, 
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which renders the chalcogenoate ligand more shielded with respect to monomeric d0 

Ti(IV) complexes. However the (RE)- ligands in these literature examples have very 

different electronic properties, so firm comparisons cannot be made. Known Ti(III) 

selenolate and tellurolates such as Cp2TiIII[TeSi(SiMe3)3]PMe3
69 precluded NMR 

characterisation due to their paramagnetic nature. 

 

Table 6.7 Solution 77Se{1H} and 125Te{1H} NMR data for 6.9 and 6.10 and related 

titanium selenolate and telluroate complexes. 

Compound δ solvent ref 

6.9 511 cyclohexane-d12 this work 

Cp2Ti(SePh)2 847 n/a 126 

Cp2Ti(o-Se2C6H4) 982 n/a 126 

Cp2Ti(SeMe)2 914.2 CD2Cl2/CH2Cl2 71 

Ti[SeSi(SiMe3)3]4 865 C6D6 127 

Ti[SeSi(SiMe3)3]3(CH2Ph) 828 C6D6 127 

Ti[SeSi(SiMe3)3]2(OEt)2 416 C6D6 127 

6.10 418 cyclohexane-d12 this work 

Cp2Ti[TeSi(SiMe3)3]2 810 C6D6 70 

Cp’2Ti[TeSi(SiMe3)3]2 783 C6D6 70 

Cp2Ti(TeSiPh3)2 709 C6D6 128 

Cp’
2Ti(TeSiPh3)2 659 C6D6 128 

 

This work has shown that the (Pn†)2Ti2 double-sandwich motif can incorporate both 

terminal and bridging ligands, and titanium thiolates complexes with terminal and 

bridging bonding modes are well known.129 Assuming that the mechanism for oxidative 
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addition of Ph2E2 occurs exclusively at one face of complex 4.3, two possible C2 

symmetric structures for 6.8, 6.9 and 6.10 are possible (Figure 6.12).  

 

 

Figure 6.12 Possible structures of di-phenylchacogenoate complexes. 

 

Spectroscopic and analytical data alone were not sufficient to distinguish between a 

terminal or bridging mode for the chalcogenolate ligands, so an XRD study was carried 

out. Selenolate complex 6.9 was recrystallised from SiMe4, however the X-ray data 

collected for the crystals were weak at high angle, and suffered from a highly disordered 

solvent molecule which could not be modelled adequately. Therefore the X-ray data for 

6.9 precluded accurate refinement of metric parameters, and only basic connectivity was 

established (see appendix A2). Gratifyingly, an Et2O solution of thiolate complex 6.8 

and a SiMe4 solution of telluroate complex 6.10 each provided single crystals which 

were of sufficient quality for structural determination by XRD. The general structural 

feature common to 6.8, 6.9 and 6.10 is the double-sandwich motif with terminal di-

chalcogenoate ligands pointing out of one face, and the Ph groups pointing in opposite 

directions to minimise steric repulsions with the SiiPr3 substituents on this face. The 

molecular structure of 6.10 is depicted in Figure 6.13 as a typical example and selected 

structural parameters for this complex are included in Table 6.8. 
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Figure 6.13 Displacement ellipsoid plot (30% probability) of 6.10. H atoms and iPr 

groups omitted for clarity. 

 

Table 6.8 Selected interatomic distances (Å), angles (°) and parameters for 6.10.  

Ct denotes the η5-centroids of the Pn ring. 

Parameter 6.10 Parameter 6.10 

Ti1−Ti2 2.6530(9) Ti−Ti−Te 
a 120.69(3) 

Ti1−Te1 2.6809(7) Ti−Te−Cipso 
a

 112.65(13) 

Ti2−Te2 2.6922(7) Cipso−Te−Te−Cipso  140.73(18) 

Ti−Ct a 2.0807(17) Te−Ti−Ti−Te 7.01(5) 

Ti–Cring a 2.411(4) Ct−Ti−Ct a 135.14(7) 

Δ a 0.115(4) Twist angle 17.4(3) 

Pn C–Cring a 1.438(2) Hinge angle  5.4(4) 

Ph C–Cring a 1.384(4) Fold angle 11.0(2) 

aAverage values. 
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The most noteworthy structural feature is the longer Ti−Ti distance for 6.10 (2.6530(9) 

Å) with respect to the starting compound 4.3 (2.399(2) Å), consistent with the loss of 

two electrons from the M−M bonding HOMO of 4.3 upon oxidative addition of Ph2Te2. 

Indeed, the intermetallic distance is significantly longer than in the mono(µ-O) and 

mono(µ-S) complexes, 5.8 and 6.4 (2.3991(7) and 2.4682(8) Å respectively), and the 

(tri-tert-butylsilyl)imido complex [(tBu3SiNH)Ti]2(µ-NSitBu)2 (2.442(1) Å)130 which 

was the only example found in the CSD of a metal-metal bond between two formally 

Ti(III) centres. 

The Ti−Te distances for 6.10 (av. 2.6866(7) Å) lie between the sum of their single and 

double bond covalent radii (2.72 and 2.45 Å respectively),93 and are comparatively short 

relative to those of previously determined tellurolate complexes of Ti(III), 

Cp2Ti[TeSi(SiMe3)3]PMe3 (2.8955(30) Å), Cp2Ti(TeSnPh3) (2.8681(18) Å)70 and even 

of Ti(IV), Cp2Ti[TeSi(SiMe3)3]2 (2.788(1) Å).70
 This suggests a possible π-bonding 

interaction between titanium and tellurium in 6.10, an effect which has been invoked in 

the permethyltitanocene(III) telluride complex [Cp*Ti]2(µ-Te),131 which shows an 

average Ti−Te distance of 2.702(3) Å 

The angle between the Ti−Te vectors (61.7°) reflects the extent to which the large Te 

atoms are pointing away from each other, in comparison with the di-carbonyl complex 

5.2 in which the Ti−CCO vectors are near parallel (9.8°). The phenyl substituents on the 

tellurolate ligands point away from one another (Cipso−Te−Te−Cipso = 140.7°) to 

minimise steric repulsions, in comparison to 5.2 in which back bonding to the CO π* 

orbitals constrains the two ligands to a near parallel arrangement (O−C−C−O = 140.7°).  

Terminal chalcogenolate ligands act as 1 electron donors (X-function in the Green et al. 

counting scheme)132 meaning 6.8, 6.9 and 6.10 are formally 17 VE per Ti, with 

diamagnetic behaviour which may be explained by a M−M single bond. However 

antiferromagnetic coupling between Ti(III) centres could also be mediated through the 

pentalene ligand, as described in chapter one. 

It was then of interest to investigate the potential for a four electron oxidation of 4.3 to 

give 18 VE per Ti centre, and the effect this would have on the double-sandwich 

structure. Azobenzene was selected as a substrate, given its ability to undergo both 2 

and 4 electron redox reactions with low valent metal complexes.  
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6.3.2 Synthesis and characterisation of [(η8-Pn†)Ti]2(µ-NPh)2 (6.11). 

Addition of one equivalent of azobenzene to a toluene solution of 4.3 resulted in a 

colour change to dark red. Removal of the solvent and recrystallisation from hexane 

furnished red crystals of [(η8-Pn†)Ti]2(µ-NPh)2 (6.11), isolated in 70% yield. Elemental 

analysis and EI-MS data support the proposed formulation. Solution phase NMR 

spectroscopy data are consistent with a C2v symmetric structure; the 1H spectrum 

contains two signals assigned to the Pn† ring protons, reminiscent of the 1H spectrum of 

bis(µ-oxo) compound 5.5, and three further signals in the aromatic region assigned to 

the two equivalent Ph groups. 

XRD analysis of single crystals of 6.11 revealed two phenylimido ligands bridging two 

formally Ti(IV) centres, forming a Ti2N2 heterocyclic ring (Figure 6.14). The 

coordination geometry of both titanium atoms is distorted tetrahedral. The Ti…Ti 

distance of 2.8935(5) Å is not unusually short for a bimetallic Ti(IV) complex, and 

similar distances have been observed in related species.85,133-135 The bridging region of 

the complex is asymmetric, such that the Ti−N bond lengths are different, ranging from 

1.9830(17) Å to 1.9536(17) Å. Asymmetrically bridging imido ligands have previously 

been observed for several different transition-metal complexes, and Nugent et al. have 

ascribed this effect to an increase in π-donation to the metal centre.135 However, these 

researchers suggested that a substantial distortion of the M−N bond lengths in four-

coordinate Group 4 [M2(µ-NR)2]-containing complexes is not expected on electronic 

grounds. Hence, it is postulated that the difference in the Ti−N bond lengths in 6.11 is 

sterically induced by the asymmetric disposition of the Pn† ligands with respect to the 

[Ti2(µ-NPh)2] unit. The reaction can be considered a 4e- reduction per azobenzene 

molecule driven by the oxidative cleavage of the Ti−Ti double bond to give the di-

Ti(IV) bis(µ-NPh) complex. 
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Figure 6.14 ORTEP (30% probability) diagram of 6.11.  

H atoms and iPr groups omitted for clarity.  

 

Table 6.9 Selected interatomic distances (Å), angles (°) and parameters for 6.11.  

Ct denotes the η5-centroid of the Pn ring. 

Parameter 6.11 Parameter 6.11 

Ti1…Ti2 2.8935(5) Ph C–Cring a 1.401(3) 

Ti1−N1 1.9799(17) Ti1−N1−Ti2 94.47(7) 

Ti1−N2 1.9614(17) Ti1−N1−Ti2 94.61(7) 

Ti2−N1 1.9536(17) Ct−Ti−Ct a 56.57(4) 

Ti2−N2 1.9536(17) Twist angle 32.30(15) 

Ti−Ct a 1.9975(10) Fold angle a 32.6(3) 

Ti–Cring a 2.384(2) Hinge Angle 1.3(2) 

Pn C–Cring a 1.443(3)   

a average values 
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Organic azides (RN3) are common reagents for the transfer of a nitrene (RN) group to a 

metal complex, upon loss of N2, and presented an alternative synthetic route to 6.11. 

Addition of 1 equivalent of azidobenzene (PhN3) to a solution of 4.3 in C6D6 resulted in 

a rapid colour change to red and the effervescence of dinitrogen. 1H NMR spectroscopy 

showed two sets of characteristic Pn ring signals corresponding to 6.11 and unreacted 

4.3 in approximately equal ratio. Addition of a further 1 equivalent of PhN3 showed 

complete conversion to 6.11.  

 

 

Scheme 6.10 Summary of synthetic routes to 6.11. R = SiiPr3. 

 

Metal-driven reductive transformations of organic azides to imido complexes are well 

known for titanium,136,137 uranium,138-141 and late transition metals.142 However with Ti 

mononuclear terminal-imido complexes are typically formed. The reaction of 4.3 with 

PhN3 can be considered a 2e- redox process per organoazide. The imido/nitrene [PhN]2- 

fragment produced is isolobal with O2-, and hence this reaction parallels that of 4.3 with 

N2O to give bis(µ-oxo) complex 5.5.143 It is of interest to explore the scope of this 

reaction using different organic azides, as a method to install RN fragments into the 

double sandwich structure, with a view to forming a mono(imido) complex given their 

precedent for C−H bond activation with group 4 metals.144 However due to time 

restraints this work was not completed in the current study and warrants further 

investigation. 
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The reactivity observed with COS is even more capricious than that with CO2 but some 

parallels can be made. The asymmetric COS molecule undergoes scission at low 

temperatures, forming a mono(µ-S) mono(CO) species 6.3 which has sufficient stability 

for spectroscopic elucidation. A mono(µ-O) mono(CO) counterpart was implicated in 

the CO2 reaction pathway, but was not observed experimentally. However by extension 

to the mono(µ-S) and mono(µ-O) complexes 6.4 and 5.8, a stability trend may be 

invoked. Comparisons of their structures reveals more extreme ligand-metal distances in 

the di-metalloepoxide such that 5.8 may be construed as a ‘snapshot' of the change in 

Pn† bonding from double-sandwich (µ-η5:η5) to umbrella-mode (η8). This is the process 

which accompanies the metal-metal bond cleavage of 5.8 to the yield 5.9 at room 

temperature, and also its ultimate fate in the CO2 reaction, to yield the bis(µ-O) 5.5. 

Mono(µ-S) mono(CO) species 6.3 was also found to open up to the η8-Pn† capped 

structure, giving bis(µ-S) 6.5, but only in the presence of excess COS.  

The reaction of 4.3 with PhNCO to give unusual phenyl-carbonimidate bridged 6.7 

shows that heteroallene reactions can be kinetically stabilised at the Ti(III)−Ti(III) 

stage, however further studies are required to fully rationalise this transformation. It 

would also be of great interest in the design of any potential catalytic cycle to 

investigate whether Ti(III)−Ti(III) complexes such as 6.7 can be reduced back to 4.3 

(chemically or electrochemically) with concomitant removal of the bridging ligand. 

This would also help to clarify the proposed disproportionation step in the CO2 

mechanism. 

The reactivity with dichalogenides and azobenzene shows 4.3 can act as a 2e- and 4e- 

reductant respectively. These reactions were clean and essentially quantitative, giving 

diamagnetic products which were straightforwardly identified by 1H NMR 

spectroscopy. Hence, these studies provide a blueprint for more predictable redox 

transformations at [Ti2]4+, which are consistent with the electrode potential measured at 

-2.5 V vs FeCp2
+/0. In future work these investigations may be extended to higher 

energy homonuclear E−E bonds (e.g. P−P or Si−Si), and more even more inert 

molecules such as dinitrogen. The introduction of different substituents on the pentalene 

rings around [Ti2]4+ would enable structure-activity relationships to be made, for 

example additional steric stabilisation may lead to more controlled reactivity with CO2. 

The reactivity of 4.3 has invited obvious comparisons with the titanocene(II) fragment 

explored by Floriani and others, and also the electron rich di-tungsten hexaalkoxide 



    
226 

complexes of Cotton, Chisholm and co-workers. The chemistry of titanium-titanium 

multiple bonds remains relatively underexplored and it is hoped that future work on 

double-sandwich complexes will provide further interesting examples of small molecule 

activation, and potentially more useful product outcomes.  

 

6.5 Experimental Details for Chapter Six 

6.5.1 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ:η2,η2-CS2) (6.1). 

To a solution of 4.3 (58 mg, 0.058 mmol) in pentane (2 mL) at -35 °C was added CS2 

(14 µL, 0.23 mmol) via microsyringe. The resultant dark green mixture was allowed to 

warm to room temperature and stir for 3 h. Filtration followed by cooling to -35 °C 

afforded red microcrystals which were isolated by decantation and dried in vacuo.  

Total yield: 36 mg (62% with respect to 4.3).  

Recrystallisation from a saturated Et2O (1 mL) solution at -35 °C afforded dark red 

crystals suitable for X-ray diffraction studies.  

1H NMR (toluene-d8, 399.5 MHz, 303 K): δH 7.30 (2H, 3JHH = 3.0 Hz, Pn H), 6.35 (2H, 
3JHH = 3.0 Hz, Pn H), 6.25 (2H, 3JHH = 3.5 Hz, Pn H), 5.85 (2H, 3JHH = 3.5 Hz, Pn H), 

1.48 (6H, m, iPr CH), 1.42 (6H, m, iPr CH), 1.15 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.13 

(18H, d, 3JHH = 7.5 Hz, iPr CH3), 1.05 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.01 (18H, d, 
3JHH = 7.5 Hz, iPr CH3).  

13C{1H} NMR (toluene-d8, 100.5 MHz, 303 K): δC 355.5 (CS2), 133.4 (Pn C), 132.4 (Pn 

C), 127.1 (Pn C), 107.6 (Pn C), 105.5 (Pn C), 95.1 (Pn C), 20.37 (iPr CH3), 20.21 (iPr 

CH3), 19.82 (iPr CH3), 14.73 (iPr CH), 12.93 (iPr CH).  

29Si{1H} NMR (toluene-d8, 79.4 MHz, 303 K): δSi 7.65, 7.39.  

EI-MS: m/z = 1002 (65%), [M]+, 960 (30%), [M - iPr]+.  

Anal. found (calcd. for C52H92S2Si4Ti2): C, 63.49 (63.56); H, 9.26 (9.26) %.  

IR (methylcyclohexane, 26 °C): 1104 (νasym SCS) cm-1.  

Crystal data for 6.1: C53H92S2Si4Ti2, Mr = 1000.53, triclinic, space group P-1, dark red 

block, a = 14.1432(8) Å, b = 14.1716(7) Å, c = 18.3870(9) Å, α = 88.928(4)°, β = 

69.270(5)°, γ = 65.223(5)° V = 3092.8(3) Å3, T = 173 K, Z = 2, Rint = 0.0957,  
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λMo(Kα) = 0.71073 Å, θmax = 24.713°, R1 [I >2σ(I)] = 0.0596, wR2 (all data) = 0.1682, 

GooF = 0.954. 

6.5.2 Synthesis of (µ:η5,η5-Pn†)2Ti2(COS) (6.2). 

A J. Young NMR tube was charged with 4.3 (20 mg, 0.022 mmol) and 

methylcyclohexane-d14 (0.6 mL). The solution was cooled to -78 °C, the headspace 

evacuated, and COS (0.048 mmol) admitted. The tube was briefly shaken and a colour 

change from deep red to green was observed. NMR spectra were immediately 

measured, with the probe pre-cooled to -30 °C.  

NMR yield: 45% with respect to 4.3.  

1H NMR (methylcyclohexane-d14, 399.5 MHz, 243 K, selected data): δH 7.00 (1H, d, 
3JHH = 3.0 Hz, Pn H), 6.96 (1H, d, 3JHH = 3.0 Hz, Pn H), 6.72 (1H, d, 3JHH = 3.7 Hz, Pn 

H), 6.45 (1H, d, 3JHH = 3.0 Hz, Pn H), 6.43 (1H, d, 3JHH = 3.6 Hz, Pn H), 6.31 (1H, d, 
3JHH = 3.7 Hz, Pn H), 6.09 (1H, d, 3JHH = 3.7 Hz, Pn H), 1.79-1.44 (12H, overlapping m, 
iPr CH), 1.34-1.02 (72H, overlapping m, iPr CH3). One Pn H signal was not resolved 

due to coincidental overlap with 6.5 signals.  

13C{1H} NMR (methylcyclohexane-d14, 100.5 MHz, 243 K, selected data): δC 283 (s, 

COS).  

29Si{1H} NMR (methylcyclohexane-d14, 79.4 MHz, 243 K, selected data): δSi 2.48, 

2.07, 1.73, 1.08.  

IR (NaCl): 1493 (νasym SCO) cm-1. 

IR (methylcyclohexane, -65 °C): 1498 (νasym SCO) cm-1. 

 

6.5.3 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ-S)(CO) (6.3). 

METHOD A: A J. Young NMR tube charged with 4.3 (16 mg, 0.017 mmol) and 

toluene-d8 (0.65 mL) at -78 °C was degassed and COS gas (0.015 mmol) slowly 

admitted. The reaction mixture was briefly shaken, resulting in a colour change from 

deep red to green, and was allowed to warm to room temperature over a period of 2 h.  

NMR yield: 47% with respect to 4.3.  
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METHOD B: An ampoule charged with 6.4 (0.028 mmol) and toluene-d8 (0.7 mL) was 

cooled to -78 °C and the headspace evacuated. 13CO gas (0.025 mmol) was admitted 

slowly to the stirred mixture, resulting in a colour change from red to green. After 

warming to room temperature the solution was decanted into a J. Young tube and 13C-

6.3 was identified by its NMR and IR spectra.  

NMR yield: 75% with respect to 4.3. 

Alternatively, exposing a solution of 6.4 to 0.9 mol eq. CO via Toepler pump yields 

primarily the unlabeled product 6.3.  

1H NMR (toluene-d8, 399.5 MHz, 303 K, selected data): δH 7.81 (2H, d, 3JHH = 2.9 Hz, 

Pn H), 6.09 (br, Δν½ = 13 Hz, Pn H), 5.75 (2H, d, 3JHH = 2.9 Hz, Pn H), 5.38 (2H, d, 
3JHH = 2.7 Hz, Pn H), 1.62-1.24 (12H, overlapping m, iPr CH), 1.22-0.96 (72H, 

overlapping m, iPr CH3).  

13C{1H} NMR (toluene-d8, 100.5 MHz, 303 K, selected data): δC 247 (br, Δν½ = 110 

Hz, CO).  

29Si{1H} NMR (toluene-d8, 79.4 MHz, 303 K, selected data): δSi 2.56, 1.46.  

IR (methylcyclohexane, -65 °C): 6.3 2011 (br, ν CO); 13C-6.3 1966 (br, ν 13CO) cm-1. 

 

6.5.4 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ-S) (6.4). 

A solution of Ph3PS (56 mg, 0.19 mmol) in toluene (3 mL) was added dropwise to a 

stirred solution of 4.3 (177 mg, 0.191 mmol) in pentane (3 mL) at -35 °C. The resultant 

red mixture was allowed to warm to room temperature, stirred for 30 min and then 

stripped to dryness. A red residue was obtained which was placed under high vacuum 

(ca. 10-6 mbar), heated at 75 °C for 1 h, and then 100 °C for 2 h to ensure complete 

sublimation of a white crystalline solid, presumably Ph3P. The residue was extracted 

with pentane (3 x 2 mL), filtered, and allowed to concentrate to ca. 3 mL. Cooling of 

this solution to -35 °C afforded red crystals of 6.4 suitable for X-ray diffraction studies.  

Total yield: 95 mg (52% with respect to 4.3).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 9.25 (2H, d, 3JHH = 3.4 Hz, Pn H), 7.06 (2H, d, 
3JHH = 3.2 Hz, Pn H), 6.10 (2H, d, 3JHH = 3.1 Hz, Pn H), 5.96 (2H, d, 3JHH = 3.4 Hz, Pn 

H), 2.01 (6H, m, iPr CH), 1.35 (6H, m, iPr CH), 1.17 (18H, d, 3JHH = 7.5 Hz, iPr CH3), 
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1.13 (18H, d, 3JHH = 7.3 Hz, iPr CH3, 0.98 (18H, d, 3JHH = 7.5 Hz, iPr CH3), 0.60 (18H, 

d, 3JHH = 7.5 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 141.7 (Pn C), 132.5 (Pn C), 130.0 (Pn C), 

123.0 (Pn C), 118.6 (Pn C), 115.3 (Pn C), 113.2 (Pn C), 98.53 (Pn C), 19.50 (iPr CH3), 

19.41 (iPr CH3), 19.14 (iPr CH3), 18.89 (iPr CH3), 13.72 (iPr CH), 13.15 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 2.20, 1.82.  

EI-MS: m/z = 989 (60%) [M + S]+; 956-959 (principal peak 957, 20%), [M]+; 877 

(100%), [M - Ti - S]+. 

Anal. found (calcd. for C52H92SSi4Ti2): C, 65.33 (65.23); H, 9.61 (9.69) %.  

Crystal data for 6.4: C52H92SSi4Ti2, Mr = 957.47, triclinic, space group P-1, red block,  

a = 11.283(2) Å, b = 12.867(3) Å, c = 21.651(4) Å, α = 99.66(3)°, β = 91.04(3)°, γ = 

115.71(3)°, V = 2777.2(12) Å3, T = 100 K, Z = 2, Rint = 0.0578, λMo(Kα) = 0.71073 Å, 

θmax = 27.542°, R1 [I >2σ(I)] = 0.0455, wR2 (all data) = 0.1238, GooF = 0.983. 

 

6.5.5 Synthesis of [(η8-Pn†)Ti(µ-S)]2 (6.5). 

METHOD A: An ampoule containing a solution of 4.3 (141 mg, 0.152 mmol) in 

benzene (2 mL), frozen at -35 °C, was degassed and fitted with a balloon containing 

COS gas (1 atm). The solution was allowed to warm to room temperature and, shortly 

after thawing, appeared green in colour. After stirring for 30 mins at room temperature a 

colour change to red-brown was observed. The reaction mixture was frozen and 

lyophilised and a spectroscopically pure red-brown solid was isolated.  

Total yield: 145 mg (96% with respect to 4.3).  

METHOD B: To an ampoule containing 4.3 (100 mg, 0.108 mmol) and Ph3PS (64 mg, 

0.216 mmol) was added toluene (2 mL). After 4 h of stirring at room temperature the 

red-brown mixture was stripped to dryness, extracted with Et2O (2 x 5 mL), filtered, and 

the solvent removed in vacuo. A brown solid was obtained which was placed under high 

vacuum (ca. 10-6 mbar) and heated at 60 °C for 2.5 h, 75 °C for 1 h, and finally 100 °C 

for 30 min to ensure complete sublimation of a white crystalline solid, presumably 

Ph3P. The residue was extracted with Et2O (2 x 5 mL), filtered, and allowed to 
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concentrate to ca. 4 mL. Cooling of this solution to -35 °C afforded red crystals suitable 

for X-ray diffraction studies. 

Total yield: 86 mg (80% with respect to 4.3).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.59 (4H, d, 3JHH = 3.3 Hz, Pn H), 5.92 (4H, d, 
3JHH = 3.2 Hz, Pn H), 1.31 (12H, m, iPr CH), 1.19 (36H, d, 3JHH = 7.3 Hz, iPr CH3), 1.14 

(36H, d, 3JHH = 7.3 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 148.9 (Pn C), 130.0 (Pn C), 115.2 (Pn C), 

113.9 (Pn C), 19.66 (iPr CH3), 19.50 (iPr CH3), 12.31 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi -0.15.  

EI-MS: m/z = 989 (100%), [M]+; 946 (50%), [M - iPr]+.  

Anal. found (calcd. for C52H92S2Si4Ti2): C, 63.20 (63.12); H, 9.44 (9.37) %.  

Crystal data for 6.5: C52H92S2Si4Ti2, Mr = 989.53, tetragonal, space group P42/nbc, red 

rod, a = b = 15.714(2) Å, c = 24.660(5) Å, α = β = γ = 90°, V = 6089(2) Å3, T = 100 K, 

Z = 4, Rint = 0.0887, λMo(Kα) = 0.71073 Å, θmax = 27.460°, R1 [I >2σ(I)] = 0.0864, wR2 

(all data) = 0.1786, GooF = 1.280. 

 

6.5.6 Synthesis of (µ:η5,η5-Pn†)2Ti2(µ-C{N(4-C6H4CH3)}2) (6.6).  

Solid 1,3-N,N’-di-p-tolylcarbodiimide (13 mg, 0.057 mmol) was added slowly to a 

solution of 4.3 (53 mg, 0.057 mmol) in pentane (2 mL) at room temperature, resulting in 

a colour change from deep red to brown-green. The solvent was removed by slow 

evaporation at ambient pressure and the brown residue was redissolved in SiMe4 (1 

mL). Cooling this solution to -35 °C produced bronze crystals that were isolated by 

decantation and dried in vacuo.  

Total yield: 60 mg (92% with respect to 4.3).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 7.35 (2H, d, 3JHH = 3.0 Hz, Pn H), 7.09 (4H, t, 
3JHH = 8.0 Hz, o-4-C6H4Me), 6.95 (4H, t, 3JHH = 8.2 Hz, Ph m-4-C6H4Me), 6.73 (2H, d, 
3JHH = 3.6 Hz, Pn H), 6.53 (2H, d, 3JHH = 3.1 Hz, Pn H), 6.19 (2H, d, 3JHH = 3.6 Hz, Pn 

H), 2.16 (2H, s, 4-C6H4CH3), 1.57 (6H, m, iPr CH), 1.23 (18H, d, 3JHH = 7.4 Hz, iPr 

CH3), 1.11 (18H, d, 3JHH = 7.5 Hz, iPr CH3), 1.08 (18H, d, 3JHH = 7.4 Hz, iPr CH3),  
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0.96 (18H, d, 3JHH = 7.4 Hz, iPr CH3). One iPr CH multiplet signal was not resolved due 

to coincidental overlap with iPr CH3 doublet signal at δH 1.23.  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 181.9 (C{NTol}2), 146.3 (i-4-C6H4Me), 

133.0 (Pn bridgehead C), 132.3 (p-4-C6H4Me), 131.4 (Pn CH), 128.9 (o-4-C6H4Me), 

125.8 (m-4-C6H4Me), 124.7 (Pn CH), 117.6 (Pn CH), 108.6 (Pn CH), 98.01 (Pn C-Si), 

93.27 (Pn C-Si), 20.99 (4-C6H4CH3), 20.10 (iPr CH3), 20.06 (iPr CH3), 20.01 (iPr CH3), 

19.80 (iPr CH3), 14.27, (iPr CH), 12.77 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 2.44, 2.28. 

EI-MS: m/z = 1144-1149 (principal peak 1146, 20%), [M]+; 1027-1032 (principal peak 

1029, 100%), [M - CN(C6H4CH3)]+.  

Anal. found (calcd. for C67H106N2Si4Ti2): C, 69.87 (70.12); H, 9.42 (9.31); N, 2.48 

(2.44) %. 

IR (NaCl): 1659 (νasym NCN), 1599 (ν aromatic C=C), 1318 (νsym NCN) cm-1. 

Crystal data for 6.6: C67H106N2Si4Ti2, Mr = 1147.69, monoclinic, space group C 2/c, 

bronze block, a = 25.872(5) Å, b = 15.032(3) Å, c = 19.626(4) Å, α = γ = 90°,  

β = 121.30(3)°, V = 6522(3) Å3, T = 150 K, Z = 4, Rint = 0.0546, λMo(Kα) = 0.71073 Å,  

θmax = 27.564°, R1 [I > 2σ(I)] = 0.0476, wR2 (all data) = 0.1301, GooF = 1.062. 

 

6.5.7 Synthesis of [(η8-Pn†)Ti]2(µ-κ2:κ2-O2CNPh) (6.7). 

To a solution of 4.3 (70 mg, 0.076 mmol) in pentane (1 mL) was added a solution of 

PhNCO (9 mg, 0.076 mmol) in pentane (2 mL), dropwise at -35 °C. A colour change to 

brown-green occurred and the mixture was allowed to warm to room temperature, 

stirred for 10 min and then filtered. The filtrate was concentrated to ca. 1 mL and after 

cooling to -35 °C, deposited pale green crystals that were isolated by decantation and 

dried in vacuo. 

Total yield: 32 mg (40% with respect to 4.3).  

1H NMR (THF-d8, 399.5 MHz, 303 K): δH 7.25 (br, Δν½ = 65 Hz, Pn H), 5.96 (br, Δν½ 

= 57 Hz, Pn H), 1.77 (br, Δν½ = 110 Hz, iPr CH), 1.37 (br, Δν½ = 280 Hz, iPr CH3).  

13C and 29Si NMR resonances were not observed due to the paramagnetic nature of 6.7. 
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EI-MS: m/z = 1059-1062 (principal peak 1060, 15%), [M]+; 1031-1035 (principal peak 

1032, 20%), [M - CO]+; 955-961 (principal peak 957, 100%), [M - PhNC]+. 

 Anal. found (calcd. for C59H97NO2Si4Ti2): C, 66.73 (66.82); H, 9.09 (9.22); N, 1.36 

(1.32) %. 

IR (NaCl): 1564 (ν aromatic C=C) cm-1.  

Crystal data for 6.7: C59H97NO2Si4Ti2, Mr = 1060.53, triclinic, space group P-1, green 

rod, a = 13.0980(9) Å, b = 13.2073(9) Å, c = 18.7778(13) Å, α = 75.122(2)°, β = 

77.239(2)°, γ = 79.896(2)°, V = 3037.5(4) Å3, T = 150 K, Z = 2, Rint = 0.0891, λMo(Kα) 

= 0.71075 Å, θmax = 27.463°, R1 [I > 2σ(I)] = 0.0857, wR2 = 0.2416, GooF = 0.984. 

 

6.5.8 Synthesis of (µ:η5,η5-Pn†)2[Ti(SPh)]2 (6.8). 

Solid PhSSPh (21 mg, 0.096 mmol) was added slowly to a stirring solution of 4.3 (89 

mg, 0.096 mmol) in toluene (2 mL) at room temperature, resulting in a colour change 

from deep red to red-brown. The solvent was removed under reduced pressure and the 

products were extracted with pentane (3 mL) and filtered. The red-brown filtrate was 

concentrated to ca. 1 mL and after cooling to -35 °C, deposited brown crystals that were 

isolated by decantation and dried in vacuo. 

Total yield: 82 mg (75% with respect to 4.3).  

1H NMR (C6D6, 399.5 MHz, 303 K): δH 8.34 (2H, d, 3JHH = 3.2 Hz, Pn H), 7.65 (4H, d, 
3JHH = 7.2 Hz, Ph o-H), 7.37 (2H, d, 3JHH = 3.3 Hz, Pn H), 7.24 (4H, t, 3JHH = 7.7 Hz, 

Ph m-H), 7.02 (2H, t, 3JHH = 7.4 Hz, Ph p-H), 5.60 (2H, d, 3JHH = 3.1 Hz, Pn H), 5.23 

(2H, d, 3JHH = 3.3 Hz, Pn H), 1.72 (6H, m, iPr CH), 1.64 (6H, m, iPr CH), 1.27 (18H, d, 
3JHH = 7.4 Hz, iPr CH3), 1.17 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.11 (18H, d, 3JHH = 7.5 

Hz, iPr CH3), 0.97 (18H, d, 3JHH = 7.5 Hz, iPr CH3).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 152.7 (Ph i-C), 142.0 (Pn C), 137.9 (Pn 

CH), 132.1 (Ph o-C), 128.6 (Ph m-C), 127.2 (Pn CH), 126.3 (Pn CH), 125.4 (Ph p-C), 

117.2 (Pn C), 111.2 (Pn CH), 91.90 (Pn C), 20.45 (iPr CH3), 20.34 (iPr CH3), 20.05 (iPr 

CH3), 19.92 (iPr CH3), 14.41 (iPr CH), 13.19 (iPr CH).  

29Si{1H} NMR (C6D6, 79.4 MHz, 303 K): δSi 4.21, 3.09. 
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EI-MS: m/z = 1142-1147 (principal peak 1143, 30%), [M]+; 1063-1069 (principal peak 

1065, 100%), [M - Ph]+.  

Anal. found (calcd. for C64H102S2Si4Ti2): C, 67.13 (67.12); H, 9.14 (8.99) %.  

IR (NaCl): 1620 (br, ν aromatic C=C) cm-1.  

Crystal data for 6.8: C64H102S2Si4Ti2, Mr = 1143.73, triclinic, space group P-1, dark red 

block, a = 14.3166(6) Å, b = 15.1682(5) Å, c = 20.1061(9) Å, α = 93.573(3)°, β = 

108.624(4)°, γ = 105.973(3)°, V = 3923.4(3) Å3, T = 173 K, Z = 2, Rint = 0.0538, 

λMo(Kα) = 0.71073 Å, θmax = 25.0°, R1 [I >2σ(I)] = 0.0728, wR2 (all data) = 0.2015, 

GooF = 1.079. 

 

6.5.9 Synthesis of (µ:η5,η5-Pn†)2[Ti(SePh)]2 (6.9). 

To a solution of 4.3 (92 mg, 0.099 mmol) in toluene (1 mL) was added a solution of 

PhSeSePh (31 mg, 0.099 mmol) in toluene (2 mL), dropwise at room temperature. A 

colour change from deep red to brown was observed and the mixture was allowed to stir 

for 30 min. The solvent was removed under reduced pressure and the products were 

extracted with pentane (4 mL) and filtered. The red-brown filtrate was concentrated to 

ca. 2 mL and after cooling to -35 °C, deposited red-brown crystals that were isolated by 

decantation and dried in vacuo.  

Total yield: 106 mg (86% with respect to 4.3). Subsequent recrystallisation from Et2O at 

-35 °C afforded X-ray quality crystals. 

1H NMR (cyclohexane-d12, 399.5 MHz, 303 K): δH 8.08 (2H, d, 3JHH = 3.2 Hz, Pn H), 

7.40 (4H, d, 3JHH = 7.0 Hz, Ph o-H), 7.27 (2H, d, 3JHH = 3.3 Hz, Pn H), 7.11 (4H, t, 3JHH 

= 7.3 Hz, Ph m-H), 7.04 (2H, t, 3JHH = 7.3 Hz, Ph p-H), 5.37 (2H, d, 3JHH = 3.1 Hz, Pn 

H), 5.04 (2H, d, 3JHH = 3.2 Hz, Pn H), 1.69-1.58 (12H, overlapping m, iPr CH), 1.26 

(18H, d, 3JHH = 7.4 Hz, iPr CH3), 1.05 (18H, d, 3JHH = 7.4 Hz, iPr CH3), 0.97 (18H, d, 
3JHH = 7.5 Hz, iPr CH3), 0.92 (18H, d, 3JHH = 7.5 Hz, iPr CH3).  

13C{1H} NMR (cyclohexane-d12, 100.5 MHz, 303 K): δC 145.5 (Ph i-C), 141.9 (Pn C), 

136.9 (Pn CH), 135.2 (Ph o-C), 128.7 (Ph m-C), 128.6 (Pn CH), 127.5 (Pn CH), 125.8 

(Ph p-C), 115.7 (Pn C), 111.3 (Pn CH), 91.07 (Pn C), 20.68 (iPr CH3), 20.62 (iPr CH3), 

20.30 (iPr CH3), 20.21 (iPr CH3), 15.00 (iPr CH), 13.95 (iPr CH).  
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77Se{1H} NMR (cyclohexane-d12, 76.21 MHz, 303 K): δSe 511.  

29Si{1H} NMR (cyclohexane-d12, 100.5 MHz, 303 K): δSi 4.88, 2.77.  

EI-MS: m/z = 1237 (60%), [M]+.  

Anal. found (calcd. for C64H102Se2Si4Ti2): C, 61.97 (62.12); H, 8.35 (8.31) %. 

IR (NaCl): 1575 (sh, ν aromatic C=C) cm-1.  

Unrefined crystal data for 6.9 from pentane solution: C64H102Se2Si4Ti2, Mr = 1237.53, 

triclinic, space group P-1, dark red block, a = 14.4267(7) Å, b = 15.2429(8) Å,  

c = 20.0970(14) Å, α = 93.221(5)°, β = 107.934(5)°, γ = 106.739(5)°, V = 3975.3(4) Å3. 

Partially refined crystal data for 6.9 from SiMe4 solution: C64H102Se2Si4Ti2,  

Mr = 1237.53, monoclinic, space group P 21/c, dark orange block, a = 18.0739(13) Å,  

b = 15.7855(7) Å, c = 25.7705(17) Å, α = γ = 90°, β = 102.416(7)°, V = 7180.5(8) Å3,  

T = 173 K, Z = 4, Rint = 0.0734, λMo(Kα) = 0.71073 Å, θmax = 22.499°, R1 [I >2σ(I)] = 

0.0882, wR2 (all data) = 0.2492, GooF = 1.155. 

 

6.5.10 Synthesis of (µ:η5,η5-Pn†)2[Ti(TePh)]2 (6.10). 

To a solution of 4.3 (88.5 mg, 0.0956 mmol) in toluene (2 mL) was added a solution of 

PhTeTePh (39.1 mg, 0.0956 mmol) in toluene (2 mL), dropwise at room temperature. A 

colour change from deep red to dark brown was observed and the mixture was allowed 

to stir for 30 min. The solvent was removed under reduced pressure and the products 

were extracted with pentane (4 mL) and filtered. The red-brown filtrate was 

concentrated to ca. 1 mL and after cooling to -35 °C, deposited dark brown crystals that 

were isolated by decantation and dried in vacuo. 

Total yield: 90 mg (71% with respect to 4.3).  

1H NMR (cyclohexane-d12, 499.9 MHz, 303 K): δH 7.95 (2H, d, 3JHH = 3.0 Hz, Pn H), 

7.90 (2H, d, 3JHH = 3.1 Hz, Pn H), 7.74 (4H, dd, J = 2.8, 6.2 Hz, Ph o-H), 7.20-7.16 

(6H, overlapping m, Ph m- and p-H), 5.44 (2H, d, 3JHH = 2.9 Hz, Pn H), 5.31 (2H, d, 
3JHH = 3.1 Hz, Pn H), 1.69 (6H, m, iPr CH), 1.54 (6H, m, iPr CH), 1.23 (18H, d, 3JHH = 

7.3 Hz, iPr CH3), 1.04-0.96 (32H, overlapping m, iPr CH3), 0.90 (18H, d, 3JHH = 7.5 Hz, 
iPr CH3).  
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13C{1H} NMR (cyclohexane-d12, 125.7 MHz, 303 K): δC 141.5 (Ph o-C), 139.5 (Pn C), 

133.9 (Pn CH), 129.2 (Pn CH), 129.0 (Ph C), 127.1 (Ph C), 126.7 (Pn C), 122.2 (Pn C), 

112.4 (Pn CH), 111.0 (Pn C), 92.80 (Pn C), 20.79 (iPr CH3), 20.77 (iPr CH3), 20.26 (iPr 

CH3), 20.13 (iPr CH3), 15.01 - 14.90 (overlapping m, iPr CH).  

29Si{1H} NMR (cyclohexane-d12, 303 K): δSi 5.20, 2.74.  

125Te{1H} NMR (cyclohexane-d12, 126.04 MHz, 303 K): δTe 418.  

EI-MS: m/z = 1303-1312 (principal peak 1307, 50%), [M - CMe]+; 1174-1183 

(principal peak 1179, 80%), [M - iPr]+. 

Anal. found (calcd. for C64H102Te2Si4Ti2): C, 57.60 (57.59); H, 7.69 (7.70) %. 

IR (NaCl): 2193, 2092, 1572 (sh, ν aromatic C=C) cm-1. 

Crystal data for 6.10: C64H102Si4Te2Ti2, Mr = 1334.81, monoclinic, space group P 21/c, 

dark orange block, a = 18.1208(3) Å, b = 16.1056(3) Å, c = 25.6467(5) Å, α = γ = 90°, 

β = 101.708(2)°, V = 7329.2(2) Å3, T = 173 K, Z = 4, Rint = 0.052, λCu(Kα) = 1.54184 

Å, θmax = 71.263°, R1 [I > 2σ(I)] = 0.0578, wR2 = 0.1658, GooF = 1.064. 

 

6.5.11 Synthesis of [(η8-Pn†)Ti]2(µ-NPh)2 (6.11). 

METHOD A: To a solution of 4.3 (87 mg, 0.094 mmol) in toluene (2 mL) was added a 

solution of azobenzene (17 mg, 0.094 mmol) in toluene (2 mL), dropwise at room 

temperature. A colour change to dark red was observed and the mixture was allowed to 

stir for 30 min. The solvent was removed under reduced pressure and the products were 

extracted with hexane (2 mL) and filtered. The red filtrate was concentrated to ca. 1 mL 

and after cooling to -35 °C, deposited red crystals that were isolated by decantation and 

dried in vacuo.  

Total yield: 73 mg (70% with respect to 4.3).  

METHOD B: To a solution of 4.3 (15 mg, 0.016 mmol) in pentane (3 mL) at -35 °C 

was added azidobenzene (32 µL, 0.016 mmol, 0.5 M soln in Me-THF), dropwise. 

Effervescene and a colour change to red was observed, and the reaction mixture was 

allowed to warm to room temperature and stir for 10 mins. The solvent was removed in 

vacuo and 1H NMR spectroscopy showed ca. 50% conversion of 4.3 to 6.11. Addition 
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of further azidobenzene (32 µL, 0.016 mmol, 0.5 M soln in Me-THF) to the reaction 

mixture furnished 6.11 in essentially quantitative yield. 

1H NMR (C6D6, 399.5 MHz, 303 K): δH 6.98 (4H, t, 3JHH = 7.8 Hz, Ph m-H), 6.71 (4H, 

d, 3JHH = 3.2 Hz, Pn H), 6.62 (2H, t, 3JHH = 7.3 Hz, Ph p-H), 6.42 (4H, d, 3JHH = 7.3 

Hz, Ph o-H), 5.22 (4H, d, 3JHH = 3.2 Hz, Pn H), 1.15 (36H, d, 3JHH = 7.5 Hz, iPr CH3), 

1.13 (36H, d, 3JHH = 7.6 Hz, iPr CH3), 0.93 (12H, m, iPr CH).  

13C{1H} NMR (C6D6, 100.5 MHz, 303 K): δC 167.3 (Ph i-C), 149.0 (Pn bridgehead C), 

134.0 (Pn CH), 127.3 (Ph m-C), 120.6 (Ph p-C), 119.8 (Ph o-C), 114.4 (Pn CH), 111.4 

(Pn C-Si), 20.01 (iPr CH3), 19.87 (iPr CH3), 12.78 (iPr CH).  

29Si{1H} NMR (C6D6, 100.5 MHz, 303 K): δSi 0.61. 

EI-MS: m/z = 1104-1111 (principal peak 1107, 100%), [M]+; 1030-1034 (principal peak 

1032, 30%), [M - Ph]+.  

Anal. found (calcd. for C64H102N2Si4Ti2): C, 67.13 (67.12); H, 9.14 (8.99) %.  

IR (NaCl): 1581 (ν aromatic C=C) cm-1.  

Crystal data for 6.11.½(C6H14): C67H109N2Si4Ti2, Mr = 1150.72, monoclinic, space 

group C 2/c, dark red plate, a = 15.3653(11) Å, b = 23.5936(17) Å, c = 37.7380(3) Å,  

α = γ = 90°, β = 99.890(5)°, V = 13477.6(14) Å3, T = 100 K, Z = 8, Rint = 0.0491, 

λMo(Kα) = 0.71075 Å, θmax = 27.464°, R1 [I >2σ(I)] = 0.0476, wR2 (all data) = 0.1291, 

GooF = 1.018. 
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APPENDIX ONE: EXPERIMENTAL DETAILS 

A1.1 General Procedures 

The manipulation of air-sensitive compounds and their spectroscopic measurements 

were undertaken using standard Schlenk techniques1 under Ar (pureshield) passed 

through a column containing BASF R3-11(G) catalyst and activated molecular sieves (4 

Å), or in a MBraun glovebox under N2 or Ar (O2 and H2O <1 ppm). Nitrogen and argon 

gases were supplied by BOC Gases UK. All glassware was dried at 160 °C overnight 

prior to use. Celite was predried in a 200 °C oven and then flame-dried under dynamic 

vacuum (<2 × 10−2 mbar) prior to use. Filter cannulae equipped with Whatman 25 mm 

glass microfibre filters were dried in an oven at 160 °C prior to use.  

A1.2 Purification of Solvents 

Solvents were purified by pre-drying for a minimum of 72 h over sodium wire before 

refluxing over the appropriate drying agents: Na-K alloy (pentane, Et2O, petroleum 

ether 40:60, SiMe4), K (THF, 1,4-dioxane, methylcyclohexane, hexane, pyridine, 
tBuOMe), Na (toluene, DME, (Me3Si)2O, TMEDA) or CaH2 (CH2Cl2, 1,2-

difluorobenzene, PhCF3, MeCN) under a N2 atmosphere. Dried solvents were collected, 

degassed and stored over argon in potassium-mirrored ampoules, except THF, Et2O, 

DME, CH2Cl2, TMEDA and pyridine, which were stored in ampoules containing 

activated 4 Å molecular sieves. 1,2-difluorobenzene, PhCF3 and MeCN were stored in 

ampoules containing activated 3 Å molecular sieves. All were degassed prior to use. 

Deuterated NMR solvents (C6D6, toluene-d8, THF-d8, methylcyclohexane-d14, pyridine-

d5, cyclohexane-d14) were obtained from Aldrich and were degassed by three freeze-

thaw cycles, dried by refluxing over K for 3 days, vacuum distilled into ampoules and 

stored under N2.  

A1.3 Instrumentation 

A1.3.1 NMR spectroscopy 

NMR spectra were measured by the author using Varian VNMRS 400 and 500 MHz 

spectrometers. The spectra were referenced internally to the residual protic solvent (1H) 

or the signals of the solvent (13C). 11B, 19F, 77Se, 29Si, 125Te, 171Yb NMR spectra were 
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referenced externally relative to BF3.OEt2, CFCl3 (10%), Me2Se, SiMe4, Me2Te (90%), 

and YbCp*2 (in 10% THF/C6D6) respectively. 

A1.3.2 EPR spectroscopy 

EPR spectroscopy was carried out by Dr S. Sproules and D. Sells from the EPSRC 

National UK EPR Facility and Service at the University of Manchester. X- and Q-band 

continuous wave EPR spectra measurements were performed using a Bruker E580 

ELEXSYS spectrometer and simulated with the XSophe2 suite.  

A1.3.3 IR spectroscopy 

IR spectra were recorded on a Perkin-Elmer 1600 Fourier Transform spectrometer. 

Samples were prepared in a glove box as thin films between NaCl plates. In situ IR 

spectroscopy was recorded on a Mettler Toledo ReactIR system, featuring an IR probe 

inside a gas tight cell attached to a Toepler pump. Background spectra of degassed 

methycyclohexane solutions of the starting material at -65 °C were acquired prior gas 

addition, allowing the growth of product IR bands to be readily identified. Spectra were 

acquired every 5 s with a resolution of 4 cm-1. 

A1.3.4 Mass spectrometry 

Mass spectra were recorded by Dr A. Abdul-Sada at the University of Sussex using a 

VG Autospec Fisons instrument (electron ionisation at 70 eV).  

A1.3.5 Elemental analysis 

Elemental analyses for all compounds were carried out by S. Boyer at the Elemental 

Analysis Service, London Metropolitan University. Additional elemental analyses for 

compound 4.1 were carried out at the Mikroanalytisches Labor Pascher to determine the 

chloride percentage in the crude solid. Additional elemental analyses for compounds 

2.2, 2.3, 4.1 and 4.2 were carried out at the analytical laboratories of the Friedrich-

Alexander-University (FAU) Erlangen-Nürnberg on Euro EA 3000, prior to SQUID 

magnetometry measurements. 



    
244 

A1.3.6 Magnetic measurements 

Magnetic measurements of polycrystalline samples of 2.2, 2.3, 4.1 and 4.2 were carried 

out by the author (with the assistance of A. C. Schmidt) at FAU Erlangen, using a 

Quantum Design MPMS-5 SQUID magnetometer at different fields (0.1 - 5 Tesla) and 

different temperatures (2 -300 K). Accurately weighed samples (ca. 30 mg) were placed 

into gelatine capsules and then loaded into nonmagnetic plastic straws before being 

lowered into the cryostat. Samples used for magnetisation measurement were 

recrystallised multiple times and checked for chemical composition and purity by 

elemental analysis (2.2, 2.3, 4.2) and 1H NMR spectroscopy (2.3). Data reproducibility 

was carefully checked on two independently synthesised and measured samples. 

Magnetic measurements of 2.6 were carried out by Dr F. Tuna at the University of 

Manchester using a Quantum Design MPMS-7 SQUID magnetometer at temperatures 

in the range 1.8 - 300 K. The polycrystalline samples were transferred to Kel-F capsules 

in an N2 glovebox, which were then sealed with an O-ring cap, and the capsules were 

then placed in plastic straws. One end of the straw was then sealed with a cap, and the 

other end was sealed with Blu-Tac. The straw was then sealed in a Schlenk tube and 

taken to the magnetometer. The straw was removed from the Schlenk tube and the Blu-

Tac quickly replaced with the carbon fibre rod, and then the sample was quickly 

transferred to the purged sample space of the cryostat. Values of the magnetic 

susceptibility were corrected for the underlying diamagnetic increment by using 

tabulated Pascal constants,3 and the effect of the blank sample holders (gelatin 

capsule/straw). Analysis of the in-phase and out-of-phase magnetic susceptibility data 

for 2.6 was carried out by Dr T. Pugh at the University of Manchester using the CCFIT 

software program by N. F. Chilton.4 

Solution phase magnetic susceptibility were determined using the Evans method, and 

measured on the Varian VNMRS 400 MHz spectrometer. Samples were allowed 15 min 

to thermally equilibrate at the given probe temperature which was calibrated with a 

methanol thermometer. The solvent density at the given temperature was factored in to 

the magnetic susceptibility calculation.5,6  



    
245 

A1.3.7 Cyclic voltammetry 

Cyclic voltammetry studies were carried out by the author using a BASi Epsilon-EC 

potentiostat under computer control. iR drop was compensated by the feedback method. 

CV experiments were performed in an Ar glovebox using a three-electrode 

configuration with a Au disc (2.0 mm2) or glassy carbon disc (7.0 mm2) as the working 

electrode, a Pt wire as the counter electrode and a Ag wire as the pseudoreference 

electrode. Sample solutions were prepared by dissolving the analyte (ca. 5 mM) in THF 

(1.0 cm3) followed by addition of a supporting electrolyte [nBu4N][B(C6F5)] or 

[nBu4N][PF6]. The reported mid-peak potentials are referenced internally to that of the 

FeCp2
+/0

 redox couple, which was measured by adding ferrocene (ca. 1 mg) to the 

sample solution. 

A1.3.8 X-ray crystallography 

Single crystal XRD data for 2.3, 3.2, 4.1, 4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.5, 5.9, 6.4, 

6.5, 6.7, 6.8, 6.9 and 6.11 were collected by the UK National Crystallography Service 

(NCS),7 at the University of Southampton on a Rigaku FR-E+ Ultra High Flux 

diffractometer (λMo(Kα)) equipped with VariMax VHF optics and a Saturn 724+ CCD 

area detector. The data were collected at 100 or 150 K using an Oxford Cryosystems 

Cobra low temperature device. An empirical absorption correction was carried out using 

the MULTI-SCAN program.8,9 Single crystal XRD data for 6.6 were collected by the 

NCS at the Diamond Light Source using synchrotron radiation (λMo(Kα)). An empirical 

absorption correction was carried out using the 'DTABSCOR' program. Data collected 

by the NCS were processed using CrystalClear-SM Expert 3.1 b18,10 and unit cell 

parameters were refined against all data. Single crystal XRD data for 2.1, 2.2, 2.4, 2.5, 

2.6, 2.7, 2.8, 3.1, 3.3, 3.4, 3.5, 3.6, 4.7, 5.6, 5.8, 6.1, 6.8 and 6.10 were collected at the 

University of Sussex on a Enraf-Nonius CAD4 diffractometer with graphite-

monochromated (λMo(Kα)) radiation or an Agilent Technologies Xcalibur Gemini ultra 

diffractometer (λMo(Kα) or λCu(Kα) source) equipped with a Eos CCD area detector. The 

data were collected at 173 K using an Oxford Cryosystems Cobra low temperature 

device. Data were processed using KappaCCD software or CrysAlisPro (version 

1.171.36.32),11 and unit cell parameters were refined against all data. An empirical 

absorption correction was carried out using the MULTI-SCAN program.8,9 
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Structures 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 4.2, 4.4, 4.5, 4.7, 5.1, 5.2, 5.4, 5.5, 5.6, 5.8, 

5.9, 6.1, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11 were solved by the author, with Drs S. 

M. Roe, N. Tsoureas and B. M. Day gratefully acknowledged for their patience, advice 

and assistance with crystallography. Stuctures 2.3, 3.1 and 3.2 were solved by Dr M. P. 

Coles. Structures 2.1, 3.3, 3.4, 3.5, 3.6 and 4.3 were solved by Dr N. Tsoureas. All 

structures were solved using SHELXL-2013,12 DIRDIF-200813 or SUPERFLIP14 and 

refined on Fo
2 by full-matrix least-squares refinements using SHELXL-2013.12 

Solutions and refinements were performed using the OLEX215 or WinGX16 packages 

and software packages within. All non-hydrogen atoms were refined with anisotropic 

displacement parameters except 2.7 where the carbon atoms of a disordered Cp* ligand 

were left isotropic. All hydrogen atoms were refined using a riding model. Disordered 

solvent molecules in 5.6, 6.1, 6.4, 6.5, 6.8, 6.9 and 6.10 could not be modelled properly; 

therefore, this disorder was treated by using the SQUEEZE17 routine in PLATON.18 

Disordered solvent molecules in were 6.4 treated using the "solvent mask" routine in 

OLEX2,15 which resulted in improved refinement indices relative to SQUEEZE so these 

data have also been included in appendix A2. 

 

A1.3.9 DFT calculations 

Density functional calculations were carried out by Prof J. C. Green at the University of 

Oxford using two computational methods. One employed the Amsterdam Density 

Functional package (version ADF2012.01).19 The Slater-type orbital (STO) basis sets 

were of triple-ζ quality augmented with a one polarization function (ADF basis TZP). 

Core electrons were frozen (C 1s; Ti 2p) in the model of the electronic configuration for 

each atom. The local density approximation (LDA) by Vosko, Wilk and Nusair 

(VWN)20 was used together with the exchange correlation corrections of Becke and 

Perdew (BP86).21,22 The other used Gaussian (version 09 revision A.02)23 with the 

B3LYP functional and SDD basis sets. In both sets of calculations tight optimisation 

conditions were used and frequency calculations were used to confirm stationary points. 

Using the ADF code, molecules were subjected to fragment analyses where the MOs of 

fragments, with the same geometry as they possess in the molecules, were used as the 

basis set for a full molecular calculation.  
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A1.4 Commercially Supplied Reagents 

The following materials were purchased from Aldrich and used as received: 1,3-N,N’-

di-p-tolylcarbodiimide, azidobenzene (0.5 M solution in Me-THF), [FeCp2][BF4], 

[nBu4N][PF6] (electrochemical grade), SiiPrOTf, SmI2(THF)2 (ca. 0.1 M solution in 

THF), C3H5MgCl (2.0 M solution in THF). The following materials were purchased 

from Aldrich and purified or dried prior to use,24 and stored under an inert atmosphere: 

CS2, Fe(acac)2, PhNCO, Ph3PS. Potassium metal was purchased as lumps from Fischer 

Scientific, which were washed with hexane and taken into an Ar glovebox and the oxide 

layer carefully removed with a scalpel. COT was purchased from Alfa, stored in the 

dark over 4 Å molecular sieves, and vacuum transferred prior to use. Solutions of nBuLi 

(ca. 2.5 M in hexanes) were supplied by Acros Organics and titrated to determine the 

exact molarity. Isocyanides MeNC and tBuNC were kindly donated by colleagues and 

were stored over 4 Å sieves and degassed before use. The gases used were of very high 

purity - CO (99.999%) and CO2 (99.99%) - supplied by Union Carbide, and used in 

combination with a high-purity regulator. N2O (puriss >99.998%) was supplied by 

Fluka and added via Toepler line. Isotopically enriched gases 13CO (99.7%) and 13CO2 

(99%) were supplied by Euriso-top and Cambridge Isotopes respectively, and added via 

Toepler line. Reagents KC8, Bu2Mg, Hg, KH, [nBu4N][B(C6F5)], Cp*2UCl2, [K]2COT†, 

[FeCp*2][B(C6F5)], YbI2, YbI3, EuI2, YCl3, ScCl3 were kindly donated by F. G. N. 

Cloke and co-workers. The reagents COS (97% Aldrich), Ph2S2 Ph2Se2, Ph2Te2 (Acros) 

and azobenzene (Aldrich) were kindly donated by Prof K. Meyer during the author's 

"Short Term Scientific Mission" to FAU Erlangen-Nürnberg in February 2014, funded 

by COST Action.  

A1.5 Synthesis of Starting Materials 

KCp*,25 NaCp*,25 [Et3NH][BPh4],26 Cp*2Yb(OEt2)2,27 Cp*2Sm(THF)2,28 Cp*2Sm,29 

Cp*2Yb, Cp*2Eu,29 Cp*Sm(BPh4), Cp*Yb(BPh4),30 Cp*Eu(BPh4),31 Cp*2UMe2,32 

Cp*2U(BPh4),33 KNH2, [Li(DME)x]Pn, Pn†H2, [K]2Pn†,34 [K]Pn†H,35 

Cp*FeCl(TMEDA),36 KBn,37 [Cp*Ln(µ-I){THF}2]2 (Ln = Yb, Sm),38 (Pn†)2V2,39 

TiCl3(THF)3,40 UI3,41 and TbI3
42 were synthesised according to published procedures. 

DyCl3 was prepared by dehydration of DyCl3.6H2O with excess Me3SiCl in refluxing 

heptane over 3 d. FeCl2(THF)x
43

 was sent for elemental analysis to determine the 

amount of coordinated THF, and the data obtained best fit to a value of x = 1.1. 
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