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ABSTRACT

This thesis describes the development of an entanglement experiment for ytterbium ions

making use of a new entanglement method utilizing microwaves and a static magnetic field

gradient.

This thesis will begin by modelling the populations of the main levels in ytterbium

using rate equations to find the optimum parameters required for the preparation and

detection of qubit states. Coherent manipulation of these qubit states will be shown and

coherence times of the states measured. Additionally a highly stable double resonance

frequency locking setup for the ytterbium cooling lasers is built.

This thesis will go on to give an overview of the main entanglement schemes and

will give a justification as to why microwaves combined with a magnetic field gradient is

the most suitable method. The magnetic field gradient creates an effective Lamb-Dicke

parameter which allows microwave fields to couple to the motional states of magnetic field

sensitive qubit states.

The use of magnetic field sensitive states can however make the qubit highly susceptible

to decoherence from magnetic field fluctuations. A method to decrease this decoherence

by two orders of magnitude using a microwave dressed state qubit will be demonstrated

and optimised and a new coherent manipulation method of the dressed state qubit will be

presented which allows for arbitrary Bloch sphere rotations.

The production of the highest recorded magnetic field gradient of 24 Tm−1 at the posi-

tion of the trapped ion using in-vacuum permanent magnets is shown and used to provide

individual addressing of ions. Static gradient microwave entanglement of a single ion’s in-

ternal and motional states within the bare qubit states is then demonstrated (Schrodinger

cat states).

Furthermore, the first ever observation of motional coupling of the microwave dressed

state qubit is shown and progress towards a two ion entanglement gate with microwave

dressed state qubits is reported.
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Chapter 1

Introduction

Since the invention of the ion trap in the late 1950’s by Wolfgang Paul and Hans Dehmelt

[5,6], trapped ions have been used in a variety of fields including atomic clocks [7–9], elec-

trodynamics [10] and spectroscopy [11]. Arguably however, one of the largest contributions

ion traps have made is to the field of quantum computing.

Quantum computing was first proposed by Feynman and Deutsch in the 1980’s and

uses a unit of information known as the qubit to encode information [12,13]. In contrast to

the bit used within a classical computer which encodes information onto the 0 or 1 states,

qubits can also exist in superposition states of 0 and 1. A three qubit system, for example,

can therefore exist in eight states simultaneously, namely |000〉, |001〉, |010〉, |011〉, |100〉,

|101〉, |110〉 and |111〉. The probabilities with which the system, upon measurement,

will collapse into each state are used to hold information within the quantum computer.

The amount of information within a system of qubits therefore increases exponentially

as 2N where N is the number of qubits. This is in contrast to a classical system of bits

where the amount of information increases linearly with N . Using quantum interference

and a quantum property known as entanglement, whereby the states of separate qubits

become correlated, parallel quantum computing becomes possible [13] whereby a function

acts simultaneously on all 2N states. This is the basis for many quantum algorithms

including Shor’s algorithm [14] with which large numbers can be factorised. This will have

significant applications within both cryptography and codebreaking. Other important

quantum algorithms include Grover’s search algorithm [15] which allows entries to be

quickly found within large unordered lists and the Deutsch-Jozsa algorithm [16].

In 1995, David DiVincenzo from IBM introduced five requirements for the physical

implementation of quantum computing [17]. These became known as the DiVincenzo

criteria and are as follows,
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1. A scalable physical system with well defined qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state:

Before any operations are preformed using the quantum computer, a method is

needed to faithfully put the qubits in the preferred initial qubit states.

3. A “universal” set of quantum gates: The evolution of the qubits state within

a quantum computer is controlled by the application of quantum gates. It has

been shown that a universal set of quantum gates exists with which any quantum

algorithm can be performed [18]. This set comprises of single qubit rotational gates

and two qubit CNOT gate.

4. Long relevant decoherence times, much longer than the gate operation

time: Decoherence results in a loss of information from the quantum computer.

The time taken for this to take effect therefore needs to be a lot longer than time it

takes to preform gate operations.

5. A qubit specific measurement capability: To gain the final result from the

quantum computer, a method is needed to faithfully measure the final qubit states.

Many physical systems which show quantum behavior are currently being explored

for their ability to satisfy these requirements, for example, superconducting Josephson

junctions [19], photons [20], trapped ions [21] and neutral atoms confined within optical

lattices [22]. Trapped ions will be the focus of this thesis and have already been proven

to satisfy all five criterion [23–27]. The next step is to bring the quantum gate operations

within fault tolerant levels [28] which would allow for successful error correction [29, 30]

needed for the creation of a large scale quantum computer. This can be performed, for

example, by reducing decoherence sources.

Trapped ion qubits normally fall into one of two categories, optical or hyperfine [31],

optical qubits consist of a ground level and a metastable excited level [32] whereas hyperfine

qubits consist of two hyperfine sublevels of the ions ground level [33]. This thesis focuses

on the hyperfine qubit of 171Yb+ and begins in chapter 2 by showing how ytterbium ions

are trapped, cooled and observed within a linear Paul trap.

Chapter 3 then goes on to show how the |0〉 and |1〉 qubit states of a 171Yb+ ion can

be initialised by optical pumping and detected. Rate equations will then be used to find

the optimum experimental parameters for both these processes. The Bloch equations are

then derived which describe the evolution of quantum states within trapped ion qubits

and coherent manipulation of the 171Yb+ qubit will then be shown.
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The fidelity of state preparation and detection can be affected by fluctuations in the

frequency of the main cooling laser. This is explored in chapter 4 which goes on to describe

an experimental setup used to stabilise this lasers frequency.

Chapter 5 reviews and compares the main methods of producing a two qubit entan-

glement gate which the lab could pursue, concluding that the most suitable method will

be to use a magnetic field gradient to create an effective Lamb-Dicke parameter allowing

microwave radiation to couple to the motional states of magnetic field sensitive levels [34].

This eliminates the need for Raman beams which can give rise to large amounts of deco-

herence from spontaneous emission and laser noise. This method does however require the

use of magnetic field sensitive Zeeman levels which makes the qubit susceptible to decoher-

ence from environmental magnetic field fluctuations. Chapter 6 will present a method of

shielding the ion from these fluctuations using microwave dressed states thereby increasing

the qubit coherence time by two orders of magnitude. This method will be characterized

and a new coherent manipulation method allowing for arbitrary Bloch sphere rotations of

the dressed state qubit will be presented.

Chapter 7 will then show the experimental progress towards the entanglement of two

171Yb+ dressed state qubits within a magnetic field gradient. Firstly, the creation of a

magnetic field gradient of 24 Tm−1 using in vacuum permanent magnets will be shown

and used to provide individual addressing of adjacent ions. The entanglement of a single

ion’s motional and internal states will then be presented as well as the motional coupling

of a dressed state qubit. Finally, the planned experimental method for the entanglement

of two dressed state qubits is presented and explained.
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Chapter 2

Trapping ytterbium ions

In order to trap and hold ytterbium ions, five main components are required.

• A potential well: This traps the ions and determines the position in space at which

they are held. This is produced using a combination of RF and DC voltages, which

are applied to several electrodes as explained in section 2.1.

• A vacuum: The finite depth of the potential well means that collisions with other

particles can knock the ion out of the trap. In addition, unwanted collisions can

perturb the system and cause decoherence of the ions’ qubit states. An ultra high

vacuum is therefore needed around the trap to maximise the lifetime and the co-

herence time of the trapped ions. The system used to produce and maintain this is

described in section 2.2.

• Ions: Ytterbium ions are produced from neutral ytterbium using a two photon

photoionisation process as described in section 2.3.

• Lasers: Once trapped, the ions need to be laser cooled to prevent them gaining

enough kinetic energy to escape the trapping potential. The lasers and optical setup

used to cool ytterbium is described in section 2.3.3.

• An imaging system: This allows the ions to be seen and is described in section

2.4.

This chapter will explain how the above requirements are achieved in greater detail.

2.1 RF Paul traps

As charged particles, ions can be easily manipulated and moved using electric fields. How-

ever, trapping using electric fields is more problematic due to a property of electrostatics
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known as Earnshaw’s theorem [35] which is described by Laplace’s equation,

∇2φ(x, y, x) = 0 (2.1)

Where φ(x, y, z) is the three dimensional electric field potential. This is analogous to

Gauss law, ∇ · E = 0, which states that electric field minima cannot exist in free space.

A potential well for trapping ions cannot therefore be formed using static electric fields in

three dimensions. If for example, a static voltage is applied to two opposite electrodes, a

saddle point potential would be formed as shown in figure 2.1. An ion would simply roll

off this potential and be lost to the trap.

Figure 2.1: Saddle potential formed when two static voltages are applied to opposite
electrodes. An ion within such a potential will be expelled outwards.

This applies however only to static fields and it is well known that a potential well can be

formed using a radio frequency (RF) field. This periodically inverts the saddle potential

which keeps the ion in place forming an effective potential well. The electrode structure

used to accomplish this is covered in the following section. The movement of the ion

within the well is covered in section 2.1.2.

2.1.1 Trap structure

For all the experiments described within this thesis, an electrode configuration known as

a segmented linear Paul trap is used. This consists of two opposite RF electrodes and two

opposite segmented DC electrodes, as shown in figure 2.2. The ion is held in place radially

using the centre DC electrodes combined with the RF electrodes. This gives the following

potential in the x-y plane [36],

φ(x, y) = κ0
Vdc − VRF cos (ΩRF t)

2r2
0

(x2 − y2) (2.2)
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where VRF cos(ΩRF t) is the time dependent voltage applied to the RF electrodes, Vdc is the

voltage applied to the DC electrodes, r0 is the ion-electrode distance and κ0 is a geometric

factor. As I will discuss in section 2.1.2, this potential can trap the ion in the x-y plane.

The ion is trapped in the z axis using static voltages applied to the endcap DC electrodes.

(a) (c)

RF

DC endcap DC endcap 
centre DC 

4.45mm 1mm 4.45mm
0.05mm 0.05mm

Ion

10mm

0.3mm

z

x

(b)
RF 

RF 

DC 

DC 

0.3mm

0.3mm
r0  0.42mm

y

x

Figure 2.2: RF paul trap used for the experiments within this thesis. (a) and (b) show
schematics and dimensions of the trap as observed perpendicular to and along the trap
axis respectively. (c) shows a photograph of the constructed trap.

The electrodes at made out of gold-plated stainless steel and are held together using a

stainless steel cage. PEEK spacers are used to separate the individual electrodes from

each other and the cage to prevent electrical shorting. A photograph of the trap is shown

in figure 2.2 (c).

2.1.2 Ion movement

The motion of an ion within the potential given by equation 2.2 in the x-y plane can be

described using the Mathieu equations of motion. These are derived in [37] and repeated

here,

ẍ + (a+ 2q cos(2ΩRF t))x = 0 (2.3)

and

ÿ − (a+ 2q cos(2ΩRF t))y = 0 (2.4)



8

where a and q are the stability parameters and are defined as,

a =
4eVdc
mr2

0f
2
RF

, q =
2eVRF
mr2

0f
2
RF

(2.5)

where m is the ion mass and e is the electronic charge. A stable solution to the Mathieu

equations is one in which the ion remains within the trapping potential. Figure 2.3 shows

the values of the a and q parameters which will result in the ion remaining stable in the

x axis (red) and the y axis (blue) of the trapping potential. The purple areas correspond

(a) (b)

Figure 2.3: (a) Graph showing the stable regions of ion motion as a function of the a and
q parameters. The red and blue regions correspond to stability in the respective x and y
directions given by equations 2.3 and 2.4. The purple regions correspond to stability in
both the x and y directions. (b) is a zoomed in image of the main stability region.

to a and q parameter values which provide ion stability in both the x and the y axis. By

ensuring the trap operates within this region, the ions will be trapped in the x-y plane.

The main ion stability region is present at q values of less than approximately 0.9 and

a values of between -0.2 and approximately 0.2. Using equation 2.5, the voltages and

frequency required for stable trapping can be determined. Within this stable trapping

region, the solutions to equations 2.3 and 2.4 can be found using the Floquet theorem [38].

For the example case where a is equal to 0 and q is less than 1, the solution to equation

2.3 giving the ion motion in the x-axis is given by [1],

x(t) = A cos(ωt)
(

1 +
q

2
cos(ΩRF t)

)
(2.6)

where A is a constant which depends on the initial conditions and ω is a constant known
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as the secular frequency given by

ω =
qΩRF

2
√

2
=

eVRF√
2mr2

0ΩRF

. (2.7)

The motion described by equation 2.6 is plotted in figure 2.4 (a) for a q parameter equal

to 0.2. As shown in figure 2.4 (a), this motion consists of a large slow oscillation at

the secular frequency around the center of the RF trapping potential combined with a

small fast oscillation at the RF frequency, ΩRF know as micromotion. The amplitude of

the micromotion is proportional to the ions’ distance from the center of the RF trapping

potential (known as the trap axis).

(a) (b)
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Figure 2.4: Graphs showing ion motion with a q parameter of 0.2 and a ΩRF equal to
2π × 20 MHz. (a) represents the ideal case where there is no excess micromotion present,
(b) shows the excess micromotion observed when the ion is offset from the RF trapping
axis.

Excess micromotion

In the above analysis there were no static electric fields within the radial directions there-

fore the ion motion coincided with the null of the RF trapping potential. Any additional

DC fields can move the center of the ions motion from this null causing excess micro-

motion of a high amplitude as shown in figure 2.4 (b). Such fields can be produced, for

example, by charge build up on dielectric surfaces, or, contamination or misalignment of

the trap electrodes. This excess micromotion is unwanted as it can cause an increase in

ion temperature, broaden the ions’ transition frequencies as a result of the Doppler effect

(see section 2.3.3) and reduce the ions’ lifetime [39], therefore this motion needs to be min-

imised. Excess micromotion can be eliminated by applying compensation voltages to the

DC electrodes to push the center of ion motion back to the RF nul. The exact procedure
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Electrical 

feedthrough 

for DC 

electrodes 

Electrical 

feedthrough 

for atomic

ovens

Vacuum chamberIon gauge

Electrical 

feedthrough 

for atomic

ovens

Titanium 

sublimation 

pump

Residual gas 

analyser (RGA)

Ion pump

Valve for 

roughing pump

Figure 2.5: Labeled diagram showing the main components of the vacuum system used to
produce and maintain the ultra high vacuum required for ion trapping

for measuring and compensating for micromotion within the experiment is based on [39]

and described within [40].

2.2 UHV system

The trap needs to be situated inside a ultra high vacuum to minimises the probability

of trapped ions experiencing collisions which could result in decoherence or ion loss. The

system used to produce and maintain this vacuum is shown in figure 2.5 and consists of

the following:

• Electrical feedthroughs: These allow voltages to be applied to the atomic ovens

and the DC and RF electrodes from outside the system.

• Ion gauge1: This measures the system’s pressure.

• Residual gas analyser (RGA)2: This measures the mass of any molecules present

within the system. This is primarily used to locate leaks by passing a stream of

helium molecules over each joint on the system. When helium is passed over a leak

the RGA will show a peak at 4mp.

1Varian: 9715015
2ExTorr: XT200M
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• Titanium sublimation pump3: When activated, this deposits a layer of titanium

on the inside of the vacuum system. This reacts with any atoms or molecules within

the system forming a solid layer which sticks to the surface of the inside of the system

thereby reducing the vacuum pressure.

• Ion pump4: This maintains the vacuum pressure.

This system is baked at 200 degrees for two weeks using the procedure described in [37]

resulting in a vacuum pressure of approximately 2×10−11 Torr. The trap is situated within

the vacuum chamber as described in the following section.

2.2.1 Vacuum chamber

The vacuum chamber consists of an octogon5 and a hemisphere6. There is a large three

inch viewport on the front7 coated for transmission of 369 nm light for imaging and several

viewports at the sides for laser access. Figure 2.6 shows the inside of the chamber with the

octogon removed, from (a) the front where the trap would be positioned and (b) the back.

A custom PEEK chip bracket attached to the hemisphere holds the trap (not shown) in

place and connects to the electrodes via gold coated pin receptacles8 to insulated Kapton

wires. These are connected to the electrical feedthroughs. Atomic ovens are located both

behind and below the trap to accommodate different trap designs. For the experiments in

this thesis we will use one of the ovens situated behind the trap.

2.3 Ytterbium

Ytterbium is a rare earth metal with an atomic number of 70 and seven stable isotopes.

In this thesis we will only be concerned with two of these isotopes which have atomic

mass numbers equal to 171 and 174. These have abundances within natural ytterbium of

14.28 % and 31.83 % respectively [37]. Ytterbium is used as its atomic structure is ideal

for quantum computing applications. Ytterbium 171 has a spin half nucleus which gives

its 2S 1
2

ground state a hyperfine structure which is ideal for use as a qubit. In addition,

lasers at the wavelengths within the cooling cycle are easily obtainable.

3Varian: 9160050
4Varian StarCell: 9191145
5Kimball physics: MCF450-MH10204/8-A
6Kimball physics: MCF450-S020008-C
7Kurt J. Lesker: SUSO90307RHLW
8Mill-Max 0672-1-15-15-30-27-10-0
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(a) (b)

Chip bracket 

Ytterbium 

ovens

Hemisphere

ytterbium ovens

Pin receptacles

Kapton wires

Chip bracket

Figure 2.6: Inside of vacuum chamber as viewed from the (a) front and (b) back of the
chip bracket.

2.3.1 Ionisation

Ytterbium metal is located within tubes of stainless steal inside the vacuum system. These

are known as atomic ovens and are positioned so they are pointing towards the trap as

shown in figure 2.6. The ovens are spot welded to copper wire which connects to the oven

feedthrough. When a current is applied to this wire, the tube heats up, heating up the

ytterbium which produces an atomic flux which passes through the trap. Ytterbium ions

can be formed from these atoms through electron bombardment or photoionsisation. In

this thesis, we use photoionisation as it allows for isotope selectivity and has higher loading

rates [41]. Figure 2.7 shows the atomic levels involved in the photoionisation of ytterbium.

A two photon process is used to ionise the atoms. The first photon at 398.9 nm excites an

electron from the ground state up to the 1P1 state. From here the electron is excited into

the continuum by a second photon of a wavelength of less than 394 nm thereby ionising

the atom. For this second photon we use the 369 nm photons already present for laser

cooling as will be described in section 2.3.2. Once ionised, the ytterbium will, as a charged

particle, become trapped in the trapping potential described in section 2.1.

2.3.2 Doppler cooling

To cool the ions once they are trapped we use Doppler cooling. When laser light is

incident on a stationary ion, the ion will absorb photons which have a frequency equal to

a transition frequency. When however, the ion is moving, the frequency of the incident

photons will become Doppler shifted with respect to the ion. If photons are applied which
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1
S0

1
P1

398.9nm

394nm

369.5nm

continuum

Figure 2.7: Level diagram of neutral ytterbium showing the two photon process used to
ionise the atoms.

are red detuned from a transition frequency, ions traveling towards the beam will therefore

absorb the photons. This will result in the ions receiving a momentum kick opposite to

their direction of motion resulting in a damping force which cools the ion.

The energy level diagram for ytterbium 174 is shown in figure 2.8. The main cooling

transition is between the 2S 1
2

level and the 2P 1
2

level. The ion is excited on this transition

using light of a wavelength of 369.5 nm. Once in the 2P 1
2

level the ion will occasionally

decay into the 3D 3
2

level with a branching ratio of 0.2 %. From this level, 935.2 nm light can

be used to excite the ion into the 3D[3/2] 1
2

level which can decay back into the 2S 1
2

level.

This creates a closed cooling cycle within the ion. Occasionally however (approximately

once an hour), collisions with stray particles within the system can cause an ion in the

3D 3
2

level to fall into the 2F 7
2

level (not shown), from here the ion can be returned to the

main cooling cycle using 638.2 nm light.

The energy level diagram for ytterbium 171 is shown in figure 2.9. The spin half

nucleus of the isotope and the resulting hyperfine structure, complicate the cooling cycle.

To cool, 369.5 nm light resonant with the 2S 1
2

F = 1 to 2P 1
2

F = 0 transition is applied.

From here the ion can decay back to the 2S 1
2

F = 1 level. Off resonant scattering will

also excite the ion into the 2P 1
2

F = 1 level where it can decay into the 2S 1
2

F = 0 level,

microwaves at 12.6 GHz are then required to bring the ion back into the main cooling

cycle. As will be explained in chapter 3, state preparation and detection will require the

use of the 2P 1
2

F = 1 level, this level can be accessed directly by the addition of 2.1 GHz

sidebands to the 369 nm light.
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2S1/2

2P1/2

3D3/2

3[3/2]1/2

935.17976nm

369.52494nm

Figure 2.8: The energy level structure of ytterbium 174 showing the transitions of the
main cooling cycle.

Polarisation

To effectively cool 171Yb+, the applied 369.5 nm light should have components of linear,

σ+ and σ− polarised light. This allows the ion to make transitions of ∆mF = 0,+1 and -1

respectively. When however, σ+ and σ− polarised light of the same frequency are applied

simultaneously they will cancel out to form linear light. Population will therefore become

trapped in the 2S 1
2

F = 1 mF = ±1 levels. To avoid this, the 369 nm light should be

applied at an angle with respect to the trap axis and a magnetic field should be applied

to the ion [42]. This breaks the degeneracy within the 2S 1
2

F = 1 and 2P 1
2

F = 1 levels

forming a Zeeman structure as shown in figure 2.9.

2.3.3 Laser setup

Figure 2.10 shows the laser setup used to produce and cool ytterbium ions. All the laser

beams, upon exiting their laser cavities first travel through an optical isolator9 to prevent

reflections from reaching the laser cavity. All the lasers also travel through polarisation

maintaining fibres before being sent to the trap. This allows the beam paths before the

fibres to be modified without affecting the beam alignment going into the trap as well as

ensuring beam stability.

The main cooling laser at 369 nm is formed by frequency doubling a 739 nm laser using

9LINOS: FI-760-TV
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F=1
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Figure 2.9: The energy level structure of ytterbium 171 showing the fine structure, hyper-
fine structure and transitions of the main cooling cycle.

a nonlinear lithium triborate crystal within a bow tie cavity10. Before doubling, the 739 nm

beam first travels through an EOM which can be used to place 1.05 GHz sidebands on the

light (this is required during state preparation as will be explained in chapter 3) followed

by a tapered amplifier which amplifies the beam power to approximately 300 mW. A small

amount of this amplified beam (≈ 200µW) is sent to the locking setup which provides a

feedback signal to the Toptica laser cavity in order to stabilise the lasers frequency (this

will be explained in chapter 4. The remaining amplified light is sent to the frequency

doubler. After doubling, the beam is slightly elliptical and is therefore passed through a

pair of anamorphic lenses to form a circular beam profile. This is double passed through

an AOM which acts as a switch allowing the cooling light reaching the trap to be blocked.

The AOM also allows the beam’s frequency and power to be adjusted.

The 399 nm, 935 nm and 638 nm lasers are homebuilt external cavity diode lasers

(ECDL). These are setup in the Littrow configuration as shown in figure 2.11. The laser

light is produced from a diode and collimated using an aspheric lens. This is then directed

towards a grating. The grating reflects the 1st order of diffracted light back to the diode

to form the laser cavity and the zeroth order is used for the experiment. The exact length

of the laser cavity determines the laser frequency and is determined by the grating angle.

After the fibres, the 369 nm beam is combined with the 638 nm and 399 nm beams

using optical bandpass filters before being sent to the trap. Half and quarter waveplates

10Toptica photonics: TA-SHG 36
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Figure 2.10: Laser setup used to ionise and cool ytterbium ions.
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To experiment

Laser diode
Piezo

Grating

Aspheric lens

To piezo controller

Figure 2.11: Internal structure of the external cavity diode lasers setup in the Littrow
configuration.

allow the beams’ polarisation to be adjusted and a final lens just before the trap focuses

the light of the combined beams relative to the trap. A translation stage attached to this

lens allows the exact position of the combined beams within the trap to be adjusted. To

fine tune the position of the 638 nm and 399 nm beams, translation stages are connected to

one of the lenses of the 1:1 telescopes present before the beams are combined. The 935 nm

beam is sent into the trap at right angles to the 369 nm, 638 nm and 399 nm beams.

2.4 Imaging

In order to see the ions, the imaging system shown in figure 2.12 is used. This consists of

nine main components.

PMT

EMCCD

x

y

z

1.Triplet 4.Doublet

8

9

Ion

23.5mm 549.7mm 303mm 199mm

3.Iris

2.Translation stage

5.Block

6.369nm 

 filter     

7.Flipper 

mirror

Figure 2.12: Diagram showing the setup used to image the ions.

1. Triplet lens: Light from the ion is collected by a triplet lens11. The triplet has a

magnification of Mtrip = −17.5 which is placed at a distance of 23.5 mm from the

11Special optics 54-17-29-369
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ion resulting in an image distance of 550 mm.

2. Translation stage: This moves the imaging tube in space allowing different parts

of the trap to be observed.

3. Iris: At the magnified image position, an iris is present to block scatter from, for

example, laser light hitting the electrodes.

4. Doublet lens: A doublet lens reimages the light onto the photon measuring devices.

The doublet consists of two lenses with focal lengths, f1 and f2 equal to 200 mm and

300 mm respectively. The image distance, di can be then be found using the following

formula
1

f1
+

1

f2
=

1

do
− 1

di
. (2.8)

Therefore if the doublet is placed at a distance of 303 mm from the iris, this will

result in an image distance, di of 199 mm. The doublet has a magnification equal

to Mdoub = −do
di

= −1.5. The total magnification of the system is therefore equal to

Mtot = Mtrip ×Mdoub = 26.25.

5. 369 nm bandpass filter: This allows only 369 nm light to pass through which

reduces scatter from other wavelengths reaching the detectors.

6. Block: A beam block is required to prevent scatter from the trap electrodes from

overlapping with the image of the ion at the detector. This is further explained in

figure 2.13.

7. Flipper mirror: A motorised flipper mirror allows the light to be switched between

hitting the PMT (photomultiplier tube) or the EMCCD (charge coupled device).

8. EMCCD12: Array of pixels which gives us the ability to align the imaging system

and the lasers as well as detect trapped ions.

9. PMT13: Photomultiplier tube which emits a TTL pulse upon detection of a photon.

This allows us to detect the exact number and arrival time of photons from the

ion more accurately than the EMCCD. This is required for data collection during

coherent manipulation experiments as described later in this thesis.

To reduce background light the whole setup is contained within light sealed tubes and

boxes.

12Andor: iXon 885
13Hamamatsu H8259-01
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Object planeImage plane

TripletDoublet

Ion

Trap electrodes

Block

Figure 2.13: Diagram showing how a block reduces electrode scatter. Due to movement
of the trap electrodes during baking, the trap is slightly tilted with respect to the plane of
the imaging. As a result, out of focus light scattered from an electrode overlaps with the
ion in the object plane (The path of the overlapping photons from the electrode are shown
in pink). Placing a block as shown stops these photons from reaching the image plane.
This block does however result in a slight reduction of photons from the ion reaching the
detector. Diagram not to scale.

2.5 Electronics

The experiment is controlled and automated using two main computers. The first is

known as the host computer and runs National Instruments Labview. This sends signals

to a field programmable gate array14 (FPGA) which is mounted in an external chassis15

and connected to the host computer via a PXIe X1 card. The FPGA has 96 digital

channels and 16 analogue channels to allow the input and output of signals and is mainly

used to detect the output pulses from the PMT, send TTL pulses to switches and control

pulse sequences as will be discussed in later chapters of this thesis.

The second computer is known as the target computer. This runs the Labview Realtime

operating system which provides realtime control of signals through analogue input and

output cards16. This is mainly used in the experiments described within this thesis to

provide locking feedback (see chapter 4), monitor the vacuum pressure, operate the atomic

ovens and control the amplitude of the RF trap voltage.

The remainder of this section will describe the electronics required to drive and control

the main devices mentioned in this chapter.

2.5.1 Trap

DC and RF voltages need to be supplied to the electrodes of the trap. Depending on

the application, the required DC voltages can be supplied by either stable DC supplies

14NI-PXI-7842R
15NI-RIOPXI-1033
16NI PCI-6722 and NI PCI-6143 respectively
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or from the Labview realtime machine which allows for fast remote control. The voltage

then passes through four stages of low pass filtering before being sent to the trap via the

DC feedthrough. To supply RF to the trap electrodes a resonant circuit is used. The

complete circuit diagram of this is shown in figure 2.14. The resonant circuit is designed

Amplifier 

(NP-541)

Directional 

power meter

(R&S 288.8610.55) Resonator

 RF signal 

generator

(HP 8640B)

Trap
Labview

realtime

Figure 2.14: Electronics used to supply an RF voltage to the trap.

to impedance match the trap with the RF source allowing for application of the maximum

possible voltage while reducing unwanted frequencies [43]. The RF voltage is supplied by a

signal generator whose amplitude is controlled remotely by Labview realtime, this is then

amplified to several watts and passed through a directional power meter. This allows us

to monitor the power being transmitted and reflected. The signal is then sent to the trap

via a helical resonator which is connected to the RF feedthrough. A full discussion of the

helical resonator is given in [43]; I will give an overview here. The helical resonator consists

of two resonant coils within a grounding shield as shown in figure 2.15. The resulting RF

voltage applied to the electrodes is given by [43],

VRF ≈

√
2PQ

(
L

C

) 1
2

(2.9)

where P is the power applied to the resonator from the amplifier and L and C are respect-

ively the total combined impedance and capacitance of the ion trap and resonator. Q is

the quality factor and is given by [43],

Q =
energy stored in resonator

energy dissipated
=
fRF
f 1

2

(2.10)

where f 1
2

is the full width at half the maximum transmission at the resonant frequency,

fRF . The resonant frequency, fRF is given theoretically by

fRF =
1

2π
√
LC

(2.11)

and is found to be equal to 21.49 MHz for our combination of resonator and trap. This

gives a Q equal to 200± 20. C equals 17± 2 pF which allows equation 2.9 to be rewritten



21
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To trap

RF

103mm

76mm

Antenna

 coil

Helix

 coil

63mm

52mm

3.14mm

N=9.5 turns

Figure 2.15: (a) Labeled diagram of the helical resonator used within this thesis showing
the dimensions of the grounding shield. (b) Dimensions of the helix coil.

as VRF ≈ (418± 4)× P
1
2 .

2.5.2 Laser and microwave frequencies

The following shows the electronics used to drive (a) the EOM which adds 1.05 GHz

sidebands to the 739 nm laser, (b) the AOM which switches and controls the power and

frequency of the 369 nm beam and (c) the microwave horn used to bridge the hyperfine

splitting of ytterbium 171.

(a) EOM

The EOM is driven by a 1.05 GHz signal from a signal generator. As shown in figure 2.16,

this is then amplified to 31 dbm before being sent to the EOM. The switch allows the

sidebands to be turned on and off quickly using Labview.

Amplifier

(MPA-0925)

EOM

Voltage controlled 

Switch (ZFSWA2-63DR+)

FPGA

Signal 

generator

(HP 8660c)

New Focus 

model #4441

Figure 2.16: Electrical circuit used to power the EOM.
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(b) AOM

The AOM is driven by a 200 MHz Voltage Controlled Oscillator (VCO) as shown in figure

2.17. The frequency of the VCO can be switched between a constant 200 MHz or a variable

0-200 MHz controlled using the FPGA. An amplifier is present to increase the 0-10 V

output of the FPGA to the 0-15 V range of the VCO. A voltage variable attenuator allows

the power of the signal and therefore the 369 nm beam power to be adjusted using the

FPGA. The signal is amplified to 3 W before being sent to the AOM. The fixed attenuators

prevent damage to the subsequent amplifiers.

Amplifiers

ZFL-750+ and 

ZHL-035WF+

VCO

(ZX95-200-S+)

AOMFPGA

+15V

Amplifier

(LF411CN)

Voltage variable 

attenuator 

(ZX73-2500-S+)

Voltage controlled 

Switch 

(ZFSWA2-63DR+)

-9dBm

-8dBm

vtune
c
o

n
tro

l

Figure 2.17: Electrical circuit used to power the AOM.

(c) Microwaves

The microwave horn is driven using a 12.6 GHz signal from a signal generator. This is

amplified to ≈30 dbm before being sent to the horn via a FPGA controlled switch as

shown in figure 2.18. This provides a single controllable microwave signal which is all that

is required to trap and cool 171Yb+. This microwave setup will be adjusted later in this

thesis to provide phase control to measure ion coherence times (see chapter 3), to provide

analogue signal control to produce STIRAP operations (see chapter 6) and to produce

multiple signals to provide individual coherent control of two ions (see chapter 7).

Amplifier

(am25-12-13-30-33)

FPGA

MW horn

Voltage controlled 

Switch (ZFSWA2-63DR+)

Signal 

generator 

(HP 83712B)

Figure 2.18: Electrical circuit used to power the MW horn.
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2.6 Trapped ions

Figure 2.19 shows a chain of 174Yb+ ions trapped using the apparatus described in this

chapter. These ions were trapped with a drive frequency of ΩRF /2π = 21.1 MHz at a

vacuum pressure of 2× 10−12 Torr.

Figure 2.19: Trapped ytterbium ions. The gap is an ion of a different isotope which is
being sympathetically cooled by the surrounding ions.
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Chapter 3

Preparing and detecting quantum

states

To perform quantum operations on trapped ytterbium ions we first need to define our

qubit. The hyperfine structure of the 2S 1
2

level in ytterbium 171 is shown in figure 3.1.

This consists of a lower F = 0 level and an upper F = 1 level which is split in frequency

space into three mF sublevels by the Zeeman effect caused by the magnetic field required

for laser cooling (see section 2.3.2). These levels are ideal for use as qubits as they are well

defined and have long lifetimes. Later, in chapter 6, I will describe how superpositions of

these different levels and sublevels combined with incident microwave fields are used to

produce a set of dressed qubit states. Initially, we shall simply define our |0〉 qubit state

to be equal to the lower F = 0 level and our |1〉 qubit state to be equal to one of the upper

F = 1 levels.

F=0

F=1

mf=-1

mf=1

mf=0

12.6GHz

Figure 3.1: Hyperfine structure of the 2S 1
2

level of ytterbium 171.

This chapter will begin by explaining how the level populations in ytterbium 171 can be
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modeled using rate equations. It will then go on to explain how the ion can be experi-

mentally prepared in both the |0〉 and the |1〉 qubit states as well as how we can determine

what state the ion is in. Finally, this chapter will introduce the Bloch sphere and explain

how arbitrary quantum superposition states can be prepared and how the decoherence of

these states can be measured.

3.1 Rate equations

The simplest way of modeling level populations is to use rate equations. These are a set

of coupled differential equations formed by considering how the population of each level is

effected by classical photon absorption and emission processes. This section will explain

how these rate equations are formed and how they can then be used to determine level

populations at a given time. It should be noted however that the rate equation model is

an approximation and does not take into account quantum effects. This will be further

discussed in section 3.1.3.

3.1.1 Forming the rate equations

In a two level system where the two levels are separated in frequency space by ω21, electron

population can be transferred between the levels by one of three processes as shown in

figure 3.2. This is known as Einstein’s model [44]. The three processes are as follows,

1. Spontaneous emission of a photon of energy, ~ω21 causing a transition from the upper

level to the lower level.

2. Stimulated absorption from the lower level to the upper level caused by absorption

of a photon of energy ~ω21.

3. Stimulated emission of two photons caused by the absorption of one photon of energy

~ω21. This causes a transition from the upper level to the lower level. The emitted

photons will have a wavevector, k, equal to that of the absorbed photon.

The total rate of change of population of the upper (n2) and lower (n1) levels is equal to

the sum of the rate of population change from these three processes.

dn

dt
=

dn

dt
(stimulated absorption) +

dn

dt
(stimulated emission) +

dn

dt
(spontaneous emission)

(3.1)
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Figure 3.2: The three methods of population transfer between two levels as described by
Einstein’s model. (a) Spontaneous emission, (b) stimulated absorption and (c) stimulated
emission.

These can be described using Einsteins A and B coefficients which respectively describe

the probability of spontaneous and stimulated processes occurring. For the stimulated

processes, the rate of population change is also dependent on the energy density of incident

radiation, ρ(ωl), given by [45]

ρ(ωl) =
1

2
ε0E

2
0g(ωl) (3.2)

where E0 is the electric field amplitude and g(ω) is the density of photon states with a

frequency ω, as well as the linewidth of the transition, σij(ωl − ω0), where ω0 and ωl

correspond to the resonant frequency and incident light frequency respectively. In real

atoms, levels have a non zero linewidth which allows light which is slightly detuned from

the resonant frequency to still excite the transition. Linewidth is defined as [45],

σij(ωl − ω0) =
Γj

2π

(
(ωl − ω0)2 +

Γ2
j

4

) (3.3)
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Where Γj = 1
τj

is the rate of decay of level j where τj is the levels lifetime. For the two

levels, equation 3.1 can therefore be expressed as [45],

dn2

dt
= B12ρ(ωl)σ12(ωl − ω0)n1 −B21ρ(ωl)σ21(ωl − ω0)n2 −An2 (3.4)

for the upper level and

dn1

dt
= −B12ρ(ωl)σ12(ωl − ω0)n1 +B21ρ(ωl)σ21(ωl − ω0)n2 +An2 (3.5)

for the lower level. Moving to a multi level system, the general form for the rate of change

of population, n, for an energy level, j, is equal to the sum of transitions to and from each

other level in the system,

dnj
dt =

∑
k +nkBkjρ(ωl)σ(ωl − ω0) population gain due to stimulated processes

+nkAkj population gain due to spontaneous emission

−njBjkρ(ωl)σ(ωl − ω0) population loss due to stimulated processes

−njAjk population loss due to spontaneous emission

(3.6)

Expressions for the A and B coefficients describing the respective spontaneous and stim-

ulated processes within ytterbium 171 will now be derived.

Spontaneous emission

Einstein’s A coefficient describing the rate of spontaneous emission from a level, i, causing

a transition to level, j, is given by

Aij =
dij
τi

(3.7)

where τi is the lifetime of level i and dij is the branching ratio of the transition from level

i to j. The mean lifetimes of the main levels are given in table 3.1. The branching ratio of

the transition i to j describes the probability that population leaving level i will enter level

j. This will equal 0 for forbidden transitions. Transitions are allowed when the change in

the total angular momentum quantum number, F is equal to 0 or ±1 with the exception

of transitions from F = 0 to F = 0. Additionally, the F level projection cannot change by

more than 1 (i.e. allowed transitions must have ∆mF = 0, ±1.). For 171Yb+ branching

ratios can be found in [1, 37] and are given in table 3.21 .

1For simplicity, the mF levels of the 3D 3
2

and 3D[3/2] 1
2

levels are assumed to be degenerate.



28

Level Lifetime
2S 1

2
1 year

2P 1
2

8.12 ns
3D 3

2
52.7 ms

3D[3/2] 1
2

37.7 ns

Table 3.1: Table showing the average lifetimes of the main levels of 171Yb+. Lifetimes
sourced from [1].

Upper level

2P 1
2

3D[3/2] 1
2

F = 0
F = 1

F = 0 F = 1
Lower level mF = −1 mF = 0 mF = +1

2P 1
2

F = 1
mF = -1 0.332 0.332 0.332 0 0.327 0.246
mF = 0 0.332 0.332 0 0.332 0.327 0.246
mF = +1 0.332 0 0.332 0.332 0.327 0.246

F = 0 0 0.332 0.332 0.332 0 0.246

3D 3
2

F = 2 0 0.002 0.002 0.002 0 0.018
F = 1 0.004 0.002 0.002 0.002 0.009 0.009

Table 3.2: Table showing branching ratios between the main levels within 171Yb+. All
numbers given to three significant figures.

Stimulated emission and absorption

The rate of stimulated emission/absorption from level i to level j, Rij , is expressed in

equations 3.4-3.6 as the following,

Rij = Bijρ(ωl)σ(ωl − ω0). (3.8)

This can also be represented by Fermi’s golden rule which is given by [46],

Rij =
2π

~
|Mij |2g(~ω)σ(ωl − ω0) (3.9)

where g(~ω) is the final density of photon states of the system and Mij = 〈i| Ĥ ′ |j〉 is the

matrix element of the perturbation, Ĥ ′ which caused the transition.

Electromagnetic radiation incident on an electron in an atom results in a electric dipole

interaction which is represented by the Hamiltonian

Ĥ ′ = −p ·E (3.10)

where p= −er and E is the electric field of the incident radiation. The amplitude of this
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field is given by |E|2 = E0. Mij can therefore be written as

Mij = ζij ·E (3.11)

where ζij is the electric dipole moment matrix element which is defined as,

ζij = e


〈i| rx |j〉

〈i| ry |j〉

〈i| rz |j〉

 . (3.12)

Using equation 3.2 where g(ω) = dn
dω = ~ dndE = ~g(E) and equations 3.8 and 3.9 results in

an expression for Einsteins B coefficient given by,

Bij =
π|ζij |2

ε0~2
. (3.13)

The rate of stimulated emission/absorption is therefore given by

Rij =
π|ζij |2

ε0~2
ρ(ωl)σ(ωl − ω0) (3.14)

which can be written as

Rij =
πΩ2

ij

2
σ(ωl − ω0), (3.15)

where

Ωij =
|ζij · E0|

~
(3.16)

is the Rabi frequency between levels i and j. This Rabi frequency can be written in terms

of the intensity of incident radiation, I, and the decay rate of the level involved to give [2],

Ω2
ij =

Γ2
jdijI

Isat
(3.17)

where Isat is the saturation intensity given by,

Isat =
~ω3

ijΓj

6πc2
. (3.18)

3.1.2 Solutions to the rate equations

Applying equation 3.6 to 171Yb+ forms 12 equations describing the rate of change of

population for each of the 12 main levels described in table 3.2. For time independent

laser powers and frequencies, the population of each level will evolve over time tending
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towards a steady state value. The total population of the system must always add up to

1, therefore by replacing one of the rate equations with the additional condition

12∑
i

ni = 1 (3.19)

the steady state populations can be found by solving the 12 equations simultaneously.

The time dependent population of the levels as they evolve towards the steady state can

be found by rewriting equation 3.6 as follows

dn

dt
= Π n (3.20)

where Π is a matrix containing both the total spontaneous emission and stimulated ab-

sorption/emission rates between the levels. This equation can be solved by integration

giving the following solution

n = eΠtn0 (3.21)

where n0 are the initial population values.

Both time dependent and steady state solutions are found using Mathematica. The

code for this is shown in appendix A.

3.1.3 Limitations of rate equations

Einstein’s rate equation model can be an extremely accurate method of describing popu-

lation transfer between levels but it has its limitations. When the Rabi frequency between

two levels Ωij becomes a lot greater than the upper level decay rate [47],

Ωij >>
1

τj
, (3.22)

the system can no longer be treated classically and experiences rabi oscillations which are

described by the Bloch equations (see section 3.5.1). The rate equations are a special case

of these Bloch equations, where, when Ω ≤ 1
τ , population decays from the upper level

before rabi oscillations can occur. Table 3.3 shows the main transitions in 171Yb+ used

within in the experiments shown in this thesis and the regimes in which they should be

treated.
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Transition Wavelength/frequency Intensity Ωτ Regime

2S 1
2
−→2P 1

2
369 nm 0.1 I0 0.18 Rate equations

3D 3
2
−→3

[
3
2

]
1
2

935 nm 15 I0 0.71 Rate equations

2S 1
2

F = 0 −→2S 1
2

F = 1 12.6 GHz 1 W 109 Bloch equations

Table 3.3: Table showing the main transitions used within 171Yb+, the required intensities
and the regimes in which that should be modeled.

3.2 State detection

State detection is the ability to detect which qubit state the ion is in. State detection is

achieved within 171Yb+ by applying a 369 nm cooling beam resonant with the 2S 1
2

F = 1

to 2P 1
2

F = 0 transition and a 935 nm repumper beam resonant with the 3D 3
2

F = 1 to

3D[3/2] 1
2

F = 0 transition. As shown in figure 3.3, this results in population from |1〉

following a closed cooling cycle and population in |0〉 remaining unaffected. Florescence

from the system would therefore indicate that the ion is in |1〉.

|0

2S1/2

2P1/2

3D3/2

3D[3/2]1/2

F=0

F=1

F=0

F=1

F=1

F=1

F=0

F=2

mf=-1

mf=-1

mf=+1

mf=+1
mf=0

mf=0

|1

Figure 3.3: Closed cooling cycle used in state detection.

3.2.1 Off-resonant coupling

When the 369 nm cooling beam is applied there is a small probability that population from

the 2S 1
2

F = 1 level will be off-resonantly excited to the 2P 1
2

F = 1 level which can decay

into the 2S 1
2

F = 0 level. Similarly, population in the 2S 1
2

F = 0 level can be off-resonantly
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excited by the 369 nm cooling light and make a transition into the pseudo-closed cooling

cycle. This can be seen in figure 3.4 which shows the probability of finding the ion in the

2S 1
2

F = 0 (blue) and the 2S 1
2

F = 1 (red) levels at a time t during detection when the ion is

initially in the 2S 1
2

F = 1, mF = 0 level. These levels correspond to the |0〉 and |1〉 states of

the qubit respectively. The population of these levels are converging towards their steady

state populations. The exact time taken to reach steady state and the exact steady state

populations depends on the intensities of the 369 nm and 935 nm light.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Detection time ms

P
ro
ba
bi
li
ty
of
st
at
e
be
in
g
po
pu
la
te
d

0

1

Figure 3.4: Probability of the population being in the |0〉 (blue) and |1〉 (red) states
during detection as calculated using the rate equations. The population is initially in the
|1〉 state and the 369 nm and 935 nm intensities are set to 0.1 Isat and 10 Isat respectively.
The population of the other levels is negligible throughout and is therefore not shown.

The movement of population between the |0〉 and |1〉 states is unwanted during de-

tection. Therefore, a detection time needs to be selected which is long enough to allow

enough photons to be produced by the population initially in the |1〉 state while ensuring

that off-resonant coupling is kept to a minimum.

The probability of detecting exactly nD photons over a detection time, τD, from an

ion initially in the |0〉 state is given by [24],

P (n) =e
− τD
τ(|0〉→|1〉)×δnD +

τD

τ(|0〉→|1〉)λ0

(
1− τD

τ(|0〉→|1〉)λ0

)n+1 Γ

[
nD + 1,

(
λ0 −

τD
τ(|0〉→|1〉)

)] (3.23)

where δnD is the kronecker delta function, Γ(i, j) is the incomplete gamma function,

τ(|i〉→|j〉) is the average off-resonant pumping time from state i to j and λ0 is the av-

erage number of photons collected from an ion in the |1〉 state over τD. Similarly the

probability of detecting nD photons over a detection time, τD, from an ion initially in the
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|1〉 state is given by [24],

Q(n) =
λnDe

−
(
λ0+

τD
τ(|1〉→|0〉)

)
nD!

+
τD

τ(|1〉→|0〉)λ0(1 + τD
τ(|1〉→|0〉)λ0

)nD+1
Γ

[
nD + 1,

(
λ0 +

τD
τ(|1〉→|0〉)

)]
.

(3.24)

The parameters τ(|0〉→|1〉) and τ(|1〉→|0〉) are equal to the reciprocal of the total off-resonant

pumping rate, given by,

τ(|0〉→|1〉) =
1

ΣβR|0〉,β

≈ 60 Wm−2s × I−1
c

(3.25)

and

τ(|1〉→|0〉) =
1

ΣαΣβRα,β

≈ 1.14 Wm−2s × I−1
c

(3.26)

where α represents all the Zeeman levels of the |1〉 state, β represents all Zeeman levels

within the 2P 1
2

F = 1 level, Ri,j is given by equation 3.15 and Ic is the intensity of the

369 nm cooling laser.

The only photons detected from the ion are from the spontaneous decay of the 2P 1
2

levels. This is because the imaging optics is at an angle with respect to the lasers therefore

photons emitted from the ion due to stimulated processes will not be detected. Addition-

ally the imaging contains a 369 nm filter so 935 nm photons will be blocked. Not all

photons from this spontaneous decay will be detected however due to inefficiencies in the

imaging system. The average number of collected photons, λ0, is therefore equal to the

total number of photons released from spontaneous decay of the 2P 1
2

levels multiplied by

the collection efficiency of the imaging optics, ρe. This can be expressed as

λ0 = ρe

∫ τD

0
(np1(t)Γp1 + np2(t)Γp2 + np3(t)Γp3 + np4(t)Γp4)dt (3.27)

where nx(t) is the population of level x at time t given by the rate equation program where

p1, p2, p3 and p4 represent the four 2P 1
2

sublevels. The photon collection efficiency, ρe, of

the imaging setup used for all the experiments in this thesis is calculated by comparing

the number of photons collected by the PMT during detection to the number of photons

released by the spontaneous decay of the 2P 1
2

level, (λ0/ρe). Figure 3.5 shows λ0/ρe

vs detection time for 369 nm and 935 nm intensities equal to Isat and 100 Isat respectively.

Using this, for a detection time of 1200 us, the total number of detectable photons released
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Figure 3.5: Number of photons released through spontaneous decay of the 2P 1
2

level of
171Yb+ vs detection time. The 369 nm intensity was set to equal I sat and the 935 nm
Intensity was set to equal 100 Isat.

from the ion, λ0/ρe, will equal 8600. Experimentally, the PMT collects an average of 18

photons2. This gives a collection efficiency of approximately 0.0021.

Using equations 3.23-3.26, the probability of detecting n photons within a detection

time, tD, can be calculated for an ion initially in the |0〉 and the |1〉 states. To distinguish

between these states, a photon number known as the discriminator is chosen. If the number

of detected photons is equal or below this number, the ion is recorded as being in the |0〉

state, overwise the ion is recorded as being in the |1〉 state. For the ideal case, where

there is no background scatter, the discriminator will equal 0. The state detection fidelity

is determined by adding the probability of an ion in the |0〉 state producing a number of

photons equal or below the discriminator and the probability of an ion in the |1〉 state

producing a number of photons above the discriminator.

Figure 3.6 shows the state detection infidelity vs the detection time for a range of

369 nm intensities with ρe equal to 0.0021. For each 369 nm intensity, the fidelity initially

increases as the detection time is increased, this occurs as more photons from an ion in the

|1〉 state can be collected. A optimum detection time is reached where the detection fidelity

is maximum. At detection times above this optimum, the detection fidelity decreases due

to off-resonant coupling.

The maximum detection fidelity increases as 369 nm intensity decreases due to a reduc-

tion in the off resonant pumping rate. In addition, as the 369 nm intensity is decreased,

less photons are produced by the ion, therefore the detection time required to reach the

2Averaged over 200 runs.
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Figure 3.6: Graph showing the detection infidelity vs detection time for 369 nm intensities
equal to 10 Isat (orange), 1 Isat (green), 0.1 Isat (black), 0.01 Isat (blue) and 0.001 Isat (red).
The graph was simulated using a collection efficiency equal to 0.0021 and a 935 nm intensity
equal to 10 Isat.

maximum fidelity increases. The maximum fidelity does however level out below 369 nm

intensities of 0.01 Isat at a maximum fidelity limit of 99.322 %. This maximum fidelity

limit can be increased by increasing the systems collection efficiency. This is shown in

figure 3.7 which shows the maximum state detection efficiency vs the detection time for

a range of 369 nm intensities and collection efficiencies. Figure 3.7 shows that increasing

the collection efficiency will both increase the maximum fidelity limit and decrease the de-

tection time required to reach the limit. The calculated maximum detection fidelities are

98.598 %, 99.864 % and 99.985 % for collection efficiencies of 0.001, 0.01 and 0.1 respect-

ively. The collection efficiency can be increased by improved collection optics as proposed

in [48–51]. For example, detection efficiencies of up to 0.548 have been demonstrated by

trapping within the focus of a parabolic mirror [52]. Using only optics external to the

vacuum system, efficiencies of up to 0.1 have been achieved [53].

Within our current experimental setup, the optimum 369 nm intensity which provides

a large fidelity within a relatively short time is 0.1 Isat which should give a detection fidelity

of > 99.3 % in approximately 1 ms as shown in figure 3.6.

3.2.2 935 nm power broadening

It is possible for off-resonant coupling to occur between the 3D 3
2

F = 1 and 3D[3/2] 1
2

F = 1

levels on the 935 nm transition. This is undesirable as the 3D[3/2] 1
2

F = 1 level can decay
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Figure 3.7: Graph showing the points of maximum detection fidelity for 369 nm intensities
equal to 10 Isat (orange), 1 Isat (green), 0.1 Isat (black), 0.01 Isat (blue) and 0.001Isat (red)
with collection efficiencies equal to 0.1 (circles), 0.01 (squares) and 0.001 (triangles). The
935 nm intensity was set to equal 10 Isat

into the |0〉 state as shown in table 3.2. The extent of which this effects the population

is explored in figure 3.8 which shows the time taken for the population in |0〉 to reach

1% during detection when the initial population starts in |1〉. The graph shows that the

935 nm intensity has little observable effect until it reaches around 1000 Isat. Above this,

the power has significantly broadened the transition causing the effects of off-resonant

coupling on the 935 nm transition to be dominant over the effects of the off-resonant

coupling on the 369 nm transition which increases the rate at which population is added

to the |0〉 state. The increase in preparation time shown on figure 3.8 at 935 nm intensities

lower than 1 Isat is due to population trapping in the 3D 3
2

F = 1 level.

3.3 State preparation

State preparation is the ability to prepare the ion into either the |0〉 state or the |1〉 state.

State preparation into the |0〉 state is ideally achieved by the process shown in figure

3.9 where 2 GHz sidebands are added to the 369 nm cooling laser, usually resonant with

the 2S 1
2

F = 1 to 2P 1
2

F = 0 transition, which allows the 2P 1
2

F = 1 levels to be populated

from which population can decay into the |0〉 state. In addition, 3 GHz sidebands should

be added to the 935 nm laser to stop population becoming trapped in the 2D 3
2

F = 2

level. Figure 3.10 shows the populations of all the levels vs time during preparation when

all the population begins in the 2S 1
2

F = 1 mF = 0 level. It shows that population is



37

0.1 10 1000 105100

200

300

400

500

600

935nm Intensityhhhhhhhhhh sat

T
im

e
ta

ke
n

fo
r

po
pu

la
tio

n
of

0
to

re
ac

h
1

us
%

(μ
s)

sathh(I/Ihhh)

Figure 3.8: Time taken for population of the |0〉 state to reach 1 % during state detection
as a function of 935 nm intensity. The 369 nm intensity is set to 0.1 Isat and the population
is initially in the |1〉 state.

quickly transferred between this and the |0〉 state via the other levels. To prepare the

ion in the |1〉 state, the 369 nm laser is turned off and a microwave π pulse is applied at

ωhf = 2π × 12.6 GHz.

|0

2S1/2

2P1/2

3D3/2

3D[3/2]1/2

F=0

F=1

F=0

F=1

F=1

F=1

F=0

F=2

mf=-1

mf=-1

mf=+1

mf=+1
mf=0

mf=0

|1

To     

F=1 levels

2S1/2

From  

F=1 levels

2P1/2

Figure 3.9: Transitions used to prepare ion into the |0〉 state.
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Figure 3.10: (a) Level populations during state preparation with population beginning in
the 2P 1

2
F = 1 mF = 0 level assuming no 369 nm carrier light is present and 50 % of the

935 nm light is within the 3 GHz sidebands. (b) is equivalent to (a) but with a different
scale to distinguish the less populated levels. Data was found using the rate equation
program with 369 nm and 935 nm intensity equal to 0.1 Isat and 10 Isat respectively. The
probability of population being in the 3D[3/2] 1

2
and 2P 1

2
F = 0 levels is negligible and

therefore not shown.

3.3.1 2 GHz 369 nm sidebands

Ideally, during state preparation, there would be no 369 nm light present resonant with the

2S 1
2

F = 1 to 2P 1
2

F = 0 transition as shown in figure 3.9. Light present at this frequency

would result in an increased preparation time as population can be excited to the 2P 1
2

F = 0 level which is unable to decay into the |0〉 state. Complete suppression of the carrier

frequency when adding sidebands can however be both difficult and expensive. Figure

3.11 shows the extent to which the ratio of 369 nm carrier intensity, Ic, to the 2 GHz side-
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band intensity, Isb, effects the preparation time at a range of different total intensities,

(It = Ic + Isb). As expected, the minimum preparation time is achieved when all the in-

tensity is contained within the sidebands. The preparation time then rises exponentially

as the power is moved into the carrier. In addition, figure 3.11 also shows that preparation

time decreases with overall 369 nm intensity. For state preparation, higher intensities are

therefore advantageous which is counter to detection where lower intensities are required

to reduce off-resonant coupling. Experimentally, we add 2.1 GHz sidebands to the 369 nm
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Figure 3.11: Effect the 2 GHz 369 nm sideband strength has on the preparation time of
the |0〉 state, this data was collected using the rate equation program with the 935 nm
intensity equal to 10 Isat and the total 369 nm intensity, It equal to 0.01 Isat (red), 0.1 Isat
(blue) and Isat (black). The sideband intensity is distributed equally between the red and
blue sidebands.

cooling beam by applying 1.05 GHz sidebands to a 739 nm laser beam which is then fre-

quency doubled (see section 2.3.3). These 1.05 GHz sidebands can be added by one of

two methods. Firstly, the current powering the laser diode of the 739 nm Toptica laser

can be modulated at 1.05 GHz. This method is however limited as the carrier frequency

of the laser changes significantly when sideband powers higher than a percent are applied

which causes the doubling cavity to unlock. Figure 3.12 (a) shows the minimum prepar-

ation time achievable with this method is 900µs. A more successful method is to put a

1.05 GHz EOM into the beam path of the 739 nm laser. This method allows at least 45 %

of the light to be in the sidebands which gives a minimum preparation time of 15µs as

shown in figure 3.12 (b). The error bars in figure 3.12 represent a 70 % binomial confidence

interval as discussed in appendix B. Unless overwise stated, all error bars within this thesis

will be calculated in the same way.
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Figure 3.12: Population of the |1〉 state vs detection time with (a) approximately 1 %
of the 369 nm intensity in the sidebands formed from modulation of the 739 nm Toptica
diode. (b) Approximately 45 % of the 369 nm intensity in the sidebands formed using an
EOM in the beam path of the 739 nm beam. Both graphs were taken with a 369 nm laser
power of approximately 1.2 µW focused down to a 60µm beam waist and a 935 nm laser
power of approximately 6mW focused down to a beam waist of approximately 1 mm. This
gives intensities at the ion equal to I 369 ≈ 0.4 Isat and I 935 ≈ 500 I sat. The population at
each point is calculated by averaging the results of 100 runs.

3.3.2 3 GHz 935 nm sidebands

During state preparation, as shown in figure 3.9, population within the 2P 1
2

F = 1 levels can

decay into the 3D 3
2

F = 2 level. 3 GHz 935 nm sidebands can be added to the 935 nm laser

resonant with the 3D 3
2

F = 1 to 3D[3/2] 1
2

F = 0 transition to avoid population becoming

trapped within the 2D 3
2

F = 2 level. To remove any trapped population, as little as 1 % of

the total 935 nm power is required to be within the sidebands. This can be achieved by

modulating the current powering the 935 nm laser diode by combining 3 GHz with the DC

current supply using a bias-tee3. This can however reduce the effectiveness of the 935 nm

3Mini-Circuit ZFBT-4R2G+
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frequency locking. The amount of trapped population is however only on the order of

0.6 % as shown in figure 3.13, this is a negligible amount therefore for the majority of

experiments outlined in this thesis, these sidebands were not be present.
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Figure 3.13: Figure showing the population of the levels during preparation with no 3 GHz
sidebands on the 935 nm repumper light. Levels are coloured as shown in figure 3.10. The
population becoming trapped in the 3D 3

2
F = 2 level increases and reaches a steady state

value of approximately 0.6 %.

3.4 Experimental results

Figure 3.14 shows the probability certain numbers of photons will be detected during the

detection time for an ion prepared in the |0〉 state (blue) and the |1〉 state (purple). To

prepare the ion in the |0〉 state, a 369 nm beam with a intensity equal to 25 Isat was applied

for 50µs with 45 % of the light within the 2 GHz sidebands. As shown in figure 3.11, these

parameters should be adequate to prepare the state into the |0〉 state. More than zero

photons are however still being counted with a probability of more than 20 %. This is due

to back-ground scatter from for example, 369 nm photons scattering off the electrodes.

This is currently the limiting factor of our state detection fidelity.

During detection, a 369 nm beam of approximately 0.4 Isat was applied. This intensity

is however an overestimate as the 369 nm beam power was measured just before the final

lens and therefore does not take into account power loss from the final lens and the vacuum

system window. The optimal state detection time, where the detection fidelity was found

to be maximum was found to be around 1200µs which suggests the the 369 nm intensity

at the ion is slightly less than 0.1 Isat.

Using figure 3.14 it can be concluded that if three or more photons are collected during

detection the ion is most probably in the |1〉 state and if only zero, one or two photons



42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

0.2

0.4

0.6

0.8

1

Number of photons collected

P
ro

b
ab

il
it

y

Figure 3.14: Probability of the detection of certain photon numbers from an ion prepared
in the |0〉 state (blue) and the |1〉 state (purple). The |0〉 state was prepared with 60µW
of 369 nm light focused down to a beam waist of 60µm with 45 % of this light contained
within the 2 GHz sidebands. The |1〉 state was prepared by applying a microwave pulse
to an ion in the |0〉 state. During detection, 1.2µW of 369 nm light was focused down to
a beam waist of 60µm for 1.5 ms. The 935 nm beam intensity was equal to 500 Isat. The
graph is an average of 500 measurements. Using a discriminator of 3, the state detection
fidelity is approximately 95%.

are collected the ion is most probably in the |0〉 state. This gives a state detection fidelity

of approximately 95 %.

3.5 Preparation of superposition states

The fundamental difference between classical and quantum bits is that in addition to the

|0〉 and |1〉 states, a quantum bit can also exist in a superposition state represented by the

following equation,

|ψ〉 = q0 |0〉+ q1 |1〉 (3.28)

where q0 and q1 obey the relation q2
0 + q2

1 = 1. For simplicity, equation 3.28 can also be

represented in matrix form as

|ψ〉 =

 q0

q1

 . (3.29)

Upon measurement, the ion will collapse into the |0〉 or |1〉 state with a probability equal

to q2
0 or q2

1 respectively. A useful way to visualise superposition states is to represent them
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as a point on a diagram known as the Bloch sphere, as shown in figure 3.15. The |0〉 and

|1〉 states are located on the z-axis of the Bloch sphere at the respective minimum and

maximum points. Points on the equator of the Bloch sphere represent ideal superpositions

where the ion is in |0〉 or |1〉 with equal probability (q2
0 = q2

1 = 1
2). Section 3.3 described

y-axis x-axis

z-axis

1|

|0

|0 1|+

2

+|0 1|

2

i

-|0 1|

2
i-|0 1|

2

Figure 3.15: The Bloch sphere

how an ion can be prepared in the |0〉 and |1〉 state; here I will show how arbitrary

superposition states of the form given in equation 3.28 can be realised by applying coherent

radiation to the ion.

3.5.1 Optical Bloch equations

The Hamiltonian describing a two level system interacting with a electromagnetic field is

given by

Ĥ = Ĥ0 + Ĥ ′ (3.30)

where H0 is the unperturbed Hamiltonian describing the system without the applied field

and is given by the sum of the Hamiltonian of a two level system, Ha and the Hamiltonian

of a trapped ion which can be modeled as a quantum harmonic oscillator, Hb [47],

Ĥ0 = Ĥa + Ĥb (3.31)

where

Ĥa =
1

2
~ωhf σ̂z (3.32)
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and

Ĥb = ~vâ†â. (3.33)

ωhf is the resonant frequency of the two level system, v is the trap secular frequency, a and

a† are the quantum raising and lowering operators and σz is the Pauli-z operator which is

given in matrix form as

σ̂z =

 1 0

0 −1

 (3.34)

and acts by rotating the state of the system by 180 degrees around the z-axis of the Bloch

sphere.

Ĥ ′ is the perturbation due to the field given by equation 3.10,

Ĥ ′ = −p ·E. (3.35)

Assuming the electromagnetic field is propagating along the -z direction, this can be

expanded into the following form

Ĥ ′ = −pzEzcos(ωM t− kz + φ)

= −pzEz
2

[ei(ωM t−kz+φ) + e−i(ωM t−kz+φ)]
(3.36)

where wM is the field frequency and φ is the fields phase. To express equation 3.36 in

terms of the Rabi frequency, Ω, it can be multiplied on either side by the relation

∑
u

|u〉 〈u| = 1 (3.37)

giving

∑
u,v

|u〉 〈u| Ĥ ′ |v〉 〈v| = Ĥ ′

= −
∑
u,v

|u〉 〈u| pzEz
2
|v〉 〈v| [ei(ωM t−kz+φ) + e−i(ωM t−kz+φ)].

(3.38)

This can be simplified and written in terms of Ω using equations 3.12 and 3.16,

Ĥ ′ = −
∑
u,v

~Ω

2
|u〉 〈v| [ei(ωM t−kz+φ) + e−i(ωM t−kz+φ)] (3.39)

In a two level system, the perturbation Hamiltonian caused by an electromagnetic field is
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therefore given by,

H ′ = −~Ω

2
(σ̂+ + σ̂−)|[ei(ωM t−kz+φ) + e−i(ωM t−kz+φ)] (3.40)

where σ+ =

 0 1

0 0

 and σ− =

 0 0

1 0

.

State evolution

The evolution of a state under the total Hamiltonian given by equation 3.30 is found using

the time dependent Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (3.41)

where |Ψ(t)〉 is the wavefunction of the system which can be expressed as the complete

set of the eigenstates of Ĥ0 [1],

|Ψ(t)〉 =
∑
u

qu(t)eiEut/~ |u〉 (3.42)

where Ĥ0 |u〉 = Eu |u〉. Combining equations 3.30, 3.41 and 3.42 gives

∑
u

(
i~q̇ue−iEut/~ + quEue

−iEut/~
)
|u〉 =

∑
u

que
−iEut/~(Ĥ0 + Ĥ ′) |u〉 . (3.43)

This simplifies to ∑
u

i~q̇ue−iEut/~ |u〉 =
∑
u

que
−iEut/~Ĥ ′ |u〉 . (3.44)

Taking the inner product of one of the coefficients, v gives

i~q̇ve−iEvt/~ =
∑
u

que
−iEut/~ 〈v| Ĥ ′ |u〉 . (3.45)

Using equation 3.40 and assuming the wavelength of light is a lot larger than the spatial

extent of the ion (kz ≈ 0), the expression 〈v| Ĥ ′ |u〉 is equal to

〈v| Ĥ ′ |u〉 = −~Ω

2

(
ei(ωM t+φ) + e−i(ωM t+φ)

)
(〈v| σ̂+ |u〉+ 〈v| σ̂− |u〉) (3.46)

Putting equation 3.46 into equation 3.45 and using the relations 〈0| σ̂+/− |0〉 = 〈1| σ̂+/− |1〉 =

〈1| σ̂+ |0〉 = 〈0| σ̂− |1〉 = 0 and 〈0| σ̂+ |1〉 = 〈1| σ̂− |0〉 = 1 gives the following simultaneous
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equations for a two level system.

q̇0 =iq1
Ω

2
e−iω01

(
ei(ωM t+φ) + e−i(ωM t+φ)

)
(3.47)

q̇1 =iq0
Ω

2
eiω01

(
ei(ωM t+φ) + e−i(ωM t+φ)

)
(3.48)

where ω01 = E1−E0
~ is the frequency difference between the two levels. These equations

can be simplified by noting that at on large timescales (t >> ω01+ωM ), the fast oscillating

terms e±i(ω01+ωM t+φ) average to zero. This is known as the rotating wave approximation

and allows equations 3.47 and 3.48 to be rewritten as

q̇0 =iq1
Ω

2
ei(∆t+φ) (3.49)

q̇1 =iq0
Ω

2
e−i(∆t+φ) (3.50)

where ∆ = ωM − ω01 is the detuning of the field from resonance. These are known as the

optical Bloch equations for a two level system and describe the rate of probability transfer

between the states. In matrix form equations 3.49 and 3.50 can be expressed together as

 q̇0

q̇1

 = i
Ω

2

 0 ei∆t+φ

e−i∆t+φ 0

 q0

q1

 . (3.51)

It should be noted that in the derivation above, state changes due to spontaneous decay

were assumed to be equal to zero. Our qubit states have a lifetime of ≈ 1 year [23] which

is a lot longer than any experiment we plan on doing therefore this assumption remains

valid.

3.5.2 Rabi flopping

The solution to the two level optical Bloch equations given in equations 3.49 and 3.50 can

be found in appendix C. For the simple case where the detuning equals zero, the solution

is equal to

q0 = cos
Ωt

2

q1 = ie−iφ sin
Ωt

2

(3.52)

when the ion is initially in the |0〉 state (q0 = 1, q1 = 0 at t = 0) and

q0 = ieiφ sin
Ωt

2

q1 = cos
Ωt

2

(3.53)
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when the ion is initially in the |1〉 state (q0 = 0, q1 = 1 at t = 0). When the ion begins in

a superposition of the states (ie, where |φ(0)〉 = q0(0) |0〉 + q1(0) |1〉) the final state after

time, t, is therefore given by the application of the following matrix on the initial state.

Π =

 cos Ωt
2 ie−iφ sin Ωt

2

ieiφ sin Ωt
2 cos Ωt

2

 (3.54)

The state will oscillate between |0〉 and |1〉 with a frequency equal to Ω, this is known as

Rabi flopping. The exact path the population takes around the Bloch sphere is determined

by the phase of the applied field, φ, as shown in figure 3.16. For example, when φ = 0, the

population rotates around the y-axis and when φ = π
2 , the population will rotate around

the x-axis. It is therefore possible to reach any point on the Bloch sphere after time, t, by

careful selection of φ and Ω.

y-axis x-axis

z-axis

Figure 3.16: Figure showing the path the population takes around the Bloch sphere during
Rabi flopping. The angle φ is set by the phase of the applied field.

Experimental realisation

To Rabi flop on a transition within the 2S 1
2

level, microwave pulses at the frequency of that

transition must be applied. As the three mF states within the 2S 1
2

F = 1 level of 171Yb+ are

split in frequency space due to the Zeeman effect, the exact frequencies of these states are

hard to calculate theoretically. This is due to difficulty in measuring the exact magnetic

field strength at the ion. The transition frequencies between these states and the |0〉 state

are therefore determined experimentally by performing a microwave frequency scan.

A microwave frequency scan is preformed by first preparing the ion into the |0〉 state,
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a microwave pulse of a set length is then applied before detection. The frequency of

this pulse is then adjusted before the next experiment run. Figure 3.17 shows the pulse

sequence and results of this experiment. Figure 3.17 (a) is a frequency scan over the

whole qubit subspace, it shows three main peaks which represent the resonances of the

transitions between the |0〉 state and the three mF levels within the 2S 1
2

F = 1 level. Figure

3.17 (b) shows a more detailed frequency scan over the centre peak representing the |0〉 to

2S 1
2

F = 1 mF = 0 transition. The data in figure 3.17 was taken with a microwave pulse

time, t, equal to tπ = π
Ω0

where Ω0 is the on-resonance Rabi frequency of the 2S 1
2

F = 1

mF = 0 transition. This Rabi frequency is determined by performing a Rabi flop on the

transition.

A Rabi flop is preformed in a similar way to a frequency scan, the only differences are

that the frequency of the microwave pulse is held constant at the transition frequency and

the pulse duration is adjusted between experiment runs. Figure 3.18 shows a Rabi flop

between the |0〉 state and the 2S 1
2

F = 1 mF = 0 (a) and mF = +1 (c) levels. The Rabi

frequency can be seen to be equal to ≈ 2π× 1.9 kHz for the Rabi flop in figure 3.18 (a) and

≈ 2π× 50 kHz for the Rabi flop in figure 3.18 (b). The Rabi flops slowly decay over time

due to decoherence caused by, for example, frequency noise from the microwave setup and

magnetic field noise which effects the level frequencies. The point at which the amplitude

is 1
e of its initial value is known as the decoherence time and is smaller for the |0〉 to 2S 1

2

F = 1 mF = ±1 transitions as these are more sensitive to magnetic field fluctuations. For

these transitions, the decoherence time is found to be less than 500µs. The decoherence

time for the |0〉 to 2S 1
2

F = 1 mF = 0 transition can be found using a technique known as

Ramsey fringes and will be discussed in section 3.5.3.

3.5.3 Ramsey fringes

When the microwave frequency field is turned off, a two level system will evolve according

to the Hamiltonian given in equation 3.31. Moving into the rotating frame with respect to

the microwave field frequency, ωM , results in the following Hamiltonian under the rotating

wave approximation,

Ĥ0 =
1

2
~∆σ̂z (3.55)
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Figure 3.17: Microwave frequency sweep over the (a) whole qubit subspace and (b) |0〉 to
2S 1

2
F = 1 mF = 0 transition. The pulse sequence for these sweeps is shown in (c). After

preparation into |0〉, a π pulse is applied to the ion, this puts the ion into the |1〉 state for
detection if the applied microwave frequency is resonant with a transition.
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(a)

F
=
1

(b)

Figure 3.18: Rabi flops between the |0〉 and (a) 2S 1
2

F = 1 mF = 0 and (b) 2S 1
2

F = 1

mF = +1 states. After preparation, a microwave pulse is applied, the length of this pulse
is increased after each run. The Rabi frequency is equal to (a) 2π × 1875 kHz and (b)
2π × 18.5 kHz.
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where ∆ = ωhf − ωM . Evolution under this Hamiltonian is given by

U = e
−iH0tp

~

= e
−i~∆tpσz

2

= cos
∆tp

2 σ0 − i sin
∆tp

2 σz

(3.56)

where tp is the evolution time. In matrix form, this is equivalent to

U =

 cos
∆tp

2 − i sin
∆tp

2 0

0 cos
∆tp

2 + i sin
∆tp

2

 . (3.57)

When applied to an arbitrary initial state, this matrix leaves the state unchanged and

adjusts the state’s phase. This is equivalent to a rotation around the z-axis of the Bloch

sphere at a frequency equal to ∆ as shown in figure 3.19 (a).

(a) (b)

y-axis x-axis

z-axis

y-axis x-axis

z-axis

Figure 3.19: (a) Diagram showing movement around the Bloch sphere caused by the
free evolution of a two-level system. (b) Diagram showing path along Bloch sphere and
resulting Bloch sphere position when two π

2 pulses of a fixed phase, separated by an
arbitrary time, tp, are applied to the ion.

This rotation means that two π
2 pulses with equal phase, φ, separated in time, tp, known

as the free precession time will only produce a spin flip when ∆ = 0 or
∆tp

2 = 2πm where

m is an integer. When these conditions are not met, the second pulse will move the ion

along the same plane of the Bloch sphere as the first pulse as shown in figure 3.19 (b) and

the resultant state will be a superposition of |0〉 and |1〉. The resultant population of the

state as a function of tp will therefore oscillate between |0〉 and |1〉. These oscillations are

known as Ramsey fringes.
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Experimental realisation

A Ramsey fringe on the |0〉 to 2S 1
2

F = 1 mF = 0 transition with the accompanying pulse

sequence is shown in figure 3.20. After preparation in |0〉, the ion is moved onto the

equator of the Bloch sphere with a slightly detuned microwave pulse for a time, tπ
2

= π
2Ω0

.

After a time, tp, a second microwave pulse is applied for a time tπ
2
. The final population is

shown to oscillate as the precession time, tp, is increased. This shows the ions movement

around the Bloch sphere during tp and therefore the frequency of these oscillations equals

the detuning of the microwave pulses from resonance.
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Figure 3.20: (a) Ramsey fringes on the |0〉 to 2S 1
2

F = 1 mF = 0 transition. (b) Pulse

sequence used to produce (a). Each point is an average of 100 measurements.
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Measuring coherence time

A similar effect can be found with a fixed tp by adjusting the phase of the second microwave

pulse. The coherence time is found by measuring the contrast of these fringes at different

values of tp. This will decay exponentially over time as the state decoheres. This requires

a change in the microwave setup, initially introduced in section 2.5.2 and shown in figure

2.18, as shown in figure 3.21 in order to have individual control of the parameters of each

pulse.

12.6GHz source

(HP 83712B)

Low frequency source

(Aglient 33533A)

Amp

MW horn

Figure 3.21: Modification of microwave setup to allow individual phase control of two
microwave pulses. The 12.6 GHz frequency source is used to produce a signal several MHz
away from resonance, this is then mixed using a high frequency mixer (Mini-Circuits ZX05-
153LH-S+) with a signal from a second frequency source which brings the total frequency
back to resonance. The signal from the second frequency sources can be switched between
two separate channels each with independent phases.

An example of the resultant fringes for the |0〉 to 2S 1
2

F = 1 mF = 0 transition is given

in figure 3.22 (a). The fringe contrast is measured to be the difference between the highest

point and lowest point of the fringe. The contrast measured at different values of tp is

shown in figure 3.22 (b) which gives a coherence time of 1.5 seconds.
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Figure 3.22: (a) Example of Ramsey fringe produced when phase of second π
2 pulse is

adjusted with a fixed evolution time, tp = 15 ms. Each point is an average of 100 measure-
ments. (b) Plot of the fringe contrast vs the evolution time. An exponential fit to these
points is also shown and gives a coherence time of ≈ 1.5 s
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Chapter 4

Frequency stability of the 369 nm

cooling laser

This chapter will describe the method used to stabilise the frequency of the 369 nm cooling

laser. The frequency at any point in time, t of a laser can be defined as [54]

f(t) =
1

2π

dφ

dt
(4.1)

where φ is the phase of the laser oscillation and f(t) is the laser frequency at time, t.

Fluctuations in this frequency are known as frequency noise and are therefore directly

related to fluctuations in the laser’s phase. Laser phase fluctuations have three main

origins:

1. Mechanical: such as vibrations of the lasers diffraction grating which can cause

the cavity length to fluctuate.

2. Electrical: such as shot noise and thermal noise which can cause fluctuations in

the current through the diode and the voltage applied to the piezo.

3. Quantum: caused by the addition of photons with random phase to the laser cavity

due to spontaneous emission.

While it could be possible to minimise each of these sources individually (with the excep-

tion perhaps of quantum fluctuations), it’s often easier and more practical to stabilise the

laser frequency indirectly using a feedback circuit. This is the method employed within

the stabilisation systems described in this chapter.

This chapter will begin by discussing how stability is measured and will go on to explore

what frequency stability of the 369 nm light is required within the experiments described
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in this thesis. This chapter will then describe how a reference frequency is produced

by stabilising a 780 nm laser to an atomic transition in rubidium 87 and how, using this

reference frequency, the 739 nm laser frequency is stabilised using a dual resonance method.

As the 369 nm light is produced by frequency doubling the 739 nm laser this results in

369 nm frequency stability.

4.1 Measuring stability

The stability of the laser frequency is measured by passing the light through a Fabry-Perot

cavity1. When the laser frequency is being scanned over time, peaks in the amount of light

transmitted through the cavity are observed. These peaks are known as Fabry-Perot peaks

and have a peak to peak distance in frequency space equal to the free spectral range of

the cavity. This is given by [54]

∆f =
c

2nlc
(4.2)

where n is the refractive index of the cavity (=1.000277 for air) and lc is the cavity length.

Therefore, if the laser frequency was set at a point half way up a Fabry-Perot peak where

the transmission through the cavity is 50 % of it maximum value, any frequency fluctu-

ations can be detected by observing any changes in the transmission of light through the

cavity. This is shown in figure 4.1, a decrease in transmission will indicate an increase

in laser frequency and an increase in transmission will indicate a decrease in laser fre-

quency. By knowing the peak height, peak width and peak to peak distance, this change

transmission with frequency can be calibrated.
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Figure 4.1: By setting the frequency of light to a point half way up the Fabry-Perot peak,
the stability of that laser frequency can be measured. An increase in light transmission
indicates a decrease in laser frequency and a decrease in light transmission indicates an
increase in laser frequency.

1All cavities used within this chapter were built to the same design as those described within [55]
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Using this method, the change in laser frequency of the 739 nm laser2 over 1 ms was

measured and shown in figure 4.2 (a). The light was coupled into a cavity and the trans-

mission through the second cavity mirror was measured using a fast photodiode3.

There are two main ways of analysing this data. Firstly the discrete Fourier transform

of the data can be taken. The discrete Fourier transform of a set of data can be calculated

using Mathematica. The Mathematica definition of a discrete Fourier transform is given

by [56]

DFT (t) =
1√
N

N∑
r=1

drsin
π

N
(r − 1

2
)t (4.3)

where N is the total number of data points, dr. This transforms the data into frequency

space so the main frequency components of the noise can be observed, this helps to identify

where the noise is coming from. Figure 4.2 (b) shows the Fourier transform of the data

shown in figure 4.2 (a). This shows a main noise component is present at 85 kHz

A second method is to look at the Allan variance [57]. This is found by first splitting

the time over which the data is measured into sets of a length ts. The average of the data

collected within each set is then taken. The variance between the averages across all the

sets is known as the Allan variance. This is written mathematically as

σ2(qn) = 〈qn − 〈qn〉〉 (4.4)

where qn is a set of indicies, where 0 ≤ n < ss and ss is the set size, given by

qn = 〈pi−j〉 (4.5)

where pi−j represents all the data points between (and including) i and j where i =

n
⌊
N
ss

⌋
+ 1 and j = (n+ 1)

⌊
N
ss

⌋
.

By varying the set size, ts, different noise components can be observed. At long set

times for example, high frequency noise averages to zero within each set meaning the only

difference between sets is due to long term drifts. This method has the advantage over

the Fourier transform as the stability in particular time regimes can be easily observed.

Figure 4.2 (c) shows the Allan variance of the data shown in figure 4.2 (a). The highest

Allan variance is present at small sample times and corresponds to quantum noise as well

as shot noise from electrical components4 The lowest Allan variance is present at a sample

2The 369 nm light required for experiments is formed through frequency doubling of a 739 nm laser.
3Thorlabs: DET36A/M
4It should be noted that this could be from the photodiode and oscilloscope and therefore doesn’t

necessarily correspond to laser noise.
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time of around 30µs. Above this, the variance is due to slower drifts from mechanical

effects. A discontinuity in the Allen variance is present at 166µs. The exact source of

this is unknown but it is suspected to be a consequence of the use of a finite number of

data points. At step sizes above 166µs, the number of data points can only be split into

a maximum of two sets. Any remaining data points above the number needed for the two

sets is then ignored. This can cause a discontinuity in the Allan variance.

4.2 Stability requirements

The 369 nm cooling laser is used at three main points within a typical experiment:

• Cooling

• State preparation

• State detection

During cooling, for experiments where the ions mean vibrational quantum number, n̄, (see

appendix D) is not important5, the 369 nm laser has the lowest stability requirements.

Providing the laser frequency remains below the resonant frequency to prevent heating

and remains close enough to the resonant frequency to provide efficient Doppler cooling,

any frequency fluctuations are not an issue. This is because cooling pulses are applied for

long periods of time and the resultant state is not important. For state preparation and

detection however, frequency stability is more important.

4.2.1 State preparation

As shown in chapter 3, during state preparation, the 369 nm laser is applied for approxim-

ately 20µs, which together with 2 GHz sidebands results in the population being optically

pumped into the 2S 1
2
F = 0 level. This is most efficient when the frequency of the 369 nm

light with the addition of 2 GHz sidebands is resonant with the 2S 1
2
F = 1 to 2P 1

2
F = 1

transition. Detuning from this frequency will cause the transition probability to be smaller

which will result in longer preparation times being needed as shown in figure 4.3. Detun-

ings caused by laser instability during a pulse sequence with a fixed preparation time will

therefore cause a random infidelity in state preparation.

5This is the case for the majority of experiments within this thesis
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Figure 4.2: (a) The change in frequency over time of the 739 nm laser signal. The data
was taken by observing the transmission through a Fabry-Perot cavity around the half
way point of a Fabry-Perot peak using a fast photodiode. (b) A Fourier transform of the
data shown in (a). (c) A plot of the Allan variance of the data shown in (a).
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Figure 4.3: Figure showing the time taken to prepare 99.9 % of the population into the 2S 1
2

F = 0 level vs the frequency of the 369 nm laser in terms of detuning from the resonant
frequency. This was simulated using the rate equation program discussed in chapter 3
with 66 % of the 369 nm light within the 2 GHz sidebands and using 369 nm and 935 nm
intensities equal to 0.1 Isat and 10 Isat respectively.

4.2.2 State Detection

During state detection, a 369 nm laser resonant with the 2S 1
2
F = 1 to 2P 1

2
F = 0 transition

is applied for approximately 800µs, during which any population present within the 2S 1
2

F = 1 level will undergo a closed cooling cycle and the emitted photons will be collected.

Figure 4.4 shows the effect the 369 nm frequency has on the number of collected photons.

Figure 4.4 shows that if, due to laser frequency instabilities, the laser becomes detuned

from resonance during detection, the number of photons collected during detection will be

reduced. This will have a significant effect on the state detection fidelity.

4.2.3 Stability regimes

The Allan variance needs to be minimised for 20 us and 800 us to minimise errors in

state preparation and state detection respectively. In addition, during an experiment, the

frequency needs to be stable between repeat applications of a pulse sequence as well as

throughout the whole experiment which corresponds to times of between 0.1 and 1 s and

10 and 60 minutes respectively, therefore, errors due to DC drift also need to be minimised.
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Figure 4.4: Figure showing the average number of collected photons from an ion prepared
in the 2S 1

2
F = 1 level vs the frequency detuning of the 369 nm laser from resonance. This

was simulated using the rate equation program discussed in chapter 3 using 369 nm and
935 nm intensities equal to 0.1 Isat and 10 Isat respectively.

4.3 Feedback mechanisms

The basis behind all the stabilisation methods used within this chapter is known as the

feedback mechanism. The basic idea behind a feedback mechanism is shown in figure

4.5. The parameter to be stabilised is first measured and amplified, which is then used to

form an error signal. This is simply a voltage which is proportional to the change in the

parameter from its required value. The error signal is then sent into a proportional-integral

(PI) controller. This creates a feedback signal which, when applied to the experiment, will

correct for the fluctuation in the parameters value.

Figure 4.5: General schematic of a feedback system.

The remainder of this chapter will describe several different feedback mechanisms used

for the stabilisation of the 739 nm laser. These are outlined in section 4.4. The method

of parameter measurement and error signal production will vary between the different

mechanisms and will therefore be described individually as each mechanism is discussed.

The method by which the feedback signal is produced using a PI controller is however the
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same for all the different mechanisms and will therefore now be described.

4.3.1 Producing feedback signals: the PI controller

As previously mentioned, a PI controller converts an error signal, which is a voltage pro-

portional to the difference in a measured parameter from its ideal value, to a feedback

signal which, when applied to the experiment, corrects for this difference. A PI controller

consists of a proportional and an integrating amplifier. The proportional amplifier pro-

duces a signal sP (t) which is proportional to the error signal, D(t), with a proportionality

constant KP [58],

sP (t) = KPD(t). (4.6)

KP is known as the proportional gain and controls the size of the feedback signal and

therefore the speed at which the parameter will move back towards its initial value. If

the gain is too high, the response will occur faster than the time taken for the change in

the error signal to reach the PI controller therefore the parameter will overshoot its ideal

value. This will result in the parameter oscillating around the ideal value.

While the proportional term can be very effective at correcting for fast oscillations,

alone it is ineffective at compensating for slow long term drifts. These are corrected for

by the integrating amplifier. The integrating amplifier produces a signal sI(t) equal to

the integral of the error signal over a predetermined time constant,
∫ t

0 D(t), times by a

proportionality constant known as the integral gain KI [58],

sI(t) = KI

∫ t

0
D(t′)dt′. (4.7)

As with the proportional gain, high integral gain increases the speed of the feedbacks

response. However, too high a gain and the parameter will overshoot and oscillate around

it ideal value.

The schematic for the home-built PI controllers used within the locking setup is shown

in figure 4.6. The amplifier gains, KP and KI are adjusted using variable resistors.

4.4 Stabilising the 739 nm laser

To stabilise the frequency of a laser, a reference frequency is first required. This is a

frequency which is constant and well known, such as an atomic transition frequency. The

difference between the laser frequency and the reference frequency can then be calcu-

lated and compared to the difference between the reference frequency and the ideal laser
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Figure 4.6: Schematic for the homebuilt PI controllers used within the locking setup.
The controller consists of eight parts. A controls the polarity of the error signal. B is
a summing amplifier which adds the error signal to a input offset generated by C. D
controls the input amplitude of the signal into the device. The signal is then split and
sent through an integrating amplifier E and a proportional amplifier F in parallel before
being recombined using a second summing amplifier G. G also combines an output offset
produced by H.

frequency.

For the lock described in this chapter, the reference used will be an atomic hyperfine

transition within rubidium 87. A 780 nm laser is locked to this transition using saturated

absorption spectroscopy. This will be explained in section 4.4.1. Two methods of compar-

ing this stable 780 nm laser to the 739 nm laser will then be discussed. Section 4.4.2 will

discuss a scanning cavity lock, which compares the peak positions of the two lasers within

a scanning Fabry-Perot cavity. Section 4.4.3 will then discuss a dual resonant lock, which

uses the stable 780 nm laser to stabilise the length of a Fabry-Perot cavity. The 739 nm

laser is then stabilised to this cavity.

4.4.1 Stabilising the 780 nm laser to rubidium

To stabilise the 780 nm laser to a hyperfine transition in rubidium 87, a method of measur-

ing the transition frequency is required. An ideal method would be to scan the frequency

of a 780 nm laser incident on a group of perfectly stationary rubidium atoms. The atoms

would absorb photons when the laser frequency is equal to the hyperfine transition fre-

quencies of rubidium resulting in dips in the intensity of the laser light which could be

detected using a photodiode. Unfortunately, however, rubidium atoms within a vapor cell

are not stationary. The frequency of the photons absorbed by each atom therefore depend
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on the atoms velocity as a result of the Doppler effect. Due to the large range of velocities

present in a gas at room temperature, the resultant frequencies of laser light absorbed for

a transition become broadened over all transitions. As a result, the individual hyperfine

transition frequencies cannot be distinguished. To find these frequencies a method known

as saturated absorption spectroscopy is used.

Saturated absorption spectroscopy

To detect the hyperfine transition frequencies of rubidium atoms within a vapor cell,

the 780 nm light needs to be split into two beams, these are sent counter-propagating

through the vapor cell. The first laser beam is known as the pump beam. An atom will

absorb photons from this pump beam and become saturated when the following equation

is satisfied [59],

vr =
λ(ωl − ω0)

2π
(4.8)

where vr is the speed of the atom in the direction parallel to the laser beams, ωl is the

frequency of the 780 nm light, ω0 is the resonant frequency of a transition within the

rubidium and λl is the wavelength of the laser.

The second beam is known as the probe beam. An atom will be resonant with this

beam if the following relation is obeyed,

vr =
λ(ω0 − ωl)

2π
. (4.9)

An atom cannot however absorb photons from the probe beam if it has already been

saturated by the pump beam. By equating equations 4.8 and 4.9, it can be concluded

that this will occur when ωl equals ω0. When the laser frequency is equal to a hyperfine

transition frequency, photons from the probe beam will therefore not be absorbed by the

rubidium and as a result, a peak will be seen in the probe beams intensity.

Peaks will also be present when the velocity of an atom is such that the pump beam

is resonant with a different transition to the probe beam. These are known as crossover

peaks.

The signal from a photodiode measuring the intensity of the probe beam during a

frequency scan of the 780 nm laser over the main hyperfine transitions in rubidium is

shown in figure 4.7(a). The structure on the left is due to the isotope rubidium 87 and

the structure on the right is due to the isotope rubidium 85. The 87 isotope has the most

well defined peaks, therefore this is the isotope which we use to stabilise the 780 nm laser.
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The inset is a zoomed in image of these peaks. Figure 4.7(b) shows the energy spectrum

of rubidium 87.
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Figure 4.7: (a) Saturation absorption spectrum of a rubidium vapor cell with an inset
showing the main peaks of rubidium 87. (b) Energy level structure of rubidium 87 giving
the transitions represented by peaks Fa, Fc and Fe. Peaks Fb and Fd are crossover peaks
caused by the pump and the probe beam each exciting different transitions within an
atom. Fb and Fd correspond to crossovers of the Fa and Fc peaks and the Fc and Fe peaks
respectively.

Before an error signal is created, the absorption of 780 nm light by rubidium without

the presence of a pump beam, known as the background Doppler signal, is first subtracted

from the probe photodiode signal. This eliminates the background ’curve’ and the resultant

signal, when the 780 nm laser frequency is scanned, is simply a row of peaks each at

frequencies corresponding to transition resonant frequencies or crossovers.

Creating an error signal

As previously described, an error signal is a voltage proportional to the difference in the

measured frequency from its ideal value. The peaks present in the absorption signal of

the 780 nm rubidium probe beam when the laser frequency is scanned can be turned into

an error signal by differentiating them with respect to frequency as shown in figure 4.8.

To experimentally differentiate these peaks, a lock-in amplifier method is used6. This

6Also known as the Pound-Drever-Hall technique.
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Figure 4.8: When a peak is differentiated with respect to frequency it forms an error signal.
Close to the resonant frequency, ωx, the amplitude of the error signal is proportional to
the distance in frequency from ωx.

method is explained briefly here, for more details on how lock-in amplifiers work, please

refer to [60].

The 780 nm laser current is first modulated at a reference frequency, fr, of 100 kHz.

As a result, the intensity of the laser as a function of laser frequency is given by

I(ω) = I (ω0 + α sin(frt+ φ1)) (4.10)

= I(ω0) + α sin(frt+ φ1)
dI(ω0)

dω
+ α2 sin2(frt+ φ1)

d2I(ω0)

dω2
+ ..... (4.11)

where I(ω0) is the lasers intensity at a frequency ω0, φ1 is the phase of the modulation

signal and α is the modulation amplitude. This intensity will be converted into a voltage

using a photodiode. This voltage will be linearly proportional to the intensity and will

therefore, to first order, be equal to

V (ω) ≈ V (ω0) + α sin(frt+ φ1)
dV (ω0)

dω
. (4.12)

This voltage is then sent into a lock-in amplifier. The lock-in amplifier multiplies this signal

by an oscillating voltage, V (t), of the same frequency as the 780 nm current modulation,

V (t) = sin(frt+ φ2). This results in the following voltage,

V× = sin(frt+ φ2)V (ω0) + α sin(frt+ φ1) sin(frt+ φ2)
dV (ω0)

dω
(4.13)

= sin(frt+ φ2)V (ω0) +
α

2
(cos(φ1 − φ2)− cos(2frt+ φ1 + φ2))

dV (ω0)

dω
. (4.14)

This voltage is then averaged over one modulation period to give the output voltage of

the lock-in amplifier,

Vout =

∫ 2π

0
V×dt = πα cos(φ1 − φ2)

dV (ω0)

dω
. (4.15)



67

The output voltage is therefore proportional to the differential of the input with respect

to frequency. This error signal is then sent to a PI controller to form a feedback signal

which, when sent to the 780 nm laser grating piezo, stabilises the laser to the center of a

transition peak.

4.4.2 Scanning cavity lock

One method of stabilising the 739 nm laser frequency using the stable 780 nm laser is a

scanning cavity lock. The method behind the lock is summarised here. For a more detailed

description please refer to the thesis of Robin Sterling [55].

The 739 nm and 780 nm laser beams are first combined using a polarising beam splitter

(PBS) and sent into a Fabry-Perot cavity. The transmission of these beams through the

cavity is then split back into the two separate 780 nm and 739 nm beams by another PBS

and detected using separate photodiodes whose signals are sent to the Labview realtime

machine. The length of the cavity is then scanned by modulating a piezo attached to one

of the cavity mirrors. As a result, peaks in time are observed in the transmission of the

laser beams through the cavity. The position in time of these peaks will be dependent

on the frequency of the lasers and can therefore be used to stabilise the 739 nm laser

frequency. As the 780 nm laser has been stabilised, the relative position of the 739 nm

peaks to the 780 nm peaks will determine the stability of the 739 nm laser. This relative

position can therefore be used as an error signal. An inbuilt Labview PI controller is used

to send feedback from this error signal to the 739 nm laser grating piezo which locks the

739 nm peak position and therefore its frequency.

This method of stabilisation is limited by the speed of Labview realtime which runs

at 500 Hz [37]. This proved to not be stable enough for our main cooling laser and so a

dual resonance lock is used (see section 4.4.3). The scanning cavity lock is however used

to stabilise the frequency of the 935 nm repumper laser as this laser is operated at a high

power to induce power broadening on the 935 nm transition, as described in chapter 3,

and therefore does not require the same level of stability.

4.4.3 Dual resonant lock

A faster method of stabilising the frequency of the 739 nm laser using the stable 780 nm

laser is a dual resonance lock. The basic principle is to first stabilise the length of a Fabry-

Perot cavity to the 780 nm laser frequency. The 739 nm laser frequency is then stabilised

to the length of the stable Fabry-Perot cavity. How these two processes are performed will
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now be described in more detail.

Locking the cavity length to the 780 nm laser frequency

When the cavity length is scanned, peaks will be present in the transmission of 780 nm

light through the cavity. These peaks describe the cavity lengths where the 780 nm laser

is resonant with the cavity. Using the lock-in amplifier method described in section 4.4.1,

the transmission of the 780 nm laser through the cavity can therefore used to form an

error signal. When sent through a PI controller this produces feedback which is applied

to the cavity mirror piezo to stabilise the cavity length to a point where the 780 nm laser

is resonant.

Locking the 739 nm laser frequency to the cavity length

Due to bugetary constraints, to lock the 739 nm laser to the stabilised cavity, a side of fringe

method is used. The side of fringe method is a simple and cheap method of error signal

production as it uses the photodiode signal directly as the error signal. When the 739 nm

laser frequency is scanned, peaks will be observed. These peaks will be centered around

the frequencies at which the 739 nm laser is resonant with the cavity. By adding an offset

voltage to these peaks equal to half the peak height, the side of these Fabry-Perot peak

become equivalent to the required error signal as shown in figure 4.9. Therefore, sending
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Figure 4.9: Diagram showing how a Fabry-Perot peak can be used to stabilise laser fre-
quency. The addition of an offset voltage results in the side of the peak resembling an
error signal as the voltage varies linearly from the locking point. This can then be sent
directly to a PI controller to produce the stabilising feedback signal.

the offset photodiode signal through a PI controller results in a feedback signal. Applying

this feedback signal to the 739 nm laser piezo results in the 739 nm frequency becoming
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stabilised to a frequency slightly higher than the resonant frequency of the laser with the

cavity. This side of fringe method does however have several disadvantages. Firstly, the

amplitude of noise which can be corrected for is limited by half the width of the peak

and secondly, the lock is sensitive to any amplitude fluctuations as these will effect the

peak height. Despite these disadvantages, this method provided sufficient stability of the

739 nm frequency for the experiments described within this thesis. If a greater degree of

stability is needed in the future this should be upgraded to the lock-in amplifier method.

4.5 Experimental setup

This section will explain the experimental equipment setup used to perform a rubidium

lock on the 780 nm laser and a dual resonance lock of the 739 nm laser. Section 4.5.3 will

then describe how the photodiodes are shielded from environmental noise using a box and

finally section 4.5.4 will give a step by step guide of how to operate the equipment to

produce an effective lock.

Figure 4.10 and 4.11 show the respective electronics and optics setup developed to

perform a rubidium lock on the 780 nm laser and a dual resonance lock of the 739 nm laser7.

The red numbers and letters are labels which allow the various optics and equipment to

be identified with ease for the remainder of the chapter.

4.5.1 780 nm rubidium lock

As shown in figure 4.11, upon exiting the 780 nm laser box, a small percentage of the

beam (≈ 10 %) is reflected by a glass plate (g). This passes through a half waveplate (d)

which allows the ratio of light reflected and transmitted through the subsequent PBS (h)

to be adjusted. The transmitted beam passes through a rubidium vapor cell and onto

the 780 nm Rb photodiode. The reflected beam is sent through the rubidium vapor cell

in the opposite direction where it overlaps with the transmitted beam. These two light

beams form the required probe and pump beams for saturated absorption spectroscopy.

The optimum power ratio of these beams was found to be equal to 3:1. Another small

percentage of the main 780 nm beam (≈ 5 %) is reflected by another glass plate (b). This

is also sent through the rubidium vapor cell and detected by a separate photodiode. This

forms the background absorption signal.

7Note: The optics setup to perform a scanning cavity lock of the 935 nm laser is also shown. Please see
the thesis by Robin Sterling [55] for details of this.
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Figure 4.10: Diagram showing electrical schematic of electronics used to lock the 739 nm
laser.
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Figure 4.11: Diagram showing the on table optical setup used to lock the 739 nm and
935 nm lasers.
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4.5.2 Dual resonant lock

The 780 nm beam polarisation is adjusted to vertical immediately after it exits the laser

using a quarter waveplate (k). This allows it to pass straight through a PBS (e) to

an AOM8. The AOM is set up in a double pass configuration to allow the frequency of

the light to be adjusted without affecting the beam path. Additionally, this doubles the

available scan range when adjusting the AOM frequency. A double pass through a quarter

waveplate (p) adjusts the polarisation of the beam to horizontal which allows it to be

reflected by the beam splitter (e) and sent into a Fabry-Perot cavity (r). When the light

is at a frequency resonant with the cavity it will exit the cavity and be detected by a

photodiode (s). The 739 nm laser is shown in figure 4.11 by the dotted red line. The beam

is vertically polarised by the half waveplate (o) which allows it to pass straight through

the beam splitter (e) and be overlapped with the 780 nm beam before passing through the

Fabry-Perot cavity (r). The 739 nm light resonant with the cavity is then detected by a

photodiode (m).

To maximise the beam power available for the experiment, the beam power taken from

the main 739 nm beam for locking is quite weak (≈ 200µW). The current produced by

the photodiode is therefore passed through a transimpedance amplifier (11) to produce a

large enough error signal amplitude.

A 3:1 potential divider (20) and summing amp are present between the PI controller

and the Toptica system. This prevents damage to the Toptica piezo which is only specified

to receive a 0-5 V modulation input whereas the PI controller can produce up to 12 V as

well as allowing the addition of an offset voltage. This offset voltage is used to adjust the

739 nm frequency while it is unlocked.

Wavelength adjustment

As previously mentioned, when unlocked, the 739 nm wavelength can be adjusted using

the variable potential divider (1) which changes the magnitude of a DC offset which is

being sent to the Toptica laser grating piezo.

When locked, this will have no effect as the PI controller will produce an equal and

opposite voltage to keep the 739 nm frequency equal to a point where the transmission

through the cavity is half its maximum value. The 739 nm frequency can however be

adjusted by changing the frequency of the 780 nm light which the cavity length is stabilised

to. This will cause the cavity length to change which results in the 739 nm frequency

8Interaction corp 2001A2.78
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where the laser transmission through the cavity is half its maximum value changing. As

previously mentioned, the 780 nm frequency going into the transfer cavity can be adjusted

by changing the frequency sent to an AOM within the 780 nm beam path. This AOM is

setup in a double path configuration so a change in frequency doesn’t effect the spatial

position of the beam. The AOM is powered by a voltage controlled oscillator (VCO) (15)

and can provide a single path frequency shift of between 0 and 300 MHz determined by

applying a variable voltage (0-18 V) to the VCO9. This is produced by Labview realtime

and sent through a low pass filter to minimise noise. The signal from the VCO is sent

through an attenuator (16) and a +30 db amplifier (19) which together provide a power

which gives optimum AOM efficiency10. Changing the AOM frequency will also have an

effect on the amplitude of 780 nm light passing through the AOM. This will not effect

the lock stability as the lock-in amplifier method used to form the error signal is, to first

order, unaffected by peak height.

4.5.3 Optics containment box

The whole on table optics setup shown in figure 4.11 is contained within a box to shield

the photodiodes from environmental noise. The box contains several layers as shown in

figure 4.12 and includes rubber and foam to shield from acoustic vibrations and a layer

of aluminum to act as a Faraday cage to shield from electromagnetic noise. Figure 4.13

shows the effect this box has on the Fourier transform of the locked 369 nm laser. Figure

4.13 shows that when the lid of the box is removed, a significant amount of 50 Hz noise is

present.

4.5.4 How to lock users guide

This section will provide a step by step guide of how to use the equipment shown in figures

4.11 and 4.10 to stabilise the 739 nm laser.

Firstly the 780 nm wavelength needs to be stabilised to an atomic transition in rubid-

ium.

• Adjust the 780 nm laser current and grating piezo voltage (10) until the wavelength

of an atomic transition is reached. Transition wavelengths are given in figure 4.7.

9An adjustment of the AOM frequency without reoptimising the beam path does however result in a
reduction in the efficiency of light passing through the AOM. As a result, the maximum frequency shift
during operation is only on the order of 40 MHz

10The attenuator is needed to ensure the signal power does not exceed the maximum input power of the
amplifier.
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Figure 4.12: (a) Picture showing the layering of the box used to insulate the locking optics
from environmental noise. The bottom three layers are formed from an acoustic underlay
(The Sound Solution NSSF7). This is attached using duct tape to an aluminum layer,
created using aluminum foil, and a rigid MDF layer. The box encloses four sides of the
optics with a lid consisting of MDF covered with aluminum on the top as shown in (b).

Ensure there is roughly a 50 pm scan range both above and below this wavelength

before the laser goes multimode.

• If the wavelength cannot be found it may be necessary to adjust the laser diode

temperature. Ensure that you wait 5-10 minutes after doing this to allow the laser

temperature to stabilise.

• Turn on the modulation signal generator (3) ensuring the switch is switched to the

“780” position. This causes the laser piezo voltage to oscillate from 0 to 5 V at

100 Hz. On channel one of oscilloscope 1 (8) you should now see the saturated

absorption spectrum of rubidium as shown in figure 4.7.

• If the signal is not present, the optical setup may need realigning. First ensure the

light from mirror (g) is hitting the photodiode. Then, use mirrors (f) and (i) to

overlap the pump beam with the probe beam within the Rb cell. (note: This can

sometimes be easier to do by first removing the Rb vapour cell.)
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Figure 4.13: Graphs showing the Fourier transform of the transmission of locked 739 nm
light through a locked Fabry-Perot cavity when the lid of the box is removed (blue) and
present (red). A large peak in noise is present at 50 Hz only when the lid is removed.

• If there is still no signal, ensure the photodiode isn’t being saturated by misaligning

the setup slightly using mirror (g).

• Once the spectrum has been found, use mirrors (f-j) to optimise the absorption peaks

and mirrors (b) and (c) to optimise the background cancellation.

• Channel two of oscilloscope 1 (8) should also show the error signal produced from this

spectrum. This should be optimised using the sensitivity, phase and time constant

settings on the lock-in amp (4) to produce the steepest signal with the least noise.

• Adjust the offset on the lock-in amp (4) to equal ground as this is the steepest point

in the error signal.

• Turn the switch after the modulation signal generator (3) to “cavity” and turn the

output of the signal generator off.

• If the wavelength has drifted in this time find the transition wavelength again using

the 780 nm grating piezo controller (10).

• On the 780 nm PI controller box (12) switch on the P switch followed by the I switch.

• If the error signal shown on oscilloscope 1 (8) starts to oscillate, increase the time

constant on the lock in amplifier (4).
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Next the Fabry-Perot cavity length needs to be stabilised to the 780 nm wavelength and

then the 739 nm wavelength needs to be stabilised to the cavity length. These have to be

done together as once the cavity is locked it cannot be scanned.

• Find the 739 nm wavelength by adjusting the DC offset being sent to the Toptica

grating piezo using the variable potential divider (1).

• If the wavelength is out of range of the potential divider, the grating piezo voltage

and diode current on the Toptica system should be adjusted.

• Turn on the signal generator (3). This causes the cavity piezo voltage to oscillate

from 0-5 V at 100 Hz. On oscilloscope 3 (9) you should now see Fabry-Perot peaks

from the 780 nm and the 739 nm beams.

• The peak sizes should be greater than 0.25 V for the 780 nm and greater than 0.2 V

for the 739 nm. If not, optimise the peaks by first using mirrors (n) and (l) to

optimise the 739 nm peaks followed by mirrors (a) and (d) to optimise the 739 nm

peaks.

• If the 780 nm peaks are still below 0.25 V, the beam position may have drifted and

the AOM angle (t) may need to be adjusting to compensate.

• On oscilloscope 2 (7) you should see the Fabry-Perot peaks from the 780 nm beam

as well as the corresponding error signal. This error signal should be optimised

using the sensitivity, phase and time constant settings on the lock in amplifier (5)

to produce the steepest signal with the least noise. (note: The signal can be made

clearer by reducing the scan frequency on the signal generator (3).)

• Adjust the offset on the lock-in amp (5) to equal ground as this is the steepest point

in the error signal.

• Turn off modulation (3).

• Flip the P switch and then the I switch on the cavity PI controller box (13). The

signal on oscilloscope 2 (7) should jump up to the top of the peak. If nothing happens

flip the I switch and then the P switch back, flip the polarity and retry. If there are

large oscillations of the error signal on oscilloscope 2 (7) increase the time constant

of the lock in amp (5) until the oscillations become flat.

• Adjust the 739 nm wavelength using the potential divider (1) until the signal on

oscilloscope 3 (9) moves up the peak.
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• Flip the P switch and then the I switch on the 739 nm PI controller box. The 739 nm

peak signal should lock half way up the peak.

• If the locked wavelength is more than ±5 × 10−5 nm from the desired wavelength,

unlock both the 739 nm and cavity PI controller boxes. Adjust the cavity length

using the cavity piezo controller (10) and repeat the last three steps. Note: If the

wavelength is less/more than required, the cavity length should be decreased/increased

respectively.

• To adjust the wavelength of the 739 nm wavelength while locked, slowly adjust the

voltage being sent to the AOM by the Labview realtime.

If the 739 nm laser doesn’t stabilise, the offsets which cause the PI controllers to lock to

the side of the fringe should be checked. This is done using the following procedure:

• Disconnect the feedback going to the summing amp (20) and plug it into a spare

DC coupled oscilloscope.

• Turn on the modulation signal generator (3) ensuring the switch is in the “cavity”

position.

• With the P and I switches of the 739 nm PI controller (2) turned off, adjust the

controllers output offset so the output signal on the oscilloscope is equal to ground.

• Switch on the P switch of the PI controller (2). The scope should now show the

739 nm Fabry-Perot peaks.

• By adjusting the input offset of the PI controller (2), move the signal so that ground

is positioned half way up the peak.

• Reconnect the feedback to the Toptica and relock.

4.6 Results

Figure 4.14 shows the Allan variance of the frequency of the 739 nm light found by measur-

ing the transmission of the 739 nm beam through the stable Fabry-Perot cavity measured

at the side of a Fabry-Perot peak as described in section 4.1. The 739 nm is measured when

it is both, locked (red) and unlocked (blue), to the cavity. The graph shows that with a

sample time of 20-300µs, the locked variance is several times smaller than the unlocked

variance. The locked Allan variance of 0.1 MHz2 corresponds to a standard deviation of
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approximately 0.32 MHz. Using figure 4.3, the required preparation time should therefore

change by less than 90 ns between measurements. Above a sample time of 200µs the lock

gets more efficient and the Allen variance drops to below 0.01 MHz2 which is more than

two orders of magnitude smaller than the unlocked variance. 0.01 MHz2 is equivalent to a

standard deviation of 100 kHz. Therefore, using figure 4.4, with a state detection time of

800µs, the average number of photons collected should therefore change by less than 0.05

between measurements.
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Figure 4.14: Allan variance of the photodiode signal measuring the transmission of 739 nm
light through a stable Fabry-Perot cavity. The cavity length is set to around the half way
point of a Fabry-Perot peak and is shown both locked (red) and unlocked (blue).

The long term frequency stability can be measured directly using the wavemeter and

is given in figure 4.15. The locked signal (blue) is seen to be significantly more stable,

with a standard deviation of the 10 second moving average of 6.515 × 10−7 nm, than the

unlocked signal (red), which has a standard deviation of the 20 second moving average

of 3.3 × 10−6 nm. Figure 4.15 also shows the effect of locking the 739 nm laser to a free

cavity which has not been externally stabilised. The signal shows a slow drift in frequency

caused by thermal changes in the cavity. Instead of locking the cavity to a stable 780 nm

laser as presented here, this could have been minimised by constructing the cavity out of

a thermally stable material such as Invar.
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Figure 4.15: Long term frequency measurement of the 739 nm laser taken using the wave-
meter when the laser is locked to a stable cavity (blue), locked to a unstable cavity (green)
and unlocked (red). The bold lines show moving averages over 10 points.
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Chapter 5

Review and comparison of

entanglement schemes

An ion trap quantum computer will work by implementing quantum algorithms to a set

of ionic qubits. It can be shown [18] that any quantum algorithm can be produced using

a combination of single qubit rotations such as those shown in chapter 3 and a two qubit

entangling gate such as a controlled-not gate (CNOT) or controlled-phase gate (CZ). Three

different methods of producing such two qubit gates are the Cirac and Zoller gate [61],

the geometric phase gate [27, 62, 63] and the ultrafast pushing gate [64]. This chapter

will begin by introducing single qubit gates and will go on to discuss entanglement and

how CNOT and CZ logic gates affect a set of qubits. The three methods of implementing

entangling gates mentioned above will be explained and ways by which they can be realised

experimentally will be explored. Finally the chapter will compare all the methods to find

a suitable entanglement solution for our lab.

It should be noted that this chapter will make frequent reference to an ions motional

state. Motional states are the quantised energy levels describing a trapped ions motion

and are discussed in appendix D.

5.1 Quantum logic

As discussed in chapter 3, a qubit state is represented in matrix form by

|ψ〉 =

 q0

q1

 . (5.1)
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where q0 and q1 obey the relation q2
0 + q2

1 = 1 and determine the qubits position on the

Bloch sphere. Quantum logic gates are processes which transform one set of qubit states

to another. Unlike classical logic gates, which are preformed using electric components

which dissipate heat, quantum logic gates rely on the evolution of Hamiltonians using the

Schrödinger equation which makes them reversible and unitary.

5.1.1 Single qubit gates

Single qubit gates are formed using Pauli rotations such as the σz rotation discussed in

chapter 3 to rotate the qubit around the Bloch sphere. Three important single qubit gates

are known as the σx, σx and σx gates and act on the qubit state to produce 180◦ rotations

around the x, y and z axes of the Bloch sphere respectively. The matrixes associated with

these gates are as follows,

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (5.2)

The σx gate is the quantum equivalent of a classical NOT gate and acts to translate |0〉

into |1〉 and |1〉 into |0〉. The σy gate is similar to a NOT gate but also introduces a phase

to the qubit states by translating |0〉 into i |1〉 and |1〉 into −i |0〉. The σz gate leaves the

|0〉 state unchanged and adds a phase of -1 to the |1〉 state.

Another commonly seen single qubit gate is the Hadamard gate which is the result of

a rotation around the x axis of the Bloch sphere by 90◦, given by

Hd =
1√
2

 1 1

1 −1

 (5.3)

This gate maps the qubit computational basis states (|0〉 and |1〉) to equal superposition

qubit states where the population is shared equally between |0〉 and |1〉 as follows,

|0〉 Hd−→ 1√
2

(|0〉+ |1〉) ≡ |+〉

|1〉 Hd−→ 1√
2

(|0〉 − |1〉) ≡ |−〉 .
(5.4)

5.1.2 Two qubit gates

Gates applied to two qubits can be either separable or inseparable. Separable gates can be

split into separate single qubit gates in a tensor product. An example of a separable gate

is the H
(2)
d gate. This gate is the application of Hadamard gates to two separate qubits
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simultaneously, given by

H
(2)
d = Hd ⊗Hd =

1√
2

 1 1

1 −1

 ⊗ 1√
2

 1 1

1 −1

 =
1√
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

(5.5)

Gates which are inseparable, i.e. cannot be split using a tensor product into two single

qubit gates, result in the gate outcome for each qubit depending on the input values of

both qubits. These are known as entangling gates. The controlled-not (CNOT) gate is a

key example of this, performing a σx gate on the second qubit only when the input state

of the first qubit is equal to |1〉. This is represented by the following matrix and truth

table

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


|00〉 ⇒ |00〉

|01〉 ⇒ |01〉

|10〉 ⇒ |11〉

|11〉 ⇒ |10〉.

(5.6)

When a CNOT gate is applied to a pair of qubits where the first qubit is in a superposition

state, an entangled state is formed, for example,

|+0〉 =
1√
2

(|00〉+ |10〉) CNOT−→ 1√
2

(|00〉+ |11〉) . (5.7)

Both qubits have an equal probability of being in the |0〉 or |1〉 state, but by measuring the

state of the first qubit in the computational basis, the state of the second qubit collapses

and is known with 100 percent probability.

5.1.3 The Cirac and Zoller gate scheme

A method of producing a CNOT gate with trapped ions was proposed in 1995 by Cirac and

Zoller [65]. The scheme requires the ions to be cooled to their ground state of motion then

uses a laser, focused down onto the first ion, to excite a combined motional mode of the

two ions, conditional on the first ion being in the |1〉 state1. A second laser is then focused

down onto the second ion which will, as a result, experience a spin flip if the combined

motional mode is excited. The application of this scheme can be quite challenging as the

ions need to be in the ground state and, as the scheme requires individual addressing, the

1Coupling spin to motion will be explained further in section 5.3.6
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lasers need to be tightly focused onto each ion. Nevertheless, fidelities of up to 95 percent

have been achieved using the method described in [66].

5.1.4 Controlled-phase gates

Another example of an entanglement gate is the controlled-phase (CZ) gate. This has the

effect of applying a σz gate to the second qubit if the state of the first qubit is equal to

|1〉. The matrix and truth table for this gate are given by

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



|00〉 ⇒ |00〉

|01〉 ⇒ |01〉

|10〉 ⇒ |10〉

|11〉 ⇒ − |11〉 .

(5.8)

A CZ gate can be turned into a CNOT gate by the application of Hadamard gates to

qubit number two before and after the gate operation as shown in figure 5.1

qubit 1

qubit 2 HzH

H

z

Hadamard gate

CNOT gate

CZ gate

Figure 5.1: Creation of a CNOT gate from a CZ gate.

The remainder of this chapter will focus on the realisation of a CZ gate with trapped ions.

A CZ gate can be performed in a similar way to the Cirac and Zoller gate explained

in the previous section, an example of a method by which this is carried out is explained

in [67].

5.2 The Mølmer and Sørenson gate scheme

One of the main challenges of the Cirac and Zoller gate scheme is the requirement for

ground state cooling. In 1999, a scheme to produce a CZ gate on “hot” ions was proposed

by Mølmer and Sørenson [63]. The scheme was shown to be insensitive to the ion’s motional

state providing the ion stayed within the Lamb-Dicke regime, that is where

η2(2n̄+ 1) << 1 (5.9)
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Figure 5.2: Rabi oscillation routes during the Mølmer and Sørenson gate

where n̄ is the ions average motional quantum number (see appendix D) and η is the

Lamb-Dicke parameter, given by

η =
2πx0

λ
(5.10)

where λ is the wavelength of the incident radiation and x0 is the spatial extent of the ions

ground state wavefunction, x0 =
√

~
2mv .

The scheme involves applying two electromagnetic fields to the two ions with fre-

quencies slightly detuned by δv from the resonant frequency plus and minus a motional

frequency, ω1 = ω0 + v− δv and ω2 = ω0− v+ δv. Assuming the single ion Rabi frequency,

Ω, induced by these fields obeys the relation ηΩ << δv, known as the weak coupling re-

gime, the ions will undergo collective Rabi oscillations via the routes shown in figure 5.2.

The Rabi frequency of these oscillations is independent of the motional quanta n, and is

given by [63],

Ω̃ =
(Ωη)2

2δv
(5.11)

The truth table for this is given by [68],

|00〉 ⇒ cos Ω̃t
2 |00〉+ i sin Ω̃t

2 |11〉

|01〉 ⇒ cos Ω̃t
2 |01〉 − i sin Ω̃t

2 |10〉

|10〉 ⇒ cos Ω̃t
2 |10〉 − i sin Ω̃t

2 |01〉

|11〉 ⇒ cos Ω̃t
2 |11〉+ i sin Ω̃t

2 |00〉

|φ0φ0〉 ⇒ e−i
Ω̃t
2 |φ0φ0〉

|φ0φ1〉 ⇒ ei
Ω̃t
2 |φ0φ1〉

|φ1φ0〉 ⇒ ei
Ω̃t
2 |φ1φ0〉

|φ1φ1〉 ⇒ e−i
Ω̃t
2 |φ1φ1〉.

(5.12)

The second truth table shows the transformation of the states in the σφ basis, where

|φ0,1〉 = (|0〉 ± eiφ |1〉)/
√

2), with φ = π/2. After a time t = π/Ω̃, only the |φ0φ0〉 and
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|φ1φ1〉 states have gained a phase2 of -1.

The Mølmer and Sørenson gate was later discovered to be a special case of a gate

known as the geometric phase gate [62]. The geometric phase gate will be described in

the following section.

5.3 Geometric phase gates

A highly successful method of producing a CZ gate is to use a geometric phase gate.

This method avoids the main issues associated with the Cirac and Zoller scheme, namely,

ground state cooling and the need for tightly focused laser beams, by the application of a

oscillating state dependent force to a pair of ions. This will result in the state dependent

movement of the ions’ motional states resulting in an overall phase change which depends

on the initial state of both the ions. To explain this process in more detail, I will begin by

looking at the effect an oscillating state dependent force has on a single ion before looking

at how this translates to two ions.

5.3.1 Oscillating force on a single ion

A single ion qubit trapped in a harmonic well can be modeled as a quantum harmonic

oscillator whose motion is described in equation 3.31 of chapter 3 as

Ĥb = ~v
(
â†â+

1

2

)
(5.13)

where v is the trap secular frequency and â and â† are the respective state lowering and

raising operators. The addition of an external time dependent force, f(t), to such a system

will result in the following addition to this Hamiltonian [69]

H ′ = x0(â+ â†)f(t) (5.14)

It will be assumed that f(t) is spatially uniform and oscillates at a frequency slightly

detuned from v,

f(t) = F cos ((v − δ)t) (5.15)

where δ is the detuning. Combining equations 5.14 and 5.15 and moving into the in-

teraction picture with respect to Hb gives the interaction Hamiltonian, ĤI where ĤI =

2Ignoring the global phase, i.
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e
iĤbt

~ Ĥ ′e−
iĤbt

~ ,

ĤI = x0

(
âe−ivt + â†eivt

)
F cos ((v − δ)t) (5.16)

This can be simplified by writing cos(x) in terms of exponentials and applying the rotating

wave approximation to eliminate the fast rotating terms [70],

ĤI(t) =
Fx0â

2
e−iδt +

Fx0â
†

2
eiδt (5.17)

The evolution of a state, |ψ〉, being acted on by this Hamiltonian is found by solving the

Schrödinger equation, i~d/dt |ψ〉 = Ĥ |ψ〉.

The solution to the Schrödinger equation for a time dependent Hamiltonian is given

by the Mangus expression which to the first order is given by [71],

|ψ(t)〉 = eÂ(t)eB̂(t) |ψ(0)〉 (5.18)

where

Â(t) =
1

i~

∫ t

0
dt′Ĥ(t′) (5.19)

and

B̂(t) = −1

2

(
1

i~

)2 ∫ t

0
dt′′
∫ t′′

0
dt′[Ĥ(t′), Ĥ(t′′)].

= −1

2

(
1

i~

)∫ t

0
dt′′[Â(t′′), Ĥ(t′′)]. (5.20)

For the interaction Hamiltonian given by equation 5.17, A(t) is equal to,

Â(t) =
Fx0

2δ~

(
(1− eiδt)â† + (e−iδt − 1)â

)
. (5.21)

As a result, the first term in equation 5.17 has the exact form of the displacement operator

(see appendix D)

eA(t) = D(α) (5.22)

= eαâ
†−α∗â (5.23)

where α is given by

α =
Fx0

δ~
(1− eiδt). (5.24)

The application of the Hamiltonian 5.17 to an initial motional state will therefore result
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in the formation of a coherent motional state, |α〉. When the ion is initially in the ground

state

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (5.25)

which will follow a trajectory in phase space described by α. The real and imaginary parts

of α describe the expectation values of the position and momentum of the motional state3,

〈x〉 = Re[α] (5.26)

=
Fx0

δ~
(1− cos(δt)) (5.27)

〈p〉 = Im[α] (5.28)

= −Fx0

δ~
(sin(δt)). (5.29)

This trajectory is plotted in figure 5.3.

In addition to the displacement operator, equation 5.18 also contains a second term,

eB(t). Using equation 5.20, B(t) is equal to

B(t) =
Fx0

4i~

∫ t

0
dt′
[
(αâ† + α∗â), (e−iδtâ+ eiδtâ†)

]
(5.30)

=
Fx0

4i~

∫ t

0
dt′
(
α∗eiδt

′
+ αe−iδt

′
)

(5.31)

=
F 2x2

0

2iδ~2

(
sin(δt)

δ
− t
)

(5.32)

for the interaction Hamiltonian. This second term therefore represents the addition of a

time dependent phase, Φ(t), to the motional state

eB(t) = eiΦ(t) (5.33)

where Φ(t) is given by

Φ(t) =
F 2x2

0

2δ~2

(
t− sin(δt)

δ

)
. (5.34)

This phase corresponds to the area sweeped out by the coherent motional state and the

Re(α) axis of phase space as it cycles in time as shown in figure 5.3 [68] and is therefore

known as a geometric phase.

The coherent motional state has performed a full rotation in phase space after at time

t = 2π
δ . At this time α equals zero and the motional state has returned to its initial state.

3It should be noted that this is within the rotating frame with respect to the ions secular motion
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Figure 5.3: The main graph shows the movement of an ion’s motional state in phase space
when acted on by an oscillating force. The dotted graphs show the time evolution of the
expectation values of position and momentum of the motional state.

The state has however picked up a geometric phase equal to

ΦT = Φ(2π/δ) = π

(
Fx0

δ~

)2

. (5.35)

5.3.2 State dependent oscillating force on a single ion

If the applied force, F , is state dependent (ie, two orthogonal states, |m1〉 and |m2〉,

experience different forces, Fm1 and Fm2) the phase given by equation 5.35 will depend

on the internal state of the ion. This state dependent phase is the key to producing a CZ

gate.

Two orthogonal qubit states represent a state basis therefore, using equation 5.17, the

Hamiltonian describing this system is given by [62]

ĤI =
∑
m1,m2

(
Fmx0â

2
e−iδt +

Fmx0â
†

2
eiδt) |m〉 〈m| (5.36)

=
x0

2

(
âe−iδt + â†eiδt

)
(Fm1 |m1〉 〈m1|+ Fm2 |m2〉 〈m2|) . (5.37)
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This can be rearranged to give

ĤI =
x0

2

(
âe−iδt + â†eiδt

)(
F+Î + F−(|m1〉 〈m1| − |m2〉 〈m2|)

)
(5.38)

where F+ =
Fm1+Fm2

2 and F− =
Fm1−Fm2

2 . The identity term is global and can therefore

be ignored leaving

ĤI =
F−x0

2

(
âe−iδt + â†eiδt

)
(|m1〉 〈m1| − |m2〉 〈m2|). (5.39)

Using equation 5.18, the application of this Hamiltonian will result in time dependent

evolution equal to

|ψ(t)〉 = D(α)eiΦ(t) |m1〉 (5.40)

= eiΦ(t) |α〉 |m1〉 (5.41)

for an ion initially in the |m1〉 state and

|ψ(t)〉 = D(−α)eiΦ(t) |m2〉 (5.42)

eiΦ(t) |−α〉 |m2〉 (5.43)

for an ion initially in the |m2〉 state where D(α), α and Φ(t) are given by equations 5.23,

5.24 and 5.34 with the substitution F = F−.

It follows that the expectation values within the interaction picture of the position and

momentum of an ion’s motional coherent states under this Hamiltonian are given by

〈x〉 =
F−x0

δ~
(1− cos(δt))

〈p〉 = −F−x0

δ~
sin(δt)

(5.44)

and

〈x〉 = −F−x0

δ~
(1− cos(δt))

〈p〉 =
F−x0

δ~
sin(δt)

(5.45)

for an ion in the |m1〉 and |m2〉 states respectively. This is shown in figure 5.4. The time

taken to perform a complete rotation in phase space and the total geometric phase after

one full rotation, ΦT , will be equal for both states.
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Figure 5.4: Movement in phase space of an ion in the |m1〉 and |m2〉 states when acted on
by a state dependent oscillating force.

5.3.3 State dependent oscillating force on two ions

Two ions in the same potential well will share motional modes mediated by the Coulomb

interaction. When applied to two ions, a state dependent oscillating force will therefore

create common coherent motional states which rotate in phase space analogously to the

coherent motional states of a single ion. After a full rotation of these states in phase space,

the total accumulated phase of the coherent state, Φ(t), will be shared by both ions.

The axial modes of two trapped ions are the center of mass mode (COM) and the

stretch mode (SM), these have frequencies equal to vC and vS where vS =
√

3vC and

coordinates in space equal to [62],

zC =
z1 + z2√

2
(5.46)

and

zS =
z1 − z2√

2
(5.47)

respectively where z1 and z2 are the axial positions of the two ions. The total force

experienced by the two modes in terms of the forces experienced by the individual ions is

therefore given by,

FC =
F1,m + F2,n√

2
(5.48)

when acting on the center of mass mode and

FS =
F1,m − F2,n√

2
(5.49)
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when acting on the stretch mode, where F1,m and F2,m are the forces experienced by ions

1 and 2 in the |m〉 and |n〉 states respectively.

The Hamiltonian acting on the COM mode of the two ions equals the sum of equation

5.17 acting on the basis states for each ion.

ĤI =
∑

m=m1,m2

∑
n=m1,m2

(
FCx0â

2
e−iδt +

FCx0â
†

2
eiδt) |m,n〉 〈m,n| (5.50)

Using equation 5.48 and assuming the forces experienced by both ions in state |m〉 are

equal and of the same phase, (F1,m = F2,m),

ĤI =
x0

2
√

2

(
âe−iδt + â†eiδt

)
×(

(Fm1 + Fm2) (|m1m2〉 〈m1m2|+ |m2m1〉 〈m2m1|) (5.51)

+ 2Fm1 |m1m1〉 〈m1m1|+ 2Fm2 |m2m2〉 〈m2m2|
)

(5.52)

=
x0

2
√

2

(
âe−iδt + â†eiδt

)(
F+Î + F− (|m1m1〉 〈m1m1| − |m2m2〉 〈m2m2|)

)
. (5.53)

As before, the identity term is global and can therefore be ignored. Similarly, when coupled

to the SM, Hamiltonian 5.50 equals

ĤI =
x0

2
√

2

(
âe−iδt + â†eiδt

)
F− (|m1m2〉 〈m1m2| − |m2m1〉 〈m2m1|) . (5.54)

Under these Hamiltonians, the modes will evolve in phase space with trajectories depend-

ent on the internal states of the two ions. As before, the exact trajectories can be found

using the solution to the Schrödinger equation given in equation 5.18. Table 5.1 shows the

evolution of the x and p expectation values of the COM and SM coherent motional states

and the total phase accumulated after a full rotation of the coherent states in phase space

for the initial states |m1m1〉, |m1m2〉, |m2m1〉 and |m2m2〉.

A truth table and transformation matrix for the resultant state after an integer number

of rotations, nr is given below for state dependent forces coupled to the stretch mode of

motion.

|m1m1〉 ⇒ |m1m1〉

|m1m2〉 ⇒ einrΦT |m1m2〉

|m2m1〉 ⇒ einrΦT |m2m1〉

|m2m2〉 ⇒ |m2m2〉


1 0 0 0

0 einrΦT 0 0

0 0 einrΦT 0

0 0 0 1

 . (5.55)



92

initial COM mode evolution SM evolution
state 〈x〉 〈p〉 Φ(2π

δ ) 〈x〉 〈p〉 Φ(2π
δ )

|m1m1〉 x(t) −p(t) ΦT 0 0 0

|m1m2〉 0 0 0 x(t) −p(t) ΦT

|m2m1〉 0 0 0 −x(t) p(t) ΦT

|m2m2〉 −x(t) p(t) ΦT 0 0 0

Table 5.1: Evolution of the expectation values of the position and momentum of the
coherent COM and SM motional states of two ions and the phase accumulated after one
rotation of the states in phase space when acted on by a state dependent oscillating force.
x(t) = F−x0

δ~ (1− cos(δt)), p(t) = F−x0

δ~ sin(δt) and ΦT = π
(
Fx0
δ~
)
.

By ensuring nrΦT = π
2 the transformation matrix takes the form

M1 =


1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

 , (5.56)

which cannot be separated by the tensor product.

This transformation can be turned into a CZ gate by applying the single qubit rota-

tion S to both ions as shown in figure 5.5. where S is equivalent to a rotation of 90◦

anticlockwise around the z-axis of the Bloch sphere and is given by the matrix

S =

 1 0

0 −i

 . (5.57)

qubit 1

qubit 2 s z

s

M1

Figure 5.5: Formation of a CZ gate from the gate operation given by M1.

This section has so far shown how the application of an oscillating state dependent

force to a pair of ions can be used to produce a CZ gate due to the geometric phases

aquired by the ions’ motional states traversing circles in phase space. The remainder of
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this section will describe the main methods known to produce the required state dependent

force. Section 5.3.4 will describe the production of a state dependent force between the

|m1〉 = |0〉 and |m2〉 = |1〉 states (known as the σz basis) and section 5.3.5 will describe

the production of a state dependent force between the |m1〉 = |φ0〉 and |m2〉 = |φ1〉 basis

states (known as the σφ basis) where |φ0〉 and |φ1〉 describe points on opposite ends of the

equator of the Bloch sphere and are given by

|φ0〉 =
1√
2

(
|0〉+ eiφ |1〉

)
(5.58)

and

|φ1〉 =
1√
2

(
|0〉 − eiφ |1〉

)
. (5.59)

where φ is the angle of rotation of the |φ0〉 state from the x-axis of the Bloch sphere as

shown in figure 5.6.

y-axis x-axis

z-axis

1|

|0

ϕ0|

ϕ1|

ϕ

Figure 5.6: Figure showing the location of the |0〉, |1〉, |φ0〉 and |φ1〉 states on the Bloch
sphere.

5.3.4 Experimental production of an oscillating state dependent force

in the σz basis

The most common method of producing a state dependent force between the |0〉 and

|1〉 states is to use the optical dipole force felt by the ions in a moving standing wave

[27,62]. This is produced when two lasers whose frequencies ω1 and ω2 obey the relation,

∆ω = ω1 − ω2 = v − δ, are applied at right angles along the trap axis as shown in figure
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5.7.

ω1

ω2

Figure 5.7: Production of a moving standing wave at the ions by the application of two
lasers at right angles along the trap axis.

The two fields interfere, producing a standing wave which moves along the trap axis at

a frequency equal to the difference in frequency of the two fields, ∆w. The ions experience

a state dependent Stark shift potential which, due to the standing wave, results in a

periodic force. The direction of this force will be state dependent resulting in the system

having the Hamiltonian given by equation 5.38 [62].

By ensuring the ion-ion separation is an integer value of the wavelength of this standing

wave, the phase of the force will be equal for both ions.

A disadvantage of this method is that it requires the optical path of the two beams

to be interferometrically stable to maintain the phase difference between the two co-

propagating fields. In addition, the use of lasers introduces the probability of decoherence

from off resonant scattering. The performance of this gate has however produced fidelities

of up to 97 percent [27].

5.3.5 Experimental production of an oscillating state dependent force

in the σφ basis.

A scheme to produce a state dependent force between the |φ0〉 and |φ1〉 states was proposed

initially by Mølmer and Sørensen [72]. As described in section 5.2, this scheme involves

applying electromagnetic fields at frequencies close to the first order motional sidebands

of the ions. The effect of applying radiation to a single ion at a frequency slightly detuned

from the first red motional sideband ω1 = ω0 − v + δv is given by the Jaynes-Cummings

interaction Hamiltonian [73],

ĤI =
i~ηΩ

2
(âe−iδv σ̂+ − â†e+iδv σ̂−) (5.60)

where σ̂− = |0〉 〈1| and σ̂+ = |1〉 〈0|. Similarly the effect of applying radiation with a

frequency slightly detuned from the first blue sideband, ω2 = ω0 + v − δv, to a single ion
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is given by the anti-Jaynes-Cummings interaction Hamiltonian [73],

ĤI =
i~ηΩ

2
(â†e+iδv σ̂+ − âe−iδv σ̂−) (5.61)

Applying the red and the blue motional sideband fields to the ion simultaneously gives

the following Hamiltonian which is the sum of equations 5.60 and 5.61.

ĤI =
~ηΩ

2
(â†e+iδv + âe−iδv)σ̂y (5.62)

where σ̂y = i(σ̂+− σ̂−). Using equations 5.58 and 5.59 this can be written in the σφ basis

as

ĤI =
~ηΩ

2
(â†e+iδv + âe−iδv) (|φ0〉 〈φ0| − |φ1〉 〈φ1|) (5.63)

with φ = π/2 which is equivalent to equation 5.39 with F− = ~ηΩ
x0

.

The scheme showed in section 5.2 is a special case of the geometric phase gate where

the two ions are in the weak coupling regime (ηΩ << −δv). In this regime, the total phase

after each rotation in phase space, given by equation 5.35,

ΦT = π

(
F−x0

~δv

)2

(5.64)

= π

(
ηΩ̂

δv

)2

(5.65)

is very small therefore the gate consists of lots of small cycles in phase space to make up

the π
2 phase required for a phase gate. This makes the gate very slow.

To minimise gate time, ideally the modes should only make one rotation in phase space

giving Φ(t) = π
2 . This can be done outside of the weak regime where the following required

relation can be satisfied,

Ω̂ =
−δv√

2η
, (5.66)

This results in a gate time of T =
√

2π
ηΩ . In this regime however the internal state will

become dependent on n during the gate time making it more susceptible to heating [68].

5.3.6 Motional coupling strength

The electromagnetic fields used to create the state dependent force must have sufficiently

strong coupling to the motional modes of the ions. If the coupling is too weak, the ions

would decohere before traversing the required path in phase space. The strength of the
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coupling is described by the Lamb-Dicke parameter which is given by equation 5.10,

η =
2πx0

λ
, (5.67)

where λ is the wavelength of the incident radiation and x0 is the spatial extent of the

ions ground state wavefunction. The qubit splitting within ytterbium 171 has a frequency

approximately equal to 12.6 GHz and with a typical trap frequency of 2π × 200 kHz this

gives a Lamb-Dicke parameter of the order of 3×10−6 which is far too small for significant

coupling. Two main solutions to this problem are as follows:

• Use optical Raman fields with a frequency difference equal to the qubit splitting.

• Introduce a magnetic field gradient [34], which when combined with magnetic field

dependent qubit states produces a new effective Lamb-Dicke parameter.

Both these methods are explored in the following sections.

5.3.7 Motional coupling using Raman transitions

A Raman transition is a method by which the ion is excited from an initial state, |i〉 to a

final state |f〉 via an intermediate state, |e〉. Two fields incident on the ion excite the states

|i〉 and |f〉 to |e〉 respectively. If these fields are detuned significantly from |e〉 then the

population entering |e〉 becomes negligible. Using Raman beams, coupling strengths on

the order of η = 0.5 can be achieved [74]. While to first order this system is analogous to

the application of one field equal at ω0, it is also subject to off-resonant scattering effects

which can limit the overall fidelity of the gate. Nevertheless Raman transitions have been

used to produce gate fidelities higher than 99.3% [75] which is an acceptable level for fault

tolerant quantum computing.

To simultaneously apply the red and blue sidebands required for gate operations, three

fields are needed as shown in figure 5.8 [62]. These fields can be produced from a single laser

along with a system of AOMs and EOMs to produce the required frequency differences.

An example setup is shown in figure 5.9. The offset frequencies need to be carefully

chosen in order to avoid unwanted excitations by the additional frequency orders from the

modulators. Alternatively, two lasers can be used as shown in figure 5.9 which eliminates

the extra frequency orders present as a result of the EOM. This method also allows for

more power and therefore higher Rabi frequencies which can lead to faster gate times, it

should be noted however that to ensure the frequency difference between the two lasers
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Figure 5.8: (a) Diagram showing how a Raman transition is performed. Population is
excited from |i〉 to |f〉 via an excited state |e〉 which remains unpopulated. This requires
two laser fields detuned from the |i〉 and |f〉 to |e〉 transitions by ∆ where ∆ is greater than
the Rabi frequency of the two fields [2]. (b) Diagram showing the three frequencies required
to simultaneously drive the red and blue motional sidebands using Raman transitions.

remains constant, phase-locking is required. Phase-locking can be technically demanding

and is performed using methods such as those shown in [76–78].

Raman transitions using a pulsed laser.

Another method of producing the Raman transitions required for gate operations is presen-

ted in [4] and [79]. The scheme uses the interference from chains of large bandwidth laser

pulses to produce the required transitions. A train of these pulses in the frequency domain

can be represented as a frequency comb as shown in figure 5.10 (a). The comb teeth are

separated in frequency by the repetition rate of the laser and the width of each tooth cor-

responds to the repetition rate/N where N is the number of pulses in the pulse train [4].

When two counterpropagating pulse chains, formed for example, from one pulse chain split

into two using a beamsplitter, are incident on an ion, the ion can absorb a photon from

one of the comb teeth in the first chain, then undergo stimulated emission as a result of a

comb tooth in the second chain. When the two chains are separated in frequency space by

the hyperfine splitting, ω0, this will result in many small Raman transitions as shown in

figure 5.10 (b) (Note: if ω0 divided by the repetition rate is an integer, these Raman trans-

itions can be driven using only one chain.). Each of these small Raman transitions will

result in a small population transfer between states. To perform a full spin flip, many of

these small transitions are needed4. Motional sidebands can be addressed in a similar way

to before by introducing an AOM into each beam path to create the required frequency

combs as shown in figure 5.10 (a).

4For example in [79], a spin flip was made up of 260 small Raman transitions
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Figure 5.9: Example experimental setup for addressing the motional sidebands using one
(a) and two (c) lasers, where ωd−ωp +ωg equals the carrier frequency, ωc, ωd−ωe equals
the blue sideband frequency, ωb and ωd + ωf is the red sideband frequency, ωr. (b) shows
a table of the main frequency components present at the given points in the beam path
of the single laser setup. At e there are many extra frequencies present as a result of the
EOM, the modulation frequencies therefore need to be carefully chosen to avoid unwanted
excitations as a result of these frequencies.

An advantage of this method is that while the frequency difference between the comb

teeth, determined by the lasers repetition rate, is important, the overall frequency is not

important, and therefore this method does not require the laser to be frequency locked.

5.3.8 Motional coupling using a magnetic field gradient

In a magnetic field, the F = 1 hyperfine level within the 2S 1
2

level of 171Yb+ is split via

the Zeeman effect into three separate levels with different energies determined by the

magnetic field strength. Within a magnetic field gradient, these energies therefore become

dependent on the ion’s position in space and are given by

E(z) = ~ωmF (z) = ~ωmF (0) + ~∂zωmF (0)z + ~
∂2
zωmF (0)z2

2!
+ .... (5.68)
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Figure 5.10: (a) In frequency space a series of laser pulses gives a frequency comb. (b)
Two of these combs can be used to drive Raman transitions if the frequency difference
between comb teeth is equal to the qubit splitting, ω0. The ion absorbs a photon from
the first comb then emits a photon into the second comb via the routes shown effectively
producing lots of small Raman transitions. (c) To perform two qubit gates, the combs
must contain components with frequency differences equal to the red and blue motional
sidebands

where mF = −1, 0, 1 is the projection of the total angular momentum quantum number

of the state, z is the distance in space from the ions equilibrium position, which has been

defined to be at the origin. ∂zωmF (0) is the frequency gradient at the ions equilibrium

position due to the magnetic field gradient, ∂zB(0), and is given to first order by [80],

∂zωmF (0) =
gFmFµB∂zB(0)

~
. (5.69)

where µB is the Bohr magnetron and gF is the states g-factor. Assuming a linear gradient,

high order terms in equation 5.68 equal zero allowing the energy to be rewritten using

equation 5.69 as

E(z) = ~ωmF (z) = ~ωmF (0) + gFmFµB∂zB(0)z (5.70)

The following derivation closely follows that given in [34] and will show how this energy

gradient results in an increased motional coupling strength.

The Hamiltonian describing the unperturbed ion’s system is given by equation 3.31

and repeated here,

Ĥ0 =
1

2
~ωmF σ̂z + ~vâ†â, (5.71)
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where ωmF is the resonant frequency of the qubit transition and v is the secular frequency.

Using equation 5.70 and rewriting z in terms of the creation and annihilation operators,

z =

√
~

2mv
(â+ â†), (5.72)

H0 can be rewritten as

Ĥ ′0 =
1

2
~ωmF (0)σ̂z +

1

2
~vε(â† + â)σ̂z + ~vâ†â (5.73)

where ε is a constant given by

ε =
gFmFµB∂zB(0)

~

√
~

2mv3
. (5.74)

When a microwave field of frequency ωm is applied to the ion, the total Hamiltonian for

the system is the sum of equation 5.73 and the Hamiltonian describing the ions interaction

with an electromagnetic field, ĤM . ĤM is given by equation 3.40 in chapter 3 and repeated

here where kz has been replaced by η(â+ â†) using equations 5.67 and 5.72,

ĤM =
1

2
~Ω(σ̂+ + σ̂−)(ei(ωM t−η(â+â†)) + e−i(ωM t−η(â+â†))). (5.75)

To see the effect of the magnetic field gradient on the microwave coupling, a unitary

Schrieffer-Wolff transformation [81] is performed,

H̃ = eÛĤe−Û , (5.76)

where Û = 1
2ε(â

† − â)σ̂z. Under this transformation, ignoring constant terms, the vi-

brational coupling Hamiltonian, Ĥ ′0, reverts back to the expression given before the field

gradient was added, H̃ ′0 = Ĥ0. The transformation Û therefore moves the effect of the

gradient into the Hamiltonian ĤM which becomes

H̃M =
1

2
~Ω(σ̂+e

ε(â†−â) + σ̂−e
−ε(â†−â))(ei(η(â†+â−εσ̂z)−ωM t) + e−i(η(â†+â−εσ̂z)−ωM t)). (5.77)

Moving into the interaction picture with respect to Ĥ0 gives the following results for the
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transformed and untransformed versions of the Hamiltonian ĤM ,

ĤI = e
iĤ0t
~ ĤMe

− iĤ0t
~ (5.78)

=
1

2
~Ω(σ̂+e

i(η(â+â†)−(ωM−ωmF (0))t) + σ̂−e
−i(η(â+â†)−(ωM−ωmF (0))t)) (5.79)

for the untransformed Hamiltonian and

H̃I = e
iĤ0t
~ H̃Me

− iĤ0t
~ (5.80)

=
1

2
~Ω(σ̂+e

i(η+â+η−â†−(ωM−ωmF (0))t−2ηε) + σ̂−e
−i(η+â+η−â†−(ωM−ωmF (0))t−2ηε)) (5.81)

for the transformed Hamiltonian where fast rotating terms have been ignored using the

rotating wave approximation and η± = η±iε. η± can be rewritten in terms of exponentials

as

η± =
√
η2 + ε2e

±tan−1
( ε
η

)
. (5.82)

By absorbing the exponential term in equation 5.82 into the interaction transformation

and by ignoring the globel phase e2iηε, H̃I and ĤI become analogous with the substitution

η ⇒
√
η2 + ε2. (5.83)

With a magnetic field gradient, the coupling to motion is therefore higher and characterised

by a new effective Lamb-Dicke parameter, ηeff =
√
η2 + ε2. A visual conceptual repres-

entation of this coupling is given in figure 5.11. For the F = 0 to F = 1 transition within

the 2S 1
2

level of 171Yb+, microwave fields give ηeff ≈ 0.1 for the field sensitive mF = ±1

states with a field gradient of 50 Tm−1 and a typical trap frequency of 2π× 200 kHz. This

is almost five orders of magnitude higher than the value of η achievable using microwaves

without a magnetic field gradient. To increase the value of ε, therefore increase the value

of ηeff , the magnetic field gradient should be increased or the trap frequency lowered.

Experimentally a magnetic field gradient can be formed using static permanent magnets

or electromagnets. Electromagnets can be formed using current carrying wires on micro-

fabricated surface traps which can form gradients at the ion of up to 150 Tm−1 [82].
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Figure 5.11: The harmonic trapping potential of the mF = ±1 states is shifted in space
when a magnetic field gradient is added. A transition from a magnetic field insensitive
state such as |0〉 would therefore cause the ion to move in space and hence the internal
state is coupled to the motion.

5.4 Ultrafast gates

In 2003, a new method of producing a phase gate was proposed by Garcia-Ripoll et al [64].

As opposed to the spectral methods involving coupling an ions state to its motional state as

detailed in the previous sections, this proposal involves mechanical pushing the ions using

state dependent ’kicking’ forces. As a result motional sidebands are not required which

therefore makes the gate independent of ion temperature, allowing it to be performed

outside of the Lamb-Dicke regime [83]. A similar gate proposal was also proposed in 2004

by L. M. Duan [84].

Section 5.4.1 will describe how the use of kicking forces can result in the addition of

the state dependent phase required for a CZ gate. Section 5.4.2 will describe how kicking

forces can be created using pulsed lasers and will compare the suitability of several lasers

currently5 on the market for this purpose.

5.4.1 Gate description

To visualise the gate process, the phase space picture of the ions motion will be used. In

contrast to the phase space picture used in the previous section, here, the ion will not

be put into the rotating frame with respect to the ions secular motion. As a result, an

unperturbed ion will traverse circles in phase space at a frequency equal to the secular

frequency as shown in figure 5.12 (a). The application of an instantaneous kicking force

to an ion will cause a transfer of momentum which will result in a straight line in phase

space as shown in figure 5.12 (b).

A carefully selected sequence of state dependent kicking forces and periods of free

evolution will result in the ion retuning to its initial motional state with the addition of a

5As of June 2011



103

state dependent phase. An example of the phase space evolution of one spin state under

such a sequence is shown in figure 5.12 (c). The procedure for producing a pulse sequence

to accomplish this with the pulsed laser kicks outlined in the following section is presented

in [64].

(a) (b)

x

p

initial state

Final state

momentum transferUk

(c)

1

x

p

Ue1

Ue2

Ue3

Uk3

Uk2

Uk1

Uk4

Final state

initial state

Figure 5.12: Movement in x-p phase space of an ion undergoing (a) free evolution and (b)
an instantaneous momentum kick. (c) A combination of free evolution and state dependent
momentum kicks can be used to move an ion to a different point on its initial free evolution
motional circle with the addition of a state dependent phase.

5.4.2 Producing ’kicking’ forces with a pulsed laser

A method of producing a fast kicking force on an ion is to use the momentum transfer

caused by the absorption of a photons during a fast spin flip. Here I will present a concep-

tual summary, for a detailed mathematical treatment please see the thesis by Mizrahi [85].
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As shown in [3], a single high power pulse with a bandwidth greater than the qubit

splitting, ω0, can produce population transfer between |0〉 and |1〉. Assuming the pulse

power is such that the Rabi frequency of the transition is a lot greater than the trap secular

frequency, a regime known as the strong regime, the probability of making a transition

using a pulse of an arbitrary pulseshape f(t) and width τ is given by [86,87],

P = sin2(A)

[
FTt

(
1

τ
f(t)

)]2

(5.84)

where FTt(x) is the Fourier transform of x with respect to time and A is a constant known

as the pulse area. The pulse area is defined as [87]

A =
1

2
µE0

∫ ∞
−∞

f(t′)dt′ =
1

2
µE0τ. (5.85)

Using equation 3.17 this can be simplified to

A =
Ωmaxτ

2
(5.86)

where Ωmax equals the Rabi frequency at the maximum pulse amplitude. The two main

pulse shapes available from commercial pulsed laser systems are Gaussian and sech. The

pulse shape function and respective Fourier transforms for both Gaussian and sech shaped

pulses are given by [87]

fs(t) = sech
(
πt
τ

)
FTs

(
1
τ f(t)

)
= sech

(
1
2ω0τ

)
fg(t) = e−

πt2

τ2 FTg
(

1
τ f(t)

)
= e−

ω2
0τ

2

2π .
(5.87)

The transition probability is therefore highly dependent on the properties of the laser

system used such as repetition rate, laser power and pulse width. The solution to equation

5.84 and thereby the capability of a variety of commercially available laser systems in

producing a spin flip with a single pulse will now be explored.

Transition probabilities of laser systems

The laser systems we will investigate will have wavelengths equal to 355 nm. A wavelength

of 355 nm corresponds to a transition between the |1〉 state and a point 33 THz above the

2P 1
2

level of 171Yb+. This is about a third of the distance between the 2P 1
2

level and the

higher 2P 3
2

level as shown in figure 5.13 (b). This point is close to local minimas in the

total spontaneous emission rate from the 2P 1
2

and 2P 3
2

levels, the total stark shift of the
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Figure 5.13: (a) Graph showing the total spontaneous emission rate of the 2P levels (red),
Γspon, the AC stark shift of the |0〉 state (Blue), δ0, and the differential AC stark shift
between the |0〉 and |1〉 states (green), δ1 − δ0 as a function of the difference in frequency
of the applied light from resonance with the |1〉 to 2P 1

2
transition. These are calculated

using equations (1), (2) and (3) from [3] where ΩD2 is the single photon Rabi frequency

of the |1〉 to 2S 3
2

F = 2 transition given by equation 3.16. Ω(D2) = |ζD2·E0|
~ . (b) Energy

level diagram of 171Yb+ showing the transition with a frequency which gives a close to
minimum AC stark shift, differential stark shift and spontaneous emission rate as shown
in (a).

|0〉 and |1〉 states as well as the total differential stark shift of the two levels [3] as shown

in figure 5.13 (a).

Three examples of pulsed laser systems on the market at 355 nm6 and their specifica-

tions7 are given in table5.2. They are all based around a frequency tripled 1064 nm laser.

All the systems form laser pulses using a process known as modelocking. This is briefly

described in figure 5.14.

The average intensity of a pulsed laser is given by the integral of the intensity of a

single pulse over time divided by the time between pulses

Iav = frep

∫
I(t)dt (5.88)

where frep is the lasers repetition rate. The integral is approximately equal to the peak

intensity multiplied by the pulse width, τ , divided by a constant, K, which depends on

the pulse shape. This leads to the following expression for the peak intensity of a pulsed

laser

Ip ≈ K
Iav
frepτ

(5.89)

6Information correct as of June 2011
7information obtained through private communications with the respective companies
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(c)
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lc

(b) Modelocked laser

modes in phase 

2lc

Figure 5.14: Within a laser, the light propagates backwards and forwards within the
laser cavity. This forms standing waves known as longitudinal modes. When the differ-
ent longitudinal modes have a random relative phase relationship, the constructive and
destructive interference of the modes within the cavity results in a constant continuous
intensity. This results in a continuous wave laser as shown in (a). When the longitudinal
modes have a fixed phase relationship, at one point within an oscillation cycle the modes
are all in phase and constructively interfere to produce a laser pulse. This is known as
modelocking and is shown in (b). Lasers can be modelocked actively, by introducing a
shutter or AOM into the cavity or passively by the introduction of a saturate absorber
which absorbs low power light and amplifies high power light initially formed from random
power fluctuations. These methods are discussed in detail within [45]. A different method
of producing a pulsed laser is to use a Mach-Zender interferometer [88] as showed in (c).
The desired pulse shape is sent to a variable delay within one arm. the interference from
the interferometer then forms the laser pulses.

where K is a constant approximately equal to 1
1.06 for Gaussian shaped pulses and 1

1.14 for

Sech shaped pulses [54].

The maximum Rabi frequency, Ωmax, achieved using light at 355 nm in 171Yb+ is found

in [4] and is equal to

Ωmax = 1.76× 10−2IpW
−1s−1 (5.90)

which can be rewritten in terms of the parameters given in table 5.2 using equation 5.89

Ωmax = 1.76× 10−2K
Iav
frepτ

W−1s−1. (5.91)

Using this, the transfer probability given by equation 5.84 is calculated for all the lasers

given in table 5.2 and is plotted in figure 5.15 for a beam waist of 20µm. Each graph

contains two plots which correspond to the probability achieved by the maximum and
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Company Laser 2000 High Q Coherent
Laser type MOPA fibre modelocked diode modelocked diode
wavelength (nm) 355 355 355
Repetition rate (MHz) 150 variable? ± 0.0045 80.145± 0.02 120 ± 2?? .
Average power (W) 8 ± 2% RMS 4 ± 2% RMS 8 ± 2% RMS
Pulse shape Gaussian Sech Gaussian
Pulse width, τ (ps) 10-15 4.5-5.5 10-15
Approx cost (x £1000) 107 142 65

Table 5.2: Summary of the main high power pulsed lasers available and their specifications.
The error ranges given for repetition rate and pulse width are due to the characteristics
of each individual laser. The laser we would receive would therefore have specifications
which were constant but within the range given. In addition to a pulsed laser system, a
pulse picker would be required. This would provide us with the ability to extract single
pulses from the pulse chain which would help us to perform specific pulse sequences. Pulse
pickers can cost up to £30 k but can be cheaper if brought as a package with the laser.
It should also be noted that the third harmonic generation systems within the above
lasers contain non-linear crystals of finite lifetimes of several thousand hours with the
laser powers involved. These come with a replacement cost of roughly £7000.

?The system used a fibre based Mach-Zender interferometer which allows the repetition rate to be varied
by the user.

?? while this may seem quite large, Coherent have offered to measure the exact repetition rate of each of
their lasers until they find one which fits within our specifications

minimum possible pulse durations of the laser. As shown in figure 5.15, the laser from

High Q could achieve the greatest transition probability of approximately 0.97 which is

due to its small pulse duration. This is however only reachable if 2.5 W of the lasers 4 W

available reaches the ion.

Figure 5.15 shows that a full spin flip cannot be produced using a single pulse from

any of the lasers given in table 5.2. To produce a transition probability of 1, the pulse

duration will need to be effectively zero which is not experimentally possible. A method of

overcoming this problem was shown in [3], where two pulses, formed by splitting a single

pulse into two, were applied to the ion separated by a time, t. The power of each pulse was

set to give a transfer probability equal to 0.5. The result is similar to Ramsey experiment.

By modifying the delay between the pulses, a full spin flip can therefore be produced.

Splitting the pulse into two will half the amount of laser power within each pulse. The

experimental setup must therefore be carefully designed to minimise the total power loss

and beam waist to ensure the intensity of each pulse at the ion is high enough to give

a transfer probability of 0.5. To illustrate this, figure 5.16 shows a contour plot of the

transfer probability of one of these pulses for the Laser 2000 pulsed laser system, with a

pulse duration of 10 ps, as a function of beam waist and total percentage power loss. The

green area represents the points where a transfer probability of 0.5 is obtainable by the
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Figure 5.15: The transition probability from a pulse of laser light for the three different
laser systems given in table 5.2 assuming a beam waist of 20µm.

pulse and therefore a spin flip can be produced. Figure 5.16 shows that a spin flip could

not be produced with a beam waist greater than approximately 18µm. This maximum

beam waist reduces as the total power loss increases. Reaching such small beam waists

while maintaining low power losses can be technically challenging and may require the use

of specialist optics.

The spin flip produced using this method will provide a momentum transfer to the ion

of 4π~
λ which will occur regardless of the ions state. To produce a CZ gate the momentum

transfer needs to be state dependent. A method of making the momentum transfer from

a pulse state dependent is explained in [85] and summarised in the following section.

5.4.3 Production of state dependent kicking forces with a pulsed laser

As described in [4], to make the momentum transfer state dependent, the experimental

setup shown in figure 5.17 is used. First a single pulse would be isolated using a pulse

picker. This pulse would then travel trough a series of beamsplitters and delay lines to

produce a chain of pulses. This pulse chain would then be split into two pulse chains which

are sent counter propagating to the ion. These are separated in frequency by ω0 using an
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Figure 5.16: Contour plot showing the transfer probability of the Laser 2000 pulsed laser
system, with a pulse duration of 10 ps, as a function of beam waist and total percentage
power loss. The green area represents the points where a transfer probability of 0.5 is
obtainable.

AOM in one of the beam paths. Assuming ω0 divided by the ions repetition rate does

not equal an integer8, the ion will then make the spin flip in several steps by performing

Raman transitions through absorption of photons from one pulse chain and emission into

the other (similar to the method described in section 5.3.7). Assuming ω0 divided by the

ions repetition rate also does not equal half an integer, the |0〉 and |1〉 states will only be

able to absorb and emit photons from opposite pulse chains resulting the ion in each state

having equal and opposite momentum transfers.

5.4.4 Experimental gate production

While state dependent fast momentum kicks have been experimentally realised [4], the

production of an ultrafast entanglement gate has yet to be performed. This could be

due to the fact that the pulse shapes and timings required need to be “perfect” as small

systematic errors can result in exponential increases in gate infidelity. For full details

please refer to [83].

8This would result in Raman transitions being driven by one chain alone
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Figure 5.17: Experimental setup required to produce a state dependent kicking force with
a pulsed laser. This diagram was replicated from [4].

5.5 Summary and choosing a suitable entanglement method

for the lab

Ideally, the lab requires an entanglement method which can be performed with high fidelity,

is scalable and is financially low risk. These points will be explored below. Table 5.3 gives

an overview of the main entanglement methods presented in this chapter along with their

main sources of decoherence and the equipment/capabilities the lab will need to gain in

order to perform them.

5.5.1 Scalability

Any quantum algorithm can be performed with a combination of single qubit and two qubit

entanglement gates [18]. For > 3 qubit algorithms performed on a single ion chain, this

requires the selective entanglement of two arbitrary ions within the chain. This requires

the capability to individually address single ions which is already a requirement of the

Cirac and Zoller gate scheme. The main method of individual addressing using lasers is

to use tightly focus laser beams [89] which due to the typical ion-ion distance being close

to the diffraction limit of light can be technically challenging. In addition this would limit

the trap frequency and therefore limit the possible gate speed [90]. Methods of overcoming

this by utilising the ions’ micromotion have been proposed [91,92] but encounter different

technical challenges at large ion numbers due to large required trap voltages. It should

be noted however that the inability to individually address does not mean a method is

not scalable. Trap architectures have been proposed which utilise ion shuttling in order

to bring specific ions together for entanglement [93].

The magnetic field gradient entanglement method does not require lasers therefore all
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the above challenges are avoided. The scheme can easily produce individual addressing as

each ion along the chain will have a different microwave resonant frequency on its magnetic

field sensitive states due to the magnetic field gradient.

5.5.2 High fidelity

To produce a high fidelity gate operation, the decoherence sources need to be minimised

during the gate time.

The use of lasers for entanglement results in potential decoherence from off reson-

ant coupling and laser fluctuations. While overcoming these decoherence sources can be

challenging, gate fidelities of 99.3% can been performed using amplitude modulation tech-

niques [94].

An ultrafast gate using a pulsed laser would benefit from increased gate speeds which

could lead to higher fidelities as decoherence sources have less time to act. The scheme does

however require ‘perfect’ pulses, any deviation from which would cause an exponentially

increasing errors which would quickly counter the advantages gained by having a faster

gate.

The magnetic field gradient method uses microwaves and therefore the decoherence

sources associated with lasers are avoided. The use of magnetic field sensitive states does

however make the method highly sensitive to magnetic field fluctuations. Decoherence

from magnetic field fluctuations can compensated for using dynamical decoupling [95],

which has successfully been performed to give fidelities of > 99% [25]. Alternitivly mag-

netic field sensitive qubits can be shielded from magnetic field fluctuations by the use of

microwave dressed states as first described by Timoney et al [96]. This method is explored

further in chapter 6 and is shown to reduce the decoherence caused by magnetic field

fluctuations by two orders of magnitude.

5.5.3 Financial risk

The lab already has a 369 nm Toptica laser and using this laser it is, in principle, possible

to do an entanglement gate using moving standing waves or Raman transitions with little

extra expenditure.

The microwave field gradient entanglement method requires the building of a mi-

crowave frequency setup which will require new frequency sources to provide the microwave

horn with the required frequencies. In addition, while the magnets required to produce

a static magnetic field gradient are relatively cheap, these will need to be placed within
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the vacuum system. This would take some time to perform and carries the risk that due

to human error or magnet movement during the baking process, the gradient center may

become displaced from the trap center causing a high offset field to be present potentially

making the trap unusable.

The costs required for the ultrafast scheme are very high and in addition to a high

powered laser system, expensive additions are required such as a pulse picker and high

power optics. This scheme is also high risk because of the large number of potential

decoherence sources mentioned previously.

With all the above considerations taken into account, the use of microwaves with a mag-

netic field gradient using microwave dressed states is determined to be an ideal way forward

for the lab.
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Chapter 6

Microwave dressed states

The use of the magnetic field gradient entanglement scheme outlined in the previous

chapter requires the use of magnetic field sensitive states such as the mF =±1 sublevels

of the 2S 1
2

F = 1 level in Ytterbium 171. Use of these levels as qubits however leads to fast

decoherence due to magnetic field fluctuations. This can be seen in figure 3.18 in chapter

3 which shows that a Rabi flop performed between the 2S 1
2

F = 0 level and the magnetic

field sensitive 2S 1
2

F = 1 mF = +1 level has a decoherence time of less than 500 µs.

This chapter begins by explaining how this decoherence can be avoided by dressing

the magnetic field sensitive states with microwaves to produce a dressed qubit which

is insensitive to magnetic field fluctuations as first proposed by Timoney et al [96]. A

method of preparing the ion into the dressed qubit states by the use of STImulated Raman

Adiabatic Passage (STIRAP) is then described and optimised in section 6.2. Methods by

which coherent manipulation can be performed with this dressed qubit using both the

original method proposed in [96] and an improved method which allows for arbitrary

qubit rotation is described and performed in section 6.3. Finally, section 6.4 confirms that

the magnetic field gradient entanglement scheme described in the previous chapter is still

applicable within the dressed state basis.

6.1 Dressed states of 171Yb+

A dressed state is a superposition state between an ion’s unperturbed levels and incident

electromagnetic radiation. For a multi-level system, the unperturbed Hamiltonian is

ĤA =
∑
n

~ωn |n〉 〈n| (6.1)
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where ωn is the angular position in frequency space of level n. For the 2S 1
2

levels in 171Yb+

as shown in figure 6.1, this Hamiltonian is equal to

ĤA = −~ω0 |0〉 〈0|+ ~ωr1 |+1〉 〈+1| − ~ωr2 |−1〉 〈−1| (6.2)

where the |−1〉, |0′〉 and |+1〉 states represent the 2S 1
2

F = 1 mF = -1, 0 and +1 levels

respectively and the zero point in energy has been defined as at the |0′〉 level.

0
0'

+1

-1

0

+ r1

- r2

- 0

+

-

Figure 6.1: Frequency space diagram of the 2S 1
2

levels within ytterbium 171. The 2S 1
2

F = 1 mF = -1, 0 and +1 levels are defined as the |−1〉, |0′〉 and |+1〉 states respectively.

The perturbation caused by the addition of electromagnetic fields is derived in chapter 3

and is equal to

Ĥ ′ =
∑
i,j

~Ωi−j cos(ωt+ φ) |i〉 〈j| (6.3)

where Ωi−j is the Rabi frequency of the transition between states i and j when illuminated

with an electromagnetic field of frequency ω and phase φ and it is assumed that the

wavelength of the fields is a lot larger than the spatial extent of the ion. Adding two

microwave fields, resonant with the |0〉 to |−1〉 transition and the |0〉 to |+1〉 transition,

results in the following perturbation Hamiltonian

Ĥ ′ = ~Ω− cos (ω−t+ φ−) (|0〉 〈−1|+ |−1〉 〈0|)

+ ~Ω+ cos (ω+t+ φ+)(|0〉 〈+1|+ |+1〉 〈0|)
(6.4)

where ω+ = ω0 + ωr1 and ω− = ω0 − ωr2. Setting the phase of the two fields, φ± to

zero and by making the Rabi frequencies of the two fields equal, Ωds = Ω±, this can be

simplified to

Ĥ ′ = ~Ωds [cos (ω−t)( |0〉 〈−1|+ |−1〉 〈0|)

+ cos (ω+t)(|0〉 〈+1|+ |+1〉 〈0|)]
(6.5)
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Figure 6.2: Frequency space diagram of the dressed state basis.

Moving into the interaction picture with respect to HA gives the interaction Hamiltonian,

Ĥ ′I , where Ĥ ′I = e
iĤAt

~ Ĥ ′e−
iĤAt

~ which is equal to

Ĥ ′I =
~Ωds

2
[cosω−t

(
e−iω−t |0〉 〈−1|+ eiω−t |−1〉 〈0|

)
+ cosω+t

(
e−iω+t |0〉 〈+1|+ eiω+t |+1〉 〈0|

)
]

(6.6)

By writing cos(x) in terms of exponential’s and applying the rotating wave approximation

to eliminate the fast rotating terms, this Hamiltonian simplifies to

Ĥ ′I =
~Ωds

2
(|0〉 〈−1|+ |−1〉 〈0|+ |0〉 〈+1|+ |+1〉 〈0|) . (6.7)

The eigenstates of this Hamiltonian are as follows,

|u〉 =
1

2
(|+1〉+ |−1〉+

√
2 |0〉)

|d〉 =
1

2
(|+1〉+ |−1〉 −

√
2 |0〉)

|D〉 =
1√
2

(|+1〉 − |−1〉)

(6.8)

These form a new state basis known as the dressed state basis. Rewriting equation 6.7 in

the dressed state basis gives

Ĥ ′I =
~Ωds√

2
(|u〉 〈u| − |d〉 〈d|) . (6.9)

Figure 6.2 shows the dressed state basis in frequency space. The following subsections will

show how a qubit formed from the |0′〉 and |D〉 states is insensitive to both magnetic field

fluctuations and fluctuations in the amplitude of the microwave dressing fields.
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6.1.1 Magnetic field fluctuations

Magnetic field fluctuations in the bare state basis cause the |−1〉 and |+1〉 states to shift

in frequency by equal and opposite amounts given by ω∆(t). This creates the following

perturbation to the Hamiltonian

Ĥ ′f = ~ω∆(t) (|+1〉 〈+1| − |−1〉 〈−1|) . (6.10)

This Hamiltonian commutes with ĤA and therefore it remains unchanged when moved

into the interaction picture with respect to ĤA. Rewriting this Hamiltonian in the dressed

state basis gives

Ĥ ′I,f =
~ω∆(t)√

2
(|D〉 〈u|+ |D〉 〈d|+ |u〉 〈D|+ |d〉 〈D|) . (6.11)

Field fluctuations therefore only couple population from |D〉 to |u〉 and |d〉. As shown in

figure 6.2 this coupling however involves crossing an energy gap of ~Ωds√
2

. It follows that

any field fluctuations of a frequency far from Ωds will not be able to cross the energy gap

and therefore have no effect [96].

By using the |0′〉 and |D〉 states as our qubit, we therefore heavily suppress decoherence

due to magnetic field fluctuations. As discussed in chapter 5, magnetic field fluctuations are

the main source of decoherence associated with the magnetic field gradient entanglement

scheme using the bare state qubit. By eliminating this source of decoherence, the dressed

qubit therefore has the potential to produce high fidelity gate operations.

6.1.2 Microwave amplitude fluctuations

A fluctuation in the amplitude of one of the microwave dressing fields will cause a change

in the Rabi frequency of that field given by δΩ. This results in the following addition to

the Hamiltonian given in equation 6.5, where the fluctuation was on the Ω− field.

H ′δΩ = ~δΩ cos(ω−t)(|0〉 〈−1|+ |−1〉 〈0|). (6.12)

Rewriting this within the interaction picture with respect to ĤA gives

H ′I,δΩ =
~δΩ

2
cos(ω−t)(e

−ω−t |0〉 〈−1|+ eω−t |−1〉 〈0|) (6.13)
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which after rewriting cos(x) in terms of exponentials and applying the rotating wave

approximation gives

H ′I,δΩ =
~δΩ

2
(|0〉 〈−1|+ |−1〉 〈0|). (6.14)

This is rewritten in the dressed state basis as

H ′I,δΩ =
~δΩ√

2
(|u〉 〈u| − 〈d| 〈d|) +

1

2
(|d〉 〈D|+ 〈D| 〈d| − |u〉 〈D| − 〈D| 〈u|). (6.15)

Amplitude fluctuations will therefore only cause coupling of population from |D〉 to |u〉

and |d〉 which as previously discussed, involves crossing an energy gap of ~Ωds√
2

, therefore

the effect of amplitude fluctuations will be negligible unless they are at a frequency close

to
√

2Ωds. In addition, the energy of the |u〉 and |d〉 states will become shifted by equal

and opposite amounts, ~δΩ√
2

. Assuming δΩ << Ωds, the energy gap will remain large and

this will have a negligible effect on the qubit.

6.2 Preparing the dressed state qubit

To initalise an ion in the |D〉 state, the first half of a STIRAP (STImulated Raman Adia-

batic Passage) pulse sequence is used. STIRAP is a method of moving population between

two states, |a〉 to |b〉, via a third intermediate state, |c〉, which remains unpopulated. The

mechanism behind STIRAP is explained briefly here, for a more detailed explanation,

please refer to [97] or [98].

If two fields, a and b, resonant with the |a〉 to |c〉 and |b〉 to |c〉 transitions are applied

to the system with Rabi frequencies equal to Ωa and Ωb respectively, a ‘dark’ eigenstate

of the system will exist which is a superposition of the |a〉 and |b〉 states [99],

|Dark〉 =
Ωb |a〉 − Ωa |b〉√

Ω2
a + Ω2

b

. (6.16)

To move population between |a〉 and |b〉 without populating |c〉, Ωa and Ωb need to be

adjusted adiabatically so the population is always within this dark state [97]. This is

done using a counter-intuitive pulse sequence, where field a is applied before field b. For

example, in the 2S 1
2

level of 171Yb+ as shown in figure 6.1, population transfer between the

|−1〉 state and the |+1〉 state is achieved via the |0〉 state by application of the counter-

intuitive pulse sequence shown in figure 6.3. A Gaussian pulse resonant with the |0〉

to |+1〉 transition is applied slightly before a Gaussian pulse resonant with the |0〉 to

|−1〉 transition, this results in population transfer while ensuring the |0〉 state remains
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unpopulated. At the half way point of this STIRAP operation (where the orange and

purple line cross on figure 6.3 (a), the Rabi frequencies of both fields are equal and the

dark state, |Dark〉, is the |D〉 state mentioned in the previous section.

(a) (b)

p

Time

frequency

R
ab

i f
re

qu
en

cy

ds

+

-

0

-1

+1

0'

Figure 6.3: (a) STIRAP pulse sequence used to transfer population from the |−1〉 state to
the |+1〉 state. The transition frequencies are shown in (b), Orange represents the |0〉 to
|−1〉 transition and purple represents the |0〉 to |+1〉 transition. Unless overwise stated,
the results in this chapter are performed using a peak STIRAP Rabi frequency, Ωp, of
2π × 23 kHZ which corresponds to a dressing field Rabi frequency, Ωds of 2π × 16 kHz.

6.2.1 Experimental setup

In order to perform STIRAP, the microwave setup shown in chapter 2 is modified to allow

for two separate controllable microwave fields as shown in figure 6.4. The STIRAP pulse

envelopes given in figure 6.3 (a) are designed in Labview which allows for easy adjustment

of pulse parameters such as pulse width and pulse-pulse separation. This is then sent to

the experiment using two FPGA channels1 which output voltages proportional to the two

respective STIRAP pulses. Switches are present to allow the user to switch from these

STIRAP channels to channels set to a constant voltage. (This allows the setup to produce

microwaves at a constant Rabi frequency for cooling.) Two low frequency signals, ωl1 and

ωl2 are produced at a constant amplitude from separate channels of the signal generator.

These are then convoluted with the FPGA signals using low frequency mixers2 and then

combined using a power splitter/combiner3. This is then mixed using a high frequency

mixer4 with a high frequency signal, ωhf before being amplified and sent to the microwave

horn.

The frequencies, ωl1, ωl2 and ωhf are selected so that when mixed together in the above

1see section 2.5
2Mini-Circuit ZX05-iL-S+
3Mini-Circuit ZMSC-2-2
4Mini-Circuit ZX05-153LH-S+
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setup they produce the required transition frequencies, for example,

ω− = ωhf + ωl1

ω+ = ωhf + ωl2

(6.17)

In addition, to prevent any unwanted population transfer, we must ensure the selected

frequencies and any other modulation products formed during mixing are far away from

the transition frequencies ω0 and ω± which were found in chapter 3 to equal ω− = 12.6290,

ω0 = 12.6429 and ω+ = 12.6568 (see figure 3.17 (a)). The set of frequencies used which

fulfill these conditions were ωl1 ≈ 29.64 MHz, ωl2 ≈ 2.21 MHz and ωhf ≈ ω0 − 15.94 MHz

= 12.63 GHz.

Amplifier

(am25-12-13-30-33)
Signal 

generator

(Aglient 33522A)

FPGA

MW horn

Voltage controlled 

switch (ZFSWA2-63DR+)

Signal 

generator

HP 83712B

FPGA

TTLTTL

Channel 1

Channel 2

l1

l2

hf

c
o

n
s
ta

n
t

c
o

n
s
ta

n
t

S
T

IR
A

P

S
T

IR
A

P

Figure 6.4: Microwave setup used with two separate controllable channels required for
STIRAP operation.

6.2.2 Results and optimization

The pulse sequence used to move population from the |−1〉 state to the |+1〉 state using

a STIRAP operation and then detect the final state is shown in figure 6.5.

After the state is prepared in the |0〉 state by optical pumping, the population is moved

to |−1〉 using a π pulse applied on the |0〉 to |−1〉 transition. The STIRAP pulse envelopes

are then activated which moves the population into the |+1〉 state. To determine if the

population transfer has been successful, a π pulse is applied on the |0〉 to |+1〉 state

transition. This moves population successfully transferred into the |0〉 state where it

remains dark during state detection. Population from an unsuccessful STIRAP would

have remained in the |−1〉 state and would therefore be bright during state detection.



121

Cooling
Preperation

into |0
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369nm 2GHz

Time

pulse on Detection CoolingSTIRAP
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Microwave 
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Microwave 

|0  to |+1 

transition

10 st

Microwaves

channel 2

Figure 6.5: Pulse sequence used to perform a STIRAP operation between the |−1〉 state
and the |+1〉 state.

In order to maximize the population transfer, the parameters of the STIRAP pulse

envelopes need to be optimized. The main parameters are the width of the Gaussian

pulses (pulse width), the separation between the two STIRAP pulses (pulse separation)

and the FPGA step size (sample spacing). The FPGA step size refers to the time between

the sequential changes in FPGA output voltage required to form the analogue pulse shape

as shown in figure 6.6.

The effect of changing the STIRAP pulse parameters are shown in figures 6.7, 6.8 and

6.9 respectively for a Ωp equal to 2π × 25 kHz. The STIRAP sequence was found to be

quite robust and large ranges in each parameter were found where the population transfer

was optimum. The range of optimum pulse separation was found to equal 120-485µs for

a pulse width of 300µs, the range of optimum pulse width was found to equal 150-650µs

for a pulse separation of 400µs and the maximum sample spacing was found to equal

20µs. In addition, the relative phase of the pulses was shown to have no effect. Taking

points roughly in the center of each of these ranges, the results in the remainder of this

chapter were performed with a sample spacing of 10µs, a pulse width of 450µs and a pulse

separation of 356µs unless overwise stated.

Maximum transfer efficiency

The overall maximum population transfer efficiency, T, was found to be approximately

80%. This is limited as the population transfer is not completely adiabatic. The adiabatic

condition for STIRAP is fulfilled when the area of the STIRAP pulses is a lot greater than
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Time
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Figure 6.6: The FPGA produces the analogue pulse shape by changing the output voltage
in a series of steps separated in time by the sample spacing, tss.

one [100],

A+,− =

∫ ∞
−∞

Ω+,−(t)dt >> 1. (6.18)

The maximum transfer efficiency of the STIRAP operation is then given by [100]

T ≈ 1− 1

A2
+,−

. (6.19)

To increase T, the maximum Rabi frequency achievable using the setup shown in figure

6.4 therefore needs to be increased. This can be achieved by, for example, inserting a

second amplifier or reducing losses by using more efficient components.

6.2.3 Lifetime

At the half way point of a STIRAP pulse sequence when the Rabi frequency of the two

transitions are equal, the ion is in the |D〉 state. To remain in the |D〉 state, the amplitude

modulation of the pulses is paused and the Rabi frequency of the two microwave fields is

held constant as shown in figure 6.10 (a). All coherent manipulation of the dressed state

qubit is then performed during this hold time. The maximum hold time is determined by

the lifetime of the |D〉 state. As discussed in section 6.1, population can decay from the

|D〉 state into the |u〉 and |d〉 states as a result of field fluctuations present at Ωds/
√

2.

The |D〉 state lifetime is determined using the pulse sequence described in section 6.2.2

with the addition of a hold into the STIRAP pulse envelopes. During this hold if the |D〉

state decays, the amount of population transferred to |+1〉 during the final part of the

STIRAP will decrease. The decayed population will become equally distributed between

the |0〉, |−1〉 and |+1〉 states therefore if the |D〉 state has completely decayed during
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Figure 6.7: Graph showing how varying the pulse width effects the population transfer
efficiency of a STIRAP pulse sequence. Population transferred effectively will end up in
the |0〉 state. The data was taken with a pulse separation of 400µs and a sample spacing
of 10µs. Each point is an average of 1000 measurements.

the hold, the probability of the resultant state of the ion being |+1〉 will become 1
3 . The

duration of the hold, th is gradually increased and the results after a final π pulse on the

|0〉 to |+1〉 state transition are shown in figure 6.10 (b). The lifetime is calculated using

an exponential fit to this data with a baseline of 1
3 and is found to equal 550 ms.

6.3 Coherent manipulation

Coherent manipulation of the dressed state qubit is achieved by applying RF radiation

resonant with the |0′〉 to |±1〉 transitions as shown in figure 6.11. Due to the sensitivity of

the |0′〉 state to the second order Zeeman effect, the exact transitions involved will depend

on the strength of the magnetic field present.

The difference in frequency between the |0′〉 to |+1〉 transition and the |0′〉 to |−1〉

transition due to the second order Zeeman effect is [101,102],

ωr2 − ωr1 = − 1

2~2ω0

(
2gjµBB

(2I + 1)

)2

= 2π × 0.31B2kHz/G2.

(6.20)

Where B is the magnetic field applied to the system. At low magnetic fields, when ΩRF >>

(ωr2 − ωr1), the second order Zeeman effect is negligible and the |0′〉 to |±1〉 transition
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Figure 6.8: Graph showing how varying the pulse separation effects the population transfer
efficiency of a STIRAP pulse sequence. Population transferred effectively will end up in
the |0〉 state. The data was taken with a pulse width of 300µs and a sample spacing of
10µs. Each point is an average of 1000 measurements.

frequencies are equal. This will be referred to as the low field regime. At high magnetic

fields, when ΩRF ≤ (ωRF2 − ωRF1), the difference between the |0′〉 to |±1〉 transition

frequencies becomes significant. This will be referred to as the high field regime. This

section will show how coherent manipulation can be performed in both regimes.

6.3.1 Low field regime

In this regime, the method given in the original paper by Timoney et al [96] applies. In

low magnetic fields, second order Zeeman shifts can be ignored and the resonant frequency

of the |0′〉 to |+1〉 and |0′〉 to |−1〉 transitions are equal and given by ωr. The perturbation

to the Hamiltonian caused by applying an RF field of frequency, ωr, and phase, ΦRF , is

found using equation 6.3 and is equal to

Ĥ ′ = ~ΩRF cos(ωr + φr)
[∣∣0′〉 〈−1|+ |−1〉 〈0|+

∣∣0′〉 〈+1|+ |+1〉
〈
0′
∣∣] (6.21)

As in section 6.1 this Hamiltonian is moved into the interaction picture with respect to

Ĥ0 becoming

Ĥ ′RF,I = ~ΩRF cos(ωr + φr)×[
eiωrt

∣∣0′〉 〈−1|+ e−iωrt |−1〉 〈0|+ e−iωrt
∣∣0′〉 〈+1|+ eiωrt |+1〉

〈
0′
∣∣] (6.22)
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Figure 6.9: Graph showing how varying the FPGA’s sample spacing effects the population
transfer efficiency of a STIRAP pulse sequence. Population transferred effectively will end
up in the |0〉 state. The data was taken with a pulse separation of 400µs and a pulse
width of 300µs. Each point is an average of 1000 measurements.

By writing cos(x) in terms of exponentials and using the rotating wave approximation to

eliminate fast rotating terms, this becomes,

Ĥ ′RF,I =
~ΩRF

2

[
e−iφr

∣∣0′〉 〈−1|+ eiφr |−1〉
〈
0′
∣∣+ eiφr

∣∣0′〉 〈+1|+ e−iφr |+1〉
〈
0′
∣∣] . (6.23)

Which can be written in the dressed state basis as

Ĥ ′RF,I =
~ΩRF

2
[cos(φr)

(
|u〉
〈
0′
∣∣+ |d〉

〈
0′
∣∣+
∣∣0′〉 〈u|+ ∣∣0′〉 〈d|)

−
√

2i sin(φr)
(
|D〉

〈
0′
∣∣− ∣∣0′〉 〈D|)]. (6.24)

When φr is set to equal π2 , the terms coupling population to |u〉 and |d〉 disappear and the

following Hamiltonian remains

Ĥ ′RF,I =
~ΩRF

2
i
(∣∣0′〉 〈D| − |D〉 〈0′∣∣) (6.25)

By treating |0′〉 and |D〉 as a two level system, equation 6.25 can be rewritten in matrix

form as

Ĥ ′RF,I =
~ΩRF

2
σ̂y (6.26)
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Figure 6.10: (a) STIRAP pulse envelopes showing hold time, th where |D〉 state is present.
(b) Lifetime measurement of |D〉 state. Population is transferred from the |−1〉 state
to the |D〉 state using half a STIRAP operation. The population is then held in this
state for a time, th before being transferred to the |+1〉 state with the remainder of the
STIRAP operation. A final π pulse on the |0〉 to |+1〉 transition is applied to move the
successfully transferred population into the |0〉 state before detection. The solid line is an
exponential fit to the data which gives a lifetime of 550 ms. Each point is an average of
200 measurements.



127

(a) (b)

-1
RF

RF

-1

0'

+1

RF2

RF1

0

-1

0'

+1

Figure 6.11: Transitions used for coherent manipulation between the |0′〉 and |D〉 states
within the dressed state basis at (a) low and (b) high magnetic fields. At high magnetic
fields, the |0′〉 state is shifted due to the second order Zeeman effect. This results in the
transition frequency of the |0′〉 to |−1〉 state transition being different to the transition
frequency of the |0′〉 to |−1〉 state transition.

which is equivalent to a rotation around the y axis of the Bloch sphere. Rotations around

arbitrary axes cannot be realized as changing the RF phase φRF results in population

coupling to the |u〉 and |d〉 states rather than changing the axis of rotation.

6.3.2 High B-field

In this regime, the second order Zeeman shifts are no longer negligible and the resonant

frequency of the |0′〉 to |+1〉 and |0′〉 to |−1〉 transitions are no longer equal. This is

the case for the magnetic field strengths typically found within ion trap experiments ≈

10 Gauss. The method described in section 6.3.1 can still be realized in this regime by

the application of two RF fields of equal phase with frequencies equal to ωr1 and ωr2

respectively.

An alternate method of coherent manipulation involves applying only one of these RF

fields [102]. If for example, the field resonant with the |0′〉 to |+1〉 transition was used,

the Hamiltonian of the system would be similar to equation 6.23 but without the terms

coupling to the |−1〉 state

Ĥ ′RF,I =
~ΩRF

2

[
eiφr1

∣∣0′〉 〈+1|+ e−iφr1 |+1〉
〈
0′
∣∣] (6.27)

Moving into the dressed state basis using equations 6.8 gives the following Hamiltonian,

Ĥ ′RF,I =
~ΩRF

2
√

2

[
e−iφr1 |D〉

〈
0′
∣∣+ eiφr1

∣∣0′〉 〈D|+
1

2

(
e−iφr1(|u〉

〈
0′
∣∣+
∣∣0′〉 〈u|) + eiφr1(

∣∣0′〉 〈d|+ |d〉 〈0′∣∣)) ] (6.28)
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By ensuring that ΩRF << Ωds, the terms in equation 6.28 which couple population from

the |0′〉 state to the |u〉 and |d〉 states are suppressed by the energy gap shown in figure

6.2. This results in Ĥ ′RF,I only containing terms which couple population between the

qubit states, |0〉 and |D〉. Ĥ ′RF,I can then be written in matrix form as

Ĥ ′RF,I =
~ΩRF

2
√

2

 0 e−iφr1

eiφr1 0

 (6.29)

which corresponds to arbitrary rotations around the σφ axis of the Bloch sphere where the

exact axis of rotation is given by the RF phase, φr1. This method is therefore preferable

to the previous method as it allows for full manipulation of the Bloch sphere. In addition,

within typical ion trap magnetic field strengths, this method requires half as many fre-

quencies for coherent manipulation than the previous method which makes it technically

simpler. The disadvantages of this method are however that the use of only one transition

causes a reduction of a factor of
√

2 in Rabi frequency with respect to the previous method

and that the RF Rabi frequency will be limited by the strength of the microwaves due to

the ΩRF << Ωds approximation.

6.3.3 Experimental realisation

The magnetic field at the centre of our trap was determined using the frequencies of the

|0〉 to |±1〉 transitions to be approximately 9.8 Gauss. Using equation 6.20, this results in

a |0′〉 to |±1〉 transition frequency difference of ωRF2 − ωRF1 ≈ 2π × 30 kHz which puts

us in the high field regime. Due to its ability to perform arbitrary rotations around the

Bloch sphere, we will use the second method described in section 6.3.2.

RF setup

The RF field is generated by a coil which is attached to a RF signal generator in series

with a capacitor and in parallel with a resistor for impedance matching as shown in figure

6.12. This forms a LCR circuit.

Such a circuit is resonant when the reactance of the inductor, XL = 2πfRFL is equal to

the reactance of the capacitor, XC = 1/(2πfRFC). This occurs when

fRF =
1

2π
√
LC

. (6.30)

The inductor then acts as an antenna and radiates this frequency. To ensure the ion re-
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Figure 6.12: Diagram of an LCR circuit where a resistor or resistance R is in parallel with
a capacitor of capacitance C and an inductor of inductance L.

ceives the maximum possible intensity of RF radiation, the inductor used is a coil designed

to fit within the indentation formed by the front viewport of the vacuum system as shown

in figure 6.13. In this position, the ion is less than 10 mm from the inductor coils axis.

The inductor coils radius is therefore set to r≈ 2.5 cm. The inductance of the coil is given

by 5

L =
µN2πr2

d
(6.31)

where N is the number of turns, d is the diameter of the wire and µ is the magnetic

permeability which equals 1.257×10−6 Hm−1 for air.

It was found that the efficiency of the resonant circuit, that is, where for a set RF input

voltage, the inductor radiates the highest power, increased with the inductance [103]. An

upper limit on this inductance is set by the circuits capacitance. In order to adjust the

resonant frequency, the capacitance should be variable and high enough to be dominant

over stray capacitances, resulting in a minimum capacitance of approximately 10 pF. The

frequency splitting of the Zeeman states will be around 10 MHz based on a typical magnetic

field of 10 Gauss. To achieve this the inductor has N = 3 turns and uses d = 6.1 mm wire.

This gives an inductance of 5.8 × 10−6H. A variable ceramic capacitor6 is used with a

capacitance of between 10 and 120 pF. This results in a variable resonant frequency of

between ≈ 6 and 14 MHz. The resistor has a resistance equal to 50 Ω and is required to

impedance match the circuit with the frequency generator to maximise the transmitted

signal power and to avoid damage due to reflections.

In addition a digital switch7 controlled via the FPGA is placed between the signal gen-

erator and the capacitor to allow the RF to be switched on and off quickly and efficiently.

5It should be noted that this is only an approximation due to the proximity of the coil to the Aluminum
vacuum chamber.

6Murata Ltd: TZ03R121F169B00
7Minicircuits ZFSWA2-63DR+
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Figure 6.13: The inductor from the RF circuit is positioned within the alcove formed by
the front imaging viewport. (a) shows an experimental schematic showing the location of
the inductor coil with relation to the trap. (b) shows a photograph of the inductor coil in
position.

RF setup testing

In order to test the RF setup, it was used to drive the |0′〉 to |+1〉 transition, without

the dressing fields. The frequencies of these states were determined by measuring the |0〉

to |0′〉 and |0〉 to |+1〉 transition frequencies and taking the frequency difference. The

RF frequency generator was then set to output this frequency and the circuits resonant

frequency was set to this by adjusting the variable capacitor.

Following preparation in the |0〉 state, a π pulse on the |0〉 to |+1〉 transition places

the population into the |+1〉 state. The RF is then switched on for a set time, tRF . A

second π pulse on the |0〉 to |+1〉 transition then places any population remaining in the

|+1〉 state back into the |0〉 state before detection. Any population present in the bright

state during detection has therefore been transferred to the |0′〉 state by the RF. Figure

6.14 shows the resultant population in the bright state and shows Rabi oscillations with

a Rabi frequency equal to 2π×18 kHz.

To test the setup on the dressed state qubit, a frequency sweep was performed over the

frequencies of the |0′〉 to |±1〉 transitions while the ion was being dressed. The RF Rabi

frequency measured in the bare states is close to the second order Zeeman splitting there-

fore the RF power is turned down to reduce crosstalk between the |0′〉 to |±1〉 transitions.

This allows exact transition frequencies to be determined.

The pulse sequence for this RF frequency sweep is shown in figure 6.15 (a). The |D〉
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Figure 6.14: Graph showing Rabi oscillations between the |0′〉 and |+1〉 states performed
using the RF setup. Each point is an average of 100 measurements.

state is prepared as described in section 6.2.3. During the hold time, an RF π pulse is

applied. After the remainder of the STIRAP process, the standard π pulse on the |+1〉 to

|0〉 transition is applied to prepare the ion for detection. The frequency of the RF pulse

is varied over a range which includes the two transitions and the resultant population in

the bright state with respect to this frequency is plotted in figure 6.15 (b).

Rabi flopping

By setting the RF frequency generator and RF resonant circuit to one of the resonant

frequencies from the RF frequency sweep shown in figure 6.15, Rabi oscillations between

the |0′〉 state and the |D〉 state can be observed. After preparation of the |D〉 state, the RF

field is applied for increasing times. State detection is achieved in the same way as before

and the results are shown in figure 6.16 (a) for times up to 2 ms. The Rabi frequency is

measured to equal 2π×1.9 kHz. Figure 6.16 (b) shows Rabi oscillations for times between

100 and 101 ms. The apparent change in Rabi frequency is due to slow drifts of the RF

signal amplitude cause by for example, heating of components within the LCR circuit.

The decrease in oscillation amplitude at the different Rabi flopping times is used to

calculate the minimum T2 time of the qubit. This is found to equal ≈ 500 ms which is

approximately equal to the lifetime of the |D〉 state. This is more than three orders of mag-

nitude larger than the coherence time of the bare state qubit which shows that a significant

amount of the decoherence due to magnetic field fluctuations has been suppressed.
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Figure 6.15: Pulse sequence (a) and results (b) of a frequency sweep over the |0′〉 to |D〉
state transition using the RF setup with a RF Rabi frequency approximately equal to
2π × 4 kHz. Two peaks are present representing the two available transition routes, from
|0′〉 to |−1〉 and from |0′〉 to |+1〉. Each point is an average of 200 measurements.
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Figure 6.16: Graph showing Rabi oscillations on the |0′〉 to |D〉 transition between (a) 0-2
ms and (b) 100-101 ms. Each point is an average of (a) 100 and (b) 50 measurements.
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The low contrast of the Rabi flop shown in figure 6.16 (a) is due to the low transfer

efficiency of the STIRAP operation as described in section 6.2. This could potentially be

increased by increasing the Rabi frequency of the dressing fields, Ωds.

An alternative method would be to initially prepare the ion in the |0′〉 state. During

the Rabi flop, the dressing microwaves resonant with the |0〉 to |−1〉 and |+1〉 transitions

should be turned on and kept at a constant power then turned off quickly so as to not

affect the state population. The final state would then be determined by a π pulse on

the |0〉 to |0′〉 transition, fluorescence during state detection would then indicate the ion

is in the |D〉 state. This method would eliminate the need for a STIRAP operation which

would result in a greater contrast. The disadvantage of this method is however that a

third frequency resonant with the |0〉 to |0′〉 state transition would need to be added to

the combiner in the microwave setup shown in figure 6.4 which would result in a more

complicated microwave setup.

Ramsey fringes

To show the ability of the coherent manipulation method to perform arbitrary rotations

of the Bloch sphere, Ramsey fringes are also produced. As described in chapter 3, Ramsey

fringes are produced by applying two detuned π/2 pulses which are separated by a variable

free precession time, t. During this time, the ion precesses around the equator of the Bloch

sphere at a frequency equal to the detuning. The timing of the second pulse therefore

determines the state the population ends up in.

This Ramsey experiment was carried out on the |0′〉 to |D〉 transition. The |D〉 state

was prepared and detected using the same method as before and the results are shown in

figure 6.17 for a free precession time of between 0 and 8 ms. The RF pulse detuning was

inferred from the fringe frequency to be approximately equal to 160 Hz.

6.4 Magnetic field gradient entanglement within the dressed

state basis

The magnetic field gradient entanglement scheme described in the previous chapter, re-

quires the use of magnetic field sensitive states. This section will show how the states in

the dressed basis are affected by a magnetic field gradient and will show how this allows

entanglement to be performed within the this basis despite the suppression of the effects

of magnetic field fluctuations.
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Figure 6.17: Graph showing Ramsey fringe on the |0′〉 to |D〉 transition with a pulse
detuning of 160 Hz. Each point is an average of 100 measurements.

The Hamiltonian describing the unperturbed ion is given by the sum of the level

Hamiltonian given by equation 6.2 and the Hamiltonian from a simple Harmonic oscillator

given by Ĥb in equation 3.31. This gives

Ĥ0 = −~ω0 |0〉 〈0|+ ~ωr1 |+1〉 〈+1| − ~ωr2 |−1〉 〈−1|+ ~vâ†â (6.32)

where v is the secular frequency and â and â† are the state raising and lowering operators

respectively. Within a magnetic field gradient, ωr1 and ωr2 will become dependent on the

ions position as shown by equation 5.68 in chapter 5. Using the same processes used to

obtain equation 5.73, equation 6.32 can be rewritten within a magnetic field gradient as

Ĥ ′0 = −~ω0 |0〉 〈0|+ ~ωr1(0) |+1〉 〈+1| − ωr2(0) |−1〉 〈−1|

+~vε(|+1〉 〈+1| − |−1〉 〈−1|) + ~vâ†â
(6.33)

where ε is a constant given by equation 5.74,

ε =
gFmFµB∂zB(0)

~

√
~

2mv3
. (6.34)

Within the magnetic field gradient entanglement formulation given in chapter 5, a po-

laron transformation was applied to move the effect of the magnetic field gradient into

the Hamiltonian of the interacting fields. The same technique will be used here with a
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transformation which, ignoring constant terms reverts Ĥ ′0 back to Ĥ0, H̃ ′0 = Ĥ0. This

transformation is given by

H̃ = eV̂ Ĥe−V̂ (6.35)

where V̂ = ε(|+1〉 〈+1| − |−1〉 〈−1|)(â† − â). This transformation will now be applied to

the Hamiltonian given by equation 6.5,

Ĥ ′MW = ~Ωds [cos (ω−t)( |0〉 〈−1|+ |−1〉 〈0|)

+ cos (ω+t)(|0〉 〈+1|+ |+1〉 〈0|)],
(6.36)

which describes the perturbation to the system caused by the application of the two mi-

crowave dressing fields. Under the transformation given by equation 6.35, this Hamiltonian

becomes

H̃ ′MW = ~Ωds [cos (ω−t)( e
ε(â†−â) |0〉 〈−1|+ e−ε(â

†−â) |−1〉 〈0|)

+ cos (ω+t)(e
−ε(â†−â) |0〉 〈+1|+ eε(â

†−â) |+1〉 〈0|)].
(6.37)

Within the interaction picture with respect to Ĥ0, this Hamiltonian can be rewritten as

H̃ ′MW,I =
~Ωds

2
[cos (ω−t)( e

ε(â†−â)−iω−t |0〉 〈−1|+ e−ε(â
†−â)+iω−t |−1〉 〈0|)

+ cos (ω+t)(e
−ε(â†−â)−iω+t |0〉 〈+1|+ eε(â

†−â)+iω+t |+1〉 〈0|)].
(6.38)

By writing cos(x) in terms of exponentials and applying the rotating wave approximation

to eliminate the fast rotating terms, this Hamiltonian simplifies to

H̃ ′MW,I =
~Ωds

2
[( eε(â

†−â) |0〉 〈−1|+ e−ε(â
†−â) |−1〉 〈0|)

+ (e−ε(â
†−â) |0〉 〈+1|+ eε(â

†−â) |+1〉 〈0|)].
(6.39)

The eigenstates of this Hamiltonian represent a new gradient transformed dressed state

basis and are given by

|ũ〉 =
1

2
(e2ε(â†−â) |+1〉+ |−1〉+

√
2eε(â

†−â) |0〉)

|d̃〉 =
1

2
(e2ε(â†−â) |+1〉+ |−1〉 −

√
2eε(â

†−â) |0〉)

|D̃〉 =
1√
2

(e2ε(â†−â) |+1〉 − |−1〉).

(6.40)

This transformed dressed state basis is analogous to the untransformed dressed state basis

given by equation 6.8 with the addition of a factor A2 to the contributions from the
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|+1〉 state and a factor A to contributions from the |0〉 state where A = eε(â
†−â) and is

dependent on the strength of the magnetic field gradient.

In order to excite the motion of an ion between the |0′〉 and the |D〉 states, a RF

field resonant with a motional sideband of one of the |0′〉 to |±1〉 state transitions should

be applied. For the first red sideband of the |0′〉 to |+1〉 state transition, this gives the

following perturbation Hamiltonian

Ĥrsb = ~ΩRF cos((ωr1 − vs)t)(|+1〉
〈
0′
∣∣+
∣∣0′〉 〈+1|). (6.41)

Under the transformation given by equation 6.35 this Hamiltonian becomes

H̃rsb = ~ΩRF cos((ωr1 − vs)t)(eε(â
†−â) |+1〉

〈
0′
∣∣+ e−ε(â

†−â)
∣∣0′〉 〈+1|). (6.42)

Within the interaction picture with respect to Ĥ0, this Hamiltonian is rewritten as

H̃rsb,I = ~ΩRF cos((ωr1 − vs)t)(eε(â
†−â)+iωr1t |+1〉

〈
0′
∣∣+ e−ε(â

†−â)−iωr1t
∣∣0′〉 〈+1|). (6.43)

By writing cos(x) in terms of exponentials and applying the rotating wave approximation

to eliminate the fast rotating terms, this Hamiltonian simplifies to

H̃rsb,I =
~ΩRF

2
(eε(â

†−â)+ivst |+1〉
〈
0′
∣∣+ e−ε(â

†−â)−ivst
∣∣0′〉 〈+1|). (6.44)

Writing this Hamiltonian in terms of the new transformed dressed state basis given by

equation 6.40 gives

H̃rsb,I =
~ΩRF

4
[e−ε(â

†−â)+ivst(|ũ〉
〈
0′
∣∣+ |d̃〉

〈
0′
∣∣+
√

2|D̃〉
〈
0′
∣∣)

+eε(â
†−â)−ivst(

∣∣0′〉 〈ũ|+ ∣∣0′〉 〈d̃|+√2
∣∣0′〉 〈D̃|). (6.45)

Assuming ΩRF << Ωds, the terms coupling population from the |0′〉 state to the |ũ〉 and

˜|d〉 states are suppressed by the energy gap shown in figure 6.2 which allows equation 6.45

to be rewritten as

H̃rsb,I =
~ΩRF

2
√

2

(
e−ε(â

†−â)+ivst|D̃〉
〈
0′
∣∣+ eε(â

†−â)−ivst
∣∣0′〉 〈D̃|) . (6.46)

By making the substitution ηeff =
√
η2 + ε2 where η = kz has been assumed to be

negligible, equation 6.46 becomes analogous to equation 5.81 for the transformed dressed

state qubit represented by |0′〉 and ˜|D〉. Motional coupling and quantum logic operations
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can be therefore performed as described by chapter 5 within the dressed state basis by

simply applying RF fields resonant with the motional sidebands of one of the |0′〉 to |±1〉

state transitions.
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Chapter 7

Motional coupling using a

magnetic field gradient

As discussed in chapter 5, an entanglement gate between ion qubits can be produced by

the application of electromagnetic fields, providing they have a strong coupling to the

motional modes of the ions. These fields create a state dependent force, which results in

the movement of an ion’s motional states in phase space leading to the addition of a state

dependent geometric phase.

This chapter will detail the progress towards the production of such an entanglement

gate using microwave fields. As discussed in section 5.3.6, due to the low frequency of the

required microwaves, a magnetic field gradient is needed to provide sufficient coupling of

these microwaves to the motional modes of the ions. The gradient provides a spatially

dependent frequency shift of the magnetic field sensitive states which results in an effective

Lamb-Dicke parameter when making a transition to these states

Section 7.1 describes how a gradient of 24 Tm−1 is created at the ion’s position using

in-vacuum permanent magnets. As a result of this gradient, adjacent ions have different

transition frequencies between their 2S 1
2

F = 0 and 2S 1
2

F = 1 mF =±1 levels. This allows

for individual addressing of adjacent ions which is described in section 7.2

Section 7.3.1 demonstrates that, within this gradient, microwaves can couple to the

motional states of both a single ion and two adjacent ions. This is shown in the form

of motional sidebands, that is, population transfer between states when the applied mi-

crowaves are at a frequency equal to the resonant frequency plus and minus the ions secular

frequency.

This coupling is then used to produce a state dependent force in the σφ basis. Section

7.3.4 demonstrates this force by observing the movement of a single ions motional state
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in phase space.

The use of magnetic field sensitive states does however leave the qubit open to de-

coherence from magnetic field fluctuations. As described in chapter 6 this decoherence

can be avoided by dressing the ions with microwaves and using a new dressed state qubit

which is shielded from this decoherence. It was also shown in section 6.4 that the ef-

fective Lamb-Dicke parameter present due to a magnetic field gradient is still present for

the dressed state qubit. Section 7.3.5 demonstrates this, showing the observation of the

motional sidebands of the dressed state qubit.

Finally section 7.4 describes how this work can be expanded to produce a two ion

entanglement gate using microwave dressed states.

7.1 Creating a magnetic field gradient

A brief summary of the setup used to produce a high magnetic field gradient at the ion is

shown here, for more details please refer to the MRes thesis by Joe Randall [104]. A high

magnetic field gradient at the ion is produced using four permanent magnets. These were

designed to fit inside the vacuum system on the chip bracket around the existing trap as

shown in figure 7.1. The magnets are made of Samarium Cobalt (SmCo). This material

was chosen due to its high residual magnetic flux density1 of 11.5 kG [105] and its high

Curie temperature2 of 800 degrees [105] which is four times higher than the maximum

baking temperature. The magnets are coated in Nickel Copper Nickel (NiCuNi) which is

UHV compatible and provides corrosion resistance.

As shown in figure 7.1, two of the magnets were designed to fit between the trap

electrodes (yellow) and the compensation electrode holder (green). The magnets contain

six machined holes for the compensation electrodes. The compensation electrodes then

hold the magnets in place. In addition, the friction between the magnets and the stainless

steel cage, intensified by the magnetic repulsion, provides extra stability. The two larger

magnets were designed to fit at either end of the chip bracket and are attached via two

screws which fit through machined holes in the magnet. The magnets were supplied and

machined to a precision of 0.05 mm by e-Magnets UK.

The magnets are positioned so they all have their north poles pointing towards the

trap centre. Figure 7.2 shows the trap after the magnets have been added. This setup

was then baked and put under vacuum.

1Residual magnetic flux density is the maximum magnetic flux density as measured on the surface of
the magnet.

2Curie temperature is the temperature at which the magnetic properties of the magnet are destroyed.
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Figure 7.1: SolidWorks diagram showing how the magnets fit on the chip carrier. The
large magnets are screwed onto either end of the chip bracket. The two smaller magnets
fit between the trap electrodes (yellow) and the compensation electrode holder (green)
and are held in place by the compensation electrodes. The insets show the dimensions of
the magnets.

The magnetic field strength given by this magnet setup within the trap was simulated3

and the results are shown in figure 7.3 [74]. The simulated magnetic field gradient at the

trap centre was found to equal 42 Tm−1 along the trap axis and between 20 and 22 Tm−1

in the radial directions.

As shown in figure 7.3, the magnet setup was designed to give a magnetic field strength

minimum as well as a high magnetic field gradient at the trap centre. This low magnetic

field strength is required for efficient cooling and detection of the ion. As the magnitude

of the magnetic field at a 171Yb+ ion increases, the Zeeman splitting of the mF levels

within the 2S 1
2

F = 1 level increases. This reduces the rate at which 369 nm light resonant

with the 2S 1
2

F = 1 mF = 0 to 2P 1
2

F = 0 transition can off-resonantly pump ions out of

the 2S 1
2

F = 1 mF = ±1 levels which consequently reduces the rate of cooling. This is

investigated further using the rate equation program from chapter 3. Figure 7.4 shows

the effect a magnetic field has on the number of detectable photons4 produced during

3Simulation performed using Computer Simulation Technology (CST)
4Detectable photons are photons produced by spontaneous emission of the 2P 1

2
levels of the ytterbium
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Figure 7.2: Photograph of the trap with the magnets in place.

Doppler cooling using 369 nm light with an intensity equal to Isat (green), 10 Isat(orange)

and 100 Isat(pink). Figure 7.4 shows that below 1 mT, the effect of the magnetic field

strength on the number of detectable photons is negligible. Above 1 mT the Zeeman shift

of the magnetic field sensitive levels becomes significant and, due to population trapping,

the number of photons drops and approaches negligible levels at approximately 100 mT.

The exact magnetic field strength at which this drop off occurs increases slightly as the

369 nm intensity is increased due to power broadening.

Experimentally, when the 369 nm intensity is above approximately 100 Isat the ion

begins to become indistinguishable from the background scatter from the trap electrodes.

Using figure 7.4, assuming this upper limit in 369 nm intensity, the maximum magnetic

field where detection of the ion during Doppler cooling is possible is approximately 30 mT.

To maximise the chances of detection however, ideally the magnetic field should be kept

below 1 mT.

The magnetic field strength will also have an effect on the state detection fidelity. The

optimum state detection fidelity for our experiment was found in chapter 3 to be present

with a 369 nm intensity equal to 0.1 Isat and a detection time of 1 ms. Figure 7.5 shows the

effect the magnetic field strength has on this maximum detection fidelity. From figure 7.5

it becomes clear that to optimise the fidelity of state detection, the magnetic field strength

should be kept below approximately 0.1 mT.

It should be noted that while figures 7.4 and 7.5 both suggest that the ideal B-field is

ion.
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Figure 7.3: Simulation of the magnet setup showing the magnetic field strength within
the centre 2 mm of the trap in the x axis (Yellow), y axis (Red) and z axis (Blue).

zero. A small offset field (≈ 10−4 T) is required to avoid population trapping in the 2S 1
2

F = 1 mF = ±1 levels as a result of limited polarisation components, this was discussed in

detail within section 2.3.

A method to counter the effects on cooling and state detection caused by a high offset

magnetic field is to apply sidebands with a frequency equal to the frequency difference

between the 2S 1
2

F = 1 mF = 0 and mF = ±1 levels to the 369 nm laser using an EOM.

Alternatively, the field can be compensated using external field coils.

7.1.1 Compensation coils

Experimentally, the magnetic field minimum was however not expected to coincide ex-

actly with the trap centre. This shift in the magnetic field minimum would be due to

unpredictable errors such as machining errors, human errors in placing the magnets or

movement of the magnets and/or the trap electrodes during the baking process. In order

to shift the magnetic field minimum to the trap centre and thereby allow the most efficient

cooling, state detection and maximum possible magnetic field gradient, external magnetic

field coils were built [104]. These consist of three pairs of Helmholtz coils made with 200

turns of 1 mm diameter copper wire. The coil pairs have radii equal to 150 mm, 90 mm and

120 mm, and coil separations of 95 mm, 30 mm and 65 mm, for the x, y and z axis coil sets

respectively. These provide constant magnetic fields in all three dimensions and, based on

the aforementioned dimensions, are capable of moving the magnetic field minimum within

the trap by 42µm, 92µm and 66µm per amp in the x, y and z axes respectively [74]. A
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Figure 7.4: Graph showing the number of detectable photons released after an ion initially
in the 2S 1

2
F = 1 mF = 0 level is Doppler cooled for 1 second vs the magnetic field strength.

This graph was formed using the rate equation program with 369 nm light resonant with
the 2S 1

2
F = 1 mF = 0 to 2P 1

2
F = 0 transition with an intensity equal to 1 Isat (green),

10 Isat (orange) and 100 Isat (pink) and microwaves resonant with the 2S 1
2

F = 0 to 2S 1
2

F = 1 mF = 0 transition to move population which decays into the 2S 1
2

F = 1 mF = 0 level

back into the cooling cycle. The 935 nm intensity was set to equal 1000 Isat. The slight
jaggedness of the curves is a consequence of the finite step size used by the rate equation
program.

photograph of these coils is shown in figure 7.6.

When new ions were trapped, the frequency of the 2S 1
2

F = 0 to F = 1 mF = +1 trans-

ition of a single ion before compensation was found to equal 12.79633 GHz which corres-

ponds to a magnetic field of approximately 0.011 T. While this is low enough for us to cool

and observe the ions with a high intensity 369 nm laser beam as shown in figure 7.4, it is

too high for efficient state detection as shown in figure 7.5.

Setting the offset magnetic field

To find the compensation coil currents which give the magnetic field minimum at the trap

centre, the frequency of the 2S 1
2

F = 0 to F = 1 mF = +1 transition of a single ion was

measured (as explained in section 3.5.2) for a range of compensation coil currents on the

x axis coils. The coil current was then set to the value which gave the minimum transition

frequency. This was then repeated using both the y and z axis coils. Due to potential

coupling of the magnetic field between axes, caused by, for example, the coils not being

perfectly perpendicular, this process was iterated several times until the coil currents at

which the minimum transmission frequency occurs did not change. The current on the z
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Figure 7.5: Graph showing the detection fidelity vs magnetic field strength. This graph was
simulated using the rate equation program and equations 3.24 and 3.24 with a collection
efficiency equal to 0.0021, a detection time of 1 ms and 369 nm and 935 nm intensities equal
to 0.1 Isat and 100Isat respectively.

axis coil was then increased to give a large enough Zeeman shift of the 2S 1
2

F = 1 levels to

allow full manipulation of the Bloch sphere of a dressed state qubit to be performed (This

requires the ability to individually address the 2S 1
2

F = 1 mF = 0 to mF =±1 transitions

(see section 6.3.2), which requires a significant second order Zeeman shift of the 2S 1
2

mF = 0 level). To accomplish this, the z axis coil current was increased to give the shift

between the 2S 1
2

F = 1 mF = 0 and mF =±1 level of approximately 9 MHz, equivalent to

0.64 mT. This gives a frequency on the 2S 1
2

F = 0 to F = 1 mF = +1 transition equal to

12.655182 GHz. Using figure 7.5, the maximum state detection fidelity achievable with a

0.64 mT offset field is ≈ 99.5 %.

Initially, it was found that the minimum magnetic field strength coincided with the

trap centre with a current of roughly 5.75 A on the x axis compensation coil. As a result

the coil dissipated around 350 W and needed to be water cooled to avoid melting the

wire insulation. Water cooling however is not ideal as it can cause vibrations as well as

temperature fluctuations in the coils which could cause experimental errors. To remove

the need for water cooling, two sets of four N42 cylindrical permanent magnets5 were

stacked together and placed above the vacuum system at a distance of approximately

120 mm from the ion to provide the majority of the required magnetic field compensation.

With this addition, the compensation coil currents found to align the minimum magnetic

5Magnet Expert Ltd, F666
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Figure 7.6: Photograph of the compensation coils used to insure the magnetic field mag-
nitude minimum is at the trap centre. The coils are held in place using a black aluminum
support structure. The coils are connected to a water cooling system to allow the use of
high currents.

field in the x and y axes to the trap centre and apply a 0.64 mT magnetic field in the z

axis are 1.63 A, 1.52 A and 1.94 A for the x, y and z axes respectively. This corresponds

to a shift of the magnetic field minimum by 68µm, 140µm and 128µm respectively.

7.1.2 Measuring the magnetic field gradient

The magnetic field gradient at the trap centre was measured by finding the resonant

frequency of a magnetic field sensitive transition with the ion at different axial positions

close to the trap centre. The ion was moved along the trap axis by adjusting the voltage

of the endcap electrodes as described in chapter 2. The ion’s distance from the trap centre

was measured by observing the ion’s image position on the CCD array.

The CCD array pixel size was first calibrated as follows. The axial secular frequency,

v of two trapped ions is measured6 and used to calculate the actual ion-ion separation,

∆z, given by [106]

∆z =

(
e2

2πε0mv2

) 1
3

(7.1)

where m is the mass of a 171Yb+ ion. This is then compared to the measured ion-ion

separation on the CCD array.

Figure 7.7 shows the change in resonant frequency of the 2S 1
2

F = 0 to F = 1 mF = 1

transition as a function of axial distance along the trap. A fit to this data gives a magnetic

6To measure the ions secular frequency, an AC ’tickle’ voltage is applied to the trap electrode. When
the frequency of this voltage is equal to the secular frequency, the ion resonates.
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field gradient of 24.4 Tm−1. This is approximately 60 % of the gradient simulated in the

previous section. The difference is most likely due to in house adjustments of the smaller

magnets7 which may have reduced their magnetisation. Other potential error sources

include magnet placement errors, impurities within the magnet or reductions in magnet

strength resulting from the vacuum system bake.
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Figure 7.7: Change in the resonant frequency of the 2S 1
2

F = 0 to F = 1 mF = 1 transition

vs axial distance along the trap. The solid line is a fit to the data and gives a field gradient
of 24.4 Tm−1.

7.2 Individual addressing

A high magnetic field gradient allows separate ions within an ion chain to be individually

addressed using microwaves by simply tuning the frequency of the microwave pulse to be

resonant with one of the magnetic field sensitive transitions of a particular ion. As an

example, figure 7.8 shows a frequency sweep, performed by adjusting the frequency of a

microwave π pulse on the 2S 1
2

F = 0 to F = 1 mF = −1 transition when two ions are present

within the trap. The two peaks correspond to the resonant frequency of the transition

for each ion. With a measured axial secular frequency equal to 2π × 268 kHz, these are

separated by 2.8 MHz which is consistent with the magnetic field gradient measured in the

previous section.

The probability that an adjacent ion to the one being addressed will become excited is

given by the addressing error, Pia. This is equal to the square of the amplitude of detuned

7The magnets were slightly too big and had to be filed down by a few hundred microns in order to fit
in position next to the trap.
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Rabi oscillations, Ω√
∆2+Ω2

, derived in appendix C and is therefore given by

Pia =
Ω2

(∆ω)2 + Ω2
(7.2)

where ∆ω is the difference in the resonant frequency of the two ions. For the data shown

within figure 7.7, this equals 0.024 %. By comparison, the lowest addressing error achiev-

able by the use of focused laser beams is only 2.5 % [89] which is two orders of magnitude

larger. The use of a magnetic field gradient is therefore a very accurate method of indi-

vidually addressing ions.
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Figure 7.8: Frequency sweep over 2S 1
2

F = 0 to F = 1 mF = −1 transition with two adja-

cent ions in a magnetic field gradient of 24.4 Tm−1. Two peaks are present, each of which
represent the transition frequency of a single ion. The difference in frequency of this trans-
ition for the two ions allows for individual addressing. The ions’ axial secular frequency
was measured to equal 2π × 268 kHz. Each point is an average of 200 measurements.

7.3 Coupling to the motional states of a single ion using

microwaves

Within a magnetic field gradient, the effective Lamb-Dicke parameter allows microwaves

to couple the internal states with the motional levels of the magnetic field sensitive states.

Subsection 7.3.1 will demonstrate this coupling by showing the resolved motional side-

bands of a single ion. The size of the sidebands give an indication of the ions temperature
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which determines whether the ion is within the required Lamb-Dicke regime. This is fur-

ther explored in subsection 7.3.2. Subsection 7.3.3 will then show the motional sidebands

of two ions.

By applying two microwave fields near resonant with the sideband frequencies of a

single ion, a σφ force is felt by the ion whose motional states resultantly traverse in phase

space as described in section 5.3. This is shown experimentally in subsection 7.3.4. To

reduce decoherence due to magnetic field fluctuations, the dressed state qubit can be used

as described in chapter 6. Subsection 7.3.5 shows the resolved motional sidebands of the

microwave dressed state qubit thereby confirming that the magnetic field gradient and

therefore the effective Lamb-Dicke parameter is felt by the dressed state qubit.

7.3.1 Motional sidebands

The magnetic field gradient of 24.4 Tm−1 combined with a typical secular frequency, v, of

2π× 267 kHz, gives an effective Lamb-Dicke parameter, ηeff , equal to 0.009. This is large

enough to allow sufficient coupling of the microwave field to the motional states of the ion

on the magnetic field sensitive transitions (see section 5.3.6).

A frequency scan over the |0〉 to |±1〉 state transitions therefore shows peaks either

side of the resonant frequencies, ω±, separated by the secular frequency, v. For example,

a frequency scan over the |0〉 to |+1〉 transition is shown in figure 7.9. This was performed

by adjusting the frequency of a microwave pulse with a length corresponding to a π pulse

on one of the sideband transitions.

These peaks are known as motional sidebands and correspond to transitions between

the motional states of the ion as shown in figure 7.10. As discussed in chapter 5, the

motional sideband peaks below and above the resonant frequency are known as red and

blue sidebands respectively. Applying a microwave field at a frequency resonant with the

first red sideband will result in a loss of a motional quanta and applying a microwave field

at a frequency resonant with the first blue sideband will result in a gain of a motional

quanta.

The relative height of the sidebands can be used to find the average motional state, n̄,

of the ion. The ratio of the probability of excitation by applying the first red sideband,

Pr to the probability of excitation by applying the first blue sideband, Pb is is related to

n̄ by [2]
Pr
Pb

=
n̄

n̄+ 1
. (7.3)

The ratio of the sideband heights in figure 7.9 is difficult to determine. While the first red
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Figure 7.9: Frequency sweep over the |0〉 to |+1〉 transition showing the resolved motional
sidebands. The peaks correspond to the transitions shown in figure 7.10. The peaks are
separated in frequency from the carrier by the secular frequency, v ≈ 2π × 267 kHz. The
Rabi frequency of the carrier and sidebands were found to equal 2π×50 kHz and 2π×8 kHz
respectively. The apparent oscillation on the carrier is due to the carrier having a different
Rabi frequency than the sideband, the oscillation peaks correspond to detuned carrier
frequencies where 62µs equals n+1

2
√

∆2+Ω2
where n is an integer (see appendix C). Each

point is an average of 200 measurements.

sideband height does appear to be slightly smaller than the first blue sideband height, the

ratio is very close to one and the difference in height of the sidebands is within the error

bars. This suggests the average motional state of the ion is very high. Another method of

estimating the ions motional quantum number is to compare the Rabi frequency of either

the red, Ωr, or the blue, Ωb, sideband to the carrier Rabi frequency, Ω0. Ωr and Ωb are

given by8 [70]

Ωr = ηe
−eta2

2

(
(n− 1)!

n!

) 1
2

L1
n−1(η2)Ω0 (7.4)

and

Ωb = ηe
−eta2

2

(
n!

(n+ 1)!

) 1
2

L1
n(η2)Ω0 (7.5)

respectively where Lba(c) is the generalised Laguerre polynomial given by [38]

Lba(c) =

∞∑
m

= 0(−1)m

 a+ b

b−m

 cm

m!
. (7.6)

8For a full derivation of this equation please refer to [70]
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Figure 7.10: Motional sidebands on the |0〉 to |+1〉 transition. ωb+ represents a transition
with the addition of a motional quanta, known as the first blue sideband and ωr+ represents
a transition minus a motional quanta, known as the first red sideband.

At low n̄, equations 7.4 and 7.5 are often approximated as [70]

Ωr = η
√
n̄Ω0 (7.7)

and

Ωb = η
√
n̄+ 1Ω0. (7.8)

Figure 7.11 shows the solution to equations 7.4 (blue) and 7.7 (red) for n̄ between 0 and

10000 for our η = ηeff = 0.009. The graph shows that in our case the approximation

given equation 7.7 only holds below n̄ ≈ 1000. Using figure 7.11, the ratio of Ωr to Ω0 can

be used to find n̄.

As n̄ increases, the ratio of Ωr to Ω0 will approach just under 0.6. As a result the

π time of all three transitions will be similar and all three peaks can be observed in one

scan. To illustrate this, figure 7.12 shows a frequency scan over the motional sidebands

on the |0〉 to |+1〉 transition when a large amount of noise was present on the DC trap

electrodes which increased the ions temperature to n̄ ≈ 10000.

The Rabi frequency of the carrier and the sidebands from figure 7.10 was found to

equal 2π × 50 kHz and 8π × 50 kHz respectively. Using figure 7.11 this gives n̄ ≈ 310.

To produce a high fidelity entanglement gate within the magnetic field gradient entan-

glement scheme, the ion must be within the Lamb-Dicke regime. The Lamb-Dicke regime

is defined as η2
eff (2n̄ + 1) << 1 (see section 5.2). With an n̄ ≈ 310 and an ηeff = 0.009,
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Figure 7.11: Graph showing how the ratio of the red sideband Rabi frequency to the
carrier Rabi frequency changes with ion temperature. The blue curve shows the exact
solution of equation 7.4 while the red curve shows the approximation given by equation
7.7 for low n̄. Both curved were calculated using a ηeff = 0.009.

η2
eff (2n̄ + 1) = 0.05. While 0.05 is less than one, it is debatable as to whether it is ‘a

lot less’ than 1. The following subsection will show how being outside the Lamb-Dicke

regime effects the fidelity of a quantum gate and will explore how high n̄ can be while still

producing a gate of high fidelity.

7.3.2 Infidelity outside of the Lamb-Dicke regime

The fidelity of the production of the entangled 1√
2
(|00〉 − i |11〉) state using the Mølmer

and Sørenson entanglement scheme9 is given by [63]

F =
1

2

(
1 +

∞∑
n=0

Pn sin(Ω̃nt)

)
(7.9)

where Pn is the initial probability of state n being occupied, t is time the state dependent

force has been applied and Ω̃n is the Rabi frequency of the |00〉 to |11〉 transition given

by [63]

Ω̃n = Ω̃

(
1− η2(2n+ 1) + η4(

5

4
n2 +

5

4
n+

1

2
+ ...

)
(7.10)

9While, as discussed in chapter 5, the Mølmer and Sørensen gate is only a special case of the a geometric
phase gate we will be using, the effect of high n̄ is the same.
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Figure 7.12: Frequency sweep over the |0〉 to |+1〉 transition showing the resolved motional
sidebands for an ion with an n̄ ≈ 10000. The peaks correspond to the transitions shown
in figure 7.10. The secular frequency v ≈ 2π × 168 kHz. Each point is an average of 200
measurements.

where Ω̃ is given by equation 5.11. Within the Lamb-Dicke regime, Ω̃n ≈ Ω̃ resulting

in F = 1. As n̄ increases, The range of Ωn begins to spread out. The time taken to

reach maximum fidelity therefore become significantly different for all the different modes

occupied. As a result, the ion becomes entangled with n and the fidelity decreases [63].

To investigate this effect further, it will first be assumed that the ion is within thermal

equilibrium and can therefore Pn be given by a Boltzmann distribution

Pn = Ae−
n
n̄ (7.11)

where A is a constant which can be determined by equating the total probability over all

n to one
∞∑
n=0

Ae−
n
n̄ =

A

1− e−
1
n̄

= 1 (7.12)

giving A = 1− e−
1
n̄ .

Using equations 7.9, 7.10 and 7.11, the minimum infidelity of an entanglement gate is

shown in figure 7.13 for an n̄ between 10 and 10000 using η = 0.009.

Using figure 7.13, an n̄ ≈ 310 will therefore result in a maximum gate fidelity of

approximately 99.9 %. This is very high and therefore the ion, when the data in figure

7.9 was taken, is within the Lamb-Dicke regime. In contrast, when the data in figure 7.12
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Figure 7.13: Infidelity of the production of the entangled 1√
2
(|00〉 − i |11〉) state vs the

average motional state, n̄, of the ion. This curve was simulated using equations 7.9, 7.10
and 7.11 with an η = 0.009. The curve is broken at low n̄ due to the limited step size of
the simulation.

was taken with a n̄ ≈ 10000, the maximum fidelity would only have been approximately

60 %. The following subsection will discuss how n̄ can be reduced in the future to allow

for higher fidelities.

Methods of reducing n̄

The only method of laser cooling used within this thesis is Doppler cooling. Using Doppler

cooling, the lowest possible ion temperature, TD, reachable is attained when [107]

∆

Γ
= −1

2
(7.13)

where ∆ is the detuning of the 369 nm cooling laser from resonance and Γ = 2π×19.6 MHz

is the linewidth of the 2S 1
2

to 2P 1
2

transition. TD is given by [107]

TD =
~Γ

2kB
(7.14)

where kB is the Boltzmann constant. Using the expression for the average energy of the

ion,

Ē = kBT = n̄~v, (7.15)
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this corresponds to an average motional state of approximately n̄ = 37 for a secular

frequency equal to 2π × 267 kHz. To reach this n̄ requires perfect cooling. To achieve

this within our experiment effects such as power fluctuations and micromotion need to be

minimised.

Once the Doppler limit has been reached, to reduce n̄ further, the ion could also be

sideband cooled10.

A different method of reducing η2(2n + 1) and thereby move further into the Lamb-

Dicke regime is to increase the secular frequency. This would have the dual effect of

reducing both ηeff and n̄ as ηeff ∝ 1

v
3
2

and n̄ ∝ 1
v giving η2

eff (2n̄+ 1) ∝ 1
v4 .

7.3.3 Motional sidebands of two ions

As discussed in section 5.3.3, there are two axial modes present for two ions known as

the centre of mass and stretch modes. Figure 7.14 shows a frequency sweep over the

|0〉 to |−1〉 transition with two ions present in the trap. Four different sideband peaks

are present which correspond to the red and blue sidebands of the stretch and centre of

mass modes. As expected, the centre of mass mode sidebands are separated in frequency

from the carrier peak by a secular frequency, in this case ω−,C = ω− ± 2π × 263 kHz, and

the stretch mode sidebands are separated by
√

3 times the secular frequency, in this case

ω−,C = ±
√

3ω−,C = ω− ± 2π × 455 kHz.

7.3.4 Generation of a σφ state dependent force

As described in section 5.3, the application of two radiation fields with frequencies slightly

detuned from the red and blue motional sidebands of a transition, (ωb+ = ω+ + v− δ and

ωr+ = ω+− v+ δ or ωb− = ω−+ v− δ and ωr− = ω−− v+ δ where δ is the detuning from

the secular frequency, v), to a trapped ion will result in a state dependent force in the σφ

basis where φ = π
2 , that is, where an ion in the state |φ0〉 = 1√

2
(|0〉+ i |1〉) experiences a

different force to an ion in the state |φ1〉 = 1√
2

(|0〉 − i |1〉).

The Hamiltonian of an ion under these fields is given by (see chapter 5)

ĤI =
~η

eff
Ω

2
(â†ei(−v+δ) + âei(v−δ)) (|φ0〉 〈φ0| − |φ1〉 〈φ1|) (7.16)

which, assuming the ion is initially in the motional ground state, results in the following

10For details on sideband cooling, please refer to the thesis by James McLoughlin [37]
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Figure 7.14: Frequency sweep over the |0〉 to |−1〉 transition showing the resolved motional
sidebands of the centre of mass and stretch modes. The centre of mass mode and stretch
mode peaks are separated in frequency from the carrier by v and

√
3v respectively where

v ≈ 2π × 263 kHz. The Rabi frequency of the carrier and sidebands were found to equal
2π × 50 kHz and 2π × 8 kHz respectively. Each point is an average of 200 measurements.

evolution of the |φ0〉 and |φ1〉 states

|φ0(t)〉 = D(α(t))eiΦ(t) |φ0〉 (7.17)

= eiΦ(t) |α(t)〉 |φ0〉 , (7.18)

|φ1(t)〉 = D(−α(t))eiΦ(t) |φ1〉 (7.19)

= eiΦ(t) |−α(t)〉 |φ1〉 (7.20)

where |α(t)〉 is a coherent motional state defined in appendix D as

|α(t)〉 = e
−|α(t)|2

2

∞∑
n=0

α(t)n√
n!
|n〉 (7.21)

where α(t) is given by

α(t) =
Fx0

~δ
(1− eiδt) (7.22)

where x0 =
√

~
2mv , m is the ions mass and the state dependent force F =

√
2η

eff
~Ω.

An ion in the |0〉 state is in a superposition of |φ0〉 and |φ1〉,

|0〉 =
|φ0〉+ |φ1〉√

2
(7.23)



157

and will therefore evolve when acted on by the Hamiltonian given in equation 7.16 as

|0〉 → 1√
2

(
eiΦ(t) |α(t)〉 |φ0〉+ eiΦ(t) |−α(t)〉 |φ1〉

)
(7.24)

= eiΦ(t) (|α(t)〉+ |−α(t)〉) |0〉+ ieiΦ(t) (|α(t)〉 − |−α(t)〉) |1〉 . (7.25)

The probability of finding the ion in the |1〉 state at time, t, after a force in the σπ
2

direction is applied to an ion initially in the |0〉 state is therefore given by

P (|1〉) =
∣∣∣ieiΦ(t) (|α(t)〉 − |−α(t)〉)

∣∣∣2 . (7.26)

This can be simplified using the coherent state identity 〈α|β〉 = e−
|α|2

2 e−
|β|2

2 eα
∗β [108] to

give

P (|1〉) =
1

2

(
1− e−2|α(t)|2

)
. (7.27)

This probability will equal zero when

tc = nr
2π

δ
(7.28)

where nr is an integer corresponding to the number of rotations made by the motional

states in phase space. As discussed in chapter 5, when a state dependent force is applied

to the ion, the motional states of two orthogonal states, in this case |φ0〉 and |φ1〉 will

follow opposite circular trajectories in phase space. After a time tc, the motional states

have returned to their initial phase space positions and the ion will return to its initial

state, |0〉, with the addition of a phase, ΦT , given by equation 5.35. The probability of

being in |1〉 at these times is therefore equal to zero.

The derivation of the equation 7.27 did not take into account the effects of temperature

or heating on the ions evolution. These are explored in [70] and result in the following

modified version of equation 7.27,

P (|1〉) =
1

2

(
1− e−

1
2
ṅt( 2F

~δ )
2−(n+ 1

2)|2α(t)|2
)

(7.29)

where n is the ions average motional state and ṅ is the heating rate of the ion.

Figure 7.15 shows the experimental probability of an ion initially in the |0〉 state being

in the |1〉 state after two microwave fields have been incident on the ion for a fixed time,
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Figure 7.15: Probability of an ion initially in the |0〉 state being in the |1〉 state after two
microwave fields resonant with the first red and blue sidebands of the |0〉 to |+1〉 transition
plus/minus a detuning, δ, are applied simultaneously for a time, tc = 180µs. The carrier
Rabi frequency was measured to be 2π×41 kHz and the secular frequency was measured to
equal 2π × 267 kHz giving a ηeff = 0.009. Each point is an average of 200 measurements.
A fit to equation 7.29 is also shown with n = 400 and ṅ = 10000 quanta per second.

tc = 180µs. The frequencies of these two fields are resonant with the red and blue motional

sidebands of the ion with the respective addition and subtraction of a variable detuning,

δ. The pulse sequence is given in figure 7.16.

As expected, periodic dips are present in the probability. The ions motional states are

therefore moving in phase space which confirms the presence of a state dependent force.

The fit to equation 7.29 of the data in figure 7.15 gives n̄ = 400 and ṅ = 10000.

While these are both very high, it should be noted that they are overestimates for two

main reasons. Firstly, due to the short pulse time, the effect of heating on the ion will be

minimal, therefore the error on the fit is quite high, while ṅ = 10000 was the best fit to

the data, it was found that any fit with an ṅ between 0 and 10000 would fit within the

error bars of the data. Secondly, equation 7.29 did not take into account other sources

of decoherence which can effect the ion in a similar way to a high n̄ and ṅ. Due to the

use of a magnetic field sensitive state, magnetic field fluctuations will be the main source

of decoherence and result in a decoherence time of less than 500µs (see chapter 3). This

is less than three times the time the state dependent force is applied for in figure 7.15

and therefore decoherence effects will be expected. Nevertheless, the n̄ and ṅ should be
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Figure 7.16: The pulse sequence used to produce a σφ state dependent force. The results
of the application of this pulse sequence are given in figure 7.15

minimised to achieve the maximum possible gate fidelity11.

As discussed in section 7.3.1, to first reduce n̄ to the Doppler limit, experimental effects

such as micromotion and power fluctuations need to be minimised. The Doppler limit at a

secular frequency of 2π× 267 kHz equals 37. To reduce n̄ further, the ion can be sideband

cooled.

A high heating rate, ṅ is caused by a large amount of unwanted electric field noise

coupling to the ions motional modes [109]. This noise could be a result of, for example,

electrical noise on the trap electrodes [109]. The effect of this noise can be reduced by

using the stretch mode of two ions [110]. When the stretch mode is excited, the ions move

out of phase with each other. As a result, the excitation of this mode by uniform electric

fields which can excite and therefore cause heating in the centre of mass and single ion

modes, is significantly reduced. While the mode is still susceptible to differential electric

fields as well as heating of the radial modes, the heating rate of the stretch mode can be

up to two orders of magnitude less than the centre of mass mode [110].

As shown in figure 7.15, a dip in probability is present at δ = 0. This dip is repeatable

and not predicted by the theory. Investigations into this have included potential power

and detuning differences between the two microwave fields, magnetic field noise and micro-

motion. All investigations have however thus far remained inconclusive and this remains

an area for further study.

11A detailed discussion of the infidelities within a σφ phase gate caused by being outside the Lamb-Dicke
regime as well as having a high heating rate is given in [63]
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7.3.5 Motional coupling within the dressed states

As discussed in chapter 6, to reduce decoherence due to magnetic field fluctuations, dressed

state qubits can be used. Figure 7.17 shows a frequency sweep of the RF over the |0′〉

to |D〉 transitions of the dressed state qubit. This is analogous to the experiment shown

in figure 6.15 however now a magnetic field gradient is present which allows the motional

sidebands to be seen. Six peaks are observed which correspond to the six different motional

transitions as shown in figure 7.18. This confirms that while insensitive to magnetic field

fluctuations, the effective Lamb-Dicke parameter from the magnetic field gradient is still

present for the dressed state qubit.

Similarly to the non dressed qubit, the red and blue sidebands in figure 7.17 are all

of a similar height which suggests a high n̄. The sideband widths are however smaller for

the dressed state qubit in relation to the bare state qubit. This is due to the smaller Rabi

frequency.

To produce a σφ state dependent force on the dressed state qubit, RF frequencies

resonant with either ωr1 and ωb1 or ωr2 and ωb2 as labeled in figure 7.18 would be applied

simultaneously to the dressed ion. The motional states of the dressed qubit will then

evolve in time as described by equation 7.29.

7.4 Future work: two ion entanglement

The following describes the additional experimental setup required to use the magnetic

field gradient to produce a two ion entanglement gate which is insensitive to magnetic

field fluctuations.

To produce a two ion gate on the dressed state qubit, firstly two ions need to be

simultaneously prepared into the dressed state. RF frequencies near resonant with the

stretch mode sidebands of the two dressed state qubits will then need to be applied to

produce the required state dependent force on the two ions. Finally a method to detect

the final state of the two ions is required.

Dressing two ions

Firstly the two ions need to be simultaneously prepared into the dressed state, |D〉, to

shield them from decoherence caused by magnetic field fluctuations. Due to the Zeeman

effect, the |−1〉 and |+1〉 states will be at different frequencies for each of the two ions

therefore four dressing fields are required as shown in figure 7.19. Two STIRAP operations,
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ωr1 ωb2

ω1 ω2
ωr2

ωb1

Figure 7.17: RF frequency sweep over the |0′〉 to |D〉 transitions while the dressing fields
resonant with the |0〉 to |±1〉 transitions are incident on the ion. Six peaks are present
which correspond to the six first order motional transitions as shown in figure 7.18. The
data was taken with a RF pulse time equal to 400µs. The Rabi frequency of the carrier
and sidebands was found to equal 2π × 7 kHz and 2π × 1 kHz respectively. Each point is
an average of 200 measurements.

one for each qubit, will need to be performed simultaneously. This can be produced by

simply replicating the setup present before the combiner in figure 6.4 to produce a second

set of STIRAP pulses and adding these to the combiner.

Applying the two ion state dependent force

In order to apply a state dependent force simultaneously to the two dressed state qubits,

RF frequencies resonant with the red and blue stretch mode motional sidebands of a |0′〉

to |D〉 transition of both ions need to be applied to the ion. An example set of these

required frequencies are shown in figure 7.20. These will be produced separately by RF

frequency supplies, combined, amplified and sent through a resonant LCR circuit similar

to that described in section 6.3.3 and as before, the RF fields will be applied to the ion

using the inductor coil. The circuit needs to be able to withstand high power and have a

bandwidth wide enough to allow all four frequencies to be applied simultaneously.
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Figure 7.18: The origin of the six first order motional transitions on the |0′〉 to |D〉 qubit.

Two ion detection

During detection, the photons from both ions will be collected by the imaging optics and

incident on the same PMT. The resultant detection histogram is shown in figure 7.21

for the four possible states. The |01〉 and |10〉 states both consist of one dark and one

bright ion and therefore give the same photon distribution and cannot be distinguished.

To determine the state of an ion, two discriminators are needed. The first discriminator,

d1 lies between the |00〉 and |01〉/|10〉 distributions and the second discriminator d2 lies at

the crossing point of the |01〉/|10〉 and |11〉 distributions. The number of photons collected

during detection, np will therefore imply the ion is in the |00〉 state if np ≤ d1, the |01〉/|10〉

state if d1 < np ≤ d2 or the |11〉 state if np > d2.

Assuming background scatter is negligible, the optimum value of d1 will always be equal

to zero (see section 3.2). Figure 7.22 shows the detection fidelity12 of two ion detection as

a function of detection time when d1 = 0 and d2 equals 10 (orange), 30 (yellow), 50 (blue),

70 (green) and 90 (purple) for a 369 nm intensity equal to 0.1 Isat. This graph is simulated

by comparing the detectable photon distributions given off by |00〉, |01〉 and |11〉 states

during detection with d1 and d2. These photon distributions are found by combining the

single ion photon distributions from equations 3.23 and 3.24 and using the rate equation

program using the method described in section 3.2.

Figure 7.22 shows that, for a fixed d2, as the detection time is increased, the fidelity

will initially increase as the increasing number of photons emitted by the bright ions

12The probability that the ions state is correctly determined by comparing np, d1 and d2
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Figure 7.20: An example of the RF frequencies required to simultaneously apply a σφ force
to two dressed state ion qubits.

separate out the photon distributions. When the detection time becomes such that the

crossing point between the |01〉 / |10〉 and |11〉 distributions reaches d2, the fidelity reaches

its maximum value. The fidelity then decreases again as the |01〉 / |10〉 distribution begins

to cross over d2. The plateau in fidelity at around 66 % is present when both the |01〉 / |10〉

and |11〉 distributions lie above d2. At high detection times, off resonant scattering results

in a further decrease in fidelity. As shown in figure 7.22, an optimum d2 and detection

time exist which give the maximum fidelity. These optimum values depend on the 369 nm

intensity. Figure 7.23 shows the optimum fidelity, detection time and d2 value for 369 nm

intensities equal to 10 (orange), 1 (green), 0.1 (black), 0.01 (blue) and 0.001 (red). Figure

7.23 shows that, as with single ion detection, to obtain the maximum fidelity, the 369 nm

intensity needs to be as low as possible. This does however result in larger detection times
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Figure 7.21: State detection histogram for two ions after the ion has been prepared in the
|00〉, |01〉 and |11〉 states. The |00〉 state was prepared with 60µW of 369 nm light focused
down to 60µm with 45 % of this light contained within the 2 GHz sidebands. The |01〉 and
|11〉 states were prepared by applying microwave pulses on the magnetic field sensitive
|0〉 to |+1〉 transition of the particular ions. During detection 1.2µW of 369 nm light was
focused down to a beam waist of 60µW for 3 ms. The 935 nm beam intensity was equal to
500 Isat. The graph is an average of 1000 measurements.

being required.

As shown in figure 7.23, the maximum detection fidelity is only approximately 90 %.

The relatively large infidelity compared with single ion detection is due to the significant

overlap in the |01〉/|10〉 and |11〉 photon distributions. It should also be noted that in real-

ity, the infidelity will be higher due to effects of background scatter such as the broadening

of the |00〉 photon distribution as demonstrated within figure 7.21.

To counter this infidelity, normalisation techniques can be used such as the method

outlined in [111].
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Figure 7.22: Graph showing the detection infidelity vs detection time of two ion detection
with d1 = 0 and d2 = 10 (orange), 30 (yellow), 50 (blue), 70 (green) and 90 (purple). The
369 nm and 935 nm intensities were set to equal 0.1 Isat and 10 Isat respectively.

7.5 Summary

This chapter has showed the progress towards a high fidelity two ion entanglement gate

using microwave and RF fields. Firstly a magnetic field gradient of 24.4 Tm−1 has been

produced using in vacuum permanent magnets and used to individually address ions.

The presence of this gradient creates an effective Lamb-Dicke parameter which allows the

microwave fields to couple the internal and motional states of the ion. This has been used

to produce a state dependent force on a single ion which is the key ingredient required

for a geometric phase gate. The coupling of the internal states of a dressed state qubit

to the ion’s motional states is also performed using RF fields. This confirms that the

effect of the magnetic field gradient is felt by the dressed qubit which allows the gate to

be performed while being shielded from decoherence due to magnetic field fluctuations.

Finally, the remaining experimental steps required to perform a two ion entanglement gate

are summarised. Additions to the experimental setup will be required in order to address

the additional frequencies associated with the second ion.
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Chapter 8

Conclusion

In this thesis I have shown the progress towards the implementation of a two qubit entan-

glement gate using trapped ytterbium ions.

Firstly the experimental setup used to successfully trap ytterbium ions was introduced

and described. This includes a macroscopic RF Paul trap which provides the trapping

potential, an ultra high vacuum system to reduce decoherence due to particle collisions,

lasers required for laser cooling and optical pumping and an imaging system to magnify,

observe and measure the photon count rate from the ions.

Next I introduced the 171Yb+ qubit as the hyperfine sublevels of the 2S 1
2

level and used

rate equations to optimise the state preparation and detection. As a result of the Zeeman

effect, the F = 1 sublevel of the 2S 1
2

level is split and separate magnetic field sensitive

and insensitive qubits were presented. Coherent manipulation on both these qubits was

performed and the coherence time of the magnetic field insensitive qubit was found using

a Ramsey method to be 1.5 seconds. The coherence time of the magnetic field sensitive

qubit is however found to be several orders of magnitude smaller due to decoherence from

magnetic field fluctuations.

I then investigated the effect of fluctuations in the frequency of the 369 nm laser during

state preparation and detection and built a system to stabilise these fluctuations to the

required level. This system begins by stabilising a 780 nm laser using saturated absorption

spectroscopy of a rubidium vapor cell and then uses this to stabilise a Fabry-Perot cavity.

The 739 nm laser, which is doubled to form the 369 nm laser, is then stabilised to this cavity

using a dual resonance cavity lock. The users guide for the system is also presented.

I review the main experimental methods of two ion entanglement including the Cirac

and Zoller gate [61], the geometric phase gate using lasers [27,62,63] or microwaves within

a magnetic field gradient [34] and the ultrafast gate using a pulsed laser system [64]. A
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comparison of the methods finds that a geometric phase gate using microwaves within

a static magnetic field gradient is the most suitable way forward for our laboratory as it

avoids the main sources of decoherence present in laser gates, namely spontaneous emission

as well as intensity and frequency fluctuations. In addition, the use of microwaves allows for

a higher degree of scalability compared with lasers. The magnetic field gradient creates

an effective Lamb-Dicke parameter which allows microwave radiation to couple to the

motional states of magnetic field sensitive qubit states. The use of magnetic field sensitive

states does however leave the system susceptible to a high degree of decoherence due to

magnetic field fluctuations.

To reduce this decoherence, I then present a method to shield the ion from magnetic

field fluctuations using microwave dressed states. Dressing the ion with microwaves allows

the use of a new qubit which suppresses magnetic field fluctuations while still allowing

motional coupling using microwaves as a result of a magnetic field gradient. The prepar-

ation of this qubit is described and optimised and two methods of coherent manipulation

of this new qubit using RF fields is presented. This includes a new method which allows

for arbitrary rotations around the Bloch sphere.

I then go on to present the experimental progress towards a two ion entanglement

gate within these microwave dressed states. Firstly in-vacuum permanent magnets were

attached to the RF Paul trap. The magnetic field gradient given by these magnets was

measured to equal 24 Tm−1 which is currently the highest recorded static magnetic field

gradient at the position of a trapped ion. Individual addressing of ions using this gradient

is then shown and the entanglement of a single ion’s internal and motional states within

the bare qubit states is demonstrated in the form of Schrodinger cat states.

Finally, the first ever observation of motional coupling of the microwave dressed state

qubit is presented and the remaining steps required for two ion entanglement are discussed.
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Appendix A

Rate equation program

The following is the Mathematica code used to solve the rate equation of 171Yb+ as

described in chapter 3.

Defining variables

Wavelengths and frequencies being applied.

λ369 = 369.52604 10−9;λ369 = 369.52604 10−9;λ369 = 369.52604 10−9;

λ935 = 935.18768 10−9;λ935 = 935.18768 10−9;λ935 = 935.18768 10−9;

sb369 = 2.1049 109;sb369 = 2.1049 109;sb369 = 2.1049 109;

sb935 = 3.06950 109;sb935 = 3.06950 109;sb935 = 3.06950 109;

eom = 14.747712124 109;eom = 14.747712124 109;eom = 14.747712124 109;

Intensities of the lasers in terms of Isat.

I369 = 0.1;I369 = 0.1;I369 = 0.1;

I935 = 10;I935 = 10;I935 = 10;

Frequencies present at the ion

f1 = spl/λ369;f1 = spl/λ369;f1 = spl/λ369;

f2 = f1 + sb369;f2 = f1 + sb369;f2 = f1 + sb369;

f3 = f1− sb369;f3 = f1− sb369;f3 = f1− sb369;

f4 = f1 + eom;f4 = f1 + eom;f4 = f1 + eom;

f5 = f1− eom;f5 = f1− eom;f5 = f1− eom;

f6 = spl/λ935;f6 = spl/λ935;f6 = spl/λ935;

f7 = f6 + sb935;f7 = f6 + sb935;f7 = f6 + sb935;

f8 = f6− sb935;f8 = f6− sb935;f8 = f6− sb935;
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Set the relative fraction of the power within sidebands

fr1 = 1;fr1 = 1;fr1 = 1;

fr2 = (1− fr1)/2;fr2 = (1− fr1)/2;fr2 = (1− fr1)/2;

fr3 = (1− fr1)/2;fr3 = (1− fr1)/2;fr3 = (1− fr1)/2;

fr4 = 0;fr4 = 0;fr4 = 0;

fr5 = 0;fr5 = 0;fr5 = 0;

fr6 = 1;fr6 = 1;fr6 = 1;

fr7 = (1− fr6)/2;fr7 = (1− fr6)/2;fr7 = (1− fr6)/2;

fr8 = (1− fr6)/2;fr8 = (1− fr6)/2;fr8 = (1− fr6)/2;

Set polarisation axis of 369 nm light.

frsm = 1/3;frsm = 1/3;frsm = 1/3;

frp = 1/3;frp = 1/3;frp = 1/3;

frsp = 1− frsm− frp;frsp = 1− frsm− frp;frsp = 1− frsm− frp;

Magnetic field present

T=0.00034;T=0.00034;T=0.00034; dbf=T mu/h;dbf=T mu/h;dbf=T mu/h;

Defining constants

hbar=1.05457148 10−34;hbar=1.05457148 10−34;hbar=1.05457148 10−34;

h=hbar 2 π ;h=hbar 2 π ;h=hbar 2 π ;

spl=2.99792458 108;spl=2.99792458 108;spl=2.99792458 108;

mu=9.274 10−24;mu=9.274 10−24;mu=9.274 10−24;

Required wavelengths and frequencies

thλ369=369.52604 10−9;thλ369=369.52604 10−9;thλ369=369.52604 10−9;

thλ935=935.18768 10−9;thλ935=935.18768 10−9;thλ935=935.18768 10−9;

thsb369=2.1049 109;thsb369=2.1049 109;thsb369=2.1049 109;

thsb935=3.06950 109;thsb935=3.06950 109;thsb935=3.06950 109;

thsb9352=0.862 109;thsb9352=0.862 109;thsb9352=0.862 109;

thmw=12.64 109;thmw=12.64 109;thmw=12.64 109;
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Frequencies which resonate with transitions within 171Yb+

thf1=spl/ thλ369;thf1=spl/ thλ369;thf1=spl/ thλ369;

thf2=thf1+thsb369;thf2=thf1+thsb369;thf2=thf1+thsb369;

thf4=thf1+thmw;thf4=thf1+thmw;thf4=thf1+thmw;

thf6=spl/ thλ935;thf6=spl/ thλ935;thf6=spl/ thλ935;

thf7=thf6-thsb935;thf7=thf6-thsb935;thf7=thf6-thsb935;

thf8=thf1+thmw+thsb369;thf8=thf1+thmw+thsb369;thf8=thf1+thmw+thsb369;

thf10=thf6-thsb9352;thf10=thf6-thsb9352;thf10=thf6-thsb9352;

thf9=thmwthf9=thmwthf9=thmw;

Defining matrices for state to state transitions

Selection rules: polerisation.

pol = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},pol = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},pol = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, frsp, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsm, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, frsp, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsm, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, frsp, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsm, frp, frsm, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{frp, frsp, 0, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsp,0, frsp, frp, 0, 0, 0, 0, 0, 0, 0, 0},{frp, frsp, 0, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsp,0, frsp, frp, 0, 0, 0, 0, 0, 0, 0, 0},{frp, frsp, 0, frsm, 0, 0, 0, 0, 0, 0, 0, 0}, {frsp,0, frsp, frp, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};

Selection rules:∆ F = 0, ±1, F = 0 -x-> F = 0.

beta = {{0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1},beta = {{0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1},beta = {{0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1},

{0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1},{0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1},{0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0},{0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0},{0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

alpha= {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},alpha= {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},alpha= {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},{1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},{1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}};

Branching ratios
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dkj={{0,1,1,1,0,0.332,0.332,0.332,0,0,0.2455,0},dkj={{0,1,1,1,0,0.332,0.332,0.332,0,0,0.2455,0},dkj={{0,1,1,1,0,0.332,0.332,0.332,0,0,0.2455,0},

{0,0,0,0,0.332,0.332,0.332,0,0,0,0.2455,0.327},{0,0,0,0,0.332,0.332,0.332,0,0,0,0.2455,0.327},{0,0,0,0,0.332,0.332,0.332,0,0,0,0.2455,0.327},

{0,0,0,0,0.332,0.332,0,0.332,0,0,0.2455,0.327},{0,0,0,0,0.332,0.332,0,0.332,0,0,0.2455,0.327},{0,0,0,0,0.332,0.332,0,0.332,0,0,0.2455,0.327},

{0,0,0,0,0.332,0,0.332,0.332,0,0,0.2455,0.327},{0,0,0,0,0.332,0,0.332,0.332,0,0,0.2455,0.327},{0,0,0,0,0.332,0,0.332,0.332,0,0,0.2455,0.327},

{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0.004,0.002,0.002,0.002,0,0,0.009,0.018},{0,0,0,0,0.004,0.002,0.002,0.002,0,0,0.009,0.018},{0,0,0,0,0.004,0.002,0.002,0.002,0,0,0.009,0.018},

{0,0,0,0,0,0.002,0.002,0.002,0,0,0.009,0},{0,0,0,0,0,0.002,0.002,0.002,0,0,0.009,0},{0,0,0,0,0,0.002,0.002,0.002,0,0,0.009,0},

{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}};{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}};{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}};

Decay rates

decayrate = {3.17 10−8, 3.17 10−8, 3.17 10−8, 3.1710−8, 3.17 10−8,decayrate = {3.17 10−8, 3.17 10−8, 3.17 10−8, 3.1710−8, 3.17 10−8,decayrate = {3.17 10−8, 3.17 10−8, 3.17 10−8, 3.1710−8, 3.17 10−8,
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Resonant frequencies

res = {{0, thf9, thf9, thf9, 0, thf8− dbf, thf8, thf8 + dbf, 0, 0, 0, 0},res = {{0, thf9, thf9, thf9, 0, thf8− dbf, thf8, thf8 + dbf, 0, 0, 0, 0},res = {{0, thf9, thf9, thf9, 0, thf8− dbf, thf8, thf8 + dbf, 0, 0, 0, 0},

{0, 0, 0, 0, thf1 + dbf, thf2, thf2 + dbf, 0, 0, 0, 0, 0},{0, 0, 0, 0, thf1 + dbf, thf2, thf2 + dbf, 0, 0, 0, 0, 0},{0, 0, 0, 0, thf1 + dbf, thf2, thf2 + dbf, 0, 0, 0, 0, 0},

{0, 0, 0, 0, thf1, thf2− dbf, 0, thf2 + dbf, 0, 0, 0, 0},{0, 0, 0, 0, thf1, thf2− dbf, 0, thf2 + dbf, 0, 0, 0, 0},{0, 0, 0, 0, thf1, thf2− dbf, 0, thf2 + dbf, 0, 0, 0, 0},

{0, 0, 0, 0, thf1− dbf, 0, thf2− dbf, thf2, 0, 0, 0, 0},{0, 0, 0, 0, thf1− dbf, 0, thf2− dbf, thf2, 0, 0, 0, 0},{0, 0, 0, 0, thf1− dbf, 0, thf2− dbf, thf2, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf10, thf6}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf7, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf10, thf6}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf7, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf10, thf6}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, thf7, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

State populations

Npop = {{n1}, {n2}, {n3}, {n4}, {n5}, {n6}, {n7}, {n8}, {n9}, {n10}, {n11}, {n12}};Npop = {{n1}, {n2}, {n3}, {n4}, {n5}, {n6}, {n7}, {n8}, {n9}, {n10}, {n11}, {n12}};Npop = {{n1}, {n2}, {n3}, {n4}, {n5}, {n6}, {n7}, {n8}, {n9}, {n10}, {n11}, {n12}};

Defining array for fields present at the ion

Intensity = {I369fr1, I369fr2, I369fr3, I369fr4, I369fr5, I935fr6, I935fr7, I935fr8};Intensity = {I369fr1, I369fr2, I369fr3, I369fr4, I369fr5, I935fr6, I935fr7, I935fr8};Intensity = {I369fr1, I369fr2, I369fr3, I369fr4, I369fr5, I935fr6, I935fr7, I935fr8};

frequency = {f1, f2, f3, f4, f5, f6, f7, f8};frequency = {f1, f2, f3, f4, f5, f6, f7, f8};frequency = {f1, f2, f3, f4, f5, f6, f7, f8};
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Forming the rate equations

For[k=1,k<13,k++,For[k=1,k<13,k++,For[k=1,k<13,k++,

For[ t=1,t<13,t++,For[ t=1,t<13,t++,For[ t=1,t<13,t++,

rateeee[k,t]=alpha[[k,t]] pol[[k,t]] decayrate[[k]] decayrate[[k]] decayrate[[k]]rateeee[k,t]=alpha[[k,t]] pol[[k,t]] decayrate[[k]] decayrate[[k]] decayrate[[k]]rateeee[k,t]=alpha[[k,t]] pol[[k,t]] decayrate[[k]] decayrate[[k]] decayrate[[k]]

(dkj[[t, k]] + dkj[[k, t]])Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2(dkj[[t, k]] + dkj[[k, t]])Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2(dkj[[t, k]] + dkj[[k, t]])Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2

+decayrate[[k]]decayrate[[k]]/4),{i,8}]/4+decayrate[[k]]decayrate[[k]]/4),{i,8}]/4+decayrate[[k]]decayrate[[k]]/4),{i,8}]/4

+alpha[[t,k]]pol[[t,k]] decayrate[[t]] decayrate[[t]] decayrate[[t]] (dkj[[t,k]]+dkj[[k,t]])+alpha[[t,k]]pol[[t,k]] decayrate[[t]] decayrate[[t]] decayrate[[t]] (dkj[[t,k]]+dkj[[k,t]])+alpha[[t,k]]pol[[t,k]] decayrate[[t]] decayrate[[t]] decayrate[[t]] (dkj[[t,k]]+dkj[[k,t]])

Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2Sum[Intensity[[i]]/(4ππ((res[[t, k]] + res[[k, t]])− frequency[[i]])2

+decayrate[[t]] decayrate[[t]]/4),{i,8}]/4+beta[[k,t]] decayrate[[t]]dkj[[k,t]]]];+decayrate[[t]] decayrate[[t]]/4),{i,8}]/4+beta[[k,t]] decayrate[[t]]dkj[[k,t]]]];+decayrate[[t]] decayrate[[t]]/4),{i,8}]/4+beta[[k,t]] decayrate[[t]]dkj[[k,t]]]];

a=MatrixForm[Array[rateeee,{12,12}]];a=MatrixForm[Array[rateeee,{12,12}]];a=MatrixForm[Array[rateeee,{12,12}]];

ar1=Array[rateeee,{12,12}];ar1=Array[rateeee,{12,12}];ar1=Array[rateeee,{12,12}];

For[y=1,y<13,y++,For[y=1,y<13,y++,For[y=1,y<13,y++,

ar=Total[ar1[[All,y]]]; rateee[y,y]=ar;For[z=1,z¡13,z++,ar=Total[ar1[[All,y]]]; rateee[y,y]=ar;For[z=1,z¡13,z++,ar=Total[ar1[[All,y]]]; rateee[y,y]=ar;For[z=1,z¡13,z++,

If[y==z,rateee[y,z]=rateee[y,z],rateee[y,z]=0]]]If[y==z,rateee[y,z]=rateee[y,z],rateee[y,z]=0]]]If[y==z,rateee[y,z]=rateee[y,z],rateee[y,z]=0]]]

b=MatrixForm[Array[rateee,{12,12}]];b=MatrixForm[Array[rateee,{12,12}]];b=MatrixForm[Array[rateee,{12,12}]];

ar2=Array[rateee,{12,12}];ar2=Array[rateee,{12,12}];ar2=Array[rateee,{12,12}];

For[z = 1, z < 13, z++,For[y = 1, y < 13, y++, ratematrix[y, z] = ar1[[y, z]]− ar2[[y, z]]]]For[z = 1, z < 13, z++,For[y = 1, y < 13, y++, ratematrix[y, z] = ar1[[y, z]]− ar2[[y, z]]]]For[z = 1, z < 13, z++,For[y = 1, y < 13, y++, ratematrix[y, z] = ar1[[y, z]]− ar2[[y, z]]]]

ar4=Array[ratematrix,{12,12}];ar4=Array[ratematrix,{12,12}];ar4=Array[ratematrix,{12,12}];

c=MatrixForm[ar4];c=MatrixForm[ar4];c=MatrixForm[ar4];

State evolution

Initial state populations

n1 = 0;n1 = 0;n1 = 0;

n2 = 0;n2 = 0;n2 = 0;

n3 = 1;n3 = 1;n3 = 1;

n4 = 0;n4 = 0;n4 = 0;

n5 = 0;n5 = 0;n5 = 0;

n6 = 0;n6 = 0;n6 = 0;

n7 = 0;n7 = 0;n7 = 0;

n8 = 0;n8 = 0;n8 = 0;
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n9 = 0;n9 = 0;n9 = 0;

n10 = 0;n10 = 0;n10 = 0;

n11 = 0;n11 = 0;n11 = 0;

n12 = 0;n12 = 0;n12 = 0;

Step size and number of steps

dt = 1 10−6;dt = 1 10−6;dt = 1 10−6;

num=10000;num=10000;num=10000;

Forming solution

ar5 = MatrixExp[ar4dt];ar5 = MatrixExp[ar4dt];ar5 = MatrixExp[ar4dt];

nb = 0;nb = 0;nb = 0;

For[i = 1, i < num, i++,For[y = 1, y < 13, y++,nb = n1ar5[[y, 1]] + n2ar5[[y, 2]]For[i = 1, i < num, i++,For[y = 1, y < 13, y++, nb = n1ar5[[y, 1]] + n2ar5[[y, 2]]For[i = 1, i < num, i++,For[y = 1, y < 13, y++,nb = n1ar5[[y, 1]] + n2ar5[[y, 2]]

+n3ar5[[y, 3]] + n4ar5[[y, 4]] + n5ar5[[y, 5]] + n6ar5[[y, 6]] + n7ar5[[y, 7]] + n8ar5[[y, 8]]+n3ar5[[y, 3]] + n4ar5[[y, 4]] + n5ar5[[y, 5]] + n6ar5[[y, 6]] + n7ar5[[y, 7]] + n8ar5[[y, 8]]+n3ar5[[y, 3]] + n4ar5[[y, 4]] + n5ar5[[y, 5]] + n6ar5[[y, 6]] + n7ar5[[y, 7]] + n8ar5[[y, 8]]

+n9ar5[[y, 9]] + n10ar5[[y, 10]] + n11ar5[[y, 11]] + n12ar5[[y, 12]]; na[i, y] = nb];+n9ar5[[y, 9]] + n10ar5[[y, 10]] + n11ar5[[y, 11]] + n12ar5[[y, 12]]; na[i, y] = nb];+n9ar5[[y, 9]] + n10ar5[[y, 10]] + n11ar5[[y, 11]] + n12ar5[[y, 12]]; na[i, y] = nb];

n1 = na[i, 1]; n2 = na[i, 2]; n3 = na[i, 3]; n4 = na[i, 4]; n5 = na[i, 5]; n6 = na[i, 6];n1 = na[i, 1]; n2 = na[i, 2]; n3 = na[i, 3]; n4 = na[i, 4]; n5 = na[i, 5]; n6 = na[i, 6];n1 = na[i, 1]; n2 = na[i, 2]; n3 = na[i, 3]; n4 = na[i, 4]; n5 = na[i, 5]; n6 = na[i, 6];

n7 = na[i, 7]; n8 = na[i, 8]; n9 = na[i, 9]; n10 = na[i, 10]; n11 = na[i, 11]; n12 = na[i, 12]]n7 = na[i, 7]; n8 = na[i, 8]; n9 = na[i, 9]; n10 = na[i, 10]; n11 = na[i, 11]; n12 = na[i, 12]]n7 = na[i, 7]; n8 = na[i, 8]; n9 = na[i, 9]; n10 = na[i, 10]; n11 = na[i, 11]; n12 = na[i, 12]]

Forming arrays of the population of each state over time set by step size and number of

steps

pop=Array[na,{num-1,12}];pop=Array[na,{num-1,12}];pop=Array[na,{num-1,12}];

n1b=pop[[All,1]];n1b=pop[[All,1]];n1b=pop[[All,1]];

n2b=pop[[All,2]];n2b=pop[[All,2]];n2b=pop[[All,2]];

n3b=pop[[All,3]];n3b=pop[[All,3]];n3b=pop[[All,3]];

n4b=pop[[All,4]];n4b=pop[[All,4]];n4b=pop[[All,4]];

n5b=pop[[All,5]];n5b=pop[[All,5]];n5b=pop[[All,5]];

n6b=pop[[All,6]];n6b=pop[[All,6]];n6b=pop[[All,6]];

n7b=pop[[All,7]];n7b=pop[[All,7]];n7b=pop[[All,7]];

n8b=pop[[All,8]];n8b=pop[[All,8]];n8b=pop[[All,8]];

n9b=pop[[All,9]];n9b=pop[[All,9]];n9b=pop[[All,9]];

n10b=pop[[All,10]];n10b=pop[[All,10]];n10b=pop[[All,10]];

n11b=pop[[All,11]];n11b=pop[[All,11]];n11b=pop[[All,11]];

n12b=pop[[All,12]];n12b=pop[[All,12]];n12b=pop[[All,12]];



185



186

Appendix B

Binomial confidence interval

Upon measurement, a qubit in the state

|φ〉 = a |0〉+ b |1〉 (B.1)

will collapse into the |0〉 or |1〉 state with probability |a|2 or |b|2 respectively. To determine

the absolute values of a and b and thus a qubits final state at the end of an experiment,

the experiment is repeated a large number, N , of times. The collapsed state after each

repetition is then measured. The average of these measurements, p, will therefore give the

ratio of a and b.

The error on p will depend on the value of N and is calculated using a binomial

confidence interval [112]. This assumes that each experiment is identical and makes the

approximation that the data follows a normal distribution around the averaged value. The

error on the calculated value, p, is therefore [112]

E(p) =

√
1

N
p(1− p) (B.2)

where p±E(p) gives a confidence interval equal to one standard deviation (approximately

70 %).
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Appendix C

General solution to the two level

optical Bloch equations

The following derivation gives the solution to the two level optical Bloch equations given

by equations 3.49 and 3.50 in chapter 3,

q̇0 =iq1
Ω

2
ei(∆t+φ) (C.1)

q̇1 =iq0
Ω

2
e−i(∆t+φ) (C.2)

This derivation is based on that found in [1]. Differentiating equation C.1 with respect to

time gives

q̈0 = iq̇1
Ω

2
ei(∆t+φ) − q1

∆Ω

2
ei(∆t+φ) (C.3)

Substituting in equations C.1 and C.2 gives the following second order differential equation,

q̈0 + iq̇0∆ + q0

(
Ω

2

)2

= 0 (C.4)

The general solution to a second order differential equation is given by

q0 = aeα−t + beα+t (C.5)

where a and b are constants which depend on the initial conditions and α± are roots of

equation C.4 given by,

α± =
−i∆± i

√
∆2 + Ω2

2
(C.6)
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q1 can then be found by substituting equation C.5 into equation C.1,

q1 = −2
i

Ω

aα−e
α−t + bα+e

α+t

ei(∆t+φ)
. (C.7)

For the moment, we will assume the ion is initially in the |0〉 state (where q0 = 1 and

q1 = 0 when t = 0). The constants a and b can be found by simultaneously solving equations

C.5 and C.7 at t = 0. This gives,

a = − α+

α− − α+
,

b =
α−

α− − α+

(C.8)

The solution to the Bloch equations when the ion is initially in |0〉 is therefore equal to

q0 = − α+

α− − α+
eα−t +

α−
α− − α+

eα+t (C.9)

and

q1 = −2
i

Ω
e−i(∆t+φ) α+α−

α− − α+
(eα+t − eα−t) (C.10)

which can be expanded and then simplified using equation C.6 to give,

q0 = e
i∆t
2

(
cos
(

0.5t
√

∆2 + Ω2
)
− ∆i√

∆2 + Ω2
sin
(

0.5t
√

∆2 + Ω2
))

(C.11)

and

q1 =
iΩ√

∆2 + Ω2
e−

i∆t
2 e−iφ sin

(
0.5t

√
∆2 + Ω2

)
. (C.12)

The solutions to the Bloch equations when the ion is initially in the |1〉 state (where q0 = 0

and q1 = 1 when t = 0)are found in a similar way and are equal to,

q′0 =
iΩ√

∆2 + Ω2
e
i∆t
2 eiφ sin

(
0.5t

√
∆2 + Ω2

)
(C.13)

and

q′1 = e−
i∆t
2

(
cos
(

0.5t
√

∆2 + Ω2
)

+
∆i√

∆2 + Ω2
sin
(

0.5t
√

∆2 + Ω2
))

. (C.14)

An ion initially in the superposition state, |ψ〉 = n |0〉+m |1〉, will therefore evolve in time



189

according the following equation

|ψ(t)〉 =

 q0 q1

q′0 q′1

 n

m

 . (C.15)

These equations describe oscillations between |0〉 and |1〉 with a frequency equal to
√

∆2 + Ω2,

These are known as Rabi oscillations.

Increasing the detuning will increase the Rabi frequency however, the amplitude of the

Rabi oscillations is proportional to Ω√
∆2+Ω2

, therefore as the detuning is increased, the

amplitude of the Rabi oscillations will decrease.
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Appendix D

Motional states

The motion of an ion trapped within a potential well is quantised into a series of motional

energy levels. These are known as Fock states and are discussed in section D.1. The

application of a oscillating force to the trapped ion results in the production of coherent

states. These are linear superpositions of Fock states and are discussed in section D.2.

D.1 Fock states

A ion trapped within a potential well can be approximated to a quantum harmonic oscil-

lator. This has the Hamiltonian

Ĥ = ~v
(
a†a+

1

2

)
(D.1)

where a† and a are the creation and annihilation operators respectively. The energy

eigenvalues of such a system are equal to

Ê = ~v
(
n+

1

2

)
(D.2)

where the corresponding eigenstates are given by |n〉 where n is an integer. These are

known as Fock states and are shown in figure D.1.

The application of creation and annihilation operators to Fock states result in move-

ment between states

a† |n〉 =
√
n+ 1 |n+ 1〉 (D.3)

a |n〉 =
√
n |n− 1〉 (D.4)
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Figure D.1: Diagram showing the Fock states of an ion trapped within a potential well.

and as a result any Fock state can be written in terms of the motional ground state as

follows

|n〉 =
1√
n!

(a†)n |0〉 . (D.5)

D.2 Coherent states

The motional states of a trapped ion can also be expressed in terms of coherent states. A

coherent state, |α〉, is defined as an eigenstate of â,

â |α〉 = α |α〉 (D.6)

where 〈α|α〉 = 1 and α is a complex number.

It follows that the expectation value for the Fock state of an ion within a coherent

state is given by

〈n〉 = 〈α |n̂|α〉 (D.7)

= 〈α|ââ†|α〉 (D.8)

= |α|2 . (D.9)

|α〉 can be expressed in terms of Fock states as [108]

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (D.10)
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Using equation D.5, a coherent state can also be written in terms of the motional ground

state as

|α〉 = e
−|α|2

2

∞∑
n=0

(αa†)n

n!
|0〉 (D.11)

= eαâ
†− 1

2
|α|2 |0〉 . (D.12)

Using the Campbel-Baker-Hausdorff relation, [113]

eÂ+B̂ = eÂeB̂e[ÂB̂]/2, (D.13)

where Â and B̂ are operators which satisfy the condition
[
Â
[
Â, B̂

]]
= 0, equation D.12

can be rewritten as [108]

|α〉 = eαâ
†−α∗â |0〉 . (D.14)

A coherent state, |α〉, can therefore be thought of as being the result of applying the

displacement operator, D(α), to the motional ground state where D(α) is given by

D(α) = eαâ
†−α∗â. (D.15)

The displacement operator can be produced by applying a force to a trapped ion, this is

explored in chapter 5.

D.2.1 Phase space

The dynamics of coherent states are often visualised by plotting α on an Argand diagram

as shown in figure D.2. The expectation values of the position and momentum of a coherent

motional state are equal to the real and imaginary parts of α respectively [108].

Re(α) = 〈x〉 (D.16)

Im(α) = 〈p〉 (D.17)

The application of the displacement operator to â results in the addition of a displacement,
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x

p

α

α

Figure D.2: The position of a coherent motional state can be represented using an Argand
diagram. This is also known as the phase space picture and is often viewed in interaction
picture with respect to the ions secular motion.

α [108],

D̂†(α)âD̂(α) = â+ α. (D.18)

This means that the application of D(β) to a coherent state, |α〉, which is an eigenstate

of â, results in a displacement of the coherent state in phase space by β. This is shown in

figure D.3. In addition to this displacement, the coherent state will gain a phase, eαβ
∗−α∗β.

This phase is the key to the production of a geometric phase gate as explored in chapter

5.

α

α

α β

α
β

 D( )

αβ*-α*β
e

Figure D.3: Displacement in phase space of a coherent state, |α〉, after application of a
displacement operator D(β).
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